
this print for content only—size & color not accurate spine = 2.005" 1,072 page count

Books for professionals By professionals®

Pro WPF in C# 2008: Windows Presentation
Foundation with .NET 3.5, SECoNd EdiTioN
Dear Reader,

For years, .NET developers have created Windows applications with the
Windows Forms toolkit. And though Windows Forms is mature and reasonably
full-featured, it’s hardwired to essential bits of Windows plumbing that haven’t
changed much in the past ten years. As a result, some tasks that should be easy
require a lot of work.

The Windows Presentation Foundation (WPF) changes all this by introduc-
ing a new model with entirely different plumbing. Although WPF includes the
standard controls you’re familiar with, it draws every detail itself, using the
high-performance DirectX engine. As a result, WPF can provide a whole host
of eye-popping new features, all of which we’ll cover in this book. For example,
we’ll give common controls like buttons a slick, customized look without writ-
ing a line of code. Similarly, we will craft animated effects that rotate, stretch,
scale, and skew anything in your user interface right before the user’s eyes.
Tasks that would have been difficult or nearly impossible in Windows Forms—
such as playing media files or creating texture-mapped 3-D shapes—are finally
possible. By the time you’ve finished this book, you’ll have mastered these pre-
viously impossible tasks.

Although WPF’s video, animation, and 3-D features get the most hype, WPF
is just as useful for building business applications that don’t need rich graphics.
We’ll cover WPF’s enhancements of key business features such as data binding,
print management, and document display, giving you all you need to create
professional business applications in WPF.

Welcome aboard!

Matthew MacDonald (Microsoft MVP, MCSD)

Author of

Pro .NET 2.0 Windows
Forms and Custom Controls
(Apress)

Pro .NET 2.0 Windows
Forms and Custom Controls
in VB 2005 (Apress)

Pro ASP.NET 3.5 in C# 2008
(Apress, with Mario Szpuszta)

Pro WPF: Windows
Presentation Foundation
in .NET 3.0 (Apress)

US $54.99

Shelve in
Programming/Microsoft/.NET

User level:
Intermediate–Advanced

MacDonald

SECoNd EdiTioN

W
PF

The eXperT’s Voice® in .neT

Pro

WPF in
C# 2008
Windows Presentation Foundation with .NET 3.5

SECoND EDiTioN

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Matthew MacDonald

Companion eBook Available

THE APRESS ROADMAP

Illustrated C# 2008

Beginning C# 2008

Pro LINQ

Pro WPF in C# 2008,
Second Edition

Beginning C# 2008
Databases

Beginning
XML with C# 2008

Beginning VB 2008
Databases

Pro C# 2008 and the .NET
3.5 Platform, Fourth Edition

Pro ASP.NET 3.5 in
C# 2008, Second Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-955-6
ISBN-10: 1-59059-955-1

9 781590 599556

55499

Create the next generation of Windows applications.

Pro

in C#
2008

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Matthew MacDonald

Pro WPF in C# 2008
Windows Presentation
Foundation with .NET 3.5
SECOND EDITION

9551CH00 2/8/08 1:40 PM Page i

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Pro WPF in C# 2008: Windows Presentation Foundation with .NET 3.5, Second Edition

Copyright © 2008 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-0576-0

ISBN-10 (pbk): 1-59059- 955-1

ISBN-13 (electronic): 978-1-59059-955-6

ISBN-10 (electronic): 1-4302-0576-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Moodie
Technical Reviewer: Christophe Nasarre
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Diana Van Winkle
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Artists: Diana Van Winkle, April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9551CH00 2/8/08 1:40 PM Page ii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For my wonderful family,
Faria and Maya

9551CH00 2/8/08 1:40 PM Page iii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH00 2/8/08 1:40 PM Page iv

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Contents at a Glance

About the Author . xxii

About the Technical Reviewer . xxiii

Acknowledgments . xxiv

Introduction . xxv

■CHAPTER 1 Introducing WPF . 1

■CHAPTER 2 XAML . 21

■CHAPTER 3 The Application . 57

■CHAPTER 4 Layout . 75

■CHAPTER 5 Content . 117

■CHAPTER 6 Dependency Properties and Routed Events . 137

■CHAPTER 7 Classic Controls . 179

■CHAPTER 8 Windows . 215

■CHAPTER 9 Pages and Navigation . 245

■CHAPTER 10 Commands . 289

■CHAPTER 11 Resources . 317

■CHAPTER 12 Styles . 349

■CHAPTER 13 Shapes, Transforms, and Brushes . 367

■CHAPTER 14 Geometries, Drawings, and Visuals . 409

■CHAPTER 15 Control Templates . 445

■CHAPTER 16 Data Binding . 491

■CHAPTER 17 Data Templates, Data Views, and Data Providers 551

■CHAPTER 18 Lists, Trees, Toolbars, and Menus . 597

■CHAPTER 19 Documents . 643

■CHAPTER 20 Printing . 697

■CHAPTER 21 Animation . 729

■CHAPTER 22 Sound and Video . 783

■CHAPTER 23 3-D Drawing . 809

■CHAPTER 24 Custom Elements . 855

■CHAPTER 25 Interacting with Windows Forms . 903

■CHAPTER 26 Multithreading and Add-Ins . 927

■CHAPTER 27 ClickOnce Deployment . 965

■INDEX . 983
v

9551CH00 2/8/08 1:40 PM Page v

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH00 2/8/08 1:40 PM Page vi

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Contents

About the Author . xxii

About the Technical Reviewer . xxiii

Acknowledgments . xxiv

Introduction . xxv

■CHAPTER 1 Introducing WPF . 1

Understanding Windows Graphics . 1
DirectX: The New Graphics Engine . 2

Hardware Acceleration and WPF . 2

WPF: A Higher-Level API . 4

Resolution Independence . 6

The Evolution of WPF . 11

Windows Forms Lives On . 13

DirectX Also Lives On . 14

Silverlight . 14

The Architecture of WPF . 15

The Class Hierarchy . 17

The Last Word . 20

■CHAPTER 2 XAML . 21

Understanding XAML . 22

Graphical User Interfaces Before WPF . 22

The Variants of XAML . 24

XAML Compilation . 24

XAML Basics . 25

XAML Namespaces . 26

The Code-Behind Class . 27

Properties and Events in XAML . 30

Simple Properties and Type Converters . 31

Complex Properties . 32

Markup Extensions . 35

Attached Properties . 36

Nesting Elements . 37

Special Characters and Whitespace . 40

vii

9551CH00 2/8/08 1:40 PM Page vii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Events . 42

The Full Eight Ball Example . 43

Using Types from Other Namespaces . 44

Loading and Compiling XAML . 46

Code-Only . 47

Code and Uncompiled XAML . 49

Code and Compiled XAML . 51

XAML Only . 53

The Last Word . 54

■CHAPTER 3 The Application . 57

The Application Life Cycle . 57

Creating an Application Object . 57

Deriving a Custom Application Class . 58

Application Shutdown . 60

Application Events . 61

Application Tasks . 64

Handling Command-Line Arguments . 64

Accessing the Current Application . 65

Interacting Between Windows . 66

Single-Instance Applications . 68

The Last Word . 74

■CHAPTER 4 Layout . 75

Understanding Layout in WPF . 75

The WPF Layout Philosophy . 76

The Layout Process . 77

The Layout Containers . 77

Simple Layout with the StackPanel . 79

Layout Properties . 81

Alignment . 82

Margin . 83

Minimum, Maximum, and Explicit Sizes . 84

The WrapPanel and DockPanel . 86

The WrapPanel . 86

The DockPanel . 88

Nesting Layout Containers . 90

The Grid . 91

Fine-Tuning Rows and Columns . 94

Spanning Rows and Columns . 96

Split Windows . 97

■CONTENTSviii

9551CH00 2/8/08 1:40 PM Page viii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Shared Size Groups . 101

The UniformGrid . 104

Coordinate-Based Layout with the Canvas . 104

Z-Order . 106

The InkCanvas . 106

Layout Examples . 109

A Column of Settings . 109

Dynamic Content . 111

A Modular User Interface . 112

The Last Word . 114

■CHAPTER 5 Content . 117

Understanding Content Controls . 117

The Content Property . 119

Aligning Content . 121

The WPF Content Philosophy . 122

Specialized Containers . 123

The ScrollViewer . 123

The GroupBox and TabItem: Headered Content Controls 127

The Expander . 129

Decorators . 133

The Border . 133

The Viewbox . 134

The Last Word . 136

■CHAPTER 6 Dependency Properties and Routed Events 137

Understanding Dependency Properties . 137

Defining and Registering a Dependency Property 138

How WPF Uses Dependency Properties . 147

Understanding Routed Events . 149

Defining and Registering a Routed Event . 149

Attaching an Event Handler . 151

Event Routing . 153

WPF Events . 163

Lifetime Events . 163

Input Events . 165

Keyboard Input . 166

Mouse Input . 171

The Last Word . 177

■CONTENTS ix

9551CH00 2/8/08 1:40 PM Page ix

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■CHAPTER 7 Classic Controls . 179

The Control Class . 179

Background and Foreground Brushes . 179

Fonts . 184

Mouse Cursors . 189

Content Controls . 190

Labels . 190

Buttons . 191

Tooltips . 194

Text Controls . 202

Multiple Lines of Text . 202

Text Selection . 203

Miscellaneous TextBox Features . 204

The PasswordBox . 205

List Controls . 206

The ListBox . 206

The ComboBox . 210

Range-Based Controls . 211

The Slider . 212

The ProgressBar . 213

The Last Word . 214

■CHAPTER 8 Windows . 215

The Window Class . 215

Showing a Window . 218

Positioning a Window . 219

Saving and Restoring Window Location . 220

Window Interaction . 222

Window Ownership . 224

The Dialog Model . 225

Common Dialog Boxes . 226

Nonrectangular Windows . 227

A Simple Shaped Window . 227

A Transparent Window with Shaped Content 231

Moving Shaped Windows . 232

Resizing Shaped Windows . 233

Vista-Style Windows . 235

Using the Windows Vista Glass Effect . 236

The Task Dialog and File Dialog Boxes . 241

The Last Word . 243

■CONTENTSx

9551CH00 2/8/08 1:40 PM Page x

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■CHAPTER 9 Pages and Navigation . 245

Understanding Page-Based Navigation . 245

Page-Based Interfaces . 246

A Simple Page-Based Application with Nav 247

The Page Class . 248

Hyperlinks . 249

Hosting Pages in a Frame . 252

Hosting Pages in Another Page . 254

Hosting Pages in a Web Browser . 256

The Page History . 257

A Closer Look at URIs in WPF . 257

Navigation History . 258

Maintaining Custom Properties . 259

The Navigation Service . 260

Programmatic Navigation . 261

Navigation Events . 262

Managing the Journal . 263

Adding Custom Items to the Journal . 265

Page Functions . 270

XAML Browser Applications . 273

XBAP Requirements . 273

Creating an XBAP . 274

Deploying an XBAP . 276

Updating an XBAP . 277

XBAP Security . 278

Full-Trust XBAPs . 280

Combination XBAP/Stand-Alone Applications 280

Coding for Different Security Levels . 281

Embedding an XBAP in a Web Page . 286

The Last Word . 287

■CHAPTER 10 Commands . 289

Understanding Commands . 289

The WPF Command Model . 291

The ICommand Interface . 291

The RoutedCommand Class . 292

The RoutedUICommand Class . 293

The Command Library . 294

Executing Commands . 295

Command Sources . 295

■CONTENTS xi

9551CH00 2/8/08 1:40 PM Page xi

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Command Bindings . 296

Using Multiple Command Sources . 299

Fine-Tuning Command Text . 300

Invoking a Command Directly . 300

Disabling Commands . 301

Controls with Built-in Commands . 304

Advanced Commands . 306

Custom Commands . 306

Using the Same Command in Different Places 308

Using a Command Parameter . 310

Tracking and Reversing Commands . 310

The Last Word . 315

■CHAPTER 11 Resources . 317

Assembly Resources . 317

Adding Resources . 318

Retrieving Resources . 319

Pack URIs . 321

Content Files . 322

Localization . 323

Building Localizable User Interfaces . 324

Preparing an Application for Localization . 325

The Translation Process . 326

Object Resources . 333

The Resources Collection . 333

The Hierarchy of Resources . 335

Static and Dynamic Resources . 337

Nonshared Resources . 339

Accessing Resources in Code . 339

Application Resources . 340

System Resources . 341

Organizing Resources with Resource Dictionaries 342

Sharing Resources Between Assemblies . 344

The Last Word . 347

■CHAPTER 12 Styles . 349

Style Basics . 349

Creating a Style Object . 353

Setting Properties . 354

Attaching Event Handlers . 356

■CONTENTSxii

9551CH00 2/8/08 1:40 PM Page xii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Many Layers of Styles . 357

Automatically Applying Styles by Type . 359

Triggers . 360

A Simple Trigger . 361

An Event Trigger . 363

Last Word . 365

■CHAPTER 13 Shapes, Transforms, and Brushes . 367

Understanding Shapes . 367

The Shape Classes . 368

Rectangle and Ellipse . 370

Sizing and Placing Shapes . 371

Sizing Shapes Proportionately with a Viewbox 374

Line . 376

Polyline . 378

Polygon . 379

Line Caps and Line Joins . 381

Dashes . 382

Pixel Snapping . 384

Transforms . 385

Transforming Shapes . 386

Transforming Elements . 388

Better Brushes . 390

The LinearGradientBrush . 390

The RadialGradientBrush . 393

The ImageBrush . 395

A Tiled ImageBrush . 397

The VisualBrush . 399

Opacity Masks . 401

Bitmap Effects . 403

Blurs . 404

Beveled Edges . 405

Embossed Edges . 406

Glows and Shadows . 407

The Last Word . 408

■CHAPTER 14 Geometries, Drawings, and Visuals . 409

Paths and Geometries . 409

Line, Rectangle, and Ellipse Geometries . 410

Combining Shapes with GeometryGroup . 411

Fusing Geometries with CombinedGeometry 413

■CONTENTS xiii

9551CH00 2/8/08 1:40 PM Page xiii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Curves and Lines with PathGeometry . 417

The Geometry Mini-Language . 422

Clipping with Geometry . 424

Drawings . 425

Displaying a Drawing . 427

Exporting Clip Art . 429

Visuals . 431

Drawing Visuals . 431

Wrapping Visuals in an Element . 433

Hit Testing . 437

Complex Hit Testing . 439

The Last Word . 443

■CHAPTER 15 Control Templates . 445

Understanding Logical Trees and Visual Trees . 445

Understanding Templates . 451

The Chrome Classes . 454

Dissecting Controls . 455

Creating Control Templates . 458

A Simple Button . 458

Template Bindings . 460

Template Triggers . 462

Organizing Template Resources . 465

Refactoring the Button Control Template . 466

Applying Templates with Styles . 468

Applying Templates Automatically . 470

User-Selected Skins . 471

Building More Complex Templates . 474

Multipart Templates . 474

Control Templates in an ItemsControl . 475

Modifying the Scroll Bar . 477

Creating a Custom Window . 483

The Simple Styles . 488

The Last Word . 490

■CHAPTER 16 Data Binding . 491

Data Binding Basics . 491

Binding to the Properties of an Element . 491

Creating Bindings with Code . 495

Multiple Bindings . 496

■CONTENTSxiv

9551CH00 2/8/08 1:40 PM Page xiv

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Binding Direction . 499

Binding Updates . 502

Binding to Objects That Aren’t Elements . 503

Binding to a Database with Custom Objects . 507

Building a Data Access Component . 507

Building a Data Object . 510

Displaying the Bound Object . 511

Updating the Database . 513

Change Notification . 514

Binding to a Collection of Objects . 516

Displaying and Editing Collection Items . 516

Inserting and Removing Collection Items . 520

Binding to the ADO.NET Objects . 521

Binding to a LINQ Expression . 523

Data Conversion . 526

Formatting Strings with a Value Converter . 527

Creating Objects with a Value Converter . 531

Applying Conditional Formatting . 533

Evaluating Multiple Properties . 535

Validation . 536

Validation in the Data Object . 536

Custom Validation Rules . 540

Reacting to Validation Errors . 543

Getting a List of Exceptions . 544

Showing a Different Error Indicator . 545

The Last Word . 548

■CHAPTER 17 Data Templates, Data Views, and Data Providers 551

Data Binding Redux . 551

Data Templates . 552

Separating and Reusing Templates . 554

More Advanced Templates . 556

Varying Templates . 559

Template Selectors . 560

Templates and Selection . 565

Style Selectors . 570

Changing Item Layout . 573

Data Views . 574

Retrieving a View Object . 575

Filtering Collections . 575

Filtering the DataTable . 578

■CONTENTS xv

9551CH00 2/8/08 1:40 PM Page xv

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Sorting . 580

Grouping . 581

Creating Views Declaratively . 585

Navigating with a View . 587

Data Providers . 590

The ObjectDataProvider . 592

The XmlDataProvider . 594

The Last Word . 596

■CHAPTER 18 Lists, Trees, Toolbars, and Menus . 597

The ItemsControl Class . 598

The ComboBox . 600

A ListBox with Check Boxes or Radio Buttons 604

The ListView . 607

Creating Columns with the GridView . 608

Resizing Columns . 610

Cell Templates . 610

Creating a Custom View . 613

The TreeView . 621

A Data-Bound TreeView . 622

Binding a DataSet to a TreeView . 626

Just-in-Time Node Creation . 627

Menus . 630

The Menu Class . 630

Menu Items . 632

The ContextMenu Class . 634

Menu Separators . 635

Toolbars and Status Bars . 636

The ToolBar . 636

The StatusBar . 640

The Last Word . 641

■CHAPTER 19 Documents . 643

Understanding Documents . 643

Flow Documents . 644

The Flow Elements . 645

Formatting Content Elements . 647

Constructing a Simple Flow Document . 648

Block Elements . 650

Inline Elements . 656

Interacting with Elements Programmatically 663

■CONTENTSxvi

9551CH00 2/8/08 1:40 PM Page xvi

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Text Justification . 667

Read-Only Flow Document Containers . 668

Zooming . 669

Pages and Columns . 670

Loading Documents from a File . 672

Printing . 673

Editing a Flow Document . 674

Loading a File . 674

Saving a File . 676

Formatting Selected Text . 678

Getting Individual Words . 680

Fixed Documents . 681

Annotations . 683

The Annotation Classes . 684

Enabling the Annotation Service . 685

Creating Annotations . 687

Examining Annotations . 690

Reacting to Annotation Changes . 694

Storing Annotations in a Fixed Document . 694

Customizing the Appearance of Sticky Notes 695

Last Word . 696

■CHAPTER 20 Printing . 697

Basic Printing . 697

Printing an Element . 698

Transforming Printed Output . 701

Printing Elements Without Showing Them . 703

Printing a Document . 704

Manipulating the Pages in a Document Printout 708

Custom Printing . 710

Printing with the Visual Layer Classes . 711

Custom Printing with Multiple Pages . 714

Print Settings and Management . 719

Maintaining Print Settings . 720

Printing Page Ranges . 720

Managing a Print Queue . 721

Printing Through XPS . 724

Creating an XPS Document for a Print Preview 725

Printing Directly to the Printer via XPS . 726

Asynchronous Printing . 727

The Last Word . 728

■CONTENTS xvii

9551CH00 2/8/08 1:40 PM Page xvii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■CHAPTER 21 Animation . 729

Understanding WPF Animation . 729

Timer-Based Animation . 730

Property-Based Animation . 731

Basic Animation . 731

The Animation Classes . 732

Animations in Code . 735

Simultaneous Animations . 740

Animation Lifetime . 741

The Timeline Class . 742

Declarative Animation and Storyboards . 746

The Storyboard . 746

Event Triggers . 747

Overlapping Animations . 752

Simultaneous Animations . 753

Controlling Playback . 754

Monitoring Progress . 759

Desired Frame Rate . 760

Animation Types Revisited . 763

Animating Transforms . 764

Animating Brushes . 769

Key Frame Animation . 772

Path-Based Animation . 775

Frame-Based Animation . 778

The Last Word . 782

■CHAPTER 22 Sound and Video . 783

Playing WAV Audio . 783

The SoundPlayer . 784

The SoundPlayerAction . 786

System Sounds . 786

The MediaPlayer . 787

The MediaElement . 789

Playing Audio Programmatically . 789

Handling Errors . 791

Playing Audio with Triggers . 791

Playing Multiple Sounds . 794

Changing Volume, Balance, Speed, and Position 795

Synchronizing an Animation with Audio . 797

Playing Video . 799

Video Effects . 800

■CONTENTSxviii

9551CH00 2/8/08 1:40 PM Page xviii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Speech . 804

Speech Synthesis . 804

Speech Recognition . 806

The Last Word . 808

■CHAPTER 23 3-D Drawing . 809

3-D Drawing Basics . 810

The Viewport . 810

3-D Objects . 811

The Camera . 819

Deeper into 3-D . 823

Shading and Normals . 825

More Complex Shapes . 829

Model3DGroup Collections . 830

Materials Revisited . 832

Texture Mapping . 834

Interactivity and Animations . 838

Transforms . 838

Rotations . 840

A Fly Over . 841

The Trackball . 843

Hit Testing . 845

2-D Elements on 3-D Surfaces . 849

The Last Word . 853

■CHAPTER 24 Custom Elements . 855

Understanding Custom Elements in WPF . 856

Building a Basic User Control . 858

Defining Dependency Properties . 859

Defining Routed Events . 862

Adding Markup . 863

Using the Control . 866

Command Support . 866

A Closer Look at User Controls . 869

Lookless Controls . 870

Refactoring the Color Picker Code . 871

Refactoring the Color Picker Markup . 871

Streamlining the Control Template . 874

Theme-Specific Styles and the Default Style 876

Extending an Existing Control . 879

Understanding Masked Edit Controls . 879

■CONTENTS xix

9551CH00 2/8/08 1:40 PM Page xix

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Mask Syntax . 879

The MaskedTextProvider . 880

Implementing a WPF Masked Text Box . 881

Improving the MaskedTextBox . 885

Custom Panels . 887

The Two-Step Layout Process . 887

The Canvas Clone . 891

A Better Wrapping Panel . 892

Custom-Drawn Elements . 895

The OnRender() Method . 896

Evaluating Custom Drawing . 897

A Custom-Drawn Element . 898

A Custom Decorator . 901

The Last Word . 902

■CHAPTER 25 Interacting with Windows Forms . 903

Assessing Interoperability . 903

Missing Features in WPF . 904

Mixing Windows and Forms . 906

Adding Forms to a WPF Application . 906

Adding WPF Windows to a Windows Forms Application 907

Showing Modal Windows and Forms . 907

Showing Modeless Windows and Forms . 908

Visual Styles for Windows Forms Controls . 909

Windows Forms Classes That Don’t Need Interoperability 909

Creating Windows with Mixed Content . 914

WPF and Windows Forms “Airspace” . 914

Hosting Windows Forms Controls in WPF . 916

WPF and Windows Forms User Controls . 918

Hosting WPF Controls in Windows Forms . 919

Access Keys, Mnemonics, and Focus . 921

Property Mapping . 923

The Last Word . 925

■CHAPTER 26 Multithreading and Add-Ins . 927

Multithreading . 927

The Dispatcher . 928

The DispatcherObject . 928

The BackgroundWorker . 931

Application Add-Ins . 940

The Add-in Pipeline . 941

■CONTENTSxx

9551CH00 2/8/08 1:40 PM Page xx

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

An Application That Uses Add-Ins . 946

Interacting with the Host . 955

Visual Add-Ins . 960

The Last Word . 963

■CHAPTER 27 ClickOnce Deployment . 965

Application Deployment . 965

Understanding ClickOnce . 966

The ClickOnce Installation Model . 967

ClickOnce Limitations . 968

A Simple ClickOnce Publication . 969

Choosing a Location . 970

Deployed Files . 974

Installing a ClickOnce Application . 975

Updating a ClickOnce Application . 977

ClickOnce Options . 977

Publish Version . 978

Updates . 979

Publish Options . 980

The Last Word . 981

■INDEX . 983

■CONTENTS xxi

9551CH00 2/8/08 1:40 PM Page xxi

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

About the Author

■MATTHEW MACDONALD is an author, educator, and Microsoft MVP in Windows client
development. He’s a regular contributor to programming journals and the author of more
than a dozen books about .NET programming, including Pro .NET 2.0 Windows Forms and
Custom Controls in C# (Apress, 2005) and Pro ASP.NET 3.5 in C# 2008 (Apress, 2007). He lives
in Toronto with his wife and daughter.

xxii

9551CH00 2/8/08 1:40 PM Page xxii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

About the Technical Reviewer

■CHRISTOPHE NASARRE is a software architect and development lead for
Business Objects, a multinational software company focused on business
intelligence solutions. During his spare time, Christophe writes articles for
MSDN Magazine, MSDN, and ASPToday. Since 1996, he has also worked as
a technical editor on numerous books on Win32, COM, MFC, .NET, and
WPF. In 2007, he wrote his first book, Windows via C/C++ from MSPress.

xxiii

9551CH00 2/8/08 1:40 PM Page xxiii

4e39d27715ea33bfeed83c26800166a2

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Acknowledgments

No author can complete a book without a small army of helpful individuals. I’m deeply
indebted to the whole Apress team, including Sofia Marchant and Laura Esterman, who shep-
herded this second edition through production, Kim Wimpsett, who speedily performed the
copy edit, and many other individuals who worked behind the scenes indexing pages, drawing
figures, and proofreading the final copy. I also owe a special thanks to Gary Cornell, who
always offers invaluable advice about projects and the publishing world.

Christophe Nasarre deserves my sincere thanks for his unfailingly excellent and insightful
tech review comments—they’ve helped me to fill gaps and improve the overall quality of this
book. I’m also thankful for the legions of die-hard bloggers on the various WPF teams, who
never fail to shed light on the deepest recesses of WPF. I encourage anyone who wants to learn
more about the future of WPF to track them down. Finally, I’d never write any book without
the support of my wife and these special individuals: Nora, Razia, Paul, and Hamid. Thanks,
everyone!

xxiv

9551CH00 2/8/08 1:40 PM Page xxiv

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Introduction

When .NET first appeared, it introduced a small avalanche of new technologies. There was a
whole new way to write web applications (ASP.NET), a whole new way to connect to databases
(ADO.NET), new typesafe languages (C# and VB .NET), and a managed runtime (the CLR). Not
least among these new technologies was Windows Forms, a library of classes for building Win-
dows applications.

Although Windows Forms is a mature and full-featured toolkit, it’s hardwired to essential
bits of Windows plumbing that haven’t changed much in the past ten years. Most significantly,
Windows Forms relies on the Windows API to create the visual appearance of standard user
interface elements such as buttons, text boxes, check boxes, and so on. As a result, these ingre-
dients are essentially uncustomizable.

For example, if you want to create a stylish glow button you need to create a custom con-
trol and paint every aspect of the button (in all its different states) using a lower-level drawing
model. Even worse, ordinary windows are carved up into distinct regions, with each control
getting its own piece of real estate. As a result, there’s no good way for the painting in one con-
trol (for example, the glow effect behind a button) to spread into the area owned by another
control. And don’t even think about introducing animated effects such as spinning text, shim-
mering buttons, shrinking windows, or live previews because you’ll have to paint every detail
by hand.

The Windows Presentation Foundation (WPF) changes all this by introducing a new
model with entirely different plumbing. Although WPF includes the standard controls you’re
familiar with, it draws every text, border, and background fill itself. As a result, WPF can pro-
vide much more powerful features that let you alter the way any piece of screen content is
rendered. Using these features, you can restyle common controls such as buttons, often with-
out writing any code. Similarly, you can use transformation objects to rotate, stretch, scale,
and skew anything in your user interface, and you can even use WPF’s baked-in animation
system to do it right before the user’s eyes. And because the WPF engine renders the content
for a window as part of a single operation, it can handle unlimited layers of overlapping con-
trols, even if these controls are irregularly shaped and partially transparent.

Underlying the new features in WPF is a powerful new infrastructure based on DirectX,
the hardware-accelerated graphics API that’s commonly used in cutting-edge computer
games. This means that you can use rich graphical effects without incurring the performance
overhead that you’d suffer with Windows Forms. In fact, you even get advanced features such
as support for video files and 3-D content. Using these features (and a good design tool), it’s
possible to create eye-popping user interfaces and visual effects that would have been all but
impossible with Windows Forms.

Although the cutting-edge video, animation, and 3-D features often get the most atten-
tion in WPF, it’s important to note that you can use WPF to build an ordinary Windows
application with standard controls and a straightforward visual appearance. In fact, it’s just as
easy to use common controls in WPF as it is in Windows Forms. Even better, WPF enhances
features that appeal directly to business developers, including a vastly improved data binding

xxv

9551CH00 2/8/08 1:40 PM Page xxv

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■INTRODUCTIONxxvi

model, a new set of classes for printing content and managing print queues, and a document
feature for displaying large amounts of formatted text. You’ll even get a new model for build-
ing page-based applications that run seamlessly in Internet Explorer and can be launched
from a website, all without the usual security warnings and irritating installation prompts.

Overall, WPF combines the best of the old world of Windows development with new
innovations for building modern, graphically rich user interfaces. Although Windows Forms
applications will continue to live on for years, developers embarking on new Windows devel-
opment projects should consider WPF.

■Tip If you’ve done a substantial amount of work creating a Windows Forms application, you don’t need
to migrate it wholesale to WPF to get access to new features such as animation. Instead, you can add WPF
content to your existing Windows Forms application, or you can create a WPF application that incorporates
your legacy Windows Forms content. Chapter 25 discusses all your interoperability options.

About This Book
This book is an in-depth exploration of WPF for professional developers who know the .NET
platform, the C# language, and the Visual Studio development environment. Previous experi-
ence with Windows Forms is useful but not required to get the most out of this book.

This book provides a complete description of every major WPF feature, from XAML
(the markup language used to define WPF user interfaces) to 3-D drawing and animation.
Along the way, you’ll occasionally work with code that involves other features of the .NET
Framework, such as the ADO.NET classes you use to query a database. These features aren’t
discussed here. Instead, if you want more information about .NET features that aren’t specific
to WPF, you can refer to one of the many dedicated .NET titles from Apress.

Chapter Overview
This book includes 26 chapters. If you’re just starting out with WPF, you’ll find it’s easiest to
read them in order, as later chapters often draw on the techniques demonstrated in earlier
chapters.

The following list gives you a quick preview of each chapter:

Chapter 1: Introducing WPF describes the architecture of WPF, its DirectX plumbing,
and the new device-independent measurement system that resizes user interfaces
automatically.

Chapter 2: XAML describes the XAML standard that you use to define user interfaces.
You’ll learn why it was created and how it works, and you’ll create a basic WPF window
using different coding approaches.

Chapter 3: The Application introduces the WPF application model. You’ll see how to cre-
ate single-instance and document-based WPF applications.

9551CH00 2/8/08 1:40 PM Page xxvi

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Chapter 4: Layout delves into the layout panels that allow you to organize elements in a
WPF window. You’ll consider different layout strategies, and you’ll build some common
types of windows.

Chapter 5: Content describes the WPF content control model, which allows you to place
elements inside other elements to customize the look of common controls such as but-
tons and labels.

Chapter 6: Dependency Properties and Routed Events describes how WPF extends
.NET’s property and event system. You’ll see how WPF uses dependency properties to pro-
vide support for key features such as data binding and animation, and how it uses event
routing to send events bubbling or tunneling through the elements in your user interface.

Chapter 7: Classic Controls considers some of the common controls every Windows
developer is familiar with, such as buttons, text boxes, and labels—and their WPF twists.

Chapter 8: Windows examines how windows work in WPF. You’ll also learn how to create
irregularly shaped windows and use Vista glass effects.

Chapter 9: Pages and Navigation describes how you can build pages in WPF and keep
track of navigation history. You’ll also see how to build a browser-hosted WPF application
that can be launched from a website without a tedious installation step.

Chapter 10: Commands introduces the WPF command model, which allows you to wire
multiple controls to the same logical action.

Chapter 11: Resources describes how resources let you embed binary files in your assem-
bly and reuse important objects throughout your user interface.

Chapter 12: Styles explains the WPF style system, which lets you apply a set of common
property values to an entire group of controls.

Chapter 13: Shapes, Transforms, and Brushes introduces the 2-D drawing model in WPF.
You’ll learn to create shapes, alter elements with transforms, and paint exotic effects with
gradients, tiles, and images.

Chapter 14: Geometries, Drawings, and Visuals delves deeper into 2-D drawing. You’ll
learn to create complex paths that incorporate arcs and curves, how to use complex
graphics efficiently, and how to use the lower-level visual layer for optimized drawing.

Chapter 15: Control Templates shows you how you can give any WPF control a dramatic
new look (and new behavior) by plugging in a customized template. You’ll also see how
templates allow you to build a skinnable application.

Chapter 16: Data Binding introduces WPF data binding. You’ll see how to bind any type
of object to your user interface, whether it’s an instance of a custom data class or the full-
fledged ADO.NET DataSet. You’ll also learn how to convert, format, and validate data.

Chapter 17: Data Templates, Data Views, and Data Providers shows some of the tricks for
designing professional data-driven interfaces. Along the way, you’ll build rich data lists
that incorporate pictures, controls, and selection effects.

■INTRODUCTION xxvii

9551CH00 2/8/08 1:40 PM Page xxvii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Chapter 18: Lists, Trees, Toolbars, and Menus considers WPF’s family of list controls.
You’ll see data-oriented controls such as grids and trees, and command-oriented controls
such as toolbars and menus.

Chapter 19: Documents introduces WPF’s rich document support. You’ll learn to use flow
documents to present large amounts of text in the most readable way possible, and you’ll
use fixed documents to show print-ready pages. You’ll even use the RichTextBox to pro-
vide document editing.

Chapter 20: Printing demonstrates WPF’s new printing model, which lets you draw text
and shapes in a print document. You’ll also learn how to manage page settings and print
queues.

Chapter 21: Animation explores WPF’s animation framework, which lets you integrate
dynamic effects into your application using straightforward, declarative markup.

Chapter 22: Sound and Video describes WPF’s media support. You’ll see how to control
playback for sound and video, and how to throw in synchronized animations and live
effects.

Chapter 23: 3-D Drawing explores the support for drawing 3-D shapes in WPF. You’ll
learn how to create, transform, and animate 3-D objects. You’ll even see how to place
interactive 2-D controls on 3-D surfaces.

Chapter 24: Custom Elements explores how you can extend the existing WPF controls
and create your own. You’ll see several examples, including a template-based color picker,
a masked text box, and a decorator that performs custom drawing.

Chapter 25: Interacting with Windows Forms examines how you can combine WPF and
Windows Forms content in the same application—and even in the same window.

Chapter 26: Multithreading and Add-Ins describes two advanced topics. You’ll use multi-
threading to create responsive WPF applications that perform time-consuming work in
the background. You’ll use the add-in model to create an extensible application that can
dynamically discover and load separate components.

Chapter 27: ClickOnce Deployment shows how you can deploy WPF applications using
the ClickOnce setup model introduced in .NET 2.0.

What You Need to Use This Book
WPF exists in two versions. The original version was released with .NET 3.0 and shipped
with Windows Vista. The second (slightly improved) version was released with .NET 3.5.
Incidentally, the second version of WPF is named WPF 3.5 to match the version of the .NET
Framework.

This book assumes you’re using the latest-and-greatest version, .NET 3.5. All the down-
loadable examples use Visual Studio 2008 projects and target .NET 3.5. However, most of the
concepts you’ll learn apply equally well to .NET 3.0. For more information about the refine-
ments that were added to WPF in .NET 3.5, refer to the section “The Evolution of WPF” in
Chapter 1.

■INTRODUCTIONxxviii

9551CH00 2/8/08 1:40 PM Page xxviii

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In order to run a WPF 3.5 application, your computer must have Microsoft Windows Vista
or Microsoft Windows XP with Service Pack 2. You also need the .NET Framework 3.5.

■Note In this book, frequent mention is made to Windows Vista and Windows XP—the two client operating
systems that WPF supports. It’s easy to overlook that WPF actually runs on two related server versions of
Windows: Windows Server 2003 and Windows Server 2008.

In order to create a WPF 3.5 application (and open the sample projects included with this
book), you need Visual Studio 2008, which includes the .NET Framework 3.5.

There’s one other option. Instead of using any version of Visual Studio, you can use
Expression Blend—a graphically oriented design tool—to build and test WPF applications.
Overall, Expression Blend is intended for graphic designers who spend their time creating
serious eye candy, while Visual Studio is ideal for code-heavy application programmers. This
book assumes you’re using Visual Studio. If you’d like to learn more about Expression Blend,
you can consult one of many dedicated books on the subject.

Some of the examples in this book use ADO.NET data access code to query a SQL Server
database. To try out these examples, you can use the script file that’s included with the sample
code to install the database (on SQL Server version 2000 or later). Alternatively, you can use a
file-based database component that’s also included with the sample code. This component
retrieves the same data from an XML file, simulating the work of the full database component
without requiring a live instance of SQL Server.

Code Samples and URLs
It’s a good idea to check the Apress website or http://www.prosetech.com to download the
most recent up-to-date code samples. You’ll need to do this to test most of the more sophisti-
cated code examples described in this book because the less significant details are usually left
out. This book focuses on the most important sections so that you don’t need to wade through
needless extra pages to understand a concept.

To download the source code, surf to http://www.prosetech.com and look for the page for
this book. You’ll also find a list of links that are mentioned in this book, so you can find impor-
tant tools and examples without needless typing.

Feedback
This book has the ambitious goal of being the best tutorial and reference for programming
WPF. Toward that end, your comments and suggestions are extremely helpful. You can send
complaints, adulation, and everything in between directly to apress@prosetech.com. I can’t
solve your .NET problems or critique your code, but I will benefit from information about
what this book did right and wrong (or what it may have done in an utterly confusing way).

■INTRODUCTION xxix

9551CH00 2/8/08 1:40 PM Page xxix

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.prosetech.com
http://www.prosetech.com
mailto:apress@prosetech.com

9551CH00 2/8/08 1:41 PM Page xxx

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Introducing WPF

The Windows Presentation Foundation (WPF) is an entirely new graphical display system
for Windows. WPF is designed for .NET, influenced by modern display technologies such as
HTML and Flash, and hardware-accelerated. It’s also the most radical change to hit Windows
user interfaces since Windows 95.

In this chapter you’ll peer into the architecture of WPF. You’ll get your first look at how it
works, and you’ll see what it promises for the next generation of Windows applications.

Understanding Windows Graphics
It’s hard to appreciate how dramatic WPF is without realizing that Windows developers
have been using essentially the same display technology for more than 15 years. A standard
Windows application relies on two well-worn parts of the Windows operating system to create
its user interface:

• User32 provides the familiar Windows look and feel for elements such as windows,
buttons, text boxes, and so on.

• GDI/GDI+ provides drawing support for rendering shapes, text, and images at the cost
of additional complexity (and often lackluster performance).

Over the years, both technologies have been refined, and the APIs that developers use to
interact with them have changed dramatically. But whether you’re crafting an application with
.NET and Windows Forms, or lingering in the past with Visual Basic 6 or MFC-based C++ code,
behind the scenes the same parts of the Windows operating system are at work. Newer frame-
works simply deliver better wrappers for interacting with User32 and GDI/GDI+. They can
provide improvements in efficiency, reduce complexity, and add prebaked features so you
don’t have to code them yourself; but they can’t remove the fundamental limitations of a sys-
tem component that was designed more than a decade ago.

■Note The basic division of labor between User32 and GDI/GDI+ was introduced more than 15 years ago
and was well established in Windows 3.0. Of course, User32 was simply User at that point, because software
hadn’t yet entered the 32-bit world.

1

C H A P T E R 1

9551CH01 2/8/08 1:41 PM Page 1

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DirectX: The New Graphics Engine
Microsoft created one way around the limitations of the User32 and GDI/GDI+ libraries:
DirectX. DirectX began as a cobbled-together, error-prone toolkit for creating games on the
Windows platform. Its design mandate was speed, and so Microsoft worked closely with video
card vendors to give DirectX the hardware acceleration needed for complex textures, special
effects such as partial transparency, and three-dimensional graphics.

Over the years since it was first introduced (shortly after Windows 95), DirectX has matured.
It’s now an integral part of Windows, with support for all modern video cards. However, the pro-
gramming API for DirectX still reflects its roots as a game developer’s toolkit. Because of its raw
complexity, DirectX is almost never used in traditional types of Windows applications (such as
business software).

WPF changes all this. In WPF, the underlying graphics technology isn’t GDI/GDI+. Instead,
it’s DirectX. Remarkably, WPF applications use DirectX no matter what type of user interface
you create. That means that whether you’re designing complex three-dimensional graphics
(DirectX’s forté) or just drawing buttons and plain text, all the drawing work travels through
the DirectX pipeline. As a result, even the most mundane business applications can use rich
effects such as transparency and anti-aliasing. You also benefit from hardware acceleration,
which simply means DirectX hands off as much work as possible to the GPU (graphics pro-
cessing unit), which is the dedicated processor on the video card.

■Note DirectX is more efficient because it understands higher-level ingredients such as textures and gra-
dients, which can be rendered directly by the video card. GDI/GDI+ doesn’t, so it needs to convert them to
pixel-by-pixel instructions, which are rendered much more slowly by modern video cards.

One component that’s still in the picture (to a limited extent) is User32. That’s because
WPF still relies on User32 for certain services, such as handling and routing input and sorting
out which application owns which portion of screen real estate. However, all the drawing is
funneled through DirectX.

■Note This is the most significant change in WPF. WPF is not a wrapper for GDI/GDI+. Instead, it’s a
replacement—a separate layer that works through DirectX.

Hardware Acceleration and WPF
You’re probably aware that video cards differ in their support for specialized rendering fea-
tures and optimizations. When programming with DirectX, that’s a significant headache. With
WPF, it’s a much smaller concern, because WPF has the ability to perform everything it does
using software calculations rather than relying on built-in support from the video card.

CHAPTER 1 ■ INTRODUCING WPF2

9551CH01 2/8/08 1:41 PM Page 2

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note There’s one exception to WPF’s software support. Due to poor driver support, WPF only performs
anti-aliasing for 3-D drawings if you’re running your application on Windows Vista (and you have a native
Windows Vista driver for your video card). That means that if you draw three-dimensional shapes on a Win-
dows XP computer, you’ll end up with slightly jagged edges rather than nicely smoothed lines. Anti-aliasing
is always provided for 2-D drawings, regardless of the operating system and driver support.

Having a high-powered video card is not an absolute guarantee that you’ll get fast,
hardware-accelerated performance in WPF. Software also plays a significant role. For example,
WPF can’t provide hardware acceleration to video cards that are using out-of-date drivers. (If
you’re using an older video card, these out-of-date drivers are quite possibly the only ones
that were provided in the retail package.) WPF also provides better performance under the
Windows Vista operating system, where it can take advantage of the new Windows Vista
Display Driver Model (WDDM). WDDM offers several important enhancements beyond the
Windows XP Display Driver Model (XPDM). Most importantly, WDDM allows several GPU
operations to be scheduled at once, and it allows video card memory to be paged to normal
system memory if you exceed what’s available on the video card.

As a general rule of thumb, WPF offers some sort of hardware acceleration to all WDDM
(Windows Vista) drivers and to XPDM (Windows XP) drivers that were created after November
2004, which is when Microsoft released new driver development guidelines. Of course, the
level of support differs. When the WPF infrastructure first starts up, it evaluates your video
card and assigns it a rating from 0 to 2, as described in the sidebar “WPF Tiers.”

Part of the promise of WPF is that you don’t need to worry about the details and idiosyn-
crasies of specific hardware. WPF is intelligent enough to use hardware optimizations where
possible, but it has a software fallback for everything. So if you run a WPF application on a
computer with a legacy video card, the interface will still appear the way you designed it. Of
course, the software alternative may be much slower, so you’ll find that computers with older
video cards won’t run rich WPF applications very well, especially ones that incorporate com-
plex animations or other intense graphical effects. In practice, you might choose to scale down
complex effects in the user interface, depending on the level of hardware acceleration that’s
available in the client (as indicated by the RenderCapability.Tier property).

■Note The goal of WPF is to offload as much of the work as possible on the video card so that complex
graphics routines are render-bound (limited by the GPU) rather than processor-bound (limited by your com-
puter’s CPU). That way, you keep the CPU free for other work, you make the best use of your video card, and
you are able to take advantage of performance increases in newer video cards as they become available.

CHAPTER 1 ■ INTRODUCING WPF 3

9551CH01 2/8/08 1:41 PM Page 3

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF TIERS

Video cards differ significantly. When WPF assesses a video card, it considers a number of factors, including
the amount of RAM on the video card, support for pixel shaders (built-in routines that calculate per-pixel
effects such as transparency), and support for vertex shaders (built-in routines that calculate values at the
vertexes of a triangle, such as the shading of a 3-D object). Based on these details, it assigns a rendering
tier value.

WPF recognizes three rendering tiers. They are as follows:

• Rendering Tier 0. The video card will not provide any hardware acceleration. This corresponds to a
DirectX version level of less than 7.0.

• Rendering Tier 1. The video card can provide partial hardware acceleration. This corresponds to a
DirectX version level greater than 7.0 but less than 9.0.

• Rendering Tier 2. All features that can be hardware accelerated will be. This corresponds to a DirectX
version level greater than or equal to 9.0.

In some situations, you might want to examine the current rendering tier programmatically, so you can
selectively disable graphics-intensive features on lesser-powered cards. To do so, you need to use the static
Tier property of the System.Windows.Media.RenderCapability class. But there’s one trick. To extract the tier
value from the Tier property, you need to shift it 16 bits, as shown here:

int renderingTier = (RenderCapability.Tier >> 16);

if (renderingTier == 0)
{ ... }
else if (renderingTier == 1)
{ ... }

This design allows extensibility. In future versions of WPF, the other bits in the Tier property might be
used to store information about support for other features, thereby creating subtiers.

For more information about what WPF features are hardware-accelerated for tier 1 and tier 2, and for a
list of common tier 1 and tier 2 video cards, refer to http://msdn2.microsoft.com/en-gb/library/
ms742196.aspx.

WPF: A Higher-Level API
If the only thing WPF offered was hardware acceleration through DirectX, it would be a com-
pelling improvement, but not a revolutionary one. But WPF actually includes a basket of
high-level services designed for application programmers.

Here’s a list with some of the most dramatic changes that WPF ushers into the Windows
programming world:

• A web-like layout model. Rather than fix controls in place with specific coordinates,
WPF emphasizes flexible flow layout that arranges controls based on their content.
The result is a user interface that can adapt to show highly dynamic content or different
languages.

CHAPTER 1 ■ INTRODUCING WPF4

9551CH01 2/8/08 1:41 PM Page 4

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn2.microsoft.com/en-gb/library

• A rich drawing model. Rather than painting pixels, in WPF you deal with primitives—
basic shapes, blocks of text, and other graphical ingredients. You also have new features,
such as true transparent controls, the ability to stack multiple layers with different opaci-
ties, and native 3-D support.

■Note The 3-D support in WPF is not as mature as Direct3D or OpenGL. If you are planning to design an
application that makes heavy use of three-dimensional drawing (such as a real-time game), WPF probably
won’t provide the features and performance you need.

• A rich text model. After years of substandard text handling with feeble controls such as
the classic Label, WPF finally gives Windows applications the ability to display rich,
styled text anywhere in a user interface. You can even combine text with lists, floating
figures, and other user interface elements. And if you need to display large amounts of
text, you can use advanced document display features such as wrapping, columns, and
justification to improve readability.

• Animation as a first-class programming concept. Yes, you could use a timer to force a
form to repaint itself. But in WPF, animation is an intrinsic part of the framework. You
define animations with declarative tags, and WPF puts them into action automatically.

• Support for audio and video media. Previous user interface toolkits, such as Windows
Forms, were surprisingly limited when dealing with multimedia. But WPF includes sup-
port for playing any audio or video file supported by Windows Media Player, and it
allows you to play more than one media file at once. Even more impressively, it gives
you the tools to integrate video content into the rest of your user interface, allowing you
to pull off exotic tricks such as placing a video window on a spinning 3-D cube.

• Styles and templates. Styles allow you to standardize formatting and reuse it through-
out your application. Templates allow you to change the way any element is rendered,
even a core control such as the button. It’s never been easier to build modern skinned
interfaces.

• Commands. Most users realize that it doesn’t matter whether they trigger the Open
command through a menu or a toolbar; the end result is the same. Now that abstrac-
tion is available to your code, you can define an application command in one place and
link it to multiple controls.

• Declarative user interface. Although you can construct a WPF window with code,
Visual Studio takes a different approach. It serializes each window’s content to a set of
XML tags in a XAML document. The advantage is that your user interface is completely
separated from your code, and graphic designers can use professional tools to edit your
XAML files and refine your application’s front end. (XAML is short for Extensible Appli-
cation Markup Language, and it’s described in detail in Chapter 2.)

• Page-based applications. Using WPF, you can build a browser-like application that lets
you move through a collection of pages, complete with forward and back navigation
buttons. WPF handles the messy details, such as the page history. You can even deploy
your project as a browser-based application that runs right inside Internet Explorer.

CHAPTER 1 ■ INTRODUCING WPF 5

9551CH01 2/8/08 1:41 PM Page 5

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Resolution Independence
Traditional Windows applications are bound by certain assumptions about resolution. Devel-
opers usually assume a standard monitor resolution (such as 1024 by 768 pixels), design their
windows with that in mind, and try to ensure reasonable resizing behavior for smaller and
larger dimensions.

The problem is that the user interface in traditional Windows applications isn’t scalable.
As a result, if you use a high monitor resolution that crams pixels in more densely, your appli-
cation windows become smaller and more difficult to read. This is particularly a problem with
newer monitors that have high pixel densities and run at correspondingly high resolutions.
For example, it’s common to find consumer monitors (particularly on laptops) that have pixel
densities of 120 dpi or 144 dpi (dots per inch), rather than the more traditional 96 dpi. At their
native resolution, these displays pack the pixels in much more tightly, creating eye-squintingly
small controls and text.

Ideally, applications would use higher pixel densities to show more detail. For example,
a high-resolution monitor could display similarly sized toolbar icons but use the extra pixels
to render sharper graphics. That way you could keep the same basic layout but offer increased
clarity and detail. For a variety of reasons, this solution hasn’t been possible in the past.
Although you can resize graphical content that’s drawn with GDI/GDI+, User32 (which gener-
ates the visuals for common controls) doesn’t support true scaling.

WPF doesn’t suffer from this problem because it renders all user interface elements itself,
from simple shapes to common controls such as buttons. As a result, if you create a button
that’s 1 inch wide on your computer monitor, it can remain 1 inch wide on a high-resolution
monitor—WPF will simply render it in greater detail and with more pixels.

■Note Resolution independence also has advantages when printing the contents of a window, as you’ll
see in Chapter 20.

This is the big picture, but it glosses over a few details. Most importantly, you need to real-
ize that WPF bases its scaling on the system DPI setting, not the DPI of your physical display
device. This makes perfect sense—after all, if you’re displaying your application on a 100-inch
projector, you’re probably standing several feet back and expecting to see a jumbo-size ver-
sion of your windows. You don’t want WPF to suddenly scale down your application to
“normal” size. Similarly, if you’re using a laptop with a high-resolution display, you probably
expect to have slightly smaller windows—it’s the price you pay to fit all your information onto
a smaller screen. Furthermore, different users have different preferences. Some want richer
detail, while others prefer to cram in more content.

So how does WPF determine how big an application window should be? The short answer
is that WPF uses the system DPI setting when it calculates sizes. But to understand how this
really works, it helps to take a closer look at the WPF measurement system.

CHAPTER 1 ■ INTRODUCING WPF6

9551CH01 2/8/08 1:41 PM Page 6

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF Units
A WPF window and all the elements inside it are measured using device-independent units. A
single device-independent unit is defined as 1/96 of an inch. To understand what this means
in practice, you’ll need to consider an example.

Imagine that you create a small button in WPF that’s 96 by 96 units in size. If you’re using
the standard Windows DPI setting (96 dpi), each device-independent unit corresponds to one
real, physical pixel. That’s because WPF uses this calculation:

[Physical Unit Size] = [Device-Independent Unit Size] ✕ [System DPI]
= 1/96 inch ✕ 96 dpi
= 1 pixel

Essentially, WPF assumes it takes 96 pixels to make an inch because Windows tells it that
through the system DPI setting. However, the reality depends on your display device.

For example, consider a 20-inch LCD monitor with a maximum resolution of 1600 by
1200 pixels. Using a dash of Pythagoras, you can calculate the pixel density for this monitor,
as shown here:

= 100 dpi

In this case, the pixel density works out to 100 dpi, which is slightly higher than what Win-
dows assumes. As a result, on this monitor a 96-by-96-pixel button will be slightly smaller than
1 inch.

On the other hand, consider a 15-inch LCD monitor with a resolution of 1024 by 768.
Here, the pixel density drops to about 85 dpi, so the 96-by-96 pixel button appears slightly
larger than 1 inch.

In both these cases, if you reduce the screen size (say, by switching to 800 by 600 resolution),
the button (and every other screen element) will appear proportionately larger. That’s because
the system DPI setting remains at 96 dpi. In other words, Windows continues to assume it takes
96 pixels to make an inch, even though at a lower resolution it takes far fewer pixels.

■Tip As you no doubt know, LCD monitors are designed with a single resolution, which is called the native
resolution. If you lower the resolution, the monitor must use interpolation to fill in the extra pixels, which can
cause blurriness. To get the best display, it’s always best to use the native resolution. If you want larger win-
dows, buttons, and text, consider modifying the system DPI setting instead (as described next).

CHAPTER 1 ■ INTRODUCING WPF 7

9551CH01 2/8/08 1:41 PM Page 7

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

System DPI
So far, the WPF button example works exactly the same as any other user interface element in
any other type of Windows application. The difference is the result if you change the system
DPI setting. In the previous generation of Windows, this feature was sometimes called large
fonts. That’s because the system DPI affects the system font size, but often leaves other details
unchanged.

■Note Many Windows applications don’t fully support higher DPI settings. At worst, increasing the system
DPI can result in windows that have some content that’s scaled up, and other content that isn’t, which can
lead to obscured content and even unusable windows.

This is where WPF is different. WPF respects the system DPI setting natively and effort-
lessly. For example, if you change the system DPI setting to 120 dpi (a common choice for
users of large high-resolution screens), WPF assumes that it needs 120 pixels to fill an inch of
space. WPF uses the following calculation to figure out how it should translate its logical units
to physical device pixels:

[Physical Unit Size] = [Device-Independent Unit Size] ✕ [System DPI]
= 1/96 inch ✕ 120 dpi
= 1.25 pixels

In other words, when you set the system DPI to 120 dpi, the WPF rendering engine
assumes one device-independent unit equals 1.25 pixels. If you show a 96-by-96 button, the
physical size will actually be 120 by 120 pixels (because 96 ✕ 1.25 = 120). This is the result you
expect—a button that’s 1 inch on a standard monitor remains 1 inch in size on a monitor with
a higher pixel density.

This automatic scaling wouldn’t help much if it only applied to buttons. But WPF uses
device-independent units for everything it displays, including shapes, controls, text, and any
other ingredient you put in a window. As a result, you can change the system DPI to whatever
you want, and WPF will adjust the size of your application seamlessly.

■Note Depending on the system DPI, the calculated pixel size may be a fractional value. You might assume
that WPF simply rounds off your measurements to the nearest pixel. (In fact, WPF supports a pixel-snapping
feature that does exactly this, and you’ll learn how to enable it for specific bits of content in Chapter 13.)
However, by default, WPF does something different. If an edge of an element falls between pixels, it uses
anti-aliasing to blend that edge into the adjacent pixels. This might seem like an odd choice, but it actually
makes a fair bit of sense. Your controls won’t necessarily have straight, clearly defined edges if you use
custom-drawn graphics to skin them; so some level of anti-aliasing is already necessary.

CHAPTER 1 ■ INTRODUCING WPF8

9551CH01 2/8/08 1:41 PM Page 8

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The steps for adjusting the system DPI depend on the operating system. In Windows XP,
you follow these steps:

1. Right-click your desktop and choose Display.

2. Choose the Settings tab and click Advanced.

3. On the General tab, choose Normal Size (96 dpi), or Large Size (120 dpi). These are the
two recommended options for Windows XP, because custom DPI settings are less likely
to be supported by older programs. To try out a custom DPI setting, choose Custom
Setting. You can then specify a specific percentage value. (For example, 175% scales the
standard 96 dpi to 168 dpi.)

Here’s what to do to change system DPI in Windows Vista:

1. Right-click your desktop and choose Personalize.

2. In the list of links on the left, choose Adjust Font Size (DPI).

3. Choose between 96 or 120 dpi. Or click Custom DPI to use a custom DPI setting. You
can then specify a percentage value, as shown in Figure 1-1. (For example, 175% scales
the standard 96 dpi to 168 dpi.) In addition, when using a custom DPI setting, you have
an option named Use Windows XP Style DPI Scaling, which is described in the sidebar
“DPI Scaling with Windows Vista.”

Figure 1-1. Changing the system DPI

CHAPTER 1 ■ INTRODUCING WPF 9

9551CH01 2/8/08 1:41 PM Page 9

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DPI SCALING WITH WINDOWS VISTA

Because older applications are notoriously lacking in their support for high DPI settings, Windows Vista uses a
new technique: bitmap scaling.

If you run an application that doesn’t appear to support high DPI settings, Windows Vista resizes the
contents of the window to the desired DPI, just as if it were an image. The advantage is that the application
still believes it’s running at the standard 96 dpi. Windows seamlessly translates input (such as mouse clicks)
and routes them to the right place in the application’s “real” coordinate system.

The scaling algorithm that Windows Vista uses is a fairly good one—it respects pixel boundaries
to avoid blurry edges and uses the video card hardware where possible to increase speed—but it
inevitably leads to a fuzzier display. It also has a serious limitation in that Windows can’t recognize older
applications that do support high DPI settings. That’s because applications need to include a manifest or call
SetProcessDPIAware (in User32) to advertise their high DPI support. Although WPF applications handle this
step correctly, applications prior to Windows Vista won’t use either approach and will be stuck with the less
than ideal bitmap scaling.

There are two possible solutions. If you have a few specific applications that support high DPI settings, but
don’t indicate it, you can configure that detail manually. To do so, right-click the shortcut that starts the applica-
tion (in the Start menu) and choose Properties. In the Compatibility tab, switch on the option named Disable
Display Scaling on High DPI Settings. If you have a lot of applications to configure, this gets tiring fast.

The other possible solution is to disable bitmap scaling altogether. To do so, choose the Use Windows XP
Style DPI Scaling option in the Custom DPI Setting dialog box shown in Figure 1-1. The only limitation of this
approach is that there may be some applications that won’t display properly (and possibly won’t be usable)
at high DPI settings. By default, Use Windows XP Style DPI Scaling is checked for DPI sizes of 120 or less but
unchecked for DPI sizes that are greater.

Bitmap and Vector Graphics
When you work with ordinary controls, you can take WPF’s resolution independence for
granted. WPF takes care of making sure that everything has the right size automatically. How-
ever, if you plan to incorporate images into your application you can’t be quite as casual. For
example, in traditional Windows applications, developers use tiny bitmaps for toolbar com-
mands. In a WPF application, this approach is not ideal because the bitmap may display
artifacts (becoming blurry) as it’s scaled up or down according to the system DPI. Instead,
when designing a WPF user interface even the smallest icon is generally implemented as a
vector graphic. Vector graphics are defined as a set of shapes, and as such they can be easily
scaled to any size.

■Note Of course, drawing a vector graphic takes more time than painting a basic bitmap, but WPF includes
optimizations that are designed to lessen the overhead to ensure that drawing performance is reasonable for
any business application and most consumer-oriented ones as well.

It’s difficult to overestimate the importance of resolution independence. At first glance, it
seems like a straightforward, elegant solution to a time-honored problem (which it is). How-
ever, in order to design interfaces that are fully scalable, developers need to embrace a new
way of thinking.

CHAPTER 1 ■ INTRODUCING WPF10

9551CH01 2/8/08 1:41 PM Page 10

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Evolution of WPF
Although WPF is a relatively new technology, it already exists in two versions:

• WPF 3.0. The first version of WPF was released with two other new technologies:
Windows Communication Foundation (WCF) and Windows Workflow Foundation
(WF). Together, these three technologies were called the .NET Framework 3.0 (even
though the core bits of .NET weren’t changed).

• WPF 3.5. A year later, a new version of WPF was released as part of the .NET Framework
3.5. The new features in WPF are mostly minor refinements. Some of these bug fixes
and performance improvements are available to .NET Framework 3.0 applications
through the .NET Framework 3.0 Service Pack 1.

From a developer standpoint, the most significant difference between WPF 3.0 and 3.5 is
design-time support. The .NET Framework 3.0 was released without a corresponding version
of Visual Studio. Developers could get basic support for Visual Studio 2005 by installing a free
Community Technology Preview (CTP). Although these extensions made it possible to create
and develop WPF applications in Visual Studio 2005, they didn’t provide a drag-and-drop
designer for WPF windows.

The .NET Framework 3.5 was released in conjunction with Visual Studio 2008, and as a
result, it offers much better design-time support for building WPF applications. This book
assumes you are using WPF 3.5 and Visual Studio 2008. However, if you’re using WPF 3.0, virtu-
ally all of the same concepts apply.

New Features in WPF 3.5
If you’ve programmed with the first version of WPF, you might be interested in tracking down
the changes. Aside from bug fixes, performance tune-ups, and better design support, WPF 3.5
introduces the following enhancements (listed in order of their appearance in this book):

• Firefox support for XBAPs. It’s now possible to run WPF browser-hosted applications
(known as XBAPs) in Firefox as well as in Internet Explorer. Chapter 9 has more.

• Data binding support for LINQ. LINQ is a set of language extensions that allow develop-
ers to write queries. These queries can pull data out of various data sources, including
in-memory collections, XML files, and databases, all without requiring a line of low-level
code. (To learn more about LINQ, you can refer to http://msdn.microsoft.com/data/
ref/linq or a dedicated book on the subject.) WPF now fully supports using LINQ in data
binding scenarios, such as the ones you’ll explore in Chapter 16.

• Data binding support for IDataErrorInfo. The IDataErrorInfo interface is a key linch-
pin for business developers who want to build rich data objects with built-in validation.
Now, the data binding infrastructure can catch these validation errors and display them
in the user interface.

• Support for placing interactive controls (such as buttons) inside a RichTextBox con-
trol. This feature previously required an obscure workaround. It now works through a
simple property that’s described in Chapter 19.

CHAPTER 1 ■ INTRODUCING WPF 11

9551CH01 2/8/08 1:41 PM Page 11

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn.microsoft.com/data

• Support for placing 2-D elements on 3-D surfaces. This feature previously required a
separate download. Now, it’s incorporated into the framework, along with better sup-
port for 3-D objects that can raise mouse and keyboard events. You’ll learn to use these
features in Chapter 23.

• An add-in model. The add-in model allows an application to host third-party compo-
nents in a limited security context. Technically, this feature isn’t WPF-specific, because
it can be used in any .NET 3.5 application. You’ll learn how it works with WPF in
Chapter 26.

Multitargeting
Previous versions of Visual Studio were tightly coupled to specific versions of .NET. You used
Visual Studio .NET to create .NET 1.0 applications, Visual Studio .NET 2003 to create .NET 1.1
applications, and Visual Studio 2005 to create .NET 2.0 applications. Visual Studio 2008 par-
tially removes this restriction. It allows you to create applications that are specifically designed
to work with .NET 2.0, .NET 3.0, or .NET 3.5.

Although it’s obviously not possible to create a WPF application with .NET 2.0, both
.NET 3.0 and .NET 3.5 have WPF support. You may choose to target .NET 3.0 for slightly
broader compatibility (because .NET 3.0 applications can run on both the .NET 3.0 and
.NET 3.5 runtimes). Or, you may choose to target .NET 3.5 to get access to newer features in
WPF or in the .NET platform itself. (One common reason for targeting .NET 3.5 is to support
LINQ, the set of technologies that allow .NET languages to access different data sources using
a tightly integrated query syntax.)

When you create a new project in Visual Studio (by choosing File ➤ New ➤ Project), you
can choose the version of the .NET Framework that you’re targeting from a drop-down list in
the top-right corner of the New Project dialog box (see Figure 1-2). You can also change the
version you’re targeting at any point afterward by double-clicking the Properties node in the
Solution Explorer and changing the selection in the Target Framework list.

To really understand how the Visual Studio multitargeting system works, you need to
know a bit more about how .NET 3.5 is structured. Essentially, .NET 3.5 is built out of three
separate pieces—a copy of the original .NET 2.0 assemblies, a copy of the assemblies that
were added in .NET 3.0 (for WPF, WCF, and WF), and the new assemblies that were added in
.NET 3.5 (for LINQ and a number of miscellaneous features). However, when you create and
test an application in Visual Studio, you are always using the .NET 3.5 assemblies. When you
choose to target an earlier version of .NET, Visual Studio simply uses a subset of the .NET 3.5
assemblies.

For example, when you choose to target .NET 3.0, you effectively configure Visual Studio
to use a portion of .NET 3.5—just those assemblies that were available in .NET 2.0 and
.NET 3.0. There’s a potential stumbling block in this system. Although these assemblies are
treated as though they haven’t changed in .NET 3.5, they aren’t completely identical to the
.NET 2.0 versions. For example, they may include performance tweaks, bug fixes, and (very
rarely) a new public member in a class. For that reason, if you build an assembly that targets
an earlier version of .NET, you should still test it with that version of .NET to make absolutely
sure there are no backward compatibility quirks.

CHAPTER 1 ■ INTRODUCING WPF12

9551CH01 2/8/08 1:41 PM Page 12

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 1-2. Choosing the target version of the .NET Framework

■Note Visual Studio 2008 doesn’t provide a way to build applications that specifically target .NET 3.0 with
SP1. Thus, if there’s an added feature in the .NET Framework 3.0 Service Pack 1, you won’t be able to use it
(unless you compile your project by hand at the command line). The only solution is to step up all the way to
.NET 3.5.

Windows Forms Lives On
WPF is the platform for the future of Windows user interface development. However, it won’t
displace Windows Forms overnight. Windows Forms is in many ways the culmination of the
display technology built on GDI/GDI+ and User32. It’s more mature than WPF and still
includes features that haven’t made their way into the WPF toolkit (such as the WebBrowser
control, the DataGridView control, and the HelpProvider component).

So which platform should you choose when you begin designing a new Windows applica-
tion? If you’re starting from the ground up, WPF is an ideal choice and it offers the best prospects
for future enhancements and longevity. Similarly, if you need one of the features that WPF pro-
vides and Windows Forms does not—such as 3-D drawing or page-based applications—it makes
sense to make the shift. On the other hand, if you have a considerable investment in a Windows
Forms–based business application, there’s no need to recode your application for WPF. The Win-
dows Forms platform will continue to be supported for years to come.

CHAPTER 1 ■ INTRODUCING WPF 13

9551CH01 2/8/08 1:41 PM Page 13

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Perhaps the best part of the story is the fact that Microsoft has invested considerable
effort in building an interoperability layer between WPF and Windows Forms (which plays a
similar role to the interoperability layer that allows .NET applications to continue to use
legacy COM components). In Chapter 25, you’ll learn how to use this support to host Windows
Forms controls inside a WPF application, and vice versa. WPF offers similarly robust support
for integrating with older Win32-style applications.

DirectX Also Lives On
There’s one area where WPF isn’t a good fit: when creating applications with demanding real-
time graphics, such as complex physics-based simulators or cutting-edge action games. If you
want the best possible video performance for these types of applications, you’ll need to pro-
gram at a much lower level and use raw DirectX. You can download the managed .NET
libraries for DirectX programming at http://msdn.microsoft.com/directx.

Silverlight
Like the .NET Framework itself, WPF is a Windows-centric technology. That means that
WPF applications can only be used on computers running the Windows operating system
(specifically, Windows XP or Windows Vista). Browser-based WPF applications are similarly
limited—they can run only on Windows computers, although they support both the Internet
Explorer and Firefox browsers.

These restrictions won’t change—after all, part of Microsoft’s goal with WPF is to take
advantage of the rich capabilities of Windows computers and its investment in technologies
such as DirectX. However, there is a separate technology named Silverlight that’s designed to
take a subset of the WPF platform, host it in any modern browser using a plug-in (including
Firefox, Opera, and Safari), and open it up to other operating systems (such as Linux and
Mac OS). This is an ambitious project that’s attracted considerable developer interest.

To make matters more interesting, Silverlight currently exists in two versions:

• Silverlight 1.0. This first release includes 2-D drawing features, animation, and media
playback features that are similar to those in WPF. However, Silverlight 1.0 has no sup-
port for the .NET Framework or the C# and Visual Basic languages—instead, you must
use JavaScript code.

• Silverlight 2.0. This second release adds a pared-down version of the .NET Framework,
complete with a miniature CLR that’s hosted by the browser plug-in and a small subset
of essential .NET Framework classes. Because Silverlight 2.0 allows you to write code in
a .NET language such as C# and Visual Basic, it’s a far more compelling technology than
Silverlight 1.0. However, at the time of this writing it’s still in beta.

Although both Silverlight 1.0 and Silverlight 2.0 are based on WPF and incorporate many
of its conventions (such as the XAML markup you’ll learn about in the next chapter), they
leave out certain feature areas. For example, neither version supports true three-dimensional
drawing or rich document display. New features may appear in future Silverlight releases, but
the more complex ones might never make the leap.

The ultimate goal of Silverlight is to provide a powerful developer-oriented competitor for
Adobe Flash. However, Flash has a key advantage—it’s used throughout the Web, and the Flash
plug-in is installed just about everywhere. In order to entice developers to switch to a new,

CHAPTER 1 ■ INTRODUCING WPF14

9551CH01 2/8/08 1:41 PM Page 14

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn.microsoft.com/directx

less-established technology, Microsoft will need to make sure Silverlight has next-generation
features, rock-solid compatibility, and unrivaled design support.

■Note Although the Silverlight programming model is best understood as a dramatically scaled-down ver-
sion of WPF, it’s probably more useful to web developers than rich client developers. That’s because web
developers can use Silverlight content to enhance ordinary websites or web applications built with ASP.NET.
In other words, Silverlight has two potential audiences: web developers who are seeking to create more
interactive applications and Windows developers who are seeking to get a broader reach for their applica-
tions. To learn more about Silverlight, refer to a dedicated book such as Pro Silverlight 2.0, or surf to
http://silverlight.net.

The Architecture of WPF
WPF uses a multilayered architecture. At the top, your application interacts with a high-level
set of services that are completely written in managed C# code. The actual work of translating
.NET objects into Direct3D textures and triangles happens behind the scenes, using a lower-
level unmanaged component called milcore.dll.

■Note milcore.dll is implemented in unmanaged code because it needs tight integration with Direct3D and
because it’s extremely performance-sensitive.

Figure 1-3 shows the layers at work in a WPF application.

Figure 1-3. The architecture of WPF

CHAPTER 1 ■ INTRODUCING WPF 15

9551CH01 2/8/08 1:41 PM Page 15

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://silverlight.net

Figure 1-3 includes these key components:

• PresentationFramework.dll holds the top-level WPF types, including those that repre-
sent windows, panels, and other types of controls. It also implements higher-level
programming abstractions such as styles. Most of the classes you’ll use directly come
from this assembly.

• PresentationCore.dll holds base types, such as UIElement and Visual, from which all
shapes and controls derive. If you don’t need the full window and control abstraction
layer, you can drop down to this level and still take advantage of WPF’s rendering
engine.

• WindowsBase.dll holds even more basic ingredients that have the potential to be
reused outside of WPF, such as DispatcherObject and DependencyObject, which intro-
duces the plumbing for dependency properties (a topic you’ll explore in detail in
Chapter 6).

• milcore.dll is the core of the WPF rendering system and the foundation of the Media
Integration Layer (MIL). Its composition engine translates visual elements into the tri-
angle and textures that Direct3D expects. Although milcore.dll is considered a part of
WPF, it’s also an essential system component for Windows Vista. In fact, the Desktop
Window Manager (DWM) in Windows Vista uses milcore.dll to render the desktop.

■Note milcore.dll is sometimes referred to as the engine for “managed graphics.” Much as the common
language runtime (CLR) manages the lifetime of a .NET application, milcore.dll manages the display state.
And just as the CLR saves you from worrying about releasing objects and reclaiming memory, milcore.dll
saves you from thinking about invalidating and repainting a window. You simply create the objects with the
content you want to show, and milcore.dll paints the appropriate portions of the window as it is dragged
around, covered and uncovered, minimized and restored, and so on.

• WindowsCodecs.dll is a low-level API that provides imaging support (for example, pro-
cessing, displaying, and scaling bitmaps and JPEGs).

• Direct3D is the low-level API through which all the graphics in a WPF are rendered.

• User32 is used to determine what program gets what real estate. As a result, it’s still
involved in WPF, but it plays no part in rendering common controls.

The most important fact that you should realize is the Direct3D renders all the drawing in
WPF. It doesn’t matter whether you have a modest video card or a much more powerful one,
whether you’re using basic controls or drawing more complex content, or whether you’re run-
ning your application on Windows XP or Windows Vista. Even two-dimensional shapes and
ordinary text are transformed into triangles and passed through the 3-D pipeline. There is no
fallback to GDI+ or User32.

CHAPTER 1 ■ INTRODUCING WPF16

9551CH01 2/8/08 1:41 PM Page 16

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Class Hierarchy
Throughout this book, you’ll spend most of your time exploring the WPF namespaces and
classes. But before you begin, it’s helpful to take a first look at the hierarchy of classes that
leads to the basic set of WPF controls.

Figure 1-4 shows a basic overview with some of the key branches of the class hierarchy. As
you continue through this book, you’ll dig into these classes (and their relatives) in more detail.

Figure 1-4. The fundamental classes of WPF

The following sections describe the core classes in this diagram. Many of these classes
lead to whole branches of elements (such as shapes, panels, and controls).

■Note The core WPF namespaces begin with System.Windows (for example, System.Windows,
System.Windows.Controls, and System.Windows.Media). The sole exception is namespaces that begin
with System.Windows.Forms, which are part of the Windows Forms toolkit.

CHAPTER 1 ■ INTRODUCING WPF 17

9551CH01 2/8/08 1:41 PM Page 17

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

System.Threading.DispatcherObject
WPF applications use the familiar single-thread affinity (STA) model, which means the entire
user interface is owned by a single thread. It’s not safe to interact with user interface elements
from another thread. To facilitate this model, each WPF application is governed by a dis-
patcher that coordinates messages (which result from keyboard input, mouse movements,
and framework processes such as layout). By deriving from DispatcherObject, every element
in your user interface can verify whether code is running on the correct thread and access the
dispatcher to marshal code to the user interface thread. You’ll learn more about the WPF
threading model in Chapter 3.

System.Windows.DependencyObject
In WPF, the central way of interacting with onscreen elements is through properties. Early on
in the design cycle, the WPF architects decided to create a more powerful property model that
baked in features such as change notification, inherited default values, and more economical
property storage. The ultimate result is the dependency property feature, which you’ll explore
in Chapter 6. By deriving from DependencyObject, WPF classes get support for dependency
properties.

System.Windows.Media.Visual
Every element that appears in a WPF is, at heart, a Visual. You can think of the Visual class as a
single drawing object, which encapsulates drawing instructions, additional details about how
the drawing should be performed (such as clipping, opacity, and transformation settings), and
basic functionality (such as hit testing). The Visual class also provides the link between the
managed WPF libraries and the milcore.dll that renders your display. Any class that derives
from Visual has the ability to be displayed on a window. If you prefer to create your user inter-
face using a lightweight API that doesn’t have the higher-level framework features of WPF, you
can program directly with Visual objects, as described in Chapter 14.

System.Windows.UIElement
UIElement adds support for WPF essentials such as layout, input, focus, and events (which the
WPF team refers to by the acronym LIFE). For example, it’s here that the two-step measure
and arrange layout process is defined, which you’ll learn about in Chapter 4. It’s also here that
raw mouse clicks and key presses are transformed to more useful events such as MouseEnter.
As with properties, WPF implements an enhanced event-passing system called routed events.
You’ll learn how it works in Chapter 6. Finally, UIElement adds supports for commands
(Chapter 10).

System.Windows.FrameworkElement
FrameworkElement is the final stop in the core WPF inheritance tree. It implements some of
the members that are merely defined by UIElement. For example, UIElement sets the founda-
tion for the WPF layout system, but FrameworkElement includes the key properties (such as
HorizontalAlignment and Margin) that support it. UIElement also adds support for data bind-
ing, animation, and styles, all of which are core features.

CHAPTER 1 ■ INTRODUCING WPF18

9551CH01 2/8/08 1:41 PM Page 18

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

System.Windows.Shapes.Shape
Basic shapes classes, such as Rectangle, Polygon, Ellipse, Line, and Path, derive from this class.
These shapes can be used alongside more traditional Windows widgets, such as buttons and
text boxes. You’ll start building shapes in Chapter 13.

System.Windows.Controls.Control
A control is an element that can interact with the user. It obviously includes classes such as
TextBox, Button, and ListBox. The Control class adds additional properties for setting the font
and the foreground and background colors. But the most interesting detail it provides is tem-
plate support, which allows you to replace the standard appearance of a control with your
own stylish drawing. You’ll learn about control templates in Chapter 15.

■Note In Windows Forms programming, every visual item in a form is referred to as a control. In WPF,
this isn’t the case. Visual items are called elements, and only some elements are actually controls (those
that can receive focus and interact with the user). To make this system even more confusing, many
elements are defined in the System.Windows.Controls namespace, even though they don’t derive from
System.Windows.Controls.Control and aren’t considered controls. One example is the Panel class.

System.Windows.Controls.ContentControl
This is the base class for all controls that have a single piece of content. This includes every-
thing from the humble Label to the Window. The most impressive part of this model (which is
described in more detail in Chapter 5) is the fact that this single piece of content can be any-
thing from an ordinary string to a layout panel with a combination of other shapes and
controls.

System.Windows.Controls.ItemsControl
This is the base class for all controls that show a collection of items, such as the ListBox and
TreeView. List controls are remarkably flexible—for example, using the features that are built
into the ItemsControl class you can transform the lowly ListBox into a list of radio buttons, a
list of check boxes, a tiled display of images, or a combination of completely different ele-
ments that you’ve chosen. In fact, in WPF menus, toolbars, and status bars are actually
specialized lists, and the classes that implement them all derive from ItemsControl. You’ll start
using lists in Chapter 16 when you consider data binding. You’ll learn to enhance them in
Chapter 17, and you’ll consider the most specialized list controls in Chapter 18.

System.Windows.Controls.Panel
This is the base class for all layout containers—elements that can contain one or more chil-
dren and arrange them according to specific layout rules. These containers are the foundation
of the WPF layout system, and using them is the key to arranging your content in the most
attractive, flexible way possible. Chapter 4 explores the WPF layout system in more detail.

CHAPTER 1 ■ INTRODUCING WPF 19

9551CH01 2/8/08 1:41 PM Page 19

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Last Word
In this chapter, you took your first look at WPF and the promise it holds. You considered the
underlying architecture and briefly considered the core classes.

WPF is the beginning of the future of Windows development. In time, it will become a
system like User32 and GDI/GDI+, on top of which more enhancements and higher-level
features are added. Eventually, WPF will allow you to design applications that would be impos-
sible (or at least thoroughly impractical) using Windows Forms.

Clearly, WPF introduces many dramatic changes. However, there are five key principles
that immediately stand out because they are so different from previous Windows user inter-
face toolkits such as Windows Forms. These principles are the following:

• Hardware acceleration. All WPF drawing is performed through DirectX, which allows it
to take advantage of the latest in modern video cards.

• Resolution independence. WPF is flexible enough to scale up or down to suit your
monitor and display preferences, depending on the system DPI setting.

• No fixed control appearance. In traditional Windows development, there’s a wide chasm
between controls that can be tailored to suit your needs (which are known as owner-
drawn controls) and those that are rendered by the operating system and essentially fixed
in appearance. In WPF, everything from a basic Rectangle to a standard Button or more
complex Toolbar is drawn using the same rendering engine and completely customizable.
For this reason, WPF controls are often called lookless controls—they define the function-
ality of a control, but they don’t have a hard-wired “look.”

• Declarative user interfaces. In the next chapter, you’ll consider XAML, the markup
standard you use to define WPF user interfaces. XAML allows you to build a window
without using code. Impressively, XAML doesn’t limit you to fixed, unchanging user
interfaces. You can use tools such as data binding and triggers to automate basic user
interface behavior (such as text boxes that update themselves when you page through a
record source, or labels that glow when you hover overtop with the mouse), all without
writing a single line of C#.

• Object-based drawing. Even if you plan to work at the lower-level visual layer (rather
than the higher-level element layer), you won’t work in terms of painting and pixels.
Instead, you’ll create shape objects and let WPF maintain the display in the most opti-
mized manner possible.

You’ll see these principles at work throughout this book. But before you go any further,
it’s time to learn about a complementary standard. The next chapter introduces XAML, the
markup language used to define WPF user interfaces.

CHAPTER 1 ■ INTRODUCING WPF20

9551CH01 2/8/08 1:41 PM Page 20

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

XAML

XAML (short for Extensible Application Markup Language, and pronounced “zammel”) is a
markup language used to instantiate .NET objects. Although XAML is a technology that can be
applied to many different problem domains, its primary role in life is to construct WPF user
interfaces. In other words, XAML documents define the arrangement of panels, buttons, and
controls that make up the windows in a WPF application.

It’s unlikely that you’ll write XAML by hand. Instead, you’ll use a tool that generates the
XAML you need. If you’re a graphic designer, that tool is likely to be a graphical design and
drawing program such as Microsoft Expression Blend. If you’re a developer, you’ll probably
start with Visual Studio. Because both tools are equally at home with XAML, you can create a
basic user interface with Visual Studio and then hand it off to a crack design team that can
polish it up with custom graphics in Expression Blend. In fact, this ability to integrate the
workflow between developers and designers is one of the key reasons that Microsoft created
XAML.

In this chapter, you’ll get a detailed introduction to XAML. You’ll consider its purpose, its
overall architecture, and its syntax. Once you understand the broad rules of XAML, you’ll know
what is and isn’t possible in a WPF user interface—and how to make changes by hand when
it’s necessary. More importantly, by exploring the tags in a WPF XAML document you can learn
a bit about the object model that underpins WPF user interfaces and get ready for the deeper
exploration to come.

CREATING XAML WITH VISUAL STUDIO

In this chapter, you’ll take a look at all the details of XAML markup. Of course, when you’re designing an
application, you won’t write all your XAML by hand. Instead, you’ll use a tool such as Visual Studio to drag
and drop your windows into existence. Based on that, you might wonder whether it’s worth spending so
much time studying the syntax of XAML.

The answer is a resounding yes. Understanding XAML is critical to WPF application design. WPF
applications are quite different from Windows Forms applications in this respect—with Windows Forms
applications, you could safely ignore the automatically generated UI code, while in WPF applications the
XAML often takes center stage. Understanding XAML will help you learn key WPF concepts, such as
attached properties (in this chapter), layout (Chapter 4), the content model (Chapter 5), routed events
(Chapter 6), and so on. More important, there is a whole host of tasks that are only possible—or are far
easier to accomplish—with handwritten XAML. They include the following:

21

C H A P T E R 2

9551CH02 2/8/08 1:42 PM Page 21

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Wiring up event handlers. Attaching event handlers in the most common places—for example, to the
Click event of a Button—is easy to do in Visual Studio. However, once you understand how events are
wired up in XAML, you’ll be able create more sophisticated connections. For example, you can set up
an event handler that responds to the Click event of every button in a window. Chapter 6 has more
about this technique.

• Defining resources. Resources are objects that you define once in your XAML and in a special section
of your XAML and then reuse in various places in your markup. Resources allow you to centralize and
standardize formatting, and create nonvisual objects such as templates and animations. Chapter 11
shows how to create and use resources.

• Defining control templates. WPF controls are designed to be lookless, which means you can substi-
tute your custom visuals in place of the standard appearance. To do so, you must create your own
control template, which is nothing more than a block of XAML markup. Chapter 15 tackles control
templates.

• Writing data binding expressions. Data binding allows you to extract data from an object and display
it in a linked element. To set up this relationship and configure how it works, you must add a data bind-
ing expression to your XAML markup. Chapter 16 introduces data binding.

• Defining animations. Animations are a common ingredient in XAML applications. Usually, they’re
defined as resources, constructed using XAML markup, and then linked to other controls (or triggered
through code). Currently, Visual Studio has no design-time support for crafting animations. Chapter 21
delves into animation.

Most WPF developers use a combination of techniques, laying out some of their user interface with a
design tool (Visual Studio or Expression Blend) and then fine-tuning it by editing the XAML markup by hand.
However, you’ll probably find that it’s easiest to write all your XAML by hand until you learn about layout con-
tainers in Chapter 4. That’s because you need to use a layout container to properly arrange multiple controls
in a window.

Understanding XAML
Developers realized long ago that the most efficient way to tackle complex, graphically rich
applications is to separate the graphical portion from the underlying code. That way, artists
can own the graphics and developers can own the code. Both pieces can be designed and
refined separately, without any versioning headaches.

Graphical User Interfaces Before WPF
With traditional display technologies, there’s no easy way to separate the graphical content
from the code. The key problem with Windows Forms application is that every form you create
is defined entirely in C# code. As you drop controls onto the design surface and configure
them, Visual Studio quietly adjusts the code in the corresponding form class. Sadly, graphic
designers don’t have any tools that can work with C# code.

Instead, artists are forced to take their content and export it to a bitmap format. These
bitmaps can then be used to skin windows, buttons, and other controls. This approach works

CHAPTER 2 ■ XAML22

9551CH02 2/8/08 1:42 PM Page 22

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

well for straightforward interfaces that don’t change much over time, but it’s extremely limit-
ing in other scenarios. Some of its problems include the following:

• Each graphical element (background, button, and so on) needs to be exported as a sep-
arate bitmap. That limits the ability to combine bitmaps and use dynamic effects such
as antialiasing, transparency, and shadows.

• A fair bit of user interface logic needs to be embedded in the code by the developer.
This includes button sizes, positioning, mouse-over effects, and animations. The
graphic designer can’t control any of these details.

• There’s no intrinsic connection between the different graphical elements, so it’s easy to
end up with an unmatched set of images. Tracking all these items adds complexity.

• Bitmaps can’t be resized without compromising their quality. For that reason, a bitmap-
based user interface is resolution-dependent. That means it can’t accommodate large
monitors and high-resolution displays, which is a major violation of the WPF design
philosophy.

If you’ve ever been through the process of designing a Windows Forms application with
custom graphics in a team setting, you’ve put up with a lot of frustration. Even if the interface is
designed from scratch by a graphic designer, you’ll need to re-create it with C# code. Usually, the
graphic designer will simply prepare a mock-up that you need to translate painstakingly into
your application.

WPF solves this problem with XAML. When designing a WPF application in Visual Studio,
the window you’re designing isn’t translated into code. Instead, it’s serialized into a set of
XAML tags. When you run the application, these tags are used to generate the objects that
compose the user interface.

■Note It’s important to understand that WPF doesn’t require XAML. There’s no reason Visual Studio couldn’t
use the Windows Forms approach and create code statements that construct your WPF windows. But if it did,
your window would be locked into the Visual Studio environment and available to programmers only.

In other words, WPF doesn’t require XAML. However, XAML opens up worlds of possibili-
ties for collaboration, because other design tools understand the XAML format. For example,
a savvy designer can use a tool such as Expression Design to fine-tune the graphics in your
WPF application or a tool such as Expression Blend to build sophisticated animations for
it. After you’ve finished this chapter, you may want to read a Microsoft white paper at
http://windowsclient.net/wpf/white-papers/thenewiteration.aspx that reviews XAML and
explores some of the ways the developers and designers can collaborate on a WPF application.

■Tip XAML plays the same role for Windows applications as control tags do for ASP.NET web applications.
The difference is that the ASP.NET tagging syntax is designed to look like HTML, so designers can craft web
pages using ordinary web design applications such as FrontPage and Dreamweaver. As with WPF, the actual
code for an ASP.NET web page is usually placed in a separate file to facilitate this design.

CHAPTER 2 ■ XAML 23

9551CH02 2/8/08 1:42 PM Page 23

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://windowsclient.net/wpf/white-papers/thenewiteration.aspx

The Variants of XAML
There are actually several different ways people use the term XAML. So far, we’ve used it to
refer to the entire language of XAML, which is an all-purpose XML-based syntax for represent-
ing a tree of .NET objects. (These objects could be buttons and text boxes in a window, or
custom classes you’ve defined. In fact, XAML could even be used on other platforms to repre-
sent non-.NET objects.)

There are also several subsets of XAML:

• WPF XAML encompasses the elements that describe WPF content, such as vector
graphics, controls, and documents. Currently, it’s the most significant application of
XAML, and it’s the subset we’ll explore in this book.

• XPS XAML is the part of WPF XAML that defines an XML representation for formatted
electronic documents. It’s been published as the separate XML Paper Specification
(XPS) standard. You’ll explore XPS in Chapter 19.

• Silverlight XAML is a subset of WPF XAML that’s intended for Silverlight applications.
Silverlight is a cross-platform browser plug-in that allows you to create rich web con-
tent with two-dimensional graphics, animation, and audio and video. Chapter 1 has
more about Silverlight, or you can visit http://silverlight.net to learn about it in
detail.

• WF XAML encompasses the elements that describe Windows Workflow Foundation
(WF) content. You can learn more about WF at http://wf.netfx3.com.

XAML Compilation
The creators of WPF knew that XAML needed to not just solve the problem of design
collaboration—it also needed to be fast. And though XML-based formats such as XAML are
flexible and easily portable to other tools and platforms, they aren’t always the most efficient
option. XML was designed to be logical, readable, and straightforward—not compact.

WPF addresses this shortcoming with BAML (Binary Application Markup Language).
BAML is really nothing more than a binary representation of XAML. When you compile a WPF
application in Visual Studio, all your XAML files are converted into BAML and that BAML is
then embedded as a resource into the final DLL or EXE assembly. BAML is tokenized, which
means lengthier bits of XAML are replaced with shorter tokens. Not only is BAML significantly
smaller, it’s also optimized in a way that makes it faster to parse at runtime.

Most developers won’t worry about the conversion of XAML to BAML because the com-
piler performs it behind the scenes. However, it is possible to use XAML without compiling it
first. This might make sense in scenarios that require some of the user interface to be supplied
just in time (for example, pulled out of a database as a block of XAML tags). You’ll see how this
works later in this chapter, in the section “Loading and Compiling XAML.”

CHAPTER 2 ■ XAML24

9551CH02 2/8/08 1:42 PM Page 24

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://silverlight.net
http://wf.netfx3.com

XAML Basics
The XAML standard is quite straightforward once you understand a few ground rules:

• Every element in a XAML document maps to an instance of a .NET class. The name of
the element matches the name of the class exactly. For example, the element <Button>
instructs WPF to create a Button object.

• As with any XML document, you can nest one element inside another. As you’ll see,
XAML gives every class the flexibility to decide how it handles this situation. However,
nesting is usually a way to express containment—in other words, if you find a Button
element inside a Grid element, your user interface probably includes a Grid that con-
tains a Button inside.

• You can set the properties of each class through attributes. However, in some situations
an attribute isn’t powerful enough to handle the job. In these cases, you’ll use nested
tags with a special syntax.

■Tip If you’re completely new to XML, you’ll probably find it easier to review the basics before you tackle
XAML. To get up to speed quickly, try the free web-based tutorial at http://www.w3schools.com/xml.

Before continuing, take a look at this bare-bones XAML document, which represents a
new blank window (as created by Visual Studio). The lines have been numbered for easy refer-
ence:

1 <Window x:Class="WindowsApplication1.Window1"
2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4 Title="Window1" Height="300" Width="300">
5
6 <Grid>
7 </Grid>
8 </Window>

This document includes only two elements—the top-level Window element, which repre-
sents the entire window, and the Grid, in which you can place all your controls. Although you
could use any top-level element, WPF applications rely on just a few:

• Window

• Page (which is similar to Window, but used for navigable applications)

• Application (which defines application resources and startup settings)

CHAPTER 2 ■ XAML 25

9551CH02 2/8/08 1:42 PM Page 25

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.w3schools.com/xml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

As in all XML documents, there can only be one top-level element. In the previous exam-
ple, that means that as soon as you close the Window element with the </Window> tag, you
end the document. No more content can follow.

Looking at the start tag for the Window element you’ll find several interesting attributes,
including a class name and two XML namespaces (described in the following sections). You’ll
also find the three properties shown here:

4 Title="Window1" Height="300" Width="300">

Each attribute corresponds to a separate property of the Window class. All in all, this tells
WPF to create a window with the caption Window1 and to make it 300 by 300 units large.

■Note As you learned in Chapter 1, WPF uses a relative measurement system that isn’t what most
Windows developers expect. Rather than letting you set sizes using physical pixels, WPF uses device-
independent units that can scale to fit different monitor resolutions and are defined as 1/96 of an inch.
That means the 300-by-300-unit window in the previous example will be rendered as a 300-by-300-pixel
window if your system DPI setting is the standard 96 dpi. However, on a system with a higher system DPI,
more pixels will be used. Chapter 1 has the full story.

XAML Namespaces
Clearly, it’s not enough to supply just a class name. The XAML parser also needs to know the
.NET namespace where this class is located. For example, the Window class could exist in sev-
eral places—it might refer to the System.Windows.Window class, or it could refer to a Window
class in a third-party component, or one you’ve defined in your application. To figure out
which class you really want, the XAML parser examines the XML namespace that’s applied to
the element.

Here’s how it works. In the sample document shown earlier, two namespaces are defined:

2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

■Note XML namespaces are declared using attributes. These attributes can be placed inside any element
start tag. However, convention dictates that all the namespaces you need to use in a document should be
declared in the very first tag, as they are in this example. Once a namespace is declared, it can be used any-
where in the document.

The xmlns attribute is a specialized attribute in the world of XML that’s reserved for
declaring namespaces. This snippet of markup declares two namespaces that you’ll find in
every WPF XAML document you create:

CHAPTER 2 ■ XAML26

9551CH02 2/8/08 1:42 PM Page 26

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

• http://schemas.microsoft.com/winfx/2006/xaml/presentation is the core WPF name-
space. It encompasses all the WPF classes, including the controls you use to build user
interfaces. In this example, this namespace is declared without a namespace prefix, so
it becomes the default namespace for the entire document. In other words, every ele-
ment is automatically placed in this namespace unless you specify otherwise.

• http://schemas.microsoft.com/winfx/2006/xaml is the XAML namespace. It includes
various XAML utility features that allow you to influence how your document is inter-
preted. This namespace is mapped to the prefix x. That means you can apply it by
placing the namespace prefix before the element name (as in <x:ElementName>).

As you can see, the XML namespace name doesn’t match any particular .NET namespace.
There are a couple of reasons the creators of XAML chose this design. By convention, XML
namespaces are often URIs (as they are here). These URIs look like they point to a location on
the Web, but they don’t. The URI format is used because it makes it unlikely that different
organizations will inadvertently create different XML-based languages with the same name-
space. Because the domain schemas.microsoft.com is owned by Microsoft, only Microsoft will
use it in an XML namespace name.

The other reason that there isn’t a one-to-one mapping between the XML namespaces
used in XAML and .NET namespaces is because it would significantly complicate your XAML
documents. The problem here is that WPF encompasses well over a dozen namespaces (all of
which start with System.Windows). If each .NET namespace had a different XML namespace,
you’d need to specify the right namespace for each and every control you use, which quickly
gets messy. Instead, the creators of WPF chose to combine all of these .NET namespaces into a
single XML namespace. This works because within the different .NET namespaces that are a
part of WPF, there aren’t any classes that have the same name.

The namespace information allows the XAML parser to find the right class. For example,
when it looks at the Window and Grid elements, it sees that they are placed in the default WPF
namespace. It then searches the corresponding .NET namespaces, until it finds System.Win-
dows.Window and System.Windows.Controls.Grid.

The Code-Behind Class
XAML allows you to construct a user interface, but in order to make a functioning application
you need a way to connect the event handlers that contain your application code. XAML
makes this easy using the Class attribute that’s shown here:

1 <Window x:Class="WindowsApplication1.Window1"

The x namespace prefix places the Class attribute in the XAML namespace, which means
this is a more general part of the XAML language. In fact, the Class attribute tells the XAML
parser to generate a new class with the specified name. That class derives from the class that’s
named by the XML element. In other words, this example creates a new class named Window1,
which derives from the base Window class.

The Window1 class is generated automatically at compile time. But here’s where things
get interesting. You can supply a piece of the Window1 class that will be merged into the auto-
matically generated portion. The piece you specify is the perfect container for your event
handling code.

CHAPTER 2 ■ XAML 27

9551CH02 2/8/08 1:42 PM Page 27

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

■Note This magic happens through the C# feature known as partial classes. Partial classes allow you to
split a class into two or more separate pieces for development and fuse them together in the compiled
assembly. Partial classes can be used in a variety of code management scenarios, but they’re most useful in
situations like these, where your code needs to be merged with a designer-generated file.

Visual Studio helps you out by automatically creating a partial class where you can place
your event handling code. For example, if you create an application named WindowsApplica-
tion1, which contains a window named Window1 (as in the previous example), Visual Studio
will start you out with this basic skeleton of a class:

namespace WindowsApplication1
{

/// <summary>
/// Interaction logic for Window1.xaml
/// </summary>
public partial class Window1 : Window
{

public Window1()
{

InitializeComponent();
}

}
}

When you compile your application, the XAML that defines your user interface (such as
Window1.xaml) is translated into CLR type declaration that is merged with the logic in your
code-behind class file (such as Window1.xaml.cs) to form one single unit.

The InitializeComponent() Method
Currently, the Window1 class code doesn’t include any real functionality. However, it does
include one important detail—the default constructor, which calls InitializeComponent()
when you create an instance of the class.

■Note The InitializeComponent()method plays a key role in WPF applications. For that reason, you should
never delete the InitializeComponent() call in your window’s constructor. Similarly, if you add another con-
structor, make sure it also calls InitializeComponent().

The InitializeComponent() method isn’t visible in your source code because it’s automati-
cally generated when you compile your application. Essentially, all InitializeComponent()
does is call the LoadComponent() method of the System.Windows.Application class. The
LoadComponent() method extracts the BAML (the compiled XAML) from your assembly and
uses it to build your user interface. As it parses the BAML, it creates each control object, sets
its properties, and attaches any event handlers.

CHAPTER 2 ■ XAML28

9551CH02 2/8/08 1:42 PM Page 28

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note If you can’t stand the suspense, jump ahead to the end of the chapter. You’ll see the code for the
automatically generated InitializeComponent() method in the section “Code and Compiled XAML.”

Naming Elements
There’s one more detail to consider. In your code-behind class, you’ll often want to manipu-
late controls programmatically. For example, you might want to read or change properties or
attach and detach event handlers on the fly. To make this possible, the control must include a
XAML Name attribute. In the previous example, the Grid control does not include a Name
attribute, so you won’t be able to manipulate it in your code-behind file.

Here’s how you can attach a name to the Grid:

6 <Grid x:Name="grid1">
7 </Grid>

You can make this change by hand in the XAML document, or you can select the grid in
the Visual Studio designer and set the Name property using the Properties window.

Either way, the Name attribute tells the XAML parser to add a field like this to the auto-
matically generated portion of the Window1 class:

private System.Windows.Controls.Grid grid1;

Now you can interact with the grid in your Window1 class code by using the name grid1:

MessageBox.Show(String.Format("The grid is {0}x{1} units in size.",
grid1.ActualWidth, grid1.ActualHeight));

This technique doesn’t add much for the simple grid example, but it becomes much more
important when you need to read values in input controls such as text boxes and list boxes.

The Name property shown previously is part of the XAML language, and it’s used to help
integrate your code-behind class. Somewhat confusingly, many classes define their own Name
property. (One example is the base FrameworkElement class from which all WPF elements
derive.) XAML parsers have a clever way of handling this. You can set either the XAML Name
property (using the x: prefix) or the Name property that belongs to the actual element (by
leaving out the prefix). Either way, the result is the same—the name you specify is used in the
automatically generated code file and it’s used to set the Name property.

That means the following markup is equivalent to what you’ve already seen:

<Grid Name="grid1">
</Grid>

This bit of magic only works if the class that includes the Name property decorates
itself with the RuntimeNameProperty attribute. The RuntimeNameProperty indicates
which property should be treated as the name for instances of that type. (Obviously, it’s
usually the property that’s named Name.) The FrameworkElement class includes the
RuntimeNameProperty attribute, so there’s no problem.

CHAPTER 2 ■ XAML 29

9551CH02 2/8/08 1:42 PM Page 29

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip In a traditional Windows Forms application, every control has a name. In a WPF application, there’s
no such requirement. However, if you create a window by dragging and dropping elements onto the Visual
Studio design surface, each element will be given an automatically generated name. This is simply a con-
venience. If you don’t want to interact with an element in your code, you’re free to remove its Name attribute
from the markup. The examples in this book usually omit element names when they aren’t needed, which
makes the markup more concise.

By now, you should have a basic understanding of how to interpret a XAML document
that defines a window and how that XAML document is converted into a final compiled class
(with the addition of any code you’ve written). In the next section, you’ll look at the property
syntax in more detail and learn to wire up event handlers.

Properties and Events in XAML
So far, you’ve considered a relatively unexciting example—a blank window that hosts an
empty Grid control. Before going any further, it’s worth introducing a more realistic window
that includes several controls. Figure 2-1 shows an example with an automatic question
answerer.

Figure 2-1. Ask the eight ball and all will be revealed.

The eight ball window includes four controls: a Grid (the most common tool for arranging
layout in WPF), two TextBox objects, and a Button. The markup that’s required to arrange and
configure these controls is significantly longer than the previous examples. Here’s an abbrevi-
ated listing that replaces some of the details with an ellipsis (…) to expose the overall structure:

<Window x:Class="EightBall.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Eight Ball Answer" Height="328" Width="412">

CHAPTER 2 ■ XAML30

9551CH02 2/8/08 1:42 PM Page 30

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ XAML 31

<Grid Name="grid1">
<Grid.Background>
...

</Grid.Background>
<Grid.RowDefinitions>
...

</Grid.RowDefinitions>

<TextBox Name="txtQuestion" ... >
...

</TextBox>

<Button Name="cmdAnswer" ... >
...

</Button>

<TextBox Name="txtAnswer" ... >
...

</TextBox>
</Grid>

</Window>

In the following sections, you’ll explore the parts of this document—and learn the syntax
of XAML along the way.

■Note XAML isn’t limited to the classes that are a part of WPF. You can use XAML to create an instance of
any class that meets a few ground rules. You’ll learn how to use your own classes with XAML later in this
chapter.

Simple Properties and Type Converters
As you’ve already seen, the attributes of an element set the properties of the corresponding
object. For example, the text boxes in the eight ball example configure the alignment, margin,
and font:

<TextBox Name="txtQuestion"
VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
FontFamily="Verdana" FontSize="24" Foreground="Green" ... >

In order for this to work, the System.Windows.Controls.TextBox class must provide the
following properties: VerticalAlignment, HorizontalAlignment, FontFamily, FontSize, and
Foreground. You’ll learn the specific meaning for each of these properties in the following
chapters.

To make this system work, the XAML parser needs to perform a bit more work than you
might initially realize. The value in an XML attribute is always a plain text string. However,
object properties can be any .NET type. In the previous example, there are two properties that

9551CH02 2/8/08 1:42 PM Page 31

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

use enumerations (VerticalAlignment and HorizontalAlignment), one string (FontFamily), one
integer (FontSize), and one Brush object (Foreground).

In order to bridge the gap between string values and nonstring properties, the XAML
parser needs to perform a conversion. The conversion is performed by type converters, a basic
piece of .NET infrastructure that’s existed since .NET 1.0.

Essentially, a type converted has one role in life—it provides utility methods that can con-
vert a specific .NET data type to and from any other .NET type, such as a string representation
in this case. The XAML parser follows two steps to find a type converter:

1. It examines the property declaration, looking for a TypeConverter attribute. (If present,
the TypeConverter attribute indicates what class can perform the conversion.) For
example, when you use a property such as Foreground, .NET checks the declaration of
the Foreground property.

2. If there’s no TypeConverter attribute on the property declaration, the XAML parser
checks the class declaration of the corresponding data type. For example, the
Foreground property uses a Brush object. The Brush class (and its derivatives)
use the BrushConverter because the Brush class is decorated with the Type-
Converter(typeof(BrushConverter)) attribute declaration.

If there’s no associated type converter on the property declaration or the class declara-
tion, the XAML parser generates an error.

This system is simple but flexible. If you set a type converter at the class level, that
converter applies to every property that uses that class. On the other hand, if you want to fine-
tune the way type conversion works for a particular property, you can use the TypeConverter
attribute on the property declaration instead.

It’s technically possible to use type converters in code, but the syntax is a bit convoluted.
It’s almost always better to set a property directly—not only is it faster, it also avoids potential
errors from mistyping strings, which won’t be caught until runtime. (This problem doesn’t
affect XAML, because the XAML is parsed and validated at compile time.) Of course, before
you can set the properties on a WPF element, you need to know a bit more about the basic
WPF properties and data types—a job you’ll tackle in the next few chapters.

■Note XAML, like all XML-based languages, is case-sensitive. That means you can’t substitute
<button> for <Button>. However, type converters usually aren’t case-sensitive, which means both
Foreground="White" and Foreground="white" have the same result.

Complex Properties
As handy as type converters are, they aren’t practical for all scenarios. For example, some
properties are full-fledged objects with their own set of properties. Although it’s possible to
create a string representation that the type converter could use, that syntax might be difficult
to use and prone to error.

CHAPTER 2 ■ XAML32

9551CH02 2/8/08 1:42 PM Page 32

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Fortunately, XAML provides another option: property-element syntax. With property-
element syntax, you add a child element with a name in the form Parent.PropertyName. For
example, the Grid has a Background property that allows you to supply a brush that’s used to
paint the area behind the controls. If you want to use a complex brush—one more advanced
than a solid color fill—you’ll need to add a child tag named Grid.Background, as shown here:

<Grid Name="grid1">
<Grid.Background>
...

</Grid.Background>
...

</Grid>

The key detail that makes this work is the period (.) in the element name. This distin-
guishes properties from other types of nested content.

This still leaves one detail—namely, once you’ve identified the complex property you
want to configure, how do you set it? Here’s the trick. Inside the nested element, you can add
another tag to instantiate a specific class. In the eight ball example (shown in Figure 2-1), the
background is filled with a gradient. To define the gradient you want, you need to create a
LinearGradientBrush object.

Using the rules of XAML, you can create the LinearGradientBrush object using an element
with the name LinearGradientBrush:

<Grid Name="grid1">
<Grid.Background>
<LinearGradientBrush>
</LinearGradientBrush>

</Grid.Background>
...

</Grid>

The LinearGradientBrush is part of the WPF set of namespaces, so you can keep using the
default XML namespace for your tags.

However, it’s not enough to simply create the LinearGradientBrush—you also need to spec-
ify the colors in that gradient. You do this by filling the LinearGradientBrush.GradientStops
property with a collection of GradientStop objects. Once again, the GradientStops property is
too complex to be set with an attribute value alone. Instead, you need to rely on the property-
element syntax:

<Grid Name="grid1">
<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
</LinearGradientBrush.GradientStops>

</LinearGradientBrush>
</Grid.Background>
...

</Grid>

CHAPTER 2 ■ XAML 33

9551CH02 2/8/08 1:42 PM Page 33

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Finally, you can fill the GradientStops collection with a series of GradientStop objects.
Each GradientStop object has an Offset and Color property. You can supply these two values
using the ordinary property-attribute syntax:

<Grid Name="grid1">
<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Red" />
<GradientStop Offset="0.50" Color="Indigo" />
<GradientStop Offset="1.00" Color="Violet" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Grid.Background>
...

</Grid>

■Note You can use property-element syntax for any property. But usually you’ll use the simpler property-
attribute approach if the property has a suitable type converter. Doing so results in more compact code.

Any set of XAML tags can be replaced with a set of code statements that performs the
same task. The tags shown previously, which fill the background with a gradient of your
choice, are equivalent to the following code:

LinearGradientBrush brush = new LinearGradientBrush();

GradientStop gradientStop1 = new GradientStop();
gradientStop1.Offset = 0;
gradientStop1.Color = Colors.Red;
brush.GradientStops.Add(gradientStop1);

GradientStop gradientStop2 = new GradientStop();
gradientStop2.Offset = 0.5;
gradientStop2.Color = Colors.Indigo;
brush.GradientStops.Add(gradientStop2);

GradientStop gradientStop3 = new GradientStop();
gradientStop3.Offset = 1;
gradientStop3.Color = Colors.Violet;
brush.GradientStops.Add(gradientStop3);

grid1.Background = brush;

CHAPTER 2 ■ XAML34

9551CH02 2/8/08 1:42 PM Page 34

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Markup Extensions
For most properties, the XAML property syntax works perfectly well. But in some cases, it just
isn’t possible to hard-code the property value. For example, you may want to set a property
value to an object that already exists. Or you may want to set a property value dynamically, by
binding it to a property in another control. In both of these cases, you need to use a markup
extension—specialized syntax that sets a property in a nonstandard way.

Markup extensions can be used in nested tags or in XML attributes, which is more com-
mon. When they’re used in attributes, they are always bracketed by curly braces {}. For
example, here’s how you can use the StaticExtension, which allows you to refer to a static
property in another class:

<Button ... Foreground="{x:Static SystemColors.ActiveCaptionBrush}" >

Markup extensions use the syntax {MarkupExtensionClass Argument}. In this case, the
markup extension is the StaticExtension class. (By convention, you can drop the final word
Extension when referring to an extension class.) The x: prefix indicates that the StaticExtension
is found in one of the XAML namespaces. You’ll also encounter markup extensions that are a
part of the WPF namespaces and don’t have the x: prefix.

All markup extensions are implemented by classes that derive from System.Windows.Mark-
up.MarkupExtension. The base MarkupExtension class is extremely simple—it provides a single
ProvideValue() method that gets the value you want. In other words, when the XAML parser
encounters the previous statement, it creates an instance of the StaticExtension class (passing in
the string “SystemColors.ActiveCaptionBrush” as an argument to the constructor) and then calls
ProvideValue() to get the object returned by the SystemColors.ActiveCaption.Brush static prop-
erty. The Foreground property of the cmdAnswer button is then set with the retrieved object.

The end result of this piece of XAML is the same as if you’d written this:

cmdAnswer.Foreground = SystemColors.ActiveCaptionBrush;

Because markup extensions map to classes, they can also be used as nested properties, as
you learned in the previous section. For example, you can use the StaticExtension with the
Button.Foreground property like this:

<Button ... >
<Button.Foreground>
<x:Static Member="SystemColors.ActiveCaptionBrush"></x:Static>

</Button.Foreground>
</Button>

Depending on the complexity of the markup extension and the number of properties you
want to set, this syntax is sometimes simpler.

Like most markup extensions, the StaticExtension needs to be evaluated at runtime
because only then can you determine the current system colors. Some markup extensions can
be evaluated at compile time. These include the NullExtension (which represents a null value)
and the TypeExtension (which constructs an object that represents a .NET type). Throughout
this book, you’ll see many examples of markup extensions at work, particularly with resources
and data binding.

CHAPTER 2 ■ XAML 35

9551CH02 2/8/08 1:42 PM Page 35

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Attached Properties
Along with ordinary properties, XAML also includes the concept of attached properties—
properties that may apply to several controls but are defined in a different class. In WPF,
attached properties are frequently used to control layout.

Here’s how it works. Every control has its own set of intrinsic properties. (For example,
a text box has a specific font, text color, and text content as dictated by properties such as
FontFamily, Foreground, and Text.) When you place a control inside a container it gains addi-
tional features, depending on the type of container. (For example, if you place a text box inside
a grid, you need to be able to choose the grid cell where it’s positioned.) These additional
details are set using attached properties.

Attached properties always use a two-part name in this form: DefiningType.PropertyName.
This two-part naming syntax allows the XAML parser to distinguish between a normal property
and an attached property.

In the eight ball example, attached properties allow the individual controls to place them-
selves on separate rows in the (invisible) grid:

<TextBox ... Grid.Row="0">
[Place question here.]

</TextBox>

<Button ... Grid.Row="1">
Ask the Eight Ball

</Button>

<TextBox ... Grid.Row="2">
[Answer will appear here.]

</TextBox>

Attached properties aren’t really properties at all. They’re actually translated into method
calls. The XAML parser calls the static method that has this form: DefiningType.SetProperty-
Name(). For example, in the previous XAML snippet, the defining type is the Grid class, and
the property is Row, so the parser calls Grid.SetRow().

When calling SetPropertyName(), the parser passes two parameters: the object that’s
being modified, and the property value that’s specified. For example, when you set the
Grid.Row property on the TextBox control, the XAML parser executes this code:

Grid.SetRow(txtQuestion, 0);

This pattern (calling a static method of the defining type) is a convenience that conceals
what’s really taking place. To the casual eye, this code implies that the row number is stored in
the Grid object. However, the row number is actually stored in the object that it applies to—in
this case, the TextBox object.

This sleight of hand works because the TextBox derives from the DependencyObject
base class, as do all WPF controls. And as you’ll learn in Chapter 6, the DependencyObject is
designed to store a virtually unlimited collection of dependency properties. (The attached
properties that were discussed earlier are a special type of dependency property.)

CHAPTER 2 ■ XAML36

9551CH02 2/8/08 1:42 PM Page 36

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In fact, the Grid.SetRow() method is actually a shortcut that’s equivalent to calling
DependencyObject.SetValue() method, as shown here:

txtQuestion.SetValue(Grid.RowProperty, 0);

Attached properties are a core ingredient of WPF. They act as an all-purpose extensibility
system. For example, by defining the Row property as an attached property, you guarantee
that it’s usable with any control. The other option, making it a part of a base class such as
FrameworkElement, complicates life. Not only would it clutter the public interface with prop-
erties that only have meaning in certain circumstances (in this case, when an element is being
used inside a Grid), it also makes it impossible to add new types of containers that require
new properties.

■Note Attached properties are very similar to extender providers in a Windows Forms application. Both
allow you to add “virtual” properties to extend another class. The difference is that you must create an
instance of an extender provider before you can use it, and the extended property value is stored in the
extender provider, not the extended control. The attached property design is a better choice for WPF because
it avoids lifetime management issues (for example, deciding when to dispose of an extender provider).

Nesting Elements
As you’ve seen, XAML documents are arranged as a heavily nested tree of elements. In the cur-
rent example, a Window element contains a Grid element, which contains TextBox and Button
elements.

XAML allows each element to decide how it deals with nested elements. This interaction
is mediated through one of four mechanisms that are evaluated in this order:

• If the parent implements IList, the parser calls IList.Add() and passes in the child.

• If the parent implements IDictionary, the parser calls IDictionary.Add() and passes in
the child. When using a dictionary collection, you must also set the x:Key attribute to
give a key name to each item.

• If the parent is decorated with the ContentProperty attribute, the parser uses the child
to set that property.

For example, earlier in this chapter you saw how a LinearGradientBrush can hold a collec-
tion of GradientStop objects using syntax like this:

<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Red" />
<GradientStop Offset="0.50" Color="Indigo" />
<GradientStop Offset="1.00" Color="Violet" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

CHAPTER 2 ■ XAML 37

9551CH02 2/8/08 1:42 PM Page 37

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The XAML parser recognizes the LinearGradientBrush.GradientStops element is a
complex property because it includes a period. However, it needs to process the tags inside
(the three GradientStop elements) a little differently. In this case, the parser recognizes that the
GradientStops property returns a GradientStopCollection object, and the GradientStopCollection
implements the IList interface. Thus, it assumes (quite rightly) that each GradientStop should be
added to the collection using the IList.Add() method:

GradientStop gradientStop1 = new GradientStop();
gradientStop1.Offset = 0;
gradientStop1.Color = Colors.Red;
IList list = brush.GradientStops;
list.Add(gradientStop1);

Some properties might support more than one type of collection. In this case, you need to
add a tag that specifies the collection class, like this:

<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStopCollection>
<GradientStop Offset="0.00" Color="Red" />
<GradientStop Offset="0.50" Color="Indigo" />
<GradientStop Offset="1.00" Color="Violet" />

</GradientStopCollection>
</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

■Note If the collection defaults to null, you need to include the tag that specifies the collection class,
thereby creating the collection object. If there’s a default instance of the collection and you simply need to fill
it, you can omit that part.

Nested content doesn’t always indicate a collection. For example, consider the Grid ele-
ment, which contains several other controls:

<Grid Name="grid1">
...
<TextBox Name="txtQuestion" ... >
...

</TextBox>
<Button Name="cmdAnswer" ... >
...

</Button>
<TextBox Name="txtAnswer" ... >
...

</TextBox>
</Grid>

CHAPTER 2 ■ XAML38

9551CH02 2/8/08 1:42 PM Page 38

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

These nested tags don’t correspond to complex properties because they don’t include the
period. Furthermore, the Grid control isn’t a collection and so it doesn’t implement IList or
IDictionary. What the Grid does support is the ContentProperty attribute, which indicates the
property that should receive any nested content. Technically, the ContentProperty attribute is
applied to the Panel class, from which the Grid derives, and looks like this:

[ContentPropertyAttribute("Children")]
public abstract class Panel

This indicates that any nested elements should be used to set the Children property. The
XAML parser treats the content property differently depending on whether or not it’s a collec-
tion property (in which case it implements the IList or IDictionary interface). Because the
Panel.Children property returns a UIElementCollection, and because UIElementCollection
implements IList, the parser uses the IList.Add() method to add nested content to the grid.

In other words, when the XAML parser meets the previous markup, it creates an instance
of each nested element and passes it to the Grid using the Grid.Children.Add() method:

txtQuestion = new TextBox();
...
grid1.Children.Add(txtQuestion);

cmdAnswer = new Button();
...
grid1.Children.Add(cmdAnswer);

txtAnswer = new TextBox();
...
grid1.Children.Add(txtAnswer);

What happens next depends entirely on how the control implements the content prop-
erty. The Grid displays all the controls it holds in an invisible layout of rows and columns, as
you’ll see in Chapter 4.

The ContentProperty attribute is frequently used in WPF. Not only is it used for container
controls (such as Grid) and controls that contain a collection of visual items (such as the List-
Box and TreeView), it’s also used for controls that contain singular content. For example, the
TextBox and Button are only able to hold a single element or piece of text, but they both use a
content property to deal with nested content like this:

<TextBox Name="txtQuestion" ... >
[Place question here.]

</TextBox>
<Button Name="cmdAnswer" ... >
Ask the Eight Ball

</Button>
<TextBox Name="txtAnswer" ... >
[Answer will appear here.]

</TextBox>

CHAPTER 2 ■ XAML 39

9551CH02 2/8/08 1:42 PM Page 39

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The TextBox class uses the ContentProperty attribute to flag the TextBox.Text property.
The Button class uses the ContentProperty attribute to flag the Button.Content property. The
XAML parser uses the supplied text to set these properties.

The TextBox.Text property only allows strings. However, Button.Content is much more
interesting. As you’ll learn in Chapter 5, the Content property accepts any element. For exam-
ple, here’s a button that contains a shape object:

<Button Name="cmdAnswer" ... >
<Rectangle Fill="Blue" Height="10" Width="100" />

</Button>

Because the Text and Content properties don’t use collections, you can’t include more
than one piece of content. For example, if you attempt to nest multiple elements inside a But-
ton, the XAML parser will throw an exception. The parser also throws an exception if you
supply nontext content (such as a Rectangle).

■Note As a general rule of thumb, all controls that derive from ContentControl allow a single nested ele-
ment. All controls that derive from ItemsControl allow a collection of items that map to some part of the
control (such as a list of items or a tree of nodes). All controls that derive from Panel are containers that are
used to organize groups of controls. The ContentControl, ItemsControl, and Panel base classes all use the
ContentProperty attribute.

Special Characters and Whitespace
XAML is bound by the rules of XML. For example, XML pays special attention to a few specific
characters, such as & and < and >. If you try to use these values to set the content of an ele-
ment, you’ll run into trouble because the XAML parser assumes you’re trying to do something
else—such as create a nested element.

For example, imagine you want to create a button that contains the text <Click Me>. The
following markup won’t work:

<Button ... >
<Click Me>

</Button>

The problem here is that it looks like you’re trying to create an element named Click
with an attribute named Me. The solution is to replace the offending characters with entity
references—specific codes that the XAML parser will interpret correctly. Table 2-1 lists the
character entities you might choose to use. Note that the quotation mark character entity is
only required when setting values using an attribute because the quotation mark indicates the
beginning and ending of an attribute value.

CHAPTER 2 ■ XAML40

9551CH02 2/8/08 1:42 PM Page 40

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 2-1. XML Character Entities

Special Character Character Entity

Less than (<) <

Greater than (>) >

Ampersand (&) &

Quotation mark (") "

Here’s the corrected markup that uses the appropriate character entities:

<Button ... >
<Click Me>

</Button>

When the XAML parser reads this, it correctly understands that you want to add the text
<Click Me> and it passes a string with this content, complete with angled brackets, to the But-
ton.Content property.

■Note This limitation is a XAML detail and it won’t affect you if you want to set the Button.Content property
in code. Of course, C# has its own special character (the backslash) that must be escaped in string literals
for the same reason.

Special characters aren’t the only stumbling block you’ll run into with XAML. Another
issue is whitespace handling. By default, XML collapses all whitespace, which means a long
string of spaces, tabs, and hard returns is reduced to a single space. Furthermore, if you add
whitespace before or after your element content, this space is ignored completely. You can see
this in the EightBall example. The text in the button and the two text boxes is separated from
the XAML tags using a hard return and tab to make the markup more readable. However, this
extra space doesn’t appear in the user interface.

Sometimes this isn’t what you want. For example, you may want to include a series of
several spaces in your button text. In this case, you need to use the xml:space="preserve"
attribute on your element.

The xml:space attribute is a part of the XML standard, and it’s an all-or-nothing setting.
Once you switch it on, all the whitespace inside that element is retained. For example, con-
sider this markup:

<TextBox Name="txtQuestion" xml:space="preserve" ...>
[There is a lot of space inside these quotation marks " ".]

</TextBox>

In this example, the text in the text box will include the hard return and tab that appear
before the actual text. It will also include the series of spaces inside the text and the hard
return that follows the text.

CHAPTER 2 ■ XAML 41

9551CH02 2/8/08 1:42 PM Page 41

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you just want to keep the spaces inside, you’ll need to use this less-readable markup:

<TextBox Name="txtQuestion" xml:space="preserve" ...
>[There is a lot of space inside these quotation marks " ".]</TextBox>

The trick here is to make sure no whitespace appears between the opening > and your
content, or between your content and the closing <.

Once again, this issue only applies to XAML markup. If you set the text in a text box pro-
grammatically, all the spaces you include are used.

Events
So far, all the attributes you’ve seen map to properties. However, attributes can also be used to
attach event handlers. The syntax for this is EventName="EventHandlerMethodName".

For example, the Button control provides a Click event. You can attach an event handler
like this:

<Button ... Click="cmdAnswer_Click">

This assumes that there is a method with the name cmdAnswer_Click in the code-behind
class. The event handler must have the correct signature (that is, it must match the delegate
for the Click event). Here’s the method that does the trick:

private void cmdAnswer_Click(object sender, RoutedEventArgs e)
{

this.Cursor = Cursors.Wait;

// Dramatic delay...
System.Threading.Thread.Sleep(TimeSpan.FromSeconds(3));

AnswerGenerator generator = new AnswerGenerator();
txtAnswer.Text = generator.GetRandomAnswer(txtQuestion.Text);
this.Cursor = null;

}

As you may have noticed from the signature of this event handler, the event model in WPF
is different than in earlier versions of .NET. It supports a new model that relies on event rout-
ing. You’ll learn more in Chapter 6.

In many situations, you’ll use attributes to set properties and attach event handlers on the
same element. WPF always follows the same sequence: first it sets the Name property (if set),
then it attaches any event handlers, and lastly it sets the properties. This means that any event
handlers that respond to property changes will fire when the property is set for the first time.

■Note It’s possible to embed code (such as event handlers) directly in a XAML document using the Code
element. However, this technique is thoroughly discouraged and it doesn’t have any practical application in
WPF. This approach isn’t supported by Visual Studio and it isn’t discussed in this book.

CHAPTER 2 ■ XAML42

9551CH02 2/8/08 1:42 PM Page 42

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Visual Studio helps you out with IntelliSense when you add an event handler attribute.
Once you enter the equals sign (for example, after you’ve typed Click= in the <Button> ele-
ment), it shows a drop-down list with all the suitable event handlers in your code-behind
class, as shown in Figure 2-2. If you need to create a new event handler to handle this event,
you simply need to choose <New Event Handler> from the top of the list.

Figure 2-2. Attaching an event with Visual Studio IntelliSense

The Full Eight Ball Example
Now that you’ve considered the fundamentals of XAML, you know enough to walk through the
definition for the window in Figure 2-1. Here’s the complete XAML markup:

<Window x:Class="EightBall.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Eight Ball Answer" Height="328" Width="412" >
<Grid Name="grid1">
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>
<TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
Margin="10,10,13,10" Name="txtQuestion"
TextWrapping="Wrap" FontFamily="Verdana" FontSize="24"
Grid.Row="0">
[Place question here.]

</TextBox>

CHAPTER 2 ■ XAML 43

9551CH02 2/8/08 1:42 PM Page 43

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Button VerticalAlignment="Top" HorizontalAlignment="Left"
Margin="10,0,0,20" Width="127" Height="23" Name="cmdAnswer"
Click="cmdAnswer_Click" Grid.Row="1">
Ask the Eight Ball

</Button>
<TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
Margin="10,10,13,10" Name="txtAnswer" TextWrapping="Wrap"
IsReadOnly="True" FontFamily="Verdana" FontSize="24" Foreground="Green"
Grid.Row="2">
[Answer will appear here.]

</TextBox>

<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Red" />
<GradientStop Offset="0.50" Color="Indigo" />
<GradientStop Offset="1.00" Color="Violet" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Grid.Background>
</Grid>

</Window>

Remember, you probably won’t write the XAML for an entire user interface by hand—
doing so would be unbearably tedious. However, you might have good reason to edit the
XAML code to make a change that would be awkward to accomplish in the designer. You
might also find yourself reviewing XAML to get a better idea of how a window works.

Using Types from Other Namespaces
So far, you’ve seen how to create a basic user interface in XAML using the classes that are a
part of WPF. However, XAML is designed as an all-purpose way to instantiate .NET objects,
including ones that are in other non-WPF namespaces and those you create yourself.

It might seem odd to consider creating objects that aren’t designed for onscreen display in
a XAML window, but there are a number of scenarios where it makes sense. One example is
when you use data binding and you want to draw information from another object to display
in a control. Another example is if you want to set the property of a WPF object using a non-
WPF object.

For example, you can fill a WPF ListBox with data objects. The ListBox will call the
ToString() method to get the text to display for each item in the list. (Or for an even better list
you can create a data template that extracts multiple pieces of information and formats them
appropriately. This technique is described in Chapter 17.)

In order to use a class that isn’t defined in one of the WPF namespaces, you need to map
the .NET namespace to an XML namespace. XAML has a special syntax for doing this, which
looks like this:

xmlns:Prefix="clr-namespace:Namespace;assembly=AssemblyName"

CHAPTER 2 ■ XAML44

9551CH02 2/8/08 1:42 PM Page 44

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Typically, you’ll place this namespace mapping in the root element of your XAML docu-
ment, right after the attributes that declare the WPF and XAML namespaces. You’ll also fill in
the three italicized bits with the appropriate information, as explained here:

• Prefix is the XML prefix you want to use to indicate that namespace in your XAML
markup. For example, the XAML language uses the x: prefix.

• Namespace is the fully qualified .NET namespace name.

• AssemblyName is the assembly where the type is declared, without the .dll extension.
This assembly must be referenced in your project. If you want to use your project
assembly, leave this out.

For example, here’s how you would gain access to the basic types in the System name-
space and map them to the prefix sys:

xmlns:sys="clr-namespace:System;assembly=mscorlib"

Here’s how you would gain access to the types you’ve declared in the MyProject name-
space of the current project and map them to the prefix local:

xmlns:local="clr-namespace:MyNamespace"

Now, to create an instance of a class in one of these namespaces, you use the namespace
prefix:

<local:MyObject ...></local:MyObject>

■Tip Remember, you can use any namespace prefix you want, as long as you are consistent throughout
your XAML document. However, the sys and local prefixes are commonly used when importing the System
namespace and the namespace for the current project. You’ll see them used throughout this book.

Ideally, every class you want to use in XAML will have a no-argument constructor. If it
does, the XAML parser can create the corresponding object, set its properties, and attach any
event handlers you supply. XAML doesn’t support parameterized constructors, and all the ele-
ments in WPF elements include a no-argument constructor. Additionally, you need to be able
to set all the details you want using public properties. XAML doesn’t allow you to set public
fields or call methods.

If the class you want to use doesn’t have a no-argument constructor, you’re in a bit of a
bind. If you’re trying to create a simple primitive (such as a string, date, or numeric type), you
can supply the string representation of your data as content inside your tag. The XAML parser
will then use the type converter to convert that string into the appropriate object. Here’s an
example with the DateTime structure:

<sys:DateTime>10/30/2010 4:30 PM</sys:DateTime>

This works because the DateTime class uses the TypeConverter attribute to link itself to
the DateTimeConverter. The DateTimeConverter recognizes this string as a valid DateTime

CHAPTER 2 ■ XAML 45

9551CH02 2/8/08 1:42 PM Page 45

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

object and converts it. When you’re using this technique you can’t use attributes to set any
properties for your object.

If you want to create a class that doesn’t have a no-argument constructor and there isn’t a
suitable type converter to use, you’re out of luck.

■Note Some developers get around these limitations by creating custom wrapper classes. For example,
the FileStream class doesn’t include a no-argument constructor. However, you could create a wrapper class
that does. Your wrapper class would create the required FileStream object in its constructor, retrieve the
information it needs, and then close the FileStream. This type of solution is seldom ideal because it invites
hard-coding information in your class constructor and it complicates exception handling. In most cases, it’s a
better idea to manipulate the object with a little event handling code and leave it out of your XAML entirely.

The following example puts it all together. It maps the sys: prefix to the System name-
space and uses the System namespace to create three DateTime objects, which are used to fill
a list:

<Window x:Class="WindowsApplication1.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:sys="clr-namespace:System;assembly=mscorlib"
Width="300" Height="300"
>

<ListBox>
<ListBoxItem>
<sys:DateTime>10/13/2010 4:30 PM</sys:DateTime>

</ListBoxItem>
<ListBoxItem>
<sys:DateTime>10/29/2010 12:30 PM</sys:DateTime>

</ListBoxItem>
<ListBoxItem>
<sys:DateTime>10/30/2010 2:30 PM</sys:DateTime>

</ListBoxItem>
</ListBox>

</Window>

Loading and Compiling XAML
As you’ve already learned, XAML and WPF are separate, albeit complementary, technologies. As
a result, it’s quite possible to create a WPF application that doesn’t use the faintest bit of XAML.

Altogether, there are three distinct coding styles that you can use to create a WPF application:

• Code-only. This is the traditional approach used in Visual Studio for Windows Forms
applications. It generates a user interface through code statements.

CHAPTER 2 ■ XAML46

9551CH02 2/8/08 1:42 PM Page 46

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

• Code and uncompiled markup (XAML). This is a specialized approach that makes
sense in certain scenarios where you need highly dynamic user interfaces. You load part
of the user interface from a XAML file at runtime using the XamlReader class from the
System.Windows.Markup namespace.

• Code and compiled markup (BAML). This is the preferred approach for WPF, and the
one that Visual Studio supports. You create a XAML template for each window and this
XAML is compiled into BAML and embedded in the final assembly. At runtime the
compiled BAML is extracted and used to regenerate the user interface.

In the following sections, you’ll dig deeper into these three models and how they actually
work.

Code-Only
Code-only development is a less common (but still fully supported) avenue for writing a WPF
application without any XAML. The obvious disadvantage to code-only development is that it
has the potential to be extremely tedious. WPF controls don’t include parameterized construc-
tors, so even adding a simple button to a window takes several lines of code. One potential
advantage is that code-only development offers unlimited avenues for customization. For
example, you could generate a form full of input controls based on the information in a data-
base record, or you could conditionally decide to add or substitute controls depending on the
current user. All you need is a sprinkling of conditional logic. By contrast, when you use XAML
documents they’re embedded in your assembly as fixed unchanging resources.

■Note Even though you probably won’t create a code-only WPF application, you probably will use the
code-only approach to creating a WPF control at some point when you need an adaptable chunk of user
interface.

Following is the code for a modest window with a single button and an event handler (see
Figure 2-3). When the window is created, the constructor calls an InitializeComponent() method
that instantiates and configures the button and the form and hooks up the event handler.

■Note To create this example, you must code the Window1 class from scratch (right-click the Solution
Explorer, and choose Add ➤ Class to get started). You can’t choose Add ➤ Window, because that will
add a code file and a XAML template for your window, complete with an automatically generated Initialize-
Component() method.

using System.Windows;
using System.Windows.Controls;
using System.Windows.Markup;

CHAPTER 2 ■ XAML 47

9551CH02 2/8/08 1:42 PM Page 47

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public class Window1 : Window
{

private Button button1;

public Window1()
{

InitializeComponent();
}

private void InitializeComponent()
{

// Configure the form.
this.Width = this.Height = 285;
this.Left = this.Top = 100;
this.Title = "Code-Only Window";

// Create a container to hold a button.
DockPanel panel = new DockPanel();

// Create the button.
button1 = new Button();
button1.Content = "Please click me.";
button1.Margin = new Thickness(30);

// Attach the event handler.
button1.Click += button1_Click;

// Place the button in the panel.
IAddChild container = panel;
container.AddChild(button1);

// Place the panel in the form.
container = this;
container.AddChild(panel);

}

private void button1_Click(object sender, RoutedEventArgs e)
{

button1.Content = "Thank you.";
}

}

Conceptually, the Window1 class in this example is a lot like a form in a traditional Win-
dows Forms application. It derives from the base Window class and adds a private member
variable for every control. For clarity, this class performs its initialization work in a dedicated
InitializeComponent() method.

CHAPTER 2 ■ XAML48

9551CH02 2/8/08 1:42 PM Page 48

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 2-3. A single-button window

To get this application started, you can use a Main() method with code like this:

public class Program : Application
{

[STAThread()]
static void Main()
{

Program app = new Program();
app.MainWindow = new Window1();
app.MainWindow.ShowDialog();

}
}

Code and Uncompiled XAML
One of the most interesting ways to use XAML is to parse it on the fly with the XamlReader. For
example, imagine you start with this XAML content in a file named Window1.xml:

<DockPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
<Button Name="button1" Margin="30">Please click me.</Button>

</DockPanel>

At runtime, you can load this content into a live window to create the same window
shown in Figure 2-3. Here’s the code that does it:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Markup;
using System.IO;

public class Window1 : Window
{

CHAPTER 2 ■ XAML 49

9551CH02 2/8/08 1:42 PM Page 49

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation

private Button button1;

public Window1()
{

InitializeComponent();
}

private void InitializeComponent()
{

// Configure the form.
this.Width = this.Height = 285;
this.Left = this.Top = 100;
this.Title = "Dynamically Loaded XAML";

// Get the XAML content from an external file.
FileStream s = new FileStream("Window1.xml", FileMode.Open);
DependencyObject rootElement = (DependencyObject)XamlReader.Load(s);
this.Content = rootElement;

// Find the control with the appropriate name.
button1 = (Button)LogicalTreeHelper.FindLogicalNode(rootElement, "button1");

// Wire up the event handler.
button1.Click += button1_Click;

}

private void button1_Click(object sender, RoutedEventArgs e)
{

button1.Content = "Thank you.";
}

}

Here, the InitializeComponent() method opens a FileStream on the Window1.xml file.
It then uses the Load() method of the XamlReader to convert the content in this file into a
DependencyObject, which is the base from which all WPF controls derive. This Dependency-
Object can be placed inside any type of container (for example, a Panel), but in this example
it’s used as the content for the entire form.

■Note In this example, you’re loading an element—the DockPanel object—from the XAML file. Alterna-
tively, you could load an entire XAML window (like the eight ball example). In this case, you would cast the
object returned by XamlReader.Load() to the Window type and then call its Show() or ShowDialog() method to
show it.

CHAPTER 2 ■ XAML50

9551CH02 2/8/08 1:42 PM Page 50

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To manipulate the button, you need to find the corresponding control object in the
dynamically loaded content. The LogicalTreeHelper serves this purpose because it has the
ability to search an entire tree of control objects, digging down as many layers as necessary
until it finds the object with the name you’ve specified. An event handler is then attached to
the Button.Click event.

Another alternative is to use the FrameworkElement.FindName() method. In this exam-
ple, the root element is a DockPanel object. Like all the controls in a WPF window, DockPanel
derives from FrameworkElement. That means you can replace this code:

button1 = (Button)LogicalTreeHelper.FindLogicalNode(rootElement, "button1");

with this equivalent approach:

FrameworkElement frameworkElement = (FrameworkElement)rootElement;
button1 = (Button)frameworkElement.FindName("button1");

Obviously, loading XAML dynamically won’t be as efficient as compiling the XAML to
BAML and then loading the BAML at runtime, particularly if your user interface is complex.
However, it opens up a number of possibilities for building dynamic user interfaces.

For example, you could create an all-purpose survey application that reads a form file
from a web service and then displays the corresponding survey controls (labels, text boxes,
check boxes, and so on). The form file would be an ordinary XML document with WPF tags,
which you load into an existing form using the XamlReader. To collect the results once the
survey is filled out, you simply need to enumerate over all the input controls and grab their
content.

Code and Compiled XAML
You’ve already seen the most common way to use XAML with the eight ball example shown in
Figure 2-1 and dissected throughout this chapter. This is the method used by Visual Studio,
and it has several advantages that this chapter has touched on already:

• Some of the plumbing is automatic. There’s no need to perform ID lookup with the
LogicalTreeHelper or wire up event handlers in code.

• Reading BAML at runtime is faster than reading XAML.

• Deployment is easier. Because BAML is embedded in your assembly as one or more
resources, there’s no way to lose it.

• XAML files can be edited in other programs, such as design tools. This opens up the
possibility for better collaboration between programmers and designers. (You also get
this benefit when using uncompiled XAML, as described in the previous section.)

Visual Studio uses a two-stage compilation process when you’re compiling a WPF appli-
cation. The first step is to compile the XAML files into BAML using the xamlc.exe compiler. For
example, if your project includes a file name Window1.xaml, the compiler will create a tempo-
rary file named Window1.baml and place it in the obj\Debug subfolder (in your project
folder). At the same time, a partial class is created for your window, using the language of your
choice. For example, if you’re using C#, the compiler will create a file named Window1.g.cs in
the obj\Debug folder. The g stands for generated.

CHAPTER 2 ■ XAML 51

9551CH02 2/8/08 1:42 PM Page 51

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The partial class includes three things:

• Fields for all the controls in your window.

• Code that loads the BAML from the assembly, thereby creating the tree of objects. This
happens when the constructor calls InitializeComponent().

• Code that assigns the appropriate control object to each field and connects all the
event handlers. This happens in a method named Connect(), which the BAML parser
calls every time it finds a named object.

The partial class does not include code to instantiate and initialize your controls because
that task is performed by the WPF engine when the BAML is processed by the
Application.LoadComponent() method.

■Note As part of the XAML compilation process, the XAML compiler needs to create a partial class. This is
only possible if the language you’re using supports the .NET Code DOM model. C# and VB support Code
DOM, but if you’re using a third-party language you’ll need to make sure this support exists before you can
create compiled XAML applications.

Here’s the (slightly abbreviated) Window1.g.cs file from the eight ball example shown in
Figure 2-1:

public partial class Window1 : System.Windows.Window,
System.Windows.Markup.IComponentConnector

{
// The control fields.
internal System.Windows.Controls.TextBox txtQuestion;
internal System.Windows.Controls.Button cmdAnswer;
internal System.Windows.Controls.TextBox txtAnswer;

private bool _contentLoaded;

// Load the BAML.
public void InitializeComponent()
{

if (_contentLoaded) {
return;

}
_contentLoaded = true;

System.Uri resourceLocater = new System.Uri("window1.baml",
System.UriKind.RelativeOrAbsolute);

System.Windows.Application.LoadComponent(this, resourceLocater);
}

CHAPTER 2 ■ XAML52

9551CH02 2/8/08 1:42 PM Page 52

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Hook up each control.
void System.Windows.Markup.IComponentConnector.Connect(int connectionId,
object target)

{
switch (connectionId)
{

case 1:
txtQuestion = ((System.Windows.Controls.TextBox)(target));
return;

case 2:
cmdAnswer = ((System.Windows.Controls.Button)(target));
cmdAnswer.Click += new System.Windows.RoutedEventHandler(
cmdAnswer_Click);

return;
case 3:

txtAnswer = ((System.Windows.Controls.TextBox)(target));
return;

}
this._contentLoaded = true;

}
}

When the XAML-to-BAML compilation stage is finished, Visual Studio uses the appropri-
ate language compiler to compile your code and the generated partial class files. In the case of
a C# application, it’s the csc.exe compiler that handles this task. The compiled code becomes a
single assembly (EightBall.exe) and the BAML for each window is embedded as a separate
resource.

