
this print for content only—size & color not accurate spine = 1.851" 1,800 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Author of

User Interfaces in VB .NET
(Apress)

User Interfaces in C#
(Apress)

The Book of VB 2005

Microsoft .NET Distributed
Applications

Microsoft Visual Basic .NET
Programmer’s Cookbook

Pro .NET 2.0 Windows
Forms and Custom Controls
in C#

US $49.99

Shelve in Programming/
Microsoft/.NET

User level:
Intermediate–Advanced

.NET 2.0 W
indow

s Form
s

and Custom
 Controls inVB 2005

MacDonald

THE EXPERT’S VOICE® IN .NET

Matthew MacDonald
Foreword by Shawn Burke
Development Manager, Windows Forms Team, Microsoft Corporation

Pro
.NET 2.0 Windows
Forms and Custom
Controls in VB 2005

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-694-3

9 781590 596944

54999

6 89253 59694 4

Companion eBook Available

Create modern user interfaces for Windows applications.

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Visual Basic .NET
Class Design Handbook

An Introduction to
Object-Oriented Programming

with Visual Basic .NET

Pro .NET 2.0 Windows
Forms And Custom Controls

In VB 2005

Data Entry and Validation
with C# and VB.NET

Windows Forms

Pro VB 2005 and the
.NET 2.0 Platform

Pro .NET 2.0 Windows Forms
and Custom Controls in VB 2005
Dear Reader,

When the .NET Framework first appeared, many assumed it would usher in a
new world of web-only programming. Today, four years after the initial release
of .NET 1.0, Windows applications refuse to die—in fact, they’re thriving.

With .NET 2.0, Microsoft has rediscovered Windows applications. You’ll
find long-requested features, like a flexible web-like layout model, the ability
to display HTML pages, and support for Windows XP visual styles. Entirely
new controls fill major gaps, like the modern ToolStrip and the high-powered
DataGridView. There’s even a whole new deployment system, called ClickOnce,
that offers streamlined installations from a web page and automatic updates. In
short, .NET 2.0 has everything you need to build modern Windows applications.

In this book, you’ll explore the Windows Forms toolkit in detail and learn
how to create everything from a vector-drawing program to a document-view
framework. Best of all, you’ll learn how to take your applications to the next
step by extending the .NET Framework. For example, you’ll learn how to design
over a dozen custom controls that handle everything from Wizard systems to
skinned buttons. And when you discover some of the real limitations that still
exist in .NET—like its meager sound support—you’ll find out how you can solve
the problem with other components.

If you’re looking for the most thorough book about Windows Forms user
interfaces, welcome aboard!

Matthew MacDonald (Microsoft MVP in Client Development, MCSD)

Pro

Pro .NET 2.0 Windows
Forms and Custom
Controls in VB 2005

■ ■ ■

Matthew MacDonald

Macdonald_694-3FRONT.fm Page i Friday, July 28, 2006 6:48 AM

Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005

Copyright © 2006 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-694-4

ISBN-10 (pbk): 1-59059-694-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Manish Jayaswal
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole LeClerc
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Liz Berry
Indexer: Michael Brinkman
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Macdonald_694-3FRONT.fm Page ii Friday, July 28, 2006 6:48 AM

 For Hamid and Razia

Macdonald_694-3FRONT.fm Page iii Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page iv Friday, July 28, 2006 6:48 AM

v

Contents at a Glance

Foreword . xxv

About the Author . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction . xxxiii

PART 1 ■ ■ ■ Windows Forms Fundamentals
■CHAPTER 1 User Interface Architecture . 3

■CHAPTER 2 Control Basics . 41

■CHAPTER 3 Forms . 71

■CHAPTER 4 The Classic Controls . 109

■CHAPTER 5 Images and Resources . 151

■CHAPTER 6 Lists and Trees . 173

■CHAPTER 7 Drawing with GDI+ . 209

■CHAPTER 8 Data Binding . 263

PART 2 ■ ■ ■ Custom Controls
■CHAPTER 9 Custom Control Basics . 321

■CHAPTER 10 User Controls . 337

■CHAPTER 11 Derived Controls . 365

■CHAPTER 12 Owner-Drawn Controls . 389

■CHAPTER 13 Design-Time Support for Custom Controls . 425

Macdonald_694-3FRONT.fm Page v Friday, July 28, 2006 6:48 AM

vi

PART 3 ■ ■ ■ Modern Controls
■CHAPTER 14 Tool, Menu, and Status Strips . 477

■CHAPTER 15 The DataGridView . 519

■CHAPTER 16 Sound and Video . 577

■CHAPTER 17 The WebBrowser . 589

PART 4 ■ ■ ■ Windows Forms Techniques
■CHAPTER 18 Validation and Masked Editing . 611

■CHAPTER 19 Multiple and Single Document Interfaces . 651

■CHAPTER 20 Multithreading . 689

■CHAPTER 21 Dynamic Interfaces and Layout Engines . 729

■CHAPTER 22 Help Systems . 777

PART 5 ■ ■ ■ Advanced Custom Controls
■CHAPTER 23 Skinned Forms and Animated Buttons . 811

■CHAPTER 24 Dynamic Drawing with a Design Surface . 839

■CHAPTER 25 Custom Extender Providers . 871

■CHAPTER 26 Advanced Design-Time Support . 885

■APPENDIX A Creating Usable Interfaces . 927

■APPENDIX B ClickOnce . 943

■INDEX . 963

Macdonald_694-3FRONT.fm Page vi Friday, July 28, 2006 6:48 AM

vii

Contents

Foreword . xxv

About the Author . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction . xxxiii

PART 1 ■ ■ ■ Windows Forms Fundamentals
■CHAPTER 1 User Interface Architecture . 3

Classes and Objects . 4

The Roles of Classes . 4

Classes and Types . 4

User Interface Classes in .NET . 8

Controls Are Classes. 9

Controls Can Contain Other Controls . 9

Controls Can Extend Other Controls . 12

Inheritance and the Form Class . 13

Accessing Controls . 15

Components . 17

Interacting with a Control . 19

Overriding Methods . 19

The View-Mediator Pattern . 20

Smart Controls . 21

Smart Forms . 22

Visual Studio . 22

Generating User-Interface Code in Visual Studio 24

The Component Tray . 26

The Hidden Designer Code . 27

The Application Framework . 30

Designing Windows Forms Applications . 34

Encapsulation . 34

Developing in Tiers . 37

The Last Word . 40

Macdonald_694-3FRONT.fm Page vii Friday, July 28, 2006 6:48 AM

viii ■C O N T E N T S

■CHAPTER 2 Control Basics . 41

The Windows Forms Package . 41

The .NET Solution . 42

The Control Class . 43

Control Relations . 46

Windows XP Styles . 46

Position and Size . 48

Overlapping Controls . 50

Color . 52

Alpha Blending . 55

Fonts and Text . 56

System Fonts. 57

Large Fonts . 57

Access Keys . 58

Focus and the Tab Sequence . 59

Responding to the Mouse and Keyboard . 61

Handling the Keyboard . 61

Handling the Mouse . 65

A Mouse/Keyboard Example . 67

Mouse Cursors . 68

Low-Level Members . 69

The Last Word . 70

■CHAPTER 3 Forms . 71

The Form Class . 71

Form Size and Position. 74

Scrollable Forms . 79

Showing a Form . 81

Custom Dialog Windows . 81

Form Interaction . 84

Form Ownership . 88

Prebuilt Dialogs . 90

Resizable Forms . 93

The Problem of Size . 94

Minimum and Maximum Form Size . 95

Anchoring. 95

Docking . 99

Autosizing . 100

Macdonald_694-3FRONT.fm Page viii Friday, July 28, 2006 6:48 AM

■C O N T E N T S ix

Splitting Windows . 103

Building Split Windows with Panels . 105

Other Split Windows . 106

The Last Word . 108

■CHAPTER 4 The Classic Controls . 109

The Classic Control Gallery . 109

Labels. 109

LinkLabel . 110

Button. 112

TextBox . 113

RichTextBox. 115

CheckBox and RadioButton . 120

PictureBox . 121

List Controls . 121

Other Domain Controls . 125

The Date Controls . 127

The DateTimePicker . 128

MonthCalendar . 130

Container Controls . 132

The TabControl . 133

AutoComplete . 135

Drag-and-Drop . 137

“Fake” Drag-and-Drop. 137

Authentic Drag-and-Drop . 138

Extender Providers . 141

The NotifyIcon . 144

ActiveX Controls . 147

Should You Import ActiveX Controls? . 148

The Last Word . 149

■CHAPTER 5 Images and Resources . 151

The Image Class . 151

Common Controls and Images . 152

The ImageList . 155

Resources . 158

Adding a Type-Safe Resource . 159

How Type-Safe Resources Work. 161

Form Resources . 163

Creating Additional Resource Files . 165

Macdonald_694-3FRONT.fm Page ix Friday, July 28, 2006 6:48 AM

x ■C O N T E N T S

Localization . 166

Creating a Localizable Form . 166

How Localization Works . 168

The Last Word . 171

■CHAPTER 6 Lists and Trees . 173

ListView Basics . 173

View Modes . 173

More Advanced ListViews . 181

ListView Sorting . 182

Label Editing . 186

ListView Grouping . 187

Searching and Hit Testing . 188

ListView Virtualization . 189

TreeView Basics . 193

TreeView Structure . 194

TreeView Navigation . 196

Manipulating Nodes . 199

Selecting Nodes . 200

More Advanced TreeViews . 202

Node Pictures . 203

Expanding and Collapsing Levels . 204

TreeView Drag-and-Drop . 205

The Last Word . 208

■CHAPTER 7 Drawing with GDI+ . 209

Understanding GDI+ . 210

Paint Sessions with GDI+ . 211

Accessing the Graphics Object . 211

Painting and Repainting . 212

Refreshes and Updates . 214

Painting and Resizing . 216

The Graphics Class . 217

Rendering Mode and Antialiasing . 219

Pens . 221

Brushes . 225

Drawing Text . 230

The GraphicsPath . 233

Macdonald_694-3FRONT.fm Page x Friday, July 28, 2006 6:48 AM

■C O N T E N T S xi

More-Advanced GDI+ . 235

Alpha Blending . 235

Clipping . 237

Coordinate Systems and Transformations . 239

Performing a Screen Capture . 242

Optimizing GDI+ Painting . 243

Painting and Debugging . 243

Double Buffering . 244

Painting Portions of a Window . 248

Hit Testing . 251

Painting Windows Controls . 254

The ControlPaint Class . 255

Visual Styles . 256

Visual Style Support . 257

Drawing with the VisualStyleRenderer . 258

Using a Control Renderer . 260

The Last Word . 261

■CHAPTER 8 Data Binding . 263

Introducing Data Binding . 264

.NET Data Binding. 264

Basic Data Binding . 266

Data Consumers . 266

Data Providers . 267

A Data Access Component . 267

Binding to a List (Complex Binding) . 270

Binding to a Grid (Complex Binding) . 272

Binding to Any Control (Simple Binding) . 273

Unusual Single-Value Binding . 274

Common Data-Binding Scenarios . 276

Updating with Data Binding . 276

Formatting Data with a Format String . 277

Formatting Data with the Format and Parse Events 279

Advanced Conversions . 281

Creating a Lookup Table . 284

Row Validation and Changes . 285

Macdonald_694-3FRONT.fm Page xi Friday, July 28, 2006 6:48 AM

xii ■C O N T E N T S

Data Binding Exposed . 286

Navigation with Data Binding . 288

Reacting to Record Navigation . 289

Creating Master-Detail Forms . 290

Creating a New Binding Context . 292

Validating Bound Data . 293

Binding to Custom Objects . 295

Overriding ToString() . 299

Supporting Grid Binding . 300

Automatic Data Binding . 303

Binding Directly to a Database (Table Adapters) 303

Using a Strongly Typed DataSet . 309

Binding Directly to a Custom Object . 310

Data-Aware Controls . 312

A Decoupled TreeView with Just-in-Time Nodes 314

The Last Word . 317

PART 2 ■ ■ ■ Custom Controls
■CHAPTER 9 Custom Control Basics . 321

Understanding Custom Controls . 321

Types of Custom Controls . 322

Custom Components . 324

Control Projects . 326

The Library Project . 326

The Disposable Pattern . 328

The Client Project . 330

Automatic Toolbox Support . 330

Customizing the Toolbox . 331

The GAC . 333

Creating a Key . 334

Applying a Key to a Control Assembly . 334

Attaching Keys in Visual Studio . 335

Installing a Control in the GAC. 335

The Last Word . 336

Macdonald_694-3FRONT.fm Page xii Friday, July 28, 2006 6:48 AM

■C O N T E N T S xiii

■CHAPTER 10 User Controls . 337

Understanding User Controls . 337

The Progress User Control . 338

Creating the Progress User Control . 338

Testing the Progress User Control . 340

The Back Door. 341

User Control Design . 342

An Automatic Progress Bar . 343

The Bitmap Thumbnail Viewer . 345

Creating the BitmapViewer User Control . 345

Testing the BitmapViewer Control . 351

BitmapViewer Events . 352

Performance Enhancements and Threading 354

Simplifying Layout . 356

User Controls and Dynamic Interfaces . 356

The Wizard Model . 357

The Wizard Step . 358

The Wizard Controller . 360

Testing the Wizard . 363

The Last Word . 364

■CHAPTER 11 Derived Controls . 365

Understanding Derived Controls . 365

Extending Controls . 366

Derived Controls or User Controls? . 367

The ProjectTree Control . 368

The Data Class . 369

Node Images . 371

Node Groups . 372

Adding Projects . 373

Project Selection . 375

A Custom TreeNode . 376

Design-Time Support . 377

The DirectoryTree Control . 377

Filling the Tree . 378

Directory Selection . 380

Macdonald_694-3FRONT.fm Page xiii Friday, July 28, 2006 6:48 AM

xiv ■C O N T E N T S

Deriving Forms . 380

A Simple Derived Form . 381

Making an Ancestor Control Available . 383

Adding a Property in the Ancestor Form . 383

Dealing with Events . 384

The Last Word . 387

■CHAPTER 12 Owner-Drawn Controls . 389

Understanding Owner-Drawn Controls . 389

A Simple Owner-Drawn ListBox . 390

A More Advanced Owner-Drawn ListBox . 391

An Owner-Drawn TreeView . 396

Owner-Drawn Custom Controls . 403

Double Buffering . 404

The MarqueeLabel Control. 404

The GradientPanel Control . 407

The SimpleChart Control . 411

The CollapsiblePanel Control . 417

The Last Word . 423

■CHAPTER 13 Design-Time Support for Custom Controls 425

Design-Time Basics . 425

The Key Players . 426

Basic Attributes . 427

Attributes and Inheritance . 431

The Toolbox Bitmap . 431

Debugging Design-Time Support . 433

Code Serialization . 437

Basic Serialization . 437

Default Values . 439

Making Serialization Decisions Programmatically 440

Serialization Type . 442

Batch Initialization . 443

Localizable Properties . 445

Macdonald_694-3FRONT.fm Page xiv Friday, July 28, 2006 6:48 AM

■C O N T E N T S xv

Type Conversion . 447

Dealing with Nested Objects . 447

Creating a Type Converter . 449

Attaching a Type Converter . 452

The ExpandableObjectConverter . 454

Creating a Nested Object with a Constructor 457

Custom Serialization with CodeDOM . 459

Providing Standard Values . 459

Type Editors . 462

Using Prebuilt Type Editors . 463

Using Custom Type Editors . 465

The Last Word . 474

PART 3 ■ ■ ■ Modern Controls
■CHAPTER 14 Tool, Menu, and Status Strips . 477

ToolStrip Basics . 477

The ToolStripItem . 479

The ToolStripContainer. 487

The StatusStrip and MenuStrip . 492

Creating a Status Bar . 493

ToolStrip Menus . 495

Main Menus . 499

Context Menus . 501

ToolStrip Customization . 502

Hosting Other Controls in the ToolStrip . 503

Taking Control of Overflow Menus . 508

Allowing Runtime Customization . 510

Customizing the ToolStrip Rendering . 512

The ToolStripManager . 513

Customizing a Renderer . 515

Changing the Colors of the ProfessionalToolStripRenderer 517

The Last Word . 518

Macdonald_694-3FRONT.fm Page xv Friday, July 28, 2006 6:48 AM

xvi ■C O N T E N T S

■CHAPTER 15 The DataGridView . 519

The DataGrid Legacy . 519

Introducing the DataGridView . 520

The DataGridView and Very Large Data Sources 521

Bare-Bones Data-Binding . 522

The DataGridView Objects . 524

Column Headers . 527

Creating an Unbound Grid . 528

Cell Selection. 530

Navigation Events . 533

Column-Based Sorting . 534

Formatting the DataGridView . 536

Column and Row Resizing . 536

DataGridView Styles . 543

Custom Cell Formatting . 546

Hiding, Moving, and Freezing Columns . 548

Using Image Columns . 549

Using Button Columns . 553

Editing and Validation with the DataGridView . 555

Editing Events . 557

Default Values for New Rows . 557

Handling Errors . 558

Validating Input . 560

Constraining Choices with a List Column. 562

DataGridView Customization . 564

Custom Cell Painting . 564

Custom Cells . 567

Custom Cell Edit Controls . 570

The Last Word . 575

■CHAPTER 16 Sound and Video . 577

The SoundPlayer . 577

Synchronous and Asynchronous Playback 578

System Sounds . 580

Advanced Media with DirectShow . 581

Using Quart.dll Through Interop . 581

Playing MP3, MIDI, WMA, and More . 582

Showing MPEG and Other Video Types . 586

The Last Word . 588

Macdonald_694-3FRONT.fm Page xvi Friday, July 28, 2006 6:48 AM

■C O N T E N T S xvii

■CHAPTER 17 The WebBrowser . 589

WebBrowser Basics . 589

Navigating to a Page . 590

WebBrowser Events . 592

A WebBrowser Example . 593

Printing, Saving, and Fine-Tuning. 595

Blending Web and Windows Interfaces . 597

Build a DOM Tree . 597

Extract All Links . 600

Scripting a Web Page with .NET Code . 602

Scripting an HTML Form . 605

The Last Word . 607

PART 4 ■ ■ ■ Windows Forms Techniques
■CHAPTER 18 Validation and Masked Editing . 611

Validating at the Right Time . 611

Validation Events . 613

The Validation Event Sequence . 613

Handling Validation Events . 615

Closing a Form with Validating . 616

The ErrorProvider . 617

Showing Error Icons . 618

Customizing Error Icons . 619

Regular Expressions . 621

Regular Expression Basics. 621

Validating with Regular Expressions. 624

Custom Validation Components . 625

Understanding the ASP.NET Validation Controls 626

Building the BaseValidator . 627

Building Three Custom Validators . 631

Using the Custom Validators . 634

Masked Edit Controls . 637

Creating a Mask . 638

The MaskedTextBox Class . 641

MaskedTextBox Events . 643

Registering a Custom Mask. 645

Creating Custom Masked Controls . 646

The Last Word . 650

Macdonald_694-3FRONT.fm Page xvii Friday, July 28, 2006 6:48 AM

xviii ■C O N T E N T S

■CHAPTER 19 Multiple and Single Document Interfaces 651

The Evolution of Document Interface Models . 651

MDI Essentials . 654

Finding Your Relatives . 656

Synchronizing MDI Children . 657

MDI Window List . 659

MDI Layout . 660

Merging Menus . 661

Managing Interface State. 664

Document-View Architecture . 666

A Document-View Ordering Program . 667

Multiple-Document SDI Applications . 680

Gaps in the Framework . 686

The Last Word . 687

■CHAPTER 20 Multithreading . 689

Multithreading Basics . 689

The Goals of Multithreading. 690

Options for Asynchronous Programming . 691

Asynchronous Delegates . 692

Polling and Callbacks . 694

Multithreading in a Windows Application . 696

The Worker Component . 697

The Asynchronous Call. 699

Marshalling Calls to the Right Thread . 700

Using a Delayed Update . 704

The BackgroundWorker Component . 707

A Simple BackgroundWorker Test . 707

Tracking Progress . 709

Supporting a Cancel Feature . 711

The Thread Class . 712

Locking and Synchronization . 714

Creating a ThreadWrapper. 716

Creating the Derived Task Class . 717

Creating and Tracking Threads . 719

Improving the Thread Wrapper . 721

Task Queuing . 723

The Last Word . 727

Macdonald_694-3FRONT.fm Page xviii Friday, July 28, 2006 6:48 AM

■C O N T E N T S xix

■CHAPTER 21 Dynamic Interfaces and Layout Engines 729

The Case for Dynamic User Interface . 729

Dynamic Content . 730

An Adaptable Menu Example. 731

A Database-Driven Adaptable Menu. 733

Creating Controls at Runtime . 736

Managing Control Layout . 738

The Layout Event . 738

A Simple Handmade Layout Manager . 739

Problems with the Simple Layout Manager 743

Layout Engines . 743

Creating a Custom Layout Engine. 745

The FlowLayoutPanel . 746

The FlowBreak Extended Property . 748

Margins and Padding . 749

Automatic Scrolling and Sizing . 750

The TableLayoutPanel . 751

Row and Column Styles . 752

Generating New Columns and Rows . 754

Positioning Controls . 755

Extended Properties with the TableLayoutPanel 756

Layout Panel Examples . 757

TableLayoutPanel: A Localizable Dialog Box 757

TableLayoutPanel: Bi-Pane Proportional Resizing 759

TableLayoutPanel: A List of Settings . 760

TableLayoutPanel: Forms from a File . 762

FlowLayoutPanel: A Modular Interface . 771

Markup-Based User Interface . 773

XAML . 774

WFML . 774

The Last Word . 775

■CHAPTER 22 Help Systems . 777

Understanding Help . 777

Classic “Bad Help” . 778

Types of Help . 779

Help-Authoring Tools . 783

Macdonald_694-3FRONT.fm Page xix Friday, July 28, 2006 6:48 AM

xx ■C O N T E N T S

Basic Help with the HelpProvider . 784

Simple Pop-Ups . 786

External Web Pages . 787

Compiled Help Files . 787

HTML Help with the HelpProvider . 788

Creating a Basic HTML Help File . 788

Using Context-Sensitive Help . 793

Control-Based and Form-Based Help . 794

Invoking Help Programmatically . 795

Using Database-Based Help . 796

Using Task-Based Help . 797

Creating Your Own Help . 799

Application-Embedded Support . 800

Affordances . 801

Agents . 802

The Last Word . 807

PART 5 ■ ■ ■ Advanced Custom Controls
■CHAPTER 23 Skinned Forms and Animated Buttons 811

Shaped Forms and Controls . 811

A Simple Shaped Form. 812

Creating a Background for Shaped Forms . 813

Moving Shaped Forms . 817

Shaped Controls . 818

Animated Buttons . 819

Basic Animated Buttons . 819

A Base Class for Animated Buttons . 819

Improving the Performance of Owner-Drawn Controls 834

Caching Images . 834

Reusing Images . 837

The Last Word . 838

■CHAPTER 24 Dynamic Drawing with a Design Surface 839

A Drawing Program with Controls . 839

The Shape Control . 840

The Drawing Surface . 843

Macdonald_694-3FRONT.fm Page xx Friday, July 28, 2006 6:48 AM

■C O N T E N T S xxi

A Drawing Program with Shape Objects . 848

The Shape Class . 849

The Shape Collection . 857

The Drawing Surface . 859

The Last Word . 869

■CHAPTER 25 Custom Extender Providers . 871

Understanding Extender Providers . 871

The StatusStripHelpLabel Provider . 872

Choosing a Base Class . 873

Choosing the Control to Extend . 873

Providing the Extended Property . 874

Implementing the SetXxx() and GetXxx() Methods 875

Testing the Provider . 877

Changing How Extended Properties Appear 877

The HelpIconProvider . 878

Choosing a Base Class . 878

Providing the Extended Property . 879

The Last Word . 883

■CHAPTER 26 Advanced Design-Time Support . 885

Control Designers . 885

Filtering Properties and Events . 888

Interacting with the Mouse . 893

Selection and Resize Rules . 894

Designer Verbs . 895

Designer Services . 899

Smart Tags . 904

The Action List . 905

The DesignerActionItem Collection . 908

The Control Designer . 910

Container and Collection Controls . 910

Collection Controls . 911

Container Controls . 918

Licensing Custom Controls . 920

Simple LIC File Licensing . 921

Custom LIC File Licensing . 922

More-Advanced License Providers . 923

The Last Word . 926

Macdonald_694-3FRONT.fm Page xxi Friday, July 28, 2006 6:48 AM

xxii ■C O N T E N T S

■APPENDIX A Creating Usable Interfaces . 927

Why Worry About the Interface? . 928

A Brief History of User Interfaces . 928

The Command-Line Era . 929

The Question-Answer Model . 930

The Menu-Driven Model . 932

The GUI Era . 932

Creativity vs. Convention . 934

Consistency in .NET . 934

The “Act Like Microsoft Office” Principle. 935

Administrative Utilities . 935

Know Your Application Type . 936

Know Your User. 937

Handling Complexity . 937

Segmenting Information. 938

Inductive User Interface . 939

Helpful Restrictions . 939

Restricting the User’s Ability to Make a Mistake. 939

Restricting the User’s Choices . 940

Restricting the User’s Imagination . 941

The Last Word . 941

■APPENDIX B ClickOnce . 943

The Ground Rules . 944

The ClickOnce Installation Model . 944

ClickOnce Requirements . 945

ClickOnce Limitations. 946

A Simple ClickOnce Deployment . 946

Choosing a Location . 947

Deployed Files . 951

Installing a ClickOnce Application . 952

Updating a ClickOnce Application . 953

ClickOnce Options . 954

Publish Version . 954

Updates . 955

Prerequisites . 956

Options . 957

Macdonald_694-3FRONT.fm Page xxii Friday, July 28, 2006 6:48 AM

■C O N T E N T S xxiii

ClickOnce Security . 958

ClickOnce Security Prompts . 958

Partial Trust and ClickOnce . 959

The Last Word . 961

■INDEX . 963

Macdonald_694-3FRONT.fm Page xxiii Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page xxiv Friday, July 28, 2006 6:48 AM

xxv

Foreword

The late 1990s brought us the revolution of the Internet. After 15 years of moving from a server-
based model of computing to a client/server-based model, the pendulum swung back swiftly
toward the server with the rapid growth of Web pages, HTML, and server-based applications.

There is much to like about Web applications. Designers like them, because they have lots
of great ways to apply nice-looking style sheets and layouts. Companies like Web applications,
because they do away with all the expensive and risky aspects of deploying client applications—all
that has to be done is to install the application on a Web server. There is no risk of breaking
other applications and no need to physically install the software on every machine in the orga-
nization. And for document viewing, HTML is a relatively easy language to learn, so it allows
many people to do some software development with few prior skills.

But not everything is perfect. Large-scale Web applications are difficult to write and manage.
There are differences among browsers. There aren’t very good tools for debugging and devel-
opments. The applications don’t take advantage of all the power on the client machines: hard
drives, video cards, and CPUs. And most important, the user interfaces are generally only well-
suited to the most basic data entry. If you need a real-time display or an advanced visualization,
things get very difficult.

In early 2002, Windows Forms was released as part of the Microsoft .NET Framework,
version 1.0. This changed the landscape in two fundamental ways. First, it gave programmers a
consistent, approachable API and tool set with which to build very sophisticated applications
for Microsoft Windows without having to know the Win32 SDK forward and backward. And
second, the .NET Framework and common language runtime (CLR) allowed client applications
to be deployed via a Web server. Once you got the .NET Framework installed on the client
machines, you could have true zero-cost or no-touch deployment.

In conjunction with the advantages of Windows applications with .NET 1.0, organizations
were beginning to recognize the shortcomings of Web applications in certain scenarios. As a
result, they started to deploy client applications once again.

With the release of Version 2.0 of the Microsoft .NET Framework, even more client momentum
is building. Windows Forms now allows developers to build applications with the look and feel
of not only Windows itself but of Microsoft Office as well. And they can deploy those applications
using a much-improved deployment technology called ClickOnce that is integrated directly
into the Microsoft Visual Studio 2005 design experience. Gone are the days when organizations
had to default to writing Web applications. Now they can choose the technology that is appro-
priate for the task at hand, which means they can implement their vision without compromising
the user experience. Version 1.0 of Windows Forms and the .NET Framework were a good start,
but Version 2.0 takes smart client development to the next level!

Matthew MacDonald understands these changes and has created a great resource for
developers who want to use the latest version of Windows Forms to create rich applications.
Whether your goal is to write components for internal use or a full application, this book will
help you deliver great results. Welcome back to the client.

Macdonald_694-3FRONT.fm Page xxv Friday, July 28, 2006 6:48 AM

xxvi ■F O R E W O R D

Before Windows Forms, there were application developers, and there were control developers.
Even with Visual Basic, controls were usually authored in another language like Visual C++, and
authoring them required a specific set of skills. However, with an object-oriented framework
like Windows Forms, control behavior can be customized with the same techniques as other
application development, which gives developers a powerful new tool to really make their
client applications deliver a great user experience that just can’t be matched anywhere else.
Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 does an excellent job of high-
lighting those possibilities and equipping developers with the techniques to make them a
reality. Whether you’re creating an owner-drawn TreeView, using the new layout features to
build dynamic interfaces, or creating skinned custom controls, this book shows you how.

The practical, task-based approach of Pro .NET 2.0 Windows Forms and Custom Controls
in VB 2005 allows the book to cover a wide range of Windows Forms topics but still provide the
technical depth to help developers deliver features. While many other resources read more like
technical reference documents, Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005
does an excellent job of filtering the information down to what developers really need to harness
the power and innovations of Windows Forms 2.0 and deliver truly world-class client applications.

Shawn Burke
Development Manager, Windows Forms Team

Microsoft Corporation

Macdonald_694-3FRONT.fm Page xxvi Friday, July 28, 2006 6:48 AM

xxvii

About the Author

■MATTHEW MACDONALD is an author, educator, and Microsoft MVP
(Most Valuable Professional). He’s a regular contributor to programming
journals and the author of more than a dozen books about .NET program-
ming, including User Interfaces in VB .NET: Windows Forms and Custom
Controls (Apress, 2002), The Book of VB 2005 (No Starch Press, 2006),
and Microsoft .NET Distributed Applications (Microsoft Press, 2003).
In a dimly remembered past life, he studied English literature and
theoretical physics.

Macdonald_694-3FRONT.fm Page xxvii Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page xxviii Friday, July 28, 2006 6:48 AM

xxix

About the Technical Reviewer

■MANISH JAYASWAL is a test lead on the Visual Basic .NET (VB .NET)
compiler team at Microsoft. He was a member of the VB teams that
developed VB .NET 7.0, 7.1, and 8.0. He has been reviewing books on
VB and .NET since 2004.

Macdonald_694-3FRONT.fm Page xxix Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page xxx Friday, July 28, 2006 6:48 AM

xxxi

Acknowledgments

No author can complete a book without a small army of helpful individuals. I’m deeply
indebted to the whole Apress team, including Elizabeth Seymour, Laura Cheu, Grace Wong,
Beckie Stones, and Janet Vail, who helped both editions of this book move swiftly and smoothly;
Heather Lang, who performed the copy edit; Manish Jayaswal, who performed the technical
review for the VB language translation, and many other individuals who worked behind the scenes
indexing pages, drawing figures, and proofreading the final copy. I also extend a special thanks to
Gary Cornell, who always offers invaluable advice about projects and the publishing world.

I owe a sincere thanks to Christophe Nasarre, who provided unfailingly excellent and
insightful technical review comments for the C# edition of this book—his comments helped
me to fill gaps and improve the overall quality of this book. I’ve worked with many technical
reviewers, and Christophe is clearly one of the best. Just as useful were the readers who took
time out to report problems and ask good questions about the first edition of this book.

This book was written with close support from members of the Microsoft Windows
Forms team, who took time out to review individual chapters and answer many e-mails filled
with obscure questions. Although I didn’t always know where the answers were coming from,
I can safely say that I owe thanks to Shawn Burke, Mike Harsh, Jessica Fosler, Joe Stegman,
Miguel Lacouture-Amaya, Jeff Chrisope, Mark Boulter, Scott Berry, Mike Henderlight,
Raghavendra Prabhu, Simon Muzio, Mark Rideout, and many others for their replies and
technical review comments. I’m especially indebted to Erick Ellis, who fielded all my questions
and followed up to make sure I had timely information and review comments. It was a great
experience to write this book with their feedback.

Finally, I’d never write any book without the support of my wife and these special individuals:
Nora, Razia, Paul, and Hamid. Thanks, everyone!

Macdonald_694-3FRONT.fm Page xxxi Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page xxxii Friday, July 28, 2006 6:48 AM

xxxiii

Introduction

Four years after the .NET Framework first hit the programming scene, smart client applica-
tions still refuse to die. This is significant, because when .NET first appeared, many assumed it
would usher in a new world of Web-only programming. In fact, for a short time Microsoft’s own
Web site described the .NET Framework in a single sentence as a “platform for building Web
services and Web applications”—ignoring the Windows technology that made the company
famous.

Now that the dust has settled, it’s clear that Web and Windows applications aren’t locked
in the final rounds of a life-or-death battle. Instead, both technologies are flourishing. And not
only are both technologies gaining strength, they’re also stealing some of each other’s best
features. For example, the latest release of .NET gives Web developers rich controls like menus
and trees that were previously the exclusive domain of Windows coders (or Webheads who
weren’t afraid to write a mess of hard-core, client-side JavaScript). On the other hand, Windows
applications are gaining easy Web-based deployment, more-flexible layout options, and the
ability to display HTML. All of these innovations point to many productive years ahead for Web
and Windows developers alike.

If you’ve picked up this book, you’ve already decided to learn more about programming
Windows smart clients with .NET. Although Web and Windows applications each have their
strengths and weaknesses, only Windows applications allow you to break out of the confines of
the browser and take full advantage of the client computer. With Windows Forms, you can play
sound and video, display dynamic graphics, react to the user’s actions instantaneously, and
build sophisticated windowed interfaces.

In this book, you’ll learn how to use all of these techniques to design state-of-the-art appli-
cation interfaces. Best of all, you won’t just learn how to use the existing controls of the .NET
Framework—you’ll also learn everything you need to extend, enhance, and customize them.

About This Book
This book focuses relentlessly on Windows Forms, the .NET toolkit for building modern
Windows interfaces.

In this book, you’ll learn about several sides of user interface programming. Some of the
key themes include the following:

• Dissecting the .NET controls. Although this book is not a reference, it contains an exhaustive
tour of just about every .NET user interface element you’ll ever want to use.

• Best practices and design tips. As a developer, you need to know more than how to add
a control to a window. You also need to know how to create an entire user interface
framework that’s scalable, flexible, and reusable.

Macdonald_694-3FRONT.fm Page xxxiii Friday, July 28, 2006 6:48 AM

xxxiv ■I N T R O D U CT I O N

• How to enhance .NET controls and build your own. In this book, you’ll learn key tech-
niques to extend existing controls and create your own from scratch. You’ll even learn
how to draw controls from scratch with GDI+, the remarkable .NET drawing framework.

• How to design elegant user interfaces for the average user. This subject isn’t the focus of
the book, but you’ll get a great overview from Appendix A. You’ll also learn more from
tips and notes throughout the book.

• Advanced user interface techniques. Features are neat, but how do you use them? In this
book, you’ll see practical examples of common techniques like document-view architecture,
validation, and hit testing. You’ll also learn how to dynamically generate forms from a
database, unshackle data binding, and build an integrated help system.

Of course, it’s just as important to point out what this book doesn’t contain. You won’t find
the following subjects in this book:

• A description of core .NET concepts. These key concepts, like namespaces, assemblies,
exception handling, and metadata, are explained in countless books, including a number of
excellent C# and Visual Basic titles from Apress.

• A primer on object-oriented design. No .NET programmer can progress very far without
a solid understanding of classes, interfaces, and other .NET types. In this book, many
examples rely on these basics, using objects to encapsulate, organize, and transfer
information.

• A reference for Visual Studio 2005. The new integrated design environment provides
powerful customization, automation, and productivity features that deserve a book of
their own. Though this book assumes you’re using Visual Studio and occasionally points
out an often-overlooked feature, it also assumes that you already know your way around
the development environment.

You’ll get the most out of this book if you’ve already read another, more general .NET book.
If you haven’t learned the .NET fundamentals yet, you’ll still be able to work through this book,
but you’ll need to travel at a slower pace, and you may need to refer to the MSDN Help files to
clear up issues you’ll encounter along the way.

■Note This book is targeted at experienced developers who want to get the most out of .NET. If you have
never programmed with a language like Visual Basic, C++ or C#, or Java before, this isn’t the place to begin.
Instead, start with an introductory book on object-oriented design or programming fundamentals. On the other
hand, if you already have some experience with .NET 1.0 or 1.1, welcome—you’ll find yourself right at home!

Chapter Overview
The following overview describes what each chapter covers. If you already have some experi-
ence with Windows Forms, feel free to skip from chapter to chapter. If you’re relatively new to
Windows Forms development, it’s probably best to read through the book to make sure you
learn the basics before tackling more-advanced topics.

Macdonald_694-3FRONT.fm Page xxxiv Friday, July 28, 2006 6:48 AM

■I N T R O D U C T I O N xxxv

Part 1: Windows Forms Fundamentals

In this part, you’ll consider the core topics you need to understand to design smart clients. In
Chapter 1, you’ll start out by exploring the class model that underpins Windows Forms user inter-
faces. In Chapters 2 and 3, you’ll explore the fundamental Control and Form classes. Chapter 4
describes the most common Windows controls. Chapter 5 shows how you can embed images
and other binary resources into your compiled applications. Chapter 6 considers trees and lists,
which are hallmarks of modern Windows applications. Finally, Chapters 7 and 8 consider two
impressive higher-level features that are built into the Windows Forms model: GDI+ (for
hand-drawing controls) and data binding (for displaying and updating data without writing
tedious code).

Part 2: Custom Controls

In Part 2, you’ll tackle one of the most important areas of Windows Forms design—creating
customized controls that add new features, use fine-tuned graphics, and encompass low-level
details with higher-level object models. In Chapter 9, you’ll learn about the basic types of custom
controls you can create and see how to set up a custom control project. You’ll then continue on
to create user controls, which combine other controls into reusable groups (Chapter 10);
derived controls, which enhance existing .NET control classes (Chapter 11); and owner-drawn
controls, which use GDI+ to render a portion of your user interface from scratch (Chapter 12).
Chapter 13 shows how you can add design-time support, so your custom controls behave
properly at design time.

Part 3: Modern Controls

In Part 3, you’ll branch out to some of the most powerful Windows Forms controls. In Chapter 14,
you’ll explore the new ToolStrip, which provides a thoroughly customizable and flexible model
for toolbars, menus, and status bars. In Chapter 15, you’ll consider the DataGridView, an all-in-
one grid control for displaying data. In Chapter 16, you’ll look at the still woefully weak support
for sound and video in the .NET Framework and learn how to improve the picture with interop.
Finally, in Chapter 17, you’ll learn how the WebBrowser lets you show HTML pages in a Windows
application, and you’ll learn some remarkable tricks for integrating the two (with Windows code
that manipulates the page and JavaScript Web code that triggers actions in your application).

Part 4: Windows Forms Techniques

In this part, you’ll consider indispensable techniques for serious Windows Forms programmers.
In Chapter 18, you’ll consider a host of approaches to validation, from masked edit controls to
custom validation components that mimic ASP.NET and perform their work automatically.
Chapter 19 tackles MDI and SDI interfaces and shows you how to build a document-view
framework. Chapter 20 explores the world of multithreading and provides practical advice
on how to write safe, performance-asynchronous code in a Windows application. Chapter 21
shows how you can build a new breed of Windows application with the highly adaptable,
Web-like layout engines. Chapter 22 considers how you can build Help and integrate it into
your application.

Macdonald_694-3FRONT.fm Page xxxv Friday, July 28, 2006 6:48 AM

xxxvi ■I N T R O D U CT I O N

Part 5: Advanced Custom Controls

The final part considers some advanced topics that illustrate interesting subjects and help you
extend your expertise. In Chapter 23, you’ll see how to build slick applications with shaped forms,
skinned controls, and custom buttons. In Chapter 24, you’ll see a complete vector-drawing appli-
cation that contrasts custom controls against a more powerful drawing model. Chapter 25
shows how you can extend existing controls with custom extender providers, and Chapter 26
picks up where Chapter 13 left off, by exploring more features and frills of design-time support
for custom controls.

Appendixes

In the appendixes, you’ll take a look at principles for user interface design in any language
(Appendix A) and the new ClickOnce deployment technology (Appendix B).

Moving from .NET 1.x to .NET 2.0
If you’ve programmed with .NET 1.x, you’ll find that a great deal remains the same in .NET 2.0.
The underlying model for creating Windows Forms applications and custom controls remains
unchanged. However, there are some significant new feature areas.

For the most part, this book doesn’t emphasize the differences between features that have
existed since .NET 1.x and those that are new in .NET 2.0, chiefly because some significant
features and programming techniques have remained the same since .NET 1.0 but are still
misunderstood by many developers. However, if you have extensive .NET 1.x programming
experience, you may want to begin by exploring some of the feature areas that have changed
the most.

The following list of the 14 most important changes points you to the right chapters:

• The SplitContainer control (Chapter 3). Finally, there’s an easier way to design complex
windows with multiple split panes. It’s a small addition, but it’s a major convenience.

• AutoComplete (Chapter 4). You see it in lists and text boxes throughout the Windows
world. Now there’s an easy way to get AutoComplete behavior without coding it by hand.

• Design-time support for resources (Chapter 5). Deploying image files with your appli-
cation is too fragile. In the past, the best alternative (embedding them in an assembly)
has been too awkward. Visual Studio 2005 solves this problem with new features for
embedding and managing resources.

• Visual styles (Chapter 7). Not only does .NET 2.0 make it easy to take advantage of
Windows XP visual styles (for all controls), it also includes a new set of classes that lets
you paint custom controls using the Windows XP–theming API.

• Automatic data binding (Chapter 8). Some love it; some hate it. Either way, you’ll need
to understand quite a bit about the new support for code-free data binding if you want to
have any chance of creating a practical, scalable application.

• The ToolStrip control (Chapter 14). Microsoft solves the problems of the out-of-date
menu, status bar, and toolbar in one step with a new model revolving around the ToolStrip
class. Best of all, the ToolStrip is endlessly customizable.

Macdonald_694-3FRONT.fm Page xxxvi Friday, July 28, 2006 6:48 AM

■I N T R O D U C T I O N xxxvii

• The DataGridView control (Chapter 15). The underpowered and inflexible DataGrid of
.NET 1.x fame is replaced with a completely new grid control. Highlights include a fine-
grained style model and support for extremely large sets of data through virtualization.

• The SoundPlayer control (Chapter 16). This new control gives basic WAV playback
features, but it still comes up far short, with no support for more-modern standards like
MP3 audio or video. (Chapter 16 also shows you how to get around these problems with
the Quartz library.)

• The WebBrowser control (Chapter 17). Finally, a clean, easy way to show a Web page
in a window. Use it with local or remote data. Best of all, you have the ability to explore
the document object model (DOM) of your page and react to JavaScript events in your
Windows code.

• Masked editing (Chapter 18). A new MaskedEdit control gives you a text box with masked
editing features. You can also use lower-level classes to integrate masked editing into
any control.

• The BackgroundWorker component (Chapter 20). Use this class to perform an asyn-
chronous task without worrying about marshalling your code to the user-interface thread.
(However, though the BackgroundWorker fits certain scenarios, you’ll still need to take
control of multithreading on your own for many tasks.)

• Dynamic interfaces (Chapter 21). This shift just might be the most underreported yet
most significant change in .NET 2.0 Windows applications. The new layout managers
allow you to build flowing, Web-like applications that lay out different modules in a
variety of flexible ways. They also make it easier to deal with expanding and contracting
text in localization scenarios.

• Smart tags (Chapter 26). Smart tags provide a helpful panel through which you perform
a variety of tasks with a control at design time. Why not build your own for custom controls?

• ClickOnce (Appendix B). ClickOnce doesn’t really change the existing .NET deployment
model—instead, it adds a higher-level set of features you can use to easily support self-
updating applications, particularly over the Web or an intranet.

This list doesn’t include all the minor features and tune-ups you’ll discover as you explore
Windows Forms and read through this book.

What’s Still Missing in .NET 2.0
Even though .NET 2.0 is more than a minor upgrade to .NET 1.x, there are still a host of features
that longtime Windows developers may find lacking. Here are some examples of what you still
won’t find:

• Window management, including tabbed and dockable windows

• Charting and other controls for data visualization

• A commanding architecture (so that multiple actions in a user interface trigger the
same operation)

Macdonald_694-3FRONT.fm Page xxxvii Friday, July 28, 2006 6:48 AM

xxxviii ■I N T R O D U CT I O N

• Markup-based layout features

• Support for Microsoft Help 2.0, the (unsupported) standard that’s used for the Visual
Studio help files

• A document-view framework for building applications

• More high-level controls (like an Outlook bar, task panes, a wizard framework, and
so on)

Some of these features are easy to develop on your own, while others are extremely difficult
to do properly. In all these cases, third-party components have already emerged to fill the gaps
(with varying levels of success). However, it’s unlikely that a native Framework solution will
emerge for any of these features, because the focus in rich client development is shifting to the
new Avalon framework, which is a part of the upcoming Windows Vista operating system.

■Note Some third-party component developers that you might want to check out are www.dotnetmagic.com,
www.divil.co.uk, and www.actiprosoftware.com.

Conventions Used in This Book
You know the drill. This book uses italics to emphasize new terms and concepts. Blocks of code
use constant-width formatting. Note and tip boxes are scattered throughout the book to identify
special considerations and useful tricks you might want to use.

Code Samples
It’s a good idea to download the most recent, up-to-date code samples. You’ll need to do this to
test most of the more-sophisticated code examples described in this book, because the less-
important details are usually left out. Instead, this book focuses on the most important sections,
so that you don’t need to wade through needless extra pages to understand an important concept.
To download the source code, navigate to www.prosetech.com. The source code for this book is
also available to readers at www.apress.com in the Source Code section. On the Apress Web site,
you can also check for errata and find related titles from Apress.

Variable Naming
Hungarian notation, which names variables according to their data type (like strFirstName
instead of FirstName), was the preferred standard for C++ and Visual Basic 6. These days,
Hungarian notation is showing its age. In the world of .NET, where memory management is
handled automatically, it seems a little backward to refer to a variable by its data type, espe-
cially when the data type may change without any serious consequences, and the majority of
variables are storing references to full-fledged objects. Microsoft now steers clear of variable
prefixes and recommends using simple names.

Macdonald_694-3FRONT.fm Page xxxviii Friday, July 28, 2006 6:48 AM

■I N T R O D U C T I O N xxxix

In this book, data-type prefixes aren’t used for variables. The only significant exception is
with control variables, where it is still a useful trick to distinguish between types of controls (like
txtUserName and lstUserCountry), and with some data objects. Of course, when you create
your own programs, you’re free to follow whatever variable naming convention you prefer,
provided you make the effort to adopt complete consistency across all your projects (and
ideally across all the projects in your organization).

■Note Microsoft provides detailed information about recommended coding and naming standards
in the MSDN (see http://msdn.microsoft.com/library/en-us/cpgenref/html/
cpconNETFrameworkDesignGuidelines.asp). If you plan to release a component for use by
third-party developers, you’ll need to read these documents carefully.

Feedback
This book has the ambitious goal of being the best tutorial and reference for programming
Windows Forms. Toward that end, your comments and suggestions are extremely helpful. You
can send complaints, adulation, and everything in between directly to apress@prosetech.com.
I can’t solve your .NET problems or critique your code, but I will benefit from information
about what this book did right and wrong.

Macdonald_694-3FRONT.fm Page xxxix Friday, July 28, 2006 6:48 AM

Macdonald_694-3FRONT.fm Page xl Friday, July 28, 2006 6:48 AM

■ ■ ■

P A R T 1

Windows Forms
Fundamentals

Macdonald_694-3C01.fm Page 1 Thursday, June 22, 2006 9:39 AM

Macdonald_694-3C01.fm Page 2 Thursday, June 22, 2006 9:39 AM

3

■ ■ ■

C H A P T E R 1

User Interface Architecture

Some developers hate the headaches of user-interface programming. They assume it’s all
about painting icons, rewording text, and endlessly tweaking dialog boxes until an entire
company agrees that an application looks attractive. However, developers who are involved in
creating and maintaining sophisticated applications realize that there is another set of design
considerations for user-interface programming. These are considerations about application
architecture.

Every day, first-rate programming frameworks are used to build terrible applications. In
Windows applications, developers often insert blocks of code wherever it’s convenient, which
is rarely where it makes most sense. To make the jump from this type of scattered user interface
coding to a more elegant approach, you need to stop thinking in terms of windows and controls
and start looking at a user interface as an entire interrelated framework.

In this chapter, you’ll start on this journey by learning about a few key concepts that you’ll
return to throughout this book. They include the following:

• A quick review of how .NET defines types, including structures, classes, delegates,
enumerations, and interfaces.

• How user interfaces are modeled with objects in a Windows Forms application. You’ll
learn about several key types of .NET classes, including controls, forms, components,
and applications.

• Why inheritance is more important for user interfaces than for business logic. (The short
answer is that it’s the best way to customize almost any .NET control.)

• How Visual Studio generates the code for your user interface and how that code works.

• The best practices for building a well-encapsulated user interface that’s easy to enhance,
extend, and debug.

• What three-tier design promises, and why it’s so hard to achieve.

The emphasis in this chapter is on general concepts. You’ll see some code, but you won’t
learn about the intricate details like the properties and methods that each control provides.
Instead, you’ll explore these details as you travel deeper into user interface coding in the
following chapters.

Macdonald_694-3C01.fm Page 3 Thursday, June 22, 2006 9:39 AM

4 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Classes and Objects
Today, it’s generally accepted that the best way to design applications is by using discrete,
reusable components called objects.

A typical .NET program is little more than a large collection of class definitions. When you
start the program, your code creates the objects it needs using these classes. Of course, your
code can also make use of the classes that are defined in other referenced assemblies and in the
.NET class library (which is itself just a collection of assemblies with useful classes).

The Roles of Classes
It’s important to remember that although all classes are created in more or less the same way
in your code, they can serve different logical roles. Here are the three most common examples:

• Classes can model real-world entities. For example, many introductory books teach
object-oriented programming using a Customer object or an Invoice object. These objects
allow you to manipulate data, and they directly correspond to an actual thing in the
real world.

• Classes can serve as useful programming abstractions. For example, you might use a
Rectangle class to store width and height information, a FileBuffer class to represent
a segment of binary information from a file, or a WinMessage class to hold information
about a Windows message. These classes don’t need to correspond to tangible objects;
they are just a useful way to shuffle around related bits of information and functionality
in your code. Arguably, this is the most common type of class.

• Classes can collect related functions. Some classes are just a collection of shared
methods that you can use without needing to create an object instance. These helper
classes are the equivalent of a library of related functions, and might have names like
GraphicsManipulator or FileManagement. In some cases, a helper class is just a sloppy
way to organize code and represents a problem that should really be broken down into
related objects. In other cases, it’s a useful way to create a repository of simple routines
that can be used in a variety of ways.

Understanding the different roles of classes is crucial to being able to master object-oriented
development. When you create a class, you should decide how it fits into your grand develop-
ment plan, and make sure that you aren’t giving it more than one type of role. The more vague
a class is, the more it resembles a traditional block of code from a non-object-oriented program.

Classes and Types
The discussion so far has reviewed object-oriented development using two words: classes and
objects. Classes are the definitions, or object templates. Objects are classes in action. The basic
principle of object-oriented design is that you can use any class to create as many objects as
you need.

In the .NET world, there’s another concept—types. Types is a catchall term that includes
the following ingredients:

Macdonald_694-3C01.fm Page 4 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 5

• Structures

• Classes

• Delegates

• Enumerations

• Interfaces

To get the most out of this book, you should already know the basics about .NET types and
how they can be used. If you need to refresh your memory and get reacquainted with the .NET
object family, browse through the following sections. Otherwise, you can skip ahead to the
“User Interface Classes in .NET” section.

Structures

Structures are like classes, but are generally simpler and more lightweight. They tend to have
only a few properties (and even fewer important methods). A more important distinction is
that structures are value types, whereas classes are reference types. As a result, these two types
of objects are allocated differently and have different lifetimes. Structures are released auto-
matically when the variable that points to the structure goes out of scope, while classes exist in
memory until they’re tracked down by the garbage collector.

Another side effect of the differences between the two is the fact that structures act differ-
ently in comparison and assignment operations. If you assign one structure variable to another,
.NET copies the contents of the entire structure, not just the reference. Similarly, when you
compare structures, you are comparing their contents, not the reference.

The following code snippet demonstrates how a structure works:

structureA = structureB ' structureA has a copy of the contents of structureB.
 ' There are two duplicate structures in memory.

If structureA.Equals(structureB) Then
 ' This is True as long as the structures have the same content.
 ' This type of comparison can be slow if the structure is large.
End If

Some of the structures in the class library include Int32, DateTime, and graphics ingredi-
ents like Point, Size, and Rectangle.

Classes

This is the most common type in the .NET class library. All .NET controls are full-fledged classes.

■Note The word “class” is sometimes used interchangeably with “type” (or even “object”), because
classes are the central ingredients of any object-oriented framework like .NET. Many traditional programming
constructs (like collections and arrays) are classes in .NET.

Macdonald_694-3C01.fm Page 5 Thursday, June 22, 2006 9:39 AM

6 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Unlike structures, classes are reference types. That means that when you manipulate an
instance of a class in code, you are actually working with a reference that points to the full-fledged
object, which exists somewhere else in memory. Usually, this low-level reality is completely
hidden from you, but it does show up when you perform comparison or assignment operations.

The following code snippet shows how classes behave:

objectA = objectB ' objectA and objectB now both point to the same thing.
 ' There is one object, and two ways to access it.

If objectA Is objectB Then
 ' This is True if both objectA and objectB point to the same thing.
 ' This is False if they are separate, yet identical objects.
End If

Occasionally, a class can override its default reference type behavior. For example, the
String class is a full-featured class in every way, but it overrides equality and assignment oper-
ations to work like a value type. When dealing with text, this tends to be more useful (and more
intuitive) for programmers. For example, if the String class acted like a reference type it would
be harder to validate a password. You would need a special method to iterate through all the
characters in the user-supplied text, and compare each one separately.

Arrays, on the other hand, are classes that behave like traditional classes. That means copy
and comparison operations work on the reference, not the content of the array. If you want to
perform a sophisticated comparison or copy operation on an array, you need to iterate through
every item in the array and copy or compare it separately.

Delegates

Delegates define the signature of a method. For example, they might indicate that a function
has a string return value and accepts two integer parameters. Using a delegate, you can create
a variable that points to specific method. You can then invoke the method through the delegate
whenever you want.

Here’s a sample delegate definition:

' A delegate definition specifies a method's parameters and return type.
Public Delegate Function StringProcessFunction(ByVal Input As String) As String

Once you define a delegate, you can create a delegate variable based on this definition,
and use it to hold a reference to a method. Here’s the code that does exactly that:

Dim StringProcessor As StringProcessFunction

' This variable can hold a reference to any method with the right signature.
' It can be a shared method or an instance method. You can then invoke it later.
' (Here we assume that our code contains a function named CapitalizeString.)
StringProcessor = AddressOf CaptitalizeString

' This invokes the CaptializeString function.
Dim returnValue As String = StringProcessor("input text")

Macdonald_694-3C01.fm Page 6 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 7

Besides being a way to implement type-safe function pointers, delegates are also the foun-
dation of .NET’s event handling. For every event that a .NET control provides, there is a
corresponding delegate that defines the event signature (although this isn’t a one-to-one
relationship, as many events share the same delegate). If you want to handle the event, you
need to create an event handler with the same signature.

In other words, when you use controls, you’ll often use delegates. And when you create
controls, you’ll probably define your own custom delegate types. You’ll see many examples of
custom delegates in this book.

Enumerations

Enumerations are simple value types that allow developers to choose from a list of constants.
Behind the scenes, an enumeration is just an ordinary integral number where every value has
a special meaning as a constant. However, because you refer to enumeration values using their
names, you don’t need to worry about forgetting a hard-coded number, or using an invalid
value.

To define an enumeration, you use the block structure shown here:

Public Enum FavoriteColors
 Red
 Blue
 Yellow
 White
End Enum

This example creates an enumeration named FavoriteColors with three possible values:
Red, Blue, and Yellow.

Once you’ve defined an enumeration, you can assign and manipulate enumeration values
like any other variable. When you assign a value to an enumeration, you use one of the predefined
named constants. Here’s how it works:

' You create an enumeration like an ordinary variable.
Dim buttonColor As FavoriteColors

' You assign and inspect enumerations using a property-like syntax.
buttonColor = FavoriteColors.Red

In some cases, you need to combine more than one value from an enumeration at once.
To allow this, you need to decorate your enumeration with the Flags attribute, as shown here:

<Flags> _
Public Enum AccessRights
 Read = &O1
 Write= &O2
 [Shared] = &O4
End Enum

Thanks to the Flags attribute, you can combine more than one value from the AccessRights
enumeration using the Or operator, as shown here:

Macdonald_694-3C01.fm Page 7 Thursday, June 22, 2006 9:39 AM

8 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Dim rights As AccessRights
rights = AccessRights.Read Or AccessRights.Write Or AccessRights.Shared

You can test to see if a single value is present using bitwise arithmetic, using the And
operator to filter out what you’re interested in:

If (rights And AccessRights.Write) = AccessRights.Write Then
 ' Write is one of the values.
End If

Enumerations are particularly important in user-interface programming, which often has
specific constants and other information you need to use but shouldn’t hard-code. For example,
when you set the color, alignment, or border style of a button, you use a value from the appro-
priate enumeration.

Interfaces

Interfaces are contracts that define properties, methods, and events that a class must imple-
ment. Interfaces have two main uses:

• Interfaces are useful in versioning situations. That’s because they allow you to enhance
a component without breaking existing clients. You simply need to add a new interface.

• Interfaces allow polymorphism. This means many different classes that use the same
interface can be treated the same way. In a very real sense, an interface acts like a
“control panel” that you can use to access a standardized set of features in a class.

With user-interface programming, the second consideration is the most interesting. For
example, imagine you create your own button control with a unique stylized look. You want
this control to have all the features of the standard .NET button, including the ability to be used
as the default button in a window (the button that is activated when the user presses Enter). To
give your button this capability, all you need to do is implement the IButtonControl interface in
your custom button control code. Even though the .NET infrastructure doesn’t know the specific
details about how your control works, it knows enough about how to use an IButtonControl class
to programmatically “click” your button when the user presses Enter.

■Tip If you haven’t had much experience with object-oriented or interface-based programming, I encourage
you to start with a book about .NET fundamentals. Two good starting points are: Programming Microsoft
Visual Basic 2005: The Language by Francesco Balena or, for developers schooled in VB 6, my own The Book
of VB 2005. Classes and other types are the basic tools of the trade, and you need to become comfortable with
them before you can start to weave them into full-fledged object models and Windows applications.

User Interface Classes in .NET
The first step when considering class design is to examine what rules are hard-wired into the
.NET Framework. Your goal should be to understand how the assumptions and conventions of

Macdonald_694-3C01.fm Page 8 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 9

.NET shape user-interface programming. Once you understand the extent of these rules, you
will have a better idea about where the rules begin and end and your object designs take over.

In the following sections, you’ll take a look at a number of examples that show how classes
plug into the Windows Forms architecture.

Controls Are Classes
In the .NET Framework, every control is a class. Windows controls are clustered in the System.
Windows.Forms namespace. Web controls are divided into three core namespaces:
System.Web.UI, System.Web.UI.HtmlControls, and System.Web.UI.WebControls. (Web controls
use a superficially similar but substantively different model than Windows controls, and they
won’t be covered in this book.)

In your code, a control class acts the same as any other class. You can create an instance
of it, set its properties, and use its methods. The difference is in the lineage. Every Windows
control inherits from System.Windows.Forms.Control, and acquires some basic functionality
that allows it to paint itself on a window. In fact, even the window that hosts the control inherits
from the Control base class.

On its own, a control object doesn’t do much. The magic happens when it interacts with
the Windows Forms engine. The Windows Forms engine handles the Windows operating system
messages that change focus or activate a window, and tells controls to paint themselves by
calling their methods and setting their properties. The interesting thing is that although these
tasks are performed automatically, they aren’t really hidden from you. If you want, you can
override methods and fiddle with the low-level details of the controls. You can even tell them
to output entirely different content.

To use a control, all you need to do is create an instance of a control class, just like you
would with any other object. For example, here’s how you might create a text box:

Private txtUserName As New System.Windows.Forms.TextBox()

Once you create the control object, you can set its properties to configure how it behaves
and what it looks like:

txtUserName.Name = "txtUserName"
txtUserName.Location = New System.Drawing.Point(64, 88)
txtUserName.Size = New System.Drawing.Size(200, 20)
txtUserName.TabIndex = 0
txtUserName.Text = "Enter text here!"

This code positions the text box in a specific location, sets its size and its position in the tab
order, and then fills in some basic text. But none of this actually creates a visible control in a
window. So how does the .NET runtime know whether you are just creating a control object to
use internally (perhaps to pass to another method) or if you want it to be painted on a specific
form and able to receive input from the user? The answer is in class relations, as you’ll see in the
next section.

Controls Can Contain Other Controls
The System.Windows.Forms.Control class provides a property called Controls, which exposes
a collection of child controls. For example, a Windows Form uses this Controls property to

Macdonald_694-3C01.fm Page 9 Thursday, June 22, 2006 9:39 AM

10 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

store the first level of contained controls that appear in the window. If you have other container
controls on the form, like group boxes, they might also have their own child controls.

In other words, controls are linked together by containment using the Controls collection.
Because every control is a class that derives from System.Windows.Forms.Control, every control
supports the ability to contain other controls. The topmost object for an application is always
a Form object, which represents the window you see on your screen.

■Tip To be technically accurate, this collection is actually an instance of the System.Windows.Forms.
Control.ControlCollection class. This collection is customized to make sure that it can contain only controls,
not other types of objects. However, you don’t really need to know that to use the Controls collection,
because it implements the IList, ICollection, and IEnumerable interfaces that allow you to treat it like any
other collection class.

Figure 1-1 shows a sample form, and Figure 1-2 diagrams the relationship of the controls
it contains.

Figure 1-1. A sample form

Figure 1-2. Control containment for a sample form

Macdonald_694-3C01.fm Page 10 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 11

To place a control in a window, you just need to add it to the form’s Controls collection.
Like most collection classes, the Controls collection provides some standard methods like
Add() and Remove().

For example, the following line of code takes the TextBox control object and places it
inside a form. The text box immediately appears in the frmMain window:

frmMain.Controls.Add(txtUserName)

If you want the text box to be located inside a group box or panel, you would use this code
instead:

' Add the panel to the form.
frmMain.Controls.Add(pnlUserInfo)

' Add the text box to the panel.
pnlUserInfo.Controls.Add(txtUserName)

The control’s location property is automatically interpreted in terms of the parent control.
For example, (0, 0) is the top-left corner of the container, and (100, 100) is 100 pixels from both
the top and left edges. Chapter 2 talks about control size and positioning in more detail.

If you add a control to a form window that already exists, it appears immediately. If, however,
the form hasn’t been displayed yet, you need to use the form’s Show() or ShowDialog() method
to display the form:

frmMain.Show()

Forms automatically handle the responsibility of coordinating the display of all their
contained controls using the underlying Windows message infrastructure.

A control can be removed from a window by using the Remove() method of the Controls
collection. In this case, you need to supply a variable that references the control you want to
remove, as shown here:

' Remove the TextBox control.
frmMain.pnlUserInfo.Controls.Remove(txtUserName)

■Note You can remove a control by index number using the RemoveAt() method. However, the index
number doesn’t have any concrete meaning—it doesn’t correspond to the control’s place in the window, and
it doesn’t necessarily correspond to the order in which you’ve added controls. For that reason, you’re unlikely
to pay much attention to the index-number position of a control in the Controls collection.

All controls, whether they are text boxes, buttons, labels, or something more sophisticated,
are added to (and removed from) container controls in the same way. In the next section you’ll
see how you can use this to your advantage by defining and displaying your custom controls.

Macdonald_694-3C01.fm Page 11 Thursday, June 22, 2006 9:39 AM

12 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Controls Can Extend Other Controls
In a popular book introducing the .NET Framework, Dan Appleman suggests that inheritance
is an overhyped feature with a few specific uses, but a host of potential problems and consid-
erations. In his words, inheritance is the “coolest feature you’ll never use.” Object-oriented
gurus who have seen the havoc that can be caused by a poorly thought-out class hierarchy will
be quick to agree. Though inheritance can be useful when creating your business and data
objects, it’s generally not the best approach, and it’s never the only one.

In the world of controls, however, inheritance just might be the single most useful feature
you’ll ever find. Essentially, inheritance allows you to acquire a set of specific functionality for
free. You don’t need to worry about how to handle the messy infrastructure code for what you
want to do. Instead, you simply inherit from a class in the .NET class library, add a few features
that are specific to your needs, and throw it into your program.

This approach can be used to create customized controls quickly and easily. Following is
the definition for a custom text box. It has all the powerful features of a text box, manages its
appearance automatically, provides sophisticated user editing capability, and takes care of
basic details like painting itself and managing focus. In addition, the custom text box adds two
new features that make it more useful for dealing with mostly numeric data (like phone numbers).
It has a property that returns the total number of numeric characters in the text string
(NumberOfDigits), and a method that quickly trims out any non-numeric characters
(TrimToDigits). To provide this functionality, it uses some standard .NET tricks to iterate
through a string and the System.Text.StringBuilder class, which provides efficient string
manipulation.

Public Class NumericTextBox
 Inherits System.Windows.Forms.TextBox

 Public ReadOnly Property NumberOfDigits() As Integer
 Get
 Dim digits As Integer = 0
 For Each c As char In Text
 If Char.IsDigit(c) Then digits += 1
 Next
 Return digits
 End Get
 End Property

 Public Sub TrimToDigits()
 Dim newText As New StringBuilder()
 For Each c As char In Text
 If Char.IsDigit(c) Then newText.Append(c)
 Next
 Text = newText.ToString()
 End Sub

End Class

Macdonald_694-3C01.fm Page 12 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 13

Arguably, this custom text box doesn’t provide much more than the ordinary text box
control. But the remarkable part of this example is the fact that you can use this class in exactly
the same way that you use a control class from the .NET class library.

Here’s the code you might use to display the custom text box in a window:

Dim txtCustom As CustomControlProject.NumericTextBox
txtCustom = New CustomControlProject.NumericTextBox()
txtCustom.Name = "txtCustom"
txtCustom.Location = New System.Drawing.Point(64, 88)
txtCustom.Size = New System.Drawing.Size(200, 20)
txtCustom.TabIndex = 0
txtCustom.Text = "Enter text in the custom textbox here!"
frmMain.Controls.Add(txtCustom)

The interesting part of this example is not what’s in the code, but what is left out. Clearly,
there are a lot of Windows-specific details that you don’t need to worry about when using
inheritance to create a custom control. Custom controls in .NET are painless and powerful.

■Note If you were really planning to create numeric text boxes, you’d have a host of more powerful options
than the NumericTextBox control in this example. You can handle key presses to reject invalid characters, or
you can use the new MaskedTextBox (see Chapter 18).

Throughout this book you’ll see a variety of custom-control programming techniques, and
you’ll learn how to license, distribute, and manage custom controls in the development envi-
ronment. Custom control examples appear throughout the book. You’ll use them to do the
following:

• Automate control validation

• Build in common usage patterns or helper routines

• Rigorously organize code

• Preinitialize complex controls

• Tailor controls to specific types of data, even replacing basic members with more-useful,
higher-level events and properties

Creating custom controls is a key way of playing with Windows Forms, and one of the most
important themes of this book.

Inheritance and the Form Class
Inheritance isn’t just used when you want to extend an existing class with additional features. It’s
also used to organize code. One of the best examples is the System.Windows.Forms.Form class.

In a Windows application, you could create an instance of a System.Windows.Forms.Form
and manually go about adding controls and attaching events. For example, the following code
creates a new generic form and adds a single text box to it:

Macdonald_694-3C01.fm Page 13 Thursday, June 22, 2006 9:39 AM

14 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

' Create the form.
Dim frmGenericForm As New System.Windows.Forms.Form()

' Create and configure the text box.
Dim txtUserName As New System.Windows.Forms.TextBox()
txtUserName.Name = "txtUserName"
txtUserName.Location = new System.Drawing.Point(64, 88)
txtUserName.Size = new System.Drawing.Size(200, 20)
txtUserName.TabIndex = 0
txtUserName.Text = "Enter text here!"

' Add the text box to the form.
frmGenericForm.Controls.Add(txtUserName)

' Show the form.
frmGenericForm.Show()

The problem with this approach is that the code that creates the form also needs to go to
all the work of configuring it. If you’re not careful, you’ll wind up mingling your user interface
code with the rest of your application logic, causing endless headaches.

Visual Studio enforces a more structured approach. When you create a new form, it auto-
matically creates a customized class that inherits from the Form class. This derived class
encapsulates all the logic for adding child controls, setting their properties, and responding
to their events in one neat package. It also provides you with an easy way to create identical
copies of a form, which is particularly useful in document-based applications.

The following is a simplified example of a custom form class that contains a simple
constructor method. When the form class is instantiated, it automatically creates and config-
ures a text box, and then adds the text box to its Controls collection.

Public Class MainForm
 Inherits System.Windows.Forms.Form

 Private txtUserName As System.Windows.Forms.TextBox;

 Public Sub New ()
 txtUserName = New System.Windows.Forms.TextBox()
 txtUserName.Name = "txtUserName"
 txtUserName.Location = New System.Drawing.Point(64, 88)
 txtUserName.Size = New System.Drawing.Size(200, 20)
 txtUserName.TabIndex = 0
 txtUserName.Text = "Enter text here!"
 Controls.Add(txtUserName)
 End Sub

End Class

The custom form class automatically gains all the features of a standard System.Windows.
Forms.Form object, including the ability to display itself with the Show() and ShowDialog()

Macdonald_694-3C01.fm Page 14 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 15

methods. That means that you can quickly create and show your customized form using the
two lines of code shown here:

' Create the form (at this point, its constructor code will run and add
' the textbox control).
Dim frmCustomForm As New MainForm()

' Show the form.
frmCustomForm.Show()

■Note The Form.Show() method shows a form modelessly, which means it doesn’t interrupt your code.
Your code can continue to run more logic and show additional windows. The Form.ShowDialog() method
shows a form modally, which means your code is put on hold and doesn’t continue until the form is closed.
You’ll see how this plays a role in determining your application lifetime in the “Application Lifetime” section
of this chapter.

Accessing Controls
Once a custom form object has been instantiated, there are two different ways to access the
controls it contains: through the Controls collection or, more simply, using form-level member
variables.

In the previous example, the only control MainForm contains (a text box) is referenced
with the member variable txtUserName. This means you can easily access it in other methods
in your custom form class using code like this:

txtUserName.Text = "John"

It’s up to you whether you want to make a control variable accessible to other classes in
your program. By default, all control variables are declared with the Friend keyword, and any
other class can access them as long as it exists in the current project. This is similar to the way
that previous versions of VB worked. However, you should avoid breaking encapsulation by
fiddling with the user interface of a form from another class. (You can change the accessibility
of a control by selecting it at design time and changing the Modifiers property in the Properties
window.)

No matter what accessibility you use for the control variables, there is always one back door
open. You can access any control through the form’s Controls collection, which is always public.

■Tip If you want to add a control but you don’t want Visual Studio to create a member variable for it, set the
GenerateMember property of the control to false. In addition, if you want to change the accessibility of a
control to be something other than private, you can change the Modifiers property. Both of these properties
are design-time properties that aren’t a part of the Control class. Instead, they’re added to the Properties
window by Visual Studio and used to control the automatically generated code.

Macdonald_694-3C01.fm Page 15 Thursday, June 22, 2006 9:39 AM

16 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

The member variables allow access to all the controls on a form. Assuming you’ve built
your form in Visual Studio, each control will have its own member variable. On the other hand,
only the first level of controls will appear in the Controls collection. Controls that are inside
container controls like group boxes, tab controls, or panels will appear in the Controls collection
of the control that contains them (as diagrammed in Figure 1-2).

Unfortunately, controls are indexed only by number in the Controls collection, not by
name. That means that if you want to find a control using the Controls collection, you need to
iterate through the entire collection and examine each control one by one until you find a
match. You can look for a specific type of control or a specifically named control. For example,
when a control is created in Visual Studio, the Name property is automatically set to match the
name used for the member variable, as shown here:

txtUserName.Name = "txtUserName"

This is just a convenience—you are not forced to set the Name property. However, it allows
you to easily look up the control by iterating through the Control collection:

' Search for and remove a control with a specific name.
For Each ctrl As Control In Controls
 If ctrl.Name = "txtUserName" Then
 Controls.Remove(ctrl)
 End If
Next

Usually, you’ll avoid the hassle of digging up your controls in the Control collection, and
just rely on the member variables. But there are exceptions to this rule, such as when you are
creating highly dynamic interfaces or generic code. For example, you might want to clear every
text box on an input form by examining each control, checking if it’s a text box, and then resetting
the text property. Here’s a simple method that handles this task:

Private Sub ClearControls(ByVal topControl As Control)
 ' Ignore the control unless it is a textbox.
 If TypeOf topControl Is TextBox Then
 topControl.Text = ""
 Else
 ' Process controls recursively.
 ' This is required if controls contain other controls
 ' (for example, if you use panels, group boxes, or other
 ' container controls).
 For Each childControl As Control In topControl.Controls
 ClearControls(childControl)
 Next
 End If
End Sub

Now you can recursively search through all the controls on a form and clear all text boxes
with a single line of code:

ClearControls(Me)

Macdonald_694-3C01.fm Page 16 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 17

■Note The Controls collection is always accessible to other forms. However, you shouldn’t use this as a
back door to allow one form to modify another. For one thing, using a string to identify the name of a control
is extremely fragile—if the original form is changed, the code may stop working, but it won’t raise a helpful
compile-time error.

Components
Controls aren’t the only ingredient you can put on a form. There are also components, or “invis-
ible controls.” Unlike controls, components don’t take up any piece of form real estate. Some
components display something, but only in specific circumstances and not necessarily on the
form itself. For example, .NET includes components that can show a help window, an error
message, a system tray icon, or a standard dialog box when needed. Other components have
no visual appearance at all, and just represent a unit of useful functionality. (Examples of this
sort of component include Timer and SqlConnection.) However, components share one
important feature with controls—they can be attached to a form and configured at design time.

For example, imagine you want to show an animation on your form by reacting to a timer
every few milliseconds and refreshing the display. You could create the timer by hand, and
write the code that initializes it, configures it, and attaches its event to the appropriate event
handler. However, it’s much easier to drag a Timer component onto a form at design time and
tweak it to your heart’s content using the Properties window.

Components have two key responsibilities:

• They must support design-time use. In technical terms, that means components can be
sited on a design surface.

• They must provide a way to release resources. All components provide a Dispose()
method that, when called, causes the component to release all its unmanaged resources
immediately.

Programmers sometimes assume that components are a special type of control, but the
reality is the other way around—controls are actually a special type of component. In fact, the
base Control class, which all forms derive from, itself derives from the Component class, as
shown in Figure 1-3.

Component classes are fairly straightforward. They simply need to implement the
IComponent interface (from the System.ComponentModel namespace).

The IComponent interface is quite simple (if a little unintuitive):

Public Interface IComponent
 Inherits IDisposable

 Event Disposed As EventHandler
 Property Site As ISite

End Interface

Macdonald_694-3C01.fm Page 17 Thursday, June 22, 2006 9:39 AM

18 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Figure 1-3. Control and component inheritance

Essentially, IComponent extends IDisposable (which forces objects to implement a Dispose()
method that releases resources). On top of that, IComponent adds an event that fires when it’s
been disposed and a Site property. The Site property binds the component to its container. This
is the starting point that allows a container (like a form) to manage a collection of components.

Most components don’t implement IComponent directly. Instead, they take a simpler
shortcut, and derive from the System.ComponentModel.Component class, which provides a
standard implementation of IComponent.

One awkward difference between controls and components is the way that they’re tracked
in a form. As you’ve already seen, the Form class includes a Controls collection that tracks
every control on the form. Unfortunately, components don’t use a similar model of contain-
ment. Instead, components are given the option of adding themselves to a private component
container called components. The component container isn’t a part of the basic Form class.
However, Visual Studio automatically defines it and adds it to every form class you create.

The component container is intended only to help make sure components are cleaned up
properly. It’s not meant to help you keep track of what components a form uses. The general
rule of thumb is that if a component holds on to unmanaged resources, it should add itself to
the component container. This way, when the form is destroyed it can dispose of any compo-
nents that need to be released. However, if a component doesn’t use unmanaged resources
and doesn’t need any special cleanup, it probably won’t add itself to the component container
at all.

■Note The component container is one of the messier workarounds in .NET. One problem is that, because
the component must add itself to the container, there’s no way for you to tell just by looking at your form code
whether or not a given component will be added. For a hands-on look at components, be sure to read Chapter 18,
which develops a set of validation components and considers how you can track them in a form.

Macdonald_694-3C01.fm Page 18 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 19

Interacting with a Control
In a typical Windows application, your code sits idly by, doing very little. When the user takes a
certain action, like clicking a button, typing in text, or moving the mouse, your code springs
into action. Usually, your code completes in a matter of seconds, and goes back to waiting for
the next move from the user.

One interesting and often overlooked fact about .NET controls is that they provide two
different ways that you can respond to user actions—you can create a custom class and override its
methods, or you can react to events. These approaches are discussed in the next two sections.

Overriding Methods
In order to override a method, you need to create a custom inherited control. For example,
imagine you have a text box that’s designed for numeric entry, and you want to examine every
key press to make sure that it corresponds to a number, and not a letter. To perform this type
of task, you can create a customized text box, and override the OnKeyPress() method to add
this extra verification logic.

Public Class NumericTextBox
 Inherits System.Windows.Forms.TextBox

 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
 MyBase.OnKeyPress(e)

 If Not char.IsControl(e.KeyChar) And Not char.IsDigit(e.KeyChar) Then
 e.Handled = True
 End If
 End Sub

End Class

The OnKeyPress() method is invoked automatically by the Windows Forms engine when a
key is pressed in a TextBox control. The overridden method in the preceding example checks
to see if the entered character is a number. If it isn’t, the Handled flag is set to true, which cancels
all further processing, effectively making sure that the character will never end up in the text box.

■Note When overriding a method, it’s a good practice to call the base class implementation, which may
have some required functionality. More commonly, the base class implementation simply raises the associated
event (in this case, KeyPress), allowing other objects to handle it. You’ll learn more about overriding methods
when you build derived controls in Chapter 11.

This design pattern is useful if you use a number of controls with extremely similar
behavior. It allows you to create a custom control that you can use whenever you need this set
of features. If, on the other hand, you need to fine-tune behavior for distinct, even unique
tasks, this approach is much less useful. For example, consider a button control. You could

Macdonald_694-3C01.fm Page 19 Thursday, June 22, 2006 9:39 AM

20 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

react to a button click by creating a special class for every button on your application, and
giving each button its own overridden OnClick() method. Although your program would still
work well, it would quickly become completely disorganized, swamped by layers of button
classes that have little to do with one another. To circumvent this problem, .NET uses the
view-mediator pattern, as described in the next section.

The View-Mediator Pattern
When you create a new form with Visual Studio, it generates a custom form class. It doesn’t
generate any other custom control classes. Instead, Visual Studio relies on events to manage
the interaction between controls and your form. Each event you want to handle is added as a
separate method in your form class.

In other words, every form acts as a giant switchboard for all the controls it contains. This
type of design pattern, which is so natural to .NET and most Windows development that you
might not have even noticed it, is called the view-mediator pattern. It dictates that one central
class organizes each individual window.

Using events and the view-mediator pattern, you can rewrite the text box example you saw
earlier. In the following example, a form-level event handler reacts to the TextBox.KeyPress
event. By specifying the WithEvents keyword in the txtUserName control declaration, you give
yourself the option to attach an event handler declaratively. All you need to do is add the
Handles clause to the method declaration for the event handler. Here’s the complete code:

Public Class MainForm
 Inherits System.Windows.Forms.Form

 Private WithEvents txtUserName As System.Windows.Forms.TextBox

 Public Sub New ()
 txtUserName = New System.Windows.Forms.TextBox()
 txtUserName.Name = "txtUserName"
 txtUserName.Location = New System.Drawing.Point(64, 88)
 txtUserName.Size = New System.Drawing.Size(200, 20)
 txtUserName.TabIndex = 1
 txtUserName.Text = "Enter text here!"
 Controls.Add(txtUserName)
 End Sub

 Private Sub txtUserName_KeyPress(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyPressEventArgs) _
 Handles txtUserName.KeyPress

 If Not char.IsControl(e.KeyChar) And _
 Not char.IsDigit(e.KeyChar) Then
 e.Handled = True
 End If
 End Sub

End Class

Macdonald_694-3C01.fm Page 20 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 21

Notice that the actual logic for processing the key press is identical, but the way it’s integrated
into the application is completely different. The form is now responsible for the validation, not the
control itself. This is an ideal approach if the form needs to handle the complex validation of
multiple different controls using the same event handler. It’s a less suitable approach if you
need to perform the same type of validation for the same control in different windows, because
you’ll probably need to copy the code into multiple form-level event handlers. Neither approach is
automatically better than the other—it all depends on how complex your code is, and how you
want to reuse it.

Smart Controls
So far you have seen two distinct ways to use controls from the .NET class library:

• Create an instance of a generic control class “as is.” Then configure its properties.

• Define a new class that inherits from a generic control class, and customize this class for
your needs. Then create an object based on this specialized class.

The difference is shown in Figure 1-4.

Figure 1-4. Two ways to interact with controls

Visual Studio uses inheritance (the first method) when you create forms. When you configure
controls, however, it inserts them as is, and adds the appropriate logic for modifying their proper-
ties (the second method). This is the default approach in .NET, but it’s not the only approach.

When Visual Studio adds controls and derives a custom form class, it’s making a design
decision for you. This decision helps clear out the clutter that would result from creating dozens of
custom control classes. However, like all design decisions, it’s not always right for all people
and in all situations. For example, if you use numerous similar controls (like text boxes that
refuse numeric input), you may find yourself duplicating the same code in event handlers all
over your program. In this case, you might be better off to step beyond Visual Studio’s default
behavior, and create customized controls with some additional intelligence.

When you are creating a new application and planning how to program its user interface,
one of the most important tasks is deciding where to draw the line between smart controls
(custom control classes) and smart switchboards (custom forms with event-handling logic).

Macdonald_694-3C01.fm Page 21 Thursday, June 22, 2006 9:39 AM

22 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

A good decision can save a lot of repetitive work. As you’ll see in this book, custom controls
are not just for redistributing neat user interface elements, but also for building intelligence
into parts of a large application, and helping to reduce repetition and enforce consistency.

Smart Forms
As explained earlier, every form class in your application is a custom class that inherits from
System.Windows.Forms.Form. However, you don’t need to derive directly from the Form class.
Instead, you can derive from another custom form class. Figure 1-5 diagrams this relationship.

Figure 1-5. Ordinary forms and visual inheritance

This technique is commonly referred to as visual inheritance, although it’s no different
from any other type of control-class inheritance. It allows you to standardize related windows
(like the steps of a wizard), and it can help you centralize and reuse specific form functionality.
You’ll take a close look at visual inheritance in Chapter 11.

Visual Studio
Very few developers will ever attempt to write their user interface code by hand. Doing so is a
recipe for endless headaches. Instead, integrated design tools like Visual Studio make it much
easier to design forms.

Visual Studio includes two project types designed for Windows applications:

• Windows Application creates the standard stand-alone EXE application.

• Windows Control Library creates a DLL that you can use in other EXE applications.
You’ll use this type of project to build custom controls and other components that you
want to reuse in multiple Windows applications.

If you’re new to Visual Studio, you might want to refer to one of the many useful books that
dissect the IDE in detail. However, most developers don’t take any time to get used to the

Macdonald_694-3C01.fm Page 22 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 23

Visual Studio development environment. You can do a lot just by dragging controls from the
Toolbox and arranging them on a form.

Visual Studio gives you two ways to configure a typical control. Usually, the most flexible
approach is to use the Properties window. Once you select the control you want to work with
on the form, you can change its properties or click the lightning bolt icon to switch to event
view, where you can create and hook up event handlers. (To switch back to properties view,
click the grid icon.) Figure 1-6 shows an example with a basic TextBox control.

Figure 1-6. Configuring control properties (left) and events (right)

■Note When you select a property in the Properties window, you’ll see explanatory text that describes it.
To build your own controls that provide this type of information, you need to apply specific attributes. Chapter 13
describes how you can tackle this job.

If you already have a method that matches the signature of the event (in other words, it has
the correct parameters), you can choose it from a drop-down list. This is particularly convenient
if you want to connect one event handler to many different events. On the other hand, if you
want to add a new event handler, just double-click in the text box next to one of the events in
the list. Visual Studio will switch to code view, insert an event handler method, and quietly add
the delegate code that connects your event handler to the control event.

For example, if you want to add a new event handler for the TextBox.TextChanged event,
simply find the event name in the list, and double-click in the empty box. Assuming the control
is named textBox1, Visual Studio will create and display the following event handler:

Private Sub textBox1_TextChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles textBox1.TextChanged

End Sub

Macdonald_694-3C01.fm Page 23 Thursday, June 22, 2006 9:39 AM

24 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

■Caution If you change the name of your event handler or remove it, you’ll get a compile error the next
time you build your project, and you’ll need to remove the offending line by hand.

Another way to configure a control is to use its designer smart tag. Not all controls provide
a smart tag, and the abilities of a smart tag vary depending on how much functionality the
control developer decided to give it. However, for many of .NET’s more sophisticated controls,
smart tags automate tasks that might require several steps. To see how smart tags work, drop a
DataGridView control onto a form. The smart tag appears to the right of a control as soon as
you add it, but you can hide or display it at any time by clicking the small arrow icon that’s
displayed in the top-right corner of a control when you select it. (If you don’t see any arrow
icon when you select a control, it doesn’t provide a smart tag for you to use.) Figure 1-7 shows
an example.

Figure 1-7. The smart tag for the DataGridView

Using the smart tag, you can quickly set certain properties via check boxes and drop-down
lists. You can click one of the links in the smart tag to perform various all-in-one tasks (like
adding a batch of standard items to a menu) or call up additional dialog boxes with more
editing options.

Generating User-Interface Code in Visual Studio
So far you’ve looked at code that can create control objects dynamically. When you use Visual
Studio to create a form at design-time, the story is a little different—or is it?

In fact, when you build a form in the IDE, Visual Studio generates the same code that you
would need to write by hand. First of all, when you add a form to a Windows application, Visual
Studio creates a customized form class. As you add, position, and configure controls in the
design-time environment, Visual Studio adds the corresponding code to the Form class, inside
a method called InitializeComponent(). The form’s constructor calls the InitializeComponent()
method—meaning that the generated code is automatically executed every time you create an
instance of your Form class (even before the form is displayed). A sample Form class (commented

Macdonald_694-3C01.fm Page 24 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 25

and slightly shortened) with an InitializeComponent() method is shown below. It configures
the window shown in Figure 1-1.

Public Class TestForm
 Inherits System.Windows.Forms.Form

 ' Form level control variables.
 ' They provide the easiest way to access a control on the window.
 Friend groupBox1 As System.Windows.Forms.GroupBox;
 Friend button1 As System.Windows.Forms.Button;
 Friend radioButton1 As System.Windows.Forms.RadioButton;
 Friend radioButton2 As System.Windows.Forms.RadioButton;

 Public Sub New()
 ' Add and configure the controls.
 InitializeComponent()
 End Sub

 Private Sub InitializeComponent()
 ' Create all the controls.
 groupBox1 = New System.Windows.Forms.GroupBox()
 button1 = New System.Windows.Forms.Button()
 radioButton1 = New System.Windows.Forms.RadioButton()
 radioButton2 = New System.Windows.Forms.RadioButton()

 ' This is our way of telling the controls not to update their layout
 ' because a batch of changes are being made at once.
 Me.groupBox1.SuspendLayout()
 Me.SuspendLayout()

 ' (Set all the properties for all our controls here.)
 ' (Configure the form properties here.)

 ' Add the radio buttons to the GroupBox.
 Me.groupBox1.Controls.Add(Me.radioButton1)
 Me.groupBox1.Controls.Add(Me.radioButton2)

 ' Add the button and group box controls to the form.
 Me.Controls.Add(Me.button1)
 Me.Controls.Add(Me.groupBox1)

 ' Now it's back to life as usual.
 Me.groupBox1.ResumeLayout(False)
 Me.ResumeLayout(False)
 End If

End Class

Macdonald_694-3C01.fm Page 25 Thursday, June 22, 2006 9:39 AM

26 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

The key point here is that a form and its controls are always created and configured through
code, even when you design it with the IDE. The only real difference between the code examples
earlier in this chapter and the code Visual Studio generates is that the latter includes a dedicated
InitializeComponent() method for better organization.

■Note You may notice that the code Visual Studio generates uses the Me keyword when referring to properties
of the base Form class (like the Controls collection) or the control member variables (like button1). This is
simply a convention adopted by Visual Studio that underscores the fact that these properties are members of
the class, not local variables. However, if the Me keyword is omitted, the code will still function in the same
way. Visual Studio takes this precaution because there is no way to assure that one of the controls it serializes
won’t generate code for a local variable with the same name (although this is extremely unlikely).

The Component Tray
There’s still one minor detail the form code omits. Remember, a form can host two types of
objects: controls, which occupy a distinct piece of screen real estate, and non-control compo-
nents, which don’t have any visual representation on the form at all.

When you drag a component onto the form surface, an icon appears for it in the compo-
nent tray (see Figure 1-8). You can configure the component’s properties and handle its events
by selecting this icon.

Figure 1-8. The component tray

If you look at the automatically generated code for the form, you’ll see that the code for
creating and configuring the component is added to the InitializeComponent() method, just
like it is for controls. However, the component is not added to the form’s Controls collection.
What you will find is this generic block of code that Visual Studio uses to clean up any compo-
nents that hold unmanaged resources:

Macdonald_694-3C01.fm Page 26 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 27

Private Components as System.ComponentModel.IContainer

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 MyBase.Dispose(disposing)
End Sub

The Hidden Designer Code
The only problem with automatically generated code is that it can be fragile. For example, if
you try to edit the code that Visual Studio has generated, you may inadvertently end up removing
something fundamental. If the problem is severe enough, Visual Studio will refuse to design the
form at all—instead, when you switch to design mode, you’ll see an unhelpful error message, as
shown in Figure 1-9.

Figure 1-9. A form that’s been tampered with

To stop this from happening, Microsoft developers changed the way Visual Studio 2005
works by using a new feature of the VB language called partial classes. Partial classes allow you
to split a class definition into more than one file. When the code is compiled, the VB compiler
tracks down all the separate pieces and assembles them into one class. You know that partial
classes are at work when one of the class definitions includes the word Partial as shown here:

Partial Public Class TestForm
 Inherits System.Windows.Forms.Form
 . . .
End Class

Visual Studio uses this technique to separate every form into two pieces: the piece that
contains the code you write, and the piece that contains all the code that Visual Studio generates
when you build the form by adding controls at design time. For example, if you add a form
named TestForm to your project, Visual Studio actually adds two files: TestForm.vb with your

Macdonald_694-3C01.fm Page 27 Thursday, June 22, 2006 9:39 AM

28 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

code, and TestForm.Designer.vb with the automatically generated code. It hides the designer
file from view to prevent tampering.

To find the designer code, you need to first show hidden files by selecting Project ➤ Show
All Files. Then, click the plus (+) symbol next to your form, as shown in Figure 1-10.

Figure 1-10. Finding a form’s designer code

There are two reasons you might want to look at the designer code for a form.

• You want to see how things work. For example, you might decide you need to write
some code to add a control dynamically at runtime. If you’re not quite sure what code
you need, you could add the code at design time, and then just cut and paste from the
designer file to a new location, with only minor modifications needed.

• You want to modify your controls without using the designer. Despite Visual Studio’s
strong design-time support, some changes are still easier to perform with a search-and-
replace operation. One example is if you have multiple controls with text that includes
your company name, and you want to change all of these instances to use a different
name. Making these changes in the Properties window would be much more time-
consuming.

■Tip As a rule of thumb, it’s safe to make changes in the designer region, but you should never add code—
even comments. That’s because Visual Studio will most likely throw out whatever you’ve added the next time
it re-creates the serialized code based on the objects on the design surface.

Here’s the skeletal structure that shows the two pieces that comprise any form in Visual
Studio 2005 (see Listing 1-1 and Listing 1-2).

Macdonald_694-3C01.fm Page 28 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 29

Listing 1-1. Testform.vb

Public Class TestForm
 ' (Any event-handling code you write goes here.)

 ' This default constructor is generated autoamtically,
 ' and doesn't appear in the code anywhere. However,
 ' if you create a constructor of your own, the
 ' InitializeComponent() line is inserted in it automatically.
 Public Sub New()
 InitializeComponent()
 End Sub

End Class

Listing 1-2. Testform.Designer.vb

Partial Public Class TestForm
 ' Code for cleaning up components follows.
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 MyBase.Dispose(disposing)
 End Sub

 Private components As System.ComponentModel.IContainer

 Private Sub InitializeComponent()
 ' (Code for creating and configuring the controls goes here.)
 End Sub

 ' (Form level control variables go here).
End Class

No self-respecting .NET programmer should be afraid to take a look at the designer code.
In fact, it just might reveal a few new tricks.

■Tip If you look at the designer code for a form you’ve created in Visual Studio, you’ll notice a few more
changes from the code listing shown earlier. Here’s why. First, controls are defined and then created in two
separate steps (and the creation takes place in the InitializeComponent() method). Second, controls are added
all at once using the Controls.AddRange() method, which accepts an array of control objects, and saves a few
lines of code at the expense of readability.

Macdonald_694-3C01.fm Page 29 Thursday, June 22, 2006 9:39 AM

30 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

The Application Framework
Visual Basic attempts to simplify Windows application design using something it calls the
application framework. Conceptually, the application framework is little more than a few auto-
matically generated pieces of code. Most notably, it enables visual styles for Windows XP,
launches the start-up form, and (optionally) prevents the user from launching more than one
instance of the application at once. You can specify application framework settings by double-
clicking the My Project node in the Solution Explorer, and choosing the Application tab (see
Figure 1-11).

Figure 1-11. Application settings

Using the window in Figure 1-11, you can set the start-up form (the form that’s launched
initially) and specify when the application should end (either when the start-up form is closed
or after all forms are closed). You can even choose a form to use as a splash screen, which will
appear for a timed interval before your start-up form is shown. Less important settings (at least,
from the point of user interface design) include the authentication mode, which determines
whether the current user account information is exposed through the My object, and the option to
automatically save settings to a user-specific file (see the Visual Studio Help for more informa-
tion about the My.Settings feature).

Macdonald_694-3C01.fm Page 30 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 31

Application Events

Although convenient, the application framework settings can be limiting. For example, in
some applications, you might want to show more than one form when your application first
starts up. In order to accomplish this with the application framework, you need to respond to
application events (see Table 1-1).

To create event handlers for application events, click the View Application Events button
in the project properties window. The first time you do this, it creates a new code file named
ApplicationEvents.vb. The following code shows how you could handle the Startup event and
use it to show a Login window before your main form appears:

Partial Friend Class MyApplication

 Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As StartupEventArgs) Handles Me.Startup
 ' Show a login window modally, which interrupts
 ' your application until it's closed.
 Dim login As New LoginForm()
 login.ShowDialog()

Table 1-1. Application Events

Event Description

Startup Fires when the application starts, but before the start-up form
is created. If you want to show a form before the main form,
you could show it here. This is also a great place to put initial-
ization code that should run before the first form appears.

Shutdown Fires after all the forms in the application are closed, just
before your program ends. This is a good place to save user
preferences and last-minute settings. This event isn’t raised
if the application fails with an error.

UnhandledException Fires if the application ends with an unhandled error.

StartupNextInstance Fires when the application is launched for a second time (in
other words, when one copy is already running). Usually, you
won’t use this event. Instead, you can select the “Make single
instance application” setting in the project properties to allow
only one copy of your application to run at once. If the user
tries to launch a second copy, the first instance is brought to
the foreground instead.

NetworkAvailabilityChanged Fires when a network connection is connected or discon-
nected. This is useful if you have features that depend on
Internet connectivity.

Macdonald_694-3C01.fm Page 31 Thursday, June 22, 2006 9:39 AM

32 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

 ' Check if the login information is valid.
 If Not login.ValidateUser Then
 ' Don't start the application.
 e.Cancel = True
 End If

 ' Continue to the main form (if a cancel
 ' hasn't been requested).
 End Sub

End Class

You could use a similar approach if you wanted to show a splash screen at the same time
that you perform time-consuming initialization.

Disabling the Application Framework

In previous versions of VB, the preferred approach was to start your application with a dedicated
method—a code routine that you can use to explicitly show whatever forms you want. This
option is still available in VB 2005, but in order to use it, you need to turn off the application
framework. To do so, head to the application framework settings (if you’re not there already)
by double-clicking the My Project node in the Solution Explorer and choosing the Application
tab. Next, clear the “Enable application framework” check box. You can then choose the class
that has the shared Main() method from the Startup object list.

When starting an application with your own dedicated method, it’s up to you to perform
the tasks that the application framework would otherwise perform automatically. Most impor-
tantly, you need to explicitly enable visual styles by calling Application.EnableVisualStyles()
before you show any forms.

You can place the start-up method in a form class, or you can create a shared method in a
separate class, which is usually a clearer and cleaner approach. Here’s an example:

Public Class Program

 Public Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Form1())
 End Sub

End Class

This example begins by enabling Windows XP visual styles, which ensures that common
controls use a slightly more up-to-date rendering style on Windows XP operating systems. (On
non-XP operating systems, the EnableVisualStyles() method has no effect.) Next, the example
creates a new instance of Form1, and then passes it to the Application.Run() method. The Run()
method starts a message loop, ensuring that your application stays alive until the window is closed.

You might wonder why you don’t just use the Form.Show() method rather than rely on the
Application class. The problem is that as soon as the Main() method finishes executing, the
application terminates, and any open windows are automatically closed. Because the

Macdonald_694-3C01.fm Page 32 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 33

Show() method shows a modeless form and doesn’t halt your code, the following sample appli-
cation will start and end immediately:

Public Shared Sub Main()
 Dim frm As New Form1()

 ' Show() shows a modeless window, which does not interrupt the code.
 ' The Main() method code continues, the application terminates
 ' prematurely, and the window is closed automatically.
 frm.Show()
End Sub

On the other hand, you don’t need to use the Application.Run() method if you use the
Form.ShowDialog() method, which shows a modal form. Your code isn’t resumed until the
form is closed. The following example shows two forms (one after the other), and ends only
when the second form is closed:

Public Shared Sub Main()
 Dim frmLogin As New LoginForm()

 ' ShowDialog() shows a modal window
 ' The Main() method does not continue until the window is closed.
 frmLogin.ShowDialog()

 Dim frmMain As New MainForm()
 ' Now the code does not continue until the main form is closed.
 frmMain.ShowDialog()
End Sub

Finally, if you want complete unrestricted freedom, you can call Application.Run() without
supplying a window name. This starts a message loop that continues until you explicitly termi-
nate it by calling Application.Exit(). (For example, you might do this when a form closes by
handling the Form.Closed event.)

Public Shared Sub Main()
 Dim frmMain As New MainForm()
 Dim frmSecondary As New SecondaryForm()

 ' Show both windows modelessly at the same time.
 ' The user can use both of them.
 frmMain.Show()
 frmSecondary.Show()

 ' Keep the application running until your code decides to end it.
 Application.Run()
End Sub

In this case, you need to make sure that you end the application somewhere using the
Application.Exit() method. Otherwise, if you leave the code like that, the user could close both

Macdonald_694-3C01.fm Page 33 Thursday, June 22, 2006 9:39 AM

34 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

your forms, leaving your application alive even though there isn’t any of your code running.
You can use Task Manager to confirm that your application process is running.

You’ll learn much more about modeless and modal windows in Chapter 3, along with
techniques for interacting between forms.

■Note The entry point is a basic piece of form infrastructure. The code examples in this book rarely include
the entry point or the Windows designer code, both of which would only clutter up the example at hand.

Designing Windows Forms Applications
Now you’ve learned all the fundamentals about the object underpinnings of Windows Forms
applications. To dive into Windows Forms programming, you can skip straight to the next chapter.

However, there’s still another set of considerations that are keenly important for user-
interface programmers—those that deal with application architecture. Application architecture
determines how a user interface “plugs in” to the rest of an application. Development platforms
like .NET make this interaction fairly straightforward and, as a result, developers usually spend
little or no time thinking about it. User interface code is often inserted wherever it’s most
convenient for the developer when the code is written. This approach almost always leads to
interface code that’s tightly bound to a particular problem, scenario, or data source, and heavily
interwoven with the rest of the application logic. The interface might look good on the outside,
but the code is almost impossible to enhance, reuse, or alter with anything more than trivial
changes.

To avoid these disasters, you need to look at the user interface as an entire interrelated
framework, and consider the best ways to organize your code, separate your user interface
details, and shuffle data from one place to another. These are the topics that I’ll touch on in
the remainder of this chapter.

Encapsulation
Encapsulation is the principle that suggests classes should have separate, carefully outlined
responsibilities. Everything that a class needs to fulfill these responsibilities should be wrapped
up, hidden from view, and accomplished automatically wherever possible. Encapsulation is
often identified as a pillar of object-oriented programming, but it’s played a part in good program
design since the invention of software. A properly encapsulated function, for example, performs
a discrete well-identified task and has a much better chance of being reused in another appli-
cation (or even the same program).

The best way to start separating your user-interface code is to think more consciously
about encapsulation. The custom form class, with its “switchboard” design, is an excellent
example of encapsulation at work. However, it also presents a danger. It potentially encourages
you to embed a great amount of additional logic in the form event handlers. A large part of
good user-interface programming is simply a matter of resisting this urge.

The following sections lay out some guidelines that can help you keep encapsulation in mind.

Macdonald_694-3C01.fm Page 34 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 35

Use a Central Switchboard

The form acts as a switchboard for all the controls it contains. Always remember that the real
goal of a switchboard is to route calls to a new destination. In other words, when you create the
event handler for a button’s Click event, this event handler usually has two purposes:

• To forward the command to another object that can handle the task

• To update the display based on any feedback that’s returned

Depending on the button, only one of these tasks may be necessary. But the important
concept is that an event handler is almost always part of a user-interface class—the form
switchboard. (After all, this is the design that Visual Studio uses.) As a result, it’s a terrible place
to put business logic. The form is meant to handle user-interface tasks and delegate more-
complicated operations to other classes. That way, your interface won’t become tightly bound
to the rest of your application logic, and you’ll be able to revise and enhance it at a later point
without running into trouble.

Ideally, you should be able to remove a form, add a new one, or even combine forms
without having to rewrite much code. To accomplish this goal, forms should always hand off
their work to another switchboard. For example, it might be easy to update a record according
to a user’s selections by creating a new object in the form code and calling a single method.
However, if you add another layer of indirection by forcing the form to call a more generic update
method in a central application switchboard, which then accesses your business objects, your
user interface will become more independent and more manageable.

Figure 1-12 shows how this process might work when updating a customer record. The
update is triggered in response to a control event. The event handler calls a DoCustomerUpdate()
switchboard method, which then calls the required methods in the CustomerDb business
object. This way, the form contains user-interface only code, the CustomerDb contains business-
only logic, and the application switchboard acts as an interface between the two.

Figure 1-12. Using form and application switchboards

■Tip Here’s another way to look at Windows Forms design. Start by building a multilayered application
object model that supplies all the features of your application. Then you can “drive” these features by calling
methods on these objects. This way, you can make your calls from any event handler, whether it’s in response
to a menu command, a toolbar button click, or an automated testing tool that you’ve developed to help you
debug your code.

Macdonald_694-3C01.fm Page 35 Thursday, June 22, 2006 9:39 AM

36 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Use Enumerations and Helper Classes

User-interface controls often require sets of constants, and trying to hard-code them is a
tempting trap. Instead, you should create enumerations with meaningful names, and place
them in dedicated helper classes. For example, you can define enumerations that help you
manage and identify different levels of nodes in a TreeView control (see Chapter 6), distinguish
different types of items in a ListView, or just pass information to other methods in your program.
Similarly, extraneous details like SQL stored procedure names should be strictly confined to
helper classes.

Don’t Share Control References

It’s easy to pass control references to helper methods. For example, you can create utility classes
that automatically fill common list controls. However, this type of design, where you rely on
extraneous classes to perform user-interface tasks, can make it extremely difficult to make
even simple modifications to the user interface. As a rule of thumb, business code should never
rely on the existence of a specific type of user-interface control.

Use Collections

Objects are only as good as the way you can access them. On its own, a data object is a group
of related information. By using a collection or other classes that contain collections, you can
represent the underlying structure of an entire set of complex data, making it easier to share
with other parts of your program.

Create Data-Driven User Interfaces

One good technique is to design your user interface around the data it manages. This may
sound like a slightly old-fashioned concept in today’s object-oriented way, but it’s actually a
good habit to prevent yourself from subconsciously combining user interface and business-
processing logic.

The single greatest challenge when creating a reusable object framework is deciding how
to retrieve data and insert it into the corresponding controls without mingling the business and
the presentation logic. Think of your user interface as having one “in” and one “out” connec-
tion. All the information that flows into your user interface needs to use a single consistent
standard. All forms should be able to recognize and process this data. To achieve this, you might
want to use data objects that rely on a common interface for providing data. Or you might want
to standardize on the DataSet object, which provides a nearly universal solution for transferring
information. Chapter 8 explores the ways you can tame data in a user interface, and Chapter 21
shows an example of an application that builds its interface dynamically using the information
in a data source.

■Note When is a data-driven interface just another bit of jargon? Probably when you aren’t creating an
application based on processing, displaying, and managing data. In the business world, the majority of appli-
cations deal with databases, and the majority of their work is processing and formatting complex information.
For that reason, a great deal of emphasis is placed on how this information is managed and transferred. If, on
the other hand, you plan to create the next three-dimensional action game, the rules may change.

Macdonald_694-3C01.fm Page 36 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 37

Developing in Tiers
An object-oriented application framework sets out rules that determine how objects will interact
and communicate. When creating a user interface, you have to develop your application
framework at the same time that you plan your individual classes. One overall guideline that
can help you shape an application is three-tier design.

The basic principle of three-tier design is simple. An application is divided into three
distinct subsystems. Every class belongs to only one of these three partitions, and performs
just one kind of task. The three tiers are usually identified as the following:

• The presentation tier. This tier converts a user’s actions into tasks and outputs data
using the appropriate controls.

• The business tier. This is the tier where all the calculations and processing specific to the
individual business are carried out.

• The data tier. This is the tier that shuttles information back and forth from the database
to the business objects.

An object in one tier can interact only with the adjacent tiers, as shown in Figure 1-13.

Figure 1-13. Three-tier design

Macdonald_694-3C01.fm Page 37 Thursday, June 22, 2006 9:39 AM

38 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

Almost everyone agrees that this sort of structure is the best way to organize an application,
but it’s not always easy to implement this design. Though the plan looks simple, modern user
interfaces are usually quite complicated, and sometimes make assumptions or have expecta-
tions about the way they will receive information. The result is that everyone recommends this
model, but very few developers follow it successfully. The problems, although not insurmount-
able, are found in every tier. The next three sections explain some of the challenges you’ll face.

The Presentation Tier

Though it doesn’t explicitly state it, three-tier design requires a fair degree of consistency
among user-interface controls. In the real world, this consistency doesn’t exist. For example,
making what is conceptually a minor change—like substituting a ListView control for a
DataGridView—requires a totally different access model. The DataGridView is filled exclu-
sively by data binding. The ListView, on the other hand, acts like a collection of items. To get
information into other ListView columns, you need to add a collection of fields to each indi-
vidual item. These quirks are easy enough to master, but they don’t make it possible to create
business objects that can quickly and efficiently fill common controls.

For example, consider an application that reads customer information from a database
and displays it in an attractive list control. At first glance, it seems like a straightforward task.
But consider the number of different ways it could be modeled with objects:

• A CustomerDb class fetches information from the database, and returns it as a DataSet.
Your form code then manually reads the DataSet and adds the information to a list control.

• A CustomerDb class fetches information from the database. You also create a custom
CustomerList control class that knows how to fill itself using the DataSet it receives
from CustomerDb.

• A CustomerDb class fetches information from the database. However, the CustomerDb
class also receives a reference to the list control that needs to be filled. The CustomerDb class
has the built-in smarts to know how to fill the list control’s collection of items.

• A CustomerDb class fetches information from the database. A helper class,
FillListFromDataSet, handles the conversion of the information in the DataSet to
information in the generic list control.

Which approach is the best one? It’s difficult to say. The first approach does the trick, but
probably isn’t generic enough, which will limit your ability to reuse your solution. The second
approach also works, but is probably too much effort because you’ll need to create a dedicated
custom control. The third option is suspicious, because it seems that the CustomerDb class is
being given additional responsibilities beyond the scope it was designed for. Overall, some
variation on the final option will probably give you the best tradeoff between simplicity and
reusability. By dividing the solution up into an extra piece (FillListFromDataSet), it makes the
user interface more loosely coupled. But the greatest problem with all of these examples is that
there is no guarantee that the other classes in the application will follow this pattern. And it
should come as no surprise that when you read the vast quantity of .NET articles and books,
you’ll see examples of all of these techniques.

Macdonald_694-3C01.fm Page 38 Thursday, June 22, 2006 9:39 AM

C H A P T E R 1 ■ U S E R I N T E R F A C E A R C H I T E C T U R E 39

■Tip The single most important decision you can make is to define how your user interface classes should
interact. This is the simplest way to improve your designs without adopting a single specific type of architecture.

The Business Tier

In three-tier design, it’s assumed that the user interface is isolated from the underlying data
source. Information for a control is requested through a layer of business objects. These busi-
ness objects handle all the application-specific tasks, including enforcement of business rules.
In other words, the business objects validate data to make sure it’s consistent with the rules of
the systems. The key benefit of this is that you can change the rules of your application by
modifying the business components, rather than by creating and deploying a new client appli-
cation, which makes it much easier to put up with the ever-changing requests of some fickle
management types.

Unfortunately, this ideal introduces as many problems as it solves. The key problem is that
the error checking happens after the process is started, which is too late for the validation to be
useful in the user interface. As a result, you’re more likely to waste time, confuse users, and (at
worst) lose information. To make a productive user interface, you need to act on an error as
soon as it happens and give immediate feedback, or better yet, forbid it entirely. That means
that your user interface always needs to be designed with some built-in business rules (for
example, forbidding letters in a text box that represents an invoice amount).

■Tip Chapter 18 discusses the best ways to integrate validation into your applications, and gives many
more practical tips about how you can deal with validation in an elegant, componentized way.

The Data Tier

Keeping the data tier separate from the business tier is another battle. To optimize performance,
databases in enterprise applications usually rely on stored procedures, views, and other opti-
mized ways to retrieve and update data. However, the user-interface tier can’t be built in a
database-friendly way, because it is designed to be completely generic. It also can’t rely on
tricks that programmers love, like dynamically generated SQL statements, because it is supposed
to be completely isolated from the data tier. The result is a tradeoff, where you can favor any
one of the following approaches:

• Create a “thin” business layer that uses methods that correspond very closely to stored
procedures and other database-specific parameters. Unfortunately, this business layer
requires significant reworking if the database changes.

• Create an average business layer that lets the user interface retrieve whatever data it
wants. The business tier relies on accessing the database using generic SQL statements.
It’s very expandable and generic, but database performance will be terrible.

Macdonald_694-3C01.fm Page 39 Thursday, June 22, 2006 9:39 AM

40 C H A P T E R 1 ■ U S E R I N T E R F A CE A R C H I T E C T U R E

• Create a “thick” business layer that tries to match requests from the user interface with
an optimized execution path for a specific database. With a little luck and careful coding,
performance could be as good as in the first option, and the layer could be nearly as
generic as in the second. However, writing this tier is a major programming undertaking
that takes exponentially more time.

So which approach is the best compromise? Usually developers decide based on the
scalability needs of their application. In an application that needs to serve a large number of
simultaneous users, the first approach is almost always preferred. In a smaller-scale applica-
tion, developers are more likely to choose flexibility over optimization and go with the second
choice. If you have a lot of extra time on your hands, you could attempt the third approach, but
it’s an academic ideal that’s rarely achieved in practice.

Three-Tier Design in .NET

It’s important to remember that three-tier design is an abstraction. No successful application
will implement it exactly. However, it’s a powerful guideline that helps you shape how classes
interact in your application.

.NET 2.0 provides a set of tools to manage data and the way it’s displayed in a Windows
application. Some of these tools are indispensable for dealing with data in a business applica-
tion. Others make it far too easy to break the rules of encapsulation and create tightly bound
interfaces with data access code embedded in your application’s user interface. In Chapter 8,
you’ll take your first look at these features, and you’ll consider some common, practical approaches
to make sure you keep a well-designed application.

The theme of separating user-interface code from other types of application code will recur
throughout this book, even when you aren’t using data binding. (For example, you’ll use it in
Chapter 19 with the document-view model, which rigidly separates user interface code from
the documents an application creates.) You’ll also learn when to break through simplifications
of three-tier design, such as when building systems for validation and dynamic help—and how
to do it in a well-encapsulated, componentized way.

It may seem strange to discuss tiers and business objects in a book on user-interface design.
(In fact, there are other excellent .NET books written entirely about architecture and design
patterns.) But as you’ll see, when you set specific rules about how the user interface tier can
communicate with other parts of your program, you start to make the transition from a simple
collection of objects to a true user-interface framework.

The Last Word
This chapter introduced you to the broad picture of user interfaces in the .NET world and
considered the basic design assumptions that Visual Studio makes automatically. You can
make different design decisions, and .NET allows you a considerable amount of freedom to
create the exact framework that you want. In later chapters, you’ll learn how to exploit this
freedom to create all types of custom controls.

Finally, this chapter provided an introduction to the concepts of application architecture,
which will crop up from time to time throughout this book as you design the user-interface
layer of your application.

Macdonald_694-3C01.fm Page 40 Thursday, June 22, 2006 9:39 AM

41

■ ■ ■

C H A P T E R 2

Control Basics

In Windows Forms, everything begins with the Control class—the fundamental class from
which every other control derives. The Control class defines the bare minimum functionality
that every control needs, from the properties that let you position it in a window to the events
that let you react to key presses and mouse clicks.

This chapter introduces the Windows Forms toolkit, and then explores the Control class in
detail. You’ll learn about the following basics:

• How controls are positioned in a window and layered on top of each other

• How to configure the appearance of a control with fonts and colors

• How controls handle focus and the tab sequence

• How you can get keyboard and mouse information by reacting to events or at any time

You won’t look at specific control classes in this chapter. Instead, you’ll concentrate on the
fundamentals that apply to all controls.

The Windows Forms Package
.NET provides two toolkits for application design: one for Web applications (called ASP.NET),
and one for Windows development (called Windows Forms, or WinForms). Windows Forms
allows you to create the traditional rich graphical interfaces found in everything from office
productivity software to arcade games. The one detail that all Windows Forms applications
have in common is the fact that they are built out of windows—tiny pieces of screen real estate
that can present information and receive user input.

It’s easy to imagine that the term “Windows Forms” refers to a special part of the .NET
class library, where fundamental classes like Form and Control are stored. This is true, but it
isn’t the whole story. More accurately, Windows Forms is the technology that allows the common
language runtime to interact with control objects and translate them into the low-level reality
of the Windows operating system. In other words, you create objects that represent controls
and windows, and the common language runtime handles the details like routing messages,
keeping track of window handles, and calling functions from the Windows API.

The idea of wrapping low-level user interface details in an object layer isn’t new. In the
past, developers have used the MFC framework in C++, WFC in J++, and Visual Basic’s own
“Ruby” forms engine to insulate themselves from some of the low-level details of Windows
programming. These frameworks all provide an object-oriented wrapper around the Windows

Macdonald_694-3C02.fm Page 41 Wednesday, June 14, 2006 12:36 PM

42 C H A P T E R 2 ■ C O N T R O L B A S I C S

API (which, on its own, is a disorganized collection with hundreds of miscellaneous C routines).
These frameworks were well-intentioned, but they have all suffered from a few problems.

• Lack of consistency. If you learn how to use MFC, you still won’t know anything about
creating Visual Basic user interfaces. Even though every framework ultimately interacts
with the Windows API, they have dramatically different object models and philosophies.

• Thin layer/thick layer problems. Frameworks tend to be either easy to use or powerful,
but not both. MFC is really only a couple of steps away from Windows messages and
low-level grunt work. On the other hand, Visual Basic developers have the benefit of a
simple framework, but face the lingering dread that they will need to delve into the raw
Windows API for complex or unusual tasks that are beyond Visual Basic’s bounds.

• Limitations of the Windows API. The Windows API dictates certain harsh realities. For
example, once you create a fixed-border window, you can’t make its border resizable.
These limitations make sense based on how the Windows API is organized, but they
often lead to confusing inconsistencies in a framework’s object model.

The result of these limitations is that there are essentially two types of frameworks: those
that are complicated to use for simple tasks (like MFC), and those that are easy to use for simple
tasks but difficult or impossible to use for complex tasks (like VB). These object models provide
a modern way to code user interfaces, but many programmers wonder why they should abstract
the Windows API when its restrictions remain.

The .NET Solution
.NET addresses these problems by being more ambitious. The result is a user-interface frame-
work that uses some innovative sleight of hand to perform tasks that are difficult or seemingly
impossible with the Windows API. Here are some examples:

• Change fixed style properties like the selection type of a list box or the border type of a
window after its creation.

• Change a form’s owner.

• Move an MDI child window from one MDI parent window to another.

• Transform an MDI child window into an MDI parent and vice versa.

• Move controls from one container to another.

Clearly this list includes a couple of tricks that a self-respecting application will probably
never need to use. Still, they illustrate an important fact: .NET doesn’t just provide an easier
object model to access the Windows API—it also provides capabilities that extend it. The result
is a framework that works the way you would intuitively expect it to work based on its objects.

■Note The online samples for this chapter include a project named ImpossibleAPI, which shows one of
these “broken rules”—a child window that can jump between different MDI parents whenever the user clicks
a button.

Macdonald_694-3C02.fm Page 42 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 43

All of this raises an interesting question. How can a programming model built on the
Windows API actually perform feats that the Windows API can’t? Truthfully, there’s nothing in
the preceding list that couldn’t be simulated with the Windows API after a fair bit of effort. For
example, you could appear to change the border style of a window by destroying and re-creating
an identical window. To do so, you would have to rigorously track and restore all the informa-
tion from the previous window.

In fact, this is more or less what takes place in .NET. If you examine the control or window
handle (the numeric value that identifies the window to the operating system), you’ll see that
it changes when you perform these unusual operations. This signifies that, on an operating-
system level, .NET actually provides you with a new window or control. The difference is that
.NET handles this destruction and re-creation automatically. The illusion is so perfect that it’s
hardly an illusion at all (any more than the illusion that ASP.NET Web controls can maintain
state, or that television shows continuous movement rather than just a series of still images).

The cost of this functionality is a runtime that requires a fair bit of intelligence. However,
.NET programs already need an intelligent runtime to provide modern features like improved
code access security and managed memory. Windows Forms are just another part of the ambi-
tious .NET Framework.

Some programmers may nonetheless feel they need to resort to the Windows API. You can
still use API calls in your .NET applications without much trouble (and in rare cases, you might
need to in order to get certain functionality). However, the best overall approach is to abandon
these habits and use the new .NET abstractions. Not only is it easier but it also provides a short path
to some remarkable features.

■Tip One of the best pieces of advice for beginning programmers in traditional development was to master
the Windows API. However, in .NET the story changes. In .NET, you’ll get the most benefit by studying the low-
level details of the .NET object libraries, not the API. Believe it or not, the operating system details will not be
as important in the next generation of software development. Instead, you’ll need to know the full range of
properties, methods, and types that are at your fingertips to unlock the secrets of becoming a .NET guru.

The Control Class
Chapter 1 introduced the .NET Control class, and examined its place in the overall architecture
of an application. Here’s a quick review:

• You create and manipulate controls and forms using .NET classes. The common language
runtime recognizes these classes, and handles the low-level Windows details for you.

• You use a control from the .NET class library by creating an instance of the appropriate
class, and adding it to the Controls collection of a container control, like a panel or form.
Whether you add the control at design time or runtime, the code is the same.

• You configure controls by setting properties. In addition, you can react to control events
in two ways: by creating an event handler (typically in a custom form class), or by deriving
a custom version of the control and overriding the corresponding method.

Macdonald_694-3C02.fm Page 43 Wednesday, June 14, 2006 12:36 PM

44 C H A P T E R 2 ■ C O N T R O L B A S I C S

Every .NET control derives from the base class System.Windows.Forms.Control. Depending
on the complexity of the control, it may pass through a few more stages in its evolution.

The Control class is interesting mainly for the basic functionality that it defines. Sorting
through the functionality is no easy task. The 200-plus members include countless properties,
events that fire to notify you when certain common properties are changed (like VisibleChanged,
TextChanged, SizeChanged, and so on), and methods that reset values to their defaults, along
with some more useful and unusual members. The sections in this chapter sort through the
most important Control properties by topic. But before you begin your exploration, you may
want to check out some of the basic and system-related members in Table 2-1.

Table 2-1. Basic Control Members

Member Description

Name Provides a short string of descriptive text that identifies
your control. Usually (and by default, if you’re using Visual
Studio), the form-level member variable that refers to the
control is given the same name. However, there’s no direct
relation; the Name property is provided just to help you
when iterating through a control collection looking for a
specific item.

Tag Provides a convenient place to store any type of object. The
Tag property is not used by the .NET Framework. Instead,
you use it to store associated data (like a data object or a
string with a unique ID).

Controls The Controls collection stores references to all the
child controls.

Invoke(), InvokeRequired, and
CheckForIllegalCrossThreadCalls

These members are used in multithreaded programming.
InvokeRequired returns True if the current thread is not the
one in which the control has been created. In this case,
you should not attempt to call directly any other method
or property of the control. Chapter 20 shows how you can
create and manage multithreaded forms.

DesignMode Returns True if the control is in design mode. This property
is used when you are creating a custom control, so you
don’t perform time-consuming operations when the program
is not running (like an automatic refresh).

Dispose() This method releases the resources held by a control (like
the operating system window handle). You can call this
method manually to clean up, or you can let the common
language runtime perform its lazy garbage collection. When
you call Dispose() on a container control, Dispose() is auto-
matically called on all child controls. This also means that
if you call Dispose() on a form, all the controls on that form
are disposed.

Macdonald_694-3C02.fm Page 44 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 45

Because every control is derived from the Control class, you can always use it as a lowest
common denominator for dealing with some basic Control properties in your application. For
example, consider the form in Figure 2-1, which provides a text box, label, and button control.
You’ll find this example (called the ControlMedley project) with the samples for this chapter.

Figure 2-1. A medley of different controls

The Click event for all these controls (and the underlying form) is handled by one event
handler: a method named ctrlClick(). Here’s the event handler:

Private Sub ctrlClick(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Button1.Click, TextBox1.Click, Label1.Click
 Dim ctrl As Control = CType(sender, Control)
 MessageBox.Show("You clicked: " & ctrl.Name)
End Sub

The code in the ctrlClick() event handler is completely generic. It converts the object refer-
ence of the sender into the control type, and then displays a message with the name of the
clicked control. Notice how the Handles clause binds this event handler to three separate Click
events for three different controls.

■Tip You can type the Handles clause by hand, or you can use the Properties window in Visual Studio. To
add an event handler, select the appropriate control on the form. Then click the lightning bolt in the Properties
window to see the list of its events. Find the event you want (in this case the Click event), and attach it to the
existing ctrlClick() method using the drop-down list.

This technique of creating a generic event handler is quite useful. It allows you to handle
similar events from any type of control, rather than limiting you to one type of control (e.g., a
Button) and one type of event (e.g., Button.Click). For example, you could use this approach to
dynamically highlight different controls as the user moves the mouse cursor over them. When
the appropriate event fires, you just need to retrieve the control reference from the sender
parameter and set that control’s foreground and background colors accordingly. In later chapters,
you’ll see examples that use this technique to simplify drag-and-drop code and show a control’s
linked context menu.

Macdonald_694-3C02.fm Page 45 Wednesday, June 14, 2006 12:36 PM

46 C H A P T E R 2 ■ C O N T R O L B A S I C S

Control Relations
Chapter 1 described how controls like forms, panels, and group boxes can contain other controls.
To add or remove a child control, you use the collection provided in the Controls property.
Control objects also provide other properties that help you manage and identify their relation-
ships (see Table 2-2).

Windows XP Styles
Windows XP introduced a revamped look for Windows applications that refreshes the way
common graphical elements like buttons and boxes are drawn. Figure 2-2 shows the difference.

Table 2-2. Members for Control Relationships

Member Description

HasChildren Returns True if the Controls collection has at least one child control.

Controls A collection of contained controls. You can use this collection to
examine the existing child controls, remove them, or add new ones.

ControlAdded and
ControlRemoved events

These events fire when controls are added to or removed from the
Controls collection. You can use these events to automate layout
logic. Chapter 21 deals with this issue in more detail.

Parent A reference to the parent control (the control that contains this control).
This could be a form or a container control like a group box. You can
set this property to swap a control into a new container.

TopLevelControl and
FindForm()

The TopLevelControl property returns a reference to the control at
the top of the hierarchy. Typically, this is the containing form. The
FindForm() method is similar, but it returns null if the control is not
situated on a form.

Contains() This method accepts a control, and returns True if this control is
a child of the current control. This method works with children of
children, so you can test if a given control is contained anywhere in
the control tree of another container.

GetChildAtPoint() This method accepts a Point structure that corresponds to a location
inside the current control. If a child control is located at this point, it
is returned. This method is often used when hit-testing to see if the
mouse pointer is over a child control. This method finds only imme-
diate children (not children of children).

ContextMenuStrip and
MenuStrip

These properties return the associated ContextMenuStrip object (for
a basic control) or MenuStrip object (for a form). Chapter 14 has much
more information about menus and toolbars.

Macdonald_694-3C02.fm Page 46 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 47

Figure 2-2. Normal (left) and Windows XP (right) visual styles

In .NET 1.0, you needed to do the tedious work of creating an additional XML file (known
as a manifest) to support the Windows XP look. In .NET 2.0, life is a whole lot easier. You simply
need to remember to call the Application.EnableVisualStyles() method when your application
starts, before showing any forms. If you’re using the application framework (introduced in
Chapter 1), this line of code isn’t visible, but it’s automatically called before your start-up form
is shown. If, on the other hand, you decide to disable the application framework and start your
application with a Main() method, you’ll need to call Application.EnableVisualStyles() yourself. If
you forget to call EnableVisualStyles(), you’ll still see the Windows XP look for nonclient portions
of your form (such as the border and minimize/maximize buttons). However, the Windows XP
look won’t be used for the form surface, which means that basic user-interface elements, like
buttons, check boxes, and radio buttons, will still have the antiquated look that they’ve used
since Windows 95.

In either case, the way your application works with earlier operating systems is unchanged.
The EnableVisualStyles() call is harmlessly ignored on non-XP versions of Windows. There’s
one more quirk—the Visual Studio design environment doesn’t pay attention to whether or
not your application uses visual styles, because it has no way to determine whether you will call
the EnableVisualStyles() method before showing a given form. As a result, Visual Studio always
uses the Windows XP styles if you’re designing your application on a Windows XP computer.

■Note Many button-style (like Button, CheckBox, and RadioButton) controls provide a FlatStyle property.
If you set FlatStyle to a value other than System or Standard, the Windows XP styles won’t be used. However,
the default setting for all controls is Standard, which ensures that you get the appearance you expect as long
as you call EnableVisualStyles().

Macdonald_694-3C02.fm Page 47 Wednesday, June 14, 2006 12:36 PM

48 C H A P T E R 2 ■ C O N T R O L B A S I C S

Position and Size
A control’s position is defined by the distance between its top-left corner and the top-left
corner of its container. Often, the container is a form, but it could also be a container control,
like a panel or group box. Similarly, the size of a control is measured as the width and height of
the control from its top-left corner (not including the space occupied by the form border and
caption). By convention, the position measurement is positive in the downward and rightward
directions. Figure 2-3 shows the relationship.

Figure 2-3. Control measurements

All coordinates and dimensions are represented by integer values that are measured in
pixels. They are provided through several properties, including Top, Left, Right, and Bottom for
position, and Width and Height for size. Out of these, only Top, Left, Width, and Height can be
adjusted (the Right and Bottom properties are calculated based on these values and are read-only).

■Note Pixels, of course, are the smallest physical measurement of screen resolution. A typical consumer
computer monitor uses a display resolution of 1024 × 768 or 800 × 600 pixels. Because the current generation
of the Windows operating systems is based on pixels, application windows can look quite different (cramped
and small or spacious and expansive) depending on the hardware on your computer. Future versions of
Windows, like Vista, promise to change this system by adding a truly scalable rendering engine.

Macdonald_694-3C02.fm Page 48 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 49

Although you can change the Top and Left properties, the preferred way to set position is
by setting the Control.Location property using a Point object. A Point object is a simple structure
that represents a coordinate. It consists of just two properties—X and Y.

Here’s an example that uses a Point object:

Dim pt As New System.Drawing.Point()
pt.X = 300 ' The control will be 300 pixels from the left
pt.Y = 500 ' The control will be 500 pixels from the top.
ctrl.Location = pt ' Now ctrl.Left = 300 and ctrl.Top = 500

Similarly, the preferred way to define a control’s size is to set the Control.Size property
with a Size object, which represents a rectangle. The Size structure consists of a Width and
Height property.

Dim sz As New System.Drawing.Size()
sz.Width = 50
sz.Height = 60
ctrl.Size = sz

' Just for fun, set another control to have the same size.
ctrl2.Size = ctrl.Size

■Note All standard controls are treated as rectangles. In Chapter 23, you’ll see how it’s possible to create
specialized controls and forms that have irregular boundaries by using the Region property.

These basic structures originate from the System.Drawing namespace. By importing the
System.Drawing namespace and using some handy constructors, you can simplify these examples
considerably, as shown here:

ctrl.Location = New Point(300, 500) ' Order is (X, Y)
ctrl.Size = New Size(50, 60) ' Order is (Width, Height)

Visual Studio takes this approach when it creates code for your controls at design time.
One other useful shortcut is the SetBounds() method, which is handy if you want to set location
and size in a single step:

ctrl.SetBounds(300, 500, 50, 60) ' Order is (X, Y, Width, Height)

Along with the basic Size property, controls and forms also provide a ClientSize property.
Essentially, Size is the full measure of the screen real estate taken by a control. ClientSize is the
size of the control, ignoring elements that the control isn’t directly responsible for drawing.
This may include the borders of the control, and the scroll bar. Figure 2-4 shows the difference
between Size and ClientSize.

Macdonald_694-3C02.fm Page 49 Wednesday, June 14, 2006 12:36 PM

50 C H A P T E R 2 ■ C O N T R O L B A S I C S

Figure 2-4. The Size property compared to the ClientSize property

Typically, the ClientSize property is most useful when you’re performing coordinate
calculations with a form and you want to ignore the title bar region. Here’s an example:

' This code attempts to center a label vertically.
' It's a little too low because the title bar is not accounted for.
label1.Location.Y = (Me.Size.Height - label1.Height) / 2

' This code centers a label vertically.
' It succeeds because it uses the client region for its calculations.
label1.Location.Y = (Me.ClientSize.Height - label1.Height) / 2

There are still other size- and position-related properties, such as those used for anchoring
and docking when creating automatically resizable forms. These properties are described in
detail in Chapter 3.

■Tip There are actually two ways to measure the position of a control. Typically, you’ll use the Location
property, which measures the distance between the control borders and the bounds of the container. However,
you can also use absolute screen coordinates, which measure the distance between the control borders and
the edges of the screen. If you have one type of measurement and you need another, don’t worry—you can
use the Control.PointToClient() and Control.PointToScreen() methods to convert the coordinate. Chapter 4
shows an example with a drag-and-drop operation that spans two forms.

Overlapping Controls
When you place more than one control in the same place, one will end up on top, and the other
will end up underneath. Usually this is the result of a minor mistake, such as incorrectly using
the anchoring and docking features (described in Chapter 3) to create resizable forms. In some
cases, however, you might want to overlap controls for a specific effect.

Macdonald_694-3C02.fm Page 50 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 51

When controls overlap, it’s the z-index that determines which control ends up on top. Essen-
tially, every control exists in its own distinct numbered layer. A control that has the z-index layer 1
will appear above a control in z-index layer 2 if they overlap. Usually, the z-index of a group of
controls is determined by the order in which you add the controls, so that the last control you add
is always in the topmost layer (with a z-index of 0). However, you can change these options.

To determine or set the z-index of a control, you can use the GetChildIndex() and
SetChildIndex() methods of the Controls collection. Here’s an example that moves a control
to the third layer in the z-index:

Controls.SetChildIndex(ctrl, 2)

Usually, you won’t need this kind of fine-grained control. Instead, you’ll just want to drop
a control to the back of the z-index (the bottom-most layer) or bring it to the top. You can
accomplish this feat at design time by right-clicking on a control and choosing Bring to Front
or Send to Back. You can also perform the same task programmatically using the
Control.BringToFront() or Control.SendToBack() methods.

ctrl.BringToFront() ' This is equivalent to Controls.SetChildIndex(ctrl, 0)

Every container control tracks z-index values separately. As a result, you need to worry
about control overlap only if two controls exist at the same level. You don’t need to worry about
it when one control is contained inside another. For example, if you put a button inside a group
box, the group box won’t obscure the button.

■Tip Usually, overlapping controls are more frustration than they’re worth. That’s because .NET doesn’t
support real background transparency. If you want to overlap content for a specific graphical effect, you’ll
probably want to develop your own owner-drawn controls, as described in Chapter 12.

ALIGNING CONTROLS IN VISUAL STUDIO

The Visual Studio designer provides a slew of tools that make it easier to lay out controls. Here are some useful
starting points:

• Select a control, and set its Locked property to True in the Properties window. This locks it in place, ensuring
that it won’t accidentally be moved while you create and manipulate other controls.

• As you move or resize a control, look for blue snap lines, which automatically align an edge of your control
with another control. Snap lines are new in Visual Studio 2005, and they make it much easier to arrange
a column of text boxes or buttons.

• Look under the Format menu for options that let you automatically align, space, and center controls. For
example, select several existing controls and choose Format ➤ Align ➤ Left to align their left edges.
Or, choose Format ➤ Make Same Size ➤ Width to expand both controls to have the same width, or
Format ➤ Vertical Spacing ➤ Make Equal to space them out evenly from top to bottom.

• To quickly place a control in the middle of a form, select the control and use one of the options in the
Format ➤ Center in Form menu.

Macdonald_694-3C02.fm Page 51 Wednesday, June 14, 2006 12:36 PM

52 C H A P T E R 2 ■ C O N T R O L B A S I C S

Color
Every control defines a ForeColor and BackColor property. For different controls, these properties
have slightly different meanings. In a simple control like a label or text box, the foreground color is
the color of the text, while the background color is the area behind it. These values default to
the Windows system-configured settings.

Colors are specified as Color structures from the System.Drawing namespace. It’s extremely
easy to create a color object, because you have several different options. You can create a color
using any of the following:

• An ARGB (alpha, red, green, blue) color value. You specify each value as an integer from
0 to 255.

• A predefined .NET color name. You choose the correspondingly named property from
the Color class.

• An HTML color name. You specify this value as a string using the ColorTranslator class.

• An OLE color code. You specify this value as an integer (representing a hexadecimal
value) using the ColorTranslator class.

• A Win32 color code. You specify this value as an integer (representing a hexadecimal
value) using the ColorTranslator class.

• An environment setting from the current color scheme. You choose the correspondingly
named property from the SystemColors class.

■Note To change the currently defined system colors, right-click the desktop, choose Properties, and then
click the Advanced button in the Appearance tab. Keep in mind that if you’re using Windows XP themes, these
colors are effectively ignored.

The code listing that follows shows several ways to specify a color using the Color,
ColorTranslator, and SystemColors types. To use this code as written, you must import the
System.Drawing namespace.

' Create a color from an ARGB value.
Dim alpha As Integer = 255, red As Integer = 0
Dim green As Integer = 255, blue As Integer = 0
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue)

' Create a color from an environment setting.
ctrl.ForeColor = SystemColors.HighlightText

Macdonald_694-3C02.fm Page 52 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 53

' Create a color using a .NET name.
ctrl.ForeColor = Color.Crimson

' Create a color from an HTML color name.
ctrl.ForeColor = ColorTranslator.FromHtml("Blue")

' Create a color from an OLE color code.
ctrl.ForeColor = ColorTranslator.FromOle(&HFF00)

' Create a color from a Win32 color code.
ctrl.ForeColor = ColorTranslator.FromWin32(&HA000)

The next code snippet shows how you can transform the KnownColors enumeration into
an array of strings that represent color names. This can be useful if you need to display a list of
valid colors by name in an application.

Dim colorNames() As String
colorNames = System.Enum.GetNames(GetType(KnownColor))

Changing a color-name string back to the appropriate enumerated value is just as easy
using the special shared Enum.Parse() method. This method compares the string against all
the available values in an enumeration, and chooses the matching one.

Dim myColor As KnownColor
myColor = CType(_
 [Enum].Parse(GetType(KnownColor), colorName), KnownColor)

' For example, if colorName is "Azure" then MyColor will be set
' to the enumerated value KnownColor.Azure (which is also the integer value 32).

■Note Enum is both a class name and a reserved Visual Basic keyword (which is used to define your own
enumerations). As a result, when you use the Enum class, you must either fully qualify the class name as
System.Enum, or you must place it inside square brackets.

Incidentally, you can use a few useful methods on any Color structure to retrieve additional
color information. For example, you can use GetBrightness(), GetHue(), and GetSaturation().

Here’s a complete program that puts all of these techniques to work. When it loads, it fills
a list control with all the known colors. When the user selects an item, the background of the
form is adjusted accordingly (see Figure 2-5). The only exception is the Transparent color,
which generates an exception. (See Chapter 3 to learn how to create a truly transparent form.)

Macdonald_694-3C02.fm Page 53 Wednesday, June 14, 2006 12:36 PM

54 C H A P T E R 2 ■ C O N T R O L B A S I C S

Public Class ColorChanger

 Private Sub ColorChanger_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim colorNames() As String
 colorNames = System.Enum.GetNames(GetType(KnownColor))
 lstColors.Items.AddRange(colorNames)
 End Sub

 Private Sub lstColors_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lstColors.SelectedIndexChanged

 Dim selectedColorObject As Object
 selectedColorObject = [Enum].Parse(GetType(KnownColor), lstColors.Text)

 Dim selectedColor As KnownColor
 selectedColor = CType(selectedColorObject, KnownColor)

 Me.BackColor = System.Drawing.Color.FromKnownColor(selectedColor)

 ' Display color information.
 lblBrightness.Text = "Brightness = " & _
 Me.BackColor.GetBrightness().ToString()
 lblHue.Text = "Hue = " & Me.BackColor.GetHue().ToString()
 lblSaturation.Text = "Saturation = " & _
 Me.BackColor.GetSaturation().ToString()
 End Sub

End Class

Figure 2-5. A color-changing form

Macdonald_694-3C02.fm Page 54 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 55

■Note ForeColor and BackColor are ambient properties—properties that, if not set, are retrieved from the
parent. For example, if you add a Label to a Form and don’t set the BackColor, the Label uses the BackColor
of the Form. If you add a Label to a Panel and don’t set the BackColor, the Label uses the BackColor or the
Panel (and if that isn’t set, the Panel uses the BackColor of the Form). Other ambient properties include Font
and Cursor.

Alpha Blending
The most flexible way to set colors for a .NET control is to use an ARGB value, which consists of
four separate numbers representing an alpha, red, green, and blue component. The red, green,
and blue components are easy to understand (for example, a color with a red component of 255 is
much redder than one with a red component of 0). The alpha value is a little trickier—it repre-
sents the transparency of a color from 0 (completely transparent) to 255 (opaque). If you set a
background color with an alpha value other than 255, you are electing to make the control’s
background partially transparent.

You can use this code to set the alpha component of any color to 0, making it transparent:

' Make a label transparent.
label1.BackColor = Color.FromArgb(0, label1.BackColor)

You can also use the system-defined color Color.Transparent. If you want to set this through
the Properties window, you’ll find the Transparent color in the Web tab of the drop-down color
picker.

Unfortunately, the standard .NET controls don’t handle transparent backgrounds very
well. In fact, they only pretend to be transparent with a rather ugly workaround. When you set
a control to have a transparent background, it simply looks at the background of the parent
control, and uses that (if the alpha value is 255) or blends it with the specified color (if the alpha
value is somewhere between 0 and 255). As a result, when you overlap one “transparent”
control with another, the topmost control will still overlap any content in the bottom control.
Figure 2-6 demonstrates the problem with two supposedly transparent controls.

Figure 2-6. A not-quite-transparent label

There is no way to solve this problem, except to use GDI+ to create custom owner-drawn
controls that don’t suffer from the same limitations.

Macdonald_694-3C02.fm Page 55 Wednesday, June 14, 2006 12:36 PM

56 C H A P T E R 2 ■ C O N T R O L B A S I C S

Fonts and Text
The Control object defines a Text property that is used by derived controls for a variety of
purposes. For a text box, the Text property corresponds to the information displayed in the text
box, which can be modified by the user. For controls like labels, command buttons, or forms,
the Text property refers to static descriptive text displayed as a title or caption.

The font of a control’s text is defined by the Font property, which uses an instance of the
System.Drawing.Font class. Note that a Font object does not just represent a typeface (such as
Tahoma). Instead, it encapsulates all details about the font family, point size, and styles (like
bold and italic).

' You can create a font with one of the 13 constructors.
ctrl.Font = New Font("Tahoma", 8, FontStyle.Bold)

The Font class also provides a Height property, which returns the line spacing of your
chosen font in pixels. This setting allows you to perform calculations when you are drawing
special graphics or text on a control manually. For example, you could manually space lines the
appropriate amount when drawing text directly onto a form background.

■Tip A traditional default font for Windows programs is Microsoft Sans Serif. However, applications since
Windows 98 consistently use the more attractive Tahoma font (which is also better for input, as it distinguishes
between characters like a lowercase L and uppercase I). You should use the Tahoma font in your applications.

Note that font families are set using a string rather than a type-safe enumerated property.
If you try to create an object using a name that does not correspond to an installed font, .NET
automatically (and unhelpfully) defaults to the Microsoft Sans Serif font. An error does not
occur. You may want to explicitly check the Font.Name property to check if this automatic
substitution has been made.

To determine what fonts are installed on the system, you can enumerate through them
with the System.Drawing.Text.InstalledFontCollection class. The following example adds the
name of every installed font to a list box.

Dim fonts As New InstalledFontCollection()
For Each family As FontFamily In fonts.Families
 lstAvailableFonts.Items.Add(family.Name)
Next

The samples for this chapter include a FontViewer utility that uses this technique to create
a list of fonts. The user can choose a font from a drop-down list control, and a sample line of
text will be painted directly on the window (see Figure 2-7). To perform the font painting, the
application uses some of the GDI+ methods you’ll see in Chapter 7.

Macdonald_694-3C02.fm Page 56 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 57

Figure 2-7. A simple font viewer

System Fonts
Windows has a lot of font conventions. Different fonts are used for different screen elements.
You can retrieve the correct default font using the System.Drawing.SystemFonts class, which
includes handy properties like CaptionFont, DefaultFont, DialogFont, IconTitleFont, Menu-
Font, MessageBoxFont, SmallCaptionFont, and StatusFont. Using these font objects ensures
your application blends in with the scenery. Here’s how you assign the caption font to a control:

ctrl.Font = SystemFonts.CaptionFont

The SystemFont class differs from other classes dedicated to system settings, like
SystemColors, SystemBrushes, and SystemPens. The difference is that when you retrieve one
of the properties from SystemFont, a new Font object is created. That means if you’re using a
font for dynamic drawing (a topic explored in Chapter 7), you should release the font when
you’re finished by calling its Dispose() method. Very few applications are brought to their
knees by wasting a few extra font handles, but it’s good to get in the habit of cleaning up every
resource you use before a problem develops.

Large Fonts
The Windows operating system has a rather kludgey feature called “large fonts” that allows you
to bump up the default text size on your computer. This feature is designed to let you use
higher resolutions for increased quality without sacrificing readability. However, most users
steer away from the large fonts feature, because it works unpredictably with many applications.
Some become unusable (important content may be bumped right off a form) while most show
no change at all.

■Tip To change the font DPI on your computer, select Display from the Control Panel, choose the Settings
tab, and click Advanced. In the General tab, there’s a drop-down list of DPI options, including normal-size and
large-size fonts.

By default, your .NET applications won’t change when large fonts are used. However, you
can choose to support this feature by setting the Font property of your form to SystemFonts.
IconTitleFont. As odd as it seems, this is the correct font to support default text—it’s the font

Macdonald_694-3C02.fm Page 57 Wednesday, June 14, 2006 12:36 PM

58 C H A P T E R 2 ■ C O N T R O L B A S I C S

that Visual Studio uses for its dialogs. Additionally, you should handle the UserPreferenceChanged
event to refresh the font immediately when the user changes the font DPI setting (no reboot is
required).

Here’s what your code should look like:

Imports Microsoft.Win32

Public Class SmallOrLargeForm

 Public Sub New()
 Me.Font = SystemFonts.IconTitleFont

 AddHandler SystemEvents.UserPreferenceChanged, _
 AddressOf SystemEvents_UserPreferenceChanged
 End Sub

 Private Sub SystemEvents_UserPreferenceChanged(_
 ByVal sender As Object, _
 ByVal e As UserPreferenceChangedEventArgs)

 If e.Category = UserPreferenceCategory.Window Then
 Me.Font = SystemFonts.IconTitleFont
 End If
 End Sub

 Private Sub Form1_Disposed(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Disposed

 RemoveHandler SystemEvents.UserPreferenceChanged, _
 AddressOf SystemEvents_UserPreferenceChanged
 End Sub

End Class

Assuming the Form.AutoScaleMode is set to AutoScaleMode.Font (the default), your form
and all its controls will resize to fit the new fonts. However, the result still isn’t perfect, and you
may find that your alignment goes slightly out of whack with some controls. A better solution
to dealing with on-screen elements that may change in size is to use the layout controls described
in Chapter 21.

Access Keys
Some controls (namely buttons, labels, and menu items) allow a character in their caption to
be highlighted and used as an access key. For example, button controls often underline one
character in the caption. If the user presses the Alt key and that character, the button is “clicked”
automatically. To configure these shortcut keys just add an ampersand (&) before the special
letter, as in “Sa&ve” to make v the access key. (If you actually want to use an ampersand, you’ll
need to include two ampersands: &&.)

Macdonald_694-3C02.fm Page 58 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 59

Focus and the Tab Sequence
In the Windows operating system, a user can work with only one control at a time. The control
that is currently receiving the user’s key presses is the control that has focus. Sometimes this
control is drawn slightly differently. For example, the button control uses a dotted line around
its caption to show that it has the focus. Figure 2-8 shows focused and unfocused buttons with
both the Windows XP visual styles and the classic Windows look.

Figure 2-8. Focused buttons

To move the focus, the user can click the mouse or use the Tab and arrow keys. The developer
has to take some care to make sure that the Tab key moves focus in a logical manner (generally
from left to right and then down the form). The developer also has to choose the control that
should receive the focus when the window is first presented.

All controls that support focusing provide a Boolean TabStop property. When set to True,
the control can receive focus through the Tab key. When set to False, the control is left out of the
tab sequence and can be reached only using a mouse click.

■Tip You should set the TabStop property to False for controls that can accept key presses but are not
directly accessed by the user in your application. For example, you might provide a DataGridView control, but
use it to display static information. Of course, the disadvantage to this approach is that setting the TabStop to
False also means the user will need to use the mouse to scroll the control if its contents extend beyond the
bounds of its display region.

To set the tab order, you configure a control’s TabIndex property. The control with a
TabIndex of 0 gets the focus first. When the user presses the Tab key, the focus moves to the
next control in the tab order, as long as it can accept focus. Visual Studio provides a special
tool, shown in Figure 2-9, that allows you to quickly set tab order. Just select View ➤ Tab Order
from the menu. You can then assign TabIndex values by clicking controls in the desired order.

Label controls have a TabIndex setting even though they cannot receive focus. This allows
you to use a label with an access key. When the user triggers the label’s access key, the focus is
automatically forwarded to the next control in the tab order. For that reason, you should give
your labels an appropriate place in the tab order, especially if they use access keys. (You create
an access key by placing an ampersand character before a letter in the label’s text.)

Controls that are invisible or disabled (“grayed out”) are generally skipped in the tab order,
and are not activated regardless of the TabIndex and TabStop settings. To hide or disable a
control, you set the Visible and Enabled properties, respectively. Note that if you hide or disable a
control at design time, the appearance is not modified. This is a deliberate idiosyncrasy designed
to make it easier to work with controls at design time, and it is recommended that you follow
this design when creating your own custom controls.

Macdonald_694-3C02.fm Page 59 Wednesday, June 14, 2006 12:36 PM

60 C H A P T E R 2 ■ C O N T R O L B A S I C S

Figure 2-9. The Visual Studio tab order tool

Some other properties and methods for managing the focus programmatically are described
in Table 2-3.

Table 2-3. Members for Dealing with Focus at Runtime

Member Description

Focused Returns True if the control currently has the focus.

ContainsFocus Returns True if the control or one of its children currently has the focus.

Focus() Sets the focus to the control. Note that this won’t work if the control
isn’t visible. That means that you can’t use it in an event handler for the
Form.Load event, because the form isn’t displayed until it is finished
loading. To get around this problem, just set the TabIndex property of
the control to 0 so that it will get the focus first.

SelectNextControl() Sets the focus to a child control. For example, you can use Panel1.
SelectNextControl() to set focus to a control inside the Panel1 container
and Form1.SelectNextControl() to set focus to a control that’s directly
contained by the form. When you call SelectNextControl(), you supply a
reference to one of the controls in the container, and the one that imme-
diately follows in the tab order gets the focus.

GetNextControl() Similar to SelectNextControl(), except this method returns the corre-
sponding control object to your code instead of selecting it.

LostFocus and
GotFocus events

These fire after the focus has moved. They do not give you the chance to
stop the focus change, and are thus poor choices for validation routines.
If you insist on programmatically resetting the focus in an event handler
for one of these events, you may trigger a neverending loop of focus
events. Instead, use the validation events or the ErrorProvider control,
which are described in Chapter 18.

Macdonald_694-3C02.fm Page 60 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 61

■Tip The GetNextControl() and SelectNextControl() methods are particularly useful when you are combining
some type of interactive wizard or application help, as they can direct the user to an important control or part
of the screen.

Responding to the Mouse and Keyboard
Controls also provide some built-in intelligence for dealing with the keyboard and mouse.
These include low-level events that react to key presses and mouse movement, and methods
that return key and mouse button state information. The next few sections describe all of these
key ingredients.

Handling the Keyboard
Table 2-4 lists the events a typical control fires if it has focus when the user presses a key. These
controls unfold in this order:

• KeyDown

• KeyPress

• KeyUp

Generally you will react to the KeyDown and KeyUp events when you need to react to
special characters like the arrow keys, which do not trigger KeyPress events. The KeyPress
event is used when you need to restrict input and perform character validation.

KeyPress and KeyDown

To understand the difference between KeyPress and KeyDown, consider what happens if the
user holds down the Shift key and then presses the D key. In this scenario, the KeyPress event
will fire once, and provide the exact character that was submitted (for example, the letter D).

Table 2-4. Events for Reacting to the Keyboard

Event Description

KeyDown Occurs when a key is pressed while the current control has focus. The event
provides additional information (through KeyEventArgs) about the state of the
Alt and Ctrl keys and the key code.

KeyPress This is a higher-level event that occurs once the key press is complete (but before
the character appears, if the control is an input control). The event provides
a KeyPressEventArgs object with information about the key character. The
KeyPressEventArgs object also provides a Handled property, which you can set
to True to cancel further processing, effectively canceling the character and
suppressing its display in an input control.

KeyUp This occurs when a key is released, just after the KeyPress event. It provides infor-
mation through a KeyEventArgs object.

Macdonald_694-3C02.fm Page 61 Wednesday, June 14, 2006 12:36 PM

62 C H A P T E R 2 ■ C O N T R O L B A S I C S

Private Sub txt_KeyPress(ByVal sender As Object, _
 ByVal e As KeyPressEventArgs) Handles txt.KeyPress
 ' Show the key that was pressed.
 lbl.Text = "Key Press: " & e.KeyChar.ToString()
End Sub

On the other hand, the KeyDown event will fire twice, once for the Shift key, and once for
the D key.

Private Sub txt_KeyDown(ByVal sender As Object, _
 ByVal e As KeyEventArgs) Handles txt.KeyDown

 ' Show the key letter that was pressed. For example, if the user presses
 ' the D key, the key value will always be "D" regardless of whether Shift
 ' was held down or not).
 lbl.Text = "Key Code: " & e.KeyCode.ToString()

 ' Show the integer value for the key that was pressed
 ' (like 16 for Shift or 68 for D).
 lbl.Text &= vbNewLine & "Key Value: " & e.KeyValue.ToString()

 ' The KeyData contains information about every key that was held down,
 ' as a combination of values from the Keys enumeration.
 ' You can enumerate over these values, or just call ToString()
 ' to a get a comma-separated list.
 lbl.Text &= vbNewLine & "Key Data: " & e.KeyData.ToString()
End Sub

It’s up to you to check the state of the Shift key the second time to determine that the user
is trying to type a capital letter.

A number of keys (some of which are listed here) will trigger KeyDown and KeyUp events,
but no KeyPress event:

• The function keys (F1, F2, etc.)

• The arrow (cursor) keys

• Shift, Ctrl, and Alt

• Caps Lock, Scroll Lock, and Num Lock

• Delete and Insert

• Pause and Break

• Home and End

• Page Up and Page Down

• Print Screen

Macdonald_694-3C02.fm Page 62 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 63

If you want to update the display or react to a changed text value in an input control, you
should probably not use any of these events. Instead, you should react to the higher-level
Changed event, which fires when any modifications are made. The Changed event will fire if
you modify the text programmatically or the user deletes the text via the right-click menu.

Key Modifiers

When a key event fires, you can test to see if a modifier key (like Ctrl, Alt, or Shift) is being held
down. Here’s the code you need:

Private Sub txt_KeyDown(ByVal sender As Object, _
 ByVal e As KeyEventArgs) Handles txt.KeyDown

 ' You can use Modifiers to check for Alt, Control, and Shift.
 If (e.Modifiers And Keys.Shift) = Keys.Shift Then
 lbl.Text &= vbNewLine & "Shift was held down."
 End If

 ' There is also an easier approach through the Alt, Control,
 ' and Shift properties.
 If e.Alt Then
 lbl.Text &= vbNewLine & "Alt was held down."
 End If

End Sub

To test the state of the Caps Lock, Scroll Lock, and Num Lock keys, you can use the shared
Control.IsKeyLocked() method, which is new in .NET 2.0. Here’s an example:

If Control.IsKeyLocked(Keys.CapsLock)
 ' Caps lock is switched on.
End If

The Control.IsKeyLocked method accepts a member from the Keys enumeration. However,
you can’t test for any key other than Caps Lock, Scroll Lock, and Num Lock. Otherwise, a
NotSupportedException will be thrown.

■Tip You don’t need to wait for an event to fire—you can use the Control.IsKeyLocked property at any time.
If you want to check the state of a modifier key like Shift, Ctrl, or Alt outside of an event handler, just check
the Control.ModifierKeys property in the same way that you would check the KeyEventArgs.Modifiers property.
This is particularly useful when dealing with controls that don’t provide a KeyDown event.

Unfortunately, the Control.IsKeyLocked method won’t help you determine if the Insert
key is pressed. If you want to make this determination (which is common if you’re building a
text input control like a text box), you need to make an unmanaged call to the GetKeyState()

Macdonald_694-3C02.fm Page 63 Wednesday, June 14, 2006 12:36 PM

64 C H A P T E R 2 ■ C O N T R O L B A S I C S

function (which is a part of User32.dll library). Here’s how you define it, so that it’s accessible
in your application:

Private Declare Function GetKeyState Lib "User32.dll" (_
 ByVal key As System.Windows.Forms.Keys) As Short

And here’s how you can use it to check for the current state of the Insert key:

If GetKeyState(Keys.Insert) = 1 Then
 ' Overwrite mode is on.
Else
 ' Insert mode is on.
End If

Intercepting Key Presses in a Form

Forms provide a Boolean KeyPreview property. If you set this to True, your form receives key-press
events when any of its controls have focus, and it receives these events before the control does.

If, when handling the KeyPress event in the form, you set the KeyPressEventArgs.Handled
property to True, the control that has focus won’t receive the corresponding KeyPress event at
all. (If you don’t set the property to True, the control that has focus will still receive the event,
but it will do so after the form.) The Handled property works for a single event, which means
if you set Handled to True when dealing with the KeyPress event, the current control will still
receive other events like KeyDown and KeyUp. If you want to stop any more events from firing
for this keystroke (for both the form and the control), just set the KeyPressEventArgs.Suppress-
KeyPress property to True.

Handling keystrokes at the form level is useful if you need to take complete control of the
keyboard. It’s also useful if you want to capture a keystroke that occurs in any control. For example,
you might listen for the F1 key and pop up a help window.

GetAsyncKeyState()

When you use the methods described so far, your code gets the virtual key state. This means it
gets the state of the keyboard based on the messages you have retrieved from your input queue.
This is not necessarily the same as the physical keyboard state.

For example, consider what happens if the user types faster than your code executes. Each
time your KeyPress event fires, you’ll have access to the keystroke that fired the event, not the
typed-ahead characters. This is almost always the behavior you want.

Longtime Windows programmers know that the Win32 API also allows you to get the current
state of the keyboard, which might be important if you’re building some sort of keyboard
logger or macro tool. Although this functionality isn’t exposed through .NET, you can get in
through an unmanaged call to the Win32 API (known as a Platform Invoke, or PInvoke). The
method you need to use is called GetAsyncKeyState(). (By contrast, the .NET behavior matches
the unmanaged GetKeyState() function.)

GetAsyncKeyState() takes a key value, and returns a value that tells you whether this key is
currently pressed, and whether it has been pressed at all since the last GetAsyncKeyState() call.

Here’s how you make the GetAsyncKeyState() function available in an application:

Macdonald_694-3C02.fm Page 64 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 65

Private Declare Function GetAsyncKeyState Lib "User32.dll" (_
 ByVal key As System.Windows.Forms.Keys) As Short

Now you can call GetAsyncKeyState() to check the state of any key. There are three possible
values that can be returned, as illustrated in this example:

' Test for the letter D.
Dim state As Short = GetAsyncKeyState(Keys.D)

Select Case state
 Case 0
 lbl.Text = "D has not been pressed since the last call."
 Case 1
 lbl.Text = _
 "D is not currently pressed, but has been pressed since the last call."
 Case -32767
 lbl.Text = "D is currently pressed."
End Select

Handling the Mouse
.NET includes a rich complement of methods for mouse handling (see Table 2-5). Using these
events, you can react to clicks and mouse movements.

Table 2-5. Events for Reacting to the Mouse

Event Description

MouseEnter Occurs when the mouse moves into a control’s region.

MouseMove* Occurs when the mouse is moved over a control by a single pixel and also
after a MouseUp event. Event handlers are provided with additional informa-
tion about the current coordinates of the mouse pointer. Be warned that a
typical mouse movement can generate dozens of MouseMove events. Event
handlers that react to this event can be used to update the display, but not for
more time-consuming tasks.

MouseHover Occurs only once when the mouse lingers, without moving, over the control
for a system-specified amount of time (typically a couple of seconds). Usually,
you react to this event to highlight the control that is being hovered over, or
update the display with some dynamic information.

MouseDown* Occurs when a mouse button is clicked.

MouseUp* Occurs when a mouse button is released. For many controls, this is where the
logic for right-button mouse clicks is coded, although MouseDown is also
sometimes used.

Click Occurs when a control is clicked. Generally, this event occurs after the
MouseDown event but before the MouseUp event. For basic controls, a
Click event is triggered for left-button and right-button mouse clicks. Some
controls have a special meaning for this event. One example is the button
control. You can raise the Button.Click event by tabbing to the button and
pressing the Enter key, or clicking with the left mouse button. Right-button
clicks button trigger MouseDown and MouseUp events, but not Click events.

Macdonald_694-3C02.fm Page 65 Wednesday, June 14, 2006 12:36 PM

66 C H A P T E R 2 ■ C O N T R O L B A S I C S

* Indicates that the event handler uses the MouseEvent delegate, and provides additional information about
the location of the mouse pointer (and the X and Y properties), the mouse wheel movement (Delta), and the
state of the mouse buttons (Button).

The MouseMove, MouseDown, and MouseUp events provide additional information about
the state of the mouse buttons. Separate MouseDown and MouseUp events are triggered for
every mouse button. In this case, the MouseEventArgs.Button property indicates the button
the caused the event.

Private Sub lbl_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lbl.MouseUp

 If e.Button = MouseButtons.Right Then
 ' This event was caused by a right-click.
 ' Here is a good place to show a context menu.
 End If
End Sub

In the MouseMove event, however, the Button property indicates all the buttons that are
currently depressed. That means that this property could take on more than one value from the
MouseButtons enumeration. To test for a button, you need to use bitwise arithmetic.

Private Sub lbl_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lbl.MouseMove

 If (e.Button And MouseButtons.Right) = MouseButtons.Right Then
 ' The right mouse button is currently being held down.

 If (e.Button And MouseButtons.Left) = MouseButtons.Left
 ' You can get here only if both the left and the right mouse buttons
 ' are currently held down.
 End If
 End If

End Sub

DoubleClick Occurs when a control is clicked twice in succession. A Click event is still
generated for the first click, but the second click generates the DoubleClick event.

MouseWheel Occurs when the mouse wheel moves while the control has focus. The mouse
pointer is not necessarily positioned over the control. This event does not
work on unfocusable controls.

MouseLeave Occurs when the mouse leaves a control’s region.

Table 2-5. Events for Reacting to the Mouse (Continued)

Event Description

Macdonald_694-3C02.fm Page 66 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 67

Every control also provides a MousePosition, MouseButtons, and ModifierKeys property
for information about the mouse and keyboard. The MouseButtons and ModifierKeys proper-
ties return information related to the last received message. The MousePosition property returns
information about the current location of the mouse pointer, not the position where it was
when the event was triggered. Additionally, the MousePosition property uses screen coordinates,
not control coordinates, although you can translate between the two with the Form.
PointToClient() and Form.ClientToPoint() methods.

There’s one other detail to be aware of with mouse events. When a control receives a
MouseDown event, it captures the mouse. That means it will continue to receive other mouse
events (like MouseMove), even if the mouse pointer is moved off the bounds of the control.
This continues until the user releases the mouse button and the MouseUp event fires. Intuitively,
this behavior makes sense, but it’s worth noting.

A Mouse/Keyboard Example
The mouse and keyboard events have some subtleties, and it’s always best to get a solid and
intuitive understanding by watching the events in action. The online code for this chapter
provides an ideal example that creates a list of common mouse and keyboard events as they
take place. Each entry also includes some event information, giving you an accurate idea of the
order in which these events occur and the information they provide.

MouseMove events are not included in the list (because they would quickly swamp it with
entries), but a separate label control reports on the current position of the mouse (see Figure 2-10).

Figure 2-10. An event tracker

For example, here’s the code that adds an entry in response to the pic.MouseLeave event:

Macdonald_694-3C02.fm Page 67 Wednesday, June 14, 2006 12:36 PM

68 C H A P T E R 2 ■ C O N T R O L B A S I C S

Private Sub pic_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles pic.MouseLeave
 Log("Mouse Leave")
End Sub

The private Log() method adds the string of information, and scrolls the list control to the
bottom to ensure that it is visible.

Private Sub Log(ByVal data As String)
 lstLog.Items.Add(data)
 Dim itemsPerPage As Integer = lstLog.Height \ lstLog.ItemHeight
 lstLog.TopIndex = lstLog.Items.Count - itemsPerPage
End Sub

Mouse Cursors
One other useful mouse-related property is Cursor. It sets the type of mouse cursor that is
displayed when the mouse is moved over a control, and it applies to all child controls. If your
application is about to perform a potentially time-consuming operation, you might want to set
the Form.Cursor property to an hourglass. You can access standard system-defined cursors
using the shared properties of the Cursors class.

myForm.Cursor = Cursors.WaitCursor
' (Perform long task.)
myForm.Cursor = Cursors.Default

You can also create a custom cursor using the Cursor class, load a custom cursor graphic,
and assign it to a control.

Dim myCursor As New Cursor(_
 Path.Combine(Application.StartupPath, "mycursor.cur"))
myCustomControl.Cursor = myCursor

Cursor files are similar to icons, but they are stored in a .cur file format. Currently, animated
cursors (.ani files) are not supported. However, you can support them through the unmanaged
LoadCursorFromFile() function. Here’s a class that provides this functionality:

Public Class AdvancedCursors

 Private Declare Function LoadCursorFromFile Lib "User32.dll" _
 Alias "LoadCursorFromFileA" (ByVal str As String) As IntPtr

 Public Shared Function Create(ByVal filename As String) As Cursor
 ' Get a handle to the cursor.
 Dim hCursor As IntPtr = LoadCursorFromFile(filename)

Macdonald_694-3C02.fm Page 68 Wednesday, June 14, 2006 12:36 PM

C H A P T E R 2 ■ C O N T R O L B A S I C S 69

 ' Check if it succeeded.
 If Not IntPtr.Zero.Equals(hCursor) Then
 Return New Cursor(hCursor)
 Else
 Throw New ApplicationException(_
 "Could not create cursor from file " & filename)
 End If
 End Function

End Class

Now you can load an animated cursor with code like this:

Try
 Me.Cursor = AdvancedCursors.Create(_
 Path.Combine(Application.StartupPath, "blob.ani"))
Catch err As ApplicationException
 MessageBox.Show(err.Message)
End Try

Low-Level Members
The .NET Framework hides the low-level messiness of the Windows API, but it doesn’t render
it inaccessible. This is a major advantage of .NET over other frameworks—it adds features
without removing any capabilities.

For example, if you want to use a Windows API function that requires a window handle
(a number that the operating system uses to identify every control uniquely), you can just read
the Control.Handle property. The only special consideration is that you should retrieve the
handle immediately before you use it. Changing some properties can cause a control to be
re-created automatically, in which case it will receive a new handle. Already you’ve seen examples
that use unmanaged calls to gain access to otherwise unsupported features like animated
cursors and the live keyboard state.

You’ve probably also realized by now that low-level Windows messages are abstracted
away in .NET controls, and replaced with more-useful events that bundle additional infor-
mation. If, however, you need to react to a message that doesn’t have a corresponding event,
you can handle it directly by overriding the PreProcessMessage() or WndProc() method. (You
can also attach global message filters for your entire application by using the Application.
AddMessageFilter() method.) Table 2-6 gives an overview of all these members.

Macdonald_694-3C02.fm Page 69 Wednesday, June 14, 2006 12:36 PM

70 C H A P T E R 2 ■ C O N T R O L B A S I C S

This book focuses on pure .NET programming, and doesn’t encourage the use of unman-
aged calls unless necessary. Occasionally, a control will omit certain functionality, forcing you
to intercept messages at a lower level to create the workaround you need. One example is the
DataGrid control, which doesn’t give developers the ability to control certain operations (like
deleting records or handling errors). Another example is the TextBox, which doesn’t allow the
type of fine-grained keystroke handling you need to apply input masks. Happily, .NET remedies
these shortcomings with a completely new DataGridView control (as described in Chapter 15)
and a MaskedTextBox (as described in Chapter 18). However, there are still many cases in which
you’ll need to use a lower level. Some examples include video playback with the unmanaged
Quartz library (see Chapter 16) and the GetWindowPlacementAPI() for saving and restoring form
positions (shown in Chapter 3).

The Last Word
This chapter provided a sweeping tour through the basics of .NET controls, including how they
interact, receive messages, process keystrokes and mouse movements, and handle focus. It
also detailed the basic ingredients from the System.Drawing namespace for creating and
managing colors, fonts, images, and more. The next chapter continues with another core topic
for Windows user-interface programming—forms.

Table 2-6. Low-Level Members

Member Description

Handle Provides an IntPtr structure (a 32-bit integer on 32-bit operating
systems) that represents the current control’s window handle.

RecreatingHandle Set to True while the control is being re-created with a new handle.
There’s no visible indication that allows the user to see this change
is taking place, and it happens almost instantaneously.

GetStyle() and SetStyle() Gets or sets a control style bit. Generally you will use higher-level
properties to accomplish the same thing.

PreProcessMessage() and
WndProc()

These methods allow you to receive a Windows message before it’s
handled by the Windows Forms infrastructure and turned into the
corresponding event. In these methods, the message is represented
as a Message structure, which you need to identify by ID number.
Usually, you’ll override one of these methods to receive a message
that would otherwise be ignored or block a message you don’t want
the control to receive.

ProcessKeyPreview() and
ProcessKeyMessage()

These methods allow you to receive Windows messages related to
keyboard handling for a control. Typically you’ll handle these messages
if the control you’re using doesn’t provide KeyPress and KeyDown
events and you want to intercept key presses. (One instance in which
this is sometimes required is with the DataGrid control.)

Macdonald_694-3C02.fm Page 70 Wednesday, June 14, 2006 12:36 PM

71

■ ■ ■

C H A P T E R 3

Forms

Windows are the basic ingredients in any desktop application—so basic that the operating
system itself is named after them. However, there’s a fair amount of subtlety in exactly how you
use a window, not to mention how you resize its content. This subtlety is what makes windows
(or forms, to use .NET terminology) one of the most intriguing user-interface topics.

This chapter explores the Form class, and considers how forms interact and take owner-
ship of one another. Along the way, you’ll look at different types of containers, like the Panel,
TabPage, and SplitContainer. You’ll also explore the far-from-trivial problem of resizable
windows, and learn how to design split-window interfaces.

The Form Class
The Form class is a special type of control that represents a complete window. It almost always
contains other controls. The Form class does not derive directly from Control; instead, it acquires
additional functionality through two extra layers, as shown in Figure 3-1.

Figure 3-1. The Form class lineage

Macdonald_694-3C03.fm Page 71 Tuesday, June 13, 2006 6:19 AM

72 C H A P T E R 3 ■ F O R M S

The Form class provides a number of basic properties that determine appearance and
window style. Many of these properties (listed in Table 3-1) will be familiar if you are a seasoned
Windows programmer, because they map to styles defined by the Windows API.

Table 3-1. Basic Style Properties

Member Description

FormBorderStyle Specifies a value from the FormBorderStyle enumeration that identifies
the type of window border. The form border you choose determines the
border’s appearance and whether it can be resized by the user.

ControlBox Boolean property that determines whether the window has the system
menu icon at the top-left corner. When clicked, this shows the system
menu for moving, resizing, or closing the form.

MaximizeBox Boolean property that determines whether the window has the maximize
box at the top-right corner.

MinimizeBox Boolean property that determines if the window has the minimize box at
the top-right corner.

HelpButton Boolean property that determines whether the window has the Help
question-mark icon at the top-right corner. This button, previously used
to trigger context-sensitive help, has fallen into disuse in most modern
applications (and isn’t supported in Windows XP).

Icon References a System.Drawing.Icon object that is used to draw the window
icon in the top-left corner. The visibility of this icon is determined by the
ControlBox property.

ShowInTaskBar Boolean property that determines whether a button appears for the window
in the taskbar. Generally, main forms should appear in the taskbar, but
secondary windows (like configuration forms, About boxes, and modal
dialog boxes or windows) don’t need to.

SizeGripStyle Determines whether the sizing grip is shown on the bottom-right corner
of the window. This is applicable only if FormBorderStyle is Sizable or
SizableToolWindow.

WindowState Identifies (and allows you to configure) the current state of a resizable
window. Possible values are Normal, Maximized, and Minimized.

TopMost When set to True, this window is always displayed on top of every other
window in your application, regardless of form ownership (unless these
other windows also have TopMost set to True). This is a useful setting for
palettes that need to “float” above other windows.

Opacity A fractional value between 0 and 1 that makes a form partially transparent if
set to less than 1. For example, if you set this to 0.1 (a 10 percent visibility),
the form and all its controls are almost completely invisible, and the
background window clearly shows through. This feature is supported
only on Windows 2000 or later operating systems and is not intended for
main windows, but for tool or notification windows.

Macdonald_694-3C03.fm Page 72 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 73

The Form class defines references to two special buttons, as shown in Table 3-2. These
properties add automatic support for the Enter and Esc keys. If you don’t set these properties,
the Enter and Esc keys will have no effect.

As you saw in Chapter 1, the preferred way to use .NET forms is to derive a custom class
from the Form class. .NET forms also serve as switchboards that contain the event-handling
code for all their child controls.

The Form class also defines some events of its own. These events (shown in Table 3-3) allow
you to react when the form acquires focus, is about to be closed, or is first loaded into memory.

TransparencyKey Identifies a color that becomes transparent. Any occurrence of this color
becomes invisible whether it is in the form background, another control,
or even a picture contained inside a control. These transparent settings
act like “holes” in your window. You can even click to activate another
window if you see it through a transparent region. This feature is supported
only on Windows 2000 or later. This is one of the techniques that allow
you to create shaped, “skinnable” forms (the other property is Region,
which lets you define a nonrectangular border). Both of these techniques
are described in Chapter 23.

Table 3-2. Special Form Buttons

Member Description

AcceptButton The button referenced by this property is automatically “clicked” when the
user presses the Enter key. (In other words, its Click event fires.) This button
is also sometimes known as the default button. On a form, the default button
should always be the least-threatening button. Typically, this is a form’s OK
or Close button, unless that button could accidentally commit irreversible
changes or discard work in progress.

CancelButton The button referenced by this property is automatically “clicked” when the
user presses the Esc key. (In other words, its Click event fires.) This is usually a
Cancel button.

Table 3-3. Form Events

Event Description

Activate and
Deactivate

These events are the form equivalent of the LostFocus and GotFocus events
for a control. Deactivate occurs when the user clicks a different form in the
application or moves to another application. Activated occurs when the user
switches to the window. You can also set the active form programmatically
by callings its Activate() method, and you can retrieve the active form by
inspecting the shared ActiveForm property.

Load Occurs when the form first loads. It gives you the chance to perform addi-
tional control initialization (like filling a list control).

Table 3-1. Basic Style Properties

Member Description

Macdonald_694-3C03.fm Page 73 Tuesday, June 13, 2006 6:19 AM

74 C H A P T E R 3 ■ F O R M S

The Closed and Closing events can be triggered for a variety of reasons. It’s important to
distinguish between some of these reasons, so you know whether to prompt the user (for example,
if the user initiated the shutdown) or just blindly save the current work (if the entire computer
is shutting down).

In .NET 1.x, this information wasn’t readily available, because the Closed and Closing
events don’t provide it. However, in .NET 2.0 the FormClosing and FormClosed events replace
these, and add a new EventArgs object that provides a CloseReason property. This can take one
of several values from the CloseReason enumeration:

• ApplicationExitCall

• FormOwnerClosing

• MdiFormClosing

• TaskManagerClosing

• UserClosing

• WindowsShutDown

Finally, every form you create in Visual Studio has automatically generated designer code,
which resides in a separate file named [FormName].Designer.vb. This code includes an
InitializeComponent() method that is executed immediately when the form object is created
but before it is displayed. The code in the designer region creates all the control objects and
sets all the properties that you have configured at design time. Even for a simple window,
this code is quite lengthy, and shouldn’t be modified directly (as Visual Studio may become
confused, or simply overwrite your changes). However, the hidden designer region is a great
place to learn how to dynamically create and configure a control. For example, you can create
a control at design time, set all its properties, and then simply copy the relevant code, almost
unchanged, into another part of your code to create the control dynamically at runtime.

In the next few sections, you’ll examine more advanced properties of the Form class and
the classes it inherits from. You’ll also learn the basic approaches for showing and interacting
with forms.

Form Size and Position
The Form class provides the same Location and Size properties that every control does, but
with a twist. The Location property determines the distance of the top-left corner of the window

FormClosing Occurs when the form is about to close. The CancelEventArgs object provides
a Cancel property that you can set to True to force the form to remain open.
Event handlers for this event often provide a message box prompting the
user to save the document. This message box typically provides Yes, No, and
Cancel buttons. If Cancel is selected, the operation should be canceled, and
the form should remain open.

FormClosed Occurs when the form has closed.

Table 3-3. Form Events (Continued)

Event Description

Macdonald_694-3C03.fm Page 74 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 75

from the top-left corner of the screen (or desktop area). Furthermore, the Location property
is ignored unless the StartPosition property is set to Manual. The possible values from the
FormStartPosition enumeration are shown in Table 3-4.

The Screen Class

Sometimes you need to take a little care in choosing an appropriate location and size for your
form. For example, you could accidentally create a window that is too large to be accommodated
on a low-resolution display. If you are working with a single-form application, the best solution
is to create a resizable form. If you are using an application with several floating windows, the
answer is not as simple.

You could just restrict your window positions to locations that are supported on even the
smallest monitors, but that’s likely to frustrate higher-end users (who have purchased better
monitors for the express purpose of fitting more information on the screen at a time). In this
case, you usually want to make a runtime decision about the best window location. To do this,
you need to retrieve some basic information about the available screen real estate using the
Screen class.

Consider the following example that uses the Screen class to manually center the form
when it first loads. It retrieves information about the resolution of the screen using the Screen.
PrimaryScreen property. Although this code is equivalent to calling Form.CenterToScreen(),
the Screen class gives you the flexibility to implement different positioning logic.

Table 3-4. StartPosition Values

Value (from the
FormStartPosition Enumeration)

Description

CenterParent If the form is displayed modally, the form is centered relative
to the form that displayed it. If this form doesn’t have a parent
form (for example, if it’s displayed modelessly), this setting is
the same as WindowsDefaultLocation. However, there’s a
workaround—if you want to emulate the modal behavior,
you can call Form.CenterToParent() in the event handler for
the Load event, thereby centering a form whether it’s modal
or modeless.

CenterScreen The form is centered in the middle of the screen.

Manual The form is displayed in the location specified by the Location
property, relative to the top-left corner of the desktop area.

WindowsDefaultLocation The form is displayed in the Windows default location. In
other words, there’s no way to be sure exactly where it will
end up.

WindowsDefaultBound The form is displayed in the Windows default location, and
with a default size (the Size property is ignored). This setting is
rarely used, because you usually want exact control over a
form’s size.

Macdonald_694-3C03.fm Page 75 Tuesday, June 13, 2006 6:19 AM

76 C H A P T E R 3 ■ F O R M S

Private Sub dynamicSizeForm_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim scr As Screen = Screen.PrimaryScreen
 Me.Left = (scr.WorkingArea.Width - Me.Width) / 2
 Me.Top = (scr.WorkingArea.Height - Me.Height) / 2
End Sub

The members of the Screen class are listed in Table 3-5.

Saving and Restoring Form Location

A common requirement for a form is to remember its last location. Usually, this information is
stored in the registry. The code that follows shows a helper class that automatically stores
information about a form’s size and position using a key based on the name of a form.

Imports Microsoft.Win32

Public Class FormPositionHelper

 Public Shared RegPath As String = "Software\App\"

Table 3-5. Screen Members

Member Type Description

AllScreens Shared Returns an array of Screen objects, with one for each display
on the system. This method is useful for systems that use
multiple monitors to provide more than one desktop
(otherwise, it returns an array with one Screen object).

Primary Shared Returns the Screen object that represents the primary
display on the system.

GetBounds() Shared Accepts a reference to a control and returns a Rectangle
representing the size of the screen that contains the
control (or the largest portion of the control if it is split
over more than one screen).

GetWorkingArea() Shared Accepts a reference to a control and returns a Rectangle
representing the working area of the screen that contains
the control (or the largest portion of the control, if it is
split over more than one screen).

Bounds Instance Returns a Rectangle structure that represents the bounds
of the display area for the current screen.

WorkingArea Instance Returns a Rectangle structure that represents the bounds
of the display area for the current screen, minus the space
taken for the taskbar and any other docked windows.

DeviceName Instance Returns the device name associated with a screen as
a string.

Macdonald_694-3C03.fm Page 76 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 77

 Public Shared Sub SaveSize(ByVal frm As System.Windows.Forms.Form)
 ' Create or retrieve a reference to a key where the settings
 ' will be stored.
 Dim key As RegistryKey
 key = Registry.LocalMachine.CreateSubKey(RegPath & frm.Name)

 key.SetValue("Height", frm.Height)
 key.SetValue("Width", frm.Width)
 key.SetValue("Left", frm.Left)
 key.SetValue("Top", frm.Top)
 End Sub

 Public Shared Sub SetSize(frm As System.Windows.Forms.Form)
 Dim key As RegistryKey
 key = Registry.LocalMachine.OpenSubKey(RegPath & frm.Name)

 If key IsNot Nothing Then
 frm.Height = CInt(key.GetValue("Height"))
 frm.Width = CInt(key.GetValue("Width"))
 frm.Left = CInt(key.GetValue("Left"))
 frm.Top = CInt(key.GetValue("Top"))
 End If
 End Sub

End Class

■Note This example uses the HKEY_LOCAL_MACHINE branch of the registry, which means that changes
are global for the current computer. You might want to use HKEY_CURRENT_USER instead to allow user-
specific window settings. This is also a requirement if your user does not have administrator rights, in which
case the application will encounter a SecurityException. In this case, just use the Registry.CurrentUser value
instead of Registry.LocalMachine in the code.

To use this class in a form, you call the SaveSize() method when the form is closing:

Private Sub Form1_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles MyBase.FormClosing
 FormPositionHelper.SaveSize(Me)
End Sub

and call the SetSize() method when the form is first opened:

Macdonald_694-3C03.fm Page 77 Tuesday, June 13, 2006 6:19 AM

78 C H A P T E R 3 ■ F O R M S

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 FormPositionHelper.SetSize(Me)
End Sub

In each case, you pass a reference to the form you want the helper class to inspect.

GetWindowPlacement()

The previous example has a serious limitation. If you save the window state while the window
is maximized or minimized, you’ll end up saving the maximized or minimized size coordinates.
This is exactly what you don’t want. The next time you restore the size information, your window
will have lost its standard size, and may appear unnaturally small or large.

You could defend against this by refusing to save the window coordinates if its Window-
State is anything other than Normal. This partly solves the problem, but it still means that if you
resize a window, maximize it, and then close it, you won’t get the benefit of storing the previous
size information. Unfortunately, this is one of the more glaring omissions in the Windows
Forms toolkit.

The proper workaround is to use the Win32 functions GetWindowPlacement() and
SetWindowPlacement(), shown here:

Private Declare Function GetWindowPlacement Lib "User32.dll"(_
 ByVal handle As IntPtr, _
 <[In](), Out()> ByVal placement As ManagedWindowPlacement) _
 As Boolean

Private Declare Function SetWindowPlacement Lib "User32.dll"(_
 ByVal handle As IntPtr, ByVal placement As ManagedWindowPlacement) _
 As Boolean

Using these methods isn’t completely straightforward, because they work with structures
that combine several pieces of window information (like coordinates and size). To use these
methods, you need to add the correct definition for these structures to your application. Although
they aren’t shown in the next example, you can see the full ManagedPt, ManagedRect, and
ManagedWindowPlacement classes with the downloadable code for this chapter.

Once you’ve added these structures, you can call GetWindowPlacement() to retrieve a
ManagedWindowPlacement object that represents a specific window (which is identified by its
handle). The easiest way to store this information in the registry is to use serialization, which
lets you boil down the complete object into one long byte array.

Here’s the code you need:

Public Shared Sub SaveSize(ByVal frm As System.Windows.Forms.Form)
 Dim key As RegistryKey
 key = Registry.LocalMachine.CreateSubKey(RegPath & frm.Name)

Macdonald_694-3C03.fm Page 78 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 79

 ' Get the window placement.
 Dim placement As New ManagedWindowPlacement()
 GetWindowPlacement(frm.Handle, placement)

 ' Serialize it.
 Dim ms As New MemoryStream()
 Dim f As New BinaryFormatter()
 f.Serialize(ms, placement)

 ' Store it as a byte array.
 key.SetValue("Placement", ms.ToArray())
End Sub

It’s easy to retrieve this information and reapply it with SetWindowPlacement():

Public Shared Sub SetSize(ByVal frm As System.Windows.Forms.Form)
 Dim key As RegistryKey
 key = Registry.LocalMachine.OpenSubKey(RegPath & frm.Name)

 If key IsNot Nothing Then
 Dim ms As New MemoryStream(_
 CType(key.GetValue("Placement"), Byte()))

 Dim f As New BinaryFormatter()
 Dim placement As ManagedWindowPlacement
 placement = CType(f.Deserialize(ms), ManagedWindowPlacement)
 SetWindowPlacement(frm.Handle, placement)
 End If
End Sub

Now the FormPositionHelper correctly handles maximized and minimized windows.
When you reapply the ManagedWindowPlacement, you set the form’s normal size and its
current window state in one step.

Scrollable Forms
The Form class inherits some built-in scrolling support from the ScrollableControl class. Generally,
forms do not use these features directly. Instead, you will probably use scrollable controls like
rich text boxes to display scrollable document windows. However, these features are still
available, rather interesting, and effortless to use.

Figure 3-2 shows a form that has its AutoScroll property set to True. This means that as
soon as a control is added to the form that does not fit in its visible area, the required scroll bars
will be displayed. The scrolling process takes place automatically.

Macdonald_694-3C03.fm Page 79 Tuesday, June 13, 2006 6:19 AM

80 C H A P T E R 3 ■ F O R M S

Figure 3-2. A scrollable form

■Tip All controls that derive from ScrollableControl also offer the useful ScrollControlIntoView() method.
As long as AutoScroll is True, you can use ScrollControlIntoView() with the reference of a child control you
want to show. If this control isn’t already visible, ScrollControlIntoView() will automatically scroll through
the window until it is.

If Figure 3-2 looks a little strange, that’s because it is. Scrollable forms make a few appear-
ances in Windows applications (Microsoft Access is one example) but are relatively rare. They
should be discouraged as unconventional. Instead, it probably makes more sense to use another
class that derives from ScrollableControl, like Panel (see Figure 3-3).

Figure 3-3. A scrollable panel

By default, scroll bars aren’t shown unless a control is off the edge of the form or you explicitly
set the Boolean HScroll and VScroll properties. However, you can configure an AutoScrollMinSize,
which specifies the required space, in pixels, between each control and the window border.
If this minimum space is not provided, scroll bars are shown.

The Form class doesn’t derive directly from ScrollableControl. Instead, it derives from the
ContainerControl (which does derive from ScrollableControl). Like the ScrollableControl class,
the ContainerControl class doesn’t provide many members that you are likely to use. It includes
a ProcessTabKey() method that the .NET Framework uses transparently to manage focus, a
ParentForm property that identifies the form that contains this control, and an ActiveControl
property that identifies or sets the control that currently has focus.

Macdonald_694-3C03.fm Page 80 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 81

Showing a Form
To display a form, you need to create an instance of the Form class and use the Show() or
ShowDialog() method.

The Show() method creates a modeless window, which doesn’t stop code from executing
in the rest of your application. That means you can create and show several modeless windows,
and the user can interact with them all at once. When using modeless windows, synchronization
code is sometimes required to make sure that changes in one window update the information in
another window to prevent a user from working with invalid information.

Here’s an example that uses the Show() method:

Dim frmMain As New MainForm()
frmMain.Show()

The ShowDialog() method, on the other hand, interrupts your code. Nothing happens on
the user interface thread of your application until the user closes the window (or the window
closes in response to a user action). The controls for all other windows are “frozen,” and
attempting to click a button or interact with a control has no effect (other than an error chime,
depending on Windows settings). This makes the window ideal for presenting the user with a
choice that needs to be made before an operation can continue. For example, consider Microsoft
Word, which shows its Options and Print windows modally, forcing you to make a decision
before continuing. On the other hand, the windows used to search for text or check the spelling
in a document are shown modelessly, allowing the user to edit text in the main document
window while performing the task.

Custom Dialog Windows
Often when you show a dialog window, you are offering the user a choice. The code that displays
the window waits for the result of that choice, and then acts on it.

You can easily accommodate this design pattern by creating some sort of public property
on the dialog form. When the user makes a selection in the dialog window, this special property is
set, and the form is closed. Your calling code can then check for this property and determine
what to do next based on its value. (Remember, even when a form is closed, the form object
and all its control information still exists until the variable referencing it goes out of scope.)

For example, consider the form shown in Figure 3-4, which provides two buttons: OK
and Cancel.

Figure 3-4. A simple dialog form

Macdonald_694-3C03.fm Page 81 Tuesday, June 13, 2006 6:19 AM

82 C H A P T E R 3 ■ F O R M S

The form class provides a UserSelection property, which uses a custom enumeration to
identify the action that was used to close the window:

Public Class DialogForm

 Public Enum SelectionTypes
 OK
 Cancel
 End Enum

 ' This variable must be public so the caller can access it
 ' (or wrapped in a property).
 Public UserSelection As SelectionTypes

 Private Sub cmdOK_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdOK.Click
 UserSelection = SelectionTypes.OK
 Me.Close()
 End Sub

 Private Sub cmdCancel_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdCancel.Click
 UserSelection = SelectionTypes.Cancel
 Me.Close()
 End Sub

End Class

The code that creates the form shows it modally. It then checks the UserSelection property
after the window is closed to determine what action the user selected:

Dim frmDialog As New DialogForm()
frmDialog.ShowDialog()

' The code uses a custom enumeration to make the code readable and less
' error-prone.
Select Case frmDialog.UserSelection
 Case DialogForm.SelectionTypes.OK
 ' (Do something here.)
 Case DialogForm.SelectionTypes.Cancel
 ' (Do something else here.)
End Select

' Release the form and all its resources.
frmDialog.Dispose()

Macdonald_694-3C03.fm Page 82 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 83

■Note When you show a window with ShowDialog(), the window and control resources aren’t released
after the window is closed. That’s because you may still need these objects (for example, to determine what
values the user entered in a set of input controls). However, once you’ve retrieved the information you need,
you should explicitly call the Dispose() method to release all your control handlers immediately rather than
waiting for the garbage collector to do the work later on.

This is an effective, flexible design. In some cases, it gets even better: You can save code by
using .NET’s built-in support for dialog forms. This technique works best if your dialog needs only
to return a simple value like Yes, No, OK, or Cancel. It works like this: In your dialog form, you set
the DialogResult of the appropriate button control to one of the values from the DialogResult
enumeration (found, like all user-interface types, in the System.Windows.Forms namespace).
For example, you can set the Cancel button’s result to DialogResult.Cancel, and the OK button’s
result to DialogResult.OK. When the user clicks the appropriate button, the dialog form is
immediately closed, and the corresponding DialogResult is returned to the calling code. Best of
all, you don’t need to write any event-handling code to make it happen.

Your calling code would interact with a .NET dialog window like this:

Dim frmDialog As New DialogForm()
Dim result As DialogResult
result = frmDialog.ShowDialog()

Select Case result
 Case DialogResult.OK
 ' The window was closed with the OK button.
 Case DialogResult.Cancel
 ' The window was closed with the Cancel button.
End Select

The code is cleaner, and the result is more standardized. The only drawback is that you are
limited to the DialogResult values shown in the following list (although you could supplement
this technique with additional public form variables that would be read only if needed):

• OK

• Cancel

• Yes

• No

• Abort

• Retry

• Ignore

Macdonald_694-3C03.fm Page 83 Tuesday, June 13, 2006 6:19 AM

84 C H A P T E R 3 ■ F O R M S

Form Interaction
You should minimize the need for form interactions, as they complicate code unnecessarily. If
you do need to modify a control in one form based on an action in another form, create a dedi-
cated method in the target form. That makes sure that the dependency is well identified, and
adds another layer of indirection, making it easier to accommodate changes to the form’s
interface. Figures 3-5 and 3-6 show two examples for implementing this pattern. Figure 3-5
shows a form that triggers a second form to refresh its data in response to a button click. This
form does not directly attempt to modify the second form’s user interface; instead, it relies on
a custom intermediate method called DoUpdate().

Figure 3-5. A single-form interaction

The second example, Figure 3-6, shows a case in which more than one form needs to be
updated. The acting form relies on a higher-level application method, which calls the required
form update methods (perhaps by iterating through a collection of forms). This approach is
better, because it works at a higher level. In the approach shown in Figure 3-5, the acting form
doesn’t need to know anything specific about the controls in the receiving form. The approach
in Figure 3-6 goes one step further—the acting form doesn’t need to know anything at all about
the receiving form class.

You can go even one step further in decoupling this example. Rather than having the
Application class trigger a method in the various forms, it could simply fire an event and allow
the forms to choose how to respond to that event.

■Note These rules don’t apply for MDI applications, which have built-in features that help you track child
and parent windows. Chapter 19 presents a few detailed examples of how MDI forms can interact with one another.

Macdonald_694-3C03.fm Page 84 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 85

Figure 3-6. A one-to-many form interaction

Default Form Instances

Once you create a form, it exists until your application ends or you explicitly call the
Form.Close() method. As with all controls, even when a form variable goes out of scope, the
actual window continues to exist. However, without the form variable, your code has no way to
access the form—or does it?

Visual Basic includes a shortcut that allows you to communicate between forms. Each
form has a default instance, a form object that’s created automatically when needed. The best
way to use the default instance is through the My.Forms object, which is hard-wired into the VB
language. For example, if you have the form classes Form1, Form2, and Form3, you can access
their default instances through the My.Forms.Form1, My.Forms.Form2, and My.Forms.Form3
properties.

For example, consider this code:

My.Forms.Form1.Show()

This code accesses the default instance of Form1 and calls the Show() method. Here’s the
interesting bit: VB uses a lazy creation technique to generate default instances. That means
that the default instance is instantiated when you refer to it for the first time. As a result, the line
of code shown previously may or may not create Form1. If the default instance of Form1 hasn’t
been created yet, it will be instantiated automatically. On the other hand, if the default instance
has already been created, no instantiation is required. And it should go without saying that
default instances are never created if your code doesn’t refer to them at all.

Macdonald_694-3C03.fm Page 85 Tuesday, June 13, 2006 6:19 AM

86 C H A P T E R 3 ■ F O R M S

The default instance approach seems convenient, but it has the following significant
drawbacks:

• It makes form creation implicit rather than explicit. In other words, you won’t necessarily
be able to tell when your form is created without carefully examining your code. If you
use the Form.Load event to perform time-consuming initialization steps, default instances
can complicate your development (and your debugging).

• It won’t help you if you need to keep track of more than one form instance. For example,
document-based applications often create one form for each document. But because VB
only supports a single default instance, you’ll need another way to track these objects.

• It makes it easy to refer to the wrong instance of the form. If you’re not careful, you could
end up using the default instance in one portion of your code and an explicitly created
instance in another part. This won’t cause an error, but it will prevent you from success-
fully interacting between your forms.

To better understand the second problem, it helps to consider an example. Imagine you
have some code in Form1 that creates an instance of Form2 and shows it modelessly:

Dim newForm As New Form2()
Form2.Show()

Later on, you need to call a custom method in the Form2 class to trigger a refresh. You use
this sensible-seeming code:

My.Form2.UpdateData()

Here’s the problem. The first code snippet creates a form object explicitly. That form object
is not the default instance. However, the second code snippet interacts with the default instance
of the form. This statement causes VB to automatically create a second form object (which won’t
even appear on the screen, because it’s never shown). Although the second form is updated,
the first form remains out of reach.

How can you correct problems like these? If you decide to use the My object, you need to
be careful to use it exclusively. Don’t mix implicit and explicit form creation. If you decide that
the My object is too limiting (for example, if you need to create an application that shows multiple
windows for different documents), you’ll need to track form objects on your own, as described
in the next section.

■Note You can also access the default instance through the class name of your form. In other words,
Form1.Show() is equivalent to My.Form1.Show(). This quirk, which is a holdover from VB 6, is dangerously
misleading and should be avoided. If you choose to use default instances, make that approach clear by coding
with the My object.

Macdonald_694-3C03.fm Page 86 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 87

Tracking Forms Manually

You can also store form references in a dedicated class. Often, developers track forms using
shared member variables, so that they’re easy to access in any other class. The following code
presents one such example class, which keeps shared references for two forms:

Public Class AppForms
 Public Shared Main As MainForm
 Public Shared Secondary As SecondaryForm
End Class

Using this class, you can refer to the forms you need anywhere in your application with
syntax like this:

AppForms.Main.Show()

Shared members are always available, so you won’t need to create an instance of the
AppForms class to access the two forms. Also, keep in mind that the AppForms class doesn’t
actually set the form references. You’ll need to do that when you create and display the form.
One easy way to automate this process is to insert a little code into the Form.Load event handler:

Private Sub MainForm_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 ' Register the newly created form instance.
 AppForms.Main = Me
End Sub

This approach works well if every form class is created only once. If you want to track multiple
instances of the same form, you probably want to use a collection object in your AppForms
class. The following example uses the generic List collection, although you can also use the
generic Dictionary collection if you want to index every form with a key. Both collection types
are found in the System.Collections.Generic namespace.

Public Class AppForms
 Public Shared Main As MainForm
 Public Shared Documents As New List(Of DocumentForm)()
End Class

Forms can add themselves to this collection as needed:

Private Sub DocumentForm_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 ' Register the newly created form instance.
 AppForms.Documents.Add(Me)
End Sub

When trying to read one of the form variables, you should first check if the value is a null
reference (Nothing), which indicates that it hasn’t yet been created.

Macdonald_694-3C03.fm Page 87 Tuesday, June 13, 2006 6:19 AM

88 C H A P T E R 3 ■ F O R M S

■Tip In Chapter 19, you’ll see this technique developed in more detail with a DocumentManager class that
tracks open documents and windows in a document-view application.

.NET 2.0 introduces another solution for tracking forms: the Application.OpenForms prop-
erty. Every time you show a form, it’s automatically added to this collection. When the form is
closed, it’s removed from the collection. Forms aren’t indexed in any way, so you’ll need to
loop through the collection to find what you’re interested in. One commonly used approach is
to check the form caption (the Text property) or the form name (the Name property), although
both of these approaches are fragile. A better solution is to check if a form is an instance of a
given class by using the TypeOf keyword, as shown here:

For Each frm As Form in Application.OpenForms
 If TypeOf frm Is DocumentForm Then
 ' The DocumentForm class provides a custom DoRefresh() method.
 ' You need to cast this form reference to access it.
 CType(frm, DocumentForm).DoRefresh()
 End If
Next

The OpenForms collection provides a set of generic Form objects. It’s up to you to cast the
reference to the correct custom form class if you need to access additional properties or methods
that you’ve added.

■Note You can also get the currently active form in your application by checking the shared Form.ActiveForm
property. However, if you use this object, be aware of a few idiosyncrasies. The ActiveForm reflects the active
form in the current application. If a window in another application is active, you’ll get a null reference. Oddly
enough, you’ll also get a null reference if your application is in the process of showing a message box. These
quirks typically appear when you’re creating a multithreaded application that has some code that runs perpetually,
outside of any specific form.

Form Ownership
.NET allows a form to “own” other forms. Owned forms are useful for floating toolbox and
command windows. One example of an owned form is the Find and Replace window in
Microsoft Word. When an owner window is minimized, the owned forms are also minimized
automatically. When an owned form overlaps its owner, it is always displayed on top. Table 3-6 lists
the Form class properties that support owned forms.

Macdonald_694-3C03.fm Page 88 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 89

The following example (shown in Figure 3-7) loads two forms, and provides buttons on the
owner that acquire or release the owned form. You can try this sample (included under the
project name FormOwnership in the downloadable code for this chapter) to observe the
behavior of owned forms.

Public Class OwnerForm

 Private frmOwned As New OwnedForm()

 Private Sub OwnerForm_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 Me.Show()
 frmOwned.Show()
 End Sub

 Private Sub cmdAddOwnership_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdAddOwnership.Click
 Me.AddOwnedForm(frmOwned)
 frmOwned.lblState.Text = "I'm Owned"
 End Sub

 Private Sub cmdReleaseOwnership_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdReleaseOwnership.Click
 Me.RemoveOwnedForm(frmOwned)
 frmOwned.lblState.Text = "I'm Free!"
 End Sub

End Class

Note that for this demonstration, the lblState control in the owned form has been modi-
fied to be publicly accessible (by changing the access modifier from internal to public). As
described in the “Form Interaction” section of this chapter, this violates encapsulation and
wouldn’t be a good choice for a full-scale application. A much better idea would be to wrap the
label text in a custom property.

Table 3-6. Ownership Members of the Form Class

Member Description

Owner Identifies a form’s owner. You can set this property to change
a form’s ownership or release an owned form.

OwnedForms Provides an array of all the forms owned by the current form.
This array is read-only.

AddOwnedForm() and
RemoveOwnedForm()

You can use these methods to add or release forms from an
owner. It has the same result as setting the Owner property.

Macdonald_694-3C03.fm Page 89 Tuesday, June 13, 2006 6:19 AM

90 C H A P T E R 3 ■ F O R M S

Figure 3-7. An owned-form tester

Prebuilt Dialogs
.NET provides some custom dialog types that you can use to show standard operating-system
windows. The most common of these is the MessageBox class, which exposes a shared Show()
method. You can use this code to display a standard Windows message box (see Figure 3-8):

MessageBox.Show("You must enter a name.", "Name Entry Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

Figure 3-8. A simple message box

The message-box icon types are listed in Table 3-7. The button types you can use Show()
method with a message box are as follows:

• AbortRetryIgnore

• OK

• OKCancel

• RetryCancel

• YesNo

• YesNoCancel

Macdonald_694-3C03.fm Page 90 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 91

In addition, .NET provides useful dialogs that allow you to show standard windows for
opening and saving files, choosing a font or color, and configuring the printer. These classes all
inherit from System.Windows.Forms.CommonDialog. For the most part, you show these dialogs
like an ordinary window, and then inspect the appropriate property to find the user selection.

For example, the code for retrieving a color selection is as follows:

Dim colorChoices As New ColorDialog()

' Sets the initial color select to the current color,
' so that if the user cancels, the original color is restored.
If colorChoices.ShowDialog() = DialogResult.OK Then
 shape.ForeColor = colorChoices.Color
End If

The dialogs often provide a few other properties. For example, with a ColorDialog you can
set AllowFullOpen to False to prevent users from choosing a custom color, and ShowHelp to True
to allow them to invoke Help by pressing F1. (In this case, you need to handle the HelpRequest
event.)

OpenFileDialog and SaveFileDialog acquire some additional features (some of which are
inherited from the FileDialog class). Both support a filter string, which sets the allowed file
extensions. The OpenFileDialog also provides properties that let you validate the user’s selection
(CheckFileExists) and allow multiple files to be selected (Multiselect). Here’s an example:

Dim myDialog As New OpenFileDialog()

myDialog.Filter = "Image Files(*.BMP;*.JPG;*.GIF)|*.BMP;*.JPG;*.GIF" & _
 "|All files (*.*)|*.*"
myDialog.CheckFileExists = True
myDialog.Multiselect = True

If myDialog.ShowDialog() = DialogResult.OK Then
 Dim selectedFiles As String = ""
 For Each file As String In myDialog.FileNames
 selectedFiles &= file & " "
 Next
 lblDisplay.Text = "You chose: " & selectedFiles
End If

Table 3-7. MessageBoxIcon Values

MessageBoxIcon Displays

Asterisk or Information A lowercase letter i in a circle

Error, Hand, or Stop A white X in a circle with a red background

Exclamation or Warning An exclamation point in a triangle with a yellow background

None No icon

Question A question mark in a circle

Macdonald_694-3C03.fm Page 91 Tuesday, June 13, 2006 6:19 AM

92 C H A P T E R 3 ■ F O R M S

Table 3-8 provides an overview of the prebuilt dialog classes. Figure 3-9 gives a quick look
at each window type (except the FolderBrowserDialog).

Table 3-8. Common Prebuilt Dialog Classes

Class Description

ColorDialog Displays the system colors and controls that allow the user to define
custom colors. The selected color can be found in the Color property.

OpenFileDialog Allows the user to select a file, which is returned in the FileName
property (or the FileNames collection, if you have enabled multiple
file select). Additionally, you can use the Filter property to set the
file format choices, and use CheckFileExists to enforce validation.

SaveFileDialog Allows the user to select a file, which is returned in the FileName
property. You can also use the Filter property to set the file format
choices and set the CreatePrompt and OverwritePrompt Boolean
properties to instruct .NET to display a confirmation if the user
selects a new file or an existing file, respectively.

FolderBrowserDialog Allows the user to select a folder, which is returned in the SelectedPath
property. You can control where browsing begins (by setting the
RootFolder property) and whether or not a button is included for quick
folder creation (by setting the ShowNewFolderButton property). You
can also supply text instructions that will appear in the window by
setting the Description property.

FontDialog Allows the user to choose a font face and size, which is provided in
the Font property (and its color through the Color property). You
can limit the size selection with properties like MinSize and MaxSize,
and you can set ShowColor and ShowEffects to configure whether
the user changes the font color and uses special styles like under-
lining and strikeout.

PageSetupDialog Allows the user to configure page layout, page format, margins, and
the printer.

PrintDialog Allows the user to select a printer, choose which portions of the
document to print, and invoke printing. To use this dialog, simply
place the PrintDocument object for the document you want to print
in the PrintDialog.Document property.

PrintPreviewDialog This is the only dialog that is not a part of standard Windows archi-
tecture. It provides a painless way to show a print preview—just
assign the PrintDocument to the Document property and display the
form. The same logic you write for handling the actual printing is
used automatically to construct the preview. Alternatively, you can
use the PrintPreviewControl to show the same preview inside one of
your custom windows.

Macdonald_694-3C03.fm Page 92 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 93

Figure 3-9. Common dialogs

Resizable Forms
Each week, Windows developers from every programming language spend countless hours
trying to solve the problem of resizable windows that smoothly and nicely rearrange their
contained controls. Some purchase separate components designed to transform static forms
into resizable wonders automatically. These components are easy to use, but generally provide
mediocre results that aren’t suitable for professional applications. Other developers ignore
the problem, and stubbornly lock interfaces into fixed-size dialog boxes, making them seem

Macdonald_694-3C03.fm Page 93 Tuesday, June 13, 2006 6:19 AM

94 C H A P T E R 3 ■ F O R M S

unmistakably primitive. Many developers eventually give in and write lengthy code routines to
resize their forms by hand.

.NET adds two features—anchoring and docking—that provide built-in support for resizable
forms. These features allow you to configure a few properties, and end up with intelligent
controls that adjust themselves automatically. The catch? It’s extremely easy to end up with a
window that resizes its controls in an embarrassingly unprofessional way with far less effort
than was needed before.

Matching a good resizing approach with a sophisticated interface is possible, but it requires a
little more subtlety and a few tricks. The next few sections describe these tricks, such as adding
container controls and using the DockPadding property. Along the way, you learn how to create
scrollable windows and controls, and see a full-fledged Explorer-style application that uses
automatic resizing the right way.

The Problem of Size
The resizable-forms dilemma stems from the fact that the Windows operating system supports
a variety of monitors at several different resolutions. A window that looks decently sized on one
computer may shrink to a toylike box on another, or even stretch beyond the bounds of the
desktop, obscuring important controls.

For many simple applications, these types of problems are not serious, because programmers
usually design their applications for a set minimum standard resolution (such as 800 × 600 or,
more commonly today, 1024 × 768). It’s generally accepted that users with much larger view-
able areas expect to run several programs at once, and purchased larger screens, so that they
can put different programs side by side. They don’t expect to use up the extra viewable area
with larger fonts or extra white space in a dialog box.

A document-based application can’t afford to ignore these considerations. Users with
more available space expect to be able to use it to see more information at a time. Programs
that ignore this consideration are irredeemably frustrating.

One common solution is to write procedures that dynamically resize the window by
responding to a resize event or message. For example, you could store the distance between
a control and the form edges using code like this when the form loads:

Private buttonMargin As Integer = 0

Private Sub Form_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 ' Store the offset of the button1 control.
 ' Use ClientSize rather than Size to ignore details like
 ' scroll bars and the form border.
 buttonMargin = ClientSize.Width - button1.Width
End Sub

Macdonald_694-3C03.fm Page 94 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 95

Now you simply need to react to the Form.SizeChanged event to resize the button1 control,
keeping it at the same distance from both the left and right edges:

Private Sub Form_SizeChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.SizeChanged
 button1.Width = ClientSize.Width - buttonMargin
End Sub

Unfortunately, if your window has more than a few controls, this code becomes long,
repetitive, and ugly. It’s also hard to alter or debug when the form changes even slightly. In
.NET, the picture improves considerably with built-in support for resizing.

Minimum and Maximum Form Size
The first useful feature the Form class introduces for managing size is the MaximumSize and
MinimumSize properties, which stop users abruptly when they try to resize a form beyond its
set limits.

If you have the Show Window Contents While Dragging environment setting enabled, the
border suddenly becomes fixed when you hit the minimum size, as though it’s glued in place.
Similarly, you can set a maximum size, although this is less conventional. In this case, even when
you try to maximize a window, it won’t go beyond the set size, which can confuse the user.

The Visual Studio IDE also stops you from resizing your form to an invalid size at design
time when you have these properties set. If you set the form size to an invalid value in code, no
error will occur. Instead, your window just automatically shrinks or expands to a valid size if it’s
outside the bounds of the MinimumSize or MaximumSize properties.

One final caveat: both of these settings are ignored if you make your window an MDI child
inside another window. In that case, your window will be freely resizable.

Anchoring
Anchoring allows you to latch a control on to one of the form’s corners. Anchored controls always
stay a fixed distance from the point they are bound to. By default, every control is anchored to
the top-left corner. That means if you resize the form, the controls stay fixed in place.

On the other hand, you can use .NET to anchor a control to a different corner or edge. For
example, if you chose the top-right corner, the control moves as you expand the window width-
wise to stay within a fixed distance of the top-right corner. If you expand the form heightwise,
the control stays in place, because it’s anchored to the top. It doesn’t need to follow the
bottom edge.

Figure 3-10 shows a window with two controls that use anchoring. The button is anchored
to the bottom-right, and the text box is anchored to all sides.

To anchor a button in .NET, you set the Anchor property using one of the values from the
AnchorStyles enumeration. It’s almost always easiest to set anchoring at design time using the
Properties window. A special editor (technically, a UITypeEditor) lets you select the edges you
are anchoring to by clicking them in a miniature picture, as shown in Figure 3-11. You don’t
need to run your program to test your anchoring settings; the Visual Studio IDE provides the
same behavior when you resize the form.

Macdonald_694-3C03.fm Page 95 Tuesday, June 13, 2006 6:19 AM

96 C H A P T E R 3 ■ F O R M S

Figure 3-10. Resizing a window that uses anchoring

Figure 3-11. Setting control anchoring at design time

Resizing Controls with Anchoring

Anchoring to one corner works best with controls that don’t need to change size but should
remain in a consistent position. This typically includes buttons (for example, OK and Cancel
should always remain at the bottom of the window) and simple controls like labels and text
boxes. If you use this type of anchoring on every control, you create a window that gradually
spreads out as it enlarges (which is almost never the effect you want).

Instead, you can anchor a control to more than one side at once. Then, as you expand the
window, the control needs to expand to keep a fixed distance from all the anchored sides.
Table 3-9 lists some of the ways that you can combine anchor settings for different effects.

Macdonald_694-3C03.fm Page 96 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 97

■Tip When using a resizable ListBox control, be sure to set the IntegralHeight property to False. This ensures
that the ListBox can grow evenly. Otherwise, the ListBox is automatically resized to ensure that no list item is
partially displayed. This causes it to “jump” awkwardly between valid sizes as its height grows or shrinks.

The controls that benefit the most from anchoring to more than one side are those that
contain more information than they can display at once. For example, a DataGridView, a
RichTextBox, or even a ListBox control may present a scrolled view into a large amount of
information. It makes sense for these controls to resize to use available screen area. On the
other hand, a button usually shouldn’t be set to resize itself.

Minimum and Maximum Control Size

Forms aren’t the only classes to provide the MaximumSize and MinimumSize properties. In
fact, these properties are defined in the base Control class, and are available to all controls.
Using them, you can create a resizable control that stops expanding or shrinking when it
reaches a predefined point. The user can still continue to expand or shrink the form (subject to
its MaximumSize and MinimumSize properties), but the size of the control won’t change.

The MaximumSize and MinimumSize properties come into effect only when you have a
control anchored to opposite sides of a form. One limitation of these settings is that once the
control reaches its maximum size, it essentially behaves like a Top + Left anchored control.
In other words, there’s no easy way to create a control that expands to a maximum size as the
form is resized, and then continues to move with the bottom or right edge of the form.

Table 3-9. Common Anchoring Choices

Anchoring Description

Top + Left The typical behavior controls have on pre-.NET platforms. Controls remain
a fixed distance from the top-left corner, but they don’t move or expand as
the form changes size.

Top + Right The control moves to stay a fixed distance from the right of the form, but it
does not move down.

Right + Left The control’s width expands as the form widens.

Bottom + Left The control moves to stay a fixed distance from the bottom of the form,
but it does not move to the side.

Bottom + Right The control moves to keep a fixed distance from the bottom-right corner.

Top + Bottom The control’s height expands as the form lengthens.

Top + Bottom +
Right + Left

The control’s width and height expand as the form is enlarged.

Macdonald_694-3C03.fm Page 97 Tuesday, June 13, 2006 6:19 AM

98 C H A P T E R 3 ■ F O R M S

Containers and Anchoring

Rather than try to anchor every control in a window, you should use one or more container
controls to save some work. Containers also make it easier to rearrange portions of user inter-
face simultaneously, or even transplant them from one form to another.

To use anchoring with container controls, you need to understand that anchoring is always
relative to the container. That means that if you place a button inside a group box and you anchor
it to the bottom right, it will be anchored to the bottom-right corner of the group box. It won’t
move when the size of the form changes; it will move only when the size of the container changes.
For example, consider the button shown in Figure 3-12. The form is resized, but the group box
doesn’t change, and so the button also remains in place.

Figure 3-12. Anchored controls follow a corner in the container.

Nothing happens in the previous example, because there’s no change in the container. To
get around this, you could anchor the group box to all sides of the window. Then, as the group
box grows, the button will move to keep a consistent distance from the bottom-right corner.
This version is shown in Figure 3-13.

Figure 3-13. Anchoring the control and its container

Macdonald_694-3C03.fm Page 98 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 99

Container controls become particularly important when you start to add docking and split
windows to your designs.

Docking
Docking allows a control to bind itself to an edge in the form or container control. When you
resize the container, the control resizes itself to fit the entire edge. A control can be bound to
any one edge, or it can be set to fill the entire available area. The only limitation is that you can’t
dock and anchor the same control (if you think about it for a moment, you’ll realize that it
wouldn’t make sense anyway).

For example, you can solve the problem you saw with the button in the container control
in the preceding examples by docking the group box to the right edge of your form. Now, when
you resize the window, the group box expands to fit the edge. Because the button inside is
anchored to the bottom-right corner of the group box, it also moves to the right side as the form
is enlarged. Similarly, you could set the group box docking to fill so that it would automatically
resize itself to occupy the entire available area. Figure 3-14 shows an example of this behavior.

Figure 3-14. A docked group box

To configure docking, you set the control’s Dock property to a value from the DockStyle
enumeration. Typically, you use the Property window to choose a setting at design time.

If you experiment with docking, your initial enthusiasm quickly drains away as you
discover the following:

• Docked controls insist on sitting flush against the docked edge. This results in excessive
crowding and doesn’t leave a nice border where you need it.

• Docked controls always dock to the entire edge. There’s no way to tell a docked control
to bind to the first half (or 50 percent) of an edge. It automatically takes the full available
width, which makes it difficult to design a real interface.

Every control that derives from the ScrollableControl class has an additional feature called
dock padding. Dock padding allows you to insert a buffer of empty space between a container
and its docked controls. Some containers that derive from ScrollableControl include Panel,

Macdonald_694-3C03.fm Page 99 Tuesday, June 13, 2006 6:19 AM

100 C H A P T E R 3 ■ F O R M S

Form, UserControl, SplitContainer, and ToolStrip. The GroupBox control does not derive from
ScrollableControl and does not provide any padding.

Figure 3-15 shows another example with a group box and a contained button. Because the
Form is the container for the group box, you need to modify the form’s padding property by
finding DockPadding in the properties window, expanding it, and setting All to 10 (pixels). Now
the group box will still bind to all sides, but it will have some breathing room around it.

Figure 3-15. A docked group box with padding

At this point you may wonder why you need docking at all. It seems like a slightly more
awkward way to accomplish what anchoring can achieve easily. However, in many cases
anchoring alone is not enough. There are two common scenarios:

• You are using an advanced window design that hides and shows various window elements.
In this scenario, docking forces other controls to resize and make room, while anchoring
leads to overlapping controls.

• You want to create a window that the user can resize, like a split window design. In this
case, you need to use docking, because it allows controls to resize to fit the available space.

You examine both of these designs later in this chapter, in the “Splitting Windows” section.

■Note The sample code for this chapter (in the Source Code area of the Apress Web site, www.
apress.com) includes a program that lets you play with a number of different combinations of anchoring
and docking, so you can see how they do or don’t solve a problem.

Autosizing
In .NET 2.0, the Control class adds a new AutoSize property, which allows you to create controls
that expand or shrink as their content changes.

All .NET controls provide the AutoSize property, although some interpret it differently
from others (and some, like TextBox, ignore it completely). If you set AutoSize to True for

Macdonald_694-3C03.fm Page 100 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 101

controls like the Label, LinkLabel, Button, CheckBox, and RadioButton, the control automatically
expands to fit the displayed text. This is useful in two key scenarios:

• You are displaying highly dynamic content. For example, you want to read text from a
file or database and show it in a label.

• You are displaying localizable content. For example, depending on the current language,
the captions on your button need to change.

By default, all of the controls listed earlier have AutoSize set to True, except for the Button
control. Autosizing takes place every time the control content is changed (or another size-
related property, such as the control’s font, is modified).

The exact behavior of autosizing depends on another property, called AutoSizeMode.
If this property is set to GrowAndShrink, autosizing is used only to expand the width. If you
reduce the amount of content, the control will shrink back to its original size, but it will never
become smaller than the original size you set. On the other hand, if you use an AutoSizeMode
of GrowOnly, you won’t be able to set the size of the control at all. Instead, the control will take
the exact size of its content.

■Note Autosizing also respects the MaximumSize and MinimumSize properties of each control. Controls
will never be resized beyond the defined limits.

Text-based controls aren’t the only ones to automatically size themselves. For example, if
you set AutoSize to True for the PictureBox control, it resizes itself to accommodate the current
image. Even more interesting is the way that container controls support autosizing. For example, a
Panel or GroupBox will expand itself to fit the widest and highest contained control if AutoSize
is True (by default, it’s False). Container controls follow the same behavior as buttons—they
expand as needed, but never shrink to be smaller than the originally defined size.

■Note Although all controls inherit the AutoSize and AutoSizeMode properties, not all support them. For
example, a scrollable control like the TextBox or ListBox doesn’t need to resize itself automatically, because
you can scroll to see all of its content. Similarly, some controls (namely the Label) support autosizing but don’t
give you a choice of mode. In the case of the Label, you’re locked into GrowAndShrink.

Finally, even the greatest container of them all—the form—supports autosizing. If
AutoSizeMode is GrowOnly, the form expands to fit enlarged content. If AutoSizeMode is
GrowAndShrink, the form is sized just large enough to fit every control (and the extra space
dictated by the Form.Padding property and the Control.Margin property of the outlying
controls).

Figure 3-16 shows an example with an autosizing label that’s contained in an autosizing
group box, which is situated on an autosizing form.

Macdonald_694-3C03.fm Page 101 Tuesday, June 13, 2006 6:19 AM

102 C H A P T E R 3 ■ F O R M S

Figure 3-16. Autosizing controls in their initial state

By specifying new label text and clicking the button, the label, the group box, and the form
all grow, as shown in Figure 3-17. To ensure that there’s a sufficient amount of space left between
the form border and the group box, you need to set the Form.Padding property. (You can also
set the GroupBox.Padding property to keep some minimum space between the label and its
container.)

Figure 3-17. Autosizing controls that have been expanded

As shown in Figure 3-17, autosized controls tend to grow wider rather than taller. However,
you can change this behavior using the MaximumSize property. For example, if you set a label
to have a MaximumSize.Width of 200 (rather than the default 0, which allows it to be as wide as it
wants), the label will autosize itself to a maximum of 200 pixels. If it can’t fit all the content into
that line, it will enlarge its height and add additional lines (until it reaches MaximumSize.Height,
if you’ve set a limit). The only caveat is that as a control grows wider and taller, it risks overlapping
with other nearby controls. To prevent this, you need to use a more dynamic approach to
layout. The layout controls (demonstrated in Chapter 21) address this problem.

Macdonald_694-3C03.fm Page 102 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 103

■Tip If you need to display a large amount of scrollable static text, don’t forget the old standby of using a
TextBox instead of a label, but set ReadOnly to True so it can’t be modified.

Autosizing raises an interesting question—how does it interact with anchoring? Essentially,
it doesn’t. When using autosizing, you should always use the default Top-Left anchor settings.
Other anchor settings may be ignored or have unpredictable results.

Behind the scenes, autosizing works through the Control.GetPreferredSize() method. Essen-
tially, every container (including the Panel and Form) has its own layout engine. The layout
engine iterates over all the contained controls and calls the GetPreferredSize() method to find
their ideal dimensions. The GetPreferredSize() method takes width and height arguments,
which allows the layout engine to constrain the size. In other words, the layout engine can ask
for the required width based on a constrained height, or vice versa. Each control is free to
implement GetPreferredSize() in whatever way is most appropriate for its content. Similarly,
every layout engine is free to either use or ignore the preferred size of a control. As you’ve seen,
in ordinary grid layout, autosized controls are given their preferred size unless this conflicts
with anchor settings. However, .NET also includes some container controls that use different
types of layouts, and you can design your own layout managers. You’ll learn about both topics
in Chapter 21.