XAML Only
The previous sections show you how to use XAML from a code-based application. As a .NET
developer, this is what you’ll spend most of your time doing. However, it’s also possible to use
a XAML file without creating any code. This is called a loose XAML file. Loose XAML files can
be opened directly in Internet Explorer. (Assuming you’ve installed the .NET Framework 3.0 or
are running Windows Vista, which has it preinstalled.)

■Note If your XAML file uses code, it can’t be opened in Internet Explorer. However, you can build a
browser-based application that breaks through this boundary. Chapter 9 describes how.

At this point, it probably seems relatively useless to create a loose XAML file—after all,
what’s the point of a user interface with no code to drive it? However, as you explore XAML
you’ll discover several features that are entirely declarative. These include features such as ani-
mation, triggers, data binding, and links (which can point to other loose XAML files). Using
these features, you can build a few very simple no-code XAML files. They won’t seem like com-
plete applications, but they can accomplish quite a bit more than static HTML pages.

CHAPTER 2 ■ XAML 53

9551CH02 2/8/08 1:42 PM Page 53

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To try out a loose XAML page, take a .xaml file and make these changes:

• Remove the Class attribute on the root element.

• Remove any attributes that attach event handlers (such as the Button.Click attribute).

• Change the name of the opening and closing tag from Window to Page. Internet
Explorer can only show hosted pages, not stand-alone windows.

You can then double-click your .xaml file to load it up in Internet Explorer. Figure 2-4 shows
a converted EightBall.xaml page, which is included with the downloadable code for this chapter.
You can type in the top text box, but because the application lacks the code-behind file, nothing
happens when you click the button. If you want to create a more capable browser-based appli-
cation that can include code, you’ll need to use the techniques described in Chapter 9.

Figure 2-4. A XAML page in a browser

The Last Word
In this chapter, you took a tour through a simple XAML file and learned its syntax at the same
time. Here’s what you saw:

• You considered key XAML ingredients, such as type converters, markup extensions, and
attached properties.

• You learned how to wire up a code-behind class that can handle the events raised by
your controls.

• You considered the compilation process that takes a standard WPF application into a
compiled executable file. At the same time, you took a look at three variants: creating a
WPF application through code alone, creating a WPF page with nothing but XAML, and
loading XAML manually at runtime.

CHAPTER 2 ■ XAML54

9551CH02 2/8/08 1:42 PM Page 54

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although you haven’t had an exhaustive look at every detail of XAML markup, you’ve
learned enough to reap all its benefits. Now, your attention can shift to the WPF technology
itself, which holds some of the most interesting surprises. In the next chapter you’ll start out
by considering the core of the WPF application model: the Application class.

CHAPTER 2 ■ XAML 55

9551CH02 2/8/08 1:42 PM Page 55

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH02 2/8/08 1:42 PM Page 56

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Application

While it’s running, every WPF application is represented by an instance of the System.Windows.
Application class. This class tracks all the open windows in your application, decides when your
application shuts down, and fires application events that you can handle to perform initialization
and cleanup.

The Application class isn’t one of the more fascinating parts of WPF. However, because
every WPF application uses the Application class, learning how it works is required reading.
In this chapter, you’ll quickly get the essentials.

■Note The System.Windows.Application class plays the same role in a WPF application as the
System.Windows.Forms.Application class plays in a Windows Forms application. But Microsoft, always
happy to reinvent the wheel, has given each one subtly different members and functionality.

The Application Life Cycle
In WPF, applications go through a straightforward life cycle. Shortly after your application
begins, the application object is created. As your application runs, various application events
fire, which you may choose to monitor. Finally, when the application object is released, your
application ends.

Creating an Application Object
The simplest way to use the Application class is to create it by hand. The following example
shows the bare minimum: an application entry point (a Main() method) that creates a window
named Window1 and fires up a new application:

using System;
using System.Windows;

public class Startup
{

[STAThread()]
static void Main()
{

57

C H A P T E R 3

9551CH03 2/8/08 1:42 PM Page 57

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Create the application.
Application app = new Application();

// Create the main window.
Window1 win = new Window1();

// Launch the application and show the main window.
app.Run(win);

}
}

When you pass a window to the Application.Run() method, that window is set as the main
window and exposed to your entire application through the Application.MainWindow prop-
erty. The Run() method then fires the Application.Startup event and shows the main window.

You could accomplish the same effect with this more long-winded code:

// Create the application.
Application app = new Application();

// Create, assign, and show the main window.
Window1 win = new Window1();
app.MainWindow = win;
win.Show();

// Keep the application alive.
app.Run();

Both approaches give your application all the momentum it needs. When started in this
way, your application continues running until the main window and every other window is
closed. At that point, the Run() method returns, and any additional code in your Main()
method is executed before the application winds down.

■Note If you want to start your application using a Main() method, you need to designate the class that
contains the Main() method as the startup object in Visual Studio. To do so, double-click the Properties node
in the Solution Explorer, and change the selection in the Startup Object list. Ordinarily, you don’t need to take
this step, because Visual Studio creates the Main() method for you based on the XAML application template.
You’ll learn about the application template in the next section.

Deriving a Custom Application Class
Although the approach shown in the previous section (instantiating the base Application class
and calling the Run() method) works perfectly well, it’s not the pattern that Visual Studio uses
when you create a new WPF application.

Instead, Visual Studio derives a custom class from the Application class. In a simple appli-
cation, this approach has no meaningful effect. However, if you’re planning to handle

CHAPTER 3 ■ THE APPLICATION58

9551CH03 2/8/08 1:42 PM Page 58

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

application events, it provides a neater model, because you can place all your event handling
code in the Application-derived class.

The model Visual Studio uses for the Application class is essentially the same as the
model it uses for the windows. The starting point is a XAML template, which is named
App.xaml by default. Here’s what it looks like (without the resources section, which you’ll learn
about in Chapter 11):

<Application x:Class="TestApplication.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml"
>

</Application>

As you might remember from Chapter 2, the Class attribute is used in XAML to create a
class derived from the element. Thus, this class creates a class that derives from Application,
with the name TestApplication.App. (TestApplication is the name of the project, which is the
same as the namespace where the class is defined, and App is the name that Visual Studio uses
for the custom class that derives from Application. If you want, you can change the class name
to something more exciting.)

The Application tag not only creates a custom application class, but it also sets the StartupUri
property to identify the XAML document that represents the main window. As a result, you don’t
need to explicitly instantiate this window using code—the XAML parser will do it for you.

As with windows, the application class is defined in two separate portions that are fused
together at compile time. The automatically generated portion isn’t visible in your project, but
it contains the Main() entry point and the code for starting the application. It looks something
like this:

using System;
using System.Windows;

public partial class App : Application
{

[STAThread()]
public static void Main()
{

TestApplication.App app = new TestApplication.App();
app.InitializeComponent();
app.Run();

}

public void InitializeComponent()
{

this.StartupUri = new Uri("Window1.xaml", System.UriKind.Relative);
}

}

If you’re really interested in seeing the custom application class that the XAML template
creates, look for the App.g.cs file in the obj\Debug folder inside your project directory.

CHAPTER 3 ■ THE APPLICATION 59

9551CH03 2/8/08 1:42 PM Page 59

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

The only difference between the automatically generated code shown here and a custom
application class that you might create on your own is that the automatically generated class
uses the StartupUri property instead of setting the MainWindow property or passing the main
window as a parameter to the Run() method. You’re free to create a custom application class
that uses this approach, so long as you use the same URI format. You need to create a relative
Uri object that names a XAML document that’s in your project. (This XAML document is com-
piled and embedded in your application assembly as a BAML resource. The resource name is
the name of the original XAML file. In the previous example, the application contains a
resource named Window1.xaml with the compiled XAML.)

■Note The URI system you see here is an all-purpose way to refer to resources in your application. You’ll
learn more about how it works in Chapter 11.

The second portion of the custom application class is stored in your project in a file like
App.xaml.cs. It contains the event handling code you add. Initially, it’s empty:

public partial class App : Application
{
}

This file is merged with the automatically generated application code through the magic
of partial classes.

Application Shutdown
Ordinarily, the Application class keeps your application alive as long as at least one window is
still open. If this isn’t the behavior you want, you can adjust the Application.ShutdownMode.
If you’re instantiating your Application object by hand, you need to set the ShutdownMode
property before you call Run(). If you’re using the App.xaml file, you can simply set the
ShutdownMode property in the XAML markup.

You have three choices for the shutdown mode, as listed in Table 3-1.

Table 3-1. Values from the ShutdownMode Enumeration

Name Description

OnLastWindowClose This is the default behavior—your application keeps running as long as
there is at least one window in existence. If you close the main window,
the Application.MainWindow property still refers to the object that
represents the closed window. (Optionally, you can use code to reassign
the MainWindow property to point to a different window.)

OnMainWindowClose This is the traditional approach—your application stays alive only as
long as the main window is open.

OnExplicitShutdown The application never ends (even if all the windows are closed) unless
you call Application.Shutdown(). This approach might make sense if
your application is a front end for a long-running background task or
if you just want to use more complex logic to decide when your
application should close (at which point you’ll call the Application.
Shutdown() method).

CHAPTER 3 ■ THE APPLICATION60

9551CH03 2/8/08 1:42 PM Page 60

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, if you want to use the OnMainWindowClose approach and you’re using the
App.xaml file, you need to make this addition:

<Application x:Class="TestApplication.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml" ShutdownMode="OnMainWindowClose"
>

</Application>

No matter what shutdown method you choose, you can always use the Applica-
tion.Shutdown() method to end your application immediately. (Of course, when you call
the Shutdown() method, your application doesn’t necessarily stop running right away.
Calling Application.Shutdown() causes the Application.Run() method to return immediately,
but there may be additional code that runs in the Main() method or responds to the Applica-
tion.Exit event.)

■Note When ShutdownMode is OnMainWindowClose and you close the main window, the Application
object will automatically close all the other windows before the Run() method returns. The same is true if you
call Application.Shutdown(). This is significant, because these windows may have event handling code that
fires when they are being closed.

Application Events
Initially, the App.xaml.cs file doesn’t contain any code. Although no code is required, you can
add code that handles application events. The Application class provides a small set of useful
events. Table 3-2 lists the most important ones. It leaves out the events that are used solely for
navigation applications (which are discussed in Chapter 9).

Table 3-2. Application Events

Name Description

Startup Occurs after the Application.Run() method is called and just before the
main window is shown (if you passed the main window to the Run()
method). You can use this event to check for any command-line
arguments, which are provided as an array through the StartupEvent-
Args.Args property. You can also use this event to create and show the main
window (instead of using the StartupUri property in the App.xaml file).

Exit Occurs when the application is being shut down for any reason, just before
the Run() method returns. You can’t cancel the shutdown at this point,
although the code in your Main() method could relaunch the application.
You can use the Exit event to set the integer exit code that’s returned from
the Run() method.

SessionEnding Occurs when the Windows session is ending—for example, when the user
is logging off or shutting down the computer. (You can find out which one
it is by examining the SessionEndingCancelEventArgs.ReasonSession-
Ending property.) You can also cancel the shutdown by setting
SessionEndingCancelEventArgs.Cancel to true. If you don’t, WPF will
call the Application.Shutdown() method when your event handler ends.

Continued

CHAPTER 3 ■ THE APPLICATION 61

9551CH03 2/8/08 1:42 PM Page 61

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Table 3-2. Continued

Name Description

Activated Occurs when one of the windows in the application gets
activated. This occurs when you switch from another
Windows program to this application. It also occurs the first
time you show a window.

Deactivated Occurs when a window in the application gets deactivated.
This occurs when you switch to another Windows program.

DispatcherUnhandledException Occurs when an unhandled exception occurs anywhere in
your application (on the main application thread). (The
application dispatcher catches these exceptions.) By
responding to this event, you can log critical errors, and
you can even choose to neutralize the exception and
continue running your application by setting the
DispatcherUnhandledExceptionEventArgs.Handled
property to true. You should take this step only if you can be
guaranteed that the application is still in a valid state and
can continue.

You have two choices for handling events: you can attach an event handler, or you can
override the corresponding protected method. If you choose to handle application events, you
don’t need to use delegate code to wire up your event handler. Instead, you can attach it using
an attribute in the App.xaml file. For example, if you have this event handler:

private void App_DispatcherUnhandledException(object sender,
DispatcherUnhandledExceptionEventArgs e)

{
MessageBox.Show("An unhandled " + e.Exception.GetType().ToString() +
" exception was caught and ignored.");

e.Handled = true;
}

you can connect it with this XAML:

<Application x:Class="PreventSessionEnd.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml"
DispatcherUnhandledException="App_DispatcherUnhandledException"
>

</Application>

For each application event (as listed in Table 3-2), a corresponding method is called to raise
the event. The method name is the same as the event name, except it’s prefixed with the word
On, so Startup becomes OnStartup(), Exit becomes OnExit(), and so on. This pattern is extremely
common in .NET (and Windows Forms programmers will recognize it well). The only exception
is the DispatcherExceptionUnhandled event—there’s no OnDispatcherExceptionUnhandled()
method, so you always need to use an event handler.

CHAPTER 3 ■ THE APPLICATION62

9551CH03 2/8/08 1:42 PM Page 62

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Here’s a custom application class that overrides OnSessionEnding and prevents both the
system and itself from shutting down if a flag is set:

public partial class App : Application
{

private bool unsavedData = false;
public bool UnsavedData
{

get { return unsavedData; }
set { unsavedData = value; }

}

protected override void OnStartup(StartupEventArgs e)
{

base.OnStartup(e);
UnsavedData = true;

}

protected override void OnSessionEnding(SessionEndingCancelEventArgs e)
{

base.OnSessionEnding(e);

if (UnsavedData)
{

e.Cancel = true;
MessageBox.Show(
"The application attempted to be closed as a result of " +
e.ReasonSessionEnding.ToString() +
". This is not allowed, as you have unsaved data.");

}
}

}

When overriding application methods, it’s a good idea to begin by calling the base class
implementation. Ordinarily, the base class implementation does little more than raise the
corresponding application event.

Obviously, a more sophisticated implementation of this technique wouldn’t use a mes-
sage box—it would show some sort of confirmation dialog box that would give the user the
choice of continuing (and quitting both the application and Windows) or canceling the
shutdown.

CHAPTER 3 ■ THE APPLICATION 63

9551CH03 2/8/08 1:42 PM Page 63

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Application Tasks
Now that you understand how the Application object fits into a WPF application, you’re ready
to take a look at how you can apply it to a few common scenarios. In the following sections,
you’ll consider how you can process command-line arguments, support interaction between
windows, add document tracking, and create a single-instance application.

Handling Command-Line Arguments
To process command-line arguments, you react to the Application.Startup event. The argu-
ments are provided as an array of strings through the StartupEventArgs.Args property.

For example, imagine you want to load a document when its name is passed as a
command-line argument. In this case, it makes sense to read the command-line arguments
and perform the extra initialization you need. The following example implements this pattern
by responding to the Application.Startup event. It doesn’t set the Application.StartupUri prop-
erty at any point—instead the main window is instantiated using code.

public partial class App : Application
{

private static void App_Startup(object sender, StartupEventArgs e)
{

// Create, but don't show the main window.
FileViewer win = new FileViewer();

if (e.Args.Length > 0)
{

string file = e.Args[0];
if (System.IO.File.Exists(file))
{

// Configure the main window.
win.LoadFile(file);

}
}
else
{

// (Perform alternate initialization here when
// no command-line arguments are supplied.)

}

// This window will automatically be set as the Application.MainWindow.
win.Show();

}
}

This method initializes the main window, which is then shown when the App_Startup()
method ends. This code assumes that the FileViewer class has a public method (that you’ve
added) named LoadFile(). Here’s one possible example, which simply reads (and displays) the
text in the file you’ve identified:

CHAPTER 3 ■ THE APPLICATION64

9551CH03 2/8/08 1:42 PM Page 64

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public partial class FileViewer : Window
{

...

public void LoadFile(string path)
{

this.Content = File.ReadAllText(path);
this.Title = path;

}
}

You can try an example of this technique with the sample code for this chapter.

■Note If you’re a seasoned Windows Forms programmer, the code in the LoadFile() method looks a little
strange. It sets the Content property of the current Window, which determines what the window displays in
its client area. Interestingly enough, WPF windows are actually a type of content control (meaning they derive
from the ContentControl class). As a result, they can contain (and display) a single object. It’s up to you
whether that object is a string, a control, or (more usefully) a panel that can host multiple controls. You’ll
learn much more about the WPF content model in the following chapters.

Accessing the Current Application
You can get the current application instance from anywhere in your application using the
static Application.Current property. This allows rudimentary interaction between windows,
because any window can get access the current Application object and through that obtain a
reference to the main window.

Window main = Application.Current.MainWindow;
MessageBox.Show("The main window is " + main.Title);

Of course, if you want to access any methods, properties, or events that you’ve added to
your custom main window class, you need to cast the window object to the right type. If the
main window is an instance of a custom MainWindow class, you can use code like this:

MainWindow main = (MainWindow)Application.Current.MainWindow;
main.DoSomething();

A window can also examine the contents of the Application.Windows collection, which
provides references to all the currently open windows:

foreach (Window window in Application.Current.Windows)
{

MessageBox.Show(window.Title + " is open.");
}

CHAPTER 3 ■ THE APPLICATION 65

9551CH03 2/8/08 1:42 PM Page 65

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In practice, most applications prefer to use a more structured form of interaction between
windows. If you have several long-running windows that are open at the same time and they
need to communicate in some way, it makes more sense to hold references to these windows
in a custom application class. That way you can always find exactly the window you need.
Similarly, if you have a document-based application, you might choose to create a collection
that tracks document windows but nothing else. The next section considers this technique.

■Note Windows (including the main window) are added to the Windows collection as they’re shown, and
they’re removed when they’re closed. For this reason, the position of windows in the collection may change,
and you can’t assume you’ll find a specific window object at a specific position.

Interacting Between Windows
As you’ve seen, the custom application class is a great place to put code that reacts to different
application events. There’s one other purpose that an Application class can fill quite nicely:
storing references to important windows so one window can access another.

■Tip This technique makes sense when you have a modeless window that lives for a long period of time
and might be accessed in several different classes (not just the class that created it). If you’re simply show-
ing a modal dialog box as part of your application, this technique is overkill. In this situation, the window
won’t exist for very long, and the code that creates the window is the only code that needs to access it. (To
brush up on the difference between modal windows, which interrupt application flow until they’re closed,
and modeless windows, which don’t, refer to Chapter 8.)

For example, imagine you want to keep track of all the document windows that your
application uses. To that end, you might create a dedicated collection in your custom applica-
tion class. Here’s an example that uses a generic List collection to hold a group of custom
window objects. In this example, each document window is represented by an instance of a
class named Document:

public partial class App : Application
{

private List<Document> documents = new List<Document>();

public List<Document> Documents
{

get { return documents; }
set { documents = value; }

}
}

CHAPTER 3 ■ THE APPLICATION66

9551CH03 2/8/08 1:42 PM Page 66

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now, when you create a new document, you simply need to remember to add it to the
Documents collection. Here’s an event handler that responds to a button click and does
the deed:

private void cmdCreate_Click(object sender, RoutedEventArgs e)
{

Document doc = new Document();
doc.Owner = this;
doc.Show();
((App)Application.Current).Documents.Add(doc);

}

Alternatively, you could respond to an event like Window.Loaded in the Document class
to make sure the document object always registers itself in the Documents collection when it’s
created.

■Note This code also sets the Window.Owner property so that all the document windows are displayed
“on top” of the main window that creates them. You’ll learn more about the Owner property when you
consider windows in detail in Chapter 8.

Now you can use that collection elsewhere in your code to loop over all the documents
and use public members. In this case, the Document class includes a custom SetContent()
method that updates its display:

private void cmdUpdate_Click(object sender, RoutedEventArgs e)
{

foreach (Document doc in ((App)Application.Current).Documents)
{

doc.SetContent("Refreshed at " + DateTime.Now.ToLongTimeString() + ".");
}

}

Figure 3-1 demonstrates this application. The actual end result isn’t terribly impressive, but
the interaction is worth noting—it demonstrates a safe, disciplined way for your windows to
interact through a custom application class. It’s superior to using the Windows property, because
it’s strongly typed, and it holds only Document windows (not a collection of all the windows in
your application). It also gives you the ability to categorize the windows in another, more useful
way—for example, in a Dictionary collection with a key name for easy lookup. In a document-
based application, you might choose to index windows in a collection by file name.

CHAPTER 3 ■ THE APPLICATION 67

9551CH03 2/8/08 1:42 PM Page 67

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 3-1. Allowing windows to interact

■Note When interacting between windows, don’t forget your object-oriented smarts—always use a layer
of custom methods, properties, and events that you’ve added to the window classes. Never expose the fields
or controls of a form to other parts of your code. If you do, you’ll quickly wind up with a tightly coupled inter-
face where one window reaches deep into the inner workings of another, and you won’t be able to enhance
either class without breaking the murky interdependencies between them.

Single-Instance Applications
Ordinarily, you can launch as many copies of a WPF application as you want. In some scenar-
ios, this design makes perfect sense. However, in other cases it’s a problem, particularly when
building document-based applications.

For example, consider Microsoft Word. No matter how many documents you open (or
how you open them), only a single instance of winword.exe is loaded at a time. As you open
new documents, they appear in the new windows, but a single application remains in control
of all the document windows. This design is the best approach if you want to reduce the over-
head of your application, centralize certain features (for example, create a single print queue
manager), or integrate disparate windows (for example, offer a feature that tiles all the cur-
rently open document windows next to each other).

WPF doesn’t provide a native solution for single-instance applications, but you can use
several workarounds. The basic technique is to check whether another instance of your appli-
cation is already running when the Application.Startup event fires. The simplest way to do this
is to use a systemwide mutex (a synchronization object provided by the operating system that

CHAPTER 3 ■ THE APPLICATION68

9551CH03 2/8/08 1:42 PM Page 68

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

allows for interprocess communication). This approach is simple but limited—most signifi-
cantly, there’s no way for the new instance of an application to communicate with the existing
instance. This is a problem in a document-based application, because the new instance may
need to tell the existing instance to open a specific document, if it’s passed on the command
line. (For example, when you double-click a .doc file in Windows Explorer and Word is already
running, you expect Word to load the requested file.) This communication is more complex,
and it’s usually performed through remoting or Windows Communication Foundation (WCF).
A proper implementation needs to include a way to discover the remoting server and use it to
transfer command-line arguments.

But the simplest approach, and the one that’s currently recommended by the WPF team,
is to use the built-in support that’s provided in Windows Forms and originally intended for
Visual Basic applications. This approach handles the messy plumbing behind the scenes.

So, how can you use a feature that’s designed for Windows Forms and Visual Basic to man-
age a WPF application in C#? Essentially, the old-style application class acts as a wrapper for
your WPF application class. When your application is launched, you’ll create the old-style
application class, which will then create the WPF application class. The old-style application
class handles the instance management, while the WPF application class handles the real
application. Figure 3-2 shows how these parts interact.

Figure 3-2. Wrapping the WPF application with a WindowsFormsApplicationBase

The first step to use this approach is to add a reference to the Microsoft.VisualBasic.dll
assembly and derive a custom class from the Microsoft.VisualBasic.ApplicationServices.Win-
dowsFormsApplicationBase class. This class provides three important members that you use
for instance management:

• The IsSingleInstance property enables a single-instance application. You set this prop-
erty to true in the constructor.

• The OnStartup() method is triggered when the application starts. You override this
method and create the WPF application object at this point.

• The OnStartupNextInstance() method is triggered when another instance of the appli-
cation starts up. This method provides access to the command-line arguments. At this
point, you’ll probably call a method in your WPF application class to show a new win-
dow but not create another application object.

CHAPTER 3 ■ THE APPLICATION 69

9551CH03 2/8/08 1:42 PM Page 69

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the code for the custom class that’s derived from WindowsFormsApplicationBase:

public class SingleInstanceApplicationWrapper :
Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase

{
public SingleInstanceApplicationWrapper()
{

// Enable single-instance mode.
this.IsSingleInstance = true;

}

// Create the WPF application class.
private WpfApp app;
protected override bool OnStartup(
Microsoft.VisualBasic.ApplicationServices.StartupEventArgs e)

{
app = new WpfApp();
app.Run();

return false;
}

// Direct multiple instances.
protected override void OnStartupNextInstance(
Microsoft.VisualBasic.ApplicationServices.StartupNextInstanceEventArgs e)

{
if (e.CommandLine.Count > 0)
{

app.ShowDocument(e.CommandLine[0]);
}

}
}

When the application starts, this class creates an instance of WpfApp, which is a custom
WPF application class (a class that derives from System.Windows.Application). The WpfApp
class includes some startup logic that shows a main window, along with a custom ShowDocu-
ment() window that loads a document window for a given file. Every time a file name is passed
to SingleInstanceApplicationWrapper through the command line, SingleInstanceApplication-
Wrapper calls WpfApp.ShowDocument().

Here’s the code for the WpfApp class:

public class WpfApp : System.Windows.Application
{

protected override void OnStartup(System.Windows.StartupEventArgs e)
{

base.OnStartup(e);
WpfApp.current = this;

// Load the main window.

CHAPTER 3 ■ THE APPLICATION70

9551CH03 2/8/08 1:42 PM Page 70

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DocumentList list = new DocumentList();
this.MainWindow = list;
list.Show();

// Load the document that was specified as an argument.
if (e.Args.Length > 0) ShowDocument(e.Args[0]);

}

public void ShowDocument(string filename)
{

try
{

Document doc = new Document();
doc.LoadFile(filename);
doc.Owner = this.MainWindow;
doc.Show();

// If the application is already loaded, it may not be visible.
// This attempts to give focus to the new window.
doc.Activate();

}
catch
{

MessageBox.Show("Could not load document.");
}

}
}

The only missing detail now (aside from the DocumentList and Document
windows) is the entry point for the application. Because the application needs to create
the SingleInstanceApplicationWrapper class before the App class, the application needs to
start with a traditional Main() method, rather than an App.xaml file. Here’s the code you need:

public class Startup
{

[STAThread]
public static void Main(string[] args)
{

SingleInstanceApplicationWrapper wrapper =
new SingleInstanceApplicationWrapper();

wrapper.Run(args);
}

}

These three classes—SingleInstanceApplicationWrapper, WpfApp, and Startup—form the
basis for a single-instance WPF application. Using these bare bones, it’s possible to create a
more sophisticated example. For example, the downloadable code for this chapter modifies
the WpfApp class so it maintains a list of open documents (as demonstrated earlier). Using

CHAPTER 3 ■ THE APPLICATION 71

9551CH03 2/8/08 1:42 PM Page 71

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF data binding (a feature described in Chapter 16), the DocumentList window displays the
currently open documents. Figure 3-3 shows an example with three open documents.

Figure 3-3. A single-instance application with a central window

Finally, the SingleInstanceApplication example includes a FileRegistrationHelper class
that registers a file extension using the classes in the Microsoft.Win32 namespace:

string extension = ".testDoc";
string title = "SingleInstanceApplication";
string extensionDescription = "A Test Document";
FileRegistrationHelper.SetFileAssociation(
extension, title + "." + extensionDescription);

This code needs to be executed only once. After the registration is in place, every time you
double-click a file with the extension .testDoc, the SingleInstanceApplication is started, and
the file is passed as a command-line argument. If the SingleInstanceApplication is already
running, the SingleInstanceApplicationWrapper.OnStartupNextInstance() method is called,
and the new document is loaded by the existing application.

CHAPTER 3 ■ THE APPLICATION72

9551CH03 2/8/08 1:42 PM Page 72

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Single-instance application support will eventually make its way to WPF in a future version. For
now, this workaround provides the same functionality with only a little more work required.

WINDOWS VISTA AND UAC

File registration is a task that’s usually performed by a setup program. One problem with including it in your
application code is that it requires elevated permissions that the user running the application might not have.
This is particularly a problem with the User Account Control (UAC) feature in Windows Vista. In fact, by default
this code will fail with a security-related exception.

In the eyes of UAC, all applications have one of three run levels:

• asInvoker. The application inherits the process token of the parent process (the process that launched
it). The application won’t get administrator privileges unless the user specifically requests them, even if
the user is logged on as an administrator. This is the default.

• requireAdministrator. If the current user is a member of the Administrators group, a UAC confirmation
dialog box appears. Once the user accepts this confirmation, the application gets administrator privi-
leges. If the user is not a member of the Administrators group, a dialog box appears where the user
can enter the user name and password of an account that does have administrator privileges.

• highestAvailable. The application gets the highest privileges according to its group membership. For
example, if the current user is a member of the Administrators group, the application gets administra-
tor privileges (once the user accepts the UAC confirmation). The advantage of this run level is that the
application will still run if administrator privileges aren’t available, unlike requireAdministrator.

Ordinarily, your application runs with the asInvoker run level. To request administrator privileges, you
must right-click the application EXE file and choose Run As Administrator when you start it. To get adminis-
trator privileges when testing your application Visual Studio, you must right-click the Visual Studio shortcut
and choose Run As Administrator.

If your application needs administrator privileges, you can choose to require them with the
requireAdministrator run level or request them with the highestAvailable run level. Either way, you need
to create a manifest—a file with a block of XML that will be embedded in your compiled assembly. To add a
manifest, right-click your project in the Solution Explorer, and choose Add ➤ New Item. Pick the Application
Manifest File template, and click Add.

The content of the manifest file is the relatively simple block of XML shown here:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0"
xmlns="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2">
<assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
<security>
<requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
<requestedExecutionLevel level="asInvoker" />

CHAPTER 3 ■ THE APPLICATION 73

9551CH03 2/8/08 1:42 PM Page 73

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</requestedPrivileges>
</security>

</trustInfo>
</asmv1:assembly>

To change the run level, simply modify the level attribute of the <requestedExcutionLevel> element.
Valid values are asInvoker, requireAdministrator, and highestAvailable.

In some cases, you might want to request administrator privileges in specific scenarios. In the file regis-
tration example, you might choose to request administrator privileges only when the application is run for the
first time and needs to create the registration. This allows you to avoid unnecessary UAC warnings. The easi-
est way to implement this pattern is to put the code that requires higher privileges in a separate executable,
which you can then call when necessary.

The Last Word
In this chapter, you took a quick look at the WPF application model. To manage a simple WPF
application, you need to do nothing more than create an instance of the Application class and
call the Run() method. However, most applications go further and derive a custom class from
the Application class. And as you saw, this custom class is an ideal tool for handling applica-
tion events and an ideal place to track the windows in your application or implement a
single-instance pattern.

You haven’t quite plumbed the full reaches of the Application class—there’s still a
Resources collection to consider, where you can define objects you want to reuse throughout
your application, like styles that can be applied to controls in multiple windows. However, it’s
safe to leave these details to Chapter 11, when you explore the WPF resource model in more
detail. Instead, in the next chapter you’ll consider how controls are organized into realistic
windows using the WPF layout panels.

CHAPTER 3 ■ THE APPLICATION74

9551CH03 2/8/08 1:42 PM Page 74

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Layout

Half the battle in any user interface design is organizing the content in a way that’s attractive,
practical, and flexible. But the real challenge is making sure that your layout can adapt itself
gracefully to different window sizes.

In WPF, you shape layout using different containers. Each container has its own layout
logic—some stack elements, others arrange them in a grid of invisible cells, and so on. If
you’ve programmed with Windows Forms, you’ll be surprised to find that coordinate-based
layout is strongly discouraged in WPF. Instead, the emphasis is on creating more flexible lay-
outs that can adapt to changing content, different languages, and a variety of window sizes.
For most developers moving to WPF, the new layout system is a great surprise—and the first
real challenge.

In this chapter, you’ll see how the WPF layout model works, and you’ll begin using the
basic layout containers. You’ll also consider several common layout examples—everything
from a basic dialog box to a resizable split window—in order to learn the fundamentals of
WPF layout.

Understanding Layout in WPF
The WPF layout model represents a dramatic shift in the way Windows developers approach
user interfaces. In order to understand the new WPF layout model, it helps to take a look at
what’s come before.

In .NET 1.x, Windows Forms provided a fairly primitive layout system. Controls were fixed
in place using hard-coded coordinates. The only saving grace was anchoring and docking—
two features that allowed controls to move or resize themselves along with their container.
Anchoring and docking were great for creating simple resizable windows—for example,
keeping OK and Cancel buttons stuck to the bottom-right corner of a window, or allowing a
TreeView to expand to fill an entire form—but they couldn’t handle serious layout challenges.
For example, anchoring and docking couldn’t implement bi-pane proportional resizing (divid-
ing extra space equally among two regions). They also weren’t much help if you had highly
dynamic content, such as a label that might expand to hold more text than anticipated, caus-
ing it to overlap other nearby controls.

In .NET 2.0, Windows Forms filled the gaps with two new layout containers: the
FlowLayoutPanel and TableLayoutPanel. Using these controls, you could create more sophisti-
cated web-like interfaces. Both layout containers allowed their contained controls to grow and
bump other controls out of the way. This made it easier to deal with dynamic content, create
modular interfaces, and localize your application. However, the layout panels still felt like an

75

C H A P T E R 4

9551CH04 2/8/08 1:43 PM Page 75

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

add-on to the core Windows Forms layout system, which used fixed coordinates. The layout
panels were an elegant solution, but you could see the duct tape holding it all together.

WPF introduces a new layout system that’s heavily influenced by the developments in
Windows Forms. This system reverses the .NET 2.0 model (coordinate-based layout with
optional flow-based layout panels) by making flow-based layout the standard and giving only
rudimentary support for coordinate-based layout. The benefits of this shift are enormous.
Developers can now create resolution-independent, size-independent interfaces that scale
well on different monitors, adjust themselves when content changes, and handle the transi-
tion to other languages effortlessly. However, before you can take advantage of these changes,
you’ll need to start thinking about layout a little differently.

The WPF Layout Philosophy
A WPF window can hold only a single element. To fit in more than one element and create a
more practical user interface, you need to place a container in your window and then add
other elements to that container.

■Note This limitation stems from the fact that the Window class is derived from ContentControl, which
you’ll study more closely in Chapter 5.

In WPF, layout is determined by the container that you use. Although there are several
containers to choose from, the “ideal” WPF window follows a few key principles:

• Elements (like controls) should not be explicitly sized. Instead, they grow to fit their
content. For example, a button expands as you add more text. You can limit controls to
acceptable sizes by setting a maximum and minimum size.

• Elements do not indicate their position with screen coordinates. Instead, they are
arranged by their container based on their size, order, and (optionally) other informa-
tion that’s specific to the layout container. If you need to add whitespace between
elements, you use the Margin property.

■Tip Hard-coded sizes and positions are evil because they limit your ability to localize your interface, and
they make it much more difficult to deal with dynamic content.

• Layout containers “share” the available space among their children. They attempt to
give each element its preferred size (based on its content) if the space is available. They
can also distribute extra space to one or more children.

• Layout containers can be nested. A typical user interface begins with the Grid, WPF’s
most capable container, and contains other layout containers that arrange smaller
groups of elements, such as captioned text boxes, items in a list, icons on a toolbar, a
column of buttons, and so on.

CHAPTER 4 ■ LAYOUT76

9551CH04 2/8/08 1:43 PM Page 76

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although there are exceptions to these rules, they reflect the overall design goals of WPF.
In other words, if you follow these guidelines when you build a WPF application, you’ll create
a better, more flexible user interface. If you break these rules, you’ll end up with a user inter-
face that isn’t well suited to WPF and is much more difficult to maintain.

The Layout Process
WPF layout takes place in two stages: a measure stage and an arrange stage. In the measure
stage, the container loops through its child elements and asks them to provide their preferred
size. In the arrange stage, the container places the child elements in the appropriate position.

Of course, an element can’t always get its preferred size—sometimes the container isn’t
large enough to accommodate it. In this case, the container must truncate the offending ele-
ment to fit the visible area. As you’ll see, you can often avoid this situation by setting a
minimum window size.

■Note Layout containers don’t provide any scrolling support. Instead, scrolling is provided by a
specialized content control—the ScrollViewer—that can be used just about anywhere. You’ll learn about
the ScrollViewer in Chapter 5.

The Layout Containers
All the WPF layout containers are panels that derive from the abstract System.Windows.
Controls.Panel class (see Figure 4-1). The Panel class adds a small set of members, including
the three public properties that are detailed in Table 4-1.

Figure 4-1. The hierarchy of the Panel class

CHAPTER 4 ■ LAYOUT 77

9551CH04 2/8/08 1:43 PM Page 77

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 4-1. Public Properties of the Panel Class

Name Description

Background The brush that’s used to paint the panel background. You must set this property
to a non-null value if you want to receive mouse events. (If you want to receive
mouse events but you don’t want to display a solid background, just set the
background color to Transparent.) You’ll learn more about basic brushes in
Chapter 7 (and more advanced brushes in Chapter 13).

Children The collection of items that’s stored in the panel. This is the first level of items—
in other words, these items may themselves contain more items.

IsItemsHost A Boolean value that’s true if the panel is being used to show the items that are
associated with an ItemsControl (such as the nodes in a TreeView or the list
entries in a ListBox). Most of the time you won’t even be aware that a list control
is using a behind-the-scenes panel to manage the layout of its items. However,
this detail becomes more important if you want to create a customized list that
lays out children in a different way (for example, a ListBox that tiles images).
You’ll use this technique in Chapter 17.

■Note The Panel class also has a bit of internal plumbing you can use if you want to create your own lay-
out container. Most notably, you can override the MeasureOverride() and ArrangeOverride() methods inherited
from FrameworkElement to change the way the panel handles the measure stage and the arrange stage
when organizing its child elements. You’ll learn how to create a custom panel in Chapter 24.

On its own, the base Panel class is nothing but a starting point for other more specialized
classes. WPF provides a number of Panel-derived classes that you can use to arrange layout.
The most fundamental of these are listed in Table 4-2. As with all WPF controls and most
visual elements, these classes are found in the System.Windows.Controls namespace.

Table 4-2. Core Layout Panels

Name Description

StackPanel Places elements in a horizontal or vertical stack. This layout container is typically
used for small sections of a larger, more complex window.

WrapPanel Places elements in a series of wrapped lines. In horizontal orientation, the
WrapPanel lays items out in a row from left to right and then onto subsequent
lines. In vertical orientation, the WrapPanel lays out items in a top-to-bottom
column and then uses additional columns to fit the remaining items.

DockPanel Aligns elements against an entire edge of the container.

Grid Arranges elements in rows and columns according to an invisible table. This is
one of the most flexible and commonly used layout containers.

UniformGrid Places elements in an invisible table but forces all cells to have the same size.
This layout container is used infrequently.

Canvas Allows elements to be positioned absolutely using fixed coordinates. This layout
container is the most similar to traditional Windows Forms, but it doesn’t provide
anchoring or docking features. As a result, it’s an unsuitable choice for a resizable
window unless you’re willing to do a fair bit of work.

CHAPTER 4 ■ LAYOUT78

9551CH04 2/8/08 1:43 PM Page 78

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Along with these core containers, there are several more specialized panels that you’ll
encounter in various controls. These include panels that are dedicated to holding the child
items of a particular control—such as TabPanel (the tabs in a TabControl), ToolbarPanel (the
buttons in a Toolbar), and ToolbarOverflowPanel (the commands in a Toolbar’s overflow
menu). There’s also a VirtualizingStackPanel, which databound list controls use to minimize
their overhead, and an InkCanvas, which is similar to the Canvas but has support for handling
stylus input on the TabletPC. (For example, depending on the mode you choose, the InkCan-
vas supports drawing with the pointer to select onscreen elements. And although it’s a little
counterintuitive, you can use the InkCanvas with an ordinary computer and a mouse.)

Simple Layout with the StackPanel
The StackPanel is one of the simplest layout containers. It simply stacks its children in a single
row or column.

For example, consider this window, which contains a stack of three buttons:

<Window x:Class="Layout.SimpleStack"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Layout" Height="223" Width="354"
>

<StackPanel>
<Label>A Button Stack</Label>
<Button>Button 1</Button>
<Button>Button 2</Button>
<Button>Button 3</Button>
<Button>Button 4</Button>

</StackPanel>
</Window>

Figure 4-2 shows the window that results.

Figure 4-2. The StackPanel in action

CHAPTER 4 ■ LAYOUT 79

9551CH04 2/8/08 1:43 PM Page 79

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

USING THE STACKPANEL IN VISUAL STUDIO

It’s relatively easy to create this example using the designer in Visual Studio. Begin by deleting the root Grid
element (if it’s there). Then, drag a StackPanel into the window. Next, drag the other elements (the label and
four buttons) into the window, in the top-to-bottom order you want.

If you want to rearrange the elements in the StackPanel, you can’t simply drag and drop them. Instead,
right-click the element you want to move, and choose an option from the Order submenu. The ordering
options correspond to the order of the elements in the markup, with the first element occupying the back
position and the last element occupying the front position. Thus, you can move an element down to the bot-
tom of the StackPanel (using Bring to Front), up to the top (using Send to Back), or one position down or up
(using Bring Forward and Send Backward).

You need to consider a few quirks when you create a user interface with Visual Studio. When you drag
elements from the Toolbox to a window, Visual Studio adds certain details to your markup. Visual Studio auto-
matically assigns a name to every new control (which is harmless but unnecessary). It also adds hard-coded
Width and Height values, which is much more limiting.

As discussed earlier, explicit sizes limit the flexibility of your user interface. In many cases, it’s better to
let controls size themselves to fit their content or size themselves to fit their container. In the current exam-
ple, fixed sizes are a reasonable approach to give the buttons a consistent width. However, a better approach
would be to let the largest button size itself to fit its content and have all smaller buttons stretch themselves
to match. (This design, which requires the use of a Grid, is described later in this chapter.) And no matter
what approach you use with the button, you almost certainly want to remove the hard-coded Width and
Height values for the StackPanel, so it can grow or shrink to fit the available space in the window.

By default, a StackPanel arranges elements from top to bottom, making each one as tall as
is necessary to display its content. In this example, that means the labels and buttons are sized
just large enough to comfortably accommodate the text inside. All elements are stretched to
the full width of the StackPanel, which is the width of the window. If you widen the window,
the StackPanel widens as well, and the buttons stretch themselves to fit.

The StackPanel can also be used to arrange elements horizontally by setting the Orienta-
tion property:

<StackPanel Orientation="Horizontal">

Now elements are given their minimum width (wide enough to fit their text) and are
stretched to the full height of the containing panel. Depending on the current size of the win-
dow, this may result in some elements that don’t fit, as shown in Figure 4-3.

Clearly, this doesn’t provide the flexibility real applications need. Fortunately, you can
fine-tune the way the StackPanel and other layout containers work using layout properties, as
described next.

CHAPTER 4 ■ LAYOUT80

9551CH04 2/8/08 1:43 PM Page 80

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-3. The StackPanel with horizontal orientation

Layout Properties
Although layout is determined by the container, the child elements can still get their say. In
fact, layout panels work in concert with their children by respecting a small set of layout prop-
erties, as listed in Table 4-3.

Table 4-3. Layout Properties

Name Description

HorizontalAlignment Determines how a child is positioned inside a layout container when
there’s extra horizontal space available. You can choose Center, Left,
Right, or Stretch.

VerticalAlignment Determines how a child is positioned inside a layout container when
there’s extra vertical space available. You can choose Center, Top,
Bottom, or Stretch.

Margin Adds a bit of breathing room around an element. The Margin
property is an instance of the System.Windows.Thickness structure,
with separate components for the top, bottom, left, and right edges.

MinWidth and MinHeight Sets the minimum dimensions of an element. If an element is too
large for its layout container, it will be cropped to fit.

MaxWidth and MaxHeight Sets the maximum dimensions of an element. If the container has
more room available, the element won’t be enlarged beyond these
bounds, even if the HorizontalAlignment and VerticalAlignment
properties are set to Stretch.

Width and Height Explicitly sets the size of an element. This setting overrides a Stretch
value for the HorizontalAlignment or VerticalAlignment properties.
However, this size won’t be honored if it’s outside of the bounds set by
the MinWidth, MinHeight, MaxWidth, and MaxHeight.

CHAPTER 4 ■ LAYOUT 81

9551CH04 2/8/08 1:43 PM Page 81

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

All of these properties are inherited from the base FrameworkElement class and are there-
fore supported by all the graphical widgets you can use in a WPF window.

■Note As you learned in Chapter 2, different layout containers can provide attached properties to their
children. For example, all the children of a Grid object gain Row and Column properties that allow them to
choose the cell where they’re placed. Attached properties allow you to set information that’s specific to a
particular layout container. However, the layout properties in Table 4-3 are generic enough that they apply to
many layout panels. Thus, these properties are defined as part of the base FrameworkElement class.

This list of properties is just as notable for what it doesn’t contain. If you’re looking for
familiar position properties, such as Top, Right, and Location, you won’t find them. That’s
because most layout containers (all except for the Canvas) use automatic layout and don’t give
you the ability to explicitly position elements.

Alignment
To understand how these properties work, take another look at the simple StackPanel shown
in Figure 4-2. In this example—a StackPanel with vertical orientation—the VerticalAlignment
property has no effect because each element is given as much height as it needs and no more.
However, the HorizontalAlignment is important. It determines where each element is placed
in its row.

Ordinarily, the default HorizontalAlignment is Left for a label and Stretch for a Button.
That’s why every button takes the full column width. However, you can change these details:

<StackPanel>
<Label HorizontalAlignment="Center">A Button Stack</Label>
<Button HorizontalAlignment="Left">Button 1</Button>
<Button HorizontalAlignment="Right">Button 2</Button>
<Button>Button 3</Button>
<Button>Button 4</Button>

</StackPanel>

Figure 4-4 shows the result. The first two buttons are given their minimum sizes and
aligned accordingly, while the bottom two buttons are stretched over the entire StackPanel. If
you resize the window, you’ll see that the label remains in the middle and the first two buttons
stay stuck to either side.

■Note The StackPanel also has its own HorizontalAlignment and VerticalAlignment properties. By default,
both of these are set to Stretch, and so the StackPanel fills its container completely. In this example, that
means the StackPanel fills the window. If you use different settings, the StackPanel will be made just large
enough to fit the widest control.

CHAPTER 4 ■ LAYOUT82

9551CH04 2/8/08 1:43 PM Page 82

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-4. A StackPanel with aligned buttons

Margin
There’s an obvious problem with the StackPanel example in its current form. A well-designed
window doesn’t just contain elements—it also includes a bit of extra space in between the ele-
ments. To introduce this extra space and make the StackPanel example less cramped, you can
set control margins.

When setting margins, you can set a single width for all sides, like this:

<Button Margin="5">Button 3</Button>

Alternatively, you can set different margins for each side of a control in the order left, top,
right, bottom:

<Button Margin="5,10,5,10">Button 3</Button>

In code, margins are set using the Thickness structure:

cmd.Margin = new Thickness(5);

Getting the right control margins is a bit of an art because you need to consider how the
margin settings of adjacent controls influence one another. For example, if you have two but-
tons stacked on top of each other, and the topmost button has a bottom margin of 5, and the
bottommost button has a top margin of 5, you have a total of 10 units of space between the
two buttons.

Ideally, you’ll be able to keep different margin settings as consistent as possible and avoid
setting distinct values for the different margin sides. For instance, in the StackPanel example it
makes sense to use the same margins on the buttons and on the panel itself, as shown here:

<StackPanel Margin="3">
<Label Margin="3" HorizontalAlignment="Center">
A Button Stack</Label>
<Button Margin="3" HorizontalAlignment="Left">Button 1</Button>
<Button Margin="3" HorizontalAlignment="Right">Button 2</Button>
<Button Margin="3">Button 3</Button>
<Button Margin="3">Button 4</Button>

</StackPanel>

CHAPTER 4 ■ LAYOUT 83

9551CH04 2/8/08 1:43 PM Page 83

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This way, the total space between two buttons (the sum of the two button margins) is the
same as the total space between the button at the edge of the window (the sum of the button
margin and the StackPanel margin). Figure 4-5 shows this more respectable window, and Fig-
ure 4-6 shows how the margin settings break down.

Figure 4-5. Adding margins between elements Figure 4-6. How margins are combined

Minimum, Maximum, and Explicit Sizes
Finally, every element includes Height and Width properties that allow you to give it an
explicit size. However, it’s rarely a good idea to take this step. Instead, use the maximum and
minimum size properties to lock your control into the right range, if necessary.

■Tip Think twice before setting an explicit size in WPF. In a well-designed layout, it shouldn’t be necessary.
If you do add size information, you risk creating a more brittle layout that can’t adapt to changes (such as
different languages and window sizes) and truncates your content.

For example, you might decide that the buttons in your StackPanel should stretch to fit
the StackPanel but be made no larger than 200 units wide and no smaller than 100 units wide.
(By default, buttons start with a minimum width of 75 units.) Here’s the markup you need:

<StackPanel Margin="3">
<Label Margin="3" HorizontalAlignment="Center">
A Button Stack</Label>
<Button Margin="3" MaxWidth="200" MinWidth="100">Button 1</Button>
<Button Margin="3" MaxWidth="200" MinWidth="100">Button 2</Button>
<Button Margin="3" MaxWidth="200" MinWidth="100">Button 3</Button>
<Button Margin="3" MaxWidth="200" MinWidth="100">Button 4</Button>

</StackPanel>

CHAPTER 4 ■ LAYOUT84

9551CH04 2/8/08 1:43 PM Page 84

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip At this point, you might be wondering if there’s an easier way to set properties that are standardized
across several elements, such as the button margins in this example. The answer is styles—a feature that
allows you to reuse property settings and even apply them automatically. You’ll learn about styles in Chapter 12.

When the StackPanel sizes a button, it considers several pieces of information:

• The minimum size. Each button will always be at least as large as the minimum size.

• The maximum size. Each button will always be smaller than the maximum size (unless
you’ve incorrectly set the maximum size to be smaller than the minimum size).

• The content. If the content inside the button requires a greater width, the StackPanel
will attempt to enlarge the button. (You can find out the size that the button wants by
examining the DesiredSize property, which returns the minimum width or the content
width, whichever is greater.)

• The size of the container. If the minimum width is larger than the width of the Stack-
Panel, a portion of the button will be cut off. Otherwise, the button will not be allowed
to grow wider than the StackPanel, even if it can’t fit all its text on the button surface.

• The horizontal alignment. Because the button uses a HorizontalAlignment of Stretch
(the default), the StackPanel will attempt to enlarge the button to fill the full width of
the StackPanel.

The trick to understanding this process is to realize that the minimum and maximum size
set the absolute bounds. Within those bounds, the StackPanel tries to respect the button’s
desired size (to fit its content) and its alignment settings.

Figure 4-7 sheds some light on how this works with the StackPanel. On the left is the win-
dow at its minimum size. The buttons are 100 units each, and the window cannot be resized to
be narrower. If you shrink the window from this point, the right side of each button will be
clipped off. (You can prevent this possibility by applying the MinWidth property to the win-
dow itself, so the window can’t go below a minimum width.)

As you enlarge the window, the buttons grow with it until they reach their maximum of
200 units. From this point on, if you make the window any larger the extra space is added to
either side of the button (as shown on the right).

Figure 4-7. Constrained button sizing

CHAPTER 4 ■ LAYOUT 85

9551CH04 2/8/08 1:43 PM Page 85

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note In some situations, you might want to use code that checks how large an element is in a window.
The Height and Width properties are no help because they indicate your desired size settings, which might
not correspond to the actual rendered size. In an ideal scenario, you’ll let your elements size to fit their con-
tent, and the Height and Width properties won’t be set at all. However, you can find out the actual size used
to render an element by reading the ActualHeight and ActualWidth properties. But remember, these values
may change when the window is resized or the content inside it changes.

AUTOMATICALLY SIZED WINDOWS

In this example, there’s still one element that has hard-coded sizes: the top-level window that contains the
StackPanel (and everything else inside). For a number of reasons, it still makes sense to hard-code window
sizes:

• In many cases, you want to make a window smaller than the desired size of its child elements. For
example, if your window includes a container of scrollable text, you’ll want to constrain the size of that
container so that scrolling is possible. You don’t want to make the window ridiculously large so that no
scrolling is necessary, which is what the container will request. (You’ll learn more about scrolling in
Chapter 5.)

• The minimum window size may be usable, but it might not give you the most attractive proportions.
Some window dimensions just look better.

• Automatic window sizing isn’t constrained by the display size of your monitor. So an automatically
sized window might be too large to view.

However, automatically sized windows are possible, and they do make sense if you are constructing a
simple window with dynamic content. To enable automatic window sizing, remove the Height and Width
properties and set the Window.SizeToContent property to WidthAndHeight. The window will make itself just
large enough to accommodate all its content. You can also allow a window to resize itself in just one dimen-
sion by using a SizeToContent value of Width or Height.

The WrapPanel and DockPanel
Obviously, the StackPanel alone can’t help you create a realistic user interface. To complete the
picture, the StackPanel needs to work with other more capable layout containers. Only then
can you assemble a complete window.

The most sophisticated layout container is the Grid, which you’ll consider later in this
chapter. But first, it’s worth looking at the WrapPanel and DockPanel, which are two more of
the simple layout containers provided by WPF. They complement the StackPanel by offering
different layout behavior.

The WrapPanel
The WrapPanel lays out controls in the available space, one line or column at a time. By
default, the WrapPanel.Orientation property is set to Horizontal; controls are arranged from

CHAPTER 4 ■ LAYOUT86

9551CH04 2/8/08 1:43 PM Page 86

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

left to right, and then on subsequent rows. However, you can use Vertical to place elements in
multiple columns.

■Tip Like the StackPanel, the WrapPanel is really intended for control over small-scale details in a user
interface, not complete window layouts. For example, you might use a WrapPanel to keep together the but-
tons in a toolbar-like control.

Here’s an example that defines a series of buttons with different alignments and places
them into the WrapPanel:

<WrapPanel Margin="3">
<Button VerticalAlignment="Top">Top Button</Button>
<Button MinHeight="60">Tall Button 2</Button>
<Button VerticalAlignment="Bottom">Bottom Button</Button>
<Button>Stretch Button</Button>
<Button VerticalAlignment="Center">Centered Button</Button>

</WrapPanel>

Figure 4-8 shows how the buttons are wrapped to fit the current size of the WrapPanel
(which is determined by the size of the window that contains it). As this example demon-
strates, a WrapPanel in horizontal mode creates a series of imaginary rows, each of which is
given the height of the tallest contained element. Other controls may be stretched to fit or
aligned according to the VerticalAlignment property. In the example on the left in Figure 4-8,
all the buttons fit into one tall row and are stretched or aligned to fit. In the example on the
right, several buttons have been bumped to the second row. Because the second row does not
include an unusually tall button, the row height is kept at the minimum button height. As a
result, it doesn’t matter what VerticalAlignment setting the various buttons in this row use.

Figure 4-8. Wrapped buttons

■Note The WrapPanel is the only panel that can’t be duplicated with a crafty use of the Grid.

CHAPTER 4 ■ LAYOUT 87

9551CH04 2/8/08 1:43 PM Page 87

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The DockPanel
The DockPanel is a more interesting layout option. It stretches controls against one of its out-
side edges. The easiest way to visualize this is to think of the toolbars that sit at the top of
many Windows applications. These toolbars are docked to the top of the window. As with the
StackPanel, docked elements get to choose one aspect of their layout. For example, if you dock
a button to the top of a DockPanel, it’s stretched across the entire width of the DockPanel but
given whatever height it requires (based on the content and the MinHeight property). On the
other hand, if you dock a button to the left side of a container, its height is stretched to fit the
container, but its width is free to grow as needed.

The obvious question is this: How do child elements choose the side where they want to
dock? The answer is through an attached property named Dock, which can be set to Left,
Right, Top, or Bottom. Every element that’s placed inside a DockPanel automatically acquires
this property.

Here’s an example that puts one button on every side of a DockPanel:

<DockPanel LastChildFill="True">
<Button DockPanel.Dock="Top">Top Button</Button>
<Button DockPanel.Dock="Bottom">Bottom Button</Button>
<Button DockPanel.Dock="Left">Left Button</Button>
<Button DockPanel.Dock="Right">Right Button</Button>
<Button>Remaining Space</Button>

</DockPanel>

This example also sets the LastChildFill to true, which tells the DockPanel to give the
remaining space to the last element. Figure 4-9 shows the result.

Figure 4-9. Docking to every side

CHAPTER 4 ■ LAYOUT88

9551CH04 2/8/08 1:43 PM Page 88

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 4 ■ LAYOUT 89

Clearly, when docking controls, the order is important. In this example, the top and bot-
tom buttons get the full edge of the DockPanel because they’re docked first. When the left and
right buttons are docked next, they fit between these two buttons. If you reversed this order,
the left and right buttons would get the full sides, and the top and bottom buttons would
become narrower because they’d be docked between the two side buttons.

You can dock several elements against the same side. In this case, the elements simply
stack up against the side in the order they’re declared in your markup. And, if you don’t like
the spacing or the stretch behavior, you can tweak the Margin, HorizontalAlignment, and
VerticalAlignment properties, just as you did with the StackPanel. Here’s a modified version
of the previous example that demonstrates:

<DockPanel LastChildFill="True">
<Button DockPanel.Dock="Top">A Stretched Top Button</Button>
<Button DockPanel.Dock="Top" HorizontalAlignment="Center">
A Centered Top Button</Button>
<Button DockPanel.Dock="Top" HorizontalAlignment="Left">
A Left-Aligned Top Button</Button>
<Button DockPanel.Dock="Bottom">Bottom Button</Button>
<Button DockPanel.Dock="Left">Left Button</Button>
<Button DockPanel.Dock="Right">Right Button</Button>
<Button>Remaining Space</Button>

</DockPanel>

The docking behavior is still the same. First the top buttons are docked, then the bottom
button, and finally the remaining space is divided between the side buttons and a final button
in the middle. Figure 4-10 shows the resulting window.

Figure 4-10. Docking multiple elements to the top

9551CH04 2/8/08 1:43 PM Page 89

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Nesting Layout Containers
The StackPanel, WrapPanel, and DockPanel are rarely used on their own. Instead, they’re used
to shape portions of your interface. For example, you could use a DockPanel to place different
StackPanel and WrapPanel containers in the appropriate regions of a window.

For example, imagine you want to create a standard dialog box with OK and Cancel
buttons in the bottom right-hand corner, and a large content region in the rest of the window.
There are several ways to model this interface with WPF, but the easiest option that uses the
panels you’ve seen so far is as follows:

1. Create a horizontal StackPanel to wrap the OK and Cancel buttons together.

2. Place the StackPanel in a DockPanel and use that to dock it to the bottom of the window.

3. Set DockPanel.LastChildFill to true, so you can use the rest of the window to fill in
other content. You can add another layout control here, or just an ordinary TextBox
control (as in this example).

4. Set the margin properties to give the right amount of whitespace.

Here’s the final markup:

<DockPanel LastChildFill="True">
<StackPanel DockPanel.Dock="Bottom" HorizontalAlignment="Right"
Orientation="Horizontal">
<Button Margin="10,10,2,10" Padding="3">OK</Button>
<Button Margin="2,10,10,10" Padding="3">Cancel</Button>

</StackPanel>
<TextBox DockPanel.Dock="Top" Margin="10">This is a test.</TextBox>

</DockPanel>

Figure 4-11 shows the rather pedestrian dialog box this creates.

■Note In this example, the Padding adds some minimum space between the button border and the con-
tent inside (the word “OK” or “Cancel”). You’ll learn more about Padding when you consider content controls
in Chapter 5.

At first glance, this seems like a fair bit more work than placing controls in precise posi-
tions using coordinates in a traditional Windows Forms application. And in many cases, it is.
However, the longer setup time is compensated by the ease with which you can change the
user interface in the future. For example, if you decide you want the OK and Cancel buttons to
be centered at the bottom of the window, you simply need to change the alignment of the
StackPanel that contains them:

<StackPanel DockPanel.Dock="Bottom" HorizontalAlignment="Center" ... >

CHAPTER 4 ■ LAYOUT90

9551CH04 2/8/08 1:43 PM Page 90

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-11. A basic dialog box

This design—a simple window with centered buttons—already demonstrates an end
result that wasn’t possible with Windows Forms in .NET 1.x (at least not without writing code)
and required the specialized layout containers with Windows Forms in .NET 2.0. And if you’ve
ever looked at the designer code generated by the Windows Forms serialization process, you’ll
realize that the markup used here is cleaner, simpler, and more compact. If you add a dash of
styles to this window (Chapter 12), you can improve it even further and remove other extrane-
ous details (such as the margin settings) to create a truly adaptable user interface.

■Tip If you have a densely nested tree of elements, it’s easy to lose sight of the overall structure. Visual
Studio provides a handy feature that shows you a tree representation of your elements and allows you to
click your way down to the element you want to look at (or modify). This feature is the Document Outline
window, and you can show it by choosing View ➤ Other Windows ➤ Document Outline from the menu.

The Grid
The Grid is the most powerful layout container in WPF. Much of what you can accomplish with
the other layout controls is also possible with the Grid. The Grid is also an ideal tool for carv-
ing your window into smaller regions that you can manage with other panels. In fact, the Grid
is so useful that when you add a new XAML document for a window in Visual Studio, it auto-
matically adds the Grid tags as the first-level container, nested inside the root Window
element.

The Grid separates elements into an invisible grid of rows and columns. Although more
than one element can be placed in a single cell (in which case they overlap), it generally makes
sense to place just a single element per cell. Of course, that element may itself be another lay-
out container that organizes its own group of contained controls.

CHAPTER 4 ■ LAYOUT 91

9551CH04 2/8/08 1:43 PM Page 91

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Although the Grid is designed to be invisible, you can set the Grid.ShowGridLines property to true to
take a closer look. This feature isn’t really intended for prettying up a window. Instead, it’s a debugging con-
venience that’s designed to help you understand how the Grid has subdivided itself into smaller regions. This
feature is important because you have the ability to control exactly how the Grid chooses column widths and
row heights.

Creating a Grid-based layout is a two-step process. First, you choose the number of
columns and rows that you want. Next, you assign the appropriate row and column to each
contained element, thereby placing it in just the right spot.

You create grids and rows by filling the Grid.ColumnDefinitions and Grid.RowDefinitions
collections with objects. For example, if you decide you need two rows and three columns,
you’d add the following tags:

<Grid ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

...
</Grid>

As this example shows, it’s not necessary to supply any information in a RowDefinition or
ColumnDefinition element. If you leave them empty (as shown here), the Grid will share the
space evenly between all rows and columns. In this example, each cell will be exactly the same
size, depending on the size of the containing window.

To place individual elements into a cell, you use the attached Row and Column proper-
ties. Both these properties take 0-based index numbers. For example, here’s how you could
create a partially filled grid of buttons:

<Grid ShowGridLines="True">
...

<Button Grid.Row="0" Grid.Column="0">Top Left</Button>
<Button Grid.Row="0" Grid.Column="1">Middle Left</Button>
<Button Grid.Row="1" Grid.Column="2">Bottom Right</Button>
<Button Grid.Row="1" Grid.Column="1">Bottom Middle</Button>

</Grid>

CHAPTER 4 ■ LAYOUT92

9551CH04 2/8/08 1:43 PM Page 92

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Each element must be placed into its cell explicitly. This allows you to place more than
one element into a cell (which rarely makes sense) or leave certain cells blank (which is often
useful). It also means you can declare your elements out of order, as with the final two buttons
in this example. However, it makes for clearer markup if you define your controls row by row,
and from right to left in each row.

There is one exception. If you don’t specify the Grid.Row property, the Grid assumes that
it’s 0. The same behavior applies to the Grid.Column property. Thus, you leave both attributes
off of an element to place it in the first cell of the Grid.

■Note The Grid fits elements into predefined rows and columns. This is different than layout containers
such as the WrapPanel and StackPanel that create implicit rows or columns as they lay out their children.
If you want to create a grid that has more than one row and one column, you must define your rows and
columns explicitly using RowDefinition and ColumnDefinition objects.

Figure 4-12 shows how this simple grid appears at two different sizes. Notice that the
ShowGridLines property is set to true so that you can see the separation between each column
and row.

Figure 4-12. A simple grid

As you would expect, the Grid honors the basic set of layout properties listed in Table 4-3.
That means you can add margins around the content in a cell, you can change the sizing
mode so an element doesn’t grow to fill the entire cell, and you can align an item along one of
the edges of a cell. If you force an element to have a size that’s larger than the cell can accom-
modate, part of the content will be chopped off.

CHAPTER 4 ■ LAYOUT 93

9551CH04 2/8/08 1:43 PM Page 93

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

USING THE GRID IN VISUAL STUDIO

When you use a Grid on the Visual Studio design surface, you’ll find that it works a bit differently than other
layout containers. As you drag an element into a Grid, Visual Studio allows you to place it in a precise posi-
tion. Visual Studio works this magic by setting the Margin property of your element.

When setting margins, Visual Studio uses the closest corner. For example, if your element is nearest to
the top-left corner of the Grid, Visual Studio pads the top and left margins to position the element (and leaves
the right and bottom margins at 0). If you drag your element down closer to the bottom-left corner, Visual
Studio sets the bottom and left margins instead and sets the VerticalAlignment property to Bottom. This obvi-
ously affects how the element will move when the Grid is resized.

Visual Studio’s margin-setting process seems straightforward enough, but most of the time it won’t cre-
ate the results you want. Usually, you’ll want a more flexible flow layout that allows some elements to expand
dynamically and push others out of the way. In this scenario, you’ll find that hard-coding position with the
Margin property is extremely inflexible. The problems get worse when you add multiple elements, because
Visual Studio won’t automatically add new cells. As a result, all the elements will be placed in the same cell.
Different elements may be aligned to different corners of the Grid, which will cause them to move with
respect to one another (and even overlap each other) as the window is resized.

Once you understand how the Grid works, you can correct these problems. The first trick is to configure
your Grid before you begin adding elements by defining its rows and columns. (You can edit the RowDefini-
tions and ColumnDefinitions collections using the Properties window.) Once you’ve set up the Grid, you can
drag and drop the elements you want into the Grid and configure their margin and alignment settings in the
Properties window or by editing the XAML by hand.

Fine-Tuning Rows and Columns
If the Grid were simply a proportionately sized collection of rows and columns, it wouldn’t be
much help. Fortunately, it’s not. To unlock the full potential of the Grid, you can change the
way each row and column is sized.

The Grid supports three sizing strategies:

• Absolute sizes. You choose the exact size using device-independent units. This is the
least useful strategy because it’s not flexible enough to deal with changing content size,
changing container size, or localization.

• Automatic sizes. Each row or column is given exactly the amount of space it needs, and
no more. This is one of the most useful sizing modes.

• Proportional sizes. Space is divided between a group of rows or columns. This is the
standard setting for all rows and columns. For example, in Figure 4-12 you’ll see that all
cells increase in size proportionately as the Grid expands.

For maximum flexibility, you can mix and match these different sizing modes. For
example, it’s often useful to create several automatically sized rows and then let one or two
remaining rows get the leftover space through proportional sizing.

You set the sizing mode using the Width property of the ColumnDefinition object or the
Height property of the RowDefinition object to a number. For example, here’s how you set an
absolute width of 100 device-independent units:

<ColumnDefinition Width="100"></ColumnDefinition>

CHAPTER 4 ■ LAYOUT94

9551CH04 2/8/08 1:43 PM Page 94

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To use automatic sizing, you use a value of Auto:

<ColumnDefinition Width="Auto"></ColumnDefinition>

Finally, to use proportional sizing, you use an asterisk (*):

<ColumnDefinition Width="*"></ColumnDefinition>

This syntax stems from the world of the Web, where it’s used with HTML frames pages. If
you use a mix of proportional sizing and other sizing modes, the proportionally sized rows or
columns get whatever space is left over.

If you want to divide the remaining space unequally, you can assign a weight, which you
must place before the asterisk. For example, if you have two proportionately sized rows and you
want the first to be half as high as the second, you could share the remaining space like this:

<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="2*"></RowDefinition>

This tells the Grid that the height of the second row should be twice the height of the first
row. You can use whatever numbers you like to portion out the extra space.

■Note It’s easy to interact with ColumnDefinition and RowDefinition objects programmatically. You simply
need to know that the Width and Height properties are GridLength objects. To create a GridLength that repre-
sents a specific size, just pass the appropriate value to the GridLength constructor. To create a GridLength
that represents a proportional (*) size, pass the number to the GridLength constructor, and pass GridUnitType.
Start as the second constructor argument. To indicate automatic sizing, use the static property
GridLength.Auto.

Using these size modes, you can duplicate the simple dialog box example shown in
Figure 4-11 using a top-level Grid container to split the window into two rows, rather than a
DockPanel. Here’s the markup you’d need:

<Grid ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<TextBox Margin="10" Grid.Row="0">This is a test.</TextBox>
<StackPanel Grid.Row="1" HorizontalAlignment="Right" Orientation="Horizontal">
<Button Margin="10,10,2,10" Padding="3">OK</Button>
<Button Margin="2,10,10,10" Padding="3">Cancel</Button>

</StackPanel>
</Grid>

■Tip This Grid doesn’t declare any columns. This is a shortcut you can take if your Grid uses just one col-
umn and that column is proportionately sized (so it fills the entire width of the Grid).

CHAPTER 4 ■ LAYOUT 95

9551CH04 2/8/08 1:43 PM Page 95

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This markup is slightly longer, but it has the advantage of declaring the controls in the
order they appear, which makes it easier to understand. In this case, the approach you take is
simply a matter of preference. And if you want, you could replace the nested StackPanel with a
one-row, two-column Grid.

■Note You can create almost any interface using nested Grid containers. (One exception is wrapped rows
or columns that use the WrapPanel.) However, when you’re dealing with small sections of user interface or
laying out a small number of elements, it’s often simpler to use the more specialized StackPanel and Dock-
Panel containers.

Spanning Rows and Columns
You’ve already seen how you place elements in cells using the Row and Column attached
properties. You can also use two more attached properties to make an element stretch over
several cells: RowSpan and ColumnSpan. These properties take the number of rows or
columns that the element should occupy.

For example, this button will take all the space that’s available in the first and second cell
of the first row:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2">Span Button</Button>

And this button will stretch over four cells in total by spanning two columns and two
rows:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2" Grid.ColumnSpan="2">
Span Button</Button>

Row and column spanning can achieve some interesting effects and is particularly handy
when you need to fit elements in a tabular structure that’s broken up by dividers or longer sec-
tions of content.

Using column spanning, you could rewrite the simple dialog box example from Figure 4-11
using just a single Grid. This Grid divides the window into three columns, spreads the text box
over all three, and uses the last two columns to align the OK and Cancel buttons.

<Grid ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>
<TextBox Margin="10" Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">

CHAPTER 4 ■ LAYOUT96

9551CH04 2/8/08 1:43 PM Page 96

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This is a test.</TextBox>
<Button Margin="10,10,2,10" Padding="3"
Grid.Row="1" Grid.Column="1">OK</Button>

<Button Margin="2,10,10,10" Padding="3"
Grid.Row="1" Grid.Column="2">Cancel</Button>

</Grid>

Most developers will agree that this layout isn’t clear or sensible. The column widths are
determined by the size of the two buttons at the bottom of the window, which makes it diffi-
cult to add new content into the existing Grid structure. If you make even a minor addition to
this window, you’ll probably be forced to create a new set of columns.

As this shows, when you choose the layout containers for a window, you aren’t simply
interested in getting the correct layout behavior—you also want to build a layout structure
that’s easy to maintain and enhance in the future. A good rule of thumb is to use smaller lay-
out containers such as the StackPanel for one-off layout tasks, such as arranging a group of
buttons. On the other hand, if you need to apply a consistent structure to more than one area
of your window (as with the text box column shown later in Figure 4-20), the Grid is an indis-
pensable tool for standardizing your layout.

Split Windows
Every Windows user has seen splitter bars—draggable dividers that separate one section of a
window from another. For example, when you use Windows Explorer, you’re presented with a
list of folders (on the left) and a list of files (on the right). You can drag the splitter bar in
between to determine what proportion of the window is given to each pane.

In WPF, splitter bars are represented by the GridSplitter class and are a feature of the
Grid. By adding a GridSplitter to a Grid, you give the user the ability to resize rows or columns.
Figure 4-13 shows a window where a GridSplitter sits between two columns. By dragging the
splitter bar, the user can change the relative widths of both columns.

Figure 4-13. Moving a splitter bar

CHAPTER 4 ■ LAYOUT 97

9551CH04 2/8/08 1:43 PM Page 97

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Most programmers find that the GridSplitter isn’t the most intuitive part of WPF. Under-
standing how to use it to get the effect you want takes a little experimentation. Here are a few
guidelines:

• The GridSplitter must be placed in a Grid cell. You can place the GridSplitter in a cell
with existing content, in which case you need to adjust the margin settings so it doesn’t
overlap. A better approach is to reserve a dedicated column or row for the GridSplitter,
with a Height or Width value of Auto.

• The GridSplitter always resizes entire rows or columns (not single cells). To make the
appearance of the GridSplitter consistent with this behavior, you should stretch the
GridSplitter across an entire row or column, rather than limit it to a single cell. To
accomplish this, you use the RowSpan or ColumnSpan properties you considered
earlier. For example, the GridSplitter in Figure 4-13 has a RowSpan of 2. As a result, it
stretches over the entire column. If you didn’t add this setting, it would only appear in
the top row (where it’s placed), even though dragging the splitter bar would resize the
entire column.

• Initially, the GridSplitter is invisibly small. To make it usable, you need to give it a
minimum size. In the case of a vertical splitter bar (like the one in Figure 4-13), you
need to set the VerticalAlignment to Stretch (so it fills the whole height of the available
area) and the Width to a fixed size (such as 10 device-independent units). In the case of
a horizontal splitter bar, you need to set HorizontalAlignment to Stretch, and Height to
a fixed size.

• The GridSplitter alignment also determines whether the splitter bar is horizontal (used
to resize rows) or vertical (used to resize columns). In the case of a horizontal splitter
bar, you should set VerticalAlignment to Center (which is the default value) to indicate
that dragging the splitter resizes the rows that are above and below. In the case of a ver-
tical splitter bar (like the one in Figure 4-13), you should set HorizontalAlignment to
Center to resize the columns on either side.

■Note You can change the resizing behavior using the ResizeDirection and ResizeBehavior properties of
the GridSplitter. However, it’s simpler to let this behavior depend entirely on the alignment settings, which is
the default.

Dizzy yet? To reinforce these rules, it helps to take a look at the actual markup for the
example shown in Figure 4-13. In the following listing, the GridSplitter details are highlighted:

<Grid>
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition MinWidth="100"></ColumnDefinition>

CHAPTER 4 ■ LAYOUT98

9551CH04 2/8/08 1:43 PM Page 98

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition MinWidth="50"></ColumnDefinition>

</Grid.ColumnDefinitions>

<Button Grid.Row="0" Grid.Column="0" Margin="3">Left</Button>
<Button Grid.Row="0" Grid.Column="2" Margin="3">Right</Button>
<Button Grid.Row="1" Grid.Column="0" Margin="3">Left</Button>
<Button Grid.Row="1" Grid.Column="2" Margin="3">Right</Button>

<GridSplitter Grid.Row="0" Grid.Column="1" Grid.RowSpan="2"
Width="3" VerticalAlignment="Stretch" HorizontalAlignment="Center"
ShowsPreview="False"></GridSplitter>

</Grid>

■Tip To create a successful GridSplitter, make sure you supply values for the VerticalAlignment,
HorizontalAlignment, and Width (or Height) properties.

This markup includes one additional detail. When the GridSplitter is declared, the
ShowsPreview property is set to false. As a result, when the splitter bar is dragged from one
side to another, the columns are resized immediately. But if you set ShowsPreview to true,
when you drag you’ll see a gray shadow follow your mouse pointer to show you where the split
will be. The columns won’t be resized until you release the mouse button. It’s also possible to
use the arrow keys to resize a GridSplitter once it receives focus.

The ShowsPreview isn’t the only GridSplitter property that you can set. You can also adjust
the DragIncrement property if you want to force the splitter to move in coarser “chunks” (such
as 10 units at a time). If you want to control the maximum and minimum allowed sizes of the
columns, you simply make sure the appropriate properties are set in the ColumnDefinitions
section, as shown in the previous example.

■Tip You can change the fill that’s used for the GridSplitter so that it isn’t just a shaded gray rectangle. The
trick is to use the Background property, which accepts simple colors and more complex brushes. You’ll learn
more in Chapter 7.

A Grid usually contains no more than a single GridSplitter. However, you can nest one
Grid inside another, and if you do, each Grid may have its own GridSplitter. This allows you to
create a window that’s split into two regions (for example, a left and right pane), and then fur-
ther subdivide one of these regions (say, the pane on the right) into more sections (such as a
resizable top and bottom portion). Figure 4-14 shows an example.

CHAPTER 4 ■ LAYOUT 99

9551CH04 2/8/08 1:43 PM Page 99

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-14. Resizing a window with two splits

Creating this window is fairly straightforward, although it’s a chore to keep track of the
three Grid containers that are involved: the overall Grid, the nested Grid on the left, and the
nested Grid on the right. The only trick is to make sure the GridSplitter is placed in the correct
cell and given the correct alignment. Here’s the complete markup:

<!-- This is the Grid for the entire window. -->
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

<!-- This is the nested Grid on the left.
It isn't subdivided further with a splitter. -->

<Grid Grid.Column="0" VerticalAlignment="Stretch">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Button Margin="3" Grid.Row="0">Top Left</Button>
<Button Margin="3" Grid.Row="1">Bottom Left</Button>

</Grid>

<!-- This is the vertical splitter that sits between the two nested
(left and right) grids. -->

<GridSplitter Grid.Column="1"
Width="3" HorizontalAlignment="Center" VerticalAlignment="Stretch"
ShowsPreview="False"></GridSplitter>

<!-- This is the nested Grid on the right. -->

CHAPTER 4 ■ LAYOUT100

9551CH04 2/8/08 1:43 PM Page 100

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Grid Grid.Column="2">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>

<Button Grid.Row="0" Margin="3">Top Right</Button>
<Button Grid.Row="2" Margin="3">Bottom Right</Button>

<!-- This is the horizontal splitter that subdivides it into
a top and bottom region.. -->

<GridSplitter Grid.Row="1"
Height="3" VerticalAlignment="Center" HorizontalAlignment="Stretch"
ShowsPreview="False"></GridSplitter>

</Grid>
</Grid>

■Tip Remember, if a Grid has just a single row or column, you can leave out the RowDefinitions section.
Also, elements that don’t have their row position explicitly set are assumed to have a Grid.Row value of 0
and are placed in the first row. The same holds true for elements that don’t supply a Grid.Column value.

Shared Size Groups
As you’ve seen, a Grid contains a collection of rows and columns, which are sized explicitly,
proportionately, or based on the size of their children. There’s one other way to size a row or a
column—to match the size of another row or column. This works through a feature called
shared size groups.

The goal of shared size groups is to keep separate portions of your user interface consis-
tent. For example, you might want to size one column to fit its content and size another
column to match that size exactly. However, the real benefit of shared size groups is to give the
same proportions to separate Grid controls.

To understand how this works, consider the example shown in Figure 4-15. This window
features two Grid objects—one at the top of the window (with three columns) and one at the
bottom (with two columns). The leftmost column of the first Grid is sized proportionately to
fit its content (a long text string). The leftmost column of the second Grid has exactly the same
width, even though it contains less content. That’s because it shares the same size group. No
matter how much content you stuff in the first column of the first Grid, the first column of the
second Grid stays synchronized.

As this example demonstrates, a shared column can be used in otherwise different grids.
In this example, the top Grid has an extra column, and so the remaining space is divided dif-
ferently. Similarly, the shared columns can occupy different positions, so you could create a
relationship between the first column in one Grid and the second column in another. And
obviously, the columns can host completely different content.

CHAPTER 4 ■ LAYOUT 101

9551CH04 2/8/08 1:43 PM Page 101

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-15. Two grids that share a column definition

When you use a shared size group, it’s as if you’ve created one column (or row) definition,
which is reused in more than one place. It’s not a simple one-way copy of one column to
another. You can test this out with the previous example by changing the content in the
shared column of the second Grid. Now, the column in the first Grid will be lengthened to
match (Figure 4-16).

You can even add a GridSplitter to one of the Grid objects. As the user resizes the
column in one Grid, the shared column in the other Grid will follow along, resizing itself at
the same time.

Figure 4-16. Shared-size columns remain synchronized.

CHAPTER 4 ■ LAYOUT102

9551CH04 2/8/08 1:43 PM Page 102

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 4 ■ LAYOUT 103

Creating a shared group is easy. You simply need to set the SharedSizeGroup property on
both columns, using a matching string. In the current example, both columns use a group
named TextLabel:

<Grid Margin="3" Background="LightYellow" ShowGridLines="True">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" SharedSizeGroup="TextLabel"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

<Label Margin="5">A very long bit of text</Label>
<Label Grid.Column="1" Margin="5">More text</Label>
<TextBox Grid.Column="2" Margin="5">A text box</TextBox>

</Grid>
...
<Grid Margin="3" Background="LightYellow" ShowGridLines="True">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" SharedSizeGroup="TextLabel"></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

<Label Margin="5">Short</Label>
<TextBox Grid.Column="1" Margin="5">A text box</TextBox>

</Grid>

There’s one other detail. Shared size groups aren’t global to your entire application because
more than one window might inadvertently use the same name. You might assume that shared
size groups are limited to the current window, but WPF is even more stringent than that. To share
a group, you need to explicitly set the attached Grid.IsSharedSizeScope property to true on a con-
tainer somewhere upstream that holds the Grid objects with the shared column. In the current
example, the top and bottom Grid are wrapped in another Grid that accomplishes this purpose,
although you could just as easily use a different container such as a DockPanel or StackPanel.

Here’s the markup for the top-level Grid:

<Grid Grid.IsSharedSizeScope="True" Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>

<Grid Grid.Row="0" Margin="3" Background="LightYellow" ShowGridLines="True">
...

</Grid>
<Label Grid.Row="1" >Some text in between the two grids...</Label>
<Grid Grid.Row="2" Margin="3" Background="LightYellow" ShowGridLines="True">
...

</Grid>
</Grid>

9551CH04 2/8/08 1:43 PM Page 103

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip You could use a shared size group to synchronize a separate Grid with column headers. The width of
each column can then be determined by the content in the column, which the header will share. You could
even place a GridSplitter in the header, which the user could drag to resize the header and the entire column
underneath.

The UniformGrid
There is a grid that breaks all the rules you’ve learned about so far: the UniformGrid. Unlike
the Grid, the UniformGrid doesn’t require (or even support) predefined columns and rows.
Instead, you simply set the Rows and Columns properties to set its size. Each cell is always the
same size because the available space is divided equally. Finally, elements are placed into the
appropriate cell based on the order in which you define them. There are no attached Row and
Column properties, and no blank cells.

Here’s an example that fills a UniformGrid with four buttons:

<UniformGrid Rows="2" Columns="2">
<Button>Top Left</Button>
<Button>Top Right</Button>
<Button>Bottom Left</Button>
<Button>Bottom Right</Button>

</UniformGrid>

The UniformGrid is used far less frequently than the Grid. The Grid is an all-purpose tool
for creating window layouts from the simple to the complex. The UniformGrid is a much more
specialized layout container that’s primarily useful when quickly laying out elements in a rigid
grid (for example, when building a playing board for certain games). Many WPF programmers
will never use the UniformGrid.

Coordinate-Based Layout with the Canvas
The only layout container you haven’t considered yet is the Canvas. It allows you to place ele-
ments using exact coordinates, which is a poor choice for designing rich data-driven forms
and standard dialog boxes, but a valuable tool if you need to build something a little different
(such as a drawing surface for a diagramming tool). The Canvas is also the most lightweight of
the layout containers. That’s because it doesn’t include any complex layout logic to negotiate
the sizing preferences of its children. Instead, it simply lays them all out at the position they
specify, with the exact size they want.

To position an element on the Canvas, you set the attached Canvas.Left and Canvas.Top
properties. Canvas.Left sets the number of units between the left edge of your element and the
left edge of the Canvas. Canvas.Top sets the number of units between the top of your element
and the top of the Canvas. As always, these values are set in device-independent units, which
line up with ordinary pixels exactly when the system DPI is set to 96 dpi.

CHAPTER 4 ■ LAYOUT104

9551CH04 2/8/08 1:43 PM Page 104

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Alternatively, you can use Canvas.Right instead of Canvas.Left to space an element from the right
edge of the Canvas, and Canvas.Bottom instead of Canvas.Top to space it from the bottom. You just can’t use
both Canvas.Right and Canvas.Left at once, or both Canvas.Top and Canvas.Bottom.

Optionally, you can size your element explicitly using its Width and Height properties.
This is more common when using the Canvas than it is in other panels because the Canvas
has no layout logic of its own. (And often, you’ll use the Canvas when you need precise control
over how a combination of elements is arranged.) If you don’t set the Width and Height prop-
erties, your element will get its desired size—in other words, it will grow just large enough to
fit its content.

Here’s a simple Canvas that includes four buttons:

<Canvas>
<Button Canvas.Left="10" Canvas.Top="10">(10,10)</Button>
<Button Canvas.Left="120" Canvas.Top="30">(120,30)</Button>
<Button Canvas.Left="60" Canvas.Top="80" Width="50" Height="50">
(60,80)</Button>
<Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50">
(70,120)</Button>

</Canvas>

Figure 4-17 shows the result.

Figure 4-17. Explicitly positioned buttons in a Canvas

If you resize the window, the Canvas stretches to fill the available space, but none of the
controls in the Canvas moves or changes size. The Canvas doesn’t include any of the anchor-
ing or docking features that were provided with coordinate layout in Windows Forms. Part of
the reason for this gap is to keep the Canvas lightweight. Another reason is to prevent people
from using the Canvas for purposes for which it’s not intended (such as laying out a standard
user interface).

CHAPTER 4 ■ LAYOUT 105

9551CH04 2/8/08 1:43 PM Page 105

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Like any other layout container, the Canvas can be nested inside a user interface. That
means you can use the Canvas to draw some detailed content in a portion of your window,
while using more standard WPF panels for the rest of your elements.

■Tip If you use the Canvas alongside other elements, you may want to consider setting its ClipToBounds to
true. That way, elements inside the Canvas that stretch beyond its bounds are clipped off at the edge of the
Canvas. (This prevents them from overlapping other elements elsewhere in your window.) All the other layout
containers always clip their children to fit, regardless of the ClipToBounds setting.

Z-Order
If you have more than one overlapping element, you can set the attached Canvas.ZIndex
property to control how they are layered.

Ordinarily, all the elements you add have the same ZIndex—0. When elements have the
same ZIndex, they’re displayed in the same order that they exist in Canvas.Children collection,
which is based on the order that they’re defined in the XAML markup. Elements declared later
in the markup—such as button (70,120)—are displayed overtop of elements that are declared
earlier—such as button (120,30).

However, you can promote any element to a higher level by increasing its ZIndex. That’s
because higher ZIndex elements always appear over lower ZIndex elements. Using this tech-
nique, you could reverse the layering in the previous example:

<Button Canvas.Left="60" Canvas.Top="80" Canvas.ZIndex="1" Width="50" Height="50">
(60,80)</Button>
<Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50">
(70,120)</Button>

■Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is
how the ZIndex value of one element compares to the ZIndex value of another. You can set the ZIndex using
any positive or negative integer.

The ZIndex property is particularly useful if you need to change the position of an ele-
ment programmatically. Just call Canvas.SetZIndex() and pass in the element you want to
modify and the new ZIndex you want to apply. Unfortunately, there is no BringToFront() or
SendToBack() method—it’s up to you to keep track of the highest and lowest ZIndex values if
you want to implement this behavior.

The InkCanvas
WPF also includes an InkCanvas element that’s similar to the Canvas in some respects (and
wholly different in others). Like the Canvas, the InkCanvas defines four attached properties
that you can apply to child elements for coordinate-based positioning (Top, Left, Bottom, and

CHAPTER 4 ■ LAYOUT106

9551CH04 2/8/08 1:43 PM Page 106

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Right). However, the underlying plumbing is quite a bit different—in fact, the InkCanvas
doesn’t derive from Canvas, or even from the base Panel class. Instead, it derives directly from
FrameworkElement.

The primary purpose of the InkCanvas is to allow stylus input. The stylus is the penlike
input device that’s used in tablet PCs. However, the InkCanvas works with the mouse in the
same way as it works with the stylus. Thus, a user can draw lines or select and manipulate
elements in the InkCanvas using the mouse.

The InkCanvas actually holds two collections of child content. The familiar Children col-
lection holds arbitrary elements, just as with the Canvas. Each element can be positioned
based on the Top, Left, Bottom, and Right properties. The Strokes collection holds
System.Windows.Ink.Stroke objects, which represent graphical input that the user has drawn
in the InkCanvas. Each line or curve that the user draws becomes a separate Stroke object.
Thanks to these dual collections, you can use the InkCanvas to let the user annotate content
(stored in the Children collection) with strokes (stored in the Strokes collection).

For example, Figure 4-18 shows an InkCanvas that contains a picture that has been anno-
tated with extra strokes. Here’s the markup for the InkCanvas in this example, which defines
the image:

<InkCanvas Name="inkCanvas" Background="LightYellow"
EditingMode="Ink">
<Image Source="office.jpg" InkCanvas.Top="10" InkCanvas.Left="10"
Width="287" Height="319"></Image>

</InkCanvas>

The strokes are drawn at runtime by the user.

Figure 4-18. Adding strokes in an InkCanvas

The InkCanvas can be used in some significantly different ways, depending on the value
you set for the InkCanvas.EditingMode property. Table 4-4 lists all your options.

CHAPTER 4 ■ LAYOUT 107

9551CH04 2/8/08 1:43 PM Page 107

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 4-4. Values of the InkCanvasEditingMode Enumeration

Name Description

Ink The InkCanvas allows the user to draw annotations. This is the default mode.
When the user draws with the mouse or stylus, a stroke is drawn.

GestureOnly The InkCanvas doesn’t allow the user to draw stroke annotations but pays
attention to specific predefined gestures (such as dragging the stylus in one
direction, or scratching out content). The full list of recognized gestures is
listed by the System.Windows.Ink.ApplicationGesture enumeration.

InkAndGesture The InkCanvas allows the user to draw stroke annotations and also recognizes
predefined gestures.

EraseByStroke The InkCanvas erases a stroke when it’s clicked. If the user has a stylus, he can
switch to this mode by using the back end of the stylus. (You can determine
the current mode using the read-only ActiveEditingMode property, and you
can change the mode used for the back end of the stylus by changing the
EditingModeInverted property.)

EraseByPoint The InkCanvas erases a portion of a stroke (a point in a stroke) when that
portion is clicked.

Select The InkCanvas allows the user to select elements that are stored in the
Children collection. To select an element, the user must click it or drag a
selection “lasso” around it. Once an element is selected, it can be moved,
resized, or deleted.

None The InkCanvas ignores mouse and stylus input.

The InkCanvas raises events when the editing mode changes (ActiveEditingModeChanged),
a gesture is detected in GestureOnly or InkAndGesture mode (Gesture), a stroke is drawn
(StrokeCollected), a stroke is erased (StrokeErasing and StrokeErased), and an element is
selected or changed in Select mode (SelectionChanging, SelectionChanged, SelectionMoving,
SelectionMoved, SelectionResizing, and SelectionResized). The events that end in ing represent
an action that is about to take place but can be canceled by setting the Cancel property of the
EventArgs object.

In Select mode, the InkCanvas provides a fairly capable design surface for dragging con-
tent around and manipulating it. Figure 4-19 shows a Button control in an InkCanvas as it’s
being selected (on the left) and then repositioned and resized (on the right).

Figure 4-19. Moving and resizing an element in the InkCanvas

CHAPTER 4 ■ LAYOUT108

9551CH04 2/8/08 1:43 PM Page 108

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

As interesting as Select mode is, it isn’t a perfect fit if you’re building a drawing or dia-
gramming tool. You’ll see a better example of how to create a custom drawing surface in
Chapter 14.

Layout Examples
You’ve now spent a considerable amount of time poring over the intricacies of the WPF layout
containers. With this low-level knowledge in mind, it’s worth looking at a few complete layout
examples. Doing so will give you a better sense of how the various WPF layout concepts (such
as size-to-content, stretch, and nesting) work in real-world windows.

A Column of Settings
Layout containers such as the Grid make it dramatically easier to create an overall structure to
a window. For example, consider the window with settings shown in Figure 4-20. This window
arranges its individual components—labels, text boxes, and buttons—into a tabular structure.

Figure 4-20. Folder settings in a column

To create this table, you begin by defining the rows and columns of the grid. The rows are
easy enough—each one is simply sized to the height of the containing content. That means
the entire row will get the height of the largest element, which in this case is the Browse button
in the third column.

<Grid Margin="3,3,10,3">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
...

CHAPTER 4 ■ LAYOUT 109

9551CH04 2/8/08 1:43 PM Page 109

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Next, you need to create the columns. The first and last columns are sized to fit their
content (the label text and the Browse button, respectively). The middle column gets all the
remaining room, which means it grows as the window is resized larger, giving you more room
to see the selected folder. (If you want this stretching to top out at some extremely wide maxi-
mum value, you can use the MaxWidth property when defining the column, just as you do
with individual elements.)

...
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition Width="*"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>
...

■Tip The Grid needs some minimum space—enough to fit the full label text, the browse button, and a few
pixels in the middle column to show the text box. If you shrink the containing window to be smaller than this,
some content will be cut off. As always, it makes sense to use the MinWidth and MinHeight properties on the
window to prevent this from occurring.

Now that you have your basic structure, you simply need to slot the elements into the
right cells. However, you also need to think carefully about margins and alignment. Each ele-
ment needs a basic margin (a good value is 3 units) to give some breathing room. In addition,
the label and text box need to be centered vertically because they aren’t as tall as the Browse
button. Finally, the text box needs to use automatic sizing mode, so it stretches to fit the entire
column.

Here’s the markup you need to define the first row in the grid:

...
<Label Grid.Row="0" Grid.Column="0" Margin="3"
VerticalAlignment="Center">Home:</Label>

<TextBox Grid.Row="0" Grid.Column="1" Margin="3"
Height="Auto" VerticalAlignment="Center"></TextBox>

<Button Grid.Row="0" Grid.Column="2" Margin="3" Padding="2">Browse</Button>
...

</Grid>

You can repeat this markup to add all your rows by simply incrementing the value of the
Grid.Row attribute.

One fact that’s not immediately obvious is how flexible this window is because of the use
of the Grid control. None of the individual elements—the labels, text boxes, and buttons—
have hard-coded positions or sizes. As a result, you can quickly make changes to the entire
grid simply by tweaking the ColumnDefinition elements. Furthermore, if you add a row that
has longer label text (necessitating a wider first column), the entire grid is adjusted to be con-
sistent, including the rows that you’ve already added. And if you want to add elements in

CHAPTER 4 ■ LAYOUT110

9551CH04 2/8/08 1:43 PM Page 110

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

between the rows—such as separator lines to divide different sections of the window—you
can keep the same columns but use the ColumnSpan property to stretch a single element over
a larger area.

Dynamic Content
As the column of settings demonstrates, windows that use the WPF layout containers are easy
to change and adapt as you revise your application. This flexibility doesn’t just benefit you at
design time. It’s also a great asset if you need to display content that changes dramatically.

One example is localized text—text that appears in your user interface and needs to be
translated into different languages for different geographic regions. In old-style coordinate-
based applications, changing the text can wreak havoc in a window, particularly because a
short amount of English text becomes significantly larger in many languages. Even if elements
are allowed to resize themselves to fit larger text, doing so often throws off the whole balance
of a window.

Figure 4-21 demonstrates how this isn’t the case when you use the WPF layout containers
intelligently. In this example, the user interface has a short text and a long text option. When
the long text is used, the buttons that contain the text are resized automatically and other con-
tent is bumped out of the way. And because the resized buttons share the same layout
container (in this case, a table column), that entire section of the user interface is resized. The
end result is that all buttons keep a consistent size—the size of the largest button.

Figure 4-21. A self-adjusting window

To make this work, the window is carved into a table with two columns and two rows. The
column on the left takes the resizable buttons, while the column on the right takes the text
box. The bottom row is used for the Close button. It’s kept in the same table so that it resizes
along with the top row.

CHAPTER 4 ■ LAYOUT 111

9551CH04 2/8/08 1:43 PM Page 111

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the complete markup:

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition Width="*"></ColumnDefinition>

</Grid.ColumnDefinitions>

<StackPanel Grid.Row="0" Grid.Column="0">
<Button Name="cmdPrev" Margin="10,10,10,3">Prev</Button>
<Button Name="cmdNext" Margin="10,3,10,3">Next</Button>
<CheckBox Name="chkLongText" Margin="10,10,10,10"
Checked="chkLongText_Checked" Unchecked="chkLongText_Unchecked">
Show Long Text</CheckBox>

</StackPanel>
<TextBox Grid.Row="0" Grid.Column="1" Margin="0,10,10,10"
TextWrapping="WrapWithOverflow" Grid.RowSpan="2">This is a test that demonstrates
how buttons adapt themselves to fit the content they contain when they aren't
explicitly sized. This behavior makes localization much easier.</TextBox>

<Button Grid.Row="1" Grid.Column="0" Name="cmdClose"
Margin="10,3,10,10">Close</Button>

</Grid>

The event handlers for the CheckBox aren’t shown here. They simply change the text in
the two buttons.

A Modular User Interface
Many of the layout containers gracefully “flow” content into the available space, like the
StackPanel, DockPanel, and WrapPanel. One advantage of this approach is that it allows you
to create truly modular interfaces. In other words, you can plug in different panels with the
appropriate user interface sections you want to show and leave out those that don’t apply. The
entire application can shape itself accordingly, somewhat like a portal site on the Web.

Figure 4-22 demonstrates. It places several separate panels into a WrapPanel. The user
can choose which of these panels are visible using the check boxes at the top of the window.

■Note Although you can set the background of a layout panel, you can’t set a border around it. This
example overcomes that limitation by wrapping each panel in a Border element that outlines the exact
dimensions. You’ll learn how to use the Border and other similarly specialized containers in the next chapter.

CHAPTER 4 ■ LAYOUT112

9551CH04 2/8/08 1:43 PM Page 112

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-22. A series of panels in a WrapPanel

As different panels are hidden, the remaining panels reflow themselves to fit the available
space (and the order in which they’re declared). Figure 4-23 shows a different permutation of
panels.

To hide and show the individual panels, a small bit of code handles check box clicks.
Although you haven’t considered the WPF event handling model in any detail (Chapter 6 has
the full story), the trick is to set the Visibility property:

panel.Visibility = Visibility.Collapsed;

The Visibility property is a part of the base UIElement class and is therefore supported
by just about everything you’ll put in a WPF window. It takes one of three values, from the
System.Windows.Visibility enumeration, as listed in Table 4-5.

Table 4-5. Values of the Visibility Enumeration

Value Description

Visible The element appears as normal in the window.

Collapsed The element is not displayed and doesn’t take up any space.

Hidden The element is not displayed, but the space it would otherwise use is still
reserved. (In other words, there’s a blank space where it would have appeared).
This setting is handy if you need to hide and show elements without changing
the layout and the relative positioning of the elements in the rest of your window.

CHAPTER 4 ■ LAYOUT 113

9551CH04 2/8/08 1:43 PM Page 113

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 4-23. Hiding some panels

■Tip You can use the Visibility property to dynamically tailor a variety of interfaces. For example, you could
make a collapsible pane that can appear at the side of your window. All you need to do is wrap all the con-
tents of that pane in some sort of layout container and set its Visibility property to suit. The remaining
content will be rearranged to fit the available space.

The Last Word
In this chapter, you took a detailed tour of the new WPF layout model and learned how to
place elements in stacks, grids, and other arrangements. You built more complex layouts using
nested combinations of the layout containers, and you threw the GridSplitter into the mix to
make resizable split windows. And all along, you kept close focus on the reasons for this dra-
matic change—namely, the benefits you’ll get when maintaining, enhancing, and localizing
your user interface.

The layout story is still far from over. In the following chapters, you’ll see many more
examples that use the layout containers to organize groups of elements. You’ll also learn about
a few additional features that let you arrange content in a window:

• Specialized containers. The Border, ScrollViewer, and Expander give you the ability
to create content that has borders, can be scrolled, and can be collapsed out of sight.
Unlike the layout panels, these containers can only hold a single piece of content. How-
ever, you can easily use them in concert with a layout panel to get exactly the effect you
need. You’ll try out these containers in Chapter 5.

CHAPTER 4 ■ LAYOUT114

9551CH04 2/8/08 1:43 PM Page 114

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• The Viewbox. Need a way to resize graphical content (such as images and vector draw-
ings)? The Viewbox is yet another specialized container that can help you out, and it has
built in scaling. You’ll take your first look at the Viewbox in Chapter 5.

• Text layout. WPF adds new tools for laying out large blocks of styled text. You can use
floating figures and lists, and use paging, columns, and sophisticated wrapping intelli-
gence to get remarkably polished results. You’ll see how in Chapter 19.

CHAPTER 4 ■ LAYOUT 115

9551CH04 2/8/08 1:43 PM Page 115

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH04 2/8/08 1:43 PM Page 116

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Content

In the previous chapter you explored the WPF layout system, which lets you arrange a win-
dow by placing elements into specialized layout containers. With this system, even a simple
window breaks down to a nested series of Grid, StackPanel, and DockPanel containers. Dig
deep enough and you’ll eventually find the visible elements (widgets such as buttons, labels,
and text boxes) inside the various containers.

However, the layout containers aren’t the only example of nested elements. In fact, WPF
is designed with a new content model that lets you place elements inside other elements that
are otherwise ordinary. Using this technique, you can take many simple controls—such as
buttons—and place pictures, vector shapes, and even layout containers inside. This content
model is one of the details that make WPF so remarkably flexible.

In this chapter, you’ll explore the base ContentControl class that supports this model.
You’ll also learn how to use more specialized ContentControl descendants to make your pan-
els scrollable and collapsible.

Understanding Content Controls
In Chapter 1, you took a look at the class hierarchy that’s at the core of WPF. You also consid-
ered the difference between elements (which include everything you’ll place in a WPF window)
and controls (which are more specialized elements that derive from the System.Windows.Con-
trols.Control class).

In the world of WPF, a control is generally described as an element that can receive focus
and accept user input, such as a text box or a button. However, the distinction is sometimes a bit
blurry. The ToolTip is considered to be a control because it appears and disappears depending
on the user’s mouse movements. The Label is considered to be a control because of its support
for mnemonics (shortcut keys that transfer the focus to related controls).

Content controls are a still more specialized type of controls that are able to hold (and
display) a piece of content. Technically, a content control is a control that can contain a single
nested element. The one-child limit is what differentiates content controls from layout con-
tainers, which can hold as many nested elements as you want.

117

C H A P T E R 5

9551CH05 2/8/08 1:44 PM Page 117

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Of course, you can still pack in a lot of content in a single content control—the trick is to wrap every-
thing in a single container, such as a StackPanel or a Grid. For example, the Window class is itself a content
control. Obviously, windows often hold a great deal of content, but it’s all wrapped in one top-level container.
(Typically, this container is a Grid.)

As you learned last chapter, all WPF layout containers derive from the abstract Panel class,
which gives the support for holding multiple elements. Similarly, all content controls derive
from the abstract ContentControl class. Figure 5-1 shows the class hierarchy.

Figure 5-1. The hierarchy of content controls

CHAPTER 5 ■ CONTENT118

9551CH05 2/8/08 1:44 PM Page 118

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

As Figure 5-1 shows, several common controls are actually content controls, including
the Label and the ToolTip. Additionally, all types of buttons are content controls, including the
familiar Button, the RadioButton, and the CheckBox. There are also a few more specialized
content controls, such as ScrollViewer (which allows you to create a scrollable panel), and
UserControl class (which allows you to reuse a custom grouping of controls). The Window
class, which is used to represent each window in your application, is itself a content control.

Finally, there is a subset of content controls that goes through one more level of inheri-
tance by deriving from the HeaderedContentControl class. These controls have both a content
region and a header region, which can be used to display some sort of title. These controls
include GroupBox, TabItem (a page in a TabControl), and Expander.

■Note Figure 5-1 leaves out very little. It doesn’t show the Frame element that’s used for content naviga-
tion (Chapter 9), and it omits a few elements that are used inside other controls (such as list box and status
bar items).

The Content Property
Whereas the Panel class adds the Children collection to hold nested elements, the Content-
Control class adds a Content property, which accepts a single object. The Content property
supports any type of object, but it separates objects into two groups and gives each group
different treatment:

• Objects that don’t derive from UIElement. The content control calls ToString() to get
the text for these controls and then displays that text.

• Objects that derive from UIElement. These objects (which include all the visual
elements that are a part of WPF) are displayed inside the content control using the
UIElement.OnRender() method.

■Note Technically, the OnRender() method doesn’t draw the object immediately—it simply generates a
graphical representation that WPF paints on the screen as needed.

To understand how this works, consider the humble button. So far, the examples that
you’ve seen that include buttons have simply supplied a string:

<Button Margin="3">Text content</Button>

This string is set as the button content and displayed on the button surface. However, you
can get more ambitious by placing other elements inside the button. For example, you can
place an image inside using the Image class:

<Button Margin="3">
<Image Source="happyface.jpg" Stretch="None" />

</Button>

CHAPTER 5 ■ CONTENT 119

9551CH05 2/8/08 1:44 PM Page 119

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Or you could combine text and images by wrapping them all in a layout container like the
StackPanel:

<Button Margin="3">
<StackPanel>
<TextBlock Margin="3">Image and text button</TextBlock>
<Image Source="happyface.jpg" Stretch="None" />
<TextBlock Margin="3">Courtesy of the StackPanel</TextBlock>

</StackPanel>
</Button>

You’ll notice that this example uses the TextBlock instead of a Label control (although
either one would work). The TextBlock is a lightweight text element that supports wrapping
but doesn’t support shortcut keys. Unlike the Label, the TextBlock is not a content control.
Chapter 7 describes both the TextBlock and Label in more detail.

■Note It’s acceptable to place text content inside a content control because the XAML parser converts that
to a string object and uses that to set the Content property. However, you can’t place string content directly
in a layout container. Instead, you need to wrap it in a class that derives from UIElement, such as TextBlock
or Label.

If you want to create a truly exotic button, you could even place other content controls
such as text boxes and buttons inside (and still nest elements inside these). It’s doubtful that
such an interface would make much sense, but it is possible. Figure 5-2 shows some sample
buttons.

Figure 5-2. Buttons with different types of nested content

CHAPTER 5 ■ CONTENT120

9551CH05 2/8/08 1:44 PM Page 120

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 5 ■ CONTENT 121

This is the exact same content model you saw with windows. Just like the Button class, the
Window class allows a single nested element, which can be a piece of text, an arbitrary object,
or an element.

■Note One of the few elements that is not allowed inside a content control is the Window. When you cre-
ate a Window, it checks to see if it’s the top-level container. If it’s placed inside another element, the Window
throws an exception.

Aside from the Content property, the ContentControl class adds very little. It includes a
HasContent property that returns true if there is content in the control, and a ContentTemplate
that allows you to build a template telling the control how to display an otherwise unrecognized
object. Using ContentTemplate, you can display non-UIElement-derived objects more intelli-
gently. Instead of just calling ToString() to get a string, you can take various property values
and arrange them into more complex markup. You’ll learn more about WPF data binding in
Chapter 16, and data templates in Chapter 17.

Aligning Content
In Chapter 4, you learned how to align different controls in a container using the
HorizontalAlignment and VerticalAlignment properties, which are defined in the base
FrameworkElement class. However, once a control contains content there’s another level of
organization to think about. You need to decide how the content inside your content control
is aligned with its borders. This is accomplished using the HorizontalContentAlignment and
VerticalContentAlignment properties.

HorizontalContentAlignment and VerticalContentAlignment support the same values
as HorizontalAlignment and VerticalAlignment. That means you can line content up on the
inside of any edge (Top, Bottom, Left, or Right), you can center it (Center), or you can stretch
it to fill the available space (Stretch). These settings are applied directly to the nested content
element, but you can use multiple levels of nesting to create a sophisticated layout. For exam-
ple, if you nest a StackPanel in a Label element, the Label.HorizontalContentAlignment
determines where the StackPanel is placed, but the alignment and sizing options of the
StackPanel and its children will determine the rest of the layout.

In Chapter 4, you also learned about the Margin property, which allows you to add white-
space between adjacent elements. Content controls use a complementary property named
Padding, which inserts space between the edges of the control and the edges of the content.
To see the difference compare the following two buttons:

<Button>Absolutely No Padding</Button>
<Button Padding="3">Well Padded</Button>

The button that has no padding (the default) has its text crowded up against the button
edge. The button that has a padding of 3 units on each side gets a more respectable amount of
breathing space. Figure 5-3 highlights the difference.

9551CH05 2/8/08 1:44 PM Page 121

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 5-3. Padding the content of the button

■Note The HorizontalContentAlignment, VerticalContentAlignment, and Padding properties are all defined
as part of the Control class, not the more specific ContentControl class. That’s because there may be controls
that aren’t content controls but still have some sort of content. One example is the TextBox—its contained
text (stored in the Text property) is adjusted using the alignment and padding settings you’ve applied.

The WPF Content Philosophy
At this point, you might be wondering if the WPF content model is really worth all the trouble.
After all, you might choose to place an image inside a button but you’re unlikely to embed
other controls and entire layout panels. However, there are a few important reasons driving
the shift in perspective.

Consider the example shown in Figure 5-2, which includes a simple image button that
places an Image element inside the Button control. This approach is less than ideal, because
bitmaps are not resolution independent. On a high-dpi display, the bitmap may appear blurry
because WPF must add more pixels by interpolation to make sure the image stays the correct
size. More sophisticated WPF interfaces avoid bitmaps and use a combination of vector
shapes to create custom-drawn buttons and other graphical frills (as you’ll see in Chapter 13).

This approach integrates nicely with the content control model. Because the Button class
is a content control, you aren’t limited to filling it with a fixed bitmap—instead, you can
include other content. For example, you can use the classes in the System.Windows.Shapes
namespace to draw a vector image inside a button. Here’s an example that creates a button
with two diamond shapes (as shown in Figure 5-4):

<Button Margin="3">
<Grid>
<Polygon Points="100,25 125,0 200,25 125,50"
Fill="LightSteelBlue" />
<Polygon Points="100,25 75,0 0,25 75,50"
Fill="White"/>

</Grid>
</Button>

CHAPTER 5 ■ CONTENT122

9551CH05 2/8/08 1:44 PM Page 122

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 5-4. A button with shape content

Clearly, in this case the nested content model is simpler than adding extra properties
to the Button class to support the different types of content. Not only is the nested content
model more flexible, it also allows the Button class to expose a simpler interface. And because
all content controls support content nesting in the same way, there’s no need to add different
content properties to multiple classes. (Windows Forms ran into this issue in .NET 2.0, while
enhancing the Button and Label class to better support images and mixed image-and-text
content.)

In essence, the nested content model is a trade. It simplifies the class model for elements
because there’s no need to use additional layers of inheritance to add properties for different
types of content. However, you need to use a slightly more complex object model—elements
that can be built out of other nested elements.

■Note You can’t always get the effect you want by changing the content of a control. For example, even
though you can place any content in a button, a few details never change, such as the button’s shaded back-
ground, its rounded border, and the mouse-over effect that makes it glow when you move the mouse pointer
over it. However, there’s another way to change these built-in details—by applying a new control template.
Chapter 15 shows how you can change all aspects of a control’s look and feel using a control template.

Specialized Containers
In Chapter 7, you’ll consider all the control basics and look at simple content controls such as
the Label and Button in more detail. But first, it’s worth taking a detour to consider a few more
sophisticated content controls: ScrollViewer, GroupBox, TabItem, and Expander. All of these
controls are designed to help you shape large portions of your user interface. However,
because these controls can only hold a single element, you’ll usually use them in conjunction
with a layout container.

The ScrollViewer
In the previous chapter, you tried out several containers. However, none of them provided
support for scrolling, which is a key feature if you want to fit large amounts of content in a
limited amount of space. In WPF, scrolling support is easy to get, but it requires another ingre-
dient: the ScrollViewer content control.

CHAPTER 5 ■ CONTENT 123

9551CH05 2/8/08 1:44 PM Page 123

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In order to get scrolling support, you need to wrap the content you want to scroll inside a
ScrollViewer. Although the ScrollViewer can hold anything, you’ll typically use it to wrap a lay-
out container. For example, in Chapter 4 you saw an example that used a Grid element to
create a three-column display of texts, text boxes, and buttons. To make this Grid scrollable,
you simply need to wrap the Grid in a ScrollViewer, as shown in this slightly shortened
markup:

<ScrollViewer>
<Grid Margin="3,3,10,3">
<Grid.RowDefinitions>
...

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
...

</Grid.ColumnDefinitions>

<Label Grid.Row="0" Grid.Column="0" Margin="3"
VerticalAlignment="Center">Home:</Label>

<TextBox Grid.Row="0" Grid.Column="1" Margin="3"
Height="Auto" VerticalAlignment="Center"></TextBox>

<Button Grid.Row="0" Grid.Column="2" Margin="3" Padding="2">
Browse</Button>

...

</Grid>
</ScrollViewer>

The result is shown in Figure 5-5.

Figure 5-5. A scrollable window

CHAPTER 5 ■ CONTENT124

9551CH05 2/8/08 1:44 PM Page 124

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 5 ■ CONTENT 125

If you resize the window in this example so that it’s large enough to fit all its content, the
scroll bar becomes disabled. However, the scroll bar will still be visible. You can control this
behavior by setting the VerticalScrollBarVisibility property, which takes a value from the
ScrollBarVisibility enumeration. The default value of Visible makes sure the vertical scroll bar
is always present. Use Auto if you want the scroll bar to appear when it’s needed and disap-
pear when it’s not. Or use Disabled if you don’t want the scroll bar to appear at all.

■Note You can also use Hidden, which is similar to Disabled but subtly different. First, content with a hid-
den scroll bar is still scrollable. (For example, you can scroll through the content using the arrow keys.)
Second, the content in a ScrollViewer is laid out differently. When you use Disabled, you tell the content in
the ScrollViewer that it has only as much space as the ScrollViewer itself. On the other hand, if you use Hid-
den you tell the content that it has an infinite amount of space. That means it can overflow and stretch off
into the scrollable region. Ordinarily, you’ll only use Hidden if you plan to allow scrolling by another mecha-
nism (such as the custom scrolling buttons described next). You’ll only use Disabled if you want to
temporarily prevent the ScrollViewer from doing anything at all.

The ScrollViewer also supports horizontal scrolling. However, the HorizontalScroll-
BarVisibility property is Hidden by default. To use horizontal scrolling, you need to change
this value to Visible or Auto.

Programmatic Scrolling
To scroll through the window in Figure 5-5, you can click the scroll bar with the mouse, you
can move over the grid and use a mouse scroll wheel, you can tab through the controls, or you
can click somewhere on the blank surface of the grid and use the up and down arrow keys. If
this still doesn’t give you the flexibility you crave, you can use the methods of the ScrollViewer
class to scroll your content programmatically:

• The most obvious are LineUp() and LineDown(), which are equivalent to clicking the
arrow buttons on the vertical scroll bar to move up or down once.

• You can also use PageUp() and PageDown(), which scroll an entire screenful up or down
and are equivalent to clicking the surface of the scroll bar, above or below the scroll bar
thumb.

• Similar methods allow horizontal scrolling, including LineLeft(), LineRight(),
PageLeft(), and PageRight().

• Finally, you can use the ScrollToXxx() methods to go somewhere specific. For vertical
scrolling, they include ScrollToEnd() and ScrollToHome(), which take you to the top or
bottom of the scrollable content, and ScrollToVerticalOffset(), which takes you to a spe-
cific position. There are horizontal versions of the same methods, including
ScrollToLeftEnd(), ScrollToRightEnd(), and ScrollToHorizontalOffset().

9551CH05 2/8/08 1:44 PM Page 125

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 5-6 shows an example where several custom buttons allow you to move through
the ScrollViewer. Each button triggers a simple event handler that uses one of the methods in
the previous list.

Figure 5-6. Programmatic scrolling

Custom Scrolling
The built-in scrolling in the ScrollViewer is quite useful. It allows you to scroll slowly through
any content, from a complex vector drawing to a grid of elements. However, one of the most
intriguing features of the ScrollViewer is its ability to let its content participate in the scrolling
process. Here’s how it works:

• You place a scrollable element inside the ScrollViewer. This is any element that imple-
ments IScrollInfo.

• You tell the ScrollViewer that the content knows how to scroll itself by setting the
ScrollViewer.CanContentScroll property to true.

• When you interact with the ScrollViewer (by using the scroll bar, the mouse wheel, the
scrolling methods, and so on), the ScrollViewer calls the appropriate methods on your
element using the IScrollInfo interface. The element then performs its own custom
scrolling.

■Note The IScrollInfo defines a set of methods that react to different scrolling actions. For example, it
includes many of the scrolling methods exposed by the ScrollViewer, such as LineUp(), LineDown(), PageUp(),
and PageDown(). It also defines methods that handle the mouse wheel.

Very few elements implement IScrollInfo. One element that does is the StackPanel con-
tainer. Its implementation of IScrollInfo implements logical scrolling, scrolling that moves
from element to element rather than from line to line.

If you place a StackPanel in a ScrollViewer and you don’t set the CanContentScroll prop-
erty, you get the ordinary behavior. Scrolling up and down moves you a few pixels at a time.
However, if you set CanContentScroll to true, each time you click down you scroll to the begin-
ning of the next element:

CHAPTER 5 ■ CONTENT126

9551CH05 2/8/08 1:44 PM Page 126

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<ScrollViewer CanContentScroll="True">
<StackPanel>
<Button Height="100">1</Button>
<Button Height="100">2</Button>
<Button Height="100">3</Button>
<Button Height="100">4</Button>

</StackPanel>
</ScrollViewer>

You may or may not find that the StackPanel’s logical scrolling system is useful in your
application. However, it’s indispensable if you want to create a custom panel with specialized
scrolling behavior.

The GroupBox and TabItem: Headered Content Controls
One of the classes that derive from ContentControl is HeaderedContentControl. Its role is
simple—it represents a container that has both single-element content (as stored in the
Content property) and a single-element header (as stored in the Header property).

There are three classes that derive from ContentControl: GroupBox, TabItem, and
Expander. The GroupBox is the simplest of the three. It’s displayed as a box with rounded
corners and a title. Here’s an example (shown in Figure 5-7):

<GroupBox Header="A GroupBox Test" Padding="5"
Margin="5" VerticalAlignment="Top">
<StackPanel>
<RadioButton Margin="3">One</RadioButton>
<RadioButton Margin="3">Two</RadioButton>
<RadioButton Margin="3">Three</RadioButton>
<Button Margin="3">Save</Button>

</StackPanel>
</GroupBox>

Figure 5-7. A basic group box

Notice that the GroupBox still requires a layout container (such as a StackPanel) to
arrange its contents. The GroupBox is often used to group small sets of related controls, such

CHAPTER 5 ■ CONTENT 127

9551CH05 2/8/08 1:44 PM Page 127

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

as radio buttons. However, the GroupBox has no built-in functionality, so you can use it how-
ever you want. (RadioButton objects are grouped by placing them into any panel. A GroupBox
is not required, unless you want the rounded, titled border.)

The TabItem represents a page in a TabControl. The only significant member that the
TabItem class adds is the IsSelected property, which indicates whether the tab is currently
being shown in the TabControl. Here’s the markup that’s required to create the simple example
that’s shown in Figure 5-8:

<TabControl Margin="5">
<TabItem Header="Tab One">
<StackPanel Margin="3">
<CheckBox Margin="3">Setting One</CheckBox>
<CheckBox Margin="3">Setting Two</CheckBox>
<CheckBox Margin="3">Setting Three</CheckBox>

</StackPanel>
</TabItem>
<TabItem Header="Tab Two">
...

</TabItem>
</TabControl>

■Tip You can use the TabStripPlacement property to make the tabs appear on the side of the tab control,
rather than their normal location at the top.

Figure 5-8. A set of tabs

As with the Content property, the Header property can accept any type of object. It dis-
plays UIElement-derived classes by rendering them and uses the ToString() method for inline

CHAPTER 5 ■ CONTENT128

9551CH05 2/8/08 1:44 PM Page 128

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 5 ■ CONTENT 129

text and all other objects. That means you can create a group box or a tab with graphical
content or arbitrary elements in its title. Here’s an example:

<TabControl Margin="5">
<TabItem>
<TabItem.Header>
<StackPanel>
<TextBlock Margin="3" >Image and Text Tab Title</TextBlock>
<Image Source="happyface.jpg" Stretch="None" />

</StackPanel>
</TabItem.Header>

<StackPanel Margin="3">
<CheckBox Margin="3">Setting One</CheckBox>
<CheckBox Margin="3">Setting Two</CheckBox>
<CheckBox Margin="3">Setting Three</CheckBox>

</StackPanel>
</TabItem>

<TabItem Header="Tab Two"></TabItem>
</TabControl>

Figure 5-9 shows the somewhat garish result.

Figure 5-9. An exotic tab title

The Expander
The most exotic headered content control is the Expander. It wraps a region of content that
the user can show or hide by clicking a small arrow button. This technique is used frequently
in online help and on web pages to allow them to include large amounts of content without
overwhelming users with information they don’t want to see.

9551CH05 2/8/08 1:44 PM Page 129

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 5-10 shows two views of a window with three expanders. In the version on the left,
all three expanders are collapsed. In the version on the right, all the regions are expanded. (Of
course, users are free to expand or collapse any combination of expanders individually.)

Figure 5-10. Hiding content with expandable regions

Using an Expander is extremely simple—you simply need to wrap the content you want
to make collapsible inside. Ordinarily, each Expander begins collapsed, but you can change
this in your markup (or in your code) by setting the IsExpanded property. Here’s the markup
that creates the example shown in Figure 5-10:

<StackPanel>
<Expander Margin="5" Padding="5" Header="Region One">
<Button Padding="3">Hidden Button One</Button>

</Expander>
<Expander Margin="5" Padding="5" Header="Region Two" >
<TextBlock TextWrapping="Wrap">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit ...

</TextBlock>
</Expander>
<Expander Margin="5" Padding="5" Header="Region Three">
<Button Padding="3">Hidden Button Two</Button>

</Expander>
</StackPanel>

CHAPTER 5 ■ CONTENT130

9551CH05 2/8/08 1:44 PM Page 130

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also choose which direction the expander “expands” in. In Figure 5-10, the stan-
dard value (Down) is used, but you can also set the ExpandDirection property to Up, Left, or
Right. When the Expander is collapsed, the arrow always points in the direction where it will
expand.

Life gets a little interesting when using different ExpandDirection values because the
effect on the rest of your user interface depends on the type of container. Some containers,
such as the WrapPanel, simply bump other elements out of the way. Others, such as Grid, have
the option of using proportional or automatic sizing. Figure 5-11 shows an example with a
four-cell grid in various degrees of expansion. In each cell is an Expander with a different
ExpandDirection. The columns are sized proportionately, which forces the text in the
Expander to wrap. (An autosized column would simply stretch to fit the text, making it larger
than the window.) The rows are set to automatic sizing, so they expand to fit the extra content.

Figure 5-11. Expanding in different directions

CHAPTER 5 ■ CONTENT 131

9551CH05 2/8/08 1:44 PM Page 131

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Expander is a particularly nice fit in WPF because WPF encourages you to use a
flowing layout model that can easily handle content areas that grow or shrink dynamically.

If you need to synchronize other controls with an Expander, you can handle the
Expanded and Collapsed events. Contrary to what the naming of these events implies, they
fire just before the content appears or disappears. This gives you a useful way to implement a
lazy load. For example, if the content in an Expander is expensive to create, you might wait
until it’s shown to retrieve it. Or perhaps you want to update the content just before it’s shown.
Either way, you can react to the Expanded event to perform your work.

■Note If you like the functionality of the Expander but aren’t impressed with the built-in appearance, don’t
worry. Using the template system in WPF, you can completely customize the expand and collapse arrows so
they match the style of the rest of your application. You’ll learn how in Chapter 15.

Ordinarily, when you expand an Expander it grows to fit its content. This may create a prob-
lem if your window isn’t large enough to fit all the content when everything is expanded. There
are several strategies for handling this problem:

• You can set a minimum size for the window (using MinWidth and MinHeight) to make
sure it will fit everything even at its smallest.

• You can set the SizeToContent property of the window so that it expands automatically
to fit the exact dimensions you need when you open or close an Expander. Ordinarily,
SizeToContent is set to Manual, but you can use Width or Height to make it expand or
contract in either dimension to accommodate its content.

• You can limit the size of the Expander by hard-coding its Height and Width. Unfortu-
nately, this is likely to truncate the content that’s inside if it’s too large.

• You can create a scrollable expandable region using the ScrollViewer.

For the most part, these techniques are quite straightforward. The only one that requires
any further exploration is the combination of an Expander and a ScrollViewer. In order for this
approach to work, you need to hard-code the size for the ScrollViewer. Otherwise, it will sim-
ply expand to fit its content.

Here’s an example:

<Expander Margin="5" Padding="5" Header="Region Two">
<ScrollViewer Height="50">
<TextBlock TextWrapping="Wrap">
...
</TextBlock>

</ScrollViewer>
</Expander>

It would be nice to have a system in which an Expander could set the size of its content
region based on the available space in a window. However, this would present obvious com-
plexities. (For example, how would space be shared between multiple regions when an

CHAPTER 5 ■ CONTENT132

9551CH05 2/8/08 1:44 PM Page 132

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Expander expands?) The Grid layout container might seem like a potential solution, but unfor-
tunately it doesn’t integrate well with the Expander. If you try it out you’ll end up with oddly
spaced rows that don’t update their heights properly when an Expander is collapsed.

Decorators
You’ve now seen several containers that are designed to help you manage other bits of con-
tent, including the ScrollViewer, GroupBox, and Expander. That makes this a good point to
pause and consider another branch of container-like elements that aren’t content controls.
These are decorators, and they’re typically used to add some sort of graphical embellishment
around an object.

All decorators derive from System.Windows.Controls.Decorator. Most decorators are
designed for use with specific controls. For example, the Button uses a ButtonChrome decora-
tor to get its trademark rounded corner and shaded background, while the ListBox uses the
ListBoxChrome decorator. Changing the appearance of these controls involves replacing their
decorator with something else, as you’ll see in Chapter 15.

There are also two more general decorators that are useful when composing user inter-
faces: the Border and the Viewbox.

The Border
The Border class is pure simplicity. It takes a single piece of nested content (which is often a
layout panel) and adds a background or border around it.

To master the Border, you need nothing more than the properties listed in Table 5-1.

Table 5-1. Properties of the Border Class

Name Description

Background Sets a background that appears behind all the content in the
border using a Brush object. You can use a solid color or
something more exotic.

BorderBrush and BorderThickness Set the color of the border that appears at the edge of the
Border object, using a Brush object, and set the width of the
border, respectively. To show a border, you must set both
properties.

CornerRadius Allows you to gracefully round the corners of your border. The
greater the CornerRadius, the more dramatic the rounding
effect is.

Padding Adds spacing between the border and the content inside. (By
contrast, margin adds spacing outside the border.)

Here’s a straightforward, slightly rounded border around a group of buttons in a StackPanel:

<Border Margin="5" Padding="5" Background="LightYellow"
BorderBrush="SteelBlue" BorderThickness="3,5,3,5" CornerRadius="3"
VerticalAlignment="Top">
<StackPanel>
<Button Margin="3">One</Button>

CHAPTER 5 ■ CONTENT 133

9551CH05 2/8/08 1:44 PM Page 133

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Button Margin="3">Two</Button>
<Button Margin="3">Three</Button>

</StackPanel>
</Border>

Figure 5-12 shows the result.

Figure 5-12. A basic border

Chapter 7 has more details about brushes and the colors you can use to set BorderBrush
and Background.

■Note Content controls already have border properties. For example, the Expander controls shown
in Figure 5-10 and Figure 5-11 use them to draw a nice outline around the expandable region. (The
only exception is the Button control, which doesn’t use its border properties because it relies on the
ButtonChrome decorator instead.) The Border element is intended to add a border around elements that
don’t have this functionality—namely the layout containers you explored in Chapter 4.

The Viewbox
The Viewbox is a more exotic decorator. Its full use won’t become apparent until you learn
more about custom drawing in Chapter 13. However, the basic principle behind the Viewbox
is easy enough to grasp. Basically, any content you place inside the Viewbox is scaled up or
down to fit the bounds of the Viewbox.

The Viewbox scaling process is much more dramatic than the stretch alignment settings
you learned about in Chapter 4. When you stretch an element, you simply change the space
that’s available to that element. This change doesn’t have an effect on most vector content
because vector drawings usually use fixed coordinates.

For example, consider the button-with-a-shape example that you saw earlier. This shape
is placed inside a Grid, and the Grid sizes itself just big enough to fit all the polygons inside.
If you enlarge the button, the shape doesn’t change—it’s just centered inside the button (see
Figure 5-13). That’s because the size of each polygon is set in absolute coordinates.

CHAPTER 5 ■ CONTENT134

9551CH05 2/8/08 1:44 PM Page 134

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 5-13. A resized graphical button

The scaling that the Viewbox does is similar to the scaling you see in WPF if you increase
the system DPI setting. It changes every onscreen element proportionately, including images,
text, lines and shapes, and the borders on common elements such as the button. If you revise
the button-with-a-shape example by wrapping the Grid in a Viewbox, you’ll see the resizing
behavior that’s shown in Figure 5-14:

<Button Margin="3">
<Viewbox>
<Grid>
<Polygon Points="100,25 125,0 200,25 125,50"
Fill="LightSteelBlue" />

<Polygon Points="100,25 75,0 0,25 75,50"
Fill="White"/>

</Grid>
</Viewbox>

</Button>

Figure 5-14. A resized graphical button that uses a Viewbox

CHAPTER 5 ■ CONTENT 135

9551CH05 2/8/08 1:44 PM Page 135

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Even though the polygons in the Grid use hard-coded coordinates, the Viewbox is clever
enough to transform these coordinates. It decides how to transform them by comparing the
Grid’s desired size—the size it wants to make itself based on the shape content—against the
available size. For example, if the Viewbox is twice as large as the Grid’s desired size, the View-
box scales all its content by a factor of 2.

■Note Usually, you’ll only want to use the Viewbox for vector graphics, not ordinary elements and controls.

By default, the Viewbox performs proportional scaling that preserves the aspect ratio of
its contents. That means that even if the shape of the button changes, the shape inside won’t.
(Instead, the Viewbox uses the largest scaling factor that fits inside the available space.) How-
ever, you can change this behavior using the Viewbox.Stretch property. By default, it’s set to
Uniform. Change it to Fill, and the content inside the Viewbox is stretched in both directions
to fit the available space exactly, even if it mangles your original drawing.

You can also get more control with the StretchDirection property. By default, this property
is set to Both, but you can use UpOnly to create content that can grow but won’t shrink
beyond its original size and DownOnly to create content that can shrink but not grow.

■Tip If you need more control, such as the ability to set a maximum upper bound and lower bound for the
size of your content, consider limiting the size of the Viewbox (or its container) using properties such as
MaxHeight, MinHeight, MaxWidth, and MinWidth.

The Last Word
As you’ve seen, WPF supports more than one content model. In the previous chapter, you
learned about panels, which can wrap multiple elements and apply layout logic. In this chap-
ter you considered content controls, which hold a single element and can range from basics
(labels and buttons) to specialized containers that create scrollable and collapsible regions.
You also took a quick detour to consider decorators, which allow you to add borders and pro-
vide dynamic scaling.

WPF still has more in store. In later chapters, you’ll learn about items controls that have
yet another content model—they can hold multiple items, each of which is displayed in a spe-
cific way (in a list box, a tree, a menu, and so on). But first, in the next chapter you’ll consider
the changes in the WPF event system and a new type of property.

CHAPTER 5 ■ CONTENT136

9551CH05 2/8/08 1:44 PM Page 136

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Dependency Properties
and Routed Events

Every .NET programmer is familiar with properties and events, which are a core part of
.NET’s object abstraction. Few would expect WPF, a user interface technology, to change either
of these fundamentals. But surprisingly enough, that’s exactly what WPF does.

First, WPF replaces ordinary .NET properties with a higher-level dependency property fea-
ture. Dependency properties use more efficient storage and support higher-level features such
as change notification and property value inheritance (the ability to propagate default values
down the element tree). Dependency properties are also the basis for a number of key WPF
features, including animation, data binding, and styles. Fortunately, even though the plumb-
ing has changed, you can read and set dependency properties in code in exactly the same way
as traditional .NET properties.

The second shift replaces ordinary .NET events with a higher-level routed event feature.
Routed events are events with more traveling power—they can tunnel down or bubble up the
element tree and be processed by event handlers along the way. Routed events allow an event
to be handled on one element (such as a label) even though it originates on another (such as
an image inside that label). As with dependency properties, routed events can be consumed in
the traditional way—by connecting an event handler with the right signature—but you need
to understand how they work to unlock all their features.

In this chapter, you’ll start by taking a look at dependency properties. You’ll see how
they’re defined and what features they support. Then you’ll explore the WPF event system and
learn how to fire and handle routed events. Finally, you’ll consider the essential WPF events
for dealing with mouse and keyboard actions.

Understanding Dependency Properties
Dependency properties are a completely new implementation of properties—one that has a
significant amount of added value. You need dependency properties to plug into core WPF
features, such as animation, data binding, and styles.

Most of the properties that are exposed by WPF elements are dependency properties. In
all the examples you’ve seen up to this point, you’ve been using dependency properties with-
out realizing it. That’s because dependency properties are designed to be consumed in the
same way as normal properties.

137

C H A P T E R 6

9551CH06 2/8/08 1:44 PM Page 137

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

However, dependency properties are not normal properties. It’s comforting to think of a
dependency property as a normal property (defined in the typical .NET fashion) with a set of
WPF features added on. Conceptually, dependency features behave this way, but that’s not
how they’re implemented behind the scenes. The simple reason why is performance. If the
designers of WPF simply added extra features on top of the .NET property system, they’d need
to create a complex, bulky layer for your code to travel through. Ordinary properties could not
support all the features of dependency properties without this extra overhead.

Dependency properties are a WPF-specific creation. However, the dependency properties
in the WPF libraries are always wrapped by ordinary .NET property procedures. This makes
them usable in the normal way, even with code that has no understanding of the WPF
dependency property system. It seems odd to think of an older technology wrapping a newer
one, but that’s how WPF is able to change a fundamental ingredient such as properties with-
out disrupting the rest of the .NET world.

Defining and Registering a Dependency Property
You’ll spend much more time using dependency properties than creating them. However,
there are still many reasons that you’ll need to create your own dependency properties. Obvi-
ously, they’re a key ingredient if you’re designing a custom WPF element. However, they’re also
required in some cases if you want to add data binding, animation, or another WPF feature to
a portion of code that wouldn’t otherwise support it. For example, you’ll see your first required
use of dependency properties in Chapter 9, when persisting custom information in a page-
based application.

Creating a dependency property isn’t difficult, but the syntax takes a little getting used to.
It’s thoroughly different than creating an ordinary .NET property.

The first step is to define an object that represents your property. This is an instance of the
DependencyProperty class. The information about your property needs to be available all the
time, and possibly even shared among classes (as is common with WPF elements). For that rea-
son, your DependencyProperty object must be defined as a static field in the associated class.

For example, the FrameworkElement class defines a Margin property that all elements
share. Unsurprisingly, Margin is a dependency property. That means it’s defined in the
FrameworkElement class like this:

public class FrameworkElement: UIElement, ...
{

public static readonly DependencyProperty MarginProperty;

...
}

By convention, the field that defines a dependency property has the name of the ordinary
property, plus the word Property at the end. That way, you can separate the dependency prop-
erty definition from the name of the actual property. The field is defined with the readonly
keyword, which means it can only be set in the static constructor for the FrameworkElement.

Defining the DependencyProperty object is just the first step. In order for it to become
usable, you need to register your dependency property with WPF. This step needs to be com-
pleted before any code uses the property, so it must be performed in a static constructor for
the associated class.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS138

9551CH06 2/8/08 1:44 PM Page 138

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF ensures that DependencyProperty objects can’t be instantiated directly, because
the DependencyObject class has no public constructor. Instead, a DependencyObject
instance can be created only using the static DependencyProperty.Register() method. WPF
also ensures that DependencyProperty objects can’t be changed after they’re created, because
all DependencyProperty members are read-only. Instead, their values must be supplied as
arguments to the Register() method.

The following code shows an example of how a DependencyPropery must be created.
Here, the FrameworkElement class uses a static constructor to initialize the MarginProperty:

static FrameworkElement()
{

FrameworkPropertyMetadata metadata = new FrameworkPropertyMetadata(
new Thickness(), FrameworkPropertyMetadataOptions.AffectsMeasure);

MarginProperty = DependencyProperty.Register("Margin",
typeof(Thickness), typeof(FrameworkElement), metadata,
new ValidateValueCallback(FrameworkElement.IsMarginValid));

...
}

There are two steps involved in registering a dependency property. First, you create a
FrameworkPropertyMetadata object that indicates what services you want to use with your
dependency property (such as support for data binding, animation, and journaling). Next,
you register the property by calling the static DependencyProperty.Register() method. At this
point, you are responsible for supplying a few key ingredients:

• The property name (Margin in this example)

• The data type used by the property (the Thickness structure in this example)

• The type that owns this property (the FrameworkElement class in this example)

• Optionally, a FrameworkPropertyMetadata object with additional property settings

• Optionally, a callback that performs validation for the property

The first three details are all straightforward. The FrameworkPropertyMetadata object
and the validation callback are more interesting. You’ll take a look at these details in the fol-
lowing two sections.

Property Validation
The validation callback allows you to enforce the validation that you’d normally add in the set
portion of a property procedure. The callback you supply must point to a method that accepts
an object parameter and returns a Boolean value. You return true to accept the object as valid
and false to reject it.

The validation of the FrameworkElement.Margin property isn’t terribly interesting
because it relies on an internal Thickness.IsValid() method. This method makes sure the
Thickness object is valid for its current use (representing a margin). For example, it may be
possible to construct a perfectly acceptable Thickness object that isn’t acceptable for setting

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 139

9551CH06 2/8/08 1:44 PM Page 139

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the margin. One example is a Thickness object with negative dimensions. If the supplied
Thickness object isn’t valid for a margin, the IsMarginValid property returns false:

private static bool IsMarginValid(object value)
{

Thickness thickness1 = (Thickness) value;
return thickness1.IsValid(true, false, true, false);

}

There’s one limitation with validation callbacks: they are static methods that don’t have
access to the object that’s being validated. All you get is the newly applied value. While that
makes them easier to reuse, it also makes it impossible to create a validation routine that takes
other properties into account. The classic example is an element with a Maximum and Mini-
mum property. Clearly, it should not be possible to set the Maximum to a value that’s less than
the Minimum. However, you can’t enforce this logic with a validation callback because you’ll
only have access to one property at a time.

■Note The preferred approach to solve this problem is to use value coercion. Coercion is a step that
occurs just before validation, and it allows you to modify a value to make it more acceptable (for example,
raising the Maximum so it’s at least equal to the Minimum) or disallow the change altogether. The coercion
step is handled through another callback, but this one’s attached to the FrameworkPropertyMetadata object,
which is described in the next section.

The Property Wrapper
The final step is to wrap your WPF property in traditional .NET property. However, whereas
typical property procedures retrieve or set the value of a private field, the property procedures
for a WPF property use the GetValue() and SetValue() methods that are defined in the base
DependencyObject class. Here’s an example:

public Thickness Margin
{

set { SetValue(MarginProperty, value); }
get { return (Thickness)GetValue(MarginProperty); }

}

When you create the property wrapper, you should include nothing more than a call to
SetValue() and a call to GetValue(), as in the previous example. You should not add any extra
code to validate values, raise events, and so on. That’s because other features in WPF may
bypass the property wrapper and call SetValue() and GetValue() directly. (One example is
when a compiled XAML file is parsed at runtime.) Both SetValue() and GetValue() are public.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS140

9551CH06 2/8/08 1:44 PM Page 140

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The property wrapper isn’t the right place to validate data or raise an event. However, WPF does
provide a place for this code—the trick is to use dependency property callbacks. Validation should be per-
formed through the DependencyProperty.ValidateValueCallback shown previously, while events can be raised
from the FrameworkPropertyMetadata.PropertyChangedCallback shown in the next section.

You now have a fully functioning dependency property, which you can set just like any
other .NET property using the property wrapper:

myElement.Margin = new Thickness(5);

There’s one extra detail. Dependency properties follow strict rules of precedence to deter-
mine their current value. Even if you don’t set a dependency property directly, it may already
have a value—perhaps one that’s applied by a binding, style, or animation, or one that’s inher-
ited through the element tree. (You’ll learn more about these rules of precedence a bit later in
the section “How WPF Uses Dependency Properties.”) However, as soon as you set the value
directly, it overrides all these other influences.

At some point later, you may want to remove your local value setting and let the property
value be determined as though you never set it. Obviously, you can’t accomplish this by setting a
new value. Instead, you need to use another method that’s inherited from DependencyObject:
the ClearValue() method. Here’s how it works:

myElement.ClearValue(FrameworkElement.MarginProperty);

Property Metadata
Technically, you don’t need to create a FrameworkPropertyMetadata object because there’s an
overload of the Dependency.Register() method that doesn’t require one. However, you need
the FrameworkPropertyMetadata object if you want to configure any one of a number of
dependency property features.