■Tip If you’re not careful, autosizing could cause a control to grow outside the bounds of a nonautosizing
form. To avoid this, use the MaximumSize property, or consider how you can place an autosizing control
inside a scrollable control.

Splitting Windows
One of the most recognizable user-interface styles in applications today is the split window
(arguably popularized by Windows Explorer). In fact, split-window-view applications are begin-
ning to replace the former dominant paradigm of MDI, and Microsoft has led the charge (although
many developers still favor MDI design for many large-scale applications).

In .NET 1.0, split windows were built out of two Panel controls separated by a Splitter
control. This worked perfectly well, but it could be a little awkward, because the two Panel
controls and the Splitter had to be docked in the correct order. In .NET 2.0, the Splitter control
is tucked out of sight. (It no longer appears in the toolbox, although you can add it by right-clicking
on the toolbox and selecting Choose Items.) Instead, .NET introduces a new higher-level
control: the SplitContainer. The SplitContainer wraps two panels and a splitter bar that separates
them. The splitter bar can be horizontal or vertical, depending on the Orientation property.
Table 3-10 lists the key SplitContainer members.

Macdonald_694-3C03.fm Page 103 Tuesday, June 13, 2006 6:19 AM

104 C H A P T E R 3 ■ F O R M S

Figure 3-18 shows a SplitContainer that contains a TreeView and a ListView. By moving the
position of the splitter bar at runtime, the user can change the relative size of these two controls.

Creating this example is easy. Begin by dragging the SplitContainer onto the form. By
default, the SplitContainer.Dock property will be set to DockStyle.Fill, so that it fills the entire
form. Next, you can drag the TreeView into the left panel, and a ListView into the right panel.
For each of these controls, you also need to set the Dock property to DockStyle.Fill, so they fill
their respective panels. You can do this through the Properties window or by choosing the
Dock in Parent Container link from the control’s smart tag.

In this case, the window is somewhat claustrophobic. To improve the spacing, you can set
a buffer using the form’s Padding property. However, this won’t add any extra spacing between
the controls and the splitter bar—to add that, you need to modify the Padding property of
the two panels, which you can access as SplitContainer.Panel1.Padding and SplitContainer.
Panel2.Padding. (You can set both of these through the Properties window in Visual Studio by
expanding the Panel1 and Panel2 properties.)

Table 3-10. Key SplitContainer Members

Member Description

Orientation You can set the orientation to one of two values: Vertical (to create
a splitter bar that runs from top to bottom) or Horizontal (to create a
splitter bar that runs from left to right).

IsSplitterFixed When set to True, this prevents the user from moving the splitter bar.
However, you can still change its position programmatically by setting
the SplitterDistance property.

SplitterIncrement The number of pixels that represents a single increment of movement
for the splitter bar. For example, if this is 5, when the user drags the
splitter bar, it moves in increments of 5 pixels. By default, this is 1.

SplitterDistance Gets or sets the location of the splitter, in pixels, from the left edge
(for a vertical split bar) or top edge (for a horizontal split bar).

Panel1 and Panel2 Panel1 provides a reference to the left or top panel of the SplitContainer
(depending on the orientation). Panel2 provides a reference to the right
or bottom panel. Using these references, you can set other Panel prop-
erties. For example, you may want to set the padding for all the controls
docked in this panel, or enable automatic scrolling with the AutoScroll
property.

Panel1Collapsed and
Panel2Collapsed

When set to True, the corresponding panel is temporarily hidden, along
with the splitter bar.

Panel1MinSize and
Panel2MinSize

Sets the minimum width (for a vertical splitter) or height (for a hori-
zontal splitter) of the appropriate panel. The user will not be able to
drag the splitter to shrink the panel beyond this minimum.

FixedPanel Takes one of three values: None, Panel1, or Panel2. If you set FixedPanel
to Panel1 or Panel2, this panel will remain the same size when the
SplitContainer is resized. If you use the value None, both panels will be
sized proportionately when the SplitContainer is resized. Usually, the
SplitContainer is resized because it’s docked or anchored to the form
or another panel that is being resized.

SplitterMoved and
SplitterMoving events

SplitterMoving occurs while the user is in the process of moving the
splitter bar. SplitterMoved fires when it’s released in its new position.

Macdonald_694-3C03.fm Page 104 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 105

Figure 3-18. A basic split window

Building Split Windows with Panels
Usually you won’t dock a SplitContainer to fill an entire form. Instead, you’ll use a combination of
panels. For example, you might dock a panel to a side of the form, and then use the SplitContainer
to fill the remaining space. Figure 3-19 shows an example (taken from Chapter 8) that uses a
customized TreeView/ListView explorer.

The panel on the left includes a single TreeView, but the panel on the right includes two
label controls spaced inside a panel to give a pleasing border around the label text. (If the same
window simply used a single label control with a border, the text in the label would sit flush
against the border.) The horizontal rule and the Close button at the bottom of the window aren’t
included in the resizable portion of the window. Instead, they are anchored in a separately
docked panel, which is attached to the bottom of the form.

To implement this design, a panel control is first docked to the bottom to hold the Close
button. Then, a SplitContainer control is docked to fill the remainder of the window. The other
controls can then be anchored or docked to fill their respective areas. Figure 3-20 shows the
overall design.

Figure 3-19. A split window

Macdonald_694-3C03.fm Page 105 Tuesday, June 13, 2006 6:19 AM

106 C H A P T E R 3 ■ F O R M S

Figure 3-20. A docking strategy

Other Split Windows
Another reason to split a window is to provide two different views of the same data. Consider
the example shown in Figure 3-21, which shows an HTML page using the WebBrowser control
and an ordinary text box. In this case, the SplitContainer uses a horizontal splitter.

Figure 3-21. A split view of a single document

Macdonald_694-3C03.fm Page 106 Tuesday, June 13, 2006 6:19 AM

C H A P T E R 3 ■ F O R M S 107

You could also add a vertical splitter to create a compound view. For example, consider
Figure 3-22, which provides a list of HTML files the user can select from.

Figure 3-22. Multiple splits

One of the best characteristics of docked designs is that they easily accommodate hidden
or modified controls. Figure 3-23 shows an alternate design that allows the file-selection panel
to be collapsed and then restored to its original size with the click of the button. To implement
this design, two panels are placed in the left region of the SplitContainer, one named pnlFileList
and the other named pnlShow. However, only one of these panels is shown at a time. The
contents of the rest of the window automatically resize themselves to accommodate the addi-
tional view when it is displayed.

The code for this operation is trivial:

Private Sub cmdHide_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdHide.Click
 splitContainer1.Panel1Collapsed = True
 pnlShow.Visible = True
End Sub

Private Sub cmdShow_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdShow.Click
 pnlShow.Visible = False
 splitContainer1.Panel1Collapsed = False
End Sub

This sample, called SplitWindow, is included in the online code for this chapter.

Macdonald_694-3C03.fm Page 107 Tuesday, June 13, 2006 6:19 AM

108 C H A P T E R 3 ■ F O R M S

Figure 3-23. A collapsible split window

The Last Word
In this chapter you’ve toured through the basics of Windows forms—creating them, displaying
them, and handling their interactions. You’ve also learned how to build resizable forms and
split windows. However, there are still more techniques to study. In Chapter 23, you’ll learn
how to create shaped forms, and in Chapter 11, you’ll see how to use visual inheritance to build
specialized forms based on more-general templates. Chapter 21 will teach you to create flex-
ible, highly dynamic user interfaces using layout managers. All these techniques build on the
basics you’ve learned so far.

In the next chapter, you’ll continue with the fundamentals of the Windows Forms toolkit
by considering the basic set of Windows controls.

Macdonald_694-3C03.fm Page 108 Tuesday, June 13, 2006 6:19 AM

109

■ ■ ■

C H A P T E R 4

The Classic Controls

This chapter considers some of the most common types of controls, such as labels, text boxes,
and buttons. Many of these controls have existed since the dawn of Windows programming
and don’t need much description. To keep things interesting, this chapter also presents a few
of their less familiar relatives. For example, at the same time you look at the label, list box, and
domain controls, you will learn about the hyperlink label, checked list box, and rich date controls.

In addition, you’ll see a few features that are supported by a wide variety of controls: drag
and drop, automatic completion, and tooltips. You’ll also learn how to create wrappers that let
you use legacy ActiveX controls, and you’ll see how to create a system tray application with the
NotifyIcon control.

The Classic Control Gallery
Over the past three chapters, you’ve learned about the basic fundamentals of controls and
forms. Now it’s time to look at some of the familiar controls every programmer knows and loves.

■Note Many common controls also support images. For example, you can display an image alongside text
in a label control. You’ll learn about this in Chapter 5.

Labels
Label controls place static text on a form. The text is contained in the Text property and aligned
according to the TextAlign property. Table 4-1 lists a few less familiar (but useful) label properties.

Macdonald_694-3C04.fm Page 109 Wednesday, June 14, 2006 11:42 AM

110 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

LinkLabel
This specialty label inherits from the Label class, but adds some properties that make it partic-
ularly well suited to representing links. For example, many applications provide a clickable link
to a company Web site in an About window.

The LinkLabel handles the details of displaying a portion of its text as a hyperlink. You
specify this portion in the LinkArea property using a LinkArea structure that identifies the first
character of the link and the number of characters in the link. Depending on the LinkBehavior
property, this linked text may always be underlined, it may be displayed as normal, or it may
become underlined when the mouse hovers over it.

Here’s the basic code that creates a link on the Web site address:

lnkWebSite.Text = "See www.prosetech.com for more information."

' Starts at position 4 and is 17 characters long.
lnkWebSite.LinkArea = New LinkArea(4, 17)
lnkWebSite.LinkBehavior = LinkBehavior.HoverUnderline

■Tip You can also set the LinkArea property using a designer in Visual Studio. Just click the ellipsis (...) next
to the LinkArea property, and select the area you want to make clickable, so it becomes highlighted.

You need to handle the actual LinkClicked event to make the link functional. In this event
handler, you should set the LinkVisited property to True, so that the color is updated properly,
and then perform the required action. For example, you might start Internet Explorer with the
following code:

Table 4-1. Label Properties

Property Description

AutoEllipsis If set to True and the label text doesn’t fit in the current bounds of the label,
the label will show an ellipsis (…) at the end of the displayed text. This property
has no effect if you have set AutoSize to True. Note that the ellipsis may occur
in the middle of a word.

BorderStyle Gives you a quick way to add a flat or sunken border around some text
(consider container controls such as the Panel for a more powerful and
configurable approach). Be sure to use this in conjunction with the Padding
property, so there is some breathing room between the text and the border.

UseMnemonic When set to True, ampersands in the label’s Text property are automatically
interpreted as Alt access keys. The user can press this access key, and the focus
switches to the next control in the tab order (for example, a labeled text box).

Macdonald_694-3C04.fm Page 110 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 111

Private Sub lnk_Clicked(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnk.LinkClicked

 ' Change the color if needed.
 e.LinkVisited = True

 ' Use the Process.Start method to open the default browser with a URL.
 System.Diagnostics.Process.Start("http://www.prosetech.com")
End Sub

If you need to have more than one link, you can use the Links property, which exposes a
special collection of Link objects. Each Link object stores its own Enabled and Visited proper-
ties, as well as information about the start and length of the link (Start and Length). You can
also use the LinkData object property to associate some additional data with a link. This is useful
if the link text does not identify the URL (for example, a “click here” link).

lnkBuy.Text = "Buy it at Amazon.com or Barnes and Noble."
lnkBuy.Links.Add(10, 10, "http://www.amazon.com")
lnkBuy.Links.Add(24, 16, "http://www.bn.com")

You can also access LinkArea objects after you create them and modify the Start, Length,
or LinkData property dynamically.

lnkBuy.Links(0).LinkData = "http://www.amazon.co.uk"

The LinkClicked event provides you with a reference to the Link object that was clicked.
You can then retrieve the LinkData and use it to decide what Web page should be shown.

Private Sub lnk_Clicked(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnk.LinkClicked

 e.Link.Visited = True
 System.Diagnostics.Process.Start(CStr(e.Link.LinkData))
End Sub

Figure 4-1 shows both of these LinkLabel examples. Table 4-2 lists the LinkLabel properties,
and Table 4-3 provides the LinkLabel.Link properties.

Figure 4-1. Two LinkLabel examples

Macdonald_694-3C04.fm Page 111 Wednesday, June 14, 2006 11:42 AM

112 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Button
Quite simply, buttons “make things happen.” The most important point to remember about
buttons is that the Click event has a special meaning: it occurs when you trigger the button in
any way, including with the keyboard, and it is not triggered by right-clicks (unlike the Click
event of other controls). Buttons are old hat to most developers, but Table 4-4 lists a few inter-
esting members that may have escaped your attention.

Table 4-2. LinkLabel Properties

Property Description

ActiveLinkColor,
DisabledLinkColor,
LinkColor, and
VisitedLinkColor

Set colors for the links in the LinkLabel (the rest of the text has
its color determined by the standard ForeColor property). Links
can be visited, disabled, enabled (normal), or active (while they
are in the process of being clicked).

LinkArea and Links LinkArea specifies the position of the link in the text. If you have
more than one link, you can use the Links property instead, which
exposes a collection of LinkArea objects. Links cannot overlap.

LinkBehavior Specifies the underlining behavior of the link using the
LinkBehavior enumeration.

LinkVisited When set to True, the link appears with the visited link color.

Table 4-3. LinkLabel.Link Properties

Property Description

Enabled Allows you to enable or disable a link. Disabled links do not fire the
LinkClicked event when clicked.

Length and Start Identify the position of the link in the LinkLabel.

LinkData Provides an object property that can hold additional data, such as the
corresponding URL. You can retrieve this data in the LinkClicked
event handler.

Visited When set to True, the link appears with the visited link color.

Macdonald_694-3C04.fm Page 112 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 113

TextBox
Another staple of Windows development, the text box allows the user to enter textual informa-
tion. The previous chapter explained how you can react to and modify key presses in the text
box. Interestingly, text boxes provide a basic set of built-in functionality that the user can access
through a context menu (see Figure 4-2).

Figure 4-2. The built-in TextBox menu

Table 4-4. Special Button Members

Member Description

PerformClick() “Clicks” the button programmatically. In other words, it causes the button
to fire the Click event. This method is useful for wizards and other features
where code “drives” the program. It also allows you to set up relationships
between controls. For example, if you set a default button for a form (by
setting the Form.AcceptButton property to point to your button), the form
can programmatically “click” your button by calling PerformClick() when
the user presses the Enter key.

DialogResult If set, indicates that this button will close the form automatically and
return the indicated result to the calling code, provided the window is
shown modally. This technique is explained in Chapter 3, which discusses
dialog forms.

FlatStyle and
FlatAppearance

FlatStyle allows you to choose between standard button rendering and two
more unusual modes. If FlatStyle is set to FlatStyle.Popup, the button is
given a thin etched border that appears to become raised when the mouse
moves over the button. If FlatStyle is set to FlatStyle.Flat, the FlatAppearance
settings take over. They specify the width of the border, its color, and the
background color that should be employed when the user moves the mouse
over the button and presses it. Overall, the results are far from impressive,
and a better choice is to use the custom button-drawing techniques covered
in Chapter 23.

Macdonald_694-3C04.fm Page 113 Wednesday, June 14, 2006 11:42 AM

114 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Much of this functionality is also exposed through TextBox class members, and some of it
is implemented by the base class TextBoxBase (which is shared with the MaskedTextBox and
RichTextBox classes). See Table 4-5 for a complete rundown.

Table 4-5. TextBox Members

Member Description

AcceptsReturn and Multiline If you set Multiline to True, the text box can wrap text over
the number of available lines (depending on the size of the
control). You can also set AcceptsReturn to True, so that a
new line is inserted in the text box whenever the user hits
the Enter key. (Otherwise, pressing the Enter key will prob-
ably trigger the form’s default button.) When adding
multiple lines of text into a text box, you must separate each
line with the character sequence \r\n (as in
“Line1\r\nLine2”). On its own, the \n character sequence
will simply appear as a nondisplayable character (a box).

AcceptsTab If True, when the user presses the Tab key, it inserts a hard
tab in the text box (rather than causing the focus to move to
the next control in the tab order).

AutoCompleteMode,
AutoCompleteCustomSource,
and AutoCompleteSource

These properties support the autocompletion feature,
which is also supported by the ComboBox. It’s discussed
later in this chapter, in the section “AutoComplete.”

CanUndo Determines whether the text box can undo the last action.
An undo operation can be triggered using the Undo()
method or when the user right-clicks the control and
chooses Undo from the context menu.

Cut(), Copy(), Paste(), Clear(),
Undo(), Select(), and SelectAll()

These methods allow you to select text and trigger opera-
tions such as copy and cut, which work with the clipboard.
The user can also access this built-in functionality through
the context menu for the text box.

CharacterCasing Forces all entered characters to become lowercase or
uppercase, depending on the value you use from the Char-
acterCasing enumeration. When you set this property, any
existing characters are also modified. It’s important to
realize that CharacterCasing doesn’t simply change the way
text is displayed; it actually replaces the TextBox.Text string
with a capitalized or lowercased value.

Lines Gets or sets the text in a multilined text box as an array of
strings, with one string for each line. When setting this
property, you must supply a completely new array (you
can’t simply modify a single line by changing one of the
strings in the array).

MaxLength The maximum number of characters or spaces that can be
entered in the text box. The default value of 0 indicates no
limit.

Macdonald_694-3C04.fm Page 114 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 115

■Tip .NET 2.0 also adds a masked text box control that automatically formats data as the user enters text.
For more information about this useful addition, and how to extend it, refer to Chapter 18.

RichTextBox
If you’re looking for a text box control with more formatting muscle, consider the RichTextBox.
Although it won’t help you build the next Microsoft Word (for that, you’d need much more
fine-grained control to intercept key presses and control painting), it does allow you to form
at arbitrary sections of text in the font, color, and alignment you choose.

PasswordChar and
UseSystemPasswordChar

If PasswordChar is set to a character, that character appears
in place of the text box value, hiding its information. For
example, if you set this to an asterisk, the password “sesame”
will appear as a series of asterisks (******). In recent versions
of Windows, the usual password character is not an asterisk
but a bullet (•). You can set the UseSystemPasswordChart
property to True to use the system-defined password
character.

SelectedText, SelectionLength,
and SelectionStart

The SelectionStart and SelectionLength properties allow
you to set the text that is currently selected in the text box.

ReadOnly If True, the contents of a read-only text box can be modi-
fied in your code, but not by the user. Making a text box
read-only instead of disabling it allows the text to remain
clearly visible (instead of “grayed out”), and it allows the
user to scroll through if it does not fit in the display area,
and select and copy the content to the clipboard.

ShortcutsEnabled When False, the user won’t be able to use the shortcut keys
for copying and pasting text or be able to use the right-click
context menu with the same commands.

WordWrap In a multiline text box, this property indicates whether text
should automatically wrap to the next line (the default,
True), or extend indefinitely until a line break is reached
(False). If you set this property to False, you’ll probably
also set AcceptReturn to False to allow the user to insert
hard returns.

ScrollToCaret() In a multiline text box, this method moves to the location of
the cursor.

GetPositionFromCharIndex(),
GetLineFromCharIndex(),
GetFirstCharIndexFromLine(),
GetCharFromPosition(), and
GetCharIndexFromPosition()

These methods (new in .NET 2.0) allow you to get detailed
information about the current position of the cursor in the
text box, either as an offset into the text string (char index) or
as the screen location (point). This is handy if you need to
show a pop-up menu next to the current insertion point in a
large text box. These methods are also available (and generally
more useful) for the RichTextBox control.

Table 4-5. TextBox Members

Member Description

Macdonald_694-3C04.fm Page 115 Wednesday, June 14, 2006 11:42 AM

116 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

The RichTextBox control derives from TextBoxBase, as does the TextBox, so it shares most
of its properties and methods (as listed in Table 4-5). Along with these features, the RichTextBox
adds the ability to handle rich formatting, images, and links. It also provides a LoadFile() and a
SaveFile() method for saving RTF documents painlessly.

One of the key enhancements the RichTextBox adds is a set of selection properties that
allow you to manipulate the formatting of the currently selected text. The RichTextBox supports
the familiar SelectedText, SelectionLength, and SelectionStart properties, but it also adds a
much more impressive set of properties including SelectionColor, SelectionBackColor,
SelectionFont, and SelectionAlignment, which allow you to adjust the formatting of the selected
text. Table 4-6 has the lowdown.

Table 4-6. RichTextBox Added Members

Member Description

AutoWordSelection If True, the nearest word is automatically selected when the user
double-clicks inside the text box.

BulletIndent Sets the number of pixels to indent text that’s styled as bulleted.
You use the SelectionBullet property to turn this style on or off.

DetectUrls and
LinkClicked event

If the DetectUrls property is True (the default), the text box will
detect URLs in the text and convert them to clickable hyperlinks.
You can handle the LinkClicked event handler to examine what text
was clicked, and handle the click (for example, by showing a new
document or launching an external process like Internet Explorer).

EnableAutoDragDrop If True, the user can rearrange selected text and images by dragging
them to a new position. The default is False.

Rtf and SelectedRtf Whereas the Text property gets the plain, unformatted text content,
the Rtf property gets or sets the formatted text, including all rich
text format (RTF) codes. This is useful primarily when interacting
with another program that understands RTF (like Microsoft Word).
For more information about RTF codes, see the rich text format
(RTF) specification at http://msdn.microsoft.com/library/en-us/
dnrtfspec/html/rtfspec.asp.

SelectionAlignment The type of horizontal alignment (left, right, or center) to use to
align the selected text.

SelectionBackColor The background color for the selected text. If this is equal to
Color.Empty, it indicates that the selection includes more than
one background color.

SelectionBullet True if the selected text should be formatted with the bullet style
(meaning each paragraph is preceded by a bullet).

SelectionCharOffset Determines whether the selected text appears on the baseline, as a
superscript, or as a subscript below the baseline.

SelectionColor The foreground color for the selected text. If this is equal to
Color.Empty, it indicates that the selection includes more than
one color.

SelectionFont The font used for the selected text. A null reference indicates that
the selection includes more than one typeface.

Macdonald_694-3C04.fm Page 116 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 117

Unless you want to master the complexities of RTF codes (which are not for the faint of
heart), steer away from the Rtf and SelectedRtf properties. Instead, perform all your formatting
by manipulating the selection properties. First, set the SelectionStart and SelectionLength
properties to define the range of text you want to format. Then, apply the formatting by assigning a
new selection color, font, or alignment through properties like SelectionColor and SelectionFont.
Use the SelectedText property to set or change the content of the selected text.

Here’s an example that formats the text in the entire control with bold formatting:

richTextBox1.SelectionStart = 0
richTextBox1.SelectionLength = richTextBox1.Text.Length - 1
richTextBox1.SelectionFont = New Font(richTextBox1.SelectionFont, FontStyle.Bold)

Notice that you can’t modify the properties of the SelectionFont. Instead, you need to
assign a new font, although you can use the current font as a starting point, and simply change
the style or size as needed.

You can set the selection formatting properties even if there’s currently no selected text (in
other words, SelectionLength is 0). In this case, the formatting options apply to the current
insertion point (wherever SelectionStart is positioned). In other words, if you use the following
line of code, when the user starts to type, the text will appear in blue. However, if the user first
moves to a new location, this formatting selection will be lost.

richTextBox1.SelectionColor = Colors.Blue

SelectionHangingIndent The spacing (in pixels) between the left edge of the first line of text
in the selected paragraph and the left edge of subsequent lines in
the same paragraph.

SelectionIndent The spacing (in pixels) between the left edge of the text box and the
left edge of the text selection.

SelectionRightIndent The distance (in pixels) between the right edge of the text box and
the right edge of the text selection.

SelectionProtected and
Protected event

If set to True, the user will be prevented from modifying this text.
Initially, no text is protected. If the user attempts to change protected
text, the Protected event is raised.

ShowSelectionMargin Shows a margin on the left where the user can click to quickly select
a line of text (or double-click to select an entire paragraph).

ZoomFactor Adjusts the scaling of the text to make it larger or smaller. A Zoom-
Factor of 1 (the default) is equivalent to 100%, which means each
font appears at its normal size. A ZoomFactor of .75 is 75%; 2 is 200%,
and so on.

LoadFile() and SaveFile() Allows you to save (or load) the content for the text box. You can
use a string with a file path, or supply a stream. You also have the
choice of saving (or loading) plain text files or formatted RTF files.

SelectionChanged event Fires when the SelectionStart of SelectionLength properties change.

Table 4-6. RichTextBox Added Members

Member Description

Macdonald_694-3C04.fm Page 117 Wednesday, June 14, 2006 11:42 AM

118 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

You can also use this technique to add formatted text. For example, here’s the code that
adds some text to the end of the text box, using a large font:

richTextBox1.SelectionStart = richTextBox1.Text.Length - 1
richTextBox1.SelectionFont = New Font("Tahoma", 20)
richTextBox1.SelectedText = "Hi"

Note that if you swapped the first and second line so that you applied the selection format-
ting before you set the selection position, the formatting would be lost and the new text would
have the default formatting (the formatting of the character immediately to the left of the cursor).

Figure 4-3 shows a simple test program (available with the downloadable examples) that
allows the user to style selected sections of text using toolbar buttons.

Figure 4-3. Formatting text in the RichTextBox

The code for this example is fairly straightforward. When a button is clicked, you simply
need to modify the corresponding selection property. However, there are a few considerations
you need to take into account.

When applying font styles (like underlining, bold, and italics), you need to be a little more
careful. First, you need to check if the style is already present. If so, it makes sense to remove
the style flag. (For example, if the underline button is clicked twice in succession, the text should
revert to normal.) Second, you need to make sure that you don’t wipe out any of the other existing
formatting. (For example, the user should be able to bold and underline text.) Thus, you need
to use bitwise arithmetic with the FontStyle enumeration to add or remove the appropriate
style option without changing the others. Third, you need to test the SelectionFont property for
a null reference, which occurs if there is more than one font family in the selected text.

Macdonald_694-3C04.fm Page 118 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 119

■Note .NET follows some slightly unusual rules for setting selection properties when the selection includes
varied formatting. For example, the SelectionFont will always indicate False for underlining, bold, italics, and
strikeout unless it’s applied to the whole selection. If there is more than one size, the Font.Size property
reflects the smallest size. However, if there’s more than one font face, the Font object can’t be created and
the SelectionFont property returns null. Similar sleight of hand happens with other selection properties—for
example, expect a SelectionColor or Color.Empty if the selection includes multiple colors (as SelectionColor
can’t return a null reference, because it’s a value type).

Here’s the complete code that allows any text to be underlined:

Private Sub cmdUnderline_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdUnderline.Click

 If richTextBox1.SelectionFont Is Nothing Then
 ' The selection includes multiple fonts. Sadly, there's
 ' no way to get information about any of them.
 ' You could fall back on the RichTextBox.Font property,
 ' but if you make any change to the SelectionFont you will
 ' override the current fonts, so it's safer to do nothing.
 Return
 End If

 ' Get the current style.
 Dim style As FontStyle = richTextBox1.SelectionFont.Style

 ' Adjust as required.
 If richTextBox1.SelectionFont.Underline Then
 style = style And Not FontStyle.Underline
 Else
 style = style Or FontStyle.Underline
 End If

 ' Assign font with new style.
 richTextBox1.SelectionFont = New Font(richTextBox1.SelectionFont, style)
End Sub

You can also react to SelectionChanged to update the status of controls. For example, you
could set a toolbar button like Bold to have an indented (pressed) appearance when the user
moves through a section of bold text. To do so, you need to react to the SelectionChanged
event, as shown here:

Macdonald_694-3C04.fm Page 119 Wednesday, June 14, 2006 11:42 AM

120 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Private Sub richTextBox1_SelectionChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles richTextBox1.SelectionChanged

 If richTextBox1.SelectionFont IsNot Nothing Then
 cmdBold.Checked = richTextBox1.SelectionFont.Bold
 cmdItalic.Checked = richTextBox1.SelectionFont.Italic
 cmdUnderline.Checked = richTextBox1.SelectionFont.Underline
 End If
End Sub

To place an image in the RichTextBox, you need to use the copy-and-paste features of the
clipboard. The basic strategy is to copy an image object to the clipboard, move to the desired
position in the text box, and then paste it into place. Here’s an example:

' Get the image.
Dim img As Image = Image.FromFile(_
 Path.Combine(Application.StartupPath, "planet.jpg"))

' Place it on the clipboard.
Clipboard.SetImage(img)

' Move to the start of the text box.
richTextBox1.SelectionStart = 0

' Paste the image.
richTextBox1.Paste()

' Optionally, remove the data from the clipboard.
Clipboard.Clear()

This is not an ideal solution, because it modifies the clipboard without notifying the user,
which is a problem if the user already has some data there. Unfortunately, there’s no other
solution possible without mastering the intricacies of RTF codes. For more information
and a more complex workaround, you may want to check out an article on the subject at
www.codeproject.com/cs/miscctrl/csexrichtextbox.asp.

CheckBox and RadioButton
The CheckBox and RadioButton controls provide a Checked property that indicates whether
the control is checked or “filled in.” After the state is changed, a CheckedChanged event occurs.

You can create a special three-state check box by setting the ThreeState property to True.
You need to check the CheckState property to examine whether it is Checked, Unchecked, or
Indeterminate (shaded but not checked).

By default, the control is checked and unchecked automatically when the user clicks it.
You can prevent this by setting AutoCheck to False and handling the Click event. This allows
you to programmatically prevent a check box or radio button from being checked (without
trying to “switch it back” after the user has made a change).

Macdonald_694-3C04.fm Page 120 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 121

PictureBox
A picture box is one of the simplest controls .NET offers. You can set a valid image using the
Image property and configure a SizeMode from the PictureBoxSizeMode enumeration. For
example, you can set the picture to automatically stretch to fit the picture box.

pic.Image = System.Drawing.Image.FromFile("mypic.bmp")
pic.SizeMode = PictureBoxSizeMode.StretchImage

You’ll learn more about how to manipulate images in .NET in Chapter 5 and Chapter 7.

List Controls
.NET provides three basic list controls: ListBox, CheckedListBox, and ComboBox. They all
inherit (directly or indirectly) from the abstract ListControl class, which defines basic function-
ality that allows you to use a list control with data binding. Controls can be bound to objects
such as the DataSet, arrays, and ArrayList collections, regardless of the underlying data source
(as you’ll see in Chapter 8).

' Bind a list control to an array of city names.
Dim cityChoices() As String = {"Seattle", "New York", "Singapore", "Montreal"}
lstCity.DataSource = cityChoices

You can access the currently selected item in several ways. You can use the SelectedIndex
property to retrieve the zero-based index number identifying the item, or you can use the
Text property to retrieve the displayed text. You can also set both of these properties to change
the selection.

' Search for the item with "New York" as its text, and select it.
lstCity.Text = "New York"

' Select the first item in the list.
lstCity.SelectedIndex = 0

If you are using a multiselect ListBox, you can also use the SelectedIndices or SelectedItems
collection. Multiselect list boxes are set based on the SelectionMode property. You have two
multiselect choices: SelectionMode.MultiExtended, which requires the user to hold down Ctrl
or Shift while clicking the list to select additional items, and SelectionMode.MultiSimple,
which selects and deselects items with a simple mouse click or press of the space bar. The
CheckedListBox does not support multiple selection, but it does allow multiple items to be
checked. It provides similar CheckedIndices and CheckedItems properties that provide infor-
mation about checked items.

Here’s an example that iterates through all the checked items in a list and displays a message
box identifying each one:

For Each item As String In chkList.CheckedItems
 ' Do something with checked item here.
 MessageBox.Show("You checked " & item)
Next

Macdonald_694-3C04.fm Page 121 Wednesday, June 14, 2006 11:42 AM

122 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

You can also access all the items in a list control through the Items collection. This collection
allows you to count, add, and remove items. Note that this collection is read-only if you are
using a data-bound list.

lstFood.Items.Add("Macaroni") ' Added to bottom of list.
lstFood.Items.Add("Baguette") ' Added to bottom of list.

lstFood.Items.Remove("Macaroni") ' The list is searched for this entry.
lstFood.Items.RemoveAt(0) ' The first item is removed.

Table 4-7 dissects some of the properties offered by the list controls. It doesn’t include the
properties used for data binding, which are discussed in Chapter 8.

Table 4-7. List Control Properties

Property Description

IntegralHeight If set to True, the height is automatically adjusted to the nearest
multiple-row height, ensuring no half-visible rows are shown in the list.
Not supported by the CheckedListBox.

ItemHeight The height of a row with the current font, in pixels.

Items The full collection of items in the list control. List items can be strings or
arbitrary objects that supply an appropriate string representation when
their ToString() method is called.

MultiColumn and
HorizontalScrollbar

A multicolumn list control automatically divides the list into columns,
with no column longer than the available screen area. Vertical scrolling
is thus never required, but you may need to enable the horizontal scroll
bar to see all the columns easily. These properties are supported only by
the ListBox.

SelectedIndex,
SelectedIndices,
SelectedItem,
SelectedItems,
and Text

Provide ways to access the currently selected item (as an object),
its zero-based index number, or its text. Not supported by the
CheckedListBox.

SelectionMode Allows you to configure a multiselect list control using one of the
SelectionMode values. Multiple selection is not supported for
CheckListBox controls.

Sorted If set to True, items are automatically sorted alphabetically. This generally
means you should not use index-based methods, as item indices change
as items are added and removed. Not supported by the CheckedListBox.

TopIndex The index number representing the topmost visible item. You can set
this property to scroll the list. Supported only by the ListBox.

UseTabStops If set to True, embedded tab characters are expanded into spaces. This,
in conjunction with properties such as MultiColumn and ColumnWidth,
allows you to line up multiple columns of text in a ListBox. However, it’s
almost always preferable to use a more sophisticated control such as the
ListView (see Chapter 6) if you need multiple columns. Supported only by
the ListBox.

Macdonald_694-3C04.fm Page 122 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 123

The CheckedListBox has no concept of selected items. Instead, it recognizes items that are
either checked or not checked. Table 4-8 shows the properties it adds.

The ComboBox supports the same selection properties and Items collection as a standard
ListBox. It also adds the properties shown in Table 4-9. The ComboBox can work in one of three
modes, as specified by the DropDownStyle property. In ComboBoxStyle.DropDown mode,
the combo box acts as a nonlimiting list where the user can type custom information. In
ComboBoxStyle.DropDownList, pressing a key selects the first matching entry. The user
cannot enter items that are not in the list.

■Tip You should always make sure to choose the right kind of combo box. The DropDown style is ideal for
selected choices that are not comprehensive (such as a field where users can type the name of their operating
system). The available list items aren’t mandatory, but they will encourage consistency. The DropDownList
style is ideal for a database application where a user is specifying a piece of search criteria by using the values in
another table. In this case, if the value doesn’t exist in the database, it’s not valid and can’t be entered by the user.

Table 4-8.CheckedListBox-Specific Properties

Property Description

CheckedItems and
CheckedIndices

Provide a collection of currently checked items (as objects) or their
index numbers. Supported only by the CheckedListBox.

CheckOnClick If set to True, the check box for an item is toggled with every click.
Otherwise, you need to click first to select the item and click again to
change the checked state. Supported only by the CheckedListBox.

ThreeDCheckBoxes Configures the appearance of check boxes for a CheckedListBox. Has no
effect if Windows XP styles are used.

Table 4-9. ComboBox-Specific Properties

Property Description

AutoCompleteMode,
AutoCompleteCustomSource,
and AutoCompleteSource

These properties support the autocompletion feature, which
is also supported by the TextBox. It’s discussed later in this
chapter, in the section “AutoComplete.”

DropDownStyle This specifies the type of drop-down list box. It can be a
restrictive or nonrestrictive list.

DropDownHeight This specifies the height (in pixels) of the drop-down portion
of the list.

DropDownWidth This specifies the width (in pixels) of the drop-down portion
of the list.

DroppedDown This Boolean property indicates whether the list is currently
dropped down. You can also set it programmatically.

Macdonald_694-3C04.fm Page 123 Wednesday, June 14, 2006 11:42 AM

124 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

List Controls with Objects

In the preceding examples, the Items property was treated like a collection of strings. In reality,
it’s a collection of objects. To display an item in the list, the list control automatically calls the
object’s ToString() method. In other words, you could create a custom data object and add
instances to a list control. Just make sure to override the ToString() method, or you will end up
with a series of identical items that show the fully qualified class name.

For example, consider the following Customer class:

Public Class Customer

 Public FirstName As String
 Public LastName As String
 Public BirthDate As DateTime

 Public Sub New(ByVal firstName As String, _
 ByVal lastName As String, ByVal birthDate As DateTime)
 Me.FirstName = firstName
 Me.LastName = lastName
 Me.BirthDate = birthDate
 End Sub

 Public Overrides Function ToString() As String
 Return FirstName & " " & LastName
 End Function

End Class

You can add customer objects to the list control natively. Figure 4-4 shows how these
Customer objects appear in the list.

lstCustomers.Items.Add(New Customer("Maurice", "Respighi", DateTime.Now))
lstCustomers.Items.Add(New Customer("Sam", "Digweed", DateTime.Now))
lstCustomers.Items.Add(New Customer("Faria", "Khan", DateTime.Now))

FlatStyle Allows you to change the rendering of the ComboBox to a flat
look that was considered more modern before the introduction
of Windows XP styling.

MaxDropDownItems This specifies how many items will be shown in the drop-down
portion of the list.

MaxLength For an unrestricted list, this limits the amount of text the user
can enter.

DropDown and
DropDownClosed events

These events occur when the drop-down portion of the
combo box is shown and when it is hidden, respectively.

Table 4-9. ComboBox-Specific Properties (Continued)

Property Description

Macdonald_694-3C04.fm Page 124 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 125

Figure 4-4. Filling a list box with objects

It’s just as easy to retrieve the currently selected Customer:

Dim cust As Customer = CType(lstCustomers.SelectedItem, Customer)
MessageBox.Show("Birth Date: " & cust.BirthDate.ToShortDateString())

Other Domain Controls
Domain controls restrict user input to a finite set of valid values. The standard ListBox is an
example of a domain control, because a user can choose only one of the items in the list.
Figure 4-5 shows an overview of the other domain controls provided in .NET.

Figure 4-5. The domain controls

DomainUpDown

DomainUpDown is similar to a list control in that it provides a list of options. The difference is
that the user can navigate through this list using only the up/down arrow buttons, moving to
either the previous item or the following item. List controls are generally more useful, because
they allow multiple items to be shown at once.

To use the DomainUpDown control, add a string for each option to the Items collection.
The Text or SelectedIndex property returns the user’s choice.

Macdonald_694-3C04.fm Page 125 Wednesday, June 14, 2006 11:42 AM

126 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

' Add Items.
udCity.Items.Add("Tokyo")
udCity.Items.Add("Montreal")
udCity.Items.Add("New York")

' Select the first one.
udCity.SelectedIndex = 0

NumericUpDown

The NumericUpDown list allows a user to choose a number value by using the up/down arrow
buttons (or typing it in directly). You can set the allowed range using the Maximum, Minimum,
and DecimalPlaces properties. The current number in the control is set or returned through
the Value property.

' Configure a NumericUpDown control.
udAge.Maximum = 120
udAge.Minimum = 18
udAge.Value = 21

TrackBar

The track bar allows the user to choose a value graphically by moving a tab across a vertical or
horizontal strip (use the Orientation property to specify it). You set the range of values through
the Maximum and Minimum properties, and the Value property returns the current number.
However, the user sees a series of “ticks,” not the exact number. This makes the track bar suitable
for a setting that doesn’t have an obvious numeric significance or where the units may be arbi-
trary (for example, if you use the control to represent the volume level in an audio program).

' Configure a TrackBar.
barVolume.Minimum = 0
barVolume.Maximum = 100
barVolume.Value = 50

' Show a tick every 5 units.
barVolume.TickFrequency = 5

' The SmallChange is the amount incremented if the user clicks an arrow button
' (or presses an arrow key).
' The LargeChange is the amount incremented if the user clicks the barVolume
' (or presses PageDown or PageUp).
barVolume.SmallChange = 5
barVolume.LargeChange = 25

Macdonald_694-3C04.fm Page 126 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 127

ProgressBar

The progress bar is quite different from the other domain controls, because it doesn’t allow any
user selection. Instead, you can use it to provide feedback about the progress of a long-running
task. As with all the number-based domain controls, the current position of the progress bar is
identified by the Value property, which is significant only as it compares to the Maximum and
Minimum properties that set the bounds of the progress bar. You can also set a number for the
Step property. Calling the Step() method then increments the value of the progress bar by that
number.

' Configure the progress bar.
' In this case we hard-code a maximum, but it would be more likely that this
' would correspond to something else (such as the number of files in a directory).
progress.Maximum = 100
progress.Minimum = 0
progress.Value = 0
progress.Step = 5

' Start a task.
For i As Integer = progress.Minimum To progress.Maximum Step progress.Step
 ' (Do work here.)

 ' Increment the progress bar.
 progress.PerformStep()
Next

The Date Controls
Retrieving date information is a common task. For example, requiring a date range is a good
way to limit database searches. In the past, programmers have used a variety of controls to
retrieve date information, including text boxes that required a specific format of month, date,
and year values.

The date controls make life easier. For one thing, they allow dates to be chosen from a
graphical calendar view that’s easy to use and prevents users from choosing invalid dates (such
as the 31st day in February). They also allow dates to be displayed in a range of formats.

Two date controls exist: DateTimePicker and MonthCalendar. DateTimePicker is ideal for
choosing a single date value and requires the same amount of space as an ordinary drop-down
list box. When the user clicks the drop-down button, a full month calendar page appears. The
user can page from month to month (and even from year to year) looking for a specific date
with the built-in navigational controls. The control handles these details automatically.

The MonthCalendar shows a similar expanded display, with a single month at a time. Unlike
the DateTimePicker, it allows the user to choose a range of dates. Figure 4-6 shows both controls.

Macdonald_694-3C04.fm Page 127 Wednesday, June 14, 2006 11:42 AM

128 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Figure 4-6. The date controls

The DateTimePicker
The DateTimePicker allows a user to choose a single date. One nice feature the DateTimePicker
has is that it automatically considers the computer’s regional settings. That means you can
specify Short for the DateTimePicker.Format property, and the date might be rendered as
yyyy/mm/dd format or dd/mm/yyyy, depending on the date settings. Alternatively, you can
specify a custom format by assigning a format string to the CustomFormat property and make
sure the date is always presented in the same way on all computers. Figure 4-7 shows the
date formats.

Figure 4-7. Common date formats

The Value property provides the selected date. One important detail about date controls is
that they always use the System.DateTime data type, which represents a date and time. Depending
on your needs, you might configure a date control to show only the day or time portion. In this
case, you may need to be careful to retrieve just the appropriate part.

Macdonald_694-3C04.fm Page 128 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 129

For example, imagine you are using a DateTimePicker control, which allows the user to
choose the start date for a database search. The date control is configured to show dates in the
long format, which doesn’t include time information.

When the form loads, you configure the date control.

dtStart.Value = DateTime.Now ' Sets dtStart to the current date and time.

The user might then click a different date. However, choosing a different date updates only
the month, year, and day components of the date. The time component remains, even though
it is not displayed!

' The next line performs a search based on the date and the original time.
' This artificially limits the returned results.
Dim SQLSelect As String = "SELECT * FROM Orders WHERE Date >'" & _
 dtStart.Value.ToString() & "'"

If you initialized the DateTimePicker at lunchtime, you could lose the first half of the day
from your search.

You can avoid this problem in a number of ways. For example, you can use the DateTime.
Date property, which returns another DateTime object that has its time portion set to 0 (midnight).

' This gets the full day.
Dim SQLSelect As String = "SELECT * FROM Orders WHERE Date >'" & _
 dtStart.Value.Date.ToString() & "'"

You could also use the DateTime.Today property to set the initial value instead of DateTime.
Now. This is a good technique for the MonthCalendar control as well. The MonthCalendar
automatically sets the time component for the current value to 0 when the user selects a date,
but if the user leaves the default date unchanged, and you’ve assigned a date with information,
the time portion remains.

But the best approach is to use a format string to control exactly what comes out when you
convert a date to a string. Here’s an example that ensures you’re using the ISO-standard year-
month-day format, which is understood by almost every relational database product:

' This ensures the correct date format (and ignores the time component).
Dim SQLSelect As String = "SELECT * FROM Orders WHERE Date >'" & _
 dtStart.Value.Date.ToString("yyyy-mm-dd") & "'"

You can also use a DateTimePicker to represent a time value with no date component. To
do so, set the Format property to Time. You also need to set the UseUpDown property to True.
This prevents the drop-down month display from being shown. Use the up/down scroll buttons
instead to increment the highlighted time component (hours, minutes, or seconds).

Macdonald_694-3C04.fm Page 129 Wednesday, June 14, 2006 11:42 AM

130 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Table 4-10 lists the important properties of the DateTimePicker control.

MonthCalendar
The MonthCalendar control looks like the DateTimePicker, except that it always shows the
month page display, and it doesn’t allow the user to enter a date by typing it into a text box.
That makes the MonthCalendar slightly less useful, except for situations when you need to let
the user select a range of contiguous dates.

You set the maximum number of dates that the user can select in the MaxSelectionCount
property. The user selects a group of dates by dragging and clicking. Selected dates must always
be next to each other. The first and last selected dates are returned as DateTime objects in the
SelectionStart and SelectionEnd properties. Figure 4-8 shows a range of four days.

Table 4-10. DateTimePicker Properties

Properties Description

CalendarFont, CalendarForeColor,
CalendarMonthBackground,
CalendarTitleBackColor,
CalendarTitleForeColor, and
CalendarTrailingForeColor

These properties configure the calendar’s font and the
color used for parts of its interface. The default colors
are provided as shared read-only fields for this class (such
as DefaultTitleForeColor). However, they are protected,
which means you can change them by deriving a custom
control from DateTimePicker. Note that the
CalendarTrailingForeColor changes the color of the
“trailing” dates. These are the dates that appear on a
month page from the previous month (at the beginning)
or from the next month (at the end). They are used to fill
in the grid.

ShowCheckBox and Checked ShowCheckBox displays a small check box inside the
drop-down list box. Unless it is checked, the date cannot
be modified.

Format and CustomFormat The Format property specifies a value from the
DateTimePickerFormat enumeration. These options
map to date and time formats defined in the Regional
and Language Options section of the Control Panel.
Alternatively, you can manually specify an exact form by
assigning a format string to the CustomFormat property
(such as “yyyy/MM/DD hh:mm:ss”).

DropDownAlign Determines whether the drop-down month page lines up
with the left or right edge of the combo box.

MaxDate and MinDate Set a maximum and minimum date, beyond which the
user cannot select. These are great tools for preventing
error messages by making invalid selections impossible.

ShowUpDown When set to True, disables the drop-down month pages
and uses up/down scroll buttons for incrementing part of
the date. This is ideal for time-only values.

Text and Value Text returns the formatted date as a string, according to
how it is currently displayed. Value returns the represented
DateTime object.

Macdonald_694-3C04.fm Page 130 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 131

' Set a range of four days.
dt.SelectionStart = New DateTime(2006, 01, 17)
dt.SelectionEnd = New DateTime(2006, 01, 20)

Figure 4-8. Selecting multiple dates

■Caution The MonthCalendar control doesn’t properly support Windows XP styles. If you try to use this
control with a project that uses Windows XP styles, the display does not appear correctly when the user
selects more than one date at a time. There is no workaround, so this control is not recommended with a
MaxSelectionCount other than 1 or 0.

Depending on your needs, you may still need to perform a significant amount of validation
with selected dates to make sure they fit your business rules. Unfortunately, you can’t easily use
the DateChanged and DateSelected events for this purpose. They fire only after an invalid date
has been selected, and you have no way to remove the selection unless you choose a different
date range. Information about the original (valid) date range is already lost.

Though the MonthCalendar control looks similar to the DateTimePicker, it provides a
different set of properties, adding some features while omitting others. Table 4-11 lists the
most important properties.

Table 4-11. MonthCalendar Properties

Property Description

AnnuallyBoldedDates, Monthly-
BoldedDates,
and BoldedDates

These properties accept arrays of DateTime objects, which
are then shown in bold in the calendar. MonthlyBoldedDates
can be set for one month and are repeated for every month,
while AnuallyBoldedDates are set for one year and repeated for
every year.

FirstDayOfWeek Sets the day that will be shown in the leftmost column of
the calendar.

MaxDate, MinDate, and
MaxSelectionCount

Sets the maximum and minimum selectable date in the calendar
and the maximum number of contiguous dates that can be
selected at once.

Macdonald_694-3C04.fm Page 131 Wednesday, June 14, 2006 11:42 AM

132 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Container Controls
The .NET Framework defines a few controls that are designed explicitly for grouping other controls:

• GroupBox. This control is drawn as a titled box and is commonly used for visually
isolating related groups of controls.

• Panel. This control has no default appearance but supports scrolling and padding.

• SplitContainer. This control combines two Panel controls, separated by a splitter bar.

• TabControl. This control hosts one or more TabPage controls (only one of which can be
shown at a time). The TabPage controls are the containers that hold your controls.

• FlowLayoutPanel and TableLayoutPanel. These controls are designed for automating
highly dynamic or configurable interfaces and are discussed in Chapter 21.

The Panel and GroupBox are the simplest of the five. The Panel control is similar to the
GroupBox control; however, only the Panel control can have scroll bars (when the AutoScroll
property is set to True), and only the GroupBox control displays a caption (set in the Text prop-
erty). Also, the Panel control supports DockPadding, which makes it a necessary ingredient in
the complex resizable forms you’ll learn about later in this chapter). The GroupBox control
does not provide this ability.

You will probably group controls using one of these container controls for two reasons.
The first reason occurs when you have more than one group of radio buttons. To associate
these as a group (so that only one option in the group can be selected at a time), you must place
them into separate containers. The other reason is to manage the layout of the controls. Some
controls do little in this regard (such as the GroupBox), while others add support for resizing

ScrollChange The number of months that the calendar “scrolls through” every
time the user clicks a scroll button.

SelectionEnd, SelectionStart,
and SelectionRange

Identify the selected dates. The SelectionRange property returns
a special structure that contains a SelectionEnd date and a
SelectionStart date.

ShowToday and
ShowTodayCircle

These properties, when True, show the current day in a special
line at the bottom of the control and highlight it in the calendar.

ShowWeekNumbers If True, displays a number next to each week in the year
from 1 to 52.

TodayDate and TodayDateSet TodayDate indicates what date is shown as “today” in the
MonthCalendar. If you set this value manually in code,
TodayDateSet is True.

TitleBackColor, TitleForeColor,
and TrailingForeColor

Set colors associated with the MonthCalendar. Note that the
TrailingForeColor changes the color of the “trailing” dates. These
are the dates that appear on a month page from the previous
month (at the beginning) or from the next month (at the end).
They are used to fill in the grid.

Table 4-11. MonthCalendar Properties (Continued)

Property Description

Macdonald_694-3C04.fm Page 132 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 133

dynamically (the SplitContainer), hiding individual groups (the TabControl), scrolling (the
Panel), and producing complex layouts (the FlowLayoutPanel and TableLayoutPanel).

You’ve already learned about the GroupBox, Panel, and SplitContainer in the previous
chapter. The next section describes the TabControl.

The TabControl
The TabControl is another staple of Windows development—it groups controls into multiple
“pages.” The technique has become remarkably successful, because it allows a large amount of
information to be compacted into a small, organized space. It’s also easy to use, because it
recalls the tabbed pages of a binder or notebook. Over the years, the tab control has evolved
into today’s forms, which are sometimes called property pages.

In .NET, you create a TabControl object, which contains a collection of TabPage objects in
the TabPages property. Individual controls are then added to each TabPage object. The example
that follows shows the basic approach, assuming your form contains a TabControl called
tabProperties:

Dim pageFile As New TabPage("File Locations")
Dim pageUser As New TabPage("User Information")

' Add controls to the tab pages.
' The code for creating and configuring the child controls is omitted.
pageUser.Controls.Add(txtFirstName)
pageUser.Controls.Add(txtLastName)
pageUser.Controls.Add(lblFirstName)
pageUser.Controls.Add(lblLastName)
tabProperties.TabPages.Add(pageFile)
tabProperties.TabPages.Add(pageUser)

Figure 4-9 shows the output for this code.

Figure 4-9. Using the TabPage control

Macdonald_694-3C04.fm Page 133 Wednesday, June 14, 2006 11:42 AM

134 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

Of course, most of the time you won’t create a tab page and add controls by hand. Instead,
you’ll drag and drop controls at design time, and Visual Studio will add the necessary code to
your form.

Table 4-12 lists some of the most important TabControl properties. Table 4-13 lists the
TabPage properties.

Table 4-12. TabControl Members

Member Description

Alignment Sets the location of the tabs. With few exceptions, this should always
be TabAlignment.Top, which is the standard adopted by almost all
applications.

Appearance Allows you to configure tabs to look like buttons that stay depressed
to select a page. This is another unconventional approach.

DrawMode and the
DrawItem event

Allow you to perform custom drawing with GDI+ to render the tabs.
(This setting doesn’t affect the content on the tab pages.) Chapter 7
has more about drawing with GDI+, and Chapter 12 covers owner-
drawn controls.

HotTrack When set to True, the text in a tab caption changes to a highlighted
hyperlink style when the user positions the mouse over it.

ImageList You can bind an ImageList to use for the caption of each tab page
(see Chapter 5 for more).

Multiline When set to True, allows you to create a tab control with more than
one row of tab pages. This is always True if Alignment is set to Left or
Right. If set to False and there are more tab pages than will fit in the
display area, a tiny set of scroll buttons is added at the edge of the tab
strip for scrolling through the list of tabs.

Padding Configures a minimum border of white space around each tab caption.
This does not affect the actual tab control, but it is useful if you need
to add an icon to the TabPage caption and need to adjust the spacing
to accommodate it properly.

RowCount and TabCount Retrieve the number of rows of tabs and the number of tabs.

SelectedIndex and
SelectedTab

Retrieve the index number for the currently selected tab or the tab as
a TabPage object, respectively.

ShowToolTips Enables or disables the tooltip display for a tab (assuming the corre-
sponding TabPage.TooltipText is set). This property is usually set
to False.

SizeMode Allows you to set the size of tab captions using one of three values from
the TabSizeMode enumeration. With Normal, each tab is sized to
accommodate its caption text. With Fixed, all tabs are the same width
(and text that doesn’t fit is truncated). You define the width using the
TabPage.ItemSize property. With FillToRight, the width of each tab is
sized so that each row of tabs fills the entire width of the TabControl.
This is applicable only to tab controls with more than one row, when
Multiline is True.

TabPages A collection of TabPage objects representing the tabs in the TabControl.

SelectedIndexChanged
event

Occurs when the SelectedIndex property changes, usually as a result of
the user clicking on a different tab.

Macdonald_694-3C04.fm Page 134 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 135

AutoComplete
Looking for a way to make text entry a little easier? A common solution in Windows applications
is AutoComplete input controls. These controls store recent entries and offer them when the
user starts to type something similar. You’ll see autocompletion at work when you type a URL
into Internet Explorer’s address bar or when you enter a file name in the Run dialog box (choose
Run from the Start menu). Other applications use them for a variety of purposes, such as tracking
recent help searches in Microsoft Word and tracking recent cell entries in Microsoft Excel.

In .NET 1.0 and 1.1, developers who wanted autocompletion functionality had to code it
themselves. And though the process is conceptually simple, the low-level quirks in how different
controls handle keystrokes and selection often caused problems or unusual behavior. In .NET 2.0,
the TextBox and ComboBox controls provide built-in support for autocompletion
through three properties: AutoCompleteSource, AutoCompleteMode, and (optionally)
AutoCompleteCustomSource. When using autocompletion, you can use your own list of
suggestions or one of the lists maintained by the operating system (such as the list of recently
visited URLs).

First, you need to specify what list of values will be used for suggestions. You do this by
setting the AutoCompleteSource property to one of the values listed in Table 4-14.

Table 4-13. TabPage Properties

Property Description

ImageIndex and ImageKey The image shown in the tab (see Chapter 5).

Text The text shown in the tab.

ToolTipText The tooltip shown when the user hovers over the tab, if the
TabControl.ShowToolTips property is True. No ToolTipProvider
is used.

Table 4-14. AutoCompleteSource Values

Value Description

FileSystem Includes recently entered file paths.

HistoryList Includes URLs from Internet Explorer’s history list.

RecentlyUsedList Includes all the documents in the current user’s list of recently used appli-
cations, which appears in the Start menu (depending on system settings).

AllUrl Represents the combination of the HistoryList and RecentlyUsedList
(with duplicates omitted).

AllSystemSources Represents the combination of the FileSystem and AllUrl options
(with duplicates omitted).

ListItems This option applies only to a ComboBox (it isn’t supported for TextBox
controls). If you use this option, this list of items is taken from the
ComboBox.Items collection.

CustomSource Uses the collection of strings you’ve specified in the control’s
AutoCompleteCustomSource collection. You need to add these items at
design time using the Properties window or add them programmatically.

Macdonald_694-3C04.fm Page 135 Wednesday, June 14, 2006 11:42 AM

136 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

■Tip When using autocompletion with a combo box, the AutoCompleteSource.ListItems option makes the
most sense. Otherwise, you’ll have two different lists of items that the user can choose from—a list of items
that appears in the control and a list of autocompletion suggestions that appears as the user types.

Next, you need to set the control’s AutoCompleteMode mode to one of the options in
Table 4-15. This determines how the autocompletion behavior will work with the control.

Figure 4-10 shows an AutoComplete combo box that uses AutoCompleteMode.
SuggestAppend and AutoCompleteSource.ListItems. The items are added to the list
with this line of code:

Dim colorNames As String() = [Enum].GetNames(GetType(KnownColor))
lstColors.Items.AddRange(colorNames)

Figure 4-10. An AutoComplete combo box

Table 4-15. AutoCompleteMode Values

Value Description

Append With this mode, the AutoComplete suggestion is automatically inserted into
the control as the user types. For example, if you start by pressing the E key
within a text box, the first item that starts with E appears in the control.
However, the added portion is selected, so that if the user continues to type,
the new portion will be replaced. This is the autocompletion behavior used
in Excel and older versions of Internet Explorer.

Suggest With this mode, a drop-down list of matching AutoComplete values appears
underneath the control. If one of these entries matches what you want,
you can select it, and it will be inserted in the control automatically. This is
usually the preferred autocompletion option, because it allows the user to
see multiple suggestions at once. It’s the same as the behavior provided in
modern versions of Internet Explorer.

SuggestAppend This mode combines Append and Suggest. As with Suggest, a list of matches
appears in a drop-down list under the control. However, the first match is
also added inserted in the control and selected.

Macdonald_694-3C04.fm Page 136 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 137

Drag-and-Drop
Drag-and-drop operations aren’t quite as common today as they were a few years ago, because
programmers have gradually settled on other methods of copying information that don’t require
holding down the mouse button (a technique that many users find difficult to master). For
example, a drawing program is likely to use a two-step operation (select an object, and then
draw it) rather than a single drag-and-drop operation. Programs that do support drag-and-
drop often use it as a shortcut for advanced users, rather than a standard way of working.

Drag-and-drop is also sometimes confused with the ability to “drag” a picture or piece of
user interface around a window. This “fake” drag-and-drop is useful in drawing and diagram-
ming applications (including the drawing application developed in Chapter 24), but it needs
to be coded manually. In the following sections, you will learn about both types of dragging
operations.

“Fake” Drag-and-Drop
True drag-and-drop is a user-initiated way to exchange information between two controls. You
don’t need to use drag-and-drop events to create objects that the user can move around the
form. For example, consider the program shown in Figure 4-11, which allows a user to click a
picture box, drag it, and release it somewhere else on the form.

Figure 4-11. Dragging a control around a form

Conceptually, a control is being dragged and dropped, but all the logic takes place in the
appropriate mouse-handling events of the draggable control. In this case, you need to handle
MouseDown (to start the dragging operation), MouseUp (to end it), and MouseMove (to move
the control if the drag is in progress). A form-level isDragging variable keeps track of when fake
drag-and-drop mode is currently switched on.

' Keep track of when fake "drag-and-drop" mode is enabled.
Private isDragging As Boolean = False

' Store the location where the user clicked the control.
Private clickOffsetX As Integer, clickOffsetY As Integer

Macdonald_694-3C04.fm Page 137 Wednesday, June 14, 2006 11:42 AM

138 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

' Start dragging.
Private Sub lblDragger_MouseDown(ByVal sender As Object, _
 e As System.Windows.Forms.MouseEventArgs) _
 Handles lblDragger.MouseDown
 isDragging = True
 clickOffsetX = e.X
 clickOffsetY = e.Y
End Sub

' Stop dragging.
Private Sub lblDragger_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lblDragger.MouseUp
 isDragging = False
End Sub

' Move the control (during dragging).
Private Sub lblDragger_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lblDragger.MouseMove
 If isDragging Then
 ' The control coordinates are converted into form coordinates
 ' by adding the label position offset.
 ' The offset where the user clicked in the control is also
 ' accounted for. Otherwise, it looks like the top-left corner
 ' of the label is attached to the mouse.
 lblDragger.Left = e.X + lblDragger.Left - clickOffsetX
 lblDragger.Top = e.Y + lblDragger.Top - clickOffsetY
 End If
End Sub

Three components factor into the position calculation:

• The e.X and e.Y parameters provide the position of the mouse over the control, where
(0,0) is the top-left corner of the control.

• The lblDragger.Left and lblDragger.Top properties give the distance between the top-
left corner of the control and the top-left corner of the form.

• The ClickOffsetX and ClickOffsetY variables give the position between the control’s top-
left corner and where the user actually clicked to start dragging. By taking this into account,
the label acts as though it is “glued” to the mouse at that point.

Authentic Drag-and-Drop
Real drag-and-drop operations are quite a bit different from fake ones. Essentially, they work
like this:

Macdonald_694-3C04.fm Page 138 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 139

1. The user clicks a control (or a specific region inside a control) and holds down the mouse
button. At this point, some information is set aside, and a drag-and-drop operation
begins.

2. The user moves the mouse over another control. If this control can accept the current
type of content (for example, a picture or text), the mouse cursor changes to a special
drag-and-drop icon. Otherwise, the mouse cursor becomes a circle with a line drawn
through it.

3. When the user releases the mouse button, the control receives the information and
decides what to do with it. The operation should also be cancelable by pressing the Esc
key (without releasing the mouse button).

Unlike the fake drag-and-drop example, a real drag-and-drop operation can easily take
place between controls, or even two different applications, as long as the drag-and-drop
contract is followed.

The example program shown in Figure 4-12 uses drag-and-drop to take a picture from a
label control and draw it onto a picture box control. You’ll find the complete code with the
samples for this chapter under the project name AuthenticDragAndDrop.

Figure 4-12. A sample drag-and-drop application

The first step is to configure the picture box control to accept dropped information.

picDrawingArea.AllowDrop = True

To start the drag-and-drop, you can use the DoDragDrop() method of the source control.
In this case, it is one of three labels. Dragging is initiated in the MouseDown event for the label.

Private Sub lbl_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lblPictureTwo.MouseDown, _
 lblPictureThree.MouseDown, lblPictureOne.MouseDown

Macdonald_694-3C04.fm Page 139 Wednesday, June 14, 2006 11:42 AM

140 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

 Dim lbl As Label = CType(sender, Label)
 lbl.DoDragDrop(lbl.Image, DragDropEffects.Copy)
End Sub

The same event handler takes care of the MouseDown event for each label. In the event
handler, the generic sender reference (which points to the object that sent the event) is converted
into a label. Then, a drag-and-drop copy operation starts. The information associated with this
operation is the image from the label control.

To allow the drop target picture box to receive information, you need to verify that the
information is the correct type in the DragEnter event and then set a special event argument
(e.Effect). DragEnter occurs once when the mouse moves into the bounds of the control.

Private Sub picDrawingArea_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles picDrawingArea.DragEnter

 If e.Data.GetDataPresent(DataFormats.Bitmap) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If
End Sub

The last step is to respond to the information once it is dropped by handling the DragDrop
event. You can do anything you want with the dropped information. In the current example,
a GDI+ drawing operation starts (although it could make just as much sense to set its Image
property).

Private Sub picDrawingArea_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles picDrawingArea.DragDrop

 ' Get the image.
 Dim img As Image = CType(e.Data.GetData(DataFormats.Bitmap), Image)

 ' Use this offset to center the 30x30-pixel images.
 Dim offset As Integer = 15

 ' Convert the coordinates from screen-based to form-based.
 Dim p As Point = Me.PointToClient(New Point(e.X - offset, e.Y - offset))

 ' Paint a temporary picture at this location.
 Dim g As Graphics = picDrawingArea.CreateGraphics()
 g.DrawImage(img, p)
 g.Dispose()
End Sub

Macdonald_694-3C04.fm Page 140 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 141

Note that the event handler provides screen coordinates, which must be converted into
the appropriate coordinates for the picture box.

Practically, you can exchange any type of object through a drag-and-drop operation.
However, while this free-spirited approach is perfect for your applications, it isn’t wise if you
need to communicate with other applications. If you want to drag and drop into other applica-
tions, you should use data from a managed base class (such as String or Image) or an object
that implements ISerializable or IDataObject (which allows .NET to transfer your object into a
stream of bytes and reconstruct the object in another application domain).

Extender Providers
Extender providers are a specialized type of component that can add properties to other controls
on the same form. They’re useful, because they allow you to add a feature to a number of controls
at the same time. The possible alternatives—writing code for each individual control or deriving
custom controls—require much more work. Of course, because of the way provider components
are implemented, they work only for certain types of extensions. Because providers are sepa-
rate classes, they don’t have the ability to reach into a control and tweak its inner workings.
However, they do have the ability to react to events, display information elsewhere on the
form, and perform any other action.

The easiest way to understand the role of extender providers is to consider an example.
.NET provides three extender provider components:

• ToolTip. This provider lets you show a pop-up tooltip window with descriptive informa-
tion next to any control. The ToolTip provider is discussed in this section.

• ErrorProvider. This provider lets you show a flashing error icon (with a tooltip error
message) when invalid data is entered. It’s described in Chapter 18.

• HelpProvider. This provider lets you show help messages or launch a context-sensitive
help topic in another window. You’ll use it in Chapter 22.

■Note Three other .NET types implement the IExtenderProvider interface but aren’t considered to be
dedicated extender providers. The FlowLayoutPanel and TableLayoutPanel use it to add features to the child
controls they contain (see Chapter 21). The PropertyTab uses it as part of the infrastructure for the Visual
Studio Properties window.

Some providers derive from Component and appear in the component tray under the
design surface of the form. Other providers derive from Control, which allows them to be
placed on the form. It all depends on how the extender provider works and whether it needs a
piece of dedicated screen real estate. For example, the ToolTip provider appears in the compo-
nent tray. It displays a tooltip on any control when the mouse hovers over it.

Once you’ve added a ToolTip provider to a form, you can set a tooltip on any control in one
of two ways:

Macdonald_694-3C04.fm Page 141 Wednesday, June 14, 2006 11:42 AM

142 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

• At design time, select the appropriate control, and look in the Properties window for the
property ToolTip on tipProvider (where tipProvider is the name of the ToolTip component).

• At runtime, call tipProvider.SetToolTip() with a reference to the control. You can also
use the GetToolTip() method to retrieve a control’s tooltip.

■Tip There really isn’t any difference between using the SetToolTip() method and the extended ToolTip
property provided by the Form designer. With providers, Visual Studio simply translates what you type in the
Properties window into the appropriate method call and adds the code to the form class. So, when you visually
set the ToolTip property, you are still in fact using the SetToolTip() method. Take a look at InitializeComponent() to
see what is generated by Visual Studio.

Here’s an example of how you can (and can’t) use a ToolTip provider programmatically:

' This code works. It uses the SetToolTip() method to attach a tooltip
' to the txtName control.
tips.SetToolTip(txtName, "Enter Your Name Here")

' This code doesn't work! It attempts to set the tooltip of the txtName control
' directly, even though the TextBox class does not provide a ToolTip property.
txtName.ToolTip = "Enter Your Name Here"

Figure 4-13 shows a titled tooltip at runtime.

Figure 4-13. A tooltip with an icon and a title

You can also configure some generic tooltip settings by adjusting the properties of the
ToolTip provider, as detailed in Table 4-16. If you’ve programmed with earlier versions of
.NET, you’ll notice that .NET 2.0 adds quite a few graphical niceties to the ToolTip provider
for displaying more than the generic yellow box.

Macdonald_694-3C04.fm Page 142 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 143

■Note For a lower-level look at how providers work, see Chapter 25, where you’ll learn how to create
your own.

Table 4-16. ToolTipProvider Members

Member Purpose

Active When set to False, no tooltips are shown for any controls.

AutomaticDelay, AutoPopDelay,
InitialDelay, and ReshowDelay

These settings specify the number of milliseconds before
the tooltip appears, the time that it remains visible if the
mouse is stationary, and the time required to make it
reappear. Generally, you should use the default values.

ShowAlways If set to True, tooltips appear when the mouse hovers
over a control even if the window containing the control
does not currently have focus.

SetToolTip(), GetToolTip(), and
RemoveAll()

These methods allow you to attach a descriptive string to
a control and retrieve it. To remove a tooltip, either attach
an empty string or use RemoveAll() to clear all tooltips at
once. (To temporarily disable tooltips without removing
the tooltip information, use the Active property.)

ForeColor and BackColor Adjust the colors of the tooltip text and background.

ToolTipTitle Sets a title that appears, in boldface, above the tooltip
text in the tooltip window. Note that this title isn’t
control-specific—you set it once, and it applies to all the
tooltips you show.

ToolTipIcon Takes one of four values: None, Info, Warning, or Error.
If you don’t use None, the corresponding icon will appear
in the tooltip window.

IsBalloon Draws the tooltip as a balloon. This will fail without an error
if you've disabled balloon tips. Balloon tips are disabled
when there’s an EnableBalloonTips registry setting with
a value of 0 in the HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Explorer\
Advanced section.

UseAnimation and UseFading Set whether the tooltip uses animated effects and
when they appear and fade away, if the system settings
allow them.

OwnerDraw and Draw events If set to True, your code has the chance to draw the tooltip.
To do so, you need to respond to the Draw event and use
GDI+ drawing code, as described in Chapter 7.

Macdonald_694-3C04.fm Page 143 Wednesday, June 14, 2006 11:42 AM

144 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

The NotifyIcon
In many other programming frameworks, it’s difficult to use a system tray icon. In .NET, it’s as
easy as adding the straightforward NotifyIcon component, which is described in Table 4-17.

Technically, the NotifyIcon is a component (not a control) that displays an icon in the
system tray at runtime. In many cases, it’s more useful to create the NotifyIcon dynamically at
runtime. For example, you might create a utility application that loads into the system tray and
waits quietly, monitoring for some system event or waiting for user actions. In this case, you
need to be able to create the system tray icon without displaying a form.

The next example demonstrates exactly such an application. When it first loads, it creates
a system tray icon (see Figure 4-14), attaches two menu items to it, and begins monitoring the
file system for changes (using the System.IO.FileSystemWatcher class). No windows are displayed.

Table 4-17. NotifyIcon Members

Member Description

ContextMenuStrip The ContextMenuStrip object defines a menu for your
system tray icon. It is displayed automatically when
the user right-clicks the icon. For more information
about creating and fine-tuning menus, see Chapter 14.

Icon The graphical icon that appears in the system tray
(as an Icon object). You can get a few commonly used
icons from the properties of the SystemIcons class, or
use the image library included with Visual Studio (see
Chapter 5 for details).

Text The tooltip text that appears above the system tray icon.

Visible Set this to True to show the icon. It defaults to False,
giving you a chance to set up the rest of the required
functionality.

Click, DoubleClick, MouseDown,
MouseMove, and MouseUp events

These events work the same as the Control-class
events with the same names. They allow you to
respond to the mouse actions.

BalloonTipText, BalloonTipTitle, and
BalloonTipIcon

Define the text, title, and icon for a balloon-style
tooltip. This tooltip won’t appear until you call the
ShowBalloonTip() method in your code.

ShowBalloonTip() Shows the balloon tooltip defined by the BalloonTipText,
BalloonTipTitle, and BalloonTipIcon properties. You
specify the delay (in milliseconds) before the tooltip is
cleared. An overloaded version of this method allows
you to specify a new BalloonTipText, BalloonTipTitle,
and BalloonTipIcon.

BalloonTipShown, BalloonTipClicked,
and BalloonTipClosed events

Allow you to react when the tip is first shown, subse-
quently clicked, and closed by the user.

Macdonald_694-3C04.fm Page 144 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 145

Figure 4-14. A system tray icon

In this example, it’s important that the NotifyIcon is displayed even though no forms have
been loaded. This task seems easy to accomplish. All you need to do is create the form that
contains the NotifyIcon component, without calling the Show() or ShowDialog() method to
display that form. The NotifyIcon will appear immediately when its Visible property is set to True.

However, there’s a problem. The Visual Basic application framework (see Chapter 1) always
starts your application by showing the start-up form. To get around this limitation, you need to
disable the application framework and start your application with a Main() method. To do so,
double-click the My Project node in Solution Explorer. Clear the check mark next to the “Enable
application framework” setting, and choose Sub Main for the start-up object.

Here’s an example that follows this pattern. The start-up code is contained in the Main()
method of a module named Startup. The start-up code creates another form (in this case, the
form is named SystemTrayForm), but doesn’t actually display it. However, as soon as an
instance of SystemTrayForm is created, its initialization code runs, which causes the icon to
appear in the system tray.

Public Module Startup

 Public Sub Main()
 ' Apply the Windows XP look (if available).
 Application.EnableVisualStyles()

 ' Create the form. If the form contains a NotifyIcon,
 ' it appears automatically (assuming its Visible property
 ' is True).
 Dim HiddenForm As New SystemTrayForm

 ' No forms are currently displayed.
 ' Start a message loop and don't exit.
 Application.Run()
 End Sub

End Module

When the Main() method finishes, the application will continue running, but nothing will
happen until the user clicks the NotifyIcon and chooses one of the menu commands. To end
the application later on, you need to call Application.Exit().

For a lightweight option, you can host the NotifyIcon on a component class instead of a
form. To create the component, just select Project ➤ Add Component in Visual Studio. Every
component has the ability to host design-time controls—just drag and drop the control onto
the design-time view of the class, and Visual Studio will create the code in the special hidden
designer region, just as it does with a form. And for an even lighter option, you could create the

Macdonald_694-3C04.fm Page 145 Wednesday, June 14, 2006 11:42 AM

146 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

NotifyIcon object yourself in the Main() method, and set its Visible property to True to make it
appear in the system tray. However, you’ll surrender some notable design-time conveniences.

For example, if you want to create a linked menu for the icon, you’ll need to edit the menu
in the Properties window (rather than using the in-place form-editing feature). Similarly, you
won’t be able to attach menu event handlers by simply clicking the menu item (because it
won’t be visible). Instead, you’ll need to switch to code view, select the menu item object from
the drop-down list at the top left, and select the Click event from the drop-down list at the top
right. Only then will Visual Studio insert the event handler you need. Here’s an example of a
component that includes a NotifyIcon, ContextMenuStrip, and FileSystemWatcher. It monitors
a specific directory for changes, quietly records them, and allows the user to review them by
clicking the Show Files menu command from the system tray icon.

Public Class FileSystemTray

 ' Track newly created files here.
 Dim newFiles As New List(Of String)()

 ' Fires when a new file is added.
 Private Sub fileSystemWatcher1_Changed(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles fileSystemWatcher1.Changed
 newFiles.Add(e.Name)
 End Sub

 ' Fires when the Exit menu command is clicked.
 Private Sub cmdExit_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdExit.Click
 ' Make sure the icon disappears promptly.
 Me.Dispose()

 Application.Exit()
 End Sub

 ' Fires when the Show Files menu command is clicked.
 Private Sub cmdShowFiles_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdShowFiles.Click
 Dim frmFileList As New FileList()
 frmFileList.FillList(newFiles)
 frmFileList.Show()
 End Sub

End Class

This example is available with the sample code in the FileWatcher project.

Macdonald_694-3C04.fm Page 146 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 147

■Tip One example of this type of program is a batch file processor. It might scan a directory for files that
correspond to work orders or invoices, and immediately add database records, send e-mails, or perform some
other task.

ActiveX Controls
.NET includes excellent interoperability features that allow you to continue using COM compo-
nents and ActiveX controls in your current applications. If you’re using Visual Studio, the process
is even automated for you.

To add an ActiveX control to one of your projects in Visual Studio, right-click the toolbox,
and select Choose Items. Select the COM Components tab, find the appropriate control on the
list, and put a check mark next to it.

Nothing happens until you add an instance of this control to a form. The first time you do
this, Visual Studio automatically creates an interop assembly for you. For example, if you add
the MSChart control, which has no direct .NET equivalent, it creates a file with a name like
AxInterop.MSChart20Lib_2_0.dll.

The “Ax” at the beginning of the name identifies that this interop assembly derives from
System.Windows.Forms.AxHost. This class creates any .NET wrapper for an ActiveX control. It
works “between” your .NET code and the ActiveX component, as shown in Figure 4-15.

Figure 4-15. AxHost interaction

The control on your form is a legitimate .NET control, as you can see by examining the
automatically generated designer code that defines and instantiates it. For example, consider
an automatically generated interop class that supports the MSChart control:

Dim AxMSChart1 As AxMSChart20Lib.AxMSChart

Here’s the code used to configure the control, in true .NET fashion:

Me.AxMSChart1 = New AxMSChart20Lib.AxMSChart()
Me.AxMSChart1.Location = New System.Drawing.Point(36, 24)
Me.AxMSChart1.Name = "AxMSChart1"
Me.axMSChart1.OcxState = CType(resources.GetObject("axMSChart1.OcxState"), _
 System.Windows.Forms.AxHost.State)
Me.AxMSChart1.Size = New System.Drawing.Size(216, 72)
Me.AxMSChart1.TabIndex = 4

Macdonald_694-3C04.fm Page 147 Wednesday, June 14, 2006 11:42 AM

148 C H A P T E R 4 ■ T H E C L A S S I C C O N T R O L S

You can see that this control supports basic .NET properties such as Size and Location.
It also uses a special OcxState property (inherited from the AxHost class) that retrieves the
persisted state of an ActiveX control. From your program’s point of view, you can communi-
cate with a normal .NET control that supports .NET event handling and the basic set of features
in the Control class. The AxHost-based control quietly communicates with the original ActiveX
control and mimics its behavior on the form. You can even dynamically resize the control and
modify its properties using the built-in property pages, and it will respond exactly as it should.

In some cases, the new class may introduce changes. For example, when the MSFlexGrid
control is imported, it changes the syntax used to set some properties into method calls:

grid.set_ColWidth(1, 3000) ' This was grid.ColWidth(1) = 3000
grid.set_ColAlignment(0, 1) ' This was grid.ColAlightment(0) = 1

Fortunately, you can always use the Object Browser to get to the bottom of any new changes.
If you are a war-hardened COM veteran, you can create interop controls by hand. However,

this process is time-consuming and error-prone, and it generally won’t produce a better result
than Visual Studio’s automatic support. Instead, you might want to subclass the interop control
that Visual Studio creates. In other words, you could create a custom control that inherits from
the interop control. This extra layer gives you the chance to add.NET features and won’t
hamper performance.

Should You Import ActiveX Controls?
Importing controls is easy, and in most cases, it works without a hitch. However, it introduces
an ugly legacy of problems:

• ActiveX registration issues are back. .NET controls demonstrate the amazing xcopy
installation capability of the .NET platform. ActiveX controls, however, need to be registered
and reregistered whenever a change occurs. This isn’t a new problem, but the return of
an ugly one.

• Security issues appear. The .NET Framework uses a fine-grained approach to security,
which allows controls to be used in semitrusted environments with most of their func-
tionality intact. ActiveX controls require full unmanaged code permission, which makes
them more difficult to use in some scenarios.

• Performance could be affected. Generally, this is the least likely concern. ActiveX emula-
tion is extremely fast in .NET. In some cases, certain controls may exhibit problems, but
those will be the exceptions.

.NET controls will always be the best solution, and many third-party .NET controls surpass
most of the legacy ActiveX controls still around today. Well-known component vendors with
cutting-edge .NET offerings include Infragistics (www.componentsource.com), ComponentOne
(www.componentone.com), and Developer Express (www.devexpress.com).

Macdonald_694-3C04.fm Page 148 Wednesday, June 14, 2006 11:42 AM

CH A P T E R 4 ■ T H E C L A S S I C C O N T R O L S 149

The Last Word
This chapter has toured the most common Windows controls and demonstrated a few .NET
twists. You’ve also learned about the basic types of controls and the techniques you can use for
AutoComplete edit boxes, drag-and-drop support, and tooltips. In the next chapter, you’ll
learn how controls work with images and other types of resources.

Macdonald_694-3C04.fm Page 149 Wednesday, June 14, 2006 11:42 AM

Macdonald_694-3C04.fm Page 150 Wednesday, June 14, 2006 11:42 AM

151

■ ■ ■

C H A P T E R 5

Images and Resources

In Chapter 1, you took your first look at code serialization, which is the process Visual Studio
uses to generate the code for your form as you configure your controls in the design environ-
ment. Code serialization captures all the properties of your controls and components, from the
position of a button to the text of a label.

However, there are certain types of data that can’t be conveniently stored in code, like
large binary images and media files. There are also cases in which you want the flexibility to
draw text data from different files, so that you can substitute content in different languages
when your application is running in different locales. In .NET, both of these scenarios are dealt
with using embedded resources.

In this chapter, you’ll take a look at how resources work, and how you can use them to
embed data into your assemblies and create localized forms. But first, you’ll look at .NET’s
support for pictures with the Image class.

The Image Class
To manipulate picture data in .NET, you use the System.Drawing.Image class. Other classes,
like System.Drawing.Bitmap and System.Drawing.Imaging.Metafile, derive from the Image
class and represent data of a specific format. However, it’s usually easiest to work directly with
the more generic Image class.

You can’t create an Image object directly, because it is an abstract class. However, you can
use the shared Image.FromFile() method to read data from a file and create the corresponding
Image. The FromFile() method supports standard bitmap formats (like BMP, GIF without
support of animation, JPEG, and PNG files).

Here’s an example:

Dim myImage As Image = Image.FromFile(_
 Path.Combine(Application.StartupPath, "mypic.bmp"))

■Tip Visual Studio provides a ready-made image library that includes standard icons used in Microsoft
Office and Windows. You can find this image library in a directory like c:\Program Files\Microsoft Visual Studio 8\
Common7\VS2005ImageLibrary (assuming you’ve installed to the default location on C:).

Macdonald_694-3C05.fm Page 151 Tuesday, June 13, 2006 6:21 AM

152 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

The Image class also includes a shared FromStream() method for retrieving image data
from any stream (which might wrap a database field, a file being downloaded from the Internet, or
in-memory data). You can also use the shared FromHbitmap() method to convert an unman-
aged Windows handle for a GDI bitmap to an Image object. This is useful if you need to use the
unmanaged GDI library to get access to a feature that GDI+ (discussed in Chapter 7) doesn’t
provide.

The Image class provides its own set of properties and methods. Some of the most inter-
esting include RotateFlip(), which changes the picture orientation by rotating or inverting it,
and GetThumbnailImage(), which returns an image object of the specified size that condenses
the information from the original Image.

Dim myImage As Image = Image.FromFile(_
 Path.Combine(Application.StartupPath, "mypic.bmp"))

' Rotate by 270 degrees and flip about the Y-axis.
myImage.RotateFlip(RotateFlipType.Rotate270FlipY)

' Create a 100 x 100 pixel thumbnail.
Dim myThumbnail As Image = myImage.GetThumbnailImage(_
 100, 100, Nothing, IntPtr.Zero)

■Tip .NET also includes a System.Drawing.Icon class for loading and manipulating icon resources.

Common Controls and Images
Many controls support showing an image. In fact, all controls inherit the BackgroundImage
and BackgroundImageLayout properties, although only some actually support it. Supporting
controls include the Button, RadioButton, CheckBox, PictureBox, and container controls like
the GroupBox, Panel, and Form. A background image is always painted at the back of the control
(underneath any child controls), and is positioned at the top-left corner and stretched, zoomed,
centered, or tiled to fit (depending on the BackgroundImageLayout property).

■Note Zooming is similar to stretching—it shrinks or expands the image to fit the control dimensions.
However, unlike stretching, zooming doesn’t change the aspect ratio, which means the image won’t
be distorted.

Macdonald_694-3C05.fm Page 152 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 153

Many controls also support foreground images with the Image and ImageAlign properties.
A foreground image appears alongside any text content, and if the two overlap, the text is always
displayed on top of the image. Figure 5-1 shows common controls with embedded pictures.

■Note You’ll need to turn off AutoSize for controls that support it, like the Label. This allows you to resize
the control to accommodate its text and picture content. Auto sizing is based only on the control’s text, except
in the case of the PictureBox.

Figure 5-1. Common control picture support

For even more flexibility, you can render your own image content and paint it on a form or
control using GDI+. You’ll learn more about this technique in Chapter 7.

■Tip Many controls, like the Button, support both a background and a foreground image. If you use both,
the foreground image appears in front of the background image.

Table 5-1 lists the image-related properties you’ll find in .NET controls.

Macdonald_694-3C05.fm Page 153 Tuesday, June 13, 2006 6:21 AM

154 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

* Not provided by all controls
** Provided only by the PictureBox

Table 5-1. Control Properties for Images

Property Description

BackgroundImage Allows you to show a picture in the background of a control. If this
control contains other child controls, the background image is
always shown underneath these controls.

BackgroundImageLayout Sets how the background image should be laid out. You can choose
None, Tile, Center, Stretch, or Zoom. The difference between
Stretch and Zoom is that zooming an image preserves its aspect
ratio, while stretching an image adjusts the image to fit the control
bounds exactly.

Image* This property isn’t a part of the base Control class, but it does
appear in several common controls, including Label, PictureBox,
Button, CheckBox, and RadioButton. The Image property allows
you to insert a picture alongside or instead of text, as a foreground
image (see Figure 5-1).

ImageAlign* Sets how the foreground image should be laid out. You can align a
picture to any side or corner of the control. Note that the PictureBox
does not provide this property.

ImageList*, ImageIndex*,
and ImageKey*

These properties serve the same purpose as the Image property,
and allow you to specify a foreground image. The ImageList is a
reference to an ImageList component, which contains a collection
of images. Once you set the ImageList property, you can set the
ImageIndex (a numeric index based on the position) or ImageKey
(a descriptive keyword that you assigned to the image previously)
to indicate the specific image that you want to use from the Image-
List. If you use these properties and the Image property, the one
you apply last takes precedence. Note that the PictureBox does not
provide these properties.

ImageLocation** Specifies a URL (in the form http://...) or a file path (like c:\...) that
points to an image file. The PictureBox will download the image
immediately when the property is set, or asynchronously, depending
on the WaitOnLoad property.

WaitOnLoad** Used in conjunction with ImageLocation. If true, the PictureBox
will download the image immediately when the ImageLocation
property is set. If false (the default), the PictureBox will behave
somewhat like a Web browser, and download the picture asyn-
chronously. The InitialImage will not be shown until the operation
is completed. During the download, the LoadProgressChanged
and LoadCompleted events will fire.

InitialImage** and
ErrorImage**

Used in conjunction with ImageLocation. InitialImage specifies
which image should be shown before the image is downloaded, if
WaitOnLoad is false. ErrorImage specifies the image that will be
shown if the image can’t be downloaded. By default, this is a small
error-page icon, like that shown in a Web browser.

Macdonald_694-3C05.fm Page 154 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 155

The ImageList
The ImageList component is a collection that holds images of a preset size and color depth.
Other controls access pictures in the ImageList using the appropriate index numbers or string
key names. In this way, an ImageList acts as a resource for other controls, providing icons for
controls like the ToolStrip and TreeView.

To create an ImageList at design time, drag it onto your form (it will appear in the compo-
nent tray). The basic members of the ImageList are described in Table 5-2.

■Tip Transparent regions are a must when mixing custom images and standard controls. If you simply use
an icon with a gray background, your interface becomes garish and ugly on a computer where the default
color scheme is not used, as a gray box appears around the image. You also run into problems if the icon can
be selected, at which point it is highlighted with a blue background.

You can add, remove, and rearrange images using the ImageList designer. Just click the
ellipsis (…) next to the Images property in the Properties window. Images can be drawn from
almost any common bitmap file, including bitmaps, GIFs, JPEGs, and icons. When you add a
picture, some related read-only properties about its size and format appear in the window (see
Figure 5-2).

Table 5-2. ImageList Members

Member Description

ColorDepth A value from the ColorDepth enumeration that identifies the color reso-
lution of the images in the control. Some common choices are 5-bit
(256-color mode), 16-bit (high color), and 24-bit (true color).

Images The collection of Image objects that are provided to other controls.

ImageSize A Size structure that defines the size of the contained images (with a
maximum of 256 × 256 pixels). ImageList controls should contain only
images that share the same size and color depth. Images are converted to
the specified format when they are added.

TransparentColor Some image types, like icons and GIFs, define a transparent color that
allows the background to show through. By setting the TransparentColor
property, you can define a new transparent color that will be used when
this image is displayed. This is useful for graphic formats that don’t
directly support transparency, like bitmaps.

Draw() This overloaded method provides a quick and easy way to take an image
and output it to a GDI+ drawing surface.

Macdonald_694-3C05.fm Page 155 Tuesday, June 13, 2006 6:21 AM

156 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

Figure 5-2. The ImageList designer

Once you have images in an ImageList control, you can use them to provide pictures to
another control. Many modern controls provide an ImageList property, which stores a reference
to an ImageList control. Individual items in the control (like tree nodes or list rows) then use
an ImageIndex property, which identifies a single picture in the ImageList by index number
(starting at 0) or an ImageKey property, which identifies a single picture by its string name.

ImageList Serialization

If you look at the automatically generated code for your form, you’ll see that the image files you add
are stored in a resource file in your project. When the form is created, the images are deserialized
into Image objects and placed in the collection. This takes place in the InitializeComponent()
helper method that’s hidden in the designer file for your form. A special class, the
ImageListStreamer, makes this process a simple one-line affair, regardless of how many images
are in your ImageList:

Me.imagesLarge.ImageStream = CType(_
 resources.GetObject("imagesLarge.ImageStream"), _
 System.Windows.Forms.ImageListStreamer)

Initially, the name is set to match the file name of the original image. However, at no point
will your application use the original file. Instead, it uses the embedded binary resource. If you
change the picture, you need to remove the image and add it back again (or use resources,
which are discussed later in this chapter).

The image key isn’t actually stored in the resource file that contains the pictures. Instead,
they are applied in the InitializeComponent() method using the SetKeyName() method. Here’s
an example that shows what takes place:

Me.imagesLarge.ImageStream = CType(_
 resources.GetObject("imagesLarge.ImageStream"), _
 System.Windows.Forms.ImageListStreamer)
Me.imagesLarge.Images.SetKeyName(0, "Happy.bmp")

Macdonald_694-3C05.fm Page 156 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 157

Although this might seem to be a fragile approach at first glance, it doesn’t cause any problems
in practice. If you remove an image or change the order of images using the ImageList designer,
Visual Studio updates this code region. You aren’t able to change the image content any other
way, because the ImageList uses a proprietary serialization format. If you browse the resource
file for your form (like Form1.resx for a form named Form1), you’ll find the ImageList data is
shown as a single opaque binary blob of information.

Manipulating the ImageList in Code

If you want to have an ImageList object around for a longer period (for example, to use in
different forms), you can create it directly in code. You might also want to create Image objects
out of graphic files rather than use a project resource.

First, you need a variable to reference the ImageList:

Private iconImages As New ImageList()

Then, you can create a method that fills the ImageList:

' Configure the ImageList.
iconImages.ColorDepth = System.Windows.Forms.ColorDepth.Depth8Bit
iconImages.ImageSize = New System.Drawing.Size(16, 16)

' Get all the icon files in the current directory.
Dim iconFiles() As String = Directory.GetFiles(_
 Application.StartupPath, "*.ico")

' Create an Image object for each file and add it to the ImageList.
' You can also use an Image subclass (like Icon).
For Each iconFile As String In iconFiles
 Dim newIcon As New Icon(iconFile)
 iconImages.Images.Add(newIcon)
Next

Notice that when you use this approach, you no longer have the benefit of the ImageKey
property. Although you could set the key names for individual images, it doesn’t make much
sense to hard-code strings for this purpose if you already need to load the files by hand.

The example that follows loops through an ImageList and draws its images directly onto
the surface of a form. The result is shown in Figure 5-3.

' Get the graphics device context for the form.
Dim g As Graphics = Me.CreateGraphics()

' Draw each image using the ImageList.Draw() method.
For i As Integer = 0 To iconImages.Images.Count - 1
 iconImages.Draw(g, 30 + i * 30, 30, i)
Next

' Release the graphics device context.
g.Dispose()

Macdonald_694-3C05.fm Page 157 Tuesday, June 13, 2006 6:21 AM

158 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

Figure 5-3. Outputting an ImageList directly

As with all manual drawing, these icons are erased as soon as the form is repainted (for
example, if you minimize and then maximize it). You’ll tackle this issue in Chapter 7.

Limitations of the ImageList

The ImageList may seem like a good all-purpose repository for image data, but it does have a
few limitations:

• If you fill the ImageList at design time, you’ll need to place it on a single form or on a
custom component. That can make it difficult to reuse the same images across multiple
windows.

• There’s no support for updating the source graphics in the ImageList. When you add the
figures to the ImageList, they’re copied, and no link is maintained to the original files. If
you want to change them, you need to delete the image and read it. If you’re relying on
the ImageIndex property to find images in the ImageList, you’ll also need to make sure
the order remains the same.

• There’s no way to store different sizes and formats of images in the same ImageList.
Similarly, the ImageList isn’t any help if you want to store other types of content, like
audio files.

To tackle these problems, .NET introduces a more powerful alternative—resources.

Resources
It’s easy to load the content for an Image object from an external file. However, it’s not the most
robust approach. Not only will you need to worry about deploying all the image files with your
application and making sure they remain in the expected directory, but you’re also at the risk
of users who carelessly or deliberately delete them. To avoid these sorts of problems, it’s common
to embed external files like images and sounds directly into your compiled assembly file. These
embedded files are known as resources.

.NET has supported resources since version 1.0. However, Visual Studio 2005 is the first
version of the IDE that adds strong design-time support that allows you to add and manage
resources at design time. Best of all, Visual Studio uses automatic code generation to create
strongly typed resources, which means you can use them in your code without worrying about

Macdonald_694-3C05.fm Page 158 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 159

misspelling the resource name (and thereby creating an unexpected runtime error) or
attempting to cast the resource to a data type that’s not supported.

Adding a Type-Safe Resource
To add a resource, start by double-clicking the My Project node in the Solution Explorer. Next,
click the Resources tab in the application properties sheet. You’ll see the resource browser
shown in Figure 5-4.

Figure 5-4. The resource browser

The resources in your application are subdivided into categories (strings, images, icons,
audio, and files). Depending on the category, you’ll see a different visualization of the resource.
For example, pictures are shown as thumbnails, while sound files are shown with a media icon
that plays the sound when double-clicked. The string view shows a list of text values.

To add an image, click the Add button and select Existing File. Browse to an image file,
select it, and click OK. If you don’t have an image file handy, try using one from the Windows
directory. If the file is not in the current project, Visual Studio copies the image file into a
Resources subfolder in your project (see Figure 5-5). If the Resources folder doesn’t exist yet,
it’s created automatically.

Next, Visual Studio adds an entry for that resource into the resource browser (see Figure 5-6).
By default, the resource is given the same name as the file, but you can rename it once

you’ve added it. It’s best to make sure the resource name is a valid variable name (no spaces or
extended characters, begins with a letter, and so on). Otherwise, the property name you use to
retrieve the resource won’t match exactly. For example, a resource named Blue Lace 16 is exposed
through a property named Blue_Lace_16.

Macdonald_694-3C05.fm Page 159 Tuesday, June 13, 2006 6:21 AM

160 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

Figure 5-5. The Resources folder

Figure 5-6. Adding an image resource

Once you’ve added a resource, it’s easy to use in your code. You can access all resources
through the My.Resources object. For example, if you add a resource named Happy, you could
use code like this to retrieve an image and show it in a picture box:

pictureBox1.Image = My.Resources.Happy

Notice that the Happy property is strongly typed as an image. That means there’s no need
to cast or convert it when you retrieve it. Similarly, text files are returned as strings, but binary
files are returned using a byte array, and audio content is returned as a memory stream (which
you can pass to the SoundPlayer component described in Chapter 16).

It’s important to realize that when you execute this code, you are actually retrieving the
Happy resource from the compiled assembly, not the stand-alone image file. (To verify this,
you can delete the image file from the Resources folder after you compiled the application, and
it will still run without a problem.) Based on this fact, you might wonder why Visual Studio uses
the Resources folder at all. The reason is, because it allows you to easily update your resources.

Macdonald_694-3C05.fm Page 160 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 161

For example, if you want to replace the Happy image with a newer version, you simply need to
overwrite the file in the Resources folder. The next time you compile your application, the
newer version will be embedded into the assembly. You don’t need to modify any of your code.

To remove a resource, delete the file from the Resources folder and recompile. Alternatively,
you can delete the entry in the resource browser. However, this only removes the resource
information—it doesn’t actually delete the corresponding file in the Resources folder.

How Type-Safe Resources Work
Now that you’ve seen how easy it is to use resources in your application, you’re probably
wondering about the underpinnings that make it all work. VB uses a hidden Resources.resx file
to store all the information it needs. To see this file in Visual Studio, select Project ➤ Show All
Files, and expand the My Project node. You’ll see the Resources.resx file along with some other
hidden files that include automatically generated code. For example, Settings.Designer.vb
stores strongly typed settings that you’ve configured; Application.Designer.vb specifies the
start-up form; and AssemblyInfo.vb includes a collection of metadata like your application’s
publisher, copyright, and version number.

The Resources.resx file is an XML document that lists the resources you’ve added (using
a <data> tag for each one), and indicates where to find the associated file in the Resources
subfolder. Each entry also indicates the corresponding .NET data type.

Here’s a heavily reduced version of the Resources.resx file that leaves out the comment
text and schema information, which describes the structure of the file. In this example, there is
one image resource:

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!-- Schema information omitted. -->
 <data name="Happy" type="System.Resources.ResXFileRef, System.Windows.Forms">
 <value>..\Resources\happy.bmp;System.Drawing.Bitmap, System.Drawing,
 Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</value>
 </data>
</root>

This type of file is a linked resource file, because it links to other files that contain the
actual picture data. Technically, the .resx format also supports creating embedded resource
files, in which case the data for each resource is merged into the .resx file as a Base64-encoded
string. However, Visual Studio doesn’t use this approach, because it risks creating extremely
large unwieldy files, and it makes it more difficult to individually update different resources. It
also requires more space, because Base64 encoding is larger than the original raw binary data.

■Note The term “embedded resources” is used in two ways, which can potentially cause confusion. There
is a difference between two types of .resx files, which contain their data directly (embedded) or simply link to
it (linked). However, no matter which .resx format you use, when you compile your application the .resx is
always compiled into an embedded .resources file that is inserted into your assembly, data and all.

Macdonald_694-3C05.fm Page 161 Tuesday, June 13, 2006 6:21 AM

162 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

No matter what type of resource file you use, when you compile the application the .resx file
is converted into a binary .resource file, which is embedded into your assembly. To take a closer
look, you need to use the IL Disassembler (ildasm.exe) tool included with .NET (or Lutz Roeder’s
Reflector, which is available at www.aisto.com/roeder/dotnet).

Resources are placed in a special noncode portion of the assembly called the manifest. The
manifest includes metadata about the assembly (like versioning and publishing information)
and all the resources. To check for the resource data, open the compiled application file in IL
Disassembler, and double-click the Manifest entry in the tree. Scroll down, and you’ll see the
following:

.mresource public ResourceTest.Properties.Resources.resources
{
}

This declares the compiled .resources file that contains the pictures. You’ll notice that the
binary picture data isn’t actually shown, because the IL Disassembler can’t decompile it.
Instead, you’ll simply see a set of empty braces.

This explains how embedded resources work, but it doesn’t explain how you can retrieve
them in your code through the shared properties of the Resources class. The trick is that as you
add resources, Visual Studio generates a class with the code for retrieving the information from
the embedded resource. To see the file, expand the Resources.resx node, and look for a file
named Resources.Designer.vb (see Figure 5-7).

Figure 5-7. The automatically generated Resources class

The Resources class retrieves the embedded resource from the assembly, and casts it to
the appropriate data type. For example, the BlueLace16 property shown below retrieves the
resource named BlueLace16 and casts it to a Bitmap object:

Macdonald_694-3C05.fm Page 162 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 163

Friend ReadOnly Property BlueLace16() As System.Drawing.Bitmap
 Get
 Dim obj As Object = ResourceManager.GetObject("BlueLace16", resourceCulture)
 Return CType(obj,System.Drawing.Bitmap)
 End Get
End Property

The ResourceManager is a shared property that’s defined in the same class. The first
time you access it, a new ResourceManager object is created and cached for later use. The
ResourceManager does the work of extracting the resources from the embedded resource.

Private resourceMan As Global.System.Resources.ResourceManager

Friend ReadOnly Property ResourceManager() As _
 Global.System.Resources.ResourceManager
 Get
 If resourceMan Is Nothing Then
 Dim temp As Global.System.Resources.ResourceManager = _
 New Global.System.Resources.ResourceManager(_
 "ImageTest.Resources", GetType(Resources).Assembly)
 resourceMan = temp
 End If
 Return resourceMan
 End Get
End Property

■Tip You don’t have to stick with a single .resx file in your project. You can add more by choosing Project ➤
Add New Item and choosing Assembly Resource File. When you double-click your .resx file, you’ll see the
same resource browser that allows you to set content and attach files (which will be copied to the Resources
folder). However, Visual Studio won’t generate a code file that wraps these resources, so it’s up to you to
create a ResourceManager, call GetObject() to retrieve the resource by name, and then cast the data to the
appropriate type.

Form Resources
Under certain situations, Visual Studio also generates a .resx file for a form. Two examples are
when you add an ImageList to your form, and when you use localization (described later in this
chapter). In both situations, Visual Studio automatically adjusts the serialized form code to use
the form resources for retrieving data.

The .resx file that’s generated for a form always has the same name as the form, as in
Form1.resx. However, you won’t see the .resx file in the Solution Explorer unless you select
Project ➤ Show All Files. Once you do, the .resx file appears under each form node in the Solution
Explorer. For example, Figure 5-8 shows a form .resx file that contains the data for an ImageList.

Macdonald_694-3C05.fm Page 163 Tuesday, June 13, 2006 6:21 AM

164 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

Figure 5-8. An ImageList in a form .resx file

Note that unlike image resources, the ImageList information is stored in a proprietary
format that only the ImageListStreamer can interpret. If you were to crack open the .resx file,
you’d find that it has the embedded information in a <value> tag that looks something like this:

<data name="imageList1.ImageStream"
 mimetype="application/x-microsoft.net.object.binary.base64">

 <value>AAEAAAD/////AQAAAAAAAAAMAgAAAFpTeXN0ZW0uV2luZG93cy5Gb3JtcywgVmVyc2lvb
j0yLjAuMzYwMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGU
wODkFAQAAACZTeXN0ZW0uV2luZG93cy5Gb3Jtcy5JbWFnZUxpc3RTdHJlYW1lcgEAAA...</value>
</data>

As with any other .resx file, when you compile your application it’s compiled to a binary
.resources file, which is then embedded into the application assembly. That guarantees that
the required information is always available, without needing to rely on an external file that
could be moved or deleted.

In previous versions of Visual Studio, a .resx file is created for a form as soon as you add
any binary data (for example, when you set the Image property of a PictureBox). However,
Visual Studio 2005 gives you a choice.

To see how this works, click the ellipsis (…) in the Properties window next to the
BackgroundImage or Image property for a control. (Try, for example, the PictureBox control.)
A designer appears that lists all the global .resx files in the project, but not the resource files that
are associated to individual forms. When you choose a file, it shows all the available images in
the file, as shown in Figure 5-9.

If you choose Local Resource and click Import, the image file is imported directly, in which
case it’s stored in the .resx file for the form (as in previous versions of Visual Studio). However,
if you choose Project Resource File, you can use any of the resources in the global Resources.
resx file. You can even click Import to add the picture as a new global resource before you
link it to the control. This has the same effect as using the Add Existing File command in the
resource browser.

Macdonald_694-3C05.fm Page 164 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 165

Figure 5-9. Linking a control Image to a resource

It’s almost always better to use global resources. That way, you have the flexibility to easily
update your images later by replacing the file, which isn’t possible with form-specific resources
or the ImageList.

Creating Additional Resource Files
There’s no reason you need to stick with one global resources class. If you need to manage a
wide range of resources, you might prefer to create several project-specific global .resx files.

To add a new global resource, simply right-click your project and select Add ➤ New Item.
Choose Resources File, enter a file name, and click Add. This creates in your project folder a
new .resx file with a .Designer.vb file that defines the corresponding class (see Figure 5-10).

Figure 5-10. Adding a new global resource

You can use the class in the same way that you use the default resources. However, the
syntax changes slightly. Instead of using My.Resources.ResourceName like this:

pictureBox1.Image = My.Resources.Happy

Macdonald_694-3C05.fm Page 165 Tuesday, June 13, 2006 6:21 AM

166 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

you use My.Resources.ResourceFileName.ResourceName like this:

pictureBox1.Image = My.Resources.CustomResources.Happy

When you add resources to your file, they’ll be copied into the Resources folder, exactly
as they are with the Resources.resx file. If you use stricter organization (or you have different
resource files with the same name), there is an easy workaround. First, add a subfolder for you
new resources to your project. Then, add the resource files using the Add ➤ Existing Item
command. Finally, link these items to the appropriate resource by opening the .resx file, choosing
the appropriate category, and dragging the resource from the Solution Explorer onto the resource
browser. This way, an entry is created for your resource, but the actual file is left in its original
project subfolder.

Localization
Resource files aren’t just for dealing with binary data. They also come in handy when you need
to localize a form. Using resource files, you allow controls to change according to the current
culture settings of the Windows operating system. This is particularly useful with text labels
and images that need to be translated into different languages.

When using resources for localization, it isn’t as convenient to embed the resource into
your application assembly. That’s because the localization-specific information might need to
change after the project is compiled, or you might want to add support for additional locales
after a program is deployed. To allow this, you need to use satellite assemblies—assemblies that
work with your application but are stored in separate subfolders. When you create a localized
form in .NET, the information is compiled into satellite assemblies, and the directory structure
you need is created automatically.

Creating a Localizable Form
The basic process for creating a localizable form is simple. First, you must set the Localizable
property for the Form to true using the Properties window. This tells Visual Studio to start
storing all settings in a resource file instead of directly in the form code.

■Note Technically, there is no Form.Localizable property. Visual Studio adds this property at design time
to allow you to configure how it serializes control properties.

Once you’ve set the Localizable property to true, it’s time to start setting locale-specific
settings. First, choose the locale that you want to add support for by setting the Language property
of the form. You’ll be provided with the full list of recognized locales (see Figure 5-11).

Technically, you aren’t choosing a language but a culture, which consists of two identifiers
separated by a hyphen. The first portion identifies the language. The second portion identifies
the country. Thus, fr-CA is French as spoken in Canada, while fr-FR represents French in
France. In the Language list in the Properties window, fr-CA is displayed as French (Canada),
while fr-FR is displayed as French (France).

Macdonald_694-3C05.fm Page 166 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 167

Figure 5-11. Choosing a language when designing a form

This presumes a fine-grained localization that might be more than you need. Fortunately,
you can localize a form based just on a language. For example, if you select fr as your culture,
you can apply settings that will be used for any French-language region. To use this option, just
select French in the Language property list.

■Note For a full list of culture names and their two-part identifiers, refer to the System.Globalization.
CultureInfo class in the MSDN help library.

Once you’ve chosen your language, you can configure the properties of various controls.
The value you supply won’t be serialized in the form code—instead, it will be stored in a dedi-
cated resource file for this language, provided the property is localizable. In a typical control,
most properties are localizable. For example, properties like Text, Font, Image, Location, Size,
Enabled, and Visible are all localizable. (The control developer designates localizable properties
by applying the Localizable(true) attribute to the property declaration.)

You can repeat these two steps to add information for multiple languages. As soon as you
change the language, all the localizable properties of the controls on your form revert to the
settings in the resource file for that language.

The final step is to test how your application works at runtime. As you’ll learn in the next
section, .NET automatically uses the property settings that match the current culture settings.
However, you can override these settings to test how your application will work under different
cultures by setting the Thread.CurrentUICulture property for the current thread. For example,
this statement sets the culture to the fr-FR culture.

Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr-FR")

Macdonald_694-3C05.fm Page 167 Tuesday, June 13, 2006 6:21 AM

168 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

Note that you need to run this line of code before the InitializeComponent() method of the
form is executed in order for it to read the correct localized information. The easiest way to do
this is to set the culture using the Startup application event. At this point, you can create a new
System.Globalization.CultureInfo object that represents the culture settings you want and assign
it to the current thread.

To enter this code, double-click the My Project node in the Solution Explorer, select the
Application tab, and click View Application Events. Here’s the code you need:

Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices.StartupEventArgs) _
 Handles Me.Startup

 Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr-FR")
End Sub

How Localization Works
For every localizable form, you’ll see multiple .resx files with different language identifiers. In
fact, there will be one for each language you’ve configured in the design environment. Figure 5-12
shows an example with two additional languages.

Figure 5-12. Multiple .resx files for a form

When you double-click one of these .resx files, you’ll see a grid that lists all the localizable
settings that you set, as shown in Figure 5-13.

■Tip In some cases, you might want to localize information that doesn’t correspond directly to a control
property. For example, you might want to localize error messages or the text that appears in a message box.
In this case, the solution is to add the information to the appropriate .resx file by hand as a string. Unfortu-
nately, there isn’t any built-in support for localizing project-specific resource files.

Macdonald_694-3C05.fm Page 168 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 169

Figure 5-13. Localizable settings for a form

When you compile this project, Visual Studio creates a separate directory using the language
identifier, and uses it to store the satellite assembly with the localization settings. You can see
these files in the Solution Explorer by choosing Project ➤ Show All Files (see Figure 5-14).

Figure 5-14. Multiple satellite assemblies

The greatest part about this is that you won’t have to delete or move files around for different
versions. Because of the way probing works with .NET assemblies, you can count on the common
language runtime (CLR) to automatically inspect the right directory based on the computer’s
regional settings and load the correct localized text. For example, if you’re running in the fr-FR
culture, the CLR will look for a fr-FR subdirectory, and use the satellite assemblies it finds there.
That means that if you want to add support for more cultures to a localized application, you
simply need to add more subfolders and satellite assemblies without disturbing the original
application executable.

Macdonald_694-3C05.fm Page 169 Tuesday, June 13, 2006 6:21 AM

170 C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S

When the CLR begins probing for a satellite assembly, it follows a few simple rules of
precedence:

1. It checks for the most specific directory that’s available. That means it looks for a sat-
ellite assembly that’s targeted for the current language and region (like fr-FR).

2. If it can’t find this directory, it looks for a satellite assembly that’s targeted for the current
language (like fr).

3. If it can’t find this directory, it falls back on whatever defaults are stored in the application
assembly. You can set these defaults by choosing (Default) for the Language property.

This list is slightly simplified. If you decide to use the global assembly cache (GAC) to share
some components over the entire computer, you’ll need to realize that .NET actually checks
the GAC at the beginning of step 1 and step 2. In other words, in step 1 the CLR checks if the
language- and region-specific version of the assembly is in the GAC, and uses it if it is. The
same is true for step 2.

■Note As a rule of thumb, localization is never as easy as it appears, because of the subtleties involved
with different languages and the way they are supported by the various versions of the Windows operating
system. For more help, you can refer to the globalization topics in the MSDN help library.

USING THE WINDOWS FORMS RESOURCE EDITOR

Visual Studio and the .NET SDK also include a utility called Winres.exe, which is extremely useful for localization.
It allows another person to edit the information in a .resx resource file using a scaled-down form editor. This
is useful, because it allows translators and other nonprogramming professionals to create the locale-specific
resource files without allowing them the chance to see sensitive code or inadvertently alter it. They also won’t
need to have Visual Studio installed—just the freely distributable Winres.exe tool.

Macdonald_694-3C05.fm Page 170 Tuesday, June 13, 2006 6:21 AM

C H A P T E R 5 ■ I M A G E S A N D R E S O U R C E S 171

The Last Word
In this chapter, you looked at the Image and ImageList classes, which allow you to manipulate
picture data. You also considered how you can embed images and other types of data into an
assembly using resources. This is a technique that’s useful in any Windows application that
needs to rely on binary content like audio snippets and images, or needs to protect string data
like HTML pages or text files, so they can’t be tampered with.

The end of this chapter discussed how resources can provide localization. Visual Studio
includes convenient support that makes localizing a Windows Form almost effortless, but
unfortunately, it doesn’t have a comparable tool for localizing other project content. For example,
if you need to use local-specific error messages, it’s up to you to manage the localized strings.
You can use the resource infrastructure to keep this information in localized satellite assem-
blies (and .NET has rich support for this approach in the class library), but there’s still no
integration in Visual Studio.

Macdonald_694-3C05.fm Page 171 Tuesday, June 13, 2006 6:21 AM

Macdonald_694-3C05.fm Page 172 Tuesday, June 13, 2006 6:21 AM

173

■ ■ ■

C H A P T E R 6

Lists and Trees

The ListView and TreeView are two of the most widespread and distinctive controls in modern
application design. As far as controls go, they have it all—an attractive appearance, a flexible
set of features, and the ability to condense a significant amount of information in one place.
And thanks to Windows Explorer, most computer users already know how to use the ListView
and TreeView to browse through data.

These days, it’s hard to find programs that don’t use the ListView and TreeView. The
Windows operating system makes heavy use of them in its administrative windows. You’ll also
see them at work in tools for SQL Server, Visual Studio, and the .NET Framework. In this
chapter, you’ll learn how to use the ListView and TreeView in your own .NET applications.

ListView Basics
The ListView control is often used to show a multicolumn list of items. In this way, the ListView
provides a simple, attractive grid. Unlike the other .NET grid controls (namely, the DataGrid
and DataGridView), the ListView lacks support for data binding, which means you always need
to fill it by hand.

■Tip Nothing prevents you from deriving a custom ListView that supports data binding. You can find
an implementation of this labor-intensive job at http://msdn.microsoft.com/library/en-us/
dnadvnet/html/vbnet08262002.asp. However, because the DataGridView provides almost all the func-
tionality of the ListView and many more features, it’s usually the better route.

View Modes
While the ListView is most commonly used to create grids, it actually supports five distinct
modes that you’ve probably already seen in Windows Explorer. You specify the mode by
setting the ListView.View property to one of the values from the View enumeration, as listed in
Table 6-1.

Macdonald_694-3C06.fm Page 173 Saturday, June 17, 2006 9:47 AM

174 C H A P T E R 6 ■ L I S T S AN D T R E E S

To understand the different styles of ListView, it helps to create a simple example. First,
create a ListView and two ImageList controls, one to hold any required small (16 × 16 pixel)
icons and one to hold large (32 × 32 pixel) icons. Next, you can associate the ListView with the
corresponding ImageList by setting the SmallImageList and LargeImageList properties.

listView.SmallImageList = imagesSmall
listView.LargeImageList = imagesLarge

Once the ImageList is associated, you can assign images to individual list items by setting
the ImageIndex or ImageKey property (as you did in Chapter 5). You can change the ImageIndex at
any time to indicate an item that has changed status.

The following code loads information into a ListView in response to a button click. This
example relies on a GetProducts() method that returns a DataTable (either by querying a data-
base or by constructing it manually).

Private Sub cmdFillList_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdFillList.Click

 ' Don't forget to clear the current content of the ListView.
 listView.Items.Clear()

 ' Fill a DataTable using a helper class (not shown).
 Dim dt As DataTable = StoreDB.GetProducts()

 For Each dr As DataRow In dt.Rows
 ' Create the item, with the text from the ModelName field.
 Dim listItem As New ListViewItem(dr("ModelName").ToString())

Table 6-1. Values for ListView.View

Value Description

LargeIcon Displays full-sized (usually 32 × 32 pixel) icons with a title beneath each one. Items
are displayed from left to right and then on subsequent lines.

SmallIcon Displays small (usually 16 × 16 pixel) icons with descriptive text at the right. Items are
displayed from left to right and then on subsequent lines.

List Displays small icons with descriptive text at the right. It’s the same as SmallIcon,
except it fills items from top to bottom and then in additional columns. The scroll bar
(if needed) is horizontal.

Tile Displays large icons with the item label and additional information to the right of it.
This view is supported only on Windows XP and Windows Server 2003. On earlier
operating systems, the ListView will revert to a LargeIcon view.

Details Displays the familiar multicolumn layout. Each item appears on a separate line, and
the leftmost column contains a small icon and label. Column headers identify each
column and allow user resizing. Columns can also be rearranged if the ListView.
AllowColumnReorder property is True. The Details view and the Tile view are the
only views that support showing more than one piece of information per item.

Macdonald_694-3C06.fm Page 174 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 175

 ' Give every item the same picture.
 listItem.ImageIndex = 0

 ' Add the item to the ListView.
 listView.Items.Add(listItem)
 Next
End Sub

■Note This book won’t cover the ADO.NET code you might use to create this DataTable (as this is better
served by a dedicated book about databases and .NET), although you can look at the online code for this
chapter to see the details. As with many of the examples, the data is retrieved from an XML file, which
guarantees that you can use the examples even if you don’t have a relational database product handy.

This is ListView code at its simplest. ListViewItem objects are created and added to the list.
The ListViewItem constructor allows you to specify the default item text (the Text property),
and the ImageIndex points to the first picture in the collection. Note that the ImageIndex applies
to both the SmallImageList and LargeImageList, meaning that your ImageList objects must use
the same ordering. The appropriate picture is chosen based on the view style.

Finally, to make the code a little more interesting, a group of radio buttons allows the user
to switch between the different view styles. Each option button is associated with a different
view mode, using the handy Tag property:

optLargeIcon.Tag = View.LargeIcon
optSmallIcon.Tag = View.SmallIcon
optDetails.Tag = View.Details
optList.Tag = View.List
optTile.Tag = View.Tile

Rather than scatter the code for this in multiple procedures, all the option button clicks are
handled by a single method, which retrieves the appropriate view mode and applies it.

Private Sub NewView(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles optTile.CheckedChanged, optSmallIcon.CheckedChanged, _
 optList.CheckedChanged, optLargeIcon.CheckedChanged, _
 optDetails.CheckedChanged

 ' Set the current view mode based on the number in the tag value of the
 ' selected radio button.
 Dim ctrl As Control = CType(sender, Control)
 listView.View = CType(ctrl.Tag, View)

 ' Display the current view style.
 Me.Text = "Using View: " & listView.View.ToString()
End Sub

Figure 6-1 shows the ListView in SmallIcon, LargeIcon, Details, and List view modes.

Macdonald_694-3C06.fm Page 175 Saturday, June 17, 2006 9:47 AM

176 C H A P T E R 6 ■ L I S T S AN D T R E E S

Figure 6-1. Different view styles with the ListView control

Table 6-2 lists the core set of ListView members.

Table 6-2. Basic ListView Members

Member Description

Columns Holds the collection of ColumnHeader objects used in
Details view.

FocusedItem, SelectedItem,
and SelectedIndices

Allow you to retrieve the item that currently has focus or the
currently selected items (the user can select multiple icons
by dragging a box around them or by holding down the Ctrl
and Shift keys). You can also examine the Focused and
Selected properties of each ListViewItem.

Items Holds the collection of ListViewItem objects displayed in
the ListView.

LabelEdit When set to True, ListViewItem text can be modified by the
user or in code using the BeginEdit() method. If you are
using the Details view, only the text in the first column can
be changed. Subitems cannot be modified.

LargeImageList and
SmallImageList

Reference the ImageList control that is used for large and small
icons. The individual icons are identified by the ListViewItem.
ImageIndex property, starting at 0 for the first icon.

MultiSelect When set to False, prevents a user from selecting more than
one item at a time.

Macdonald_694-3C06.fm Page 176 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 177

If you try this application as it stands right now, you’ll see that it doesn’t work in Details
view. The reason is that the ListView displays information in Details view only if you have
added the appropriate column headers. If you add items without adding the column headers,
you’re left with a blank display. The next section corrects the problem.

Details Mode

When you set a ListView to Details mode, it behaves a little differently. Unless you correctly
configure the column headers, the display remains blank, with no information at all.

The following example rewrites the ListView code to fill multiple columns of information.
It uses three column headers. The first column is automatically filled with the ListViewItem
text. To fill the other two columns, you need to add two subitems to the ListViewItem.SubItem
collection of each item. Note that the extra information in these columns is ignored in LargeIcon,
SmallIcon, and List view modes.

Private Sub cmdFillList_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdFillList.Click

 listView.Items.Clear()
 Dim dt As DataTable = StoreDB.GetProducts()

Sorting Allows you to specify an ascending or descending sort order,
which considers the main text of the ListViewItem only (not
any subitems).

View Sets the ListView style using the View enumeration.
Supported views are LargeIcon, SmallIcon, List, Tile, and
Details.

AutoArrange and ArrangeIcons() In SmallIcon and LargeIcon view, the AutoArrange property
determines whether icons automatically snap to a grid or
can be positioned anywhere by the user.
If you allow the user to reposition icons (by setting
AutoArrange to False), you can call ArrangeIcons() to put
things back in order.

BeginUpdate() and EndUpdate() Allow you to temporarily suspend the ListView drawing, so
that you can add or modify several items at once without
flickering.

AfterLabelEdit and
BeforeLabelEdit events

Events that fire before and after a label is modified. Both
events provide the index to the appropriate ListViewItem
and a property that allows you to cancel the edit.

ColumnClick event Occurs when a user clicks a column. You can react to this
event to perform column-specific sorting.

SelectedItemIndexChanged event Occurs whenever the user selects an item, except when the
same item is selected twice in a row.

Table 6-2. Basic ListView Members

Member Description

Macdonald_694-3C06.fm Page 177 Saturday, June 17, 2006 9:47 AM

178 C H A P T E R 6 ■ L I S T S AN D T R E E S

 ' Suspending automatic refreshes as items are added/removed.
 listView.BeginUpdate()

 ' Add column headers for Details view (if they haven't been added before).
 If listView.Columns.Count = 0 Then
 listView.Columns.Add("Product", 100, HorizontalAlignment.Left)
 listView.Columns.Add("ID", 100, HorizontalAlignment.Left)
 listView.Columns.Add("Description", 100, HorizontalAlignment.Left)
 End If

 For Each dr As DataRow In dt.Rows
 Dim listItem As New ListViewItem(dr("ModelName").ToString())
 listItem.ImageIndex = 0

 ' Add subitems for Details view.
 listItem.SubItems.Add(dr("ProductID").ToString())
 listItem.SubItems.Add(dr("Description").ToString())

 listView.Items.Add(listItem)
 Next

 ' Re-enable the display.
 listView.EndUpdate()
End Sub

When adding a ColumnHeader, you have the chance to specify a width in pixels, a title,
and the alignment for values in the column. Figure 6-2 shows the ListView in grid mode.

You can also programmatically resize the columns using the AutoResizeColumns()
method (or the AutoResizeColumn() method if you want to work with a single column). You
supply a value from the ColumnHeaderAutoResizeStyle enumeration to indicate the type of
resizing. Use ColumnContent if you want to fit the widest entry in a column or HeaderSize if
you want to fit the caption text. The AutoResizeColumns() method will both enlarge and shrink
columns as necessary.

The ListView is different from almost any other grid control in that it designates every
column except the first one as a subitem. This idiosyncrasy shouldn’t trouble you too much, but
note that it causes the column header indices to differ from the subitem indices. For example, the
first subitem is listItem.SubItems(0), while the corresponding column is listView.Columns(1).

■Tip The previous example uses a ListView for its most common task: representing items. However, ListView
controls can also represent actions. For example, consider the Control Panel, which uses a ListView in LargeIcon
view to provide access to a number of features. Remember, different view styles suggest different uses (and
in the case of the Details view, show different information), so you should always choose the most suitable
style when creating the control.

Macdonald_694-3C06.fm Page 178 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 179

Figure 6-2. A ListView grid

LINKING EXTRA INFORMATION TO A LISTVIEWITEM

A typical application often needs to store information about display items that isn’t rendered in the user inter-
face. For example, you might want to keep track of unique identifier numbers that will allow you to look up a
given item in a database, but you won’t show this information to the end user, because it’s of no use to them.
Sometimes, programmers handle this in a control-specific way using hidden columns or other workarounds.
However, a more generic and elegant approach is to find some way to link the extra information to the control.

You can add information to a ListView control to represent custom data in two ways:

• Derive a custom ListViewItem, and add the properties you need for your particular type of data.

• Use the Tag property of the ListViewItem to store the related DataRow or custom data object.

The first option is the only approach directly explained in the MSDN reference. However, it’s probably the
least convenient, because it tightly integrates details about the structure of your data into the user interface
code. This means you need to modify these classes if the data changes or if you move to a different type of
control (such as the TreeView).

The second approach is more flexible, because it maintains the state separately, but it makes it easy to
find when you need it. The only disadvantage is that the Tag property isn’t strongly typed, so you need to cast
it to the object you expect when you want to retrieve the linked information.

Macdonald_694-3C06.fm Page 179 Saturday, June 17, 2006 9:47 AM

180 C H A P T E R 6 ■ L I S T S AN D T R E E S

If you decide to use the ListView as a grid control, you might want to use row selection:

listView.FullRowSelect = True

Otherwise, the ListView lets you select any combination of contiguous values. For example,
you could select a value in a single column, several adjacent values in a row, and so on.

Table 6-3 lists more properties for fine-tuning the appearance of a ListView.

Table 6-3. Appearance-Related ListView Members

Member Description

Activation and
HoverSelection

Activation determines how items in the ListView are highlighted. If
you select OneClick, the mouse cursor becomes a hand icon when
it hovers over an item. The HoverSelection property, when set to
True, automatically selects an item when the user hovers over it.
This formerly cutting-edge feature is now discouraged as being
unintuitive (and somewhat “touchy”).

Alignment Sets the side of the ListView that items are aligned against.

AllowColumnReorder When set to True, the user can drag column headers around to
rearrange the column order in Details view, without requiring
any code.

BackgroundImage Specifies a background image that will appear behind the items in
the list and be tiled if appropriate.

FullRowSelect When set to True, the entire row will be highlighted when you select
an item in Details view, not just the first column. It’s a useful setting
for database applications that are using the ListView as a grid
control. The FullRowSelect property is ignored if ShowLines is True.

GridLines Displays attractive column and row gridlines in Details view. Useful
if you are displaying many rows of complex or hard-to-read infor-
mation. However, the gridlines may not be displayed properly on
Windows XP when the smooth scrolling feature is enabled, particu-
larly if you are also using virtualization, as described later in this
chapter. (See www.microsoft.com/windowsxp/using/accessibility/
smoothscrolling.mspx for information about turning smooth
scrolling on or off.)

HeaderStyle Allows you to configure whether column headers respond to clicks
(Clickable) or ignore them (Nonclickable).

LabelWrap Allows the text label to wrap in one of the icon views.

OwnerDraw,
DoubleBuffered,
RedrawItems(), and
the DrawItem and
DrawSubItem events

You can set the OwnerDraw property to True to perform custom
drawing. You must then handle the DrawItem event (and the
DrawSubItem event, if you’re using the grid view). In addition, you
can use the RedrawItems() method to force a group of items be
redrawn (perhaps because the underlying data has been modified)
and set the DoubleBuffered property to True to optimize the
drawing process. Chapter 12 has more information about owner-
drawn controls.

ShowItemTooltips If True, the text specified in the ListViewItem.ToolTipText property
is displayed when the user hovers over an item with the mouse.

TileSize In Tile view mode, this specifies (as a Size structure) the dimensions
of the tile used for each item.

Macdonald_694-3C06.fm Page 180 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 181

Tile Mode and Large Images

So far, you’ve seen examples of the ListView with relatively small images (16- or 32-pixel squares).
However, many of the ListView modes can handle much larger images. In LargeIcon mode, the
image can be arbitrarily large. The text is centered underneath. In Tile mode, the height of the
row is automatically expanded to fit taller images (and you specify the width). The List and
SmallIcon modes produce less helpful results, because the larger image usually crowds out
any text.

Tile mode is particularly well suited to handling large images. When using Tile mode, the
image is displayed on the left, and the content appears on the right. However, it’s up to you to
set a tile size that allows enough room for the image and text content. You do that by setting the
ListView.TileSize property, as shown here:

' Create a tile that is 300 pixels wide and 50 pixels high.
listView.TileSize = New Size(300, 50)

Tiles are organized left to right (if the width allows) and then in subsequent rows. Interestingly,
Tile mode is the only mode that can work equally well with or without subitems. If you’ve provided
subitems, they appear on separate lines. Sadly, you can’t control the formatting of individual
lines—if you want that ability, you’ll need to create an owner-drawn ListView.

Figure 6-3 shows the ListView with large images in Tile mode. Remember, on non-Windows
XP computers, Tile mode is equivalent to LargeIcon, and the extra subitem information does
not appear.

Figure 6-3. Tiling with large images

More Advanced ListViews
So far you’ve seen the basic bread-and-butter work of ListView and its five view styles. In the
following sections, you’ll dig into a few frills and more advanced features.

Macdonald_694-3C06.fm Page 181 Saturday, June 17, 2006 9:47 AM

182 C H A P T E R 6 ■ L I S T S AN D T R E E S

ListView Sorting
You’ll often want a way to sort the information in your ListView. This is particularly the case if
you’re showing a multicolumned list, in which case you probably want the user to be able to
trigger a sort by clicking the appropriate column.

If you need to sort using only the ListItem.Text property, you can use the Sorting property.
Just set it to configure the sort order, as shown here:

listView.Sorting = SortOrder.Ascending

If you want to sort based on more complex rules, or if you want to sort using the informa-
tion in another column, you need to do a little more work. On its own, the ListView control has
no intrinsic support for sorting by column. However, you can easily develop a custom class
that implements IComparer to fill the gap.

A class that implements IComparer has a single responsibility in life—to examine two
instances of the same object and return a 1, 0, or –1 depending on which one is deemed “larger”
than the other. It performs this work by providing a public implementation of the Compare
method of System.Collection.IComparer interface that accepts two parameters. In the custom
comparer you create, you need to create an implementation of Compare() that examines the
column data that interests you. Here’s an example:

Public Class MyComparer
 Implements IComparer

 Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
 Implements System.Collections.IComparer.Compare
 Dim listX As ListViewItem = CType(x, ListViewItem)
 Dim listY As ListViewItem = CType(y, ListViewItem)

 ' Get the integer in the second column of each ListViewItem.
 Dim intX As Integer = CInt(listX.SubItems(0).Text)
 Dim intY As Integer = CInt(listX.SubItems(0).Text)

 ' Compare this column.
 If intX > intY Then
 Return 1
 ElseIf intX < intY Then
 Return -1
 Else
 Return 0
 End If
 End Function

End Class

Macdonald_694-3C06.fm Page 182 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 183

In most cases, you can simplify your work by farming the comparison out to the CompareTo()
method in one of the base data types (such as string, int, decimal, and so on). Here’s an example of
this shortcut:

Public Function Compare(ByVal x As Object, ByVal y As Object) As Integer _
 Implements System.Collections.IComparer.Compare
 Dim listX As ListViewItem = CType(x, ListViewItem)
 Dim listY As ListViewItem = CType(y, ListViewItem)

 Dim intX As Integer = CInt(listX.SubItems(0).Text)
 Dim intY As Integer = CInt(listX.SubItems(0).Text)

 Return intX.CompareTo(intY)
End Function

Of course, you have no good reason to create a new MyComparer for every different
column you want to compare. Instead, the best option is to create a more generic comparer
class that can compare any column. To accomplish this, your class should provide a column
index property. When you create this class, you can set the column index to the column you
want to compare. To make your class even more useful, you can create another property that
allows you to switch between numeric and alphabetic comparisons (Numeric) and create a
property that lets you implement descending sorts (Descending).

Here’s the complete code you need:

Public Class ListViewItemComparer
 Implements IComparer

 Private _column As Integer
 Public Property Column() As Integer
 Get
 Return _column
 End Get
 Set(ByVal value As Integer)
 _column = value
 End Set
 End Property

 Private _numeric As Boolean = False
 Public Property Numeric() As Boolean
 Get
 Return _numeric
 End Get
 Set(ByVal value As Boolean)
 _numeric = value
 End Set
 End Property

Macdonald_694-3C06.fm Page 183 Saturday, June 17, 2006 9:47 AM

184 C H A P T E R 6 ■ L I S T S AN D T R E E S

 Private _descending As Boolean = False
 Public Property Descending() As Boolean
 Get
 Return _descending
 End Get
 Set(ByVal value As Boolean)
 _descending = value
 End Set
 End Property

 Public Sub New(ByVal columnIndex As Integer)
 Column = columnIndex
 End Sub

 Public Function Compare(ByVal x As Object, ByVal y As Object) _
 As Integer Implements System.Collections.IComparer.Compare
 Dim listX, listY As ListViewItem
 If descending Then
 listY = CType(x, ListViewItem)
 listX = CType(y, ListViewItem)
 Else
 listX = CType(x, ListViewItem)
 listY = CType(y, ListViewItem)
 End If

 If Numeric Then
 ' Convert column text to numbers before comparing.
 ' If the conversion fails, the value defaults to 0.
 Dim valX, valY As Double
 valX = Val(listX.SubItems(Column).Text)
 valY = Val(listY.SubItems(Column).Text)

 ' Perform a numeric comparison.
 Return Decimal.Compare(valX, valY)
 Else
 ' Perform an alphabetic comparison.
 Return String.Compare(_
 listX.SubItems(Column).Text, listY.SubItems(Column).Text)
 End If
 End Function

End Class

Now, you can easily create a ListView that re-sorts itself as a column header when it is
clicked by handling the ColumnClicked event, generating a new ListViewItemComparer
object, and calling the ListView.Sort() method.

Macdonald_694-3C06.fm Page 184 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 185

Private Sub listView_ColumnClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.ColumnClickEventArgs) _
 Handles listView.ColumnClick

 ' Specify an alphabetical sort based on the column that was clicked.
 listView.ListViewItemSorter = New ListViewItemComparer(e.Column)

 ' Perform the sort.
 listView.Sort()
End Sub

With a little more creativity, you can implement a reversible sort, so that clicking twice in
a row on the same column uses a descending sort instead of an ascending sort.

Private Sub listView_ColumnClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.ColumnClickEventArgs) _
 Handles listView.ColumnClick

 ' Check the current sort.
 If listView.ListViewItemSorter IsNot Nothing AndAlso _
 TypeOf listView.ListViewItemSorter Is ListViewItemComparer Then
 ' The list is sorted with ListViewItemSorter.
 ' But is it on this column?
 Dim sorter As ListViewItemComparer
 sorter = CType(listView.ListViewItemSorter, ListViewItemComparer)

 If sorter.Column = e.Column And Not sorter.Descending Then
 ' The list is already sorted on this column.
 ' Time to flip the sort.
 sorter.Descending = True

 ' Keep the ListView.Sorting property
 ' synchronized, just for tidiness.
 listView.Sorting = SortOrder.Descending
 Else
 listView.Sorting = SortOrder.Ascending
 sorter.Descending = False
 sorter.Column = e.Column
 End If

 Else
 ' No ListViewItemSorter sort is applied.
 ' Use the default sort.
 Dim sorter As New ListViewItemComparer(e.Column)
 listView.ListViewItemSorter = sorter
 End If

 ' Perform the sort.
 listView.Sort()
End Sub

Macdonald_694-3C06.fm Page 185 Saturday, June 17, 2006 9:47 AM

186 C H A P T E R 6 ■ L I S T S AN D T R E E S

■Note Another interesting trick is column reordering. This allows the user to rearrange columns by dragging
the column header. This technique takes place automatically if you set the ListView.AllowColumnReorder
property to True. Unfortunately, there is no easy way to save these view settings and apply them later. To
manage this type of advanced data display, you may want to consider the DataGridView control described in
Chapter 15.

Label Editing
The ListView includes an automatic label-editing feature that you have probably already witnessed
in Windows Explorer. You trigger the label editing by clicking a selected item once or by pressing
the F2 key. This automatic editing is confusing to many new users. If you use it, you should also
provide another way for the user to edit the corresponding information.

To enable label editing, set the LabelEdit property to True. You can programmatically start
label editing for a node using the node’s BeginEdit() method.

Private Sub cmdStartEdit_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdStartEdit.Click

 ' The user clicked a dedicated Edit button.
 ' Put the label of the first selected item into edit mode.
 If listView.SelectedItems.Count > 0 Then
 listView.SelectedItems(0).BeginEdit()
 End If

 ' (You might also want to disable other controls until the user completes
 ' the edit and the AfterLabelEdit event fires.)
End Sub

In addition, you can prevent certain nodes from being edited by handling the
BeforeLabelEdit event and setting the Cancel flag to True. You can also fix any invalid changes
by reacting to the AfterLabelEdit event.

■Tip If you want to use the BeginEdit() method but prevent users from being able to modify the label by
clicking it, you must set the LabelEdit property to True. To prevent users from editing labels directly, set a
special form-level property (such as AllowEdit) before you use the BeginEdit() method, and check for this
property in the BeforeLabelEdit event. If it has not been set, this indicates that the user initiated the edit by
double-clicking, and you should cancel it. If you forget to set LabelEdit to True, a call to BeginEdit() raises a
System.InvalidOperationException.

Macdonald_694-3C06.fm Page 186 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 187

ListView Grouping
The ListView examples you’ve seen so far gave you a “flat” look at your data. All the items have
had equal precedence. And although the ListView lacks the muscle to represent complex hier-
archies of information (an area where the TreeView excels), it can subgroup items into separate
categories.

To use grouping, take these two steps:

1. Define the groups you want to use through the ListView.Groups collection.

2. Put each ListViewItem into the appropriate group when you create it by setting the
ListViewItem.Group property.

In addition, you need to make sure the ListView.ShowGroups property is set to True (the
default). Groups are respected in all view modes except List. Figure 6-4 shows an example in
grid view.

Figure 6-4. Using ListView subgrouping

To define the grouping, you need to add one ListViewGroup object for each group to the
ListView.Groups property. The ListViewGroup class has two important properties—Header
(the text title that appears above the group) and HeaderAlignment (how the text is aligned in
the ListView).

Here’s the code that creates category labels for the product ListView shown in Figure 6-4:

Dim dt As DataTable = StoreDB.GetCategories()
For Each dr As DataRow In dt.Rows
 listView.Groups.Add(dr("CategoryID").ToString(), _
 dr("CategoryName").ToString())
Next

The CategoryName is used for the header text, and the CategoryID is used for the key in
the collection. That means you can retrieve the group from the ListView.Groups collection later
using the CategoryID.

Macdonald_694-3C06.fm Page 187 Saturday, June 17, 2006 9:47 AM

188 C H A P T E R 6 ■ L I S T S AN D T R E E S

And here’s the code that attaches each product to the appropriate group based on the
value of the CategoryID:

For Each dr As DataRow In dt.Rows
 Dim listItem As New ListViewItem(dr("ModelName").ToString())
 listItem.Group = listView.Groups(dr("CategoryID").ToString())

 ...
 listView.Items.Add(listItem)
Next

Searching and Hit Testing
The ListView has a number of methods that can help you find items. Using these methods
(described in Table 6-4), you can find the ListViewItem at a specific mouse coordinate or with
specific text. Once you’ve found an item, you can retrieve other ListViewItem properties or use
EnsureVisible() to scroll it into view.

Table 6-4. Searching the ListView

Member Description

FindItemWithText() Finds the first ListView whose text begins with the string you supply.
You can use an overload of this method that searches subitems as well
(look for the Boolean includeSubItemsInSearch parameter) and starts
at a specific position (look for the startIndex parameter). If no match is
found, null is returned.

EnsureVisible() Scrolls to make sure a specified ListViewItem is visible. You indicate the
item by its zero-based row index. Alternatively, you can set the ListView.
TopItem property to point to the ListViewItem you want to appear at
the top of the list (the ListView is then scrolled, so that this is the first
visible item).

GetItemAt() Retrieves the ListViewItem at the given X and Y coordinates. Useful for
hit testing and drag-and-drop operations.

FindNearestItem() Similar to GetItemAt() but finds items that are near (but not directly at)
the given point. You provide a value from the SearchDirectionHint
enumeration to indicate the direction to search in (Up, Down. Left, or
Right). If no item is found and the border of the control is reached, this
method returns null.

HitTest() Similar to GetItemAt() but returns a ListViewHitTestInfo object instead
of a ListViewItem. The ListViewHitTestInfo allows you to distinguish
whether the clicked element was item text or subitem text (just check
the Item and SubItem properties) and exactly what part of the
ListViewItem was clicked (using the Location property). For example,
you can distinguish between a click on an image in the ListViewItem,
the text, the client area to the side, and so on.

InsertionMark The insertion mark helps indicate (to the user) where the target of a drag-
and-drop operation will be placed. The InsertionMark property returns a
ListViewInsertionMark object. You can adjust the color of the insertion
mark and set the ListViewInsertionMark.Index property to determine
where it appears during a drag-and-drop operation.

Macdonald_694-3C06.fm Page 188 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 189

ListView Virtualization
One limitation of the ListView is that, like all Windows controls, it stores all its ListView items
in memory. That means if you want to create a ListView that shows tens of thousands of data-
heavy records, you’re left with an unavoidable footprint in memory.

In .NET 2.0, the ListView adds support for virtualization, which allows it to support large
sets of data. With virtualization, the ListView loads only the data that’s currently being displayed.
As the user scrolls to a new place in the list, the appropriate items are requested and filled in as
needed. This separates data storage that’s associated with the ListView from the control itself,
allowing you to implement a more efficient way of retrieving and caching data.

The following example demonstrates ListView virtualization with a list of order records
stored in a SQL Server database. At any given time, 100 records are cached in the client’s memory.
As the client scrolls to new information, these records are discarded, and a new set of 100 are
fetched. This design assumes that the records are extremely large, and the memory saving of
storing only 100 at a time trumps the additional database work and latency that’s involved in
querying the database multiple times.

IS VIRTUALIZATION A GOOD IDEA?

It goes without saying that there’s a lot of design and testing required to create a truly efficient virtualized ListView.
You need to weigh the memory requirements against the database latency (for a single user) and the database
load (which affects the scalability for multiple users).

For example, if the cost of retrieving the records is high, you might choose to cache a much larger
number of records but still retrieve them only in bite-sized chunks. It’s also up to you to determine when to
fetch new ones (asynchronously, on demand, and so on) and how to optimize the process of getting a subset
of records. Depending on your approach, getting a single page of records may be just as intensive for the data-
base as the cost of performing the whole query. If it is, your memory-friendly virtualization technique will lead
to a database-intensive bottlenecked application.

Finally, you should always ask yourself whether you really need all that data. If nothing else, scrolling
through pages of uninteresting information might annoy the user. A more straightforward option is to use (or
force the user to choose) tight searching criteria, so that only a few hundred records are shown at a time.

Selecting just the page of records you need isn’t as easy as it seems at first. You might think
you can select a range of records based on a unique identity field, but you have no easy way to
know how many values fall in a specified range.

For example, imagine you want to get the rows in position 40 to 50. Even if you know the
first row has a unique identity value of 1, you have no guarantee that row 40 will have an
identity of 41. Unless all the records were inserted in one batch, it’s likely that some identity
values are skipped.

Unfortunately, SQL Server has no way to query an arbitrary page of records from a query
(unlike Oracle, which provides the ROWNUM() function). To code around this limitation, you
can use a stored procedure like the following one. It copies all the records from the Orders table
into a new temporary table, numbering them with a new unique identifier. It then extracts the
specified subset of rows by searching on the new unique identifier.

Macdonald_694-3C06.fm Page 189 Saturday, June 17, 2006 9:47 AM

190 C H A P T E R 6 ■ L I S T S AN D T R E E S

CREATE PROCEDURE GetOrdersByPage(@FromID int, @ToID int)
AS

-- Create a temporary table with the columns you are interested in.
CREATE TABLE #TempOrders
(
 ID int IDENTITY PRIMARY KEY,
 OrderID int,
 ShippedDate datetime
)

-- Fill the table with all the records.
INSERT INTO #TempOrders
(
 OrderID,
 ShippedDate
)
SELECT
 OrderID,
 ShippedDate
FROM
 Orders ORDER BY OrderID

-- Select the page of records.
SELECT * FROM #TempOrders WHERE ID >= @FromID AND ID <= @ToID
GO

Of course, if you want to make sure this performs well, you might want to consider keeping
the temporary table around for a longer period of time and using a cluster index to make the
range searching more efficient. (This example also assumes that no one else will insert new
order records while a user is scrolling through the ListView.) However, this simple stored
procedure is enough to create the virtual ListView test.

In the client, it makes sense to create a helper class that exposes the functionality you
need. To create the ListView, you need a way to get the total number of available orders and
a way to call the GetOrdersByPage stored procedure to extract just the information in which
you’re interested.

Public Class NorthwindDB

 Private Shared connectionString As String = "Data Source=localhost;" & _
 "Initial Catalog=Northwind;Integrated Security=SSPI"

 Public Shared Function GetOrdersCount() As Integer
 ' Create the command and the connection.
 Dim sql As String = "SELECT COUNT(*) FROM Orders"
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand(sql, con)

Macdonald_694-3C06.fm Page 190 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 191

 ' Get the number of records.
 Using con
 con.Open()
 Return CInt(cmd.ExecuteScalar())
 End Using
 End Function

 Public Shared Function GetOrders(ByVal fromOrderID As Integer, _
 ByVal toOrderID As Integer) As DataTable
 ' Create the command and the connection.
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand("GetOrdersByPage", con)
 cmd.CommandType = CommandType.StoredProcedure
 cmd.Parameters.Add(New SqlParameter("@FromID", SqlDbType.Int, 4))
 cmd.Parameters("@FromID").Value = fromOrderID
 cmd.Parameters.Add(New SqlParameter("@ToID", SqlDbType.Int, 4))
 cmd.Parameters("@ToID").Value = toOrderID

 ' Prepare to fill a new DataSet.
 Dim adapter As New SqlDataAdapter(cmd)
 Dim ds As New DataSet()

 ' Get the appropriate "page" of order records.
 adapter.Fill(ds)

 ' Define the primary key (required for searching).
 ds.Tables(0).PrimaryKey = _
 New DataColumn() {ds.Tables(0).Columns("ID")}

 Return ds.Tables(0)
 End Function

End Class

To designate a ListView as virtual, set the VirtualMode property to True, and set the
VirtualListSize property to reflect the total number of rows. However, don’t add anything to
the ListView.Items collection.

listView.VirtualMode = True
listView.VirtualListSize = NorthwindDB.GetOrdersCount()

When the ListView needs an item to display, it fires the RetrieveVirtualItem event. Your
code must examine the requested index and then create the corresponding ListViewItem.

The RetrieveVirtualItem event fires for every item you want to display, so it’s up to you to
determine how you want to batch the retrieval process. In this example, the rows are cached in
a DataTable. If the required row is found in the DataTable, it’s used automatically. Otherwise,
a new query is performed to find the nearest range of 100 rows. (For example, if row 50 is required,
the code requeries rows 1 to 100.)

Macdonald_694-3C06.fm Page 191 Saturday, June 17, 2006 9:47 AM

192 C H A P T E R 6 ■ L I S T S AN D T R E E S

Private dtCachedItems As DataTable

Private Sub listView_RetrieveVirtualItem(ByVal sender As Object, _
 ByVal e As RetrieveVirtualItemEventArgs) _
 Handles listView.RetrieveVirtualItem

 ' Check whether the item is in the local cache.
 ' Remember to add 1 to the index because SQL Server counts from 1 up,
 ' while the ListView counts from 0.
 Dim match As DataRow = Nothing
 If dtCachedItems IsNot Nothing Then
 match = dtCachedItems.Rows.Find(e.ItemIndex + 1)
 End If

 If match Is Nothing Then
 ' The item isn't in memory.
 ' Get a new range of 100 records.
 Dim fromNumber, toNumber As Integer
 If e.ItemIndex < 50 Then
 fromNumber = 0
 Else
 fromNumber = e.ItemIndex - 50
 End If

 toNumber = fromNumber + 100
 dtCachedItems = NorthwindDB.GetOrders(fromNumber, toNumber)
 match = dtCachedItems.Rows.Find(e.ItemIndex + 1)

 lblStatus.Text = String.Format(_
 "Fetched rows from {0} to {1}.", _
 fromNumber.ToString(), toNumber.ToString())
 End If

 ' Create the ListViewItem for the matching record.
 e.Item = New ListViewItem(match("OrderID").ToString())
 e.Item.SubItems.Add(match("ShippedDate").ToString())
End Sub

Figure 6-5 shows the result.
This approach is not the most efficient possible implementation, because it’s likely that

the DataTable being discarded has some of the information in the new DataTable. A more
intelligent implementation would check what data is available and query only new records.
(For example, if you have rows 50 to 150 and scroll to row 151, a new query is performed for
rows 101 to 201. A better implementation would be to check the DataTable, discard rows 50
to 100, and just query rows from 151 to 201.)

Macdonald_694-3C06.fm Page 192 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 193

Figure 6-5. A ListView that uses virtualization

■Tip The RetrieveVirtualItem event fires when an item is obscured and then displayed for any reason. This
includes not only scrolling but also minimizing and maximizing the window and showing content over the top
(such as a message box). For all these reasons, it’s important to have the most efficient algorithm for caching
and querying items.

Because all the items aren’t available in the ListView at any one time, the methods for
searching for an item won’t work. If you want to supply this functionality, handle the
SearchForVirtualItem event and supply your own logic to query the data source for the
requested information.

TreeView Basics
The TreeView is a hierarchical collection of elements, which are called nodes. This collection is
provided through the TreeView.Nodes property. With this collection, it’s quite easy to add a
few basic nodes.

treeFood.Nodes.Add("Apple")
treeFood.Nodes.Add("Peach")
treeFood.Nodes.Add("Tofu")
treeFood.Nodes.Add("Apple")

In this example, four nodes are added with descriptive text. The .NET implementation
of the TreeView doesn’t require a unique key for relating parent nodes to child nodes (which
dodges a few headaches). This means it’s easier to quickly insert a new node. It also means that
unless you take specific steps to record a unique identifier with each item, you won’t be able to

Macdonald_694-3C06.fm Page 193 Saturday, June 17, 2006 9:47 AM

194 C H A P T E R 6 ■ L I S T S AN D T R E E S

distinguish duplicates. For example, the only difference between the two “Apple” entries in the
example is their respective position in the list.

To specify more information about a node, you have to construct a TreeNode object sepa-
rately and then add it to the list. In the example that follows, a unique identifier is stored in the
Tag property:

Dim newNode As New TreeNode()
newNode.Text = "Apple"
newNode.Tag = 1
treeFood.Nodes.Add(newNode)

In this case, a simple integer is used, but the Tag property can hold any type of object if
needed, even a reference to a corresponding database record.

For Each drFood As DataRow In dtFoods.Rows
 Dim newNode As New TreeNode()
 newNode.Text = drFoods("Name").ToString()
 newNode.Tag = drFood
 treeFood.Nodes.Add(newNode)
Next

TreeView Structure
You can nest nodes in a complex structure with a virtually unlimited number of layers. Adding
subnodes is similar to adding submenu items. First you find the parent node, and then you add
the child node to the parent’s Nodes collection.

Dim node As TreeNode
node = treeFood.Nodes.Add("Fruits")
node.Nodes.Add("Apple")
node.Nodes.Add("Peach")
node = treeFood.Nodes.Add("Vegetables")
node.Nodes.Add("Tomato")
node.Nodes.Add("Eggplant")

The Add() method always returns the newly added node object. You can then use this
node object to add child nodes. If you wanted to add child nodes to the Apple node, you would
follow the same pattern and catch the node reference returned by the Add() method.

This code produces a hierarchical tree structure, as shown in Figure 6-6.

Macdonald_694-3C06.fm Page 194 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 195

Figure 6-6. A basic TreeView

Microsoft suggests that the preferred way to add items to a TreeView is by using the
AddRange() method to insert an entire block of nodes at once. It works similarly but requires
an array of node objects.

Dim nodes(1) As TreeNode

nodes(0) = new TreeNode("Fruits")
nodes(0).Nodes.Add("Apple")
nodes(0).Nodes.Add("Peach")

nodes(1) = new TreeNode("Vegetables")
nodes(1).Nodes.Add("Tomato")
nodes(1).Nodes.Add("Eggplant")

treeFood.Nodes.AddRange(nodes)

By using this technique, you ensure that the TreeView is updated all at once, improving
performance dramatically. You can achieve a similar performance gain by using the BeginUpdate()
and EndUpdate() methods, which suspends the graphical refresh of the TreeView control, allowing
you to perform a series of operations at once.

' Suspend automatic refreshing.
treeFood.BeginUpdate()

' (Add or remove several nodes here.)

' Enable automatic refreshing.
treeFood.EndUpdate()

■Note If you use the AddRange() method, the BeginUpdate() and EndUpdate() methods are used behind the
scenes, provided you are adding a large enough collection of nodes.

Macdonald_694-3C06.fm Page 195 Saturday, June 17, 2006 9:47 AM

196 C H A P T E R 6 ■ L I S T S AN D T R E E S

TreeView Navigation
The TreeView’s multileveled structure can make it difficult to navigate through your tree structure
to perform common tasks. For example, you might want to use a TreeView to provide a hierar-
chical list of check box settings (as Windows does for the View tab in its Folder Options dialog
box, shown in Figure 6-7). You can configure the TreeView to display check boxes next to each
node by setting a single property.

treeSettings.CheckBoxes = True

Figure 6-7. Using a TreeView to configure settings

When you click the OK or Apply button, you then search through the list of settings and
make the corresponding changes.

The following section of code might seem like a reasonable attempt, but it won’t work:

For Each node As TreeNode In treeSettings.Nodes
 ' (Process node here.)
Next

The problem is that the TreeView.Nodes collection contains only the first level of the
nodes hierarchy, which in this case corresponds to the main groupings (such as “Files and
Folders”). The correct code goes another level deep:

For Each node As TreeNode In treeSettings.Nodes
 ' (Process first-level node here.)

Macdonald_694-3C06.fm Page 196 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 197

 For Each nodeChild As TreeNode In node.Nodes
 ' (Process second-level node here.)
 Next
Next

Alternatively, if you have a less structured organization where similar types of elements are
held at various levels, you need to search through all the nodes recursively. The following code
calls a ProcessNodes procedure recursively until it has walked through the entire tree structure:

Private Sub cmdOK_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdOk.Click
 ' Start the update.
 ProcessNodes(treeSettings.Nodes)
End Sub

Private Sub ProcessNodes(ByVal nodes As TreeNodeCollection)
 For Each node As TreeNode In nodes
 ProcessNode(node)
 ProcessNodes(node.Nodes)
 Next
End Sub

Private Sub ProcessNode(ByVal node As TreeNode)
 ' Check whether the node interests us.
 ' If it does, process it.
 ' To verify that this routine works, display the node text.
 Debug.WriteLine(node.Text)
End Sub

■Tip To count all the nodes in your tree, you don’t need to enumerate through the collections and subcollections.
Instead, you can use the TreeView.GetNodeCount() method. Make sure you specify True for the required
parameter—this indicates you want to count the items in subtrees. Each TreeNode object also provides a
GetNodeCount() method, allowing you to count the items in selected branches of a tree.

You can also use relative-based navigation. In this model, you don’t iterate through the
whole collection. Instead, you go from a current node to another node.

currentNode = currentNode.Parent.Parent.NextNode

This example takes the current node, finds its parent (by moving one level up the hierarchy),
then finds the parent’s parent, and finally moves to the next sibling (the next node in the list
that is at the same level). If there is no next node, a null reference is returned. If one of the
parents is missing, an error occurs. Table 6-5 lists the relative-based navigation properties you
can use.

Macdonald_694-3C06.fm Page 197 Saturday, June 17, 2006 9:47 AM

198 C H A P T E R 6 ■ L I S T S AN D T R E E S

The next example shows how you could use the relative-based navigation to walk over
every node in a tree:

Private Sub cmdOK_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdOk.Click
 ' Start the update.
 ProcessNodes(treeUsers.Nodes(0))
End Sub

Private Sub ProcessNodes(nodeStart As TreeNode)
 Do
 ProcessNode(nodeStart)

 ' Check for contained (child nodes).
 If nodeStart.Nodes.Count > 0 Then
 ProcessNodes(nodeStart.FirstNode)
 End If

 ' Move to the next (sibling) node.
 nodeStart = nodeStart.NextNode
 Loop While nodeStart IsNot Nothing
End Sub

Private Sub ProcessNode(ByVal node As TreeNode)
 ' Check whether the node interests us.
 ' If it does, process it.
 ' To verify that this routine works, display the node text.
 Debug.WriteLine(node.Text)
End Sub

This type of navigation is generally less common in .NET programs, because the collection-
based syntax is more readable and easier to use.

Table 6-5. Relative-Based Navigation Properties

Node Property Moves…

Parent One level up the hierarchy, to the node that contains the current node

FirstNode One level down the node hierarchy, to the first node in the current node’s
Nodes collection

LastNode One level down the node hierarchy, to the last node in the current node’s
Nodes collection

PrevNode To the node at the same level, but just above the current node

NextNode To the node at the same level, but just below the current node

Macdonald_694-3C06.fm Page 198 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 199

Manipulating Nodes
Now that you have a good idea of how to add nodes and find them in the tree structure, it’s time
to consider how you can delete and rearrange nodes. Once again, you use the methods of the
Nodes collection.

Generally, the best way to delete a node is by first obtaining a reference to the node. You
could also remove a node using its index number, but index numbers can change as nodes are
removed or if sorting is used, so they raise the potential for unexpected problems.

Once again, consider the example tree of food products:

Dim node As TreeNode = treeFood.Nodes.Add("Fruits")
node.Nodes.Add("Apple")
node.Nodes.Add("Peach")

node = treeFood.Nodes.Add("Vegetables")
node.Nodes.Add("Tomato")
node.Nodes.Add("Eggplant")

You can now search for the “Fruits” node in the collection and delete it. Note that when
you use the Remove() method, all the child nodes are automatically deleted as well.

For Each searchNode As TreeNode In treeFood.Nodes
 If searchNode.Text = "Fruits" Then
 treeFood.Nodes.Remove(searchNode)
 Exit For
 End If
Next

You can use the Remove() method to delete a node that exists several layers down the hier-
archy. In other words, if you obtain a reference to the “Apple” node, you can delete it directly
from the treeFood.Nodes collection even though the collection doesn’t really contain that node.

Dim nodeApple, nodeFruits As TreeNode
nodeFruits = treeFood.Nodes.Add("Fruits")
nodeApple = nodeFruits.Nodes.Add("Apple")

' This works. It finds the nodeApple in the nodeFruits.Nodes subcollection.
treeFood.Nodes.Remove(nodeApple)

' This also works. It directly removes the apple from nodeFruits.Nodes.
nodeFruits.Nodes.Remove(nodeApple)

The Nodes property provides an instance of the Remove() method. Table 6-6 lists a few
more of its node manipulation features. Some, such as the ability to use Clear() to wipe all child
nodes and Insert() to add a node at a specific position, are particularly useful.

.NET provides another way to manipulate nodes—using their own methods. For example,
you can delete a node without worrying about what TreeView it belongs to by using the Node.
Remove() method. This shortcut is extremely convenient.

nodeApple.Remove()

Macdonald_694-3C06.fm Page 199 Saturday, June 17, 2006 9:47 AM

200 C H A P T E R 6 ■ L I S T S AN D T R E E S

Nodes also provide a built-in clone method that copies the node and any child nodes. This
can allow you to transfer a batch of nodes between TreeView controls without needing to iterate
over every child node. (A node object cannot be assigned to more than one TreeView control.)

For Each node As TreeNode In treeView.Nodes
 ' Clone this node and all the sublevels.
 Dim nodeNew As TreeNode = CType(node.Clone(), TreeNode)

 ' Add the nodes to a new tree.
 treeDestination.Nodes.Add(nodeNew)
Next

Selecting Nodes
On their own, TreeNode objects don’t raise any events. The TreeView control, however, provides
notification about important node actions, such as selections and expansions. Each of these
actions is composed of two events: a “Before” event that occurs before the TreeView display is
updated and an “After” event that allows you to react to the event in the traditional way when
it is completed. (You’ll see in some of the advanced examples how the “Before” event can allow
you to perform just-in-time node additions. This technique is used in Chapter 11 with a directory
tree and in Chapter 8 with a database-browser application.) Table 6-7 lists the key TreeView events.

Table 6-6. Useful TreeNodeCollection Methods

Method Description

Add() Adds a new node at the bottom of the list.

AddRange() Adds an array of node objects. You can use this technique to update a TreeView
in a single batch operation and thereby optimize performance.

Clear() Clears all the child nodes of the current node. Any sublevels are also deleted,
meaning that if you call this method for the TreeView, the whole structure
is cleared.

Contains() Returns True or False, depending on whether a given node object is currently
part of the Nodes collection. If you want to provide a search that is more than
one level deep, you need to write your own method and use recursion, as shown
in the previous examples.

IndexOf() Returns the current (zero-based) index number for a node. Remember, node
indexes change as nodes are added and deleted. This method returns –1 if the
node is not found.

Insert() This method allows you to insert a node in a specific position. It’s similar to the
Add() method, but it takes an additional parameter specifying the index number
where you want to add the node. The node that is currently there is shifted down.
Unlike the Add() method, the Insert() method does not return the node reference.

Remove() Accepts a node reference and removes the node from the collection. All children
are removed, and all subsequent tree nodes are moved up one position.

Macdonald_694-3C06.fm Page 200 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 201

Every custom event in the TreeView is node-specific and provides a reference to the relevant
node. The TreeView control also inherits some generic events that allow it to react to mouse
clicks and other actions that occur to any part of the control, but these are generally not very
useful. These TreeView node-based events provide a TreeViewEventArgs object (for AfterTif()
events) or TreeViewCancelEventArgs (for BeforeTif() events). This object has a Node property
that provides the affected node and an Action property that indicates how the action was
triggered. The Action property uses the TreeViewAction enumeration and can indicate whether
an event was caused by a key press, a mouse click, or a node expansion/collapse. The
TreeViewCancelEventArgs also adds a Cancel property that you can use to cancel the attempted
operation.

The next example reacts to the AfterSelect event and gives the user the chance to remove
the selected node. You’ll notice that when a node is deleted, the closest node is automatically
selected.

Private Sub treeUsers_AfterSelect(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.TreeViewEventArgs) _
 Handles treeUsers.AfterSelect

 Dim message As String
 message = "You selected " & e.Node.Text & " with this action: " & _
 e.Action.ToString() & vbNewLine & vbNewLine & "Delete it?"

 Dim result As DialogResult
 result = MessageBox.Show(message, "Delete", MessageBoxButtons.YesNo)
 If result = DialogResult.Yes Then
 e.Node.Remove()
 End If
End Sub

Table 6-7. TreeView Node Events

Event Description

BeforeCheck and
AfterCheck

Occur when a user clicks to select or deselect a check box.

BeforeCollapse and
AfterCollapse

Occur when a user collapses a node, either by double-clicking it or by
using the minus box.

BeforeExpand and
AfterExpand

Occur when a user expands a node, either by double-clicking it or by
using the plus box.

BeforeSelect and
AfterSelect

Occur when a user clicks a node. These events can also be triggered for
other reasons. For example, deleting the currently selected node causes
another node to be selected.

BeforeLabelEdit and
AfterLabelEdit

Occur when a user edits a node label. This is possible only when TreeView.
LabelEdit is True (in which case you can start an edit by calling BeginEdit(),
or the user can initiate it by clicking once on the node text).

Macdonald_694-3C06.fm Page 201 Saturday, June 17, 2006 9:47 AM

202 C H A P T E R 6 ■ L I S T S AN D T R E E S

Depending on your TreeView, just having a reference to the node object may not be enough.
For example, you might add duplicate node entries to different subgroups. This technique
isn’t that unusual; for example, you might have a list of team members subgrouped by role
(programmer, tester, documenter, and so on). A single team member might play more than
one role. However, depending on what subgroup the selected node is in, you might want to
perform a different action.

In this case, you need to determine where the node is positioned. You can use the node-
relative properties (such as Parent) to move up the tree, or you can retrieve a string that repre-
sents the full path from the node’s FullPath property. A few possible values for the FullPath
property are as follows:

Fruits
Fruits\Peach
Country\State\City\Street

In these examples, a slash separates each tree level, but you can use a different delimiter
by setting the TreeView.PathSeparator property.

More Advanced TreeViews
The TreeView is a sophisticated control, and it provides a great deal of customization possibil-
ities. Table 6-8 describes some of the additional appearance-related properties.

Table 6-8. TreeView Appearance Properties

Property Description

BackgroundImage Specifies a background image that will appear behind the items
in the list. This item may be stretched, stretched without distor-
tion (“zoomed”), tiled, or centered according to the value of the
BackgroundImageLayout property.

CheckBoxes Set this to True to display a check box next to each node.

FullRowSelect When set to True, selecting a node shows a highlight box that
spans the full width of the tree. The FullRowSelect property is
ignored if ShowLines is True.

HotTracking When set to True, the text in a node changes to a highlighted
hyperlink style when the user positions the mouse over it.

Indent Specifies the left-to-right distance between each level of items in
the tree, in pixels.

ShowLines, ShowPlusMinus,
and ShowRootLines

Boolean properties that configure the appearance of lines linking
each node, the plus/minus box that allows users to easily expand
a node, and the root lines that connect the first level of objects.

LineColor Allows you to configure the color of the node lines.

Macdonald_694-3C06.fm Page 202 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 203

The TreeNode also provides some useful properties that haven’t been discussed yet (see
Table 6-9). Mainly, these properties allow you to determine the state of node. Additional prop-
erties exist that let you modify a node’s background and foreground color and determine its
relatives, as you saw earlier.

■Tip In .NET 2.0, the TreeNode class adds a few useful formatting-related properties you can use to tweak
the appearance of the TreeView on a node-by-node basis without resorting to full-out custom drawing. These
include ForeColor, BackColor, and NodeFont.

Node Pictures
One frequently used feature is the ability to assign icons to each node. As with all modern
controls, this works by using a paired ImageList control.

DrawNode, DoubleBuffered,
and the DrawNode event

You can set the DrawNode property to allow custom drawing.
Use OwnerDrawAll if you want to draw all elements of a node or
OwnerDrawText if you want the TreeView to handle details such
as node lines, check boxes, icons, and the expand/collapse boxes.
In either case, you need to handle the DrawItem event to perform
the drawing. In addition, you can set the DoubleBuffered property
to True to optimize the drawing process. Chapter 12 has more
information about owner-drawn controls.

Sorted and
TreeViewNodeSorter

When Sorted is set to True, nodes are sorted in each group alphabet-
ically using their text names. If you want to specify a custom sort
order, supply an IComparer object to the TreeViewNodeSorter
property (as demonstrated earlier with the ListView).

Table 6-9. TreeNode State Properties

Property Description

Checked True if you are using a TreeView with check box nodes and the node is checked.

IsEditing True if the user is currently editing this node’s label. Label editing is explained
later in this section.

IsExpanded True if this node is expanded, meaning its child nodes are displayed.

IsSelected True if this is the currently selected node. Only one node can be selected at a
time, and you can control which one is using the TreeView.SelectedNode property.

IsVisible True if the node is currently visible. A node is not visible if its parent is collapsed
or if you need to scroll up or down to find it. To programmatically show a node,
use its EnsureVisible() method.

Table 6-8. TreeView Appearance Properties

Property Description

Macdonald_694-3C06.fm Page 203 Saturday, June 17, 2006 9:47 AM

204 C H A P T E R 6 ■ L I S T S AN D T R E E S

treeFood.ImageList = imagesFood

You can assign a default picture index that will be used by any node that does not specifically
override it.

treeFood.ImageIndex = 0

You can set an image for each individual node through the properties of the TreeNode
object. Each node can have two linked images: a default image and one that is used when the
node is selected.

Dim node As New TreeNode("Apples")
node.ImageIndex = 1
node.SelectedImageIndex = 2
treeFood.Nodes.Add(node)

Unfortunately, it is not possible to have a different icon when the node is expanded from
the one you use when it is collapsed (unless you handle the BeforeExpand and BeforeCollapse
events to implement this behavior).

Expanding and Collapsing Levels
You’ve already learned how to react when the user expands and collapses levels. However, you
can also programmatically expand and collapse nodes. This trick has many uses:

• Restoring a TreeView control to its “last viewed” state, so users can continue right where
they left off with the control in the same state.

• Ensuring that a particular node or set of nodes is visible to correspond with another
activity. For example, the user might have made a selection in a different part of the
window or might be using a wizard that is stepping through the process.

• Configuring the TreeView when the window is first loaded, so that the user sees the most
important (or most commonly used) nodes.

.NET provides a few ways to accomplish these tasks. First, every node provides four useful
methods: Collapse(), Expand(), ExpandAll(), and Toggle(). The Expand() method acts on the
immediate children, while ExpandAll() expands the node and all subnodes. To expand or
collapse the entire tree, you can use one of the TreeView methods: ExpandAll() or CollapseAll().

node.Expand() ' Expand the node to display its immediate children.
node.Toggle() ' Switch the node: it was expanded, so now it is collapsed.
node.ExpandAll() ' Expand all nodes and subnodes.
tree.ExpandAll() ' Expand the entire tree.

Second, you can use a node’s EnsureVisible() method. This extremely useful method
expands whatever nodes are required to make a node visible and scrolls to the appropriate
location. This is extremely useful if you are iterating through a tree looking for a node that
matches certain criteria.

Macdonald_694-3C06.fm Page 204 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 205

' Search the first level of a TreeView control.
For Each node As TreeNode In tree.Nodes

 If Val(node.Tag) = 12 Then
 ' Collapse the whole tree to hide unimportant nodes.
 tree.CollapseAll()

 ' Expand just the node that interests the user.
 node.EnsureVisible()

 ' Stop searching the tree.
 Exit For
 End If
Next

The TreeView control also provides a TopNode property that references the first fully
visible node at the top of the current display window. It also provides a VisibleCount property
that identifies the maximum number of nodes that can be displayed at a time in the TreeView
at its current height.

TreeView Drag-and-Drop
TreeView controls can support drag-and-drop operations just as easily as any other .NET control.
However, when information is dragged onto a TreeView, you generally need to determine what
node it was “dropped” on. To perform this magic, you need to perform your own hit testing,
with a little help from the TreeView.GetNodeAt() method.

The following example presents a form with two TreeViews. The user can drag a node from
one TreeView to the other TreeView or to another location in the same TreeView (see Figure 6-8).
When a node is dropped, its content is copied, and the original branch is left untouched. Best
of all, the code is generic, meaning that one set of event handlers responds to the events from
both trees.

Figure 6-8. Drag-and-drop operations with a TreeView

To start, you need to make sure both TreeView controls can receive drag-and-drop events.
At the same time, disable the HideSelection property, so that you can highlight the node that
will be the drop target, even if the TreeView doesn’t have the focus.

Macdonald_694-3C06.fm Page 205 Saturday, June 17, 2006 9:47 AM

206 C H A P T E R 6 ■ L I S T S AN D T R E E S

treeOne.AllowDrop = True
treeTwo.AllowDrop = True
treeOne.HideSelection = False
treeTwo.HideSelection = False

The next step is to create the MouseDown event-handling logic that starts the drag-and-
drop operation. This code needs to investigate whether there is a node under the mouse pointer.
If there is, the node is copied (along with all subnodes), and a drag-and-drop operation is started.

Private Sub tree_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles treeOne.MouseDown, treeTwo.MouseDown

 ' Get the tree.
 Dim tree As TreeView = CType(sender, TreeView)

 ' Get the node underneath the mouse.
 Dim node As TreeNode = tree.GetNodeAt(e.X, e.Y)
 tree.SelectedNode = node

 ' Start the drag-and-drop operation with a cloned copy of the node.
 If node IsNot Nothing Then
 tree.DoDragDrop(node.Clone(), DragDropEffects.Copy)
 End If
End Sub

Note that all the TreeView event handlers handle events in both trees. For example, the
MouseDown event handler is attached to treeOne.MouseDown and treeTwo.MouseDown.
This provides the flexibility that allows the user to drag nodes back and forth between both
trees. In addition, this means that the event handler must retrieve the TreeView reference from
the sender parameter to determine which tree fired the event.

Next, both trees need to handle the DragOver event. Note that you use this event, instead
of the DropEnter event, because the operation is permitted or allowed based on whether there
is a node under the current mouse pointer.

Private Sub tree_DragOver(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles treeOne.DragOver, treeTwo.DragOver

 ' Get the tree.
 Dim tree As TreeView = CType(sender, TreeView)

 ' Drag and drop denied by default.
 e.Effect = DragDropEffects.None

 ' Get the dragged object.
 Dim nodeSource As TreeNode = e.Data.GetData(GetType(TreeNode))

Macdonald_694-3C06.fm Page 206 Saturday, June 17, 2006 9:47 AM

CH A P T E R 6 ■ L I S T S A N D T R E E S 207

 ' Is it a valid format?
 If nodeSource IsNot Nothing Then

 ' Get the screen point.
 Dim pt As New Point(e.X, e.Y)

 ' Convert to a point in the TreeView's coordinate system.
 pt = tree.PointToClient(pt)

 ' Is the mouse over a valid node?
 Dim node As TreeNode = tree.GetNodeAt(pt)
 If node IsNot Nothing Then
 ' (You could also check the state of the Ctrl key to decide
 ' whether to copy or move nodes.)
 e.Effect = DragDropEffects.Copy
 tree.SelectedNode = node
 End If
 End If
End Sub

Note that the drag-and-drop events provide mouse coordinates in the screen’s frame of
reference (measuring from the top-left corner of the desktop). To perform the hit testing, you
need to convert this point to a point in the TreeView control’s coordinate system (which measures
from the top left of the control).

■Note GetNodeAt() returns a node as long as the mouse is positioned in a node row. It doesn’t matter if you
are a little bit to the left or right of the text; the GetNodeAt() method still treats it as though you are over the node.

Finally, the actual copied node is inserted by a DragDrop event handler. The node that
contains the added node is expanded to ensure that the addition is visible.

Private Sub tree_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles treeOne.DragDrop, treeTwo.DragDrop

 ' Get the tree.
 Dim tree As TreeView = CType(sender, TreeView)

 ' Get the screen point.
 Dim pt As New Point(e.X, e.Y)

 ' Convert to a point in the TreeView's coordinate system.
 pt = tree.PointToClient(pt)

Macdonald_694-3C06.fm Page 207 Saturday, June 17, 2006 9:47 AM

208 C H A P T E R 6 ■ L I S T S AN D T R E E S

 ' Get the node underneath the mouse.
 Dim node As TreeNode = tree.GetNodeAt(pt)

 ' Add a child node.
 node.Nodes.Add(CType(e.Data.GetData(GetType(TreeNode)), TreeNode))

 ' Show the newly added node if it is not already visible.
 node.Expand()
End Sub

You can try this example in the TreeViewDragAndDrop project. This example doesn’t
provide any restrictions—it allows you to copy nodes anywhere you want. Most programs
probably add more restrictive logic in the DragOver event handler. In addition, you might want
to create a tree where dragging and dropping moves items instead of copies them. In this case,
the easiest approach is to store a reference to the original node object (without cloning it).

tree.DoDragDrop(node, DragDropEffects.Copy)

The DragDrop event handler then removes the node from the source tree and adds it to the
target tree. However, you typically need to perform some validation to ensure that the dragged
node is an allowed child of the target node.

Dim nodeDragged As TreeNode = e.Data.GetData(GetType(TreeNode))

' Copy to new position.
node.Nodes.Add(nodeDragged.Clone())

' Remove from original position.
nodeDragged.Remove()

■Tip For even more advanced drag-and-drop possibilities, you can use the DoDragDrop() method with an
instance of a custom class that encapsulates all the relevant information, instead of just the TreeNode object.

The Last Word
In this chapter, you looked at the ListView and TreeView, two staples of modern Windows
programming. In the later chapters on custom control development, you’ll see two ways to
extend these controls. First, in Chapter 11, you’ll learn how to derive a class from the TreeView
to provide higher-level features and behavior tailored to your data. Next, in Chapter 12, you’ll
learn how to take complete control and paint a TreeView from scratch with owner drawing.

Macdonald_694-3C06.fm Page 208 Saturday, June 17, 2006 9:47 AM

209

■ ■ ■

C H A P T E R 7

Drawing with GDI+

If you’ve programmed rich graphics in the pre-.NET world, odds are you used the GDI (Graphics
Device Interface) API. The key idea behind GDI is that your code can paint graphics to different
devices (printers, monitors, and video cards) using the same set of functions, without needing
to understand the underlying hardware. In turn, Windows ensures compatibility with a wide
range of clients, and (to a certain extent) makes use of optimizations that the hardware might
provide. Unfortunately, mastering the GDI functions requires coding wizardry and hard work.

.NET 1.x introduced a new toolkit of classes for two-dimensional drawing and rendering.
These classes, most of which are found in the System.Drawing namespaces (and contained in
the System.Drawing.dll assembly), constitute GDI+. Technically, GDI+ isn’t built into .NET.
Instead, .NET wraps the functions in unmanaged libraries (including gdiplus.dll and gdi32.dll).
However, the .NET classes provide a higher level of abstraction, with prebuilt support for features,
like double buffering, that are time consuming to implement on your own. All in all, GDI+
provides the most convenient and flexible drawing interface that Windows programmers have
had to date.

You’ve already seen a sprinkling of GDI+ throughout this book. For example, in Chapter 3,
you learned about some of the basic GDI+ ingredients in the System.Drawing namespace,
including objects representing fonts, colors, position, and size. In the rest of this book, you’ll
see many more examples, including custom owner-drawn controls. This chapter gives you the
basic principles of the underlying GDI+ model that makes it all possible. It also describes the
new rendering support for Windows XP styles that’s in .NET 2.0.

■Note .NET 2.0 has only minor changes for GDI+. Although there are areas where the model could be
extended (and some where performance still lags), Microsoft no longer plans to refine GDI+. Instead, the
focus has shifted to the creation of a next-generation drawing framework known as Windows Presentation
Foundation (WPF), which is planned for future versions of Windows like Windows Vista. WPF is also supported
on Windows XP and Windows Server 2003 through a separate add-on. For more details, see
http://msdn.microsoft.com/windowsvista/building/presentation.

Macdonald_694-3C07.fm Page 209 Tuesday, July 25, 2006 8:39 AM

210 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Understanding GDI+
GDI+ has three broad feature areas:

• Two-dimensional vector graphics. Using GDI+, you can draw lines, curves, and shapes
on a drawing surface. Most of the examples you’ll see in this chapter involve two-
dimensional graphics.

• Imaging. GDI+ allows you to render bitmaps onto a drawing surface, and perform some
operations on images (like stretching and skewing them). Images were introduced in
Chapter 5.

• Typography. GDI+ allows you to render smooth, antialiased text in a variety of fonts,
sizes, colors, and orientations. You learned about the basic Font class that makes this
possible in Chapter 2.

You can use these features to render output on a window or to the printer.

■Note GDI+ doesn’t support rich multimedia like video or vector-based animation. For more information
about how you can integrate these features into your applications, see Chapter 16.

There’s another way of looking at GDI+—in terms of the namespaces you use to access its
features. Table 7-1 has the lowdown.

Table 7-1. GDI+ Namespaces

Member Description

System.Drawing Provides the basic GDI+ graphics functionality, including the
Graphics class you use to perform all your painting, and
definitions for basic types like the Point, Rectangle, Color,
Font, Pen, Brush, and Bitmap

System.Drawing.Drawing2D Provides classes for more advanced two-dimensional painting,
including types for blending, patterns, and gradients, the
GraphicsPath, and enumerations that let you set the quality
level of your rendering

System.Drawing.Imaging Provides classes for manipulating bitmap and vector images

System.Drawing.Text A small namespace that includes classes that let you access the
currently installed fonts

System.Drawing.Printing Provides types for rendering GDI+ content to the printer,
including the PrintDocument class that represents an in-memory
document you plan to print and the PrinterSettings class that
exposes printer settings

Macdonald_694-3C07.fm Page 210 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 211

GDI+ doesn’t expose all the functionality of GDI, which means you need to fall back on
unmanaged calls if you need to perform tasks like overwriting arbitrary areas of the screen (for
example, in a custom screen saver). However, GDI+ fits the bill for the majority of cases in
which you simply want to use custom drawing to create a snazzy interface, rather than build a
custom drawing application.

Paint Sessions with GDI+
The heart of GDI+ programming is the System.Drawing.Graphics class. The Graphics class
encapsulates a GDI+ drawing surface, whether it is a window or print document. You paint on
the GDI+ drawing surface using a combination of the methods in the Graphics class.

Accessing the Graphics Object
There are essentially two ways to access a live instance of the Graphics class. The simplest and
safest approach is to perform your painting inside a dedicated Paint event handler. In this case,
the Graphics object is provided to your event handler through the PaintEventArgs parameter.

For example, the code that follows draws a curve onto a form using the
Graphics.DrawArc() method (see Figure 7-1):

Private Sub MyForm_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 Dim drawingPen As New Pen(Color.Red, 15)
 e.Graphics.DrawArc(drawingPen, 50, 20, 100, 200, 40, 210)
 drawingPen.Dispose()
End Sub

Figure 7-1. Painting to a GDI+ surface

You could perform the same task by overriding the OnPaint() method of a control. This is the
approach you’ll follow when creating an owner-drawn control, and it produces the same result.

Macdonald_694-3C07.fm Page 211 Tuesday, July 25, 2006 8:39 AM

212 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

' This code overrides the base Form.OnPaint() method.
Protected Overrides Sub OnPaint(_
 ByVal e As System.Windows.Forms.PaintEventArgs)
 Dim drawingPen As New Pen(Color.Red, 15)
 e.Graphics.DrawArc(drawingPen, 50, 20, 100, 200, 40, 210)
 drawingPen.Dispose()

 ' Call the base class implementation (which raises the Paint event).
 MyBase.OnPaint(e)
End Sub

Of course, you don’t have to wait for a Paint event to occur before you start drawing. Instead,
you can directly obtain the Graphics object for a specific control or form using the Control.
CreateGraphics() method. In this case, you should make sure to call the Graphics.Dispose()
method when you’re finished, because the Graphics object uses unmanaged system resources.
You don’t take this step when handling the Paint event or overriding the OnPaint() method,
because the .NET Framework acquires and disposes of the Graphics object for you.

Here’s an example that draws the same arc shown in Figure 7-1, but this time it does so by
creating a Graphics object for the form in response to a button click.

Private Sub button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles button1.Click

 Dim drawingPen As New Pen(Color.Red, 15)
 Dim gdiSurface As Graphics = Me.CreateGraphics()
 gdiSurface.DrawArc(drawingPen, 50, 20, 100, 200, 40, 210)

 ' Release your resources. You can also use the using statement
 ' to take care of this task.
 drawingPen.Dispose()
 gdiSurface.Dispose()
End Sub

Before you start using this approach, be warned—this code isn’t equivalent to the earlier
example! The problem is that as soon as you minimize or hide the window, the arc disappears.
It won’t be repainted until you click the button again. This odd behavior confuses just about
everyone when they first tackle GDI+, and it’s the source of the most common GDI+ questions
on Microsoft newsgroups. To understand why this discrepancy exists, you need to take a
closer look at how the Windows operating system handles paint operations, as described in
the next section.

Painting and Repainting
Contrary to what you might expect, the Windows operating system doesn’t store the graphical
representation of a window in memory. This architecture stems from the early days of
Windows programming when memory was scarce. Storing a bitmap image of every open
Window could quickly consume tens of megabytes and cripple a computer.

Instead, Windows automatically discards the contents of a window as soon as it is mini-
mized or hidden by another window. When the program window is restored, Windows sends

Macdonald_694-3C07.fm Page 212 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 213

a message to the application, asking it to repaint itself. In a .NET application, this means that
the Control.OnPaint() method executes and the Control.Paint event fires. Similarly, if part of
a window is obscured, only controls that are affected fire Paint events when they reappear on
the screen.

■Note These days, it makes sense to change the rules about how windows are painted. However, you can’t
revamp the architecture of the world’s most popular operating system overnight. But don’t be surprised to see
that this approach changes when Windows Vista (Microsoft’s long-awaited next-generation operating system)
finally debuts with a whole new rendering model called Windows Presentation Foundation (WPF).

What this all boils down to is that it’s the responsibility of the application (and hence the
programmer) to repaint the window when needed. When you put your drawing logic in a Paint
event handler, you can rest assured that it will be triggered automatically at the right time.
However, if you perform painting inside another method, the result of your work will be lost
unless you take specific steps to restore the window after it is hidden or minimized.

The best approach is to code around this limitation, so that all painting is performed in the
Paint event handler. The examples from Chapter 2 include a FontViewer application that draws
text using the GDI+ Graphics class. When the user chooses a different font from the drop-down
list box, the window is repainted with an example of the new font (see Figure 7-2). Although the
repainting is triggered by the selection, the code still resides in the Paint event handler.

Figure 7-2. Painting font text

Here’s how it works. The SelectedIndexChanged event for the ComboBox control uses the
Control.Invalidate() method. This tells the Windows operating system that the form needs to
be repainted. Windows then sends a message to the specific window, which the .NET Framework
translates into a Paint event.

Private Sub lstSize_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles lstSize.SelectedIndexChanged

 Me.Invalidate()
End Sub

Macdonald_694-3C07.fm Page 213 Tuesday, July 25, 2006 8:39 AM

214 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

In the Paint event handler, the code reads the font selection and size from the appropriate
controls and draws the text in the appropriate font.

Private Sub FontForm_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 If lstFonts.SelectedIndex <> -1 Then
 Try
 e.Graphics.DrawString(lstFonts.Text, _
 New Font(lstFonts.Text, Val(lstSize.Text)), _
 Brushes.Black, 10, 50)
 StatusBar.Panels(0).Text = ""
 Catch err As ArgumentException
 ' Can't create the font because it doesn't provide the selected
 ' style (normal). It may exist in only a bold or italic version.
 statusBar.Panels(0).Text = err.Message
 End Try
 End If
End Sub

Note that there is no way to erase content once you’ve drawn it. You can only paint over it
or invalidate the window, at which point the entire window is repainted from scratch.

In a more complicated application, you could use form-level variables to track the drawing
content. Then, an event handler can set these variables and invalidate the form, letting the
Paint event handler take care of the rest. This technique is demonstrated later in this chapter.

■Tip You should never call the Paint event handler or OnPaint() method directly. This is especially true if
your painting logic is complicated or potentially time consuming. If you call the Invalidate() method instead,
Windows will queue the paint message if necessary and take care of other critical tasks first if the system is
under a heavy load. Calling Invalidate() also allows Windows to save work. If the window is invalidated twice
in quick succession, the window may just be repainted once. If you call the OnPaint() method twice, however,
your painting code will always execute two times, resulting in a sluggish refresh time.

Refreshes and Updates
There’s a potential stumbling block with the Invalidate() method. When you call it, you simply
notify Windows that repainting is required. You won’t actually know when the Paint event will
fire (although it tends to be a matter of mere milliseconds). In the meantime, your code sails ahead.

This can present a problem if you perform multiple invalidations in quick succession.
Usually, the best way to handle this model is to use a timer and invalidate the form each time
the timer fires. This allows enough time between the timer ticks for Windows to dispatch the
paint request. However, this isn’t the case if you invalidate the form multiple times in a tight
loop of code, like the one shown here:

Macdonald_694-3C07.fm Page 214 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 215

Private size As Integer

Private Sub button_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles button.Click

 For i As Integer = 0 To 500
 size = i
 Invalidate()
 Next
End Sub

Private Sub MyForm_Paint(ByVal sender As Object, _
 ByVal e As PaintEventArgs) Handles MyBase.Paint

 Dim drawingPen As New Pen(Color.Red, 15)
 Dim rect As New Rectangle(New Point(0,0), New Size(size, size))
 e.Graphics.DrawRectangle(drawingPen, rect)
 drawingPen.Dispose()

 ' Delay this code 10 milliseconds so you can see what was just painted.
 System.Threading.Thread.Sleep(10)
End Sub

All this code does is paint a square that appears to grow on the form (by repainting a larger
and larger square 500 times). Unfortunately, when you run this code the successive invalidate
operations are so close together that only one repaint actually occurs, and all you end up seeing
is the final 500-pixel-wide square.

To make this code respectable, you would use the timer approach, which solves the refresh
problem and makes sure the square expanding happens at the same rate regardless of the
speed of the computer’s CPU. However, it’s possible that you might see a variation of code like
this that implements a small animation effect for a control without using a timer. You can fix
the refresh problem using the Control.Update() method. Update() triggers a refresh and stalls
your code until it’s complete.

Private Sub button_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles button.Click

 For i As Integer = 0 To 500
 size = i
 Invalidate()
 Update()
 Next
End Sub

The trick is that Update() causes the control or form to refresh only the areas that have
been invalidated. If you haven’t invalidated any part of the drawing surface, the Update()
method does nothing.

Macdonald_694-3C07.fm Page 215 Tuesday, July 25, 2006 8:39 AM

216 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

The Invalidate() method also provides an overload that accepts a Boolean parameter. If
you supply True, all child controls are also invalidated. The default is False.

If you want to invalidate the entire drawing surface, trigger a refresh, and wait, you can use
the Control.Refresh() method instead of Invalidate() and Update(). However, the combination
of Invalidate() and Update() gives you the most fine-grained control, especially if you’re inval-
idating only certain regions (a technique you’ll see later in this chapter). Internally, the Refresh()
method simply executes these two lines of code:

Invalidate(True)
Update()

Painting and Resizing
One often overlooked fact about automatic repainting is that it only affects the portion of the
window that is obscured. This is particularly important with window resizing. For example,
consider the code that follows, which paints an ellipse that is the same size as the containing
window:

Private Sub FlawedResizing_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 Dim drawingPen As New Pen(Color.Red, 15)
 e.Graphics.DrawEllipse(DrawingPen, _
 New Rectangle(New Point(0, 0), Me.ClientSize))
 pen.Dispose()
End Sub

When you resize this window, you’ll discover that the painting code isn’t working correctly.
The newly exposed portions of the window are filled with the resized ellipse, but the rest of the
window is not updated, leading to a jumble of different ellipses that don’t line up.

The problem is that Windows assumes that it only needs to repaint the portion of the window
that has been hidden or restored. In this case, the entire content of the window depends on its
dimensions, so the assumption is incorrect. Fortunately, there are several ways to solve this
problem. You could override the OnResize() method and manually invalidate the form every
time it’s resized. However, a better choice is to set the Form.ResizeRedraw property to True. This
instructs .NET to invalidate the entire form automatically whenever the form size changes.

Macdonald_694-3C07.fm Page 216 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 217

■Note This phenomenon (incorrectly repainted forms) doesn’t always appear when Form.ResizeRedraw is
set to False. That’s because a ResizeRedraw value of False simply indicates that you don’t require a full
repaint. However, under certain circumstances, .NET will still decide to invalidate the entire form. One notable
example is if you are showing a resizable form modally, and your form includes a sizing grip (as it does by
default). In this case, the Windows Forms infrastructure invalidates the entire form after a resize, so it can
draw the sizing grip. (If you want to remove this quirk to more easily test the ResizeRedraw property or to
eliminate unnecessary form refreshes, simply set the Form.SizeGripStyle property to SizeGripStyle.Hide. Now
.NET won’t draw the sizing grip, and the entire form won’t be invalidated unless ResizeRedraw is True.)

The Graphics Class
Now that you’ve learned the basics of painting on a form, it’s time to consider the different
graphical elements that you can draw.

The majority of GDI+ drawing smarts is concentrated in the Graphics class. Table 7-2
describes the basic set of Graphics class members, many of which are explored in detail as the
chapter progresses.

Table 7-2. Basic Graphics Class Members

Member Description

CompositingMode and
CompositingQuality

CompositingMode determines whether the drawing will
overwrite the existing content or be blended with it. The
CompositingQuality specifies the technique that will be used
when blending, which determines the quality and speed of
the operation.

InterpolationMode Determines how properties are specified between the start point
and end point of a shape (for example, when drawing a curve).

SmoothingMode and
TextRenderingHint

These properties set the rendering quality (and optionally, the
antialiasing) that will be used for drawing graphics or text on this
GDI+ surface.

Clear() Clears the entire drawing surface and fills it with the specified
background color.

Dispose() Releases all the resources held by the Graphics object. The Graphics
object can’t be used after you call Dispose(). As a rule of thumb,
never call Dispose() when handling a Paint event or when overriding
OnPaint(), because the Windows Forms infrastructure will take care
of that task. However, always call it when you create the Graphics
object yourself using a method like Control.CreateGraphics() or
Graphics.FromImage().

FromHdc(), FromHwnd(),
and FromImage()

These shared methods create a Graphics object using either a
handle to a device context, a window, or a .NET Image object.

Macdonald_694-3C07.fm Page 217 Tuesday, July 25, 2006 8:39 AM

218 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

The Graphics class also provides several methods for drawing specific shapes, images,
or text. Most of these methods begin with the word Draw. All shape-drawing methods draw
outlines using a given pen; you need to use the corresponding Fill method to paint an interior
fill region with a brush. Table 7-3 lists both types of methods. Keep in mind that many of these
methods provide multiple overrides that accept different combinations of information.

GetHdc() and
ReleaseHdc()

GetHdc() gets the Windows GDI handle that you can use with
unmanaged code (for example, methods in the gdi32.dll library).
You should use the ReleaseHdc() method to release the device
context when you are finished, or call Dispose() to release the
device context and dispose of the Graphics object.

IsVisible() Accepts a point or a rectangle, and indicates whether it is in a
visible portion of the graphics device (not outside the clipping
region). This does not depend on whether the window is actually
visible on the screen.

MeasureString() Returns a Size structure that indicates the amount of space that is
required for a given string of text in a given font. This method is
useful when handling wrapped printing or drawing a multiline
text display. However, if you’re using the new text-rendering
model (as all new applications do by default), you’ll get better
results using the TextRenderer.MeasureText() method instead.

Save() and Restore() Save() stores the state of the current Graphics object in a
GraphicsState object. You can use this object with the Restore()
method. This is typically used when you are changing the GDI+
surface coordinate systems.

SetClip() Allows you to define the clipping region of this device context
using a Rectangle, Region, or GraphicsPath. When you paint
content on this surface, the only portions that appear are those
that lie inside the clipping region.

Table 7-3. Graphics Class Methods for Drawing

Method Description

DrawArc() Draws an arc representing a portion of an ellipse in a rectangle
specified by a pair of angles

DrawBezier() and
DrawBeziers()

Draw the infamous and attractive Bezier curve, which is defined
by four control points

DrawClosedCurve() Draws a curve and then closes it off by connecting the end points

DrawCurve() Draws a curve (technically, a cardinal spline)

DrawEllipse() Draws an ellipse defined by a bounding rectangle

DrawIcon() and
DrawIconUnstretched()

Draw the icon represented by an Icon object and (optionally)
stretch it to fit a given rectangle

Table 7-2. Basic Graphics Class Members (Continued)

Member Description

Macdonald_694-3C07.fm Page 218 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 219

As you’ve seen, GDI+ is stateless (unlike GDI), which means that every time you draw a
shape, you need to supply the coordinates. When drawing a shape, you need a pen. When
filling a shape, you need a brush. These objects aren’t maintained for you—instead, you supply
them to each call as method arguments.

Rendering Mode and Antialiasing
One factor that’s hampered the ability of drawing tools in some programming frameworks is
the lack of control over rendering quality. With GDI+, however, you can enhance the quality of
your drawing with automatic antialiasing.

Antialiasing is a technique used to smooth out jagged edges in shapes and text. It works by
adding shading at the border of an edge. For example, gray shading might be added to the edge
of a black curve to make a corner look smoother. Technically, antialiasing blends a curve with
its background. Figure 7-3 shows a close-up of an antialiased ellipse.

DrawImage() and
DrawImageUnscaled()

Draw the image represented by an Image-derived object, and
(optionally) stretch it to fit a given rectangle

DrawLine() and
DrawLines()

Draw a line connecting the two or more points

DrawPath() Draws a GraphicsPath object, which can represent a combination
of curves and shapes

DrawPie() Draws a “piece of pie” shape defined by an ellipse specified by a
coordinate pair, a width, a height, and two radial lines

DrawPolygon() Draws a multisided polygon defined by an array of points

DrawRectangle() and
DrawRectangles()

Draw one or more ordinary rectangles

DrawString() Draws a string of text in a given font (and using a given brush to
fill the text)

FillClosedCurve() Draws a curve, closes it off by connecting the end points, and fills it

FillEllipse() Fills the interior of an ellipse

FillPath() Fills the shape represented by a GraphicsPath object

FillPie() Fills the interior of a “piece of pie” shape

FillPolygon() Fills the interior of a polygon

FillRectangle() and
FillRectangles()

Fill the interior of a rectangle

FillRegion() Fills the interior of a Region object

Table 7-3. Graphics Class Methods for Drawing

Method Description

Macdonald_694-3C07.fm Page 219 Tuesday, July 25, 2006 8:39 AM

220 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-3. Antialiasing with an ellipse

To use smoothing on shapes in your applications, you set the SmoothingMode property of
the Graphics object. You can choose between None (the default), HighSpeed, AntiAlias, and
HighQuality (which is similar to AntiAlias but uses other, slower optimizations with LCD screens).
The SmoothingMode property is one of the few stateful Graphics class members, which means
that you set it before you begin drawing, and it applies to any shapes you draw in the rest of the
paint session (until the Graphics object is disposed of). Here’s an example:

e.Graphics.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias

Figure 7-4 shows a form with several picture boxes. Each picture box handles its own paint
event, sets a different smoothing mode, and then draws an ellipse. You can see the result of
using higher quality, which is almost always the best way to go.

Antialiasing also can be used with fonts to soften jagged edges on text. The latest versions
of the Windows operating system use antialiasing automatically with on-screen fonts. However,
you can set the Graphics.TextRenderingHint property to ensure optimized text. Among your
choices are SingleBitPerPixelGridFit (fastest performance and lowest quality), AntiAliasGridFit
(better quality but slower performance), and ClearTypeGridFit (the best quality on an LCD
display). Or, you can use the SystemDefault value to use whatever font smoothing settings the
user has configured. Figure 7-5 compares different font smoothing modes.

Figure 7-4. Smoothing modes for shapes

Macdonald_694-3C07.fm Page 220 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 221

Figure 7-5. Smoothing modes for fonts

Pens
In Chapter 2, you learned about many of the GDI+ basics, including fonts, colors, points, and
rectangles. However, GDI+ drawing code also uses other details like brushes and pens.

Pens are used to draw lines when you use the shape or curve drawing methods from the
Graphics class. You can retrieve a standard pen using one of the shared properties from the
System.Drawing.Pens class, as shown below. These pens all have a width of 1; they differ only
in their color.

Dim blackPen As Pen = Pens.Black

You also can use the SystemPens class (which provides pens that correspond to various
Windows color scheme settings, like the control background color or the highlight menu text
color), or you can create a Pen object on your own, and configure all the properties described
in Table 7-4.

Dim myPen As New Pen(Color.Red)
myPen.DashCap = DashCap.Triangle
myPen.DashStyle = DashStyle.DashDotDot
e.Graphics.DrawLine(myPen, 0, 0, 10, 0)
myPen.Dispose()

■Note When creating a new pen object, it’s good practice to call Dispose() to release the pen when you no
longer need it, because it holds on to unmanaged resources. However, when using one of the ready-made
pens from Pens or SystemPens, you must never call Dispose() on the object.

Macdonald_694-3C07.fm Page 221 Tuesday, July 25, 2006 8:39 AM

222 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Pen Alignment

There is one notorious quirk with painting and drawing in GDI+. For unpleasant historical
reasons, the DrawXxx() methods always extend an extra pixel below and to the right. For
example, imagine you use this painting code:

Dim rect As New Rectangle(10, 10, 110, 110)
Dim myPen As New Pen(Color.Red, 1)
e.Graphics.DrawRectangle(myPen, rect)
e.Graphics.FillRectangle(Brushes.Blue, rect)
myPen.Dispose()

Because both the DrawRectangle() and FillRectangle() methods use the same coordinates,
you would expect that the fill operation completely overwrites the outline. (Usually, you’d
reverse these two lines, so that the outline is painted after the shape.) However, this isn’t what
happens. Instead, the originally red border still shows through, but only on the bottom and
right edges (see Figure 7-6).

The DrawRectangle() method actually drew a larger rectangle than FillRectangle()—
instead of 100 pixels, it used a height and width of 101 pixels.

It’s important to understand this problem, because it doesn’t necessarily disappear in
real-world situations. For example, imagine you use a thicker pen:

Dim thickRedPen As New Pen(Color.Red, 11)

Table 7-4. Basic Pen Properties

Member Description

Alignment The alignment determines where the outline is drawn when you create a
closed shape. By default, the alignment is PenAlignment.Center, which
places the outline just outside the shape. PenAlignment.Inset draws the
pen outline directly on the shape. (The difference is demonstrated with an
example in this section.) Other PenAlignment values are not supported and
are treated equivalently to PenAlignment.Center.

Color Sets the color of the line that the pen draws.

DashPattern Defines a dash style for broken lines using an array of dashes and spaces.

DashStyle Defines a dash style for broken lines using the DashStyle enumeration.

LineJoin Defines how overlapping lines in a shape will be joined together.

PenType The type of fill that will be used for the line. Typically this will be SolidColor,
but you also can use a gradient, bitmap texture, or hatch pattern by
supplying a brush object when you create the pen. You cannot set the
PenType through this property, because it is read-only.

StartCap and
EndCap

Determine how the beginning and ends of lines will be rendered. You can
also define a custom line cap by creating a CustomLineCap object (typically by
using a GraphicsPath), and then assigning it to the CustomStartCap or
CustomEndCap property.

Width The pixel width of lines drawn by this pen.

Macdonald_694-3C07.fm Page 222 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 223

Figure 7-6. An uneven border

Now what’s the result? It’s not hard to figure out once you realize that the Pen.Alignment
property is responsible for the slightly unusual behavior. By default, the alignment of any pen
is PenAlignment.Center. In other words, the center of the line lies along the shape (taking 1
pixel), with 5 pixels of border visible outside the square, and 5 inside. Because the current code
draws the shape and then fills it, you’ll see only the outside of the border (meaning the border
will appear to be 5 pixels wide in total). Of course, because the bottom edge is offset by that
extra pixel, it is actually 6 pixels.

■Note If you use an even number for the pen width, like 10 or 12, all sides will appear equal. That’s
because the midline takes 1 pixel, leaving an uneven number of pixels (9 or 11) to be split over both sides.
This uneven number of pixels leads to a fractional value on each side of the midline (4.5 or 5.5). This fraction
is rounded up so that the width on both sides is the same (5 or 6). Strange but true.

You can change the alignment behavior, so that lines are always drawn where you expect,
right along the shape’s edge. To do this, you need to make sure you’re using a pen that’s more
than 1 pixel wide, and you need to set the alignment to PenAlignment.Inset:

Dim rect As New Rectangle(10, 10, 110, 110)
Dim myPen As New Pen(Color.Red, 2)
myPen.Alignment = PenAlignment.Inset

e.Graphics.DrawRectangle(myPen, rect)
e.Graphics.FillRectangle(Brushes.Blue, rect)
myPen.Dispose()

Now the outline of the shape is drawn exactly where you would expect, and the fill operation
overwrites it, leaving no visible border. If you create a thicker pen, it lies entirely inside the
region of the square.

Macdonald_694-3C07.fm Page 223 Tuesday, July 25, 2006 8:39 AM

224 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-7 shows the difference between inset and centered alignment more clearly.
In this example, the outline drawing is being performed after the shape filling, and an extra
outline is used to indicate where the edge of the square fill falls. As you can see, the inset align-
ment paints a border inside this line, while the centered alignment splits the difference.

Figure 7-7. Comparing pen alignment

Pen Styling

There are a few other details you can use to style the borders you draw. Line caps determine the
appearance of the start and end of a line (in an unclosed figure), and you can set them using the
StartCap and EndCap properties of the Pen. Figure 7-8 shows your basic options (not including
custom caps through the CustomStartCap or CustomEndCap properties).

Figure 7-8. Line caps

You also can change the way the line itself is drawn using the DashStyle property. All of
these options allow you to create broken lines according to a set pattern (see Figure 7-9).

Macdonald_694-3C07.fm Page 224 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 225

Figure 7-9. Dash styles

Finally, you can use the LineJoin property to change how the corners of a shape are
rendered. For example, you can have a sharp edge (Miter, the default), an angled edge (Bevel),
or a rounded corner (Round). Figure 7-10 shows your options.

Figure 7-10. Line joins

To see the drawing code for all of these examples, refer to the downloadable content for
this chapter.

Brushes
Brushes are used to fill the space between lines. Brushes are used when drawing text or when
using any of the fill methods of the Graphics class for painting the inside of a shape.

Macdonald_694-3C07.fm Page 225 Tuesday, July 25, 2006 8:39 AM

226 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

You can quickly retrieve a predefined solid brush using a shared property from the Brushes
class, or the SystemBrushes class (which provides brushes that correspond to various Windows
color scheme settings, like the control background color or the highlight menu text color).

Dim myBrush As Brush = SystemBrushes.Menu
e.Graphics.FillRectangle(myBrush, 0, 0, 50, 50)

Finally, you can create a custom brush. You need to decide what type of brush you are
creating. Solid brushes are created from the SolidBrush class, while other classes (HatchBrush,
LinearGradientBrush, PathGradientBrush, and TextureBrush) allow fancier options. The next
four sections consider these different types of brushes.

It’s also worth noting that you can create a pen that draws using the fill style of a brush.
This technique allows you to draw lines that are filled with gradients and textures. To do so,
begin by creating the appropriate brush, and then create a new pen. One of the overloaded pen
constructor methods accepts a reference to a brush—that’s the one you need to use for a
brush-based pen.

Here’s an example:

Dim myBrush As New HatchBrush(HatchStyle.DiagonalCross, _
 Color.Blue, Color.LightYellow)

' Create a pen that uses this hatch pattern (use a large enough width
' to see the fill pattern).
Dim myPen As New Pen(myBrush, 10)
...
' Release both objects.
myBrush.Dispose()
myPen.Dispose()

■Tip When you use DrawString() to render some text, you need to supply a brush, not a pen. That gives you
some interesting possibilities—for example, you can create outline text or text filled with a texture or gradient
by using more exotic brush types.

The HatchBrush

A HatchBrush has a foreground color, a background color, and a hatch style that determines
how these colors are combined. Typically, colors are interspersed using stripes, grids, or dots,
but you can even select unusual pattern styles like bricks, confetti, weave, and shingles.

Following is the code for a simple brush demonstration program that displays the available
hatch brush styles. Figure 7-11 shows the result.

Macdonald_694-3C07.fm Page 226 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 227

Figure 7-11. HatchBrush styles

Here’s the code that creates this form:

Private Sub HatchBrushes_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 Dim y As Integer = 20
 Dim x As Integer = 20
 Dim captionFont As New Font("Tahoma", 8)

 ' Enumerate over all the styles.
 For Each brushStyle As HatchStyle In [Enum].GetValues(GetType(HatchStyle))
 Dim brush As New HatchBrush(brushStyle, Color.Blue, Color.LightYellow)

 ' Fill a rectangle with the brush.
 e.Graphics.FillRectangle(brush, x, y, 40, 20)

 ' Display the brush name.
 e.Graphics.DrawString(brushStyle.ToString(), captionFont, _
 Brushes.Black, 50 + x, y + 5)
 y += 30
 If (y + 30) > ClientSize.Height Then
 y = 20
 x += 180
 End If

Macdonald_694-3C07.fm Page 227 Tuesday, July 25, 2006 8:39 AM

228 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

 brush.Dispose()
 Next
 captionFont.Dispose()
End Sub

The LinearGradientBrush

The LinearGradientBrush allows you to blend two colors in a gradient pattern. You can choose
any two colors (as with the hatch brush) and then choose to blend horizontally (from left to
right), vertically (from top to bottom), diagonally (from the top-left corner to the bottom-right
corner), or diagonally backward (from the top-right to the bottom-left corner). You also can
specify the origin point for either side of the gradient.

Here’s an example that fills a rectangle with a gradient:

Dim y As Integer = 20
Dim x As Integer = 20
Dim size As Integer = 100
Dim rect As New Rectangle(x, y, size, size)
Dim myBrush As New LinearGradientBrush(rect, _
 Color.Violet, Color.White, LinearGradientMode.BackwardDiagonal)
e.Graphics.FillRectangle(myBrush, x, y, size, size)
myBrush.Dispose()

Figure 7-12 shows the different gradient styles.

Figure 7-12. The LinearGradientBrush

The PathGradientBrush

For a truly unique effect, you can create a gradient that follows the path of a closed shape. In
order to pull off this trick, you need to use the GraphicsPath class, which is discussed later in
this chapter. Essentially, the GraphicsPath allows you to combine any combination of lines and
shapes into a single figure.

Macdonald_694-3C07.fm Page 228 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 229

Here’s an example that creates a path that simply wraps a single ellipse, and then uses that
path to create a PathGradientBrush.

' Create the path (which determines the shape of the gradient).
Dim path As New GraphicsPath()
Dim size As Integer = 150
path.AddEllipse(10, 10, size, size)

' Create the brush, and set its colors.
Dim myBrush As New PathGradientBrush(path)
myBrush.SurroundColors = New Color() { Color.White }
myBrush.CenterColor = Color.Violet

' Paint the gradient.
e.Graphics.FillRectangle(myBrush, 10, 10, size, size)

path.Dispose()
myBrush.Dispose()

Figure 7-13 shows the result.

Figure 7-13. The PathGradientBrush

The PathGradientBrush can take a bit of getting used to. In this example, it works because the
region the code is painting and the region used for the brush match—they are both a 150 × 150 area
starting at the point (10, 10). As a result, you see the full shape defined by the PathGradientBrush.

However, you’ll get a less-intuitive result if you paint only a portion of the region defined
by the brush. In this example, if you paint a smaller square or a square at a different location,
you’ll see only the part of the gradient circle that it overlaps.

The TextureBrush

Finally, the TextureBrush attaches a bitmap to a brush. The image is tiled in the painted portion
of the brush, whether it is text or a simple rectangle. Here’s an example that fills a form with a
tiled bitmap. The result is shown in Figure 7-14.

Macdonald_694-3C07.fm Page 229 Tuesday, July 25, 2006 8:39 AM

230 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Private Sub TextureBrushes_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 Dim myBrush As New TextureBrush(Image.FromFile("tile.bmp"))
 e.Graphics.FillRectangle(myBrush, e.Graphics.ClipBounds)
End Sub

■Tip This example reads the image from a file, but a better approach is to embed the picture into your
assembly and use the strongly typed resources feature described in Chapter 5. The online example uses this
approach.

Figure 7-14. The TextureBrush

Drawing Text
As you’ve seen already, rendering graphics to a GDI+ drawing surface is as easy—you simply
use the Graphics.DrawString() method and specify the text, a font, a brush, and the location:

e.Graphics.DrawString("Sample Text", font, brush, point)

However, there are several overloaded versions of the DrawString() method that give you
some added features. One of the most interesting is the overload that replaces the Point object
with a Rectangle object, as shown here:

e.Graphics.DrawString("Sample Text", font, brush, rectangle)

Macdonald_694-3C07.fm Page 230 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 231

When you use this overload, .NET automatically wraps the text over multiple lines to fit
inside the rectangle you’ve supplied. If the text doesn’t completely fit in the rectangle, the
remaining content is truncated. Although this technique is used only occasionally in a Windows
interface, it’s particularly handy when sending content to the printer. It saves you from needing to
call methods like Font.GetHeight() and Graphics.MeasureString() to calculate word wrapping
and line breaks manually. Of course, you’ll need to fall back on the manual approach if you
need to mix text with different colors or fonts, or if you want to have greater control over line
alignment and (in the case of printing) spread text over multiple pages.

There are also several overloads of the DrawString() method that take a StringFormat
parameter. A StringFormat object encapsulates a handful of layout and display details. One
useful way to use StringFormat is to create blocks of wrapped text that are aligned differently
than usual (for example, right-aligned or centered). To do this, you simply set the Alignment
property (to center each line of text horizontally) and the LineAlignment property (to center
the block of text), as shown here:

Dim stringFormat As New StringFormat()

' Center each line of text.
stringFormat.Alignment = StringAlignment.Center

' Center the block of text (top to bottom) in the rectangle.
stringFormat.LineAlignment = StringAlignment.Center

' Draw the text.
e.Graphics.DrawString(text, font, brush, rectangle, stringFormat)

You also can use the StringFormat object to configure what happens with text that extends
beyond the bounds of the rectangle by setting the Trimming property. You can choose to chop
it off at the letter (Character), to leave the last full word (Word), and to add an ellipsis (...) at the
end to signify missing text (EllipsisCharacter or EllipsisWord). For a more unusual result, try
EllipsisPath, which always removes the middle of the string to fit, and substitutes an ellipsis
(similar to the way a path like c:\MyFiles\MyDocuments\MyDoc.doc can be replaced with
c:\MyFiles\...\MyDoc.doc). Figure 7-15 shows a text application that lets you manipulate these
three settings.

Finally, there’s one more trick hidden in the StringFormat object. You can use it to create
perfectly rotated vertical text by adjusting the FormatFlags property:

Dim stringFormat As New StringFormat()
stringFormat.FormatFlags = StringFormatFlags.DirectionVertical

Macdonald_694-3C07.fm Page 231 Tuesday, July 25, 2006 8:39 AM

232 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-15. Wrapping text

The TextRenderer

.NET 2.0 adds a new TextRenderer class (in the System.Windows.Forms namespace), which
implements a slightly different model for text rendering. Essentially, the TextRenderer draws text
using GDI (or Uniscribe for non-Western characters) rather than GDI+. There are a few reasons
why you might prefer to use the TextRenderer instead of the standard Graphics.DrawString()
method:

• The rendering quality for international text has been improved regularly. As a result, GDI
draws better quality text than GDI+ when using these complex scripts. Similarly, if the
Windows operating system is updated to support new languages, the GDI drawing methods
will draw these scripts correctly while GDI+ likely will not, even with the correct font.

• The Windows Forms controls often use GDI. In some cases (possibly when extending
one of these controls), you might want to draw text that matches exactly. If you use GDI+,
the alignment and smoothing may differ subtly but noticeably.

• GDI+ locks font files for the duration of the application’s lifetime, making it difficult to
update fonts.

Using the TextRenderer class is easy, as it exposes only two methods: MeasureText() and
DrawText(), although there are multiple overloads of both.

Here’s an example that draws text using the TextRenderer when a Paint event fires:

Macdonald_694-3C07.fm Page 232 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 233

Private Sub MyForm_Paint(ByVal sender As Object, _
 ByVal e As PaintEventArgs) Handles MyBase.Paint

 Dim flags As TextFormatFlags
 flags = TextFormatFlags.Bottom Or TextFormatFlags.EndEllipsis
 TextRenderer.DrawText(e.Graphics, "This text drawn with GDI.", Me.Font, _
 New Rectangle(10, 10, 100, 50), SystemColors.ControlText, flags)
End Sub

The Windows Forms team faced a bit of a dilemma when they created the TextRenderer—
namely, whether they should use it for better rendering in the standard .NET controls, even
though it could alter existing applications (due to subtly different measuring and wrapping
conventions). They settled on allowing controls to decide what rendering behavior to use based
on a new Control.UseCompatibleTextRendering property. This property defaults to True,
which means that the control should use the same rendering as it did in .NET 1.x. If you set this
property to False, however, the control should switch to the TextRenderer. Of course, it’s up to
the control itself to check this property in its painting code and use the TextRenderer—simply
setting the property on a control that doesn’t use it has no effect. However, you’ll notice that
the .NET controls do respect the UseCompatibleTextRendering property.

To have the least effect on existing applications, UseCompatibleTextRendering defaults
to True. Rather than set this property for each control in your application, you can call the
Application.SetCompatibleTextRenderingDefault() method. In fact, this call is automatically
made by every Windows application that uses the VB application framework, much as the
Application.EnableVisualStyles() call is made to switch on visual styles. If you don’t use the
application framework (which is described in Chapter 1), it’s up to you to make this call if you
want to use the TextRenderer by default.

The GraphicsPath
As you’ve learned, the Graphics class allows you to draw all the basic ingredients—lines, rectangles,
ellipses, arcs, polygons, curves, and strings of text. The GraphicsPath allows you to combine a
group of these elements into a single unit. You can then draw them all at once, or perform other
tasks like hit testing.

To build a GraphicsPath object, you simply create a new instance, and use the methods in
Table 7-5 to add all the required elements. Here’s an example that creates a GraphicsPath
made up of an ellipse and a rectangle:

Dim path As New GraphicsPath()
path.AddEllipse(0, 0, 100, 50)
path.AddRectangle(New Rectangle(100, 50, 100, 50))

These two shapes can overlap, but they don’t need to. Either way, both shapes are merged
into one logical entity for future manipulation. Once you’ve created the GraphicsPath object,
you can copy it onto the drawing surface using the DrawPath() and FillPath() methods of the
Graphics object:

e.Graphics.DrawPath(pen, path)

Macdonald_694-3C07.fm Page 233 Tuesday, July 25, 2006 8:39 AM

234 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

When you’re finished, remember to clean up by disposing the path:

path.Dispose()

Using the GraphicsPath, you also can create a solid-filled figure out of line segments. To do
this, you first call the StartFigure() method. Then you add the required curves and lines using
the appropriate methods. When finished, you call the CloseFigure() method to close off the
shape by drawing a line from the endpoint to the starting point. You can use the StartFigure() and
CloseFigure() methods multiple times to add several closed figures to a single GraphicsPath
object.

Here’s an example:

Dim path As New GraphicsPath()
path.StartFigure()
path.AddArc(10, 10, 100, 100, 20, 50)
path.AddLine(20, 100, 70, 230)
path.CloseFigure()

Table 7-5. GraphicsPath Methods

Method Description

AddArc() Adds an arc representing a portion of an ellipse specified by a
rectangle and two angles.

AddBezier() and
AddBeziers()

Add the infamous and attractive Bezier curve, which is defined by
four control points.

AddClosedCurve() Adds a curve and then closes it off by connecting the end points.

AddCurve() Adds a curve (technically, a cardinal spline).

AddEllipse() Adds an ellipse defined by a bounding rectangle.

AddLine() and
AddLines()

Add a line (or a series of lines) connecting two points.

AddPath() Adds another GraphicsPath object to this GraphicsPath object.

AddPie() Adds a “piece of pie” shape defined by an ellipse and two angles.

AddPolygon() Adds a multisided polygon defined by an array of points.

AddRectangle() and
AddRectangles()

Add one and more ordinary rectangles.

AddString() Add a string of text in a given font.

StartFigure() and
CloseFigure()

StartFigure() defines the start of a new closed figure. When you use
CloseFigure(), the starting point will be joined to the end point by an
additional line.

Flatten() Converts existing curves into a series of connected line segments.

Transform(), Warp(),
and Widen()

Apply a matrix transform, a warp transform (defined by a rectangle and
a parallelogram), and an expansion, respectively.

Macdonald_694-3C07.fm Page 234 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 235

More-Advanced GDI+
Now that you’ve learned the basic techniques for drawing with pens, brushes, and the rendering
smarts of the Graphics class, it’s worth considering some of the more powerful features of GDI+. In
this section, you’ll take a look at alpha blending, clipping, and coordinate transformations.

Alpha Blending
Sophisticated graphics often incorporate some level of semitransparency. For example, you
may draw transparent text or shapes that allow the background to show through. This tech-
nique is called alpha blending, because the alpha value indicates the transparency of any color.
Alpha values range from 0 to 255, where 255 represents a fully opaque color and 0 represents a
completely transparent color.

As you learned in Chapter 2, every color in .NET is represented by the Color structure, and
has a separate alpha, red, green, and blue component. Technically, when you use an alpha
color that’s anything other than 255, the following formula is used to blend the color with the
background color:

displayColor = sourceColor × alpha / 255 + backgroundColor × (255 - alpha) / 255

The important detail is that alpha blending is performed on individual pixels. For example,
if you draw a semitransparent rectangle, each pixel in the rectangle is blended with the pixel
immediately underneath. This allows the obscured content to show through. (Depending on
the Graphics.CompositingQuality setting, the values of nearby pixels also may be taken into
account when calculating the background color.)

To try this out, you can use the following painting code. It paints three rectangles, with
different levels of transparency, and then renders some semitransparent text for variety.

' Fill the background with a tile.
Dim backgroundBitmap As Bitmap = My.Resources.Pic
Dim backgroundBrush As New TextureBrush(backgroundBitmap)
e.Graphics.FillRectangle(backgroundBrush, ClientRectangle)
backgroundBrush.Dispose()
backgroundBitmap.Dispose()

' Draw some solid content.
Dim solidColor As Color = Color.Yellow
Dim penWidth As Integer = 80
Dim opaquePen As New Pen(solidColor, penWidth)
e.Graphics.DrawLine(opaquePen, 0, 50, 200, 20)
opaquePen.Dispose()

' Make the color partly transparent (50%).
Dim semiTransparentColor As Color = Color.FromArgb(_
 128, solidColor.R, solidColor.G, solidColor.B)
Dim semiTransparentPen As New Pen(semiTransparentColor, penWidth)
e.Graphics.DrawLine(semiTransparentPen, 0, 200, 200, 140)
semiTransparentPen.Dispose()

Macdonald_694-3C07.fm Page 235 Tuesday, July 25, 2006 8:39 AM

236 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

' Make the color very transparent (70% transparent).
Dim veryTransparentColor As Color = Color.FromArgb(_
 77, solidColor.R, solidColor.G, solidColor.B)
Dim veryTransparentPen As New Pen(veryTransparentColor, penWidth)
e.Graphics.DrawLine(veryTransparentPen, 0, 350, 200, 260)
veryTransparentPen.Dispose()

' Draw some transparent text.
Dim transparentBrush As New SolidBrush(semiTransparentColor)
e.Graphics.DrawString("TRANSPARENT", New Font("Verdana", 36, FontStyle.Bold), _
 transparentBrush, 80, 150)
transparentBrush.Dispose()

Figure 7-16 shows the result.

Figure 7-16. Alpha blending

Keen eyes will notice that the text doesn’t appear to be equally transparent. The portions
of the text that are over the semitransparent region (the letters “TRA”) are more opaque. To
understand why, you need to remember the order in which the drawing was performed. The
text was added last, at which point it was blended with the current background. The current
background includes the semitransparent region that is already shaded more yellow, and thus
the blended text over this portion also becomes more yellow.

Macdonald_694-3C07.fm Page 236 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 237

Clipping
Clipping is a technique that restricts drawing to a specific region. By default, your clipping
region is the entire graphics surface. That means when you paint to a form, you have free range
over the entire client area. When you paint to a picture box or panel, you can draw content
anywhere in the client region of that control.

Although it’s not immediately obvious, you can restrict the painting region even further.
Usually, you’ll do this to produce interesting effects. For example, you could set the clipping
region to allow drawing only within a specific rectangular region. You can then paint content
over the entire graphics surface, but only the content that overlaps with the rectangular region
will appear.

To use clipping in this way, you need to set the Graphics.Clipping property before you
paint. The Clipping property accepts a Region object representing the area where drawing is
allowed. (Region objects represent the interior or closed figure, and are used primarily for clip-
ping and hit testing, which you’ll see later.)

Here’s an example that creates a region based on a rectangle, sets the clipping, and then
draws some content:

' Draw the rectangle.
Dim rect As New Rectangle(10, 10, 250, 50)
e.Graphics.DrawRectangle(Pens.Black, rect)

' Set the clipping so that any additional content will appear only when it
' overlaps with this rectangle.
Dim clippingRegion As New Region(rect)
e.Graphics.Clip = clippingRegion

' Draw in the clipped region.
e.Graphics.DrawString("Clipped", _
 New Font("Verdana", 36, FontStyle.Bold), Brushes.Black, 10, 10)
clippingRegion.Dispose()

When you’re ready to return to normal drawing (and get access to the entire drawing
surface), call ResetClip():

e.Graphics.ResetClip()

There are two ways to create a Region—from a rectangle (as shown in this example), and
from a GraphicsPath. You’ll need to use the GraphicsPath if you want to perform clipping with
a more complex shape. For example, here’s the code that sets the clipping region to an ellipse:

' Create the GraphicsPath with an ellipse.
Dim path As New GraphicsPath()
Dim rect As New Rectangle(10, 10, 250, 50)
path.AddEllipse(rect)

' Render the ellipse on the drawing surface.
e.Graphics.DrawPath(Pens.Red, path)

Macdonald_694-3C07.fm Page 237 Tuesday, July 25, 2006 8:39 AM

238 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

' Set the clipping.
Dim clippingRegion As New Region(path)
e.Graphics.Clip = clippingRegion

' Draw inside the ellipse.
e.Graphics.DrawString("Clipped", _
 New Font("Verdana", 36, FontStyle.Bold), Brushes.Black, 10, 10)
clippingRegion.Dispose()
path.Dispose()

Figure 7-17 shows this example with and without clipping.

Figure 7-17. Clipping to an ellipse (left), and not clipping (right)

This technique allows for some truly interesting effects. For example, you can create a path
out of a complex object like a string, and then create a region based on this path. If you do, the
region where drawing is allowed is inside the outline of the letters. Here’s the code you need:

' Clip to path (which represents text).
Dim path As New GraphicsPath()
path.AddString("Clipped", New FontFamily("Verdana"), _
 0, 70, New Point(10, 130), New StringFormat())
e.Graphics.DrawPath(Pens.Blue, path)

' Set the clipping.
Dim clippingRegion As New Region(path)
e.Graphics.Clip = clippingRegion

' Draw a series of ellipses in the clipped region.
For i As Integer = 0 To 40
 e.Graphics.DrawEllipse(Pens.Red, 180 - i*3, 180 - i*3, i*6, i*6)
Next

clippingRegion.Dispose()
path.Dispose()

Macdonald_694-3C07.fm Page 238 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 239

Figure 7-18 shows this example with and without clipping.

Figure 7-18. Clipping to the outline of a text string (left), and not clipping (right)

Coordinate Systems and Transformations
By default, when you draw GDI+ shapes, you use a coordinate system that designates the top-
left corner as (0, 0). The x-axis value increases as you move to the right, and the y-axis value
increases as you move down. The point (Form.ClientSize.Width -1, Form.ClientSize.Height -1)
corresponds to the bottom-right corner of a form. Each unit corresponds to one pixel. This is
nothing new—it’s the same coordinate system you examined with control basics in Chapter 2.
However, the Graphics class also gives you the flexibility to change the unit of measurement,
point of origin, and rotation.

To change the unit of measurement, you simply set the PageUnit property of the Graphics
class. You can use one of several values from the GraphicsUnit enumeration, including Pixel
(the default), Display (the same as pixels when drawing to the screen or 1/100 inch for printers),
Document (1/300 inch), Inch, Millimeter, and Point (1/72 of an inch).

e.Graphics.PageUnit = Graphics.Inch

The ability to change the point of origin is more useful. It uses the Graphics.
TranslateTranform() method, which accepts the coordinates of the new point that should
become (0,0). Using the code below, the point at (50, 50) will become the new (0,0) origin.
Points to the left or right of this origin must be specified using negative values.

e.Graphics.TranslateTransform(50, 50)

This trick is fairly handy. For example, it can allow you to perform simpler calculations
by assuming the top-left point of your drawing is (0, 0). You also can use several transforms
in a row and repeat the same drawing code. The figure you are drawing would then appear at
several different points in the window, as shown in Figure 7-19.

Macdonald_694-3C07.fm Page 239 Tuesday, July 25, 2006 8:39 AM

240 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-19. Using translate transforms

Here’s the code that creates this effect:

Private Sub TranslateTransform_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 ' Draw several squares in different places.
 DrawRectangle(e.Graphics)
 e.Graphics.TranslateTransform(180, 60)
 DrawRectangle(e.Graphics)
 e.Graphics.TranslateTransform(-50, 80)
 DrawRectangle(e.Graphics)
 e.Graphics.TranslateTransform(-100, 50)
 DrawRectangle(e.Graphics)
End Sub

Private Sub DrawRectangle(ByVal g As Graphics)
 Dim drawingPen As New Pen(Color.Red, 30)

 ' Draw a rectangle at a fixed position.
 g.DrawRectangle(drawingPen, New Rectangle(20, 20, 20, 20))

 drawingPen.Dispose()
End Sub

■Note Transforms are cumulative, so transforming by (50, 50) and then (20,10) is equivalent to a single
(70, 60) transform.

Macdonald_694-3C07.fm Page 240 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 241

The final transformation considered here is a rotational one. It uses the Graphics.
RotateTransform() method, which rotates the coordinate system using an angle or matrix. It’s
important to remember that rotations are performed around the point of origin. If you haven’t
performed any translation transformations, this point will be in the top-right corner of the form.

The next example uses a translation transform to move the center point to the middle of
the form, and then rotates text around that point with successive rotational transforms. The
result is shown in Figure 7-20.

Private Sub RotateTransform_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 ' Optimize text quality.
 e.Graphics.TextRenderingHint = TextRenderingHint.AntiAliasGridFit

 ' Move origin to center of form so we can rotate around that.
 e.Graphics.TranslateTransform(Me.Width / 2 - 30, Me.Height / 2 - 30)

 DrawText(e.Graphics)
 e.Graphics.RotateTransform(45)
 DrawText(e.Graphics)
 e.Graphics.RotateTransform(75)
 DrawText(e.Graphics)
 e.Graphics.RotateTransform(160)
 DrawText(e.Graphics)
End Sub

Private Sub DrawText(ByVal g As Graphics)
 g.DrawString("Text", New Font("Verdana", 30, FontStyle.Bold), _
 Brushes.Black, 0, 10)
End Sub

Figure 7-20. Using rotational transforms

Macdonald_694-3C07.fm Page 241 Tuesday, July 25, 2006 8:39 AM

242 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

There’s much more that you can do with coordinate systems. To tackle advanced issues,
check out the topics in the MSDN Help or look for a dedicated GDI+ book, such as Pro ..NET 2.0
Graphics Programming by Eric White (Apress, 2005).

Performing a Screen Capture
Some specialized programs need to take a snapshot of the current display, with the Windows
background and any visible applications. In the past, developers were forced to rely on GDI to
get this functionality. However, .NET 2.0 adds a new Graphics.CopyFromScreen() method that
simplifies life dramatically.

To use CopyFromScreen(), you need to first create an in-memory Bitmap object that has
the same dimensions as the current screen.

Dim bmp As New Bitmap(Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height)

Now you can get a Graphics object for this Bitmap, and use the CopyFromScreen() method to
capture the current screen. You need to supply coordinates that specify the top-left point of the
screen where you want to start your capture, the top-left point in the Bitmap where you want
to place the screen capture, and the size of the image you want to capture. The following code
gets the entire screen:

Dim g As Graphics = Graphics.FromImage(bmp)
g.CopyFromScreen(0, 0, 0, 0, bmp.Size)

Once you’ve captured the screen, you can continue by saving it (use the Bitmap.Save()
method) or displaying it. Figure 7-21 shows a program that copies the captured screen to a
picture box, which is placed inside a scrollable panel.

Here’s the code that captures the screen:

Private Sub cmdCapture_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdCapture.Click

 If pictureBox1.Image IsNot Nothing Then
 pictureBox1.Image.Dispose()
 End If

 Dim bmp As New Bitmap(Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height)
 Dim g As Graphics = Graphics.FromImage(bmp)
 g.CopyFromScreen(0, 0, 0, 0, bmp.Size)
 g.Dispose()
 pictureBox1.Image = bmp
 pictureBox1.Size = bmp.Size
End Sub

Macdonald_694-3C07.fm Page 242 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 243

Figure 7-21. Capturing the current screen

Optimizing GDI+ Painting
Painting is a performance-sensitive area for any application. Slow refresh rates and screen
flicker may not stop your application from performing its work, but it will make it seem old,
unprofessional, and underpowered. This section considers some techniques that optimize
drawing with GDI+ surfaces.

Painting and Debugging
Debugging drawing code can be frustrating. For example, consider what happens if you set a
breakpoint in the painting code for a form. When the breakpoint is reached, the code enters
break mode, the IDE appears, and the application window is hidden. When you run the next
line of code, the program is redisplayed, which triggers a second Paint event.

To escape this endless sequence of repainting, you can use a couple of tricks:

• If you have a high-resolution monitor, you can run your application alongside the program
you are testing. Then, when your program enters break mode, the IDE window does not
appear on top of your program window, and a repaint is not triggered. (Alternatively, you
can use two monitors at once.)

• Alternatively, you can set the TopMost property of your form to True, which keeps it
superimposed on your IDE window at all times. This should also avoid a repaint.

Macdonald_694-3C07.fm Page 243 Tuesday, July 25, 2006 8:39 AM

244 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Double Buffering
You may notice that when you repaint a window frequently it flickers madly. The flicker is
caused because, with each paint event, the image is erased and then redrawn object by object.
The flash you see is the blank background that precedes the redrawn content.

You can reduce flickering by preventing a control or form from drawing its background. If
you do, your code must begin by painting a background using one of the fill methods from the
Graphics class. Otherwise, the original content remains underneath the new content.

To disable background painting, all you need to do is override the OnPaintBackground()
method for the form or control and do nothing. In other words, you won’t call the base
OnPaintBackground() method.

Protected Overrides Sub OnPaintBackground(_
 ByVal e As System.Windows.Forms.PaintEventArgs)
 ' Do nothing.
End Sub

If you are filling a form or control with a custom background color, you should always
follow this step, as it can improve performance dramatically. Otherwise, your window will
flicker noticeably between the default background color and the color you paint every time
you redraw the form.

Instead of overriding the OnPaintBackground() method, you can use the SetStyle() method
and set the AllPaintingInWmPaint style to True. This tells the form to ignore messages asking it
to repaint its background.

Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

Disabling the automatic background painting reduces flicker, but the flicker remains. To
remove it completely, you can use a technique known as double buffering. With double buffering,
an image is built in memory instead of on the surface of a form or control. When the image is
completed, it’s drawn in one shot to the form. The process of drawing takes just as long, but the
refresh is faster, because it is delayed until the image is completely rendered. Hence, there is
very little flicker.

Although you could perform double buffering manually by drawing on an in-memory
Image object, there’s no need to. In .NET 2.0 all forms provide a DoubleBuffered property. If
you set this property to True, GDI+ performs automatic double buffering. Even though your
code appears to paint directly on the form surface, it really paints to an in-memory bitmap that
has the same bounds as the client area of the form. When the painting code ends, the bitmap is
copied onto the form in a single operation.

To try this out, consider an example that uses a simple animation, shrinking and growing
an ellipse automatically (see Figure 7-22).

Macdonald_694-3C07.fm Page 244 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 245

Figure 7-22. Using double buffering

The form is redrawn in response to the tick of a Timer control:

Private isShrinking As Boolean = False
Private extraSize As Integer = 0

Private Sub tmrRefresh_Tick(ByVal sender As Object, _
 ByVal e As EventArgs) Handles tmrRefresh.Tick

 ' Change the circle dimensions.
 If isShrinking Then
 extraSize -= 1
 Else
 extraSize += 1
 End If

 ' Change the sizing direction if needed.
 If extraSize > (Me.Width - 150) Then
 isShrinking = True
 ElseIf extraSize < 1 Then
 isShrinking = False
 End If

 ' Repaint the form.
 Invalidate()
End Sub

Macdonald_694-3C07.fm Page 245 Tuesday, July 25, 2006 8:39 AM

246 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

The paint code examines the state of a check box and decides whether or not it will imple-
ment double buffering.

Private Sub DoubleBuffering_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

 ' Check if double buffering is needed.
 Me.DoubleBuffered = chkDoubleBuffer.Checked

 Dim g As Graphics = e.Graphics
 g.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality

 ' Draw a rectangle.
 Dim drawingPen As New Pen(Color.Black, 10)
 g.FillRectangle(Brushes.White, New Rectangle(New Point(0, 0), _
 Me.ClientSize))
 g.DrawEllipse(drawingPen, 50, 50, 50 + extraSize, 50 + extraSize)
 drawingPen.Dispose()
End Sub

When you test this application, you’ll see that there is absolutely no flicker in double-buffered
mode. There is significant flicker without it.

■Tip The DoubleBuffered property always caches the graphic content of the entire form. If you’re animating
only a small portion, you’ll probably opt to implement double buffering on your own. That way, you can cache
just the region you need to repaint, reducing the memory overhead of your application. The following section
describes custom double buffering.

Double-Buffered Controls

There’s one limitation with automatic double buffering—it works only if you can set the
DoubleBuffered property, which is protected. That means the control itself has the ability to
control how it uses double buffering for its painting logic, but the application consuming the
control can’t.

For forms, this isn’t a problem, because you always derive a new form class when you create
a custom form. But for other controls, this isn’t the case. When you add a control to your form,
you aren’t deriving a new class—you’re simply using the existing class. As a result, you won’t be
able to access the DoubleBuffered property for the individual controls on your form.

In most cases, this distinction makes perfect sense. The core .NET controls rely on the
Windows API, not GDI+, so double buffering would have no effect. However, there are some
cases where this limitation does have an effect—namely, when you’re handling the Paint event
in a control to perform custom drawing. In this case, you don’t have the ability to switch on
double buffering.

The most typical example is a container control like the Panel. Assume you want to paint
some custom content just inside a specific panel, while the rest of the form contains ordinary

Macdonald_694-3C07.fm Page 246 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 247

.NET controls. To implement this logic, you respond to the Panel.Paint event. However, if you
want to optimize the painting process using double buffering, you need to use one of two
techniques:

• Perform manual double buffering. To do so, you perform all your drawing using an in-
memory Bitmap object, and then you copy that bitmap to the drawing surface when
you’re finished using the Graphics.DrawImageUnscaled() method.

• Create a custom control that derives from Panel. Override the constructor and set the
protected Control.DoubleBuffered property to True. Use this panel when you want a
double-buffered painting surface.

Both of these options are reasonable solutions. Manual double buffering requires more
work, because you are essentially reimplementing a feature that exists in .NET. However, it can
be useful if you’re using it inside a custom control to buffer just part of the visible region, which
allows you to reduce the amount of memory that’s used. Here’s the basic model:

' Create an in-memory graphic that matches the dimensions of the drawing
' surface.
Dim bitmap As New Bitmap(ctrl.ClientRectangle.Width, ctrl.ClientRectangle.Height)
Dim g As Graphics = Graphics.FromImage(bitmap)

' (Paint on this in-memory graphics surface in the same way that you paint
' with an ordinary Graphics object.)

' Copy the final image to the drawing surface and dispose of it.
e.Graphics.DrawImageUnscaled(bitmap, 0, 0)
g.Dispose()
bitmap.Dispose()

Creating a custom control neatly solves the problem and keeps the programming model
simple and well encapsulated, but it forces you to generate additional classes. Here’s an example:

Public Class BufferedPanel
 Inherits Panel

 Public Sub New ()
 Me.DoubleBuffered = True
 End Sub
End Class

■Note Setting the DoubleBuffered property to True is equivalent to setting the AllPaintingInWmPaint and
OptimizedDoubleBuffer control styles to True. If you perform painting in OnPaintBackground() as well as OnPaint(),
you should set the OptimizedDoubleBuffer property to True but not set the DoubleBuffered property. (One
control that does this is the ToolStrip.) If you do set the DoubleBuffered property to True and you perform
painting in OnPaintBackground(), your background may not be repainted correctly when you Alt+Tab from one
program to another.

Macdonald_694-3C07.fm Page 247 Tuesday, July 25, 2006 8:39 AM

248 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-23 shows an example that compares different approaches to double buffering. On
the left is a custom double-buffered panel, in the middle is an ordinary panel, and on the right
is a panel with manual double buffering. Each panel has the same task—to draw a graphic using
time-consuming rendering code over a form that shows a custom graphic. All three panels are
transparent.

In this example, the custom control performs the best, because it’s the only one that’s able
to combine the background painting (using the form graphic) and the foreground painting in
one operation, resulting in no flicker. The ordinary panel performs by far the worst—there’s
noticeable flicker as it re-creates the arcs individually. The manually buffered example paints
the graphic in one operation, but it still requires two operations to refresh itself. The first paints
the background, and the second paints the buffered graphic. This adds some flicker. To get a
better feel for the difference, try out this example in the downloadable code.

Figure 7-23. Optimizing double buffering in a panel

Painting Portions of a Window
In some cases, it just doesn’t make sense to repaint the entire window when you need to
update only a portion of the display. One example is a drawing program.

Consider a simple example program that allows the user to draw squares. Every time the
user clicks on an area of the form, a new square is inserted (see Figure 7-24).

Macdonald_694-3C07.fm Page 248 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 249

Figure 7-24. A square-painting program

To make sure this painting program keeps working even if the form is resized or minimized, all
the painting is performed in the Paint event handler. When the user clicks with the mouse, a
new square is created but not drawn. Instead, a rectangle object is added to a form-level collection,
so it can be tracked, and the form is invalidated. Not only does this offer better performance, it’s
also a conceptually solid design, because you’re separating your data (the square objects) from
their visual representation (the drawing code).

' Store the squares that are painted on the form.
Private squares As New List(Of Rectangle)()

Private Sub DrawSquare_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown

 ' Define a new square based on where the user clicked.
 Dim square As New Rectangle(e.X, e.Y, 20, 20)
 squares.Add(square)

 ' Request a repaint.
 Invalidate()
End Sub

The painting logic then takes over, iterating through the collection, and drawing each
rectangle. The number of squares that is currently being displayed is also written to a status bar
at the end of this operation.

Private Sub DrawSquare_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

Macdonald_694-3C07.fm Page 249 Tuesday, July 25, 2006 8:39 AM

250 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

 Dim squarePen As New Pen(Color.Red, 10)
 For Each square As Rectangle In squares
 e.Graphics.DrawRectangle(squarePen, square)
 Next

 squarePen.Dispose()
 lblCount.Text = " " & squares.Count & " squares"
End Sub

The problem with this code is that every time a rectangle is created, the entire form is
redrawn. This causes noticeable screen flicker as the number of squares advances beyond 100.
You can try this out using the sample code for this chapter.

There are two ways that you can remedy this problem. The fastest solution is to draw the
square in two places: in the Paint logic and the MouseDown event handling code. With this
approach, the MouseDown event handler does not need to invalidate the form. It draws the
square directly, and stores enough information about the new rectangle for it to be successfully
repainted if the window is minimized and restored. The potential drawback is that the code
becomes significantly more tangled, especially if the drawing logic is complicated. To avoid
writing the same code twice, you should separate the drawing logic into a separate subroutine
that accepts a Graphics object and the item to draw. The following code snippet shows how
this technique would work with the simple square painting program:

' Paint a square in response to a mouse click.
Private Sub DrawSquare_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown

 Dim square As New Rectangle(e.X, e.Y, 20, 20)
 squares.Add(square)

 Dim g As Graphics = Me.CreateGraphics()
 DrawRectangle(square, g)
 g.Dispose()
End SUb

' Paint all the squares when the form needs to be refreshed
' in response to the Paint event.
Private Sub DrawSquare_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

 For Each square As Rectangle In squares
 DrawRectangle(square, e.Graphics)
 Next
End Sub

' This procedure performs the actual drawing, and is called by
' DrawSquare_MouseDown and DrawSquare_Paint.

Macdonald_694-3C07.fm Page 250 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 251

Private Sub DrawRectangle(ByVal rect As Rectangle, ByVal g As Graphics)
 Dim squarePen As New Pen(Color.Red, 10)
 g.DrawRectangle(squarePen, rect)
 squarePen.Dispose()
 lblCount.Text = " " & squares.Count & " squares"
End Sub

A simpler solution is to use one of the overloaded versions on the Invalidate() method.
This instructs Windows to repaint only a small portion of the window. The full painting code
still runs (which could slow your application if the painting is complex), but only the specified
region is repainted, thereby improving performance and drastically reducing screen flicker.

Private Sub DrawSquare_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown

 Dim square As New Rectangle(e.X, e.Y, 20, 20)
 squares.Add(square)

 ' Get a region that includes the square and its border.
 ' Because the pen width is 10 pixels (and the center line is in
 ' the middle), you'll need an extra 5 pixels on each side.
 square.Inflate(5, 5)
 Invalidate(square)
End Sub

Finally, the last enhancement you can make is to modify the painting code to perform the
repainting only if it falls in the invalidated region. You can determine the invalidated region by
checking the PaintEventArgs.ClipRectangle property. For example, you could use conditional
logic that paints the rectangle only if it falls into this region. In this situation, there isn’t much
performance benefit to be had because the step of painting the rectangle doesn’t take much
time (and the output isn’t copied to the drawing surface anyway). However, if you need to
perform a computationally intensive drawing task (for example, one that involves a gradient or
a series of coordinate calculations), you can use this approach to avoid the work when it’s not
necessary.

■Note Another way to paint just a portion of a window is to develop owner-drawn controls that override
their own OnPaint() methods. In Chapter 24, you’ll see an example of a custom drawing program that demon-
strates both the control-based approach and a pure GDI+ approach to drawing shape elements.

Hit Testing
The square painting program shown earlier presents some interesting possibilities. For example,
you could use this code as the basis for a simple GDI+ drawing application. You probably
would add controls that allow the user to draw more than one type of object. You would need
to add a special class (perhaps called Shape) that encapsulates all the details about the drawn

Macdonald_694-3C07.fm Page 251 Tuesday, July 25, 2006 8:39 AM

252 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

object, such as size, color, pen width, and so on. Your Paint event handler would then iterate
through a collection of Shape objects and render all of them to the form using the appropriate
information.

All these details are easy to implement, but what if you want to go another step and give
the user the ability to select and manipulate shapes after they’ve been created? You’ll need a
way to respond to mouse actions and determine what shape the user is trying to select. Unfor-
tunately, squares, ellipses, curves, and other shapes have no ability to capture mouse actions
and raise the typical MouseDown and Click events. Instead, you need to intercept these events
using the containing object (typically a form), and then manually determine whether a shape
was clicked. This process is known as hit testing.

Hit Testing with Rectangles

.NET provides basic hit testing support through a Contains() method that’s built into the Rectangle
structure. It examines a supplied x and y coordinate, Point object, or Rectangle object, and
returns True if it is located inside the Rectangle.

However, there are a couple of quirks that take some getting used to with Rectangle hit testing:

• A Rectangle is a combination of points (defined by a top-left corner, width, and height).
It doesn’t necessarily correspond to a region on the screen—that depends on whether
you’ve drawn some sort of shape based on the Rectangle with one of the GDI+ drawing
methods.

• The Rectangle is the only simple drawing structure that supports hit testing. That means
that if you create another shape (like an ellipse), you need to convert its coordinates into
a Rectangle object or use the GraphicsPath approach (described in the next section).

■Tip The Rectangle also provides methods that aren’t considered here. For example, you can use Intersect()
to return a Rectangle representing where two Rectangles intersect, Offset() to move it, and Inflate() to enlarge
or reduce it.

The next example uses hit testing with the square-drawing program developed earlier.
When the user right-clicks the form, the code loops through the collection of squares, and
displays a message box for each one that contains the clicked point.

Private Sub DrawSquare_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown

 If e.Button = MouseButtons.Left Then
 Dim square As New Rectangle(e.X, e.Y, 20, 20)
 squares.Add(square)
 square.Inflate(5, 5)
 Invalidate(square)

Macdonald_694-3C07.fm Page 252 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 253

 ElseIf e.Button = Windows.Forms.MouseButtons.Right Then
 ' Search for the clicked square.
 Dim squareNumber As Integer = 0
 For Each square As Rectangle In squares
 squareNumber += 1
 If square.Contains(e.X, e.Y) Then
 MessageBox.Show("Point inside square #" & _
 squareNumber)
 End If
 Next
 End If
End Sub

Figure 7-25 shows what happens when the user clicks a square. Once you have determined
which square was clicked, you could modify it and then invalidate the form, or allow drag-and-
drop. Chapter 24 uses a similar, but more sophisticated, technique to create a vector-based
drawing tool that allows users to draw, move, and resize shapes.

Figure 7-25. Hit testing with squares

Hit-Testing Nonrectangular Shapes

.NET does provide some help if you need to perform hit testing with a nonrectangular object.
If you use the GraphicsPath object to create a shape (or combination of shapes), you can rely
on the indispensable IsVisible() method, which accepts a point and returns True if this point is
contained inside a closed figure in the GraphicsPath. This method works equally well, whether
you click inside a prebuilt closed figure (like a square, ellipse, polygon, etc.) or inside a figure
you created with line segments using the StartFigure() and CloseFigure() methods of the
GraphicsPath object.

Private path As GraphicsPath

Private Sub GraphicsPathExample_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint

Macdonald_694-3C07.fm Page 253 Tuesday, July 25, 2006 8:39 AM

254 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

 path = New GraphicsPath()
 path.StartFigure()
 path.AddArc(10, 10, 100, 100, 20, 50)
 path.AddLine(20, 50, 70, 230)
 path.CloseFigure()
 path.AddEllipse(120, 50, 80, 80)
 e.Graphics.FillPath(Brushes.White, path)
 e.Graphics.DrawPath(Pens.Black, path)
End Sub

Private Sub GraphicsPathExample_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown

 If path.IsVisible(e.X, e.Y) Then
 MessageBox.Show("You clicked inside the figure.")
 End If
End Sub

Figure 7-26 shows a successful use of hit testing with a nonrectangular shape.

Figure 7-26. Hit-testing a nonrectangular path

Painting Windows Controls
The GDI+ classes allow you to build a drawing out of shapes, curves, and text. Using these
drawing primitives, you can create more sophisticated elements. However, using GDI+ to draw
a typical Windows control, like a check box or button, takes a significant amount of code.

Of course, Windows controls aren’t rendered using GDI+. Instead, they’re rendered by the
system based on calls to the Windows API. You can get access to some of this functionality in
.NET in two ways:

Macdonald_694-3C07.fm Page 254 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 255

• The ControlPaint class, which allows you to draw standard (unthemed) Windows interface
elements.

• The VisualStyleRenderer class, which allows you to draw themed Windows XP-style
controls. The VisualStyleRenderer is new in .NET 2.0.

Although neither of these elements is technically a part of GDI+, both are useful in custom
drawing scenarios. You’ll examine them in the following sections.

The ControlPaint Class
The ControlPaint class offers methods for drawing standard Windows interface elements, like
scroll buttons, borders, focus rectangles, and check boxes.

For example, if you want to create a special control that contains a list of items with check
boxes, you have limited options. You can use control composition (and create contained
check-box controls), but this limits the ways that you can use the check boxes and tailor the
interface. Alternatively, you could attempt to draw your own and probably end up with a rather
crude-looking square. With the ControlPaint class, however, you can use the DrawCheckBox()
method, and end up with the perfectly shaded Windows standard for free. You can even create
a check box of any size you like. Similarly, if you want to create a scroll button, or a button that
displays a focus rectangle, you also can turn to the ControlPaint class.

The ControlPaint class consists entirely of shared methods, as described in Table 7-6.
Here’s a line of code that uses it draw a check box:

ControlPaint.DrawCheckBox(e.Graphics, New Rectangle(10, 10, 50, 50), _
 ButtonState.Checked)

And here’s one that draws the familiar dotted focus rectangle:

ControlPaint.DrawFocusRectangle(e.Graphics, new Rectangle(130, 80, 20, 20))

Table 7-6. Basic ControlPaint Methods

Method Description

DrawBorder() and
DrawBorder3D()

Draw a border like on a button-style control

DrawButton() and
DrawCaptionButton()

Draw a standard command button control

DrawCheckBox() Draws a check-box control

DrawComboButton() Draws the drop-down button for a combo box control

DrawFocusRectangle Draws a dotted rectangular outline for a focus rectangle

DrawGrid() Draws a grid of one-pixel dots with the specified spacing,
within the specified bounds, and in the specified color

DrawImageDisabled() and
DrawStringDisabled()

Draw an image or string of text in a disabled (“grayed-out”) state

Macdonald_694-3C07.fm Page 255 Tuesday, July 25, 2006 8:39 AM

256 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Figure 7-27 shows the sample output for several ControlPaint methods, including check
boxes of different sizes and states.

Figure 7-27. Drawing pictures with ControlPaint

Remember, this is a picture of a check box, not a check box! If you want it to change its state
when the user clicks it, you need to manually repaint a new check box in a different state.

Visual Styles
A significant gap in the ControlPaint class is that it doesn’t take visual style into account. If
you’re using Windows XP (or you have visual styles enabled for Windows 2003 Server), you
have the ability to display modern interfaces with a slick new look. Painting an old-fashioned
legacy control ruins the effect.

.NET 2.0 introduces a solution to this problem with a new System.Windows.Forms.
VisualStyles namespace that wraps the visual styles API. Unfortunately, because the API uses a
radically different model than ordinary control painting, it’s not possible to merge the visual
styles functionality into the ControlPaint class (which would be a cleaner result). However, the

DrawLockedFrame() and
DrawSelectionFrame()

Draw a standard selection frame in the specified state, with the
specified inner and outer dimensions, and with the specified
background color

DrawMenuGlyph() Draws a menu glyph on a menu item control (for example, a
check mark)

DrawMixedCheckBox Draws a three-state check-box control

DrawRadioButton() Draws a standard radio button control

DrawScrollButton Draws a scroll button on a scroll bar control

DrawSizeGrip() Draws the sizing grip that appears on the bottom right of
some windows

Table 7-6. Basic ControlPaint Methods (Continued)

Method Description

Macdonald_694-3C07.fm Page 256 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 257

VisualStyleRenderer plays an analogous role—it renders user interface elements using the
visual styles API.

The System.Windows.Forms.VisualStyles namespace includes all the ingredients you
need to draw with a themed element. These details include the following:

• VisualStyleInformation. Provides shared properties that return information about the
current visual style environment, such as the chosen color scheme and the operating
system support.

• VisualStyleElement nested classes. There’s a separate nested class for each type of
element you can paint. For example, VisualStyleElement.CheckBox.Button represents
a check box in various states.

• Enumerations. There are many enumerations that you use in conjunction with the
VisualStyleElement nested classes to set various properties.

• VisualStyleRenderer. This is the class that performs the actual work of painting the
styled element onto a form. Plays a similar role to ControlPaint.

Visual Style Support
There’s a significant catch to using visual styles. Before you can use the VisualStyleRenderer in
an application, you need to be sure that your environment supports visual styles.

To have this support, four things need to be true:

• The application must be running on an operation that supports visual styles (Windows
XP or Windows 2003 Server). You can determine this by checking the IsSupportedByOS
property of the VisualStyleInformation class.

• Visual styles must be enabled in the operating system. You can check this by using the
IsEnabledByUser property of the VisualStyleInformation class.

• Visual styles must be enabled for the application, meaning you must have called the
Application.EnableVisualStyles() method. By default, when you create a new project in
Visual Studio this line is added to the Program class.

• Visual styles must be applied to the client area of all application windows. You can deter-
mine this by checking the VisualStyleState property of the Application class, which must
have the value VisualStyleState.ClientAreaEnabled or
VisualStyleState.ClientAndNonClientAreasEnabled.

Rather than checking these details individually, you can rely on the Application.
RenderWithVisualStyles property. If True, all of these conditions have been met. If any condi-
tion fails, visual styles cannot be used and this property returns False. Attempting to use visual
styles when they aren’t supported will lead to an exception, so you should always examine this
property and degrade gracefully to a different set of drawing logic (such as the ControlPaint
class) if visual styles aren’t supported.

Macdonald_694-3C07.fm Page 257 Tuesday, July 25, 2006 8:39 AM

258 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

Drawing with the VisualStyleRenderer
Assuming visual styles are enabled, you begin by choosing the type of element you want to
draw from the set of VisualStyleElement nested classes. Each nested VisualStyleElement class
contains a group of shared properties that allows you to retrieve the VisualStyleElement object.

For example, the VisualStyleElement.CheckBox.Button class provides shared properties
like CheckedDisabled, CheckedNormal, CheckedPressed, UncheckedDisabled, and so on. Each
property returns a VisualStyle object that represents the element in the corresponding state.

Dim element As VisualStyleElement = VisualStyleElement.Button.CheckBox.CheckedNormal

There are several dozen visual element classes. You can consult the MSDN Help to browse
the full list.

Once you have the VisualStyle object you want, you can create a VisualStyleRenderer
that wraps it. Before you do this, it’s considered good practice to call the VisualStyleRenderer.
IsElementDefined() method to make sure the renderer supports the element you’ve chosen
(meaning it’s supported by the current theme). For example, though there’s a set of
VisualStyleElement.Menu classes, none of the themes provided with current operating
systems supports it.

If VisualStyleRenderer.IsElementDefined(element) Then
 Dim renderer As New VisualStyleRenderer(element)
 ...

■Note In theory, you could write your code generically to use visual styles for all elements when available.
However, there is only one implementation of visual styles currently available (both Windows XP and Windows 2003
Server are the same), and future versions of Windows are likely to adopt a new drawing framework. That means
in practice it’s reasonable to code against the known visual style implementation and streamline your code.

The last step is to use the methods of the VisualStyleRenderer to create the output. The
core VisualStyleRenderer methods are described in Table 7-7.

Table 7-7. Essential VisualStyleRenderer Methods

Method Description

DrawBackground() Draws the background for the current visual style element. In
many cases, the background is the element—for example, the
background of a push button creates the familiar white shaded
button, and the background of a check box paints the check
box. All you need to do after calling this method is (optionally)
add text and a border.

DrawEdge() Draws one or more edges of the specified bounding rectangle.

DrawText() Draws text in the specified bounds using the appropriate font.
The image is automatically adjusted based on the state of the
item (for example, disabled).

Macdonald_694-3C07.fm Page 258 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 259

Here’s the remainder of the painting code. It displays a check box in a bordered and a text
caption. The key methods are DrawBackground(), which creates the check box, DrawEdge(),
and DrawTest().

 ...
 Dim rectCheck As New Rectangle(10, 10, 50, 50)
 Dim rectBox As New Rectangle(10, 10, 200, 50)
 Dim rectText As New Rectangle(50, 25, 150, 25)
 renderer.DrawBackground(e.Graphics, rectCheck)
 renderer.DrawEdge(e.Graphics, rectBox, _
 Edges.Bottom Or Edges.Top Or Edges.Left Or Edges.Right, _
 EdgeStyle.Etched, EdgeEffects.Flat)
 renderer.DrawText(e.Graphics, rectText, "Styled checkbox", False, _
 TextFormatFlags.Top)
End If

Figure 7-28 shows the result.

Figure 7-28. Drawing pictures with VisualStyleRenderer

DrawImage() Draws the specified image within the specified bounding
rectangle. The image is automatically adjusted based on the
state of the item (for example, disabled).

DrawParentBackground() Draws the background of the control’s parent in the specified
area. Has no effect when painting directly to a form.

HitTestBackground() Returns True if a specified point is contained in the background
of the current visual style element. This is useful, because
although you choose the bounding rectangle for the element,
you don’t necessarily know where the content is drawn.

IsElementDefined() Returns True if the specified visual style element is defined by
the current visual style. If it isn’t, don’t attempt to use any of the
drawing methods—they won’t produce any output.

SetParameters() Sets the VisualStyleRenderer to use a different
VisualStyleElement object.

Table 7-7. Essential VisualStyleRenderer Methods

Method Description

Macdonald_694-3C07.fm Page 259 Tuesday, July 25, 2006 8:39 AM

260 C H A P T E R 7 ■ D R A W I N G W I T H G D I +

■Note Sadly, due to a bug in the .NET API for visual styles, the font is not always set correctly. Although
this issue will be fixed in future releases, you can use the (somewhat awkward) workaround described at
http://blogs.msdn.com/jfoscoding/articles/475517.aspx for now.

To get a better feeling for DrawTest() and the visual style elements that are available, be
sure to browse the System.Windows.Form.VisualStyles namespace. You’ll find classes that
represent core controls (buttons, check boxes, text boxes, drop-downs, scroll bars, etc.) along
with more modern controls (trees, panels, toolbars, and more). Regardless of the element, you
use the same set of VisualStyleRenderer methods from Table 7-7 to render the output.

■Tip You can switch an existing VisualStyleRenderer object to use another element by calling the
SetParameters() method and supplying the new VisualStyleElement object.

Using a Control Renderer
Adding the logic to painstakingly create a VisualStyleObject, check whether it’s defined in the
current theme, and then render it can become fairly time consuming. If you’re planning to use
the visual style support to build a unique custom control (like the examples in Chapter 12,
which use visual styles in a charting control and a collapsible panel), you don’t have any other
option. However, if you simply want to create a basic ingredient like a button or check box,
there is a shortcut. You can use one of the dedicated renderer classes defined in the System.
Windows.Forms namespace.

The neat thing about many control renderers is that they work regardless of whether visual
styles are available. Internally, they check the Application.RenderVisualStyles property and
degrade to the classic Windows look if styles aren’t supported. This simplifies the code you
need to write dramatically.

.NET includes the following control renderers:

• ButtonRenderer

• CheckBoxRenderer

• GroupBoxRenderer

• RadioButtonRenderer

Here’s an example of how you might use the CheckBoxRenderer inside a paint event handler:

CheckBoxRenderer.DrawCheckBox(e.Graphics, New Point(10,10), _
 New Rectangle(10,10,110,15), "Style checkbox", Me.Font, False, _
 CheckBoxState.CheckedNormal)

Macdonald_694-3C07.fm Page 260 Tuesday, July 25, 2006 8:39 AM

C H AP T E R 7 ■ D R A W I N G W I T H G D I + 261

There are also some control renderers that work only if visual styles are available (and they
throw exceptions if styles aren’t supported). That means it’s up to you to check the Application.
RenderVisualStyles property before you decide whether or not to use these renderers. They
include the following:

• ComboBoxRenderer

• ProgressBarRenderer

• ScrollBarRenderer

• TabRenderer

• TextBoxRenderer

• TrackBarRenderer

The Last Word
In this chapter, you learned how to use .NET’s revitalized painting framework and the optimized
techniques, including double buffering, that make drawing routines sharp and flicker-free.
You also saw how to make shaped forms and considered topics you need to master if you want
to develop owner-drawn controls, like hit testing and double buffering. The story doesn’t end
here—you’ll see GDI+ at work throughout this book. Here are the most notable examples:

• Chapter 12 provides several practical examples of how you can use GDI+ to create
owner-drawn controls.

• Chapter 23 uses owner-drawn controls to demonstrate modern skinned interfaces.

• Chapter 24 uses owner-drawn controls to implement a custom drawing program.

The GDI+ information in this chapter isn’t comprehensive, and there are many more
details about the platform that could easily occupy a complete book. If you want to explore
more about GDI+, consider Pro .NET 2.0 Graphics Programming by Eric White (Apress, 2005).
Another great resource for hard-core graphics programmers is the Paint.NET sample application
(see www.eecs.wsu.edu/paint.net), which implements a feature-complete, modern drawing
application using .NET.

Macdonald_694-3C07.fm Page 261 Tuesday, July 25, 2006 8:39 AM

Macdonald_694-3C07.fm Page 262 Tuesday, July 25, 2006 8:39 AM

263

■ ■ ■

C H A P T E R 8

Data Binding

Many Windows applications are really just attractive window dressing over a relational data-
base. This is especially true of the internal software that powers most businesses. The chief
responsibilities of this type of software are to allow highly structured data entry and to generate
reports that sumarize vast quantities of information.

Of course, databases aren’t only used for workflow and administrative software. Almost
every application needs to connect to a data source and retrieve, format, and display informa-
tion at some point. (Even an Internet e-commerce site is really just an interactive product
catalog that draws information from one group of tables and logs transactions in another.) In
this chapter, you’ll consider the options you have for displaying data in a Windows application
through data binding.

Data binding aims to reduce the amount of code you need to write to create forms that
display and edit data. As you’ll see in this chapter, you have a choice about how much function-
ality you code by hand and how much you allow Visual Studio to generate automatically. To
create an application that’s reasonably easy to change or enhance, you need to understand
how to make this compromise.

■Note This chapter isn’t meant as a primer on ADO.NET, the library .NET applications use to connect to
relational databases. If you haven’t used ADO.NET before, you may be interested in a dedicated book on the
subject. Two good choices are Microsoft ADO.NET Core Reference (Microsoft Press) and Pro ADO.NET (Apress).
However, if you are familiar with ADO.NET, you’ll learn quite a bit in this chapter about the best ways to integrate
relational data into a Windows Forms application.

In this chapter, you’ll consider three fundamental topics:

• How to use .NET data binding to show the information from any data object in any control.

• How to use the .NET data source model to query data a database without writing any
code—and whether you should rely on this approach in a serious application.

• How to design with data in mind, so you can keep your application ruthlessly organized
and well encapsulated.

Macdonald_694-3C08.fm Page 263 Wednesday, July 26, 2006 10:55 AM

264 C H A P T E R 8 ■ D AT A B I N D I N G

Introducing Data Binding
Traditionally, data binding has been viewed with a great deal of suspicion. Many developers
feel that it’s an inflexible, clumsy tool favored by beginning programmers and visual develop-
ment tools. In most cases, they’ve been all too correct.

Data binding usually suffers from several well-known problems:

• It’s inflexible. For example, you can only bind special controls to special objects—and
when you do, you lose control of the process. In many cases, you need to either enable
or disable entire features such as data editing, because data controls don’t allow you to
participate in their work.

• It’s ugly. When you bind to data, you often have to display all available rows and sacrifice
any ability to format details like column widths or order. And if you hoped to convert a
field made up of numeric constants into a friendlier representation, forget it.

• It’s fragile. Data binding doesn’t follow classic three-tier design. Instead, it binds data-
base details directly to user interface logic. If the data source changes, or you need to
create functionality that should be shared among different applications or environments,
you are entirely on your own.

• It’s proprietary. A fine-tuned data-binding solution is great—until your organization
decides to upgrade to a newer programming tool or change programming languages. At
this point, there is generally no migration path, because much of the logic is hard-coded
in proprietary designer or project files. In some cases, you’ll face the same problems if
you simply switch from one relational database product to another (for example, you
move from SQL Server to Oracle).

Does .NET suffer from the same problems? It all depends on how you use data binding,
and how you integrate it in the rest of your application. As you’ll discover, it’s possible to use
data binding intelligently and flexibly and avoid these problems. It’s also possible to use data
binding to build poorly designed applications that are all but impossible to change or optimize.

.NET Data Binding
It’s important to realize that there are really two levels of .NET data binding:

• Basic data binding (for data display). This includes support for binding data objects
to Windows Forms controls. Although this saves you from the hassle of writing display
logic, you still need to manage the process that retrieves the data from the database (and
commits changes).

• No-code data binding (for data operations). This adds support for automatically popu-
lating data objects based on a known data source, like a relational database. You also can
apply changes in the same way. Using this level of support, you can theoretically avoid
writing any database code at all.

Macdonald_694-3C08.fm Page 264 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 265

The difference is important, because these two technologies have radically different
consequences for the design of your application. It’s almost always safe to use the first level.
It gives you all the flexibility you need to display your data with an elegant, extensible model.
On the other hand, if you use both levels of data binding you need to be very cautious. You
run the risk of creating applications where database code is tightly bound to individual forms
in your application, and routines for common tasks like handling errors are scattered throughout
your application. You also make it more difficult to change or optimize your approach to
data access.

Figure 8-1 shows an example of the first approach—an application that retrieves data
objects by hand, but uses data binding to get the information into various controls for display.

Figure 8-1. Data binding in a .NET application

In this example, a custom data access class (that you create) contains all the ADO.NET
code. It contacts the database, performs a query, and transfers information into a data object
(like the DataSet or a collection of objects). This data access class may be in the same assembly
as the rest of your application, or for better componentization, you can develop it in a separate
class library project. Once the data object is returned, the information it contains is displayed
in a form automatically, thanks to data binding. This automatic display works through various
relationships between the data object and the controls on the form. These relationships are
usually set up when the form is first created.

Figure 8-2 shows how no-code data binding works in a Windows application. The ingredients
that are involved are similar to those in Figure 8-1—namely, there’s a class to retrieve data and
a class to represent that data. However, there are two significant differences. By default, all the
objects are contained by the form that displays the data. Unfortunately, this makes it difficult
to bind the data to other forms without duplicating code. More importantly, to create the
application in Figure 8-1, you need to code the data access class by hand and choose a suitable
data object. But when you use the approach shown in Figure 8-2, the choice is out of your
hands. The data access logic and the data object are generated automatically in Visual Studio,
and your options for customizing it are limited.

In this chapter, you’ll start by exploring the first level (showing relational data in bound
controls) and then consider whether or not it makes sense to use the second level (avoiding
data access code altogether).

Macdonald_694-3C08.fm Page 265 Wednesday, July 26, 2006 10:55 AM

266 C H A P T E R 8 ■ D AT A B I N D I N G

Figure 8-2. No-code data binding in a .NET application

Basic Data Binding
In the world of .NET data binding, there are data providers (the data objects that contain the
information you want to show) and data consumers (the controls that display the bound data).

Figure 8-3 shows a snapshot of the relationship between data providers and data consumers.

Figure 8-3. Information flow in .NET data binding

Data Consumers
Almost every control in .NET supports data binding in one form or another. However, different
controls support data binding in different ways. For example, when binding to a text box, button,

Macdonald_694-3C08.fm Page 266 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 267

or image control, you will usually bind to the TextBox.Text, Button.Text, or PictureBox.Image
property (although there are other possibilities, as you’ll discover shortly). Each of these properties
can bind to a single piece of information at a time through a process called simple data binding.

On the other hand, a control like ListBox or CheckedListBox can hold an entire list of data
or the contents of a single field from a database. There are also rich controls like DataGridView
that can display all the information from a DataSet on their own. All of these controls support
complex data binding, which means they can show the values from more than one row in a
data object.

Data Providers
You don’t need to use any database code to take advantage of data binding. .NET allows controls
to bind to any class that implements the IList interface.

■Note IList is just a starting point. Other, more sophisticated interfaces extend IList with features for editing.
As you’ll see later in this chapter, interfaces like IBindingList and IEditableObject, allow two-way data binding,
so you can modify a value in a control and have the control update the bound data object automatically. ADO.NET
objects like the DataView support these interfaces, and you can implement them in your custom classes.

Data sources that are supported in Windows Forms data binding include:

• DataColumn. Represents a single value from a field.

• DataView. Represents a view onto a complete DataTable (which can include filtering
and sorting settings). You can also bind to the DataTable directly, but when you use this
approach .NET actually examines the DataTable.DefaultView property to get a DataView
object, which it binds.

• DataViewManager. Represents a complete DataSet, which may contain several DataTable
objects with information. You also can bind directly to a DataSet object, but when you
use this approach .NET actually examines the DataSet.DefaultViewManager to get a
DataViewManager object, which it binds.

• Arrays and collections. Represents a collection of virtually any type of object. You can
use arrays, the ArrayList, and generic collections like List(Of T) and BindingList(Of T).
You can’t use specialized collection types, like queues and hashtables. The best part is
that you can fill the collection with your own custom data objects.

In the following examples, you’ll begin by using the basic ADO.NET objects and then learn
how create bindable custom objects.

A Data Access Component
Before continuing, it makes sense to introduce the database class that’s used in the following
examples. Here’s the basic outline:

Macdonald_694-3C08.fm Page 267 Wednesday, July 26, 2006 10:55 AM

268 C H A P T E R 8 ■ D AT A B I N D I N G

Public Class StoreDB

 Public Function GetProducts() As DataTable
 ...
 End Function

End Class

When other forms need data, they call the StoreDB.GetProducts() method to retrieve a
DataTable object. In this section, we’re primarily interested with how ADO.NET objects like the
DataTable and DataSet can be bound to Windows Forms controls. The actual process that
deals with creating and filling these objects (as well as other implementation details, such as
whether StoreDB caches the data over several method calls, whether it uses stored procedures
instead of inline queries, whether it fetches the data from a local XML file when offline, and so
on) isn’t our focus.

However, just to get an understanding of what’s taking place, here’s the complete code. In
order for it to work, you must import the System.Data.SqlClient namespace to get access to the
classes for SQL Server database access.

Public Class StoreDB

 Public Function GetProducts() As DataTable
 ' Get the connection string from the .config file.
 Dim connectionString As String = My.Settings.Store

 ' Create the ADO.NET objects.
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand("GetProducts", con)
 cmd.CommandType = CommandType.StoredProcedure
 Dim adapter As New SqlDataAdapter(cmd)

 ' Fill a DataTable.
 Dim ds As New DataSet()
 adapter.Fill(ds, "Products")
 return ds.Tables("Products")
 End Function

End Class

■Note Currently, the GetProducts() method doesn’t include any exception handling code, so all exceptions
will bubble up the calling code. This is a reasonable design choice, but you may want to catch the exception
in GetProducts(), perform cleanup or logging as required, and then rethrow the exception to notify the calling
code of the problem. This design pattern is called caller inform.

Macdonald_694-3C08.fm Page 268 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 269

This code retrieves a table of product information from the Store database, which is a
sample database for the fictional IBuySpy store included with some Microsoft case studies.
(You can get a script to install this database with the downloadable samples for this chapter.)
The query is performed through a stored procedure in the database named GetProducts. The
connection string isn’t hard-coded—instead, it’s retrieved through an application setting in
the .config file for this application. (To view or set application settings, double-click the My
Project node in the Solution Explorer, and click Settings.)

Figure 8-4 shows two tables in the Store database and their schema.

Figure 8-4. A portion of the Store database

You have several options for making the StoreDB class available to the forms in your
application:

• The form could create an instance of StoreDB whenever it needs to access the database.

• You could change the methods in the StoreDB class to be shared.

• You could create a single instance of StoreDB, and make it available through a shared
property in another class (following the “factory” pattern).

The first two options are reasonable, but both of them limit your flexibility. The first choice
prevents you from caching data objects for use in multiple forms. Even if you don’t want to use
that approach immediately, it’s worth designing your application in such a way that it’s easy to
implement later on. Similarly, the second approach assumes that you won’t have any instance-
specific state that you need to retain in the StoreDB class. Although this is a good design principle,
there are some details (like the connection string) that you might want to retain in memory. If
you convert the StoreDB class to use shared methods, it becomes much more difficult to access
different instances of the Store database in different back-end data stores.

Ultimately, the third option is the most flexible. It preserves the switchboard design by
forcing all the forms to work through a single property. Here’s an example that makes an
instance of StoreDB available at all times:

Public Class Program

 Private Shared _storeDB As New StoreDB
 Public Shared ReadOnly Property StoreDB() As StoreDB
 Get
 Return _storeDB
 End Get
 End Property

End Class

Macdonald_694-3C08.fm Page 269 Wednesday, July 26, 2006 10:55 AM

270 C H A P T E R 8 ■ D AT A B I N D I N G

Binding to a List (Complex Binding)
Binding to a list is one of the most common data-binding tasks. All the basic .NET list controls
supply a DataSource property that accepts a reference to any IList data source.

Here’s an example that binds a simple list to the ModelName column of the Products table:

Private Sub SimpleListBinding_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load

 lstModelName.DataSource = Program.StoreDB.GetProducts()
 lstModelName.DisplayMember = "ModelName"
End Sub

This is an example of complex binding, because the model name of every product in the
table is shown in the list control (see Figure 8-5).

Figure 8-5. Complex binding to a DataView

To make this work, you use two properties. The DataSource property is exposed by every
control that uses complex binding. It accepts the data object, which must implement IList or
one of its derived interfaces, as described earlier. The DisplayMember property names the field
name that you want to display. The DisplayMember property is required in simple list controls,
because they can show only one piece of information at a time.

In this example, the code appears to bind to a DataTable object, but it actually binds to the
DataTable.DefaultView property. This property provides a DataView object that implements
the required IList interface. For the most part, you can ignore this lower-level reality unless you
want to use the DataView object to customize the displayed data. For example, the code that
follows doesn’t change the actual information in the DataTable, but it does ensure that only a
subset of it will be shown in the list control:

Dim dt As DataTable = Program.StoreDB.GetProducts()

' Only include rows with a UnitCost value less than 5.
dt.DefaultView.RowFilter = "UnitCost < 5"

Macdonald_694-3C08.fm Page 270 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 271

lstModelName.DataSource = dt
lstModelName.DisplayMember = "ModelName"

Figure 8-6 shows the filtered list.

Figure 8-6. Binding to a filtered DataView

The DataView class provides other properties that allow you to implement sorting and to
specify whether the data-bound collection allows deletions, additions, and modifications
(which don’t apply to the list control because it never allows the modification of a bound data
source). Taken together, these options (listed in Table 8-1) provide an extra layer of indirection
that allows your code to be more flexible.

■Tip As you might imagine, you can even create multiple DataView objects, allowing you to show data from
the same underlying DataSet in multiple controls, but with different filtering or sorting options.

Table 8-1. Useful DataView Properties

Member Description

RowFilter A string that allows you to filter the results based on any field. This string
works like a tiny snippet of SQL code, meaning that string values must be
enclosed in single quotes, and you can use the operators like =, <, and >.

RowStateFilter A combination of the values from DataViewRowState enumeration. This
allows you to display rows that have been scheduled for deletion in the
DataSet pending the next update (deleted rows are usually hidden).

Sort Allows you to configure the sort order for the DataView. You can enter a
combination of columns, separated by commas (as in "CategoryID,
ModelName"). Append a space and the letters DESC after a column
name to indicate descending (reverse) sort order.

Table The DataTable object that contains the data used by this DataView.

Macdonald_694-3C08.fm Page 271 Wednesday, July 26, 2006 10:55 AM

272 C H A P T E R 8 ■ D AT A B I N D I N G

You also can bind through a DataSet instead of the DataTable. In this case, you need to
supply the table name and the field name for the DisplayMember property, as shown here:

lstModelName.DataSource = ds
lstModelName.DisplayMember = "Products.ModelName"

The end result is the same, but a DataSet.DefaultViewManager is used for the data
binding. This property contains a DataViewManager object for the entire DataSet.

Binding to a Grid (Complex Binding)
.NET includes one bindable control that’s head and shoulders above the rest. It’s the
DataGridView, and it has the ability to show every field of every record in a data source. That
means with the following code, you’ll end up with a grid like the one shown in Figure 8-7.

Private Sub GridBinding_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load

 dataGridView1.DataSource = Program.StoreDB.GetProducts()
End Sub

Figure 8-7. Binding to a DataGridView

The DataGridView has a significant amount of additional data-binding functionality built
in. For example, you can edit any item in the list, add new items at the end, and remove an item
by selecting it and pressing the Delete key. You also can apply sophisticated formatting and
configure nearly every aspect of its behavior through properties. You’ll learn about all these
features in Chapter 15, which explores the DataGridView in detail. For now, it’s just important
to understand that the DataGridView is another example of complex binding.

Macdonald_694-3C08.fm Page 272 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 273

Binding to Any Control (Simple Binding)
.NET list controls are designed for this type of data binding and provide a helpful DataSource
property that’s inherited from the base ListControl class. Other controls, like text boxes and
buttons, don’t add this feature. However, every control gains basic single-value data-binding
ability from the Control.DataBindings collection.

Using this collection, you can link any control property to a field in a data source. For
example, to connect a text box to a single field in a DataTable, you can use the following syntax
(where dt is the DataTable object):

txtUnitCost.DataBindings.Add("Text", dt, "UnitCost")

The first parameter is the name of the control property as a string. (.NET uses reflection to
find the matching property, so it does not detect your mistakes at compile time.) The second
parameter is the data source. The third parameter is the field in the DataSource that is used for
the binding.

If you use this code statement on its own, you’ll get a slightly perplexing result. The price
of the first record in the DataTable will appear in the text box. However, there won’t be any way
to move to other items.

Programmers who are familiar with traditional data binding will probably expect that they
need to add specialized navigation controls to the form. This isn’t the case. Instead, you have
two options—controlling navigation programmatically (which is described a little later in this
chapter) or adding another control that uses complex binding to provide navigation.

For example, you can combine the list control example and the text box example to make
this example more workable. Now, you can move from record to record simply by selecting
items in the list box. When you do, all the other bound controls on the form are updated to
show the values from the corresponding record. In other words, the form keeps track of your
position, and all bound controls are synchronized to it.

To see this in action, consider the following form, which displays the information from a
product record using a combination of three labels and a drop-down list control (see Figure 8-8).
This list control allows navigation—when the user selects a different model name, the other
data-bound controls are updated automatically.

Figure 8-8. Creating a record browser

Macdonald_694-3C08.fm Page 273 Wednesday, July 26, 2006 10:55 AM

274 C H A P T E R 8 ■ D AT A B I N D I N G

Here’s the code that sets up the data bindings:

Private Sub MultipleControlBinding_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load

 ' Get the data object.
 Dim dt As DataTable = Program.StoreDB.GetProducts()

 ' Use complex binding.
 cboModelName.DataSource = dt
 cboModelName.DisplayMember = "ModelName"

 ' Use simple binding.
 lblModelNumber.DataBindings.Add("Text", dt, "ModelNumber")
 lblUnitCost.DataBindings.Add("Text", dt, "UnitCost")
 lblDescription.DataBindings.Add("Text", dt, "Description")
End Sub

Unusual Single-Value Binding
The nicest thing about single-value binding is that it can be used with almost any property. For
example, you could set the background color of a text box, or specify the font. Unfortunately,
there is no implicit type conversion when setting these specialized properties, which means
you can’t easily convert a string representing a font name into an actual font object.

The example that follows (Figure 8-9) demonstrates some of the extra effort you need to
make if you want to bind one of these properties, and it makes for an interesting example of
extreme data binding. Two list boxes are bound to the Font and ForeColor properties of a Label
control. As you select different items in the list, the label changes automatically.

Figure 8-9. Data binding with other text box properties

Macdonald_694-3C08.fm Page 274 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 275

The following code runs when this form first loads. To work, it requires that the System.
Drawing and System.Drawing.Text namespaces be imported.

' These are our final data sources: two ArrayList objects.
Dim fontList As New List(Of Font)()
Dim colorList As New List(Of Color)()

' The InstalledFonts collection allows us to enumerate installed fonts.
' Each FontFamily needs to be converted to a genuine Font object
' before it is suitable for data binding to the Control.Font property.
Dim fonts As New InstalledFontCollection()
For Each family As FontFamily In fonts.Families
 Try
 fontList.Add(New Font(family, 12))
 Catch Err As Exception
 ' We end up here if the font could not be created
 ' with the default style.
 End Try
Next

' To retrieve the list of colors, we need to first retrieve
' the strings for the KnownColor enumeration, and then convert each one
' into a suitable color object.
Dim colorNames() As String
colorNames = System.Enum.GetNames(GetType(KnownColor))
Dim cnvrt As TypeConverter = TypeDescriptor.GetConverter(GetType(KnownColor))

For Each colorName As String In colorNames
 colorList.Add(_
 Color.FromKnownColor(_
 CType(cnvrt.ConvertFromString(colorName), KnownColor)))
Next

' We can now bind both of our list controls.
lstColors.DataSource = colorList
lstColors.DisplayMember = "Name"
lstFonts.DataSource = fontList
lstFonts.DisplayMember = "Name"

' The label is bound to both data sources.
lblSampleText.DataBindings.Add("ForeColor", colorList, "")
lblSampleText.DataBindings.Add("Font", fontList, "")

You’ll notice that the ForeColor and Font properties of the text box are simultaneously
bound to two different data sources, which doesn’t require any additional code. Some work
is involved, however, to retrieve the list of currently installed fonts and named colors.

Macdonald_694-3C08.fm Page 275 Wednesday, July 26, 2006 10:55 AM

276 C H A P T E R 8 ■ D AT A B I N D I N G

Common Data-Binding Scenarios
Simple (single-value) binding and complex (repeated-value) binding are the only two ingredi-
ents you need to enable a wide range of scenarios. In the following sections, you’ll consider
how to use data binding to edit records and how to handle formatting and validation.

Updating with Data Binding
As described earlier, you can perform basic binding with any IList data source. However, data
sources that implement additional interfaces can gain some extra features. Four such interfaces
are listed in Table 8-2.

The DataView, DataViewManager, and DataRowView ADO.NET objects work together to
implement all these interfaces. This means that when you bind to a DataSet, you acquire a
much greater level of functionality. For example, if you modify the multiple control sample to
use input controls, you will be able to make changes that permanently modify the DataSet.
When you navigate to a changed record, you will see that its change persists. Furthermore, if
multiple controls display the same data (for example, if you use a list control for navigation and
allow the same field to be modified in a text box), they will all be updated with the new content
when you browse back to the record. You can see this behavior with the product name field in
the following example:

Private Sub EditableBinding_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load

 Dim dt As DataTable = Program.StoreDB.GetProducts()

 cboModelName.DataSource = dt
 cboModelName.DisplayMember = "ModelName"

Table 8-2. Interfaces Used with Data Binding

Interface Description

IList Allows simple data binding to a collection of identical types. (For example,
you cannot bind to an ArrayList with different types of objects in it.)

IBindingList Provides additional features for notification, for when the list itself has
changed (for example, the number of items in the list increases) and for
when the list items themselves change (for example, the third item in a list
of customers has a change to its FirstName field).

IEditableObject Allows permanent changes. For example, this allows a data-bound control
to commit its changes back to the bound data object. This interface provides
BeginEdit(), EndEdit(), and CancelEdit() methods.

IDataErrorInfo Allows data sources to offer error information that a control can bind to.
This information consists of two strings: the Error property, which returns
general error message text (for example, “An error has occurred”) and the
Item property, which returns a string with a specific error message from the
column (for example, “The value in the Cost column cannot be negative”).

Macdonald_694-3C08.fm Page 276 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 277

 txtModelName.DataBindings.Add("Text", dt, "ModelName")
 txtModelNumber.DataBindings.Add("Text", dt, "ModelNumber")
 txtUnitCost.DataBindings.Add("Text", dt, "UnitCost")
 txtDescription.DataBindings.Add("Text", dt, "Description")
End Sub

In this example, the code is largely unchanged. The key difference is that the Label controls
are replaced with TextBox controls, so the data object can be modified. Figure 8-10 shows the
corresponding form.

Of course, a change made to the data set won’t affect the original data source, it simply
changes the linked DataRow object. Remember, the DataSet is always disconnected by nature.
To commit changes, you need to add something like an update button, which would then
presumably call a method like StoreDB.UpdateProducts(). This method would use the
DataAdapter.Update() method to commit changes back to the database. But because this
book only covers the user interface aspect of your code, we don’t explore these details here.

Figure 8-10. An editable bound data source

Formatting Data with a Format String
One limitation in your current example is that there is no way to handle data that need to be
formatted before they can be displayed. For example, the UnitCost is displayed in the form
1.9900 instead of the more appropriate currency string $1.99.

Luckily, it’s quite easy to change this detail. If the conversion you want to perform involves
converting a number or date into an appropriate string representation, you can use an over-
loaded version of the ControlBindingsCollection.Add() that accepts a format string.

For example, instead of using this code:

txtUnitCost.DataBindings.Add("Text", dt, "UnitCost")

use this:

txtUnitCost.DataBindings.Add("Text", dt, "UnitCost", True, _
 DataSourceUpdateMode.OnValidation, 0, "C")

Macdonald_694-3C08.fm Page 277 Wednesday, July 26, 2006 10:55 AM

278 C H A P T E R 8 ■ D AT A B I N D I N G

There are several extra parameters at work here. The first new parameter (True) enables
formatting. The next parameter specifies the default update mode, which applies changes to
the bound object after validation is performed. This doesn’t represent a change, but a value is
required for this version of the Add() method. The following parameter (0) sets the value that’s
used if the bound field is null, and the final string sets the format (C for currency), which
ensures the UnitCost field is displayed with a currency symbol and two decimal places (see
Figure 8-11).

Figure 8-11. Formatting numbers to strings

You can learn about all the format strings that are available in MSDN Help. However,
Table 8-3 and Table 8-4 show some of the most common options you’ll use for numeric and
date values, respectively.

Table 8-3. Numeric Format Strings

Type Format String Example

Currency C $1,234.50
Brackets indicate negative values: ($1,234.50). The currency
sign is locale-specific.

Scientific
(Exponential)

E 1.234.50E+004

Percentage P 45.6%

Fixed Decimal F? Depends on the number of decimal places you set. F3
formats values like 123.400. F0 formats values like 123.

Macdonald_694-3C08.fm Page 278 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 279

■Note If you’re using complex binding, you can’t use the technique described here. However, many controls that
support complex binding have similar features available to you. For example, the GridView allows you to
define a format string for any column (as you’ll see in Chapter 15). The ListBox allows you to supply a format
string through the FormatString property (provided FormatStringEnabled is True).

Formatting Data with the Format and Parse Events
Format strings are great for tweaking numbers and dates. However, they don’t help you with
other values that might come out of a database in a less-than-professional state. For example,
certain fields might use hard-coded numbers that are meaningless to the user, or they might
use a confusing short form. If so, you need a way to convert these codes into a better display
form. If you support editing, you also need to do the converse—take user-supplied data and
convert it to a representation suitable for the appropriate field.

Fortunately, both tasks are fairly easy provided you handle the Format and Parse events
for the Binding object. Format gives you a chance to modify values as they exit the database
(before they appear in a data-bound control). Parse allows you to take a user-supplied value
and modify it before it is committed to the data source. Figure 8-12 shows the process.

Figure 8-12. Formatting bound data

Table 8-4. Time and Date Format Strings

Type Format String Example

Short Date D M/d/yyyy (for example, 10/30/2005)

Long Date D dddd, MMMM dd, yyyy (for example, Monday,
January 30, 2005)

Long Date and
Short Time

F dddd, MMMM dd, yyyy HH:mm aa (for example,
Monday, January 30, 2005 10:00 AM)

Long Date and
Long Time

F dddd, MMMM dd, yyyy HH:mm:ss aa (for example,
Monday, January 30, 2005 10:00:23 AM)

ISO Sortable
Standard

S yyyy-MM-dd HH:mm:ss (for example, 2005-01-30 10:00:23)

Month and Day M MMMM dd (for example, January 30)

General G M/d/yyyy HH:mm:ss aa (depends on locale settings)
(for example, 10/30/2002 10:00:23 AM)

Macdonald_694-3C08.fm Page 279 Wednesday, July 26, 2006 10:55 AM

280 C H A P T E R 8 ■ D AT A B I N D I N G

Here’s an example that works with the UnitCost field and duplicates the previous example.
It formats the numeric value as a currency string when it’s requested for display in a text box.
The reverse process ensures that the final committed value doesn’t use the currency symbol.
To connect this logic, you need to begin by creating a Binding object, then register to receive its
events, and finally add it to the DataBindings collection of the bound text box. Notice that the
following code adds a trick—it registers for the DataTable.ColumnChanged event. This way,
you can verify what value is actually inserted into the DataTable.

' Create the binding.
Dim costBinding As New Binding("Text", dt, "UnitCost")

' Connect the methods for formatting and parsing data.
AddHandler costBinding.Format, AddressOf DecimalToCurrencyString
AddHandler costBinding.Parse, AddressOf CurrencyStringToDecimal

' Add the binding.
txtUnitCost.DataBindings.Add(costBinding)

' Register an event handler for changes to the DataTable (optional).
AddHandler dt.ColumnChanged, AddressOf TableChanged

The event-handling code for formatting simply returns the new converted value by setting
the e.Value property.

Private previousUnitCost As Object

Private Sub DecimalToCurrencyString(ByVal sender As Object, _
 ByVal e As ConvertEventArgs)
 If e.DesiredType Is GetType(String) Then
 previousUnitCost = e.Value

 ' Use the ToString method to format the value as currency ("c").
 e.Value = (CType(e.Value, Decimal)).ToString("c")
 End If
End Sub

Private Sub CurrencyStringToDecimal(ByVal sender As Object, _
 ByVal e As ConvertEventArgs)

 If e.DesiredType Is GetType(decimal) Then
 ' Convert the string back to decimal using the shared Parse method.
 ' Use exception handling code in case the text can't be interpreted
 ' as a decimal.
 Try
 ' When parsing, make sure you use the appropriate number styles
 ' flags to allow currency symbols, commas, and so on.
 e.Value = Decimal.Parse(e.Value.ToString(), _
 System.Globalization.NumberStyles.Any)

Macdonald_694-3C08.fm Page 280 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 281

 Catch Err As Exception
 e.Value = previousUnitCost
 End Try
 End If
End Sub

The DataTable.ColumnChanged event handler is quite straightforward. It notes the changes
by updating a label.

Private Sub TableChanged(ByVal sender As Object, _
 ByVal e As System.Data.DataColumnChangeEventArgs)

 lblStatus.Text = "Detected change. Column " & e.Column.ColumnName
 lblStatus.Text &= " updated to " & e.ProposedValue.ToString() & "."
End Sub

Obviously, this approach requires a fair bit more code than the format string approach,
and it doesn’t add any new functionality. To see where the Format and Parse events really
make sense, you need to consider an example that wouldn’t be possible with format strings
alone. The following section demonstrates some of these more interesting conversions.

■Note Once again, this option isn’t available with complex binding. Some controls provide support with
their own events—for example, the DataGridView fires a CellFormatting event for each cell where you can
perform similar adjustments. The ListBox has no such support.

Advanced Conversions
You can use a similar technique to handle more interesting conversions. For example, you
could convert a column value to an appropriate string representation, straighten out issues of
case, or ensure the correct locale-specific format for dates and times. Here’s one example that
compares hard-coded integers from the database against an enumeration:

Private Sub ConstantToString(ByVal sender As Object, ByVal e As ConvertEventArgs)

 If e.DesiredType Is GetType(String) Then
 Dim status As ProjectStatus = CType(e.Value, ProjectStatus)
 Select Case status
 Case ProjectStatus.NotStarted
 e.Value = "Project not started."
 Case ProjectStatus.InProgress
 e.Value = "Project in progress."
 Case ProjectStatus.Complete
 e.Value = "Project is complete."
 End Select
 End If
End Sub

Macdonald_694-3C08.fm Page 281 Wednesday, July 26, 2006 10:55 AM

282 C H A P T E R 8 ■ D AT A B I N D I N G

■Note Be warned—this approach can lead you to mingle too many database details into your code. A better
approach is to handle the problem at the database level, if you can. For example, if you use a list of numeric
constants, create a table in the database that maps the numbers to text descriptions. Then, make this infor-
mation available to your form either through a separate method in your data access class or by using a JOIN
query when retrieving the data.

Now let’s look at an additional trick that’s useful when storing records that link to pictures.
When storing a record that incorporates a graphic, you have two options. You can store the
image as binary information in the database (which is generally less flexible but more reliable),
or you can store the file name and ensure that the file exists in the appropriate shared directory.
The next example (shown in Figure 8-13) uses the Format event to convert a picture name to
the required Image object.

Figure 8-13. Converting file names to image objects

Unfortunately, data binding is always a two-way street, and if you implement a Format
event handler, you need to create a corresponding Parse event handler to reverse your change.
In our example, the Format event handler takes the file name and inserts the corresponding
picture into a PictureBox. In the event handler, the code needs to take the picture, change back
to the appropriate file name string, and insert this into the DataTable. This bidirectional
conversion is required even though the application doesn’t offer any way for the user to choose
a new picture file and the content in the PictureBox can’t be changed.

To make matters more complicated, there’s no way to convert an image object back to the
file name, so we have to fall back on another trick—storing the actual file name in the control
for later retrieval.

Here’s the data-binding code:

Dim pictureBinding As New Binding("Image", dt, "ProductImage")
AddHandler pictureBinding.Format, AddressOf FileToImage
AddHandler pictureBinding.Parse, AddressOf ImageToFile
picProduct.DataBindings.Add(pictureBinding)

Macdonald_694-3C08.fm Page 282 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 283

And here is the formatting code (note that it requires the System.Drawing namespace to
be imported):

Private Sub FileToImage(ByVal sender As Object, ByVal e As ConvertEventArgs)
 If e.DesiredType Is GetType(Image) Then
 ' Store the filename.
 picProduct.Tag = e.Value

 ' Look up the corresponding file, and create an Image object.
 Try
 lblStatus.Text = "Retrieved picture " & e.Value
 e.Value = Image.FromFile(_
 Path.Combine(Application.StartupPath, e.Value))

 Catch err As System.IO.FileNotFoundException
 lblStatus.Text = "Could not find picture " & e.Value

 ' You could return an error picture here.
 ' This code uses a blank 1x1 pixel image.
 e.Value = New Bitmap(1,1)

 Catch err As OutOfMemoryException
 lblStatus.Text = "Picture " & e.Value & "has an unsupported format."
 e.Value = new Bitmap(1,1)
 End Try
 End If
End Sub

Private Sub ImageToFile(ByVal sender As Object, ByVal e As ConvertEventArgs)
 If e.DesiredType Is GetType(String) Then
 ' Substitute the filename.
 e.Value = picProduct.Tag
 End If
End Sub

This can only be considered a “conversion” in the loosest sense. What’s really happening
here is a file lookup. The process, however, is completely seamless. If you allow the user to
dynamically choose a picture (maybe from a file or the clipboard), you could even create a
corresponding Parse event handler that saves it to an appropriate directory with a unique
name and then commits that name to the database.

■Tip The Format and Parse methods can run any .NET code. This provides an invaluable extra layer of
indirection, and using it is one of the keys to making data binding work. With it, you can transform raw data
into the appropriate presentation content.

Macdonald_694-3C08.fm Page 283 Wednesday, July 26, 2006 10:55 AM

284 C H A P T E R 8 ■ D AT A B I N D I N G

Creating a Lookup Table
In the previous examples, the list control is a navigation control that allows the user to access
any record. In some cases, this isn’t the behavior you want. For example, you may want to use
the list as an editing control. In that case, it should show the current value but contain a list of
other possible values. Selecting a new value from the list doesn’t perform record navigation—
instead, it should update the data object.

Creating this effect isn’t too difficult. For example, every product in the Products table is
associated (by CategoryID) with a record in the Categories table (see Figure 8-4). Imagine you
want to show the linked category for each product and allow the user to change it. Figure 8-14
shows one such example, where the user can browse to a record using one list and change the
category using another.

Figure 8-14. A bound lookup list

The easiest approach to create this example is to begin by using a JOIN query that ensures
you retrieve the category information with each product, as with this stored procedure:

CREATE PROCEDURE GetProducts AS
 SELECT * FROM Products
 INNER JOIN Categories ON Products.CategoryID = Categories.CategoryID
GO

Next, you need to create a record in the StoreDB class that returns a DataSet with two tables—
one with category information and one with product information. For example, you could
create a method like this in the StoreDB class:

Public Function GetCategoriesAndProducts() As DataSet
 Dim connectionString As String = My.Settings.Store
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand("GetProducts", con)
 cmd.CommandType = CommandType.StoredProcedure
 Dim adapter As New SqlDataAdapter(cmd)

 Dim ds As New DataSet()
 adapter.Fill(ds, "Products")
 cmd.CommandText = "GetCategories"
 adapter.Fill(ds, "Categories")

Macdonald_694-3C08.fm Page 284 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 285

 Return ds
End Function

Here’s how you can use this method:

Dim ds As DataSet = Program.StoreDB.GetCategoriesAndProducts()

To allow record navigation, you can bind a unique field like ModelName to a list box:

' Connect the product list used for navigation.
cboModelName.DataSource = ds.Tables("Products")
cboModelName.DisplayMember = "ModelName"

To show category information, you have to set up two types of binding—both complex
binding (to fill the list) and simple binding (to set the selected item).

First, you need to set the DataSource, so that the list is filled with all the possible categories:

' Connect the category list used for editing.
cboCategory.DataSource = ds.Tables("Categories")
cboCategory.DisplayMember = "CategoryName"
cboCategory.ValueMember = "CategoryID"

The trick here is the ValueMember property, with stores the unique CategoryID for each
list item, but displays the CategoryName text through the familiar DisplayMember text.

Now, you need to use single binding to tie the SelectedValue property to the CategoryID
field in the Products table:

cboCategory.DataBindings.Add("SelectedValue", ds.Tables("Products"), _
 "CategoryID")

This is the technique that makes the example work. It ensures that every time you navigate
to a new record, the list shows the category for that product. It also ensures that if you change
the category selection, the product record is updated with a new CategoryID.

Row Validation and Changes
Now that you’ve seen how easy it is to commit changes to a bound DataTable, you’re probably
wondering what you can do to restrict the user’s update ability—making sure some fields are
read-only and others are bound by specific rules. This validation can be performed in exactly
the same way it always is—by handling events like KeyPress in a text box or using the more-
advanced validation techniques described in Chapter 18. After all, you’re binding your fields to
ordinary .NET controls—the only difference is that their changes are stored in the DataTable as
soon as the user navigates to another record.

Another option is to handle the events raised by your bound data object. For example, if
you’re binding a DataTable, you can react to DataTable events like ColumnChanging. The
advantage of this approach is that you create data-specific validation code that can be used no
matter what control you end up binding to.

Here is an example that uses the ColumnChanging event and refuses to allow a change to
the UnitCost column if the number is negative. Instead, it substitutes the existing value, effectively
canceling the change.

Macdonald_694-3C08.fm Page 285 Wednesday, July 26, 2006 10:55 AM

286 C H A P T E R 8 ■ D AT A B I N D I N G

Private Sub TableChanging(ByVal sender As Object, _
 ByVal e As System.Data.DataColumnChangeEventArgs)
 If CInt(e.ProposedValue) < 0 Then
 e.ProposedValue = e.Row(e.Column.ColumnName)
 End If
End Sub

To use this code, you need to connect the event handler (typically at the same time you
add the data binding):

AddHandler dt.ColumnChanging, TableChanging

■Note Resist the urge to enter error-handling code into the Parse event handler. This method is purely
designed to convert a value before attempting to store it. Instead, use the DataTable events or the editing
events in the bound control.

This code is useful as a basic level of error protection, but it doesn’t provide an easy way to
notify the user about the error, because the user has more than likely already moved to another
record. In some cases, you may need to prevent the user from navigating to a new record after
making invalid changes. To apply this logic, you need to take manual control of record naviga-
tion. This technique is explored in the next section, which considers what’s really at work in
data binding and shows how you can interact with it programmatically.

■Tip Some more-sophisticated controls, like DataGridView, have built-in support for handling data errors
and validation through events. You’ll learn about the DataGridView in detail in Chapter 15.

Data Binding Exposed
The secret behind data binding comprises two objects that you don’t ordinarily see: Binding-
Context and CurrencyManager (both of which are found in the System.Windows.Forms
namespace).

Every form provides a single default BindingContext object, which it creates automatically.
In turn, every BindingContext provides a collection of zero or more BindingManagerBase
objects. When you create a new form, its BindingContext will be empty. But once you start
binding data objects (either through complex or simple binding), this changes. Ordinarily,
you’ll find one BindingManagerBase object for each bound data object. For example, if you
bind a DataView to eight different controls, your form will have a BindingContext with one
BindingManagerBase object (because there’s a single DataView). This BindingManagerBase
ensures that all the controls are synchronized—for example, it listens to a change of position in
one control and updates the others accordingly. On the other hand, if you bind two different
DataView objects to two different sets of controls, you’ll wind up with two BindingManagerBase
objects, one to synchronize each DataView.

Macdonald_694-3C08.fm Page 286 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 287

■Note Technically, the BindingManagerBase doesn’t communicate directly with the control. Instead, it
interacts through the binding object that was created when you bound the control.

But there’s another important detail. The BindingManagerBase is an abstract class, so it
can’t be created directly. Instead, the BindingContext actually contains instances of one of two
classes that derived from BindingManagerBase—either PropertyManager or CurrencyManager.
The difference depends on the type of data source. If you’re using simple binding to display the
properties of an ordinary object (one that doesn’t support the interfaces in Table 8-2), the
PropertyManager is used. This is a relatively rare occurrence. Usually, you’re binding a Data-
View, DataViewManager, or collection of items, and the more capable CurrencyManager is
used instead. In other words, the CurrencyManager is designed to work with a list of items.

The CurrencyManager object shoulders the responsibility for tracking the user’s position
in the bound data and synchronizing all the controls that are bound to it. To this end, the
CurrencyManager provides a small set of properties, including Count and the ever-important
Position, which indicates an integer row index. It performs its work automatically. Figure 8-15
diagrams this relationship.

There are really only three reasons that you might want to access the data-binding objects:

• To programmatically control record navigation

• To programmatically react to record navigation

• To create a new BindingContext that allows you to store a different position to the
same data

Figure 8-15. Data binding under the hood

Macdonald_694-3C08.fm Page 287 Wednesday, July 26, 2006 10:55 AM

288 C H A P T E R 8 ■ D AT A B I N D I N G

Navigation with Data Binding
To navigate programmatically, you need to access the form’s BindingContext object, find the
correct CurrencyManager, and modify its Position property. Unfortunately, to find the correct
CurrencyManager object, you need to submit the data object you used for your binding. That
means you need to keep track of the data object in a form-level variable, or look up the
CurrencyManager immediately after you perform the binding and track it in a form-level variable.
The following example demonstrates the second technique.

First, create the variable for storing the CurrencyManager object:

' This is a CurrencyManager, but we don't need to perform a cast because
' the BindingManagerBase exposes all the properties we need to use.
Private storeBinding As BindingManagerBase

Next, in the Form.Load event handler create the bindings and store a reference to the
binding object. The only new line is highlighted in bold.

Private Sub MultipleControlBinding_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Get table.
 Dim dt = Program.StoreDB.GetProducts()

 ' Set up bindings.
 cboModelName.DataSource = dt
 cboModelName.DisplayMember = "ModelName"
 lblModelNumber.DataBindings.Add("Text", dt, "ModelNumber")
 lblUnitCost.DataBindings.Add("Text", dt, "UnitCost")
 lblDescription.DataBindings.Add("Text", dt, "Description")

 ' Keep track of the currency manager.
 storeBinding = Me.BindingContext(dt)
End Sub

Now you can control the position through the storeBinding member variable. Here’s an
example with Previous and Next buttons that allow the user to browse through the data (see
Figure 8-16):

Private Sub cmdNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdNext.Click
 storeBinding.Position += 1
End Sub

Private Sub cmdPrev_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPrev.Click
 storeBinding.Position -= 1
End Sub

Macdonald_694-3C08.fm Page 288 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 289

Figure 8-16. Data binding with custom navigation controls

Reacting to Record Navigation
As it stands, the navigation controls harmlessly fail to work if you try to browse past the bounds
of the data source (for example, click the Previous button on the first record). However, a more
intuitive approach would be to disable the controls at this position. You can accomplish this by
reacting to the Binding.PositionChanged event.

First, you connect the event handler (after binding the data source):

storeBinding = Me.BindingContext(dt)
AddHandler storeBinding.PositionChanged, AddressOf Binding_PositionChanged

The PositionChanged event doesn’t provide you with any useful information (such as the
originating page). But it does allow you to respond and update your controls accordingly. In
the example below, the previous and next buttons are disabled when they don’t apply.

Private Sub Binding_PositionChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 If storeBinding.Position = storeBinding.Count - 1 Then
 cmdNext.Enabled = False
 Else
 cmdNext.Enabled = True
 End If

 If storeBinding.Position = 0 Then
 cmdPrev.Enabled = False
 Else
 cmdPrev.Enabled = True
 End If
End Sub

Macdonald_694-3C08.fm Page 289 Wednesday, July 26, 2006 10:55 AM

290 C H A P T E R 8 ■ D AT A B I N D I N G

If you want to be able to track the previous record, you need to add a form-level variable,
and track it in the PositionChanged event handler. This technique has a few interesting uses,
including validation (which you examine later in this chapter).

Private currentRecord As Integer

Private Sub Binding_PositionChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' At this point, currentPage holds the previous page number.
 ' Now we update currentPage:
 currentRecord = storeBinding.Position
End Sub

■Tip You could use the PositionChanged event handler to update the data source (the original database
record or the XML file) if it has changed. By increasing the frequency of updates, you lower performance but
reduce the chance of concurrency errors.

Creating Master-Detail Forms
Another interesting use of the PostionChanged event is to create master-detail forms. The
concept is simple: you bind two controls to two different tables. When the selection in one
table changes, you update the second by modifying the set of displayed rows with the RowFilter
property.

This example uses two list controls, one that displays categories and one that displays the
products in a given category (see Figure 8-17).

Figure 8-17. Data binding with a master-detail list

The lists are filled in the normal manner:

Macdonald_694-3C08.fm Page 290 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 291

Private categoryBinding As BindingManagerBase
private ds As DataSet

Private Sub MasterDetails_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ds = Program.StoreDB.GetCategoriesAndProducts()

 ' Bind the lists to different tables.
 lstCategory.DataSource = ds.Tables("Categories")
 lstCategory.DisplayMember = "CategoryName"

 lstProduct.DataSource = ds.Tables("Products")
 lstProduct.DisplayMember = "ModelName"

 ' Track the binding context and handle position changing.
 categoryBinding = Me.BindingContext(ds.Tables("Categories"))
 AddHandler categoryBinding.PositionChanged, _
 AddressOf Binding_PositionChanged

 ' Update child table at startup.
 UpdateProducts()
End Sub

Now, when the PositionChanged event is detected for the category binding, the current
view of products is automatically modified:

Private Sub Binding_PositionChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 UpdateProducts()
End Sub

Private Sub UpdateProducts()
 ' Find the current category row.
 Dim selectedRow As DataRow
 selectedRow = ds.Tables("Categories").Rows(categoryBinding.Position)

 ' Create a filter expression using its CategoryID.
 Dim filter As String
 filter = "CategoryID='" & selectedRow("CategoryID").ToString() & "'"

 ' Modify the view onto the product table.
 ds.Tables("Products").DefaultView.RowFilter = filter
End Sub

Macdonald_694-3C08.fm Page 291 Wednesday, July 26, 2006 10:55 AM

292 C H A P T E R 8 ■ D AT A B I N D I N G

The result is a perfectly synchronized master-detail list. You could adapt this example to
work with two separate forms without much trouble. You simply need to design a way for the
parent form to communicate with the child form, by setting a public property or calling a method.

Creating a New Binding Context
In the previous example, both controls were synchronized separately and had separate binding
contexts, because they were bound to two different tables (and hence two different DataView
objects). In some cases, however, you might want the ability to bind to the same table (or any
other data source) but at two different and independent positions. To accomplish this, you
need to manually create an extra binding context.

Every control provides the BindingContext property. By default, each control checks its
container, looking for a BindingContext to use. For example, a button in a group box checks the
GroupBox.BindingContext property and uses the same context. The group box checks the
BindingContext property of the containing form and uses that context. The end result is that
every control acquires its BindingContext from the containing form.

You’re free to change this behavior by creating your own BindingContext objects and
assigning them to specific controls. The easiest way to do this is to place the controls that you
want in a different binding context into a different container (like a group box). Next, you
manually create a new BindingContext object for that container. Now, all the controls in that
container will acquire the new context.

The code that follows carries out this operation for two list controls in different group
boxes. The two list boxes are bound to the same data source but synchronized separately.

' Make sure all the controls in the second group box have a different binding.
grpB.BindingContext = New BindingContext()

Dim dt As DataTable = Program.StoreDB.GetProducts()

' Configure the first group.
lstModelNameA.DataSource = dt
lstModelNameA.DisplayMember = "ModelName"

' Configure the second group.
lstModelNameB.DataSource = dt
lstModelNameB.DisplayMember = "ModelName"

Figure 8-18 shows the separately synchronized panels.

Macdonald_694-3C08.fm Page 292 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 293

Figure 8-18. Separately synchronized view of the same data

Validating Bound Data
Earlier in this chapter, you learned that one problem with ADO.NET data binding is validation.
You can write specific error-handling code for each control, which is often a good approach,
but one that creates extra code and ends up importing database details into your form code.
Another approach is to handle the DataTable events like ColumnChanging, ColumnChanged,
RowChanging, and RowChanged. The potential problem here is that the user may browse to
another record, not realizing that invalid data have been rejected.

Taking control of data-binding navigation allows you to provide a more elegant solution.
First, you create two form-level variables: one that tracks the current page and another that
tracks the validity of the current record.

Private currentRecord As Integer
Private errFlag As Boolean

You also need to hook up the events for column changes and position changes:

AddHandler storeBinding.PositionChanged, AddressOf Binding_PositionChanged
AddHandler dt.ColumnChanged, AddressOf TableChanged

Next, you make the record navigation conditional on the current record being valid. If the
errFlag member variable is set to True, the user is automatically sent back to the original page.

Private Sub Binding_PositionChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 If errFlag Then
 ' Reset the page.
 storeBinding.Position = currentRecord
 Else
 ' Allow the page to change and update the currentPage variable.
 currentRecord = storeBinding.Position
 End If
End Sub

Macdonald_694-3C08.fm Page 293 Wednesday, July 26, 2006 10:55 AM

294 C H A P T E R 8 ■ D AT A B I N D I N G

Next, you add the validation code, which occurs in response to a table change. This event
is fired when the user tabs to a new field after making a modification or tries to browse to a new
record after making a modification. It always occurs before the PositionChanged event.

Private Sub TableChanged(ByVal sender As Object, _
 ByVal e As System.Data.DataColumnChangeEventArgs)

 Dim errors As String = Program.StoreDB.ValidateProduct(e.Row)

 If errors.Length = 0 Then
 errFlag = False
 Else
 errFlag = True
 End If
 lblErrorSummary.Text = errors
End Sub

You’ll notice that this form doesn’t contain any database-specific code. Instead, the vali-
dation is performed by passing the current row to a special method provided by our database
wrapper class. This method returns an error string or an empty string if the validation succeeded.

Public Function ValidateProduct(ByVal row As DataRow) As String
 Dim errors As String = ""

 If Val(row("UnitCost")) <= 0 Then
 errors &= "* UnitCost value too low" & vbNewLine
 End If

 If row("ModelNumber").ToString().Length = 0 Then
 errors &= "* You must specify a ModelNumber" & vbNewLine
 End If

 If row("ModelName").ToString().Length = 0 Then
 errors &= "* You must specify a ModelName" & vbNewLine
 End If
 Return errors
End Function

The error message is displayed in the window. Everything works nicely together. Database
validation code is in a database component, but record navigation is halted immediately if an
error is found.

Figure 8-19 shows the final application detecting an error.

Macdonald_694-3C08.fm Page 294 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 295

Figure 8-19. Custom row validation with data binding

Binding to Custom Objects
So far, you’ve concentrated exclusively on examples that bind controls to ADO.NET data
objects. Surprisingly, you can use the same techniques to bind to a collection of custom
objects. There’s no intrinsic advantage in taking this approach. However, it does give you a
wide range of options when you decide how to model your application, where you want to
place your validation logic, and so on.

To see how this works, it helps to consider a basic example. Here’s a custom Product class
that encapsulates the information for a single product in the Products table:

Public Class Product

 Private _modelNumber As String
 Public Property ModelNumber() As String
 Get
 Return _modelNumber
 End Get
 Set(ByVal value As String)
 _modelNumber = value
 End Set
 End Property

 Private _modelName As String
 Public Property ModelName() As String
 Get
 Return _modelName
 End Get

Macdonald_694-3C08.fm Page 295 Wednesday, July 26, 2006 10:55 AM

296 C H A P T E R 8 ■ D AT A B I N D I N G

 Set(ByVal value As String)
 _modelName = value
 End Set
 End Property

 Private _unitCost As Decimal
 Public Property UnitCost() As Decimal
 Get
 Return _unitCost
 End Get
 Set(ByVal value As Decimal)
 _unitCost = value
 End Set
 End Property

 Private _description As String
 Public Property Description() As String
 Get
 Return _description
 End Get
 Set(ByVal value As String)
 _description = value
 End Set
 End Property

 Public Sub New(ByVal modelNumber As String, ByVal modelName As String, _
 ByVal unitCost As Decimal, ByVal description As String)
 Me.ModelNumber = modelNumber
 Me.ModelName = modelName
 Me.UnitCost = unitCost
 Me.Description = description
 End Sub

 Public Sub New()
 End Sub

End Class

This class doesn’t include any special features (for example, the property procedures don’t
implement any validation, and there aren’t any helper methods). However, you could add
these details without changing the example. The only requirement is that the information you
want to display must be stored in public properties. The Windows Forms data binding infra-
structure won’t pick up private information or public member variables.

The next step is to modify the StoreDB.GetProducts() method so that it returns a collection
of Product objects instead of a DataTable. Here’s the revised code:

Macdonald_694-3C08.fm Page 296 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 297

Public Class StoreDB

 Public Function GetProducts() As List(Of Product)
 ' Get the connection string from the .config file.
 Dim connectionString As String = My.Settings.Store

 ' Create the ADO.NET objects.
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand("GetProducts", con)
 cmd.CommandType = CommandType.StoredProcedure

 Dim products As New List(Of Product)()
 Try
 con.Open()
 Dim reader As SqlDataReader = cmd.ExecuteReader()
 Do While reader.Read()
 ' Create a Product object that wraps the
 ' current record.
 Dim product As New Product(CStr(reader("ModelNumber")), _
 CStr(reader("ModelName")), CDec(reader("UnitCost")), _
 CStr(reader("Description")))

 ' Add to collection
 products.Add(product)
 Loop
 Finally
 con.Close()
 End Try
 Return products
 End Function

End Class

You can now use this new version of the StoreDB class to create a quick data-bound list. In
fact, you can exactly duplicate the result in Figure 8-5 (which binds to a DataTable) using the
same code:

Private Sub SimpleListBinding_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 lstModelName.DataSource = Program.StoreDB.GetProducts()
 lstModelName.DisplayMember = "ModelName"
End Sub

Here, .NET uses reflection to examine the bound Product objects, searching for a property
named ModelName. It then displays the value in the list.

Macdonald_694-3C08.fm Page 297 Wednesday, July 26, 2006 10:55 AM

298 C H A P T E R 8 ■ D AT A B I N D I N G

However, there’s a difference hidden behind the scenes. In the DataTable example, the list
actually binds to DataRow objects and displays field values. In this example, the list binds to
Product instances. When you retrieve the currently selected item, you’ll find that it’s a full Product
object, complete with all the Product properties. This allows you to get other related informa-
tion. To test this out, add the following code and attach it to the lstModelName.DoubleClick
event that fires when an item in the list is double-clicked:

Private Sub lstModelName_DoubleClick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lstModelName.DoubleClick

 If lstModelName.SelectedItem IsNot Nothing Then
 Dim product As Product = CType(lstModelName.SelectedItem, Product)
 MessageBox.Show(String.Format("Costs {0:C}", product.UnitCost))
 End If
End Sub

Now when you double-click any item in the list, you’ll see its price (Figure 8-20).

Figure 8-20. Binding objects to a list

The products collection works just as well if you want to create forms that have several
data-bound controls. The only difference is that the object you bind is a List(Of Product)
collection, not a DataTable:

' Get the data object.
Dim products As List(Of Product) = Program.StoreDB.GetProducts()

' Set up the bindings.
cboModelName.DataSource = products
cboModelName.DisplayMember = "ModelName"

lblModelNumber.DataBindings.Add("Text", products, "ModelNumber")
lblUnitCost.DataBindings.Add("Text", products, "UnitCost")
lblDescription.DataBindings.Add("Text", products, "Description")

Macdonald_694-3C08.fm Page 298 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 299

Even more impressively, you can bind these properties to edit controls (like text boxes),
so the user can modify the properties. You can even handle the Format and Parse events to
convert the data type representation that’s shown in the form, as described earlier. However,
there’s no support for change events—if you want to react when the object is modified, you’ll
need to add your own event handling code.

■Note If one of your property procedures throws an exception when the user attempts to set an invalid
value, no message is shown. Instead, the user is simply unable to move to another field or record until the
problem is fixed. To improve this situation, you may want to raise an error event, which you can react to in
your form to display information in another control (like a label). Additionally, some controls (like the DataGridView),
support more sophisticated error reporting features and automatically raise an event when such problems occur.

Overriding ToString()
One interesting thing to note is what happens if you don’t set the DisplayMember property. In
this case, .NET simply calls the ToString() method of each object and uses that to provide the
text. If the default implementation of ToString() hasn’t been overriden, this text is the fully
qualified class named, which means that every list appears exactly the same, as shown in
Figure 8-21.

Figure 8-21. Binding to a list of objects without DisplayMember

However, you can put this behavior to good use by creating an object that overrides the
ToString() method. This method could return some more useful information or a combination
of different properties. Here’s the code you would place inside the Product class:

Public Overrides Function ToString() As String
 Return string.Format("{0} ({1})", modelName, modelNumber)
End Function

This changes the text that’s shown in the bound form, as shown in Figure 8-22.

Macdonald_694-3C08.fm Page 299 Wednesday, July 26, 2006 10:55 AM

300 C H A P T E R 8 ■ D AT A B I N D I N G

Figure 8-22. Overriding ToString() for a bound object

■Tip The advantages that can be gained by these two techniques are remarkable. You can bind data without
being forced to adopt a specific data access technology. If you don’t like ADO.NET, it’s easy to design your
own business objects and use them for binding. Best of all, they remain available through the Items collection
of the list, which means you don’t need to spend additional programming effort tracking this information.

Supporting Grid Binding
The custom object approach is a little more limited if you bind it to the DataGridView control. The
DataGridView control supports a range of enhanced data-binding functionality. For example,
it allows the user to edit, add, and delete items. Unfortunately, none of this functionality is
available to your bound Product objects in the current example, because they don’t implement
the necessary IBindingList interface. As a result, if you bind the current collection to the
DataGridView, you’re stuck with a read-only collection that doesn’t allow editing, deletion,
or insertion.

The IBindingList is actually responsible for supporting one or more of several optional
features. These are described in Table 8-5. Notice that each feature is paired with a Boolean
property that returns True if this feature is implemented, and False otherwise.

Table 8-5. IBindingList Features

Feature Description Property That Indicates Support

Change
notification

Notifies controls when items are
added, removed, or edited in the
bound collection.

SupportsChangeNotification

New item insert Allows a bound control like the
DataGridView to insert a new item
(when the user adds information at
the bottom of the grid).

AllowNew

Macdonald_694-3C08.fm Page 300 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 301

To create a collection of Product objects that supports some of these features, you could
implement the IBindingList by hand. Fortunately, you don’t need to because .NET provides a
generic BindingList(Of T) collection in the System.ComponentModel namespace. This collection
supports change notification, item insertion (provided the corresponding object has a default
zero-parameter constructor), item deletion, and in-place editing of items. You can derive a
new class from BindingList(Of T) if you want to support searching or sorting.

To see how this works, change your code to use the BindingList(Of T) collection instead of
List(Of T), as shown here:

Public Class StoreDB

 Public Function GetProducts() As BindingList(Of Product)
 ...
 Dim products As New BindingList(Of Product)()
 ...
 End Function

End Class

Now when you bind your control to the grid, you’ll automatically get support for insertion,
in-place editing, and deletion.

If you want to customize the way that the IBindingList features work, you can create a
custom collection class by deriving from BindingList(Of T). For example, imagine you create a
Product class that doesn’t have a default constructor. By default, the BindingList(Of T) collection
won’t allow new item creation. However, you can derive a class that will by manually setting
AllowNew to True and overriding the AddNewCore() method, as shown here:

Item delete Allows a bound control like the
DataGridView to remove an item
(when the user presses Delete).

AllowRemove

In-place editing
of items

Allows a bound control like the
DataGridView to perform in-place
editing of an item. In other words, the
various properties of the bound item
can be changed.

AllowEdit

Searching Your code can use the Find() method
of the collection to locate a specific
object.

SupportsSearching

Sorting Your code can use the Sort() method of
the collection to reorder the collection
of objects. The DataGridView also can
use this method to provide automatic
sorting when column headers are clicked.

SupportsSorting

Table 8-5. IBindingList Features

Feature Description Property That Indicates Support

Macdonald_694-3C08.fm Page 301 Wednesday, July 26, 2006 10:55 AM

302 C H A P T E R 8 ■ D AT A B I N D I N G

Public Class ProductList
 Inherits BindingList(Of Product)

 Public Sub New()
 MyBase.AllowNew = True
 End Sub

 Protected Overrides Function AddNewCore() As Object
 ' Create a new Product, and supply a unique model number
 ' and some placeholder values.
 Dim product As New Product(Guid.NewGuid().ToString(), _
 "[ModelName]", 0, "[Description]")

 ' Add the item to the collection.
 MyBase.Items.Add(product)
 Return product
 End Function
End Class

Now you simply need to modify the StoreDB class to use the ProductList:

Public Class StoreDB

 Public Function GetProducts() As ProductList
 ...
 Dim products As New ProductList
 ...
 End Function

End Class

There’s no need to change any other part of your code. Because ProductList derives from
BindingList(Of Product), you can cast a ProductList object to a BindingList(Of Product) object
if desired.

To see the difference in this example, fire up the DataGridView, and bind it to a ProductList
collection. Now when you scroll to the end and create a new record, you’ll see your default
values appear (Figure 8-23). The new record will be added to the collection, provided you edit
at least one of the values.

Macdonald_694-3C08.fm Page 302 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 303

Figure 8-23. Customizing the creation of bound objects

Automatic Data Binding
The examples you’ve seen so far have used best design practices to retrieve their data from a
dedicated class. This model is a bare minimum requirement for separating the user interface
code from the data access code. By applying a proper separation, you make it easier to change
the data access code without affecting the rest of your application, which is critical if the under-
lying data source changes or if you just need to optimize performance (for example, by switching
from ad-hoc queries to stored procedure calls).

That said, .NET 2.0 adds some time-saving features that allow you to effectively bypass this
level and bring data straight into your application without writing a dedicated database wrapper
component. These features are dangerous and in many cases should be avoided. In the following
sections, you’ll learn how they work and how you can use them intelligently without violating
the basic tenets of good design.

Binding Directly to a Database (Table Adapters)
The automatic binding features all work through the Data Sources window in Visual Studio. The
basic idea is that you define a data source (which can be an external database, a separate class,
or a Web service) in this window. You can then bind these data sources more or less directly to
a form.

Macdonald_694-3C08.fm Page 303 Wednesday, July 26, 2006 10:55 AM

304 C H A P T E R 8 ■ D AT A B I N D I N G

The following steps take you through the simplest scenario, where you set up a data source
for a database on the current computer or a local network.

1. Select Data menu ➤ Show Data Sources to show the Data Sources window (Figure 8-24).

2. Click the Add New Data Sources link.

Figure 8-24. The Data Sources window (without any data sources)

3. You’ll be given a choice of three data source types (see Figure 8-25). For this test, choose
Database and click Next.

Macdonald_694-3C08.fm Page 304 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 305

Figure 8-25. Choosing a type of data source

4. Follow the rest of the steps in the wizard to define the location of the database you want
to use, whether or not the connection string should be stored in the application config-
uration file (as it was for the StoreDB class), and what tables you’d like to make available
to your application. At the end of the process, click Finish.

Figure 8-26 shows the result of creating a data source for the Products and Categories
tables in the Store database. The two tables, with their associated columns, appear in the Data
Sources window. The Solution Explorer shows that two new files have been added to the project—
an XML schema (.xsd file) that defines the structure of these tables and a designer file that
contains pages of automatically generated code for querying these two tables. The classes that
perform this work (of querying the database for a specific table of records and optionally
updating the table based on any changes) are called table adapters.

Macdonald_694-3C08.fm Page 305 Wednesday, July 26, 2006 10:55 AM

306 C H A P T E R 8 ■ D AT A B I N D I N G

Figure 8-26. A new data source for the Store database

Here you’ll encounter the first problem with automatic data binding in this simple scenario.
The automatically generated code is created based on the tables you selected in the wizard.
You don’t have any ability to control how this code is generated. For example, you can’t instruct
the code to use a stored procedure (as the StoreDB class did) for optimum performance. You
can’t apply sorting or filtering clauses, and you can’t control the concurrency strategy used for
updating the data. If you edit the automatically generated code by hand, the changes you make
will be wiped out if you need to regenerate the table adapters when the database schema changes
(for example, a new table is added to the database) or a newer version of .NET is released. In the
future, it’s quite likely that the design-time support will improve and give you more options for
configuring the generation of table adapters. However, this automatically generated code is
still fundamentally limiting and unsuitable for large-scale applications where scalability and
performance are key concerns.

From the Data Sources window, you can drag the full table or individual controls to any
form. Before you take this step, you can click a drop-down arrow next to the table or form to
configure how bound controls should be generated. For tables, you can choose to use the
DataGridView for an all-in-one view, which is the default choice (shown in Figure 8-27).

Macdonald_694-3C08.fm Page 306 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 307

Figure 8-27. Automatic binding to a DataGridView

Alternatively, you can choose to bind individual controls (through simple binding), as
shown in Figure 8-28. For each individual control, you can change among commonly used
control types like the TextBox, Label, LinkLabel, ListBox, and so on.

Either way, you’ll end up with a few frills, like a navigation bar that allows you to add or
remove records, move from one record to another, and so on. (You can create a ToolStrip with
the same functionality by hand by using the code shown in this chapter.)

You’ll also end up with something a lot less desirable—a slew of objects that appear directly
on the form. These objects include an instance of the table adapter that queries the informa-
tion and the DataSet that stores the retrieved information. You’ll also get the BindingSource
helper object (which allows you to quickly configure some aspects of the data-binding behavior,
like whether new records are allowed) and the BindingNavigator that represents the navigation
bar (and allows you to tweak its appearance).

This design is keenly undesirable, because it embeds several data-specific objects directly
in the form. That means that if you want to share data between forms, you need to perform
wasteful trips back to the database. For each and every form that you want to connect in this
way at design time, you’ll end up with a duplicate copy of the table adapter, DataSet, and
helper objects.

Macdonald_694-3C08.fm Page 307 Wednesday, July 26, 2006 10:55 AM

308 C H A P T E R 8 ■ D AT A B I N D I N G

Figure 8-28. Automatic simple binding to various controls

If you look at the code for your form, you’ll find that the data are queried when the form is
loaded using the table adapters. Here’s an example of what you’ll see:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' TODO: This line of code loads data into the 'StoreDataSet.Products' table.
 ' You can move, or remove it, as needed.
 Me.ProductsTableAdapter.Fill(Me.StoreDataSet.Products);
End Sub

■Note It’s worth noting that you don’t need to connect your controls at design time. You can write code like
this at any point to retrieve the data you need. For example, this allows you to put all your data into a single
DataSet, which you can manually supply to each bound control. Unfortunately, if you take this approach, you
lose the ability to set up your data bindings at design time. In fact, if you sever the design-time connection
between the bound control and its data source, all the data bindings are lost.

You can customize this section to perform your own error handling or logging. However,
once again you are forced to place your database code in the form. This is one of only two areas
of code that you can customize with automatic data binding. The other area is the code that
saves the record and triggers an update when the user clicks a button in the navigation bar:

Macdonald_694-3C08.fm Page 308 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 309

Private Sub ProductsBindingNavigatorSaveItem_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles ProductsBindingNavigatorSaveItem.Click
 Me.Validate()
 Me.ProductsBindingSource.EndEdit()
 Me.ProductsTableAdapter.Update(Me.StoreDataSet.Products)
End Sub

This just isn’t flexible enough for a professional application. In fact, trying to use this design
is likely to leave you with an application that’s poorly organized and difficult to maintain or
optimize. In the following sections, you’ll consider whether there’s any way to redeem this
design-time data-binding support.

Using a Strongly Typed DataSet
There is one feature that you get with automatically generated data sources that can be worth-
while—strongly typed DataSet classes.

When you add a data source, you end up with several new classes:

• One table adapter class for each table in the data source.

• One derived DataSet class for your database.

• One DataRow and one DataTable class for each table in the data source.

The table adapter encapsulates the data access logic. It plays the same conceptual role as
StoreDB in the earlier examples, although it’s much less flexible. You may use the table adapter
for quick one-off mockups, but you’re unlikely to use it in a large-scale application.

The DataSet, DataRow, and DataTable classes are data objects that model your data. They
derive from the familiar DataSet, DataRow, and DataTable classes you already know, but they
hardwire in the database schema. For example, in the previous example, you’ll end up with a
ProductsDataTable and a ProductsDataRow class, which have the structure of the Products
table hardwired into them.

These custom data classes have two advantages. First, when you query information from
the database no schema information is needed, because it’s already in your objects. Thus,
ADO.NET can fill the DataTable more efficiently (without making an initial query to determine
the table schema). The other advantage is that it’s easier to program with these classes, because
you can use strongly typed properties instead of string-based field and table lookup.

For example, you could take this code:

Dim ds As DataSet = Program.StoreDB.GetProducts()
For Each row As DataRow In ds.Tables("Products")
 MessageBox.Show(row("ModelName").ToString())
Next

and change it to this:

Dim ds As StoreDataSet = Program.StoreDB.GetProducts()
For Each row As ProductsDataRow In ds.ProductsDataTable
 MessageBox.Show(row.ModelName)
Next

Macdonald_694-3C08.fm Page 309 Wednesday, July 26, 2006 10:55 AM

310 C H A P T E R 8 ■ D AT A B I N D I N G

The second version is easier to write (thanks to IntelliSense) and any errors are caught at
design time instead of runtime. But the real beauty is that you can use these features if you
want or ignore them completely. Because ProductsDataTable derives from DataTable,
ProductsDataRow derives from DataRow, and StoreDataSet derives from DataSet, the rest of
your code can treat these objects as ordinary DataTable, DataRow, and DataSet instances, with
the familiar string-based lookup.

In conclusion, you might choose to use the Data Sources window to create strongly typed
data objects, which you can then use in your other data classes. However, this doesn’t gain you
the other benefits of automatic data binding. For example, you still don’t have any way to set
up bindings and data sources at design time. The cost to get these features is simply too great.

Binding Directly to a Custom Object
The automatic data-binding features in Visual Studio work much better when binding to custom
objects. Now that you understand how data binding works in detail, you might still find that
these features clutter your applications. However, they add some genuinely useful RAD capa-
bilities without introducing the negative designs of automatic database binding.

■Note Unlike the automatic database binding, the object binding won’t generate any data access for you.
However, this gives you much more control (and allows you to write much better data access code).

The following example shows how you can set up object binding using the object example
from before, which includes the StoreDB, Product, and ProductList classes:

1. If the object you want to bind to is in the current assembly, make sure you’ve compiled
the assembly since you added it. If the object is in another assembly, make sure you’ve
added a reference to that assembly.

2. Select Data ➤ Show Data Sources to show the Data Source window.

3. Click the Add New Data Sources link.

4. Choose Object, and click Next.

5. Now you need to choose the collection object that holds the data you want to show (see
Figure 8-29); this is the object that the controls bind to. In this example, you’ll use the
ProductList collection, not StoreDB.

6. Once you’ve made your choice, click Finish to end the wizard.

When you take these steps, Visual Studio doesn’t generate any new code (although it
does record the information about the data source in the project file). To bind a form to your
ProductList, choose the appropriate controls for each data member in the drop-down lists in the
Data Sources window. Then, drag the controls to a form. Figure 8-30 shows one possible result.

Macdonald_694-3C08.fm Page 310 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 311

Figure 8-29. Binding the ProductList collection

Figure 8-30. Binding a form to the ProductList collection

Macdonald_694-3C08.fm Page 311 Wednesday, July 26, 2006 10:55 AM

312 C H A P T E R 8 ■ D AT A B I N D I N G

You’ll still need to rearrange these controls to get the result you really want. Depending on
your scenario, this might take longer than just designing the form from scratch. However, you
do start off with a handy navigation bar that lets you move through the collection of product
records.

When you run this application, you’ll end up with a blank form. That’s because Visual Studio
has no idea how you plan to create a ProductList collection, and it doesn’t generate any code.
This is also the most flexible design, because it allows you to generate a ProductList collection
in a variety of ways (from a database that gets every record, from a more targeted search, from
a serialized file, and so on).

To complete this example, you need to add code like this, which uses the familiar StoreDB
to return the ProductList:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 productListBindingSource.DataSource = Program.StoreDB.GetProducts()
End Sub

The great advantage here is that you don’t need to write the code by hand that sets up your
data bindings to the Product objects. Also, you only need to connect one object instead of wiring up
the DataSource property of each individual control, which is a significant code savings.

You can use this approach to get better design-time support when using your own data
access components. However, this a minor convenience compared to the promise of no-code
data binding, which just won’t be practical for most programmers.

Data-Aware Controls
Not all controls work well with data binding. For example, the popular TreeView and ListView
controls need to be filled manually. In other circumstances, you may have controls that support
data binding, but you want to take control of the entire process. Maybe you want to create a
control that can’t be filled all at once, but uses partial data reads or just-in-time queries to
allow a user to browse through a large amount of data.

.NET provides many opportunities for data integration without data binding. One handy
technique is using the Tag property. Every control provides the Tag property, but the .NET
framework doesn’t use it. Instead, you can use the Tag property to store any information or
object you need. For example, you could use this property to store the relevant business object
with each node in a TreeView, or a DataRow object with each row in a ListView.

■Note This example uses a GetProductsAndCategories() method that fills a DataSet with two DataTable
objects and sets up a DataRelation between the two tables. The code is similar to what you’ve seen before—
for the full details, see the online code or the next example, which presents the complete data access component.

Macdonald_694-3C08.fm Page 312 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 313

The next example shows a TreeView that embeds the data it needs use the Tag property of
each node. Here’s the code needed to fill the TreeView (which could be placed in the Form.Load
event handler):

Dim ds As DataSet = Program.StoreDB.GetProductsAndCategories()

' Add the records to the TreeView.
Dim nodeParent, nodeChild As TreeNode
For Each rowParent As DatARow In ds.Tables("Categories").Rows
 ' Add the category node.
 nodeParent = treeDB.Nodes.Add(rowParent("CategoryName"))

 ' Store the disconnected category information.
 nodeParent.Tag = rowParent

 For Each rowChild As DataRow In rowParent.GetChildRows(relCategoryProduct)
 ' Add the product order node.
 nodeChild = nodeParent.Nodes.Add(rowChild("ModelName"))

 ' Store the disconnected product information.
 nodeChild.Tag = rowChild
 Next
Next

When a node is selected, a generic code routine reads the accompanying DataRow and
displays all the information it contains in a label. (This code reacts to the TreeView.AfterSelect
event.)

Private Sub treeDB_AfterSelect(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.TreeViewEventArgs) _
 Handles treeDB.AfterSelect

 lblInfo.Text = ""
 Dim row as DataRow = CType(e.Node.Tag, DataRow)

 Dim sb As New StringBuilder()
 For Each field As Object In row.ItemArray
 sb.Add(field.ToString())
 sb.Add(vbNewLine)
 Next
 lblInfo.Text = sb.ToString()
End Sub

The result, shown in Figure 8-31, is a TreeView that has easy access to the information for
each node.

Macdonald_694-3C08.fm Page 313 Wednesday, July 26, 2006 10:55 AM

314 C H A P T E R 8 ■ D AT A B I N D I N G

Figure 8-31. A TreeView with embedded data

A Decoupled TreeView with Just-in-Time Nodes
The preceding TreeView example requires very little information about the data source. Instead,
it loops through the available fields to display a list of information. However, in doing so, the
control also gives up the ability to show the data in a more acceptable format. For example,
fields that aren’t important are always displayed, and the field order is fixed.

There is an elegant way to solve this problem. The next example shows a TreeView that still
embeds data, but relies on the StoreDB class to transform the DataRow fields into display
information (see Figure 8-32). Thanks to this approach, the TreeView doesn’t need to handle
the table hierarchy.

Figure 8-32. A decoupled TreeView

The form begins by filling the tree with a list of categories and adds dummy nodes under
every level.

Macdonald_694-3C08.fm Page 314 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 315

Private Sub TreeViewForm_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim nodeParent As TreeNode
 For Each row As DataRow In Program.StoreDB.GetCategories().Rows
 ' Add the category node.
 nodeParent = _
 treeDB.Nodes.Add(row(StoreDB.CategoryField.Name).ToString())
 nodeParent.ImageIndex = 0

 ' Store the disconnected category information.
 nodeParent.Tag = row

 ' Add a "dummy" node.
 nodeParent.Nodes.Add("*")
 Next
End Sub

When a node is expanded and the TreeView.BeforeExpand event fires, the code calls the
StoreDB with the selected category and requests more information. The StoreDB class then
returns the information needed to add the appropriate child nodes. (It’s up to you whether this
step uses a previously cached product DataTable or fetches it at this exact moment, although
the first approach is the fastest.)

Private Sub treeDB_BeforeExpand(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) _
 Handles treeDB.BeforeExpand

 Dim nodeSelected, nodeChild As TreeNode
 nodeSelected = e.Node
 If nodeSelected.Nodes(0).Text = "*" Then
 ' This is a dummy node.
 nodeSelected.Nodes.Clear()

 For Each row As DataRow In _
 Program.StoreDB.GetProductsInCategory(CType(nodeSelected.Tag, DataRow))

 Dim field As String = row(StoreDB.ProductField.Name).ToString()
 nodeChild = nodeSelected.Nodes.Add(field)

 ' Store the disconnected product information.
 nodeChild.Tag = row
 nodeChild.ImageIndex = 1
 nodeChild.SelectedImageIndex = 1
 Next
 End if
End Sub

Macdonald_694-3C08.fm Page 315 Wednesday, July 26, 2006 10:55 AM

316 C H A P T E R 8 ■ D AT A B I N D I N G

When an item is selected, the code again relies on the ProductDatabase class to “translate”
the embedded DataRow. In this case, the code responds to the TreeView.AfterSelect event:

Private Sub treeDB_AfterSelect(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.TreeViewEventArgs) _
 Handles treeDB.AfterSelect
 lblInfo.Text = Program.StoreDB.GetDisplayText(CType(e.Node.Tag, DataRow))
End Sub

This pattern allows the StoreDB to handle its own data access strategy—it can fetch the
information as needed with queries every time a node is expanded, or it can retain it in memory as
a private member variable (as it does in this example). Even better, the StoreDB code is extremely
simple, because it doesn’t need to convert ADO.NET objects into “business” objects. The TreeView
can use and embed the ADO.NET objects natively, without needing to know anything about
their internal field structures.

Here’s the full StoreDB code for this example:

Public Class StoreDB

 Public Function GetCategories() As DataTable
 Dim connectionString As String = My.Settings.Store
 Dim con As New SqlConnection(connectionString)
 Dim cmd As New SqlCommand("GetProducts", con)
 cmd.CommandType = CommandType.StoredProcedure
 Dim adapter As New SqlDataAdapter(cmd)

 Dim ds As New DataSet()
 adapter.Fill(ds, Tables.Product)
 cmd.CommandText = "GetCategories"
 adapter.Fill(ds, Tables.Category)

 ' Set up a relation between these tables.
 Dim relCategoryProduct As New DataRelation("CategoryProduct", _
 ds.Tables(Tables.Category).Columns(CategoryField.ID), _
 ds.Tables(Tables.Product).Columns(ProductField.CategoryID))
 ds.Relations.Add(relCategoryProduct)
 return ds.Tables(Tables.Category)
 End Function

 Public Class Tables
 Public Const Product As String = "Products"
 Public Const Category As String = "Categories"
 End Class

 Public Class ProductField
 Public Const Name As String = "ModelName"
 Public Const Description As String = "Description"
 Public Const CategoryID As String = "CategoryID"
 End Class

Macdonald_694-3C08.fm Page 316 Wednesday, July 26, 2006 10:55 AM

C H A P T E R 8 ■ D A T A B I N D I N G 317

 Public Class CategoryField
 Public Const Name As String = "CategoryName"
 Public Const ID As String = "CategoryID"
 End Class

 Public Function GetProductsInCategory(ByVal rowParent As DataRow) _
 As DataRow()
 Dim relCategoryProduct As DataRelation
 relCategoryProduct = rowParent.Table.DataSet.Relations(0)
 Return rowParent.GetChildRows(relCategoryProduct)
 End Function

 Public Function GetDisplayText(ByVal row As DataRow) As String
 Dim text As String = ""

 Select Case row.Table.TableName
 Case Tables.Product
 text = "ID: " & row(0) & vbNewLine
 text &= "Name: " & row(ProductField.Name) & vbNewLine & vbNewLine
 text &= row(ProductField.Description)
 End Select
 Return text
 End Function

End Class

The ProductDatabase methods can be used easily with other controls. None of them are
specific to the TreeView.

The Last Word
This chapter provided an in-depth examination of the inner workings of data binding. It also
has considered the best practices you need to use for data binding without crippling your code
and tying it too closely to the specific data-source details. In Chapter 15, you’ll return to data
binding and learn how you can create a rich data-bound form using only a single control: the
new DataGridView.

Macdonald_694-3C08.fm Page 317 Wednesday, July 26, 2006 10:55 AM

Macdonald_694-3C08.fm Page 318 Wednesday, July 26, 2006 10:55 AM

■ ■ ■

P A R T 2

Custom Controls

Macdonald_694-3C09.fm Page 319 Tuesday, July 25, 2006 7:31 AM

Macdonald_694-3C09.fm Page 320 Tuesday, July 25, 2006 7:31 AM

321

■ ■ ■

C H A P T E R 9

Custom Control Basics

Custom controls are a key theme in Windows Forms development. They can help you improve
encapsulation, simplify your programming model, and make your user interface more “pluggable”
(so that you can swap out a control and replace it with a completely different one without rewriting
the rest of your application). Of course, custom controls have other benefits, including the way
they can transform a generic window into a slick, modern interface with eye-catching graphics.

This chapter introduces the different types of custom controls and discusses the problems
they solve. You’ll learn the basic steps you need to create control projects and test them in
Visual Studio. However, you won’t actually create a realistic control. Instead, you’ll get ready
for the next four chapters, which build on these fundamentals to create some more practical
controls.

Understanding Custom Controls
Generally, developers tackle custom control development for one of three reasons:

• To create controls that provide entirely new functionality or combine existing user inter-
face elements in a unique way. For example, the .NET framework doesn’t include any
controls for charts, image thumbnails, or dockable windows—but that doesn’t stop you
from building your own.

• To create controls with a distinct original look, or ones that mimic the controls in a
professional application that aren’t available to the masses. Examples include shaped
buttons and the infamous Outlook bar.

• To create controls that abstract away unimportant details and are tailored for a specific
type of data. For example, if you’re creating a file-browsing application, it’s probably
easier to program with a custom DirectoryTreeView control rather than the generic
TreeView.

Creating custom controls in .NET is far easier than it is in COM-based frameworks like
MFC or Visual Basic 6, where you typically need to use the ActiveX model. The ActiveX model
has a cumbersome deployment model, poor versioning support (aka “DLL Hell”), and weak
support for design-time features. In .NET, creating a custom control is often as easy as creating
an ordinary class. You simply inherit from the best possible parent class and add the specific
features you need. Best of all, thanks to .NET’s deep language integration, you can share your
control assemblies with other applications written in any .NET language.

Macdonald_694-3C09.fm Page 321 Tuesday, July 25, 2006 7:31 AM

322 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

THIRD-PARTY CONTROLS

The fact that custom controls are conceptually simple (and easy to deploy) doesn’t mean you won’t be forced
to write a significant amount of code! If you want to create a rich, graphically intensive widget, you could easily
write hundreds of lines of GDI+ code to perfect it. That’s why you should consider some of the free and
commercial controls that are available for Windows Forms.

There are a variety of options for popular control types like Outlook bars, dockable windows, and wizards.
Some of the best are provided at Divelements (www.divil.co.uk) and Actipro (www.actiprosoftware.com).
Another good option is Crownwood software (www.dotnetmagic.com), which includes complete source
code for its products.

Finally, if you’re interested in a free solution that can save you some money (or one you can extend to learn
even more about .NET), check out the official Windows Forms community site (www.windowsforms.net),
where an expansive control gallery provides free solutions and trial software.

Types of Custom Controls
Developers often make a distinction between three types of controls:

• User controls. These are the simplest type of control. They inherit from the System.
Windows.Forms.UserControl class, and follow a model of composition. Usually, user
controls combine more than one control in a logical unit (like a group of text boxes for
entering address information). You’ll learn about user controls in Chapter 10.

• Derived controls. With a derived control (also known as an inherited control), you choose
the existing .NET control that is closest to what you want to provide. Then, you create a
custom class that inherits from the class you’ve chosen and overrides or adds properties
and methods. You’ll see examples of this approach in Chapter 11.

• Owner-drawn controls. These controls use GDI+ drawing routines to generate their
interfaces from scratch. Because of this, they tend to inherit from a more basic class
that’s farther down the control hierarchy, like System.Windows.Forms.Control. Owner-
drawn controls require the most work, and provide the most flexibility. You’ll see them
at work in Chapter 12.

The distinction between the three control types is slightly exaggerated. For example, you
can create a user control that paints itself with GDI+. Similarly, instead of inheriting from
Control, UserControl, or a full-fledged .NET control class, you can inherit from one of the inter-
mediary classes to get a different level of support. For example, a control that needs the ability
to contain other controls can inherit from ContainerControl.

Macdonald_694-3C09.fm Page 322 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 323

Table 9-1 describes the classes you can inherit from when creating a custom control. The
table is organized from general to specific. Figure 9-1 shows the relevant portion of the class
hierarchy.

Table 9-1. Base Classes for Custom Controls

Class Description Examples

Component A component is a designable class.
You can drag and drop it onto the
component tray at design time (see
the next section for more information).
However, a component is not a control,
and as a result, it doesn’t get a piece of
form real estate.

ToolTip,
OpenFileDialog,
Timer

Control The first level of controls.
Adds mouse support for standard events,
along with keyboard handling. It’s up to
you to draw everything from scratch.

Owner-drawn controls
(Chapter 12)

ScrollableControl Adds support for scrolling.
You shouldn’t derive from this
class directly. Instead, derive from
ContainerControl or Panel.

ContainerControl Adds support for containing child
controls and managing their focus.

GroupBox, Panel

UserControl Adds the Load event for initialization
and provides design-time support you
can use to lay out and configure child
controls in Visual Studio.

User controls (Chapter 10)

Form and other
control classes

You can derive from the Form class
to create a reusable form template or
derive from an existing control to
override and enhance its functionality.

Derived controls
(Chapter 11)

Macdonald_694-3C09.fm Page 323 Tuesday, July 25, 2006 7:31 AM

324 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

Figure 9-1. The control base classes

Custom Components
Along with custom controls, you can also create custom components that interact with your
user interface. Technically, the .NET framework defines a component as a class that implements
the System.ComponentModel.IComponent interface or that derives from another class that
implements IComponent (such as System.ComponentModel.Component). If you dig into the
.NET class library, you’ll discover the Control class derives from Component, which means that
all controls are a type of component (as shown in Figure 9-1).

■Note Although controls are technically a type of component, when I refer to components in this book, I’m
usually referring to components that aren’t controls.

Macdonald_694-3C09.fm Page 324 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 325

Component classes have two characteristics that distinguish them from noncomponent
classes:

• Components provide basic design-time support. You can add component classes to the
Toolbox in Visual Studio, and then drag and drop them onto a form. If you drop a control
onto a form, it appears exactly where you’ve placed it. If you drop any other type of
component on a form, it appears in the component tray under the form. Either way, you
can configure it to your heart’s content by selecting it and changing properties in the
Properties window.

• Components provide a deterministic way to release resources. Because the IComponent
interface extends the IDisposable interface, every component provides a Dispose() method.
When this method is invoked, the component immediately frees the resources it uses.

Usually, you use custom components, because you want to be able to drop an instance
of your class onto a form at design time. For example, the OpenFileDialog, MenuStrip, and
ImageList classes are components. Often, components have some hand in generating the user
interface—as all these classes do. However, that doesn’t need to be the case. In the Components
tab of the Toolbox, you’ll find classes like Timer, EventLog, and BackgroundWorker that don’t
have any visual representation at runtime.

Custom components often provide services used by other controls (like the validation
classes in Chapter 18). One specialized example is extender providers like the ToolTip compo-
nent, which extend other controls with additional properties. You’ll learn how to create your
own custom extender providers in Chapter 25.

Typically, if you want to create a custom component that’s not a control, you’ll derive your
class from the Component class. The Component class provides a basic implementation of the
IComponent interface. All you need to do is add your own properties and methods—there’s no
basic boilerplate code to write. Alternatively, you can implement IComponent by hand, but it’s
more work and doesn’t add any benefit (other than giving you the flexibility to derive from
another class).

There’s one other advantage that you gain from creating a component instead of an ordi-
nary class. Visual Studio gives all components a design surface. That means you can switch to
design view and drag and drop other controls onto the new component you’re creating. You’ve
seen this model in detail with forms, but with components it’s more limited—in fact, all you’ll
see is a blank surface that looks like the component tray and fills the whole design window, as
shown in Figure 9-2.

You can drop controls and components onto this component tray, and when you do,
Visual Studio will generate the appropriate code and add it to the hidden InitializeComponent()
method of your component class. If you’re an unredeemable fan of dragging and dropping
ADO.NET objects like SqlConnection and SqlCommand, this offers a great compromise. You
can add these objects to a custom component and configure them at design time, rather than
tightly coupling them to a single form in your application.

Macdonald_694-3C09.fm Page 325 Tuesday, July 25, 2006 7:31 AM

326 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

Figure 9-2. The design surface of a component

Control Projects
When designing a custom control or component, you could add the control or component
class directly to your application project. However, this approach prevents you from reusing
your class in multiple applications. A better, more component-based approach is to create a
separate project for your custom control or component. You can then use it in any other project
by adding a reference to the compiled DLL assembly. This separate control or component
project is a library.

The Library Project
Typically, you’ll create your control as either a Class Library Project (for components) or a
Windows Control Library (for custom controls). The choice you make doesn’t have much impact—
essentially all the project type does is configure the default references and the namespaces that
are initially imported into your project. The important fact is that either way you’re creating a
library project, which compiles into a DLL assembly instead of a stand-alone executable. This
DLL can then be shared with any other project that needs to use the control. Figure 9-3 shows
the option you need to select to create a Windows Control Library project.

When you begin your control project, you’ll probably find that you need to add a few assembly
references and import some namespaces. This is particularly the case if you’re adding advanced
design-time support for your controls, in which case you’ll usually need a reference to the
System.Design.dll and System.Drawing.Design.dll assemblies. (To add these references, just
right-click the project in the Solution Explorer, select Add Reference, and find the assemblies
in the list.)

Macdonald_694-3C09.fm Page 326 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 327

Figure 9-3. Creating a control project

Having accomplished this step, you’ll probably want to import some namespaces in
your code files, so you don’t have to type fully qualified names. Useful namespaces include
System.Windows.Forms, System.ComponentModel, and System.Drawing. When building
classes for design-time support, you’ll need to rely on many more namespaces, as you’ll see in
Chapter 13. Remember that importing namespaces isn’t required—it’s just a convenience that
helps trim long lines of code.

Once you’ve created the project, you can add your custom control or component classes.
Generally, you’ll place each control in a separate file. This isn’t a requirement, but it makes it
easier to work with your code when you start to add frills like design-time smarts.

To try this out, you can create the following exceedingly simple custom control that was
first presented in Chapter 1. It extends the TextBox class, so that it rejects non-numeric input:

Public Class NumericTextBox
 Inherits TextBox

 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
 ' Ignore all non-control and non-numeric key presses.
 If Not char.IsControl(e.KeyChar) And _
 Not char.IsDigit(e.KeyChar) Then
 e.Handled = True
 End If

 ' Call the implementation in the base TextBox class,
 ' which raises the KeyPress event.
 MyBase.OnKeyPress(e)
 End Sub

End Class

Macdonald_694-3C09.fm Page 327 Tuesday, July 25, 2006 7:31 AM

328 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

To build your project at any time, right-click it in the Solution Explorer, and choose Build.
For obvious reasons, you can’t launch a custom control project directly. Instead, your controls
or components need to be used in another application.

■Tip Visual Studio 2005 adds a feature that does allow you to launch user controls directly. It supplies a
basic test harness (a form that shows the control with a property grid) automatically. However, this convenience
doesn’t work for other types of control projects or components.

The Disposable Pattern
If your class holds on to any unmanaged resources (like unmanaged memory or window handles),
you need to clean them up properly. The proper approach is to override the Dispose() method,
and make sure you release your resources there. Similarly, if your class holds references to any
IDisposable classes, you need to override Dispose() and call Dispose() on those objects. This
cleanup code makes sure your code runs optimally at runtime and in the design environment.

As long as you’re deriving your class from Component or Control, it’s very easy to add the
Dispose() logic you need. Simply override the version of the method that takes a single Boolean
parameter, as shown here:

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 ...
End Sub

The disposing parameter is an unusual ingredient—essentially, it indicates how your object
was disposed. If the disposing parameter is True, your object has been properly released. In other
words, some other piece of code explicitly called the Dispose() method. If disposing is False,
you haven’t had the same success—instead, your object was left floating in memory until the
garbage collector eventually tracked it down and disposed it.

■Note The dispose pattern isn’t hardwired into the common language runtime—instead, it’s built into the
Component class. If you inherit IComponent on your own, you’ll need to re-create this pattern.

The reason you check the disposing parameter is to decide whether you should call the
Dispose() method on other linked objects. If your object is being disposed properly (disposing
is True), you should call the Dispose() method of the disposable objects that your class uses, so
that they are cleaned up as well. For example, if you’re creating an owner-drawn control, you
might have Pen and Brush objects that are held in member variables and need to be disposed.
On the other hand, if the garbage collector is at work (disposing is False), these linked objects
may or may not already be cleaned up, so you need to leave them alone to be safe.

Here’s the structure you should use when you override Dispose():

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then

Macdonald_694-3C09.fm Page 328 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 329

 ' Call Dispose() on other linked objects.
 ' For example: drawBrush.Dispose()
 End if

 ' Clean up any unmanaged resources.
End Sub

Although it’s not much work to write this basic conditional logic in the Dispose() method,
Visual Studio will create it for you if you add a new component or user control by choosing
Project ➤ Add Item. That’s because components and user controls both have the ability to hold
other components on their design surface (in the component tray). To make sure these objects
are properly released, Visual Studio creates a component collection in your class:

Private components As System.ComponentModel.IContainer
Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
End Sub

Visual Studio also adds cleanup code that calls Dispose() on every object in the component
collection when your component or user control is disposed:

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If

 MyBase.Dispose(disposing)
End Sub

There are two important details to keep in mind. First, the components collection contains
only components that need to be disposed explicitly. If you add a component that doesn’t hold
onto any unmanaged resources, this component won’t add itself to the component collection.
Secondly, Visual Studio generates this boilerplate implementation of the Dispose() method
only if you create a component or user control class using the Project ➤ Add Item menu command.
If you type in the code by hand or create an ordinary class, you won’t end up with the basic
implementation of the Dispose() method. This isn’t a problem, unless you start dropping
components onto the design surface of your class, in which case you have no guarantee that
these components will be cleaned up properly. But of course, now that you’ve read this, you
won’t make that mistake.

■Note To find the plumbing for the Dispose() method, you’ll need to peek at the hidden designer file for
your component. For example, if you create a component named Component1, Visual Studio creates a
Component1.Designer.vb file with a partial definition of your class that fills in these details. (This is the same
model Visual Studio uses with forms, which you saw in Chapter 1.) To see the designer file, just select Project ➤
Show All Files.

Macdonald_694-3C09.fm Page 329 Tuesday, July 25, 2006 7:31 AM

330 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

The Client Project
Once you’ve created the perfect control, you need an easy way to admire your work—and hunt
for errors. Testing custom controls can be a little awkward. Visual Studio provides several options:

• You can add test forms directly to your control-class projects and remove them when
they are no longer needed (or just set the Build Action to None instead of Compile, so
that they are retained but not added to the compiled DLL).

• You can open two instances of Visual Studio: one with the control project and one
with the control test project. To use this approach, you need to add your control to
the Toolbox manually.

• You can create a solution with two projects: one that contains the control and one that
uses the control. This is the easiest approach, because Visual Studio will temporarily add
your control to the Toolbox automatically (as described in the next section). This approach
also gives you a good separation between your control code and your test harness.

In order for you to use your control in another project, that project needs a reference to the
compiled control assembly. When you add this reference, Visual Studio stores the location of
the control assembly file. Every time you rebuild your client project, Visual Studio copies the
latest version of the control assembly into the client’s Bin directory, where the client executable
resides. This ensures that you’re always testing against the most recent build of a control.

Automatic Toolbox Support
Visual Studio 2005 introduces a time-saving feature that can let you start using custom controls
without any extra configuration steps. To try this out, create a solution that contains two projects—
the custom control-class library and the client application (see Figure 9-4).

This approach works because every time you compile a class library, Visual Studio scans
through the classes it contains, and adds each component or control to a special temporary tab
at the top of the Toolbox. You can then create instances of the control by dragging it to the
design surface on a form. The first time you add a control to a project, Visual Studio adds a
reference to the assembly where the control is defined and copies this assembly to your project
directory.

For example, if you open a project named CustomControl and it contains at least one
component-derived class, Visual Studio will add a tab named CustomControl Components to
the Toolbox, as shown in Figure 9-5. This tab remains as long as the project is open, and it’s
updated every time you compile the class library project.

When you actually deploy an application that uses a custom control, all you need to do is
ensure that the required control DLL is in the same directory as the application executable.
When you copy these files to another computer, you do not need to worry about registering
them or performing additional steps. This is the infamous zero-touch deployment that has
been heavily hyped with .NET.

Macdonald_694-3C09.fm Page 330 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 331

Figure 9-4. A control-class library and client in the same solution

Figure 9-5. Components and controls appear automatically in the Toolbox.

Customizing the Toolbox
Visual Studio’s automatic Toolbox support for custom controls offers the best solution if you’re
planning to reuse a control in just one or two projects. But in other cases, you’ll want something
a little more permanent. For example, you might decide a control is so useful you want to have
the Toolbox item handy to insert it in any project, even if the library project with the custom control
isn’t open. In this case, you need to customize the Toolbox, so it includes the custom control.

To add a component or control to the Toolbox, right-click the Toolbox, and select Choose
Items. Then select the .NET Framework Components tab, and click the Browse button.

Once you double-click the appropriate assembly (for example, CustomControl.dll), Visual
Studio will examine its metadata to find all the classes that implement IComponent (including
custom component and custom controls). It adds each of these classes to the list and selects
them. You won’t necessarily see the classes in the list, because Visual Studio doesn’t automat-
ically scroll to the right place. Instead, you’ll need to scroll through the list looking for selected
items (which are highlighted in blue). As a shortcut, you can click on the Assembly Name header to
sort the list by assembly. You can then scroll to your assembly, and you’ll see all your controls
at once (see Figure 9-6).

Macdonald_694-3C09.fm Page 331 Tuesday, July 25, 2006 7:31 AM

332 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

Figure 9-6. Referencing an assembly with controls

■Note In truth, not all components and controls will show up in the Choose Toolbox Items list. Component
or control classes that are decorated with the DesignTimeVisible(False) or ToolboxItem(False) attributes
explicitly prevent themselves from being placed in the Toolbox. As a result, they won’t appear in the list.

Every selected item will be shown in the Toolbox. If you don’t want one of the controls to
be added to the Toolbox, just remove the check mark next to its name. When you’re finished,
click OK to continue and update the Toolbox with the currently selected controls.

Figure 9-7 shows the custom NumericTextBox control, which is added to the bottom of the
Toolbox alongside its .NET counterparts. If you haven’t configured a custom icon, it appears
with the default gear icon. (Chapter 13 discusses how to choose a different Toolbox icon.) If you
want, you can reorganize the Toolbox by dragging your custom controls to another position or
another tab.

■Note The Toolbox is a user-specific Visual Studio setting, not a project-specific setting. This means that
once you add a control to the Toolbox, it will remain there until you remove it, regardless of what project you
are working with.

Macdonald_694-3C09.fm Page 332 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 333

Figure 9-7. A custom control in the Toolbox

The GAC
If multiple applications need to use the same control, you can copy the appropriate assembly
to each application directory. This gives you the freedom to update some applications with
additional functionality without worrying about backward compatibility. It also simplifies
deployment, and requires only a minuscule amount of extra disk space. For all these reasons,
it’s the favored approach.

Another option is to install your component to the Global Assembly Cache (the same repos-
itory that contains the core .NET assemblies). The Global Assembly Cache (or GAC) allows
multiple versions of a component to be installed side by side. The GAC also ensures that every
application uses the version of a control that it was compiled with, which almost completely
eliminates versioning headaches. The disadvantage is that you now have an extra deployment
step—you need to install the component into the GAC on each computer where it will be used.
You also need to sign your versioned assembly using a private key to ensure that it has a unique
identifier (and can’t conflict with other components), and to ensure that no other organization
can release a new control that claims to be yours. This process is the same for any shared
component, whether it is a control or a business object.

Many factors that required a central repository for components in the old world of COM
don’t apply with .NET. If you just want to share a control between specific applications, you
probably don’t need the additional complexity of the GAC. On the other hand, if you are a tool
vendor who creates, sells, and distributes custom controls, you may want to use the GAC to make
your control available machine-wide. This process is well documented in the MSDN help, but
the essential steps are explained in the following three sections.

Macdonald_694-3C09.fm Page 333 Tuesday, July 25, 2006 7:31 AM

334 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

■Tip You don’t need to install your control to the GAC to use licensing (which is described in Chapter 13).
In fact, I recommend that you don’t place the controls developed in this chapter into the GAC unless you have
a clear reason to do so. (For example, if you’re creating a fairly complex component you want to sell as a third-
party add-in.)

Creating a Key
Before you can install an assembly in the GAC, you need to sign it using the sn.exe command-
line utility included with the .NET framework. To create a key, you use the -k parameter, and
specify the name for your key, as shown here:

sn -k MyKey.snk

Each .snk file contains a private and a public key. Private and public keys provide a special
time-honored form of encryption (called asymmetric encryption). Anything encrypted with a
private key can be read only with the corresponding public key. Conversely, anything encrypted
with a public key can be read only with the corresponding private key. The public key is typically
made available to the world. The private key is carefully guarded. Public and private key
encryption is sometimes used with e-mail. If you want to create a message that only a specific
user can decipher, you would use that individual’s public key to encrypt the message. If you
want to create a message that anyone can read but no one can impersonate, you would use
your own private key. Thus, asymmetric encryption can protect data and your identity.

In .NET, the private key is used to compile the assembly, and the public key is embedded
inside the assembly. When an application uses your control, the common language runtime
uses the public key to decode information from the manifest. Thus, no one else can create an
update to your assembly, because someone would need your original private key to encode it
successfully.

■Tip You can create a strongly named component even if you don’t intend to deploy it to the GAC. This has
the advantage of guaranteeing your company’s identity.

Applying a Key to a Control Assembly
To add the key to a control project, you need to add an attribute to the AssemblyInfo.vb file for
your project. To find this file, look under the Properties node in the Solution Explorer.

The AssemblyInfo.vb file contains a variety of assembly attributes that configure assembly
metadata, including details like versioning and product name. Here’s the attribute you need to
attach a key file:

<Assembly: AssemblyKeyFile("c:\KeyFiles\MyKey.snk")>

If you specify a relative file name instead of the full path for the key file, the compiler looks
in the \obj\Debug directory or the \obj\Release directory when you build the project, depending
on whether you’re compiling your code in debug or release mode. One easy way to get around
this is to place the key file in the root project directory, and use the following attribute:

Macdonald_694-3C09.fm Page 334 Tuesday, July 25, 2006 7:31 AM

C H A P T E R 9 ■ CU S T O M C O N T R O L B A S I C S 335

[assembly: AssemblyKeyFile(@"..\..\MyKey.snk")]

When you compile a project that has one of these attributes, the compiler searches for the
key file. If it can’t find the key file, it fails with an error message. If it does find the key file, the key
information is added to the assembly metadata. .NET also supports delayed assembly signing,
which allows you to add the strong name just before shipping the control. This is useful in a
large organization, because it allows you to debug the control without requiring the private
key. The assembly can then be signed just before it is released by the individual who guards the
private key. Delayed assembly assignment requires a little more grunt work and is described in
the MSDN help.

Attaching Keys in Visual Studio
Visual Studio saves you from the trouble of using the sn command-line tool. Instead, it allows
you to generate and attach a key file without leaving the development environment. To do so,
double-click the My Project node in the Solution Explorer, and select the Signing tab. Select the
check box “Sign the assembly”, and then choose your key file in the drop-down list control. At
this point, you can generate a new key (by selecting New) or browse to the location of an
existing key file (by choosing Browse). Once you complete this step, the assembly key file will
be added to the project, and it will appear in the Solution Explorer.

Note that you don’t need to add the AssemblyKeyFile attribute to your application when
you use this approach. Instead, Visual Studio will take care of emitting the appropriate meta-
data when it compiles the assembly.

Installing a Control in the GAC
Now that your control assembly is signed, you can install it to the GAC using a dedicated setup
program or the Global Assembly Cache tool (gacutil.exe) included with the .NET framework, as
shown here:

gacutil /i CustomControl.dll

You can also drag and drop the assembly to the C:\[WindowsDir]\Assembly directory in
Windows Explorer, which installs it automatically using a special plug-in. You’ll see your
assembly listed in the assembly list (see Figure 9-8), with its public key and version informa-
tion. Life couldn’t be easier.

If you install later versions of the same assembly in the GAC, the original version remains
alongside the new version. Clients automatically use the assembly that they were compiled
with (and raise an exception if they can’t find the right version in the GAC). You can uninstall
assemblies using the /u switch in the Global Assembly Cache tool, or by selecting the assembly
in Windows Explorer and pressing the Del key.

■Tip There are many more options for configuring version policies using application configuration files.
 You can consult the MSDN reference or a book about .NET fundamentals for more information.

Macdonald_694-3C09.fm Page 335 Tuesday, July 25, 2006 7:31 AM

336 C H A P T E R 9 ■ C U S T O M C O N T R O L B A S I C S

Figure 9-8. A custom control assembly in the GAC

The Last Word
This chapter introduced one of the most important ingredients in advanced user interfaces—
custom controls. Now that you’ve digested the basics of creating, compiling, and consuming a
custom control, it’s time to look at some practical examples in the next three chapters. All of
these custom controls are included with the downloadable code samples for this book.

■Note All the control projects in the samples have names that end with “Control” (as in DirectoryTreeControl),
while the Windows Forms projects that test the controls have names that end with “Host” (as in DirectoryTreeHost).
The easiest way to run these examples is to open the solution file that will open both projects at once.

Macdonald_694-3C09.fm Page 336 Tuesday, July 25, 2006 7:31 AM

337

■ ■ ■

C H A P T E R 1 0

User Controls

User controls allow you to build customized controls by combining the existing controls in
the Windows Forms toolkit. Typically, a user control consists of a group of ordinary controls
that are related in some way. For example, you might create a user control that models a simple
record browser, combining navigation buttons with other display controls. Or, you could
create a user control that wraps together related input fields and validators. The advantage is
that you can build a user control in almost the same way as you build a full-fledged form.

Although user controls are the simplest type of custom control project, they suffer from
some serious drawbacks:

• User controls make it a little too easy for developers to combine business logic with an
inflexible block of user interface. For example, if the application programmer doesn’t
like the way individual text boxes are arranged in an address user control, there’s no easy
way to change it. Similarly, if the underlying business logic needs to change, the control
needs to be rebuilt and redistributed. Although you can solve these problems with good
design, user controls tend to be more fragile and less flexible than other types of custom
controls.

• Unless you take additional steps, user controls hide all the properties and methods of
their child controls. This is similar to the way ActiveX controls worked in Visual Basic 6.

That said, user controls are useful for quickly solving certain problems and creating
composite controls. They also have one great benefit—you can use the design support in Visual
Studio to add, configure, and lay out child controls inside a user control. This makes it possible
to create a simple composite control very quickly.

Understanding User Controls
To add a user control to a .NET custom control project, right-click the Solution Explorer window
and select Add ➤ User Control. Figure 10-1 shows a user control in the Solution Explorer.

To add a control to a user control, just drop it onto the design surface in the same way as
you would a form. You can (and should) use anchoring and docking with the controls in your
user control. That ensures that they always resize to fit the bounds of their containers. Remember,
the size of the user control is dictated by the application programmer.

You’ll notice from the designer that a user control is halfway between an ordinary control
and a form. It helps to imagine that a user control is just a reusable portion of a form. In fact,
user controls inherit from all the same base classes as forms (described in Chapter 3).

Macdonald_694-3C10.fm Page 337 Tuesday, July 25, 2006 7:32 AM

338 C H A P T E R 1 0 ■ U S E R C O N T R O L S

Figure 10-1. A user control at design time

To understand the strengths and limitations of user controls, it helps to consider a couple
of examples. In this chapter, you’ll see how to create and extend several user controls. First,
you’ll tackle a simple progress control that combines a progress bar and a label. Next, you’ll
tackle a more detailed thumbnail viewer. Finally, you’ll consider a framework for building
wizards that’s based on user controls. Along the way you’ll consider a few issues that are central to
any custom control project, including proper encapsulation, events, and asynchronous support.

The Progress User Control
The first user control you’ll consider is a simple coupling of a ProgressBar and Label control. This
control solves a minor annoyance associated with the ProgressBar—there is no way to show a
standard text description that indicates the percent of work complete. You can easily get around
this limitation by adding a label to every form that uses the ProgressBar, and manually synchro-
nizing the two. However, the Progress user control implements a standard, reusable solution.

Creating the Progress User Control
To begin, the user control is created with a label and a progress bar, as shown in Figure 10-2.

When you use the Progress control in a project, you’ll discover that you can’t access the
ProgressBar or Label child controls directly. Instead, the only properties and methods that are
available are those that belong to the user control itself, such as those that allow you to modify
the default font and background color (as you can with a form), but not much more. To actually
make the Progress user control functional, you need to wrap all the important methods and
properties of the child controls with new methods and properties in the user control.

This delegation pattern can add up to a lot of extra code for an advanced control. Fortu-
nately, when you create a user control, you will usually restrict and simplify the interface, so
that it’s more consistent and targeted for a specific use. For example, in the Progress user
control, you might decide not to allow the hosting form to set the font or background color for
the label control.

Macdonald_694-3C10.fm Page 338 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 339

Figure 10-2. The progress control at design time

■Tip If your user control contains several controls with the same properties (like Font), you need to decide
whether to provide individual user control properties (NameFont, AddressFont, etc.) or set them all at once in
a single property procedure. The UserControl class makes your job a little easier. It defines Font and ForeColor
properties that are automatically applied to all the child controls unless they specify otherwise. (This is
because these are ambient properties, which means they work in the same way in a form or any other type
of container.) The UserControl class also provides BackColor and BackImage properties that configure the
actual user control drawing surface.

The Progress user control provides access to three properties from the ProgressBar control
(Value, Maximum, and Step) and the PerformStep() method. Here’s the complete code for the
Progress user control. Although it’s not shown (you’ll need to look in the designer-generated
file), all user control classes derive from the UserControl class.

Public Class Progress

 Public Property Value() As Integer
 Get
 Return Bar.Value
 End Get
 Set(ByVal value As Integer)
 Bar.Value = value
 UpdateLabel()
 End Set
 End Property

Macdonald_694-3C10.fm Page 339 Tuesday, July 25, 2006 7:32 AM

340 C H A P T E R 1 0 ■ U S E R C O N T R O L S

 Public Property Maximum() As Integer
 Get
 Return Bar.Maximum
 End Get
 Set(ByVal value As Integer)
 Bar.Maximum = value
 End Set
 End Property

 Public Property [Step]() As Integer
 Get
 Return Bar.Step
 End Get
 Set(ByVal value As Integer)
 Bar.Step = value
 End Set
 End Property

 Public Sub PerformStep()
 Bar.PerformStep()
 UpdateLabel()
 End Sub

 Private Sub UpdateLabel()
 lblProgress.Text = (Bar.Value * 100 / Bar.Maximum).ToString()
 lblProgress.Text &= "% Done"
 End Sub

End Class

Every time the progress bar changes (either by modifying the Value or invoking the Perform-
Step() method), the code calls a private method named UpdateLabel(), which changes the
caption to reflect the current progress. This ensures that the label always remains completely
synchronized with the progress bar.

Testing the Progress User Control
Testing this control is easy. All you need is a simple form that hosts the Progress user control
and increments its value. In this case, a timer is used for this purpose. Each time the timer fires,
the PerformStep() method increments the counter by its Step value.

Private Sub tmrIncrementBar_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrIncrementBar.Tick

 status.PerformStep()
 If status.Maximum = status.Value Then
 tmrIncrementBar.Stop()
 End If
End Sub

Macdonald_694-3C10.fm Page 340 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 341

■Note As discussed in the previous chapter, you can test a user control directly just by running the user
control project. Visual Studio provides a basic test form with a PropertyGrid. However, this isn’t enough for a
real test of the Progress control, because you need an automated way to increment the value multiple times.

The timer itself is enabled in response to a button click, which also configures the user
control’s initial settings:

Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click

 tmrIncrementBar.Stop()

 ' Reset the progress.
 status.Value = 0
 status.Maximum = 20
 status.Step = 1

 ' Start incrementing.
 tmrIncrementBar.Start()
End Sub

Figure 10-3 shows the Progress control in the test application.

Figure 10-3. The Progress user control in action

The Back Door
Currently, the developer can access one back door in the Progress user control—the Controls
collection. For example, a developer using the Progress control could dig through the Controls
collection searching for the ProgressBar control. Once you find the ProgressBar control (either
by looking for a specific name or by checking the class type), you can modify it directly, which
means the label won’t be refreshed. This technique is brittle, because it leads to a tight coupling
between the form and the inner workings of the user control; therefore, I strongly discourage it.
However, it’s important to realize this back door exists in case it could be used to introduce
invalid data or cause an error you haven’t anticipated.

Macdonald_694-3C10.fm Page 341 Tuesday, July 25, 2006 7:32 AM

342 C H A P T E R 1 0 ■ U S E R C O N T R O L S

■Note Of course, crafty developers are always trying out solutions to plug holes like these. One innovative
solution is to override the CreateControlsInstance() method of the user control, which is called to create the
control collection when the user control is instantiated. You can then replace the standard ControlCollection
object with a read-only control collection that prevents direct access. This approach is detailed at www.
martnet.com/~jfosler/articles/OverridingControlCollection.htm. Although it’s interesting,
it isn’t practical in most scenarios, because disabling the Controls collection breaks Visual Studio’s design-
time support and makes it impossible to add controls to the user control design surface.

User Control Design
When creating any custom control, it helps to remember that you are designing a genuine
class. As with any class, you should decide how it will communicate with other code and how
it can encapsulate its private data before you begin writing the code. The best approach is to
start by designing the control’s interface. Figure 10-4 presents a UML (Unified Modeling Language)
diagram that defines the interface for the Progress user control.

Figure 10-4. The Progress control in UML

There are no clear rules for designing custom controls. Generally, you should follow the
same guidelines that apply to any type of class in a program. Some of the basics include the
following:

• Always use properties in place of public class variables. Public variables don’t give you
the ability to implement any validation, event tracking, or type conversion, and they
won’t appear in the Properties window.

• If you provide a property, make it both readable and writable, unless there is a clear
reason not to. Also, make sure that properties that can affect the control’s appearance
trigger a refresh when they are altered.

• Don’t expose the inner workings of your control, such as the methods you use to refresh
or manage the interface. Instead, expose higher-level methods that call these lower-level
methods as required. Hide details that aren’t important or could cause problems if used
incorrectly. It’s acceptable if private methods need to be used in a set order, but public
methods should be able to work in any order.

Macdonald_694-3C10.fm Page 342 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 343

• Wrap errors in custom exception classes that provide additional information to the
application programmer about the mistake that was made.

• Always use enumerations when allowing the user to choose between two or more options
(never fixed constant numbers or strings). Wherever possible, code so that invalid input
can’t be entered.

• When all other aspects of the design are perfect, streamline your control for performance.
This means reducing the memory requirements, adding threading if it’s appropriate,
and applying updates in batches to minimize refresh times.

Finally, whenever possible, analyze the user interface for an application as a whole. You
can then decide based on that analysis what custom controls can reduce the overall develop-
ment effort.

An Automatic Progress Bar
Some applications use a different, less reliable type of progress. In these applications, once the
progress bar reaches its maximum, it simply starts over at 0%. This approach is sometimes
used in situations where you can’t predict how long an operation will take (for example, if you’re
asynchronously retrieving information from a database or Web service). In these situations,
the progress bar is simply intended to reassure the user that the application is still working,
rather than to convey the actual amount of progress.

Converting the progress bar to use this type of behavior is easy—all you need to do is move
the timer into the user control. Then, add a new PercentPerSecond property and remove the
Maximum and Step properties. Whereas the Step property indicates the number of units that
the progress bar should increment with each step, the PercentPerSecond property indicates
the amount the progress bar should be incremented each second.

Private _percentPerSecond As Integer = 5

Public Property PercentPerSecond() As Integer
 Get
 Return _percentPerSecond
 End Get
 Set(ByVal value As Integer)
 If value < 0 Then
 Throw New ArgumentException("Progress cannot go backward.")
 ElseIf value = 0 Then
 Throw New ArgumentException("Progress must go on.")
 End If
 _percentPerSecond = value
 End Set
End Property

You’ll notice that the PercentPerSecond property doesn’t map directly to any of the properties
in the child controls. Instead, it’s a higher-level property that’s stored by the user control.
Using the PercentPerSecond property and a couple of internal details (like the maximum value
and the timer interval), you can compute a suitable step value. This calculation takes place in
the Start() method, which also enables the timer so the progress bar begins incrementing:

Macdonald_694-3C10.fm Page 343 Tuesday, July 25, 2006 7:32 AM

344 C H A P T E R 1 0 ■ U S E R C O N T R O L S

Public Sub Start()
 ' The maximum controls how fine-grained
 ' the progress bar is. 200 is a good choice.
 Bar.Maximum = 200

 ' Calculation is based on a timer that
 ' fires 10 times per second (an interval of 100).
 tmrIncrementBar.Interval = 100
 Dim timerStep As Single = Bar.Maximum * PercentPerSecond / 1000
 Bar.Step = Int(timerStep)

 ' Reset the progress and start counting.
 Bar.Value = 0
 tmrIncrementBar.Start()
End Sub

Public Sub Stop()
 tmrIncrementBar.Stop()
 Bar.Value = 0
End Sub

Public Sub Finish()
 tmrIncrementBar.Stop()
 Bar.Value = Bar.Maximum
End Sub

When the timer reaches the maximum value, the progress bar loops seamlessly back to
start incrementing from zero again:

Private Sub tmrIncrementBar_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrIncrementBar.Tick
 Bar.PerformStep()
 If Bar.Value = Bar.Maximum Then
 Bar.Value = 0
 End If
End Sub

With a little imagination, you can come up with even more progress-bar behaviors. For
example, you could design a “bouncing” progress bar that decrements progress when it
reaches 100%, and then begins incrementing it again. And of course, you wouldn’t need to
create all of these options in separate controls. Instead, you can simply provide an enumerated
value that lets the user choose an increment mode from one of the supported options.

Now that you’ve considered two versions of one of the simplest possible user controls, it’s
time to look at something a little more ambitious—and practical.

Macdonald_694-3C10.fm Page 344 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 345

The Bitmap Thumbnail Viewer
The next user control creates a series of thumbnails that show miniature versions of all the bitmap
files found in a specific directory. This type of control could be created in a more flexible way
(and with much more code), by using the GDI+ drawing features. Instead, this example uses
control composition and dynamically inserts a PictureBox control for every image. This makes
it easier to handle image clicks and support image selection. It also previews the techniques
you’ll see in Chapter 21, where a user interface is generated out of controls dynamically at runtime.

■Note If you’re still interested in the GDI+ approach, don’t worry—in Chapter 12, you’ll learn the basics,
and in Chapter 24, you’ll see a full-scale drawing application that uses custom-drawn control objects.

Possibly the best aspect of the BitmapViewer user control is that it communicates with
your program in both directions. You can tailor the appearance of the BitmapViewer by setting
properties, and the BitmapViewer raises an event to notify your code when a picture is selected.

Creating the BitmapViewer User Control
The design-time appearance of the BitmapViewer is unremarkable (see Figure 10-5). It contains
a single Panel control where all the picture boxes will be added. Alternatively, the picture boxes
could be added directly to the Controls collection of the user control, but the Panel allows for
an attractive border around the control. It also allows automatic scrolling support—as long as
the Panel.AllowScroll is set to True, scroll bars are provided as soon as the image thumbnails
extend beyond the bounds of the Panel. As with the previous example, the Panel is anchored to
all sides for automatic resizing.

■Note The size of the user control in the user control designer sets the initial size that is used when the
control is added to a form. This size can (and probably will) be changed by the developer using the control,
but think of it as a reasonable default.

Macdonald_694-3C10.fm Page 345 Tuesday, July 25, 2006 7:32 AM

346 C H A P T E R 1 0 ■ U S E R C O N T R O L S

Figure 10-5. The BitmapViewer at design time

Unlike the Progress control, the BitmapViewer cannot just hand off its property procedures
and methods to members in one of the composite controls. Instead, it needs to retain a fair bit
of its own information. The following code shows the key private variables:

' The directory that will be scanned for images.
Dim _directory As String

' Each picture box will be a square of dimension X dimension pixels.
Dim _dimension As Integer = 80

' The space between each image.
Dim _spacing As Integer = 10

' The space between the images and the top, left, and right sides.
Dim _border As Integer = 5

' The images that were found in the selected directory.
Dim images As New List(Of NamedImage)()

The collection of images is drawn from the referenced directory. The rest of the details can
be modified through property procedures:

Public Property Directory() As String
 Get
 Return _directory
 End Get
 Set(ByVal value As String)
 _directory = value
 GetImages()
 UpdateDisplay()
 End Set

Macdonald_694-3C10.fm Page 346 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 347

End Property

Public Property Dimension() As Integer
 Get
 Return _dimension
 End Get
 Set(ByVal value As Integer)
 _dimension = value
 UpdateDisplay()
 End Set
End Property

Public Property Border() As Integer
 Get
 Return _border
 End Get
 Set(ByVal value As Integer)
 _border = value
 UpdateDisplay()
 End Set
End Property

Public Property Spacing() As Integer
 Get
 Return _spacing
 End Get
 Set(ByVal value As Integer)
 _spacing = value
 UpdateDisplay()
 End Set
End Property

■Note For simplicity’s sake, this code doesn’t provide any error-handling logic. For example, all the integer
properties in the BitmapViewer should be restricted to positive numbers. Ideally, the property procedure code
should refuse negative numbers and raise an error to alert the developer if an attempt is made to set an
invalid value.

Notice that every time a value is modified, the display is automatically regenerated by
calling the UpdateDisplay() method. A more sophisticated approach might make this logic
depend on a property like AutoRefresh. That way, the user could temporarily turn off the
refresh, make several changes at once, and then re-enable it. Many collection-based Windows
Forms controls use the SuspendLayout() and ResumeLayout() methods to implement this sort
of performance optimization.

Macdonald_694-3C10.fm Page 347 Tuesday, July 25, 2006 7:32 AM

348 C H A P T E R 1 0 ■ U S E R C O N T R O L S

The set procedure for the Directory property also calls a special GetImages() method,
which inspects the directory and populates the Images collection. You might expect that the
Images collection contains Image objects, but this is not the case. To provide useful event
information, the BitmapViewer needs to track the file name of every image it displays, along
with the image data. To make this possible, you need to define another class that encapsulates
this data, called NamedImage:

Private Class NamedImage

 Private _image As Image
 Public Property Image() As Image
 Get
 Return _image
 End Get
 Set(ByVal value As Image)
 _image = value
 End Set
 End Property

 Private _fileName As String
 Public Property FileName() As String
 Get
 Return _fileName
 End Get
 Set(ByVal value As String)
 _fileName = value
 End Set
 End Property

 Public Sub New(ByVal image As Image, ByVal fileName As String)
 Me.Image = image
 Me.FileName = fileName
 End Sub

End Class

In this example, the NamedImage class is a private class nested inside the BitmapViewer
control class. This means that NamedImage is used exclusively by the BitmapViewer, and
not made available to the application using the BitmapViewer control. (In the online code,
NamedImage is declared as an internal Friend class instead, which allows it to be shared among all
the classes in the BitmapViewer assembly, including different versions of the BitmapViewer
control.)

The GetImages() method uses the standard .NET file and directory classes to retrieve a list
of bitmaps. For each bitmap, a NamedImage object is created, and added to the Images collection:

Macdonald_694-3C10.fm Page 348 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 349

Private Sub GetImages()
 If directory <> "" Then
 images.Clear()
 Dim dir As New DirectoryInfo(directory)

 For Each file As FileInfo In dir.GetFiles("*.bmp")
 images.Add(New NamedImage(_
 Bitmap.FromFile(file.FullName), file.FullName))
 Next
 End If
End Sub

The bulk of the work for the BitmapViewer takes place in the UpdateDisplay() method,
which generates the picture boxes, adds them to the panel, and sets their tag property with the
name of the corresponding file for later reference. The BitmapViewer is filled from left to right,
and then row by row.

Private Sub UpdateDisplay()
 ' Suspend layout to prevent multiple window refreshes.
 pnlPictures.SuspendLayout()

 ' Clear the current display.
 For Each ctrl As Control In pnlPictures.Controls
 ctrl.Dispose()
 Next
 pnlPictures.Controls.Clear()

 ' row and col will track the current position where pictures are
 ' being inserted. They begin at the top-left corner.
 Dim row As Integer = Border
 Dim col As Integer = Border

 ' Iterate through the images collection, and create PictureBox controls.
 For Each image As NamedImage In images
 Dim pic As New PictureBox()
 pic.Image = image.Image
 pic.Tag = image.FileName
 pic.Size = New Size(dimension, dimension)
 pic.Location = New Point(col, row)
 pic.BorderStyle = BorderStyle.FixedSingle

 ' StretchImage mode gives us the "thumbnail" ability.
 pic.SizeMode = PictureBoxSizeMode.StretchImage

 ' Display the picture.
 pnlPictures.Controls.Add(pic)

Macdonald_694-3C10.fm Page 349 Tuesday, July 25, 2006 7:32 AM

350 C H A P T E R 1 0 ■ U S E R C O N T R O L S

 ' Move to the next column.
 col += Dimension + Spacing

 ' Move to next line if no more pictures will fit.
 If (col + Dimension + Spacing + Border) > Me.Width Then
 col = Border
 row += Dimension + Spacing
 End If
 Next

 pnlPictures.ResumeLayout()
End Sub

Notice that before the new controls are generated, the existing controls need to be disposed. If
you simply call Panel.Controls.Clear() without explicitly disposing the controls, you won’t reclaim
all the unmanaged resources—in other words, your application will leak memory or control
handles.

It’s possible that the developer might want to trigger a refresh if the directory contents
have changed, without needing to modify a property. To allow this, the UpdateDisplay() method is
also made accessible through the public RefreshImages() method.

Public Sub RefreshImages()
 GetImages()
 UpdateDisplay()
End Sub

The OnSizeChanged() method is also overridden to ensure that the pictures are redrawn
when the user control size changes. This ensures that the pictures are automatically adjusted
(in rows and columns) to best fit the new size.

Protected Overrides Sub OnSizeChanged(ByVal e As System.EventArgs)
 UpdateDisplay()
 MyBase.OnSizeChanged(e)
End Sub

Figure 10-6 shows a stripped-down UML diagram for the BitmapViewer control, in keeping
with my philosophy of clearly defining the interfaces for custom controls. This diagram omits
private members and members that have been inherited. It also shows two other class dependen-
cies: the private NamedImage class and the PictureSelectedEventArgs class, which is introduced
shortly as a means of passing event data to the application that hosts the BitmapViewer.

Macdonald_694-3C10.fm Page 350 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 351

Figure 10-6. The BitmapViewer in UML

Testing the BitmapViewer Control
To see the final BitmapViewer control, follow these steps:

1. Compile the BitmapViewer control.

2. Create a new test project, and add it to the solution.

3. Drop the BitmapViewer control onto the form using the Toolbox.

4. Set the appropriate properties, like Directory, Dimension, and Spacing. In Figure 10-7,
a dimension of 80 and spacing of 10 are used. (You can modify the declarations of the
corresponding private member variables to establish some reasonable default values.)

5. Set the Directory property. A good place to do this is in the Form.Load event handler.

Figure 10-7 shows the BitmapViewer test project. In this example, the BitmapViewer is
docked to the form, so you can change the size and see the image thumbnails being reorganized.

Figure 10-7. The BitmapViewer in action

Macdonald_694-3C10.fm Page 351 Tuesday, July 25, 2006 7:32 AM

352 C H A P T E R 1 0 ■ U S E R C O N T R O L S

BitmapViewer Events
To make the BitmapViewer more useful, you can add an event that fires every time a picture
box is selected. Because the BitmapViewer is built entirely from PictureBox controls, which
natively provide a Click event, no hit testing is required. All you need to do is dynamically
register an event handler for the Click event when the picture box is first created. Place this
code in the UpdateDisplay() method just before the new PictureBox is added to the form:

AddHandler pic.Click, AddressOf Me.pic_Click

To send an event to the application, the event must first be defined in the user control
class. In this case, the event is named PictureSelected. In true .NET style, it passes a reference
to the event sender and a custom EventArgs object that contains additional information:

Public Event PictureSelected(ByVal sender As Object, _
 ByVal e As PictureSelectedEventArgs)

The custom PictureSelectedEventArgs object provides the file name of the picture that was
clicked, which allows the application to retrieve it directly for editing or some other task. Here’s
the code:

Public Class PictureSelectedEventArgs
 Inherits EventArgs

 Private _image As Image
 Public Property Image() As Image
 Get
 Return _image
 End Get
 Set(ByVal value As Image)
 _image = value
 End Set
 End Property

 Private _fileName As String
 Public Property FileName() As String
 Get
 Return _fileName
 End Get
 Set(ByVal value As String)
 _fileName = value
 End Set
 End Property

 Public Sub New(ByVal image As Image, ByVal fileName As String)
 Me.Image = image
 Me.FileName = fileName
 End Sub

End Class

Macdonald_694-3C10.fm Page 352 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 353

The PictureBox.Click event handler changes the border style of the clicked picture box to
make it appear “selected.” If you were using GDI+, you could draw a more flexible focus cue,
like a brightly colored outline rectangle.

The PictureBox.Click event handler then fires the event, with the required information:

Private picSelected As PictureBox

Private Sub pic_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 ' Clear the border style from the last selected picture box.
 If picSelected IsNot Nothing Then
 picSelected.BorderStyle = BorderStyle.FixedSingle
 End If

 ' Get the new selection.
 picSelected = CType(sender, PictureBox)
 picSelected.BorderStyle = BorderStyle.Fixed3D

 ' Fire the selection event.
 Dim args As New PictureSelectedEventArgs(_
 picSelected.Image, CType(picSelected.Tag, String)

 RaiseEvent PictureSelected(Me, args)
End Sub

The application can now handle this event. In the example shown here (and pictured in
Figure 10-8), a message box is displayed with the file name information:

Private Sub bitmapViewer1_PictureSelected(ByVal sender As Object, _
 ByVal e As PictureSelectedEventArgs) Handles bitmapViewer1.PictureSelected
 MessageBox.Show("You chose " & e.FileName)
End Sub

Figure 10-8. A BitmapViewer event

Macdonald_694-3C10.fm Page 353 Tuesday, July 25, 2006 7:32 AM

354 C H A P T E R 1 0 ■ U S E R C O N T R O L S

Performance Enhancements and Threading
If you use the BitmapViewer with a directory that contains numerous large images, you’ll
start to notice a performance slowdown. One of the problems is that in its current form, the
BitmapViewer stores the entire image in memory, even though it displays only a thumbnail.

A better approach would be to scale the image immediately when it is retrieved. This is
accomplished using the Image.GetThumbnail() method.

In the code that follows, the GetImages() method has been rewritten to use this more
memory-friendly alternative:

Private Sub GetImages()
 If directory <> "" Then
 images.Clear()
 Dim dir As New DirectoryInfo(directory)
 For Each file As FileInfo In dir.GetFiles("*.bmp")
 Dim thumbnail As Bitmap = _
 Bitmap.FromFile(file.FullName).GetThumbnailImage(_
 Dimension, Dimension, Nothing, IntPtr.Zero)
 images.Add(New NamedImage(thumbnail, file.Name))
 Next
 End If
End Sub

This technique also frees you up to use a simpler control than the PictureBox to show the
picture, because the control no longer has to perform the scaling. However, it also means that
you need to update the Dimension property procedure, so that it calls the GetImages()
method—otherwise, the image objects won’t be the correct size. Here’s the correction:

Public Property Dimension() As Integer
 Get
 Return _dimension
 End Get
 Set(ByVal value As Integer)
 _dimension = value
 GetImages()
 UpdateDisplay()
 End Set
End Property

Using the cached image thumbnails, you could optimize the control even further by
painting the image directly on the user control surface using the GDI+ drawing functions. In
this case, you’d need to rely on hit testing to capture the user’s mouse clicks. You’ll learn more
about mixing GDI+ with custom controls in Chapter 12, and in Chapter 24, you’ll see an advanced
example with a vector-based drawing program that compares both the control-based and the
GDI+ approaches.

Assuming that the GetImages() method takes a significant amount of time, you might want
to make another change to the BitmapViewer, and make the image retrieval asynchronous. With
this design, the GetImages() code runs on a separate thread, and then automatically calls the
UpdateDisplay() method when it’s completed. That way, the user interface won’t be tied up in
the meantime. The remainder of this section walks you through the process.

Macdonald_694-3C10.fm Page 354 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 355

First, ensure that none of the property procedures call GetImages() or UpdateDisplay().
This step simplifies life, because you won’t need to catch actions that could trigger multiple
updates at once (which won’t cause an error if you code properly, but will bog down your code
and introduce unnecessary flicker). Also, you should make sure that the Directory property is
read-only. That’s because you’ll use another method—named StartLoadingImages()—to set
the directory and explicitly start the refresh process.

Public ReadOnly Property Directory() As String
 Get
 return _directory
 End Get
End Property

Public Sub StartLoadingImages(ByVal directory As String)
 _directory = directory
 GetImages()
End Sub

Next, import the System.Threading namespace, so you have the Thread class at your
fingertips, and modify the GetImages() method, so it starts the ReadImagesFromFile() method
on a separate thread:

Private Sub GetImages()
 Dim getThread As New Thread(AddressOf Me.ReadImagesFromFile)
 getThread.Start()
End Sub

Finally, modify the file-reading code, and place it in the ReadImagesFromFile() method.
It’s the ReadImagesFromFile() method that will do the real work of extracting the image data
from the files and creating the thumbnails.

Private Sub ReadImagesFromFile()

 SyncLock images
 images.Clear()
 If directory <> "" Then
 Dim thumbnail As Image
 Dim dir As New DirectoryInfo(directory)

 For Each file As FileInfo In dir.GetFiles("*.bmp")
 thumbnail = Bitmap.FromFile(file.Name).GetThumbnailImage(_
 Dimension, Dimension, Nothing, IntPtr.Zero)
 images.Add(new NamedImage(thumbnail, file.Name))
 Next
 End If
 End SyncLock

 ' Update the display on the UI thread.
 pnlPictures.Invoke(New MethodInvoker(AddressOf UpdateDisplay))
End Sub

Macdonald_694-3C10.fm Page 355 Tuesday, July 25, 2006 7:32 AM

356 C H A P T E R 1 0 ■ U S E R C O N T R O L S

Threading introduces potential pitfalls and isn’t recommended unless you really need it.
When implementing the preceding example, you have to be careful that the UpdateDisplay()
method happens on the user-interface thread, not the ReadImagesFromFile() thread. Otherwise,
a strange conflict could emerge in real-world use. Similarly, the lock statement is required to
make sure that no other part of the control code attempts to modify the images collection while
the ReadImagesFromFile() method is in progress. For a more detailed look at multithreading
and the user-interface considerations it entails, refer to Chapter 20.

Simplifying Layout
When the BitmapViewer control renders itself, it determines where each picture box should be
placed. There is a simpler approach—rather than calculating the coordinates of each child
control by hand, you can use a more capable container control. One ideal choice is the
FlowLayoutPanel.

To use the FlowLayoutPanel, you simply set the minimum space that needs to be kept
around controls (by setting the Margin property of each control), the direction in which the
controls should be ordered (by setting the FlowLayoutPanel.FlowDirection property), and
whether controls should span multiple lines or columns (by setting the FlowLayoutPanel.
WrapContents property). For example, if you use FlowDirection.LeftToRight and set
WrapContents to True, the FlowLayoutPanel will order the picture boxes you add from left
to right, and then on subsequent lines. This creates the same effect as the original version of the
BitmapViewer, but you don’t need to worry about explicitly setting the Position property of
each PictureBox control, because the FlowLayoutPanel ignores this information.

To see this more realistic version of the BitmapViewer, which uses the FlowLayoutPanel
and all the threading enhancements, refer to the code for this chapter in the Downloads section of
the Apress Web site, www.apress.com. For more information about the FlowLayoutPanel, refer
to Chapter 21, which deals with layout controls in much more detail and shows some other
examples of dynamically generated user interfaces.

User Controls and Dynamic Interfaces
One interesting feature of user controls that you may not have considered is how they allow
you to create a highly componentized and extremely flexible user interface. For example, user
controls give you an easy way to build portal sites and other types of customizable applications
where you can snap in different modules.

To create this sort of interface, you would create a separate user control for each module.
For example, a financial application could have a range of available modules, like
StockPickerModule, AccountViewerModule, HelpModule, NewsModule, and so on. The user
could then choose what modules to show. Your application simply needs to load the selected
modules and add them to the main form at runtime. To make the interface flow more smoothly,
you’ll probably also need the dynamic layout controls described in Chapter 21. They can help
you manage the arrangement of different modules in a window without forcing you to write
tedious and error-prone custom code for resizing and repositioning controls.

The reason user controls work so well with dynamic interfaces is because they allow you to
build an entire portion of a window in one class. The design-time support for user control creation
in Visual Studio makes it easy for another developer to create a module that could plug into any
framework you create. Typically, you’ll require that user controls implement an interface you

Macdonald_694-3C10.fm Page 356 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 357

recognize—that way you can perform basic interactions, like loading and saving data, or asking
the control to initialize itself or perform cleanup.

In the following example, you’ll see how you could build a system for creating multistep
wizards based on user controls.

The Wizard Model
This example revolves around a single wizard form that contains the standard features (like
Previous and Next buttons), and a panel that occupies most of the form. The logic for the Previous
and Next buttons is hard-wired into the wizard form. However, for each step the wizard dynami-
cally loads into the panel the user control that you supply. This approach allows unlimited
customizability—quite simply, a developer using this model can put any type of content into
the standardized wizard window. However, it also prevents the developer from tampering with
any other aspect of the window.

■Note There’s another approach to solving this problem—visual inheritance. This technique (described in
the next chapter) allows you to build a form template, which you can then reuse to create more-specialized
forms. Form inheritance has some advantages over the user-control approach (it makes it easier to share and
override bits of common functionality) and some disadvantages (it can’t restrict changes to a single portion of
the window).

Figure 10-9 shows the region of the wizard form that the dynamically loaded user control
supplies.

Figure 10-9. The wizard model

Macdonald_694-3C10.fm Page 357 Tuesday, July 25, 2006 7:32 AM

358 C H A P T E R 1 0 ■ U S E R C O N T R O L S

The Wizard Step
The wizard model is quite easy to create. A good starting point is to define an interface that all
user controls must implement in order to be hosted in the wizard dialog. Here’s a good beginning:

Public Interface IWizardItem

 ReadOnly Property HeaderTitle() As String
 Function GetValues() As Dictionary(Of String, String)
 Sub ApplyValues(ByVal values As Dictionary(Of String, String))

End Interface

This interface indicates that, at a minimum, every user control that’s used with the wizard
component must provide a HeaderTitle property (used to retrieve the header for the wizard
step), and a method to save and restore values (the GetValues() and ApplyValues() methods).
For the sake of simplicity and flexibility, settings are stored as a collection of name/value pairs.
This allows the information from a wizard step to be retrieved, saved, and restored later. However,
it also makes for more fragile code, because retrieving the wizard values involves searching for
specific strings. You could address this problem by creating a more complex model that uses
base classes or interfaces to standardize individual pieces of state information.

Figure 10-10 shows a simple example of a user control that implements the IWizardItem
interface. It contains two text boxes, for supplying a first and last name. These two values need
to be managed in the GetValues() and ApplyValues() methods.

Figure 10-10. The content for a wizard step

Here’s the complete code for this wizard step:

Public Class NameStep
 Implements IWizardItem

 Public ReadOnly Property HeaderTitle() As String _
 Implements WizardComponent.IWizardItem.HeaderTitle
 Get
 Return "Please enter your first and last name."
 End Get
 End Property

Macdonald_694-3C10.fm Page 358 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 359

 ' Store the state for this step.
 Private values As New Dictionary(Of String, String)()

 Public Function GetValues() As Dictionary(Of String, String) _
 Implements WizardComponent.IWizardItem.GetValues
 values.Clear()
 values.Add("FirstName", txtFirstName.Text)
 values.Add("LastName", txtLastName.Text)
 Return values
 End Function

 Public Sub ApplyValues(ByVal values As Dictionary(Of String, String)) _
 Implements WizardComponent.IWizardItem.ApplyValues
 Me.values = values
 txtFirstName.Text = values("FirstName")
 txtFirstName.Text = values("LastName")
 End Sub

End Class

And just to make a more realistic test, you can quickly develop a second step, like the regis-
tration step shown in Figure 10-11.

Figure 10-11. A second wizard step

This step tracks a single value—the currently selected radio button. Here’s the code you
need for this step:

Public Class RegistrationStep
 Implements IWizardItem

 Public ReadOnly Property HeaderTitle() As String _
 Implements WizardComponent.IWizardItem.HeaderTitle
 Get
 Return "Select a registration method"
 End Get
 End Property

Macdonald_694-3C10.fm Page 359 Tuesday, July 25, 2006 7:32 AM

360 C H A P T E R 1 0 ■ U S E R C O N T R O L S

 ' Store the state for this step.
 Private values As New Dictionary(Of String, String)()

 Public Function GetValues() As Dictionary(Of String, String) _
 Implements WizardComponent.IWizardItem.GetValues
 values.Clear()
 For Each opt As RadioButton In Controls
 If opt.Checked Then
 values.Add(opt.Name, "True")
 End If
 Next
 Return values
 End Function

 Public Sub ApplyValues(ByVal values As Dictionary(Of String, String)) _
 Implements WizardComponent.IWizardItem.ApplyValues
 Me.values = values
 For Each opt As RadioButton In Controls
 If values(opt.Name) IsNot Nothing Then
 opt.Checked = True
 End If
 Next
 End Sub

End Class

The Wizard Controller
Now you can create the Wizard controller form that manages these user controls:

Public Class Wizard
 ...
End Class

Three private variables track the current position, total number of steps, and IWizardItem
instances for each step:

Private currentStep As Integer
Private totalSteps As Integer
Private steps As List(Of IWizardItem)

When the Wizard class is first instantiated, you need to supply the IWizardItem collection.
At that point, the total number of steps is recorded, the current step is set to 1, and the work is
handed off to the private ShowStep() method.

Public Sub New(ByVal steps As List(Of IWizardItem))
 InitializeComponent()
 If steps.Count > 0 Then
 Me.steps = steps

Macdonald_694-3C10.fm Page 360 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 361

 totalSteps = steps.Count
 currentStep = 1
 ShowStep()
 End If
End Sub

The ShowStep() method takes care of showing the current step, by getting the appropriate
user control and inserting it into the automatic scrolling panel (after clearing the existing content).
At the same time, the heading is applied, and the button state is updated. For example, if you’re
on the first step, the Previous button is hidden. If you’re on the last step, the Next button caption
changes to Finish.

Private Sub ShowStep()
 ' Update buttons.
 cmdPrev.Visible = (currentStep <> 1)

 If currentStep = totalSteps Then
 cmdNext.Text = "Finish"
 Else
 cmdNext.Text = "Next >"
 End If

 ' Get headings.
 lblHeader.Text = steps(currentStep - 1).HeaderTitle
 Text = "Step " & currentStep & " of " & totalSteps

 ' See if there's state to be restored.
 If State IsNot Nothing AndAlso State(currentStep - 1) IsNot Nothing Then
 steps(currentStep - 1).ApplyValues(State(currentStep - 1))
 End If

 ' Show step content.
 panelStep.Controls.Clear()
 Dim ctrl As UserControl = CType(steps(currentStep - 1), UserControl)
 panelStep.Controls.Add(ctrl)
End Sub

Notice that in every step the code checks the state collection to see if there are values to be
applied to that step. The code for storing and maintaining this state collection is shown shortly.

The navigation buttons are quite straightforward. They simply adjust the current position
and call the ShowStep() method. Here’s the code for the Previous button:

Private Sub cmdPrev_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPrev.Click
 currentStep -= 1
 ShowStep()
End Sub

Macdonald_694-3C10.fm Page 361 Tuesday, July 25, 2006 7:32 AM

362 C H A P T E R 1 0 ■ U S E R C O N T R O L S

The exception is the last step. When this is reached and the Finish button is clicked, all the
state information is compiled into a collection and exposed through a property. The applica-
tion that’s calling the Wizard component could then store this for later use, or even serialize it
to a file or some other storage location.

Private Sub cmdNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdNext.Click
 If currentStep = totalSteps Then
 ' The Finish button was clicked.
 ' Save the state and close the form.
 ReDim _state(totalSteps)

 For i As Integer = 0 To totalSteps - 1
 State(i) = steps(i).GetValues()
 Next
 Close()
 Else
 currentStep += 1
 ShowStep()
 End If
End Sub

Private _state() As Dictionary(Of String, String)
Public ReadOnly Property State() As Dictionary(Of String, String)()
 Get
 Return _state
 End Get
End Property

The final detail is a second constructor, which allows you to create a Wizard object with
previous saved state information:

Public Sub New(ByVal steps As List(Of IWizardItem), _
 ByVal state() As Dictionary(Of String, String))
 Me.New(steps)
 _state = state
 End Sub

■Note Each time the user moves from one step to another, the controls are cleared out of the panel.
However, they aren’t disposed, and they remain in memory. This makes it easy to reload the controls if the
user navigates back to the step. However, it’s a good idea to explicitly dispose of all the controls when the
Wizard component is disposed of. To do this, you can override the Dispose() method (as demonstrated in the
online sample code available in the Downloads area of the Apress Web site, www.apress.com).

Macdonald_694-3C10.fm Page 362 Tuesday, July 25, 2006 7:32 AM

CH A P T E R 1 0 ■ U S E R C O N T R O L S 363

Testing the Wizard
You can now create a realistic test using the two wizard steps. All you need to do is create the
array of steps, create a new instance of the Wizard, and then call the Wizard.ShowDialog()
method, as shown here:

Dim items As New List(Of IWizardItem)()

items.Add(New NameStep())
items.Add(New RegistrationStep())
Dim wizard As New Wizard(items)
wizard.ShowDialog()

Figure 10-12 shows the wizard at work. You’ll notice that as you navigate from one page
to the next, the values are restored automatically. In fact, if you close the wizard and call
ShowDialog() again to redisplay it, all the information remains intact.

Figure 10-12. The wizard at work

By using the wizard model, you gain the ability to create a customized wizard without
being forced to reinvent the wizard controller logic. Instead, you simply need to create the user
interface for each step, and the logic that saves and restores their values. To complete the
example shown in Figure 10-12, you’d need to retrieve the values at the end of the wizard
process and perform the appropriate action.

■Note For more examples of dynamic layout and highly modular forms, refer to Chapter 21. You can
also read an interesting article at http://msdn.microsoft.com/library/en-us/dnforms/html/
winforms07202004.asp. It shows a sample application in which user controls help to implement a
Windows interface that’s closer to a Web browser interface, complete with separate “pages” and navigation
controls.

Macdonald_694-3C10.fm Page 363 Tuesday, July 25, 2006 7:32 AM

364 C H A P T E R 1 0 ■ U S E R C O N T R O L S

The Last Word
In this chapter, you learned how to master user interface controls and equip them with useful
properties, methods, and events. In the next chapter, you’ll consider a more powerful but more
complex alternative—derived controls.

Macdonald_694-3C10.fm Page 364 Tuesday, July 25, 2006 7:32 AM

365

■ ■ ■

C H A P T E R 1 1

Derived Controls

Derived controls provide an ideal way to take functionality from the existing .NET control
classes and extend it. A derived control can be dramatically different from its predecessor, or it
may just add a few refinements. Sometimes, derived controls are used to fasten a new feature
onto an existing control (for example, you could create a TreeView that supports data binding).
In other cases, derived controls customize more-general controls to work with specific types of
data (like the Directory tree in this chapter). The only common thread is that all derived
controls aim to avoid the heavy lifting by borrowing the features of another class.

The .NET class library is filled with examples of derived controls. For example, LinkLabel
inherits from Label and CheckedListBox inherits from ListBox. In this chapter, you’ll see how
to create derived controls, and you’ll use a similar technique to build customized form templates.

Understanding Derived Controls
To create a derived control, you simply create a class that inherits from a suitable parent control
class. You can then override functionality you want to change and add the features you need.

Of course, derived controls often aren’t this easy. Depending on the specific control, the
functionality you want to change or extend might be buried deep within its inner workings, far
beyond reach. A typical example of control functionality that can’t be easily altered is control
painting. For example, if you want to change the way a ListBox or TextBox is drawn on a form,
you can’t simply override the OnPaint() method, because the drawing takes place at a lower
level (through Windows system calls). Instead, you need to look for a control class that supports
an owner-draw mode (which is possible with the ListBox, but not possible with the Button), or
you need to create a custom-drawn control from scratch. Chapter 12 explores the tricks and
techniques of owner-drawn controls in detail.

Even if you don’t want to change the appearance of a control, it’s important to realize that
every control wraps some sort of functionality that isn’t extensible. This is often because the
functionality is ingrained in the Windows API, but it’s also possible that the developers of the
control didn’t anticipate the customization you want to add. Examples include the expansion
and collapse behavior of nodes in a TreeView, the animation effects in a menu, and the selection
behavior in the date controls. As a result, control authors who want to change this behavior
must create custom controls that derive directly from the base Control class, and reimplement
all the standard functionality, which can be quite a challenge.

Macdonald_694-3C11.fm Page 365 Thursday, June 22, 2006 9:19 AM

366 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

■Note From .NET’s point of view, there’s no difference between deriving from the Control class and a
higher-level control class like TreeView. However, for the purpose of this discussion, there is an important
conceptual difference. If you derive directly from Control, you are responsible for painting your control by hand
in the OnPaint() method, or adding some child controls, at a bare minimum. If you derive from a class like
TreeView, you inherit a fully functioning control and need to add or customize only the features that interest you.

Inherited controls (and the owner-drawn controls you’ll see in the next chapter) are generally
more powerful than user controls. They’re also more likely to be used across applications (and
even organizations, if you’re a tool vendor), not just between different windows in the same
program. Some of the reasons why programmers develop inherited controls include the following:

• To add new functionality. One example is the custom ComboBox in Chapter 18 that
implements masking. Another example is a custom TreeView that supports node searching.

• To implement a specific behavior. One example is the simple TextBox shown in Chapter 9
that overrides OnKeyPress() to reject non-numeric characters.

• To abstract away certain details. For example, you might decide that you want to
simplify the interface of a TreeView to deal with specific data structures. Rather than
using the Nodes collection, you could add higher-level properties and methods that
support the operations you need and maintain the Nodes collection internally. You
could use the same approach to react to actions in the base class and raise more mean-
ingful custom events.

• To set commonly used defaults. For example, you might want to add a DataGridView
that always has the same group of columns. To do this, you could configure the properties of
your custom DataGridView in its constructor. These properties could still be changed by
the consuming form, but the defaults would apply if they aren’t.

Extending Controls
Chapter 9 showed the simplest possible example of a derived control—a NumericTextBox that
extended the key-press behavior, so that the control ignores all non-numeric characters. That
simple example shows the basic approach to extending a derived control. You respond to
events in the base class by overriding the corresponding OnXxx() method:

Public Class NumericTextBox
 Inherits TextBox

 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
 ' Ignore all non-control and non-numeric key presses.
 If Not char.IsControl(e.KeyChar) And _
 Not char.IsDigit(e.KeyChar) Then
 e.Handled = True
 End If

Macdonald_694-3C11.fm Page 366 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 367

 ' Call the implementation in the base TextBox class,
 ' which raises the KeyPress event.
 MyBase.OnKeyPress(e)
 End Sub

End Class

When overriding a method in this way, you should always take care to call the base class
implementation of the method. That’s because the base class implementation might contain a
key piece of functionality that must be executed for the control to function correctly. Often, the
base class implementation does nothing more than raise the corresponding event. In this case,
you need to call the base class method to make sure that the hosting form has the chance to
respond to the event.

Usually, it doesn’t matter whether you call the base class method before your custom code
or after it. However, there are a few cases in which you might want to make sure your code has
executed before the event is raised. For example, in an override OnLoad() event you might
decide that you need to complete your initialization before allowing any other code to run.

■Tip In a very few rare cases, you might choose not to call the base class implementation, because the
code you’re adding is replacing some existing functionality. Although this isn’t common, it is sometimes
necessary.

Of course, instead of overriding the method, you could handle the corresponding event
directly—but you shouldn’t. Not only is it an extra hassle and a small bit of extra overhead to
write the delegate code that wires up the event handler, but it can also cause problems if
someone wants to create a customized control that derives from your derived control. The
problem is that event handlers aren’t guaranteed to be called in any specific order, so it’s possible
that the behavior of a control might change unexpectedly. (A well-designed control will be
immune to this, but it’s not always easy to anticipate how a custom control you create will be
extended by others.) If you use method overriding, the overriding method always gets the first
chance to handle the action and explicitly calls the base class method when it should execute.

Of course, you aren’t limited to override methods and properties. You can also add new
properties, methods, and events to your derived control, just as you can with a user control.

Derived Controls or User Controls?
So how do you know when to create a user control and when you need a control that derives
from another control class? It’s not always an easy question to answer, because many problems
can be solved with either approach. However, here are a few points that you should consider
before embarking on a custom control project:

Macdonald_694-3C11.fm Page 367 Thursday, June 22, 2006 9:19 AM

368 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

• User controls are well suited if you want to ensure that a block of interface is re-created
exactly in more than one situation. Because a user control usually provides less-flexible
configuration, it guarantees a more standardized appearance.

• If your control closely resembles an existing .NET control, consider whether you can
derive it from an existing control class to simplify your life. With a user control, you’ll
need to spend more time creating new properties and methods to allow access to the
members of the original control.

• User controls are generally easier and faster to program. If you don’t anticipate reusing
the control frequently in different scenarios and different programs, a user control may
suffice. However, Visual Studio 2005 now includes better support for debugging other
control types (such as the automatic Toolbox registration), so the gap is not as signifi-
cant as it was in earlier versions of .NET.

• User controls don’t provide a fine-grained level of reuse. User controls typically provide
only a few members, and thus are not as configurable. The most flexible type of control
is one that derives directly from the base Control class. Tool vendors and other advanced
control programmers almost always take this approach.

• User controls are great for composite controls that wrap two or more existing .NET
controls. However, for more flexibility you might want to consider creating separate
derived controls. This approach gives you the ability to link the controls but make the
relationship optional. The application programmer can then use them separately or
together and has complete freedom about how to integrate them into a user interface.

Now that you’ve had a quick overview of how derived controls work, consider a few examples
that put it into practice.

The ProjectTree Control
The TreeView control provides a flexible model that allows it to be used in countless ways and
with different types of data. But an individual TreeView in an application is generally used only
in a set way, depending on the underlying data it represents. That means that it can make a
good deal of sense to create a custom TreeView that exposes a fine-tuned, higher-level inter-
face to your form. This approach can dramatically simplify and clarify your form code. The
disadvantage is that the custom TreeView control you create is more tightly bound to a specific
scenario or type of data.

For example, imagine you want to create a TreeView for a project-management system.
It always uses two levels of nodes—a second level that contains the actual projects, and a first
level that organizes the products into groups based on their status.

You could create a ProjectTree that “bakes in” this design. Your design goals would be
as follows:

• Include all the resources (in this case the node pictures) in the control assembly.

• Create the first-level groupings automatically, and expose them as properties.

Macdonald_694-3C11.fm Page 368 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 369

• Expose a method that lets the control consumer add projects without needing to go
through the Nodes collection.

• Replace the AfterSelect event with a higher-level ProjectSelected event.

Figure 11-1 shows an example with a sample instance of the ProjectTree.

Figure 11-1. A custom TreeView

The ProjectTree could have been created as a user control, but the inheritance approach
provides far more flexibility. For example, all the original TreeView events, properties, and
methods are still available to the client code (unless you explicitly hide them). Best of all, you
don’t need to write any code to delegate the properties of your custom control class to an
underlying control.

The first step to creating the ProjectTree is to define the custom control class, like this:

Public Class ProjectTree
 Inherits TreeView
 ...
End Class

This creates a ProjectTree control that functions exactly like an ordinary TreeView. In the
following sections, you’ll build more functionality into the ProjectTree class.

The Data Class
Before you can write the code for the ProjectTree, you need to design the object model. In this
example, the starting point is a Project class that represents the information for a single project.
This class includes project name, description, and status information.

Here’s the full code for the Project class:

Macdonald_694-3C11.fm Page 369 Thursday, June 22, 2006 9:19 AM

370 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

Public Class Project

 ' Use an enumeration to represent the three project status types.
 Public Enum StatusType
 Unassigned
 InProgress
 Closed
 End Enum

 Private _name As String
 Public Property Name() As String
 Get
 Return _name
 End Get
 Set (ByVal value As String)
 _name = value
 End Set
 End Property

 Private _description As String
 Public Property Description() As String
 Get
 Return _description
 End Get
 Set (ByVal value As String)
 _description = value
 End Set
 End Property

 Private _status As StatusType
 Public Property Status() As StatusType
 Get
 Return _status
 End Get
 Set (ByVal value As StatusType)
 _status = value
 End Set
 End Property

 Public Sub New(ByVal name As String, _
 ByVal description As String, ByVal status As StatusType)
 Me.Name = name
 Me.Description = description
 Me.Status = status
 End Sub

End Class

Macdonald_694-3C11.fm Page 370 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 371

This Project class is tightly coupled to the ProjectTree. While a ProjectTree is physically a
collection of TreeNode objects, logically it will be a grouping of Project instances.

Node Images
Before going any further, you need to embed the images you want to use for TreeView nodes
into the custom control assembly. You could add these resources individually, but there’s a
shortcut. Because a custom control derives from Component, it provides a design-time surface
(as described in Chapter 9), which is equivalent to the component tray on a form. That means
you can switch to design view with your custom control, drop an ImageList onto it (see
Figure 11-2), and add all the icons you need to the ImageList. The pictures that you add to the
image list will be stored as an ImageStream resource, which is embedded in the control assembly
automatically.

Figure 11-2. Embedding an ImageList in a control

You can link the ImageList to the ProjectTree by setting the ImageList property, either
using the Properties window or a quick line of code in the ProjectTree constructor:

ImageList = imagesTree

Sometimes, it’s convenient to write this line of code using the MyBase keyword, like this:

MyBase.ImageList = imagesTree

This emphasizes that the ImageList property is defined in the base class (in this case, the
TreeView class), not your ProjectTree class. However, both approaches compile to exactly the
same IL code.

Once you’ve set the ImageList, the ProjectTree control can choose to use these images
when creating TreeNode objects by specifying an image index number. You can make this
process easier by creating the following enumeration inside the ProjectTree class:

' Specific numbers correspond to the image index.
' In this case, the numbers correspond to the values the compiler
' would assign by default, but they are assigned explicitly for clarity.

Macdonald_694-3C11.fm Page 371 Thursday, June 22, 2006 9:19 AM

372 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

Private Enum NodeImages
 UnassignedGroup = 0
 InProgressGroup = 1
 ClosedGroup = 2
 NormalProject = 3
 SelectedProject = 4
End Enum

■Note As you can see, the ProjectTree is limiting projects to a small set of predefined categories. This
improves the programming model, but it prevents you from reusing the control in different scenarios with
different groupings. This tradeoff between convenience and flexibility is one of the recurring themes of
custom control development. It’s up to you to choose the best compromise.

Node Groups
The structure of the ProjectTree is also hardwired. To help make this more flexible, you can
create member variables that track the three key branches, and expose them as properties.

Private _nodeUnassigned As TreeNode
Public ReadOnly Property UnassignedProjectsNode() As TreeNode
 Get
 Return _nodeUnassigned
 End Get
End Property

Private _nodeInProgress As TreeNode
Public ReadOnly Property InProgressProjectsNode() As TreeNode
 Get
 Return _nodeInProgress
 End Get
End Property

Private _nodeClosed As TreeNode
Public ReadOnly Property ClosedProjectsNode() As TreeNode
 Get
 Return _nodeClosed
 End Get
End Property

When the ProjectTree is created, you can create these nodes, with the appropriate pictures,
and then add them to the tree:

Public Sub New()
 InitializeComponent()

Macdonald_694-3C11.fm Page 372 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 373

 ' Set the images.
 ImageList = imagesTree

 ' Create the first level of nodes.
 _nodeUnassigned = New TreeNode("Unassigned", _
 CInt(NodeImages.UnassignedGroup), CInt(NodeImages.UnassignedGroup))
 _nodeInProgress = New TreeNode("In Progress", _
 CInt(NodeImages.InProgressGroup), CInt(NodeImages.InProgressGroup))
 _nodeClosed = New TreeNode("Closed", _
 CInt(NodeImages.ClosedGroup), CInt(NodeImages.ClosedGroup))

 ' Add the project category nodes.
 Nodes.Add(_nodeUnassigned)
 Nodes.Add(_nodeInProgress)
 Nodes.Add(_nodeClosed)
End Sub

Adding Projects
When you use the ProjectTree control in a program, you don’t add TreeNode objects. Instead,
you add projects. Based on a Project object, the ProjectTree should be able to add the corre-
sponding node to the correct branch, with the correct icon. Here’s the method that makes it
happen:

Public Sub AddProject(ByVal project As Project)
 Dim nodeNew As New TreeNode(project.Name, _
 CInt(NodeImages.NormalProject), CInt(NodeImages.SelectedProject))

 ' Store the project object for later use
 ' (when the event is raised).
 nodeNew.Tag = project

 Select Case project.Status
 Case Project.StatusType.Unassigned
 _nodeUnassigned.Nodes.Add(nodeNew)
 Case Project.StatusType.InProgress
 _nodeInProgress.Nodes.Add(nodeNew)
 Case Project.StatusType.Closed
 _nodeClosed.Nodes.Add(nodeNew)
 End Select
End Sub

Now the client might use the custom ProjectTree like this:

Dim projectA As New Project("Migration to .NET", _
 "Change existing products to take advantage of new Windows Forms controls", _
 Project.StatusType.InProgress)
Dim projectB As New Project("Revamp pricing site", _
 "Enhance the pricing website with ASP.NET", Project.StatusType.Unassigned)

Macdonald_694-3C11.fm Page 373 Thursday, June 22, 2006 9:19 AM

374 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

tree.AddProject(projectA)
tree.AddProject(projectB)

The appeal of this approach is that the appropriate user interface class wraps many of the
extraneous details and makes the rest of the code more readable.

To go along with this method, it makes sense to create a GetProject() method that searches
for a node based on its name and returns the corresponding Project object:

Public Function GetProject(ByVal name As String, _
 ByVal status As Project.StatusType) As Project
 Dim nodes As TreeNodeCollection = Nothing

 Select Case status
 Case Project.StatusType.Unassigned
 nodes = _nodeUnassigned.Nodes
 Case Project.StatusType.InProgress
 nodes = _nodeInProgress.Nodes
 Case Project.StatusType.Closed
 nodes = _nodeClosed.Nodes
 End Select

 For Each node As TreeNode In nodes
 ' Test for a name match.
 If node.Text = name Then
 ' Get the Project object for this node.
 If node.Tag IsNot Nothing AndAlso _
 TypeOf node.Tag Is Project Then
 Return CType(node.Tag, Project)
 End If
 End If
 Next

 ' If nothing was found...
 Return Nothing
End Function

■Note At this point, it may occur to you that the AddProject() and GetProject() methods are implementing a
sort of virtual collection. A nicer way to expose this functionality is to do away with the Nodes collection altogether,
and expose a ProjectTree.Projects collection that the application can interact with directly. The downside to
this approach is that it requires more work—you need to create a custom collection, and your control needs
to monitor the collection to determine when projects are added or removed. You’ll see an example of a collection-
based charting control in Chapter 12.

Macdonald_694-3C11.fm Page 374 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 375

There’s no limit to the possible features you can add to a TreeView class. For example, you
can add special methods for sorting nodes, moving nodes, or presenting context menus. The
danger is that you will make the control too specific, locking functionality into places where it
can’t be reused. Try to think of your custom TreeView as a generic TreeView designed for a
specific type of data. Ideally, it should allow many different possible uses of that data. For
example, the project-specific tree might be used in various windows to allow project managers
to assign projects, programmers to prioritize their tasks, and managers to audit work and
prepare company forecasts. If you’ve designed the ProjectTree well, it should support all of
these uses. And no matter what the circumstance, you should never put business code into the
control. For example, if a specific action should result in a database update, there’s only one
option—raise an event from your control and allow the code receiving that event to take care
of the data source interaction.

Project Selection
The final ingredient is to replace the AfterSelect event, which fires whenever a node is clicked
and provides the corresponding TreeNode object with a ProjectSelected event that provides
the appropriate Project object. To implement this design, begin by creating a custom EventArgs
object that the event will use to transmit the extra information:

Public Class ProjectSelectedEventArgs
 Inherits EventArgs

 Private _project As Project
 Public Property Project() As Project
 Get
 Return _project
 End Get
 Set(ByVal value As Project)
 _project = value
 End Set
 End Property

 Public Sub New(ByVal project As Project)
 Me.Project = project
 End Sub

End Class

Now you can define the event:

Public Event ProjectSelected(ByVal sender As Object, _
 ByVal e As ProjectSelectedEventArgs)

The next step is to override the OnAfterSelect() event, check that the selected node represents
a project, and then raise the ProjectSelected event. There are several possible ways to determine
if the node in question is a project node—for example, you can examine the node’s parent to
discover the category. In this case, the simplest approach is just to check the node’s level.

Macdonald_694-3C11.fm Page 375 Thursday, June 22, 2006 9:19 AM

376 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

The first level (level 0) contains the project categories, and the second level (level 1) contains
the projects.

' When a node is selected, retrieve the Project and raise the event.
Protected Overrides Sub OnAfterSelect(ByVal e As TreeViewEventArgs)
 MyBase.OnAfterSelect(e)

 If e.Node.Level = 1 Then
 Dim project As Project = CType(e.Node.Tag, Project)
 Dim arg As New ProjectSelectedEventArgs(project)
 RaiseEvent ProjectSelected(Me, arg)
 End If
End Sub

This technique of intercepting events and providing more useful, higher-level events
provides an easier model to program against. It also completes the ProjectTree class code.

A Custom TreeNode
The ProjectTree makes use of a handy but clumsy approach for linking Project objects to
TreeNode objects—the TreeNode.Tag property. Although this works, it’s not strongly typed,
and it breaks down entirely if you need to associate two different objects with the same
TreeNode. Another solution is to derive a custom TreeNode class that adds the properties
you’re interested in.

Here’s an example:

Public Class ProjectTreeNode
 Inherits TreeNode

 Private _project As Project
 Public ReadOnly Property Project() As Project
 Get
 Return _project
 End Get
 End Property

 Public Sub New(ByVal project As Project, ByVal text As String, _
 ByVal imageIndex As Integer, ByVal selectedImageIndex As Integer)
 ' Call the base class (TreeNode) constructor.
 MyBase.New(text, imageIndex, selectedImageIndex)

 ' Store the project.
 _project = project
 End Sub

End Class

Now you simply need to update the AddProject() method to use the ProjectTreeNode:

Macdonald_694-3C11.fm Page 376 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 377

Dim nodeNew As New ProjectTreeNode(project, project.Name, _
 CInt(NodeImages.NormalProject), CInt(NodeImages.SelectedProject))

and the OnAfterSelect() method

Dim project As Project = CType(e.Node, ProjectTreeNode).Project

You’ll notice that the TreeNode still links to the Project object through a single member
variable. Alternatively, you could abandon the Project class altogether, and add all the project
properties (Name, Description, and Status) directly to the ProjectTreeNode class. However,
this approach makes your solution more tightly coupled than it needs to be. It prevents you
from reusing the Project data structure with other controls and other types of code, and it prevents
you from adding properties or validation logic to the Project class without also modifying your
custom control. For these reasons, it’s best to keep the link between your control model and
your data model as transparent as possible.

■Tip You might be tempted to track other information with ordinary TreeView controls by using derived
TreeNode classes like ProjectTreeNode. This technique is perfectly acceptable—after all, a ProjectTreeNode
is a genuine TreeNode. The only limitations are that you can’t force a TreeView to reject other types of nodes,
and you can’t add custom TreeNode objects through the Properties window.

Design-Time Support
If you build the ProjectTree using just the information in this chapter, you’ll discover that it
works erratically in the design-time environment. To correct these glitches, hide the parts of
the base TreeView class that you don’t want accessible (like the Nodes collection), and make
sure the ProjectTree works as seamlessly at design time as it does at runtime, you need to create an
additional component called a control designer. You’ll learn how to provide this missing ingre-
dient in Chapter 13. For now, just keep in mind that the sample code for every control in this
chapter includes a matching control designer.

The DirectoryTree Control
The next example is another custom control that derives from TreeView. However, this example—
the DirectoryTree control—also changes the behavior of the control with just-in-time node
creation.

The DirectoryTree control inherits from the standard TreeView and adds the features
needed to display a hierarchical view of directories. Although .NET includes a similar compo-
nent for selecting directories—the FolderBrowserDialog—it’s a stand-alone dialog box, not a
control, which means you can’t show it in place on a form that you’ve designed. For that reason,
the DirectoryTree is genuinely useful.

Perhaps most importantly, the DirectoryTree fills itself by reading subdirectories “just in
time.” That means that the control operates very quickly, even if the drive has tens of thousands
of subdirectories. Only the expanded directory levels are actually shown. The collapsed branches
all have a dummy node inserted. Every time a directory branch is expanded, the inherited

Macdonald_694-3C11.fm Page 377 Thursday, June 22, 2006 9:19 AM

378 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

control checks if a dummy node is present, and, if it is, the dummy node is removed and the
directories are read from the disk.

Figure 11-3 shows the DirectoryTree on a form.

Figure 11-3. The DirectoryTree in action

Filling the Tree
The DirectoryTree control shows the directory tree for a single drive. The currently selected
drive is stored as a single character (technically, a char). Another approach would be to use an
instance of the System.IO.DirectoryInfo class to track or set the currently highlighted directory.
That approach would provide better control for the application programmer, but it would
complicate design-time support.

Private _drive As Char
Public Property Drive() As Char
 Get
 Return _drive
 End Get
 Set(ByVal value As Char)
 _drive = value
 RefreshDisplay()
 End Set
End Property

Whenever the Drive property is set, the RefreshDisplay() method is called to build the tree.
The RefreshDisplay() method clears the current display, and then calls another method—named
Fill()—to fill the root node. The reason that you need to split the logic into two methods is
because Fill() needs to be called at different times to fill in different levels of the directory tree.

Public Sub RefreshDisplay()
 ' Erase the existing tree.
 Nodes.Clear()

Macdonald_694-3C11.fm Page 378 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 379

 ' Set the first node.
 Dim rootNode As New TreeNode(drive & ":\")
 Nodes.Add(rootNode)

 ' Fill the first level and expand it.
 Fill(rootNode)
 Nodes(0).Expand()
End Sub

The RefreshDisplay() method is public so that you can trigger a refresh whenever it’s needed.
You could also use a component like the FileSystemWatcher to receive notification whenever
directories are added or removed, and refresh the tree accordingly.

The Fill() method takes a single node, and fills in the first level of directories for that node.
However, the Fill() method doesn’t go any further to fill in deeper levels of nested subdirectories.
If it did, the code would grind to a halt while the tree is being filled. Instead, the Fill() method
adds an asterisk placeholder. The user won’t see the asterisk, because the directory nodes are
initially in a collapsed state.

Private Sub Fill(ByVal dirNode As TreeNode)
 Dim dir As New DirectoryInfo(dirNode.FullPath)

 For Each dirItem As DirectoryInfo In dir.GetDirectories()
 ' Add node for the directory.
 Try
 Dim newNode As New TreeNode(dirItem.Name)
 dirNode.Nodes.Add(newNode)
 newNode.Nodes.Add("*")
 Catch err As Exception
 ' An exception could be thrown in this code if you don't
 ' have sufficient security permissions for a file or directory.
 ' You can catch and then ignore this exception.
 End Try
 Next
 End Sub

The trick is that every time a subdirectory branch is expanded, that level is filled in first
using the OnBeforeExpand() method. This just-in-time directory process unfolds speedily, so
the user will never realize that it’s taking place. (The only other possible step is to fill the tree
asynchronously, which you could do using a technique similar to the BitmapViewer in the
previous chapter.)

Protected Overrides Sub OnBeforeExpand(ByVal e As TreeViewCancelEventArgs)
 MyBase.OnBeforeExpand(e)

 ' If a dummy node is found, remove it and read the real directory list.
 If e.Node.Nodes(0).Text = "*" Then
 e.Node.Nodes.Clear()
 Fill(e.Node)
 End If
End Sub

Macdonald_694-3C11.fm Page 379 Thursday, June 22, 2006 9:19 AM

380 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

Directory Selection
The last step is to replace the AfterSelect event with a higher-level DirectorySelected event, just
as in the ProjectTree. In this case, the DirectorySelectedEventArgs provides a single piece of
information—the full path of the selected directory.

Public Class DirectorySelectedEventArgs
 Inherits EventArgs

 Private _directoryName As String

 Public Property DirectoryName() As String
 Get
 Return _directoryName
 End Get
 Set(ByVal value As String)
 _directoryName = value
 End Set
 End Property

 Public Sub New(ByVal directoryName As String)
 Me.DirectoryName = directoryName
 End Sub

End Class

Here’s the DirectoryTree code that fires the DirectorySelected event:

Public Event DirectorySelected(ByVal sender As Object, _
 ByVal e As DirectorySelectedEventArgs)

Protected Overrides Sub OnAfterSelect(ByVal e As TreeViewEventArgs)
 MyBase.OnAfterSelect(e)

 ' Raise the DirectorySelected event.
 RaiseEvent DirectorySelected(Me, _
 New DirectorySelectedEventArgs(e.Node.FullPath))
End Sub

You can respond to the DirectorySelected event and perform additional work with the
directory, like showing the files it contains in another control.

Deriving Forms
Just as you derive controls from existing control classes, you can also derive a new form from
an existing form class. Of course, every form derives from the System.Windows.Forms.Form
class, but you can add extra layers of inheritance to standardize form design. For example, you
can create a custom form named MyFormTemplate (which derives from the Form class),

Macdonald_694-3C11.fm Page 380 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 381

and then derive additional forms from MyFormTemplate. This technique is called visual inherit-
ance, although conceptually it isn’t different from inheritance in any other scenario.

Visual inheritance has acquired a mixed reputation based on some of the idiosyncrasies it
had in .NET 1.0. Problems included the following:

• Quirky design-time support, which sometimes necessitated closing and reopening a
project to get past a cryptic error or see a change in the designer.

• Problems with anchored controls not being properly resized or relocated. This problem
stemmed from the use of the SuspendLayout() and ResumeLayout() methods in the
designer-generated code.

• Problems with control serialization, such as adding redundant lines in the designer-
generated code for the derived form.

The good news is that these problems are ironed out in .NET 2.0, and Visual Studio now
includes solid design-time support for visual inheritance.

Depending on how you use visual inheritance, you can accomplish two things:

• Use a common form template (appearance) for several different windows. This might be
useful to create a wizard or standardized About window.

• Use form functionality in several different windows. This allows you to create a frame-
work that you might use for different types of view windows in a Multiple Document
Interface (MDI) application. Every window will have its own look, but it might reuse
some of the same buttons to close the window or open a file.

As with any type of inheritance, visual inheritance gives you many different ways to
customize how the descendent class can use, extend, or override the inherited class.

A Simple Derived Form
To create a simple example of form inheritance, you might create a wizard form like the one
shown in Figure 11-4. It uses a blank header area for title text, a large surface area for additional
content, and a Next button at the bottom. In this example (found in the downloadable code for
this chapter at www.apress.com under the project name VisualInheritance), the base form is
named Ancestor.

To create an inherited form that uses this form, you first need to compile the project. Then,
right-click the project item in the Solution Explorer, and choose Add ➤ Windows Form Item.
Next, choose Inherited Form from the Add New Item dialog box. You’ll be prompted to choose
a new form name, and select the form you want to derive from (see Figure 11-5).

■Tip As with inherited controls, it makes good sense to create two projects: a library that contains the form
templates you want to reuse, and an application that contains the forms that derive from these templates.

Macdonald_694-3C11.fm Page 381 Thursday, June 22, 2006 9:19 AM

382 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

Figure 11-4. An ancestor form for a wizard

Figure 11-5. Inheriting from a form

Of course, you don’t actually need to use the wizard to create an inherited form. All you really
need to do is create a Form class, edit the designer file (for example, Descendant.Designer.vb.), and
change the standard class declaration (which inherits from the System.Windows.Forms class)
to inherit from your custom class, like this:

Public Partial Class Descendent
 Inherits VisualInheritance.Ancestor

You’ll notice that the inherited form contains all the controls that you defined in the orig-
inal form, but it doesn’t allow you to move them, change their properties, or add event handlers.
You can, however, add new controls, write their event handlers, and change the size (or any
other property) for your descendant form. In the basic example, this doesn’t allow the flexibility
you need. For example, the user needs to have some way to configure the text in the title area
and override the behavior of the Next and Previous buttons. Fortunately, this is all easy if you
understand a few basics about inheritance.

Macdonald_694-3C11.fm Page 382 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 383

Making an Ancestor Control Available
By default, every control on the original ancestor form is declared with the Friend modifier.
This keyword allows access to other forms in the same assembly, but it doesn’t allow any access
to your derived form. To change this state of affairs, simply modify the controls you want to
configure to use the Protected modifier instead. You can change the declaration by looking
through the form code, or you can use the Properties window and look for the Modifiers property.

Technically, Modifiers isn’t a real property of the control—instead, it’s a design-time
property added by Visual Studio. Whenever you change it, Visual Studio modifies the decla-
ration of the control.

■Tip Whenever you change the ancestor form, you must recompile the project before you see the appro-
priate changes in the descendant form. Just right-click the project in the Solution Explorer, and choose Build
to create the assembly without launching it. You need to take this step regardless of whether the ancestor
form is in an assembly separate from the descendant assembly or in the same one.

Once you’ve changed the accessibility of the control and rebuilt the assembly that contains
the ancestor form, you’ll have much more freedom. In the descendant form, you can now
configure any property of the inherited control, including its appearance and position (and
you can even hide the control by setting its Visible property to False). The values that you’ve set
in the ancestor form become the default values in the derived form. However, any changes you
make in the derived form supersede these defaults, because they’re applied in the derived form’s
InitializeComponent() method, which executes after the designer code in ancestor form.

If you keep the Friend modifier, not only will the descendant be prevented from changing
the controls in the ancestor, it won’t be able to interact with the control at all. As a result, you
won’t be able to respond to events, add items to a menu, or iterate through the Nodes property
in a TreeView. However, you should think twice before changing the access modifier on your
controls to solve these problems. If you make a change, you’ll end up exposing the inner work-
ings of your ancestor form and giving up all control over how it’s used. As a result, the derived
forms are likely to become tightly coupled to the low-level details of your ancestor form, limiting
reuse and making it difficult to change or enhance your ancestor form. A far better solution is
to expose just the details that are required by adding properties and methods to your form
class, as described in the next section.

Adding a Property in the Ancestor Form
In the wizard example, creating protected-level controls isn’t the best approach. Quite simply,
it allows too much freedom to change the original layout. Take the header text, for example.
The creator of the derived form should be able to enter custom text into the control, but other
details (like its font, color, and position) shouldn’t be modifiable, as they risk compromising
the standardized layout you’ve established.