■Note In the Windows Forms platform, the same function is provided using ordinary .NET attributes from
several namespaces. Although you’ll still use some attributes with WPF elements (for example, to attach
custom type converters), the system is clearer because several important options are grouped into the
FrameworkPropertyMetadata class.

Most of these features are configured through simple Boolean flags. (The default value for
each Boolean flag is false.) A few are callbacks that point to custom methods that you create to
perform a specific task. Table 6-1 lists the available properties.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 141

9551CH06 2/8/08 1:44 PM Page 141

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 6-1. Properties of the FrameworkPropertyMetadata Class

Name Description

AffectsArrange, AffectsMeasure, If true, the dependency property may affect how adjacent
AffectsParentArrange, and elements (or the parent element) are placed during the
AffectsParentMeasure measure pass and the arrange pass of a layout operation. For

example, the Margin dependency property sets AffectsMeasure
to true, signaling that if the margin of an element changes, the
layout container needs to repeat the measure step to determine
the new placement of elements.

AffectsRender If true, the dependency property may affect something about
the way an element is drawn, requiring that the element be
repainted.

BindsTwoWayByDefault If true, this dependency property will use two-way data binding
instead of one-way data binding by default. However, you can
specify the binding behavior you want explicitly when you
create the binding.

Inherits If true, the dependency property value propagates through the
element tree and can be inherited by nested elements. For
example, Font is an inheritable dependency property—if you
set it on a higher-level element, it’s inherited by nested elements,
unless they explicitly override it with their own font settings.

IsAnimationProhibited If true, the dependency property can’t be used in an animation.

IsNotDataBindable If true, the dependency property can’t be set with a binding
expression.

Journal If true, this dependency property will be persisted to the
journal (the history of visited pages) in a page-based
application.

SubPropertiesDoNotAffectRender If true, WPF will not rerender an object if one of its
subproperties (the property of a property) changes.

DefaultUpdateSourceTrigger This sets the default value for the Binding.UpdateSourceTrigger
property when this property is used in a binding expression.
The UpdateSourceTrigger determines when a databound value
applies its changes. You can set the UpdateSourceTrigger
property manually when you create the binding.

DefaultValue This sets the default value for the dependency property.

CoerceValueCallback This provides a callback that attempts to “correct” a property
value before it’s validated.

PropertyChangedCallback This provides a callback that is called when a property value is
changed.

Property Coercion
It’s important to understand the relationship between the ValidateValueCallback (which
you can supply as an argument to the DependencyProperty.Register() method) and the
PropertyChangedCallback and CoerceValueCallback (which you can supply as constructor
arguments when creating the FrameworkPropertyMetadata object). Here’s how all the pieces
come into play:

• First, the CoerceValueCallback method has the opportunity to modify the
supplied value (usually, to make it consistent with other properties) or return
DependencyProperty.UnsetValue, which rejects the change altogether.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS142

9551CH06 2/8/08 1:44 PM Page 142

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Next, the ValidateValueCallback is fired. This method returns true to accept a value as
valid, or false to reject it. Unlike the CoerceValueCallback, the ValidateValueCallback
does not have access to the actual object on which the property is being set, which
means you can’t examine other property values.

• Finally, if both these previous stages succeed, the PropertyChangedCallback is trig-
gered. At this point, you can raise a change event if you want to provide notification to
other classes.

The CoerceValueCallback is the preferred way to deal with interrelated properties. For
example, the ScrollBar provides Maximum, Minimum, and Value properties, all of which are
inherited from the RangeBase class. When the Maximum is set, it’s coerced so that it can’t be
less than the Minimum:

private static object CoerceMaximum(DependencyObject d, object value)
{

RangeBase base1 = (RangeBase)d;
if (((double) value) < base1.Minimum)
{

return base1.Minimum;
}
return value;

}

In other words, if the value that’s applied to the Maximum property is less than
the Minimum, the Minimum value is used instead to cap the Maximum. Notice that the
CoerceValueCallback passes two parameters—the value that’s being applied, and the object to
which it’s being applied.

When the Value is set, a similar coercion takes place. The Value property is coerced so that
it can’t fall outside of the range defined by the Minimum and Maximum, using this code:

internal static object ConstrainToRange(DependencyObject d, object value)
{

double newValue = (double)value;
RangeBase base1 = (RangeBase)d;

double minimum = base1.Minimum;
if (newValue < minimum)
{

return minimum;
}
double maximum = base1.Maximum;
if (newValue > maximum)
{

return maximum;
}
return newValue;

}

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 143

9551CH06 2/8/08 1:44 PM Page 143

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Minimum property doesn’t use value coercion at all. Instead, once it has been
changed, it triggers a PropertyChangedCallback that forces the Maximum and Value proper-
ties to follow along by manually triggering their coercion:

private static void OnMinimumChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
RangeBase base1 = (RangeBase)d;
...
base1.CoerceValue(RangeBase.MaximumProperty);
base1.CoerceValue(RangeBase.ValueProperty);

}

Similarly, once the Maximum has been set and coerced, it manually coerces the Value
property to fit:

private static void OnMaximumChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
RangeBase base1 = (RangeBase)d;
...
base1.CoerceValue(RangeBase.ValueProperty);
base1.OnMaximumChanged((double) e.OldValue, (double)e.NewValue);

}

The end result is that if you set conflicting values, the Minimum takes precedence,
the Maximum gets its say next (and may possibly be coerced by the Minimum), and then the
Value is applied (and may be coerced by both the Maximum and Minimum).

The goal of this somewhat confusing sequence of steps is to ensure that the ScrollBar
properties can be set in various orders without causing an error. This is an important consid-
eration for initialization, such as when a window is being created for a XAML document. All
WPF controls guarantee that their properties can be set in any order, without causing any
change in behavior.

A careful review of the previous code calls this goal into question. For example, consider
this code:

ScrollBar bar = new ScrollBar();
bar.Value = 100;
bar.Minimum = 1;
bar.Maximum = 200;

When the ScrollBar is first created, Value is 0, Minimum is 0, and Maximum is 1.
After the second line of code, the Value property is coerced to 1 (because initially the Max-

imum property is set to the default value 1). But something remarkable happens when you
reach the fourth line of code. When the Maximum property is changed, it triggers coercion on
both the Minimum and Value properties. This coercion acts on the values you specified origi-
nally. In other words, the local value of 100 is still stored by the WPF dependency property
system, and now that it’s an acceptable value, it can be applied to the Value property. Thus,
after this single line of code executes, two properties have changed. Here’s a closer look at
what’s happening:

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS144

9551CH06 2/8/08 1:44 PM Page 144

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ScrollBar bar = new ScrollBar();
bar.Value = 100;
// (Right now bar.Value returns 1.)
bar.Minimum = 1;
// (bar.Value still returns 1.)
bar.Maximum = 200;
// (Now now bar.Value returns 100.)

This behavior persists no matter when you set the Maximum property. For example, if
you set a Value of 100 when the window loads, and set the Maximum property later when the
user clicks a button, the Value property is still restored to its rightful value of 100 at that point.
(The only way to prevent this from taking place is to set a different value or remove the local
value that you’ve applied using the ClearValue() method that all elements inherit from
DependencyObject.)

This behavior is due to WPF’s property resolution system, which stores the exact local
value you’ve set internally but evaluates what the property should be (using coercion and a
few other considerations) when you read the property. More information about this system is
in the section “How WPF Uses Dependency Properties” later in this chapter.

■Note Long-time Windows Forms programmers may remember the ISupportInitialize interface, which
was used to solve similar problems in property initialization by wrapping a series of property changes into a
batch process. Although you can use ISupportInitialize with WPF (and the XAML parser respects it), few of
the WPF elements use this technique. Instead, it’s encouraged to resolve these problems using value coer-
cion. There are a number of reasons that coercion is preferred. For example, coercion solves other problems
that can occur when an invalid value is applied through a data binding or animation, unlike the ISupportIni-
tialize interface.

Shared Dependency Properties
Some classes share the same dependency property, even though they have separate class
hierarchies. For example, both TextBlock.FontFamily and Control.FontFamily point to the
same static dependency property, which is actually defined in the TextElement class and
TextElement.FontFamilyProperty. The static constructor of TextElement registers the
property, but the static constructors of TextBlock and Control simply reuse it by calling
the DependencyProperty.AddOwner() method:

TextBlock.FontFamilyProperty =
TextElement.FontFmamilyProperty.AddOwner(typeof(TextBlock));

You can use the same technique when you create your own custom classes (assuming the
property is not already provided in the class you’re inheriting from, in which case you get it for
free). You can also use an overload of the AddOwner() method that allows you to supply a vali-
dation callback and a new FrameworkPropertyMetadata that will only apply to this new use of
the dependency property.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 145

9551CH06 2/8/08 1:44 PM Page 145

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Reusing dependency properties can lead to some strange side effects in WPF, most
notably with styles. For example, if you use a style to set the TextBlock.FontFamily property
automatically, your style will also affect the Control.FontFamily property because behind the
scenes both classes use the same dependency property. You’ll see this phenomenon in action
in Chapter 12.

Attached Dependency Properties
Chapter 2 introduced a special type of dependency property called an attached property. An
attached property is a dependency property, and it’s managed by the WPF property system.
The difference is that an attached property applies to a class other than the one where it’s
defined.

The most common example of attached properties is found in the layout containers
described in Chapter 4. For example, the Grid class defines the attached properties Row and
Column, which you set on the contained elements to indicate where they should be posi-
tioned. Similarly, the DockPanel defines the attached property Dock, and the Canvas defines
the attached properties Left, Right, Top, and Bottom.

To define an attached property, you use the RegisterAttached() method instead of Regis-
ter(). Here’s an example that registers the Grid.Row property:

FrameworkPropertyMetadata metadata = new FrameworkPropertyMetadata(
0, new PropertyChangedCallback(Grid.OnCellAttachedPropertyChanged));

Grid.RowProperty = DependencyProperty.RegisterAttached("Row", typeof(int),
typeof(Grid), metadata, new ValidateValueCallback(Grid.IsIntValueNotNegative));

As with an ordinary dependency property, you can supply a FrameworkPropertyMetadata
object and a ValidateValueCallback.

When creating an attached property, you don’t define the .NET property wrapper. That’s
because attached properties can be set on any dependency object. For example, the Grid.Row
property may be set on a Grid object (if you have one Grid nested inside another) or on some
other element. In fact, the Grid.Row property can be set on an element even if that element
isn’t in a Grid—and even if there isn’t a single Grid object in your element tree.

Instead of using a .NET property wrapper, attached properties require a pair of static
methods that can be called to set and get the property value. These methods use the familiar
SetValue() and GetValue() methods (inherited from the DependencyObject class). The static
methods should be named SetPropertyName() and GetPropertyName().

Here are the static methods that implement the Grid.Row attached property:

public static int GetRow(UIElement element)
{

if (element == null)
{

throw new ArgumentNullException(...);
}
return (int)element.GetValue(Grid.RowProperty);

}

public static void SetRow(UIElement element, int value)

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS146

9551CH06 2/8/08 1:44 PM Page 146

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
if (element == null)
{

throw new ArgumentNullException(...);
}
element.SetValue(Grid.RowProperty, value);

}

Here’s an example that positions an element in the first row of a Grid using code:

Grid.SetRow(txtElement, 0);

Alternatively, you can call the SetValue() or GetValue() method directly and bypass the
static methods:

txtElement.SetValue(Grid.RowProperty, 0);

The SetValue() method also provides one brain-twisting oddity. Although XAML doesn’t
allow it, you can use an overloaded version of the SetValue() method in code to attach a value
for any dependency property, even if that property isn’t defined as an attached property. For
example, the following code is perfectly legitimate:

ComboBox comboBox = new ComboBox();
...
comboBox.SetValue(PasswordBox.PasswordCharProperty, "*");

Here, a value for the PasswordBox.PasswordChar property is set for a ComboBox object,
even though PasswordBox.PasswordCharProperty is registered as an ordinary dependency
property, not an attached property. This action won’t change the way the ComboBox works—
after all, the code inside the ComboBox won’t look for the value of a property that it doesn’t
know exists—but you could act upon the PasswordChar value in your own code.

Although rarely used, this quirk provides some more insight into the way the WPF prop-
erty system works, and it demonstrates its remarkable extensibility. It also shows that even
though attached properties are registered with a different method than normal dependency
properties, in the eyes of WPF there’s no real distinction. The only difference is what the XAML
parser allows. Unless you register your property as an attached property, you won’t be able to
set it in on other elements in your markup.

How WPF Uses Dependency Properties
As you’ll discover throughout this book, dependency properties are required for a range of
WPF features. However, all of these features work through two key behaviors that every
dependency property supports—change notification and dynamic value resolution.

As you’ve already seen, when you change the value of a dependency property, a callback
is triggered. This callback is part of the low-level plumbing of WPF, and it takes care of updat-
ing data bindings and firing triggers. Contrary to what you might expect, dependency
properties do not automatically fire events to let you know when a property value changes.
Instead, they trigger a protected method named OnPropertyChangedCallback(). This method
passes the information along to two WPF services (data binding and triggers) and calls the
PropertyChangedCallback, if one is defined.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 147

9551CH06 2/8/08 1:44 PM Page 147

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In other words, if you want to perform an action when a property changes, you have two
choices—you can create a binding that uses the property value (Chapter 15), or you can write
a trigger that automatically changes another property or starts an animation (Chapter 12).
However, dependency properties don’t give you a general-purpose way to fire off some code to
respond to a property change.

■Note If you’re dealing with a control that you’ve created, you can use the property callback mechanism to
react to property changes and even raise an event. Many common controls use this technique for properties
that correspond to user-supplied information. For example, the TextBox provides a TextChanged event and
the ScrollBar provides a ValueChanged event. A control can implement functionality like this using the
PropertyChangedCallback, but this functionality isn’t exposed from dependency properties in a general way
for performance reasons.

The second feature that’s key to the way dependency properties work is dynamic value
resolution. This means when you retrieve the value from a dependency property, WPF takes
several factors into consideration. You’ve already seen this at work in the ScrollBar example,
where the Value property depends on both the value applied locally by code and the Coerce-
ValueCallback.

This behavior gives dependency properties their name—in essence, a dependency prop-
erty depends on multiple property providers, each with its own level of precedence. When you
retrieve a value from a property value, the WPF property system goes through a series of steps
to arrive at the final value. First, it determines the base value for the property by considering
the following factors, arranged from lowest to highest precedence:

1. The default value (as set by the FrameworkPropertyMetadata object)

2. The inherited value (if the FrameworkPropertyMetadata.Inherits flag is set and a value
has been applied to an element somewhere up the containment hierarchy)

3. The value from a theme style (as discussed in Chapter 15)

4. The value from a project style (as discussed in Chapter 12)

5. The local value (in other words, a value you’ve set directly on this object using code
or XAML)

As this list shows, you override the entire hierarchy by applying a value directly. If you
don’t, the value is determined by the next applicable item up on the list.

■Note One of the advantages of this system is that it’s very economical. If the value of a property has not
been set locally, WPF will retrieve its value from a style, another element, or the default. In this case, no
memory is required to store the value. You can quickly see the savings if you add a few buttons to a form.
Each button has dozens of properties which, if they are set through one of these mechanisms, use no
memory at all.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS148

9551CH06 2/8/08 1:44 PM Page 148

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF follows the previous list to determine the base value of a dependency property. How-
ever, the base value is not necessarily the final value that you’ll retrieve from a property. That’s
because WPF considers several other providers that can change a property’s value.

Here’s the five-step process WPF follows to determine a property value:

1. Determine the base value (as described previously).

2. If the property is set using an expression, evaluate that expression. Currently, WPF sup-
ports two types of expression: resources (Chapter 11) and data binding (Chapter 15).

3. If this property is the target of animation, apply that animation.

4. Run the CoerceValueCallback to “correct” the value.

5. Run the PropertyChangedCallback to disallow invalid data.

Essentially, dependency properties are hardwired into a small set of WPF services. If it
weren’t for this infrastructure, these features would add unnecessary complexity and signifi-
cant overhead.

■Tip In future versions of WPF, the dependency property pipeline could be extended to include additional
services. When you design custom elements (a topic covered in Chapter 24), you’ll probably use dependency
properties for most (if not all) of their public properties.

Understanding Routed Events
Every .NET developer is familiar with the idea of events—messages that are sent by an object
(such as a WPF element) to notify your code when something significant occurs. WPF
enhances the .NET event model with a new concept of event routing. Event routing allows an
event to originate in one element but be raised by another one. For example, event routing
allows a click that begins in a toolbar button to rise up to the toolbar and then to the contain-
ing window before it’s handled by your code.

Event routing gives you the flexibility to write tight, well-organized code that handles
events in the most convenient place. It’s also a necessity for working with the WPF content
model, which allows you to build simple elements (such as a button) out of dozens of distinct
ingredients, each of which has its own independent set of events.

Defining and Registering a Routed Event
The WPF event model is quite similar to the WPF property model. As with dependency proper-
ties, routed events are represented by read-only static fields, registered in a static constructor,
and wrapped by a standard .NET event definition.

For example, the WPF Button class provides the familiar Click event, which is inherited
from the abstract ButtonBase class. Here’s how the event is defined and registered:

public abstract class ButtonBase : ContentControl, ...
{

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 149

9551CH06 2/8/08 1:44 PM Page 149

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// The event definition.
public static readonly RoutedEvent ClickEvent;

// The event registration.
static ButtonBase()
{

ButtonBase.ClickEvent = EventManager.RegisterRoutedEvent(
"Click", RoutingStrategy.Bubble,
typeof(RoutedEventHandler), typeof(ButtonBase));

...
}

// The traditional event wrapper.
public event RoutedEventHandler Click
{

add
{

base.AddHandler(ButtonBase.ClickEvent, value);
}
remove
{

base.RemoveHandler(ButtonBase.ClickEvent, value);
}

}

...
}

While dependency properties are registered with the DependencyProperty.Register()
method, routed events are registered with the EventManager.RegisterRoutedEvent() method.
When registering an event, you need to specify the name of the event, the type of routine
(more on that later), the delegate that defines the syntax of the event handler (in this example,
RoutedEventHandler), and the class that owns the event (in this example, ButtonBase).

Usually, routed events are wrapped by ordinary .NET events to make them accessible
to all .NET languages. The event wrapper adds and removes registered callers using the
AddHandler() and RemoveHandler() methods, both of which are defined in the base
FrameworkElement class and inherited by every WPF element.

Of course, like any event, the defining class needs to raise it at some point. Exactly where
this takes place is an implementation detail. However, the important detail is that your event
is not raised through the traditional .NET event wrapper. Instead, you use the RaiseEvent()
method that every element inherits from the UIElement class. Here’s the appropriate code
from deep inside the ButtonBase class:

RoutedEventArgs e = new RoutedEventArgs(ButtonBase.ClickEvent, this);
base.RaiseEvent(e);

The RaiseEvent() method takes care of firing the event to every caller that’s been regis-
tered with the AddHandler() method. Because AddHandler() is public, callers have a

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS150

9551CH06 2/8/08 1:44 PM Page 150

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

choice—they can register themselves directly by calling AddHandler(), or they can use the
event wrapper. (The following section demonstrates both approaches.) Either way, they’ll be
notified when the RaiseEvent() method is invoked.

As with dependency properties, the definition of a routed event can be shared between
classes. For example, two base classes use the MouseUp event: UIElement (which is the start-
ing point for ordinary WPF elements) and ContentElement (which is the starting point for
content elements, which are individual bits of content that can be placed in a flow document).
The MouseUp event is defined by the System.Windows.Input.Mouse class. The UIElement and
ContentElement classes simply reuse it with the RoutedEvent.AddOwner() method:

UIElement.MouseUpEvent = Mouse.MouseUpEvent.AddOwner(typeof(UIElement));

All WPF events use the familiar .NET convention for event signatures. That first parameter
of every event handler provides a reference to the object that fired the event (the sender). The
second parameter is an EventArgs object that bundles together any additional details that
might be important. For example, the MouseUp event provides a MouseEventArgs object that
indicates what mouse buttons were pressed when the event occurred:

private void img_MouseUp(object sender, MouseButtonEventArgs e)
{
}

In Windows Forms applications, it was customary for many events to use the base Event-
Args class if they didn’t need to pass along any extra information. However, the situation is
different in WPF applications due to their support for the routed event model.

In WPF, if an event doesn’t need to send any additional details, it uses the RoutedEvent-
Args class, which includes some details about how the event was routed. If the event does
need to transmit extra information, it uses a more specialized RoutedEventArgs-derived
object (such as MouseButtonEventArgs in the previous example). Because every WPF event
argument class derives from RoutedEventArgs, every WPF event handler has access to infor-
mation about event routing.

Attaching an Event Handler
As you learned in Chapter 2, there are several ways to attach an event handler. The most com-
mon approach is to add an event attribute to your XAML markup. The event attribute is
named after the event you want to handle, and its value is the name of the event handler
method. Here’s an example that uses this syntax to connect the MouseUp event of the Image
to an event handler named img_MouseUp:

<Image Source="happyface.jpg" Stretch="None"
Name="img" MouseUp="img_MouseUp" />

Although it’s not required, it’s a common convention to name event handler methods in
the form ElementName_EventName. If the element doesn’t have a defined name (presumably
because you don’t need to interact with it in any other place in your code), consider using the
name it would have:

<Button Click="cmdOK_Click">OK</Button>

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 151

9551CH06 2/8/08 1:44 PM Page 151

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip It may be tempting to attach an event to a high-level method that performs a task, but you’ll have
more flexibility if you keep an extra layer of event handling code. For example, when you click a button
named cmdUpdate, it shouldn’t trigger a method named UpdateDatabase() directly. Instead, it should call an
event handler such as cmdUpdate_Click(), which can then call the UpdateDatabase() method that does the
real work. This pattern gives you the flexibility to change where your database code is located, replace the
update button with a different control, and wire several controls to the same process, all without limiting
your ability to change the user interface later on. If you want a simpler way to deal with actions that can be
triggered from several different places in a user interface (toolbar buttons, menu commands, and so on),
you’ll want to add the WPF command feature that’s described in Chapter 10.

You can also connect an event with code. Here’s the code equivalent of the XAML markup
shown previously:

img.MouseUp += new MouseButtonEventHandler(img_MouseUp);

This code creates a delegate object that has the right signature for the event (in this case,
an instance of the MouseButtonEventHandler delegate) and points that delegate to the
img_MouseUp() method. It then adds the delegate to the list of registered event handlers for
the img.MouseUp event.

C# also allows a more streamlined syntax that creates the appropriate delegate object
implicitly:

img.MouseUp += img_MouseUp;

The code approach is useful if you need to dynamically create a control and attach an
event handler at some point during the lifetime of your window. By comparison, the events
you hook up in XAML are always attached when the window object is first instantiated. The
code approach also allows you to keep your XAML simpler and more streamlined, which is
perfect if you plan to share it with nonprogrammers, such as a design artist. The drawback is a
significant amount of boilerplate code that will clutter up your code files.

The previous code approach relies on the event wrapper, which calls the UIElement.Add-
Handler() method, as shown in the previous section. You can also connect an event directly by
calling UIElement.AddHandler() method yourself. Here’s an example:

img.AddHandler(Image.MouseUpEvent,
new MouseButtonEventHandler(img_MouseUp));

When you use this approach, you always need to create the appropriate delegate type
(such as MouseButtonEventHandler). You can’t create the delegate object implicitly, as
you can when hooking up an event through the property wrapper. That’s because the
UIElement.AddHandler() method supports all WPF events and it doesn’t know the delegate
type that you want to use.

Some developers prefer to use the name of the class where the event is defined, rather
than the name of the class that is firing the event. Here’s the equivalent syntax that makes it
clear that the MouseUpEvent is defined in UIElement:

img.AddHandler(UIElement.MouseUpEvent,
new MouseButtonEventHandler(img_MouseUp));

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS152

9551CH06 2/8/08 1:44 PM Page 152

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Which approach you use is largely a matter of taste. However, the drawback to this second
approach is that it doesn’t make it obvious that the Image class provides a MouseUpEvent. It’s possible to
confuse this code and assume it’s attaching an event handler that’s meant to deal with the MouseUpEvent
in a nested element. You’ll learn more about this technique in the section “Attached Events” later in this
chapter.

If you want to detach an event handler, code is your only option. You can use the
-= operator, as shown here:

img.MouseUp -= img_MouseUp;

Or you can use the UIElement.RemoveHandler() method:

img.RemoveHandler(Image.MouseUpEvent,
new MouseButtonEventHandler(img_MouseUp));

It is technically possible to connect the same event handler to the same event more than
once. This is usually the result of a coding mistake. (In this case, the event handler will be trig-
gered multiple times.) If you attempt to remove an event handler that’s been connected twice,
the event will still trigger the event handler, but just once.

Event Routing
As you learned in the previous chapter, many controls in WPF are content controls, and con-
tent controls can hold any type and amount of nested content. For example, you can build a
graphical button out of shapes, create a label that mixes text and pictures, or put content in a
specialized container to get a scrollable or collapsible display. You can even repeat this nesting
process to go as many layers deep as you want.

This ability for arbitrary nesting raises an interesting question. For example, imagine you
have a label like this one, which contains a StackPanel that brings together two blocks of text
and an image:

<Label BorderBrush="Black" BorderThickness="1">
<StackPanel>
<TextBlock Margin="3">
Image and text label</TextBlock>
<Image Source="happyface.jpg" Stretch="None" />
<TextBlock Margin="3">
Courtesy of the StackPanel</TextBlock>

</StackPanel>
</Label>

As you already know, every ingredient you place in a WPF window derives from
UIElement at some point, including the Label, StackPanel, TextBlock, and Image. UIElement
defines some core events. For example, every class that derives from UIElement provides a
MouseDown and MouseUp event.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 153

9551CH06 2/8/08 1:44 PM Page 153

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

But consider what happens when you click the image part of the fancy label shown here.
Clearly, it makes sense for the Image.MouseDown and Image.MouseUp events to fire. But
what if you want to treat all label clicks in the same way? In this case, it shouldn’t matter
whether the user clicks the image, some of the text, or part of the blank space inside the label
border. In every case, you’d like to respond with the same code.

Clearly, you could wire up the same event handler to the MouseDown or MouseUp event
of each element, but that would result in a significant amount of clutter and it would make
your markup more difficult to maintain. WPF provides a better solution with its routed event
model.

Routed events actually come in the following three flavors:

• Direct events are like ordinary .NET events. They originate in one element and don’t
pass to any other. For example, MouseEnter (which fires when the mouse pointer
moves over an element) is a direct event.

• Bubbling events are events that travel up the containment hierarchy. For example,
MouseDown is a bubbling event. It’s raised first by the element that is clicked. Next, it’s
raised by that element’s parent, and then by that element’s parent, and so on, until WPF
reaches the top of the element tree.

• Tunneling events are events that travel down the containment hierarchy. They give you
the chance to preview (and possibly stop) an event before it reaches the appropriate
control. For example, PreviewKeyDown allows you to intercept a key press, first at the
window level, and then in increasingly more specific containers until you reach the ele-
ment that had focus when the key was pressed.

When you register a routed event using the EventManager.RegisterEvent() method, you
pass a value from the RoutingStrategy enumeration that indicates the event behavior you
want to use for your event.

Because MouseUp and MouseDown are bubbling events, you can now determine what
happens in the fancy label example. When the happy face is clicked, the MouseDown event
fires in this order:

1. Image.MouseDown

2. StackPanel.MouseDown

3. Label.MouseDown

After the MouseDown event is raised for the label, it’s passed on to the next control
(which in this case is the Grid that lays out the containing window), and then to its parent (the
window). The window is the top level of the containment hierarchy and the final stop in the
event bubbling sequence. It’s your last chance to handle a bubbling event such as Mouse-
Down. If the user releases the mouse button, the MouseUp event fires in the same sequence.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS154

9551CH06 2/8/08 1:44 PM Page 154

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note In Chapter 9, you’ll learn how to create a page-based WPF application. In this situation, the top-
level container isn’t a window, but an instance of the Page class.

You aren’t limited to handling a bubbling event in one place. In fact, there’s no reason why
you can’t handle the MouseDown or MouseUp event at every level. But usually you’ll choose
the most appropriate level for the task at hand.

The RoutedEventArgs Class
When you handle a bubbling event, the sender parameter provides a reference to the last link
in the chain. For example, if an event bubbles up from an image to a label before you handle
it, the sender parameter references the label object.

In some cases, you’ll want to determine where the event originally took place. You can get
that information and other details from the properties of the RoutedEventArgs class (which
are listed in Table 6-2). Because all WPF event argument classes inherit from RoutedEventArgs,
these properties are available in any event handler.

Table 6-2. Properties of the RoutedEventArgs Class

Name Description

Source Indicates what object raised the event. In the case of a keyboard event, this is
the control that had focus when the event occurred (for example, when the
key was pressed). In the case of a mouse event, this is the topmost element
under the mouse pointer when the event occurred (for example, when a
mouse button was clicked).

OriginalSource Indicates what object originally raised the event. Usually, the OriginalSource
is the same as the source. However, in some cases the OriginalSource goes
deeper in the object tree to get a behind-the-scenes element that’s part of a
higher-level element. For example, if you click close to the border of a
window, you’ll get a Window object for the event source, but a Border object
for the original source. That’s because a Window is composed out of
individual, smaller components. To take a closer look at this composition
model (and learn how to change it), head to Chapter 15, which discusses
control templates.

RoutedEvent Provides the RoutedEvent object for the event triggered by your event handler
(such as the static UIElement.MouseUpEvent object). This information is
useful if you’re handling different events with the same event handler.

Handled Allows you to halt the event bubbling or tunneling process. When a control
sets the Handled property to true, the event doesn’t travel any further and
isn’t raised for any other elements. (As you’ll see in the section “Handling a
Suppressed Event,” there is one way around this limitation.)

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 155

9551CH06 2/8/08 1:44 PM Page 155

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Bubbling Events
Figure 6-1 shows a simple window that demonstrates event bubbling. When you click a part of
the label, the event sequence is shown in a list box. Figure 6-1 shows the appearance of this
window immediately after you click the image in the label. The MouseUp event travels
through five levels, ending up at the custom BubbledLabelClick form.

Figure 6-1. A bubbled image click

To create this test form, the image and every element above it in the element hierarchy
are wired up to the same event handler—a method named SomethingClicked(). Here’s the
XAML that does it:

<Window x:Class="RoutedEvents.BubbledLabelClick"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="BubbledLabelClick" Height="359" Width="329"
MouseUp="SomethingClicked">
<Grid Margin="3" MouseUp="SomethingClicked">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS156

9551CH06 2/8/08 1:44 PM Page 156

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Label Margin="5" Grid.Row="0" HorizontalAlignment="Left"
Background="AliceBlue" BorderBrush="Black" BorderThickness="1"
MouseUp="SomethingClicked">
<StackPanel MouseUp="SomethingClicked">
<TextBlock Margin="3"
MouseUp="SomethingClicked">
Image and text label</TextBlock>
<Image Source="happyface.jpg" Stretch="None"
MouseUp="SomethingClicked" />
<TextBlock Margin="3"
MouseUp="SomethingClicked">
Courtesy of the StackPanel</TextBlock>

</StackPanel>
</Label>

<ListBox Grid.Row="1" Margin="5" Name="lstMessages"></ListBox>
<CheckBox Grid.Row="2" Margin="5" Name="chkHandle">
Handle first event</CheckBox>
<Button Grid.Row="3" Margin="5" Padding="3" HorizontalAlignment="Right"
Name="cmdClear" Click="cmdClear_Click">Clear List</Button>

</Grid>
</Window>

The SomethingClicked() method simply examines the properties of the RoutedEventArgs
object and adds a message to the list box:

protected int eventCounter = 0;

private void SomethingClicked(object sender, RoutedEventArgs e)
{

eventCounter++;
string message = "#" + eventCounter.ToString() + ":\r\n" +
" Sender: " + sender.ToString() + "\r\n" +
" Source: " + e.Source + "\r\n" +
" Original Source: " + e.OriginalSource;

lstMessages.Items.Add(message);
e.Handled = (bool)chkHandle.IsChecked;

}

■Note Technically, the MouseUp event provides a MouseButtonEventArgs object with additional informa-
tion about the mouse state at the time of the event. However, the MouseButtonEventArgs object derives from
MouseEventArgs, which in turn derives from RoutedEventArgs. As a result, it’s possible to use it when
declaring the event handler (as shown here) if you don’t need additional information about the mouse.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 157

9551CH06 2/8/08 1:44 PM Page 157

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

There’s one other detail in this example. If you’ve checked the chkHandle check box, the
SomethingClicked() method sets the RoutedEventArgs.Handled property to true, which stops
the event bubbling sequence the first time an event occurs. As a result, you’ll only see the first
event appear in the list, as shown in Figure 6-2.

■Note There’s an extra cast required here because the CheckBox.IsChecked property is a nullable Boolean
value (a bool? rather than a bool). The null value represents an indeterminate state for the check box, which
means it’s neither checked nor unchecked. This feature isn’t used in this example, so a simple cast solves
the problem.

Figure 6-2. Marking an event as handled

Because the SomethingClicked() method handles the MouseUp event that’s fired by the
Window, you’ll be able to intercept clicks on the list box and the blank window surface. How-
ever, the MouseUp event doesn’t fire when you click the Clear button (which removes all the
list box entries). That’s because the button includes an interesting bit of code that suppresses
the MouseUp event and raises a higher-level Click event. At the same time, the Handled flag is
set to true, which prevents the MouseUp event from going any further.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS158

9551CH06 2/8/08 1:44 PM Page 158

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Unlike Windows Forms controls, most WPF elements don’t expose a Click event. Instead they include
the more straightforward MouseDown and MouseUp events. Click is reserved for button-based controls.

Handling a Suppressed Event
Interestingly, there is a way to receive events that are marked as handled. Instead of attaching
the event handler through XAML, you must use the AddHandler() method described earlier.
The AddHandler() method provides an overload that accepts a Boolean value for its third
parameter. Set this to true, and you’ll receive the event even if the Handled flag has been set:

cmdClear.AddHander(UIElement.MouseUpEvent,
new MouseButtonEventHandler(cmdClear_MouseUp), true);

This is rarely a good design decision. The button is designed to suppress the MouseUp
event for a reason: to prevent possible confusion. After all, it’s a common Windows convention
that buttons can be “clicked” with the keyboard in several ways. If you make the mistake of
handling the MouseUp event in a Button instead of the Click event, your code will only
respond to mouse clicks, not the equivalent keyboard actions.

Attached Events
The fancy label example is a fairly straightforward example of event bubbling because all the ele-
ments support the MouseUp event. However, many controls have their own more specialized
events. The button is one example—it adds a Click event that isn’t defined by any base class.

This introduces an interesting dilemma. Imagine you wrap a stack of buttons in a Stack-
Panel. You want to handle all the button clicks in one event handler. The crude approach is to
attach the Click event of each button to the same event handler. But the Click event supports
event bubbling, which gives you a better option. You can handle all the button clicks by han-
dling the Click event at a higher level (such as the containing StackPanel).

Unfortunately, this apparently obvious code doesn’t work:

<StackPanel Click="DoSomething" Margin="5">
<Button Name="cmd1">Command 1</Button>
<Button Name="cmd2">Command 2</Button>
<Button Name="cmd3">Command 3</Button>
...

</StackPanel>

The problem is that the StackPanel doesn’t include a Click event, so this is interpreted by
the XAML parser as an error. The solution is to use a different attached-event syntax in the
form ClassName.EventName. Here’s the corrected example:

<StackPanel Button.Click="DoSomething" Margin="5">
<Button Name="cmd1">Command 1</Button>
<Button Name="cmd2">Command 2</Button>
<Button Name="cmd3">Command 3</Button>
...

</StackPanel>

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 159

9551CH06 2/8/08 1:44 PM Page 159

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now your event handler receives the click for all contained buttons.

■Note The Click event is actually defined in the ButtonBase class and inherited by the Button class. If you
attach an event handler to ButtonBase.Click, that event handler will be used when any ButtonBase-derived
control is clicked (including the Button, RadioButton, and CheckBox classes). If you attach an event handler
to Button.Click, it’s only used for Button objects.

You can wire up an attached event in code, but you need to use the UIElement.
AddHandler() method rather than the += operator syntax. Here’s an example (which assumes
the StackPanel has been given the name pnlButtons):

pnlButtons.AddHandler(Button.Click, new RoutedEventHandler(DoSomething));

In the DoSomething() event handler you have several options for determining which but-
ton fired the event. You can compare its text (which will cause problems for localization) or its
name (which is fragile because you won’t catch mistyped names when you build the applica-
tion). The best approach is to make sure each button has a Name property set in XAML, so
that you can access the corresponding object through a field in your window class and com-
pare that reference with the event sender. Here’s an example:

private void DoSomething(object sender, RoutedEventArgs e)
{

if (sender == cmd1)
{ ... }
else if (sender == cmd2)
{ ... }
else if (sender == cmd3)
{ ... }

}

Another option is to simply send a piece of information along with the button that you
can use in your code. For example, you could set the Tag property of each button, as shown
here:

<StackPanel Click="DoSomething" Margin="5">
<Button Name="cmd1" Tag="The first button.">Command 1</Button>
<Button Name="cmd2" Tag="The second button.">Command 2</Button>
<Button Name="cmd3" Tag="The third button.">Command 3</Button>
...

</StackPanel>

You can then access the Tag property in your code:

private void DoSomething(object sender, RoutedEventArgs e)
{

object tag = ((FrameworkElement)sender).Tag;
MessageBox.Show((string)tag);

}

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS160

9551CH06 2/8/08 1:44 PM Page 160

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Tunneling Events
Tunneling events work the same as bubbling events, but in the opposite direction. For exam-
ple, if MouseUp was a tunneled event (which it isn’t), clicking the image in the fancy label
example would cause MouseUp to fire first in the window, then in the Grid, then in the Stack-
Panel, and so on until it reaches the actual source, which is the image in the label.

Tunneling events are easy to recognize because they begin with the work Preview.
Furthermore, WPF usually defines bubbling and tunneling events in pairs. That means if you
find a bubbling MouseUp event, you can probably also find a tunneling PreviewMouseUp
event. The tunneling event always fires before the bubbling event, as shown in Figure 6-3.

Figure 6-3. Tunneling and bubbling events

To make life more interesting, if you mark the tunneling event as handled the
bubbling event won’t occur. That’s because the two events share the same instance of
the RoutedEventArgs class.

Tunneling events are useful if you need to perform some preprocessing that acts on
certain keystrokes or filters out certain mouse actions. Figure 6-4 shows an example that
tests tunneling with the PreviewKeyDown event. When you press a key in the text box, the
event is fired first in the window and then down through the hierarchy. And if you mark the
PreviewKeyDown event as handled at any point, the bubbling KeyDown event won’t occur.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 161

9551CH06 2/8/08 1:44 PM Page 161

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 6-4. A tunneled key press

IDENTIFYING THE ROUTING STRATEGY OF AN EVENT

Clearly, the different routing strategies affect how you’ll use an event. But how do you determine what type of
routing a given event uses?

Tunneling events are straightforward. By .NET convention, a tunneling event always begins with the
word Preview (as in PreviewKeyDown). However, there’s no similar mechanism to distinguish bubbling events
from direct events. For developers exploring WPF, the easiest approach is to find the event in the class library
reference of the help for the .NET Framework SDK (under the .NET Development ➤ .NET Framework SDK ➤
.NET Framework 3.0 Development ➤ Class Library node). You’ll see Routed Event Information that indicates
the static field for the event, the type of routing, and the event signature.

You can get the same information programmatically by examining the static field for the event. For
example, the ButtonBase.ClickEvent.RoutingStrategy property provides an enumerated value that tells you
what type of routing the Click event uses.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS162

9551CH06 2/8/08 1:44 PM Page 162

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Be careful about marking a tunneling event as handled. Depending on the way the control is written,
this may prevent the control from handling its own event (the related bubbling event) to perform some task
or update its state.

WPF Events
Now that you’ve learned how WPF events work, it’s time to consider the rich variety of events
that you can respond to in your code. Although every element exposes a dizzying array of
events, the most important events usually fall into one of four categories:

• Lifetime events. These events occur when the element is initialized, loaded, or
unloaded.

• Mouse events. These events are the result of mouse actions.

• Keyboard events. These events are the result of keyboard actions (such as key presses).

• Stylus events. These events are the result of using the penlike stylus, which takes the
place of a mouse on a Table PC.

Taken together, mouse, keyboard, and stylus events are known as input events.

Lifetime Events
All elements raise events when they are first created and when they are released. You can use
these events to initialize a window. Table 6-3 lists these events, which are defined in the
FrameworkElement class.

Table 6-3. Lifetime Events for All Elements

Name Description

Initialized Occurs after the element is instantiated and its properties have been set
according to the XAML markup. At this point, the element is initialized, but
other parts of the window may not be. Also, styles and data binding haven’t
been applied yet. At this point, the IsInitialized property is true. Initialized is an
ordinary .NET event—not a routed event.

Loaded Occurs after the entire window has been initialized and styles and data binding
have been applied. This is the last stop before the element is rendered. At this
point, the IsLoaded property is true.

Unloaded Occurs when the element has been released, either because the containing
window has been closed or the specific element has been removed from
the window.

To understand how the Initialized and Loaded events relate, it helps to consider the ren-
dering process. The FrameworkElement implements the ISupportInitialize interface, which
provides two methods for controlling the initialization process. The first, BeginInit(), is called
immediately after the element is instantiated. After BeginInit() is called, the XAML parser sets
all the element properties (and adds any content). The second method, EndInit(), is called
when initialization is complete, at which point the Initialized event fires.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 163

9551CH06 2/8/08 1:44 PM Page 163

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note This is a slight simplification. The XAML parser takes care of calling the BeginInit() and EndInit()
methods, as it should. However, if you create an element by hand and add it to a window, it’s unlikely that
you’ll use this interface. In this case, the element raises the Initialized event once you add it to the window,
just before the Loaded event.

When you create a window, each branch of elements is initialized in a bottom-up fashion.
That means deeply nested elements are initialized before their containers. When the Initial-
ized event fires, you are guaranteed that the tree of elements from the current element down is
completely initialized. However, the element that contains your element probably isn’t initial-
ized, and you can’t assume that any other part of the window is initialized.

After each element is initialized, it’s also laid out in its container, styled, and bound to a
data source, if required. After the Initialized event fires for the window, it’s time to go on to the
next stage.

Once the initialization process is complete, the Loaded event is fired. The Loaded event
follows the reverse path of the Initialized event—in other words, the containing window fires
the Loaded event first, followed by more deeply nested elements. When the Loaded event has
fired for all elements, the window becomes visible and the elements are rendered.

The lifetime events listed in Table 6-3 don’t tell the whole story. The containing window
also has its own more specialized lifetime events. These events are listed in Table 6-4.

Table 6-4. Lifetime Events for the Window Class

Name Description

SourceInitialized Occurs when the HwndSource property of the window is acquired (but before
the window is made visible). The HwndSource is a window handle that you
may need to use if you’re calling legacy functions in the Win32 API.

ContentRendered Occurs immediately after the window has been rendered for the first time.
This isn’t a good place to perform any changes that might affect the visual
appearance of the window, or you’ll force a second render operation. (Use the
Loaded event instead.) However, the ContentRendered event does indicate
that your window is fully visible and ready for input.

Activated Occurs when the user switches to this window (for example, from another
window in your application or from another application). Activated also fires
when the window is loaded for the first time. Conceptually, the Activated
event is the window equivalent of a control’s GotFocus event.

Deactivated Occurs when the user switches away from this window (for example, by
moving to another window in your application or another application).
Deactivated also fires when the window is closed by a user, after the Closing
event but before Closed. Conceptually, the Deactivated event is the window
equivalent of a control’s LostFocus event.

Closing Occurs when the window is closed, either by a user action or program-
matically using the Window.Close() method or the Application.Shutdown()
method. The Closing event gives you the opportunity to cancel the operation
and keep the window open by setting the CancelEventArgs.Cancel property to
true. However, you won’t receive the Closing event if your application is
ending because the user is shutting down the computer or logging off. To deal
with these possibilities, you need to handle the Application.SessionEnding
event described in Chapter 3.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS164

9551CH06 2/8/08 1:44 PM Page 164

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

Closed Occurs after the window has been closed. However, the element objects are
still accessible, and the Unloaded event hasn’t fired yet. At this point, you can
perform cleanup, write settings to a persistent storage place (such as a
configuration file or the Windows registry), and so on.

If you’re simply interested in performing first-time initializing for your controls, the best
time to take care of this task is when the Loaded event fires. Usually, you can perform all your
initialization in one place, which is typically an event handler for the Window.Loaded event.

■Tip You can also use the window constructor to perform your initialization (just add your code immedi-
ately after the InitializeComponent() call). However, it’s always better to use the Loaded event. That’s because
if an exception occurs in the constructor of the Window, it’s thrown while the XAML parser is parsing the
page. As a result, your exception is wrapped in an unhelpful XamlParseException object (with the original
exception in the InnerException property).

Input Events
All input events—events that occur due to mouse, keyboard, or stylus actions—pass along
extra information in a custom event argument class. In fact, all these classes share a common
ancestor: the InputEventArgs class. Figure 6-5 shows the inheritance hierarchy.

Figure 6-5. The EventArgs classes for input events

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 165

9551CH06 2/8/08 1:44 PM Page 165

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The InputEventArgs class adds just two properties: Timestamp and Device. The Timestamp
provides an integer that indicates when the event occurred as a number of milliseconds. (The
actual time that this represents isn’t terribly important, but you can compare different time
stamp values to determine what event took place first. Larger time stamps signify more recent
events.) The Device returns an object that provides more information about the device that
triggered the event, which could be the mouse, the keyboard, or the stylus. Each of these three
possibilities is represented by a different class, all of which derive from the abstract System.Win-
dows.Input.InputDevice class.

In the rest of this chapter, you’ll take a closer look at how you handle mouse and keyboard
actions in a WPF application.

Keyboard Input
When the user presses a key, a sequence of events unfolds. Table 6-5 lists these events in the
order that they occur.

Table 6-5. Keyboard Events for All Elements (in Order)

Name Routing Type Description

PreviewKeyDown Tunneling Occurs when a key is pressed.

KeyDown Bubbling Occurs when a key is pressed.

PreviewTextInput Tunneling Occurs when a keystroke is complete and the element
is receiving the text input. This event isn’t fired for
keystrokes that don’t result in text being “typed” (for
example, it doesn’t fire when you press Ctrl, Shift,
Backspace, the arrow keys, the function keys, and so on).

TextInput Bubbling Occurs when a keystroke is complete and the element
is receiving the text input. This event isn’t fired for
keystrokes that don’t result in text.

PreviewKeyUp Tunneling Occurs when a key is released.

KeyUp Bubbling Occurs when a key is released.

Keyboard handling is never quite as straightforward as it seems. Some controls may
suppress some of these events so they can perform their own more specialized keyboard han-
dling. The most notorious example is the TextBox control, which suppresses the TextInput
event. The TextBox also suppresses the KeyDown event for some keystrokes, such as the arrow
keys. In cases like these, you can usually still use the tunneling events (PreviewTextInput and
PreviewKeyDown).

The TextBox control also adds one new event, named TextChanged. This event fires
immediately after a keystroke causes the text in the text box to change. At this point, the new
text is already visible in the text box, so it’s too late to prevent a keystroke you don’t want.

Handling a Key Press
The best way to understand the key events is to use a sample program such as the one shown
in Figure 6-6. It monitors a text box for all the possible key events and reports when they
occur. Figure 6-6 shows the result of typing a capital S in a text box.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS166

9551CH06 2/8/08 1:44 PM Page 166

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 6-6. Watching the keyboard

This example illustrates an important point. The PreviewKeyDown and KeyDown events
fire every time a key is pressed. However, the TextInput event only fires when a character is
“typed” into an element. This action may actually involve multiple key presses. In the example
in Figure 6-5, two key presses are needed to create the capital letter S. First, the Shift key is
pressed, followed by the S key. As a result, you’ll see two KeyDown and KeyUp events, but only
one TextInput event.

The PreviewKeyDown, KeyDown, PreviewKey, and KeyUp events all provide the same
information through the KeyEventArgs object. The most important detail is the Key property,
which returns a value from the System.Windows.Input.Key enumeration that identifies the
key that was pressed or released. Here’s the event handler that handles key events for the
example in Figure 6-6:

private void KeyEvent(object sender, KeyEventArgs e)
{

string message = "Event: " + e.RoutedEvent + " " +
" Key: " + e.Key;

lstMessages.Items.Add(message);
}

The Key value doesn’t take into account the state of any other keys. For example, it doesn’t
matter whether the Shift key is currently pressed when you press the S key; either way you’ll
get the same Key value (Key.S).

There’s one more wrinkle. Depending on your Windows keyboard settings, pressing a key
causes the keystroke to be repeated after a short delay. For example, holding down the S key
obviously puts a stream of S characters in the text box. Similarly, pressing the Shift key causes
multiple keystrokes and a series of KeyDown events. In a real-world test where you type
Shift+S, your text box will actually fire a series of KeyDown events for the Shift key, followed by
a KeyDown event for the S key, a TextInput event (or TextChanged event in the case of a text
box), and then a KeyUp event for the Shift and S keys. If you want to ignore these repeated
Shift keys, you can check if a keystroke is the result of a key that’s being held down by examin-
ing the KeyEventArgs.IsRepeat property, as shown here:

if ((bool)chkIgnoreRepeat.IsChecked && e.IsRepeat) return;

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 167

9551CH06 2/8/08 1:44 PM Page 167

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip The PreviewKeyDown, KeyDown, PreviewKey, and KeyUp events are best for writing low-level key-
board handling (which you’ll rarely need outside of a custom control) and handling special keystrokes, such
as the function keys.

After the KeyDown event occurs, the PreviewTextInput event follows. (The TextInput
event doesn’t occur, because the TextBox suppresses this event.) At this point, the text has not
yet appeared in the control.

The TextInput event provides your code with a TextCompositionEventArgs object. This
object includes a Text property that gives you the processed text that’s about to be received by
the control. Here’s the code that adds this text to the list shown in Figure 6-6:

private void TextInput(object sender, TextCompositionEventArgs e)
{

string message = "Event: " + e.RoutedEvent + " " +
" Text: " + e.Text;

lstMessages.Items.Add(message);
}

Ideally, you’d use the PreviewTextInput to perform validation in a control like the TextBox.
For example, if you’re building a numeric-only text box, you could make sure that the current
keystroke isn’t a letter, and set the Handled flag if it is. Unfortunately, the PreviewTextInput
event doesn’t fire for some keys that you may need to handle. For example, if you press the
space key in a text box, you’ll bypass PreviewTextInput altogether. That means you also need
to handle the PreviewKeyDown event.

Unfortunately, it’s difficult to write robust validation logic in a PreviewKeyDown event
handler because all you have is the Key value, which is a fairly low-level piece of information.
For example, the Key enumeration distinguishes between the numeric key pad and the num-
ber keys that appear just above the letters on a typical keyboard. That means depending on
how you press the number 9, you might get a value of Key.D9 or Key.NumPad9. Checking for
all the allowed key values is tedious, to say the least.

One option is to use the KeyConverter to convert the Key value into a more useful string.
For example, using KeyConverter.ConvertToString() on both Key.D9 and Key.NumPad9 returns
“9” as a string. If you just use the Key.ToString() conversion, you’ll get the much less useful
enumeration name (either “D9” or “NumPad9”):

KeyConverter converter = new KeyConverter();
string key = converter.ConvertToString(e.Key);

However, even using the KeyConverter is a bit awkward because you’ll end up with longer
bits of text (such as “Backspace”) for keystrokes that don’t result in text input.

The best compromise is to handle both PreviewTextInput (which takes care of most of the
validation) and use PreviewKeyDown for keystrokes that don’t raise PreviewTextInput in the
text box (such as the space key). Here’s a simple solution that does it:

private void pnl_PreviewTextInput(object sender, TextCompositionEventArgs e)
{

short val;

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS168

9551CH06 2/8/08 1:44 PM Page 168

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

if (!Int16.TryParse(e.Text, out val))
{

// Disallow non-numeric keypresses.
e.Handled = true;

}
}

private void pnl_PreviewKeyDown(object sender, KeyEventArgs e)
{

if (e.Key == Key.Space)
{

// Disallow the space key, which doesn't raise a PreviewTextInput event.
e.Handled = true;

}
}

You can attach these event handlers to a single text box, or you can wire them up to a con-
tainer (such as a StackPanel that contains several numeric-only text boxes) for greater
efficiency.

■Note This key handling behavior may seem unnecessarily awkward (and it is). One of the reasons that
the TextBox doesn’t provide better key handling is because WPF focuses on data binding, a feature that lets
you wire up controls such as the TextBox to custom objects. When you use this approach, validation is usu-
ally provided by the bound object, errors are signaled by an exception, and bad data triggers an error
message that appears somewhere in the user interface. Unfortunately, there’s no easy way (at present) to
combine the useful, high-level data binding feature with the lower-level keyboard handling that would be
necessary to prevent the user from typing invalid characters altogether.

Focus
In the Windows world, a user works with one control at a time. The control that is currently
receiving the user’s key presses is the control that has focus. Sometimes this control is drawn
slightly differently. For example, the WPF button uses blue shading to show that it has the
focus.

In order for a control to be able to accept the focus, its Focusable property must be set to
true. This is the default for all controls.

Interestingly enough, the Focusable property is defined as part of the UIElement class,
which means that other noncontrol elements can also be focusable. Usually, in noncontrol
classes, Focusable will be false by default. However, you can set it to true. Try this out with a
layout container such as the StackPanel—when it receives the focus, a dotted border will
appear around the panel’s edge.

To move the focus from one element to another, the user can click the mouse or use the
Tab and arrow keys. In previous development frameworks, programmers have been forced to
take great care to make sure that the Tab key moves focus in a logical manner (generally from
left to right and then down the window) and that the right control has focus when the window

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 169

9551CH06 2/8/08 1:44 PM Page 169

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

first appears. In WPF, this extra work is seldom necessary because WPF uses the hierarchical
layout of your elements to implement a tabbing sequence. Essentially, when you press the Tab
key you’ll move to the first child in the current element or, if the current element has no chil-
dren, to the next child at the same level. For example, if you tab through a window with two
StackPanel containers, you’ll move through all the controls in the first StackPanel and then
through all the controls in the second container.

If you want to take control of tab sequence, you can set the TabIndex property for each
control to place it in numerical order. The control with a TabIndex of 0 gets the focus first, fol-
lowed by the next highest TabIndex value (for example, 1, then 2, then 3, and so on). If more
than one element has the same TabIndex value, WPF uses the automatic tab sequence, which
means it jumps to the nearest subsequent element.

■Tip By default, the TabIndex property for all controls is set to 1. That means you can designate a specific
control as the starting point for a window by setting its TabIndex to 0 but rely on automatic navigation to
guide the user through the rest of the window from that starting point, according to the order that your
elements are defined.

The TabIndex property is defined in the Control class, along with an IsTabStop property.
You can set IsTabStop to false to prevent a control from being included in the tab sequence.
The difference between IsTabStop and Focusable is that a control with an IsTabStop value of
false can still get the focus in another way—either programmatically (when your code calls its
Focus() method) or by a mouse click.

Controls that are invisible or disabled (“grayed out”) are generally skipped in the tab order
and are not activated regardless of the TabIndex, IsTabStop, and Focusable settings. To hide or
disable a control, you set the Visibility and IsEnabled properties, respectively.

Getting Key State
When a key press occurs, you often need to know more than just what key was pressed. It’s also
important to find out what other keys were held down at the same time. That means you might
want to investigate the state of other keys, particularly modifiers such as Shift, Ctrl, and Alt.

The key events (PreviewKeyDown, KeyDown, PreviewKeyUp, and KeyUp) make this infor-
mation easy to get. First, the KeyEventArgs object includes a KeyStates property that reflects
the property of the key that triggered the event. More usefully, the KeyboardDevice property
provides the same information for any key on the keyboard.

Not surprisingly, the KeyboardDevice property provides an instance of the KeyboardDe-
vice class. Its properties include information about which element currently has the focus
(FocusedElement) and what modifier keys were pressed when the event occurred (Modifiers).
The modifier keys include Shift, Ctrl, and Alt, and you can check their status using bitwise
logic like this:

if ((e.KeyboardDevice.Modifiers & ModifierKeys.Control) == ModifierKeys.Control)
{

lblInfo.Text = "You held the Control key.";
}

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS170

9551CH06 2/8/08 1:44 PM Page 170

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The KeyboardDevice also provides a few handy methods, as listed in Table 6-6. For each of
these methods, you pass in a value from the Key enumeration.

Table 6-6. KeyboardDevice Methods

Name Description

IsKeyDown() Tells you whether this key was pressed down when the event occurred.

IsKeyUp() Tells you whether this key was up (not pressed) when the event occurred.

IsKeyToggled() Tells you whether this key was in a “switched on” state when the event occurred.
This only has a meaning for keys that can be toggled on or off, such as Caps Lock,
Scroll Lock, and Num Lock.

GetKeyStates() Returns one or more values from the KeyStates enumeration that tell you
whether this key is currently up, pressed, or in a toggled state. This method is
essentially the same as calling both IsKeyDown() and IsKeyToggled() on the
same key.

When you use the KeyEventArgs.KeyboardDevice property, your code gets the virtual key
state. This means it gets the state of the keyboard at the time the event occurred. This is not
necessarily the same as the current keyboard state. For example, consider what happens if the
user types faster than your code executes. Each time your KeyPress event fires, you’ll have
access to the keystroke that fired the event, not the typed-ahead characters. This is almost
always the behavior you want.

However, you aren’t limited to getting key information in the key events. You can also get
the state of the keyboard at any time. The trick is to use the Keyboard class, which is very simi-
lar to KeyboardDevice except it’s made up of static members. Here’s an example that uses the
Keyboard class to check the current state of the left Shift key:

if (Keyboard.IsKeyDown(Key.LeftShift))
{

lblInfo.Text = "The left Shift is held down.";
}

■Note The Keyboard class also has methods that allow you to attach application-wide keyboard event
handlers, such as AddKeyDownHandler() and AddKeyUpHandler(). However, these methods aren’t recom-
mended. A better approach to implementing application-wide functionality is to use the WPF command
system, as described in Chapter 10.

Mouse Input
Mouse events perform several related tasks. The most fundamental mouse events allow you to
react when the mouse is moved over an element. These events are MouseEnter (which fires
when the mouse pointer moves over the element) and MouseLeave (which fires when the
mouse pointer moves away). Both are direct events, which means they don’t use tunneling or
bubbling. Instead, they originate in one element and are raised by just that element. This
makes sense because of the way controls are nested in a WPF window.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 171

9551CH06 2/8/08 1:44 PM Page 171

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, if you have a StackPanel that contains a button and you move the mouse
pointer over the button, the MouseEnter event will fire first for the StackPanel (once you enter
its borders) and then for the button (once you move directly over it). As you move the mouse
away, the MouseLeave event will fire first for the button and then for the StackPanel.

You can also react to two events that fire whenever the mouse moves: PreviewMouseMove
(a tunneling event) and MouseMove (a bubbling event). All of these events provide your code
with the same information: a MouseEventArgs object. The MouseEventArgs object includes
properties that tell you the state that the mouse buttons were in when the event fired, and a
GetPosition() method that tells you the coordinates of the mouse in relation to an element of
your choosing. Here’s an example that displays the position of the mouse pointer in device-
independent pixels relative to the form:

private void MouseMoved(object sender, MouseEventArgs e)
{

Point pt = e.GetPosition(this);
lblInfo.Text =
String.Format("You are at ({0},{1}) in window coordinates",
pt.X, pt.Y);

}

In this case, the coordinates are measured from the top-left corner of the client area (just
below the title bar). Figure 6-7 shows this code in action.

Figure 6-7. Watching the mouse

You’ll notice that the mouse coordinates in this example are not whole numbers. That’s
because this screen capture was taken on a system running at 120 dpi, not the standard 96 dpi.
As explained in Chapter 1, WPF automatically scales up its units to compensate, using more
physical pixels. Because the size of a screen pixel no longer matches the size of the WPF unit
system, the physical mouse position may be translated to a fractional number of WPF units, as
shown here.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS172

9551CH06 2/8/08 1:44 PM Page 172

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip The UIElement class also includes two useful properties that can help with mouse hit-testing. Use
IsMouseOver to determine whether a mouse is currently over an element or one of its children, and use
IsMouseDirectlyOver to find out whether the mouse is over an element but not one of its children. Usually,
you won’t read and act on these values in code. Instead, you’ll use them to build style triggers that automati-
cally change elements as the mouse moves over them. Chapter 12 demonstrates this technique.

Mouse Clicks
Mouse clicks unfold in a similar way to key presses. The difference is that there are distinct
events for the left mouse button and the right mouse button. Table 6-7 lists these events in the
order they occur. Along with these are two events that react to the mouse wheel: Preview-
MouseWheel and MouseWheel.

Table 6-7. Mouse Click Events for All Elements (in Order)

Name Routing Type Description

PreviewMouseLeftButtonDown and Tunneling Occurs when a mouse button is pressed
PreviewMouseRightButtonDown

MouseLeftButtonDown Bubbling Occurs when a mouse button is pressed

PreviewMouseLeftButtonUp and Tunneling Occurs when a mouse button is released
PreviewMouseRightButtonUp

MouseLeftButtonUp and Bubbling Occurs when a mouse button is released
MouseRightButtonUp

All mouse button events provide a MouseButtonEventArgs object. The MouseButton-
EventArgs class derives from MouseEventArgs (which means it includes the same coordinate
and button state information) and it adds a few members. The less important of these are
MouseButton (which tells you which button triggered the event) and ButtonState (which tells
you whether the button was pressed or unpressed when the event occurred). The more inter-
esting property is ClickCount, which tells you how many times the button was clicked,
allowing you to distinguish single clicks (where ClickCount is 1) from double-clicks (where
ClickCount is 2).

■Tip Usually, Windows applications react when the mouse key is raised after being clicked (the “up” event
rather than the “down” event).

Some elements add higher-level mouse events. For example, the Control class adds a
PreviewMouseDoubleClick and MouseDoubleClick event that take the place of the Mouse-
LeftButtonUp event. Similarly, the Button class raises a Click event that can be triggered by the
mouse or keyboard.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 173

9551CH06 2/8/08 1:44 PM Page 173

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note As with key press events, the mouse events provide information about where the mouse was and
what buttons were pressed when the mouse event occurred. To get the current mouse position and mouse
button state, you can use the static members of the Mouse class, which are similar to those of the Mouse-
ButtonEventArgs.

Capturing the Mouse
Ordinarily, every time an element receives a mouse button “down” event, it will receive a cor-
responding mouse button “up” event shortly thereafter. However, this isn’t always the case. For
example, if you click an element, hold down the mouse, and then move the mouse pointer off
the element, the element won’t receive the mouse up event.

In some situations, you may want to have a notification of mouse up events, even if they
occur after the mouse has moved off your element. To do so, you need to capture the mouse by
calling the Mouse.Capture() method and passing in the appropriate element. From that point
on, you’ll receive mouse down and mouse up events until you call Mouse.Capture() again and
pass in a null reference. Other elements won’t receive mouse events while the mouse is cap-
tured. That means the user won’t be able to click buttons elsewhere in the window, click inside
text boxes, and so on. Mouse capturing is sometimes used to implement draggable and resiz-
able elements. You’ll see an example with the custom drawn resizable window in Chapter 8.

■Tip When you call Mouse.Capture() you can pass in an optional CaptureMode value as the second param-
eter. Ordinarily, when you call Mouse.Capture() you use CaptureMode.Element, which means your element
always receives the mouse events. However, you can use CaptureMode.SubTree to allow mouse events to
pass through to the clicked element if that clicked element is a child of the element that’s performing the
capture. This makes sense if you’re already using event bubbling or tunneling to watch mouse events in
child elements.

In some cases, you may lose a mouse capture through no fault of your own. For example,
Windows may free the mouse if it needs to display a system dialog box. You’ll also lose the
mouse capture if you don’t free the mouse after a mouse up event occurs and the user carries
on to click a window in another application. Either way, you can react to losing the mouse
capture by handling the LostMouseCapture event for your element.

While the mouse has been captured by an element, you won’t be able to interact with
other elements. (For example, you won’t be able to click another element on your window.)
Mouse capturing is generally used for short-term operations such as drag-and-drop.

Drag-and-Drop
Drag-and-drop operations (a technique for pulling information out of one place in a window
and depositing it in another) aren’t quite as common today as they were a few years ago. Pro-
grammers have gradually settled on other methods of copying information that don’t require
holding down the mouse button (a technique that many users find difficult to master). Pro-
grams that do support drag-and-drop often use it as a shortcut for advanced users, rather than
a standard way of working.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS174

9551CH06 2/8/08 1:44 PM Page 174

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF changes very little about drag-and-drop operations. If you’ve used them in Windows
Forms applications, you’ll find the programming interface is virtually unchanged in WPF. The
key difference is that the methods and events that are used for drag-and-drop operations are
centralized in the System.Windows.DragDrop class and then used by other classes (such as
UIElement).

Essentially, a drag-and-drop operation unfolds in three steps:

1. The user clicks an element (or selects a specific region inside it) and holds the mouse
button down. At this point, some information is set aside and a drag-and-drop opera-
tion begins.

2. The user moves the mouse over another element. If this element can accept the type of
content that’s being dragged (for example, a bitmap or a piece of text), the mouse cur-
sor changes to a drag-and-drop icon. Otherwise, the mouse cursor becomes a circle
with a line drawn through it.

3. When the user releases the mouse button, the element receives the information and
decides what to do with it. The operation can be canceled by pressing the Esc key
(without releasing the mouse button).

You can try out the way drag-and-drop is supposed to work by adding two TextBox objects
to a window that have the built-in logic to support drag-and-drop. If you select some text
inside a text box, you can drag it to another text box. When you release the mouse button, the
text will be moved. The same technique works between applications—for example, you can
drag some text from a Word document and drop it into a WPF TextBox object, or vice versa.

■Note Don’t confuse a drag-and-drop operation with the ability to “drag” an element around the window.
This feature is a technique that drawing and diagramming tools use to allow you to move content around. It’s
demonstrated in Chapter 14.

Sometimes, you might want to allow drag-and-drop between elements that don’t have the
built-in functionality. For example, you might want to allow the user to drag content from a
text box and drop it in a label. Or you might want to create the example shown in Figure 6-8,
which allows a user to drag text from a Label or TextBox object and drop it into a different
label. In this situation, you need to handle the drag-and-drop events.

Figure 6-8. Dragging content from one element to another

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 175

9551CH06 2/8/08 1:44 PM Page 175

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

There are two sides to a drag-and-drop operation: the source and target. To create a drag-
and-drop source, you need to call the DragDrop.DoDragDrop() method at some point to
initiate the drag-and-drop operation. At this point you identify the source of the drag-and-
drop operation, set aside the content you want to transfer, and indicate what drag-and-drop
effects are allowed (copying, moving, and so on).

Usually, the DoDragDrop() method is called in response to the MouseDown or Preview-
MouseDown event. Here’s an example that initiates a drag-and-drop operation when a label is
clicked. The text content from the label is used for the drag-and-drop operation:

private void lblSource_MouseDown(object sender, MouseButtonEventArgs e)
{

Label lbl = (Label)sender;
DragDrop.DoDragDrop(lbl, lbl.Content, DragDropEffects.Copy);

}

The element that receives the data needs to set its AllowDrop property to true. Addition-
ally, it needs to handle the Drop event to deal with the data:

<Label Grid.Row="1" AllowDrop="True" Drop="lblTarget_Drop">To Here</Label>

When you set AllowDrop to true, you configure an element to allow any type of informa-
tion. If you want to be pickier, you can handle the DragEnter event. At this point, you can
check the type of data that’s being dragged and then determine what type of operation to
allow. The following example only allows text content—if you drag something that cannot be
converted to text, the drag-and-drop operation won’t be allowed and the mouse pointer will
change to the forbidding circle-with-a-line cursor:

private void lblTarget_DragEnter(object sender, DragEventArgs e)
{

if (e.Data.GetDataPresent(DataFormats.Text))
e.Effects = DragDropEffects.Copy;

else
e.Effects = DragDropEffects.None;

}

Finally, when the operation completes you can retrieve the data and act on it. The follow-
ing code takes the dropped text and inserts it into the label:

private void lblTarget_Drop(object sender, DragEventArgs e)
{

((Label)sender).Content = e.Data.GetData(DataFormats.Text);
}

You can exchange any type of object through a drag-and-drop operation. However, while
this free-spirited approach is perfect for your applications, it isn’t wise if you need to commu-
nicate with other applications. If you want to drag-and-drop into other applications, you
should use a basic data type (such as string, int, and so on), or an object that implements
ISerializable or IDataObject (which allows .NET to transfer your object into a stream of bytes
and reconstruct the object in another application domain). One interesting trick is to convert
a WPF element into XAML and reconstitute it somewhere else. All you need is the XamlWriter
and XamlReader objects described in Chapter 2.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS176

9551CH06 2/8/08 1:44 PM Page 176

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note If you want to transfer data between applications, be sure to check out the System.Windows.Clip-
board class, which provides static methods for placing data on the Windows clipboard and retrieving it in a
variety of different formats.

The Last Word
In this chapter, you took a deep look at WPF dependency properties and routed events. First,
you saw how dependency properties are defined and registered and how they plug into other
WPF services. Next, you explored routed events and saw how they allow you to deal with
events at different levels—either directly at the source or in a containing element. Finally, you
saw how these routing strategies are implemented in the WPF elements to allow you to deal
with keyboard and mouse input.

It may be tempting to begin writing event handlers that respond to common events such
as mouse movements to apply simple graphical effects or otherwise update the user interface.
But don’t start writing this logic just yet. As you’ll see later in Chapter 12, you can automate
many simple program operations with declarative markup using WPF styles and triggers. But
before you branch out to this topic, the next chapter takes a short detour to show you how
many of the most fundamental graphical widgets (things such as buttons, labels, and text
boxes) work in the WPF world.

■Tip One of the best ways to learn more about the internals of WPF is to browse the code for basic WPF
elements, such as Button, UIElement, and FrameworkElement. One of the best tools to perform this browsing
is Lutz Roeder’s Reflector, which is available at http://www.aisto.com/roeder/dotnet. Using Reflector,
you can see the definitions for dependency properties and routed events, browse through the static constructor
code that initializes them, and even explore how the properties and events are used in the class code.

CHAPTER 6 ■ DEPENDENCY PROPERTIES AND ROUTED EVENTS 177

9551CH06 2/8/08 1:44 PM Page 177

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.aisto.com/roeder/dotnet

9551CH06 2/8/08 1:44 PM Page 178

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Classic Controls

Now that you’ve learned the fundamentals of WPF layout, content, and event handling,
you’re ready to take a closer look at the elements WPF includes. In this chapter, you’ll take a
quick tour of the most fundamental WPF controls, including basic ingredients such as labels,
buttons, and text boxes. Although Windows developers have been using these items for years,
this chapter fills in a few important details about their WPF implementations. Along the way,
you’ll also take a quick look at the System.Windows.Control class to learn how WPF controls
use brushes and fonts.

The Control Class
As you learned in Chapter 5, WPF windows are filled with elements, but only some of these
elements are controls. Controls are user-interactive elements—elements that can take focus
and receive input from the keyboard or mouse.

All controls derive from the System.Windows.Control class, which adds a bit of basic
infrastructure:

• The ability to set the alignment of content inside the control

• The ability to set the tab order

• Support for painting a background, foreground, and border

• Support for formatting the size and font of text content

You’ve already learned about the first two points. (Chapter 5 covered content and align-
ment, while Chapter 6 explored the subtleties of focus and tab order.) The following sections
cover brushes and fonts.

Background and Foreground Brushes
All controls include the concept of a background and foreground. Usually, the background is
the surface of the control (think of the white or gray area inside the borders of a button), while
the foreground is the text. In WPF, you set the color of these two areas (but not the content)
using the Background and Foreground properties.

It’s natural to expect that the Background and Foreground properties would use color
objects, as they do in a Windows Forms application. However, these properties actually use
something much more versatile: a Brush object. That gives you the flexibility to fill your
background and foreground content with a solid color (by using the SolidColorBrush) or 179

C H A P T E R 7

9551CH07 2/8/08 1:45 PM Page 179

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

something more exotic (for example, by using a LinearGradientBrush or TileBrush). In this
chapter, you’ll consider only the simple SolidColorBrush, but you’ll try fancier brushwork in
Chapter 13.

■Note All Brush classes are found in the System.Windows.Media namespace.

Setting Colors in Code
Imagine you want to set a blue surface area inside a button named cmd. Here’s the code that
does the trick:

cmd.Background = new SolidColorBrush(Colors.AliceBlue);

This code creates a new SolidColorBrush using a ready-made color via a static property
of the handy Colors class. (The names are based on the color names supported by most web
browsers.) It then sets the brush as the background brush for the button, which causes its
background to be painted a light shade of blue.

■Note This method of styling a button isn’t completely satisfactory. If you try it, you’ll find that it configures
the background color for a button in its normal (unpressed) state, but it doesn’t change the color that
appears when you press the button (which is a darker gray). To really customize every aspect of a button’s
appearance, you need to delve into templates, as discussed in Chapter 15.

You can also grab system colors (which may be based on user preferences) from the
System.Windows.SystemColors enumeration. Here’s an example:

cmd.Background = new SolidColorBrush(SystemColors.ControlColor);

Because system brushes are used frequently, the SystemColors class also provides ready-
made properties that return SolidColorBrush objects. Here’s how you use them:

cmd.Background = SystemColors.ControlBrush;

As it’s written, both of these examples suffer from a minor problem. If the system color
is changed after you run this code, your button won’t be updated to use the new color. In
essence, this code grabs a snapshot of the current color or brush. To make sure your program
can update itself in response to configuration changes, you need to use dynamic resources, as
described in Chapter 11.

The Colors and SystemColors classes offer handy shortcuts, but they’re not the only way
to set a color. You can also create a Color object by supplying the R, G, B values (red, green,
and blue). Each one of these values is a number from 0 to 255:

int red = 0; int green = 255; int blue = 0;
cmd.Foreground = new SolidColorBrush(Color.FromRgb(red, green, blue));

CHAPTER 7 ■ CLASSIC CONTROLS180

9551CH07 2/8/08 1:45 PM Page 180

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also make a color partly transparent by supplying an alpha value and calling the
Color.FromArgb() method. An alpha value of 255 is completely opaque, while 0 is completely
transparent.

RGB AND SCRGB

The RGB standard is useful because it’s used in many other programs—for example, you can get the RGB
value of a color in a graphic in a paint program and use the same color in your WPF application. However, it’s
possible that other devices (such as printers) might support a richer range of colors. For this reason, an alter-
native scRGB standard has been created that represents each color component (alpha, red, green, and blue)
using 64-bit values.

The WPF Color structure supports either approach. It includes a set of standard RGB properties (A, R, G,
and B) and a set of properties for scRGB (ScA, ScR, ScG, and ScB). These properties are linked, so that if you
set the R property, the ScR property is changed accordingly.

The relationship between the RGB values and the scRGB values is not linear. A 0 value in the RGB sys-
tem is 0 in scRGB, 255 in RGB becomes 1 in scRGB, and all values in between 0 and 255 in RGB are
represented as decimal values in between 0 and 1 in scRGB.

Setting Colors in XAML
When you set the background or foreground in XAML, you can use a helpful shortcut. Rather
than define a Brush object, you can supply a color name or color value. The WPF parser will
automatically create a SolidColorBrush object using the color you specify, and it will use that
brush object for the foreground or background. Here’s an example that uses a color name:

<Button Background="Red">A Button</Button>

It’s equivalent to this more verbose syntax:

<Button>A Button
<Button.Background>
<SolidColorBrush Color="Red" />

</Button.Background>
</Button>

You need to use the longer form if you want to create a different type of brush, such as a
LinearGradientBrush, and use that to paint the background.

If you want to use a color code, you need to use a slightly less convenient syntax that
puts the R, G, and B values in hexadecimal notation. You can use one of two formats—either
#rrggbb or #aarrggbb (the difference being that the latter includes the alpha value). You need
only two digits to supply the A, R, G, and B values because they’re all in hexadecimal notation.
Here’s an example that creates the same color as in the previous code snippets using #aarrggbb
notation:

<Button Background="#FFFF0000">A Button</Button>

Here the alpha value is FF (255), the red value is FF (255), and the green and blue values
are 0.

CHAPTER 7 ■ CLASSIC CONTROLS 181

9551CH07 2/8/08 1:45 PM Page 181

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Brushes support automatic change notification. In other words, if you attach a brush to a control
and change the brush, the control updates itself accordingly. This works because brushes derive from the
System.Windows.Freezable class. The name stems from the fact that all freezable objects have two states—
a readable state and a read-only (or “frozen”) state.

The Background and Foreground properties aren’t the only details you can set with a
brush. You can also paint a border around controls (and some other elements, such as the
Border element) using the BorderBrush and BorderThickness properties. BorderBrush takes
a brush of your choosing, and BorderThickness takes the width of the border in device-
independent units. You need to set both properties before you’ll see the border.

■Note Some controls don’t respect the BorderBrush and BorderThickness properties. The Button object
ignores them completely because it defines its background and border using the ButtonChrome decorator.
However, you can give a button a new face (with a border of your choosing) using templates, as described in
Chapter 15.

Transparency
Unlike Windows Forms, WPF supports true transparency. That means if you layer several
elements on top of one another and give them all varying layers of transparency, you’ll see
exactly what you expect. At its simplest, this feature gives you the ability to create graphical
backgrounds that “show through” the elements you place on top. At its most complex, this fea-
ture allows you to create multilayered animations and other effects that would be extremely
difficult in other frameworks.

There are two ways to make an element partly transparent:

• Set the Opacity property. Opacity is a fractional value from 0 to 1, where 1 is com-
pletely solid (the default) and 0 is completely transparent. The Opacity property is
defined in the UIElement class (and the base Brush class), so it applies to all elements.

• Use a semitransparent color. Any color that has an alpha value less than 255 is semi-
transparent. If possible, you should use transparent colors rather than the Opacity
property because it’s likely to perform better. And because you can apply different col-
ors to different parts of a control, you can use transparent colors to create a control that
is partly transparent—for example, a semitransparent background with completely
opaque text.

Figure 7-1 shows an example that has several semitransparent layers:

• The window has an opaque white background.

• The top-level StackPanel that contains all the elements has an ImageBrush that applies
a picture. The Opacity of this brush is reduced to lighten it, allowing the white window
background to show through.

CHAPTER 7 ■ CLASSIC CONTROLS182

9551CH07 2/8/08 1:45 PM Page 182

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• The first button uses a semitransparent red background color. The image shows
through in the button background, but the text is opaque.

• The label (under the first button) is used as is. By default, all labels have a completely
transparent background color.

• The text box uses opaque text and an opaque border but a semitransparent background
color.

• Another StackPanel under the text box uses a TileBrush to create a pattern of happy
faces. The TileBrush has a reduced Opacity, so the other background shows through.
For example, you can see the sun at the bottom-right corner of the form.

• In the second StackPanel is a TextBlock with a completely transparent background and
semitransparent white text. If you look carefully, you can see both backgrounds show
through under some letters.

Figure 7-1. A window with several semitransparent layers

Here are the contents of the window in XAML. Keep in mind that this example includes
one detail you haven’t examined yet—the specialized ImageBrush for painting image content.
(You’ll learn about the ImageBrush class in Chapter 13.)

<StackPanel Margin="5">
<StackPanel.Background>
<ImageBrush ImageSource="celestial.jpg" Opacity="0.7"/>

</StackPanel.Background>

<Button Foreground="White" FontSize="16" Margin="10"

CHAPTER 7 ■ CLASSIC CONTROLS 183

9551CH07 2/8/08 1:45 PM Page 183

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

BorderBrush="White" Background="#60AA4030"
Padding="20">A Semi-Transparent Button</Button>

<Label Margin="10" FontSize="18" FontWeight="Bold" Foreground="White">
Some Label Text</Label>

<TextBox Margin="10" Background="#AAAAAAAA" Foreground="White"
BorderBrush="White">A semi-transparent text box</TextBox>

<Button Margin="10" Padding="25" BorderBrush="White">
<Button.Background>
<ImageBrush ImageSource="happyface.jpg" Opacity="0.6"
TileMode="Tile" Viewport="0,0,0.1,0.3"/>

</Button.Background>

<StackPanel>
<TextBlock Foreground="#75FFFFFF" TextAlignment="Center"
FontSize="30" FontWeight="Bold" TextWrapping="Wrap">
Semi-Transparent Layers</TextBlock>

</StackPanel>
</Button>

</StackPanel>

Transparency is a popular WPF feature—in fact, it’s so easy and works so well that it’s a bit
of a WPF user-interface cliché. For that reason, be careful not to overuse it.

Fonts
The Control class defines a small set of font-related properties that determine how text
appears in a control. These properties are outlined in Table 7-1.

■Note The Control class doesn’t define any properties that use its font. While many controls include a
property such as Text, it isn’t defined as part of the base control class. Obviously, the font properties don’t
mean anything unless they’re used by the derived class.

Table 7-1. Font-Related Properties of the Control Class

Name Description

FontFamily The name of the font you want to use.

FontSize The size of the font in device-independent units (each of which is 1/96 of an
inch). This is a bit of a change from tradition that’s designed to support WPF’s
new resolution-independent rendering model. Ordinary Windows applications
measure fonts using points, which are assumed to be 1/72 of an inch on a
standard PC monitor. If you want to turn a WPF font size into a more familiar
point size, you can use a handy trick—just multiply by 3/4. For example, a
traditional 38-point is equivalent to 48 units in WPF.

CHAPTER 7 ■ CLASSIC CONTROLS184

9551CH07 2/8/08 1:45 PM Page 184

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

FontStyle The angling of the text, as represented as a FontStyle object. You get the FontSyle
preset you need from the static properties of the FontStyles class, which includes
Normal, Italic, or Oblique lettering. (Oblique is an “artificial” way to create italic
text on a computer that doesn’t have the required italic font. Letters are taken
from the normal font and slanted using a transform. This usually creates a poor
result.)

FontWeight The heaviness of text, as represented as a FontWeight object. You get the
FontWeight preset you need from the static properties of the FontWeights class.
Bold is the most obvious of these, but some typefaces provide other variations
such as Heavy, Light, ExtraBold, and so on.

FontStretch The amount that text is stretched or compressed, as represented by a FontStretch
object. You get the FontStretch preset you need from the static properties of the
FontStretches class. For example, UltraCondensed reduces fonts to 50% of their
normal width, while UltraExpanded expands them to 200%. Font stretching is an
OpenType feature that is not supported by many typefaces. (To experiment with
this property, try using the Rockwell font, which does support it.)

Obviously, the most important of these properties is FontFamily. A font family is a collec-
tion of related typefaces—for example, Arial Regular, Arial Bold, Arial Italic, and Arial Bold
Italic are all part of the Arial font family. Although the typographic rules and characters for
each variation are defined separately, the operating system realizes they’re related. As a result,
you can configure an element to use Arial Regular, set the FontWeight property to Bold, and be
confident that WPF will switch over to the Arial Bold typeface.

When choosing a font, you must supply the full family name, as shown here:

<Button Name="cmd" FontFamily="Times New Roman" FontSize="18">A Button</Button>

It’s much the same in code:

cmd.FontFamily = "Times New Roman";
cmd.FontSize = "18";

When identifying a FontFamily, a shortened string is not enough. That means you can’t
substitute Times or Times New instead of the full name Times New Roman.

Optionally, you can use the full name of a typeface to get italic or bold, as shown here:

<Button FontFamily="Times New Roman Bold">A Button</Button>

However, it’s clearer and more flexible to use just the family name and set other properties
(such as FontStyle and FontWeight) to get the variant you want. For example, the following
markup sets the FontFamily to Times New Roman and sets the FontWeight to Font-
Weights.Bold:

<Button FontFamily="Times New Roman" FontWeight="Bold">A Button</Button>

Text Decorations and Typography
Some elements also support more advanced text manipulation through the TextDecorations
and Typography properties. These allow you to add embellishments to text. For example, you
can set the TextDecorations property using a static property from the TextDecorations class.
It provides just four decorations, each of which allows you to add some sort of line to your

CHAPTER 7 ■ CLASSIC CONTROLS 185

9551CH07 2/8/08 1:45 PM Page 185

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

text. They include Baseline, OverLine, Strikethrough, and Underline. The Typography property
is more advanced—it lets you access specialized typeface variants that only some fonts will
provide. Examples include different number alignments, ligatures (connections between adja-
cent letters), and small caps.

For the most part, the TextDecorations and Typography features are found only in flow
document content—which you use to create rich, readable documents. (Chapter 19 describes
documents in detail.) However, the frills also turn up on the TextBox class. Additionally, they’re
supported by the TextBlock, which is a lighter-weight version of the Label that’s perfect for
showing small amounts of wrappable text content. Although you’re unlikely to use text deco-
rations with the TextBox or change its typography, you may want to use underlining in the
TextBlock, as shown here:

<TextBlock TextDecorations="Underline">Underlined text</TextBlock>

If you’re planning to place a large amount of text content in a window and you want to
format individual portions (for example, underline important words), you should refer to
Chapter 19, where you’ll learn about many more flow elements. Although flow elements are
designed for use with documents, you can nest them directly inside a TextBlock.

Font Inheritance
When you set any of the font properties, the values flow through to nested objects. For exam-
ple, if you set the FontFamily property for the top-level window, every control in that window
gets the same FontFamily value (unless the control explicitly sets a different font). This feature
is similar to the Windows Forms concept of ambient properties, but the underlying plumbing
is different. It works because the font properties are dependency properties, and one of the
features that dependency properties can provide is property value inheritance—the magic
that passes your font settings down to nested controls.

It’s worth noting that property value inheritance can flow through elements that don’t
even support that property. For example, imagine you create a window that holds a Stack-
Panel, inside of which are three Label controls. You can set the FontSize property of the
window because the Window class derives from the Control class. You can’t set the FontSize
property for the StackPanel because it isn’t a control. However, if you set the FontSize property
of the window, your property value is still able to flow “through” the StackPanel to get to your
labels inside and change their font sizes.

Along with the font settings, several other base properties use property value inheritance.
In the Control class, the Foreground property uses inheritance. The Background property does
not. However, the default background is a null reference that’s rendered by most controls as a
transparent background. (That means the parent’s background will show through, as shown in
Figure 7-1.) In the UIElement class, AllowDrop, IsEnabled, and IsVisible use property inheri-
tance. In the FrameworkElement, the CultureInfo and FlowDirection properties do.

■Note A dependency property supports inheritance only if the FrameworkPropertyMetadata.Inherits flag is
set to true, which is not the default. Chapter 6 discusses the FrameworkPropertyMetadata class and property
registration in detail.

CHAPTER 7 ■ CLASSIC CONTROLS186

9551CH07 2/8/08 1:45 PM Page 186

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Font Substitution
When you’re setting fonts, you need to be careful to choose a font that you know will be pres-
ent on the user’s computer. However, WPF does give you a little flexibility with a font fallback
system. You can set FontFamily to a comma-separated list of font options. WPF will then move
through the list in order, trying to find one of the fonts you’ve indicated.

Here’s an example that attempts to use Technical Italic font but falls back to Comic Sans
MS or Arial if that isn’t available:

<Button FontFamily="Technical Italic, Comic Sans MS, Arial">A Button</Button>

If a font family really does contain a comma in its name, you’ll need to escape the comma
by including it twice in a row.

Incidentally, you can get a list of all the fonts that are installed on the current computer
using the static SystemFontFamilies collection of the System.Windows.Media.Fonts class.
Here’s an example that uses it to add fonts to a list box:

foreach (FontFamily fontFamily in Fonts.SystemFontFamilies)
{

lstFonts.Items.Add(fontFamily.Source);
}

The FontFamily object also allows you to examine other details, such as the line spacing
and associated typefaces.

■Note One of the ingredients that WPF doesn’t include is a dialog box for choosing a font. The WPF
Text team has posted two much more attractive WPF font pickers, including a no-code version that uses
data binding (http://blogs.msdn.com/text/archive/2006/06/20/592777.aspx) and a more
sophisticated version that supports the optional typographic features that are found in some OpenType fonts
(http://blogs.msdn.com/text/archive/2006/11/01/sample-font-chooser.aspx).

Font Embedding
Another option for dealing with unusual fonts is to embed them in your application. That way,
your application never has a problem finding the font you want to use.

The embedding process is simple. First, you add the font file (typically, a file with the
extension .ttf) to your application and set the Build Action to Resource. (You can do this in
Visual Studio by selecting the font file in the Solution Explorer and changing its Build Action
in the Properties window.)

Next, when you use the font, you need to add the character sequence ./# before the font
family name, as shown here:

<Label FontFamily="./#Bayern" FontSize="20">This is an embedded font</Label>

The ./ characters are interpreted by WPF to mean “the current folder.” To understand
what this means, you need to know a little more about XAML’s packaging system.

CHAPTER 7 ■ CLASSIC CONTROLS 187

9551CH07 2/8/08 1:45 PM Page 187

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/text/archive/2006/06/20/592777.aspx
http://blogs.msdn.com/text/archive/2006/11/01/sample-font-chooser.aspx

As you learned in Chapter 1, you can run stand-alone (known as loose) XAML files directly
in your browser without compiling them. The only limitation is that your XAML file can’t use a
code-behind file. In this scenario, the current folder is exactly that, and WPF looks at the font
files that are in the same directory as the XAML file and makes them available to your applica-
tion.

More commonly, you’ll compile your WPF application to a .NET assembly before you run
it. In this case, the current folder is still the location of the XAML document, only now that
document has been compiled and embedded in your assembly. WPF refers to compiled
resources using a specialized URI syntax that’s discussed in Chapter 11. All application URIs
start with pack://application. If you create a project named ClassicControls and add a window
named EmbeddedFont.xaml, the URI for that window is this:

pack://application:,,,/ClassicControls/embeddedfont.xaml

This URI is made available in several places, including through the FontFamily.BaseUri
property. WPF uses this URI to base its font search. Thus, when you use the ./ syntax in a
compiled WPF application, WPF looks for fonts that are embedded as resources alongside
your compiled XAML.

After the ./ character sequence, you can supply the file name, but you’ll usually just add
the number sign (#) and the font’s real family name. In the previous example, the embedded
font is named Bayern.

■Note Setting up an embedded font can be a bit tricky. You need to make sure you get the font family
name exactly right, and you need to make sure you choose the correct build action for the font file. Further-
more, Visual Studio doesn’t currently provide design support for embedded fonts (meaning your control text
won’t appear in the correct font until you run your application). To see an example of the correct setup, refer
to the sample code for this chapter.

Embedding fonts raises obvious licensing concerns. Unfortunately, most font vendors
allow their fonts to be embedded in documents (such as PDF files) but not applications (such
as WPF assemblies) even though an embedded WPF font isn’t directly accessible to the end
user. WPF doesn’t make any attempt to enforce font licensing, but you should make sure
you’re on solid legal ground before you redistribute a font.

You can check a font’s embedding permissions using Microsoft’s free font properties
extension utility, which is available at http://www.microsoft.com/typography/TrueType-
Property21.mspx. Once you install this utility, right-click any font file, and choose Properties to
see more detailed information about it. In particular, check the Embedding tab for informa-
tion about the allowed embedding for this font. Fonts marked with Installed Embedding
Allowed are suitable for WPF applications, while fonts with Editable Embedding Allowed may
not be. Consult with the font vendor for licensing information about a specific font.

CHAPTER 7 ■ CLASSIC CONTROLS188

9551CH07 2/8/08 1:45 PM Page 188

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

pack://application
pack://application:,,,/ClassicControls/embeddedfont.xaml
http://www.microsoft.com/typography/TrueType-Property21.mspx
http://www.microsoft.com/typography/TrueType-Property21.mspx

Mouse Cursors
A common task in any application is to adjust the mouse cursor to show when the application
is busy or to indicate how different controls work. You can set the mouse pointer for any ele-
ment using the Cursor property, which is inherited from the FrameworkElement class.

Every cursor is represented by a System.Windows.Input.Cursor object. The easiest way to
get a Cursor object is to use the static properties of the Cursors class (from the System.Windows.
Input namespace). They include all the standard Windows cursors, such as the hourglass, the
hand, resizing arrows, and so on. Here’s an example that sets the hourglass for the current window:

this.Cursor = Cursors.Wait;

Now when you move the mouse over the current window, the mouse pointer changes to
the familiar hourglass icon (in Windows XP) or the swirl (in Windows Vista).

■Note The properties of the Cursors class draw on the cursors that are defined on the computer. If the user
has customized the set of standard cursors, the application you create will use those customized cursors.

If you set the cursor in XAML, you don’t need to use the Cursors class directly. That’s
because the TypeConverter for the Cursor property is able to recognize the property names
and retrieve the corresponding Cursor object from the Cursors class. That means you can
write markup like this to show the “help” cursor (a combination of an arrow and a question
mark) when the mouse is positioned over a button:

<Button Cursor="Help">Help</Button>

It’s possible to have overlapping cursor settings. In this case, the most specific cursor
wins. For example, you could set a different cursor on a button and on the window that con-
tains the button. The button’s cursor will be shown when you move the mouse over the
button, and the window’s cursor will be used for every other region in the window.

However, there’s one exception. A parent can override the cursor settings of its children
using the ForceCursor property. When this property is set to true, the child’s Cursor property is
ignored, and the parent’s Cursor property applies everywhere inside.

If you want to apply a cursor setting to every element in every window of an application,
the FrameworkElement.Cursor property won’t help you. Instead, you need to use the static
Mouse.OverrideCursor property, which overrides the Cursor property of every element:

Mouse.OverrideCursor = Cursors.Wait;

To remove this application-wide cursor override, set the Mouse.OverrideCursor property
to null.

Lastly, WPF supports custom cursors without any fuss. You can use both ordinary .cur
cursor files (which are essentially small bitmaps) and .ani animated cursor files. To use a cus-
tom cursor, you pass the file name of your cursor file or a stream with the cursor data to the
constructor of the Cursor object:

Cursor customCursor = new Cursor(Path.Combine(applicationDir, "stopwatch.ani");
this.Cursor = customCursor;

CHAPTER 7 ■ CLASSIC CONTROLS 189

9551CH07 2/8/08 1:45 PM Page 189

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Cursor object doesn’t directly support the URI resource syntax that allows other WPF
elements (such as the Image) to use files that are stored in your compiled assembly. However,
it’s still quite easy to add a cursor file to your application as a resource and then retrieve it as a
stream that you can use to construct a Cursor object. The trick is using the Application.Get-
ResourceStream() method:

StreamResourceInfo sri = Application.GetResourceStream(
new Uri("stopwatch.ani", UriKind.Relative));

Cursor customCursor = new Cursor(sri.Stream);
this.Cursor = customCursor;

This code assumes that you’ve added a file named stopwatch.ani to your project and set
its Build Action to Resource. This technique is explained in more detail in Chapter 12.

Content Controls
As you learned in Chapter 5, many of the most fundamental WPF controls are actually content
controls. These include the well-worn Label, Button, CheckBox, and RadioButton.

Labels
The simplest of all content controls is the Label control. Like any other content control, it
accepts any single piece of content you want to place inside. But what distinguishes the Label
control is its support for mnemonics—essentially, shortcut keys that set the focus to a linked
control.

To support this functionality, the Label control adds a single property, named Target. To
set the Target property, you need to use a binding expression that points to another control.
Here’s the syntax you must use:

<Label Target="{Binding ElementName=txtA}">Choose _A</Label>
<TextBox Name="txtA"></TextBox>
<Label Target="{Binding ElementName=txtB}">Choose _B</Label>
<TextBox Name="txtB"></TextBox>

The underscore in the label text indicates the shortcut key. (If you really do want an
underscore to appear in your label, you must add two underscores instead.) All mnemonics
work with Alt and the shortcut key you’ve identified. For example, if the user presses Alt+A in
this example, the first label transfers focus to the linked control, which is txtA. Similarly, Alt+B
takes the user to txtB.

■Note If you’ve programmed with Windows Forms, you’re probably used to using the ampersand (&) char-
acter to identify a shortcut key. XAML uses the underscore instead because the ampersand character can’t
be entered directly in XML—instead, you need to use the clunkier character entity & in its place.

CHAPTER 7 ■ CLASSIC CONTROLS190

9551CH07 2/8/08 1:45 PM Page 190

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Usually, the shortcut letters are hidden until the user presses Alt, at which point they
appear as underlined letters (Figure 7-2). However, this behavior depends on system settings.

■Tip If all you need to do is display content without support for mnemonics, you may prefer to use the
more lightweight TextBlock element. Unlike the Label, the TextBlock also supports wrapping through its
TextWrapping property.

Figure 7-2. Shortcuts in a label

Buttons
WPF recognizes three types of button controls: the familiar Button, the CheckBox, and the
RadioButton. All of these controls are content controls that derive from ButtonBase.

The ButtonBase class includes only a few members. It defines the Click event and adds
support for commands, which allow you to wire buttons to higher-level application tasks (a
feat you’ll consider in Chapter 10). Finally, the ButtonBase class adds a ClickMode property,
which determines when a button fires its Click event in response to mouse actions. The
default value is ClickMode.Release, which means the Click event fires when the mouse is
clicked and released. However, you can also choose to fire the Click event mouse when the
mouse button is first pressed (ClickMode.Press) or, oddly enough, whenever the mouse moves
over the button and pauses there (ClickMode.Hover).

■Note All button controls support access keys, which work similarly to mnemonics in the Label control.
You add the underscore character to identify the access key. If the user presses Alt and the access key, a
button click is triggered.

CHAPTER 7 ■ CLASSIC CONTROLS 191

9551CH07 2/8/08 1:45 PM Page 191

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Button
The Button class represents the ever-present Windows push button. It adds just two writeable
properties, IsCancel and IsDefault:

• When IsCancel is true, this button is designated as the cancel button for a window. If
you press the Escape key while positioned anywhere on the current window, this button
is triggered.

• When IsDefault is true, this button is designated as the default button (also known as
the accept button). Its behavior depends on your current location in the window. If
you’re positioned on a non-Button control (such as a TextBox, RadioButton, CheckBox,
and so on), the default button is given a blue shading, almost as though it has focus. If
you press Enter, this button is triggered. However, if you’re positioned on another But-
ton control, the current button gets the blue shading, and pressing Enter triggers that
button, not the default button.

Many users rely on these shortcuts (particularly the Escape key to close an unwanted dia-
log box), so it makes sense to take the time to define these details in every window you create.
It’s still up to you to write the event handling code for the cancel and default buttons, because
WPF won’t supply this behavior.

In some cases, it may make sense for the same button to be the cancel button and the
default button for a window. One example is the OK button in an About box. However, there
should be only a single cancel button and a single default button in a window. If you designate
more than one cancel button, pressing Escape will simply move the focus to the next default
button but it won’t trigger it. If you have more than one default button, pressing Enter has a
somewhat more confusing behavior. If you’re on a non-Button control, pressing Enter moves
you to the next default button. If you’re on a Button control, pressing Enter triggers it.

ISDEFAULT AND ISDEFAULTED

The Button class also includes the horribly confusing IsDefaulted property, which is read-only. IsDefaulted
returns true for a default button if another control has focus and that control doesn’t accept the Enter key. In
this situation, pressing the Enter key will trigger the button.

For example, a TextBox does not accept the Enter key, unless you’ve set TextBox.AcceptsReturn to true.
When a TextBox with an AcceptsReturn value of true has focus, IsDefaulted is false for the default button.
When a TextBox with an AcceptsReturns value of false has focus, the default button has IsDefaulted set to
true. If this isn’t confusing enough, the IsDefaulted property returns false when the button itself has focus,
even though hitting Enter at this point will trigger the button.

Although it’s unlikely that you’ll want to use the IsDefaulted property, it does allow you to write certain
types of style triggers, as you’ll see in Chapter 12. If not, just add it to your list of obscure WPF trivia, which
you can use to puzzle your colleagues.

The ToggleButton and RepeatButton
Alongside Button, three more classes derive from ButtonBase. These include the following:

• GridViewColumnHeader, which represents the clickable header of a column when you
use a grid-based ListView. The ListView is described in Chapter 18.

CHAPTER 7 ■ CLASSIC CONTROLS192

9551CH07 2/8/08 1:45 PM Page 192

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• RepeatButton, which fires Click events continuously, as long as the button is held
down. Ordinary buttons fire one Click event per user click.

• ToggleButton, which represents a button that has two states (pushed or unpushed).
When you click a ToggleButton, it stays in its pushed state until you click it again to
release it. This is sometimes described as “sticky click” behavior.

Both RepeatButton and ToggleButton are defined in the System.Windows.Controls.Primi-
tives namespace, which indicates they aren’t often used on their own. Instead, they’re used to
build more complex controls by composition, or extended with features through inheritance.
For example, the RepeatButton is used to build the higher-level ScrollBar control (which, ulti-
mately, is a part of the even higher-level ScrollViewer). The RepeatButton gives the arrow
buttons at the ends of the scroll bar their trademark behavior—scrolling continues as long as
you hold it down. Similarly, the ToggleButton is used to derive the more useful CheckBox and
RadioButton classes described next.

However, neither the RepeatButton nor the ToggleButton is an abstract class, so you can
use both of them directly in your user interfaces. The ToggleButton is genuinely useful inside a
ToolBar, which you’ll use in Chapter 18.

The CheckBox
Both the CheckBox and the RadioButton are buttons of a different sort. They derive from
ToggleButton, which means they can be switched on or off by the user, hence their “toggle”
behavior. In the case of the CheckBox, switching the control “on” means placing a check mark
in it.

The CheckBox class doesn’t add any members, so the basic CheckBox interface is defined
in the ToggleButton class. Most important, ToggleButton adds an IsChecked property.
IsChecked is a nullable Boolean, which means it can be set to true, false, or null. Obviously,
true represents a checked box, while false represents an empty one. The null value is a little
trickier—it represents an indeterminate state, which is displayed as a shaded box. The indeter-
minate state is commonly used to represent values that haven’t been set or areas where some
discrepancy exists. For example, if you have a check box that allows you to apply bold format-
ting in a text application and the current selection includes both bold and regular text, you
might set the check box to null to show an indeterminate state.

To assign a null value in WPF markup, you need to use the null markup extension, as
shown here:

<CheckBox IsChecked="{x:Null}">A check box in indeterminate state</CheckBox>

Along with the IsChecked property, the ToggleButton class adds a property named
IsThreeState, which determines whether the user is able to place the check box into an inde-
terminate state. If IsThreeState is false (the default), clicking the check box alternates its state
between checked and unchecked, and the only way to place it in an indeterminate state is
through code. If IsThreeState is true, clicking the check box cycles through all three possible
states.

The ToggleButton class also defines three events that fire when the check box enters spe-
cific states: Checked, Unchecked, and Indeterminate. In most cases, it’s easier to consolidate
this logic into one event handler by handling the Click event that’s inherited from ButtonBase.
The Click event fires whenever the button changes state.

CHAPTER 7 ■ CLASSIC CONTROLS 193

9551CH07 2/8/08 1:45 PM Page 193

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The RadioButton
The RadioButton also derives from ToggleButton and uses the same IsChecked property and
the same Checked, Unchecked, and Indeterminate events. Along with these, the RadioButton
adds a single property named GroupName, which allows you to control how radio buttons are
placed into groups.

Ordinarily, radio buttons are grouped by their container. That means if you place three
RadioButton controls in a single StackPanel, they form a group from which you can select just
one of the three. On the other hand, if you place a combination of radio buttons in two sepa-
rate StackPanel controls, you have two independent groups on your hands.

The GroupName property allows you to override this behavior. You can use it to create
more than one group in the same container or to create a single group that spans multiple
containers. Either way, the trick is simple—just give all the radio buttons that belong together
the same group name.

Consider this example:

<StackPanel>
<GroupBox Margin="5">
<StackPanel>
<RadioButton>Group 1</RadioButton>
<RadioButton>Group 1</RadioButton>
<RadioButton>Group 1</RadioButton>
<RadioButton Margin="0,10,0,0" GroupName="Group2">Group 2</RadioButton>

</StackPanel>
</GroupBox>
<GroupBox Margin="5">
<StackPanel>
<RadioButton>Group 3</RadioButton>
<RadioButton>Group 3</RadioButton>
<RadioButton>Group 3</RadioButton>
<RadioButton Margin="0,10,0,0" GroupName="Group2">Group 2</RadioButton>

</StackPanel>
</GroupBox>

</StackPanel>

Here, there are two containers holding radio buttons, but three groups. The final radio
button at the bottom of each group box is part of a third group. In this example it makes for a
confusing design, but there may be some scenarios where you want to separate a specific
radio button from the pack in a subtle way without causing it to lose its group membership.

■Tip You don’t need to use the GroupBox container to wrap your radio buttons, but it’s a common conven-
tion. The GroupBox shows a border and gives you a caption that you can apply to your group of buttons.

Tooltips
WPF has a flexible model for tooltips (those infamous yellow boxes that pop up when you
hover over something interesting). Because tooltips in WPF are content controls, you can

CHAPTER 7 ■ CLASSIC CONTROLS194

9551CH07 2/8/08 1:45 PM Page 194

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

place virtually anything inside a tooltip. You can also tweak various timing settings to control
how quickly tooltips appear and disappear.

The easiest way to show a tooltip doesn’t involve using the ToolTip class directly. Instead,
you simply set the ToolTip property of your element. The ToolTip property is defined in the
FrameworkElement class, so it’s available on anything you’ll place in a WPF window.

For example, here’s a button that has a basic tooltip:

<Button ToolTip="This is my tooltip">I have a tooltip</Button>

When you hover over this button, the text “This is my tooltip” appears in the familiar yel-
low box.

If you want to supply more ambitious tooltip content, such as a combination of nested
elements, you need to break the ToolTip property out into a separate element. Here’s an exam-
ple that sets the ToolTip property of a button using more complex nested content:

<Button>
<Button.ToolTip>
<StackPanel>
<TextBlock Margin="3" >Image and text</TextBlock>
<Image Source="happyface.jpg" Stretch="None" />
<TextBlock Margin="3" >Image and text</TextBlock>

</StackPanel>
</Button.ToolTip>
<Button.Content>I have a fancy tooltip</Button.Content>

</Button>

As in the previous example, WPF implicitly creates a ToolTip object. The difference is that
in this case the ToolTip object contains a StackPanel rather than a simple string. Figure 7-3
shows the result.

Figure 7-3. A fancy tooltip

CHAPTER 7 ■ CLASSIC CONTROLS 195

9551CH07 2/8/08 1:45 PM Page 195

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If more than one tooltip overlaps, the most specific tooltip wins. For example, if you add a
tooltip to the StackPanel container in the previous example, this tooltip appears when you
hover over an empty part of the panel or a control that doesn’t have its own tooltip.

■Note Don’t put user-interactive controls in a tooltip because the ToolTip window can’t accept focus. For
example, if you place a button in a ToolTip, the button will appear, but it isn’t clickable. (If you attempt to click
it, your mouse click will just pass through to the window underneath.) If you want a tooltip-like window that
can hold other controls, consider using the Popup instead, which is discussed shortly, in the section named
“The Popup.”

Setting ToolTip Properties
The previous example shows how you can customize the content of a tooltip, but what if you
want to configure other ToolTip-related settings? You actually have two options. The first tech-
nique you can use is to explicitly define the ToolTip object. That gives you the chance to
directly set a variety of ToolTip properties.

The ToolTip is a content control, so you can adjust standard properties such as the Back-
ground (so it isn’t a yellow box), Padding, and Font. You can also modify the members that are
defined in the ToolTip class (and listed in Table 7-2). Most of these properties are designed to
help you place the tooltip exactly where you want it.

Table 7-2. ToolTip Properties

Name Description

HasDropShadow Determines whether the tooltip has a diffuse black drop
shadow that makes it stand out from the window underneath.

Placement Determines how the tooltip is positioned, using one of the
values from the PlacementMode enumeration. The default
value is Mouse, which means that the top-left corner of the
tooltip is placed relative to the current mouse position. (The
actual position of the tooltip may be offset from this starting
point based on the HorizontalOffset and VerticalOffset
properties.) Other possibilities allow you to place the tooltip
using absolute screen coordinates or place it relative to some
element (which you indicate using the PlacementTarget
property).

HorizontalOffset and VerticalOffset Allows you to nudge the tooltip into the exact position you
want. You can use positive or negative values.

PlacementTarget Allows you to place a tooltip relative to another element. In
order to use this property, the Placement property must be set
to Left, Right, Top, Bottom, or Center. (This is the edge of the
element to which the tooltip is aligned.)

PlacementRectangle Allows you to offset the position of the tooltip. This works in
much the same way as the HorizontalOffset and VerticalOffest
properties. This property doesn’t have an effect if Placement
property is set to Mouse.

CHAPTER 7 ■ CLASSIC CONTROLS196

9551CH07 2/8/08 1:45 PM Page 196

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

CustomPopupPlacementCallback Allows you to position a tooltip dynamically using code. If the
Placement property is set to Custom, this property identifies
the method that will be called by the ToolTip to get the position
where the ToolTip should be placed. Your callback method
receives three pieces of information—popupSize (the size of
the ToolTip), targetSize (the size of the PlacementTarget, if it’s
used), and offset (a point that’s created based on Horizontal-
Offset and VerticalOffset properties). The method returns a
CustomPopupPlacement object that tells WPF where to place
the tooltip.

StaysOpen Has no effect in practice. The intended purpose of this
property is to allow you to create a tooltip that remains
open until the user clicks somewhere else. However, the
ToolTipService.ShowDuration property overrides the
StaysOpen property. As a result, tooltips always disappear after
a configurable amount of time (usually about 5 seconds) or
when the user moves the mouse away. If you want to create a
tooltip-like window that stays open indefinitely, the easiest
approach is to use the Popup control.

Using the ToolTip properties, the following markup creates a tooltip that has no drop
shadow but uses a transparent red background that lets the underlying window (and controls)
show through:

<Button>
<Button.ToolTip>
<ToolTip Background="#60AA4030" Foreground="White"
HasDropShadow="False" >
<StackPanel>
<TextBlock Margin="3" >Image and text</TextBlock>
<Image Source="happyface.jpg" Stretch="None" />
<TextBlock Margin="3" >Image and text</TextBlock>

</StackPanel>
</ToolTip>

</Button.ToolTip>
<Button.Content>I have a fancy tooltip</Button.Content>

</Button>

In most cases, you’ll be happy enough to use the standard tooltip placement, which puts
it at the current mouse position. However, the various ToolTip properties give you many more
options. Here are some strategies you can use to place a tooltip:

• Based on the current position of the mouse. This is the standard behavior, which relies
on Placement being set to Mouse. The top-left corner of the tooltip box is lined up with
the bottom-left corner of the invisible “bounding box” around the mouse pointer.

• Based on the position of the moused-over element. Set the Placement property to Left,
Right, Top, Bottom, or Center, depending on the edge of the element you want to use.
The top-left corner of the tooltip box will be lined up with that edge.

CHAPTER 7 ■ CLASSIC CONTROLS 197

9551CH07 2/8/08 1:45 PM Page 197

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Based on the position of another element (or the window). Set the Placement prop-
erty in the same way you would if you were lining the tooltip up with the current
element. (Use the value Left, Right, Top, Bottom, or Center.) Then choose the element
by setting the PlacementTarget property. Remember to use the {Binding Element-
Name=Name} syntax to identify the element you want to use.

• With an offset. Use any of the strategies described previously, but set the Horizon-
talOffset and VerticalOffset properties to add a little extra space.

• Using absolute coordinates. Set Placement to Absolute and use the HorizontalOffset
and VerticalOffset properties (or the PlacementRectangle) to set some space between
the tooltip and the top-left corner of the window.

• Using a calculation at runtime. Set Placement to Custom. Set the CustomPopupPlace-
mentCallback property to point to a method that you’ve created.

Figure 7-4 shows how different placement properties stack up. Note that when lining up a
tooltip against an element along the tooltip’s bottom or right edge, you’ll end up with a tiny bit
of extra space. That’s because of the way that the ToolTip measures its content.

Figure 7-4. Placing a tooltip explicitly

Setting ToolTipService Properties
There are some tooltip properties that can’t be configured using the properties of the ToolTip
class. In this case, you need to use a different class, which is named ToolTipService.
ToolTipService allows you to configure the time delays associated with the display of a tooltip.
All the properties of the ToolTipService class are attached properties, so you can set them
directly in your control tag, as shown here:

<Button ToolTipService.InitialShowDelay="1">
...

</Button>

The ToolTipService class defines many of the same properties as ToolTip. This allows you
to use a simpler syntax when you’re dealing with text-only tooltips. Rather than adding a
nested ToolTip element, you can set everything you need using attributes:

<Button ToolTip="This tooltip is aligned with the bottom edge"
ToolTipService.Placement="Bottom">I have a tooltip</Button>

CHAPTER 7 ■ CLASSIC CONTROLS198

9551CH07 2/8/08 1:45 PM Page 198

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 7-3 lists the properties of the ToolTipService class. The ToolTipService class also
provides two routed events: ToolTipOpening and ToolTipClosing. You can react to these events
to fill a tooltip with just-in-time content or to override the way tooltips work. For example, if
you set the handled flag in both events, tooltips will no longer be shown or hidden automati-
cally. Instead, you’ll need to show and hide them manually by setting the IsOpen property.

■Tip It makes little sense to duplicate the same tooltip settings for several controls. If you plan to adjust
the way tooltips are handled in your entire application, use styles so that your settings are applied automati-
cally, as described in Chapter 12. Unfortunately, the ToolTipService property values are not inherited, which
means if you set them at the window or container level, they don’t flow through to the nested elements.

Table 7-3. ToolTipService Properties

Name Description

InitialShowDelay Sets the delay (in milliseconds) before this tooltip is shown when
the mouse hovers over the element.

ShowDuration Sets the amount of time (in milliseconds) that this tooltip is shown
before it disappears, if the user does not move the mouse.

BetweenShowDelay Sets a time window (in milliseconds) during which the user can
move between tooltips without experiencing the InitialShowDelay.
For example, if BetweenShowDelay is 5000, the user has five
seconds to move to another control that has a tooltip. If the user
moves to another control within that time period, the new tooltip is
shown immediately. If the user takes longer, the BetweenShowDelay
window expires, and the InitialShowDelay kicks into action. In this
case, the second tooltip isn’t shown until after the InitialShowDelay
period.

ToolTip Sets the content for the tooltip. Setting ToolTipService.ToolTip is
equivalent to setting the FrameworkElement.ToolTip property of an
element.

HasDropShadow Determines whether the tooltip has a diffuse black drop shadow
that makes it stand out from the window underneath.

ShowOnDisabled Determines the tooltip behavior when the associated element is
disabled. If true, the tooltip will appear for disabled elements
(elements that have their IsEnabled property set to false). The
default is false, in which case the tooltip appears only if the
associated element is enabled.

Placement, PlacementTarget, Allows you to control the placement of the tooltip. These properties
PlacementRectangle, and work in the same way as the matching properties of the ToolTip-
VerticalOffset HorizontalOffset class.

IsEnabled and IsOpen Allows you to control the tooltip in code. IsEnabled allows you to
temporarily disable a ToolTip, and IsOpen allows you to program-
matically show or hide a tooltip (or just check whether the tooltip
is open).

CHAPTER 7 ■ CLASSIC CONTROLS 199

9551CH07 2/8/08 1:45 PM Page 199

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Popup
The Popup control has a great deal in common with the ToolTip, although neither one derives
from the other.

Like the ToolTip, the Popup can hold a single piece of content, which can include
any WPF element. (This content is stored in the Popup.Child property, rather than the
ToolTip.Content property.) Also, like the ToolTip, the content in the Popup can extend beyond
the bounds of the window. Lastly, the Popup can be placed using the same placement proper-
ties and shown or hidden using the same IsOpen property.

The differences between the Popup and ToolTip are more important. They include the
following:

• The Popup is never shown automatically. You must set the IsOpen property for it to
appear.

• By default, the Popup.StaysOpen property is set to true, and the Popup does not disap-
pear until you explicitly set its IsOpen property to false. If you set StaysOpen to false,
the Popup disappears when the user clicks somewhere else.

■Note A popup that stays open can be a bit jarring because it behaves like a separate stand-alone win-
dow. If you move the window underneath, the popup remains fixed in its original position. You won’t witness
this behavior with the ToolTip or with a Popup that sets StaysOpen to false because as soon as you click to
move the window, the tooltip or popup window disappears.

• The Popup provides a PopupAnimation property that lets you control how it comes into
view when you set IsOpen to true. Your options include None (the default), Fade (the
opacity of the popup gradually increases), Scroll (the popup slides in from the upper-
left corner of the window, space permitting), and Slide (the popup slides down into
place, space permitting). In order for any of these animations to work, you must also set
the AllowsTransparency property to true.

• The Popup can accept focus. Thus, you can place user-interactive controls in it, such as
a Button. This functionality is one of the key reasons to use the Popup instead of the
ToolTip.

• The Popup control is defined in the System.Windows.Controls.Primitives namespace
because it is most commonly used as a building block for more complex controls. You’ll
find that the Popup is not quite as polished as other controls—notably, you must set the
Background property if you want to see your content because it won’t be inherited from
your window and you need to add the border yourself (the Border element works per-
fectly well for this purpose).

Because the Popup must be shown manually, you may choose to create it entirely in code.
However, you can define it just as easily in XAML markup—just make sure to include the
Name property so you can manipulate it in code.

CHAPTER 7 ■ CLASSIC CONTROLS200

9551CH07 2/8/08 1:45 PM Page 200

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 7-5 shows an example. Here, when the user moves the mouse over an underlined
word, a popup appears with more information and a link that opens an external web browser
window.

Figure 7-5. A popup with a hyperlink

To create this window, you need to include a TextBlock with the initial text and a Popup
with the additional content that you’ll show when the user moves the mouse into the right
place. Technically, it doesn’t matter where you define the Popup tag because it’s not associated
with any particular control. Instead, it’s up to you to set the placement properties to position
the Popup in the correct spot. In this example, the Popup appears at the current mouse posi-
tion, which is the simplest option.

<TextBlock TextWrapping="Wrap">You can use a Popup to provide a link for a
specific <Run TextDecorations="Underline" MouseEnter="run_MouseEnter">term</Run>
of interest.</TextBlock>

<Popup Name="popLink" StaysOpen="False" Placement="Mouse" MaxWidth="200"
PopupAnimation="Slide" AllowsTransparency="True">
<Border BorderBrush="Beige" BorderThickness="2" Background="White">
<TextBlock Margin="10" TextWrapping="Wrap">
For more information, see
<Hyperlink NavigateUri="http://en.wikipedia.org/wiki/Term"
Click="lnk_Click">Wikipedia</Hyperlink>

</TextBlock>
</Border>

</Popup>

This example presents two elements that you might not have seen before. The Run ele-
ment allows you to apply formatting to a specific part of a TextBlock—it’s a piece of flow
content that you’ll learn about in Chapter 19 when you consider documents. The Hyperlink

CHAPTER 7 ■ CLASSIC CONTROLS 201

9551CH07 2/8/08 1:45 PM Page 201

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://en.wikipedia.org/wiki/Term

allows you to provide a clickable piece of text. You’ll take a closer look at it in Chapter 9, when
you consider page-based applications.

The only remaining details are the relatively trivial code that shows the Popup when the
mouse moves over the right word and the code that launches the web browser when the link is
clicked:

private void run_MouseEnter(object sender, MouseEventArgs e)
{

popLink.IsOpen = true;
}

private void lnk_Click(object sender, RoutedEventArgs e)
{

Process.Start(((Hyperlink)sender).NavigateUri.ToString());
}

■Note You can show and hide a Popup using a trigger—an action that takes place automatically when
a specific property hits a specific value. You simply need to create a trigger that reacts when the
Popup.IsMouseOver is true and sets the Popup.IsOpen property to true. Chapter 12 has the details.

Text Controls
WPF includes three text-entry controls: TextBox, RichTextBox, and PasswordBox. The Pass-
wordBox derives directly from Control. The TextBox and RichTextBox controls go through
another level and derive from TextBoxBase.

Unlike the content controls you’ve seen, the text boxes are limited in the type of content
they can contain. The TextBox always stores a string (provided by the Text property). The Pass-
wordBox also deals with string content (provided by the Password property), although it uses a
SecureString internally to mitigate against certain types of attacks. Only the RichTextBox has
the ability to store more sophisticated content: a FlowDocument that can contain a complex
combination of elements.

In the following sections, you’ll consider the core features of the TextBox. You’ll end by
taking a quick look at the security features of the PasswordBox.

■Note The RichTextBox is an advanced control design for displaying FlowDocument objects. You’ll learn
how to use it when you tackle documents in Chapter 19.

Multiple Lines of Text
Ordinarily, the TextBox control stores a single line of text. (You can limit the allowed number
of characters by setting the MaxLength property.) However, there are many cases when you’ll

want to create a multiline text box for dealing with large amounts of content. In this case, set

CHAPTER 7 ■ CLASSIC CONTROLS202

9551CH07 2/8/08 1:45 PM Page 202

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the TextWrapping property to Wrap or WrapWithOverflow. Wrap always breaks at the edge of
the control, even if it means severing an extremely long word in two. WrapWithOverflow
allows some lines to stretch beyond the right edge if the line-break algorithm can’t find a suit-
able place (such as a space or a hyphen) to break the line.

To actually see multiple lines in a text box, it needs to be sized large enough. Rather than
setting a hard-coded height (which won’t adapt to different font sizes and may cause layout
problems), you can use the handy MinLines and MaxLines properties. MinLines is the mini-
mum number of lines that must be visible in the text box. For example, if MinLines is 2, the
text box will grow to be at least two lines tall. If its container doesn’t have enough room, part of
the text box may be clipped. MaxLines sets the maximum number of lines that will be dis-
played. Even if a text box expands to fit its container (for example, a proportionally sized Grid
row or the last element in a DockPanel), it won’t grow beyond this limit.

■Note The MinLines and MaxLines properties have no effect on the amount of content you can place in a
text box. They simply help you size the text box. In your code, you can examine the LineCount property to
find out exactly how many lines are in a text box.

If your text box supports wrapping, the odds are good that the user can enter more text
that can be displayed at once in the visible lines. For this reason, it usually makes sense to add
an always-visible or on-demand scroll bar by setting the VerticalScrollBarVisibility property to
Visible or Auto. (You can also set the HorizontalScrollBarVisibility property to show a less
common horizontal scroll bar.)

You may want to allow the user to enter hard returns in a multiline textbox by pressing the
Enter key. (Ordinarily, pressing the Enter key in a text box triggers the default button.) To make
sure a text box supports the Enter key, set AcceptsReturn to true. You can also set AcceptsTab
to allow the user to insert tabs. Otherwise, the Tab key moves to the next focusable control in
the tab sequence.

■Tip The TextBox class also includes a host of methods that let you move through the text content
programmatically in small or large steps. They include LineUp(), LineDown(), PageUp(), PageDown(),
ScrollToHome(), ScrollToEnd(), and ScrollToLine().

Sometimes, you’ll create a text box purely for the purpose of displaying text. In this case,
set the IsReadOnly property to true to prevent editing. This is preferable to disabling the text
box by setting IsEnabled to false because a disabled text box shows grayed-out text (which is
more difficult to read), does not support selection (or copying to the clipboard), and does not
support scrolling.

Text Selection
As you already know, you can select text in any text box by clicking and dragging with the
mouse or holding down Shift while you move through the text with the arrow keys. The

CHAPTER 7 ■ CLASSIC CONTROLS 203

9551CH07 2/8/08 1:45 PM Page 203

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

TextBox class also gives you the ability to determine or change the currently selected text pro-
grammatically, using the SelectionStart, SelectionLength, and SelectedText properties.

SelectionStart identifies the zero-based position where the selection begins. For example,
if you set this property to 10, the first selected character is the 11th character in the text box.
The Selection Length indicates the total number of selected characters. (A value of 0 indicates
no selected characters.) Finally, the SelectedText property allows you to quickly examine or
change the selected text in the text box. You can react to the selection being changed by han-
dling the SelectionChanged event. Figure 7-6 shows an example that reacts to this event and
displays the current selection information.

Figure 7-6. Selecting text

The TextBox class also includes one property that lets you control its selection behavior:
AutoWordSelection. If this is true, the text box selects entire words at a time as you drag
through the text.

Miscellaneous TextBox Features
The TextBox includes a few more specialized frills. The most interesting is the spelling-checker
feature, which underlines unrecognized words with a red squiggly line. The user can right-
click an unrecognized word and choose from a list of possibilities, as shown in Figure 7-7.

To turn on this spelling-checker functionality for the TextBox control, you simply need to
set the SpellCheck.IsEnabled dependency property, as shown here:

<TextBox SpellCheck.IsEnabled="True">...</TextBox>

The spelling checker is WPF-specific and doesn’t depend on any other software (such as
Office). The spelling checker determines what dictionary to use based on the input language
that’s configured for the keyboard. You can override this default by setting the Language prop-
erty of the TextBox, which is inherited from the FrameworkElement class, or you can set the
xml:lang attribute on the <TextBox> element.

CHAPTER 7 ■ CLASSIC CONTROLS204

9551CH07 2/8/08 1:45 PM Page 204

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 7-7. Spell-checking a text box

Unfortunately, the spelling checker is not customizable in any way. It contains only one
additional property (SpellingReform), which determines whether post-1990 spelling rule
changes are applied to French and German languages. Another useful feature of the TextBox
control is Undo, which allows the user to reverse recent changes. The Undo feature is available
programmatically (using the Undo() method), and it’s available using the Ctrl+Z keyboard
shortcut, as long as the CanUndo property has not been set to false.

■Tip When manipulating text in the text box programmatically, you can use the BeginChange() and
EndChange() methods to bracket a series of actions that the TextBox will treat as a single “block” of
changes. These actions can then be undone in a single step.

The PasswordBox
The PasswordBox looks like a TextBox, but it displays a string of circle symbols to mask the
characters it shows. (You can choose a different mask character by setting the PasswordChar
property.) Additionally, the PasswordBox does not support the clipboard, so you can’t copy the
text inside.

Compared to the TextBox class, the PasswordBox has a much simpler, stripped-down
interface. Much like the TextBox class, it provides a MaxLength property; a Clear(), a Paste()
and a SelectAll() method; and an event that fires when the text is changed (named Password-
Changed). But that’s it. Still, the most important difference between the TextBox and the
PasswordBox is on the inside. Although you can set text and read it as an ordinary string using
the Password property, internally the PasswordBox uses a System.Security.SecureString object
exclusively.

CHAPTER 7 ■ CLASSIC CONTROLS 205

9551CH07 2/8/08 1:45 PM Page 205

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

A SecureString is a text-only object much like the ordinary string. The difference is how
it’s stored in memory. A SecureString is stored in memory in an encrypted form. The key that’s
used to encrypt the string is generated randomly and stored in a portion of memory that’s
never written to disk. The end result is that even if your computer crashes, a malicious user
won’t be able to examine the paging file to retrieve the password data. At best, he’ll find the
encrypted form.

The SecureString class also includes on-demand disposal. When you call Secure-
String.Dispose(), the in-memory password data is overwritten. This guarantees that all
password information has been wiped out of memory and is no longer subject to any kind
of exploit. As you’d expect, the PasswordBox is conscientious enough to call Dispose() on the
SecureString that it stores internally when the control is destroyed.

List Controls
WPF includes many controls that wrap a collection of items, ranging from the simple ListBox
and ComboBox that you’ll examine here to more specialized controls such as the ListView, the
TreeView, and the ToolBar, which are covered in future chapters. All of these controls derive
from the ItemsControl class (which itself derives from Control).

The ItemsControl class fills in the basic plumbing that’s used by all list-based controls.
Notably, it gives you two ways to fill the list of items. The most straightforward approach is to
add them directly to the Items collection, using code or XAML. However, in WPF it’s more
common to use data binding. In this case, you set the ItemsSource property to the object that
has the collection of data items you want to display. (You’ll learn more about data binding
starting in Chapter 16.)

The class hierarchy that leads from ItemsControls is a bit tangled. One major branch is
the selectors, which includes the ListBox, the ComboBox, and the TabControl. These controls
derive from Selector and have properties that let you track down the currently selected item
(SelectedItem) or its position (SelectedIndex). Separate from these are controls that wrap lists
of items but don’t support selection in the same way. These include the classes for menus,
toolbars, and trees—all of which are ItemsControls but aren’t selectors.

In order to unlock most of the features of any ItemsControl, you’ll need to use data bind-
ing. This is true even if you aren’t fetching your data from a database or even an external data
source. WPF data binding is general enough to work with data in a variety of forms, including
custom data objects and collections. But you won’t consider the details of data binding just
yet. For now, you’ll take only a quick look at the ListBox and ComboBox.

The ListBox
The ListBox and ComboBox class represent two common staples of Windows design—
variable-length lists that allow the user to select an item.

CHAPTER 7 ■ CLASSIC CONTROLS206

9551CH07 2/8/08 1:45 PM Page 206

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The ListBox class also allows multiple selection if you set the SelectionMode property to Multiple or
Extended. In Multiple mode, you can select or deselect any item by clicking it. In Extended mode, you need to
hold down the Ctrl key to select additional items or the Shift key to select a range of items. In either type of
multiple-selection list, you use the SelectedItems collection instead of the SelectedItem property to get all
the selected items.

To add items to the ListBox, you can nest ListBoxItem elements inside the ListBox ele-
ment. For example, here’s a ListBox that contains a list of colors:

<ListBox>
<ListBoxItem>Green</ListBoxItem>
<ListBoxItem>Blue</ListBoxItem>
<ListBoxItem>Yellow</ListBoxItem>
<ListBoxItem>Red</ListBoxItem>

</ListBox>

As you’ll remember from Chapter 2, different controls treat their nested content in differ-
ent ways. The ListBox stores each nested object in its Items collection.

The ListBox is a remarkably flexible control. Not only can it hold ListBoxItem objects, but
it can also host any arbitrary element. This works because the ListBoxItem class derives from
ContentControl, which gives it the ability to hold a single piece of nested content. If that piece
of content is a UIElement-derived class, it will be rendered in the ListBox. If it’s some other
type of object, the ListBoxItem will call ToString() and display the resulting text.

For example, if you decided you want to create a list with images, you could create
markup like this:

<ListBox>
<ListBoxItem>
<Image Source="happyface.jpg"></Image>

</ListBoxItem>
<ListBoxItem>
<Image Source="happyface.jpg"></Image>

</ListBoxItem>
</ListBox>

The ListBox is actually intelligent enough to create the ListBoxItem objects it needs
implicitly. That means you can place your objects directly inside the ListBox element. Here’s
a more ambitious example that uses nested StackPanel objects to combine text and image
content:

<ListBox>
<StackPanel Orientation="Horizontal">
<Image Source="happyface.jpg" Width="30" Height="30"></Image>
<Label VerticalContentAlignment="Center">A happy face</Label>

</StackPanel>
<StackPanel Orientation="Horizontal">
<Image Source="redx.jpg" Width="30" Height="30"></Image>

CHAPTER 7 ■ CLASSIC CONTROLS 207

9551CH07 2/8/08 1:45 PM Page 207

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Label VerticalContentAlignment="Center">A warning sign</Label>
</StackPanel>
<StackPanel Orientation="Horizontal">
<Image Source="happyface.jpg" Width="30" Height="30"></Image>
<Label VerticalContentAlignment="Center">A happy face</Label>

</StackPanel>
</ListBox>

In this example, the StackPanel becomes the item that’s wrapped by the ListBoxItem. This
markup creates the rich list shown in Figure 7-8.

Figure 7-8. A list of images

■Note One flaw in the current design is that the text color doesn’t change when the item is selected. This
isn’t ideal because it’s difficult to read the black text with a blue background. To solve this problem, you need
to use a data template, as described in Chapter 17.

This ability to nest arbitrary elements inside list box items allows you to create a variety of
list-based controls without needing to use other classes. For example, the Windows Forms
toolkit includes a CheckedListBox class that’s displayed as a list with a check box next to every
item. No such specialized class is required in WPF because you can quickly build one using
the standard ListBox:

<ListBox Name="lst" SelectionChanged="lst_SelectionChanged"
CheckBox.Click="lst_SelectionChanged">
<CheckBox Margin="3">Option 1</CheckBox>
<CheckBox Margin="3">Option 2</CheckBox>

</ListBox>

CHAPTER 7 ■ CLASSIC CONTROLS208

9551CH07 2/8/08 1:45 PM Page 208

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

There’s one caveat to be aware of when you use a list with different elements inside. When
you read the SelectedItem value (and the SelectedItems and Items collections), you won’t see
ListBoxItem objects—instead, you’ll see whatever objects you placed in the list. In the
CheckedListBox example, that means SelectedItem provides a CheckBox object.

For example, here’s some code that reacts when the SelectionChanged event fires. It then
gets the currently selected CheckBox and displays whether that item has been checked:

private void lst_SelectionChanged(object sender, SelectionChangedEventArgs e)
{

if (lst.SelectedItem == null) return;
txtSelection.Text = String.Format(
"You chose item at position {0}.\r\nChecked state is {1}.",
lst.SelectedIndex,
((CheckBox)lst.SelectedItem).IsChecked);

}

■Tip If you want to find the current selection, you can read it directly from the SelectedItem or
SelectedItems property, as shown here. If you want to determine what item (if any) was unselected, you
can use the RemovedItems property of the SelectionChangedEventArgs object. Similarly, the AddedItems
property tells you what items were added to the selection. In single-selection mode, one item is always
added and one item is always removed whenever the selection changes. In multiple or extended mode,
this isn’t necessarily the case.

In the following code snippet, similar code loops through the collection of items to deter-
mine which ones are checked. (You could write similar code that loops through the collection
of selected items in a multiple-selection list with check boxes.)

private void cmd_ExamineAllItems(object sender, RoutedEventArgs e)
{

StringBuilder sb = new StringBuilder();
foreach (CheckBox item in lst.Items)
{

if (item.IsChecked == true)
{

sb.Append(item.Content);
sb.Append(" is checked.");
sb.Append("\r\n");

}
}
txtSelection.Text = sb.ToString();

}

Figure 7-9 shows the list box that uses this code.

CHAPTER 7 ■ CLASSIC CONTROLS 209

9551CH07 2/8/08 1:45 PM Page 209

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 7-9. A check box list

When manually placing items in a list, it’s up to you whether you want to place the items
in directly or explicitly wrap each one in a ListBoxItem object. The second approach is often
cleaner, albeit more tedious. The most important consideration is to be consistent. For example,
if you place StackPanel objects in your list, the ListBox.SelectedItem object will be a StackPanel.
If you place StackPanel objects wrapped by ListBoxItem objects, the ListBox.SelectedItem object
will be a ListBoxItem, so code accordingly.

The ListBoxItem offers a little bit of extra functionality from what you get with directly
nested objects. Namely, it defines an IsSelected property that you can read (or set) and a
Selected and Unselected event that tells you when that item is highlighted. However, you can
get similar functionality using the members of the ListBox class, such as the SelectedItem (or
SelectedItems) property, and the SelectionChanged event.

Interestingly, there’s a technique to retrieve a ListBoxItem wrapper for a specific object
when you use the nested object approach. The trick is the often overlooked Container-
FromElement() method. Here’s the code that checks whether the first item is selected in a list
using this technique:

ListBoxItem item = (ListBoxItem)lst.ContainerFromElement(
(DependencyObject)lst.SelectedItems[0]);

MessageBox.Show("IsSelected: " + item.IsSelected.ToString());

The ComboBox
The ComboBox is similar to the ListBox control. It holds a collection of ComboBoxItem
objects, which are created either implicitly or explicitly. As with the ListBoxItem, the
ComboBoxItem is a content control that can contain any nested element.

CHAPTER 7 ■ CLASSIC CONTROLS210

9551CH07 2/8/08 1:45 PM Page 210

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The key difference between the ComboBox and ListBox classes is the way they render
themselves in a window. The ComboBox control uses a drop-down list, which means only one
item can be selected at a time.

If you want to allow the user to type in text in the combo box to select an item, you must
set the IsEditable property to true, and you must make sure you are storing ordinary text-only
ComboBoxItem objects or an object that provides a meaningful ToString() representation. For
example, if you fill an editable combo box with Image objects, the text that appears in the
upper portion is simply the fully qualified Image class name, which isn’t much use.

One limitation of the ComboBox is the way it sizes itself when you use automatic sizing.
The ComboBox widens itself to fit its content, which means that it changes size as you move
from one item to the next. Unfortunately, there’s no easy way to tell the ComboBox to take the
size of its largest contained item. Instead, you may need to supply a hard-coded value for the
Width property, which isn’t ideal.

Range-Based Controls
WPF includes three controls that use the concept of a range. These controls take a numeric
value that falls in between a specific minimum and maximum value. These controls—
ScrollBar, ProgressBar, and Slider—all derive from the RangeBase class (which itself derives
from the Control class). But although they share an abstraction (the range), they work quite
differently.

The RangeBase class defines the properties shown in Table 7-4.

Table 7-4. Properties of the RangeBase Class

Name Description

Value This is the current value of the control (which must fall between the minimum
and maximum). By default, it starts at 0. Contrary to what you might expect,
Value isn’t an integer—it’s a double, so it accepts fractional values. You can react
to the ValueChanged event if you want to be notified when the value is changed.

Maximum This is the upper limit (the largest allowed value).

Minimum This is the lower limit (the smallest allowed value).

SmallChange This is the amount the Value property is adjusted up or down for a “small
change.” The meaning of a small change depends on the control (and may not be
used at all). For the ScrollBar and Slider, this is the amount the value changes
when you use the arrow keys. For the ScrollBar, you can also use the arrow
buttons at either end of the bar.

LargeChange This is the amount the Value property is adjusted up or down for a “large
change.” The meaning of a large change depends on the control (and may not be
used at all). For the ScrollBar and Slider, this is the amount the value changes
when you use the Page Up and Page Down keys or when you click the bar on
either side of the thumb (which indicates the current position).

Ordinarily, there’s no need to use the ScrollBar control directly. The higher-level
ScrollViewer control, which wraps two ScrollBar controls, is typically much more useful.
(The ScrollViewer was covered in Chapter 5.) However, the Slider and ProgressBar are more
valuable on their own.

CHAPTER 7 ■ CLASSIC CONTROLS 211

9551CH07 2/8/08 1:45 PM Page 211

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Slider
The Slider is a specialized control that’s occasionally useful—for example, you might use it to
set numeric values in situations where the number itself isn’t particularly significant. For
example, it makes sense to set the volume in a media player by dragging the thumb in a slider
bar from side to side. The general position of the thumb indicates the relative loudness (nor-
mal, quiet, loud), but the underlying number has no meaning to the user.

The key Slider properties are defined in the RangeBase class. Along with these, you can
use all the properties listed in Table 7-5.

Table 7-5. Additional Properties in the Slider Class

Name Description

Orientation Switches between a vertical and a horizontal slider.

Delay and Interval Controls how fast the thumb moves along the track when you click and
hold down either side of the slider. Both are millisecond values. The
Delay is the time before the thumb moves one (small change) unit after
you click, and the Interval is the time before it moves again if you
continue holding the mouse button down.

TickPlacement Determines where the tick marks appear. (Tick marks are notches that
appear near the bar to help you visualize the scale.) By default, the
TickPlacement is set to None, and no tick marks appear. If you have a
horizontal slider, you can place the tick marks above (TopLeft) or below
(BottomRight) the track. With a vertical slider, you can place them on
the left (TopLeft) and right (BottomRight). (The TickPlacement names
are a bit confusing because two values cover four possibilities,
depending on the orientation of the slider.)

TickFrequency Sets the interval in between ticks, which determines how many ticks
appear. For example, you could place them every 5 numeric units,
every 10, and so on.

Ticks If you want to place ticks in specific, irregular positions, you can use the
Ticks collection. Simply add one number (as a double) to this collection
for each tick mark. For example, you could place ticks at the positions
1, 1.5, 2, and 10 on the scale by adding these numbers.

IsSnapToTickEnabled If true, when you move the slider, it automatically snaps into place,
jumping to the nearest tick mark. The default is false.

IsSelectionRangeEnabled If true, you can use a selection range to shade in a portion of the slider
bar. You set the position selection range using the SelectionStart and
SelectionEnd properties. The selection range has no intrinsic meaning,
but you can use it for whatever purpose makes sense. For example,
media players sometimes use a shaded background bar to indicate the
download progress for a media file.

Figure 7-10 compares Slider controls with different tick settings.

CHAPTER 7 ■ CLASSIC CONTROLS212

9551CH07 2/8/08 1:45 PM Page 212

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 7-10. Adding ticks to a slider

The ProgressBar
The ProgressBar indicates the progress of a long-running task. Unlike the slider, the Progress-
Bar isn’t user interactive. Instead, it’s up to your code to periodically increment the Value
property. (Technically speaking, WPF rules suggest the ProgressBar shouldn’t be a control
because it doesn’t respond to mouse actions or keyboard input.) You’ve already seen one
example with the ProgressBar in Chapter 3—a window that uses a background thread to com-
plete a task. The ProgressBar has no natural height of two or three device-independent units.
It’s up to you to set the Height property (or put it in the appropriate fixed-size container) if you
want to see a larger, more traditional bar.