Macdonald_694-3C11.fm Page 383 Thursday, June 22, 2006 9:19 AM

384 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

To code a better solution, you could create a property in the ancestor form. The client can
then use this property to set the header text without being allowed any greater degree of control.

Public Property HeaderText() As String
 Get
 Return lblHeader.Text
 End Get
 Set(ByVal value As String)
 lblHeader.Text = value
 End Set
End Property

Once you recompile, the HeaderText property will be available in your derived form. You
can change it using code or, more conveniently, in the Properties window (see Figure 11-6). In
fact, you can add other attributes to this property that configure the description it shows and
the category it will appear in. See Chapter 13 for more on that topic.

Figure 11-6. A custom property

Dealing with Events
Your base form might also contain event-handling logic. If this logic is generic (for example, it
simply closes the form), it is suitable for all descendants. In the case of your Previous and Next
buttons, clearly there is no generic code that can be written. Instead, the descendant needs to
provide the event-handling code. Unfortunately, this raises the same problem as setting control

Macdonald_694-3C11.fm Page 384 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 385

properties. If you want the descendant form to handle an event in a control, you’re forced to
declare it as protected, which exposes it to unlimited modification.

There are two ways to code around this limitation:

• Define a new, higher-level event in the ancestor-form class. Handle the event of the child
control in the ancestor class (like Button.Click), and raise the corresponding custom
event (like AncestorForm.NextButtonClicked).

• Handle the event in your form class, but make the event handler explicitly overridable.

Both of these techniques give you the ability to perform some logic in the ancestor form
(if required) and allow the derived form to respond as well. The first approach offers the best
design-time support, because you can hook up the event handler through the Properties window.
However, the second approach offers an additional ability—you can force the derived form to
override the method, ensuring it won’t be ignored.

You’ve already seen the first approach at work with the two TreeView examples earlier in
this chapter. For a change of pace, we’ll consider the second technique.

The first step is to create the event handler in the ancestor form and declare that it can be
overridden by marking it as protected and overridable. Here’s an example:

Protected Overridable Sub OnNextButtonClick(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdNext.Click
 MessageBox.Show("Ancestor form event handler.")
End Sub

■Tip It’s a good idea to choose a more meaningful method name like OnNextButtonClick() rather than use
the default event handler name like cmdNext_Click(). That’s because in ordinary forms, the event handler
name is an implementation that’s internal to the form. But with visual inheritance, another class will see this
method and override it.

You can now override this routine in your descendant form:

Protected Overrides Sub OnNextButtonClick(ByVal sender As Object, _
 ByVal e As EventArgs)
 MessageBox.Show("Descendant form event handler.")
End Sub

Note that you do not connect this code by adding an event handler with the Handles
keyword. That’s because the original routine (the one you are overriding) is already connected
to the event.

In some cases, you might want to execute both the extra code in the descendant form and
the original code. You can accomplish this by using the MyBase keyword. The code that follows,
for example, results in the display of two message boxes: one from the ancestor form followed
by one from the derived form:

Macdonald_694-3C11.fm Page 385 Thursday, June 22, 2006 9:19 AM

386 C H A P T E R 1 1 ■ D E R I V E D C O N T R O LS

Protected Overrides Sub OnNextButtonClick(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Call the original version.
 MyBase.OnNextButtonClick(sender, e)

 MessageBox.Show("Descendant form event handler.")
End Sub

Finally, in some cases you might want to force an event handler to be overriden. For instance,
in our example, a wizard form can’t be considered complete unless it has the necessary event-
handling logic behind added to its Next button. However, it’s impossible to code this logic at
the ancestor level. To force the derived class to override this event handler (as a precautionary
measure), you can declare the event handler with the MustOverride keyword. In this case, you
can’t add a method body.

Protected MustOverride Sub cmdNext_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

For this to work, the ancestor form class must be declared MustInherit in the designer
code file:

Public Partial MustInherit Class Ancestor
 Inherits System.Windows.Forms.Form

Be warned that this pattern confuses the Visual Studio IDE. You won’t have any trouble
designing a MustInherit form (the Ancestor form), but you won’t be able to design any forms
that inherit from it (the Descendant form). The reason lies deep in the Visual Studio design-
time model. Essentially, while you are designing a form, Visual Studio instantiates the objects
you’re using in order to create the proper design-time representation. For example, if you’re
creating a form that contains two text box controls, Visual Studio creates two TextBox objects.
However, the designer doesn’t attempt to create the actual form you’re designing. Instead, it
creates an instance of the base form. Why? Remember, while you design a form, Visual Studio
is continuously working, serializing your actions to code statements in the InitializeComponent()
method. At the same time, Visual Studio applies your code to the live design-time version of
your form. So there are two reasons Visual Studio doesn’t create an instance of the form you’re
designing: It can’t (because the code is constantly changing, and so it isn’t yet compiled), and
it doesn’t need to (because it has the base class and all your customizations readily at hand).

The side effect of this model is that Visual Studio can’t design a form that derives from a
MustInherit form, because it can’t create an instance of the base form. Microsoft is well aware
of this problem and has considered (but not yet implemented) compromises that would make it
possible. Some of them are described at http://www.urbanpotato.net/Default.aspx/document/
1772. And if you want to delve deep into the .NET designer infrastructure, you can actually code
a complex workaround (http://www.urbanpotato.net/default.aspx/document/2001 shows how).

Of course, none of this affects the runtime performance of your form. If you derive a form
from a MustInherit base class, you can still run it without a hitch. As a last resort, you can design
your form without the MustInherit modifier and add it just before you compile and deploy
your assembly.

Macdonald_694-3C11.fm Page 386 Thursday, June 22, 2006 9:19 AM

C H A P T E R 1 1 ■ D E R I V E D C O N T R O L S 387

■Tip One feature that isn’t possible with form inheritance is to limit the derived form to inserting content in
set areas of the form. For example, you might want to create a wizard template that inserts controls only in a
predefined panel. Although this model isn’t supported by visual inheritance, you can implement it yourself—
in fact, you saw one possible approach with the wizard model in Chapter 10, which was based on user controls.

The Last Word
In this chapter, you walked through two custom TreeView controls that demonstrated how you
could fine-tune existing .NET controls for specific scenarios. You also considered the advantages
and limitations of visual inheritance, which offers an elegant way to create reusable form
templates. In the next chapter, you’ll step up to a more ambitious problem and tackle controls
that paint themselves from scratch.

■Note You’re not finished with derived controls yet. Some of the best Windows Forms controls are designed
with extensibility in mind. They allow you to customize the control by deriving another class that’s used with
the control, rather than an entirely new version of the complete control. You’ll see this technique in Chapter 14 (to
derive custom ToolStripItem controls that extend the ToolStrip and StatusStrip) and Chapter 15 (to derive a custom
DataGridViewColumn that extends the DataGridView).

Macdonald_694-3C11.fm Page 387 Thursday, June 22, 2006 9:19 AM

Macdonald_694-3C11.fm Page 388 Thursday, June 22, 2006 9:19 AM

389

■ ■ ■

C H A P T E R 1 2

Owner-Drawn Controls

In Chapter 7, you learned how to use GDI+ to draw text and complex shapes on a form by over-
riding the OnPaint() method. Although this technique works perfectly well, most of the time
you’ll want to build an application out of smaller controls that paint themselves individually.
Taken to its logical extreme, you can use this technique to build hand-tooled interfaces with
the latest in eye-catching graphics (something you’ll consider again in Chapter 23).

In this chapter, you’ll start out on your journey to creating hand-drawn custom controls.
First, you’ll consider controls that have built-in support for owner-drawing a portion of their
interface. Then, you’ll graduate into custom controls that render their entire interface from scratch.

Understanding Owner-Drawn Controls
Many of the core Windows Forms controls are wrappers over the Win32 API. As a result, they
don’t render their interface directly, but rely on the work of the operating system. One side
effect of this design is that there’s no way to tailor the rendering of most simple controls, like
the TextBox or Button. If you want to have a hand in the painting logic, you either need to build
a custom control from scratch or find a control that explicitly gives you the ability to supply
some of the drawing logic.

The following are some controls that support owner drawing:

• ListBox and ComboBox

• ListView and TreeView

• ToolTip

• MenuItem (which has been superseded by MenuStrip in .NET 2.0)

All controls that support owner drawing have either a Boolean OwnerDraw property
(which you set to True), or a DrawMode property (which you set to one of several enumerated
values to choose what drawing logic you want to supply). You then supply the drawing logic by
responding to an event that supplies a Graphics object.

Macdonald_694-3C12.fm Page 389 Wednesday, July 26, 2006 10:56 AM

390 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

■Note Additionally, in Chapter 14, you’ll learn how the ToolStrip and StatusStrip support a more loosely
coupled model for owner drawing. These controls use a dedicated renderer class that controls the painting.
This gives you the flexibility to tweak the visual appearance without needing to create an entirely new set of
button controls.

A Simple Owner-Drawn ListBox
The standard ListBox control is fairly unimpressive. You can configure various properties that
affect the whole control, like Font, ForeColor, and BackColor, but you can’t change individual
items independently. For example, you can’t create a list box that contains pictures, formatted
text, or colored item backgrounds. And while you could develop a custom list control from
scratch, there’s a fair bit of boilerplate code you would need to write for managing the scrolling
and selection behavior.

Fortunately, an easier approach exists. You simply need to set the ListBox.DrawMode to
DrawMode.OwnerDrawFixed or DrawMode.OwnerDrawVariable. The difference between the
two owner-drawn options is that with fixed drawing each item in the list is the standard size
(typically 13 pixels), and with OwnerDrawVariable (the mode used in the following example),
you can specify the height for each item independently.

Assuming you use OwnerDrawVariable, you need to handle two events: MeasureItem, in
which you specify the size of an item row, and DrawItem, in which you use the GDI+ Graphics
class to output images, shapes, or text.

The following example uses this approach to draw the simplest possible owner-drawn list
box. All items are the same height (15 pixels). The text is displayed using the list box font and
obtained by calling ToString() on the list object. The background and foreground colors depend
on whether or not the item is selected.

Private Sub listBox1_MeasureItem(ByVal sender As Object, _
 ByVal e As MeasureItemEventArgs) Handles listBox1.MeasureItem
 ' Specify a fixed height.
 ' (The default height depends on the system font settings,
 ' but it usually 13 pixels.)
 e.ItemHeight = 15
End Sub

Private Sub listBox1_DrawItem(ByVal sender As Object, _
 ByVal e As DrawItemEventArgs) Handles listBox1.DrawItem
 ' Draw the background.
 ' The color (white or blue) depends on selection.
 e.DrawBackground()

 ' Determine the forecolor based on whether or not
 ' the item is selected.
 Dim drawBrush As Brush
 If (e.State And DrawItemState.Selected) = DrawItemState.Selected Then
 drawBrush = Brushes.White

Macdonald_694-3C12.fm Page 390 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 391

 Else
 drawBrush = Brushes.Black
 End If

 ' Get the item text.
 Dim text As String = CType(sender, ListBox).Items(e.Index).ToString()

 ' Draw the item text.
 e.Graphics.DrawString(text, CType(sender, Control).Font, _
 drawBrush, e.Bounds.X, e.Bounds.Y)
End Sub

■Tip If you use OwnerDrawFixed, you don’t have the chance to specify the height of the items (because the
MeasureItem event never fires). Thus, it makes sense to use OwnerDrawVariable to vary the height of items
or just apply a nonstandard item height to all items.

A More Advanced Owner-Drawn ListBox
The previous example mimicked the basic list box. To create a more interesting owner-drawn
list box, you can customize this code to apply different colors or formatting, or even draw bitmaps
or shapes in the space provided. However, it’s worth carefully considering how you want to
model this control. In many cases, you’ll want the ability to configure each item separately.
Ideally, the object that represents each item in the list box should have its own formatting
information. The list box could then read this information and use it to configure the painting
process.

■Note The custom-drawn content will not appear in the Visual Studio design-time environment. Instead,
the list will be shown without any content.

To implement this design, you need to create a new class that encapsulates the list item
data and the formatting information. Here’s an example of a class that wraps any object and
provides properties that allow you to set the foreground color, background color, and font:

Public Class FormattedListItemWrapper

 Private _item As Object
 Public Property Item() As Object
 Get
 Return _item
 End Get

Macdonald_694-3C12.fm Page 391 Wednesday, July 26, 2006 10:56 AM

392 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 Set(ByVal value As Object)
 _item = value
 End Set
 End Property

 Private _foreColor As Color
 Public Property ForeColor() As Color
 Get
 Return _foreColor
 End Get
 Set(ByVal value As Color)
 _foreColor = value
 End Set
 End Property

 Private _backColor As Color
 Public Property BackColor() As Color
 Get
 Return _backColor
 End Get
 Set(ByVal value As Color)
 _backColor = value
 End Set
 End Property

 Private _font As Font
 Public Property Font() As Font
 Get
 Return _font
 End Get
 Set(ByVal value As Font)
 _font = value
 End Set
 End Property

 Public Overrides Function ToString() As String
 If item Is Nothing Then
 Return ""
 Else
 Return item.ToString()
 End If
 End Function

 ' (Constructors omitted.)
End Class

Macdonald_694-3C12.fm Page 392 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 393

Remember, the standard ListBox accepts any object and simply calls the ToString()
method to get the item text. To duplicate this functionality, the FormattedListItemWrapper
also wraps any object. When you call FormattedListItemWrapper.ToString(), it calls ToString()
on the wrapped object.

Although the FormattedListItemWrapper provides a Font, ForeColor, and BackColor
property, you don’t need to use them all. If you don’t set these properties, the ForeColor and
BackColor will contain the value Color.Empty, and the Font property will provide a null refer-
ence. The custom ListBox drawing logic should check for this possibility and supply intelligent
defaults (such as the system colors and the ListBox font). You can easily extend the
FormattedListItemWrapper to accommodate other details. For example, you can add an
Image property to incorporate thumbnail images.

Once this class is in place, you need to rewrite the event-handling code for measuring
the item. First, you need to check if the current item is a FormattedListItemWrapper instance.
If it is, you can set the height based on the font. However, if it’s a different type of item, or the
FormattedListItemWrapper doesn’t provide a font, you should revert to the standard size.

Private Sub listBox1_MeasureItem(ByVal sender As Object, _
 ByVal e As MeasureItemEventArgs) Handles listBox1.MeasureItem
 Dim list As ListBox = CType(sender, ListBox)

 If TypeOf list.Items(e.Index) Is FormattedListItemWrapper Then

 Dim item As FormattedListItemWrapper
 item = CType(list.Items(e.Index), FormattedListItemWrapper)

 If item.Font IsNot Nothing Then
 ' Get the height from the current item's font.
 e.ItemHeight = item.Font.Height
 Return
 End If
 End If

 ' If item or font information can't be found, use the default.
 e.ItemHeight = 15
End Sub

The same process is used to draw the item. First, the code checks for a
FormattedListItemWrapper. It then uses the corresponding settings or chooses sensible
defaults, depending on what’s available.

Private Sub listBox1_DrawItem(ByVal sender As Object, _
 ByVal e As DrawItemEventArgs) Handles listBox1.DrawItem
 Dim list As ListBox = CType(sender, ListBox)

 Dim item As FormattedListItemWrapper
 If TypeOf list.Items(e.Index) Is FormattedListItemWrapper Then
 item = CType(list.Items(e.Index), FormattedListItemWrapper)
 End If

Macdonald_694-3C12.fm Page 393 Wednesday, July 26, 2006 10:56 AM

394 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 Dim font As Font = Nothing
 Dim foreColor As Color = Color.Empty
 Dim backColor As Color = Color.Empty

 If item IsNot Nothing Then
 font = item.Font
 foreColor = item.ForeColor
 backColor = item.BackColor
 End If

 ' The font could be null if there is no ListItemWrapper or the
 ' ListItemWrapper doesn't specify a font.
 If font Is Nothing Then
 ' Use the ListBox font if no custom font is provided.
 font = list.Font
 End If

 ' The color could be empty if there is no ListItemWrapper or the
 ' ListItemWrapper doesn't specify a color.
 Dim brush As Brush
 If foreColor = Color.Empty Then
 ' Use the default color.
 brush = Brushes.Black
 Else
 ' Use the custom color.
 brush = New SolidBrush(item.ForeColor)
 End If

 ' Override the color if the item is selected.
 ' Alternatively, you could add SelectedForeColor and
 ' SelectedBackColor properties to the wrapper.
 If (e.State And DrawItemState.Selected) = DrawItemState.Selected Then
 brush = Brushes.White
 End If

 ' Paint the background.
 If backColor = Color.Empty Then
 e.DrawBackground()
 Else
 Dim brushBackground As New SolidBrush(item.BackColor)
 e.Graphics.FillRectangle(brushBackground, e.Bounds)
 End If

 ' Draw the item text.
 Dim text As String = list.Items(e.Index).ToString()
 e.Graphics.DrawString(text, font, _
 brush, e.Bounds.X, e.Bounds.Y)
End Sub

Macdonald_694-3C12.fm Page 394 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 395

To create a simple test for this owner-drawn list box, try filling the list with a separate list
item, one for each font installed on the system:

Dim families As New InstalledFontCollection()

For Each family As FontFamily In families.Families
 Try
 Dim font As New Font(family.Name, 12)
 Dim item As New FormattedListItemWrapper(family.Name, font)
 listBox1.Items.Add(item)
 Catch err As ArgumentException
 ' An error occurs if the font doesn't support normal
 ' typeface or 12-point size. Ignore this font.
 End Try
Next

Figure 12-1 shows the resulting list box.

Figure 12-1. Item-specific drawing in a list box

Writing the correct code in the MeasureItem and DrawItem event handlers requires some
tweaking of pixel offsets and sizes. Unfortunately, in the current implementation, there is no
easy way to reuse this logic for different windows (not to mention different applications). A
better approach is to perfect your list box as a custom derived control, like the examples you
saw in the previous chapter. Just set the OwnerDrawMode property in the constructor of your

Macdonald_694-3C12.fm Page 395 Wednesday, July 26, 2006 10:56 AM

396 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

custom control, and override the OnMeasureItem() and OnDrawItem() methods to hardwire
the drawing logic into the control. You can then reuse the custom control in a variety of projects
and scenarios.

An Owner-Drawn TreeView
The TreeView and the ListView are two controls that developers commonly want to change. In
.NET 1.x, this feat ranged from difficult to nearly impossible because of the ways the TreeView
and ListView interact with the Win32 API. (In fact, overriding the OnPaint() method for these
controls has no effect.) As a result, developers who needed to change an aspect of the control’s
appearance (for example, giving the TreeView the ability to support multiple selections) were
forced to create look-alike custom controls from scratch. And although this approach works, it
requires a hefty amount of code and some low-level message processing.

In .NET 2.0, the situation improves dramatically for both controls:

• The ListView provides a new OwnerDraw property. When True, you can handle the
DrawColumnHeader, DrawItem, and DrawSubItem events to paint various parts of the
control.

• The TreeView provides a new DrawMode property. You can set this property to
OwnerDrawText if you just want to customize the appearance of the node content
or OwnerDrawAll if you want to draw everything, including node lines, the expand/collapse
boxes, check boxes, and so on. Either way, you handle the DrawNode event to perform
your drawing.

There’s no reason to create an owner-drawn TreeView or ListView to add custom colors
and fonts, as both the TreeNode and ListViewItem classes expose properties like ForeColor,
BackColor, and Font. However, the TreeView still lacks multiselect functionality—a limitation
that’s corrected with the following owner-drawn TreeView.

This TreeView uses a DrawMode of OwnerDrawText, so that the TreeView will paint the
node lines, expand/collapse boxes, and check boxes, depending on the value of properties like
ShowLines, ShowPlusMinus, ShowRootLines, and CheckBoxes.

The Custom TreeNode

The first step to create this TreeNode is to derive a new node class from the standard TreeNode.
In this case, the goal is to give the TreeNode the ability to support multiple selection. Here’s the
declaration:

Public Class MultiSelectTreeNode
 Inherits TreeNode
 ...
End Class

In the basic TreeNode class, the IsSelected property is read-only. The only way to set the
selected node is through the TreeView.SelectedNode property. To get around this limitation,
the MultiSelectTreeNode declares its own version of the new IsSelected property:

Macdonald_694-3C12.fm Page 396 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 397

Private selected As Boolean = False
Public Overloads ReadOnly Property IsSelected() As Boolean
 Get
 Return selected
 End Get
End Property

The TreeNode.IsSelected property isn’t overridable, so the MultiSelectTreeNode falls back
on a slightly awkward trick—declaring a new version of the IsSelected property that indicates
that the definition for MultiSelectTreeNode.IsSelected hides the underlying TreeNode.IsSelected
property. For the most part, the MultiSelectTreeNode will behave exactly as expected. The only
caveat is that if you cast a MultiSelectTreeNode object to the TreeNode type, you’ll be able to
access only the old single-select TreeNode.IsSelected property, which probably isn’t what
you want. To avoid this confusion, you’ll need to make sure you always cast each node to the
MultiSelectTreeNode type before inspecting its selected status.

To make a multiselect TreeView work, you need to track all the selected nodes in a collection.
(The TreeView.SelectedNode property isn’t of any use, because it allows for only one node to
be selected at a time.) Ideally, this collection would be built into a custom TreeView class. However,
in this example, you’re using the standard TreeView, so you need to track the collection of
selected nodes elsewhere. The most convenient approach is to store a reference to the collection in
each MultiSelectTreeNode. That way, when the node is selected or unselected, it can insert
itself in or remove itself from the collection.

Private selectedNodes As List(Of MultiSelectTreeNode)

To create a MultiSelectTreeNode, you need to pass a reference to the collection through
the constructor:

Public Sub New(ByVal text As String, _
 ByVal selectedNodes As List(Of MultiSelectTreeNode))
 MyBase.New(text)
 Me.selectedNodes = selectedNodes
End Sub

This constructor accepts the selected node collection and the node text (which is passed
along to the base TreeNode constructor). A well-rounded custom node class would probably
duplicate many more of the constructors found in the base TreeNode class, so that you can
create MultiSelectTreeNode objects with images and children in one step.

To select a node, you simply call the public Select() method. To remove the selection, you
can call UnSelect(). Selecting a node doesn’t automatically remove the selection from previously
selected nodes.

Public Sub [Select]()
 ' Check if the selection is being changed.
 If selected <> True Then
 selected = True

Macdonald_694-3C12.fm Page 397 Wednesday, July 26, 2006 10:56 AM

398 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 ' Update the collection.
 selectedNodes.Add(Me)
 RepaintNode()
 End If
End Sub

Public Sub UnSelect()
 ' Check if the selection is being changed.
 If selected <> False Then
 selected = False

 ' Update the collection.
 selectedNodes.Remove(Me)
 RepaintNode()
 End If
End Sub

Every time the selection status is changed, that region of the TreeView is invalidated so
that the node is correctly painted:

Private Sub RepaintNode()
 ' TreeView will be null if the node hasn't been
 ' added yet.
 If MyBase.TreeView IsNot Nothing AndAlso MyBase.IsVisible Then
 ' Repaint the node.
 MyBase.TreeView.Invalidate(MyBase.Bounds)
 End If
End Sub

By building this logic into the MultiSelectTreeNode class (rather than the TreeView or
form), you ensure that the TreeView is always properly refreshed when you change the selection
status of a node. Otherwise, the only nodes that will be repainted are the current node and the
node that was clicked previously.

The Drawing Logic

The real work is the drawing logic in the TreeView.DrawNode event handler. We’ll take a look
at this code one piece at a time.

The first step is to confirm you are drawing a MultiSelectTreeNode. If you aren’t, the standard
drawing logic should be used. You can achieve this by setting the DrawTreeNodeEventArgs.
DrawDefault property to True. This gives you the flexibility to customize the drawing for just
some nodes.

Macdonald_694-3C12.fm Page 398 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 399

Private Sub treeView1_DrawNode(ByVal sender As Object, _
 ByVal e As DrawTreeNodeEventArgs) Handles treeView1.DrawNode

 ' Check for multiple selection support.
 If Not TypeOf e.Node Is MultiSelectTreeNode Then
 ' No multiple selection support.
 e.DrawDefault = True
 ...

Otherwise, the first task is to determine the font and colors for the node. Here’s where you
consider the MultiSelectTreeNode.IsSelected property. When using default colors, you should
check the Font, ForeColor, and BackColor properties of the node. If they aren’t specified, you
can fall back on the TreeView defaults.

 ...
 Else
 Dim multiNode As MultiSelectTreeNode = CType(e.Node, MultiSelectTreeNode)

 ' Retrieve the node font. If the node font has not been set,
 ' use the TreeView font.
 Dim nodeFont As Font = multiNode.NodeFont
 If nodeFont Is Nothing Then nodeFont = treeView1.Font

 ' Create brushes for the background and foreground.
 Dim backBrush, foreBrush As Brush
 If multiNode.IsSelected Then
 foreBrush = SystemBrushes.HighlightText
 backBrush = SystemBrushes.Highlight
 Else
 If multiNode.ForeColor <> Color.Empty Then
 foreBrush = New SolidBrush(multiNode.ForeColor)
 Else
 foreBrush = New SolidBrush(multiNode.TreeView.ForeColor)
 End If

 If multiNode.BackColor <> Color.Empty Then
 backBrush = New SolidBrush(multiNode.BackColor)
 Else
 backBrush = New SolidBrush(multiNode.TreeView.BackColor)
 End If
 End If
 ...

Macdonald_694-3C12.fm Page 399 Wednesday, July 26, 2006 10:56 AM

400 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

The actual drawing logic is fairly straightforward. It draws the background, text, and focus
rectangle (if appropriate), and then cleans up the brushes if necessary.

 ...
 ' Draw the background of the selected node.
 e.Graphics.FillRectangle(backBrush, e.Bounds)

 ' Draw the node text.
 e.Graphics.DrawString(e.Node.Text, nodeFont, foreBrush, _
 e.Bounds.X,e.Bounds.Y)

 ' If the node has focus, draw the focus rectangle.
 If (e.State And TreeNodeStates.Focused) <> 0 Then
 Dim focusPen As New Pen(Color.Black)
 Using focusPen
 focusPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dot
 Dim focusBounds As Rectangle = e.Bounds
 focusBounds.Size = New Size(focusBounds.Width - 1, _
 focusBounds.Height - 1)
 e.Graphics.DrawRectangle(focusPen, focusBounds)
 End Using
 End If

 ' Dispose brushes if they were created
 ' just for this node.
 If Not multiNode.IsSelected Then
 backBrush.Dispose()
 foreBrush.Dispose()
 End If
 End If
End Sub

Tracking Selected Nodes

To support this new drawing logic, the behavior of the TreeView also needs a little tweaking.
Namely, you need to intercept node clicks and set or clear the MultiSelectTreeNode.IsSelected
property. Selected nodes should also be tracked in a collection, which you can maintain as a
form member variable, as shown here:

Private selectedNodes As New List(Of MultiSelectTreeNode)()

You can’t rely on the BeforeSelect and AfterSelect events, because these won’t fire when
the same node is clicked twice in a row. In a multiselect TreeView, multiple clicks like these can
be used to toggle the selected state of an item. Instead, you need to rely on the NodeMouseClick
event, which fires every time a node is clicked. At this point, you can check the state of the Ctrl
key. If it’s held down, the click is being used to extend the current selection. If Ctrl isn’t held
down, the current selection is cleared. All of this is made easy thanks to the Select() and UnSelect()
methods of the MultiSelectTreeNode.

Macdonald_694-3C12.fm Page 400 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 401

Here’s the complete code:

Private Sub treeView1_MouseDown(ByVal sender As Object, _
 ByVal e As MouseEventArgs) Handles treeView1.MouseDown

 ' Test if the click was on a node.
 Dim nodeHit As TreeNode = treeView1.HitTest(e.X, e.Y).Node
 If nodeHit Is Nothing Then Return

 If TypeOf nodeHit Is MultiSelectTreeNode Then
 ' Get the node that was clicked.
 Dim multiNode As MultiSelectTreeNode = CType(nodeHit, MultiSelectTreeNode)

 ' Use advanced selection rules.
 If (Control.ModifierKeys And Keys.Control) = 0 Then
 ' Ctrl is not held down.
 ' Remove previous selection.
 Dim nodesToDelete As New List(Of MultiSelectTreeNode)()
 For Each node As MultiSelectTreeNode In selectedNodes
 If node IsNot multiNode Then
 nodesToDelete.Add(node)
 End If
 Next
 For Each node As MultiSelectTreeNode In nodesToDelete
 node.UnSelect()
 Next
 End If

 If multiNode.IsSelected Then
 ' Node is already selected.
 ' Toggle it off.
 multiNode.UnSelect()
 Else
 multiNode.Select()
 End If
 End If
End Sub

There’s one limitation in this approach—it doesn’t change the node selection when the
user moves from one node to another with the arrow keys. You would need to handle additional
TreeView events to add such node-selection logic. You might also want to add more-intelligent
selection logic, such as support for the Shift key, and give the user the ability to drag a selection
square around several nodes at once (as in Windows Explorer).

Figure 12-2 shows the multiselect TreeView.

Macdonald_694-3C12.fm Page 401 Wednesday, July 26, 2006 10:56 AM

402 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

Figure 12-2. An owner-drawn TreeView for multiple selection

A Custom MultiSelectTreeView

Although the multiselect TreeView works well, it requires code in the form class. It’s difficult to
reuse this TreeView implementation without duplicating that code. To avoid this problem and
perfect this example, it makes sense to derive a custom TreeView class that wraps the drawing
and selection logic, and exposes a built-in SelectedNodes property. You can use the techniques
described in the previous chapter to build this type of control.

Here’s the basic outline:

Public Class MultiSelectTreeView
 Inherits TreeView

 ' Force the tree to use owner drawing.
 Public Sub New ()
 MyBase.DrawMode = TreeViewDrawMode.OwnerDrawText
 End Sub

 ' Track the selected nodes.
 Private _selectedNodes As New List(Of MultiSelectTreeNode)()

 Public ReadOnly Property SelectedNodes() As _
 ReadOnlyCollection(Of MultiSelectTreeNode)
 Get
 ' Return a read-only wrapper for this collection.
 ' The only way to change selection is through the
 ' MultiSelectTreeNode methods.
 Return _selectedNodes.AsReadOnly()
 End Get
 End Property

Macdonald_694-3C12.fm Page 402 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 403

 Protected Overrides Sub OnDrawNode(ByVal e As DrawTreeNodeEventArgs)
 ...
 End Sub

 Protected Overrides Sub OnMouseDown(ByVal e As MouseEventArgs)
 ...
 End Sub

End Class

You can also modify the MultiSelectTreeNode class. It no longer needs to track the selected
node collection—instead, it can access this detail through the MultiSelectTreeView.

Hiding the SelectedNode property and making sure the TreeView accepts only
MultiSelectTreeNode objects takes a bit more work. You’ll learn about these design-time
niceties in the next chapter. For the full details for this example, consult the online code.

Owner-Drawn Custom Controls
So far, you’ve seen examples that use owner drawing support to customize the appearance of
existing controls. In the remainder of this chapter, you’ll step up to a more challenging task—
rendering entirely new controls from scratch.

Owner-drawn custom controls are one of the most ambitious projects a developer can
undertake. This is not because they are conceptually tricky (although sometimes they may be),
but because a moderately sophisticated control needs a great deal of basic code just to handle
all aspects of its appearance. If you can create a control using composition (i.e., a user control)
or by inheriting from a similar control class (as shown in Chapter 11), you’ll save yourself some
work. On the other hand, if you need complete control over drawing and behavior or you want
to introduce some of the unusual GDI+ features to your user interface, you need to create a
control that performs its painting manually.

The prime advantage of GDI+ controls is freedom. The prime disadvantage of GDI+ controls
is that they aren’t nearly as autonomous as prebuilt controls. For example, with custom GDI+
controls you need to handle the following details manually:

• Scrolling support

• Focus cues (i.e., indicating when the control has focus)

• The “pushed” state appearance for a button control

• Special cues or “hot tracking” appearance changes when the mouse moves over the control

• Hit testing to determine if a click was made in an appropriate area

• Respecting and applying the Windows XP themes

The remainder of this chapter introduces several example controls that paint themselves
without any outside help.

Macdonald_694-3C12.fm Page 403 Wednesday, July 26, 2006 10:56 AM

404 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

Double Buffering
In Chapter 7, you learned how to use double buffering with a form to dramatically reduce flicker.
The same features are available in controls. However, they’re exposed through protected
members, which means you can turn on control double buffering only if you’re creating a
control (not if you’re simply using it).

The easiest way to improve the drawing performance of a control that’s made up of more
than one element is to set the Control.DoubleBuffered property to True. Now, whenever you
paint in the OnPaint() method, the Graphics object won’t give you direct access to the surface
of the control—instead, it wraps an in-memory bitmap. The image content won’t be copied to
the control until the method ends, at which point it is painted in a single step. A convenient
place to turn on double buffering is in the control’s constructor.

■Note Do not use SetStyle() to apply the DoubleBuffer style. This has been superseded by the
DoubleBuffered property and is now considered obsolete.

In addition, you might want to set the ResizeRedraw property to True, so that the control
automatically invalidates itself if the size changes. This is useful if the drawing logic uses calcu-
lations that depend on the control’s size. However, use it only if you need it. If you don’t apply
it, only newly exposed areas are painted, which often saves time.

The MarqueeLabel Control
The first type of GDI+ control that might occur to you to use is one that simply wraps one of the
GDI+ drawing features you examined Chapter 7. For example, you might want to provide a
simple shape control that renders a closed figure depending on the properties you set. Or, you
might want to create a special type of label that paints itself with a textured brush, or a gradient
that the developer can configure through the appropriate properties. That’s the type of example
considered next with the MarqueeLabel control.

The MarqueeLabel is a graphical control with a twist. It automatically refreshes its display
in response to a timer, scrolling a line of text across the visible area. The control uses three
significant properties: Text; ScrollTimeInterval, which determines how frequently the timer
fires; and ScrollPixelAmount, which determines how much the text is scrolled with every timer
tick. An additional private member variable, called position, is defined to track how far the text
has scrolled. This property is not made available to the client (although it could be if you wanted
to allow the text to be set at a specific scroll position).

Here’s the property procedure code for the MarqueeLabel control:

Private _text As String
Private _scrollAmount As Integer = 10
Private position As Integer = 0
Private WithEvents tmrScroll As New System.Windows.Forms.Timer()

Macdonald_694-3C12.fm Page 404 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 405

Public Overrides Property() Text As String
 Get
 Return _text
 End Get
 Set(ByVal value As String)
 _text = value
 Invalidate()
 End Set
End Property

Public Property ScrollTimeInterval() As Integer
 Get
 Return tmrScroll.Interval
 End Get
 Set(ByVal value As Integer)
 tmrScroll.Interval = value
 End Set
End Property

Public Property ScrollPixelAmount() As Integer
 Get
 Return _scrollAmount
 End Get
 Set(ByVal value As Integer)
 _scrollAmount = value
 End Set
End Property

When the control is instantiated, it switches on double buffering:

Public Sub New()
 InitializeComponent()

 DoubleBuffered = True
 ResizeRedraw = True
End Sub

At runtime, you call the Scroll() method to turn the timer on:

Public Sub Scroll(ByVal state As Boolean)
 tmrScroll.Enabled = state
End Sub

■Tip You can easily build a MarqueeLabel that starts scrolling automatically. However, to prevent it from
also scrolling at design time (which is CPU-wasteful and distracting), you need to get a little more clever.
Chapter 13 shows you how to add this support.

Macdonald_694-3C12.fm Page 405 Wednesday, July 26, 2006 10:56 AM

406 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

The timer simply increments the private position variable and invalidates the display with
each tick:

Private Sub tmrScroll_Tick(ByVal sender As Object, ByVal e As EventArgs) _
 Handles tmrScroll.Tick
 position += ScrollPixelAmount

 ' Force a refresh.
 Invalidate()
End Sub

The painting logic takes care of the rest. If the text has scrolled off the form, the position
is reset. However, the new starting position is not (0, 0). Instead, the text is moved left by an
amount equal to its length. That way, when the scrolling resumes, the last letter appears first
from the left side of the control, followed by the rest of the text.

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
 MyBase.OnPaint(e)

 If position > Width Then
 ' Reset the text to scroll back onto the control.
 position = -CInt(e.Graphics.MeasureString(text, Font).Width)
 End If
 e.Graphics.DrawString(Text, Font, New SolidBrush(ForeColor), position, 0)
End Sub

The online samples for this chapter include a test program (shown in Figure 12-3) that
allows you to try out the marquee control and dynamically modify its scroll speed settings.

Figure 12-3. The MarqueeLabel test utility

Macdonald_694-3C12.fm Page 406 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 407

The GradientPanel Control
Many modern applications incorporate panels with rich gradient or blended backgrounds.
The .NET framework doesn’t include any such control, but using GDI+ you can easily develop
your own.

The next example presents a control that’s both an owner-drawn control and a derived
control. The custom GradientPanel derives from Panel, which ensures you can add controls to
it at design time without any extra steps, and gives automatic support for features like automatic
scrolling. The custom GradientPanel class overrides OnPaintBackground() to fill the panel
surface with a gradient based on two selected colors.

The Gradient Fill

In the GradientPanel, the first step is to create the required properties. In this case, you need to
store information about the two colors for the gradient and the type of gradient to be used.
Note that, when set, the property procedures invalidate the display, ensuring that the gradient
is repainted as needed.

Private _colorA As Color = Color.LightBlue
Private _colorB As Color = Color.Purple
Private _gradientStyle As LinearGradientMode = LinearGradientMode.ForwardDiagonal

Public Property ColorA() As Color
 Get
 Return _colorA
 End Get
 Set(ByVal value As Color)
 _colorA = value
 Invalidate()
 End Set
End Property

Public Property ColorB() As Color
 Get
 Return _colorB
 End Get
 Set(ByVal value As Color)
 _colorB = value
 Invalidate()
 End Set
End Property

Public Property GradientFillStyle() As LinearGradientMode
 Get
 Return _gradientStyle
 End Get

Macdonald_694-3C12.fm Page 407 Wednesday, July 26, 2006 10:56 AM

408 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 Set(ByVal value As LinearGradientMode)
 _gradientStyle = value
 Invalidate()
 End Set
End Property

In the constructor, you can set the ResizeRedraw property to True:

Public Sub New()
 ResizeRedraw = True
End Sub

You’ll also need to invalidate the panel when the user scrolls down (assuming you’ve enabled
scrolling by setting AutoScroll to True). There’s no property to implement this behavior, so
you’ll need to override the OnScroll() method and invalidate the panel with the following code:

Protected Overrides Sub OnScroll(ByVal e As ScrollEventArgs)
 Invalidate()
End Sub

The Painting Process

The OnPaintBackground() code is fairly straightforward. It creates the LinearGradientBrush
and fills the available control area.

Protected Overrides Sub OnPaintBackground(ByVal e As PaintEventArgs)
 ' To prevent flicker, don't call the base implementation
 ' of OnPaintBackground(), which would paint a solid background using
 ' the GradientPanel.BackColor.

 ' Draw the gradient background.
 Dim brush As New LinearGradientBrush(_
 ClientRectangle, ColorA, ColorB, GradientFillStyle)
 e.Graphics.FillRectangle(brush, ClientRectangle)
 brush.Dispose()
End Sub

Figure 12-4 shows the GradientPanel on a form. Autoscroll is turned on, and a button and
two labels have been added. The labels have a transparent background (Color.Transparent), so
that the gradient shows through.

■Note To make the GradientPanel work properly at design time with the Properties window, a few enhance-
ments are needed. You’ll explore those in Chapter 13.

Macdonald_694-3C12.fm Page 408 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 409

Figure 12-4. The GradientPanel

Improving Performance

GDI+ controls suffer from one obvious limitation—they render themselves far slower than
basic Windows controls. To compensate, you need to make sure your GDI+ code is as carefully
optimized as can be.

In the GradientPanel class, two improvements are possible. The first step is to avoid
continually re-creating resources (like brushes and pens) in the OnPaintBackground() method.
A better approach is to create these ingredients only when required. In all likelihood, the control
consumer will simply set the color properties once, so there’s no need to generate a new brush
each time the window is moved or the panel is scrolled. In the GradientPanel, the change won’t
make much difference, because the overhead required to create a single LinearGradientBrush
object is trivial. However, if you created a more complex control with a collection of drawing
resources, the difference would be more pronounced.

The first step is to create a private variable that stores the LinearGradientBrush object for
the lifetime of the control and a property procedure that uses the lazy initialization pattern to
create it only when it’s requested.

Private _gradientBrush As Brush
Private ReadOnly Property GradientBrush() As Brush
 Get
 If _gradientBrush Is Nothing Then
 _gradientBrush = New LinearGradientBrush(_
 ClientRectangle, ColorA, ColorB, GradientFillStyle)
 End If
 Return _gradientBrush
 End Get
End Property

Now, when setting the various properties, you need to clear the gradient brush:

Public Property ColorA() As Color
 Get
 Return _colorA
 End Get

Macdonald_694-3C12.fm Page 409 Wednesday, July 26, 2006 10:56 AM

410 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 Set(ByVal value As Color)
 _colorA = value
 If _gradientBrush IsNot Nothing Then
 _gradientBrush.Dispose()
 _gradientBrush = Nothing
 End If
 Invalidate()
 End Set
End Property

The drawing code is simplified:

Protected Overrides Sub OnPaintBackground(ByVal e As PaintEventArgs)
 ' Draw the gradient background.
 e.Graphics.FillRectangle(GradientBrush, ClientRectangle)
End Sub

The last step is to override the Dispose() method, so that the gradient brush is properly
disposed when the control is disposed. This is the best design, because all brushes hold onto
unmanaged resources, like many other GDI+ objects.

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If gradientBrush IsNot Nothing Then gradientBrush.Dispose()
 End If
 MyBase.Dispose(disposing)
End Sub

You’ll notice that the Dispose() method disposes the brush only if the disposing argument
is True. That’s because this indicates that the GradientPanel was explicitly disposed by calling
the Dispose() method. If disposing is False, it’s been picked up by the garbage collector, and it’s
possible that the gradientBrush object has already been disposed.

■Tip If you have numerous resources that you want to generate on demand, it’s easiest to create them
all at once instead of maintaining them with separate property procedures. For example, you might want to
create a method like RebuildResources() and call it when you start drawing. You could track if resources need
to be re-created with a Boolean member variable like ResourcesDirty.

A more dramatic performance optimization is to bypass the rendering process altogether
for subsequent paint using some form of caching. Caching becomes particularly important if
you have a control that can render in several predetermined states (like a gel button) and the
drawing logic is time-consuming. In this case, you can often optimize the painting code by
holding onto the rendered picture and reusing it automatically when the panel is repainted if
nothing has changed. This increases the complexity of the code, but it has the potential to give
a much more significant performance boost. It works best when the ratio of control complexity
to control size is high. That’s because the more complex your control is, the more time you’ll

Macdonald_694-3C12.fm Page 410 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 411

save by reusing the cached version rather than reconstructing it—the smaller your control,
the smaller the cached memory footprint. The caching approach isn’t appropriate for the
GradientPanel (because it’s large and not that complex), but you’ll see this technique in action
with custom buttons in Chapter 23.

The SimpleChart Control
The next control considered here is a simple charting tool. It’s a good demonstration of how
you can create a higher-level GDI+ control. Instead of representing a single label or button, it
renders a complete display according to the supplied data.

The BarItem

The basis of the chart is a BarItem class that stores information for a single bar. This informa-
tion consists of a numerical value and a short title that can be displayed along with the bar.

Public Class BarItem

 Private _shortForm As String
 Public Property ShortForm() As String
 Get
 Return _shortForm
 End Get
 Set(ByVal value As String)
 _shortForm = value
 End Set
 End Property

 Private _barValue As Single
 Public Property Value() As Single
 Get
 Return _barValue
 End Get
 Set(ByVal value As Single)
 _barValue = value
 End Set
 End Property

 Public Sub New(ByVal shortForm As String, ByVal value As Single)
 Me.ShortForm = shortForm
 Me.Value = value
 End Sub

End Class

The data for a bar chart is made up of a collection of BarItem objects. The SimpleChart
control provides a collection of BarItem objects through its Bars property. The client programmer
must create and add the appropriate BarItem objects. A more sophisticated control might add

Macdonald_694-3C12.fm Page 411 Wednesday, July 26, 2006 10:56 AM

412 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

dedicated UITypeEditors that allow BarItem objects to be created and added at design time.
Chapter 13 demonstrates how to give this level of design-time sophistication to the SimpleChart
control. The following, though, is our SimpleChart class:

Public Class SimpleChart
 Inherits Control

 Private _bars As New List(Of BarItem)()
 Public Property Bars() As List(Of BarItem)
 Get
 Return _bars
 End Get
 Set(ByVal value As List(Of BarItem))
 _bars = value
 End Set
 End Property

 Public Sub New()
 DoubleBuffered = True
 End Sub

 ' (Drawing logic omitted.)
End Class

Building the Chart

To use the SimpleChart, you must add one or more BarItem objects and then call the public
RebuildChart() method. This allows the client application to control exactly when the chart is
generated.

Instead of using the RebuildChart() method, you could track changes to the BarItem
collection and fire an event to notify the SimpleChart. The SimpleChart could then rebuild the
chart each time a bar is added, removed, or changed. However, this approach hampers perfor-
mance, because it causes the chart to be recalculated multiple times—once each time a new
bar is added. If you use this approach, you should also provide a way to temporarily turn off
automatic chart generation, as with the SuspendLayout() and ResumeLayout() methods exposed
by many complex container controls. You’ll see an example of this technique with a modified
version of the GradientPanel control in the next chapter.

The RebuildChart() method steps through the data, determines the maximum BarItem
value, and sizes all other bar items proportionally. Then, the RebuildChart() method creates a
Rectangle object to represent the on-screen presence of each bar. Finally, the RebuildChart()
method invalidates the control to trigger the painting logic.

Macdonald_694-3C12.fm Page 412 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 413

Private barRectangles As New List(Of Rectangle)()

Public Sub RebuildChart()
 If Bars.Count = 0 Then Return

 ' Find out how much space a single bar can occupy.
 Dim barWidth As Integer = Int(Width / Bars.Count)

 ' Set the maximum value on the chart.
 Dim maxValue As Single = 0
 For Each bar As BarItem In Bars
 If bar.Value > maxValue Then
 maxValue = bar.Value
 End If
 Next

 ' Create the rectangle shapes and store them for later use.
 ' Clear any existing shapes.
 barRectangles.Clear()

 ' Track the x-coordinate while laying out the bars.
 Dim x As Integer = 0

 ' Leave some space at the top.
 Dim topMargin As Integer = 5

 ' Leave some space between bars.
 Dim barGap As Integer = 4

 For Each bar As BarItem In Bars
 Dim barHeight As Integer = bar.Value / maxValue * (Me.Height - topMargin)
 Dim top As Integer = Me.Height - barHeight

 barRectangles.Add(New Rectangle(x + barGap / 2, top, _
 barWidth - barGap, barHeight))
 x += barWidth
 Next

 ' Trigger a repaint.
 Invalidate()
End Sub

You might have expected to create the Rectangle objects as a part of the painting logic.
However, doing so in the RebuildChart() method has several benefits. First of all, it improves
performance, because the chart may be invalidated and refreshed multiple times (for example,
when the form is minimized or resized) without needing to be rebuilt each time. Most impor-
tantly, it keeps the Rectangle objects around for hit testing later on. If you didn’t create the
Rectangle objects, you wouldn’t be able to make the chart interactive.

Macdonald_694-3C12.fm Page 413 Wednesday, July 26, 2006 10:56 AM

414 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

Painting the Chart

The simplest part of the painting process is the OnPaintBackground() method, which fills the
area behind the charts with a gentle blue gradient. To simplify this task, the region is filled
using the VisualStyleRenderer class (described in Chapter 7), which uses Windows XP themes.
Unfortunately, you can’t assume that all computers support visual styles, so backup drawing
logic uses a plainer solid fill if the operating system doesn’t support themes or the user has
switched them off.

Protected Overrides Sub OnPaintBackground(ByVal e As PaintEventArgs)
 If Application.RenderWithVisualStyles Then
 ' Use part of the current theme.
 Dim renderer As New VisualStyleRenderer(_
 VisualStyleElement.ExplorerBar.NormalGroupBackground.Normal)
 renderer.DrawBackground(e.Graphics, e.ClipRectangle)
 Else
 ' Use a solid fill with the BackColor.
 Dim brush As New SolidBrush(MyBase.BackColor)
 e.Graphics.FillRectangle(brush, e.ClipRectangle)
 brush.Dispose()
 End If
End Sub

The OnPaint() routine has the code for drawing the individual bars. It steps through the
collection of bars and draws each one onto the form with the appropriate proportional size. To
simplify the heavy lifting, the bars are drawn using the VisualStyleRenderer class. In this case,
the Start bar style is used, which creates a bold blue bar if you’re using the Default Windows XP
theme. If visual styles aren’t supported, more-straightforward shadowed rectangles are used
instead. (You could create your own bar that mimics Windows XP visual styles, but it requires
a significant amount of extra code.)

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 MyBase.OnPaint(e)
 If Bars.Count = 0 Then Return

 For Each rect As Rectangle In barRectangles
 If Application.RenderWithVisualStyles Then
 Dim renderer As new VisualStyleRenderer(_
 VisualStyleElement.StartPanel.UserPane.Normal)
 renderer.DrawBackground(e.Graphics, rect)
 Else
 ' Draw bar (two rectangles are used for a shadowed effect).
 Dim shadowMargin As Integer = 4
 Dim rectShadow As Rectangle = rect
 rectShadow.Offset(shadowMargin, shadowMargin)

 e.Graphics.FillRectangle(Brushes.White, rectShadow)
 e.Graphics.FillRectangle(Brushes.SteelBlue, rect)
 End If

Macdonald_694-3C12.fm Page 414 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 415

 Next
 ...

The BarItem.ShortForm text is also drawn onto each bar in a second pass, which assures
that long titles won’t be obscured by adjacent bars. Finally, a bottom base line is added to
frame the chart.

 ...
 Dim index As Integer = 0
 For Each rect As Rectangle In barRectangles
 ' Get title.
 Dim text As String = bars(index).ShortForm

 ' Get the position.
 Dim textTopOffset As Integer= 10
 Dim textLeftOffset As Integer = 15
 Dim ptText As Point = rect.Location
 ptText.Offset(textTopOffset, textLeftOffset)

 ' Draw the title.
 e.Graphics.DrawString(text, Font, Brushes.White, ptText)
 index += 1
 Next

 ' Draw bottom line of the the grid.
 Dim pen As New Pen(Color.Black, 3)
 e.Graphics.DrawLine(pen, 0, MyBase.Height - 1, _
 MyBase.Width, MyBase.Height - 1)
 pen.Dispose()
End Sub

The code that follows creates a simple chart when the form first loads. The chart is shown
in Figure 12-5 (in both its native themed look and the more basic style it uses when visual styles
aren’t available).

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 simpleChart1.Bars.Add(new BarItem("Sales 2002", 10000))
 simpleChart1.Bars.Add(new BarItem("Sales 2003", 20000))
 simpleChart1.Bars.Add(new BarItem("Sales 2004", 5000))
 simpleChart1.Bars.Add(new BarItem("Sales 2005", 27000))
 simpleChart1.RebuildChart()
End Sub

Macdonald_694-3C12.fm Page 415 Wednesday, July 26, 2006 10:56 AM

416 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

Figure 12-5. The SimpleChart, with and without visual styles

If you want to start tweaking the SimpleChart control, there are several interesting avenues
to explore. You might want to start by developing a better axis, allowing customizable bar captions,
giving options for a legend and customizable title alignment, or creating a pie-chart mode.
Adding these enhancements is relatively straightforward. However, even though it’s concep-
tually easy to create a charting control, it can require a huge amount of drawing code. For that
reason, it’s worth considering third-party charting controls.

Making the Chart Interactive

Creating a charting control like SimpleChart is fairly easy, because it doesn’t need to interact
with the user, receive focus, accept input, and so on. Instead, it draws itself in one pass and
then sits on the form as a static piece of user interface.

However, thanks to the carefully segmented design of the SimpleChart, you can make
it interactive without much extra work. The trick is to react to events like MouseMove and
MouseClick and test to see if the mouse is in the region of one of the bar rectangles. If it is, you
can take additional steps, like firing a BarItemClick event to the application, showing a tooltip,
or highlighting the selected bar.

The following example uses this approach to react to mouse movements. Each time the
mouse moves over a bar item, the value of the corresponding BarItem object is shown in a tooltip,
using a ToolTip component that’s been added to the design surface of the SimpleChart control.

Protected Overrides Sub OnMouseMove(ByVal e As MouseEventArgs)
 ' Hit test all the bars.
 Dim index As Integer = 0
 For Each rect As Rectangle In barRectangles
 If rect.Contains(e.Location) Then
 ' Get matching value.
 Dim text As String = String.Format("{0:C}", Bars(index).Value)

Macdonald_694-3C12.fm Page 416 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 417

 ' Get point relative to the top-left corner of the form
 ' (currently the point is relative to the top-left corner
 ' of the chart control).
 Dim pt As Point = e.Location
 pt.Offset(MyBase.Location)
 toolTip1.Show(text, MyBase.FindForm(), pt)
 Return
 End If
 index += 1
 Next

 ' No bar found.
 toolTip1.Hide(MyBase.FindForm())
End Sub

Figure 12-6 shows the tooltip that appears.

Figure 12-6. Interacting with the bars in the SimpleChart

You could easily extend this framework, so the user can manipulate individual bar objects.
A similar example in Chapter 23 demonstrates a dynamic drawing application in which shape
objects can be manipulated freely.

The CollapsiblePanel Control
The last control you’ll consider is a Windows XP standby that’s finally available in the .NET
world. It’s a CollapsiblePanel developed by Microsoft and designed to mimic the Windows XP
common task pane, which is shown on the side of many standard windows (see Figure 12-7).

Macdonald_694-3C12.fm Page 417 Wednesday, July 26, 2006 10:56 AM

418 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

Figure 12-7. The common task pane in Windows XP

This panel has several noteworthy features:

• It supports Windows XP themes, giving it a slick look with a detailed gradient background.

• It supports collapsing. When you click the arrow button in the top-right corner, the
panel is reduced to just its header. You can click the arrow button again to expand the
panel. In Figure 12-7, the Other Places panel is collapsed.

The .NET version of the collapsible panel duplicates this functionality (see Figure 12-8).

Figure 12-8. The .NET CollapsiblePanel, expanded (left) and collapsed (right)

The CollapsiblePanel is particularly useful when generating dynamic interfaces. For
example, you can stack multiple CollapsiblePanel controls one on top of the other and dock
them all to the top of the form. This ensures that as one panel collapses, all the panels underneath
shift up. To get even fancier, you can put CollapsiblePanel controls in the FlowLayoutPanel
(discussed in Chapter 21). Then, set the FlowLayoutPanel.Margin property to add a basic
amount of space between each CollapsiblePanel, and set the FlowLayoutPanel.Padding property

Macdonald_694-3C12.fm Page 418 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 419

to add some space between the FlowLayoutPanel borders and the CollapsiblePanel controls
inside. With this approach, you can duplicate the look of the Windows XP common tasks pane
(see Figure 12-9).

Figure 12-9. Dynamic interfaces with the CollapsiblePanel

Although the code for the CollapsiblePanel is too long to repeat in its entirety (download
the full code with the sample content for this book), it’s fairly easy to pick out the important
details using the concepts that you’ve explored in this chapter.

The CollapseButton

The CollapsiblePanel control is divided into two pieces (not including the classes for design-
time support):

• The CollapsiblePanel derives from the base Panel class and adds the custom drawing
code and the collapsing logic.

• The CollapseButton represents the header of the panel, including the title and the arrow
button shown in the top-left corner, which you can use to collapse and expand the panel.

Both of these controls draw their interfaces from scratch using the VisualStyleRenderer
class, which means they are supported only in Windows XP. If you need to use this control with
other types of clients, you’ll need to extend the drawing logic to check for visual style support
and gracefully downgrade.

The code for the button consists of a fair bit of painting logic. It adjusts the rendering
depending on whether the mouse is hovering over the button, has just clicked it, and so on.
Although this code is fairly lengthy (because of the range of possible states), the actual drawing
process is straightforward, because it’s all built into the VisualStyleRenderer. For example,
here’s the code needed to paint a button if it’s been pressed:

Macdonald_694-3C12.fm Page 419 Wednesday, July 26, 2006 10:56 AM

420 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

If Not Collapsed Then
 If (State And StateButtonState.Pressed) <> 0 Then
 renderer = New VisualStyleRenderer(_
 VisualStyleElement.ExplorerBar.NormalGroupCollapse.Pressed)
 End If
 ...
Else
 ...
End If

Of course, the button does double duty as an expand button, as well. Note the slightly
different VisualStyleElement you need to use to draw the “down” arrow button (rather than the
“up” arrow button) if the panel is collapsed:

renderer = New VisualStyleRenderer(_
 VisualStyleElement.ExplorerBar.NormalGroupExpand.Pressed)

There’s also a fair bit of basic boilerplate code for handling mouse movements and mouse
clicks, updating the state appropriately, and raising the related events. Most of this logic is
standard for any button control. You can see the full code with the online content. For a walk-
through of how to create a custom button, see Chapter 23.

Collapsing the Panel

The CollapsiblePanel class contains the most interesting logic. It provides a single CollapseButton
that, when clicked, initiates the collapsing or expanding process. The button is configured in
the control constructor.

Private button As CollapseButton
Private timer As Timer

Public Sub New()
 ResizeRedraw = True
 DoubleBuffered = True

 ' Set up the button.
 button = New CollapseButton()
 button.Size = New Size(this.Width, 25)
 button.Location = New Point(0, 0)
 button.Font = New Font("Tahoma", 8.0, FontStyle.Bold)
 button.Dock = DockStyle.Top
 AddHandler button.Click, AddressOf button_Click
 MyBase.Controls.Add(button)

 ' Set up the timer.
 timer = new Timer()
 timer.Interval = 25
 AddHandler timer.Tick, AddressOf timer_Tick
End Sub

Macdonald_694-3C12.fm Page 420 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 421

The automatic resizing is handled in much the same way as the scrolling in the
MarqueeLabel. When the operation is started (either programmatically or by clicking the
CollapseButton), a timer is switched on. Here’s the (slightly shortened) code:

' Tracks collapsed/expanded state of control.
Private collapsing As Boolean
' Track old height.
Private oldHeight As Integer

Private Sub button_Click(ByVal sender As Object, ByVal e As EventArgs)
 If Not collapsing Then
 PerformCollapse()
 Else
 PerformExpand()
 End If
End Sub

Public Sub PerformCollapse()
 oldHeight = Height
 collapsing = True

 ' Prevent child controls from being laid out until process is finished.
 SuspendLayout()
 timer.Enabled = True
End Sub

Public Sub PerformExpand()
 collapsing = False

 ' Prevent child controls from being laid out until process is finished.
 SuspendLayout()
 timer.Enabled = True
End Sub

Each time the timer fires, the size of the panel is changed until the process is complete and
the timer can be disabled.

' Incremented to increase the speed of the resize as the process goes on.
Private accelerator As Integer

Private Sub timer_Tick(ByVal sender As Object, ByVal e As EventArgs)
 If collapsing Then
 ' Collapse one increment.
 Me.Size = New Size(Me.Width, Me.Height - 2 - accelerator)

Macdonald_694-3C12.fm Page 421 Wednesday, July 26, 2006 10:56 AM

422 C H A P T E R 1 2 ■ O W N E R -D R A W N C O N T R O L S

 ' Check if process is finished.
 If Me.Height <= 25 Then
 Me.Size = New Size(Me.Width, 25)
 timer.Enabled = False
 button.Collapsed = True
 accelerator = 0
 ResumeLayout()
 End If
 Else
 ' Expand one increment.
 Me.Size = New Size(Me.Width, Me.Height + 2 + accelerator)

 ' Check if process is finished.
 If Me.Height >= oldHeight Then
 Me.Size = New Size(Me.Width, oldHeight)
 timer.Enabled = False
 button.Collapsed = False
 accelerator = 0
 ResumeLayout()
 End If
 End If
 accelerator += 1
End Sub

Painting the Panel

The painting logic for the panel is surprisingly straightforward. Thanks to the visual renderer,
there’s not much work to do at all:

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim renderer As New VisualStyleRenderer(_
 VisualStyleElement.ExplorerBar.NormalGroupBackground.Normal)
 renderer.DrawBackground(e.Graphics, e.ClipRectangle)

 If Not timer.Enabled Then MyBase.OnPaint(e)
End Sub

If you wanted to make this control work without visual styles, you could simply fall back on
the base implementation of the Panel.OnPaint() method, which fills a solid background with
the background color. This wouldn’t change the collapsing feature of the panel.

Macdonald_694-3C12.fm Page 422 Wednesday, July 26, 2006 10:56 AM

C H A P T E R 1 2 ■ O W N E R - D R A W N C O N T R O L S 423

The Last Word
GDI+ controls represent the fusion of two remarkable features: a powerful drawing framework
and .NET’s simple and elegant class-based control development. The potential for owner-
drawn .NET controls is limitless, and major tool vendors have developed countless complex
.NET controls. Look for these on the Internet—some are even available to experiment with at
no cost.

One topic that we haven’t considered so far is Visual Studio’s sometimes quirky design-
time support of custom controls. The next chapter takes some of the controls you’ve been
working with and develops the designers and type editors that allow them to behave properly
in the IDE.

Macdonald_694-3C12.fm Page 423 Wednesday, July 26, 2006 10:56 AM

Macdonald_694-3C12.fm Page 424 Wednesday, July 26, 2006 10:56 AM

425

■ ■ ■

C H A P T E R 1 3

Design-Time Support
for Custom Controls

The custom controls you have explored so far are full of promise. Being able to drop a tool-like
directory browser or thumbnail viewer directly into your application without writing a line of
extra code is a remarkable advantage.

However, even though your custom code might work perfectly at runtime, that doesn’t
mean it will behave itself at design time. Common problems include properties that you can’t
edit at design time and properties that are mysteriously reset when you recompile the application.
To correct these quirks, you need to apply attributes, create new classes, and write additional
code to implement design-time support.

Overall, design-time issues fall into several categories:

• Allowing the developer to add your control to a form and configure it at design time.

• Ensuring the developer’s configuration steps are properly serialized into the form code,
so the control can be successfully initialized when the program is executed.

• Ensuring the control behaves nicely at runtime. For example, you might want to select
individual parts of the control, see a realistic representation of the runtime appearance,
and so on.

• Giving design-time shortcuts for complex configuration tasks (right-click context
menus, smart tags, advanced editors for specialized properties, and so on).

• Using licensing to differentiate between development and runtime use of a control and
restricting use according to your license policy.

In this chapter, you’ll tackle the first three items on this list. In other words, you’ll concentrate
on using design-time support to make sure your control works as it should and steers clear of
common design-time problems. You won’t consider adding frills like custom smart tags and
designers—those topics are discussed in Chapter 26.

Design-Time Basics
Custom controls have two requirements. They need to interact with your code and the user at
runtime, and they need to interact with Visual Studio and the developer at design time. These

Macdonald_694-3C13.fm Page 425 Friday, June 30, 2006 1:29 PM

426 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

two tasks are related, but they can be refined and customized separately. Some of the most
advanced Windows Forms controls include an impressive degree of design-time smarts.

You’ve already seen how Visual Studio gives a basic level of support to all custom controls
by adding them to the Toolbox automatically when the project is compiled and by allowing you
to drop them onto other forms. Once you insert a custom control, you can configure its properties
in the Properties window. However, there’s still a lot more that the design-time behavior of a
control can offer.

Many of the techniques you’ll see are niceties that make it easier to work with custom
controls. For example, you might use design-time support to add descriptions in the Properties
window or commands in a context menu for your control. However, there are other cases
where design-time customization is required. For example, if you create a control that exposes
complex objects as properties and you don’t take any extra steps to add design-time support,
the control will work erratically in the design-time environment. You might have trouble
setting properties with the Properties window, or you might discover that when you do the
information is abruptly wiped out. These quirks are a result of how Visual Studio serializes your
control properties into source code, and you’ll learn how to tackle these issues in this chapter.

■Note This chapter talks about design-time control features as seen in Visual Studio. However, the
.NET Framework actually provides a generic design-time model that can be used by third-party tools (like
SharpDevelop). Other IDEs may not provide all the same services as Visual Studio, though. Generally, all IDEs
will include at least a design surface and a Properties window.

The Key Players
In .NET, there’s no single class that provides design-time support. Instead, a number of
different ingredients are involved. They include the following:

• Attributes. You apply attributes to parts of your control for several reasons. First,
these attributes supply information that will be used in the Properties window.
Second, attributes attach other design-time components to your control and
configure how properties are serialized.

• Type converters. Type converters allow complex or unusual data types to be converted
to and from representations in more common data types. For example, if you create a
type editor that lets you convert a custom data type to and from a string representation,
you can then view and edit a control property that uses that data type in the Properties
window. Type converters can also play a role in code serialization by generating the
initialization code required to instantiate a complex type.

• Type editors. Type editors provide a graphical interface for setting complex type values.
For example, when you choose a color or font in the Properties window, you’re making
use of a type editor for that data type.

• Control designers. Control designers are the heavyweights of custom control development.
Every control has a control designer that manages its design-time appearance and behavior.
You can use a custom control designer to add frills like smart tags or manage more-complex
details like the design-time selection behavior. You can also use a designer to hide properties
in your control class at design time or add design-time-only properties.

Macdonald_694-3C13.fm Page 426 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 427

In this chapter, you’ll consider all of these ingredients. You’ll begin by considering how
you can outfit your control with a custom toolbox icon and proper support for the Properties
window. Next, you’ll learn how to shape basic control serialization into source code. Finally,
you’ll consider how to create type converters and type editors to deal with your custom data
types. However, you won’t look at custom control designers yet—you’ll get that material in
Chapter 26.

Basic Attributes
The first level of design-time support consists of control attributes—declarative flags that are
compiled into the metadata of your custom control assembly. Attributes give you a way to add
information that’s related to a piece of code without forcing you to change the code or create a
separate file in an entirely different format.

In .NET, attributes are used for a range of tasks. The key detail to understand about attributes
is that they can be read and interpreted by different agents. For example, you can add attributes
that give information to the common language runtime, the compiler, the debugger, or a
custom tool. In this chapter, we’re primarily interested in attributes that provide information
to Visual Studio, and tell it how to work with a control at design time.

For an example, consider the Progress user control developed in Chapter 10. This control
displays a synchronized label paired with a progress bar. To make it work, three properties
were added: Value, Step, and Maximum. You may have noticed that these properties appear in
the design window grouped under the generic Misc category without any additional informa-
tion (see Figure 13-1).

Figure 13-1. Nondescript properties

You can improve on this situation using attributes. For example, here’s how you could
place the Value property into the Behavior category:

Macdonald_694-3C13.fm Page 427 Friday, June 30, 2006 1:29 PM

428 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

<Category("Behavior")> _
Public Property Value() As Integer
 Get
 Return Bar.Value
 End Get
 Set(ByVal value As Integer)
 Bar.Value = value
 UpdateLabel()
 End Set
End Property

When you add more than one attribute, you can close them all in a single set of brackets
(separated by commas), or you can place each one in its own set. Here’s an example that adds
a Description and Category attribute to the Value property:

<Description("The current value (between 0 and Maximum) which sets " & _
 "the position of the progress bar")> _
<Category("Behavior")> _
Public Property Value() As Integer
 ...
End Property

The result of applying these attributes is shown in Figure 13-2.

Figure 13-2. A property configured with attributes

All these attributes are found in the System.ComponentModel namespace, along with
many more that allow you to configure aspects of your control’s design-time behavior. Table 13-1

Macdonald_694-3C13.fm Page 428 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 429

lists some of the attributes that affect the Properties window. You’ll look at more attributes as
this chapter progresses.

Table 13-1. Attributes for Control Properties

Attribute Description

AmbientValue(True|False) If True, indicates that the value for a property is
derived from the control’s container. For example,
all controls have ambient Font, ForeColor,
BackColor, and Cursor properties—if these values
are not set, the values of the container are used
automatically. The default is False.

Browsable(True|False) If False, indicates that a property should not be
shown in the Properties window. However, the
property is still accessible through code and is still
a candidate to be serialized into code if the value is
different from the default value. The default is True.

Category("") Sets the category under which the property
appears in the Properties window. If a category
with this name doesn’t exist, it is created.

Description("") Specifies the text description that will be displayed
for this property in the Object Browser and the
Properties window.

DesignOnly(True|False) When set to True, the value of this property is not
serialized even though it can be modified at design
time. However, the attribute name is somewhat
misleading—design-only properties can still be
read at runtime. One example might be a property
that determines how a control is localized. The
default is False.

ImmutableObject(True|False) When set to True on an object property, this
attribute ensures that the subproperties of this
object are displayed as read-only. For example,
if you apply this to a property that uses a Point
object, the X and Y subproperty will be read-only.
The default is False.

MergableProperty(True|False) Configures how the Properties window behaves
when more than one instance of this control are
selected at once. If False, the property is not
shown. If True (the default), the property can be
set for all selected controls at once.

NotifyParentProperty(True|False) Set this to True to indicate that a parent property
should receive notification about changes to the
property’s value (and update its display accord-
ingly). For example, the Size property has two
nested properties: Height and Width. These nested
properties should be marked with this attribute.
The default is False.

Macdonald_694-3C13.fm Page 429 Friday, June 30, 2006 1:29 PM

430 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

A few attributes can be applied to your custom control class declaration, rather than a specific
property. These include two attributes that set the default event and property (as described in
Table 13-2).

The Progress user control doesn’t raise any new events, so the DefaultEvent attribute isn’t
of much use. However, here’s how you could use these attributes with the DirectoryTree
developed in Chapter 11:

<DefaultEvent("DirectorySelected")> _
<DefaultProperty("Drive")> _
Public Class DirectoryTree
 Inherits TreeView
 ...
End Class

ParenthesizePropertyName(True|False) When True, indicates that the property should be
displayed with brackets around it in the Properties
window (like the Name property). The default
is False.

PasswordPropertyText(True|False) When True, the value for this property will be
displayed in the Properties window with bullets
that mask the underlying value. This affects display
only, and the real value is still visible in the
serialized code. The default is False.

ReadOnly(True|False) When True, this property is read-only in the
Properties window at design time and by default, its
value is not serialized into code. The default is False.

RefreshProperties() You use this attribute with a value from the
RefreshProperties enumeration. It specifies
whether the rest of the Properties window must
be updated when this property is changed (for
example, if one property procedure could change
another property).

Table 13-2. Basic Control-Class Attributes

Attribute Description

DefaultEvent When the application programmer double-clicks your control, Visual Studio
automatically adds an event handler for the default event.

DefaultProperty The DefaultProperty is the property that is highlighted in the Properties
window by default the first time the control is selected.

Table 13-1. Attributes for Control Properties (Continued)

Attribute Description

Macdonald_694-3C13.fm Page 430 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 431

You can also use other advanced attributes to control serialization and type conversion,
support licensing, and attach a control designer that manages one or more aspects of the
control’s design-time behavior.

Attributes and Inheritance
When you derive a control from a base class that has design-time attributes, the control inherits the
design-time functionality of its parent, just like it inherits the methods and properties. If the
parent class’s implementation of the design-time attributes is sufficient for your control, you
do not need to reapply them.

However, in some cases you might want to change the design-time behavior of an existing
property. In this case, you must first override the property, and reapply the changed attributes
or add the new ones.

Most of the properties in base classes like Control are marked as virtual, allowing you to
change their behavior. However, this isn’t always the case. For example, consider the Project-
Tree example in Chapter 11. There, the tree is filled using higher-level methods, and you don’t
want the control consumer to see or be able to edit the Nodes property directly at design time.
It might occur to you to solve this problem by overriding the Nodes property and using the
Browsable attribute to hide it, so it won’t appear in the Properties window:

<Browsable(False)> _
Public Overrides Property Nodes() As TreeNodeCollection
 ...
End Property

Unfortunately, the Nodes property isn’t overridable, so this approach won’t work. Instead,
you need to disable design-time display of the directory tree altogether (as demonstrated in the
sample code included for this chapter), or you need to use the more advanced technique of control
designers. Chapter 26 shows a version of the DirectoryTree control that uses a control designer.

The Toolbox Bitmap
Adding a toolbox icon is refreshingly easy. All you need to do is add a bitmap to your project
and ensure it has the same file name as your custom control class. This bitmap must meet a few
basic criteria:

• It must be 16 pixels by 16 pixels. Otherwise, Visual Studio attempts to scale it, and the
results will be ugly.

• It must use only 16 colors.

Once you add the file, use the Properties window to set the build action for it to Embedded
Resource. Then, recompile the control project. Figure 13-3 shows an example: the DirectoryTree
control project with the required image file.

Macdonald_694-3C13.fm Page 431 Friday, June 30, 2006 1:29 PM

432 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Figure 13-3. Configuring a toolbox bitmap

When you add the control to the toolbox (right-click it, select Choose Items, and browse to
your control assembly), you’ll see the new bitmap appear in the toolbox, as shown in Figure 13-4.
However, the toolbox icons that are automatically added to the project-specific section of the
toolbox always use the gear icon.

Figure 13-4. A custom toolbox bitmap

You can also attach a bitmap explicitly using the System.Drawing.ToolboxBitmap attribute.
There are typically two reasons for taking this step—either you want to use a different name for
your bitmap file, or you want to reuse an image from another control. For example, if you want
to associate the image file DirTree.bmp with the DirectoryTree control, you’d add the DirTree.bmp
image file as an embedded resource and then use the following attribute on the control to link
the two:

Macdonald_694-3C13.fm Page 432 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 433

<ToolboxBitmap(GetType(DirectoryTree), "DirTree.bmp")> _
Public Class DirectoryTree
 Inherits TreeView
 ...
End Class

Or if you’ve placed your image in a project subfolder named images, you’d need to change
your attribute as shown here:

<ToolboxBitmap(GetType(DirectoryTree), "images.DirTree.bmp")> _
Public Class DirectoryTree
 Inherits TreeView
 ...
End Class

For a more convenient shortcut, you can steal the toolbox bitmap from the standard
TreeView control using this attribute:

<ToolboxBitmap(GetType(TreeView))> _
Public Class DirectoryTree
 Inherits TreeView
 ...
End Class

Debugging Design-Time Support
Developing good design-time support for your control requires a different set of considerations
than creating its basic functionality. If you test your custom control in a project with the control
source code, you are able to set breakpoints and use other debugging tricks. However, what if
you want to use breakpoints to debug the design-time behavior? For example, you might want
to test how your control reacts to selection or changes to values through the Properties window.
You have a couple of options to perform this testing.

One good approach is to use .NET’s specialized PropertyGrid control. This control is an
exact replica of the Properties window contained in the Visual Studio environment. You can
add this control to a form, and use it to run your custom control through its paces by modifying
any of its properties. (This is a good habit to get into—if you try to set invalid property values,
you’ll probably discover that your control isn’t as successful as you expect at rejecting them.)
By default, the PropertyGrid control doesn’t appear in the toolbox. To add it, you need to right-
click the Toolbox, select Choose Items, and find it in the list. You can then drag the PropertyGrid
onto a test form.

The PropertyGrid provides properties that allow you to format its appearance and configure
its display. The most important property is SelectedObject. When you set the SelectedObject to
an instance of a control, the grid automatically fills with a list of all the available properties.
(You can perform this step at design time using the Properties window or at runtime.) Now,
when you change a property in the grid, it’s applied to the control immediately. Figure 13-5
shows a test project that combines an instance of the DirectoryTree control with a PropertyGrid.

Macdonald_694-3C13.fm Page 433 Friday, June 30, 2006 1:29 PM

434 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Figure 13-5. Testing controls with the PropertyGrid

■Tip Interestingly, you can use the PropertyGrid control with any object, regardless of whether it is a
control, component, or simple class. The PropertyGrid allows you to modify any public property exposed by
the class.

If you’re working with a user control, you don’t even need to create a test form, because
Visual Studio has a convenient shortcut in store. Just launch your class library directly. Visual
Studio automatically shows a sample form that hosts your user control and provides a
PropertyGrid to tweak it. If your project has more than one user control, just choose the one
you want to test from the drop-down list (as demonstrated in Figure 13-6) and click Load.
Sadly, this won’t work with any other type of control.

The PropertyGrid is useful for a variety of tasks, but it doesn’t represent all of Visual
Studio’s design-time functionality. For example, you might want to debug how your control
acts when it’s resized on the form designer, or step through the code that implements a custom
smart tag.

Microsoft offers an impressive component that can help you—the DesignModeDialog.
The DesignModeDialog can create a design-mode representation of any form, complete with
support for dragging, resizing, snap lines, and more.

■Note The DesignModeDialog isn’t part of the .NET Framework. Instead, it’s a proof-of-concept sample
written in C#. You can download it form Www.windowsforms.net, and you can find it included with the code
for this chapter.

Macdonald_694-3C13.fm Page 434 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 435

Figure 13-6. Automatic support for testing user controls

To use the DesignModeDialog component, simply instantiate a test form, as you
would normally. You also need to add each of the properties you want to design to the
DesignModeDialog.PropertiesToDesign collection. You can do this using the Properties
window, but here’s a code-only example:

Dim dialog As New DesignModeDialog()

' Set the form you want to run in design mode.
dialog.HostForm = Me

' Specify the properties that should appear in the PropertyGrid.
dialog.PropertiesToDesign.Add("Items")
dialog.PropertiesToDesign.Add("AutoSize")
dialog.PropertiesToDesign.Add("Size")
dialog.PropertiesToDesign.Add("Text")
dialog.PropertiesToDesign.Add("Font")
dialog.PropertiesToDesign.Add("Location")
dialog.PropertiesToDesign.Add("ForeColor")
dialog.PropertiesToDesign.Add("BackColor")
dialog.PropertiesToDesign.Add("Anchor")
dialog.PropertiesToDesign.Add("Dock")
dialog.PropertiesToDesign.Add("ClientSize")

Macdonald_694-3C13.fm Page 435 Friday, June 30, 2006 1:29 PM

436 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

' Show the form with the design-time representation of the host form.
designModeDialog1.ShowDialog()

You don’t need to specifically designate the controls you want to design. They’re all
designable.

The DesignModeDialog.ShowDialog() method opens a new window with a design-time
view onto your form (see Figure 13-7). Essentially, the DesignModeDialog takes a snapshot of
the parent form, clones all the controls, and then creates a new designer form that includes
these exactly duplicated controls and a PropertyGrid to edit them. When the form is closed, all
the changes are pushed back to the original control objects (although this obviously affects
only the current in-memory instance of your application, not the serialized designer code
you’ve created in Visual Studio).

Figure 13-7. Debugging an arbitrary form in design mode

The amazing thing about this designer form is that not only can you change properties
using the PropertyGrid, but you can also drag, resize, and remove controls. (Smart tags and
some other details don’t work in the current implementation, however.) Keep in mind that as
you make these changes, you’re working with a copy of your form, not changing the actual
code in your project.

Of course, there’s no substitute for testing design-time support in the host that’s used by
almost every Windows developer—Visual Studio. So why not debug the Visual Studio IDE
itself? To accomplish this, add your control to the toolbox, and then configure your custom
control project to start Visual Studio (devenv.exe) when you run your project, as shown in
Figure 13-8. Now when you run your project, it launches a second instance of Visual Studio.
You can now set breakpoints in your control code or custom designer code that will be triggered
as the control is manipulated in the IDE.

Macdonald_694-3C13.fm Page 436 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 437

Figure 13-8. Debugging design-time support

Code Serialization
When you configure control properties in the Properties window, Visual Studio needs to be
able to create the corresponding code statements in the InitializeComponent() method of the
containing form. This process is called code serialization, and it often works automatically
without a hitch. However, there’s a fair bit you can do to optimize the process, and there’s addi-
tional work you’ll need to undertake if you use properties that are, themselves, complex types.

Basic Serialization
The basic serialization rules that Visual Studio follows are quite simple. Essentially, Visual Studio
inspects the public read/write properties of a control and generates the corresponding state-
ments that set them. Visual Studio doesn’t respect the order in which you actually set the
properties at design time. Instead, it simply sets properties in alphabetical order.

For example, if you drop a straightforward button onto a form, you’ll generate serialized
code that looks like this:

'
' button1
'
Me.button1.Location = New System.Drawing.Point(84, 122)
Me.button1.Name = "button1"
Me.button1.Size = New System.Drawing.Size(85, 23)
Me.button1.TabIndex = 0
Me.button1.Text = "Submit"

Macdonald_694-3C13.fm Page 437 Friday, June 30, 2006 1:29 PM

438 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Fortunately, with a properly designed control (like the Button), Visual Studio won’t attempt
to serialize every property. If it did, the designer code for a simple form would be swamped
with unnecessary code statements that simply apply default property values. However, the
control projects that you’ve seen so far don’t take this precaution, and you’ll find that Visual
Studio serializes everything, including the initial property values (the values that are set in your
control’s constructor and its member variable declarations). For example, when you add the
Progress user control to a form, you’ll see code like this:

'
' status
'
Me.status.Location = New System.Drawing.Point(12, 8)
Me.status.Maximum = 100
Me.status.Name = "status"
Me.status.Size = New System.Drawing.Size(272, 88)
Me.status.Step = 10
Me.status.TabIndex = 0
Me.status.Value = 0

In this case, the Maximum, Step, and Value properties use the default values set in the
control. However, Visual Studio doesn’t know this, so it adds the code to serialize this information,
even though it isn’t needed. To avoid this problem, you need to add a little more intelligence to
your controls via the attributes shown in Table 13-3.

Table 13-3. Serialization Attributes for Control Properties

Attribute Description

DefaultValue() Sets the initial value that is used for this property when the
control is created. As long as a control property matches the
corresponding initial value, it’s not serialized.

DesignerSerializationVisibility() Configures whether or not a property should be
serialized, and if it is, how it should be serialized. The
DesignerSerializationVisibility() attribute is not taken into
account if the property is decorated with the ReadOnly
attribute.

Localizable(True|False) When set to True, the design-time value for this property is
stored in a resource file instead of in the generated code
when you’re using a localized form. This makes it easy to
swap the value later by introducing a new resource file.
When the user configures properties that don’t use this
attribute, the appropriate code is inserted in the hidden
designer region of the form, unless it requires a special data
type (like an image) that must be stored in a resource file.

Macdonald_694-3C13.fm Page 438 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 439

Default Values
You can avoid serialization of unnecessary information using the DefaultValue attribute. With
this attribute, you specify a default value (using any basic .NET data type, like a string, integer,
or Boolean value).

<DefaultValue(100)> _
Public Property Maximum() As Integer
 ...
End Property

Once this attribute is in place, Visual Studio will serialize the property only if the value is
changed in the design-time environment. (A change can happen directly—the developer modifies
the value in the Properties window—or indirectly—when the developer changes a different
property or makes a selection in another designer window.) Keep in mind that the DefaultValue
attribute doesn’t apply the value; it simply determines serialization. In other words, if you
specify a DefaultValue that isn’t really the default, you’ll run into trouble. For example, if you
initialize the progress bar to have a Maximum of 100 and you specify the default value as 50,
Visual Studio won’t serialize the property if it’s set to 50. However, when you run the form the
real default of 100 will apply, wiping out your settings. Thus, you should always make sure that
the DefaultValue attribute matches the actual default.

■Tip Using the DefaultValue attribute also allows the control consumer to reset a property value to its initial
value at design time. To do so, just right-click on the property, and choose Reset.

The DefaultValue attribute works wonders if you’re using a simple data type, but what if
you’re dealing with a more sophisticated object, like a Color or Font? Unfortunately, code like
this won’t work:

<DefaultValue(New Font("Tahoma", 8, FontStyle.Regular))> _

The problem is you can’t supply any nonconstant expression to an attribute constructor,
which includes all objects. That’s because the attribute information is evaluated when your
code is compiled, not when the class is created.

But don’t give up just yet. There is an overload to the DefaultValue constructor that’s
designed to tackle this problem. It accepts two parameters: the data type and a string represen-
tation of the value. Using this constructor, you could specify a default font like this:

<DefaultValue(GetType(Font), "Tahoma, 8pt")> _

In this case, the string “Tahoma, 8pt” can be converted into a Font object, because the
Font class has an associated type converter that performs the work. (You’ll learn more about
creating type converters later in this chapter.) If you don’t have a type converter handy for your
data type, you can’t use the DefaultValue attribute at all. Instead, you’ll have to use the tech-
nique described in the next section.

Macdonald_694-3C13.fm Page 439 Friday, June 30, 2006 1:29 PM

440 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Incidentally, the Color type also has a type converter that allows you to supply a string with
a color name, like this:

<DefaultValue(GetType(Color), "Purple")> _

Making Serialization Decisions Programmatically
Usually, Visual Studio bases its decision about whether it should serialize a property on whether
the current value matches the value specified by the DefaultValue attribute. However, this isn’t
always the best approach. Sometimes you might want to make the decision to serialize or not
to serialize based on a different condition.

For example, imagine you’re creating a grid control that supports different configuration
modes. In its default mode, this control needs to serialize every property value explicitly. However,
it also supports an automatic mode that chooses property values based on the bound data source.
When you use the automatic mode, you don’t want to serialize the other property values.
To implement this design, you need to add an optional method for each property named
ShouldSerializePropertyName(). This method returns True if the property should be serialized
or False if it shouldn’t.

For example, if you have a property named Columns, you could add the following method:

Private Function ShouldSerializeColumns() As Boolean
 If mode = CustomGrid.AutoGenerateProperties Then
 ' Don't serialize the Columns property.
 Return False
 Else
 ' Serialize the Columns property.
 Return True
 End If
End Function

Another reason to use this approach is if your default value is a complex object, not a
simple data type. In that case, it’s awkward to create the object and supply it in the constructor
for the DefaultValue attribute. If you don’t have a suitable type converter, you won’t be able to
do it at all. This limitation doesn’t exist with the ShouldSerializeXxx() method, because it
creates the default using pure code.

For example, consider a variant of the DirectoryTree control shown in Chapter 11 that uses
a DriveInfo object instead of a char to track the currently selected drive. Here’s how you might
test if the drive object maps to the default drive (in this case, drive C:):

Private Function ShouldSerializeDrive() As Boolean
 If Drive IsNot Nothing AndAlso Drive.Name <> "C:" Then
 Return True
 Else
 Return False
 End If
End Function

Once you understand the technique, you can simplify this syntax:

Macdonald_694-3C13.fm Page 440 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 441

Private Function ShouldSerializeDrive() As Boolean
 Return Drive IsNot Nothing AndAlso Drive.Name <> "C:"
End Function

■Note The ShouldSerializeXxx() method is called after the property is set, so you can retrieve it and examine
it without a problem. It’s called just before Visual Studio serializes the property value to the InitializeComponent()
method.

In the previous example, the ShouldSerializeXxx() method checks if the current object
wraps the default drive. Life gets a little more complicated if you want to check if several properties
in an object match. For example, this code, which tests if the current Font matches a specified
default value, is flawed:

Private Function ShouldSerializeFont() As Boolean
 ' This compares the references, not the object content.
 Return Font IsNot New Font("Tahoma", 8, FontStyle.Bold))
End Function

The problem here is that the comparison checks to see if the two references are pointing
to the same object in memory (which they aren’t). But what you really want to do is compare
the content of the two objects. Depending on the object you’re dealing with, you may be able to
make use of another helper method, or you may need to compare all the properties you’re
interested in yourself. Fortunately, the Font object provides an Equals() method that performs
value comparison rather than reference comparison, and checks if two Font objects are equiv-
alent. Here’s the corrected code:

Private Function ShouldSerializeFont() As Boolean
 ' This compares the content of the two Font objects.
 Return Not Font.Equals(New Font("Tahoma", 8, FontStyle.Bold))
End Function

The ShouldSerializeXxx() method simply instructs Visual Studio whether or not to serialize a
value. If you use this method, you also need another method that works hand-in-hand with
ShouldSerializeXxx(). It’s the ResetPropertyName() method, and it’s called when the property
is reset (by right-clicking it in the Properties window and choosing Reset) and when the control
is first created to get the initial property value.

Here’s an example that sets the default value for the font:

Public Sub ResetFont()
 If Font IsNot Nothing Then Font.Dispose()
 Font = New Font("Tahoma", 8, FontStyle.Bold)
End Sub

If you decide to use the ShouldSerializeXxx() and ResetXxx() methods, don’t use the
DefaultValue attribute. These methods supersede it.

Macdonald_694-3C13.fm Page 441 Friday, June 30, 2006 1:29 PM

442 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Serialization Type
The DefaultValue attribute and the ShouldSerializeXxx() and ResetXxx() properties control
when a property is serialized. However, you also use the DesignerSerializationVisibility attribute to
prevent serialization or change how it takes place. You have three choices, listed in Table 13-4.

For example, you could use this code to make sure a property isn’t serialized:

<DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)> _
Public Property Value() As Integer
 ...
End Property

In this case, the property will still appear in the Properties window, and you will be able to
modify its value. However, the change won’t be persisted to code, so when you launch the
application, the property will revert to its default value.

■Tip Often, you’ll use the Browsable attribute to hide properties that aren’t serialized. If you use just the
Browsable attribute to hide a property but you don’t use the DesignerSerializationVisibility attribute to turn off
serialization, the property value may still be serialized. For example, if you set another property that has the
side effect of changing the nonbrowsable property, Visual Studio will still serialize its changed value, which is
probably not what you want. Thus, it’s a good idea to use the DesignerSerializationVisibility attribute to turn
off serialization when using the Browsable attribute to hide a property.

Serialization isn’t necessarily this easy. If one of your control properties is a nested object
(rather than a simple data type like a string of an integer), you’ll probably run into added difficul-
ties. That’s because creating the nested object might require the help of a specific constructor, or
properties might need to be set in a certain order. For this to work, you not only need to set the
DesignerSerializationVisibility to Content, but you also need to create a separate type converter
that can generate the required code. You’ll see this technique later in this chapter.

Table 13-4. Values From the DesignerSerializationVisibility Enumeration

Attribute Description

Visible This is the default value that applies if you don’t add the DesignerSerializationVisibility
attribute. In this case, the property should be serialized as usual.

Content This value instructs Visual Studio to serialize the entire content of an object. You
can use this value to serialize complex types with multiple properties.

Hidden This value specifies that a property shouldn’t be serialized at all.

Macdonald_694-3C13.fm Page 442 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 443

Batch Initialization
As you’ve seen, when control properties are serialized, they’re ordered alphabetically. This can
cause a problem if one property depends on another, and you’ve entered validation logic to
reject values that don’t make sense (as you should).

For example, you might create a control that exposes both a LowerBound and an
UpperBound property. In this case, you’ll want to ensure that the lower bound value is never
greater than upper bound, and vice versa:

Private _upperBound As Integer
Public Property UpperBound() As Integer
 Get
 Return _upperBound
 End Get
 Set(ByVal value As Integer)
 If value < LowerBound Then
 _upperBound = value
 Else
 Throw New ArgumentException(_
 "UpperBound must be greater than LowerBound.")
 End If
 End Set
End Property

Private _lowerBound As Integer
Public Property LowerBound() As Integer
 Get
 Return _lowerBound
 End Get
 Set(ByVal value As Integer)
 If UpperBound < value Then
 _lowerBound = value
 Else
 Throw New ArgumentException(_
 "UpperBound must be greater than LowerBound.")
 End If
 End Set
End Property

The problem occurs if you set both the UpperBound and LowerBound values at design
time. Here’s the designer code that will be generated:

control.LowerBound = 100
control.UpperBound = 500

This leads to an error, because at the point when the lower bound is set, the upper bound
is still 0.

Macdonald_694-3C13.fm Page 443 Friday, June 30, 2006 1:29 PM

444 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

There’s no way to alter the order in which this serialized code is generated. However, you
can give your control the ability to deal with out-of-order property setting by implementing
ISupportInitialize. When you do, you’ll be required to supply two methods: BeginInit(), which
is called before any properties are set, and EndInit(), which is called after all properties are set.
The serialized code becomes the following:

CType(control, ISupportInitialize).BeginInit()
control.LowerBound = 100
control.UpperBound = 500
CType(control, ISupportInitialize).EndInit()

On its own, this doesn’t solve anything. However, you code around the problem by setting
a member variable in the BeginInit() method that instructs the property procedures to skip
their validation logic:

Private intializing As Boolean
Private Sub BeginInit() Implements ISupportInitialize.BeginInit
 initializing = True
End Sub

Here’s how you’d rewrite the property procedures, so that they skip their validation if
you’re currently in initialization mode:

Public Property UpperBound() As Integer
 Get
 Return _upperBound
 End Get
 Set(ByVal value As Integer)
 If initializing Or value < LowerBound Then
 _upperBound = value
 Else
 Throw New ArgumentException(_
 "UpperBound must be greater than LowerBound.")
 End If
 End Set
End Property

Now, in the EndInit() method, you need to turn off initialization mode and check that the
data is valid:

Private Sub EndInit() Implements ISupportInitialize.EndInit
 initializing = False
 If upperBound < lowerBound Then
 Throw New ArgumentException(_
 "UpperBound must be greater than LowerBound.")
 End If
End Sub

Macdonald_694-3C13.fm Page 444 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 445

■Tip Because the designer code explicitly casts your control reference to ISupportInitialize in order to
access the BeginInit() and EndInit() methods, you’re free to make them private, as shown in the previous
example. This keeps them out of the public interface of your control, which is a little cleaner.

You can also use ISupportInitialize for the following reasons:

• To prevent invalidating an owner-drawn control multiple times when several properties
are set in quick succession. Instead, just invalidate the display in EndInit().

• To vary initialization or behavior based on whether the control is in design mode. You
can’t query the DesignMode property in the constructor, because the control isn’t sited
on the form yet. However, you can inspect the DesignMode property in the EndInit()
method.

• To hook up event handlers or perform initialization that requires all the other properties
to be already set.

For example, consider the MarqueeLabel control from Chapter 12. In order to make the
MarqueeLabel start scrolling, you need to call the Scroll() method manually in your code. To
simplify life, you could design the MarqueeLabel control, so it starts scrolling immediately
when it’s created. However, this would cause it to scroll both at runtime and at design time,
which is a waste of CPU time and an unnecessary distraction. Fortunately, there is a solution
that lets you prevent design-time scrolling without forcing you to call the Scroll() method. You
need to implement ISupportInitialize and check the DesignMode property in the EndInit()
method, as shown here:

Private Sub EndInit() Implements ISupportInitialize.EndInit
 If Not DesignMode Then
 tmrScroll.Enabled = True
 End If
End Sub

Localizable Properties
All of the Windows Forms controls included with .NET are highly localizable. That means you
can use the technique described in Chapter 5 to localize a form, creating multiple versions for
different cultures.

By default, when you create your own custom controls, none of the new properties you add
is localizable. This significantly reduces their value in applications that need to be localized.
Fortunately, there’s no reason to stick with this limitation. You can easily create a localizable
property just by adding the Localizable attribute.

For example, here are two string properties, only one of which is localizable:

Macdonald_694-3C13.fm Page 445 Friday, June 30, 2006 1:29 PM

446 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Private _nonLocalizableText As String
Public Property NonLocalizableText() As String
 Get
 Return _nonLocalizableText
 End Get
 Set(ByVal value As String)
 _nonLocalizableText = value
 End Set
End Property

Private _localizableText As String
<Localizable(True)> _
Public Property LocalizableText() As String
 Get
 Return _localizableText
 End Get
 Set(ByVal value As String)
 _localizableText = value
 End Set
End Property

To try this out, add this control to a form, and set both properties. If you examine the
serialized code, you won’t notice any difference yet. Here’s the sort of code you’ll see:

Me.localizableControl1.LocalizableText = "Test"
Me.localizableControl1.Location = New System.Drawing.Point(21, 12)
Me.localizableControl1.Name = "localizableControl1"
Me.localizableControl1.NonLocalizableText = "Test"
Me.localizableControl1.Size = New System.Drawing.Size(150, 150)
Me.localizableControl1.TabIndex = 0

However, if you start localizing your form (set the Localizable property of the form in the
Properties window to True), the code changes immediately. Now, this is all you’ll see:

resources.ApplyResources(Me.localizableControl1, "localizableControl1")
Me.localizableControl1.Name = "localizableControl1"
Me.localizableControl1.NonLocalizableText = "Test"

In other words, every property except Name and NonLocalizableText is localizable. These
properties (including Location, Size, TabIndex, and LocalizableText) are all relocated into a
.resx file for the form. You can browse them in Visual Studio to see the various values. The
designer code uses the ComponentResourceManager.ApplyResources() method, which reflects
on the control and fills in all its localizable properties.

As with serialization-to-code, Visual Studio serializes a localizable value only if it doesn’t
match the default value. Chapter 5 has more information about resources and localization.

Macdonald_694-3C13.fm Page 446 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 447

Type Conversion
The Properties window deals seamlessly with common data types. String data doesn’t present
a problem, but the Properties window can also convert strings to other types. For example, if
you look at the Font property, you’ll see a value such as “Tahoma, 8.25pt.” You can enter any
characters in this field, but if you try to commit the change (by pressing Enter or moving to
another field) and you’ve included characters that can’t be interpreted as a font, the change
will be rejected.

This behavior is made possible by type converters, specialized classes that are designed for
the sole purpose of converting a specialized data type to a string representation and back. Most
of the core .NET data types have default type converters that work perfectly well. (You can find
these type converters in the System.ComponentModel namespace.) However, if you create
your own structures or classes and use them as properties, you may also want to create custom
type converters to allow them to work in the Properties window. If you don’t undertake this
small effort, any property that uses a complex type will be uneditable.

Dealing with Nested Objects
In Chapter 12, you considered a GradientPanel control. Using this control, you can configure
two colors, and the results appear immediately in the IDE.

However, there is an alternate design that you might want to use with the GradientPanel.
Consider the ColorA, ColorB, and GradientFillStyle properties. These properties are really all
parts of the same setting, and together they determine the background fill. If you wrapped
these three settings into one class, they would be easier to find and set at design time, and
easier to reuse in any other control that might need a gradient fill.

Here’s how the custom class would look:

Public Class GradientFill

 Private _colorA As Color = Color.LightBlue
 Private _colorB As Color = Color.Purple
 Private _gradientStyle As LinearGradientMode = _
 LinearGradientMode.ForwardDiagonal

 <DefaultValue(GetType(Color), "LightBlue")> _
 Public Property ColorA() As Color
 Get
 Return _colorA
 End Get
 Set(ByVal value As Color)
 _colorA = value
 End Set
 End Property

Macdonald_694-3C13.fm Page 447 Friday, June 30, 2006 1:29 PM

448 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

 <DefaultValue(GetType(Color), "Purple")> _
 Public Property ColorB() As Color
 Get
 Return _colorB
 End Get
 Set(ByVal value As Color)
 _colorB = value
 End Set
 End Property

 <DefaultValue(GetType(LinearGradientMode), "ForwardDiagonal")> _
 Public Property GradientFillStyle() As LinearGradientMode
 Get
 Return _gradientStyle
 End Get
 Set(ByVal value As LinearGradientMode)
 _gradientStyle = value
 End Set
 End Property

End Class

Now the new GradientPanel control doesn’t need to define any of these properties. Instead,
it defines a single GradientFill property. This property requires the DesignerSerializationVisibility
attribute set to Content. This instructs Visual Studio to serialize all embedded child properties
of the GradientFill class. Without it, you’ll mysteriously lose the property values you set at
design time.

Private _gradientFill As New GradientFill()

<DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _
Public Property GradientFill() As GradientFill
 Get
 Return _gradientFill
 End Get
 Set(ByVal value As GradientFill)
 _gradientFill = value
 _gradientBrush = Nothing
 Invalidate()
 End Set
End Property

Macdonald_694-3C13.fm Page 448 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 449

■Tip Notice that the GradientFill class uses the DefaultValue attribute, so its various subproperties aren’t
serialized if they match the default values.

Unfortunately, there’s no way to set the GradientFill subproperties at design time. If you
look in the Properties window, you’ll see a piece of static text that shows the result of calling
ToString() on the GradientFill object (see Figure 13-9). This provides the fully qualified class
name, which isn’t much help.

Figure 13-9. A nested object without a type converter

Creating a Type Converter
To solve this problem, you need to create a type converter, which is a specialized class that can
convert a GradientFill object to a string and then convert the string back to a live GradientFill
object.

The first step is to create a custom class that derives from the base class System.
ComponentModel.TypeConverter, as shown here:

Public Class GradientFillConverter
 Inherits TypeConverter
 ...
End Class

Macdonald_694-3C13.fm Page 449 Friday, June 30, 2006 1:29 PM

450 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

By convention, the name of a type converter class is made up of the class type it converts
followed by the word “converter.” Table 13-5 details the TypeConverter overridable methods.

Remember, the key task of a type converter is to convert from your custom data type and
a string representation. This example uses a string representation that includes all three values
from the Gradient object separated by commas and spaces:

ColorA, ColorB, LinearGradientMode

Here’s an example:

LightBlue, Purple, ForwardDiagonal

Before attempting a conversion from a GradientFill object to a string, the Properties
window will first query the CanConvertTo() method. If it receives a True value, it will call
the actual ConvertTo() method. All the CanConvertTo() method needs to do is check that the
target type is a string.

Public Overrides Function CanConvertTo(ByVal context As ITypeDescriptorContext, _
 ByVal destinationType As Type) As Boolean
 If destinationType Is GetType(String) Then
 Return True
 Else
 return MyBase.CanConvertTo(context, destinationType)
 End If
End Function

Notice that if the target type isn’t recognized, the type converter calls the base class imple-
mentation, which will convert it, pass it to another class higher up the inheritance chain, or
throw an error.

The ConvertTo() method is called if CanCovertTo() returns True. ConvertTo() simply
checks that it can indeed convert to the desired type. If not, it calls the base class implementa-
tion of the ConvertTo() method (because presumably it was the base class that returned True
from the CanCovertTo() method). If ConvertTo() is asked to convert a GradientFill into a string,
it goes ahead by calling the implementation in the ConvertToString() method.

Table 13-5. TypeConverter Overridable Methods

Method Description

CanConvertFrom() This method examines a data type and returns True if the type
converter can make the conversion from this data type to the
custom data type.

ConvertFrom() This method performs the conversion from the supplied data type to
the custom data type.

CanConvertTo() This method examines a data type and returns True if the type converter
can make the conversion from the custom object to this data type.

ConvertTo() This method performs the conversion from the custom data type to the
requested data type.

Macdonald_694-3C13.fm Page 450 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 451

Public Overrides Function ConvertTo(_
 ByVal context As ITypeDescriptorContext, ByVal culture As CultureInfo, _
 ByVal value As Object, ByVal destinationType As Type) As Object
 If destinationType Is GetType(String) Then
 Return ConvertToString(value)
 Else
 Return MyBase.ConvertTo(context, culture, value, destinationType)
 End If
End Function

The ToString() method builds the required string representation:

Public Overloads Function ConvertToString(ByVal value As Object) As String
 Dim fill As GradientFill = CType(value, GradientFill)
 Dim converter As New ColorConverter()
 Return String.Format("{0}, {1}, {2}", converter.ConvertToString(fill.ColorA), _
 converter.ConvertToString(fill.ColorB), fill.GradientFillStyle)
End Function

Notice that this method makes use of the ColorConverter—an existing type converter that
transforms colors into strings and back. This saves some work when converting the GradientFill
object. If you have a data type that has a type converter, but you don’t know what the type
converter class is, you can use the shared TypeDescriptor.GetConverter() method. Here’s
an example:

Dim converter As TypeConverter = TypeDescriptor.GetConverter(GetType(Color))

Once you have the converter, you can call its ConvertToString() or ConvertFromString()
method.

The exact same process occurs in reverse when converting a GradientFill object to a string.
First the Properties window calls CanConvertFrom(). If it returns True, the next step is to call
the ConvertFrom() method.

Public Overrides Function CanConvertFrom(ByVal context As ITypeDescriptorContext, _
 ByVal sourceType As Type) As Boolean
 If sourceType Is GetType(String) Then
 Return True
 Else
 Return MyBase.CanConvertFrom(context, sourceType)
 End If
End Function

Public Overrides Function ConvertFrom(ByVal context As ITypeDescriptorContext, _
 ByVal culture As CultureInfo, ByVal value As Object) As Object
 If TypeOf value Is String Then
 Return ConvertFromString(value)
 Else
 return MyBase.ConvertFrom(context, culture, value)
 End If
End Function

Macdonald_694-3C13.fm Page 451 Friday, June 30, 2006 1:29 PM

452 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

The ConvertFromString() method does the actual work of decoding the string representation.
If the string isn’t in the format you need, the ConvertFromString() code raises an exception.
Otherwise, it returns the new GradientFill object instance.

Public Overloads Function ConvertFromString(ByVal value As Object) As GradientFill
 Dim values() As String = CStr(value).Split(",")
 If values.Length <> 3 Then
 Throw New ArgumentException("Could not convert the value")
 End If

 Try
 Dim gradient As New GradientFill()

 ' Retrieve the colors.
 Dim converter As New ColorConverter()
 gradient.ColorA = CType(converter.ConvertFromString(values(0)), Color)
 gradient.ColorB = CType(converter.ConvertFromString(values(1)), Color)

 ' Convert the name of the enumerated value into the corresponding
 ' enumerated value (which is actually an integer constant).
 gradient.GradientFillStyle = CType(System.Enum.Parse(_
 GetType(LinearGradientMode), values(2), True), LinearGradientMode)

 Return gradient
 Catch err As Exception
 Throw New ArgumentException("Could not convert the value")
 End Try

End Function

Now that you have a fully functioning type converter, the next step is to attach it to the
corresponding property.

Attaching a Type Converter
There are two ways to attach a type converter. The approach you should use in most cases is to
link the custom type to the type converter by adding the TypeConverter attribute to the class
declaration.

<TypeConverter(GetType(GradientFillConverter))> _
Public Class GradientFill
 ...
End Class

Another option is to apply the TypeConverter attribute to the property in your custom
control. This option is most suitable if your control needs to serialize a nested object in a
different way than usual.

Macdonald_694-3C13.fm Page 452 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 453

<TypeConverter(GetType(GradientFillConverter))> _
<DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _
Public Property GradientFill() As GradientFill
 ...
End Property

If you use both approaches, the type converter that’s attached to the property takes
precedence when converting the data type to and from a string for display in the Properties
window. However, this isn’t the whole story.

As you’ll learn a little later in this chapter, you can also use a type converter to convert an
object into an InstanceDescriptor, which allows you to customize the way the object is serial-
ized in the designer code. If you use this feature, the type converter that’s attached to the class
is the only type converter that has any bearing on the result. This behavior is necessary to avoid
potential ambiguities (for example, if the same object is used for two properties, each of which
uses a different type converter).

Now you can recompile the code and try using the GradientPanel control in a sample
form. When you select a GradientPanel, you’ll see the current value of the GradientPanel.
GradientFill property in the Properties window (shown in Figure 13-10), and you can edit it
by hand.

Figure 13-10. A string representation of the GradientFill object

Of course, unless you enter the correct string representation, you’ll receive an error message,
and your change will be rejected. In other words, this custom type converter gives you the
ability to specify a GradientFill object as a string, but the process certainly isn’t user-friendly.
The next section shows you how to improve this level of support.

Macdonald_694-3C13.fm Page 453 Friday, June 30, 2006 1:29 PM

454 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

The ExpandableObjectConverter
A number of object properties are supported by Windows Forms controls. The best example is
Font, which refers to a full-fledged Font object with properties like Bold, Italic, Name, and so
on.

When you set the Font property in the Properties window, you don’t need to type all this
information in a single, correctly formatted string. Instead, you can expand the Font property
by clicking the plus (+) box and editing all of the Font subproperties individually.

You can enable the same type of editing with your own custom object types. You actually
have two choices—you can use the ExpandableObjectConverter directly, or you can create a
custom type converter that derives from the ExpandableObjectConverter. If you use this approach,
you’ll have the benefit of the string representation and the ability to expand the property to see
subproperties.

Public Class GradientFillConverter
 Inherits ExpandableObjectConverter
 ...
End Class

Figure 13-11 shows the much more convenient interface of the Properties window.

Figure 13-11. Editing properties of the GradientFill object

Solving the Refresh Problem with Events

This looks good at first pass, but there are still a few quirks. One problem is that when you change a
subproperty, the string representation that’s shown in the Format box isn’t updated immediately.
To solve this problem, you need to apply the NotifyParentProperty and RefreshProperties
attributes to the properties of the GradientFill class. Here’s an example:

Macdonald_694-3C13.fm Page 454 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 455

<RefreshProperties(RefreshProperties.Repaint)> _
<NotifyParentProperty(True)> _
<DefaultValue(GetType(Color), "LightBlue")> _
Public Property ColorA() As Color
 ...
End Property

■Tip You can also add a Description attribute to the properties of the GradientFill class to configure the text
that will appear in the lower Description pane of the Properties window.

This solves the refresh problem in the Properties window, but all the quirks still aren’t
worked out. Even though the property is correctly updated when you make a new selection
(and the correct code is generated in the InitializeComponent() method), the Panel isn’t
refreshed on the design surface. That’s because changing the properties of the GradientFill
object doesn’t invalidate the GradientPanel. Several workarounds are possible. One option is
to define an event that can be fired from the GradientFill object and handled by the
GradientPanel.

Here’s the code you need in the GradientFill class:

Public Event GradientChanged(ByVal sender As Object, ByVal e As EventArgs)

Public Property ColorA() As Color
 Get
 Return _colorA
 End Get
 Set(ByVal value As Color)
 _colorA = value
 OnGradientChanged(EventArgs.Empty)
 End Set
End Property

Private Sub OnGradientChanged(ByVal e As EventArgs)
 RaiseEvent GradientChanged(Me, e)
End Sub

In the GradientPanel, an event handler can watch for changes to the gradient and invali-
date the display as needed:

Macdonald_694-3C13.fm Page 455 Friday, June 30, 2006 1:29 PM

456 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Public Property GradientFill() As GradientFill
 Get
 Return _gradientFill
 End Get
 Set(ByVal value As GradientFill)
 _gradientFill = value
 AddHandler _gradientFill.GradientChanged, AddressOf GradientChanged
 _gradientBrush = Nothing
 Invalidate()
 End Set
End Property

When the event is received, the GradientChanged event handler simply needs to remove
the current brush (so that it will be re-created with the new colors during the background
painting), and invalidate the panel:

Private Sub GradientChanged(ByVal sender As Object, ByVal e As EventArgs)
 If _gradientBrush IsNot Nothing Then _gradientBrush.Dispose()
 _gradientBrush = Nothing
 Invalidate()
End Sub

Solving the Refresh Problem with CreateInstance()

Another technique is to force the entire GradientFill object to be re-created every time a property
changes. To implement this mechanism, you need to override the GetCreateInstanceSupported()
and CreateInstance() methods of the type converter. The GetCreateInstanceSupported()
method returns a Boolean value that indicates whether the support for creating a GradientFill
object is provided. The default is False.

Public Overrides Function GetCreateInstanceSupported(_
 ByVal context As ITypeDescriptorContext) As Boolean
 ' Always force a new instance.
 Return True
End Function

If GetCreateInstanceSupported() returns True, Visual Studio will call the CreateInstance()
method to generate the GradientFill object whenever any of its properties are changed. This
process is quite easy, because the CreateInstance() method supplies a dictionary with name/value
pairs for the current GradientFill object. These values are extracted through reflection. You can
use them to generate the corresponding object instance, as shown here:

Public Overrides Function CreateInstance(_
 ByVal context As ITypeDescriptorContext, ByVal propertyValues As IDictionary) _
 As Object
 ' Create the new instance.
 Dim fill As New GradientFill()
 fill.ColorA = CType(propertyValues("ColorA"), Color)
 fill.ColorB = CType(propertyValues("ColorB"), Color)

Macdonald_694-3C13.fm Page 456 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 457

 fill.GradientFillStyle = CType(_
 propertyValues("GradientFillStyle"), LinearGradientMode)
 Return fill
End Function

This solves the refresh problem with a little more overhead. Now the GradientFill object is
re-created when any of its properties are changed.

Creating a Nested Object with a Constructor
With the GradientPanel, the three GradientFill properties are changed independently. As you
modify them, Visual Studio generates code like this in the InitializeComponent() method:

Me.gradientPanel1.GradientFill.ColorA = Color.Cyan
Me.gradientPanel1.GradientFill.ColorB = Color.Plum
Me.gradientPanel1.GradientFill.GradientFillStyle = _
 LinearGradientMode.Horizontal

This technique is great—when it works. In some cases, you can’t alter the properties of a
nested object in an arbitrary order. Instead, you need to create the object in one step using a
specific constructor. Fortunately, by adding some additional intelligence to your type converter
you can tell Visual Studio to take this step.

The trick is that you need to create a type converter that won’t just convert between your
object and a string. Instead, it will examine your object and return a System.ComponentModel.
Design.Serialization.InstanceDescriptor. The InstanceDescriptor gives Visual Studio three key
pieces of information:

• The method that must be called to create an object. Usually this is a constructor, but it
could be a shared method.

• The values that must be passed to the method as parameters.

• Whether additional persistence is required to capture the full state of the object.

With this information, Visual Studio can generate more-complex serialized code. To try
this out, add the following constructors to the GradientFill class:

Public Sub New ()
End Sub

Public Sub New(ByVal colorA As Color, ByVal colorB As Color, _
 ByVal gradientFillStyle As LinearGradientMode)
 Me.ColorA = colorA
 Me.ColorB = colorB
 Me.GradientFillStyle = gradientFillStyle
End Sub

You now need to derive a new type converter. In the CanConvertTo() method, return True
as long as the requested target is an InstanceDescriptor. If you want to also support conversion
to the string data type, you can also add the same logic you used earlier, or you can derive your

Macdonald_694-3C13.fm Page 457 Friday, June 30, 2006 1:29 PM

458 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

new custom type converter from the previous type converter, so that any conversion it doesn’t
handle is forwarded to that class.

Here’s the CanConvertTo() implementation you need:

Public Overrides Function CanConvertTo(_
 ByVal context As ITypeDescriptorContext, ByVal destinationType As Type) _
 As Boolean
 If destinationType Is GetType(InstanceDescriptor) Then
 Return True
 Else
 Return MyBase.CanConvertTo(context, destinationType)
 End If
End Function

Now the ConvertTo() method has the work of generating the InstanceDescriptor based on
the supplied GradientFill object. There are two steps to generating the InstanceDescriptor.
First, you need to create a System.Reflection.ConstructorInfo object that points to the constructor
you want to use. To create the ConstructorInfo, you need to call the Type.GetConstructor()
method on the GradientFill type.

Because a class can have more than one constructor, you need to specify the constructor
you want to use by supplying an array of Type objects, one for each parameter the expected
constructor should take. For example, to indicate that you want to call the GradientFill constructor
with three parameters, you supply two Color types and the LinearGradientMode type, as
shown here:

Public Overrides Function ConvertTo(ByVal context As ITypeDescriptorContext, _
 ByVal culture As CultureInfo, ByVal value As Object, _
 ByVal destinationType As Type) As Object
 If destinationType Is GetType(InstanceDescriptor) And _
 TypeOf value Is GradientFill Then
 Dim gradient As GradientFill = CType(value, GradientFill)

 ' Specify the three-parameter (Color-Color-LinearGradientMode)
 ' constructor.
 Dim ctor As System.Reflection.ConstructorInfo = _
 GetType(GradientFill).GetConstructor(_
 New Type() { _
 GetType(Color), GetType(Color), _
 GetType(Drawing2D.LinearGradientMode)})
 ...

The InstanceDescriptor wraps the ConstructorInfo object and the data that you want to
pass to the constructor. To supply the data, you need to pass an object array, with one entry for
each parameter. The parameters can be retrieved from the current gradient object:

Macdonald_694-3C13.fm Page 458 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 459

 ...
 Return New InstanceDescriptor(ctor, _
 New Object() { _
 gradient.ColorA, gradient.ColorB, gradient.GradientFillStyle})
 Else
 Return MyBase.ConvertTo(context, culture, value, destinationType)
 End If
End Function

The last step is to change the DesignerSerializationVisibility for the property from Content
to Visible. That way, the entire object will be serialized (triggering the type converter), not just
the individual subproperties.

Once you’ve made these changes, the designer serialized code will use the GradientFill
constructor, and generate code like this:

Me.gradientPanel1.GradientFill.ColorA = New GradientFill(_
 Color.Cyan, Color.Plum, LinearGradientMode.Horizontal)

Custom Serialization with CodeDOM
By using the serialization attributes, ShouldSerializeXxx() methods, and type converters, you
have a good amount of control over how design-time changes are persisted into form code. For
most cases, this level of control is enough. However, if you are developing extremely complex
controls or commercial tools, you might need fine-grained control. You can get this through a
.NET feature known as CodeDOM, although it’s far from easy.

CodeDOM (code document object model) is a .NET API for generating code dynamically.
What’s unique about CodeDOM is that you create code constructs by instantiating and linking
various objects, and these objects can create code in any supported language. That means a C#
developer can use your control just as easily as a VB developer, because both languages have
CodeDOM providers that allow CodeDOM objects to be serialized into their respective languages.

The problem is that serializing code with CodeDOM is far from trivial, and pitfalls abound.
It’s also incredibly tedious, and you’ll quickly find that you need to construct quite a few objects
just to model simple code statements. For a basic introduction to CodeDOM, refer to the
MSDN article at http://msdn.microsoft.com/library/en-us/dndotnet/html/custcodegen.asp.

Providing Standard Values
The Properties window does a solid job of providing support for enumerations. For example, if
you create a property that uses a custom enumeration, the Properties window automatically
provides a drop-down list with the values from the enumeration.

For example, consider the DisplayStyle property shown here:

Public Enum DisplayStyle
 Standard
 SpecialDirectoryPictures
 AllDirectoryPictures
End Enum

Macdonald_694-3C13.fm Page 459 Friday, June 30, 2006 1:29 PM

460 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Private _displayStyle As DisplayStyle
Public Property DisplayStyle() As DisplayStyle
 Get
 Return _displayStyle
 End Get
 Set(ByVal value As DisplayStyle)
 _displayStyle = value
 End Set
End Property

■Tip You can hide individual values in an enumeration from appearing in the Properties window. Just use
the Browsable(False) attribute, as described in Table 13-1.

The enumerated values are shown in the Properties window (see Figure 13-12).

Figure 13-12. Enumerations in the Properties window

■Note Remember, even if you use an enumerated value, you still need to perform some error-checking in
your property procedure. Though programmers won’t be able to submit an invalid value through the Properties
window, nothing prevents them from using code to directly set an integer value that doesn’t correspond to a
valid value in the enumeration.

What you probably don’t realize is that you can supply a drop-down list of standard values
for any control properties, even if it’s not an enumeration. In fact, this trick is made possible
with a custom type converter.

It all works through three overridable type converter methods that you haven’t seen. The
most important is GetStandardValues(), which returns a StandardValuesCollection (a type
nested in TypeConverter from the System.ComponentModel namespace) that contains a list

Macdonald_694-3C13.fm Page 460 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 461

of all the items you want to show in the drop-down. However, for Visual Studio to use this func-
tionality, you also need to override GetStandardValuesSupported() and return True. Finally, if
you want property settings to be limited to the list—in other words, you don’t want the developer
to supply a value that isn’t in your standard value list at design time—you need to override
GetStandardValuesExclusive() and return True.

To demonstrate how this works, the following example creates a type converter that shows
a list of drive letters for the Directory.Drive property. Because the Drive property is really just a
char, there’s no need to waste time reimplementing the ConvertTo() and ConvertFrom() methods
in the type converter. Instead, your custom type converter can derive directly from CharConverter.
(The .NET Framework includes type converters for all common data types.)

Here’s the full code:

Public Class DriveCharConverter
 Inherits CharConverter

 ' Cache the collection of values so you don't need to re-create it each time.
 Private Shared svc As StandardValuesCollection

 ' Advertise that the standard values are available.
 Public Overrides Function GetStandardValuesSupported(_
 ByVal context As ITypeDescriptorContext) As Boolean
 Return True
 End Function

 ' Don't limit property values to the values in the list.
 Public Overrides Function GetStandardValuesExclusive(_
 ByVal context As ITypeDescriptorContext) As Boolean
 Return False
 End Function

 ' Provide the list of standard values.
 Public Overrides Function GetStandardValues(_
 ByVal context As ITypeDescriptorContext) As StandardValuesCollection
 If svc Is Nothing Then
 ' First, build the list of values using any ICollection.
 ' Make sure you use the right data type.
 ' In this case, Drive is a char,
 ' so all values must be chars.
 Dim drives As New List(Of Char)()

 ' Use exception-handling code here to prevent a file
 ' access error from crashing the IDE.
 Try
 For Each drive As String In Directory.GetLogicalDrives()
 drives.Add(drive(0))
 Next

Macdonald_694-3C13.fm Page 461 Friday, June 30, 2006 1:29 PM

462 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

 ' Now wrap the real values in the StandarValuesCollection object.
 svc = New TypeConverter.StandardValuesCollection(drives)
 Catch Err As Exception
 ' Ignore errors.
 End Try
 End If

 Return svc
 End Function

End Class

Now, you simply attach this type converter to the Drive property using an attribute:

<TypeConverter(GetType(DriveCharConverter))> _
Public Property Drive() As Char

Figure 13-13 shows the result.

Figure 13-13. A list of standard values for drives

Type Editors
Type converters help you serialize your code and allow unusual data types to be displayed in
the Properties window as strings. However, that’s not enough to guarantee the rich data type
support that developers expect. Many data types can’t be entered by strings, or if they can, it’s
too tedious to be required. The Windows Forms designer infrastructure solves this problem
with type editors.

Macdonald_694-3C13.fm Page 462 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 463

You’ve no doubt noticed that some richer object types have additional design-time support.
For example, if you create a property that has a Font or Color data type, a color picker or font-
selection dialog is used in the Properties window. Similar magic happens if you create a Collection
property. This user interface is in addition to the string representation you see in the Properties
window (as provided by the type converter).

These niceties are provided through UITypeEditor classes, which are dedicated components
that generate the design-time user interface that allows the developer to set complex properties at
design-time more easily.

■Tip Type editors are particularly useful when you have classes that can’t be reasonably represented as
strings (like binary data), or have so many properties that setting individual properties is no longer practical.
They also make sense for classes that have relationships between their properties that limit the properties
from being set individually.

Using Prebuilt Type Editors
The base UITypeEditor class is found in the System.Drawing.Design namespace. You can
inherit from this class to create your custom type editors, or you can use one of the derived
classes that are provided with the .NET Framework. Table 13-6 shows a sampling of useful type
editors (editors that are usable only with specific Web controls have been omitted).

Table 13-6. UITypeEditors in the .NET Framework

Class Description

System.ComponentModel.
Design.ArrayEditor

Edits an array by allowing the programmer to
enter a list of strings. Used automatically for
supported arrays.

System.ComponentModel.
Design.BinaryEditor

Edits an array of bytes. Allows the developer to
modify bytes in a hexadecimal view.

System.ComponentModel.
Design.CollectionEditor

Edits a collection of items. Other controls usually
derive custom collection editor classes from
this class depending on the type of items they
expose. You’ll see an example of this technique
in Chapter 26.

System.ComponentModel.Design.
MultilineStringEditor

Displays a drop-down box that allows the devel-
oper to modify a long string with line breaks.

System.Drawing.Design.FontEditor Allows the programmer to select and configure a
font. Used automatically for font properties.

System.Drawing.Design.ImageEditor Allows the programmer to create an Image object
by selecting a bitmap or other supported file type
from an open file dialog. You can also use similar
editors like BitmapEditor, IconEditor, and
MetafileEditor, which restrict the allowed file types.

Macdonald_694-3C13.fm Page 463 Friday, June 30, 2006 1:29 PM

464 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

You associate a property with a type editor using the Editor attribute. As with type converters,
you can apply the Editor attribute to a class declaration or a property declaration. The correct
approach depends on how specialized the underlying data type is.

For example, you’ll always want to edit fonts in the same way, so the declaration for the
Font class binds it to the FontEditor using the Editor attribute. On the other hand, some type
editors work with more general types. An example is the RegexTypeEditor, which allows the
programmer to choose a common regular expression for a control property, which is then
stored as an ordinary string. Controls that provide strings with regular expression content must
attach the type editor to the appropriate property using the Editor attribute. Here’s an example:

Private _regEx As String

<Editor(GetType(System.Web.UI.Design.WebControls.RegexTypeEditor), _
 GetType(UITypeEditor))> _
Public Property ValidationExpression() As String
 Get
 Return _regEx
 End Get
 Set(ByVal value As String)
 _regEx = value
 End Set
End Property

When the programmer clicks this property in the Properties window, an ellipsis (…)
appears next to the property name. If the programmer clicks the ellipsis button, a full dialog
appears with common regular expression choices (see Figure 13-14).

System.Web.UI.Design.WebControls.
RegexTypeEditor

Allows the programmer to choose a regular
expression from a list of common choices. This
UITypeEditor works with string properties.

System.Windows.Forms.Design.
MaskPropertyEditor

Allows you to set a string with a mask code (using
the format specified by the MaskedTextBox control).
Using this dialog box, you can choose from a list of
presets and test masks before applying them.

System.Windows.Forms.
Design.FileNameEditor

Allows a fully qualified file name to be set by
choosing a file from an open file dialog box. This
type editor works with string properties.

System.Windows.Forms.Design.
FolderNameEditor

Allows a directory path to be set from a directory-
browsing dialog box. This type editor works with
string properties.

System.Windows.Forms.Design.
ShortcutKeysEditor

Allows you to choose shortcut keys as a combina-
tion of values from the Keys enumeration.

Table 13-6. UITypeEditors in the .NET Framework (Continued)

Class Description

Macdonald_694-3C13.fm Page 464 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 465

Figure 13-14. The RegexTypeEditor

■Note Interestingly, this type editor was originally designed for the validation controls provided with
ASP.NET, and is provided alongside the Web controls in the .NET namespaces. However, it works equally well
with a Windows control. You simply have to add the System.Design.dll assembly reference to your project.

Using Custom Type Editors
You can also develop your own custom type editor classes to allow special settings to be config-
ured. For example, consider the TreeView control. Its Nodes property is a collection, but it
doesn’t use the standard System.ComponentModel.Design.CollectionEditor class. Instead, it
uses the more specialized System.Windows.Forms.Design.TreeNodeCollectionEditor.

To create a custom type editor, you must first create a class that derives from
System.Drawing.Design.UITypeEditor. You can then override the four methods shown in
Table 13-7.

You’ll see three examples in the following sections.

Table 13-7. UITypeEditor Overridable Methods

ClassMethod Description

EditValue() Invoked when the property is edited. Generally, this is where
you would create a special dialog box for property editing.

GetEditStyle() Specifies whether the type editor is a DropDown (provides a
list of specially drawn choices), Modal (provides a dialog box
for property selection), or None (no editing supported).

GetPaintValueSupported() Use this to return True if you are providing a PaintValue()
implementation.

PaintValue() Invoked to paint a graphical thumbnail that represents the
value in the Properties window.

Macdonald_694-3C13.fm Page 465 Friday, June 30, 2006 1:29 PM

466 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

A Modal Type Editor

A modal type editor shows an ellipsis (...) button next to the property value. When this button
is clicked, a dialog box appears that allows the developer to change the property value (see
Figure 13-15).

Figure 13-15. The sign of a modal type editor

To create a modal type editor, you need to create the dialog box form. To create a basic
example, consider the DirectoryTree control first presented in Chapter 11. Although it isn’t
difficult to change the DirectoryTree.Drive property, it would be nice if you could run a little bit
of extra code to find all the drives on the current computer and allow the user to choose from
them.

Here’s a SelectDrive form that does exactly that. It gets an array of drives and shows them
in a list. When the developer selects a new drive, the Select.DriveSelection property is updated.
The OK button is set with a DialogResult of DialogResult.OK, so clicking it closes the window.

Public Class SelectDrive

 ' Store the selected drive.
 Private _driveSelection As Char
 Public Property DriveSelection() As Char
 Get
 Return _driveSelection
 End Get
 Set(ByVal value As Char)
 _driveSelection = value
 ' Select the drive in the list.
 lstDrives.SelectedIndex = lstDrives.FindString(_
 DriveSelection.ToString())

Macdonald_694-3C13.fm Page 466 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 467

 End Set
 End Property

 Private Sub New()
 InitializeComponent()

 Dim drives() As String = System.IO.Directory.GetLogicalDrives()
 lstDrives.DataSource = drives
 End Sub

 Private Sub lstDrives_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles lstDrives.SelectedIndexChanged
 DriveSelection = lstDrives.Text(0)
 End Sub

 ' Allow quick select-and-close.
 Private Sub lstDrives_DoubleClick(ByVal sender As Object, _
 ByVal e As EventArgs) Handles lstDrives.DoubleClick
 DialogResult = DialogResult.OK
 End Sub

End Class

All the type editor needs to do is create an instance of the SelectDrive dialog box, show it,
and then read the DriveSelection property once the dialog box is closed.

Here’s the complete type editor code:

Public Class DriveEditor
 Inherits UITypeEditor

 Public Overrides Function GetEditStyle(_
 ByVal context As ITypeDescriptorContext) _
 As System.Drawing.Design.UITypeEditorEditStyle
 ' Use a dialog box for property editing.
 Return UITypeEditorEditStyle.Modal
 End Function

 Public Overrides Function EditValue(_
 ByVal context As ITypeDescriptorContext, _
 ByVal provider As IServiceProvider, ByVal value As Object) _
 As Object
 Dim frm As New SelectDrive()

 ' Set current drive in window.
 frm.DriveSelection = CType(value, Char)

Macdonald_694-3C13.fm Page 467 Friday, June 30, 2006 1:29 PM

468 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

 ' Show the dialog box.
 If frm.ShowDialog() = DialogResult.OK Then
 ' Return the new value.
 Return frm.DriveSelection
 Else
 ' Return the old value.
 Return value
 End If
 End Function

 Public Overrides Function GetPaintValueSupported(_
 ByVal context As ITypeDescriptorContext) As Boolean
 ' No special thumbnail will be shown in the Properties window.
 Return False
 End Function

End Class

The type editor is attached to the appropriate property using an Editor attribute:

<Editor(GetType(DriveEditor), GetType(UITypeEditor))> _
Public Property Drive() As Char

Figure 13-16 shows the drive-selection window that appears when the user edits the
Drive property.

Figure 13-16. A custom drive-selection window

One benefit to this design is that you can reuse this type editor with any drive property in
any control. It’s specific to the property data type, not the control.

An alternative approach is to use a DirectoryInfo object instead of an underlying char to
represent the drive. Because the property editing is now handled by the type editor, there’s no
need to choose a basic type that can be edited with the default design-time support built into
the property grid.

Macdonald_694-3C13.fm Page 468 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 469

A Drop-Down Type Editor

Instead of showing a separate dialog box, a drop-down type editor shows a control in a drop-
down box underneath the property. The drop-down box is sized to fit the initial size of the
control you supply, but it will be resized if it can’t fit due to screen size or window positioning.

The best way to prepare the content for the drop-down box is to create a user control. The
type editor is then responsible for showing that user control in the drop-down box. For example,
consider the Progress control first demonstrated in Chapter 10. It allows you to type any
number into the Value property, although values that are higher than the maximum or lower
than 0 will be rejected with an error message. To simplify editing, you might want to create a
drop-down display that indicates the allowed range and lets the user set a value with a slider
bar. Figure 13-17 shows a user control that provides this feature.

Figure 13-17. The user control for a drop-down type editor

Because this control is intended solely to be used at design-time, it makes sense to keep it
out of the toolbox. You can accomplish this by adding the ToolboxItem attribute to the class
declaration and marking it False:

<ToolboxItem(False)> _
Public Class ProgressValueDropDown
 ...
End Class

The real trick in this example is that the user control you create for editing the property
needs a way to receive information from the custom control object. To make this easier, you
should add a constructor to your editing control that accepts all the information it needs. In
this case, you need two details: the maximum and current values. (The Progress control in its
current implementation forces developers to use a minimum of 0.)

Additionally, it’s a common convention to accept an IWindowsFormEditorService object
that represents the editing service in Visual Studio. (You’ll learn more about design-time services in
Chapter 26.) The reference to the editing service allows the control to close the drop-down
after the editing is complete. In this example, you don’t need to close the drop-down. Instead,
it makes more sense to leave the drop-down open, so the developer can try out several settings.

Macdonald_694-3C13.fm Page 469 Friday, June 30, 2006 1:29 PM

470 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

However, this feature is still useful, because it provides the functionality for the X button in the
top-right corner of the drop-down.

Here are the constructor code and the details for storing the constructor-supplied
information:

Private _progressValue As Integer
Public Property ProgressValue() As Integer
 Get
 Return _progressValue
 End Get
 Set(ByVal value As Integer)
 _progressValue = value
 End Set
End Property

Private editorService As IWindowsFormsEditorService

Public Sub New(ByVal value As Integer, ByVal maximum As Integer, _
 ByVal editorService As IWindowsFormsEditorService)
 InitializeComponent()

 ' Store this information for later use.
 ProgressValue = value
 Me.editorService = editorService

 ' Apply the current information.
 trackBar1.Maximum = maximum
 lblRange.Text = "Allowed Range: (0, " & maximum.ToString() & ")"
 trackBar1.Value = value

 trackBar1.SmallChange = 1
 trackBar1.LargeChange = 5
End Sub

Public Sub New()
 ' Default constructor required for designing
 ' this control in Visual Studio.
 InitializeComponent()
End Sub

Every time the value in the track bar is changed, the Value property is updated:

Private Sub trackBar1_ValueChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles trackBar1.ValueChanged
 ProgressValue = trackBar1.Value
 lblValue.Text = "Current Value = " & trackBar1.Value.ToString()
End Sub

Macdonald_694-3C13.fm Page 470 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 471

Finally, when the X button is clicked, the drop-down is closed. The developer can also
close the drop-down by clicking the arrow next to the value (the same arrow that opens the
drop-down region).

Private Sub cmdClose_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdClose.Click
 editorService.CloseDropDown()
End Sub

The next step is to develop the type editor that uses this control. Here’s the class
declaration:

Public Class ProgressValueEditor
 Inherits UITypeEditor
 ...
End Class

You can connect this type editor to the Progress.Value property using the Editor attribute,
as in the previous example. All you need to do now is fill in the type editor code. This part is
quite easy.

First, you choose the drop-down style:

Public Overrides Function GetEditStyle(_
 ByVal context As ITypeDescriptorContext) _
 As System.Drawing.Design.UITypeEditorEditStyle
 Return UITypeEditorEditStyle.DropDown
End Function

Once again, you turn down thumbnails:

Public Overrides Function GetPaintValueSupported(_
 ByVal context As ITypeDescriptorContext) _
 As Boolean
 Return False
End Function

Finally, in the EditValue() method, you get the editor service, create an instance of
the ProgressValueDropDown control, and add it to the Properties window using the
IWindowsFormsEditorService.DropDownControl() method, as shown here:

Public Overrides Function EditValue(_
 ByVal context As ITypeDescriptorContext, _
 ByVal provider As IServiceProvider, ByVal value As Object) _
 As Object
 If provider IsNot Nothing Then
 Dim editorService As IWindowsFormsEditorService = _
 CType(provider.GetService(GetType(IWindowsFormsEditorService)), _
 IWindowsFormsEditorService)

Macdonald_694-3C13.fm Page 471 Friday, June 30, 2006 1:29 PM

472 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

 If editorService IsNot Nothing Then
 ' Create the editing control.
 Dim ctrl As Progress = CType(context.Instance, Progress)
 Dim selectionControl As New ProgressValueDropDown(_
 CInt(value), ctrl.Maximum, editorService)

 ' Show the editing control.
 editorService.DropDownControl(selectionControl)
 value = selectionControl.ProgressValue
 End If
 End If
 Return value
End Function

The final step is to attach the editor to the Value property of the Progress control using an
Editor attribute:

<Editor(GetType(ProgressValueEditor), GetType(UITypeEditor))> _
Public Property Value() As Integer

Figure 13-18 shows the drop-down editor in the Properties window.

Figure 13-18. A drop-down type editor

Macdonald_694-3C13.fm Page 472 Friday, June 30, 2006 1:29 PM

C H A P T E R 1 3 ■ D E S I G N - T I M E SU P P O R T F O R C U S T O M C O N T R O L S 473

Painting a Thumbnail

Type editors also give you the chance to get a little fancy by creating a custom thumbnail of the
gradient in the Properties window. You might use this trick with the GradientPanel control. To
add this extra bit of finesse, all you need to do is create a type editor for the GradientFill class
and override the PaintValue() method. Here’s the complete code:

Public Class GradientFillEditor
 Inherits UITypeEditor

 Public Overrides Function GetPaintValueSupported(_
 ByVal context As ITypeDescriptorContext) As Boolean
 Return True
 End Function

 Public Overrides Sub PaintValue(_
 ByVal e As System.Drawing.Design.PaintValueEventArgs)
 Dim fill As GradientFill = CType(e.Value, GradientFill)
 Dim brush As New LinearGradientBrush(e.Bounds, _
 fill.ColorA, fill.ColorB, fill.GradientFillStyle)

 ' Paint the thumbnail.
 e.Graphics.FillRectangle(brush, e.Bounds)
 End Sub

End Class

Finally, attach the type editor to the GradientFill class with an Editor attribute:

<Editor(GetType(GradientFillEditor), GetType(UITypeEditor))> _
Public Class GradientFill

■Tip Alternatively, you could attach the GradientFillEditor directly to the GradientFill property of the
GradientPanel. But, by attaching it to the class, you ensure the GradiendFillEditor is used, by default, for
any control that makes use of the GradientFill class.

The GradientPanel now retains its effortless design-time support, with the added frill of a
thumbnail gradient in the Properties window next to the GradientFill property (see Figure 13-19).
You can also reuse the GradientFill and GradientFillEditor to add similar features to countless
other custom control projects.

Macdonald_694-3C13.fm Page 473 Friday, June 30, 2006 1:29 PM

474 C H A P T E R 1 3 ■ D E S I G N - T I M E S U P P O R T F O R C U S T O M C O N T R O L S

Figure 13-19. The GradientPanel with a thumbnail gradient

The Last Word
This chapter covered a lot of ground about custom controls, with the goal of getting you up to
speed on all the essentials. First, you learned about the basic set of attributes that go into every
custom control. Next, you took an in-depth look at code serialization and learned how to take
control of it with attributes, the ShouldSerializeXxx() methods, and custom type converters.
Finally, you examined type editors, which allow you to provide a slick editing interface for
complex properties.

The story doesn’t end here, however. In Chapter 26, you’ll revisit design-time support and
consider some new topics. Namely, you’ll focus on control designers, which allow you to influ-
ence your control’s design-time behavior, show smart tags, and hide (or add) properties. You’ll
also see a more advanced serialization example that demonstrates how you can add design-time
support for a collection control.

Macdonald_694-3C13.fm Page 474 Friday, June 30, 2006 1:29 PM

■ ■ ■

P A R T 3

Modern Controls

Macdonald_694-3C14.fm Page 475 Tuesday, July 25, 2006 8:40 AM

Macdonald_694-3C14.fm Page 476 Tuesday, July 25, 2006 8:40 AM

477

■ ■ ■

C H A P T E R 1 4

Tool, Menu, and Status Strips

.NET 2.0 does something that’s more than a little surprising with its toolbar, status bar, and
menu controls—it tosses out the .NET 1.x standbys and replaces them with an entirely new
model. The old controls like the ToolBar, StatusBar, and MainMenu are still available (right-click
the toolbox and select Choose Items to hunt for them), but they’re intended only for backward
compatibility. Now, a new set of classes that includes System.Windows.Forms.ToolStrip and
two other derived classes (MenuStrip and StatusStrip) provides a completely new model for
toolbars and menus.

The natural question is, Why reinvent the wheel? The legacy ToolBar, StatusBar, and
MainMenu classes were based on some of the older corners of the Win32 API, and developers
were quick to complain that they were out of place among the slick themed and skinned inter-
faces popular in modern applications like Microsoft Office. Theming support was entirely
absent, which meant that there was no way to harmonize these controls with the Windows XP
user interface, and there was little or no support for reordering buttons, rearranging side-by-
side toolbars, or customizing the button-drawing process. In fact, even painting a thumbnail
image next to a menu item required custom painting code with the .NET 1.x MainMenu.

For the .NET 2.0 release, the Windows Forms development team was faced with the signif-
icant task of bringing these out-of-date controls up to a respectable level. Rather than rework
each control separately, they set out to build a new model that could be leveraged for each of
these scenarios. That new model revolves around the ToolStrip control. Its many features
include a slick modern look, support for themes and customizable rendering, and the ability
for the user to drag, rearrange, and customize toolbars effortlessly. In this chapter, you’ll
examine the ToolStrip in detail and use it to create toolbars, status bars, and menus.

ToolStrip Basics
The ToolStrip is the basis of the StatusStrip, MenuStrip, and ContextMenuStrip controls you’ll
consider in this chapter and a slick stand-alone control of its own. To get off to a quick start
with ToolStrip, drag it onto a form, select it, and choose Insert Standard Items from the smart
tag. This adds a basic set of buttons including File, Open, Save, and Print, the editing commands
Cut, Copy, and Paste, and a Help button.

When you run this example, you’ll immediately notice that the ToolStrip sports a slick new
interface that’s far better than the miserably out-of-date ToolBar. Some of its niceties include:

Macdonald_694-3C14.fm Page 477 Tuesday, July 25, 2006 8:40 AM

478 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

• It’s flat, so there aren’t any visible button edges (although you can add etched
separator lines).

• It supports hot tracking, so as you hover over a button, it’s highlighted.

• It supports Windows XP themes, so the gradient background that’s painted as the bar
background automatically uses the active color scheme.

• It provides automatic overflow menus. That means when the windows are resized so
that not all the buttons can fit, an arrow icon is added at the end of the menu. If you click
that arrow, you’ll see a drop-down menu with the missing items (see Figure 14-1). You
can disable the overflow behavior by setting CanOverflow to False.

Overall, the ToolStrip closely matches the polished toolbars used in Microsoft Office XP and
Office 2003.

Figure 14-1. Automatic overflow menus in the ToolStrip

Figure 14-1 shows a standard horizontal ToolStrip, which is what you get when you first drop
a ToolStrip onto a form. However, you can change the direction using the ToolStrip.LayoutStyle
property, using any of the options described in Table 14-1.

Table 14-1. LayoutStyle Values (from the ToolStripLayoutStyle Enumeration)

Value Description

HorizontalStackWithOverflow Arranges items in a horizontal line from left to right, adding
any leftovers to the overflow menu (on the right).

VerticalStackWithOverflow Arranges items in a single column of buttons and adds an
overflow menu to the bottom if needed.

StackWithOverflow Uses either HorizontalStackWithOverflow or
VerticalStackWithOverflow, depending on whether the
ToolStrip is docked to the top or side of its container.
This is the default.

Flow Tiles items from left to right and then downward to fill the
available space. No overflow menu is created—instead, the
ToolStrip is enlarged to fit all the items.

Table Arranges items in a grid, from left to right and then down. To
make this work, you need to cast the ToolStrip.LayoutSettings
to TableLayoutSettings and then set the desired number of
columns. The ToolStrip is then expanded (with new rows) to
fit all the items.

Macdonald_694-3C14.fm Page 478 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 479

Usually, when you use horizontal layout, you’ll want to dock the ToolStrip to the top or
bottom of your form. When you use a vertical layout, you’ll dock to the left or right sides. In fact,
when you set the ToolStrip.Dock property, the ToolStrip automatically sets the LayoutStyle
property to match (although you can modify it afterward).

■Tip Although docked horizontal and vertical toolbars are most common, you don’t need to dock your
ToolStrip anywhere. If you don’t, it remains fixed in place on the form wherever you’ve positioned it, just like
any other control. Later in this chapter, you’ll learn to use the ToolStripContainer to allow users to rearrange
ToolStrip controls.

The ToolStrip is outfitted with a wide range of features, and it’s impossible to introduce
them all at once. Instead, the following sections will take you through a series of common
ToolStrip tasks, from the relatively simple (for example, handling button clicks) to the much
more complex (customizing the painting logic).

The ToolStripItem
At its heart, the ToolStrip is a collection of ToolStripItem objects, which are exposed through
the ToolStrip.Items property. Each ToolStripItem represents a separate element on the
ToolStrip bar, like a button, combo box, text box, label, or separator. You can select each
ToolStripItem individually to configure it or attach event handlers.

The ToolStripItem class inherits from Component and defines a basic set of properties for
controlling the font (Font), colors (BackColor and ForeColor), the displayed content (Image
and Text), the ToolTipText, the state of the item (Visible and Enabled), and so on. You’ll
consider many of these properties in the following sections.

In the simple example shown in Figure 14-1, all the ToolStripItem objects are either buttons
(instances of ToolStripButton) or separators (instances of ToolStripSeparator). Both of these
classes derive from ToolStripItem, along with several other supported ToolStripItem types.
Table 14-2 lists all the ToolStripItem classes that are recommended for use with the ToolStrip.

Later in this chapter, you’ll learn about ToolStripItem classes that are tailored for status
bars and menus, and you’ll see how to create your own custom ToolStripItem classes.

The easiest way to add ToolStrip items is to use the Visual Studio designer. Just select Edit
Items from the ToolStrip smart tag. You’ll see a designer that lets you add new ToolStripItem
objects, configure them, and rearrange their order (see Figure 14-2).

Table 14-2. ToolStripItem Derived Classes

Class Description

ToolStripButton Represents an item on the ToolStrip that the user can click. You
can place text or image content (or both) on the button.

ToolStripLabel Represents a nonselectable item on the ToolStrip. It can include
text or an image (or both). However, if you set the IsLink property
to True, the ToolStripLabel is rendered like a hyperlink, and is
selectable. (You’ll still need to handle the Click event to perform
the appropriate action.)

Macdonald_694-3C14.fm Page 479 Tuesday, July 25, 2006 8:40 AM

480 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Although the ToolStrip class manages the heavy lifting, including painting, keyboard
handling, and mouse input, the ToolStripItem determines the content and some aspects of
the layout and fires its own events.

Figure 14-2. Designing a ToolStrip

ToolStripSeparator Separates adjacent ToolStrip items into groups with a thin
engraved line. Even though this ingredient doesn’t seem
terribly important, it can still raise events like any other
ToolStripItem.

ToolStripControlHost An item that hosts another Windows Form control. You can use
the ToolStripControlHost to display just about any control in the
ToolStrip, or you can use one of the classes that are derived from it
(ToolStripComboBox, ToolStripTextBox, or ToolStripProgressBar)
to get a specific control with strongly typed properties.

ToolStripDropDownItem An item that displays a drop-down menu. When using the
ToolStripDropDownItem, you actually have two very similar
options, depending on what ToolStripDropDownItem-derived
class you choose. ToolStripDropDownButton gives you a button
with a tiny arrow icon (and your own text or image). When
this button is clicked, the drop-down menu appears.
ToolStripSplitButton looks similar, but it separates the drop-
down button from your content with a thin solid line. Typically,
you use ToolStripSplitButton when you want to give the ability
to provide several functions through one button. The user can
push on the button to get a drop-down menu and select an
option from it to apply.

Table 14-2. ToolStripItem Derived Classes (Continued)

Class Description

Macdonald_694-3C14.fm Page 480 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 481

ToolStripItem Events

Every ToolStripItem supports a small set of events. In fact, even noninteractive ToolStripItem
instances (like separators and labels) fire the ToolStripItem events. These events closely match
the events provided by the base Control class and don’t hide any surprises. Table 14-3 lists the
most useful ones.

To implement most of the functionality behind a typical ToolStrip, you’ll simply react to
the ToolStripItem.Click event. You can handle each button separately (which is often the
clearest approach), or you can attach the same event handler to every ToolStripItem. Here’s an
example that simply displays the name of the button you clicked:

Private Sub ToolStripButton1_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles ToolStripButton1.Click
 Dim item As ToolStripItem = CType(sender, ToolStripItem)
 MessageBox.Show("You clicked " & item.Name)
End Sub

An alternate approach is possible. You can handle the ToolStrip.ItemClicked event, which
fires when any item in the ToolStrip is clicked. This is handy in scenarios where you need to
perform a generic task with the selected item, but you don’t want to manually hook up the
ToolStripItem.Click event for each ToolStripItem.

Here’s how you could rewrite the previous example to use this approach:

Private Sub ToolStrip_ItemClicked(ByVal sender As Object, _
 ByVal e As ToolStripItemClickedEventArgs) Handles ToolStrip.ItemClicked
 Dim item As ToolStripItem = e.ClickedItem
 MessageBox.Show("You clicked " & item.Name)
End Sub

Table 14-3. ToolStripItem Events

Event Description

Click Occurs when the ToolStripItem is clicked.

DoubleClick Occurs when the ToolStripItem is double-clicked with the mouse.
Because double-clicks can mask single-clicks, and because
there’s rarely any reason to double-click a part of the ToolStrip,
double-clicks are disabled by default. They won’t be raised
unless you set ToolStripItem.DoubleClickEnabled to True.

DragDrop, DragEnter,
DragLeave, DragOver,
GiveFeedBack

Allow you to manage drag-and-drop operations, much as you
would with any other control. For more information, see the
section about these events in Chapter 4.

MouseMove, MouseEnter,
MouseHover, MouseLeave,
MouseDown, MouseUp

Allow you to track the state of the mouse and handle mouse clicks.

Macdonald_694-3C14.fm Page 481 Tuesday, July 25, 2006 8:40 AM

482 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

ToolStripItem Display Styles

There are several different ways to display a ToolStripItem, based on the DisplayStyle property,
which takes a value from the ToolStripItemDisplayStyle enumeration. You can display just an
image (Image), just text (Text), nothing at all (None, the oddest option), or image and text
(ImageAndText).

■Tip The ToolStrip is optimized, so it doesn’t attempt to lay out content if the corresponding property is
null—for example, if you have an image set but no text, TextAndImage and ImageOnly render the same.

The default DisplayStyle depends on the type of item. For example, a ToolStripButton
starts off in image mode, while a ToolStripLabel uses ImageAndText. The DisplayStyle has no
meaning for the ToolStripSeparator and ToolStripControlHost (and this Property doesn’t appear
in their Properties Window for these items).

When you use ImageAndText, you have the flexibility to choose how the two components
are arranged. By default, the image appears on the left and the text on the right. However, you
can change this relationship with the TextImageRelation property. Supported values include:

• ImageBeforeText (the default)

• TextBeforeImage

• ImageAboveText

• TextAboveImage

• Overlay (which superimposes the text over your image).

Figure 14-3 shows a test program included with the code for this chapter that lets you try
out different text-alignment options.

Figure 14-3. Image above text and other alignment options

Macdonald_694-3C14.fm Page 482 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 483

■Tip It’s a common technique in applications like Internet Explorer and Office to mix image-only buttons
with other buttons that include image and text. Usually, the images that include text represent less common
commands that need some identification.

ToolStripItem Images

Each ToolStripItem supports an image through its Image property. However, the ToolStrip
assumes that all images are the same size. This size is dictated by the ToolStrip.ImageScalingSize
dimensions. This size is initially 16 × 16 pixels, although you can change the scaling size to
any dimensions you want.

Problems occur if there’s a mismatch between the scaling size and the actual size of an
image. If the image doesn’t match the scaling size of the ToolStrip, the ToolStrip needs to scale
the image to fit, with unimpressive results. To turn off this automatic scaling behavior, change
each ToolStripItem.ImageScaling property from SizeToFit to None. Now the image for each
ToolStripItem image will be kept at its native size, no matter what the ImageScalingSize of the
ToolStrip imposes.

You can actually set two images in each ToolStripItem: one in the foreground (through the
Image property) and one in the background (through the BackgroundImage property). You
can use this in conjunction with BackgroundImageLayout (which allows you to tile, stretch, or
zoom the image) to place an image behind your text and any foreground image. You can even
set the ImageTransparent property to one of the colors in your foreground image to allow the
background to bleed through (although this effect is never as polished as when you prepare the
images ahead of time with the right background color, using a professional drawing program
that applies antialiasing).

ToolStripItem Text

Each ToolStripItem supports an arbitrary amount of text through its Text property. However,
text is never wrapped in a ToolStrip item, so it’s a good idea to keep it as short as possible.
A single word is ideal—any more should go into the tooltip.

■Note The ToolStrip gives you a range of tooltip possibilities. If you don’t set anything in the ToolTipText
property, the ToolStripItem will use its Text property for tooltip text. To disable this behavior, set the
AutoToolTip property to False. To turn off tooltips for the entire ToolStrip in one step, set the
ToolStrip.ShowItemToolTips property to False.

The text in a ToolStripItem is rendered horizontally, regardless of whether the ToolStrip
itself is horizontal or vertical. However, you can rotate the text by setting the TextDirection
property (of the ToolStrip or a single ToolStripItem) to Vertical90 (a rotation of 90º) or
Vertical270 (a rotation of 270º) rather than the default, Horizontal. Images are never rotated.

Macdonald_694-3C14.fm Page 483 Tuesday, July 25, 2006 8:40 AM

484 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-4 shows an example with two vertical ToolStrip objects. The one displays images
and text with the normal text direction. The one of the right shows images only, but adds two
labels with a TextDirection of Vertical90.

Figure 14-4. Rotated text labels

■Note Rotated text is uncommon in professional Windows applications, but it does crop up from time to
time (usually with the objective of saving space). In Office, toolbars rotate text by default when they’re in
the vertical orientation. One example is the List toolbar in Microsoft Excel 2003, which has 90º-rotated text on
two items.

The ToolStripItem supports quick-access keys, which let the user trigger a command using
an Alt key combination. To define a quick-access key, add the ampersand (&) before the key
you want to use in the text. For example, &New makes Alt+N the quick-access key. The quick-
access key is active only if the ToolStripItem.DisplayStyle is set to an option that shows the text.

■Note As with menus, the appearance of underlining in the ToolStrip depends on the “Hide underlined
letters for keyboard navigation until I press the Alt key” operating system setting. You can configure this
setting in the Display section of the Control Panel. If this option is set, underlining won’t appear until you press Alt.

ToolStripItem Size and Alignment

Ordinarily, each ToolStripItem is sized to fit its content (text and image). The only changes you
make are through the Margin property of each ToolStripItem, which allows you to increase
spacing between the edges of the ToolStrip and adjacent items.

Macdonald_694-3C14.fm Page 484 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 485

You can turn off the automatic sizing by setting the ToolStripItem.AutoSize property
to False. You then have the freedom to change the Size property to set the exact size of the
ToolStripItem. If the ToolStripItem is too small to accommodate all its content, part of the
content will be truncated at the end. Text in a ToolStripItem is never wrapped.

If you make the ToolStripItem much larger than its content, the text and images will be
centered inside its bounds. However, you can fine-tune this alignment using the ImageAlign
and TextAlign properties, so that the content is aligned along one of the edges.

Figure 14-5 shows some of your alignment options. Keep in mind that all of the buttons in
this example use the default TextImageRelation.ImageBeforeText, so the image is always to the
left of the text. You can change the TextImageRelation property to get even more positioning
flexibility.

Figure 14-5. Explicitly sizing and aligning the ToolStripItem

The ImageAlign and TextAlign properties determine the alignment of content inside a
ToolStrip. You also can change how different items are aligned with respect to each other.
Ordinarily, all items are ordered starting at the left edge of the ToolStrip (or the top edge in a
vertical ToolStrip). Items are arranged according to the order they have in the ToolStrip.Items
collection. However, you can set some items to stick to the end of the ToolStrip (the right edge
in a horizontal ToolStrip or bottom of a vertical ToolStrip) by setting the ToolStripItem.Alignment
property from Left to Right. (Of course, if your ToolStrip is docked to the side of a form, an
Alignment value of Right places it at the bottom of the ToolStrip rather than the right side.) This
technique is occasionally useful to separate a few buttons, like a Help icon.

Figure 14-6 shows an example that has three buttons aligned to the end of the ToolStrip.
When more than one button is aligned to the end, the buttons are attached in the order they
appear in the collection, so the first is the farthest right, the next button is just to the left, and
so on.

Figure 14-6. Aligning items on both ends

It’s important to understand not only how the ToolStripItem is sized, but also how the
containing ToolStrip is sized. Once again, there’s an automatic option and a manual option,

Macdonald_694-3C14.fm Page 485 Tuesday, July 25, 2006 8:40 AM

486 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

depending on the value of the ToolStripItem.AutoSize property. By default, this property
is True, and a horizontal ToolStrip is heightened (while a vertical ToolStrip is widened) to
fit the dimensions of the largest item. However, if you turn off the AutoSize property you
can set the size precisely through the Size property. As long as you have a LayoutStyle of
HorizontalStackWithOverflow, VerticalStackWithOverflow, or StackWithOverflow, an overflow
menu is added for any items that don’t fit in the ToolStrip. But if you’re using Flow layout,
items that don’t fit are simply left out.

Creating a ToolStrip Toggle Button

A toggle button is a button that has two states—an ordinary unselected state and a selected
state. When a toggle button is in its selected state, it remains highlighted even when the mouse
is not hovering over it. The user can turn a toggle button on or off by clicking it once.

Toggle buttons are easy with the ToolStrip, because the ToolStripButton class adds several
properties for managing them. The selected state is known as checked, and the ToolStripButton
adds a Checked property that, if True, highlights the item permanently. To add the on/off
behavior, you simply set the CheckOnClick property to True. That way, the button is automat-
ically switched on or off when the user clicks it. Finally, you can use the CheckedChanged event
to react in your code when the button is selected or unselected.

Some toggle buttons are used in groups. For example, in Microsoft Word there is a set of
justification buttons, and only one can be selected at a time. To implement this design, the
CheckOnClick property isn’t enough—instead, when a button in the group is clicked, you need
to handle the CheckedChanged event and manually set the Checked property of the other
buttons to False.

Creating a ToolStrip Link

Most ToolStrip examples are filled with ToolStripButton objects. However, you also can use the
ToolStripLabel to fire commands by setting the IsLink property to True, thereby turning it into
a link (see Figure 14-7). You can set the LinkBehavior property to control how the link is under-
lined (AlwaysUnderline, NeverUnderline, HoverUnderline, or SystemDefault). You also can
determine the colors of the link in both its initial and visited state by setting LinkColor and
VisitedLinkColor. Finally, you can read or set the Boolean LinkVisited property to determine
whether or not the link is in its visited state.

Figure 14-7. A ToolStripLabel as a link

Links are sometimes used to start a new process (for example, launching a browser to
display a help or update page). For example, if you place a target URL into the Tag property
of a ToolStripLabel, you can use this code to launch it with the default browser:

Private Sub ToolStripLinkLabel_Click(ByVal sender As Object, ByVal e As EventArgs) _

Macdonald_694-3C14.fm Page 486 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 487

 Handles ToolStripLinkLabel.Click
 Dim lbl As ToolStripLabel = CType(sender, ToolStripLabel)
 Try
 Process.Start(New ProcessStartInfo(lbl.Tag.ToString()))
 Catch Err As Exception
 MessageBox.Show("Error launching browser.")
 End Try
End Sub

If you want to attach more information and aren’t happy with passing it through the
weakly typed Tag property, you can always develop a custom ToolStripItem that derives from
ToolStripLinkLabel. You’ll learn how to develop custom ToolStripItem classes later in this
chapter.

The ToolStripContainer
So far, the ToolStrip examples you’ve seen have used docked ToolStrip objects. This is a quick
way to build simple forms, and it’s ideal if you intend to have only a single ToolStrip visible.
However, there’s another option—you can embed your ToolStrip inside a ToolStripContainer.

The ToolStripContainer allows more than one docked ToolStrip control to share space.
For example, imagine you create a control with three ToolStrip objects. If you dock them all to
the top, they appear in three separate rows, one above the other, depending on the order in
which you created them. The first created object is at the top, because it has the lowest z-index.
(See Chapter 2 for a more detailed discussion about z-order.) To change this, you can right-click
the control you want on top and select Bring To Front.

But what do you do if you want more than one ToolStrip control to appear on the same
row, side by side but similarly docked to the top edge? You could avoid docking altogether and
position them absolutely, but this causes tremendous headaches with ToolStrip resizing. Namely,
you’ll need to tweak the ToolStrip size to accommodate newly added buttons, and write code
to manage overflow menus and implement the proper sizing behavior when the window is
resized. Fortunately, the ToolStripContainer saves you the trouble with an elegant solution.

Essentially, the ToolStripContainer is a group of five panels. There are four ToolStripPanel
controls, one for the top, bottom, left, and right edges, and a ContentPanel for the center region,
where you can place the rest of the window content. Figure 14-8 shows this design. Usually, you’ll
dock the ToolStripContainer to fill the form, so that its edges are the same as the form’s edges.

When the ToolStripContainer is first created, these four panels are hidden. However, as
soon as you place a ToolStrip on one of the edges, the closest panel is resized to fit the ToolStrip.
The neat part of this design is the fact that the ToolStrip objects don’t use any docking—instead,
they’re placed in terms of the panel, and the panel is docked in the right place. By default, the
ToolStripContainer panels use a shaded background like the ToolStrip.

Figure 14-9 shows a ToolStripContainer with several identical ToolStrip objects. To make
it easier to see the different panels, the background color of the content panel has been set to
white. Now, you can place more than one ToolStrip on the same row or column, and you can
click on the ToolStrip sizing grip at runtime and drag it from one place to another. A user can
apply this technique to rearrange a group of adjacent ToolStrip objects or to drag a ToolStrip
from one panel to another (for example, from the top of the window to the right side). The
ToolStripContainer provides the necessary dragging cues. For example, as you drag the ToolStrip,

Macdonald_694-3C14.fm Page 487 Tuesday, July 25, 2006 8:40 AM

488 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

a rectangle outline shows you the new position. When you approach one of the sides, the
ToolStrip snaps neatly into place with the correct orientation.

Figure 14-8. The ToolStripContainer at design time

■Tip You can set the ToolStrip.Stretch property to True to force a ToolStrip to fill the whole row (for a horizontal
ToolStrip) or column (for a vertical ToolStrip). This property is intended primarily for displaying menus. It has
no effect unless the ToolStrip is inside a ToolStripPanel.

Figure 14-9. Rearranging ToolStrip objects at runtime

Macdonald_694-3C14.fm Page 488 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 489

If you want to add a ToolStrip into a ToolStripContainer at design time, you first must
expand the panel where you want to place it. To do this, use the arrow buttons that appear
along each edge of the ToolStripContainer. These buttons are a design-time convenience, and
they don’t appear at runtime. For example, if you want to add a ToolStrip to the right edge, start
by clicking the right arrow button to expand the panel. You can then drop the ToolStrip into the
exposed panel area. When you first add the ToolStripContainer, the top panel begins with its
surface exposed.

■Tip You can add a ToolStripContainer directly from the Visual Studio toolbox. However, if you have
an existing ToolStrip that you want to place into a ToolStripContainer, just select it, and choose Embed in
ToolStripContainer from the smart tag. Visual Studio will create a new ToolStripContainer and place your
existing ToolStrip inside.

Restricting the ToolStripContainer

By default, the user is allowed to drag any ToolStrip in a ToolStripContainer and dock it to any
side. ToolStrip objects outside a ToolStripContainer are immovable.

You can restrict this freedom in several ways. If you want to restrict docking to certain
areas, you can disable some of the ToolStripContainer panels by setting their visibility to False.
The ToolStripContainer gives you four properties to serve this purpose: TopToolStripPanelVisible,
BottomToolStripPanelVisible, LeftToolStripPanelVisible, and RightToolStripPanelVisible.
For example, if you set BottomToolStripPanelVisible to False, no ToolStrip will appear in the
bottom panel, and the user won’t be able to drag another ToolStrip into that area.

■Tip You can create a form that allows the user to rearrange ToolStrip objects but restricts them to the top
of the window by setting every visibility property to False, except for TopToolStripPanelVisibility.

You also can fix an individual ToolStrip in place by setting the ToolStrip.GripStyle property
to Hidden. Without the grip, there’s no way for the user to drag the ToolStrip out of its start-up
position.

Configuring the ToolStripContainer Panels

The ToolStripContainer doesn’t expose much of a programming model. However, it does let
you customize the five panels it wraps through several properties.

The four side panels are instances of the ToolStripPanel control, which has the built-in
collapse/expand behavior you saw in the previous example. The ToolStripPanel doesn’t derive
from the Panel control, although it has a similar lineage. To get access to these panels, you use
the TopToolStripPanel, BottomToolStripPanel, LeftToolStripPanel, and RightToolStripPanel
properties.

Macdonald_694-3C14.fm Page 489 Tuesday, July 25, 2006 8:40 AM

490 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

The center panel is an instance of the ToolStripContentPanel, which does derive from the
Panel control. You add the rest of your window content here. You can access it through the
ContentPanel property.

So what can you do once you have access to these controls? Primarily, you’ll want to change
the background color, set a background image, or use the RenderMode property to change how
the panel is painted (a technique discussed later in this chapter). You can access all of these panels
at design time with the Properties window through the properties of the ToolStripPanel, or you can
choose them from the drop-down list box in the Properties window.

■Note The ToolStripContainer doesn’t make much sense on an MDI parent because of the content region.
However, if you want a similar experience (namely, the ability to let the user rearrange multiple ToolStrip
controls), you can add one or more ToolStripPanel controls directly to your MDI form. Unfortunately, the
ToolStripPanel doesn’t appear in the Toolbox, so you’ll need to do it in code.

Floating ToolStrips

Now that you understand how the ToolStripContainer functionality is built using separate panels,
you might not be as surprised to learn about the one key limitation of the ToolStripContainer—
it doesn’t support floating ToolStrip objects. If you start dragging a ToolStrip and try to release it
anywhere except one of the four edges—for example, in the content panel or outside the
window—nothing happens.

However, you can code your own solution. For example, you could use the fake drag-and-
drop technique from Chapter 4 to change the position of the ToolStrip as the user drags it with
the mouse. However, this isn’t quite as easy as it should be. The problem is that the ToolStrip
mouse events (like MouseDown) only fire when they aren’t handled by any other part of the
ToolStrip. Unfortunately, when the user clicks the ToolStrip grip, the sizing grip handles the
click, and the event isn’t passed on to your code.

The only way to code around this problem is to create a custom ToolStrip control that
overrides the corresponding mouse methods. For example, the following code listing shows a
custom ToolStrip that overrides OnMouseDown and checks if the click was made inside the
sizing grip region. If it was, the control creates a new form and moves the ToolStrip from the
current form to the new (floating) form.

Public Class FloatToolStrip
 Inherits ToolStrip

 Public Event Undocked(ByVal sender As Object, ByVal e As EventArgs)

 Protected Overrides Sub OnMouseDown(ByVal mea As MouseEventArgs)
 If Me.GripRectangle.Contains(mea.Location) Then
 Dim location As Point = PointToScreen(Point.Empty)

 ' For more control, this would be a custom form.
 ' You could then event handlers that would react when
 ' it is dragged to an edge, and redock it automatically.

Macdonald_694-3C14.fm Page 490 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 491

 _floatForm = New Form()
 _floatForm.StartPosition = FormStartPosition.Manual
 _floatForm.Owner = Me.FindForm()
 Dim pt As Point = location
 pt.Offset(5, 5)
 _floatForm.Location = pt
 _floatForm.Text = Me.Text
 _floatForm.FormBorderStyle = FormBorderStyle.FixedToolWindow
 _floatForm.ClientSize = Me.Size

 ' A control can be contained in only one form. This moves
 ' the ToolStrip out of the original form and into the floating form.
 _floatForm.Controls.Add(Me)
 _floatForm.Show()

 ' Raise the event to notify the form.
 RaiseEvent Undocked(Me, EventArgs.Empty)
 Else
 ' Perform the normal mouse-click handling.
 MyBase.OnMouseDown(mea)
 End If
 End Sub

 Public Sub New()
 MyBase.New()
 End Sub

 Private _floatForm As Form
 Public ReadOnly Property FloatForm() As Form
 Get
 Return _floatForm
 End Get
 End Property

End Class

Now you can recompile your application and add this custom ToolStrip from the Toolbox.
You’ll have all the same design support for configuring the FloatToolStrip and adding
ToolStripItem objects inside.

Figure 14-10 shows how this code can create a rudimentary floating ToolStrip. You can try
out the complete example with the downloadable code for this chapter, available in the
Source Code area at www.apress.com.

Macdonald_694-3C14.fm Page 491 Tuesday, July 25, 2006 8:40 AM

492 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-10. Floating the ToolStrip in a tool window

The StatusStrip and MenuStrip
So far, you’ve learned the ToolStrip essentials, including how to control the layout, handle
ToolStripItem events, and use the ToolStripContainer to add drag-and-rearrange support.
Now, it’s time to consider how the ToolStrip model enables status bars and menus.

The basic idea behind the ToolStrip model is that you can add the same ToolStripItem
objects to different top-level containers. If you need a toolbar, the top-level container is the
ToolStrip. If you need a status bar, the StatusStrip item makes more sense. And if you need a
menu, the MenuStrip or ContextMenuStrip containers make sense. All the top-level containers
provide a very similar model, with essentially the same set of features. However, the default
rendering is slightly different, and some ToolStripItem objects are intended only for certain
top-level containers. In truth, there’s no absolute limitation—you can add menu items to the
ToolStrip and status panels to a MenuStrip. However, you’re encouraged not to (and this
option isn’t available in the designers you use at design time).

Table 14-4 shows the full list of ToolStripItem classes, and indicates what container
supports them. Remember, this table is based on intended usage and design-time support—
you can break the rules if you want and treat every container in the same way.

Table 14-4. ToolStripItem Container Support

Class Recommended
in ToolStrip

Recommended
in MenuStrip

Recommended
in StatusStrip

ToolStripButton Yes No No

ToolStripComboBox Yes Yes No

ToolStripSplitButton Yes No No

ToolStripLabel Yes No No

ToolStripSeparator Yes Yes No

ToolStripDropDownButton Yes No No

ToolStripTextBox Yes Yes Yes

ToolStripMenuItem No Yes No

Macdonald_694-3C14.fm Page 492 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 493

■Note There’s one other class that derives from ToolStrip: the ToolStripDropDownMenu. This class
represents a submenu for a menu item or a drop-down button, as you’ll see later in this chapter.

Creating a Status Bar
The StatusStrip is essentially a subset of the ToolStrip control. Although it can be used in a
ToolStripContainer, it’s almost always docked to the bottom of the window, where it can provide
long-term status information. By default, the StatusStrip doesn’t use the themed background
of the ToolStrip (although you can change this by shifting the RenderMode to Professional).
The StatusStrip rendering is also tweaked a bit—it adds a shaded line above the status bar and
a sizing grip for the window at the right side (which you can hide by setting SizingGrip to False).

Because a status bar is most commonly used to show information, not to provide commands,
you’ll probably add more label items than you would with an ordinary ToolStrip. In fact, there’s
a customized ToolStripStatusLabel control that’s tailored for the StatusStrip. It inherits from
the ToolStripLabel, changes some defaults, and adds four new properties: Alignment,
BorderStyle, BorderSides, and Spring.

■Tip In some applications, like the Microsoft Office applications, double-clicking on a label in the status bar
is a shortcut for a commonly used feature.

The BorderStyle and BorderSides properties allow you to create a border around your
label. With status bars, it’s a common convention to separate several pieces of information
graphically. You can set the BorderStyle property to one of the options in Table 14-5.

ToolStripStatusLabel No No Yes

ToolStripProgressBar Yes No Yes

Table 14-5. BorderStyle Values (from the Border3DStyle Enumeration)

Value Description

Adjust The border is drawn just outside the control bounds. This way, you
have free rein to perform custom drawing inside (by responding to the
ToolStripItem.Paint event).

Bump The inner and outer edges of the border have a raised appearance.

Table 14-4. ToolStripItem Container Support

Class Recommended
in ToolStrip

Recommended
in MenuStrip

Recommended
in StatusStrip

Macdonald_694-3C14.fm Page 493 Tuesday, July 25, 2006 8:40 AM

494 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

You can then set the BorderSides property to indicate on which edges the border should
be drawn. For example, you can choose to enclose the label completely or just draw a vertical
separator line. Figure 14-11 shows a test program included with downloadable code for this
chapter that lets you try out different border options.

The other new property in ToolStripStatusLabel is Spring. If Spring is True, the
ToolStripStatusLabel automatically expands to fill any leftover space in the StatusStrip. Unless
you change the TextAlign and ImageAlign properties, the content is centered in the middle of
the item. If you have more than one ToolStripStatusLabel with Spring set to True, any extra
space is divided between them proportionately. Figure 14-12 shows this spring behavior in action.

Figure 14-11. Borders with the ToolStripStatusLabel

Figure 14-12. A StatusStrip with two springing labels

Etched The inner and outer edges of the border have an etched (engraved)
appearance.

Flat The border has no three-dimensional effects. (This is the BorderStyle
default for the ToolStripStatusLabel.)

Raised The border has raised inner and outer edges.

RaisedInner The border has a raised inner edge and no outer edge.

RaisedOuter The border has a raised outer edge and no inner edge.

Sunken The border has sunken inner and outer edges.

SunkenInner The border has a sunken inner edge and no outer edge.

SunkenOuter The border has a sunken outer edge and no inner edge.

Table 14-5. BorderStyle Values (from the Border3DStyle Enumeration) (Continued)

Value Description

Macdonald_694-3C14.fm Page 494 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 495

THE PROPER PLACE FOR A STATUS BAR

A status bar is ideal for displaying small amounts of information throughout the life of the application. This
information should never be critical or take the place of informative messages or progress indicators, as many
users won’t notice it. This information should also be kept to a minimum to prevent a cluttered interface. Some
possible status bar information includes:

• Information about the application mode or operating context. For example, if your application can
be run by many different types of users, you might use a status bar panel to provide information about
the current user level (e.g., Administrator Mode). Similarly, a financial application might provide a label
indicating U.S. Currency Prices if it’s possible to switch regularly between several different pricing modes.

• Information about the application status. For example, a database application might start by displaying
Ready or Connected To… when you first log in, and then display Record Added when you update the
database. This technique avoids stalling advanced users with a confirmation window where they need
to click an OK button, but it can also easily be missed, leaving it unsuitable for some situations.

• Information about a background process. For example, Microsoft Word provides some information
about print operations while they are being spooled in its status bar.

• Information about the current document. For example, most word processors use a status bar to
display the current page count and the user’s position in the document. Windows Explorer uses the
status bar to display ancillary information like the total number of files in a folder.

ToolStrip Menus
Just as in Microsoft Office applications, the ToolStrip can accommodate drop-down menu
items. You simply need to add one of the items that derives from ToolStripDropDownItem
(either ToolStripDropDownButton or ToolStripSplitButton) to your ToolStrip.

The ToolStripDropDownItem adds a small set of members. The most important is the
DropDownItems collection, which accepts a collection of ToolStripItem objects for the
drop- down menu. The interesting part is that you can add any ToolStripItem to the
DropDownItems collection. This means that you can add menu commands, ToolStripTextBox,
ToolStripComboBox, and (through code) any other class derived from ToolStripItem.

Figure 14-13 shows a ToolStripDropDownButton with three menu items. The fourth
menu item is being chosen from a drop-down list that provides four options. The only ingre-
dient in this list that you haven’t yet considered is the ToolStripMenuItem, which is discussed
in the next section.

Along with the DropDownItems collection, the ToolStripDropDownItem class also adds a
DropDownDirection property you can set (in code) to influence where the menu is displayed,
and a set of events (DropDownOpening, DropDownOpened, DropDownClosing, and
DropDownClosed) that you can handle to add, hide, insert, or remove menu items on the fly.
Finally, it includes a ShowDropDown() method you can call to pop open the menu program-
matically and a DropDownItemClicked event that fires when any of the items in the
DropDownItems collection is clicked.

Macdonald_694-3C14.fm Page 495 Tuesday, July 25, 2006 8:40 AM

496 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-13. Designing a drop-down ToolStrip menu

■Tip Often, you won’t handle the DropDownItemClicked event, which fires when any item in the submenu
is clicked. Instead, you’ll create separate event handlers that respond to the ToolStripItem.Click event of each
menu item. This helps keep your user interface code more encapsulated. For example, it allows you to easily
add new menu items and move them between menus without needing to change your code.

The ToolStripMenuItem

The ToolStripMenuItem represents a command in a menu. It renders differently depending on
whether it’s part of a submenu or a top-level menu item in a MenuStrip control. When it’s in a
submenu, the ToolStripMenuItem renders a margin on the left where thumbnail images are
displayed for each command (if supplied).

The ToolStripMenuItem derives from the ToolStripDropDownItem, which means
you can create a submenu by adding items to the ToolStripMenuItem.Items collection. The
ToolStripMenuItem also adds properties for managing shortcut keys and for supporting
checked menu items and MDI (Multiple Document Interface) applications. You’ll learn more
about MDI menu merging and window lists in Chapter 19. Table 14-6 has the full details.

Table 14-6. ToolStripMenuItem Members

Member Description

Checked If True, a check mark is shown in the margin to the left of the menu
item. Keep in mind that you can’t simultaneously use check
marks and images, because they are both displayed in the same
margin space. If you do, the image will overwrite the check mark.

CheckOnClick If True, the check mark is automatically switched on or off when
the user selects the menu item.

CheckedChanged event Handle this event to respond when the item is checked
or unchecked.

IsMdiWindowListEntry Returns True if this is an autocreated menu item that’s part of a
MDI window list. You’ll learn about this feature in Chapter 19.

Macdonald_694-3C14.fm Page 496 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 497

■Tip You also can use quick-access keys (called mnemonics) with a menu item. Simply add the ampersand
character before the access key (as in E&xit, which makes “x” the access key).

If the menu grows too large to fit the current screen resolution, scroll buttons are automat-
ically added to the top and bottom. Here’s an example that tests this feature by adding a series
of menu items, one for each font installed on the computer:

Private Sub stripMenu_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 ' Create the font collection.
 Dim fontFamilies As New InstalledFontCollection()

 ' Iterate through all font families.
 For Each family As FontFamily In fontFamilies.Families
 Try
 ' Create a ToolStripMenuItem that will display text in this font.
 Dim item As New ToolStripMenuItem(family.Name)
 item.Font = New Font(family, 8)

 mnuFont.DropDownItems.Add(item)
 Catch Err as Exception
 ' An error will occur if the selected font does
 ' not support normal style (the default used when
 ' creating a Font object). This problem can be
 ' harmlessly ignored.
 End Try
 Next
End Sub

Figure 14-14 shows the result.

ShortcutKeys Specifies the shortcut key, using a combination of values from the
Keys enumeration. For example, set this to Keys.Control | Keys.N if
you want the key sequence Ctrl+N to activate this command
automatically.

ShowShortcutKeys If True, the shortcut key is automatically displayed, at the right of
the menu item, and right-justified.

ShortcutKeyDisplayString If ShowShortcutKeys is True and a value is supplied for
ShortcutKeyDisplayString, this value is used instead of the
shortcut key. For example, if you want the shortcut key text to
appear as Ctrl+Shift+N instead of the default Shift+Ctrl+N, you
can use this property.

Table 14-6. ToolStripMenuItem Members

Member Description

Macdonald_694-3C14.fm Page 497 Tuesday, July 25, 2006 8:40 AM

498 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-14. Scroll buttons in a long menu

Multicolumn Menus

Interestingly, the drop-down menu exposed by the ToolStripDropDownItem is a complete,
independent ToolStrip. You can get a reference to this sub-ToolStrip through the
ToolStripDropDownItem.DropDown property. Technically, this is an instance of a
ToolStrip-derived class, with the confusingly similar name ToolStripDropDown. The
ToolStripDropDownItem makes this child ToolStrip available through the
ToolStripDropDownItem.DropDown property.

This opens up some interesting possibilities. For example, you can change the ToolStrip.
Opacity property to create a semitransparent drop-down menu. Here’s how:

toolStripDropDownButton1.DropDown.Opacity = 0.5

Or, you could create a multicolumn table layout as shown here:

' Create a new drop-down menu.
Dim menu As New ToolStripDropDown()

' Copy the existing items.
Dim items(fileToolStripMenuItem.DropDown.Items.Count - 1) As ToolStripItem
fileToolStripMenuItem.DropDown.Items.CopyTo(items, 0)

Macdonald_694-3C14.fm Page 498 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 499

' Transfer the items into the drop-down menu.
For Each item As ToolStripItem In items
 If Not TypeOf item Is ToolStripSeparator Then menu.Items.Add(item)
Next

' Adjust the layout of the new menu.
menu.LayoutStyle = ToolStripLayoutStyle.Table
CType(menu.LayoutSettings, TableLayoutSettings).ColumnCount = 2

' Attach it to the File menu.
fileToolStripMenuItem.DropDown = menu

Figure 14-15 shows the result.

Figure 14-15. A menu with two columns

Main Menus
Now that you’ve learned how to create a drop-down menu in a ToolStrip, you know almost
everything you need to know to create main menus and context menus. Both controls use a
similar set of ToolStripMenuItem objects. The only difference is the top-level container.

To create a main menu, you begin by adding a MenuStrip to your form. It’s usually enough
to dock the MenuStrip to the top of your window, above any other docked ToolStrip objects.
However, the MenuStrip can be placed in a ToolStripContainer, so that you can place a ToolStrip
and MenuStrip side by side, and you can drag a MenuStrip from one place to another (as you
can in Microsoft Office). However, by default, the MainMenu.GripStyle property is set to Hidden,
and the MenuStrip is fixed in place. The Stretch property is also set to True, so the menu
expands to the full width of the window.

By default, when you add a MenuStrip to your form, Visual Studio sets the Form.
MainMenuStrip property to point to your menu. By taking this step, your MenuStrip is
assigned to be the form’s main menu, which means it responds to the Alt key. However, it is
valid (although unusual) for a form to have more than one MenuStrip. In this case, although
all menus are displayed, only the Form.MainMenuStrip can handle the Alt key (and only one
menu will use the MDI menu merging feature described in Chapter 19).

Once you’ve added the MenuStrip, you must create the menu structure by adding
ToolStripMenuItem objects. One difference between the MenuStrip and the ToolStrip is the
fact that the top-level menu headings in the MenuStrip are all ToolStripMenuItem objects.
In fact, every menu item in a MenuStrip is a ToolStripMenuItem. You don’t use the
ToolStripDropDownButton or ToolStripSplitButton.

Macdonald_694-3C14.fm Page 499 Tuesday, July 25, 2006 8:40 AM

500 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-16 shows a basic main menu.

Figure 14-16. The default rendering for a MenuStrip

■Tip You can quickly create a standard menu with commonly used menu commands using the Insert
Standard Items link from the MenuStrip smart tag.

The MenuStrip derives from ToolStrip. Although it tweaks the rendering, it adds only two
new members: the MenuActivate and MenuDeactive events. MenuActivate fires when the
menu is opened using the mouse or keyboard, and MenuDeactivate fires when it closes. This
event isn’t terribly useful, because it fires for any menu in the ToolStrip. ToolStripMenuItem
events like DropDownOpening and DropDownClosing (for submenus) and Click (for indi-
vidual menu items) are more useful.

There’s one possible point of confusion with the MenuStrip. Because the MenuStrip derives
from ToolStrip, it provides an Items collection that contains the top-level menu entries (like
File, Edit, Tools, Help, and so on). Each of these entries is represented by a ToolStripMenuItem
instance. The items inside each menu (like the New, Open, and Close commands in the File
menu) are also ToolStripMenuItem objects. However, because ToolStripMenuItem derives
from ToolStripDropDownMenuItem, the name of this collection changes, and these items
are stored in the ToolStripMenuItem.DropDownItems collection. Figure 14-17 shows this
organization.

When you add a MenuStrip to a form, the Form.MenuStrip property is automatically set to
point to that MenuStrip object. You probably won’t need to use this property in your code
(because the menu is already defined as a member variable of your form class), but it’s required
to support menu keyboard commands and MDI menu merging (which you’ll see in Chapter 19).

■Note Unlike the legacy MainMenu control, when you add a MenuStrip to a form it’s inserted into the
Forms.Controls collection like any other ToolStrip or control. The MenuStrip also uses the client area of the
form (whereas the MainMenu used the nonclient area). This gives you more options—for example, you can
place other controls on top of the MenuStrip, you can add several MenuStrip controls to the same form, or you
can add a MenuStrip to another container, like a Panel.

Macdonald_694-3C14.fm Page 500 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 501

Figure 14-17. The object model for a simple menu

Context Menus
Applications use two kinds of menus—main menus and context menus. Context menus are
“pop up” menus that provide additional options, usually when the user right-clicks a part of
the window.

In .NET 2.0, you model context menus using the ContextMenuStrip class, which derives
from ToolStripDropDownMenu. When you add a ContextMenuStrip object to your form, it
appears in the component tray. When you select the menu, it appears at the top of the form
and you can design it in the same way as a MenuStrip for the main menu.

At runtime, your ContextMenuStrip won’t appear. You have two choices to display it. The
easiest approach is to associate it with another control by setting the Control.ContextMenuStrip
property to your ContextMenuStrip object. When the user right-clicks the control, your context
menu appears automatically.

Using a control’s ContextMenu property is really just a convenience. You can display a
context menu at any time, in response to any event using the ContextMenuStrip.Show()
method. Here’s an example that opens a context menu when the user right-clicks a control,
just as if you set the Control.ContextMenuStrip property:

Private Sub listBox1_MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs) _
 Handles listBox1.MouseUp
 If e.Button Is MouseButtons.Right Then
 contextMenuStrip1.Show(CType(sender, Control), e.X, e.Y)
 End If
End Sub

Sometimes, you might want to show a subset of a main menu in a context menu. Unfortu-
nately, there’s no way to set this up at design time. Even at runtime, your options are limited.

Macdonald_694-3C14.fm Page 501 Tuesday, July 25, 2006 8:40 AM

502 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

You can’t copy ToolStripMenuItem objects from one menu, because a ToolStripMenuItem can
be a member of only one menu (and when you add it to another, it’s removed from the first).
There’s also no Clone() method to allow you to duplicate entries with their event handlers
intact. However, you can respond to the Opening event to copy a set of items into a context
menu and then react to Closed to copy them back the main menu.

■Tip For an example that shows how you could create a custom ToolStripMenuItem control that does
support cloning, check out http://blogs.msdn.com/jfoscoding/articles/475177.aspx.

In many scenarios, you’ll have a single context menu that you bind to several controls. In
this situation, you’ll probably want to tailor the menu depending on which control currently
has focus. For example, you might choose to hide or disable certain options. This process is
easy thanks to the ContextMenuStrip.SourceControl property, which always returns a refer-
ence to the control that was just clicked to display the context menu. You can examine the
SourceControl property just before the menu is shown by reacting to the ContextMenuStrip.
Opening event. You can test for specific controls by comparing the SourceControl reference to
the corresponding member variable, or you can test the type of control based on class, as
shown here:

Private Sub contextMenuStrip1_Opening(ByVal sender As Object, _
 ByVal e As CancelEventArgs) Handles contextMenuStrip1.Opening
 ' Enable everything.
 For Each item As ToolStripItem In contextMenuStrip1.Items
 item.Visible = True
 Next

 ' Disable what isn't appropriate.
 If TypeOf contextMenuStrip.SourceControl Is Label Then
 mnuCut.Visible = False
 mnuPaste.Visible = False
 End If
End Sub

ToolStrip Customization
Now that you’ve mastered the essentials of the ToolStrip, you’re ready to consider a few more
advanced scenarios. In this section, you’ll have a tour of a variety of different ways to extend
the ToolStrip, from fine-tuning the behavior of the overflow menu to creating your own
ToolStripItem classes.

Macdonald_694-3C14.fm Page 502 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 503

Hosting Other Controls in the ToolStrip
Sometimes, you’ll want to put controls other than buttons and labels in a ToolStrip.
The ToolStripControlHost makes this feat easy. You simply create a new instance of a
ToolStripControlHost and pass any Control-derived class in the constructor. You can then
add the ToolStripControlHost to the ToolStrip.

Here’s an example that uses this technique to add a DateTimePicker to a ToolStrip:

Dim dt As New DateTimePicker()
dt.Value = DateTime.Now
dt.Format = DateTimePickerFormat.Short
Dim item As New ToolStripControlHost(dt)
toolStrip1.Items.Add(item)

■Tip If you want to slot the new ToolStripControlHost into a specific place in an existing ToolStrip, use the
Insert() method instead of Add(). This allows you to supply an index number for the position.

Because the ToolStripControlHost.AutoSize property is set to True by default, the
ToolStripItem automatically fits the exact size of the hosted control. Depending on the control
you’re hosting, you may need to set its BackgroundColor to Color.Transparent to make it look
respectable. You may also need to set the AutoSize property to True to make sure its bounds are
only as large as its content.

Figure 14-18 shows an example of a hosted control sandwiched between two ordinary
buttons.

Figure 14-18. A DateTimePicker in a ToolStrip

Macdonald_694-3C14.fm Page 503 Tuesday, July 25, 2006 8:40 AM

504 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

There are a few minor disadvantages to using the ToolStripControlHost:

• You can add only a single control. However, there’s a workaround. If you want to place
an arrangement with more than one control, you need to create a container control
(like a Panel or UserControl) that has these controls. Then, use that container in the
ToolStripControlHost.

• You need to create it and add the control to your ToolStrip programmatically, because
there’s no design-time support. However, you can easily derive a custom ToolStripItem
from ToolStripControlHost (as explained in the next section).

• You don’t have strongly typed access to the hosted control. You need to cast the
ToolStripControlHost.Control property to the right type to get access to control-specific
members.

The ToolStripControlHost does one very smart thing—it provides numerous members
that wrap basic properties and events from the Control class members. That means you can
access properties like Text, Font, and ForeColor, and events like GotFocus, LostFocus, and
KeyPress for the hosted control. If you need something more specific, you need to cast the
Control property.

Here’s an example of both approaches:

MessageBox.Show("The current date is " & item.Text)
MessageBox.Show("The current date format is " & _
 CType(item.Control, DateTimePicker).Format.ToString())

.NET includes a rich set of controls that complement the ToolStrip. With the
ToolStripControlHost, you have the ability to use any control or combination of controls
to create custom menu items, toolbar buttons, and tool windows.

Creating a Custom ToolStripItem

If you want to improve the design-time support and add strongly typed properties to your item,
there’s an easy answer—just create a custom ToolStripItem class that derives from
ToolStripControlHost.

To use this approach, you begin by deriving your custom ToolStripItem. In this example,
the ToolStripItem renders itself as a CheckBox followed by a TextBox. The CheckBox must be
checked to type into the TextBox.

Public Class CheckTextBoxToolStripItem
 Inherits ToolStripControlHost
 ...
End Class

Next, you use constructor to create the controls you want and pass them to the base class
constructor, thereby initializing the ToolStripControlHost. The CheckTextBoxToolStripItem
uses a FlowLayoutPanel as an easy way to combine two controls side by side. The FlowLayoutPanel
is given a transparent background, so the ToolStrip gradient will show through, and the
CheckBox is set to size itself automatically, so it will collapse down to the smallest possible width.

Macdonald_694-3C14.fm Page 504 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 505

' Controls in this item.
Private controlPanel As FlowLayoutPanel
Private chk As New CheckBox()
Private txt As New TextBox()

Public Sub New()
 MyBase.New(New FlowLayoutPanel)

 ' Set up the FlowLayouPanel.
 controlPanel = CType(MyBase.Control, FlowLayoutPanel)
 controlPanel.BackColor = Color.Transparent

 ' Add two child controls.
 chk.AutoSize = True
 controlPanel.Controls.Add(chk)
 controlPanel.Controls.Add(txt)
End Sub

Now you need to add properties, methods, and events to wrap the members of the hosted
control. You can do this in almost exactly the same way as in the user control examples demon-
strated in Chapter 10.

In this example, a single TextEnabled property wraps the CheckBox.Checked property:

Public Property TextEnabled() As Boolean
 Get
 Return chk.Checked
 End Get
 Set(ByVal value As Boolean)
 chk.Checked = value
 End Set
End Property

Finally, it’s important to attach event handlers to any events in the hosted control that
you need to intercept. If you want to handle events from the base control class (which is the
FlowLayoutPanel in this example), you should use two dedicated methods that are designed
for that purpose: OnSubscribeControlEvents() and OnUnsubscribeControlEvents().
In OnSubscribeControlEvents, you can attach your event handler, and in
OnUnsubscribeControlEvents, you can detach it.

However, if you want to attach events to other objects (like the contained CheckBox
control in this example), you’ll need to do it in the constructor immediately after you create the
controls. That’s because the OnSubscribeControlEvents() method may be called before your
constructor has run. If you try to hook up events at this point, you’ll receive a null reference
exception, because the control objects haven’t yet been instantiated.

Here’s the line of code you need to add to the end of the constructor:

AddHandler chk.CheckedChanged, AddressOf CheckedChanged

Macdonald_694-3C14.fm Page 505 Tuesday, July 25, 2006 8:40 AM

506 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

■Tip If you need to put a ProgressBar, TextBox, or ComboBox into a ToolStrip, .NET already includes
ToolStripControlHost-derived items that wrap these controls. These are the ToolStripComboBox,
ToolStripTextBox, and ToolStripProgressBar.

Design-Time Support for a Custom ToolStripItem

The real miracle is how easily your custom ToolStripControlHost can plug into the design-time
ToolStrip architecture. All you need to do is carry out a few simple steps.

First, add a reference to the System.dll assembly. Next, import the
System.Windows.Forms.Design namespace. Now you can use the
ToolStripItemDesignerAvailability attribute to specify what types of ToolStrip-derived classes
your custom item supports. Because you’ve derived from ToolStripControlHost, which doesn’t
appear at design time at all, the default visibility of your class is none. Here’s a quick change
that allows your custom ToolStripItem to be added to a ToolStrip or StatusStrip at design time:

<ToolStripItemDesignerAvailability(ToolStripItemDesignerAvailability.ToolStrip Or _
 ToolStripItemDesignerAvailability.StatusStrip)> _
Public Class CheckTextBoxToolStripItem
 Inherits ToolStripControlHost
 ...
End Class

Finally, just rebuild your application, and click the Edit Items link in the ToolStrip smart
tag. At the bottom of the list of options, you’ll see your newly created class (see Figure 14-19).

Figure 14-19. Adding a custom ToolStripItem at design time

Macdonald_694-3C14.fm Page 506 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 507

Once you add your custom ToolStripItem, you can configure it in the Properties window.
All the design-time skills you learned in Chapter 13 still apply. That means you can use attributes
to customize the default gear icon, add descriptions for your properties, control how property
values are serialized, and so on.

This integration makes it effortless to create custom ToolStripItem objects with design-
time integration for menus, toolbars, and status bars. In fact, this model is so easy and elegant,
it’s hard not to wish for something comparable to give you design-time support for custom
items in other collection-base controls, like the TreeView and ListView.

■Tip If you want to set a custom item for your ToolStripItem, just use the ToolboxBitmap attribute, which is
described in Chapter 13.

Creating an Owner-Drawn ToolStripItem

The design-time integration of custom ToolStripItem classes isn’t limited to those that wrap
other Windows Forms controls. In fact, you can create an owner-drawn ToolStripItem by
deriving directly from ToolStripItem or ToolStripButton and overriding the OnPaint() method.

Public Class CustomToolStripButton
 Inherits ToolStripButton

 Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 pe.Graphics.Clear(Color.Red)
 End Sub
End Class

Once again, you can add the ToolStripItemDesignerAvailability attribute to configure
design-time support. Without it, the design time support of your class is based on the class you
derive from, so if you derive from ToolStripButton, your custom item will appear in all the
same designers as ToolStripButton.

In some cases, you might want to render with some of the normal rendering support but
add additional content. For example, you might use this technique to add custom-drawn
content to a ToolStripItem while keeping the standard gradient background used by the rest of
the ToolStrip. To accomplish this, you need to access the renderer for the current ToolStrip and
then call one of its public methods, depending on what item you want to draw. For example,
here’s a custom-drawn item that uses the background that’s being rendered for the rest of the
ToolStrip where it’s located:

Public Class CustomToolStripButton
 Inherits ToolStripButton

 Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
 Parent.Renderer.DrawButtonBackground(_
 New ToolStripItemRenderEventArgs(pe.Graphics, Me))

Macdonald_694-3C14.fm Page 507 Tuesday, July 25, 2006 8:40 AM

508 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

 pe.Graphics.DrawEllipse(Pens.Blue, 0, 0, Me.Width, Me.Height)
 pe.Graphics.FillEllipse(Brushes.Yellow, 0, 0, Me.Width, Me.Height)
 End Sub

End Class

You’ll learn more about renderers and the methods they provide later in this chapter.

Taking Control of Overflow Menus
As you saw at the beginning of this chapter (in Figure 14-1), the ToolStrip uses an overflow
menu when there isn’t enough room to show all the buttons at once. By default, items are
dropped off the end of the ToolStrip and added into the overflow menu. But more sophisticated
programs that use overflow menus (like Microsoft Office) take a different approach—they
selectively eliminate commands that are deemed to be less important. You can implement the
same sort of logic with the .NET ToolStrip. In fact, there are several options, depending on how
much control you want.

At the highest level, you can prevent items from being placed in an overflow menu by
setting the ToolStripItem.Overflow to Never (the default value is AsNeeded). A ToolStripItem
configured in this way will remain on the ToolStrip as other AsNeeded items are dropped into
the overflow menu. If there are several items set to not overflow and the ToolStrip can’t accom-
modate all of them, the items just won’t appear at all. You have one other choice—if you set
ToolStripItem.Overflow to Always the item will remain permanently in the overflow menu,
regardless of how much space there is.

In some situations, you might want even more fine-grained control. For example, maybe
you want to show image and text buttons when space allows, but remove the text captions
when the ToolStrip shrinks to prevent the need for an overflow menu. The basic technique is to
react to the ToolStrip.LayoutCompleted event, which fires after all the items have been arranged
and the overflow menu has been created. You then have two possibilities for determining what
items overflowed.

Your first option is to check the ToolStrip.OverflowButton property to get access to the
overflow menu. You can test its HasDropDownItems property to check whether there is
anything in the overflow menu. Alternatively, you can loop through the ToolStrip.Items collec-
tion (which still contains all the items) and check the ToolStripItem.Placement property of
each item. If it returns ToolStripItemPlacement.Overflow, this item has been relocated to the
overflow menu.

This task is conceptually quite straightforward, although in practice the code can become
quite convoluted. The following example implements a basic approach to custom overflow
menus. If possible, it tries to fit all buttons with text and images. If that doesn’t work, it takes the
first button on the right and switches the display style to text-only. As the ToolStrip continues to
shrink, it removes all the images one-by-one. If you shrink the ToolStrip beyond this point, it
starts switching the text-only buttons to the even more compact image-only display (see
Figure 14-20). The same logic unfolds in reverse when you expand the ToolStrip.

Macdonald_694-3C14.fm Page 508 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 509

Figure 14-20. Advanced ToolStrip configuration at runtime

To implement this design, you need to handle two ToolStrip events: Layout and
LayoutCompleted. The LayoutCompleted event fires when the layout has been finished and
the overflow menu has been created. At this point, you can check to see if an overflow menu
exists. If it does, you can try selectively reducing the buttons to a smaller display format.

Private Sub toolStripOverflow_LayoutCompleted(ByVal sender As Object, _
 ByVal e As EventArgs) Handles toolStripOverflow.LayoutCompleted
 ' Check if the overflow menu is in use.
 If toolStripOverflow.OverflowButton.HasDropDownItems Then
 ' Step backwards.
 For i As Integer = toolStripOverflow.Items.Count - 1 To 0 Step -1
 Dim item As ToolStripItem = toolStripOverflow.Items(i)
 If Not TypeOf item Is ToolStripSeparator Then
 If item.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText Then
 item.DisplayStyle = ToolStripItemDisplayStyle.Text
 Return
 End If
 End If
 Next

 ' If we reached here, all buttons are shrunk to text.
 ' Try reducing them further.
 For i As Integer = toolStripOverflow.Items.Count - 1 To 0 Step -1
 Dim item As ToolStripItem = toolStripOverflow.Items(i)
 If Not TypeOf Item Is ToolStripSeparator Then
 If item.DisplayStyle = ToolStripItemDisplayStyle.Text Then
 item.DisplayStyle = ToolStripItemDisplayStyle.Image
 Return
 End If
 End If
 Next

Macdonald_694-3C14.fm Page 509 Tuesday, July 25, 2006 8:40 AM

510 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

 ' If we reach here, the bar is fully collapsed.
 End If
End Sub

The Layout event fires at the beginning of the resize process. At this point, you can attempt
to expand the ToolStrip if space allows. Here’s the code:

Private Sub toolStripOverflow_Layout(ByVal sender As Object, _
 ByVal e As LayoutEventArgs) Handles toolStripOverflow.Layout
 If toolStripOverflow.DisplayRectangle.Width > MeasureToolStrip() Then
 ' Right now everything fits.
 ' Check if a larger size is appropriate.
 For Each item As ToolStripItem In toolStripOverflow.Items
 If Not TypeOf item Is ToolStripSeparator Then
 ' Look to expand any image-only buttons.
 If item.DisplayStyle = ToolStripItemDisplayStyle.Image Then
 item.DisplayStyle = ToolStripItemDisplayStyle.Text
 Return
 End If
 End If
 Next

 ' If we reach here, there are no image-only buttons.
 ' Look to expand any text-only buttons.
 For Each item As ToolStripItem In toolStripOverflow.Items
 If Not TypeOf item Is ToolStripSeparator Then
 If item.DisplayStyle = ToolStripItemDisplayStyle.Text Then
 item.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText
 Return
 End If
 End If
 Next
 ' If we reach here, the bar is fully expanded.
 End If
End Sub

Although this design works, it does have a few idiosyncrasies. If the user jerks the border
quickly enough, the ToolStrip size can be collapsed dramatically without the Layout and
LayoutCompleted events firing enough times to update all the buttons. The result is that all the
buttons won’t be resized, and an overflow menu will be present. A more sophisticated imple-
mentation would need to calculate the available space and determine which buttons to expand,
and it would take dramatically more code.

Allowing Runtime Customization
In applications like Microsoft Office, the toolbars are highly customizable. You can switch tool-
bars into a design mode and then rearrange and remove items. You’ve already seen how you
can use a ToolStripContainer to let users rearrange ToolStrip objects. It’s also no stretch of the

Macdonald_694-3C14.fm Page 510 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 511

imagination to design a menu that allows users to selectively show and hide specific ToolStrips. But
what about customizing the buttons on a single ToolStrip?

It turns out that the ToolStrip has a minimal level of built-in support for runtime custom-
ization. If you set ToolStrip.AllowItemReorder to True, the user can rearrange items on a
ToolStrip by holding down the Alt key, and clicking and dragging the items to a new position.
Although this process works quite well, it’s completely uncustomizable. You can’t change the
hotkey, programmatically switch into reorder, or allow reorder of just certain buttons. The
reorder feature also won’t allow a user to drag an item off a ToolStrip or move it from one ToolStrip
to another. You might think you could add these features, but unfortunately, the model is
locked up tight. When the user holds down Alt to begin reordering items, the ToolStrip blows
right past events like MouseDown and ItemClicked, so there’s no way for your code to get involved.

■Note You can still handle events like DragDrop and DragEnter to allow the user to drag other types of
items onto a ToolStrip.

If you’re happy with the reordering functionality, you’ll be pleased to find that there’s
built-in support for persisting and restoring the order of items in a ToolStrip. This functionality
comes from the ToolStripManager, which is a helper class that you’ll use later in this chapter to
implement custom rendering. The ToolStripManager also includes shared methods for a few
other tasks, like searching for a specific ToolStrip or merging the buttons on separate ToolStrip
instances.

The ToolStripManager works on a form-by-form basis, using the shared SaveSettings()
and LoadSettings() methods. To save the settings for all the reordered ToolStrip objects on a
form, you supply a reference to the form and a key name:

ToolStripManager.SaveSettings(Me, Me.Name)

To restore the settings, you can use this code:

ToolStripManager.LoadSettings(Me, Me.Name)

Settings are stored in an automatically generated user-specific directory in a subfolder of
c:\Documents and Settings\[userName]\Local Settings\Application Data.

If the built-in ToolStrip customization features don’t fit your needs, you may want to
implement a dedicated dialog box for adding, removing, and rearranging the items in a ToolStrip.
The Windows Forms team has made an interesting customization sample available that creates
a dialog box that’s quite similar to the one used in Office applications (see Figure 14-21).

The code for this dialog box is quite lengthy, but it provides an impressive level of features,
with support for multiple toolbar editing, canceling, and requesting the full set of allowed
menu items from the client program. The complete code for this component is available with
the downloadable code samples for this chapter.

Macdonald_694-3C14.fm Page 511 Tuesday, July 25, 2006 8:40 AM

512 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-21. Advanced ToolStrip configuration at runtime

Customizing the ToolStrip Rendering
The ToolStrip uses a completely different rendering model than other controls that support
owner drawing. Although the ToolStripItem does provide an OnPaint() method that can perform
custom painting, by default, a separate renderer class does all the work. The renderer paints
the text and image content and other details like the gradient background to the sizing grips,
highlighting, and drop-down buttons.

Here’s how it works. The ToolStripRenderer defines an abstract base class for all renderers. To
create a renderer, you simply need to derive from ToolStripRenderer and override its various
methods. In fact, .NET includes two renderer classes that derive from ToolStripRenderer:

• ToolStripSystemRenderer. This renderer paints the ToolStrip according to operating
system settings and colors.

• ToolStripProfessionalRenderer. This renderer paints the ToolStrip with a slick Office
XP–style look and support for Windows XP themes.

You have several options for choosing the renderer that’s active for a given ToolStrip. For
absolute control, you can programmatically set the ToolStrip.Renderer property to the renderer
object you want to use. This gives you the flexibility to individually configure each ToolStrip,
StatusStrip, and MenuStrip to use a different renderer. Here’s an example:

toolStrip1.Renderer = New ToolStripSystemRenderer()

You can set the renderer for a drop-down submenu, but the syntax is a little different.
There is no Renderer property in the ToolStripDropDownItem itself, because the
ToolStripDropDownItem is rendered according to the renderer that the parent ToolStrip
uses, like all ToolStripItems. However, you can use the ToolStripDropDownItem.DropDown.
Renderer property to set the renderer for just the drop-down items:

toolStripDropDownItem1.DropDown.Renderer = New ToolStripSystemRenderer()

■Tip If you don’t explicitly set the drop-down renderer, the renderer from the top-level container automat-
ically cascades down to any submenus.

Macdonald_694-3C14.fm Page 512 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 513

The ToolStrip isn’t the only class with a RenderMode property. You also need to set the
RenderMode of the panels in a ToolStripContainer if you want the renderer to paint the appro-
priate type of background. Here’s an example that changes just one of the five panels:

toolStripContainer.LeftToolStripPanel.Renderer = New ToolStripSystemRenderer()

Of course, in an application with dozens of different ToolStrip and ToolStripContainer
objects, it doesn’t make much sense to create new renderer instances for each one. To simplify
life, the ToolStrip adds the RenderMode property, which springs into effect if the Renderer
property isn’t set.

toolStrip.RenderMode = ToolStripRenderMode.System

The RenderMode property accepts one of three values, as detailed in Table 14-7.

By default, every ToolStrip and MenuStrip you create has a RenderMode of Manager and
uses the ToolStripManager. The StatusStrip and ToolStripContentPanel have a default
RenderMode of System.

■Tip The ToolStripPanel (used for the sides of the ToolStripContainer) and the ToolStripContentPanel (used
for the center region of the ToolStripContainer) also provide the Renderer and RenderMode properties, allowing you
to customize how their background is painted in the same ways you customize the ToolStrip itself.

The ToolStripManager
The ToolStripManager allows you to set a renderer that will be used by multiple ToolStrip
objects in your application. This gives you the ability to transform the look of your entire inter-
face by modifying a single line of code. Figure 14-22 shows this model.

Table 14-7. RenderMode Values (from the ToolStripRenderMode Enumeration)

Member Description

Professional The ToolStrip uses a common instance of the
ToolStripProfessionalRenderer.

System The ToolStrip uses a common instance of the ToolStripSystemRenderer.

Custom The rendering work is performed by the renderer set in the Renderer
property. You can’t set a RenderMode of Custom directly; instead,
the ToolStrip sets it when you supply a custom renderer.

ManagerRenderMode The work is offloaded to a helper class called the ToolStripManager,
which supplies the right renderer.

Macdonald_694-3C14.fm Page 513 Tuesday, July 25, 2006 8:40 AM

514 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

Figure 14-22. How the ToolStripManager interacts with the ToolStrip

The model is actually quite simple. The ToolStripManager provides three shared proper-
ties that deal with rendering: the familiar Renderer and RenderMode properties, and a Boolean
VisualStylesEnabled property. (If you turn off visual styles, the renderer will use the default
system colors instead of the XP theme colors.) At any time, you can modify either the RenderMode
or the Renderer property. When you do, all objects that use a RenderMode of ToolStripManager are
updated immediately.

Figure 14-23 shows an example where you can dynamically switch renderers and the
entire form is updated.

Figure 14-23. Changing the renderer dynamically

Macdonald_694-3C14.fm Page 514 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 515

Here’s the straightforward code that makes it work:

Private Sub opt_CheckedChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles optPro.CheckedChanged, _
 optSys.CheckedChanged, optCust.CheckedChanged
 If optPro.Checked Then
 ToolStripManager.RenderMode = ToolStripManagerRenderMode.Professional
 ElseIf optSys.Checked Then
 ToolStripManager.RenderMode = ToolStripManagerRenderMode.System
 ElseIf optCust.Checked Then
 ToolStripManager.Renderer = New CustomRenderer()
 End If
End Sub

The only detail this example doesn’t show is how the CustomRenderer class was built.
You’ll explore that topic in the next section.

■Note The ToolStripManager.RenderMode property is not identical to the ToolStrip.RenderMode property.
Technically, it uses the ToolStripManagerRenderMode enumeration rather than the ToolStripRenderMode
enumeration. The only difference is the ManagerRenderMode option is left out (because it doesn’t apply).

Customizing a Renderer
There are two approaches to creating a custom renderer. You can derive from one of the existing
renderers, or you can derive from the abstract ToolStripRenderer class. Either way, you need to
override only the methods that have the functionality you want to change.

Table 14-8 lists the methods you can override.

Table 14-8. Overridable Methods in the ToolStripRenderer

Method Description

OnRenderToolStripBackground Draws the basic background for the
entire ToolStrip.

OnRenderToolStripBorder Draws the border around the ToolStrip.

OnRenderItemBackground Draws the background of a ToolStripItem
(over which its content is superimposed). This
is used only if the more-specific background-
rendering methods don’t apply to this item.

OnRenderButtonBackground Draws the background for a ToolStripButton.

OnRenderDropDownButtonBackground Draws the background for a
ToolStripDropDownButton.

OnRenderSplitButtonBackground Draws the background for a
ToolStripSplitButton.

Macdonald_694-3C14.fm Page 515 Tuesday, July 25, 2006 8:40 AM

516 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

For example, the following custom renderer changes the background of the whole ToolStrip
and the background of all ToolStripButton items. Notice that this code needs to account for
whether the button is currently highlighted.

Public Class CustomRenderer
 Inherits ToolStripRenderer

 Protected Overrides Sub OnRenderToolStripBackground(_
 ByVal e As ToolStripRenderEventArgs)
 Dim g As Graphics = e.Graphics
 Dim b As New Drawing2D.LinearGradientBrush(e.AffectedBounds, _
 Color.DarkGray, Color.Black, 90)
 g.FillRectangle(b, e.AffectedBounds)
 b.Dispose()

OnRenderLabelBackground Draws the background for a ToolStripLabel.

OnRenderToolStripStatusLabelBackground Draws the background for a
ToolStripStatusLabel.

OnRenderMenuItemBackground Draws the background for a
ToolStripMenuItem.

OnRenderOverflowButtonBackground Draws the background for an overflow button.

OnRenderItemImage Draws an image on a ToolStripItem.

OnRenderItemText Draws text a ToolStripItem.

OnRenderSeparator Draws a ToolStripSeparator.

OnRenderGrip Draws the grip handle for moving a ToolStrip.

OnRenderStatusStripSizingGrip Draws the window-sizing grip shown at the
corner of a StatusStrip.

OnRenderArrow Draws the drop-down arrow used on
some items.

OnRenderItemCheck Draws an image on a ToolStripItem that
indicates the item is in a selected state.

OnRenderImageMargin Draws the shaded margin where an image is
placed (usually next to a menu item).

OnRenderToolStripContentPanelBackground Draws the background for the content panels
in a ToolStripContainer.

OnRenderToolStripPanelBackground Draws the background for one of the side
panels in a ToolStripContainer.

Table 14-8. Overridable Methods in the ToolStripRenderer (Continued)

Method Description

Macdonald_694-3C14.fm Page 516 Tuesday, July 25, 2006 8:40 AM

C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T A T U S S T R I P S 517

 MyBase.OnRenderToolStripBackground(e)
 End Sub

 Protected Overrides Sub OnRenderButtonBackground(_
 ByVal e As ToolStripItemRenderEventArgs)
 MyBase.OnRenderButtonBackground(e)

 ' Check if the item is selected.
 If e.Item.Pressed Or e.Item.Selected Then
 Dim brush As New Drawing2D.LinearGradientBrush(e.Item.Bounds, _
 Color.Yellow, Color.Green, 90)
 e.Graphics.FillRectangle(brush, 0, 0, e.Item.Width, e.Item.Height)
 End If
 End Sub
 ...

The drawing code uses various gradients and darkens the overall color scheme consider-
ably. To compensate, the renderer also changes the way text is drawn, switching the text color
to white.

 ...
 Protected Overrides Sub OnRenderItemText(_
 ByVal e As ToolStripItemTextRenderEventArgs)
 e.TextColor = Color.White
 MyBase.OnRenderItemText(e)
 End Sub

End Class

Note that the OnRenderItemText() is the only method that calls the base class implemen-
tation from ToolStripRenderer. As a rule of thumb, you never need to call the base class
implementation unless you want to trigger the normal drawing logic. In the case of
OnRenderItemText(), you can make use of a shortcut by changing the text color and then
launching the normal text painting operation.

Changing the Colors of the ProfessionalToolStripRenderer
In the previous example, you saw how you can get complete rendering control by creating a
custom renderer for the ToolStrip. However, in some cases a custom renderer is more than you
need. For example, you might want to perform the standard drawing logic but simply tweak the
colors that are used. In this case, there’s a shortcut.

By default, the ToolStripProfessionalRenderer chooses colors that match the visual style
settings on a Windows XP computer. If you’re using the default blue scheme, that means the
colors are blue and (for highlighting) orange. If the current operating system isn’t Windows XP,
or you’ve set ToolStripManager.VisualStylesEnabled property to False, you’ll get back to the
more familiar gray and blue system colors.

However, the ToolStripProfessionalRenderer gives you another choice. You can explicitly
specify the colors when you create the ToolStripProfessionalRenderer, by supplying a color
table to the constructor. Here’s an example:

Macdonald_694-3C14.fm Page 517 Tuesday, July 25, 2006 8:40 AM

518 C H A P T E R 1 4 ■ T O O L , M E N U , A N D S T AT U S S T R I P S

toolStrip1.Renderer = New ToolStripProfessionalRenderer(New CustomColorTable())

The only trick is to create the class for the color table. To do this, you simply need to derive
from ProfessionalColorTable and override the properties that correspond to the colors you
want to change. For example, the following CustomColorTable class changes the colors used
for the basic ToolStrip gradient shown on the ToolStrip background and behind all image and
text content. It doesn’t change the highlight gradient colors that are used when you move the
mouse over a button.

Public Class CustomColorTable
 Inherits ProfessionalColorTable

 Public Overrides ReadOnly Property ToolStripGradientBegin() As Color
 Get
 Return Color.FromArgb(50, 50, 50)
 End Get
 End Property

 Public Overrides ReadOnly Property ToolStripGradientMiddle() As Color
 Get
 Return Color.FromArgb(60, 50, 50)
 End Get
 End Property

 Public Overrides ReadOnly Property ToolStripGradientEnd() As Color
 Get
 Return Color.LimeGreen
 End Get
 End Property

End Class

Customizing every color in a ToolStrip can take some time. The ProfesionalColorTable
class defines more than 50 color properties, all of which you can override.

The Last Word
In this chapter, you took a close look at the different strip controls provided in .NET, including
the ToolStrip, StatusStrip, MenuStrip, and ContextMenuStrip. You learned how to use their
many features to control formatting and layout, and how to extend the way the strip controls
are drawn, how they are customized by the user, and how they use the overflow menu. The
ToolStrip is one of the most impressive additions to the .NET Windows Forms toolkit. It’s rivaled
only by another new control—the DataGridView, which you’ll explore in the next chapter.

Macdonald_694-3C14.fm Page 518 Tuesday, July 25, 2006 8:40 AM

519

■ ■ ■

C H A P T E R 1 5

The DataGridView

The first two releases of the .NET Framework (.NET 1.0 and .NET 1.1) left a glaring gap in the
data-binding picture. Although developers had a flexible, configurable model for linking almost
any control to almost any data source, they didn’t have a practical way to display full tables of
information. The only tool included for this purpose was the DataGrid control, which worked
well for simple demonstrations but was woefully inadequate for real-world code. Most developers
found that the DataGrid was awkward to use, inflexible, and almost impossible to customize.
Oddly enough, the DataGrid lagged far behind its ASP.NET counterpart, making it more difficult
to display rich data-bound tables in a Windows application than in a Web page.

Filling this gap is a key goal for .NET 2.0, and Microsoft’s taken up the challenge with an
entirely new grid control—the DataGridView. The DataGridView has two overall goals. First of
all, it aims to support common tasks like master-details lists, validation, and data formatting
without requiring you to write more than a few of lines of code. More importantly, it’s designed
from the ground up with extensibility in mind, so that you can integrate the specialized features
you need without resorting to low-level hacks and “black magic” programming.

This chapter dissects the DataGridView. You’ll begin by considering how it works with
basic data-binding tasks, and then delve deeper into more advanced customization.

The DataGrid Legacy
Developers have been using grid controls for years. In the pre-.NET world, developers often
relied on ActiveX controls like the MSFlexGrid, which provides a solid formatting model and
access to individual cells. Though controls like the MSFlexGrid still can be used in .NET, they
obviously can’t support .NET data binding. If you want to use them, you’ll need to write pains-
taking code to iterate through the rows of your data source and copy values into the grid.

The DataGrid was the first native .NET solution for a data-bound list control, and it’s included
with every version of the .NET Framework. The DataGrid has an almost deceptive appearance
of simplicity—although you can bind data with a single line of code, you might need to write
dozens more to accomplish a seemingly easy task like applying a custom background color to
a cell. In fact, the first edition of this book included a mere seven pages of information about
the DataGrid, because most developers outgrew its feature set long before they had the chance
to use it in a realistic application.

Macdonald_694-3C15.fm Page 519 Wednesday, July 19, 2006 1:39 PM

520 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Some of the limitations of the DataGrid include:

• Limited ability to customize its appearance. Some details, like column formatting, are
fairly easy to change. Other details, like individual cell formatting, are much more chal-
lenging and require writing custom DataGridColumnStyle classes. Still other details, like
formatting an entire row or modifying the appearance of table links, are nearly impossible.

• No easy way to display pictures in cells. Again, if you want to use this feature, you’ll need
to implement it yourself with a custom DataGridColumnStyle class that contains dozens
of lines of code.

• Limited support for formatting text and numbers. You can use the standard number
formats, but if you need to apply a custom format—for example, “translating” a numeric
status code into a text string—you’re on your own.

• Limited ability to access individual cells. The DataGrid doesn’t make it easy to change
or read arbitrary cell values. Instead, you need to work through the bound data source.
If you want to display information in a DataGrid without using data binding, you’re out
of luck.

• Limited support for modifying the DataGrid programmatically. Tasks like changing
column order or adding custom button columns are impossible.

• No ability to customize the DataGrid error messages. If the user attempts to make an
invalid edit to a cell, you’re stuck with cryptic error messages provided by the .NET
Framework.

For most developers, the best they could hope for was to discover these issues before
committing their applications to use the DataGrid. Needless to say, the third-party control
market had great success selling custom grid controls for .NET 1.0 and 1.1.

Introducing the DataGridView
The DataGridView is the .NET 2.0 answer to the DataGrid fiasco. It demonstrates what some
call the traditional Microsoft approach—when the first product disappoints, keep working
until the next one is perfect. And, although the DataGridView might not be perfect, it’s dramatically
better than the DataGrid, and it’s one of the most sophisticated controls in the Windows Forms
package.

Some of the enhancements you’ll find in the DataGridView include:

• Extensive visual customization. The DataGridView won’t force you to accept default
formatting for your cell data, fonts, colors, or justification.

• Performance. The DataGridView is optimized to work faster than the DataGrid, especially
when painting cells.

• Events, events, and more events. You can “plug in” to all of the major DataGridView
operations, including sorting, filtering, validation, record insertions, and error handling.
In other words, if the default behavior isn’t what you want, you can code your own.

Macdonald_694-3C15.fm Page 520 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 521

• Programmability. The DataGridView exposes a richer, more logical object model than
the DataGrid. It gives you the ability to interact with individual cells, columns, and rows.

• Flexible sizing. The DataGridView includes built-in functionality to size columns
according to cell contents, saving you the heavy lifting of calculating text widths for
different fonts.

It’s worth noting that the DataGridView isn’t designed to solve every problem you might
encounter displaying data. It doesn’t provide the following features:

• Spreadsheet-like behavior. Tables and spreadsheets look similar, but they serve fundamen-
tally different purposes and need a different set of features. For spreadsheet functionality,
consider using Excel automation.

• Reporting. The DataGridView has no ability to format data in a rich document-like format
or print its data. If you need this capability, you’re better off working with Crystal Reports.

• Hierarchical data views. Hierarchical controls show more than one set of data and help
illustrate the relationship. Some hierarchical controls use a collapsible display, while others
(like the DataGrid) use link-based navigation. Unfortunately, allowing hierarchical data can
complicate controls horribly, and there’s no standard, one-size-fits-all representation.

■Tip Though the DataGridView doesn’t natively support hierarchical data, you can create forms that do. The
most common approach is to use multiple DataGridView controls that work together. You’ll see this technique
later in this chapter with the master-details list example.

The DataGridView and Very Large Data Sources
The DataGridView is designed from the ground up to display large amounts of data efficiently,
without draining away vast amounts of memory. Depending on your needs, you may need to
follow certain best practices to make sure your use of the DataGridView is scalable.

The DataGridView scalability features revolve around three key concepts:

• Shared row state. The DataGridView automatically shares as much memory as possible
among rows that have similar states. For example, if there is a large group of rows that
have the same long string value in a column, the DataGridView will store only one copy
of that data. Sharing is implemented automatically, but the actions you take can affect it.
For example, there are numerous actions that can cause a shared row to become
unshared (like accessing the object for that row directly). The MSDN Help has a full list
of such actions, and you’ll learn about the most common pitfalls as you consider various
topics in this chapter.

• Shared styles. The DataGridView uses a style-based model, which allows you to define
one set of formatting presets and apply them to groups of cells, entire rows, columns, or
the complete DataGridView. This is much more efficient than tracking separate style
information for each cell.

Macdonald_694-3C15.fm Page 521 Wednesday, July 19, 2006 1:39 PM

522 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

• Virtual mode. The DataGridView supports a virtual mode where data is fetched as they
are needed (for example, as the user scrolls down through the grid). You can implement
virtual mode in the DataGridView in much the same way that you implement it with the
ListView. See Chapter 6 for a full description, or refer to the online samples for a basic
demonstration.

This architecture ensures that the DataGridView won’t break down when dealing with
huge lists of information. Although this chapter doesn’t specifically deal with large data strategies
(for example, you’ll probably need to develop your own custom caching mechanism), you will
learn about the considerations you need to watch to make sure the DataGridView’s memory
use remains as compact as possible.

DATA BINDING AND THE DATA MODEL

The examples in this chapter follow the data-binding approach of Chapter 8. That means that we’ll work with
the Store database. However, we’ll fill this database using a separate service provider component (the StoreDB
class), so that the data access code can be tested and fine-tuned separately. We won’t use the automatic data
binding described in Chapter 8. Though it provides some design-time niceties, it’s not worth sacrificing the
flexibility of the service provider model. In professional applications, it’s generally more important to have opti-
mized performance, a clean component-based separation on layers, and a range of techniques to deal with
errors. As a result, hand-written data access code is preferred over designer-generated data access code.

There’s another hidden stumbling block that you’ll face with DataGridView if you plan to use strongly
typed data access code. The problem occurs when you want to manipulate individual columns in the DataGridView.
To do this, you need to use the field name, which the DataGridView retrieves from your data source automatically.
Here’s an example:

DataGridView.Columns("OrderID").ReadOnly = True

This is weakly typed code, because the field name (“OrderID”) is an ordinary string. A minor error in the
field name won’t be caught at design time—instead, it will appear as an unexpected runtime error. With addi-
tional effort, you can sidestep this problem using constants or a strongly typed DataSet (both of which are
described in Chapter 8) to look up the proper field name. Here’s an example:

DataGridView.Columns(storeDs.Orders.OrderIDColumn.ColumnName).ReadOnly = True

This code is safer, but it’s a little less compact. This approach isn’t used in this chapter, because it can
lead to confusion when you’re first learning the DataGridView object model. However, you can adopt this
approach in production applications to prevent errors.

Bare-Bones Data-Binding
The best way to get acquainted with the DataGridView is to try out it without configuring a
single property. Just like the DataGrid, you can bind a DataTable object (or an object derived
from DataTable) using the DataSource property. Here’s an example that uses the StoreDB class
(which is included with the online samples and discussed in Chapter 8):

dataGridView1.DataSource = Program.StoreDB.GetProducts()

Macdonald_694-3C15.fm Page 522 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 523

Unlike the DataGrid, the DataGridView can show only a single table at a time. If you bind
an entire DataSet, no data will be displayed, unless you set the DataMember property with the
name of the table you want to show.

dataGridView1.DataSource = Program.StoreDB.GetProductsAndCategories()
dataGridView1.DataMember = "Products"

■Tip As explained in Chapter 8, binding a DataTable actually binds the linked DataView object returned by
the DataTable.DefaultView property. You can use this fact to customize the sort order and filter out rows, or
you can programmatically create and bind a new DataView. Additionally, the DataGridView supports binding
to collections of custom objects. For example, you can use the alternate version of the StoreDB class
(discussed in Chapter 8) that returns a custom ProductList object instead of an ordinary DataSet or DataTable.

The basic DataGridView is shown in Figure 15-1 with a table of order records. Its appear-
ance follows a few straightforward rules:

• The DataGridView creates one column for each field in the data source.

• The DataGridView creates column headers using the field names. The column headers
are fixed, which means they won’t scroll out of view as the user moves down the list.

• The DataGridView supports Windows XP visual styles. You’ll notice that the column
headers have a modern flat look and become highlighted when the user moves the
mouse over them.

 Figure 15-1. A DataGridView with no customization

Macdonald_694-3C15.fm Page 523 Wednesday, July 19, 2006 1:39 PM

524 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

The DataGridView also includes quite a bit of default behavior that you might not notice
immediately. Here’s what you’ll see if you follow the simple approach shown previously to
bind a DataGridView without performing any additional customization.

• The DataGridView allows different types of selection. Users can highlight one or more
cells, or multiple rows or columns, by clicking and dragging. Clicking the square at the
top left of the DataGridView selects the entire table.

• Using the Tab key moves you from one cell to another inside the DataGridView. To tab
out of the DataGridView press Ctrl+Tab or set the StandardTab property to True, which
reverses this behavior (so Ctrl+Tab moves from cell to cell, and Tab moves out of the
DataGridView control).

• The DataGridView has automatic tooltips that show the full text content when the user
hovers over a cell with the mouse pointer. Although this feature is quite convenient for
truncated values, it can slow down performance if you have extremely large fields, in
which case you’ll want to set ShowCellToolTips to False.

• The DataGridView supports automatic sorting. The user can click on a column header
once or twice to sort values in ascending or descending order based on the values in that
field. By default, the sort takes the data type into account and is alphabetic or numeric.
Alphabetic sorts are case sensitive.

• The DataGridView supports an autosizing feature. Users can double-click on the column
divider between headers, and the column on the left will be automatically expanded or
contracted to fit the cell content. (Users also can freely resize rows and columns by dragging
on the edges of the row or column header.)

• The DataGridView allows in-place editing. To initiate editing, the user can double-click
in a cell, press F2, or start typing in a new value (by typing in a letter, number, or symbol).
The only exceptions are read-only properties and fields that have DataColumn.ReadOnly set
to True (like the ProductID field in the current example). Similarly, the user can remove
rows (by selecting the record and pressing Delete) and insert new ones (by scrolling to
the blank bottom record and typing in it).

■Note To support sorting and in-place editing with a collection of custom objects, you need to use (or
create) a collection that implements IBindingList. See Chapter 8 for details.

These basic characteristics are highly configurable. In the following sections, you’ll learn
how to tailor this built-in behavior. But first, it’s worth taking a quick look at the DataGridView
object model.

The DataGridView Objects
The DataGridView is a complex control that exposes dozens of properties, methods, and events.
However, there are a few key collections that you should learn about to make the most of other

Macdonald_694-3C15.fm Page 524 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 525

features. These collections (Columns and Rows) allow you to work with the entire set of data
that’s displayed in the DataGridView.

The Columns property provides a collection of DataGridViewColumn objects, one for
each field or property in the bound data object. The Rows property provides a collection of
DataGridViewRow objects, each of which references a collection of DataGridViewCell objects
with the actual data. Figure 15-2 diagrams the relationship along with three additional details—
the collections that let you retrieve selection information (as described in the next section).

Generally, you’ll turn to the DataGridViewColumn object to configure column display
properties, formatting, and header text. You also may use it to fine-tune sizing or sorting for
a specific column, or to hide a column you don’t want to see in the grid (set Visible to False).
You’ll use the DataGridViewRow and DataGridViewCell objects to retrieve the actual data from
the bound record. When you modify the data in a DataGridViewCell, it’s treated in the same
way as a user edit: The appropriate DataGridView change events are fired, and the underlying
data source is modified.

 Figure 15-2. The DataGridView objects

The DataGridViewRow

Now that you understand the DataGridView object model, you can easily create code that iterates
over the table. The following example displays the ProductID (in the debug window) of each
item that has a value in the UnitCost field greater than 50.

For Each row As DataGridViewRow In dataGridView1.Rows
 If Not row.IsNewRow AndAlso CInt(row.Cells("UnitCost").Value) > 50 Then
 ' You can retrieve a field value by index position or name.
 Debug.WriteLine(row.Cells("ProductID").Value)
 End If
Next

Macdonald_694-3C15.fm Page 525 Wednesday, July 19, 2006 1:39 PM

526 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Note that the code needs to test the DataGridView.IsNewRow property to make sure that
the blank new row placeholder (which is at the bottom of the grid) is not included in the search.
If the DataGridView.AllowUserToAddRows property is False, this row won’t appear, so this test
isn’t necessary.

There’s one limitation with this code—it isn’t scalable if you’re working with extremely
large grids. That’s because iterating over the Rows collection causes each row to become unshared,
which means it’s created as a separate object with its own independent state. If you aren’t
binding extremely large tables of data, this isn’t a consideration. However, it’s rare that you
need to iterate over all the rows in a DataGridView. As you’ll see in this chapter, you can usually
manipulate specific rows by responding to DataGridView events or calling DataGridView methods.
Both of these techniques allow you to manipulate a relatively small subset of rows, thereby
leaving the untouched rows in a memory-friendly shared state.

■Note Formatting information isn’t directly stored in the DataGridViewCell, DataGridViewColumn, and
DatGridViewRow objects. Instead, there’s a separate style model that you’ll learn about later in this chapter,
which revolves around the DataGridViewCellStyle class.

The DataGridView Column

Here’s a similar approach that hides all columns and then shows just the ProductID and
Description column. This code performs its task by enumerating over the available
DataGridViewColumn objects, and then directly accessing the desired columns by name.

For Each col As DataGridViewColumn In dataGridView1.Columns
 col.Visible = False
Next

' You can retrieve a column by index position or name.
dataGridView1.Columns("ProductID").Visible = True
dataGridView1.Columns("Description").Visible = True

■Tip Another approach for removing columns is to use the Remove() method of the columns collection.
However, setting the visible property gives you the flexibility to hide and then reshow a column.

It’s worth noting that there are several different classes that derive from
DataGridViewColumn. These classes can control the way values are painted and edited in a
cell. The .NET Framework includes six prebuilt DataGridView column classes, which are listed
in Table 15-1.

Macdonald_694-3C15.fm Page 526 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 527

Column Headers
Another reasonable change is to clean up the header text shown in each column. For example,
the title “Order Date” looks more professional than the field name OrderDate. This change is
easy enough to make. You simply need to retrieve the appropriate DataGridViewColumn from
the DataGridView.Columns collection and modify the header cell accordingly:

dataGridView1.Columns("OrderID").HeaderCell.Value = "Order ID"

Writing this sort of code risks embedding a lot of database-specific code into your form
class, which is never a good idea. One possible solution is to add read-only variables to another
class with the correct field names. In some cases, an even easier alternative is possible. For
example, consider the SplitStringByCase() method shown next. It splits a string into separate
words by inserting a space before each new capital letter.

Private Function SplitStringByCase(ByVal inputString As String) As String
 Dim sb As New System.Text.StringBuilder()

 ' Add first character.
 sb.Append(inputString(0))

Table 15-1. Classes Derived from DataGridViewColumn

Class Description Corresponding Cell Class

DataGridViewButtonColumn Displays text as a clickable
button. You’ll see this type of
column used later in this chapter
to create a master-details view
with two forms.

DataGridViewButtonCell

DataGridViewLinkColumn Displays text as a clickable link.
The functionality of this
column is similar to the
DataGridViewButtonColumn.

DataGridViewLinkCell

DataGridViewCheckBoxColumn Displays a check box. This
column is automatically used
for Boolean data fields.

DataGridViewCheckBoxCell

DataGridViewComboBoxColumn Displays a drop-down list box.
You’ll use this type of column in
a later example to restrict user
selections.

DataGridViewComboBoxCell

DataGridViewImageColumn Displays an image. You’ll use
this type of column later in this
chapter to load custom pictures.

DataGridViewImageCell

DataGridViewTextBoxColumn Displays plain text and uses a
text box when the user edits the
cell value. This is the default column
type for most fields.

DataGridViewTextBoxCell

Macdonald_694-3C15.fm Page 527 Wednesday, July 19, 2006 1:39 PM

528 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

 ' Add middle characters. Insert space before capitals.
 For i As Integer = 1 To inputString.Length - 2
 Dim c As Char = inputString(i)

 ' Skip existing spaces (if any).
 If c = " " Then
 sb.Append(c)
 i += 1
 sb.Append(Char.ToUpper(inputString(i)))
 Else
 If Char.IsUpper(c) Then
 sb.Append(" ")
 End If
 sb.Append(c)
 End If
 Next

 ' Add last character.
 sb.Append(inputString(inputString.Length - 1))
 Return sb.ToString()
End Function

Using this method, you can iterate over the columns of any table in the Store database and
create readable header text. Here’s the generic code you’ll need:

' Clean up all the columns.
For Each col As DataGridViewColumn In dataGridView1.Columns
 col.HeaderCell.Value = SplitStringByCase(col.HeaderText)
Next

If you’re looking for an even more elegant solution, you can use regular expressions
through the Regex class in the System.Text.RegularExpressions. Although the regular expres-
sion you need is a little tricky to decipher, using it is extremely easy:

' Adjust the header text through a regular expression.
Dim regularExpression As String = "(\p{Ll})(\p{Lu})|_+"
For Each col As DataGridViewColumn In dataGridView1.Columns
 col.HeaderText = Regex.Replace(col.HeaderText, regularExpression, "$1 $2")
Next

Creating an Unbound Grid
Now that you understand the object model of the DataGridView, you can modify the structure
of any grid and even create a new grid programmatically. This latter technique is known as
creating an unbound grid, and it’s occasionally useful if you want to use the DataGridView
simply as a way to display some static information that isn’t represented by an existing collection
or DataTable.

Macdonald_694-3C15.fm Page 528 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 529

To create an unbound grid, you start with a blank DataGridView and begin adding the
columns you need. Here’s an example that adds several columns:

Dim col1 As New DataGridViewTextBoxColumn()
col1.Name = "ProductID"
col1.HeaderText = "Product ID"
dataGridView1.Columns.Add(col1)

' The easiest way to add a column, with name and header text.
dataGridView1.Columns.Add("ModelName", "Model Name")
dataGridView1.Columns.Add("Description", "Description")
dataGridView1.Columns.Add("UnitCost", "Unit Cost")
dataGridView1.Columns("UnitCost").ValueType = GetType(Decimal)

Once the columns are in place, you can generate new rows. The Add() method of the rows
collection makes this easy—all you need to do is supply a list of values in the correct order.

' Fill in a row of data (as a list of values).
dataGridView1.Rows.Add(100, "Emergency Travel Gear", _
 "Be prepared for vacation disasters.", 34.44)

' Add another row (the hard way).
Dim row As DataGridViewRow
row = CType(dataGridView1.Rows(0).Clone(), DataGridViewRow)
row.SetValues(_
 101, "Supreme Flight", "Sail over the trees with this glider.", 138.25)
dataGridView1.Rows.Add(row)

Figure 15-3 shows the grid this code creates.

 Figure 15-3. An unbound DataGridView

Macdonald_694-3C15.fm Page 529 Wednesday, July 19, 2006 1:39 PM

530 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Finally, it also makes sense to disable other DataGridView features you don’t need, like
editing support.

' Disable editing features.
dataGridView1.AllowUserToAddRows = False
dataGridView1.AllowUserToDeleteRows = False
dataGridView1.EditMode = DataGridViewEditMode.EditProgrammatically

This isn’t a requirement. You could allow editing and even respond to editing actions
using various DataGridView events. You’ll learn more about editing later in this chapter.

■Tip When creating an unbound grid, you can define all the columns at design time. Just click the ellipsis
next to the Columns property in the Properties window to launch the designer you need.

Cell Selection
By default, the DataGridView allows free selection. Users can highlight individual cells, groups
of cells, all the cells at once (by clicking the square in the top-right of the grid), or one or more
rows (by clicking in the row header column). Depending on the selection mode, users may
even be able to select one or more columns by selecting the column headers. You can control
this behavior by setting the DataGridView.SelectionMode property with one of the values from
the DataGridViewSelectionMode enumeration, as described in Table 15-2.

Table 15-2. SelectionMode Values

Value (from the
DataGridViewSelectionMode
enumeration)

Description

CellSelect The user can select cells, but not full rows or columns.
The user will be able to select multiple cells if
DataGridView.MultiSelect is True.

FullColumnSelect The user can select full columns only, by clicking on the
column header. The user will be able to select multiple
columns if DataGridView.MultiSelect is True. When this
mode is used, clicking on a column header will not sort the
grid. To clear the current selection, click on a cell.

FullRowSelect The user can select full rows only, by clicking on the row
header. The user will be able to select multiple rows if
DataGridView.MultiSelect is True. To clear the current
selection, click on a cell.

ColumnHeaderSelect The user can use CellSelect or FullColumnSelect selection
modes. When this mode is used, clicking on a column
header will not sort the grid.

RowHeaderSelect The user can use CellSelect or FullRowSelect selection
modes. This is the default selection mode.

Macdonald_694-3C15.fm Page 530 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 531

■Note No matter what selection mode you use, the user will always be able to select the entire table by
clicking the top-right square, unless you have set MultiSelect to False (or you have chosen not to display the
column or row headers).

The DataGridView makes it easy to retrieve the selected cells using three properties:
SelectedCells, SelectedRows, and SelectedColumns. SelectedCells always returns a collection
of DataGridViewCell objects, regardless of the selection mode being used. SelectedRows, on
the other hand, only returns information if a full row has been selected using the row header.
SelectedColumns only returns information if a full column has been selected using the column
header.

To drive this point home, you can create a simple DataGridView test that checks the current
selection using all the selection properties. Here’s the code you need:

Dim info As New StringBuilder()
info.Append(String.Format("Selected Cells: {0}", _
 dataGridView1.SelectedCells.Count))
info.Append(vbNewLine)
info.Append(String.Format("Selected Rows: {0}", _
 dataGridView1.SelectedRows.Count))
info.Append(vbNewLine)
info.Append(String.Format("Selected Columns: {0}", _
 dataGridView1.SelectedColumns.Count))
info.Append(vbNewLine)

' Display the selection information.
txtSelectionInfo.Text = info.ToString()

To report some additional information, you can retrieve the actual values from the selected
cells. You can start with any of the three selection properties, but using the SelectedCells property
will always work, regardless of the selection mode:

info.Append("Values: ")
info.Append(vbNewLine)
For Each cell As DataGridViewCell In dataGridView1.SelectedCells
 info.Append(String.Format(" {0} at ({1}, {2})", _
 cell.Value, cell.RowIndex, cell.ColumnIndex))
 info.Append(vbNewLine)
Next

■Tip DataGridViewCell.Value grabs the underlying value from the bound data object. If you use
DataGridViewCell.FormattedValue instead, you’ll receive the representation of the value that’s currently
displayed in the grid. For example, the value 10 might be displayed as the formatted value $10.00, depending
on the formatting you’ve applied.

Macdonald_694-3C15.fm Page 531 Wednesday, July 19, 2006 1:39 PM

532 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Figure 15-4 shows this code at work.

 Figure 15-4. Retrieving selection information

■Tip Instead of responding to a button click, you can respond immediately when the selection changes by
handling the SelectionChanged event.

In this example, each cell is treated individually and identified with a column and row index
number. You can retrieve information about the cell field or row by retrieving the corresponding
DataGridViewColumn or DataGridViewRow object from the DataGridView. For example,
here’s how you restrict the display to selected cell values that are in the column corresponding
to the ProductID field:

For Each cell As DataGridViewCell In DataGridView.SelectedCells
 If DataGridView.Columns(cell.ColumnIndex).Name = "ProductID" Then
 info.Append(cell.Value)
 info.Append(vbNewLine)
 End If
Next

In row selection mode, life is even easier. The DataGridViewRow object provides a Cells
property that lets you retrieve individual cell values using the field name:

For Each row As DataGridViewRow In DataGridView.SelectedRows
 info.Append(row.Cells("ProductID").Value)
 info.Append(vbNewLine)
Next

Macdonald_694-3C15.fm Page 532 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 533

Remember, the SelectedRows collection is only filled when you select entire rows. Other
selected cell and columns won’t appear.

It’s just as easy to retrieve a reference to the current cell using the CurrentCell or
CurrentCellAddress properties. When using the DataGridView, you’ll notice that the current
cell is surrounded by a focus rectangle, which looks like a black dotted square. This is the location
where the user is currently positioned.

Here’s the code you need to add to display the current cell information:

If dataGridView1.CurrentCell IsNot Nothing Then
 info.Append(String.Format("Current Cell Value: {0}", _
 dataGridView1.CurrentCell.Value))
 info.Append(vbNewLine)
 info.Append(String.Format("Current Cell Location: ({0}, {1})", _
 dataGridView1.CurrentCellAddress.X, dataGridView1.CurrentCellAddress.Y))
End If

The CurrentCellAddress property is read-only, but you can use CurrentCell to program-
matically change the current location. Once you do, the DataGridView is scrolled so that the
current location is visible.

' Move to the fourth cell in the eleventh row.
DataGridView.CurrentCell = DataGridView.Rows(10).Cells(3)

You also can scroll the DataGridView by setting the DataGridView.FirstDisplayedCell
property with the index number of the row that should be positioned at the top of the display.

■Tip To programmatically change the selection in a grid, you can modify the Selected property of a
DataGridViewCell, DataGridViewRow, or DataGridViewColumn. The DataGridView itself also exposes
SelectAll() and ClearSelection() methods for quickly selecting and deselecting the entire table without
needing to iterate over each cell.

It’s worth considering some of the limitations of cell selection with the DataGridView.
Most significantly, if you enumerate over the SelectedCells property, you’ll wind up unsharing
all the rows you touch. In fact, it’s best to avoid cell selection altogether, if you can, and use row
selection or column selection instead. Finally, you can check if the user has selected the entire
grid (typically by clicking the box in the top-right corner) by calling the DataGridView.
AreAllCellsSelectedMethod(). Use this method before you enumerate over a collection of rows,
columns, or cells, to prevent needlessly unsharing rows.

Navigation Events
The DataGridView is packed full of events, including several navigation events that allow you to
respond when the user moves from one cell to another, from one row to another, or abandons the
control entirely. The event arguments indicate the relevant cell. Table 15-3 has more information.

Macdonald_694-3C15.fm Page 533 Wednesday, July 19, 2006 1:39 PM

534 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

For example, when the user clicks a new cell in the same row, the events unfold like this:

1. CellLeave (for the current cell)

2. CellEnter (for the new cell)

When the user moves to a cell in another row, the navigation events fire in this order:

1. CellLeave

2. RowLeave

3. RowEnter

4. CellEnter

And if the user moves from the DataGridView to another control (like a text box on the
form), the events fire in this order:

1. CellLeave

2. RowLeave

3. Leave

Column-Based Sorting
As you learned earlier, the DataGridView has built-in sorting support. When you click a column,
values are ordered according to the data type (numerically or alphabetically in ascending
order) and a sorting glyph appears in the column header (an arrow pointing up). Click again,
and the sort order is reversed, and the sorting glyph becomes an arrow pointing down. Figure 15-5
shows a grid sorted by CustomerID.

Table 15-3. Navigation Events

Event Description

Enter and Leave Enter fires when the user moves to the DataGridView from another
control on the form, and Leave fires when the user heads to
another control.

RowEnter and RowLeave These events fire when the user moves from one row to another.
RowLeave also fires when the user clicks on another control on
the form.

CellEnter and CellLeave These events fire when the user moves from one cell to another
(regardless of whether or not the cell is in the same row). CellLeave
also fires when the user clicks on another control on the form.

CellClick The user selects a cell by clicking on it with the mouse.

SelectionChanged The currently selected cells have changed (usually the result of the
user clicking with the mouse or moving with the arrow keys while
holding Shift down, although the selection also can also be set
programmatically).

Macdonald_694-3C15.fm Page 534 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 535

 Figure 15-5. Sorting the DataGridView

Sorting is controlled on a column-specific basis, according to the DataGridViewColumn.
SortMode property, which takes one of three values: Automatic (the default), NotSortable (no
sorting is performed), and Programmatic (no sorting is performed, but space is reserved for the
sorting glyph, which you can use if you perform your own custom sorting).

There are several cases in which you might choose to perform custom sorting. Here are
some examples:

• You want to sort non-text-box columns. For example, Boolean fields are (by default)
not sorted.

• You want to format the display value (using the CellFormatting event described later),
but you want to sort according to the original value. For example, you might want to
replace status numbers with descriptive text or icons, but sort based on the underlying
number.

• You want to implement more sophisticated sorting logic that takes several values into
consideration or arranges values in a way other than strictly alphabetic or numeric.

The first scenario is the easiest to implement. All you need to do is change the SortMode
property of the appropriate column:

dataGridView1.Columns("InStock").SortMode = DataGridViewColumnSortMode.Automatic

Custom sorting requires a little more work to implement. First, turn off automatic sorting
for the columns in question. This code turns off automatic sorting for all columns:

For Each col As DataGridViewColumn In dataGridView1.Columns
 col.SortMode = DataGridViewColumnSortMode.Programmatic
Next

Now when the user clicks on the column header for these columns, it will have no effect.
Next, handle the DataGridView.ColumnHeaderMouseClick event. Check if the mouse

click was on one of the columns that you want to sort programmatically. If it is, perform your
sorting now by calling DataGridView.Sort(). Here’s an example that always sorts columns in
ascending order:

Macdonald_694-3C15.fm Page 535 Wednesday, July 19, 2006 1:39 PM

536 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Private Sub dataGridView1_ColumnHeaderMouseClick(ByVal sender As Object, _
 ByVal e As DataGridViewCellMouseEventArgs) _
 Handles dataGridView1.ColumnHeaderMouseClick
 dataGridView1.Sort(dataGridView1.Columns(e.ColumnIndex), _
 ListSortDirection.Ascending)
End Sub

This overload of the Sort() method accepts a DataGridViewColumn and a sort order. Clearly, it
doesn’t allow much customization. For more control, you need to use the Sort() method overload
that accepts a custom IComparer object. This IComparer must compare two DataGridViewRow
objects and determine which should occur first in the sort. This exact technique is demon-
strated with the ListView control in Chapter 6.

■Note The DataGridView also provides a SortCompare event. However, this event only fires if you’ve
created an unbound grid. In this (relatively uncommon) situation, you can perform the comparison between
two rows in the SortCompare event handler by modifying the event arguments, rather than by creating a
custom IComparer.

Formatting the DataGridView
One of the most important aspects of rich data controls is formatting—how you can tailor their
appearance to suit your needs. On this score, the DataGridView is remarkably flexible. It intro-
duces a new style-based system that allows you to apply formatting changes coarsely (for best
performance) or make them as fine-grained as you need. You also have built-in support for
adjusting column widths, rearranging, hiding, and freezing columns in place, and using
specialized column types to show buttons and images. In this section, you’ll learn how to use
all of these features.

Column and Row Resizing
The default appearance of the DataGridView is a modest improvement over the DataGrid. But
with a few quick refinements, you can greatly improve it.

One problem is that the DataGridView gives a default standard width to all columns regardless
of their content. As a result, the initial appearance of the bound grid in Figure 15-1 is less than
perfect, with the ModelName and Description columns too small for the data they contain.

Fortunately, you can use some powerful automatic resizing functionality that’s built into
the DataGridView. Your first decision is whether you want to control sizing for the entire control or
fine tune individual columns. The following sections explore your options.

Macdonald_694-3C15.fm Page 536 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 537

Setting an Automatic Resize Mode for the Entire Grid

The simplest approach is to set a resizing behavior that applies to all columns using the
AutoSizeColumnsMode property. Your options are shown in Table 15-4.

■Tip Using the AllCells criteria to sort a small table works perfectly well. However, if you have an extremely
large table (one with thousands of rows), it introduces a noticeable delay, because the width of every value
in the table needs to be examined. In these cases, it is much more practical to compromise and use the
DisplayedCells value instead. This only examines the width of the values in the rows that are currently visible
in the DataGridView.

Setting the AutoSizeColumnsMode at any time triggers the DataGridView to resize its columns
immediately. Figure 15-6 shows a simple test application in action, changing the grid from
AutoSizeColumnsMode.None to AutoSizeColumnsMode.Fill and then to AutoSizeColumnsMode.
DisplayCells (in which case the last column is too wide to fit in the grid, and scroll bars are added).

Table 15-4. AutoSizeColumnsMode Values

Value Description

None The column widths are not adjusted automatically. Extra
content is clipped (with an ellipsis added to indicate the
missing content). This is the default.

AllCells Each column is sized just large enough to fit the largest value,
including header cells.

AllCellsExceptHeader Each column is sized just large enough to fit the largest value,
excluding header cells.

ColumnHeader Each column is sized just large enough to fit the text in
the header.

DisplayedCells Similar to AllCells, except the DataGridView only considers
the rows that are currently visible at the time the property is
set. This option is used to improve performance for large grids.
The assumption is that the first subset of values has a fairly
representative set of widths.

DisplayedCellsExceptHeader The same as DisplayedCells, except it doesn’t take the header
cell into consideration.

Fill Column widths are adjusted so that all columns exactly fill the
available DataGridView. If the grid is resized, all the columns
change proportionately. You can adjust the MinimumWidth
and FillWeight properties of each column to make some
columns wider than others.

Macdonald_694-3C15.fm Page 537 Wednesday, July 19, 2006 1:39 PM

538 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

 Figure 15-6. Automatic column resizing in the DataGridView

If you use Fill mode, users are still allowed to resize columns (assuming you haven’t
changed the Resizable property of any DataGridViewColumn objects). When a column is
resized, all the following columns are expanded or shrunk proportionately to fit the remaining
space. If you resize the last column, all the other columns are resized proportionately.

Macdonald_694-3C15.fm Page 538 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 539

Setting an Automatic Resize Mode for Individual Columns

If you don’t want all columns to be resized in the same way, you can adjust the AutoSizeMode
property of the DataGridViewColumn object for each column. For example, you could size one
column to None and another column to DisplayedCells. (The default value is NotSet, in which
case the value is inherited from the DataGridView.AutoSizeColumnsMode property.)

A more interesting scenario occurs if you’re using proportional fill. In many cases, you’ll
want to make some columns larger than others or limit them, so they can’t shrink beyond a
certain minimum. This is easy to accomplish through the FillWeight and MinimumWidth
properties.

Initially, the FillWeight of every column is 100. If you set the FillWeight of another column
to 200, you create a column that’s twice as wide. A FillWeight of 50 is half as large as the default.
The FillWeight is only important in a relative sense, unlike the MinimumWidth property, which
sets an absolute minimum width in pixels.

Here’s an example that configures these details:

' Retrieve the columns you need to work with.
Dim colID As DataGridViewColumn = dataGridView1.Columns("ProductID")
Dim colModel As DataGridViewColumn = dataGridView1.Columns("ModelName")
Dim colDesc As DataGridViewColumn = dataGridView1.Columns("Description")

' Give much more weigth to the description.
colID.FillWeight = 25
colModel.FillWeight = 25
colDesc.FillWeight = 100

' However, keep a minimum width that ensures
' the first two columns are readable.
' Another option in this scenario is to only
' assign fill mode to the description column.
colID.MinimumWidth = 75
colModel.MinimumWidth = 125
colDesc.MinimumWidth = 100

■Note Unfortunately, you must configure column properties using code. Although the DataGridView does
provide design-time support for modifying the Columns property, unless you’re using the automatic data-binding
features discussed in Chapter 8 (which aren’t suitable for most large-scale projects), you won’t be able to add
or modify bound columns.

When the user resizes a column, the FillWeight changes. As a result, additional resize oper-
ations (on other columns or the whole grid) will work a little differently. For example, if the user
expands the first column, it’s automatically given a correspondingly larger FillWeight. If the
user then resizes the whole form (and by extension, the DataGridView), the first column gets
the same larger proportion of space.

Macdonald_694-3C15.fm Page 539 Wednesday, July 19, 2006 1:39 PM

540 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

There’s no need to use Fill mode with every column. You can use Fill mode with just one
column. The fill behavior still works the same—the remaining space in the DataGridView is
divided among all Fill mode columns.

■Tip If you don’t want to use Fill mode for the whole grid, but you want to make sure the DataGridView
background isn’t visible, you can configure the last column to spring to fill the remaining space. All you need
to do is set the AutoSizeColumnsMode of that column to Fill.

Manual Sizing

Automatic resizing is preferred, because it’s the most flexible approach. However, you can use
fixed pixel widths instead. Just set the AutoSizeColumnsMode to None (either for individual
columns or for the entire grid), and then set the DataGridViewColumn.Width property with the
width in pixels.

User Sizing

By default, the DataGridView allows the user to resize columns that have an
AutoSizeColumnsMode of None or Fill. If you are using another option (like DisplayedCells),
resizing is disabled. (However, you’ll learn how to work around this limitation in the next section.)

If you want to prevent the user from resizing columns or rows altogether, set the
AllowUserToResizeRows and AllowUserToResizeColumns properties for your DataGridView
to False. You also can restrict the user from resizing individual columns or rows by setting the
Resizable property of the corresponding DataGridViewColumn or DataGridViewRow.

Programmatic Resizing

The DataGridView also allows you to trigger autosizing for specific columns or the entire grid
by calling one of the following methods:

• AutoResizeColumn()

• AutoResizeColumns()

• AutoResizeRow()

• AutoResizeRows()

• AutoResizeColumnHeadersHeight()

• AutoResizeRowHeadersWidth()

There are a couple of common reasons that you might choose to use these methods. First
of all, there is a possible performance consideration. The DataGridView performs automatic
column resizing at several points, including after a column sort and a cell edit. If you’ve used a
resize mode like AllCells, this could be impractically slow. In this case, you might choose to
perform your sorting exactly when you want it by calling the appropriate method.

Macdonald_694-3C15.fm Page 540 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 541

Another reason you might use programmatic resizing is to get around the problem that
automatically resized columns don’t allow user resizing. If you use a resize mode other than
None or Fill, the user won’t be able to adjust the column widths. This might be a problem in
some situations—for example, if you want the user to be able to collapse a column to see more
information without scrolling. To get around this problem, you can leave the default resizing
mode to None, but call one of the resizing methods when the form first loads.

Here’s an example that resizes the third column:

dataGridView1.AutoResizeColumn(2, DataGridViewAutoSizeColumnMode.AllCells)

And here’s an example that resizes the whole grid:

dataGridView1.AutoResizeColumns(DataGridViewAutoSizeColumnMode.AllCells)

Keep in mind that this method needs to be invoked after you bind the data, or it won’t have
any effect. You also might want to use it after user editing (perhaps in response to an event like
DataGridView.CellValueChanged).

Resizing Rows

The DataGridView provides a similar model for resizing rows. Your options are identical to
those shown in Table 15-4, and you can resize the height of all the rows in the grid or specific
rows automatically or manually. The only difference is the name of the properties and methods
that you use. For example, the AutoSizeRowsMode property configures automatic resizing for
the DataGridView, and the DataGridViewRow.Height property allows you to set a specific pixel
height.

There are only three reasons that you’ll want to resize a row:

• You’ve enlarged the font size, so the text is being clipped at the bottom. (Similarly, if you
reduce the font size, you might resize the row to get rid of the extra space.)

• You’re using a different column type, like an image, and the content extends beyond the
bounds of the standard row height.

• You’re using wrapped text, and you want to show several lines at once.

The first two options are fairly straightforward. Wrapped text is a little more interesting. It
works through the style model described in the next section. The basic approach is that you set
the columns that you want to wrap. Then, you set the column width. Finally (and optionally),
you use automatic row resizing to heighten the row to fit all the text.

Here’s an example that ensures you can always see the full description text. The Description
column is set to use DataGridViewAutoSizeColumnMode.Fill, and the automatic row size
adjusts the row height as necessary.

Dim colDesc As DataGridViewColumn = dataGridView1.Columns("Description")

' Give it as much width as possible.
colDesc.AutoSizeMode = DataGridViewAutoSizeColumnMode.Fill

' Wrap to fit the bounds of the column.
colDesc.DefaultCellStyle.WrapMode = DataGridViewTriState.True

Macdonald_694-3C15.fm Page 541 Wednesday, July 19, 2006 1:39 PM

542 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

' Use row autosizing to show all the text.
dataGridView1.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.DisplayedCells

 Figure 15-7. Resizing rows to fit wrapped text

Figure 15-7 shows how this grid adapts as it is resized.
In this example, the automatic row resizing only takes displayed cells into consideration.

Try the same example (included online) with AllCells resizing, and you’ll notice more lethargic
performance.

■Note You’ll see the DataGridViewTriState enumeration used in some places where you might expect to
find ordinary Boolean values. The three values are True, False, and NotSet (which inherits values from the
containing object). For example, a value of NotSet allows a cell to inherit settings from a row, the row to inherit
them from the grid, and so on.

Macdonald_694-3C15.fm Page 542 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 543

DataGridView Styles
One of the challenges of designing the DataGridView was to create a formatting system that
was flexible enough to apply different levels of formatting, but remained efficient for very large
tables. For flexibility, the best approach is to allow the developer to configure each cell individ-
ually. But for efficiency, this approach can be disastrous. A table with thousands of rows will
have tens of thousands of cells, and maintaining distinct formatting for each cell is sure to
waste vast expanses of memory.

To solve this problem, the DataGridView adopts a multilayered model using
DataGridViewCellStyle objects. A DataGridViewCellStyle object represents the style of a cell,
and it includes details like color, font, alignment, wrapping, and data formatting. You can
create a single DataGridViewCellStyle to specify the default formatting for an entire table.
Additionally, you can specify the default formatting for a column, row, and individual cell. The
more fine-grained your formatting is and the more DataGridViewCellStyle objects you create,
the less scalable your solution will be. But if you use primarily column-based and row-based
formatting, and only occasionally format individual cells, your DataGridView won’t require
much more memory than the DataGrid.

When the DataGridView displays a cell, it examines the DataGridViewCellStyle objects in
this order:

1. The style for the specific cell: DataGridViewCell.Style

2. The default style for all cells in that row: DataGridViewRow.DefaultCellStyle

3. The default styles defined by the grid for normal and alternating rows: DataGridView.
RowsDefaultColumnStyle or DataGridView.AlternatingRowsDefaultColumnStyle,
depending on whether the row is even or odd numbered

4. The default style for cells in that column: DataGridViewColumn.DefaultCellStyle

5. The default style defined by the grid for all cells: DataGridView.DefaultCellStyle

The items higher in the list have the greatest priority in the case of any overlap. However,
styles aren’t applied in an all-or-nothing fashion. Instead, the DataGridView looks at the prop-
erties of each style object. For example, imagine you want to apply a special forecolor to a
specific cell, but you don’t want to change any other details. In this case, you can attach a style
object through the DataGridViewCell.Style property and set just the ForeColor property. The
DataGridView will use that color, but continue checking the other style objects to find the
appropriate background color, font, and so on.

■Tip None of these styles apply to row or column headers. To change the appearance of these cells, use
the ColumnHeadersDefaultCellStyle and RowHeadersDefaultCellStyle properties of the DataGridView.

Figure 15-8 shows how you can set cell styles using the DataGridView objects. The numbers
represent the order that the DataGridView checks for styles.

Macdonald_694-3C15.fm Page 543 Wednesday, July 19, 2006 1:39 PM

544 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

 Figure 15-8. The DataGridView and CellStyle objects

The DataGridViewCellStyle defines two types of formatting: data and appearance. Data
formatting describes how the data-bound value will be modified before it is displayed. This
typically includes using formatting strings to turn numeric or date values into text. To use
data formatting, you simply set the format specifier or custom format string using the
DataGridViewCellStyle.Format property. You can use all the format specifiers listed in Chapter 8
(see Tables 8-3 and 8-4).

For example, the following code snippet formats all the numbers in the UnitCost column
so that they are displayed as currency values, with two decimal places and the appropriate
currency symbol defined in the regional settings:

dataGridView1.Columns("UnitCost").DefaultCellStyle.Format = "C"

Appearance formatting includes the cosmetic niceties like color and font. For example, the
following code right-aligns the UnitCost cells, applies a bold font, and changes the cell back-
ground to yellow:

dataGridView1.Columns("UnitCost").DefaultCellStyle.Font = _
 New Font(DataGridView.Font, FontStyle.Bold)
dataGridView1.Columns("UnitCost").DefaultCellStyle.Alignment = _
 DataGridViewContentAlignment.MiddleRight
dataGridView1.Columns("UnitCost").DefaultCellStyle.BackColor = Color.LightYellow

Figure 15-9 shows the formatted UnitCost column.

Macdonald_694-3C15.fm Page 544 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 545

 Figure 15-9. A formatted currency column

Table 15-5 lists all the DataGridViewCellStyle properties.

Table 15-5. DataGridViewCellStyle Properties

Property Description

Alignment Configures how text will be justified inside the cell.

BackColor and ForeColor Sets the color of the cell background and the cell text.

Font Sets the font used for the cell text.

Format A format string that configures how data source values are
formatted for display. Usually, you’ll use this to convert numeric
or date values to the appropriate string representation.

FormatProvider A custom IFormatProvider object that configures how data source
values are formatted for display.

NullValue The data that will be displayed in the grid for any null values in
the data source.

DataSourceNullValue The value that will be committed back to the data source if a
control is empty or null.

Padding Sets the spacing between the cell content and the borders of the
cell, on one or more sides.

SelectionBackColor and
SelectionForeColor

Sets the cell background and text colors for selected cells.

WrapMode Determines whether text should be allowed to flow over multiple
lines, if the row is high enough to accommodate it. Otherwise, text
will be truncated. By default, no cells wrap.

Macdonald_694-3C15.fm Page 545 Wednesday, July 19, 2006 1:39 PM

546 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

■Tip Your formatting isn’t limited to cells in the display. You also can change the cell styles for the column
headers and the row selection column. To do so for an entire table, set the ColumnHeadersDefaultCellStyle
and RowHeadersDefaultCellStyle properties of the DataGridView.

Custom Cell Formatting
The first choice for formatting cells is to set styles through the higher-level DataGridView,
DataGridViewColumn, and DataGridViewRow objects. These styles are then used for the entire
grid, entire columns, or entire rows, respectively. However, sometimes you need to set the style
for specific, individual cells. For example, you might want to flag data in a column that is
greater or less than a certain value, such as due dates that have passed on a project schedule list
or negative rates of return on a sales analysis. In both of these cases, you’ll need to format the
individual cell.

Using your knowledge of the DataGridView object model, you might be tempted to iterate
through the collection of cells in a specific column looking for the values you want to highlight.
This approach will work, but it’s not the best choice. The key problem is that if the user edits
the data or if your code changes the bound data source, the cell highlighting won’t be updated
to match.

Fortunately, the DataGridView provides a CellFormatting event just for this purpose.
CellFormatting fires just before the cell value is painted. It gives you the chance to update the
cell style based on its content.

Here’s an example that flags prices above or equal to $1,000:

Private Sub dataGridView1_CellFormatting(ByVal sender As Object, _
 ByVal e As DataGridViewCellFormattingEventArgs) _
 Handles dataGridView1.CellFormatting
 If dataGridView1.Columns(e.ColumnIndex).Name = "UnitCost" Then
 If Convert.ToInt32(e.Value) >= 1000 Then
 e.CellStyle.ForeColor = Color.Red
 e.CellStyle.BackColor = Color.Yellow
 e.CellStyle.Font = New Font(_
 dataGridView1.DefaultCellStyle.Font, FontStyle.Bold)
 End If
 End If
End Sub

The formatted DataGridView is shown in Figure 15-10.

■Note Due to the architecture of the DataGridView, the CellFormatting event fires every time a cell becomes
visible—when you resize the window, minimize and maximize it, scroll through the list, move your mouse
over cells, and so on. To ensure optimum performance, you shouldn’t perform any time-consuming opera-
tions in the CellFormatting event. For example, if you need to perform a complex calculation, perform it ahead
of time and store the value for later use in the CellFormatting event.

Macdonald_694-3C15.fm Page 546 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 547

 Figure 15-10. Highlighting large prices with cell-based formatting

Notice in this code that the cell data is retrieved through the TableCellFormattingEventArgs
object that’s passed to the event handler. This object is also used to specify the new style infor-
mation. This approach is important, because cell objects are often created on demand. If you
don’t directly manipulate the individual DataGridViewCell object for a cell, .NET may not need
to create it, which reduces the overall memory use of your application.

You can further improve performance by reusing the same DataGridViewCellStyle object
with multiple cells. First, define the DataGridViewCellStyle as a member variable of the form class:

Dim highPriceStyle As New DataGridViewCellStyle()

In your Form.Load event handler, configure this style accordingly:

highPriceStyle.ForeColor = Color.Red
highPriceStyle.BackColor = Color.Yellow
highPriceStyle.Font = new Font(dataGridView1.DefaultCellStyle.Font, _
 FontStyle.Bold)

Now, you can apply this style to multiple cells in the CellFormatting event handler:

Private Sub dataGridView1_CellFormatting(ByVal sender As Object, _
 ByVal e As DataGridViewCellFormattingEventArgs) _
 Handles dataGridView1.CellFormatting
 If dataGridView1.Columns(e.ColumnIndex).Name = "UnitCost" Then
 If Convert.ToInt32(e.Value) >= 1000 Then
 e.CellStyle = highPriceStyle
 End If
 End If
End Sub

This is known as a shared style. Only one DataGridViewCellStyle object is created in memory.
Additionally, if you change the properties of the highPriceStyle, all the cells that use it are
affected automatically.

Macdonald_694-3C15.fm Page 547 Wednesday, July 19, 2006 1:39 PM

548 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

■Note The DatGridViewCellStyle object won’t be garbage collected as long as it is used by at least one cell
or referred to by a member variable in your form class.

You also can use this technique to apply the same formatting to multiple columns. Create
the DataGridViewCellStyle object in the same way, configure it, and then set it to multiple
columns using the DataGridViewColumn.DefaultCellStyle property.

Hiding, Moving, and Freezing Columns
Styles aren’t the only detail that influences the appearance of your grid. You also can hide
columns, move them from place to place, and “freeze” them so that they remain visible even
as the user scrolls to the right. These features are all provided through the properties of the
DataGridViewColumn class, as detailed in Table 15-6.

For example, the following code rearranges the columns of a DataGridView bound to the
Products table:

dataGridView1.Columns("ProductImage").Visible = False
dataGridView1.Columns("CategoryID").Visible = False
dataGridView1.Columns("ModelNumber").DisplayIndex = 4

dataGridView1.Columns("ProductID").Frozen = True
dataGridView1.Columns("ProductID").Resizable = False

When you change the display index, the existing columns are moved out of the way. For
example, in the preceding code the columns that currently have a DisplayIndex of 4 or later are
automatically changed to have a DisplayIndex of 5 and later.

Table 15-6. Appearance-Related DataGridViewColumn Properties

Property Description

DisplayIndex Sets the position where the column will appear in the DataGridView.
For example, a column with a DisplayIndex of 0 is automatically shown
in the leftmost column. Initially, the DisplayIndex matches the index of
the DataGridViewColumn object in the DataGridView.Columns collection.

Frozen If True, the column will remain visible and fixed the left side of the
table, even if the user scrolls to the right to view additional columns.
All columns to the left are automatically also frozen.

HeaderText Sets the text that will appear in the column header.

Resizable and
MinimumWidth

Set Resizable to False to prevent the user from resizing a column, or set
MinimumWidth to the minimum number of pixels that will be allowed.

Visible Set this to False to hide a column.

Macdonald_694-3C15.fm Page 548 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 549

■Tip If you are simultaneously hiding and rearranging rows, you’ll need to set the DisplayIndex property as
though all the rows are visible. The DisplayIndex of a column won’t change when you hide a column.

Some of these techniques can be applied to rows using the properties of the
DataGridViewRow object. For example, you can freeze rows (they’ll remain at the top of the
grid as you scroll down), and you can set DataGridViewRow.Visible to False to hide a row. This
gives you the ability to implement more advanced filtering than what’s available with proper-
ties like DataView.RowFilter (described in Chapter 8). Simply loop through the collection of
rows looking for those you’d like to hide.

For example, here’s a function that filters out strings containing the words “warning”
or “danger”:

Private Function TestForWords(ByVal stringToTest As String) As Boolean
 stringToTest = stringToTest.ToLower()
 Return (stringToTest.Contains("warning") Or stringToTest.Contains("danger"))
End Function

and here’s the code that hides any row that has these words in the description:

' Remove cells with the objectionable description.
For Each row As DataGridViewRow In DataGridView.Rows
 If TestForWords(row.Cells("Description").Value.ToString()) Then
 row.Visible = False
 End If
Next

You’ll also need to respond to the CellValueChanged event to check whether you need to
filter new or modified rows.

■Note This approach isn’t as efficient as setting a filter string for the DataView, but it allows you far more
possibilities. If you’re binding to a DataTable, you may want to consider using the DataView.RowFilter property
instead, as described in Chapter 8.

Using Image Columns
One of the column types provided for the DataGridView is the DataGridViewImageColumn,
which displays a picture in the bounds of the cell. You can set the DataGridViewImageColumn.
Layout property to configure how the picture is shown in the cell—whether it is stretched to fit
or simply cropped if it’s too large.

One extremely straightforward way to use images in a DataGridView is to add an unbound
DataGridViewImageColumn. In this case, the column data won’t be drawn from the under-
lying data source. Instead, you can set images programmatically. You might use this approach
to distinguish between new and changed rows, or to flag important rows. You might even use

Macdonald_694-3C15.fm Page 549 Wednesday, July 19, 2006 1:39 PM

550 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

the DataGridViewImageColumn to display a generic image next to every row just to improve
the appearance of the control. The next example demonstrates this technique with a column
that shows a starburst icon next to new or modified rows.

First of all, define the images that you want to use as form member variables, so that they
are available to all event-handling code:

Private genericImage As Image
Private newImage As Image

When the application first loads, you can configure these images by loading them from a
file or, more practically, by retrieving the image from an embedded resource or an ImageList:

genericImage = imageList.Images(1)
newImage = imageList.Images(0)

Next, create the image column. In this example, the image column is in the leftmost position
of the DataGridView, and always shows the default genericImage:

' Bind the grid.
dataGridView1.DataSource = Program.StoreDB.GetProducts()

' Create the image column.
Dim imageCol As New DataGridViewImageColumn()
imageCol.DefaultCellStyle.Alignment = DataGridViewContentAlignment.MiddleCenter
imageCol.ImageLayout = DataGridViewImageCellLayout.Normal
imageCol.Frozen = True
imageCol.Name = "Image"
imageCol.HeaderText = ""

' Move the column to the left, and move the ProductID
' column out of the way.
imageCol.DisplayIndex = 0
dataGridView1.Columns("ProductID").DisplayIndex = 1

' By default, show the generic image.
imageCol.Image = genericImage

' Add the image column to the grid.
dataGridView1.Columns.Add(imageCol)

Finally, you can respond to the CellValueChanged event, and update the image to show
that the row has been modified. In a more sophisticated scenario, you might want to check
other criteria for the modified row before deciding how to change the image.

Private Sub dataGridView1_CellValueChanged(ByVal sender As Object, _
 ByVal e As DataGridViewCellEventArgs) _
 Handles dataGridView1.CellValueChanged

Macdonald_694-3C15.fm Page 550 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 551

 If e.RowIndex <> -1 Then
 ' Retrieve the image column for this row.
 Dim col As DataGridViewImageCell = CType(_
 dataGridView1.Rows(e.RowIndex).Cells("Image"), _
 DataGridViewImageCell)

 ' Set the image.
 col.Value = newImage
 End If
End Sub

Figure 15-11 shows the DataGridView with two modified rows. Note that the DataGridView
correctly handles background selection, changing the color of the image background appro-
priately. This works because the ImageList control defines the background color as transparent
using the TransparentColor property.

 Figure 15-11. Using an image to represent row state

■Tip Unfortunately, the DataGridView doesn’t have any built-in way to show both image content and text in
a single cell. However, you can easily add this ability using custom painting, as described later in this chapter.

A more sophisticated way to use image columns is to display picture data that relates to an
actual record. There are two ways to do this. The simple approach requires no extra code, and
takes place automatically if you are showing a column that has the Image data type. For example,
consider the pub_info table in the pubs sample database that’s included with all installations
of SQL Server. It includes a logo field that holds a 16-byte picture. If you retrieve this information
and bind it to a DataGridView, the DataGridView automatically uses a DataGridViewImageColumn
to show it.

Macdonald_694-3C15.fm Page 551 Wednesday, July 19, 2006 1:39 PM

552 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

However, displaying an image isn’t always this easy. Sometimes, you might need your
code to explicitly translate the binary data in a portion of a binary column to create the picture.
Or, your database record might simply store the file name of the image file you want to show.
In these cases, you need an extra manual step, where your code must retrieve and supply the
required data.

To implement this design, you need to respond to the CellFormatting event. In this event,
you set the Image object for the cell. You can create this Image object based on binary data in
the database, or using a filename specified in another field, which is the approach we’ll use
in the next example with the Products table.

The Products table includes a ProductImage field that specifies the file name for a picture
of the product. The following code binds the DataGridView to the Products table, hides the
ProductImage field, and creates a new image column where the linked picture will be displayed.

' Bind the grid.
dataGridView1.DataSource = Program.StoreDB.GetProducts()

' Hide the column with the image file name.
dataGridView1.Columns("ProductImage").Visible = False

' Create a new image column.
Dim imageCol As New DataGridViewImageColumn()
imageCol.DefaultCellStyle.Alignment = DataGridViewContentAlignment.MiddleCenter
imageCol.ImageLayout = DataGridViewImageCellLayout.Normal
imageCol.Name = "Image"
dataGridView1.Columns.Add(imageCol)

' Make sure pictures are visible.
dataGridView1.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.AllCells

Next, the CellFormatting event handler looks for the file specified for each record and, if it
can be found, loads it into the cell:

Private Sub dataGridView1_CellFormatting(ByVal sender As Object, _
 ByVal e As DataGridViewCellFormattingEventArgs) _
 Handles dataGridView1.CellFormatting
 ' Check if it's the Image column.
 If dataGridView1.Columns(e.ColumnIndex).Name = "Image" And _
 ' Set the value based on the hidden ProductImage column.
 Dim fileName As String = Application.StartupPath & "\" & _
 dataGridView1.Rows(e.RowIndex).Cells("ProductImage").Value.ToString()

 If File.Exists(fileName) Then
 e.Value = Image.FromFile(fileName)
 End If
 Else
 ' (You could supply a default picture here.)
 End If
End Sub

Macdonald_694-3C15.fm Page 552 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 553

Figure 15-12 shows the DataGridView with product images.

 Figure 15-12. Displaying images from a hidden column

DISPLAYING UNBOUND DATA

When designing the DataGridView, Microsoft developers considered common data-binding scenarios— especially
those that the DataGrid couldn’t tackle. One of these is displaying nonbound data. You can apply the same
technique used to create an image column to add multiple columns to a DataGridView that doesn’t have any
bound data source. The DataGridView will even support editing and row insertions (depending on the
AllowUserToAddRows and ReadOnly properties). It’s up to you whether you want to use this approach to show
unbound data or programmatically create a new DataTable to use with the DataGridView.

For optimum performance, don’t use this approach to implement calculated columns with bound data.
Instead, you should add calculated columns directly to the underlying DataTable and set the DataColumn.Expression
property so that the column value is calculated automatically. This technique is demonstrated in Chapter 8.

Using Button Columns
Another type of column you might want to add manually is the DataGridViewButtonColumn,
which displays a button next to every item. You can respond to a click of this button and use it
to start another action or show a new form. For example, a button column might be used to
allow a user to purchase an item or see related rows in another table. The following example
demonstrates this latter approach with a master-details form.

Macdonald_694-3C15.fm Page 553 Wednesday, July 19, 2006 1:39 PM

554 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

In a master-details form, you show two tables of data. When the user makes a selection
from the first, you show the related rows in a second. In the Chapter 8, you saw an example
with a single form that allowed users to browse products by category. Using the
DataGridViewButtonColumn, you can implement a slightly different approach.

First, bind the grid and add the new column. When configuring the
DataGridViewButtonColumn, you need to specify a name and the button text:

Dim ds As DataSet = Program.StoreDB.GetCategoriesAndProducts()
dataGridView1.DataSource = ds.Tables("Categories")

Dim detailsCol As New DataGridViewButtonColumn()
detailsCol.Name = "Details"
detailsCol.Text = "Details..."
detailsCol.UseColumnTextForButtonValue = True
detailsCol.HeaderText = ""
DataGridView.Columns.Insert(DataGridView.Columns.Count, detailsCol)

Figure 15-13 shows the grid with the new column.

 Figure 15-13. Adding a button column

Here’s the code that reacts to this event handler, creates a new form, copies the CategoryID of
the selected item to a property of the new form, and then displays it modally:

Private Sub dataGridView1_CellClick(ByVal sender As Object, _
 ByVal e As DataGridViewCellEventArgs) Handles dataGridView1.CellClick
 If dataGridView1.Columns(e.ColumnIndex).Name = "Details" Then
 ' Create the new form.
 Dim frm As ChildForm = New ChildForm()

Macdonald_694-3C15.fm Page 554 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 555

 ' Provide the OrderID to the new form.
 frm.CategoryID = Convert.ToInt32(_
 dataGridView1.Rows(e.RowIndex).Cells("CategoryID").Value)

 ' Show the form.
 frm.ShowDialog()
 frm.Dispose()
 End If
End Sub

The ChildForm.CategoryID property sets up the DataGridView on the new form using the
DataView.RowFilter property:

Private _categoryID As Integer

Public Property CategoryID() As Integer
 Get
 Return _categoryID
 End Get
 Set
 _categoryID = Value
 Dim ds As DataSet = Program.StoreDB.GetCategoriesAndProducts()
 dataGridView1.DataSource = ds.Tables("Products")
 ds.Tables("Products").DefaultView.RowFilter = _
 "CategoryID =" & _categoryID.ToString()
 End Set
End Property

Editing and Validation with the DataGridView
The DataGrid was notoriously inflexible with user input, offering little opportunity to customize
how cells were validated and errors were reported. The DataGridView, on the other hand, lets
you control its behavior in a variety of ways. First of all, you can use the editing properties in
Table 15-7 to configure editing support for the DataGridView.

Table 15-7. Editing Properties of the DataGridView

Property Description

AllowUserToAddRows If this property is set to True, the bottom of the grid will show an
extra blank row with an asterisk in the row header. The user can
type values here to create a new row.

AllowUserToDeleteRows If this property is set to True, the user can delete entire rows just
by selecting the row (typically by clicking on the row header)
and pressing the Delete key on the keyboard.

Macdonald_694-3C15.fm Page 555 Wednesday, July 19, 2006 1:39 PM

556 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

■Note If you use any EditMode value other than EditProgrammatically, the user also can initiate an edit by
double-clicking the cell with the mouse.

When the user is editing a cell, the row header will display an editing icon that looks like a
pencil, although this too is configurable (just set ShowEditingIcon to False).

The user can cancel an edit by pressing the Esc key. If the EditCellOnEnter property is set
to True, the cell will remain in edit mode, but all changes will be discarded. To commit a change,
the user simply needs to move to a new cell (just pressing Enter will take care of that) or change
focus to another control. If your code moves the position of the current cell, this also will commit
the change.

To prevent a cell from being edited, you can set the ReadOnly property of the
DataGridViewCell, DataGridViewColumn, DataGridViewRow, or DataGridView (depending on
whether you want to prevent changes to that cell only, all cells in that column, all cells in that
row, or all cells in the table, respectively). Values are automatically read-only if the underlying
property or field in the data object is read-only.

You also can start and stop cell edits programmatically, using the BeginEdit(), CancelEdit(),
CommitEdit(), and EndEdit() methods of the DataGridView.

ReadOnly If this property is set to True, the user will not be able to type in
any row. This also effectively disables row insertion—even though
the user can scroll to the new record marker at the bottom grid,
there’s no way to type anything in. You also can set the ReadOnly
property of individual DataGridViewColumn, DataGridViewRow,
or DataGridViewCell objects to make specific columns read-only.

EditMode Sets the conditions under which a cell will switch to edit mode.
The default (EditOnKeystrokeOrF2) switches the row into edit
mode when the user types a character or presses F2. Depending
on the value you use, the DataGridView can be configured to put
a cell into edit mode immediately when the user navigates to
it (EditOnEnter), or it can prevent all user-initiated edits
(EditProgrammatically), in which case you can choose to start an
edit by calling DataGridView.BeginEdit(). You can also use
EditOnKeystroke or EditOnF2 to restrict the default editing
behavior to use either the F2 key or character keystrokes, but
not both.

Table 15-7. Editing Properties of the DataGridView (Continued)

Property Description

Macdonald_694-3C15.fm Page 556 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 557

Editing Events
The DataGridView also exposes several events during the edit process, as detailed in Table 15-8.

For example, if you want to show a confirmation dialog box when a user attempts to
remove a row, you could use the following event handler:

Private Sub dataGridView1_UserDeletingRow(ByVal sender As Object, _
 ByVal e As DataGridViewRowCancelEventArgs) _
 Handles dataGridView1.UserDeletingRow
 Dim id As String = e.Row.Cells("ProductID").FormattedValue.ToString()
 Dim name As String = e.Row.Cells("ModelName").FormattedValue.ToString()

 Dim result As DialogResult = MessageBox.Show(_
 "Are you sure you want to delete product " & id & _
 " - " & name & "?", "Delete?", MessageBoxButtons.OKCancel)

 If result = DialogResult.Cancel Then
 ' Cancel the delete operation.
 e.Cancel = True
 End If

End Sub

Default Values for New Rows
Ordinarily, when the user begins adding a new row, the values of that new row are filled in with
any defaults defined in the data source. (For example, if you’re binding to a custom data object
that sets certain defaults in its constructor, the constructor determines what text appears in
the fields.)

Table 15-8. DataGridView Editing Events

Event Description

CellBeginEdit Raised when the cell enters edit mode. You can examine the cell and use
the DataGridViewCellCancelEventArgs object to cancel the edit if needed.

CellEndEdit Raised when a cell exits edit mode, when the change has been cancelled
or committed. However, you don’t receive any information about why
the edit was cancelled, and you won’t have the opportunity to prevent
the cancellation.

UserAddedRow Raised when a user navigates away from a newly entered row, after the
validation events and CellEndEdit.

UserDeletingRow Raised when a user initiates an edit by selecting a row and pressing the
Del key. At this point, you still have the chance to cancel the delete.

UserDeletedRow Raised after the delete operation is complete and the row has been
removed from the grid.

Macdonald_694-3C15.fm Page 557 Wednesday, July 19, 2006 1:39 PM

558 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

However, in many cases, you need a more flexible, decoupled approach that allows you to
set defaults that apply only to the DataGridView. This is actually quite easy to accomplish—all
you need to do is handle the DefaultValuesNeeded event. The DefaultValuesNeeded event
supplies you with the appropriate DataGridView row object. You simply need to fill in each of
the fields.

Here’s an example:

Private Sub dataGridView1_DefaultValuesNeeded(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DataGridViewRowEventArgs) _
 Handles dataGridView1.DefaultValuesNeeded
 e.Row.Cells("ProductID").Value = Guid.NewGuid.ToString()
 e.Row.Cells("ModelName").Value = "(Enter Name)"
 e.Row.Cells("Image").Value = "noimage.gif"
 ...
End Sub

Incidentally, you also can supply default formatting for new cells. Just set the properties of
the DataGridView.RowTemplate object. Any property values you don’t set are inherited from
the styles associated with the corresponding DataGridViewColumn and the DataGridView.

Handling Errors
By default, the DataGridViewTextBoxColumn allows users to enter any characters, including
those that might not be allowed in the current cell. For example, a user might type non-numeric
characters in a numeric field, or specify a value that violates a ForeignKeyConstraint or
UniqueConstraint defined in the DataSet. The DataGridView handles these problems in
different ways:

• If the edited value can be converted into the required data type (for example, the user
has typed text into a numeric column), the user won’t be able to commit the change or
navigate to another row. Instead, the change must be cancelled, or the value must be edited.

• If the editing attempt causes an exception, the change will be cancelled immediately
after the user attempts to commit it by navigating to another row or pressing Enter.
Exceptions can be thrown from the property procedure code of a bound object or gener-
ated if you violate a constraint in a bound DataTable.

These common sense defaults work well for most scenarios. However, if necessary, you
also can participate in the handling of errors by responding to the DataGridView.DataError
event, which fires when the DataGridView intercepts an error from the data source (for example,
entering a string instead of a number or violating a constraint in the underlying DataTable).

For example, the following DataError event handler catches both of the errors described
above when the user edits the CategoryID field of the Products table:

Private Sub dataGridView1_DataError(ByVal sender As Object, _
 ByVal e As DataGridViewDataErrorEventArgs) _
 Handles dataGridView1.DataError
 ' Check if it's an error during the commit stage.
 If (e.Context And DataGridViewDataErrorContexts.Commit) = _
 DataGridViewDataErrorContexts.Commit Then

Macdonald_694-3C15.fm Page 558 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 559

 ' Check the column.
 If dataGridView1.Columns(e.ColumnIndex).Name = "CategoryID" Then
 ' Check if it's a constraint exception.
 If TypeOf e.Exception Is System.Data.InvalidConstraintException Then
 MessageBox.Show("This category does not exist.")
 ' The following two lines suppress the exception for this error
 ' and cancel the attempted action (like row navigation) so focus
 ' remains on the cell. However, these are the defaults, so these
 ' lines aren't required.
 e.ThrowException = False
 e.Cancel = True

 ' Check if it's a formatting exception.
 ElseIf e.Exception.InnerException IsNot Nothing AndAlso _
 TypeOf e.Exception.InnerException Is FormatException Then
 MessageBox.Show("This field can only contain numbers.")
 e.ThrowException = False
 e.Cancel = True
 End If
 End If
 End If
End Sub

The DataError event isn’t limited to dealing with exceptions that occur in the
underlying data source. In fact, it’s a catch-all event that fires when exceptions occur
in a variety of situations. You can determine what the exception is by investigating the
DataGridViewDataErrorContexts property of the DataGridViewDataErrorEventArgs object
passed to the event handler. This provides a combination of enumeration values that represent
exactly what’s taking place. Table 15-9 lists the possible values.

Table 15-9. DataGridViewDataErrorContexts Values

Value Description

Display An error occurred when attempting to paint the cell or calculate the
cell’s tooltip. Several different factors can cause a display error. For
example, if there’s a problem formatting a value for display in a cell,
you’ll see both the Formatting and Display error values.

Commit An error occurred when committing changes to the underlying data
object. As with a Display error, a Commit error can occur for a variety
of reasons, so this value is usually combined with additional error
values from this enumeration.

Parsing An error occurred when converting the cell’s FormattedValue into
its Value. Parsing errors usually indicate problems with user-supplied
data. Common situations that can cause the Parsing value include
errors when committing, ending, or canceling an edit. The Parsing
flag is usually combined with other error values.

Formatting An error occurred when converting the cell’s Value into a
FormattedValue. This is the reverse of the Parsing error.

Macdonald_694-3C15.fm Page 559 Wednesday, July 19, 2006 1:39 PM

560 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

For example, you could take advantage of this context information to change the behavior
of the DataGridView if the user is attempting to change focus to a different control on the form.
In this case, it might be appropriate to simply display the error message in a status bar, but
revert to the original value (rather than force the user to cancel the change or edit the value). To
do this, you need to set the DataGridViewDataErrorEventArgs.Cancel property to False, as
shown here:

If (e.Context And GridViewDataErrorContexts.LeaveControl) = _
 GridViewDataErrorContexts.LeaveControl Then
 e.Cancel = False
End If

Validating Input
Validation is a slightly different task than error handling. With error handling, you deal with the
problems reported by the data source. With validation, you catch your own custom error
conditions—for example, data that may be allowed in the data source, but doesn’t make sense
in your application.

When the user commits a change by navigating to a new cell, the DataGridView control
raises the CellValidating and CellValidated events. These are followed by the RowValidating
and RowValidated events, which only occur when the user navigates to another row. You can
respond to these events, check if the user-entered values are correct, and perform any required
post-processing. If a value is invalid, you have a choice of how you want to respond.

CurrentCellChange An error occurred when the cursor moved to another cell (at which
point the DataGridView may commit an edit and perform validation).
The CurrentCellChange value is usually combined with another
error value.

LeaveControl An error occurred when the DataGridView lost focus (at which point
the DataGridView may commit an edit and perform validation). The
LeaveControl value is usually combined with another error value.

RowDeletion An error occurred when deleting a row. The underlying data object
may have thrown an exception (for example, perhaps the deletion
would violate a foreign key constraint).

ClipboardContent An error occurred when copying content to the clipboard, because
the cell value could not be converted to a string.

InitialValueRestoration An error occurred when restoring a cell to its previous value. This
value indicates that a cell tried to cancel an edit, and the rollback to
the initial value failed. This can occur if the cell formatting changes
so that it is incompatible with the initial value.

PreferredSize An error occurred when calculating the preferred size (height and
width) of a cell when resizing a column or row.

Scroll An error occurred when scrolling a new portion of the grid into view.

Table 15-9. DataGridViewDataErrorContexts Values (Continued)

Value Description

Macdonald_694-3C15.fm Page 560 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 561

The most intrusive approach is to stop the user with a message box. Here’s an example:

Private Sub dataGridView1_CellValidating(ByVal sender As Object, _
 ByVal e As DataGridViewCellValidatingEventArgs) _
 Handles dataGridView1.CellValidating
 ' Check if it's a column you want to validate.
 If dataGridView1.Columns(e.ColumnIndex).Name = "ProductImage" Then
 ' Apply the appropriate rule.
 If System.IO.Path.GetExtension(e.FormattedValue.ToString()) <> ".gif" Then
 ' There's a problem. Alert the user and cancel navigation.
 MessageBox.Show("Invalid product image.")
 e.Cancel = true
 End If
 End If
End Sub

By setting the Cancel property of the DataGridViewCellValidatingEventArgs object to
True, you force the cell to stay in edit mode, so the invalid data is not committed to the under-
lying data source.

■Tip If you decide to use the aggressive message box approach, it may make sense to wait until the user
has finished editing the entire row. Although this introduces the possibility of multiple errors, it also reduces
the number of annoying message boxes that the user will see. To implement this approach, just respond to
the RowValidating event instead of the CellValidating event, check every column of the current row, and
present a message box with a bulleted list of all the problems you’ve found.

Almost everyone hates to be interrupted by a message box with error information. A more
elegant approach is to set some error text to alert the user. The error text can be placed in
another control, or it can be shown in the DataGrid using the ErrorText property of the corre-
sponding DataGridViewRow and DataGridViewCell.

Usually, you’ll use both of these properties in conjunction, and set an error message in
both the row and cell. Here’s an example that prevents file names that don’t have the correct
extension from being used in the ProductImage field:

Private Sub dataGridView1_CellValidating(ByVal sender As Object, _
 ByVal e As DataGridViewCellValidatingEventArgs) _
 Handles dataGridView1.CellValidating
 If dataGridView1.Columns(e.ColumnIndex).Name = "ProductImage" Then
 If System.IO.Path.GetExtension(e.FormattedValue.ToString()) <> ".gif" Then
 dataGridView1.Rows(e.RowIndex).ErrorText = "Invalid Product Image"
 dataGridView1.Rows(e.RowIndex).Cells(e.ColumnIndex).ErrorText = _
 "The file name must end with '.gif'."
 End If
 End If
End Sub

Macdonald_694-3C15.fm Page 561 Wednesday, July 19, 2006 1:39 PM

562 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

The ErrorText settings follow two rules:

• When DataGridViewCell.ErrorText is set, an exclamation icon appears in the cell. Hovering
over this icon with the mouse reveals the error message. To hide these error icons, set
ShowCellErrors to False.

• When DataGridViewRow.ErrorText is set, an exclamation icon appears in the row
header at the left of the row. Hovering over this icon with the mouse reveals the error
message. To hide these error icons, set ShowRowErrors to False.

Figure 15-14 shows the row and cell error icons.

 Figure 15-14. Setting row and cell errors

■Note Error messages that are set in the cell are only visible while the cell is not being edited. That means
if you set cell error text and cancel the change, the user will remain in error mode and won’t see the message.
You can resolve this problem by setting error text for the row or in another control.

Constraining Choices with a List Column
Using validation, you can catch any error conditions. However, this approach isn’t necessarily
the best, because it allows the user to enter invalid input and then tries to correct it after the
fact. A better solution is to restrict the user from entering any invalid input in the first place.

Macdonald_694-3C15.fm Page 562 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 563

One common example is when you need to constrain a column to a list of predefined
values. In this scenario, it’s easiest for the user to choose the correct value from a list, rather
than type it in by hand. Best of all, you can implement this design quite easily using the
DataGridViewComboBoxColumn.

The list of items for the DataGridViewComboBoxColumn can be added by hand using
the Items collection, much as you would with a ListBox. Alternatively, you can bind the
DataGridViewComboBoxColumn to another data source. In this case, you specify the data
source using the DataSource property, and you indicate what value should be displayed in
the column using the DisplayMember property and what value should be used for the under-
lying column value using the ValueMember property.

For a demonstration, consider the next example, which works with the Products table.
Every record in this table is linked to a record in the Categories table through its CategoryID
field. To change the category of a product, the user must remember the correct ID and enter it
in the CategoryID field. A better solution would be to use a DataGridViewComboBoxColumn
that is bound to the Categories table. This column would use CategoryName as the display
member, but would have CategoryID as the real underlying value. Best of all, this column
would still be bound to the Products table through the DataProperyName property, which
means when the user chooses a new Category from the list, the CategoryID field of the product
record is changed automatically.

Here’s the code you need to configure this table:

' Bind the grid.
Dim ds As DataSet = Program.StoreDB.GetCategoriesAndProducts()
dataGridView1.DataSource = ds.Tables("Products")

' Remove the auto-generated CategoryID column.
dataGridView1.Columns.Remove("CategoryID")

' Create a list column for the CategoryID.
Dim listCol As New DataGridViewComboBoxColumn()
listCol.DisplayIndex = 0
listCol.HeaderText = "Category"

' This column is bound to the Products.CategoryID field.
listCol.DataPropertyName = "CategoryID"

' The list is filled from the Categories table.
listCol.DataSource = ds.Tables("Categories")
listCol.DisplayMember = "CategoryName"
listCol.ValueMember = "CategoryID"

' Add the column.
dataGridView1.Columns.Add(listCol)

Figure 15-15 shows the new category column.

Macdonald_694-3C15.fm Page 563 Wednesday, July 19, 2006 1:39 PM

564 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

 Figure 15-15. Setting values through a list column

DataGridView Customization
The most impressive feature of the DataGridView is its support for customization. You can
extend the DataGridView to suit your needs, and you can implement these extensions in a flexible
and reusable way. Although many of the possible avenues for customization are outside the
scope of this book (for example, you can fine tune details as minute as the asterisk symbol
shown in the new record placeholder by deriving a custom class), the following sections will
give you an overview of some common scenarios where customization makes sense.

Custom Cell Painting
Although the DataGridView supports images, there are still cases where you’ll want to display
different types of content or apply custom formatting that isn’t directly supported. For example,
you might want to mingle text and graphics, draw shapes, or add a background behind the cell
content. All of these details can be handled using the GDI+ drawing tools you learned about
in Chapter 7. All you need to do is handle the CellPainting event (or the RowPrePaint and
RowPostPaint events to apply drawing effects for the entire row). All of these events provide a
drawing surface through the Graphics property of the appropriate EventArgs object.

The following example shows how you can handle the CellPainting event to fill a background
gradient behind the cell content of the first column. The only caveats are that you need to
explicitly set the DataGridViewCellPaintingEventArgs.Handled property to True to prevent the
DataGridView from performing its own painting logic over the top of yours, and you need to
paint both the background and the cell content.

Here’s the drawing logic:

Private Sub dataGridView1_CellPainting(ByVal sender As Object, _
 ByVal e As DataGridViewCellPaintingEventArgs) _
 Handles dataGridView1.CellPainting

Macdonald_694-3C15.fm Page 564 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 565

 ' Only paint the desired column and
 ' don't paint headers.
 If e.ColumnIndex = 0 And e.RowIndex >= 0 Then
 ' If the cell is selected, use the normal painting
 ' instead of the custom painting.
 If (e.State And DataGridViewElementStates.Selected) <> _
 DataGridViewElementStates.Selected Then
 ' Suppress normal cell painting.
 e.Handled = True

 ' Get the rectangle where painting will take place.
 Dim rect As Rectangle = New Rectangle(e.CellBounds.X, _
 e.CellBounds.Y, e.CellBounds.Width - 1, _
 e.CellBounds.Height - 1)

 ' Render the custom cell background.
 Dim brush As New LinearGradientBrush(_
 rect, Color.White, Color.YellowGreen, 35)
 Using brush
 e.Graphics.FillRectangle(brush, rect)
 End Using

 ' Render the standard cell border.
 Dim borderPen As New Pen(dataGridView1.GridColor)
 using (borderPen)
 e.Graphics.DrawRectangle(borderPen, e.CellBounds.X - 1, _
 e.CellBounds.Y - 1, e.CellBounds.Width, e.CellBounds.Height)
 End Using

 ' Render the cell text.
 Dim cellValue As String = e.FormattedValue.ToString()

 ' Set the alignment settings. Unfortunately, there's no
 ' straightforward way to get the cell style settings and
 ' convert them to the text alignment values you need here.

 Dim format As New StringFormat()
 format.LineAlignment = StringAlignment.Center
 format.Alignment = StringAlignment.Near

 Dim valueBrush As New SolidBrush(e.CellStyle.ForeColor)
 Using valueBrush
 e.Graphics.DrawString(cellValue, e.CellStyle.Font, valueBrush, _
 rect, format)
 End Using
 End If
 End If
End Sub

Macdonald_694-3C15.fm Page 565 Wednesday, July 19, 2006 1:39 PM

566 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Figure 15-16 shows the result.

 Figure 15-16. Custom painting in a cell

The CellPainting event provides several shortcuts, so you don’t need to re-create basic
functionality. For example, the DataGridViewCellPaintingEventArgs class provides a
PaintContent() and a PaintBackground() method. You can call these to paint part of the cell—
for example, if you’re interested in adding a fancy background but you don’t want to bother
drawing the cell text by hand. For even more control, you can use the Paint() method, which
accepts a combination of values from the DataGridViewPaintParts enumeration. This combi-
nation of values tells the DataGridView exactly what to paint, and it can include the Background,
Border, ContentBackground, ContentForeground, ErrorIcon, Focus, and SelectionBackground.

Using the DataGridViewCellPaintingEventArgs.Paint() method, it’s possible to simplify
the previous example as shown here:

Private Sub dataGridView1_CellPainting(ByVal sender As Object, _
 ByVal e As DataGridViewCellPaintingEventArgs) _
 Handles dataGridView1.CellPainting
 ' Only paint the desired column and
 ' don't paint headers.
 If e.ColumnIndex = 0 And e.RowIndex >= 0 Then
 ' If the cell is selected, use the normal painting
 ' instead of the custom painting.
 If (e.State And DataGridViewElementStates.Selected) <> _
 DataGridViewElementStates.Selected Then
 e.Handled = True

 ' Get the rectangle where painting will take place.
 Dim rect As Rectangle = New Rectangle(e.CellBounds.X, _
 e.CellBounds.Y, e.CellBounds.Width - 1, _
 e.CellBounds.Height - 1)

Macdonald_694-3C15.fm Page 566 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 567

 ' Render the custom cell background.
 Dim brush As New LinearGradientBrush(_
 rect, Color.White, Color.YellowGreen, 35)
 Using brush
 e.Graphics.FillRectangle(brush, rect)
 End Using

 ' Paint the cell text, the border, and the error icon (if needed).
 ' Don't worry about the focus rectangle or selection background,
 ' because we aren't painting selected cells.
 e.Paint(e.ClipBounds, DataGridViewPaintParts.ContentForeground Or _
 DataGridViewPaintParts.Border Or _
 DataGridViewPaintParts.ErrorIcon Or _
 DataGridViewPaintParts.Focus)
 End If
 End If
End Sub

Custom Cells
Throughout this chapter, you’ve seen a range of ways to extend the DataGridView by handling
various cell-based events. In all of these examples, you place your event handling code in the
form. This works perfectly well, but it’s not terribly convenient if you want to reuse the same
DataGridView in more than one form or, more likely, you want to reuse the same formatting,
painting, or validation technique in different columns, forms, and even applications.

If you’ve perfected a piece of custom DataGridView functionality that you want to reuse,
you can create a custom DataGridViewCell that encapsulates that logic. You can derive directly
from the DataGridViewCell class, which is an abstract base class. Depending on your needs,
you might be able to save some work by deriving from one of the higher-level cell classes like
DataGridViewImageCell or DataGridViewTextBoxCell (as in the next example).

For example, here’s a custom DataGridViewCell that applies the shaded background you
saw in the previous example—with a twist. Now the shaded background is only applied for the
cell that the user hovers over with the mouse.

Public Class GradientRolloverCell
 Inherits DataGridViewTextBoxCell

 Private Shared inCell As Integer = -1

 Protected Overrides Sub OnMouseEnter(ByVal rowIndex As Integer)
 inCell = rowIndex

 ' Invalidate the cell.
 Me.DataGridView.InvalidateCell(Me.ColumnIndex, rowIndex)
 End Sub

 Protected Overrides Sub OnMouseLeave(ByVal rowIndex As Integer)
 inCell = -1

Macdonald_694-3C15.fm Page 567 Wednesday, July 19, 2006 1:39 PM

568 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

 ' Invalidate the cell.
 Me.DataGridView.InvalidateCell(Me.ColumnIndex, rowIndex)
 End Sub

 Protected Overrides Sub Paint(ByVal graphics As Graphics, _
 ByVal clipBounds As Rectangle, ByVal cellBounds As Rectangle, _
 ByVal rowIndex As Integer, _
 ByVal cellState As DataGridViewElementStates, _
 ByVal value As Object, ByVal formattedValue As Object, _
 ByVal errorText As String, _
 ByVal cellStyle As DataGridViewCellStyle, _
 ByVal advancedBorderStyle As DataGridViewAdvancedBorderStyle, _
 ByVal paintParts As DataGridViewPaintParts)
 ' Is the mouse hovering over this cell?
 If inCell = rowIndex
 ' (Perform the gradient painting shown earlier.)
 Else
 ' Perform the standard painting.
 MyBase.Paint(graphics, clipBounds, cellBounds, rowIndex, _
 cellState, value, formattedValue, errorText, cellStyle, _
 advancedBorderStyle, paintParts)
 End If
 End Sub
End Class

You can also override methods like PaintErrorIcon() and PaintBorder() to customize these
details in the visual representation of your cell. (Although a bug that’s present in the first release
on .NET 2.0 ensures that PaintErrorIcon() isn’t actually called.)

You can’t place a custom DataGridViewCell directly into a DataGridView. Instead, you
need to place your cell into a column and then add that column to the grid. To create a custom
column, you simply need to derive a class from DataGridViewColumn.

In your custom column class, you can override functionality, add useful properties, or just
set reasonable defaults in the constructor. However, in this case all you need to do is associate
the custom cell with the custom column. You can achieve that with the single line of code in the
constructor shown here:

Public Class GradientRolloverColumn
 Inherits System.Windows.Forms.DataGridViewColumn

 Public Sub New()
 MyBase.CellTemplate = New GradientRolloverCell()
 End Sub
End Class

This code sets the DataGridViewColumn.CellTemplate property to an instance of your
custom DataGridViewCell. In other words, the DataGridViewColumn will use this class every
time the DataGridView asks it to create a new cell.

Macdonald_694-3C15.fm Page 568 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 569

The final step is to add the custom column into the grid. Here’s the code that accomplishes
this task:

' Hide the ordinary version of this column.
dataGridView1.Columns(0).Visible = False

' Create custom column.
Dim colGradient As New GradientBackgroundColumn()
colGradient.DataPropertyName = dataGridView1.Columns(0).DataPropertyName
colGradient.HeaderText = dataGridView1.Columns(0).HeaderText
colGradient.Width = dataGridView1.Columns(0).Width
colGradient.ReadOnly = dataGridView1.Columns(0).ReadOnly
colGradient.ValueType = dataGridView1.Columns(0).ValueType
colGradient.DisplayIndex = 0

' Add the custom column.
dataGridView1.Columns.Add(colGradient)

The custom column class is also a great place to define properties that should apply to all
your custom cells. For example, instead of hard-coding the gradient color, you can add a property
in the column class:

Public Class GradientRolloverColumn
 Inherits System.Windows.Forms.DataGridViewColumn

 Public Sub New(ByVal gradientColor As Color)
 Me.GradientColor = gradientColor
 MyBase.CellTemplate = New GradientRolloverCell()
 End Sub

 Private color As Color
 Public Property GradientColor() As Color
 Get
 Return color
 End Get
 Set(ByVal value As Color)
 color = value
 End Set
 End Property

End Class

You can retrieve a reference to the parent column using the DataGridViewCell.
OwningColumn property. In this example, you need to cast the column to the correct type and
retrieve the color in your drawing logic:

Macdonald_694-3C15.fm Page 569 Wednesday, July 19, 2006 1:39 PM

570 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Dim gradientColor As Color

If TypeOf Me.OwningColumn Is GradientRolloverColumn Then
 Dim gradientColumn As GradientRolloverColumn
 gradientColumn = CType(Me.OwningColumn, GradientRolloverColumn)
 gradientColor = gradientColumn.GradientColor;
Else
 gradientColor = defaultGradientColor
End If

backgroundBrush = New LinearGradientBrush(rect, Color.White, gradientColor, 35)

When you create the column, you can choose the desired color for the background fill:

Dim colGradient As New GradientBackgroundColumn(Color.SlateBlue)

It’s important to realize that custom cell and column classes aren’t reserved for scenarios
where you want to perform custom drawing. They’re equally useful if you want to encapsulate
validation, formatting, or error handling logic in a reusable package.

Custom Cell Edit Controls
One interesting use of custom cells is to create custom editing controls for that cell. Ordinarily, the
DataGridView limits you to ordinary text boxes, check boxes, and drop-down lists. However, you
might want to use another editing control, like the DateTimePicker, as shown in Figure 15-17.

The basic model is the same as what you learned in the previous section. In other words,
you need to create a custom DataGridViewCell class, plus a custom DataGridViewColumn that
uses the cell. The difference is in the custom DataGridViewCell class, which can override
several methods to control editing behavior.

 Figure 15-17. Editing dates with a custom cell

Macdonald_694-3C15.fm Page 570 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 571

The key ingredient is the EditType property. This property returns the type of
editing control that the cell uses. For example, if you derive a custom cell from
DataGridViewTextBoxCell, the default editing control is DataGridViewTextBoxEditingControl.
Here’s how you would override that property to use something different:

Public Class CalendarCell
 Inherits DataGridViewTextBoxCell

 Public Overrides ReadOnly Property EditType() As Type
 Get
 ' Return the type of the editing contol that CalendarCell uses.
 Return GetType(CalendarEditingControl)
 End Get
 End Property
 ...

Of course, it’s up to you to create the CalendarEditingControl (as you’ll see shortly). But
first, you need to specify the underlying type of data that the cell stores. It’s no longer strings—
now it’s instances of DateTime.

 ...
 Public Overrides ReadOnly Property ValueType() As Type
 Get
 ' Return the type of the value that CalendarCell contains.
 Return GetType(DateTime)
 End Get
 End Property
 ...

Next, you need to override the InitializeEditingControl() method to configure the editing
control when the cell switches into editing mode. This is the point at which you need to copy
the value from the cell into the editing control.

 ...
 Public Overrides Sub InitializeEditingControl(ByVal rowIndex As Integer, _
 ByVal initialFormattedValue As Object, _
 ByVal dataGridViewCellStyle As DataGridViewCellStyle)
 ' Set the value of the editing control to the current cell value.
 MyBase.InitializeEditingControl(rowIndex, _
 initialFormattedValue, dataGridViewCellStyle)

 Dim ctl As CalendarEditingControl = _
 CType(DataGridView.EditingControl, CalendarEditingControl)
 ctl.Value = CDate(Me.Value)
 End Sub
 ...

Macdonald_694-3C15.fm Page 571 Wednesday, July 19, 2006 1:39 PM

572 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

And last of all, you can override the DefaultNewRowValue property to set the default
content that should appear in this column when a new row is inserted.

 ...
 Public Overrides ReadOnly Property DefaultNewRowValue() As Object
 Get
 ' Use the current date and time as the default value.
 Return DateTime.Now
 End Get
 End Property

End Class

Now the only remaining task to create the example shown in Figure 15-16 is to build the
custom CalendarEditingControl. This step is quite easy, although there’s a fair bit of boiler-
plate code to write. The basic technique is to derive a new class from the .NET control that you
want to use. For example, in this case, you need the editing features of the DateTimePicker, so
it makes sense to derive from the DateTimePicker control class. However, there’s another
ingredient every control needs to work as an editing control for the DataGridView—it must
implement IDataGridViewEditingControl.

Here’s the class declaration you need:

Public Class CalendarEditingControl
 Inherits DateTimePicker
 Implements IDataGridViewEditingControl
 ...
End Class

The rest of the work is to implement the IDataGridViewEditingControl members. Most
of these are quite straightforward. For example, you need properties that expose the linked
DataGridView, the current row index:

Private _dataGridView As DataGridView
Public Property EditingControlDataGridView() As DataGridView _
 Implements IDataGridViewEditingControl.EditingControlDataGridView
 Get
 Return _dataGridView
 End Get
 Set(ByVal value As DataGridView)
 _dataGridView = value
 End Set
End Property

Macdonald_694-3C15.fm Page 572 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 573

Private _rowIndex As Integer
Public Property EditingControlRowIndex() As Integer _
 Implements IDataGridViewEditingControl.EditingControlRowIndex
 Get
 Return _rowIndex
 End Get
 Set(ByVal value As Integer)
 _rowIndex = value
 End Set
End Property

Notice you don’t need to supply any real code, other than a private variable to track each
of these details. The DataGridView takes care of setting these properties when it creates an
editing control.

Along with these basics are some more important details. For example, whenever the value
changes in your editing control, you need to call the DataGridView.NotifyCurrentCellDirty()
method to notify the DataGridView (which will then display the pencil icon next to that cell).
In the case of the DateTimePicker, the easiest way to implement this step is to override the
OnValueChanged() method:

' This is the only member in CalendarEditingControl that's not implemented
' to satisfy the IDataGridViewEditingControl interface.
Protected Overrides Sub OnValueChanged(ByVal eventargs As EventArgs)
 ' Notify the DataGridView that the contents of the cell
 ' have changed.
 _hasValueChanged = True
 Me.EditingControlDataGridView.NotifyCurrentCellDirty(True)
 MyBase.OnValueChanged(eventargs)
End Sub

Private _hasValueChanged As Boolean = False
Public Property EditingControlValueChanged() As Boolean _
 Implements IDataGridViewEditingControl.EditingControlValueChanged
 Get
 Return _hasValueChanged
 End Get
 Set(ByVal value As Boolean)
 _hasValueChanged = value
 End Set
End Property

Notice that you also need to implement the EditingControlValueChanged property to
track whether the control value has changed.

Another property you need to implement is EditingControlFormattedValue. This property
allows your control to receive a formatted string from the cell, which it must convert into the
appropriate DateTime value and display.

Macdonald_694-3C15.fm Page 573 Wednesday, July 19, 2006 1:39 PM

574 C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W

Public Property EditingControlFormattedValue() As Object _
 Implements IDataGridViewEditingControl.EditingControlFormattedValue
 Get
 Return Me.Value.ToShortDateString()
 End Get
 Set(ByVal value As Object)
 Dim newValue As String = TryCast(value, String)
 If Not newValue Is Nothing Then
 Me.Value = DateTime.Parse(newValue)
 End If
 End Set
End Property

Public Function GetEditingControlFormattedValue(_
 ByVal context As DataGridViewDataErrorContexts) As Object _
 Implements IDataGridViewEditingControl.GetEditingControlFormattedValue
 Return EditingControlFormattedValue
End Function

Two more interesting methods are ApplyCellStyleToEditingControl() and
EditingControlWantsInputKey(). In ApplyCellStyleToEditingControl(), you configure
the control to match the style properties of the DataGridViewCell. In
EditingControlWantsInputKey(), you define what keystrokes your control should handle.

Public Sub ApplyCellStyleToEditingControl(_
 ByVal dataGridViewCellStyle As DataGridViewCellStyle) _
 Implements IDataGridViewEditingControl.ApplyCellStyleToEditingControl
 Me.Font = dataGridViewCellStyle.Font
 Me.CalendarForeColor = dataGridViewCellStyle.ForeColor
 Me.CalendarMonthBackground = dataGridViewCellStyle.BackColor
End Sub

Public Function EditingControlWantsInputKey(ByVal key As Keys, _
 ByVal dataGridViewWantsInputKey As Boolean) As Boolean _
 Implements IDataGridViewEditingControl.EditingControlWantsInputKey
 ' Let the DateTimePicker handle the keys listed.
 Select Case key And Keys.KeyCode
 Case Keys.Left, Keys.Up, Keys.Down, Keys.Right, _
 Keys.Home, Keys.End, Keys.PageDown, Keys.PageUp
 Return True
 Case Else
 Return False
 End Select
End Function

Macdonald_694-3C15.fm Page 574 Wednesday, July 19, 2006 1:39 PM

C H A P T E R 1 5 ■ T H E D A T A G R I D V I E W 575

The remaining members of IDataGridViewEditingControl don’t need any real code in this
example. They simply give you the opportunity to configure the DateTimePicker when it enters
edit mode, force the DataGridView to reposition the control when the value changes, and set
the edit cursor.

Public Sub PrepareEditingControlForEdit(ByVal selectAll As Boolean) _
 Implements IDataGridViewEditingControl.PrepareEditingControlForEdit
 ' No preparation needs to be done.
End Sub

Public ReadOnly Property RepositionEditingControlOnValueChange() As Boolean _
 Implements IDataGridViewEditingControl.RepositionEditingControlOnValueChange
 Get
 Return False
 End Get
End Property

Public ReadOnly Property EditingPanelCursor() As Cursor _
 Implements IDataGridViewEditingControl.EditingPanelCursor
 Get
 Return MyBase.Cursor
 End Get
End Property

The Last Word
This chapter provided a close look at the DataGridView, one of .NET’s most anticipated new
controls. As you’ve seen in this chapter, the DataGridView works well in a variety of scenarios
and offers rich support for common scenarios, formatting, customization, different column
types, and editing. Unlike the original DataGrid, the DataGridView really does offer an all-in-
one data display solution for Windows Forms applications.

Macdonald_694-3C15.fm Page 575 Wednesday, July 19, 2006 1:39 PM

Macdonald_694-3C15.fm Page 576 Wednesday, July 19, 2006 1:39 PM

577

■ ■ ■

C H A P T E R 1 6

Sound and Video

Great user interfaces don’t stop at buttons and text boxes. They include multimedia features
like soundtracks and even live video. One of the most glaring omissions in the first versions of
.NET was the lack of any controls for dealing with audio. This gap forced developers to dig into
the Windows API just to play simple sounds and beeps. Fortunately, .NET 2.0 addresses this
problem with a new SoundPlayer control that lets you play WAV files synchronously or in the
background.

Sadly, the SoundPlayer control is still a limited solution. If you need something a little more
sophisticated, like the ability to play MP3 audio or host a movie window, you still need to step
outside the .NET Framework and use the unmanaged DirectShow library that’s included with
Windows. In this chapter, you’ll learn how to use both the SoundPlayer control and DirectShow.

The SoundPlayer
Playing a sound in Windows has never been difficult. Programmers in just about any language
can rely on the unmanaged PlaySound() function in the Windows API. Life gets even easier in
.NET 2.0, which includes a simple SoundPlayer class that wraps the PlaySound() function. The
SoundPlayer is found in the new System.Media namespace, which is largely slated for future
use. Currently, it contains only three types: SoundPlayer, SystemSounds, and SystemSound.
You’ll see all of these classes in this chapter.

■Note In order to use the SoundPlayer, you must create it manually in code. Although the SoundPlayer is
derived from the Component class and thus has rudimentary design-time features, Microsoft chose to explic-
itly hide it from the Toolbox using the ToolboxItem attribute. This decision was made because there isn’t any
design-time support for wiring up media files to the Sound Player in Visual Studio. In other words, even if you
could add the SoundPlayer to the component tray, you would still need to write code to configure it.

Aside from convenience, the chief benefit of the SoundPlayer class is that it supports .NET
stream objects. That means you don’t have to store your audio in separate files. Instead, you
can extract it from a variety of different sources, like a binary field in a database, or a resource
file that’s embedded inside your application assembly. The key drawback of the SoundPlayer is

Macdonald_694-3C16.fm Page 577 Wednesday, July 19, 2006 1:31 PM

578 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

the fact that it can play only the WAV audio format. If you want to play other types of multimedia,
like MP3 or WMA files, you need to use a different solution.

To play a sound with the SoundPlayer, you follow several steps:

1. First, specify the sound content by setting either the Stream or the SoundLocation
property. If you have a Stream-based object that contains WAV audio content, use
the Stream property. If you have a file path or URL that points to a WAV file, use the
SoundLocation property.

2. Once you’ve set the Stream or SoundLocation property, you can tell SoundPlayer to
actually load the audio data by calling the Load() or LoadAsync() method. The Load()
method is the simplest—it stalls your code until all the audio is loaded into memory.
LoadAsync() quietly carries out its work on another thread and fires the LoadCompleted
event when it’s finished.

■Note Technically, you don’t need to use Load() or LoadAsync(). The SoundPlayer will load the audio data
if needed when you call Play() or PlaySync(). However, it’s a good idea to explicitly load the audio—not only
does that save you the overhead if you need to play it multiple times, but it also makes it easy to handle excep-
tions related to file problems separately from exceptions related to audio-playback problems.

3. Now you can call PlaySync() to pause your code while the audio plays, or you can use
Play() to play the audio on another thread, ensuring that your application’s interface
remains responsive. Your only other option is PlayLooping(), which plays the audio
asynchronously in an unending loop (perfect for those annoying soundtracks). To halt
the current playback at any time, just call Stop().

The SoundPlayer also exposes two less-useful events. These are the SoundLocationChanged
and StreamChanged events, which fire when your code changes the SoundLocation or Stream
property of the SoundPlayer.

■Tip If you’re hunting for WAV files to test out with the SoundPlayer, look for the Media directory in the
Windows directory, which holds WAV files for all the Windows system sounds.

Synchronous and Asynchronous Playback
The following code snippet shows the simplest approach to load and play a sound synchronously:

Macdonald_694-3C16.fm Page 578 Wednesday, July 19, 2006 1:31 PM

C H AP T E R 1 6 ■ S O U N D A N D V I D E O 579

Dim player As New System.Media.SoundPlayer()
player.SoundLocation = Path.Combine(Application.StartupPath, "test.wav")

Try
 player.Load()
Catch err As FileNotFoundException
 ' An error will occur here if the file can't be found.
End Try

Try
 player.PlaySync()
Catch err As FormatException
 ' A FormatException will occur here if the file doesn't
 ' contain valid WAV audio.
End Try

The asynchronous pattern for playing audio is similar, except that you can’t assume the
audio is available and ready to play until the LoadCompleted event fires. You can handle
the LoadCompleted event to take the next step, such as enabling playback controls on your
form or playing the sound.

Here’s an example that uses the asynchronous pattern. The process begins when the form
first loads:

Private player As New System.Media.SoundPlayer()

Private Sub SoundTestForm_Load(ByVal sender As Object, ByVal e As EventArgs)
 ' Attach the event handler.
 AddHandler player.LoadCompleted, AddressOf player_LoadCompleted

 player.SoundLocation = Path.Combine(Application.StartupPath, "test.wav")

 Try
 player.LoadAsync()
 Catch err As FileNotFoundException
 ' An error will occur here if the file can't be found.
 End Try
End Sub

Private Sub player_LoadCompleted(ByVal sender As Object, _
 ByVal e As AsyncCompletedEventArgs)

 Try
 player.PlaySync()
 Catch err As Exception
 ' A FormatException will occur here if the file doesn't
 ' contain valid WAV audio.
 End Try
End Sub

Macdonald_694-3C16.fm Page 579 Wednesday, July 19, 2006 1:31 PM

580 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

You can see both techniques in the sample audio player included with this chapter’s
samples (see Figure 16-1).

Figure 16-1. A SoundPlayer test utilty

Of course, you don’t need to load the SoundPlayer audio from a file. If you’ve created small
sounds that are played at several points in your application, it may make more sense to embed
the sound files into your compiled assembly as resources. This technique, which was discussed
in Chapter 5, works just as well with sound files as it does with images. For example, if you add
the ding.wav audio file with the resource name Ding (just browse to the Properties ➤ Resources
node in the Solution Explorer and use the designer support), you would use this code to play it:

Dim player As New System.Media.SoundPlayer()
player.Stream = Properties.Resources.Ding
player.PlaySync()

■Note The SoundPlayer class doesn’t deal well with large audio files, because it needs to load the entire
file into memory at once. You might think that you can resolve this problem by submitting a large audio file in
smaller chunks, but the SoundPlayer wasn’t designed with this technique in mind. There’s no easy way to
synchronize the SoundPlayer so that it plays multiple audio snippets one after the other, because it doesn’t
provide any sort of queuing feature. Each time you call PlaySync() or PlayAsync(), the current audio playback
is stopped. Workarounds are possible, but you’ll be far better off using the DirectX libraries discussed later.

System Sounds
One of the shameless frills of the Windows operating system is its ability to map audio files to
specific system events. .NET includes a new System.Media.SystemSounds class that allows you
to access the most common of these sounds, and use them in your own applications. This tech-
nique works best if all you want is a simple chime to indicate the end of a long-running operation
or an alert sound to indicate a warning condition.

Unfortunately, the SystemSounds class is based on the MessageBeep Win32 API, and as a
result, it provides access to only the following generic system sounds:

Macdonald_694-3C16.fm Page 580 Wednesday, July 19, 2006 1:31 PM

C H AP T E R 1 6 ■ S O U N D A N D V I D E O 581

• Asterisk

• Beep

• Exclamation

• Hand

• Question

The SystemSounds class provides a property for each of these sounds, which returns a
SystemSound object you can use to play the sound through its Play() method. For example,
to sound a beep in your code, you simply need to execute this line of code:

SystemSounds.Beep.Play()

To configure what WAV files are used for each sound, select the Sounds and Audio Devices
icon in the Control Panel.

Advanced Media with DirectShow
The SoundPlayer and SystemSounds classes are easy to use, but they’re relatively underpow-
ered. In today’s world, it’s much more common to use compressed MP3 audio for everything
except the simplest of sounds, instead of the original WAV format. But if you want to play MP3
audio or MPEG video, you need to turn to the world of unmanaged code.

The solution is the Quartz COM component. This component is a key part of DirectX, and
it’s included with Windows Media Player and the Windows operating system. (The same
component is also known by the more marketing-friendly term DirectShow, and previous
versions were called ActiveMovie.) You can find the Quartz component by looking for a like-
named quartz.dll in the Windows System32 directory.

Using Quart.dll Through Interop
Before you can use the Quartz component, you need to generate an interop assembly that can
handle the interaction between your .NET application and the unmanaged Quartz library. One
easy approach is to generate an interop assembly using the Type Library Importer utility
(tlbimp.exe). Just open a command-prompt window (preferably by choosing Programs ➤
Microsoft Visual Studio 2005 ➤ Visual Studio Tools ➤ Visual Studio Command Prompt, which
sets the path variable so that the tlbimp.exe utility is always available). Then enter the following
command, where [WindowsDir] is the path for your installation of Windows:

[WindowsDir]/tlbimp quartz.dll /out:QuartzTypeLib.dll

You can then add a reference to this interop class to your .NET project. Just right-click your
project in the Solution Explorer, and choose Add Reference from the context menu. Select the
.NET tab, click Browse, and select the QuartzTypeLib.dll assembly that you created. Alterna-
tively, you can let Visual Studio .NET generate the interop class on its own. To do this, simply
right-click your project in the Solution Explorer, and choose Add Reference. Then click the
Browse tab, and select the quartz.dll file in the System32 directory inside your Windows directory.

Macdonald_694-3C16.fm Page 581 Wednesday, July 19, 2006 1:31 PM

582 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

■Note You can also find the quartz.dll library in the list of known COM components, under the name
ActiveMovie.

Playing MP3, MIDI, WMA, and More
Once you’ve added a reference to the Quartz component, you can use it to play a wide range
of audio files. Essentially, you can play any audio supported by Windows Media Player. This
includes the following:

• MP3, the high-quality compressed audio format that made song pirating famous.

• WMA (Windows Media Audio), Microsoft’s MP3 clone that can be used in conjunction
with strict licenses.

• MIDI, the lightweight format that stores a sequence of notes rather than digital audio.
When you play a MIDI file, the sequence of notes is synthesized using whatever capa-
bility your sound card has. MIDI files were once the easiest way to play high-quality
music (with the right equipment). But now that hard drives have grown, and compressed
digital audio formats like MP3 are practical, MIDI is used more commonly by music
professionals than by computer hobbyists or gamers.

Of course, you can also use Quartz to play a basic WAV audio file.
To play an audio file with Quartz, you use the IMediaControl interface. IMediaControl is

fairly easy to use, but its cryptically named methods can be somewhat confusing at first. To
load an audio file, you use the RenderFile() method. You can then control its playback using
methods like Run(), Stop(), and Pause(). The actual playback always takes place on a separate
thread, so it won’t block your code.

The following example shows the form code you can use to play an audio file. The audio is
started when a Play button is clicked and stopped when a Pause button is clicked.

' The FilgraphManager is the central source for all other interfaces.
Private graphManager As QuartzTypeLib.FilgraphManager

' The IMediaControl interface allows you control playback.
Private mc As QuartzTypeLib.IMediaControl

Private Sub cmdPlay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPlay.Click
 If mc Is Nothing Then
 ' This audio is being played for the first time.

 ' Get access to the IMediaControl interface.
 graphManager = New QuartzTypeLib.FilgraphManager()
 mc = CType(graphManager, QuartzTypeLib.IMediaControl)

Macdonald_694-3C16.fm Page 582 Wednesday, July 19, 2006 1:31 PM

C H AP T E R 1 6 ■ S O U N D A N D V I D E O 583

 ' Load the file.
 Try
 mc.RenderFile(Path.Combine(Application.StartupPath, "test.mp3"))
 Catch err As FileNotFoundException
 MessageBox.Show("File not found.")
 Return
 End Try
 End If

 ' Start playing the audio asynchronously.
 Try
 mc.Run()
 Catch err As System.Runtime.InteropServices.COMException
 ' Indicates a problem interpreting the file.
 MessageBox.Show("COM error.")
 End Try
End Sub

Private Sub cmdPause_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPause.Click
 If mc IsNot Nothing Then mc.Pause()
End Sub

Private Sub MediaPlayer_FormClosed(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles MyBase.FormClosed
 If mc IsNot Nothing Then mc.Stop()
End Sub

The Quartz component provides quite a bit more functionality that’s hidden in this example.
For instance, you might want to control volume and position and respond to events. To perform
any of these tasks, you need to first define a few more interfaces. Add these at the form level, so
they’re accessible in all your event handlers:

' IBasicAudio exposes Volume and Balance properties.
Private audio As QuartzTypeLib.IBasicAudio

' IMediaPosition exposes the CurrentPosition property.
Private position As QuartzTypeLib.IMediaPosition

' IMediaEventEx allows you to receive events, including when playback stops.
Private mEventEx As QuartzTypeLib.IMediaEventEx

As with the IMediaControl interface, you can access all of these interfaces through the
central FilgraphManager. You simply need to cast the object to the required interface before
you load the file. You can place this code immediately after you create the FilgraphManager.

Macdonald_694-3C16.fm Page 583 Wednesday, July 19, 2006 1:31 PM

584 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

audio = CType(graphManager, QuartzTypeLib.IBasicAudio)
position = CType(graphManager, QuartzTypeLib.IMediaPosition)
mEventEx = CType(graphManager, QuartzTypeLib.IMediaEventEx)

For example, using the IMediaPosition interface you can add a Stop button that resets the
position to the beginning of the file:

Private Sub cmdStop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStop.Click
 If mc IsNot Nothing Then mc.Stop()
 position.CurrentPosition = 0
End Sub

Tracking Position

Another reason you might go to all the trouble of defining the additional interfaces is to
measure the duration of a file and track the current position of playback.

The IMediaPosition.Duration property retrieves the total length of the file (in seconds).
Here’s the code you could use to display the total duration of the file in hours, minutes, and
seconds just before you start playing it:

statusLabel1.Text = "Total: " & ConvertTimeToString(CInt(position.Duration))

This code employs the private ConvertTimeToString() method shown here:

Private Function ConvertTimeToString(ByVal seconds As Integer) As String
 Dim hours As Integer = seconds \ 3600
 Dim minutes As Integer = (seconds - (hours * 3600)) \ 60
 seconds = seconds - (hours * 3600 + minutes * 60)
 Return String.Format("{0:D2}:{1:D2}:{2:D2}", hours, minutes, seconds)
End Function

Even better, to ensure the progress stays up-to-date as you play a file, you can add a simple
timer that checks the IMediaPosition.Position property every 500 milliseconds and updates
the status bar accordingly:

Private Sub timerPosition_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles timer1.Tick
 If position IsNot Nothing Then
 statusLabel2.Text = "Current: " & _
 ConvertTimeToString(CInt(position.CurrentPosition))
 End If
End Sub

Now, just start the timer immediately after you start the playback:

timerPosition.Start()

and stop the timer before the playback is stopped or paused:

timerPosition.Stop()

Macdonald_694-3C16.fm Page 584 Wednesday, July 19, 2006 1:31 PM

C H AP T E R 1 6 ■ S O U N D A N D V I D E O 585

Figure 16-2 shows the media player application so far.

Figure 16-2. A Quartz-based media player

Looping Audio

Another reason you might want to use some of the extender interfaces is to receive a notifica-
tion when the file is complete. Because the Quartz component doesn’t provide any way to loop
your audio, you could use this point to restart the playback process.

This technique is a little more awkward, because the only way you can receive the notifi-
cation you need is to override the WndProc() method of the form. WndProc() fires every time a
Windows notification message is received by your window. When you override WndProc(), you
need to check if the message is one that specifically interests you and, if not, pass it along to the
.NET Framework.

Here’s the code you need to check for the audio completion message and restart playback,
so it loops forever:

Private Const WM_APP As Integer = &H8000
Private Const WM_GRAPHNOTIFY As Integer = WM_APP + 1
Private Const EC_COMPLETE As Integer = &H01

Protected Overrides Sub WndProc(ByRef m As Message)
 ' Check if it's a notification message from the Quartz component.
 If m.Msg = WM_GRAPHNOTIFY Then

 Dim lEventCode, lParam1, lParam2 As Integer
 Try
 ' Retrieve the message.
 mEventEx.GetEvent(lEventCode, lParam1, lParam2, 0)
 mEventEx.FreeEventParams(lEventCode, lParam1, lParam2)

 ' Check if it's the end-of-file message.
 If lEventCode = EC_COMPLETE Then
 ' Restart the playback.
 mc.Stop()
 position.CurrentPosition = 0
 mc.Run()
 End If

Macdonald_694-3C16.fm Page 585 Wednesday, July 19, 2006 1:31 PM

586 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

 Catch err As Exception
 ' Never throw an exception from WndProc().
 ' You may want to log it, however.
 End Try
 End If

 ' Pass the message along to .NET.
 MyBase.WndProc(m)
End Sub

There’s only one catch. In order to receive the completion message, you need to tell the
Quartz component to notify you when playback is finished. To do this, call the SetNotifyWindow()
method of the IMediaEventEx interface, and pass the low-level handle of the window that
needs to receive the message. You should perform this step before you start playback (but after
you load the file), using a line of code like this:

mEventEx.SetNotifyWindow(Me.Handle, WM_GRAPHNOTIFY, 0)

Now, your audio will loop continuously. You can try out the complete sample application
with the downloadable code for this chapter.

Showing MPEG and Other Video Types
The Quartz component also works with video files. You can use it to play common types of
video like MPEG, AVI, or WMV. In fact, you use the exact same methods of the IMediaControl
interface to load and play a movie. If you try out the application shown in the previous example
with an MPEG file, a stand-alone window will automatically appear showing the video. You can
use all of the same techniques to adjust the sound, change the position, and loop the video.

The only difference occurs if you want to show the video window inside your application
interface (rather than in a separate stand-alone window). In this case, you need to use the
IVideoWindow interface.

As with the other interfaces, you can cast the FilgraphManager to the IVideoWindow inter-
face. Using the IVideoWindow interface, you can bind the video output to a control on your
form, such as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the
handle for the control, which you can retrieve using the Control.Handle property. Then, call
IVideoWindow.SetWindowPosition() to set the window size and location.

The following example plays a video file and shows it in a PictureBox on your form:

Private Const WS_CHILD As Integer = &H40000000
Private Const WS_CLIPCHILDREN As Integer = &H2000000

Private mc As QuartzTypeLib.IMediaControl
Private videoWindow As QuartzTypeLib.IVideoWindow

Private Sub MoviePlayer_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Load the movie file.
 Dim graphManager As New FilgraphManager()
 videoWindow = CType(graphManager, IVideoWindow)

Macdonald_694-3C16.fm Page 586 Wednesday, July 19, 2006 1:31 PM

C H AP T E R 1 6 ■ S O U N D A N D V I D E O 587

 mc = CType(graphManager, IMediaControl)
 graphManager.RenderFile(Path.Combine(Application.StartupPath, "test.mpg"))

 ' Attach the view to a PictureBox on the form.
 Try
 videoWindow.Owner = pictureBox1.Handle
 videoWindow.WindowStyle = WS_CHILD Or WS_CLIPCHILDREN
 videoWindow.SetWindowPosition(_
 pictureBox1.ClientRectangle.Left, pictureBox1.ClientRectangle.Top, _
 pictureBox1.ClientRectangle.Width, pictureBox1.ClientRectangle.Height)
 Catch err as Exception
 ' An error can occur if the file does not have a video
 ' source (for example, an MP3 file.)
 ' You can ignore this error and still allow playback to
 ' continue (without any visualization).
 End Try

 ' Start the playback (asynchronously).
 mc.Run()
End Sub

Private Sub MoviePlayer_FormClosed(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles MyBase.FormClosed
 If mc IsNot Nothing Then mc.Stop()
End Sub

You can use the SetWindowPosition() method to change the size of your video window
even while playback is in progress. In the preceding example, the PictureBox is anchored to
all sides of the form, so it changes size as the form is resized. You need to respond to the
PictureBox.SizeChanged event to change the size of the corresponding video window, so it
matches the new size of the PictureBox.

Private Sub pictureBox1_SizeChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles pictureBox1.SizeChanged

 If videoWindow IsNot Nothing Then
 Try
 videoWindow.SetWindowPosition(_
 pictureBox1.ClientRectangle.Left, pictureBox1.ClientRectangle.Top, _
 pictureBox1.ClientRectangle.Width, _
 pictureBox1.ClientRectangle.Height)
 Catch err as Exception
 ' Ignore the exception thrown when resizing the form
 ' when the file does not have a video source.
 End Try
 End If
End Sub

Macdonald_694-3C16.fm Page 587 Wednesday, July 19, 2006 1:31 PM

588 C H A P T E R 1 6 ■ SO U N D A N D V I D E O

■Note If you want to go one step further and use advanced DirectX features for rendering three-dimensional
graphics and mixing multiple audio sounds at once, you may be interested in the managed DirectX SDK (software
development kit). This toolkit is large and complex, and it requires a client that has DirectX 9 (older computers
need not apply), but it’s also stocked full of powerful functionality for building cutting-edge games and other
graphically rich applications. You can find out more at Microsoft’s DirectX Developer Center (http://msdn.
microsoft.com/directx), or you can read a dedicated book on the topic.

Figure 16-3 shows a sample video being played in this application.

Figure 16-3. Playing video with DirectShow

The Last Word
In this chapter, you learned how to play sound with the simple SoundPlayer and step up to
more ambitious audio and video with the unmanaged Quartz component. Unfortunately,
sound and video are two areas where the Windows Forms toolkit still has some significant gaps.

In the next chapter, you’ll learn about a much more impressive addition to the .NET
Framework—the WebBrowser control.

Macdonald_694-3C16.fm Page 588 Wednesday, July 19, 2006 1:31 PM

589

■ ■ ■

C H A P T E R 1 7

The WebBrowser

The WebBrowser control is another new frill in .NET 2.0. Essentially, the WebBrowser allows
you to embed a full-featured Internet Explorer inside any window. This feat was technically
possible in previous versions of .NET using interop and the Internet Explorer ActiveX control.
However, the interop approach suffered from a few annoying quirks that the WebBrowser control
deftly avoids. The WebBrowser control also adds a remarkable piece of new functionality: the
ability to interact with the contents of a Web page programmatically using a specially crafted
document object model (DOM). In other words, you can access individual HTML elements on a
Web page, tweaking their text, changing their position, or inserting new markup. You can even
handle JavaScript events that originate from a Web page in your form code. If you’re willing to
invest a fair bit of work, you could use these features to build something really unique, like a
next-generation help engine, a screen-scraping Web browser, or a blended interface that
incorporates both Windows and Web controls.

WebBrowser Basics
Some of the most innovative applications weave together Windows controls and Web-style
interfaces. With the new WebBrowser control, .NET gives you a tool that you can use to build
your own Web-enabled interfaces. You can use the WebBrowser to display a Web site or an
ordinary HTML file on the current computer, which makes it a great tool for serving up user
information and sophisticated help.

The WebBrowser displays a standard Internet Explorer window. That means that WebBrowser
has all the features and frills of IE, including JavaScript, Dynamic HTML, ActiveX controls, and
plug-ins. However, the WebBrowser window doesn’t include additional details like a toolbar,
address bar, or status bar (although you can add all of these ingredients to your form using
other controls like the ToolStrip). Best of all, the WebBrowser has a respectable .NET interface,
with a solid complement of methods, a rich event model, and some extended functionality that
allows you to manipulate HTML pages as a collection of objects.

■Note The WebBrowser isn’t written from scratch in managed code. It’s actually a wrapper for the shdocvw.dll
COM component, which provides the actual Web-browsing functionality. However, the WebBrowser is far
superior to using interop on your own. That’s because the WebBrowser control supports features that don’t
quite work right with an automatically generated shdocvw.dll wrapper.

Macdonald_694-3C17.fm Page 589 Wednesday, July 19, 2006 1:33 PM

590 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

Navigating to a Page
Once you’ve placed the WebBrowser control on a window, you need to point it to a document.
Usually, you’ll supply a URL that points to a local or remote location. However, you can also
submit a complete HTML document, content and all, as a long string or a Stream-based object.

The WebBrowser control gives you the choice of three properties:

• Url. Set this to a remote URL (http://mysite.com/mypage.html) or a fully qualified file
path (file:///c:\mydocument.text). You must use a Uri object (which you can create
from a string).

• DocumentText. Set this with a string containing the HTML document you want to
show. This provides some interesting options, like the dynamic HTML editor shown in
Figure 17-1, which creates a Web page by copying the HTML entered in a text box in
the DocumentText property of a WebBrowser window.

• DocumentStream. Set this with an object that derives from Stream and contains the
HTML document. This allows you to open a file and feed it straight into the WebBrowser
for rendering, without needing to hold the whole HTML content in memory at once.

Figure 17-1. The WebBrowser with dynamic content

■Note All three navigation properties are writable and readable. That means you can set a URL, wait for the page
to load, and then retrieve the raw HTML from the DocumentText property (and the title from DocumentTitle). If a
document couldn’t be loaded and an error page is shown, this property returns an empty string.

Macdonald_694-3C17.fm Page 590 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 591

In addition to these properties, you can navigate to a URL using several different methods,
the most useful of which is Navigate(). Navigate() is particularly interesting, because it provides
several overloaded versions. One of these allows you to specify a Boolean new Window parameter.
Set this to True, and the WebBrowser will launch a stand-alone Internet Explorer window
(complete with toolbars, address bars, and more).

webBrowser1.Navigate("http://www.prosetech.com", True)

This stand-alone browser will be out of your control, and you won’t be able to send it to
specific pages or receive events for it.

Another overloaded version of the Navigate() method lets you update a single frame in the
current document. In this case, you specify a targetFrameName parameter. The WebBrowser
loads the new URL into this frame, provided it exists, in the current document.

webBrowser1.Navigate("http://www.prosetech.com", "bodyFrame")

This command is particularly handy if you want to control different parts of a complex
Web page independently.

Table 17-1 lists all the navigation methods of the WebBrowser control.

■Note You can also direct the WebBrowser to a directory. For example, set the Url property to file:///c:\. In
this case, the WebBrowser window becomes the familiar Explorer-style file browser, allowing the user to
open, copy, paste, and delete files. However, the WebBrowser doesn’t provide events or properties that allow
you to restrict this ability (or even monitor it), so tread carefully!

Table 17-1. Navigation Methods for the WebBrowser

Method Description

Navigate() Moves to the new URL you specify. If you use one of the overloaded methods,
you can choose to load this document into a specific frame or a stand-alone
IE window. You can also use one of the overloads that allows you to supply
data that will be posted to the server.

GoBack() and
GoForward()

Move to the previous or next document in the navigation history. If you try
to move back while on the first document, or try to move forward while on
the most recent document, the method returns False and has no effect.

GoHome() and
GoSearch()

Move to the designated home page or search page, as configured in the
computer’s Internet settings.

Refresh() Reloads the current document.

Stop() Stops downloading the document if it is not yet complete. The partial version
will still be shown (or an error page if the server couldn’t be contacted at all).
It also ends playing any background sounds or animations on the page.

Macdonald_694-3C17.fm Page 591 Wednesday, July 19, 2006 1:33 PM

592 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

All WebBrowser navigation is asynchronous. That means your code continues executing
while the page is downloading. If you want to determine if the page is finished, you can check
the IsBusy property (which should be False). For more information, check the ReadyState
property, which provides one of the values from Table 17-2.

WebBrowser Events
If you want your application to perform respectably, you won’t waste time querying the IsBusy
and ReadyState properties. Instead, you’ll wait for a WebBrowser event to fire that indicates the
document is complete. With this approach, your user interface remains responsive, and the
user has the ability to click other buttons or interact with the partially downloaded Web page.

To master the WebBrowser, you need to understand its event model. The WebBrowser
events unfold in this order:

• Navigating fires when you set a new Url, or the user clicks a link. You can inspect the Url
and cancel navigation by setting e.Cancel to True.

• Navigated fires after Navigating, just before the Web browser begins downloading
the page.

• ProgressChanged fires periodically during a page download and gives you information
about how many bytes have been downloaded and how many are expected in total. You
can use this event to update a status bar or some sort of progress control. Just keep in
mind that the numbers you receive are not always accurate, and you need to continually
check both the current value and the maximum value. For example, a ProgressChanged
event fires at the beginning of every page request with a max value of 10,000 and may be
adjusted to a more accurate page size shortly thereafter.

• DocumentCompleted fires when the page is completely loaded. This is your chance to
process the page.

Table 17-2. Values for the WebBrowserReadyState Enumeration

Value Description

UnInitialized No document is currently loaded.

Loading A download has been initiated.

Loaded Contrary to what you might expect, the document’s not finished yet.
However, the WebBrowser control has initialized the new document and
started retrieving the data it needs.

Interactive The document’s still not finished, but there is enough data to display some of
it and allow limited user interaction. For example, the user can click on any
hyperlinks that have been displayed so far.

Complete The document is fully loaded. On a typical connection, the WebBrowser will
pass through the Loaded, Interactive, and Complete stages quite quickly.

Macdonald_694-3C17.fm Page 592 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 593

These are the core WebBrowser events. In addition, you may be interested in handling the
events shown in Table 17-3.

A WebBrowser Example
The following code shows a form that hosts a WebBrowser and is armed with a simple status
bar and progress bar. The key point in this example is the event handler for the Navigating
event. It demonstrates how you can stop the user from surfing to pages you don’t want them to
access. In this example, any page that’s not on the msdn.microsoft.com domain is prohibited.
This example also shows how to show the Internet Explorer status text, and use a progress bar
to show the amount of a page that’s been downloaded so far.

Public Class WebBrowserRestricted

 Private Sub WebBrowserRestricted_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 webBrowser1.Navigate("http://msdn.microsoft.com")
 End Sub

Table 17-3. Additional WebBrowser Events

Event Description

FileDownload This event occurs just before a file download starts. You can
cancel the download by setting e.Cancel to True.

NewWindow This event occurs just before a new stand-alone Internet Explorer
window opens in response to the overloaded Navigate() method,
or if the user right-clinks a link and chooses Open in New Window.
You can cancel this operation by setting e.Cancel to True.

CanGoBackChanged and
CanGoForwardChanged

Occur when the CanGoBack and CanGoForward properties
change. These properties are simple Boolean values that indicate
if there is a previous or subsequent entry in the navigation history.
You can use these events to keep the state of any custom forward
or backward buttons synchronized.

DocumentTitleChanged Occurs when the document title changes as a result of down-
loading the page. At this point, you can display the document
title somewhere else (Internet Explorer shows it in the title bar).

StatusTextChanged Occurs whenever the WebBrowser has new status text. The status
text is displayed at the bottom of a typical Internet Explorer
window in the status bar, and it indicates the current state, as
well as the destination of a hyperlink when the user hovers over
it with the mouse. By default, this text doesn’t appear in the
WebBrowser control, but you can receive it from the StatusText
property every time this event fires and display it somewhere
else on your form.

EncryptionLevelChanged Occurs when the user navigates to or from a site that uses SSL
(Secure Sockets Layer) to encrypt communication between the
client and server.

Macdonald_694-3C17.fm Page 593 Wednesday, July 19, 2006 1:33 PM

594 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

 Private Sub webBrowser1_Navigating(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) _
 Handles webBrowser1.Navigating
 ' Here you decide whether to allow navigation to the selected page.

 ' Check the domain.
 ' In this case, allow only the home site.
 If e.Url.Host <> "msdn.microsoft.com" Then
 MessageBox.Show("Site restricted for demonstration purposes.")
 e.Cancel = True
 End If
 End Sub

 Private Sub webBrowser1_Navigated(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) _
 Handles webBrowser1.Navigated
 ' Show the progress bar.
 progressBar1.Visible = True
 End Sub

 Private Sub webBrowser1_ProgressChanged(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.WebBrowserProgressChangedEventArgs) _
 Handles webBrowser1.ProgressChanged
 ' Update the progress bar.
 progressBar1.Maximum = CInt(e.MaximumProgress)
 If e.CurrentProgress >= 0 And e.CurrentProgress <= e.MaximumProgress Then
 progressBar1.Value = CInt(e.CurrentProgress)
 End If
 End Sub

 Private Sub webBrowser1_DocumentCompleted(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
 Handles webBrowser1.DocumentCompleted
 ' Hide the progress bar.
 progressBar1.Visible = False
 End Sub

 Private Sub webBrowser1_StatusTextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles webBrowser1.StatusTextChanged
 ' Display the text that IE would ordinarily show
 ' in the status bar.
 statusBar1.Text = webBrowser1.StatusText
 End Sub

Macdonald_694-3C17.fm Page 594 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 595

 Private Sub webBrowser1_NewWindow(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles webBrowser1.NewWindow
 ' Never allow external windows.
 e.Cancel = True
 End Sub

End Class

Figure 17-2 shows the Web browser in action.

Figure 17-2. A custom Web browser

Printing, Saving, and Fine-Tuning
You can set a slew of miscellaneous WebBrowser properties to customize its behavior. It’s
important to consider these carefully, not because you might need to access additional features,
but because they let you clamp down on the open-ended nature of the Internet Explorer window.
For example, if you’re worrying about users dragging and dropping links or right-clicking to
get extended options, you can set the AllowWebBrowserDrop and
IsWebBrowserContextMenuEnabled properties to False to disable this functionality completely,
ensuring that your WebBrowser window shows only the content you want it to. Table 17-4 lists
these properties, all of which require a True or False value.

Macdonald_694-3C17.fm Page 595 Wednesday, July 19, 2006 1:33 PM

596 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

In addition, the WebBrowser lets you programmatically access some of the options you’ve
seen in the Internet Explorer menu. Two particularly useful features are the ability to print and
save documents. For example, if you use the WebBrowser to show a collection of Web pages with
online help, you can add a Print button to your form that calls the WebBrowser’s PrintDialog() or
Print() method to send the content directly to the printer without any headaches. Table 17-5
lists these useful methods, which you might want to use from your own custom toolbar buttons.

Table 17-4. Miscellaneous WebBrowser Properties

Property Description

AllowNavigation If False, no navigation is allowed. If the user clicks a
link, no action will be taken. However, you can still
set the Url or DocumentText properties to perform
programmatic navigation.

AllowWebBrowserDrop If True (the default), the WebBrowser control will
automatically load and render any document dropped
on it. Set this to False to stop the user from navigating
away from the content you want to show. The default
is True.

CanGoBack and CanGoForward These read-only properties indicate whether there
are previous or subsequent entries in the navigation
history. You can use these events to keep the state of
any custom forward or backward buttons synchronized.

IsWebBrowserContextMenuEnabled If True (the default), users can right-click on a link to
see other options (including those that allow them to
save the target or open in a new, stand-alone window).
Set this to False to restrict these possibilities.

ScriptErrorsSuppressed If False (the default), the WebBrowser displays an
alert window if it tries to run invalid JavaScript code.
Usually, you’ll want this to be True while testing, and
False when the application is deployed, because this
error information won’t help the user.

ScrollBarsEnabled If True (the default), scroll bars will be shown if the
page is larger than the size of the WebBrowser control.

WebBrowserShortcutsEnabled If True (the default), users can use shortcut keys like
Ctrl+N to open a new window. Disable this feature to
restrict these possibilities.

Table 17-5. Miscellaneous WebBrowser Methods

Method Description

Print() Sends the currently loaded document to the default printer. For a
less drastic approach, use ShowPrintDialog() instead.

ShowPageSetupDialog() Shows the Internet Explorer Page Setup dialog box, allowing the
user to change options like page orientation and margins.

ShowPrintDialog() Shows the Internet Explorer Print dialog box, allowing the user to
choose a printer and optionally print the current document.

Macdonald_694-3C17.fm Page 596 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 597

Blending Web and Windows Interfaces
So far, you’ve seen how you can use the WebBrowser to embed Web content inside a window.
This technique works wonders if you need to show an application help file, or direct the user
to a Web site with product updates, discussion groups, or late-breaking news. However, the
WebBrowser control actually goes quite a bit further with features that let you break down the
boundaries between Web content and your VB code. This interaction works two ways:

• You can create VB code that browses through the tree of HTML elements on a page. You
can even modify, remove, or insert elements as you go.

• You can create a Web page that triggers the code in your application in response to a
specific action, like clicking on a button.

In both cases, you use a programming model that’s similar to the HTML DOM used in Web
browser scripting languages like JavaScript. In the following sections, you’ll see both
techniques.

Build a DOM Tree
The starting point for exploring the content in a Web page is the WebBrowser.Document prop-
erty. This property provides an HtmlDocument object that models the current page as a
hierarchical collection of HtmlElement objects. You’ll find a distinct HtmlElement object for
each tag in your Web page, including paragraphs (<p>), hyperlinks (<a>), images (), and
all the other familiar ingredients of HTML markup.

The WebBrowser.Document property is read-only. That means that although you can
modify the linked HtmlDocument, you can’t create a new HtmlDocument object on the fly.
Instead, you need to set the Url, DocumentText, or DocumentStream property (or use the
Navigate() method) to load a new page. Once a document is loaded, you can access the
Document property.

ShowPrintPreviewDialog() Shows a Print Preview window that allows the reader to see the
printed output, change printer settings, and even print the docu-
ment. Unlike the other windows, the Print Preview window is
always shown modelessly, meaning it doesn’t stop your code
or prevent the user from accessing the current window in your
application.

ShowPropertiesDialog() Shows the Properties dialog box, which has basic information
about the URL, the page size, when the page was last updated,
and server certificates.

ShowSaveAsDialog() Shows the Internet Explorer Save As dialog box, allowing the user
to choose a file name and save the current document.

Table 17-5. Miscellaneous WebBrowser Methods

Method Description

Macdonald_694-3C17.fm Page 597 Wednesday, July 19, 2006 1:33 PM

598 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

■Tip Building the HtmlDocument takes a short but distinctly noticeable amount of time for a typical
Web page. The WebBrowser won’t actually build the HtmlDocument for the page until you try to access
the Document property for the first time.

Each HtmlElement object has a few key properties:

• TagName is the actual tag, without the angle brackets. For example, an anchor tag takes
this form …, and has the tag name A.

• Id contains the value of the id attribute, if specified. Often, elements are identified with
unique id attributes if you need to manipulate them in an automated tool or server-
side code.

• Children provides a collection of HtmlElement objects, one for each contained tag.

• InnerHtml shows the full content of the tag, including any nested tags and their content.

• InnerText shows the full content of the tag and the content of any nested tags. However,
it strips out all the HTML tags.

• OuterHtml and OuterText play the same role as InnerHtml and InnerText, except they
include the current tag (rather than just its contents).

To get a better understanding of InnerText, InnertHtml, and OuterHtml, consider the
following tag:

<p>Here is some <i>interesting</i> text.</p>

The InnerText for this tag is

Here is some interesting text.

The InnerHtml is

Here is some <i>interesting</i> text.

Finally, the OuterHtml is the full tag:

<p>Here is some <i>interesting</i> text.</p>

In addition, you can retrieve the attribute value for an element by name using the
HtmlElement.GetAttribute() method.

To navigate the document model for an HTML page, you simply move through the Children
collections of each HtmlElement. The following code performs this task in response to a button
click and builds a tree that shows the structure of elements and the content on the page (see
Figure 17-3).

Macdonald_694-3C17.fm Page 598 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 599

Private Sub cmdBuildTree_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdBuildTree.Click
 ' Analyzing a page takes a non-trivial amount of time.
 ' Use the hourglass cursor to warn the user.
 Me.Cursor = Cursors.WaitCursor

 ' Show the title.
 Me.Text = webBrowser1.Document.Title

 ' Process all the HTML elements on the page.
 ProcessElement(webBrowser1.Document.Body.Children, treeDOM.Nodes)

 Me.Cursor = Cursors.Default
End Sub

Private Sub ProcessElement(ByVal elements As HtmlElementCollection, _
 ByVal nodes As TreeNodeCollection)

 ' Scan through the collection of elements.
 For Each element As HtmlElement In elements
 ' Create a new node that shows the tag name.
 Dim node As New TreeNode("<" & element.TagName & ">")
 nodes.Add(node)

 If element.Children.Count = 0 And _
 element.InnerText <> String.Empty Then
 ' If this element doesn't contain any other elements, add
 ' any leftover text content as a new node.
 node.Nodes.Add(element.InnerText)
 Else
 ' If this element contains other elements, process them recursively.
 ProcessElement(element.Children, node.Nodes)
 End If
 Next
End Sub

If you want to find a specific element without digging through all the layers of the Web
page, you have a couple of simpler options. First of all, you can use the HtmlDocument.All
collection, which allows you to retrieve any element on the page using its id attribute. If you need
to retrieve an element that doesn’t have an id attribute, you can also use the HtmlDocument
method GetElementsByTagName(), as demonstrated in the next example.

Macdonald_694-3C17.fm Page 599 Wednesday, July 19, 2006 1:33 PM

600 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

Figure 17-3. A tree model of a Web page

Extract All Links
The next example shows how you can use screen scraping to extract just those elements that
interest you. In this case, the task is to retrieve all the hyperlinks on a page by searching for
anchor tags. Remember, a typical anchor tag looks like this:

Click here!

The hyperlink destination (which is found in the href attribute of the anchor tag) is then
added to a list box, but the inner text is ignored. Here’s the complete code:

Private Sub cmdGetAllLinks_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdGetAllLinks.Click

 If webBrowser1.ReadyState = WebBrowserReadyState.Complete Then
 ' Use an hourglass mouse pointer, because it takes a short delay
 ' to build the document tree.
 Me.Cursor = Cursors.WaitCursor
 lstLinks.Items.Clear()

 Dim elements As HtmlElementCollection = _
 webBrowser1.Document.GetElementsByTagName("A")
 For Each element As HtmlElement In elements
 lstLinks.Items.Add(element.GetAttribute("href"))
 Next

Macdonald_694-3C17.fm Page 600 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 601

 Me.Cursor = Cursors.Default
 End If
End Sub

To make the example more interesting, every time the user clicks a link in the list box, the
corresponding item is modified in the Web page. In this case, a string of three angle brackets
(>>>) is inserted to mark the selected hyperlink. When a new selection is made, the previous
hyperlink is returned to normal.

Private previous As HtmlElement

Private Sub lstLinks_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lstLinks.SelectedIndexChanged
 Dim elements As HtmlElementCollection = _
 webBrowser1.Document.GetElementsByTagName("A")

 If previous IsNot Nothing Then
 previous.InnerText = previous.InnerText.Substring(3)
 End If

 previous = elements(lstLinks.SelectedIndex)
 previous.InnerText = ">>>" & previous.InnerText
End Sub

Figure 17-4 shows the form at work.

Figure 17-4. Hunting for links in a page

Macdonald_694-3C17.fm Page 601 Wednesday, July 19, 2006 1:33 PM

602 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

■Tip This example matches selected indexes by index number position. However, if you’re specifically
creating pages to use with the WebBrowser control, you’ll save yourself some work by adding the id attribute
to all the elements you want to work with. You can then use GetElementById() to retrieve elements with a
specific ID. Or, if you want to find the element at a specific coordinate in the control (perhaps so you can update
some other control while the user hovers over a portion of a Web page), use the GetElementFromPoint() method.

This example shows how the HtmlDocument works in both directions. Not only can you
use it to retrieve information, but you can also use it as an interface for modifying parts of a
page, perhaps to keep it synchronized with your application. There’s no limit to how you can
alter a page or insert content using the HtmlElement.CreateElement() method. However,
unfortunately you can’t create an HtmlDocument by hand. Instead, you always need to load
data into a WebBrowser window and then retrieve the current HtmlDocument from the Docu-
ment property.

Scripting a Web Page with .NET Code
The last trick you’ll see with the WebBrowser is something even more intriguing: the ability to
react to Web-page events in your Windows code.

The WebBrowser makes this technique remarkably simple. All you need to do is
specify the object that will receive scripted events. You do this by setting the WebBrowser.
ObjectForScripting property. Here’s an example that sets this reference to the current form:

Private Sub ScriptedMenu_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 webBrowser1.ObjectForScripting = Me
 webBrowser1.Navigate("file:///" & Application.StartupPath & "\sample.htm")
End Sub

Additionally, you need to add the ComVisible attribute to your form to allow the Web page
to see it:

<ComVisible(True)> _
Public Class ScriptedMenu
 ...
End Class

In the Web page, you use JavaScript code to trigger the event. All you need to do is use the
window.external object, which represents the linked .NET object. Using this object, you specify
a method that you want to trigger; for example, use window.external.HelloWorld() if there’s a
public method named HelloWorld in the .NET object.

■Caution If you use this option, make sure that your class doesn’t include any other public methods that
aren’t related to Web access. A nefarious user could theoretically find the HTML source and modify it to call a
different method than the one you intend. Ideally, the scriptable class should contain only Web-related methods
to ensure security.

Macdonald_694-3C17.fm Page 602 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 603

To build the JavaScript command into your Web page, you first need to decide what
Web-page event you want to react to. Most HTML elements support a small number of events,
and some of the most useful include the following:

• onFocus occurs when a control receives focus.

• onBlur occurs when focus leaves a control.

• onClick occurs when the user clicks a control.

• onChange occurs when the user changes the value of certain controls.

• onMouseOver occurs when the user moves the mouse pointer over a control.

To write a JavaScript command that responds to one of these events, you simply add an
attribute with that name to the element tag. For example, if you have an image tag that looks
like this:

you can add an onClick attribute that triggers the HelloWorld() method in your linked .NET
class whenever the user clicks the image:

<img onClick="window.external.HelloWorld()" border="0" id="img1"
 src="buttonC.jpg" height="20" width="100">

Figure 17-5 shows an application that puts it all together. In this example, a WebBrowser
control shows a local HTML file that contains four buttons, each of which is a graphical image.
This page uses Dynamic HTML effects, so that the buttons slide onto the page from different
sides of the screen. The buttons also light up as the user hovers over them, changing their
position.

Figure 17-5. An HTML menu that triggers .NET code

But when the user clicks a button, the image uses the onClick attribute to trigger a form-
level method called WebClick():

Macdonald_694-3C17.fm Page 603 Wednesday, July 19, 2006 1:33 PM

604 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

The WebClick() method then takes over. It can show another Web page, open a new form,
or modify part of the Web page. In this example, it simply displays a message box to confirm
that the event has been received:

Public Sub WebClick(ByVal source As String)
 MessageBox.Show("Received: " & source)
End Sub

You’ll notice this example introduces one new feature—parameters. The images pass
hard-coded strings to the WebClick() method. By examining this string, it’s possible to deter-
mine which button triggered the method, without needing to create a separate method for
each button. Another way that you can use this feature is to pass user-supplied information to
your application, as you’ll see in the next section.

■Tip Scripting a window also comes in handy if you’re using a WebBrowser control to show product docu-
mentation. Using this feature, you can place a link that says “Do it for me” at the bottom of a how-to topic.
When the user clicks that link, it can trigger a method in your code that performs the action the user was
reading about. The secret to making this strategy work is to make sure that you don’t script individual forms.
Instead, create an application-wide class that’s dedicated to handling Web events. That way it doesn’t matter
what window is active when the user clicks the link.

Interestingly, this ability to jump between the bounds of the HTML document and managed
.NET code works both ways. You can call any script that’s embedded in the HTML document
courtesy of the WebBrowser.Document.InvokeScript() method, which takes two parameters.
The first parameter is the name of the script function that you want to execute in the HTML
page, and the second is an array of strings, one for each argument in the function.

For example, imagine you want to trigger the following Web-page script function (which
displays a message box using the JavaScript alert() function:

<script>
 function ShowMessage(message) {
 alert(message);
 }
</script>

You can call this script through the WebBrowser using this code statement:

webBrowser1.Document.InvokeScript("ShowMessage",
 new string[] { "This script was called by VB" });

This gives you the flexibility to control what happens in your .NET application, but code
the Web page–manipulation functions in the HTML document where they may be easier to
write. It also helps remove some of the messy HTML details from your form code and create
pages that are more logically encapsulated.

Macdonald_694-3C17.fm Page 604 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 605

■Caution Keep in mind that unless your HTML document is compiled into your assembly as an embedded
resource or retrieved from some secure location (like a database), it may be subject to client tampering. For
example, if you store HTML documents as separate files, users can easily edit them. If this is a concern, use
the embedding techniques described in Chapter 5. You can create file resources, retrieve them as strings, and
assign them using the WebBrowser.DocumentText property.

Scripting an HTML Form
HTML pages can use HTML form controls. These are special tags that represent user-interface
widgets like buttons, check boxes, text boxes, and options. These elements are always placed
inside a <form> tag. In your .NET code, you’ll want to examine the user-supplied information
in these controls.

There are two basic approaches to retrieving a value. The following example—a customer
feedback form shown in Figure 17-6—demonstrates both of them.

Figure 17-6. A scripted feedback form

Macdonald_694-3C17.fm Page 605 Wednesday, July 19, 2006 1:33 PM

606 C H A P T E R 1 7 ■ T H E W E B B R O W S E R

The most straightforward approach is to create a method that accepts all the required
information as separate parameters. For example, imagine you want to retrieve the customer
name and e-mail address. First, create a form method that accepts the two string parameters
you need. (Every object passed from an HTML page is usually in the form of a string.)

Public Sub Feedback(ByVal userName As String, ByVal email As String)
 If userName <> String.Empty Then
 MessageBox.Show("Welcome, " & userName & " at " & email & ".")
 End If
End Sub

Next, you need to look at the HTML for that portion of the page. In this case, it’s wrapped
inside a table. The two text boxes are represented by <input> tags of type text: one with the
name UserName and the other with the name UserEmail.

<table>
 <tr>
 <td>Name</td>
 <td><input type="text" size="35" maxlength="256" name="UserName"></td>
 </tr>
 <tr>
 <td>E-mail</td>
 <td><input type="text" size="35" maxlength="256" name="UserEmail"></td>
 </tr>
</table>

To retrieve the current value for either of these elements in your JavaScript command, you
simply need to access the value property. For example, UserName.value will contain the text
that’s currently entered in the user name text box.

Armed with this information, you can add an onClick attribute to the Submit Comments
button that triggers the Feedback() method and passes the two important pieces of information.
Here’s what it looks like:

<input onClick="window.external.Feedback(UserName.value, UserEmail.value)"
 type="submit" value="Submit Comments">

Generally, this is the best approach. However, you can also retrieve information from the
page using the HtmlDocument model. In this case, you need to check the value attribute,
which will have the information you need once the page has been submitted. Here’s an
example that grabs the text from the comment box:

Dim comments As String = webBrowser1.Document.All("Comments").GetAttribute("value")

Or to test if the Complaint radio button is selected, use the following:

If webBrowser1.Document.GetElementById("Complaint").GetAttribute("checked") _
 = "True" Then

Macdonald_694-3C17.fm Page 606 Wednesday, July 19, 2006 1:33 PM

C H A P T E R 1 7 ■ T H E W E B B R O W S E R 607

With a little craftiness and the WebBrowser.Navigating event, you can stop users from
moving on if they haven’t correctly filled out the form:

Private Sub webBrowser1_Navigating(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) _
 Handles webBrowser1.Navigating

 If webBrowser1.Document.All("userName").GetAttribute("value") = _
 String.Empty Then
 e.Cancel = True
 MessageBox.Show("Please enter your name.")
 End If
End Sub

The Last Word
In this chapter, you learned about the new WebBrowser control, which allows you to display
Web pages and control navigation. On its own, the WebBrowser provides some useful features, but
some of the most interesting possibilities arise when you use scripting and the HtmlDocument
object model to fuse together the world of the Web with the managed world of .NET code.
Using these features you can create small-scale solutions (like a start-up window that shows an
animated company logo by displaying a Web page that uses Macromedia Flash) or more ambi-
tious projects (like a next-generation help engine that allows users to read documentation and
trigger application tasks).

Macdonald_694-3C17.fm Page 607 Wednesday, July 19, 2006 1:33 PM

Macdonald_694-3C17.fm Page 608 Wednesday, July 19, 2006 1:33 PM

■ ■ ■

P A R T 4

Windows Forms
Techniques

Macdonald_694-3C18.fm Page 609 Tuesday, July 25, 2006 8:41 AM

Macdonald_694-3C18.fm Page 610 Tuesday, July 25, 2006 8:41 AM

611

■ ■ ■

C H A P T E R 1 8

Validation and Masked Editing

In any realistic application, you need to have some sort of error-checking hard-wired into the
user-interface code. If you don’t code this logic properly or if you put it in the wrong place, you
may frustrate users, complicate the business process, and even lose data.

In this chapter, you’ll learn about all the options for preventing and responding to input
errors in a Windows application. First, you’ll take a look at how you can use validation events
to react to mistakes before they become serious problems. Next, you’ll learn how to extend
your validation techniques to flag errors politely with the ErrorProvider, and check complex
text patterns with regular expressions.

In the second half of this chapter, you’ll learn about an elegant way to solve validation
problems by creating custom validation components. Best of all, you’ll learn how to reuse
these components to make all your forms bulletproof. Finally, you’ll take a close look at the
new MaskedTextBox control, which can help you prevent errors before they happen. You’ll
even learn how to harness the MaskedTextProvider to create your own custom masked controls.

Validating at the Right Time
Before you write any validation code, you need to decide where it fits into your application. In
a stand-alone application, this decision is usually fairly easy. But in a distributed application
that might invoke remote objects, contact a database server, or use a Web service, there are
several options—and they’re far from equal.

For example, consider an application designed for entering sales invoices. Once a sales
invoice is complete, the application sends the data to a Web service (or some other type of
server-side component), and the Web service stores the invoice information in a central data-
base. A naive programmer might try to code all the validation logic in the Web service. This
approach makes the validation code easier to monitor and change. However, it also introduces
a few dangerous headaches:

• Error notifications will occur too late. By the time the Web service identifies the problem
and returns an error message to the client, the user will have already moved on (mentally
at least), and will be frustrated to take a few steps back or—even worse—restart the
process. This problem is particularly severe if you need a multistep process to create an
invoice. In this case, it’s more than likely that the user will have long forgotten about the
choices made in the first few steps. Even worse, the user may no longer have the infor-
mation needed to correct the error. (For example, the customer who made the purchase
might have already left the store.)

Macdonald_694-3C18.fm Page 611 Tuesday, July 25, 2006 8:41 AM

612 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

• Error notifications can’t be fine-grained. If the invoice has multiple mistakes, it’s difficult to
explain each one effectively. A generic “invalid invoice” message is no help to anyone,
and it only increases the likelihood that the invoice information won’t be submitted
successfully.

• The error-checking overhead isn’t trivial. If an invoice has an error, the application
needs to waste a trip to the Web service to perform error-checking. If an invoice has
more than one error, you may need to make several round-trips before you can submit
a single invoice, multiplying the overhead of the application. Calling a remote computer
takes a nontrivial amount of time, particularly if you’re working over a slow network
connection or the wide Internet.

Overall, checking for errors on the Web server makes the system slightly less scalable.
But the most significant change is the fact that the system becomes less robust—in other
words, it has less ability to let users correct problems and get their work done successfully.

In scenarios like these, the best solution is to validate twice (as shown in Figure 18-1). The
first validation happens in the client application and should be as comprehensive as possible,
enforcing maximum field lengths, checking for non-numeric input, and so on. Very few invalid
invoices should clear the client validation process. Next, the Web service side can perform its
own set of validation checks. These validation checks serve two purposes: they are a failsafe
guarantee that grossly incorrect or malicious data can’t be submitted, and they perform any
checks that the client can’t. For example, you might want to examine the order history in the
database to verify that a customer doesn’t have any outstanding payments before you allow an
invoice to continue. To increase performance (by avoiding an extra round-trip) or tighten
security, you might choose to perform this check on the server instead of the client. Server-side
checking also allows you to update business rules without rolling out new client updates.

Figure 18-1. A sensible approach to validation

■Tip If your validation requirements are complex, you might need a way for the client to periodically down-
load a list of rules from the server. This approach makes sure the latest validation rules are always in effect,
without forcing you to update clients manually. One of the simplest ways to do this is to use a DataSet that is
configured with all the database schema information, including data types and maximum field lengths. However,
this won’t help you validate more-complex rules (like making sure a phone number field has the right format).

Macdonald_694-3C18.fm Page 612 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 613

Validation Events
The perfect Windows application would make it impossible for the user to enter any syntacti-

cally invalid information; this is achieved by using the right set of controls, checking key presses,
and limiting choices. Of course, sometimes this task is too daunting and you need to settle on the
next best thing, which is checking for errors after the fact. If you take this approach, it’s important
that you report any error as soon as possible, preferably before the user continues to enter more
information. The easiest way is to react to validation events.

Validation events are designed to let you check information as soon as it is entered, rather
than waiting for the whole form to be submitted. This kind of instantaneous error-checking is
very useful, for the following reasons:

• Without it, users might be afraid to submit a form, because they know there is a
possible error.

• Users might enter several pieces of invalid data at the same time. If you don’t check the
data until the form is submitted, your program will have to find some way to report all
the mistakes at once.

• By the time users submit a form, they might have already forgotten about the particular
field they entered incorrectly.

The validation events avoid these problems by checking the field as soon as the user is
finished entering information in it and changes focus to another control (either to enter new
information, like choosing a text box, or to perform an action, like clicking a button).

The Validation Event Sequence
When you navigate from one control to another, a series of events unfolds. For example, if you
move from TextBox1 to TextBox2 by pressing the Tab key, here are the events that fire:

1. Leave (TextBox1)

2. Enter (TextBox2)

3. LostFocus (TextBox1)

4. GotFocus (TextBox2)

The same pattern plays out when you change focus using other keys (like Shift+Tab), or
when your code calls the Control.Select() or Control.SelectNextControl() methods or sets the
ContainerControl.ActiveControl property.

Oddly enough, if you change focus using the mouse or by calling the Control.Focus()
method, the order of events shifts slightly so that the LostFocus event occurs earlier:

1. LostFocus (TextBox1)

2. Leave (TextBox1)

3. Enter (TextBox2)

4. GotFocus (TextBox2)

Macdonald_694-3C18.fm Page 613 Tuesday, July 25, 2006 8:41 AM

614 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

It may seem tempting to write “do-it-yourself” validation by responding to a control’s
LostFocus event. Unfortunately, this approach is dangerous, because it’s not safe to change the
focus inside a LostFocus event handler. If you try to direct the user back to the original control,
or if you change the focus in another way (for example, by showing a message box), you’ll end
up triggering an additional LostFocus event from the target control. If both controls have
invalid data, they may fight endlessly among themselves, trying to move the focus somewhere
else and trapping your program in an endless loop.

■Tip If you don’t want to perform validation, but you simply want to update some part of your user interface
when focus changes from one control to another, you still shouldn’t use the GotFocus and LostFocus events.
Instead, use the safer Enter and Leave events. You’ll notice that both GotFocus and LostFocus are hidden from
the Properties window to prevent accidental usage.

.NET handles this problem with the Validating and Validated events. These events occur
between the Leave and Enter events. For example, if you tab from one text box to another,
here’s the sequence of events that occurs:

1. Leave (TextBox1)

2. Enter (TextBox2)

3. Validating (TextBox1)

4. Validating (TextBox2)

5. LostFocus (TextBox1)

6. GotFocus (TextBox2)

The Validated event allows you to respond to correctly entered data. The Validating event
is more useful. It allows you to verify the data and, if it fails the test, stop the focus from moving
to the new control.

Validation takes place only if the source control (the control to be validated) has the
CausesValidation property set to True. In addition, the validation won’t take place until the
focus changes to a control that also has its CausesValidation property set to True. If either one
has a CausesValidation of False, the validation events are suppressed, but the other events (like
Enter and Leave) still fire. Table 18-1 shows some examples of what can happen when tabbing
from one control to another.

Finally, it’s important to note that you can switch off this behavior entirely by setting the
Form.AutoValidate property to AutoValidate.Disable. In this case, the validation events will
never be fired, no matter what you set for the CausesValidation property of your controls. You
can set the AutoValidate property for any container control (panels, group boxes, and so on).
Use AutoValidate.Inherit to acquire the settings from the parent control or form.

Macdonald_694-3C18.fm Page 614 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 615

Handling Validation Events
The program shown in Figure 18-2 uses validation to verify that neither text box is left blank.
If the user tries to change focus without entering any information, a message box appears, and
the focus is reset to the empty text box.

Figure 18-2. A validation example

All that’s necessary to implement this behavior is to set the CausesValidation property for
both text boxes to True, and handle the TextBox.Validating event. The validation code for this
application is shown here:

Private Sub txtName_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles txtFirstName.Validating, txtLastName.Validating
 If CType(sender, TextBox).Text = "" Then
 MessageBox.Show("You must enter a first and last name.", "Invalid Input", _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 e.Cancel = True
 End If
End Sub

Table 18-1. .NET Validation

Source Control Status Destination Control Status Result

CausesValidation is False. Doesn’t matter. Validation code is ignored.

CausesValidation is True. CausesValidation is True. Validation is performed for the
source control.

CausesValidation is True. CausesValidation is False. Validation is postponed
until the focus changes to a
CausesValidation control. At
this point, all the controls that
need to be validated are validated
in order until one is found with
invalid input and the process is
canceled.

Macdonald_694-3C18.fm Page 615 Tuesday, July 25, 2006 8:41 AM

616 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

You can handle the Validating event for both text boxes with the same event handler, provided
you write your code generically. That means you shouldn’t hard-code the control you want to
check—instead, retrieve a reference from the sender parameter, as in the preceding example.

■Tip You can alter this behavior using the Form.AutoValidate property. As discussed earlier, you can prevent your
validation code from running altogether (with AutoValidate.Disable). You can also allow your validation code
to run but ignore any cancel requests, so that the user is allowed to tab from one control to the next (use
AutoValidate.EnableAllowFocusChange). The default is AutoValidate.EnablePreventFocusChange.

Note that if you cancel a focus change in the Validating event, no other events will fire for
the target control. For example, if you move to a control with invalid input and then click a
button, the Button.Click event won’t fire.

■Tip There’s a potential catch in the validation example shown here. For validation to work, the focus needs
to begin on one of the text boxes. If the focus begins on another control (like the button), the user can close
the form or click the button without triggering the validation events. That’s because validation takes place only
when you navigate away from the control that performs the validation. To avoid any problem, make sure you
set the focus to start on the correct input control or use the Control.Select() method when the form loads.

Closing a Form with Validating
There’s one interesting quirk in the previous example. If the user attempts to close the form
with the top-right close button (or by pressing Alt+F4), this action also triggers validation. If
validation fails, the form won’t close.

This behavior is reasonable, but it complicates your life if you need to let users escape from
a form without filling in all the controls. One solution is to create a Cancel button that closes
the form, and set its CausesValidation property set to False. However, this is only part of the
solution.

By setting CausesValidation to False, you allow the focus to change to the Cancel button,
and you allow its Button.Click event to fire. However, when your code uses the Form.Close()
method to close the form, the validation code still springs into action, preventing the form
from closing.

Private Sub cmdClose_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdClose.Click
 ' This triggers validation.
 Me.Close()
End Sub

Macdonald_694-3C18.fm Page 616 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 617

There are two solutions. The first choice is to change the Form.AutoValidate setting before
you attempt to close the form. For example, this event handler will breeze past any validation
routines:

Private Sub cmdClose_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdClose.Click
 Me.AutoValidate = AutoValidate.Disable
 Me.Close()
End Sub

There’s another option. When the validation code sets the cancel flag, it indicates that the
form should not be allowed to close. However, you still have the chance to override this deci-
sion by handling FormClosing. At this point, you can clear the cancel flag if you want, allowing
the form to close. Here’s an example that lets the user decide:

Private Sub Form1_FormClosing(ByVal sender As Object, _
 ByVal e As FormClosingEventArgs) Handles MyBase.FormClosing
 ' If e.Cancel is True, the cancel flag has been set by a validation routine.
 If e.Cancel Then
 Dim result As DialogResult = MessageBox.Show(_
 "There are still errors on the form. Do you wish to close the form?", _
 "Errors found", MessageBoxButtons.YesNo)
 If result = DialogResult.Yes Then e.Cancel = False
 End If
End Sub

This approach is quite a bit different than the first solution, because it ensures that your
validation code runs.

The ErrorProvider
Interrupting users with a message box is a crude way of pointing out an error. It’s not likely to
get users on your side, and you won’t find it in any modern Windows application. A much
better approach is to provide some kind of on-screen indication about the problem, like an
explanatory error message next to the incorrect input.

The .NET Framework provides an elegant way to accomplish this: ErrorProvider control.
The ErrorProvider has a simple role in life—it can display an error icon (which looks like a red
exclamation point) next to any control. Typically, you’ll show the error icon next to a control
that has invalid input. You’ll also specify a detailed text message. The error message appears in
a tooltip if the user hovers over the error icon with the mouse pointer (see Figure 18-3).

The ErrorProvider is a provider control—a special type of user-interface ingredient intro-
duced in Chapter 4. Like all other providers, you add a single instance of the ErrorProvider to
the form you want to validate. You can then use that instance to display an error icon next to
any control. To add the ErrorProvider, you can drag it from the Toolbox into the component
tray, or you can create it manually in code. In the latter case, make sure you create a member
variable to track it so you can access it later.

Macdonald_694-3C18.fm Page 617 Tuesday, July 25, 2006 8:41 AM

618 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

Figure 18-3. The ErrorProvider

Showing Error Icons
To show an error icon next to a control, you use the ErrorProvider.SetError() method. The
following code segment shows the same text box validation code as in the previous example,
which reacts to the TextBox.Validating event. However, the code has been rewritten so that it
doesn’t stop the user from moving to the new control. Instead, if validation fails, it simply indi-
cates the error using the error icon.

Private Sub txtName_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles txtFirstName.Validating, txtLastName.Validating

 Dim ctrl As Control = CType(sender, Control)
 If ctrl.Text = "" Then
 ErrorProvider1.SetError(ctrl, "You must enter a first and last name.")
 Else
 ErrorProvider1.SetError(ctrl, "")
 End If
End Sub

To hide the error icon you must explicitly clear the error message when validation succeeds.

■Note This example uses the time-honored TextBox. However, there’s no reason you can’t validate other
input controls, like lists, check boxes, radio buttons, and more, using the exact same Validating event and
ErrorProvider control.

In this example, the validation event doesn’t cancel the user’s action. This is a more user-
friendly alternative, but it also means that when the user clicks OK to submit the form, you
need to explicitly check if there are any errors before continuing. Here’s an example that veri-
fies there are no errors attached to either text box:

Macdonald_694-3C18.fm Page 618 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 619

Private Sub cdmOK_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOK.Click

 If ErrorProvider1.GetError(txtFirstName) = "" And _
 ErrorProvider1.GetError(txtLastName) = "" Then
 Me.Close()
 Else
 MessageBox.Show("You still have invalid input.", "Invalid Input", _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 End If
End Sub

If you have a lot of controls, it makes more sense to iterate through the whole collection,
rather than code-checking each control individually. In the following example, the validation
controls are all contained inside a single group box named grpValidation, so the code iterates
its collection of child controls.

Private Sub cmdOK_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOK.Click
 Dim invalidInput As Boolean = False

 For Each ctrl As Control In grpValidation.Controls
 If ErrorProvider1.GetError(ctrl) <> "" Then
 invalidInput = True
 Exit For
 End If
 Next

 If invalidInput Then
 MessageBox.Show("You still have invalid input.", _
 "Invalid Input", MessageBoxButtons.OK, _
 MessageBoxIcon.Warning)
 Else
 Me.Close()
 End If
End Sub

This approach still has one limitation. Because validation is performed only when the
focus changes, the error icon doesn’t disappear when the user corrects a problem. Instead, it
remains until the user moves to another control and validation is triggered. If you want a different
behavior, you can skip using the validation events altogether. For example, you can perform
your validation by reacting to the TextBox.TextChanged event every time the user presses a key.

Customizing Error Icons
The ErrorProvider control can serve any number of input controls on the same form and can
display as many simultaneous error icons and warning messages as needed. By default, every

Macdonald_694-3C18.fm Page 619 Tuesday, July 25, 2006 8:41 AM

620 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

warning icon appears to the immediate right of the input control. However, enterprising devel-
opers will be happy to find out that they can tweak the error icon’s appearance to better fit in
with their applications.

The ErrorProvider control provides two methods that let you specify how an error icon
should be aligned with a control and how much spacing there should be between the icon and
the control (see Table 18-2).

As you probably remember from Chapter 4, there are always two ways to interact with an
extender provider: you can call its methods explicitly in your code, or you can configure the
corresponding extended property at design time for the extended control. For example, instead of
calling the SetError() method to show an error message in a TextBox, you can select the TextBox at
design time and modify the Error property in the Properties window. The Error property doesn’t
really exist—instead, it’s just provided as a design-time convenience. When you set it, Visual
Studio adds the required statement that invokes the SetError() method to your form initializa-
tion code. It doesn’t make sense to set the Error property at design time, because as soon as the
Error string is set, the error icon appears. However, it makes good sense to set the IconAlignment
and IconPadding properties at design time if you need to use them. That way you can set up
everything properly ahead of time without resorting to code.

In addition to the extended properties, the ErrorProvider has a few useful properties of its
own. These properties allow you to control how the error icon blinks, and even to replace the
familiar red exclamation mark with something more customized (see Table 18-3).

■Note The ErrorProvider properties are applied automatically for every control that you use with the
ErrorProvider. That means that if you want to have the ability to show error icons with more than one icon, you
need to add more than one ErrorProvider. And if you want to change something more substantial about the
ErrorProvider, like showing error messages in the status bar, a balloon tip, or a different control, you’ll need
to create your own custom provider, as described in Chapter 28.

Table 18-2. ErrorProvider Appearance-Related Methods

Method Extended Property Description

SetIconAlignment() IconAlignment Determines where the error icon will appear
for a specific control, using one of the values
from the ErrorIconAlignment enumeration.
The default is MiddleRight, which means the
icon appears on the right side of the control,
centered between the top and bottom edge.
You can easily flip the icon to any other side.

SetIconPadding() IconPadding Determines the amount of space, in pixels,
that will be left between the icon and the
aligned edge of a specific control. By default
this is 0, which still leaves a few pixels between
the control and the icon.

Macdonald_694-3C18.fm Page 620 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 621

Regular Expressions
The ErrorProvider control is an ideal way to weave error feedback into your application. However,
writing the actual validation code can still be painful and time-consuming. One way to stream-
line your work is to use the .NET regular expression classes, which allow you to search text
strings for specific patterns.

A regular expression is a formula for matching complex text patterns. Using the ordinary
methods of the String class, you can search for a series of specific characters (for example, the
word “hello”) in a string. Using a regular expression, however, you can search a string for any
word that is five letters long and begins with an h.

Regular Expression Basics
All regular expressions are made up of two kinds of characters: literals and metacharacters.
Literals represent a specific, defined character. Metacharacters are wildcards that can repre-
sent a range of values. Regular expressions gain their power from the rich set of metacharacters
that they support.

Two examples of regular-expression metacharacters include \s (which represents any
white-space character) and \d (which represents any digit). Using these characters, you can
construct the following expression, which will successfully match any string that starts with the
numbers 333, followed by a single white-space character and any three numbers. Valid matches
include 333 333, 333 945, but not 334 333 or 3334 945.

Table 18-3. ErrorProvider Appearance-Related Properties

Property Description

BlinkRate Determines the rate, in milliseconds, at which the error
icon should flash (assuming the BlinkStyle is set to allow
flashing). The default is 250 milliseconds, which means
the error icon blinks to get attention once every 250 milli-
seconds (or four times a second).

BlinkStyle Determines when the error icon blinks, using one of
the values from the ErrorBlinkStyle enumeration. You
can choose to never blink (NeverBlink), always blink
(AlwaysBlink), or blink only the first time an error is set and
when a new error message is set (BlinkIfDifferentError).
The nice thing about BlinkIfDifferentError (the default) is
that the blinking continues for only a few seconds before
stopping automatically— enough to catch the user’s atten-
tion without becoming an eyesore.

Icon A System.Drawing.Icon object that’s shown for the error
icon. If you don’t like the red exclamation mark, this is the
property you need to change. In .NET 2.0, the ErrorIcon
got a minor facelift, so that it has a more shaded, three-
dimensional look than it did in previous versions.

Macdonald_694-3C18.fm Page 621 Tuesday, July 25, 2006 8:41 AM

622 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

333\s\d\d\d

You can also use the plus (+) sign to represent a repeated character. For example, 5+7
means “any number of 5 characters, followed by a single 7.” The number 57 matches, as does
555557. You can also use the brackets to group together a subexpression. For example, (52)+7
would find match any string that starts with a sequence of 52. Matches include 527, 52527,
52552527, and so on.

You can also delimit a range of characters using square brackets. [a-f] would match any
single character from a to f (lowercase only). The following expression would match any word
that starts with a letter from a to f, contains one or more letters, and ends with “ing”—possible
matches include acting and developing.

[a-f][a-z]+ing

This discussion just scratches the surface of regular expressions, which constitute an entire
language of their own. However, you don’t need to learn everything there is to know about
regular expressions before you start using them. In fact, many programmers simply look for
useful prebuilt regular expressions on the Web. Without much trouble, you can find examples
for e-mails, phone numbers, postal codes, and more, all of which you can drop straight into
your applications.

■Tip To learn about regular expression, you might be interested in a dedicated book like the Jeffrey Friedl’s
excellent Mastering Regular Expressions, Second Edition (O’Reilly, 2002).

Table 18-4 shows a brief list of some common regular-expression metacharacters. You can
use these characters to create your own regular expressions. However, it’s often easier to look
up a prebuilt regular expression that suits your data using the Internet or a dedicated book on
the subject.

Table 18-4. Regular-Expression Metacharacters

Character Rule

* Represents zero or more occurrences of the previous character or subexpression.
For example, a*b matches aab or just b.

+ Represents one or more occurrences of the previous character or subexpression.
For example, a+b matches aab but not a.

() Groups a subexpression that is treated as a single element. For example,
(ab)+ matches ab and ababab.

{m} Requires m repetitions of the preceding character or group. For example, a{3}
matches aaa.

{m, n} Requires n to m repetitions of the preceding character or group. For example,
a{2,3} matches aa and aaa but not aaaa.

Macdonald_694-3C18.fm Page 622 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 623

Table 18-5 shows a few regular expression examples to get you started.

| Represents either of two matches. For example, a|b matches a or b.

[] Matches one character in a range of valid characters. For example, [A-C]
matches A, B, or C.

[^] Matches a character that is not in the given range. For example, [^A-C] matches
any character except A, B, and C.

. Represents any character except newline.

\s Represents any white-space character (like a tab or space).

\S Represents any non-white-space character.

\d Represents any digit character.

\D Represents any character that is not a digit.

\w Represents any alphanumeric character (letter, number, or underscore).

^ Represents the start of the string. For example, ^ab can find a match only if the
string begins with ab.

$ Represents the end of the string. For example, ab$ can find a match only if the
string ends with ab.

\ Indicates that the following character is a literal (even though it might ordinarily
be interpreted as a metacharacter). For example, use \\ for the literal \ and use
\+ for the literal +.

Table 18-5. Sample Regular Expressions

Content Regular Expression Description

Email address* \S+@\S+\.\S+ Check for an “at” symbol (@), a dot
(.), and only allow non-white-space
characters.

Password \w+ Any sequence of word characters
(letter, space, or underscore).

Specific-length password \w{4,10} A password that must be at least four
characters long, but no longer than
ten characters.

Advanced password [a-zA-Z]\w{3,9} As with the specific-length password,
this regular expression will allow four
to ten total characters. The twist is
that the first character must fall in the
range of a–z or A–Z (that is, it must
start with a letter).

Table 18-4. Regular-Expression Metacharacters

Character Rule

Macdonald_694-3C18.fm Page 623 Tuesday, July 25, 2006 8:41 AM

624 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

* There are many different ways to validate e-mail addresses, with regular expressions of varying
complexity. See www.4guysfromrolla.com/webtech/validateemail.shtml for a discussion of the subject
and numerous examples.

Validating with Regular Expressions
To validate regular expressions in .NET, you can use the Regex class from the System.Text.
RegularExpressions namespace. When you create this class, you specify the regular expression
you want to use as a constructor argument. You can then call the IsMatch() method to check if
a given string (like the text in a text box) matches the regular expression.

■Tip When you use validation with the Regex class, make sure your expression starts with the ̂ metachar-
acter (representing the start of the string) and ends with the $ metacharacter (representing the end of the
string). Otherwise, the IsMatch() method will search for matching text anywhere inside the string you specify,
ignoring any invalid characters at the start or end of the string, which probably isn’t the behavior you want.

The following example puts regular expressions to work with the ErrorProvider. In this
case, the regular expression validates an e-mail address by verifying that it contains an “at”
symbol (@) and a period (.) and doesn’t include spaces or special characters. The validation is
performed in the TextChanged event handler, which ensures that the error provider icon is
updated immediately after any change.

Private Sub txtEmail_TextChanged(ByVal sender As Object, ByVal e As EventArgs) _
 Handles txtEmail.TextChanged
 Dim regex As System.Text.RegularExpressions.Regex
 regex = New System.Text.RegularExpressions.Regex("^\S+@\S+\.\S+$")

Another advanced
password

[a-zA-Z]\w*\d+\w* This password starts with a letter
character, followed by zero or more
word characters, a digit, and then
zero or more word characters. In
short, it forces a password to contain a
number somewhere inside it. You
could use a similar pattern to require
two numbers or any other special
characters.

Limited-length field \S{4,10} Like the password example, this
allows four to ten characters, but it
allows special characters (asterisks,
ampersands, and so on).

Social Security number \d{3}-\d{2}-\d{4} A sequence of three, two, then four
digits, with each group separated by a
dash. A similar pattern could be used
when requiring a phone number.

Table 18-5. Sample Regular Expressions (Continued)

Content Regular Expression Description

Macdonald_694-3C18.fm Page 624 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 625

 Dim ctrl As Control = CType(sender, Control)
 If regex.IsMatch(ctrl.Text) Then
 ErrorProvider1.SetError(ctrl, "")
 Else
 ErrorProvider1.SetError(ctrl, "Not a valid email.")
 End If
End Sub

Rather than hard-coding a regular expression, you may choose to store it in the configura-
tion file through an application setting. Alternatively, if you want to make sure it’s compiled
and tamperproof, but you need to keep the details out of your form code, you may prefer to
write your own custom class that groups together the regular expressions you need. An example
of one such class is shown below.

Public Class RegularExpressions
 Public Const Email As String = "^\S+@\S+\.\S+$"

 ' 4-10 character password that starts with a letter.
 Public Const Password As String = "^[a-zA-Z]\w{3,9}$"

 ' A sequence of 3-2-4 digits, with each group separated by a dash.
 Public Const SSN As String = "^\d{3}-\d{2}-\d{4}$"
End Class

Once you have created this type of resource class, you can use it easily to create a
Regex object:

Dim expression As Regex = new Regex(RegularExpressions.Email)

Custom Validation Components
The validation solutions you’ve seen so far work well, but they tend to be code-heavy. To validate
different controls, you almost always need to create separate Validating event handlers, because
each control requires its own validation logic and its own error message. Clearly, in an applica-
tion with dozens of forms and hundreds of input controls, this approach isn’t very convenient,
because it forces you to write a huge amount of custom validation code.

You might try to solve this by writing generic validation routines that handle the Validating
event for multiple controls. Unfortunately, there’s no easy way to keep track of the error message
and validation rules that you want to apply for each control. If you needed only one control-
specific piece of information, you could store it in the handy Control.Tag property. For example,
you could use the Tag property to store an error message for each control or a custom regular
expression to use for validation. Unfortunately, you can’t store both pieces of information—at
least not without making it impossible for developers to enter the validation expression and
error-message information using the Properties window at design time, which is the real goal.

Fortunately, there is a solution, and it already exists in the .NET Framework. Unfortunately,
the solution is designed for a completely different platform—ASP.NET Web pages. Although
you can’t use the ASP.NET validation controls in a Windows Forms application, you can learn

Macdonald_694-3C18.fm Page 625 Tuesday, July 25, 2006 8:41 AM

626 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

a lot about the best way to encapsulate validation logic. With a little additional effort, you can
even build your own set of validation controls that provides the same functionality.

■Note There is another potential solution that’s not pursued in this chapter—you could create a custom
extender provider to implement the customized validation. This extender provider could work like the ErrorProvider,
but perform the validation as well as the error display. You’ll learn more about extender providers in Chapter 25, and
you can find a detailed example of this technique at http://msdn.microsoft.com/library/en-us/
dnadvnet/html/vbnet04082003.asp.

Understanding the ASP.NET Validation Controls
The goal of the ASP.NET validation controls is to create a straightforward, reusable validation
framework that allows you to set validation rules declaratively. In other words, you drag a vali-
dator onto a form, connect it to an existing control, and set a few properties to determine how
the validation will be performed. All of these steps unfold at design time. Best of all, you don’t
need to write any validation code at all.

Clearly, validation controls allow you to be more productive. Validation controls also simplify
your application, because they encapsulate common validation tasks like checking for blank
values, comparing numbers, and using regular expressions. Because the validation controls
handle this basic infrastructure, you don’t need to write (and repeat) this code yourself.
Considering that validation code is usually scattered throughout countless different forms, you
can see how validation controls can help you dramatically cut down the total amount of code
in your application.

ASP.NET provides five core validators, which are shown in Table 18-6.

Table 18-6. ASP.NET Validator Controls

Control Class Description

RequiredFieldValidator Validation succeeds as long as the input control doesn’t contain
an empty string.

RangeValidator Validation succeeds if the input control contains a value within
a specific numeric, alphabetic, or date range.

RegularExpressionValidator Validation succeeds if the value in an input control matches a
specified regular expression.

CompareValidator Validation succeeds if the input control contains a value that
matches the value in another specified input control.

CustomValidator Validation is performed by an event handler you write.

Macdonald_694-3C18.fm Page 626 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 627

Each validation control can be bound to a single input control. In addition, you can apply
more than one validation control to the same input control to provide multiple types of valida-
tion. Each validator provides its own set of properties that are specific for that type of validation.
For example, if you use a RangeValidator, you need to set the upper and lower limits. Once
you’ve configured these bounds and connected the RangeValidator to another control, the
validation happens automatically.

You can follow this model to build powerful validators for Windows applications. In this
case your validators won’t be controls, but components that derive from the System.
ComponentModel.Component class, and can be dropped into a form’s component tray at
design time. The first step to building these components is to create a class library project
where you’ll place all your validation code. Once that’s in place, you can continue with the
following sections to create the validator classes you need.

Building the BaseValidator
In the ASP.NET world, each validator inherits form a base class named BaseValidator. The
BaseValidator class defines the basic features needed to connect to an input control and store
an error message. This functionality is generic and can be reused in every validator. If you
follow the same pattern, you’ll have an easy time creating a wide range of custom validators.

The BaseValidator needs a few basic ingredients:

• It needs to inherit from Component, so that it can be placed in the component tray.

• It needs to create an ErrorProvider behind the scenes for flagging invalid controls, and
expose any ErrorProvider properties you should be able to change, like Icon.

• It needs to let you specify an error message.

• It needs to allow you to bind it to a specific control. When you do, it should automatically
register itself to receive the Validating event for that control.

• It needs to respond to the Validating event, perform validation, and display the error
icon if needed.

• Additionally, it needs to provide a Validate() method so you can trigger validation
programmatically if needed, and it needs to expose an IsValid property so you can check
what the validation outcome was.

Keep in mind that the BaseValidator doesn’t actually perform the validation, because it
doesn’t know what type of validation you want. Instead, it calls the EvaluateIsValid() method.
The validator classes that inherit from BaseValidator override this method to implement the
appropriate validation logic. In other words, the BaseValidator defines the infrastructure for
binding to a control and performing validation, but the derived classes add the actual validation
code. Figure 18-4 diagrams this interaction.

Macdonald_694-3C18.fm Page 627 Tuesday, July 25, 2006 8:41 AM

628 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

Figure 18-4. How the BaseValidator plugs in to a form

The following code listings dissect the BaseValidator class piece by piece. First of all, the
BaseValidator is defined as a MustInherit class, so that it can’t be instantiated directly:

Public MustInherit Class BaseValidator
 ...
End Class

Internally, the BaseValidator stores a private instance of an ErrorProvider, along with an
error message and an IsValid property that reflects whether validation has failed. Here are the
basic properties:

' Use an internal error provider to show error icons.
Private errorProvider As New ErrorProvider()

' Expose whatever ErrorProvider settings you want the
' user to be able to modify (like Icon, BlinkStyle, and BlinkRate).
' This class exposes only Icon.
Public Property Icon() As Icon
 Get
 Return errorProvider.Icon
 End Get
 Set(ByVal value As Icon)
 errorProvider.Icon = value
 End Set
End Property

Macdonald_694-3C18.fm Page 628 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 629

' This is the error message that will be shown if validation fails.
Private _errorMessage As String
Public Property ErrorMessage() As String
 Get
 Return _errorMessage
 End Get
 Set(ByVal Value As String)
 _errorMessage = value
 End Set
End Property

' This property allows you to check if validation succeeded.
' The safest option is to default to False, and assume that
' any unvalidated data is not valid.
Private _isValid As Boolean = False
Public ReadOnly Property IsValid() As Boolean
 Get
 Return _isValid
 End Get
End Property

The ErrorProvider also gives you the option to stop focus changes when an error is
detected:

Private _cancelFocus As Boolean = False
Public Property CancelFocusChangeWhenInvalid() As Boolean
 Get
 Return _cancelFocus
 End Get
 Set(ByVal value As Boolean)
 _cancelFocus = value
 End Set
End Property

Whenever a control is assigned to the BaseValidator, the BaseValidator connects to that
control’s Validating event (unless the application is in design mode).

' This is the control that will be validated.
' The ReferenceConverter allows the user to choose a control from
' a drop-down list with all the controls on the form.
Private _controlToValidate As Control

<TypeConverter(GetType(ReferenceConverter))> _
Public Property ControlToValidate() As Control
 Get
 Return _controlToValidate
 End Get

Macdonald_694-3C18.fm Page 629 Tuesday, July 25, 2006 8:41 AM

630 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

 Set(ByVal value As Control)
 ' Detach event handler from previous control.
 If _controlToValidate IsNot Nothing And Not DesignMode Then
 RemoveHandler _controlToValidate.Validating, _
 AddressOf ControlToValidate_Validating
 End If
 _controlToValidate = value

 ' Hook up the control's Validating event.
 If _controlToValidate IsNot Nothing And Not DesignMode Then
 AddHandler _controlToValidate.Validating, _
 AddressOf ControlToValidate_Validating
 End If
 End Set
End Property

When the Validating event fires, the BaseValidator simply calls the public Validate() method,
and optionally stops the focus from changing.

' Validate the control when the Validating event fires.
Private Sub ControlToValidate_Validating(ByVal sender As Object, _
 ByVal e As CancelEventArgs)
 Validate()

 ' Cancel the focus change if the data is invalid,
 ' and this is the configured behavior.
 If Not IsValid And CancelFocusChangeWhenInvalid Then e.Cancel = True
End Sub

In turn, the Validate() method calls the MustOverride EvaluateIsValid() method, which
each validator overrides with its custom validation code. Then, depending on the success or
failure of validation, the error icon is updated.

' This is a public method so that validation can be triggered
' manually if you want, not just in response to the Validating event.
Public Function Validate() As Boolean
 ' Validate the control (using whatever functionality
 ' is provided in the derived class).
 _isValid = EvaluateIsValid()

 If IsValid Then
 ' Clear the error message.
 errorProvider.SetError(ControlToValidate, "")
 Else
 ' Display the error message.
 errorProvider.SetError(ControlToValidate, ErrorMessage)
 End If

Macdonald_694-3C18.fm Page 630 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 631

 Return IsValid
End Function

' This is the method where the derived classes will
' execute their validation logic.
Protected MustOverride Function EvaluateIsValid() As Boolean

All in all, this gives you a solid framework for building custom validation controls, as
demonstrated in the next section.

■Note It’s worth pointing out that this design has one limitation—if a control is already valid when you
attach it to a validator, the IsValid property will still return False. That’s because validation won’t be performed
until the user tabs over to the control and moves away, so that the Validating event fires. There are two possible
work-arounds. You can trigger the validation as soon as the control is connected (which has the disadvantage
of showing the error icon immediately), or you can make sure you call the Validate() method of each validator
before you check the IsValid property (for example, when the user clicks the OK button to move on to
another form).

Building Three Custom Validators
With the BaseValidator in place, it’s surprisingly easy to create new validators. The first validator
that you’ll consider is the RequiredFieldValidator, which simply checks that the control text is
not blank. Here’s the code in full:

Public Class RequiredFieldValidator
 Inherits BaseValidator

 Protected Overrides Function EvaluateIsValid() As Boolean
 ' This is valid, as long as the value is not blank.
 Return (ControlToValidate.Text.Trim().Length <> 0)
 End Function
End Class

■Note Because the BaseValidator is a MustInherit class, the Visual Studio designer won’t allow you to use
the design surface of derived classes like the RequiredFieldValidator. This is a known limitation of Visual Studio (and
the same problem is discussed for forms at the end of Chapter 11). However, it’s not a significant problem,
because you don’t need to use the design surface of this component. Instead, edit the code directly. If you do
want to use the design surface, you can modify the BaseValidator class, so it isn’t declared as MustInherit.

The RegularExpressionValidator is almost as straightforward. It adds a property where the
user can supply a regular expression and overrides the EvaluateIsValid() method with the code
needed to verify the expression against the control text. Here’s what it looks like:

Macdonald_694-3C18.fm Page 631 Tuesday, July 25, 2006 8:41 AM

632 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

Public Class RegularExpressionValidator
 Inherits BaseValidator

 ' Store the regular expression.
 Private _validationExpression As String
 Public Property ValidationExpression() As String
 Get
 Return _validationExpression
 End Get
 Set(ByVal value As String)
 _validationExpression = value
 End Set
 End Property

 ' Validate with the regular expression.
 Protected Overrides Function EvaluateIsValid() As Boolean
 ' Don't validate if empty (that's a job for the RequiredFieldValidator).
 If ControlToValidate.Text.Trim().Length = 0 Then Return True

 ' Evaluate the regular expression.
 Dim expression As new Regex(validationExpression)
 Return expression.IsMatch(ControlToValidate.Text)
 End Function

End Class

You’ll notice that the RegularExpressionValidator returns True if it encounters a blank
value. That’s the same way that ASP.NET validators work, and it gives you the flexibility to deal
with optional information. Essentially, the RegularExpressionValidator checks a control if it
contains a value. If it doesn’t contain a value but it should, you need to use both the
RegularExpressionValidator and the RequiredFieldValidator on the same control.

The final validator you’ll consider is the RangeValidator, which checks that a value is
between a specified minimum and maximum. The RangeValidator is slightly more compli-
cated, because it needs to support different types of data. In this example, it works for string
comparisons, floating point numbers, and integers, although you could easily extend it to work
with dates and other values. Here’s the enumeration that defines supported data types:

Public Enum ValidationDataType
 [Integer]
 [Double]
 Text
End Enum

The minimum and maximum values in the RangeValidator are stored as strings until the
actual comparison is performed. Here’s the basic set of properties for the RangeValidator:

Macdonald_694-3C18.fm Page 632 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 633

Public Class RangeValidator
 Inherits BaseValidator

 ' Determines how the ranges are compared
 ' (numerically or alphabetically).
 Private _validationDataType As ValidationDataType
 Public Property Type() As ValidationDataType
 Get
 Return _validationDataType
 End Get
 Set(ByVal value As ValidationDataType)
 _validationDataType = value
 End Set
 End Property

 ' Set a minimum and maximum allowed value.
 ' You could add checks to make sure the minimum value
 ' isn't greater than the maximum value.
 Private _minimumValue As String = ""
 Public Property MinimumValue() As String
 Get
 Return _minimumValue
 End Get
 Set(ByVal value As String)
 _minimumValue = value
 End Set
 End Property

 Private _maximumValue As String = ""
 Public Property MaximumValue() As String
 Get
 Return _maximumValue
 End Get
 Set(ByVal value As String)
 _maximumValue = value
 End Set
 End Property

 ' Check if the value falls in the range.
 Protected Overrides Function EvaluateIsValid() As Boolean
 ...
 End Function

End Class

Macdonald_694-3C18.fm Page 633 Tuesday, July 25, 2006 8:41 AM

634 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

When the EvaluateIsValid() method is triggered, the RangeValidator checks what type of
comparison is needed. If necessary, it performs a data type conversion. It also checks for decimals
if the value is supposed to be an in integer.

Protected Overrides Function EvaluateIsValid() As Boolean
 ' Don't validate if empty (that's a job for the RequiredFieldValidator).
 If ControlToValidate.Text.Trim().Length = 0 Then Return True

 Select Case Type
 Case ValidationDataType.Double, ValidationDataType.Integer
 If Type = ValidationDataType.Integer Then
 ' Check there's no decimal point.
 If ControlToValidate.Text.IndexOf(".") <> -1 Then
 Return False
 End If
 End If

 Try
 Dim valD As Double = Double.Parse(ControlToValidate.Text)
 Return valD >= Double.Parse(MinimumValue) And _
 valD <= Double.Parse(MaximumValue)
 Catch ex as Exception
 ' The text can't be converted to a number
 Return False
 End Try

 Case ValidationDataType.Text
 Dim valS As String = ControlToValidate.Text
 Return String.Compare(valS, MinimumValue) >= 0 And _
 String.Compare(valS, MaximumValue) <= 0
 Case Else
 Return False
 End Select
End Function

You could use this model to build many more custom validators. But first, continue to the
next section to see these three in action.

Using the Custom Validators
It’s easy to use all of the custom validation components that were built in the last section. All
you need to do is compile the class library project; the components it contains are automatically
added to the Toolbox in Visual Studio (as described in Chapter 9). Then, you can drag validator
components into the component tray, one for each control you want to validate. To configure
how the validation works, adjust the appropriate properties (like the regular expression or
maximum and minimum allowed values) using the Properties window.

Figure 18-5 shows several custom validators on a form. Figure 18-6 shows the validators at
work at runtime, with no validation code required.

Macdonald_694-3C18.fm Page 634 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 635

Figure 18-5. Connecting custom validators

Figure 18-6. Automatic validation

Remember, the validation controls have a single goal in life—to check input values
and display the error icons when they’re needed. The validator controls won’t stop the user
from changing focus or clicking another button (although you could certainly modify the
BaseValidator to add this optional functionality).

As a result, when the user finishes the form and clicks OK to continue, you need to check
that there isn’t any invalid input. You also need to make sure that every validator has been
triggered at least once. Here’s the basic pattern you’ll use:

Macdonald_694-3C18.fm Page 635 Tuesday, July 25, 2006 8:41 AM

636 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

Private Sub cmdOK_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOK.Click

 ' Make sure all the validation is performed.
 requiredFirstName.Validate()
 requiredLastName.Validate()
 emailExpression.Validate()

 ' Check that all the controls are valid.
 If requiredFirstName.IsValid And requiredLastName.IsValid _
 And emailExpression.IsValid Then
 Me.Close()
 Else
 MessageBox.Show("You still have invalid input.", "Invalid Input", _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 End If
End Sub

Unfortunately, the more validators you add, the longer this code becomes. Even worse, it’s
all too easy to forget to check one of the validators and accept invalid information.

To solve this problem, you need a generic way to scan all the validators on a form and check
that each one is valid. But because the validators aren’t controls (instead, they’re components),
they won’t be stored in the Form.Controls collection. That means if you want to track all the
validators that are associated with a form, you need to add this logic yourself.

One solution is to tell the validator to add itself to the components collection of the form
that hosts it. Technically, the components collection is meant for components that use unmanaged
resources and need to receive notification when the form is disposed. However, it also gives
you an easy way to create a form-wide collection of validators that you can search.

To implement this solution, you simply need to add a new constructor to each of your vali-
dator classes. This constructor accepts the form’s components collection and registers itself.

Public Sub New (ByVal container As System.ComponentModel.IContainer)
 MyBase.New
 container.Add(Me)
End Sub

Provided this constructor is available, Visual Studio will automatically use it. You can then
scan the components collection to perform form-wide validation, as shown here:

Dim invalidInput As Boolean = False

' Make sure all the validation is performed.
For Each component As IComponent In formComponents.Components
 If TypeOf component Is BaseValidator Then
 Dim validator As BaseValidator = CType(component, BaseValidator)
 validator.Validate()

Macdonald_694-3C18.fm Page 636 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 637

 If Not validator.IsValid Then
 invalidInput = True
 Exit For
 End If
 End If
Next

Of course, there’s no good reason to put all this validation code in the client. Instead, you
can add a helper method to the BaseValidator class that performs this check. Here’s an example:

Public Shared Function IsFormValid(formComponents As IContainer) As Boolean
 Dim invalidInput As Boolean = False

 ' Maybe nothing to validate...
 If formComponents Is Nothing Then
 Return(True)
 End If

 ' Make sure all the validation is performed.
 For Each component As IComponent In formComponents.Components
 If TypeOf component Is BaseValidator Then
 Dim validator As BaseValidator = CType(component, BaseValidator)
 validator.Validate()
 If Not validator.IsValid Then
 invalidInput = True
 Exit For
 End If
 End If
 Next
 Return Not invalidInput
End Function

Now you can call this method in your client to check the form, with less hassle:

Private Sub cmdOK_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOK.Click
 If BaseValidator.IsFormValid(Me.components)
 Me.Close()
 Else
 MessageBox.Show("You still have invalid input.", "Invalid Input", _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 End If
End Sub

Masked Edit Controls
The best possible way to prevent invalid input is to make it impossible for users to enter it in
the first place. You accomplish this by forcing users to choose from lists, ignoring invalid key

Macdonald_694-3C18.fm Page 637 Tuesday, July 25, 2006 8:41 AM

638 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

presses, and using specialized controls. Specialized controls can include the date controls
described in Chapter 4, your own custom controls, or the MaskedTextBox, one of .NET’s
newest additions.

A masked text box is a text box that automatically formats input as it’s entered. For example, if
you type 1234567890 into a masked edit control that uses a U.S. telephone number mask, the
number will be displayed as the string (123) 456-7890. Masked edit controls have numerous
advantages:

• They provide more guidance. When empty, a masked edit control shows all the literal
values, along with placeholders where the user supplied values need to go. For example,
the phone number control shows the text string (___) ___-____ when it’s empty, clearly
indicating what type of information it needs.

• They make data easier to understand. Many values are easier to read and interpret
when formatted a certain way. Examples include social security numbers, phone numbers,
zip codes, and IP addresses.

• They prevent errors. Masks not only enforce details like data length and format, they
also reject invalid characters (like letters in a phone number or a second decimal place
in a number).

One of the most interesting aspects of a masked edit control is the way it avoids canonical-
ization errors, which occur when there is more than one way of representing the same
information. One example of a canonicalization error is when a date is entered in day-month
format when your code expects month-day. Phone numbers can also suffer from canonicaliza-
tion errors. For example, your code might assume that the user will enter a series of ordinary
numbers, and fail if the user adds dashes or forgets to include the area code. Masked edit
controls neatly sidestep many of these problems.

Masked edit controls are nothing new—in fact, they’ve been a part of Access and Visual
Basic (thanks to an ActiveX control) for years. However, .NET 1.0 and 1.1 didn’t include any
native support for masks. In .NET 2.0, the new MaskedTextBox provides a text box that offers
support for masks.

■Note The MaskedTextBox functionality is completely new. It is not a wrapper on the somewhat quirky
ActiveX control used in previous versions of Visual Basic, although the masking language is very similar.

Creating a Mask
You can set the mask for a MaskedTextBox using one of several prebuilt choices at design time.
Just click the ellipsis (. . .) next to the Mask property in the Properties window (or click Set the
Mask Associated with This Control in the smart tag for the MaskedTextBox). A dialog box named
Input Mask will appear (see Figure 18-7), with a list of commonly used masks (for phone numbers,
zip codes, dates, and so on). When you select a mask from the list, the mask appears in the
Mask text box. You can try out the mask in a sample MaskedTextBox using the Try It text box.

Macdonald_694-3C18.fm Page 638 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 639

Figure 18-7. Choosing a mask at design time

You can also set your own custom mask, either by customizing a mask in the Input Mask
dialog box or writing one from scratch. Every mask is built out of two types of characters: place-
holders, which designate where the user must supply a character, and literals, which are used
to format the value.

For example, the mask 990.990.990.990 represents an IP address. The periods (.) are literals
that are always displayed. The user can’t delete, modify, or move them. In fact, as the user
types, the cursor automatically jumps over the literal characters. The 0 and 9 characters are
placeholders. 0 represents a required number, and 9 represents an optional number. Thus, the
IP address mask requires four numbers separated by periods, each with one to three digits.

On a form, the MaskedTextBox displays all the literal characters, and puts a prompt char-
acter where each placeholder is defined. For example, if you have the mask 990.990.990.990
and you are using the underscore for your prompt character (which is the default), the text box
initially shows ___.___.___.___ on the form. You can change the prompt character by modifying
the PromptChar property.

Table 18-7 shows the characters you can use to build a custom mask.

■Note The mask characters that the MaskedTextBox uses bear no relation to the regular expression
language! Using regular expressions to write masks would be horrendously complex, and Microsoft devel-
opers chose to go with a simpler, more familiar masking syntax.

Editing with the MaskedTextBox is quite intuitive. The user can move to any position in
the text box and delete or insert characters (in which case existing characters are moved to the
right or left, provided they are allowed in their new position). The MaskedTextBox even supports
cutting and pasting text. Optional characters can be ignored (the user can just skip over them
using the arrow keys) or space characters can be inserted in their place.

Macdonald_694-3C18.fm Page 639 Tuesday, July 25, 2006 8:41 AM

640 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

The MaskedTextBox makes interesting use of the Text property. If you set the Text prop-
erty, the MaskedTextBox treats it as though you were typing each character in the string one by
one into the text box. If it finds any invalid character, it simply ignores it (without raising an
exception).

For example, if you have the phone number mask (000)-000-0000, the best way to set a
phone number through the Text property is like this:

maskedTextBox.Text = "2121234567"

which is displayed as (212)-123-4567. However, you can also use this syntax:

maskedTextBox.Text = "(212)-123-4567"

Table 18-7. Basic Properties of the MaskedTextBox

Character Description

0 Required digit (0–9).

9 Optional digit or space. If left blank, a space is inserted automatically.

Optional digit, space, or plus/minus symbol. If left blank, a space is inserted
automatically.

L Required ASCII letter (a-z or A-Z).

? Optional ASCII letter.

& Required Unicode character. Allows anything that isn’t a control key, including
punctuation and symbols.

C Optional Unicode character.

A Required alphanumeric character (allows letter or number but not punctuation
or symbols).

a Optional alphanumeric character.

. Decimal placeholder.

, Thousands placeholder.

: Time separator.

/ Date separator.

$ Currency symbol.

< All the characters that follow will be converted automatically to lowercase as the
user types them in. (There is no way to switch back to mixed-case entry mode
once you use this character.)

> All the characters that follow will be converted automatically to uppercase as
the user types them in.

\ Escapes a masked character, turning it into a literal. Thus, if you use \&, it is
interpreted as a literal character &, which will be inserted in the text box.

All other
characters

All other characters are treated as literals and are shown in the text box.

Macdonald_694-3C18.fm Page 640 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 641

Typically, the only reason you’d use this approach is if you’re binding the text box to a data
value that’s already formatted.

Finally, you can even break the rules altogether and supply invalid characters, like this:

maskedTextBox.Text = "((212))123!!"

The invalid characters are silently discarded, so the text box now displays (212)-123-___
(the last four numbers haven’t been supplied). You can change this behavior to some extent
using the RejectInputOnFirstFailure property described in Table 18-8.

Reading from the Text property is another issue. The format you get depends on the
TextMaskFormat property, which takes one of four values from the MaskFormat enumeration:
IncludePromptAndLiterals (the default), IncludeLiterals, IncludePrompt, and
ExcludePromptAndLiterals. For example, if you have the phone number shown previously
(which contains literals and user supplied values), IncludePromptAndLiterals and IncludeLiterals
return (212)-123-4567, while IncludePrompt and ExcludePromptAndLiterals return
2121234567. On the other hand, if you have a partially filled out phone number, the
IncludePromptAndLiterals and IncludePrompt values will include that prompt character. That
means IncludePromptAndLiterals will be (212)-123-____ while IncludePrompt is 212123____.
The formats that don’t include the prompt character just substitute spaces instead.

The MaskedTextBox Class
The MaskedTextBox derives from TextBoxBase, an ancestor of the TextBox control. As a result,
the MaskedTextBox includes most of the same properties as the TextBox. (One notable excep-
tion is the MultiLine property, which isn’t used.) The MaskedTextBox also offers several new
ingredients, as shown in Table 18-8.

Table 18-8. Basic Properties of the MaskedTextBox

Property Description

Mask Specifies the pattern that the input must match, complete
with literal values. For example, the mask (000)-000-0000
defines a phone number. The zeroes represent digits the user
must enter, and the other characters are placeholders that
are always shown. (999)-000-0000 defines a phone number
where the area code is optional.

PromptChar Every required value in the MaskedTextBox is displayed
with a prompt character until the user enters a value. The
default prompt character is the underscore (_), so a mask
for a telephone number displays (___)-___-____ while
empty. Whatever you do, make sure you don’t use a
PromptChar that you are already using as a literal, as
that will cause complete confusion!

Text By default, the Text property returns everything you see in the
masked text box, including prompt characters and literals.
However, you can configure this using the TextMaskFormat
property. You can also use the Text property to set the text,
in which case invalid characters are ignored.

Macdonald_694-3C18.fm Page 641 Tuesday, July 25, 2006 8:41 AM

642 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

TextMaskFormat Determines the format of the Text property. You can use
one of four values from the MaskFormat enumeration—
IncludePromptAndLiterals (the default), IncludeLiterals,
IncludePrompt, and ExcludePromptAndLiterals.

CutCopyMaskFormat Similar to TextMaskFormat, but determines the text that’s
copied to the clipboard when you use a cut or copy operation.

AllowPromptAsInput In some cases, you might allow the user to enter the same
character you use as the prompt character. For example,
the C placeholder accepts any character, including the
underscore, which is the default prompt character. In this
situation, you can set AllowPromptAsInput to False to
prevent the user from being allowed to use the prompt
character as a value.

InsertMode Accepts a value from the MaskedTextBoxInsertMode
enumeration. This can set the text box to always be in insert
mode (On), always stay in overwrite mode (Off), or vary
depending on the state of the Insert key (InsertKeyMode).

HidePromptOnLeave Hides the prompt characters when the control doesn’t have
focus (spaces are shown in their place).

PasswordChar and If you want all user-supplied values to be hidden from
view, you can either supply a password character, or set
UseSystemPasswardChar to True to use the standard
Unicode dot.

BeepOnError If the user inputs an invalid character and BeepOnError is
True, the MaskedTextBox will play the standard error sound.

RejectInputOnFirstFailure Some operations transfer multiple characters into the
MaskedTextBox at once. Two common examples are
pasting from the clipboard and setting the Text property.
In either case, if RejectInputOnFirstFailure is True, the
MaskedTextBox will stop processing the remaining values
when it encounters the first error. The MaskInputRejected
event is raised only once. If RejectInputOnFirstFailure is
False (the default), the MaskedTextBox tries to process
each character individually.

ResetOnPrompt If True (the default), if the user types the prompt character
over an existing value, the existing value is deleted. If False,
the prompt character is treated as a normal key press (which
usually means it isn’t allowed).

ResetOnSpace If True (the default), if the user types the space character
over an existing value, the existing value is deleted. If False,
the prompt character is treated as a normal key press (which
usually means it isn’t allowed).

Table 18-8. Basic Properties of the MaskedTextBox (Continued)

Property Description

Macdonald_694-3C18.fm Page 642 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 643

MaskedTextBox Events
One of the more useful features of the MaskedTextBox is the ability to convert the user’s infor-
mation to strongly typed values by setting the ValidatingType property. For example, imagine
you’ve chosen a mask that expects a date in a standard form recognized by the DateTime.
Parse() method. In this case, just set the ValidatingType property like this:

maskedTextBox.ValidatingType = GetType(DateTime)

Once the mask is complete, you can retrieve the converted value by responding to the
TypeValidationCompleted event. At that point, you can check the IsValidInput property of the
TypeValidationEventArgs object, and if it’s True, you can retrieve the properly converted
object from the ReturnValue property. Here’s an example:

SkipLiterals If True (the default) and the cursor is positioned just before
a literal character, the user can type in that literal, and the
cursor will move forward one space. For example, if a user
is entering a phone number and the cursor is positioned
just before the dash (-) and the user types in a dash char-
acter, the cursor will move past the dash. If SkipLiterals is
False, typing in the dash at this point has no effect, and the
cursor remains in the same position until the next number
is entered. The “skip ahead” behavior is just a cue for the
user—either way, typing the literal has no effect on the
value, and users never need to type in a literal.

ValidatingType and
FormatProvider

These allow you to get strongly typed values from the
MaskedTextBox. ValidatingType is a Type object that repre-
sents the data type the value should be converted into. When
the mask is complete, you can retrieve this value in the
TypeValidationCompleted event. If you need to convert a
text string into a value and the standard Parse() method
can’t do it, you can specify a custom FormatProvider to use
for the operation.

MaskCompleted and MaskFull MaskCompleted returns True if there are no empty
required characters in the mask (meaning the user has
entered the required value). MaskFull returns True if there
are no empty characters in the mask at all (including optional
values). If your mask doesn’t include optional values,
MaskCompleted and MaskFull will always be the same.

MaskInputRejected event Fires whenever an invalid character is entered.
MaskInputRejectedEventArgs provides the position where
the error occurred, and a MaskedTextResultHint that may
provide more information about why the error occurred.

TypeValidationCompleted event Fires when the mask is complete. At this point, you can check
whether the entered value was successfully converted to the
ValidatingType, and retrieve it.

Table 18-8. Basic Properties of the MaskedTextBox (Continued)

Property Description

Macdonald_694-3C18.fm Page 643 Tuesday, July 25, 2006 8:41 AM

644 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

Private dateVal As DateTime

Private Sub maskedTextBox1_TypeValidationCompleted(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.TypeValidationEventArgs) _
 Handles maskedTextBox1.TypeValidationCompleted
 If e.IsValidInput Then
 ' The value can be successfully converted to a date.
 dateVal = CType(e.ReturnValue, DateTime)
 MessageBox.Show("You have correctly entered a date value.")
 Else
 dateVal = DateTime.MinValue
 MessageBox.Show("Your value fits the mask, but it isn't a valid date.")
 End If
End Sub

If you use a custom type, you need to equip your type with a shared Parse() method that
converts a string (supplied as the only parameter) to the appropriate object instance. Here’s
the signature you need to follow:

Public Shared Function Parse(ByVal s As String) As MyType
 ...
End Function

The MaskedTextBox will find this method (using reflection) and call it when the mask is
complete, just before the TypeValidationCompleted event fires.

■Note The online examples for this chapter include an IP address sample that creates an IP object after a
mask is completed.

You can also respond to a MaskInputRejected event, which fires whenever the user enters
an invalid character that’s discarded. Unfortunately, the MaskInputRejected event doesn’t
provide any information about what the problem is, but it might still be useful if you want to
show a generic error message. The following code shows a tooltip when an error occurs and
clears it the next time a change is successfully committed:

Private Sub maskedTextBox1_MaskInputRejected(ByVal sender As Object, _
 ByVal e As MaskInputRejectedEventArgs) _
 Handles maskedTextBox1.MaskInputRejected
 ' Show an error notification.
 Dim control As Control = CType(sender, Control)
 toolTip1.Show("That character is not allowed in this text box.", _
 control, New Point(control.Height, control.Height+1))
End Sub

Macdonald_694-3C18.fm Page 644 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 645

Private Sub maskedTextBox1_TextChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles maskedTextBox1.TextChanged
 ' Hide any error messages.
 toolTip1.Hide(CType(sender, IWin32Window))
End Sub

Figure 18-8 shows the result.

Figure 18-8. Catching invalid characters in a mask

Registering a Custom Mask
If you’ve created a custom mask that you’d like to reuse or share with others, you can use a
handy extensibility system through the MaskDescriptor. The basic idea is that you create
a MaskDescriptor class that provides your mask, the associated data type, and some other
descriptive information like the mask name and a sample of a valid value. Once you create the
MaskDescriptor, other controls can read and use the information. Currently, there’s only one
.NET piece that uses MaskDescriptor classes—the MaskPropertyEditor that displays the Input
Mask dialog box where you can choose a mask at design time.

When you display the Input Mask dialog box, the MaskProperty editor searches the current
assembly (and all referenced assemblies) for classes that derive from MaskDescriptor. Whenever
it finds one, it adds it to the list of allowed masks.

For example, you could create the following IPv5MaskDescriptor class to describe a mask
that represents IPv5 network addresses:

Public Class IPv5MaskDescriptor
 Inherits MaskDescriptor

 Public Overrides ReadOnly Property Mask() As String
 Get
 Return "099.099.099.099"
 End Get
 End Property

 Public Overrides ReadOnly Property Name() As String
 Get
 Return "IPv5 IP address"
 End Get
 End Property

Macdonald_694-3C18.fm Page 645 Tuesday, July 25, 2006 8:41 AM

646 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

 Public Overrides ReadOnly Property Sample() As String
 Get
 Return "128.128.1.0"
 End Get
 End Property

 Public Overrides ReadOnly Property ValidatingType() As Type
 Get
 Return GetType(IPv5)
 End Get
 End Property

End Class

To try this out, add it to a project, rebuild the assembly (choose Build ➤ Rebuild Solution).
Then select a MaskedEditTextBox on a form and click the ellipsis (. . .) next to the Mask
property to show the Input Mask dialog box. Figure 18-9 shows the result, with the custom
IPv5MaskDescriptor first in the list.

Figure 18-9. Plugging a custom mask into the Input Mask dialog box

Creating Custom Masked Controls
The MaskedTextBox control doesn’t actually include the functionality needed to validate
masks. Instead, the MaskedTextBox control relies on a more generic service provided by
another class—the MaskedTextProvider class in the System.ComponentModel namespace.
You can use the MaskedTextProvider to implement your own masked control, although the
process probably won’t be easy, because it needs you to have fine-grained control over the
display and keyboard handling of the control.

To create a custom masked control, you need to follow these guidelines:

Macdonald_694-3C18.fm Page 646 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 647

• Create a control that maintains an instance of MaskedTextProvider internally. The
MaskedTextProvider is stateful—it maintains the text that the user has entered into the
mask so far.

• Whenever the custom control receives a key press, determine the attempted action and
pass it on to the MaskedTextProvider using methods like Add(), Insert(), Remove(), and
Replace(). The MaskedTextProvider will automatically ignore invalid characters.

• After you’ve sent a change to the MaskedTextProvider, call MaskedTextProvider.
ToDisplayString() to get the latest text. You can then refresh your custom control.
Ideally, you’ll update just those characters that have changed, although that often isn’t
when you’re deriving from other controls, in which case you may need to replace all the
text in one operation, which might cause flicker.

The difficulty in using the MaskedTextProvider is keeping track of all the low-level details,
like the user’s current position in the input string.

The following example creates a custom ComboBox control that uses this principle to
support masking in a combo box. First of all, you need to create a class that derives from
ComboBox, create the private MaskedTextProvider member, and expose the Mask and
MaskCompleted properties.

Public Class MaskedComboBox
 Inherits ComboBox

 Private maskProvider As MaskedTextProvider

 Public Property Mask() As String
 Get
 If maskProvider Is Nothing Then
 Return ""
 Else
 Return maskProvider.Mask
 End If
 End Get
 Set(ByVal value As String)
 If value = "" Then
 maskProvider = Nothing
 Me.Text = ""
 Else
 ' This is necessary because the Mask property is read-only.
 maskProvider = New MaskedTextProvider(value)
 Me.Text = maskProvider.ToDisplayString()
 End If
 End Set
 End Property

Macdonald_694-3C18.fm Page 647 Tuesday, July 25, 2006 8:41 AM

648 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

 Public ReadOnly Property MaskCompleted() As Boolean
 Get
 Return maskProvider.MaskCompleted
 End Get
 End Property

 ...
End Class

The next step is to create two useful private functions that you’ll need to rely on. First, the
SkipToEditableCharacter() method returns the edit position where the cursor should be posi-
tioned. You need to call this at various times as the user moves through the mask to make sure
you skip over mask characters. MaskedTextProvider.FindEditPostionFrom() performs the
hard work, finding the next valid insertion point to the right of the current cursor position.

Private Function SkipToEditableCharacter(ByVal startPos As Integer) _
 As Integer
 Dim newPos As Integer = maskProvider.FindEditPositionFrom(startPos, True)
 If newPos = -1 Then
 ' Already at the end of the string.
 Return startPos
 Else
 Return newPos
 End If
End Function

Another important private method is RefreshText(), which gets the most recent text from
the MaskedTextProvider, displays it in the current control, and resets the cursor to the correct
position.

Private Sub RefreshText(ByVal pos As Integer)
 Me.Text = maskProvider.ToDisplayString()

 ' Position cursor.
 Me.SelectionStart = pos
End Sub

The final detail is to override OnKeyDown() and OnKeyPress(). You can use OnKeyPress()
to react to ordinary characters and the Backspace key. However, when inserting a character
you need to take special care to find out whether the Insert key is currently on. Notice that the
code sets the e.Handled property to True, so the key won’t be processed any further by the base
ComboBox class.

Private Declare Function GetKeyState Lib "User32.dll"(_
 ByVal key As Integer) As Integer

Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
 If maskProvider IsNot Nothing Then
 Dim pos As Integer = Me.SelectionStart

Macdonald_694-3C18.fm Page 648 Tuesday, July 25, 2006 8:41 AM

C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G 649

 ' Deleting a character (backspace).
 ' Currently this steps over a format character
 ' (unlinked MaskedTextBox, which steps over and
 ' deletes the next input character).
 ' You could use the private SkipToEditableCharacter()
 ' method to change this behavior.
 If Asc(e.KeyChar) = CInt(Keys.Back) Then
 If pos > 0 Then
 pos -= 1
 maskProvider.RemoveAt(pos)
 End If
 ' Adding a character.
 ElseIf pos < Me.Text.Length Then
 pos = SkipToEditableCharacter(pos)

 ' Overwrite mode is on.
 If GetKeyState(CInt(Keys.Insert)) = 1 Then
 If maskProvider.Replace(e.KeyChar, pos) Then
 pos += 1
 End If
 ' Insert mode is on.
 Else
 If maskProvider.InsertAt(e.KeyChar, pos) Then
 pos += 1
 End If
 End If

 ' Find the new cursor position.
 pos = SkipToEditableCharacter(pos)
 End If

 RefreshText(pos)
 e.Handled = True
 End If

 MyBase.OnKeyPress(e)
End Sub

The OnKeyDown() method allows you to handle special extended keys, like Delete.

Protected Overrides Sub OnKeyDown(ByVal e As KeyEventArgs)
 Dim pos As Integer = Me.SelectionStart

 ' Deleting a character (Delete key).
 ' Currently this does nothing if you try to delete
 ' a format character (unliked MaskedTextBox, which
 ' deletes the next input character).
 ' You could use the private SkipToEditableCharacter

Macdonald_694-3C18.fm Page 649 Tuesday, July 25, 2006 8:41 AM

650 C H A P T E R 1 8 ■ V A L I D A T I O N A N D M A S K E D E D I T I N G

 ' method to change this behavior.
 If CInt(e.KeyCode) = CInt(Keys.Delete) And pos < Me.Text.Length Then
 If maskProvider.RemoveAt(pos) Then
 RefreshText(pos)
 End If
 e.Handled = True
 End If

 MyBase.OnKeyDown(e)
End Sub

Figure 18-10 shows the MaskedComboBox at work.

Figure 18-10. Entering data in a custom masked combo box

This lengthy code still doesn’t provide all the functionality you probably want. For example,
you may want to handle the WM_PASTE message by overriding the WndProc() method, so that
you can accept pasted text. You might also want to add logic to the OnKeyDown() method to
handle keystrokes when text is selected (like Delete).

The Last Word
This chapter gave an in-depth look at different validation techniques, from the simple (validation
events and the ErrorProvider) to the most sophisticated (regular expressions, custom validation
components, and masked controls). For more tips about preventing invalid input and managing
complexity, refer to Appendix A, which gives a basic user-interface design primer.

Macdonald_694-3C18.fm Page 650 Tuesday, July 25, 2006 8:41 AM

651

■ ■ ■

C H A P T E R 1 9

Multiple and Single
Document Interfaces

As long as developers have had graphical windows to play with, there have been heated
debates about the best ways to organize these windows into applications. Although there are
hundreds of possibilities, most user interfaces tend to fall into one of three categories:

• MDI (multiple document interface). MDIs start with a single container window that
represents the entire application. Inside the container window are multiple child windows.
Depending on the type of application, these child windows might represent different
documents the user is editing at the same time or different views of the same data. Visual
Studio is an MDI application.

• SDI (single document interface). SDIs can open only a single document at a time. Notepad
is an example of an SDI application—if you want to open two text files at once, you need
to fire up two instances of Notepad.

• MFI (multiple frame interface). MFIs place each document into a completely separate
window, which gets a separate button on the taskbar. When you open multiple documents
in an MFI application, it looks as though there are multiple instances of the application
running at once (similar to an SDI application). However, the underlying architecture is
different. Word is an MFI application—even though each document has its own sepa-
rate window, you can use the Window menu to jump from one to another, because
they’re really all part of one application.

In this chapter, you’ll learn how to use these different models, and you’ll learn about the
specific MDI features that are included in .NET. You’ll also learn how to use basic window
management and synchronization with the document-view architecture.

The Evolution of Document Interface Models
Early Windows applications were only designed to deal with one task a time. For example, if
you wanted to edit two text files, you opened two instances of Notepad. This is still the way that
many small-scale Windows applications work today, including the Calculator, Paint, and
Notepad accessories that are included with Windows. (All the examples you’ve seen in this
book so far are SDI applications.)

Macdonald_694-3C19.fm Page 651 Tuesday, July 25, 2006 7:51 AM

652 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Soon after, the first MDI applications appeared. MDI applications were perfect for docu-
ment-centric applications, because they allowed you to work with several documents in a
single work environment (see Figure 19-1). The hallmarks of a typical document-centric MDI
application include a main window, a common set of toolbars, and a top-level Window menu.
The Window menu provides a list of all the open documents and allows you to switch from one
to another quickly. Often, MDI applications let you tile or cascade child windows to view several
documents side by side. They may also include floating or dockable tool windows that provide
access to additional features.

Figure 19-1. Visio: An MDI

There are essentially two types of MDI applications:

• Document applications. These applications use a single application window to contain
multiple identical document windows. In a word processing program, this might provide a
simple way for a user to work with several files at once.

Macdonald_694-3C19.fm Page 652 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 653

• Workspace applications. These applications provide several different windows (which
correspond to different features) that can all be displayed simultaneously. For example,
you might create a project management program that allows you to simultaneously
browse through a list of users, enter new projects, and report software bugs. This could
be modeled in an Explorer-style SDI application, but the user would be able to perform
only one task at a time.

MDI applications remained the de facto standard until the last few years. In a drive to
streamline and simplify Windows applications, Microsoft has quietly created a hybrid approach—
MFI applications.

In an MFI application, multiple documents are displayed in separate windows, as though
they were separate instances of the same application, although only one instance is actually
running (see Figure 19-2). Each window has its own copy of the application menu and toolbars.
For example, Internet Explorer is an MFI application—if you want to open several pages at
once, the pages appear in several windows, each of which is shown on the taskbar. Microsoft
Word also has become an MFI application, although it was one of the earliest MDI examples in
the Windows world. Most other word processors and document applications use MDIs. Excel
straddles the fence—it allows you to manipulate several spreadsheet windows in the same main
window (like an MDI application), but it also adopts the MFI convention of adding a separate
button to the taskbar for each open document.

Figure 19-2. Word: An MFI

Macdonald_694-3C19.fm Page 653 Tuesday, July 25, 2006 7:51 AM

654 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

■Tip When planning your own applications, it’s always good to survey the landscape and study the models
used in today’s most popular applications. That tells you what interfaces are the most successful and, more
importantly, what the average user is most familiar with.

The debate among MDI, SDI, and MFI is sometimes heated.1 There is no clear standard,
although Microsoft officially states that MFI and SDI are easier to use and preferred. The best
design depends on the purpose of your application and the user it is designed to serve. If you
are dealing with advanced users who need to manage several views simultaneously, an MDI is
often better than scattering multiple windows across the taskbar. On the other hand, if you
are creating a small application for a novice user, it may be clearer to follow a simpler MFI or
SDI design.

There are also architectural considerations. MDI design is usually one of the easiest models
to implement, because programming frameworks like .NET include extensive support for it.
SDI design is even easier, but if you need to support certain features (like drag-and-drop
between windows, or some other form of document interaction), life gets more complicated,
because you need to deal with cross-application communication. In .NET, this involves using
the set of features known as remoting.

Finally, if you use an MFI design, you may have substantial issues keeping different windows
and views synchronized. There’s no prebuilt MFI framework in .NET, so you’ll need to build
your own, and make sure it adheres to convention (so it doesn’t confuse the user).

Recently, some applications have revamped the look of MDI. The best example is Visual
Studio, which provides a unique user interface with tabbed and grouped windows. The basic
principle of MDI—hosting several different windows in one large container—remains unchanged,
but the style is streamlined. FrontPage is another example of an MDI application that displays
child windows using a set of tabs. Unfortunately, tabbed windows are higher-level features that
are not trivial to create and completely absent from .NET. If you want this functionality, you’ll
probably need to use a third-party component (as discussed at the end of this chapter).

At the other end of the spectrum, many newer applications are adopting conventions from
the world of the Web to create modular, flow-based applications. Creating these types of appli-
cations is more complicated, because you need to build your own window management system.
However, it allows highly configurable displays that can adapt to different content, different
types of users, and different screen resolutions. There are a whole set of acronyms used to
describe these Web-like applications—Microsoft sometimes uses the term IUI (inductive user
interface). For more about these techniques, refer to Chapter 21.

MDI Essentials
In .NET, there is no sharp distinction between ordinary forms and MDI forms. In fact, you can
transform any form into an MDI parent at design time or runtime by setting the IsMdiContainer

1. One of the key features driving savvy Web surfers away from Internet Explorer to the upstart Firefox, for
example, is the latter’s use of tabbed windows (MDI design) to show multiple pages at once. To some
users, this relatively minor feature is more important than any consideration about security, spyware,
or compatibility!

Macdonald_694-3C19.fm Page 654 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 655

container. You can even change a window back and forth at will, which is a mind-expanding trick
never before allowed.

Me.IsMdiContainer = True

When displayed as an MDI container, the form’s surface becomes a dark gray open area
where other windows can be hosted. To add a window as an MDI child, you simply set the
form’s MdiParent property on start-up:

Dim frmChild As New Child()
frmChild.MdiParent = Me
frmChild.Show()

Ideally, you perform this task before you display the window, but with .NET, you don’t
need to. In fact, you can even have more than one MDI parent in the same project, and move a
child from one parent to the other by changing the MdiParent property.

Figure 19-3 shows two different views of an MDI parent with a contained MDI child.

Figure 19-3. An MDI child

One of the most unusual features of an MDI parent in .NET is that it can display any type
of control. Traditionally, MDI parents only support docked controls like toolbars, status bars,
and menus. With an MDI parent created in .NET, however, you can add any other type of
control, and it remains fixed in place (or anchored and docked), suspended “above” any other
MDI child windows.