One neat trick that you can perform with the ProgressBar is using it to show a long-
running status indicator, even if you don’t know how long the task will take. Interestingly
(and oddly), you do this by setting the IsIndeterminate property to true:

<ProgressBar Height="18" Width="200" IsIndeterminate="True"></ProgressBar>

When setting IsIndeterminate, you no longer use the Minimum, Maximum, and Value
properties. Instead, this ProgressBar shows a periodic green pulse that travels from left to
right, which is the universal Windows convention indicating that there’s work in progress. This
sort of indicator makes particular sense in an application’s status bar. For example, you could
use it to indicate that you’re contacting a remote server for information.

CHAPTER 7 ■ CLASSIC CONTROLS 213

9551CH07 2/8/08 1:45 PM Page 213

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Last Word
In this chapter, you toured the basic WPF controls. You considered several categories:

• Content controls that can contain nested elements, such as the Label, the Button, and
the ToolTip

• Text controls that can store ordinary text (the TextBox) or a password (the PasswordBox)

• List controls that contain a collection of items, such as the ListBox and the ComboBox

• Range-based controls that take a numeric value from a range, such as the Slider and the
ProgressBar

I’ll cover many more essential controls in the chapters to come. In the next two chapters,
you’ll take a look at the most important top-level controls in WPF controls—the Window and
the Page.

CHAPTER 7 ■ CLASSIC CONTROLS214

9551CH07 2/8/08 1:45 PM Page 214

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Windows

Windows are the basic ingredients in any desktop application—so basic that the operating
system is named after them. And although WPF has a model for creating navigation applica-
tions that divide tasks into separate pages, windows are still the dominant metaphor for
creating applications.

In this chapter, you’ll explore the Window class. If you’ve programmed with the Windows
Forms toolkit before, much of this material will seem familiar, because the Window class is
loosely modeled after the Form class. As a result, you might want to skim through this mate-
rial, paying attention to details that have changed significantly, such as nonrectangular
windows and the Vista-style task dialog box. You can then continue to the next chapter, which
tackles a different top-level container (the Page) and a different way to structure applications
(using web-style navigation).

The Window Class
As you learned in Chapter 5, the Window class derives from ContentControl. That means it
can contain a single child (usually a layout container such as the Grid control), and you can
paint the background with a brush by setting the Background property. You can also use the
BorderBrush and BorderThickness properties to add a border around your window, but this
border is added inside the window frame (around the edge of the client area). You can remove
the window frame altogether by setting the WindowStyle property to None, which allows you
to create a completely customized window, as you’ll see later in the “Nonrectangular Win-
dows” section.

■Note The client area is the surface inside the window boundaries. This is where you place your content.
The nonclient area includes the border and the title bar at the top of the window. The operating system
manages this area.

In addition, the Window class adds a small set of members that will be familiar to any
Windows programmer. The most obvious are the appearance-related properties that let you
change the way the nonclient portion of the window appears. Table 8-1 lists these members.

215

C H A P T E R 8

9551CH08 2/8/08 1:46 PM Page 215

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 8-1. Basic Properties of the Window Class

Name Description

AllowsTransparency If AllowsTransparency is set to true, the Window class allows other
windows to show through if the background is set to a transparent
color. If set to false (the default), the content behind the window never
shows through, and a transparent background is rendered as a black
background. This property allows you to create irregularly shaped
windows when it’s used in combination with a WindowStyle of None, as
you’ll see in the “Nonrectangular Windows” section.

Icon Is an ImageSource object that identifies the icon you want to use for
your window. Icons appear at the top left of a window (if it has one of
the standard border styles), in the taskbar (if ShowInTaskBar is true),
and in the selection window that’s shown when the user presses Alt+Tab
to navigate between running applications. Because these icons are
different sizes, your .ico file should include at least a 16✕16 pixel image
and a 32✕32 pixel image. In fact, the Vista icon standard (described at
http://www.axialis.com/tutorials/tutorial-vistaicons.html)
adds both a 48✕48 pixel image and a 256✕256 image, which can be
sized as needed for other purposes. If Icon is a null reference, the
window is given the same icon as the application (which you can set in
Visual Studio by double-clicking the Properties node in the Solution
Explorer and then choosing the Application tab). If this is omitted, WPF
will use a standard but unremarkable icon that shows a window.

Top and Left Sets the distance between the top-left corner of the window and the
top and left edges of the screen, in device-independent pixels. The
LocationChanged event fires when either of these details changes. If
the WindowStartupPosition property is set to Manual, you can set these
properties before the window appears to set its position. You can
always use these properties to move the position of a window after it
has appeared, no matter what value you use for WindowStartupPosition.

ResizeMode Takes a value from the ResizeMode enumeration that determines
whether the user can resize the window. This setting also affects the
visibility of the maximize and minimize boxes. Use NoResize to lock a
window up completely, CanMinimize to allow minimizing only,
CanResize to allow everything, or CanResizeWithGrip to add a visual
detail at the bottom-right corner of the window to show that the
window is resizable.

RestoreBounds Gets the bounds of the window. However, if the window is currently
maximized or minimized, this property provides the bounds that were
last used before the window was maximized or minimized. This is
extremely useful if you need to store the position and dimensions of a
window, as described later in this chapter.

ShowInTaskbar If set to true, the window appears in the taskbar and the Alt+Tab list.
Usually, you will set this to true only for your application’s main
window.

SizeToContent Allows you to create a window that enlarges itself automatically. This
property takes a value from the SizeToContent enumeration. Use
Manual to disable automatic sizing, or use Height, Width, or
WidthAndHeight to allow the window to expand in different
dimensions to accommodate dynamic content. When using
SizeToContent, the window may be sized larger than the bounds
of the screen.

Title The caption that appears in the title bar for the window (and in the
taskbar).

CHAPTER 8 ■ WINDOWS216

9551CH08 2/8/08 1:46 PM Page 216

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.axialis.com/tutorials/tutorial-vistaicons.html

Name Description

Topmost When set to true, this window is always displayed on top of every other
window in your application (unless these other windows also have
TopMost set to true). This is a useful setting for palettes that need to
“float” above other windows.

WindowStartupLocation Takes a value from the WindowStartupLocation enumeration. Use
Manual to position a window exactly with the Left and Top properties,
CenterScreen to place the window in the center of the screen, or
CenterOwner to center the window with respect to the window that
launched it. When showing a modeless window with CenterOwner,
make sure you set the Owner property of the new window before you
show it.

WindowState Takes a value from the WindowState enumeration. Informs you (and
allows you to change) whether the window is currently maximized,
minimized, or in its normal state. The StateChanged event fires when
this property changes.

WindowStyle Takes a value from the WindowStyle enumeration, which determines
the border for the window. Your options include SingleBorderWindow
(the default), ThreeDBorderWindow (which is rendered the same on
Windows Vista and almost the same on Windows XP), ToolWindow (a
thin border good for floating tool windows, with no maximize or
minimize buttons), and None (a very thin raised border with no title
bar region). Figure 8-1 shows the difference.

a) Windows Vista

b) Windows XP

Figure 8-1. Different values for WindowStyle: (a) Windows Vista, (b) Windows XP

CHAPTER 8 ■ WINDOWS 217

9551CH08 2/8/08 1:46 PM Page 217

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You’ve already learned about the lifetime events that fire when a window is created, acti-
vated, and unloaded (in Chapter 6). In addition, the Window class includes LocationChanged
and WindowStateChanged events, which fire when its position and WindowState change,
respectively.

Showing a Window
To display a window, you need to create an instance of the Window class and use the Show() or
ShowDialog() method.

The ShowDialog() method shows a modal window. Modal windows stop the user from
accessing the parent window by blocking any mouse or keyboard input to it, until the modal
window is closed. In addition, the ShowDialog() method doesn’t return until the modal win-
dow is closed, so any code that you’ve placed after the ShowDialog() call is put on hold.
(However, that doesn’t mean other code can’t run—for example, if you have a timer running,
its event handler will still run.) A common pattern in code is to show a modal window, wait
until it’s closed, and then act on its data.

Here’s an example that uses the ShowDialog() method:

TaskWindow winTask = new TaskWindow();
winTask.ShowDialog();
// Execution reaches this point after winTask is closed.

The Show() method shows a modeless window, which doesn’t block the user from access-
ing any other window. The Show() method also returns immediately after the window is
shown, so subsequent code statements are executed right away. You can create and show sev-
eral modeless windows, and the user can interact with them all at once. When using modeless
windows, synchronization code is sometimes required to make sure that changes in one win-
dow update the information in another window to prevent a user from working with invalid
information.

Here’s an example that uses the Show() method:

MainWindow winMain = new MainWindow();
winMain.Show();
// Execution reaches this point immediately after winMain is shown.

Modal windows are ideal for presenting the user with a choice that needs to be made
before an operation can continue. For example, consider Microsoft Word, which shows its
Options and Print windows modally, forcing you to make a decision before continuing. On
the other hand, the windows used to search for text or check the spelling in a document are
shown modelessly, allowing the user to edit text in the main document window while per-
forming the task.

Closing a window is equally easy, using the Close() method. Alternatively, you can hide
a window from view using Hide() or by setting the Visibility property to Hidden. Either way,
the window remains open and available to your code. Generally, it only makes sense to hide
modeless windows. That’s because if you hide a modal window, your code remains stalled
until the window is closed, and the user can’t close an invisible window.

CHAPTER 8 ■ WINDOWS218

9551CH08 2/8/08 1:46 PM Page 218

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Positioning a Window
Usually, you won’t need to position a window exactly on the screen. You’ll simply use Center-
Owner for the WindowState and forget about the whole issue. In other, less common cases,
you’ll use Manual for the Windows state and set an exact position using the Left and Right
properties.

Sometimes you need to take a little more care in choosing an appropriate location and
size for your window. For example, you could accidentally create a window that is too large to
be accommodated on a low-resolution display. If you are working with a single-window appli-
cation, the best solution is to create a resizable window. If you are using an application with
several floating windows, the answer is not as simple.

You could just restrict your window positions to locations that are supported on even the
smallest monitors, but that’s likely to frustrate higher-end users (who have purchased better
monitors for the express purpose of fitting more information on their screen at a time). In this
case, you usually want to make a runtime decision about the best window location. To do this,
you need to retrieve some basic information about the available screen real estate using the
System.Windows.SystemParameters class.

The SystemParameters class consists of a huge list of static properties that return
information about various system settings. For example, you can use the SystemParameters
class to determine whether the user has enabled hot tracking and the “drag full windows”
option, among many others. With windows, the SystemParameters class is particularly
useful because it provides two properties that give the dimensions of the current screen:
FullPrimaryScreenHeight and FullPrimaryScreenWidth. Both are quite straightforward,
as this bit of code (which centers the window at runtime) demonstrates:

double screeHeight = SystemParameters.FullPrimaryScreenHeight;
double screeWidth = SystemParameters.FullPrimaryScreenWidth;
this.Top = (screenHeight - this.Height) / 2;
this.Left = (screenWidth - this.Width) / 2;

Although this code is equivalent to using CenterScreen for the WindowState property of
the window, it gives you the flexibility to implement different positioning logic and to run this
logic at the appropriate time.

An even better choice is to use the SystemParameters.WorkArea rectangle to center the
window in the available screen area. The work area measurement doesn’t include the area
where the taskbar is docked (and any other “bands” that are docked to the desktop).

double workHeight = SystemParameters.WorkArea.Height;
double workWidth = SystemParameters.WorkArea.Width;
this.Top = (workHeight - this.Height) / 2;
this.Left = (workWidth - this.Width) / 2;

CHAPTER 8 ■ WINDOWS 219

9551CH08 2/8/08 1:46 PM Page 219

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Both code examples have one minor drawback. When the Top property is set on a window that’s
already visible, the window is moved and refreshed immediately. The same process happens when the Left
property is set in the following line of code. As a result, keen-eyed users may see the window move twice.
Unfortunately, the Window class does not provide a method that allows you to set both position properties at
once. The only solution is to position the window after you create it but before you make it visible by calling
Show() or ShowDialog().

Saving and Restoring Window Location
A common requirement for a window is to remember its last location. This information can be
stored in a user-specific configuration file or in the Windows registry.

If you wanted to store the position of an important window in a user-specific configura-
tion file, you would begin by double-clicking the Properties node in the Solution Explorer and
choosing the Settings section. Then, add a user-scoped setting with a data type of System.
Windows.Rect, as shown in Figure 8-2.

Figure 8-2. A property for storing a window’s position and size

CHAPTER 8 ■ WINDOWS220

9551CH08 2/8/08 1:46 PM Page 220

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

With this setting in place, it’s easy to create code that automatically stores information
about a window’s size and position, as shown here:

Properties.Settings.Default.WindowPosition = win.RestoreBounds;
Properties.Settings.Default.Save();

Notice that this code uses the RestoreBounds property, which gives the correct dimen-
sions (the last nonmaximized, nonminimized size) even if the window is currently maximized
or minimized. (This handy feature wasn’t directly available in Windows Forms, and it necessi-
tated the use of the GetWindowPlacement() unmanaged API function.)

It’s just as easy to retrieve this information when you need it:

try
{

Rect bounds = Properties.Settings.Default.WindowPosition;
win.Top = bounds.Top;
win.Left = bounds.Left;

// Restore the size only for a manually sized
// window.
if (win.SizeToContent == SizeToContent.Manual)
{

win.Width = bounds.Width;
win.Height = bounds.Height;

}
}
catch
{

MessageBox.Show("No settings stored.");
}

The only limitation to this approach is that you need to create a separate property for
each window that you want to store. If you need to store the position of many different win-
dows, you might want to design a more flexible system. For example, the following helper
class stores a position for any window you pass in, using a registry key that incorporates the
name of that window. (You could use additional identifying information if you want to store
the settings for several windows that will have the same name.)

public class WindowPositionHelper
{

public static string RegPath = @"Software\MyApp\WindowBounds\";

public static void SaveSize(Window win)
{

// Create or retrieve a reference to a key where the settings
// will be stored.
RegistryKey key;
key = Registry.CurrentUser.CreateSubKey(RegPath + win.Name);

CHAPTER 8 ■ WINDOWS 221

9551CH08 2/8/08 1:46 PM Page 221

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

key.SetValue("Bounds", win.RestoreBounds.ToString());
}

public static void SetSize(Window win)
{

RegistryKey key;
key = Registry.CurrentUser.OpenSubKey(RegPath + win.Name);

if (key != null)
{

Rect bounds = Rect.Parse(key.GetValue("Bounds").ToString());
win.Top = bounds.Top;
win.Left = bounds.Left;

// Restore the size only for a manually sized
// window.
if (win.SizeToContent == SizeToContent.Manual)
{

win.Width = bounds.Width;
win.Height = bounds.Height;

}
}

}
}

To use this class in a window, you call the SaveSize() method when the window is closing
and call the SetSize() method when the window is first opened. In each case, you pass a refer-
ence to the window you want the helper class to inspect. Note that in this example, each
window must have a different value for its Name property.

Window Interaction
In Chapter 3, you considered the WPF application model, and you took your first look at how
windows interact. As you saw there, the Application class provides you with two tools for get-
ting access to other windows: the MainWindow and Windows properties. If you want to track
windows in a more customized way—for example, by keeping track of instances of a certain
window class, which might represent documents—you can add your own static properties to
the Application class.

Of course, getting a reference to another window is only half the battle. You also need to
decide how to communicate. As a general rule, you should minimize the need for window
interactions, because they complicate code unnecessarily. If you do need to modify a control
in one window based on an action in another window, create a dedicated method in the target
window. That makes sure the dependency is well identified, and it adds another layer of indi-
rection, making it easier to accommodate changes to the window’s interface.

CHAPTER 8 ■ WINDOWS222

9551CH08 2/8/08 1:46 PM Page 222

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip If the two windows have a complex interaction, are developed or deployed separately, or are likely to
change, you can consider going one step further and formalize their interaction by creating an interface with
the public methods and implementing that interface in your window class.

Figures 8-3 and 8-4 show two examples for implementing this pattern. Figure 8-3 shows
a window that triggers a second window to refresh its data in response to a button click. This
window does not directly attempt to modify the second window’s user interface; instead, it
relies on a custom intermediate method called DoUpdate().

Figure 8-3. A single window interaction

The second example, Figure 8-4, shows a case where more than one window needs to be
updated. In this case, the acting window relies on a higher-level application method, which
calls the required window update methods (perhaps by iterating through a collection of win-
dows). This approach is better because it works at a higher level. In the approach shown
Figure 8-3, the acting window doesn’t need to know anything specific about the controls in
the receiving window. The approach in Figure 8-4 goes one step further—the acting window
doesn’t need to know anything at all about the receiving window class.

Figure 8-4. A one-to-many window interaction

CHAPTER 8 ■ WINDOWS 223

9551CH08 2/8/08 1:46 PM Page 223

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip When interacting between windows, the Window.Activate() method often comes in handy. It transfers
the activation to the window you want. (You can also use the Window.IsActive property to test whether a win-
dow is currently the one and only active window.)

You can do one step further in decoupling this example. Rather than having the Applica-
tion class trigger a method in the various windows, it could simply fire an event and allow the
windows to choose how to respond to that event.

■Note WPF can help you abstract your application logic through its support for commands, which are
application-specific tasks that can be triggered any way you like. Chapter 10 has the full story.

The examples in Figure 8-3 and Figure 8-4 show how separate windows (usually mode-
less) can trigger actions in one another. But certain other patterns for window interaction are
simpler (such as the dialog model) and supplement this model (such as window ownership).
You’ll consider these features in the following sections.

Window Ownership
.NET allows a window to “own” other windows. Owned windows are useful for floating toolbox
and command windows. One example of an owned window is the Find and Replace window
in Microsoft Word. When an owner window is minimized, the owned windows are also mini-
mized automatically. When an owned window overlaps its owner, it is always displayed on top.

To support window ownership, the Window class adds two properties. Owner is a reference
that points to the window that owns the current window (if there is one). OwnedWindows is a
collection of all the windows that the current window owns (if any).

Setting up ownership is simply a matter of setting the Owner property, as shown here:

// Create a new window.
ToolWindow winTool = new ToolWindow();

// Designate the current window as the owner.
winTool.Owner = this;

// Show the owned window.
winTool.Show();

Owned windows are always shown modelessly. To remove an owned window, set the
Owner property to null.

■Note WPF does not include a system for building multiple document interface (MDI) applications. If you
want more sophisticated window management, it’s up to you to build it (or buy a third-party component).

CHAPTER 8 ■ WINDOWS224

9551CH08 2/8/08 1:46 PM Page 224

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

An owned window can own another window, which can own another window, and so
forth (although it’s questionable whether this design has any practical use). The only limita-
tions are that a window cannot own itself and two windows cannot own each other.

The Dialog Model
Often, when you show a window modally, you are offering the user some sort of choice. The
code that displays the window waits for the result of that choice and then acts on it. This
design is known as the dialog model. The window you show modally is the dialog box.

You can easily accommodate this design pattern by creating some sort of public property
in your dialog window. When the user makes a selection in the dialog window, you would set
this property and then close the window. The code that shows the dialog box can then check
for this property and determine what to do next based on its value. (Remember, even when a
window is closed, the window object, and all its control information, still exists until the vari-
able referencing it goes out of scope.)

Fortunately, some of this infrastructure is already hardwired into the Window class. Every
window includes a ready-made DialogResult property, which can take a true, false, or null
value. Usually, true indicates the user chose to go forward (for example, clicked OK), while
false indicates that the user canceled the operation.

Best of all, once you set the dialog result, it’s returned to calling code as the return value of
the ShowDialog() method. That means you can create, show, and consider the result of a dia-
log box window with this lean code:

DialogWindow dialog = new DialogWindow();
if (dialog.ShowDialog() == true)
{

// The user accepted the action. Full speed ahead.
}
else
{

// The user canceled the action.
}

■Note Using the DialogResult property doesn’t prevent you from adding custom properties to your window.
For example, it’s perfectly reasonable to use the DialogResult property to inform the calling code whether an
action was accepted or canceled and to provide other important details through custom properties. If the
calling code finds a DialogResult of true, it can then check these other properties to get the information it
needs.

You can take advantage of another shortcut. Rather than setting the DialogResult by
hand after the user clicks a button, you can designate a button as the accept button (by setting
IsDefault to true). Clicking that button automatically sets the DialogResult of the window to
true. Similarly, you can designate a button as the cancel button (by setting IsCancel to true),
in which case clicking it will set the DialogResult to Cancel. (You learned about IsDefault and
IsCancel when you considered buttons in Chapter 7.)

CHAPTER 8 ■ WINDOWS 225

9551CH08 2/8/08 1:46 PM Page 225

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The dialog model in WPF is different from that of Windows Forms. Buttons do not provide a
DialogResult property, so you are limited to creating default and cancel buttons. The DialogResult is more
limited—it can be only true, false, or null (which it is initially). Also, clicking a default or cancel button does
not automatically close the window—you need to write the code to accomplish that.

Common Dialog Boxes
The Windows operating system includes many built-in dialog boxes that you can access
through the Windows API. WPF provides wrappers for just a few of these.

■Note There are good reasons that WPF doesn’t include wrappers for all the Windows APIs. One of the
goals of WPF is to decouple it from the Windows API so it’s usable in other environments (like a browser) or
portable to other platforms. Also, many of the built-in dialog boxes are showing their age and shouldn’t be
the first choice for modern applications. Windows Vista also discourages dialog boxes in favor of task-based
panes and navigation.

The most obvious of these is the System.Windows.MessageBox class, which exposes a
static Show() method. You can use this code to display a standard Windows message box.
Here’s the most common overload:

MessageBox.Show("You must enter a name.", "Name Entry Error",
MessageBoxButton.OK, MessageBoxImage.Exclamation) ;

The MessageBoxButton enumeration allows you to choose the buttons that are shown in
the message box. Your options include OK, OKCancel, YesNo, and YesNoCancel. (The less user-
friendly AbortRetryIgnore isn’t supported.) The MessageBoxImage enumeration allows you to
choose the message box icon (Information, Exclamation, Error, Hand, Question, Stop, and so
on).

Along with the MessageBox class, WPF includes specialized printing support that uses
the PrintDialog (which is described in Chapter 20) and, in the Microsoft.Win32 namespace,
OpenFileDialog and SaveFileDialog classes.

The OpenFileDialog and SaveFileDialog classes acquire some additional features (some
which are inherited from the FileDialog class). Both support a filter string, which sets the
allowed file extensions. The OpenFileDialog also provides properties that let you validate the
user’s selection (CheckFileExists) and allow multiple files to be selected (Multiselect). Here’s an
example that shows an OpenFileDialog and displays the selected files in a list box after the
dialog box is closed:

OpenFileDialog myDialog = new OpenFileDialog();

myDialog.Filter = "Image Files(*.BMP;*.JPG;*.GIF)|*.BMP;*.JPG;*.GIF" +
"|All files (*.*)|*.*";

myDialog.CheckFileExists = true;
myDialog.Multiselect = true;

CHAPTER 8 ■ WINDOWS226

9551CH08 2/8/08 1:46 PM Page 226

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

if (myDialog.ShowDialog() == true)
{

lstFiles.Items.Clear();
foreach (string file in myDialog.FileNames)
{

lstFiles.Items.Add(file);
}

}

You won’t find any color pickers, font pickers, or folder browsers (although you can get
these ingredients using the System.Windows.Forms classes from .NET 2.0).

Nonrectangular Windows
Irregularly shaped windows are often the trademark of cutting-edge consumer applications
such as photo editors, movie makers, and MP3 players, and they’re likely to be even more
common with WPF applications.

Creating a basic shaped window in WPF is easy. However, creating a slick, professional-
looking shaped window takes more work—and, most likely, a talented graphic designer to
create the outlines and design the background art.

A Simple Shaped Window
The basic technique for creating a shaped window is to follow these steps:

1. Set the Window.AllowsTransparency property to true.

2. Set the Window.WindowStyle property to None to hide the nonclient region of the win-
dow (the blue border). If you don’t, you’ll get an InvalidOperationException when you
attempt to show the window.

3. Set the Background to be transparent (using the color Transparent, which has an alpha
value of 0). Or, set the Background to use an image that has transparent areas (regions
that are painted with an alpha value of 0).

These three steps effectively remove the standard window appearance (known to WPF
experts as the window chrome). To get the shaped window effect, you now need to supply
some nontransparent content that has the shape you want. You have a number of options:

• Supply background art, using a file format that supports transparency. For example,
you can use a PNG file to supply the background of a window. This is a simple, straight-
forward approach, and it’s suitable if you’re working with designers who have no
knowledge of XAML. However, because the window will be rendered with more pixels at
higher system DPIs, the background graphic may become blurry. This is also a problem
if you choose to allow the user to resize the window.

• Use the shape-drawing features in WPF to create your background with vector content.
This approach ensures that you won’t lose quality regardless of the window size and
system DPI setting. However, you’ll probably want to use a XAML-capable design tool.
(Expression Blend is best if you want Visual Studio integration, but even traditional vec-
tor drawing may offer XAML export features through a plug-in. One example is Adobe
Illustrator with the plug-in at http://www.mikeswanson.com/xamlexport.)

CHAPTER 8 ■ WINDOWS 227

9551CH08 2/8/08 1:46 PM Page 227

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.mikeswanson.com/xamlexport

• Use a simpler WPF element that has the shape you want. For example, you can create a
nicely rounded window edge with the Border element. This gives you a modern Office-
style window appearance with no design work.

Here’s a bare-bones transparent window that uses the first approach and supplies a PNG
file with transparent regions:

<Window x:Class="Windows.TransparentBackground" ...
WindowStyle="None" AllowsTransparency="True"
>

<Window.Background>
<ImageBrush ImageSource="squares.png"></ImageBrush>

</Window.Background>
<Grid>
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Button Margin="20">A Sample Button</Button>
<Button Margin="20" Grid.Row="2">Another Button</Button>

</Grid>
</Window>

Figure 8-5 shows this window with a Notepad window underneath. Not only does the
shaped window (which consists of a circle and square) leave gaps through which you can see
the content underneath, some buttons drift off the image and into the transparent region,
which means they appear to be floating without a window.

If you’ve programmed with Windows Forms before, you’ll probably notice that shaped
windows in WPF have cleaner edges, especially around curves. That’s because WPF is able to
perform antialiasing between the background of your window and the content underneath
to create the smoothened edge.

Figure 8-6 shows another, subtler shaped window. This window uses a rounded Border
element to give an easy yet distinctive look. The layout is also simplified, because there’s no
way your content could accidentally leak outside the border, and the border can be easily
resized with no Viewbox required.

CHAPTER 8 ■ WINDOWS228

9551CH08 2/8/08 1:46 PM Page 228

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 8-5. A shaped window that uses a background image

Figure 8-6. A shaped window that uses a Border

This window holds a Grid with three rows, which are used for the title bar, the footer bar,
and all the content in between. The content row holds a second Grid, which sets a different
background and holds any other elements you want (currently, it holds just a single TextBlock).

CHAPTER 8 ■ WINDOWS 229

9551CH08 2/8/08 1:46 PM Page 229

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the markup that creates the window:

<Window x:Class="Windows.ModernWindow" ...
AllowsTransparency="True" WindowStyle="None"
Background="Transparent"
>

<Border Width="Auto" Height="Auto" Name="windowFrame"
BorderBrush="#395984" BorderThickness="1"
CornerRadius="0,20,30,40" >
<Border.Background>
<LinearGradientBrush>
<GradientBrush.GradientStops>
<GradientStopCollection>
<GradientStop Color="#E7EBF7" Offset="0.0"/>
<GradientStop Color="#CEE3FF" Offset="0.5"/>
</GradientStopCollection>

</GradientBrush.GradientStops>
</LinearGradientBrush>

</Border.Background>

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>

<TextBlock Text="Title Bar" Margin="1" Padding="5"></TextBlock>

<Grid Grid.Row="1" Background="#B5CBEF">
<TextBlock VerticalAlignment="Center" HorizontalAlignment="Center"
Foreground="White" FontSize="20">Content Goes Here</TextBlock>

</Grid>

<TextBlock Grid.Row="2" Text="Footer" Margin="1,10,1,1" Padding="5"
HorizontalAlignment="Center"></TextBlock>

</Grid>
</Border>

</Window>

To complete this window, you’d want to create buttons that mimic the standard maxi-
mize, minimize, and close buttons in the top-right corner. If you wanted to reuse the window,
you’d need to find a way to separate the window style from the window content. The ideal
approach is to use a custom control template for your window so that you can apply your
customized window look to any window you want. You’ll see an example that adapts the
window shown here into a reusable template in Chapter 15.

CHAPTER 8 ■ WINDOWS230

9551CH08 2/8/08 1:46 PM Page 230

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

A Transparent Window with Shaped Content
In most cases, WPF windows won’t use fixed graphics to create shaped windows. Instead,
they’ll use a completely transparent background and then place shaped content on this back-
ground. (You can see how this works by looking at the button in Figure 8-5, which is hovering
over a completely transparent region.)

The advantage of this approach is that it’s more modular. You can assemble a window out
of many separate components, all of which are first-class WPF elements. But more important,
this allows you to take advantage of other WPF features to build truly dynamic user interfaces.
For example, you might assemble shaped content that can be resized or use animation to pro-
duce perpetually running effects right in your window. This isn’t as easy if your graphics are
provided in a single static file.

Figure 8-7 shows an example. Here, the window contains a Grid with one cell. Two ele-
ments share that cell. The first element is a Path that draws the shaped window border and
gives it a gradient fill. The other element is a layout container that holds the content for the
window, which overlays the Path. In this case, the layout container is a StackPanel, but you
could also use something else (such as another Grid or a Canvas for coordinate-based
absolute positioning). This StackPanel holds the close button (with the familiar X icon) and
the text.

Figure 8-7. A shaped window that uses a Path

■Note Even though Figure 8-5 and Figure 8-6 show different examples, they are interchangeable. In other
words, you could create either one using the background-based approach or the shape-drawing approach.
However, the shape-drawing approach gives you more abilities if you want to dynamically change the shape
later and gives you the best quality if you need to resize the window.

The key piece of this example is the Path element that creates the backgrounds. It’s a sim-
ple vector-based shape that’s composed out of a series of lines and arcs. You’ll learn more
about the Path element and other WPF shape classes in Chapters 13 and 14. Here’s the com-
plete markup for the Path:

<Path Stroke="DarkGray" StrokeThickness="2">
<Path.Fill>
<LinearGradientBrush StartPoint="0.2,0" EndPoint="0.8,1" >
<LinearGradientBrush.GradientStops>

CHAPTER 8 ■ WINDOWS 231

9551CH08 2/8/08 1:46 PM Page 231

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<GradientStop Color="White" Offset="0"></GradientStop>
<GradientStop Color="White" Offset="0.45"></GradientStop>
<GradientStop Color="LightBlue" Offset="0.9"></GradientStop>
<GradientStop Color="Gray" Offset="1"></GradientStop>

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Path.Fill>

<Path.Data>
<PathGeometry>
<PathGeometry.Figures>
<PathFigure StartPoint="20,0" IsClosed="True">
<LineSegment Point="140,0"/>
<ArcSegment Point="160,20" Size="20,20" SweepDirection="Clockwise"/>
<LineSegment Point="160,60"/>
<ArcSegment Point="140,80" Size="20,20" SweepDirection="Clockwise"/>
<LineSegment Point="70,80"/>
<LineSegment Point="70,130"/>
<LineSegment Point="40,80"/>
<LineSegment Point="20,80"/>
<ArcSegment Point="0,60" Size="20,20" SweepDirection="Clockwise"/>
<LineSegment Point="0,20"/>
<ArcSegment Point="20,0" Size="20,20" SweepDirection="Clockwise"/>

</PathFigure>
</PathGeometry.Figures>

</PathGeometry>
</Path.Data>

</Path>

Currently, the Path is fixed in size (as is the window), although you could make it resizable
by hosting it in the Viewbox container that you learned about in Chapter 5. You could also
improve this example by giving the close button a more authentic appearance—probably a
vector X icon that’s drawn on a red surface. Although you could use a separate Path element to
represent a button and handle its mouse events, it’s better to change the standard Button con-
trol using a control template (as described in Chapter 15). You can then make the Path that
draws the X icon part of your customized button.

Moving Shaped Windows
One limitation of shaped forms is that they omit the nonclient title bar portion, which allows
the user to easily drag the window around the desktop. In Windows Forms, this was a bit of a
chore—you either had to react to mouse events such as MouseDown, MouseUp, and Mouse-
Move and move the window manually when the user clicks and drags or had to override the
WndProc() method and handle the low-level WM_NCHITTEST message. WPF makes the same
task much easier. You can initiate window dragging mode at any time by calling the
Window.DragMove() method.

So, to allow the user to drag the shaped form you saw in the previous examples, you sim-
ply need to handle the MouseLeftButtonDown event for the window (or an element on the
window, which will then play the same role as the title bar):

CHAPTER 8 ■ WINDOWS232

9551CH08 2/8/08 1:46 PM Page 232

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<TextBlock Text="Title Bar" Margin="1" Padding="5"
MouseLeftButtonDown="titleBar_MouseLeftButtonDown"></TextBlock>

In your event handler, you need only a single line of code:

private void titleBar_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)

{
this.DragMove();

}

Now the window follows the mouse around the screen, until the user releases the mouse
button.

Resizing Shaped Windows
Resizing a shaped window isn’t as easy. If your window is roughly rectangular in shape,
the easiest approach is to add a sizing grip to the bottom-right corner by setting the
Window.ResizeMode property to CanResizeWithGrip. However, the sizing grip placement
assumes that your window is rectangular. For example, if you’re creating a rounded window
effect using a Border object, as shown earlier in Figure 8-6, this technique may work. The
sizing grip will appear in the bottom-right corner, and depending how much you’ve rounded
off that corner, it may appear over the window surface where it belongs. But if you’ve created a
more exotic shape, such as the Path shown earlier in Figure 8-7, this technique definitely won’t
work—instead, it will create a sizing grip that floats in empty space next to the window.

If the sizing grip placement isn’t right for your window or you want to allow the user to
size the window by dragging its edges, you’ll need to go to a bit more work. You can use two
basic approaches. You can use .NET’s platform invoke feature (P/Invoke) to send a Win32 mes-
sage that resizes the window. Or, you can simply track the mouse position as the user drags to
one side, and resize the window manually, by setting its Width property. The following exam-
ple uses the latter approach.

Before you can use either approach, you need a way to detect when the user moves the
mouse over the edges of the window. At this point, the mouse pointer should change to a resize
cursor. The easiest way to do this in WPF is to place an element along the edge of each window.
This element doesn’t need to have any visual appearance—in fact, it can be completely transpar-
ent and let the window show through. Its sole purpose is to intercept mouse events.

One good candidate is the lowly Rectangle, which is a shape-drawing element you’ll study
in Chapter 13. A 5-unit wide Rectangle is perfect for the task. Here’s how you might place a
Rectangle that allows right-side resizing in the rounded-edge window shown in Figure 8-6:

<Grid>
...
<Rectangle Grid.RowSpan="3" Width="5"
VerticalAlignment="Stretch" HorizontalAlignment="Right"
Cursor="SizeWE" Fill="Transparent"
MouseLeftButtonDown="window_initiateWiden"
MouseLeftButtonUp="window_endWiden"
MouseMove="window_Widen"></Rectangle>

</Grid>

CHAPTER 8 ■ WINDOWS 233

9551CH08 2/8/08 1:46 PM Page 233

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Rectangle is placed in the top row but is given a RowSpan value of 3. That way, it
stretches along all three rows and occupies the entire right side of the window. The Cursor
property is set to the mouse cursor you want to show when the mouse is over this element. In
this case, the “west-east” resize cursor does the trick—it shows the familiar two-way arrow
that points left and right.

The Rectangle event handlers toggle the window into resize mode when the user clicks
the edge. The only trick is that you need to capture the mouse to ensure you continue receiv-
ing mouse events even if the mouse is dragged off the rectangle. The mouse capture is
released when the user releases the left mouse button.

bool isWiden = false;

private void window_initiateWiden(object sender, MouseEventArgs e)
{

isWiden = true;
}

private void window_Widen(object sender, MouseEventArgs e)
{

Rectangle rect = (Rectangle)sender;
if (isWiden)
{

rect.CaptureMouse();
double newWidth = e.GetPosition(this).X + 5;
if (newWidth > 0) this.Width = newWidth;

}
}

private void window_endWiden(object sender, MouseEventArgs e)
{

isWiden = false;

// Make sure capture is released.
Rectangle rect = (Rectangle)sender;
rect.ReleaseMouseCapture();

}

Figure 8-8 shows the code in action.

CHAPTER 8 ■ WINDOWS234

9551CH08 2/8/08 1:46 PM Page 234

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 8-8. Resizing a shaped window

Vista-Style Windows
One of the glaring oversights in WPF is that it doesn’t include any managed classes that wrap
the new features in Vista. You may have already seen the lack of integration with the UAC secu-
rity model (which may require you to write a manifest, as described in Chapter 3). Just as
conspicuous is the lack of support for extending the “glass blur” effect in window frames and
creating dialog boxes using the new task dialog box style.

Fortunately, none of these missing features is truly out of reach. You can gain access to
any of them using .NET’s P/Invoke feature to make unmanaged calls to the Win32 API. In the
following sections, you’ll learn how to use Vista’s glass effect and new dialog boxes.

But before you go any further, it’s worth noting that there’s an obvious but significant
downside to all of Windows Vista’s new features—namely, they won’t be available when run-
ning WPF applications on that other operating system, Windows XP. To avoid problems, you
should write code that checks the operating system and degrades gracefully when necessary.
For example, you can easily switch between the traditional OpenFileDialog and the Vista
equivalent when running on Windows XP. Similarly, you can skip over any code that extends
the Vista glass effect.

The easiest way to determine whether you’re running on Windows Vista is to read the
static OSVersion property from the System.Environment class. Here’s how it works:

if (Environment.OSVersion.Version.Major >= 6)
{

// Vista features are supported.
}

CHAPTER 8 ■ WINDOWS 235

9551CH08 2/8/08 1:46 PM Page 235

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Using the Windows Vista Glass Effect
One of the most distinctive features in the Windows Vista “look” is the blurred glass window
frames, through which you can see other windows and their content. This feature is com-
monly referred to as Aero Glass (Aero being the name of the Windows Vista user interface).

Applications running under Windows Vista get the Aero Glass effect for free in the non-
client region of the window. If you show a standard window with a standard window frame in
WPF and your application is running on an Aero-capable computer (a computer that has any
version of Windows Vista other than Home Basic, has the required video card support, and has
this feature switched on), you’ll get the eye-catching translucent window frame.

Some applications extend this effect into the client area of the window. Two examples are
Internet Explorer, which features the glass effect behind the address bar, and Media Player,
which uses it behind the playback controls. You can perform the same magic in your own
applications. You’ll encounter only two limits:

• The blurred glass area of your window always begins at the edges of your window. That
means you can’t create a glass “patch” in the somewhere in the middle. However, you
can place completely opaque WPF elements on the glass frame to create a similar
effect.

• The nonglass region inside your window is always defined as a rectangle.

WPF doesn’t include classes for performing this effect. Instead, you need to call the
DwmExtendFrameIntoClientArea() function from the Win32 API. (The Dwm prefix refers to
the desktop window manager that controls this effect.) Calling this function allows you to
extend the frame into your client area by making one or all of the edges thicker.

Here’s how you can import the DwmExtendFrameIntoClientArea() function so it’s callable
from your application:

[DllImport("DwmApi.dll")]
public static extern int DwmExtendFrameIntoClientArea(
IntPtr hwnd,
ref Margins pMarInset);

You also need to define the fixed Margins structure, as shown here:

[StructLayout(LayoutKind.Sequential)]
public struct Margins
{

public int cxLeftWidth;
public int cxRightWidth;
public int cyTopHeight;
public int cyBottomHeight;

}

This has one potential stumbling block. As you already know, the WPF measurement sys-
tem uses device-independent units that are sized based on the system DPI setting. However,
the DwmExtendFrameIntoClientArea() uses physical pixels. To make sure your WPF elements
line up with your extended glass frame no matter what the system DPI, you need to take the
system DPI into account in your calculations.

CHAPTER 8 ■ WINDOWS236

9551CH08 2/8/08 1:46 PM Page 236

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The easiest way to retrieve the system DPI is to use the System.Drawing.Graphics class,
which exposes two properties—DpiX and DpiY—that indicate the DPI of a window. The follow-
ing code shows a helper method that takes a handle to a window and a set of WPF units and that
returns a Margin object with the correspondingly adjusted measurement in physical pixels:

public static Margins GetDpiAdjustedMargins(IntPtr windowHandle,
int left, int right, int top, int bottom)

{
// Get the system DPI.
System.Drawing.Graphics g = System.Drawing.Graphics.FromHwnd(windowHandle);
float desktopDpiX = g.DpiX;
float desktopDpiY = g.DpiY;

// Set the margins.
VistaGlassHelper.Margins margins = new VistaGlassHelper.Margins();
margins.cxLeftWidth = Convert.ToInt32(left * (desktopDpiX / 96));
margins.cxRightWidth = Convert.ToInt32(right * (desktopDpiX / 96));
margins.cyTopHeight = Convert.ToInt32(top * (desktopDpiX / 96));
margins.cyBottomHeight = Convert.ToInt32(right * (desktopDpiX / 96));

return margins;
}

■Note Unfortunately, the System.Drawing.Graphics is a part of Windows Forms. To gain access to it, you
need to add a reference to the System.Drawing.dll assembly.

The final step is to apply the margins to the window using the DwmExtendFrameInto-
ClientArea() function. The following code shows an all-in-one helper method that takes the
WPF margin measurements and a reference to a WPF window. It then gets the Win32 handle
for the window, adjusts the margins, and attempts to extend the glass frame.

public static void ExtendGlass(Window win, int left, int right,
int top, int bottom)

{
// Obtain the Win32 window handle for the WPF window.
WindowInteropHelper windowInterop = new WindowInteropHelper(win);
IntPtr windowHandle = windowInterop.Handle;

// Adjust the margins to take the system DPI into account.
Margins margins = GetDpiAdjustedMargins(
windowHandle, left, right, top, bottom);

CHAPTER 8 ■ WINDOWS 237

9551CH08 2/8/08 1:46 PM Page 237

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Extend the glass frame.
int returnVal = DwmExtendFrameIntoClientArea(windowHandle, ref margins);
if (returnVal < 0)
{

throw new NotSupportedException("Operation failed.");
}

}

The sample code for this chapter wraps all these ingredients into a single class, called
VistaGlassHelper, which you can call from any window. For the code to work, you must call it
before the window is shown. The Window.Loaded event provides the perfect opportunity.
Additionally, you must remember to set the Background of your window to Transparent so
the glass frame shows through the WPF drawing surface.

Figure 8-9 shows an example that thickens the top edge of the glass frame.

Figure 8-9. Extending the glass frame

When creating this window, the content at the top is grouped into a single Border ele-
ment. That way, you can measure the height of the border and use that measurement to
extend the glass frame. (Of course, the glass frame is set only once, when the window is first
created. If you change content or resize the window and the Border grows or shrinks, it won’t
line up with the glass frame any longer.)

Here’s the complete markup for the window:

<Window x:Class="Windows.VistaGlassWindow2"
...
Loaded="window_Loaded" Background="Transparent"

CHAPTER 8 ■ WINDOWS238

9551CH08 2/8/08 1:46 PM Page 238

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

>
<Grid >
<DockPanel Name="mainDock" LastChildFill="True">
<!-- The border is used to compute the rendered height with margins.

topBar contents will be displayed on the extended glass frame.-->
<Border Name="topBar" DockPanel.Dock="Top">
<StackPanel>
<TextBlock Padding="5">Some content that's docked to the top.</TextBlock>
<Button Margin="5" Padding="5">A Button</Button>

</StackPanel>
</Border>
<Border Background="White">
<StackPanel Margin="5">
<TextBlock Margin="5" >Some text.</TextBlock>
<Button Margin="5" Padding="5">A Button</Button>

</StackPanel>
</Border>

</DockPanel>
</Grid>

</Window>

Notice that the second Border in this window, which contains the rest of the content,
must explicitly set its background to white. Otherwise, this part of the window will be com-
pletely transparent. (For the same reason, the second Border shouldn’t have any margin space,
or you’ll see a transparent edge around it.)

When the window is loaded, it calls the ExtendGlass() method and passes in the new
coordinates. Ordinarily, the glass frame is 5 units thick, but this code adds to the top edge.

private void window_Loaded(object sender, RoutedEventArgs e)
{

try
{

VistaGlassHelper.ExtendGlass(this, 5, 5,
(int)topBar.ActualHeight + 5, 5);

}
catch
{

// A DllNotFoundException occurs if you run this on Windows XP.
// A NotSupportedException is thrown if the
// DwmExtendFrameIntoClientArea() call fails.
this.Background = Brushes.White;

}
}

CHAPTER 8 ■ WINDOWS 239

9551CH08 2/8/08 1:46 PM Page 239

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you want to extend the glass edge so that it covers the entire window, simply pass in
margin settings of –1 for each side. Figure 8-10 shows the result.

Figure 8-10. A completely “glassified” window

When using the Aero Glass effect, you need to consider how the appearance of your content
will vary when the window is placed over different backgrounds. For example, if you place black
text in a glassified region of a window, it will be easier to read on a light background than on a
dark background (although it will be legible on both). To improve the readability of text and
make your content stand out against a variety of backgrounds, it’s common to add some sort of
glow effect. For example, black text with a white glow will be equally legible on light and dark
backgrounds. Windows Vista includes its own unmanaged function for drawing glowing text,
called DrawThemeTextEx(), but there are a variety of native WPF techniques that can give you a
similar (or better) result. Two examples include using a fancy brush to paint your text and
adding a bitmap effect to your text. (Both techniques are discussed in Chapter 13.)

MORE DWM MAGIC

In the previous example, you learned how you could create a thicker glass edge (or a completely glassified
window) using the DwmExtendFrameIntoClientArea() function. However, DwmExtendFrameIntoClientArea()
isn’t the only useful function from the Windows API. There are several other API functions that start with Dwm
and allow you to interact with the desktop window manager.

For example, you can call DwmIsCompositionEnabled() to check that the Aero Glass effect is currently
enabled, and you can use DwmEnableBlurBehindWindow() to apply the glass effect to a specific region in a
window. There are also a few functions that allow you to get the live thumbnail representation of other appli-
cations. For the bare-bones information, check out the MSDN reference for the desktop window manager at
http://tinyurl.com/333glv.

CHAPTER 8 ■ WINDOWS240

9551CH08 2/8/08 1:46 PM Page 240

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com/333glv

The Task Dialog and File Dialog Boxes
Although WPF includes the familiar file dialog boxes, such as OpenFileDialog and OpenSave-
Dialog, it doesn’t include classes for any of the new dialog boxes that were introduced with
Windows Vista. Missing ingredients include the restyled Open and Save dialog boxes and the
completely new task dialog box.

The task dialog box is a sort of super-powered MessageBox. It includes a caption, footer
space, and a variety of optional controls ranging from a progress bar to a hyperlink. You can
use the task dialog box to display a friendlier version of a message box, ask the user a question
and collect input, and show a generic “in progress” message while your code is at work.
Figure 8-11 shows two simple examples.

Figure 8-11. Vista-style dialog boxes

Although the WPF libraries don’t include any support for Vista-style dialog boxes, Microsoft
has released an indispensable (but often overlooked) sample that takes care of most of the
tedious details. It’s available as part of the Windows SDK .NET Framework 3.0 Samples, which
you can download at http://tinyurl.com/36s6py. Rather than download the entire package of
samples, you can download the group of samples named CrossTechnologySamples.exe, which
includes samples that support the new Windows Vista dialog boxes. The specific project you
want is named VistaBridge.

This VistaBridge project includes a class library that wraps the required Win32 functions
(using P/Invoke) and provides more than 30 higher-level classes. It also includes a test window
that demonstrates several ways to use the task dialog box, and it includes a wizard control. A
good starting point is the TaskDialog class, which was used to create the windows shown in

CHAPTER 8 ■ WINDOWS 241

9551CH08 2/8/08 1:46 PM Page 241

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com/36s6py

Figure 8-11. To use the TaskDialog, you simply create an instance, set the appropriate proper-
ties, and call the Show() method. For example, here’s how you create the topmost example in
Figure 8-11:

TaskDialog taskDialog = new TaskDialog();
taskDialog.Content = "Are you sure you want to continue?";
taskDialog.StandardButtons = TaskDialogStandardButtons.YesNo;
taskDialog.MainIcon = TaskDialogStandardIcon.Warning;
taskDialog.Caption = "Confirm Format";
taskDialog.Instruction = "Confirm Drive Format";
taskDialog.FooterText = "NOTE: All data stored on the drive will be lost.";
taskDialog.FooterIcon = TaskDialogStandardIcon.Information;
TaskDialogResult result = taskDialog.Show();
if (result.StandardButtonClicked == TaskDialogStandardButton.Yes)
{ ... }

The TaskDialogResult object wraps the information that the user supplied, including any
check box or radio button selections (using the CheckBoxChecked and RadioButtonClicked
properties). In this example the user has two options (Yes or No), and the clicked button is
indicated by the StandardButtonClicked property.

An alternative approach is to define the TaskDialog declaratively in XAML. Because the
TaskDialog isn’t a WPF element, you need to declare it in the Window.Resources section of
your markup, as shown here:

<Window ...
xmlns:v="clr-namespace:Microsoft.SDK.Samples.VistaBridge.Library;assembly=

VistaBridgeLibrary" >
<Window.Resources>
<v:TaskDialog x:Key="simpleWait"
Content="Please wait while we update your account."
Instruction="Working ..." Caption ="Updating Account"
Cancelable="True" StandardButtons="Cancel">
<v:TaskDialogMarquee Name="marquee"/>

</v:TaskDialog>
</Window.Resources>
...

</Window>

You can then retrieve this object by key name in your code and use it:

TaskDialog dialog = (TaskDialog)this.Resources["simpleWait"];
TaskDialogResult result = dialog.Show();

Chapter 11 covers the WPF resource system in detail.
If you want to take advantage of these Vista-specific APIs, the VistaBridge sample presents

the best starting point.

CHAPTER 8 ■ WINDOWS242

9551CH08 2/8/08 1:46 PM Page 242

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note At the time of this writing, there’s a minor quirk in the VistaBridge sample project. It uses Visual
Studio 2005 project files and fails to run properly when converted to Visual Studio 2008. The problem is
the manifest file, which needs to be re-created in Visual Studio 2008. To do so, right-click the project in the
Solution Explorer, and choose Add ➤ New Item. Pick the Application Manifest File template, and click Add.
Then, copy the content from the existing manifest file (which is included as a support file in the project) into
the new manifest file that was generated by Visual Studio. Alternatively, you can download a fixed-up version
of the VistaBridge project with the samples for this chapter.

The Last Word
In this chapter, you took a quick tour of the WPF window model. Compared to previous tech-
nologies such as Windows Forms, the WPF window is a streamlined, slimmed-down entity. In
many cases, that’s a benefit, because other elements take over the responsibility and allow
more flexible application designs (such as the navigation-based systems you’ll see in the next
chapter). But in other cases, it’s a reflection of the fact that WPF is a new, not-quite-mature
technology, and it lacks support for the previous generation of Windows staples.

For example, there’s no built-in way to create an MDI application, tabbed windows, or
docked windows. All these details are possible with a little extra work, but they are often diffi-
cult to make absolutely perfect. For that reason, many WPF developers who prefer window-
based designs are likely to turn to third-party components, at least in the short term.

CHAPTER 8 ■ WINDOWS 243

9551CH08 2/8/08 1:46 PM Page 243

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH08 2/8/08 1:46 PM Page 244

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Pages and Navigation

Most traditional Windows applications are arranged around a window that contains tool-
bars and menus. The toolbars and menus drive the application—as the user clicks them,
actions happen, and other windows appear. In document-based applications, there may be
several equally important “main” windows that are open at once, but the overall model is the
same. The user spends most of his time in one place, and jumps to separate windows when
necessary.

Windows applications are so common that it’s sometimes hard to imagine different ways
to design an application. However, desktop developers have spent the past few years watching
the developments in the Web—which uses a dramatically different page-based navigation
model—and realizing that it’s a surprisingly good choice for designing certain types of appli-
cations. In a bid to give desktop developers the ability to build web-like desktop applications,
WPF includes its own page-based navigation system. And as you’ll see in this chapter, it’s a
remarkably flexible model.

Currently, the page-based model is most commonly used for simple, lightweight applica-
tions (or small feature subsets in a more complex window-based application). However,
page-based applications are a good choice if you want to streamline application deployment.
That’s because WPF allows you to create a page-based application that runs directly inside
Internet Explorer or Firefox, with limited trust. This allows users to run your application with
no explicit install step—they simply point their browsers to the right location. You’ll learn
about this model, called XBAP, in the second half of this chapter.

Understanding Page-Based Navigation
The average web application looks quite a bit different from traditional rich client software.
The users of a website spend their time navigating from one page to another. Unless they’re
unlucky enough to face popup advertising, there’s never more than one page visible at a time.
When completing a task (such as placing an order or performing a complicated search), the
user traverses these pages in a linear sequence from start to finish.

HTML doesn’t support the sophisticated windowing capabilities of desktop operating
systems, so the best web developers rely on good design and clear, straightforward interfaces.
As web design has become increasingly more sophisticated, Windows developers have also
begun to see the advantages of this approach. Most important, the web model is simple and
streamlined. For that reason, novice users often find websites easier to use than Windows
applications, even though Windows applications are obviously much more capable.

245

C H A P T E R 9

9551CH09 2/8/08 1:46 PM Page 245

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In recent years, developers have begun mimicking some of the conventions of the Web in
desktop applications. Financial software such as Microsoft Money is a prime example of a
web-like interface that leads users through set tasks. However, creating these applications is
often more complicated than designing a traditional window-based application, because
developers need to re-create basic browser features such as navigation.

■Note In some cases, developers have built web-like applications using the Internet Explorer browser
engine. This is the approach that Microsoft Money takes, but it’s one that would be more difficult for non-
Microsoft developers. Although Microsoft provides hooks into Internet Explorer, such as the WebBrowser
control, building a complete application around these features is far from easy. It also risks sacrificing the
best capabilities of ordinary Windows applications.

In WPF, there’s no longer any reason to compromise because WPF includes a built-in page
model that incorporates navigation. Best of all, this model can be used to create a variety of
page-based applications, applications that use some page-based features (for example, in a
wizard or help system), or applications that are hosted right in the browser.

Page-Based Interfaces
To create a page-based application in WPF, you need to stop using the Window class as your
top-level container for user interfaces. Instead, it’s time to switch to the System.Windows.
Controls.Page class.

The model for creating pages in WPF is much the same as the model for creating windows.
Although you could create page objects with just code, you’ll usually create a XAML file and a
code-behind file for each page. When you compile that application, the compiler creates a
derived page class that combines your code with a bit of automatically generated glue (such as
the fields that refer to each named element on your page). This is the same process that you
learned about when you considered compilation with a window-based application in Chapter 2.

■Note You can add a page to any WPF project. Just choose Project ➤ Add Page in Visual Studio.

Although pages are the top-level user interface ingredient when you’re designing your
application, they aren’t the top-level container when you run your application. Instead, your
pages are hosted in another container. This is the secret to WPF’s flexibility with page-based
applications because you can use one of several different containers:

• The NavigationWindow, which is a slightly tweaked version of the Window class

• A Frame that’s inside another window

• A Frame that’s inside another page

• A Frame that’s hosted directly in Internet Explorer or Firefox

You’ll consider all of these hosts in this chapter.

CHAPTER 9 ■ PAGES AND NAVIGATION246

9551CH09 2/8/08 1:46 PM Page 246

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

A Simple Page-Based Application with NavigationWindow
To try an extremely simple page-based application, create a page like this:

<Page x:Class="NavigationApplication.Page1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
WindowTitle="Page1"
>

<StackPanel Margin="3">
<TextBlock Margin="3">
This is a simple page.

</TextBlock>
<Button Margin="2" Padding="2">OK</Button>
<Button Margin="2" Padding="2">Close</Button>

</StackPanel>
</Page>

Now, modify the App.xaml file so that the startup page is your page file:

<Application x:Class="NavigationApplication.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Page1.xaml"
>

</Application>

When you run this application, WPF is intelligent enough to realize that you’re pointing it
to a page rather than a window. It automatically creates a new NavigationWindow object to
serve as a container and shows your page inside of it (Figure 9-1). It also reads the page’s
WindowTitle property and uses that for the window caption.

Figure 9-1. A page in a NavigationWindow

CHAPTER 9 ■ PAGES AND NAVIGATION 247

9551CH09 2/8/08 1:46 PM Page 247

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

■Note One difference between a page and a window is that you don’t typically set the size of a page
because it’s determined by the host. If you do set the Width and Height properties of the page, the page is
made exactly that size, but some content is clipped if the host window is smaller, or it’s centered inside the
available space if the host window is larger.

The NavigationWindow looks more or less like an ordinary window, aside from the back
and forward navigation buttons that appear in the bar at the top. As you might expect, the
NavigationWindow class derives from Window, and it adds a small set of navigation-related
properties. You can get a reference to the containing NavigationWindow object using code
like this:

// Get a reference to the window that contains the current page.
NavigationWindow win = (NavigationWindow)Window.GetWindow(this);

This code won’t work in the page constructor because the page hasn’t been placed inside
its container yet—instead, wait at least until the Page.Loaded event fires.

■Tip It’s best to avoid this approach if at all possible and use properties of the Page class (and the
navigation service described later in this chapter). Otherwise, your page will be tightly coupled to
the NavigationWindow, and you won’t be able to reuse it in different hosts.

If you want to create a code-only application, you’d need to create both the navigation
window and the page to get the effect shown in Figure 9-1. Here’s the code that would do it:

NavigationWindow win = new NavigationWindow()
win.Content = new Page1();
win.Show();

The Page Class
Like the Window class, the Page class allows a single nested element. However, the Page class
isn’t a content control—it actually derives directly from FrameworkElement. The Page class is
also simpler and more streamlined than the Window class. It adds a small set of properties
that allow you to customize its appearance, interact with the container in a limited way, and
use navigation. Table 9-1 lists these properties.

CHAPTER 9 ■ PAGES AND NAVIGATION248

9551CH09 2/8/08 1:46 PM Page 248

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 9-1. Properties of the Page Class

Name Description

Background Takes a brush that allows you to set the background fill.

Content Takes the single element that’s shown in the page. Usually, this is a
layout container, such as a Grid or a StackPanel.

Foreground, FontFamily, Determines the default appearance of text inside the page. The values
and FontSize of these properties are inherited by the elements inside the page. For

example, if you set the foreground fill and font size, by default the
content inside the page gets these details.

WindowWidth, Determines the appearance of the window that wraps your page. These
WindowHeight, properties allow you to take control of the host by setting its width,
and WindowTitle height, and caption. However, they have an effect only if your page is

being hosted in a window (rather than a frame).

NavigationService Returns a reference to a NavigationService object, which you can use to
programmatically send the user to another page.

KeepAlive Determines whether the page object should be kept alive after the user
navigates to another page. You’ll take a closer look at this property later
in this chapter (in the “Navigation History” section) when you consider
how WPF restores the pages in your navigation history.

ShowsNavigationUI Determines whether the host for this page shows its navigation
controls (the forward and back button). By default, it’s true.

Title Sets the name that’s used for the page in the navigation history. The
host does not use the title to set the caption in the title bar—instead,
the WindowTitle property serves that purpose.

It’s also important to notice what’s not there—namely, there’s no equivalent of the Hide()
and Show() methods of the Window class. If you want to show a different page, you’ll need to
use navigation.

Hyperlinks
The easiest way to allow the user to move from one page to another is using hyperlinks. In
WPF, hyperlinks aren’t separate elements. Instead, they’re inline flow elements, which must be
placed inside another element that supports them. (The reason for this design is that hyper-
links and text are often intermixed. You’ll learn more about flow content and text layout in
Chapter 19.)

For example, here’s a combination of text and links in a TextBlock element, which is the
most practical container for hyperlinks:

<TextBlock Margin="3" TextWrapping="Wrap">
This is a simple page.
Click <Hyperlink NavigateUri="Page2.xaml">here</Hyperlink> to go to Page2.

</TextBlock>

CHAPTER 9 ■ PAGES AND NAVIGATION 249

9551CH09 2/8/08 1:46 PM Page 249

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When rendered, hyperlinks appear as the familiar blue underlined text (see Figure 9-2).

Figure 9-2. Linking to another page

You can handle clicks on a link in two ways. You can respond to the Click event and use
code to perform some task, or direct the user to another page. However, there’s an easier
approach. The Hyperlink class also includes a NavigateUri property, which you set to point to
any other page in your application. Then, when users click this hyperlink, they travel to the
destination page automatically.

■Note The NavigateUri property works only if you place the hyperlink in a page. If you want to use a
hyperlink in a window-based application to let users perform a task, launch a web page, or open a new
window, you need to handle the RequestNavigate event and write the code yourself.

Hyperlinks aren’t the only way to move from one page to another. The NavigationWindow
includes prominent forward and back buttons (unless you set the Page.ShowsNavigationUI
property to false to hide it). Clicking these buttons moves you through the navigation
sequence one page at a time. And similar to a browser, you can click the drop-down arrow at
the edge of the forward button to examine the complete sequence and jump forward or back-
ward several pages at a time (Figure 9-3).

You’ll learn more about how the page history works—and what limitations it has—later in
the “Navigation History” section.

■Note If you navigate to a new page, and that page doesn’t set the WindowTitle property, the window
keeps the title it had on the previous page. If you don’t set the WindowTitle on any page, the window caption
is left blank.

CHAPTER 9 ■ PAGES AND NAVIGATION250

9551CH09 2/8/08 1:46 PM Page 250

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 9-3. The history of visited pages

Navigating to Websites
Interestingly, you can also create a hyperlink that points to web content. When the user clicks
the link, the target web page loads up in the page area:

<TextBlock Margin="3" TextWrapping="Wrap">
Visit the website
<Hyperlink NavigateUri="http://www.prosetech.com">www.prosetech.com</Hyperlink>.

</TextBlock>

However, if you use this technique, make sure you attach an event handler to the
Application.DispatcherUnhandledException or Application.NavigationFailed event. That’s
because the attempt to navigate to a website could fail if the computer isn’t online, the site
isn’t available, or the web content can’t be reached. In this case, the network stack returns an
error like “404: File Not Found,” which becomes a WebException.

In order to handle this exception gracefully and prevent your application from shutting
down unexpectedly, you need to neutralize it with an event handler like this:

private void App_NavigationFailed(object sender, NavigationFailedEventArgs e)
{

if (e.Exception is System.Net.WebException)
{

MessageBox.Show("Website " + e.Uri.ToString() + " cannot be reached.");

// Neutralize the error so the application continues running.
e.Handled = true;

}
}

NavigationFailed is just one of several navigation events that are defined in the Applica-
tion class. You’ll get the full list later in this chapter, in Table 9-2.

CHAPTER 9 ■ PAGES AND NAVIGATION 251

9551CH09 2/8/08 1:46 PM Page 251

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.prosetech.com
http://www.prosetech.com</Hyperlink

■Note Once you lead users to a web page, they’ll be able to click its links to travel to other web pages,
leaving your content far behind. In fact, they’ll return to your WPF page only if they use the navigation history
to go back or if you’re showing the page in a custom window (as discussed in the next section) and that
window includes a control that navigates back to your content.

You can’t do a number of things when displaying pages from external websites. You can’t
prevent the user from navigating to specific pages or sites. Also, you can’t interact with the
web page using the HTML DOM (document object model). That means you can’t scan a
page looking for links or dynamically change a page. All of these tasks are possible using the
WebBrowser control, which is included with Windows Forms. Chapter 25 has more informa-
tion about Windows Forms interoperability.

Fragment Navigation
The last trick that you can use with the hyperlink is fragment navigation. By adding the num-
ber sign (#) at the end of the NavigateUri, followed by an element name, you can jump straight
to a specific control on a page. However, this works only if the target page is scrollable. (The
target page is scrollable if it uses the ScrollViewer control or if it’s hosted in a web browser.)
Here’s an example:

<TextBlock Margin="3">
Review the <Hyperlink NavigateUri="Page2.xaml#myTextBox">full text</Hyperlink>.

</TextBlock>

When the user clicks this link, the application moves to the page named Page2, and
scrolls down the page to the element named myTextBox. The page is scrolled down until
myTextBox appears at the top of the page (or as close as possible, depending on the size of the
page content and the containing window). However, the target element doesn’t receive focus.

Hosting Pages in a Frame
The NavigationWindow is a convenient container, but it’s not your only option. You can also
place pages directly inside other windows or even inside other pages. This makes for an
extremely flexible system because you can reuse the same page in different ways depending
on the type of application you need to create.

To embed a page inside a window, you simply need to use the Frame class. The Frame
class is a content control that can hold any element, but it makes particular sense when used
as a container for a page. It includes a property, named Source, that points to a XAML page
that you want to display.

Here’s an ordinary window that wraps some content in a StackPanel and places a Frame
in a separate column:

CHAPTER 9 ■ PAGES AND NAVIGATION252

9551CH09 2/8/08 1:46 PM Page 252

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Window x:Class="WindowPageHost.WindowWithFrame"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="WindowWithFrame" Height="300" Width="300"
>

<Grid Margin="3">
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

<StackPanel>
<TextBlock Margin="3" TextWrapping="Wrap">
This is ordinary window content.</TextBlock>
<Button Margin="3" Padding="3">Close</Button>

</StackPanel>
<Frame Grid.Column="1" Source="Page1.xaml"
BorderBrush="Blue" BorderThickness="1"></Frame>

</Grid>
</Window>

Figure 9-4 shows the result. A border around the frame shows the page content. There’s no
reason you need to stop at one frame. You can easily create a window that wraps multiple
frames, and you can point them all to different pages.

Figure 9-4. A window with a page embedded in a frame

CHAPTER 9 ■ PAGES AND NAVIGATION 253

9551CH09 2/8/08 1:46 PM Page 253

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

As you can see in Figure 9-4, this example doesn’t include the familiar navigation buttons.
This is because the Frame.NavigationUIVisibility property is (by default) set to Automatic. As a
result, the navigation controls appear only once there’s something in the forward and back
list. To try this, navigate to a new page. You’ll see the buttons appear inside the frame, as
shown in Figure 9-5.

Figure 9-5. A frame with navigation buttons

You can change the NavigationUIVisibility property to Hidden if you never want to show
the navigation buttons or Visible if you want them to appear right from the start.

Having the navigation buttons inside the frame is a great design if your frame contains
content that’s separate from the main flow of the application. (For example, maybe you’re
using it to display context-sensitive help or the content for a walk-through tutorial.) But in
other cases, you may prefer to show them at the top of the window. To do this, you need to
change your top-level container from Window to NavigationWindow. That way, your window
will include the navigation buttons. The frame inside the window will automatically wire itself
up to these buttons, so the user gets a similar experience to what’s shown in Figure 9-3, except
now the window also holds the extra content.

■Tip You can add as many Frame objects as you need to a window. For example, you could easily create a
window that allows the user to browse through an application task, help documentation, and an external
website, using three separate frames.

Hosting Pages in Another Page
Frames give you the ability to create more complex arrangements of windows. As you learned
in the previous section, you can use several frames in a single window. You can also place a
frame inside another page to create a nested page. In fact, the process is exactly the same—you
simply add a Frame object inside your page markup.

CHAPTER 9 ■ PAGES AND NAVIGATION254

9551CH09 2/8/08 1:46 PM Page 254

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Nested pages present a more complex navigation situation. For example, imagine you
visit a page and then click a link in an embedded frame. What happens when you click the
back button?

Essentially, all the pages in a frame are flattened into one list. So the first time you click
the back button, you move to the previous page in the embedded frame. The next time you
click the back button, you move to the previously visited parent page. Figure 9-6 shows the
sequence you follow. Notice that the back navigation button is enabled in the second step.

Figure 9-6. Navigation with an embedded page

Most of the time, this navigation model is fairly intuitive because you’ll have one item
in the back list for each page you visit. However, there are some cases where the embedded
frame plays a less important role. For example, maybe it shows different views of the same
data or allows you to step through multiple pages of help content. In these cases, stepping
through all the pages in the embedded frame may seem awkward or time-consuming. Instead,
you may want to use the navigation controls to control the navigation of the parent frame only
so that when you click the back button, you move to the previous parent page right away.

To do this, you need to set the JournalOwnership property of the embedded frame to
OwnsJournal. This tells the frame to maintain its own distinct page history. By default, the
embedded frame will now acquire navigation buttons that allow you to move back and forth
through its content (see Figure 9-7). If this isn’t what you want, you can use the JournalOwner-
ship property in conjunction with the NavigationUIVisibility property to hide the navigation
controls altogether, as shown here:

<Frame Source="Page1.xaml"
JournalOwnership="OwnsJournal" NavigationUIVisibility="Hidden"
BorderThickness="1" BorderBrush="Blue"></Frame>

Now the embedded frame is treated as though it’s just a piece of dynamic content inside
your page. From the user’s point of view, the embedded frame doesn’t support navigation.

CHAPTER 9 ■ PAGES AND NAVIGATION 255

9551CH09 2/8/08 1:46 PM Page 255

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 9-7. An embedded page that owns its journal and supports navigation

Hosting Pages in a Web Browser
The final way that you can use page-based navigation applications is in Internet Explorer.
However, in order to use this approach, you need to create a XAML browser application (which
is known as an XBAP). In Visual Studio, the XBAP is a separate project template, and you must
select it (rather than the standard WPF Windows application) when creating a project in order
to use browser hosting. You’ll examine the XBAP model in the latter part of this chapter.

GETTING THE RIGHT SIZE WINDOW

There are really two types of page-based applications:

• Stand-alone Windows applications that use pages for part or all of their user interfaces. You’ll use this
approach if you need to integrate a wizard into your application or you want a simple task-oriented
application. This way, you can use WPF’s navigation and journal features to simplify your coding.

• Browser applications (XBAPs) that are hosted by Internet Explorer or Firefox and run with limited
permissions. You’ll use this approach if you want a lightweight, web-based deployment model.

If you fall into the first category, you probably won’t want to set the Application.StartupUri property to
point to a page. Instead, you’ll create the NavigationWindow manually and then load your first page inside it
(as shown earlier), or you’ll embed your pages in a custom window using the Frame control. Both of these
approaches give you the flexibility to set the size of the application window, which is important for making
sure your application looks respectable when it first starts up. On the other hand, if you’re creating an XBAP,
you have no control over the size of the containing web browser window, and you must set the StartupUri
property to point to a page.

CHAPTER 9 ■ PAGES AND NAVIGATION256

9551CH09 2/8/08 1:46 PM Page 256

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Page History
Now that you’ve learned about pages and the different ways to host them, you’re ready to
delve deeper into the navigation model that WPF uses. In this section, you’ll learn how WPF
hyperlinks work and how pages are restored when you navigate back to them.

A Closer Look at URIs in WPF
You might wonder how properties like Application.StartupUri, Frame.Source, and
Hyperlink.NavigateUri actually work. In an application that’s made up of loose XAML files and
run in the browser, it’s fairly straightforward—when you click a hyperlink, the browser treats
the page reference as a relative URI and looks for the XAML page in the current folder. But in
a compiled application, the pages are no longer available as separate resources—instead,
they’re compiled to BAML and embedded into the assembly. So, how can they be referenced
using a URI?

This system works because of the way that WPF addresses application resources (a topic
you’ll delve into in Chapter 11). When you click a hyperlink in a compiled XAML application,
the URI is still treated as a relative path. However, it’s relative to the base URI for the applica-
tion. A hyperlink that points to Page1.xaml is actually expanded to this:

pack://application:,,,/Page1.xaml

This is known as a pack URI. It’s composed of three parts:

• The scheme (pack://) indicates the way that the resource is found.

• The authority (application:,,,) indicates the container that holds the resource. In this
case, it’s an assembly.

• The path (/Page.1xaml) indicates the exact location of that resource, relative to the
container.

In other words, the pack URI is a path that extracts the compiled XAML resource from the
assembly.

This system has several advantages. You can use relative URIs in your hyperlinks, and
these relative URIs will work regardless of whether your application is compiled or (less com-
monly) kept as loose XAML files.

At this point, you might be wondering why it’s important to learn how XAML URIs work if
the process is so seamless. The chief reason is because you might choose to create an applica-
tion that navigates to XAML pages that are stored in another assembly. In fact, there are good
reasons for this design. Because pages can be used in different containers, you might want to
reuse the same set of pages in an XBAP and an ordinary Windows application. That way, you
can deploy two versions of your application—a browser-based version and a desktop version.
To avoid duplicating your code, you should place all the pages you plan to reuse in a separate
class library assembly (DLL), which can then be referenced by both your application projects.

This necessitates a change in your URIs. If you have a page in one assembly that points to
a page in another, you need to use the following syntax:

pack://application:,,,/PageLibrary;component/Page1.xaml

CHAPTER 9 ■ PAGES AND NAVIGATION 257

9551CH09 2/8/08 1:46 PM Page 257

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

pack://application:,,,/Page1.xaml
pack://application:,,,/PageLibrary

Here, the component is named PageLibrary and the path ,,,PageLibrary;component/
Page1.xaml points to a page named Page1.xaml that’s compiled and embedded inside.

Of course, you probably won’t use the absolute path. Instead, it makes more sense to use
the following slightly shorter relative path in your URIs:

/PageLibrary;component/Page1.xaml

■Tip Use the project template called Custom Control Library (WPF) when you create the SharedLibrary
assembly to get the right assembly references, namespace imports, and application settings.

Navigation History
The WPF page history works just like the history in a browser. Every time you navigate to a
new page, the previous page is added to the back list. If you click the back button, the page is
added to the forward list. If you back out from one page and then navigate to a new page, the
forward list is cleared out.

The behavior of the back and forward lists is fairly straightforward, but the plumbing that
supports them is more complex. For example, imagine you visit a page with two text boxes, type
something in, and move ahead. If you head back to this page, you’ll find that WPF restores the
state of your text boxes—meaning whatever content you placed in them is still there.

■Note There’s an important difference between returning to a page through the navigation history and
clicking a link that takes you to the same page. For example, if you click links that take you from Page1 to
Page2 to Page1, WPF creates three separate page objects. The second time you see Page1, WPF creates it
as a separate instance, with its own state. However, if you click the back button twice to return to the first
Page1 instance, you’ll see that your original Page1 state remains.

You might assume that WPF maintains the state of previously visited pages by keeping the
page object in memory. The problem with this design is that the memory overhead may not be
trivial in a complex application with many pages. For that reason, WPF can’t assume that
maintaining the page object is a safe strategy. Instead, when you navigate away from a page,
WPF stores the state of all your controls and then destroys the page. When you return to a
page, WPF re-creates the page (from the original XAML) and then restores the state of your
controls. This strategy has lower overhead because the memory required to save just a few
details of control state is far less than the memory required to store the page and its entire
visual tree of objects.

This system raises an interesting question. Namely, how does WPF decide what details to
store? WPF examines the complete element tree of your page, and it looks at the dependency
properties of all your elements. Properties that should be stored have a tiny bit of extra
metadata—a journal flag that indicates they should be kept in the navigation log known
as the journal. (The journal flag is set using the FrameworkPropertyMetadata object when
registering the dependency property, as described in Chapter 6.)

CHAPTER 9 ■ PAGES AND NAVIGATION258

9551CH09 2/8/08 1:46 PM Page 258

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you take a closer look at the navigation system, you’ll find that many properties don’t
have the journal flag. For example, if you set the Content property of a content control or the
Text property of a TextBlock element using code, neither of these details will be retained when
you return to the page. The same is true if you set the Foreground or Background properties
dynamically. However, if you set the Text property of a TextBox, the IsSelected property of a
CheckBox, or the SelectedIndex property of a ListBox, all these details will remain.

So what can you do if this isn’t the behavior you want—in other words, if you set many
properties dynamically and you want your pages to retain all of their information? You have
several options. The most powerful is to use the Page.KeepAlive property, which is false by
default. When set to true, WPF doesn’t use the serialization mechanism described previously.
Instead, it keeps all your page objects alive. Thus, when you navigate back to a page, it’s
exactly the way you left it. Of course, this option has the drawback of increased memory over-
head, so you should enable only it on the few pages that really need it.

■Tip When you use the KeepAlive property to keep a page alive, it won’t fire the Initialized event the next
time you navigate to it. (Pages that aren’t kept alive but are “rehydrated” using WPFs journaling system will
fire the Initialized event each time the user visits them.) If this behavior isn’t what you want, handle the
Unloaded and Loaded events of the Page instead, which always fire.

Another solution is to choose a different design that passes information around. For
example, you can create page functions (described later in this chapter) that return informa-
tion. Using page functions, along with extra initialization logic, you can design your own
system for retrieving the important information from a page and restoring it when needed.

There’s one more wrinkle with the WPF navigation history. As you’ll discover later in this
chapter, you can write code that dynamically creates a page object and then navigates to it. In
this situation, the ordinary mechanism of maintaining the page state won’t work. WPF doesn’t
have a reference to the XAML document for the page, so it doesn’t know how to reconstruct
the page. (And if the page is created dynamically, there may not even be a corresponding
XAML document.) In this situation, WPF always keeps the page object alive in memory, no
matter what the KeepAlive property says.

Maintaining Custom Properties
Ordinarily, any fields in your page class lose their values when the page is destroyed. If you
want to add custom properties to your page class and make sure they retain their values, you
can set the journal flag accordingly. However, you can’t take this step with an ordinary prop-
erty or a field. Instead, you need to create a dependency property in your page class.

You’ve already taken a look at dependency properties in Chapter 6. To create a depend-
ency property, you need to follow two steps. First, you need to create the dependency property
definition. Second, you need an ordinary property procedure that sets or gets the value of the
dependency property.

CHAPTER 9 ■ PAGES AND NAVIGATION 259

9551CH09 2/8/08 1:46 PM Page 259

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To define the dependency property, you need to create a static field like this:

private static DependencyProperty MyPageDataProperty;

By convention, the field that defines your dependency property has the name of your
ordinary property, plus the word Property at the end.

■Note This example uses a private dependency property. That’s because the only code that needs to
access this property is in the page class where it’s defined.

To complete your definition, you need a static constructor that registers your dependency
property definition. This is the place where you set the services that you want to use with your
dependency property (such as support for data binding, animation, and journaling):

static PageWithPersistentData()
{

FrameworkPropertyMetadata metadata = new FrameworkPropertyMetadata();
metadata.Journal = true;

MyPageDataProperty = DependencyProperty.Register(
"MyPageDataProperty", typeof(string),
typeof(PageWithPersistentData), metadata, null);

}

Now you can create the ordinary property that wraps this dependency property. However,
when you write the getter and setter you’ll use the GetValue() and SetValue() methods that are
defined in the base DependencyObject class:

private string MyPageData
{

set { SetValue(MyPageDataProperty, value); }
get { return (string)GetValue(MyPageDataProperty); }

}

Add all these details to a single page (in this example, one named PageWithPersistent-
Data), and the MyPageData property value will be automatically serialized when users
navigate away and restored when they return.

The Navigation Service
So far, the navigation you’ve seen relies heavily on hyperlinks. When this approach works, it’s
simple and elegant. However, in some cases you’ll want to take more control of the navigation
process. For example, hyperlinks work well if you’re using pages to model a fixed, linear series
of steps that the user traverses from start to finish (such as a wizard). However, if you want the
user to complete small sequences of steps and return to a common page, or if you want to
configure the sequence of steps based on other details (such as the user’s previous actions),
you need something more.

CHAPTER 9 ■ PAGES AND NAVIGATION260

9551CH09 2/8/08 1:46 PM Page 260

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Programmatic Navigation
You can set the Hyperlink.NavigateUri and Frame.Source properties dynamically.
However, the most flexible and powerful approach is to use the WPF navigation service.
You can access the navigation service through the container that hosts the page (such as
Frame or NavigationWindow), but this approach limits your pages so they can be used only in
that type of container. The best approach is to access the navigation service through the static
NavigationService.GetNavigationService() method. You pass a reference to your page to the
GetNavigationService() method, and it returns a live NavigationService object that lets you
perform programmatic navigation:

NavigationService nav;
nav = NavigationService.GetNavigationService(this);

This code works no matter what container you’re using to host your pages.

■Note The NavigationService isn’t available in page constructor or when the Page.Initialized event fires.
Use the Page.Loaded event instead.

The NavigationService class gives you a number of methods you can use to trigger naviga-
tion. The most commonly used is the Navigate() method. It allows you to navigate to a page
based on its URI:

nav.Navigate(new System.Uri("Page1.xaml", UriKind.RelativeOrAbsolute));

or by creating the appropriate page object:

Page1 nextPage = new Page1();
nav.Navigate(nextPage);

If possible, you’ll want to navigate by URI because that allows WPF’s journaling system to
preserve the page data without needing to keep the tree of page objects alive in memory. When
you pass a page object to the Navigate() method, the entire object is always retained in memory.

However, you may decide to create the page object manually if you need to pass informa-
tion into the page. You can pass information in using a custom page class constructor (which
is the most common approach), or you can call another custom method in the page class after
you’ve created it. If you add a new constructor to the page, make sure your constructor calls
InitializeComponent() to process your markup and create the control objects.

■Note If you decide you need to use programmatic navigation, it’s up to you whether you use button con-
trols, hyperlinks, or something else. Typically, you’ll use conditional code in your event handler to decide
which page to navigate to.

WPF navigation is asynchronous. As a result, you can cancel the navigation request before
it’s complete by calling the NavigationService.StopLoading() method. You can also use the
Refresh() method to reload a page.

CHAPTER 9 ■ PAGES AND NAVIGATION 261

9551CH09 2/8/08 1:46 PM Page 261

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Finally, the NavigationService also provides GoBack() and GoForward() methods that allow
you to move through the back and forward lists. This is useful if you’re creating your own naviga-
tion controls. Both of these methods raise an InvalidOperationException if you try to navigate to
a page that doesn’t exist (for example, you attempt to go back when you’re on the first page). To
avoid these errors, check the Boolean CanGoBack and CanGoForward properties before using
the matching methods.

Navigation Events
The NavigationService class also provides a useful set of events that you can use to react to
navigation. The most common reason you’ll react to navigation is to perform some sort of task
when navigation is complete. For example, if your page is hosted inside a frame in a normal
window, you might update status bar text in the window when navigation is complete.

Because navigation is asynchronous, the Navigate() method returns before the target
page has appeared. In some cases, the time difference could be significant, such as when
you’re navigating to a loose XAML page on a website (or a XAML page in another assembly
that triggers a web download) or when the page includes time-consuming code in its Initial-
ized or Loaded event handler.

The WPF navigation process unfolds like this:

1. The page is located.

2. The page information is retrieved. (If the page is on a remote site, it’s downloaded at
this point.)

3. Any related resources that the page needs (such as images) are also located and down-
loaded.

4. The page is parsed and the tree of objects is generated. At this point, the page fires its
Initialized event (unless it’s being restored from the journal) and its Loaded event.

5. The page is rendered.

6. If the URI includes a fragment, WPF navigates to that element.

Table 9-2 lists the events that are raised by the NavigationService class during the process.
These navigation events are also provided by the Application class and by the navigation

containers (NavigationWindow and Frame). If you have more than one navigation container,
this gives you the flexibility to handle the navigation in different containers separately. How-
ever, there’s no built-in way to handle the navigation events for a single page. Once you attach
an event handler to the navigation service to a navigation container, it continues to fire events
as you move from page to page (or until you remove the event handler). Generally, this means
that the easiest way to handle navigation is at the application level.

Navigation events can’t be suppressed using the RoutedEventArgs.Handled property.
That’s because navigation events are ordinary .NET events, not routed events.

■Tip You can pass data from the Navigate() method to the navigation events. Just look for one of the Navi-
gate() method overloads that take an extra object parameter. This object is made available in the Navigated,
NavigationStopped, and LoadCompleted events through the NavigationEventArgs.ExtraData property. For
example, you could use this property to keep track of the time a navigation request was made.

CHAPTER 9 ■ PAGES AND NAVIGATION262

9551CH09 2/8/08 1:46 PM Page 262

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 9-2. Events of the NavigationService Class

Name Description

Navigating Navigation is just about to start. You can cancel this event to prevent
the navigation from taking place.

Navigated Navigation has started, but the target page has not yet been retrieved.

NavigationProgress Navigation is underway, and a chunk of page data has been
downloaded. This event is raised periodically to provide information
about the progress of navigation. It provides the amount of information
that’s been downloaded (NavigationProgressEventArgs.BytesRead) and
the total amount of information that’s required (NavigationProgress-
EventArgs.MaxBytes). This event fires every time 1KB of data is
retrieved.

LoadCompleted The page has been parsed. However, the Initialized and Loaded events
have not yet been fired.

FragmentNavigation The page is about to be scrolled to the target element. This event fires
only if you use a URI with fragment information.

NavigationStopped Navigation was canceled with the StopLoading() method.

NavigationFailed Navigation has failed because the target page could not be located or
downloaded. You can use this event to neutralize the exception before it
bubbles up to become an unhandled application exception. Just set
NavigationFailedEventArgs.Handled to true.

Managing the Journal
Using the techniques you’ve learned so far, you’ll be able to build a linear navigation-based
application. You can make the navigation process adaptable (for example, using conditional
logic so that users are directed to different steps along the way), but you’re still limited to the
basic start-to-finish approach. Figure 9-8 shows this navigation topology, which is common
when building simple task-based wizards. The dashed lines indicate the steps we’re interested
in—when the user exits a group of pages that represent a logical task.

Figure 9-8. Linear navigation

CHAPTER 9 ■ PAGES AND NAVIGATION 263

9551CH09 2/8/08 1:46 PM Page 263

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you try to implement this design using WPF navigation, you’ll find that there’s a missing
detail. Namely, when the user is finished with the navigation process (either because they’ve
canceled the operation during one of the steps or because they’ve completed the task at
hand), you need to wipe out the back history. If your application revolves around a main
window that isn’t navigation-based, this isn’t a problem. When the user launches the page-
based task, your application simply creates a new NavigationWindow to take the user through
it. When the task ends, you can destroy that window. However, if your entire application is
navigation-based, this isn’t as easy. You need a way to drop the history list when the task
is canceled or complete so the user can’t step back to one of the intermediary steps.

Unfortunately, WPF doesn’t allow you to have much control over the navigation stack.
All it gives you is two methods in the NavigationService class: AddBackEntry() and
RemoveBackEntry().

RemoveBackEntry() is the one you need in this example. It takes the most recent item
from the back list and deletes it. RemoveBackEntry() also returns a JournalEntry object that
describes that item. It tells you the URI (through the Source property) and the name that it
uses in the navigation history (through the Name property). Remember, the name is set based
on the Page.Title property.

If you want to clear several entries after a task is complete, you’ll need to call Remove-
BackEntry() multiple times. You can use two approaches. If you’ve decided to remove the
entire back list, you can use the CanGoBack property to determine when you’ve reached the
end:

while (nav.CanGoBack)
{

nav.RemoveBackEntry();
}

Alternatively, you can continue removing items until you remove the task starting point.
For example, if a page launches a task starting with a page named ConfigureAppWizard.xaml,
you could use this code when the task is complete:

string pageName;
while (pageName != "ConfigureAppWizard.xaml")
{

JournalEntry entry = nav.RemoveBackEntry();
pageName = System.IO.Path.GetFileName(entry.Source.ToString());

}

This code takes the full URI that’s stored in the JournalEntry.Source property and trims it
down to just the page name using the static GetFileName() method of the Path class (which
works equally well with URIs). Using the Title property would make for more convenient cod-
ing, but it isn’t as robust. Because the page title is displayed in the navigation history and is
visible to the user, it’s a piece of information you’d need to translate into other languages when
localizing your application. This would break code that expects a hard-coded page title. And
even if you don’t plan to localize your application, it’s not difficult to imagine a scenario where
the page title is changed to be clearer or more descriptive.

Incidentally, it is possible to examine all the items in the back and forward lists using the
BackStack and ForwardStack properties of the navigation container (such as Navigation-
Window or Frame). However, it’s not possible to get this information generically through the

CHAPTER 9 ■ PAGES AND NAVIGATION264

9551CH09 2/8/08 1:46 PM Page 264

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

NavigationService class. In any case, these properties expose simple read-only collections of
JournalEntry objects. They don’t allow you to modify the lists, and they’re rarely needed.

Adding Custom Items to the Journal
Along with the RemoveBackEntry() method, the NavigationService also gives you an
AddBackEntry() method. The purpose of this method is to allow you to save “virtual” entries
in the back list. For example, imagine you have a single page that allows the user to perform a
fairly sophisticated configuration task. If you want the user to be able to step back to a previ-
ous state of that window, you can save it using the AddBackEntry() method. Even though it’s
only a single page, it may have several corresponding entries in the list.

Contrary to what you might expect, when you call AddBackEntry(), you don’t pass in a
JournalEntry object. (In fact, the JournalEntry class has a protected constructor and so it can’t
be instantiated by your code.) Instead, you need to create a custom class that derives from the
abstract System.Windows.Navigation.CustomContentState class and stores all the informa-
tion you need. For example, consider the application shown in Figure 9-9, which allows you to
move items from one list to another.

Figure 9-9. A dynamic list

Now imagine you want to save the state of this window every time an item is moved from
one list to the other. The first thing you need is a class that derives from CustomContentState
and keeps track of this information you need. In this case, you simply need to record the
contents of both lists. Because this class will be stored in the journal (so your page can be
“rehydrated” when needed), it needs to be serializable:

[Serializable()]
public class ListSelectionJournalEntry : CustomContentState
{

CHAPTER 9 ■ PAGES AND NAVIGATION 265

9551CH09 2/8/08 1:46 PM Page 265

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

private List<String> sourceItems;
private List<String> targetItems;
public List<String> SourceItems
{

get { return sourceItems; }
}
public List<String> TargetItems
{

get { return targetItems; }
}
...

This gets you off to a good start, but there’s still a fair bit more to do. For example, you
probably don’t want the page to appear with the same title in the navigation history multiple
times. Instead, you’ll probably want to use a more descriptive name. To make this possible,
you need to override the JournalEntryName property.

In this example, there’s no obvious, concise way to describe the state of both lists. So it
makes sense to let the page choose the name when it saves the entry in the journal. This way,
the page can add a descriptive name based on the most recent action (such as Added Blue or
Removed Yellow). To create this design, you simply need to make the JournalEntryName
depend on a variable, which can be set in the constructor:

...
private string _journalName;
public override string JournalEntryName
{

get { return _journalName; }
}
...

The WPF navigation system calls your JournalEntryName property to get the name it
should show in the list.

The next step is to override the Replay() method. WPF calls this method when the user
navigates to an entry in the back or forward list so that you can apply the previously saved
state.

There are two approaches you can take in the Replay() method. You can retrieve a refer-
ence to the current page using the NavigationService.Content property. You can then cast that
into the appropriate page class and call whatever method is required to implement your
change. The other approach, which is used here, is to rely on a callback:

...
private ReplayListChange replayListChange;

public override void Replay(NavigationService navigationService,
NavigationMode mode)

{
this.replayListChange(this);

CHAPTER 9 ■ PAGES AND NAVIGATION266

9551CH09 2/8/08 1:46 PM Page 266

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
...

The ReplayListChange delegate isn’t shown here, but it’s quite simple. It represents a
method with one parameter—the ListSelectionJournalEntry object. The page can then retrieve
the list information from the SourceItems and TargetItems properties and restore the page.

With this in place, the last step is to create a constructor that accepts all the information
you need—namely, the two lists of items, the title to use in the journal, and the delegate that
should be triggered when the state needs to be reapplied to the page:

...
public ListSelectionJournalEntry(
List<String> sourceItems, List<String> targetItems,
string journalName, ReplayListChange replayListChange)

{
this.sourceItems = sourceItems;
this.targetItems = targetItems;
this.journalName = journalName;
this.replayListChange = replayListChange;

}
}

To hook up this functionality into the page, you need to take three steps:

1. You need to call AddBackReference() at the appropriate time to store an extra entry in
the navigation history.

2. You need to handle the ListSelectionJournalEntry callback to restore your window
when the user navigates through the history.

3. You need to implement the IProvideCustomContentState interface and its single
GetContentState() method in your page class. When the user navigates to another
page through the history, the GetContentState() method gets called by the navigation
service. This allows you to return an instance of your custom class that will be stored
as the state of the current page.

■Note The IProvideCustomContentState interface is an easily overlooked but essential detail. When the
user navigates using the forward or back list, two things need to happen—your page needs to add the cur-
rent view to the journal (using IProvideCustomContentState) and then needs to restore the selected view
(using the ListSelectionJournalEntry callback).

First, whenever the Add button is clicked, you need to create a new ListSelection-
JournalEntry object and call AddBackReference() so the previous state is stored in the history.

CHAPTER 9 ■ PAGES AND NAVIGATION 267

9551CH09 2/8/08 1:46 PM Page 267

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This process is factored out into a separate method so that you can use it in several places in
the page (for example, when either the Add button or the Remove button is clicked):

private void cmdAdd_Click(object sender, RoutedEventArgs e)
{

if (lstSource.SelectedIndex != -1)
{

// Determine the best name to use in the navigation history.
NavigationService nav = NavigationService.GetNavigationService(this);
string itemText = lstSource.SelectedItem.ToString();
string journalName = "Added " + itemText;

// Update the journal (using the method shown below.)
nav.AddBackEntry(GetJournalEntry(journalName));

// Now perform the change.
lstTarget.Items.Add(itemText);
lstSource.Items.Remove(itemText);

}
}

private ListSelectionJournalEntry GetJournalEntry(string journalName)
{

// Get the state of both lists (using a helper method).
List<String> source = GetListState(lstSource);
List<String> target = GetListState(lstTarget);

// Create the custom state object with this information.
// Point the callback to the Replay method in this class.
return new ListSelectionJournalEntry(
source, target, journalName, Replay);

}

You can use a similar process when the Remove button is clicked.
The next step is to handle the callback in the Replay() method and update the lists, as

shown here:

private void Replay(ListSelectionJournalEntry state)
{

lstSource.Items.Clear();
foreach (string item in state.SourceItems)
{ lstSource.Items.Add(item); }

lstTarget.Items.Clear();
foreach (string item in state.TargetItems)
{ lstTarget.Items.Add(item); }

}

CHAPTER 9 ■ PAGES AND NAVIGATION268

9551CH09 2/8/08 1:46 PM Page 268

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

And the final step is to implement IProvideCustomContentState in the page:

public partial class PageWithMultipleJournalEntries : Page,
IProvideCustomContentState

IProvideCustomContentState defines a single method named GetContentState(). In
GetContentState(), you need to store the state for the page in the same way you do when
the Add or Remove button is clicked. The only difference is that you don’t add it using the
AddBackReference() method. Instead, you provide it to WPF through a return value:

public CustomContentState GetContentState()
{

// We haven't stored the most recent action,
// so just use the page name for a title.
return GetJournalEntry("PageWithMultipleJournalEntries");

}

Remember, the WPF navigation service calls GetContentState() when the user travels to
another page using the back or forward buttons. WPF takes the CustomContentState object
you return and stores that in the journal for the current page. There’s a potential quirk here—
if the user performs several actions and then travels back through the navigation history
reversing them, the “undone” actions in the history will have the hard-coded page name
(PageWithMultipleJournalEntries) rather than the more descriptive original name (such as
Added Orange). To improve the way this is handled, you can store the journal name for the
page using a member variable in your page class. The downloadable code for this example
takes that extra step.

This completes the example. Now, when you run the application and begin manipulating
the lists, you’ll see several entries appear in the history (Figure 9-10).

Figure 9-10. Custom entries in the journal

CHAPTER 9 ■ PAGES AND NAVIGATION 269

9551CH09 2/8/08 1:46 PM Page 269

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Page Functions
So far, you’ve learned how to pass information to a page (by instantiating the page program-
matically, configuring it, and then passing it to the NavigationService.Navigate() method), but
you haven’t seen how to return information from a page. The easiest (and least structured)
approach is to store information in some sort of static application variable so that it’s accessi-
ble to any other class in your program. However, this design isn’t the best if you just need a
way to transmit simple bits of information one page to another, and you don’t want to keep
this information in memory for a long time. If you clutter your application with global vari-
ables, you’ll have a difficult time figuring out the dependencies (what variables are used by
which pages), and it will become much more difficult to reuse your pages and maintain your
application.

The other approach that WPF provides is the PageFunction class. A PageFunction
is a derived version of the Page class that adds the ability to return a result. In a way, a
PageFunction is analogous to a dialog box, while a page is analogous to a window.

To create a PageFunction in Visual Studio, right-click your project in the Solution
Explorer, and choose Add ➤ New Item. Next, select the WPF category, choose the Page
Function (WPF) template, enter a file name, and click Add. The markup for a PageFunction
is nearly identical to the markup you use for a Page. The difference is the root element,
which is <PageFunction> instead of <Page>.

Technically, the PageFunction is a generic class. It accepts a single type parameter, which
indicates the data type that’s used for the PageFunction’s return value. By default, every new
page function is parameterized by string (which means it returns a single string as its return
value). However, you can easily modify that detail by changing the TypeArguments attribute in
the <PageFunction> element.

In the following example, the PageFunction returns an instance of a custom class named
SelectedProduct. In order to support this design, the <PageFunction> element maps the
appropriate namespace (NavigationAplication) to a suitable XML prefix (local), which is then
used when setting the TypeArguments attribute.

<PageFunction
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:NavigationApplication"
x:Class="NavigationApplication.SelectProductPageFunction"
x:TypeArguments="local:Product"
Title="SelectProductPageFunction"
>

This declaration indicates that your page function will return a Product object to the call-
ing page.

Incidentally, as long as you set the TypeArguments attribute in your markup, you don’t
need to specify the same information in your class declaration. Instead, the XAML parser will
generate the correct class automatically. That means this code is enough to declare the page
function shown earlier:

public partial class SelectProductPageFunction
{ ... }

CHAPTER 9 ■ PAGES AND NAVIGATION270

9551CH09 2/8/08 1:46 PM Page 270

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Although this more explicit code works just as well:

public partial class SelectProductPageFunction:
PageFunction<Product>

{ ... }

Visual Studio uses this more explicit syntax when you create a PageFunction. By default,
all new PageFunction classes that Visual Studio creates derive from PageFunction<string>.

The PageFunction needs to handle all its navigation programmatically. When you click
a button or a link that finishes the task, your code must call the PageFunction.OnReturn()
method. At this point, you supply the object you want to return, which must be an instance of
the class you specified in the declaration. Or you can supply a null value, which indicates that
the task was not completed.

Here’s an example with two event handlers:

private void lnkOK_Click(object sender, RoutedEventArgs e)
{

// Return the selection information.
OnReturn(new ReturnEventArgs<Product>(lstProducts.SelectedValue));

}

private void lnkCancel_Click(object sender, RoutedEventArgs e)
{

// Indicate that nothing was selected.
OnReturn(null);

}

Using the PageFunction is just as easy. The calling page needs to instantiate the
PageFunction programmatically because it needs to hook up an event handler to
the PageFunction.Returned event. (This extra step is required because the
NavigationService.Navigate() method is asynchronous and returns immediately.)

SelectProductPageFunction pageFunction = new SelectProductPageFunction();
pageFunction.Return += new ReturnEventHandler<Product>(
SelectProductPageFunction_Returned);

this.NavigationService.Navigate(pageFunction);

When the user finishes using the PageFunction and clicks a link that calls OnReturn(),
the PageFunction.Returned event fires. The returned object is available through the
ReturnEventArgs.Result property:

private void SelectProductPageFunction_Returned(object sender,
ReturnEventArgs<Product> e)

{
Product product = (Product)e.Result;
if (e != null) lblStatus.Text = "You chose: " + product.Name;

}

Usually, the OnReturn() method marks the end of a task, and you don’t want the
user to be able to navigate back to the PageFunction. You could use the NavigationService.
RemoveBackEntry() method to implement this, but there’s an easier approach. Every

CHAPTER 9 ■ PAGES AND NAVIGATION 271

9551CH09 2/8/08 1:46 PM Page 271

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

PageFunction also provides a property named RemoveFromJournal. If you set this to true, the
page is automatically removed from the history when it calls OnReturn().

By adding the PageFunction to your application, you now have the ability to use a differ-
ent sort of navigation topology. You can designate one page as a central hub and allow users to
perform various tasks through page functions, as shown in Figure 9-11.

Often, a PageFunction will call another page function. In this case, the recommended
way to handle the navigation process once it’s complete is to use a chained series of
OnReturn() calls. In other words, if PageFunction1 calls PageFunction2, which then calls
PageFunction3, when PageFunction3 calls OnReturn() it triggers the Returned event handler
in PageFunction2, which then calls OnReturn(), which then fires the Returned event in
PageFunction1, which finally calls OnReturn() to end the whole process. Depending on
what you’re trying to accomplish, it may be necessary to pass your return object up through
the whole sequence until it reaches a root page.

Figure 9-11. Linear navigation

CHAPTER 9 ■ PAGES AND NAVIGATION272

9551CH09 2/8/08 1:46 PM Page 272

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

XAML Browser Applications
XBAPs are page-based applications that run inside the browser. XBAPs are full-blown WPF
applications, with a few key differences:

• They run inside the browser window. They can take the entire display area for the web
page, or you can place them somewhere inside an ordinary HTML document using the
<iframe> tag (as you’ll see shortly).

■Note The technical reality is that any type of WPF application, including an XBAP, runs as a separate
process managed by the CLR. An XBAP appears to run “inside” the browser simply because it displays all
its content in the browser window. This is different from the model used by ActiveX controls (and Silverlight
applications), which are loaded inside the browser process.

• They have limited permission. Although it’s possible to configure an XBAP so that it
requests full trust permissions, the goal is to use XBAP as a lighter-weight deployment
model that allows users to run WPF applications without allowing potentially risky code
to execute. The permissions given to an XBAP are the same as the permissions given to
a .NET application that’s run from the Web or local intranet, and the mechanism that
enforces these restrictions (code access security) is the same. That means that by
default an XBAP cannot write files, interact with other computer resources (such as
the registry), connect to databases, or pop up full-fledged windows.

• They aren’t installed. When you run an XBAP, the application is downloaded and
cached in the browser. However, it doesn’t remain installed on the computer. This gives
you the instant-update model of the Web—in other words, every time a user returns to
use an application, the newest version is downloaded if it doesn’t exist in the cache.

The advantage of XBAPs is that they offer a prompt-free experience. If .NET 3.5 is installed,
a client can surf to an XBAP in the browser and start using it just like a Java applet, a Flash
movie, or JavaScript-enhanced web page. There’s no installation prompt or security warning.
The obvious trade-off is that you need to abide by a stringently limited security model. If your
application needs greater capabilities (for example, it needs to read or write arbitrary files,
interact with a database, use the Windows registry, and so on), you’re far better off creating a
stand-alone Windows application. You can then offer a streamlined (but not completely seam-
less) deployment experience for your application using ClickOnce deployment, which is
described in Chapter 27.

XBAP Requirements
The client computer must have the .NET Framework 3.0 or 3.5 in order to run any WPF appli-
cation, including an XBAP. Windows Vista includes .NET 3.0, so computers running Windows
Vista automatically recognize XBAPs. (The version of .NET that you need to run an XBAP—
.NET 3.0 or 3.5—depends on the WPF features you’re using and the version of .NET you’ve
chosen to target, as described in Chapter 1.)

CHAPTER 9 ■ PAGES AND NAVIGATION 273

9551CH09 2/8/08 1:46 PM Page 273

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Currently, two browsers are able to launch XBAP applications: Internet Explorer (version 6
or later) and Firefox (version 2 or later). Internet Explorer 7 has one extra feature—it’s able to
recognize .xbap files even if .NET 3.0 or 3.5 isn’t installed. When the user requests an .xbap file,
Internet Explorer gives the user the option to install .NET 3.5 (as shown in Figure 9-12).

Figure 9-12. Trying to launch an XBAP without .NET 3.5 on Internet Explorer 7

Creating an XBAP
Any page-based application can become an XBAP, although Visual Studio forces you to create
a new project with the WPF Browser Application template in order to create one. The differ-
ence is four key elements in the .csproj project file, as shown here:

<HostInBrowser>True</HostInBrowser>
<Install>False</Install>
<ApplicationExtension>.xbap</ApplicationExtension>
<TargetZone>Internet</TargetZone>

These tags tell WPF to host the application in the browser (HostInBrowser), to cache it
along with other temporary Internet files rather than install it permanently (Install), to use the
extension .xbap (ApplicationExtension), and to request the permissions for only the Internet
zone (TargetZone). The fourth part is optional—as you’ll see shortly, it’s technically possible to
create an XBAP that has greater permissions. However, XBAPs almost always run with the lim-
ited permissions available in the Internet zone, which is the key challenge to programming
one successfully.

■Tip The .csproj file also includes other XBAP-related tags that ensure the right debugging experience.
The easiest way to change an application from an XBAP into a page-based application with a stand-alone
window (or vice versa) is to create a new project of the desired type and then import all the pages from the
old project.

CHAPTER 9 ■ PAGES AND NAVIGATION274

9551CH09 2/8/08 1:46 PM Page 274

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Once you’ve created your XBAP, you can design your pages and code them in exactly the
same way as if you were using the NavigationWindow. For example, you set the StartupUri in
the App.xaml file to one of your pages. When you compile your application, an .xbap file is
generated. You can then request that .xbap file in Internet Explorer or Firefox, and (provided
the .NET Framework is installed) the application runs in limited trust mode automatically.
Figure 9-13 shows an XBAP in Internet Explorer.

■Note XBAP projects have a hard-coded debug path. That means if you move an XBAP project from one
folder to another, you’ll lose the ability to debug it in Visual Studio. To fix the problem, double-click Properties
in the Solution Explorer, choose the Debug section, and update the path in the Command Line Arguments
text box.

Figure 9-13. An XBAP in the browser

The XBAP application runs just the same as an ordinary WPF application, provided you
don’t attempt to perform any restricted actions (such as showing a stand-alone window). If
you’re running your application in Internet Explorer 7 (the version that’s included with Win-
dows Vista), the browser buttons take the place of the buttons on the NavigationWindow, and
they show the back and forward page lists. On previous versions of Internet Explorer and in
Firefox, you get a new set of navigation buttons at the top of your page, which isn’t quite
as nice.

CHAPTER 9 ■ PAGES AND NAVIGATION 275

9551CH09 2/8/08 1:46 PM Page 275

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Deploying an XBAP
Although you could create a setup program for an XBAP (and you can run an XBAP from the
local hard drive), there’s rarely a reason to take this step. Instead, you can simply copy your
compiled application to a network share or a virtual directory.

■Note You can get a similar effect using loose XAML files. If your application consists entirely of XAML
pages with no code-behind files, you don’t need to compile it at all. Instead, just place the appropriate .xaml
files on your web server and let users browse to them directly. Of course, loose XAML files obviously can’t do
as much as their compiled counterparts, but they’re suitable if you simply need to display a document, a
graphic, or an animation, or if you wire up all the functionality you need through declarative binding
expressions.

Unfortunately, deploying an XBAP isn’t as simple as just copying the .xbap file. You actu-
ally need to copy the following three files to the same folder:

• ApplicationName.exe. This file has the compiled IL code, just as it does in any .NET
application.

• ApplicationName.exe.manifest. This file is an XML document that indicates require-
ments of your application (for example, the version of the .NET assemblies you used to
compile your code). If your application uses other DLLs, you can make these available in
the same virtual directory as your application and they’ll be downloaded automatically.

• ApplicationName.xbap. The .xbap file is another XML document. It represents the
entry point to your application—in other words, this is the file that the user needs to
request in the browser to install your XBAP. The markup in the .xbap file points to the
application file and includes a digital signature that uses the key you’ve chosen for your
project.

Once you’ve transferred these files to the appropriate location, you can run the applica-
tion by requesting the .xbap file in Internet Explorer or Firefox. It makes no difference whether
the files are on the local hard drive or a remote web server—you can request them in the
same way.

■Tip It’s tempting, but don’t run the .exe file. If you do, nothing will happen. Instead, double-click the .xbap
file in Windows Explorer (or type its path in by hand using Internet Explorer). Either way, all three files must
be present, and the browser must be able to recognize the .xbap file extension.

The browser will show a progress page as it begins downloading the .xbap file (Figure 9-14).
This downloading process is essentially an installation process that copies the .xbap application
to the local Internet cache. When the user returns to the same remote location on subsequent

CHAPTER 9 ■ PAGES AND NAVIGATION276

9551CH09 2/8/08 1:46 PM Page 276

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

visits, the cached version will be used. (The only exception is if there’s a newer version of the
XBAP on the server, as described in the next section.)

When you create a new XBAP application, Visual Studio also includes an automatically
generated certificate file with a name like ApplicationName_TemporaryKey.pfx. This certifi-
cate contains a public/private key pair that’s used to add a signature to your .xbap file. If you
publish an update to your application, you’ll need to sign it with the same key to ensure the
digital signature remains consistent.

Rather than using the temporary key, you may want to create a key of your own (which
you can then share between projects and protect with a password). To do so, double-click
the Properties node under your project in the Solution Explorer and use the options in the
Signing tab.

Figure 9-14. Running an .xbap application for the first time

Updating an XBAP
When you debug an XBAP application, Visual Studio always rebuilds your XBAP and loads up
the latest version in the browser. You don’t need to take any extra steps.

This isn’t the case if you request an XBAP directly in your browser. When running XBAPs in
this fashion, there’s a potential problem. If you rebuild the application, deploy it to the same
location, and then rerequest it in the browser, you won’t necessarily get the updated version.
Instead, you’ll continue running the older cached copy of the application. This is true even if
you close and reopen the browser window, click the browser’s Refresh button, and increment
the assembly version of your XBAP.

You can manually clear the ClickOnce cache, but this obviously isn’t a convenient solu-
tion. Instead, you need to update the publication information that’s stored in your .xbap file so
that the browser recognizes that your newly deployed XBAP represents a new version of your
application. Updating the assembly version isn’t enough to trigger an update—instead, you
need to update the publish version.

CHAPTER 9 ■ PAGES AND NAVIGATION 277

9551CH09 2/8/08 1:46 PM Page 277

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note This extra step is required because the download-and-cache functionality of an .xbap is built using
the plumbing from ClickOnce, the deployment technology that you’ll learn about in Chapter 27. ClickOnce
uses the publication version to determine when an update should be applied. This allows you to build an
application multiple times for testing (each time with a different assembly version number) but increment
the publish version only when you want to deploy a new release.

The easiest way to rebuild your application and apply a new publication version is to
choose Build ➤ Publish [ProjectName] from the Visual Studio menu (and then click Finish).
You don’t need to use the publication files (which are placed in the Publish folder under your
project directory). That’s because the newly generated .xbap file in the Debug or Release folder
will indicate the new publish version. All you need to do is deploy this .xbap file (along with
the .exe and .manifest files) to the appropriate location. The next time you request the .xbap
file, the browser will download the new application files and cache them.

You can see the current publish version by double-clicking the Properties item in the
Solution Explorer, choosing the Publish tab, and looking at the settings in the Publish Version
section at the bottom of the tab. Make sure you keep the Automatically Increment Revision
with Each Publish setting switched on so that the publish version is incremented when you
publish your application, which clearly marks it as a new release.

XBAP Security
The most challenging aspect to creating an XBAP is staying within the confines of the limited
security model. Ordinarily, an XBAP runs with the permissions of the Internet zone. This is
true even if you run your XBAP from the local hard drive.

The .NET Framework uses code access security (a core feature that it has had since ver-
sion 1.0) to limit what your XBAP is allowed to do. In general, the limitations are designed to
correspond with what comparable Java or JavaScript code could do in an HTML page. For
example, you’ll be allowed to render graphics, perform animations, use controls, show docu-
ments, and play sounds. You can’t access computer resources like files, the Windows registry,
databases, and so on.

■Note If you’ve programmed Windows Forms applications with .NET 2.0, you may recall that ClickOnce
allows applications to escalate their level of trust through a security prompt. If an application needs more
permissions than those provided in the Internet zone, users are prompted with an intimidating security
warning and can choose to allow the application. XBAPs don’t work the same way. The user is not able to
escalate permissions, so an application that needs permissions outside the Internet security zone will fail.

One simple way to find out whether an action is allowed is to write some test code and try
it. The WPF documentation also has full details. Table 9-3 provides a quick list of significant
supported and disallowed features.

CHAPTER 9 ■ PAGES AND NAVIGATION278

9551CH09 2/8/08 1:46 PM Page 278

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

So what’s the effect if you attempt to use a feature that’s not allowed in the Internet zone?
Ordinarily, your application fails as soon as it runs the problematic code with a SecurityExcep-
tion. Alternatively, you can configure your application to request the permission, in which the
user receives an error when they first browse to the .xbap file and try to launch your applica-
tion. (To request a permission, double-click the Properties node in the Visual Studio Solution
Explorer, choose the Security tab, and change the permission you want from Zone Default to
Include.)

Figure 9-15 shows the result of running an ordinary XBAP that attempts to perform a dis-
allowed action and not handling the resulting SecurityException.

Table 9-3. Key WPF Features and the Internet Zone

Allowed Not Allowed

All core controls, including the RichTextBox Windows Forms controls (through interop)

Pages, the MessageBox, and the OpenFileDialog Stand-alone windows and other dialog boxes
(such as the SaveFileDialog)

Isolated storage (limited to 512KB) Access to the file system and access to the
registry

2D and 3D drawing, audio and video, flow and Some bitmap effects (presumably because
XPS documents, and animation they rely on unmanaged code)

“Simulated” drag-and-drop Windows drag-and-drop
(code that responds to mouse-move events)

ASP.NET (.asmx) web services and WCF (Windows Most advanced WCF features (non-HTTP
Communication Foundation) services transport, server-initiated connections, and

WS-* protocols) and communicating with
any server other than the one where the
XBAP is hosted

Figure 9-15. An unhandled exception in an XBAP

CHAPTER 9 ■ PAGES AND NAVIGATION 279

9551CH09 2/8/08 1:46 PM Page 279

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Full-Trust XBAPs
It’s possible to create an XBAP that runs with full trust, although this technique isn’t recom-
mended. To do so, double-click the Properties node in the Solution Explorer, choose the
Security tab, and select This Is a Full Trust Application. However, users won’t be able to run
your application from a web server or virtual directory anymore. Instead, you’ll need to take
one of the following steps to ensure that your application is allowed to execute in full trust:

• Run the application from the local hard drive. (You can launch the .xbap file like an
executable file by double-clicking it or using a shortcut.) You may want to use a setup
program to automate the install process.

• Add the certificate you’re using to sign the assembly (by default, it’s a .pfx file) to the
Trusted Publishers store on the target computer. You can do this using the certmgr.exe
tool.

• Assign full trust to the website URL or network computer where the .xbap file is
deployed. To do this, you need to use the Microsoft .NET 2.0 Framework Configuration
Tool (which you can find in the Administrative Tools section of the Control Panel sec-
tion in the Start menu).

The first option is the most straightforward. However, all of these steps require an awk-
ward configuration or deployment step that must be performed on everyone else’s computer.
As a result, they aren’t ideal approaches.

■Note If your application requires full trust, you should consider building a stand-alone WPF application
and deploying it using ClickOnce (as described in Chapter 27). The real goal of the XBAP model is to create a
WPF equivalent to the traditional HTML-and-JavaScript website (or Flash applet).

Combination XBAP/Stand-Alone Applications
So far, you’ve considered how to deal with XBAPs that may run under different levels of trust.
However, there’s another possibility. You might take the same application and deploy it as both
an XBAP and a stand-alone application that uses the NavigationWindow (as described in the
beginning of this chapter).

In this situation, you don’t necessarily need to test your permissions. It may be enough to
write conditional logic that tests the static BrowserInteropHelper.IsBrowserHosted property
and assumes that a browser-hosted application is automatically running with Internet zone
permissions. The IsBrowserHosted property is true if your application is running inside the
browser.

Unfortunately, changing between a stand-alone application and an XBAP is not an easy feat
because Visual Studio doesn’t provide direct support. However, other developers have created
tools to simplify the process. One example is the flexible Visual Studio project template found at
http://scorbs.com/2006/06/04/vs-template-flexible-application. It allows you to create a
single project file and choose between an XBAP and a stand-alone application using the build
configuration list. In addition, it provides a compilation constant you can use to conditionally
compile code in either scenario and an application property you can use to create binding
expressions that conditionally show or hide certain elements based on the build configuration.

CHAPTER 9 ■ PAGES AND NAVIGATION280

9551CH09 2/8/08 1:46 PM Page 280

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://scorbs.com/2006/06/04/vs-template-flexible-application

Another option is to place your pages in a reusable class library assembly. Then you can
create two top-level projects, one that creates a NavigationWindow and loads the first page
inside and another that launches the page directly as an XBAP. This makes it easier to maintain
your solution but will probably still need some conditional code that tests the IsBrowser-
Hosted property and checks specific CodeAccessPermission objects.

Coding for Different Security Levels
In some situations, you might choose to create an application that can function in different
security contexts. For example, you may create an XBAP that can run locally (with full trust) or
be launched from a website. In this case, it’s key to write flexible code that can avoid an unex-
pected SecurityException.

Every separate permission in the code access security model is represented by a class that
derives from CodeAccessPermission. You can use this class to check whether your code is run-
ning with the required permission. The trick is to call the CodeAccessPermission.Demand()
method, which requests a permission. This demand fails (throwing a SecurityException) if the
permission isn’t granted to your application.

Here’s a simple function that allows you to check for a given permission:

private bool CheckPermission(CodeAccessPermission requestedPermission)
{

try
{

// Try to get this permission.
requestedPermission.Demand();
return true;

}
catch
{

return false;
}

}

You can use this function to write code like this, which checks to see whether the calling
code has permission to write to a file before attempting the operation:

// Create a permission that represents writing to a file.
FileIOPermission permission = new FileIOPermission(
FileIOPermissionAccess.Write, @"c:\highscores.txt");

// Check for this permission.
if (CheckPermission(permission))
{

// (It's safe to write to the file.)
}
else
{

// (It's not allowed. Do nothing or show a message.)
}

CHAPTER 9 ■ PAGES AND NAVIGATION 281

9551CH09 2/8/08 1:46 PM Page 281

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The obvious disadvantage with this code is that it relies on exception handling to control
normal program flow, which is discouraged (both because it leads to unclear code and
because it adds overhead). Another alternative would be to simply attempt to perform the
operation (such as writing to a file) and then catch any resulting SecurityException. However,
this approach makes it more likely that you’ll run into a problem halfway through a task, when
recovery or cleanup may be more difficult.

Isolated Storage
In many cases, you may be able to fall back on less powerful functionality if a given permis-
sion isn’t available. For example, although code running in the Internet zone isn’t allowed to
write to arbitrary locations on the hard drive, it is able to use isolated storage. Isolated storage
provides a virtual file system that lets you write data to a small, user-specific and application-
specific slot of space. The actual location on the hard drive is obfuscated (so there’s no way to
know exactly where the data will be written beforehand), and the total space available is
512KB. A typical location on a Windows Vista computer is a path in the form c:\Users\
[UserName]\AppData\Local\IsolatedStorage\[GuidIdentifier]. Data in one user’s isolated
store is restricted from all other nonadministrative users.

■Note Isolated storage is the .NET equivalent of persistent cookies in an ordinary web page—it allows
small bits of information to be stored in a dedicated location that has specific controls in place to prevent
malicious attacks (such as code that attempts to fill the hard drive or replace a system file).

Isolated storage is covered in detail in the .NET reference. However, it’s quite easy to
use because it exposes the same stream-based model as ordinary file access. You simply use
the types in the System.IO.IsolatedStorage namespace. Typically, you’ll begin by calling the
IsolatedStorageFile.GetUserStoreForApplication() method to get a reference to the isolated
store for the current user and application. (Each application gets a separate store.) You can then
create a virtual file in that location using the IsolatedStorageFileStream. Here’s an example:

// Create a permission that represents writing to a file.
string filePath = System.IO.Path.Combine(appPath, "highscores.txt");
FileIOPermission permission = new FileIOPermission(
FileIOPermissionAccess.Write, filePath);

// Check for this permission.
if (CheckPermission(permission))
{

// Write to local hard drive.
try
{

using (FileStream fs = File.Create(filePath))
{

WriteHighScores(fs);
}

CHAPTER 9 ■ PAGES AND NAVIGATION282

9551CH09 2/8/08 1:46 PM Page 282

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
catch { ... }

}
else
{

// Write to isolated storage.
try
{

IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForApplication();

using (IsolatedStorageFileStream fs = new IsolatedStorageFileStream(
"highscores.txt", FileMode.Create, store))

{
WriteHighScores(fs);

}
}
catch { ... }

}

You can also use methods such as IsolatedStorageFile.GetFileNames() and IsolatedStor-
ageFile.GetDirectoryNames() to enumerate the contents of the isolated store for the current
user and application.

Remember, if you’ve made the decision to create an ordinary XBAP that will be deployed
on the Web, you already know that you won’t have FileIOPermission for the local hard drive (or
anywhere else). If this is the type of application you’re designing, there’s no reason to use the
conditional code shown here. Instead, your code can jump straight to the isolated storage
classes.

■Tip You can increase the amount of data you can pack into isolated storage by wrapping your file-writing
operations with the DeflateStream or GZipStream. Both types are defined in the System.IO.Compression
namespace and use compression to reduce the number of bytes required.

Simulating Dialog Boxes with the Popup Control
Another limited feature in XBAPs is the ability to open a secondary window. In many cases,
you’ll use navigation and multiple pages instead of separate windows, and you won’t miss this
functionality.

However, sometimes it’s convenient to pop open a window to show some sort of a mes-
sage or collect input. In a stand-alone Windows application, you’d use a modal dialog box for
this task. In an XBAP, there’s another possibility—you can use the Popup control that was
introduced in Chapter 7.

The basic technique is easy. First, you define the Popup in your markup, making sure to
set its StaysOpen property to true so it will remain open until you close it. (There’s no point in
using the PopupAnimation or AllowsTransparency properties, because they won’t have any
effect in a web page.) Include suitable buttons, such as OK and Cancel, and set the Placement
property to Center so the popup will appear in the middle of the browser window.

CHAPTER 9 ■ PAGES AND NAVIGATION 283

9551CH09 2/8/08 1:46 PM Page 283

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s a simple example:

<Popup Name="dialogPopUp" StaysOpen="True" Placement="Center" MaxWidth="200">
<Border>
<Border.Background>
<LinearGradientBrush>
<GradientStop Color="AliceBlue" Offset="1"></GradientStop>
<GradientStop Color="LightBlue" Offset="0"></GradientStop>

</LinearGradientBrush>
</Border.Background>
<StackPanel Margin="5" Background="White">
<TextBlock Margin="10" TextWrapping="Wrap">
Please enter your name.
</TextBlock>
<TextBox Name="txtName" Margin="10"></TextBox>
<StackPanel Orientation="Horizontal" Margin="10">
<Button Click="dialog_cmdOK_Click" Padding="3" Margin="0,0,5,0">OK</Button>
<Button Click="dialog_cmdCancel_Click" Padding="3">Cancel</Button>

</StackPanel>
</StackPanel>

</Border>
</Popup>

At the appropriate time (for example, when a button is clicked), disable the rest of your
user interface and show the Popup. To disable your user interface, you can set the IsEnabled
property of some top-level container, such as a StackPanel or a Grid, to false. (You can also set
the Background property of the page to gray, which will draw the user’s attention to Popup.)
To show the Popup, simply set its IsVisible property to true.

Here’s an event handler that shows the previously defined Popup:

private void cmdStart_Click(object sender, RoutedEventArgs e)
{

DisableMainPage();
}

private void DisableMainPage()
{

mainPage.IsEnabled = false;
this.Background = Brushes.LightGray;
dialogPopUp.IsOpen = true;

}

When the user clicks the OK or Cancel button, close the Popup by setting its IsVisible
property to false, and re-enable the rest of the user interface:

private void dialog_cmdOK_Click(object sender, RoutedEventArgs e)
{

// Copy name from the Popup into the main page.
lblName.Content = "You entered: " + txtName.Text;

CHAPTER 9 ■ PAGES AND NAVIGATION284

9551CH09 2/8/08 1:46 PM Page 284

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

EnableMainPage();
}

private void dialog_cmdCancel_Click(object sender, RoutedEventArgs e)
{

EnableMainPage();
}

private void EnableMainPage()
{

mainPage.IsEnabled = true;
this.Background = null;
dialogPopUp.IsOpen = false;

}

Figure 9-16 shows the Popup in action.

Figure 9-16. Simulating a dialog box with the Popup

Using the Popup control to create this workaround has one significant limitation. To
ensure that the Popup control can’t be used to spoof legitimate system dialog boxes, the
Popup window is constrained to the size of the browser window. If you have a large Popup
window and a small browser window, this could chop off some of your content. One solution,
which is demonstrated with the sample code for this chapter, is to wrap the full content of the
Popup control in a ScrollViewer with the VerticalScrollBarVisibility property set to Auto.

There’s one other, even stranger option for showing a dialog box in a WPF page. You can
use the Windows Forms library from .NET 2.0. You can safely create and show an instance of
the System.Windows.Forms.Form class (or any custom form that derives from Form), because
it doesn’t require unmanaged code permission. In fact, you can even show the form mode-
lessly, so the page remains responsive. The only drawback is that a security balloon
automatically appears superimposed over the form and remains until the user clicks the

CHAPTER 9 ■ PAGES AND NAVIGATION 285

9551CH09 2/8/08 1:46 PM Page 285

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

warning message (as shown in Figure 9-17). You’re also limited in what you can show in the
form. Windows Forms controls are acceptable, but WPF content isn’t allowed. For an example
of this technique, refer to the sample code for this chapter.

Figure 9-17. Using a .NET 2.0 form for a dialog box

Embedding an XBAP in a Web Page
Usually, an XBAP is loaded directly in the browser so it takes up all the available space. How-
ever, you can have one other option—you can show an XBAP inside a portion of an HTML
page, along with other HTML content. All you need to do is create an HTML page that uses the
<iframe> tag to point to your .xbap file, as shown here:

<html>
<head>
<title>An HTML Page That Contains an XBAP</title>

</head>
<body>
<h1>Regular HTML Content</h1>
<iframe src="BrowserApplication.xbap"></iframe>
<h1>More HTML Content</h1>

</body>
</html>

Using an <iframe> is a relatively uncommon technique, but it does allow you to pull off a
few new tricks. For example, it allows you to display more than one XBAP in the same browser
window. It also allows you to create a WPF-driven gadget for the Windows Vista sidebar.

■Note WPF applications don’t have direct support for Vista gadgets, but you can embed a WPF application
in a gadget using an <iframe>. The key drawback is that the overhead of WPF application is greater than the
overhead of an ordinary HTML and JavaScript web page. There are also some quirks with the way that a
WPF application handles mouse input. You can find an example of this technique and a good discussion of its
limitations at http://tinyurl.com/38e5se.

CHAPTER 9 ■ PAGES AND NAVIGATION286

9551CH09 2/8/08 1:46 PM Page 286

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com/38e5se

The Last Word
In this chapter, you took a close look at the WPF navigation model. You learned how to build
pages, host them in different containers, and use WPF navigation to move from one page to
the next.

You also delved into the XBAP model that allows you to create a web-style WPF applica-
tion that runs in a browser. Because XBAPs still require the .NET Framework, they won’t
replace the existing web applications and Flash games that we all know and love. However,
they just might provide an alternate way to deliver rich content and graphics to Windows
users. For example, one could imagine that a company like Microsoft could create an alternate
interface to a popular web-based application like Hotmail using an XBAP. To program an XBAP
successfully, you need to embrace the limitations of partial trust and code accordingly, which
takes some getting used to.

■Note If you’re planning to build WPF applications that run in a web browser over the Internet, you
may want to consider WPF’s scaled-down sibling, Silverlight 2.0. Although it’s not as powerful as WPF,
Silverlight 2.0 borrows a substantial portion of the WPF model and adds support for cross-platform use.
(For example, you can run a Silverlight 2.0 application in a Safari browser on a Mac computer.) For more
information about Silverlight, refer to http://silverlight.net.

CHAPTER 9 ■ PAGES AND NAVIGATION 287

9551CH09 2/8/08 1:46 PM Page 287

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://silverlight.net

9551CH09 2/8/08 1:46 PM Page 288

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Commands

In Chapter 6, you learned about routed events, which you can use to respond to a wide range
of mouse and keyboard actions. However, events are a fairly low-level ingredient. In a realistic
application, functionality is divided into higher-level tasks. These tasks may be triggered by a
variety of different actions and through a variety of different user-interface elements, includ-
ing main menus, context menus, keyboard shortcuts, and toolbars.

WPF allows you to define these tasks—known as commands—and connect controls to
them so you don’t need to write repetitive event handling code. Even more important, the
command feature manages the state of your user interface by automatically disabling controls
when the linked commands aren’t available. It also gives you a central place to store (and
localize) the text captions for your commands.

In this chapter, you’ll learn how to use the prebuilt command classes in WPF, how to wire
them up to controls, and how to define your own commands. You’ll also consider the limita-
tions of the command model—namely, the lack of a command history and the lack of support
for an application-wide Undo feature—and see how you can build your own.

Understanding Commands
In a well-designed Windows application, the application logic doesn’t sit in the event handlers
but is coded in higher-level methods. Each one of these methods represents a single applica-
tion “task.” Each task may rely on other libraries (such as separately compiled components
that encapsulate business logic or database access). Figure 10-1 shows this relationship.

Figure 10-1. Mapping event handlers to a task

289

C H A P T E R 1 0

9551CH10 2/8/08 2:08 PM Page 289

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The most obvious way to use this design is to add event handlers wherever they’re needed
and use each event handler to call the appropriate application method. In essence, your
window code becomes a stripped-down switchboard that responds to input and forwards
requests to the heart of the application.

Although this design is perfectly reasonable, it doesn’t save you any work. Many applica-
tion tasks can be triggered through a variety of routes, so you’ll often need to code several
event handlers that call the same application method. This in itself isn’t much of a problem
(because the switchboard code is so simple), but life becomes much more complicated when
you need to deal with UI state.

A simple example shows the problem. Imagine you have a program that includes an appli-
cation method named PrintDocument(). This method can be triggered in four ways: through a
main menu (by choosing File ➤ Print), through a context menu (by right-clicking somewhere
and choosing Print), through a keyboard shortcut (Ctrl+P), and through a toolbar button. At cer-
tain points in your application’s lifetime, you need to temporarily disable the PrintDocument()
task. That means you need to disable the two menu commands and the toolbar button so they
can’t be clicked, and you need to ignore the Ctrl+P shortcut. Writing the code that does this (and
adding the code that enables these controls later) is messy. Even worse, if it’s not done properly,
you might wind up with different blocks of state code overlapping incorrectly, causing a control
to be switched on even when it shouldn’t be available. Writing and debugging this sort of code is
one of the least glamorous aspects of Windows development.

Much to the surprise of many experienced Windows developers, the Windows Forms
toolkit didn’t provide any features that could help you deal with these issues. Developers could
build the infrastructure they needed on their own, but most weren’t that ambitious.

Fortunately, WPF fills in the gaps with a new commanding model. It adds two key features:

• It delegates events to the appropriate commands.

• It keeps the enabled state of a control synchronized with the state of the corresponding
command.

The WPF command model isn’t quite as straightforward as you might expect. To plug into
the routed event model, it requires several separate ingredients, which you’ll learn about in
this chapter. However, the command model is conceptually simple. Figure 10-2 shows how a
command-based application changes the design shown in Figure 10-1. Now each action that
initiates printing (clicking the button, clicking the menu item, or pressing Ctrl+P) is mapped
to the same command. A command binding links that command to a single event handler in
your code.

Figure 10-2. Mapping events to a command

CHAPTER 10 ■ COMMANDS290

9551CH10 2/8/08 2:08 PM Page 290

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The WPF command system is a great tool for simplifying application design. However, it
still has some fairly significant gaps. Notably, WPF doesn’t have any support for the following:

• Command tracking (for example, keeping a history of recent commands)

• “Undoable” commands

• Commands that have state and can be in different “modes” (for example, a command
that can be toggled on or off)

The WPF Command Model
The WPF command model consists of a surprising number of moving parts. All together, it has
four key ingredients:

• Commands. A command represents an application task and keeps track of whether it
can be executed. However, commands don’t actually contain the code that performs the
application task.

• Command bindings. Each command binding links a command to the related applica-
tion logic, for a particular area of your user interface. This factored design is important,
because a single command might be used in several places in your application and
have a different significance in each place. To handle this, you use the same command
with different command bindings.

• Command sources. A command source triggers a command. For example, a MenuItem
and a Button can both be command sources. Clicking them executes the bound
command.

• Command targets. A command target is the element on which the command is being
performed. For example, a Paste command might insert text into a TextBox, and an
OpenFile command might pop a document into a DocumentViewer. The target may
or may not be important, depending on the nature of the command.

In the following sections, you’ll dig into the first ingredient—the WPF command.

The ICommand Interface
The heart of the WPF command model is the System.Windows.Input.ICommand interface
that defines how commands work. This interface includes two methods and an event:

public interface ICommand
{

void Execute(object parameter);
bool CanExecute(object parameter);

event EventHandler CanExecuteChanged;
}

CHAPTER 10 ■ COMMANDS 291

9551CH10 2/8/08 2:08 PM Page 291

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In a simple implementation, the Execute() method would contain the application task
logic (for example, printing the document). However, as you’ll see in the next section, WPF is a
bit more elaborate. It uses the Execute() method to fire off a more complicated process that
eventually raises an event that’s handled elsewhere in your application. This gives you the
ability to use ready-made command classes and plug in your own logic. It also gives you the
flexibility to use one command (such as Print) in several different places.

The CanExecute() method returns the state of the command—true if it’s enabled and false
if it’s disabled. Both Execute() and CanExecute() accept an additional parameter object that
you can use to pass along any extra information you need.

Finally, the CanExecuteChanged event is raised when the state changes. This is a signal to
any controls using the command that they should call the CanExecute() method to check the
command’s state. This is part of the glue that allows command sources (such as a Button or
MenuItem) to automatically enable themselves when the command is available and to disable
themselves when it’s not.

The RoutedCommand Class
When creating your own commands, you won’t implement ICommand directly. Instead, you’ll
use the System.Windows.Input.RoutedCommand class, which implements this interface for
you. The RoutedCommand class is the only class in WPF that implements ICommand. In
other words, all WPF commands are instances of RoutedCommand (or a derived class).

One of the key concepts behind the command model in WPF is that the RoutedUI-
Command class doesn’t contain any application logic. It simply represents a command. This
means one RoutedCommand object has the same capabilities as another.

The RoutedCommand class adds a fair bit of extra infrastructure for event tunneling and
bubbling. Whereas the ICommand interface encapsulates the idea of a command—an action
that can be triggered and may or may not be enabled—the RoutedCommand modifies the
command so that it can bubble through the WPF element hierarchy to get to the right event
handler.

To support routed events, the RoutedCommand class implements the ICommand inter-
face privately and then adds slightly different versions of its methods. The most obvious
change you’ll notice is that the Execute() and CanExecute() methods take an extra parameter.
Here are their new signatures:

public void Execute(object parameter, IInputElement target)
{...}

public bool CanExecute(object parameter, IInputElement target)
{...}

The target is the element where the event handling begins. This event begins at the target
element and then bubbles up to higher-level containers until your application handles it to
perform the appropriate task. (To handle the Executed event, your element needs the help of
yet another class—the CommandBinding.)

Along with this shift, the RoutedElement also introduces three properties: the command
name (Name), the class that this command is a member of (OwnerType), and any keystrokes or
mouse actions that can also be used to trigger the command (in the InputGestures collection).

CHAPTER 10 ■ COMMANDS292

9551CH10 2/8/08 2:08 PM Page 292

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WHY WPF COMMANDS NEED EVENT BUBBLING

When looking at the WPF command model for the first time, it’s tricky to grasp exactly why WPF commands
require routed events. After all, shouldn’t the command object take care of performing the command, regard-
less of how it’s invoked?

If you were using the ICommand interface directly to create your own command classes, this would be
true. The code would be hardwired into the command, so it would work the same way no matter what trig-
gers the command. You wouldn’t need event bubbling.

However, WPF uses a number of prebuilt commands. These command classes don’t contain any real
code. They’re just conveniently defined objects that represent a common application task (such as printing a
document). To act on these commands, you need to use a command binding, which raises an event to your
code (as shown in Figure 10-2). To make sure you can handle this event in one place, even if it’s fired by dif-
ferent command sources in the same window, you need the power of event bubbling.

This raises an interesting question—namely, why use prebuilt commands at all? Wouldn’t it be clearer
to have custom command classes do all the work, instead of relying on an event handler? In many ways, this
design would be simpler. However, the advantage of prebuilt commands is that they provide much better
possibilities for integration. For example, a third-party developer could create a document viewer control that
uses the prebuilt Print command. As long as your application uses the same prebuilt command, you won’t
need to do any extra work to wire up printing in your application. Seen this way, commands are a major piece
of WPF’s pluggable architecture.

The RoutedUICommand Class
Most of the commands you’ll deal with won’t be RoutedCommand objects but will be
instances of the RoutedUICommand class, which derives from RoutedCommand. (In fact,
all the ready-made commands that WPF provides are RoutedUICommand objects.)

RoutedUICommand is intended for commands with text that is displayed somewhere
in the user interface (for example, the text of a menu item or the tooltip for a toolbar button).
The RoutedUICommand class adds a single property—Text—which is the display text for that
command.

The advantage of defining the command text with the command (rather than directly on
the control) is that you can perform your localization in one place. However, if your command
text never appears anywhere in the user interface, the RoutedCommand class is equivalent.

■Note You don’t need to use the RoutedUICommand text in your user interface. In fact, there may be good
reasons to use something else. For example, you might prefer “Print Document” to just “Print,” and in some
cases you might replace the text altogether with a tiny graphic.

CHAPTER 10 ■ COMMANDS 293

9551CH10 2/8/08 2:08 PM Page 293

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Command Library
The designers of WPF realized that every application is likely to have a large number of com-
mands and that many commands are common to many different applications. For example,
all document-based applications will have their own versions of the New, Open, and Save
commands. To save you the work of creating those commands, WPF includes a basic com-
mand library that’s stocked with more than 100 commands. These commands are exposed
through the static properties of five dedicated static classes:

• ApplicationCommands. This class provides the common commands, including clip-
board commands (such as Copy, Cut, and Paste) and document commands (such as
New, Open, Save, SaveAs, Print, and so on).

• NavigationCommands. This class provides commands used for navigation, including
some that are designed for page-based applications (such as BrowseBack, BrowseForward,
and NextPage) and others that are suitable for document-based applications (such as
IncreaseZoom and Refresh).

• EditingCommands. This class provides a long list of mostly document-editing com-
mands, including commands for moving around (MoveToLineEnd, MoveLeftByWord,
MoveUpByPage, and so on), selecting content (SelectToLineEnd, SelectLeftByWord),
and changing formatting (ToggleBold and ToggleUnderline).

• ComponentCommands. This includes commands that are used by user-interface
components, including commands for moving around and selecting content that are
similar to (and even duplicate) some of the commands in the EditingCommands class.

• MediaCommands. This class includes a set of commands for dealing with multimedia
(such as Play, Pause, NextTrack, and IncreaseVolume).

The ApplicationCommands class exposes a set of basic commands that are commonly
used in all types of applications, so it’s worth a quick look. Here’s the full list:

CHAPTER 10 ■ COMMANDS294

New

Open

Save

SaveAs

Close

Print

PrintPreview

CancelPrint

Copy

Cut

Paste

Delete

Undo

Redo

Find

Replace

SelectAll

Stop

ContextMenu

CorrectionList

Properties

Help

For example, ApplicationCommands.Open is a static property that exposes a
RoutedUICommand object. This object represents the “Open” command in an application.
Because ApplicationCommands.Open is a static property, there is only one instance of the
Open command for your entire application. However, you may treat it differently depending
on its source—in other words, where it occurs in the user interface.

9551CH10 2/8/08 2:08 PM Page 294

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The RoutedUICommand.Text property for every command matches its name, with the
addition of spaces between words. For example, the text for the ApplicationCommands.SelectAll
command is “Select All.” (The Name property gives you the same text without the spaces.) The
RoutedUICommand.OwnerType property returns a type object for the ApplicationCommands
class, because the Open command is a static property of that class.

■Tip You can modify the Text property of a command before you bind it in a window (for example, using
code in the constructor of your window or application class). Because commands are static objects that are
global to your entire application, changing the text affects the command everywhere it appears in your user
interface. Unlike the Text property, the Name property cannot be modified.

As you’ve already learned, these individual command objects are just markers with no
real functionality. However, many of the command objects have one extra feature: default
input bindings. For example, the ApplicationCommands.Open command is mapped to the
keystroke Ctrl+O. As soon as you bind that command to a command source and add that com-
mand source to a window, the key combination becomes active, even if the command doesn’t
appear anywhere in the user interface.

Executing Commands
So far, you’ve taken a close look at commands, considering both the base classes and inter-
faces and the command library that WPF provides for you to use. However, you haven’t yet
seen any examples of how to use these commands.

As explained earlier, the RoutedUICommand doesn’t have any hardwired functionality. It
simply represents a command. To trigger this command, you need a command source (or you
can use code). To respond to this command, you need a command binding that forwards exe-
cution to an ordinary event handler. You’ll see both ingredients in the following sections.

Command Sources
The commands in the command library are always available. The easiest way to trigger them
is to hook them up to a control that implements the ICommandSource interface, which
includes controls that derive from ButtonBase (Button, CheckBox, and so on), individual
ListBoxItem objects, the Hyperlink, and the MenuItem.

The ICommandSource interface defines three properties, as listed in Table 10-1.

Table 10-1. Properties of the ICommandSource Interface

Name Description

Command Points to the linked command. This is the only required detail.

CommandParameter Supplies any other data you want to send with the command.

CommandTarget Identifies the element on which the command is being performed.

CHAPTER 10 ■ COMMANDS 295

9551CH10 2/8/08 2:08 PM Page 295

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, here’s a button that links to the ApplicationCommands.New command
using the Command property:

<Button Command="ApplicationCommands.New">New</Button>

WPF is intelligent enough to search all five command container classes described earlier,
which means you can use the following shortcut:

<Button Command="New">New</Button>

However, you may find that this syntax is less explicit and therefore less clear because it
doesn’t indicate what class contains the command.

Command Bindings
When you attach a command to a command source, you’ll see something interesting. The
command source will be automatically disabled.

For example, if you create the New button shown in the previous section, the button will
appear dimmed and won’t be clickable, just as if you had set IsEnabled to false (see Figure 10-3).
That’s because the button has queried the state of the command. Because the command has no
attached binding, it’s considered to be disabled.

Figure 10-3. A command without a binding

To change this state of affairs, you need to create a binding for your command that indi-
cates three things:

• What to do when the command is triggered.

• How to determine whether the command can be performed. (This is optional. If you
leave out this detail, the command is always enabled as long as there is an attached
event handler.)

• Where the command is in effect. For example, the command might be limited to a sin-
gle button, or it might be enabled over the entire window (which is more common).

Here’s a snippet of code that creates a binding for the New command. You can add this
code to the constructor of your window:

// Create the binding.
CommandBinding binding = new CommandBinding(ApplicationCommands.New);

CHAPTER 10 ■ COMMANDS296

9551CH10 2/8/08 2:08 PM Page 296

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Attach the event handler.
binding.Executed += NewCommand_Executed;

// Register the binding.
this.CommandBindings.Add(binding);

Notice that the completed CommandBinding object is added to the CommandBindings
collection of the containing window. This works through event bubbling. Essentially, when
the button is clicked, the CommandBinding.Executed event bubbles up from the button to the
containing elements.

Although it’s customary to add all the bindings to the window, the CommandBindings
property is actually defined in the base UIElement class. That means it’s supported by any ele-
ment. For example, this example would work just as well if you added the command binding
directly to the button that uses it (although then you wouldn’t be able to reuse it with another
higher-level element). For greatest flexibility, command bindings are usually added to the top-
level window. If you want to use the same command from more than one window, you’ll need
to create a binding in both windows.

■Note You can also handle the CommandBinding.PreviewExecuted event, which is fired first in the
highest-level container (the window) and then tunnels down to the button. As you learned in Chapter 6,
you use event tunneling to intercept and stop an event before it’s completed. If you set the RoutedEvent-
Args.Handled property to true, the Executed event will never take place.

The previous code assumes that in the same class you have an event handler named
NewCommand_Executed, which is ready to receive the command. Here’s an example of some
simple code that displays the source of the command:

private void NewCommand_Executed(object sender, ExecutedRoutedEventArgs e)
{

MessageBox.Show("New command triggered by " + e.Source.ToString());
}

Now, when you run the application, the button is enabled (see Figure 10-4). If you click it,
the Executed event fires, bubbles up to the window, and is handled by the NewCommand()
handler shown earlier. At this point, WPF tells you the source of the event (the button). The
ExecutedRoutedEventArgs object also allows you to get a reference to the command that was
invoked (ExecutedRoutedEventArgs.Command) and any extra information that was passed
along (ExecutedRoutedEventArgs.Parameter). In this example, the parameter is null because
you haven’t passed any extra information. (If you wanted to pass additional information,
you would set the CommandParameter property of the command source. And if you
wanted to pass a piece of information drawn from another control, you’d need to set
CommandParameter using a data binding expression, as shown later in this chapter.)

CHAPTER 10 ■ COMMANDS 297

9551CH10 2/8/08 2:08 PM Page 297

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 10-4. A command with a binding

■Note In this example, the event handler that responds to the command is still code inside the window
where the command originates. The same rules of good code organization still apply to this example—in
other words, your window should delegate its work to other components where appropriate. For example, if
your command involves opening a file, you may use a custom file helper class that you’ve created to serial-
ize and deserialize information. Similarly, if you create a command that refreshes a data display, you’ll use it
to call a method in a database component that fetches the data you need. See Figure 10-2 for a refresher.

In the previous example, the command binding was generated using code. However, it’s
just as easy to wire up commands declaratively using XAML if you want to streamline your
code-behind file. Here’s the markup you need:

<Window x:Class="Commands.TestNewCommand"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="TestNewCommand">

<Window.CommandBindings>
<CommandBinding Command="ApplicationCommands.New"
Executed="NewCommand_Executed"></CommandBinding>

</Window.CommandBindings>

<StackPanel Margin="5">
<Button Padding="5" Command="ApplicationCommands.New">New</Button>

</StackPanel>
</Window>

Unfortunately, Visual Studio does not have any design-time support for defining
command bindings. It’s also provides relatively feeble support for connecting controls and
commands. You can set the Command property of a control using the Properties window, but
it’s up to you to type the exact name of the command—there’s no handy drop-down list of
commands from which to choose.

CHAPTER 10 ■ COMMANDS298

9551CH10 2/8/08 2:08 PM Page 298

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Using Multiple Command Sources
The button example seems like a somewhat roundabout way to trigger an ordinary event.
However, the extra command layer starts to make more sense when you add more controls
that use the same command. For example, you might add a menu item that also uses the New
command:

<Menu>
<MenuItem Header="File">
<MenuItem Command="New"></MenuItem>

</MenuItem>
</Menu>

Note that this MenuItem object for the New command doesn’t set the Header property.
That’s because the MenuItem is intelligent enough to pull the text out of the command if the
Header property isn’t set. (The Button control lacks this feature.) This might seem like a minor
convenience, but it’s an important consideration if you plan to localize your application in dif-
ferent languages. In this case, being able to modify the text in one place (by setting the Text
property of your commands) is easier than tracking it down in your windows.

The MenuItem class has another frill. It automatically picks up the first shortcut
key that’s in the Command.InputBindings collection (if there is one). In the case of the
ApplicationsCommands.New command object, that means the Ctrl+O shortcut appears
in the menu alongside the menu text (see Figure 10-5).

■Note One frill you don’t get is an underlined access key. WPF has no way of knowing what commands
you might place together in a menu, so it can’t determine the best access keys to use. This means if you
want to use the N key as a quick access key (so that it appears underlined when the menu is opened with
the keyboard, and the user can trigger the New command by pressing N), you need to set the menu text
manually, preceding the access key with an underscore. The same is true if you want to use a quick access
key for a button.

Figure 10-5. A menu item that uses a command

Note that you don’t need to create another command binding for the menu item. The sin-
gle command binding you created in the previous section is now being used by two different
controls, both of which hand their work off to the same command event handler.

CHAPTER 10 ■ COMMANDS 299

9551CH10 2/8/08 2:08 PM Page 299

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Fine-Tuning Command Text
Based on the ability of the menu to pull out the text of the command item automatically, you
might wonder whether you can do the same with other ICommandSource classes, such as the
Button control. You can, but it requires a bit of extra work.

You can use two techniques to reuse the command text. One option is to pull the text
right out of the static command object. XAML allows you to do this with the Static markup
extension. Here’s an example that gets the command name “New” and uses that as the text
for a button:

<Button Command="New" Content="{x:Static ApplicationCommands.New}"></Button>

The problem with this approach is that it simply calls ToString() on the command object.
As a result, you get the command name but not the command text. (For commands that have
multiple words, the command text is nicer because it includes spaces.) You could correct this
problem, but it’s significantly more work. There’s also another issue in the way that one button
uses the same command twice, introducing the possibility that you’ll inadvertently grab the
text from the wrong command.

The preferred solution is to use a data binding expression. This data binding is a bit
unusual, because it binds to the current element, grabs the Command object you’re using,
and pulls out the Text property. Here’s the terribly long-winded syntax:

<Button Margin="5" Padding="5" Command="ApplicationCommands.New" Content=
"{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}"

</Button>

Chapter 15 covers data binding expressions in detail.
You can use this technique in other, more imaginative ways. For example, you can set the

content of a button with a tiny image but use the binding expression to show the command
name in a tooltip:

<Button Margin="5" Padding="5" Command="ApplicationCommands.New"
ToolTip="{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}">

<Image ... />
</Button>

The content of the button (which isn’t shown here) will be a shape or bitmap that appears
as a thumbnail icon.

Clearly, this approach is wordier than just putting the command text directly in your
markup. However, this approach is worth considering if you are planning to localize your
application in different languages. You simply need to set the command text for all your com-
mands when your application starts. (If you change the command text after you’ve created a
command binding, it won’t have any effect. That’s because the Text property isn’t a depend-
ency property, so there’s no automatic change notification to update the user interface.)

Invoking a Command Directly
You aren’t limited to the classes that implement ICommandSource if you want to trigger a
command. You can also call a method directly from any event handler using the Execute()

CHAPTER 10 ■ COMMANDS300

9551CH10 2/8/08 2:08 PM Page 300

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

method. At that point, you need to pass in the parameter value (or a null reference) and a
reference to the target element:

ApplicationCommands.New.Execute(null, targetElement);

The target element is simply the element where WPF begins looking for the command
binding. You can use the containing window (which has the command binding) or a nested
element (such as the actual element that fired the event).

Incidentally, you can also go through the Execute() method in the associated Command-
Binding object. In this case, you don’t need to supply the target element, because it’s auto-
matically set to the element that exposes the CommandBindings collection that you’re using.

this.CommandBindings[0].Command.Execute(null);

This approach uses only half the command model. It allows you to trigger the command,
but it doesn’t give you a way to respond to the command’s state change. If you want this fea-
ture, you may also want to handle the RoutedCommand.CanExecuteChanged to react when
the command becomes disabled or enabled. When the CanExecuteChanged event fires, you
need to call the RoutedCommand.CanExecute() method to check whether the commands
are in a usable state. If not, you can disable or change the content in a portion of your user
interface.

COMMAND SUPPORT IN CUSTOM CONTROLS

WPF includes a number of controls that implement ICommandSupport and have the ability to raise com-
mands. (It also includes some controls that have the ability to handle commands, as you’ll see shortly in the
section “Controls with Built-in Commands.”) Despite this support, you may come across a control that you’d
like to use with the command model, even though it doesn’t implement ICommandSource. In this situation,
the easiest option is to handle one of the control’s events and execute the appropriate command using code.
However, another option is to build a new control of your own—one that has the command-executing logic
built in.

The downloadable code for this chapter includes an example that uses this technique to create a slider
that triggers a command when its value changes. This control derives from the Slider class you learned about
in Chapter 8; implements ICommand; defines the Command, CommandTarget, and CommandParameter
dependency properties; and monitors the RoutedCommand.CanExecuteChanged event internally. Although
the code is straightforward, this solution is a bit over the top for most scenarios. Creating a custom control is
a fairly significant step in WPF, and most developers prefer to restyle existing controls with templates (Chap-
ter 14) rather than add an entirely new class. However, if you’re designing a custom control from scratch and
you want it to provide command support, this example is worth exploring.

Disabling Commands
You’ll see the real benefits of the command model when you create a command that varies
between an enabled and disabled state. For example, consider the one-window application
shown in Figure 10-6, which is a basic text editor that consists of a menu, a toolbar, and a large
textbox. It allows you to open files, create new (blank) documents, and save your work.

CHAPTER 10 ■ COMMANDS 301

9551CH10 2/8/08 2:08 PM Page 301

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 10-6. A simple text editor

In this case, it’s perfectly reasonable to make the New, Open, Save, SaveAs, and Close
commands perpetually available. But a different design might enable the Save command only
if the text has been changed in some way from the original file. By convention, you can track
this detail in your code using a simple Boolean value:

private bool isDirty = false;

You would then set this flag whenever the text is changed:

private void txt_TextChanged(object sender, RoutedEventArgs e)
{

isDirty = true;
}

What you need now is a way for the information to make its way from your window to the
command binding so that the linked controls can be updated as needed. The trick is to handle
the CanExecute event of the command binding. You can attach an event handler to this event
through code:

CommandBinding binding = new CommandBinding(ApplicationCommands.Save);
binding.Executed += SaveCommand_Executed;
binding.CanExecute += SaveCommand_CanExecute;
this.CommandBindings.Add(binding);

or declaratively:

<Window.CommandBindings>
<CommandBinding Command="ApplicationCommands.Save"
Executed="SaveCommand_Executed" CanExecute="SaveCommand_CanExecute">

</CommandBinding>
</Window.CommandBindings>

CHAPTER 10 ■ COMMANDS302

9551CH10 2/8/08 2:08 PM Page 302

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In your event handler, you simply need to check the isDirty variable and set the
CanExecuteRoutedEventArg.CanExecute property accordingly:

private void SaveCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
{

e.CanExecute = isDirty;
}

If isDirty is false, the command is disabled. If it’s true, the command is enabled. (If you
don’t set the CanExecute flag, it keeps its most recent value.)

There’s one issue to be aware of when using CanExecute. It’s up to WPF to call the Routed-
Command.CanExecute() method to trigger your event handler and determine the status of
your command. The WPF command manager does this when it detects a change it believes
is significant—for example, when the focus moves from one control to another, or after you
execute a command. Controls can also raise the CanExecuteChanged event to tell WPF to
reevaluate a command—for example, this occurs when you press a key in the text box. All in
all, the CanExecute event will fire quite frequently, and you shouldn’t use time-consuming
code inside it.

However, other factors might affect the command state. In the current example, the isDirty
flag could be modified in response to another action. If you notice that the command state is not
being updated at the correct time, you can force WPF to call CanExecute() on all the commands
you’re using. You do this by calling the static CommandManager.InvalidateRequerySuggested()
method. The command manager then fires the RequerySuggested event to notify the command
sources in your window (buttons, menu items, and so on). The command sources will then
requery their linked commands and update themselves accordingly.

THE LIMITS OF WPF COMMANDS

Unfortunately, WPF commands are able to change only one aspect of the linked element’s state—the value of
its IsEnabled property. It’s not hard to imagine situations where you need something a bit more sophisticated.
For example, you might want to create a PageLayoutView command that can be switched on or off. When
switched on, the corresponding controls should be adjusted accordingly. (For example, a linked menu item
should be checked, and a linked toolbar button should be highlighted, as a CheckBox is when you add it to
a ToolBar.) Unfortunately, there’s no way to keep track of the “checked” state of a command. That means
you’re forced to handle an event for that control and update its state and that of any other linked controls
by hand.

There’s no easy way to solve this problem. Even if you created a custom class that derives from
RoutedUICommand and gave it the functionality for tracking its checked/unchecked state (and raising an
event when this detail changes), you’d also need to replace some of the related infrastructure. For example,
you’d need to create a custom CommandBinding class that could listen to notifications from your custom
command, react when the checked/unchecked state changes, and then update the linked controls.

Checked buttons are an obvious example of user-interface state that falls outside the WPF command
model. However, other details might suit a similar design. For example, you might create some sort of a split
button that can be switched to different “modes.” Once again, there’s no way to propagate this change to
other linked controls through the command model.

CHAPTER 10 ■ COMMANDS 303

9551CH10 2/8/08 2:08 PM Page 303

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Controls with Built-in Commands
Some input controls handle command events on their own. For example, the TextBox class
handles the Cut, Copy, and Paste commands (as well as Undo and Redo commands and some
of the commands from the EditingCommands class that select text and move the cursor to
different positions).

When a control has its own hardwired command logic, you don’t need to do anything to
make your command work. For example, if you took the simple text editor shown in Figure 10-6
and added the following toolbar buttons, you would get automatic support for cutting, copying,
and pasting text.

<ToolBar>
<Button Command="Cut">Cut</Button>
<Button Command="Copy">Copy</Button>
<Button Command="Paste">Paste</Button>

</ToolBar>

Now, you can click any of these buttons (while the text box has focus) to copy, cut, or
paste text from the clipboard. Interestingly, the text box also handles the CanExecute event.
If nothing is currently selected in the text box, the Cut and Copy commands will be disabled.
All three commands will be automatically disabled when the focus changes to another control
that doesn’t support these commands (unless you’ve attached your own CanExecute event
handler that enables them).

This example has an interesting detail. The Cut, Copy, and Paste commands are handled
by the text box that has focus. However, the command is triggered by the button in the toolbar,
which is a completely separate element. In this example, this process works seamlessly
because the button is placed in a toolbar, and the ToolBar class includes some built-in magic
that dynamically sets the CommandTarget property of its children to the control that currently
has focus. (Technically, the ToolBar looks at the parent, which is the window, and finds the
most recently focused control in that context, which is the text box. The ToolBar has a separate
focus scope, and in that context the button is focused.)

If you place your buttons in a different container (other than a ToolBar or Menu),
you won’t have this benefit. That means your buttons won’t work unless you set the
CommandTarget property manually. To do so, you must use a binding expression that
names the target element. For example, if the text box is named txtDocument, you would
define the buttons like this:

<Button Command="Cut"
CommandTarget="{Binding ElementName=txtDocument}">Cut</Button>
<Button Command="Copy"
CommandTarget="{Binding ElementName=txtDocument}">Copy</Button>
<Button Command="Paste"
CommandTarget="{Binding ElementName=txtDocument}">Paste</Button>

Another, simpler option is to create a new focus scope using the attached
FocusManager.IsFocusScope property. This tells WPF to look for the element in the parent’s
focus scope when the command is triggered:

<StackPanel FocusManager.IsFocusScope="True">
<Button Command="Cut">Cut</Button>

CHAPTER 10 ■ COMMANDS304

9551CH10 2/8/08 2:08 PM Page 304

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Button Command="Copy">Copy</Button>
<Button Command="Paste">Paste</Button>

</StackPanel>

This approach has the added advantage that the same commands will apply to multiple
controls, unlike the previous example where the CommandTarget was hard-coded. Inciden-
tally, the Menu and ToolBar set the FocusManager.IsFocusScope property to true by default,
but you can set it to false if you want the simpler command routing behavior that doesn’t hunt
down the focused element in the parent’s context.

In some rare cases, you might find that a control has built-in command support you don’t
want to enable. In this situation, you have three options for disabling the command.

Ideally, the control will provide a property that allows you to gracefully switch off the
command support. This ensures that the control will remove the feature and adjust itself
consistently. For example, the TextBox control provides an IsUndoEnabled property that you
can set to false to prevent the Undo feature. (If IsUndoEnabled is true, the Ctrl+Z keystroke
triggers it.)

If that fails, you can add a new binding for the command you want to disable. This bind-
ing can then supply a new CanExecute event handler that always responds false. Here’s an
example that uses this technique to remove support for the Cut feature of the text box:

CommandBinding commandBinding = new CommandBinding(
ApplicationCommands.Cut, null, SuppressCommand);

txt.CommandBindings.Add(commandBinding);

and here’s the event handler that sets the CanExecute state:

private void SuppressCommand(object sender, CanExecuteRoutedEventArgs e)
{

e.CanExecute = false;
e.Handled = true;

}

Notice that this code sets the Handled flag to prevent the text box from performing its
own evaluation, which might set CanExecute to true.

This approach isn’t perfect. It successfully disables both the Cut keystroke (Ctrl+X) and
the Cut command in the context menu for the text box. However, the option will still appear
in the context menu in a disabled state.

The final option is to remove the input that triggers the command using the
InputBindings collections. For example, you could disable the Ctrl+C keystroke that triggers
the Copy command in a TextBox using code like this:

KeyBinding keyBinding = new KeyBinding(
ApplicationCommands.NotACommand, Key.C, ModifierKeys.Control);

txt.InputBindings.Add(keyBinding);

The trick is to use the special ApplicationCommands.NotACommand value, which is a
command that does nothing. It’s specifically intended for disabling input bindings.

When you use this approach, the Copy command is still enabled. You can trigger it
through buttons of your own creation (or the context menu for the text box, unless you
remove that too by setting the ContextMenu property to null).

CHAPTER 10 ■ COMMANDS 305

9551CH10 2/8/08 2:08 PM Page 305

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note You always need to add new command bindings or input bindings to disable features. You can’t
remove existing bindings. That’s because existing bindings don’t show up in the public CommandBinding
and InputBinding collection. Instead, they’re defined through a separate mechanism, called class bindings.
In Chapter 24 you’ll learn how to wire up commands in this way to the custom controls you build.

Advanced Commands
Now that you’ve seen the basics of commands, it’s worth considering a few more sophisticated
implementations. In the following sections, you’ll learn how to use your own commands, treat
the same command differently depending on the target, and use command parameters. You’ll
also consider how you can support a basic undo feature.

Custom Commands
As well stocked as the five command classes (ApplicationCommands, NavigationCommands,
EditingCommands, ComponentCommands, and MediaCommands) are, they obviously can’t
provide everything your application might need. Fortunately, it’s easy to define your own cus-
tom commands. All you need to do is instantiate a new RoutedUICommand object.

The RoutedUICommand class provides several constructors. You can create a Routed-
UICommand with no additional information, but you’ll almost always want to supply the
command name, the command text, and the owning type. In addition, you may want to
supply a keyboard shortcut for the InputGestures collection.

The best design is to follow the example of the WPF libraries and expose your custom
commands through static properties. Here’s an example with a command named Requery:

public class DataCommands
{

private static RoutedUICommand requery;

static DataCommands()
{

// Initialize the command.
InputGestureCollection inputs = new InputGestureCollection();
inputs.Add(new KeyGesture(Key.R, ModifierKeys.Control, "Ctrl+R"));
requery = new RoutedUICommand(
"Requery", "Requery", typeof(DataCommands), inputs);

}

public static RoutedUICommand Requery
{

get { return requery; }
}

}

CHAPTER 10 ■ COMMANDS306

9551CH10 2/8/08 2:08 PM Page 306

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip You can also modify the RoutedCommand.InputGestures collection of an existing command—for
example, by removing existing key bindings or adding new ones. You can even add mouse bindings, so a
command is triggered when a combination of a mouse button and modifier key is pressed (although in this
case you’ll want to place the command binding on just the element where the mouse handling should come
into effect).

Once you’ve defined a command, you can use it in your command bindings just like any
of the ready-made commands that are provided by WPF. However, there’s one twist. If you
want to use your command in XAML, you need to first map your .NET namespace to an XML
namespace. For example, if your class is in a namespace named Commands (the default for a
project named Commands), you would add this namespace mapping:

xmlns:local="clr-namespace:Commands"

In this example, local is chosen as the namespace alias. You can use any alias you want, as
long as you are consistent in your XAML file.

Now you can access your command through the local namespace:

<CommandBinding Command="local:DataCommands.Requery"
Executed="RequeryCommand_Executed"></CommandBinding>

Here’s a complete example of a simple window that includes a button that triggers the
Requery command:

<Window x:Class="Commands.CustomCommand"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="CustomCommand" Height="300" Width="300">

<Window.CommandBindings>
<CommandBinding Command="local:DataCommands.Requery"
Executed="RequeryCommand_Executed"></CommandBinding>

</Window.CommandBindings>

<Button Margin="5" Command="local:DataCommands.Requery">Requery</Button>
</Window>

To complete this example, you simply need to implement the RequeryCommand_
Executed() event handler in your code. Optionally, you can also use the CanExecute event to
selectively enable or disable this command.

■Tip When using custom commands, you may need to call the static CommandManager.InvalidateRequery-
Suggested() method to tell WPF to reevaluate the state of your command. WPF will then trigger the CanExecute
event and update any command sources that use that command.

CHAPTER 10 ■ COMMANDS 307

9551CH10 2/8/08 2:08 PM Page 307

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Using the Same Command in Different Places
One of the key ideas in the WPF command model is scope. Although there is exactly one copy
of every command, the effect of using the command varies depending on where it’s triggered.
For example, if you have two text boxes, they both support the Cut, Copy, and Paste com-
mands, but the operation happens only in the text box that currently has focus.

You haven’t yet learned how to do this with the commands that you wire up yourself. For
example, imagine you create a window with space for two documents, as shown in Figure 10-7.

Figure 10-7. A two-file-at-once text editor

If you use the Cut, Copy, and Paste commands, you’ll find they automatically work on the
right text box. However, the commands you’ve implemented yourself—New, Open, and Save—
do not. The problem is that when the Executed event fires for one of these commands, you
have no idea whether it pertains to the first or second text box. Although the ExecutedRouted-
EventArgs object provides a Source property, this property reflects the element that has the
command binding (just like the sender reference). So far, all your command bindings have
been attached to the containing window.

The solution to this problem is to bind the command differently in each text box using the
CommandBindings collection for the text box. Here’s an example:

<TextBox.CommandBindings>
<CommandBinding Command="ApplicationCommands.Save"
Executed="SaveCommand_Executed"
CanExecute="SaveCommand_CanExecute"></CommandBinding>

</TextBox.CommandBindings>

Now the text box handles the Executed event. In your event handler, you can use this
information to make sure the right information is saved:

private void SaveCommand_Executed(object sender, ExecutedRoutedEventArgs e)
{

string text = ((TextBox)sender).Text;

CHAPTER 10 ■ COMMANDS308

9551CH10 2/8/08 2:08 PM Page 308

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

MessageBox.Show("About to save: " + text);
...
isDirty = false;

}

This implementation has two minor issues. First, the simple isDirty flag no longer
works, because you have to keep track of two text boxes. This problem has several solutions.
You could use the TextBox.Tag property to store the isDirty flag—that way whenever the
CanExecuteSave() method is called, you simply look at the Tag property of the sender. Or,
you could create a private dictionary collection that stores the isDirty value, indexed by the
control reference. When the CanExecuteSave() method is triggered, you simply look for
the isDirty value that belongs to the sender. Here’s the full code you’d use:

private Dictionary<Object, bool> isDirty = new Dictionary<Object, bool>();

private void txt_TextChanged(object sender, RoutedEventArgs e)
{

isDirty[sender] = true;
}

private void SaveCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
{

if (isDirty.ContainsKey(sender) && isDirty[sender])
{

e.CanExecute = true;
}
else
{

e.CanExecute = false;
}

}

The other issue with the current implementation is that it creates two command bindings
where you really need only one. This adds clutter to your XAML file and makes it more difficult
to maintain. This problem is especially bad if you have a large number of commands that are
shared between both text boxes.

The solution is to create a single command binding and add that same binding to the
CommandBindings collection of both text boxes. This is easy to accomplish in code. If you
want to polish it off in XAML, you need to use another feature you haven’t considered yet—
WPF resources. Although you won’t get the full story about WPF resources until Chapter 11,
the basics are easy enough. You simply add a section to the top of your window that creates
the object you need to use and gives it a key name:

<Window.Resources>
<CommandBinding x:Key="binding" Command="ApplicationCommands.Save"
Executed="SaveCommand" CanExecute="CanExecuteSave">

</CommandBinding>
</Window.Resources>

CHAPTER 10 ■ COMMANDS 309

9551CH10 2/8/08 2:08 PM Page 309

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The object is then stored in a dictionary collection so you can access it elsewhere. To
insert the object into another place in your markup, you use the StaticResource extension and
supply the key name:

<TextBox.CommandBindings>
<StaticResource ResourceKey="binding"></StaticResource>

</TextBox.CommandBindings>

Using a Command Parameter
So far, the examples you’ve seen haven’t used the command parameter to pass extra informa-
tion. However, some commands always require some extra information. For example, the
NavigationCommands.Zoom command needs a percentage value to use for its zoom. Simi-
larly, you can imagine that some of the commands you’re already using might require extra
information in certain scenarios. For example, if you use the Save command with the two-file
text editor in Figure 10-7, you need to know what file to use when saving the document.

The solution is to set the CommandParameter property. You can set this directly on an
ICommandSource control (and you can even use a binding expression that gets a value from
another control). For example, here’s how you might set the zoom percentage for a button
that’s linked to the Zoom command by reading the value from another text box:

<Button Command="NavigationCommands.Zoom"
CommandParameter="{Binding ElementName=txtZoom, Path=Text}">
Zoom To Value

</Button>

Unfortunately, that approach doesn’t always work. For example, in the two-file text editor,
the Save button is reused for each text box, but each text box needs to use a different file
name. In situations like these, you’re forced to store the information somewhere else (for
example, in the TextBox.Tag property or in a separate collection that indexes file names to line
up with your text boxes), or you need to trigger the command programmatically like this:

ApplicationCommands.New.Execute(theFileName, (Button)sender);

Either way, the parameter is made available in the Executed event handler through the
ExecutedRoutedEventArgs.Parameter property.

Tracking and Reversing Commands
One feature that the Command model lacks is the ability to make a command reversible.
Although there is an ApplicationCommands.Undo command, this command is generally used
by edit controls (such as the TextBox) that maintain their own Undo histories. If you want to
support an application-wide Undo feature, you need to track the previous state internally and
restore it when the Undo command is triggered.

Unfortunately, it’s not easy to extend the WPF command system. Relatively few entry
points are available for you to connect custom logic, and those that exist are not documented.
To create a general-purpose, reusable Undo feature, you’d need to create a whole new set of
“undoable” command classes and a specialized type of command binding—in essence, you’d
be forced to replace the WPF command system with a new one of your own creation.

CHAPTER 10 ■ COMMANDS310

9551CH10 2/8/08 2:08 PM Page 310

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

A better solution is to design your own system for tracking and reversing commands but
to use the CommandManager class to keep a command history. Figure 10-8 shows an example
that does exactly that. The window consists of two text boxes, where you can type freely, and a
list box that keeps track of every command that’s taken place in both text boxes. You can
reverse the last command by clicking the Reverse Last Action button.

Figure 10-8. An application-wide Undo feature

To build this solution, you need a few new techniques. The first detail is a class for track-
ing the command history. It might occur to you to build an undo system that stores a list of
recent commands. (Perhaps you’d even like to create a derived ReversibleCommand class that
exposes a method such as Unexecute() for reversing the task it did previously.) Unfortunately,
this system won’t work because all WPF commands are treated like singletons. That means
there is only one instance of each command in your application.

To understand the problem, imagine you support the EditingCommands.Backspace com-
mand, and the user performs several backspaces in a row. You can register that fact by adding
the Backspace command to a stack of recent commands, but you’re actually adding the same
command object several times. As a result, there’s no easy way to store other information
along with that command, such as the character that’s just been deleted. If you want to store
this state, you’ll need to build your own data structure to do it. This example uses a class
named CommandHistoryItem.

Every CommandHistoryItem object tracks several pieces of information:

• The command name.

• The element on which the command was performed. In this example, there are two text
boxes, so it could be either one.

• The property that was changed in the target element. In this example, it will be the Text
property of the TextBox class.

• An object that you can use to store the previous state of the affected element (for exam-
ple, the text the text box had before the command was executed).

CHAPTER 10 ■ COMMANDS 311

9551CH10 2/8/08 2:08 PM Page 311

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note This design is fairly crafty in that it stores the state for one element. If you stored a snapshot of the
state in the entire window, you’d use significantly more memory. However, if you have large amounts of data
(such as text boxes with dozens of lines), the Undo overhead could be more than trivial. The solution then is
to limit the number of items you keep in the history or use a more intelligent (and more complex) routine that
stores information about only the changed data, rather than all the data.

The CommandHistoryItem also includes one method, an all-purpose Undo() method.
This method uses reflection to apply the previous value to the modified property. This works
for restoring the text in a TextBox, but in a more complex application you’d need a hierarchy
of CommandHistoryItem classes, each of which is able to revert a different type of action in a
different way.

Here’s the complete code for the CommandHistoryItem class, which conserves some
space by using the C# language feature automatic properties:

public class CommandHistoryItem
{

public string CommandName
{ get; set; }

public UIElement ElementActedOn
{ get; set; }

public string PropertyActedOn
{ get; set; }

public object PreviousState
{ get; set; }

public CommandHistoryItem(string commandName)
: this(commandName, null, "", null)

{ }

public CommandHistoryItem(string commandName, UIElement elementActedOn,
string propertyActedOn, object previousState)

{
CommandName = commandName;
ElementActedOn = elementActedOn;
PropertyActedOn = propertyActedOn;
PreviousState = previousState;

}

public bool CanUndo
{

CHAPTER 10 ■ COMMANDS312

9551CH10 2/8/08 2:08 PM Page 312

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

get { return (ElementActedOn != null && PropertyActedOn != ""); } }

public void Undo()
{

Type elementType = ElementActedOn.GetType();
PropertyInfo property = elementType.GetProperty(PropertyActedOn);
property.SetValue(ElementActedOn, PreviousState, null);

}
}

The next ingredient you need is a command that performs the application-wide Undo
action. The ApplicationCommands.Undo command isn’t suitable, because it’s already used for
individual controls for a different purpose (reverting the last editing change). Instead, you
need to create a new command, as shown here:

private static RoutedUICommand applicationUndo;

public static RoutedUICommand ApplicationUndo
{

get { return MonitorCommands.applicationUndo; }
}

static MonitorCommands()
{

applicationUndo = new RoutedUICommand(
"ApplicationUndo", "Application Undo", typeof(MonitorCommands));

}

In this example, the command is defined in a window class named MonitorCommands.
So far, this code is relatively unremarkable (aside from the nifty bit of reflection code that

performs the undo operation). The more difficult part is integrating this command history
into the WPF command model. An ideal solution would do this in such a way that you can
track any command, regardless of how it’s triggered and how it’s bound. In a poorly designed
solution, you’d be forced to rely on a whole new set of custom command objects that have this
logic built in or to manually handle the Executed event of every command.

It’s easy enough to react to a specific command, but how can you react when any com-
mand executes? The trick is to use the CommandManager, which exposes a few static events.
These events include CanExecute, PreviewCanExecute, Executed, and PreviewCanExecuted.
In this example, it’s the last two that are most interesting, because they fire whenever any
command is executed.

The Executed event is suppressed by the CommandManager, but you can still attach an
event handler using the UIElement.AddHandler() method and passing in a value of true for
the optional third parameter. This allows you to receive the event even though it’s handled, as
described in Chapter 6. However, the Executed event fires after the event is executed, at which
point it’s too late to save the state of the affected control in your command history. Instead,
you need to respond to the PreviewExecuted event, which fires just before.

CHAPTER 10 ■ COMMANDS 313

9551CH10 2/8/08 2:08 PM Page 313

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the code that attaches the PreviewExecuted event handler in the window construc-
tor and removes it when the window is closed:

public MonitorCommands()
{

InitializeComponent();

this.AddHandler(CommandManager.PreviewExecutedEvent,
new ExecutedRoutedEventHandler(CommandExecuted));

}

private void window_Unloaded(object sender, RoutedEventArgs e)
{

this.RemoveHandler(CommandManager.PreviewExecutedEvent,
new ExecutedRoutedEventHandler(CommandExecuted));

}

When the PreviewExecuted event fires, you need to determine whether it’s a command
you want to pay attention to. If so, you can create the CommandHistoryItem and add it to the
Undo stack. You also need to watch out for two potential problems. First, when you click a
toolbar button to perform a command on the text box, the CommandExecuted event is raised
twice—once for the toolbar button and once for the text box. This code avoids duplicate
entries in the Undo history by ignoring the command if the sender is ICommandSource.
Second, you need to explicitly ignore the commands you don’t want to add to the Undo
history. One example is the ApplicationUndo command, which allows you to reverse the
previous action.

private void CommandExecuted(object sender, ExecutedRoutedEventArgs e)
{

// Ignore menu button source.
if (e.Source is ICommandSource) return;

// Ignore the ApplicationUndo command.
if (e.Command == MonitorCommands.ApplicationUndo) return;

TextBox txt = e.Source as TextBox;
if (txt != null)
{

RoutedCommand cmd = (RoutedCommand)e.Command;
CommandHistoryItem historyItem = new CommandHistoryItem(
cmd.Name, txt, "Text", txt.Text);

ListBoxItem item = new ListBoxItem();
item.Content = historyItem;
lstHistory.Items.Add(historyItem);

}
}

CHAPTER 10 ■ COMMANDS314

9551CH10 2/8/08 2:08 PM Page 314

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This example stores all CommandHistoryItem objects in a ListBox. The ListBox has
DisplayMember set to Name so that it shows the CommandHistoryItem.Name property of
each item. This code supports the Undo feature only if the command is being fired for a text
box. However, it’s generic enough to work with any text box on the window. You could extend
this code to support other controls and properties.

The last detail is the code that performs the application-wide Undo. Using a CanExecute
handler, you can make sure that this code is executed only when there is at least one item in
the Undo history:

private void ApplicationUndoCommand_CanExecute(object sender,
CanExecuteRoutedEventArgs e)

{
if (lstHistory == null || lstHistory.Items.Count == 0)
e.CanExecute = false;

else
e.CanExecute = true;

}

To revert the last change, you simply call the Undo() method of the CommandHistoryItem
and then remove it from the list:

private void ApplicationUndoCommand_Executed(object sender, RoutedEventArgs e)
{

CommandHistoryItem historyItem = (CommandHistoryItem)
lstHistory.Items[lstHistory.Items.Count - 1];

if (historyItem.CanUndo) historyItem.Undo();
lstHistory.Items.Remove(historyItem);

}

Although this example demonstrates the concept and presents a simple application
with multiple controls that fully support the Undo feature, you’d need to make many refine-
ments before you would use an approach like this in a real-world application. For example,
you’d need to spend considerable time refining the event handler for the Command-
Manager.PreviewExecuted event to ignore commands that clearly shouldn’t be tracked.
(Currently, events such as selecting text with the keyboard and hitting the spacebar raise
commands.) Similarly, you’d probably want to add CommandHistoryItem objects for action
that should be reversible but aren’t represented by commands, such as typing a bunch of text
and then navigating to another control. Finally, you’d probably want to limit the Undo history
to just the most recent commands.

The Last Word
In this chapter, you explored the WPF command model. You learned how to hook controls to
commands, respond when the commands are triggered, and handle commands differently
based on where they occur. You also designed your own custom commands and learned how
to extend the WPF command system with a basic command history and Undo feature.

CHAPTER 10 ■ COMMANDS 315

9551CH10 2/8/08 2:08 PM Page 315

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Overall, the WPF command model isn’t quite as streamlined as other bits of WPF architec-
ture. The way that it plugs into the routed event model requires a fairly complex assortment of
classes, and the inner workings aren’t extensible. However, the command model is still a great
stride forward over Windows Forms, which lacked any sort of command feature.

CHAPTER 10 ■ COMMANDS316

9551CH10 2/8/08 2:08 PM Page 316

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Resources

In WPF applications, there are two very different ingredients that are both described as
resources:

• An assembly resource is a chunk of binary data that’s embedded in your compiled
assembly. You can use an assembly resource to make sure your application has an
image or sound file it needs.

• An object resource is a .NET object that you want to define in one place and use in sev-
eral others. Although an object resource can be created in code, it’s usually defined in
XAML markup. This type of resource saves repetitive coding and allows you to store
information (such as your application’s color scheme) in a central place so it can be
modified easily. Object resources are also the basis for reusing WPF styles.

In this chapter, you’ll take a look at assembly resources and the pack URI syntax they use.
You’ll also learn about the emerging support for localization in WPF. Then you’ll examine the
object resource model and see how it can simplify your XAML markup.

Assembly Resources
Assembly resources in a WPF application work in essentially the same way as assembly
resources in other .NET applications. The key difference is the addressing system that you
use to refer to them.

■Note Assembly resources are also known as binary resources because they’re embedded in compiled
assembly (the EXE or DLL file for your project) as an opaque blob of binary data.

You’ve already seen binary resources at work in Chapter 2. That’s because every time you
compile your application, each XAML file in your project is converted to a BAML file that’s
more efficient to parse. These BAML files are embedded in your assembly as individual
resources. It’s just as easy to add your own resources.

317

C H A P T E R 1 1

■ ■ ■

9551CH11 2/8/08 2:08 PM Page 317

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Adding Resources
You can add your own resources by adding a file to your project and setting its Build Action
property (in the Properties window) to Resource. Here’s the good news—that’s all you need
to do.

For better organization, you can create subfolders in your project (right-click the Solution
Explorer and choose Add ➤ New Folder) and use these to organize different types of resources.
Figure 11-1 shows an example where several image resources are grouped in a folder named
Images, and two audio fields appear in a folder named Sounds.

Figure 11-1. An application with assembly resources

Resources that you add in this way are easy to update. All you need to do is replace the file
and recompile your application. For example, if you create the project shown in Figure 11-1,
you could copy all new files to the Images folder using Windows Explorer. As long as you’re
replacing the contents of files that are included in your project, you don’t need to take any
special step in Visual Studio (aside from actually compiling your application).

There are a couple of things that you must not do in order to use assembly resources suc-
cessfully:

• Don’t make the mistake of setting the Build Action property to Embedded Resource.
Even though all assembly resources are embedded resources by definition, the Embed-
ded Resource build action places the binary data in another area where it’s more
difficult to access. In WPF applications, it’s assumed that you always use a build type of
Resource.

• Don’t use the Resources tab in the Project Properties window. WPF does not support
this type of resource URI.

CHAPTER 11 ■ RESOURCES318

9551CH11 2/8/08 2:08 PM Page 318

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Curious programmers naturally want to know what happens to the resources they
embed in their assemblies. WPF merges them all into a single stream (along with BAML
resources). This single resource stream is named in this format: AssemblyName.g.resources.
In Figure 11-1, the application is named AssemblyResources and the resource stream is named
AssemblyResources.g.resources.

If you want to actually see the embedded resources in a compiled assembly, you can use a
disassembler. Unfortunately, the .NET staple—ildasm—doesn’t have this feature. However,
you can download the free and much more elegant Reflector tool at http://www.aisto.com/
roeder/DotNet, which does let you dig into your resources. Figure 11-2 shows the resources for
the project shown in Figure 11-1, using Reflector.

Figure 11-2. Assembly resources in Reflector

You’ll see the BAML resource for the only window in the application, along with all the
images and audio files. The spaces in the file names don’t cause a problem in WPF because
Visual Studio is intelligent enough to escape them properly. You’ll also notice that the file
names are changed to lowercase when your application is compiled.

Retrieving Resources
Adding resources is clearly easy enough, but how do you actually use them? There’s more
than one approach that you can use. The low-level choice is to retrieve a StreamResourceInfo
object that wraps your data, and then decide what to do with it. You can do this through code,
using the static Application.GetResourceStream() method.

For example, here’s the code that gets the StreamResourceInfo object for the winter.jpg
image:

StreamResourceInfo sri = Application.GetResourceStream(
new Uri("images/winter.jpg", UriKind.Relative));

CHAPTER 11 ■ RESOURCES 319

9551CH11 2/8/08 2:08 PM Page 319

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.aisto.com

Once you have a StreamResourceInfo object, you can get two pieces of information.
The ContentType property returns a string describing the type of data—in this example, it’s
image/jpg. The Stream property returns an UnmanagedMemoryStream object that you can
use to read the data, one byte at a time.

The GetResourceStream() method is really just a helper method that wraps a
ResourceManager and ResourceSet classes. These classes are a core part of the .NET Frame-
work resource system, and they’ve existed since version 1.0. Without the GetResourceStream()
method, you’d need to specifically access the AssemblyName.g.resources resource stream
(which is where all WPF resources are stored) and search for the object you want. Here’s the
far uglier code that does the trick:

Assembly assembly = Assembly.GetAssembly(this.GetType());
string resourceName = assembly.GetName().Name + ".g";
ResourceManager rm = new ResourceManager(resourceName, assembly);

using (ResourceSet set =
rm.GetResourceSet(CultureInfo.CurrentCulture, true, true))

{
UnmanagedMemoryStream s;

// The second parameter (true) performs a case-insensitive resource lookup.
s = (UnmanagedMemoryStream)set.GetObject("images/winter.jpg", true);
...

}

The ResourceManager and ResourceSet classes also allow you to do a few things you can’t
do with the Application class alone. For example, the following snippet of code shows you the
name of all the embedded resources in the AssemblyName.g.resources stream:

Assembly assembly = Assembly.GetAssembly(this.GetType());
string resourceName = assembly.GetName().Name + ".g";
ResourceManager rm = new ResourceManager(resourceName, assembly);

using (ResourceSet set =
rm.GetResourceSet(CultureInfo.CurrentCulture, true, true))

{
foreach (DictionaryEntry res in set)
{

MessageBox.Show(res.Key.ToString());
}

}

Resource-Aware Classes
Even with the help of the GetResourceStream() method, you’re unlikely to bother
retrieving a resource directly. The problem is that this approach gets you a relatively low-level
UnmanagedMemoryStream object, which isn’t much use on its own. Instead, you’ll want
to translate the data into something more meaningful, such as a higher-level object with
properties and methods.

CHAPTER 11 ■ RESOURCES320

9551CH11 2/8/08 2:08 PM Page 320

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF provides a few classes that work with resources natively. Rather than forcing you to
do the work of resource extraction (which is messy and not typesafe), they take the name of
the resource you want to use. For example, if you want to show the Blue hills.jpg image in the
WPF Image element, you could use this markup:

<Image Source="Images/Blue hills.jpg"></Image>

Notice that the backslash becomes a forward slash because that’s the convention WPF
uses with its URIs. (It actually works both ways, but the forward slash is recommended for
consistency.)

You can perform the same trick in code. In the case of an Image element, you simply need
to set the Source property with a BitmapImage object that identifies the location of the image
you want to display as a URI. You could specify a fully qualified file path like this:

img.Source = new BitmapImage(new Uri(@"d:\Photo\Backgrounds\arch.jpg"));

But if you use a relative URI, you can pull a different resource out of the assembly and
pass it to the image, with no UnmanagedMemoryStream object required:

img.Source = new BitmapImage(new Uri("images/winter.jpg", UriKind.Relative));

This technique constructs a URI that consists of the base application URI with images/
winter.jpg added on the end. Most of the time, you don’t need to think about this URI syntax—
as long as you stick to relative URIs, it all works seamlessly. However, in some cases it’s
important to understand the URI system in a bit more detail, particularly if you want to access
a resource that’s embedded in another assembly. The following section digs into WPF’s URI
syntax.

Pack URIs
As you learned in Chapter 9 when you were dealing with pages, WPF lets you address com-
piled resources (such as the BAML for a page) using the pack URI syntax. The Image and tag in
the previous section referenced a resource using a relative URI, like this:

images/winter.jpg

This is equivalent to the more cumbersome absolute URI shown here:

pack://application:,,,/images/winter.jpg

You can use this absolute URI when setting the source of an image, although it doesn’t
provide any advantage:

img.Source = new BitmapImage(new Uri("pack://application:,,,/images/winter.jpg"));

■Tip When using an absolute URI, you can use a file path, a UNC path to a network share, a website URL,
or a pack URI that points to an assembly resource. Just be aware that if your application can’t retrieve the
resource from the expected location, an exception will occur. If you’ve set the URI in XAML, the exception will
happen when the page is being created.

CHAPTER 11 ■ RESOURCES 321

9551CH11 2/8/08 2:08 PM Page 321

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

pack://application:,,,/images/winter.jpg
pack://application:,,,/images/winter.jpg

The pack URI syntax is borrowed from the XPS (XML Paper Specification) standard. The
reason it looks so strange is because it embeds one URI inside another. The three commas are
actually three escaped slashes. In other words, the pack URI shown previously contains an
application URI that starts with application:///.

Resources in Other Assemblies
Pack URIs also allow you to retrieve resources that are embedded in another library (in other
words, in a DLL assembly that your application uses). In this case, you need to use the follow-
ing syntax:

pack://application:,,,/AssemblyName;component/ResourceName

For example, if your image is embedded in a referenced assembly named ImageLibrary,
you’d use a URI like this:

img.Source = new BitmapImage(
new Uri("pack://application:,,,/ImageLibrary;component/images/winter.jpg"));

Or, more practically, you’d use the equivalent relative URI:

img.Source = new BitmapImage(
new Uri("ImageLibrary;component/images/winter.jpg", UriKind.Relative));

If you’re using a strong-named assembly, you can replace the assembly name with a qual-
ified assembly reference that includes the version, the public key token, or both. You separate
each piece of information using a semicolon and precede the version number with the letter v.
Here’s an example with just a version number:

img.Source = new BitmapImage(
new Uri("ImageLibrary;v1.25;component/images/winter.jpg",
UriKind.Relative));

And here’s an example with both the version number and the public key token:

img.Source = new BitmapImage(
new Uri("ImageLibrary;v1.25;dc642a7f5bd64912;component/images/winter.jpg",
UriKind.Relative));

Content Files
When you embed a file as a resource, you place it into the compiled assembly and ensure it’s
always available. This is an ideal choice for deployment, and it side-steps possible problems.
However, there are some situations where it isn’t practical:

• You want to change the resource file without recompiling the application.

• The resource file is very large.

• The resource file is optional and may not be deployed with the assembly.

• The resource is a sound file.

CHAPTER 11 ■ RESOURCES322

9551CH11 2/8/08 2:08 PM Page 322

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

pack://application:,,,/AssemblyName
pack://application:,,,/ImageLibrary

■Note As you’ll discover in Chapter 22, the WPF sound classes don’t support assembly resources. As a
result, there’s no way to pull an audio file out of a resource stream and play it—at least not without saving it
first. This is a limitation of the underlying bits of technology on which these classes are based (namely, the
Win32 API and Media Player).

Obviously, you can deal with this issue by deploying the files with your application and
adding code to your application to read these files from the hard drive. However, WPF has a
convenient option that can make this process easier to manage. You can specifically mark
these noncompiled files as content files.

Content files won’t be embedded in your assembly. However, WPF adds an Assembly-
AssociatedContentFile attribute to your assembly that advertises the existence of each content
file. This attribute also records the location of each content file relative to your executable
file (indicating whether the content file is in the same folder as the executable file or in a
subfolder). Best of all, you can use the same URI system to use content files with resource-
aware elements such as the Image class.

To try this out, add a sound file to your project, select it in the Solution Explorer, and
change the Build Action in the Properties window to Content. Make sure that the Copy to
Output Directory setting is set to Copy Always to make sure the sound file is copied to the
output directory when you build your project.

Now you can use a relative URI to point a MediaElement to your content file:

<MediaElement Name="Sound" Source="Sounds/start.wav"
LoadedBehavior="Manual"></MediaElement>

To see an application that uses both application resources and content files, check out the
downloadable code for this chapter.

Localization
Assembly resources also come in handy when you need to localize a window. Using resources,
you allow controls to change according to the current culture settings of the Windows operat-
ing system. This is particularly useful with text labels and images that need to be translated
into different languages.

In some frameworks, localization is performed by providing multiple copies of user-
interface details such as string tables and images. In WPF, localization isn’t this fine-grained.
Instead, the unit of localization is the XAML file (technically, the compiled BAML resource
that’s embedded in your application). If you want to support three different languages, you
need to include three BAML resources. WPF chooses the right one based on the current cul-
ture on the computer that’s executing the application. (Technically, WPF bases its decision on
the CurrentUICulture property of the thread that’s hosting the user interface.)

Of course, this process wouldn’t make much sense if you need to create (and deploy) an
all-in-one assembly with all the localized resources. This wouldn’t be much better than creat-
ing separate versions of your application for every language because you’d need to rebuild
your entire application every time you want to add support for a new culture (or if you need to
tweak the text in one of the existing resources). Fortunately, .NET solves this problem using

CHAPTER 11 ■ RESOURCES 323

9551CH11 2/8/08 2:08 PM Page 323

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

satellite assemblies—assemblies that work with your application but are stored in separate
subfolders. When you create a localized WPF application, you place each localized BAML
resource in a separate satellite assembly. To allow your application to use this assembly, you
place it in a subfolder under the main application folder, such as fr-FR for French (France).
Your application can then bind to this satellite assembly automatically using a technique
called probing, which has been a part of the .NET Framework since version 1.0.

The challenge in localizing an application is in the workflow—in other words, how do
you pull your XAML files out of your project, get them localized, compile them into satellite
assemblies, and then bring them back to your application? This is the shakiest part of the
localization story in WPF because there aren’t yet any tools (including Visual Studio) that have
design support for localization. It’s likely that better tools will emerge in the future, but WPF
still gives you everything you need to localize your application with a bit more work.

Building Localizable User Interfaces
Before you begin to translate anything, you need to consider how your application will
respond to changing content. For example, if you double the length of all the text in your user
interface, how will the overall layout of your window be adjusted? If you’ve built a truly adapt-
able layout (as described in Chapter 4), you shouldn’t have a problem. Your interface should
be able to adjust itself to fit dynamic content. Some good practices that suggest you’re on the
right track include the following:

• Not using hard-coded widths or heights (or at least not using them with elements that
contain nonscrollable text content).

• Setting the Window.SizeToContent property to Width, Height, or WidthAndHeight so it
can grow as needed. (Again, this isn’t always required, depending on the structure of
your window, but it’s sometimes useful.)

• Using the ScrollViewer to wrap large amounts of text.

OTHER CONSIDERATIONS FOR LOCALIZATION

Depending on the languages in which you want to localize your application, there are other considerations
that you might need to take into account. Although a discussion of user interface layout in different languages
is beyond the scope of this book, here are some issues to consider:

• If you want to localize your application into a language that has a dramatically different character set,
you’ll need to use a different font. You can do this by localizing the FontFamily property in your user
interface, or you can use a composite font such as Global User Interface, Global Sans Serif, or Global
Serif, which support all languages.

• You may also need to think about how your layout works in a right-to-left layout (rather than the stan-
dard English left-to-right layout). For example, Arabic and Hebrew use a right-to-left layout. You can
control this behavior by setting the FlowDirection property on each page or window in your application.
For more information about right-to-left layouts, see the “Bidirectional Features” topic in the Visual
Studio help.

CHAPTER 11 ■ RESOURCES324

9551CH11 2/8/08 2:08 PM Page 324

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Preparing an Application for Localization
The next step is to switch on localization support for your project. This takes just one
change—you need to add the following element to the .csproj file for your project anywhere
in the first <PropertyGroup> element:

<UICulture>en-US</UICulture>

This tells the compiler that the default culture for your application is U.S. English (obvi-
ously, you could choose something else if that’s appropriate). Once you make this change, the
build process changes. The next time you compile your application, you’ll end up with a sub-
folder named en-US. Inside that folder is a satellite assembly with the same name as your
application and the extension .resources.dll (for example, LocalizableApplication.resources.dll).
This assembly contains all the compiled BAML resources for your application, which were previ-
ously stored in your main application assembly.

UNDERSTANDING CULTURES

Technically, you don’t localize an application for a specific language but for a culture, which takes into
account regional variation. Cultures are identified by two identifiers separated by a hyphen. The first portion
identifies the language. The second portion identifies the country. Thus, fr-CA is French as spoken in Canada,
while fr-FR represents French in France. For a full list of culture names and their two-part identifiers, refer to
the System.Globalization.CultureInfo class in the Visual Studio help.

This presumes a fine-grained localization that might be more than you need. Fortunately, you can local-
ize an application based just on a language. For example, if you want to define settings that will be used for
any French-language region, you could use fr for your culture. This works as long as there isn’t a more spe-
cific culture available that matches the current computer exactly.

Now, when you run this application, the common language runtime (CLR) automatically
looks for satellite assemblies in the right directory based on the computer’s regional settings
and loads the correct localized resource. For example, if you’re running in the fr-FR culture,
the CLR will look for an fr-FR subdirectory and use the satellite assemblies it finds there. That
means that if you want to add support for more cultures to a localized application, you simply
need to add more subfolders and satellite assemblies without disturbing the original applica-
tion executable.

When the CLR begins probing for a satellite assembly, it follows a few simple rules of
precedence:

1. First, it checks for the most specific directory that’s available. That means it looks for a
satellite assembly that’s targeted for the current language and region (such as fr-FR).

2. If it can’t find this directory, it looks for a satellite assembly that’s targeted for the cur-
rent language (such as fr).

3. If it can’t find this directory, an IOException exception is thrown.

CHAPTER 11 ■ RESOURCES 325

9551CH11 2/8/08 2:08 PM Page 325

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This list is slightly simplified. If you decide to use the global assembly cache (GAC) to
share some components over the entire computer, you’ll need to realize that .NET actually
checks the GAC at the beginning of step 1 and step 2. In other words, in step 1, the CLR checks
whether the language- and region-specific version of the assembly is in the GAC and uses it if
it is. The same is true for step 2.

The Translation Process
Now you have all the infrastructure you need for localization. All you need to do is create the
appropriate satellite assemblies with the alternate versions of your windows (in BAML form),
and put these assemblies in the right folders. Doing this by hand would obviously be a lot of
work. Furthermore, localization usually involves a third-party translation service that needs
to work with your original text. Obviously, it’s too much to expect that your translators will be
skilled programmers who can find their way around a Visual Studio project (and you’re unlikely
to trust them with the code anyway). For all these reasons, you need a way to manage the local-
ization process.

Currently, WPF has a partial solution. It works, but it requires a few trips to the command
line, and one piece isn’t finalized. The basic process works like this:

1. You flag the elements in your application that need to be localized. Optionally, you
may add additional comments to help the translator.

2. You extract the localizable details to a .csv file (a comma-separated text file) and send it
off to your translation service.

3. Once you receive the translated version of this file, you run locbaml again to generate
the satellite assembly you need.

You’ll follow these steps in the following sections.

Preparing Markup Elements for Localization
The first step is to add a specialized Uid attribute to all the elements you want to localize.
Here’s an example:

<Button x:Uid="Button_1" Margin="10" Padding="3">A button</Button>

The Uid attribute plays a similar role as the Name attribute—it uniquely identifies a but-
ton in the context of a single XAML document. That way you can specify localized text for just
this button. However, there are a few reasons why WPF uses a Uid instead of just reusing the
Name value—including the fact that the name might not be assigned, it might be set accord-
ing to different conventions and used in code, and so on. In fact, the Name property is itself a
localizable piece of information.

■Note Obviously, text isn’t the only detail you need to localize. You also need to think about fonts, font
sizes, margins, padding, other alignment-related details, and so on. In WPF, every property that may need to
be localized is decorated with the System.Windows.LocalizabilityAttribute.

CHAPTER 11 ■ RESOURCES326

9551CH11 2/8/08 2:08 PM Page 326

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although you don’t need to, you should add the Uid to every element in every window of a
localizable application. This could add up to a lot of extra work, but the msbuild.exe tool can
do it automatically. Just use it like this:

msbuild /t:updateuid LocalizableApplication.csproj

This assumes you wish to add Uids to an application named LocalizableApplication.
And if you want to check whether your elements all have Uids (and make sure you haven’t

accidentally duplicated one), you can use msbuild.exe like this:

msbuild /t:checkuid LocalizableApplication.csproj

■Tip The easiest way to run msbuild is to launch the Visual Studio Command Prompt (Start ➤ Programs ➤
Microsoft Visual Studio 2005 ➤ Visual Studio Tools ➤ Visual Studio 2005 Command Prompt) so that the path
is set to give you easy access. Then you can quickly move to your project folder to run msbuild.exe.

When you generate Uids using msbuild, your Uids are set to match the name of the corre-
sponding control. Here’s an example:

<Button x:Uid="cmdDoSomething" Name="cmdDoSomething" Margin="10" Padding="3">

If your element doesn’t have a name, msbuild creates a less helpful Uid based on the class
name, with a numeric suffix:

<TextBlock x:Uid="TextBlock_1" Margin="10">

■Note Technically, this step is how you globalize an application—in other words, prepare it for localization
into different languages. Even if you don’t plan to localize your application right away, there’s an argument to
be made that you should prepare it for localization anyway. If you do, you may be able to update your appli-
cation to a different language simply by deploying a satellite assembly. Of course, globalization’s not worth
the effort if you haven’t taken the time to assess your user interface and make sure it uses an adaptable
layout that can accommodate changing content (such as buttons with longer captions, and so on).

Extracting Localizable Content
To extract the localizable content of all your elements, you need to use the locbaml command-
line tool. Currently, locbaml isn’t included as a compiled tool. Instead, the source code is
available as a sample (look for locbaml in the Visual Studio help), and it must be compiled by
hand.

When using locbaml, you must be in the folder that contains your compiled assembly (for
example, LocalizableApplication\bin\Debug). To extract a list of localizable details, you point
locbaml to your satellite assembly and use the /parse parameter, as shown here:

locbaml /parse en-US\LocalizableApplication.resources.dll

CHAPTER 11 ■ RESOURCES 327

9551CH11 2/8/08 2:08 PM Page 327

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The locbaml tool searches your satellite assembly for all its compiled BAML resources
and generates a .csv file that has the details. In this example, the .csv file will be named
LocalizationApplication.resources.csv.

Each line in the extracted file represents a single localizable property that you’ve used on
an element in your XAML document. Each line consists of the following seven values:

• The name of the BAML resource (for example, LocalizableApplication.g.en-US.
resources:window1.baml).

• The Uid of the element and the name of the property to localize. Here’s an example:
StackPanel_1:System.Windows.FrameworkElement.Margin.

• The localization category. This is a value from the LocalizationCategory enumeration
that helps to identify the type of content that this property represents (long text, a title,
a font, a button caption, a tooltip, and so on).

• Whether the property is readable (essentially visible as text in the user interface). All
readable values always need to be localized, while nonreadable values may or may not
require localization.

• Whether the property value can be modified by the translator. This value is always true
unless you specifically indicate otherwise.

• Additional comments that you’ve provided for the translator. If you haven’t provided
comments, this value is blank.

• The value of the property. This is the detail that needs to be localized.

For example, imagine you have the window shown in Figure 11-3. Here’s the XAML
markup:

<Window x:Uid="Window_1" x:Class="LocalizableApplication.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="LocalizableApplication" Height="300" Width="300"
SizeToContent="WidthAndHeight"
>

<StackPanel x:Uid="StackPanel_1" Margin="10">
<TextBlock x:Uid="TextBlock_1" Margin="10">One line of text.</TextBlock>
<Button x:Uid="cmdDoSomething" Name="cmdDoSomething" Margin="10" Padding="3">
A button</Button>
<TextBlock x:Uid="TextBlock_2" Margin="10">
This is another line of text.</TextBlock>

</StackPanel>
</Window>

CHAPTER 11 ■ RESOURCES328

9551CH11 2/8/08 2:08 PM Page 328

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 11-3. A window that can be localized

When you run this through locbaml, you’ll get the information shown in Table 11-1. (For
the sake of brevity, the BAML name has been left out because it’s always the same window, the
resource key has been shortened so it doesn’t use fully qualified names, and the comments—
which are blank—have been left out.)

Here’s where the current tool support is a bit limited. It’s unlikely that a translation service
will want to work directly with the .csv file because it presents information in a rather awk-
ward way. Instead, another tool is needed that parses this file and allows the translator to
review it more efficiently. You could easily build a tool that pulls out all this information, dis-
plays the values where Readable and Modifiable are true, and allows the user to edit the
corresponding value. However, at the time of this writing WPF doesn’t include such a tool.

To perform a simple test, you can open this file directly (use Notepad or Excel) and mod-
ify the last piece of information—the value—to supply translated text instead. Here’s an
example:

LocalizableApplication.g.en-US.resources:window1.baml,
TextBlock_1:System.Windows.Controls.TextBlock.$Content,
Text,True,True,,
Une ligne de texte.

■Note Although this is really a single line of code, it’s broken here to fit the bounds of the page.

You don’t specify what culture you’re using at this point. You do that when you compile
the new satellite assembly in the next step.

CHAPTER 11 ■ RESOURCES 329

9551CH11 2/8/08 2:08 PM Page 329

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Ta
bl

e
11

-1
.A

 S
am

p
le

 L
is

t o
f L

oc
al

iz
ab

le
 P

ro
p

er
ti

es

Re
so

ur
ce

 K
ey

Lo
ca

liz
at

io
n

Ca
te

go
ry

Re
ad

ab
le

M
od

ifi
ab

le
Va

lu
e

W
in

d
ow

_1
:L

o
ca

liz
ab

le
A

p
p

lic
at

io
n

.W
in

d
ow

1.
$C

o
n

te
n

t
N

o
n

e
Tr

u
e

Tr
u

e
#S

ta
ck

Pa
n

el
_1

;

W
in

d
ow

_1
:W

in
d

ow
.T

it
le

T
it

le
Tr

u
e

Tr
u

e
Lo

ca
liz

ab
le

A
p

p
lic

at
io

n

W
in

d
ow

_1
:F

ra
m

ew
o

rk
E

le
m

en
t.

H
ei

gh
t

N
o

n
e

Fa
ls

e
Tr

u
e

30
0

W
in

d
ow

_1
:F

ra
m

ew
o

rk
E

le
m

en
t.

W
id

th
N

o
n

e
Fa

ls
e

Tr
u

e
30

0

W
in

d
ow

_1
:W

in
d

ow
.S

iz
eT

o
C

o
n

te
n

t
N

o
n

e
Fa

ls
e

Tr
u

e
W

id
th

A
n

d
H

ei
gh

t

St
ac

kP
an

el
_1

:F
ra

m
ew

o
rk

E
le

m
en

t.
M

ar
gi

n
N

o
n

e
Fa

ls
e

Tr
u

e
10

Te
xt

B
lo

ck
_1

:T
ex

tB
lo

ck
.$

C
o

n
te

n
t

Te
xt

Tr
u

e
Tr

u
e

O
n

e
lin

e
o

f t
ex

t

Te
xt

B
lo

ck
_1

:F
ra

m
ew

o
rk

E
le

m
en

t.
M

ar
gi

n
N

o
n

e
Fa

ls
e

Tr
u

e
10

cm
d

D
o

So
m

et
h

in
g:

B
u

tt
o

n
.$

C
o

n
te

n
t

B
u

tt
o

n
Tr

u
e

Tr
u

e
A

 b
u

tt
o

n

cm
d

D
o

So
m

et
h

in
g:

Fr
am

ew
o

rk
E

le
m

en
t.

M
ar

gi
n

N
o

n
e

Fa
ls

e
Tr

u
e

10

cm
d

D
o

So
m

et
h

in
g:

Pa
d

d
in

g
N

o
n

e
Fa

ls
e

Tr
u

e
3

Te
xt

B
lo

ck
_2

:T
ex

tB
lo

ck
.$

C
o

n
te

n
t

Te
xt

Tr
u

e
Tr

u
e

A
n

o
th

er
 li

n
e

o
f t

ex
t

Te
xt

B
lo

ck
_2

:F
ra

m
ew

o
rk

E
le

m
en

t.
M

ar
gi

n
N

o
n

e
Fa

ls
e

Tr
u

e
10

CHAPTER 11 ■ RESOURCES330

9551CH11 2/8/08 2:08 PM Page 330

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Building a Satellite Assembly
Now you’re ready to build the satellite assemblies for other cultures. Once again, the locbaml
tool takes care of this task, but this time you use the /generate parameter.

Remember, the satellite assembly will contain an alternate copy of each complete
window as an embedded BAML resource. In order to create these resources, the locbaml tool
needs to take a look at the original satellite assembly, substitute all the new values from the
translated .csv file, and then generate a new satellite assembly. That means you need to point
locbaml to the original satellite assembly and (using the /trans: parameter) the translated list
of values. You also need to tell locbaml what culture this assembly represents (using the
/cul: parameter). Remember, cultures are defined using two-part identifiers that are listed
in the description of the System.Globalization.CultureInfo class.

Here’s an example that pulls it all together:

locbaml /generate en-US\LocalizableApplication.resources.dll
/trans:LocalizableApplication.resources.French.csv
/cul:fr-FR /out:fr-FR

This command does the following:

• Uses the original satellite assembly en-US\LocalizedApplication.resources.dll.

• Uses the translates .csv file French.csv.

• Uses the France French culture.

• Outputs to the fr-FR subfolder (which must already exist). Even though this seems
implicit based on the culture you’re using, you need to supply this detail.

When you run this command line, locbaml creates a new version of the
LocalizableApplication.resources.dll assembly with the translated values, and places
it in the fr-FR subfolder of the application.

Now when you run the application on a computer that has its culture sent to France
French, the alternate version of the window will be shown automatically. You can change the
culture using the Regional and Language Options section of the Control Panel. Or for an easier
approach to testing, just use code to change the culture of the current thread. You need to do
this before you create or show any windows, so it make sense to use an application event or
just use your application class constructor as shown here:

public partial class App : System.Windows.Application
{

public App()
{

Thread.CurrentThread.CurrentUICulture =
new CultureInfo("fr-FR");

}
}

CHAPTER 11 ■ RESOURCES 331

9551CH11 2/8/08 2:08 PM Page 331

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 11-4 shows the result.

Figure 11-4. A window that’s localized in French

Not all localizable content is defined as a localizable property in your user interface. For
example, you might need to show an error message when something occurs. The best way to
handle this situation with XAML is to use object resources (described in the second half of this
chapter). For example, you could store your error message strings as resources in a specific
window, in the resources for an entire application, or in a resource dictionary that’s shared
across multiple applications. Here’s an example:

<Window.Resources>
<s:String x:Uid="s:String_1" x:Key="Error">Something bad happened.</s:String>

</ Window.Resources >

When you run locbaml, the strings in this file are also added to the content that needs to
be localized. When compiled, this information is added to the satellite assembly, ensuring that
error messages are in the right language (as shown in Figure 11-5).

Figure 11-5. Using a localized string

CHAPTER 11 ■ RESOURCES332

9551CH11 2/8/08 2:08 PM Page 332

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note An obvious weakness in the current system is that it’s difficult to keep up with an evolving user
interface. The locbaml tool always creates a new file, so if you end up moving controls to different windows
or replacing one control with another, you’ll probably be forced to create a new list of translations from
scratch.

Object Resources
Assembly resources are nothing new to .NET developers. However, WPF also introduces a new
resource system that integrates closely with XAML. This system allows you to define resources
in a variety of places in your markup (along with specific controls, in specific windows, or
across the entire application) and then reuse it easily.

Object resources have a number of important benefits:

• Efficiency. Resources let you define an object once and use it in several places in your
markup. This streamlines your code and makes it marginally more efficient.

• Maintainability. Resources let you take low-level formatting details (such as font sizes)
and move them to a central place where they’re easy to change. It’s the XAML equiva-
lent of creating constants in your code.

• Adaptability. Once certain information is separated from the rest of your application
and placed in a resource section, it becomes possible to modify it dynamically. For
example, you may want to change resource details based on user preferences or the
current language.

■Note Although it’s convenient to refer to WPF resources that are defined in XAML as object resources to
prevent confusion, usually they’re just called resources. (Object resources are also sometimes called logical
resources and declarative resources.)

The Resources Collection
Every element includes a Resources property, which stores a dictionary collection of resources.
(It’s an instance of the ResourceDictionary class.) The resources collection can hold any type of
object, indexed by string.

Although every element includes the Resources property (which is defined as part of the
FrameworkElement class), the most common way to define resources is at the window-level.
That’s because every element has access to the resources in its own resource collection and
the resources in all of its parents’ resource collections.

CHAPTER 11 ■ RESOURCES 333

9551CH11 2/8/08 2:08 PM Page 333

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, consider the window with three buttons shown in Figure 11-6. Two of the
three buttons use the same brush—an image brush that paints a tile pattern of happy faces.

Figure 11-6. A window that reuses a brush

In this case, it’s clear that you want both the top and bottom button to have the same
styling. However, you might want to change the characteristics of the image brush later on.
For that reason, it makes sense to define the image brush in the resources for the window and
reuse it as necessary.

Here’s how you define the brush:

<Window.Resources>
<ImageBrush x:Key="TileBrush" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="happyface.jpg" Opacity="0.3">

</ImageBrush>
</Window.Resources>

The details of the image brush aren’t terribly important (you’ll learn about the specifics in
Chapter 13). What is important is the first attribute, named Key (and preceded by the x: name-
space prefix, which puts it in the XAML namespace rather than the WPF namespace). This
assigns the name under which the brush will be indexed in the Window.Resources collection.
You can use whatever you want, so long as you use the same name when you need to retrieve
the resource.

■Note You can instantiate any .NET class in the resources section (including your own custom classes), as
long as it’s XAML-friendly. That means it needs to have a few basic characteristics, such as a public zero-
argument constructor and writeable properties.

CHAPTER 11 ■ RESOURCES334

9551CH11 2/8/08 2:08 PM Page 334

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To use a resource in your XAML markup, you need a way to refer to it. This is accom-
plished using a markup extension. In fact, there are two markup extensions that you can use:
one for dynamic resources and one for static resources. Static resources are set once, when the
window is first created. Dynamic resources are reapplied if the resource is changed. (You’ll
study the difference more closely a little bit later in this chapter.) In this example, the image
brush never changes, so the static resource is fine.

Here’s one of the buttons that uses the resource:

<Button Background="{StaticResource TileBrush}"
Margin="5" Padding="5" FontWeight="Bold" FontSize="14">
A Tiled Button

</Button>

In this case, the resource is retrieved and used to assign the Button.Background property.
You could perform the exact same feat (with slightly more overhead) by using a dynamic
resource:

<Button Background="{DynamicResource TileBrush}"

Using a simple .NET object for a resource really is this easy. However, there are a few finer
points you need to consider. The following sections will fill you in.

The Hierarchy of Resources
Every element has its own resource collection, and WPF performs a recursive search up your
element tree to find the resource you want. In the current example, you could move the image
brush from the Resources collection of the window to the Resources collection of the Stack-
Panel that holds all three buttons without changing the way the application works. You could
also put the image brush in Button.Resources collection, but then you’d need to define it twice
—once for each button.

There’s another issue to consider. When using a static resource, you must always define a
resource in your markup before you refer to it. That means that even though it’s perfectly valid
(from a markup perspective) to put the Windows.Resources section after the main content of
the form (the StackPanel that contains all the buttons), this change will break the current
example. When the XAML parser encounters a static reference to a resource it doesn’t know, it
throws an exception. (You can get around this problem using a dynamic resource, but there’s
no good reason to incur the extra overhead.)

As a result, if you want to place your resource in the button element, you need to
rearrange your markup a little, so that the resource is defined before the background is set.
Here’s one way to do it:

<Button Margin="5" Padding="5" FontWeight="Bold" FontSize="14">
<Button.Resources>
<ImageBrush x:Key="TileBrush" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 10 10"
ImageSource="happyface.jpg" Opacity="0.3"></ImageBrush>

</Button.Resources>

<Button.Background>

CHAPTER 11 ■ RESOURCES 335

9551CH11 2/8/08 2:08 PM Page 335

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<StaticResource ResourceKey="TileBrush"/>
</Button.Background>

<Button.Content>Another Tiled Button</Button.Content>
</Button>

The syntax for the static resource markup extension looks a bit different in this example
because it’s set in a nested element (not an attribute). The resource key is specified using the
ResourceKey property to point to the right resource.

Interestingly, resource names can be reused as long as you don’t use the same resource
name more than once in the same collection. That means you could create a window like this,
which defines the image brush in two places:

<Window x:Class="Resources.TwoResources"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Resources" Height="300" Width="300" >

<Window.Resources>
<ImageBrush x:Key="TileBrush" TileMode="Tile"

ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="happyface.jpg" Opacity="0.3"></ImageBrush>

</Window.Resources>

<StackPanel Margin="5">
<Button Background="{StaticResource TileBrush}" Padding="5"
FontWeight="Bold" FontSize="14" Margin="5" >A Tiled Button</Button>

<Button Padding="5" Margin="5"
FontWeight="Bold" FontSize="14">A Normal Button</Button>

<Button Background="{DynamicResource TileBrush}" Padding="5" Margin="5"
FontWeight="Bold" FontSize="14">
<Button.Resources>
<ImageBrush x:Key="TileBrush" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="sadface.jpg" Opacity="0.3"></ImageBrush>

</Button.Resources>
<Button.Content>Another Tiled Button</Button.Content>

</Button>

</StackPanel>
</Window>

CHAPTER 11 ■ RESOURCES336

9551CH11 2/8/08 2:08 PM Page 336

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

In this case, the button uses the resource it finds first. Because it begins by searching its
own Resources collection, the second button uses the sadface.jpg graphic, while the first but-
ton gets the brush from the containing window and uses the happyface.jpg image.

Static and Dynamic Resources
You might assume that because the previous example used a static resource it’s immune to
any changes you make to your resource (in this case, the image brush). However, that’s actu-
ally not the case.

For example, imagine you execute this code at some point after the resource has been
applied and the window has been displayed:

ImageBrush brush = (ImageBrush)this.Resources["TileBrush"];
brush.Viewport = new Rect(0, 0, 5, 5);

This code retrieves the brush from the Window.Resources collection and manipulates it.
(Technically, the code changes the size of each tile, shrinking the happy face and packing the
image pattern more tightly.) When you run this code, you probably don’t expect any reaction
in your user interface—after all, it’s a static resource. However, this change does propagate to
the two buttons. In fact, the buttons are updated with the new Viewport property setting,
regardless of whether they use the brush through a static resource or a dynamic resource.

The reason this works is because the Brush class derives from a class named Freezable.
The Freezable class has basic-change tracking features (and it can be “frozen” to a read-only
state if it doesn’t need to change). What that means is whenever you change a brush in WPF,
any controls that use that brush refresh themselves automatically. It doesn’t matter whether
they get their brushes through a resource or not.

At this point, you’re probably wondering what the difference is between static and
dynamic resource. The difference is that a static resource grabs the object from the resources
collection once. Depending on the type of object (and the way it’s used), any changes you
make to that object may be noticed right away. However, the dynamic resource looks the
object up in the resources collection every time it’s needed. That means you could place an
entirely new object under the same key and the dynamic resource would pick up your change.

To see an example that illustrates the difference, consider the following code, which
replaces the current image brush with a completely new (and boring) solid blue brush:

this.Resources["TileBrush"] = new SolidColorBrush(Colors.LightBlue);

A dynamic resource picks up this change, while a static resource has no idea that its brush
has been replaced in the Resources collection by something else. It continues using the origi-
nal ImageBrush instead.

CHAPTER 11 ■ RESOURCES 337

9551CH11 2/8/08 2:08 PM Page 337

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 11-7 shows this example in a window that includes a dynamic resource (the top
button) and a static resource (the bottom button).

Figure 11-7. Dynamic and static resources

Usually, you don’t need the overhead of a dynamic resource and your application will
work perfectly well with a static resource. One notable exception is if you’re creating resources
that depend on Windows settings (such as system colors). In this situation, you need to use
dynamic resources if you want to be able to react to any change in the current color scheme.
(Or if you use static resources, you’ll keep using the old color scheme until the user restarts the
application.) You’ll learn more about how this works when you tackle system resources a bit
later in this chapter.

As a general guideline, only use dynamic properties when

• Your resource has properties that depend on system settings (such as the current Win-
dows colors or fonts).

• You plan to replace your resource objects programmatically (for example, to implement
some sort of dynamic skinning feature, as demonstrated in Chapter 15).

However, you shouldn’t get overly ambitious with dynamic resources. The primary issue is
that changing a resource doesn’t necessarily trigger a refresh in your user interface. (It does in
the brush example because of the way brush objects are constructed—namely, they have this
notification support built in.) There are a host of occasions where you need to show dynamic
content in a control in a way that the control adjusts itself as the content changes, and for that
it makes much more sense to use data binding (Chapter 16).

CHAPTER 11 ■ RESOURCES338

9551CH11 2/8/08 2:08 PM Page 338

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note On rare occasions, dynamic resources are also used to improve the first-time-load performance
of a form. That’s because static resources are always loaded when the window is created, while dynamic
resources are loaded when they’re first used. However, you won’t see any benefit unless your resource is
extremely large and complex (in which case parsing its markup takes a nontrivial amount of time).

Nonshared Resources
Ordinarily, when you use a resource in multiple places, you’re using the same object instance.
This behavior—called sharing—is usually what you want. However, it’s also possible to tell the
parser to create a separate instance of your object each time it’s used.

To turn off sharing you use the Shared attribute, as shown here:

<ImageBrush x:Key="TileBrush" x:Shared="False" ...></ImageBrush>

There are few good reasons for using nonshared resources. You might consider nonshared
resources if you want to modify your resource instances separately later on. For example, you
could create a window that has several buttons that use the same brush but turn off sharing so
that you can change each brush individually. This approach isn’t very common because it’s
inefficient. In this example, it would be better to let all the buttons use the same brush ini-
tially, and then create and apply new brush objects as needed. That way you’re only incurring
the overhead of extra brush objects when you really need to.

Another reason you might use nonshared resources is if you want to reuse an object in a
way that otherwise wouldn’t be allowed. For example, using this technique, you could define
an element (such as an Image or a Button) as a resource, and then display that element in sev-
eral different places in a window.

Once again, this usually isn’t the best approach. For example, if you want to reuse an
Image element, it makes more sense to store the relevant piece of information (such as the
BitmapImage object that identifies the image source) and share that between multiple Image
elements. And if you simply want to standardize controls so they share the same properties,
you’re far better off using styles, which are described in the next chapter. Styles give you the
ability to create identical or nearly identical copies of any element, but they also allow you to
override property values when they don’t apply and attach distinct event handlers, two fea-
tures you’d lose if you simply cloned an element using a nonshared resource.

Accessing Resources in Code
Usually, you’ll define and use resources in your markup. However, if the need arises, you can
work with the resources collection in code.

As you’ve already seen, you can pull items out of the resources collection by name.
However, in order to use this approach you need to use the resource collection of the right ele-
ment. As you’ve already seen, this limitation doesn’t apply to your markup. A control such as a
button can retrieve a resource without specifically knowing where it’s defined. When it
attempts to assign the brush to its Background property, WPF checks the resources collection
of the button for a resource named TileBrush, then it checks the resources collection of the
containing StackPanel, and then the containing window. (This process actually continues to
look at application and system resources, as you’ll see in the next section.)

CHAPTER 11 ■ RESOURCES 339

9551CH11 2/8/08 2:08 PM Page 339

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can hunt for a resource in the same way using the FrameworkElement.FindResource()
method. Here’s an example that looks for the resource of a button (or one of its higher-level
containers) when a Click event fires:

private void cmdChange_Click(object sender, RoutedEventArgs e)
{

Button cmd = (Button)sender;
ImageBrush brush = (ImageBrush)sender.FindResource("TileBrush");
...

}

Instead of FindResource() you can use the TryFindResource() method that returns a null
reference if a resource can’t be found, rather than throwing an exception.

Incidentally, you can also add resources programmatically. Pick the element where you
want to place the resource and use the Add() method of the resources collection. However, it’s
much more common to define resources in markup.

Application Resources
The Window isn’t the last stop in the resource search. If you indicate a resource that can’t be
found in a control or any of its containers (up to the containing window or page), WPF contin-
ues to check the set of resources you’ve defined for your application. In Visual Studio, these
are the resources you’ve defined in the markup for your App.xaml file, as shown here:

<Application x:Class="Resources.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Menu.xaml"
>
<Application.Resources>
<ImageBrush x:Key="TileBrush" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="happyface.jpg" Opacity="0.3">

</ImageBrush>
</Application.Resources>

</Application>

As you’ve probably already guessed, application resources give you a great way to reuse
an object across your entire application. In this example, it’s a good choice if you plan to use
the image brush in more than one window.

■Note Before creating an application resource, consider the trade-off between complexity and reuse.
Adding an application resource gives you better reuse, but it adds complexity because it’s not immediately
clear which windows use a given resource. (It’s conceptually the same as an old-style C++ program with too
many global variables.) A good guideline is to use application resources if your object is reused widely (for
example, in many windows). If it’s used in just two or three, consider defining the resource in each window.

CHAPTER 11 ■ RESOURCES340

9551CH11 2/8/08 2:08 PM Page 340

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

It turns out that application resources still aren’t the final stop when an element searches
for a resource. If the resource can’t be found in the application resources, the element contin-
ues to look at the system resources.

System Resources
As you learned earlier, dynamic resources are primarily intended to help your application
respond to changes in system environment settings. However, this raises a question—how do
you retrieve the system environment settings and use them in your code in the first place?

The secret is a set of three classes named SystemColors, SystemFonts, and SystemPara-
meters, all of which are in the System.Windows namespace. SystemColors gives you access to
color settings; SystemFonts gives you access to fonts settings; and SystemParameters wraps a
huge list of settings that describe the standard size of various screen elements, keyboard and
mouse settings, and screen size, and whether various graphical effects (such as hot tracking,
drop shadows, and showing window contents while dragging) are switched on.

■Note There are two versions of the SystemColors and SystemFonts classes. They’re found in the
System.Windows namespace and the System.Drawing namespace. Those in the System.Windows name-
space are part of WPF. They use the right data types and support the resource system. The ones in the
System.Drawing namespace are part of Windows Forms and the .NET Framework 2.0. They aren’t useful
in a WPF application.

The SystemColors, SystemFonts, and SystemParameters classes expose all their details
through static properties. For example, SystemColors.WindowTextColor gets you a Color
structure that you can use as you please. Here’s an example that uses it to create a brush and
fill the foreground of an element:

label.Foreground = new SolidBrush(SystemColors.WindowTextColor);

Or to be a bit more efficient, you can just use the ready-made brush property:

label.Foreground = SystemColors.WindowTextBrush;

In WPF, you can access static properties using the static markup extension. For example,
here’s how you could set the foreground of the same label using XAML:

<Label Foreground="{x:Static SystemColors.WindowTextBrush}">
Ordinary text

</Label>

This example doesn’t use a resource. It also suffers from a minor failing—when the win-
dow is parsed and the label is created, a brush is created based on the current “snapshot” of
the window text color. If you change the Windows colors while this application is running
(after the window containing the label has been shown), the label won’t update itself. Applica-
tions that behave this way are considered to be a bit rude.

CHAPTER 11 ■ RESOURCES 341

9551CH11 2/8/08 2:08 PM Page 341

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To solve this problem, you can’t set the Foreground property directly to a brush object.
Instead, you need to set it to a DynamicResource object that wraps this system resource.
Fortunately, all the SystemXxx classes provide a complementary set of properties that return
ResourceKey objects—references that let you pull the resource out of the collection of
system resources. These properties have the same name as the ordinary property that returns
the object directly, with the word Key added to the end. For example, the resource key for the
SystemColors.WindowTextBrush is SystemColors.WindowTextBrushKey.

■Note Resource keys aren’t simple names—they're references that tell WPF where to look to find a
specific resource. The ResourceKey class is opaque, so it doesn’t show you the low-level details about how
system resources are identified. However, there’s no need to worry about your resources conflicting with
the system resources because they are in separate assemblies and treated differently.

Here’s how you can use a resource from one of the SystemXxx classes:

<Label Foreground="{DynamicResource {x:Static SystemColors.WindowTextBrushKey}}">
Ordinary text

</Label>

This markup is a bit more complex than the previous example. It begins by defining a
dynamic resource. However, the dynamic resource isn’t pulled out of the resource collection in
your application. Instead, it uses a key that’s defined by the SystemColors.WindowTextBrushKey
property. Because this property is static, you also need to throw in the static markup extension
so that the parser understands what you’re trying to do.

Now that you’ve made this change, you have a label that can update itself seamlessly
when system settings change.

Organizing Resources with Resource Dictionaries
If you want to share resources between multiple projects, you can create a resource dictionary.
A resource dictionary is simply a XAML document that does nothing but store the resources
you want to use. Here’s an example of a resource dictionary that has one resource:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<ImageBrush x:Key="TileBrush" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="happyface.jpg" Opacity="0.3">

</ImageBrush>
</ResourceDictionary>

When you add a resource dictionary to an application, make sure the Build Action is set to
Page (as it is for any other XAML file). This ensures that your resource dictionary is compiled
to BAML for best performance. However, it’s perfectly allowed to have a resource dictionary

CHAPTER 11 ■ RESOURCES342

9551CH11 2/8/08 2:08 PM Page 342

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

with a Build Action of Resource, in which case it’s embedded in the assembly but not com-
piled. Parsing it at runtime is then imperceptibly slower.

In order to use a resource dictionary, you need to merge it into a resource collection
somewhere in your application. You could do this in a specific window, but it’s more common
to merge it into the resources collection for the application, as shown here:

<Application x:Class="Resources.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Menu.xaml" >

<Application.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="AppBrushes.xaml"/>
<ResourceDictionary Source="WizardBrushes.xaml"/>

</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

</Application.Resources>
</Application>

This markup works by explicitly creating a ResourceDictionary object. The resources col-
lection is always a ResourceDictionary object, but this is one case where you need to specify
that detail explicitly so that you can also set the ResourceDictionary.MergedDictionaries
property (which is usually null).

The MergedDictionaries collection is a collection of ResourceDictionary objects that
you want to use to supplement your resource collection. In this example, there are two: one
that’s defined in the AppBrushes.xaml resource dictionary and another that’s defined in the
WizardBrushes.xaml.

If you want to add your own resources and merge in resource dictionaries, you simply
need to place your resources before or after the MergedProperties section, as shown here:

<Application.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="AppBrushes.xaml"/>
<ResourceDictionary Source="WizardBrushes.xaml"/>

</ResourceDictionary.MergedDictionaries>
<ImageBrush x:Key="GraphicalBrush1" ... ></ImageBrush>
<ImageBrush x:Key="GraphicalBrush2" ... ></ImageBrush>

</ResourceDictionary>
</Application.Resources>

■Note As you learned earlier, it’s perfectly reasonable to have resources with the same name stored in dif-
ferent but overlapping resource collections. However, it’s not acceptable to merge resource dictionaries that
use the same resource names. If there’s a duplicate, you’ll receive a XamlParseException when you compile
your application.

CHAPTER 11 ■ RESOURCES 343

9551CH11 2/8/08 2:08 PM Page 343

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

One reason to use resource dictionaries is to define one or more reusable application
“skins” that you can apply to your controls. (You’ll learn how to develop this technique in
Chapter 15.) Another reason is to store content that needs to be localized (such as error mes-
sage strings).

Sharing Resources Between Assemblies
If you want to share a resource dictionary between multiple applications, you could copy and
distribute the XAML file that contains the resource dictionary. This is the simplest approach,
but it doesn’t give you any version control. A more structured approach is to compile your
resource dictionary in a separate class library assembly and distribute that component
instead.

When sharing a compiled assembly with one or more resource dictionaries, there’s
another challenge to face—namely, you need a way to extract the resource you want and use
it in your application. There are two approaches you can take. The most straightforward solu-
tion is to use code that creates the appropriate ResourceDictionary object. For example, if you
have a resource dictionary in a class library assembly named ReusableDictionary.xaml, you
could use the following code to create it manually:

ResourceDictionary resourceDictionary = new ResourceDictionary();
resourceDictionary.Source = new Uri(
"ResourceLibrary;component/ReusableDictionary.xaml", UriKind.Relative);

This code snippet uses the pack URI syntax you learned about earlier in this chapter.
It constructs a relative URI that points to the compiled XAML resource named Reusable-
Dictionary.xaml in the other assembly. Once you’ve created the ResourceDictionary object,
you can manually retrieve the resource you want from the collection:

cmd.Background = (Brush)resourceDictionary["TileBrush"];

However, you don't need to assign resources manually. Any DynamicResource references
you have in your window will be automatically reevaluated when you load a new resource
dictionary. You'll see an example of this technique in Chapter 15, when you build a dynamic
skinning feature.

If you don't want to write any code, you have another choice. You can use the
ComponentResourceKey markup extension, which is designed for just this purpose. You
use the ComponentResourceKey to create the key name for your resource. By taking this
step, you indicate to WPF that you plan to share your resource between assemblies.

■Note Up until this point, you’ve only seen resources that use strings (such as “TileBrush”) for key names.
Using a string is the most common way to name a resource. However, WPF has some clever resource exten-
sibility that kicks in automatically when you use certain types of key names that aren’t strings. For example,
in the next chapter you’ll see that you can use a Type object as a key name for a style. This tells WPF to
apply the style to the appropriate type of element automatically. Similarly, you can use an instance of
ComponentResourceKey as a key name for any resource you want to share between assemblies.

CHAPTER 11 ■ RESOURCES344

9551CH11 2/8/08 2:08 PM Page 344

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Before you go any further, you need to make sure you’ve given your resource dictionary
the right name. In order for this trick to work, your resource dictionary must be in a file named
generic.xaml, and that file must be placed in a Themes subfolder in your application. The
resources in the generic.xaml files are considered part of the default theme, and they’re always
made available. You’ll use this trick many more times, particularly when you build custom
controls in Chapter 24.

Figure 11-8 shows the proper organization of files. The top project, named ResourceLibrary,
includes the generic.xaml file in the correct folder. The bottom project, named Resources, has a
reference to ResourceLibrary, so it can use the resources it contains.

Figure 11-8. Sharing resources with a class library

■Tip If you have a lot of resources and you want to organize them in the best way possible, you can create
individual resource dictionaries, just as you did before. However, make sure you merge these dictionaries
into the generic.xaml file, so that they’re readily available.

The next step is to create the key name for the resource you want to share, which is stored
in the ResourceLibrary assembly. When using a ComponentResourceKey, you need to supply
two pieces of information: a reference to a class in your class library assembly, and a descriptive
resource ID. The class reference is part of the magic that allows WPF to share your resource with
other assemblies. When they use the resource, they’ll supply the same class reference and the
same resource ID.

CHAPTER 11 ■ RESOURCES 345

9551CH11 2/8/08 2:08 PM Page 345

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

It doesn’t matter what this class actually looks like, and it doesn’t need to contain code. The
assembly where this type is defined is the same assembly where ComponentResourceKey will
find the resource. The example shown in Figure 11-8 uses a class named CustomResources,
which has no code:

public class CustomResources
{}

Now you can create a key name using this class and a resource ID:

x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:CustomResources},
ResourceId=SadTileBrush}"

Here’s the complete markup for the generic.xaml file, which includes a single resource—
an ImageBrush that uses a different graphic:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:ResourceLibrary">

<ImageBrush
x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:CustomResources},

ResourceId=SadTileBrush}"
TileMode="Tile" ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="ResourceLibrary;component/sadface.jpg" Opacity="0.3">
</ImageBrush>

</ResourceDictionary>

Keen eyes will notice one unexpected detail in this example. The ImageSource property is
no longer set with the image name (sadface.jpg). Instead, a more complex relative URI is used
that clearly indicates the image is a part of the ResourceLibrary component. This is a required
step because this resource will be used in the context of another application. If you simply use
the image name, that application will search its own resources to find the image. Instead, you
need a relative URI that indicates the component where the image is stored.

Now that you’ve created the resource dictionary, you can use it in another application.
First, make sure you’ve defined a prefix for the class library assembly, as shown here:

<Window x:Class="Resources.ResourceFromLibrary"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:res="clr-namespace:ResourceLibrary;assembly=ResourceLibrary"
... >

You can then use a DynamicResource that contains a ComponentResourceKey. (This
makes sense because the ComponentResourceKey is the resource name.) The Component-
ResourceKey you use in the consumer is exactly the same as the ComponentResourceKey you
use in the class library. You supply a reference to the same class and the same resource ID. The
only difference is that you may not use the same XML namespace prefix. This example uses
res instead of local, so as to emphasize the fact that the CustomResources class is defined in a
different assembly:

CHAPTER 11 ■ RESOURCES346

9551CH11 2/8/08 2:08 PM Page 346

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Button Background="{DynamicResource {ComponentResourceKey
TypeInTargetAssembly={x:Type res:CustomResources}, ResourceId=SadTileBrush}}"
Padding="5" Margin="5" FontWeight="Bold" FontSize="14">
A Resource From ResourceLibrary

</Button>

■Note You must use a dynamic resource, not a static resource, when using a ComponentResourceKey.

This completes the example. However, there’s one additional step you can take to make it
easier to use your resource. You can define a static property that returns the correct Component-
ResourceKey that you need to use. Typically, you’ll define this property in a class in your com-
ponent, as shown here:

public class CustomResources
{

public static ComponentResourceKey SadTileBrushKey
{

get
{

return new ComponentResourceKey(
typeof(CustomResources), "SadTileBrush");

}
}

}

Now you use the Static markup extension to access this property and apply the resource
without using the long-winded ComponentResourceKey in your markup:

<Button
Background="{DynamicResource {x:Static res:CustomResources.SadTileBrushKey}}"
Padding="5" Margin="5" FontWeight="Bold" FontSize="14">
A Resource From ResourceLibrary

</Button>

This handy shortcut is essentially the same technique that’s used by the SystemXxx classes
that you saw earlier. For example, when you retrieve SystemColors.WindowTextBrushKey, you
are receiving the correct resource key object. The only difference is that it’s an instance of the
private SystemResourceKey rather than ComponentResourceKey. Both classes derive from the
same ancestor: an abstract class named ResourceKey.

The Last Word
In this chapter, you took an in-depth look at the WPF resource system. You considered assem-
bly resources that package up binary data with your application, and you looked at object
resources that let you reuse the same XAML ingredients in different parts of your application.

CHAPTER 11 ■ RESOURCES 347

9551CH11 2/8/08 2:08 PM Page 347

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You also took a look at localization and learned how satellite assemblies and a few command-
line tools (msbuild.exe and locbaml.exe) allow you to provide culture-specific versions of your
user interface.

You’re not done looking at resources just yet. One of the most practical uses of object
resources is to store styles—collections of property settings that you can apply to multiple
elements. In the next chapter, you’ll learn how to define styles and reuse them effortlessly.

CHAPTER 11 ■ RESOURCES348

9551CH11 2/8/08 2:08 PM Page 348

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Styles

In the previous chapter you learned about the WPF resource system, which lets you define
objects in one place and reuse them throughout your markup. Although you can use resources
to store a wide variety of objects, one of the most common reasons you’ll use them is to hold
styles.

A style is a collection of property values that can be applied to an element. The WPF style
system plays a similar role to the cascading style sheet (CSS) standard in HTML markup. Like
CSS, WPF styles allow you to define a common set of formatting characteristics and apply
them throughout your application to ensure consistency. And as with CSS, WPF styles can
work automatically, target specific element types, and cascade through the element tree.
However, WPF styles are more powerful because they can set any dependency property. That
means you can use them to standardize nonformatting characteristics, such as the behavior
of a control. WPF styles also support triggers, which allow you to change the style of a control
when another property is changed (as you’ll see in this chapter), and they can use templates to
redefine the built-in appearance of a control (as you’ll see in Chapter 15). Once you’ve learned
how to use styles, you’ll be sure to include them in all your WPF applications.

Style Basics
As you learned in the previous chapter, resources offer several key benefits, including simpler
markup and more maintainable applications. So what do styles add to the picture?

To understand how styles fit in, it helps to consider a simple example. Imagine you need
to standardize the font that’s used in a window. The simplest approach is to set the font prop-
erties of the containing window. These properties, which are defined in the Control class,
include FontFamily, FontSize, FontWeight (for bold), FontStyle (for italics), and FontStretch
(for compressed and expanded variants). Thanks to the property value inheritance feature,
when you set these properties at the window level, all the elements inside the window will
acquire the same values, unless they explicitly override them.

■Note Property value inheritance is one of the many optional features that dependency properties can
provide. Dependency properties are described in Chapter 6.

349

C H A P T E R 1 2

■ ■ ■

9551CH12 2/8/08 2:08 PM Page 349

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now consider a different situation, one in which you want to lock down the font that’s
used for just a portion of your user interface. If you can isolate these elements in a specific
container (for example, if they’re all inside one Grid or StackPanel), you can use essentially the
same approach and set the font properties of the container. However, life’s not usually that
easy. For example, you may want to give all buttons a consistent typeface and text size inde-
pendent from the font settings that are used in other elements. In this case, you need a way to
define these details in one place and reuse them wherever they apply.

Resources give you a solution, but it’s somewhat awkward. Because there’s no Font object
in WPF (just a collection of font-related properties), you’re stuck defining several related
resources, as shown here:

<Window.Resources>
<FontFamily x:Key="ButtonFontFamily">Times New Roman</FontFamily>
<sys:Double x:Key="ButtonFontSize">18</s:Double>
<FontWeight x:Key="ButtonFontWeight">Bold</FontWeight>

</Window.Resources>

This snippet or markup adds three resources to a window: a FontFamily object with the
name of the font you want to use, a double that stores the number 18, and the enumerated
value FontWeight.Bold. It assumes you’ve mapped the .NET namespace System to the XML
namespace prefix sys, as shown here:

<Window xmlns:sys="clr-namespace:System;assembly=mscorlib" ... >

■Tip When setting properties using a resource, it’s important that the data types match exactly. WPF won’t
use a type converter in the same way it does when you set an attribute value directly. For example, if you’re
setting the FontFamily attribute in an element, you can use the string “Times New Roman” because the Font-
FamilyConverter will create the FontFamily object you need. However, the same magic won’t happen if you
try to set the FontFamily property using a string resource—in this situation, the XAML parser throws an
exception.

Once you’ve defined the resources you need, the next step is to actually use these
resources in an element. Because the resources are never changed over the lifetime of the
application, it makes sense to use static resources, as shown here:

<Button Padding="5" Margin="5" Name="cmd"
FontFamily="{StaticResource ButtonFontFamily}"
FontWeight="{StaticResource ButtonFontWeight}"
FontSize="{StaticResource ButtonFontSize}"
>A Customized Button

</Button>

CHAPTER 12 ■ STYLES350

9551CH12 2/8/08 2:08 PM Page 350

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This example works, and it moves the font details (the so-called “magic numbers”) out of
your markup. However, it also presents two new problems:

• There’s no clear indication that the three resources are related (other than the similar
resource names). This complicates the maintainability of the application. It’s especially
a problem if you need to set more font properties or if you decide to maintain different
font settings for different types of elements.

• The markup you need to use your resources is quite verbose. In fact, it’s less concise
than the approach it replaces (defining the font properties directly in the element).

You could improve on the first issue by defining a custom class (such as FontSettings) that
bundles all the font details together. You could then create one FontSettings object as a resource
and use its various properties in your markup. However, this still leaves you with verbose
markup—and it makes for a fair bit of extra work.

Styles provide the perfect solution. You can define a single style that wraps all the proper-
ties you want to set. Here’s how:

<Window.Resources>
<Style x:Key="BigFontButtonStyle">
<Setter Property="Control.FontFamily" Value="Times New Roman" />
<Setter Property="Control.FontSize" Value="18" />
<Setter Property="Control.FontWeight" Value="Bold" />

</Style>
</Window.Resources>

This markup creates a single resource: a System.Windows.Style object. This style object
holds a Setters collection with three Setter objects, one for each property you want to set. Each
Setter object names the property that it acts on and the value that it applies to that property.
Like all resources, the style object has a key name so you can pull it out of the collection when
needed. In this case, the key name is BigFontButtonStyle. (By convention, the key names for
styles usually end with “Style.”)

Every WPF element can use a single style (or no style). The style plugs into an element
through the element’s Style property (which is defined in the base FrameworkElement class).
For example, to configure a button to use the style you created previously, you’d point the but-
ton to the style resource like this:

<Button Padding="5" Margin="5" Name="cmd"
Style="{StaticResource BigFontButtonStyle}"
>A Customized Button

</Button>

Of course, you could also set a style programmatically. All you need to do is pull the style
out of the closest Resources collection using the familiar FindResource() method. Here’s the
code you’d use for a Button object named cmd:

cmdButton.Style = (Style)cmd.FindResource("BigFontButtonStyle");

CHAPTER 12 ■ STYLES 351

9551CH12 2/8/08 2:08 PM Page 351

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 12-1 shows a window with two buttons that use the BigFontButtonStyle.

Figure 12-1. Reusing button settings with a style

■Note Styles set the initial appearance of an element, but you’re free to override the characteristics they
set. For example, if you apply the BigFontButtonStyle style and set the FontSize property explicitly, the Font-
Size setting in the button tag overrides the style. Ideally, you won’t rely on this behavior—instead, create
more styles so that you can set as many details as possible at the style level. This gives you more flexibility
to adjust your user interface in the future with minimum disruption.

The style system adds many benefits. Not only does it allow you to create groups of set-
tings that are clearly related, it also streamlines your markup by making it easier to apply these
settings. Best of all, you can apply a style without worrying about what properties it sets. In the
previous example the font settings were organized into a style named BigFontButtonStyle. If
you decide later that your big-font buttons also need more padding and margin space, you
can add setters for the Padding and Margin properties as well. All the buttons that use the
style automatically acquire the new style settings.

The Setters collection is the most important property of the Style class. But there are five
key properties altogether, which you’ll consider in this chapter. Table 12-1 shows a snapshot.

CHAPTER 12 ■ STYLES352

9551CH12 2/8/08 2:08 PM Page 352

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 12-1. Properties of the Style Class

Property Description

Setters A collection of Setter or EventSetter objects that set property values and attach
event handlers automatically.

Triggers A collection of objects that derive from TriggerBase and allow you to change style
settings automatically. For example, you can modify a style when another property
changes or when an event occurs.

Resources A collection of resources that you want to use with your styles. For example, you
might need to use a single object to set more than one property. In that case, it’s
more efficient to create the object as a resource and then use that resource in your
Setter object (rather than create the object as part of each Setter, using nested tags).

BasedOn A property that allows you to create a more specialized style that inherits (and
optionally overrides) the settings of another style.

TargetType A property that identifies the element type that this style acts upon. This property
allows you to create setters that only affect certain elements, and it allows you to
create setters that spring into action automatically for the right element type.

Now that you’ve seen a basic example of a style at work, you’re ready to look into the style
model more deeply.

Creating a Style Object
In the previous example, the style object is defined at the window level and then reused in
two buttons inside that window. Although that’s a common design, it’s certainly not your only
choice.

If you want to create more finely targeted styles, you could define them using the
Resources collection of their container, such as a StackPanel or a Grid. If you want to reuse
styles across an application, you can define them using the Resources collection of your appli-
cation. These are also common approaches.

Strictly speaking, you don’t need to use styles and resources together. For example, you
could define the style of a particular button by filling its Style collection directly, as shown
here:

<Button Padding="5" Margin="5">
<Button.Style>
<Style>
<Setter Property="Control.FontFamily" Value="Times New Roman" />
<Setter Property="Control.FontSize" Value="18" />
<Setter Property="Control.FontWeight" Value="Bold" />

</Style>
</Button.Style>
<Button.Content>A Customized Button</Button.Content>

</Button>

CHAPTER 12 ■ STYLES 353

9551CH12 2/8/08 2:08 PM Page 353

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This works, but it’s obviously a lot less useful. Now there’s no way to share this style with
other elements.

This approach isn’t worth the trouble if you’re simply using a style to set some properties
(as in this example) because it’s easier to set the properties directly. However, this approach is
occasionally useful if you’re using another feature of styles and you only want to apply it to a
single element. For example, you can use this approach to attach triggers to an element. This
approach also allows you to modify a part of an element’s control template. (In this case, you
use the Setter.TargetName property to apply a setter to a specific component inside the ele-
ment, such as the scroll bar buttons in a list box. You’ll learn more about this technique in
Chapter 15.)

Setting Properties
As you’ve seen, every Style object wraps a collection of Setter objects. Each Setter object sets a
single property in an element. The only limitation is that a setter can only change a depend-
ency property—other properties can’t be modified.

In some cases, you won’t be able to set the property value using a simple attribute string.
For example, an ImageBrush object (such as the kind you used in the previous chapter to
show a tiled pattern) can’t be set with a simple string. In this situation, you can use the familiar
XAML trick of replacing the attribute with a nested element. Here’s an example:

<Style x:Key="HappyTiledElementStyle">
<Setter Property="Control.Background">
<Setter.Value>
<ImageBrush TileMode="Tile"
ViewportUnits="Absolute" Viewport="0 0 32 32"
ImageSource="happyface.jpg" Opacity="0.3">

</ImageBrush>
</Setter.Value>

</Setter>
</Style>

■Tip If you want to reuse the same image brush in more than one style (or in more than one setter in the
same style) you can define it as a resource and then use that resource in your style.

To identify the property you want to set, you need to supply both a class and a property
name. However, the class name you use doesn’t need to be the class where the property is
defined. It can also be a derived class that inherits the property. For example, consider the fol-
lowing version of the BigFontButton style, which replaces the references to the Control class
with references to the Button class:

<Style x:Key="BigFontButtonStyle">
<Setter Property="Button.FontFamily" Value="Times New Roman" />
<Setter Property="Button.FontSize" Value="18" />
<Setter Property="Button.FontWeight" Value="Bold" />

</Style>

CHAPTER 12 ■ STYLES354

9551CH12 2/8/08 2:08 PM Page 354

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you substitute this style in the same example (Figure 12-1), you’ll get exactly the same
result. So why the difference? In this case, the distinction is how WPF handles other classes
that may include the same FontFamily, FontSize, and FontWeight properties but that don’t
derive from Button. For example, if you apply this version of the BigFontButton style to a Label
control, it has no effect. WPF simply ignores the three properties because they don’t apply. But
if you use the original style, the font properties will affect the label because the Label class
derives from Control.

■Tip The fact that WPF ignores properties that don’t apply means you can also set properties that won’t
necessarily be available in the element to which you apply the style. For example, if you set the ButtonBase.
IsCancel property, it will only have an affect when you set the style on a button.

There are some cases in WPF where the same properties are defined in more than one place
in the element hierarchy. For example, the full set of font properties (such as FontFamily) is
defined in both the Control class and the TextBlock class. If you’re creating a style that applies to
TextBlock objects and elements that derive from Control, it might occur to you to create markup
like this:

<Style x:Key="BigFontStyle">
<Setter Property="Button.FontFamily" Value="Times New Roman" />
<Setter Property="Button.FontSize" Value="18" />

<Setter Property="TextBlock.FontFamily" Value="Arial" />
<Setter Property="TextBlock.FontSize" Value="10" />

</Style>

However, this won’t have the desired effect. The problem is that although Button.
FontFamily and TextBlock.FontFamily are declared separately in their respective base
classes, they are both references to the same dependency property. (In other words,
TextBlock.FontSizeProperty and Control.FontSizeProperty are references that point to the
same DependencyProperty object. You first learned about this possible issue in Chapter 6.)
As a result, when you use this style, WPF sets the FontFamily and FontSize property twice.
The last-applied settings (in this case, 10-unit Arial) take precedence and are applied to both
Button and TextBlock objects. Although this problem is fairly specific and doesn’t occur with
many properties, it’s important to be on the lookout for it if you often create styles that apply
different formatting to different element types.

There’s one more trick that you can use to simplify style declarations. If all your properties
are intended for the same element type, you can set the TargetType property of the Style object
to indicate the class that your properties apply to. For example, if you’re creating a button-only
style, you could create the style like this:

<Style x:Key="BigFontButtonStyle" TargetType="Button">
<Setter Property="FontFamily" Value="Times New Roman" />
<Setter Property="FontSize" Value="18" />
<Setter Property="FontWeight" Value="Bold" />

</Style>

CHAPTER 12 ■ STYLES 355

9551CH12 2/8/08 2:08 PM Page 355

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This is a relatively minor convenience. As you’ll discover later, the TargetType property
also doubles as a shortcut that allows you to apply styles automatically if you leave out the
style key name.

Attaching Event Handlers
Property setters are the most common ingredient in any style, but you can also create a collec-
tion of EventSetter objects that wire up events to specific event handlers. Here’s an example
that attaches the event handlers for the MouseEnter and MouseLeave events:

<Style x:Key="MouseOverHighlightStyle">
<EventSetter Event="TextBlock.MouseEnter" Handler="element_MouseEnter" />
<EventSetter Event="TextBlock.MouseLeave" Handler="element_MouseLeave" />
<Setter Property="TextBlock.Padding" Value="5"/>

</Style>

Here’s the event handling code:

private void element_MouseEnter(object sender, MouseEventArgs e)
{

((TextBlock)sender).Background = new
SolidColorBrush(Colors.LightGoldenrodYellow);

}

private void element_MouseLeave(object sender, MouseEventArgs e)
{

((TextBlock)sender).Background = null;
}

MouseEnter and MouseLeave use direct event routing, which means they don’t bubble up
or tunnel down the element tree. If you want to apply a mouseover effect to a large number of
elements (for example, you want to change the background color of an element when the
mouse moves overtop of it), you need to add the MouseEnter and MouseLeave event handlers
to each element. The style-based event handlers simplify this task. Now you simply need to
apply a single style, which can include property setters and event setters:

<TextBlock Style="{StaticResource MouseOverHighlightStyle}">
Hover over me.
</TextBlock>

Figure 12-2 shows a simple demonstration of this technique with three elements, two of
which use the MouseOverHighlightStyle.

Event setters are a rare technique in WPF. If you need the functionality shown here, you’re
more likely to use event triggers, which define the action you want declaratively (and so
require no code). Event triggers are designed to implement animations, which makes them
more useful when creating mouseover effects.

Event setters aren’t a good choice when handling an event that uses bubbling. In this situ-
ation, it’s usually easier to handle the event you want on a higher-level element. For example,
if you want to link all the buttons in a toolbar to the same event handler for the Click event,
the best approach is to attach a single event handler to the Toolbar element that holds all the
buttons. In this situation, an event setter is an unnecessary complication.

CHAPTER 12 ■ STYLES356

9551CH12 2/8/08 2:08 PM Page 356

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 12-2. Handling the MouseEnter and MouseLeave events with a style

■Tip In many cases it’s clearer to explicitly define all your events and avoid event setters altogether. If you
need to link several events to the same event handler, do it by hand. You can also use tricks such as attach-
ing an event handler at the container level and centralizing logic with commands (Chapter 10).

The Many Layers of Styles
Although you can define an unlimited number of styles at many different levels, each WPF ele-
ment can only use a single style object at once. Although this might appear to be a limitation
at first, it usually isn’t because of property value inheritance and style inheritance.

For example, imagine you want to give a group of controls the same font without applying
the same style to each one. In this case, you may be able to place them in a single panel (or
another type of container) and set the style of the container. As long as you’re setting proper-
ties that use the property value inheritance feature, these values will flow down to the
children. Properties that use this model include IsEnabled, IsVisible, Foreground, and all the
font properties.

In other cases, you might want to create a style that builds upon another style. You can
use this sort of style inheritance by setting the BasedOn attribute of a style. For example, con-
sider these two styles:

<Window.Resources>
<Style x:Key="BigFontButtonStyle">
<Setter Property="Control.FontFamily" Value="Times New Roman" />
<Setter Property="Control.FontSize" Value="18" />
<Setter Property="Control.FontWeight" Value="Bold" />

</Style>

CHAPTER 12 ■ STYLES 357

9551CH12 2/8/08 2:08 PM Page 357

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Style x:Key="EmphasizedBigFontButtonStyle"
BasedOn="{StaticResource BigFontButtonStyle}">
<Setter Property="Control.Foreground" Value="White" />
<Setter Property="Control.Background" Value="DarkBlue" />

</Style>
</Window.Resources>

The first style (BigFontButtonStyle) defines three font properties. The second style
(EmphasizedBigFontButtonStyle) acquires these aspects from BigFontButtonStyle and then
supplements them with two more properties that change the foreground and the background
brushes. This two-part design gives you the ability to apply just the font settings or the font-
and-color combination. This design also allows you to create more styles that incorporate the
font or color details you’ve defined (but not necessarily both).

■Note You can use the BasedOn property to create an entire chain of inherited styles. The only rule is that
if you set the same property twice, the last property setter (the one in the derived class farthest down the
inheritance chain) overrides any earlier definitions.

Figure 12-3 shows style inheritance at work in a simple window that uses both styles.

Figure 12-3. Creating a style based on another style

CHAPTER 12 ■ STYLES358

9551CH12 2/8/08 2:08 PM Page 358

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

STYLE INHERITANCE ADDS COMPLEXITY

Although style inheritance seems like a great convenience at first glance, it’s usually not worth the
trouble. That’s because style inheritance is subject to the same problems as code inheritance: dependencies
that make your application more fragile. For example, if you use the markup shown previously, you’re
forced to keep the same font characteristics for two styles. If you decide to change BigFontButtonStyle,
EmphasizedBigFontButtonStyle changes as well—unless you explicitly add more setters that override the
inherited values.

This problem is trivial enough in the two-style example, but it becomes a significant issue if you use
style inheritance in a more realistic application. Usually, styles are categorized based on different types of
content and the role that the content plays. For example, a sales application might include styles such as
ProductTitleStyle, ProductTextStyle, HighlightQuoteStyle, NavigationButtonStyle, and so on. If you base
ProductTitleStyle on ProductTextStyle (perhaps because they both share the same font), you’ll run into
trouble if you apply settings to ProductTextStyle later on that you don’t want to apply to ProductTitleStyle

(such as different margins). In this case, you’ll be forced to define your settings in ProductTextStyle and
explicitly override them in ProductTitleStyle. At the end, you’ll be left with a more complicated model and very
few style settings that are actually reused.

Unless you have a specific reason to base one style on another (for example, the second style is a spe-
cial case of the first and changes just a few characteristics out of a large number of inherited settings), don’t
use style inheritance.

Automatically Applying Styles by Type
So far, you’ve seen how to create named styles and refer to them in your markup. However,
there’s another approach. You can apply a style automatically to elements of a certain type.

Doing this is quite easy. You simply need to set the TargetType property to indicate the
appropriate type (as described earlier) and leave out the key name altogether. When you do
this, WPF actually sets the key name implicitly using the type markup extension, as shown
here:

x:Key="{x:Type Button}"

Now the style is automatically applied to any buttons all the way down the element tree.
For example, if you define a style in this way on the window, it applies to every button in that
window (unless there’s a style farther downstream that replaces it).

Here’s an example with a window that sets the button styles automatically to get the same
effect you saw in Figure 12-1:

<Window.Resources>
<Style TargetType="Button">
<Setter Property="FontFamily" Value="Times New Roman" />
<Setter Property="FontSize" Value="18" />
<Setter Property="FontWeight" Value="Bold" />

</Style>
</Window.Resources>

CHAPTER 12 ■ STYLES 359

9551CH12 2/8/08 2:08 PM Page 359

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<StackPanel Margin="5">
<Button Padding="5" Margin="5">Customized Button</Button>
<TextBlock Margin="5">Normal Content.</TextBlock>
<Button Padding="5" Margin="5" Style="{x:Null}">A Normal Button</Button>
<TextBlock Margin="5">More normal Content.</TextBlock>
<Button Padding="5" Margin="5">Another Customized Button</Button>

</StackPanel>

In this example, the middle button explicitly replaces the style. But rather than supply a
new style of its own, this button sets the Style property to a null value, which effectively
removes the style.

Although automatic styles are convenient, they can complicate your design. Here are a
few reasons why:

• In a complex window with many styles and multiple layers of styles, it becomes difficult
to track down whether a given property is set through property value inheritance or a
style (and if it’s a style, which one). As a result, if you want to change a simple detail, you
may need to wade through the markup of your entire window.

• The formatting in a window often starts out more general and becomes increasingly
fine-tuned. If you apply automatic styles to the window early on, you’ll probably need
to override the styles in many places with explicit styles. This complicates the overall
design. It’s much more straightforward to create named styles for every combination of
formatting characteristics you want and apply them by name.

• For example, if you create an automatic style for the TextBlock element, you’ll wind up
modifying other controls that use the TextBlock (such as a template-driven ListBox
control).

To avoid problems, it’s best to apply automatic styles judiciously. For example, you might
use an automatic style to give a consistent padding to buttons, or control the margin settings
of text boxes in a specific container rather than the entire window.

Triggers
One of the themes in WPF is extending what you can do declaratively. Whether you’re using
styles, resources, or data binding, you’ll find that you can do quite a bit without resorting to
code.

Triggers are another example of this trend. Using triggers, you can automate simple style
changes that would ordinarily require boilerplate event-handling logic. For example, you can
react when a property is changed and adjust a style automatically.

Triggers are linked to styles through the Style.Triggers collection. Every style can have
an unlimited number of triggers, and each trigger is an instance of a class that derives from
System.Windows.TriggerBase. WPF gives you the choices listed in Table 12-2.

You can apply triggers directly to elements, without needing to create a style, by using the
FrameworkElement.Triggers collection. However, there’s a sizeable catch. This Triggers collec-
tion only supports event triggers. (There’s no technical reason for this limitation; it’s simply a
feature the WPF team didn’t have time to implement and may include in future versions.)

CHAPTER 12 ■ STYLES360

9551CH12 2/8/08 2:08 PM Page 360

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 12-2. Classes That Derive from TriggerBase

Name Description

Trigger This is the simplest form of trigger. It watches for a change in a dependency
property and then uses a setter to change the style.

MultiTrigger This is similar to trigger but combines multiple conditions. All the conditions
must be met before the trigger springs into action.

DataTrigger This trigger works with data binding. It’s similar to Trigger, except it watches
for a change in any bound data.

MultiDataTrigger This combines multiple data triggers.

EventTrigger This is the most sophisticated trigger. It applies an animation when an event
occurs.

A Simple Trigger
You can attach a simple trigger to any dependency property. For example, you can create
mouseover and focus effects by responding to changes in the IsFocused, IsMouseOver, and
IsPressed properties of the Control class.

Every simple trigger identifies the property you’re watching and the value that you’re
waiting for. When this value occurs, the setters you’ve stored in the Trigger.Setters collection
are applied. (Unfortunately, it isn’t possible to use more sophisticated trigger logic that
compares a value to see how it falls in a range, performs a calculation, and so on. In these
situations, you’re better off to use an event handler.)

Here’s a trigger that waits for a button to get the keyboard focus, at which point it’s given a
dark red background:

<Style x:Key="BigFontButton">
<Style.Setters>
<Setter Property="Control.FontFamily" Value="Times New Roman" />
<Setter Property="Control.FontSize" Value="18" />

</Style.Setters>

<Style.Triggers>
<Trigger Property="Control.IsFocused" Value="True">
<Setter Property="Control.Foreground" Value="DarkRed" />

</Trigger>
</Style.Triggers>

</Style>

The nice thing about triggers is that there’s no need to write any logic to reverse them.
As soon as the trigger stops applying, your element reverts to its normal appearance. In this
example that means the button gets its ordinary gray background as soon as the user tabs
away.

CHAPTER 12 ■ STYLES 361

9551CH12 2/8/08 2:08 PM Page 361

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note To understand how this works, you need to remember the dependency property system that you
learned about in Chapter 6. Essentially, a trigger is one of the many property providers that can override the
value that’s returned by a dependency property. However, the original value (whether it is set locally or by a
style) still remains. As soon as the trigger becomes deactivated, the pretrigger value is available again.

It’s possible to create multiple triggers that may apply to the same element at once. If
these triggers set different properties, there’s no ambiguity in this situation. However, if you
have more than one trigger that modifies the same property, the last trigger in the list wins.

For example, consider the following triggers, which adjust a control depending on
whether it is focused, whether the mouse is hovering over it, and whether it’s been clicked:

<Style x:Key="BigFontButton">
<Style.Setters>
...

</Style.Setters>
<Style.Triggers>
<Trigger Property="Control.IsFocused" Value="True">
<Setter Property="Control.Foreground" Value="DarkRed" />

</Trigger>
<Trigger Property="Control.IsMouseOver" Value="True">
<Setter Property="Control.Foreground" Value="LightYellow" />
<Setter Property="Control.FontWeight" Value="Bold" />

</Trigger>
<Trigger Property="Button.IsPressed" Value="True">
<Setter Property="Control.Foreground" Value="Red" />

</Trigger>
</Style.Triggers>

</Style>

Obviously, it’s possible to hover over a button that currently has the focus. This doesn’t
pose a problem because these triggers modify different properties. But if you click the button,
there are two different triggers attempting to set the foreground. Now the trigger for the
Button.IsPressed property wins because it’s last in the list. It doesn’t matter which trigger
occurs first—for example, WPF doesn’t care that a button gets focus before you click it. The
order in which the triggers are listed in your markup is all that matters.

■Note In this example, triggers aren’t all you need to get a nice-looking button. You’re also limited by the
button’s control template, which locks down certain aspects of its appearance. For best results when cus-
tomizing elements to this degree, you need to use a control template. However, control templates don’t
replace triggers—in fact, control templates often use triggers to get the best of both worlds: controls that
can be completely customized and react to mouseovers, clicks, and other events to change some aspect of
their visual appearance.

CHAPTER 12 ■ STYLES362

9551CH12 2/8/08 2:08 PM Page 362

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you want to create a trigger that only switches on if several criteria are true, you can use
a MultiTrigger. It provides a Conditions collection that lets you define a series of property and
value combinations. Here’s an example that only applies formatting if a button has focus and
the mouse is over it:

<Style x:Key="BigFontButton">
<Style.Setters>
...

</Style.Setters>
<Style.Triggers>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="Control.IsFocused" Value="True">
<Condition Property="Control.IsMouseOver" Value="True">

</MultiTrigger.Conditions>
<MultiTrigger.Setters>
<Setter Property="Control.Foreground" Value="DarkRed" />

</MultiTrigger.Setters>
</MultiTrigger>

</Style.Triggers>
</Style>

In this case, it doesn’t matter what order you declare the conditions in because they must
all hold true before the background is changed.

An Event Trigger
While an ordinary trigger waits for a property change to occur, an event trigger waits for a
specific event to be fired. You might assume that at this point you use setters to change the
element, but that’s not the case. Instead, an event trigger requires that you supply a series of
actions that modify the control. These actions are used to apply an animation.

Although you won’t consider animations in detail until Chapter 21, you can get the idea
with a basic example. The following event trigger waits for the MouseEnter event and then
animates the FontSize property of the button, enlarging it to 22 units for 0.2 seconds:

<Style x:Key="BigFontButtonStyle">
<Style.Setters>
...

</Style.Setters>

<Style.Triggers>
<EventTrigger RoutedEvent="Mouse.MouseEnter">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation
Duration="0:0:0.2"
Storyboard.TargetProperty="FontSize"
To="22" />

CHAPTER 12 ■ STYLES 363

9551CH12 2/8/08 2:08 PM Page 363

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>
...

In XAML, every animation must be defined in a storyboard, which provides the timeline
for the animation. Inside the storyboard, you define the animation object (or objects) that
you want to use. Every animation object performs essentially the same task: it modifies a
dependency property over some time period.

In this example, a prebuilt animation class named DoubleAnimation is being used (which
is found in the System.Windows.Media.Animation namespace, like all animation classes).
DoubleAnimation is able to gradually change any double value (such as FontSize) to a set tar-
get over a given period of time. Because the double value is changed in small fractional units,
you’ll see the font grow gradually. The actual size of the change depends on the total amount
of time and the total change you need to make. In this example, the font changes from its cur-
rent set value to 22 units, over a time period of 0.2 seconds. (You can fine-tune details such as
these and create an animation that accelerates or decelerates by tweaking the properties of
the DoubleAnimation class.)

Unlike property triggers, you need to reverse event triggers if you want the element to
return to its original state. (That’s because the default animation behavior is to remain active
once the animation is complete, holding the property at the final value. You’ll learn more
about how this system works in Chapter 21.)

To reverse the font size in this example, the style uses an event trigger that reacts to the
MouseLeave event and shrinks the font back to its original size over a full two seconds. You
don’t need to indicate the target font size in this case—if you don’t, WPF assumes you want the
original font size that the button had before the first animation kicked in:

...
<EventTrigger RoutedEvent="Mouse.MouseLeave">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation
Duration="0:0:1"
Storyboard.TargetProperty="FontSize" />

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Style.Triggers>
</Style>

Interestingly, you can also perform an animation when a dependency property hits a spe-
cific value. This is useful if you want to perform an animation and there isn’t a suitable event
to use.

CHAPTER 12 ■ STYLES364

9551CH12 2/8/08 2:08 PM Page 364

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To use this technique you need a property trigger, as described in the previous section.
The trick is to not supply any Setter objects for your property trigger. Instead, you set the
Trigger.EnterActions and Trigger.ExitActions properties. Both properties take a collection of
actions, such as the BeginStoryboard action that starts an animation. The EnterActions are
performed when the property reaches the designated value, and ExitActions are performed
when the property changes away from the designated value.

You’ll learn much more about using event triggers and property triggers to launch anima-
tions in Chapter 21.

Last Word
In this chapter, you saw how styles allow you to define named sets of property values and eas-
ily apply them to the appropriate element.

Styles are a key ingredient that support many other WPF features. For example, styles give
you a way to apply new control templates to a range of controls; use different formatting,
depending on the current system theme; dynamically reskin your application; and enhance
elements with automatic animations. You’ll learn about these techniques in the chapters to
come. (In Chapter 15, you’ll explore control templates, themes, and application skinning. In
Chapter 21, you’ll delve into animations.) But first, it’s time to tackle another core WPF topic:
its rich two-dimensional drawing features.

CHAPTER 12 ■ STYLES 365

9551CH12 2/8/08 2:08 PM Page 365

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH12 2/8/08 2:08 PM Page 366

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Shapes, Transforms,
and Brushes

When you were first introduced to WPF in Chapter 1, you learned that it’s powered by an
entirely new graphics model—one that handles prebuilt controls and custom-drawn graphics
in the same way, uses hardware acceleration with ordinary two-dimensional drawing, and
favors scalable vectors over bitmaps.

In this chapter, you’ll learn how to draw basic shapes, how to assemble them into more
complex graphics, and how to use fancy brushes for painting gradients and creating other image
effects. You’ll also see how you can use transforms to rotate, skew, and otherwise manipulate just
about any piece of user interface, including WPF elements. Not only will this knowledge help you
build graphically rich visuals for your user interface, it will also allow you to get the most out of
other WPF features such as control templates (Chapter 15) and animation (Chapter 21).

Understanding Shapes
The simplest way to draw 2-D graphical content in a WPF user interface is to use shapes:
dedicated classes that represent simple lines, ellipses, rectangles, and polygons. Technically,
shapes are known as drawing primitives. You can combine these basic ingredients to create
more complex graphics.

The most important detail about shapes in WPF is the fact that they all derive from
FrameworkElement. As a result, shapes are elements. This has a number of important
consequences:

• Shapes draw themselves. You don’t need to manage the invalidation and painting
process. For example, you don’t need to manually repaint a shape when content moves,
the window is resized, or the shape’s properties change.

• Shapes are organized in the same way as other elements. In other words, you can
place a shape in any of the layout containers you learned about in Chapter 4. (Although
the Canvas is obviously the most useful container because it allows you to place shapes
at specific coordinates, which is important when you’re building a complex drawing
out of multiple pieces.)

• Shapes support the same events as other elements. That means you don’t need to go
to any extra work to deal with focus, key presses, mouse movements, and mouse clicks.
You can use the same set of events you’d use with any element, and you have the same
support for tooltips, context menus, and drag-and-drop operations. 367

C H A P T E R 1 3

■ ■ ■

9551CH13 2/8/08 2:09 PM Page 367

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This model is dramatically different than those in earlier user interface technologies, such
as Windows Forms. Those frameworks do most of their work using the traditional windowing
model (through User32), which would be incredibly inefficient if applied to pieces of graphical
content, such as individual lines and squares. Additionally, the window model requires that
each element “own” a small section of screen real estate, which makes it difficult to add trans-
parency and use antialiasing around the edges of a nonrectangular shape.

Because of these limitations, older frameworks use the lower-level GDI/GDI+ model for
custom drawing. This requires more work and provides far fewer high-level features.

■Tip As you’ll see in Chapter 14, it’s still possible to program at a lower level in WPF using the visual layer.
This lightweight model improves performance if you need to create huge numbers of elements (say, thou-
sands of shapes), and you don’t need all the features of the UIElement and FrameworkElement classes (such
as data binding and event handling). However, visual layer programming still works at a higher level than
GDI/GDI+. Most importantly, WPF still manages the redrawing processing automatically. You simply supply
the content.

The Shape Classes
Every shape derives from the abstract System.Windows.Shapes.Shape class. Figure 13-1 shows
the inheritance hierarchy for shapes.

As you can see, there’s a relatively small set of classes that derive from the Shape class.
Line, Ellipse, and Rectangle are all straightforward, while Polyline is a connected series of
straight lines, and Polygon is a closed shape made up of a connected series of straight lines.
Finally, the Path class is an all-in-one superpower that can combine basic shapes in a single
element.

Although the Shape class can’t do anything on its own, it defines a small set of important
properties, which are listed in Table 13-1.

Table 13-1. Shape Properties

Name Description

Fill Sets the brush object that paints the surface of the shape (everything
inside its borders).

Stroke Sets the brush object that paints the edge of the shape (its border).

StrokeThickness Sets the thickness of the border, in device-independent units. When
drawing a line, WPF splits the width on each side. So a line that’s 10 units
wide gets 5 units of space on each side of where a single-unit line would be
drawn. If you give a line an odd-number thickness, the line will have a
fractional width on each side. For example, an 11-unit line has 5.5 units of
space on each side. This pretty much guarantees that the line won’t line up
evenly with the display pixels of your monitor, even if it’s running at 96 dpi
resolution, so you’ll end up with a slightly fuzzy antialiased edge. You can
use the SnapsToDevicePixels property to clean this up if it bothers you (as
described in the section “Pixel Snapping” later in this chapter).

StrokeStartLineCap Determine the contour of the edge of the beginning and end of the line.
and StrokeEndLineCap These properties only have an effect for the Line, the Polyline, and

(sometimes) the Path shapes. All other shapes are closed, and so have no
starting and ending point.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES368

9551CH13 2/8/08 2:09 PM Page 368

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 369

Name Description

StrokeDashArray, Allow you to create a dashed border around a shape. You can control the
StrokeDashOffset, size and frequency of the dashes and how the edge where each dash line
and StrokeDashCap begins and ends is contoured.

StrokeLineJoin and Determine the contour of the corners of a shape. Technically, these
StrokeMiterLimit properties affect the vertices where different lines meet, such as the

corners of a Rectangle. These properties have no effect for shapes without
corners, such as Line and Ellipse.

Stretch Determines how a shape fills its available space. You can use this property
to create a shape that expands to fit its container. You can also force a
shape to expand in one direction using a Stretch value for the
HorizontalAlignment or VerticalAlignment properties (which are
inherited from the FrameworkElement class).

DefiningGeometry Provides a Geometry object for the shape. A Geometry object describes
the coordinates and size of a shape without including the UIElement
plumbing, such as the support for keyboard and mouse events. You’ll use
geometries in Chapter 14.

GeometryTransform Allows you to apply a Transform object that changes the coordinate system
that’s used to draw a shape. This allows you to skew, rotate, or displace a
shape. Transforms are particularly useful when animating graphics. You’ll
learn about transforms later in this chapter.

RenderedGeometry Provides a Geometry object that describes the final, rendered shape.
Geometries are described in Chapter 14.

Figure 13-1. The WPF shape classes

Legend

DispatcherObject

UIElement

Shape

Abstract Class

Concrete Class

Rectangle Ellipse PolylineLine Polygon Path

FrameworkElement

DependencyObject

Visual

9551CH13 2/8/08 2:09 PM Page 369

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In the following sections, you’ll consider the Rectangle, Ellipse, Line, and Polyline. Along
the way, you’ll learn the following fundamentals:

• How to size shapes and organize them in a layout container.

• How to control what regions of a complex shape are filled in.

• How to use dashed lines and different line ends (or “caps”).

• How to neatly align shape edges along pixel boundaries.

You’ll take a look at the more sophisticated Path class in Chapter 14.

Rectangle and Ellipse
The Rectangle and Ellipse are the two simplest shapes. To create either one, set the familiar
Height and Width properties (inherited from FrameworkElement) to define the size of your
shape, and then set the Fill or Stroke property (or both) to make the shape visible. You’re also
free to use properties such as MinHeight, MinWidth, HorizontalAlignment, VerticalAlignment,
and Margin.

■Note If you fail to supply a brush for the Stroke or Fill property, your shape won’t appear at all. Both these
properties are initially set to use transparent brushes.

Here’s a simple example that stacks an ellipse on a rectangle (see Figure 13-2) using a
StackPanel:

<StackPanel>
<Ellipse Fill="Yellow" Stroke="Blue"
Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Ellipse>
<Rectangle Fill="Yellow" Stroke="Blue"
Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Rectangle>

</StackPanel>

Figure 13-2. Two simple shapes

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES370

9551CH13 2/8/08 2:09 PM Page 370

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Ellipse class doesn’t add any properties. The Rectangle class adds just two: RadiusX
and RadiusY. When set to nonzero values, these properties allow you to create nicely rounded
corners.

You can think of RadiusX and RadiusY as describing an ellipse that’s used just to fill in the
corners of the rectangle. For example, if you set both properties to 10, WPF draws your corners
using the edge of a circle that’s 10 units wide. As you make your radius larger, more of your
rectangle will be rounded off. If you increase RadiusY more than RadiusX, your corners will
round off more gradually along the left and right sides and more sharply along the top and
bottom edge. If you increase the RadiusX property to match your rectangle’s width, and
increase RadiusY to match its height, you’ll end up converting your rectangle into an ordinary
ellipse.

Figure 13-3 shows a few rectangles with rounded corners.

Figure 13-3. Rounded corners

Sizing and Placing Shapes
As you already know, hard-coded sizes are usually not the ideal approach to creating user
interfaces. They limit your ability to handle dynamic content and they make it more difficult
to localize your application into other languages.

When drawing shapes, these concerns don’t always apply. Often, you’ll need tighter con-
trol over shape placement. However, there are many cases where you can make your design a
little more flexible. Both the Ellipse and the Rectangle have the ability to size themselves to fill
the available space.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 371

9551CH13 2/8/08 2:09 PM Page 371

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you don’t supply the Height and Width properties, the shape is sized based on its con-
tainer. In the previous example, removing the Height and Width values (and leaving out the
MinHeight and MinWidth values) will cause the shapes to shrink to a vanishingly small size,
because the StackPanel is sized to fit its content. However, if you force the StackPanel to take
the full width of the window (by setting its HorizontalAlignment property to Stretch), then also
set the HorizontalAlignment property of the ellipse to Stretch and remove the ellipse’s Width
property, the ellipse will take the full width of the window.

A better example can be made with the Grid container. If you use the proportional row-
sizing behavior (which is the default), you can create an ellipse that fills a window with this
stripped-down markup:

<Grid>
<Ellipse Fill="Yellow" Stroke="Blue"></Ellipse>

</Grid>

Here, the Grid fills the entire window. The Grid contains a single proportionately sized
row, which fills the entire Grid. Finally, the ellipse fills the entire row.

This sizing behavior depends on the value of the Stretch property (which is defined in the
Shape class). By default, it’s set to Fill, which stretches a shape to fill its container if an explicit
size isn’t indicated. Table 13-2 lists all your possibilities.

Table 13-2. Values for the Stretch Enumeration

Name Description

Fill Your shape is stretched in width and height to fit its container exactly. (If you
set an explicit height and width, this setting has no effect.)

None The shape is not stretched. Unless you set a nonzero width and height (using
the Height and Width or MinHeight and MinWidth properties), your shape
won’t appear.

Uniform The width and height are sized up proportionately until the shape reaches the
edge of the container. If you use this with an ellipse, you’ll end up with the
biggest circle that fits in the window. If you use it with a rectangle, you’ll get
the biggest possible square. (If you set an explicit height and width, your
shape is sized within those bounds. For example, if you set a Width of 10
and a Height of 100 for a rectangle, you’ll only get a 10 ✕10 square.)

UniformToFill The width and height are sized proportionately until the shape fills all the
available height and width. For example, if you place a rectangle with this size
setting into a window that’s 100 ✕ 200 units, you’ll get a 200 ✕ 200 rectangle,
and part of it will be clipped off. (If you set an explicit height and width, your
shape is sized within those bounds. For example, if you set a Width of 10 and a
Height of 100 for a rectangle, you’ll get a 100 ✕ 100 rectangle that’s clipped to
fit an invisible 10 ✕ 100 box.)

Figure 13-4 shows the difference between Fill, Uniform, and UniformToFill.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES372

9551CH13 2/8/08 2:09 PM Page 372

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Usually, a Stretch value of Fill is the same as setting both HorizontalAlignment and
VerticalAlignment to Stretch. The difference occurs if you choose to set a fixed Width or Height
on your shape. In this case, the HorizontalAlignment and VerticalAlignment values are simply
ignored. However, the Stretch setting still has an effect—it determines how your shape content
is sized within the bounds you’ve given it.

Figure 13-4. Filling three cells in a Grid

■Tip In most cases, you’ll size a shape explicitly or allow it to stretch to fit. You won’t combine both
approaches.

So far, you’ve seen how to size a Rectangle and an Ellipse, but what about placing
them exactly where you want them? WPF shapes use the same layout system as any other
element. However, some layout containers aren’t as appropriate. For example, the StackPanel,
DockPanel, and WrapPanel often aren’t what you want because they’re designed to separate
elements. The Grid is a bit more flexible because it allows you to place as many elements as
you want in the same cell (although it doesn’t let you position squares and ellipsis in different
parts of that cell). The ideal container is the Canvas, which forces you to specify the coordi-
nates of each shape using the attached Left, Top, Right, or Bottom properties. This gives you
complete control over how shapes overlap:

<Canvas>
<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="100" Canvas.Top="50"
Width="100" Height="50"></Ellipse>
<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
Width="100" Height="50"></Rectangle>

</Canvas>

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 373

9551CH13 2/8/08 2:09 PM Page 373

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

With a Canvas, the order of your tags is important. In the previous example, the rectangle
is superimposed on the ellipse because the ellipse appears first in the list, and so is drawn first
(Figure 13-5).

Remember, a Canvas doesn’t need to occupy an entire window. For example, there’s no
reason that you can’t create a Grid that uses a Canvas in one of its cells. This gives you the
perfect way to lock down fixed bits of drawing logic in a dynamic, free-flowing user interface.

Figure 13-5. Overlapping shapes in a Canvas

Sizing Shapes Proportionately with a Viewbox
The only limitation to using the Canvas is that your graphics won’t be able to resize themselves
to fit larger or smaller windows. This makes perfect sense for buttons (which don’t change size
in these situations), but not necessarily for other types of graphical content. For example, you
might create a complex graphic that you want to be resizable so it can take advantage of the
available space.