This trick can be used to create a bizarre window like that shown in Figure 19-4 or a unique
type of floating tool window (although you’ll need to add the “fake” drag-and-drop support, as
described in Chapter 4).

■Tip MDI child forms can be minimized or maximized. When maximized, they take up the entire viewable
area, and the title name appears in square brackets in the MDI container’s title bar. When minimized, just
the title bar portion appears at the bottom of the window. You can prevent this behavior by disabling the
ShowMaximize or ShowMinimize properties for the child form.

Macdonald_694-3C19.fm Page 655 Tuesday, July 25, 2006 7:51 AM

656 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Figure 19-4. Suspended controls

Finding Your Relatives
If you display multiple windows in an SDI application, you need to carefully keep track of each
one, usually by storing a form reference in some sort of shared application class. With MDIs,
you don’t need to go to this extra work. That’s because it’s easy to find the currently active MDI
window, the MDI parent, and the full collection of MDI children.

Consider the next example, which provides a ToolStrip with two buttons: New and Close. The
New button creates an MDI child window, while the Close button always closes the currently active
window (see Figure 19-5). You don’t need to write any extra code to track the currently active child.
Instead, it is provided through the ActiveMdiChild property of the parent form.

Here’s the code:

Private mdiIndex As Integer

Private Sub cmdNew(ByVal sender As Object, ByVal e As EventArgs) _
 Handles newToolStripButton.Click, newToolStripMenuItem.Click
 ' Show a new child form.
 Dim frmChild As New Child()
 frmChild.MdiParent = Me

 mdiIndex += 1
 frmChild.Text = "MDI Child #" & mdiCount.ToString()

 frmChild.Show()
End Sub

Private Sub cmdClose(ByVal sender As Object, ByVal e As EventArgs) _
 Handles openToolStripButton.Click, closeToolStripMenuItem.Click
 ' Close the active child.
 If ActiveMdiChild IsNot Nothing Then
 ActiveMdiChild.Close()
 End If
End Sub

Macdonald_694-3C19.fm Page 656 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 657

The event handlers are treated as user interface “commands” (hence the names cmdClose
and cmdNew). That’s because they aren’t linked to just one control. Instead, clicks on the
menu and the ToolStrip are handled by the same event handlers.

Figure 19-5. Working with the active child

■Tip You also can set the active MDI form using the Form.Activate() method. This is similar to setting the
focus for a control. It automatically moves the appropriate child form to the top of all other child forms and
sets the focus to the most recently selected control on that form. Additionally, you can find the control that has
focus on an MDI form by reading the ActiveControl property.

Synchronizing MDI Children
The MdiParent property allows you to find the MDI container from any child. The
ActiveMdiChild property allows you to find the active child from the parent form. The only
remaining gap to fill is retrieving the full list of all MDI children. You can accomplish this using
the MdiChildren property, which provides an array of form references. (That’s right, an array—
not a collection, which means you can’t use methods like Add() and Remove() to manage MDI
children.)

The next example shows how you can use the MdiChildren array to synchronize MDI children.
In this example, every child shows a text box with the same content. If the text box content is
modified in one window, the custom RefreshChildren() method is called in the parent form.

Macdonald_694-3C19.fm Page 657 Tuesday, July 25, 2006 7:51 AM

658 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Private isUpdating As Boolean = False

Private Sub TextBox1_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles textBox1.TextChanged
 If Me.MdiParent IsNot Nothing And Not isUpdating Then
 ' The reference to the MDI parent must be converted to the appropriate
 ' form class in order to access the custom RefreshChildren() method.
 CType(Me.MdiParent, Parent).RefreshChildren(Me, textBox1.Text)
 End If
End Sub

The RefreshChildren() method in the MDI parent form steps through all the child windows
and updates each one, except the original sender. It also stores the current text in a private
member variable, so it can assign it automatically to newly created windows.

Private synchronizedText As String

Public Sub RefreshChildren(ByVal sender As Child, ByVal text As String)
 ' Store text for use when creating a child form, or if needed later.
 synchronizedText = text

 ' Update children.
 For Each frm As Child In Me.MdiChildren
 If Not frm Is sender Then
 frm.RefreshText(text)
 End If
 Next
End Sub

The refreshing is performed through the RefreshText() method provided by each child
window. It takes special care to avoid triggering another refresh by disabling the event handler
for the duration of the task.

Public Sub RefreshText(ByVal text As String)
 ' Disable the event to prevent an endless string of updates.
 isUpdating = True

 ' Update the control.
 textBox1.Text = text

 ' Re-enable the event handler.
 isUpdating = False
End Sub

Finally, when the parent creates a new child window, it sets the last synchronized text into
the text box using this line of code:

frmChild.RefreshText(synchronizedText)

Macdonald_694-3C19.fm Page 658 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 659

This example shows how synchronization can be implemented using the MdiChildren
property. However, the potential drawback of this technique is that it forces every window to
be updated even if the change only affects one or two. This is suitable if all windows are linked
together, but is not useful if the user is working in multiple independent windows. A more scalable
approach is introduced later when you explore document-view architecture.

MDI Window List
By convention, MDI applications often provide a menu that lists all the open document windows,
and provides options for automatically tiling or cascading them. Adding these features in .NET
is easy.

To create an MDI child window list, simply add a MenuStrip, and then insert one
ToolStripMenuItem for the list. Typically, this ToolStripMenuItem will display the text “&Window”.
Once you’ve created this menu item, set the MenuStrip.MdiWindowListItem to the top-level
ToolStripMenuItem you created. You can perform this step using the Properties window, which
will give you a drop-down list of all the ToolStripMenuItem objects that are a part of the menu.

Once you’ve established this link, the Windows Forms engine automatically adds one item
to the bottom of the submenu for each child window (using the title bar for the menu text) and
places a check mark next to the window that is currently active (see Figure 19-6). The user also
can use the menu to move from window to window, without any required code.

Figure 19-6. The MDI child list

■Note The MDI window list is always added at the bottom of the menu. There is no way to add other menu
items after the list.

There’s a trick here. If you want to put additional options in the same menu that has the
window list (for example, options to rearrange the windows, as you’ll see in the next section),
you’ll probably want to add a separator between your items and the window list. However, you
don’t want this separator to appear if there are no children, because it looks odd at the bottom
of the menu.

Macdonald_694-3C19.fm Page 659 Tuesday, July 25, 2006 7:51 AM

660 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

The easiest solution is to handle the DropDownOpening and DropDownClosed events of
the ToolStripMenuItem for the Window menu and hide or show the separator as required. The
following code implements a reasonably generic approach that works even if you change the
number of items in the menu or the variable name of the separator.

Private Sub windowToolStripMenuItem_DropDownOpening(ByVal sender As Object, _
 ByVal e As EventArgs) Handles windowToolStripMenuItem.DropDownOpening
 If Me.MdiChildren.Length = 0 Then
 ' There are no children.
 ' The last item in the menu must be a separator.
 ' Hide it.
 Dim lastItem As Integer = windowToolStripMenuItem.DropDown.Items.Count - 1
 windowToolStripMenuItem.DropDown.Items(lastItem).Visible = False
 End If
End Sub

Private Sub windowToolStripMenuItem_DropDownClosed(ByVal sender As Object, _
 ByVal e As EventArgs) Handles windowToolStripMenuItem.DropDownClosed
 If Me.MdiChildren.Length = 0 Then
 Dim lastItem As Integer = windowToolStripMenuItem.DropDown.Items.Count - 1
 windowToolStripMenuItem.DropDown.Items(lastItem).Visible = True
 End If
End Sub

MDI Layout
If you want to add the support for tiling and cascading windows, you’ll probably also add these
options to this menu. Every MDI container supports a LayoutMdi() method that accepts a
value from the MdiLayout enumeration and arranges the windows automatically.

For example, here’s the code to tile windows horizontally in response to a menu click in
the Parent form:

Private Sub mnuTileH_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles tileHorizontalToolStripMenuItem.Click
 Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub

Of course, it’s just as easy to create your own custom layout logic. Here’s the code for a
menu option that minimizes all the open windows:

Private Sub mnuMinimizeAll_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles minimizeAllToolStripMenuItem.Click
 For Each frm As Form In Me.MdiChildren
 frm.WindowState = FormWindowState.Minimized
 Next
End Sub

Figure 19-7 shows some of the layout options.

Macdonald_694-3C19.fm Page 660 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 661

Figure 19-7. Different layout options

Merging Menus
Another unique characteristic of MDI applications is their treatment of menus. If you create a
child form with a menu, that menu is added to the main menu when the child form is
displayed. This behavior allows you to provide different options depending on the current
view, but presents a centralized menu to the user.

Using the default menu behavior, menu items from the child form are added to the right
of the predefined menu items in the parent (and removed from the child menu). This merging
process happens whenever the child form gets focus (is activated). As you move from one child
to another, the menus are adjusted automatically.

Figure 19-8 shows an example with a child menu named Document.

■Tip Even if you merge every top-level menu in a child window, the MenuStrip container remains, with its
shaded background. Fortunately, there’s an easy workaround. If you plan to merge the entire menu, you
should set MenuStrip.Visible to False in the child window.

Macdonald_694-3C19.fm Page 661 Tuesday, July 25, 2006 7:51 AM

662 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Figure 19-8. Merged menus

Interestingly enough, both the MenuStrip and the ToolStrip support menu merging. However,
you can only merge between top-level containers of the same type. For example, you perform
menu merging to move a menu from the MenuStrip on the child to the MenuStrip on the parent.
Similarly, you can move a ToolStripItem from a ToolStrip in the child to a ToolStrip in the
parent. However, you can’t move a ToolStripItem into a MenuStrip or a ToolStripMenuItem
into an ordinary ToolStrip through merging.

■Tip If you use merging with the ToolStrip and there is more than one possible destination for merging, your
ToolStripItem objects are merged into the last ToolStrip (the one added to the Controls collection of the parent
form last).

Menu merging revolves around three properties: AllowMerge, MergeAction, and MergeIndex.
For any merging to happen, the AllowMerge property of both top-level containers needs to be
set True (which is the default value). For example, if you’re performing merging between two
main menus, the MenuStrip.AllowMerge property of both the source and destination menus
must be True.

Next, you need to consider the MergeAction and MergeIndex properties of the menu items
in the child. (The MergeAction and MergeIndex properties of the menu items in the parent
have no effect.) The most important of the two properties is MergeAction, which determines
how each individual menu item is merged. It takes one of the values shown in Table 19-1.
MergeIndex is only used if you use a MergeAction of Insert.

Macdonald_694-3C19.fm Page 662 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 663

Merging Nested Menus

Using the Append and Insert merge options, it’s easy to insert new menus from the child into
the parent (as described in Table 19-1). Merging submenus together takes a little more work.

For example, imagine you have a File menu in the parent, with a few basic commands
(New, Open, Save, a separator, and Quit). When a child is activated, you want to add the Print
command just after the Save command. To make this work with menu merging, take these steps:

1. Make sure both MenuStrip controls have AllowMerge set to True (the default).

2. Add a File menu to the child.

3. Set the MergeAction of the File menu to MatchOnly.

4. Add a Print menu item to the child’s File menu.

5. Set the MergeAction of the File menu to Insert, and set the MergeIndex to 3, so it appears
fourth on the list.

6. If you don’t want the empty File menu to appear on the child form, set the top-level File
menu on the child by setting ToolStripMenuItem.Visible to False, or hide the entire
child MenuStrip by setting its Visible property to False. Either way, the merged items
will still appear in the parent menu.

Table 19-1. Values from the MergeAction Enumeration

Value Description

Append Adds the child menu to the end of the parent menu. If you append several
items, their order in the parent menu is the same as their order was in the
child menu. The menu disappears from the child window.

Replace Searches for a matching item in the parent menu. If it finds a matching item,
the parent menu (and its subitems) is replaced with the child menu (and
its subitems). If no match is found, the menus aren’t merged. The menu
disappears from the child window.

Insert Inserts the child item into the parent menu at the position indicated by the
MergeIndex property. For example, if the property is 0, the merged item will
be placed first in the menu. If the property is second, the merged item will be
placed between the original first and second items, and so on. The menu
disappears from the child window.

Remove Searches for a matching item in the parent menu. If a match is found, that
item is removed from the parent. However, the menu remains in the child.

MatchOnly Searches for a matching item in the parent menu but doesn’t perform any
merging. This option is primarily useful for combining top-level menus or nested
structures. For example, if you create a top-level File menu with a MatchOnly
merge, and you place other items into this menu with other merge types (like
Append or Insert), these subitems will be relocated into the parent’s File menu,
if it exists. However, the top-level File menu will remain in the child window.

Macdonald_694-3C19.fm Page 663 Tuesday, July 25, 2006 7:51 AM

664 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Programmatic Merging

In some cases, you might want to perform merging only when certain conditions are true. In this
case, the MergeAction and MergeIndex properties will be too simple to provide the functionality
you want. However, you can still perform programmatic merging using the ToolStripManager.

The ToolStripManager is a utility class made of shared methods. In Chapter 14, you
learned how to use it to save ToolStrip settings and change the ToolStrip renderer for your
application. The ToolStripManager also includes two functions for programmatic menu
merging: Merge() and RevertMerge().

Merge() combines two ToolStrip controls using the MergeAction and MergeIndex properties
described earlier. Here’s the syntax:

ToolStripManager.Merge(toolStripSource, toolStripTarget)

This method returns True if merging is successful, and the target menu has been changed.
If the merge process failed or no action was performed (perhaps because one of the menus has
AllowMerge set to False), it will return False. You may want to handle the Form.Activated or
Form.Enter event to perform merging.

RevertMerge() reverses this step. You can call it in response to the Form.Leave event.

ToolStripManager.RevertMerge(toolStripTarget, toolStripSource)

■Tip There’s no need to use menu merging, particularly if your child windows have essentially the same
set of menu options. In that case, it’s easiest to create your menu in the parent and hide or show certain options
(or entire ToolStrips) when different child windows are activated (by responding to the Form.Activated event).
However, if your child windows have a mix of different menu commands, menu merging may be worthwhile.

Managing Interface State
When creating MDI applications, you’ll often find that you have more than one control with
equivalent functionality. For example, you may find that the buttons in the ToolStrip duplicate
options in the main menu.

To resolve this problem, Windows Forms would need a commanding model. This model
would allow you to define a single command (like opening a document) and then map this
command to different controls. Although .NET doesn’t yet include this feature, you can create
a reasonable solution by adding an extra layer of code. One easy technique is to hand off the
work to another method. Thus, both the toolbar button-click and the menu-click event handlers
forward requests for a new document to a form-level or application class method like
NewDocument(). Here’s how it works in the parent form:

Public Class MDIParent
 Private Sub cmdNew_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles newToolStripButton.Click, newToolStripMenuItem.Click
 ApplicationTasks.NewDocument(Me)
 End Sub
End Class

Macdonald_694-3C19.fm Page 664 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 665

Public Class ApplicationTasks
 Public Shared Sub NewDocument(ByVal parentForm As Form)
 ' (Code implementation here.)
 End Sub
End Class

■Tip This switchboard pattern is an all-purpose approach that works with any control. Of course, with the
ToolStrip and MenuStrip it gets even easier. Because these are two variants of the same control, the event
handler signatures for the Click event are identical, which means in this special case you can handle both
clicks in one event handler. However, you should still separate the implementation code into a separate class
like ApplicationTasks, so you have the flexibility of triggering this action through another path.

Life becomes a little trickier when you need to handle the enabled/disabled state for these
controls. For example, rather than performing error-checking to verify there is an active docu-
ment when the user clicks Save, you should disable the Save button and menu option unless a
document is available. The problem is that you not only have to disable the menu option, you
also need to ensure that the corresponding toolbar button (or any other control that provides
the same functionality) becomes disabled or enabled at the same time. Otherwise, mysterious
bugs can creep into your application, where controls allow a function to be attempted when
the document is in an invalid state. If you are performing all your testing with the menu bar,
you might not even notice this vulnerability, because it’s exposed solely through the toolbar.

Generally, you’ll need a dedicated controller class to manage the state for your applica-
tion. One option is to provide higher-level methods or properties in the controller class that
automatically disable or enable related controls. Then your code will call one of these methods
instead of manually interacting with the appropriate controls.

Here’s how a controller class like this might look:

Public Class MDIMainStateController
 Private MDIMain As MDIParent

 Public Sub New(ByVal mainForm As MDIParent)
 MDIMain = mainForm
 End Sub

 Public Property NewEnabled() As Boolean
 Get
 Return MDIMain.mnuNew.Enabled Or MDIMain.cmdNew.Enabled
 End Get
 Set(ByVal value As Boolean)
 MDIMain.mnuNew.Enabled = value
 MDIMain.cmdNew.Enabled = value
 End Sub
 End Property

End Class

Macdonald_694-3C19.fm Page 665 Tuesday, July 25, 2006 7:51 AM

666 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

This is typical of many programming solutions: it works by adding another layer of indi-
rection. The MDIMainStateController acts as a layer between the form and the user interface
code. When you want to remove the ability for the user to create new documents, you simply
use a single line of code:

controller.NewEnabled = False

As with many programming tasks, the trick is in managing the details. The controller class
technique works well and helps tame the inevitable complexity of your user interface. However,
you need to design with this technique in mind from the beginning, even if your application
only exposes a few simple options.

■Tip For an example of a commanding architecture that’s implemented through a custom component,
check out www.codeproject.com/cs/miscctrl/actionlist.asp.

Document-View Architecture
Many developers will recognize document-view architecture as a staple of MFC design. In .NET,
the emphasis is less critical, because custom form classes can be equipped with most of the
intelligence they need and don’t require an additional separation between the document and
the view. Tasks that typically required views, like scrolling, are dealt with effortlessly with the
built-in smarts of most .NET controls.

On the other hand, there are several scenarios that are particularly well suited to a dedicated
document-view architecture:

• When you are working with complex documents that require helper methods to perform
tasks like preparing the information for display

• When you are providing more than one view of the same document

• When you want the flexibility to provide different views in separate windows or in a
single window

When discussing MDIs, a document is the actual underlying data. For example, with
Microsoft Word the document is the memo, report, or resume the user is composing. The
document often encapsulates document persistence—for example, it might provide methods
that save and re-create the document (possibly with the help of another class). The view is a
window onto the document. For example, the view in Microsoft Word might just include the
page that is currently being edited (which can be scrolled to different pages).

A typical document-view application uses the following ingredients:

• A document class

• A document view class that references an instance of a document

• An MDI child class that hosts the view

• An MDI container that holds all the MDI children

Macdonald_694-3C19.fm Page 666 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 667

Why would a document require more than one view? It’s easy to think of a view as a window
onto a different part of a document, but a view also can correspond to a representation of the
document. For example, you could have an editing view where changes are made and a print
preview that shows the final layout. Both views represent the same data in different ways and
must be synchronized. However, they can’t be cleanly dealt with in a single class. Similarly, you
might have a document object that corresponds to a large amount of information from a data-
base. You could simultaneously view this as a grid of records and as a diagram with two different
views. Yet another example is an HTML file, which can be viewed as straight text or marked-up
content. And of course there are Windows forms, which can be viewed in Visual Studio as
design surfaces or pure code files.

A Document-View Ordering Program
Our next example presents a fairly sophisticated model that supports real-time previews using
the document-view architecture. It includes the following ingredients:

• An Order document object that contains a list of OrderItem objects.

• Two view objects: OrderPrintPreview and OrderGridView. Both derive from the
UserControl class, but they could be implemented just as easily using a Panel or
some other control.

• A Child form class, which can display either of the two view objects.

• A main Parent class, which provides a toolbar and the event handling logic that creates
the document objects and displays the child windows.

• Resource classes, like Product, which represents an individual product, and PriceList,
which provides a shared GetItem() method that accepts a product ID and returns a
Product object with product information.

Figure 19-9 shows the relationship of some of the classes in this example.

Figure 19-9. The document-view architecture in the ordering program

Macdonald_694-3C19.fm Page 667 Tuesday, July 25, 2006 7:51 AM

668 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

The Document Class

The heart of this application is the document class called Order, which represents a collection
of items in a sales order. Because this is a fairly long piece of code, it helps to attack it piecemeal.

■Note In a large-scale solution, it may make sense to create a Document class and derive the Order class
from that class, or to design an IDocument interface that standardizes basic methods like Save() and Open().
However, this example keeps the classes to a bare minimum needed to illustrate the document-view pattern.

The Order class requires the help of several other data classes to model all the information
that represents an order. The first such ingredient is the Product class, which represents an
item in the catalog.

Public Class Product

 Private _id As Integer
 Private _name As String
 Private _description As String
 Private _price As Decimal
 ' (Public properties ID, Name, Description, and Price omitted.)

 Public Sub New(ByVal id As Integer, ByVal name As String, _
 ByVal description As String, ByVal price As Decimal)
 Me.ID = id
 Me.Name = name
 Me.Description = description
 Me.Price = price
 End Sub

End Class

In an order, each product is identified solely by its product ID. The OrderItem class wraps
this information and represents a single line item in an order:

Public Class OrderItem
 Private _id As Integer
 Public Property ID() As Integer
 Get
 Return _id
 End Get
 Set(ByVal value As Integer)
 _id = value
 End Set
 End Property

Macdonald_694-3C19.fm Page 668 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 669

 Public Sub New(ByVal id As Integer)
 Me.ID = id
 End Sub
End Class

The OrderItem doesn’t record the price, because the application always uses the current
price for an order. (If the application were intended to show historical information about past
orders, you would need this information.) To keep things simple, the OrderItem also can only
represent a single unit of any particular item.

Finally, the Order class contains a collection of OrderItem objects. The Order class is created
as a custom collection by deriving from the CollectionBase class. This trick provides an added
benefit to all clients, ensuring that they can easily iterate through the order items using foreach
syntax. It also prevents deficient code from trying to add any objects other than OrderItem
instances.

Here’s the basic framework for the Order class:

Public Class Order
 Inherits CollectionBase

 Private _lastFileName As String = "[New Order]"
 Public Property LastFileName() As String
 Get
 Return _lastFileName
 End Get
 Set(ByVal value As String)
 _lastFileName = value
 End Set
 End Property

 Public Sub Add(ByVal item As OrderItem)
 MyBase.List.Add(item)
 OnDocumentChanged(New EventArgs())
 End Sub

 Public Sub Remove(ByVal index As Integer)
 ' Check to see if there is an item at the supplied index.
 If index > (Me.Count - 1) OrElse index < 0 Then
 Throw New System.IndexOutOfRangeException()
 Else
 MyBase.List.RemoveAt(index)
 End If
 OnDocumentChanged(New EventArgs())
 End Sub

Macdonald_694-3C19.fm Page 669 Tuesday, July 25, 2006 7:51 AM

670 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

 ' Indexer.
 Default Public Property Item(ByVal index As Integer) As OrderItem
 Get
 Return CType(MyBase.List(index), OrderItem)
 End Get
 Set(ByVal value As OrderItem)
 MyBase.List(index) = value
 End Set
 End Property

 Public Event DocumentChanged As EventHandler
 Protected Sub OnDocumentChanged(ByVal e As System.EventArgs)
 ' Note that this currently occurs as items are added or removed,
 ' but not when they are edited. To overcome this would require adding
 ' an additional OrderItem change event.

 ' Raise the DocumentChanged event.
 If Not DocumentChangedEvent Is Nothing Then
 RaiseEvent DocumentChanged(Me, e)
 End If
 End Sub

End Class

The OnDocumentChanged() method is a critically important ingredient. This is the key
that allows other views to update themselves when the list of items in the order is changed
(either by adding a new item or removing an existing one).

The Order class also includes two additional document-specific methods—Save() and
Open()—which transfer the data to and from a file.

Public Sub Open(ByVal filename As String)
 Using fs As FileStream = New FileStream(filename, FileMode.Open)
 Dim r As StreamReader = New StreamReader(fs)
 Do
 Me.Add(New OrderItem(Integer.Parse(r.ReadLine())))
 Loop While r.Peek() <> -1

 r.Close()
 End Using

 ' By placing this last we ensure that the file will not be updated
 ' if a load error occurs.
 Me.LastFileName = filename
End Sub

Macdonald_694-3C19.fm Page 670 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 671

Public Sub Save(ByVal filename As String)
 Using fs As FileStream = New FileStream(filename, FileMode.Create)
 Dim w As StreamWriter = New StreamWriter(fs)
 For Each item As OrderItem In Me.List
 w.WriteLine(item.ID)
 Next item

 w.Close()
 End Using

 ' Note: a real pricing program would probably store the price in the file
 ' (required for orders) but update it to correspond with the current
 ' price for the item when the file is opened.

 ' By placing this last we ensure that the file will not be updated
 ' if a save error occurs.
 Me.LastFileName = filename
End Sub

All in all, the Order class is really built out of three parts: It contains data (the collection of
OrderItem objects), the functionality for saving and opening files, and the DocumentChanged
event that prompts the appropriate views to update themselves when any changes are detected.

The OrderGridView Class

The OrderGridView presents a ListView that displays all the order items and provides support
for adding and removing items. The view is created as a user control, which allows it to hold
various combined controls and be tailored at design time. The ListView is anchored, so that it
grows as the dimensions of the user control expand (see Figure 19-10).

Figure 19-10. The OrderGridView

Macdonald_694-3C19.fm Page 671 Tuesday, July 25, 2006 7:51 AM

672 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Public Class OrderGridView

 Private _document As Order
 Public Property Document() As Order
 Set(ByVal value As Order)
 ' Store a reference to the document, attach the event handler,
 ' and refresh the display.
 _document = value
 AddHandler _document.DocumentChanged, AddressOf RefreshList
 RefreshList()
 End Set
 Get
 Return _document
 End Get
 End Property

 Public Sub New()
 InitializeComponent()
 End Sub

 ' This constructor calls the default constructor to make sure the controls
 ' were added at design-time are created.
 Public Sub New(ByVal document As Order)
 InitializeComponent()

 ' Store a reference to the document, attach the event handler,
 ' and refresh the display.
 Me.Document = document
 End Sub

 Private Sub RefreshList(ByVal sender As Object, ByVal e As System.EventArgs)
 RefreshList()
 End Sub

 Private Sub RefreshList()
 ' Update the ListView control with the new document contents.
 If Not List Is Nothing Then
 ' For best performance, disable refreshes while updating the list.
 List.SuspendLayout()

 List.Items.Clear()

Macdonald_694-3C19.fm Page 672 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 673

 ' Step through the list of items in the document.
 Dim itemProduct As Product
 Dim itemDisplay As ListViewItem
 For Each item As OrderItem In Me.Document
 itemDisplay = List.Items.Add(item.ID.ToString())
 itemProduct = PriceList.GetItem(item.ID)
 itemDisplay.SubItems.Add(itemProduct.Name)
 itemDisplay.SubItems.Add(itemProduct.Price.ToString())
 itemDisplay.SubItems.Add(itemProduct.Description)
 Next item

 List.ResumeLayout()
 End If
 End Sub

 ' Triggered when the Add button is clicked.
 Private Sub cmdAdd_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdAdd.Click
 ' Add a random item.
 Dim randomItem As Random = New Random()
 Document.Add(New OrderItem(randomItem.Next(1, 4)))
 End Sub

 ' Triggered when the Remove button is clicked.
 Private Sub cmdRemove_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdRemove.Click
 ' Remove the current item.
 ' The ListView Is configured for single-selection only.
 If List.SelectedIndices.Count = 1 Then
 Document.Remove(List.SelectedIndices(0))
 End If
 End Sub

End Class

Most of the forms and user controls in this example provide non-default constructors—
that is, custom constructors that accept one or more arguments. This makes it easy for your
code to correctly create and configure the form or user control in one step, supplying the
necessary document. However, the zero-argument constructor is still required, because it’s
used by Visual Studio to create the user control or form at design time. You also need to call this
constructor to make sure the controls you added at design time are instantiated at runtime.
You achieve this by adding the colon after the constructor declaration, followed by the keyword
“this” and any parameters to indicate the constructor you want to use. (Alternatively, you
could call the InitializeComponent() method directly from your constructor.)

Macdonald_694-3C19.fm Page 673 Tuesday, July 25, 2006 7:51 AM

674 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

■Note If you want to add the OrderGridView at design time, make sure you subsequently set the Document
property somewhere in your code to supply the document and attach the event handlers.

Our simple example doesn’t provide an additional product catalog—instead, a random
order item is added every time the Add button is clicked. It also doesn’t include any code for
editing items. None of these details would change the overall model being used.

You also should notice that the RefreshList() method handles the DocumentChanged
event, ensuring that the list is rebuilt if any change is made by any view (or even through code).

The OrderPrintPreview Class

The OrderPrintPreview class is also a user control, but it contains only a single instance of the
PrintPreview control. Once again, this example is intentionally crude. You can easily add other
controls for zooming, moving from page to page, and otherwise configuring the print preview.
Similarly, the printed output is very basic and doesn’t include details like an attractive title or
letterhead. Figure 19-11 shows the OrderPrintPreview view in action.

Figure 19-11. The OrderPrintPreview

The OrderPrintPreview class follows a similar design to the OrderGridView. A reference to the
document is set in the constructor, and the RefreshList() method handles the DocumentChanged
event. The only difference is that the RefreshList() needs to initiate printing using a PrintDocument
instance. The PrintDocument.PrintPage event handler writes the output to the preview window.

Public Class OrderPrintPreview

Partial Public Class OrderPrintPreview : Inherits UserControl
 Public Sub New()
 InitializeComponent()
 End Sub

Macdonald_694-3C19.fm Page 674 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 675

 Private _document As Order
 Public Property Document() As Order
 Set(ByVal value As Order)
 ' Store a reference to the document, attach the event handler,
 ' and refresh the display.
 _document = value
 AddHandler _document.DocumentChanged, AddressOf RefreshList
 AddHandler printDoc_Renamed.PrintPage, AddressOf PrintDoc
 RefreshList()
 End Set
 Get
 Return _document
 End Get
 End Property

 Private printDoc_Renamed As PrintDocument = New PrintDocument()

 Public Sub New(ByVal document As Order)
 InitializeComponent()

 ' Store a reference to the document, attach the document event handlers,
 ' and refresh the display.
 Me.Document = document

 End Sub

 Private Sub RefreshList(ByVal sender As Object, ByVal e As System.EventArgs)
 RefreshList()
 End Sub

 Private Sub RefreshList()
 ' Setting this property starts the preview,
 ' even if the PrintDoc document is already assigned.
 Preview.Document = printDoc_Renamed
 Preview.InvalidatePreview()
 End Sub

 ' Tracks placement while printing.
 Private itemNumber As Integer

 ' The print font.
 Private printFont As Font = New Font("Tahoma", 14, FontStyle.Bold)

Macdonald_694-3C19.fm Page 675 Tuesday, July 25, 2006 7:51 AM

676 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

 Private Sub PrintDoc(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs)
 ' Tracks the line position on the page.
 Dim y As Integer = 70

 ' Step through the items and write them to the page.
 Dim item As OrderItem
 Dim itemProduct As Product

 itemNumber = 0
 Do While itemNumber < Document.Count
 item = Document(itemNumber)
 e.Graphics.DrawString(item.ID.ToString(), printFont,
 Brushes.Black, 70, y)
 itemProduct = PriceList.GetItem(item.ID)
 e.Graphics.DrawString(itemProduct.Name, printFont,
 Brushes.Black, 120, y)
 e.Graphics.DrawString(itemProduct.Price.ToString(), printFont, _
 Brushes.Black, 350, y)

 ' Check if more pages are required.
 If (y + 30) > e.MarginBounds.Height And _
 itemNumber < (Document.Count - 1) Then
 e.HasMorePages = True
 Return
 End If

 ' Move to the next line.
 y += 20
 itemNumber += 1
 Loop

 ' Printing is finished.
 e.HasMorePages = False
 itemNumber = 0
 End Sub

End Class

■Tip Printing operations are threaded asynchronously, which allows you to code lengthy RefreshList() code
without worrying. However, if you create other views that need to perform time-consuming work in their auto-
matic refresh routines (like analyzing statistical data), you should perform the work on a separate thread, and
callback at the end to display the final results.

Macdonald_694-3C19.fm Page 676 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 677

The Child Form Class

So far, everything is designed according to the document-view ideal. Most of the data manipula-
tion logic is concentrated in the Order class, while most of the presentation logic is encapsulated in
the view classes. All that’s left for the child form is to create the appropriate view and display it.
You do this by adding an additional constructor to the form class that accepts an Order docu-
ment object.

Public Class Child

 Public Enum ViewType
 ItemGrid
 PrintPreview
 End Enum

 Public Document As Order

 Public Sub New(ByVal doc As Order, ByVal viewType As ViewType)
 InitializeComponent()

 ' Configure the title.
 Me.Text = doc.LastFileName
 Me.Document = doc

 ' Create a reference for the view.
 ' This reference can accomodate any type of control.
 Dim view As Control = Nothing

 ' Instantiate the appropriate view.
 Select Case viewType
 Case ViewType.ItemGrid
 view = New OrderGridView(doc)
 Case ViewType.PrintPreview
 view = New OrderPrintPreview(doc)
 End Select

 ' Add the view to the form.
 view.Dock = DockStyle.Fill
 Me.Controls.Add(view)
 End Sub

End Class

One advantage to this design is that you can easily create a child window that hosts a combi-
nation of views (for example, grid views for two different orders, or a grid view and print preview for
the same document). You even have the flexibility to change the interface to an SDI style.

Macdonald_694-3C19.fm Page 677 Tuesday, July 25, 2006 7:51 AM

678 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

The Parent Form Class

The MDI parent provides a toolbar with basic options and the typical event handling logic that
allows users to open, close, and save documents. This code follows true “switchboard” style
and relies heavily on the other classes to actually perform the work.

Public Class Parent

 Private lastDir As String = "C:\Temp"

 Private Sub cmdOpen(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOpen.Click
 Dim dlgOpen As OpenFileDialog = New OpenFileDialog()
 dlgOpen.InitialDirectory = lastDir
 dlgOpen.Filter = "Order Files (*.ord)|*.ord"

 ' Show the open dialog.
 If dlgOpen.ShowDialog() = System.Windows.Forms.DialogResult.OK Then
 Dim doc As Order = New Order()

 Try
 doc.Open(dlgOpen.FileName)
 Catch err As Exception
 ' All exceptions bubble up to this level.
 MessageBox.Show(err.ToString())
 Return
 End Try

 ' Create the child form for the selected file.
 Dim frmChild As Child = New Child(doc, Child.ViewType.ItemGrid)
 frmChild.MdiParent = Me
 frmChild.Show()
 End If
 End Sub

 Private Sub cmdNew(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdNew.Click
 ' Create a new order.
 Dim doc As Order = New Order()
 Dim frmChild As Child = New Child(doc, Child.ViewType.ItemGrid)
 frmChild.MdiParent = Me
 frmChild.Show()
 End Sub

Macdonald_694-3C19.fm Page 678 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 679

 Private Sub cmdSave(ByVal sender As Object, ByVal e As EventArgs)_
 Handles cmdSave.Click
 ' Save the current order.
 If Not ActiveMdiChild Is Nothing Then
 Dim dlgSave As SaveFileDialog = New SaveFileDialog()
 Dim doc As Order = (CType(ActiveMdiChild, Child)).Document
 dlgSave.FileName = doc.LastFileName
 dlgSave.Filter = "Order Files (*.ord)|*.ord"

 If dlgSave.ShowDialog() = System.Windows.Forms.DialogResult.OK Then
 Try
 doc.Save(dlgSave.FileName)
 ActiveMdiChild.Text = dlgSave.FileName
 Catch err As Exception
 ' All exceptions bubble up to this level.
 MessageBox.Show(err.ToString())
 Return
 End Try
 End If
 End If
 End Sub

 Private Sub cmdClose(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdClose.Click
 If Not ActiveMdiChild Is Nothing Then
 ActiveMdiChild.Close()
 End If
 End Sub

 Private Sub cmdPreview(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdPreview.Click
 ' Launch a print preview child for the active order.
 If Not ActiveMdiChild Is Nothing Then
 Dim doc As Order = (CType(ActiveMdiChild, Child)).Document

 Dim frmChild As Child = New Child(doc, Child.ViewType.PrintPreview)
 frmChild.MdiParent = Me
 frmChild.Show()
 End If
 End Sub

End Class

One interesting detail is the event handling code for the preview button. It determines
whether there is a current document and, if there is, it opens a preview window with the same
underlying document object.

Figure 19-12 shows the finished application with its synchronized views. You can peruse
the full code in the DocumentView project included with the samples for this chapter.

Macdonald_694-3C19.fm Page 679 Tuesday, July 25, 2006 7:51 AM

680 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Figure 19-12. Synchronized views on the same document

■Note Because this application makes a clean separation of documents and windows, you can use this
approach in other types of applications. For example, tabbed interfaces and MDI interfaces don’t have the
same mapping between documents and windows. Multiple documents can be placed on the same window,
in different tabs. However, you can still use this model to create a tabbed MDI application, because you can
place multiple user controls in different tabs of the same window.

Multiple-Document SDI Applications
SDIs are easy to create—up until this chapter, every application you’ve seen has been a straight-
forward SDI application. However, modern MFI applications implement a few new twists. For
example, some MFI applications include a Window menu that lists all of the open documents.
When you select a document from the list, the appropriate window appears in the foreground.
This behavior is implemented in Microsoft Word and several other Office applications.

Unlike the MDI window list, a window list in an MFI application needs to be implemented
by hand. Essentially, it’s up to you to build a replacement for the ActiveMdiChild and MdiChildren
properties and the Window menu.

The following example shows a replacement class called DocumentManager. It has the
following responsibilities:

• Track all the document forms that are currently open.

• Keep track of which form currently is activated.

Macdonald_694-3C19.fm Page 680 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 681

• Create and update a window menu with a list of open document forms.

• Allow an automatic shutdown when the last document form is closed.

The DocumentManager class tracks the collection of open forms and the active form using
private member variables, as shown here:

Public Class DocumentManager

 ' Track the open documents.
 Private _documents As New Dictionary(Of Form,String)()
 Public ReadOnly Property Documents() As Dictionary(Of Form, String)
 Get
 Return _documents
 End Get
 End Property

 ' Track the form that has focus.
 Private _activeDocumentForm As Form
 Public ReadOnly Property ActiveDocumentForm() As Form
 Get
 Return _activeDocumentForm
 End Get
 End Property
 ...

Notice that the documents collection doesn’t just store a list of form objects. Instead, it
keeps a dictionary of document names, indexed by form reference. This is important, because
the document name is used to fill in the Window menu that lets the user switch from one docu-
ment to another. In this example, the document name is by default the same as the form caption
text—it’s the full file path for the document.

To register a form, you need to call a dedicated DocumentManager.AddForm() method.
This adds the form to the collection and hooks up the events it needs to listen for.

 ...
 Public Sub AddForm(ByVal form As Form)
 If (Not _documents.ContainsKey(form)) Then
 _documents.Add(form, form.Text)

 ' Watch for activation and close events.
 AddHandler form.Activated, AddressOf Form_Activated
 AddHandler form.Closed, AddressOf Form_Closed

 AddHandler form.TextChanged, AddressOf Form_TextChanged
 OnWindowListChanged()
 End If
 End Sub
 ...

Macdonald_694-3C19.fm Page 681 Tuesday, July 25, 2006 7:51 AM

682 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

The rest of the DocumentManager class consists of reacting to these events. For example,
when a form is activated, the DocumentManager class has to change the ActiveDocumentForm
property to reflect the change.

 ...
 Private Sub Form_Activated(ByVal sender As Object, ByVal e As EventArgs)
 _activeDocumentForm = CType(sender, Form)
 End Sub
 ...

When a form is closed, the DocumentManager class has to remove the document from the
document list. It also gives an option to end the application when the last document form is
closed, provided the QuitWhenLastDocumentClosed property is True.

 ...
 Private Sub Form_Closed(ByVal sender As Object, ByVal e As EventArgs)
 Dim form As Form = CType(sender, Form)
 _documents.Remove(form)

 If _documents.Count = 0 AndAlso quitWhenLastDocumentClosed_Renamed Then
 Application.Exit()
 End If
 OnWindowListChanged()
 End Sub

 ' Provide an automatic shut-down feature when
 ' last document is closed, if desired.
 Private quitWhenLastDocumentClosed_Renamed As Boolean = True
 Public Property QuitWhenLastDocumentClosed() As Boolean
 Get
 Return quitWhenLastDocumentClosed_Renamed
 End Get
 Set(ByVal value As Boolean)
 quitWhenLastDocumentClosed_Renamed = Value
 End Set
 End Property
 ...

Next, when a form caption changes, the Form.TextChanged event makes sure the window
list is updated accordingly.

 ...
 Private Sub Form_TextChanged(ByVal sender As Object, ByVal e As EventArgs)
 Dim form As Form = CType(sender, Form)
 _documents(form) = form.Text
 OnWindowListChanged()
 End Sub
 ...

Macdonald_694-3C19.fm Page 682 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 683

Finally, the OnWindowListChanged() method raises an event whenever the window list
changes. The child window can react to this event to update its Window menu.

 ...
 Public Event WindowListChanged As EventHandler(Of WindowListChangedEventArgs)

 Public Sub OnWindowListChanged()
 RaiseEvent WindowListChanged(Me, New WindowListChangedEventArgs(_documents))
 End Sub

End Class

The WindowListChangedEventArgs class isn’t shown here. It simply defines a custom
EventArgs that includes a property for the dictionary of window information.

It’s easy to plug this simple framework into any application. For example, consider the
document-view sample demonstrated in the previous section. To convert it to a multiple docu-
ment MFI application, you need to start by creating a DocumentManager instance. You can
store this as a shared member variable in the Program class, so it’s readily available to the rest
of your code:

Private Shared _documentManager As New DocumentManager()
Public Shared ReadOnly Property DocumentManager() As DocumentManager
 Get
 Return _documentManager
 End Get
End Property

Here’s the interesting part: You need to move the toolbars and menus that are a part of the
Parent form into the Child form. In this revamped version of the application, there won’t be a
parent any longer—instead, there’ll simply be a collection of child windows representing separate
documents, which are tracked and coordinated by the DocumentManager behind the scenes.

However, this design change doesn’t mean you should move all of the code from the
Parent form into the Child form. Instead, it makes sense to use a more factored design and
move the code for creating and saving documents into a new ApplicationTasks class. Here’s
the basic outline:

Public Class ApplicationTasks

 Public Sub Open()
 ...
 End Sub

 Public Sub New()
 ...
 End Sub

 Public Sub Save()
 ...
 End Sub

Macdonald_694-3C19.fm Page 683 Tuesday, July 25, 2006 7:51 AM

684 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

 Public Sub Preview()
 ...
 End Sub

End Class

The code for all of these methods is almost identical to the code you used in the MDI
version of this application. The only change is that you can’t use properties like ActiveMdiChild
and MdiChildren. Instead, you need to use the corresponding DocumentManager versions.
That means you need to replace code like this:

Dim frmChild As New Child(doc, Child.ViewType.ItemGrid)
frmChild.MdiParent = Me
frmChild.Show()

with this:

Dim frmChild As New Child(doc, Child.ViewType.ItemGrid)
Program.DocumentManager.AddForm(frmChild)
frmChild.Show()

You also need to convert every reference to ActiveMdiChild to Program.DocumentManager.
ActiveDocumentForm.

You expose the ApplicationTasks class to the rest of your application in the same way that
you exposed the DocumentManager—through a shared property in the Program class:

Private Shared _appTasks As New ApplicationTasks()
Public Shared ReadOnly Property ApplicationTasks() As AppTasks
 Get
 Return _appTasks
 End Get
End Property

Now when the user clicks a toolbar button in the child, your event handler simply calls the
corresponding method in ApplicationTasks, as shown here:

Private Sub cmdOpen_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdOpen.Click
 Program.AppTasks.Open()
End Sub

You’ll also need to add just a little more logic—namely, the event handler that reacts to the
DocumentManager.WindowListChanged event to update the Window menu and the event
handler that reacts to clicks in the Window menu and activates the corresponding form:

Macdonald_694-3C19.fm Page 684 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 685

Public Sub WindowListChanged(ByVal sender As Object, _
 ByVal e As WindowListChangedEventArgs)
 windowToolStripMenuItem.DropDownItems.Clear()
 For Each name As KeyValuePair(Of Form,String) In e.WindowNames
 Dim menuItem As ToolStripItem = _
 windowToolStripMenuItem.DropDownItems.Add(name.Value)
 menuItem.Tag = name.Key
 Next
End Sub

Private Sub windowToolStripMenuItem_DropDownItemClicked(_
 ByVal sender As Object, ByVal e As ToolStripItemClickedEventArgs) _
 Handles windowToolStripMenuItem.DropDownItemClicked
 ' Show the linked form.

CType(e.ClickedItem.Tag, Form).Activate()
End Sub

And with this modest rearrangement, you now have a fully functioning MFI application, as
shown in Figure 19-13. For the full code, refer to the downloadable examples for this chapter,
in the DocumentViewMFI folder.

Figure 19-13. From MDI to MFI

Macdonald_694-3C19.fm Page 685 Tuesday, July 25, 2006 7:51 AM

686 C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S

Gaps in the Framework
So far, you’ve seen what you can do with .NET. Unfortunately, there are a few challenges that
aren’t nearly as easy to deal with.

Almost everyone expects an MDI to support dockable windows and toolbars—floating
controls that can be latched into place or left hovering above your application. Unfortunately,
designing this type of interface is surprisingly awkward. Windows (and previous application
frameworks) do not provide native support for most of these features. Instead, the developer
has to resort to some creative coding to implement a solution. As a side effect, docked and
floating windows often look different in every Windows application that uses them—even if
these applications are written by Microsoft programmers. Every solution has drawbacks and
advantages.

A good case in point is Visual Studio 2003, which has a completely different docking archi-
tecture than Visual Studio 2005. Even though both interfaces look similar, there are significant
behind-the-scenes differences. For example, Visual Studio 2003 only shows the window border
while dragging, while Visual Studio 2005 shows the contents (with a bit of transparency). Another
difference is in Visual Studio 2003, windows aren’t pulled out of a docked position based only
on the amount they are dragged, but also the speed at which the user drags them. Thus, a quick
jerk will dislodge a docked form, while a slow pull will leave it in place. This behavior changes
in Visual Studio 2005. Unfortunately, docked windows are a nonstandardized area of Windows
programming, and one where the .NET Framework still comes up short.

The previous edition of this book presented a hand-crafted docking strategy. However,
there’s one universal truth about handmade docking—it’s easy to do a simple mock-up, but
very difficult to polish it up into a practical, robust solution. The code for the custom docking
is still available with the downloadable code for this chapter if you want to start exploring your
options. However, we won’t consider it in any detail in this book. As a professional developer,
you’ll be better served by leveraging more full-featured, third-party components than struggling to
cobble together your own solution.

So where should you look to fill this gap? It all depends on the features you need and the
amount you’re willing to pay.

The Windows Forms control gallery is a good first stop, particularly if you’re on a budget.
Look under the Custom Forms ➤ Docking Windows category at www.windowsforms.net/
ControlGallery. You’ll find some freely usable examples and a few free trials. However, there’s
no quality guarantee.

Professional solutions for docking windows are provided by www.dotnetmagic.com,
www.divil.co.uk, and www.actiprosoftware.com.

You also may decide to turn to these component vendors to find controls for implementing
tabbed interfaces, which are another common user interface convention that has no built-in
.NET support. Tabbed interfaces are a way to update class MDIs, and applications like Visual
Studio use them to show several open documents without confusing the ideas of documents
and windows.

Macdonald_694-3C19.fm Page 686 Tuesday, July 25, 2006 7:51 AM

C H A P T E R 1 9 ■ M U L T I P L E AN D S I N G LE D O C U M E N T I N T E R F A C E S 687

■Tip If you follow good design practices and make sure your applications are well encapsulated (with business
logic divided from user interface logic), you should be able to move from one implementation of docking
windows to another without changing crucial pieces of your code.

The Last Word
This chapter explored MDI programming and design. The chapter began with an introduction
to .NET’s effortless MDI features and showed how to use menu merging, simple synchroniza-
tion, and MDI layout styles. It continued in more detail with a sophisticated example of
document-view architecture, which provides the freedom to create multiple synchronized
views hosted in separate windows or the same window. Finally, the chapter ended by consid-
ering some of the missing ingredients in the Windows Forms toolkit.

Macdonald_694-3C19.fm Page 687 Tuesday, July 25, 2006 7:51 AM

Macdonald_694-3C19.fm Page 688 Tuesday, July 25, 2006 7:51 AM

689

■ ■ ■

C H A P T E R 2 0

Multithreading

One of the great advantages of rich client applications is their support for asynchronous
operations—in other words, their ability to perform multiple tasks at the same time and still
remain responsive. The same feat isn’t possible in a typical server-side Web application. Although
Web browsers are themselves multithreaded pieces of software, most Web applications strictly
separate the work that’s done in the browser from the work that’s done on the server, for both
security and compatibility reasons. As a result, there’s little (if any) support for background
processing. Even if the server-side application uses multiple threads, the user is still stuck
waiting until all the work is completed before the final HTML for the page is rendered, sent
back, and displayed in the browser.1

In a Windows client application, running multithreaded code is as easy as instantiating an
object and calling a method. However, multithreading safely isn’t as clear-cut. Several issues
can trip you up, including passing data from one thread to another, updating controls from the
proper thread, and properly cleaning up when the work is finished.

In this chapter, you’ll learn about these techniques and consider several ways to implement
multithreading. You’ll look at a simple application that calculates prime numbers by brute
force and see how to implement it with asynchronous delegate calls, the new BackgroundWorker
component, and the Thread class.

Multithreading Basics
A thread is an independent unit of execution. A complex application can have dozens of threads
executing simultaneously.

You can take a quick count of the threads that are currently running in an application by
using the Task Manager. Just call it up (with Shift+Ctrl+Esc), switch to the Processes tab, and
choose View ➤ Select Columns from the menu. Add a check mark in the Thread Count check
box, and click OK. Now you’ll see a list of processes, with the total threads for each process (see
Figure 20-1).

1. Enterprising Web developers often try to work around these problems with JavaScript code that runs
on the client and manages a background task by making multiple requests. However, trying to make
these kludges reliable and scalable is a small nightmare.

Macdonald_694-3C20.fm Page 689 Tuesday, July 25, 2006 7:53 AM

690 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Figure 20-1. The current processes and thread use

■Tip If you want to take a deeper look under the hood, with more thread details for currently running appli-
cations, you can use a utility such as the free Process Explorer (available from www.sysinternals.com).
For example, Process Explorer lets you see when a thread was created, the name of the thread’s starting
method, and even the current call stack.

When you program with threads, you write your code as though each thread were running
independently. Behind the scenes, the Windows operating system gives each thread a brief
unit of time (called a time slice) to perform some work, and then it freezes the thread in a state
of suspended animation. A little bit later (perhaps only a few milliseconds), the operating system
unfreezes the thread and allows it to perform a little more work.

This model of constant interruption is known as preemptive multitasking. It takes place
completely outside the control of your program. Your application acts (for the most part), as if
all its threads were running simultaneously, and each thread carries on as though it’s an inde-
pendent program performing some task.

The Goals of Multithreading
Multithreading increases complexity. If you decide to use multithreading, you’ll need to
code carefully to avoid minor mistakes that can lead to mysterious errors later on. Before you
split your application into separate threads, carefully consider whether the additional work
is warranted.

There are essentially three reasons for using multiple threads in a program:

Macdonald_694-3C20.fm Page 690 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 691

Making the client more responsive. If you run a time-consuming task on a separate thread,
the user can still interact with your application’s user interface to perform other tasks. You
can even give the user the ability to cancel the background work before it’s complete.

Completing several tasks at once. On its own, multithreading doesn’t improve performance
for the typical single-CPU computer. (In fact, the additional overhead needed to track the
new threads decreases it slightly.) However, certain tasks can involve a high degree of
latency, such as fetching data from an external source (Web page, database, or a file on a
network) or communicating with a remote component. While these tasks are underway,
the CPU is essentially idle. Although you can’t reduce the wait time, you can use the time
to perform other work. For example, you might send requests to three Web services at the
same time to reduce the total time taken, or you might perform CPU-intensive work while
waiting for a call to complete.

Making a server application scalable. A server-side application needs to be able to handle
an arbitrary number of clients. Depending on the technology you’re using, this might be
handled for you (as it is if you’re creating an ASP.NET Web application). In other cases, you
might need to create this infrastructure on your own—for example, if you’re building a
peer-to-peer file sharer with the .NET networking classes.

In this chapter, you’ll consider only the first two options. The issue of programming a
threaded server requires a closer look at distributed programming. For more information, refer
to Microsoft .NET Distributed Applications (Microsoft Press, 2003), or consult a dedicated book
about multithreading.

■Tip Remember, multithreading doesn’t improve performance if both of your threads are competing for the
same resource. For example, if you have a CPU-intensive task, splitting this task into two threads won’t help
it finish any sooner, because both threads will get approximately half of the CPU resources (in time slices).

Options for Asynchronous Programming
As all programmers know, there are several ways to solve most problems. In keeping with this
principle, .NET provides several tools for multithreaded programming. Each approach has its
own strengths and weaknesses.

Your options include the following:

Asynchronous delegate calls. The delegate type has built-in support for asynchronous
use. That means you can launch any method on a separate thread. The code runs on one
of the free threads that the common language runtime (CLR) reserves in a handy thread
pool. This approach is straightforward and convenient.

The BackgroundWorker component. It’s easy enough to get code to run on a separate
thread, but it’s not as easy to manage threading issues such as synchronization. To help
you avoid these challenges, .NET 2.0 introduces a new higher-level model with the
BackgroundWorker component, which allows you to write multithreaded code just by
responding to a couple of events that fire when the task starts and when it finishes. This
approach is the simplest, but also the least flexible.

Macdonald_694-3C20.fm Page 691 Tuesday, July 25, 2006 7:53 AM

692 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

The System.Threading.Thread class. For more control, you can spawn a new thread at
will by creating a Thread object. The Thread object is tied to a single method, which it
launches when you call Thread.Start(). When the method ends, the thread is destroyed.
This approach is the most powerful, but it also requires the most work to implement.

These three approaches differ in how they are implemented by the CLR, how you write
your code, and what features are available. A serious .NET programmer needs to be familiar
with all three. In the rest of this chapter, you’ll work through examples that put all three of these
techniques to the test. Along the way, you’ll develop a simple asynchronous application, making
it increasingly more sophisticated (and more complex).

TIMERS

You can avoid threading concerns altogether using the System.Windows.Forms.Timer component. However,
the Timer doesn’t offer true multithreaded execution. Instead, it waits for an idle moment in your application,
at which point it triggers the Timer.Tick event handler.

The advantage of the Timer is that your time code always executes on the main user interface thread,
thereby sidestepping synchronization problems and other headaches. However, this also introduces a number
of limitations. For example, if your Timer event handling code performs a time-consuming task, the user inter-
face will lock up until it’s finished. Thus, the timer doesn’t help you make a user interface more responsive,
and it doesn’t allow you to collapse the waiting time for high-latency operations. To get this functionality, you
need real multithreading.

.NET actually provides several different timers, some of which do execute on other threads (which also
means they introduce the threading complexities you’ll learn about in this chapter). You can learn more about
.NET timers from an MSDN Magazine article at http://msdn.microsoft.com/msdnmag/issues/04/
02/TimersinNET. But before you do, read through this chapter to get a handle on the essentials of multi-
threading and synchronization.

Asynchronous Delegates
As you already know, delegates are type-safe function pointers that form the basis for .NET
events. You create a delegate that references a specific method, and then you can call that
method through the delegate.

The first step is to define the delegate at the namespace level (if it’s not already present in
the .NET class library). Here’s a delegate that can point to any method that accepts a single
integer parameter and returns an integer:

Public Delegate Function DoSomethingDelegate(ByVal input As Integer) As Integer

Now consider a class that has a method that matches this delegate:

Macdonald_694-3C20.fm Page 692 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 693

Public Class MySampleClass

 Public Function DoubleNumber(ByVal input As Integer) _
 As Integer
 Return input * 2
 End Function

End Class

You can create a delegate variable that points to a method with the same signature. Here’s
the code:

Dim myObj As New MySampleClass()

' Create a delegate that points to the myObj.DoubleNumber() method.
Dim doSomething As New DoSomethingDelegate(AddressOf myObj.DoubleNumber)

' Call the myObj.DoubleNumber() method through the delegate.
Dim doubledValue As Integer = doSomething(12)

What you may not realize is that delegates also have built-in threading smarts. Every time
you define a delegate (such as DoSomethingDelegate in the above example), a custom delegate
class is generated and added to your assembly. (A custom delegate class is needed, because the
code for each delegate is different, depending on the signature of the method you’ve defined.)
When you call a method through the delegate, you are actually relying on the Invoke() method
of the delegate class.

The Invoke() method executes the linked method synchronously. However, the delegate
class also includes methods for asynchronous invocation—BeginInvoke() and EndInvoke().
When you use BeginInvoke(), the call returns immediately, but it doesn’t provide the return
value. Instead, the method is simply queued to start on another thread. When calling
BeginInvoke(), you supply all the parameters of the original method, plus two additional
parameters for an optional callback and state object. If you don’t need these details (described
later), simply pass a null reference.

Dim async As IAsyncResult = doSomething.BeginInvoke(12, Nothing, Nothing)

BeginInvoke() doesn’t return the return value of the underlying method. Instead, it returns
an IAsyncResult object that you can examine to determine when the asynchronous operation
is complete. To pick up the results later on, you submit the IAsyncResult object to the matching
EndInvoke() method of the delegate. EndInvoke() waits for the operation to complete if it hasn’t
already finished and then provides the real return value. If any unhandled errors occurred in
the method that you executed asynchronously, they’ll bubble up to the rest of your code when
you call EndInvoke().

Here’s the previous example rewritten to call the delegate asynchronously:

Dim myObj As New MySimpleClass()

' Create a delegate that points to the myObj.DoubleNumber() method.
Dim doSomething As New DoSomethingDelegate(AddressOf myObj.DoubleNumber)

Macdonald_694-3C20.fm Page 693 Tuesday, July 25, 2006 7:53 AM

694 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

' Start the myObj.DoubleNumber() method on another thread.
Dim async As IAsyncResult
async = doSomething.BeginInvoke(originalValue, Nothing, Nothing)

' (Do something else here while myObj.DoubleNumber() is executing.)

' Retrieve the results, and wait (synchronously) if they're still not ready.
Dim doubledValue As Integer = doSomething.EndInvoke(async)

■Note Most of the time, the EndInvoke() method takes a single parameter—the IAsyncState object. However,
if your method uses out or ref parameters, the EndInvoke() method will also be responsible for supplying these
values. As a result, you’ll need to supply all these parameters to EndInvoke(), followed by the IAsyncState
parameter.

To gain some of the benefits of multithreading with this technique, you could call several
methods asynchronously with BeginInvoke(). You could then call EndInvoke() on all of them
before continuing. The assumption in this case is that you need to perform every task before
continuing. It doesn’t matter what order you use, because you’ll always need to wait for the
slowest method. But in a more sophisticated application, you’ll want to have different tasks
running over different periods of time, and you’ll need a way to check their status or react when
they are complete, as described in the next section.

ASYNCHRONOUS DELEGATES UNDER THE HOOD

When you invoke a delegate asynchronously, no new thread is created. Instead, the CLR automatically assigns
a free thread from a small thread pool that it maintains. Typically, this thread pool starts with one thread and
increases to a maximum of about 25 free threads on a single-CPU computer. As a result, if you start 50 asyn-
chronous operations one after the other, the first 25 will complete first. As soon as one ends, the freed thread
is used to execute the next asynchronous operation.

Usually, this is exactly the behavior you want, because it allows you to avoid worrying about creating too
many threads, in which case none get enough access to the CPU and the overhead is multiplied. However, if
you really want the ability to create new threads at will, or you want to be able to pause, prioritize, or abort an
in-progress thread, you’ll need to tackle the more advanced Thread class that’s described later in this chapter.

Polling and Callbacks
When you call EndInvoke(), the call becomes synchronous. That means that if the underlying
method hasn’t returned by the time you call EndInvoke(), your code simply waits for it to finish,
as it would if you called Invoke().

If you want to check whether the method is actually complete before you call EndInvoke(),
you can check the IsCompleted property of the IAsyncResult object that’s returned from the
BeginInvoke() method. You can check this information repeatedly (for example, in a loop while

Macdonald_694-3C20.fm Page 694 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 695

you do some other work in bite-sized pieces). This approach is known as polling, and it’s usually
not terribly efficient. Here’s an example that uses it:

Dim async As IAsyncResult = doSomething.BeginInvoke(12, Nothing, Nothing)

' Loop until the method is complete.
Do While Not async.IsCompleted
 ' Do a small piece of work here.
Loop
Dim doubledValue As Integer = doSomething.EndInvoke(async)

A better approach is to use a callback to react immediately when an asynchronous task is
complete. Callbacks allow you to separate the code for different tasks, and they can simplify
your application significantly. To use a callback, you must first create a method that accepts a
single parameter of type IAsyncResult, as shown here:

Private Sub MyCallback(ByVal async As IAsyncResult)
 ...
End Sub

The IAsyncResult object is the same object you receive when you call BeginInvoke(). It’s
provided to your callback, so that you can easily complete the call—just call EndInvoke(), and
submit the IAsyncResult object.

To use a callback, you need to pass a delegate that points to your callback method as the
second-to-last parameter when you call BeginInvoke():

doSomething.BeginInvoke(12, New AsyncCallback(AddressOf Me.MyCallback), Nothing)

In this case, the BeginInvoke() will still return the same IAsyncResult object, but the code
doesn’t need to use it to monitor progress, because the CLR will automatically call the callback
method as soon as the asynchronous operation is complete.

Callbacks don’t provide any information about why they were triggered. They don’t even
provide the delegate object that you used to start the asynchronous processing. That means
that if you’re handling several asynchronous tasks with the same callback, you can’t easily tell
which operation has completed when the callback fires. To get around this limitation, you can
send an additional object using the last parameter of the BeginInvoke() method. This object is
then provided through the IAsyncResult.AsyncState parameter in the callback method. You
can use any object, including an instance of a custom class that records the details of the original
operation. One useful trick is to provide the original delegate object (in this case, the doSomething
delegate) as part of that custom class. This way, you can easily complete the call in the callback
by calling EndInvoke() on the provided delegate. Otherwise, it’s up to you to keep the delegate
reference around for later.

Here’s an example that starts an asynchronous task with a callback and sends an additional
state parameter. In this example, the state object is simply the delegate that made the call:

doSomething.BeginInvoke(originalValue, _
 New AsyncCallback(AddressOf Me.MyCallback), doSomething)

And here’s how you can retrieve the result in the callback:

Macdonald_694-3C20.fm Page 695 Tuesday, July 25, 2006 7:53 AM

696 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Private Sub MyCallback(ByVal async As IAsyncResult)
 ' Retrieve the delegate.
 Dim doSomething As DoSomethingDelegate
 doSomething = CType(async.AsyncState, DoSomethingDelegate)

 ' Use it to retrieve the result.
 Dim doubledValue As Integer = doSomething.EndInvoke(async)
 ' (Do something with the retrieved information.)
End Sub

It’s important to realize that callbacks are actually executed on the same thread as the
asynchronous delegate, not the main thread of your application.

This fact can cause a host of problems if you don’t take it into account. For example, if you
try to update an existing object, you could run into synchronization problems (where two
threads try to update the same data at once). Similarly, you can’t modify the properties of an
existing UI control from a separate thread, or you may introduce other obscure errors and
trigger unexpected exceptions. The only solutions to these problems are to marshal your call
to the right user interface thread or use some type of synchronization. You’ll see examples of
both these techniques in the following section, as you apply the delegate approach to a more
realistic example.

■Note You might think that you could solve the thread communication problem by firing an event from your
worker thread. Unfortunately, this has the exact same limitation as the callback—the event handler will still
execute on the same thread, which isn’t the main thread of your application.

Multithreading in a Windows Application
The asynchronous delegate example demonstrates how to execute code on a separate thread.
However, this example is wide open to some of the nastier problems of multithreading. The
worst part about all these problems is they usually don’t appear immediately. Instead, they
occur only sporadically under certain conditions, making them difficult to diagnose and solve.

To tackle these problems, it helps to consider a sample application. The basic ingredient
for any test is a time-consuming process. The following example uses a common algorithm for
finding prime numbers in a given range called the sieve of Eratosthenes, which was invented by
Eratosthenes himself in about 240 BC. With this algorithm, you begin by making a list of all the
integers in a range of numbers. You then strike out the multiples of all primes less than or equal
to the square root of the maximum number. The numbers that are left are the primes.

Macdonald_694-3C20.fm Page 696 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 697

The Worker Component
In this chapter, you won’t go into the theory that proves the sieve of Eratosthenes, or see the
fairly trivial code that performs it. (Similarly, you won’t worry about optimizing it or comparing
it against other techniques.) However, you will see how to perform the sieve of Eratosthenes
algorithm on a background thread.

The full code is available with the online examples for this chapter. It takes this form:

Public Class Worker

 Public Shared Function FindPrimes(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer) As Integer
 ' Find the primes between fromNumber and toNumber,
 ' and return them as an array of integers.
 End Function

End Class

The FindPrimes() method takes two parameters that delimit a range of numbers. The code
then returns an integer array with all the prime numbers that occur in that range. The Worker
class is compiled into a separate DLL assembly. You can then reference it in your client application.

To try out the Worker component, you can call the FindPrimes() method synchronously.
Figure 20-2 shows a simple test form after a successful search has finished.

Figure 20-2. A synchronous test of a long-running operation

Macdonald_694-3C20.fm Page 697 Tuesday, July 25, 2006 7:53 AM

698 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

When you specify a search range and click Find Primes, the following code runs:

Private Sub cmdFind_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdFind.Click
 Me.Cursor = Cursors.WaitCursor

 txtResults.Text = ""
 lblTimeTaken.Text = ""

 Try
 ' Get the search range.
 Dim fromNumber, toNumber As Integer
 If Not Int32.TryParse(txtFrom.Text, fromNumber) Then
 MessageBox.Show("Invalid From value.")
 Return
 End If
 If Not Int32.TryParse(txtTo.Text, toNumber) Then
 MessageBox.Show("Invalid To value.")
 Return
 End If

 ' Start the search for primes and wait.
 Dim startTime As DateTime = DateTime.Now
 Dim primes() As Integer = _
 MultithreadingWorker.Worker.FindPrimes(fromNumber, toNumber)

 ' Display the time for the call to complete.
 lblTimeTaken.Text = _
 DateTime.Now.Subtract(startTime).TotalSeconds.ToString()

 ' Paste the list of primes together into one long string.
 Dim sb As New StringBuilder()
 For Each prime As Integer In primes
 sb.Append(prime.ToString())
 sb.Append(" ")
 Next
 txtResults.Text = sb.ToString()
 Catch err As Exception
 MessageBox.Show(err.Message)
 End Try

 Me.Cursor = Cursors.Default
End Sub

This code runs without a hitch, but it also locks the user out while the work is in progress.
If you start dragging the form around the screen while the Worker is searching for primes, you
may see some erratic behavior. For example, the window may become a blank surface, indicating
that the form hasn’t yet responded to the Windows message asking it to repaint itself, or it may

Macdonald_694-3C20.fm Page 698 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 699

display the “Not Responding” message in the caption (see Figure 20-3). To improve on this
situation, you need multithreading.

Figure 20-3. An unresponsive user interface

The Asynchronous Call
There are several ways to translate this example into a multithreaded application. Using asyn-
chronous delegates, you can launch the Worker.FindPrimes() method on another thread.
However, a much better approach is to wrap the call to Worker.FindPrimes() with another
method in the form. This allows you to separate the code for updating the user interface from
the code that actually performs the prime-number search, which is a key design goal. It also
provides you with an extra layer of flexibility. This extra layer comes in handy if the signature of
the FindPrimes() method changes. Figure 20-4 shows this design.

Figure 20-4. Calling a component asynchronously

Here’s the form method that you need. It simply calls the Worker.FindPrimes() method
(synchronously), and then updates the user interface with the results:

Macdonald_694-3C20.fm Page 699 Tuesday, July 25, 2006 7:53 AM

700 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Private Sub CallAsyncWorker(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer)
 ' Start the search for primes and wait.
 Dim startTime As DateTime = DateTime.Now
 Dim primes() As Integer = Worker.FindPrimes(fromNumber, toNumber)

 ' (Update the user interface.)
End Sub

Because you’re calling the CallAsyncWorker() method asynchronously, you need to create
a delegate for it that has the same signature:

Private Delegate Sub CallAsyncWorkerDelegate(_
 ByVal fromNumber As Integer, ByVal toNumber As Integer)

Now you can invoke the CallAsyncWorker() method on another thread when the user
clicks the Find Primes button. Here’s the code you need:

Private Sub cmdFind_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdFind.Click
 ' Disable the button.
 cmdFind.Enabled = False

 txtResults.Text = ""
 lblTimeTaken.Text = ""

 ' Get the search range.
 Dim fromNumber, toNumber As Integer
 If Not Int32.TryParse(txtFrom.Text, fromNumber) Then
 MessageBox.Show("Invalid From value.")
 Return
 End If
 If Not Int32.TryParse(txtTo.Text, toNumber) Then
 MessageBox.Show("Invalid To value.")
 Return
 End If

 ' Start the search for primes on another thread.
 Dim doWork As New CallAsyncWorkerDelegate(AddressOf CallAsyncWorker)
 doWork.BeginInvoke(fromNumber, toNumber, Nothing, Nothing)
End Sub

Notice that this example disables the button, so that only one asynchronous operation can
be performed at a time. The button will be re-enabled when the asynchronous task is completed.

Marshalling Calls to the Right Thread
This example leaves out one detail—the code for updating the user interface. The problem is
that .NET controls exhibit thread affinity, which means that their properties and methods can

Macdonald_694-3C20.fm Page 700 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 701

be called only by code running on the same thread that created the control. As a result, you
can’t modify the lblTimeTaken or txtResults controls from the CallAsyncWorker() method.

A new debugging feature in .NET 2.0 helps you spot threading errors. By default, every
Windows control included with .NET throws an InvalidOperationException when it’s accessed
from the wrong thread. (You can disable this behavior by setting the shared Control.
CheckForIllegalCrossThreadCalls to False.) However, it’s important to realize that this is a
debugging convenience, and these checks aren’t made in a release-mode build. Furthermore,
third-party controls are unlikely to provide the same nicety. As a result, you need to be conscious
of when you cross a thread boundary. If you do access a control from another thread, you will
run into unpredictable errors that can crash your application or freeze your user interface. Worst of
all, these types of errors happen sporadically, which makes them very difficult to diagnose.

Fortunately, all .NET controls provide two members that you can access from other threads.
These include:

• InvokeRequired. This property returns True if the current code is running on a thread
other than the one that created the control, in which case you can’t directly manipulate
the control.

• Invoke(). This method allows you to fire a method on the correct user interface thread,
so you can manipulate the control without causing an error.

You can use the Invoke() method to solve the problem in the current example. You just
need to break your code down, so that the user interface update happens in a separate method.

Here’s an UpdateForm() method you could use for updating the interface (with the corre-
sponding delegate):

Private Delegate Sub UpdateFormDelegate(ByVal timeTaken As TimeSpan, _
 ByVal primeList As String)

Private Sub UpdateForm(ByVal timeTaken As TimeSpan, ByVal primeList As String)
 lblTimeTaken.Text = timeTaken.TotalSeconds.ToString()
 txtResults.Text = primeList

 cmdFind.Enabled = True
End Sub

Now you can call the UpdateForm() method from the CallAsyncWorker() method using
Control.Invoke(). Here’s how you need to revise the code:

Private Sub CallAsyncWorker(ByVal fromNumber As Integer, ByVal toNumber As Integer)
 Try
 ' Start the search for primes and wait.
 Dim startTime As DateTime = DateTime.Now
 Dim primes() As Integer = _
 MultithreadingWorker.Worker.FindPrimes(fromNumber, toNumber)

 ' Calculate the time for the call to complete.
 Dim timeTaken As TimeSpan = DateTime.Now.Subtract(startTime)

Macdonald_694-3C20.fm Page 701 Tuesday, July 25, 2006 7:53 AM

702 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

 ' Paste the list of primes together into one long string.
 Dim sb As New StringBuilder()
 For Each prime As Integer In primes
 sb.Append(prime.ToString())
 sb.Append(" ")
 Next

 ' Use the Control.Invoke() method of the current form,
 ' which is on the same thread as the rest of the controls.
 Me.Invoke(New UpdateFormDelegate(AddressOf UpdateForm), _
 New Object() {timeTaken, sb.ToString()})

 Catch err As Exception
 MessageBox.Show(err.Message)
 End Try
End Sub

The nice part about the Invoke() method is that it supports methods with any signature. All
you need to do is pass a delegate and supply an object array with all the parameter values.

Notice that the CallAsyncWorker() method also performs the work of building the string of
primes. That’s because the UpdateForm() method fires on the user interface thread (when it’s
idle), temporarily interrupting your application. To ensure that the application remains respon-
sive, you need to reduce the amount of work you perform here as much as possible.

This completes the example. Figure 20-5 shows the three steps. First the button is clicked,
launching the event handler (step 1). Next, the CallAsyncWorker() is invoked asynchronously
(step 2), and it calls the FindPrimes() method (step 3). Finally, CallAsyncWorker() retrieves the
result and calls the UpdateForm() method on the user interface thread (step 4). Steps 1 and 4
are on the user interface thread, while the shaded portion (steps 2 and 3) execute on a single
thread borrowed from the CLR’s thread pool.

Figure 20-5. Dealing with an asynchronous task safely

Macdonald_694-3C20.fm Page 702 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 703

To test this example, run the application and start a prime search. While it’s underway,
you still can click on other controls or drag the form around the screen. Of course, to prevent
synchronization problems or unintended side effects, you need to make sure your user inter-
face is in a state where only the supported commands are available. For example, the Find Primes
button is disabled in this example, because we’ve chosen to allow only one search at a time.

If you like, you can rewrite UpdateForm() method to make it self-sufficient, so that it auto-
matically marshals itself to the user interface thread as needed. This is a common pattern in
Windows Forms applications that’s easy to implement.

Private Sub UpdateForm(ByVal timeTaken As TimeSpan, ByVal primeList As String)
 If Me.InvokeRequired Then
 Me.Invoke(New UpdateFormDelegate(Addressof UpdateForm), _
 New Object() {timeTaken, primeList})
 Else
 lblTimeTaken.Text = timeTaken.TotalSeconds.ToString()
 txtResults.Text = primeList
 cmdFind.Enabled = True
 End If
End Sub

Now you can call UpdateFormDelegate() directly. If you call UpdateFormDelegate() from
the user interface thread, the code will run ordinarily. If you call it from another thread, the
method will call itself on the correct thread, taking care of the marshalling automatically.

CONTROL.INVOKE() UNDER THE HOOD

In .NET, there is no general-purpose way to trigger code on specific threads. The Control.Invoke() method is a
special exception to this rule that makes writing multithreaded Windows applications much easier.

When you call Control.Invoke(), the code checks that the control is created and its Windows handle exists. If its
handle exists, the rest of the process is straightforward. The Invoke() method uses the GetWindowThreadProcessId()
Win32 API function to find the thread ID for the control and then compares that value against the currently
executing one using GetCurrentThreadId(). This stage determines whether or not marshalling is needed.

Life becomes much uglier if the control’s handle isn’t created yet. In this case, the Invoke() method walks
the control hierarchy trying to find out if the control’s parent (or its parent’s parent, and so on), have been
created yet. If they have, the Invoke() method grabs that thread ID. If you’re facing erratic behavior or you think
your Control.Invoke() method is taking longer than it should because you’re using Invoke() on a control that is
created dynamically, you have two possible solutions. You can access the Control.Handle property in your code
before you call the Invoke() method, which ensures that the control handle is created. (Of course, you'll need
to access Control.Handle from the main application thread.) Or you can skip directly to the parent by calling
the Invoke() method of a container control or the hosting form.

Finally, to marshal your call, Control.Invoke() posts a message to the message queue for the user interface
thread (using the Win32 API function PostMessage). As with any other event in a Windows application, this message
isn’t handled until your application has an idle moment. In other words, if your main thread is tied up with some
intensive processing and you use Control.Invoke(), the call may be deferred for some time. Similarly, when your call
does execute, it will temporarily take control away from your main thread. For the same reason, make sure that you
perform any processor-intensive work on the separate thread before you use Control.Invoke().

For a more detailed look at the implementation behind Control.Invoke(), refer to Justin Rogers’s post at
http://weblogs.asp.net/justin_rogers/articles/126345.aspx.

Macdonald_694-3C20.fm Page 703 Tuesday, July 25, 2006 7:53 AM

704 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Using a Delayed Update
The technique shown in the previous example works well when you want to perform a single
asynchronous task and update the user interface once it completes. However, in many situa-
tions, you’ll simply want to take the data that the asynchronous worker provides and store it
somewhere for later use. One reason to take this step is to avoid interrupting other work the
user is performing. For example, consider an application that shows a product catalog in a grid
control. You might fetch an updated DataSet from a Web service, but you probably don’t want
to refresh the grid immediately. That’s because the user might be looking at a specific row or
even performing an edit. Instead, a better approach is to provide a message in a status bar
informing the user that new data is available and allow the user to click a button to refresh the
grid at the right time.

In this type of scenario, you need a place to store the data returned by the worker until you
decide to display it. A form member variable makes perfect sense for this storage:

Private primeList As StringBuilder

Now, the CallAsyncWorker() method needs to store the prime-number list as soon as the
operation is complete.

' Start the search for primes and wait.
Dim primes As Integer() = MultithreadingWorker.Worker.FindPrimes(from, [to])

' Paste the list of primes together into one long string.
Dim sb As New StringBuilder()
For Each prime As Integer In primes
 sb.Append(prime.ToString())
 sb.Append(" ")
Next

' Store the list of primes for later use.
primeList = sb

' Indicate that the prime list is available.
Me.Invoke(New MethodInvoker(AddressOf NotifyComplete))

As you can see, the CallAsyncWorker() method no longer calls the UpdateForm() method
to apply the changes. Instead, it calls another custom method—NotifyComplete()—which
displays the status text. Figure 20-6 diagrams the revised model.

Because the NotifyComplete() method doesn’t require any arguments, you don’t need to
define a specific delegate type for it. Instead, you can use the generic MethodInvoker delegate,
which works with any parameterless method.

Macdonald_694-3C20.fm Page 704 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 705

Figure 20-6. Using a notification instead of an automatic refresh

The NotifyComplete() method displays the status message, sets a flag to indicate that the
data’s available, and re-enables the Find Primes button:

Private dataAvailable As Boolean = False

Private Sub NotifyComplete()
 dataAvailable = True
 statusPanel.Text = "Double-click panel to see new prime list."
 cmdFind.Enabled = True
End Sub

Figure 20-7 shows the notification message.
When the status bar is double-clicked, the cached information is inserted into the

txtResults text box.

Private Sub status_DoubleClick(ByVal sender As Object, ByVal e As EventArgs)

 If dataAvailable Then
 dataAvailable = False
 txtResults.Text = primeList.ToString()
 primeList = ""
 statusPanel.Text = ""
 End If
End Sub

Macdonald_694-3C20.fm Page 705 Tuesday, July 25, 2006 7:53 AM

706 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Figure 20-7. Notifyng the user when a result is ready

■Note If you’re a threading pro, you might wonder why you don’t need locking to safeguard this example.
After all, there’s a single object (the primeList StringBuilder) that’s shared between two threads. The answer
is that the application is carefully designed, so that the two threads will never try to access the primeList
object at the same time. The asynchronous thread creates a new StringBuilder and stores in the form variable
only after the task is complete. That means the StringBuilder object is visible to the form thread only after the
asynchronous thread is finished using it.

At this point, you’ve learned enough about threading to begin adding more features. For
example, you could add a method for progress reporting, which your asynchronous task could
call periodically to provide information about the percentage of the search that’s complete so
far. In this case, you need to use the Control.Invoke() method to marshal the progress reporting
to the user interface thread. You could also allow the user to pause or cancel a prime search by
designating a form-level variable for passing notifications. In this case, you need to use locking
to make sure the data is handled correctly by both threads.

Both of these improvements require adding additional methods. To manage this process
effectively, you shouldn’t add these methods directly to the form class. Instead, you should
create a dedicated asynchronous controller class. The form can call the asynchronous controller
class, and the controller class can then manage the asynchronous operation with the worker class.

There are two ways you can go about building this design. The simplest is to use the
BackgroundWorker component (described in the next section), which provides high-level
management and neatly hides the threading details. A more powerful option is to create a
custom-threaded class, a task you’ll consider at the end of this chapter.

Macdonald_694-3C20.fm Page 706 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 707

The BackgroundWorker Component
Realizing that the challenges of multithreaded programming weren’t for everyone, Microsoft
programmers added the System.ComponentModel.BackgroundWorker component to .NET 2.0.
The BackgroundWorker component gives you a nearly foolproof way to run a time-consuming
task on a separate thread. Under the hood, it works the same way as the delegate approach you’ve
been considering, but the marshalling issues are abstracted away with an event-based model.

To use the BackgroundWorker, you begin by creating an instance (either programmatically in
your code or by dragging it onto a form at design time). You then connect it to the appropriate
event handlers and call the RunWorkerAsync() method to start it on its way.

When the BackgroundWorker begins executing, it grabs a free thread from the CLR thread
pool, and then fires the DoWork event from this thread. You handle the DoWork event and
begin your time-consuming task. However, you need to be careful not to access shared data
(such as form-level variables) or controls on the form. If you do, all the same locking and
synchronization considerations apply. Once the work is complete, the BackgroundWorker
fires the RunWorkerCompleted event to notify your application. This event fires on the original
thread, which allows you to access shared data and update controls freely, without incurring
any problems.

As you’ll see, the BackgroundWorker also supports two more frills—progress events and
cancel messages. In both cases, the threading details are hidden, making for easy coding.

A Simple BackgroundWorker Test
To try out the BackgroundWorker, it makes sense to use it with the prime-number search example.
The first step is to create a custom class that allows you to transmit the input parameters to the
BackgroundWorker. When you call BackgroundWorker.RunWorkerAsync(), you can supply
any object, which will be delivered to the DoWork event. However, you can supply only a single
object, so you need to wrap the to and from numbers into one class, as shown here:

Public Class FindPrimesInput

 Private _to As Integer
 Public Property [To]() As Integer
 Get
 Return _to
 End Get
 Set(ByVal value As Integer)
 _to = Value
 End Set
 End Property

 Private _from As Integer
 Public Property From() As Integer
 Get
 Return _from
 End Get

Macdonald_694-3C20.fm Page 707 Tuesday, July 25, 2006 7:53 AM

708 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

 Set(ByVal value As Integer)
 _from = Value
 End Set
 End Property

 Public Sub New(ByVal fromNumber As Integer, ByVal toNumber As Integer)
 Me.To = toNumber
 Me.From = fromNumber
 End Sub

End Class

Now, drop a BackgroundWorker component onto your form. When the user clicks the
Find Primes button, create a new FindPrimesInput object, and submit it to the worker using
the BackgroundWorker.RunWorkerAsync() method, as shown here:

' Start the search for primes on another thread.
Dim input As New FindPrimesInput(fromNumber, toNumber)
backgroundWorker1.RunWorkerAsync(input)

Once the BackgroundWorker acquires the thread, it fires the DoWork event. You can
handle this event to call the Worker.FindPrimes() method. The DoWork event provides a
DoWorkEventArgs object, which is the key ingredient for retrieving and returning information.
You retrieve the input object through the DoWorkEventArgs.Argument property, and return
the result by setting the DoWorkEventArgs.Result property.

Private Sub backgroundWorker1_DoWork(ByVal sender As Object, _
 ByVal e As DoWorkEventArgs) Handles backgroundWorker1.DoWork
 ' Get the input values.
 Dim input As FindPrimesInput = CType(e.Argument, FindPrimesInput)

 ' Start the search for primes and wait.
 Dim primes() As Integer = Worker.FindPrimes(input.From, input.To)

 ' Paste the list of primes together into one long string.
 Dim sb As New StringBuilder()
 For Each prime As Integer in primes
 sb.Append(prime.ToString())
 sb.Append(" ")
 Next

 ' Return the result.
 e.Result = sb.ToString()
End Sub

Once the method completes, the BackgroundWorker fires the
RunWorkerCompletedEventArgs from the user interface thread. At this point, you can retrieve
the result from the RunWorkerCompletedEventArgs.Result property. You can then update the
interface and access form-level variables without worry.

Macdonald_694-3C20.fm Page 708 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 709

Private Sub backgroundWorker1_RunWorkerCompleted(ByVal sender As Object, _
 ByVal e As RunWorkerCompletedEventArgs) _
 Handles backgroundWorker1.RunWorkerCompleted

 If e.Error IsNot Nothing Then
 ' An error was thrown by the DoWork event handler.
 MessageBox.Show(e.Error.Message, "An Error Occurred")
 primeList = ""
 statusPanel.Text = ""
 Else
 primeList = e.Result.ToString()
 statusPanel.Text = "Double-click panel to see new prime list."
 End If
 cmdFind.Enabled = True
End Sub

Notice that you don’t need any locking code, and you don’t need to use Control.Invoke().

Tracking Progress
The BackgroundWorker also provides built-in support for tracking progress, which is useful for
keeping the client informed about how much work has been completed in a long-running task.

To add support for progress, you need to first set the BackgroundWorker.
WorkerReportsProgress property to True. Actually, providing and displaying the progress
information is a two-step affair. First, the DoWork event handling code needs to call the
BackgroundWorker.ReportProgress() method and provide an estimated percent complete
(from 0 to 100). You can do this as often as you like. Every time you call ReportProgress(), the
BackgroundWorker fires the ProgressChanged event. You can react to this event to read the
new progress percentage and update the user interface. Because the ProgressChanged event
fires from the user interface thread, there’s no need to use Control.Invoke().

Supporting this pattern in the current example is a little more work. Currently, the majority
of the work is performed in response to a single method call—Worker.FindPrimes(). But to
provide progress information, you need to call ReportProgress() during the prime search. To
make this possible, you must split the search into several pieces or give the Worker class the
ability to report progress. In this example, you’ll see the second approach.

To add support to the Worker class, start by adding a third parameter to the FindPrimes()
method, as shown here:

Public Shared Function FindPrimes(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer, ByVal backgroundWorker As BackgroundWorker) _
 As Integer()
 ...
End Function

The FindPrimes() method is also changed to report progress periodically. Reporting
progress usually involves a calculation, an event, and a refresh of the form’s user interface. As
a result, you want to cut down the rate of progress reporting to one or two updates per second.
In the FindPrimes() method, progress is reported only in one-percent increments:

Macdonald_694-3C20.fm Page 709 Tuesday, July 25, 2006 7:53 AM

710 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Dim iteration = list.Length / 100
For i As Integer = 0 To list.Length -1
 ...
 ' Report progress only if there is a change of 1%.
 ' Also, don't bother performing the calculation if there
 ' isn't a BackgroundWorker or it doesn't support progress notifications.
 If I Mod Iteration = 0 AndAlso backgroundWorker IsNot Nothing _
 AndAlso backgroundWorker.WorkerReportsProgress Then
 backgroundWorker.ReportProgress(i / iteration)
 End If
Next

Now the only remaining step is to respond to the ProgressChanged event and update a
progress control in the status bar:

Private Sub backgroundWorker1_ProgressChanged(ByVal sender As Object, _
 ByVal e As ProgressChangedEventArgs) _
 Handles backgroundWorker1.ProgressChanged
 progressPanel.Value = e.ProgressPercentage
End Sub

Figure 20-8 shows the progress meter while the task is in progress.

Figure 20-8. Tracking progress for an asynchronous task

This approach breaks the clean separation between data processing and the user interface
layer, and it tightly couples your Worker component to a particular asynchronous implemen-
tation (in this case, the one provided by the BackgroundWorker component). Ideally, you could
avoid this complexity by using an interface (say, IReportProgress) that could be implemented
by the BackgroundWorker and other classes. Sadly, the BackgroundWorker doesn’t use any
such interface. The only way to properly correct the problem is to create your own asynchronous

Macdonald_694-3C20.fm Page 710 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 711

implementation that does use an interface (see the section on custom-threaded classes later in
this chapter).

However, you can improve the situation a bit by making sure the BackgroundWorker
supports alternate approaches, including invocation without a BackgroundWorker. To keep
compatibility with the earlier examples, you can add an overload to the FindPrimes() method
that takes the original two parameters. It can then call the other version of FindPrimes() to
perform the actual work:

Public Shared Function FindPrimes(ByVal fromNumber As Integer, _
 ByVal toNumber As Integer) As Integer()
 Return FindPrimes(fromNumber, toNumber, Nothing)
End Function

The Worker component is still tightly coupled to the BackgroundWorker, but by factoring
your code a bit more and providing overloaded versions of the FindPrimes()method, you buy
yourself some valuable flexibility.

Supporting a Cancel Feature
It’s just as easy to add support for canceling a long-running task with the BackgroundWorker.
The first step is to set the BackgroundWorker.WorkerSupportsCancellation property to True.

To request a cancellation, your form needs to call the BackgroundWorker.CancelAsync()
method. In this example, the cancellation is requested when a Cancel button is clicked:

Private Sub cmdCancel_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles cmdCancel.Click
 backgroundWorker1.CancelAsync()
End Sub

Nothing happens automatically when you call CancelAsync(). Instead, the code that’s
performing the task needs to explicitly check for the cancel request, perform any required
cleanup, and return. Here’s how you can add this code to the FindPrimes() method, so that it
checks just before it reports progress:

For i As Integer = 0 To list.Length - 1
 ...
 If i Mod iteration = 0 And backgroundWorker IsNot Nothing Then
 If backgroundWorker.CancellationPending Then
 ' Return without doing any more work.
 Return
 End If
 If backgroundWorker.WorkerReportsProgress Then
 backgroundWorker1.ReportProgress(i / iteration)
 End If
 End If
Next

Macdonald_694-3C20.fm Page 711 Tuesday, July 25, 2006 7:53 AM

712 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

The code in the DoWork event handler also needs to explicitly set the DoWorkEventArgs.
Cancel property to True to complete the cancellation. You can then return from that method
without attempting to build up the string of primes.

Private Sub backgroundWorker1_DoWork(ByVal sender As Object, _
 ByVal e As DoWorkEventArgs) Handles backgroundWorker1.DoWork

 Dim input = CType(e.Argument, FindPrimesInput)
 Dim primes() As Integer = Worker.FindPrimes(_
 input.From, input.To, backgroundWorker)

 If backgroundWorker1.CancellationPending Then
 e.Cancel = True
 Return
 End If

 ' (Code for building the prime list.)
End Sub

Even when you cancel an operation, the RunWorkerCompleted event still fires. At this
point, you can check if the task was canceled, and handle it accordingly.

Private Sub backgroundWorker1_RunWorkerCompleted(ByVal sender As Object, _
 ByVal e As RunWorkerCompletedEventArgs) _
 Handles backgroundWorker1.RunWorkerCompleted

 primeList = ""
 statusPanel.Text = ""
 If e.Cancelled Then
 MessageBox.Show("Search cancelled.")
 ElseIf e.Error IsNot Nothing Then
 MessageBox.Show(e.Error.Message, "An Error Occurred")
 Else
 primeList = e.Result.ToString()
 statusPanel.Text = "Double-click panel to see new prime list."
 End If
 cmdFind.Enabled = True
End Sub

Now the BackgroundWorker component allows you to start a search and end it prematurely.

The Thread Class
At first, the BackgroundWorker component seems like the perfect solution to building multi-
threaded applications, and in many cases, it is. The BackgroundWorker component makes
particularly good sense when you have a single long-running task that executes in the back-
ground. But the BackgroundWorker doesn’t provide some features, such as the following:

Macdonald_694-3C20.fm Page 712 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 713

• The ability to manage multiple asynchronous tasks at once. For example, you can’t run
multiple prime-number queries at once (at least not without some ugly workarounds).

• The ability to communicate in ways other than sending a progress report or cancellation
request. For example, you can’t pause an in-progress task or supply new information.
You’re limited to the features baked into the BackgroundWorker.

• The ability to directly access and manipulate details about the background thread (such
as its priority).

If you’re creating an application that needs these features, you need to step up to the
System.Threading.Thread class. The Thread class represents a new thread of execution. To use
the Thread class, you begin by creating a new Thread object, at which point you supply a delegate
to the method you want to invoke asynchronously. As with the delegate examples and the
BackgroundWorker, a Thread object can point to only a single method. However, there’s one
basic limitation—this method must accept no parameters and have no return value. In other
words, it must match the signature of the System.Threading.ThreadStart delegate.

Dim asyncMethod As New ThreadStart(AddressOf myMethod)
Dim asyncThread As New Thread(asyncMethod)

Once you’ve created the Thread object, you can start it on its way by calling the Thread.Start()
method. This method returns immediately, and your code begins executing asynchronously
on a new thread (not one of the threads in the CLR thread pool).

asyncThread.Start()

When the method ends, the thread is destroyed and cannot be reused.
Table 20-1 lists the key properties of the Thread class.

Table 20-1. Thread Properties

Property Description

IsAlive Returns True unless the thread is stopped, aborted, or not yet started.

IsBackground A thread is either a background thread or a foreground thread. Background
threads are identical to foreground threads except they can’t prevent a process
from ending. After all the foreground threads in your application have termi-
nated, the CLR automatically aborts all background threads that are still alive.

Name Enables you to set a string name that identifies the thread. This is primarily
useful during debugging.

Priority You can set a ThreadPriority to change the priority of your thread at any time.
Valid values are Highest, AboveNormal, Normal (the default), BelowNormal,
and Lowest. Thread priorities are important in a relative sense. For example, if
your application has an AboveNormal thread, it gets many more time slices in
which to execute than a BelowNormal thread in your application (or other
applications). However, be careful about relying on high priority levels, as they
may compromise the performance of other currently running applications or
system services. It is usually a good idea to set a lower priority to your worker
thread in order to have a more responsive user interface.

Macdonald_694-3C20.fm Page 713 Tuesday, July 25, 2006 7:53 AM

714 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

The Thread class also provides some useful methods for controlling threads. These are
listed in Table 20-2.

Locking and Synchronization
The previous examples work smoothly, because there’s never more than one thread competing
for the same data. One thread (the asynchronous one) prepares the information you need, and
another one (the user interface thread) reads it once the task is complete. However, in many
cases, you’ll need to do something a little more complex. For example, you might have an
application object that needs to be updated from different threads. The problem is that it’s not
safe for you to access an object from more than one thread at the same time. Doing so can lead
to unpredictable behavior and, occasionally, incorrect or corrupted data.

ThreadState A combination of ThreadState values, which indicate whether the thread is
started, running, waiting, a background thread, and so on. You can poll this
property to find out when a thread has completed its work.

CurrentThread Returns a Thread object for the current thread (where your code is
executing). This property is shared.

Table 20-2. Thread Methods

Method Description

Abort() Kills a thread using the ThreadAbortException. As a rule of thumb, it’s better
to use message passing to make sure a thread ends politely in response to a
cancellation request.

Interrupt() If the thread is currently waiting (using synchronization code), blocked, or
sleeping, this method puts it back on track.

Join() Waits until the thread terminates (or a specified time-out elapses).

ResetAbort() If the thread calls this method when handling the ThreadAbortException,
the exception will not be thrown again, and the thread will be allowed to
continue living.

Resume() Returns a thread to life after it has been paused with the Suspend() method.

Start() Starts a thread executing for the first time. You cannot use Start() to restart a
thread after it ends.

Suspend() Pauses a thread for an indefinite amount of time (until Resume() is called).
This method is risky, because the code may be anywhere when you pause it,
and it may even be holding onto a lock. It's often better to create your own
thread communication mechanisms, so that your threaded code can pause
itself (using the Thread.Sleep() method) on request.

Sleep() Pauses the current thread for a specified number of milliseconds. This method
is shared.

Table 20-1. Thread Properties (Continued)

Property Description

Macdonald_694-3C20.fm Page 714 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 715

There are two ways to resolve this problem:

Use the Control.Invoke() method. The Control.Invoke() method can marshal the code on
other threads to the main thread, where it’s safe to update application objects. However,
this approach requires a free time slice on the user interface thread, potentially slowing
performance. It’s also awkward to manage if you have several asynchronous tasks taking
place at once.

Use locking. With locking, you ensure that you gain exclusive access to the variable for a
short time. If another thread tries to access the same object, it will be forced to wait.

Locking is easily implemented in VB through the SyncLock statement. The SyncLock state-
ment pauses your code until it can acquire an exclusive lock on the object you specify. As soon
as it acquires the lock, the code inside the SyncLock block is executed. Finally, when execution
exits the SyncLock block, the lock is released.

SyncLock myObj
 ' (Do something with myObj.)
End SyncLock

Locking works only if you use it in every place that you try to access the shared object. When
you use the SyncLock statement, the object is automatically released when you exit the block,
even if it’s the result of an unhandled error.

■Tip The only limit to the lock statement is that it won’t work with value types (such as integers and
Boolean values). You always need to wrap these inside another object.

When creating a lock, make sure you lock the smallest object with the least visibility for the
shortest amount of time to ensure that other parts of the application that might also use the
object aren’t blocked. It’s also a good idea to avoid locking multiple objects at once using nested
SyncLock statements, as this can lead to deadlock situations, in which two threads are trapped
waiting for one another to release a lock on a required object.

You’ll see locking in the next example, which demonstrates how to build a threading
system for performing an arbitrary number of simultaneous prime-number searches. In this
application, the collections that track the in-progress workers may be accessed from more than
one thread. But before you see locking in action, it helps to make a thread wrapper class that
can simplify your thread management.

■Tip The System.Threading namespace includes other classes you can use for fine-grained control over
locking behavior, such as Monitor and ReaderWriterLock. These classes aren’t discussed in this book. For
more information, consult a dedicated book about .NET multithreading or MSDN Help.

Macdonald_694-3C20.fm Page 715 Tuesday, July 25, 2006 7:53 AM

716 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Creating a ThreadWrapper
Because the Thread class supports only methods with no parameters and no return value, it’s
common to put the code you want to execute in a separate class. You can then add properties
to that class for the input and output information.

A common design in .NET applications is to create a Worker class that encapsulates the
code for performing your specific task and the thread object. That way, you don’t need to track
both the worker and the thread objects separately.

Before you create your thread wrapper, it makes good sense to factor out all the threading
essentials into a base class. That way you can use the same pattern to create multiple asynchro-
nous tasks without recoding it each time. This approach also gives you the benefit of defining
a standard interface.

We’ll examine the ThreadWrapper base class piece by piece. First of all, the ThreadWrapper
is declared MustInherit, so that it can’t be instantiated on its own. Instead, you need to create
a derived class.

Public MustInherit Class ThreadWrapper
 ...
End Class

The ThreadWrapper defines two public properties. Status returns one of three values from
an enumeration (Unstarted, InProgress, or Completed). ID returns an automatically generated
unique ID, which is useful for tracking the task when several are underway at once.

' Track the status of the task.
Private _status As StatusState = StatusState.Unstarted
Public ReadOnly Property Status() As StatusState
 Get
 Return _status
 End Get
End Property

' Use a unique ID to track the task later, if needed.
Private _id As Guid = Guid.NewGuid()
Public ReadOnly Property ID() As Guid
 Get
 Return _id
 End Get
End Property

The ThreadWrapper wraps a Thread object. It exposes a public Start() method which,
when called, creates the thread and starts it off:

' This is the thread where the task is carried out.
Private thread As Thread

' Start the new operation.
Public Sub Start()
 If _status = StatusState.InProgress Then
 Throw New InvalidOperationException("Already in progress.")

Macdonald_694-3C20.fm Page 716 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 717

 Else
 ' Initialize the new task.
 _status = StatusState.InProgress

 ' Create the thread and run it in the background,
 ' so it will terminate automatically if the application ends.
 thread = New Thread(AddressOf StartTaskAsync)
 thread.IsBackground = True

 ' Start the thread.
 thread.Start()
 End If
End Sub

The thread executes a private method named StartTaskAsync(). This method farms the
work out to two other methods: DoTask() and OnCompleted(). DoTask() performs the actual
work (calculating the prime numbers). OnCompleted() fires a completion event or triggers a
callback to notify the client. Both of these details are specific to the particular task at hand, so
they’re implemented as MustOverride methods that the derived class will override and provide
the implementation code:

Private Sub StartTaskAsync()
 DoTask()
 _status = StatusState.Completed
 OnCompleted()
End Sub

' Override this class to supply the task logic.
Protected MustOverride Sub DoTask()

' Override this class to supply the callback logic.
Protected MustOverride Sub OnCompleted()

This completes the ThreadWrapper.

Creating the Derived Task Class
Now that you have the thread wrapper in place, you can derive a new class that overrides
DoTask() and OnCompleted() to perform the prime-number calculation:

Public Class EratosthenesTask
 Inherits ThreadWrapper
 ...
End Class

The first order of business is getting the input information into the EratosthenesTask class.
The easiest approach is to require that the from and to numbers be supplied as constructor
arguments:

Macdonald_694-3C20.fm Page 717 Tuesday, July 25, 2006 7:53 AM

718 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Private fromNumber, toNumber As Integer

Public Sub New(ByVal fromNumber As Integer, ByVal toNumber As Integer)
 Me.fromNumber = fromNumber
 Me.toNumber = toNumber
 SupportsProgress = True
End Sub

This solves the problem of getting the input information into the class. But how do you get
the result out? The thread wrapper needs to fire some sort of completion event. You could
require the client to supply a callback as a constructor argument. However, this example uses
an event instead:

Public Event Completed As FindPrimesCompletedEventHandler

The event signature defines two parameters: the sender and a
FindPrimesCompletedEventArgs object that wraps the information about the search range
and final prime-number result list.

Public Delegate Sub FindPrimesCompletedEventHandler(_
 ByVal sender As Object, ByVal e As FindPrimesCompletedEventArgs)

Now, you simply need to override the DoTask() and OnCompleted() methods to fill in the
blanks. The DoTask() method performs the search and stores the prime list in a variable:

Private primeList As String

Protected Overrides Sub DoTask()
 ' Start the search for primes and wait.
 Dim primes() As Integer = Worker.FindPrimes(fromNumber, toNumber)

 ' Paste the list of primes together into one long string.
 Dim sb As New StringBuilder()
 For Each prime As Integer In primes
 sb.Append(prime.ToString())
 sb.Append(" ")
 Next

 ' Store the result.
 primeList = sb.ToString()
End Sub

Notice that, in this example, the work is farmed out to the Worker component. This makes
for a more streamlined design and simpler coding. However, you might want to change this
design to put the prime search code into the DoTask() method. This way, you can add support
for progress reporting and cancellation. (The downloadable samples for this chapter [in the
Source Code area of the Apress Web site] use this approach.)

The OnCompleted() method fires the event:

Macdonald_694-3C20.fm Page 718 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 719

Protected Overrides Sub OnCompleted()
 RaiseEvent Completed(Me, _
 New FindPrimesCompletedEventArgs(fromNumber, toNumber, primeList))
End Sub

The next ingredient is to create the form that lets the user launch the prime-number searches.

Creating and Tracking Threads
In this example, the user can launch multiple searches using an MDI interface (see Figure 20-9).
Each search is run by a separate instance of the EratosthenesTask class. The MDI form tracks
all these wrappers and responds to the completion callback to show the results. The number of
ongoing tasks is indicated in the status bar.

Figure 20-9. Performing multiple searches

To make this work, you need to use a collection that keeps track of all the wrappers that are
currently performing searches. You can add this collection as a member variable to the MDI form:

Private workers As New List(Of EratosthenesTask)()

The window you’ve seen in previous example, which included both the search parameters
and the search results, now needs to be split into two separate windows. AsyncTestQuery is the
window where the user will define the range for a new search. AsyncTextResult is the window
that shows the result of a search.

When the user launches a new search, you need to show a search window. Once the user
clicks OK, you can continue by creating the wrapper, adding it to the collection, and getting it
started with the EratosthenesTask.Start() method.

Macdonald_694-3C20.fm Page 719 Tuesday, July 25, 2006 7:53 AM

720 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

Private Sub cmdNewSearch_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdNewSearch.Click
 Dim search As New AsyncTestQuery()
 If search.ShowDialog() = System.Windows.Forms.DialogResult.OK Then
 ' Start the new search.
 Dim worker As New EratosthenesTask(search.From, search.To)
 AddHandler worker.Completed, AddressOf WorkerCompleted
 SyncLock workers
 workers.Add(worker)
 statusPanel.Text = String.Format("Currently running {0} tasks.", _
 workers.Count)
 End SyncLock
 worker.Start()
 End If

 search.Dispose()
End Sub

Notice that when you access the collection, you need to use locking to make sure it’s not
accessed by another thread at the same time.

When the task is completed, it triggers the WorkerCompleted() event handler. This call-
back removes the wrapper from the collection and then calls the private ShowResults() method
on the user interface thread.

Private Sub WorkerCompleted(ByVal sender As Object, _
 ByVal e As FindPrimesCompletedEventArgs)
 ' Stop tracking the worker.
 SyncLock workers
 workers.Remove(CType(sender, EratosthenesTask))
 End SyncLock

 ' Show the results (on the user interface thread).
 Me.Invoke(_
 New FindPrimesCompletedEventHandler(AddressOf ShowResults), _
 New Object() {sender, e})
End Sub

The ShowResults() method handles the job of showing the results. It creates a new window
as an MDI child and displays the prime list in it. It also updates the status bar to reflect the fact
that the number of ongoing tasks has been reduced by one.

Private Sub ShowResults(ByVal sender As Object, _
 ByVal e As FindPrimesCompletedEventArgs)
 Dim result As New AsyncTestResult()
 result.Text = String.Format("Primes From {0} T0 {1}", _
 New Object() { e.From, e.To})
 result.ShowList(e.PrimeList)
 result.MdiParent = Me
 result.Show()

Macdonald_694-3C20.fm Page 720 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 721

 SyncLock workers
 statusPanel.Text = String.Format("Currently running {0} tasks.", _
 workers.Count)
 End SyncLock
End Sub

Improving the Thread Wrapper
This example sketched out the bare skeleton you need to create a respectable solution. You can
add a lot more functionality to the thread wrapper implementation. For example, the base
ThreadWrapper class could be enhanced to support task stopping, either politely (through a
cancel request message that you must heed in the DoTask() method) or impolitely (by aborting
the thread).

Here’s the rough outline for a stop feature. Simply add this code to the ThreadWrapper
base class and customize the protected variables in the EratosthenesTask class as required.

' Flag that indicates a stop is requested.
Private _requestCancel As Boolean = False
Protected ReadOnly Property RequestCancel() As Boolean
 Get
 Return _requestCancel
 End Get
End Property

' How long the thread will wait (in total)
' before aborting a thread that hasn't responded to
' the cancellation message.
' TimeSpan.Zero means polite stops are not enabled.
Private _cancelWaitTime As TimeSpan = TimeSpan.Zero
Protected Property CancelWaitTime() As TimeSpan
 Get
 Return _cancelWaitTime
 End Get
 Set(ByVal value As TimeSpan)
 _cancelWaitTime = value
 End Set
End Property

' How often the thread checks to see if a cancellation
' message has been heeded.
Private _cancelCheckInterval As Integer = 5
Protected Property CancelCheckInterval() As Integer
 Get
 Return _cancelCheckInterval
 End Get

Macdonald_694-3C20.fm Page 721 Tuesday, July 25, 2006 7:53 AM

722 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

 Set(ByVal value As Integer)
 _cancelCheckInterval = value
 End Set
End Property

Public Sub StopTask()
 ' Perform no operation if task isn't running.
 If _status <> StatusState.InProgress Then
 Return
 End If

 ' Try the polite approach.
 If _cancelWaitTime <> TimeSpan.Zero Then
 Dim startTime As DateTime = DateTime.Now
 Do While DateTime.Now.Subtract(startTime).TotalSeconds > 0
 ' Still waiting for the time limit to pass.
 ' Allow other threads to do some work.
 System.Threading.Thread.Sleep(_
 TimeSpan.FromSeconds(_cancelCheckInterval))
 Loop
 End If

 ' Use the forced approach.
 thread.Abort()
End Sub

You could use a similar approach to implement the Pause() and Resume() methods.
The next refinement is progress tracking. If your derived class supports progress reporting,

it should set the SupportsProgress property to True. It can then supply the percentage complete
through the protected progress variable.

Private _supportsProgress As Boolean = False
Protected Property SupportsProgress() As Boolean
 Get
 Return _supportsProgress
 End Get
 Set(ByVal value As Boolean)
 _supportsProgress = Value
 End Set
End Property

Protected _progress As Integer
Public ReadOnly Property Progress() As Integer
 Get
 If (Not _supportsProgress) Then
 Throw New InvalidOperationException(_
 "This worker does not report progess.")

Macdonald_694-3C20.fm Page 722 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 723

 Else
 Return _progress
 End If
 End Get
End Property

You’ll see progress reporting in the next example.

Task Queuing
There’s still a lot more you can do with this example. One improvement would be to imple-
ment some form of task queuing. This approach prevents the possibility that the user might
start a huge number of threads running simultaneously, ensuring that none can get enough
system resources to finish their work (a problem known as thread starvation). Instead, you
allow only a set number of threads to work at once. Once you reach the limit, you add any addi-
tional requests to a queue and execute them only when a thread becomes available.

To manage this work, you need to replace the simple collection of worker threads (from
the previous example) with a dedicated class that wraps the queuing and thread management
work. This model requires too much code to show it all here, but you can see the complete code
in the downloadable examples for this chapter.

■Note You can also use the ThreadPool class from the System.Threading namespace for a simple imple-
mentation of thread queuing that uses threads from the CLR’s pool. However, the ThreadPool doesn’t give you
much flexibility—for example, you can’t stop tasks, report progress, control how many tasks execute at once,
and change priorities. However, the ThreadPool implementation is still better than the example you’ll consider
in this section in one respect. Because it reuses threads for more than one task, you avoid the overhead of
creating new threads.

The basic idea is that your form uses a new TaskManager class. The TaskManager class
derives from Component, so it can be added to a form at design time. This makes it easy to
hook up event handlers.

Public Class TaskManager
 Inherits System.ComponentModel.Component
 ...
End Class

The TaskManager allows you to choose how many tasks can be performed at a time through
a MaxThreads property:

Private _maxThreads As Integer = 2
Public Property MaxThreads() As Integer
 Get
 Return _maxThreads
 End Get

Macdonald_694-3C20.fm Page 723 Tuesday, July 25, 2006 7:53 AM

724 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

 Set(ByVal value As Integer)
 _maxThreads = value
 End Set
End Property

The TaskManager class wraps three ThreadWrapper collections. These collections reflect
tasks that are queued, currently underway, and completed:

' Track ongoing workers.
Private workers As New List(Of ThreadWrapperBase)()

' Track queued requests.
Private workersQueued As New List(Of ThreadWrapperBase)()

' Task completed requests.
Private workersCompleted As New List(Of ThreadWrapperBase)()

To add a new task to the queue, the client simply calls EnqueueTask(). This method doesn’t
start the work—instead, it adds it to the collection of queued requests.

Public Sub EnqueueTask(ByVal task As ThreadWrapper)
 SyncLock workersQueued
 workersQueued.Add(task)
 End SyncLock
End Sub

The magic happens in the AllocateWork() method, which runs continuously on a low-
priority thread. The TaskManager doesn’t actually create this thread and start allocating work
until the client calls StartAllocatingWork().

Private allocateWork As Thread
Private working As Boolean = False
Private invokeContext As Control

Public Sub StartAllocatingWork(ByVal invokeContext As Control)
 If working = False Then
 Me.invokeContext = invokeContext
 allocateWork_Renamed = New Thread(AddressOf AllocateWork)
 allocateWork_Renamed.IsBackground = True
 allocateWork.Priority = ThreadPriority.BelowNormal
 working = True
 allocateWork_Renamed.Start()
 End If
End Sub

Macdonald_694-3C20.fm Page 724 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 725

There’s another important detail here. When the client calls AllocateWork(), it passes in a
reference to the current form. The TaskManager uses this to call Control.Invoke() before raising
any events. That way, the events are always raised on the user interface thread, and the client
application is completely insulated from the threading complexities.

The AllocateWork() method has the bulk of the work. It walks through the three collections
of ThreadWrapper objects. It performs its work in a continuous loop, sleeping for a few seconds
after each pass to allow other threads to do some work.

Private Sub AllocateWork()
 Do
 ' (Allocate work, check for completed items, and report progress here.)
 Thread.Sleep(TimeSpan.FromSeconds(5))
 Loop
End Sub

The AllocateWork() method performs three tasks in its loop. First, it removes completed
tasks and fires the appropriate completion events.

For i As Integer = workers.Count - 1 To 0 Step -1
 If workers(i).Status = StatusState.Completed Then
 Dim worker As ThreadWrapperBase = workers(i)
 SyncLock workersCompleted
 workersCompleted.Add(worker)
 End SyncLock

 SyncLock workers
 workers.Remove(worker)
 End SyncLock

 ' Fire notification event.
 invokeContext.Invoke(_
 New WorkerCompletedEventHandler(AddressOf OnWorkerCompleted), _
 New Object() {Me, _
 New WorkerCompletedEventArgs(CType(worker, EratosthenesTask))})
 End If
Next

This code loops through the collection in reverse order, so that a single pass can remove
entries without rearranging the items that haven’t been scanned yet. You’ll notice that the
collection isn’t locked while it’s being scanned. That’s because the AllocateWork() method
is the only piece of code that touches this object. On the other hand, the workersCompleted
collection does need locking, because you may want to provide another method that extracts
this information later on.

If you haven’t reached the maximum number of in-progress tasks, the next step is to move
tasks from the queue to the current collection and start them:

Macdonald_694-3C20.fm Page 725 Tuesday, July 25, 2006 7:53 AM

726 C H A P T E R 2 0 ■ M U L T I T H R E A D I N G

' Allocate new work while threads are available.
Do While workersQueued.Count > 0 AndAlso workers.Count < _maxThreads
 Dim task As ThreadWrapperBase = workersQueued(0)

 ' Some exception handling code here would be useful
 ' to prevent performing one part of this sequence
 ' (starting the task), without the other (removing it
 ' from the queue).
 SyncLock workers
 workers.Add(task)
 End SyncLock

 SyncLock workersQueued
 workersQueued.RemoveAt(0)
 End SyncLock
 task.Start()
Loop

Once again, you don’t need to lock the workers collection, but you do need to lock the
workersQueued collection, because the application could be in the process of queuing up a
new task.

Finally, progress notifications are fired for all the tasks that are in progress.

' Report progress.
For i As Integer = workers.Count - 1 To 0 Step -1
 Dim worker As ThreadWrapperBase = workers(i)
 If worker.Status = StatusState.InProgress Then

 ' Fire notification event.
 If invokeContext.Created Then
 invokeContext.Invoke(_
 New ReportWorkerProgressEventHandler(_
 AddressOf OnReportWorkerProgress), _
 New Object() {Me, _
 New ReportWorkerProgressEventArgs(worker.ID, worker.Progress)})
 End If
 End If
Next

There are different ways to accomplish this step, each with its own compromises. In the
design used here, a separate event is fired for each in-progress task. This allows you to keep the
threading code and the user interface code well separated, but it may not perform well for
applications that queue up a long list of tasks, because the client will be forced to search for the
matching task request each time the event fires. In this case, you might consider a compromise,
such as passing all the status information at once or even giving your task objects a reference
to a control the TaskManager can update directly. This approach is messier, but it may allow
you to keep the application more responsive.

Macdonald_694-3C20.fm Page 726 Tuesday, July 25, 2006 7:53 AM

C H A P T E R 2 0 ■ M U L T I T H R E A D I N G 727

The end result is that once you have the TaskManager code in place, you can create an
application that allows you to start and monitor multiple tasks, as shown in Figure 20-10. When
a task is completed, simply double-click the item to see the prime list.

Figure 20-10. Testing the Task Manager

The Last Word
In this chapter, you’ve seen a variety of techniques for multithreading, ranging from the rela-
tive simplicity of asynchronous delegates and the BackgroundWorker to much more advanced
designs with thread wrappers and task managers.

Think twice before letting loose with multithreading, as it increases the complexity associ-
ated with every aspect of your application, from design to debugging. If you need multithreading to
ensure a responsive application (and Windows applications often do), use it judiciously—in
other words, run only the most time-consuming, long-running operations in the background,
and make the rest of your application synchronous. Multithreading definitely isn’t for the faint
of heart, and creating a real-world task manager (such as the one demonstrated in this chapter)
requires a thorough understanding of the subtleties involved.

Macdonald_694-3C20.fm Page 727 Tuesday, July 25, 2006 7:53 AM

Macdonald_694-3C20.fm Page 728 Tuesday, July 25, 2006 7:53 AM

729

■ ■ ■

C H A P T E R 2 1

Dynamic Interfaces and
Layout Engines

One of the most common questions in any Windows programming language is how to add a
control to a window dynamically—in other words, while the program is executing. For example,
you might want to create a program that generates tailored forms based on the information in
an XML file. This sort of task is surprisingly easy in .NET, because there isn’t a sharp distinction
between control creation at runtime and control creation at design time. In fact, in .NET
programming, every control is created through code. As you learned in Chapter 1, when you
add a control to a form and configure its properties, Visual Studio generates the appropriate
code statements and adds them to a designer file. By studying this automatically generated
code, you can quickly learn how to create and add any control you need at runtime.

Of course, creating a dynamic user interface is about much more than instantiating a
control object at runtime. It’s also a philosophy that breaks free of the shackles of visual design
tools and allows you to generate user interfaces based on database records, user preferences,
or localization needs.

In this chapter, you’ll start with dynamic menus and a button generator, and then dive
into more advanced examples. For example, you’ll see an application that builds made-to-
measure windows based on survey definitions in a file, and another that creates a flexible
portal-style interface out of multiple modules. Along the way, you’ll learn about the new .NET 2.0
layout panels, which provide a flexible framework that can help you manage how dynamically
inserted content is organized in a window.

The Case for Dynamic User Interface
Before you start writing any code, you need to decide how dynamic your user interface should
be. This chapter offers examples that do little more than add a few simple elements to a form,
and others that build the Window dynamically from scratch. So which approach is best?

As usual, it all depends on your project and design goals. To determine where dynamic
user interface fits in, you need to consider the role of the user interface designer. Some of the
reasons that programmers rely on Visual Studio to create their interface include:

Macdonald_694-3C21.fm Page 729 Tuesday, July 25, 2006 7:59 AM

730 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

It hides the messy code details. User-interface code is difficult to manage due to the sheer
amount you need to implement even basic designs. Because Windows Forms controls
don’t provide constructors that allow important properties to be set, it takes several lines
that set multiple properties to fully configure an average control.

It saves time. The design-time environment makes it faster to create and maintain an
interface. You can apply changes directly, with little chance of error.

It supports localization. As described in Chapter 5, it’s easy to localize the properties of the
controls on your form at design time. Just set Form.Localizable to True, set the Language
property, and enter your values.

Overall, it’s far easier to create a user interface with precision and cosmetic appeal using
the IDE. On the other hand, there are some things that user interfaces designed in the IDE
don’t handle well:

Adaptable user interfaces. In some cases, you want the user interface to change according
to distinct rules. For example, you might need to adjust the UI to suit different user skill
levels, different permissions, or different languages. In these situations, you can stick with
a static user interface and write a great deal of “control tweaking” code, or consider a more
radical solution that builds the whole interface dynamically. The latter approach takes
longer to code initially, but it may end up being more manageable in the long run.

Customizable user interfaces. Many applications give the user the ability to customize
some aspects of the UI. In some cases, your product might be so customizable that you
need to include a separate administrative module that allows nonprogrammers to define
or modify certain aspects of the interface. Once again, if the changes are relatively minor,
you can tweak the existing UI, but if they’re more substantial (for example, if the user chooses
different modules to show on a main window), a dynamic interface will be much easier.

Wizards. If you’re using this type of UI, you need to show different content in a region of
the form (usually a panel) as the user moves from one step (or “page”) to the next. Chapter 10
presented a solution to this problem that makes use of user controls.

Drawing and diagramming tools. Most drawing tools don’t just paint static content.
Instead, they let users create independent objects (ranging from lines of texts to geometric
shapes). If you’re creating an application like this, you’ll want to consider custom drawing
or owner-drawn controls (as demonstrated in Chapter 24).

Code that dynamically creates a user interface is almost always more work to create and
more difficult to maintain. But as you’ll see in this chapter, a dynamic interface also can result
in an application that’s much more flexible and much more adaptable to different needs and
changing content.

Dynamic Content
When discussing dynamic interfaces, it’s often useful to draw a distinction between those that
simply tailor the content of existing controls and those that actually create and add new controls.
The first case—dynamic content—is obviously simpler and can appear in just about any situa-
tion. Some examples include applications that need to be localized or configured for different

Macdonald_694-3C21.fm Page 730 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 731

sets of users, or applications that are heavily data-driven (like a program for browsing an online
product catalog).

One of the simplest examples of dynamic content is the average About box (shown in
Figure 21-1). It rarely makes sense to hard-code information like a program’s version directly
into the user interface of a window, because it cannot be guaranteed to remain correct (and it
can be extremely tedious to synchronize if you use auto-incrementing version numbers).
Instead, this information should be retrieved dynamically:

lblProductName.Text = Application.ProductName
lblProductVersion.Text = "Version: " & Application.ProductVersion.ToString()
lblPath.Text = "Executing in: " & Application.ExecutablePath

Figure 21-1. Dynamic content in the About box

Usually, you’ll decide between dynamic content and dynamic control creation based on
the type of information you need to display and how much it varies.

An Adaptable Menu Example
A more interesting example of dynamic content is an adaptable menu. Some Windows program-
ming frameworks (like MFC) include the concept of changing a menu as different controls get
focus. Although .NET doesn’t include this functionality, you can build it yourself.

Before you begin, you need to consider how your menu will vary. Key considerations include
whether you need to change one submenu or several, whether you need to change toolbars as
well as menus, and whether you want to replace the menu with a completely different one or
simply add or hide individual items.

Once you’ve identified your design, you need to decide how to implement it. You’ll need
to react to the focus events Enter and Leave to change the menu as the user moves from one
control to another. To actually change the menu, you can use one of three common techniques:

Programmatic menu merging. In this case, you use the ToolStripManager.Merge() method to
trigger automatic menu merging. Menu merging is described in Chapter 19.

Replacing submenus with context menus. In this case, you create multiple context menus
and simply assign them to parts of the main menu.

Hiding and showing individual items. In this case, you simply tweak the Enabled or Visible
property of the appropriate ToolStripMenuItem object.

Macdonald_694-3C21.fm Page 731 Tuesday, July 25, 2006 7:59 AM

732 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

The following example uses the second (context menu) approach. The next section shows
a more ambitious example that uses the third approach.

When designing an adaptable menu, you don’t necessarily need to tailor the menu for
individual controls. In many cases, you’ll only want to have a small set of menus, and you’ll use
each menu for a group of controls. The easiest way to implement this design is to arrange your
controls into some sort of container, like a panel.

Consider the form shown in Figure 21-2. The second top-level menu varies depending on
whether the focus is somewhere in the first panel or somewhere in the second.

Figure 21-2. A menu that changes according to control focus

Implementing this example is easy. The trick is that you can replace a top-level menu item
with a context menu using code like this:

mnuTopLevel.DropDown = mnuContext.DropDown

Assuming mnuTopLevel is a top-level menu (like File) in a MenuStrip, and mnuContext is
a ContextMenuStrip, this single line populates the top-level menu with all the items in the
context menu.

The problem with this approach is that it doesn’t change the top-level menu text. This
example works around this limitation by binding to the first item in the context menu, rather
than the entire context menu. In other words, it uses code like this:

' Get the first item in the menu.
Dim item As ToolStripMenuItem = CType(mnuContext.Items(0), ToolStripMenuItem)

' Copy the subitems from this item into the top-level menu.
mnuTopLevel.DropDown = item.DropDown

' Copy the text from this item into the top-level menu.
mnuReplaceable.Text = item.Text

Macdonald_694-3C21.fm Page 732 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 733

This design assumes the menu you’re moving into the top level is a submenu of the first
item in the context menu. This allows you to define the menu items and the menu text.

Using this approach makes it easy to create the context menus and attach event handlers
at design time. It’s also easy to associate each menu with its corresponding panel through the
Control.ContextMenuStrip property. In fact, you can use as many menus and panels as you
want without complicating the design. Every panel can use the same code in the same event
handler to perform the swap:

Private Sub panel_Enter(ByVal sender As Object, ByVal e As EventArgs) _
 Handles panel2.Enter, panel1.Enter
 Dim panel As Panel = CType(sender, Panel)
 mnuTopLevel.DropDown = panel.ContextMenuStrip
 Dim item As ToolStripMenuItem
 item = CType(panel.ContextMenuStrip.Items(0), ToolStripMenuItem)
 mnuTopLevel.DropDown = item.DropDown
 mnuTopLevel.Text = item.Text
End Sub

If you decide to use an alternate approach (for example, menu merging with the
ToolStripManager), you’ll need to devise a way to associate a ToolStrip with a control, or you’ll
be forced to hard-code these relations in your form, which makes your code longer and much
more difficult to maintain. This challenge is a prime candidate for a custom property extender
(as described in Chapter 25). With a custom property extender, you could add properties like
AssociatedToolStrip and MergeToolStripOnFocus to every panel control. Once you set these
properties, the property extender takes care of listening for the focus change events, getting the
related ToolStrip, and performing the merge operation. To learn more about how to imple-
ment a property extender, see Chapter 25.

A Database-Driven Adaptable Menu
It’s all well and good to assemble a menu out of bits and pieces in response to specific events,
but it’s even more interesting if the information is drawn from an external source. The following
example uses a database table that maps user levels to control access permissions. Depending
on the user type, some options may be disabled or hidden entirely.

The database uses three tables (see Figure 21-3). Controls lists the names of available
controls in the user interface, Levels lists the supported user levels, and Controls_Levels specifies
what controls are allowed for a given user level (using a special State field that indicates 0 for
normal, 1 for hidden, and 2 for disabled). All controls are enabled by default, so the only records
that need to be added to Controls_Levels are those that specifically hide or disable controls. In
a full-blown application, there would probably also be a Users table that indicates what level
each user has.

Figure 21-3. Tables mapping control access permissions

Macdonald_694-3C21.fm Page 733 Tuesday, July 25, 2006 7:59 AM

734 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

In this example, the database is configured with the information for two user levels: User
and Admin. The different menu structures these users will see are shown in Figure 21-4.

Figure 21-4. Different menu structures

By pulling all the user permission logic out of the user interface and placing it in the data-
base, it becomes very easy to write a small amount of generic code that automatically configures
the user interface for the user who is currently logged on:

' Get permissions for an Admin-level user.
Dim dtPermissions As DataTable = _
 DBPermissions.GetPermissions(DBPermissions.Level.Admin)

' Update the menu with these permissions.
MenuLockDown.SearchMenu(MainMenuStrip.Items, dtPermissions)

The DBPermissions class uses a shared GetPermissions() function that returns a table with
all the security information for the specified user level. To remove the chance of error, it also
uses an enumeration that defines the different levels of user access in the database.

Public Class DBPermissions

 Public Enum State
 Normal = 0
 Disabled = 1
 Hidden = 2
 End Enum

 Public Enum Level
 Admin
 User
 End Enum

Macdonald_694-3C21.fm Page 734 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 735

 Private con As New SqlConnection(My.Settings.DBConnectionString)

 Public Function GetPermissions(ByVal userLevel As Level) As DataTable
 ' Permissions isn't actually actually a table in our data source.
 ' Instead, it's a view that combines the important information
 ' from all three tables using a Join query.
 Dim selectPermissions As String = _
 "SELECT * FROM Permissions WHERE LevelName=@LevelName"
 Dim cmd As New SqlCommand(selectPermissions, con)

 Dim param As New SqlParameter("@LevelName", _
 [Enum].GetName(GetType(Level), userLevel))
 cmd.Parameters.Add(param)

 Dim adapter As New SqlDataAdapter(cmd)
 Dim ds As New DataSet()
 adapter.Fill(ds, "Permissions")

 Return ds.Tables("Permissions")
 End Function
End Class

Finally, the SearchMenu() function recursively tunnels through the menu, hiding or
disabling controls as indicated in the permissions table.

Public Class MenuLockDown

 Public Shared Sub SearchMenu(ByVal items As ToolStripItemCollection, _
 ByVal dtPermissions As DataTable)
 Dim rowMatch As DataRow()

 For Each item As ToolStripItem In items
 ' Skip separators and other controls
 Dim mnuItem As ToolStripMenuItem = TryCast(item, ToolStripMenuItem)
 If Not mnuItem Is Nothing Then
 ' See if this menu item has a corresponding row.
 rowMatch = dtPermissions.Select("ControlName = '" & _
 mnuItem.Name & "'")

 ' If it does, configure the menu item state accordingly.
 If rowMatch.GetLength(0) > 0 Then
 Dim state As DBPermissions.State
 state = CType(_
 Integer.Parse(rowMatch(0)("State").ToString()), _
 DBPermissions.State)

Macdonald_694-3C21.fm Page 735 Tuesday, July 25, 2006 7:59 AM

736 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

 Select Case state
 Case DBPermissions.State.Hidden
 mnuItem.Visible = False
 Case DBPermissions.State.Disabled
 mnuItem.Enabled = False
 End Select
 Else
 mnuItem.Visible = True
 mnuItem.Enabled = True
 End If

 ' Search recursively through any submenus.
 If mnuItem.DropDownItems.Count > 0 Then
 SearchMenu(mnuItem.DropDownItems, dtPermissions)
 End If
 End If
 Next
 End Sub

End Class

Best of all, if the permissions need to change or another access level needs to be added,
only the database needs to be modified. An application created in this way is easy to maintain
without painful recompiles and redeployment.

Our example dynamically configures menus, but there are other approaches. For example,
you could disable controls in a form (at which point you would probably want to add a
FormName field to the Controls table). Chapter 22 demonstrates a similar technique with
dynamic help content. You also could use a similar model to create localizable content for your
menus. Instead of mapping controls to user levels with a State field, you would use a Text field
that would be applied to the control’s Text property.

■Note You can even extend this system to make a radically configurable interface supporting user-selected
themes, but beware of going too far. The more variation your application supports, the more difficult it is to
create support material and solve problems in the field. This is the classic flexibility-versus-ease-of-use
dilemma.

Creating Controls at Runtime
Creating a control at runtime involves a few simple steps:

1. Create the control object as you would any other class.

2. Set the properties for the control (including basics like size and position).

Macdonald_694-3C21.fm Page 736 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 737

3. Add the control object to the Controls collection of a container control, like a Form,
GroupBox, Panel, or TabPage.

4. If you want to handle any of the control’s events, use the appropriate delegate code to
hook up your event handler.

To demonstrate this process, consider the sample button generator program shown in
Figure 21-5. This program creates a button at the specified position every time the user clicks
the Create button. An event handler is attached to the Click event for each new button, ensuring
that .NET can capture user clicks (and display a brief user message at the bottom of the window).

Public Class ButtonMaker

 Private buttonCount As Integer = 0

 Private Sub cmdCreate_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdCreate.Click
 buttonCount += 1

 ' Create the button.
 Dim newButton As New Button()
 newButton.Text = "Button " & buttonCount.ToString()
 newButton.Location = New Point(Int32.Parse(txtLeft.Text), _
 Int32.Parse(txtTop.Text))

 ' Attach the event handler.
 AddHandler newButton.Click, AddressOf ButtonHandler

 Me.Controls.Add(newButton)
 End Sub

 Private Sub ButtonHandler(ByVal sender As Object, ByVal e As System.EventArgs)
 lblStatus.Text = " You clicked ... "
 lblStatus.Text += (CType(sender, Button)).Text
 End Sub

End Class

One of the key challenges with this approach is that you need to place each control exactly.
If you have a modestly detailed user interface, you’ll need some extremely messy calculations
to determine the correct coordinates and size for each element. One way to deal with these
problems is to use a control layout engine, as described in the next section.

■Tip The button generator is a proof-of-concept example. On its own, it doesn’t do anything useful. In the
following sections, you’ll see how you can adapt the same technique to create a much more practical application.

Macdonald_694-3C21.fm Page 737 Tuesday, July 25, 2006 7:59 AM

738 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Figure 21-5. A dynamic button generator

Managing Control Layout
If you’re creating highly dynamic forms, you need a way to create the controls and a technique
to ensure they all end in the right place. You could calculate control sizes and positions by
hand, but it can quickly lead to complex and convoluted code. Another solution is to use one of
.NET’s layout panels. These container controls, which are new in .NET 2.0, automatically orga-
nize all the contained child controls based on specific rules.

The control layout panels extend the possibilities for form layout, but they also complicate
your application. As a general rule of thumb, you shouldn’t use a control layout engine if you
can get all the functionality you need using docking, anchoring, the Control.AutoSize property,
and container controls like the Panel and SplitContainer (which are described in Chapter 3).
These controls allow you to create a wide range of control layouts, and are easy to work with at
design time. However, if you need to programmatically create a highly configurable interface
or you need one of the specific resizing behaviors discussed in the following sections, you can
consider using a specialized layout control instead.

■Note If you’ve programmed with Java before, the idea of layout managers is nothing new. Some of the
layout managers provided for Java containers include FlowLayout (similar to a word processor), BorderLayout
(which divides the screen into five zones), CardLayout (like a stack of cards layered on top of each other),
GridLayout (which allows one component per equal-sized cell), and GridBagLayout (which adds support for
variable control sizes and location with a grid). Although the layout ability in .NET resembles the Java approach
in several ways, it also provides much more impressive design-time support.

The Layout Event
As you’ve seen, the .NET forms architecture provides support for laying out controls using
coordinates in a grid. This approach, combined with the built-in support for docking and
anchoring, gives developers a rich layout environment.

However, there are times when the use of the Dock and Anchor properties alone is not
necessarily the best approach. For example, you may need a container control that automatically

Macdonald_694-3C21.fm Page 738 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 739

lays out child controls according to different rules, perhaps adjusting them to accommodate the
width of the largest control or shrinking them to fit the size of the container, to name just two
possibilities.

The basic starting point in extending control layout is the Control.Layout event (or, equiv-
alently, the Control.OnLayout() method). This event occurs in container controls and forms
when they need to update the position or size of their child controls. Several factors can trigger
the Layout event, including when child controls are added or removed, when a child control is
resized or moved, and when the bounds of the container are changed.

■Note You can temporarily suspend the Layout event using the SuspendLayout() and ResumeLayout()
methods, which are handy to optimize performance if you need to perform several operations. Each will trigger
a layout operation, such as moving and resizing a control. However, the SuspendLayout() and ResumeLayout()
methods are only one level deep. In other words, if you have a TopPanel that contains an InnerPanel control
and you call TopPanel.SuspendLayout(), layout events will still take place for the InnerPanel.

To extend Windows Forms layout, you can create a layout manager—a specialized class
that connects itself to the action by listening for layout events from the container control.
When a layout event fires, the layout manager can iterate through all the items in the Controls
collection of the container and arrange them accordingly. Depending on the layout manager,
this may mean ignoring the Location property and even the Size property of each control. It
also could involve inspecting other extended properties.

A Simple Handmade Layout Manager
The following SingleLineFlowLayoutManager is an example of a simple layout manager
that tracks one associated control. When the Layout event of that control fires, the
SingleLineFlowLayoutManager lays out the controls it contains, placing one control per
line from top to bottom. It also gives each control the width of the container. The
SingleLineFlowLayoutManager also includes a single property—Margin—that lets you
set the spacing between lines.

Public Class SingleLineFlowLayoutManager

 Private container As Control

 ' Instead of using a simple integer, you could use a full
 ' Padding structure.
 Private _margin As Integer
 Public Property Margin() As Integer
 Get
 Return _margin
 End Get

Macdonald_694-3C21.fm Page 739 Tuesday, July 25, 2006 7:59 AM

740 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

 Set(ByVal value As Integer)
 _margin = value
 container.PerformLayout()
 End Set
 End Property

 Public Sub New(ByVal container As Control, ByVal margin As Integer)
 Me.container = container
 Me.Margin = margin

 ' Attach the event handler.
 AddHandler container.Layout, AddressOf UpdateLayout

 ' Refresh the layout.
 container.PerformLayout(container, "LayoutManager")
 End Sub

 Private Sub UpdateLayout(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LayoutEventArgs)
 If e.AffectedProperty = "Visible" Then
 Return
 End If
 Dim y As Integer = 0
 For Each ctrl As Control In container.Controls
 y += Margin

 ' For maximum efficiency, set the
 ' size and location in one step through
 ' the Bounds property.
 ctrl.Bounds = New Rectangle(Margin, y, _
 container.Width - Margin * 2, Margin)
 Next
 End Sub

End Class

The bulk of the work is performed in the UpdateLayout() method, which adjusts the posi-
tion of the controls in the container. The client doesn’t need to call this method manually.
Instead, once the layout manager is connected to the correct container, it fires automatically as
controls are added or removed. The UpdateLayout() method arranges controls with a fixed
height and uses the width of the container. Many more alternatives are possible—for example,
you could record the width of the largest child control and resize all the other controls and the
container itself to match.

To trigger the layout when the layout manager is first created, the code uses the
PerformLayout() method. PerformLayout() plays the same role with layout as Invalidate() does
with custom drawing. When you call it, you notify the control that its layout is no longer valid,
and it must fire its Layout. It’s more efficient to call PerformLayout() than to launch directly
into your layout code (mainly because it helps multiple layouts in a row when they aren’t needed).

Macdonald_694-3C21.fm Page 740 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 741

The following form code shows how easy it is to use the layout manager. It adds several
check box controls to a TabPage container when a form is loaded. Because a layout provider is
being used, the client doesn’t need to worry about details like the position or size of the child
controls—they are organized automatically.

Private Sub HandMadeLayoutManager_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 ' Create and attach the layout manager.
 Dim layoutManager As New SingleLineFlowLayoutManager(tabPage1, 20)
 tabPage1.SuspendLayout()

 ' Add 10 sample checkboxes.
 Dim chkbox As CheckBox

 For i As Integer = 1 To 10
 chkbox = New CheckBox()
 chkbox.Name = "checkBox" & i.ToString()
 chkbox.Text = "Setting " & i.ToString()
 tabPage1.Controls.Add(chkbox)
 Next
 tabPage1.ResumeLayout()
End Sub

Without the layout manager, all the check boxes would just be layered on top of each
other with the default size and the coordinates (0, 0). Figure 21-6 shows the result with the
SingleLineFlow layout manager.

Figure 21-6. The SingleLineFlowLayoutManager in action

Macdonald_694-3C21.fm Page 741 Tuesday, July 25, 2006 7:59 AM

742 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

To take a look at what’s really going on behind the scenes, you can add some quick-and-
dirty debugging code to the SingleLineFlowLayoutManager.UpdateLayout() method:

Private Sub UpdateLayout(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LayoutEventArgs)
 Dim debugMessage As String = "Called: " & _
 vbNewLine & " Affected Control: " & e.AffectedControl.Name & _
 vbNewLine & " Affected Property: " & e.AffectedProperty
 Debug.WriteLine(debugMessage)
 ...
End Sub

You’ll find that when the form first loads, the UpdateLayout() method runs (in response to
the Layout event) 12 times. The first time occurs when the SingleLineFlowLayoutManager is
created and calls PerformLayout(). It displays this debug message:

Called:
 Affected Control: tabPage1
 Affected Property: Bounds

The next ten times occur after each check box is added. The AffectedControl property indi-
cates the control that’s been added, and the AffectedProperty property explains the reason for
the layout (the control has a new parent—the tab page).

Called:
 Affected Control: checkBox1
 Affected Property: Parent
Called:
 Affected Control: checkBox2
 Affected Property: Parent
...

Finally, the layout code fires again when the form becomes visible:

Called:
 Affected Control: tabPage1
 Affected Property: Visible

If you switch to the second tab and back again, the layout code runs once more with the
same message, which indicates that the tab page has become visible again.

To optimize your layout code, you may choose to ignore some layout operations or perform
less work depending on the type of action that triggered the layout. However, it’s usually diffi-
cult and unreliable to code this logic, particularly because LayoutEventArgs.AffectedProperty
returns a simple string and isn’t guaranteed. In fact, the AffectedControl and AffectedProperty
are set by the caller when calling PerformLayout():

control.PerformLayout(control, "Parent")

If you don’t supply these parameters, the control defaults to the control on which you’re
calling PerformLayout(), and the AffectedProperty string defaults to Bounds.

Macdonald_694-3C21.fm Page 742 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 743

A safer optimization is to use the SuspendLayout() and ResumeLayout() methods. By
placing these calls before and after you add the check boxes, you can reduce the number of
layout events from 12 to 3.

' Create and attach the layout manager.
Dim layoutManager As New SingleLineFlowLayoutManager(tabPage1, 20)

tabPage1.SuspendLayout()
' (Add 10 sample checkboxes.)
tabPage1.ResumeLayout()

■Note Remember, it won’t help to call SuspendLayout() on the entire tab control, because that will only
suppress layout events for controls that are directly contained by the TabControl (namely, TabPage controls).
It won’t affect the controls inside each TabPage.

Problems with the Simple Layout Manager
The SimpleFlowLayoutManager is a good example of custom layout logic, but it has a few
glaring issues:

• The layout manager doesn’t give a good design-time representation of what the form
will look like. That’s because the layout logic isn’t performed until the layout manager
class is created at runtime. As a result, the child controls won’t be organized in the IDE
view at design time. Instead, they will be reorganized when the program is launched and
your code attaches the layout manager.

• The code is still quite simple. You could extend this example layout manager so that it
lays out controls in multiple columns or a fixed-size table. However, it will take more
time and code.

• The layout manager treats all controls equally. In some cases, you’ll want a more customiz-
able layout that takes individual control settings into account. For example, the default
layout provided by Windows Forms gives every control a Size and a Location property
that is used to determine where the control is placed in the container. You might want to
add other layout properties (for example, a Justification, Column, or LayoutListPriority
property) to standard controls, which your layout manager could then take into account.
To achieve this, you would need to design your layout manager as a custom extender
provider (see Chapter 27).

In .NET 1.x, there was no alternative to creating custom layout classes by hand. However,
.NET 2.0 adds a new layout engine system that solves these problems.

Layout Engines
.NET 2.0 extends the layout system with layout engines. Layout engines play the same role as
the custom layout manager shown in the previous example, with a few minor differences:

Macdonald_694-3C21.fm Page 743 Tuesday, July 25, 2006 7:59 AM

744 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

• All layout engines inherit from the abstract base class LayoutEngine in the System.
Windows.Forms.Layout namespace. (You won’t actually see the basic set of layout
engine classes in this namespace, because they are hidden, internal classes.) When
inheriting from LayoutEngine, the class must override two methods: InitLayout() and
Layout().

• Layout engines don’t link themselves to controls. Instead, wherever possible, controls
bind themselves to layout engines. This allows a single layout manager to be reused for
multiple controls, saving memory. To accommodate this design, each control has a
LayoutEngine property, which provides a reference to the layout engine that should be
used for organizing child controls.

■Note In some cases, controls and layout engines do have a one-to-one relationship. One key example is
the ToolStrip, which has its own layout manager that implements details like the overflow menu.

By default, the Control.LayoutEngine is set to an instance of the internal DefaultLayout
class (from the System.Windows.Forms.Layout namespace). This class implements the dock-
and-anchor functionality you learned about in Chapter 3.

The Control.LayoutEngine property is protected and read-only, so you don’t set it directly.
Instead, to bind a control to a layout engine, you must derive a new control class. Because the
chief goal of a layout engine is to organize child controls, you would only use this technique to
create new types of containers. For example, you might design a new type of custom toolbar
and override its Control.LayoutEngine property, so it returns a custom layout engine object
that can organize the individual toolbar buttons the way you want.

Later in this chapter, you’ll consider how to create and use a custom layout manager.
But in most cases, you won’t need to go to this work, because .NET includes two all-purpose
container controls that implement specialized layout: FlowLayoutPanel and
TableLayoutPanel.

The FlowLayoutPanel and TableLayoutPanel controls are hardwired to use a corresponding
layout engine to organize their child controls. (These are the FlowLayout and TableLayout
classes, respectively. Both are in the System.Windows.Forms.Layout namespace, but they’re
internal, so you won’t be able see them.) Additionally, both FlowLayoutPanel and
TableLayoutPanel implement IExtenderProvider, which allows them to add layout-related
properties to other controls. For example, if you drag a button into a TableLayoutPanel and
check the Properties window, you’ll find that it has several new properties, like RowSpan and
ColumnSpan. Using these properties, you can give the layout engine additional information
that it can use when performing the layout.

Figure 21-7 shows the interaction of the layout engines, controls, and layout panels.

Macdonald_694-3C21.fm Page 744 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 745

Figure 21-7. Layout engines in .NET 2.0

Creating a Custom Layout Engine
Before we consider the FlowLayoutPanel and TableLayoutPanel controls, it’s worth taking a
deeper look at how layout engines plug into controls.

It’s surprisingly easy to transform the SingleLineFlowLayoutManager demonstrated in the
previous example into a legitimate layout engine. The first step is to create a class that derives
from the abstract LayoutEngine class (in the System.Windows.Forms.Layout namespace):

Public Class SingleLineFlowLayoutEngine
 Inherits LayoutEngine
 ...
End Class

You can add a Margin property and a basic constructor to this class, just as you did with
the SingleLineFlowLayoutManager. But the real work is done by overriding the Layout()
method. This method is triggered automatically in response to a Layout event in the linked
control (unless SuspendLayout() has been called, in which case the call is deferred until
ResumeLayout() is called).

Macdonald_694-3C21.fm Page 745 Tuesday, July 25, 2006 7:59 AM

746 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Public Overrides Function Layout(ByVal container As Object, _
 ByVal layoutEventArgs As LayoutEventArgs) As Boolean
 parent = TryCast(container, Control)

 Dim y As Integer = 0
 For Each ctrl As Control In parent.Controls
 y += Margin

 ' For maximum efficiency, set the
 ' size and location in one step through
 ' the Bounds property.
 ctrl.Bounds = New Rectangle(Margin, y, parent.Width - Margin * 2, Margin)
 Next

 ' Return true if the layout should be performed again
 ' by the parent.
 Return parent.AutoSize
End Function

This code implements the same logic you saw earlier—each control is spaced out in a
separate line. You can easily choose to take other properties (such as the parent’s padding, and
the margins or anchor settings of each child control) into account.

The final step is to connect this layout engine to a control. You can do this only by deriving
a new control class and assigning to the LayoutEngine property. For example, you could create
a derived panel control or user control that uses this technique. But the easiest test is to change
the layout manager of a form. Because every form you create in Visual Studio is a custom class
that derives from Form, you’re able to override the LayoutEngine property, as shown here:

Private _layoutEngine As SingleLineFlowLayoutEngine
Public Overrides ReadOnly Property LayoutEngine() As LayoutEngine
 Get
 If _layoutEngine Is Nothing Then
 ' Create a layout manager that uses a 20-pixel margin.
 _layoutEngine = New SingleLineFlowLayoutEngine(20)
 End If
 Return _layoutEngine
 End Get
End Property

Now the controls in this form are automatically laid out by the SingleLineFlowLayoutEngine.

The FlowLayoutPanel
There are two panel controls for custom layout. The FlowLayoutPanel is the simpler of the two.
The FlowLayoutPanel arranges controls one after the other in the available space. It’s similar to
the approach usually used with web pages, where each element is positioned immediately
after the preceding element.

Macdonald_694-3C21.fm Page 746 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 747

To try out a FlowLayoutPanel, drag it onto a form and start adding some controls. The
FlowLayoutPanel adds two new properties to the Panel class:

FlowDirection. This property determines how the controls are laid out in sequence (for
example, from top to bottom). Table 21-1 lists the supported values.

WrapContents. If True, this allows the layout control to wrap controls once they extend
beyond the boundary specified by FlowDirection. For example, if you’re laying out items
from left to right and you set WrapContents to True, items will be added in a new left-to-
right row underneath when the first row is full. If WrapContents is False, everything will be
added into the first row, but items that extend beyond the boundaries of the panel will be
clipped or hidden.

Once you’re familiar with these two properties, there’s not much more you need to know
about the FlowLayoutPanel. Figure 21-8 shows two examples where multiple buttons are
placed in FlowLayoutPanel. In the first case, wrapping is enabled. In the second, it isn’t. In both
examples, a border is displayed around the FlowLayoutPanel, although this isn’t required.

Figure 21-8. Wrapping the contents of a FlowLayoutPanel

When you add FlowDirection to the mix, you have a few more interesting possibilities.
Figure 21-9 shows two different wrapping orders.

The FlowLayoutPanel follows a single, simple rule—controls can never overlap. That means
if you are wrapping multiple lines of controls, the second line is spaced according to the highest
control in the first line (as shown in Figure 21-10). No attempt is made to make all the lines the
same height—if you need that sort of functionality, you need the TableLayoutPanel instead.

Table 21-1. Values for the FlowDirection Enumeration

Value Description

BottomUp Elements flow from the bottom of the panel to the top.

LeftToRight Elements flow from the left edge of the panel to the right. This is the default.

RightToLeft Elements flow from the right edge of the panel to the left.

TopDown Elements flow from the top of the panel to the bottom.

Macdonald_694-3C21.fm Page 747 Tuesday, July 25, 2006 7:59 AM

748 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Figure 21-9. Changing the flow direction

Figure 21-10. Spacing different-sized controls

The order of controls in the FlowLayoutPanel is determined by the z-order (first described
in Chapter 2). The controls are laid out in order from lowest to highest z-index. Ordinarily, the
z-index is incremented for each new control you create at design time, which means the controls
you add first appear first in the FlowLayoutPanel (assuming FlowDirection is LeftToRight or
TopDown). To change the order, you can drag and drop child controls inside the FlowLayoutPanel.
Their z-indexes will be adjusted automatically.

■Tip You also can change the order programmatically by calling the ControlCollection.SetChildIndex()
method, as in flowLayoutPanel1.SetChildIndex(myControl, newIndex).

The FlowBreak Extended Property
The FlowLayoutPanel implements IExtenderProvider, which allows it to extend other controls on
the form. It adds a single property to all its child controls: a Boolean property named FlowBreak.

Macdonald_694-3C21.fm Page 748 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 749

If FlowBreak is set to True and the FlowLayoutPanel.WrapContents property is also True,
the next control is wrapped to the following line, even if there is sufficient space remaining. In
that way, FlowBreak is a handy tool for separating groups of controls without relying on the
FlowLayoutPanel borders alone. FlowBreak is False by default, and it has no effect if WrapContents
is False.

Figure 21-11 shows an example.

Figure 21-11. A flow break

Margins and Padding
As you’ve seen in the previous examples, the FlowLayoutPanel leaves some spacing between
its child controls, and between the child controls and its borders. It does this by respecting the
Margin and Padding properties.

You first learned about Margin and Padding in Chapter 3, but these properties have an
increased significance with the FlowLayoutPanel and TableLayoutPanel. In the examples
you’ve seen so far (a FlowLayoutPanel that contains numerous buttons), here’s how these
properties come into effect:

• The FlowLayoutPanel.Padding adds space between the panel edges and the buttons
inside. You can adjust the Top, Bottom, Left, and Right properties of the padding
separately.

• The Button.Margin property adds space between one button and adjacent buttons (or
the edges of the panel). As with padding, the Margin property has Top, Bottom, Left, and
Right properties.

The Padding and Margin settings are cumulative. For example, if button1 is on the left and
button2 is adjacent on the right, the space between them is the sum of button1.Margin.Right
and button2.Margin.Left. Similarly, if button1 is the first control in flowPanel, the space between
the left edge is the sum of button1.Margin.Left and flowPanel.Padding.Left. Figure 21-12 illus-
trates how this works.

By default, controls like the button have a margin of 3, and the FlowLayoutPanel has
no padding.

Macdonald_694-3C21.fm Page 749 Tuesday, July 25, 2006 7:59 AM

750 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Figure 21-12. How margins affect the FlowLayoutPanel

Automatic Scrolling and Sizing
You’ve seen how the FlowLayoutPanel can use automatic wrapping to place controls on
multiple lines. However, whether you’ve enabled WrapContents or not, once the controls
reach the bounds of the panel, they’ll be cut off.

There are two ways around this problem, and both were introduced in Chapter 3. One
option is to use automatic scrolling by setting the FlowLayoutPanel.AutoScroll property to
True. This has one of two effects:

• If WrapContents is False and AutoScroll is True, a horizontal scroll bar is added that
allows you to scroll from side to side.

• If WrapContents is True and AutoScroll is True, a vertical scroll bar is added that allows
you to scroll down to see the remaining controls.

Either way, the AutoScroll property gives you a convenient solution to handling dynamic
content that can expand greatly.

Your other option is to use the FlowLayoutPanel.AutoSize property to use automatic
sizing. In this case, the FlowLayoutPanel determines the minimum size that’s required to show
all its child controls and expands itself accordingly, either horizontally (if WrapContents is
False) or vertically (if WrapContents is True). If you use this approach, you also can use the
MaximumSize property to constrain the FlowLayoutPanel’s growth at some predetermined
maximum size.

Automatic sizing is most often useful if you want to arrange more than one FlowLayoutPanel
inside another layout container. For example, imagine you have a form that contains a
FlowLayoutPanel. This FlowLayoutPanel contains other FlowLayoutPanel controls (each of
which might represent a different module in a portal-style application). These child panels are

Macdonald_694-3C21.fm Page 750 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 751

hidden, shown, and resized depending on various user options. In this situation, you might
decide to use automatic scrolling with the parent FlowLayoutPanel and use automatic sizing
with the child panels.

■Tip Sometimes it gets a little tricky to lay out detailed interfaces with the layout controls. The problem
is that you'll often end up with many nested layers. For example, you might have a FlowLayoutPanel that
contains other panels, which in turn contain still more panels, which contain ordinary .NET controls. To get an
overview of these levels of hierarchy, you can use the Document Outline window. Just choose View ➤ Other
Windows ➤ Document Outline. The Document Outline window also allows you to rearrange the order of controls in
their container. This is important because order determines layout in controls like the FlowLayoutPanel and
TableLayoutPanel, unlike other .NET containers

The TableLayoutPanel
The TableLayoutPanel is a more advanced layout control. It arranges controls in a grid with a
fixed number of rows and columns. Each control occupies a single cell. You have the ability to
set how the rows and columns are sized for a variety of effects.

Table 21-2 gives you an at-a-glance look at the properties of the TableLayoutPanel.

Table 21-2. TableLayoutPanel Properties

Property Description

ColumnCount Sets the number of columns that are in the table.

RowCount Sets the number of rows that are in the table.

ColumnStyles Provides a collection of ColumnStyle objects, one for each row in the table.
Each ColumnStyle object has two properties: Width and SizeType. Width
sets the preferred width, while SizeType indicates the sizing mode. Depending
on the sizing mode, the width of the column may be expanded, as you will
soon see.

RowStyles Provides a collection of RowStyle objects, one for each row in the table.
Each RowStyle object has two properties: Height and SizeType. Height sets
the preferred height, while SizeType indicates the sizing mode. Depending
on the sizing mode, the height of the row may be expanded.

GrowStyle The GrowStyle property sets how the table will expand itself when more
controls are added programmatically. You can use one of three enumeration
values: AddRows (insert new rows for the added controls), AddColumns
(insert new columns), or FixedSize (throw an exception if you try to add a
control to a full table).

CellBorderStyle Sets the border that will be shown around the TableLayoutPanel and between
each cell. You can use etched (Inset), embossed (Outset), solid lines (Single),
or no lines (None, the default).

Macdonald_694-3C21.fm Page 751 Tuesday, July 25, 2006 7:59 AM

752 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

To try out the TableLayoutPanel, begin by dragging it onto a form. The TableLayoutPanel
starts out with two columns and two rows, for a total of four cells. You can adjust the number
of cells by modifying the RowCount and ColumnCount properties.

■Tip Visual Studio shows the column and row borders at design-time with dotted lines, but you also can
set the CellBorderStyle property to any value other than none if you want to show lines at runtime. This makes
it easier to debug your layout.

Once you have the right size of table, you can drag controls into the TableLayoutPanel (see
Figure 21-13). Each control occupies one cell in the table. If you want to put more than one
control into a single cell, just wrap your controls into a container control. For example, you
could create a TableLayoutPanel with four cells, and put an ordinary Panel in each cell with an
unlimited number of additional controls.

Figure 21-13. Tiling controls in a table

This example shows the basic model of the TableLayoutPanel, but it doesn’t explain how
you can control the sizing behavior of the rows, columns, and individual controls. To master
these details, you need to understand how the TableLayoutPanel works with styles, as described
in the next section.

Row and Column Styles
To get the result you want with the TableLayoutPanel, you need to independently define the
behavior of each row and column. You do this through a style-based model. Essentially, every
column is paired with a matching ColumnStyle object. Every row is matched with a RowStyle
object. You configure these style objects through the ColumnStyles and RowStyles properties
of the TableLayoutPanel. In an attempt to simplify this model, Visual Studio doesn’t expose
these two collections directly in the Properties window. Instead, it lets you configure them
through two linked virtual properties, named Columns and Rows or through the direct “Edit
Rows and Columns” link in the Action pane.

Macdonald_694-3C21.fm Page 752 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 753

For example, imagine you create a 2 × 3 table by setting the ColumnCount and RowCount
properties. Visual Studio will add the code required to create two RowStyle and three
ColumnStyle objects. RowStyle and ColumStyle objects are exceedingly simple—in fact, they
only have two properties each. The RowStyle class provides a Height property that sets the
preferred height, while the ColumnStyle class provides a Width property. Both include a
SizeType property, which determines how the Height or Width should be interpreted and
how the row should be resized when the TableLayoutPanel changes size.

There are three possible values for SizeType, as shown in Table 21-3.

Visual Studio includes a handy designer that lets you tweak these values at design time.
Just click the ellipsis (. . .) next to the Rows or Columns property, and you’ll see the Column and
Row Styles dialog box shown in Figure 21-14.

Figure 21-14. Configuring the ColumnStyle and RowStyle objects

Table 21-3. Values from the SizeType Enumeration

Property Description

Absolute The Height or Width property is interpreted as the exact number of pixels to size
the row or column.

Percent The Height or Width property is interpreted as a percentage of the height or width
of the containing TableLayoutPanel when sizing the row or column.

AutoSize The row or column is sized to match the largest cell. For example, a column is
widened to fit its widest control, and a row is heightened to fit its tallest control.

Macdonald_694-3C21.fm Page 753 Tuesday, July 25, 2006 7:59 AM

754 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

You’ll quickly see how to use the RowStyle and ColumnStyle objects to create simple fixed
or proportional layouts. For example, you can assign absolute sizes to every column (with a
SizeMode of Absolute) or proportional sizes (with a SizeMode of Percent). However, it’s less
clear what happens if you set more than size mode for your rows or columns. To understand
what happens, you need to understand how the TableLayoutPanel creates its grid. It follows
these steps:

1. It allocates space for all absolute-sized columns (or rows).

2. It allocates space for all autosized columns (or rows).

3. It distributes the remaining space for the percentage-sized columns or rows. It attempts
to meet the percentage sizes the columns and rows request.

4. If extra space is left over, the last column (or row) is enlarged to fill it.

■Note For the remainder of the discussion, we’ll consider column sizing for simplicity’s sake. However, all
these details apply equally to row sizing.

This sequence leads to a few important consequences. First of all, if you have absolute-
sized columns or autosized columns that don’t fit (the TableLayoutPanel is too small), they are
cut off at the end. (This is a case where you might want to switch on autoscrolling by setting the
TableLayoutPanel.AutoScroll property).

The TableLayoutPanel is more flexible with percentage-sized columns. For example, if a
column requests 50 percent of the width of the panel, but only 10 percent is available, the column
is resized to fit. Similarly, if you have several columns and their combined percentages are
more than 100 percent, the TableLayoutPanel normalizes them to 100 percent (and divides
whatever space is available proportionately).

Finally, step 4 may lead to the last column being wider than you want. To fix this problem,
you have two options:

• You can size your table to exactly fit the total widths of all the columns. (One easy way to
accomplish this is to set the TableLayoutPanel.AutoSize property to True.)

• You can add another dummy column that’s empty and just intended to fill space.

Generating New Columns and Rows
In the design environment, Visual Studio ensures that you have exactly the right number of
RowStyle and ColumnStyle objects based on the values you set for RowCount and ColumnCount.
However, this isn’t a necessity. For example, you can add cells programmatically just by setting
the RowCount and ColumnCount properties in code. Similarly, new cells will be added if you
add new controls the TableLayoutPanel.Controls collection.

This raises a couple of interesting questions—if you add controls to the TableLayoutPanel,
are they placed in new rows or new columns? And what styles are applied?

The TableLayoutPanel.GrowStyle property answers the first question. It determines
whether new controls are placed in rows (AddRows) or columns (AddColumns) or disallowed

Macdonald_694-3C21.fm Page 754 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 755

completely (FixedSize), which means an exception will be thrown if you attempt to add a
control to the Controls collection.

The GrowStyle property only comes into play when you’re adding to the Controls collec-
tion. It doesn’t have any effect if you resize the table using the RowCount and ColumnCount
properties.

■Note Keep in mind that when you use a GrowStyle of AddRows or AddColumns, the overall size of the
TableLayoutPanel will increase. To deal with this, you might need to use the AutoScroll or AutoSize properties
of the TableLayoutPanel.

The next issue is the row and column styles that are used for dynamically added rows, and
this is governed by a simple default. When you add a column or row (either by adding a control
or by changing the RowCount or ColumnCount properties), it’s automatically assumed to have
a SizeMode of AutoSize. If this isn’t what you want, you can add a corresponding RowStyle or
ColumnStyle object to the RowStyles or ColumnStyles collection.

Positioning Controls
So far, you’ve seen how you can configure the sizing of rows and columns. But what about the
individual controls inside each cell?

By default, controls appear in the top-left corner of the cell that contains them. As with the
FlowLayoutPanel, you can use the Margin properties of each control to add spacing between
the cell edges and the control edges. You also can use the TableLayoutPanel.Padding property,
but it’s less useful. It sets the space between the borders of the TableLayoutPanel and the grid
of cells inside.

To change the alignment of a control in its cell, you use the familiar Anchor and Dock
properties. By default, all controls are docked to the top left of the cell, but you can easily make
a control that:

• Is centered inside a cell (set Anchor to None).

• Fills the available space in a cell (set Dock to Fill, or set Anchor to Left, Right, Top, and
Bottom).

• Is absolutely positioned (set Anchor to Top and Left, and then set the Left and Top
components of the Margin property to nudge the control into place).

As you learned in Chapter 3, Dock and Anchor apply to the container. In this case, the
container is the cell, so the control shrinks or expands as the cell shrinks or expands. The cell
shrinks or expands to fit the row height and column width. And as you learned earlier, the row
height and column width are either fixed or may vary with the size of the TableLayoutPanel,
depending on the SizeMode property.

Figure 21-15 shows some examples with differently aligned controls. Remember, you also
can place an entire panel inside a cell if you want to align a combination of controls. Mastering
this combination of layout panels, nested panels, and anchoring and docking isn’t always easy,
but it will give you virtually limitless possibilities for creating dynamic interfaces.

Macdonald_694-3C21.fm Page 755 Tuesday, July 25, 2006 7:59 AM

756 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Figure 21-15. Aligning controls inside a cell

■Note You can look at almost any user interface and envision how it can be laid out with a TableLayoutPanel.
However, be careful that you don’t needlessly complicate your life. Microsoft architects recommend that you only
use the TableLayoutPanel if you need the TableLayoutPanel resizing functionality or if you’re generating your
controls programmatically.

Extended Properties with the TableLayoutPanel
The TableLayoutPanel also doubles as a property extender (by implementing IExtenderProvider).
As a result, it adds virtual properties to all the child controls you place inside it. These proper-
ties are listed in Table 21-4.

Table 21-4. Extended Properties for TableLayoutPanel Children

Property Description

Column Indicates the zero-based column index where the control is positioned. You
also can set this value programmatically to move a control to a new location in
the table. If you move a control farther down a table, all the cells in between
are left blank.

Row Indicates the zero-based row index where the control is positioned. You also
can set this value programmatically to move a control to a new location in the
table. If you move a control farther down a table, all the cells in between are
left blank.

ColumnSpan Indicates the number of columns that this control spans (the default is 1). For
example, if you set ColumnSpan to 2, the control will occupy two cells (its own
cell and the one on the right). If you specify a ColumnSpan greater than the
number of columns on the right, the control is bumped to the next row. If you
specify a ColumnSpan greater than the total number of columns in the table,
the control occupies the entire row.

Macdonald_694-3C21.fm Page 756 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 757

Figure 21-16 shows an example of cell spanning. Notice that if you set the TableLayoutPanel.
CellBorderStyle to a value other than None, the control in the spanned cell is superimposed
over the border. You can use column and row spanning simultaneously. In this case, the
control fills a block of cells RowSpan × ColumnSpan in size.

Figure 21-16. Row and column spanning

Layout Panel Examples
The layout panels are extremely flexible, and you can use them to create a wide range of effects.
Unfortunately, it’s not immediately obvious what approach you should take with the layout
panels, and a property-by-property description does little to fill in the blanks. Instead, the
following sections give you an example-based approach, leading you through common solu-
tions that the layout panels can provide.

TableLayoutPanel: A Localizable Dialog Box
Imagine you have a simple dialog box that you need to localize. This dialog box has three
buttons, arranged one on top of the other. Using the AutoSize property described in Chapter 3,
it’s fairly easy to make these buttons expand to fit their content. However, it’s not as easy to
make sure all three buttons have the same size. Ideally, you’d like to make all the buttons take

RowSpan Indicates the number of rows that this control spans (the default is 1). For
example, if you set RowSpan to 2, the control will occupy two cells (its own cell
and the one below it). If you specify a RowSpan greater than the number of
rows below, the control is bumped to a new column.

CellPosition Provides a TableLayoutPanelCellPosition you can use to set both the Row and
Column at once for optimum performance. In the Properties window, this
extended property appears with the name Cell.

Table 21-4. Extended Properties for TableLayoutPanel Children

Property Description

Macdonald_694-3C21.fm Page 757 Tuesday, July 25, 2006 7:59 AM

758 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

the size of the largest automatically sized button, so they line up neatly. Figure 21-17 shows the
desired result.

Figure 21-17. A resizable column of buttons

To implement this design, follow these steps:

1. Add a TableLayoutPanel for the three buttons. Define the basic structure by setting
RowCount to 3 and ColumnCount to 1, and add the three buttons.

2. Edit the RowStyles collection of the TableLayoutPanel (which is exposed in the Properties
window as the Rows collection), so that each row has an Absolute size of 30 pixels. This
is because the buttons should all have the same height (if you want to allow different
fonts and character sets for other languages, this isn’t necessarily true). To make sure
the last row isn’t stretched, make sure the TableLayoutPanel height is equal to three
rows’ heights (in this case, 90 pixels).

3. Edit the ColumnStyles collection of the TableLayoutPanel, so that the single column
uses AutoSize, which allows the table to grow with the buttons. Also set the initial width
of the TableLayoutPanel (such as 100 pixels).

4. Add a button in each cell.

Macdonald_694-3C21.fm Page 758 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 759

5. Change each button by setting the AutoSize property to True (so the button can grow
with its caption text) and setting the Dock property to Fill (so that the button expands to
fill the full cell). This step implements the basic design. If the content of any button is
extended, the button will resize to fit. This action will widen the column, and the other
buttons will follow suit because of their docking properties.

6. Finally, to get everything to display correctly, you need to make sure the TableLayoutPanel
and the containing form also expand as the column expands. To achieve this, set the
AutoSize property of both to True.

To fine-tune this example, you might want to adjust the Margin property of the
TableLayoutPanel, so that the controls it contains line up with other anchored controls on the
form. (The example in Figure 21-17 uses 10 pixels rather than the default 3.)

TableLayoutPanel: Bi-Pane Proportional Resizing
Although anchoring and docking give you a great deal of control, there is some behavior they
can’t accomplish on their own. One example is resizing adjacent controls proportionately. For
example, consider a window that’s split into two panels. With anchoring, you can configure
one panel to enlarge as the form is widened. However, you can’t get both panels to resize to
split the new space equitably. As a result, the proportions of the window change. (Windows
Explorer is one example of this behavior. As you resize the window, the width of the file list changes,
but the width of the directory tree does not.) In conventional Windows applications, this problem
is usually dealt with by a splitter bar, which lets the user explicitly change the portion of the
window allocated to each panel as needed.

Another option is to use the TabelLayoutPanel to implement proportional resizing.
Figure 21-18 shows an example.

Figure 21-18. Proportional resizing

To implement this design, follow these steps:

1. Add a TableLayoutPanel. Define the basic structure by setting RowCount to 1 and
ColumnCount to 2.

2. Size the TableLayoutPanel to fill most of the form, and then set its Anchor property,
so it’s anchored to all four sides of the form and will grow as the form is resized.

Macdonald_694-3C21.fm Page 759 Tuesday, July 25, 2006 7:59 AM

760 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

3. Add a control on each side (such as a TreeView on the left and ListView on the right). Set
the Dock property of each control to Fill. If you wanted to add multiple controls, you
would use Panel controls instead and add anchored controls inside each panel.

4. Edit the ColumnStyles collection of the TableLayoutPanel (which is exposed in the
Properties window as the Columns collection), so that each column uses SizeType.Percent.
You can then choose appropriate percentages (in this example, the space is split with
the 50 percent columns).

TableLayoutPanel: A List of Settings
The TableLayoutPanel makes great sense for columns of settings that need to be laid out in a
grid. To model this sort of window, you could use a two-column TableLayoutPanel with labels
on the left and an input control (text box, drop-down list box, etc.) on the right. The label
column should size to fit the largest label. The text box column should fill all the remaining
space. Figure 21-19 shows an example.

Figure 21-19. A list of settings

To implement this design, follow these steps:

1. Add a TableLayoutPanel. Define the basic structure by setting RowCount to 1 and
ColumnCount to 2.

2. Size the TableLayoutPanel to fill most of the form. Then, set its Anchor property, so it’s
anchored to all four sides of the form and will grow as the form is resized. Don’t add any
controls—instead, the labels and buttons will be inserted programmatically.

Macdonald_694-3C21.fm Page 760 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 761

3. Edit the ColumnStyles collection of the TableLayoutPanel. The first column should use
AutoSize resizing mode, so that it grows to fit the largest label. The sizing mode for the
second column isn’t important, as it will automatically be sized to fit whatever space
remains.

4. Edit the RowStyles collection of the TableLayoutPanel. Set the first (and only) row to
AutoSize resizing mode.

Now you can insert the controls when the form loads. In this example, the controls are
hard-coded, but you could easily generate them based on the information in a database or file
(as demonstrated later in this chapter):

Private Sub TextBoxColumn_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 ' Reduce the number of times the layout logic is executed.
 tableLayoutPanel1.SuspendLayout()

 ' Add the controls.
 For i As Integer = 1 To 14
 ' Create an auto-sizing label for the left column.
 Dim lbl As New Label()
 lbl.Text = "This is Setting " & i.ToString()

 lbl.Margin = New Padding(3, 7, 3, 3)
 lbl.AutoSize = True

 ' Create a text box that's docked to fill up the entire second column.
 Dim txt As New TextBox()
 txt.Dock = DockStyle.Fill

 Dim cmd As New Button()
 cmd.Text = "Browse..."
 cmd.Width = 60

 ' Add the controls
 tableLayoutPanel1.Controls.Add(lbl)
 tableLayoutPanel1.Controls.Add(txt)
 tableLayoutPanel1.Controls.Add(cmd)
 Next

 tableLayoutPanel1.ResumeLayout()
End Sub

Macdonald_694-3C21.fm Page 761 Tuesday, July 25, 2006 7:59 AM

762 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

■Note In this example, the layout logic is performed when the Form.Load event fires. For best performance,
you should perform this task even earlier. That’s because when the Form.Load event fires, the handles have
already been created for the form and the TableLayoutPanel. A better place to perform initialization like this
is in the Form constructor, immediately after InitializeComponent() is called to create the control objects.

You can easily extend this example to use even more columns. For example, you could
create a four-column table with two pairs of settings, or you could add a third column with a
button, as shown in Figure 21-20. In this example, the label column sizes to the largest label,
the button column sizes to the fixed button size, and the text box column in between takes the
remaining space.

Figure 21-20. A more-detailed list of settings

To create this window, you simply need to add a third AutoSize column. You can then dock
a newly created button in the column, as shown here:

Dim cmd As New Button()
cmd.Text = "Browse..."
cmd.Width = 60
tableLayoutPanel1.Controls.Add(cmd)

One other frill is added—the entire TableLayoutPanel is made scrollable by setting
AutoScroll to True.

TableLayoutPanel: Forms from a File
You can extend the technique shown in the previous example to create more a customizable
user interface that’s built out of a collection of TableLayoutPanel and FlowLayoutPanel
objects. Doing so allows you to create more sophisticated, variable interfaces, like those that
model business forms. The following example demonstrates one such example with a survey
application.

Macdonald_694-3C21.fm Page 762 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 763

In this application, the code reads XML tags that define the required interface. These tags
are stored in a file, although you could easily modify the code so that it reads a block of XML
from another source, like a database. The code then loops through the elements in the XML
document, translating them into the appropriate controls. As the control objects are created,
they’re added to the form. This logic is fairly involved, but it’s not nearly as messy as it would
have been with .NET 1.x. That’s because the code uses autosizing and layout panels to avoid
dealing directly with control sizes and position. As long as the control is added to the right
container, the entire form flows without a problem.

The basic structure of the form is made up of two pieces:

• A TableLayoutPanel with one column holds all the sections of the survey form. The
TableLayoutPanel has a single column, with a width of 100 percent.

• Each section of the survey form is inserted as another panel (either a TableLayoutPanel
or a FlowLayoutPanel depending on the type of content). This panel control is placed in
a separate cell.

The top-level TableLayout is also placed into an ordinary Panel container. This extra step
is one approach to add a border around the TableLayoutPanel without adding a border between
cells. (Another approach would be to perform some custom drawing in response to the
Form.Paint event.)

Figure 21-21 shows a sample survey form.

Figure 21-21. Generating a data entry form from a .frm file

Macdonald_694-3C21.fm Page 763 Tuesday, July 25, 2006 7:59 AM

764 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

The Form File

All forms are modeled as XML files with a root <Form> element. In the root element, you can
add one of four different panels, depending on the type of survey content you need:

<TextBoxPanel>. Rendered as a two-column table, with labels on the left and text boxes
for data entry on the right. Each row requires a separate <TextItem> tag.

<GroupSelectionPanel>. Rendered as a group of radio buttons, one for each item, with a
caption at the top. Each radio button requires a separate <SelectionItem> tag.

<CheckBoxListPanel>. Rendered as a CheckBoxList control, which shows multiple items
in a list box, each of which can be checked or unchecked. Each item requires a separate
<SelectionItem> tag.

<LargeTextBoxPanel>. Rendered as one or more full-width multiple line text boxes, with
a caption at the top. Each text box requires a separate <TextItem> tag.

The code defines an enumeration that represents the four allowed types of panels:

Public Enum PanelTypes
 TextBoxPanel
 GroupSelectionPanel,
 CheckBoxListPanel
 LargeTextBoxPanel
End Enum

Here’s the sample survey form used to create the user interface in Figure 21-21:

<?xml version="1.0"?>
<Form>
 <TextBoxPanel>
 <TextItem id="FirstName" caption="First Name" />
 <TextItem id="LastName" caption="Last Name" />
 </TextBoxPanel>

 <GroupSelectionPanel
 caption="Choose the option that best describes your job role">
 <SelectionItem id="Programmer" />
 <SelectionItem id="Developer" />
 <SelectionItem id="TechSupport" caption="Technical Support" />
 <SelectionItem id="NetworkAdmin" caption = "Network Administrator" />
 <SelectionItem id="Other" />
 </GroupSelectionPanel>

 <CheckBoxListPanel
 caption="Choose all the activities you have performed recently.">
 <SelectionItem id="Program" />
 <SelectionItem id="Test" />
 <SelectionItem id="Debug" />
 <SelectionItem id="Manage" />
 </CheckBoxListPanel>

Macdonald_694-3C21.fm Page 764 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 765

 <LargeTextBoxPanel caption="Fill in any comments about this survey (optional).">
 <TextItem id="Comments" />
 </LargeTextBoxPanel>
</Form>

The caption attributes define text that’s rendered in the user interface. The id attributes
define the unique names that will be used for the automatically generated controls. The id also
will be used when saving the filled-out survey data. Notice that you don’t need to supply the
caption attribute for the <SelectionItem> element—if you don’t, the caption is set to match the id.

The Form Parsing Code

In the application, the first step is to choose a survey file by clicking the Browse button. At this
point, a dialog box is shown with all the available survey files (which are given a .frm extension).
Once a file is selected, the work is handed off to the SurveyDeserializer class:

Private Sub cmdBrowse_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles cmdBrowse.Click
 If openFileDialog.ShowDialog() = System.Windows.Forms.DialogResult.OK Then
 txtFileName.Text = openFileDialog.FileName
 Dim surveyReader As New SurveyDeserializer(_
 openFileDialog.FileName, tableLayoutPanel1)
 tableLayoutPanel1.SuspendLayout()
 surveyReader.LoadForm()
 tableLayoutPanel1.ResumeLayout()
 End If
End Sub

In its constructor, the SurveyDeserializer stores the file name and layout panel informa-
tion for future reference:

Private fileName As String
Private targetContainer As Panel

Public Sub New(ByVal fileName As String, ByVal targetContainer As Panel)
 Me.fileName = fileName
 Me.targetContainer = targetContainer
End Sub

Next, the SurveyDeserializer.LoadForm() method begins by disposing any controls that
exist inside the survey panel.

Public Sub LoadForm()
 ' Clear the current table content.
 For Each ctr As Control In targetContainer.Controls
 ctrl.Dispose()
 Next
 ...

Macdonald_694-3C21.fm Page 765 Tuesday, July 25, 2006 7:59 AM

766 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Note that it’s not enough to call the Panel.Controls.Clear() method. This removes the
control objects from the Controls collection, but it doesn’t release them. As a result, you’ll tie
up control handles every time you generate a new form and reduce system performance.

■Tip In some layout situations, you may use a panel to show one of a small set of different views. In this
scenario, the most efficient way to deal with your controls is to simply hide them (or their container), rather
than dispose and re-create them.

The next step is to read the survey file into an in-memory XmlDocument object. The code
then iterates over the panel elements, checking to make sure that the type matches one of the
values defined in the enumeration.

 ...
 Try
 ' Load the form into memory.
 Dim doc As New XmlDocument()
 doc.Load(fileName)

 ' Iterate over panel nodes.
 For Each nodePanel As XmlNode In doc.DocumentElement.ChildNodes
 ' Convert the element name into the appropriate enum value.
 Dim type As PanelTypes = CType([Enum].Parse(_
 GetType(PanelTypes), nodePanel.LocalName), _
 PanelTypes)

 ' Check for caption node.
 Dim caption As String = CheckForAttribute(nodePanel, "caption")
 ...

You’ll notice that the code also makes use of a simple CheckForAttribute() method, which
looks for an attribute with a specific name. If the attribute is found, CheckForAttribute()
returns its value. If not, CheckForAttribute() returns an empty string.

The work of actually creating the corresponding container is handed off to another method,
called CreateContainer(). It generates the container control that will hold the content for that
survey element.

 ...
 ' Create the container for this survey element.
 ' It's placed into the next available cell.
 Dim container As Control = CreateContainer(type, caption)
 ...

Finally, the code loops through all the tags in the container. These are the <SelectionItem>
and <TextItem> elements that define specific text boxes, check boxes, or radio buttons. Each
time it finds a nested element, the code extracts the relevant id and caption information and

Macdonald_694-3C21.fm Page 766 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 767

passes it to another private method—CreateContent(). CreateContent() creates the required
child control and inserts it in the container.

 ...
 ' Remember, when there is more than one level of container at work,
 ' you need to call SuspendLayout() on each level to get the
 ' performance benefits.
 container.SuspendLayout()

 ' Iterate over the nested nodes.
 For Each nodeItem As XmlNode In nodePanel.ChildNodes
 ' Get the node information.
 Dim id As String = CheckForAttribute(nodeItem, "id")
 caption = CheckForAttribute(nodeItem, "caption")
 If caption = "" Then
 caption = id
 End If

 ' Create the content inside the survey element.
 CreateContent(type, nodeItem.LocalName, caption, id, container)
 Next
 container.ResumeLayout()
 Next

 Catch err As Exception
 MessageBox.Show("Failure parsing file." & Constants.vbLf + err.Message)
 End Try
End Sub

Essentially, the LoadForm() method takes care of parsing the XML document.
CreateContainer() and CreateContent() perform the real work—generating the controls and
inserting them into the current position in the survey table.

Every survey element is stored inside a nested TableLayoutPanel or FlowLayoutPanel.
This is referred to as the top-level container for the survey element. The rest of the survey
content may be added to the top-level container, or it may be added to another control in the
top-level container. For example, consider the <CheckBoxListPanel> survey element. For this
element, a FlowLayoutPanel hosts the caption and a CheckBoxList. The FlowLayoutPanel is
the top-level container, but the CheckBoxList is the container for survey elements. It’s the
control that’s returned by the CreateContainer() method.

To make it easier to manipulate these ingredients, the CreateContainer() method defines
them immediately, as shown here:

Private Function CreateContainer(ByVal type As PanelTypes, _
 ByVal caption As String) As Control
 ' Represents the top-level container
 ' (a TableLayoutPanel or FlowLayoutPanel,
 ' depending on the survey element).
 Dim pnlTable As TableLayoutPanel = Nothing
 Dim pnlFlow As FlowLayoutPanel = Nothing

Macdonald_694-3C21.fm Page 767 Tuesday, July 25, 2006 7:59 AM

768 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

 ' Represents the control object that contains
 ' the rest of the survey content.
 Dim container As Control = Nothing

 ' Represents a caption that can be inserted at
 ' the top of the panel.
 Dim lblCaption As Label
 ...

The next step is to identify the type of survey element, and create the appropriate container.
For example, if a TextBoxPanel is required, a new nested TableLayoutPanel is generated with
two columns, one for the label text and one for the text box:

 ...
 Select Case type
 Case PanelTypes.TextBoxPanel
 pnlTable = New TableLayoutPanel()
 pnlTable.CellBorderStyle = TableLayoutPanelCellBorderStyle.Outset
 pnlTable.ColumnCount = 2

 ' Make sure the full width of the form is used
 ' for the text box.
 pnlTable.Anchor = AnchorStyles.Left Or AnchorStyles.Right

 container = pnlTable
 ...

Note that, when created programmatically, a TableLayoutPanel has no ColumnStyle
objects. (When created at design time, the ColumnStyle objects are generated automatically.)
You don’t necessarily need to add these objects, if the default AutoSize behavior makes sense.
In this example, the AutoSize behavior does make sense, because you want the first column
(the label) to be only as wide as necessary. The second column (with the text box) is the last
column, so it automatically fills the remaining space.

The code for creating a <GroupSelectionPanel> is similar, except it uses a FlowLayoutPanel as
the top-level container that’s inserted in the cell. The FlowLayoutPanel uses FlowDirection.
TopDown, so that the contained caption (a Label control) and each radio button inside it will
take a full line.

 ...
 Case PanelTypes.GroupSelectionPanel
 pnlFlow = New FlowLayoutPanel()

 ' Each radio button should take
 ' a full line.
 pnlFlow.FlowDirection = FlowDirection.TopDown

Macdonald_694-3C21.fm Page 768 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 769

 ' Add a caption.
 lblCaption = New Label()
 lblCaption.Text = caption
 lblCaption.AutoSize = True
 pnlFlow.Controls.Add(lblCaption)

 container = pnlFlow
 ...

The <CheckBoxListPanel> and <LargeTextBoxPanel> use the same approach. Here’s the
complete code:

 ...
 Case PanelTypes.CheckBoxListPanel
 pnlTable = New TableLayoutPanel()
 pnlTable.ColumnCount = 1

 ' Add a caption.
 lblCaption = New Label()
 lblCaption.Text = caption
 lblCaption.AutoSize = True
 pnlTable.Controls.Add(lblCaption)

 ' Add the checkbox list.
 Dim checks As New CheckedListBox()
 checks.AutoSize = True
 pnlTable.Controls.Add(checks)

 container = checks

 Case PanelTypes.LargeTextBoxPanel
 pnlTable = New TableLayoutPanel()
 pnlTable.ColumnCount = 1
 pnlTable.Anchor = AnchorStyles.Left Or AnchorStyles.Right

 ' Add a caption.
 lblCaption = New Label()
 lblCaption.Text = caption
 lblCaption.AutoSize = True
 pnlTable.Controls.Add(lblCaption)

 container = pnlTable
 End Select
 ...

The last step is to add the top-level container to the table and return the control container,
so the rest of the content can be inserted into it:

Macdonald_694-3C21.fm Page 769 Tuesday, July 25, 2006 7:59 AM

770 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

 ...
 ' Add the top-level container (the
 ' FlowLayoutPanel or TableLayoutPanel)
 ' to the table.
 Dim pnl As Panel = Nothing
 If Not pnlTable Is Nothing Then
 pnl = pnlTable
 Else
 pnl = pnlFlow
 End If
 pnl.AutoSize = True
 pnl.Margin = New Padding(7)
 targetContainer.Controls.Add(pnl)

 ' Return the container control, so more content can
 ' be inserted inside it.
 Return container
End Function

The CreateContent() method is the last piece of the puzzle. It accepts several pieces of
information, creates the corresponding input control, and adds it to the panel. It also performs
basic validation by checking that the name of the element matches the expected content.

Here’s the full code:

Private Sub CreateContent(ByVal type As PanelTypes, _
 ByVal elementName As String, ByVal caption As String, _
 ByVal id As String, ByVal container As Control)
 Dim ctrl As Control = Nothing

 Select Case type
 Case PanelTypes.TextBoxPanel
 If elementName <> "TextItem" Then
 Throw New XmlException("Element " & elementName & " not expected")
 End If
 ctrl = New Label()
 ctrl.Text = caption
 container.Controls.Add(ctrl)

 ctrl = New TextBox()
 ctrl.Name = id
 ctrl.Dock = DockStyle.Fill
 container.Controls.Add(ctrl)

 Case PanelTypes.GroupSelectionPanel
 If elementName <> "SelectionItem" Then
 Throw New XmlException("Element " & elementName & " not expected")
 End If
 ctrl = New RadioButton()

Macdonald_694-3C21.fm Page 770 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 771

 ctrl.Name = id
 ctrl.Text = caption
 ctrl.Margin = New Padding(3, 0, 3, 0)
 container.Controls.Add(ctrl)

 Case PanelTypes.CheckBoxListPanel
 If elementName <> "SelectionItem" Then
 Throw New XmlException("Element " & elementName & " not expected")
 End If
 CType(container, CheckedListBox).Items.Add(_
 New CheckBoxListItem(caption, id))

 Case PanelTypes.LargeTextBoxPanel
 If elementName <> "TextItem" Then
 Throw New XmlException("Element " & elementName & " not expected")
 End If
 ctrl = New TextBox()
 ctrl.Dock = DockStyle.Fill
 CType(ctrl, TextBox).WordWrap = True
 CType(ctrl, TextBox).AcceptsReturn = True
 CType(ctrl, TextBox).Multiline = True
 ctrl.Height *= 3
 container.Controls.Add(ctrl)
 End Select
End Sub

Storing the Form Data

This example leaves out one detail—how do you save the survey data once the form is complete?
Because the controls are created dynamically, you can’t make use of any form-level references.
Instead, you need to iterate through the Controls collection, looking for input controls (in this
case, the TextBox, RadioButton, and CheckBoxList). Each time you find one of these controls,
you can record the Name property (which reflects the id set in the survey file) and the user-
supplied data.

FlowLayoutPanel: A Modular Interface
One interesting application of the FlowLayoutPanel is to lay out multiple modules in a portal-
style application. For example, you might have an application that provides different features
or data views to different users, depending on their roles or their preferences. You can imple-
ment each feature using a separate user control, and then show the appropriate group of user
controls in a FlowLayoutPanel. (Depending on the way you want to arrange these controls, you
might alternatively choose to use a TableLayoutPanel with defined columns.)

Figure 21-22 shows an example that puts several CollapsiblePanel controls (from Chapter 12)
into a FlowLayoutPanel.

Macdonald_694-3C21.fm Page 771 Tuesday, July 25, 2006 7:59 AM

772 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Figure 21-22. A portal-style application with layout panels

What’s interesting about this example is the way it’s modular: You can hide individual
panels, and the interface will reflow seamlessly. To help demonstrate this, the form presents
a list of all the currently displayed modules. When the form first loads, it scans through the
FlowLayoutPanel looking for panels and adds them to the list:

Private Sub ModularPortal_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 For Each ctrl As Control In flowLayoutPanel1.Controls
 If TypeOf ctrl Is Panel Then
 lstModules.Items.Add(ctrl.Text, True)
 End If
 Next
End Sub

A single click in the list is all you need to hide or show a panel:

Private Sub lstModules_ItemCheck(ByVal sender As Object, _
 ByVal e As ItemCheckEventArgs) Handles lstModules.ItemCheck
 For Each ctrl As Control In flowLayoutPanel1.Controls
 If ctrl.Text = lstModules.Text Then
 If e.NewValue = CheckState.Checked Then
 ctrl.Visible = True

Macdonald_694-3C21.fm Page 772 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 773

 Else
 ctrl.Visible = False
 End If
 Return
 End If
 Next
End Sub

Figure 21-23 shows the result after hiding two panels.

Figure 21-23. Changing the displayed panels

Markup-Based User Interface
The future of user interface is probably an entirely different approach to programmatic control
creation. This approach, first popularized with the Web, is markup based. Rather than writing
code to programmatically create and insert controls into a container, with markup-based user
interface you write a template (typically in an XML-based format) that defines each control.
The user interface framework parses this file and then creates the corresponding controls
(typically one for each tag it finds).

One of the goals of markup-based user interface language is to allow a proper separation
between user interface code (the event handlers) and the user interface itself (the graphical
widgets). In an ideal world, this separation would let professional graphic designers perfect the
user interface look and feel without compromising the security or integrity of your code. Of
course, it’s also a great way to create flexible, extensible user interfaces. For example, you could
build a tool for filling out forms (like the one shown earlier in this chapter) much more easily.

Macdonald_694-3C21.fm Page 773 Tuesday, July 25, 2006 7:59 AM

774 C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A C E S A N D L A Y O U T E N G I N E S

Instead of writing the logic to interpret your own custom XML format, you could simply create
a template for each form using a markup-based language like XAML or WFML.

■Note The idea of markup-based user interface is similar to the dynamic form generator shown in this
chapter. There are two key differences. First, in the form generator, you need to write the parsing, whereas
XAML and WFML provide their own parsers that automate this low-level grunt work. The second difference is
that the form generator uses a higher-level model that has elements map to logical survey elements. In the
XAML and WFML standards, elements map directly to controls.

XAML
A significant example of markup-based user interface is XAML (Extensible Application Markup
Language, pronounced “Zamel”). XAML is an XML-based markup language for constructing
.NET objects. It was designed as a way to declaratively define Windows Forms user interfaces,
and for that reason, it’s the new standard for the Windows Presentation Foundation (WPF)
display technology. (WPF is found in Windows Vista, Microsoft’s next version of Windows, and
it’s available as a free download for Windows XP).

Using XAML, you can define your windows with tags and write the logic behind them
using your favorite .NET language, giving you the ability to tweak either piece separately. The
nicest part is that Visual Studio won’t be the only tool capable of working with XAML. Instead,
several professional graphics programs are in the works that allow design artists to design
XAML interfaces.

To start experimenting with XAML in .NET today, surf to http://msdn.microsoft.com/
winfx/technologies/presentation.

WFML
WFML (Windows Forms Markup Language) provides a more straightforward model for using
markup with Windows Forms applications. Essentially, WFML consists of two pieces: the WFML
markup standard (which dictates how you can build templates) and the WFML parser (which
reads templates and creates the corresponding control objects).

■Note If you’ve programmed with ASP.NET before, the idea of WFML will seem surprisingly familiar. Like
WFML, ASP.NET uses a parser to process a template (in this case, the .aspx file) and generate web page
controls before your code executes.

WFML is described in detail on the Microsoft Windows Forms community site at http://
windowsforms.net/articles/wfml.aspx. WFML isn’t a standard—it’s really a proof-of-concept
demonstration of markup-based language, and it won’t ever be incorporated into the .NET
Framework. However, it’s still usable in current Windows Forms applications.

Macdonald_694-3C21.fm Page 774 Tuesday, July 25, 2006 7:59 AM

C H A P T E R 2 1 ■ D Y N A M I C I N T E R F A CE S A N D L A Y O U T E N G I N E S 775

The Last Word
This chapter considered dynamic user interfaces. Rather than limiting the discussion to ques-
tions about how to create controls at runtime and hook up their events (which, as you’ve seen,
is relatively trivial once you know how to do it), the chapter examined some more radical
approaches. These techniques allow you to dynamically build entire interfaces to suit localiza-
tion needs, changing data, or user-specific customization.

Many of these applications have specific niches, and the techniques discussed here aren’t
suitable for all applications. On the other hand, if you need to create a data-driven or highly
customizable application like the portal example in this chapter, you need to use a dynamic
interface—without it you’ll be trapped in an endless cycle of user interface tweaking and
recompiling as the underlying data change. Perhaps best of all, dynamic user interfaces give
developers a chance to write innovative code—and that’s always fun.

Macdonald_694-3C21.fm Page 775 Tuesday, July 25, 2006 7:59 AM

Macdonald_694-3C21.fm Page 776 Tuesday, July 25, 2006 7:59 AM

777

■ ■ ■

C H A P T E R 2 2

Help Systems

Help: Is it the final polish on a professional application or a time-consuming chore? It all
depends on the audience, but most applications need a support center where users can seek
assistance when they become confused or disoriented. Without this basic aid, you (or your
organization’s technical support department) are sure to be buried under an avalanche of
support calls.

In this chapter, you learn the following:

• How to integrate Windows Help files into your applications. You look at launching Help
manually and using the context-sensitive HelpProvider.

• When to design your own Help, and how you can weave it into an application using an
extensible database-based or XML-based model.

• How to break down the limits of Help and design application-embedded support: user
assistance that’s integrated into the software it documents instead of slapped in a sepa-
rate file as an afterthought. You explore some simple approaches such as affordances
and a few advanced techniques such as animated agents.

Understanding Help
In recent years there has been a shift away from printed documentation. The occasional
weighty manual (like the book you’re holding now) is still required for learning advanced tools,
but the average piece of office productivity or business software no longer assumes the user is
willing to perform any additional reading. Instead, these programs are heavily dependent on
natural, instinctive interfaces, and use online Help to patch the gaps and answer the occasional
user question.

Online Help doesn’t have to take the form of a second-rate user manual, however. The
advantages of online Help are remarkable:

Macdonald_694-3C22.fm Page 777 Tuesday, July 25, 2006 8:01 AM

778 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Increased control. With a little effort, you can determine exactly what information users
see when they click the F1 key. With a printed book, users might look for information using
the index, table of contents, or even a third-party For Dummies guide, and you have no
way of knowing what they will find.

Rich media. With online Help, you can use as many pictures as you want, in any combina-
tion, and even include sounds, movies, and animated demonstrations.

Searching tools and context-sensitivity. Help systems can automate most of the drudgery
associated with finding information. They can look for keywords with a full-text search
(rather than relying on a human-compiled index), and programs can use context-sensitivity
to make sure users see the appropriate topic immediately.

All Help standards provide these advantages in one form or another.

Classic “Bad Help”
Have you ever had this experience? You find an unusual option buried deep in an application,
and it piques your curiosity. You hit F1, curious to find out what this option accomplishes. But
your optimism dwindles when you read the description provided by the context-sensitive Help
system: “To enable option X, click once on the option X check box. To disable option X, click
the option X check box again to remove the check mark. Click OK to save your changes.”

Clearly something is missing here. You want to know what option X does; the Help wants
to explain, in oddly explicit detail, how to use a check box. The situation is ridiculous, as the
function of option X is not at all obvious, but the way to use a check box is instinctive to every
computer user. If you don’t know how to use a check box, you probably wouldn’t have guessed
to press the F1 key for Help.

This is an example of classic bad Help. Some of the characteristics of bad Help are as follows:

It describes the user interface. Users don’t need to know how the interface works—they
can often discover that by trial and (occasionally) error. Instead, users need to know what
tasks the application performs.

It’s excessively long. Help doesn’t have the same bandwidth as a printed document, and
endless scrolling is sure to frustrate users.

It uses visual clues. Instructing the user to look at the “top left” or “middle right” may
seem logical enough, but with the application running in another (potentially minimized)
window, it can cause confusion.

It omits information. Printed documents can afford to choose what they cover. However,
Help documents are shipped with the software and are expected to provide a matching
reference. Thus, you can’t ignore any option or setting that’s in the interface.

Macdonald_694-3C22.fm Page 778 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 779

To understand good Help, you need to recognize that most Help is designed to provide
reference information. Help really shines compared to a printed book when it’s able to use
context sensitivity to automatically display a piece of information about a specific window or
setting. This is the type of information that all users need occasionally while working with an
application they mostly understand.

On the other hand, Help is relatively poor at providing tutorial-based learning, which
explains tasks that incorporate many different parts. In this case, it’s generally easier to use a
printed book. Help that tries to provide descriptive task-based learning is generally frustrating
for a number of reasons: users can’t see the Help window at the same time they look at the
program window; the Help window doesn’t provide enough space for the long descriptions
that are needed, and most users don’t want to read a large amount of information from the
computer screen anyway.

When creating Help, you should aim to divide it into discrete topics that describe individual
windows, complete with all their details. This provides the most useful context-sensitive
Help system.

■Tip Help can be used for tutorial-based learning, but not ordinary Help. Instead, applications and games
that teach users as they work need to incorporate custom solutions, which are generally referred to as application-
embedded support. You’ll look at this technology later in the chapter. Application-embedded support supplements
the standardized reference-based Help systems; it doesn’t replace them.

In the next section, you explore the Help landscape.

Types of Help
Standardized Help has existed since the Windows platform was created, and even in the DOS
world in little-known tools like QuickHelp. Throughout the years (and versions of Windows),
Help has continued to evolve, passing through several distinct stages, which are described in
the next few sections.

WinHelp

The WinHelp format used in Windows 3.0 still exists (see Figure 22-1) and can be used in the
most modern Windows application. Unfortunately, it looks irredeemably garish. Help files
from different authors tended to look—and act—differently.

Macdonald_694-3C22.fm Page 779 Tuesday, July 25, 2006 8:01 AM

780 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Figure 22-1. WinHelp: a piece of living history

WinHelp 95

When Windows 95 was introduced, a new standard (often referred to as WinHelp 95—see
Figure 22-2) took over. WinHelp 95 files are familiar to almost any computer user, and they are
still used in countless programs.

WinHelp 95 was a major improvement in the Help world. Whereas the original WinHelp
forced developers to create their own contents pages with hyperlinks, WinHelp 95 files use a sepa-
rate contents file (with the extension .cnt) to define the standardized multilevel table of contents.
WinHelp 95 really has two parts: the .cnt contents page (which also provides a standardized index
and full-text search) and the .hlp Help file (which provides the actual topics). When a user double-
clicks a topic, the table of contents is replaced with the appropriate Help window.

The standardized table of contents was both the most significant advance and the most
obvious limitation of WinHelp 95. The obvious problem is that users often need to jump back
and forth between the table of contents and the topic pages before they find the content they
need. This process is tedious, and it feels complicated, because there can be multiple windows
scattered about the desktop.

To create a WinHelp 95 file, you write the content in one or more Rich Text Format (.rtf)
files. These files are then put through a “compilation” process that creates a linked, compact
binary format. The easiest way to generate WinHelp 95 files (or any other standard of Help file)
is with a dedicated Help-authoring program.

Macdonald_694-3C22.fm Page 780 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 781

Figure 22-2. WinHelp 95: a facelift

HTML Help

The next version of WinHelp was named HTML Help, because the source files were written in
HTML markup instead of Rich Text Format. HTML Help debuted with Windows 98 and also
shipped with Internet Explorer 4. A common source of confusion about HTML Help is the idea
that it is somehow supposed to provide help over the Web or browser-integrated Help. While
HTML Help depends on some components that are also used in Internet Explorer, it really has
little to do with the Internet. Instead, HTML Help is an improvement to WinHelp that combines
the table of contents and topic views in the same window (see Figure 22-3).

The HTML Help view makes it dramatically easier to browse through a long, multilevel
table of contents without losing your place. By dividing and subdividing information into its
smallest bits, Help developers are able to put fairly lengthy, complex content in a Help file.
With HTML Help, developers also started to use DHTML and JavaScript text directly in their
Help to create collapsible headings and other neat tricks. In some cases (for example, the
Visual Studio 6 documentation and the SQL Server documentation), Microsoft refers to these
Help files as “books online.” HTML Help files always use the .chm extension.

In the years since HTML Help first appeared, Microsoft has experimented with several
other approaches, including proprietary Help windows in Microsoft Office and Windows XP.
However, these other approaches have never been officially released to third parties, and the
slightly shopworn HTML Help remains the official current standard.

Macdonald_694-3C22.fm Page 781 Tuesday, July 25, 2006 8:01 AM

782 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Figure 22-3. HTML Help: the industrial revolution of Help

MS Help 2

Microsoft originally planned to make MS Help 2, the Help engine that debuted in Visual Studio
.NET 2002, the next Help revolution (see Figure 22-4). Help 2 promised some long-awaited
improvements to HTML Help, like a redesigned user interface and the ability to embed a Help
window in an application interface with minimum fuss. However, it also had its idiosyncrasies.
For example, every Help 2 file must be registered with the Windows operating system. You
can’t simply copy the appropriate .HxS file to another computer.

Sadly, the release of the Help 2 standard was postponed in December 2001 and ultimately
canceled in January 2003. Instead, Microsoft is perfecting a new standard that will debut with
Windows Vista. The key issue with Help 2 is the lack of integration with the operating system.
However, it’s still widely used by third parties to distribute .NET developer documentation (as
all .NET developers have the Help 2 engine installed, either through Visual Studio or the .NET
Framework SDK). To find out more information about Help 2, refer to the excellent community
site http://helpware.net. You can also find a variety of tools for registering and compiling
Help 2 collections.

Macdonald_694-3C22.fm Page 782 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 783

Figure 22-4. Help 2.0: an aborted standard

Help-Authoring Tools
Microsoft provides only rudimentary tools for compiling source files to create Help systems. To
have the full range of tools for designing, linking, and configuring your Help, you will probably
need to turn to a third-party design tool. Creating Help is beyond the scope of this book, but
there are a few starting points:

• The HTML Help SDK (http://msdn.microsoft.com/library/en-us/htmlhelp/html/
hwMicrosoftHTMLHelpDownloads.asp) is available from Microsoft. It contains authoring
information and a basic tool for compiling HTML pages into a .chm file with a table of
contents. However, professional Help is almost always authored with more-powerful
authoring tools (see the following two items).

• Professional Help design systems tend to ship with countless tools—and intimidating
prices. One leading example is RoboHelp (www.macromedia.com/software/robohelp),
although numerous other mutually incompatible design tools are available. Some Help
systems are designed from the ground up with single-sourcing in mind, with varied
degrees of success. For example, WebWorks Publisher (www.quadralay.com) attempts to
create HTML from FrameMaker files—at the cost of forcing you to learn a proprietary
language.

Macdonald_694-3C22.fm Page 783 Tuesday, July 25, 2006 8:01 AM

784 C H A P T E R 2 2 ■ H E L P S Y S T E M S

• Numerous smaller-scale utilities assist with the compilation or some aspects of develop-
ment (like creating a table of contents), but don’t assume you’ll use an HTML editor
or other tool to write the actual content. An example of a program like this is FAR
(www.helpware.net), which is unique in being one of the few third-party tools to support
MS Help 2. Another example is the HTML Help to MS Help conversion utility at
www.mvps.org/htmlhelpcenter/mshelp2/h2conv.html.

• Developer tools, like the open-source NDoc, allow you to generate impressive Help 2
references based on your source code and a set of XML comments. Visit http://ndoc.
sourceforge.net to download this tool and put it to work.

Basic Help with the HelpProvider
.NET supports several different types of Help. You can use the following:

• Simple strings that appear in pop-up windows

• HTML pages that launch in a stand-alone browser window

• Full-fledged compiled Help files, such as WinHelp (.hlp) or HTML Help (.chm) files,
which appear in their own windows

■Note Officially, Microsoft supports MS Help 2 only to provide Help for Visual Studio plug-ins and extensions.
There is no support for MS Help 2 in the .NET Framework.

No matter which approach you use, it all works through the HelpProvider component. To
begin, you add an instance of the HelpProvider to your form. It will appear in the component
tray (Figure 22-5).

The HelpProvider is an extender provider—it works by plugging into other controls and
adding additional properties. You first saw extender providers with the ToolTip component in
Chapter 4. The HelpProvider gives each control the four properties shown in Table 22-1.

To bind a control to this HelpProvider, you simply need to set its extended ShowHelp
property to True. At this point, the HelpProvider begins monitoring the control. If the user
presses the F1 key while this control has focus, the HelpProvider shows some type of Help
(depending on how you’ve configured it).

Macdonald_694-3C22.fm Page 784 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 785

Figure 22-5. The HelpProvider

You can also connect or disconnect Help manually in code, using the HelpProvider.
SetShowHelp() method. Just pass the control that you want to use as an argument.

Table 22-1. HelpProvider Extended Properties

Property Description

ShowHelp Set this to True to bind a control to the HelpProvider. That HelpProvider will
listen for the HelpRequested event, which fires when the F1 key is pressed.
At this point, it will show the appropriate Help.

HelpString Use this property if you want a simple Help pop-up (which is somewhat like
a tooltip) instead of using a full-fledged Help file. Set this to the text you
want to show in the pop-up.

HelpNavigator Use this property if you’re binding to a full-fledged Help file. You choose the
part of your Help file that should be shown—the index, search page, table of
contents, or a specific topic. Note that the name of the Help file itself isn’t set
on the control. Instead, it’s global to all controls that use this HelpProvider,
and you set it through the HelpProvider.HelpNamespace property.

HelpKeyword Used to provide context-sensitive Help with a full-fledged Help file, when
HelpNavigator is set to Topic or TopicId. You set a keyword that identifies the
topic for this control.

Macdonald_694-3C22.fm Page 785 Tuesday, July 25, 2006 8:01 AM

786 C H A P T E R 2 2 ■ H E L P S Y S T E M S

' This turns on F1 help support for cmdAdd.
hlp.SetShowHelp(cmdAdd, True)

' This disables it.
hlp.SetShowHelp(cmdAdd, False)

In the following sections, you’ll consider some common scenarios with the HelpProvider.

Simple Pop-Ups
For really simple Help, you don’t need to use a Help file at all. Instead, you can display a pop-
up window with a short message (formerly referred to as What’s This Help). To do so, make
sure that you do not set the HelpProvider.HelpNamespace property to anything other than an
empty string.

Then, find the control you want to use, and supply the Help text by settings its HelpString
property in the Properties window. Alternatively, you can do it programmatically by calling the
SetHelpString() method, as shown here:

hlp.SetHelpString(cmdAdd, "Choose another item from the catalog.")
hlp.SetHelpString(cmdDelete, "Delete the selected item from your order.")

Note that when you set use the SetHelpString() method, you automatically enable Help for
the control. That means that you don’t need to call the SetShowHelp() method (unless you
want to explicitly disable Help for the control).

■Tip If you set the HelpString property at design time (in the Properties window), you can employ Visual
Studio’s automatic localization support, as described in Chapter 5.

Now, if the user gives focus to this control and presses F1, a pop-up message appears, as
shown in Figure 22-6. It remains until the user clicks or presses a key.

Figure 22-6. What’s This Help

Macdonald_694-3C22.fm Page 786 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 787

There are some quirks with this approach:

• The Help text is displayed by the mouse cursor, not the actual control. This can be
confusing to the user.

• The Help text can’t be formatted in any way (for example, you can’t bold command names).

• It forces the user to understand the rather complicated model of changing focus to the
correct control and then pressing F1.

In fact, if you’re satisfied with simple pop-ups, you can achieve a more satisfying result by
implementing it yourself. Just handle the Control.HelpRequested event to respond to the F1
key. The only limitation is that you’re stuck hard-coding Help strings unless you store the
strings in resources and write your own localization code.

External Web Pages
Some organizations use the same Help online and bundled with their products (or make only
slight changes between the two). Rather than creating a dedicated Help file, they distribute a
collection of HTML pages, which the client can browse for reference information.

To implement this model, set the HelpProvider.HelpNamespace property with a path that
points to the first page on your site:

HelpProvider.HelpNamespace = Application.StartupPath & "/Help/index.html"

Make sure the bound control doesn’t set the HelpString property. However, it still must set
ShowHelp to True.

Now when you give focus to a bound control and press F1, a browser window will open on
this page. The only limitation with this approach is that it isn’t control-specific. Each control
uses the same path, and thereby sends the user to the same page.

For that reason, you probably don’t need to waste time wiring up individual controls.
Instead, set the ShowHelp property of the form to True. This way, the F1 key always launches
the Help page, regardless of which control has focus and whether it has ShowHelp set to True.
Later in this chapter, you’ll consider different types of granularity for context-sensitive Help.

■Note Other products take an even more Web-centric approach by sending users to a Help section of a live
Web site. You can’t do this with the HelpProvider, but you can respond to a control’s HelpRequested event and
launch a browser using the System.Diagnostics.Process class. Just call the shared Process.Start() method
and pass in a string pointing to your Web site.

Compiled Help Files
You can use compiled WinHelp (.hlp) or HTML Help (.chm) files just as easily as you use an
external Web site. The only difference is that you need to set the HelpProvider.HelpNamespace
property, so it points to the appropriate Help file. Each bound control sets ShowHelp to True,
and leaves HelpString blank.

Macdonald_694-3C22.fm Page 787 Tuesday, July 25, 2006 8:01 AM

788 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Of course, you also need to create the Help file, which is a feat considered later in this chapter.
For now, test out this approach with a sample Help file from another product.

The HelpProvider gives you control over what part of your Help file is shown. You determine
this using the HelpNavigator property of the linked control. Table 22-2 outlines your options.
Note that while all these choices are supported by HTML Help, the support in WinHelp and
WinHelp 95 is notoriously poor.

Both the Topic and TopicID values are used to create context-sensitive Help in conjunc-
tion with the HelpKeyword property. You’ll see it in action in the next section.

HTML Help with the HelpProvider
As you saw in the previous section, binding Help files to .NET controls is easy thanks to the
HelpProvider. However, getting the result you want—a well-integrated Help system—is a little
trickier, because it requires some knowledge of Help standards. In this section, you’ll walk
through creating a basic HTML Help file and using it to add context-sensitive Help to an
application.

Creating a Basic HTML Help File
All Help files consist of topics. Each topic is a page with Help information that you view sepa-
rately. In HTML Help (the standard used in this chapter), each topic is analogous to a Web page
and can contain arbitrary HTML, pictures, links to other topics, CSS (Cascading Style Sheets)
styles, JavaScript (which can be used to great effect), and even ActiveX controls (although this

Table 22-2. Values for the HelpNavigator Enumeration

HelpNavigator Description

TableOfContents Shows the table of contents for the Help file. This is the most common
option if you aren’t linking to a specific topic.

Index Shows the index for the Help file, if it exists.

KeywordIndex Shows the index and automatically highlights the first topic that matches
the HelpKeyword property. For example, if HelpKeyword is “format” for
this control, the most similar entry is highlighted in the index list.

AssociateIndex Shows the index and automatically highlights the index entry for the first
letter of the HelpKeyword.

Find Shows the search page for the Help file, which allows the user to perform
unguided text searches. This feature tends to provide poorer (and slower)
results than the index or table of contents, and is best avoided if possible.

Topic Shows the topic page that has the unique topic URL specified by the Help-
Keyword property. For example, the HelpKeyword might be
“welcome.htm”, which instructs the HelpProvider to jump straight to the
topic page named Welcome.

TopicId Similar to Topic, but instead of matching the topic URL, matches a unique
number (called the topic identifier).

Macdonald_694-3C22.fm Page 788 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 789

isn’t recommended). You can also refer to topics by a unique topic name or numeric ID. This
gives you the ability to launch a Help file and position it at a specific topic to give the user infor-
mation that’s relevant to the current window or task. This is the basic tool for incorporating
context-sensitive Help.

Essentially, a Help file is nothing more than a collection of topics. However, Help files typically
have a few extras, such as a table of contents, index, and full-text search. The index and full-text
search, if you choose to use it, is generated for you automatically when you compile your Help.
You build the table of contents, and have each link in it lead to a specific topic (although you
can have topics that aren’t in the table of contents and can be reached only by clicking a link in
another topic).

As explained earlier, sophisticated Help is designed with professional tools (or a collection
of shareware and freeware utilities). However, if you’re completely new to Help, you can learn
a fair bit by creating a basic, barebones Help file and using it in a Windows application. Along
the way, you’ll learn some of the basic concepts that you need to create Help files in any
application.

Before you begin, you can download and install the HTML Help SDK from http://msdn.
microsoft.com/library/en-us/htmlhelp/html/hwMicrosoftHTMLHelpDownloads.asp. However,
because the HTML Help SDK doesn’t provide much of an editor, it’s easier to prepare your files
before you use it.

■Tip For a detailed reference that includes advanced topics with HTML Help SDK, read the PDF tutorials at
www.mvps.org/htmlhelpcenter/htmlhelp/hhtutorials.html.

You can start by planning your table of contents. In this example, the table of contents
includes these topics:

Welcome
Introduction
 The Value of Help
 Bad Help

The indents represent different levels of hierarchy. In other words, the last two topics are
contained inside the Introduction topic. Stand-alone topics are represented as pages, whereas
topics that contain subtopics are usually shown as a folder or book (although technically you
can customize both of these images). Each of these items is linked to a topic page, including the
Introduction topic. Figure 22-7 shows the table of contents as it will appear in the Help window.

Figure 22-7. A basic table of contents

Macdonald_694-3C22.fm Page 789 Tuesday, July 25, 2006 8:01 AM

790 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Creating the Topic Pages

Now that you’ve decided what topics to use, choose some reasonable file names. Note that
each topic can be created as a stand-alone HTML file using whatever HTML editor you prefer
(including FrontPage, Dreamweaver, or just Notepad).

Welcome.htm
Introduction.htm
ValueOfHelp.htm
BadHelp.htm

All of these files should be placed in the same directory.
In this example, we’ll also use a style sheet named stylesheet.css to define the font for the

document, the margins for all paragraphs, and a highlighted background for headings:

body {
 font-family: Verdana;
 font-size: x-small;
}

p {
 margin-bottom: 8px;
 margin-top: 8px;
}

h1 {
 font-size: medium;
 padding: 10px;
 background-color: lightblue;
}

Here’s the content for the Welcome.html file:

<html>
 <head>
 <title>Welcome</title>
 <link rel="stylesheet" type="text/css" href="stylesheet.css">
 </head>
 <body>
 <h1>Welcome</h1>
 <p>Welcome to the first page of this HTML Help file.</p>
 <p>Click on other topics to browse them, or go straight
 to the introduction page.</p>
 </body>
</html>

Figure 22-8 shows this page on its own. It includes a link that leads straight to the
Introduction.htm file. It’s a good idea to add these cross-topic links in addition to the table
of contents.

Macdonald_694-3C22.fm Page 790 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 791

Figure 22-8. One topic from a Help project (not compiled)

Creating the HTML Help Project

Once you’ve completed all these HTML pages, you can add them to an HTML Help project.
Follow these steps:

1. Launch the HTML Help Workshop (choose Programs ➤ HTML Help Workshop ➤
HTML Help Workshop from the Windows Start button.

2. Choose File ➤ New.

3. In the New dialog box, select Project, and click OK. Click Next to start moving through
the project.

4. Choose the location where you want to place your Help project, and add a name for the
Help project file onto the end (like HelpTest). Click Next.

5. In the Existing Files list, select HTML files, because you’ve already created these outside
of the HTML Help Workshop. Click Next.

6. Click Add, browse to the Help topic files, and click OK to add them. When you’re finished
adding all your HTML topic pages (and the style sheet, if you used one), click Next.

7. Click Finish to complete the process and generate your Help project.

You can play around with many options in the HTML Help Workshop. However, the key
step you need to perform to get your Help up and running is to add a table of contents, with a
topic for each of your pages.

Creating the Table of Contents

To get started with the table of contents, click the Contents tab, choose Create a New Contents
File, and click OK. You can give the contents file any name you want.

Now you need to create the topics and organize them appropriately. You can do this using
two buttons. Insert a Heading adds a topic that has subtopics, and Insert a Page inserts a topic
that doesn’t (see Figure 22-9).

Macdonald_694-3C22.fm Page 791 Tuesday, July 25, 2006 8:01 AM

792 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Figure 22-9. Creating the table of contents

For example, to create a topic for the Welcome.htm page, click the Insert a Page button.
The Table of Contents Entry dialog box (Figure 22-10) appears.

Type in the topic heading (in this case, Welcome) in the Entry Title box. Then click Add,
and choose the correct page from the list of pages in your project. This list shows the title of
each page, as defined in the HTML document. Finally, click OK to insert the topic.

Repeat this started process until you create all the links shown in Figure 22-9. That gives
you a complete HTML Help project that’s ready for compilation.

Figure 22-10. Adding a new table of contents entry

Macdonald_694-3C22.fm Page 792 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 793

Compiling the Help File

Once you’ve perfected your table of contents, you’re ready to move on to the last stage and
compile your project into a single HTML Help file. The compilation process isn’t anything like
the compilation of a programming language. In fact, your pages aren’t changed in any way;
they’re simply compressed and combined into a single binary file using a proprietary standard.

To start the compilation process, select File ➤ Compile, and click the Compile button.
A log that lists the number of topics, links, and the final file size appears.

To try out your Help, double-click the .chm file. You’ll see something like Figure 22-11.

Figure 22-11. A compiled HTML Help file

Using Context-Sensitive Help
Now you’re ready to use the Help file in a project. Just follow these steps:

1. Right-click on your project, and choose Add ➤ Existing Item. Browse to the compiled
Help file, and add it to the project. (This step is optional, but it makes it easier to keep
track of the file and to make sure it’s deployed along with the executable.)

2. Select the .chm file in the Solution Explorer. Using the Properties window, change the
Copy to Output Directory setting to Copy Always or Copy If Newer.

3. Add a HelpProvider to your form, and set the HelpProvider.HelpNamespace property to
the file name of your .chm file (like HelpTest.chm). Don’t worry about specifying a fully
qualified path, because you’ll be placing the .chm file in the same directory as the appli-
cation executable.

4. Add a control that can receive focus (like a button or text box). Set the HelpNavigator
property to Topic, and set the HelpKeyword property to the original file name of the topic.
For example, in the previous example you could use Introduction.htm, Welcome.htm,
BadHelp.htm, and so on.

Macdonald_694-3C22.fm Page 793 Tuesday, July 25, 2006 8:01 AM

794 C H A P T E R 2 2 ■ H E L P S Y S T E M S

5. Repeat the previous step with a second control, but use a different HelpKeyword value.

6. Run the application. Switch to one of the controls and press F1. The HTML Help window
will appear with the corresponding topic. If you switch back to the application, choose
a different control, and press F1 again, the original Help window will return to the fore-
ground with the new topic shown.

This is the preferred way to set up context-sensitive Help, but .NET 2.0 also adds support
for the older system of topic numbers. To use these with HTML Help, you need to set up your
project accordingly and specifically map each topic to an ID. You can then use that number in
your Windows application—simply set the HelpKeyword property to the number, and set
HelpNavigator to TopicId. You can find more information about creating topic numbers at
www.mvps.org/htmlhelpcenter/htmlhelp/hhtutorials.html.

Control-Based and Form-Based Help
Control-by-control context sensitivity is usually too much for an application. It’s rare that a
Help file is created with separate topics for every control in a window, and even if it were, most
users simply click F1 as soon as they encounter a confusing setting. In other words, they don’t
explicitly tab to the setting they want to find out about to give it focus before invoking Help. For
that reason, the control that is launching the Help is quite possibly not the control that the user
is seeking information about.

One easy way around this is to define an individual context-sensitive Help topic for every
form. For a settings dialog, this topic should contain a list of every option. Nicely designed Help
might even use dynamic HTML to make this list collapsible (see Figure 22-12).

Figure 22-12. Collapsible Help for one window

Macdonald_694-3C22.fm Page 794 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 795

You don’t need any proprietary tricks to get this feature—it’s all in the HTML you write for
the Help topics. To implement the approach shown in Figure 22-12, you simply need a script
that finds the corresponding section of the HTML document and tweaks its visibility.

The only subtlety to understand with form-based Help is that when you enable Help for
the form, you also enable Help for every control it contains. If the user presses F1 while the
focus is on a control that is specifically configured with different Help settings, these settings
take precedence. If, however, the current control has ShowHelp set to False, the request will be
forwarded to the containing form, which launches its own Help. This process works analogously
with all container controls, and it allows you to define Help that’s as specific as you need while
being able to fall back on a generic form-wide topic for controls that aren’t specifically configured.

■Tip The online samples for this chapter (in the Source Code area of www.apress.com) include a HelpTest
project that shows a simple project with three windows. Each of three windows uses a different granularity of
Help: form-based, frame-based, and control-based. You can run this application with the included Help file to
get a better understanding of the options you have for linking context-sensitive Help to an application.

Invoking Help Programmatically
The examples so far require the user to press the F1 key. This automated approach doesn’t
work as well if you want to provide your own buttons that allow the user to trigger Help when
needed. Sometimes, that sort of prominent reminder can reassure the user that Help is nearby.

To trigger Help programmatically, you need to use the shared ShowHelp() method of the
Help class (in the System.Windows.Forms namespace). The Help class works analogously to
the HelpProvider—in fact, the HelpProvider uses the Help class behind the scenes when the
user presses F1.