In situations like these, WPF has an easy solution. If you want to combine the precise con-
trol of the Canvas with easy resizability, you can use the Viewbox element. The Viewbox is a
simple class that derives from Decorator, which you first considered in Chapter 5. It accepts a
single child, which it stretches or shrinks to fit the available space.

Although you could place a single shape in a Decorator, that doesn’t provide any real
advantage. Instead, the Decorator shines when you need to wrap a group of shapes that make
up a drawing. Then you simply place the layout container for your drawing (typically, the
Canvas) inside the Viewbox.

The following example puts a Decorator in the second row of a Grid. The Decorator takes
the full height and width of the row. The row takes whatever space is left over after the first
autosized row is rendered. Here’s the markup:

<Grid Margin="5">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="*"></RowDefinition>

</Grid.RowDefinitions>

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES374

9551CH13 2/8/08 2:09 PM Page 374

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<TextBlock>The first row of a Grid.</TextBlock>

<Viewbox Grid.Row="1" HorizontalAlignment="Left" >
<Canvas Width="200" Height="150">
<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="10" Canvas.Top="50"
Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
Width="100" Height="50" HorizontalAlignment="Left"></Rectangle>

</Canvas>
</Viewbox>

</Grid>

Figure 13-6 shows how the Viewbox adjusts itself as the window is resized. The first row is
unchanged. However, the second row expands to fill the extra space. As you can see, the shape
in the Viewbox changes proportionately as the window grows.

Like all shapes, the Viewbox has a Stretch property, but it takes a default value of Uniform.
However, you can use any of the other values from Table 13-2. You can also get slightly more
control by using the StretchDirection property. By default, this property takes the value Both,
but you can use UpOnly to create content that can grow but won’t shrink beyond its original
size, and DownOnly to create content that can shrink but not grow.

■Note When a shape is resized, WPF resizes its inside area and its border proportionately. That means the
larger your shape grows, the thicker its border will be.

Figure 13-6. Resizing with a viewbox

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 375

9551CH13 2/8/08 2:09 PM Page 375

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In order for the Viewbox to perform its magic, it needs to be able to determine two pieces
of information: the ordinary size that your content would have (if it weren’t in a Viewbox) and
the new size that you want it to have. The second detail—the new size—is simple enough. The
Viewbox gives the inner content all the space that’s available, based on its Stretch property.
That means the bigger the Viewbox, the bigger your content.

The first detail—the ordinary, non-Viewbox size, is implicit in the way you define the nested
content. In the previous example, the Canvas is given an explicit size of 200 by 150 units. Thus, the
Viewbox scales the image from that starting point. For example, the ellipse is initially 100 units
wide, which means it takes up half the allotted Canvas drawing space. As the Canvas grows larger,
the Viewbox respects these proportions and the ellipse continues to take half the available space.

However, consider what happens if you remove the Width and Height properties from the
Canvas. Now, the Canvas is given a size of 0 by 0 units, so the Viewbox cannot resize it and
your nested content won’t appear. (This is different than the behavior you get if you have the
Canvas on its own. That’s because even though the Canvas is still given a size of 0 by 0, your
shapes are allowed to draw outside the Canvas area as long as the Canvas.ClipToBounds prop-
erty hasn’t been set to true. The Viewbox isn’t as tolerant of this error.)

Now consider what happens if you wrap the Canvas inside a proportionately sized Grid
cell and you don’t specify the size of the Canvas. If you aren’t using the Viewbox, this approach
works perfectly well—the Canvas is stretched to fill the cell and the content inside is visible.
But if you place all this content in a Viewbox, this strategy fails. The Viewbox can’t determine
the initial size, so it can’t resize the Grid appropriately.

You can get around this problem by placing certain shapes (such as the Rectangle and
Ellipse) directly in an autosized container (such as the Grid). The Viewbox can then evaluate
the minimum size the Grid needs to fit its content and then scale it up to fit what’s available.
However, the easiest way to get the size you really want in a Viewbox is to wrap your content in
an element that has a fixed size, whether it’s a Canvas, a button, or something else. This fixed
size then becomes the initial size that the Viewbox uses for its calculations. Hard-coding a size
in this way won’t limit the flexibility of your layout because the Viewbox is sized proportion-
ately based on the available space and its layout container.

■Note Regardless of whether you use the Viewbox, your graphic will be resized to compensate for differ-
ent system DPI settings (as described in Chapter 1). In other words, a rectangle on a 96 dpi system will be
rendered with fewer pixels than the same rectangle on a 120 dpi system.

Line
The Line shape represents a straight line that connects one point to another. The starting and
ending points are set by four properties: X1 and Y1 (for the first point) and X2 and Y2 (for the
second). For example, here’s a line that stretches from (0, 0) to (10, 100):

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

The Fill property has no effect for a line. You must set the Stroke property.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES376

9551CH13 2/8/08 2:09 PM Page 376

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The coordinates you use in a line are relative to the top-left corner where the line is
placed. For example, if you place the previous line in a StackPanel, the coordinate (0, 0) points
to wherever that item in the StackPanel is placed. It might be the top-left corner of the win-
dow, but it probably isn’t. If the StackPanel uses a nonzero Margin, or if the line is preceded by
other elements, the line will begin at a point (0, 0) some distance down from the top of the
window.

However, it’s perfectly reasonable to use negative coordinates for a line. In fact, you can
use coordinates that take your line out of its allocated space and draw overtop of any other
part of the window. This isn’t possible with the Rectangle and Ellipse shapes you’ve seen so
far. However, there’s also a drawback to this model—namely, lines can’t use the flow content
model. That means there’s no point setting properties such as Margin, HorizontalAlignment,
and VerticalAlignment on a line—they won’t have any effect. The same limitation applies to
the Polyline and Polygon shapes.

■Note You can use the Height, Width, and Stretch properties with a line, although it’s not terribly common.
The basic technique is to use the Height and Width to determine the space that’s allocated to the line, and
then use the Stretch property to resize the line to fill this area.

If you place a Line in a Canvas, the attached position properties (such as Top and Left)
still apply. They determine the starting position of the line. In other words, the two line coordi-
nates are offset by that amount. Consider this line:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"
Canvas.Left="5" Canvas.Top="100"></Line>

It stretches from (0, 0) to (10, 100), using a coordinate system that treats the point (5, 100)
on the Canvas as (0, 0). That makes it equivalent to this line that doesn’t use the Top and Left
properties:

<Line Stroke="Blue" X1="5" Y1="100" X2="15" Y2="200"></Line>

It’s up to you whether you use the position properties when you place a Line on a Canvas.
Often you can simplify your line drawing by picking a good starting point. You also make it
easier to move parts of your drawing. For example, if you draw several lines and other shapes
at a specific position in a Canvas, it’s a good idea to draw them relative to a nearby point (by
using the same Top and Left coordinates). That way, you can shift that entire part of your
drawing to a new position as needed.

■Note There’s no way to create a curved line with Line or Polyline shapes. Instead, you need the more
advanced Path class described in Chapter 14.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 377

9551CH13 2/8/08 2:09 PM Page 377

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Polyline
The Polyline class allows you to draw a sequence of connected straight lines. You simply sup-
ply a list of X and Y coordinates using the Points property. Technically, the Points property
requires a PointCollection object, but you fill this collection in XAML using a lean string-based
syntax. You simply need to supply a list of points and add a space or a comma between each
coordinate.

A Polyline can have as few as two points. For example, here’s a Polyline that duplicates the
first line you saw in this section, which stretches from (5, 100) to (15, 200):

<Polyline Stroke="Blue" Points="5 100 15 200"></Polyine>

For better readability, use commas in between each X and Y coordinate:

<Polyline Stroke="Blue" Points="5,100 15,200"></Polyline>

And here’s a more complex PolyLine that begins at (10, 150). The points move steadily
to the right, oscillating between higher Y values such as (50, 160) and lower ones such as
(70, 130):

<Canvas>
<Polyline Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130

90,170 110,120 130,180 150,110 170,190 190,100 210,240" >
</Polyline>

</Canvas>

Figure 13-7 shows the final line.

Figure 13-7. A line with several segments

At this point, it might occur to you that it would be easier to fill the Points collection
programmatically, using some sort of loop that automatically increments X and Y values
accordingly. This is true if you need to create highly dynamic graphics—for example, a chart
that varies its appearance based on a set of data you extract from a database. But if you simply

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES378

9551CH13 2/8/08 2:09 PM Page 378

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

want to build a fixed piece of graphical content, you won’t want to worry about the specific
coordinates of your shapes at all. Instead, you (or a designer) will use another tool, such as
Expression Design, to draw the appropriate graphics, and then export to XAML.

Polygon
The Polygon is virtually the same as the Polyline. Like the Polyline class, the Polygon class has
a Points collection that takes a list of coordinates. The only difference is that the Polygon adds
a final line segment that connects the final point to the starting point. (If your final point is
already the same as the first point, the Polygon class has no difference.) You can fill the interior
of this shape using the Fill brush. Figure 13-8 shows the previous Polyline as a Polygon with a
yellow fill.

■Note Technically, you can set the Fill property of a Polyline as well. In this situation, the Polyline fills itself
as though it were a Polygon—in other words, as though it has an invisible line segment connecting the last
point to the first point. This effect is of limited use.

In a simple shape where the lines never cross, it’s easy to fill the interior. However, some-
times you’ll have a more complex Polygon where it’s not necessarily obvious what portions are
“inside” the shape (and should be filled) and what portions are outside.

For example, consider Figure 13-9, which features a line that crosses more than one other
line, leaving an irregular region at the center that you may or may not want to fill. Obviously,
you can control exactly what gets filled by breaking this drawing down into smaller shapes.
But you may not need to.

Figure 13-8. A filled polygon

Every Polygon and Polyline includes a FillRule property that lets you choose between two
different approaches for filling in regions. By default, Fill Rule is set to EvenOdd. In order to
decide whether to fill a region, WPF counts the number of lines that must be crossed to reach

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 379

9551CH13 2/8/08 2:09 PM Page 379

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the outside of the shape. If this number is odd, the region is filled in; if it’s even, the region isn’t
filled. In the center area of Figure 13-9, you must cross two lines to get out of the shape, so it’s
not filled.

Figure 13-9. Determining fill areas when FillRule is EvenOdd

WPF also supports the Nonzero fill rule, which is a little trickier. Essentially, with Nonzero,
WPF follows the same line-counting process as EvenOdd, but it takes into account the direc-
tion that each line flows. If the number of lines going in one direction (say, left to right) is
equal to the number going in the opposite direction (right to left), the region is not filled. If
the difference between these two counts is not zero, the region is filled. In the shape from the
previous example, the interior region is filled if you set the FillRule to NonZero. Figure 13-10
shows why. (In this example, the points are numbered in the order they are drawn, and arrows
show the direction in which each line is drawn.)

Figure 13-10. Determining fill areas when FillRule is NonZero

Crosses two left-to-right lines.
The count differences is not zero.

The region is filled.

2

4 5

1 3

Crosses two lines
(an even number).

The region is not filled.

Crosses one line
(an odd number).

The region is filled.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES380

9551CH13 2/8/08 2:09 PM Page 380

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note If there are an odd number of lines, the difference between the two counts can’t be zero. Thus, the
Nonzero fill rule always fills at least as much as the EvenOdd rule, plus possibly a bit more.

The tricky part about Nonzero is that its fill settings depend on how you draw the shape,
not what the shape itself looks like. For example, you could draw the same shape in such a way
that the center isn’t filled (although it’s much more awkward, you’d begin by drawing the inner
region and then draw the outside spikes in the reverse direction).

Here’s the markup that draws the star shown in Figure 13-10:

<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow"
Canvas.Left="10" Canvas.Top="175" FillRule="Nonzero"
Points="15,200 68,70 110,200 0,125 135,125">
</Polygon>

Line Caps and Line Joins
When drawing with the Line and Polyline shapes, you can choose how the starting and ending
edge of the line is drawn using the StartLineCap and EndLineCap properties. (These proper-
ties have no effect on other shapes because they’re closed.)

Ordinarily, both StartLineCap and EndLineCap are set to Flat, which means the line ends
immediately at its final coordinate. Your other choices are Round (which rounds the corner off
gently), Triangle (which draws the two sides of the line together in a point), and Square (which
ends the line with a sharp edge). All of these values add length to the line—in other words,
they take it beyond the position where it would otherwise end. The extra distance is half the
thickness of the line.

■Note The only difference between Flat and Square is the fact that the Square-edged line extends this
extra distance. In all other respects, the edge looks the same.

Figure 13-11 shows different line caps at the end of a line.
All shapes except Line allow you to tweak how their corners are shaped using the

StrokeLineJoin property. You have three choices. The default value, Miter, uses sharp edges,
while Bevel cuts off the point edge, and Round rounds it out gently. Figure 13-12 shows the
difference.

When using mitered edges with thick lines and very small angles, the sharp corner can
extend an impractically long distance. In this case, you can use Bevel or Round to pare down
the corner. Or you could use the StrokeMiterLimit, which automatically bevels the edge when
it reaches a certain maximum length. The StrokeMiterLimit is a ratio that compares the length
used to miter the corner to half the thickness of the line. If you set this to 1 (which is the
default value), you’re allowing the corner to extend half the thickness of the line. If you set it to
3, you’re allowing the corner to extend to 1.5 times the thickness of the line. The last line in
Figure 13-12 uses a higher miter limit with a narrow corner.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 381

9551CH13 2/8/08 2:09 PM Page 381

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-11. Line caps Figure 13-12. Line joins

Dashes
Instead of drawing boring solid lines for the borders of your shape, you can draw dashed
lines—lines that are broken with spaces according to a pattern you specify.

When creating a dashed line in WPF, you aren’t limited to specific presets. Instead, you
choose the length of the solid segment of the line and the length of the broken (blank) seg-
ment by setting the StrokeDashArray property. For example, consider this line:

<Polyline Stroke="Blue" StrokeThickness="14" StrokeDashArray="1 2"
Points="10,30 60,0 90,40 120,10 350,10">

</Polyline>

It has a line value of 1 and a gap value of 2. These values are interpreted relative to the thick-
ness of the line. So if the line is 14 units thick (as in this example), the solid portion is 14 units,
followed by a blank portion of 28 units. The line repeats this pattern for its entirelength.

On the other hand, if you swap these values around like so

StrokeDashArray="2 1"

you get a line that has 28-unit solid portions broken by 13-unit spaces. Figure 13-13 shows
both lines. As you’ll notice, when a very thick line segment falls on a corner, it may be broken
unevenly.

There’s no reason that you need to stick with whole number values. For example, this
StrokeDashArray is perfectly reasonable:

StrokeDashArray="5 0.2 3 0.2"

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES382

9551CH13 2/8/08 2:09 PM Page 382

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-13. Dashed lines

It supplies a more complex sequence—a dashed line that’s 5 ✕ 14 length, then a 0.2 ✕ 15
break, followed by a 3 ✕ 14 length and another 0.2 ✕ 14 length. At the end of this sequence, the
line repeats the pattern from the beginning.

An interesting thing happens if you supply an odd number of values for the
StrokeDashArray. Take this one for example:

StrokeDashArray="3 0.5 2"

When drawing this line, WPF begins with a 3-times-thickness line, followed by a
0.5-times-thickness space, followed by a 2-times-thickness-line. But when it repeats the
pattern it starts with a gap, meaning you get a 3-times-thickness space, followed by a 0.5-times-
thickness line, and so on. Essentially, the dashed line alternates its pattern between line seg-
ments and spaces.

If you want to start midway into your pattern, you can use the StrokeDashOffset property,
which is a 0-based index number that points to one of the values in your StrokeDashArray. For
example, if you set StrokeDashOffset to 1 in the previous example, the line will begin with the
0.5-thickness space. Set it to 2, and the line begins with the 2-thickness segment.

Finally, you can control how the broken edges of your line are capped. Ordinarily, it’s a
straight edge, but you can set the StrokeDashCap to the Bevel, Square, and Triangle values you
considered in the previous section. Remember, all of these settings add one half the line thick-
ness to the end of your dash. If you don’t take this into account, you might end up with dashes
that overlap one another. The solution is to add extra space to compensate.

■Tip When using the StrokeDashCap property with a line (not a shape), it’s often a good idea to set the
StartLineCap and EndLineCap to the same values. This makes the line look consistent.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 383

9551CH13 2/8/08 2:09 PM Page 383

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Pixel Snapping
As you know, WPF uses a device-independent drawing system. You specify sizes for things like
fonts and shapes using “virtual” pixels, which are the same size as normal pixels on ordinary
96 dpi displays but are scaled up on higher dpi displays. In other words, a rectangle you draw
that’s 50 pixels wide might actually be rendered using more or fewer pixels, depending on the
device. This conversion between device-independent units and physical pixels happens auto-
matically, and you usually don’t need to think about it at all.

The ratio of pixels between different dpi settings is rarely a whole number. For example,
50 pixels at 96 dpi become 62.4996 pixels on a 120 dpi monitor. (This isn’t an error condition—
in fact, WPF always allows you to use fractional double values when supplying a value in
device-independent units.) Obviously, there’s no way to place an edge on a point that’s
between pixels. WPF compensates by using antialiasing. For example, when drawing a
red line that’s 62.4992 pixels long, WPF might fill the first 62 pixels normally and then shade
the 63rd pixel with a value that’s in between the line color (red) and the background. However,
there’s a catch. If you’re drawing straight lines, rectangles, or polygons with square corners,
this automatic antialiasing can introduce a tinge of blurriness at the edges of your shape.

You might assume that this problem only appears when you’re running an application on
a display that has display resolution that’s not 96 dpi. However, that’s not necessarily the case
because all shapes can be sized using fractional lengths and coordinates, which causes the
same issue. And although you probably won’t use fractional values in your shape drawing,
resizable shapes—shapes that are stretched because they size along with their container or
they’re placed in a Viewbox—will almost always end up with fractional sizes. Similarly, odd-
numbered line thicknesses create a line that has a fractional number of pixels on either side.

The fuzzy edge issue isn’t necessarily a problem. In fact, depending on the type of graphic
you’re drawing it might look quite normal. However, if you don’t want this behavior, you can
tell WPF not to use antialiasing for a specific shape. Instead, WPF will round the measurement
to the nearest device pixel. You turn on this feature, which is called pixel snapping, by setting
the SnapsToDevicePixels property of a UIElement to true.

To see the difference, look at the magnified window in Figure 13-14, which compares two
rectangles. The bottom one uses pixel snapping, while the top one doesn’t. If you look care-
fully, you’ll see a thin edge of lighter color along the top and left edges of the unsnapped
rectangle.

Figure 13-14. The effect of pixel snapping

Snapped

Not Snapped

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES384

9551CH13 2/8/08 2:09 PM Page 384

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Transforms
A great deal of drawing tasks can be made simpler with the use of a transform—an object that
alters the way a shape or element is drawn by secretly shifting the coordinate system it uses. In
WPF, transforms are represented by classes that derive from the abstract
System.Windows.Media.Transform class, as listed in Table 13-3.

Table 13-3. Transform Classes

Name Description Important Properties

TranslateTransform Displaces your coordinate system by X, Y
some amount. This transform is useful
if you want to draw the same shape in
different places.

RotateTransform Rotates your coordinate system. The Angle, CenterX, CenterY
shapes you draw normally are turned
around a center point you choose.

ScaleTransform Scales your coordinate system up or ScaleX, ScaleY, CenterX,
down, so that your shapes are drawn CenterY
smaller or larger. You can apply different
degrees of scaling in the X and Y
dimensions, thereby stretching or
compressing your shape.

SkewTransform Warps your coordinate system by AngleX, AngleY, CenterX,
slanting it a number of degrees. For CenterX
example, if you draw a square, it
becomes a parallelogram.

MatrixTransform Modifies your coordinate system using Matrix
matrix multiplication with the matrix you
supply. This is the most complex option—
it requires some mathematical skill.

TransformGroup Combines multiple transforms so they N/A
can all be applied at once. The order in
which you apply transformations is
important—it affects the final result.
For example, rotating a shape (with
RotateTransform) and then moving it
(with TranslateTransform) sends the
shape off in a different direction than if
you move it and then rotate it.

Technically, all transforms use matrix math to alter the coordinates of your shape.
However, using the prebuilt transforms such as TranslateTransform, RotateTransform,
ScaleTransform, and SkewTransform is far simpler than using the MatrixTransform and
trying to work out the right matrix for the operation you want to perform. When you perform
a series of transforms with the TransformGroup, WPF fuses your transforms together into a
single MatrixTransform, ensuring optimal performance.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 385

9551CH13 2/8/08 2:09 PM Page 385

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note All transforms derive from Freezable (through the Transform class). That means they have automatic
change notification support. If you change a transform that’s being used in a shape, the shape will redraw
itself immediately.

Transforms are one of those quirky concepts that turn out to be extremely useful in a vari-
ety of different contexts. Some examples include the following:

• Angling a shape. So far you’ve been stuck with horizontally aligned rectangles, ellipses,
lines, and polygons. Using the RotateTransform, you can turn your coordinate system
to create certain shapes more easily.

• Repeating a shape. Many drawings are built using a similar shape in several different
places. Using a transform, you can take a shape and then move it, rotate it, resize it,
and so on.

■Tip In order to use the same shape in multiple places, you’ll need to duplicate the shape in your markup
(which isn’t ideal), use code (to create the shape programmatically), or use the Path shape described in
Chapter 14. The Path shape accepts Geometry objects, and you can store a geometry object as a resource
so it can be reused throughout your markup.

• Animation. You can create a number of sophisticated effects with the help of a trans-
form, such as rotating a shape, moving it from one place to another, and warping it
dynamically.

You’ll use transforms throughout this book, particularly when you create animations
(Chapter 21) and manipulate 3-D content (Chapter 23). For now, you can learn all you need to
know by considering how to apply a basic transform to an ordinary shape.

Transforming Shapes
To transform a shape, you assign the RenderTransform property to the transform object you
want to use. Depending on the transform object you’re using, you’ll need to fill in different
properties to configure it, as detailed in Table 13-3.

For example, if you’re rotating a shape, you need to use the RotateTransform, and supply
the angle in degrees. Here’s an example that rotates a square by 25 degrees:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
Canvas.Left="100" Canvas.Top="100">
<Rectangle.RenderTransform>
<RotateTransform Angle="25" />

</Rectangle.RenderTransform>
</Rectangle>

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES386

9551CH13 2/8/08 2:09 PM Page 386

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When you rotate a shape in this way, you rotate it about the shape’s origin (the top-left
corner). Figure 13-15 illustrates this by rotating the same square 25, 50, 75, and then
100 degrees.

Figure 13-15. Rotating a rectangle four times

Sometimes you’ll want to rotate a shape around a different point. The RotateTransform,
like many other transform classes, provides a CenterX property and a CenterY property. You
can use these properties to indicate the center point around which the rotation should be
performed. Here’s a rectangle that uses this approach to rotate itself 25 degrees around its
center point:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
Canvas.Left="100" Canvas.Top="100">
<Rectangle.RenderTransform>
<RotateTransform Angle="25" CenterX="45" CenterY="5" />

</Rectangle.RenderTransform>
</Rectangle>

Figure 13-16 shows the result of performing the same sequence of rotations featured in
Figure 13-15, but around the designated center point.

There’s a clear limitation to using the CenterX and CenterY properties of the
RotateTransform. These properties are defined using absolute coordinates, which means
you need to know the exact center point of your content. If you’re displaying dynamic content
(for example, pictures of varying dimensions or elements that can be resized), this introduces
a problem. Fortunately, WPF has a solution with the handy RenderTransformOrigin property,
which is supported by all shapes. This property sets the center point using a proportional
coordinate system that stretches from 0 to 1 in both dimensions. In other words, the point
(0, 0) is designated as the top-left corner and (1, 1) is the bottom-right corner. (If the shape
region isn’t square, the coordinate system is stretched accordingly.)

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 387

9551CH13 2/8/08 2:09 PM Page 387

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-16. Rotating a rectangle around its middle

With the help of the RenderTransformOrigin property, you can rotate any shape around
its center point using markup like this:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
Canvas.Left="100" Canvas.Top="100" RenderTransformOrigin="0.5,0.5">
<Rectangle.RenderTransform>
<RotateTransform Angle="25" />

</Rectangle.RenderTransform>
</Rectangle>

This works because the point (0.5, 0.5) designates the center of the shape, regardless of
its size. In practice, RenderTransformOrigin is generally more useful than the CenterX and
CenterY properties, although you can use either one (or both) depending on your needs.

■Tip You can use values greater than 1 or less than 0 when setting RenderTransformOrigin property to
designate a point that appears outside the bounding box of your shape. For example, you can use this tech-
nique with a RotateTransform to rotate a shape in a large arc around a very distant point, such as (5, 5).

Transforming Elements
The RenderTransform and RenderTransformOrigin properties aren’t limited to shapes. In fact,
the Shape class inherits them from the UIElement class, which means they’re supported by all
WPF elements, including buttons, text boxes, the TextBlock, entire layout containers full of
content, and so on. Amazingly, you can rotate, skew, and scale any piece of WPF user interface
(although in most cases you shouldn’t).

RenderTransform isn’t the only transform-related property that’s defined in the base WPF
classes. The FrameworkElement also defines a LayoutTransform property. LayoutTransform

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES388

9551CH13 2/8/08 2:09 PM Page 388

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

alters the element in the same way, but it performs its work before the layout pass. This results
in slightly more overhead, but it’s critical if you’re using a layout container to provide auto-
matic layout with a group of controls. (The shape classes also include the LayoutTransform
property, but you’ll rarely need to use it because you’ll usually place your shapes specifically
using a container such as the Canvas, rather than using automatic layout.)

To understand the difference, consider Figure 13-17, which includes two StackPanel
containers (represented by the shaded areas), both of which contain a rotated button and
a normal button. The rotated button in the first StackPanel uses the RenderTransform
approach. The StackPanel lays out the two buttons as though the first button is positioned
normally, and the rotation happens just before the button is rendered. As a result, the rotated
button overlaps the one underneath. In the second StackPanel, the rotated button uses the
LayoutTransform approach. The StackPanel gets the bounds that are required for the rotated
button and lays out the second button accordingly.

Figure 13-17. Rotating buttons

There are a few rare elements that can’t be transformed because their rendering work isn’t
native to WPF. Two examples are the WindowsFormsHost, which lets you place a Windows
Forms control in a WPF window (a feat demonstrated in Chapter 25) and the Frame element
when it’s used to display HTML content (in which case it relies on the COM-based Web-
Browser control from Internet Explorer).

To a certain degree, WPF elements aren’t aware that they’re being modified when you set
the LayoutTransform or RenderTransform properties. Notably, transforms don’t affect the
ActualHeight and ActualWidth properties of the element, which continue to report their
untransformed dimensions. This is part of how WPF ensures that features such as flow layout
and margins continue to work with the same behavior, even when you apply one or more
transforms.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 389

9551CH13 2/8/08 2:09 PM Page 389

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Better Brushes
As you know, brushes fill an area, whether it’s the background, foreground, or border of an
element, or the fill or stroke of a shape. You’ve used brushes throughout this book, but so far
you’ve done most of your work with the straightforward SolidColorBrush. You’ve also learned
these fundamental facts about brushes:

• Brushes support change notification because they derive from Freezable. As a result, if
you change a brush, any elements that use that brush repaint themselves automatically.

• Brushes support partial transparency. All you need to do is modify the Opacity property
to let the background show through.

• The SystemBrushes class provides access to brushes that use the colors defined in the
Windows system preferences for the current computer.

Although SolidColorBrush is indisputably useful, there are several other classes that
inherit from System.Windows.Media.Brush and give you more exotic effects. Table 13-4 lists
them all.

Table 13-4. Brush Classes

Name Description

LinearGradientBrush Paints an area using a gradient fill, a gradually shaded fill that changes
from one color to another (and, optionally, to another and then
another, and so on).

RadialGradientBrush Paints an area using a radial gradient fill, which is similar to a linear
gradient except it radiates out in a circular pattern starting from a
center point.

ImageBrush Paints an area using an image that can be stretched, scaled, or tiled.

DrawingBrush Paints an area using a Drawing object. This object can include shapes
you’ve defined and bitmaps.

VisualBrush Paints an area using a Visual object. Because all WPF elements derive
from the Visual class, you can use this brush to copy part of your user
interface (such as the face of a button) to another area. This is useful
when creating fancy effects, such as partial reflections.

The DrawingBrush is covered in Chapter 14, when you consider more optimized ways to
deal with large numbers of graphics. In this section, you’ll learn how to use the brushes that
fill areas with gradients, images, and visual content copied from other elements.

The LinearGradientBrush
The LinearGradientBrush allows you to create a blended fill that changes from one color to
another.

Here’s the simplest possible gradient. It shades a rectangle diagonally from blue (in the
top-left corner) to white (in the bottom-right corner):

<Rectangle Width="150" Height="100">
<Rectangle.Fill>

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES390

9551CH13 2/8/08 2:09 PM Page 390

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<LinearGradientBrush >
<GradientStop Color="Blue" Offset="0"/>
<GradientStop Color="White" Offset="1" />

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

The top gradient in Figure 13-18 shows the result.

Figure 13-18. A rectangle with different linear gradients

To create this gradient, you need to add one GradientStop for each color. You also need
to place each color in your gradient using an Offset value from 0 to 1. In this example, the
GradientStop for the blue color has an offset of 0, which means it’s placed at the very begin-
ning of the gradient. The GradientStop for the white color has an offset of 1, which places it at
the end. If you change these values, you could adjust how quickly the gradient switches from
one color to the other. For example, if you set the GradientStop for the white color to 0.5,
the gradient would blend from blue (in the top-left corner) to white in the middle (the point
between the two corners). The right side of the rectangle would be completely white. (The
second gradient in Figure 13-18 shows this example.)

The previous markup creates a gradient with a diagonal fill that stretches from one corner
to another. However, you might want to create a gradient that blends from top to bottom or
side to side, or uses a different diagonal angle. You control these details using the StartPoint
and EndPoint properties of the LinearGradientBrush. These properties allow you to choose

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 391

9551CH13 2/8/08 2:09 PM Page 391

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the point where the first color begins to change and the point where the color change ends
with the final color. (The area in between is blended gradually.) However, there’s one quirk.
The coordinates you use for the starting and ending point aren’t real coordinates. Instead, the
LinearGradientBrush assigns the point (0, 0) to the top-left corner and (1, 1) to the bottom-
right corner of the area you want to fill, no matter how high and wide it actually is.

To create a top-to-bottom horizontal fill, you can use a start point of (0, 0) for the top-left
corner, and an end point of (0, 1), which represents the bottom-left corner. To create a side-to-
side vertical fill (with no slant), you can use a start point of (0, 0) and an end point of (1, 0) for
the bottom-left corner. Figure 13-18 shows a horizontal gradient (it’s the third one).

You can get a little craftier by supplying start points and end points that aren’t quite
aligned with the corners of your gradient. For example, you could have a gradient stretch from
(0, 0) to (0, 0.5), which is a point on the left edge, halfway down. This creates a compressed
linear gradient—one color starts at the top, blending to the second color in the middle. The
bottom half of the shape is filled with the second color. But wait—you can change this behav-
ior using the LinearGradientBrush.SpreadMethod property. It’s Pad by default (which means
areas outside the gradient are given a solid fill with the appropriate color), but you can also
use Reflect (to reverse the gradient, going from the second color back to the first) or Repeat
(to duplicate the same color progression). Figure 13-18 shows the Reflect effect (it’s the fourth
gradient).

The LinearGradientBrush also allows you to create gradients with more than two colors
by adding more than two GradientStop objects. For example, here’s a gradient that moves
through a rainbow of colors:

<Rectangle Width="150" Height="100">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Yellow" Offset="0.0" />
<GradientStop Color="Red" Offset="0.25" />
<GradientStop Color="Blue" Offset="0.75" />
<GradientStop Color="LimeGreen" Offset="1.0" />

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

The only trick is to set the appropriate offset for each GradientStop. For example, if you
want to transition through five colors, you might give your first color an offset of 0, the second
0.25, the third 0.5, the fourth 0.75, and the fifth 1. Or if you want the colors to blend more
quickly at the beginning and then end more gradually, you could give the offsets 0, 0.1, 0.2, 0.4,
0.6, and 1.

Remember, Brushes aren’t limited to shape drawing. You can substitute the
LinearGradientBrush anytime you would use the SolidColorBrush—for example, when
filling the background surface of an element (using the Background property), the foreground
color of its text (using the Foreground property), or the fill of a border (using the BorderBrush
property). Figure 13-19 shows an example of a gradient-filled TextBlock.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES392

9551CH13 2/8/08 2:09 PM Page 392

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-19. Using the LinearGradientBrush to set the TextBlock.Foreground property

The RadialGradientBrush
The RadialGradientBrush works similarly to the LinearGradientBrush. It also takes a sequence
of colors with different offsets. As with the LinearGradientBrush, you can use as many colors
as you want. The difference is how you place the gradient.

To identify the point where the first color in the gradient starts, you use the GradientOrigin
property. By default, it’s (0.5, 0.5), which represents the middle of the fill region.

■Note As with the LinearGradientBrush, the RadialGradientBrush uses a proportional coordinate system
that acts as though the top-left corner of your rectangular fill area is (0, 0) and the bottom-right corner is
(1, 1). That means you can pick any coordinate from (0, 0) to (1, 1) to place the starting point of the gradient.
In fact, you can even go beyond these limits if you want to locate the starting point outside the fill region.

The gradient radiates out from the starting point in a circular fashion. Eventually, your
gradient reaches the edge of an inner gradient circle, where it ends. This center of this circle
may or may not line up with the gradient origin, depending on the effect you want. The area
beyond the edge of the inner gradient circle and the outermost edge of the fill region is given a
solid fill using the last color that’s defined in RadialGradientBrush.GradientStops collection.
Figure 13-20 illustrates.

You set the edge of the inner gradient circle using three properties: Center, RadiusX, and
RadiusY. By default, the Center property is (0.5, 0.5), which places the center of the limiting
circle in the middle of your fill region and in the same position as the gradient origin.

The RadiusX and RadiusY determine the size of the limiting circle, and by default they’re
both set to 0.5. These values can be a bit unintuitive—they’re measured in relation to the diag-
onal span of your fill area (the length of an imaginary line stretching from the top-left corner
to the bottom-right corner of your fill area). That means a radius of 0.5 defines a circle that has

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 393

9551CH13 2/8/08 2:09 PM Page 393

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

a radius that’s half the length of this diagonal. If you have a square fill region, you can use a
dash of Pythagoras to calculate that this is about 0.7 times the width (or height) of your region.
Thus, if you’re filling a square region with the default settings, the gradient begins in the center
and stretches to its outermost edge at about 0.7 times the width of the square.

Figure 13-20. How a radial gradient is filled

■Note If you trace the largest possible ellipse that fits in your fill area, that’s the place where the gradient
ends with your second color.

The radial gradient fill is a particularly good choice for filling rounded shapes and creat-
ing lighting effects. (Master artists use a combination of gradients to create buttons with a
glow effect.) A common trick is to offset the GradientOrigin point slightly to create an illusion
of depth in your shape. Here’s an example:

<Ellipse Margin="5" Stroke="Black" StrokeThickness="1" Width="200" Height="200">
<Ellipse.Fill>
<RadialGradientBrush RadiusX="1" RadiusY="1" GradientOrigin="0.7,0.3">
<GradientStop Color="White" Offset="0" />
<GradientStop Color="Blue" Offset="1" />

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>

Figure 13-21 shows this gradient, along with an ordinary radial gradient that has the
standard GradientOrigin (0.5, 0.5).

End of Gradient Circle

Gradient Origin
Gradient Fill Area

Solid Color Fill Area

Bounding Box Around
the Fill Region

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES394

9551CH13 2/8/08 2:09 PM Page 394

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-21. Radial gradients

The ImageBrush
The ImageBrush allows you to fill an area with a bitmap image. You can use most common file
types, including BMP, PNG, GIF, and JPEG files. You identify the image you want to use by set-
ting the ImageSource property. For example, this brush paints the background of a Grid using
an image named logo.jpg that’s included in the assembly as a resource:

<Grid>
<Grid.Background>
<ImageBrush ImageSource="logo.jpg"></ImageBrush>

</Grid.Background>
</Grid>

The ImageBrush,ImageSource property works in the same way as the Source property of
the Image element, which means you can also set it using a URI that points to a resource, an
external file, or a web location. You can also create an ImageBrush that uses XAML-defined
vector content by supplying a DrawingImage object for the ImageSource property. You might
take this approach to reduce overhead (by avoiding the more costly Shape-derived classes),
or if you want to use a vector image to create a tiled pattern. You’ll learn more about the
DrawingImage class in Chapter 14.

■Note WPF respects any transparency information that it finds in an image. For example, WPF supports
transparent areas in a GIF file, and transparent or partially transparent areas in a PNG file.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 395

9551CH13 2/8/08 2:09 PM Page 395

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In this example, the ImageBrush is used to paint the background of a cell. As a result, the
image is stretched to fit the fill area. If the Grid is larger than the original size of the image, you
may see resizing artifacts in your image (such as a general fuzziness). If the shape of the Grid
doesn’t match the aspect ratio of the picture, the picture will be distorted to fit.

You can control this behavior by modifying the ImageBrush.Stretch property, and assign-
ing one of the values listed in Table 13-2. For example, use Uniform to scale the image to fit the
container, but keep the aspect ratio or None to paint the image at its natural size (in which
case, part of it may be clipped to fit).

■Note Even with a Stretch of None, your image may still be scaled. For example, if you’ve set your
Windows system DPI setting to 120 dpi (also known as large fonts), WPF will scale up your bitmap propor-
tionately. This may introduce some fuzziness, but it’s a better solution than having your image sizes (and the
alignment of your overall user interface) change on monitors with different dpi settings.

If the image is painted smaller than the fill region, the image is aligned according to the
AlignmentX and AlignmentY properties. The unfilled area is left transparent. This occurs if
you’re using Uniform scaling and the region you’re filling has a different shape (in which case
you’ll get blank bars on the top or the sides). It also occurs if you’re using None and the fill
region is larger than the image.

You can also use the Viewbox property to clip out a smaller portion of the picture that
you’re interested in using. To do so, you specify four numbers that describe the rectangle you
want to clip out of the source picture and use. The first two identify the top-left corner where
your rectangle begins, and the following two numbers specify the width and height of the
rectangle. The only catch is that the Viewbox uses a relative coordinate system, just like the
gradient brushes. This coordinate system designates the top-left corner of your picture as
(0, 0) and the bottom-right corner as (1, 1).

To understand how Viewbox works, take a look at this markup:

<ImageBrush ImageSource="logo.jpg" Stretch="Uniform"
Viewbox="0.4,0.5 0.2,0.2"></ImageBrush>

Here, the Viewbox starts at (0.4, 0.5), which is almost halfway into the picture. (Techni-
cally, the X coordinate is 0.4 ✕ width and the Y coordinate is 0.5 ✕ width.) The rectangle then
extends to fill a small box that’s 20% as wide and tall as the total image (technically, the rectan-
gle is 0.2 ✕ width long and 0.2 ✕ height tall). The cropped-out portion is then stretched or
centered, based on the Stretch, AlignmentX, and AlignmentY properties. Figure 13-22 shows
two rectangles that use different ImageBrush objects to fill themselves. The topmost rectangle
shows the full image, while the rectangle underneath uses the Viewbox to magnify a small sec-
tion. Both are given a solid black border.

■Note The Viewbox property is occasionally useful when reusing parts of the same picture in different
ways to create certain effects. However, if you know in advance that you only need to use a portion of an
image, it obviously makes more sense to crop it down in your favorite graphics software.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES396

9551CH13 2/8/08 2:09 PM Page 396

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-22. Different ways to use an ImageBrush

A Tiled ImageBrush
An ordinary ImageBrush isn’t all that exciting. However, you can get some interesting effects
by tiling your image across the surface of the brush.

When tiling an image, you have two options:

• Proportionally sized tiles. Your fill area always has the same number of tiles. The tiles
expand and shrink to fit the fill region.

• Fixed-sized tiles. Your tiles are always the same size. The size of your fill area deter-
mines the number of tiles that appears.

Figure 13-23 compares the difference when a tile-filled rectangle is resized.
To tile an image, you need to set the ImageSource property (to identify the image you

want to tile) and the Viewport, ViewportUnits, and TileMode properties. It’s these latter three
properties that determine the size of your tile and the way it’s arranged.

You use the Viewport property to set the size of each tile. To use proportionately sized
tiles, ViewportUnits must be set to RelativeToBoundingBox (which is the default). Then you
define the tile size using a proportional coordinate system that stretches from 0 to 1 in both
dimensions. In other words, a tile that has a top-left corner at (0, 0) and a bottom-right corner
at (1, 1) occupies the entire fill area. To get a tiled pattern, you need to define a Viewport that’s
smaller than the total size of the fill area, as shown here:

<ImageBrush ImageSource="tile.jpg" TileMode="Tile"
Viewport="0,0 0.5,0.5"></ImageBrush>

This creates a Viewport box that begins at the top-left corner of the fill area (0, 0) and
stretches down to the midpoint (0.5, 0.5). As a result, the fill region will always hold four tiles,
no matter how big or small it is. This behavior is nice because it ensures that there’s no danger
of having part of a tile chopped off at the edge of a shape. (Of course, this isn’t the case if you’re
using the ImageBrush to fill a nonrectangular area.)

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 397

9551CH13 2/8/08 2:09 PM Page 397

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-23. Different ways to tile a rectangle

Because the tile in this example is relative to the size of the fill area, a larger fill area will
use a larger tile, and you may wind up with some blurriness from image resizing. Furthermore,
if your fill area isn’t perfectly square, the relative coordinate system is squashed accordingly, so
each tiled square becomes a rectangle. This behavior is shown in the second tiled pattern in
Figure 13-23.

You can alter this behavior by changing the Stretch property (which is Fill by default). Use
None to ensure that tiles are never distorted and keep their proper shape. However, if the fill
area isn’t square, whitespace will appear in between your tiles. This detail is shown in the third
tiled pattern in Figure 13-23.

A third option is to use a Stretch value of UniformToFill, which crops your tile image as
needed. That way, your tiled image keeps the correct aspect ratio and you don’t any have
whitespace in between your tiles. However, if your fill area isn’t a square, you won’t see the
complete tile image.

The automatic tile resizing is a nifty feature, but there’s a price to pay. Some bitmaps may
not resize properly. To some extent, you can prepare for this situation by supplying a bitmap
that’s bigger than what you need, but this technique can result in a blurrier bitmap when it’s
scaled down.

An alternate solution is to define the size of your tile in absolute coordinates, based on
the size of your original image. To take this step, you set ViewportUnits to Absolute (instead of
RelativeToBoundBox). Here’s an example that defines a 32 ✕ 32 unit size for each tile and starts
them at the top-left corner:

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES398

9551CH13 2/8/08 2:09 PM Page 398

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<ImageBrush ImageSource="tile.jpg" TileMode="Tile"
ViewportUnits="Absolute" Viewport="0,0 32,32"></ImageBrush>

This type of tiled pattern is shown in the first rectangle in Figure 13-23. The drawback
here is that the height and width of your fill area must be divisible by 32. Otherwise, you’ll get
a partial tile at the edge. If you’re using the ImageBrush to fill a resizable element, there’s no
way around this problem, so you’ll need to accept that the tiles won’t always line up with the
edges of the fill region.

So far, all the tiled patterns you’ve seen have used a TileMode value of Tile. You can
change the TileMode to set how alternate tiles are flipped. Table 13-5 lists your choices.

Table 13-5. Values from the TileMode Enumeration

Name Description

Tile Copies the image across the available area

FlipX Copies the image, but flips each second column vertically

FlipY Copies the image, but flips each second row horizontally

FlipXY Copies the image, but flips each second column vertically and each second row horizontally

This flipping behavior is often useful if you need to make tiles blend more seamlessly. For
example, if you use FlipX, tiles that are side by side will always line up seamlessly. Figure 13-24
compares the different tiling options you can use.

Figure 13-24. Flipping tiles

The VisualBrush
The VisualBrush is an unusual brush that allows you to take the visual content of an element
and use it to fill any surface. For example, using a VisualBrush you could copy the appearance
of a button in a window to a region somewhere else in that same window. However, the button
copy won’t be clickable or interactive in any way. It’s simply a copy of how your element looks.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 399

9551CH13 2/8/08 2:09 PM Page 399

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, here’s a snippet of markup that defines a button and a VisualBrush that
duplicates the button:

<Button Name="cmd" Margin="3" Padding="5">Is this a real button?</Button>
<Rectangle Margin="3" Height="100">
<Rectangle.Fill>
<VisualBrush Visual="{Binding ElementName=cmd}"></VisualBrush>

</Rectangle.Fill>
</Rectangle>

Although you could define the element you want to use in the VisualBrush itself, it’s much
more common to use a binding expression to refer to an element in the current window, as in
this example. Figure 13-25 shows the original button (at the top of the window) and several
differently shaped regions that are painted with a VisualBrush based on that button.

Figure 13-25. Copying the visual for a button

A VisualBrush watches for changes in the appearance of your element. For example, if you
copy the visual for a button, and that button then receives focus, the VisualBrush repaints its
fill area with the new visual—a focused button. The VisualBrush derives from TileBrush, so it
also supports all the cropping, stretching, and flipping features you learned about in the previ-
ous section. If you combine these details with the transforms you learned about earlier in this
chapter, you can easily use a VisualBrush to take element content and manipulate it beyond
all recognition.

Because the content of a VisualBrush isn’t interactive, you might wonder what purpose it
has. In fact, the VisualBrush is useful in a number of situations where you need to create static
content that duplicates the “real” content that’s featured elsewhere. For example, you can take
an element that contains a significant amount of nested content (even an entire window),
shrink it down to a smaller size, and use it for a live preview. Some document programs do this

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES400

9551CH13 2/8/08 2:09 PM Page 400

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

to show formatting, Internet Explorer 7 uses it to show previews of the documents in different
tabs on the Quick Tabs view (hit Ctrl+Q), and Windows Vista uses it to show previews of differ-
ent applications in the taskbar.

You can use a VisualBrush in combination with animation to create certain effects
(such as a document shrinking down to the bottom of your main application window). The
VisualBrush is also the foundation for one of WPF’s most notoriously overused effects—the
live reflection, which you’ll see in the following section (and the even worse live reflection
of video content, which you’ll see in Chapter 22).

Opacity Masks
In previous chapters, you learned about two ways to make an element (or some of its content)
partially transparent:

• Set the Opacity property to a value less than 1.0. For example, an opacity of 0.9 creates
a 90% visible (10% transparency) effect. Every element and every brush provides an
Opacity property.

• Use a color that has a nonopaque alpha value. For example, you could use a partially
transparent color in a SolidColorBrush, and use that to paint the foreground content or
background surface of an element.

All elements also provide another option. You can use the OpacityMask property to make
specific regions of an element transparent or partially transparent. The OpacityMask allows
you to achieve a variety of common and exotic effects. For example, you can use it to fade a
shape gradually into transparency.

The OpacityMask property accepts any brush. The alpha channel of the brush determines
where the transparency occurs. For example, if you use a SolidColorBrush that’s set to a
transparent color for your OpacityMask, your entire element will disappear. If you use a
SolidColorBrush that’s set to use a nontransparent color, your element will remain completely
visible. The other details of the color (the red, green, and blue components) aren’t important
and are ignored when you set the OpacityMask property.

Using the OpacityMask with a SolidColorBrush doesn’t make much sense because you
can accomplish the same effect more easily with the Opacity property. However, OpacityMask
becomes more useful when you use more exotic types of brushes, such as the LinearGradient
or RadialGradientBrush. Using a gradient that moves from a solid to a transparent color, you
can create a transparency effect that fades in over the surface of your element, like the one
used by this button:

<Button FontSize="14" FontWeight="Bold">
<Button.OpacityMask>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
<GradientStop Offset="0" Color="Black"></GradientStop>
<GradientStop Offset="1" Color="Transparent"></GradientStop>

</LinearGradientBrush>
</Button.OpacityMask>
<Button.Content>A Partially Transparent Button</Button.Content>

</Button>

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 401

9551CH13 2/8/08 2:09 PM Page 401

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-26 shows this button over a window that displays a picture of a grand piano.

Figure 13-26. A button that fades from solid to transparent

You can also use the OpacityMask property in conjunction with the VisualBrush to create
a reflection effect. For example, the following markup creates one of WPF’s most common
effects—a text box with mirrored text. As you type, the VisualBrush paints a reflection of the
text underneath. The VisualBrush paints a rectangle that uses the OpacityMask property to
fade the reflection out, which distinguishes it from the real element above:

<TextBox Name="txt" FontSize="30">Here is some reflected text</TextBox>
<Rectangle Grid.Row="1" RenderTransformOrigin="1,0.5">
<Rectangle.Fill>
<VisualBrush Visual="{Binding ElementName=txt}"></VisualBrush>

</Rectangle.Fill>
<Rectangle.OpacityMask>
<LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
<GradientStop Offset="0.3" Color="Transparent"></GradientStop>
<GradientStop Offset="1" Color="#44000000"></GradientStop>

</LinearGradientBrush>
</Rectangle.OpacityMask>
<Rectangle.RenderTransform>
<ScaleTransform ScaleY="-1"></ScaleTransform>

</Rectangle.RenderTransform>
</Rectangle>

This example uses a LinearGradientBrush that fades between a completely transparent
color and a partially transparent color, to make the reflected content more faded. It also adds a
RenderTransform that flips the rectangle so the reflection is upside down. As a result of this
transformation, the gradient stops must be defined in the reverse order. Figure 13-27 shows
the result.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES402

9551CH13 2/8/08 2:09 PM Page 402

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-27. VisualBrush + OpacityMask + RenderTransform = reflection effect

Along with the gradient brushes and the VisualBrush, the OpacityMask property is often
used with the DrawingBrush you’ll learn about in the next chapter. This allows you to apply a
shaped transparent region to an element.

Bitmap Effects
Shapes, transforms, and brushes are core ingredients in 2-D drawings. Along with these basics
(and the geometries and drawings you’ll learn about next chapter), WPF also includes a few
frills.

One of these frills is a set of bitmap effects: ready-made visual effects that you can
apply to any element. The goal of bitmap effects is to give you an easy, declarative way to
enhance the appearance of text, images, buttons, and other controls. Rather than write your
own drawing code, you simply use one of the classes that derives from BitmapEffect (in the
System.Windows.Media.Effects namespace) to get instant effects such as blurs, glows, and
drop shadows.

There are two key disadvantages to bitmap effects. The first limitation is that bitmap
effects are implemented in unmanaged code, and so require a fully trusted application. As a
result, you can’t use bitmap effects in an XBAP application.

The other disadvantage is that bitmap effects are always rendered in software and don’t
use the resources of the video card. This makes them slow. As a result, bitmap effects aren’t
appropriate if you need to restyle a large number of elements in a window. They also aren’t
ideal for changing the appearance of extremely large elements, because bitmap effects modify
the whole visual surface of an element (not just its outer edges). In these situations, you
should consider using an alternate approach, such as applying the effects to your graphics
in a design tool, or using code to craft a custom-drawn element (Chapter 24).

■Note It’s quite possible that future versions of WPF will include better algorithms for bitmap effects that
use hardware acceleration. If this is the case, the bitmap effect model won’t change, but you’ll be able to
use bitmap effects more freely throughout your user interface (rather than constraining them to small
regions).

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 403

9551CH13 2/8/08 2:09 PM Page 403

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 13-6 lists all the bitmap effect classes that you can use.

Table 13-6. Bitmap Effects

Name Description Properties

BlurBitmapEffect Blurs the content in your element. Radius, KernelType

BevelBitmapEffect Adds a beveled (raised) edge around BevelWidth, EdgeProfile,
your content. LightAngle, Relief,

Smoothness

EmbossBitmapEffect Gives your content embossed edges LightAngle, Relief
and lines, as though it were stamped
or engraved.

OuterGlowBitmapEffect Adds a halo of color around your content. GlowColor, GlowSize,
Noise, Opacity

DropShadowBitmapEffect Adds a rectangular drop shadow behind Color, Direction, Noise,
your element. Opacity, ShadowDepth,

Softness

BitmapEffectGroup Applies a combination of bitmap effects. Children
The order you use is significant, as each
effect is applied overtop all the existing
effects. The BitmapEffectGroup is rarely
used because it multiplies the overhead.
In other words, a button with four effects
requires four times as much processing
as a button with one effect.

Blurs
To apply a bitmap effect, you simply create the appropriate bitmap effect object and assign it
to the BitmapEffect property of your element. Here’s how you can apply a basic blurring effect
to a button:

<Button>
<Button.Content>A Blurred Button</Button.Content>
<Button.BitmapEffect>
<BlurBitmapEffect Radius="1"></BlurBitmapEffect>

</Button.BitmapEffect>
</Button>

The BlurBitmapEffect class includes two properties. The Radius property allows you to
control the strength of the blur from 0 (no blur) to a blurring level of your choice. A Radius of 1
creates the soft blur shown in the middle button in Figure 13-28. The blurrier button under-
neath uses the default Radius of 5.

Along with the Radius property, you can also set the KernelType property to change the
style of blurring. The default is Gaussian, which creates a smooth blur. Alternatively, you can
use Box, which requires fewer calculations. It’s less soft, and looks a little bit more like a dou-
ble image.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES404

9551CH13 2/8/08 2:09 PM Page 404

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 13-28. Two blurred buttons

Beveled Edges
The BevelBitmapEffect creates a raised edge around the border of your content. Beveling
works well with elements that have a cleanly defined border, the rectangular border that wraps
a button, or the crisp edges of text. Figure 13-29 shows the bevel effect with its default settings
applied to an ordinary button and a TextBlock. (In order to see the beveling in the text, it’s nec-
essary to blow it up to a large font size.)

Figure 13-29. Two beveled elements

■Note The beveled edge is applied to the outermost border of your element. When using text, the edge of
each individual level is beveled (as shown in Figure 13-29), provided your text is placed on a transparent
background. If you specify a different background color for your TextBlock, the beveled edge will be added
around the rectangle that sets the bounds of the TextBlock—in other words, you’ll end up with ordinary text
on a beveled, colored rectangle. The same behavior appears when using the DropShadowBitmapEffect and
OuterGlowBitmapEffect.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 405

9551CH13 2/8/08 2:09 PM Page 405

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When setting a bevel, you can tweak the effect using a range of properties. BevelWidth
controls the width of the beveled edge (which defaults to 5), and EdgeProfile controls how that
edge is shaped (possible values are BulgedUp, CurvedIn, CurvedOut, and Linear).

You can change how the beveled edge is shaded by setting the Relief, Smoothness, and
LightAngle properties. Relief takes a value from 0 to 1, where 1 applies the strongest shadows
(0.3 is the default). Smoothness also takes a value from 0 to 1, where 1 creates the smoothest
shadows (0.2 is the default). Finally, LightAngle determines where the shadows appear. It takes
a value in degrees, where 0 degrees is the right side (so 90 degrees is at the top, 180 degrees is
on the left side, 270 degrees is directly beneath the element, and so on). The default value of
135 degrees puts the light source in the top-left corner and creates the shadows on the bottom
and right edges

Embossed Edges
The EmbossBitmapEffect uses an algorithm that detects the edges of content in your element
and alters them to give them a textured stand-out effect. If you use this effect on the right con-
tent, you’ll create the illusion of engraved or stamped content. If you use it on the wrong
content, you’ll simply end up with distorted patches of color. For example, web-ready graph-
ics often include fuzzy edges or dithered colors that cause artifacts to appear when you apply
an embossing effect.

The EmbossBitmapEffect class gives you just two properties to play with: the Relief prop-
erty for adjusting the amount of embossing (from 0 to 1, with the default being 0.44) and the
LightAngle property for choosing the direction that light falls on the embossed edge (which is
much like the LightAngle property you used with the BevelBitmapEffect).

Figure 13-30 shows three versions of the same picture with varying levels of embossing.
The image on the left has no embossing, the image in the middle has an emboss effect with a
Relief of 0.9, and the image on the right has an emboss effect with a Relief of 0.5.

Figure 13-30. Embossing a picture

■Note Remember, the emboss effect is applied over the entire surface of your element. It mangles most
ordinary elements, such as buttons, because it embosses both the outside border and the inner text.

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES406

9551CH13 2/8/08 2:09 PM Page 406

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Glows and Shadows
The final two effects are the OuterGlowBitmapEffect and the DropShadowBitmapEffect.

The OuterGlowBitmapEffect adds a diffuse halo of light around your element. You can
control the color (GlowColor), the width of the glow effect (GlowSize, which defaults to 5),
the sharpness of the glow (Noise, which takes a value between 0 and 1), and whether content
underneath shows through the halo (Opacity, which also takes a value between 0 and 1).

The DropShadowBitmapEffect has a similar set of properties, including Color, Noise,
Softness, and Opacity. It also includes a Direction property that lets you set the angle
from which the light is shining (much as you do with the LightDirection property on the
BevelBitmapEffect and EmbossBitmapEffect) and a ShadowDepth that lets you set how far
away the shadow appears (although you can’t control the actual size of the shadow). Both the
OuterGlowBitmapEffect and the DropShadowBitmapEffect cling to the edges of your content,
whether it’s the rectangular border around a button or the edges of the letters in your text.

Figure 13-31 shows different shadow and glow effects on buttons and text. To create the
distant shadows, the ShadowDepth property was increased to 20 and the Color property was
changed to a lighter color. To create the thick, grainy glows, the GlowSize property was set to
20 and the Noise property was raised from 0 to 0.5.

■Note Bitmap effects are added after the layout pass and don’t affect the placement of your controls.
That means that the drop shadow or glow around an element may overlap onto another element, if it’s
large enough.

Figure 13-31. Shadowns and glows

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES 407

9551CH13 2/8/08 2:09 PM Page 407

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 13 ■ SHAPES, TRANSFORMS, AND BRUSHES408

DROP SHADOWS WITH LESS OVERHEAD

Many WPF controls use drop shadows, including the Menu, ToolTip, and ComboBox. However, the
DropShadowBitmapEffect has too much overhead to be used with these common controls. Instead,
these controls simulate the same effect by adding a separate element that looks like a drop shadow.
The element that does the work is the SystemDropShadowChrome class, which is found in the
Microsoft.Windows.Themes namespace.

The SystemDropShadowChrome is a decorator—a class that wraps a single nested element and adds
a visual detail around or behind it. You first learned about decorators in Chapter 5 when you considered the
Border and Viewbox. You’ll see how decorators are used to paint the background of common controls such as
the Button in Chapter 15, and you’ll learn how to create your own decorator and use custom drawing code to
paint its background in Chapter 24.

If you want to create a drop shadow effect without the overhead of the DropShadowBitmapEffect,
you can use the SystemDropShadowChrome. The trick is to add a reference to the
Presentation.Framework.Aero.dll assembly, and map the Microsoft.Windows.Themes namespace,
as shown here:

<Window ... xmlns:theme=
"clr-namespace:Microsoft.Windows.Themes;assembly=PresentationFramework.Aero">

Once you’ve taken these two steps, you can wrap any element in a SystemDropShadowChrome object:

<theme:SystemDropShadowChrome>
<Button>This Button has an artifical drop shadow</Button>

</theme:SystemDropShadowChrome>

SystemDropShadowChrome provides two key properties: Color and CornerRadius. You use Color to set
the drop shadow color (as a Color object, not a Brush), and you can use the CornerRadius property to round
the edges.

The SystemDropShadowChrome has one limitation. It can only create rectangular drop shadows. It’s no
help if you want to add a drop shadow behind a different shape or behind text, which clearly makes it less
powerful than DropShadowBitmapEffect. The clear benefit is its vastly improved performance.

The Last Word
In this chapter, you took a detailed look at WPF’s support for basic 2-D drawing. You began
by considering the simple shape classes, and continued to consider transforms, specialized
brushes, and even bitmap effects. However, your journey isn’t finished yet. In the next chapter
you’ll take a look at the Path, the most sophisticated of the shape classes, which lets you com-
bine the shapes you’ve seen so far and add arcs and curves. You’ll also consider how you can
make more efficient graphics with the help of WPF’s Geometry and Drawing objects, and how
you can export clip art from other programs. Finally, you’ll consider the lower-level visual
layer and learn how you can use it to draw large amounts of dynamic content in the most
efficient way possible.

9551CH13 2/8/08 2:09 PM Page 408

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

409

C H A P T E R #

■ ■ ■

Geometries, Drawings,
and Visuals

In the previous chapter, you started your exploration into WPF’s 2-D drawing features. You
considered how you can use simple Shape-derived classes in combination with transforms,
images, and fancy brushes to create a variety of graphical effects. However, the concepts you
learned still fall far short of what you need to create (and manipulate) detailed 2-D scenes
made up of vector art. That’s because there’s a wide gap between rectangles, ellipses, and poly-
gons and the sort of clip art you see in graphically rich applications (such as Flash applets).

In this chapter, you’ll extend your skills with a few new concepts. You’ll learn how more
complex drawings are defined in WPF, how to model arcs and curves, and how you can con-
vert existing vector art to the XAML format you need. You’ll also consider the most performant
ways to work with complex images—in other words, how you can reduce the overhead
involved in managing hundreds or thousands of shapes. This begins with replacing the simple
shapes you learned about in the previous chapter with the more powerful Path class, which
can wrap complex geometries. At the end of this chapter, you’ll consider an even leaner
approach—foregoing elements and using the lower-level Visual class to perform your render-
ing by hand.

Paths and Geometries
In the previous chapter you took a look at a number of classes that derive from Shape, includ-
ing Rectangle, Ellipse, Polygon, and Polyline. However, there’s one Shape-derived class that
you haven’t considered yet, and it’s the most powerful by far. The Path class has the ability to
encompass any simple shape, groups of shapes, and more complex ingredients such as
curves.

The Path class includes a single property, named Data, that accepts a Geometry object
that defines the shape (or shapes) the path includes. You can’t create a Geometry object
directly because it’s an abstract class. Instead, you need to use one of the seven derived
classes listed in Table 14-1.

C H A P T E R 1 4

■ ■ ■

9551CH14 2/8/08 2:09 PM Page 409

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 14-1. Geometry Classes

Name Description

LineGeometry Represents a straight line. The geometry equivalent of the Line shape.

RectangleGeometry Represents a rectangle (optionally with rounded corners). The
geometry equivalent of the Rectangle shape.

EllipseGeometry Represents an ellipse. The geometry equivalent of the Ellipse shape.

GeometryGroup Adds any number of Geometry objects to a single path, using the
EvenOdd or NonZero fill rule to determine what regions to fill.

CombinedGeometry Merges two geometries into one shape. The CombineMode property
allows you to choose how the two are combined.

PathGeometry Represents a more complex figure that’s composed of arcs, curves, and
lines, and can be open or closed.

StreamGeometry A read-only lightweight equivalent to PathGeometry. The
StreamGeometry saves memory because it doesn’t hold the
individual segments of your path in memory all at once. However, it
can’t be modified once it’s been created.

At this point you might be wondering what the difference is between a path and a geome-
try. The geometry defines a shape. A path allows you to draw the shape. Thus, the Geometry
object defines details such as the coordinates and size of your shape, while the Path object
supplies the Stroke and Fill brushes you’ll use to paint it. The Path class also includes the fea-
tures it inherits from the UIElement infrastructure, such as mouse and keyboard handling.

However, the geometry classes aren’t quite as simple as they seem. For one thing, they
all inherit from Freezable (through the base Geometry class), which gives them support for
change notification. As a result, if you use a geometry to create a path and then modify the
geometry after the fact, your path will be redrawn automatically. The geometry classes can
also be used to define drawings that you can apply through a brush, which gives you an easy
way to paint complex content that doesn’t need the user-interactivity features of the Path
class. You’ll consider this ability in the “Drawings” section later in this chapter.

In the following sections, you’ll explore all the classes that derive from Geometry.

Line, Rectangle, and Ellipse Geometries
The LineGeometry, RectangleGeometry, and EllipseGeometry classes map directly to the
Line, Rectangle, and Ellipse shapes that you learned about in Chapter 13. For example, you
can convert this markup that uses the Rectangle element:

<Rectangle Fill="Yellow" Stroke="Blue"
Width="100" Height="50" ></Rectangle>

to this markup that uses the Path element:

<Path Fill="Yellow" Stroke="Blue">
<Path.Data>
<RectangleGeometry Rect="0,0 100,50"></RectangleGeometry>

</Path.Data>
</Path>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS410

9551CH14 2/8/08 2:09 PM Page 410

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The only real difference is that the Rectangle shape takes Height and Width values, while
the RectangleGeometry takes four numbers that describe the size and location of the rectan-
gle. The first two numbers describe the X and Y coordinates point where the top-left corner
will be placed, while the last two numbers set the width and height of the rectangle. You can
start the rectangle out at (0, 0) to get the same effect as an ordinary Rectangle element, or you
can offset the rectangle using different values. The RectangleGeometry class also includes the
RadiusX and RadiusY properties that let you round the corners (as described earlier).

Similarly, you can convert the following Line:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

to this LineGeometry:

<Path Fill="Yellow" Stroke="Blue">
<Path.Data>
<LineGeometry StartPoint="0,0" EndPoint="10,100"></LineGeometry>

</Path.Data>
</Path>

and you can convert an Ellipse like this:

<Ellipse Fill="Yellow" Stroke="Blue"
Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>

to this EllipseGeometry:

<Path Fill="Yellow" Stroke="Blue">
<Path.Data>
<EllipseGeometry RadiusX="50" RadiusY="25" Center="50,25"></EllipseGeometry>

</Path.Data>
</Path>

Notice that the two radius values are simply half of the width and height values. You can
also use the Center property to offset the location of the ellipse. In this example, the center is
placed in the exact middle of the ellipse bounding box, so that it’s drawn in exactly the same
way as the Ellipse shape.

Overall, these simple geometries work in exactly the same way as the corresponding
shapes. You get the added ability to offset rectangles and ellipses, but that’s not necessary if
you’re placing your shapes on a Canvas, which already gives you the ability to position your
shapes at a specific position. In fact, if this were all you could do with geometries, you proba-
bly wouldn’t bother to use the Path element. The difference appears when you decide to
combine more than one geometry in the same path, as described in the next section.

Combining Shapes with GeometryGroup
The simplest way to combine geometries is to use the GeometryGroup, and nest the other
Geometry-derived objects inside. Here’s an example that places an ellipse next to a square:

<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10" >
<Path.Data>
<GeometryGroup>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 411

9551CH14 2/8/08 2:09 PM Page 411

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>
<EllipseGeometry Center="150,50" RadiusX="35" RadiusY="25"></EllipseGeometry>

</GeometryGroup>
</Path.Data>

</Path>

The effect of this markup is the same as if you supplied two Path elements, one with the
RectangleGeometry and one with the EllipseGeometry (and that’s the same as if you used a
Rectangle and Ellipse shape instead). However, there’s one advantage to this approach. You’ve
replaced two elements with one, which means you’ve reduced the overhead of your user
interface. In general, a window that uses a smaller number of elements with more complex
geometries will perform faster than a window that has a large number of elements with sim-
pler geometries. This effect won’t be apparent in a window that has just a few dozen shapes,
but it may become significant in one that requires hundreds or thousands.

Of course, there’s also a drawback to combining geometries in a single Path element—
namely, you won’t be able to perform event handling of the different shapes separately.
Instead, the Path element will fire all mouse events. However, you can still manipulate the
nested RectangleGeometry and EllipseGeometry objects independently to change the overall
path. For example, each geometry provides a Transform property that you can set to stretch,
skew, or rotate that part of the path.

Another advantage of geometries is that you can reuse the same geometry in several
separate Path elements. No code is necessary—you simply need to define the geometry in a
Resources collection and refer to it in your path with the StaticExtension or DynamicExtension
markup extensions. Here’s an example that rewrites the markup shown previously to show
instances of the CombinedGeometry, at two different locations on a Canvas and with two
different fill colors:

<Window.Resources>
<GeometryGroup x:Key="Geometry">
<RectangleGeometry Rect="0 ,0 100 ,100"></RectangleGeometry>
<EllipseGeometry Center="150, 50" RadiusX="35" RadiusY="25"></EllipseGeometry>

</GeometryGroup>
</Window.Resources>

<Canvas>
<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10"
Data="{StaticResource Geometry}">
</Path>
<Path Fill="Green" Stroke="Blue" Margin="5" Canvas.Top="150" Canvas.Left="10"
Data="{StaticResource Geometry}">
</Path>

</Canvas>

The GeometryGroup becomes more interesting when your shapes intersect. Rather than
simply treating your drawing as a combination of solid shapes, the GeometryGroup uses its
FillRule property (which can be EvenOdd or Nonzero, as described in Chapter 13) to decide
what shapes to fill. Consider what happens if you alter the markup shown earlier like this,
placing the ellipse over the square:

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS412

9551CH14 2/8/08 2:09 PM Page 412

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10" >
<Path.Data>
<GeometryGroup>
<RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>
<EllipseGeometry Center="50,50" RadiusX="35" RadiusY="25"></EllipseGeometry>

</GeometryGroup>
</Path.Data>

</Path>

Now this markup creates a square with an ellipse-shaped hole in it. If you change FillRule
to Nonzero, you’ll get a solid ellipse over a solid rectangle, both with the same yellow fill.

You could create the square-with-a-hole effect by simply superimposing a white-filled
ellipse over your square. However, the GeometryGroup class becomes more useful if you have
content underneath, which is typical in a complex drawing. Because the ellipse is treated as a
hole in your shape (not another shape with a different fill), any content underneath shows
through—for example, if you add this line of text:

<TextBlock Canvas.Top="50" Canvas.Left="20" FontSize="25" FontWeight="Bold">
Hello There</TextBlock>

Now you’ll get the result shown in Figure 14-1.

Figure 14-1. A path that uses two shapes

■Note Remember, objects are drawn in the order they are processed. In other words, if you want the text
to appear underneath your shape, make sure you add the TextBlock to your markup before the Path element.
(Or if you’re using a Canvas or Grid to hold your content, you can set the attached Panel.ZIndex property on
your elements to place them explicitly, as described in Chapter 4.

Fusing Geometries with CombinedGeometry
The GeometryGroup class is an invaluable tool for building complex shapes out of the basic
primitives (rectangle, ellipse, and line). However, it has obvious limitations. It works great for
creating a shape by drawing one shape and “subtracting” out other shapes from inside.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 413

9551CH14 2/8/08 2:09 PM Page 413

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS414

However, it’s difficult to get the result you want if the shape borders intersect one another,
and it’s no help if you want to remove part of a shape. To help you out, there’s another tool
that you can use: the CombinedGeometry class. It’s tailor-made for combining shapes that
overlap, and where neither shape contains the other completely. Unlike GeometryGroup,
CombinedGeometry takes just two geometries, which you supply using the Geometry1 and
Geometry2 properties. CombinedGeometry doesn’t include the FillRule property—instead, it
has the much more powerful GeometryCombineMode property that takes one of four values,
as described in Table 14-2.

Table 14-2. Values from the GeometryCombineMode Enumeration

Name Description

Union Creates a shape that includes all the areas of the two geometries.

Intersect Creates a shape that contains the area that’s shared between the two geometries.

Xor Creates a shape that contains the area that isn’t shared between the two geometries. In
other words, it’s as if the shapes are combined (using a Union) and then the shared part
(the Intersect) is removed.

Exclude Creates a shape that includes all the area from the first geometry, not including the area
that’s in the second geometry.

For example, here’s how you can merge two shapes to create one shape with the total area
using GeometryCombineMode.Union:

<Path Fill="Yellow" Stroke="Blue" Margin="5">
<Path.Data>
<CombinedGeometry GeometryCombineMode="Union">
<CombinedGeometry.Geometry1>
<RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>

</CombinedGeometry.Geometry1>
<CombinedGeometry.Geometry2>
<EllipseGeometry Center="85,50" RadiusX="65" RadiusY="35"></EllipseGeometry>

</CombinedGeometry.Geometry2>
</CombinedGeometry>

</Path.Data>
</Path>

Figure 14-2 shows this shape, as well as the result of combining the same shapes in every
other way possible.

The fact that a CombinedGeometry can only combine two shapes may seem like a signifi-
cant limitation, but it’s not. You can build a shape that involves dozens of distinct geometries
or more—you simply need to use nested CombinedGeometry objects. For example, one
CombinedGeometry object might combine two other CombinedGeometry objects, which
themselves can combine more geometries. Using this technique, you can build up detailed
shapes.

To understand how this works, consider the simple “no” sign (a circle with a slash through
it) shown in Figure 14-3. Although there isn’t any WPF primitive that resembles this shape, you
can assemble it quite quickly using CombinedGeometry objects.

9551CH14 2/8/08 2:09 PM Page 414

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 14-2. Combining shapes Figure 14-3. Several combined shapes

It makes sense to start by drawing the ellipse that represents the outer edge of the shape.
Then, using a CombinedGeometry with the GeometryCombineMode.Exclude, you can
remove a smaller ellipse from the inside. Here’s the markup that you need:

<Path Fill="Yellow" Stroke="Blue">
<Path.Data>
<CombinedGeometry GeometryCombineMode="Exclude">
<CombinedGeometry.Geometry1>
<EllipseGeometry Center="50,50" RadiusX="50" RadiusY="50"></EllipseGeometry>

</CombinedGeometry.Geometry1>
<CombinedGeometry.Geometry2>
<EllipseGeometry Center="50,50" RadiusX="40" RadiusY="40"></EllipseGeometry>

</CombinedGeometry.Geometry2>
</CombinedGeometry>

</Path.Data>
</Path>

This gets you part of the way, but you still need the slash through the middle. The easiest
way to add this element is to use a rectangle that’s tilted to the side. You can accomplish this
using the RectangleGeometry with a RotateTransform of 45 degrees:

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 415

9551CH14 2/8/08 2:09 PM Page 415

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<RectangleGeometry Rect="44,5 10,90">
<RectangleGeometry.Transform>
<RotateTransform Angle="45" CenterX="50" CenterY="50"></RotateTransform>

</RectangleGeometry.Transform>
</RectangleGeometry>

■Note When applying a transform to a geometry, you use the Transform property (not RenderTransform or
LayoutTransform). That’s because the geometry defines the shape, and any transforms are always applied
before the path is used in your layout.

The final step is to combine this geometry with the combined geometry that created the
hollow circle. In this case, you need to use GeometryCombineMode.Union to add the rectan-
gle to your shape.

Here’s the complete markup for the symbol:

<Path Fill="Yellow" Stroke="Blue">
<Path.Data>
<CombinedGeometry GeometryCombineMode="Union">
<CombinedGeometry.Geometry1>
<CombinedGeometry GeometryCombineMode="Exclude">
<CombinedGeometry.Geometry1>
<EllipseGeometry Center="50,50"
RadiusX="50" RadiusY="50"></EllipseGeometry>

</CombinedGeometry.Geometry1>
<CombinedGeometry.Geometry2>
<EllipseGeometry Center="50,50"
RadiusX="40" RadiusY="40"></EllipseGeometry>

</CombinedGeometry.Geometry2>
</CombinedGeometry>

</CombinedGeometry.Geometry1>

<CombinedGeometry.Geometry2>
<RectangleGeometry Rect="44,5 10,90">
<RectangleGeometry.Transform>
<RotateTransform Angle="45" CenterX="50" CenterY="50"></RotateTransform>

</RectangleGeometry.Transform>
</RectangleGeometry>

</CombinedGeometry.Geometry2>
</CombinedGeometry>

</Path.Data>
</Path>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS416

9551CH14 2/8/08 2:09 PM Page 416

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note A GeometryGroup object can’t influence the fill or stroke brushes used to color your shape. These
details are set by the path. As a result, you need to create separate Path objects if you want to color parts of
your path differently.

Curves and Lines with PathGeometry
PathGeometry is the superpower of geometries. It can draw anything that the other geometries
can, and much more. The only drawback is a lengthier (and somewhat more complex) syntax.

Every PathGeometry object is built out of one or more PathFigure objects (which are
stored in the PathGeometry.Figures collection). Each PathFigure is a continuous set of con-
nected lines and curves that can be closed or open. The figure is closed if the end of the last
line in the figure connects to the beginning of the first line.

The PathFigure class has four key properties, as described in Table 14-3.

Table 14-3. PathFigure Properties

Name Description

StartPoint This is a Point that indicates where the line for the figure begins.

Segments This is a collection of PathSegment objects that are used to draw the figure.

IsClosed If true, WPF adds a straight line to connect the starting and ending points (if they
aren’t the same).

IsFilled If true, the area inside the figure is filled in using the Path.Fill brush.

So far, this all sounds fairly straightforward. The PathFigure is a shape that’s drawn using
an unbroken line that consists of a number of segments. However, the trick is that there are
several type of segments, all of which derive from the PathSegment class. Some are simple,
like the LineSegment that draws a straight line. Others, like the BezierSegment, draw curves
and are correspondingly more complex.

You can mix and match different segments freely to build your figure. Table 14-4 lists the
segment classes you can use.

Table 14-4. PathSegment Classes

Name Description

LineSegment Creates a straight line between two points.

ArcSegment Creates an elliptical arc between two points.

BezierSegment Creates a Bézier curve between two points.

QuadraticBezierSegment Creates a simpler form of Bézier curve that has one control point
instead of two, and is faster to calculate.

PolyLineSegment Creates a series of straight lines. You can get the same effect using
multiple LineSegment objects, but a single PolyLineSegment is
more concise.

PolyBezierSegment Creates a series of Bézier curves.

PolyQuadraticBezierSegment Creates a series of simpler quadratic Bézier curves.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 417

9551CH14 2/8/08 2:09 PM Page 417

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Straight Lines
It’s easy enough to create simple lines using the LineSegment and PathGeometry classes.
You simply set the StartPoint and add one LineSegment for each section of the line. The
LineSegment.Point property identifies the end point of each segment.

For example, the following markup begins at (10, 100), draws a straight line to (100, 100),
and then draws a line from that point to (100, 50). Because the PathFigure.IsClosed property is
set to true, a final line segment is adding connection (100, 50) to (0, 0). The final result is a
right-angled triangle:

<Path Stroke="Blue">
<Path.Data>
<PathGeometry>
<PathFigure IsClosed="True" StartPoint="10,100">
<LineSegment Point="100,100" />
<LineSegment Point="100,50" />

</PathFigure>
</PathGeometry>

</Path.Data>
</Path>

■Note Remember, each PathGeometry can contain an unlimited number of PathFigure objects. That means
you can create several separate open or closed figures that are all considered part of the same path.

Arcs
Arcs are a little more interesting than straight lines. You identify the end point of the line
using the ArcSegment.Point property, just as you would with a LineSegment. However, the
PathFigure draws a curved line from the starting point (or the end point of the previous seg-
ment) to the end point of your arc. This curved connecting line is actually a portion of the
edge of an ellipse.

Obviously, the end point isn’t enough information to draw the arc because there are many
curves (some gentle, some more extreme) that could connect two points. You also need to
indicate the size of the imaginary ellipse that’s being used to draw the arc. You do this using
the ArcSegment.Size property, which supplies the X radius and the Y radius of the ellipse. The
larger the ellipse size of the imaginary ellipse, the more gradually its edge curves.

■Note For any two points, there is a practical maximum and minimum size for the ellipse. The maximum
occurs when you create an ellipse so large the line segment you’re drawing appears straight. Increasing the
size beyond this point has no effect. The minimum occurs when the ellipse is small enough that a full semi-
circle connects the two points. Shrinking the size beyond this point also has no effect.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS418

9551CH14 2/8/08 2:09 PM Page 418

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 419

Here’s an example that creates the gentle arc shown in Figure 14-4:

<Path Stroke="Blue" StrokeThickness="3">
<Path.Data>
<PathGeometry>
<PathFigure IsClosed="False" StartPoint="10,100" >
<ArcSegment Point="250,150" Size="200,300" />

</PathFigure>
</PathGeometry>

</Path.Data>
</Path>

Figure 14-4. A simple arc

So far, arcs sound fairly straightforward. However, it turns out that even with the start and
end point and the size of the ellipse, you still don’t have all the information you need to draw
your arc unambiguously. In the previous example, you’re relying on two default values that
may not be set to your liking.

To understand the problem, you need to consider the other ways that an arc can connect
the same two points. If you picture two points on an ellipse, it’s clear that you can connect them
in two ways—by going around the short side, or by going around the long side. Figure 14-5
illustrates.

You set the direction using the ArcSegment.IsLargeArc property, which can be true or
false. The default value is false, which means you get the shorter of the two arcs.

Even once you’ve set the direction, there is still one point of ambiguity—where the ellipse
is placed. For example, imagine you draw an arc that connects a point on the left with a point
on the right, using the shortest possible arc. The curve that connects these two points could be
stretched down and then up (as it does in Figure 14-4) or it could be flipped so that it curves
up and then down. The arc you get depends on the order in which you define the two points in
the arc and the ArcSegment.SweepDirection property, which can be Counterclockwise (the
default) or Clockwise. Figure 14-6 shows the difference.

9551CH14 2/8/08 2:09 PM Page 419

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 14-5. Two ways to trace a curve along an ellipse

Figure 14-6. Two ways to flip a curve

Bézier Curves
Bézier curves connect two line segments using a complex mathematical formula that incorpo-
rates two control points that determine how the curve is shaped. Bézier curves are an ingredient
in virtually every vector drawing application ever created because they’re remarkably flexible.
Using nothing more than start point, end point, and two control points, you can create a surpris-
ingly wide variety of smooth curves (including loops). Figure 14-7 shows a classic Bézier curve.
Two small circles indicate the control points, and a dashed line connects each control point to
the end of the line it affects the most.

Even without understanding the math underpinnings, it’s fairly easy to get the “feel” of
how Bézier curves work. Essentially, the two control points do all the magic. They influence
the curve in two ways:

• At the starting point, a Bézier curve runs parallel with the line that connects it to the
first control point. At the ending point, the curve runs parallel with the line that con-
nects it to the end point. (In between, it curves.)

• The degree of curvature is determined by the distance to the two control points. If one
control point is farther away, it exerts a stronger “pull.”

To define a Bézier curve in markup, you supply three points. The first two points
(BezierSegment.Point1 and BezierSegment.Point2) are the control points. The third point
(BezierSegment.Point3) is the end point of the curve. As always, the starting point is that start-
ing point of the path or wherever the previous segment leaves off.

Clockwise

Counterclockwise

End PointStart Point

End Point

Large Arc

Small Arc

Start Point

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS420

9551CH14 2/8/08 2:09 PM Page 420

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 14-7. A Bézier curve

The example shown in Figure 14-7 includes three separate components, each of which
uses a different stroke and thus requires a separate Path element. The first path creates the
curve, the second adds the dashed lines, and the third applies the circles that indicate the con-
trol points. Here’s the complete markup:

<Canvas>
<Path Stroke="Blue" StrokeThickness="5" Canvas.Top="20">
<Path.Data>
<PathGeometry>
<PathFigure StartPoint="10,10">
<BezierSegment Point1="130,30" Point2="40,140"
Point3="150,150"></BezierSegment>

</PathFigure>
</PathGeometry>

</Path.Data>
</Path>
<Path Stroke="Green" StrokeThickness="2" StrokeDashArray="5 2" Canvas.Top="20">
<Path.Data>
<GeometryGroup>
<LineGeometry StartPoint="10,10" EndPoint="130,30"></LineGeometry>
<LineGeometry StartPoint="40,140" EndPoint="150,150"></LineGeometry>

</GeometryGroup>
</Path.Data>

</Path>
<Path Fill="Red" Stroke="Red" StrokeThickness="8" Canvas.Top="20">
<Path.Data>
<GeometryGroup>
<EllipseGeometry Center="130,30"></EllipseGeometry>
<EllipseGeometry Center="40,140"></EllipseGeometry>

</GeometryGroup>
</Path.Data>

</Path>
</Canvas>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 421

9551CH14 2/8/08 2:09 PM Page 421

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Trying to code Bézier paths is a recipe for many thankless hours of trial-and-error
computer coding. You’re much more likely to draw your curves (and many other graphical
elements) in a dedicated drawing program that has an export-to-XAML feature, or Microsoft
Expression Blend.

■Tip To learn more about the algorithm that underlies the Bézier curve, you can read an informative
Wikipedia article on the subject at http://en.wikipedia.org/wiki/Bezier_curve.

The Geometry Mini-Language
The geometries you’ve seen so far have been relatively concise, with only a few points. More
complex geometries are conceptually the same but can easily require hundreds of segments.
Defining each line, arc, and curve in a complex path is extremely verbose and unnecessary—
after all, it’s likely that complex paths will be generated by a design tool rather than written by
hand, so the clarity of the markup isn’t all that important. With this in mind, the creators of
WPF added a more concise alternate syntax for defining geometries that allows you to repre-
sent detailed figures with much smaller amounts of markup. This syntax is often described as
the geometry mini-language (and sometimes the path mini-language due to its application
with the Path element).

To understand the mini-language, you need to realize that it is essentially a long string
holding a series of commands. These commands are read by a type converter that then creates
the corresponding geometry. Each command is a single letter and is optionally followed by a
few bits of numeric information (such as X and Y coordinates) separated by spaces. Each com-
mand is also separated from the previous command with a space.

For example, a bit earlier you created a basic triangle using a closed path with two line
segments. Here’s the markup that did the trick:

<Path Stroke="Blue">
<Path.Data>
<PathGeometry>
<PathFigure IsClosed="True" StartPoint="10,100">
<LineSegment Point="100,100" />
<LineSegment Point="100,50" />

</PathFigure>
</PathGeometry>

</Path.Data>
</Path>

To duplicate this figure using the mini-language, you’d write this:

<Path Stroke="Blue" Data="M 10,100 L 100,100 L 100,50 Z"/>

This path uses a sequence of four commands. The first command (M) creates the
PathFigure and sets the starting point to (10, 100). The following two commands (L) create
line segments. The final command (Z) ends the PathFigure and sets the IsClosed property to
true. The commas in this string are optional, as are the spaces between the command and its

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS422

9551CH14 2/8/08 2:09 PM Page 422

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://en.wikipedia.org/wiki/Bezier_curve

parameters, but you must leave at least one space between adjacent parameters and com-
mands. That means you can reduce the syntax even further to this less-readable form:

<Path Stroke="Blue" Data="M10 100 L100 100 L100 50 Z"/>

When creating a geometry with the mini-language, you are actually creating a
StreamGeometry object, not a PathGeometry. As a result, you won’t be able to modify the
geometry later on in your code. If this isn’t acceptable, you can create a PathGeometry
explicitly but use the same syntax to define its collection of PathFigure objects. Here’s how:

<Path Stroke="Blue">
<Path.Data>
<PathGeometry Figures="M 10,100 L 100,100 L 100,50 Z" />

</Path.Data>
</Path>

The geometry mini-language is easy to grasp. It uses a fairly small set of commands,
which are detailed in Table 14-5. Parameters are shown in italics.

Table 14-5. Commands for the Geometry Mini-Language

Command Description

F value Sets the Geometry.FillRule property. Use 0 for EvenOdd, or 1 for NonZero.
This command must appear at the beginning of the string (if you decide to
use it).

M x,y Creates a new PathFigure for the geometry and sets its start point. This
command must be used before any other commands except F. However, you
can also use it during your drawing sequence to move the origin of your
coordinate system. (The M stands for move.)

L x,y Creates a LineSegment to the specified point.

H x Creates a horizontal LineSegment using the specified X value and keeping the
Y value constant.

V y Creates a vertical LineSegment using the specified Y value and keeping the
X value constant.

A radiusX, radiusY Creates an ArcSegment to the indicated point. You specify the radii of the
degrees isLargeArc, ellipse that describes the arc, the number of degrees the arc is rotated, and
isClockwise x,y Boolean flags that set the IsLargeArc and SweepDirection properties

described earlier.

C x1,y1 x2,y2 x,y Creates a BezierSegment to the indicated point, using control points at
(x1, y1) and (x2, y2).

Q x1, y1 x,y Creates a QuadraticBezierSegment to the indicated point, with one control
point at (x1, y1).

S x2,y2 x,y Creates a smooth BezierSegment by using the second control point from the
previous BezierSegment as the first control point in the new BezierSegment.

Z Ends the current PathFigure and sets IsClosed to true. You don’t need to use
this command if you don’t want to set IsClosed to true—instead, simply use M
if you want to start a new PathFigure or end the string.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 423

9551CH14 2/8/08 2:09 PM Page 423

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS424

■Tip There’s one more trick in the geometry mini-language. You can use a command in lowercase if you
want its parameters to be evaluated relative to the previous point rather than using absolute coordinates.

Clipping with Geometry
As you’ve seen, geometries are the most powerful way to create a shape. However, geometries
aren’t limited to the Path element. They’re also used anywhere you need to supply the abstract
definition of a shape (rather than draw a real, concrete shape in a window).

Another place geometries are used is to set the Clip property, which is provided by all
elements. The Clip property allows you to constrain the outer bounds of an element to fit a
specific geometry. You can use the Clip property to create a number of exotic effects. Although
it’s commonly used to trim down image content in an Image element, you can use the Clip
property with any element. The only limitation is that you’ll need a closed geometry if you
actually want to see anything—individual curves and line segments aren’t of much use.

The following example defines a single geometry that’s used to clip two elements: an
Image element that contains a bitmap, and a standard Button element. The results are shown
in Figure 14-8.

Figure 14-8. Clipping two elements

Here’s the markup for this example:

<Window.Resources>
<GeometryGroup x:Key="clipGeometry" FillRule="Nonzero">
<EllipseGeometry RadiusX="75" RadiusY="50" Center="100,150"></EllipseGeometry>
<EllipseGeometry RadiusX="100" RadiusY="25" Center="200,150"></EllipseGeometry>
<EllipseGeometry RadiusX="75" RadiusY="130" Center="140,140"></EllipseGeometry>

</GeometryGroup>
</Window.Resources>
<Grid>
<Grid.ColumnDefinitions>

9551CH14 2/8/08 2:09 PM Page 424

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

<Button Clip="{StaticResource clipGeometry}">A button</Button>
<Image Grid.Column="1" Clip="{StaticResource clipGeometry}"
Stretch="None" Source="creek.jpg"></Image>

</Grid>

There’s one limitation with clipping. The clipping you set doesn’t take the size of the
element into account. In other words, if the button in Figure 14-8 becomes larger or smaller
when the window is resized, the clipped region will remain the same and show a different
portion of the button. One possible solution is to wrap the element in a Viewbox to provide
automatic rescaling. However, this causes everything to resize proportionately, including the
details you do want to resize (the clip region and button surface) and those you might not (the
button text and the line that draws the button border).

In the next section, you’ll go a bit further with Geometry objects and use them to define a
lightweight drawing that can be used in a variety of ways.

Drawings
As you’ve learned, the abstract Geometry class represents a shape or a path. The abstract
Drawing class plays a complementary role. It represents a 2-D drawing—in other words, it
contains all the information you need to display a piece of vector or bitmap art.

Although there are several types of drawing classes, the GeometryDrawing is the one that
works with the geometries you’ve learned about so far. It adds the stroke and fill details that
determine how the geometry should be painted. You can think of a GeometryDrawing as a sin-
gle shape in a piece of vector clip art. For example, it’s possible to convert a standard Windows
Metafile (.wmf) into a collection of GeometryDrawing objects that are ready to insert into your
user interface. (In fact, you’ll learn how to do exactly this in the “Exporting Clip Art” section a
little later in this chapter.)

It helps to consider a simple example. Earlier, you saw how to define a simple
PathGeometry that represents a triangle:

<PathGeometry>
<PathFigure IsClosed="True" StartPoint="10,100">
<LineSegment Point="100,100" />
<LineSegment Point="100,50" />

</PathFigure>
</PathGeometry>

You can use this PathGeometry to build a GeometryDrawing like so:

<GeometryDrawing Brush="Yellow">
<GeometryDrawing.Pen>
<Pen Brush="Blue" Thickness="3"></Pen>

</GeometryDrawing.Pen>
<GeometryDrawing.Geometry>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 425

9551CH14 2/8/08 2:09 PM Page 425

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<PathGeometry>
<PathFigure IsClosed="True" StartPoint="10,100">
<LineSegment Point="100,100" />
<LineSegment Point="100,50" />

</PathFigure>
</PathGeometry>
</GeometryDrawing.Geometry>

</GeometryDrawing>

Here, the PathGeometry defines the shape (a triangle). The GeometryDrawing defines
the shape’s appearance (a yellow triangle with a blue outline). Neither the PathGeometry
nor the GeometryDrawing is an element, so you can’t use either one directly to add your
custom-drawn content to a window. Instead, you’ll need to use another class that supports
drawings, as described in the next section.

■Note The GeometryDrawing class introduces a new detail: the System.Windows.Media.Pen class. The
Pen class provides the Brush and Thickness properties used in the previous example, along with all the
stroke-related properties you learned about with shapes (StartLine, EndLineCap, DashStyle, DashCap,
LineJoin, and MiterLimit). In fact, most Shape-derived classes use Pen objects internally in their drawing
code but expose pen-related properties directly for ease of use.

GeometryDrawing isn’t the only drawing class in WPF (although it is the most relevant
one when considering 2-D vector graphics). In fact, the Drawing class is meant to represent all
types of 2-D graphics, and there’s a small group of classes that derive from it. Table 14-6 lists
them all.

Table 14-6. The Drawing Classes

Class Description Properties

GeometryDrawing Wraps a geometry with the brush Geometry, Brush, Pen
that fills it and the pen that outlines it.

ImageDrawing Wraps an image (typically, a file-based ImageSource, Rect
bitmap image) with a rectangle that
defines its bounds.

VideoDrawing Combines a MediaPlayer that’s used to Player, Rect
play a video file with a rectangle that
defines its bounds. Chapter 22 has the
details about WPF’s multimedia support.

GlyphRunDrawing Wraps a low-level text object known as GlyphRun, ForegroundBrush
a GlyphRun with a brush that paints it.

DrawingGroup Combines a collection of Drawing BitmapEffect, BitmapEffectInput,
objects of any type. The DrawingGroup Children, ClipGeometry,
allows you to create composite drawings, GuidelineSet, Opacity,
and apply effects to the entire collection OpacityMask, Transform
at once, using one of its properties.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS426

9551CH14 2/8/08 2:09 PM Page 426

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Displaying a Drawing
Because Drawing-derived classes are not elements, they can’t be placed in your user interface.
Instead, to display a drawing, you need to use one of three classes listed in Table 14-7.

Table 14-7. Classes for Displaying a Drawing

Class Derives From Description

DrawingImage ImageSource Allows you to host a drawing inside an Image element.

DrawingBrush Brush Allows you to wrap a drawing with a brush, which you
can then use to paint any surface.

DrawingVisual Visual Allows you to place a drawing in a lower-level visual
object. Visuals don’t have the overhead of true elements
but can still be displayed if you implement the required
infrastructure. You’ll learn more later in this chapter in
the “Visuals” section.

There’s a common theme in all of these classes—quite simply, they give you a way to dis-
play your 2-D content with less overhead.

For example, imagine you want to use a piece of vector art to create the icon for a button.
The most convenient (and resource-intensive) way to do this is to place a Canvas inside the
button, and place a series of Shape-derived elements inside the Canvas:

<Button ... >
<Canvas ... >
<Polyline ... >
<Polyline ... >
<Rectangle ... >
<Ellipse ... >
<Polygon ... >
...

</Canvas>
</Button>

As you already know, if you take this approach, each element is completely independent,
with its own memory footprint, event handling, and so on.

A better approach is to reduce the number of elements using the Path element. Because
each path has a single stroke and fill, you’ll still need a large number of Path objects, but you’ll
probably be able to reduce the number of elements somewhat:

<Button ... >
<Canvas ... >
<Path ... >
<Path ... >
<Path ... >
...

</Canvas>
</Button>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 427

9551CH14 2/8/08 2:09 PM Page 427

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Once you start using the Path element, you’ve made the switch from separate shapes to
distinct geometries. You can carry the abstraction one level further by extracting the geometry,
stroke, and fill information from the path and turning it into a drawing. You can then fuse your
drawings together in a DrawingGroup and place that DrawingGroup in a DrawingImage,
which can in turn be placed in an Image element. Here’s the new markup this process creates:

<Button ... >
<Image ... >
<Image.Source>
<DrawingImage>
<DrawingImage.Drawing>
<DrawingGroup>
<GeometryDrawing ... >
<GeometryDrawing ... >
<GeometryDrawing ... >
...

</DrawingGroup>
</DrawingImage.Drawing>

</DrawingImage>
<Image.Source>

</Image>
</Button>

This is a significant change. It hasn’t simplified your markup, as you’ve simply substituted
one GeometryDrawing object for each Path object. However, it has reduced the number of ele-
ments and hence the overhead that’s required. The previous example created a Canvas inside
the button and added a separate element for each path. But this example requires just one
nested element: the Image inside the button. The trade-off is that you no longer have the
ability to handle events for each distinct path (for example, you can’t detect mouse clicks on
separate regions of the drawing). But in a static image that’s used for a button, it’s unlikely that
you want this ability anyway.

■Note It’s easy to confuse DrawingImage and ImageDrawing, two WPF classes with awkwardly similar
names. DrawingImage is used to place a drawing inside an Image element. Typically, you’ll use it to put
vector content in an Image. ImageDrawing is completely different—it’s a Drawing-derived class that
accepts bitmap content. This allows you to combine GeometryDrawing and ImageDrawing objects in
one DrawingGroup, thereby creating a drawing with vector and bitmap content that you can use however
you want.

Although the DrawingImage gives you the majority of the savings, you can still get a tiny
bit more efficient and remove one more element with the help of the DrawingBrush. The basic
idea is to wrap your DrawingImage in a DrawingBrush, like so:

<Button ... >
<Button.Background>

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS428

9551CH14 2/8/08 2:09 PM Page 428

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 429

<DrawingBrush>
<DrawingBrush.Drawing>
<DrawingGroup>
<GeometryDrawing ... >
<GeometryDrawing ... >
<GeometryDrawing ... >
...

</DrawingGroup>
</DrawingBrush.Drawing>

</DrawingBrush>
</Button.Background>

</Button>

One product that uses this approach is Expression Blend.
The DrawingBrush approach isn’t exactly the same as the DrawingImage approach shown

earlier. That’s because the default way that an Image sizes its content is different than the
DrawingBrush. The default Image.Stretch property is Uniform, which scales the image up or
down to fit the available space. The default DrawingBrush.Stretch property is Fill, which may
distort your image.

When changing the Stretch property of a DrawingBrush, you may also want to adjust the
Viewport setting to explicitly tweak the location and size of the drawing in the fill region. For
example, this markup scales the drawing used by the drawing brush to take 90% of the fill
area:

<DrawingBrush Stretch="Fill" Viewport="0,0 0.9,0.9">

This is useful with the button example because it gives some space for the border around
the button. Because the DrawingBrush isn’t an element, it won’t be placed using the WPF
layout process. That means that unlike the Image, the placement of the content in the
DrawingBrush won’t take the Button.Padding value into account.

One quirk with the DrawingBrush approach is that the content disappears when you
move the mouse over the button and a new brush is used to paint its surface. But when you
use the Image approach, the picture remains unaffected. To deal with this issue, you need to
create a custom control template for the button that doesn’t paint its background in the same
way. This technique is demonstrated in Chapter 15.

■Tip Using DrawingBrush objects also allows you to create some effects that wouldn’t otherwise be possi-
ble, such as tiling. Because DrawingBrush derives from TileBrush, you can use the TileMode property to
repeat a drawing in a pattern across your fill region. Chapter 13 has the full details about tiling with the
TileBrush.

Exporting Clip Art
Although all of these examples have declared their drawings inline, a more common approach
is to place some portion of this content in a resource dictionary so it can be reused throughout
your application (and modified in one place). It’s up to you how you break this markup down
into resources, but two common choices are to store a dictionary full of DrawingImage

9551CH14 2/8/08 2:09 PM Page 429

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

objects, or one stocked with DrawingBrush objects. Optionally, you can factor out the
Geometry objects and store them as separate resources. (This is handy if you use the same
geometry in more than one drawing, with different colors.)

Of course, very few developers will code much (if any) art by hand. Instead, they’ll use
dedicated design tools that export the XAML content they need. Most design tools don’t sup-
port XAML export yet, although there are a wide variety of plug-ins and converters that fill the
gaps. Here are some examples:

• http://www.mikeswanson.com/XAMLExport has a free XAML plug-in for Adobe Illustrator.

• http://www.mikeswanson.com/swf2xaml has a free XAML converter for Adobe Flash files.

• Expression Design, Microsoft’s illustration and graphic design program, has a built-in
XAML export. In can read a variety of vector art file formats, including the .wmf
(Windows Metafile Format), which allows you to import existing clip art and export
it as XAML.

However, even if you use one of these tools, the knowledge you’ve learned about geome-
tries and drawings is still important for several reasons.

First, many programs allow you to choose whether you want to export a drawing as a
combination of separate elements in a Canvas or as a collection of DrawingBrush or
DrawingImage resources. Usually, the first choice is the default choice because it preserves
more features. However, if you’re using a large number of drawings, your drawings are com-
plex, or you simply want to use the least amount of memory for static graphics like button
icons, it’s a much better idea to use DrawingBrush or DrawingImage resources. Better still,
these formats are separated from the rest of your user interface so it’s easier to update them
later. (In fact, you could even compile your DrawingBrush or DrawingImage resources in a
separate DLL assembly, as described in Chapter 11.)

■Tip To save resources in Expression Design, you must explicitly choose Resource Dictionary instead of
Canvas in the Document Format list box.

Another reason why it’s important to understand the plumbing behind 2-D graphics is
because it makes it far easier for you to manipulate them. For example, you can alter a stan-
dard 2-D graphic by modifying the brushes used to paint various shapes, applying transforms
to individual geometries, or altering the opacity or transform of an entire layer of shapes
(through a DrawingGroup object). More dramatically, you can add, remove, or alter individual
geometries. These techniques can be easily combined with the animation skills you’ll pick up
in Chapter 21. For example, it’s easy to rotate a Geometry object by modifying the Angle prop-
erty of a RotateTransform, fade a layer of shapes into existence using DrawingGroup.Opacity,
or create a swirling gradient effect by animating a LinearGradientBrush that paints the fill for a
GeometryDrawing.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS430

9551CH14 2/8/08 2:09 PM Page 430

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.mikeswanson.com/XAMLExport
http://www.mikeswanson.com/swf2xaml

■Tip If you’re really curious, you can hunt down the resources used by other WPF applications. The
basic technique is to use a tool such as Reflector (http://www.aisto.com/roeder/dotnet) to find
the assembly with the resources. You can then use a Reflector plug-in (http://www.codeplex.com/
reflectoraddins) to extract one of the BAML resources and decompile it back to XAML. Of course,
most companies won’t take kindly to developers who steal their handcrafted graphics to use in their own
applications!

Visuals
So far, you’ve learned the best ways to deal with modest amounts of graphical content. By
using geometries, drawings, and paths, you reduce the overhead of your 2-D art. Even if you’re
using complex compound shapes with layered effects and gradient brushes, this is an
approach that performs well.

However, this design isn’t suitable for drawing-intensive applications that need to render
a huge number of graphical elements. For example, consider a mapping program, a physics
modeling program that demonstrates particle collisions, or a side-scrolling game. The prob-
lem posed by these applications isn’t the complexity of the art, but the sheer number of
individual graphical elements. Even if you replace your Path elements with lighter weight
Geometry objects, the overhead will still hamper the application’s performance.

The WPF solution for this sort of situation is to use the lower-level visual layer model. The
basic idea is that you define each graphical element as a Visual object, which is an extremely
lightweight ingredient that has less overhead than a Geometry object or a Path object. You can
then use a single element to render all your visuals in a window.

In the following sections, you’ll learn how to create visuals, manipulate them, and per-
form hit testing. Along the way, you’ll build a basic vector-based drawing application that lets
you add squares to a drawing surface, select them, and drag them around.

Drawing Visuals
Visual is an abstract class, so you can’t create an instance of it. Instead, you need to use one of
the classes that derive from Visual. These include UIElement (which is the root of WPF’s ele-
ment model), Viewport3DVisual (which allows you to display 3-D content, as described in
Chapter 23), and ContainerVisual (which is a basic container that holds other visuals). But the
most useful derived class is DrawingVisual, which derives from ContainerVisual and adds the
support you need to “draw” the graphical content you want to place in your visual.

To draw content in a DrawingVisual, you call the DrawingVisual.RenderOpen() method.
This method returns a DrawingContext that you can use to define the content of your visual.
When you’re finished, you call DrawingContext.Close(). Here’s how it all unfolds:

DrawingVisual visual = new DrawingVisual();
DrawingContext dc = visual.RenderOpen();
// (Perform drawing here.)
dc.Close();

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 431

9551CH14 2/8/08 2:09 PM Page 431

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.aisto.com/roeder/dotnet
http://www.codeplex.com/reflectoraddins
http://www.codeplex.com/reflectoraddins

Essentially, the DrawingContext class is made up of methods that add some graphical
detail to your visual. You call these methods to draw various shapes, apply transforms, change
the opacity, and so on. Table 14-8 lists the methods of the DrawingContext class.

Table 14-8. DrawingContext Methods

Name Description

DrawLine(), DrawRectangle(), Draw the specified shape at the point you specify, with the fill and
DrawRoundedRectangle(), outline you specify. These methods mirror the shapes you saw in
and DrawEllipse() Chapter 13.

DrawGeometry () and Draws more complex Geometry objects and Drawing objects.
DrawDrawing()

DrawText() Draws text at the specified location. You specify the text, font, fill,
and other details by passing a FormattedText object to this
method. You can use DrawText() to draw wrapped text if you set
the FormattedText.MaxTextWidth property.

DrawImage() Draws a bitmap image in a specific region (as defined by a Rect).

DrawVideo() Draws video content (wrapped in a MediaPlayer object) in a
specific region. Chapter 22 has the full details about video
rendering in WPF.

Pop() Reverses the last PushXxx() method that was called. You use the
PushXxx() method to temporarily apply one or more effects and
the Pop() method to reverse them.

PushClip() Limits drawing to a specific clip region. Content that falls outside
of this region isn’t drawn.

PushEffect () Applies a BitmapEffect to subsequent drawing operations.

PushOpacity() and Apply a new opacity setting or opacity mask (see Chapter 13) to
PushOpacityMask() make subsequent drawing operations partially transparent.

PushTransform() Sets a Transform object that will be applied to subsequent
drawing operations. You can use a transformation to scale,
displace, rotate, or skew content.

Here’s an example that creates a visual that contains a basic black triangle with no fill:

DrawingVisual visual = new DrawingVisual();
using (DrawingContext dc = visual.RenderOpen())
{

Pen drawingPen = new Pen(Brushes.Black, 3);
dc.DrawLine(drawingPen, new Point(0, 50), new Point(50, 0));
dc.DrawLine(drawingPen, new Point(50, 0), new Point(100, 50));
dc.DrawLine(drawingPen, new Point(0, 50), new Point(100, 50));

}

As you call the DrawingContext methods, you aren’t actually painting your visual—rather,
you’re defining its visual appearance. When you finish by calling Close(), the completed draw-
ing is stored in the visual and exposed through the read-only DrawingVisual.Drawing
property. WPF retains the Drawing object so that it can repaint the window when needed.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS432

9551CH14 2/8/08 2:09 PM Page 432

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The order of your drawing code is important. Later drawing actions can write content
overtop of what already exists. The PushXxx() methods apply settings that will apply to future
drawing operations. For example, you can use PushOpacity() to change the opacity level,
which will then affect all subsequent drawing operations. You can use Pop() to reverse the
most recent PushXxx() method. If you call more than one PushXxx() method, you can switch
them off one at a time with subsequent Pop() calls.

Once you’ve closed the DrawingContext, you can’t modify your visual any further. How-
ever, you can apply a transform or change a visual’s overall opacity (using the Transform and
Opacity properties of the DrawingVisual class). If you want to supply completely new content,
you can call RenderOpen() again and repeat the drawing process.

■Tip Many drawing methods use Pen and Brush objects. If you plan to draw many visuals with the same
stroke and fill, or if you expect to render the same visual multiple times (in order to change its content), it’s
worth creating the Pen and Brush objects you need upfront and holding on to them over the lifetime of
your window.

Visuals are used in several different ways. In the remainder of this chapter, you’ll learn
how to place a DrawingVisual in a window and perform hit testing for it. You can also use a
DrawingVisual to define content you want to print, as you’ll see in Chapter 20. Finally, you
can use visuals to render a custom-drawn element by overriding the OnRender() method, as
you’ll see in Chapter 24. In fact, that’s exactly how the shape classes that you learned about in
Chapter 13 do their work. For example, here’s the rendering code that the Rectangle element
uses to paint itself:

protected override void OnRender(DrawingContext drawingContext)
{

Pen pen = base.GetPen();
drawingContext.DrawRoundedRectangle(base.Fill, pen, this._rect,
this.RadiusX, this.RadiusY);

}

Wrapping Visuals in an Element
Defining a visual is the most important step in visual-layer programming, but it’s not enough
to actually show your visual content onscreen. To display a visual, you need the help of a full-
fledged WPF element that can add it to the visual tree. At first glance, this seems to reduce the
benefit of visual-layer programming—after all, isn’t the whole point to avoid elements and
their high overhead? However, a single element has the ability to display an unlimited number
of elements. Thus, you can easily create a window that holds only one or two elements but
hosts thousands of visuals.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 433

9551CH14 2/8/08 2:09 PM Page 433

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To host a visual in an element, you need to perform the following tasks:

• Call the AddVisualChild() and AddLogicalChild() methods of your element to register
your visual. Technically speaking, these tasks aren’t required to make the visual appear,
but they are required to ensure it is tracked correctly, appears in the visual and logical
tree, and works with other WPF features such as hit testing.

• Override the VisualChildrenCount property and return the number of visuals you’ve
added.

• Override the GetVisualChild() method and add the code needed to return your visual
when it’s requested by index number.

When you override VisualChildrenCount and GetVisualChild(), you are essentially hijack-
ing that element. If you’re using a content control, decorator, or panel that can hold nested
elements, these elements will no longer be rendered. For example, if you override these two
methods in a custom window, you won’t see the rest of the window content. Instead, you’ll
only see the visuals that you’ve added.

For this reason, it’s common to create a dedicated custom class that wraps the visuals you
want to display. For example, consider the window shown in Figure 14-9. It allows the user to
add squares (each of which is a visual) to a custom Canvas.

Figure 14-9. Drawing visuals

On the left side of the window in Figure 14-9 is a toolbar with three RadioButton objects.
As you’ll discover in Chapter 18, the ToolBar changes the way some basic controls are ren-
dered, such as buttons. By using a group of RadioButton objects, you can create a set of linked
buttons. When you click one of the buttons in this set, it is selected and remains “pushed,”
while the previously selected button reverts to its normal appearance.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS434

9551CH14 2/8/08 2:09 PM Page 434

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

On the right side of the window in Figure 14-9 is a custom Canvas named DrawingCanvas,
which stores a collection of visuals internally. DrawingCanvas returns the total number of
squares in the VisualChildrenCount property, and uses the GetVisualChild() method to pro-
vide access to each visual in the collection. Here’s how this details are implemented:

public class DrawingCanvas : Canvas
{

private List<Visual> visuals = new List<Visual>();

protected override int VisualChildrenCount
{

get { return visuals.Count; }
}

protected override Visual GetVisualChild(int index)
{

return visuals[index];
}
...

Additionally, the DrawingCanvas includes an AddVisual() method and a DeleteVisual()
method to make it easy for the consuming code to insert visuals into the collection, with the
appropriate tracking:

...
public void AddVisual(Visual visual)
{

visuals.Add(visual);

base.AddVisualChild(visual);
base.AddLogicalChild(visual);

}

public void DeleteVisual(Visual visual)
{

visuals.Remove(visual);

base.RemoveVisualChild(visual);
base.RemoveLogicalChild(visual);

}
}

The DrawingCanvas doesn’t include the logic for drawing squares, selecting them, and
moving them. That’s because this functionality is controlled at the application layer. This
makes sense because there might be several different drawing tools, all of which work with the
same DrawingCanvas. Depending on which button the user clicks, the user might be able to
draw different types of shapes or use different stroke and fill colors. All of these details are
specific to the window—the DrawingCanvas simply provides the functionality for hosting,
rendering, and tracking your visuals.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 435

9551CH14 2/8/08 2:09 PM Page 435

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s how the DrawingCanvas is declared in the XAML markup for the window:

<local:DrawingCanvas x:Name="drawingSurface" Background="White" ClipToBounds="True"
MouseLeftButtonDown="drawingSurface_MouseLeftButtonDown"
MouseLeftButtonUp="drawingSurface_MouseLeftButtonUp"
MouseMove="drawingSurface_MouseMove" />

■Tip By setting the background to white (rather than transparent), it’s possible to intercept all mouse clicks
on the canvas surface.

Now that you’ve considered the DrawingCanvas container, it’s worth considering the
event handling code that creates the squares. The starting point is the event handler for the
MouseLeftButton. It’s at this point that the code determines what operation is being per-
formed—square creation, square deletion, or square selection. At the moment, we’re just
interested in the first task:

private void drawingSurface_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)

{
Point pointClicked = e.GetPosition(drawingSurface);

if (cmdAdd.IsChecked == true)
{

// Create, draw, and add the new square.
DrawingVisual visual = new DrawingVisual();
DrawSquare(visual, pointClicked, false);
drawingSurface.AddVisual(visual);

}
...

}

The actual work is performed by a custom method named DrawSquare(). This approach
is useful because the square drawing needs to be triggered at several different points in the
code. Obviously, DrawSquare() is required when the square is first created. It’s also used when
the appearance of the square changes for any reason (such as when it’s selected).

The DrawSquare() method accepts three parameters: the DrawingVisual to draw, the
point for the top-left corner of the square, and a Boolean flag that indicates whether the
square is currently selected, in which case it is given a different fill color.

Here’s the modest rendering code:

// Drawing constants.
private Brush drawingBrush = Brushes.AliceBlue;
private Brush selectedDrawingBrush = Brushes.LightGoldenrodYellow;
private Pen drawingPen = new Pen(Brushes.SteelBlue, 3);
private Size squareSize = new Size(30, 30);

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS436

9551CH14 2/8/08 2:09 PM Page 436

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

private void DrawSquare(DrawingVisual visual, Point topLeftCorner, bool isSelected)
{

using (DrawingContext dc = visual.RenderOpen())
{

Brush brush = drawingBrush;
if (isSelected) brush = selectedDrawingBrush;

dc.DrawRectangle(brush, drawingPen,
new Rect(topLeftCorner, squareSize));

}
}

This is all you need to display a visual in a window: some code that renders the visual, and
a container that handles the necessary tracking details. However, there’s a bit more work to do
if you want to add interactivity to your visuals, as you’ll see in the following section.

Hit Testing
The square-drawing application not only allows users to draw squares, it also allows them to
move and delete existing squares. In order to perform either of these tasks, your code needs to
be able to intercept a mouse click and find the visual at the clicked location. This task is called
hit testing.

To support hit testing, it makes sense to add a GetVisual() method to the DrawingCanvas
class. This method takes a point and returns the matching DrawingVisual. To do its work,
it uses the static VisualTreeHelper.HitTest() method. Here’s the complete code for the
GetVisual() method:

public DrawingVisual GetVisual(Point point)
{

HitTestResult hitResult = VisualTreeHelper.HitTest(this, point);
return hitResult.VisualHit as DrawingVisual;

}

In this case, the code ignores any hit object that isn’t a DrawingVisual, including the
DrawingCanvas itself. If no squares are clicked, the GetVisual() method returns a null
reference.

The delete feature makes use of the GetVisual() method. When the delete command is
selected and a square is clicked, the MouseLeftButtonDown event handler uses this code to
remove it:

else if (cmdDelete.IsChecked == true)
{

DrawingVisual visual = drawingSurface.GetVisual(pointClicked);
if (visual != null) drawingSurface.DeleteVisual(visual);

}

Similar code supports the dragging feature, but it needs a way to keep track of the fact
that dragging is underway. Three fields in the window class serve this purpose—isDragging,
selectedVisual, and clickOffset:

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 437

9551CH14 2/8/08 2:09 PM Page 437

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

private bool isDragging = false;
private DrawingVisual selectedVisual;
private Vector clickOffset;

When the user clicks a shape, the isDragging field is set to true, the selectedVisual is set to
the visual that was clicked, and the clickOffset records the space between the top-left corner
of the square and the point where the user clicked. Here’s the code from the
MouseLeftButtonDown event handler:

else if (cmdSelectMove.IsChecked == true)
{

DrawingVisual visual = drawingSurface.GetVisual(pointClicked);
if (visual != null)
{

// Find the top-left corner of the square.
// This is done by looking at the current bounds and
// removing half the border (pen thickness).
// An alternate solution would be to store the top-left
// point of every visual in a collection in the
// DrawingCanvas, and provide this point when hit testing.
Point topLeftCorner = new Point(
visual.ContentBounds.TopLeft.X + drawingPen.Thickness / 2,
visual.ContentBounds.TopLeft.Y + drawingPen.Thickness / 2);

DrawSquare(visual, topLeftCorner, true);

clickOffset = topLeftCorner - pointClicked;
isDragging = true;

if (selectedVisual != null && selectedVisual != visual)
{

// The selection has changed. Clear the previous selection.
ClearSelection();

}
selectedVisual = visual;

}
}

Along with basic bookkeeping, this code also calls DrawSquare() to rerender the
DrawingVisual, giving it the new color. The code also uses another custom method, named
ClearSelection(), to repaint the previously selected square so it returns to its normal
appearance:

private void ClearSelection()
{

Point topLeftCorner = new Point(
selectedVisual.ContentBounds.TopLeft.X + drawingPen.Thickness / 2,

selectedVisual.ContentBounds.TopLeft.Y + drawingPen.Thickness / 2);
DrawSquare(selectedVisual, topLeftCorner, false);
selectedVisual = null;

}

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS438

9551CH14 2/8/08 2:09 PM Page 438

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Remember, the DrawSquare() method defines the content for the square—it doesn’t actually paint
it in the window. For that reason, you don’t need to worry about inadvertently painting overtop of another
square that should be underneath. WPF manages the painting process, ensuring that visuals are painted in
the order they are returned by the GetVisualChild() method (which is the order in which they are defined
in the visuals collection).

Next, you need to actually move the square as the user drags, and end the dragging opera-
tion when the user releases the left mouse button. Both of these tasks are accomplished with
some straightforward event handling code:

private void drawingSurface_MouseMove(object sender, MouseEventArgs e)
{

if (isDragging)
{

Point pointDragged = e.GetPosition(drawingSurface) + clickOffset;
DrawSquare(selectedVisual, pointDragged, true);

}
}

private void drawingSurface_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{

isDragging = false;
}

Complex Hit Testing
In the previous example, the hit testing code always returns the topmost visual (or a null refer-
ence if the space is empty). However, the VisualTreeHelper class includes two overloads to the
HitTest() method that allow you to perform more sophisticated hit testing. Using these meth-
ods, you can retrieve all the visuals that are at a specified point, even if they’re obscured
underneath other visuals. You can also find all the visuals that fall in a given geometry.

To use this more advanced hit testing behavior, you need to create a callback. The
VisualTreeHelper will then walk through your visuals from top to bottom (in the reverse order
that you created them). Each time it finds a match, it calls your callback with the details. You
can then choose to stop the search (if you’ve dug down enough levels) or continue until no
more visuals remain.

The following code implements this technique by adding a GetVisuals() method to the
DrawingCanvas. GetVisuals() accepts a Geometry object, which it uses for hit testing. It cre-
ates the callback delegate, clears the collection of hit test results, and then starts the hit testing
process by calling the VisualTreeHelper.HitTest() method. When the process is finished, it
returns a collection with all the visuals that were found:

private List<DrawingVisual> hits = new List<DrawingVisual>();

public List<DrawingVisual> GetVisuals(Geometry region)
{

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 439

9551CH14 2/8/08 2:09 PM Page 439

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Remove matches from the previous search.
hits.Clear();

// Prepare the parameters for the hit test operation
// (the geometry and callback).
GeometryHitTestParameters parameters = new GeometryHitTestParameters(region);
HitTestResultCallback callback =
new HitTestResultCallback(this.HitTestCallback);

// Search for hits.
VisualTreeHelper.HitTest(this, null, callback, parameters);
return hits;

}

■Tip In this example, the callback is implemented by a separately defined method named
HitTestResultCallback(). Both the HitTestResultCallback() and GetVisuals() use the hits collection, so it
must be defined as a member field. However, you could remove this requirement by using an anonymous
method for the callback, which you would declare inside the GetVisuals() method.

The callback method implements your hit testing behavior. Ordinarily, the HitTestResult
object provides just a single property (VisualHit), but you can cast it to one of two derived
types depending on the type of hit test you’re performing.

If you’re hit testing a point, you can cast HitTestResult to PointHitTestResult, which pro-
vides a relatively uninteresting PointHit property that returns the original point you used to
perform the hit test. But if you’re hit testing a Geometry object, as in this example, you can
cast HitTestResult to GeometryHitTestResult and get access to the IntersectionDetail property.
This property tells you whether your geometry completely wraps the visual (FullyInside),
whether the geometry and visual simply overlap (Intersects), or whether your hit-tested
geometry falls within the visual (FullyContains). In this example, hits are only counted if the
visual is completely inside the hit-tested region. Finally, at the end of the callback, you can
return one of two values from the HitTestResultBehavior enumeration: Continue to keep look-
ing for hits, or Stop to end the process.

private HitTestResultBehavior HitTestCallback(HitTestResult result)
{

GeometryHitTestResult geometryResult = (GeometryHitTestResult)result;
DrawingVisual visual = result.VisualHit as DrawingVisual;

// Only include matches that are DrawingVisual objects and
// that are completely inside the geometry.
if (visual != null &&

geometryResult.IntersectionDetail == IntersectionDetail.FullyInside)
{

hits.Add(visual);

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS440

9551CH14 2/8/08 2:09 PM Page 440

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
return HitTestResultBehavior.Continue;

}

Using the GetVisuals() method, you can create the sophisticated selection box effect
shown in Figure 14-10. Here, the user draws a box around a group of squares. The application
then reports the number of squares in the region.

Figure 14-10. Advanced hit testing

To create the selection square, the window simply adds another DrawingVisual to the
DrawingCanvas. The window also stores a reference to the selection square as a member field,
along with a flag named isMultiSelecting that keeps track of when the selection box is being
drawn, and a field named selectionSquareTopLeft that tracks the top-left corner of the current
selection box:

private DrawingVisual selectionSquare;
private bool isMultiSelecting = false;
private Point selectionSquareTopLeft;

In order to implement the selection box feature you need to add some code to the event
handlers you’ve already seen. When the mouse is clicked, you need to create the selection box,
switch isMultiSelecting to true, and capture the mouse. Here’s the code that does this work in
the MouseLeftButtonDown event handler:

else if (cmdSelectMultiple.IsChecked == true)
{

selectionSquare = new DrawingVisual();
drawingSurface.AddVisual(selectionSquare);

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 441

9551CH14 2/8/08 2:09 PM Page 441

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

selectionSquareTopLeft = pointClicked;
isMultiSelecting = true;

// Make sure we get the MouseLeftButtonUp event even if the user
// moves off the Canvas. Otherwise, two selection squares could
// be drawn at once.
drawingSurface.CaptureMouse();

}

Now, when the mouse moves, you can check if the selection box is currently active, and
draw it if it is. To do so, you need this code in the MouseMove event handler:

else if (isMultiSelecting)
{

Point pointDragged = e.GetPosition(drawingSurface);
DrawSelectionSquare(selectionSquareTopLeft, pointDragged);

}

The actual drawing takes place in a dedicated method named DrawSelectionSquare(),
which looks a fair bit like the DrawSquare() method you considered earlier:

private Brush selectionSquareBrush = Brushes.Transparent;
private Pen selectionSquarePen = new Pen(Brushes.Black, 2);

private void DrawSelectionSquare(Point point1, Point point2)
{

selectionSquarePen.DashStyle = DashStyles.Dash;

using (DrawingContext dc = selectionSquare.RenderOpen())
{

dc.DrawRectangle(selectionSquareBrush, selectionSquarePen,
new Rect(point1, point2));

}
}

Finally, when the mouse is released you can perform the hit testing, show the
message box, and then remove the selections square. To do so, you need this code in the
MouseLeftButtonUp event handler:

if (isMultiSelecting)
{

// Display all the squares in this region.
RectangleGeometry geometry = new RectangleGeometry(
new Rect(selectionSquareTopLeft, e.GetPosition(drawingSurface)));

List<DrawingVisual> visualsInRegion =
drawingSurface.GetVisuals(geometry);

MessageBox.Show(String.Format("You selected {0} square(s).",
visualsInRegion.Count));

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS442

9551CH14 2/8/08 2:09 PM Page 442

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

isMultiSelecting = false;
drawingSurface.DeleteVisual(selectionSquare);
drawingSurface.ReleaseMouseCapture();

}

The Last Word
In this chapter, you delved deeper into WPF’s 2-D drawing model. You began with a thorough
look at the Path class, the most powerful of WPF’s shape classes, and the geometry model that
it uses. Next, you considered how you could use a geometry to build a drawing, and to use that
drawing to display lightweight, noninteractive graphics. Finally, you tackled the most efficient
way to display graphics in WPF—the lower-level visual layer. Using the visual layer, you saw
how you could build a basic drawing application that uses sophisticated hit testing.

In the next chapter you’ll consider one of the places where you can put your drawing
skills to good use—creating custom control templates.

CHAPTER 14 ■ GEOMETRIES, DRAWINGS, AND VISUALS 443

9551CH14 2/8/08 2:09 PM Page 443

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH14 2/8/08 2:09 PM Page 444

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Control Templates

In the past, Windows developers were forced to choose between convenience and flexibility.
For maximum convenience, they could use prebuilt controls. These controls worked well
enough, but they offered limited customization and almost always had a fixed visual appear-
ance. Occasionally, some controls provided a less than intuitive “owner drawing” mode that
allowed developers to paint a portion of the control by responding to a callback. But the basic
controls—buttons, text boxes, check boxes, list boxes, and so on—were completely locked
down.

As a result, developers who wanted a bit more pizzazz were forced to build custom con-
trols from scratch. This was a problem—not only was it slow and difficult to write the required
drawing logic by hand, but custom control developers also needed to implement basic func-
tionality from scratch (such as selection in a text box or key handling in a button). And even
once the custom controls were perfected, inserting them into an existing application involved
a fairly significant round of editing, which would usually necessitate changes in the code (and
more rounds of testing). In short, custom controls were a necessary evil—they were the only
way to get a modern, distinctive interface, but they were also a headache to integrate into an
application and support.

WPF finally solves the control customization problem with styles (which you considered
in Chapter 12), and templates (which you’ll begin exploring in this chapter). The reason these
features work so well is because of the dramatically different way that controls are imple-
mented in WPF. In previous user interface technologies, such as Windows Forms, commonly
used controls aren’t actually implemented in .NET code. Instead, the Windows Forms control
classes wrap core ingredients from the Win32 API, which are untouchable. But as you’ve
already learned, in WPF every control is composed in pure .NET code, with no Win32 API glue
in the background. As a result, it’s possible for WPF to expose mechanisms (styles and tem-
plates) that allow you to reach into these elements and tweak them. In fact, tweak is the wrong
word because, as you’ll see in this chapter, WPF controls allow the most radical redesigns you
can imagine.

Understanding Logical Trees and Visual Trees
Earlier in this book, you spent a great deal of time considering the content model of a
window—in other words, how you can nest elements inside other elements to build
a complete window.

For example, consider the extremely simple two-button window shown in Figure 15-1.
To create this window, you nest a StackPanel control inside a Window. In the StackPanel, you

445

C H A P T E R 1 5

9551CH15 2/8/08 2:10 PM Page 445

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

place two Button controls, and inside of each you can add some content of your choice (in this
case, two strings). Here’s the markup:

<Window x:Class="SimpleWindow.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="SimpleWindow" Height="338" Width="356"
>
<StackPanel Margin="5">
<Button Padding="5" Margin="5">First Button</Button>
<Button Padding="5" Margin="5">Second Button</Button>

</StackPanel>
</Window>

Figure 15-1. A window with three elements

The assortment of elements that you’ve added is called the logical tree, and it’s shown in
Figure 15-2. As a WPF programmer, you’ll spend most of your time building the logical tree
and then backing it up with event handling code. In fact, all of the features you’ve considered
so far (such as property value inheritance, event routing, and styling) work through the logical
tree.

However, if you want to customize your elements, the logical tree isn’t much help. Obvi-
ously, you could replace an entire element with another element (for example, you could
substitute a custom FancyButton class in place of the current Button), but this requires more
work, and it could disrupt your application’s interface or its code. For that reason, WPF goes
deeper with the visual tree.

A visual tree is an expanded version of the logical tree. It breaks elements down into
smaller pieces. In other words, instead of seeing a carefully encapsulated black box such as the
Button control, you see the visual components of that button—the border that gives buttons
their signature shaded background (represented by the ButtonChrome class), the container
inside (a ContentPresenter), and the block that holds the button text (represented by the
familiar TextBlock). Figure 15-3 shows the visual tree for Figure 15-1.

CHAPTER 15 ■ CONTROL TEMPLATES446

9551CH15 2/8/08 2:10 PM Page 446

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 15-2. The logical tree for SimpleWindow

Figure 15-3. The visual tree for SimpleWindow

All of these details are themselves elements—in other words, every individual detail in a
control such as Button is represented by a class that derives from FrameworkElement.

CHAPTER 15 ■ CONTROL TEMPLATES 447

9551CH15 2/8/08 2:10 PM Page 447

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note It’s important to realize that there is more than one possible way to expand a logical tree into a
visual tree. Details like the styles you’ve used, the properties you’ve set, your operating system (Windows XP
or Vista), and your current Windows theme can affect the way a visual tree is composed. For instance, in the
previous example, the button holds text content, and as a result it automatically creates a nested TextBlock
element. But as you know, the Button control is a content control, and so it can hold any other element you
wish to use, so long as you nest it inside the button.

So far, this doesn’t seem that remarkable. You’ve just seen that all WPF elements can be
decomposed into smaller parts. But what’s the advantage for a WPF developer? The visual tree
allows you to do two useful things:

• You can alter one of the elements in the visual tree using styles. You can select the spe-
cific element you want to modify using the Style.TargetType property. You can even use
triggers to make changes automatically when control properties change. However, cer-
tain details are difficult or impossible to modify.

• You can create a new template for your control. In this case, your control template will
be used to build the visual tree exactly the way you want it.

Interestingly enough, WPF provides two classes that let you browse through the logical
and visual trees. These classes are System.Windows.LogicalTreeHelper and System.Win-
dows.Media.VisualTreeHelper.

You’ve already seen the LogicalTreeHelper in Chapter 2, where it allowed you to hook up
event handlers in a WPF application with a noncompiled, dynamically loaded XAML docu-
ment. The LogicalTreeHelper provides the relatively sparse set of methods listed in Table 15-1.
Although these methods are occasionally useful, in most cases you’ll use the methods of a
specific FrameworkElement instead.

Table 15-1. LogicalTreeHelper Methods

Name Description

FindLogicalNode() Finds a specific element by name, starting at the element you specify
and searching down the logical tree.

BringIntoView() Scrolls an element into view (if it’s in a scrollable container and isn’t
currently visible). The FrameworkElement.BringIntoView() method
performs the same trick.

GetParent() Gets the parent element of a specific element.

GetChildren() Gets the child element of a specific element. As you learned in
Chapter 2, different elements support different content models. For
example, panels support multiple children, while content controls only
support a single child. However, the GetChildren() method abstracts
away this difference and works with any type of element.

The VisualTreeHelper provides a few similar methods—GetChildrenCount(), GetChild(),
and GetParent()—along with a small set of methods that are designed for performing lower-
level drawing. (For example, you’ll find methods for hit testing and bounds checking, which
you considered in Chapter 14.)

CHAPTER 15 ■ CONTROL TEMPLATES448

9551CH15 2/8/08 2:10 PM Page 448

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The VisualTreeHelper also doubles as an interesting way to study the visual tree in your
application. Using the GetChild() method, you can drill down through the visual tree of any
window and display it for your consideration. This is a great learning tool, and it requires
nothing more than a dash of recursive code.

Figure 15-4 shows one possible implementation. Here, a separate window displays an
entire visual tree, starting at any supplied object. In this example, another window (named
SimpleWindow), uses the VisualTreeDisplay window to show its visual tree.

Figure 15-4. Programmatically examining the visual tree

Here, a window named Window1 contains a Border, which in turn holds an Adorner-
Decorator. (The AdornerDecorator class adds support for drawing content in the adorner
layer, which is a special invisible region that overlays your element content. WPF uses the
adorner layer to draw details such as focus cues and drag-and-drop indicators.) Inside the
AdornerDecorator is a ContentPresenter, which hosts the content of the window. That content
includes StackPanel with two Button controls, each of which comprises a ButtonChrome
(which draws the standard visual appearance of the button) and a ContentPresenter (which
holds the button content). Finally, inside the ContentPresenter of each button is a TextBlock
that wraps the text you see in the window.

■Note In this example, the code builds a visual tree in another window. If you place the TreeView in the
same window as the one you’re examining, you’d inadvertently change the visual tree as you fill the
TreeView with items.

CHAPTER 15 ■ CONTROL TEMPLATES 449

9551CH15 2/8/08 2:10 PM Page 449

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the complete code for the VisualTreeDisplay window:

public partial class VisualTreeDisplay : System.Windows.Window
{

public VisualTreeDisplay()
{

InitializeComponent();
}

public void ShowVisualTree(DependencyObject element)
{

// Clear the tree.
treeElements.Items.Clear();

// Start processing elements, begin at the root.
ProcessElement(element, null);

}

private void ProcessElement(DependencyObject element,
TreeViewItem previousItem)

{
// Create a TreeViewItem for the current element.
TreeViewItem item = new TreeViewItem();
item.Header = element.GetType().Name;
item.IsExpanded = true;

// Check whether this item should be added to the root of the tree
//(if it's the first item), or nested under another item.
if (previousItem == null)
{

treeElements.Items.Add(item);
}
else
{

previousItem.Items.Add(item);
}

// Check whether this element contains other elements.
for (int i = 0; i < VisualTreeHelper.GetChildrenCount(element); i++)
{

// Process each contained element recursively.
ProcessElement(VisualTreeHelper.GetChild(element, i), item);

}
}

}

Once you’ve added this tree to a project, you can use this code from any other window to
display its visual tree:

VisualTreeDisplay treeDisplay = new VisualTreeDisplay();
treeDisplay.ShowVisualTree(this);
treeDisplay.Show();

CHAPTER 15 ■ CONTROL TEMPLATES450

9551CH15 2/8/08 2:10 PM Page 450

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip You can delve into the visual tree of other applications using the remarkable Snoop utility, which is
incorporated into Expression Blend and available separately at http://www.blois.us/Snoop. Using Snoop,
you can examine the visual tree of any currently running WPF application. You can also zoom in on any element,
survey routed events as they’re being executed, and explore and even modify element properties.

Understanding Templates
This look at the visual tree raises a few interesting questions. For example, how is a control
translated from the logical tree into the expanded representation of the visual tree?

It turns out that every control has a built-in recipe that determines how it should be
rendered (as a group of more fundamental elements). That recipe is called a control template,
and it’s defined using a block of XAML markup.

■Note Every WPF control is designed to be lookless, which means that its visuals (the “look”) can be
completely redefined. What doesn’t change is the control’s behavior, which is hardwired into the control
class (although it can often be fine-tuned using various properties). When you choose to use a control like
the Button, you choose it because you want button-like behavior (in other words, an element that presents
content can be clicked to trigger an action and can be used as the default or cancel button on a window.)
However, you’re free to change the way a button looks and how it reacts when you mouse over it or press it,
and any other aspect of its appearance and visual behavior.

Here’s a simplified version of the template for the common Button class. It omits the XML
namespace declarations, the attributes that set the properties of the nested elements, and the
triggers that determine how the button behaves when it’s disabled, focused, or clicked:

<ControlTemplate ... >
<mwt:ButtonChrome Name="Chrome" ... >
<ContentPresenter Content="{TemplateBinding ContentControl.Content}" ... />

</mwt:ButtonChrome>
<ControlTemplate.Triggers>
...

</ControlTemplate.Triggers>
</ControlTemplate>

Although we haven’t yet explored the ButtonChrome and ContentPresenter classes, you
can easily recognize that the control template provides the expansion you saw in the visual
tree. The ButtonChrome class defines the standard button visuals, while the ContentPresenter
holds whatever content you’ve supplied. If you wanted to build a completely new button (as
you’ll see later in this chapter), you simply need to create a new control template. In place of
ButtonChrome, you’d use something else—perhaps your own custom class, or a drawing class
like the ones you considered in Chapter 13.

CHAPTER 15 ■ CONTROL TEMPLATES 451

9551CH15 2/8/08 2:10 PM Page 451

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.blois.us/Snoop

■Note ButtonChrome derives from Decorator (much like the Border class you learned about in Chapter 5).
That means it’s designed to add a graphical embellishment around another element—in this case, around
the content of a button.

The triggers control how the button changes when it is focused, clicked, and disabled.
There’s actually nothing particularly interesting in these triggers. Rather than perform
the heavy lifting themselves, the focus and click triggers simply modify a property of the
ButtonChrome class that provides the visuals for the button:

<Trigger Property="UIElement.IsKeyboardFocused">
<Setter Property="mwt:ButtonChrome.RenderDefaulted" TargetName="Chrome">
<Setter.Value>
<s:Boolean>True</s:Boolean>

</Setter.Value>
</Setter>
<Trigger.Value>
<s:Boolean>True</s:Boolean>

</Trigger.Value>
</Trigger>
<Trigger Property="ToggleButton.IsChecked">
<Setter Property="mwt:ButtonChrome.RenderPressed" TargetName="Chrome">
<Setter.Value>
<s:Boolean>True</s:Boolean>

</Setter.Value>
</Setter>
<Trigger.Value>
<s:Boolean>True</s:Boolean>

</Trigger.Value>
</Trigger>

The first trigger ensures that when the button receives focus, the RenderDefaulted
property is set to true. The Second trigger ensures that when the button is clicked, the Render-
Pressed property is set to true. Either way, it’s up to the ButtonChrome class to adjust itself
accordingly. The graphical changes that take place are too complex to be represented by a few
property setter statements.

Both of the Setter objects in this example use the TargetName property to act upon a spe-
cific piece of a control template. This technique is only possible when working with a control
template. In other words, you can’t write a style trigger that uses the TargetName property to
access the ButtonChrome object because the name “Chrome” isn’t in scope in your style. This
is just one of the ways that templates give you more power than styles alone.

Triggers don’t always need to use the TargetName property. For example, the trigger for
the IsEnabled property simply adjusts the foreground color of any text content in the button.
This trigger does its work by setting the attached TextElement.Foreground property without
the help of the ButtonChrome class:

CHAPTER 15 ■ CONTROL TEMPLATES452

9551CH15 2/8/08 2:10 PM Page 452

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Trigger Property="UIElement.IsEnabled">
<Setter Property="TextElement.Foreground">
<Setter.Value>
<SolidColorBrush>#FFADADAD</SolidColorBrush>

</Setter.Value>
</Setter>
<Trigger.Value>
<s:Boolean>False</s:Boolean>

</Trigger.Value>
</Trigger>

You’ll see the same division of responsibilities when you build your own control tem-
plates. If you’re lucky enough to be able to do all your work directly with triggers, you may not
need to create custom classes and add code. On the other hand, if you need to provide more
complex visual tailoring, you may need to derive a custom chrome class of your own. The
ButtonChrome class itself provides no customization—it’s dedicated to rendering the stan-
dard theme-specific appearance of a button on Windows XP and Windows Vista.

■Note All the XAML that you see in this section is extracted from the standard Button control template.
A bit later, in the “Dissecting Controls” section, you’ll learn how to view a control’s default control template.

TYPES OF TEMPLATES

This chapter focuses on control templates, which allow you to define the elements that make up a control.
However, there are actually three types of templates in the WPF world, all of which derive from the base
FrameworkTemplate class. Along with control templates (represented by the ControlTemplate class), there are
data templates (represented by DataTemplate and HierarchicalDataTemplate) and the more specialized panel
template for an ItemsControl (ItemsPanelTemplate).

Data templates are used to extract data from an object and display it in a content control or in the indi-
vidual items of a list control. Data templates are ridiculously useful in data binding scenarios, and they’re
described in detail in Chapter 17. To a certain extent, data templates and control templates overlap. For
example, both types of templates allow you to insert additional elements, apply formatting, and so on. How-
ever, data templates are used to add elements inside an existing control. The prebuilt aspects of that control
aren’t changed. On the other hand, control templates are a much more drastic approach that allows you to
completely rewrite the content model of a control.

Finally, panel templates are used to control the layout of items in a list control (a control that derives
from the ItemsControl class). For example, you can use them to create a list box that tiles its items from right
to left and then down (rather than the standard top-to-bottom single-line display). Panel templates are
described in Chapter 17.

You can certainly combine template types in the same control. For example, if you want to create a slick
list control that is bound to a specific type of data, lays its items out in a nonstandard way, and replaces the
stock border with something more exciting, you’ll want to create your own data templates, panel template,
and control template.