There are several overloaded versions of the ShowHelp() method. The simplest requires a
Help file name (or URL) and the control that is the parent for the Help dialog (this second
parameter is required for low-level Windows operating system reasons). Here’s an example
that shows the test.hlp file:

Help.ShowHelp(Me, "test.hlp")

Additionally, you can use a version of the ShowHelp() method that requires a HelpNavigator,
one that requires a keyword, or one that requires both a keyword and a HelpNavigator. Here’s
an example that could be used for context-sensitive Help:

Help.ShowHelp(Me, "test.hlp", HelpNavigator.Topic, "about.htm")

To save yourself some work when using this technique with the HelpProvider, you would
probably retrieve these values from the HelpProvider. For example, you might provide a
button on your form that invokes the default form Help:

Macdonald_694-3C22.fm Page 795 Tuesday, July 25, 2006 8:01 AM

796 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Private Sub cmdHelp_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles cmdHelp.Click

 Help.ShowHelp(Me, hlp.HelpNamespace, hlp.GetHelpNavigator(Me), _
 hlp.GetHelpKeyword(Me))
End Sub

Similarly, you might use a right-click context menu for a control that provides the control’s
default Help:

Private Sub mnuHelp_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles mnuHelp.Click

 Dim ctrl As Control = mnuLabel.SourceControl
 Help.ShowHelp(ctrl, hlp.HelpNamespace, hlp.GetHelpNavigator(ctrl), _
 hlp.GetHelpKeyword(ctrl))
End Sub

This menu event handler is written using the SourceControl property, which means it’s
generic enough to be used with any control. When the menu is clicked, it retrieves the control
attached to the context menu and gets its assigned Help keyword.

Now that you are this far, it’s possible to unshackle yourself completely from the HelpProvider
class. Just handle the HelpRequested event of any form or control. Then launch the appropriate
Help programmatically with the Help class.

Now that you’ve seen how it can be done, why would you want to do it? You’ll examine two
of the most common reasons in the next two sections.

Using Database-Based Help
Help files, like any other external resource, change (or need to be localized). You don’t want to
embed information such as topic URLs all over your user interface, because they are difficult
and time-consuming to update. Instead, you can use a basic form event handler that calls a
method in a custom AppHelp class. It would look something like this:

Private Sub form1_HelpRequested(ByVal sender As Object,
 ByVal e As HelpEventArgs) Handles MyBase.HelpRequested

 Program.Help.ShowHelp(Me)
End Sub

The Global class simply provides the current AppHelp instance through a shared Help
member:

Public Class Program
 Public Shared Help As New AppHelp()
End Class

The AppHelp.ShowHelp() method examines the submitted form, compares it with a list of
forms in a database, and thus determines the appropriate context topic, which it launches.

Macdonald_694-3C22.fm Page 796 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 797

Note that for performance reasons, this list of form-topic mappings would be read once when
the application starts and stored in a member variable.

The AppHelp class is shown in the following example. The database code to retrieve the
FormHelpMappings table has been omitted.

Public Class AppHelp

 Public FormHelpMappings As DataTable
 Public HelpFile As String

 Public Sub ShowHelp(ByVal helpForm As Form)
 For Each row As DataRow In FormHelpMappings.Rows
 If helpForm.Name.CompareTo(row["FormName"].ToString()) = 0 Then
 ' A match was found. Launch the appropriate Help topic.
 Help.ShowHelp(helpForm, HelpFile, HelpNavigator.Topic, _
 row["Topic"].ToString())
 Return
 End If
 Next
 End Sub

End Class

Using Task-Based Help
Another reason you might take control of the Help process is to get around the limitations of
form-based Help. Form-specific Help works well in a dialog-based application, but falters
when you create a document-based or workspace-based program where users perform a
number of different tasks from the same window. Rather than try to write the code to modify
Help keywords dynamically, you can use the AppHelp class to track the current user’s task.
When Help is invoked, you can use this information to determine what topic should be shown.

Here’s the remodeled AppHelp class. In this case, it doesn’t decide what topic to show
based on form name, but rather based on one of the preset task types. The logic that links tasks
to topics is coded centrally in the AppHelp class (not in the user interface), and it could be
moved into a database for even more control. An enumeration is used to ensure that the client
code always sets a valid value.

Public Class AppHelp

 ' These are the types of tasks that have associated Help topics.
 Public Enum Task
 CreatingReport
 CreatingReportWithWizard
 ManagingReportFiles
 ImportingReport
 End Enum

Macdonald_694-3C22.fm Page 797 Tuesday, July 25, 2006 8:01 AM

798 C H A P T E R 2 2 ■ H E L P S Y S T E M S

 Private _helpFile As String
 Public Property HelpFile() As String
 Get
 Return _helpFile
 End Get
 Set(ByVal value As String)
 _helpFile = value
 End Set
 End Property

 Private _currentTask As Task
 Public Property CurrentTask() As Task
 Get
 Return _currentTask
 End Get
 Set(ByVal value As Task)
 _currentTask = value
 End Set
 End Property

 ' Show Help based on the current task.
 Public Sub ShowHelp(ByVal helpForm As Form)
 Dim topic As String = ""

 Select Case CurrentTask
 Case Task.CreatingReport
 topic = "Reports.htm"
 Case Task.CreatingReportWithWizard
 topic = "Wizard.htm"
 Case Task.ManagingReportFiles
 topic = "Reports.htm"
 Case Task.ImportingReport
 topic = "Importing.htm"
 Case Else
 Return
 End Select

 Help.ShowHelp(helpForm, HelpFile, HelpNavigator.Topic, topic)
 End Sub

End Class

Macdonald_694-3C22.fm Page 798 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 799

Now the code simply needs to “remember” to set the task at the appropriate times.

Program.Help.CurrentTask = AppHelp.Task.CreatingReport

When Help is invoked, the form doesn’t need to determine what task is underway—the
AppHelp class simply uses the most recent task setting.

Private Sub form1_HelpRequested(ByVal sender As Object,
 ByVal e As HelpEventArgs) Handles MyBase.HelpRequested
 Program.Help.ShowHelp(Me)
End Sub

This system could be made much more complex by using a task list or tracking multiple
different types of context information in the AppHelp class, which is conceptually similar to
the way many advanced consumer applications (such as office productivity software) work.

Creating Your Own Help
Another advanced option you might want to pursue is to create your own Help from scratch
rather than relying on one of the formats I’ve described. This technique has significant draw-
backs: you surrender advanced features like text searching, a hierarchical table of contents,
and an index. However, it also has significant advantages, the most important being that you
can easily integrate Help content into your application. With the current HTML Help system, it
is almost impossible to embed and control a Help window in your application. MS Help 2 promises
some improvements, but the required tools have not yet appeared.

Creating your own Help generally follows two approaches:

• You store Help as long strings in a database record. This generally works best when you
are using your custom Help for error messages, a “tip of the day” feature, or some other
simple content.

• You store links to an HTML file that is contained in the program directory (or a Help
subdirectory). This allows you to easily create files using any HTML design tool, take
advantage of linking, and even provide the Help externally (possibly through an Internet
browser). Hosting an HTML window in your application is much easier than trying to
integrate a Help window. (In fact, you can handle this easily with the WebBrowser
control described in Chapter 17.)

These designs allow you to provide a design like the one shown in Figure 22-13. It provides
a slide-out window that can give a list of steps with information for the current task. The infor-
mation itself is retrieved from a database and displayed in the application.

This .NET example uses a WebBrowser control to display a formatted list of instructions.
Thanks to the linking power of HTML, the user can browse to other topics of interest.

Macdonald_694-3C22.fm Page 799 Tuesday, July 25, 2006 8:01 AM

800 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Figure 22-13. Integrated custom Help

Application-Embedded Support
One of the crucial shortcomings with the Help systems you have looked at is that they are all
designed to provide fine-grained reference information about specific windows and controls.
As I described earlier, Help usually fails miserably when it tries to walk the user through a long,
involved task. However, better Help is possible. What’s needed is a change to how Help is
designed and integrated in applications.

Application-embedded support represents that change. Quite simply, embedded Help is
user assistance that is a first-class member of an application. It’s designed as part of the soft-
ware, not added to the software after it’s complete. Embedded Help provides far greater user
assistance, but also requires far more development work.

Some examples of embedded Help include the following:

Process-oriented. Some applications reserve a portion of their interface for continuous tip
messages, or use a tiny information icon that a user can click for more information about
the current task. This type of Help trains users as they work and is used to great effect in
fairly complex computer games. Wizards are another example of process-oriented Help.

Stationary embedded. This is the most common form of embedded Help, and it refers to
the content added to dialog boxes to explain options (affordances) and actual embedded
Help windows.

Agents. This is one of the most advanced and time-consuming types of embedded Help. It
was pioneered largely by Microsoft in Microsoft Office (and later abandoned). Microsoft’s
attitude toward agents is extremely schizophrenic—it provides tools to make it easy for all
developers to use this level of support, but it only occasionally devotes the intense coding
time needed to integrate it into its flagship applications.

Macdonald_694-3C22.fm Page 800 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 801

Bidirectional. To some, this is a holy grail of embedded Help, but it’s rarely achieved, and
usually only in a primitive form. Essentially, one of the critical drawbacks with Help is that
it’s cut off from the applications in two ways. Not only does the user have to leave the
application to read most Help files, but once the appropriate information is found in the
Help file, the user has to perform the actual work. There’s no way for the Help file to act on
the user’s behalf, and actually show the user how to do what is needed. Some Help files do
provide rudimentary Show Me links that can prompt the application to display the appro-
priate window, but this communication is difficult and fragile. With bidirectional Help,
Help can perform the necessary task once it determines what the user needs.

Affordances
Affordances are the visual “clues” designed to demystify a complex application. For example,
Windows uses brief descriptions to provide a little information about your computer’s Internet
settings, as shown in Figure 22-14.

Figure 22-14. A dialog with affordances

Help and affordances represent a bit of a paradox. Nothing can clarify a confusing dialog
box more than a couple of well-placed words or icons. On the other hand, users often ignore
descriptions, error messages, or anything else that requires reading. They either try to figure
out the task on their own or, in the case of an error, repeat the task a few times and then give up.

Given this problem, what is the role of Help in an application? It’s hard to believe that Help
is useless, as you can routinely see innovative games and Web sites that have no problem
guiding users through new and unusual interfaces with a few carefully integrated explanations.
Unfortunately, the customary, current stand-alone Help is designed to provide reference infor-
mation. It’s very poor at the task-based explanations that most beginning users require—in fact,
it’s really little more than a limited electronic book.

Macdonald_694-3C22.fm Page 801 Tuesday, July 25, 2006 8:01 AM

802 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Agents
Agents are the animated characters that appear in applications to guide users through a task.
The most infamous example of an agent is the (now defunct) Clippy character included with
Microsoft Office. Most developers don’t consider agents for their applications because of
several factors:

• Agents require first-rate design work. An ugly agent is worse than no agent at all.

• Agents require tedious programming. Every action or tip the agent gives must be indi-
vidually triggered by the application code. If not handled properly, this can lead to Help
code that is tangled up with the application’s core functionality.

• Agents are “silly” and appeal more for novelty than for any actual assistance they provide.

These are legitimate concerns. However, in a consumer application, an agent can act as an
appealing and distinctive feature that attracts the user’s attention. Agents also perform the
remarkable trick of turning tedium into fun. Quite simply, users often enjoy using programs
with agents. (Of course, it helps to know your user. Relatively inexperienced users may enjoy
agents while power users might find they slow them down or interfere with their workflow.)

Creating a program with agent support is not as difficult as most developers believe, because
Microsoft provides some remarkable tools and a set of four standard characters that can be
freely distributed with your applications. To download the agent libraries, refer to http://
msdn.microsoft.com/library/en-us/msagent/userinterface_3y2a.asp. The Microsoft Agent
Control is available only as a COM component, but it can be easily consumed in a .NET program by
creating a runtime-callable wrapper (RCW), a task Visual Studio carries out automatically when
you add a reference to a COM component in your project. To use the Microsoft Agent control,
right-click the Toolbox, and select Choose Items. Then click on the COM Components tab, add a
check mark next to Microsoft Agent Control 2.0 (see Figure 22-15), and click OK. This adds the
agent control to the Toolbox—you can then drag it onto any form, and Visual Studio will auto-
matically create the RCW.

The Microsoft Agent control allows you to use Merlin (a genie), Peedy (a bird), or Robbie (a
robot), or all of them at once. All components are complete with rotoscoped animations, can
perform various actions as you direct them, can move about the screen, can think or “speak”
text (either using a poor voice synthesizer that’s included, or a wave file you specify). When
speaking with a voice file, the characters’ mouths even move to synchronize closely with the
words, creating a lifelike illusion. Best of all, Microsoft gives these features away for free. You
can purchase other agent characters from third-party sites online, or create them indepen-
dently, although the tools provided won’t help you create lifelike animations.

The online samples include an AgentTryout application that allows you to put an agent
character through its paces, speaking and thinking the text you specify, moving about the
screen, and performing various animations (see Figure 22-16).

Macdonald_694-3C22.fm Page 802 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 803

Figure 22-15. Adding the Microsoft Agent control

Figure 22-16. The AgentTryout application

The AgentTryout application interacts with any of the three agent characters through a
special AgentController class, which encapsulates all the functionality for controlling move-
ments, speech, and action. This class code can be reused in any application.

The class AgentController class begins by defining some constants used when setting
agent properties:

Macdonald_694-3C22.fm Page 803 Tuesday, July 25, 2006 8:01 AM

804 C H A P T E R 2 2 ■ H E L P S Y S T E M S

Public Class AgentController
 Implements IDisposable

 ' Balloon constants
 Private Const BalloonOn As Int16 = 1
 Private Const SizeToText As Int16 = 2
 Private Const AutoHide As Int16 = 4
 Private Const AutoPace As Int16 = 8
 ...

To use the AgentController class, you need to create an instance of the Microsoft Agent
control on your form. You then pass that instance to the AgentController class constructor,
along with the name of the character you want to show. The constructor loads up the agent
character and stores it in a member variable for future use.

 ...
 ' Name of the initialized character.
 Private characterName As String

 ' Agent variable.
 Private agentChar As AgentObjects.IAgentCtlCharacterEx

 Public Sub New(ByVal agentHost As AxAgentObjects.AxAgent, _
 ByVal character As String)
 agentHost.Characters.Load(character, Nothing)
 agentChar = agentHost.Characters(character)
 characterName = character

 ' You could put your own options in this menu, if desired.
 agentChar.AutoPopupMenu = False

 ' Set balloon style.
 agentChar.Balloon.Style = agentChar.Balloon.Style Or BalloonOn
 agentChar.Balloon.Style = agentChar.Balloon.Style Or SizeToText
 agentChar.Balloon.Style = agentChar.Balloon.Style Or AutoHide
 End Sub
 ...

The AgentController wraps all the functionality you will need. Simply call the appropriate
method to trigger the corresponding animation. Call Show() to reveal the character, or Hide()
to make it disappear, and use methods like Speak(), Think(),GestureAt(), and MoveTo() to
interact with the user.

 ...
 Public Sub Show()
 agentChar.Show(Nothing)
 End Sub

Macdonald_694-3C22.fm Page 804 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 805

 Public Sub Hide()
 agentChar.Hide(Nothing)
 End Sub

 Public Sub Speak(ByVal text As String)
 agentChar.StopAll(Nothing)
 agentChar.Speak(text, "")
 End Sub

 Public Sub Think(ByVal text As String)
 agentChar.StopAll(Nothing)
 agentChar.Think(text)
 End Sub

 Public Sub MoveTo(ByVal x As Int16, ByVal y As Int16)
 agentChar.MoveTo(x, y, Nothing)
 End Sub

 Public Sub GestureAt(ByVal x As Int16, ByVal y As Int16)
 agentChar.GestureAt(x, y)
 End Sub

 Public Sub StopAll()
 agentChar.StopAll(Nothing)
 End Sub
 ...

For more-exotic effects, you can use one of the custom animations that the agent supports.
You can retrieve the full list from the GetAnimations() method, and you can trigger an anima-
tion by name by calling Animate().

 ...
 Public Function GetAnimations() As List(Of String)
 Dim list As New List(Of String)()
 For Each animation As String In agentChar.AnimationNames
 list.Add(animation)
 Next

 Return list
 End Function

 Public Sub Animate(ByVal animation As String)
 agentChar.StopAll(Nothing)
 agentChar.Play(animation)
 End Sub
 ...

Macdonald_694-3C22.fm Page 805 Tuesday, July 25, 2006 8:01 AM

806 C H A P T E R 2 2 ■ H E L P S Y S T E M S

■Tip Beware of animations that have the word “left” or “right” in them. These refer to the character’s left
and right, not your right and left. For example, if you use the GestureLeft animation, the agent will point to
its right.

Finally, the Dispose() method makes sure the agent is properly cleaned up:

 ...
 Public Sub Dispose() Implements IDisposable.Dispose
 If agentChar.Visible
 agentChar.StopAll(Nothing)
 agentChar.Hide(Nothing)
 End If
 End Sub

End Class

To try this out, create a form, add the Microsoft Agent control, and then create an instance
of the AgentController. For example, the AgentTryout project uses the following code to create
the agent and fill a list control with a list of supported animations:

Private controller As AgentController

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 controller = New AgentController(axAgent1, "Genie")
 lstAnimations.DataSource = controller.GetAnimations()
 controller.Show()
End Sub

The animation is played with a single line of code in response to a button click:

Private Sub cmdPlay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPlay.Click
 controller.Animate(lstAnimations.Text)
End Sub

Moving, thinking, and speaking (shown below) are similarly easy:

Private Sub cmdSpeak_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSpeak.Click
 controller.Speak(txtSpeak.Text)
End Sub

Even if you don’t like the idea of animated characters, it’s hard to complain about the
agent control. Similar functionality from a third-party developer comes at quite a price.

Macdonald_694-3C22.fm Page 806 Tuesday, July 25, 2006 8:01 AM

C H A P T E R 2 2 ■ H E LP S Y S T E M S 807

■Note To use the agent control successfully, you need to use the RCW for the ActiveX control (which shows
up in the AxInterop.AgentObjects library). In the past, Microsoft has recommended that you use this version
only in Web pages and rely instead on the nonvisual COM components in Windows applications (which are
exposed through the AgentObjects library). This way you don’t need to create an instance of the ActiveX
control on each form. However, in a .NET application the AgentObjects library doesn’t work successfully on its
own, so you must use the ActiveX control. Luckily, both the ActiveX control and the COM component provide
the same interface to interact with the agent character.

The Last Word
Help strategies and systems vary widely depending on the intended audience and the applica-
tion design. In this chapter, we toured the wide and diverse world of Help programming. None
of the solutions examined here can be used in every scenario. Instead, it helps to keep some
basic principles in mind:

• A Help file should describe the purpose of various settings, not how to use common
controls. No one needs an explanation of how to click a check box. Instead, users need
to know why they should.

• The best affordances are descriptive labels, not instructions. No dialog box has the space
or formatting power of a printed document.

• The best error is one that doesn’t happen. It may take more effort in your code to disable
or hide invalid options, but it will prevent dozens of common mistakes in the input fields.

• Help must be context-sensitive. A confused user won’t search through a Help file to find
a relevant topic—a printed document is better at that.

• Perform usability tests. When writing a program, you design based on who you believe
the audience is. At some point, you need to bring in some new users and find out what
their capabilities really are.

Macdonald_694-3C22.fm Page 807 Tuesday, July 25, 2006 8:01 AM

Macdonald_694-3C22.fm Page 808 Tuesday, July 25, 2006 8:01 AM

■ ■ ■

P A R T 5

Advanced Custom
Controls

Macdonald_694-3C23.fm Page 809 Tuesday, July 25, 2006 8:02 AM

Macdonald_694-3C23.fm Page 810 Tuesday, July 25, 2006 8:02 AM

811

■ ■ ■

C H A P T E R 2 3

Skinned Forms and
Animated Buttons

There’s a whole class of Windows applications that don’t resemble the examples you’ve seen
so far. They use highly stylized interfaces with shaped windows and animated buttons, and
they often look more like Flash-animated Web pages or futuristic dashboards than typical
Windows Forms user interfaces.

However, these interfaces aren’t beyond the capabilities of the Windows Forms toolkit.
In fact, with a few basic tricks (and more than a dash of artistic resources), you can create your
own skinned interfaces. In this chapter, you’ll consider a few ingredients that will help you
build skinned interfaces:

• Nonrectangular shaped forms that contour themselves according to a complex shape or
a background image.

• Animated buttons that change their appearance when the user moves the mouse over
them or clicks them, similar to a Web rollover button.

• Optimizations you can use to improve rendering speed and reduce memory usage when
creating a large number of custom-drawn controls.

These tricks of the trade are enough to get you started creating a truly unique, modern
interface.

Shaped Forms and Controls
Irregularly shaped forms are often the trademark of cutting-edge consumer applications like
photo editors, movie makers, and MP3 players. In the past, creating them required a bit of API
wizardry. With .NET, creating a shaped form is almost effortless, thanks to GDI+.

To create a simple shaped control in .NET, all you need to do is assign a new shape
(represented by an instance of the System.Drawing.Region class) to the Control.Region
property. There is more than one way to create a Region object, but one of the easiest is by
using the GraphicsPath class, which allows you to build a complex shape out of as many sub-
shapes as you need (as described in Chapter 7). You can then pass the GraphicsPath to the
Region class constructor.

Macdonald_694-3C23.fm Page 811 Tuesday, July 25, 2006 8:02 AM

812 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

A Simple Shaped Form
The following example code creates a shaped form. It defines an ellipse with the same bounds
of the form and adds it to a GraphicsPath. Once the GraphicsPath is assigned to the Region
property of the form, only the part of the form that fits inside the ellipse is shown.

Private Sub SimpleShapedForm_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 Dim path As New GraphicsPath()
 path.AddEllipse(0, 0, Me.Width, Me.Height)
 Me.Region = New Region(path)
End Sub

Figure 23-1 shows this unusual form, displayed over an ordinary Notepad window, so you
can see how content underneath is displayed.

Figure 23-1. A shaped form

You can see part of the original window border at the top and bottom of the shaped form,
and the single contained button in the middle. However, the form acts completely like an
ellipse. For example, if you click in the cutout portion that the original rectangular form occupied
(that is, just above the left edge of the ellipse), your click won’t activate the form. Instead, you’ll
activate whatever application is currently underneath the form.

You also can create a shaped form made up of a combination of shapes. In fact, these
shapes don’t even need to overlap. The following example creates the more unusual shaped
form shown in Figure 23-2:

Private Sub CompoundShapedForm_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 Dim path As New GraphicsPath()

Macdonald_694-3C23.fm Page 812 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 813

 path.AddEllipse(0, 0, Me.Width / 2, Me.Height / 2)
 path.AddRectangle(new Rectangle(Me.Width / 2, Me.Height / 4, _
 Me.Width / 2, Me.Height / 4))
 path.AddEllipse(Me.Width / 2, Me.Height / 2, Me.Width / 2, _
 Me.Height / 2)

 Me.Region = New Region(path)
End Sub

Figure 23-2. A noncontiguous shaped form

Creating a Background for Shaped Forms
You’ll quickly notice a few problems with shaped forms:

• The Region defines a shape, but this shape does not provide any borders. Instead, a
shaped form is just a geometric figure that reveals a portion of the underlying form.

• If you use a curved shape, the edges are somewhat jagged. To smooth these edges,
Windows would need to perform antialiasing between the foreground (the form) and
the background (the other applications or the desktop), which it can’t do.

• If you cut off the nonclient area of the form (the title bar), the user won’t have any way to
drag it around the desktop or close it.

• Ordinary controls (like standard windows buttons) aren’t well suited for a shaped form—
the styles seem to clash.

To handle these problems, you need to create the content for your shaped form from
scratch. One approach is to use GDI+ to perform all your drawing. For example, you could
revise the earlier example, so that it draws the form border.

Macdonald_694-3C23.fm Page 813 Tuesday, July 25, 2006 8:02 AM

814 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Begin by setting Form.FormBorderStyle to FormBorderStyle.None, to remove all the
nonclient areas (like the title bar), which makes drawing calculations easier. Then, use the
same region for drawing that you use to define the shape of the form:

Public Class CompoundShapedForm

 Private path As New GraphicsPath()

 Private Sub CompoundShapedForm_Load(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Load
 path.AddEllipse(0, 0, Me.Width / 2, Me.Height / 2)
 path.AddRectangle(new Rectangle(Me.Width / 2, Me.Height / 4, _
 Me.Width / 2, Me.Height / 4))
 path.AddEllipse(Me.Width / 2, Me.Height / 2, Me.Width / 2, _
 Me.Height / 2)
 Me.Region = new Region(path)
 End Sub

 Private Sub CompoundShapedForm_Paint(ByVal sender As Object, _
 ByVal e As PaintEventArgs) Handles MyBase.Paint
 e.Graphics.SmoothingMode = SmoothingMode.HighQuality
 e.Graphics.FillPath(Brushes.LightBlue, path)

 Dim drawingPen As New Pen(Color.SlateBlue, 8)
 Using drawingPen
 e.Graphics.DrawPath(drawingPen, path)
 End Using
 End Sub

End Class

Now the edging of the form is drawn, and the only part that looks out of place is the single
ordinary button (see Figure 23-3). Note that all the labels use a BackColor of Color.Transparent,
so that the blue painted background shows through.

Of course, designing this form in Visual Studio isn’t quite as easy, because you won’t see
the shaped regions at design time. As a result, you may have trouble aligning the content
appropriately.

Although this approach works, a more typical approach in a professional application is to
design the appropriate images in a dedicated graphics program and import them into your
.NET application as embedded resources. For example, you can set the Form.BackgroundImage
property to a picture that has the same shape you want to use, and includes a border. Best of
all, you’ll see the background shape at design time.

Figure 23-4 shows an example with a background graphic. The text and button have been
added to the form using controls. The background texture and title section are part of the back-
ground image.

Macdonald_694-3C23.fm Page 814 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 815

Figure 23-3. Painting a form border

Figure 23-4. Shaping a form to match a bitmap

To design the application shown in Figure 23-4, a custom bitmap is assigned to the back-
ground, which “skins” the application. However, there’s still the problem of getting the form
background to match the picture background. You can handle this by constructing a Region
object with the same dimensions, but there’s actually a far easier approach, which works
through the Form.TransparencyKey property.

Here’s how it works: You can define a special color for the form that will automatically be
cut out by setting the TransparencyKey property. For example, if you choose dark blue, all
occurrences of dark blue in your form become invisible. To use this technique with a back-
ground image like the one in Figure 23-4, all you need to do is make sure the outside of your
picture is filled with a color that is clearly distinguishable from all the colors on the form (often,
a near-fluorescent pink is used). Then you can show the picture on the form by setting the

Macdonald_694-3C23.fm Page 815 Tuesday, July 25, 2006 8:02 AM

816 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Form.BackgroundImage property, and the portion outside the edges will be chopped out
automatically.

■Note The TransparencyKey property is supported only on Windows 2000 or later. Plus, transparency can
fail to work on certain video cards if your color depth is greater than 24-bit, and it can also fail when you use
double buffering. As a result, when using TransparencyKey you should also use the Form.Region property. Set
the region to be at least an approximation of the shape you want to avoid the worst of these problems.

When designing a background image, you may need to experiment to get the best result.
Ideally, you want a clean, shaped border around all edges. To avoid problems, you may want to
minimize curves altogether and use mostly straight lines.

When adding the region behind your picture, you also need to make sure that your drawing
program doesn’t use antialiasing. For example, to create the background picture for the form
shown in Figure 23-4, a bright yellow background was used behind the shaped image (Figure 23-5).
This yellow color exactly matches the Form.TransparencyKey yellow. However, if the drawing
program uses antialiasing to blend the background edges with the yellow color underneath (as
most drawing programs do), you’ll have a problem. Near the edges of the shape, the drawing
program will use other, subtly different shades of yellow to create a softer blended edge. These
shades of yellow won’t match the Form.TransparencyKey value, so they won’t be removed. To
avoid this problem, you need to prevent antialiasing between the two shapes or use a background
color that’s similar enough to the image border color that the antialiased edge won’t stand out.
To get a really professional look, you may need to hand-smooth the edge of your shape before
you apply the background. Artistic techniques like this could improve the edging you see in
Figure 23-4.

There’s one other side effect of the TransparencyKey property that you might not appre-
ciate immediately. When you set a transparent color, all occurrences of that color are affected.
This includes occurrences of the color in an image, a control, or even the form’s background.

For example, Figure 23-6 shows an example that contains several picture box controls,
each of which has the TransparencyKey color as its background. At runtime, these picture
boxes disappear. Using this technique, you can create imaginative effects, like removing any
portion of a form.

Macdonald_694-3C23.fm Page 816 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 817

Figure 23-5. The background picture

Figure 23-6. A form (with the desktop showing through)

Moving Shaped Forms
As you’ve seen, one limitation of shaped forms is that they usually omit the nonclient title bar
portion, which allows the user to easily drag the form around the desktop. There are several
ways to remedy this problem. You could react to mouse events like MouseDown, MouseUp,
and MouseMove, and move the form manually when the user clicks and drags (as demonstrated
in Chapter 4). However, there’s an even easier approach if you’re willing to step outside of the
.NET Framework by overriding the WndProc() method of the form.

Macdonald_694-3C23.fm Page 817 Tuesday, July 25, 2006 8:02 AM

818 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

The WndProc() method fires every time the form receives a Windows message. The trick is
to override this method and check for the WM_NCHITTEST message. This WM_NCHITTEST
message is sent when the mouse is moved over your form, at which point you are supposed to
tell Windows which part of the form the mouse is positioned above. This message is used by
Windows to determine what shape it should give the cursor (such as the diagonal arrow when
on the resizable bottom-right area). But more interesting, you can return the code corresponding
to the caption area, to instruct Windows to treat clicks on the client area in the same way as
caption clicks—in other words, the user can click and drag anywhere on the form to move it.
You could add additional tests if you want to make only part of the window draggable in this
way, but that’s entirely up to you.

The code you need isn’t obvious, but it’s quite short:

Protected Overrides Sub WndProc(ByRef m As Message)
 ' Allow the base class to handle all messages first.
 MyBase.WndProc(m)

 ' Look for the WM_NCHITTEST message.
 Dim WM_NCHITTEST As Integer = &H84
 If m.Msg = WM_NCHITTEST Then
 ' Treat this click as a click on the caption.
 Dim HTCLIENT As Integer = 1
 Dim HTCAPTION As Integer = 2
 If m.Result.ToInt32() = HTCLIENT Then
 m.Result = CType(HTCAPTION, IntPtr)
 End If
 End If
End Sub

Now the user can click anywhere on the form and drag it around. However, the WndProc()
method isn’t called when you move over other controls, because they provide their own
WndProc() implementation to handle this message. (Of course, workarounds are possible. For
example, you could create a custom control that overrides WndProc() and returns a value of
HTTRANSPARENT. This allows the form to receive the click.)

Shaped Controls
You don’t need to stop at shaped forms. You can apply similar techniques to create irregularly
shaped controls. Most controls will let the background of the parent show through if you set a
transparent BackColor. More powerfully, you can use the Control.Region property, which
works the same as the Form.Region property, to assign a nonrectangular region to a form.
Control mouse handling and control painting are performed only in the control’s region. You’ll
see an example of irregularly shaped controls with the vector-based drawing application in
Chapter 24.

Controls don’t provide a TransparencyKey property, although they are affected by the
TransparencyKey of the form. If a control has any of the transparent color, this region of the
control is made completely transparent—both the control and the underlying form become
invisible.

Macdonald_694-3C23.fm Page 818 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 819

■Tip For more examples of shaped controls, check out the curved panel in the RegionMaster control sample
provided by Microsoft at http://windowsforms.net/articles/usingregionmastercontrols.aspx.

Animated Buttons
One problem that remains with shaped and skinned forms is that many of the ordinary
Windows controls (like buttons) look out of place on a rich, graphical background. The easiest
solution to this problem is to build owner-drawn controls. In this section, you’ll take a look at
how you can build animated buttons.

Basic Animated Buttons
When building animated buttons, there are two chief goals. First, you want to create a distinct,
modern look with hand-tooled graphics. Second, you want to use some sort of visual effect to
alert the user when the mouse is over the button. This allows the user to spot buttons more
easily, even though they don’t have the standard Windows look. It also gives the application a
more dynamic feel. Commonly used visual effects include the following:

• Adding a raised border when the mouse is over the button

• Highlighting button text, outlines, or a small glyph (like a bullet)

• Enlarging the button picture

• Making the button “bounce” (grow and shrink in rapid succession until the user moves
the mouse off the button)

Based on this discussion, a couple of points should be immediately clear. First, developers
are likely to create a wide range of custom controls to implement different effects. Second, all
of these buttons use the same basic pattern of interaction (they change their appearance in
response to a mouse-over). Thus, to simplify your life, you can start designing a custom button
by creating a base class that implements this pattern. You can then derive from that base class
to create specific types of animated buttons. This is a worthwhile design, because button
controls require a considerable amount of boilerplate for managing focus, state, click events,
and so on.

A Base Class for Animated Buttons
To create any button control class, it makes most sense to derive directly from Control, because
you need to implement all the drawing on your own.

Public MustInherit Class AnimatedButtonBase
 Inherits Control
 Implements IButtonControl
 ...
End Class

Macdonald_694-3C23.fm Page 819 Tuesday, July 25, 2006 8:02 AM

820 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

The AnimatedButtonBase control is declared as a MustInherit class, which means it can’t
be instantiated directly. Although this design is conceptually good, it does mean you’ll receive
a design-time warning if you try to switch to design view while creating a class that derives from
AnimatedButtonBase. (The specific problem is that the designer can’t create MustInherit classes,
as discussed in Chapter 11, with visual inheritance.) If this bothers you, you can choose to
implement AnimatedButtonBase as a normal class, but add the ToolboxItem attribute to hide
it, so it won’t appear in the Visual Studio toolbox.

In the following sections, you’ll see how to build each piece of the AnimatedButtonBase class.

The IButtonControl Interface

All buttons should implement the IButtonControl interface, which allows other programs to
recognize them as being inherently button-like. By implementing IButtonControl, your button
control gains the following features:

• Other classes can programmatically trigger a button click in your control.

• Your control can be used as a default button for a form (if you set the Form.AcceptButton
or Form.CancelButton properties).

• Your control can be used to close a modal form and return a value from the DialogResult
enumeration.

The most important part of the IButtonControl interface is the PerformClick() method.
Other classes can call this method to trigger a click programmatically. This is the basic require-
ment for all the features described previously. For example, if you want your button to be an
AcceptButton for a form, the form simply needs a way to trigger a click when the Enter key is
pressed. It does this by calling IButtonControl.PerformClick(). Additionally, the IButtonControl
interface requires a DialogResult property that stores the result associated with your button
(like OK, Cancel, and so on), and a NotifyDefault() method that alerts your control that it has
become the default button, in which case it can adjust its rendering if desired.

Here’s the definition of the AnimatedButtonBase class, with the members that are required to
implement IButtonControl:

Public MustInherit Class AnimatedButtonBase
 Inherits Control
 Implements IButtonControl

 Public Sub PerformClick() _
 Implements IButtonControl.PerformClick
 OnClick(EventArgs.Empty)
 End Sub

 Private _dialogResult As DialogResult
 Public Property DialogResult() As DialogResult _
 Implements IButtonControl.DialogResult
 Get
 Return _dialogResult
 End Get

Macdonald_694-3C23.fm Page 820 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 821

 Set(ByVal value As DialogResult)
 _dialogResult = value
 End Set
 End Property

 Public Sub NotifyDefault(ByVal value As Boolean) _
 Implements IButtonControl.NotifyDefault
 ' Fires when the button is made into a default.
 ' You could set properties to adjust the rendering,
 ' but that's not necessary.
 OnNotifyDefault(value)
 End Sub

 Public Overridable Sub OnNotifyDefault(ByVal value As Boolean)
 ' This method can be overriden in derived classes
 ' if they wish to apply rendering customizations.
 End Sub

End Class

Button States

The AnimatedButtonBase distinguishes among four states. An ordinary button appears in
Normal state. MouseOver state occurs when the mouse is moved over the button, and Pushed
occurs when the button is clicked (the mouse button is currently pressed down). Additionally,
the button can be placed into a Disabled state, at which point it is essentially inactive and does
not respond to user actions.

Public Enum States
 Normal
 MouseOver
 Pushed
 Disabled
End Enum

Clearly, the whole idea of the AnimatedButtonBase control is that it changes its rendering
when it moves from one state to another. However, it’s possible that the button might be
repeatedly placed into the same state. This may occur in the design environment or if some
code is reapplying a default. In this case, a refresh should not be triggered.

To facilitate this pattern, the AnimatedButtonBase has a State property. When this property
is set, it checks if the value has changed, and triggers a refresh if it has. All the other code in the
AnimatedButtonBase control must then work through the State property to ensure that this
automatic refresh happens appropriately.

Macdonald_694-3C23.fm Page 821 Tuesday, July 25, 2006 8:02 AM

822 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

' Begin in normal state.
Private _state As States = States.Normal

' This property procedure ensures the control is
' invalidated only when the state changes.
Private Property State() As States
 Get
 Return _state
 End Get
 Set(ByVal value As States)
 If _state <> value Then
 _state = value
 Invalidate()
 End If
 End Set
End Property

You can bridge the gap between the Enabled property and the Disabled state like this:

Protected Overrides Sub OnEnabledChanged(ByVal e As EventArgs)
 If Not Enabled Then
 State = States.Disabled
 ElseIf Enabled And State = States.Disabled Then
 State = States.Normal
 End If
 MyBase.OnEnabledChanged(e)
End Sub

It also makes sense to trigger a refresh when other details change that affect the button
display. Currently, the AnimatedButtonBase control uses this technique only when the button
text is changed.

Public Overrides Property Text() As String
 Get
 Return MyBase.Text
 End Get
 Set(ByVal value As String)
 If value <> MyBase.Text Then
 MyBase.Text = value
 Invalidate()
 End If
 End Set
End Property

Mouse Movements

To update the state of the button, the AnimatedButtonBase needs to handle several mouse
events. You do this by overriding the OnMouseMove() and OnMouseLeave() methods.

Macdonald_694-3C23.fm Page 822 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 823

However, before implementing either of those methods, it’s important to create one addi-
tional ingredient—the HitTest() method. The HitTest() method allows you to create buttons
that include clickable button content and nonclickable content on the same surface. Essen-
tially, the HitTest() method returns True if the mouse cursor is positioned over a clickable area.
In the simple implementation of AnimatedButtonBase, the entire control region is treated as
clickable, and so HitTest() always returns True. However, derived controls can override this
method to implement their own logic.

' If you want to make only a portion of the button
' clickable, this is the method to override.
Protected Overridable Function HitTest(ByVal X As Integer, ByVal Y As Integer) _
 As Boolean
 Return True
End Sub

Now, when the OnMouseMove() method is triggered, you need to call HitTest() to deter-
mine whether the mouse is over a clickable area. If so, the state is changed to MouseOver; if
not, the state is set to Normal. If the button has been placed in a disabled state, this logic is
bypassed altogether.

Protected Overrides Sub OnMouseMove(ByVal e As System.Windows.Forms.MouseEventArgs)
 MyBase.OnMouseMove(e)

 ' Do nothing if the button is disabled.
 If State = States.Disabled Then Return

 If HitTest(e.X, e.Y) Then
 If State <> States.Pushed Then State = States.MouseOver
 Else
 State = States.Normal
 End If
End Sub

Remember, as long as you change the state through the State property, you ensure a
refresh is performed only if necessary.

Similar logic is used when the mouse leaves the control altogether. However, there’s no
longer a need to call HitTest() on the control, because it’s obvious the mouse pointer is no
longer over a clickable region.

Protected Overrides Sub OnMouseLeave(ByVal e As EventArgs)
 If State <> States.Disabled Then State = States.Normal
End Sub

Finally, the OnMouseDown() and OnMouseUp() events change the state to Pushed and
back to MouseOver:

Macdonald_694-3C23.fm Page 823 Tuesday, July 25, 2006 8:02 AM

824 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Protected Overrides Sub OnMouseDown(ByVal e As System.Windows.Forms.MouseEventArgs)
 ' Do nothing if the button is disabled.
 If State = States.Disabled Then Return

 If HitTest(e.X, e.Y) Then
 If (e.Button And MouseButtons.Left) = MouseButtons.Left Then
 State = States.Pushed
 Focus()
 End If
 End If
End Sub

Protected Overrides Sub OnMouseUp(ByVal e As System.Windows.Forms.MouseEventArgs)
 ' Do nothing if the button is disabled.
 If State = States.Disabled Then Return

 If (e.Button And MouseButtons.Left) = MouseButtons.Left Then
 If HitTest(e.X, e.Y) Then
 State = States.MouseOver
 Else
 State = States.Normal
 End If
 End If
End Sub

The last detail is to make sure the clicks are propagated into Click events only if they are
on a clickable area. Unfortunately, the mouse coordinates aren’t available in the EventArgs
parameter, but you can check the current state of the button to determine whether it’s changed
to Pushed in OnMouseDown to indicate a valid click.

Protected Overrides Sub OnClick(ByVal e As EventArgs)
 If State = States.Pushed Then
 MyBase.OnClick(e)
 End If
End Sub

Painting

Now that you have the infrastructure in place for changing the state at the right moment and
refreshing the control as needed, the painting logic is quite straightforward. However, the
AnimatedButtonBase class isn’t intended to perform the painting on its own. Instead, this task
is handled by the deriving class, which knows best what effect to apply in the MouseOver and
Pushed states.

To make this design clear, the OnPaint() method actually triggers several other methods to
perform the painting work, depending on the state of the button. For example, if the button is
disabled, it calls PaintDisabled(). Here’s the full code:

Macdonald_694-3C23.fm Page 824 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 825

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
 Select Case State
 Case States.Normal
 PaintNormal(e.Graphics)
 Case States.MouseOver
 PaintMouseOver(e.Graphics)
 Case States.Pushed
 PaintPushed(e.Graphics)
 Case States.Disabled
 PaintDisabled(e.Graphics)
 End Select
 If Me.Focused And State <> States.Disabled Then PaintFocusRectangle(e.Graphics)
End Sub

The trick is that each of these methods is declared as MustOverride, so the deriving class is
forced to implement them appropriately. The painting methods receive the Graphics object,
which they use to render their output.

Protected MustOverride Sub PaintNormal(ByVal g As Graphics)
Protected MustOverride Sub PaintMouseOver(ByVal g As Graphics)
Protected MustOverride Sub PaintPushed(ByVal g As Graphics)
Protected MustOverride Sub PaintDisabled(ByVal g As Graphics)

Focus

The final step of the OnPaint() drawing method is to call a method named PaintFocusRectangle(),
provided the button is focused and not disabled. At this point, the focus cue is drawn around
the borders of the control, provided the PaintFocusCue property is True. (If it’s False, the
PaintFocusRectangle() method isn’t called at all.)

Private _paintFocusCue As Boolean = True
Public Property PaintFocusCue() As Boolean
 Get
 Return _paintFocusCue
 End Get
 Set(ByVal value As Boolean)
 If value <> _paintFocusCue Then
 _paintFocusCue = value
 Invalidate()
 End If
 End Set
End Property

Protected Overridable Sub PaintFocusRectangle(ByVal g As Graphics)
 ControlPaint.DrawFocusRectangle(g, Me.ClientRectangle)
End Sub

Notice that the PaintFocusRectangle() is marked Overridable, which means the deriving
class can override it with a different implementation if the ordinary dotted square isn’t enough.

Finally, the control needs to listen for focus events and update itself accordingly:

Macdonald_694-3C23.fm Page 825 Tuesday, July 25, 2006 8:02 AM

826 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Protected Overrides Sub OnGotFocus(ByVal e As EventArgs)
 If PaintFocusCue Then Invalidate()
End Sub

Protected Overrides Sub OnLostFocus(ByVal e As EventArgs)
 If PaintFocusCue Then Invalidate()
End Sub

These methods simply trigger a refresh of the complete button, but in most cases you
could create a Graphics object for the control using Control.CreateGraphics(), and then call
PaintFocusRectangle() to add this detail on top of the current drawing.

This completes all the code you need to build the AnimatedButtonBase. In the next sections,
you’ll see how easy it is to build on this model to design your own animated buttons. You’ll see
three examples:

• A simple button that glows when it’s highlighted

• A more advanced button that includes a clickable picture region, which becomes raised
when the mouse moves over it

• A rollover button that swaps pictures when the mouse hovers over it

A Simple Glow Button

The first example you’ll see demonstrates how easy it is to extend the AnimatedButtonBase
class. The SimpleGlowButton creates a couple of drawing objects in its constructor, and simply
overrides the four paint methods to paint a button with a different background color.

Here’s the complete code:

Public Class SimpleGlowButton
 Inherits AnimatedButtonBase

 Private penOutline As Pen
 Private textFormat As StringFormat

 Public Sub New ()
 ' In a more sophisticated control, these hard-coded
 ' details would be mapped to properties.
 penOutline = New Pen(Color.Black, 2)
 penOutline.Alignment = PenAlignment.Inset

 textFormat = New StringFormat()
 textFormat.Alignment = StringAlignment.Center
 textFormat.LineAlignment = StringAlignment.Center
 End Sub

 Protected Overrides Sub PaintNormal(ByVal g As Graphics)
 g.FillRectangle(Brushes.LightGray, ClientRectangle)
 g.DrawRectangle(penOutline, ClientRectangle)

Macdonald_694-3C23.fm Page 826 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 827

 g.DrawString(Text, Font, Brushes.Black, ClientRectangle, textFormat)
 End Sub

 Protected Overrides Sub PaintMouseOver(ByVal g As Graphics)
 g.FillRectangle(Brushes.LimeGreen, ClientRectangle)
 g.DrawRectangle(penOutline, ClientRectangle)
 g.DrawString(Text, Font, Brushes.White, ClientRectangle, textFormat)
 End Sub

 Protected Overrides Sub PaintPushed(ByVal g As Graphics)
 g.FillRectangle(Brushes.Lime, ClientRectangle)
 g.DrawRectangle(penOutline, ClientRectangle)
 g.DrawString(Text, Font, Brushes.White, ClientRectangle, textFormat)
 End Sub

 Protected Overrides Sub PaintDisabled(ByVal g As Graphics)
 g.FillRectangle(Brushes.LightSlateGray, ClientRectangle)
 g.DrawRectangle(penOutline, ClientRectangle)
 g.DrawString(Text, Font, Brushes.White, ClientRectangle, textFormat)
 End Sub

End Class

Figure 23-7 shows the result.

Figure 23-7. The SimpleGlowButton

A Raised Image Button

The next example is a little more interesting, because it overrides the HitTest() method to
create a button where only a portion is clickable. This portion is an image icon that is displayed
just to the left of the text. When the mouse is positioned over the image, the image appears with
a raised border (see Figure 23-8).

Macdonald_694-3C23.fm Page 827 Tuesday, July 25, 2006 8:02 AM

828 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Figure 23-8. The PopImageButton

This control project raises some unique, subtle challenges:

• The clickable portion of the button should include only the image. Thus, the control
needs to use hit testing when a click is detected, and suppress click events if the text
portion is clicked.

• The button must be able to deal with any valid image size.

When designing this control, you need to add an Image property to store the picture it will
display. Here’s the first part of the code for the PopImageButton:

Public Class PopImageButton
 Inherits AnimatedButtonBase

 Private _image As Image
 Private _bounds As Rectangle

 Public Property Image() As Image
 Get
 Return _image
 End Get
 Set(ByVal value As Image)
 _image = value
 If Image IsNot Nothing Then
 _bounds = New Rectangle(0, 0, Image.Width + 5, Image.Height + 5)
 End If

 Invalidate()
 End Set
 End Property
 ...

Macdonald_694-3C23.fm Page 828 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 829

Notice that a private member variable called bounds is used to track the drawing area of
the control. This rectangle is slightly larger than the image itself, because it needs to accommo-
date the focus rectangle.

The HitTest() method uses the bounds to test the placement of the mouse cursor:

 ...
 Protected Overrides Function HitTest(ByVal X As Integer, ByVal Y As Integer) _
 As Boolean
 ' Check if the mouse pointer is over the button.
 If Image Is Nothing Then
 Return False
 Else
 Return _bounds.Contains(X, Y)
 End If
 End Function
 ...

The drawing code uses the same paint methods you saw earlier. It uses a raised three-
dimensional border when the mouse is positioned over the button and a sunken border when
it is clicked, which is similar to the image bar style used in Microsoft Outlook. The text is placed
to the right of the picture and is vertically centered with the midpoint of the image (by measuring
the image and font sizes).

 ...
 Protected Overrides Sub PaintNormal(ByVal g As Graphics)
 If Image IsNot Nothing Then g.DrawImage(Image, 2, 2)
 PaintText(g)
 End Sub

 Protected Overrides Sub PaintMouseOver(ByVal g As Graphics)
 If Image IsNot Nothing Then
 ControlPaint.DrawBorder3D(g, _bounds, _
 Border3DStyle.Raised, Border3DSide.All)
 g.DrawImage(Image, 2, 2)
 End If
 PaintText(g)
 End Sub

 Protected Overrides Sub PaintPushed(ByVal g As Graphics)
 If Image IsNot Nothing Then
 ControlPaint.DrawBorder3D(g, _bounds, _
 Border3DStyle.Sunken, Border3DSide.All)
 g.DrawImage(Image, 3, 3)
 End If
 PaintText(g)
 End Sub

Macdonald_694-3C23.fm Page 829 Tuesday, July 25, 2006 8:02 AM

830 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

 Protected Overrides Sub PaintDisabled(ByVal g As Graphics)
 If Image IsNot Nothing Then
 ControlPaint.DrawImageDisabled(g, Image, 2, 2, _
 BackColor)
 End If
 PaintText(g)
 End Sub
 ...

The drawing logic benefits from the ControlPaint class, which provides the DrawBorder3D()
and the DrawImageDisabled() methods. This class was described in Chapter 7.

Additionally, a private PaintText() method draws the text, because it’s rendered the same
for all states:

 ...
 Private Sub PaintText(ByVal g As Graphics)
 ' If there is no image, center the text (vertically) between
 ' the borders of the control.
 ' If there is an image, center the text to the midline of the image.
 Dim y As Integer = 0
 If Image Is Nothing Then
 y = Height
 Else
 y = bounds.Height
 End If

 Dim brush As New SolidBrush(ForeColor)
 g.DrawString(Text, Font, _
 brush, _bounds.Width + 3, (y - Font.Height) / 2)
 brush.Dispose()
 End Sub

End Class

There’s clearly a lot more you could add to this button control. For example, you could
allow the user to change the orientation, place the text under the image, add support for text
wrapping, or even create a compound control that contains a collection of images.

Rollover Button

The last button control you’ll consider here is an all-purpose rollover button. With the rollover
button, very little work is performed with GDI+. Instead, button images for all the four states
are prepared in a separate program and imported into the application as resources. These
images are then assigned to the control, which switches between them seamlessly.

To implement the rollover button, you need to begin by defining the image properties. To
save space, the following code shows only the image property for the initial, normal-state
image. (The other image properties are almost identical.)

Macdonald_694-3C23.fm Page 830 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 831

Public Class RolloverButton
 Inherits AnimatedButtonBase

 Private _normalImage As Image
 Private _mouseOverImage As Image
 Private _pushedImage As Image
 Private _disabledImage As Image

 Public Property NormalImage() As Image
 Get
 Return _normalImage
 End Get
 Set(ByVal value As Image)
 _normalImage = value

 ' Just perform this tweak the first time the image is set
 ' at design time.
 If _normalImage IsNot Nothing And DesignMode Then
 Size = New Size(_
 _normalImage.Size.Width + 10, _normalImage.Size.Height + 2)
 End If
 Invalidate()
 End Set
 End Property
 ...

One interesting detail is that the button automatically adjusts its size when you set the
NormalImage property, which saves the hassle of resizing each button in the design environ-
ment. You also may want to set the background to transparent, so that any region that extends
beyond the dimensions of the button picture shows the form background.

Now, all the RolloverButton needs to do is to copy its images to the drawing surface in the
appropriate paint methods. Here’s an example that draws the normal state image:

 ...
 Protected Overrides Sub PaintNormal(ByVal g As Graphics)
 If normalImage IsNot Nothing Then
 g.DrawImageUnscaled(NormalImage, New Point(0,0))
 End If
 End Sub
 ...

However, a good rollover button doesn’t force you to supply every picture. Instead, it’s
clever enough to substitute one picture for another if needed, or possibly even create a selected
or disabled image by manipulating the color of the normal image. The RolloverButton is rela-
tively simple in this regard—it paints disabled images using the ControlPaint class if no disabled
image is supplied, tries to substitute the mouse-over image if the pressed image is missing, and
so on.

Macdonald_694-3C23.fm Page 831 Tuesday, July 25, 2006 8:02 AM

832 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

 ...
 Protected Overrides Sub PaintDisabled(ByVal g As Graphics)
 If DisabledImage IsNot Nothing Then
 g.DrawImageUnscaled(DisabledImage, New Point(0,0))
 Else
 If normalImage IsNot Nothing Then
 ' Fake a disabled image.
 ' Serveral techniques are possible, but this is the easiest.
 ControlPaint.DrawImageDisabled(g, NormalImage, 0, 0, BackColor)
 End If
 End If
 End Sub

End Class

Figure 23-9 shows a skinned form with several rollover buttons.

Figure 23-9. The RolloverButton

■Note To see some more examples of controls with images, check out the Visual Basic Power Pack, which
has its own image button control (http://msdn.microsoft.com/vbasic/default.aspx?pull=/
library/en-us/dv_vstechart/html/vbpowerpack.asp), and the RegionMaster controls (http://
windowsforms.net/articles/usingregionmastercontrols.aspx), which use a timer to make a
moused-over button “bounce” repeatedly.

Macdonald_694-3C23.fm Page 832 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 833

Transparency

Currently, the PopImageButton (like all Control-derived classes) doesn’t support transparency.
If you’re using ordinary forms, you won’t notice the problem. That’s because the default imple-
mentation on Control.OnPaintBackground() fills the background color of the form behind
your custom control. However, if you place your control on a form that uses a background
image, and size your control so that its bounds are larger than its content, you’ll see the incorrect
background (see Figure 23-10).

Figure 23-10. A nontransparent background

This is an unnecessary limitation. In fact, it’s useful to have the form background show
through behind the text if you want to combine your button with the skinned form techniques
shown earlier. Fortunately, it’s not hard to make a transparent control.

The key step is to use the Control.SetStyle() method to specifically indicate that your control
supports a BackgroundColor value of Color.Transparent. Without this step, you’ll receive an
exception if you attempt to set a transparent background color. In this example, the support for
transparency is implemented in the constructor for the AnimatedButtonBase class, from
which RolloverButton derives:

Public Sub New ()
 SetStyle(ControlStyles.SupportsTransparentBackColor, True)
End Sub

Next, you need to set the BackColor of your control to Color.Transparent. It’s that easy!
Now the OnPaintBackground() method will copy the form’s background image, so that all your
button painting is performed on top of that surface.

Macdonald_694-3C23.fm Page 833 Tuesday, July 25, 2006 8:02 AM

834 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Improving the Performance of
Owner-Drawn Controls
The simple controls developed in this chapter work by drawing their content on the fly. In
many cases, this approach is completely acceptable. However, in some situations, it can slow
down the responsiveness of your application’s user interface.

Problems are most likely to occur when you have a large number of controls that render
themselves with complex painting logic. For example, if your buttons incorporate gradients,
multiple images, alpha blending, and other effects, refreshes may perform sluggishly. Although
there are no hard and fast rules, refreshes are typically considered to take an unreasonable
amount of time if they include a delay that’s noticeable to the user.

■Note Unfortunately, double buffering can’t solve this problem. First of all, double buffering is implemented
on a class-specific basis. This means you can buffer the painting in a form’s OnPaint() method or a single
control’s OnPaint() method, but you can’t put several controls into the same buffer. Another problem is that
double buffering simply reduces flicker, it doesn’t improve refresh speed. If your drawing is time consuming,
it could take an unreasonable amount of time to redraw on-screen elements.

Caching Images
One solution to this problem is to implement caching in your control. The basic idea is for your
control to create in-memory buffers of the different button states. Then, when a button
changes from one state to another, you simply need to copy the buffer to the control surface
(rather than rerender it from scratch). This approach increases memory usage, but reduces
redraw times.

In the examples shown earlier, the AnimatedButtonBase class is an ideal place to imple-
ment the caching logic, because then any derived class can take advantage of it. Classes like the
RolloverButton, which simply write out images that are embedded in the assembly as resources,
probably don’t benefit from caching. Complex gel buttons that are rendered dynamically quite
possibly will benefit.

The first step to implement caching is to create a property that allows you to switch
caching on or off:

Private _cacheImages As Boolean = True
Public Property CacheImages() As Boolean
 Get
 Return _cacheImages
 Set(ByVal value As Boolean)
 _cacheImages = value
 End Set
End Property

Macdonald_694-3C23.fm Page 834 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 835

■Note In the implementation you’ll see in this example, the CacheImages property only has an effect if set
before other properties. You could use the ISupportInitialize interface (as discussed in Chapter 13) to ensure
that this is the case, but in this example, it’s not needed. That’s because Visual Studio will always set the
CacheImages property before the other image properties when it generates the designer code, because Visual
Studio serializes properties in alphabetical order.

The cached images are stored in several private member variables:

Private _normalImage As Image
Private _mouseOverImage As Image
Private _pushedImage As Image
Private _disabledImage As Image

Additionally, a FlushCache() method is included, so that cached images can be removed
when other properties change:

Protected Sub FlushCache()
 normalImage = Nothing
 mouseOverImage = Nothing
 pushedImage = Nothing
 disabledImage = Nothing
End Sub

For example, you should use this when the text is modified:

Public Overrides Property Text() As String
 Get
 Return MyBase.Text
 End Get
 Set(ByVal value As String)
 If value <> MyBase.Text
 MyBase.Text = value
 FlushCache()
 Invalidate()
 End If
 End Set
End Property

To complete this example, you’d probably want to override other properties (or react to
their change events), so that the cache is cleared when other details that affect the images are
modified, like text font, foreground and background colors, and so on.

The painting logic is where the caching logic actually takes place. Essentially, the painting
code needs to first check the state of the button. Then, it needs to look for the matching image.
If it doesn’t exist, it’s time to call the derived class implementation of the painting method, and
store the result. If the image does exist, it can be simply copied to the design surface.

Macdonald_694-3C23.fm Page 835 Tuesday, July 25, 2006 8:02 AM

836 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

The most compact way to encapsulate this behavior is to create a generic method that
performs this task. This method requires three details: a reference to the cached image, a refer-
ence to the method that renders the image, and a reference to the final drawing surface where
the image should be painted.

Here’s the code:

Private Delegate Sub ClientPaintMethod(ByVal g As Graphics)

Private Sub CreateAndPaintCachedImage(ByVal image As Image, _
 ByVal paintMethod As ClientPaintMethod, ByVal g As Graphics)
 ' Check if the image needs to be created.
 If image Is Nothing Then
 ' Create the in-memory buffer.
 image = New Bitmap(Width, Height)
 Dim bufferedGraphics As Graphics = Graphics.FromImage(image)

 ' Call the derived painting method, but pass in a Graphics object
 ' that refers to the in-memory bitmap, not the actual control surface.
 paintMethod(bufferedGraphics)

 ' Release the drawing surface (but keep the Bitmap object).
 bufferedGraphics.Dispose()
 End If

 ' Copy the buffer to the real drawing surface.
 g.DrawImageUnscaled(image, New Point(0, 0))
End Sub

With this building block, you can revise the OnPaint() method to take advantage of caching:

Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
 If Not CacheImages Then
 ...
 Else
 Select Case State
 Case States.Normal
 CreateAndPaintCachedImage(NormalImage, _
 AddressOf PaintNormal, e.Graphics)
 Case States.MouseOver
 CreateAndPaintCachedImage(MouseOverImage, _
 AddressOf PaintMouseOver, e.Graphics)
 Case States.Pushed
 CreateAndPaintCachedImage(PushedImage, _
 AddressOf PaintPushed, e.Graphics)
 Case States.Disabled
 CreateAndPaintCachedImage(DisabledImage, _
 AddressOf PaintDisabled, e.Graphics)
 End Select

Macdonald_694-3C23.fm Page 836 Tuesday, July 25, 2006 8:02 AM

C H A P T E R 2 3 ■ S K I N N E D F O R M S A N D A N I M A T E D B U T T O N S 837

 ' Always paint the focus rectangle last, because this is
 ' independent of the current button state.
 If Me.Focused Then PaintFocusRectangle(e.Graphics)
 End If
End Sub

The best part of this example is the fact that the derived classes you created earlier continue
to work. They can choose whether or not to opt into the caching model.

Reusing Images
Before you implement the caching approach, you need to give some thought to the additional
overhead incurred by tying up extra memory with the Bitmap. You might want to store a
cached copy only if the panel isn’t extremely large, at which point the caching benefit won’t be
worth the memory overhead.

■Tip Another option is to use the System.WeakReference class to wrap the bitmap, which allows the bitmap
to be garbage-collected if system resources become scarce. It’s fairly easy to wrap another object with a
WeakReference instance—just pass the object as an argument in the constructor. You can retrieve or set the
wrapped object at any time through the WeakReference.Target property, but before you try to access it, check
WeakReference.IsAlive to make sure it wasn’t garbage-collected because of memory pressure.

If you are creating an application that has dozens of identical buttons, you may be able to
use a different technique to cut down on the memory usage. For example, if you have relatively
large OK and Cancel buttons that you use on forms throughout your application, it makes little
sense to cache each instance of the button separately. Instead, you should cache one copy in
memory, and use it for every button. There are several possibilities for implementing this design.
All of them rely on shared members.

First of all, you should start with a class that encapsulates the details you want to cache, as
shown here:

Public Class AnimatedButtonCachedImages
 Private _normalImage As Image
 Private _mouseOverImage As Image
 Private _pushedImage As Image
 Private _disabledImage As Image

 ' (Public properties omitted.)
End Class

Then you could create a class that caches a group of these objects. Here’s how you could
keep a collection of AnimatedButtonCachedImages, indexed by name and available to your
entire application:

Public Shared CachedImages As Dictionary(Of String, AnimatedButtonCachedImages)

Macdonald_694-3C23.fm Page 837 Tuesday, July 25, 2006 8:02 AM

838 C H A P T E R 2 3 ■ SK I N N E D F O R M S A N D A N I M A T E D B U T T O N S

Now you can add a StyleName property to the AnimatedButtonBase class, and rewrite the
code in CreateAndPaintCachedImage(). Before rendering a button, the control can check if an
AnimatedButtonCachedImages object with the same style name exists in the shared cache. If it
does, it can be reused—if not, you can create the images, and then cache them in the collection
for future use.

Of course, it’s possible to get much fancier. Rather than simply create a class that caches
the images, why not create a class that encapsulates all the style-related details? You could then
apply a style to an instance of your control by setting the style name, and you could define your
styles using another tool (or by writing code). This approach of factoring out style details to
ensure good performance for more objects is used in other .NET controls. For example, the
DataGridView uses a style model that shares style objects wherever possible, thereby avoiding
the need to create a separate style object for each cell that shares the same formatting. Imple-
menting a design like this is a fair bit of work (and can be prone to minor errors) but will ensure
good performance if you plan many instances of an owner-drawn control in a large application.

The Last Word
In this chapter, you learned how to design one of the most practical types of owner-drawn
controls—buttons. You also learned how you can place these customized buttons on a shaped
form, thereby giving your application a modern facelift.

Now that you understand the basic model, there’s much more you can do with a little
creativity, a dash of artistic insight, and a generous helping of GDI+ drawing code. The best
inspiration is to check out what other developers have designed. Community sites like
www.windows.net and www.gotdotnet.com are filled with examples you can explore.

Macdonald_694-3C23.fm Page 838 Tuesday, July 25, 2006 8:02 AM

839

■ ■ ■

C H A P T E R 2 4

Dynamic Drawing with a
Design Surface

Drawing programs exist in two basic flavors. The first type is comprised of painting programs,
like Microsoft Paint, which allow users to create bitmaps with static content. In these programs,
once the user draws a shape or types some text onto the drawing area, it can’t be modified or
rearranged. But in more-sophisticated vector-based drawing programs (everything from Adobe
Illustrator to Microsoft Visio), the user’s drawing is actually a collection of objects. The user can
click and change any object at any time or remove it entirely.

It’s relatively easy to create a bitmap-based drawing program once you learn GDI+. However,
a vector-based drawing or diagramming program can be a little more complex, because you
need to keep track of every object and its location individually. When the user clicks on the
drawing surface, you may need to use some fairly intricate logic to find out which object the
user is trying to select and to handle the overlapping painting.

You might use two approaches to tackle this problem:

Use child controls for each drawing element. This is the simplest approach to solving the
problem, but it isn’t flexible enough for a professional drawing application.

Draw and track each element manually. This approach gives you the greatest flexibility
and power, but it will force you to step up with a fair bit of extra code.

In this chapter, you’ll learn how to create an application that lets you draw, configure, and
move around shapes on a form surface using both techniques. This application is a great
starting point if you need to build some sort of dynamic drawing or diagramming tool, and it’s
a good example of owner-drawn controls and GDI+ drawing.

A Drawing Program with Controls
The basic application (shown in Figure 24-1) allows the user to create rectangles, ellipses, or
triangles of any color, and then resize them or drag them around the form to a new location.
Rather than coding all the logic to manage the hit testing, selection, and layering, you can make
use of a convenient shortcut by turning each shape into a custom control. Because each control
has its own built-in smarts for handling user interaction, like mouse clicks and key presses, this
approach simplifies your life considerably.

Macdonald_694-3C24.fm Page 839 Tuesday, July 25, 2006 8:05 AM

840 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Figure 24-1. A vector-based drawing application

The basic concept in this application is to let the shapes draw themselves. Essentially, each
shape is an owner-drawn control that paints its surface. The support for dragging, resizing, and
changing shape colors is built into the form code, but it’s not terribly difficult to implement.
Really, all the form needs to do is react to the user’s mouse actions, and set properties like
Location and Size accordingly. It’s easy to react to an event when a specific shape is clicked,
because the shape controls inherit all the basic mouse notification events from the Control class.

Using this application, you could easily add more shape types and enhance the drawing
functionality with additional features. You’ll see some of these enhancements in the revised,
non-control-based version of this application.

The Shape Control
The drawing program works by dynamically creating an instance of a custom Shape control.
It supports rectangles, circles, and triangles, but it could easily support any arbitrary or
unusual shape.

Before you consider the Shape control, you need to understand one possible problem. If
the user draws a circle, you want the circle shape to act like a circle for all mouse operations. In
other words, the user shouldn’t be able to click on a part of the control outside the circle and
use that to move the control. Similarly, this “invisible” portion of the control shouldn’t over-
write other controls on the drawing surface. Figure 24-2 shows a drawing program with shapes
that doesn’t take this into account.

Luckily, .NET makes it easy to create a control that has a nonrectangular bounding area.
(In fact, you saw this technique in Chapter 23 with irregularly shaped forms.) All that’s required
is to set the Control.Region property, which defines a new clipping region. Note that this does
have a minor side effect: The control cannot be as effectively antialiased (or blended with the
background). As a result, the border appears jagged.

Macdonald_694-3C24.fm Page 840 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 841

Figure 24-2. A flawed drawing program

Overall, the Shape control has three key characteristics:

It provides a ShapeType enumeration that defines the shapes it can represent. The
programmer chooses a shape by setting the Shape property. (Another option would be
to create a separate class for each shape type. However, in this example, the shape drawing
is quite simple, so encapsulating it in a single class is still practical.)

It uses a private member variable that references a GraphicsPath object with the associated
shape. Whenever the Shape property is modified, the control creates a new GraphicsPath
and adds the appropriate shape to it. It then sets the control’s Region property, effectively
setting the clipping bounds to match the shape.

The painting logic is the easiest part. It simply uses the FillPath() method to draw the
shape and the DrawPath() method to outline it.

Here’s the complete Shape class code:

Public Class Shape
 Inherits System.Windows.Forms.Control

 ' The types of shapes supported by this control.
 Public Enum ShapeType
 Rectangle
 Ellipse
 Triangle
 End Enum

Macdonald_694-3C24.fm Page 841 Tuesday, July 25, 2006 8:05 AM

842 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

 ' The current shape.
 Private shape As ShapeType = ShapeType.Rectangle
 Private path As GraphicsPath
 Public Property Type() As ShapeType
 Get
 Return shape
 End Get
 Set(ByVal value As ShapeType)
 shape = value
 RefreshPath()
 Me.Invalidate()
 End Set
 End Property

 ' Create the corresponding GraphicsPath for the shape, and apply
 ' it to the control by setting the Region property.
 Private Sub RefreshPath()
 If path IsNot Nothing Then path.Dispose()
 path = New GraphicsPath()

 Select Case shape
 Case ShapeType.Rectangle
 path.AddRectangle(Me.ClientRectangle)
 Case ShapeType.Ellipse
 path.AddEllipse(Me.ClientRectangle)
 Case ShapeType.Triangle
 Dim pt1 As Point = New Point(Me.Width / 2, 0)
 Dim pt2 As Point = New Point(0, Me.Height)
 Dim pt3 As Point = New Point(Me.Width, Me.Height)
 path.AddPolygon(New Point(){pt1, pt2, pt3})
 End Select

 Me.Region = New Region(path)
 End Sub

 Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
 MyBase.OnPaint(e)
 If path IsNot Nothing Then
 Dim shapeBrush As New SolidBrush(Me.BackColor)
 Dim shapePen As New Pen(Me.ForeColor, 5)

 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.FillPath(shapeBrush, path)
 e.Graphics.DrawPath(shapePen, path)

 shapePen.Dispose()
 shapeBrush.Dispose()

Macdonald_694-3C24.fm Page 842 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 843

 End If
 End Sub

 Protected Overrides Sub OnResize(ByVal e As System.EventArgs)
 MyBase.OnResize(e)
 RefreshPath()
 Me.Invalidate()
 End Sub

End Class

As you can see, there’s no need to code properties like BackColor, ForeColor, Location, or
Size, because these members are all built into the base Control class. The code emphasizes that
it’s using built-in members by using the Me keyword (as in this.BackColor rather than just
BackColor).

■Tip To avoid re-creating the brushes and pens each time the shape is drawn, you could create the brush
and pen once, and store them in member variables. You would then need to check to make sure the color hasn’t
changed before you reuse the pen and brush (or react to the ForeColorChanged and BackColorChanged events).

The Drawing Surface
The drawing application begins with an empty canvas. To create a shape, the user right-clicks
the form drawing area and chooses one of the three menu options. These menu options
(New Rectangle, New Ellipse, and New Triangle) are represented by three menu items
(mnuRectangle, mnuEllipse, and mnuTriangle). However, the click event for each of these
objects triggers the same event handler, which just sets the ShapeType property accordingly.

Private Sub mnuNewShape_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles mnuRectangle.Click, mnuTriangle.Click, mnuEllipse.Click
 ' Create and configure the shape with some defaults.
 Dim newShape As New Shape()
 newShape.Size = New Size(40, 40)
 newShape.ForeColor = Color.Coral

 ' Configure the appropriate shape depending on the menu option selected.
 If sender Is mnuRectangle Then
 newShape.Type = Shape.ShapeType.Rectangle
 ElseIf sender Is mnuEllipse Then
 newShape.Type = Shape.ShapeType.Ellipse
 ElseIf sender Is mnuTriangle Then
 newShape.Type = Shape.ShapeType.Triangle
 End If

Macdonald_694-3C24.fm Page 843 Tuesday, July 25, 2006 8:05 AM

844 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

 ' To determine where to place the shape, you need to convert the
 ' current screen-based mouse coordinates into relative form coordinates.
 newShape.Location = Me.PointToClient(Control.MousePosition)

 ' Attach a context menu to the shape.
 newShape.ContextMenuStrip = mnuSelectShape

 ' Connect the shape to all its event handlers.
 AddHandler newShape.MouseDown, AddressOf ctrl_MouseDown
 AddHandler newShape.MouseMove, AddressOf ctrl_MouseMove
 AddHandler newShape.MouseUp, AddressOf ctrl_MouseUp

 ' Add the shape to the form.
 Me.Controls.Add(newShape)
End Sub

Once this code runs, the shape appears (with the default size) at the current mouse location.
There are three things the user can do with a shape once it is created:

• Click and drag it to a new location

• Click its bottom-right corner and resize it

• Right-click to show its context menu, which provides an option for changing the color or
deleting the object

All these actions happen in response to the MouseDown event. At this point, the code
retrieves a reference that points to the control that fired the event, and then examines whether
the right mouse button was clicked (in which case the menu is shown). If the left mouse button
has been clicked, the form switches into resize or drag mode (using one of two Boolean form-
level variables), depending on the location of the cursor. Resizing can be performed only from
the bottom-right corner, the bottom side, and the right side.

' Keep track of when drag or resize mode is enabled.
Private isDragging As Boolean = False
Private isResizing As Boolean = False

' Store the location where the user clicked on the control.
Private clickOffsetX, clickOffsetY As Integer

Private Sub ctrl_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs)
 ' Retrieve a reference to the active label.
 Dim currentCtrl As Control
 currentCtrl = CType(sender, Control)

 If e.Button = MouseButtons.Right Then
 ' Show the context menu.
 mnuSelectShape.Show(currentCtrl, New Point(e.X, e.Y))

Macdonald_694-3C24.fm Page 844 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 845

 ElseIf e.Button = MouseButtons.Left Then
 clickOffsetX = e.X
 clickOffsetY = e.Y

 If currentCtrl.Cursor = Cursors.SizeNWSE Or _
 currentCtrl.Cursor = Cursors.SizeNS Or _
 currentCtrl.Cursor = Cursors.SizeWE Then
 ' The mouse pointer is at one of the sides,
 ' so resizing mode is appropriate.
 isResizing = True
 Else
 ' The mouse is somewhere else, so dragging mode is
 ' appropriate.
 isDragging = True
 End If
 End If
End Sub

The MouseMove event changes the position or size of the shape if it is in drag or resize
mode. It also changes the cursor to the resize icon to alert the user when the mouse pointer is
aligned on one of the sides of the shape.

Private Sub ctrl_MouseMove(ByVal sender As Object, ByVal e As MouseEventArgs)
 ' Retrieve a reference to the active shape.
 Dim currentCtrl As Control
 currentCtrl = CType(sender, Control)

 If isDragging Then
 ' Move the control.
 currentCtrl.Left = e.X + currentCtrl.Left - clickOffsetX
 currentCtrl.Top = e.Y + currentCtrl.Top - clickOffsetY
 ElseIf isResizing Then
 ' Resize the control, according to the resize mode.
 If currentCtrl.Cursor = Cursors.SizeNWSE Then
 currentCtrl.Width = e.X
 currentCtrl.Height = e.Y
 ElseIf currentCtrl.Cursor = Cursors.SizeNS Then
 currentCtrl.Height = e.Y
 ElseIf currentCtrl.Cursor = Cursors.SizeWE
 currentCtrl.Width = e.X
 End If
 Else
 ' Change the cursor if the mouse pointer is on one of the right
 ' and lower edges of the control.
 If (e.X + 5) > currentCtrl.Width And _
 (e.Y + 5) > currentCtrl.Height Then
 currentCtrl.Cursor = Cursors.SizeNWSE

Macdonald_694-3C24.fm Page 845 Tuesday, July 25, 2006 8:05 AM

846 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

 ElseIf (e.X + 5) > currentCtrl.Width Then
 currentCtrl.Cursor = Cursors.SizeWE
 ElseIf (e.Y + 5) > currentCtrl.Height
 currentCtrl.Cursor = Cursors.SizeNS
 Else
 ' This misleadingly named cursor is the four-way
 ' mouse pointer often used for moving objects.
 currentCtrl.Cursor = Cursors.SizeAll
 End If
 End If
End Sub

Figure 24-3 shows the process of resizing a shape.

Figure 24-3. Resizing a shape

The MouseUp event ends the dragging or resizing operation.

Private Sub ctrl_MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs)
 isDragging = False
 isResizing = False
End Sub

Finally, the context menu provides two options. The first, when clicked, allows the user to
change the shape’s fill color using a common color dialog box. Note that the code retrieves the
active control through the SourceControl property of the ContextMenuStrip, as shown here:

Private Sub mnuColorChange_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles mnuColorChange.Click
 ' Show color dialog.
 Dim dlgColor As New ColorDialog()

Macdonald_694-3C24.fm Page 846 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 847

 If dlgCoslor.ShowDialog() = DialogResult.OK Then
 ' Change shape background.
 Dim ctrl As ToolStripMenuItem = CType(sender, ToolStripMenuItem)
 mnuSelectShape.SourceControl.BackColor = dlgColor.Color
 End If
End Sub

Figure 24-4 shows how a shape’s background color can be modified using this color
dialog box.

Figure 24-4. Changing a shape’s background color

The second option allows the user to remove the currently selected shape:

Private Sub mnuRemoveShape_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles mnuRemoveShape.Click
 Dim ctrlShape As Control = mnuSelectShape.SourceControl
 Me.Controls.Remove(ctrlShape)
End Sub

You could add a number of additional frills to this simple application. For example,
you could extent the Shape control to support drawing-contained text or a custom border. You
could also use methods like Control.BringToFront() and Control.SendToBack() to allow shapes
to be layered in various ways, according to the user’s selections (demonstrated with the down-
loadable code for this chapter). You could even use different controls. Currently, all the event
handlers assume they are dealing with generic control events, and thus work with buttons, text
boxes, picture boxes, and just about any other control, whether it is owner-drawn or not.

Macdonald_694-3C24.fm Page 847 Tuesday, July 25, 2006 8:05 AM

848 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

A Drawing Program with Shape Objects
Although the first drawing program was refreshingly easy to create, if you extend it, you’ll even-
tually run into a few inherent limitations. Some of the problems include the following:

Rendering quality. Unfortunately, .NET doesn’t deal all that well with overlapped
controls. The edges are never as smooth as they are with the overlapped elements
of a single image drawn through GDI+.

Focus cues. If you want to support shape manipulation, you probably want to highlight
the currently selected object with some sort of dotted outline or sizing grips. Unfortu-
nately, there’s no easy way to add these details. You can’t make it a part of the shape,
because it extends beyond the bounds of the clipping region. (For example, even an ellipse
should have a large square focus cue around it.) If you draw it through the form, all the
other shapes will appear on top of it, because child controls are always drawn after the
form content you render in the OnPaint() method. (The online code for the previous
example uses one such naive implementation of focus cues.)

Advanced features. Plan to add a feature that allows the user to group multiple shapes into
one? Or how about one that lets you skew and rotate the image to your heart’s content or
save a completed drawing? All of these techniques are easier to implement when you paint
the whole image by hand.

An alternate approach to the control-based solution is to draw the shapes by hand using
GDI+ and track them in a collection. You then need to rely on hit testing for shape selection and
manipulation, which can become a little messy. However, this approach ultimately gives you
much more flexibility. You’ll now see this technique developed to create the richer drawing
program shown in Figure 24-5.

Figure 24-5. A more advanced drawing program

Macdonald_694-3C24.fm Page 848 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 849

■Note One change you’ll notice right away in the revised application is the smoother drawing that results
from the improved antialiasing that happens when you draw the complete image with GDI+.

The Shape Class
The new Shape class borrows from the Shape control in the previous example. However, it’s
now rendered painstakingly from scratch. Additionally, the Shape is a MustInherit class, from
which other types of shapes derive.

Public MustInherit Class Shape
 ...
End Class

Because the Shape class draws itself from scratch and doesn’t derive from Control, properties
like ForeColor, BackColor, Location, and Size need to be added by hand:

Private _foreColor As Color
Public Property ForeColor() As Color
 Get
 Return _foreColor
 End Get
 Set(ByVal value As Color)
 _foreColor = value
 End Set
End Property

Private _backColor As Color
Public Property BackColor() As Color
 Get
 Return _backColor
 End Get
 Set(ByVal value As Color)
 _backColor = value
 End Set
End Property

Private _size As Size
Public Property Size() As Size
 Get
 Return _size
 End Get
 Set(ByVal value As Size)
 _size = value
 _path = Nothing
 End Set
End Property

Macdonald_694-3C24.fm Page 849 Tuesday, July 25, 2006 8:05 AM

850 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Private _location As Point
Public Property Location() As Point
 Get
 Return _location
 End Get
 Set(ByVal value As Point)
 _location = value
 _path = Nothing
 End Set
End Property

Notice that the Location and Size properties, when set, clear the current GraphicsPath that
represents the shape. The same lazy creation pattern is used when setting the shape type. The
GraphicsPath for the shape is no longer regenerated every time a property is modified. Instead,
it’s created when needed—which is whenever a piece of code requests the Path property.

' Even internally, all access to the path should
' go through the Path property, so that the path
' is regenerated if null.
Private _path As GraphicsPath
Public ReadOnly Property Path() As GraphicsPath
 Get
 ' The path is refreshed automatically
 ' as needed.
 If _path Is Nothing Then
 RefreshPath()
 End If
 Return _path
 End Get
End Property

The RefreshPath() method doesn’t actually perform any work. It delegates the task to the
deriving class, through a MustOverride method named GeneratePath():

' Create the corresponding GraphicsPath for the shape.
Private Sub RefreshPath()
 _path = GeneratePath()
End Sub
Protected MustOverride Function GeneratePath() As GraphicsPath

One of the major new features in the Shape class is the ability to draw a focus rectangle.
To keep track of when this is needed, each shape has a Selected property:

Private _selected As Boolean
Public Property Selected() As Boolean
 Get
 Return _selected
 End Get

Macdonald_694-3C24.fm Page 850 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 851

 Set
 _selected = value
 End Set
End Property

The Derived Shape Classes

The derived shape classes (RectangleShape, EllipseShape, and TriangleShape) require very
little code, because all the hit-testing smarts and drawing logic are encapsulated by the base
Shape class. In fact, the only code they contain is the GeneratePath() method that identifies the
control region.

Here’s the code for all three shape classes:

Public Class RectangleShape
 Inherits Shape

 Protected Overrides Function GeneratePath() As GraphicsPath
 Dim newPath As New GraphicsPath()
 newPath.AddRectangle(New Rectangle(_
 Location.X, Location.Y, Size.Width, Size.Height))
 Return newPath
 End Function
End Class

Public Class EllipseShape
 Inherits Shape

 Protected Overrides Function GeneratePath() As GraphicsPath
 Dim newPath As New GraphicsPath()
 NewPath.AddEllipse(Location.X, Location.Y, Size.Width, Size.Height)
 Return newPath
 End Sub
End Class

Public Class TriangleShape
 Inherits Shape

 Protected Overrides Function GeneratePath() As GraphicsPath
 Dim newPath As New GraphicsPath()

 Dim pt1 As New Point(Location.X + Size.Width / 2, Location.Y)
 Dim pt2 As New Point(Location.X, Location.Y + Size.Height)
 Dim pt3 As New Point(Location.X + Size.Width, Location.Y + Size.Height)
 newPath.AddPolygon(New Point(){pt1, pt2, pt3})
 Return newPath
 End Function
End Class

Macdonald_694-3C24.fm Page 851 Tuesday, July 25, 2006 8:05 AM

852 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

The code for calculating the path is quite similar to the drawing code used with the control-
based example you considered earlier. However, the coordinates change. Because the shape is
passed a reference to the entire drawing surface, it needs to take its location into account when
creating the region. (Otherwise, the shape will always appear at the top-left corner of the drawing.)
The calculations with the Shape control (shown earlier) are slightly easier, because the coordi-
nates that the Shape control sees are always relative to its current position.

■Tip In some cases, taking the location into account may result in excessively complex calculations. In this
case, you can use a coordinate transformation to move the origin to the top-left corner of the shape. Trans-
formations are discussed in Chapter 7.

The Drawing Code

Although the Shape class can’t paint itself directly, it still makes sense to centralize the painting
logic inside the Shape class. In this case, the containing form can ask the shape to paint itself
by calling Render() and passing in a suitable drawing surface (represented by the Graphics
object). Note that the drawing logic doesn’t set the rendering quality, because it’s the form that
takes control of these details.

' These details could be wrapped in properties
' to provide more customization for line thickness
' and border patterns.
Private penThickness As Integer = 5
Private focusBorderSpace As Integer = 5
Private outlinePen As Pen

Public Sub Render(ByVal g As Graphics)
 If outlinePen IsNot Nothing Then outlinePen.Dispose()
 outlinePen = New Pen(foreColor, penThickness)
 Dim surfaceBrush As New SolidBrush(backColor)

 ' Paint the shape.
 g.FillPath(surfaceBrush, Path)
 g.DrawPath(outlinePen, Path)

 ' If required, paint the focus box.
 If Selected Then
 Dim rect As Rectangle = Rectangle.Round(Path.GetBounds())
 rect.Inflate(New Size(focusBorderSpace, focusBorderSpace))
 ControlPaint.DrawFocusRectangle(g, rect)
 End If
 surfaceBrush.Dispose()
End Sub

Macdonald_694-3C24.fm Page 852 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 853

There’s one unusual detail here. The outline pen isn’t disposed at the end of the drawing
routine, because you need it to perform property hit testing. (Namely, you need the thickness
and edge settings of the pen to distinguish between clicks on the surface and clicks on the
outline.) However, the code does dispose the most recently used pen object at the beginning of
the drawing routine, before it creates a new one.

Hit Testing

To be self-sufficient, the shape now needs the ability to hit-test arbitrary points and see if they
fall inside the bounds of the path. There are three types of hit tests you might want to perform:

• Checking if a point falls inside the shape.

• Checking if a point falls on the edge of a shape. In the sample project we’re building right
now, this is treated the same as clicking inside the shape.

• Checking if a point falls on the focus cue (dotted rectangle) drawn around a shape. This
is relevant only if the shape is currently selected.

In this application, the first two actions are used to select or drag a shape. The third action
(selecting the focus square) is employed when the user wants to resize the shape.

The code for hit testing points in the shape and border is easy, thanks to the IsVisible() and
IsOutlineVisible() methods of the GraphicsPath.

' Check if the point is in the shape.
Public Overridable Function HitTest(ByVal point As Point) As Boolean
 Return Path.IsVisible(point)
End Function

' Check if the point is in the outline of the shape.
Public Overridable Function HitTestBorder(ByVal point As Point) As Boolean
 Return Path.IsOutlineVisible(point, outlinePen)
End Function

Notice that both these methods are overridable, so the derived shape class can override
them if necessary.

■Note Handling clicks that fall on the edge of the shape is particularly important if the shape has a thick
border. Otherwise, these clicks will be ignored.

Hit testing the focus border is much more work. The problem is that the routine needs
to distinguish where the hit occurred. Here’s an enumeration that represents the different
possibilities:

Macdonald_694-3C24.fm Page 853 Tuesday, July 25, 2006 8:05 AM

854 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Public Enum HitSpot
 Top
 Bottom
 Left
 Right
 TopLeftCorner
 BottomLeftCorner
 TopRightCorner
 BottomRightCorner
 None
End Enum

You can perform a simple test for the focus border by hit-testing two rectangles—the outer
rectangle (where the focus border is drawn) and the inner rectangle (where the control is drawn).
If the point falls inside the outer rectangle but not inside the inner rectangle, the focus border
was hit. The Rectangle.Contains() method makes this approach easy:

Public Function HitTestFocusBorder(ByVal point As Point, _
 ByRef hitSpot As HitSpot) As Boolean
 hitSpot = HitSpot.None

 ' Ignore controls that don't have a focus square.
 If Not selected Then
 Return False
 Else
 Dim rectInner As Rectangle = Rectangle.Round(Path.GetBounds())
 Dim rectOuter As Rectangle = rectInner
 rectOuter.Inflate(New Size(focusBorderSpace, focusBorderSpace))

 If rectOuter.Contains(point) And Not rectInner.Contains(point) Then
 ' Point is on (or close enough) to the focus square.
 Else
 Return False
 End If
 ...

Unfortunately, the Rectangle.Contains() method can’t give you any information about
where the hit occurred. To get these details, you need to go to the extra work of comparing the
space between the clicked point and the appropriate edge. You need to perform all these tests
for every point, in case it’s close to two edges, in which case it’s interpreted as a corner hit.

Here’s the complete code:

 ...
 Dim top As Boolean = False
 Dim bottom As Boolean = False
 Dim left As Boolean = False
 Dim right As Boolean = False

Macdonald_694-3C24.fm Page 854 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 855

 ' Check the point against all edges.
 If Math.Abs(point.X - location.X) < focusBorderSpace
 left = True
 End If
 If Math.Abs(point.X - (location.X + size.Width)) < focusBorderSpace Then
 right = True
 End If
 If Math.Abs(point.Y - location.Y) < focusBorderSpace Then
 top = True
 End If
 If Math.Abs(point.Y - (location.Y + size.Height)) < focusBorderSpace Then
 bottom = True
 End If

 ' Determine the hit spot based on the edges that are close.
 If top And left Then
 hitSpot = HitSpot.TopLeftCorner
 ElseIf top And right Then
 hitSpot = HitSpot.TopRightCorner
 ElseIf bottom And left Then
 hitSpot = HitSpot.BottomLeftCorner
 ElseIf bottom And right Then
 hitSpot = HitSpot.BottomRightCorner
 ElseIf top Then
 hitSpot = HitSpot.Top
 ElseIf bottom Then
 hitSpot = HitSpot.Bottom
 ElseIf left Then
 hitSpot = HitSpot.Left
 ElseIf right Then
 hitSpot = HitSpot.Right
 End If

 If hitSpot = HitSpot.None Then
 Return False
 Else
 Return True
 End If
 End If
End Function

There’s one more method related to hit testing in the Shape class—the
GetLargestPossibleRegion() method. This method returns a Region object that represents the
maximum space that the shape can occupy, which occurs when the focus rectangle is drawn.
The code for making this calculation is the same as the code to determine the size of the focus
rectangle when the shape is rendered:

Macdonald_694-3C24.fm Page 855 Tuesday, July 25, 2006 8:05 AM

856 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Public Function GetLargestPossibleRegion() As Rectangle
 Dim rect As Rectangle = Rectangle.Round(Path.GetBounds())
 rect.Inflate(New Size(focusBorderSpace, focusBorderSpace))
 Return rect
End Function

The GetLargestPossibleRegion() method is useful when refreshing the form. When the
user is interacting with a single shape, the form code can invalidate just that portion of the
window, ensuring a speedy refresh.

Z-Order

Controls have built-in support for layering. You can use methods like BringToFront() and
SendToBack() to change how controls overlap, and you can use the ControlCollection.
SetChildIndex() and ControlCollection.GetChildIndex() to explicitly change the z-index.

■Tip Remember, the z-index is a number that represents the layer on which a control is placed. (Each
control is on a separate layer.) A control with a smaller z-index is superimposed on a control with a larger
z-index when they overlap. See Chapter 2 for more information about the z-index.

You need to explicitly build this functionality into the Shape class. The first step is to define
a property that stores the numeric z-index value:

Private _zOrder As Integer
Public Property ZOrder() As Integer
 Get
 Return _zOrder
 End Get
 Set(ByVal value As Integer)
 _zOrder = value
 End Set
End Property

As with controls, the actual reordering is performed by the container, because it involves
comparing the z-index of each item. In this case, it’s the ShapeCollection class (described in
the next section) that plays this role. To make the sorting process even easier, the Shape class
implements the IComparable interface:

Public MustInherit Class Shape
 Implements IComparable

Now the Shape class needs to implement the CompareTo() method, which compares two
shape objects and determines which one should occur “first,” which is important when hit-
testing and drawing multiple shapes. The goal in this example is to make sure the shapes with
the highest z-index occur first in the list.

Macdonald_694-3C24.fm Page 856 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 857

When implementing CompareTo(), you can return one of three values: 0 to indicate two
values are equal, –1 to indicate that the current instance is less than the instance supplied
through the parameter, and 1 to indicate that the object supplied through the parameter is
larger than the current instance. However, to make the code even shorter, you can implement
it by invoking the CompareTo() method of the ZOrder property, because a basic implementa-
tion of CompareTo() is built into all integers. Here’s the code to implement this behavior:

Public Function CompareTo(ByVal obj As Object) As Integer _
 Implements IComparable.CompareTo
 Return ZOrder.CompareTo(CType(obj, Shape).ZOrder)
End Function

None of the code you’ve seen so far actually calls the CompareTo() method. To fill in that
detail, you need to build the ShapeCollection class that holds shape objects.

The Shape Collection
You could use the generic List(Of Type) class to create a collection for storing shapes without
needing to create a new class. However, in this case, creating a custom collection class makes
sense, because it gives you a good place to put code that works on groups of shapes (like hit
testing and reordering).

There are several options for creating the custom shape collection. You could derive from
List(Of Shape) to add your logic to the strongly typed List(Of Type) class, or you could derive
from CollectionBase, which wraps an ArrayList and exposes it through your own strongly typed
methods. The following example uses the ArrayList approach:

Public Class ShapeCollection
 Inherits CollectionBase
 ...
End Class

The actual collection is stored internally as an ArrayList, but you need to add the strongly
typed Add() and Remove() methods. When these methods are called, you access the internal
ArrayList through one of two properties: List (which provides access to the collection through
the IList interface) or InnerList (which provides the full ArrayList).

Here are the strongly typed Remove() method and collection indexer:

Public Sub Remove(ByVal shapeToRemove As Shape)
 List.Remove(shapeToRemove)
End Sub

Public ReadOnly Property Item(ByVal index as Integer) As Shape
 Get
 Return CType(List(index), Shape)
 End Get
End Property

The Add() method is a little more interesting. It has the additional responsibility of making
sure the new item has the lowest z-index, so that it appears on top of all other shapes.

Macdonald_694-3C24.fm Page 857 Tuesday, July 25, 2006 8:05 AM

858 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Public Sub Add(ByVal shapeToAdd As Shape)
 ' Reorder the shapes so the new shape is on top.
 For Each shape As Shape In List
 shape.ZOrder += 1
 Next
 shapeToAdd.ZOrder = 0
 List.Add(shapeToAdd)
End Sub

The ShapeCollection class also provides BringShapeToFront() and SendShapeToBack()
methods that allow the z-order of a shape to be changed relative to the rest of the collection:

Public Sub BringShapeToFront(ByVal frontShape As Shape)
 For Each shape As Shape In List
 shape.ZOrder += 1
 Next
 frontShape.ZOrder = 0
End Sub

Public Sub SendShapeToBack(ByVal backShape As Shape)
 Dim maxZOrder As Integer = 0
 For Each shape As Shape in List
 If shape.ZOrder > maxZOrder Then
 maxZOrder = shape.ZOrder
 End If
 Next
 maxZOrder += 1
 backShape.ZOrder = maxZOrder
End Sub

But the most useful method of the ShapeCollection is HitTest(), which loops through all
the shapes and calls their HitTest() and HitTestBorder() methods, looking for a hit. The impor-
tant part of this method is that before it starts checking, it sorts the collection, so that the lowest
z-index elements are first. This ensures that if one image is layered on top of another, the image
on top has the first chance to receive the mouse click.

Public Function HitTest(ByVal point As Point) As Shape
 Sort()
 For Each shape As Shape In List
 If shape.HitTest(point) Or shape.HitTestBorder(point) Then
 Return shape
 End If
 Next
 Return Nothing
End Function

Public Sub Sort()
 InnerList.Sort()
End Sub

Macdonald_694-3C24.fm Page 858 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 859

However, this sorting method won’t suit all tasks. The problem occurs when painting a
series of shapes. In this case, you need higher z-indexes first and smaller values at the end of
the list, which is the reverse of usual numeric ordering. That way, objects that are at the back
are drawn first, and shape objects that are on subsequent layers are drawn over them.

To support this design, you need to add a ReverseSort() method that performs the reverse
ordering. The IComparable implementation that’s provided in the Shape class is no longer of
any help, because it uses the lowest-to-highest sort. Instead, you need to perform the sorting
on your own. A more elegant option is to create a dedicated class that implements IComparer
and encapsulates your ordering logic. This way, you don’t need to code a sorting algorithm—
instead, you simply define how a set of two shapes should be compared to one another.

The IComparer interface defines a single Compare() method, which takes two objects and
performs the comparison. The trick is to reverse the usual order by calling CompareTo() on the
second object instead of the first.

Public Class ReverseZOrderComparer
 Implements IComparer

 Public Function Compare(ByVal shapeA As Object, _
 ByVal shapeB As Object) As Integer _
 Implements IComparer.Compare
 ' Call the CompareTo() method in the reverse order.
 ' This gives a highest-to-lowest sort.
 Return CType(shapeB, Shape).CompareTo(CType(shapeA, Shape))
 End Function

End Class

Now you can add the ReverseSort() method that uses it:

Private ReverseComparer As New ReverseZOrderComparer()
Public Sub ReverseSort()
 InnerList.Sort(ReverseComparer)
End Sub

The Drawing Surface
The drawing surface (the form) has the responsibility of tracking all the shapes that are added
to it. It accomplishes this with a form-level reference to a ShapeCollection object:

Private shapes As New ShapeCollection()

Adding a shape works in almost the same way that it did in the previous example. You still
set the same ForeColor, BackColor, Type, Size, and Location properties. The only real change
is that the shape is inserted into the shapes collection (at which point the z-index is set), and
special care is taken to invalidate just the portion of the form where the new shape has been added:

shapes.Add(newShape)
Invalidate(newShape.GetLargestPossibleRegion())

Macdonald_694-3C24.fm Page 859 Tuesday, July 25, 2006 8:05 AM

860 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

When the form is asked to paint itself, it loops through these shapes (in the reverse z-order),
and it paints each one in turn by calling the Shape.Render() method and passing the current
Graphics object:

Private Sub DrawingSurface_Paint(ByVal sender As Object, _
 ByVal e As PaintEventArgs) Handles MyBase.Paint
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias

 ' Erase the current image.
 e.Graphics.Clear(Color.White)

 ' Ensure shapes on the top obscure shapes on the bottom.
 shapes.ReverseSort()

 ' Ask all the shapes to paint themselves.
 For Each shape As Shape In shapes
 shape.Render(e.Graphics)
 Next
End Sub

Remember—when you pass a region to the Form.Invalidate() method, your complete
drawing code (in the OnPaint() method or a Paint event handler) still runs. The difference is
that as you render the image, .NET ignores any portions that fall outside of the specified region.
This increases the painting speed and reduces flicker, but it still doesn’t change the time taken
to execute your drawing logic. To optimize this process, you can specifically check if the inval-
idated region overlaps with a given shape. If it doesn’t, there’s no reason to draw it, as that part
of the form isn’t being updated. You can get the invalidated region from the PaintEventArgs.
ClipRectangle property.

Here’s the change you need:

For Each shape As shape In shapes
 If e.ClipRectangle.IntersectsWith(shape.GetLargestPossibleRegion()) Then
 shape.Render(e.Graphics)
 End If
Next

Finally, you can make the rendering dramatically smoother by turning on double-buffering
(set the Form.DoubleBuffered property to True).

Without these steps, there is a significant amount of flicker when shapes are moved. With
these steps, there is virtually no flicker. In other words, properly handling this detail is a key to
distinguishing your application and making it look professional.

Detecting Mouse Clicks

Dealing with mouse clicks is an intricate issue. To determine what should happen, the applica-
tion needs to determine which shape was clicked. The best approach is to follow these steps:

Macdonald_694-3C24.fm Page 860 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 861

1. Check if there is a currently selected shape. If there is, test for a hit on the focus square.
This has highest precedence.

2. If there’s no hit on the focus square, loop through all the shapes and perform a hit test
on each one (checking both the surface and the border). This technique is easy thanks
to the ShapeCollection.HitTest() method, which respects the proper z-order.

3. If there’s no hit on any shape, clear the last selected shape and (depending on the
mouse button that was clicked) show a menu.

To make this series of steps run smoothly, you need two new details. First of all, you need
a form-level variable to track the currently selected shape:

Private currentShape As Shape

You also need a helper method to remove the currently selected shape, making sure the
Selected property is set to False, so the focus square will disappear:

Private Sub ClearSelectedShape()
 If currentShape IsNot Nothing Then
 currentShape.Selected = False
 End If
 currentShape = Nothing
End Sub

Now you can put together the event handler for the MouseDown event. The first step is to
check for a click on a focus square. If that’s what happened, turn on resize mode (as in the
control-based example).

Private Sub DrawingSurface_MouseDown(ByVal sender As Object, _
 ByVal e As MouseEventArgs) Handles MyBase.MouseDown
 ' Check for a hit on a focus square.
 Dim hitSpot As Shape.HitSpot

 If currentShape IsNot Nothing AndAlso currentShape.Selected AndAlso _
 currentShape.HitTestFocusBorder(New Point(e.X, e.Y), hitSpot) Then
 ' The border was clicked. Turn on resize mode.
 clickOffsetX = e.X - currentShape.Location.X
 clickOffsetY = e.Y - currentShape.Location.Y
 isResizing = True
 ...

Otherwise, remove the current selection, and perform a new hit test to see what shape
(if any) was clicked.

 ...
 Else
 ' Remove the last selected shape.
 ClearSelectedShape()

Macdonald_694-3C24.fm Page 861 Tuesday, July 25, 2006 8:05 AM

862 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

 ' Retrieve a reference to the selected shape
 ' using hit testing.
 currentShape = shapes.HitTest(New Point(e.X, e.Y))
 ...

If you don’t find a shape and the right mouse button was clicked, show the general form
context menu. This allows the user to insert a new shape.

 ...
 If currentShape Is Nothing Then
 ' No shape was clicked.
 ' Depending on the mouse button, show a menu.
 If e.Button = MouseButtons.Right Then
 mnuForm.Show(Me, New Point(e.X, e.Y))
 End If
 ...

Otherwise, select the new shape, and store it for future reference. Then, depending on the
mouse button that was clicked, either show the context menu with shape-specific options
(if the right button was clicked), or turn on dragging mode (if the left button was clicked).

 ...
 Else
 ' Select the new shape.
 currentShape.Selected = True

 ' Make sure the display is updated to reflect
 ' newly selected or deselected shapes.
 Invalidate(currentShape.GetLargestPossibleRegion())

 ' Check what action should be performed with the
 ' shape, depending on the mouse button that was clicked.
 If e.Button = MouseButtons.Right Then
 ' Show the context menu.
 mnuShape.Show(Me, New Point(e.X, e.Y))
 ElseIf e.Button = MouseButtons.Left Then
 ' Start dragging mode.
 clickOffsetX = e.X - currentShape.Location.X
 clickOffsetY = e.Y - currentShape.Location.Y
 isDragging = True
 End If
 End If
 End If
End Sub

As with the control-based example, the dragging and resizing mode variables are cleared
when the mouse button is released.

Macdonald_694-3C24.fm Page 862 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 863

Manipulating Shapes

Once a shape is selected, it’s easy to perform additional tasks with it. The code for changing the
background color and removing the shape is very similar to the control-based version. The key
difference is that rather than looking for a linked control, the event handlers use the shape
object that’s stored in the form-level currentShape variable. They are also fine-tuned to invali-
date just the affected region where the shape is.

Private Sub mnuColorChange_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles mnuColorChange.Click
 ' Show color dialog.
 Dim dlgColor As New ColorDialog()
 If dlgColor.ShowDialog() = DialogResult.OK Then
 ' Change shape background.
 currentShape.BackColor = dlgColor.Color
 Invalidate(currentShape.Region)
 End If
End Sub

Private Sub mnuRemoveShape_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles mnuRemoveShape.Click
 shapes.Remove(currentShape)
 ClearSelectedShape()
End Sub

Two new menu commands allow the shapes to be reordered by sending them to
different layers. Coding this functionality is easy, because it’s already available through
the BringShapeToFront() and SendShapeToBack() methods of the ShapeCollection class.

Private Sub mnuToFront_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles mnuToFront.Click
 shapes.BringShapeToFront(currentShape)
 Invalidate(currentShape.GetLargestPossibleRegion())
End Sub

Private Sub mnuToBack_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles mnuToBack.Click
 shapes.SendShapeToBack(currentShape)
 Invalidate(currentShape.GetLargestPossibleRegion())
End Sub

Watching the Mouse

The longest and most involved event handler in this application is the one that handles mouse
movement. That’s because there are three different tasks that you might perform at this point:

• If dragging mode is enabled, move the control.

• If resizing mode is enabled, resize the control.

• If neither mode is enabled, check if the mouse pointer is near one of the borders of the
focus square, and then update the mouse pointer accordingly.

Macdonald_694-3C24.fm Page 863 Tuesday, July 25, 2006 8:05 AM

864 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

The first of these tasks is easy to accomplish and takes only a few lines of code:

Private Sub DrawingSurface_MouseMove(ByVal sender As Object, _
 ByVal e As MouseEventArgs) Handles MyBase.MouseMove
 If isDragging Then
 Dim oldPosition, newPosition As Rectangle
 oldPosition = currentShape.GetLargestPossibleRegion()
 currentShape.Location = New Point(e.X - clickOffsetX, _
 e.Y - clickOffsetY)

 ' Invalidate a section of the form that includes the old and new
 ' positions.
 newPosition = currentShape.GetLargestPossibleRegion()
 Invalidate(Rectangle.Union(oldPosition, newPosition))
 ...

The resizing process is much more complicated. That’s because the application supports
resizing from several different locations, and in each case, the resize behavior differs slightly.
For example, if the user clicked on the top or top-right of the control, then horizontal resizing
is allowed. That means the control can grow taller or shorter, but its width can’t change. The
current resize mode is stored in a form-level variable named resizingMode (not shown).

In addition, not only do you need to resize the shape correctly, you also need to check to
make sure that the user hasn’t tried to drag the shape to be less than the minimum bounds that
are allowed. Here’s how the process unfolds when the user is dragging the top edge:

 ...
 ElseIf isResizing Then
 Dim minSize As Integer = 5
 Dim oldPosition, newPosition As Rectangle
 oldPosition = currentShape.GetLargestPossibleRegion()

 ' Resize the control, according to the resize mode.
 Select Case resizingMode
 ' Clicks on the top and top-right corner are treated in the same
 ' way. The top edge of the control is selected, and can be dragged
 ' up or down.
 Case Shape.HitSpot.Top, Shape.HitSpot.TopRightCorner
 ' Before resizing the control, make sure the top edge hasn't
 ' been dragged below the bottom edge.
 ' The minimum size forces the shape to be a 5-pixel sliver.
 If e.Y < (currentShape.Location.Y + _
 currentShape.Size.Height - minSize) Then
 ' When the top edge is dragged, you need to change both the
 ' position of the control and the size to reflect the new
 ' top edge.

Macdonald_694-3C24.fm Page 864 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 865

 currentShape.Size = New Size(currentShape.Size.Width, _
 currentShape.Location.Y + currentShape.Size.Height - _
 (e.Y - clickOffsetY))
 currentShape.Location = New Point(currentShape.Location.X, _
 e.Y - clickOffsetY)
 End If
 ...

The calculation becomes a little bit simpler for the bottom edge, because the position
doesn’t need to be changed. Only the size is tweaked.

 ...
 Case Shape.HitSpot.Bottom
 If e.Y > (currentShape.Location.Y + minSize)
 currentShape.Size = New Size(currentShape.Size.Width, _
 e.Y - currentShape.Location.Y)
 End If
 ...

The code for dealing with the left and right edges performs similar calculations:

 ...
 Case Shape.HitSpot.Left, Shape.HitSpot.BottomLeftCorner, _
 Shape.HitSpot.TopLeftCorner
 If e.X < (currentShape.Location.X + _
 currentShape.Size.Width - minSize) Then
 currentShape.Size = New Size(_
 (currentShape.Location.X + currentShape.Size.Width) - _
 (e.X - clickOffsetX), currentShape.Size.Height)
 currentShape.Location = New Point(e.X - clickOffsetX, _
 currentShape.Location.Y)
 End If
 Case Shape.HitSpot.Right
 If e.X > (currentShape.Location.X + minSize)
 currentShape.Size = New Size(e.X - currentShape.Location.X, _
 currentShape.Size.Height)
 End If
 ...

The bottom-right corner is a special exception. It allows free resizing in either direction
(so long as the resized shape isn’t less that the minimum bounds). Here’s the logic that imple-
ments this behavior:

 ...
 Case Shape.HitSpot.BottomRightCorner
 If e.Y > (currentShape.Location.Y + minSize) Then
 currentShape.Size = New Size(currentShape.Size.Width, _
 e.Y - currentShape.Location.Y)
 End If

Macdonald_694-3C24.fm Page 865 Tuesday, July 25, 2006 8:05 AM

866 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

 If e.X > (currentShape.Location.X + minSize) Then
 currentShape.Size = New Size(e.X - currentShape.Location.X, _
 currentShape.Size.Height)
 End If
 End Select
 ...

You could use a similar approach for the other corners, but for the sake of simplicity, clicks
on these corners are treated the same as a click on the nearest edge. No matter what type of
resize was performed, the form is invalidated, so it can be refreshed:

 ...
 newPosition = currentShape.GetLargestPossibleRegion()
 Invalidate(Rectangle.Union(oldPosition, newPosition))
 End If
 ...

Assuming the form isn’t in dragging or resizing mode, the final test is performed. The code
checks if there is a currently selected shape. If there is, the code checks if the mouse has moved
over one of the edges by calling the Shape.HitTestFocusBorder() method.

The HitTestFocusBorder() method returns the exact spot where the hit occurs, and it’s up
to the form to decide how to deal with different hits. In this case, the hit-spot information is
simplified slightly. If the hit occurs in any corner except the bottom-right corner, it’s treated as
a hit on the adjoining side. Depending on where the mouse pointer is, the pointer is changed
to a different resize arrow.

 ...
 Else
 If currentShape IsNot Nothing AndAlso currentShape.Selected _
 AndAlso currentShape.HitTestFocusBorder(New Point(e.X, e.Y), _
 resizingMode) Then

 Select Case resizingMode
 Case Shape.HitSpot.Top, Shape.HitSpot.Bottom, _
 Shape.HitSpot.TopRightCorner
 Cursor = Cursors.SizeNS
 Case Shape.HitSpot.Left, Shape.HitSpot.Right, _
 Shape.HitSpot.BottomLeftCorner, Shape.HitSpot.TopLeftCorner
 Cursor = Cursors.SizeWE
 Case Shape.HitSpot.BottomRightCorner
 Cursor = Cursors.SizeNWSE
 Case Else
 Cursor = Cursors.Arrow
 End Select
 ...

If all of these tests turn up nothing, the last step is to return the mouse pointer to the
default arrow, just in case the user moves over the edge of a focus square and then moves off
the focus square and back over the rest of the form.

Macdonald_694-3C24.fm Page 866 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 867

 ...
 Else
 Cursor = Cursors.Arrow
 End If
 End If
End Sub

Saving and Loading Images

One of the frills that you can implement quite easily is the ability to save all the shapes that are
currently displayed into a file and then retrieve and redisplay them later. This feature would
have been more difficult to create with the control-based example, because controls can’t be
serialized directly. However, because you control the code for the Shape and ShapeCollection
classes, you can ensure that both of them are serializable. .NET has great built-in smarts for
dealing with serializable classes. It can take live objects, convert them to a stream of bytes, and
perform the reverse magic to reconstitute an object from its serialization information.

To make the Shape and ShapeCollection classes serializable, simply add the Serializable
attribute to the class declaration, as shown here:

<Serializable> _
Public Class Shape
 Implements IComparable
 ...
End Class

<Serializable> _
Public Class ShapeCollection
 Inherits CollectionBase
 ...
End Class

For a class to be serializable, all of its private member variables (and those in any parent
classes that it inherits from) must also be serializable. The ShapeCollection class meets this
requirement, but the Shape class falls short. It includes four offending members: graphicsPath,
region, outlinePen, and surfaceBrush. Fortunately, you don’t need to store any of these details.
The graphicsPath and region objects are created transparently based on the shape type, loca-
tion, and size when you access the GraphicsPath property. The outlinePen and surfaceBrush
are created in the Render() method using the current ForeColor and BackColor. Thus, all you
need to do is add the NonSerialized attribute in front of each of these members. This tells .NET
to ignore this variable while serializing the containing object. As a result, when you deserialize
the object, this information will revert to the default value (for example, Nothing).

Here’s an example with the graphicsPath member:

<NonSerialized> Private _path As GraphicsPath

Once you have the serialization attributes in place, it’s easy to write the serialization code.
First, import the following two namespaces, which have the file and serialization classes,
respectively:

Macdonald_694-3C24.fm Page 867 Tuesday, July 25, 2006 8:05 AM

868 C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Rather than serialize individual shape objects, you can serialize the entire ShapeCollection
and all its contents in one step. All you need to do is create a BinaryFormatter object to perform
the serialization work, and call its Serialize() method. When you call serialize, you supply both
the object you want to serialize and the stream where you want the serialized data to be placed.
In this case, it makes sense to store them in a FileStream.

Here’s the complete code that prompts the user for a file, with the help of the SaveFileDialog,
and then serializes the current shape collection to that file:

Private Sub mnuSave_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles mnuSave.Click
 If saveFileDialog.ShowDialog() = DialogResult.OK Then
 Try
 Dim fs As FileStream = File.Create(saveFileDialog.FileName)
 Using fs
 Dim f As New BinaryFormatter()
 f.Serialize(fs, shapes)
 End Using
 Catch err As Exception
 MessageBox.Show("Error while saving. " & err.Message)
 End Try
 End If
End Sub

Deserializing is just as easy. Instead of using the Serialize() method, you use the Deserialize()
method of the BinaryFormatter. You pass in the stream you want to deserialize and then cast
the returned object to the appropriate data type (in this case, ShapeCollection). Finally, you
need to invalidate the form to trigger a refresh.

Private Sub mnuLoad_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles mnuLoad.Click
 If openFileDialog.ShowDialog() = DialogResult.OK Then
 Dim newShapes As ShapeCollection = Nothing
 Try
 Dim fs As FileStream = File.Open(openFileDialog.FileName, FileMode.Open)
 Using fs
 Dim f As New BinaryFormatter()
 newShapes = CType(f.Deserialize(fs, Nothing), ShapeCollection)
 End Using
 Catch err As Exception
 MessageBox.Show("Error while loading. " & err.Message)
 Return
 End Try

Macdonald_694-3C24.fm Page 868 Tuesday, July 25, 2006 8:05 AM

C H A P T E R 2 4 ■ D Y N A M I C D R A W I N G W I T H A D E S I G N S U R F A C E 869

 ' Trigger a refresh.
 shapes = newShapes
 Invalidate()
 End If
End Sub

The Last Word
This chapter worked through a useful example that demonstrates how to make a dynamic
drawing surface where objects can be dragged, deleted, and manipulated. We considered two
approaches: building the program using .NET’s support for controls and building it by hand
using only the features of GDI+. The control-based approach is a great shortcut if you want to
add drawing or diagramming features to a business application in the easiest and most convenient
way possible. On the other hand, the lower-level approach is the right road to take if you are
planning to build a sophisticated drawing application.

Macdonald_694-3C24.fm Page 869 Tuesday, July 25, 2006 8:05 AM

Macdonald_694-3C24.fm Page 870 Tuesday, July 25, 2006 8:05 AM

871

■ ■ ■

C H A P T E R 2 5

Custom Extender Providers

Extender providers are a specialized type of component that can enhance other controls.
Essentially, an extender provider works by adding “virtual properties” to existing controls. For
example, the ErrorProvider adds an Error property that you can set to display a flashing error
icon next to input controls that contain invalid information. Other examples include the ToolTip,
which displays a tooltip next to other controls, and the HelpProvider, which invokes context-
sensitive Help on a control’s behalf when the F1 key is pressed. Chapter 4 introduced the basic
extender providers included with Windows Forms. These are prebuilt components, but you
can also build your own.

The beauty of extender providers is that they give you another route to enhance controls.
Throughout this book, you’ve seen examples that have used inheritance to create customized
controls. Extender providers give you another option—rather than derive a custom control,
you can build a lightweight component that adds just the features you need.

Understanding Extender Providers
Extender providers work by hooking into control events. Essentially, every provider tracks
specific events that occur in a group of one or more controls.

It’s up to you to register a control with an extender provider to set up this link. When you
do, the provider attaches its event handlers. For example, the HelpProvider monitors key
presses for the F1 key. When you register a control with the HelpProvider, it attaches an event
handler to that control’s KeyPress event. When the F1 key is pressed, it springs into action.

Extender providers have both advantages and drawbacks. The key advantage is that the
model is much more loosely coupled than custom controls. For example, imagine you derive a
custom control from the ComboBox class and override several protected members. A future
version of the ComboBox class could change its internal logic enough to break your derived
class. This problem is much less likely if you create an extender provider for the ComboBox. An
extender provider reacts only to events, and event definitions are unlikely to change, because
they are a part of the control’s public interface. Figure 25-1 compares the two approaches.

Additionally, because your extender provider supports the ComboBox, it also supports
any custom control that derives from ComboBox. If you created your own custom ComboBox
control, this type of integration wouldn’t be possible. The loosely coupled provider model also
allows you to extend controls that have sophisticated design-time features, without forcing you
to re-implement details like control builders. That’s because you’re not changing the original
control—you’re just adding to the existing model.

Macdonald_694-3C25.fm Page 871 Tuesday, July 25, 2006 8:27 AM

872 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

Figure 25-1. Custom controls (left) versus extender providers (right)

Another advantage of this loosely coupled design is the fact that your extender provider
doesn’t need to be coded to a single specific control class. It’s quite easy to create an extender
provider that extends multiple types of controls, or even one that extends every control. In this
chapter, you’ll see a provider that extends all classes derived from ToolStripItem. Not only does
this support all the ToolStripItem controls in the .NET class library, it also works equally well
with custom ToolStripItem classes that other developers may create in the future.

The key limitation of extender providers is that they really have only one point of extensi-
bility: control events. If you want to react to a certain action but a control doesn’t define an
event for that action, you’re out of luck. Custom controls suffer from this limitation, but to a
lesser extent. That’s because a custom control can override protected methods, which often
provide access to some of the internal workings of a control. A typical control will provide
many more protected methods than public events, and so it has more extensibility points
when you create a custom control.

It would be difficult to implement a derived control like the DirectoryTree (shown in
Chapter 11) using an extender provider, because it changes the control too much. Even if you
could, the result wouldn’t be as intuitive, because extender providers don’t give you the freedom to
hide unnecessary members and add design-time frills to the control you’re extending.

Overall, extender providers tend to be specialized solutions, and you may design dozens of
custom controls before even contemplating a custom provider. Nonetheless, custom providers
can achieve some remarkable tricks. This chapter demonstrates two extender providers. The
first provider brings back an old-fashioned MFC trick—Help text that automatically appears in
the status bar when you hover over a toolbar button or menu item. The second provider displays
a clickable icon that launches context-sensitive Help.

■Tip To create an extender provider, it’s easiest to create the custom provider class in a class library
project, and compile it into a DLL file. Visual Studio will automatically add it to a temporary tab in the Toolbox,
as described in Chapter 9, so you can drag it onto a form in any project in the current solution.

The StatusStripHelpLabel Provider
The goal of the first provider is to extend an ordinary toolbar or menu by associating each item
in it with a unique Help string. Then, when the user hovers over an item, the extender provider

Macdonald_694-3C25.fm Page 872 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 873

will retrieve the matching Help string and display it in a status bar. This is a common (albeit
slightly outdated) user-interface convention, and while it’s not terribly useful for the average
user, it does provide a good example of an extender provider at work.

Choosing a Base Class
The first step when creating an extender provider is to create a class that implements the
IExtenderProvider interface and uses the ProvideProperty attribute (both of these types are
found in the System.ComponentModel namespace). This can be any type of class, including a
user control, inherited control, or just a basic Component class that doesn’t derive from any
control. The type of class depends on the type of provider you are creating.

A control-based provider, like the StatusStripHelpLabel provider, uses a dedicated control
to display information in a specific location on a form. In this example, the StatusStripHelpLabel
inherits from the ToolStripStatusLabel class, which is used to display static text in a status bar.
Thanks to this design, you can add the StatusStripHelpLabel to any StatusStrip, and it will
update its display to provide the appropriate text automatically. Figure 25-2 diagrams this
relationship.

Figure 25-2. The StatusStripHelpLabel extender

Here’s the bare skeleton of the extender provider:

Public Class StatusStripHelpLabel
 Inherits ToolStripStatusLabel
 Implements IExtenderProvider
 ...
End Class

By inheriting from ToolStripStatusLabel, the provider gets the ability to appear in a StatusStrip
and display text. None of this functionality needs to be coded. The real task is to implement the
required members of the IExtenderProvider.

Choosing the Control to Extend
Once you’ve decided what type of provider you are creating, your next decision is to determine
the type of object that you are extending. Many providers extend any type of Windows control,
while some are limited to specific classes. To specify the appropriate type of object, you need

Macdonald_694-3C25.fm Page 873 Tuesday, July 25, 2006 8:27 AM

874 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

to implement the IExtenderProvider.CanExtend() method, which is the only method in the
IExtenderProvider interface.

In the CanExtend() method, your code examines the supplied type of object and then
makes a decision about whether your provider can extend it. To make this decision, you can
evaluate any information about the target, including the type (the most common criteria),
whether it is hosted in another control or placed directly on a form, and even its name. You
return True if the object can be extended.

The ToolStripStatusLabel provider extends only ToolStripItem objects. Here’s the code
that enforces this restriction:

Public Function CanExtend(ByVal extendee As Object) _
 As Boolean Implements IExtenderProvider.CanExtend
 Return (TypeOf extendee Is ToolStripItem)
End Function

If you wanted to be stricter, you could limit the provider to ToolStripMenuItem objects,
which represent items in a ToolStrip menu. However, this approach gives more flexibility—you
can use the provider to extend menus or any other type of ToolStripItem, including ordinary
ToolStripButton items.

Providing the Extended Property
The next step is to identify the virtual property that will be assigned to all extended controls.
You do this by adding a ProvideProperty attribute just before your class declaration. The
ProvideProperty attribute identifies the property name and the type of class that is being
extended.

<ProvideProperty("HelpText", GetType(ToolStripItem))> _
Public Class StatusStripHelpLabel
 Inherits ToolStripStatusLabel
 Implements IExtenderProvider
 ...
End Class

Once you’ve specified a property in this fashion, you need to provide corresponding
GetXxx() and SetXxx() methods that perform the actual work when the property is changed.
These members are preceded with “Get” or “Set” and use the same name you identified in the
ProvideProperty attribute. These methods must be public.

Public Sub SetHelpText(ByVal extendee As Object, ByVal value As String)
 ...
End Sub

Public Function GetHelpText(ByVal extendee As Object) As String
 ...
End Function

Remember, neither of these methods is explicitly defined in the IExtenderProvider interface.
When the Windows Forms infrastructure hooks up an extender provider, it uses reflection.

Macdonald_694-3C25.fm Page 874 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 875

Interestingly, it does so in a way that works even if you change the parameter types. That
means you’re free to use this strongly typed code and avoid an extra cast:

Public Sub SetHelpText(ByVal extendee As ToolStripItem, ByVal value As String)
 ...
End Sub

Public Function GetHelpText(ByVal extendee As ToolStripItem) As String
 ...
End Function

■Tip In this example, the extender provider provides a single property. However, there’s no reason why you
can’t create an extender provider that provides multiple properties—you simply need to apply the ProvideProperty
attribute once for each property and include the corresponding SetXxx() and GetXxx() methods for each one.

You’ll notice that the GetProperty() and SetProperty() methods accept a reference to the
target control. That’s because a single instance of your extender can be reused to extend
dozens of controls (and, conversely, two similar providers can extend the same control). To
support this sort of scenario, it’s up to you to keep track of all the extended controls in your
extender provider. The usual technique is to use a collection. In the StatusStripHelpLabel, a
type-safe dictionary collection allows the provider to keep track of registered controls and the
supplied Help text for each one:

' The collection for tracking the Help text information.
Private helpText As New Dictionary(Of ToolStripItem, String)()

Implementing the SetXxx() and GetXxx() Methods
To complete the StatusStripHelpLabel, you need to add the implementation logic for the
SetHelpText() and GetHelpText() methods. The first step is to fill in the SetHelpText() method,
which requires the most coding. When the Help text is set, the provider needs to add the
supplied ToolStrip to the internal collection for tracking. It also needs to dynamically attach
event handlers to receive the MouseEnter and MouseLeave events. Additionally, your code
needs to politely detach the event handlers when a blank Help string is supplied. Finally, the
code needs to avoid hooking itself up more than once. The Visual Studio designer is prone
to calling the SetXxx() method multiple times in a row, and you don’t want the overhead of
detaching and reattaching the event handlers with each call.

Here’s the complete SetHelpText() code:

Public Sub SetHelpText(ByVal extendee As ToolStripItem, ByVal value As String)
 ' A blank value string indicates the control is trying to unregister.
 If value = "" Then
 ' Check if the item is registered.

Macdonald_694-3C25.fm Page 875 Tuesday, July 25, 2006 8:27 AM

876 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

 If Not helpText.ContainsKey(extendee) And Not DesignMode Then
 ' Unregister.
 RemoveHandler extendee.MouseEnter, AddressOf MenuSelect
 RemoveHandler extendee.MouseLeave, AddressOf MenuClear
 End If
 helpText.Remove(extendee)
 Else
 ' The user has supplied Help text.
 ' Check if the item is registered.
 If Not helpText.ContainsKey(extendee) And Not DesignMode Then
 ' It hasn't been registered yet. Register it now.
 AddHandler extendee.MouseEnter, AddressOf MenuSelect
 AddHandler extendee.MouseLeave, AddressOf MenuClear
 End If

 ' Either way, update the Help text.
 helpText(extendee) = value
 End If
End Sub

■Note With extender providers, calling a SetXxx() method with an empty string is assumed to mean
removing the extension. This is a common convention.

When the MouseEnter event occurs, the Help text is retrieved and displayed in the StatusStrip
label. When the MouseLeave event occurs, the text is cleared. You could just as easily monitor
different events (like key presses, focus changes, and so on).

Private Sub MenuSelect(ByVal sender As Object, ByVal e As EventArgs)
 MyBase.Text = helpText(CType(sender, ToolStripMenuItem))
End Sub

Private Sub MenuClear(ByVal sender As Object, ByVal e As EventArgs)
 MyBase.Text = ""
End Sub

Implementing the GetHelpText() method is much quicker. It simply returns the Help text
from the dictionary:

Public Function GetHelpText(ByVal extendee As ToolStripItem) As String
 If helpText.ContainsKey(extendee) Then
 Return helpText(extendee)
 Else
 Return ""
 End If
End Function

Macdonald_694-3C25.fm Page 876 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 877

Testing the Provider
To try out this example, create a new test form, and add a ToolStrip and a StatusStrip. Inside
the StatusStrip, add the StatusStripHelpLabel provider. Remember, the automatic designer
support means that this class will appear in the Items Collection Editor dialog box as one of the
possible choices (as discussed in Chapter 14). The only requirement is that the project must
have a reference to the StatusStripHelpLabel assembly.

Now, add some sample items to the ToolStrip. For each item, you’ll see a property like
“HelpText on statusStripHelpLabel1.” When you set this property, Visual Studio adds the code
to call the SetHelpText() method, like this:

statusStripHelpLabel1.SetHelpText(mnuNew, _
 "Create a new document and abandon the current one.")

You can also call the SetHelpText() method directly if you want to set the Help text
programmatically.

Figure 25-3 shows the help text that appears automatically when you hover over a menu
item that has been extended.

Figure 25-3. The StatusStripHelpLabel provider in action

Changing How Extended Properties Appear
By default, extended properties appear differently in the Properties window, because they always
incorporate both the property name and the name of the extender object reference. For example,
instead of just HelpText, you’ll see the extended property HelpText on statusStripHelpLabel1.
This has the benefit of making sure developers realize which properties are built into the control
and which ones come courtesy of an extender provider. However, if it’s too cumbersome, you
can change this using the DisplayName attribute on the GetXxx() method to set a different
name, as shown here:

<DisplayName("HelpText")> _
Public Function GetHelpText(ByVal extendee As ToolStripItem) As String
 ...
End Function

Macdonald_694-3C25.fm Page 877 Tuesday, July 25, 2006 8:27 AM

878 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

And while you’re at it, why not add some of the usual attributes for configuring the description
and category in the Properties window (as described in Chapter 13):

<DisplayName("HelpText")> _
<Category("Behavior")> _
<Description("This text appears in the linked StatusStripHelpLabel.")> _
Public Function GetHelpText(ByVal extendee As ToolStripItem) As String
 ...
End Function

The HelpIconProvider
The HelpIconProvider is an extender provider that gives users quick access to context-sensitive
Help. It plays the same role as the HelpProvider discussed in Chapter 23, except it doesn’t wait
for the F1 key to be pressed. Instead, it adds a help icon next to the control that provides the
Help. The user can click this icon to launch the Help. This model is much more intuitive, because
each control that provides worthwhile Help clearly advertises that fact, and the user can spot
this information at a glance (rather than check for it by trial and error).

Choosing a Base Class
In many ways, the HelpIconProvider is a more typical provider, because it extends other controls
without being a control itself. Instead, it derives from the System.ComponentModel.Component
class, as shown here:

<ProvideProperty("HelpID", GetType(Control))> _
Public Class HelpIconProvider
 Inherits Component
 Implements IExtenderProvider

 Public Function CanExtend(ByVal extendee As Object) As Boolean _
 Implements IExtenderProvider.CanExtend
 Return (TypeOf extendee Is Control)
 End Function
 ...
End Class

As you can tell from the ProvideProperty attribute, the HelpIconProvider supports any
control, and it adds a property named HelpID. The HelpID tracks a context-sensitive ID that’s
used to find the appropriate Help topic.

As for the Help file, the HelpIconProvider code assumes that all controls are using topics
from the same file. Thus, the HelpIconProvider includes an overall HelpFile property (rather
than a control-specific extended property):

Private _helpFile As String
Public Property HelpFile() As String
 Get
 Return _helpFile
 End Get

Macdonald_694-3C25.fm Page 878 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 879

 Set(ByVal value as String)
 _helpFile = value
 End Set
End Property

Providing the Extended Property
Even though the HelpIconProvider isn’t a dedicated control, it still has a graphical representa-
tion. It creates this representation dynamically when you attach it to other controls. To do this,
the HelpIconProvider retrieves a reference to the form that contains the extended control and
adds a small PictureBox control with a question mark icon in it.

This approach complicates the code. First of all, the HelpIconProvider now needs to include
two collections. The first collection, named contextIDs, keeps track of each extended control
and the associated Help context ID. The second collection, named pictures, stores the dynamically
generated PictureBox control:

' Store the context-senstive ID for each control.
Private contextIDs As New Dictionary(Of Control, String)()

' Store the dynamically inserted PictureBox controls.
Private pictures As New Dictionary(Of Control, PictureBox)()

The next challenge is in adding the PictureBox. You could do this when the SetHelpText()
method is called. Unfortunately, if the developer configures the form at design time, the
SetHelpText() method will be called before the extended control has been added to the form.
As a result, the HelpIconProvider won’t be able to find the form and add the required PictureBox.

The solution to this challenge is to use the ISupportInitialize interface introduced in
Chapter 13. That way, the SetHelpText() method can register itself with the appropriate
context ID, and the HelpIconProvider can add the associated PictureBox when the
ISupportInitialize.EndInit() method is called, when all the controls are sited on the form.

<ProvideProperty("HelpID", GetType(Control))> _
Public Class HelpIconProvider
 Inherits Component
 Implements IExtenderProvider, ISupportInitialize
 ...
End Class

However, the ISupportInitialize approach adds its own stumbling block—namely, it works
only for controls added at design time. If you call SetHelpText() programmatically, the PictureBox
won’t be added because the EndInit() method has already been invoked.

The solution is to consider the state of the extended control and add the PictureBox at the
most appropriate time. The SetHelpID() method accomplishes this by testing the Control.Parent
for a null reference. If no parent is found, the control isn’t registered. Either way, it’s still appro-
priate to add the control to the contextIDs collection.

Here’s the complete code for the SetHelpID() method:

Macdonald_694-3C25.fm Page 879 Tuesday, July 25, 2006 8:27 AM

880 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

Public Sub SetHelpID(ByVal extendee As Control, ByVal value As String)
 ' A blank value string indicates the control is trying to unregister.
 If value = "" Then
 ' Check if the item is registered.
 If pictures.ContainsKey(extendee) And Not DesignMode Then
 ' Perform this step only if the form is created.
 If extendee.Parent IsNot Nothing Then
 UnRegister(extendee)
 End If
 End If

 ' Stop maintaining the help ID.
 contextIDs.Remove(extendee)
 Else
 ' The user has supplied a value.
 ' Check if the item is registered.
 If Not pictures.ContainsKey(extendee) And Not DesignMode Then
 If extendee.Parent IsNot Nothing Then
 Register(extendee)
 End If
 End If

 ' Update or store the help ID.
 contextIDs(extendee) = value
 End If
End Sub

You’ll notice that the SetHelpID() method actually relies on two private methods—Register()
and Unregister()—to create the PictureBox. This way, you can call the same methods from the
EndInit() method, rather than coding the same code in two places. Here’s the code you need:

Public Sub BeginInit() Implements ISupportInitialize.BeginInit
End Sub

Public Sub EndInit() Implements ISupportInitialize.EndInit
 ' No design-time PictureBox controls are created.
 ' Add them now.
 For Each item As KeyValuePair(Of Control, String) In contextIDs
 Register(item.Key)
 Next
End Sub

As you can see, the EndInit() method simply steps through the collection of controls and
registers everything it finds. This makes sense—if there’s a control in the collection at this time,
it must have been added at design time, and the PictureBox hasn’t been set up yet.

The heavy lifting is performed in the Register() method. It creates the PictureBox, adds it
to the form, and registers for the PictureBox.DoubleClick event. Notice that the PictureBox
image is drawn from a resource in the assembly that contains the HelpIconProvider. To further

Macdonald_694-3C25.fm Page 880 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 881

refine the provider, you could handle more events from the dynamically generated picture box,
perhaps tailoring the mouse cursor when it is positioned over the picture box.

Private Sub Register(ByVal control As Control)
 ' Create new PictureBox.
 Dim pic As New PictureBox()
 pic.Image = My.Resources.help
 pic.Size = New Size(16, 16)
 pic.Location = New Point(control.Right + 10, control.Top)

 ' Register for DoubleClick event.
 AddHandler pic.DoubleClick, AddressOf PicDoubleClick

 ' Store a reference to the help icon
 ' So you can remove it later.
 pictures(control) = pic

 ' Add it to the form.
 control.Parent.Controls.Add(pic)
End Sub

■Tip This extender works by adding another control to the form. Instead of taking this approach, you could
draw the icon by hand. In order to do this correctly, your extender would need to hook into two events: the
Form.Paint event (to repaint the help icon) and the Form.DoubleClick event (to hit-test and see if the help icon
was double-clicked).

The UnRegister() method, which is called when an empty string is passed to the SetHelpID()
method, detaches the event handler and disposes the PictureBox.

Private Sub UnRegister(ByVal control As Control)
 ' Detach event handler.
 RemoveHandler pictures(control).DoubleClick, AddressOf PicDoubleClick

 ' Remove the picture from the form.
 control.Parent.Controls.Remove(pictures(control))
 pictures(control).Dispose()

 pictures.Remove(control)
End Sub

For good form, you should remove all PictureBox references when the provider is disposed.
Of course, you could still get a fair bit more paranoid and perform even more cleanup work, but
this is sufficient to keep the HelpIconProvider well behaved.

Macdonald_694-3C25.fm Page 881 Tuesday, July 25, 2006 8:27 AM

882 C H A P T E R 2 5 ■ CU ST O M E X T E N D E R P R O V I D E R S

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 ' Dispose all the PictureBox controls.
 For Each item As KeyValuePair(Of Control, PictureBox) In pictures
 item.Value.Dispose()
 Next
 End If
End Sub

Last, the GetHelpID() method is as simple as ever—it simply retrieves the relevant Help
context ID:

Public Function GetHelpID(ByVal extendee As Control) As String
 If contextIDs.ContainsKey(extendee) Then
 Return contextIDs(extendee)
 Else
 Return ""
 End If
End Function

When the PictureBox.DoubleClick event occurs, the HelpIcon provider searches for the
matching control. Then it launches the Help file with the appropriate context identifier.

Public Sub PicDoubleClick(ByVal sender As Object, ByVal e As EventArgs)
 ' Find the related control.
 Dim ctrl As Control = Nothing
 For Each item As KeyValuePair(Of Control, PictureBox) In pictures
 If item.Value Is sender Then
 ctrl = item.Key
 Exit For
 End If
 Next

 ' Show the help.
 If ctrl IsNot Nothing Then
 Help.ShowHelp(ctrl, helpFile, HelpNavigator.Topic, _
 contextIDs(ctrl))
 End If
End Sub

It’s important to note that if you don’t have a valid Help file and context identifier, nothing
will happen when you double-click the help icon. For this reason, the version of this example
included with the code download at www.apress.com uses a message box to let you know the
event has been detected. You can find out much more about the Help class this control uses to
invoke the Help engine in Chapter 23.

To invoke this control, just specify a global Help file for the provider and set a Help context
ID for a specific control, using either the Properties window or code like this:

Macdonald_694-3C25.fm Page 882 Tuesday, July 25, 2006 8:27 AM

C H A P T E R 2 5 ■ C U S T O M E X T E N D E R P R O V I D E R S 883

helpIconProvider1.HelpFile = "myhelp.hlp"
helpIconProvider1.SetHelpID(TextBox1, "10001")
helpIconProvider1.SetHelpID(TextBox2, "10002")

Figure 25-4 shows the HelpIconProvider in action.

Figure 25-4. A HelpIconProvider extending two text boxes

■Tip By now, you’ve probably recognized that a lot of infrastructure is shared in almost every extender
provider. To deal with this in a more elegant way, you could create a base class for extender providers that
implements the registration pattern shown in the HelpIconProvider. Then to create a custom provider you
would simply need to override the Register() and UnRegister() methods to hook into your desired event, and
the CanExtend() method to choose the controls you support. The process of tracking controls and adding them
to the collection can be abstracted away, simplifying the model.

The Last Word
In this chapter, you’ve taken a look at two extender providers that can add new features to
existing controls. The StatusStripHelpLabel allows you to synchronize menu Help text with a
status bar, and the HelpIconProvider helps you link to context-sensitive Help with a graphical
icon. The important part about both of these controls is that they give you a whole new way to
extend the Windows Forms framework. Instead of deriving classes that extend specific controls,
you can generically apply a new feature to a range of controls by building a new provider. Best
of all, this provider can be dropped into existing projects and will start working immediately,
with no control customization required.

Macdonald_694-3C25.fm Page 883 Tuesday, July 25, 2006 8:27 AM

Macdonald_694-3C25.fm Page 884 Tuesday, July 25, 2006 8:27 AM

885

■ ■ ■

C H A P T E R 2 6

Advanced Design-Time
Support

In Chapter 13 you explored how you could add a respectable level of design-time support to
your control. You saw how attributes, type converters, and type editors could improve the
Properties-window support for your control and ensure proper code serialization. In this
chapter, you’ll continue to add to your design-time skills by considering a few more topics.

Control designers. Control designers allow you to manage the design-time behavior and
the design-time interface (properties and events) exposed by your control. Although control
designers are quite complex pieces of the Windows Forms infrastructure (and creating one
from scratch is far beyond the scope of this book), it’s not difficult to customize an existing
control designer to add new features.

Smart tags. The new .NET 2.0 controls provide them, so why can’t your controls? As you’ll
see, it’s quite easy.

Collection controls. You’ve already learned the basics about type converters and type
editors. In this section, you’ll learn how to apply these to more complex controls that
model collections of items and how to add some extra features with a control designer.

Licensing. If you want to restrict how your control can be used (either at runtime or at
design time), you’ll need to implement some sort of licensing policy.

Control Designers
A control designer influences the design-time behavior and design-time appearance for a
control. Technically a designer is a class that implements the System.ComponentModel.
Design.IDesigner interface (see Table 26-1). Designers often implement the IDesignerFilter
interface (which is covered in the next section) to change the design-time interface of their control.

Macdonald_694-3C26.fm Page 885 Tuesday, July 25, 2006 8:35 AM

886 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

Fortunately, you’ll rarely be forced to create your own from scratch. The .NET Framework
provides a basic component designer in the System.ComponentModel.Design.
ComponentDesigner class that is provided to all IComponent classes and a control designer
with the System.Windows.Forms.Design.ControlDesigner class that applies to all controls.
These classes contain a great deal of functionality and provide many more methods that you
can override to plug into different parts of the designer behavior. In addition, there are derived
control designers that add support for child control containment and scrolling. Figure 26-1
shows the hierarchy.

Figure 26-1. Control designer classes

You can also derive a custom control designer to use with your custom controls. Why
would you create your own designer?

Table 26-1. IDesigner Members

Member Description

Component Gets the component (in this case, the custom control) that this designer
is designing.

Verbs Gets the design-time verbs (commands that are exposed through a
context menu) when you right-click on the control. You can override
this method to supply custom commands.

DoDefaultAction() Performs the default action for this designer. This is called when the
control is double-clicked on the design surface, and you can override
this method to customize this behavior.

Initialize() Initializes the designer for the appropriate component. You can override
this method to perform your own custom design-time initialization for
the control. This initialization takes place immediately after the compo-
nent is created and its constructor code has executed.

Macdonald_694-3C26.fm Page 886 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 887

• To add design-time conveniences, like context menu options and smart tags

• To remove inappropriate events or properties from view (or add design-time-only events
or properties)

• To tailor the design-time appearance of the control so that it differs from the runtime
appearance (for example, adding a border around an empty panel)

• To add support for controls that contain other controls (like the toolbar) or controls with
special design-time needs (like menus)

At design time, the designer infrastructure attaches a designer to each component as it is
sited on a form. (If more than one instance of the same component is added to a form, Visual
Studio will reuse the same designer for all instances.) Once this connection is established, the
control designer has the ability to take part in the interaction between the developer and
the control.

To create a basic control designer, begin by deriving a class from ControlDesigner (or
ParentControlDesigner, if you want to create a container control that can hold child controls).
Here’s an example that creates a designer for the DirectoryTree control from Chapter 11:

Public Class DirectoryTreeDesigner
 Inherits ControlDesigner
 ...
End Class

■Tip Remember, to use many of the design-time classes (including ControlDesigner), you must add a reference
to the System.Design.dll assembly.

You can then add functionality to your control designer by overriding the built-in methods.
When you’re finished, you need to link the custom control designer to the appropriate control.
To do this, you apply the Designer attribute to the control declaration and specify the appropriate
designer type. Here’s an example that links the DirectoryTreeDesigner to the DirectoryTree
control:

<Designer(GetType(DirectoryTreeDesigner))> _
Public Class DirectoryTree
 Inherits TreeView
 ...
End Class

■Tip Instead of supplying a type, you can use a different constructor overload that accepts a string with a
full assembly name. This is handy, because it allows you to separate the runtime and design-time code for
your custom control. If you develop extensive design-time support, this ensures that the runtime version of
your control remains as small as possible.

Macdonald_694-3C26.fm Page 887 Tuesday, July 25, 2006 8:35 AM

888 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

A designer can be as complex or as simple as you want. In the following sections, you’ll see
a number of techniques you can use with control designers. Although these topics are by no
means comprehensive, they provide a good overview of what you can accomplish.

■Note When you derive a custom control from an existing .NET control, you automatically acquire the same
control designer as the base class. This is significant, because many controls (including the TreeView) have custom
designers. However, you can reapply the Designer attribute to choose a different designer for your custom control.

Filtering Properties and Events
Sometimes, an event or property needs to be hidden from a control but not removed entirely.
For example, the ProgressBar control provides a Text property, which it inherits from the base
Control class. This property can be used at the programmer’s discretion, but it does not have
any visible text, because the ProgressBar doesn’t provide a caption. For this reason, the Text
property should be hidden from the Properties window.

If you are defining or overriding a property, you can use the Browsable attribute to keep
it from appearing in the Properties window. However, consider the TreeView control, which
provides a Nodes collection. You may have noticed that the custom DirectoryTree control (first
presented in Chapter 11) displays the Nodes property in the designer and allows it to be modified,
although the display is built automatically at runtime based on the Drive property. The TreeView.
Nodes property is not overridable, so you can’t use the Browsable attribute. However, you can
create a custom designer that ensures it won’t appear at design time.

Designers provide six methods from the IDesignerFilter interface that you can override to
filter properties, events, and attributes. These methods are listed in Table 26-2.

Technically, the filtering methods allow you to modify a System.ComponentModel.
TypeDescriptor object that stores the property, attribute, and event information for your
custom control. Visual Studio uses the information from this TypeDescriptor to determine
what it makes available in the design-time environment.

Table 26-2. IDesignerFilter Methods

Method Description

PostFilterAttributes() Override this method to remove unused or inappropriate attributes.

PostFilterEvents() Override this method to remove unused or inappropriate events.

PostFilterProperties() Override this method to remove unused or inappropriate properties.

PreFilterAttributes() Override this method to add attributes.

PreFilterEvents() Override this method to add events.

PreFilterProperties() Override this method to add properties.

Macdonald_694-3C26.fm Page 888 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 889

Removing Members

To filter the Nodes property so it doesn’t appear in the DirectoryTree control, you need a
control designer that overrides the PostFilterProperties() method. Here’s the complete control
designer code:

Public Class DirectoryTreeDesigner
 Inherits ControlDesigner

 Protected Overrides Sub PostFilterProperties(_
 ByVal properties As System.Collections.IDictionary)
 properties.Remove("Nodes")
 MyBase.PostFilterProperties(properties)
 End Sub
End Class

Now, when you recompile the control and test it in the client, you’ll notice that the Nodes
property does not appear in the Properties window. However, the Nodes property is still accessible
in code. This allows clients to perform other useful tasks (like enumerating through the collection
of nodes) at their discretion. This code also ensures that the Nodes collection is not serialized
at design time, effectively sidestepping the problem where the same set of drive nodes is added
more than once to an instance of the DirectoryTree control.

You can extend this example to get rid of other details you don’t need. For example, you
might want to remove the AfterSelect event from view, because you’ve added a more useful
DirectorySelected event. Here’s how you’d do that:

Protected Overrides Sub PostFilterEvents(_
 ByVal events As System.Collections.IDictionary)
 events.Remove("AfterSelect")
 MyBase.PostFilterEvents(events)
End Sub

Adding Design-Time Members

Just as you can remove properties and events in the PostFilterXxx() methods, you can also add
properties events in the PreFilterXxx() methods. This technique is most commonly used with
properties in the PreFilterProperties() method.

It’s important to realize that when you add a property in the PreFilterProperties() method,
you aren’t adding it to the underlying control. Instead, you’re adding a design-time-only prop-
erty that your designer is responsible for tracking. It’s also your designer that reacts if the property
is changed to alter some aspect of the design-time experience.

For example, consider the MarqueeLabel first shown in Chapter 12. In this control, it makes
sense not to fire the timer events at design time, and for that reason, the timer isn’t enabled
when the control is in design mode. But what would it take to give the developer the choice as
to whether the label should scroll or stay fixed? It turns out this design is quite easy to imple-
ment with a design-time property.

The first step is to create a control designer for the MarqueeLabel and attach it to the
MarqueeLabel with the Designer attribute. Next, you need to add the virtual property to the
control designer, not the control. Notice that this property finds the associated control (through

Macdonald_694-3C26.fm Page 889 Tuesday, July 25, 2006 8:35 AM

890 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

the ControlDesigner.Control or the ComponentDesigner.Component property) and then uses
the Scroll() method to turn scrolling on or off.

Private _allowDesignTimeScroll As Boolean

Public Property AllowDesignTimeScroll() As Boolean
 Get
 Return _allowDesignTimeScroll
 End Get
 Set(ByVal value As Boolean)
 CType(Control, MarqueeLabel).Scroll(value)
 _allowDesignTimeScroll = value
 End Set
End Property

■Tip In this case, the control already contains a Scroll() method that you can call to get the desired effect.
However, it’s possible in other situations that you might want to trigger a change in a control, and there won’t
be a suitable public method or property. In this case, consider creating an internal method, which is acces-
sible only to classes that are compiled in the same assembly.

The next part is more interesting. In the PreFilterProperties() method, you need to create
a PropertyDescriptor that represents the AllowDesignTimeScroll property. You can accomplish
this with the shared TypeDescriptor.CreateProperty() method. You simply need to specify the
type where the property is defined, the property name (as a string), and the property data type,
as shown here:

Dim prop As PropertyDescriptor = TypeDescriptor.CreateProperty(_
 GetType(MarqueeLabelDesigner), "AllowDesignTimeScroll", GetType(Boolean), _
 CategoryAttribute.Design, DesignOnlyAttribute.Yes)

In addition, the last two parameters of the CreateProperty() method specify the category
where the attribute should appear in the Properties window and whether or not it should be
considered a design-time-only property. If you specify that it is, the property setting will be
persisted in the .resx resources file for the form (ensuring that Visual Studio remembers the
value if you close the project and open it later).

If you don’t specify that the property is a design-time-only value, Visual Studio will generate
the code to set this property and add it to the InitializeComponent() section of the form. This
will cause an error when you run the application, because the control designer won’t exist at
that point, and the AllowDesignTimeScroll property isn’t really a part of the MarqueeLabel.

Once you’ve created the PropertyDescriptor that defines your property, you can add it to
the properties collection. Here’s the complete code:

Protected Overrides Sub PreFilterProperties(ByVal properties As IDictionary)
 MyBase.PreFilterProperties(properties)

Macdonald_694-3C26.fm Page 890 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 891

 ' Add a new property.
 properties("AllowDesignTimeScroll") = TypeDescriptor.CreateProperty(_
 GetType(MarqueeLabelDesigner), "AllowDesignTimeScroll", GetType(Boolean), _
 CategoryAttribute.Design, DesignOnlyAttribute.Yes)
End Sub

■Note As a general rule, always call the base method first in the PreFilterXxx() methods and last in the Post-
FilterXxx() methods. This way, all designer classes are given the proper opportunity to apply their changes.
The ControlDesigner and ComponentDesigner use these methods to add properties like Visible, Enabled,
Name, and Locked.

When you recompile your code, the AllowDesignTimeScroll property will appear in the
design-time window. If you set it to True, the label will begin scrolling in the design-time
environment.

Shadowing Members

Another trick you might want to use with filtering is to shadow a member. Shadowing a member
is a technique in which you replace a control property with a duplicate control-designer property
that has the same name. This allows your designer to intercept when the property is set and
decide whether it should pass a value to the underlying control at design time. This technique
ensures that properties like Visible or Enabled don’t have any effect at design time.

■Note Another way to achieve this result is to explicitly check the DesignMode attribute in your control
code. However, the shadowing approach is preferable. Not only does it enforce better separation between the
design-time and runtime logic of your control, it also prevents the control code from becoming unnecessarily
tangled with conditional statements.

To see a shadowed member at work, it’s worth considering a more realistic version of the
MarqueeLabel control. A more typical design would add a property to MarqueeLabel that
determines whether scrolling should be performed. This allows the application to stop and
start the label at will:

Public Property EnableScrolling() As Boolean
 Get
 Return tmrScroll.Enabled
 End Get
 Set(ByVal value As Boolean)
 tmrScroll.Enabled = Value
 End Set
End Property

Macdonald_694-3C26.fm Page 891 Tuesday, July 25, 2006 8:35 AM

892 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

In this case, the developer will probably want to be able to set the EnableScrolling property
at design time. However, you still want to prevent the label from scrolling until the application
is launched. You can solve this by shadowing the property.

Here’s the duplicate EnableScrolling property that you need to add to the control designer:

Public Property EnableScrolling() As Boolean
 Get
 Return CBool(ShadowProperties("EnableScrolling"))
 End Get
 Set(ByVal value As Boolean)
 ShadowProperties("EnableScrolling") = Value
 End Set
End Property

Notice that the value for the EnableScrolling property isn’t stored in a member variable.
Instead, the ControlDesigner class provides a collection named ShadowProperties that you
can use for this purpose.

When the control designer is first created, you need to make sure its EnableScrolling property
is set to match the underlying control. At the same time, you should switch off scrolling, no
matter what the property’s value is. To do this, you need to override the Initialize() method.
The Initialize() method is called before any other tasks happen with the designer.

Public Overrides Sub Initialize(ByVal c As IComponent)
 MyBase.Initialize(c)

 ' Shadow the EnableScrolling property.
 EnableScrolling = (CType(Control, MarqueeLabel)).EnableScrolling

 ' Now turn off scrolling in the underlying control.
 CType(Control, MarqueeLabel).EnableScrolling = False
End Sub

The last step is to use the PreFilterProperties() method to replace the MarqueeLabel.
EnableScrolling property with the shadowed MarqueeLabelDesigner.EnableScrolling
property:

Protected Overrides Sub PreFilterProperties(ByVal properties As IDictionary)
 MyBase.PreFilterProperties(properties)

 properties("EnableScrolling") = TypeDescriptor.CreateProperty(_
 GetType(MarqueeLabelDesigner), CType(properties("EnableScrolling"), _
 PropertyDescriptor), New Attribute() {})
End Sub

This completes the example. You might expect that you need to add more code to copy the
value of the shadowed property from the designer back to the control. However, this isn’t the
case. That’s because a shadowed version of the EnableScrolling property doesn’t have the
design-time-only flag. As a result, when the developer sets this property in the Properties window,
Visual Studio generates the code and adds it to the InitializeComponent() method:

Macdonald_694-3C26.fm Page 892 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 893

marqueeLabel1.EnableScrolling = True

At runtime, the control designer no longer exists, and this statement acts directly on the
control, switching on scrolling.

Interacting with the Mouse
One dramatic difference between how controls work at runtime and how they work at design
time is the handling of the mouse. In the design-time environment, mouse actions are ignored
and never passed on to the control. You can click a control to select it, but that won’t fire the
underlying control events.

You have several options for extending how a control designer works with mouse actions
or changing for this behavior entirely. For example, you can override the OnMouseEnter(),
OnMouseHover(), and OnMouseLeave() methods of the ControlDesigner class to react to these
actions. (A similar set of methods is available for responding to drag-and-drop operations.)

The following example shows a control designer that reacts to the mouse movement and
sets a member variable in the designer to indicate if the mouse pointer is currently over the
control. If it is, it adds a red dashed outline around the control (see Figure 26-2).

Figure 26-2. Adding a border around your control

The trick to enabling this is using the OnPaintAdornments() method. The
OnPaintAdornments() method allows you to paint some elements that appear only at design
time, and it’s called immediately after your control finishes its own painting. This technique is
commonly used to add helpful cues (like a border around an empty panel). You might also
want to use OnPaintAdornments() to substitute a generic representation for a complex control
that isn’t rendered at design time.

Here’s the complete code:

Macdonald_694-3C26.fm Page 893 Tuesday, July 25, 2006 8:35 AM

894 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

Private mouseOver As Boolean
Protected Overrides Sub OnMouseEnter()
 MyBase.OnMouseEnter()
 mouseOver = True
 Control.Invalidate()
End Sub

Protected Overrides Sub OnMouseLeave()
 MyBase.OnMouseLeave()
 mouseOver = False
 Control.Invalidate()
End Sub

Protected Overrides Sub OnPaintAdornments(ByVal pe As PaintEventArgs)
 MyBase.OnPaintAdornments(pe)

 If mouseOver Then
 ' Draw the rectangle adornment.
 Dim borderPen As New Pen(Color.Red)
 borderPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dash
 pe.Graphics.DrawRectangle(borderPen, 0, 0, Control.Width - 1, _
 Control.Height - 1)
 borderPen.Dispose()
 End If
End Sub

Another related method is ControlDesigner.GetHitTest(), which allows you to pass mouse
clicks on to the underlying control. Typically, you’ll use the code in this method to test if the
click occurred in a specific region of the control (one that’s linked to some sort of design-time
feature). You can then return True, in which case the mouse click is passed to the control, which
then fires its Click event. It’s then up to your control code to test for the Control.DesignMode
property and react accordingly. You’ll see this technique at work later in this chapter with the
SimpleChart example, where it allows you to select individual bar items at design time.

Selection and Resize Rules
Sometimes you’ll come across controls that don’t allow all the normal resizing operations. For
example, when you add a TextBox that has the MultiLine property set to False, you can’t resize
it vertically. Similar restrictions can exist for moving or resizing child controls in a special container
(think of a custom toolbar).

Control designers make it easy to implement these restrictions with the help of the
ControlDesigner.SelectionRules property. You can override this property and return a combi-
nation of values from the SelectionRules enumeration to specify what the control can do. For
example, the following set of selection rules allows moving a control but prevents it from being
resized vertically (like the TextBox):

Macdonald_694-3C26.fm Page 894 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 895

Public Overrides ReadOnly Property SelectionRules() As SelectionRules
 Get
 Return SelectionRules.LeftSizeable Or SelectionRules.RightSizeable Or _
 SelectionRules.Visible Or SelectionRules.Moveable
 End Get
End Property

Table 26-3 lists the values you can return.

Designer Verbs
So far, you’ve seen how a control designer can change the way a control works. But another
reason to use designers is to add frills, like fancy wizards that make it easier to set complex
properties. For example, you can use a custom designer to add to the context menu that is
displayed when a programmer right-clicks your control in the design environment. This menu
always contains some standard options provided by Visual Studio, but it can also contain your
commands (technically known as verbs).

To add verbs, you need to override the Verbs property in your custom designer, create a
new DesignerVerbCollection, and add the appropriate DesignerVerb object entries. Your control
designer handles the verb click event, generally by updating the associated control.

The following example retrieves a list of all the drives on the current computer and adds a
context menu entry for each one. The user can click the appropriate entry to set the Drive property
of the control.

Public Class DirectoryTreeDesigner
 Inherits ControlDesigner

 Private _verbs As New DesignerVerbCollection()

 Public Sub New ()
 ' Configure the designer verb collection.
 Dim drives() As String = System.IO.Directory.GetLogicalDrives()

Table 26-3. Values for the SelectionRules Enumeration

Value Description

AllSizeable The control supports sizing in all directions.

BottomSizeable, LeftSizeable,
RightSizeable, and TopSizeable

The control supports sizing in the specified directions.
It doesn’t support sizing in any direction you omit.

Locked The control is locked to its container. This prevents moving
and sizing, even if you’ve specified those flags.

Moveable The control supports moving to different locations in
its container.

Visible The control has some form of visible user interface. When
selected, the selection service will draw a selection border
around it.

Macdonald_694-3C26.fm Page 895 Tuesday, July 25, 2006 8:35 AM

896 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 For Each drive As String In drives
 _verbs.Add(New DesignerVerb("Set Drive " & drive, _
 New EventHandler(AddressOf OnVerb)))
 Next
 End Sub

 Public Overrides ReadOnly Property Verbs() As DesignerVerbCollection
 Get
 Return _verbs
 End Get
 End Property

 Protected Sub OnVerb(ByVal sender As Object, ByVal e As EventArgs)
 ' Retrieve the selected drive.
 Dim driveLetter As Char = CType(sender, DesignerVerb).Text(10)

 ' Adjust the associated control.
 CType(Me.Control, DirectoryTree).Drive = driveLetter
 End Sub

End Class

■Note This example shows the naïve approach that modifies the control directly. The problem is that this
doesn’t inform Visual Studio that a change has taken place, and the user interface won’t be refreshed properly.
To deal with this issue, you need to take additional steps to notify Visual Studio, as described at the end of
this section.

The resulting context menu for the DirectoryTree control is shown in Figure 26-3.
Generally, you won’t use your designer verbs to provide settings for a simple property.

A more interesting technique is to provide higher-level configuration operations that adjust
several properties at once.

Macdonald_694-3C26.fm Page 896 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 897

Figure 26-3. Designer verbs

Implementing this design is refreshingly easy. Just add a Windows Form to your project
and display it when the appropriate designer verb is selected. Here’s another simple example
using the DirectoryTree. This time, only a single verb is available, which displays a window that
allows the user to choose a drive. When a drive is chosen, a public form-level variable is set, and
the designer retrieves it and applies the change. This approach is more manageable than the
previous design, and it doesn’t clutter the context menu with drive letters.

Public Class DirectoryTreeDesigner
 Inherits ControlDesigner

 Private _verbs As New DesignerVerbCollection()

 Public Sub New DirectoryTreeDesigner()
 _verbs.Add(New DesignerVerb("Set Drive", _
 New EventHandler(AddressOf OnVerb)))
 End Sub

 Public Overrides ReadOnly Property Verbs() As DesignerVerbCollection
 Get
 Return _verbs
 End Get
 End Property

Macdonald_694-3C26.fm Page 897 Tuesday, July 25, 2006 8:35 AM

898 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 Protected Sub OnVerb(ByVal sender As Object, ByVal e As EventArgs)
 Dim ctrl As DirectoryTree = CType(Me.Control, DirectoryTree)

 ' Show the form.
 Dim frm As New SelectDrive()
 frm.DriveSelection = ctrl.Drive
 frm.ShowDialog()

 ' Adjust the associated control.
 ctrl.Drive = frm.DriveSelection
 End Sub

End Class

The SelectDrive form is quite simple—it’s the selection dialog box used in Chapter 13 as a
modal type editor. It shows a list of available drives and then stores the user’s selection in the
SelectDrive.Drive property.

■Note When you add a form like SelectDrive to a control project, the client will be able to see the form class
in your designer and create and display instances of it. If this isn’t the behavior you want, you need to declare
your form class as internal. (Another alternative is to nest it inside your control class and declare it as private
or protected, but if you do this, you have to forego Visual Studio’s design-time support for the form).

One quirk remains in the control designer. When the designer modifies the DirectoryTree,
the Properties window is not updated until the control is deselected and then reselected. To
correct this defect, you need to explicitly notify the IDE that a change has been made by using
the PropertyDescriptor for the property.

The rewritten OnVerb() method handles this detail:

Protected Sub OnVerb(ByVal sender As Object, ByVal e As EventArgs)
 Dim ctrl As DirectoryTree = CType(Me.Control, DirectoryTree)

 ' Show the form.
 Dim frm As New SelectDrive()
 frm.DriveSelection = ctrl.Drive
 frm.ShowDialog()

 ' Adjust the associated control.
 ctrl.Drive = frm.DriveSelection

Macdonald_694-3C26.fm Page 898 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 899

 ' Notify the IDE that the Drive property has changed.
 Dim properties As PropertyDescriptorCollection
 properties = TypeDescriptor.GetProperties(GetType(DirectoryTree))
 Dim changedProperty As PropertyDescriptor = properties.Find("Drive", False)
 RaiseComponentChanged(changedProperty, "", frm.DriveSelection)
End Sub

Rather than use the RaiseComponent method, you could set the property through the
PropertyDescriptor by using the PropertyDescriptor.SetValue() method:

Dim properties As PropertyDescriptorCollection
properties = TypeDescriptor.GetProperties(GetType(DirectoryTree))
Dim property As PropertyDescriptor = properties.Find("Drive", False)
property.SetValue(Control, frm.DriveSelection)

Although these two approaches are equivalent in this case, it’s better to use the latter
approach. When you start using smart tags, you need to use the SetValue() method to ensure
that the Undo feature works correctly.

■Note Technically, there is another option—you can start and commit a designer transaction manually.
You’ll learn about designer services in the next section, but the PropertyDescriptor.SetValue() approach is
much simpler in this scenario.

Designer Services
If you’re planning to create sophisticated designers, you’ll soon encounter the concept of
designer services. These services allow you to interact with the Windows Forms design-time
infrastructure in some powerful ways.

The method you use to access a service is named GetService(), and it’s part of the
IServiceProvider interface. It turns out that a number of different ingredients implement
IServiceProvider, so you have several choices for getting access to a service. For example, every
component implements it and provides a Component.GetService() method. Seeing as all controls
derive from Component, this means you can call GetService() on any control. Similarly,
the ComponentDesigner implements IServiceProvider. Seeing as ControlDesigner derives
from ComponentDesigner, and all the designers you use derive from ControlDesigner, you
can also rely on ComponentDesigner.GetService() to get access to a service. In other words,
whether you have access to a control or to a designer, the service you need is never far off.

So what services can you use? There is a dizzying array of choices (see Table 26-4), and you
can even add your own.

Macdonald_694-3C26.fm Page 899 Tuesday, July 25, 2006 8:35 AM

900 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

Table 26-4. Designer Services

Service Interface Description

IComponentChangeService Allows a designer to receive notifications of when components are
changed, added, or removed from the design-time environment.

IDesignerEventService Allows a designer to receive notifications when other designers
are added or removed from the design-time environment.

IDesignerFilter Allows a designer to add to and filter the set of properties displayed
in a property browser for its component. (You’ve already seen
this service at work with the DirectoryTree example.)

IDesignerHost Allows a designer to manage designer transactions and to react
when components are created or destroyed.

IDesignerOptionService Allows a designer to get and set the values of properties in the
Properties window.

IDictionaryService Allows a designer to store miscellaneous information in a
key-based collection.

IEventBindingService Allows a designer to register event handlers to component events.

IExtenderListService Allows a designer to obtain the currently active extender providers
and then add or remove them.

IHelpService Allows a designer to create and remove help service contexts,
create and remove help context attributes, and display help
topics by keyword or URL.

IInheritanceService Allows a designer to search for components of derived classes
and identify any inheritance attributes of each.

IMenuCommandService Allows a designer to search for, add, remove, or invoke menu
commands in the design-time environment.

IReferenceService Allows a designer to obtain the name of an object by reference,
or a reference to an object based on its name. You can also get a
reference to the parent of a specified component or references
to all objects of a specified type.

IResourceService Allows a designer to obtain a resource reader or resource writer
for a specified CultureInfo.

IRootDesigner Allows a designer to provide the background design surface when
it’s the top-level designer.

ISelectionService Allows a designer to determine what components are selected,
set the selection programmatically, or react when the selection
changes.

IServiceContainer Allows a designer to add or remove services that can be used by
other components or designers.

ITypeDescriptorFilterService Allows a component or designer to filter the attributes, events,
and properties exposed by any component at design time.

ITypeResolutionService Allows a designer to add a reference to an assembly to the project,
obtain a type or assembly by name, and obtain the path of a
specified assembly.

Macdonald_694-3C26.fm Page 900 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 901

The most common pattern for using a designer service is through a control designer. If
your goal is to receive events from a service, you’ll override the Initialize() method of your
designer. There, you’ll call GetService() and attach your event handlers. You can then detach
your event handlers by overriding the Dispose() method. If you simply need to perform an
action through a designer, you’ll probably just retrieve it when you need it using GetService()
and call the appropriate method.

In the following sections, you’ll see two of the most common services at work in custom
control designers.

Designer Notifications

One common reason to use a designer service is to receive notifications whenever controls are
added, removed, or changed. This works through the IComponentChangeService, which exposes
the events shown in Table 26-5.

■Note The IComponentChangeService also provides two methods, OnComponentChanging() and
OnComponentChanged(), which you can call to notify the designer about changes you’re making to a control.

The following example modifies the DirectoryTreeDesigner to use this service. Here’s the
basic idea: rather than providing a designer verb for every possible drive, the context menu
should show every drive except the currently selected one. For example, if the DirectoryTree.Drive
property is currently set to C, the control’s context menu should either hide (set DesignerVerb.
Visible to False) or disable (set DesignerVerb.Enabled to False) the Set Drive C:\ command.

The problem is that there are several possible ways to change the Drive property: through
a designer verb, through the Properties window, through a type editor, and so on. Your designer
needs to be notified of property changes, no matter how they take place. When a property is
changed, the designer needs to adjust the corresponding DesignerVerb object. The most reliable
way to do this is to react to the IComponentChangeService.ComponentChanged event.

Table 26-5. IComponentChangeService Events

Event Description

ComponentAdding Triggered when a component is in the process of being added to
the control at design time

ComponentAdded Triggered when a component is added to the control at design time

ComponentChanging Triggered when a component is in the process of changing at
design time

ComponentChanged Triggered when a contained component has changed at design time

ComponentRemoving Triggered when a component is in the process of being removed

ComponentRemoved Triggered when a component is removed at design time

ComponentRename Triggered when a component is renamed

Macdonald_694-3C26.fm Page 901 Tuesday, July 25, 2006 8:35 AM

902 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

You can hook up the service by overriding the designer’s Initialize() method:

Private changeService As IComponentChangeService

Public Overrides Sub Initialize(ByVal component As IComponent)
 MyBase.Initialize(component)

 changeService = CType(GetService(GetType(IComponentChangeService)), _
 IComponentChangeService)
 If Not changeService Is Nothing Then
 AddHandler changeService.ComponentChanged, AddressOf ComponentChanged
 End If
End Sub

Notice how the designer tests for a null reference before hooking up the event handler.
This is a best practice, because a control can potentially be designed in different editors, and
not all will necessarily provide the same set of design-time services. If a service isn’t available,
your control should still function, albeit with fewer frills.

Now all you need to do is react accordingly, find the corresponding verb, and modify it:

Private Sub ComponentChanged(ByVal sender As Object, _
 ByVal e As ComponentChangedEventArgs e)
 Dim ctrl As DirectoryTree = CType(Me.Control, DirectoryTree)

 If tree IsNot Nothing Then
 For Each verb As DesignerVerb In _verbs
 If verb.Text(10) = tree.Drive Then
 verb.Enabled = False
 Else
 verb.Enabled = True
 End If
 Next
 End If
End Sub

And just to behave properly, you should remove the event handler when the designer is
disposed:

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If Not changeService Is Nothing Then
 RemoveHandler changeService.ComponentChanged, AddressOf ComponentChanged
 End If
End Sub

The IComponentChangeService can facilitate many more complex scenarios that involve
linked controls. However, the basic technique of connecting event handlers remains exactly
the same.

Macdonald_694-3C26.fm Page 902 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 903

Designer Transactions

Designer transactions ensure that when several small changes are made at design time as part
of a logical operation, they can be reversed using the Undo command. Not only do designer
transactions support the Undo feature, they also improve performance, because the design
surface isn’t refreshed until the transaction is complete.

For example, consider the DirectoryTreeDesigner. When you select an option from its
context menu, the Drive property is changed. This is a single action, which means you can
accomplish it easily through the PropertyDescriptor without starting a transaction. (The
PropertyDescriptor.SetValue() method implicitly starts and commits a designer transaction.)

However, life isn’t as easy if you need to provide a command that implements a series
of changes. For example, consider this method, which applies a series of changes to the
MarqueeLabel control:

Protected Sub OnVerbFunky(ByVal sender As Object, ByVal e As EventArgs)
 ' Get the associated control.
 Dim lbl As MarqueeLabel = CType(Control, MarqueeLabel)

 lbl.ForeColor = Color.LimeGreen
 lbl.BackColor = Color.Yellow
 lbl.Font = New Font(lbl.Font.Name, 48, FontStyle.Bold)
End Sub

It’s attached to a designer verb:

Private _verbs As New DesignerVerbCollection()

Public Sub New ()
 _verbs.Add(New DesignerVerb("Apply Funky Theme", _
 New EventHandler(AddressOf OnVerbFunky)))
End Sub

Public Overrides ReadOnly Property Verbs() As DesignerVerbCollection
 Get
 Return _verbs
 End Get
End Property

The problem right now is that this set of changes doesn’t use the designer transaction
features. If you trigger this command and then select Edit ➤ Undo, you’re likely to have that
operation and several more rolled back at the same time.

To create a designer transaction, you need a reference to the IDesignerHost service, which
provides a CreateTransaction() method. This returns a DesignerTransaction object, which has
a Commit() method you use to finalize the transaction.

However, there’s another consideration when using a designer transaction. To make sure
other designers and other parts of the design-time infrastructure (like the Properties window) are
notified about the changes that are taking place, you need to use the IComponentChangeService.
You must call IComponentChangeService.OnComponentChanging() before you make a change,

Macdonald_694-3C26.fm Page 903 Tuesday, July 25, 2006 8:35 AM

904 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

and IComponentChangeService.OnComponentChanged() afterward. The methods take several
parameters, which allow you to identify exactly which property is being changed.

If you are performing a change that affects multiple properties and you don’t want to call
the OnComponentChanging() and OnComponentChanged() methods multiple times, you can
simply pass null references instead of property names and values.

Here’s how you can revise the previous example to use a transaction:

Protected Sub OnVerbFunky(ByVal sender As Object, ByVal e As EventArgs)
 ' Get the associated control.
 Dim lbl As MarqueeLabel = CType(Control, MarqueeLabel)

 ' Get the IComponentChangeService.
 Dim host As IDesignerHost = _
 CType(GetService(GetType(IDesignerHost)), IDesignerHost)
 Dim changeService As IComponentChangeService = _
 CType(GetService(GetType(IComponentChangeService)), _
 IComponentChangeService)

 ' Start the transaction.
 Dim tran As DesignerTransaction = _
 host.CreateTransaction("Apply Funky Theme")

 changeService.OnComponentChanging(lbl, Nothing)
 lbl.ForeColor = Color.LimeGreen
 lbl.BackColor = Color.Yellow
 lbl.Font = New Font(lbl.Font.Name, 48, FontStyle.Bold)
 changeService.OnComponentChanged(lbl, Nothing, Nothing, Nothing)

 ' Commit the transaction.
 tran.Commit()
End Sub

■Note You are not quite finished with designer services. You’ll see an example of the component-selection
service (ISelectionService) later in this chapter when we consider collection controls.

Smart Tags
Visual Studio 2005 includes a new feature for creating a rich design-time experience—smart
tags. Smart tags are the pop-up windows that appear next to a control when you click the tiny
arrow in the corner.

Smart tags are similar to menus in that they have a list of items. However, these items can
be commands (which are rendered like hyperlinks), or other controls like check boxes, drop-
down lists, and more. They can also include static descriptive text. In this way, a smart tag can
act like a mini Properties window.

Macdonald_694-3C26.fm Page 904 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 905

Figure 26-4 shows an example of the custom smart tag that’s created in the next example.
It allows the developer to set a combination of GradientPanel properties. It includes three
drop-down lists that let you change the gradient colors and fill style, a Randomize Colors link
that chooses random gradient colors, and some static information that indicates the control’s
current size and location. Additionally, there’s a link for docking the control at the very bottom
of the smart tag, which is thrown in for free because we’re using the ParentControlDesigner
(the natural control designer for control containers like Panel).

Figure 26-4. A custom smart tag

To create this smart tag, you need the following ingredients:

A collection of DesignerActionItem objects. Each DesignerActionItem represents a single
item in the smart tag.

An action list class. This class has two roles—it configures the collection of
DesignerActionItem instances for the smart tag and, when a command or change
is made, it performs the corresponding operation on the linked control.

A control designer. This hooks your action list up to the control, so the smart tag appears
at design time.

In the following sections, you’ll build this solution piece by piece.

The Action List
Creating a smart tag is conceptually similar to adding designer verbs—you override a method
in your control designer, which returns the collection of commands you want to support. (This
list of commands is called an action list.)

However, smart tags allow many more options than designer verbs, so the associated code
is likely to be more complex. To keep it all under control, it’s a good idea to separate your code
by creating a custom class that encapsulates your action list. This custom class should derive
from DesignerActionList (in the System.ComponentModel.Design namespace).

Here’s an example that creates an action list that’s intended for use with the GradientPanel:

Macdonald_694-3C26.fm Page 905 Tuesday, July 25, 2006 8:35 AM

906 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

Public Class GradientPanelActionList
 Inherits DesignerActionList
 ...
End Class

You should add a single constructor to the action list that requires the matching control
type. You can then store the reference to the control in a member variable. This isn’t required,
because the base ActionList class does provide a Component property that provides access to
your control. However, by using this approach, you gain the convenience of strongly typed
access to your control.

Private linkedControl As GradientPanel

Public Sub New(ByVal ctrl As GradientPanel)
 MyBase.New(ctrl)
 linkedControl = ctrl
End Sub

Before you can build the smart tag, you need to equip your action-list class with the required
members. For every link you want to add to the tag (via a DesignerActionMethodItem), you need
to create a method. For every property you want to add (via the DesignerActionPropertyItem),
you need to create a property procedure.

The smart tag in Figure 26-4 includes eight custom items: two category headers, three
properties, one action link, and two pieces of static text (at the bottom of the tag).

The first step is to add the properties. The get property procedure needs to retrieve the
value of the property from the linked control. The set property procedure needs to apply the
new value to the linked control. However, there’s a catch—you can’t set the new value directly.
If you do, other parts of the designer infrastructure won’t be notified about the change. Instead, you
need to work through the PropertyDescriptor.SetValue() method, as described in the previous
section. To make this easier, you can define a private helper method in your action-list class
that retrieves the PropertyDescriptor for a given property by name:

Private Function GetPropertyByName(ByVal propName As String) _
 As PropertyDescriptor
 Dim prop As PropertyDescriptor
 prop = TypeDescriptor.GetProperties(linkedControl)(propName)

 If Nothing Is prop Then
 Throw New ArgumentException("Matching property not found.", propName)
 Else
 Return prop
 End If
End Function

Now you can create the three properties that wrap the properties in the GradientPanel
control:

Macdonald_694-3C26.fm Page 906 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 907

Public Property ColorA() As Color
 Get
 Return linkedControl.ColorA
 End Get
 Set(ByVal value As Color)
 GetPropertyByName("ColorA").SetValue(linkedControl, value)
 End Set
End Property

Public Property ColorB() As Color
 Get
 Return linkedControl.ColorB
 End Get
 Set(ByVal value As Color)
 GetPropertyByName("ColorB").SetValue(linkedControl, Value)
 End Set
End Property

Public Property GradientFillStyle() As LinearGradientMode
 Get
 Return linkedControl.GradientFillStyle
 End Get
 Set(ByVal value As LinearGradientMode)
 GetPropertyByName("GradientFillStyle").SetValue(linkedControl, Value)
 End Set
End Property

■Note Not all properties can be edited natively in a smart tag—it all depends on the data type. If the data
type has an associated UITypeEditor (for editing the property graphically) or a TypeConverter (for converting
the data type to and from a string representation), editing will work. Most common data types have these
ingredients, but your custom objects won’t. As a result, all you’ll see is a read-only string generated by calling
ToString() on the object.

The next step is to build the functionality for the Randomize Colors command. To do this,
all you need to do is create a method in the action-list class. Here’s an example:

Public Sub ChooseRandomColors()
 Dim rand As New Random()

 ' Set the colors through the property procedures
 ' in this class.
 ColorA = Color.FromArgb(rand.Next(255), rand.Next(255), rand.Next(255))
 ColorB = Color.FromArgb(rand.Next(255), rand.Next(255), rand.Next(255))
End Sub

Macdonald_694-3C26.fm Page 907 Tuesday, July 25, 2006 8:35 AM

908 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

The DesignerActionItem Collection
The DesignerActionItem class represents the individual items in a smart tag. The .NET Framework
provides four basic classes that derive from DesignerActionItem, as described in Table 26-6.

To create your smart tag, you need to build a DesignerActionItemCollection that combines
your group of DesignerActionItem objects. Order is important in this collection, because
Visual Studio will add the DesignerActionItem objects to the smart tag from top to bottom in
the order they appear.

To build your action list, you override the DesignerActionList.GetSortedActionItems()
method, create the DesignerActionItemCollection, add each DesignerActionItem to it, and
then return the collection. Depending on the complexity of your smart tag, this may take
several steps.

The first step is to create the headers that divide the smart tag into separate regions. You
can then add other items into these categories. This example uses two headers:

Public Overrides Function GetSortedActionItems() As DesignerActionItemCollection
 ' Create eight items.
 Dim items As New DesignerActionItemCollection()

 ' Begin by creating the headers.
 items.Add(New DesignerActionHeaderItem("Appearance"))
 items.Add(New DesignerActionHeaderItem("Information"))
 ...

Next, you can add the properties. You specify the name of the property and the class, followed
by the name that should appear in the smart tag. The last two items include the category where
the item should be placed (corresponding to one of the DesignerActionHeaderItems you just
created) and a description (which appears as a tooltip when you hover over that item).

Table 26-6. Classes Derived from DesignerActionItem

Class Description

DesignerActionMethodItem This item is rendered as a link. When you click it, it triggers an
action by calling a method in your DesignerActionList class.

DesignerActionPropertyItem This item is rendered as an edit control, using logic that’s
very similar to the Properties window. Strings are given edit
boxes, enumerated values become drop-down lists, and
Boolean values are turned into check boxes. When you
change the value, the underlying property is modified.

DesignerActionTextItem This item is rendered as a static piece of text. Usually, it
provides additional information about the control. It’s not
clickable.

DesignerActionHeaderItem This item derives from DesignerActionTextItem. It’s a static
piece of text that’s styled as a heading. Using one or more
header items, you can divide the smart tag into separate cate-
gories and group your other properties accordingly. Headers
are not clickable.

Macdonald_694-3C26.fm Page 908 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 909

 ...
 ' Add items that wrap the properties.
 items.Add(New DesignerActionPropertyItem("ColorA", _
 "Gradient Color A", "Appearance", _
 "Sets the first color in the gradient."))

 items.Add(New DesignerActionPropertyItem("ColorB", _
 "Gradient Color B", "Appearance", _
 "Sets the second color in the gradient."))

 items.Add(New DesignerActionPropertyItem("GradientFillStyle", _
 "Gradient Fill Style", "Appearance", _
 "Sets the blend direction for the gradient."))
 ...

Visual Studio connects the action item to the property in the action-item class by using
reflection with the property name you supply. If you add more than one property to the same
category, they’re ordered based on the order in which you add them. If you add more than
one category header, the categories are ordered the same way.

The next step is to create a DesignerActionMethodItem(), which binds a smart tag item to
a method. In this case, you specify the object where the callback method is implemented, the
name of the method, the name that should appear in the smart tag display, the category where
it will appear, and the tooltip description. The last parameter is a Boolean value. If True, the
item will be added to the context menu for the control, as well as to the smart tag.

 ...
 items.Add(New DesignerActionMethodItem(Me, _
 "ChooseRandomColors", "Randomize colors", _
 "Appearance", "Chooses random colors for the gradient.", _
 True))
 ...

Finally, you can create new DesignerActionTextItem objects with the text you want to
show and return the complete array of items:

 ...
 items.Add(New DesignerActionTextItem(_
 "Location: " & linkedControl.Location.ToString(), _
 "Information"))

 items.Add(New DesignerActionTextItem(_
 "Dimension: " & linkedControl.Size.ToString(), _
 "Information"))

 Return items
End Function

Macdonald_694-3C26.fm Page 909 Tuesday, July 25, 2006 8:35 AM

910 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

The Control Designer
Once you’ve perfected your smart tag action list, you still need to connect it to your control.
You accomplish this by creating a custom designer and overriding the ActionList property so
that it returns an instance of your custom action-list class, as the following control designer
demonstrates. Notice that the action list isn’t created each time ActionList is called—instead,
it’s cached it as a private member variable to optimize performance.

Public Class GradientPanelDesigner
 Inherits System.Windows.Forms.Design.ParentControlDesigner

 Private _actionLists As DesignerActionListCollection

 Public Overrides ReadOnly Property ActionLists() As DesignerActionListCollection
 Get
 If _actionLists Is Nothing Then
 _actionLists = New DesignerActionListCollection()
 _actionLists.Add(New GradientPanelActionList(_
 CType(Control, GradientPanel)))
 End If
 Return _actionLists
 End Get
 End Property

End Class

Container and Collection Controls
Some of the most complex control types are controls that contain child items. These controls
can range from simple containers to custom toolbars, trees, and graphical charts. A host of
design-time issues come into play specifically with these control types.

Although there’s no formal definition for container controls or collection controls, it’s
helpful to make a distinction between two related but different types. Container controls are
simply controls that can hold other controls. These child controls are added directly to the
Control.Controls collection—one example is the Panel control. Depending on the result you
want, you might use design-time features to restrict containers to specific types of children, or
you might put the container control completely in charge of layout, in such a way that it disregards
the Size and Location properties of its children.

Collection controls are generally a more flexible and common design. They represent a
similar concept, but use a more carefully focused object model. The idea with a collection
control is that it exposes some collection that accepts child objects—but these objects are not
controls. The collection control then performs its drawing from scratch, based on the current
collection of children. One example of a collection control is the ListView.

In the following sections, you’ll consider some of the design-time basics for both these
scenarios, and you’ll add design-time support to the SimpleChart custom control.

Macdonald_694-3C26.fm Page 910 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 911

Collection Controls
The term collection controls is commonly used to describe controls that expose a collection of
items and then render each item graphically. For example, the TreeNode is a collection control,
because it exposes a collection of TreeNode objects and uses them to build a tree. Similarly, the
ToolStrip is a collection control that shows ToolStripItem instances (commands, labels, and so
on) in a toolbar. Unlike container controls, the child items in collection controls aren’t neces-
sarily controls in their own right. For example, a TreeNode isn’t a control—it’s just a programming
abstraction, and it’s up to the TreeView to handle mouse selection, keyboard handling, and
painting for all the nodes it shows. The same is true of the ToolStripItem. Unlike the TreeNode,
it’s a component (which gives it some design-time support), but it isn’t a control.

Collection controls pose a few challenges with design-time support. Notably, you need a
way to let the developer add child items at design time. You might also want to handle other
designer services to provide additional features, like the ability for the developer to select indi-
vidual child items and configure them in the Properties window (which is possible in the
ToolStrip but not the TreeView). Fortunately, the skills you learned in Chapter 13 are enough
for you to outfit a collection control with a basic level of support using a type editor and a type
converter. This takes care of control serialization and property editing. Additionally, you can
use a control designer to provide other services.

To try this out, consider the SimpleChart custom control presented in Chapter 12. The
SimpleChart accepts a collection of BarItem objects and uses them to draw a bar chart.
The SimpleChart’s drawing logic simply loops through the Bars collection, calculates the
appropriate bounds, and draws a rectangle representing each BarItem using GDI+.

However, at design time the control doesn’t perform as well. When you look at the
SimpleChart.Bars property in the Properties window, you’ll see the familiar ellipsis (. . .) button.
If you click on it, it calls up the standard CollectionEditor type editor (from the System.
ComponentModel.Design namespace). However, if you try to use this dialog box to add BarItem
objects, you’ll receive an error, because the BarItem collection doesn’t provide a default
constructor. And even if you add a default constructor, the quirks won’t go away. Even though
you’ll be able to create BarItem objects, they won’t be serialized into your form-designer code.

The proper solution to this problem is to develop your own type editor and type converter.

The BarItem Type Converter

First of all, you need a way to tell Visual Studio how to create BarItem objects, using the correct
constructor. As you learned in Chapter 13, the way to use a nondefault constructor is to support
conversion to an InstanceDescriptor.

Let’s dissect the code piece by piece. First of all, the BarItemConverter derives from
ExpandableObjectConverter, giving it the ability to expand and show subproperties in the
Properties window:

Public Class BarItemConverter
 Inherits ExpandableObjectConverter
 ...
End Class

The CanConvertFrom() method indicates that it supports conversions from a string
representation:

Macdonald_694-3C26.fm Page 911 Tuesday, July 25, 2006 8:35 AM

912 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

Public Overrides Function CanConvertFrom(_
 ByVal context As ITypeDescriptorContext, _
 ByVal t As Type) As Boolean
 If t Is GetType(String) Then
 Return True
 Else
 Return MyBase.CanConvertFrom(context, t)
 End If
End Function

The string representation used in this example is a simple comma-delimited format like
this: BarItem.ShortForm, BarItem.Value. The ConvertFrom() method builds this string from a
live BarItem object.

Public Overrides Function ConvertFrom(_
 ByVal context As ITypeDescriptorContext, _
 ByVal info As CultureInfo, ByVal value As Object) As Object
 If value.GetType Is GetType(String) Then
 Try
 Dim elements() As String = CStr(value).Split(",")
 Return New BarItem(elements(0), Single.Parse(elements(1)))
 Catch Err as Exception
 Throw New ArgumentException("Could not convert the value")
 End Try
 End If
 Return MyBase.ConvertFrom(context, info, value)
End Function

Life gets a little more interesting with CanConvertTo(), because it supports two conversion
paths: to a string (used for display in the Properties window) or to an InstanceDescriptor (used
for code serialization).

Public Overrides Function CanConvertTo(_
 ByVal context As ITypeDescriptorContext, _
 ByVal destType As Type) As Boolean
 If destType Is GetType(InstanceDescriptor) Or destType Is GetType(String) Then
 Return True
 Else
 Return MyBase.CanConvertTo(context, destType)
 End If
End Function

The ConvertTo() method implements the conversion. The conversion to string is straight-
forward. The conversion to an InstanceDescriptor needs to get the matching constructor,
which takes two parameters (string and float).

Public Overrides Function ConvertTo(_
 ByVal context As ITypeDescriptorContext, _
 ByVal info As CultureInfo, ByVal value As Object, _
 ByVal destType As Type) As Object

Macdonald_694-3C26.fm Page 912 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 913

 Dim item As BarItem = CType(value, BarItem)
 If destType Is GetType(String) Then
 Return String.Format("{0}, {1}", item.ShortForm, item.Value)

 ElseIf destType Is GetType(InstanceDescriptor) Then
 Dim ctor As ConstructorInfo = _
 GetType(BarItem).GetConstructor(_
 New Type() {GetType(String), GetType(Single)})
 Return New InstanceDescriptor(ctor, _
 New Object() {item.ShortForm, item.Value})
 Else
 Return MyBase.ConvertTo(context, info, value, destType)
 End If
End Function

This is the first step in adding design-time support to the SimpleChart. Now you’ll be able
to edit the BarItem collection at design time using the familiar CollectionEditor, and it will
successfully create BarItem objects. However, the CollectionEditor has a significant limitation—
it serializes collection items only if they implement IComponent. That means you need to
either modify the BarItem class, so that it derives from Component (which is unnecessarily
clunky), or create your own type editor, as demonstrated in the next section.

The BarItemCollectionEditor

Now that you’ve added serialization support to the BarItem class, you need to consider how
the developer edits the Bars collection. It’s not attaching a type editor to the BarItem class,
because the developer doesn’t edit the BarItem objects individually. Instead, you need a way to
control the editing for the entire collection.

This task is actually easier than it seems. The first step is to create a custom collection
class. In the current version of the SimpleChart control, a generic collection provides access
to BarItem instances:

Private _bars As New List(Of BarItem)()

The problem here is that there’s no way to control what type editor is used to edit the bars
collection. To solve this problem, you need to use a custom collection.

Private _bars As New BarItemCollection()

It’s easy to create the BarItemCollection. Here’s a basic example that makes the
BarItemCollection more or less the same as an ArrayList, with support for each iteration and
Add() and Remove() methods. Only BarItem objects are allowed in the BarItemCollection.

Public Class BarItemCollection
 Inherits CollectionBase
 Public Sub Add(ByVal item As BarItem)
 Me.List.Add(item)
 End Sub

Macdonald_694-3C26.fm Page 913 Tuesday, July 25, 2006 8:35 AM

914 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 Public Sub Remove(ByVal index As Integer)
 ' Check to see if there is an item at the supplied index.
 If (index > Count - 1) OrElse (index < 0) Then
 Throw New System.IndexOutOfRangeException()
 Else
 Me.List.RemoveAt(index)
 End If
 End Sub

 Default Public Property Item(ByVal i As Integer) As BarItem
 Get
 Return CType(Me.List(i), BarItem)
 End Get
 Set(ByVal value As BarItem)
 Me.List(i) = value
 End Set
 End Property

End Class

Now you can create a custom collection editor. Although you can implement your own
functionality from scratch, the easiest approach is to just derive a class from CollectionEditor,
which gives you the familiar collection-editing dialog box with a list of items in the collection
and a property grid for changing the settings of the currently selected item. Figure 26-5 shows
the final result.

Figure 26-5. A custom type editor for the BarItemCollection

When building your custom collection editor, you can add functionality by overriding one
of several methods. Table 26-7 lists some of your options.

Macdonald_694-3C26.fm Page 914 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 915

In this example, it makes sense to override two methods. By overriding EditValue(), you
can make sure the chart is refreshed to show the new set of bars when any item is changed. By
overriding CreateInstance(), you can supply default values for each new BarItem that’s created
when the developer clicks the Add button.

Here’s the complete code:

Public Class BarItemCollectionEditor
 Inherits CollectionEditor

 Public Sub New(ByVal type As Type)
 MyBase.New(type)
 End Sub

 Public Overloads Overrides Function EditValue(_
 ByVal context As ITypeDescriptorContext, _
 ByVal provider As IServiceProvider, _
 ByVal value As Object) As Object
 Dim returnObject As Object = MyBase.EditValue(context, provider, value)
 CType(context.Instance, SimpleChart).RebuildChart()
 Return returnObject
 End Function

Table 26-7. Overridable CollectionEditor Methods

Method Description

CreateInstance() Creates a new collection item, which is added to the collec-
tion (occurs when the Add button is clicked). Override this
method to customize the default values of new items.

DestroyInstance() Destroys the specified collection item (occurs when the
Remove button is clicked).

EditValue() Modifies an item in the collection (occurs when changes are
made in the property grid).

CancelChanges() Reverts the changes that have been made so far (triggered
when the Cancel button is clicked).

CreateNewItemTypes() Returns the types of all items in the collection. Override this
method if you want the collection editor to allow several
different item types. Once you do, the Add button will show a
drop-down arrow giving you the choice of supported items.

CanRemoveInstance() Returns True (the default) if existing members of the collec-
tion can be removed with the Remove button.

CanSelectMultipleInstances() Returns True (the default) to indicate that multiple collection
items can be selected and modified at once in the property grid.

GetDisplayText() Retrieves the display text for the given list item.

ShowHelp() Displays the default Help topic for the collection editor.

Macdonald_694-3C26.fm Page 915 Tuesday, July 25, 2006 8:35 AM

916 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 Protected Overrides Function CreateInstance(ByVal itemType As Type) As Object
 Dim item As New BarItem("Enter Title Here", 0)
 Return item
 End Function

End Class

Finally, you need to attach the type editor to the Bars property of the BarItemCollection
class:

<Editor(GetType(BarItemCollectionEditor), GetType(UITypeEditor))> _
Public Class BarItemCollection
 Inherits CollectionBase
 ...
End Class

This completes the example, giving you the ability to add and modify the collection BarItem
objects used for the SimpleChart at design time.

Selecting BarItem Objects at Design Time

There’s one more frill you can add to the SimpleChart example. Now that you have the ability
to create and configure BarItem objects at design time, you might also want to allow the devel-
oper to select individual BarItem objects from the form-design surface and configure them
directly in the Properties window. In the case of the SimpleChart control, this doesn’t add a lot
to the overall picture, but it’s still a useful technique. It also demonstrates how to use the
ISelectionService.

The first step is to add a method to the SimpleChart control that can perform hit testing.
This method needs to accept a point, check each bar using Rectangle.Contains, and return the
matching BarItem object:

Public Function HitTest(ByVal p As Point) As BarItem
 ' Hit test all the bars.
 Dim i As Integer = 0
 For i As Integer = 0 To barRectangles.Count - 1
 If barRectangles(i).Contains(p) Then
 Return _bars(i)
 End If
 Next
 Return Nothing
End Function

Next, you need to override the ControlDesigner.GetHitTest() method. In this method, you
need to convert the mouse coordinates from screen to form coordinates. Then you can call the
SimpleChart.HitTest() method to check if that point lies on a bar:

Protected Overrides Function GetHitTest(ByVal point As Point) As Boolean
 point = Control.PointToClient(point)

 Dim chart As SimpleChart = CType(Component, SimpleChart)
 Dim bar As BarItem = chart.HitTest(point)

Macdonald_694-3C26.fm Page 916 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 917

 ' If the mouse is positioned over a bar,
 ' allow the mouse events to occur.
 Return (Not bar Is Nothing)
End Function

In this example, the designer returns True to pass the click to the SimpleChart control if it
falls on a bar. The SimpleChart control can then handle the MouseDown event and select the
corresponding BarItem object. This step requires the ISelectionService, which is described in
Table 26-8.

Here’s the code you need:

Protected Overrides Sub OnMouseDown(ByVal e As MouseEventArgs)
 MyBase.OnMouseDown(e)
 If DesignMode Then
 Dim bar As BarItem = HitTest(e.Location)

 If bar IsNot Nothing Then
 Dim selectService As ISelectionService = _
 CType(GetService(GetType(ISelectionService)), _
 ISelectionService)
 Dim selection As New ArrayList()
 selection.Add(bar)
 selectService.SetSelectedComponents(selection)
 End If
 End If
End Sub

Table 26-8. ISelectionService Members

Member Description

PrimarySelection Gets the object that is currently the primary selected object. If
more than one object is selected, PrimarySelection gets the
object that was selected most recently.

SelectionCount Gets the total number of selected objects.

GetComponentSelected() Tests if a specific component is currently selected.

GetSelectedComponents() Gets a collection with all the components that are
currently selected.

SetSelectedComponents() Selects the components you specify. You must supply a collection
object with the components you want to select, even if you
want to select only a single component.

SelectionChanging event Occurs when the current selection is about to change.

SelectionChanged event Occurs once the current selection has changed.

Macdonald_694-3C26.fm Page 917 Tuesday, July 25, 2006 8:35 AM

918 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

In this case, you don’t really need the GetHitTest() method—in fact, you could improve
this design by performing all the logic in the ControlDesigner.MouseDown() method. Because
the bounds of each bar are publicly accessible, the ControlDesigner can perform all the hit
testing and use the ISelectionService. However, the GetHitTest() method is important if the
control needs to perform more work or change its internal state (for example, rearranging an
internal collection or adjusting several child items).

Container Controls
A container control is a control that can contain other controls. Technically, any control has
this ability by virtue of its Controls collection. However, only some controls provide this func-
tionality in the design-time environment.

You can create a container control by inheriting from ContainerControl or a derived class
(like Panel). This works because these controls use the ParentControlDesigner (or one of its
derived classes), which has the design-time ability to host other controls. However, even if you
decide to create your own control that doesn’t derive from ContainerControl, you can still get
this functionality—all you need to do is attach the ParentControlDesigner by hand.

■Note One ContainerControl that doesn’t use ParentControlDesigner is the UserControl. If you want the
(potentially confusing) ability to create a user control that allows the developers to add additional child controls,
you’ll need to attach the ParentControlDesigner with the Designer attribute.

For example, consider the following exceedingly simple control, which paints a large
blue border:

<Designer(GetType (ParentControlDesigner))> _
Public Class Container
 Inherits Control

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
 Dim p As New Pen(Color.Blue, 10)
 e.Graphics.DrawRectangle(p, Me.ClientRectangle)
 p.Dispose()
 End Sub
End Class

Because this control attaches the ParentControlDesigner, you can drag and drop other
controls inside it at design time (see Figure 26-6). When you move the container, these child
controls will move with it.

Macdonald_694-3C26.fm Page 918 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 919

Figure 26-6. A custom container control

When creating a container control, you might want the ability to restrict what types of
controls can be placed inside. You have two options, and both involve creating a custom control
designer. To restrict the container control from hosting other types of controls, you need to
override the ParentControlDesigner.CanParent() method, so that it returns True only for
supported controls (in this case, the ContainerChild control).

Public Class ContainerDesigner
 Inherits ParentControlDesigner

 Public Overrides Function CanParent(ByVal control As Control) _
 As Boolean
 ' Children can only be of type ContainerChild.
 If TypeOf control Is Panel Then
 Return MyBase.CanParent(control)
 Else
 Return False
 End If
 End Sub

End Class

To restrict a control from being added to certain containers, you need to override the
ControlDesigner.CanBeParentedTo() method, so that it returns True only for supported
containers:

Public Class ContainerChildDesigner
 Inherits ControlDesigner

 Public Overrides Function CanBeParentedTo(_
 ByVal parentDesigner As IDesigner) As Boolean
 ' Control can be parent only by Container

Macdonald_694-3C26.fm Page 919 Tuesday, July 25, 2006 8:35 AM

920 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 If TypeOf parentDesigner Is ContainerDesigner Then
 Return MyBase.CanBeParentedTo(parentDesigner
 Else
 Return False
 End If
 End Function
End Class

There’s still a problem with this example. Right now the control designers prevent you
from moving the wrong type of child into the Container, or taking a ContainerChild outside of
the Container. However, you won’t be prevented from breaking these rules if you add a control
from the toolbox.

■Tip If you want to create a set of child and parent controls that are used together exclusively (like the
TabControl and TabPage controls), there are a few steps you can take. First of all, add the ToolboxItem
attribute to your child control and use the constructor argument False, so it doesn’t appear in the toolbox at
all. Then, allow instances to be created exclusively through designer verbs and smart tags that are provided
on the container. You can use the techniques demonstrated in this chapter to implement this design.

Licensing Custom Controls
Licensing in the .NET world is far more customizable and far less painful than it is with older
component technologies like COM. The .NET Framework provides several licensing classes in
the System.ComponentModel namespace. By using and extending these classes, you can grant
or allow access to your control, using ordinary .NET code to check external resources like the
Windows registry, an XML file, or even a remote Web service for registration information.

There are four basic ingredients for .NET licensing:

• The license. This is an object that contains the licensing information. You might create
it based on the information in a license file, a registry key, a piece of hardware, or some-
thing entirely different. However, this is the programming abstraction that your
licensing code will evaluate. You can create a custom license class by deriving from
System.ComponentModel.License.

• The license provider. This is where you write the code to implement your licensing
policy. The license provider creates the license object. To build a custom license
provider, you derive from System.ComponentModel.LicenseProvider and override
IsKeyValid() and GetLicense().

• The LicenseProvider attribute. This connects a component to a license provider.

• The LicenseManager. This is a part of the .NET infrastructure. Once you’ve attached your
license provider with the LicenseProvider attribute, it’s up to you to call the LicenseManager.
Validate() method when your class is instantiated to verify that the license is in order. In
turn, the LicenseManager communicates with your license provider and then provides
your component with the license object. Your component holds on to its license for the
duration of its lifetime.

Macdonald_694-3C26.fm Page 920 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 921

Figure 26-7 shows how these classes interact.

Figure 26-7. The licensing classes

The .NET licensing model allows you to distinguish between application and control
licensing. Application licensing is concerned mainly with the runtime requirements of an
application. Control licensing distinguishes between runtime use (which is often unrestricted)
and design-time use. The goal is to allow free distribution of the control, but make money
selling the control assembly to developers. Making this distinction in your licensing classes is
easy, because the GetLicense() method that’s a part of all license providers includes the infor-
mation about whether the component is in runtime or design-time mode.

■Note Technically, licensing can be applied to any class. However, in this discussion we’re primarily inter-
ested in licensing control classes.

Simple LIC File Licensing
To best understand .NET licensing, it helps to start with a simple example using the
LicFileLicenseProvider class. The LicFileLicenseProvider is a simple file-based licensing
implementation that derives from LicenseProvider. This class doesn’t provide any real protec-
tion, but it’s a stepping-stone to the more-advanced licensing strategies you’ll look at next.

The LicFileLicenseProvider searches for a text file in the same directory as the control
assembly. This LIC file uses the control’s fully qualified class name for a file name, so a control
named SimpleControl in a project named LicensedControl requires a license file named
LicensedControl.SimpleControl.LIC. The file starts with a simple predefined text string in the
format “[Component] is a licensed component.”

Thus, the contents of the LicensedControl.SimpleControl.LIC file would be as follows:

LicensedControl.SimpleControl is a licensed component.

This file must be placed in the client project’s Bin\Debug directory (where Visual Studio
compiles the final EXE application just prior to launching it).

Macdonald_694-3C26.fm Page 921 Tuesday, July 25, 2006 8:35 AM

922 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

■Note It’s worth noting that these LIC files don’t need to be distributed with a client application. When you
compile a Windows program, a license.licx file is created with all the licensing information for all license
controls. This file is compiled as a binary resource and embedded in the final client assembly. However, if
another developer wants to create a client application with your control, a LIC source file is needed. This gives
you a separate licensing path for design-time use (in which case you need the LIC file) and runtime use (in
which case you need only the embedded resource) with a control.

To enforce LIC file licensing, you need to add a LicenseProvider attribute to your control
class to tell .NET to use the LicFileLicenceProvider class to validate licenses.

<LicenseProvider(GetType(LicFileLicenseProvider))> _
Public Class SimpleControl

Additionally, you need to create the license when the control is created, using the shared
Validate() method of the LicenseManager class:

Private license As license

Public Sub New()
 license = LicenseManager.Validate(Me.GetType(), Me)
End Sub

The Validate() method throws a LicenseException if it doesn’t find the correct string in the
LIC file and refuses to create your control.

Finally, you need to dispose of the license when the control is disposed.

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 If license IsNot Nothing Then
 license.Dispose()
 End If

 MyBase.Dispose(disposing)
End Sub

Now if you try to add this control to a form and you haven’t created the correct LIC file,
you’ll be refused with an error message. If you create the LIC file, you’ll be able to add instances
of the control to the form.

Custom LIC File Licensing
Clearly, simple LIC file licensing doesn’t offer much in the way of protection. Any user who
knows a little about the .NET Framework will realize the generic format that must be created
for a LIC file. However, you can add more-stringent requirements by creating a custom license
provider based on the LicFileLicenseProvider.

All you need to do is inherit from the class and override the IsValid() method to change the
validation routine. The IsValid() method receives the contents of the LIC file and returns True
or False to indicate if the contents are correct. Thus, you could use the IsValid() method to

Macdonald_694-3C26.fm Page 922 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 923

check a license number against a company-specific algorithm. (You can also override the
GetLicense() method if you want to retrieve the license file from another location. You’ll see an
example of how to override GetLicense() a little later on.)

The example below extracts the first three characters from the license file and verifies that
they correspond to a number that is divisible by 7.

Public Class FileLicenseProvider
 Inherits LicFileLicenseProvider

 Protected Overrides Function IsKeyValid(ByVal key As String, _
 ByVal type As System.Type) As Boolean
 Dim code As Integer = Int32.Parse(key.Substring(0, 3))
 If code <> 0 Then
 If Math.IEEERemainder(code, 7) = 0 Then
 Return True
 Else
 Return False
 End If
 Else
 Return False
 End If
 End Sub

End Class

More-Advanced License Providers
Control licensing doesn’t need to be based on LIC files. In fact, you can create any type of licensing
scheme imaginable. You can even perform tremendously annoying tricks like allowing controls to
be registered only to specific computers. To implement a custom licensing scheme, you need
to create two classes: a custom license provider and a custom license.

The custom license is the easiest ingredient. It simply derives from the base License class,
overrides the LicenseKey property and the Dispose() method, and adds properties for any required
pieces of information. You also need to add a constructor that configures the license, as the
LicenseKey property is read-only.

Public Class CustomLicense
 Inherits License

 Private key As String

 Public Overrides ReadOnly Property LicenseKey() As String
 Get
 Return key
 End Get
 End Property

Macdonald_694-3C26.fm Page 923 Tuesday, July 25, 2006 8:35 AM

924 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

 Public Sub New(ByVal key As String)
 Me.key = key
 End Sub

 Public Overrides Sub Dispose()
 ' This method must be overriden.
 End Sub

End Class

The custom LicenseProvider plays the same role as the LicFileLicenseProvider. It provides
a GetLicense() method, which the .NET Framework calls to validate the control. For example,
when you use the LicenseManager.Validate() method in the constructor for the DirectoryTree
control, .NET uses the LicenseProvider.GetLicense() method to retrieve the license.

In the GetLicense() method, you may want to examine whether the component is in design-
time or runtime mode, retrieve license information from another source, and apply different
rules. Additionally, you may want to return a valid license object, return nothing at all, or throw
a LicenseException to indicate that the control should not be created. The LicFileProvider
throws a LicenseException to indicate when a LIC file is not valid.

The example that follows looks for a predefined registry entry at design time. At runtime,
it first examines the current context and then defaults to the registry if a compiled license key
can’t be found. The registry value is stored under a predefined company name, followed by
the fully qualified name of the control. The key is validated as long as it matches the string
“1234567890” and a CustomLicense object encapsulating this key is returned.

Public Class RegistryLicenseProvider
 Inherits LicenseProvider

 Public Overrides Function GetLicense(_
 ByVal context As System.ComponentModel.LicenseContext, _
 ByVal type As System.Type, ByVal instance As Object, _
 ByVal allowExceptions As Boolean) As License
 Dim key As String = ""

 If context.UsageMode = LicenseUsageMode.Runtime Then
 ' Try to find key in current context.
 key = context.GetSavedLicenseKey(type, Nothing)
 End If

 ' Always look in the registry at design time.
 ' If the key wasn't found in the current context at runtime,
 ' we can also look in the registry.
 ' Another option might be to always allow the control at runtime,
 ' and restrict it just at design time.
 If key.Length = 0 Then
 ' A debugging hint (remove when you perfect the licensing scheme):
 MessageBox.Show("Performing registry lookup.", _
 "RegistryLicenseProvider")

Macdonald_694-3C26.fm Page 924 Tuesday, July 25, 2006 8:35 AM

C H A P T E R 2 6 ■ A D V A N C E D D E S I G N - T I M E SU P P O R T 925

 Dim rk As RegistryKey
 rk = Registry.LocalMachine.OpenSubKey("Software\MyCompany\" & _
 type.ToString())
 If rk IsNot Nothing Then
 key = rk.GetValue("LicenseKey", "").ToString()
 End If

 ' Save key in current context.
 If key IsNot Nothing AndAlso key.Length <> 0 Then
 context.SetSavedLicenseKey(type, key)
 End If
 End If

 ' Check if key is valid.
 If Not IsValid(key) Then
 If allowExceptions Then
 Throw New LicenseException(type)
 End If
 Return Nothing
 End If

 ' Return the license object.
 Return New CustomLicense(key)
 End Sub

 Private Function IsValid(ByVal key As String) As Boolean
 Return key.CompareTo("1234567890") = 0
 End Function

End Class

The GetLicense() method is provided with a fair bit of information, including the current
LicenseContext, the type of the component that is requesting the license, and a reference to an
instance of the component. The LicenseContext object is particularly useful—it allows you to
tell if the component is being used at design time or runtime by evaluating the LicenseContext.
UsageMode property.

Using the information supplied to the GetLicense() method, you can easily create a single
LicenseProvider that could handle the licensing for all different types of controls. Custom
licensing schemes are limited only by your imagination and can become quite complex. The
material presented here is only a basic introduction for what a component vendor might do.

Macdonald_694-3C26.fm Page 925 Tuesday, July 25, 2006 8:35 AM

926 C H A P T E R 2 6 ■ AD V A N C E D D E S I G N - T I M E S U P P O R T

The Last Word
In this chapter, you’ve considered a wide range of techniques for implementing better design-
time support. You began by creating custom designers and using them to filter properties,
interact with the mouse, and add frills like designer verbs. You then considered how to access
designer services, create custom smart tags, and build your own collection controls. Finally,
the chapter wrapped up with an introduction to licensing.

There’s still a lot to learn before you’re a master of control development. If you want to
learn more, start by exploring the other designer services, which allow you to plug in to other
important areas of IDE functionality. You can also look at the other methods that the
ComponentDesigner and ControlDesigner base classes provide. By overriding these, you
can configure even more details about your control’s design-time behavior, including how it
participates with snap lines, whether it supports drag-and-drop operations, and how it tracks
linked controls. The MSDN class reference is your best bet for exploring these details. You may
also want to consider the sample code for more-elaborate sample controls, some of which you
can find at www.windowsforms.net.

Macdonald_694-3C26.fm Page 926 Tuesday, July 25, 2006 8:35 AM

927

■ ■ ■

A P P E N D I X A

Creating Usable Interfaces

Sometimes it seems that no one can agree about what user interface design really is. Is it the
painstaking process an artist goes through to create shaded icons that light up when the mouse
approaches? Is it the hours spent in a usability lab subjecting users to a complicated new appli-
cation? Is it the series of decisions that determine how to model information using common
controls and metaphors?

In fact, user interface design is a collection of several different tasks:

• User interface modeling. This is the process in which you look at the tasks a program
needs to accomplish and decide how to break these tasks into windows and controls.
To emerge with an elegant design, you need to combine instinct, convention, a dash of
psychology, and painstaking usability testing.

• User interface architecture. This is the logical design you use to divide the functionality
in your application into separate objects. Creating a consistent, well-planned design
makes it easy to extend, alter, and reuse portions of the user interface framework.

• User interface coding. This is the process in which you write the code for managing the
user interface with the appropriate classes and objects. Ideally, you follow the first two
steps to lay out a specific user interface model and architecture before you begin this stage.

This book concentrates on the second and third steps, where user interface designs are
translated into code using the tools and techniques of .NET. This appendix, however, focuses
on the first task of user interface design. Here you’ll examine the essential guidelines that no
programmer can afford to ignore. You learn basic tips for organizing information, handling
complexity, and entering into the mind of that often-feared final judge—the end user.

You could ignore these topics completely. However, the greatest programming framework
in the world won’t solve some common, critical user interface mistakes. Learning how to design an
interface is no less important than learning how to work with it in code.

Macdonald_694-3AppA.fm Page 927 Wednesday, July 26, 2006 10:54 AM

928 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

Why Worry About the Interface?
The user interface is the thin outer shell that wraps a program’s logic and provides a way for
ordinary users to interact with it. Usually, user interfaces have three responsibilities:

• Interpreting what a user wants and translating it into the corresponding operations

• Retrieving information and displaying it in different ways

• Guiding users through a task (and steering them away from common mistakes)

User interfaces bear the weight of a program, because they are the only part the user interacts
with. It doesn’t matter what your program can do if it’s trapped behind a limited, frustrating
interface—it’s a little like locking a concert pianist in a prison cell. As with anything else, people
judge and identify programs based on what they can see from the outside. Friendly, enjoyable
interfaces are able to attract users just because of the way of they look. Ugly and confusing
interfaces, on the other hand, lead to a legacy of headaches for developers and end users.

In programming circles, user interfaces are often the subject of heated debate. Some devel-
opers resent the whole topic of user interface design, because they feel it detracts from “real”
programming. They dread the vaguely defined requirements, the hard-to-please end users, and
the perception that they have to simplify the product of their perfectly natural first instincts.
Another group is made up of developers who love to experiment with the latest user interface fad.
They aim to discover the newest and most avant-garde user interface controls before they have
been adopted as standards, even when they lead to somewhat bizarre applications.

Ultimately, both approaches are bad news for end users, who just want a simple, unobtrusive
interface that works exactly the way they expect it to. To create a good user interface—one that
satisfies the average user—you need to know the unwritten rules of user interface design.

■Tip It’s sometimes suggested that there is no such as thing as bad interfaces—just interfaces that are
suited for different types of users. Allow me to put this myth to rest. There are definitely bad (and even atrocious)
interfaces. Although it’s certainly true that you need to tailor the interface to the audience, user confusion is
usually the result of violating conventions.

A Brief History of User Interfaces
You might think that user interface design is a history of continuous innovation. In fact, user
interface design is marked by a series of distinct eras. Typically, in each era one predominant
approach develops. Then, at some unpredictable time, a lone programmer or innovative
programming team creates a truly new user interface model that dazzles the world. In the
months that follow, hundreds of developers rush to create similar but mutually incompatible
versions. This process of imitation continues until the next revolution.

So what are these eras of user interface development? It all began very simply. . .

Macdonald_694-3AppA.fm Page 928 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 929

The Command-Line Era
Almost everyone who has any experience with computers has at least glimpsed the fabled
command line. Today’s novice users instinctively think of it as some backdoor way of accessing
features that are forbidden to and hidden from most people. Even advanced computer users
are sometimes bound by the superstition that a command line lurks behind the scenes in the
latest Windows operating system, secretly controlling things.

A command-line interface is the power user’s dream. Of course, even power users have to
learn somewhere, and although modern-day command-line interfaces are usually fairly friendly,
because they include an autocompletion feature to help you fill in hard-to-remember commands,
the command line was not always an easy tool to master.

The command line is, in many respects, the original way of doing things, and it’s arguable
that it’s not so much an interface design as a lack of any user interface, at least in the sense we
use the term today. Command lines began as the basis for operating systems like DOS (see
Figure A-1) and UNIX, were the basis for early database applications like dBase, and continue
to proliferate in unusual places.

Figure A-1. The archetypal command-line interface

For example, the Visual Studio interface provides a Command Window that lets you interact
with the IDE or execute code statements against the currently running application. Besides a
few rudimentary enhancements (like autocomplete), it’s still a basic command-line interface
(see Figure A-2).

Figure A-2. The command line in Visual Studio

Macdonald_694-3AppA.fm Page 929 Wednesday, July 26, 2006 10:54 AM

930 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

Command-line interfaces are characterized by the following traits:

• Ultimate control. Users can do anything in any order, so long as they remember the
“secret codes.”

• Ultimate lack of structure. Users not only have to remember what to do, but in what
order to do it. In DOS, just moving a file to a new directory can be an agonizing multistep
operation. By default, the command line assumes that each operation is atomic, and it
doesn’t associate one task with another.

• A “hands-off” treatment of the user. With a few minor exceptions, there are no helpful
prompts, tips, or guidance.

• No metaphors. This makes it easy to grasp the basic process (type in words, press Enter),
which never changes. However, it makes it impossible to guess how to do a related task
based on a previous one. (For example, if you know how to copy a file in UNIX, that
doesn’t mean you know how to delete it.)

Today, a command-line model could still turn up in one of your user interfaces, but it’s
unlikely. On the other hand, it’s still a familiar tool in the developer world, particularly with
formula-based languages and SQL.

The Question-Answer Model
The question-answer model is one of the oldest user interface models, and it’s still alive and
well in the modern world. Its principles are the polar opposite of a command-line interface:

• Prompts at every step of the way. Thus, you don’t need to remember what the program
requires. However, you are also immediately stuck if you are missing a piece of informa-
tion, as question-and-answer programs are usually unidirectional—if you can’t move
forward, you can’t go anywhere.

• No control. This can be either a blessing or a curse. If the program has an accurate idea
of your needs, you are in a “benevolent dictator” scenario, which makes your life consid-
erably less complicated. But if the program makes the wrong assumptions, you have no
way to fight it.

• Ultimate guidance. Some kind of instruction is provided at each step in the process.

• Still no metaphors. Well, that’s not exactly true—sometimes a superficial metaphor is
used, in which the program invites you to imagine that a friendly guide is asking you a
series of questions, and trying to do what you need.

The question-answer programming model has a valuable place in the world today, and it’s
seen commonly in Windows programs with wizards. Wizards lead you through a set of questions
and then perform a complicated task for you.

As you’ve no doubt discovered, there are useful wizards (like those that set up hardware on
your computer). There are also less-useful wizards that seem to be more complicated, demanding,
and restrictive than the program itself (like those that create documents for you in some popular
graphics programs). Figure A-3 shows the wizard Windows uses for adding a shortcut.

Macdonald_694-3AppA.fm Page 930 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 931

Figure A-3. A genuinely useful wizard

■Tip One good habit is to implement a wizard in your application only after you have created a standard
Windows interface. This ensures that you don’t end up inadvertently coding the application functionality inside
the wizard itself, which would limit flexibility.

Question-answer programs are double-edged swords that can frustrate as much as they
please. The next few sections outline a few key principles that can help you use this model.

Ask What the User Can Tell You

It makes sense to ask a user to tell you what company made his or her printer. However, it
doesn’t make sense to ask a user whether you should convert tabs to spaces for DOS print oper-
ations. Instead, just pick a suitable default. Remember, no one likes to be asked a question they
can’t answer. Novice computer users might just give up altogether or stop reading other prompts.

Restrict It to a Single Task

A wizard works well for a single task that can be accomplished in only one way (like adding a
printer driver). As soon as you start adding an element of variety or creativity, the wizard can’t
keep up. Don’t think that you should be proud of a complex wizard that branches out condi-
tionally to use different windows depending on previous user selections. All you’ve done is
create a traditional single-screen DOS program wherein tasks must be completed in separate
windows and in a set order.

Beware of Forcing Your Preferences

Every wizard has its own hard-coded patterns. The user never has a choice of what order to
answer questions or supply information, and that lack of control can frustrate anyone who
wants to approach the task differently. Be forewarned, especially if you are using a wizard for a
complex task: you are enforcing a single way of working according to your assumptions and

Macdonald_694-3AppA.fm Page 931 Wednesday, July 26, 2006 10:54 AM

932 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

biases. If those don’t match the way the majority of users want to work, your wizard will only
make them miserable.

Use Signposts

Let the user know what step is coming next. For example, at the end of one step add a sentence
that helps prepare for the next. Give a general overview of where the user is in the wizard (e.g.,
“Step 3/5”). Even better, separate the wizard into logical stages (Choose a Location, Choose
Files, Copy Files, and so on), and list these all at the top of the window. Then highlight the
current stage. This is similar to the way Amazon.com guides a visitor through the ordering
process.

The Menu-Driven Model
The menu-driven model is the most easily recognizable user interface model. It came to popu-
larity with document-based programs, like DOS word processors, and then took over nearly
every application with the Windows operating system. It’s easy to see why—menus represent
an attractive compromise, allowing you to prompt users without restricting the way they work.

• Commands performable in any order. You have the same freedom you have with the
command-line interface and the same ability to use keyboard shortcuts.

• On-screen prompts. You are never left on your own, and the very grouping of elements
can sometimes help you remember what you want to do. For example, if you want to
change spacing in Microsoft Word you might not know it has anything to do with para-
graphs, but you would be able to decide that the Format menu is probably the best place
to start your exploration.

Menus are one of the dominant interface elements in Windows programming, and they
allow absolutely no room for experimentation or innovation (unless, of course, you’re Microsoft,
in which case you can roll out a new menu “standard” with each new version of Office). To
create a menu, you copy Microsoft Office as closely as possible, even adding a vestigial File
menu when your program has nothing to do with files or documents. Similarly, you would do
best to emulate basic options like Edit, View, Window, and even Tools before you start adding
menus organized around program-specific concepts. You’ll learn more about Microsoft’s role
in your user interface design a little later in this appendix.

The GUI Era
Shortly after the menu excitement subsided, everyone fell in love with pictures and buttons
with the Macintosh OS and Microsoft Windows. The GUI era introduced an avalanche of concepts
and user interface elements, several of which are often summarized with the acronym WIMP
(windows, icons, mouse, and pointers). One key innovation in the GUI era was the introduc-
tion of the mouse, which provides more points of entry for interacting with an application (as
in “I want to click here”). Another change was the shift to realistic representation—for example,
word processors that show a close approximation of how a printed document will look. A central
idea in the GUI era was to base user interfaces on real-world metaphors. For example, if you
want to delete a file, drag it to an icon that looks like a trash can, because that’s what you use to
dispose of rubbish in the real world.

Macdonald_694-3AppA.fm Page 932 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 933

Of course, some things are much harder to convey with pictures than others are (for
example, no application provides an icon that accurately suggests “synchronize my e-mail”).
Metaphors are also notoriously difficult to localize or adapt for other languages and cultures.

The following are some of the hallmarks of the GUI era:

• Visual clues. A button with a gray border seems to pop off the window—it just looks
pushable. Web-like buttons that glow when the mouse moves over them also give valuable
feedback, and future versions of Windows (like Vista) will add similar feedback mechanisms.

• Real-world analogies. A tabbed dialog box looks like a set of tabbed pages in a binder;
sticky notes in Microsoft Outlook look like real-life sticky notes. Most contact-management
software tries to look like a wall calendar and an address book (see Figure A-4 for an
example). The idea is that the user already knows how to use these things in the real world.

• Transferable knowledge. For example, if you learned how to delete a file, a program can
provide a trash can that lets you delete a product record, and you might be able to guess
how to use it based on the similarity. (Of course, metaphors enforce their own biases—
knowing how to format a paragraph won’t help you format a floppy disk.)

Figure A-4. A metaphor-based calendar and organizer

All these points are essentially an effort to make a program so logical it’s almost instinctual.
The goal is for a user to require no special training, and just be able to apply assumptions
garnered from other programs and the real world when learning a new application. Of course,
because the focus is on the user, you need to know quite a bit about how an average user thinks
before you can create the interface.

Macdonald_694-3AppA.fm Page 933 Wednesday, July 26, 2006 10:54 AM

934 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

The GUI model provides a great deal of freedom for the developer (some might say too
much freedom). In the Windows world, designing a first-rate user interface has less to do with
inventing metaphors and more to do with following established conventions.

Creativity vs. Convention
Many user interface projects are sidetracked when they meet up with the developer’s need for
creativity. Unfortunately, an application’s user interface doesn’t just determine how a program
looks; it also determines how it acts (or from the user’s point of view, how it works).

Ask yourself this question: Would car manufacturers allow the same degree of creativity
that some developers take in application design? The world’s reliance on vehicles (and the seri-
ousness of any mistake) makes it almost impossible to imagine a car manufacturer taking such
liberties. Every year, new car models appear that have been tweaked by entire design teams of
engineers with bold promises that they are entirely new and modern. But it doesn’t take much
inspection to see that the air conditioners and radios always work almost exactly the same as
before, down to the last button; the steering wheel looks and works exactly the same way; the
seat configuration is generally unchanged; and the controls for starting, stopping, and slowing
the car down are indistinguishable. The average driver could close his or her eyes and still
locate the ignition in most cars.

Even in some of today’s better applications, this level of consistency is rare. If you install a
new program on your computer, are you confident that Ctrl+S is the Save command? Will File ➤
Print send your document straight to the printer or give you a chance to tweak some settings
first? And exactly where do you find the menu command for that all-important Preferences or
Options window. . . under Tools, Edit, or File?

■Tip Some conventions are well followed (like using Esc to exit a dialog box). Other conventions have taken
over just because Microsoft enforces them (like the way you resize or move a window).

Convention is the way that users learn to work with a variety of software. Violating conven-
tion, because convention is somehow inferior to your highly idiosyncratic vision, is a poor idea.
It just multiplies the amount of information a user needs to know to use computer software.
Users aren’t interested in spending long hours to learn new user interface idioms for business
software—and companies aren’t interested in paying to train them for it.

Consistency in .NET
Microsoft has made no secret of its goal to use the .NET platform to make the programming
model more consistent for different programmers. You can see evidence of this in the different
.NET languages, which share a consistent set of data types and functionality drawn from a
shared class library. You can see it in the lavish use of interfaces and inheritance, which defines
how specialized classes should work, so they resemble other, similar classes. You can even see
it in the way Visual Studio allows you to use its powerful debugging tools, regardless of whether
you’re working with code for a Windows project, an ASP.NET page, or even a database stored
procedure.

Macdonald_694-3AppA.fm Page 934 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 935

In short, if cutting-edge software developers prize consistency, why would anyone assume
it’s not just as important to the beginning computer user?

The “Act Like Microsoft Office” Principle
Windows developers have it rather easy. The secret to making a program that the average user
can understand, and even enjoy, is usually just to copy Microsoft as closely as possible. That
isn’t to say that Microsoft has made the best choices in its applications—but for the most part,
that isn’t important. If the users of your application have ever used another application, chances
are that it’s been Microsoft Office or Internet Explorer. In fact, if your users are regular computer
users, they probably spend the majority of their computing time with Word and Excel.

There’s rarely a good reason for deviating from Microsoft standards. If average users have
learned anything, it’s the common keystrokes and menu organizations in an Office applica-
tion. Not only that, but Microsoft is known to pour ridiculous amounts of money into extensive
usability tests, suggesting that their designs might not only be more recognizable than yours,
but they could very well be better.

If you aren’t creating an office-productivity or document-based application, you should
still pay careful attention to Microsoft’s designs. In almost every field, Microsoft has a well-
worn example (including utilities for playing music, browsing the Internet, and reading e-mail). In
some cases, you might need to investigate another application (like Adobe Photoshop in the
graphics arena), but Microsoft is generally the standard.

■Tip Remember, when you follow expected conventions, you don’t just make it easier for users to learn
your application. You also help train those users for the next programmer’s software.

Administrative Utilities
One good example of a Windows convention is found in Microsoft’s design of system and
management utilities. These utilities almost always use a paired TreeView and ListView control,
loosely resembling Windows Explorer. In Windows 2000 and later operating systems, Microsoft
uses this design everywhere it can, even stretching the convention to apply it to computer
hardware configuration and user management (see Figure A-5).

This type of design has significant merits. First, it’s easy to see how items are related.
The TreeView suggests the basic levels of grouping and subgrouping. You can often add multiple
TreeView levels to combine features that would otherwise be scattered across several different
windows. Additionally, you can gather a great deal of information without leaving the window.
The ListView pane can be adapted to show a variety of data types without obscuring the naviga-
tional controls (the TreeView). This allows users to be at ease. Furthermore, the TreeView/ListView
design doesn’t enforce any required order for performing tasks, and it employs graphical icons
to help break up the monotony of a great deal of information displayed at once.

Macdonald_694-3AppA.fm Page 935 Wednesday, July 26, 2006 10:54 AM

936 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

Figure A-5. An Explorer-like user interface

This design also has some idiosyncrasies. For example, the menu conventions favor a
streamlined Action menu instead of File and Tools menus. Sometimes records are edited in a
special window that appears in place of the ListView, and in other cases a separate window
pops up to allow the changes. It’s also extremely ambitious. It could quickly confuse basic users,
who tend to have trouble understanding the relationship between the TreeView and the ListView
control. Thus, your decision to use this interface style should depend on your target audience.

In an impressive attempt to achieve standardization, this design is found in almost all of
Microsoft’s current programs, from SQL Server to Visual Studio. It’s an example of a lesser-
known yet keenly important Microsoft standard: the Microsoft Management Console (MMC)
framework. Currently, you can’t create MMC applications in .NET, but you can (and should)
follow the organization and conventions for common utility and management tasks like
configuring users or browsing a database.

Ultimately, you need to know both your application type and your audience. For example,
while the MMC design is ideal for advanced tasks, Microsoft Office provides the canonical rules
for document-based applications geared to less-experienced users.

Know Your Application Type
If you can’t identify the type of application you are creating, you are in for a rough time. Here
are some common types (which are detailed in other chapters of this book):

• Configuration utility. This may be based on a single control panel, an MMC or Explorer-
like interface, or a sophisticated wizard.

• Workspace. The workspace is an “application desktop” that combines a set of features
into a common environment that may add some kind of status display. This application
type is best suited to sophisticated applications, particularly for proprietary software
that may be the only application used on certain workstations.

Macdonald_694-3AppA.fm Page 936 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 937

• Document editor. This is one of the most common Windows application types that
we’re all very familiar with; I mention it here for completeness of common application types.

• Monitor. Generally, this is a system tray program that lurks in the background, automati-
cally performing certain tasks when it’s directed by the user or when it receives notification
from the operating system. For example, a monitor might wait for a file and copy or
import it automatically. If you need to interact with this program, you’ll typically do so
through a context menu for its system tray icon.

• Data browser. This is generally organized as an Explorer-type application that lists
records and allows you to view and update them.

Know Your User
Different audiences require different degrees of assistance. The user browsing quickly and
effortlessly through the intricacies of the Windows registry with regedit.exe is not the same user
who turns to Microsoft Agent for help creating a graph. If you are designing a professional
application for a specific audience, it may help you to begin by creating a profile that clearly
identifies the abilities, expectations, and computer comfort level of the end user.

However, the “know your user” principle is often used as a crutch to excuse complicated
interfaces based on the imagined requirements of professional users. As a rule, it is possible to
design an interface that combines power-user shortcuts and first-time-user guidance. In fact,
it’s essential. The users of your application will have different requirements when they first use
the software (or evaluate it for a potential purchase) than when they master it as part of their
daily routine. A good interface recognizes these challenges and helps guide users as much as
necessary without obstructing functionality. For example, consider Microsoft Word, in which
novice users find their way around using the menus for clues, intermediate users save clicks
with the toolbar icons, and power users can work speedily with shortcut keys and drag and
drop. Not only does this interface handle multiple user levels, but it helps users graduate from
one level to another, because toolbar buttons match menu commands, and menu text includes
the relevant shortcut keys.

■Caution Be careful not to overestimate the user. The typical programmer spends an incredible amount
of time planning and working with an application and can’t really imagine what it would be like to see the
application for the first time.

The greatest art of user interface design is creating applications that can be used efficiently
by different levels of users. To master this art, you need to know where to impose restrictions
and how to handle complexity.

Handling Complexity
Some programmers (and many management types) believe the myth that when users complain
that an application is too complicated, it’s because a specific feature is not prominently available.
The immediate solution is often just to slap a new button somewhere that will supposedly

Macdonald_694-3AppA.fm Page 937 Wednesday, July 26, 2006 10:54 AM

938 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

make it quicker to access features and thus render the program easier to use. Unfortunately,
life (and user interface programming) isn’t that easy.

For example, consider the sample audio recorder and its “improved” version, both shown
in Figure A-6. It may be a little quicker to open and save files in the second version, but is the
interface actually easier to use?

Figure A-6. Two approaches to an audio recorder

In reality, when a user complains that an interface is confusing, it’s rarely because it lacks
a few quick shortcut controls or time-saving features. Rather, it’s almost always a sign that the
user interface is not logically organized. Adding more buttons to the audio recorder doesn’t
just make the interface look ugly; it also makes it seem impossibly complicated.

Segmenting Information
Deciding how to divide a product’s functionality into separate applications, windows, and
controls is the most important user interface decision you will make. One common pattern is
to group different types of information into similar management windows. For example, a
database application might have an add/remove/configure window for configuring customer
records or product records. Other applications use a task-based approach, with a wizard that
presents multiple steps leading to a single goal. Before beginning an application, you should
identify the most obvious logical divisions and build your application along those lines.

Some other design principles are outlined here:

• Use the common Windows analogies. These are “obvious” metaphors (for example,
document icons represent files) and shouldn’t require any imagination.

• Don’t let metaphors take over your program. You shouldn’t find a cute way to reuse
a metaphor when it will just make a program more confusing. (An example of this
problem is the Mac OS’s use of a trash can both to delete files and to eject discs.)

• Use the right controls to offload the work. Controls like the TreeView, ListView, and
DataGrid can handle the basic user interface infrastructure.

• Hide unnecessary information.

• Keep it simple to use. A program appears logical when it does what the user expects.
Keep this in mind, and you can create the illusion of an intuitive program.

Macdonald_694-3AppA.fm Page 938 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 939

Inductive User Interface
Microsoft has a new methodology designed to make user interfaces simpler by breaking features
into individual self-explanatory windows. Each window is used for one task, rather than the
common combined window that incorporates a set of tasks related to a single type of informa-
tion. This type of interface, geared toward the lowest (and most common) level of computer
user, often combines Web-style forms and requires more windows than usual. At best, it’s
refreshingly easy to understand; at worst, it’s awkward (because it takes multiple clicks to move
from page to page and complete a simple operation). Inductive user interface (IUI) design is
present, for example, in recent versions of Microsoft Money.

IUI is in its infancy. No clear conventions exist, and it’s fairly labor-intensive to design. For
most programmers, it makes sense to ignore IUI until it is better-established and more conven-
tionalized. You can read the initial IUI guidelines online at www.msdn.microsoft.com/library/
en-us/dnwui/html/iuiguidelines.asp.

The next generation of the Windows operating system (called Vista) will incorporate an
entirely new user interface framework (called Avalon), which will introduce new GUI elements
that make it easier to design an IUI. You can get early preview information (and even download
beta bits usable on Windows XP and Windows Server 2003) from www.msdn.microsoft.com/
windowsvista/building/presentation.

Helpful Restrictions
Most programmers fall into the category of “power users” of computer systems. Therefore, it
sometimes comes as a surprise when programmers learn that one of the kindest things they
can do for a user is to impose restrictions. To a developer, restrictions often seem contrary to
the goal of application programming—they make a program less able to do things. However,
when you use intelligent restrictions, you may curb the overall abilities of your program while
increasing the average user’s efficiency and confidence.

Restricting the User’s Ability to Make a Mistake
If you aren’t careful, a great deal of code can be wasted attempting to detect and deal with
errors. The problem is that once a user error has occurred, there is no elegant way to report it
to the user and help the user continue. No matter how carefully worded or helpful the error
message attempts to be, it’s likely to make the user feel foolish, guilty, and frustrated. (In fact,
usability studies show us that users will probably just click OK or Cancel as soon as the message
appears to clear it from the screen, and then try the same thing again.)

It doesn’t matter whether you display this message after the user clicks the OK button or
(worse yet) as soon as a field loses focus. Mentally, the user has moved on to the next task, and
the error message is an interruption.

A better approach is to spend your energy preventing errors from happening in the first
place. Here are some examples of how to do this:

Macdonald_694-3AppA.fm Page 939 Wednesday, July 26, 2006 10:54 AM

940 A P P E N D I X A ■ C R E A T I N G U S A B L E I N T E R F AC E S

• Limit the number of characters a text box can accept, and use the key-press event to
make sure invalid characters are ignored.

• Use drop-down lists when the user is selecting one of several predefined choices.

• Disable invalid options. In the case of a complex application with many menu options
and toolbars, you may need to centralize this task in some sort of state function or link
different user interface elements.

If you must show error messages, don’t interrupt the user. Instead, use a polite notification
technique (like tooltips). The .NET ErrorProvider makes this easy (see Chapter 25).

■Tip Many of these options represent a trade-off between usability and maintainability. For example,
enforcing field-length restrictions in a text box can cause quite a headache if the allowed length of the under-
lying database field changes. A better approach may be to dynamically determine the length of the field from
the database when the form first loads. This ensures that you won’t need to recompile your code when the
database changes, but it also forces you to write (and test) additional code.

Restricting the User’s Choices
Another common myth in user interface programming is that the more advanced an applica-
tion is, the more options it should provide. Some developers even believe that if you can’t
decide between two different ways to provide a feature, you should do both and allow the user
to choose. Unfortunately, this type of logic (deciding not to decide) is shirking your duty as a
user interface designer. The end user will not have your in-depth understanding of the appli-
cation and may not even know that a configuration option is available or how it works. Adding
more options dramatically raises the number of possible problems and guarantees a lack of
consistency across different installations.

The basic rule is that if something appears more complicated, it is more complicated.
Adding gratuitous options can make simple operations complicated (and intimidating). Think
of the incredible complexity of nonconfigurable devices like a car or a microwave. If microwave
users had to navigate through a series of menus that gave options about the pitch of the “food
ready” beep, the intensity of the interior light, and the time-display mode, the common house-
hold appliance would be much more intimidating. Even more-practical enhancements, like
allowing the user to fine-tune power levels, preset cooking time a day in advance, or set the
platter rotation speed probably aren’t worth the added complexity.

Heavily customizable applications also bury genuinely useful options in a slew of miscel-
laneous, less-important properties. Few users dig through the whole list to find the important
options—therefore you actually reduce the usable features of an application as you add extra-
neous elements. Most options either can be eliminated and handled by a reasonable default or
should graduate to a prominent place where the average user can configure them. Remember
that every time you give a user an option, you are forcing the user to make a decision. Many
users become increasingly unsettled and less confident as they pass by options they don’t
understand.

Macdonald_694-3AppA.fm Page 940 Wednesday, July 26, 2006 10:54 AM

A P P E N D I X A ■ CR E A T I N G U S A B L E I N T E R F A C E S 941

Restricting the User’s Imagination
If you’ve ever worked at a help desk, you probably understand that the human mind thinks in
terms of cause and effect. The human desire to identify underlying reasons for events is so strong
that users actually invent explanations for mysterious problems or unexpected behavior with
their applications, even if these explanations seem wildly fantastical to a more experienced user.

When designing a program, there are various ways to restrict this natural tendency:

• Give feedback for long tasks. Some possibilities include a continuously updating dialog-
box message, progress bar, or status-bar text. When feedback isn’t arriving, most users
assume the program isn’t working.

• Show—don’t tell. The average user mistrusts long-winded dialog boxes that explain
what will happen next. It’s far better to avoid written explanations and find another way
to convey the information (or just direct the user to an important area of the screen). For
example, many drawing programs now use thumbnail previews that allow users to see
the result of an action before it begins.

• Avoid the superintelligent interface. People love to see the demon in the machine. Even
in a painstakingly designed application like Microsoft Word, automatic features for capi-
talizing text and applying formatting often confound users of all levels. Don’t assume
your application can determine what the user intends to do. Automatic fixes and modi-
fications are not only likely to frustrate users by removing control, but they can also
insult users.

• Always include a print preview. Just about every user wants to see what the finished
product will look like, even when all the information is already on-screen. With .NET, it’s
easier than ever to create a preview that matches the pagination and formatting of the
final copy.

These tips can’t redeem a terrible interface. However, if used when needed, they can
bridge the gap between an attractive application and one that’s truly usable.

The Last Word
Creating a user interface requires a blend of common sense, bitter experience, and a little luck.
Many other books treat the subject in more detail and can provide some fascinating reading.
One interesting resource is User Interface Design for Programmers by Joel Spolsky (Apress, 2001),
a short and insightful book. There are also seminal works from Microsoft on Windows conven-
tions, although the most well-known, Microsoft Windows User Experience (Microsoft, 1999), is
starting to show its age and no longer reflects modern controls and Microsoft’s latest trends.
Parts of Microsoft Windows User Experience can be read online at www.msdn.microsoft.com/
library/en-us/dnwue/html/welcome.asp.

A large part of this appendix has focused on a back-to-basics approach that stresses orga-
nization and logic instead of graphic artistry. However, sometimes it’s OK to be cool. The dividing
line is usually drawn between productivity applications and entertainment. For example,
Winamp can get away with a highly proprietary interface, but you might find that the market
for skinnable word processors isn’t nearly as large.

Macdonald_694-3AppA.fm Page 941 Wednesday, July 26, 2006 10:54 AM

Macdonald_694-3AppA.fm Page 942 Wednesday, July 26, 2006 10:54 AM

943

■ ■ ■

A P P E N D I X B

ClickOnce

.NET has dramatically changed the way rich client applications are deployed. In .NET 1.x the
central story was no-touch deployment—the ability to deploy a Windows Forms application by
simply copying its assemblies to the target computer (or placing them in a shared network
drive), with no component registration required. In .NET 2.0 the same no-touch deployment
model remains. However, .NET 2.0 also builds on this model with a new setup technology
called ClickOnce.

ClickOnce has the same key benefit as no-touch deployment: there’s no component regis-
tration required. It also has the same stumbling block—namely, it works only if the target
computer already has the .NET Framework installed. However, the ClickOnce bootstrapper
can install .NET and other prerequisites more or less seamlessly, provided the user who’s
performing the installation is an administrator.

ClickOnce adds a few new features to the no-touch deployment model:

• It generates setup UI automatically. In other words, you publish a ClickOnce applica-
tion, and the .NET Framework creates the setup wizard that guides the user through the
installation process. The setup wizard not only copies the application; it also handles
other niceties like creating a shortcut in the Start menu.

• It manages the update process as well as the installation process. Here you have a
variety of options as to when updates are made and whether they are mandatory. For
example, you can configure an application so that every time it’s launched, it checks the
original site where it was published for a new version.

• It’s integrated with code access security. ClickOnce makes it possible to deploy applica-
tions in partial trust scenarios. That means a nonadministrator user can install an
application from a third-party site, and be secure in the knowledge that the application
is prevented from undertaking potentially dangerous actions like reading and writing
local files.

Although this book is primarily concerned with creating user interfaces, not deploying
them, ClickOnce is still worth a quick look. Fortunately, you can learn all the basics with a quick
tour. In this appendix, you’ll use ClickOnce to deploy applications and handle several common
setup scenarios.

Macdonald_694-3AppB.fm Page 943 Thursday, July 27, 2006 4:54 AM

944 A P P E N D I X B ■ C L I C K O N CE

The Ground Rules
Although ClickOnce allows for a fair bit of customization, some details never change. Before
you start using ClickOnce, it’s important to get an understanding of the basic model and its
limitations.

ClickOnce is designed with a specific type of application in mind—line-of-business appli-
cations and internal company software. Typically, these applications perform their work with
the data and services on middle-tier server computers. As a result, they don’t need privileged
access to the local computer. These applications are also deployed in enterprise environments
that may include thousands of workstations. In these environments, the cost of application
deployment and updating isn’t trivial, especially if it needs to be handled by an administrator.
As you’ll see, this reality has shaped the ClickOnce technology into a simple, straightforward
enterprise software deployment system for .NET applications. However, ClickOnce technology
isn’t designed to replace the more-sophisticated setup applications you can create using MSI
(Microsoft Installer).

ClickOnce may also make sense for consumer applications that are deployed over the
Web, particularly if these applications are updated frequently and don’t have extensive instal-
lation requirements. However, the limitations of ClickOnce (such as the lack of flexibility for
customizing the setup wizard) don’t make it practical for sophisticated consumer applications
that have detailed setup requirements or need to guide the user through a set of proprietary
configuration steps.

The ClickOnce Installation Model
Although ClickOnce supports several types of deployment, the overall model is designed to
make Web deployment practical and easy. Here’s how it works. You use Visual Studio to publish
your ClickOnce application to a Web server. Then, the user surfs to an automatically generated
Web page (named publish.htm) that provides a link to install the application. When the user
clicks that link, the application is downloaded, installed, and added to the Start menu. Figure B-1
shows this process.

Figure B-1. Installing a ClickOnce application

Although ClickOnce is ideal for Web deployment, the same basic model lends itself to
other scenarios, including the following:

Macdonald_694-3AppB.fm Page 944 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 945

• Deploying your application from a network file share

• Deploying your application from a CD or DVD

• Deploying your application to a Web server or network file share and then sending a link
to the setup program via e-mail

When deploying to network file share or a CD or DVD, the installation Web page isn’t
created. Instead, users install the application by running the setup.exe program directly.

The most interesting part of a ClickOnce deployment is the way it supports updating.
Essentially, you (the developer) have control over several update settings. For example, you
can configure the application to check for updates automatically or periodically at certain
intervals. You can even configure your application to use a Web-like online-only mode. In this
situation, the application must be launched from the ClickOnce Web page. The application is
still cached locally for optimum performance, but users won’t be able to run the application
unless they’re able to connect to the site where the application was published. This ensures
that users always run the latest, most up-to-date version of your application.

ClickOnce Requirements
To successfully install an application with ClickOnce, the target computer must meet these
minimum requirements:

• Windows 98 or later, excluding Windows NT 4

• .NET Framework 2.0 runtime

The second requirement isn’t as limiting as it might seem. The .NET Framework can be
installed in a variety of ways, including via the Windows Update feature, and with enterprise
distribution systems like Microsoft Systems Management Server (SMS). However, the most
attractive option is to use the bootstrapping functionality that’s part of all ClickOnce applications.

Essentially, it works like this: When you launch the setup.exe program for an application,
the bootstrapper runs first. It checks to see if the system requirements are met. If the .NET
Framework runtime isn’t installed, the bootstrapper launches that installation, either from
Microsoft’s Web site or from an installation file that you’ve chosen to include with the setup.
The only limitation is that the .NET Framework setup requires administrator privileges, unlike
most ClickOnce applications. Once the prerequisites are installed, the application setup is
launched automatically.

■Note In this chapter, you’ll frequently see the term ClickOnce application. However, this is just shorthand
to indicate an application that’s deployed through ClickOnce. The application itself doesn’t require any change
in code or configuration.

Macdonald_694-3AppB.fm Page 945 Thursday, July 27, 2006 4:54 AM

946 A P P E N D I X B ■ C L I C K O N CE

ClickOnce Limitations
ClickOnce is designed to be a lighter setup option than MSI-based setups. As a result, ClickOnce
deployment doesn’t allow for much configuration. Many aspects of its behavior are completely
fixed, either to guarantee a consistent user experience or to encourage enterprise-friendly
security policies.

The limitations of ClickOnce include the following:

• ClickOnce applications are installed for a single user. You cannot install an application
for all users on a workstation.

• ClickOnce applications are always installed in a system-managed user-specific folder.
You cannot change or influence the folder where the application is installed.

• If ClickOnce applications are installed in the Start menu, they show up as a single shortcut
in the form [Publisher Name] ➤ [Product Name]. You can’t change this, nor can you add
additional shortcuts, like a shortcut for a help file, related Web site, or an uninstall feature.
Similarly, you can’t add a ClickOnce application to the Startup group, the Favorites
menu, and so on.

• You can’t change the user interface of the setup wizard. That means you can’t add new
dialogs, change the wording of existing ones, and so on.

• You can’t change the installation page that ClickOnce applications generate. However,
you can edit the HTML by hand after it’s generated.

• A ClickOnce setup can’t install shared components in the GAC (global assembly cache).

• A ClickOnce setup can’t perform custom actions (like creating a database, registering file
types, or configuring registry settings).

You can work around some of these issues. For example, you could configure your appli-
cation to register custom file types or set registry defaults the first time it’s launched on a new
computer. However, if you have complex setup requirements, you’re much better off creating
a full-fledged MSI (Microsoft Installer) setup program. You can use a third-party tool, or you
can create a Setup Project in Visual Studio. Both of these options are beyond the scope of this book.

A Simple ClickOnce Deployment
The easiest way to publish an application through ClickOnce is to choose Build ➤ Publish
[ProjectName] from the Visual Studio menu, which walks you through a short wizard. This
wizard doesn’t give you access to all the ClickOnce features you’ll learn about in this appendix,
but it’s a quick way to get started.

The first choice you’re faced with in the publishing wizard is choosing the location where
you want to publish the application (see Figure B-2).

Macdonald_694-3AppB.fm Page 946 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 947

Figure B-2. Choosing a publish location

There’s nothing particularly important about the location where you first publish your
application, because this isn’t necessarily the same location you’ll use to host the setup files
later on. In other words, you could publish to a local directory, and then transfer the files to a
Web server. The only caveat is that you need to know the ultimate destination of your files when
you run the publishing wizard, because you need to supply this information. Without it, the
automatic update feature won’t work.

Of course, you could choose to publish the application directly to its final destination, but
it’s not necessary. In fact, building the installation locally is often the easiest option.

Choosing a Location
To get a better sense of how this works, start by choosing a local file path location (like
c:\Temp\ClickOnceApp). Then click Next. You’re now faced with the real question—where
users will go to install this application (see Figure B-3).

This bit is very important, because it influences your update strategy. The choices you
make are stored in a manifest file that’s deployed with your application.

■Note There is one case in which you won’t see the dialog in Figure B-3. If you enter a virtual directory to
a Web server for the publish location (in other words, a URL starting with http://), the wizard assumes this
is the final installation location.

In Figure B-3, you have essentially three choices. You can create an installation for a network
file share, a Web server, or CD or DVD media. The following sections explain each approach.

Macdonald_694-3AppB.fm Page 947 Thursday, July 27, 2006 4:54 AM

948 A P P E N D I X B ■ C L I C K O N CE

Figure B-3. Choosing the installation type

Publishing for a Network File Share

In this case, all the users in your network will access the installation by browsing to a specific
UNC path and running a file named setup.exe at that location.

A UNC path is a network path in the form \\ComputerName\ShareName. You can’t use a
networked drive, because networked drives depend on system settings (so different users might
have their drives mapped differently). To provide automatic updates, the ClickOnce infrastruc-
ture needs to know exactly where it can find the installation files, because this is also the location
where you’ll deploy updates.

Publishing for a Web Server

You can create an installation for a Web server on a local intranet or the Internet. Visual Studio
will generate an HTML file named publish.htm that simplifies the process. Users request this
page in a browser, and click a link to download and install the application.

You have several options for transferring your files to a Web server. If you want to take a
two-step approach (publish the files locally and then transfer them to the right location), you
simply need to copy the files from the local directory to your Web server using the appropriate
mechanism (like FTP). Make sure you preserve the directory structure.

If you want to publish your files straight to the Web server without any advance testing,
you have two choices. If you are using IIS (Internet Information Services), and the current
account you’re running has the necessary permissions to create a new virtual directory on the
Web server (or upload files to an existing one), you can publish files straight to your Web server.
Just supply the virtual directory path in the first step of the wizard. For example, you could use
the publish location http://ComputerName/VirtualDirectoryName (in the case of an intranet) or
http://DomainName/VirtualDirectoryName (for a server on the Internet).

Macdonald_694-3AppB.fm Page 948 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 949

You can also publish straight to a Web server using FTP. This is often required in Internet
(rather than intranet) scenarios. In this case, Visual Studio will contact your Web server and
transfer the ClickOnce files over FTP. You’ll be prompted for user and password information
when you connect.

■Note FTP is used to transfer files—it’s not used for the actual installation process. Instead, the idea is that
the files you upload become visible on some Web server, and users install the application from the publish.htm
file on that Web server. As a result, when you use an FTP path in the first step of the wizard (Figure B-1), you’ll
still need to supply the corresponding Web URL in the second step (Figure B-2). This is important, because the
ClickOnce publication needs to return to this location to perform its automatic update checks.

Publishing for a CD or DVD

If you choose to publish to setup media like a CD or DVD, you still need to decide whether
you plan to support the automatic update feature. Some organizations will use CD-based
deployment exclusively, while others will use it to supplement their existing Web-based or
network-based deployment. You choose which option applies for use in the third step of the
wizard (see Figure B-4).

Figure B-4. Support for automatic updates

Here, you have a choice. You can supply a URL or UNC path that the application will check
for updates. This assumes that you plan to publish the application to that location. Alternatively,
you can leave out this information and bypass the automatic update feature altogether.

Macdonald_694-3AppB.fm Page 949 Thursday, July 27, 2006 4:54 AM

950 A P P E N D I X B ■ C L I C K O N CE

■Note The publishing wizard doesn’t give you an option for how often to check for updates. By default,
ClickOnce applications check for an update whenever they’re launched. If a new version is found, they prompt
the user to install it before launching the application. You’ll learn how to change these settings later in this
appendix.

Online or Offline

If you’re creating a deployment for a Web server or network share, you’ll get one additional
option, as shown in Figure B-5.

Figure B-5. Support for offline use

The default choice is to create an online/offline application that runs whether or not the
user can connect to the published location. In this case, a shortcut for the application is added
to the start menu.

If you choose to create an online-only application, the user needs to return to the published
location to run the application. (To help make this clear, the publish.htm Web page will show
a button labeled Run instead of Install.) This ensures that an old version of the application
can’t be used after you roll out an update. This part of the deployment model is analogous to
a Web application.

When you create an online-only application, the application will still be downloaded (into
a locally cached location) the first time it’s launched. Thus, while startup times may be longer
(because of the initial download), the application will still run as quickly as any other installed
Windows application. However, the application can’t be launched when the user isn’t connected
to the network or Internet, which makes it unsuitable for mobile users (such as laptop users
who don’t always have an Internet connection available).

If you choose to create an application that supports offline use, the setup program will add
a Start menu shortcut. The user can launch the application from this shortcut, regardless of

Macdonald_694-3AppB.fm Page 950 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 951

whether the computer is online or offline. If the computer is online, the application will check
for new versions in the location where the application was published. If an update exists, the
application will prompt the user to install it. You’ll learn how to configure this policy later on.

■Note If you choose to publish for a CD installation, you don’t have the option of creating an online-only
application.

This is the final choice in the publishing wizard. Click Next to see the final summary, and
click Finish to generate the deployment files and copy them to the location you chose in step 1.

Deployed Files
ClickOnce uses a fairly straightforward directory structure. It creates a setup.exe file in the
location you chose and a subdirectory for the application.

For example, if you deploy an application named ClickOnceTest to the location
c:\ClickOnceTest, you’ll end up with files like these:

c:\ClickOnceTest\setup.exe
c:\ClickOnceTest\publish.htm
c:\ClickOnceTest\ClickOnceTest.application
c:\ClickOnceTest\ClickOnceTest_1_0_0_0.application
c:\ClickOnceTest\ClickOnceTest_1_0_0_0\ClickOnceTest.exe.deploy
c:\ClickOnceTest\ClickOnceTest_1_0_0_0\ClickOnceTest.exe.manifest

The publish.htm file is present only if you’re deploying to a Web server. The .manifest and
.application files store information about required files, update settings, and other details.
(You can get a low-level look at these files and their XML file in the MSDN Help.) The .manifest
and .application files are digitally signed at the time of publication, so these files can’t be modi-
fied by hand. If you do make a change, ClickOnce will notice the discrepancy and refuse to
install the application.

As you publish newer versions of your application, ClickOnce adds new subdirectories for
each new version. For example, if you change the publish version of your application to 1.0.0.1,
you’ll get a new directory like this:

c:\ClickOnceTest\ClickOnceTest_1_0_0_1\ClickOnceTest.exe.deploy
c:\ClickOnceTest\ClickOnceTest_1_0_0_1\ClickOnceTest.exe.manifest

When you run the setup.exe program, it handles the process of installing any prerequisites
(like the .NET Framework) and then installs the most recent version of your application.

Macdonald_694-3AppB.fm Page 951 Thursday, July 27, 2006 4:54 AM

952 A P P E N D I X B ■ C L I C K O N CE

Installing a ClickOnce Application
To see ClickOnce in action with a Web deployment, follow these steps:

1. Make sure you have the optional IIS Web server component installed. Choose Settings
➤ Control Panel ➤ Add or Remove Programs from the Start menu, choose the Add/Remove
Windows Components section, and scroll through the list until you find Internet Infor-
mation Services (IIS). This option must be checked.

2. Using Visual Studio, create a basic Windows application, and compile it.

3. Launch the publishing wizard (by choosing Build ➤ Publish), and select http://
localhost/ClickOnceTest for the publish location. The localhost portion of the URL
points to the current computer. As long as IIS is installed and you are running with suf-
ficient privileges, Visual Studio will be able to create this virtual directory.

4. Choose to create an online and offline application, and then click Finish to end the
wizard. The files will be deployed to a folder named ClickOnceTest in the IIS Web server
root (by default, the directory c:\Inetpub\wwwroot).

5. Run the setup.exe program directly, or load up the publish.htm page (shown in Figure B-6),
and click Install. You’ll receive a security message asking if you want to trust the appli-
cation (similar to when you download an ActiveX control in a Web browser).

Figure B-6. The publish.htm installation page

Macdonald_694-3AppB.fm Page 952 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 953

6. If you choose to continue, the application will be downloaded, and you’ll be asked to
verify that you want to install it.

7. Once the application is installed, you can run it from the Start menu shortcut or unin-
stall it using the Add/Remove Programs window.

The shortcut for ClickOnce applications isn’t the standard shortcut you’re probably accus-
tomed to. Instead, it’s an application reference—a text file with information about the application
name and the location of the deployment files. The actual program files for your application
are stored in a location that’s difficult to find and impossible to control. The location follows
this pattern:

c:\Documents and Settings\[UserName]\Local Settings\Apps\2.0\[...]\[...]\[...]

The final three portions of this path are opaque, automatically generated strings like
C6VLXKCE.828. Clearly, you aren’t expected to access this directory directly.

Updating a ClickOnce Application
To see how a ClickOnce application can update itself automatically, follow these steps with the
installation from the previous example:

1. Make a minor but noticeable change in the application (for example, adding a button).

2. Recompile the application, and republish it to the same location.

3. Run the application from the Start menu. The application will detect the new version
and ask you if you’d like to install it (see Figure B-7).

4. Once you accept the update, the new version of the application will install and start.

Figure B-7. Detecting a newer version of a ClickOnce application

In the following sections, you’ll learn how to customize some additional ClickOnce options.

■Note The ClickOnce engine, dfsvc.exe, handles updates and downloads.

Macdonald_694-3AppB.fm Page 953 Thursday, July 27, 2006 4:54 AM

954 A P P E N D I X B ■ C L I C K O N CE

ClickOnce Options
The publishing wizard is a quick way to create a ClickOnce deployment, but it doesn’t allow
you to adjust all the possible options. To get access to more ClickOnce settings, double-click
the Properties node in the Solution Explorer, and then click the Publish tab. You’ll see the
settings shown in Figure B-8.

Figure B-8. ClickOnce project settings

Some of these settings duplicate details you’ve already seen in the wizard. For example,
the first two text boxes allow you to choose the publishing location (the place where the ClickOnce
files will be placed, as set in step 1 of the wizard) and the installation location (the place from
which the user will run the setup, as set in step 2 of the wizard). The Install Mode setting allows
you to choose whether the application should be installed on the local computer or run in
an online-only mode, as described earlier in this appendix. At the bottom of the window, the
Publish Wizard button launches the wizard you saw earlier, and the Publish Now button publishes
the project using the previous settings.

The following sections discuss the settings that you haven’t already seen.

Publish Version
The Publish Version section sets the version of your application that’s stored in the ClickOnce
manifest file. This isn’t the same as the assembly version, which you can set in the Application
tab, although you might set both to match.

Macdonald_694-3AppB.fm Page 954 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 955

The key difference is that the publish version is the criterion that’s used to determine whether
a new update is available. If a user launches version 1.5.0.0 of an application and version 1.5.0.1
is available, the ClickOnce infrastructure will show the update dialog box (Figure B-7).

By default, the Automatically Increment Revision with Each Publish check box is set, in
which case the final part of the publish version (the revision number) is incremented by 1 after
each publication, so 1.0.0.0 becomes 1.0.0.1, then 1.0.0.2, and so on. If you want to publish the
same version of your application to multiple locations using Visual Studio, you should switch
off this option. However, keep in mind that the automatic update feature springs into action
only if it finds a higher version number. The date stamp on the deployed files has no effect (and
isn’t reliable).

It may seem horribly inelegant to track separate assembly and publication version numbers.
However, there are cases where it makes sense. For example, while testing an application you
may want to keep the assembly version number fixed without preventing testers from getting
the latest version. In this case, you can use the same assembly version number but keep the
autoincrementing publish version number. When you’re ready to release an official update,
you can set the assembly version and the publish version to match. Also, a published applica-
tion might contain multiple assemblies with different version numbers. In this case, it wouldn’t
be realistic to use the assembly version number—instead, the ClickOnce infrastructure needs
to consider a single version number to determine whether an update is warranted.

Updates
Click the Updates button to show the Application Updates dialog box (Figure B-9), where you
can choose your update strategy.

Figure B-9. Setting update options

Macdonald_694-3AppB.fm Page 955 Thursday, July 27, 2006 4:54 AM

956 A P P E N D I X B ■ C L I C K O N CE

■Note The Updates button isn’t available if you’re creating an online-only application. An online-only appli-
cation always runs from its published location on a Web site or network share.

You first choose whether the application performs update checking. If it does, you can
choose when updates are performed. You have two options:

1. Before the application starts. If you use this model, the ClickOnce infrastructure
checks for an application update (on the Web site or network share) every time the user
runs the application. If an update is detected, it’s installed, and then the application is
launched. This option is a good choice if you want to make sure the user gets an update
as soon as it’s available.

2. After the application starts. If you use this model, the ClickOnce infrastructure checks
for a new update after the application is launched. If an updated version is detected,
this version is installed the next time the user starts the application. This is the recom-
mended option for most applications, because it improves load times.

If you choose to perform checks after the application starts, the check is performed in the
background. You can choose to perform it every time the application is run (the default option)
or in less-frequent intervals. For example, you can limit checks to once per number of hours,
days, or weeks.

You can also specify a minimum required version. You can use this to make updates
mandatory. For example, if you set the publish version to 1.5.0.1 and the minimum version to
1.5.0.0 and then publish your application, any user who has a version older than 1.5.0.0 will be
forced to update before being allowed to run the application. (By default, there is no minimum
version, and all updates are optional.)

■Note Even if you specify a minimum version and require the application to check for updates before
starting, a user could end up running an old version of your application. This happens if the user is offline, in
which case the update check will fail without an error. The only way around this limitation is to create an
online-only application.

Prerequisites
By default, every ClickOnce setup checks for certain prerequisites (namely, the .NET Framework),
and then directs the user to install them as needed. Using the Prerequisites dialog box, you can
choose additional prerequisites (see Figure B-10). You can also choose to include prerequisites
along with your setup files in the publish location. This option obviously requires more space,
but it make sense in some scenarios, for example, if you want to create a CD setup that can be
installed even if the target computer isn’t online.

Macdonald_694-3AppB.fm Page 956 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 957

Figure B-10. Possible prerequisites for a ClickOnce application

Options
The Options dialog box has a slew of miscellaneous options (see Figure B-11).

Figure B-11. Miscellaneous ClickOnce options

Macdonald_694-3AppB.fm Page 957 Thursday, July 27, 2006 4:54 AM

958 A P P E N D I X B ■ C L I C K O N CE

The publisher and product names are used to create the Start menu hierarchy. In the
example shown in Figure B-12, the shortcut will be generated as Start ➤ Acme Software ➤
ClickOnceTest. This information also turns up with the application information in the
Add/Remove Programs dialog box, along with the support URL.

You can also use the Options dialog box to change the name of the installation page in Web
deployments (which is publish.htm by default), and you can choose whether you want Visual
Studio to launch this page automatically after a successful publication (presumably so you can
test it). Two more options give you control over how the setup works—allowing you to set whether
the application is launched automatically once it’s installed, and whether an autorun.inf file
should be generated to tell CD players to launch the setup program immediately when the CD
is inserted into the CD drive.

ClickOnce Security
ClickOnce security is based on the code access security system in .NET. Code access security
acts like a configurable sandbox that restricts the abilities of a .NET application based on
certain details, such as where it came from, who created it, and so on. Taken together, these
details are called evidence.

When you run a .NET application, the code access security system compares the evidence
of an application to the current security policy to determine what permissions it should have.
For example, if an application is signed as being created by Microsoft, the security policy may
grant a wide range of permissions on it. Although there may be a multitude of different rules
applied to different evidence, the most-restrictive security settings come into effect, which
means an application ends up with the smallest possible permission set. Permissions are fine-
grained—they can restrict everything from reading a file to displaying information on the screen.

Code access security is in effect for all .NET applications, but it’s easy to miss. That’s
because applications that are launched from the local computer are run in full trust mode,
which means they can do anything they want. Code access security essentially has no effect on
applications in full trust mode. Of course, other checks (such as those imposed by the Windows
operating system based on the Windows account that’s running the code) still come into play.

In some situations, an application can be placed into partial trust mode. This happens, for
example, if you launch an executable that resides on an Internet Web server without saving it
to the local hard drive first (unless the Web site in question is specifically identified as a trusted
site according to the current security policy), or if the computer has been explicitly locked
down with policy rules. In these situations, the application runs with a greatly reduced set of
permissions. If the application tries to undertake an action that it doesn’t have permission for
(like writing to a local file), the code access security system will throw an exception.

ClickOnce Security Prompts
Partial trust mode comes into play with a ClickOnce application depending on how you deploy
the application. If the ClickOnce installation is launched from a CD drive, it’s always launched
with full trust. But if it’s launched from an intranet site, the permissions are scaled down. If it’s
launched from an Internet site, the permissions are ratcheted down even more.

Macdonald_694-3AppB.fm Page 958 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 959

This has the potential to significantly complicate deployment. For example, it could make
Web-based installations impractical by restricting their abilities so significantly that they can’t
perform anything practical. Microsoft’s solution is to give the user the ability to escalate the
permission level of a ClickOnce application when it’s installed. Essentially, ClickOnce combines
the evidence about your application with the security policy and compares it to the permissions
you require (which are full trust, by default). If the permissions you require are within the
permission set that’s already been granted, the user won’t see any message. However, if your
application needs more permissions than it already has (for example, it’s being installed from
an untrusted Web server and it needs the ability to read and write to files), users will see a security
prompt informing them and asking them if they want to grant the full set of permissions
(assuming they’re not restricted from doing so by the security policy on the machine). In this
way, ClickOnce is reasonably secure—it restricts what an application can do unless it’s being
installed from a trusted location or the user explicitly accepts the risk.

Partial Trust and ClickOnce
As explained earlier, ClickOnce applications are set to require full trust by default. This intro-
duces a couple of problems.

First, it guarantees that users will see the security message unless they’re running the
installation from a CD or local file path. More significantly, it violates the principle of least privilege,
which states that your application should only be able to do what it needs to do. This is an
excellent security guideline, particularly for enterprise applications (although it’s often complex
to implement in practice). If you follow the principle of least privilege, it greatly reduces the
possibility that your application will be used or abused (deliberately or inadvertently) in a way
you didn’t intend that may harm the system.

To deal with these problems, you can explicitly configure the permission set that your
application should have, as described in the next section.

Configuring for Partial Trust

You may want to follow the principle of least privilege and configure your application to run
with the minimum permission set it needs. You can configure the required permissions in
Visual Studio as part of the project properties. Here’s how it works:

1. Double-click the Properties node in the Solution Explorer, and choose the Security tab
(see Figure B-12).

2. Select the This Is a Partial Trust Application radio button, and choose a security zone
from the Zone list. This is the starting point for your security configuration, and you
should choose the zone based on where you plan to publish your application. If you
plan to use more than one zone (for example, an Internet Web server and a CD), choose
the zone with the least permissions (Internet). If you want to start with a blank slate and
add each permission you need, choose Custom.

3. Once you choose a zone, the Permissions list is updated with the default permissions
for that zone. If the permission is included, it’s shown with a green check mark.

Macdonald_694-3AppB.fm Page 959 Thursday, July 27, 2006 4:54 AM

960 A P P E N D I X B ■ C L I C K O N CE

Figure B-12. The default ClickOnce security settings

4. Now you can adjust individual permissions by excluding those you don’t need or con-
figuring them in more detail (by clicking the Properties button). For example, if you
need file access to a specific path only, you can configure the FileIOPermission to allow
just this location. You can also add the permissions that you do need but that aren’t
included in your zone. This will lead to a security prompt that the user must accept
when the application is installed.

■Tip You can use the Permissions Calculator tool to quickly assess all the permissions your application
needs. Just click the Calculate Permissions button. Once the Permission Calculator has analyzed your appli-
cation, it will adjust your permission settings accordingly. However, you should review the permissions that
are determined by the Permission Calculator, because they may be broader than required. For example, the
Permission Calculator may determine that you need FileIOPermission for the local hard drive, when really you
need this permission only for a single, specific directory.

5. Once you’re finished, publish the application.

Macdonald_694-3AppB.fm Page 960 Thursday, July 27, 2006 4:54 AM

A P P E N D I X B ■ CL I C K O N C E 961

Remember, the default level of trust given to an application depends on the location from
which it’s being installed. When an application is deployed from the Internet, it receives a
highly restrictive set of permissions; when it’s deployed from a local intranet, it receives greater
permissions; and when it’s deployed from a CD-ROM, it receives full trust permissions. If an
application needs more permissions than its zone allows, the user will be prompted to grant
these permissions at install time.

■Tip To reduce the permissions you require, you may want to store user-specific files in the dedicated
ClickOnce data directory. Each ClickOnce application has an isolated data directory, and you can retrieve it
at runtime by calling AppDomain.GetData(). As with the ClickOnce application itself, the data directory is
user-specific.

The Last Word
This chapter offered a quick tour of the new ClickOnce deployment model. It’s provided you
enough information to evaluate whether ClickOnce will work in your environment, and it’s
given you a taste of how ClickOnce deals with code access security. If you want to build a partial
trust ClickOnce application, you’ll find that the model takes some getting used to. You’ll need
to aggressively review the permission requirements of your application and accept compromises
about certain client-configuration details you can’t control. To learn more about ClickOnce,
refer to the MSDN Help or to the FAQ on the subject at http://www.windowsforms.net/FAQs.

Macdonald_694-3AppB.fm Page 961 Thursday, July 27, 2006 4:54 AM

Macdonald_694-3AppB.fm Page 962 Thursday, July 27, 2006 4:54 AM

963

INDEX

■A
Abort() method

Thread class, 714
Absolute value

SizeType enumeration, 753
AcceptButton property

Form class, 73, 820
AcceptsReturn property

TextBox control, 114
AcceptsTab property

TextBox control, 114
access keys and controls, 58
ActionList class

Component property, 906
creating smart tags, 905

Activate() method
Form class, 73

Activated event
Form class, 664

Activation property
ListView control, 180

Active property
ToolTip class, 143

ActiveControl property
ContainerControl class, 80, 613

ActiveDocumentForm property
DocumentManager class, 682, 684

ActiveLinkColor property
LinkLabel control, 112

ActiveMdiChild property
building replacement for, 680
Form class, 656, 657

ActiveX controls, 147, 148
importing, 148

adaptability and dynamic interfaces, 730
adaptable menu example, 731

context menu approach, 732, 733

Add() method
ControlBindingsCollection class, 277
ControlCollection class, 11
MaskedTextProvider class, 647
rows collection, 529
ShapeCollection class, 857
TreeNodeCollection class, 200
TreeView control, 194

AddArc() method
GraphicsPath class, 234

AddBezier() method
GraphicsPath class, 234

AddBeziers() method
GraphicsPath class, 234

AddClosedCurve() method
GraphicsPath class, 234

AddCurve() method
GraphicsPath class, 234

AddEllipse() method
GraphicsPath class, 234

AddForm() method
DocumentManager class, 681

AddLine() method
GraphicsPath class, 234

AddLines() method
GraphicsPath class, 234

AddMessageFilter() method
Application class, 69

AddOwnedForm() method
Form class, 89

AddPath() method
GraphicsPath class, 234

AddPie() method
GraphicsPath class, 234

AddPolygon() method
GraphicsPath class, 234

Macdonald_694-3INDEX.fm Page 963 Friday, July 28, 2006 4:36 AM

964 ■I N D E X

AddRange() method
TreeNodeCollection class, 200
TreeView control, 195

AddRectangle() method
GraphicsPath class, 234

AddString() method
GraphicsPath class, 234

ADO.NET objects
binding to Windows Forms controls, 268

advanced passwords, regular
expressions, 623

AfterCheck event
TreeView control, 201

AfterCollapse event
TreeView control, 201

AfterExpand event
TreeView control, 201

AfterLabelEdit event
ListView control, 177, 186
TreeView control, 201

AfterSelect event
TreeView class, 313, 316
TreeView control, 201, 375

AgentController class, 803–804
creating instance of, 806
methods, 804

agents, 802–806
application-embedded support, 800

AgentTryout application, 803, 806
Alignment property

customised version of
ToolStripStatusLabel class, 493

DataGridViewCellStyle class, 545
ListView control, 180
Pen class, 223
Pens class, 222
StringFormat class, 231
TabControl control, 134
ToolStripItem class, 485

AllCells value
AutoSizeColumnsMode enumeration,

537, 540, 542
AllCellsExceptHeader value

AutoSizeColumnsMode enumeration, 537

AllowColumnReorder property
ListView control, 174, 180

AllowDesignTimeScroll property
PropertyDescriptor class, 890, 891

AllowEdit property
IBindingList interface, 301

AllowFullOpen property
ColorDialog class, 91

AllowItemReorder property
ToolStrip class, 511

AllowMerge property
MenuStrip class, 662, 663

AllowNavigation property
WebBrowser control, 596

AllowNew property
IBindingList interface, 300

AllowPromptAsInput property
MaskedTextBox control, 642

AllowRemove property
IBindingList interface, 301

AllowScroll property
Panel class, 345

AllowUserToAddRows property
DataGridView class, 526, 553, 555

AllowUserToDeleteRows property
DataGridView class, 555

AllowUserToResizeColumns property
DataGridView class, 540

AllowUserToResizeRows property
DataGridView class, 540

AllowWebBrowserDrop property
WebBrowser control, 596

AllScreens property
Screen class, 76

AllSizeable value
SelectionRules enumeration, 895

AllSystemSources value
AutoCompleteSource enumeration, 135

AllUrl value
AutoCompleteSource enumeration, 135

alpha blending, 235–236
setting color for controls, 55

AlternatingRowsDefaultColumnStyle
property

DataGridView class, 543

Macdonald_694-3INDEX.fm Page 964 Friday, July 28, 2006 4:36 AM

965■I N D E X

Find it faster at http://superindex.apress.com

ambient properties, 55
AmbientValueAttribute class

System.ComponentModel
namespace, 429

ancestor controls, making available, 383
ancestor forms, adding property, 383, 384
Anchor property

Control class, 755
Form class, 95
TableLayoutPanel class, 759, 760

anchoring, 95
containers and anchoring, 98–99
minimum and maximum control size, 97
resizing controls, 96–97

AnchorStyles enumeration, 95
Animate() method

AgentController class, 805
animated buttons, 811, 819

base class, 819
basic animated buttons, 819
button states, 821–822
focus, 825–826
IButtonControl interface, 820
mouse movements, 822–824
painting, 824–825
raised image button, 827–830
rollover button, 830–832
simple glow button, 826–827
transparency, 833

AnimatedButtonBase class
button states, 821–822
definition, 820
deriving from Control class, 820
focus, 825–826
mouse events, 822–824
PaintFocusRectangle() method, 826
painting, 824–825
raised image button, 827–830
rollover button, 830–832
simple glow button, 826–827
transparency, 833

AnnuallyBoldedDates property
MonthCalendar control, 131

antialiasing, 219–220

Appearance property
TabControl control, 134

Append value
MergeAction enumeration, 663

AppForms class, 87
Appleman, Dan

inheritance, 12
Application class

AddMessageFilter() method, 69
EnableVisualStyles() method, 32, 47,

233, 257
Exit() method, 33, 145
OpenForms property, 88
RenderVisualStyles property, 260
RenderWithVisualStyles property, 257
Run() method, 32, 33
SetCompatibleTextRenderingDefault()

method, 218, 233
Show() method, 32
VisualStyleState property, 257

application framework, 30
disabling, 32–33
events, 31–32

application types
user interfaces, 936–937

Application Updates dialog box
ClickOnce, 955

application–embedded support, 800
affordances, 801
agents, 802–806

ApplicationExitCall value
CloseReason enumeration, 74

ApplicationTasks class, 683
ApplyCellStyleToEditingControl() method

DataGridViewEditingControl class, 574
ApplyResources() method

ComponentResourceManager class, 446
architecture

user interface design, 927
AreAllCellsSelectedMethod() method

DataGridView class, 533
ArrangeIcons() method

ListView control, 177
ArrayEditor class

System.ComponentModel.Design
namespace, 463

Find it faster at http://superindex.apress.com

Macdonald_694-3INDEX.fm Page 965 Friday, July 28, 2006 4:36 AM

966 ■I N D E X

ArrayList class
creating the custom shape collection, 857
data sources supported in Windows

Forms data binding, 267
arrays as data source supported in Windows

Forms data binding, 267
AssociatedToolStrip property

adding to panel controls, 733
AssociateIndex value

HelpNavigator enumeration, 788
asymmetric encryption, 334
asynchronous calls, 699–700
asynchronous delegates, 692–694

polling and callbacks, 694–696
asynchronous operations

rich client applications, 689
options, 691

AsyncState class, 695
attributes

applying to custom controls, 426–428
inheritance, 431
System.ComponentModel namespace,

428–429
uses, 427–428

audio
DirectShow controllibrary, 577
looping, 585–586
SoundPlayer control, 577–578

authentic drag-and-drop, 138–141
AutoArrange property

ListView control, 177
AutoComplete controls, 135–136

combo box example, 136
AutoCompleteCustomSource collection, 135
AutoCompleteCustomSource property

AutoComplete controls, 135
ComboBox control, 123
TextBox control, 114

AutoCompleteMode property
AutoComplete controls, 135
ComboBox control, 123
TextBox control, 114
values, 136

AutoCompleteSource enumeration
values, 135

AutoCompleteSource property
AutoComplete controls, 135
ComboBox control, 123
TextBox control, 114

autocompletion feature
command line user interface, 929

AutoEllipsis property
Label control, 110

automatic data binding, 303
binding directly to a custom object,

310–312
binding directly to a database, 303–309
using a strongly typed DataSet, 309–310

automatic sorting
DataGridView class, 524

automatic tooltips
DataGridView class, 524

AutomaticDelay property
ToolTip class, 143

AutoPopDelay property
ToolTip class, 143

AutoResizeColumn() method
DataGridView class, 540
resizing columns programmatically, 178

AutoResizeColumnHeadersHeight() method
DataGridView class, 540

AutoResizeColumns() method
DataGridView class, 540
resizing columns programmatically, 178

AutoResizeRow() method
DataGridView class, 540

AutoResizeRowHeadersWidth() method
DataGridView class, 540

AutoResizeRows() method
DataGridView class, 540

AutoScaleMode property
Form class, 58

AutoScroll property
FlowLayoutPanel class, 750
Form class, 79
Panel control, 132
TableLayoutPanel class, 754, 762

AutoScrollMinSize property
Form class, 80

Macdonald_694-3INDEX.fm Page 966 Friday, July 28, 2006 4:36 AM

967■I N D E X

Find it faster at http://superindex.apress.com

AutoSize property
Control class, 100, 738
FlowLayoutPanel class, 750
Panel class, 101
PictureBox control, 101
TableLayoutPanel class, 759
ToolStripControlHost class, 503
ToolStripItem class, 485, 486

AutoSize value
SizeType enumeration, 753

AutoSizeColumnsMode enumeration
AllCells value, 540, 542
DisplayedCells value, 540
Fill value, 540, 541
None value, 540
values, 537

AutoSizeColumnsMode property
DataGridView class, 537, 539, 541

AutoSizeMode property
behavior of autosizing, 101

AutoSizeRowsMode property
DataGridView class, 541

autosizing, 100–102
DataGridView class, 524

AutoToolTip property
ToolStripItem class, 483

AutoValidate property
Form class, 614, 617

AutoWordSelection property
RichTextBox control, 116

■B
BackColor property

Control class, 843
controls, 52
DataGridViewCellStyle class, 545
FormattedListItemWrapper class, 393
Shape class, 849
ToolStripItem class, 479
ToolTip class, 143
UserControl class, 339

BackgroundImage property
Form class, 814, 816
image-related properties in common

controls, 154
inherited by controls, 152

ListView control, 180
ToolStripItem class, 483
TreeView control, 202

BackgroundImageLayout property
image-related properties in common

controls, 154
inherited by controls, 152
ToolStripItem class, 483

BackgroundWorker component, 707
CancelAsync() method, 711, 712
features not provided, 713
options for asynchronous

programming, 691
ReportProgress() method, 709, 710, 711
RunWorkerAsync() method, 707, 708
RunWorkerCompleted event, 707
simple test, 707–709
supporting a cancel feature, 711–712
System.ComponentModel

namespace, 707
WorkerSupportsCancellation

property, 711
BackImage property

UserControl class, 339
Balena, Francesco

Programming Microsoft Visual Basic 2005:
The Language, 8

BalloonTipClicked event
NotifyIcon component, 144

BalloonTipClosed event
NotifyIcon component, 144

BalloonTipIcon property
NotifyIcon component, 144

BalloonTipShown event
NotifyIcon component, 144

BalloonTipText property
NotifyIcon component, 144

BalloonTipTitle property
NotifyIcon component, 144

BarItem class, creating, 411–412
BarItemCollection class

BarItem objects, 913
BarItemCollectionEditor class, 913
BarItemConverter class

derives from
ExpandableObjectConverter, 911

Macdonald_694-3INDEX.fm Page 967 Friday, July 28, 2006 4:36 AM

968 ■I N D E X

Bars property
SimpleChart class, 911

BaseValidator control
adding helper method, 637
building, 627–631
defined as MustInherit class, 628
EvaluateIsValid() method, 627, 630
Validate() method, 627, 630

batch initialization, 443–445
Beep property

SystemSounds class, 581
BeforeCheck event

TreeView control, 201
BeforeCollapse event

TreeView control, 201
BeforeExpand event

TreeView control, 201, 315
BeforeLabelEdit event

ListView control, 186
TreeView control, 201

BeforeLabelEdit event
ListView control, 177

BeforeSelect event
TreeView control, 201

BeginEdit() method
DataGridView control, 556

BeginInvoke() method
delegate class, 693, 695

BeginUpdate() method
ListView control, 177
TreeView control, 195

bidirectional application-embedded
support, 801

BinaryEditor class
System.ComponentModel.Design

namespace, 463
BinaryFormatter class

Deserialize() method, 868
Binding class

Format event, 279
Parse event, 279
PostionChanged event, 289, 290, 291

binding to custom objects, 295–299
overriding ToString(), 299
supporting grid binding, 300–302

BindingContext class
creating and asigning to controls, 292
navigation, 288
System.Windows.Forms namespace, 286

BindingContext property
GroupBox class, 292

BindingList(Of T) collection
new item creation, 301
System.ComponentModel

namespace, 301
BindingManagerBase class, 286
Bitmap class

Save() method, 242
System.Drawing namespace, 151

Bitmap Viewer user control, 345
creating, 345–350
events, 352–353
performance enhancements and

threading, 354–355
simplifying layout, 356
testing, 351

BlinkRate property
ErrorProvider control, 621

BlinkStyle property
ErrorProvider control, 621

BoldedDates property
MonthCalendar control, 131

Book of Visual Basic 2005, The
MacDonald, Matthew, 8

bootstrapping functionality
ClickOnce, 945

Border3DStyle enumeration 493
BorderSides property

customised version of
ToolStripStatusLabel class, 493

BorderStyle property
customised version of

ToolStripStatusLabel class, 493
Label control, 110

BottomSizeable value
SelectionRules enumeration, 895

BottomToolStripPanel property
ToolStripContainer class, 489

BottomToolStripPanelVisible property
ToolStripContainer class, 489

Macdonald_694-3INDEX.fm Page 968 Friday, July 28, 2006 4:36 AM

969■I N D E X

Find it faster at http://superindex.apress.com

BottomUp value
FlowDirection enumeration, 747

Bounds property
Screen class, 76

BringShapeToFront() method
ShapeCollection class, 858, 863

BringToFront() method
Control class, 51, 847
control support for layering, 856

BrowsableAttribute class
hiding a property, 442
System.ComponentModel

namespace, 429
brushes

HatchBrush class, 226, 227
introduction, 225, 226
LinearGradientBrush class, 228
PathGradientBrush class, 228, 229

BulletIndent property
RichTextBox control, 116

Bump value
Border3DStyle enumeration, 493

business tier, 37, 39
Button class

Margin property, 749
button columns

DataGridView class, 553–555
Button control, 112–113

members, 112
support for images, 152
Text property, 266

Button property
MouseEventArgs class, 66

■C
caching images

improving performance of owner-drawn
controls, 834–837

CalendarFont property
DateTimePicker control, 130

CalendarForeColor property
DateTimePicker control, 130

CalendarMonthBackground property
DateTimePicker control, 130

CalendarTitleBackColor property
DateTimePicker control, 130

CalendarTrailingForeColor property
DateTimePicker control, 130

Call Show() method
AgentController class, 804

CanBeParentedTo() method
ControlDesigner class, 919

Cancel property
DataGridViewCellValidatingEventArgs

class, 561
DataGridViewDataErrorEventArgs

class, 560
CancelAsync() method

BackgroundWorker component, 711, 712
CancelButton property

Form class, 73, 820
CancelChanges() method

CollectionEditor class, 915
CancelEdit() method

DataGridView control, 556
CanConvertFrom() method

TypeConverter class, 450, 451
TypeListConverter class, 911

CanConvertTo() method
TypeConverter class, 450, 451

CanExtend() method
IExtenderProvider interface, 873

CanGoBack property
WebBrowser control, 596

CanGoBackChanged event
WebBrowser control, 593

CanGoForward property
WebBrowser control, 596

CanGoForwardChanged event
WebBrowser control, 593

CanParent() method
ParentControlDesigner class, 919

CanRemoveInstance() method
CollectionEditor class, 915

CanSelectMultipleInstances() method
CollectionEditor class, 915

CanUndo property
TextBox control, 114

CaptionFont property
SystemFonts class, 57

cardinal spline, 218

Macdonald_694-3INDEX.fm Page 969 Friday, July 28, 2006 4:36 AM

970 ■I N D E X

CategoryAttribute class
System.ComponentModel
namespace, 429

CausesValidation property
Control class, 614, 615
Form class, 616

cell selection
DataGridView class, 530–533

CellBeginEdit event
DataGridView class, 557

CellBorderStyle property
TableLayoutPanel class, 751, 757

CellClick event
DataGridView class, 534

CellEndEdit event
DataGridView class, 557

CellEnter event
DataGridView class, 534

CellFormatting event
DataGridView class, 546

CellFormatting event handler
DataGridView class, 547

CellLeave event
DataGridView class, 534

CellPainting event
DataGridView class, 564

CellPosition property
extended properties for TableLayoutPanel

children, 757
CellSelect value

DataGridViewSelectionMode
enumeration, 530

CellStyle class, 544
CellTemplate property

DataGridViewColumn class, 568
CellValidated event

DataGridView class, 560
CellValidating event

DataGridView class, 560, 561
CellValueChanged event

DataGridView class, 541, 549
CenterParent value

FormStartPosition enumeration, 75
CenterScreen value

FormStartPosition enumeration, 75

CenterToScreen() method
Form class, 75

CharacterCasing enumeration, 114
CharacterCasing property

TextBox control, 114
CheckBox control, 120

support for images, 152
CheckBoxes property

TreeView control, 202
Checked property

DateTimePicker control, 130
ToolStripButton class, 486
ToolStripDropDownItem class, 496
TreeNode class, 203

CheckedChanged event
ToolStripButton class, 486
ToolStripDropDownItem class, 496

CheckedIndices property
CheckedListBox control, 121, 123

CheckedItems property
CheckedListBox control, 121, 123

CheckedListBox control, 121
checking multiple items, 121
complex data binding, 267
properties supported and not supported

by, 122
CheckForIllegalCrossThreadCalls() method

Control class, 44, 701
CheckOnClick property

CheckedListBox control, 123
ToolStripButton class, 486
ToolStripDropDownItem class, 496

CheckState property
CheckBox control, 120
RadioButton control, 120

Child form class, 677
Children property

HtmlElement object, 598
Class Library Project

custom components, 326
classes

and types, 4–5
introduction, 5–6
role of, 4

Macdonald_694-3INDEX.fm Page 970 Friday, July 28, 2006 4:36 AM

971■I N D E X

Find it faster at http://superindex.apress.com

Clear() method
Graphics class, 217
TreeNodeCollection class, 200

ClearSelection() method
DataGridView class, 533

Click event
controls, 65
NotifyIcon component, 144
ToolStripItem class, 481

ClickOnce, 943
basic model, 944
features added to no-touch deployment

model, 943
installation model, 944–945
limitations, 946
options, 954

Options dialog box, 957
prerequisites, 956
Publish Version section, 954–955
Updates button, 955–956

requirements, 945
security

code access security, 958
partial trust, 959–961
security prompts, 958

ClickOnce deployment example, 946–947
choosing a location, 947

online or offline, 950–951
publishing for a CD or DVD, 949
publishing for a network file share, 948
publishing for a web server, 948–949

deployed files, 951
installing ClickOnce application, 952–953
updating ClickOnce application, 953

Client project, 330
automatic toolbox support, 330
customizing the toolbox, 331–332

ClientSize property
Control class, 49

ClientToPoint() method
Form class, 67

ClipboardContent value
DataGridViewDataErrorContexts

enumeration, 560

Clipping property
Graphics class, 237

ClipRectangle property
PaintEventArgs class, 251, 860

Clone() method
lack of in ToolStripMenuItem class, 502

Close() method
Form class, 85, 616

Closed event
Form class, 33
ToolStripMenuItem class, 502

CloseFigure() method
GraphicsPath class, 234, 253

CloseReason enumeration
values, 74

CloseReason property
EventArgs class, 74

code access security
ClickOnce integrated with, 943, 958

code serialization, 437
See also serialization
basic serialization, 437–438
batch initialization, 443–445
DefaultValueAttribute class, 439
localizable properties, 445–446
making serialization decisions

programmatically, 440–441
serialization type, 442

CodeDOM, custom serialization, 459
coding for user interface design, 927
Collapse() method

Node class, 204
CollapseAll() method

TreeView control, 204
CollapseButton class, 419, 420
CollapsiblePanel control

CollapseButton class, 419, 420
collapsing panel, 420, 421
expanded (left) and collapsed (right), 419
features, 418
owner-drawn custom controls, 417
painting panel, 422

Macdonald_694-3INDEX.fm Page 971 Friday, July 28, 2006 4:36 AM

972 ■I N D E X

collection controls, 885, 910–911
BarItem type converter, 911–913
BarItemCollectionEditor class, 913–914
selecting BarItem objects at design time,

916–918
CollectionBase class, 669
CollectionEditor class

overridable methods, 914
System.ComponentModel.Design

namespace, 463, 465
CollectionEditor type editor

System.ComponentModel.Design
namespace, 911

collections
data sources supported in Windows

Forms data binding, 267
encapsulation, 36

color
alpha blending, 55
controls, 52–55

Color property
Pens class, 222

Color structure
Empty property, 119
GetBrightness() method, 53
GetHue() method, 53
GetSaturation() method, 53
System.Drawing namespace, 52
Transparent property, 55

ColorDepth enumeration
values, 155

ColorDepth property
ImageList control, 155

ColorDialog class, 92
AllowFullOpen property, 91

Colors class
specifying a color, 52

ColorTranslator class, 52
specifying a color, 52

column and row resizing
DataGridView class, 536–542

column headers
DataGridView class, 527–528

Column property
extended properties for TableLayoutPanel

children, 756
column-based sorting

DataGridView class, 534–536
ColumnChanged event

DataTable class, 280, 281, 293
ColumnChanging event

DataTable class, 285, 293
ColumnClick event

ListView control, 177
ColumnCount property

TableLayoutPanel class, 751, 753, 755
ColumnHeader class

used in Details view of ListView
control, 176

ColumnHeader value
AutoSizeColumnsMode enumeration, 537

ColumnHeaderAutoResizeStyle
enumeration, 178

ColumnHeaderMouseClick event
DataGridView class, 535

ColumnHeadersDefaultCellStyle property
DataGridView class, 546

ColumnHeaderSelect value
DataGridViewSelectionMode

enumeration, 530
Columns collection

DataGridView class, 527
Columns property

DataGridView class, 525
ListView control, 176

ColumnSpan property
extended properties for TableLayoutPanel

children, 756
ColumnStyle class, 752, 755

creating simple fixed or proportional
layouts, 754

ColumnStyle property
TableLayoutPanel class, 751, 753

ColumnStyles collection
TableLayoutPanel class, 758, 760, 761

ComboBox class
deriving a custom control from, 871
OnKeyDown() method, 648, 650
OnKeyPress() method, 648

Macdonald_694-3INDEX.fm Page 972 Friday, July 28, 2006 4:36 AM

973■I N D E X

Find it faster at http://superindex.apress.com

ComboBox control, 121
AutoComplete properties, 135
properties, 123
SelectedIndexChanged event, 213

command line user interface, 929
characteristics, 930

Command Window, 929
Commit value

DataGridViewDataErrorContexts
enumeration, 559

Commit() method
DesignerTransaction class, 903

CommitEdit() method
DataGridView control, 556

Compare method
IComparer interface, 182

Compare() method
IComparer interface, 859

CompareTo() method
IComparer interface, 859
Shape class, 856

CompareValidator control, 626
compiled Help files, 787–788
Complete value

WebBrowserReadyState enumeration, 592
complex data binding, 267

binding to a grid, 272
binding to a list, 270–272
DataView class, 270, 271

Component class
add Dispose() logic, 328
base classes for custom controls, 323
GetService() method, 899
HelpIconProvider derives from, 878
InitializeComponent() method, 325
System.ComponentModel namespace, 18,

324, 627
component classes, characteristics, 325
Component property

ActionList class, 906
ComponentDesigner class, 889
IDesigner interface, 886

ComponentAdded() method
IComponentChangeService interface, 901

ComponentAdding() method
IComponentChangeService interface, 901

ComponentChanged() method
IComponentChangeService interface, 901

ComponentChanging() method
IComponentChangeService interface, 901

ComponentDesigner class
Component property, 889
GetService() method, 899
System.ComponentModel.Design

namespace, 886
ComponentRemoved() method

IComponentChangeService interface, 901
ComponentRemoving() method

IComponentChangeService interface, 901
ComponentRename() method

IComponentChangeService interface, 901
ComponentResourceManager class

ApplyResources() method, 446
components of user interfaces, 17–18
CompositingMode property

Graphics class, 217
CompositingQuality property

Graphics class, 217, 235
ConstructorInfo class

System.Reflection namespace, 458
ConstructorInfo object

InstanceDescriptor class wraps, 458
container controls, 132, 910, 918, 919

support for images, 152
TabControl control, 133–134
TabPage control, 134

ContainerControl class
ActiveControl property, 80, 613
base classes for custom controls, 323
creating container control, 918
ParentForm property, 80
ProcessTabKey() method, 80

containers and anchoring, 98–99
Contains() method

controls, 46
Rectangle class, 252, 253, 854
TreeNodeCollection class, 200

ContainsFocus property
controls, 60

Macdonald_694-3INDEX.fm Page 973 Friday, July 28, 2006 4:36 AM

974 ■I N D E X

Content value
DesignerSerializationVisibility

enumeration, 442, 448
ContentPanel class, 487
ContentPanel property

ToolStripContainer class, 490
context menus, 501–502, 732–733
ContextMenu control

SourceControl property, 846
ContextMenuStrip class, 146, 501

Opening event, 502
Show() method, 501
SourceControl property, 502
ToolStrip class is basis of, 477

ContextMenuStrip property
Control class, 501, 733
controls, 46
NotifyIcon component, 144

context-sensitive Help, 793, 794
Control class, 41

add Dispose() logic, 328
all controls derive from, 9
Anchor property, 755
AutoSize property, 100, 738
base classes for custom controls, 323
BringToFront() method, 51, 847
CausesValidation property, 614, 615
CheckForIllegalCrossThreadCalls

property, 701
ClientSize property, 49
ContextMenuStrip property, 501, 733
Control.PointToScreen() method, 50
ControlMedley project, 45
Controls property, 9
CreateControlsInstance() method, 341
CreateGraphics() method, 212, 217, 826
DataBindings collection, 273
DataSource property, 270
deriving from to create animated

buttons, 819
DesignMode property, 894
Dock property, 99, 755
DoubleBuffered property, 247, 404
Font property, 56
GetPreferredSize() method, 103

GotFocus event, 73
HelpNavigator property, 788
HelpRequested event, 787, 796
introduction, 43
Invalidate() method, 213, 214
Invoke() method, 701, 703

thread synchronization, 706, 715
IsKeyLocked method, 63
Layout event, 739
LayoutEngine property, 744
Location property, 49
LostFocus event, 73, 614
low-level members, 69
MaximumSize property, 97
members, 44–45
members for relationships, 46
MinimumSize property, 97
OnLayout() method, 739
OnPaint() method, 211, 212, 213, 214, 404
OnPaintBackground() method, 247, 833
Paint event, 213
Parent property, 879
PointToClient() method, 50
PointToScreen() method, 50
properties, 843
Refresh() method, 216
Region property, 811, 818, 840
ResizeRedraw property, 404
Select() method, 613
SelectNextControl() method, 613
SendToBack() method, 51, 847
SetBounds() method, 49
SetStyle() method, 244, 404, 833
Size property, 49
SourceControl property, 796
Tag property, 312
Text property, 56
TextChanged event, 624
Update() method, 215
UseCompatibleTextRendering

property, 233
Validated event, 614
Validating event, 614, 627
Windows XP styles, 46
WndProc() method, 650

Macdonald_694-3INDEX.fm Page 974 Friday, July 28, 2006 4:36 AM

975■I N D E X

Find it faster at http://superindex.apress.com

control designers, 885–888
applying to custom controls, 426
creating smart tags, 905
designer services, 899–901

designer notifications, 901–902
designer transactions, 903–904

designer verbs, 895–899
filtering properties and events, 888

adding design-time members, 889–891
removing members, 889
shadowing members, 891–892

interacting with the mouse, 893, 894
selection and resize rules, 894

control layout, 738
Layout event, 738, 739
layout manager, 739–742

problems with, 743
control projects, 326

Client project, 330–332
Disposable pattern, 328–329
library project, 326–328

Control property
ControlDesigner class, 889
ToolStripControlHost class, 504

control references, 36
ControlAdded event

controls, 46
control-based Help, 794–795
ControlBindingsCollection class

Add() method, 277
ControlBox property

Form class, 72
ControlCollection class

creating, 342
GetChildIndex() method, 856
interfaces implemented, 10
Remove() method, 11
SetChildIndex() method, 748, 856
standard methods, 11

ControlDesigner class
CanBeParentedTo() method, 919
Control property, 889
deriving a class from, 887
GetHitTest() method, 894, 916, 918
MouseDown() method, 918
OnMouseEnter() method, 893

OnMouseHover() method, 893
OnMouseLeave() method, 893
OnPaintAdornments() method, 893
PostFilterProperties() method, 889
PreFilterProperties() method, 889
ShadowProperties collection, 892
System.Windows.Forms.Design

namespace, 886
Verbs property, 895

ControlPaint class, 255
DrawBorder3D() method, 830
DrawCheckBox() method, 255
DrawImageDisabled() method, 830
methods, 255

ControlRemoved event
controls, 46

controls, 41, 109
See also custom controls; derived controls;

user controls; Windows controls
access keys, 58
accessing, 15–16
aligning in Visual Studio, 51
and images, 152–154
as classes, 9
AutoComplete controls, 135–136
Button control, 112, 113
CheckBox control, 120
classes, 626
classic controls, 109
color, 52–55
compared to components, 18
container controls, 132–135
containing other controls, 9, 10, 11
creating at runtime, 736–737
date controls, 127–132
derived from Control class, 45
domain controls, 125–127
extending other controls, 12–13
focus and tab sequence, 59–60
fonts and text, 56
GetAsyncKeyState() function, 64, 65
handling the keyboard, 61

intercepting key presses in a form, 64
key modifiers, 63
KeyPress and KeyDown, 61–63

handling the mouse, 65–67

Macdonald_694-3INDEX.fm Page 975 Friday, July 28, 2006 4:36 AM

976 ■I N D E X

improving performance of owner-drawn
controls, 834

caching images, 834–837
reusing images, 837–838

interacting with, 19
KeyPress event, 64
Label control, 109, 110
large fonts, 57–58
LinkLabel control, 110, 111, 112
list controls, 121–125
low-level members, 69mouse cursors,

68–69
mouse/keyboard example, 67–68
overlapping, 50–51
overriding methods, 19–20
PictureBox control, 121
position and size, 48–50
RadioButton control, 120
resizing with anchoring, 96–97
RichTextBox control, 115–120
smart controls, 21
system fonts, 57
TextBox control, 113, 114, 115

Controls collection
Control class, 44
controls, 46
Form class, 636
GetChildIndex() method, 51
SetChildIndex() method, 51
TableLayoutPanel class, 754

Controls property
Control class, 9

ConvertFrom() method
ITypeDescriptorContext interface, 912
TypeConverter class, 450, 451

ConvertTimeToString() method
IMediaPosition interface, 584

ConvertTo() method
ITypeDescriptorContext interface, 912
TypeConverter class, 450, 451

coordinate systems and transformations,
239–242

Copy() method
TextBox control, 114

CopyFromScreen() method
Graphics class, 242

CountStyle class
SizeType property, 753
Width property, 753

CreateControlsInstance() method
Control class, 341

CreateGraphics() method
Control class, 212, 217, 826

CreateInstance() method
CollectionEditor class, 915

CreateNewItemTypes() method
CollectionEditor class, 915

CreateProperty() method
TypeDescriptor class, 890

CreateTransaction() method
IDesignerHost interface, 903

CultureInfo class
System.Globalization namespace, 168

Currency data type
data binding format string, 278

CurrencyManager class, 287
Position property, 288
System.Windows.Forms namespace, 286

CurrentCell property
DataGridView class, 533

CurrentCellAddress property
DataGridView class, 533

CurrentCellChange value
DataGridViewDataErrorContexts

enumeration, 560
CurrentThread property

Thread class, 714
CurrentUICulture property

Thread class, 167
Cursor class, customising, 68
custom cell edit controls

DataGridView class, 570, 571, 572, 573,
574, 575

custom cell formatting
DataGridView class, 546, 547, 548

custom cell painting
DataGridView class, 564, 566

custom cells
DataGridView class, 567, 568, 569, 570

custom colors and fonts
ListView and TreeView controls, 396

Macdonald_694-3INDEX.fm Page 976 Friday, July 28, 2006 4:36 AM

977■I N D E X

Find it faster at http://superindex.apress.com

custom ComboBox control
creating, 647–649

custom components, 324–325
custom container controls, 919
custom control designers, 887
custom controls, 12–13, 321

base classes for, 323
code serialization, 437

basic serialization, 437–438
batch initialization, 443–445
DefaultValueAttribute class, 439
localizable properties, 445–446
making serialization decisions

programmatically, 440–441
serialization type, 442

control projects, 326
Client project, 330–332
Disposable pattern, 328–329
library project, 326–328

custom components, 324–325
custom type editors, 465

drop-down type editor, 469–472
modal type editor, 466–468
painting a thumbnail, 473

deriving from ComboBox class, 871
design time support, 425

adding toolbox icon, 431–433
attributes, 427–430
attributes and inheritance, 431
basics, 425–426
debugging, 433–436
ingredients, 426

introduction, 321
type conversion, 447

attaching type converters, 452–453
creating a nested object with a

constructor, 457–459
creating type converters, 449–452
custom serialization with

CodeDOM, 459
ExpandableObjectConverter class,

454–457
nested objects, 447–449
providing standard values, 459–462

type editors, 462–463
prebuilt type editors, 463–464

types, 322
uses, 13
using GAC, 333

applying a key to control assembly,
334–335

attaching keys in Visual Studio, 335
creating a key, 334
installing a control in GAC, 335

versus extender providers, 872
custom dialog windows, 81–83
custom editors, 465

drop-down type editor, 469–472
modal type editor, 466–468
painting a thumbnail, 473

custom form class
simplified example, 14

custom LIC file licensing, 922–923
custom mask, registering, 645–646
custom masked controls, creating, 646–650
custom TreeNode class, 376
custom validation components, 625

building the BaseValidator control,
627–631

building three custom validators, 631–634
understanding ASP.NET validation

controls, 626
using the custom validators, 634–637

Custom value
ToolStripRenderMode enumeration, 513

CustomFormat property
DateTimePicker control, 128, 130

customization
reasons for using dynamic interfaces, 730

customizing a renderer, 515–517
CustomLineCap object, creating, 222
CustomSource value

AutoCompleteSource enumeration, 135
CustomValidator control, 626
Cut() method

TextBox control, 114
CutCopyMaskFormat property

MaskedTextBox control, 642

Macdonald_694-3INDEX.fm Page 977 Friday, July 28, 2006 4:36 AM

978 ■I N D E X

■D
DashPattern property

Pens class, 222
DashStyle property

Pens class, 222, 224
data access component, 267–269
data binding, 263

.NET data binding, 264–265
and DataGridView class, 522
automatic data binding, 303

binding directly to a custom object,
310–312

binding directly to a database, 303–309
using a strongly typed DataSet, 309–310

basic data binding, 266
binding to a grid, 272
binding to a list, 270–272
binding to any control, 273–274
data access component, 267–269
data consumers, 266–267
data providers, 267
single-value binding, 274–275

binding to custom objects, 295–299
overriding ToString(), 299
supporting grid binding, 300–302

common data binding scenarios, 276
advanced conversions, 281–283
creating a lookup table, 284–285
formatting data with Format and Parse

events, 279–281
formatting data with format string,

277–279
row validation and changes, 285–286
updating, 276–277

data-aware controls, 312–313
decoupled TreeView with Just-In-Time

nodes, 314–317
DataGridView class, 522–536
design with data in mind, 263
exposed, 286–287

creating master-detail forms, 290–292
creating new binding context, 292
navigation, 288
reacting to record navigation, 289–290
validating bound data, 293–294

introduction, 264
not supported in ListView control, 173

data consumers, 266–267
data display, data binding for, 264–265
data providers, 266–267
data tiers, 37, 39, 40
data types and data binding format

string, 278
DataAdapter class

Update() method, 277
data-aware controls, 312–313

decoupled TreeView with Just-In-Time
nodes, 314–317

database-based Help, 796–797
database-driven adaptable menu example,

733–736
data-binding objects

reasons to access, 287
DataBindings collection

Control class, 273
Font property, 274
ForeColor property, 274

DataColumn class
data sources supported in Windows

Forms data binding, 267
Expression property, 553
ReadOnly property, 524

data-driven user interfaces, 36
DataError event

DataGridView class, 558
DataGrid class

enhancements in DataGridView, 520–521
legacy, 519–520

DataGridView class
AllowUserToAddRows property, 526, 553
AllowUserToResizeColumns property, 540
AllowUserToResizeRows property, 540
AlternatingRowsDefaultColumnStyle

property, 543
AreAllCellsSelectedMethod() method, 533
automatic binding to, 307
AutoSizeColumnsMode property, 537,

539, 541
AutoSizeRowsMode property, 541
BeginEdit() method, 556
cell selection, 530–533

Macdonald_694-3INDEX.fm Page 978 Friday, July 28, 2006 4:36 AM

979■I N D E X

Find it faster at http://superindex.apress.com

CellFormatting event, 546, 547
CellPainting event, 564
CellValidated event, 560
CellValidating event, 560, 561
CellValueChanged event, 541, 549
ClearSelection() method, 533
column and row resizing, 536

manual sizing, 540
programmatic resizing, 540–541
resizing rows, 541–542
setting automatic resize for individual

columns, 539
setting automatic resize mode for entire

grid, 537–538
user sizing, 540

column headers, 527–528
column-based sorting, 534–536
ColumnHeaderMouseClick event, 535
ColumnHeadersDefaultCellStyle

property, 546
Columns collection, 527
Columns property, 525
complex data binding, 267, 272
CurrentCell property, 533
CurrentCellAddress property, 533
custom cell edit controls, 570–575
customization, 564–570data-binding,

522–524
DataError event, 558
DataGrid class legacy, 519–520
DataMember property, 523
DataSource property, 522
DefaultCellStyle property, 543
DefaultValuesNeeded event, 558
editing and validation, 555–556

constraining choices with a list column,
562–563

default values for new rows, 557–558
editing events, 557
editing properties, 555
handling errors, 558–560
validating input, 560–562

FirstDisplayedCell property, 533
formatting, 536

column and row resizing, 536–542
custom cell formatting, 546–548

hiding, moving and freezing columns,
548–549

styles, 543–546
introduction, 519–521
IsNewRow property, 526
large data sources, 521–522
navigation events, 533–534
NotifyCurrentCellDirty() method, 573
objects, 524–525

DataGridViewColumn class, 526
DataGridViewRow class, 525–526

Paint() method, 566
ReadOnly property, 553
retrieving selected cells, 531
RowHeadersDefaultCellStyle

property, 546
RowPostPaint event, 564
RowPrePaint event, 564
Rows property, 525
RowsDefaultColumnStyle property, 543
RowTemplate object, 558
RowValidated event, 560
RowValidating event, 560, 561
SelectAll() method, 533
SelectionMode property, 530
smart tags, 24
Sort() method, 535
StandardTab property, 524
styles inherited from, 558
unbound grids, 528–530
using button columns, 553–555
using image columns, 549–553

DataGridViewButtonColumn class
derived from DataGridViewColumn
class, 527
using button columns, 553–555

DataGridViewCell class, 525, 547
DefaultNewRowValue property, 572
EditType property, 570
ErrorText property, 561, 562
OwningColumn property, 569
PaintBorder() method, 568
PaintErrorIcon() method, 568
Selected property, 533
Style property, 543

Macdonald_694-3INDEX.fm Page 979 Friday, July 28, 2006 4:36 AM

980 ■I N D E X

DataGridViewCellPaintingEventArgs class
Handled property, 564
PaintBackground() method, 566
PaintContent() method, 566

DataGridViewCellStyle class, 543, 544, 547
defining as member variable of Form

class, 547
formatting information, 526
properties, 545–546

DataGridViewCellValidatingEventArgs class
Cancel property, 561

DataGridViewCheckBoxColumn class
derived from DataGridViewColumn

class, 527
DataGridViewColumn class, 526

appearance-related properties, 548
CellTemplate property, 568
classes derived from, 526
custom cell formatting, 546
DefaultCellStyle property, 543, 548
FillWeight property, 539
MinimumWidth property, 539
provided by Columns property,

DataGridViewColumn class, 525
Resizable property, 538, 540
retrieving, 532
retrieving from Columns collection,

DataGridView class, 527
Selected property, 533
SortMode property, 535
styles inherited from, 558
Width property, 540

DataGridViewComboBoxColumn class
DataProperyName property, 563
DataSource property, 563
derived from DataGridViewColumn

class, 527
Items collection, 563

DataGridViewDataErrorContexts
enumeration

values, 559, 560
DataGridViewDataErrorContexts property

DataGridViewDataErrorEventArgs
class, 559

DataGridViewDataErrorEventArgs class
Cancel property, 560
DataGridViewDataErrorContexts

property, 559
DataGridViewEditingControl class

ApplyCellStyleToEditingControl()
method, 574

EditingControlFormattedValue
property, 573

EditingControlValueChanged
property, 573

EditingControlWantsInputKey()
method, 574

DataGridViewImageCell class, 567
DataGridViewImageColumn class

derived from DataGridViewColumn
class, 527

image columns, 549–553
Layout property, 549

DataGridViewLinkColumn class
derived from DataGridViewColumn

class, 527
DataGridViewPaintParts enumeration

values, 566
DataGridViewRow class, 525, 526

custom cell formatting, 546
DefaultCellStyle property, 543
ErrorText property, 561
Height property, 541
properties, 549
provided by Rows property,

DataGridViewColumn class, 525
Resizable property, 540
retrieving, 532
Selected property, 533

DataGridViewSelectionMode enumeration
values, 530

DataGridViewTextBoxCell class, 567
DataGridViewTextBoxColumn class

allows users to enter any characters, 558
derived from DataGridViewColumn

class, 527
DataGridViewTextBoxEditingControl

class, 571
DataMember property

DataGridView class, 523

Macdonald_694-3INDEX.fm Page 980 Friday, July 28, 2006 4:36 AM

981■I N D E X

Find it faster at http://superindex.apress.com

DataProperyName property
DataGridViewComboBoxColumn class, 563

DataRowView class
does not support IBindingList

interface, 300
implementing interfaces used in data

binding, 276
DataSet class

binding through, 272
binding to Windows Forms controls, 268
DefaultViewManager property, 272
strongly typed DataSet classes, 309–310

DataSource property
Control class, 270
DataGridView class, 522
DataGridViewComboBoxColumn

class, 563
DataView class, 270

DataSourceNullValue property
DataGridViewCellStyle class, 545

DataTable class
binding, 285, 522
binding to Windows Forms controls, 268
ColumnChanged event, 280, 281
ColumnChanging event, 285
DefaultView property, 270, 523
events, 293

DataView class
binding by DataTable class, 523
binding to controls, 286–287
binding to tables, 292
complex data binding, 270–271
data sources supported in Windows

Forms data binding, 267
DisplayMember property, 299
implementing interfaces used in data

binding, 276
properties, 271
RowFilter property, 549, 555

DataViewManager class, 287
accessing, 272
data sources supported in Windows

Forms data binding, 267
implementing interfaces used in data

binding, 276

date controls, 127
DateTimePicker control, 127–129
MonthCalendar control, 127, 130, 131, 132

Date data types
data binding format string, 279

Date property
DateTime class, 129

DateChanged event
MonthCalendar control, 131

DateSelected event
MonthCalendar control, 131

DateTime class
Date property, 129
Now property, 129
Parse() method, 643
System namespace, 129
Today property, 129

DateTimePicker control, 127, 128, 129
properties, 129

Deactivate event
Form class, 73

debugging, design time support, 433–436
DefaultCellStyle property

DataGridView class, 543
DataGridViewColumn class, 543, 548
DataGridViewRow class, 543

DefaultEventAttribute class
System.ComponentModel

namespace, 430
DefaultFont property

SystemFonts class, 57
DefaultLayout class

System.Windows.Forms.Layout
namespace, 744

DefaultNewRowValue property
DataGridViewCell class, 572

DefaultValueAttribute class
attributes for control properties, 438
System.ComponentModel

namespace, 439
DefaultValuesNeeded event

DataGridView class, 558
DefaultView property

DataTable class, 270, 523
DefaultViewManager property

DataSet class, 272

Macdonald_694-3INDEX.fm Page 981 Friday, July 28, 2006 4:36 AM

982 ■I N D E X

DefaultyPropertyAttribute class
System.ComponentModel

namespace, 430
delayed updates, 704–706
delegates, 6–7
derived controls

compared to user controls, 367–368
DirectoryTree control, 377–378

DirectorySelected event, 380
filling the tree, 378–379

extending, 366–367
ProjectTree control, 368–369

adding projects, 373–375
custom tree node, 376–377
Data class, 369, 371
design-time support, 377
node groups, 372
node images, 371
ProjectSelected event, 375, 376

types of custom controls, 322
uses, 365–366

derived forms, 380–381
adding property in ancestor form, 383–384
ancestor control, 383
events, 384–386
simple derived forms, 381–382

DescriptionAttribute class
System.ComponentModel

namespace, 429
Deserialize() method

BinaryFormatter class, 868
design time support for custom controls, 425

basics, 425–436
code serialization, 437–446
type conversion, 447–462
type editors, 462–473

Designer attribute
MarqueeLabel control, 889

designer services, 899–901
designer notifications, 901–902
designer transactions, 903–904

designer verbs, 895–899
DesignerActionHeaderItem class, 908

deriving from DesignerActionItem
class, 908

DesignerActionItem class
classes that derive from, 908
creating smart tags, 905

DesignerActionItemCollection class
building, 908

DesignerActionList class
GetSortedActionItems() method, 908
System.ComponentModel.Design

namespace, 905
DesignerActionMethodItem class

adding links to smart tags, 906
deriving from DesignerActionItem

class, 908
DesignerActionMethodItem() method

creating, 909
DesignerActionPropertyItem class

adding properties to smart tags, 906
deriving from DesignerActionItem

class, 908
DesignerActionTextItem class

creating objects, 909
deriving from DesignerActionItem

class, 908
DesignerSerializationVisibility enumeration

Content value, 448
values, 442
Visible value, 459

DesignerSerializationVisibilityAttribute class
attributes for control properties, 438
turning off serialization, 442

DesignerTransaction class
Commit() method, 903

DesignerVerbCollection class
creating, 895

DesignMode property
Control class, 44, 894

DesignModeDialog class
PropertiesToDesign collection, 435
ShowDialog() method, 436

DesignOnlyAttribute class
System.ComponentModel

namespace, 429

Macdonald_694-3INDEX.fm Page 982 Friday, July 28, 2006 4:36 AM

983■I N D E X

Find it faster at http://superindex.apress.com

design-time support, 885
See also custom controls
collection controls, 910–911

BarItem type converter, 911–913
BarItemCollectionEditor class, 913–916
selecting BarItem objects at design time,

916–918
container controls, 910, 918–920
control designers, 885–888

designer services, 899–904
designer verbs, 895–899
filtering properties and events, 888–893
interacting with the mouse, 893–894
selection and resize rules, 894

licensing custom controls, 920–921
custom LIC file licensing, 922–923
more advanced license providers,

923–925
simple LIC file lincensing, 921–922

smart tags, 904, 905
action list, 905, 906, 907
control designer, 910
DesignerActionItem class, 908, 909

DestroyInstance() method
CollectionEditor class, 915

Details mode
ListView control, 177, 178, 180

Details value
View enumeration, 174

Details view mode
ListView control, 175

DetectUrls property
RichTextBox control, 116

DeviceName property
Screen class, 76

diagramming tools and dynamic
interfaces, 730

DialogFont property
SystemFonts class, 57

DialogResult enumeration, 820
System.Windows.Forms namespace, 83

DialogResult property
Button control, 113
IButtonControl interface, 820

Dictionary collection
System.Collections.Generic

namespace, 87
Dimension property

Bitmap Viewer user control, 354
Directory class

Drive property, 461, 462
DirectoryInfo class

System.IO namespace, 378
DirectorySelectedEventArgs class, 380
DirectoryTree class

Drive property, 466, 898
DirectoryTree control, 377, 378

adding designer verbs, 897
deriving a designer class from, 887
DirectorySelected event, 380
filling the tree, 378, 379
implementing using extender

provider, 872
linking to DirectoryTree control, 887

DirectoryTreeDesigner class
Drive property, 903
linking to DirectoryTree control, 887
modifying to use designer service, 901

DirectShow, 581
Disabled state

AnimatedButtonBase class, 821, 822
DisabledLinkColor property

LinkLabel control, 112
Display value

DataGridViewDataErrorContexts
enumeration, 559

DisplayedCells value
AutoSizeColumnsMode enumeration,

537, 540
DisplayedCellsExceptHeader value

AutoSizeColumnsMode enumeration, 537
DisplayIndex property

DataGridViewColumn class, 548
DisplayMember property

DataView class, 270, 299
DisplayName attribute, 877
DisplayStyle property

not in ToolStripControlHost class, 482
not in ToolStripSeparator class, 482
ToolStripItem class, 482, 484

Macdonald_694-3INDEX.fm Page 983 Friday, July 28, 2006 4:36 AM

984 ■I N D E X

Dispose() method
AgentController class, 806
and pens, 221
Control class, 44
font classes, 57
GradientPanel control, 410
Graphics class, 212, 217
IDisposable classes, 328
License class, 923
overriding, 328
release control handlers, 83

dock padding
ScrollableControl class, 99

Dock property
Control class, 99, 755
SplitContainer class, 104
ToolStrip class, 479

docking, 99–100
DockPadding property

Form class, 94
Panel control, 132

DockStyle enumeration, 99
document applications as MDI application

type, 652
Document class, 668–669

Order class derives from, 668
document interface models

evolution, 651–654
Document property

WebBrowser control, 597
Document.InvokeScript() method

WebBrowser control, 604
DocumentChanged event

Order class, 671, 674
DocumentCompleted event

WebBrowser control, 592
DocumentManager class

ActiveDocumentForm property, 682, 684
AddForm() method, 681
OnWindowListChanged() method, 683
QuitWhenLastDocumentClosed

property, 682
responsibilities, 680

DocumentStream property
WebBrowser control, 590, 597

DocumentText property
WebBrowser control, 590, 597

DocumentTitleChanged event
WebBrowser control, 593

document-view architecture, 666–667
document-view ordering program, 667

Child form class, 677
Document class, 668–669
Order class, 669–671
OrderGridView class, 671–673
OrderPrintPreview class, 674–676
Parent form class, 678–679

DoDefaultAction() method
IDesigner interface, 886

domain controls, 125
DomainUpDown control, 125
NumericUpDown control, 126
ProgressBar control, 127
TrackBar control, 126

DomainUpDown control, 125
double buffering, 404
DoubleBuffered property

and controls, 246–248
Control class, 247, 404
Form class, 244, 246, 860
ListView control, 180
TreeView control, 203

DoubleClick event
controls, 66
NotifyIcon component, 144
Pause() method, 882
PictureBox control, 880
ToolStripItem class, 481

DoubleClickEnabled event
ToolStripItem class, 481

drag-and-drop, 137
authentic drag-and-drop, 138–141
fake drag-and-drop, 137–138
TreeView control, 205–208

DragDrop event
ToolStripItem class, 481

DragEnter event
ToolStripItem class, 481

DragLeave event
ToolStripItem class, 481

Macdonald_694-3INDEX.fm Page 984 Friday, July 28, 2006 4:36 AM

985■I N D E X

Find it faster at http://superindex.apress.com

DragOver event
ToolStripItem class, 481
TreeView control, 206

Draw event
ToolTip class, 143

Draw() method
ImageList control, 155

DrawArc() method
Graphics class, 211, 218

DrawBackground() method
VisualStyleRenderer class, 258, 259

DrawBezier() method
Graphics class, 218

DrawBorder() method
ControlPaint class, 255

DrawBorder3D() method
ControlPaint class, 255, 830

DrawButton() method
ControlPaint class, 255

DrawCaptionButton() method
ControlPaint class, 255

DrawCheckBox() method
ControlPaint class, 255

DrawClosedCurve() method
Graphics class, 218

DrawColumnHeader event
ListView control, 396

DrawComboButton() method
ControlPaint class, 255

DrawCurve() method
Graphics class, 218

DrawDefault property
DrawTreeNodeEventArgs class, 398

DrawEdge() method
VisualStyleRenderer class, 258, 259

DrawEllipse() method
Graphics class, 218

DrawFocusRectangle() method
ControlPaint class, 255

DrawGrid() method
ControlPaint class, 255

DrawIcon() method
Graphics class, 218

DrawIconUnstretched() method
Graphics class, 218

DrawImage() method
Graphics class, 219
VisualStyleRenderer class, 259

DrawImageDisabled() method
ControlPaint class, 255, 830

DrawImageUnscaled() method
Graphics class, 219

drawing program with controls, 839–840
drawing surface, 843–847
Shape control, 840–843

drawing program with Shape objects, 848
drawing surface, 859–860

detecting mouse clicks, 860–862
manipulating shapes, 863
saving and loading images, 867–869
watching the mouse, 863–866

Shape class, 849–850
derived Shape classes, 851–852
drawing code, 852–853
hit testing code, 853–855
ZOrder property, 856–857

ShapeCollection class, 857–859
drawing surface, 843–860

detecting mouse clicks, 860–862
manipulating shapes, 863
saving and loading images, 867–869
watching the mouse, 863–866

drawing tools and dynamic interfaces, 730
drawing with GDI+, 209
DrawItem event

ListView control, 180, 396
TabControl control, 134

DrawLine() method
Graphics class, 219

DrawLines() method
Graphics class, 219

DrawLockedFrame() method
ControlPaint class, 256

DrawMenuGlyph() method
ControlPaint class, 256

DrawMixedCheckBox() method
ControlPaint class, 256

DrawMode enumeration
OwnerDrawFixed value, 390, 391
OwnerDrawVariable value, 390

Macdonald_694-3INDEX.fm Page 985 Friday, July 28, 2006 4:36 AM

986 ■I N D E X

DrawMode event
TabControl control, 134

DrawMode property
ListBox control, 390
owner drawn controls, 389
TreeView control, 396

DrawNode event
TreeView control, 203, 396

DrawNode property
TreeView control, 203

DrawParentBackground() method
VisualStyleRenderer class, 259

DrawPath() method
Graphics class, 219, 233
Shape control, 841

DrawPie() method
Graphics class, 219

DrawPolygon() method
Graphics class, 219

DrawRadioButton() method
ControlPaint class, 256

DrawRectangle() method
Graphics class, 219, 222

DrawRectangles() method
Graphics class, 219

DrawScrollButton() method
ControlPaint class, 256

DrawSelectionFrame() method
ControlPaint class, 256

DrawSizeGrip() method
ControlPaint class, 256

DrawString() method
compared to TextRenderer class, 232
Graphics class, 219, 230, 231

DrawStringDisabled() method
ControlPaint class, 255

DrawSubItem event
ListView control, 180, 396

DrawTest() method
VisualStyleRenderer class, 259

DrawText() method
TextRenderer class, 232
VisualStyleRenderer class, 258

DrawTreeNodeEventArgs class
DrawDefault property, 398

Drive property
Directory class, 461, 462
DirectoryTree class, 466, 898
DirectoryTreeDesigner class, 903
SelectDrive class, 898

DriveSelection property
Select class, 466

DropDown event
ComboBox control, 124

drop-down lists
creating, 495–496
use of in user interfaces, 940

DropDown property
ToolStripDropDownItem class, 498

drop-down type editor, 469–472
DropDown.Renderer property

ToolStripDropDownItem class, 512
DropDownAlign property

DateTimePicker control, 130
DropDownClosed event

ComboBox control, 124
ToolStripDropDownItem class, 495
ToolStripMenuItem class, 660

DropDownClosing event
ToolStripDropDownItem class, 495

DropDownControl() method
IWindowsFormEditorService object, 471

DropDownDirection property
ToolStripDropDownItem class, 495

DropDownHeight property
ComboBox control, 123

DropDownItemClicked event
ToolStripDropDownItem class, 495

DropDownItems collection
ToolStripMenuItem class, 500

DropDownOpened event
ToolStripDropDownItem class, 495

DropDownOpening event
ToolStripDropDownItem class, 495
ToolStripMenuItem class, 660

DropDownStyle property
ComboBox control, 123

DropDownWidth property
ComboBox control, 123

Macdonald_694-3INDEX.fm Page 986 Friday, July 28, 2006 4:36 AM

987■I N D E X

Find it faster at http://superindex.apress.com

DropEnter event
TreeView control, 206

DroppedDown property
ComboBox control, 123

Duration property
IMediaPosition interface, 584

dynamic content, 730–731
adaptable menu example, 731–733
creating controls at runtime, 736–37
database-driven adaptable menu

example, 733–736
dynamic drawing with a design surface, 839

approaches, 839
drawing program with controls, 839–840

drawing surface, 843–847
Shape control, 840–843

drawing program with Shape objects, 848
Shape class, 849–857

dynamic interfaces, 356, 729
control layout, 738

Layout event, 738–739
layout manager, 739–743

creating user interfaces using the IDE, 730
dynamic content, 730–731

adaptable menu example, 731–733
creating controls at runtime, 736–737
database-driven adaptable menu

example, 733–736
FlowLayoutPanel class, 746–749

automatic scrolling and sizing, 750
FlowBreak property, 748
margins and padding, 749

layout engines, 743–744
creating a custom layout engine,

745–746
layout panel examples

FlowLayoutPanel class - modular
interface, 771–772

TableLayoutPanel class - bipane
proportional resizing, 759–760

TableLayoutPanel class - forms from a
file, 762–771

TableLayoutPanel class - list of settings,
760–762

TableLayoutPanel class - localizable
dialog box, 757–759

markup-based user interfaces, 773
WMFL, 774
XAML, 774

reasons for dynamic user interfaces,
729–730

TableLayoutPanel class, 751–752
extended properties, 756
generating new rows and columns,

754–755
positioning controls, 755–756
row and column styles, 752–754

testing the wizard, 363
wizard controller, 360–362
wizard model, 357
wizard step, 358–359

■E
editing events

DataGridView class, 555–557
EditingControlFormattedValue property

DataGridViewEditingControl class, 573
EditingControlValueChanged property

DataGridViewEditingControl class, 573
EditingControlWantsInputKey() method

DataGridViewEditingControl class, 574
EditMode property

DataGridView class, 556
EditType property

DataGridViewCell class, 570
EditValue() method

CollectionEditor class, 915
UITypeEditor class, 465

EllipseShape class, 851
EllipsisPath property

StringFormat class, 231
email address, regular expressions, 623
embedded resources, 151
Empty property

Color structure, 119
EnableAutoDragDrop event

RichTextBox control, 116
Enabled property

AnimatedButtonBase class, 822
Link object, 111
LinkLabel control, 112
ToolStripItem class, 479

Macdonald_694-3INDEX.fm Page 987 Friday, July 28, 2006 4:36 AM

988 ■I N D E X

EnableScrolling property
MarqueeLabel control, 892

EnableVisualStyles() method
Application class, 32, 47, 233, 257

encapsulation
control references, 36
data-driven user interfaces, 36
introduction, 34
using central switchboard, 35
using collections, 36
using enumerations and helper classes, 36

EncryptionLevelChanged event
WebBrowser control, 593

EndCap property
Pens class, 222

EndEdit() method
DataGridView control, 556

EndInit() method
ISupportInitialize interface, 444, 445,

879, 880
EndInvoke() method

delegate class, 693–695
EndUpdate() method

ListView control, 177
TreeView control, 195

EnsureVisible() method
ListView control, 188
Node class, 204

Enter event
DataGridView class, 534
Form class, 664

Enum class
Parse() method, 53

enumerations
introduction, 7–8
support for in Properties window, 459–461

Equals() method
Font class, 441

Eratosthenes, sieve of, 696
EratosthenesTask class, 717, 721
error handling

DataGridView class, 558–560
error notifications, validating at right

time, 611

Error property
ErrorProvider class, 871

ErrorBlinkStyle enumeration, 621
ErrorIconAlignment enumeration, 620
ErrorImage property

image-related properties in common
controls, 154

ErrorProvider class
Error property, 871
extender providers, 141

ErrorProvider control, 60, 617
appearance related methods, 620
appearance related properties, 620
BaseValidator creates behind the

scenes, 627
BlinkRate property, 621
BlinkStyle property, 621
extending validation techniques, 611
Icon property, 621
SetError() method, 618, 619
SetIconAlignment() method, 620
SetIconPadding() method, 620

ErrorText property
DataGridViewCell class, 561, 562
DataGridViewRow class, 561

Etched value
Border3DStyle enumeration, 494

EvaluateIsValid() method
BaseValidator control, 627, 630
RangeValidator control, 634

EventArgs class
CloseReason property, 74
Graphics property, 564

events
derived forms, 384–386
supported by HTML elements, 603

evidence and code access security, 958
Exit() method

Application class, 33, 145
Expand() method

Node class, 204
ExpandableObjectConverter class

BarItemConverter class derives from, 911
solving refresh problem with

CreateInstance() method, 456–457

Macdonald_694-3INDEX.fm Page 988 Friday, July 28, 2006 4:36 AM

989■I N D E X

Find it faster at http://superindex.apress.com

solving refresh problem with events,
454–456

ways of using, 454
ExpandAll() method

Node class, 204
TreeView control, 204

Explorer-like user interface, 935
Exponential data type

data binding format string, 278
Expression property

DataColumn class, 553
extender providers, 141–142, 871

HelpIconProvider class, 878–883
StatusStripHelpLabel provider, 872–878
understanding, 871–872

■F
fake drag-and-drop, 137–138
file names, converting to image objects, 282
FileDialog class, 91
FileDownload event

WebBrowser control, 593
FileNameEditor class

System.Windows.Forms.Design
namespace, 464

FileSystem value
AutoCompleteSource enumeration, 135

FileSystemWatcher class, 146
System.IO namespace, 144

FilgraphManager class
accessing interfaces, 583
casting to IVideoWindow interface, 586

Fill value
AutoSizeColumnsMode enumeration,

537, 540, 541
FillClosedCurve() method

Graphics class, 219
FillEllipse() method

Graphics class, 219
FillPath() method

Graphics class, 219, 233
Shape control, 841

FillPie() method
Graphics class, 219

FillPolygon() method
Graphics class, 219

FillRectangle() method
Graphics class, 219, 222

FillRectangles() method
Graphics class, 219

FillRegion() method
Graphics class, 219

FillWeight property
DataGridViewColumn class, 539

Find value
HelpNavigator enumeration, 788

FindEditPostionFrom() method
MaskedTextProvider class, 648

FindForm() method
controls, 46

FindItemWithText() method
ListView control, 188

FindNearestItem() method
ListView control, 188

FindPrimes() method
Worker component, 697, 699, 708, 709

FirstDayOfWeek property
MonthCalendar control, 131

FirstDisplayedCell property
DataGridView class, 533

FirstNode property
TreeView control, 198

Fixed Decimal data type
data binding format string, 278

FixedPanel property
SplitContainer class, 104

Flat value
Border3DStyle enumeration, 494

FlatAppearance property
Button control, 113

FlatStyle property
Button control, 113
button-style controls, 47
ComboBox control, 124

Flatten() method
GraphicsPath class, 234

floating ToolStrip objects, 490
Flow value

ToolStripLayoutStyle enumeration, 478
FlowBreak property

FlowLayoutPanel class, 748

Macdonald_694-3INDEX.fm Page 989 Friday, July 28, 2006 4:36 AM

990 ■I N D E X

FlowDirection enumeration
values, 747

FlowDirection property
FlowLayoutPanel class, 747

FlowLayout class
System.Windows.Forms.Layout

namespace, 744
FlowLayoutPanel class, 132, 744

adds new properties to Panel class, 747
AutoScroll property, 750
AutoSize property, 750
Button class.Margin property, 749
FlowBreak property, 748
FlowDirection property, 747
layout panel examples, 771, 772
MaximumSize property, 750
OnSubscribeControlEvents() method, 505
OnUnsubscribeControlEvents()

method, 505
Padding property, 749
WrapContents property, 747, 749, 750
wrapping contents of, 747, 748, 749
simplifying layout, 356

focus
and AnimatedButtonBase class, 825–826
and tab sequence, 59–60

Focus() method
controls, 60

Focused property
ListView control, 176

Focused_ Returns property
controls, 60

FocusedItem property
ListView control, 176

FolderBrowserDialog class, 92
FolderNameEditor class

System.Windows.Forms.Design
namespace, 464

Font class
Equals() method, 441
Font.Size property, 118
GetHeight() method, 231
Height property, 56
Name property, 56

setting properties in Properties
window, 454

System.Drawing namespace, 56
Font property

Control class, 56
DataBindings collection, 274
DataGridViewCellStyle class, 545
Form class, 57
FormattedListItemWrapper class, 393
ToolStripItem class, 479
UserControl class, 339

FontDialog class, 92
FontEditor class

System.ComponentModel.Design
namespace, 463

fonts
and text, 56
large fonts, 57–58
system fonts, 57

FontStyle enumeration, 118
ForeColor property

Control class, 843
controls, 52
DataBindings collection, 274
DataGridViewCellStyle class, 545
FormattedListItemWrapper class, 393
Shape class, 849
ToolStripItem class, 479
ToolTip class, 143
UserControl class, 339

Form class, 71, 74
AcceptButton property, 820
Activated event, 664
ActiveMdiChild property, 656, 657
Anchor property, 95
AutoScroll property, 79
AutoScrollMinSize property, 80
AutoValidate property, 614, 617
BackgroundImage property, 814, 816
base classes for custom controls, 323
CancelButton property, 820
CausesValidation property, 616
CenterToScreen() method, 75
ClientToPoint() method, 67
Close() method, 85, 616
Closed event, 33

Macdonald_694-3INDEX.fm Page 990 Friday, July 28, 2006 4:36 AM

991■I N D E X

Find it faster at http://superindex.apress.com

Controls collection, 636
derives from ContainerControl, 80
dock padding, 100
DockPadding property, 94
DoubleBuffered property, 244, 246, 860
Enter event, 664
events, 73
Font property, 57
FormBorderStyle property, 814
FormClosing event, 617
HelpRequested event, 796
HScroll property, 80
inheritance, 13–15, 22
InitializeComponent() method, 24, 26, 437
Invalidate() method, 860
Leave event, 664
Load event, 288, 313, 762
Localizable property, 166
MainMenuStrip property, 499
MaximumSize property, 95
MdiChildren property, 657, 659
MdiParent property, 655
MenuStrip property, 500
MinimumSize property, 95
Name property, 88
OnPaintBackground() method, 244
OnResize() method, 216
ownwership members, 88
PointToClient() method, 67
properties, 72, 73
Region property, 818
ResizeRedraw property, 216
Show() method, 11, 15, 81
ShowDialog() method, 11, 15, 33, 81
SizeChanged event, 95
SizeGripStyle property, 217
System.Windows.Forms namespace, 15,

380, 382
Text property, 88
TextChanged event, 682
TopMost property, 243
TransparencyKey property, 815, 816, 818
UserSelection property, 82
VScroll property, 80
WndProc() method, 585, 818

Form control
support for images, 152

form resources, 163, 164
Format event

Binding class, 279
Format property

DataGridViewCellStyle class, 545
DateTimePicker control, 128, 130

FormatFlags property
StringFormat class, 231

FormatProvider property
DataGridViewCellStyle class, 545
MaskedTextBox control, 643

FormattedListItemWrapper class
adding an Image property, 393
BackColor property, 393
Font property, 393
ForeColor property, 393
ToString() method, 393

formatting
data with Format and Parse events,

279–281
data with format string, 277–279
information with DataGridViewCellStyle

class, 526
strings, 278
styles with DataGridView class, 543–545

Formatting value
DataGridViewDataErrorContexts

enumeration, 560
form-based Help, 794–795
FormBorderStyle enumeration

None value, 814
FormBorderStyle property

Form class, 72, 814
FormClosed event

Form class, 74
FormClosing event

Form class, 74, 617
FormOwnerClosing value

CloseReason enumeration, 74
forms, 71

See also derived forms
closing with validating, 616–617
custom dialog windows, 81–83
Form class, 71

Macdonald_694-3INDEX.fm Page 991 Friday, July 28, 2006 4:36 AM

992 ■I N D E X

form interaction, 84
default form instances, 85–86
tracking forms, 88
tracking forms manually, 87–88

form ownership, 88–89
prebuilt dialogs, 90–91
resizable forms, 93–94

anchoring, 95–99
autosizing, 100–102
docking, 99–100
minimum and maximum form size, 95
problem of size, 94–95

scrollable forms, 79–80
showing a form, 81
size and position, 74

GetWindowPlacement() function, 78–79
saving and restoring form location,

76–77
Screen class, 75–76

smart forms, 22
splitting windows, 103–104

building with Panels, 105
other split windows, 106–107

FormStartPosition enumeration
values, 75

freezing columns
DataGridView class, 548–549

Friedl, Jeffrey
Mastering Regular Expressions

2nd edn, 622
Friend keyword, 15
FromFile() method

Image class, 151
FromHbitmap() method

Image class, 152
FromHdc() method

Graphics class, 218
FromImage() method

Graphics class, 217
FromStream() method

Image class, 152
Frozen property

DataGridViewColumn class, 548
FullColumnSelect value

DataGridViewSelectionMode
enumeration, 530

FullPath property
Node class, 202

FullRowSelect property
ListView control, 180
TreeView control, 202

FullRowSelect value
DataGridViewSelectionMode

enumeration, 530

■G
GAC (Global Assembly Cache), 333

applying a key to a control assembly,
334–335

attaching keys in Visual Studio, 335
creating a key, 334
installing a control in GAC, 335

GDI+
advanced

alpha blending, 235–236
clipping, 237–239
coordinate systems and

transformations, 239–242
screen captures, 242–243

and .NET, 209
controls, GDI+, benefits and

disadvantages, 403
creating content for shaped forms,

813–814
drawing with, 209
Graphics class, 217–219

brushes, 225–229
drawing text, 230–233
GraphicsPath class, 233–234
pens, 221–225
rendering mode and antialiasing,

219–220
introduction, 210–211
namespaces, 210
paint sessions, 211

Graphics class, 211–212
painting and repainting, 212–214
painting and resizing, 216
refreshes and updates, 214–216

painting optimization, 243
double buffering, 244–246
double-buffered controls, 246–248

Macdonald_694-3INDEX.fm Page 992 Friday, July 28, 2006 4:36 AM

993■I N D E X

Find it faster at http://superindex.apress.com

hit testing, 251–254
painting and debugging, 243
painting portions of a window, 248–251

painting Windows controls, 254–255
ControlPaint class, 255–256
using a control renderer, 260–261
visual styles, 256–257
VisualStyleRenderer class, 258–260

System.Drawing namespace, 209
General data type

data binding format string, 279
GenerateMember property

Visual Studio, 15
GeneratePath() method

derived Shape classes, 851
Shape class, 850

GestureAt() method
AgentController class, 804

GetAnimations() method
AgentController class, 805

GetAsyncKeyState() function
controls, 64–65

GetAttribute() method
HtmlElement object, 598

GetBounds() method
Screen class, 76

GetBrightness() method
Color structure, 53

GetCharFromPosition() method
TextBox control, 115

GetCharIndexFromPosition() method
TextBox control, 115

GetChildAtPoint() method
controls, 46

GetChildIndex() method
ControlCollection class, 856
Controls collection, 51

GetComponentSelected() method
ISelectionService interface, 917

GetConstructor() method
Type class, 458

GetConverter() method
TypeDescriptor class, 451

GetDisplayText() method
CollectionEditor class, 915

GetEditStyle() method
UITypeEditor class, 465

GetElementById() method
HtmlDocument class, 602

GetElementFromPoint() method
HtmlDocument class, 602

GetElementsByTagName() method
HtmlDocument class, 599

GetFirstCharIndexFromLine() method
TextBox control, 115

GetHeight() method
Font class, 231

GetHelpText() method
StatusStripHelpLabel provider, 876

GetHitTest() method
ControlDesigner class, 894, 916, 918

GetHue() method
Color structure, 53

GetImages() method
Bitmap Viewer user control, 348, 354

GetItemAt() method
ListView control, 188

GetKeyState() function, 63, 64
GetLargestPossibleRegion() method

Shape class, 855
GetLicense() method

LicenseProvider class, 920, 924, 925
GetLineFromCharIndex() method

TextBox control, 115
GetNodeAt() method

TreeView control, 205
GetPaintValueSupported() method

UITypeEditor class, 465
GetPositionFromCharIndex() method

TextBox control, 115
GetPreferredSize() method

Control class, 103
GetProject() method

ProjectTree control, 374
GetSaturation() method

Color structure, 53
GetSelectedComponent() method

ISelectionService interface, 917
GetSelectedComponents() method

ISelectionService interface, 917

Macdonald_694-3INDEX.fm Page 993 Friday, July 28, 2006 4:36 AM

994 ■I N D E X

GetService() method
Component class, 899
ComponentDesigner class, 899
IServiceProvider interface, 899

GetSortedActionItems() method
DesignerActionList class, 908

GetStandardValues() method
TypeConverter class, 460

GetStandardValuesExclusive() method
TypeConverter class, 461

GetStyle() method
Control class, 70

GetThumbnail() method
Image class, 354

GetThumbnailImage() method
Image class, 152

GetToolTip() method
ToolTip class, 143

GetWindowPlacement() function, 78
retrieves ManagedWindowPlacement

object, 78
GetWorkingArea() method

Screen class, 76
GiveFeedBack event

ToolStripItem class, 481
Global Assembly Cache. See GAC, 333
GoBack() method

WebBrowser control, 591
GoForward() method

WebBrowser control, 591
GoHome() method

WebBrowser control, 591
GoSearch() method

WebBrowser control, 591
GotFocus event

Control class, 73
controls, 60

GradientFill class
applying attributes to properties, 454–456
converting to string, 450–452
overriding refresh problem with

CreateInstance() method, 456
PaintValue() method, 473

GradientFill property
GradientPanel control, 448, 453, 473

GradientFillEditor control
attaching to GradientFill property of the

GradientPanel, 473
GradientPanel control

changing GradientPanel properties, 457
creating action list for, 905–907
creating custom class to determine

background fill, 447–449
gradient fill, 407–408
GradientFill property, 448, 453, 473
improving performance, 409–411
OnPaintBackground() method,

407–408, 414
owner-drawn custom controls, 407
painting process, 408

Graphics class
brushes, 225–226

HatchBrush class, 226–227
LinearGradientBrush class, 228
PathGradientBrush class, 228–229

Clipping property, 237
CompositingQuality property, 235
CopyFromScreen() method, 242
Dispose() method, 212
DrawArc() method, 211
DrawImageUnscaled() method, 247
drawing text, 230–231

TextRenderer class, 232, 233
DrawPath() method, 233
DrawRectangle() method, 222
DrawString() method, 230, 231
FillPath() method, 233
FillRectangle() method, 222
FromImage() method, 217
GraphicsPath class, 233, 234
MeasureString() method, 231
members, 217
methods for drawing, 218, 219
outputing images, shapes, or text, 390
PageUnit property, 239
pens, 221–222

alignment, 222–224
styling, 224–225

Macdonald_694-3INDEX.fm Page 994 Friday, July 28, 2006 4:36 AM

995■I N D E X

Find it faster at http://superindex.apress.com

rendering mode and antialiasing, 219–220
representing drawing surface, 852
ResetClip() method, 237
RotateTransform() method, 241
SmoothingMode property, 220
System.Drawing namespace, 211
TextRenderingHint property, 220
TranslateTranform() method, 239

Graphics property
EventArgs class, 564

GraphicsPath class, 841
cleared by Location and Size

properties, 850
CloseFigure() method, 253
creating Region object, 811
introduction, 233–234
IsOutlineVisible() method, 853
IsVisible() method, 253, 853
methods, 234
StartFigure() method, 253

GraphicsUnit enumeration, 239
GridLines property

ListView control, 180
GripStyle property

MainMenu class, 499
ToolStrip class, 489

Group property
ListViewItem class, 187

GroupBox control, 132
AutoSize property, 101
BindingContext property, 292
padding not provided, 100
support for images, 152

grouping on ListView control, 187
Groups collection

ListView control, 187, 188
Groups property

ListView control, 187
GrowStyle property

TableLayoutPanel class, 751, 754
GUI interfaces, 932

characteristics, 933–934

■H
Handle property

Control class, 70
Handled property

DataGridViewCellPaintingEventArgs
class, 564

KeyPressEventArgs class, 64
Handles keyword, 385
HasChildren property

controls, 46
HasDropDownItems property

ToolStrip class, 508
HatchBrush class, 226, 227
HeaderStyle property

ListView control, 180
HeaderText property

DataGridViewColumn class, 548
Height property

DataGridViewRow class, 541
Font class, 56
RowStyle class, 753
Size object, 49

Help class
and HelpProvider class, 795
ShowHelp() method, 795
System.Windows.Forms namespace, 795

Help systems, 777
application-embedded support, 800

affordances, 801
agents, 802–806

bad Help, 778–779
basic Help with HelpProvider, 784

compiled Help files, 787
external web pages, 787
simple pop-ups, 786–787

benefits of online help, 777–778
Help-authoring tools, 783–784
HTML Help with HelpProvider, 788

compiling Help file, 793
context-sensitive Help, 793–794
control- based and form-based Help,

794–795

Macdonald_694-3INDEX.fm Page 995 Friday, July 28, 2006 4:36 AM

996 ■I N D E X

creating a basic HTML Help file,
788–789

creating HTML Help project, 791
creating table of contents, 791–792
creating topic pages, 790

invoking Help programmatically, 795
creating your own Help, 799
database-based Help, 796–797
task-based Help, 797–799

types of Help, 779
HTML Help, 781
MS Help 2, 782
WinHelp, 779
WinHelp 95, 780

Help text
creating pop-ups, 787

Help-authoring tools, 783–784
HelpButton property

Form class, 72
HelpFile property

HelpIconProvider class, 878
HelpIconProvider class, 878

choosing a base class, 878
HelpFile property, 878
providing the extended property, 879–882

HelpKeyword property
HelpProvider class, 785

HelpNamespace property
HelpProvider class, 786–787

HelpNavigator enumeration, 795
values, 788

HelpNavigator property
Control class, 788
HelpProvider class, 785

HelpProvider class
and Help class, 795
basic Help, 784
extender providers, 141
HelpNamespace property, 786–787
members, 784
role of, 871
SetHelpString() method, 786

HelpRequested event
Control class, 787, 796
Form class, 796

HelpString property
HelpProvider class, 785

Hidden value
DesignerSerializationVisibility

enumeration, 442
Hide() method

AgentController class, 804
HidePromptOnLeave property

MaskedTextBox control, 642
HideSelection property

TreeView control, 205
hiding columns

DataGridView class, 548–549
hierarchical data views

not provided in DataGridView, 521
HistoryList value

AutoCompleteSource enumeration, 135
hit testing, 251, 252

ListView control, 188
non-rectangular shapes, 253–254
rectangles, 252–253
Shape class, 853–855

HitTest() method
AnimatedButtonBase class, 823
ListView control, 188
PopImageButton class, 829
ShapeCollection class, 858, 861

HitTestBackground() method
VisualStyleRenderer class, 259

HitTestFocusBorder() method
Shape class, 866

HorizontalScrollbar property
list controls, 122

HorizontalStackWithOverflow value
ToolStripLayoutStyle enumeration,

478, 486
HotTrack property

TabControl control, 134
HotTracking property

TreeView control, 202
HoverSelection property

ListView control, 180
HScroll property

Form class, 80

Macdonald_694-3INDEX.fm Page 996 Friday, July 28, 2006 4:36 AM

997■I N D E X

Find it faster at http://superindex.apress.com

HTML elements
events supported by, 603

HTML form
scripting, 605–606

HTML Help, 781
choices supported, 788

HTML Help SDK, 783
HTML Help with HelpProvider, 788

context-sensitive Help, 793–794
control-based and form-based Help,

794–795
creating a basic HTML Help file, 788–789

compiling Help file, 793
creating HTML Help project, 791
creating table of contents, 791–792
creating topic pages, 790

HtmlDocument class
GetElementById() method, 602
GetElementFromPoint() method, 602
GetElementsByTagName() method, 599
retrieving information, 606

HtmlElement object
GetAttribute() method, 598
key properties, 598

■I
IAsyncResult object, 693

IsCompleted property, 694
IBindingList interface

features, 300
two-way data binding, 267
using in data binding, 276

IButtonControl interface
buttons should implement, 820
DialogResult property, 820
NotifyDefault() method, 820

ICollection interface
implemented by ControlCollection class, 10

IComparable interface
implemented by Shape class, 856

IComparer interface
Compare() method, 182, 859
CompareTo() method, 859
creating custom sorting class, 182–185
creating a class that implements, 859
Sort() method, DataGridView class, 536

IComponent interface
extends IDisposable, 18
Initialize() method, 892
System.ComponentModel

namespace, 324
IComponentChangeService interface,

900, 902
methods, 901
OnComponentChanged() method, 904
OnComponentChanging() method, 903

Icon class
System.Drawing namespace, 152, 621

Icon property
ErrorProvider control, 621
Form class, 72
NotifyIcon component, 144

IconAlignment property
Visual Studio, 620

IconPadding property
Visual Studio, 620

IconTitleFont property
SystemFonts class, 57

Id property
HtmlElement object, 598

IDataErrorInfo interface
using in data binding, 276

IDataGridViewEditingControl class
implementing members, 572

IDataGridViewEditingControl interface, 572
IDesigner interface

members, 885
System.ComponentModel.Design

namespace, 885
IDesignerEventService interface, 900
IDesignerFilter interface, 885, 900

methods, 888
PreFilterProperties() method, 889

IDesignerHost interface, 900
CreateTransaction() method, 903

IDesignerOptionService interface, 900
IDictionaryService interface, 900
IDisposable interface

extended IComponent interface, 18
IEditableObject interface

two-way data binding, 267
using in data binding, 276

Macdonald_694-3INDEX.fm Page 997 Friday, July 28, 2006 4:36 AM

998 ■I N D E X

IEnumerable interface
implemented by ControlCollection

class, 10
IEventBindingService interface, 900
IExtenderListService interface, 900
IExtenderProvider interface, 744, 875

CanExtend() method, 873
System.ComponentModel

namespace, 873
IHelpService interface, 900
IInheritanceService interface, 900
IList interface, 270

data binding, 267
implemented by ControlCollection

class, 10
using in data binding, 276

Image class
FromFile() method, 151
FromHbitmap() method, 152
FromStream() method, 152
GetThumbnail() method, 354
GetThumbnailImage() method, 152
introduction, 151, 152
RotateFlip() method, 152
System.Drawing namespace, 151

image columns
DataGridView class, 549–553

Image property
adding to FormattedListItemWrapper

class, 393
image-related properties in common

controls, 154
PictureBox control, 121, 164, 267
ToolStripItem class, 479, 483

ImageAboveText value
ToolStripItemDisplayStyle

enumeration, 482
ImageAlign property

image-related properties in common
controls, 154

ToolStrip class, 485, 494
ImageBeforeText value

ToolStripItemDisplayStyle
enumeration, 482

ImageEditor class
System.ComponentModel.Design

namespace, 463
ImageIndex property

image-related properties in common
controls, 154–156

TabPage control, 135
ImageKey property

image-related properties in common
controls, 154–156

TabPage control, 135
ImageList class

embedding in ProjectTree control, 371
ImageList control

associating ListView control with, 174
information storage, 164
introduction, 155
limitations, 158
manipulating in code, 157–158
members, 155
serialization, 156

ImageList property
image-related properties in common

controls, 154–156
TabControl control, 134
TreeView class, 371

ImageListStreamer class
ImageList serialization, 156
interpreting information held in ImageList

control, 164
ImageOnly property

ToolStrip class, 482
images and controls, 152–154
Images property

ImageList control, 155
ImageScaling property

ToolStripItem class, 483
ImageScalingSize property

ToolStrip class, 483
ImageSize property

ImageList control, 155
ImageTransparent property

ToolStripItem class, 483
imaging and GDI+, 210

Macdonald_694-3INDEX.fm Page 998 Friday, July 28, 2006 4:36 AM

999■I N D E X

Find it faster at http://superindex.apress.com

IMediaControl interface
loading and playing a movie, 586
Pause() method, 582
RenderFile() method, 582
Run() method, 582, 586
Stop() method, 582

IMediaEventEx interface
SetNotifyWindow() method, 586

IMediaPosition interface
adding stop button, 584
ConvertTimeToString() method, 584
Duration property, 584
Position property, 584

IMenuCommandService interface, 900
ImmutableObjectAttribute class

System.ComponentModel
namespace, 429

Indent property
TreeView control, 202

Index value
HelpNavigator enumeration, 788

indexing controls, 16
IndexOf() method

TreeNodeCollection class, 200
inductive user interfaces, 939
inheritance

Appleman, Dan, 12
attributes, 431
controls, 12
Form class, 13, 14, 15

InitialDelay property
ToolTip class, 143

InitialImage property
image-related properties in common

controls, 154
Initialize() method

IComponent interface, 892
IDesigner interface, 886

InitializeComponent() method
code for creating and configuring the

component is added to, 26
Component class, 325
Form class, 24, 26, 437

InitialLocation property
image-related properties in common

controls, 154

InitialValueRestoration value
DataGridViewDataErrorContexts

enumeration, 560
InitLayout() method

LayoutEngine class, 744
InnerHtml property

HtmlElement object, 598
InnerText property

HtmlElement object, 598
in-place editing

DataGridView class, 524
Input Mask dialog box, 645
Insert value

MergeAction enumeration, 663
Insert() method

MaskedTextProvider class, 647
TreeNodeCollection class, 200

InsertionMark property
ListView control, 188

InsertMode property
MaskedTextBox control, 642

InstalledFontCollection class
System.Drawing.Text namespace, 56

InstanceDescriptor class, 912
generating, 458
information supplied to Visula Studio, 457
wrapping ConstructorInfo object, 458

IntegralHeight property
list controls, 122
ListBox control, 97

Interactive value
WebBrowserReadyState enumeration, 592

interface state, managing, 664–666
interfaces

See also user interfaces; IUIs; MDIs; SDIs
introduction, 8
using in data binding, 276

InterpolationMode property
Graphics class, 217

Interrupt() method
Thread class, 714

Invalidate() method
Control class, 213, 214
Form class, 860

InvalidOperationException class, 701

Macdonald_694-3INDEX.fm Page 999 Friday, July 28, 2006 4:36 AM

1000 ■I N D E X

Invoke() method
.NET controls, 701
Control class, 44, 701, 703

thread synchronization, 706, 715
delegate class, 693

InvokeRequired() method
.NET controls, 701
Control class, 44

IPv5MaskDescriptor class
creating, 645

IReferenceService interface, 900
IResourceService interface, 900
IRootDesigner interface, 900
IsAlive property

Thread class, 713
IsBackground property

Thread class, 713
IsBalloon property

ToolTip class, 143
IsBusy property

WebBrowser control, 592
IsCompleted property

IAsyncResult object, 694
IsEditing property

TreeNode class, 203
ISelectionService interface, 900

members, 917
IsElementDefined() method

VisualStyleRenderer class, 258, 259
IsEnabledByUser property

VisualStyleInformation class, 257
IServiceContainer interface, 900
IServiceProvider interface

GetService() method, 899
IsExpanded property

TreeNode class, 203
IsKeyLocked method

Control class, 63
IsKeyValid() method

LicenseProvider class, 920
IsLink property

ToolStripLabel class, 486
IsMatch() method

Regex class, 624
IsMdiContainer container, 655

IsMdiWindowListEntry property
ToolStripDropDownItem class, 496

IsNewRow property
DataGridView class, 526

ISO Sortable Standard data type
data binding format string, 279

IsOutlineVisible() method
GraphicsPath class, 853

IsSelected property
MultiSelectTreeNode control, 397, 400
TreeNode class, 203, 396

IsSplitterFixed property
SplitContainer class, 104

IsSupportedByOS property
VisualStyleInformation class, 257

ISupportInitialize interface
EndInit() method, 444, 445, 879, 880

IsValid() method
LicFileLicenseProvider class, 922

IsValidInput property
TypeValidationEventArgs class, 643

IsVisible property
TreeNode class, 203

IsVisible() method
Graphics class, 218
GraphicsPath class, 253, 853

IsWebBrowserContextMenuEnabled
property

WebBrowser control, 596
ItemClicked event

ToolStrip class, 511
ToolStripItem class, 481

ItemHeight property
list controls, 122

Items collection
ComboBox control, 123
DataGridViewComboBoxColumn

class, 563
DomainUpDown control, 125
ToolStrip class, 485

Items property
list controls, 122
ListView control, 176

ItemSize property
TabPage control, 134

Macdonald_694-3INDEX.fm Page 1000 Friday, July 28, 2006 4:36 AM

1001■I N D E X

Find it faster at http://superindex.apress.com

ITypeDescriptorContext interface
ConvertFrom() method, 912
ConvertTo() method, 912

ITypeDescriptorFilterService interface, 900
ITypeResolutionService interface, 900
IUI (inductive user interfaces), 939
IVideoWindow interface, 586

Owner property, 586
SetWindowPosition() method, 586, 587

IWindowsFormEditorService object
DropDownControl() method, 471
represents the editing service in Visual

Studio, 469

■J
Join() method

Thread class, 714

■K
keyboard handling for controls, 61

example with mouse handling, 67–68
intercepting key presses in a form, 64
key modifiers, 63
KeyPress and KeyDown, 61–63

KeyDown event
controls, 61–63

KeyPress event
controls, 61–64

KeyPressEventArgs class
Handled property, 64
SuppressKeyPress property, 64

keys, attaching in Visual Studio, 335
KeyUp event, controls, 61
KeywordIndex value

HelpNavigator enumeration, 788
KnownColors enumeration

transforming into an array of strings
representing color names, 53

■L
Label control

combining with ProgressBar control, 338
MaximumSize property, 102
properties, 109–110
TabIndex property, 59

label editing
ListView control, 186

LabelEdit property
ListView control, 176, 186

LabelWrap property
ListView control, 180

large fonts, 57–58
LargeIcon mode, ListView control

and large images, 181
LargeIcon value

View enumeration, 174
LargeImageList property

ListView control, 174, 176
LastNode property

TreeView control, 198
layout controls

overlapping problems addressed, 102
layout engines, 729–744

creating a custom layout engine, 745–746
in .NET 2.0, 744

Layout event
Control class, 739
ToolStrip class, 509, 510

layout manager
creating, 739–742
problems with, 743

layout panel examples
FlowLayoutPanel class

modular interface, 771–772
TableLayoutPanel class

bipane proportional resizing, 759–760
forms from a file, 762–771
list of settings, 760–762
localizable dialog box, 757–759

Layout property
DataGridViewImageColumn class, 549

Layout() method
LayoutEngine class, 744–745

LayoutCompleted event
ToolStrip class, 508–510

LayoutEngine class
creating a custom layout engine, 745
InitLayout() method, 744
Layout() method, 744, 745
System.Windows.Forms.Layout

namespace, 744

Macdonald_694-3INDEX.fm Page 1001 Friday, July 28, 2006 4:36 AM

1002 ■I N D E X

LayoutEngine property
assigning new control class to, 746
Control class, 744

LayoutEventArgs class
AffectedProperty property, 742

LayoutMdi() method
MDI containers, 660

LayoutStyle property
ToolStrip class, 478, 479, 486

Leave event
DataGridView class, 534
Form class, 664

LeaveControl value
DataGridViewDataErrorContexts

enumeration, 560
LeftSizeable value

SelectionRules enumeration, 895
LeftToolStripPanel property

ToolStripContainer class, 489
LeftToolStripPanelVisible property

ToolStripContainer class, 489
LeftToRight value

FlowDirection enumeration, 747
legacy controls

reasons for changing, 477
Length property

LinkLabel control, 112
License class

Dispose() method, 923
LicenseKey property, 923
System.ComponentModel

namespace, 920
LicenseContext class

UsageMode property, 925
LicenseException class, 922

thrown by LicFileProvider class, 924
LicenseKey property

License class, 923
LicenseManager class

Validate() method, 920, 922, 924
LicenseProvider attribute class, 920
LicenseProvider class

GetLicense() method, 920, 924, 925
IsKeyValid() method, 920
System.ComponentModel

namespace, 920

licensing controls, 885
licensing custom controls, 920–921

custom LIC file licensing, 922–923
more advanced license providers, 923–925
simple LIC file licensing, 921–922

LicFileLicenseProvider class, 921–922
IsValid() method, 922

LicFileProvider class
throws LicenseException class, 924

limited-length field
regular expressions, 624

LineAlignment property
StringFormat class, 231

LinearGradientBrush class, 226, 228
creating control, 408–409

LinearGradientMode class
calling GradientFill constructor, 458

LineColor property
TreeView control, 202

LineJoin property
Pens class, 222, 225

Lines property
TextBox control, 114

Link object
Enabled property, 111
Visited property, 111

LinkArea property
LinkLabel control, 112

LinkBehavior property
LinkLabel control, 112
ToolStripLabel class, 486

LinkClicked event
LinkLabel control, 110
RichTextBox control, 116

LinkColor property
LinkLabel control, 112
ToolStripLabel class, 486

LinkData object
associating some data with a link, 111

LinkData property
LinkLabel control, 112

linked resource files, 161
LinkLabel control

Introduction, 110–112
Link properties, 111

Macdonald_694-3INDEX.fm Page 1002 Friday, July 28, 2006 4:36 AM

1003■I N D E X

Find it faster at http://superindex.apress.com

Links property
LinkLabel control, 111, 112

LinkVisited property
LinkLabel control, 110, 112

List collection
System.Collections.Generic

namespace, 87
list controls, 121

common properties, 122
with objects, 124–125

List value
View enumeration, 174

List view mode
ListView control, 175

ListBox control, 121
advanced owner-drawn version, 391–395
complex data binding, 267
DrawMode property, 390
IntegralHeight property, 97
MeasureItem event, 391
properties supported by, 122
simple owner-drawn version, 390–391

ListControl class
list controls inherit from, 121

ListItem class
Text property, 182

ListItems value
AutoCompleteSource enumeration, 135

ListView control, 671
AfterLabelEdit event, 186
appearance related members, 180
BeforeLabelEdit event, 186
custom colors and fonts, 396
Details mode, 177, 178, 180
EnsureVisible() method, 188
events, 396
grouping, 187
Groups collection, 187–188
Groups property, 187
introduction, 173
label editing, 186
LabelEdit property, 186
LargeIcon mode

and large images, 181
members, 176

OwnerDraw property, 396
owner-drawn approach, 396
searching and hit testing, 188
ShowGroups property, 187
Sort() method, 184
sorting, 182–186
Tile view mode, 180

and large images, 181
view modes, 173–177
View property, 173
virtualization, 189–193

ListViewItem class
Group property, 187
linking extra information to, 179
retrieving properties, 188
ToolTipText property, 180

ListViewItemComparer object
generating, 184

literals, 621
Load event

Form class, 73, 288, 313, 762
Load() method

SoundPlayer control, 578
LoadAsync() method

SoundPlayer control, 578
LoadCompleted event

common controls, 154
SoundPlayer control, 578

LoadCursorFromFile() function, 68
Loaded value

WebBrowserReadyState enumeration, 592
LoadFile() method

RichTextBox control, 116, 117
Loading value

WebBrowserReadyState enumeration, 592
LoadProgressChanged event

common controls, 154
LoadSettings() method

ToolStripManager class, 511
localizable properties, 445–446
Localizable property

Form class, 166
LocalizableAttribute class

attributes for control properties, 438
creating localizable properties, 445–446

Macdonald_694-3INDEX.fm Page 1003 Friday, July 28, 2006 4:36 AM

1004 ■I N D E X

localization, 730
using resource files, 166

creating a localizable form, 166–167
workings of, 168–170

Location property
Control class, 49, 843
Form class, 74
Shape class, 849

Locked value
SelectionRules enumeration, 895

locking
thread synchronization, 715

Long Date and Long Time data type
data binding format string, 279

Long Date and Short Time data type
data binding format string, 279

Long Date data types
data binding format string, 279

lookup table
creating, 284–285

LostFocus event
Control class, 73, 614
controls, 60

■M
MacDonald, Matthew

Book of Visual Basic 2005, The, 8
main menus, 499–500
MainMenu class

GripStyle property, 499
MainMenu control

compared to MenuStrip, 500
MainMenuStrip property

Form class, 499
ManagedWindowPlacement object

retrieved by GetWindowPlacement()
function, 78

ManagerRenderMode value
ToolStripRenderMode enumeration, 513

manifest, resources placed in, 162
Manual value

FormStartPosition enumeration, 75
Margin property

adding to custom layout engine class, 745
Button class, 749
ToolStripItem class, 484

markup-based user interfaces, 773
WFML, 774
XAML, 774

MarqueeLabel class
Scroll() method, 445
scrolling handled in similar way to

automatic resizing, 421
MarqueeLabel control, 889

Designer attribute, 889
EnableScrolling property, 892
modifying, 903
owner-drawn custom controls, 404–406

marshalling calls, 700–703
Mask property

MaskedTextBox control, 641, 647
MaskCompleted property

MaskedTextBox control, 643, 647
MaskDescriptor class

creating, 645
masked edit controls

characters to make a custom mask,
639–640

creating a mask, 638–641
creating custom masked controls, 646–650
introduction, 637–638
MaskedTextBox class, 641–643

events, 643–645
registering a custom mask, 645–646

MaskedTextBox control, 611, 638
AllowPromptAsInput property, 642
basic properties, 641
creating a mask, 638–641
CutCopyMaskFormat property, 642
deriving from TextBoxBase, 641
events, 643–645
FormatProvider property, 643
HidePromptOnLeave property, 642
Mask property, 641, 647
MaskCompleted property, 643, 647
MaskFull property, 643
MaskInputRejected event, 643, 644
PasswordChar property, 642
PromptChar property, 641
RejectInputOnFirstFailure property,

641–642
ResetOnPrompt property, 642

Macdonald_694-3INDEX.fm Page 1004 Friday, July 28, 2006 4:36 AM

1005■I N D E X

Find it faster at http://superindex.apress.com

ResetOnSpace property, 642
SkipLiterals property, 643
Text property, 640, 641
TextMaskFormat property, 641, 642
TypeValidationCompleted event, 643, 644
UseSystemPasswordChar property, 642
ValidatingType property, 643

MaskedTextProvider class
FindEditPostionFrom() method, 648
methods, 647
System.ComponentModel namespace, 646
ToDisplayString() method, 647

MaskedTextResultHint class, 643
MaskFull property

MaskedTextBox control, 643
MaskInputRejected event

MaskedTextBox control, 644
MaskInputRejected event_

MaskedTextBox control, 643
MaskInputRejectedEventArgs class, 643
MaskProperty editor, 645
MaskPropertyEditor

MaskDescriptor class, 645
MaskPropertyEditor class

System.Windows.Forms.Design
namespace, 464

Mastering Regular Expressions 2nd ed
Friedl, Jeffrey, 622

MatchOnly value
MergeAction enumeration, 663

MaxDate property
DateTimePicker control, 130
MonthCalendar control, 131

MaxDropDownItems property
ComboBox control, 124

MaximizeBox property
Form class, 72

Maximum property
ProgressBar control, 339
TrackBar control, 126

MaximumSize property
Control class, 97
FlowLayoutPanel class, 750
Form class, 95
Label class, 102

MaxLength property
ComboBox control, 124
TextBox control, 114

MaxSelectionCount property
MonthCalendar control, 130, 131

MDI applications
architectural considerations, 654
finding relatives, 656–657
introduction, 654–655
managing interface state, 664–666
MDI layout, 660
MDI Window list, 659
merging menus, 661–663

nested menus, 663
programmatic merging, 664

merging nested menus
programmatic merging, 664

recent examples, 654
synchronizing MDI children, 657–658
types, 652

MDI containers
LayoutMdi() method, 660

MDI Window list example, 659
layout, 660

MdiChildren array
synchronizing MDI children, 657

MdiChildren property
building replacement for, 680
Form class, 657, 659

MdiFormClosing value
CloseReason enumeration, 74

MdiLayout enumeration, 660
MDIMainStateController class, 666
MdiParent property

Form class, 655
MDIs (multiple document interfaces), 651
MdiWindowListItem property

MenuStrip class, 659
Me keyword

Visual Studio, 26
MeasureItem event

ListBox control, 391
MeasureString() method

Graphics class, 218, 231

Macdonald_694-3INDEX.fm Page 1005 Friday, July 28, 2006 4:36 AM

1006 ■I N D E X

MeasureText() method
TextRenderer class, 218, 232

MenuActivate event
MenuStrip class, 500

MenuDeactive event
MenuStrip class, 500

menu-driven model interface, 932
MenuFont property

SystemFonts class, 57
menus

context menu, 501–502
drop-down menus, 495
main menu, 499–500
multicolumn menus, 498–499
taking control of overflow menus, 508–510
ToolStripMenuItem class, 496, 497

MenuStrip class, 492, 659
AllowMerge property, 662
compared to ToolStrip class, 499
creating a main menu, 499
MdiWindowListItem property, 659
members, 500
support for ToolStripItem classes, 492
support menu merging, 662
System.Windows.Forms namespace, 477
ToolStrip class is basis of, 477

MenuStrip control
AllowMerge property, 663

MenuStrip property
controls, 46
Form class, 500

MergablePropertyAttribute class
System.ComponentModel

namespace, 429
Merge() method

ToolStripManager class, 664, 731
MergeAction enumeration

values, 662
MergeAction property

menu items, 662
ToolStrip class, 664

MergeIndex property
menu items, 662
ToolStrip class, 664

MergeToolStripOnFocus property
adding to panel controls, 733

MessageBeep Win32 API
SystemSounds class is based on, 580

MessageBox class
icon types, 90
Show() method, 90

MessageBoxFont property
SystemFonts class, 57

MessageBoxIcon enumeration
values, 91

metacharacters, 621, 622
Metafile class

System.Drawing.Imaging namespace, 151
MFC design

document-view architecture, 666
MFC framework

limitations, 41
MFIs (multiple frame interfaces), 651

issues, 654
Microsoft Help. See MS Help 2
Microsoft ADO.NET Core Reference, 263
Microsoft Agent Control, 802
Microsoft Installer. See MSI
MIDI files, playing with Quartz, 582
MinDate property

DateTimePicker control, 130
MonthCalendar control, 131

MinimizeBox property
Form class, 72

Minimum property
TrackBar control, 126

MinimumSize property
Control class, 97
Form class, 95

MinimumWidth property
DataGridViewColumn class, 539, 548

modal type editor, 466–468
modeling and user interface design, 927
ModifierKeys property

controls, 67
Modifiers property

Visual Studio, 15
Month and Day data type

data binding format string, 279
MonthCalendar control, 127, 130, 131

properties, 131–132

Macdonald_694-3INDEX.fm Page 1006 Friday, July 28, 2006 4:36 AM

1007■I N D E X

Find it faster at http://superindex.apress.com

MonthlyBoldedDates property
MonthCalendar control, 131

mouse cursors
controls, 68–69

mouse events
AnimatedButtonBase class, 822–824

mouse handling for controls, 65–67
example with keyboard handling, 67–68

MouseButtons enumeration, 66
MouseButtons property

controls, 67
MouseDown event

controls, 65, 66
NotifyIcon component, 144
SimpleChart control, 917
ToolStrip class, 511
ToolStripItem class, 481

MouseDown() method
ControlDesigner class, 918

MouseEnter event
controls, 65
ToolStripItem class, 481

MouseEventArgs class
Button property, 66

MouseHover event
controls, 65
ToolStripItem class, 481

MouseLeave event
controls, 66
ToolStripItem class, 481

MouseMove event
controls, 65, 66
NotifyIcon component, 144
ToolStripItem class, 481

MouseOver state
AnimatedButtonBase class, 821

MousePosition property
controls, 67

MouseUp event
controls, 65, 66
NotifyIcon component, 144
ToolStripItem class, 481

MouseWheel event
controls, 66

Moveable value
SelectionRules enumeration, 895

MoveTo() method
AgentController class, 804

moving columns
DataGridView class, 548, 549

MP3 files
not supported by SoundPlayer

control, 578
playing with Quartz, 582

MS Help 2, 782
MSFlexGrid control, 519
MSI-based setups

compared to ClickOnce, 946
reasons for using, 946

multicolumn menus, 498, 499
MultiColumn property

list controls, 122
Multiline property

TabControl control, 134
TextBox control, 114

MultilineStringEditor class
System.ComponentModel.Design

namespace, 463
multiple document interfaces. See MDIs
multiple frame interfaces. See MFIs
multiple-document SDI applications, 680

example, 680–685
MultiSelect property

ListView control, 176
MultiSelectTreeNode control

creating, 397–403
multithreading, 689–690

asynchronous delegates, 692–694
polling and callbacks, 694–696

BackgroundWorker component, 707
simple test, 707–709
supporting a cancel feature, 711–712
tracking progress, 709–711

introduction, 689
goals, 690–691
options for asynchronous

programming, 691–692
safety, 689

Macdonald_694-3INDEX.fm Page 1007 Friday, July 28, 2006 4:36 AM

1008 ■I N D E X

Thread class, 712–714
creating a ThreadWrapper, 716–717
creating and tracking threads, 719–720
creating derived Task class, 717–719
improving ThreadWrapper, 721–723
locking and synchronization, 714–715
task queueing, 723–727

multithreading in a Windows
application, 696

asynchronous call, 699–700
locking and synchronization, 715
marshalling calls to the right thread,

700–703
using a delayed update, 704–706
Worker component, 697–698

MustOverride keyword, 386
MyBase keyword, 385

■N
Name property

Control class, 44
Font class, 56
Form class, 88
Thread class, 713
Visual Studio, 16

NamedImage class
defining, 348

Navigate() method
WebBrowser control, 591, 597

Navigated event
WebBrowser control, 592

Navigating event
WebBrowser control, 592, 607

navigation events
DataGridView class, 533, 534

navigation with data binding, 288
reacting to record navigation, 289–290

nested objects, 447–448
.NET and GDI+, 209
.NET 2.0

legacy controls, 477
modern controls, 477

.NET class library
derived controls, 365

.NET data binding. See data binding

.NET data source model
querying data in a database, 263

.NET ErrorProvider
displaying errors in user interfaces, 940

.NET Framework
audio, 577
gaps in framework, 686
low-level members, 69
solution to limitations of earlier

frameworks, 42–43
three-tier design in .NET, 40

.NET stream objects
supported by SoundPlayer control, 577

NetworkAvailabilityChanged event
application framework, 31

NewWindow event
WebBrowser control, 593

NextNode property
TreeView control, 198

no-code data binding, 264, 265
Node class

expanding and collapsing, 204
FullPath property, 202
Remove() method, 199

node groups
ProjectTree control, 372

node images
ProjectTree control, 371

Nodes collection
TreeView control, 888

Nodes property
TreeView class, 189, 888

None value
AutoSizeColumnsMode enumeration,

537, 540
FormBorderStyle enumeration, 814

Normal state
AnimatedButtonBase class, 821

NotifyCurrentCellDirty() method
DataGridView class, 573

NotifyDefault() method
IButtonControl interface, 820

NotifyIcon component
introduction, 144–146

Macdonald_694-3INDEX.fm Page 1008 Friday, July 28, 2006 4:36 AM

1009■I N D E X

Find it faster at http://superindex.apress.com

NotifyParentPropertyAttribute class
applying to GradientFill class, 454–456
System.ComponentModel

namespace, 429
no-touch deployment, 943
NotSupportedException class, 63
Now property

DateTime class, 129
NullValue property

DataGridViewCellStyle class, 545
NumericTextBox class

extending key-press behavior, 366–367
NumericUpDown control, 126

■O
ObjectForScripting property

WebBrowser control, 602
OnAfterSelect() event

TreeView control, 375
OnComponentChanged() method

IComponentChangeService interface, 904
OnComponentChanging() method

IComponentChangeService interface, 903
OnDocumentChanged() method

Order class, 670
OnDrawItem() method

list box custom control, 395
OnKeyDown() method

ComboBox class, 648, 650
OnKeyPress() method

ComboBox class, 648
TextBox control, 19

OnLayout() method
Control class, 739

online help, benefits, 777–778
OnMeasureItem() method

list box custom control, 395
OnMouseDown event

overriding to create floating ToolStrip
objects, 490

OnMouseDown() method
AnimatedButtonBase class, 823, 824

OnMouseEnter() method
ControlDesigner class, 893

OnMouseHover() method
ControlDesigner class, 893

OnMouseLeave() method
AnimatedButtonBase class, 823
ControlDesigner class, 893

OnMouseMove() method
AnimatedButtonBase class, 823

OnMouseUp() method
AnimatedButtonBase class, 823

OnPaint() method
AnimatedButtonBase class, 825
Control class, 211, 212, 213, 214, 404
drawing code contained within, 860
Panel class, 422
ToolStripButton class, 507
ToolStripItem class, 507

OnPaintAdornments() method
ControlDesigner class, 893

OnPaintBackground() method
Control class, 247, 833
Form class, 244
GradientPanel class, 407, 408
GradientPanel control, 408, 414
Panel class, 409

OnRenderArrow() method
ToolStripRenderer class, 516

OnRenderButtonBackground() method
ToolStripRenderer class, 515

OnRenderDropDownButtonBackground()
method

ToolStripRenderer class, 515
OnRenderGrip() method

ToolStripRenderer class, 516
OnRenderImageMargin() method

ToolStripRenderer class, 516
OnRenderItemBackground() method

ToolStripRenderer class, 515
OnRenderItemCheck() method

ToolStripRenderer class, 516
OnRenderItemImage() method

ToolStripRenderer class, 516
OnRenderItemText() method

ToolStripRenderer class, 516, 517
OnRenderLabelBackground() method

ToolStripRenderer class, 516
OnRenderMenuItemBackground() method

ToolStripRenderer class, 516

Macdonald_694-3INDEX.fm Page 1009 Friday, July 28, 2006 4:36 AM

1010 ■I N D E X

OnRenderOverflowButtonBackground()
method

ToolStripRenderer class, 516
OnRenderSeparator() method

ToolStripRenderer class, 516
OnRenderSplitButtonBackground() method

ToolStripRenderer class, 515
OnRenderStatusStripSizingGrip() method

ToolStripRenderer class, 516
OnRenderToolStripBackground() method

ToolStripRenderer class, 515
OnRenderToolStripBorder() method

ToolStripRenderer class, 515
OnRenderToolStripContentPanel-

Background() method
ToolStripRenderer class, 516

OnRenderToolStripPanelBackground()
method

ToolStripRenderer class, 516
OnRenderToolStripStatusLabel-

Background() method
ToolStripRenderer class, 516

OnResize() method
Form class, 216

OnSizeChanged() method
Bitmap Viewer user control, 350

OnSubscribeControlEvents() method
FlowLayoutPanel control, 505

OnUnsubscribeControlEvents() method
FlowLayoutPanel control, 505

OnWindowListChanged() method
DocumentManager class, 683

Opacity property
Form class, 72
ToolStrip class, 498

OpenFileDialog class, 91, 92
OpenForms collection, 88
OpenForms property

Application class, 88
Opening event

ContextMenuStrip class, 502
ToolStripMenuItem class, 502

Order class, 671
basic framework, 669
creating, 668
DocumentChanged event, 671, 674
OnDocumentChanged() method, 670

OrderGridView class, 671–673
RefreshList() method, 674

OrderItem class, 669, 670
creating, 668

OrderPrintPreview class, 674, 676
RefreshList() method, 674

Orientation property
SplitContainer class, 104
TrackBar control, 126

OuterHtml property
HtmlElement object, 598

OuterText property
HtmlElement object, 598

Overflow property
ToolStripItem class, 508

OverflowButton property
ToolStrip class, 508

Overlay value
ToolStripItemDisplayStyle

enumeration, 482
OwnedForms property

Form class, 89
Owner property

Form class, 89
IVideoWindow interface, 586

OwnerDraw event
ToolTip class, 143

OwnerDraw property
ListView control, 180, 396
owner drawn controls, 389

OwnerDrawFixed value
DrawMode enumeration, 390, 391

owner-drawn controls, 389
improving performance, 834

caching images, 834–837
reusing images, 837–838

ListBox control
advanced owner-drawn version,

391–395
simple owner-drawn version, 390–391

Macdonald_694-3INDEX.fm Page 1010 Friday, July 28, 2006 4:36 AM

1011■I N D E X

Find it faster at http://superindex.apress.com

TreeView control, 396
custom MultiSelectTreeView control,

402–403
custom TreeNode, 396–398
drawing logic, 398–400
tracking selected nodes, 400–401

types of custom controls, 322
understanding, 389

owner-drawn custom controls
CollapsiblePanel control, 417–419

CollapseButton class, 419–420
collapsing panel, 420–421
painting panel, 422

double buffering, 404
GradientPanel control, 407

gradient fill, 407–408
improving performance, 409–411
painting process, 408

introduction, 403
MarqueeLabel control, 404, 406
SimpleChart control, 411

BarItem class, 411–412
building the chart, 412–413
making the chart interactive, 416–417
painting the chart, 414–416

OwnerDrawVariable value
DrawMode enumeration, 390

OwningColumn property
DataGridViewCell class, 569

■P
Padding property

DataGridViewCellStyle class, 545
FlowLayoutPanel class, 749
Label control, 110
TabControl control, 134
TableLayoutPanel class, 755

PageSetupDialog class, 92
PageUnit property

Graphics class, 239
Paint event

calling directly, 214Control class, 213
Panel class, 247

paint sessions with GDI+, 211
Graphics class, 211, 212
painting and repainting, 212–214
painting and resizing, 216
refreshes and updates, 214–216

Paint() method
DataGridView class, 566

PaintBackground() method
DataGridViewCellPaintingEventArgs

class, 566
PaintBorder() method

DataGridViewCell class, 568
PaintContent() method

DataGridViewCellPaintingEventArgs
class, 566

PaintErrorIcon() method
DataGridViewCell class, 568

PaintEventArgs class
ClipRectangle property, 251, 860

PaintFocusCue property
AnimatedButtonBase class, 825

PaintFocusRectangle() method
AnimatedButtonBase class, 825, 826

painting
AnimatedButtonBase class, 824, 825
a thumbnail, 473

painting optimization, 243
double buffering, 244–246
double-buffered controls, 246–248
hit testing, 251–252

non-rectangular shapes, 253–254
rectangles, 252–253

painting and debugging, 243
painting portions of a window, 248–251

painting Windows controls, 254–255
ControlPaint class, 255–256
using a control renderer, 260–261
visual styles, 256–257
VisualStyleRenderer class, 258, 260

PaintText() method
PopImageButton class, 830

PaintValue() method
GradientFill class, 473
UITypeEditor class, 465

Macdonald_694-3INDEX.fm Page 1011 Friday, July 28, 2006 4:36 AM

1012 ■I N D E X

Panel class, 132
AllowScroll property, 345
AutoSize property, 101
CollapsiblePanel control derives from, 419
dock padding, 99
GradientPanel class derives from, 407
OnPaint() method, 422
OnPaintBackground() method, 409
Paint event, 247
support for images, 152

Panel1 property
SplitContainer class, 104

Panel1Collapsed property
SplitContainer class, 104

Panel1MinSize property
SplitContainer class, 104

Panel2 property
SplitContainer class, 104

Panel2Collapsed property
SplitContainer class, 104

Panel2MinSize property
SplitContainer class, 104

Parent form class, 678–679
Parent property

Control class, 879
controls, 46
TreeView control, 198

ParentControlDesigner class, 905, 918
CanParent() method, 919
deriving a class from, 887

ParentForm property
ContainerControl class, 80

ParenthesizePropertyNameAttribute class
System.ComponentModel

namespace, 430
Parse event

Binding class, 279
Parse() method

DateTime class, 643
Enum class, 53

Parsing value
DataGridViewDataErrorContexts

enumeration, 559
partial classes, 27

partial trust security, 959
configuring for, 959–961

passwords, regular expression, 623
PasswordChar property

MaskedTextBox control, 642
TextBox control, 115

PasswordPropertyTextAttribute class
System.ComponentModel

namespace, 430
Paste() method

TextBox control, 114
Path property

Shape class, 850
PathGradientBrush class, 226, 228, 229
Pause() method

DoubleClick event, 882
IMediaControl interface, 582

Pen class
Alignment property, 223
System.Drawing namespace, 221

pens
alignment, 222–224
introduction, 221–222
styling, 224–225

Pens class
DashStyle property, 224
LineJoin property, 225
properties, 222

PenType property
Pens class, 222

Percent value
SizeType enumeration, 753, 760

Percentage data type
data binding format string, 278

performance
improving performance of owner-drawn

controls, 834
caching images, 834–837
reusing images, 837–838

PerformClick() method
Button control, 113

PerformStep() method
ProgressBar control, 339, 340

Macdonald_694-3INDEX.fm Page 1012 Friday, July 28, 2006 4:36 AM

1013■I N D E X

Find it faster at http://superindex.apress.com

PictureBox control, 121
AutoSize property, 101
DoubleClick event, 880
Image property, 164
Image property property, 267
inserting for every image, 345
Position property, 356
support for images, 152

PictureBoxSizeMode enumeration
SizeMode value, 121

pictures
support for common controls, 153
support for with Image class, 151

PInvoke, 64
Placement property

ToolStripItem class, 508
Platform Invoke, 64
Play() method

SoundPlayer control, 578
SystemSounds class, 581

PlayLooping() method
SoundPlayer control, 578

PlaySound() function
SoundPlayer class, 577

PlaySync() method
SoundPlayer control, 578

Point object
representing coordinates, 49

PointToClient() method
Control class, 50
Form class, 67

PointToScreen() method
Control class, 50

polymorphism and interfaces, 8
PopImageButton class

defining, 828–830
pop-ups, creating, 786
Position property

CurrencyManager class, 288
IMediaPosition interface, 584
PictureBox control, 356

PostFilterAttributes() method
IDesignerFilter interface, 888

PostFilterEvents() method
IDesignerFilter interface, 888

PostFilterProperties() method
control designers, 889
ControlDesigner class, 889
IDesignerFilter interface, 888

PostionChanged event
Binding class, 289, 290, 291

prebuilt dialogs, 90–91
preemptive multitasking, 690
PreferredSize value

DataGridViewDataErrorContexts
enumeration, 560

PreFilterAttributes() method
IDesignerFilter interface, 888

PreFilterEvents() method
IDesignerFilter interface, 888

PreFilterProperties() method
ControlDesigner class, 889
IDesignerFilter interface, 888, 889

PreProcessMessage() method
Control class, 70

presentation tier, 37–38
PrevNode property

TreeView control, 198
Primary property

Screen class, 76
PrimaryScreen property

Screen class, 75
PrimarySelection property

ISelectionService interface, 917
Print() method

WebBrowser control, 596
PrintDialog class, 92
PrintDocument class

PrintPage event handler, 674
System.Drawing.Printing namespace, 210

PrinterSettings class
System.Drawing.Printing namespace, 210

PrintPage event handler
PrintDocument class, 674

PrintPreviewDialog class, 92
Priority property

Thread class, 713
Pro .NET Graphics Programming, 242
Pro ADO.NET, 263

Macdonald_694-3INDEX.fm Page 1013 Friday, July 28, 2006 4:36 AM

1014 ■I N D E X

ProcessKeyMessage() method
Control class, 70

ProcessKeyPreview() method
Control class, 70

process-oriented
application-embedded support, 800

ProcessTabKey() method
ContainerControl class, 80

ProfesionalColorTable class
color properties, 518

Professional value
ToolStripRenderMode enumeration, 513

Programming Microsoft Visual Basic 2005:
The Language

Balena, Francesco, 8
Progress control

automatic progress bar, 343–344
back door, 341
creating, 338–340
testing, 340–341
user control design, 342–343
Value property, 472

ProgressBar control, 127
combining with Label control, 338
PerformStep() method, 339
properties inherited by Progress

control, 339
Text property, 888

ProgressChanged event
WebBrowser control, 592

Project class
ProjectTree control, 369, 371

ProjectSelected event
ProjectTree control, 376

ProjectTree control, 368–369
adding projects, 373–375
custom tree node, 376–377
Data class, 369, 371
design-time support, 377
node groups, 372
node images, 371
ProjectSelected event, 375, 376

PromptChar property
MaskedTextBox control, 641

Properties window
setting Font property, 454
support for enumerations, 459, 461

PropertiesToDesign collection
DesignModeDialog class, 434

property pages, 133
PropertyDescriptor class, 898

AllowDesignTimeScroll property, 890, 891
SetValue() method, 903, 906

PropertyGrid control
SelectedObject property, 433
testing custom controls, 433

PropertyManager class, 287
ProvideProperty attribute

role of in providing the extended property,
874–875

System.ComponentModel
namespace, 873

Pushed state
AnimatedButtonBase class, 821

■Q
Quartz COM component, 581

playing MP3, MIDI, WMA and others,
582–583

looping audio, 585–586
tracking position, 584–585

showing MPEG and other video types,
586–588

using quartz.dll through interop, 581
question-answer model interface, 930

key principles, 931–932
QuitWhenLastDocumentClosed property

DocumentManager class, 682

■R
RadioButton control, 120

support for images, 152
raised image buttons, 827–830
Raised value

Border3DStyle enumeration, 494
RaisedInner value

Border3DStyle enumeration, 494
RaisedOuter value

Border3DStyle enumeration, 494

Macdonald_694-3INDEX.fm Page 1014 Friday, July 28, 2006 4:36 AM

1015■I N D E X

Find it faster at http://superindex.apress.com

RangeValidator control, 626
complexity of, 632, 634
EvaluateIsValid() method, 634

ReadImagesFromFile() method
Bitmap Viewer user control, 355

ReadOnly property
DataColumn class, 524
DataGridView class, 553, 556
TextBox control, 115

ReadOnlyTextAttribute class
System.ComponentModel

namespace, 430
ReadyState property

WebBrowser control, 592
RebuildChart() method

SimpleChart control, 412, 413
RecentlyUsedList value

AutoCompleteSource enumeration, 135
RecreatingHandle property

Control class, 70
Rectangle structure

Contains() method, 252, 253, 854
RectangleShape class, 851
RedrawItems() method

ListView control, 180
Reflector tool

Lutz Roeder, 162
Refresh() method

Control class, 216
WebBrowser control, 591

RefreshChildren() method
MDI parent form, 658

RefreshImages() method
Bitmap Viewer user control, 350

RefreshList() method
OrderGridView class, 674

RefreshPath() method
Shape class, 850

RefreshPropertiesAttribute class
applying to GradientFill class, 454–456
System.ComponentModel

namespace, 430
RefreshText() method

custom ComboBox control, 648

Regex class
creating Regex object, 625
IsMatch() method, 624
System.Text.RegularExpressions

namespace, 624
RegexTypeEditor class

System.Web.UI.Design.WebControls
namespace, 464

Region class
System.Drawing namespace, 811

Region property
Control class, 811, 818, 840
controls, 49
Form class, 818

Register() method
HelpIconProvider class, 880

regular expressions, 621
basics, 621–622
common examples, 623–624
metacharacters, 622
validating with, 624–625

RegularExpressionValidator control, 626,
631, 632

RejectInputOnFirstFailure property
MaskedTextBox control, 641, 642

ReleaseHdc() method
Graphics class, 218

Remove value
MergeAction enumeration, 663

Remove() method
ControlCollection class, 11
MaskedTextProvider class, 647
Node class, 199
ShapeCollection class, 857
TreeNodeCollection class, 200
TreeView control, 199

RemoveAll() method
ToolTip class, 143

RemovedOwnedForm() method
Form class, 89

Render() method
Shape class, 852, 860

Macdonald_694-3INDEX.fm Page 1015 Friday, July 28, 2006 4:36 AM

1016 ■I N D E X

Renderer property
ToolStrip class, 512
ToolStripContentPanel class, 513
ToolStripManager class, 514
ToolStripPanel class, 513

RenderFile() method
IMediaControl interface, 582

RenderMode property
setting panels in ToolStripContainer, 513
ToolStrip class, 513
ToolStripContainer panels, 490
ToolStripContentPanel class, 513
ToolStripManager class, 514
ToolStripPanel class, 513
values, 513

RenderVisualStyles property
Application class, 260

RenderWithVisualStyles property
Application class, 257

Replace value
MergeAction enumeration, 663

Replace() method
MaskedTextProvider class, 647

reporting, not provided in DataGridView, 521
ReportProgress() method

BackgroundWorker component, 709,
710, 711

RequiredFieldValidator control, 626, 631,
632, 636

ResetAbort() method
Thread class, 714

ResetClip() method
Graphics class, 237

ResetOnPrompt property
MaskedTextBox control, 642

ResetOnSpace property
MaskedTextBox control, 642

ResetPropertyName() method, 441
ReshowDelay property

ToolTip class, 143
resizable forms, 93–94

anchoring, 95
containers and anchoring, 98–99
minimum and maximum control

size, 97

resizing controls, 96–97
autosizing, 100–102
docking, 99–100
minimum and maximum form size, 95
problem of size, 94–95

Resizable property
DataGridViewColumn class, 538, 540, 548
DataGridViewRow class, 540

ResizeRedraw property
Control class, 404
Form class, 216

resources
creating resource files, 165–166
embedded resources, 151
form resources, 163–164
introduction, 158
localization, 166

creating a localizable form, 166–167
workings of, 168–170

type-safe resources
adding, 159–161
workings of, 161–163

Resources class
workings of, 162

Resources.resx file, 161
Restore() method

Graphics class, 218
Resume() method

Thread class, 714
ResumeLayout() method

collection-based Windows Forms
controls, 347

container controls, 412
designer-generated code, 381

RetrieveVirtualItem event
ListView control, 191

ReturnValue property
retrieving converted object, 643

reusing images
improving performance of owner-drawn

controls, 837–838
ReverseSort() method

ShapeCollection class, 859
RevertMerge() method

ToolStripManager class, 664

Macdonald_694-3INDEX.fm Page 1016 Friday, July 28, 2006 4:36 AM

1017■I N D E X

Find it faster at http://superindex.apress.com

rich client applications
asynchronous operations, 689

RichTextBox control
formatting text, 118
introduction, 115–120
members, 116
methods, 115
SelectionFont property, 118

RightSizeable value
SelectionRules enumeration, 895

RightToLeft value
FlowDirection enumeration, 747

RightToolStripPanel property
ToolStripContainer class, 489

RightToolStripPanelVisible property
ToolStripContainer class, 489

RoboHelp
Help authoring tools, 783

Roeder, Lutz
Reflector tool, 162

rollover button, 830–832
RotateFlip() method

Image class, 152
RotateTransform() method

Graphics class, 241
rotected event

RichTextBox control, 117
Row property

extended properties for TableLayoutPanel
children, 756

row validation and changes, 285, 286
RowChanged event

DataTable class, 293
RowChanging event

DataTable class, 293
RowCount property

TabControl control, 134
TableLayoutPanel class, 751, 753, 755

RowDeletion value
DataGridViewDataErrorContexts

enumeration, 560
RowEnter event

DataGridView class, 534
RowFilter property

DataView class, 271, 549, 555

RowHeadersDefaultCellStyle property
DataGridView class, 546

RowHeaderSelect value
DataGridViewSelectionMode

enumeration, 530
RowLeave event

DataGridView class, 534
RowPostPaint event

DataGridView class, 564
RowPrePaint event

DataGridView class, 564
Rows property

DataGridView class, 525
rows, default values for

DataGridView class, 557, 558
RowsDefaultColumnStyle property

DataGridView class, 543
RowSpan property

extended properties for TableLayoutPanel
children, 757

RowStateFilter property
DataView class, 271

RowStyle class, 752, 755
creating simple fixed or proportional

layouts, 754
Height property, 753
SizeType property, 753

RowStyles collection
TableLayoutPanel class, 758

RowStyles property
TableLayoutPanel class, 751, 753

RowValidated event
DataGridView class, 560

RowValidating event
DataGridView class, 560, 561

Rtf property
RichTextBox control, 116, 117

Ruby
limitations, 41

Run() method
Application class, 32, 33
IMediaControl interface, 582, 586

runtime customization, 510–511
RunWorkerAsync() method

BackgroundWorker component, 707, 708

Macdonald_694-3INDEX.fm Page 1017 Friday, July 28, 2006 4:36 AM

1018 ■I N D E X

RunWorkerCompleted event
BackgroundWorker component, 707

RunWorkerCompletedEventArgs class, 708

■S
satellite assemblies, 166
Save() method

Bitmap class, 242
Graphics class, 218

SaveFile() method
RichTextBox control, 116, 117

SaveFileDialog class, 91, 92
SaveSettings() method

ToolStripManager class, 511
scalability and DataGridView class, 521–522
screen captures, 242, 243
Screen class

members, 76
PrimaryScreen property, 75

ScriptErrorsSuppressed property
WebBrowser control, 596

Scroll value
DataGridViewDataErrorContexts

enumeration, 560
Scroll() method

MarqueeLabel class, 445
scrollable forms, 79–80
ScrollableControl class

base classes for custom controls, 323
dock padding, 99
Form class inherits from, 79
ScrollControlIntoView() method, 79

ScrollBarsEnabled property
WebBrowser control, 596

ScrollChange property
MonthCalendar control, 132

ScrollControlIntoView() method
ScrollableControl class, 79

ScrollToCaret() method
TextBox control, 115

SDIs (single document interfaces), 651
architectural considerations for SDI

applications, 654
SearchForVirtualItem event

ListView control, 193

searching and hit testing
ListView control, 188

Select class
DriveSelection property, 466

Select() method
Control class, 613
MultiSelectTreeNode control, 400
TextBox control, 114

SelectAll() method
DataGridView class, 533
TextBox control, 114

SelectDrive class
Drive property, 898

Selected property
DataGridViewCell class, 533
DataGridViewColumn class, 533
DataGridViewRow class, 533
ListView control, 176
Shape class, 850, 861

SelectedCells property
DataGridView class, 531

SelectedColumns property
DataGridView class, 531

SelectedIndex property
DomainUpDown control, 125
list controls, 121, 122
TabControl control, 134

SelectedIndexChanged event
ComboBox control, 213
TabControl control, 134

SelectedIndice collection
using a multiselect ListBox, 121

SelectedIndices property
list controls, 122
ListView control, 176

SelectedItem property
list controls, 122
ListView control, 176

SelectedItemIndexChanged event
ListView control, 177

SelectedItems collection
using a multiselect ListBox, 121

SelectedItems property
list controls, 122

Macdonald_694-3INDEX.fm Page 1018 Friday, July 28, 2006 4:36 AM

1019■I N D E X

Find it faster at http://superindex.apress.com

SelectedNode property
TreeNode class, 396, 397
TreeView control, 203

SelectedObject property
PropertyGrid control, 433

SelectedRows collection
DataGridView class, 533

SelectedRows property
DataGridView class, 531

SelectedRtf property
RichTextBox control, 117

SelectedTab property
TabControl control, 134

SelectedText property
RichTextBox control, 117
TextBox control, 115

SelectionAlignment property
RichTextBox control, 116

SelectionBackColor property
DataGridViewCellStyle class, 545
RichTextBox control, 116

SelectionBullet property
RichTextBox control, 116

SelectionChanged event
DataGridView class, 534
ISelectionService interface, 917
RichTextBox control, 117

SelectionChanging event
ISelectionService interface, 917

SelectionCharOffset property
RichTextBox control, 116

SelectionColor property
RichTextBox control, 116, 117, 119

SelectionCount property
ISelectionService interface, 917

SelectionEnd property
MonthCalendar control, 130, 132

SelectionFont property
RichTextBox control, 116, 117, 118

SelectionForeColor property
DataGridViewCellStyle class, 545

SelectionHangingIndent property
RichTextBox control, 117

SelectionIndent property
RichTextBox control, 117

SelectionLength property
RichTextBox control, 117
TextBox control, 115

SelectionMode property
DataGridView class, 530
list controls, 122
multiselect ListBox, 121

SelectionProtected property
RichTextBox control, 117

SelectionRange property
MonthCalendar control, 132

SelectionRightIndent property
RichTextBox control, 117

SelectionRules enumeration
values, 895

SelectionStart property
MonthCalendar control, 130, 132
RichTextBox control, 117
TextBox control, 115

SelectionXXXX properties
RichTextBox control, 116

SelectNextControl() method
Control class, 613

SeletedRtf property
RichTextBox control, 116

SendShapeToBack() method
ShapeCollection class, 858, 863

SendToBack() method
Control class, 51, 847
control support for layering, 856

serialization
See also code serialization
attributes for control properties, 438
batch initialization, 443–445
localizable properties, 445–446
making decisions programmatically,

440–441
rules followed in Visual Studio, 438
serialization type, 442
Visual Studio, 437–438

SetBounds() method
Control class, 49

SetChildIndex() method
ControlCollection class, 51, 748, 856

Macdonald_694-3INDEX.fm Page 1019 Friday, July 28, 2006 4:36 AM

1020 ■I N D E X

SetClip() method
Graphics class, 218

SetCompatibleTextRenderingDefault()
method

Application class, 218, 233
SetError() method

ErrorProvider control, 618, 619
Visual Studio, 620

SetHelpID() method
HelpIconProvider class, 879, 880

SetHelpString() method
HelpProvider class, 786

SetHelpText() method
StatusStripHelpLabel provider, 875

SetIconAlignment() method
ErrorProvider control, 620

SetIconPadding() method
ErrorProvider control, 620

SetKeyName() method
ImageList serialization, 156

SetNotifyWindow() method
IMediaEventEx interface, 586

SetParameters() method
VisualStyleRenderer class, 259

SetShowHelp() method
HelpProvider class, 785

SetStyle() method
Control class, 70, 244, 404, 833

SetToolTip() method
ToolTip class, 143

SetValue() method
PropertyDescriptor class, 903, 906

SetWindowPlacement() function, 78
SetWindowPosition() method

IVideoWindow interface, 586, 587
shadowing members, 891–892
ShadowProperties collection

ControlDesigner class, 892
Shape class, 840, 841, 843, 849, 850

adding Serializable attribute, 867
CompareTo() method, 856
dererived Shape classes, 851–852
drawing code, 852–853
DrawPath() method, 841
FillPath() method, 841

GetLargestPossibleRegion() method, 855
hit testing, 853–855
HitTestFocusBorder() method, 866
Path property, 850
RefreshPath() method, 850
Render() method, 852, 860
Selected property, 861
Shape property, 841
ShapeType property, 843
ZOrder property, 856, 857

Shape property
Shape control, 841

ShapeCollection class
adding Serializable attribute, 867
BringShapeToFront() method, 858, 863
creating, 857–859
HitTest() method, 858, 861
ReverseSort() method, 859
SendShapeToBack() method, 858, 863

shaped controls, 818
shaped forms, 811

creating, 811
creating a background, 813–816
moving, 817–818
simple example, 812

ShapeType enumeration, 841
ShapeType property

Shape control, 843
Short Date data type

data binding format string, 279
ShortcutKeyDisplayString property

ToolStripDropDownItem class, 497
ShortcutKeys property

ToolStripDropDownItem class, 497
ShortcutKeysEditor class

System.Windows.Forms.Design
namespace, 464

ShortcutsEnabled property
TextBox control, 115

ShouldSerializeXxx() method, 441
Show() method

Application class, 32
ContextMenuStrip class, 501
Form class, 11, 15, 81
MessageBox class, 90

Macdonald_694-3INDEX.fm Page 1020 Friday, July 28, 2006 4:36 AM

1021■I N D E X

Find it faster at http://superindex.apress.com

ShowAlways property
ToolTip class, 143

ShowBalloonTip() property
NotifyIcon component, 144

ShowCellToolTips property
DataGridView class, 524

ShowCheckBox property
DateTimePicker control, 130

ShowDialog() method
DesignModeDialog class, 436
Form class, 11, 15, 33, 81
showing a window with, 83
Wizard class, 363

ShowDropDown() method
ToolStripDropDownItem class, 495

ShowGroups property
ListView control, 187

ShowHelp property
HelpProvider class, 784, 785

ShowHelp() method
CollectionEditor class, 915
Help class, 795

ShowInTaskBar property
Form class, 72

ShowItemToolTips property
ToolStrip class, 483

ShowItemTooltips property
ListView control, 180

ShowLines property
TreeView control, 202

ShowPageSetupDialog() method
WebBrowser control, 596

ShowPlusMinus property
TreeView control, 202

ShowPrintDialog() method
WebBrowser control, 596

ShowPrintPreviewDialog() method
WebBrowser control, 597

ShowPropertiesDialog() method
WebBrowser control, 597

ShowRootLines property
TreeView control, 202

ShowSaveAsDialog() method
WebBrowser control, 597

ShowSelectionMargin property
RichTextBox control, 117

ShowShortcutKeys property
ToolStripDropDownItem class, 497

ShowStep() method
Wizard class, 360, 361

ShowToday property
MonthCalendar control, 132

ShowTodayCircle property
MonthCalendar control, 132

ShowToolTips property
TabControl control, 134

ShowUpDown property
DateTimePicker control, 130

ShowWeekNumbers property
MonthCalendar control, 132

Shutdown event
application framework, 31

sieve of Eratosthenes, 696
simple data binding, 267

binding to a grid, 273–274
simple data binding, 274–275
simple glow button, 826, 827
SimpleChart control, 913

BarItem class, 411, 412
Bars property, 911
building the chart, 412–413
making the chart interactive, 416–417
MouseDown event, 917
owner-drawn custom controls, 411
painting the chart, 414–416
revisited, 911–918

single document interfaces. See SDIs
SingleLineFlowLayoutManager example, 739

AffectedControl property, 742
PerformLayout() method, 740, 742
problems with, 743
ResumeLayout() method, 743
SuspendLayout() method, 743
UpdateLayout() method, 740, 742

single-value data binding
unusual example, 274–275

Site property
IComponent interface, 18

Macdonald_694-3INDEX.fm Page 1021 Friday, July 28, 2006 4:36 AM

1022 ■I N D E X

Size property
Control class, 49, 843
Form class, 74
Shape class, 849
ToolStripItem class, 486

Size structure
properties, 49
returned by MeasureString() method,

Graphics class, 218
SizeChanged event

Form class, 95
SizeGripStyle property

Form class, 72, 217
SizeMode property

TabControl control, 134
TableLayoutPanel class, 755

SizeMode value
PictureBoxSizeMode enumeration, 121

SizeType enumeration
Percent value, 760
values, 753

SizeType property
CountStyle class, 753
RowStyle class, 753

skinned interfaces, 811
SkipLiterals property

MaskedTextBox control, 643
Sleep() method

Thread class, 714
SmallCaptionFont property

SystemFonts class, 57
SmallIcon value

View enumeration, 174
SmallIcon view mode

ListView control, 175
SmallImageList property

ListView control, 174, 176
smart controls, 21–22
smart forms, 22
smart tags, 885, 904, 905

action list, 905–907
control designer, 910
DesignerActionItem class, 908, 909
workings of, 24

SmoothingMode property
Graphics class, 217, 220

social security number
regular expression, 624

SolidBrush class, 226
Sort property

DataView class, 271
Sort() method

DataGridView class, 535
ListView control, 184

Sorted property
list controls, 122

Sorter property
TreeView control, 203

sorting
ListView control, 182–186

Sorting property
ListView control, 177

SortMode property
DataGridViewColumn class, 535

sound and video
advanced media with DirectShow, 581
SoundPlayer control, 577–581

sound files
embedding into compiled assemblies, 580

SoundLocation property
SoundPlayer control, 578

SoundLocationChanged event
SoundPlayer control, 578

SoundPlayer control
events, 578
introduction, 577, 578
load and play sound asynchronously,

579–580
load and play sound synchronously, 578
methods, 578
PlaySound() function, 577
properties, 578
System.Media namespace, 577
SystemSounds class, 580

SourceControl property
ContextMenu control, 846
ContextMenuStrip class, 502
Control class, 796

Macdonald_694-3INDEX.fm Page 1022 Friday, July 28, 2006 4:36 AM

1023■I N D E X

Find it faster at http://superindex.apress.com

Speak() method
AgentController class, 804

specific-length password
regular expressions, 623

SplitContainer class
Dock property, 104
members, 103–104

SplitContainer control, 132
dock padding, 100

SplitterDistance property
SplitContainer class, 104

SplitterIncrement property
SplitContainer class, 104

SplitterMoved event
SplitContainer class, 104

SplitterMoving event
SplitContainer class, 104

splitting windows, 103–104
building with Panels, 105
other split windows, 106–107

spreadsheets
not provided in DataGridView, 521

Spring property
customised version of

ToolStripStatusLabel class, 493–494
StackWithOverflow value

ToolStripLayoutStyle enumeration,
478, 486

StandardTab property
DataGridView class, 524

Start property
LinkLabel control, 112

Start() method
Thread class, 692, 713, 714, 716

StartCap property
Pens class, 222

StartFigure() method
GraphicsPath class, 234, 253

StartLoadingImages() method
Bitmap Viewer user control, 355

StartPosition property
Form class, 74

Startup event
application framework, 31

StartupNextInstance event
application framework, 31

State property
AnimatedButtonBase class, 821

stationary embedded
application-embedded support, 800

status bar
creating, 493–495

StatusFont property
SystemFonts class, 57

StatusStrip class, 492
creating a status bar, 493–495
support for ToolStripItem classes, 492
System.Windows.Forms namespace, 477
ToolStrip class is basis of, 477

StatusStripHelpLabel provider
changing how extended properties

appear, 877
choosing a base class, 873
choosing control to extend, 873–874
implementing GetXxx() and SetXxx()

methods, 875–876
providing the extended property, 874–875
testing the provider, 877

StatusTextChanged event
WebBrowser control, 593

Step property
ProgressBar control, 339

Step() method
ProgressBar control, 127

Stop() method
IMediaControl interface, 582
SoundPlayer control, 578
WebBrowser control, 591

stream objects supported by SoundPlayer
control, 577

Stream property
SoundPlayer control, 578

StreamChanged event
SoundPlayer control, 578

Stretch property
ToolStrip class, 488, 499

StringBuilder class
System.Text namespace, 12

StringFormat class
properties, 231

Macdonald_694-3INDEX.fm Page 1023 Friday, July 28, 2006 4:36 AM

1024 ■I N D E X

structures, introduction, 5
Style property

DataGridViewCell class, 543
StyleName property

AnimatedButtonBase class, 838
Sunken value

Border3DStyle enumeration, 494
SunkenInner value

Border3DStyle enumeration, 494
SunkenOuter value

Border3DStyle enumeration, 494
SupportsChangeNotification property

IBindingList interface, 300
SupportsSearching property

IBindingList interface, 301
SupportsSorting property

IBindingList interface, 301
SuppressKeyPress property

KeyPressEventArgs class, 64
SuspendLayout() method

collection-based Windows Forms
controls, 347

container controls, 412
designer-generated code, 381

SyncLock statement, 715
system fonts, 57
System namespace

DateTime class, 129
System value

ToolStripRenderMode enumeration, 513
System.Collection namespace

IComparer interface, 182
System.Collections.Generic namespace

Dictionary collection, 87
List collection, 87

System.ComponentModel namespace
attributes, 428–429
attributes for control properties, 438
BackgroundWorker component, 707
BindingList(Of T) collection, 301
Component class, 18, 324, 627, 878
DefaultValueAttribute class, 439
IComponent interface, 17, 324
IExtenderProvider interface, 873
importing, 327

License class, 920
LicenseProvider class, 920
MaskedTextProvider class, 646
ProvideProperty attribute, 873
type converters, 447
TypeConverter class, 449
TypeDescriptor class, 888

System.ComponentModel.Design namespace
ArrayEditor class, 463
BinaryEditor class, 463
CollectionEditor class, 463, 465
CollectionEditor type editor, 911
ComponentDesigner class, 886
DesignerActionList class, 905
FontEditor class, 463
IDesigner interface, 885
ImageEditor class, 463
MultilineStringEditor class, 463

System.ComponentModel.Design.
Serialization namespace

InstanceDescriptor class, 457
System.Data.SqlClient namespace

importing, 268
System.Drawing namespace, 49, 275, 283

Bitmap class, 151
Color structure, 52
Font class, 56
GDI+, 209, 210
Graphics class, 211
Icon class, 152, 621
Image class, 151
importing, 52, 327
Pen class, 221
Region class, 811
SystemFonts class, 57

System.Drawing.Design namespace
UITypeEditor class, 463, 465

System.Drawing.Drawing2D namespace
GDI+ two-dimensional painting, 210

System.Drawing.Imaging namespace
classes for manipulating bitmap and

vectors, 210
Metafile class, 151

System.Drawing.Printing namespace
rendering GDI+ content to the printer, 210

Macdonald_694-3INDEX.fm Page 1024 Friday, July 28, 2006 4:36 AM

1025■I N D E X

Find it faster at http://superindex.apress.com

System.Drawing.Text namespace, 275
accessing currently installed fonts, 210
InstalledFontCollection class, 56

System.Globalization namespace
CultureInfo class, 168

System.IO namespace
DirectoryInfo class, 378
FileSystemWatcher class, 144

System.Media namespace
SoundPlayer class, 577
SystemSound class, 577
SystemSounds class, 577, 580

System.Reflection namespace
ConstructorInfo class, 458

System.Text namespace
StringBuilder class, 12

System.Text.RegularExpressions namespace
Regex class, 624

System.Threading namespace
Thread class, 355, 713

System.Web.UI namespace
Web controls, 9

System.Web.UI.Design.WebControls
namespace

RegexTypeEditor class, 464
System.Web.UI.HtmlControls namespace

Web controls, 9
System.Web.UI.WebControls namespace

Web controls, 9
System.Windows.Forms namespace

BindingContext class, 286
Control class, 9, 44
CurrencyManager class, 286
DialogResult enumeration, 83
Form class, 13, 15, 22, 380, 382
Help class, 795
importing, 327
MenuStrip class, 477
StatusStrip class, 477
TextRenderer class, 232
Timer class, 692
ToolStrip class, 477
Windows controls, 9

System.Windows.Forms.Design namespace
ControlDesigner class, 886
FileNameEditor class, 464
FolderNameEditor class, 464
MaskPropertyEditor class, 464
ShortcutKeysEditor class, 464
ToolStripItemDesignerAvailability

attribute, 506
TreeNodeCollectionEditor class, 465

System.Windows.Forms.Layout namespace
DefaultLayout class, 744
FlowLayout class, 744
LayoutEngine class, 744
TableLayout class, 744

System.Windows.Forms.VisualStyles
namespace, 260

enumerations, 257
VisualStyleElement nested classes, 257
VisualStyleInformation class, 257
VisualStyleRenderer class, 257

SystemBrushes class, 226
compared to SystemFont class, 57

SystemColors class, 52
compared to SystemFont class, 57
specifying a color, 52

SystemFont class, 57
SystemFonts class, 57
SystemPens class, 221

compared to SystemFont class, 57
SystemSound class

System.Media namespace, 577
SystemSounds class

based on the MessageBeep Win32 API, 580
Play() method, 581
properties, 581
System.Media namespace, 577, 580

■T
tab order tool

Visual Studio, 59
TabControl control, 132–133

properties, 134
TabCount property

TabControl control, 134

Macdonald_694-3INDEX.fm Page 1025 Friday, July 28, 2006 4:36 AM

1026 ■I N D E X

TabIndex property
controls, 59
Label control, 59

table of contents, creating for HTML Help,
791–792

Table property
DataView class, 271

Table value
ToolStripLayoutStyle enumeration, 478

TableCellFormattingEventArgs class, 547
TableLayout class

System.Windows.Forms.Layout
namespace, 744

TableLayoutPanel class, 744
Anchor property, 759, 760
AutoScroll property, 754, 762
AutoSize property, 759
CellBorderStyle property, 757
ColumnCount property, 755
ColumnStyles collection, 758, 760, 761
Controls collection, 754
creating grid, 754
extended properties, 756
generating new rows and columns,

754, 755
GrowStyle property, 754
layout panel examples

bipane proportional resizing, 759–760
forms from a file, 762–771
list of settings, 760–762
localizable dialog box, 757–759

Padding property, 755
positioning controls, 755–756
properties, 751–752
row and column styles, 752–754
RowCount property, 755
RowStyles collection, 758
SizeMode property, 755

TableLayoutPanel control, 132
TableOfContents value

HelpNavigator enumeration, 788
TabPage control

ItemSize property, 134
properties, 134
TabPages collection, 134

TabPages collection
TabPage control, 134

TabPages property
TabControl control, 133

TabStop property
controls, 59

Tag property
Control class, 44, 312
ListView control, 175
ToolStripLabel class, 486
TreeNode class, 376
TreeView control, 194

TagName property
HtmlElement object, 598

task queueing, 723–727
task-based Help, 797–799
TaskManager class, 723–727
TaskManagerClosing value

CloseReason enumeration, 74
Testform.cs file, 27, 28
Testform.Designer.cs file, 27, 28
Text property

Button control, 266
Control class, 56
DateTimePicker control, 130
DomainUpDown control, 125
Form class, 88
GroupBox control, 132
Label control, 110
list controls, 121, 122
ListItem class, 182
MaskedTextBox control, 640, 641
NotifyIcon component, 144
ProgressBar control, 888
TabPage control, 135
TextBox control, 266
ToolStripItem class, 479, 483, 484

TextAboveImage value
ToolStripItemDisplayStyle

enumeration, 482
TextAlign property

ToolStrip class, 485, 494
TextAndImage property

ToolStripLabel class, 482

Macdonald_694-3INDEX.fm Page 1026 Friday, July 28, 2006 4:36 AM

1027■I N D E X

Find it faster at http://superindex.apress.com

TextBeforeImage value
ToolStripItemDisplayStyle

enumeration, 482
TextBox class

extending, 327
TextBox control, 113, 114, 115

AutoComplete properties, 135
members, 114
OnKeyPress() method, 19
Text property, 266
TextChanged event, 23, 619
Validating event, 615, 618

TextBoxBase class
MaskedTextBox control derives from, 641
RichTextBox control derives from, 116

TextChanged event
Control class, 624
Form class, 682
TextBox control, 23, 619

TextImageRelation property
ToolStripItem class, 482, 485

TextMaskFormat property
MaskedTextBox control, 641, 642

TextRenderer class
DrawText() method, 232
MeasureText() method, 218, 232
System.Windows.Forms namespace, 232
using instead of Graphics.DrawString()

method, 232
TextRenderingHint property

Graphics class, 217, 220
TextureBrush class, 226
Think() method

AgentController class, 804
third-party controls, 322
Thread class, 712, 713

asynchronous programming, 692
creating a ThreadWrapper, 716–717
creating and tracking threads, 719–720
creating derived Task class, 717–719
CurrentUICulture property, 167
locking and synchronization, 714–715
methods, 714
properties, 713
Start() method, 692, 713, 716

System.Threading namespace, 355, 713
task queueing, 723–727

thread starvation, 723
thread synchronization, 714

Control class, Invoke() method, 706
locking, 715

ThreadState property
Thread class, 714

ThreadWrapper class
creating, 716–717
improving, 721–723

ThreeDCheckBoxes property
CheckedListBox control, 123

ThreeState property
CheckBox control, 120
RadioButton control, 120

three-tier design, 37, 40
thumbnails, painting, 473
Tile value

View enumeration, 174
Tile view mode

ListView control, 180
and large images, 181

TileSize property
ListView control, 180

Time data types
data binding format string, 279

Timer class
System.Windows.Forms namespace, 692

TitleBackColor property
MonthCalendar control, 132

TitleForeColor property
MonthCalendar control, 132

Today property
DateTime class, 129

TodayDate property
MonthCalendar control, 132

TodayDateSet property
MonthCalendar control, 132

ToDisplayString() method
MaskedTextProvider class, 647

Toggle() method
Node class, 204

ToolBar class
compared to ToolStrip class, 477

Macdonald_694-3INDEX.fm Page 1027 Friday, July 28, 2006 4:36 AM

1028 ■I N D E X

toolbox icon, adding, 431, 432, 433
ToolStrip class

adding sample items to, 877
adding with Visual Studio designer, 480
AllowItemReorder property, 511
as collection of ToolStripItem objects, 479
compared to MenuStrip, 499
creating a link, 486
creating toggle button, 486
customizing, 512–513

a renderer, 515–517
ToolStripManager, 513–515

dock padding, 100
embedding inside ToolStripContainer

class, 487–489
example, 656–657
floating ToolStrip objects, 490–491
GripStyle property, 489
HasDropDownItems property, 508
ImageAlign property, 485
ImageOnly property, 482
ImageScalingSize property, 483
introduction, 477–479
ItemClicked event, 511
Items collection, 485
Layout event, 509, 510
LayoutCompleted event, 508, 509, 510
LayoutStyle property, 478
menus, 495, 496, 497

context menus, 501–502
main menus, 499–500
multicolumn menus, 498–499
ToolStripMenuItem class, 496–497

MergeAction property, 664
MergeIndex property, 664
MouseDown event, 511
Opacity property, 498
OverflowButton property, 508
Renderer property, 512
RenderMode property, 513
ShowItemToolTips property, 483
StatusStrip as subset of, 493
Stretch property, 488, 499
support for ToolStripItem classes, 492
support menu merging, 662

System.Windows.Forms namespace, 477
TextAlign property, 485
ToolTipText property, 483

ToolStrip customization
allowing runtime customization, 510–511
hosting other controls, 503–504

creating a custom ToolStripItem,
504–506

creating owner-drawn ToolStripItem,
507–508

design-time support for custom
ToolStripItem, 506–507

introduction, 502
taking control of overflow menus, 508–510

ToolStripButton class
Checked property, 486
CheckedChanged event, 486
CheckOnClick property, 486
container support, 492
derived from ToolStripItem class, 479
OnPaint() method, 507

ToolStripComboBox class
container support, 492

ToolStripContainer class
BottomToolStripPanelVisible

property, 489
configuring panels, 489
ContentPanel property, 490
embedding ToolStrip inside, 487–489
lack of support for floating ToolStrip

objects, 490
LeftToolStripPanelVisible property, 489
placing MenuStrip inside, 499
restricting, 489
RightToolStripPanelVisible property, 489
TopToolStripPanelVisible property, 489

ToolStripContentPanel class
accessing, 490
Renderer property, 513
RenderMode property, 513

ToolStripControlHost class
AutoSize property, 503
Control property, 504
derived from ToolStripItem class, 480
deriving a custom ToolStripItem from, 504
disadvantages to using, 504

Macdonald_694-3INDEX.fm Page 1028 Friday, July 28, 2006 4:36 AM

1029■I N D E X

Find it faster at http://superindex.apress.com

DisplayStyle property not in, 482
hosting other controls in ToolStrip, 503

ToolStripDropDownButton class
container support, 492
creating with three menus, 495
derived from ToolStripItem class, 480

ToolStripDropDownItem class
creating drop-down menus, 495
derived from ToolStripItem class, 480
DropDown property, 498
DropDown.Renderer property, 512
DropDownDirection property, 495
events, 495
ToolStripMenuItem class derives

from, 496
ToolStripDropDownMenu class

ContextMenuStrip class derives from, 501
ToolStripDropDownMenuItem class

ToolStripMenuItem class derives
from, 500

ToolStripItem class
Alignment property, 485
AutoSize property, 485, 486
AutoToolTip property, 483
BackgroundImage property, 483
BackgroundImageLayout property, 483
creating a ToolStrip toggle button, 486
customizing, 504–506

design-time support, 506–507
owner-drawn, 507–508

derived classes, 479
display styles, 482–483
DisplayStyle property, 484
events, 481
full list of classes and container

support, 492
Image property, 483
images, 483
ImageScaling property, 483
ImageTransparent property, 483
introduction, 479
Margin property, 484
OnPaint() method, 507
Overflow property, 508
Placement property, 508

size and alignment, 484–486
Size property, 486
Text property, 483, 484
TextImageRelation property, 482, 485

ToolStripItem control
extending all classes deriving from, 872

ToolStripItemDesignerAvailability
attribute, 507

System.Windows.Forms.Design
namespace, 506

ToolStripItemDisplayStyle enumeration, 482
values, 482

ToolStripLabel class
container support, 492
derived from ToolStripItem class, 479
IsLink property, 486
LinkBehavior property, 486
LinkColor property, 486
Tag property, 486
TextAndImage property, 482
VisitedLinkColor property, 486

ToolStripLayoutStyle enumeration
values, 478, 486

ToolStripManager class, 733
introduction, 513–515
LoadSettings() method, 511
Merge() method, 731
programmatic merging, 664
SaveSettings() method, 511
VisualStylesEnabled property, 517

ToolStripMenuItem class, 495
container support, 492
creating custom version, 502
DropDownClosed event, 660
DropDownItems collection, 500
DropDownOpening event, 660
introduction, 496–497
lack of Clone() method, 502
objects in main menu, 500
Visible property, 663

ToolStripPanel class, 488
configuring panels, 489
Renderer property, 513
RenderMode property, 513

Macdonald_694-3INDEX.fm Page 1029 Friday, July 28, 2006 4:36 AM

1030 ■I N D E X

ToolStripProfessionalRenderer class, 513
changing colors, 517
deriving from ToolStripRenderer class, 512

ToolStripProgressBar class
container support, 493

ToolStripRenderer class
classes deriving from, 512
deriving from, 515
overridable methods, 515

ToolStripRenderMode enumeration
values, 513

ToolStripSeparator class
container support, 492
derived from ToolStripItem class, 480
DisplayStyle property not in, 482

ToolStripSplitButton class
container support, 492
creating drop-down menus, 495
derived from ToolStripItem class, 480

ToolStripStatusLabel class
container support, 493
customised version tailored for

StatusStrip, 493
extends only ToolStripItem objects, 874
StatusStripHelpLabel class inherits

from, 873
ToolStripSystemRenderer class

deriving from ToolStripRenderer
class, 512

ToolStripTextBox class
container support, 492

ToolTip class
extender providers for component, 141
members, 142–143
role of, 871

ToolTipIcon property
ToolTip class, 143

ToolTipText property
ListViewItem class, 180
TabPage control, 135
ToolStrip class, 483

ToolTipTitle property
ToolTip class, 143

TopDown value
FlowDirection enumeration, 747

topic pages, 790

Topic value
HelpNavigator enumeration, 788

TopicId value
HelpNavigator enumeration, 788

TopIndex property
list controls, 122

TopLevelControl property
controls, 46

TopMost property
Form class, 72, 243

TopNode property
TreeView control, 205

TopSizeable value
SelectionRules enumeration, 895

TopToolStripPanel property
ToolStripContainer class, 489

TopToolStripPanelVisible property
ToolStripContainer class, 489

ToString() method
FormattedListItemWrapper class, 393

TrackBar control, 126
TrailingForeColor property

MonthCalendar control, 132
Transform() method

GraphicsPath class, 234
TranslateTranform() method

Graphics class, 239
transparency, 833
TransparencyKey property

Form class, 73, 815, 816, 818
Transparent property

Color structure, 55
TransparentColor property

ImageList control, 155
TreeNode class

deriving custom class, 376
deriving new node class from, 396
IsSelected property, 396
SelectedNode property, 396, 397
state properties, 203
Tag property, 376

TreeNodeCollection class
methods, 199

TreeNodeCollectionEditor class
System.Windows.Forms.Design

namespace, 465

Macdonald_694-3INDEX.fm Page 1030 Friday, July 28, 2006 4:36 AM

1031■I N D E X

Find it faster at http://superindex.apress.com

TreeView control, 173
adding features, 375
AfterSelect event, 313, 316, 375
appearence properties, 202
BeforeExpand event, 315
custom colors and fonts, 396
DirectoryTree Control derives from, 377
drag-and-drop, 205–208
DrawMode property, 396
DrawNode event, 396
example with just-in-time nodes, 314–317
expanding and collapsing levels, 204–205
flexible model for creating derived

controls, 368–369
ImageList property, 371
introduction, 193–194
manipulating nodes, 199–200
navigation, 196–197

properties, 197–198
node events, 200
node pictures, 203
Nodes collection, 888
Nodes property, 199, 888
OnAfterSelect() event, 375
owner-drawn version, 396

custom MultiSelectTreeView control,
402–403

custom TreeNode, 396–398
drawing logic, 398–400
tracking selected nodes, 400–401

Remove() method, 199
SelectedNode property, 203
selecting nodes, 200–202
structure, 194–195

TreeView/ListView interface design, 935
TreeViewCancelEventArgs object, 201
TreeViewEventArgs object, 201
TreeViewNodeSorter property

TreeView control, 203
TriangleShape class, 851
Trimming property

StringFormat class, 231
two-dimensional vector graphics, GDI+, 210
Type class

GetConstructor() method, 458

type converters
applying to custom controls, 426
attaching, 452–453
creating, 449–452
creating a nested object with a

constructor, 457–459
custom serialization with CodeDOM, 459
ExpandableObjectConverter class,

454–457
nested objects, 447–449
providing standard values, 459–462
System.ComponentModel

namespace, 447
type editors, 462–463

applying to custom controls, 426
custom editors, 465

drop-down type editor, 469–472
modal type editor, 466–468
painting a thumbnail, 473

prebuilt type editors, 463–464
TypeConverter class

adding attribute to custom class
declaration, 452

GetStandardValues() method, 460
GetStandardValuesExclusive()

method, 461
overridable methods, 450, 451
System.ComponentModel

namespace, 449
TypeDescriptor class

CreateProperty() method, 890
GetConverter() method, 451
System.ComponentModel

namespace, 888
TypeListConverter class

CanConvertFrom() method, 911
TypeOf keyword, 88
types, introduction, 4, 5
type-safe resources

adding, 159–161
workings of, 161–163

TypeValidationCompleted event
MaskedTextBox control, 643, 644

TypeValidationEventArgs class
IsValidInput property, 643

typography, GDI+, 210

Macdonald_694-3INDEX.fm Page 1031 Friday, July 28, 2006 4:36 AM

1032 ■I N D E X

■U
UITypeEditor class

overridable methods, 465
System.Drawing.Design namespace, 463

UML diagrams
defining interface for Progress user

control, 342
unbound data,

displaying with DataGridView control, 553
unbound grids

DataGridView class, 528–530
Undo() method

TextBox control, 114
UnhandledException event

application framework, 31
Unified Modeling Language, 342
UnInitialized value

WebBrowserReadyState enumeration, 592
UnRegister() method

HelpIconProvider class, 881
UnSelect() method

MultiSelectTreeNode control, 400
Update() method

Control class, 215
DataAdapter class, 277

UpdateDisplay() method
Bitmap Viewer user control, 349, 350, 352,

354, 356
Url property

WebBrowser control, 590, 597
UsageMode property

LicenseContext class, 925
UseAnimation property

ToolTip class, 143
UseCompatibleTextRendering property

Control class, 233
UseFading property

ToolTip class, 143
UseMnemonic property

Label control, 110
user controls, 337

bitmap thumbnail viewer, 345–356
compared to derived controls, 367–368
dynamic interfaces, 356

testing the wizard, 363
wizard controller, 360–362

wizard model, 357
wizard step, 358–359

introduction, 337
Progress user controls, 338–344
types of custom controls, 322

user interface architecture
classes and objects, 4
classes and types, 4–5

classes, 5–6
delegates, 6–7
enumerations, 7–8
interfaces, 8
structures, 5

introduction, 3
types and structures, 5

user interfaces
application framework, 30

disabling, 32–33
events, 31–32

brief history, 928
command-line era, 929–930
GUI era interfaces, 933–934
GUI interfaces, 932
menu-driven model interface, 932
question-answer model, 930–932

classes in .NET, 8
components, 17–18
controls

accessing, 15–16
as classes, 9
containing other controls, 9–11
extending other controls, 12–13

creativity vs convention, 934
admistrative utilities, 935–936
application types, 936
consistency in .NET, 934
Microsoft standards, 935
user requirements, 937

design, 927
approaches, 928

generating code in Visual studio, 24, 26
handling complexity, 937

inductive user interfaces, 939
IUI (inductive user interfaces), 939
segmenting information, 938

Macdonald_694-3INDEX.fm Page 1032 Friday, July 28, 2006 4:36 AM

1033■I N D E X

Find it faster at http://superindex.apress.com

helpful restrictions, 939
users choices, 940
users imagination, 941
users mistakes, 939

inheritance and the Form class, 13–15
interacting with controls, 19

overriding methods, 19
smart controls, 21–22
smart forms, 22
view-mediator pattern, 20–21

Visual studio, 22–24
application lifetime, 34
component tray, 26
hidden designer code, 27–29

User32.dll library
GetKeyState() function, 63

UserAddedRow event
DataGridView class, 557

UserClosing value
CloseReason enumeration, 74

UserControl class
all user control classes derive from, 339
base classes for custom controls, 323
benefits of using, 339
OrderPrintPreview and OrderGridView

derive from, 667
UserControl control

dock padding, 100
UserDeletedRow event

DataGridView class, 557
UserDeletingRow event

DataGridView class, 557
UserPreferenceChanged event, 58
UserSelection property

Form class, 82
UseSystemPasswordChar property

MaskedTextBox control, 642
TextBox control, 115

UseTabStops property
list controls, 122

■V
Validate() method

BaseValidator control, 627, 630
LicenseManager class, 920, 922, 924

Validating event
Control class, 614, 627
TextBox control, 615, 618

ValidatingType property
MaskedTextBox control, 643

validation, 611
ASP.NET validation controls, 626
bound data, 293–294
closing forms with, 616, 617
custom validation components, 625

building the BaseValidator control,
627–631

building three custom validators,
631–634

understanding ASP.NET validation
controls, 626

using the custom validators, 634–637
DataGridView class, 560–562
ErrorProvider control, 617

customizing error icons, 619–620
showing error icons, 618–619

regular expressions, 621
basics, 621–624
bvalidating with, 624
validating with, 625

validating at the right time, 611–612
validation events, 613

event sequence, 613–614
handling, 615–616

Value property
DateTimePicker control, 128, 130
Progress control, 472
ProgressBar control, 339
TrackBar control, 126

vector-based drawing programs, 839
Verbs property

ControlDesigner class, 895
IDesigner interface, 886

versioning, interfaces and, 8
VerticalStackWithOverflow value

ToolStripLayoutStyle enumeration,
478, 486

View enumeration
values, 173

View property
ListView control, 173, 177

Macdonald_694-3INDEX.fm Page 1033 Friday, July 28, 2006 4:36 AM

1034 ■I N D E X

view-mediator pattern, 20–21
virtualization and ListView control, 189–193
VirtualListSize property

ListView control, 191
VirtualMode property

ListView control, 191
Visible property

DataGridViewColumn class, 548
NotifyIcon component, 144
ToolStripItem class, 479
ToolStripMenuItem class, 663

Visible value
DesignerSerializationVisibility

enumeration, 442, 459
SelectionRules enumeration, 895

Visited property
Link object, 111
LinkLabel control, 112

VisitedLinkColor property
LinkLabel control, 112
ToolStripLabel class, 486

Visual Basic
partial classes, 27
Resources.resx file, 161
Ruby, 41

Visual Studio
adding ActiveX controls to projects, 147
aligning controls, 51
application framework, 30

disabling, 32–33
events, 31–32

attaching keys, 335
automatic toolbox support, 330
automatically generated designer code, 74
ClickOnce, 946
Column and Row Styles dialog box, 753
Command Window, 929
configuring control properties and

events, 23
creating a new form, 14

interaction between controls and
form, 20

custom controls support, 426
Form.Localizable property added at

design time, 166
GenerateMember property, 15

generating GradientFill object whenever
properties are changed, 456

generating user interface code, 24, 26
IconAlignment property, 620
IconPadding property, 620
Me keyword, 26
Modifiers property, 15
Name property, 16
serialization rules, 437–438
SetError() method, 620
tab order tool, 59, 60
testing custom controls, 330
user interfaces, 22–24

application lifetime, 34
component tray, 26
hidden designer code, 27–29

Windows Application project, 22
Windows Control Library project, 22

VisualStyleElement class, 257
Menu classes, 258

VisualStyleInformation class
IsEnabledByUser property, 257
IsSupportedByOS property, 257
System.Windows.Forms.VisualStyles

namespace, 257
VisualStyleRenderer class, 255

drawing, 258
IsElementDefined() method, 258
methods, 258, 260
System.Windows.Forms.VisualStyles

namespace, 257
uses Windows XP themes, 414

VisualStylesEnabled property
ToolStripManager class, 514, 517

VisualStyleState property
Application class, 257

VScroll property
Form class, 80

■W
WaitOnLoad property

image-related properties in common
controls, 154

Warp() method
GraphicsPath class, 234

Macdonald_694-3INDEX.fm Page 1034 Friday, July 28, 2006 4:36 AM

1035■I N D E X

Find it faster at http://superindex.apress.com

WAV audio format
supported by SoundPlayer control, 578

Web controls
System.Web.UI namespace, 9
System.Web.UI.HtmlControls

namespace, 9
System.Web.UI.WebControls

namespace, 9
web pages as online Help, 787
WebBrowser control

basics, 589
blending Web and Windows

interfaces, 597
building a DOM tree, 597–599
extracting all links, 600–602
scripting a Web page, 602–604
scripting an HTML form, 605–606

Document property, 597
Document.InvokeScript() method, 604
DocumentStream property, 590, 597
DocumentText property, 590, 597
events, 592–593
example, 593–595
IsBusy property, 592
methods, 596
Navigate() method, 591, 597
Navigating event, 607
navigating to a page, 590–591
navigation methods, 591
ObjectForScripting property, 602
printing, saving and fine tuning, 595–596
properties, 595
ReadyState property, 592
Url property, 590, 597
uses, 589

WebBrowserReadyState enumeration
values, 592

WebBrowserShortcutsEnabled property
WebBrowser control, 596

WebWorks Publisher
Help authoring tools, 783

WFC limitations, 41
WFML, markup-based user interfaces, 774
Widen() method

GraphicsPath class, 234

Width property
CountStyle class, 753
DataGridViewColumn class, 540
Pens class, 222
Size object, 49

Win32 functions
GetWindowPlacement() function, 78
SetWindowPlacement() function, 78

WindowListChanged event
DocumentManager class, 684

WindowListChangedEventArgs class, 683
Windows Application project, 22
Windows applications

multithreading, 696–706
Windows Control Library

custom controls, 326
Windows Control Library project, 22
Windows controls

painting, 254
ControlPaint class, 255, 256
using a control renderer, 260, 261
visual styles, 256–257
VisualStyleRenderer class, 258, 259, 260

System.Windows.Forms namespace, 9
Windows Forms

introduction, 41, 42
Windows Forms application design, 34

developing in tiers, 37, 38
business tier, 39
data tier, 39–40
presentation tier, 38
three-tier design in .NET, 40

encapsulation, 34
control references, 36
data-driven user interfaces, 36
using central switchboard, 35
using collections, 36
using enumerations and helper

classes, 36
Windows Forms architecture

user interface classes plug into, 9
Windows controls, 9

Windows Forms controls
owner drawing and, 389

Macdonald_694-3INDEX.fm Page 1035 Friday, July 28, 2006 4:36 AM

1036 ■I N D E X

Windows Forms Markup Language.
See WFML

Windows Media Audio. See WMA
Windows XP styles, 46
WindowsDefaultBound value

FormStartPosition enumeration, 75
WindowsDefaultLocation value

FormStartPosition enumeration, 75
WindowsShutDown value

CloseReason enumeration, 74
WindowState property

Form class, 72
WinHelp, 779

choices supported, 788
WinHelp 95, 780

choices supported, 788
Winres.exe, 170
Wizard class

ShowDialog() method, 363
ShowStep() method, 360, 361

wizard model
creating Wixard controller form, 360–362
defining interface, 358–359
introduction, 357
testing, 363

wizards
question-answer model interface, 930
reasons for using dynamic interfaces, 730

WMA files
not supported by SoundPlayer

control, 578
playing with Quartz, 582

WndProc() method
Control class, 70, 650
Form class, 585, 818

WordWrap property
TextBox control, 115

Worker component, 697, 698
FindPrimes() method, 697, 699, 708, 709

WorkerSupportsCancellation property
BackgroundWorker component, 711

WorkingArea property
Screen class, 76

Workplace applications
as MDI application type, 652

WrapContents property
FlowLayoutPanel class, 747, 749, 750
FlowLayoutPanel control, 356

WrapMode property
DataGridViewCellStyle class, 545

■X
XAML

markup-based user interfaces, 774

■Z
ZoomFactor property

RichTextBox control, 117
ZOrder property

Shape class, 856, 857

Macdonald_694-3INDEX.fm Page 1036 Friday, July 28, 2006 4:36 AM

	Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005
	Table of Content
	PART 1 Windows Forms Fundamentals
	Chapter 1 User Interface Architecture
	Chapter 2 Control Basics
	Chapter 3 Forms
	Chapter 4 The Classic Controls
	Chapter 5 Images and Resources
	Chapter 6 Lists and Trees
	Chapter 7 Drawing with GDI+
	Chapter 8 Data Binding

	PART 2 Custom Controls
	Chapter 9 Custom Control Basics
	Chapter 10 User Controls
	Chapter 11 Derived Controls
	Chapter 12 Owner-Drawn Controls
	Chapter 13 Design-Time Support for Custom Controls

	PART 3 Modern Controls
	Chapter 14 Tool, Menu, and Status Strips
	Chapter 15 The DataGridView
	Chapter 16 Sound and Video
	Chapter 17 The WebBrowser

	PART 4 Windows Forms Techniques
	Chapter 18 Validation and Masked Editing
	Chapter 19 Multiple and Single Document Interfaces
	Chapter 20 Multithreading
	Chapter 21 Dynamic Interfaces and Layout Engines
	Chapter 22 Help Systems

	PART 5 Advanced Custom Controls
	Chapter 23 Skinned Forms and Animated Buttons
	Chapter 24 Dynamic Drawing with a Design Surface
	Chapter 25 Custom Extender Providers
	Chapter 26 Advanced Design-Time Support
	Appendix A Creating Usable Interfaces
	Appendix B ClickOnce

	Index