CHAPTER 15 ■ CONTROL TEMPLATES 453

9551CH15 2/8/08 2:10 PM Page 453

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Chrome Classes
The ButtonChrome class is defined in the Microsoft.Windows.Themes namespace, which
holds a relatively small set of similar classes that render basic Windows details. Along with
ButtonChrome, these classes include BulletChrome (for check boxes and radio buttons),
ScrollChrome (for scroll bars), ListBoxChrome, and SystemDropShadowChrome. This is
the lowest level of the public control API. At a slightly higher level, you’ll find that the
System.Windows.Controls.Primitives namespace includes a number of basic elements
that you can use independently but are more commonly wrapped into more useful
controls. These include ScrollBar, ResizeGrip (for sizing a window), Thumb (the draggable
button on a scroll bar), TickBar (the optional set of ticks on a slider), and so on. Essentially,
System.Windows.Controls.Primitives provides bare-bones ingredients that can be used in a
variety of controls and aren’t very useful on their own, while Microsoft.Windows.Themes
contains the down-and-dirty drawing logic for rendering these details.

There’s one more difference. The types in System.Windows.Controls.Primitives are, like
most WPF types, defined in the PresentationFramework.dll assembly. However, those in the
Microsoft.Windows.Themes are defined separately in three different assemblies: Presentation-
Framework.Aero.dll, PresentationFramework.Luna.dll, and PresentationFramework.Royale.dll.
Each assembly includes its own version of the ButtonChrome class (and other chrome classes),
with slightly different rendering logic. The one that WPF uses depends on your operating system
and theme settings.

■Note You’ll learn more about the internal workings of a chrome class in Chapter 24, and you’ll learn to
build your own chrome class with custom rendering logic.

Although control templates often draw on the chrome classes, they don’t always need to.
For example, the ResizeGrip element (which is to create the grid of dots in the bottom-right
corner of a resizable window) is simple enough that its template can use the drawing classes
you learned about in Chapter 13 and Chapter 14, such as Path, DrawingBrush, and
LinearGradientBrush. Here’s the (somewhat convoluted) markup that it uses:

<ControlTemplate TargetType="ResizeGrip" ... >
<Grid Background="{TemplateBinding Panel.Background}" SnapsToDevicePixels="True">
<Path Margin="0,0,2,2" Data="M9,0L11,0 11,11 0,11 0,9 3,9 3,6 6,6 6,3 9,3z"
HorizontalAlignment="Right" VerticalAlignment="Bottom">
<Path.Fill>
<DrawingBrush ViewboxUnits="Absolute" TileMode="Tile" Viewbox="0,0,3,3"
Viewport="0,0,3,3" ViewportUnits="Absolute">
<DrawingBrush.Drawing>
<DrawingGroup>
<DrawingGroup.Children>
<GeometryDrawing Geometry="M0,0L2,0 2,2 0,2z">
<GeometryDrawing.Brush>
<LinearGradientBrush EndPoint="1,0.75" StartPoint="0,0.25">
<LinearGradientBrush.GradientStops>

CHAPTER 15 ■ CONTROL TEMPLATES454

9551CH15 2/8/08 2:10 PM Page 454

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<GradientStop Offset="0.3" Color="#FFFFFFFF" />
<GradientStop Offset="0.75" Color="#FFBBC5D7" />
<GradientStop Offset="1" Color="#FF6D83A9" />

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</GeometryDrawing.Brush>
</GeometryDrawing>

</DrawingGroup.Children>
</DrawingGroup>

</DrawingBrush.Drawing>
</DrawingBrush>

</Path.Fill>
</Path>

</Grid>
</ControlTemplate>

■Note It’s common to see the SnapsToDevicePixels setting in a prebuilt control template (and it’s useful
in the one you create as well). As you learned in Chapter 13, SnapsToDevicePixels ensures that single-pixel
lines aren’t placed “between” pixels due to WPF’s resolution independence, which creates a fuzzy
two-pixel line.

Dissecting Controls
When you create a control template (as you’ll see in the next section), your template replaces
the existing template completely. This gives you a high level of flexibility, but it also makes life
a little more complex. In most cases, you’ll need to see the standard template that a control
uses before you can create your own adapted version. In some cases, your control template
might mirror the standard template with only a minor change.

The WPF documentation doesn’t list the XAML for standard control templates. However,
you can get the information you need programmatically. The basic idea is to grab a control’s
template from its Template property (which is defined as part of the Control class) and then
serialize it to XAML using the XamlWriter class. Figure 15-5 shows an example with a program
that lists all the WPF controls and lets you view each one’s control template.

The secret to building this application is a healthy dose of reflection, the .NET API for
examining types. When the main window in this application is first loaded, it scans all the
types in the core PresentationFramework.dll assembly (which is where the Control class is
defined). It then adds these types to a collection, which it sorts by type name, and then binds
that collection to a list. (You’ll learn more about the details of data binding in Chapter 16.)

private void Window_Loaded(object sender, EventArgs e)
{

Type controlType = typeof(Control);
List<Type> derivedTypes = new List<Type>();

// Search all the types in the assembly where the Control class is defined.

CHAPTER 15 ■ CONTROL TEMPLATES 455

9551CH15 2/8/08 2:10 PM Page 455

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Assembly assembly = Assembly.GetAssembly(typeof(Control));
foreach (Type type in assembly.GetTypes())
{

// Only add a type of the list if it's a Control, a concrete class,
// and public.
if (type.IsSubclassOf(controlType) && !type.IsAbstract && type.IsPublic)
{

derivedTypes.Add(type);
}

}

// Sort the types. The custom TypeComparer class orders types
// alphabetically by type name.
derivedTypes.Sort(new TypeComparer());

// Show the list of types.
lstTypes.ItemsSource = derivedTypes;

}

Figure 15-5. Browsing WPF control templates

Whenever a control is selected from the list, the corresponding control template is shown
in the text box on the right. This step takes a bit more work. The first challenge is the fact that a
control template is null until the control is actually displayed in a window. Using reflection,
the code attempts to create an instance of the control and add it to the current window (albeit

CHAPTER 15 ■ CONTROL TEMPLATES456

9551CH15 2/8/08 2:10 PM Page 456

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

with a Visibility of Collapse so it can’t be seen). The second challenge is to convert the live
ControlTemplate object to the familiar XAML markup. The static XamlWriter.Save() method
takes care of this task, although the code uses the XmlWriter and XmlWriterSettings objects
to make sure the XAML is indented so that it’s easier to read. All of this code is wrapped in an
exception handling block, which catches the problems that result from controls that can’t be
created or can’t be added to a Grid (such as another Window or a Page):

private void lstTypes_SelectionChanged(object sender, SelectionChangedEventArgs e)
{

try
{

// Get the selected type.
Type type = (Type)lstTypes.SelectedItem;

// Instantiate the type.
ConstructorInfo info = type.GetConstructor(System.Type.EmptyTypes);
Control control = (Control)info.Invoke(null);

// Add it to the grid (but keep it hidden).
control.Visibility = Visibility.Collapsed;
grid.Children.Add(control);

// Get the template.
ControlTemplate template = control.Template;

// Get the XAML for the template.
XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;
StringBuilder sb = new StringBuilder();
XmlWriter writer = XmlWriter.Create(sb, settings);
XamlWriter.Save(template, writer);

// Display the template.
txtTemplate.Text = sb.ToString();

// Remove the control from the grid.
grid.Children.Remove(control);

}
catch (Exception err)
{

txtTemplate.Text = "<< Error generating template: " + err.Message + ">>";
}

}

It wouldn’t be much more difficult to extend this application so you can edit the template
in the text box, convert it back to a ControlTemplate object (using the XamlReader), and then
assign that to a control to see its effect. However, you’ll have an easier time testing and refin-
ing templates by putting them into action in a real window, as described in the next section.

CHAPTER 15 ■ CONTROL TEMPLATES 457

9551CH15 2/8/08 2:10 PM Page 457

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip If you’re using Expression Blend, you can also use a handy feature that lets you edit the template for
any control that you’re working with. (Technically, this step grabs the default template, creates a copy of it
for your control, and then lets you edit the copy.) To try this out, right-click a control on the design surface
and choose Edit Control Parts (Template) ➤ Edit a Copy. Your control template copy will be stored as a
resource (see Chapter 11), so you’ll be prompted to choose a descriptive resource key, and you’ll need to
choose between storing your resource in the current window or in the global application resources so you
can use your control template throughout your application.

Creating Control Templates
So far, you’ve learned a fair bit about the way templates work, but you haven’t built a template
of your own. In the following sections, you’ll build a simple custom button and learn a few of
the finer details about control templates in the process.

As you’ve already seen, the basic Button control uses the ButtonChrome class to draw
its distinctive background and border. One of the reasons that the Button class uses Button-
Chrome instead of the WPF drawing primitives is because a standard button’s appearance
depends on a few obvious characteristics (whether it’s disabled, focused, or in the process of
being clicked) and other subtler factors (such as the current Windows theme). Implementing
this sort of logic with triggers alone would be awkward.

However, when you build your own custom controls, you’re probably not as worried
about standardization and theme integration. (In fact, WPF doesn’t emphasize user interface
standardization nearly as strongly as previous user interface technologies.) Instead, you’re
more concerned with creating attractive, distinctive controls that blend in with the rest of your
user interface. For that reason, you might not need to create classes such as ButtonChrome.
Instead, you can use the drawing smarts you picked up in Chapter 13 and Chapter 14 (and the
animation skills you’ll learn in Chapter 21) to design a self-sufficient control template with
no code.

■Note For an alternate approach, check out Chapter 24, which explains how to build your own chrome
with custom rendering logic and integrate it into a control template.

A Simple Button
To apply a custom control template, you simply set the Template property of your control.
Although you can define an inline template (by nesting the control template tag inside the
control tag), this approach rarely makes sense. That’s because you’ll almost always want to
reuse your template to skin multiple instances of the same control. To accommodate this
design, you need to define your control template as a resource and refer to it using a
StaticResource reference, as shown here:

<Button Margin="10" Padding="5" Template="{StaticResource ButtonTemplate}">
A Simple Button with a Custom Template</Button>

CHAPTER 15 ■ CONTROL TEMPLATES458

9551CH15 2/8/08 2:10 PM Page 458

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Not only does this approach make it easier to create a whole host of customized buttons,
it also gives you the flexibility to modify your control template later without disrupting the rest
of your application’s user interface.

In this particular example, the ButtonTemplate resource is placed in the Resources collec-
tion of the containing window. However, in a real application you’re much more likely to use
application resources. The reasons why (and a few design tips) are discussed a bit later in the
“Organizing Template Resources” section.

Here’s the basic outline for the control template:

<Window.Resources>
<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
...

</ControlTemplate>
</Window.Resources>

You’ll notice that this control template sets the TargetType property to explicitly indicate
it’s designed for buttons. As a matter of style, this is always a good convention to follow. In
content controls, such as the button, it’s also a requirement, or the ContentPresenter won’t
work.

To create a template for a basic button, you need to draw your own border and back-
ground and then place the content inside the button. Two possible candidates for drawing the
border are the Rectangle class and the Border class. The following example uses the Border
class to combine a rounded orange outline with an eye-catching red background and white
text:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Border BorderBrush="Orange" BorderThickness="3" CornerRadius="2"
Background="Red" TextBlock.Foreground="White">
...

</Border>
</ControlTemplate>

This takes care of the background, but you still need a way to display the button content.
You may remember from your earlier exploration that the Button class includes a ContentPre-
senter in its control template. The ContentPresenter is required for all content controls—it’s
the “insert content here” marker that tells WPF where to stuff the content:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Border BorderBrush="Orange" BorderThickness="3" CornerRadius="2"
Background="Red" TextBlock.Foreground="White">
<ContentPresenter RecognizesAccessKey="True"></ContentPresenter>

</Border>
</ControlTemplate>

This ContentPresenter sets the RecognizesAccessKey property to true. Although this isn’t
required, it ensures that the button supports access keys—underlined letters that you can use
to quickly trigger the button. In this case, if your button has text such as “Click _Me” the user
can trigger the button by pressing Alt+M. (Under standard Windows settings, the underscore is
hidden and the access key—in this case, M—appears underlined as soon as you press the Alt

CHAPTER 15 ■ CONTROL TEMPLATES 459

9551CH15 2/8/08 2:10 PM Page 459

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

key.) If you don’t set RecognizesAccessKey to true, this detail will be ignored and any under-
scores will be treated as ordinary underscores and displayed as part of the button content.

Template Bindings
There’s still one minor issue with this example. Right now the tag you’ve added for your button
specifies a Margin value of 10 and a Padding of 5. The Margin property is headed by the Stack-
Panel but the Padding property is ignored, leaving the contents of your button scrunched up
against the sides. The problem here is the fact that the Padding property doesn’t have any
effect unless you specifically heed it in your template. In other words, it’s up to your template
to retrieve the padding value and use it to insert some extra space around your content.

Fortunately, WPF has a tool that’s designed exactly for this purpose: template bindings. By
using a template binding, your template can pull out a value from the control to which you’re
applying the template. In this example, you can use a template binding to retrieve the value of
the Padding property and use it to create a margin around the ContentPresenter:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Border BorderBrush="Orange" BorderThickness="3" CornerRadius="2"
Background="Red" TextBlock.Foreground="White">
<ContentPresenterRecognizesAccessKey="True"
Margin="{TemplateBinding Padding}"></ContentPresenter>

</Border>
</ControlTemplate>

This achieves the desired effect of adding some space between the border and the con-
tent. Figure 15-6 shows your modest new button.

Figure 15-6. A button with a customized control template

CHAPTER 15 ■ CONTROL TEMPLATES460

9551CH15 2/8/08 2:10 PM Page 460

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Template bindings are similar to ordinary data bindings (which you’ll consider in
Chapter 16), but they’re lighter weight because they’re specifically designed for use in a
control template. They only support one-way data binding (in other words, they can pass
information from the control to the template but not the other way around) and they can’t be
used to draw information from a property of a class that derives from Freezable. If you run
into a situation where template bindings won’t work, you can use a full-fledged data binding
instead. Chapter 24 includes a sample color picker that runs into this problem and uses a
combination of template bindings and regular bindings.

■Note Template bindings support the WPF change-monitoring infrastructure that’s built into all depend-
ency properties. That means that if you modify a property in a control, the template takes it into account
automatically. This detail is particularly useful when you’re using animations that change a property value
repeatedly in a short space of time.

The only way you can anticipate what template bindings are needed is to check the default
control template. If you look at the control template for the Button class, you’ll find that it uses a
template binding in exactly the same way as this custom template—it takes the padding speci-
fied on the button and converts it to a margin around the ContentPresenter. You’ll also find that
the standard button template includes a few more template bindings that aren’t used in the sim-
ple customized template, such as HorizontalAlignment, VerticalAlignment, and Background.
That means if you set these properties on the button, they’ll have no effect on the simple custom
template.

■Note Technically, the ContentPresenter works because it has a template binding that sets the
ContentPresenter.Content property to the Button.Content property. However, this binding is implicit, so
you don’t need to add it yourself.

In many cases, leaving out template bindings isn’t a problem. In fact, you don’t need to
bind a property if you don’t plan to use it or don’t want it to change your template. For exam-
ple, it makes sense that the current simple button sets the Foreground property for text to
white and ignores any value you’ve set for the Background property because the foreground
and background are intrinsic parts of this button’s visual appearance.

There’s another reason you might choose to avoid template bindings—your control may
not be able to support them adequately. For example, if you’ve ever set the Background prop-
erty of a button, you’ve probably noticed that this background isn’t handled consistently when
the button is pressed (in fact, it disappears at this point and is replaced with the default visual
for pressed buttons). The custom template shown in this example is similar. Although it doesn’t
yet have any mouseover and mouse-pressed behavior, once you add these details you’ll want
to take complete control over the colors and how they change in different states.

CHAPTER 15 ■ CONTROL TEMPLATES 461

9551CH15 2/8/08 2:10 PM Page 461

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Template Triggers
If you try out the button that you created in the previous section, you’ll find it’s a major disap-
pointment. Essentially, it’s nothing more than a rounded red rectangle—as you move the
mouse over it or click it, there’s no visual feedback. The button simply lies there inert.

This problem is easily fixed by adding triggers to your control template. You first consid-
ered triggers with styles in Chapter 12. As you know, you can use triggers to change one or
more properties when another property changes. The bare minimums that you’ll want to
respond to in your button are IsMouseOver and IsPressed. Here’s a revised version of the
control template that changes the colors when these properties change:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Border Name="Border" BorderBrush="Orange" BorderThickness="3" CornerRadius="2"
Background="Red" TextBlock.Foreground="White">
<ContentPresenter RecognizesAccessKey="True"
Margin="{TemplateBinding Padding}"></ContentPresenter>

</Border>
<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="Border" Property="Background" Value="DarkRed" />

</Trigger>
<Trigger Property="IsPressed" Value="True">
<Setter TargetName="Border" Property="Background" Value="IndianRed" />
<Setter TargetName="Border" Property="BorderBrush" Value="DarkKhaki" />

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>

There’s one other change that makes this template work. The Border element has been
given a name, and that name is used to set the TargetName property of each Setter. This way,
the Setter can update the Background and BorderBrush properties of the Border that’s speci-
fied in the template. Using names is the easiest way to make sure a single specific part of a
template is updated. You could create an element-typed rule that affects all Border elements
(because you know there is only a single border in the button template), but this approach is
both clearer and more flexible if you change the template later on.

There’s one more required element in any button (and most other controls)—a focus
indicator. There’s no way to change the existing border to add a focus effect, but you can
easily add another element that shows it, and simply show or hide this element based on the
Button.IsKeyboardFocused property using a trigger. Although you could create a focus effect
in many different ways, the following example simply adds a transparent Rectangle element
with a dashed border. The Rectangle doesn’t have the ability to hold child content, so you need
to make sure the Rectangle overlaps the rest of the content. The easiest way to do this is to
wrap the Rectangle and the ContentPresenter in a one-cell Grid, with both elements in the
same cell.

CHAPTER 15 ■ CONTROL TEMPLATES462

9551CH15 2/8/08 2:10 PM Page 462

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the revised template with focus support:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
<Border Name="Border" BorderBrush="Orange" BorderThickness="3" CornerRadius="2"
Background="Red" TextBlock.Foreground="White">
<Grid>
<Rectangle Name="FocusCue" Visibility="Hidden" Stroke="Black"
StrokeThickness="1" StrokeDashArray="1 2"
SnapsToDevicePixels="True" ></Rectangle>
<ContentPresenter RecognizesAccessKey="True"
Margin="{TemplateBinding Padding}"></ContentPresenter>
</Grid>

</Border>
<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="Border" Property="Background" Value="DarkRed" />

</Trigger>
<Trigger Property="IsPressed" Value="True">
<Setter TargetName="Border" Property="Background" Value="IndianRed" />
<Setter TargetName="Border" Property="BorderBrush" Value="DarkKhaki" />

</Trigger>
<Trigger Property="IsKeyboardFocused" Value="True">
<Setter TargetName="FocusCue" Property="Visibility" Value="Visible" />

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>

Once again, the Setter finds the element it needs to change using the TargetName prop-
erty (which points to the FocusCue rectangle in this example).

■Note This technique of hiding or showing elements in response to a trigger is a useful building block in
many templates. You can use it to replace the visuals of a control with something completely different when
its state changes. (For example, a clicked button could change from a rectangle to an ellipse by hiding the
former and showing the latter.)

Figure 15-7 shows three buttons that use the revised template. The second button cur-
rently has focus (as represented by the dashed rectangle), while the mouse is hovering over the
third button.

CHAPTER 15 ■ CONTROL TEMPLATES 463

9551CH15 2/8/08 2:10 PM Page 463

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 15-7. Buttons with focus and mouseover support

To really round out this button, you’ll add an additional trigger that changes the
button background (and possibly the text foreground) when the IsEnabled property of
the button becomes false:

<Trigger Property="IsEnabled" Value="False">
<Setter TargetName="Border" Property="TextBlock.Foreground" Value="Gray" />
<Setter TargetName="Border" Property="Background" Value="MistyRose" />

</Trigger>

To make sure that this rule takes precedence over any conflicting trigger settings, you
should define it at the end of the list of triggers. That way, it doesn’t matter if the IsMouseOver
property is also true; the IsEnabled property trigger takes precedence and the button remains
inactive.

This example shows you all the concepts you need to create your own customized button,
but it doesn’t show you how to design the graphics that make a truly attractive button. At the
end of this chapter, you’ll find a couple of links to similarly constructed but more elaborate
buttons that include the popular glow and glass effects.

TEMPLATES VS. STYLES

It might have occurred to you that there’s a similarity between templates and styles. Both allow you to
change the appearance of an element, usually throughout your application. However, styles are far more lim-
ited in scope. They’re able to adjust properties of the control but not replace it with an entirely new visual tree
that’s made up of different elements.

Already, the simple button you’ve seen includes features that couldn’t be duplicated with styles alone.
Although you could use styles to set the background of a button, you’d have more trouble adjusting the back-
ground when the button was pressed because the built-in template for the button already includes a trigger
for that purpose. You also wouldn’t have an easy way to add the focus rectangle.

CHAPTER 15 ■ CONTROL TEMPLATES464

9551CH15 2/8/08 2:10 PM Page 464

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

However, templates also open the door to many more exotic types of buttons that are unthinkable
with styles. For example, rather than using a rectangular border, you can create a button that’s shaped like an
ellipse or uses a path to draw a more complex shape. All you need are the drawing classes from Chapter 13.
The rest of your markup—even the triggers that switch the background from one state to another—require
relatively few changes.

Organizing Template Resources
When using control templates, you need to decide how broadly you want to share your tem-
plates and whether you want to apply them automatically or explicitly.

The first question asks you to think about where you want to use your templates. For
example, are they limited to a specific window? In most situations, control templates apply to
multiple windows, and possibly even the entire application. To avoid defining them more than
once, you can define them in the Resources collection of the Application class, as described in
Chapter 11.

However, this raises another consideration. Often, control templates are shared between
applications. It’s quite possible that a single application might use templates that have been
developed separately. However, an application can only have a single App.xaml file and a sin-
gle Application.Resources collection. For that reason, it’s a better idea to define your resources
in separate resource dictionaries. That gives you the flexibility to bring them into action in
specific windows, or in the entire application. It also allows you to combine styles because any
application can hold multiple resource dictionaries. To add a resource dictionary in Visual Stu-
dio, right-click your project in the Solution Explorer window, choose Add ➤ New Item, and
then select Resource Dictionary (WPF).

You’ve already learned about resource dictionaries in Chapter 11. Using them is easy. You
simply need to add a new XAML file to your application with content like this:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
...

</ControlTemplate>
</ResourceDictionary>

Although you could combine all your templates into a single resource dictionary file,
experienced developers prefer to create a separate resource dictionary for each control tem-
plate. That’s because a control template can quickly become quite complex and can draw on a
host of other related resources. Keeping these together in one place, but separate from other
controls, is good organization.

To use your resource dictionary, you simply add it to the Resources collection of a specific
window or, more commonly, your application. You do this using the MergedDictionaries col-
lection. For example, if your button template is in a file named Button.xaml in a project
subfolder named Resources, you could use this markup in your App.xaml file:

CHAPTER 15 ■ CONTROL TEMPLATES 465

9551CH15 2/8/08 2:10 PM Page 465

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Application x:Class="SimpleApplication.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml">
<Application.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="Resources\Button.xaml" />

</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

</Application.Resources>
</Application>

Refactoring the Button Control Template
As you enhance and extend a control template, you may find that it wraps a number of differ-
ent details, including specialized shapes, geometries, and brushes. It’s a good idea to pull
these details out of your control template and define them as separate resources. One reason
you’ll take this step is to make it easier to reuse these brushes among a set of related controls.
For example, you might decide that you want to create a customized Button, CheckBox, and
RadioButton that use a similar set of colors. To make this easier, you could create a separate
resource dictionary for your brushes (named Brushes.xaml) and merge that into the resource
dictionary for each of your controls (such as Button.xaml, CheckBox.xaml, and Radio-
Button.xaml).

To see this technique in action, consider the following markup. It presents the complete
resource dictionary for a button, including the resources that the control template uses, the
control template, and the style rule that applies the control template to every button in the
application. This is the order that you always need to follow because a resource needs to be
defined before it can be used. (If you defined one of the brushes after the template, you’d
receive an error because the template wouldn’t be able to find the brush it requires.)

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<!-- Resources used by the template. -->
<RadialGradientBrush RadiusX="1" RadiusY="5" GradientOrigin="0.5,0.3"
x:Key="HighlightBackground">
<GradientStop Color="White" Offset="0" />
<GradientStop Color="Blue" Offset=".4" />
</RadialGradientBrush>

<RadialGradientBrush RadiusX="1" RadiusY="5" GradientOrigin="0.5,0.3"
x:Key="PressedBackground">
<GradientStop Color="White" Offset="0" />
<GradientStop Color="Blue" Offset="1" />

</RadialGradientBrush>

CHAPTER 15 ■ CONTROL TEMPLATES466

9551CH15 2/8/08 2:10 PM Page 466

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<SolidColorBrush Color="Blue" x:Key="DefaultBackground"></SolidColorBrush>
<SolidColorBrush Color="Gray" x:Key="DisabledBackground"></SolidColorBrush>

<RadialGradientBrush RadiusX="1" RadiusY="5" GradientOrigin="0.5,0.3"
x:Key="Border">
<GradientStop Color="White" Offset="0" />
<GradientStop Color="Blue" Offset="1" />

</RadialGradientBrush>

<!-- The button control template. -->
<ControlTemplate x:Key="GradientButtonTemplate" TargetType="{x:Type Button}">
<Border Name="Border" BorderBrush="{StaticResource Border}" BorderThickness="2"
CornerRadius="2" Background="{StaticResource DefaultBackground}"
TextBlock.Foreground="White">
<Grid>
<Rectangle Name="FocusCue" Visibility="Hidden" Stroke="Black"
StrokeThickness="1" StrokeDashArray="1 2" SnapsToDevicePixels="True">
</Rectangle>
<ContentPresenter Margin="{TemplateBinding Padding}"
RecognizesAccessKey="True"></ContentPresenter>

</Grid>
</Border>
<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="Border" Property="Background"
Value="{StaticResource HighlightBackground}" />

</Trigger>
<Trigger Property="IsPressed" Value="True">
<Setter TargetName="Border" Property="Background"
Value="{StaticResource PressedBackground}" />

</Trigger>
<Trigger Property="IsKeyboardFocused" Value="True">
<Setter TargetName="FocusCue" Property="Visibility"
Value="Visible"></Setter>

</Trigger>
<Trigger Property="IsEnabled" Value="False">
<Setter TargetName="Border" Property="Background"
Value="{StaticResource DisabledBackground}"></Setter>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</ResourceDictionary>

Figure 15-8 shows the button that this template defines. In this example, a gradient
fill is used when the user moves the mouse over the button. However, the gradient is always
centered in the middle of the button. If you want to create a more exotic effect, such as a gra-
dient that follows the position of the mouse, you’ll need to use an animation or write code.
Chapter 24 shows an example with a custom chrome class that implements this effect.

CHAPTER 15 ■ CONTROL TEMPLATES 467

9551CH15 2/8/08 2:10 PM Page 467

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 15-8. A gradient button

Applying Templates with Styles
There’s one limitation in this design. The control template essentially hard-codes quite a few
details, such as the color scheme. That means that if you want to use the same combination of
elements in your button (Border, Grid, Rectangle, and ContentPresenter) and arrange them in
the same way, but you want to supply a different color scheme, you’ll be forced to create a new
copy of the template that references different brush resources.

This isn’t necessarily a problem (after all, the layout and formatting details may be so
closely related that you don’t want to separate them anyway). However, it does limit your abil-
ity to reuse your control template. If your template uses a complex arrangement of elements
that you know you’ll want to reuse with a variety of different formatting details (usually colors
and fonts), you can pull these details out of your template and put them into a style.

To make this work, you’ll need to rework your template. Instead of using hard-coded col-
ors, you need to pull the information out of control properties using template bindings. The
following example defines a streamlined template for the fancy button you saw earlier. The
control template treats some details as fundamental, unchanging ingredients—namely, the
focus box and the rounded 2-unit-thick border. The background and border brushes are con-
figurable. The only trigger that remains is the one that shows the focus box:

<ControlTemplate x:Key="CustomButtonTemplate" TargetType="{x:Type Button}">
<Border Name="Border" BorderThickness="2" CornerRadius="2"
Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}">
<Grid>
<Rectangle Name="FocusCue" Visibility="Hidden" Stroke="Black"
StrokeThickness="1" StrokeDashArray="1 2" SnapsToDevicePixels="True">
</Rectangle>
<ContentPresenter Margin="{TemplateBinding Padding}"
RecognizesAccessKey="True"></ContentPresenter>

</Grid>
</Border>

CHAPTER 15 ■ CONTROL TEMPLATES468

9551CH15 2/8/08 2:10 PM Page 468

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<ControlTemplate.Triggers>
<Trigger Property="IsKeyboardFocused" Value="True">
<Setter TargetName="FocusCue" Property="Visibility"
Value="Visible"></Setter>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>

The associated style applies this control template, sets the border and background colors,
and adds triggers that change the background depending on the state of the button:

<Style x:Key="CustomButtonStyle" TargetType="{x:Type Button}">
<Setter Property="Control.Template"
Value="{StaticResource CustomButtonTemplate}"></Setter>
<Setter Property="BorderBrush"
Value="{StaticResource Border}"></Setter>
<Setter Property="Background"

Value="{StaticResource DefaultBackground}"></Setter>
<Setter Property="TextBlock.Foreground"
Value="White"></Setter>

<Style.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Background"
Value="{StaticResource HighlightBackground}" />

</Trigger>
<Trigger Property="IsPressed" Value="True">
<Setter Property="Background"
Value="{StaticResource PressedBackground}" />

</Trigger>
<Trigger Property="IsEnabled" Value="False">
<Setter Property="Background"
Value="{StaticResource DisabledBackground}"></Setter>

</Trigger>
</Style.Triggers>

</Style>

Ideally, you’d be able to keep all the triggers in the control template because they repre-
sent control behavior and use the style simply to set basic properties. Unfortunately, that’s not
possible here if you want to give the style the ability to set the color scheme.

■Note If you set triggers in both the control template and style, the style triggers win out.

To use this new template you need to set the Style property of a button rather than the
Template property:

<Button Margin="10" Padding="5" Style="{StaticResource CustomButtonStyle}">
A Simple Button with a Custom Template</Button>

CHAPTER 15 ■ CONTROL TEMPLATES 469

9551CH15 2/8/08 2:10 PM Page 469

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can now create new styles that use the same template but bind to different brushes to
apply a new color scheme.

There’s one significant limitation in this approach. You can’t use the Setter.TargetName
property in this style because the style doesn’t contain the control template (it simply refer-
ences it). As a result, your style and its triggers are somewhat limited. They can’t reach deep
into the visual tree to change the aspect of a nested element. Instead, your style needs to set a
property of the control, and the element in the control needs to bind the property using a
template binding.

CONTROL TEMPLATES VS. CUSTOM CONTROLS

You can get around both of the problems discussed here—being forced to define control behavior in the
style with triggers, and not being able to target specific elements—by creating a custom control. For exam-
ple, you could build a class that derives from Button and adds properties such as HighlightBackground,
DisabledBackground, and PressedBackground. You could then bind to these properties in the control template
and simply set them in the style with no triggers required. However, this approach has its own drawback. It
forces you to use a different control in your user interface (such as CustomButton instead of just Button). This
is more trouble when designing the application.

Usually, you’ll switch from custom control templates to custom controls in one of two situations:

• Your control represents a significant change in functionality. For example, you have a custom button,
and that button adds new functionality that requires new properties or methods.

• You plan to distribute your control in a separate class library assembly so it can be used in (and cus-
tomized for) a wide range of applications. In this situation, you need a higher level of standardization
than is possible with control templates alone.

If you decide to create a custom control, Chapter 24 has all the information you need.

Applying Templates Automatically
In the current example, each button is responsible for hooking itself up to the appropriate
template using the Template or Style property. This makes sense if you’re using your control
template to create a specific effect in a specific place in your application. It’s less convenient if
you want to re-skin every button in your entire application with a custom look. In this situa-
tion, it’s more likely that you want all the buttons in your application to acquire your new
template automatically. To make this a reality, you need to apply your control template with
a style.

The trick is to use a typed style that affects the appropriate element type automatically
and sets the Template property. Here’s an example of the style you’d place in the resources col-
lection of your resource dictionary to give your buttons a new look:

<Style TargetType="{x:Type Button}">
<Setter Property="Control.Template" Value="{StaticResource ButtonTemplate}"

</Style>

CHAPTER 15 ■ CONTROL TEMPLATES470

9551CH15 2/8/08 2:10 PM Page 470

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This works because the style doesn’t specify a key name, which means the element type
(Button) is used instead.

Remember, you can still opt out of this style by creating a button that explicitly sets its
Style to a null value:

<Button Style="{x:Null}" ... ></Button>

■Tip This technique works even better if you’ve followed good design practices and defined your button in
a separate resource dictionary. In this situation, the style doesn’t sprint into action until you add a Resource-
Dictionary tag that imports your resources into the entire application or a specific window, as described
earlier.

The possibilities of this approach are remarkable. You can take an existing WPF
application and completely re-skin all its controls without touching the user interface at all.
All you need to do is add the resource dictionaries to your project and merge them into the
Application.Resources collection. This combination of styles and control templates provides
an effortless, completely code-free ability to skin any application.

User-Selected Skins
In some applications, you might want to alter templates dynamically, usually in response to
user preferences. This is easy enough to accomplish, but it’s not well-documented. The basic
technique is to load a new resource dictionary at runtime and use it to replace the current
resource dictionary. (It’s not necessary to replace all your resources, just those that are used
for your skin.)

The trick is retrieving the ResourceDictionary object, which is compiled and embedded
as a resource in your application. The easiest approach is to use the ResourceManager class
described in Chapter 11 to load up the resources you want.

For example, imagine you’ve created two resources that define alternate versions of the
same button control template. One is stored in a file named GradientButton.xaml, while the
other is in a file named GradientButtonVariant.xaml. Both files are placed in the Resources
subfolder in the current project for better organization.

Now you can create a simple window that uses one of these resources, using a Resources
collection like this:

<Window.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary
Source="Resources/GradientButton.xaml"></ResourceDictionary>

</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

</Window.Resources>

CHAPTER 15 ■ CONTROL TEMPLATES 471

9551CH15 2/8/08 2:10 PM Page 471

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now you can swap in a different resource dictionary using code like this:

ResourceDictionary newDictionary = new ResourceDictionary();
newDictionary.Source = new Uri(
"Resources/GradientButtonVariant.xaml", UriKind.Relative);

this.Resources.MergedDictionaries[0] = newDictionary;

This code loads the resource dictionary named GradientButtonVariant and places it into
the first slot in the MergedDictionaries collection. It doesn’t clear the MergedDictionaries
collection (or any other window resources) because it’s possible that you might be linking to
other resource dictionaries that you want to continue using. It doesn’t add a new entry to the
MergedDictionaries collection because there could then be conflict between resources with
the same name but in different collections.

If you were changing the skin for an entire application, you’d use the same approach but
you’d use the resource dictionary of the application. You could update this resource dictionary
using code like this:

Application.Current.Resources.MergedDictionaries[0] = newDictionary;

You can also load a resource dictionary that’s defined in another assembly using the URI
syntax described in Chapter 11:

ResourceDictionary newDictionary = new ResourceDictionary();
newDictionary.Source = new Uri(
"ControlTemplateLibrary;component/GradientButtonVariant.xaml",
UriKind.Relative);

this.Resources.MergedDictionaries[0] = newDictionary;

When you load a new resource dictionary, all the buttons are automatically updated to
use the new template. You can also include basic styles as part of your skin if you don’t need
to be quite as ambitious when modifying a control.

This example assumes that the GradientButton.xaml and GradientButtonVariant.xaml
resources use an element-typed style to change your buttons automatically. As you know,
there’s another approach—you can opt in to a new template by manually setting the Template
or Style property of your Button objects. If you take this approach, make sure you use a
DynamicResource reference instead of a StaticResource. If you use a StaticResource, the
button template won’t be updated when you switch skins.

■Note When using a DynamicResource reference, you’re making an assumption that the resource you
need will appear somewhere in the resource hierarchy. If it doesn’t, the resource is simply ignored and the
buttons revert to their standard appearance without generating an error.

There’s another way to load resource dictionaries programmatically. You can create a
code-behind class for your resource dictionary in much the same way you create code-behind
classes for windows. You can then instantiate that class directly rather than using the

CHAPTER 15 ■ CONTROL TEMPLATES472

9551CH15 2/8/08 2:10 PM Page 472

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ResourceDictionary.Source property. This approach has the benefit of being strongly typed
(there’s no chance of entering an invalid URI for the Source property) and it allows you to add
properties, methods, and other functionality to your resource class. For example, you’ll use
this ability to create a resource that has event handling code in the “Creating a Custom
Window” section later in this chapter.

Although it’s easy enough to create a code-behind class for your resource dictionary,
Visual Studio doesn’t do it automatically. Instead, you need to add a code file with a partial
class that derives from ResourceDictionary and calls InitializeComponent in the constructor:

public partial class GradientButtonVariant : ResourceDictionary
{

public GradientButtonVariant()
{

InitializeComponent();
}

}

Here, the class name GradientButtonVariant is used, and the class is stored in a file named
GradientButtonVariant.xaml.cs. The XAML file holding the resource is named GradientButton-
Variant.xaml. It’s not necessary to make these names consistent, but it’s a good idea, and it’s in
keeping with the convention Visual Studio uses when you create windows and pages.

The next step is to link your class to the resource dictionary. You do that by adding the
Class attribute to the root element of your resource dictionary, just as you do with a window,
and just as you can do with any XAML class. You then supply the fully qualified class name. In
this example, the project is named ControlTemplates; hence the default namespace, so the
finished tag looks like this:

<ResourceDictionary x:Class="ControlTemplates.GradientButtonVariant" ... >

You can now use this code to create your resource dictionary and apply it to a window:

GradientButtonVariant newDictionary = new GradientButtonVariant();
this.Resources.MergedDictionaries[0] = newDictionary;

If you want your GradientButtonVariant.xaml.cs file to appear nested under the Gradient-
ButtonVariant.xaml file in the Solution Explorer, you need to modify the .csproj project file in
a text editor. Find the code-behind file in the <ItemGroup> section and change this:

<Compile Include="Resources\GradientButtonVariant.xaml.cs" />

to this:

<Compile Include="Resources\GradientButtonVariant.xaml.cs">
<DependentUpon> Resources\GradientButtonVariant.xaml</DependentUpon>

</Compile>

CHAPTER 15 ■ CONTROL TEMPLATES 473

9551CH15 2/8/08 2:10 PM Page 473

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Building More Complex Templates
In the previous section, you learned how to build a basic template for a button. Using a few
straightforward triggers, you were able to create a respectable button without being forced to
reimplement any core button functionality (as you would have been forced to do in a Win-
dows Forms application). Best of all, these custom buttons support all the normal button
behavior—you can tab from one to the next, you can click them to fire an event, you can use
access keys, and so on. Best of all, you can reuse your button template throughout your appli-
cation and still replace it with a whole new design at a moment’s notice.

So what more do you need to know before you can skin all the basic WPF controls? In
order to get the snazzy look you probably want, you might need to spend more time studying
the details of WPF drawing, including the content in Chapter 13 and Chapter 14. You’ll also
need a dash of artistic flair. It might surprise you to know that you can use the shapes and
brushes you’ve already learned about to build sophisticated buttons with glass-style blurs and
soft glow effects. The secret is in combining multiple layers of shapes, each with a different
gradient brush. The best way to get this sort of effect is to learn from the control template
examples others have created. (At the end of this chapter, you’ll get a list with a few useful
links to help you continue your template exploration.)

Another trick that can jazz up your customized controls is animated effects, which you’ll
learn to use in Chapter 21. For example, you could use an animation to create a button that
doesn’t abruptly change color when it’s clicked and released, but gradually fades from one
color to the next.

Finally, along with general drawing skills, you also need to learn a bit more about how
complex, multipart templates are built. That’s the task you’ll tackle in this section.

Multipart Templates
The template for the button control can be decomposed into a few relatively simple pieces.
However, many templates aren’t so simple. Here are some of the characteristics of more com-
plex templates:

• They include button controls that trigger specific prebuilt commands. Each button is
attached to the appropriate command using the Command property.

• They use specifically named elements, which usually have names beginning with
“PART_”. When creating a custom template, you should make sure that you keep all the
named elements because the control class probably includes code that directly manip-
ulates these elements (for example, attaches event handlers).

■Note According to the WPF control guidelines, a control that’s missing a named element won’t throw an
exception. However, it may not work properly.

CHAPTER 15 ■ CONTROL TEMPLATES474

9551CH15 2/8/08 2:10 PM Page 474

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• They include nested controls, which can have their own templates.

• If they derive from ContentControl, they include a ContentPresenter where the content
will be placed. If they derive from ItemsControl, they include an ItemsPresenter that
indicates where the panel that contains the list of items will be placed. Scrollable con-
tent inside a ScrollViewer control is represented by a ScrollContentPresenter.

• They use the static properties of SystemBrushes, SystemParameters, and SystemFonts
to use environment variables (like the current color scheme, the standard height of a
scroll bar, and so on).

• More often than not, they arrange their items using a Grid (though a Canvas may be
used for precise alignment of different elements).

As always, the best way to get used to these different conventions is to play with the tem-
plate browser shown earlier to look at the control templates for basic controls. You can then
copy and edit the template to use it as a basis for your custom work.

UNDERSTANDING CONTROL TEMPLATE DEPENDENCIES

There is an implicit contract between a control’s template and the code that underpins it. If you’re replacing a
control’s standard template with one of your own, you need to make sure your new template meets all the
requirements of the control’s implementation code.

In simple controls, this process is easy, because there are few (if any) real requirements on the
template. In a complex control, the issue is subtler, because it’s impossible for the visuals and the implemen-
tation to be completely separated. In this situation, the control needs to make some assumptions about its
visual display, no matter how well it has been designed.

You’ve already seen two examples of the requirements a control can place on its control template, with
placeholder elements (such as ContentPresenter and ItemsPresenter) and template bindings. In the following
sections, you’ll see two more: elements with specific names (starting with “PART_”) and elements that are
specially designed for use in a particular control’s template (such as Track in the ScrollBar control). To create
a successful control template, you need to look carefully at the standard template for the control in question,
make note of how these four techniques are used, and then duplicate them in your own templates.

There’s another way to get comfortable with the interaction between controls and control templates. You
can create your own custom control. In this case, you’ll have the reverse challenge—you’ll need to create
code that uses a template in a standardized way and that can work equally well with templates supplied by
other developers. You’ll tackle this challenge in Chapter 24 (which makes a great complement to the per-
spective you’ll get in this chapter).

Control Templates in an ItemsControl
To master the techniques of control template creation, it helps to examine a more advanced
example. Imagine you’re planning to revamp the familiar ListBox control. In the following sec-
tions, you’ll see how to alter its appearance, change its selection effect, and replace the scroll
bar it uses.

CHAPTER 15 ■ CONTROL TEMPLATES 475

9551CH15 2/8/08 2:10 PM Page 475

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The first step to create this example is to design a template for the ListBox and (option-
ally) add a style that applies the template automatically. Here are both ingredients rolled
into one:

<Style TargetType="{x:Type ListBox}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBox}">
<Border
Name="Border"
Background="{StaticResource ListBoxBackgroundBrush}"
BorderBrush="{StaticResource StandardBorderBrush}"
BorderThickness="1" CornerRadius="3">
<ScrollViewer Focusable="False">
<ItemsPresenter Margin="2"></ItemsPresenter>

</ScrollViewer>
</Border>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

This style draws on two brushes for painting the border and the background. The actual
template is a simplified version of the standard ListBox template, but it avoids the ListBox-
Chrome class in favor of a simpler Border. Inside the Border is the ScrollViewer that provides
the list scrolling, and an ItemsPresenter that holds all the items of the list. (Currently, this tem-
plate lacks a trigger to change its appearance when it’s in a disabled state.)

This template is most notable for what it doesn’t let you do—namely, configure the
appearance of individual items in the list. Without this ability, the selected item is always high-
lighted with the familiar blue background. To change this behavior, you need to add a control
template for the ListBoxItem, which is a content control that wraps the content of each indi-
vidual item in the list.

As with the ListBox template, you can apply the ListBoxItem template using an element-
typed style. The following basic template wraps each item in an invisible border. Because the
ListBoxItem is a content control, you use the ContentPresenter to place the item content
inside. Along with these basics are triggers that react when an item is moused over or clicked:

<Style TargetType="{x:Type ListBoxItem}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBoxItem}">
<Border
Name="Border" BorderThickness="2" CornerRadius="3" Padding="1" >
<ContentPresenter />

</Border>
<ControlTemplate.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="Border" Property="BorderBrush"
Value="{StaticResource HoverBorderBrush}"/>

CHAPTER 15 ■ CONTROL TEMPLATES476

9551CH15 2/8/08 2:10 PM Page 476

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Setter TargetName="Border" Property="TextBlock.FontSize" Value="20" />
</Trigger>
<Trigger Property="IsSelected" Value="True">
<Setter TargetName="Border" Property="Background"
Value="{StaticResource SelectedBackgroundBrush}"/>
<Setter TargetName="Border" Property="TextBlock.Foreground"
Value="{StaticResource SelectedForegroundBrush}"/>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

Together, these two templates allow you to create the odd list box shown in Figure 15-9,
which enlarges the item over which the mouse is currently positioned.

Figure 15-9. A list box that uses two templates

Modifying the Scroll Bar
There’s one aspect of the list box that’s remained out of touch: the scroll bar on the right. It’s a
part of the ScrollViewer, which is a part of the ListBox template. Even though this example
redefines the ListBox template, it doesn’t alter the ScrollViewer of the ScrollBar.

To customize this detail, you could create a new ScrollViewer template for use with the
ListBox. You could then point the ScrollViewer template to your custom ScrollBar template.
However, there’s an easier option. You can create an element-typed style that changes the tem-
plate of all the ScrollBar controls it comes across. This avoids the extra work of creating the
ScrollViewer template.

■Note In order to ensure that the list box gets the revamped scroll bar, you must place the template for the
ScrollBar class before the template for the ListBox class.

CHAPTER 15 ■ CONTROL TEMPLATES 477

9551CH15 2/8/08 2:10 PM Page 477

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ScrollBar control is surprisingly sophisticated. It’s actually built out of a collection of
smaller pieces, as shown in Figure 15-10.

Figure 15-10. Dissecting the scroll bar

The background of the scroll bar is represented by the Track class—it’s usually a shaded
rectangle that’s stretched out over the length of the scroll bar. At the far ends of the scroll bar
are buttons that allow you to move one increment up or down (or to the left or right). These
are instances of the RepeatButton class, which derives from ButtonBase. The key difference
between a RepeatButton and the ordinary Button class is that if you hold the mouse down on
a RepeatButton, the Click event fires over and over again (which is handy for scrolling).

In the middle of the scroll bar is a Thumb that represents the current position in the
scrollable content. And, most interestingly of all, the blank space on either side of the thumb
is actually made up of two more RepeatButton objects, which are transparent. When you click
either one of these, the scroll bar scrolls an entire page (a page is defined as the amount that
fits in the visible window of the scrollable content). This gives you the familiar ability to jump
quickly through scrollable content by clicking the bar on either side of the thumb.

Here’s the template for a vertical scroll bar:

<ControlTemplate x:Key="VerticalScrollBar" TargetType="{x:Type ScrollBar}">
<Grid>
<Grid.RowDefinitions>
<RowDefinition MaxHeight="18"/>
<RowDefinition Height="*"/>

CHAPTER 15 ■ CONTROL TEMPLATES478

9551CH15 2/8/08 2:10 PM Page 478

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<RowDefinition MaxHeight="18"/>
</Grid.RowDefinitions>

<RepeatButton Grid.Row="0" Height="18"
Style="{StaticResource ScrollBarLineButtonStyle}"
Command="ScrollBar.LineUpCommand" >
<Path Fill="{StaticResource GlyphBrush}"
Data="M 0 4 L 8 4 L 4 0 Z"></Path>

</RepeatButton>

<Track Name="PART_Track" Grid.Row="1"
IsDirectionReversed="True" ViewportSize="0">
<Track.DecreaseRepeatButton>
<RepeatButton Command="ScrollBar.PageUpCommand"
Style="{StaticResource ScrollBarPageButtonStyle}">
</RepeatButton>

</Track.DecreaseRepeatButton>
<Track.Thumb>
<Thumb Style="{StaticResource ScrollBarThumbStyle}">
</Thumb>

</Track.Thumb>
<Track.IncreaseRepeatButton>
<RepeatButton Command="ScrollBar.PageDownCommand"
Style="{StaticResource ScrollBarPageButtonStyle}">
</RepeatButton>

</Track.IncreaseRepeatButton>
</Track>

<RepeatButton
Grid.Row="3" Height="18"
Style="{StaticResource ScrollBarLineButtonStyle}"
Command="ScrollBar.LineDownCommand"
Content="M 0 0 L 4 4 L 8 0 Z">

</RepeatButton>

<RepeatButton
Grid.Row="3" Height="18"
Style="{StaticResource ScrollBarLineButtonStyle}"
Command="ScrollBar.LineDownCommand">
<Path Fill="{StaticResource GlyphBrush}"
Data="M 0 0 L 4 4 L 8 0 Z"></Path>

</RepeatButton>
</Grid>

</ControlTemplate>

CHAPTER 15 ■ CONTROL TEMPLATES 479

9551CH15 2/8/08 2:10 PM Page 479

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This template is fairly straightforward, once you understand the multipart structure of the
scroll bar (as shown in Figure 15-9). There are a few key points to note:

• The vertical scroll bar consists of a three-row grid. The top and bottom rows hold the
buttons at either end (and appear as arrows). They’re fixed at 18 units. The middle sec-
tion, which holds the track, takes the rest of the space.

• The RepeatButton at both ends use the same style. The only difference is the Content
property that contains a Path that draws the arrow because the top button has an up
arrow while the bottom button has a down arrow. For conciseness, these arrows are
represented using the path mini-language described in Chapter 14. The other details,
such as the background fill and the circle that appears around the arrow are defined in
the control template, which is set out in the ScrollButtonLineStyle.

• Both buttons are linked to a command in the ScrollBar class (LineUpCommand and
LineDownCommand). This is how they do their work. As long as you provide a button
that’s linked to this command, it doesn’t matter what its name is, what it looks like, or
what specific class it uses. (Commands are covered in detail in Chapter 10.)

• The Track has the name PART_Track. You must use this name in order for the ScrollBar
class to hook up its code successfully. If you look at the default template for the Scroll-
Bar class (which is similar, but lengthier), you’ll see it appears there as well.

■Note If you’re examining a control with reflection (or using a tool such as Reflector), you can look for the
TemplatePart attributes attached to the class declaration. There should be one TemplatePart attribute for
each named part. The TemplatePart attribute indicates the name of the expected element (through the Name
property) and its class (through the Type property). In Chapter 21, you’ll see how to apply the TemplatePart
attribute to your own custom control classes.

• The Track.ViewportSize property is set to 0. This is a specific implementation detail in
this template. It ensures that the Thumb always has the same size. (Ordinarily, the
thumb is sized proportionately based on the content, so that if you’re scrolling through
content that mostly fits in the window, the thumb becomes much larger.)

• The Track wraps two RepeatButton objects (whose style is defined separately) and the
Thumb. Once again, these buttons are wired up to the appropriate functionality using
commands.

You’ll also notice that the template uses a key name that specifically identifies it as a verti-
cal scroll bar. As you learned in Chapter 12, when you set a key name on a style, you ensure
that it isn’t applied automatically, even if you’ve also set the TargetType property. The reason
this example uses this approach is because the template is only suitable for scroll bars in the
vertical orientation. Another, element-typed style uses a trigger to automatically apply the
control template if the ScrollBar.Orientation property is set to Vertical:

<Style TargetType="{x:Type ScrollBar}">
<Setter Property="SnapsToDevicePixels" Value="True"/>

CHAPTER 15 ■ CONTROL TEMPLATES480

9551CH15 2/8/08 2:10 PM Page 480

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Setter Property="OverridesDefaultStyle" Value="true"/>
<Style.Triggers>
<Trigger Property="Orientation" Value="Vertical">
<Setter Property="Width" Value="18"/>
<Setter Property="Height" Value="Auto" />
<Setter Property="Template" Value="{StaticResource VerticalScrollBar}" />

</Trigger>
</Style.Triggers>

</Style>

Although you could easily build a horizontal scroll bar out of the same basic pieces, this
example doesn’t take that step (and so retains the normally styled horizontal scroll bar).

The final task is to fill in the styles that format the various RepeatButton objects and the
Thumb. These styles are relatively modest, but they do change the standard look of the scroll
bar. First, the Thumb is shaped like an ellipse:

<Style x:Key="ScrollBarThumbStyle" TargetType="{x:Type Thumb}">
<Setter Property="IsTabStop" Value="False"/>
<Setter Property="Focusable" Value="False"/>
<Setter Property="Margin" Value="1,0,1,0" />
<Setter Property="Background" Value="{StaticResource StandardBrush}" />
<Setter Property="BorderBrush" Value="{StaticResource StandardBorderBrush}" />
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type Thumb}">
<Ellipse Stroke="{StaticResource StandardBorderBrush}"
Fill="{StaticResource StandardBrush}"></Ellipse>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

Next, the arrows at either end are drawn inside nicely rounded circles. The circles are
defined in the control template, while the arrows are provided from the content of the Repeat-
Button and inserted into the control template using the ContentPresenter:

<Style x:Key="ScrollBarLineButtonStyle" TargetType="{x:Type RepeatButton}">
<Setter Property="Focusable" Value="False"/>
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type RepeatButton}">
<Grid Margin="1">
<Ellipse Name="Border" StrokeThickness="1"
Stroke="{StaticResource StandardBorderBrush}"
Fill="{StaticResource StandardBrush}"></Ellipse>
<ContentPresenter HorizontalAlignment="Center"
VerticalAlignment="Center"></ContentPresenter>

</Grid>
<ControlTemplate.Triggers>

CHAPTER 15 ■ CONTROL TEMPLATES 481

9551CH15 2/8/08 2:10 PM Page 481

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Trigger Property="IsPressed" Value="true">
<Setter TargetName="Border" Property="Fill"
Value="{StaticResource PressedBrush}" />

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

The RepeatButton objects that are displayed over the track aren’t changed. They simply
use a transparent background so the track shows through:

<Style x:Key="ScrollBarPageButtonStyle" TargetType="{x:Type RepeatButton}">
<Setter Property="IsTabStop" Value="False"/>
<Setter Property="Focusable" Value="False"/>
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type RepeatButton}">
<Border Background="Transparent" />

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

Unlike the normal scroll bar, in this template no background is assigned to the Track,
which leaves it transparent. That way, the gently shaded gradient of the list box shows
through. The final list box is shown in Figure 15-11.

Figure 15-11. A list box with a customized scroll bar

CHAPTER 15 ■ CONTROL TEMPLATES482

9551CH15 2/8/08 2:10 PM Page 482

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Creating a Custom Window
In Chapter 8, you considered how to build a custom-shaped window that uses WPF drawing
elements instead of the standard window frame. Although the technique described there
worked well enough, it forced you to manually restyle every window with the shaped border,
header region, close buttons, and so on. In this section, you’ll see how to adapt that markup
into a control template you can use on any window.

The first step is to consult the default control template for the Window class. For the most
part, this template is pretty straightforward, but it includes one detail you might not expect:
an AdornerDecorator element. This element creates a special drawing area called the adorner
layer over the rest of the window’s client content. WPF controls can use the adorner layer to
draw content that should appear superimposed over your elements. This includes small
graphical indicators that show focus, flag validation errors, and guide drag-and-drop opera-
tions. When you build a custom window, you need to ensure that the adorner layer is present,
so that controls that use it continue to function.

With that in mind, it’s possible to identify the basic structure that the control template for
a window should take:

<ControlTemplate x:Key="CustomWindowTemplate" TargetType="{x:Type Window}">
<Border Name="windowFrame">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>

<!-- The title bar. -->
<TextBlock Text="{TemplateBinding Title}"
FontWeight="Bold"></TextBlock>
<Button Style="{StaticResource CloseButton}"
HorizontalAlignment="Right"></Button>

<!-- The window content. -->
<Border Grid.Row="1">
<AdornerDecorator>
<ContentPresenter></ContentPresenter>

</AdornerDecorator>
</Border>

<!-- The footer. -->
<ContentPresenter Grid.Row="2" Margin="10"
HorizontalAlignment="Center"
Content="{TemplateBinding Tag}"></ContentPresenter>

<!-- The resize grip. -->
<ResizeGrip Name="WindowResizeGrip" Grid.Row="2"
HorizontalAlignment="Right" VerticalAlignment="Bottom"

CHAPTER 15 ■ CONTROL TEMPLATES 483

9551CH15 2/8/08 2:10 PM Page 483

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Visibility="Collapsed" IsTabStop="False" />
</Grid>

</Border>

<ControlTemplate.Triggers>
<Trigger Property="ResizeMode" Value="CanResizeWithGrip">
<Setter TargetName="WindowResizeGrip"
Property="Visibility" Value="Visible"></Setter>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>

The top-level element in this template is a Border object for the window frame. Inside
that is a Grid with three rows. The contents of the Grid break down as follows:

• The top row holds the title bar, which consists of an ordinary TextBlock that displays the
window title and a close button. A template binding pulls the window title from the
Window.Title property.

• The middle row holds a nested Border with the rest of the window content. The
content is inserted using a ContentPresenter. The ContentPresenter is wrapped in the
AdornerDecorator, which ensures that the adorner layer is placed over your element
content.

• The third row holds another ContentPresenter. However, this content presenter doesn’t
use the standard binding to get its content from the Window.Content property. Instead,
it explicitly pulls its content from the Window.Tag property. Usually, this content is just
ordinary text, but it could include any element content you want to use.

■Note The Tag property is used because the Window class doesn’t include any property that’s designed to
hold footer text. Another option is to create a custom class that derives from Window and adds a Footer
property you need.

• Also in the third row is a resize grip. A trigger shows the resize grip when the
Window.ResizeMode property is set to CanResizeWithGrip.

Two details that aren’t shown here are the relatively uninteresting style for the resize grip
(which simply creates a small pattern of dots to use as the resize grip), and the close button
(which draws a small X on a red square). This markup also doesn’t include the formatting
details, such as the gradient brush that paints the background and the properties that create a
nicely rounded border edge. To see the full markup, refer to the sample code provided for this
chapter.

The window template is applied using a simple style. This style also sets three key proper-
ties of the Window class that make it transparent. This allows you to create the window border
and background using WPF elements:

CHAPTER 15 ■ CONTROL TEMPLATES484

9551CH15 2/8/08 2:10 PM Page 484

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Style x:Key="CustomWindowChrome" TargetType="{x:Type Window}">
<Setter Property="AllowsTransparency" Value="True"></Setter>
<Setter Property="WindowStyle" Value="None"></Setter>
<Setter Property="Background" Value="Transparent"></Setter>
<Setter Property="Template"
Value="{StaticResource CustomWindowTemplate}"></Setter>

</Style>

At this point, you’re ready to use your custom window. For example, you could create a
window like this that sets the style and fills in some basic content:

<Window x:Class="ControlTemplates.CustomWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="CustomWindowTest" Height="300" Width="300"
Tag="This is a custom footer"
Style="{StaticResource CustomWindowChrome}">

<StackPanel Margin="10">
<TextBlock Margin="3">This is a test.</TextBlock>
<Button Margin="3" Padding="3">OK</Button>

</StackPanel>
</Window>

Figure 15-12 shows the result.

Figure 15-12. A reusable window template

There’s just one problem. Currently, the window lacks most of the basic behavior windows
require. For example, you can’t drag the window around the desktop, resize it, or use the close
button. To perform these actions, you need code.

CHAPTER 15 ■ CONTROL TEMPLATES 485

9551CH15 2/8/08 2:10 PM Page 485

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

There are two possible ways to add the code you need—you could expand your example
into a custom Window-derived class, or you could create a code-behind class for your
resource dictionary. The custom control approach provides better encapsulation and allows
you to extend the public interface of your window (for example, adding useful methods and
properties that you can use in your application). However, the code-behind approach is a rela-
tively lightweight alternative that allows you to extend the capabilities of a control template
while allowing your application to continue using the base control classes. It’s the approach
that you’ll see in this example. (Chapter 24 presents the custom control alternative.)

You’ve already learned how to create a code-behind class for your resource dictionary (see
the “User-Selected Skins” section earlier). Once you’ve created the code file, it’s easy to add the
event handling code you need. The only challenge is that your code runs in the resource dic-
tionary object, not inside your window object. That means you can’t use the this keyword to
access the current window. Fortunately, there’s an easy alternative: the Framework-
Element.TemplatedParent property.

For example, to make the window draggable you need to intercept a mouse event on the
title bar and initiate dragging. Here’s the revised TextBlock that wires up an event handler
when the user clicks with the mouse:

<TextBlock Margin="1" Padding="5" Text="{TemplateBinding Title}"
FontWeight="Bold" MouseLeftButtonDown="titleBar_MouseLeftButtonDown"></TextBlock>

Now you can add the following event handler to the code-behind class for the resource
dictionary:

private void titleBar_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{

Window win = (Window)
((FrameworkElement)sender).TemplatedParent;

win.DragMove();
}

To make your window resizable you need to add two invisible rectangles running along
the right and bottom edges of the window, respectively. These rectangles can receive mouse
events and call event handlers to resize the window.

Here’s the markup that you need to configure the Grid in the control template to support
resizing:

<Rectangle Grid.Row="1" Grid.RowSpan="3"
Cursor="SizeWE" Fill="Transparent" Width="5"
VerticalAlignment="Stretch" HorizontalAlignment="Right"
MouseLeftButtonDown="window_initiateResizeWE"
MouseLeftButtonUp="window_endResize"
MouseMove="window_Resize"></Rectangle>

<Rectangle Grid.Row="2"
Cursor="SizeNS" Fill="Transparent" Height="5"
HorizontalAlignment="Stretch" VerticalAlignment="Bottom"
MouseLeftButtonDown="window_initiateResizeNS"
MouseLeftButtonUp="window_endResize"
MouseMove="window_Resize"></Rectangle>

CHAPTER 15 ■ CONTROL TEMPLATES486

9551CH15 2/8/08 2:10 PM Page 486

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

And here are the event handlers that coordinate the resizing. A Boolean isResizing field
keeps track of when resize mode is underway, and the resizeType field tracks the direction in
which the window is being resized:

private bool isResizing = false;

// Use the Flags attribute to allow simultaneous Width and Height resizing
// (which could be activated using the bottom-right corner of the window.)
[Flags()]
private enum ResizeType
{

Width, Height
}
private ResizeType resizeType;

private void window_initiateResizeWE(object sender, MouseEventArgs e)
{

isResizing = true;
resizeType = ResizeType.Width;

}

private void window_initiateResizeNS(object sender, MouseEventArgs e)
{

isResizing = true;
resizeType = ResizeType.Height;

}

private void window_endResize(object sender, MouseEventArgs e)
{

isResizing = false;

// Make sure capture is released.
Rectangle rect = (Rectangle)sender;
rect.ReleaseMouseCapture();

}

private void window_Resize(object sender, MouseEventArgs e)
{

Rectangle rect = (Rectangle)sender;
Window win = (Window)rect.TemplatedParent;

if (isResizing)
{

rect.CaptureMouse();
if (resizeType == ResizeType.Width)
{

double width = e.GetPosition(win).X + 5;
if (width > 0) win.Width = width;

CHAPTER 15 ■ CONTROL TEMPLATES 487

9551CH15 2/8/08 2:10 PM Page 487

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
if (resizeType == ResizeType.Height)
{

double height = e.GetPosition(win).Y + 5;
if (height > 0) win.Height = height;

}
}

}

Finally, similar code handles the click of the close button:

private void cmdClose_Click(object sender, RoutedEventArgs e)
{

Window win = (Window)
((FrameworkElement)sender).TemplatedParent;

win.Close();
}

This completes the example, giving you a custom window control template with built-in
behavior. You can apply this template to any ordinary WPF window. Of course, there’s still a lot
of polish needed before this window is attractive enough to suit a modern application. But it
demonstrates the sequence of steps you need to follow to build a complex control template
and shows how you can achieve results that would have required custom control development
in previous user interface frameworks.

The Simple Styles
As you’ve seen, giving a new template to a common control can be a detailed task. That’s
because all the requirements of a control template aren’t always obvious. For example, a typi-
cal ScrollBar requires a combination of two RepeatButton objects and a Track. Other control
templates need elements with specific PART_ names. In the case of a custom window, you
need to make sure the adorner layer is defined because some controls will require it.

Although you can discover these details by exploring the default template for a control,
these default templates are often complicated and include details that aren’t important and
bindings that you probably won’t support anyway. Fortunately, there’s a better place to get
started: the SimpleStyles sample project.

The SimpleStyles project provides a collection of simple, streamlined templates for all
WPF’s standard controls, which makes them a useful jumping-off point for any custom con-
trol designer. Unlike the default control templates, these use standard colors, perform all their
work declaratively (with no chrome classes), and leave out optional parts such as template
bindings for less commonly used properties. The goal of SimpleStyles is to give developers a
practical starting point that they can use to design their own graphically enhanced control
templates. Figure 15-13 shows about half of the controls in the SimpleStyles project.

CHAPTER 15 ■ CONTROL TEMPLATES488

9551CH15 2/8/08 2:10 PM Page 488

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 15-13. WPF controls with bare-bones styles

The SimpleStyles examples are included with Visual Studio. To find them, look up “Styling
with ControlTemplates sample” in the index of the Visual Studio help. Alternatively, you can
get them with the downloadable samples for this chapter.

■Tip The SimpleStyles are one of the hidden gems of WPF. They provide templates that are easier to
understand and enhance than the default control templates. If you need to enhance a common control with a
custom look, this project should be your first stop.

CHAPTER 15 ■ CONTROL TEMPLATES 489

9551CH15 2/8/08 2:10 PM Page 489

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Last Word
In this chapter, you learned the fundamentals of template building. However, to create a
sophisticated template you’ll need plenty of trial-and-error fiddling. Often the best starting
point is to consider other examples of custom control templates, which abound on the Web.
Here are two good examples to check out:

• There are plenty of handcrafted, shaded buttons with glass and soft glow effects on the
Web. You can find a complete tutorial that walks you through the process of creating a
snazzy glass button in Expression Blend at http://blogs.msdn.com/mgrayson/archive/
2007/02/16/creating-a-glass-button-the-complete-tutorial.aspx.

• An excellent MSDN Magazine article about control templates provides examples of
templates that incorporate simple drawings in innovative ways. For example, a Check-
Box is replaced by an up-down lever, a slider is rendered with a three-dimensional tab,
a ProgressBar is changed into a thermometer, and so on. Check it out at http://msdn.
microsoft.com/msdnmag/issues/07/01/Foundations.

If you don’t want to type these links in by hand, you can find them listed on the page for
this book at http://www.prosetech.com.

CHAPTER 15 ■ CONTROL TEMPLATES490

9551CH15 2/8/08 2:10 PM Page 490

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/mgrayson/archive
http://msdn
http://www.prosetech.com

Data Binding

Data binding is the time-honored tradition of pulling information out of an object and dis-
playing it in your application’s user interface, without writing the tedious code that does all
the work. Often, rich clients use two-way data binding, which adds the ability to push infor-
mation from the user interface back into some object—again, with little or no code. Because
many Windows applications are all about data (and all of them need to deal with data some of
the time), data binding is a top concern in a user interface technology like WPF.

Developers who are approaching WPF from a Windows Forms background will find that
WPF data binding has many similarities. As in Windows Forms, WPF data binding allows you
to create bindings that take information from just about any property of any object and stuff it
into just about any property of any element. WPF also includes a set of list controls that can
handle entire collections of information and allow you to navigate through them. However,
there are significant changes in the way that data binding is implemented behind the scenes,
some impressive new functionality, and a fair bit of tweaking and fine-tuning. Many of the
same concepts apply, but the same code won’t.

In this chapter, you’ll learn how to use WPF data binding. You’ll create declarative bind-
ings that pull the information you need out of elements and other objects. You’ll also learn
how to plug this system into a back-end database, whether you plan to use the standard
ADO.NET data objects or build your own custom data classes.

Data Binding Basics
At its simplest, data binding is a relationship that tells WPF to extract some information from
a source object and use it to set a property in a target object. The target property is always a
dependency property, and it’s usually in a WPF element—after all, the ultimate goal of WPF
data binding is to display some information in your user interface. However, the source object
can be just about anything, ranging from another WPF element to an ADO.NET data object
(like the DataTable and DataRow) or a data-only object of your own creation. In this chapter,
you’ll begin your exploration of data binding by considering the simplest approach (element-
to-element binding) and then considering how to use data binding with other types of objects.

Binding to the Properties of an Element
The simplest data binding scenario occurs when your source object is a WPF element and
your source property is a dependency property. That’s because dependency properties have
built-in support for change notification, as explained in Chapter 6. As a result, when you

491

C H A P T E R 1 6

9551CH16 2/8/08 2:11 PM Page 491

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

change the value of the dependency property in the source object, the bound property in the
target object is updated immediately. This is exactly what you want—and it happens without
requiring you to build any additional infrastructure.

■Note Although it’s nice to know that element-to-element binding is the simplest approach, most developers
are more interested in finding out which approach is most common in the real world. Overall, the bulk of your
data binding work will be spent binding elements to data objects. This allows you to display the information that
you’ve extracted from an external source (such as a database or file). However, element-to-element binding is
often useful. For example, you can use element-to-element binding to automate the way elements interact so
that when a user modifies a control, another element is updated automatically. This is a valuable shortcut that
can save you from writing boilerplate code (and it’s a technique that wasn’t possible in the previous generation
of Windows Forms applications).

To understand how you can bind an element to another element, consider the simple
window shown in Figure 16-1. It contains two controls: a Slider and a TextBlock with a single
line of text. If you pull the thumb in the slider to the right, the font size of the text is increased
immediately. If you pull it to the left, the font size is reduced.

Figure 16-1. Linked controls through data binding

Clearly, it wouldn’t be difficult to create this behavior using code. You would simply react
to the Slider.ValueChanged event and copy the current value from the slider to the TextBlock.
However, data binding makes it even easier.

■Tip Data binding also has another benefit—it allows you to create simple XAML pages that you can run in
the browser without compiling them into applications. (As you learned in Chapter 1, if your XAML file has a
linked code-behind file, it can’t be opened in a browser.)

CHAPTER 16 ■ DATA BINDING492

9551CH16 2/8/08 2:11 PM Page 492

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When using data binding, you don’t need to make any change to your source object
(which is the Slider in this example). Just configure it to take the right range of values, as you
would usually:

<Slider Name="sliderFontSize" Margin="3"
Minimum="1" Maximum="40" Value="10"
TickFrequency="1" TickPlacement="TopLeft">
</Slider>

The binding is defined in the TextBlock element. Instead of setting the FontSize using a
literal value, you use a binding expression, as shown here:

<TextBlock Margin="10" Text="Simple Text" Name="lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value}" >
</TextBlock>

Data binding expressions use an XAML markup extension (and hence have curly
braces). You begin with the word Binding, because you’re creating an instance of the
System.Windows.Data.Binding class. Although you can configure a Binding object in several
ways, in this situation you need to set just two properties: the ElementName that indicates the
source element and a Path that indicates the property in the source element.

■Tip The name Path is used instead of Property because the Path might point to a property of a property
(for example, FontFamily.Source) or an indexer used by a property (for example, Content.Children[0]). You
can build up a path with multiple periods to dig into a property of a property of a property, and so on.

If you want to refer to an attached property (a property that’s defined in another class but applied to the
bound element), you need to wrap the property name in parentheses. For example, if you’re binding to an
element that’s placed in a Grid, the path (Grid.Row) retrieves the row number where you’ve placed it.

One of the neat features of data binding is that your target is updated automatically, no
matter how the source is modified. In this example, the source can be modified in only one
way—by the user’s interaction with the slider thumb. However, consider a slightly revamped
version of this example that adds a few buttons, each of which applies a preset value to the
slider. Figure 16-2 shows the new window.

When you click the Set to Large button, this code runs:

private void cmd_SetLarge(object sender, RoutedEventArgs e)
{

sliderFontSize.Value = 30;
}

This code sets the value of the slider, which in turn forces a change to the font size of the
text through data binding. It’s the same as if you had moved the slider thumb yourself.

CHAPTER 16 ■ DATA BINDING 493

9551CH16 2/8/08 2:11 PM Page 493

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

However, this code doesn’t work as well:

private void cmd_SetLarge(object sender, RoutedEventArgs e)
{

lblSampleText.FontSize = 30;
}

Figure 16-2. Modifying the data binding source programmatically

BINDING ERRORS

WPF doesn’t raise exceptions to notify you about data binding problems. If you specify an element or a prop-
erty that doesn’t exist, you won’t receive any indication—instead, the data will simply fail to appear in the
target property.

At first glance, this seems like a debugging nightmare. Fortunately, WPF does output trace information
that details binding failures. This information appears in Visual Studio’s Output window when you’re debug-
ging the application. For example, if you try to bind to a nonexistent property, you’ll see a message like this in
the Output window:

System.Windows.Data Error: 35 : BindingExpression path error:
'Tex' property not found on 'object' ''TextBox' (Name='txtFontSize')'.
BindingExpression:Path=Tex; DataItem='TextBox' (Name='txtFontSize');
target element is 'TextBox' (Name='');
target property is 'Text' (type 'String')

WPF also ignores any exception that’s thrown when you attempt to read the source property and quietly
swallows the exception that occurs if the source data can’t be cast to the data type of the target property.
However, there is another option when dealing with these problems—you can tell WPF to change the appear-
ance of the source element to indicate that an error has occurred. For example, this allows you to flag invalid
input with an exclamation icon or a red outline. The “Validation” section later in this chapter demonstrates
this technique.

It sets the font of the text box directly. As a result, the slider position isn’t updated to
match. Even worse, this has the effect of wiping out your font size binding and replacing it
with a literal value. If you move the slider thumb now, the text block won’t change at all.

CHAPTER 16 ■ DATA BINDING494

9551CH16 2/8/08 2:11 PM Page 494

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Interestingly, there’s a way to force values to flow in both directions: from the source to the
target and from the target to the source. The trick is to set the Mode property of the Binding.
Here’s a revised bidirectional binding that allows you to apply changes to either the source or
the target and have the other piece of the equation update itself automatically:

<TextBlock Margin="10" Text="Simple Text" Name="lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value, Mode=TwoWay}" >

</TextBlock>

In this example, you have no reason to use a two-way binding (which requires more
overhead) because you can solve the problem by using the right code. However, consider a
variation of this example that includes a text box where the user can set the font size precisely.
This text box needs to use a two-way binding, so it can both apply the user’s changes and dis-
play the most recent size value in the text box when it’s changed through another avenue.
You’ll see this example in the next section.

Creating Bindings with Code
When you’re building a window, it’s usually most efficient to declare your binding expression
in the XAML markup using the Binding markup extension. However, it’s also possible to create
a binding using code.

Here’s how you could create the binding for the TextBlock shown in the previous example:

Binding binding = new Binding();
binding.Source = sliderFontSize;
binding.Path = new PropertyPath("Value");
binding.Mode = BindingMode.TwoWay;
lblSampleText.SetBinding(TextBlock.TextProperty, binding);

You can also remove a binding with code using two static methods of the
BindingOperations class. The ClearBinding() method takes a reference to the dependency
property that has the binding you want to remove, while ClearAllBindings() removes all the
data binding for an element:

BindingOperations.ClearAllBindings(lblSampleText);

Both ClearBinding() and ClearAllBindings() use the ClearValue() method that every
element inherits from the based DependencyObject class. ClearValue() simply removes a
property’s local value (which, in this case, is a data binding expression).

Markup-based binding is far more common than programmatic binding, because it’s
cleaner and requires less work. In this chapter, all the examples use markup to create their
bindings. However, you will want to use code to create a binding in some specialized scenarios:

• Creating a dynamic binding. If you want to tailor a binding based on other runtime
information or create a different binding depending on the circumstances, it often
makes sense to create your binding in code. (Alternatively, you could define every bind-
ing you might want to use in the Resources collection of your window and just add the
code that calls SetBinding() with the appropriate binding object.)

• Removing a binding. If you want to remove a binding so that you can set a property in
the usual way, you need the help of the ClearBinding() or ClearAllBindings() method. It

CHAPTER 16 ■ DATA BINDING 495

9551CH16 2/8/08 2:11 PM Page 495

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

isn’t enough to simply apply a new value to the property—if you’re using a two-way
binding, the value you set is propagated to the linked object, and both properties
remain synchronized.

■Note You can remove any binding using the ClearBinding() and ClearAllBindings() methods. It doesn’t
matter whether the binding was applied programmatically or in XAML markup.

• Creating custom controls. To make it easier for other people to modify the visual appear-
ance of a custom control you build, you’ll need to move certain details (such as event
handlers and data binding expressions) into your code and out of your markup. Chap-
ter 24 includes a custom color picking control that uses code to create its bindings.

Multiple Bindings
Although the previous example includes just a single binding, you don’t need to stop there. If
you wanted, you could set the TextBlock up to draw its text from a text box, its current fore-
ground and background color from separate lists of colors, and so on. Here’s an example:

<TextBlock Margin="3" Name="lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value}"
Text="{Binding ElementName=txtContent, Path=Text}"
Foreground="{Binding ElementName=lstColors, Path=SelectedItem.Tag}" >

</TextBlock>

Figure 16-3 shows the triple-bound TextBlock.

Figure 16-3. A TextBlock that’s bound to three elements

CHAPTER 16 ■ DATA BINDING496

9551CH16 2/8/08 2:11 PM Page 496

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also chain data bindings. For example, you could create a binding expression for
the TextBox.Text property that links to the TextBlock.FontSize property, which contains a binding
expression that links to the Slider.Value property. In this case, when the user drags the slider
thumb to a new position, the value flows from the Slider to the TextBlock and then from the
TextBlock to the TextBox. Although this works seamlessly, a cleaner approach is to bind your
elements as closely as possible to the data they use. In the example described here, you should
consider binding both the TextBlock and the TextBox directly to the Slider.Value property.

Life becomes a bit more interesting if you want a target property to be influenced by more
than one source—for example, if you want there to be two equally legitimate bindings that set
its property. At first glance, this doesn’t seem possible. After all, when you create a binding,
you can point to only a single target property. However, you can get around this limitation in
several ways.

The easiest approach is to change the data binding mode. As you learned in the previous
section, the Mode property allows you to change the way a binding works so that values aren’t
just pushed from the source to the target but also from the target to the source. Using this
technique, you can create multiple binding expressions that set the same property. The last-
set property is the one that comes into effect.

To understand how this works, consider a variation of the slider bar example that intro-
duces a text box where you can set the exact font size you want. In this example (shown in
Figure 16-4), you can set the TextBlock.FontSize property in two ways—by dragging the slider
thumb or by typing a font size into the text box. All the controls are synchronized so that if you
type a new number in the text box, the font size of the sample text is adjusted and the slider
thumb is moved to the corresponding position.

Figure 16-4. Linking two properties to the font size

As you know, you can apply only a single data binding to the TextBlock.FontSize property.
It makes sense to leave the TextBlock.FontSize property as is so that it binds directly to the
slider:

<TextBlock Margin="10" Text="Simple Text" Name="lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value, Mode=TwoWay}" >
</TextBlock>

CHAPTER 16 ■ DATA BINDING 497

9551CH16 2/8/08 2:11 PM Page 497

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although you can’t add another binding to the FontSize property, you can bind the new
control—the TextBox—to the TextBlock.FontSize property. Here’s the markup you need:

<TextBox Text="{Binding ElementName=lblSampleText, Path=FontSize, Mode=TwoWay}">
</TextBox>

Now, whenever the TextBlock.FontSize property changes, the current value is inserted
into the text box. Even better, you can edit the value in the text box to apply a specific size.
Notice that in order for this example to work, the TextBox.Text property must use a two-way
binding so that values travel both ways. Otherwise, the text box will be able to display the
TextBlock.FontSize value but won’t be able to change it.

This example has a few quirks:

• Because the Slider.Value property is a double, you’ll end up with a fractional font size
when you drag the slider thumb. You can constrain the slider to whole numbers by set-
ting the TickFrequency property to 1 (or some other whole number interval) and setting
the IsSnapToTickEnabled property to true.

• The text box allows letters and other non-numeric characters. If you enter any, the
text box value can no longer be interpreted as a number. As a result, the data binding
silently fails, and the font size is set to 0. Another approach would be to handle key
presses in the text box to prevent invalid input altogether or to use data binding valida-
tion, as discussed later in this chapter.

• The changes you make in the text box aren’t applied until the text box loses focus (for
example, when you tab to another control). If this isn’t the behavior you want, you can
get an instantaneous refresh using the UpdateSourceTrigger property of the Binding
object, as you’ll learn shortly in the “Binding Updates” section.

Interestingly, the solution shown here isn’t the only way to connect the text box. It’s just as
reasonable to configure the text box so that it changes the Slider.Value property instead of the
TextBlock.FontSize property:

<TextBox Text="{Binding ElementName=sliderFontSize, Path=Value, Mode=TwoWay}">
</TextBox>

Now changing the text box triggers a change in the slider, which then applies the new font
to the text. Once again, this approach works only if you use two-way data binding.

And lastly, you can swap the roles of the slider and text box so that the slider binds to the
text box. To do this, you need to create an unbound TextBox and give it a name:

<TextBox Name="txtFontSize" Text="10">
</TextBox>

Then you can bind the Slider.Value property, as shown here:

<Slider Name="sliderFontSize" Margin="3"
Minimum="1" Maximum="40"
Value="{Binding ElementName=txtFontSize, Path=Text, Mode=TwoWay}"
TickFrequency="1" TickPlacement="TopLeft">
</Slider>

CHAPTER 16 ■ DATA BINDING498

9551CH16 2/8/08 2:11 PM Page 498

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now the slider is in control. When the window is first shown, it retrieves the TextBox.Text
property and uses that to set its Value property. When the user drags the slider thumb to a new
position, it uses the binding to update the text box. Or, the user can update the slider value
(and the font size of the sample text) by typing in the text box.

■Note If you bind the Slider.Value property, the text box behaves slightly differently than the previous two
examples. Any edits you make in the text box are applied immediately, rather than waiting until the text box
loses focus. You’ll learn more about controlling when an update takes place in the “Binding Updates” section.

As this example demonstrates, two-way bindings give you remarkable flexibility. You can
use them to apply changes from the source to the target and from the target to the source. You
can also apply them in combination to create a surprisingly complex code-free window.

Usually, the decision of where to place a binding expression is driven by the logic of your
coding model. In the previous example, it probably makes more sense to place the binding in
the TextBox.Text property rather than the Slider.Value property, because the text box is an
optional add-on to an otherwise complete example, not a core ingredient that the slider relies
on. It also makes more sense to bind the text box directly to the TextBlock.FontSize property
rather than the Slider.Value property. (Conceptually, you’re interested in reporting the current
font size, and the slider is just one of the ways this font size can be set. Even though the slider
position is the same as the font size, it’s an unnecessary extra detail if you’re trying to write the
cleanest possible markup.) Of course, these decisions are subjective and a matter of coding
style. The most important lesson is that all three approaches can give you the same behavior.

In the following sections, you’ll explore two details that this example relies on. First, you’ll
consider your choices for setting the direction of a binding. Then, you’ll see how you can tell
WPF exactly when it should update the source property in a two-way binding.

Binding Direction
So far, you’ve seen one-way and two-way data binding. WPF actually allows you to use one
of five values from the System.Windows.Data.BindingMode enumeration when setting the
Binding.Mode property. Table 16-1 has the full list.

Table 16-1. Values from the BindingMode Enumeration

Name Description

OneWay The target property is updated when the source property changes.

TwoWay The target property is updated when the source property changes, and the
source property is updated when the target property changes.

OneTime The target property is set initially based on the source property value.
However, changes are ignored from that point onward (unless the
binding is set to a completely different object or you call Binding-
Expression.UpdateTarget(), as described later in this chapter). Usually,
you’ll use this mode to reduce overhead if you know the source property
won’t change.

Continued

CHAPTER 16 ■ DATA BINDING 499

9551CH16 2/8/08 2:11 PM Page 499

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 16-1. Continued

Name Description

OneWayToSource Similar to OneWay but in reverse. The source property is updated when the
target property changes (which might seem a little backward), but the target
property is never updated.

Default The type of binding depends on the target property. It’s either TwoWay (for
user-settable properties, such as the TextBox.Text) or OneWay (for everything
else). All bindings use this approach unless you specify otherwise.

Figure 16-5 illustrates the difference. You’ve already seen OneWay and TwoWay. OneTime
is fairly straightforward. The other two choices bear some additional investigation.

Figure 16-5. Different ways to bind two properties

OneWayToSource
You might wonder why there’s both a OneWay and a OneWayToSource option—after all, both
values create a one-way binding that works in the same way. The only difference is where the
binding expression is placed. Essentially, OneWayToSource allows you to flip the source and
target by placing the expression in what would ordinarily be considered the binding source.

The most common reason to use this trick is to set a property that isn’t a dependency
property. As you learned at the beginning of this chapter, binding expressions can be used
only to set dependency properties. But by using OneWayToSource, you can overcome this
limitation, provided the property that’s supplying the value is itself a dependency property.

This technique isn’t terribly common when performing element-to-element binding,
because almost all element properties are dependency properties. One exception is the set
of inline elements that you can use to build documents (as you’ll see in Chapter 19). For
example, consider the following markup, which creates a FlowDocument that’s perfect for
displaying nicely formatted regions of static content:

<FlowDocumentScrollViewer>
<FlowDocument>
<Paragraph>This is a paragraph one.</Paragraph>
<Paragraph>This is paragraph two.</Paragraph>

</FlowDocument>
</FlowDocumentScrollViewer>

CHAPTER 16 ■ DATA BINDING500

9551CH16 2/8/08 2:11 PM Page 500

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The FlowDocument is placed inside a scrollable container (which is only one of several
possible containers you can use) and given two paragraphs with small amounts of text.

Now consider what happens if you want to bind some of the text in a paragraph to
another property. The first step is to wrap the text you want to change inside a Run object,
which represents any small unit of text inside a FlowDocument. The next step you might
attempt is to set the text of the run using a binding expression:

<FlowDocumentScrollViewer>
<FlowDocument>
<Paragraph>This is a paragraph one.</Paragraph>
<Paragraph>
<Run Text="{Binding ElementName=txtParagraph, Path=Text}"
Name="runParagraphTwo"></Run>

</Paragraph>
</FlowDocument>

</FlowDocumentScrollViewer>

In this example, the run attempts to pull its text out of a text box named txtParagraph.
Unfortunately, this code won’t work because Run.Text is not a dependency property, so it
doesn’t know what to do with your binding expression. The solution is to remove the binding
expression from the run and place it in the text box instead:

<TextBlock Margin="5">Content for second paragraph: </TextBlock>
<TextBox Margin="5" MinLines="2" TextWrapping="Wrap" Name="txtParagraph"
Text="{Binding ElementName=runParagraphTwo, Path=Text, Mode=OneWayToSource}">
</TextBox>

Now, the text is automatically copied out of the text box and into the run. Of course, you
could also use a two-way binding in the text box, which would incur a slight amount of extra
overhead. This would be the best way to go if there is some initial text in the run and you want
it to appear in the bound text box at the outset.

Default
Initially, it seems logical to assume that all bindings are one-way unless you explicitly specify
otherwise. (After all, that’s the way the simple slider example works.) However, this actually
isn’t the case. To demonstrate this fact to yourself, return to the example with the bound text
box that allows you to edit the current font size. If you remove the Mode=TwoWay setting, this
example still works just as well. That’s because WPF uses a different Mode default depending
on the property you’re binding. (Technically, there’s a tiny bit of metadata on every depend-
ency property—the FrameworkPropertyMetadata.BindsTwoWayByDefault flag—that
indicates whether that property should use one-way or two-way binding.)

Often, the default is exactly what you want. However, you can imagine an example with a
read-only text box that the user can’t change. In this case, you can reduce the overhead slightly
by setting the mode to use one-way binding.

As a general rule of thumb, it’s never a bad idea to explicitly set the mode. Even in the case
of a text box, it’s worth emphasizing that you want a two-way binding by including the Mode
property.

CHAPTER 16 ■ DATA BINDING 501

9551CH16 2/8/08 2:11 PM Page 501

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Binding Updates
In the example shown in Figure 16-4 (which binds TextBox.Text to TextBlock.FontSize), there’s
another quirk. As you change the displayed font size by typing in the text box, nothing hap-
pens. It’s not until you tab to another control that the change is applied. This behavior is
different from the behavior you see with the slider control. There, the new font size is applied
as you drag the slider thumb. There’s no need to tab away.

To understand this difference, you need to take a closer look at the binding expressions
used by these two controls. When you use OneWay or TwoWay binding, the changed value is
propagated from the source to the target immediately. In the case of the slider, there’s a one-
way binding expression in the TextBlock. Thus, changes in the Slider.Value property are
immediately applied to the TextBlock.FontSize property. The same behavior takes place in
the text box example—changes to the source (which is TextBlock.FontSize) affect the target
(TextBox.Text) immediately.

However, changes that flow in the reverse direction—from the target to the source—don’t
necessarily happen immediately. Instead, their behavior is governed by the Binding.Update-
SourceTrigger property (which takes one of the values listed in Table 16-2). When the text is
taken from the text box and used to update the TextBlock.FontSize property, you’re witnessing
an example of a target-to-source update that uses the UpdateSourceTrigger.LostFocus behavior.

Table 16-2. Values from the UpdateSourceTrigger Enumeration

Name Description

PropertyChanged The source is updated immediately when the target property changes.

LostFocus The source is updated when the target property changes and the target
loses focus.

Explicit The source is not updated unless you call the Binding-
Expression.UpdateSource() method.

Default The updating behavior is determined by the metadata of the target
property (technically, its FrameworkPropertyMetadata.DefaultUpdate-
SourceTrigger property). For most properties, the default behavior is
PropertyChanged, although the TextBox.Text property has a default
behavior of LostFocus.

Remember, the values in Table 16-2 have no effect over how the target is updated. They
simply control how the source is updated in a TwoWay or OneWayToSource binding.

With this knowledge, you can improve the text box example so that changes are applied to
the font size as the user types in the text box. Here’s how:

<TextBox Text="{Binding ElementName=txtSampleText, Path=FontSize, Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" Name="txtFontSize"></TextBox>

■Tip The default behavior of the TextBox.Text property is LostFocus, simply because the text in a text box
will change repeatedly as the user types, causing multiple refreshes. Depending on how the source control
updates itself, the PropertyChanged update mode can make the application feel more sluggish. Additionally,
it might cause the source object to refresh itself before an edit is complete, which can cause problems for
validation.

CHAPTER 16 ■ DATA BINDING502

9551CH16 2/8/08 2:11 PM Page 502

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The UpdateSourceTrigger.Explicit behavior is often a good compromise, although it
involves writing a bit of code. For example, in the text box example you could add an
Apply button that, when clicked, updates the font size. You would then use the
BindingExpression.UpdateSource() method to trigger an immediate refresh. Of course,
this raises two excellent questions—namely, what is a BindingExpression object, and how
do you get it?

A BindingExpression is just a slim package that wraps together two things: the Binding
object you’ve already learned about (provided through the BindingExpression.ParentBinding
property) and the object that’s being bound from the source (BindingExpression.DataItem).
In addition, the BindingExpression object provides two methods for triggering an immediate
update for one part of the binding: UpdateSource() and UpdateTarget().

To get a BindingExpression object, you use the GetBindingExpression() method, which
every element inherits from the base FrameworkElement class, and pass in the target property
that has the binding. Here’s an example that changes the font size in the TextBlock based on
the current text in the text box:

// Get the binding that's applied to the text box.
BindingExpression binding = txtFontSize.GetBindingExpression(TextBox.TextProperty);

// Update the linked source (the TextBlock).
binding.UpdateSource();

Binding to Objects That Aren’t Elements
So far, you’ve focused on adding bindings that link two elements. But in data-driven applica-
tions, it’s more common to create binding expressions that draw their data from a nonvisual
object. The only requirement is that the information you want to display must be stored in
public properties. The WPF data binding infrastructure won’t pick up private information or
public fields.

When binding to an object that isn’t an element, you need to give up the Binding.Element-
Name property and use one of the following properties instead:

• Source. This is a reference that points to the source object—in other words, the object
that’s supplying the data.

• RelativeSource. This points to the source object using a RelativeSource object, which
allows you to base your reference on the current element. This is a specialized tool
that’s handy when writing control templates and data templates.

• DataContext. If you don’t specify a source using the Source or RelativeSource property,
WPF searches up the element tree starting at the current element. It examines the Data-
Context property of each element and uses the first one that isn’t null. The DataContext
property is extremely useful if you need to bind several properties of the same object to
different elements, because you can set the DataContext property of a higher-level con-
tainer object rather than directly on the target element.

The following sections fill in a few more details about these three options.

CHAPTER 16 ■ DATA BINDING 503

9551CH16 2/8/08 2:11 PM Page 503

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Source
The Source property is quite straightforward. The only catch is that you need to have your
data object handy in order to bind it. As you’ll see, you can use several approaches for getting
the data object. You can pull it out of a resource, generate it programmatically, or get it with
the help of a data provider.

The simplest option is to point the Source to some static object that’s readily available.
For example, you could create a static object in your code and use that. Or, you could use an
ingredient from the .NET class library, as shown here:

<TextBlock Text="{Binding Source={x:Static SystemFonts.IconFontFamily},
Path=Source}"></TextBlock>

This binding expression gets the FontFamily object that’s provided by the static
SystemFonts.IconFontFamily property. (Notice that you need the help of the static markup
extension to set the Binding.Source property.) It then sets the Binding.Path property to the
FontFamily.Source property, which gives the name of the font family. The result is a single line
of text. In Windows Vista, the font name Segoe UI appears.

Another option is to bind to an object that you’ve previously created as a resource. For
example, this markup creates a FontFamily object that points to the Calibri font:

<Window.Resources>
<FontFamily x:Key="CustomFont">Calibri</FontFamily>

</Window.Resources>

And here’s a TextBlock that binds to this resource:

<TextBlock Text="{Binding Source={StaticResource CustomFont},
Path=Source}"></TextBlock>

Now the text you’ll see is Calibri.

RelativeSource
The RelativeSource property allows you to point to a source object based on its relation to the
target object. For example, you can use RelativeSource property to bind an element to itself or
to bind to a parent element that’s found an unknown number of steps up the element tree.

To set the Binding.RelativeSource property, you use a RelativeSource object. This makes
the syntax a little more convoluted, because you need to create a Binding object and create a
nested RelativeSource object inside. One option is to use the property-setting syntax instead
of the Binding markup extension. For example, the following code creates a Binding object for
the TextBlock.Text property. The Binding object uses a RelativeSource that searches out the
parent window and displays the window title.

<TextBlock>
<TextBlock.Text>
<Binding Path="Title">
<Binding.RelativeSource>
<RelativeSource Mode="FindAncestor" AncestorType="{x:Type Window}" />

</Binding.RelativeSource>
</Binding>

CHAPTER 16 ■ DATA BINDING504

9551CH16 2/8/08 2:11 PM Page 504

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</TextBlock.Text>
</TextBlock>

The RelativeSource object uses the FindAncestor mode, which tells it to search up the
element tree until it finds the type of element defined by the AncestorType property.

The more common way to write this binding is to combine it into one string using the
Binding and RelativeSource markup extensions, as shown here:

<TextBlock Text="{Binding Path=Title,
RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Window}} }">

</TextBlock>

The FindAncestor mode is only one of four options when you create a RelativeSource
object. Table 16-3 lists all four modes.

Table 16-3. Values from the RelativeSourceMode Enumeration

Name Description

Self The expression binds to another property in the same element. (You saw an
example of this technique in Chapter 10, where it was used to display the text
that’s associated with a command in the control that triggers the command.)

FindAncestor The expression binds to a parent element. WPF will search up the element
tree until it finds the parent you want. To specify the parent, you must also set
the AncestorType property to indicate the type of parent element you want to
find. Optionally, you can use the AncestorLevel property to skip a certain
number of occurrences of the specified element. For example, if you want to
bind to the third element of type ListBoxItem when going up the tree, you
would set AncestorType={x:Type ListBoxItem} and AncestorLevel=3, thereby
skipping the first two ListBoxItems. By default, AncestorLevel is 1, and the
search stops at the first matching element.

PreviousData The expression binds to the previous data item in a data-bound list. You
would use this in a list item.

TemplatedParent The expression binds to the element on which the template is applied. This
mode works only if your binding is located inside a control template or data
template.

At first glance, the RelativeSource property seems like an unnecessary way to complicate
your markup. After all, why not bind directly to the source you want using the Source or
ElementName property? However, this isn’t always possible, usually because the markup the
source and target objects are in different chunks of markup. This happens when you’re creat-
ing control templates and data templates. For example, if you’re building a data template that
changes the way items are presented in a list, you might need to access the top-level ListBox
object to read a property. You’ll see several examples that use the RelativeSource binding in
Chapter 17 and Chapter 18.

DataContext
In some cases, you’ll have a number of elements that bind to the same object. For example,
consider the following group of TextBlock elements, each of which uses a similar binding
expression to pull out different details about the default icon font, including its line spacing

CHAPTER 16 ■ DATA BINDING 505

9551CH16 2/8/08 2:11 PM Page 505

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

and the style and weight of the first typeface it provides (both of which are simply Regular).
You can use the Source property for each one, but this results in fairly lengthy markup:

<StackPanel DataContext="{x:Static SystemFonts.IconFontFamily}">
<TextBlock Text="{Binding Source={x:Static SystemFonts.IconFontFamily},
Path=Source}"></TextBlock>
<TextBlock Text="{Binding Source={x:Static SystemFonts.IconFontFamily},
Path=LineSpacing}"></TextBlock>
<TextBlock Text="{Binding Source={x:Static SystemFonts.IconFontFamily},
Path=FamilyTypefaces[0].Style}"></TextBlock>
<TextBlock Text="{Binding Source={x:Static SystemFonts.IconFontFamily},
Path=FamilyTypefaces[0].Weight}"></TextBlock>

</StackPanel>

In this situation, it’s cleaner and more flexible to define the binding source once using
the FrameworkElement.DataContext property. In this example, it makes sense to set the
DataContext property of the StackPanel that contains all the TextBlock elements. (You could
also set the DataContext property at an even higher level—for example, the entire window—
but it makes sense to define it as narrowly as possible to make your intentions clear.)

You can set the DataContext property of an element in the same way that you set the
Binding.Source property. In other words, you can supply your object inline, pull it out of a
static property, or pull it out of a resource, as shown here:

<StackPanel DataContext="{x:Static SystemFonts.IconFontFamily}">

Now you can streamline your binding expressions by leaving out the source information:

<TextBlock Margin="5" Text="{Binding Path=Source}"></TextBlock>

When the source information is missing from a binding expression, WPF checks the
DataContext property of that element. If it’s null, WPF searches up the element tree looking
for the first data context that isn’t null. (Initially, the DataContext property of all elements is
null.) If it finds a data context, it uses that for the binding. If it doesn’t, the binding expression
doesn’t apply any value to the target property.

■Note If you create a binding that explicitly specifies a source using the Source property, your element
uses that source instead of any data context that might be available.

This example shows you how you can create a basic binding to an object that isn’t an ele-
ment. However, to use this technique in a realistic application, you need to pick up a few more
skills. In the next section, you’ll learn how to display information drawn from a database by
building on these data binding techniques.

CHAPTER 16 ■ DATA BINDING506

9551CH16 2/8/08 2:11 PM Page 506

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Binding to a Database with Custom Objects
When developers hear the term data binding, they often think of one specific application—
pulling information out of a database and showing it onscreen with little or no code.

As you’ve already seen, data binding in WPF is a much more general tool. Even if your
application never comes into contact with a database, it’s still likely to use data binding to
automate the way elements interact or translate an object model into a suitable display.
However, you can learn a lot about the details of object binding by considering a traditional
example that queries and updates a table in a database. But before you get there, you need to
consider the custom data access component and data object that this example uses.

Building a Data Access Component
In professional applications, database code is not embedded in the code-behind class for a
window but encapsulated in a dedicated class. For even better componentization, these data
access classes can be pulled out of your application altogether and compiled in a separate
DLL component. This is particularly true when writing code that accesses a database (because
this code tends to be extremely performance-sensitive), but it’s a good design no matter where
your data lives.

DESIGNING DATA ACCESS COMPONENTS

No matter how you plan to use data binding (or even if you don’t), your data access code should always be
coded in a separate class. This approach is the only way you have the slightest chance to make sure you can
efficiently maintain, optimize, troubleshoot, and (optionally) reuse your data access code.

When creating a data class, you should follow a few basic guidelines in this section:

• Open and close connections quickly. Open the database connection in every method call, and close it
before the method ends. This way, a connection can’t be inadvertently left open. One way to ensure the
connection is closed at the appropriate time is with a using block.

• Implement error handling. Use error handling to make sure that connections are closed even if an
exception occurs.

• Follow stateless design practices. Accept all the information needed for a method in its parameters,
and return all the retrieved data through the return value. This avoids complications in a number of
scenarios (for example, if you need to create a multithreaded application or host your database
component on a server).

• Store the connection string in one place. Ideally, this is the configuration file for your application.

The database component that’s shown in the following example retrieves a table of prod-
uct information from the Store database, which is a sample database for the fictional IBuySpy
store included with some Microsoft case studies. You can get a script to install this database
with the online samples for this chapter. Figure 16-6 shows two tables in the Store database
and their schemas.

CHAPTER 16 ■ DATA BINDING 507

9551CH16 2/8/08 2:11 PM Page 507

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 16-6. A portion of the Store database

The data access class is exceedingly simple—it provides just a single method that allows
the caller to retrieve one product record. Here’s the basic outline:

public class StoreDB
{

// Get the connection string from the current configuration file.
private string connectionString = Properties.Settings.Default.StoreDatabase;

public Product GetProduct(int ID)
{

...
}

}

The query is performed through a stored procedure in the database named GetProduct.
The connection string isn’t hard-coded—instead, it’s retrieved through an application setting
in the .config file for this application. (To view or set application settings, double-click the
Properties node in the Solution Explorer, and then click the Settings tab.)

When other windows need data, they call the StoreDB.GetProduct() method to retrieve a
Product object. The Product object is a custom object that has a sole purpose in life—to repre-
sent the information for a single row in the Products table. You’ll consider it in the next
section.

You have several options for making the StoreDB class available to the windows in your
application:

• The window could create an instance of StoreDB whenever it needs to access the
database.

• You could change the methods in the StoreDB class to be static.

• You could create a single instance of StoreDB and make it available through a static
property in another class (following the “factory” pattern).

The first two options are reasonable, but both of them limit your flexibility. The first
choice prevents you from caching data objects for use in multiple windows. Even if you don’t
want to use that caching right away, it’s worth designing your application in such a way that
it’s easy to implement later. Similarly, the second approach assumes you won’t have any
instance-specific state that you need to retain in the StoreDB class. Although this is a good

CHAPTER 16 ■ DATA BINDING508

9551CH16 2/8/08 2:11 PM Page 508

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

design principle, you might want to retain some details (such as the connection string) in
memory. If you convert the StoreDB class to use static methods, it becomes much more diffi-
cult to access different instances of the Store database in different back-end data stores.

Ultimately, the third option is the most flexible. It preserves the switchboard design by
forcing all the windows to work through a single property. Here’s an example that makes an
instance of StoreDB available through the Application class:

public partial class App : System.Windows.Application
{

private static StoreDB storeDB = new StoreDB();
public static StoreDB StoreDB
{

get { return storeDB; }
}

}

In this book, we’re primarily interested with how data objects can be bound to WPF
elements. The actual process that deals with creating and filling these data objects (as well as
other implementation details, such as whether StoreDB caches the data over several method
calls, whether it uses stored procedures instead of inline queries, whether it fetches the data
from a local XML file when offline, and so on) isn’t our focus. However, just to get an under-
standing of what’s taking place, here’s the complete code:

public class StoreDB
{

private string connectionString = Properties.Settings.Default.StoreDatabase;

public Product GetProduct(int ID)
{

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand("GetProductByID", con);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue("@ProductID", ID);

try
{

con.Open();
SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SingleRow);
if (reader.Read())
{

// Create a Product object that wraps the
// current record.
Product product = new Product((string)reader["ModelNumber"],

(string)reader["ModelName"], (decimal)reader["UnitCost"],
(string)reader["Description"] ,
(string)reader["ProductImage"]);

return(product);
}
else

CHAPTER 16 ■ DATA BINDING 509

9551CH16 2/8/08 2:11 PM Page 509

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
return null;

}
}
finally
{

con.Close();
}

}
}

■Note Currently, the GetProduct() method doesn’t include any exception handling code, so all exceptions
will bubble up the calling code. This is a reasonable design choice, but you might want to catch the excep-
tion in GetProduct(), perform cleanup or logging as required, and then rethrow the exception to notify the
calling code of the problem. This design pattern is called caller inform.

Building a Data Object
The data object is the information package that you plan to display in your user interface.
Any class works, provided it consists of public properties (fields and private properties aren’t
supported). In addition, if you want to use this object to make changes (via two-way binding),
the properties cannot be read-only.

Here’s the Product object that’s used by StoreDB:

public class Product
{

private string modelNumber;
public string ModelNumber
{

get { return modelNumber; }
set { modelNumber = value; }

}

private string modelName;
public string ModelName
{

get { return modelName; }
set { modelName = value; }

}

private decimal unitCost;
public decimal UnitCost
{

get { return unitCost; }
set { unitCost = value; }

}

CHAPTER 16 ■ DATA BINDING510

9551CH16 2/8/08 2:11 PM Page 510

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

private string description;
public string Description
{

get { return description; }
set { description = value; }

}

public Product(string modelNumber, string modelName,
decimal unitCost, string description)

{
ModelNumber = modelNumber;
ModelName = modelName;
UnitCost = unitCost;
Description = description;

}
}

Displaying the Bound Object
The final step is to create an instance of the Product object and then bind it to your controls.
Although you could create a Product object and store it as a resource or a static property, nei-
ther approach makes much sense. Instead, you need to use StoreDB to create the appropriate
object at runtime and then bind that to your window.

■Note Although the declarative no-code approach sounds more elegant, there are plenty of good reasons
to mix a little code into your data-bound windows. For example, if you’re querying a database, you probably
want to handle the connection in your code so that you can decide how to handle exceptions and inform the
user of problems.

Consider the simple window shown in Figure 16-7. It allows the user to supply a product
code, and it then shows the corresponding product in the Grid in the lower portion of the
window.

When you design this window, you don’t have access to the Product object that will supply
the data at runtime. However, you can still create your bindings without indicating the data
source. You simply need to indicate the property that each element uses from the Product
class.

Here’s the full markup for displaying a Product object:

<Grid Name="gridProductDetails">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

CHAPTER 16 ■ DATA BINDING 511

9551CH16 2/8/08 2:11 PM Page 511

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="*"></RowDefinition>

</Grid.RowDefinitions>

<TextBlock Margin="7">Model Number:</TextBlock>
<TextBox Margin="5" Grid.Column="1"
Text="{Binding Path=ModelNumber}"></TextBox>
<TextBlock Margin="7" Grid.Row="1">Model Name:</TextBlock>
<TextBox Margin="5" Grid.Row="1" Grid.Column="1"
Text="{Binding Path=ModelName}"></TextBox>
<TextBlock Margin="7" Grid.Row="2">Unit Cost:</TextBlock>
<TextBox Margin="5" Grid.Row="2" Grid.Column="1"
Text="{Binding Path=UnitCost}"></TextBox>
<TextBlock Margin="7,7,7,0" Grid.Row="3">Description:</TextBlock>
<TextBox Margin="7" Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="2"
TextWrapping="Wrap" Text="{Binding Path=Description}"></TextBox>

</Grid>

Figure 16-7. Querying a product

Notice that the Grid wrapping all these details is given a name so that you can manipulate
it in code and complete your data bindings.

When you first run this application, no information will appear. Even though you’ve
defined your bindings, no source object is available.

When the user clicks the button at runtime, you use the StoreDB class to get the appropri-
ate product data. Although you could create each binding programmatically, this wouldn’t
make much sense (and it wouldn’t save much code over just populating the controls by hand).
However, the DataContext property provides a perfect shortcut. If you set it for the Grid that

CHAPTER 16 ■ DATA BINDING512

9551CH16 2/8/08 2:11 PM Page 512

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

contains all your data binding expressions, all your binding expressions will use it to fill
themselves with data.

Here’s the event handling code that reacts when the user clicks the button:

private void cmdGetProduct_Click(object sender, RoutedEventArgs e)
{

int ID;
if (Int32.TryParse(txtID.Text, out ID))
{

try
{

gridProductDetails.DataContext = App.StoreDB.GetProduct(ID);
}
catch
{

MessageBox.Show("Error contacting database.");
}

}
else
{

MessageBox.Show("Invalid ID.");
}

}

Updating the Database
You don’t need to do anything extra to enable database updates with this example. As you
learned earlier, the TextBox.Text property uses two-way binding by default. As a result, the
Product object is modified as you edit the text in the text boxes. (Technically, each property
is updated when you tab to a new field, because the default source update mode for the
TextBox.Text property is LostFocus.)

You can commit changes to the database at any time. All you need is to add an
UpdateProduct() method to the StoreDB class and an Update button the window. When
clicked, your code can grab the current Product object from the data context and use it to
commit the update:

private void cmdUpdateProduct_Click(object sender, RoutedEventArgs e)
{

Product product = (Product)gridProductDetails.DataContext;
try
{

App.StoreDB.UpdateProduct(product);
}
catch
{

MessageBox.Show("Error contacting database.");
}

}

CHAPTER 16 ■ DATA BINDING 513

9551CH16 2/8/08 2:11 PM Page 513

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This example has one potential stumbling block. When you click the Update button, the
focus changes to that button, and any uncommitted edit is applied to the Product object.
However, if you set the Update button to be a default button (by setting IsDefault to true),
there’s another possibility. A user could make a change in one of the fields and hit Enter to
trigger the update process without committing the last change. To avoid this possibility, you
can explicitly force the focus to change before you execute any database code, like this:

FocusManager.SetFocusedElement(this, (Button)sender);

Change Notification
The Product binding example works so well because each Product object is essentially fixed—
it never changes (except if the user edits the text in one of the linked text boxes).

For simple scenarios, where you’re primarily interested in displaying content and letting
the user edit it, this behavior is perfectly acceptable. However, it’s not difficult to imagine a dif-
ferent situation, where the bound Product object might be modified elsewhere in your code.
For example, imagine an Increase Price button that executes this line of code:

product.UnitCost *= 1.1M;

■Note Although you could retrieve the Product object from the data context, this example assumes you’re
also storing it as a member variable in your window class, which simplifies your code and requires less
type casting.

When you run this code, you’ll find that even though the Product object has been
changed, the old value remains in the text box. That’s because the text box has no way of
knowing that you’ve changed a value.

You can use three approaches to solve this problem:

• You can make each property in the Product class a dependency property using the
syntax you learned about in Chapter 6. (In this case, your class must derive from
DependencyObject.) Although this approach gets WPF to do the work for you (which is
nice), it makes the most sense in elements—classes that have a visual appearance in a
window. It’s not the most natural approach for data classes like Product.

• You can raise an event for each property. In this case, the event must have the name
PropertyNameChanged (for example, UnitCostChanged). It’s up to you to fire the event
when the property is changed.

• You can implement the System.ComponentModel.INotifyPropertyChanged interface,
which requires a single event named PropertyChanged. You must then raise the Property-
Changed event whenever a property changes and indicate which property has changed
by supplying the property name as a string. It’s still up to you to raise this event when a
property changes, but you don’t need to define a separate event for each property.

CHAPTER 16 ■ DATA BINDING514

9551CH16 2/8/08 2:11 PM Page 514

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The first approach relies on the WPF dependency property infrastructure, while both the
second and the third rely on events. Usually, when creating a data object, you’ll use the third
approach. It’s the simplest choice for nonelement classes.

■Note You can actually use one other approach. If you suspect a change has been made to a bound object
and that bound object doesn’t support change notifications in any of the proper ways, you can retrieve the
BindingExpression object (using the FrameworkElement.GetBindingExpression() method) and call Binding-
Expression.UpdateTarget() to trigger a refresh. Obviously, this is the most awkward solution—you can almost
see the duct tape that’s holding it together.

Here’s the definition for a revamped Product class that uses the INotifyPropertyChanged
interface, with the code for the implementation of the PropertyChanged event:

public class Product : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;
public void OnPropertyChanged(PropertyChangedEventArgs e)
{

if (PropertyChanged != null)
PropertyChanged(this, e);

}
}

Now you simply need to fire the PropertyChanged event in all your property setters:

private decimal unitCost;
public decimal UnitCost
{

get { return unitCost; }
set {

unitCost = value;
OnPropertyChanged(new PropertyChangedEventArgs("UnitCost"));

}
}

If you use this version of the Product class in the previous example, you’ll get the behavior
you expect. When you change the current Product object, the new information will appear in
the text box immediately.

■Tip If several values have changed, you can call OnPropertyChanged() and pass in an empty string. This
tells WPF to reevaluate the binding expressions that are bound to any property in your class.

CHAPTER 16 ■ DATA BINDING 515

9551CH16 2/8/08 2:11 PM Page 515

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Binding to a Collection of Objects
Binding to a single object is quite straightforward. But life gets more interesting when you
need to bind to some collection of objects—for example, all the products in a table.

Although every dependency property supports the single-value binding you’ve seen so
far, collection binding requires an element with a bit more intelligence. In WPF, all the classes
that derive from ItemsControl have the ability to show an entire list of items. Data binding
possibilities include the ListBox, ComboBox, and ListView (and the Menu and TreeView for
hierarchical data).

■Tip Although it seems like WPF offers only a small set of list controls, these controls allow you to show
your data in a virtually unlimited number of different ways. That’s because the list controls support data tem-
plates, which allow you to control exactly how items are displayed. You’ll learn more about data templates in
Chapter 17.

To support collection binding, the ItemsControl class defines the three key properties
listed in Table 16-4.

Table 16-4. Properties in the ItemsControl Class for Data Binding

Name Description

ItemsSource Points to the collection that has all the objects that will be shown in
the list.

DisplayMemberPath Identifies the property that will be used to create the display text for
each item.

ItemTemplate Accepts a data template that will be used to create the visual
appearance of each item. This property is far more powerful than
DisplayMemberPath, and you’ll learn how to use it in Chapter 17.

At this point, you’re probably wondering exactly what type of collections you can stuff in
the ItemSource property. Happily, you can use just about anything. All you need is support
for the IEnumerable interface, which is provided by arrays, all types of collections, and many
more specialized objects that wrap groups of items. However, the support you get from a basic
IEnumerable interface is limited to read-only binding. If you want to edit the collection (for
example, you want to allow inserts and deletions), you need a bit more infrastructure, as you’ll
see shortly.

Displaying and Editing Collection Items
Consider the window shown in Figure 16-8, which shows a list of products. When you choose a
product, the information for that product appears in the bottom section of the window, where
you can edit it. (In this example, a GridSplitter lets you adjust the space given to the top and
bottom portions of the window.)

CHAPTER 16 ■ DATA BINDING516

9551CH16 2/8/08 2:11 PM Page 516

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To create this example, you need to begin by building your data access logic. In this case,
the StoreDB.GetProducts() method retrieves the list of all the products in the database using
the GetProducts stored procedure. A Product object is created for each record and added to a
generic List collection. (You could use any collection here—for example, an array or a weakly
typed ArrayList would work equivalently.)

Figure 16-8. A list of products

Here’s the GetProducts() code:

public List<Product> GetProducts()
{

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand("GetProducts", con);
cmd.CommandType = CommandType.StoredProcedure;

List<Product> products = new List<Product>();
try
{

con.Open();
SqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{

CHAPTER 16 ■ DATA BINDING 517

9551CH16 2/8/08 2:11 PM Page 517

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Create a Product object that wraps the
// current record.
Product product = new Product((string)reader["ModelNumber"],
(string)reader["ModelName"], (decimal)reader["UnitCost"],
(string)reader["Description"], (string)reader["CategoryName"],
(string)reader["ProductImage"]);

// Add to collection
products.Add(product);

}
}
finally
{

con.Close();
}
return products;

}

When the Get Products button is clicked, the event handling code calls the GetProducts()
method and supplies it as the ItemsSource for list. The collection is also stored as a member
variable in the window class for easier access elsewhere in your code.

private List<Product> products;

private void cmdGetProducts_Click(object sender, RoutedEventArgs e)
{

products = App.StoreDB.GetProducts();
lstProducts.ItemsSource = products;

}

This successfully fills the list with Product objects. However, the list doesn’t know how to
display a product object, so it will simply call the ToString() method. Because this method
hasn’t been overridden in the Product class, this has the unimpressive result of showing the
fully qualified class name for every item (see Figure 16-9).

You have three options to solve this problem:

• Set the DisplayMemberPath property of the list. For example, set this to ModelName to
get the result shown in Figure 16-9.

• Override the ToString() method to return more useful information. For example, you
could return a string with the model number and model name of each item. This
approach gives you a way to show more than one property in the list (for example, it’s
great for combining the FirstName and LastName property in a Customer class). How-
ever, you still don’t have much control over how the data is presented.

• Supply a data template. This way, you can show any arrangement of property values
(and along with fixed text). You’ll learn how to use this trick in Chapter 17.

CHAPTER 16 ■ DATA BINDING518

9551CH16 2/8/08 2:11 PM Page 518

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Once you’ve decided how to display information in the list, you’re ready to move on to the
second challenge: displaying the details for the currently selected item in the grid that appears
below the list. You could handle this challenge by responding to the SelectionChanged event
and manually changing the data context of the grid, but there’s a quicker approach that doesn’t
require any code. You simply need to set a binding expression for the Grid.DataContent property
that pulls the selected Product object out of the list, as shown here:

<Grid DataContext="{Binding ElementName=lstProducts, Path=SelectedItem}">
...

</Grid>

Figure 16-9. An unhelpful bound list

When the window first appears, nothing is selected in the list. The ListBox.SelectedItem
property is null, and therefore the Grid.DataContext is too, and no information appears. As
soon as you select an item, the data context is set to the corresponding object, and all the
information appears.

CHAPTER 16 ■ DATA BINDING 519

9551CH16 2/8/08 2:11 PM Page 519

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you try this example, you’ll be surprised to see that it’s already fully functional. You can
edit product items, navigate away (using the list), and then return to see that your edits were
successfully committed. In fact, you can even change a value that affects the display text in the
list. If you modify the model name and tab to another control, the corresponding entry in
the list is refreshed automatically. (Experienced developers will recognize this as a frill that
Windows Forms applications lacked.)

■Tip To prevent a field from being edited, set the IsLocked property of the text box to true or, better yet,
use a read-only control like a TextBlock.

MASTER-DETAILS DISPLAY

As you’ve seen, you can bind other elements to the SelectedItem property of your list to show more details
about the currently selected item. Interestingly, you can use a similar technique to build a master-details dis-
play of your data. For example, you can create a window that shows a list of categories and a list of products.
When the user chooses a category in the first list, you can show just the products that belong to that cate-
gory in the second list.

To pull this off, you need to have a parent data object that provides a collection of related child data
objects through a property. For example, you could build a Category product that provides a property named
Category.Products with the products that belong to that category. (In fact, you can find an example of a Cate-
gory class that’s designed like this in Chapter 18.) You can then build a master-details display with two lists.
Fill your first list with Category objects. To show the related products, bind your second list—the list that dis-
plays products—to the SelectedItem.Products property of the first list. This tells the second list to grab the
current Category object, extract its collection of linked Product objects, and display them.

You can find an example that uses related data in Chapter 18, with a TreeView that shows a categorized
list of products. You’ll see two versions of the example—one that uses Category and Product objects, and
one that uses the ADO.NET DataRelation object.

Of course, to complete this example, from an application perspective you’ll need to sup-
ply some code. For example, you might need an UpdateProducts() method that accepts your
collection or products and executes the appropriate statements. Because an ordinary .NET
object doesn’t provide any change tracking, this is a situation where you might want to con-
sider using the ADO.NET DataSet (as described a little later in this chapter). Alternatively, you
might want to force users to update records one at a time. (One option is to disable the list
when text is modified in a text box and force the user to then cancel the change by clicking
Cancel or apply it immediately by clicking Update.)

Inserting and Removing Collection Items
One limitation of the previous example is that it won’t pick up changes you make to the collec-
tion. It notices changed Product objects, but it won’t update the list if you add a new item or
remove one through code.

CHAPTER 16 ■ DATA BINDING520

9551CH16 2/8/08 2:11 PM Page 520

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, imagine you add a Delete button that executes this code:

private void cmdDeleteProduct_Click(object sender, RoutedEventArgs e)
{

products.Remove((Product)lstProducts.SelectedItem);
}

The deleted item is removed from the collection, but it remains stubbornly visible in the
bound list.

To enable collection change tracking, you need to use a collection that implements
the INotifyCollectionChanged interface. Most generic collections don’t, including the List
collection used in the current example. In fact, WPF includes a single collection that uses
INotifyCollectionChanged: the ObservableCollection class.

■Note If you have an object model that you’re porting over from the Windows Forms world, you can use the
Windows Forms equivalent of ObservableCollection, which is BindingList. The BindingList collection implements
IBindingList instead of INotifyCollectionChanged, which includes a ListChanged event that plays the same role
as the INotifyCollectionChanged.CollectionChanged event. In addition, you can derive from BindingList to gain
additional features for sorting and item creation in the Windows Forms DataGridView control.

You can derive a custom collection from ObservableCollection to customize the
way it works, but that’s not necessary. In the current example, it’s enough to replace
the List<Product> object with an ObservableCollection<Product>, as shown here:

public List<Product> GetProducts()
{

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand("GetProducts", con);
cmd.CommandType = CommandType.StoredProcedure;

ObservableCollection<Product> products = new ObservableCollection<Product>();
...

The return type can be left as List<Product>, because the ObservableCollection class
derives from the List class. To make this example just a bit more generic, you could use
ICollection<Product> for the return type, because the ICollection interface has all the
members you need to use.

Now, if you remove or add an item programmatically, the list is refreshed accordingly. Of
course, it’s still up to you to create the data access code that takes place before the collection is
modified—for example, the code that removes the product record from the back-end database.

Binding to the ADO.NET Objects
All the features you’ve learned about with custom objects also work with the ADO.NET discon-
nected data objects.

CHAPTER 16 ■ DATA BINDING 521

9551CH16 2/8/08 2:11 PM Page 521

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, you could create the same user interface you see in Figure 16-9 but use the
DataSet, DataTable, and DataRow on the back end, rather than the custom Product class and
the ObservableCollection.

To try it, start by considering a version of the GetProducts() method that extracts the same
data but packages it into a DataTable:

public DataTable GetProducts()
{

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand("GetProducts", con);
cmd.CommandType = CommandType.StoredProcedure;
SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet ds = new DataSet();
adapter.Fill(ds, "Products");
return ds.Tables[0];

}

You can retrieve this DataTable and bind it to the list in almost the same way you did with
the ObservableCollection. The only difference is that you can’t bind directly to the DataTable
itself. Instead, you need to go through an intermediary known as the DataView. Although you
can create a DataView by hand, every DataTable has a ready-made DataView object available
through the DataTable.DefaultView property.

■Note This limitation is nothing new. Even in a Windows Forms application, all DataTable data binding
goes through a DataView. The difference is that the Windows Forms universe can conceal this fact. It allows
you to write code that appears to bind directly to a DataTable, when in reality it uses the DataView that’s
provided by the DataTable.DefaultView property.

Here’s the code you need:

private DataTable products;

private void cmdGetProducts_Click(object sender, RoutedEventArgs e)
{

products = App.StoreDB.GetProducts();
lstProducts.ItemsSource = products.DefaultView;

}

Now the list will create a separate entry for each DataRow object in the DataTable.Rows
collection. To determine what content is shown in the list, you need to set DisplayMember-
Path property with the name of the field you want to show or use a data template (as
described in Chapter 17).

The nice aspect of this example is that once you’ve changed the code that fetches your
data, you don’t need to make any more modifications. When an item is selected in the list,
the Grid underneath grabs the selected item for its data context. The markup you used with the
ProductList collection still works, because the property names of the Product class match
the field names of the DataRow.

CHAPTER 16 ■ DATA BINDING522

9551CH16 2/8/08 2:11 PM Page 522

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Another nice feature in this example is that you don’t need to take any extra steps
to implement change notifications. That’s because the DataView class implements the
IBindingList interface, which allows it to notify the WPF infrastructure if a new DataRow
is added or an existing one is removed.

However, you do need to be a little careful when removing a DataRow object. It might
occur to you to use code like this to delete the currently selected record:

products.Rows.Remove((DataRow)lstProducts.SelectedItem);

This code is wrong on two counts. First, the selected item in the list isn’t a DataRow
object—it’s a thin DataRowView wrapper that’s provided by the DataView. Second, you proba-
bly don’t want to remove your DataRow from the collection of rows in the table. Instead, you
probably want to mark it as deleted so that when you commit the changes to the database, the
corresponding record is removed.

Here’s the correct code, which gets the selected DataRowView, uses its Row property to
find the corresponding DataRow object, and calls its Delete() method to mark the row for
upcoming deletion:

((DataRowView)lstProducts.SelectedItem).Row.Delete();

At this point, the scheduled-to-be-deleted DataRow disappears from the list, even though
it’s technically still in the DataTable.Rows collection. That’s because the default filtering set-
tings in the DataView hide all deleted records. You’ll learn more about filtering in Chapter 17.

Binding to a LINQ Expression
One of the key reasons to prefer .NET 3.5 over .NET 3.0 is its support for Language Integrated
Query (LINQ), which is an all-purpose query syntax that works across a variety of data sources
and is closely integrated with the C# language. LINQ works with any data source that has a
LINQ provider. Using the support that’s included with .NET 3.5, you can use similarly struc-
tured LINQ queries to retrieve data from an in-memory collection, an XML file, or a SQL
Server database. And as with other query languages, LINQ allows you to apply filtering, sort-
ing, grouping, and transformations to the data you retrieve.

Although LINQ is somewhat outside the scope of this chapter, you can learn a lot from a
simple example. For example, imagine you have a collection of Product objects, named prod-
ucts, and you want to create a second collection that contains only those products that exceed
$100 in cost. Using procedural code, you can write something like this:

// Get the full list of products.
List<Product> products = App.StoreDB.GetProducts();

// Create a second collection with matching products.
List<Product> matches = new List<Product>();
foreach (Product product in products)
{

if (product.UnitCost >= 100)
{

matches.Add(product);
}

}

CHAPTER 16 ■ DATA BINDING 523

9551CH16 2/8/08 2:11 PM Page 523

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Using LINQ, you can use the following expression, which is far more concise:

// Get the full list of products.
List<Product> products = App.StoreDB.GetProducts();

// Create a second collection with matching products.
IEnumerable<Product> matches = from product in products

where product.UnitCost >= 100
select product;

This example uses LINQ to Collections, which means it uses a LINQ expression to query the
data in an in-memory collection. LINQ expressions use a set of new language keywords, includ-
ing from, in, where, and select. These LINQ keywords are a genuine part of the C# language.

■Note A full discussion of LINQ is beyond the scope of this book. (For a detailed treatment, refer
to the LINQ developer center at http://msdn.microsoft.com/data/ref/linq or the huge catalog
of LINQ examples at http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx.)

LINQ revolves around the IEnumerable<T> interface. No matter what data source you
use, every LINQ expression returns some object that implements IEnumerable<T>. Because
IEnumerable<T> extends IEnumerable, you can bind it in a WPF window just as you bind an
ordinary collection:

lstProducts.ItemsSource = matches;

That said, there are a few quirks worth considering. The following sections give you the
details.

Converting IEnumerable<T> to an Ordinary Collection
Unlike ObservableCollection and the DataTable classes, the IEnumerable<T> interface does
not provide a way to add or remove items. If you need this capability, you need to first convert
your IEnumerable<T> object into an array or List collection using the ToArray() or ToList()
method.

Here’s an example that uses ToList() to convert the result of a LINQ query (shown previ-
ously) into a strongly typed List collection of Product objects:

List<Product> productMatches = matches.ToList();

■Note ToList() is an extension method, which means it’s defined in a different class from the one in which
is used. Technically, ToList() is defined in the System.Linq.Enumerable helper class, and it’s available to all
IEnumerable<T> objects. However, it won’t be available if the Enumerable class isn’t in scope, which means
the code shown here will not work if you haven’t imported the System.Linq namespace.

CHAPTER 16 ■ DATA BINDING524

9551CH16 2/8/08 2:11 PM Page 524

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn.microsoft.com/data/ref/linq
http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx

The ToList() method causes the LINQ expression to be evaluated immediately. The end
result is an ordinary collection, which you can deal with in all the usual ways. For example,
you can wrap it in an ObservableCollection to get notification events, so any changes you
make are reflected in bound controls immediately:

ObservableCollection<Product> productMatchesTracked =
new ObservableCollection<Product>(productMatches);

You can then bind the productMatchesTracked collection to a control in your window.

Deferred Execution
LINQ uses deferred execution. Contrary to what you might expect, the result of a LINQ expres-
sion (such as the matches object in the previous example) isn’t a straightforward collection.
Instead, it’s a specialized LINQ object that has the ability to fetch the data when you need it,
rather than when the LINQ expression is created.

In this example, the matches object is an instance of the WhereIterator class, which is a
private class that’s nested inside the System.Linq.Enumerable class:

matches = from product in products
where product.UnitCost >= 100
select product;

Depending on the specific query you use, a LINQ expression might return a different
object. For example, a union expression that combines data from two different collections
would return an instance of the private UnionIterator class. Or, if you simplify the query by
removing the where clause, you’ll wind up with a simple SelectIterator. You don’t actually need
to know the specific iterator class that your code uses because you interact with the results
through the IEnumerable<T> interface. (But if you’re curious, you can determine the object
type at runtime by hovering over the appropriate variable in Visual Studio while in break
mode.)

The LINQ iterator objects add an extra layer between defining a LINQ expression and exe-
cuting it. As soon as you iterate over a LINQ iterator like WhereIterator, it retrieves the data it
needs. For example, if you write a foreach block that moves through the matches collection,
this action forces the LINQ expression to be evaluated. The same thing happens when you
bind an IEnumerable<T> object to a WPF window, in which case the WPF data binding infra-
structure iterates over its contents.

■Note There’s no technical reason why LINQ needs to use deferred execution, but there are many reasons
why it’s a good approach. In many cases, it allows LINQ to use performance optimization techniques that
wouldn’t otherwise be possible. For example, when using database relationships with LINQ to SQL, you can
avoid loading related data that you don’t actually use. Deferred execution also allows optimizations when
you create LINQ queries that act on top of other LINQ queries.

CHAPTER 16 ■ DATA BINDING 525

9551CH16 2/8/08 2:11 PM Page 525

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DEFERRED EXECUTION AND LINQ TO SQL

It’s important to understand deferred execution when you’re using a data source that may not be available. In
the examples you’ve seen so far, the LINQ expression acts on an in-memory collection, so it’s not important
(at least to the application developer) to know exactly when the expression is evaluated. However, this isn’t
the case when you’re using LINQ to SQL to perform a just-in-time query against the database. In this situa-
tion, enumerating over the IEnumerable<T> results object causes .NET to establish a database connection
and execute a query. This is obviously a risky move—if the database server isn’t available or can’t respond,
an exception will occur when you least expect it. For this reason, it’s common to use LINQ expressions in two
more limited ways:

• After you’ve retrieved the data (using ordinary data access code), use LINQ to Collections to filter the
results. This is handy if you need to provide a variety of different views on the same set of results. This
is the approach demonstrated in this section (and in the downloadable examples for this chapter).

• Use LINQ to SQL to get the data you need. This saves you from writing the low-level data access code.
Use the ToList() method to force the query to be executed immediately, and return an ordinary collection.

It’s generally not a good idea to create a database component that uses LINQ to SQL and returns the
IEnumerable<T> result object from a database query. If you allow this, you lose control over when the query
will be executed and how potential errors will be handled. (You also lose control over how many times the
query will be executed, because the LINQ expression will be re-evaluated every time you iterate over the
collection or bind it to a control. Bind the same data to several different controls, and you’ve just created
unnecessary extra work for your database server.)

LINQ to SQL is a significant topic of its own. It provides a flexible, SQL-free way to fetch data from a
database and place it into custom objects you’ve designed. (The cost is learning the LINQ syntax and yet
another data access model.) Currently, LINQ to SQL supports SQL Server only. If you’re interested in trying it,
start with the detailed overview at http://msdn2.microsoft.com/en-us/library/bb425822.aspx,
or consider a dedicated book about LINQ, such as Pro LINQ.

Data Conversion
In an ordinary binding, the information travels from the source to the target without any
change. This seems logical, but it’s not always the behavior you want. Often, your data source
might use a low-level representation that you don’t want to display directly in your user inter-
face. For example, you might have numeric codes you want to replace with human-readable
strings, numbers that need to be cut down to size, dates that need to be displayed in a long
format, and so on. If so, you need a way to convert these values into the right display form.
And if you’re using a two-way binding, you also need to do the converse—take user-supplied
data and convert it to a representation suitable for storage in the appropriate data object.

Fortunately, WPF allows you do to both by creating (and using) a value converter class.
The value converter is responsible for converting the source data just before it’s displayed in
the target and (in the case of a two-way binding) converting the new target value just before
it’s applied back to the source.

CHAPTER 16 ■ DATA BINDING526

9551CH16 2/8/08 2:11 PM Page 526

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn2.microsoft.com/en-us/library/bb425822.aspx

■Note This approach to conversion is similar to the way data binding worked in the world of Windows
Forms with the Format and Parse binding events. The difference is that in a Windows Forms application, you
could code this logic anywhere—you simply needed to attach both events to the binding. In WPF, this logic
must be encapsulated in a value converter class, which makes for easier reuse.

Value converters are an extremely useful piece of the WPF data binding puzzle. They can
be used in several useful ways:

• To format data to a string representation. For example, you can convert a number to a
currency string. This is the most obvious use of value converters, but it’s certainly not
the only one.

• To create a specific type of WPF object. For example, you could read a block of binary
data and create a BitmapImage object that can be bound to an Image element.

• To conditionally alter a property in an element based on the bound data. For exam-
ple, you might create a value converter that changes the background color of an
element to highlight values in a specific range.

In the following sections, you’ll consider an example of each of these approaches.

Formatting Strings with a Value Converter
Value converters are the perfect tool for formatting numbers that need to be displayed as text.
For example, consider the Product.UnitCost property in the previous example. It’s stored as a
decimal, and as a result, when it’s displayed in a text box, you’ll see values like 3.9900. Not only
does this display format show more decimal places than you’d probably like, it also leaves out
the currency symbol. A more intuitive representation would be the currency-formatted value
$3.99, as shown in Figure 16-10.

Figure 16-10. Displaying formatted currency values

CHAPTER 16 ■ DATA BINDING 527

9551CH16 2/8/08 2:11 PM Page 527

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To create a value converter, you need to take four steps:

1. Create a class that implements IValueConverter.

2. Add the ValueConversion attribute to the class declaration, and specify the destination
and target data types.

3. Implement a Convert() method that changes data from its original format to its display
format.

4. Implement a ConvertBack() method that does the reverse and changes a value from
display format to its native format.

Figure 16-11 shows how it works.

Figure 16-11. Converting bound data

In the case of the decimal-to-currency conversion, you can use the Decimal.ToString()
method to get the formatted string representation you want. You simply need to specify the
currency format string “C”, as shown here:

string currencyText = decimalPrice.ToString("C");

This code uses the culture settings that apply to the current thread. A computer that’s
configured for the English (United States) region runs with a locale of en-US and displays cur-
rencies with the dollar sign ($). A computer that’s configured for another local might display a
different currency symbol. If this isn’t the result you want (for example, you always want the
dollar sign to appear), you can specify a culture using the overload of the ToString() method
shown here:

CultureInfo culture = new CultureInfo("en-US");
string currencyText = decimalPrice.ToString("C", culture);

You can learn about all the format strings that are available in the Visual Studio help.
However, Table 16-5 and Table 16-6 show some of the most common options you’ll use for
numeric and date values, respectively.

CHAPTER 16 ■ DATA BINDING528

9551CH16 2/8/08 2:11 PM Page 528

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 16-5. Format Strings for Numeric Data

Type Format String Example

Currency C $1,234.50.
Parentheses indicate negative values: ($1,234.50).
The currency sign is locale-specific.

Scientific (Exponential) E 1.234.50E+004.

Percentage P 45.6%.

Fixed Decimal F? Depends on the number of decimal places you set. F3
formats values like 123.400. F0 formats values like 123.

Table 16-6. Format Strings for Times and Dates

Type Format String Format

Short Date d M/d/yyyy
For example: 10/30/2008

Long Date D dddd, MMMM dd, yyyy
For example: Wednesday, January 30, 2008

Long Date and Short Time f dddd, MMMM dd, yyyy HH:mm aa
For example: Wednesday, January 30, 2008 10:00 AM

Long Date and Long Time F dddd, MMMM dd, yyyy HH:mm:ss aa
For example: Wednesday, January 30, 2008 10:00:23 AM

ISO Sortable Standard s yyyy-MM-dd HH:mm:ss
For example: 2008-01-30 10:00:23

Month and Day M MMMM dd
For example: January 30

General G M/d/yyyy HH:mm:ss aa
(depends on locale-specific settings)
For example: 10/30/2008 10:00:23 AM

Converting from the display format back to the number you want is a little trickier.
The Parse() and TryParse() methods of the Decimal type are logical choices to do the work,
but ordinarily they can’t handle strings that include currency symbols. The solution is to use
an overloaded version of the Parse() or TryParse() method that accepts a System.Globaliza-
tion.NumberStyles value. If you supply NumberStyles.Any, you’ll be able to successfully strip
out the currency symbol, if it exists.

Here’s the complete code for the value converter that deals with price values like the
Product.UnitCost property:

[ValueConversion(typeof(decimal), typeof(string))]
public class PriceConverter : IValueConverter
{

public object Convert(object value, Type targetType, object parameter,
CultureInfo culture)

{
decimal price = (decimal)value;
return price.ToString("C", culture);

}

CHAPTER 16 ■ DATA BINDING 529

9551CH16 2/8/08 2:11 PM Page 529

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public object ConvertBack(object value, Type targetType, object parameter,
CultureInfo culture)

{
string price = value.ToString(culture);

decimal result;
if (Decimal.TryParse(price, NumberStyles.Any, culture, out result))
{

return result;
}
return value;

}
}

To put this converter into action, you need to begin by mapping your project namespace
to an XML namespace prefix you can use in your markup. Here’s an example that uses the
namespace prefix local and assumes your value converter is in the namespace DataBinding:

xmlns:local="clr-namespace:DataBinding"

Typically, you’ll add this attribute to the <Window> tag that holds all your markup.
Now, you simply need to create an instance of the PriceConverter class and assign it to

the Converter property of your binding. To do this, you need the more long-winded syntax
shown here:

<TextBlock Margin="7" Grid.Row="2">Unit Cost:</TextBlock>
<TextBox Margin="5" Grid.Row="2" Grid.Column="1">
<TextBox.Text>
<Binding Path="UnitCost">
<Binding.Converter>
<local:PriceConverter></local:PriceConverter>

</Binding.Converter>
</Binding>

</TextBox.Text>
</TextBox>

In many cases, the same converter is used for multiple bindings. In this case, it doesn’t
make sense to create an instance of the converter for each binding. Instead, create one con-
verter object in the Resources collection, as shown here:

<Window.Resources>
<local:PriceConverter x:Key="PriceConverter"></local:PriceConverter>

</Window.Resources>

Then, you can point to it in your binding using a StaticResource reference, as described in
Chapter 11:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1"
Text={Binding Path=UnitCost, Converter={StaticResource PriceConverter}">
</TextBox>

CHAPTER 16 ■ DATA BINDING530

9551CH16 2/8/08 2:11 PM Page 530

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Creating Objects with a Value Converter
Value converters are indispensable when you need to bridge the gap between the way data is
stored in your classes and the way it’s displayed in a window. For example, imagine you have
picture data stored as a byte array in a field in a database. You could convert the binary data
into a System.Windows.Media.Imaging.BitmapImage object and store that as part of your data
object. However, this design might not be appropriate.

For example, you might need the flexibility to create more than one object representation of
your image, possibly because your data library is used in both WPF applications and Windows
Forms applications (which use the System.Drawing.Bitmap class instead). In this case, it makes
sense to store the raw binary data in your data object and convert it to a WPF BitmapImage
object using a value converter. (To bind it to a form in a Windows Forms application, you’d use
the Format and Parse events of the System.Windows.Forms.Binding class.)

■Tip To convert a block of binary data into an image, you must first create a BitmapImage object and
read the image data into a MemoryStream. Then, you can call the BitmapImage.BeginInit() method, set its
StreamSource property to point to your MemoryStream, and call EndInit() to finish loading the image.

The Products table from the Store database doesn’t include binary picture data, but it
does include a ProductImage field that stores the file name of an associated product image. In
this case, there’s even more reason to delay creating the image object. First, the image might
not be available depending on where the application’s running. Second, there’s no point in
incurring the extra memory overhead storing the image unless it’s going to be displayed.

The ProductImage field includes the file name but not the full path of an image file,
which gives you the flexibility to put the image files in any suitable location. The value con-
verter has the task of creating a URI that points to the image file based on the ProductImage
field and the directory you want to use. The directory is stored using a custom property named
ImageDirectory, which defaults to the current directory.

Here’s the complete code for the ImagePathConverter that performs the conversion:

public class ImagePathConverter : IValueConverter
{

private string imageDirectory = Directory.GetCurrentDirectory();
public string ImageDirectory
{

get { return imageDirectory; }
set { imageDirectory = value; }

}

public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
string imagePath = Path.Combine(ImageDirectory,
(string)value);

return new BitmapImage(new Uri(imagePath));
}

CHAPTER 16 ■ DATA BINDING 531

9551CH16 2/8/08 2:11 PM Page 531

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
throw new NotSupportedException();

}
}

To use this converter, begin by adding it to the Resources. In this example, the
ImageDirectory property is not set, which means the ImagePathConverter defaults to
the current application directory:

<Window.Resources>
<local:ImagePathConverter x:Key="ImagePathConverter"></local:ImagePathConverter>

</Window.Resources>

Now it’s easy to create a binding expression that uses this value converter:

<Image Margin="5" Grid.Row="2" Grid.Column="1" Stretch="None"
HorizontalAlignment="Left" Source=
"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
</Image>

This works because the Image.Source property expects an ImageSource object, and the
BitmapImage class derives from ImageSource.

Figure 16-12 shows the result.

Figure 16-12. Displaying bound images

You might improve this example in a couple of ways. First, attempting to create a
BitmapImage that points to a nonexistent file causes an exception, which you’ll receive when
setting the DataContext, ItemsSource, or Source property. Alternatively, you can add proper-
ties to the ImagePathConverter class that allow you to configure this behavior. For example,

CHAPTER 16 ■ DATA BINDING532

9551CH16 2/8/08 2:11 PM Page 532

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

you might introduce a Boolean SuppressExceptions property. If set to true, you could catch
exceptions in the Convert() method and then return the Binding.DoNothing value (which tells
WPF to temporarily act as though no data binding is set). Or, you could add a DefaultImage
property that takes a placeholder BitmapImage. The ImagePathConverter could then return
the default image if an exception occurs.

You’ll also notice that this converter supports only one-way conversion. That’s because it’s
not possible to change the BitmapImage object and use that to update the image path. How-
ever, you could take an alternate approach. Rather than return a BitmapImage from the
ImagePathConverter, you could simply return the fully qualified URI from the Convert()
method, as shown here:

return new Uri(imagePath);

This works just as successfully, because the Image element uses a type converter to trans-
late the Uri to the ImageSource object it really wants. If you take this approach, you could then
allow the user to choose a new file path (perhaps using a TextBox that’s set with the help of the
OpenFileDialog class). You could then extract the file name in the ConvertBack() method and
use that to update the image path that’s stored in your data object.

Applying Conditional Formatting
Some of the most interesting value converters aren’t designed to format data for presentation.
Instead, they’re intended to format some other appearance-related aspect of an element
based on a data rule.

For example, imagine you want to flag high-priced items by giving them a different back-
ground color. You can easily encapsulate this logic with the following value converter:

public class PriceToBackgroundConverter : IValueConverter
{

public decimal MinimumPriceToHighlight
{

get; set;
}

public Brush HighlightBrush
{

get; set;
}

public Brush DefaultBrush
{

get; set;
}

public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
decimal price = (decimal)value;
if (price >= MinimumPriceToHighlight)

CHAPTER 16 ■ DATA BINDING 533

9551CH16 2/8/08 2:11 PM Page 533

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

return HighlightBrush;
else

return DefaultBrush;
}

public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
throw new NotSupportedException();

}
}

Once again, the value converter is carefully designed with reusability in mind. Rather
than hard-coding the color highlights in the converter, they’re specified in the XAML by the
code that uses the converter:

<local:PriceToBackgroundConverter x:Key="PriceToBackgroundConverter"
DefaultBrush="{x:Null}" HighlightBrush="Orange" MinimumPriceToHighlight="50">

</local:PriceToBackgroundConverter>

Brushes are used instead of colors so that you can create more advanced highlight effects
using gradients and background images. And if you want to keep the standard, transparent
background (so the background of the parent elements is used), just set the DefaultBrush or
HighlightBrush property to null, as shown here.

Now all that’s left is to use this converter to set the background of some element, like the
Border that contains all the other elements:

<Border Background=
"{Binding Path=UnitCost, Converter={StaticResource PriceToBackgroundConverter}}"
... >

OTHER WAYS TO APPLY CONDITIONAL FORMATTING

Using a custom IValueConverter is only one of the ways to apply conditional formatting based on your
data object. You can also use data triggers in a style, style selector, and template selector, all of which are
described in the next chapter. Each one of these approaches has its own advantages and disadvantages.

The IValueConverter approach works best when you need to set a single property in an element based
on the bound data object. It’s easy, and it’s automatically synchronized. If you make changes to the bound
data object, the linked property is changed immediately.

Data triggers are similarly straightforward, but they support only extremely simple logic that tests for
equality. For example, a data trigger can apply formatting that applies to products in a specific category, but it
can’t apply formatting that kicks in when the price is greater than a specific minimum value. The key advan-
tage of data triggers is that you can use them to apply certain types of formatting and selection effects
without writing any code.

Style selectors and template selectors are the most powerful option. They allow you to change multiple
properties in the target element at once and change the way items are presented in the list. However, they
introduce additional complexity. Also, you need to add code that reapplies your styles and templates if the
bound data changes.

CHAPTER 16 ■ DATA BINDING534

9551CH16 2/8/08 2:11 PM Page 534

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Evaluating Multiple Properties
You can pull off one last trick with a value converter—evaluating several distinct fields and using
them to create a single converted value. For example, you could use this to fuse together differ-
ent pieces of information (such as a FirstName and LastName field), perform calculations (such
as multiplying UnitPrice by UnitsInStock), and apply formatting that takes several details into
consideration (such as highlighting all high-priced products in a specific category).

To perform this trick, you need two ingredients:

• A MultiBinding that defines the binding (instead of an ordinary Binding object)

• A converter that implements IMultiValueConverter (rather than IValueConverter)

The MultiBinding groups a sequence of Binding objects. Here’s an example where a
MultiBinding uses two properties in the data object:

<TextBlock>Total Stock Value: </TextBlock>
<TextBox>
<TextBox.Text>
<MultiBinding Converter="{StaticResource ValueInStockConverter}">
<Binding Path="UnitCost"></Binding>
<Binding Path="UnitsInStock"></Binding>

</MultiBinding>
</TextBox.Text>

</TextBox>

The IMultiValueConverter interface defines similar Convert() and ConvertBack() methods
as the IValueConverter interface. The main difference is that you’re provided with an array of
values rather than a single value. These values are placed in the same order that they’re
defined in your markup. Thus, in the previous example you can expect UnitCost to appear
first, followed by UnitsInStock.

Here’s the code for the ValueInStockConverter:

public class ValueInStockConverter : IMultiValueConverter
{

public object Convert(object[] values, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
// Return the total value of all the items in stock.
decimal unitCost = (decimal)values[0];
int unitsInStock = (int)values[1];
return unitCost * unitsInStock;

}

public object[] ConvertBack(object value, Type[] targetTypes,
object parameter, System.Globalization.CultureInfo culture)

{
throw new NotSupportedException();

}
}

CHAPTER 16 ■ DATA BINDING 535

9551CH16 2/8/08 2:11 PM Page 535

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Validation
Another key ingredient in any two-binding scenario is validation—in other words, logic that
catches incorrect values and refuses them. You can build validation directly into your controls
(for example, by responding to input in the text box and refusing invalid characters), but this
low-level approach limits your flexibility.

Fortunately, WPF provides a validation feature that works closely with the data binding
system you’ve explored. Validation gives you two more options to catch invalid values:

• You can raise errors in your data object. To notify WPF of an error, simply throw an
exception from a property set procedure. Ordinarily, WPF ignores any exceptions that
are thrown when setting a property, but you can configure it to show a more helpful
visual indication. Another option is to implement the IDataErrorInfo interface in your
data class, which gives you the ability to indicate errors without throwing exceptions.

• You can define validation at the binding level. This gives you the flexibility to use the
same validation regardless of the input control. Even better, because you define your
validation in a distinct class, you can easily reuse it with multiple bindings that store
similar types of data.

In general, you’ll use the first approach if your data objects already have hardwired valida-
tion logic in their property set procedures and you want to take advantage of that logic. You’ll
use the second approach when you’re defining validation logic for the first time and you want
to reuse it in different contexts and with different controls. However, some developers choose
to use both techniques. They use validation in the data object to defend against a small set of
fundamental errors and use validation in the binding to catch a wider set of user-entry errors.

■Note Validation applies only when a value from the target is being used to update the source—in other
words, when you’re using a TwoWay or OneWayToSource binding.

Validation in the Data Object
Some developers build error checking directly into their data objects. For example, here’s a
modified version of the Product.UnitPrice property that disallows negative numbers:

public decimal UnitCost
{

get { return unitCost; }
set
{

if (value < 0)
throw new ArgumentException("UnitCost cannot be negative.");

else
{

unitCost = value;
OnPropertyChanged(new PropertyChangedEventArgs("UnitCost"));

CHAPTER 16 ■ DATA BINDING536

9551CH16 2/8/08 2:11 PM Page 536

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
}

}

The validation logic shown in this example prevents negative price values, but it doesn’t
give the user any feedback about the problem. As you learned earlier, WPF quietly ignores data
binding errors that occur when setting or getting properties. In this case, the user won’t have
any way of knowing that the update has been rejected. In fact, the incorrect value will remain
in the text box—it just won’t be applied to the bound data object. To improve this situation,
you need the help of the ExceptionValidationRule, which is described next.

DATA OBJECTS AND VALIDATION

Whether or not it’s a good approach to place validation logic in a data object is a matter of never-ending debate.
This approach has some advantages—for example, it catches all errors all the time, whether they occur

because of an invalid user edit, a programming mistake, or a calculation that’s based on other invalid data.
However, this has the disadvantage of making the data objects more complex and moving validation code
that’s intended for an application’s front end deeper into the back-end data model.

If applied carelessly, property validation can inadvertently rule out perfectly reasonable uses of the data
object. They can also lead to inconsistencies and actually compound data errors. (For example, it might not
make sense for the UnitsInStock to hold a value of –10, but if the underlying database stores this value, you
might still want to create the corresponding Product object so you can edit it in your user interface.) Some-
times, problems like these are solved by creating yet another layer of objects—for example, in a complex
system developers might build a rich business object model overtop the bare-bones data object layer.

In the current example, the StoreDB and Product classes are designed to be part of a back-end
data access component. In this context, the Product class is simply a glorified package that lets you pass
information from one layer of code to another. For that reason, validation code really doesn’t belong in the
Product class.

The ExceptionValidationRule
The ExceptionValidationRule is a prebuilt validation rule that tells WPF to report all excep-
tions. To use the ExceptionValidationRule, you must add it to the Binding.ValidationRules
collection, as shown here:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1">
<TextBox.Text>
<Binding Path="UnitCost">
<Binding.Converter>
<local:PriceConverter></local:PriceConverter>

</Binding.Converter>
<Binding.ValidationRules>
<ExceptionValidationRule></ExceptionValidationRule>

</Binding.ValidationRules>
</Binding>

</TextBox.Text>
</TextBox>

CHAPTER 16 ■ DATA BINDING 537

9551CH16 2/8/08 2:11 PM Page 537

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This example uses both a value converter and a validation rule. Usually, validation is
performed before the value is converted, but the ExceptionValidationRule is a special case. It
catches exceptions that occur at any point, including exceptions that occur if the edited value
can’t be cast to the correct data type, exceptions that are thrown by the property setter, and
exceptions that are thrown by the value converter.

So, what happens when validation fails? Validation errors are recorded using the attached
properties of the System.Windows.Controls.Validation class. For each failed validation rule,
WPF takes three steps:

• It sets the attached Validation.HasError property to true on the bound element (in this
case, the TextBox control).

• It creates a ValidationError object with the error details (as returned from the Valida-
tionRule.Validate() method) and adds that to the attached Validation.Errors collection.

• If the Binding.NotifyOnValidationError property is set to true, WPF raises the Valida-
tion.Error attached event on the element.

The visual appearance of your bound control also changes when an error occurs. WPF
automatically switches the template that a control uses when its Validation.HasError property
is true to the template that’s defined by the attached Validation.ErrorTemplate property. In a
text box, the new template changes the outline of the box to a thin red border.

In most cases, you’ll want to augment the error indication in some way and give specific
information about the error that caused the problem. You can use code that handles the Error
event, or you can supply a custom control template that provides a different visual indication.
But before you tackle either of these tasks, it’s worth considering two other ways WPF allows
you to catch errors—by using IDataErrorInfo in your data objects and by writing custom vali-
dation rules.

The DataErrorValidationRule
Many object-orientation purists prefer not to raise exceptions to indicate user input errors.
There are several possible reasons, including the following: a user input error isn’t an excep-
tional condition, error conditions may depend on the interaction between multiple property
values, and it’s sometimes worthwhile to hold on to incorrect values for further processing
rather than reject them outright.

In the Windows Forms world, developers could use the IDataErrorInfo interface (from the
System.ComponentModel namespace) to avoid exceptions but still place the validation code
in the data class. The IDataErrorInfo interface was originally designed to support grid-based
display controls such as the DataGridView, but it also works as an all-purpose solution for
reporting errors. Although IDataErrorInfo wasn’t supported in the first release of WPF, it is
supported in WPF 3.5.

The IDataErrorInfo interface requires two members: a string property named Error and a
string indexer. The Error property provides an overall error string that describes the entire
object (which could be something as simple as “Invalid Data”). The string indexer accepts a
property name and returns the corresponding detailed error information. For example, if
you pass “UnitCost” to the string indexer, you might receive a response such as “The UnitCost
cannot be negative.” The key idea here is that properties are set normally, without any fuss,
and the indexer allows the user interface to check for invalid data. The error logic for the entire
class is centralized in one place.

CHAPTER 16 ■ DATA BINDING538

9551CH16 2/8/08 2:11 PM Page 538

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s a revised version of the Product class that implements IDataErrorInfo. Although
you could use IDataErrorInfo to provide validation messages for a range of validation prob-
lems, this validation logic checks just one property—ModelNumber—for errors:

public class Product : INotifyPropertyChanged, IDataErrorInfo
{

...

private string modelNumber;
public string ModelNumber
{

get { return modelNumber; }
set {

modelNumber = value;
OnPropertyChanged(new PropertyChangedEventArgs("ModelNumber"));

}
}

// Error handling takes place here.
public string this[string propertyName]
{

get
{

if (propertyName == "ModelNumber")
{

bool valid = true;
foreach (char c in ModelNumber)
{

if (!Char.IsLetterOrDigit(c))
{

valid = false;
break;

}
}
if (!valid)
return "The ModelNumber can only contain letters and numbers.";

}
return null;

}
}

// WPF doesn't use this property.
public string Error
{

get { return null; }
}

}

CHAPTER 16 ■ DATA BINDING 539

9551CH16 2/8/08 2:11 PM Page 539

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To tell WPF to use the IDataErrorInfo interface, and use it to check for errors when a
property is modified, you must add the DataErrorValidationRule to the collection of
Binding.ValidationRules, as shown here:

<TextBox Margin="5" Grid.Column="1">
<TextBox.Text>
<Binding Path="ModelNumber">
<Binding.ValidationRules>
<DataErrorValidationRule></DataErrorValidationRule>

</Binding.ValidationRules>
</Binding>

</TextBox.Text>
</TextBox>

Incidentally, you can combine both approaches by creating a data object that throws
exceptions for some types of errors and uses IDataErrorInfo to report others. You just need to
make sure you use both the ExceptionValidationRule and the DataErrorValidationRule.

■Tip .NET 3.5 provides a shortcut. Rather than adding the ExceptionValidationRule to the binding, you can
set the Binding.ValidatesOnExceptions property to true. Rather than adding the DataErrorValidationRule, you
can set the Binding.ValidatesOnDataErrors property to true.

Custom Validation Rules
The approach for applying a custom validation rule is similar to applying a custom converter.
You define a class that derives from ValidationRule (in the System.Windows.Controls
namespace), and you override the Validate() method to perform your validation. If desired, you
can add properties that accept other details that you can use to influence your validation (for
example, a validation rule that examines text might include a Boolean CaseSensitive property).

Here’s a complete validation rule that restricts decimal values to fall between some set
minimum and maximum. By default, the minimum is set at 0, and the maximum is the largest
number that will fit in the decimal data type, because this validation rule is intended for use
with currency values. However, both these details are configurable through properties for
maximum flexibility.

public class PositivePriceRule : ValidationRule
{

private decimal min = 0;
private decimal max = Decimal.MaxValue;

public decimal Min
{

get { return min; }
set { min = value; }

}

CHAPTER 16 ■ DATA BINDING540

9551CH16 2/8/08 2:11 PM Page 540

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public decimal Max
{

get { return max; }
set { max = value; }

}

public override ValidationResult Validate(object value,
CultureInfo cultureInfo)

{
decimal price = 0;

try
{

if (((string)value).Length > 0)
price = Decimal.Parse((string)value, NumberStyles.Any, culture);

}
catch
{

return new ValidationResult(false, "Illegal characters.");
}

if ((price < Min) || (price > Max))
{

return new ValidationResult(false,
"Not in the range " + Min + " to " + Max + ".");

}
else
{

return new ValidationResult(true, null);
}

}
}

Notice that the validation logic uses the overloaded version of the Decimal.Parse()
method that accepts a value from the NumberStyles enumeration. That’s because validation is
always performed before conversion. If you’ve applied both the validator and the converter to
the same field, you need to make sure that your validation will succeed if there’s a currency
symbol present. The success or failure of the validation logic is indicated by returning a Valida-
tionResult object. The IsValid property indicates whether the validation succeeded, and if it
didn’t, the ErrorContent property provides an object that describes the problem. In this exam-
ple, the error content is set to a string that will be displayed in the user interface, which is the
most common approach.

Once you’ve perfected your validation rule, you’re ready to attach it to an element by
adding it to the Binding.ValidationRules collection. Here’s an example that uses the Posi-
tivePriceRule and sets the Maximum at 999.99:

<TextBlock Margin="7" Grid.Row="2">Unit Cost:</TextBlock>
<TextBox Margin="5" Grid.Row="2" Grid.Column="1">

CHAPTER 16 ■ DATA BINDING 541

9551CH16 2/8/08 2:11 PM Page 541

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<TextBox.Text>
<Binding Path="UnitCost">
<Binding.ValidationRules>
<local:PositivePriceRule Max="999.99" />

</Binding.ValidationRules>
</Binding>

</TextBox.Text>
</TextBox>

Often, you’ll define a separate validation rule object for each element that uses the same
type of rule. That’s because you might want to adjust the validation properties (such as the
minimum and maximum in the PositivePriceRule) separately. If you know that you want to
use exactly the same validation rule for more than one binding, you can define the validation
rule as a resource and simply point to it in each binding using the StaticResource markup
extension.

As you’ve probably gathered, the Binding.ValidationRules collection can take an unlim-
ited number of rules. When the value is committed to the source, WPF checks each validation
rule, in order. (Remember, a value in a text box is committed to the source when the text box
loses focus, unless you specify otherwise with the UpdateSourceTrigger property.) If all the
validation succeeds, WPF then calls the converter (if one exists) and applies the value to the
source.

■Note If you add the PositivePriceRule followed by the ExceptionValidationRule, the PositivePriceRule will
be evaluated first. It will capture errors that result from an out-of-range value. However, the ExceptionValida-
tionRule will catch type-casting errors that result if you type an entry that can’t be cast to a decimal value
(such as a sequence of letters).

When you perform validation with the PositivePriceRule, the behavior is the same as
when you use the ExceptionValidationRule—the text box is outlined in red, the HasError and
Errors properties are set, and the Error event fires. To provide the user with some helpful feed-
back, you need to add a bit of code or customize the ErrorTemplate. You’ll learn how to take
care of both approaches in the following sections.

■Tip Custom validation rules can be extremely specific so that they target a specific constraint for a spe-
cific property or much more general so that they can be reused in a variety of scenarios. For example, you
could easily create a custom validation rule that validates a string using a regular expression you specify,
with the help of .NET’s System.Text.RegularExpressions.Regex class. Depending on the regular expression
you use, you could use this validation rule with a variety of pattern-based text data, such as email
addresses, phone numbers, IP addresses, and ZIP codes.

CHAPTER 16 ■ DATA BINDING542

9551CH16 2/8/08 2:11 PM Page 542

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Reacting to Validation Errors
In the previous example, the only indication the user receives about an error is a red outline
around the offending text box. To provide more information, you can handle the Error event,
which fires whenever an error is stored or cleared. However, you must first make sure you’ve
set the Binding.NotifyOnValidationError property to true:

<Binding Path="UnitCost" NotifyOnValidationError="True">

The Error event is a routed event that uses bubbling, so you can handle the Error event for
multiple controls by attaching an event handler in the parent container, as shown here:

<Grid Name="gridProductDetails" Validation.Error="validationError">

Here’s the code that reacts to this event and displays a message box with the error infor-
mation. (A less disruptive option would be to show a tooltip or display the error information
somewhere else in the window.)

private void validationError(object sender, ValidationErrorEventArgs e)
{

// Check that the error is being added (not cleared).
if (e.Action == ValidationErrorEventAction.Added)
{

MessageBox.Show(e.Error.ErrorContent.ToString());
}

}

The ValidationErrorEventArgs.Error property provides a ValidationError object that
bundles together several useful details, including the exception that caused the problem
(Exception), the validation rule that was violated (ValidationRule), the associated Binding
object (BindingInError), and any custom information that the ValidationRule object has
returned (ErrorContent).

If you’re using custom validation rules, you’ll almost certainly choose to place the error
information in the ValidationError.ErrorContent property. If you’re using the ExceptionValida-
tionRule, the ErrorContent property will return the Message property of the corresponding
exception. However, there’s a catch. If an exception occurs because the data type cannot be
cast to the appropriate value, the ErrorContent works as expected and reports the problem.
However, if the property setter in the data object throws an exception, this exception is
wrapped in a TargetInvocationException, and the ErrorContent provides the text from the
TargetInvocationException.Message property, which is the much less helpful warning
“Exception has been thrown by the target of an invocation.”

Thus, if you’re using your property setters to raise exceptions, you’ll need to add code that
checks the InnerException property of the TargetInvocationException. If it’s not null, you can
retrieve the original exception object and use its Message property instead of the Validation-
Error.ErrorContent property.

CHAPTER 16 ■ DATA BINDING 543

9551CH16 2/8/08 2:11 PM Page 543

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Getting a List of Exceptions
At certain times, you might want to get a list of all the outstanding errors in your current window
(or a given container in that window). This task is relatively straightforward—all you need to do
is walk through the element tree testing the Validation.HasError property of each element.

The following code routine demonstrates an example that specifically searches out
invalid data in TextBox objects. It uses recursive code to dig down through the entire element
hierarchy. Along the way, the error information is aggregated into a single message that’s then
displayed to the user.

private void cmdOK_Click(object sender, RoutedEventArgs e)
{

string message;
if (FormHasErrors(message))
{

// Errors still exist.
MessageBox.Show(message);

}
else
{

// There are no errors. You can continue on to complete the task
// (for example, apply the edit to the data source.).

}
}

private bool FormHasErrors(out string message)
{

StringBuilder sb = new StringBuilder();
GetErrors(sb, gridProductDetails);
message = sb.ToString();
return message != "";

}

private void GetErrors(StringBuilder sb, DependencyObject obj)
{

foreach (object child in LogicalTreeHelper.GetChildren(obj))
{

TextBox element = child as TextBox;
if (element == null) continue;

if (Validation.GetHasError(element))
{

sb.Append(element.Text + " has errors:\r\n");
foreach (ValidationError error in Validation.GetErrors(element))
{

sb.Append(" " + error.ErrorContent.ToString());
sb.Append("\r\n");
}

CHAPTER 16 ■ DATA BINDING544

9551CH16 2/8/08 2:11 PM Page 544

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

}
// Check the children of this object for errors.
GetErrors(sb, element);

}
}

}

In a more complete implementation, the FormHasErrors() method would probably create
a collection of objects with error information. The cmdOK_Click() event handler would then
be responsible for constructing an appropriate message.

Showing a Different Error Indicator
To get the most out of WPF validation, you’ll want to create your own error template that flags
errors in an appropriate way. At first glance, this seems like a fairly low-level way to go about
reporting an error—after all, a standard control template gives you the ability to customize the
composition of a control in minute detail. However, an error template isn’t like an ordinary
control template.

Error templates use the adorner layer, which is a drawing layer that exists just above ordi-
nary window content. Using the adorner layer, you can add a visual embellishment to indicate
an error without replacing the control template of the control underneath or changing the lay-
out in your window. The standard error template for a text box works by adding a red Border
element that floats just above the corresponding text box (which remains unchanged under-
neath). You can use an error template to add other details, like images, text, or some other sort
of graphical detail that draws attention to the problem.

The following markup shows an example. It defines an error template that uses a green
border and adds an asterisk next to the control with the invalid input. The template is
wrapped in a style rule so that it’s automatically applied to all the text boxes in the current
window:

<Style TargetType="{x:Type TextBox}">
<Setter Property="Validation.ErrorTemplate">
<Setter.Value>
<ControlTemplate>
<DockPanel LastChildFill="True">
<TextBlock DockPanel.Dock="Right" Foreground="Red"
FontSize="14" FontWeight="Bold">*</TextBlock>
<Border BorderBrush="Green" BorderThickness="1">
<AdornedElementPlaceholder></AdornedElementPlaceholder>

</Border>
</DockPanel>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

The AdornedElementPlaceholder is the glue that makes this technique work. It represents
the control itself, which exists in the element layer. By using the AdornedElementPlaceholder,
you’re able to arrange your content in relation to the text box underneath.

CHAPTER 16 ■ DATA BINDING 545

9551CH16 2/8/08 2:11 PM Page 545

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

As a result, the border in this example is placed directly overtop of the text box, no matter
what its dimensions are. The asterisk in this example is placed just to the right (as shown in
Figure 16-13). Best of all, the new error template content is superimposed on top of the exist-
ing content without triggering any change in the layout of the original window. (In fact, if
you’re careless and include too much content in the adorner layer, you’ll end up overwriting
other portions of the window.)

Figure 16-13. Flagging an error with an error template

■Tip If you want your error template to appear superimposed over the element (rather than positioned
around it), you can place both your content and the AdornerElementPlaceholder in the same cell of a Grid.
Alternatively, you can leave out the AdornerElementPlaceholder altogether, but then you lose the ability to
position your content precisely in relation to the element underneath.

This error template still suffers from one problem—it doesn’t provide any additional
information about the error. To show these details, you need to extract them using data bind-
ing. One good approach is to take the error content of the first error and use it for tooltip text
of your error indicator. Here’s a template that does exactly that:

<ControlTemplate>
<DockPanel LastChildFill="True">
<TextBlock DockPanel.Dock="Right"
Foreground="Red" FontSize="14" FontWeight="Bold"
ToolTip="{Binding ElementName=adornerPlaceholder,

Path=AdornedElement.(Validation.Errors)[0].ErrorContent}"
>*</TextBlock>

CHAPTER 16 ■ DATA BINDING546

9551CH16 2/8/08 2:11 PM Page 546

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Border BorderBrush="Green" BorderThickness="1">
<AdornedElementPlaceholder Name="adornerPlaceholder">
</AdornedElementPlaceholder>

</Border>
</DockPanel>

</ControlTemplate>

The Path of the binding expression is a little convoluted and bears closer examination.
The source of this binding expression is the AdornedElementPlaceholder, which is defined in
the control template:

ToolTip="{Binding ElementName=adornerPlaceholder, ...

The AdornedElementPlaceholder class provides a reference to the element underneath
(in this case, the TextBox object with the error) through a property named AdornedElement:

ToolTip="{Binding ElementName=adornerPlaceholder,
Path=AdornedElement ...

To retrieve the actual error, you need to check the Validation.Errors property of this ele-
ment. However, you need to wrap the Validation.Errors property in parentheses to indicate
that it’s an attached property, rather than a property of the TextBox class:

ToolTip="{Binding ElementName=adornerPlaceholder,
Path=AdornedElement.(Validation.Errors) ...

Finally, you need to use an indexer to retrieve the first ValidationError object from the col-
lection and then extract its Error content property:

ToolTip="{Binding ElementName=adornerPlaceholder,
Path=AdornedElement.(Validation.Errors)[0].ErrorContent}"

Now you can see the error message when you move the mouse over the asterisk.
Alternatively, you might want to show the error message in a ToolTip for the Border or

TextBox itself so that the error message appears when the user moves the mouse over any por-
tion of the control. You can perform this trick without the help of a custom error template—all
you need is a trigger on the TextBox control that reacts when Validation.HasError becomes
true and applies the ToolTip with the error message. Here’s an example:

<Style TargetType="{x:Type TextBox}">
...
<Style.Triggers>
<Trigger Property="Validation.HasError" Value="True">
<Setter Property="ToolTip"
Value="{Binding RelativeSource={RelativeSource Self},
Path=(Validation.Errors)[0].ErrorContent}" />

</Trigger>
</Style.Triggers>

</Style>

CHAPTER 16 ■ DATA BINDING 547

9551CH16 2/8/08 2:11 PM Page 547

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 16-14 shows the result.

Figure 16-14. Turning a validation error message into a tooltip

The Last Word
This chapter took a thorough look at data binding. You learned how to create data binding
expressions that draw information from other elements and custom objects and how to push
changes back to the source. You also learned how to use change notification, bind entire col-
lections, and bind to the ADO.NET disconnected data objects.

In many ways, WPF data binding is designed to be an all-purpose solution for automating
the way that elements interact and mapping the object model of an application to its user
interface. Although WPF applications are still new, those that exist today use data binding
much more frequently and thoroughly than their Windows Forms counterparts. In WPF, data
binding is much more than an optional frill, and every professional WPF developer needs to
master it.

You haven’t reached the end of your data exploration yet. You still have several topics to
tackle. In the following two chapters, you’ll build on the data binding basics you’ve learned
here and tackle these new topics:

• Data views. In every application that uses data binding, there’s a data view at work.
Often, you can ignore this piece of background plumbing. But if you take a closer look,
you can use it to write navigation logic and apply filtering and sorting.

• Data templates. If you want to really customize the information that’s shown for each
record in an ItemsControl like the ListBox, you need to use a data template. Doing so
gives you the ability to combine fields; lay them out in a predetermined way; add
formatting; and even throw in other shapes, elements, and controls.

CHAPTER 16 ■ DATA BINDING548

9551CH16 2/8/08 2:11 PM Page 548

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Data providers. Data providers are objects that make it easier to bind to certain data
sources declaratively. WPF includes two data providers: one for easy display of XML
data and one for binding to the data returned by an object. These providers are some-
what limited, but they’re occasionally useful for quick, straightforward data binding
scenarios.

• Advanced data controls. Although WPF isn’t nearly as mature in this area as Windows
Forms, the two staples of modern windows design—the ListView and TreeView—
support data binding in a flexible and remarkably powerful way.

CHAPTER 16 ■ DATA BINDING 549

9551CH16 2/8/08 2:11 PM Page 549

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH16 2/8/08 2:11 PM Page 550

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Data Templates, Data Views,
and Data Providers

In Chapter 16, you learned the essentials of WPF data binding—how to pull information out
of an object and display it in a window, with little or no code. Along the way, you considered
how to make that information editable, how to format it, how to convert it to the representa-
tion you need, and how to incorporate more advanced features such as validation. However,
you still have more to learn.

In this chapter, you’ll continue your exploration by tackling three subjects that will allow
you to build better bound windows. First, you’ll look at data templates, which let you cus-
tomize the way each item is shown in an ItemsControl. Data templates are the secret to
converting a basic list into a rich data presentation tool complete with custom formatting,
picture content, and additional WPF controls. Once you’ve mastered data templates, you’ll
consider data views, which work behind the scenes to coordinate collections of bound data.
Using data views, you can add navigation logic to implement filtering, sorting, and grouping.
Finally, you’ll end with a look at data providers, which allow you to pull information from a
data source with less code.

Data Binding Redux
In most data binding scenarios, you aren’t binding to a single object but to an entire collection
or DataTable. Figure 17-1 shows a familiar example—a form with a list of products. When the
user selects a product, its details appear on the right.

Figure 17-1. Browsing a collection of products 551

C H A P T E R 1 7

9551CH17 2/8/08 2:12 PM Page 551

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In Chapter 16, you learned to build exactly this sort of form. Here’s a quick review of the
basic steps:

1. First you need to create the list of items, which you can show in an ItemsControl. Set
the DisplayMemberPath to indicate the property (or field) you want to show for each
item in the list. This list shows the model name of each item:

<ListBox Name="lstProducts" DisplayMemberPath="ModelName"></ListBox>

2. To fill the list with data, set the ItemsSource property to your collection (or DataTable).
Typically, you’ll perform this step in code when your window loads or the user clicks a
button. In this example, the ItemsControl is bound to an ObservableCollection of
Product objects.

ObservableCollection<Product> products = App.StoreDB.GetProducts();
lstProducts.ItemsSource = products;

3. To show item-specific information, add as many elements as you need, each with a
binding expression that identifies the property or field you want to display. In this
example, each item in the collection is a Product object. Here’s an example that shows
the model number of an item by binding to the Product.ModelNumber property:

<TextBox Text="{Binding Path=ModelNumber}"></TextBox>

4. The easiest way to connect the item-specific elements to the currently selected item is
to wrap them in a single container. Set the DataContext property of the container to
refer to the selected item in the list:

<Grid DataContext="{Binding ElementName=lstProducts, Path=SelectedItem}">

So far, this is all review. However, what you haven’t yet considered is how to tailor the list
of items—how to filter it, sort it, and create a more detailed representation of each data item.

The last task is the one you’ll consider first. In the previous series of steps, the Display-
MemberPath property indicates the property of each data item that you want to show in the
list. If you leave out the DisplayMemberPath, the list simply calls ToString() on each object to
get its string representation. But what if you want to use a combination of properties from the
bound object, lay them out in a specific way, or display a visual representation that’s more
sophisticated than a simple string? To use any of these techniques, you need to create a data
template.

Data Templates
A data template is a chunk of XAML markup that defines how a bound data object should be
displayed. Two types of controls support data templates:

• Content controls support data templates through the ContentTemplate property. The
content template is used to display whatever you’ve placed in the Content property.

• List controls (controls that derive from ItemsControl) support data templates through
the ItemTemplate property. This template is used to display each item from the collec-
tion (or each row from a DataTable) that you’ve supplied as the ItemsSource.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS552

9551CH17 2/8/08 2:12 PM Page 552

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The list-based template feature is actually based on content control templates. That’s
because each item in a list is wrapped by a content control, such as ListBoxItem for the
ListBox, ComboBoxItem for the ComboBox, and so on. Whatever template you specify for
the ItemTemplate property of the list is used as the ContentTemplate of each item in the list.

So, what can you put inside a data template? It’s actually quite simple. A data template is
an ordinary block of XAML markup. Like any other block of XAML markup, the template can
include any combination of elements. It should also include one or more data binding expres-
sions that pull out the information that you want to display. (After all, if you don’t include any
data binding expressions, each item in the list will appear the same, which isn’t very helpful.)

The best way to see how a data template works is to start with a basic list that doesn’t use
them. For example, consider this list box, which was shown previously:

<ListBox Name="lstProducts" DisplayMemberPath="ModelName"></ListBox>

You can get the same effect with this list box that uses a data template:

<ListBox Name="lstProducts">
<ListBox.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=ModelName}"></TextBlock>

</DataTemplate>
</ListBox.ItemTemplate>

</ListBox>

When the list is bound to the collection of products (by setting the ItemsSource property),
a single ListBoxItem is created for each Product. The ListBoxItem.Content property is set to
the appropriate Product object, and the ListBoxItem.ContentTemplate is set to the data tem-
plate shown earlier, which extracts the value from the Product.ModelName property and
displays it in a TextBlock.

So far, the results are underwhelming. But now that you’ve switched to a data template,
there’s no limit to how you can creatively present your data. Here’s an example that wraps each
item in a rounded border, shows two pieces of information, and uses bold formatting to high-
light the model number:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch">
<ListBox.ItemTemplate>
<DataTemplate>
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold"
Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1"
Text="{Binding Path=ModelName}"></TextBlock>

</Grid>
</Border>

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 553

9551CH17 2/8/08 2:12 PM Page 553

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</DataTemplate>
</ListBox.ItemTemplate>

</ListBox>

When this list is bound, a separate Border object is created for each product. Inside the
Border element is a Grid with two pieces of information, as shown in Figure 17-2.

Figure 17-2. A list that uses a data template

■Tip When using Grid objects to lay out individual items in a list, you may want to use the SharedSizeGroup
property described in Chapter 4. You can apply the SharedSizeGroup property (with a descriptive group name)
to individual rows or columns to ensure that those rows and columns are made the same size for every item.
Chapter 18 includes an example that builds a rich list that combines text and image content using this
approach.

Separating and Reusing Templates
Like styles, templates are often declared as a window or application resource rather than defined
in the list where you use them. This separation is often clearer, especially if you use long, com-
plex templates or multiple templates in the same control (as described in the next section). It
also gives you the ability to reuse your templates in more than one list or content control if you
want to present your data the same way in different places in your user interface.

To make this work, all you need to do is to define your data template in a resources collec-
tion and give it a key name (as described in Chapter 11). Here’s an example that extracts the
template shown in the previous example:

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS554

9551CH17 2/8/08 2:12 PM Page 554

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Window.Resources>
<DataTemplate x:Key="ProductDataTemplate">
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold"
Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1"
Text="{Binding Path=ModelName}"></TextBlock>

</Grid>
</Border>

</DataTemplate>
</Window.Resources>

Now you can use your data template using a StaticResource reference:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch"
ItemTemplate="{StaticResourceProductDataTemplate }"></ListBox>

You can use another interesting trick if you want to reuse the same data template in dif-
ferent types of controls automatically. You can set the DataTemplate.DataType property to
identify the type of bound data for which your template should be used. For example, you
could alter the previous example by removing the key and specifying that this template is
intended for bound Product objects, no matter where they appear:

<Window.Resources>
<DataTemplate DataType="{x:Type local:Product}">
</DataTemplate>

</Window.Resources>

This assumes you’ve defined an XML namespace prefix named local and mapped it your
project namespace.

Now this template will be used with any list or content control in this window that’s
bound to Product objects. You don’t need to specify the ItemTemplate setting.

■Note Data templates don’t require data binding. In other words, you don’t need to use the ItemsSource
property to fill a template list. In the previous examples, you’re free to add Product objects declaratively (in
your XAML markup) or programmatically (by calling the ListBox.Items.Add() method). In both cases, the data
template works in the same way.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 555

9551CH17 2/8/08 2:12 PM Page 555

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

More Advanced Templates
Data templates can be remarkably self-sufficient. Along with basic elements such as the
TextBlock and data binding expressions, they can also use more sophisticated controls, attach
event handlers, convert data to different representations, use animations, and so on.

It’s worth considering a couple of quick examples that show how powerful data templates
are. First, you can use IValueConverter objects in your data binding to convert your data to a
more useful representation. Consider, for example, the ImagePathConverter demonstrated in
Chapter 16. It accepts a picture file name and uses it to create a BitmapImage object with the
corresponding image content. This BitmapImage object can then be bound directly to the
Image element.

You can use the ImagePathConverter to build the following data template that displays
the image for each product:

<Window.Resources>
<local:ImagePathConverter x:Key="ImagePathConverter"></local:ImagePathConverter>
<DataTemplate x:Key="ProductTemplate">
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold" Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1" Text="{Binding Path=ModelName}"></TextBlock>
<Image Grid.Row="2" Grid.RowSpan="2" Source=

"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
</Image>

</Grid>
</Border>

</DataTemplate>
</Window.Resources>

Although this markup doesn’t involve anything exotic, the result is a much more interest-
ing list (see Figure 17-3).

Another useful technique is to place controls directly inside a template. For example,
Figure 17-4 shows a list of categories. Next to each category is a View button that you can use
to launch another window with just the matching products in that category.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS556

9551CH17 2/8/08 2:12 PM Page 556

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 17-3. A list with image content

Figure 17-4. A list with button controls

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 557

9551CH17 2/8/08 2:12 PM Page 557

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The trick in this example is handling the button clicks. Obviously, all of the buttons will be
linked to the same event handler, which you define inside the template. However, you need to
determine which item was clicked from the list. One solution is to store some extra identifying
information in the Tag property of the button, as shown here:

<DataTemplate>
<Grid Margin="3">
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>

<TextBlock Text="{Binding Path=CategoryName}"></TextBlock>
<Button Grid.Column="2" HorizontalAlignment="Right" Padding="2"
Click="cmdView_Clicked" Tag="{Binding Path=CategoryID}">View ...</Button>

</Grid>
</DataTemplate>

You can then retrieve the Tag property in the cmdView_Clicked event handler:

private void cmdView_Clicked(object sender, RoutedEventArgs e)
{

Button cmd = (Button)sender;
int categoryID = (int)cmd.Tag;
...

}

You can use this information to take another action. For example, you might launch
another window that shows products and pass the CategoryID value to that window, which
can then use filtering to show only the products in that category. (One easy way to implement
filtering is with data views, as described later in this chapter.)

If you want all the information about the selected data item, you can grab the entire data
object by leaving out the Path property when you define the binding:

<Button HorizontalAlignment="Right" Padding="1"
Click="cmdView_Clicked" Tag="{Binding}">View ...</Button>

Now your event handler will receive the Product object (if you’re binding a collection
of Products). If you’re binding to a DataTable, you’ll receive a DataRowView object instead,
which you can use to retrieve all the field values exactly as you would with a DataRow object.

Passing the entire object has another advantage: it makes it easier to update the list selec-
tion. In the current example, it’s possible to click a button in any item, regardless of whether
that item is currently selected. This is potentially confusing, because the user could select one
item and click the View button of another item. When the user returns to the list window, the
first item remains selected even though the second item was the one that was used by the pre-
vious operation. To remove the possibility for confusion, it’s a good idea to move the selection
to the new list item when the View button is clicked, as shown here:

Button cmd = (Button)sender;
Product product = (Product)cmd.Tag;
lstCategories.SelectedItem = product;

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS558

9551CH17 2/8/08 2:12 PM Page 558

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Another option is to show the View button only in a selected item. This technique
involves modifying or replacing the template you’re using in this list, which is described in
the “Templates and Selection” section a bit later in this chapter.

Varying Templates
One limitation with the templates you’ve seen so far is that you’re limited to one template for
the entire list. But in many situations, you’ll want the flexibility to present different data items
in different ways.

You can achieve this goal in several ways. Here are some common techniques:

• Use a data trigger. You can use a trigger to change a property in the template based on
the value of a property in the bound data object. Data triggers work like the property
triggers you learned about with styles in Chapter 12, except they don’t require depend-
ency properties.

• Use a value converter. A class that implements IValueConverter can convert a value
from your bound object to a value you can use to set a formatting-related property in
your template.

• Use a template selector. A template selector examines the bound data object and
chooses between several distinct templates.

Data triggers offer the simplest approach. The basic technique is to set a property of one
of the elements in your template based on a property in your data item. For example, you
could change the background of the custom border that wraps each list item based on the
CategoryName property of the corresponding Product object. Here’s an example that high-
lights products in the Tools category with boldface lettering:

<DataTemplate x:Key="DefaultTemplate">
<DataTemplate.Triggers>
<DataTrigger Binding="{Binding Path=CategoryName}" Value="Tools">
<Setter Property="ListBoxItem.Foreground" Value="Red"></Setter>
</DataTrigger>

</DataTemplate.Triggers>
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold"
Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1"
Text="{Binding Path=ModelName}"></TextBlock>

</Grid>
</Border>

</DataTemplate>

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 559

9551CH17 2/8/08 2:12 PM Page 559

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Because the Product object implements the INotifyPropertyChanged interface (as
described in Chapter 16), any changes are picked up immediately. For example, if you modify
the CategoryName property to move a product out of the Tools category, its text in the list
changes at the same time.

This approach is useful but inherently limited. It doesn’t allow you to change complex
details about your template, only tweak individual properties of the elements in the template
(or the container element). Also, as you learned in Chapter 12, triggers can test only for
equality—they don’t support more complex comparison conditions. That means you can’t use
this approach to highlight prices that exceed a certain value, for example. And if you need to
choose between a range of possibilities (for example, giving each product category a different
background color), you’ll need to write one trigger for each possible value, which is messy.

Another option is to create one template that’s intelligent enough to adjust itself based on
the bound object. To pull this trick off, you usually need to use a value converter that exam-
ines a property in your bound object and returns a more suitable value. For example, you
could create a CategoryToColorConverter that examines a product’s category and returns a
corresponding Color object. That way, you can bind directly to the CategoryName property in
your template, as shown here:

<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue" CornerRadius="4"
Background=
"{Binding Path=CategoryName, Converter={StaticResource CategoryToColorConverter}">

You saw how to create a value converter and use it to apply conditional formatting in
Chapter 16. You also saw a value converter example in the previous section, which was used to
display images in a list.

Like the trigger approach, the value converter approach also prevents you from making
dramatic changes, such as replacing a portion of your template with something completely
different. However, it allows you to implement more sophisticated formatting logic. Also, it
allows you to base a single formatting property on several properties from the bound data
object. (To pull off this trick, use the IMultiValueConverter interface described in Chapter 16
instead of the ordinary IValueConverter.)

■Tip Value converters are a good choice if you might want to reuse your formatting logic with other
templates.

Template Selectors
Another, more powerful option is to give different items a completely different template.
Unfortunately, there’s no way to do this declaratively. Instead, you need to build a specialized
class that derives from DataTemplateSelector. This class has the responsibility of examining
each data item and choosing the appropriate template. This work is performed in the Select-
Template() method, which you must override.

Here’s a rudimentary template selector that chooses between two templates:

public class ProductByCategoryTemplateSelector : DataTemplateSelector
{

public override DataTemplate SelectTemplate(object item,

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS560

9551CH17 2/8/08 2:12 PM Page 560

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DependencyObject container)
{

Product product = (Product)item;
Window window = Application.Current.MainWindow;

if (product.CategoryName == "Travel")
{

return (DataTemplate)window.FindResource("TravelProductTemplate");
}
else
{

return (DataTemplate)window.FindResource("DefaultProductTemplate");
}

}
}

In this example, products that are in the Travel category get one template, while all other
products get another. Both the templates you want to use must be defined in the Resources
collection of the window, with the key names TravelProductTemplate and DefaultProduct-
Template.

This template selector works, but it’s not perfect. One problem is that your code depends
on details that are in the markup, which means there’s a dependency that isn’t enforced at
compile time and could easily be disrupted (for example, if you give your templates the wrong
resource keys). The other problem is that this template selector hard-codes the value it’s look-
ing for (in this case, the category name), which limits reuse.

A better idea is to create a template selector that uses one or more properties to allow you
to specify some of these details, such as the criteria you’re using to evaluate your data items
and the templates you want to use. The following template selector is still quite simple but
extremely flexible. It’s able to examine any data object, look for a given property, and compare
that property against another value to choose between two templates. The property, property
value, and templates are all specified as properties. The SelectTemplate() method uses reflec-
tion to find the right property in a manner similar to the way data bindings work when digging
out bound values.

Here’s the complete code:

public class SingleCriteriaHighlightTemplateSelector : DataTemplateSelector
{

public DataTemplate DefaultTemplate
{

get; set;
}

public DataTemplate HighlightTemplate
{

get; set;
}

public string PropertyToEvaluate

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 561

9551CH17 2/8/08 2:12 PM Page 561

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
get; set;

}

public string PropertyValueToHighlight
{

get; set;
}

public override DataTemplate SelectTemplate(object item,
DependencyObject container)

{
Product product = (Product)item;

// Use reflection to get the property to check.
Type type = product.GetType();
PropertyInfo property = type.GetProperty(PropertyToEvaluate);

// Decide if this product should be highlighted
// based on the property value.
if (property.GetValue(product, null).ToString() == PropertyValueToHighlight)
{

return HighlightTemplate;
}
else
{

return DefaultTemplate;
}

}
}

To make this work, you’ll need to create the two styles you want to use, and you’ll need to
create and initialize an instance of the SingleCriteriaHighlightTemplateSelector.

Here are two similar templates, which are distinguished only by the background color, the
use of bold formatting, and an extra line of text:

<Window.Resources>
<DataTemplate x:Key="DefaultTemplate">
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS562

9551CH17 2/8/08 2:12 PM Page 562

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1"
Text="{Binding Path=ModelName}"></TextBlock>

</Grid>
</Border>

</DataTemplate>

<DataTemplate x:Key="HighlightTemplate">
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
Background="LightYellow" CornerRadius="4">
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold"
Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1" FontWeight="Bold"
Text="{Binding Path=ModelName}"></TextBlock>
<TextBlock Grid.Row="2" FontStyle="Italic" HorizontalAlignment="Right">
*** Great for vacations ***</TextBlock>

</Grid>
</Border>

</DataTemplate>
</Window.Resources>

When you create the SingleCriteriaHighlightTemplateSelector, you point it to these two
templates. You can also create the SingleCriteriaHighlightTemplateSelector as a resource
(which is useful if you want to reuse it in more than one place), or you can define it inline in
your list control, as in this example:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch">
<ListBox.ItemTemplateSelector>
<local:SingleCriteriaHighlightTemplateSelector
DefaultTemplate="{StaticResource DefaultTemplate}"
HighlightTemplate="{StaticResource HighlightTemplate}"
PropertyToEvaluate="CategoryName"
PropertyValueToHighlight="Travel"

>
</local:SingleCriteriaHighlightTemplateSelector>

</ListBox.ItemTemplateSelector>
</ListBox>

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 563

9551CH17 2/8/08 2:12 PM Page 563

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here, the SingleCriteriaHighlightTemplateSelector looks for a Category property in the
bound data item and uses the HighlightTemplate if it contains the text Travel. Figure 17-5
shows the result.

Figure 17-5. A list with two data templates

■Tip One disadvantage with this approach is that you’ll probably be forced to create multiple templates
that are similar, which causes a bit of duplication. For best maintainability, you shouldn’t create more than a
few templates for a single list—instead, use triggers and styles to apply different formatting to your tem-
plates. (The ItemsControl.ItemContainerStyleSelector property is a particular help here, as described in the
“Style Selectors” section later in this chapter.)

The template selection process is performed once, when you first bind the list. This is a
problem if you’re displaying editable data and it’s possible for an edit to move the data item
from one template category to another. In this situation, you need to force WPF to reapply the
templates, and there’s no graceful way to do it. The brute-force approach is to remove the tem-
plate selector by setting the ItemTemplateSelector property to null and then to reassign it:

DataTemplateSelector selector = lstProducts.ItemTemplateSelector;
lstProducts.ItemTemplateSelector = null;
lstProducts.ItemTemplateSelector = selector;

You may choose to run this code automatically in response to certain changes by
handling events such as PropertyChanged (which is raised by all classes that implement
INotifyPropertyChanged, including Product), DataTable.RowChanged (if you’re using the
ADO.NET data objects), and, more generically, Binding.SourceUpdated (which fires only

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS564

9551CH17 2/8/08 2:12 PM Page 564

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

when Binding.NotifyOnSourceUpdated is true). When you reassign the template selector, WPF
examines and updates every item in the list—a process that’s quick for small-to-medium lists.

Templates and Selection
There’s a small but irritating quirk in the current template example. The problem is that the
templates you’ve seen don’t take selection into account.

If you select an item in the list, WPF automatically sets the Foreground and Background
properties of the item container (in this case, the ListBoxItem object). The foreground is white,
and the background is blue. The Foreground property uses property inheritance, so any ele-
ments you’ve added to your template automatically acquire the new white color, unless you’ve
explicitly specified a new color. The Background color doesn’t use property inheritance, but
the default Background value is Transparent. If you have a transparent border, for example,
the new blue background shows through. Otherwise, the color you’ve set in the template still
applies.

This mishmash can alter your formatting in a way you might not intend. Figure 17-6
shows an example.

Figure 17-6. Unreadable text in a highlighted item

You could hard-code all your colors to avoid this problem, but then you’ll face another
challenge. The only indication that an item is selected will be the blue background around
your curved border.

Obviously, a better solution would be to modify your template or supply a completely
new template for selected items. After all, you might want to make a wide range of changes
when an item becomes selected. (For example, you might want to fill in additional informa-
tion, expanding it in the list so the user doesn’t need to look to another control to get the full
details about an item. Or, you might want to replace the bound elements with editable con-
trols such as the TextBox so the item can be edited in place.)

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 565

9551CH17 2/8/08 2:12 PM Page 565

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Unfortunately, modifying the template of a selected item isn’t as easy as you’d expect. The
ItemsControl class doesn’t provide a SelectedItemDataTemplate property. The DataTemplate-
Selector class you learned about in the previous section isn’t any help either, because it
generates templates when the list is first bound. It’s no help if you want to change the tem-
plate when an item is selected or deselected.

So, how can you solve this problem? In a list that doesn’t use templates, you can use style
triggers to modify the selected item. You use these styles to modify the container that holds
each item in the list. (In the case of the ListBox, it’s a ListBoxItem; in the case of a ComboBox,
it’s a ComboBoxItem, and so on.)

You can apply these styles in two ways. You can apply a style by type to all ListBoxItem
controls, or you can use the ListBox.ItemContainerStyle property (as in the following exam-
ple), which allows you to set a style that’s used to affect every ListBoxItem object that’s created
for that list. Both approaches work equally well.

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch">
<ListBox.ItemContainerStyle>
<Style>
<Setter Property="Control.Padding" Value="0"></Setter>
<Style.Triggers>
<Trigger Property="ListBoxItem.IsSelected" Value="True">
<Setter Property="ListBoxItem.Background" Value="DarkRed" />

</Trigger>
</Style.Triggers>

</Style>
</ListBox.ItemContainerStyle>

</ListBox>

This trigger applies a dark red background to the selected item. Unfortunately, this code
doesn’t have the desired effect for a list that uses templates. That’s because these templates
include elements with a different background color that’s displayed over the dark red back-
ground. Unless you make everything transparent (and allow the red color to wash through
your entire template), you’re left with a thin red edge around the margin area of your template.

The solution is to explicitly bind the background in part of your template to the value of
the ListBoxItem.Background property. This makes sense—after all, you’ve now gone to the
work of choosing the right background color to highlight the selected item. You just need to
make sure it appears in the right place.

The markup you need to implement this solution is a bit messy. That’s because you can’t
make do with an ordinary binding expression, which can simply bind to a property in the cur-
rent data object (in this case, the Product object). Instead, you need to grab the background
from the item container (in this case, the ListBoxItem). This involves using the Binding.Rela-
tiveSource property to search up the element tree for the first matching ListBoxItem object.
Once that element is found, you can grab its background color and use it accordingly.

Here’s the finished template, which uses the selected background in the curved border
region. The Border element is placed inside a Grid with a white background, which ensures
that the selected color does not appear in the margin area outside the curved border. The
result is the much slicker selection style shown in Figure 17-7.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS566

9551CH17 2/8/08 2:12 PM Page 566

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<DataTemplate>
<Grid Margin="0" Background="White">
<Border Margin="5" BorderThickness="1"
BorderBrush="SteelBlue" CornerRadius="4"
Background="{Binding Path=Background, RelativeSource={

RelativeSource
Mode=FindAncestor,
AncestorType={x:Type ListBoxItem}

}}" >
<Grid Margin="3">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<TextBlock FontWeight="Bold" Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Grid.Row="1" Text="{Binding Path=ModelName}"></TextBlock>

</Grid>
</Border>

</Grid>
</DataTemplate>

Figure 17-7. Highlighting a selected item

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 567

9551CH17 2/8/08 2:12 PM Page 567

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

SELECTION AND SNAPSTODEVICEPIXELS

You should make one other change to ensure your template displays perfectly on computers with different
system DPI settings (such as 120 dpi rather than the standard 96 dpi). You should set the ListBox.SnapsTo-
DevicePixels property to true. This ensures that the edge of the list doesn’t use antialiasing if it falls in
between pixels.

If you don’t set SnapsToDevicePixels to true, it’s possible that you’ll get a trace of
the familiar blue border creeping in between the edge of your template and the edge of
the containing ListBox control. (For more information about fractional pixels and why they occur when the
system DPI is set to a value other than 96 dpi, see the discussion about WPF’s device-independent measur-
ing system in Chapter 1.)

This approach—using a binding expression to alter a template—works well if you can pull
the property value you need out of the
item container. For example, it’s a great technique if you want to get the background and fore-
ground color of a selected item. However, it isn’t as useful if you need to alter the template in a
more profound way.

For example, consider the list of product shown in Figure 17-8. When you select a product
from this list, that item is expanded from a single-line text display to a box with a picture and
full description. This example also combines several of the techniques you’ve already seen,
including showing image content in a template and using data binding to set the background
color of the Border element when an item is selected.

Figure 17-8. Expanding a selected item

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS568

9551CH17 2/8/08 2:12 PM Page 568

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To create this sort of list, you need to use a variation of the technique used in the previous
example. You still need to use the RelativeSource property of a Binding to search for the cur-
rent ListBoxItem. However, now you don’t want to pull out its background color. Instead, you
want to examine whether it’s selected. If it isn’t, you can hide the extra information by setting
its Visibility property.

This technique is similar to the previous example but not exactly the same. In the previ-
ous example, you were able to bind directly to the value you wanted so that the background
of the ListBoxItem became the background of the Border object. But in this case, you need to
consider the ListBoxItem.IsSelected property and set the Visibility property of another ele-
ment. The data types don’t match—IsSelected is a Boolean value, while Visibility takes a
value from the Visibility enumeration. As a result, you can’t bind the Visibility property to the
IsSelected property (at least, not without the help of a custom IValueConverter). The solution
is to use a data trigger so that when the IsSelected property is changed in the ListBoxItem, you
modify Visibility property of your container.

The place in your markup where you put the trigger is also different. It’s no longer con-
venient to place the trigger in the ItemContainerStyle, because you don’t want to change the
visibility of the entire item. Instead, you want to hide just a single section, so the trigger needs
to be part of a style that applies to just one container.

Here’s a slightly simplified version of the template that doesn’t have the automatically
expanding behavior yet. Instead, it shows all the information (including the picture and
description) for every product in the list.

<DataTemplate>
<Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
CornerRadius="4">
<StackPanel Margin="3">
<TextBlock Text="{Binding Path=ModelName}"></TextBlock>
<StackPanel>
<TextBlock Margin="3" Text="{Binding Path=Description}"
TextWrapping="Wrap" MaxWidth="250" HorizontalAlignment="Left"></TextBlock>
<Image Source=

"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
</Image>
<Button FontWeight="Regular" HorizontalAlignment="Right" Padding="1"
Tag="{Binding}">View Details...</Button>

</StackPanel>
</StackPanel>

</Border>
</DataTemplate>

Inside the Border is a StackPanel that holds all the content. Inside that StackPanel is a sec-
ond StackPanel that holds the content that should be shown only for selected items, which
includes the description, image, and button. To hide this information, you need to set the style
of the inner StackPanel using a trigger, as shown here:

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 569

9551CH17 2/8/08 2:12 PM Page 569

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<StackPanel>
<StackPanel.Style>
<Style>
<Style.Triggers>
<DataTrigger
Binding="{Binding Path=IsSelected, RelativeSource={

RelativeSource
Mode=FindAncestor,
AncestorType={x:Type ListBoxItem}

}}"
Value="False">
<Setter Property="StackPanel.Visibility" Value="Collapsed" />

</DataTrigger>
</Style.Triggers>

</Style>
</StackPanel.Style>

<TextBlock Margin="3" Text="{Binding Path=Description}"
TextWrapping="Wrap" MaxWidth="250" HorizontalAlignment="Left"></TextBlock>
<Image Source=

"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
</Image>
<Button FontWeight="Regular" HorizontalAlignment="Right" Padding="1"
Tag="{Binding}">View Details...</Button>

</StackPanel>

In this example, you need to use a DataTrigger instead of an ordinary trigger, because the
property you need to evaluate is in an ancestor element (the ListBoxItem), and the only way to
access it is using a data binding expression.

Now, when the ListBoxItem.IsSelected property changes to False, the StackPanel.Visibility
property is changed to Collapsed, hiding the extra details.

■Note Technically, the expanded details are always present, just hidden. As a result, you’ll experience the
extra overhead of generating these elements when the list is first created, not when an item is selected. This
doesn’t make much difference in the current example, but this design could have a performance effect if you
use it for an extremely long list with a complex template.

Style Selectors
Data templates are the most powerful tools for changing the appearance of the items in a list.
However, sometimes they’re a little excessive. For example, you may not need to radically alter
the layout and content of each item in a list. Instead, you may simply be interested in applying
some basic formatting—for example, changing the foreground and background colors or the
text in the list. In this case, it makes more sense to use a style.

In the previous section, you saw how you can define a style that’s automatically applied to
each item container (such as the ListBoxItem, ComboBoxItem, and so on). All you need to do

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS570

9551CH17 2/8/08 2:12 PM Page 570

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

is set the ListBox.ItemContainerStyle property. Like any style, you can use a combination of
Setter elements to set properties in the ListBoxItem. The formatting you set is applied to every
item in the list, although you can use triggers to change the formatting based on other details,
such as whether the item is currently selected. You also saw this technique in the previous
example.

One additional feature that you can use is a style selector, which works analogously to a
template selector. The style selector is a dedicated class with the simple task of evaluating
each item and supplying the correct style. This allows you to vary the style that’s used for each
data object based on specific information about that object. For example, you could easily
create a style selector that highlights high-priced products with a different text color. And
although the same feat is possible with a template selector, the style selector is a better choice
in this case. That’s because the template selector approach requires that you build an entirely
separate template for high-priced products, which forces you to duplicate some details from
the standard template and makes it more difficult to modify these details later. The style selec-
tor allows you to use a single template and simply tweak a few properties to suit.

Style selectors are often used to apply an alternating row style—in other words, a set of
formatting characteristics that distinguish every second item in a list. Usually, alternating rows
are given subtly different backgrounds colors so that the rows are clearly separated, as shown
in Figure 17-9.

Figure 17-9. Alternating row highlighting with a style selector

To create a style selector, you build a class that derives from the base
System.Windows.Controls.StyleSelector class and overrides the SelectStyle() method.
SelectStyle() works in the same way as SelectTemplate() in a template selector, except it
returns a Style object instead of a DataTemplate.

The following style selector applies one style to odd rows and another one to even rows.
For maximum reusability, both styles are supplied through properties rather than hard-coded.

public class AlternatingRowStyleSelector : StyleSelector
{

public Style DefaultStyle

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 571

9551CH17 2/8/08 2:12 PM Page 571

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
get; set;

}

public Style AlternateStyle
{

get; set;
}

// Track the row index.
private int i = 0;

public override Style SelectStyle(object item, DependencyObject container)
{

// Reset the counter if this is the first item.
ItemsControl ctrl = ItemsControl.ItemsControlFromItemContainer(container);
if (item == ctrl.Items[0])
{

i = 0;
}
i++;

// Choose between the two styles based on the current position.
if (i % 2 == 1)
{

return DefaultStyle;
}
else
{

return AlternateStyle;
}

}
}

To complete the example shown in Figure 17-9, you simply need to define the styles you
want to use. In this example, every odd-numbered item keeps the standard style settings.
Thus, you need to supply only the style that should be used for even items:

<Style x:Key="AlternateStyle">
<Setter Property="ListBoxItem.Background" Value="GoldenrodYellow" ></Setter>

</Style>

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS572

9551CH17 2/8/08 2:12 PM Page 572

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now you can use this style to configure the AlternatingRowStyleSelector that’s applied to
the list:

<ListBox Grid.Row="1" Margin="7,3,7,10" Name="lstProducts"
DisplayMemberPath="ModelName">
<ListBox.ItemContainerStyleSelector>
<local:AlternatingRowStyleSelector
AlternateStyle="{StaticResource AlternateStyle}" />

</ListBox.ItemContainerStyleSelector>
</ListBox>

As with template selectors, style selectors are evaluated only when an item is added to the
list is filled for the first time. If you add new items to the list between existing items, the alter-
nating row formatting will be thrown off. The solution is to manually clear the style selector
(by setting ItemContainerStyleSelector to null) and then reapply it.

Changing Item Layout
Data templates and style selectors give you remarkable control over every aspect of item pres-
entation. However, they don’t allow you to change how the items are organized with respect to
each other. No matter what templates and styles you use, the ListBox puts each item into a
separate horizontal row and stacks each row to create the list.

You can change this layout by replacing the container that the list uses to lay out
its children. To do so, you set the ItemsPanelTemplate property with a block of XAML
that defines the panel you want to use. This panel can be any class that derives from
System.Windows.Controls.Panel.

The following uses a WrapPanel to wrap items across the available width of the ListBox
control (as shown in Figure 17-10):

<ListBox Margin="7,3,7,10" Name="lstProducts"
ItemTemplate="{StaticResource ItemTemplate}"
ScrollViewer.HorizontalScrollBarVisibility="Disabled">
<ListBox.ItemsPanel>
<ItemsPanelTemplate>
<WrapPanel></WrapPanel>

</ItemsPanelTemplate>
</ListBox.ItemsPanel>

</ListBox>

For this approach to work, you must also set the attached ScrollViewer.HorizontalScroll-
BarVisibility property to Disabled. This ensures that the ScrollViewer (which the ListBox uses
automatically) never uses a horizontal scroll bar. Without this detail, the WrapPanel will be
given infinite width in which to lay out its items, and this example becomes equivalent to a
horizontal StackPanel.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 573

9551CH17 2/8/08 2:12 PM Page 573

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 17-10. Tiling items in the display area of a list

Data Views
Now that you’ve explored the art of building data templates, you’re ready to move on to
another part of the data binding picture: data views.

When you bind a collection (or a DataTable) to an ItemsControl, a data view is quietly cre-
ated behind the scenes. This view sits between your data source and the bound control. The
data view is a window into your data source. It tracks the current item, and it supports features
such as sorting, filtering, and grouping. These features are independent of the data object
itself, which means you can bind the same data in different ways in different portions of a
window (or different parts of your application). For example, you could bind the same collec-
tion of products to two different lists but filter them to show different records.

The view object that’s used depends on the type of data object. All views derive from
CollectionView, but two specialized implementations derive from CollectionView: ListCollec-
tionView and BindingListCollectionView. Here’s how it works:

• If your data source implements IBindingList, a BindingListCollectionView is created.
This happens when you bind an ADO.NET DataTable.

• If your data source doesn’t implement IBindingList but it implements IList, a
ListCollectionView is created. This happens when you bind an ObservableCollection,
like the list of products.

• If your data source doesn’t implement IBindingList or IList but it implements
IEnumerable, you get a basic CollectionView.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS574

9551CH17 2/8/08 2:12 PM Page 574

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Ideally, you’ll avoid the third scenario. The CollectionView offers poor performance for large items and
operations that modify the data source (such as insertions and deletions). As you learned in Chapter 16, if
you’re not binding to an ADO.NET data object, it’s almost always easiest to use the ObservableCollection
class (or derive a custom class from ObservableCollection).

Retrieving a View Object
To get ahold of a view object that’s currently in use, you use the static GetDefaultView()
method of the System.Windows.Data.CollectionViewSource class. When you call GetDefault-
View(), you pass in the data source—the collection or DataTable that you’re using. Here’s an
example that gets the view for the collection of products that’s bound to the list:

ICollectionView view = CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

The GetDefaultView() method always returns an ICollectionView reference. It’s up to you
to cast the view object to the appropriate class, such as a ListCollectionView or BindingList-
CollectionView, depending on the data source.

ListCollectionView view =
(ListCollectionView)CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

In the following sections, you’ll learn how to use the view object to add filtering, sorting,
and grouping.

Filtering Collections
Filtering allows you to show a subset of records that meet specific conditions. When working
with a collection as a data source, you set the filter using the Filter property of the view object.

The implementation of the Filter property is a little awkward. It accepts a Predicate dele-
gate that points to a custom filtering method (that you create). Here’s an example of how you
can connect a view to a method named FilterProduct():

ListCollectionView view = (ListCollectionView)
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

view.Filter = new Predicate<object>(FilterProduct);

The filtering examines a single data item from the collection and returns true if it should
be allowed in the list or false if it should be excluded. When you create the Predicate object,
you specify the type of object that it’s meant to examine. The awkward part is that the view
expects you to use a Predicate<object> instance—you can’t use something more useful (such
as Predicate<Product>) to save yourself the type casting code.

Here’s a simple method that shows products only if they exceed $100:

public bool FilterProduct(Object item)
{

Product product = (Product)item;
return (product.UnitCost > 100);

}

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 575

9551CH17 2/8/08 2:12 PM Page 575

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Obviously, it makes little sense to hard-code values in your filter condition. A more realis-
tic application would filter dynamically based on other information, like the user-supplied
criteria shown in Figure 17-11.

Figure 17-11. Filtering the product list

You can use two strategies to make this scenario work. If you use an anonymous delegate,
you can define an inline filtering method, which gives you access to any local variables that
are in scope in the current method. Here’s an example:

ListCollectionView view = (ListCollectionView)
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

view.Filter = delegate(object item)
{

Product product = (Product)item;
return (product.UnitCost > 100);

}

Although this is a neat, elegant approach, in more complex filtering scenarios you’re more
likely to use a different strategy and create a dedicated filtering class. That’s because in these
situations, you often need to filter using several different criteria, and you may want the ability
to modify the filtering criteria later.

The filtering class wraps the filtering criteria and the callback method that performs the
filtering. Here’s an extremely simple filtering class that filters products that fall below a mini-
mum price:

public class ProductByPriceFilter
{

public decimal MinimumPrice

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS576

9551CH17 2/8/08 2:12 PM Page 576

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
get; set;

}

public ProductByPriceFilter(decimal minimumPrice)
{

MinimumPrice = minimumPrice;
}

public bool FilterItem(Object item)
{

Product product = item as Product;
if (product != null)
{

return (product.UnitCost > MinimumPrice);
}
return false;

}
}

Here’s the code that creates the ProductByPriceFilterer and uses it to apply minimum
price filtering:

private void cmdFilter_Click(object sender, RoutedEventArgs e)
{

decimal minimumPrice;
if (Decimal.TryParse(txtMinPrice.Text, out minimumPrice))
{

ListCollectionView view =
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource)
as ListCollectionView;

if (view != null)
{

ProductByPriceFilter filter =
new ProductByPriceFilter(minimumPrice);

view.Filter = new Predicate<object>(filter.FilterItem);
}

}
}

It might occur to you to create different filters for filtering different types of data. For
example, you might plan to create (and reuse) a MinMaxFilter, a StringFilter, and so on. How-
ever, it’s usually more helpful to create a single filtering class for each window where you want
to apply filtering. That’s because you can’t chain more than one filter together.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 577

9551CH17 2/8/08 2:12 PM Page 577

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Of course, you could create a custom implementation that solves this problem—for example, a
FilterChain class that wraps a collection of IFilter objects and calls the FilterItem() method of each one to find
out whether to exclude an item. However, this extra layer may be more code and complexity than you need.

If you want to modify the filter later without re-creating the ProductByPriceFilter object,
you’ll need to store a reference to the filter object as a member variable in your window class.
You can then modify the filter properties. However, you’ll also need to call the Refresh() method
of the view object to force the list to be refiltered. Here’s some code that adjusts the filter settings
whenever the TextChanged event fires in the text box that contains the minimum price:

private void txtMinPrice_TextChanged(object sender, TextChangedEventArgs e)
{

ListCollectionView view =
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource)
as ListCollectionView;

if (view != null)
{

decimal minimumPrice;
if (Decimal.TryParse(txtMinPrice.Text, out minimumPrice) &&
(filter != null))

{
filter.MinimumPrice = minimumPrice;
view.Refresh();

}
}

}

■Tip It’s a common convention to let the user choose to apply different types of conditions using a series
of check boxes. For example, you could create a check box for filtering by price, by name, by model number,
and so on. The user can then choose which filter conditions to apply by checking the appropriate check boxes.

Finally, you can completely remove a filter by setting the Filter property to null:

view.Filter = null;

Filtering the DataTable
Filtering works differently with the DataTable. If you’ve worked with ADO.NET before, you
probably already know that every DataTable works in conjunction with a DataView object
(which is, like the DataTable, defined in the System.Data namespace along with the other core
ADO.NET data objects). The ADO.NET DataView plays much the same role as the WPF view
object. Like a WPF view, it allows you to filter records (by field content using the RowFilter

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS578

9551CH17 2/8/08 2:12 PM Page 578

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

property or by row state using the RowStateFilter property). It also supports sorting through
the Sort property. Unlike the WPF view object, the DataView doesn’t track the position in a set
of data. It also provides additional properties that allow you to lock down editing capabilities
(AllowDelete, AllowEdit, and AllowNew).

It’s quite possible to change the way a list of data is filtered by retrieving the bound
DataView and modifying its properties directly. (Remember, you can get the default DataView
from the DataTable.DefaultView property.) However, it would be nicer if you had a way to
adjust the filtering through the WPF view object so that you can continue to use the same
model.

It turns out that this is possible, but there are some limitations. Unlike the ListCollection-
View, the BindingListCollectionView that’s used with the DataTable doesn’t support the Filter
property. (BindingListCollectionView.CanFilter returns false, and attempting to set the Filter
property causes an exception to be thrown.) Instead, the BindingListCollectionView provides
a CustomFilter property. The CustomFilter property doesn’t do any work of its own—it simply
takes the filter string that you specify and uses it to set the underlying DataView.RowFilter
property.

The DataView.RowFilter is easy enough to use but a little messy. It takes a string-based fil-
ter expression, which is modeled after the snippet of SQL you’d use to construct the WHERE
clause in a SELECT query. As a result, you need to follow all the conventions of SQL, such as
bracketing string and date values with single quotes ('). And if you want to use multiple condi-
tions, you need to string them all together using the OR and AND keywords.

Here’s an example that duplicates the filtering shown in the earlier, collection-based
example so that it works with a DataTable of product records:

decimal minimumPrice;
if (Decimal.TryParse(txtMinPrice.Text, out minimumPrice))
{

BindingListCollectionView view =
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource)
as BindingListCollectionView;

if (view != null)
{

view.CustomFilter = "UnitCost > " + minimumPrice.ToString();
}

}

Notice that this example takes the roundabout approach of converting the text in the
txtMinPrice text box to a decimal value and then back to a string to use for filtering. This
requires a bit more work, but it avoids possible injection attacks and errors with invalid char-
acters. If you simply concatenate the text from the txtMinPrice text box to build your filter
string, it could contain filter operations (=, <, >) and keywords (AND, OR) that apply com-
pletely different filtering than what you intend. This could happen as part of a deliberate
attack or because of user error.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 579

9551CH17 2/8/08 2:12 PM Page 579

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Sorting
You can also use a view to implement sorting. The easiest approach is to sort based on the
value of one or more properties in each data item. You identify the fields you want to use using
System.ComponentModel.SortDescription objects. Each SortDescription identifies the field
you want to use for sorting and the sort direction (ascending or descending). You add the
SortDescription objects in the order that you want to apply them. For example, you could sort
first by category and then by model name.

Here’s an example that applies a simple ascending sort by model name:

ICollectionView view = CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);
view.SortDescriptions.Add(
new SortDescription("ModelName", ListSortDirection.Ascending));

Because this code uses the ICollectionView interface rather than a specific view class,
it works equally well no matter what type of data source you’re binding. In the case of a
BindingListCollectionView (when binding a DataTable), the SortDescription objects are
used to build a sorting string that’s applied to the underlying DataView.Sort property.

■Note In the rare case that you have more than one BindingListCollectionView working with the same
DataView, both will share the same filtering and sorting settings, because these details are stored in the
DataView, not the BindingListCollectionView. If this isn’t the behavior you want, you can create more than
one DataView to wrap the same DataTable.

As you’d expect, when sorting strings, values are ordered alphabetically. Numbers
are ordered numerically. To apply a different sort order, begin by clearing the existing
SortDescriptions collection.

You also have the ability to perform a custom sort, but only if you’re using the
ListCollectionView (not the BindingListCollectionView). The ListCollectionView provides
a CustomSort property that accepts an IComparer object that performs the comparison
between any two data items and indicates which one should be considered greater than the
other. This approach is handy if you need to build a sorting routine that combines properties
to get a sorting key. It also makes sense if you have nonstandard sorting rules. For example,
you may want to ignore the first few characters of a product code, perform a calculation on a
price, convert your field to a different data type or a different representation before sorting,
and so on. Here’s an example that counts the number of letters in the model name and uses
that to determine sort order:

public class SortByModelNameLength : IComparer
{

public int Compare(object x, object y)
{

Product productX = (Product)x;
Product productY = (Product)y;
return productX.ModelName.Length.CompareTo(productY.ModelName.Length);

}
}

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS580

9551CH17 2/8/08 2:12 PM Page 580

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the code that connects the IComparer to a view:

ListCollectionView view = (ListCollectionView)
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

view.CustomSort = new SortByModelNameLength();

In this example, the IComparer is designed to fit a specific scenario. If you have an
IComparer that you need to reuse with similar data in different places, you can generalize it.
For example, you could change the SortByModelNameLength class to a SortByTextLength class.
When creating a SortByTextLength instance, your code would need to supply the name of the
property to use (as a string), and your Compare() method could then use reflection to look it up
in the data object (as with the SingleCriteriaHighlightTemplateSelector earlier in this chapter).

Grouping
In much the same way that they support sorting, views also allow you to apply grouping. As
with sorting, you can group the easy way (based on a single property value) or the hard way
(using a custom callback).

To perform grouping, you add System.ComponentModel.PropertyGroupDescription
objects to the CollectionView.GroupDescriptions collection. Here’s an example that groups
products by category name:

ICollectionView view = CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);
view.GroupDescriptions.Add(new PropertyGroupDescription("CategoryName"));

■Note This example assumes that the Product class has a property named CategoryName. It’s more likely
that you have a property named Category (which returns a linked Category object) or CategoryID (which
identifies the category with a unique ID number. You can still use grouping in these scenarios, but you’ll need
to add a value converter that examines the grouping information (such as the Category object or CategoryID
property) and returns the correct category text to use for the group. You’ll see how to use a value converter
with grouping in the next example.

This example has one problem. Although your items will now be arranged into separate
groups based on their categories, it’s difficult to see that any grouping has been applied when
you look at the list. In fact, the result is the same as if you simply sorted by category name.

There’s actually more taking place—you just can’t see it with the default settings. When
you use grouping, your list creates a separate GroupItem object for each group, and it adds
these GroupItem objects to the list. The GroupItem is a content control, so each GroupItem
holds the appropriate container (like ListBoxItem objects) with your actual data. The secret to
showing your groups is formatting the GroupItem element so it stands out.

You could use a style that applies formatting to all the GroupItem objects in a list.
However, you probably want more than just formatting—for example, you might want to
display a group header, which requires the help of a template. Fortunately, the ItemsControl
class makes both tasks easy through its ItemsControl.GroupStyle property, which provides a
collection of GroupStyle objects. Despite the name, GroupStyle class is not a style. It’s simply a

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 581

9551CH17 2/8/08 2:12 PM Page 581

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

convenient package that wraps a few useful settings for configuring your GroupItem objects.
Table 17-1 lists the properties of the GroupStyle class.

Table 17-1. GroupStyle Properties

Name Description

ContainerStyle Sets the style that’s applied to the GroupItem that’s generated for each
group.

ContainerStyleSelector Instead of using ContainerStyle, you can use ContainerStyleSelector to
supply a class that chooses the right style to use, based on the group.

HeaderTemplate Allows you to create a template for displaying content at the beginning
of each group.

HeaderTemplateSelector Instead of using HeaderTemplate, you can use HeaderTemplateSelector
to supply a class that chooses the right header template to use, based
on the group.

Panel Allows you to change the template that’s used to hold groups. For
example, you could use a WrapPanel instead of the standard StackPanel
to create a list that tiles groups from left to right and then down.

In this example, all you need is a header before each group. You can use this to create the
effect shown in Figure 17-12.

Figure 17-12. Grouping the product list

To add a group header, you need to set the GroupStyle.HeaderTemplate. You can fill this
property with an ordinary data template, like the ones you saw earlier in this chapter. You can
use any combination of elements and data binding expressions inside your template.

However, there’s one trick. When you write your binding expression, you aren’t binding
against the data object from your list (in this case, the Product object). Instead, you’re binding

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS582

9551CH17 2/8/08 2:12 PM Page 582

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

against the PropertyGroupDescription object for that group. That means if you want to display
the field value for that group (as shown in Figure 17-12), you need to bind the Property-
GroupDescription.Name property rather than Product.CategoryName.

Here’s the complete template:

<ListBox Name="lstProducts" DisplayMemberPath="ModelName">
<ListBox.GroupStyle>
<GroupStyle>
<GroupStyle.HeaderTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=Name}" FontWeight="Bold"
Foreground="White" Background="LightGreen"
Margin="0,5,0,0" Padding="3"/>

</DataTemplate>
</GroupStyle.HeaderTemplate>

</GroupStyle>
</ListBox.GroupStyle>

</ListBox>

■Tip The ListBox.GroupStyle property is actually a collection of GroupStyle objects. This allows you to add
multiple levels of grouping. To do so, you need to add more than one PropertyGroupDescription (in the order
that you want your grouping and subgrouping applied) and then add a matching GroupStyle object to format
each level.

You’ll probably want to use grouping in conjunction with sorting. If you want to sort your
groups, just make sure that the first SortDescription you use sorts based on the grouping field.
The following code sorts the categories alphabetically by category name and then sorts each
product within the category alphabetically by model name.

view.SortDescriptions.Add(new SortDescription("CategoryName",
ListSortDirection.Ascending));

view.SortDescriptions.Add(new SortDescription("ModelName",
ListSortDirection.Ascending));

One limitation with the simple grouping approach you see here is that it requires a field
with duplicate values in order to perform its grouping. The previous example works because
many products share the same category and have duplicate values for the CategoryName
property. However, this approach doesn’t work as well if you try to group by another piece of
information, such as the UnitCost field. In this situation, you’ll end up with a separate group
for each product.

This problem has a solution. You can create a class that examines some piece of informa-
tion and places it into a conceptual group for display purposes. This technique is commonly
used to group data objects using numeric or date information that fall into specific ranges. For
example, you could create a group for products that are less than $50, another for products
that fall between $50 and $100, and so on. Figure 17-13 shows this example.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 583

9551CH17 2/8/08 2:12 PM Page 583

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 17-13. Grouping in ranges

To create this solution, you need to supply a value converter that examines a field in your
data source (or multiple fields if you implement IMultiValueConverter) and returns the group
header. As long as you use the same group header for multiple data objects, these objects are
placed into the same logical group.

The following code shows the converter that creates the price ranges shown in Figure 17-13.
It’s designed to have some flexibility—namely, you can specify the size of the grouping ranges.
(In Figure 17-13, the group range is 50 units big.)

public class PriceRangeProductGrouper : IValueConverter
{

public int GroupInterval
{

get; set;
}

public object Convert(object value, Type targetType, object parameter,
CultureInfo culture)

{
decimal price = (decimal)value;
if (price < GroupInterval)
{

return String.Format(culture, "Less than {0:C}", GroupInterval);
}

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS584

9551CH17 2/8/08 2:12 PM Page 584

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

else
{

int interval = (int)price / GroupInterval;
int lowerLimit = interval * GroupInterval;
int upperLimit = (interval + 1) * GroupInterval;
return String.Format(culture, "{0:C} to {1:C}", lowerLimit, upperLimit);

}
}

public object ConvertBack(object value, Type targetType, object parameter,
CultureInfo culture)

{
throw new NotSupportedException("This converter is for grouping only.");

}
}

To make this class even more flexible so that it can be used with other fields, you could
add other properties that allow you to set the fixed part of the header text and a format string
to use when converting the numeric values to header text. (The current code assumes the
numbers should be treated as currencies, so 50 becomes $50.00 in the header.)

Here’s the code that uses the converter to apply the range grouping. Note that the prod-
ucts must first be sorted by price, or you’ll end up grouping them based on where they fall in
the list.

ICollectionView view =
CollectionViewSource.GetDefaultView(lstProducts.ItemsSource);

view.SortDescriptions.Add(new SortDescription("UnitCost",
ListSortDirection.Ascending));

PriceRangeProductGrouper grouper = new PriceRangeProductGrouper();
grouper.GroupInterval = 50;
view.GroupDescriptions.Add(new PropertyGroupDescription("UnitCost", grouper));

This example does its work in code, but you can also create the converter and the view
declaratively by placing them both in the Resources collection of the window. You’ll see how
this works in the next section.

Creating Views Declaratively
So far, the examples you’ve seen work the same way. They retrieve the view you want to
use with code and then modify it programmatically. However, you have another choice—you
can construct a CollectionViewSource declaratively in XAML markup and then bind the
CollectionViewSource to your controls (such as the list).

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 585

9551CH17 2/8/08 2:12 PM Page 585

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Technically, the CollectionViewSource is not a view. It’s a helper class that allows you to retrieve a
view (using the GetDefaultView() method you’ve seen in the previous examples) and a factory that can create
a view when you need it (as you’ll see in this section).

The two most important properties of the CollectionViewSource class are View, which
wraps the view object, and Source, which wraps the data source. The CollectionViewSource
also adds the SortDescriptions and GroupDescriptions properties, which mirror the identi-
cally named view properties you’ve already learned about. When the CollectionViewSource
creates a view, it simply passes the value of these properties to the view.

The CollectionViewSource also includes a Filter event, which you can handle to perform
filtering. This filtering works in the same way as the Filter callback that’s provided by the view
object, except it’s defined as an event so you can easily hook up your event handler in XAML.

For example, consider the previous example, which placed products in groups using price
ranges. Here’s how you would define the converter and CollectionViewSource you need for
this example declaratively:

<local:PriceRangeProductGrouper x:Key="Price50Grouper" GroupInterval="50"/>
<CollectionViewSource x:Key="GroupByRangeView">
<CollectionViewSource.SortDescriptions>
<component:SortDescription PropertyName="UnitCost" Direction="Ascending"/>

</CollectionViewSource.SortDescriptions>
<CollectionViewSource.GroupDescriptions>
<PropertyGroupDescription PropertyName="UnitCost"
Converter="{StaticResource Price50Grouper}"/>

</CollectionViewSource.GroupDescriptions>
</CollectionViewSource>

Notice that the SortDescription class isn’t one of the WPF namespaces. To use it, you need
to add the following namespace alias:

xmlns:component="clr-namespace:System.ComponentModel;assembly=WindowsBase"

Once you’ve set up the CollectionViewSource, you can bind to it in your list:

<ListBox ItemsSource="{Binding Source={StaticResource GroupByRangeView}}" ... >

At first glance, this looks a bit odd. It seems as though the ListBox control is binding to the
CollectionViewSource, not the view exposed by the CollectionViewSource (which is stored in
the CollectionViewSource.View property). However, WPF data binding makes a special excep-
tion for the CollectionViewSource. When you use it in a binding expression, WPF asks the
CollectionViewSource to create its view and then binds that view to the appropriate element.

The declarative approach doesn’t really save you any work. You still need code that
retrieves the data at runtime. The difference is that now your code must pass the data along to
the CollectionViewSource rather than supply it directly to the list:

ICollection<Product> products = App.StoreDB.GetProducts();
CollectionViewSource viewSource = (CollectionViewSource)
this.FindResource("GroupByRangeView");

viewSource.Source = products;

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS586

9551CH17 2/8/08 2:12 PM Page 586

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Alternatively, you could create the products collection as a resource using XAML markup.
You could then bind the CollectionViewSource to your products collection declaratively. How-
ever, you still need to use code to populate your products collection.

■Note People use a few dubious tricks to create code-free data binding. Sometimes, the data collection is
defined and filled using XAML markup (with hard-coded values). In other cases, the code for populating the
data object is hidden away in the data object’s constructor. Both these approaches are severely impractical.
I mention them only because they’re often used to create quick, off-the-cuff data binding examples.

Now that you’ve seen the code-based and markup-based approaches for configuring a
view, you’re probably wondering which one is the better design decision. Both are equally
valid. The choice you make depends on where you want to centralize the details for your
data view.

However, the choice becomes more significant if you want to use multiple views. In this
situation, there’s a good case to be made for defining all your views in markup and then using
code to swap in the appropriate view.

■Tip Creating multiple views makes sense if your views are dramatically different. (For example, they
group on completely different criteria.) In many cases, it’s simpler to modify the sorting or grouping informa-
tion for the current view. For example, if you want to extend the window shown in Figure 17-13 so that you
can create larger or smaller groups, the most efficient approach is to dynamically modify the PriceRange-
ProductGrouper.GroupInterval property.

Navigating with a View
One of the simplest things you can do with a view object is determine the number of items in the
list (through the Count property) and get a reference to the current data object (CurrentItem) or
current position index (CurrentPosition). You can also use a handful of methods to move from
one record to another, such as MoveCurrentToFirst(), MoveCurrentToLast(), MoveCurrent-
ToNext(), MoveCurrentToPrevious(), and MoveCurrentToPosition(). So far, you haven’t needed
these details because all the examples you’ve seen have used the list to allow the user to move
from one record to the next. But if you want to create a record browser application, you might
want to supply your own navigation buttons. Figure 17-14 shows one example.

The bound text boxes that show the data for the bound product stay the same. They need
only to indicate the appropriate property, as shown here:

<TextBlock Margin="7">Model Number:</TextBlock>
<TextBox Margin="5" Grid.Column="1" Text="{Binding Path=ModelNumber}"></TextBox>

However, this example doesn’t include any list control, so it’s up to you to take control of
the navigation. To simplify life, you can store a reference to the view as a member variable in
your window class:

private ListCollectionView view;

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 587

9551CH17 2/8/08 2:12 PM Page 587

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 17-14. A record browser

In this case, the code casts the view to the appropriate view type (ListCollectionView)
rather than using the ICollectionView interface. The ICollectionView interface provides most
of the same functionality, but it lacks the Count property that gives the total number of items
in the collection.

When the window first loads up you can get the data, place it in the DataContext of the
window, and store a reference to the view:

ICollection<Products> products = App.StoreDB.GetProducts();
this.DataContext = products;

view = (ListCollectionView)CollectionViewSource.GetDefaultView(this.DataContext);
view.CurrentChanged += new EventHandler(view_CurrentChanged);

The second line does all the magic needed to show your collection of items in the window.
It places the whole collection of Product objects in the DataContext. The bound controls on
the form will search up the element tree until they find this object. Of course, you want the
binding expressions to bind to the current item in the collection, not the collection itself, but
WPF is smart enough to figure this out automatically. It automatically supplies them with the
current item, so you don’t need a stitch of extra code.

The previous example has one additional code statement. It connects an event handler
to the CurrentChanged event of the view. When this event fires, you can perform a few useful
actions, such as enabling or disabling the previous and next buttons depending on the current
position and displaying the current position in a TextBlock at the bottom of the window.

private void view_CurrentChanged(object sender, EventArgs e)
{

lblPosition.Text = "Record " + (view.CurrentPosition + 1).ToString() +

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS588

9551CH17 2/8/08 2:12 PM Page 588

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

" of " + view.Count.ToString();
cmdPrev.IsEnabled = view.CurrentPosition > 0;
cmdNext.IsEnabled = view.CurrentPosition < view.Count - 1;

}

This code seems like a candidate for data binding and triggers. However, the logic is just a
bit too complex (partly because you need to add 1 to the index to get the record position num-
ber that you want to display).

The final step is to write the logic for the previous and next buttons. Because these but-
tons are automatically disabled when they don’t apply, you don’t need to worry about moving
before the first item or after the last item.

private void cmdNext_Click(object sender, RoutedEventArgs e)
{

view.MoveCurrentToNext();
}

private void cmdPrev_Click(object sender, RoutedEventArgs e)
{

view.MoveCurrentToPrevious();
}

For an interesting frill, you can add a list control to this form so the user has the option of
stepping through the records one at a time with the buttons or using the list to jump directly
to a specific item (as shown in Figure 17-15).

Figure 17-15. A record browser with a drop-down list

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 589

9551CH17 2/8/08 2:12 PM Page 589

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In this case, you need a ComboBox that uses the ItemsSource property (to get the full list
of products) and uses a binding on the Text property (to show the right item):

<ComboBox Name="lstProducts" DisplayMemberPath="ModelName"
Text="{Binding Path=ModelName}"
SelectionChanged="lstProducts_SelectionChanged"></ComboBox>

When you first retrieve the collection of products, you’ll bind the list:

lstProducts.ItemsSource = products;

This might not have the effect you expect. By default, the selected item in an ItemsControl
is not synchronized with the current item in the view. That means that when you make a new
selection from the list, you aren’t directed to the new record—instead, you end up modifying
the ModelName property of the current record. Fortunately, there are two easy approaches to
solve the problem.

The brute-force approach is to simply move to the new record whenever an item is
selected in the list. Here’s the code that does it:

private void lstProducts_SelectionChanged(object sender, RoutedEventArgs e)
{

view.MoveCurrentTo(lstProducts.SelectedItem);
}

A simpler solution is to set the ItemsControl.IsSynchronizedWithCurrentItem to true.
That way, the currently selected item is automatically synchronized to match the current
position of the view with no code required.

USING A LOOKUP LIST FOR EDITING

The ComboBox provides a handy way to edit record values. In the current example, it doesn’t make much
sense—after all, there’s no reason to give one product the same name as another product. However, it’s not
difficult to think of other scenarios where the ComboBox is a great editing tool.

For example, you might have a field in your database that accepts one of a small set of preset values. In
this case, use a ComboBox, and bind it to the appropriate field using a binding expression for the Text prop-
erty. However, fill the ComboBox with the allowable values by setting its ItemsSource property to point to the
list you’ve defined. And if you want to display the values in the list one way (say, as text) but store them
another way (as numeric codes), just add a value converter to your Text property binding.

Another case where a lookup list makes sense is when dealing with related tables. For example, you
might want to allow the user to pick the category for a product using a list of all the defined categories. The
basic approach is the same: set the Text property to bind to the appropriate field, and fill in the list of options
with the ItemsSource property. If you need to convert low-level unique IDs into more meaningful names, use
a value converter.

Data Providers
In most of the examples you’ve seen, the top-level data source has been supplied by program-
matically setting the DataContext of an element or the ItemsSource property of a list control.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS590

9551CH17 2/8/08 2:12 PM Page 590

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In general, this is the most flexible approach, particularly if your data object is constructed by
another class (such as StoreDB). However, you have other options.

As you saw in the previous chapter, you can define your data object as a resource of your
window (or some other container). This works well if you can construct your object declaratively,
but it makes less sense if you need to connect to an outside data store (such as a database) at
runtime. However, some developers still use this approach (often in a bid to avoid writing event
handling code). The basic idea is to create a wrapper object that fetches the data you need in its
constructor. For example, you could create a resource section like this:

<Window.Resources>
<ProductListSource x:Key="products"></ProductListSource>

</Window.Resources>

Here, ProductListSource is a class that derives from ObservableCollection<Products>.
Thus, it has the ability to store a list of products. It also has some basic logic in the constructor
that calls StoreDB.GetProducts() to fill itself.

Now, other elements can use this in their binding:

<ListBox ItemsSource="{StaticResource products}"

This approach seems tempting at first, but it’s a bit risky. When you add error handling,
you’ll need to place it in the ProductListSource class. You may even need to show a message
explaining the problem to the user. As you can see, this approach mingles the data model, the
data access code, and the user interface code in a single muddle, so it doesn’t make much
sense for this example. This approach could make sense if you’re constructing your data with-
out needing to access any outside resources (files, databases, and so on), but even then it’s a
bit risky.

Data providers are, in some ways, an extension of this limited model. A data provider
gives you the ability to bind directly to an object that you define in the resources section of
your markup. However, instead of binding directly to the data object itself, you bind to a data
provider that’s able to retrieve or construct that object. This approach makes sense if the data
provider is full-featured—for example, if it has the ability to raise events when exceptions
occur and provides properties that allow you to configure other details about its operation.
Unfortunately, the data providers that are included in WPF aren’t yet up to this standard.
They’re too limited to be worth the trouble in a situation with external data (for example,
when fetching the information from a database or a file). They may make sense in simpler
scenarios—for example, you could use a data provider to glue together some controls that
supply input to a class that calculates a result. However, they add relatively little in this situa-
tion except the ability to reduce event handling code in favor of markup.

All data providers derive from the System.Windows.Data.DataSourceProvider class.
Currently, WPF provides just two data providers:

• ObjectDataProvider, which gets information by calling a method in another class

• XmlDataProvider, which gets information directly from an XML file

The goal of both of these objects is to allow you to instantiate your data object in XAML,
without resorting to event handling code.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 591

9551CH17 2/8/08 2:12 PM Page 591

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ObjectDataProvider
The ObjectDataProvider allows you to get information from another class in your application.
It adds the following features:

• It can create the object you need and pass parameters to the constructor.

• It can call a method in that object and pass method parameters to it.

• It can create the data object asynchronously. (In other words, it can wait until after the
window is loaded and then perform the work in the background.)

For example, here’s a basic ObjectDataProvider that creates an instance of the StoreDB
class, calls its GetProducts() method, and makes the data available to the rest of your window:

<Window.Resources>
<ObjectDataProvider x:Key="productsProvider" ObjectType="{x:Type local:StoreDB}"
MethodName="GetProducts"></ObjectDataProvider>

</Window.Resources>

You can now create a binding that gets the source from the ObjectDataProvider:

<ListBox Name="lstProducts" DisplayMemberPath="ModelName"
ItemsSource="{Binding Source={StaticResource productsProvider}}"></ListBox>

This tag looks like it binds to the ObjectDataProvider, but the ObjectDataProvider is intel-
ligent enough to know you really want to bind to the product list that it returns from the
GetProducts() method.

■Note The ObjectDataProvider, like all data providers, is designed to retrieve data but not update it. In
other words, there’s no way to force the ObjectDataProvider to call a different method in the StoreDB class
to trigger an update. This is just one example of how the data provider classes in WPF are less mature than
other implementations in other frameworks, such as the data source controls in ASP.NET.

Error Handling
As written, this example has a giant limitation. When you create this window, the XAML parser
creates the window and calls the GetProducts() method so it can set up the binding. Every-
thing runs smoothly if the GetProducts() method returns the data you want, but the result isn’t
as nice if an unhandled exception is thrown (for example, if the database is too busy or isn’t
reachable). At this point, the exception bubbles up from the InitializeComponent() call in the
window constructor. The code that’s showing this window needs to catch this error, which is
conceptually confusing. And there’s no way to continue and show the window—even if you
catch the exception in the constructor, the rest of the window won’t be initialized properly.

Unfortunately, there’s no easy way to solve this problem. The ObjectDataProvider class
includes an IsInitialLoadEnabled property that you can set to false to prevent it from calling
GetProducts() when the window is first created. If you set this, you can call Refresh() later to
trigger the call. Unfortunately, if you use this technique, your binding expression will fail,

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS592

9551CH17 2/8/08 2:12 PM Page 592

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

because the list won’t be able to retrieve its data source. (This is unlike most data binding
errors, which fail silently without raising an exception.)

So, what’s the solution? You can construct the ObjectDataProvider programmatically,
although you’ll lose the benefit of declarative binding, which is the reason you probably used the
ObjectDataProvider in the first place. Another solution is to configure the ObjectDataProvider to
perform its work asynchronously, as described in the next section. In this situation, exceptions
cause a silent failure (although a trace message will still be displayed in the Debug window
detailing the error).

Asynchronous Support
Most developers will find that there aren’t many reasons for using the ObjectDataProvider.
Usually, it’s easier to simply bind directly to your data object and add the tiny bit of code that
calls the class that queries the data (such as StoreDB). However, there is one reason that you
might use the ObjectDataProvider—to take advantage of its support for asynchronous data
querying.

<ObjectDataProvider IsAsynchronous="True" ... >

It’s deceptively simple. As long as you set the ObjectDataProvider.IsAsynchronous prop-
erty to true, the ObjectDataProvider performs its work on a background thread. As a result,
your interface isn’t tied up while the work is underway. Once the data object has been con-
structed and returned from the method, the ObjectDataProvider makes it available to all
bound elements.

■Tip If you don’t want to use the ObjectDataProvider, you can still launch your data access code asynchro-
nously. The trick is to use WPF’s support for multithreaded applications. One useful tool is the Background-
Worker component that’s described in Chapter 3. When you use the BackgroundWorker, you gain the benefit
of optional cancellation support and progress reporting. However, incorporating the BackgroundWorker into
your user interface is more work than simply setting the ObjectDataProvider.IsAsynchronous property.

ASYNCHRONOUS DATA BINDINGS

WPF also provides asynchronous support through the IsAsync property of each Binding object. However, this
feature is far less useful than the asynchronous support in the ObjectDataProvider. When you set
Binding.IsAsync to true, WPF retrieves the bound property from the data object asynchronously. However, the
data object itself is still created synchronously.

For example, imagine you create an asynchronous binding for the StoreDB example that looks like this:

<TextBox Text="{Binding Path=ModelNumber, IsAsync=True}" />

Even though you’re using an asynchronous binding, you’ll still be forced to wait while your code queries
the database. Once the product collection is created, the binding will query the Product.ModelNumber prop-
erty of the current product object asynchronously. This behavior has little benefit, because the property
procedures in the Product class take a trivial amount of time to execute. In fact, all well-designed data

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 593

9551CH17 2/8/08 2:12 PM Page 593

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

objects are built out of lightweight properties such as this, which is one reason that the WPF team had
serious reservations about providing the Binding.IsAsync property at all!

The only way to take advantage of Binding.IsAsync is to build a specialized class that includes time-
consuming logic in a property get procedure. For example, consider an analysis application that binds to a
data model. This data object might include a piece of information that’s calculated using a time-consuming
algorithm. You could bind to this property using an asynchronous binding but bind to all the other properties
with synchronous bindings. That way, some information will appear immediately in your application, and the
additional information will appear once it’s ready.

WPF also includes a priority binding feature that builds on asynchronous bindings. Priority binding
allows you to supply several asynchronous bindings in a prioritized list. The highest-priority binding is pre-
ferred, but if it’s still being evaluated, a lower-priority binding is used instead. Here’s an example:

<TextBox>
<TextBox.Text>
<PriorityBinding>
<Binding Path="SlowSpeedProperty" IsAsync="True" />
<Binding Path="MediumSpeedProperty" IsAsync="True" />
<Binding Path="FastSpeedProperty" />

</PriorityBinding>
</TextBox.Text>

</TextBox>

This assumes that the current data context contains an object with three properties named SlowSpeed-
Property, MediumSpeedProperty, and FastSpeedProperty. The bindings are placed in their order of importance.
As a result, SlowSpeedProperty is always used to set the text, if it’s available. But if the first binding is still in
the midst of reading SlowSpeedProperty (in other words, there is time-consuming logic in the property get
procedure), MediumSpeedProperty is used instead. If that’s not available, FastSpeedProperty is used. For this
approach to work, you must make all the binding asynchronous, except the fastest, lowest-priority binding at
the end of the list. This binding can be asynchronous (in which case the text box will appear empty until the
value is retrieved) or synchronous (in which case the window won’t be frozen until the synchronous binding has
finished its work).

The XmlDataProvider
The XmlDataProvider provides a quick and straightforward way to extract XML data from a
separate file, web location, or application resource and make it available to the elements in
your application. The XmlDataProvider is designed to be read-only (in other words, it doesn’t
provide the ability to commit changes), and it isn’t able to deal with XML data that may come
from other sources (such as a database record, a web service message, and so on). As a result,
it’s a fairly specific tool.

If you’ve used .NET to work with XML in the past, you already know that .NET provides a
rich set of libraries for reading, writing, and manipulating XML. You can use streamlined
reader and writer classes that allow you to step through XML files and handle each element
with custom code, you can use XPath or the DOM to hunt for specific bits of content, and you
can use serializer classes to convert entire objects to and from an XML representation. Each of
these approaches has advantages and disadvantages, but all of them are more powerful than
the XmlDataProvider.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS594

9551CH17 2/8/08 2:12 PM Page 594

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you foresee needing the ability to modify XML or to convert XML data into an object
representation that you can work with in your code, you’re better off using the extensive XML
support that already exists in .NET. The fact that your data is stored in an XML representation
then becomes a low-level detail that’s irrelevant to the way you construct your user interface.
(Your user interface can simply bind to data objects, as in the database-backed examples
you’ve seen in this chapter.) However, if you absolutely must have a quick way to extract XML
content and your requirements are relatively light, the XmlDataProvider is a reasonable
choice.

To use the XmlDataProvider, you begin by defining it and pointing it to the appropriate
file by setting the Source property.

<XmlDataProvider x:Key="productsProvider" Source="store.xml"></XmlDataProvider>

You can also set the Source programmatically (which is important if you aren’t sure what
the file name is that you need to use). By default, the XmlDataProvider loads the XML content
asynchronously, unless you explicitly set XmlDataProvider.IsAsynchronous to false.

Here’s a portion of the simple XML file used in this example. It wraps the entire document
in a top-level Products element and places each product in a separate Product element. The
individual properties for each product are provided as nested elements.

<Products>
<Product>
<ProductID>355</ProductID>
<CategoryID>16</CategoryID>
<ModelNumber>RU007</ModelNumber>
<ModelName>Rain Racer 2000</ModelName>
<ProductImage>image.gif</ProductImage>
<UnitCost>1499.99</UnitCost>
<Description>Looks like an ordinary bumbershoot ... </Description>

</Product>
<Product>
<ProductID>356</ProductID>
<CategoryID>20</CategoryID>
<ModelNumber>STKY1</ModelNumber>
<ModelName>Edible Tape</ModelName>
<ProductImage>image.gif</ProductImage>
<UnitCost>3.99</UnitCost>
<Description>The latest in personal survival gear ... </Description>

</Product>
...

</Products>

To pull information from your XML, you use XPath expressions. XPath is a powerful stan-
dard that allows you to retrieve the portions of a document that interest you. Although a full
discussion of XPath is beyond the scope of this book, it’s easy to sketch out the essentials.

XPath uses a pathlike notation. For example, the path / identifies the root of an XML docu-
ment, and /Products identifies a root element named <Products>. The path /Products/Product
selects every <Product> element inside the <Products> element.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS 595

9551CH17 2/8/08 2:12 PM Page 595

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When using XPath with the XmlDataProvider, your first task is to identify the root node.
In this case, that means selecting the <Products> element that contains all the data. (If you
wanted to focus on a specific section of the XML document, you would use a different top-
level element.)

<XmlDataProvider x:Key="productsProvider" Source="store.xml"
XPath="/Products"></XmlDataProvider>

The next step is to bind your list. When working the XmlDataProvider, you use the
Binding.XPath property instead of the Binding.Path property. This gives you the flexibility to
dig into your XML as deeply as you need.

Here’s the markup that pulls out all the <Product> elements:

<ListBox Name="lstProducts" Margin="5" DisplayMemberPath="ModelName"
ItemsSource="{Binding Source={StaticResource products}, XPath=Product}" ></ListBox>

When setting the XPath property in a binding, you need to remember that your expres-
sion is relative to the current position in the XML document. For that reason, you don’t need
to supply the full path /Products/Product in the list binding. Instead, you can simply use
the relative path Product, which starts from the <Products> node that was selected by the
XmlDataProvider.

Finally, you need to wire up each of the elements that displays the product details.
Once again, the XPath expression you write is evaluated relative to the current node (which
will be the <Product> element for the current product). Here’s an example that binds to the
<ModelNumber> element:

<TextBox Text="{Binding XPath=ModelNumber}"></TextBox>

Once you make these changes, you’ll be left with an XML-based example that’s nearly
identical to the object-based bindings you’ve seen so far. The only difference is that all the
data is treated as ordinary text. To convert it to a different data type or a different representa-
tion, you’ll need to use a value converter.

The Last Word
In this chapter, you delved deeper into data binding, one of the key pillars of WPF. In the past,
many of the scenarios you’ve considered in this chapter would be handled using code. In WPF,
the data binding model (in conjunction with styles and templates) allows you to do much
more work declaratively. In fact, data binding is nothing less than an all-purpose way to dis-
play any type of information, regardless of where it’s stored, how you want to displayed, or
whether it’s editable.

Although you’ve now considered all the key principles of data binding (and a bit more
besides), the following chapters cover a few more topics that will allow you to expand the way
you present complex data. First up is Chapter 18, which takes a closer look at a few specialized
controls that derive from ItemsControl, including the ListView and TreeView.

CHAPTER 17 ■ DATA TEMPLATES, DATA VIEWS, AND DATA PROVIDERS596

9551CH17 2/8/08 2:12 PM Page 596

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Lists, Trees, Toolbars,
and Menus

So far, you’ve learned a wide range of techniques and tricks for using WPF data binding to
display information in the form you need. Along the way, you’ve seen many examples that
revolve around the lowly ListBox control.

Thanks to the extensibility provided by styles, data templates, and control templates,
even the ListBox (and it’s similarly equipped sibling, the ComboBox) can serve as remarkably
powerful tools for displaying data in a variety of ways. However, some types of data presenta-
tion would be difficult to implement with the ListBox alone. Two important examples include
the following:

• Showing a tabular grid of information

• Showing a hierarchical tree of information

Although you could build these controls from scratch using the basic plumbing in the
ItemsControl, WPF has two much more helpful starting points: the ListView and TreeView
controls. Longtime Windows developers will recognize these as two of the most familiar
“modern” Windows controls, and they turn up everywhere from file-browsing tools such as
Windows Explorer to management utilities.

In this chapter, you’ll take a closer look at the ListView and TreeView controls, and you’ll
learn how to use them to create a variety of commonly used designs. Then, you’ll consider a
few more specialized classes that derive from ItemsControl, including the WPF Menu, ToolBar,
and StatusBar.

■Note The WPF ListView and TreeView are far different from the lists and trees you may have used in pre-
vious user interface frameworks like Windows Forms. In previous frameworks, the ListView and TreeView
have provided only limited customizability. However, the WPF versions are among the most flexible controls
in the entire WPF toolkit, and you can fine-tune every aspect of their display (and many aspects of their
behavior).

597

C H A P T E R 1 8

9551CH18 2/8/08 2:12 PM Page 597

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ItemsControl Class
As you know, the ItemsControl class defines the basic functionality for controls that wrap a list
of items. Those items can be entries in a list, nodes in a tree, commands in a menu, buttons in
a toolbar, and so on. Figure 18-1 provides an at-a-glance overview of all the ItemsControl
classes in WPF.

Figure 18-1. Classes that derive from ItemsControl

■Note You’ll notice that some item wrappers appear in the class hierarchy of classes that derive from
ItemsControl. For example, you’ll not only see the expected Menu and TreeView classes, but you’ll also see
MenuItem and TreeViewItem. That’s because these classes have the ability to contain their own collection of
items—that’s what gives trees and menus their nested, hierarchical structure. On the other hand, you won’t
find ComboBoxItem or ListBoxItem in this list, because they don’t need to hold a child collection of items and
so don’t derive from ItemsControl.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS598

9551CH18 2/8/08 2:12 PM Page 598

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The most important plumbing appears in the ItemsControl class, which all list-based
controls derive from. The ItemsControl defines the properties that support data binding, data
templating, and configurable styling (through style and template selectors). Although you’ve
seen all these features in the previous two chapters, it’s worth reviewing. Table 18-1 summa-
rizes the key properties of the ItemsControl class.

Table 18-1. Properties of the ItemsControl Class

Name Description

ItemsSource The bound data source (the collection or DataView that you want to
display in the list).

DisplayMemberPath The property that you want to display for each data item. For a more
sophisticated representation or to use a combination of properties,
use the ItemTemplate instead.

ItemTemplate A template that defines the elements (complete with the formatting
and binding expressions you want to use to display each item).

ItemTemplateSelector A DataTemplateSelector that uses code to choose a template for
each item in the list. This allows you to give different templates to
different items. You must create a custom DataTemplateSelector
class yourself.

ItemContainerStyle A style that allows you to set the properties of the container that
wraps each item. The container depends on the type of list (for
example, it’s ListBoxItem for the ListBox class and ComboBoxItem
for the ComboBox class). These wrapper objects are created
automatically as the list is filled.

ItemContainerStyleSelector A StyleSelector that uses code to choose a style for the wrapper of
each item in the list. This allows you to give different styles to
different items in the list. You must create a custom StyleSelector
yourself.

ItemContainerGenerator Provides a reference to an ItemContainerGenerator helper object.
Using this object, you can use a small set of methods that get the item
wrapper (ListBoxItem, ComboBoxItem, and so on) for a given list item
or list index (ContainerFromItem() and ContainerFromIndex()), or
vice versa (ItemFromContainer() and IndexFromContainer()).

ItemsPanel Defines the panel that’s created to hold the items of the list. All the
item wrappers are added to this container. Usually, a StackPanel is
used with a vertical (top-to-bottom) orientation.

GroupStyle If you’re using grouping, this is a style that defines how each group
should be formatted. When using grouping, the item wrappers
(ListBoxItem, ComboBoxItem, and so on) are added in GroupItem
wrappers that represent each group, and these groups are then
added to the list.

GroupStyleSelector A StyleSelector that uses code to choose a style for each group. This
allows you to give different styles to different groups. You must
create a custom StyleSelector yourself.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 599

9551CH18 2/8/08 2:12 PM Page 599

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The next rung in the ItemsControl inheritance hierarchy is the Selector class, which
adds a straightforward set of properties for determining (and setting) a selected item. Not
all ItemsControls support selection. For example, selection doesn’t have any meaning for the
ToolBar or Menu, so these classes derive from ItemsControl but not Selector.

The properties that the Selector class adds include SelectedItem (the selected data object),
SelectedIndex (the position of the selected item), and SelectedValue (the “value” property of the
selected data object, which you designate by setting SelectedValuePath). Notice that the Selector
class doesn’t provide support for multiple selection—that’s added to the ListBox through its
SelectionMode and SelectedItems properties (which is essentially all the ListBox class adds to
this model).

■Note Even though the TreeView supports selection, its hierarchical structure makes it different from other
selectors and prevents it from deriving directly from the Selector class. However, the TreeView class does
define the same SelectedItem, SelectedValue, and SelectedValue path properties. It omits the SelectedIndex
property, which has no meaning because tree nodes can be found at different levels in the tree hierarchy.
Finally, the Selector provides a SelectionChanged event to notify you when the current selection changes,
while the TreeView uses the SelectedItemChanged event for the same purpose. (The naming difference
reflects that the SelectionChanged event will indicate whether multiple items have been selected or unse-
lected, which is possible in a multiselect ListBox.)

In most of the data binding examples you’ve considered so far, this chapter has focused
on the ListBox and used it to explore the features that are built into the ItemsControl and
Selector classes. However, you still haven’t considered a few points about ItemsControls. The
following sections fill in a few of these blanks. First, you’ll learn how to use ComboBox editing
and autocomplete. Next, you’ll see how to use the ListBox to get a list of check boxes or radio
buttons.

The ComboBox
Like the ListBox, the ComboBox is a descendant of the Selector class. Unlike the ListBox, the
ComboBox is built out of two pieces: a selection box that shows the currently selected item
and a drop-down list where you can choose that item. The drop-down list appears when you
click the drop-down arrow at the edge of the combo box. Or, if your combo box is in read-only
mode (the default), you can open the drop-down list by clicking anywhere in the selection
box. Finally, you can programmatically open or close the drop-down list by setting the IsDrop-
DownOpen property.

Ordinarily, the ComboBox control shows a read-only combo box, which means you
can use it to select an item but you can type in arbitrary text of your own. However, you can
change this behavior by setting the IsReadOnly property to false and the IsEditable property to
true. Now, the selection box becomes a text box, and you can type in whatever text you want.

The ComboBox control provides a rudimentary form of AutoComplete that completes
entries as you type. (This shouldn’t be confused with the fancier AutoComplete that you see in
programs such as Internet Explorer, which shows a whole list of possibilities under the current

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS600

9551CH18 2/8/08 2:12 PM Page 600

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

text box.) Here’s how it works—as you type in the ComboBox control, WPF fills in the remain-
der of the selection box with the first matching AutoComplete suggestion. For example, if you
type Gr and your list contains the string Green, the combo box will fill in the letters een. The
AutoComplete text is selected, so you’ll automatically overwrite it if you keep typing.

If you don’t want the AutoComplete behavior, simply set the ComboBox.IsTextSearch-
Enabled property to false. This property is inherited from the base ItemsControl class, and it
applies to many other list controls. For example, if IsTextSearchEnabled is set to true in a
ListBox, you can type the first level of an item to jump to that position.

■Note WPF doesn’t include any features for using the system-tracked AutoComplete lists, like the list of
recent URLs and files. It also doesn’t provide support for drop-down AutoComplete lists.

Lists of Complex Objects
So far, the behavior of the ComboBox is quite straightforward. However, it changes a bit if your
list contains more complex objects rather than simple strings of text.

You can place more complex objects in a ComboBox in two ways. The first option is to
add them manually. As with the ListBox, you can place any content you want in a ComboBox.
For example, if you want a list of images and text, you’d simply place the appropriate elements
in a StackPanel and wrap that StackPanel in a ComboBoxItem object. More practically, you
can use data templates to insert the data from an object into a predefined group of elements.
You explored this approach in detail in Chapter 17.

When using nontext content, it’s not as obvious what the selection box should contain. If
the IsEditable property is false (the default), the selection box will show an exact visual copy of
the item. For example, Figure 18-2 shows a ComboBox that uses a data template that incorpo-
rates text and image content.

Figure 18-2. A read-only ComboBox that uses templates

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 601

9551CH18 2/8/08 2:12 PM Page 601

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The important detail is what the combo box is displaying as its content, not what it has as its data
source. For example, imagine you fill a ComboBox control with Product objects and set the DisplayMemberPath
property to ModelName so the combo box shows the ModelName property of each item. Even though the
combo box retrieves its information from a group of Product objects, your markup creates an ordinary text list.
As a result, the selection box will behave the way you expect it to behave. It will show the ModelName of the
current product, and if IsEditable is true and IsReadOnly is false, it will allow you to edit that value.

The user won’t be able to interact with the content that appears in the selection box. For
example, if the content of the currently selected item includes a text box, you won’t be able to
type in it. If the currently selected item includes a button, you won’t be able to click it. Instead,
clicking the selection box will simply open the drop-down list. (Of course, there are countless
good usability reasons not to put user-interactive controls in a drop-down list in the first place.)

If the IsEditable property is true, the behavior of the ComboBox control changes. Instead
of showing a copy of the selected item, the selection box displays a textual representation of it.
To create this textual representation, WPF simply calls ToString() on the item. Figure 18-3
shows an example with the same combo box that’s shown in Figure 18-2. In this case, the dis-
play text DataBinding.Product is simply the fully qualified class name of the currently selected
Product object, which is the default ToString() implementation unless you override it in your
data class.

Figure 18-3. An editable ComboBox that uses templates

The easiest option to correct this problem is to set the attached TextSearch.TextPath prop-
erty to indicate the property that should be used for the content of the selection box. Here’s an
example:

<ComboBox IsEditable="True" IsReadOnly="True" TextSearch.TextPath="ModelName" ...>

Although IsEditable must be true, it’s up to you whether you set IsReadOnly to false (to
allow editing of that property) or true (to prevent the user from typing in arbitrary text).
Figure 18-4 shows the result.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS602

9551CH18 2/8/08 2:12 PM Page 602

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip What if you want to show richer content than a simple piece of text but you still want the content in
the selection box to be different from the content in the drop-down list? The ComboBox includes a Selection-
BoxItemTemplate property that defines the template that’s used for the selection box. Unfortunately, the
SelectionBoxItemTemplate is read-only. It’s automatically set to match the current item, and you can’t supply
a different template. However, you could create an entirely new ComboBox control template that doesn’t use
the SelectionBoxItemTemplate at all. Instead, this control template could hard-code the selection box tem-
plate or could retrieve it from the Resources collection in the window.

Figure 18-4. Displaying a property in the selection box

Improving the Performance of the ComboBox
The ComboBox has a well-known limitation. If you pack it with thousands of items, there will
be a noticeable delay when you click the down arrow to open the drop-down portion of the
combo box. That’s because even though the combo box shows only a subset of the total list of
items, it still iterates over the entire list and creates an element for each item.

Fortunately, this problem is easy to fix. The solution is to explicitly insert a Virtualizing-
StackPanel container for hosting the items in the ComboBox control. Doing so is easy. You
simply need to modify the ComboBox.ItemsPanel property, as shown here:

<ComboBox>
<ComboBox.ItemsPanel>
<ItemsPanelTemplate>
<VirtualizingStackPanel></VirtualizingStackPanel>

</ItemsPanelTemplate>
</ComboBox.ItemsPanel>

</ComboBox>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 603

9551CH18 2/8/08 2:12 PM Page 603

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Now, a different set of steps happens when you click the down arrow in the combo box.
First, the VirtualizingStackPanel calculates how many items will fit in the display area that’s
given to the combo box drop-down. Then, it generates elements for just this subset of the list.
As you scroll through the list, additional elements are generated without any noticeable hesi-
tation. The end result is a much more responsive user interface.

Incidentally, the ListBox control automatically uses a VirtualizingStackPanel to hold its
items. If you override this behavior by supplying a standard StackPanel for the ListBox.Items-
Panel property and you add a very large number of items to the ListBox, you’ll see essentially
the same delay. In this case, the delay will occur when the window is first created and the list is
displayed for the first time.

A ListBox with Check Boxes or Radio Buttons
New WPF developers sometimes look for popular controls that have gone missing. One exam-
ple is the CheckedListBox from Windows Forms, which displays a check box next to each item
that can be checked or cleared.

At first glance, the value of a single CheckedListBox seems small. After all, it’s easy enough
to solve the problem by composition. All you need to do is fill a ScrollViewer with a series of
CheckBox objects. However, this implementation doesn’t provide the same programming
model. There’s no easy way to iterate through all the check boxes, and, more important, there’s
no way to use this implementation with data binding. (Ideally, you’d be able to fill the Scroll-
Viewer with CheckBox controls simply by supplying a collection of data objects.)

The solution is to use an ordinary ListBox but use control templates to change the appear-
ance of each item. Figure 18-5 and Figure 18-6 show two examples—one with a list filled with
RadioButton elements (only one of which can be chosen at a time) and one with a list of Check-
Box elements. The two solutions are similar, but the list with radio buttons is easier.

Figure 18-5. A radio button list using a template Figure 18-6. A check box list using a template

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS604

9551CH18 2/8/08 2:12 PM Page 604

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The basic technique is to change the control template used as the container for each list
item. You don’t want to modify the ListBox.Template property, because this provides the tem-
plate for the ListBox. Instead, you need to modify the ListBoxItem.Template property. Here’s
the template you need to wrap each item in a RadioButton element:

<ControlTemplate TargetType="{x:Type ListBoxItem}">
<RadioButton Focusable="False" IsChecked="{Binding Path=IsSelected,

RelativeSource={RelativeSource TemplatedParent},Mode=TwoWay}">
<ContentPresenter></ContentPresenter>

</RadioButton>
</ControlTemplate>

This works because a RadioButton is a content control and can contain any content.
Although you could use a binding expression to get the content, it’s far more flexible to use the
ContentPresenter element, as shown here. The ContentPresenter grabs whatever would ordi-
narily appear in the item, which might be property text (if you’re using the ListBox.Display-
MemberPath property) or a more complex representation of the data (if you’re using the
ListBox.ItemTemplate property).

The real trick is the binding expression for the RadioButton.IsChecked property.
This expression retrieves the value of the ListBoxItem.IsSelected property using the
Binding.RelativeSource property. That way, when you click a RadioButton to select it,
the corresponding ListBoxItem is marked as selected. At the same time, all other items are
deselected. This binding expression also works in the other direction, which means you can
set the selection in code and the right RadioButton will be filled in.

To complete this template, you need to set the RadioButton.Focusable property to false.
Otherwise, you’ll be able to tab to the currently selected ListBoxItem (which is focusable) and
then into the RadioButton itself, which doesn’t make much sense.

The ListBoxItem.Template property isn’t exposed through the ListBox class. To set this
property, you need a style rule that can dig down to the right level. Fortunately, this part is
easy, because the ListBox class includes an ItemContainerStyle property that allows you to
supply a style that’s used for individual list items. The following markup shows the style rule,
with its control template:

<Window.Resources>
<Style x:Key="RadioButtonListStyle" TargetType="{x:Type ListBox}">
<Setter Property="ItemContainerStyle">
<Setter.Value>
<Style TargetType="{x:Type ListBoxItem}" >
<Setter Property="Margin" Value="2" />
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBoxItem}">
<RadioButton Focusable="False"
IsChecked="{Binding Path=IsSelected, Mode=TwoWay,

RelativeSource={RelativeSource TemplatedParent} }">
<ContentPresenter></ContentPresenter>

</RadioButton>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 605

9551CH18 2/8/08 2:12 PM Page 605

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

</Setter.Value>
</Setter>

</Style>
</Window.Resources>

Although you could set the ListBox.ItemContainerStyle property directly, this example
factors it out one more level. The style that sets the ListBoxItem.Control template is wrapped
in another style that applies this style to the ListBox.ItemContainerStyle property. This makes
the template reusable, allowing you to connect it to as many ListBox objects as you want:

<ListBox Style="{StaticResource RadioButtonListStyle}" Name="lstProducts"
DisplayMemberPath="ModelName">

You could also use the same style to adjust other properties of the ListBox.
Creating a ListBox that shows check boxes is just as easy. In fact, you have to make only

two changes. First, replace the RadioButton element with an identical CheckBox element.
Then, change the ListBox.SelectionMode property to allow simple multiple selection. Now, the
user can check as many or as few items as desired.

Here’s the style rule that transforms an ordinary ListBox into a list of check boxes:

<Style x:Key="CheckBoxListStyle" TargetType="{x:Type ListBox}">
<Setter Property="SelectionMode" Value="Multiple"></Setter>
<Setter Property="ItemContainerStyle">
<Setter.Value>
<Style TargetType="{x:Type ListBoxItem}" >
<Setter Property="Margin" Value="2" />
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBoxItem}">
<CheckBox Focusable="False"
IsChecked="{Binding Path=IsSelected, Mode=TwoWay,

RelativeSource={RelativeSource TemplatedParent} }">
<ContentPresenter></ContentPresenter>

</CheckBox>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
</Setter.Value>

</Setter>
</Style>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS606

9551CH18 2/8/08 2:12 PM Page 606

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ListView
The ListView is a specialized list class that’s designed for displaying different views of the same
data. The ListView is particularly useful if you need to build a multicolumn view that displays
several pieces of information about each data item.

The ListView derives from the ListBox class and extends it with a single detail: the View
property. The View property is yet another extensibility point for creating rich list displays. If
you don’t set the View property, the ListView behaves just like its lesser-powered ancestor, the
ListBox. However, the ListView becomes much more interesting when you supply a view
object that indicates how data items should be formatted and styled.

Technically, the View property points to an instance of any class that derives from View-
Base (which is an abstract class). The ViewBase class is surprisingly simple—in fact, it’s little
more than a package that binds together two styles. One style applies to the ListView control
(and is referenced by the DefaultStyleKey property), while the other style applies to the items
in the ListView (and is referenced by the ItemContainerDefaultStyleKey property). The Default-
StyleKey and ItemContainerDefaultStyleKey properties don’t actually provide the style;
instead, they return a ResourceKey object that points to it.

At this point, you might wonder why you need a View property—after all, the ListBox
already offers powerful data template and styling features (as do all classes that derive from
ItemsControls). Ambitious developers can rework the visual appearance of the ListBox by sup-
plying a different data template, layout panel, and control template.

In truth, you don’t need a ListView class with a View property in order to create customiz-
able multicolumned lists. In fact, you could achieve much the same thing on your own using
the template and styling features of the ListBox. However, the View property is a useful
abstraction. Here are some of its advantages:

• Reusable views. The ListView separates all the view-specific details into one object.
That makes it easier to create views that are data-independent and can be used on
more than one list.

• Multiple views. The separation between the ListView control and the View objects also
makes it easier to switch between multiple views with the same list. (For example, you
use this technique in Windows Explorer to get a different perspective on your files and
folders.) You could build the same feature by dynamically changing templates and
styles, but it’s easier to have just one object that encapsulates all the view details.

• Better organization. The view object wraps two styles: one for the root ListView control
and one that applies to the individual items in the list. Because these styles are pack-
aged together, it’s clear that these two pieces are related and may share certain details
and interdependencies. For example, this makes a lot of sense for a column-based
ListView, because it needs to keep its column headers and column data lined up.

Using this model, there’s a great potential to create a number of useful prebuilt views that
all developers can use. Unfortunately, the first version of WPF includes just one view: the Grid-
View. Although the GridView is extremely useful for creating multicolumn lists, you’ll need to
create your own custom view if you have other needs. The following sections show you how to
do both.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 607

9551CH18 2/8/08 2:12 PM Page 607

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

THE GRIDVIEW VS. THE DATAGRIDVIEW

The GridView can’t compete with the specialized features provided by more mature data controls, such as
the DataGridView from Windows Forms. Some of the features that are lacking include the following:

• Individual cell selection. You must select entire rows in the GridView.

• Automatic sorting. You can respond to cell header clicks in a GridView and perform sorting using the
techniques described in Chapter 17. Unfortunately, it’s not so easy to determine what field to sort by
(particularly if your field names don’t match your column headers) and what to do with formatted
numbers. The only solution is to keep track of extra information about your data source and write
some messy conditional code.

• Cell styling. The GridView lets you give different templates to different columns and different styles to
different rows. However, these features aren’t nearly as fine-grained as those of the DataGridView,
which lets you format individual cells.

• Freezable columns. This DataGridView feature allows you to make sure some columns always remain
in view when scrolling from side to side in a wide grid.

• Virtualization. This DataGridView feature allows you to query just a subset of the information for a list
that could contain tens of thousands of items.

• Editing support. You can use control templates and triggers to provide editing behavior in a GridView,
but it’s not easy; you’ll face quirks aplenty, and you won’t have support for keyboard navigation. You
can find a sample implementation of an editable GridView column at http://blogs.msdn.com/
atc_avalon_team/archive/2006/03/14/550934.aspx.

If you need DataGridView-like functionality, the best approach is to take advantage of Windows Forms
interoperability to use the DataGridView control in your WPF applications. Other options are to build it your-
self, purchase a third-party control, or wait, because the architects of WPF are actively considered a more
capable grid control for future versions. At the time of this writing, Xceed Software (http://xceed.com)
offers a free DataGrid control for WPF.

Creating Columns with the GridView
The GridView is a class that derives from ViewBase and represents a list view with multiple
columns. You define those columns by adding GridViewColumn objects to the
GridView.Columns collection.

Both GridView and GridViewColumn provide a small set of useful methods that you can
use to customize the appearance of your list. To create the simplest, most straightforward list
(which resembles the details view in Windows Explorer), you need to set just two properties
for each GridViewColumn: the Header and the DisplayMemberBinding. The Header property
supplies the text that’s placed at the top of the column, while the DisplayMemberBinding
property contains a binding that extracts the piece of information you want to display from
each data item.

Figure 18-7 shows a straightforward example with three columns of information about a
product.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS608

9551CH18 2/8/08 2:12 PM Page 608

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com
http://xceed.com

Figure 18-7. A grid-based ListView

Here’s the markup that defines the three columns used in this example:

<ListView Margin="5" Name="lstProducts">
<ListView.View>
<GridView>
<GridView.Columns>
<GridViewColumn Header="Name"
DisplayMemberBinding="{Binding Path=ModelName}" />
<GridViewColumn Header="Model"
DisplayMemberBinding="{Binding Path=ModelNumber}" />
<GridViewColumn Header="Price" DisplayMemberBinding=

"{Binding Path=UnitCost, Converter={StaticResource PriceConverter} }" />
</GridView.Columns>

</GridView>
</ListView.View>

</ListView>

This example has a few important points worth noticing. First, none of the columns has
a hard-coded size. Instead, the GridView sizes its columns just large enough to fit the widest
visible item (or the column header, if it’s wider), which makes a lot of sense in the flow layout
world of WPF. (Of course, this leaves you in a bit of trouble if you have huge columns values. In
this case, you may choose to wrap your text, as described in the upcoming “Cell Templates”
section.)

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 609

9551CH18 2/8/08 2:12 PM Page 609

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Also, notice how the DisplayMemberBinding property is set using a full-fledged binding
expression, which supports all the tricks you learned about in Chapter 16. For example, you
can use an IValueConverter, such as the PriceConverter that changes decimal values into more
readable currency strings in this example. (For the full code for the PriceConverter, refer to
Chapter 16, or refer to the downloadable code for this chapter.)

Resizing Columns
Initially, the GridView makes each column just wide enough to fit the largest visible value.
However, you can easily resize any column by clicking and dragging the edge of the column
header. Or, you can double-click the edge of the column header to force the GridViewColumn
to resize itself based on whatever content is currently visible. For example, if you scroll down
the list and find an item that’s truncated because it’s wider than the column, just double-click
the right edge of that column’s header. The column will automatically expand itself to fit.

For more micromanaged control over column size, you set a specific width when you
declare the column:

<GridViewColumn Width="300" ... />

This simply determines the initial size of the column. It doesn’t prevent the user from
resizing the column using either of the techniques described previously. Unfortunately, the
GridViewColumn class doesn’t define properties like MaxWidth and MinWidth, so there’s no
way to constrain how a column can be resized. Your only option is to supply a new template
for the GridViewColumn’s header if you want to disable resizing altogether.

■Note The user can also reorder columns by dragging a header to a new position.

Cell Templates
The GridViewColumn.DisplayMemberBinding property isn’t the only option for showing data
in a cell. Your other choice is the CellTemplate property, which takes a data template. This is
exactly like the data templates you learned about in Chapter 17, except it applies to just one
column. If you’re ambitious, you can give each column its own data template.

Cell templates are a key piece of the puzzle when customizing the GridView. One feature
that they allow is text wrapping. Ordinarily, the text in a column is wrapped in a single-line
TextBlock. However, it’s easy to change this detail using a data template of your own devising:

<GridViewColumn Header="Description" Width="300">
<GridViewColumn.CellTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=Description}" TextWrapping="Wrap"></TextBlock>

</DataTemplate>
</GridViewColumn.CellTemplate>

</GridViewColumn>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS610

9551CH18 2/8/08 2:12 PM Page 610

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Notice that in order for the wrapping to have an effect, you need to constrain the width of
the column using the Width property. If the user resizes the column, the text will be rewrapped
to fit. You don’t want to constrain the width of the TextBlock, because that would ensure that
your text is limited to a single specific size, no matter how wide or narrow the column
becomes.

The only limitation in this example is that the data template needs to bind explicitly to
the property you want to display. For that reason, you can’t create a template that enables
wrapping and reuse it for every piece of content you want to wrap. Instead, you need to create
a separate template for each field. This isn’t a problem in this simple example, but it’s annoy-
ing if you create a more complex template that you’d like to apply to other lists (for example, a
template that converts data to an image and displays it in an Image element, or a template
that uses a TextBox control to allow editing). There’s no easy way to reuse any template on
multiple columns—instead, you’ll be forced to cut and paste the template and then modify
the binding.

■Note It would be nice if you created a data template that uses the DisplayMemberBinding property. That
way, you could use DisplayMemberBinding to extract the specific property you want and use CellTemplate to
format that content into the right visual representation. Unfortunately, this just isn’t possible. If you set both
DisplayMember and CellTemplate, the GridViewColumn uses the DisplayMember property to set the content
for the cell and ignores the template altogether.

Data templates aren’t limited to tweaking the properties of a TextBlock. You can also use
date templates to supply completely different elements. For example, the following column uses
a data template to show an image. The ProductImagePath converter (shown in Chapter 16) helps
by loading the corresponding image file from the file system.

<GridViewColumn Header="Picture" >
<GridViewColumn.CellTemplate>
<DataTemplate>
<Image Source=

"{Binding Path=ProductImagePath,Converter={StaticResource ImagePathConverter}}">
</Image>

</DataTemplate>
</GridViewColumn.CellTemplate>

</GridViewColumn>

Figure 18-8 shows a ListView that uses both templates to show wrapped text and a prod-
uct image.

■Tip When creating a data template, you have the choice of defining it inline (as in the previous two exam-
ples) or referring to a resource that’s defined elsewhere. Because column templates can’t be reused for
different fields, it’s usually clearest to define them inline.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 611

9551CH18 2/8/08 2:12 PM Page 611

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

As you learned in Chapter 17, you can vary templates so that different data items get
different templates. To do this, you need to create a template selector that chooses the appro-
priate template based on the properties of the data object at that position. To use this feature,
create your selector, and use it to set the GridViewColumn.CellTemplateSelector property. For
a full template selector example, see Chapter 17.

Figure 18-8. Columns that use templates

CUSTOMIZING COLUMN HEADERS

Cell templates aren’t the only templates you can use with the ListView. You can also use column header tem-
plates to change how the column header appears if the standard gray box doesn’t excite you.

So far, you’ve seen how to customize the appearance of the values in every cell. However, you haven’t
done anything to fine-tune the column headers. If the standard gray boxes don’t excite you, you’ll be happy to
find out that you can change the content and appearance of the column headers just as easily as the column
values. In fact, you can use several approaches.

If you want to keep the gray column header boxes but you want to fill them with your own content, you
can simply set the GridViewColumn.Header property. The previous examples have the Header property using
ordinary text, but you can supply an element instead. Use a StackPanel that wraps a TextBlock and Image to
create a fancy header that combines text and image content.

If you want to fill the column headers with your own content but you don’t want to specify this content
separately for each column, you can use the GridViewColumn.HeaderTemplate property to define a data tem-
plate. This data template binds to whatever object you’ve specified in the GridViewColumn.Header property
and presents it accordingly.

If you want to reformat a specific column header, you can use the GridViewColumn.HeaderContainer-
Style property to supply a style. If you want to reformat all the column headers in the same way, use the
GridView.ColumnHeaderContainerStyle property instead.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS612

9551CH18 2/8/08 2:12 PM Page 612

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you want to completely change the appearance of the header (for example, replacing the gray box
with a rounded blue border), you can supply a completely new control template for the header. Use GridView-
Column.HeaderTemplate to change a specific column, or use GridView.ColumnHeaderTemplate to change
them all in the same way. You can even use a template selector to choose the right template for a given
header by setting the GridViewColumn.HeaderTemplateSelector or GridView.ColumnHeaderTemplateSelector
properties.

Creating a Custom View
So far, you’ve focused on how the ListView works in conjunction with the GridView. The Grid-
View is the only view object that’s provided in the first version of WPF, but you can create your
own to extend the ListView’s capabilities. Unfortunately, it’s far from straightforward.

To understand the problem, you need to understand a little more about the way a view
works. Views do their work by overriding two protected properties: DefaultStyleKey and Item-
ContainerDefaultKeyStyle. Each property returns a specialized object called a ResourceKey,
which points to a style that you’ve defined in XAML. The DefaultStyleKey property points
to the style that should be applied to configure the overall ListView, while the Item-
Container.DefaultKeyStyle property points to the style that should be used to configure each
ListViewItem in the ListView. Although these styles are free to tweak any property, they usually
do their work by replacing the ControlTemplate that’s used for the ListView and the DataTem-
plate that’s used for each ListViewItem.

Here’s where the problems occur. The DataTemplate you use to display items is defined in
XAML markup. Imagine you want to create a ListView that shows a tiled image for each item.
This is easy enough using a DataTemplate—you simply need to bind the Source property of
an Image to the right property of your data object. But how do you know what data object the
user will supply? If you hard-code property names as part of your view, you’ll limit its useful-
ness, making it impossible to reuse your custom view in other scenarios. The alternative—
forcing the user to supply the DataTemplate—means you can’t pack as much functionality
into the view, which means reusing it won’t be as useful.

■Tip Before you begin creating a custom view, consider whether you could get the same result by simply
using the right DataTemplate with a ListBox or a ListView and GridView combination.

So why go to all the effort of designing a custom view if you can already get all the func-
tionality you need by restyling the ListView (or even the ListBox)? The primary reason is if you
want a list that can dynamically change views. For example, you might want a product list that
can be viewed in different modes, depending on the user’s selection. You could implement
this by dynamically swapping in different DataTemplate objects (and this is a reasonable
approach), but often a view needs to change both the DataTemplate of the ListViewItem and
the layout or overall appearance of the ListView itself. A view helps clarify the relationship
between these details in your source code.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 613

9551CH18 2/8/08 2:12 PM Page 613

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following example shows you how to create a grid that can be switched seamlessly
from one view to another. The grid begins in the familiar column-separated view but also
supports two tiled image views, as shown in Figure 18-9 and Figure 18-10.

Figure 18-9. An image view

Figure 18-10. A detailed image view

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS614

9551CH18 2/8/08 2:12 PM Page 614

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The View Class
The first step that’s required to build this example is the class representing the custom view.
This class must derive from ViewBase. In addition, it usually (although not always) overrides
the DefaultStyleKey and ItemContainerDefaultStyleKey properties to supply style references.

In this example, the view is named TileView, because its key characteristic is that it tiles its
items in the space provided. It uses a WrapPanel to lay out the contained ListViewItem objects.
This view is not named ImageView, because the tile content isn’t hard-coded and may not
include images at all. Instead, the tile content is defined using a template that the developer
supplies when using the TileView.

The TileView class applies two styles, named TileView (which applies to the ListView) and
TileViewItem (which applies to the ListViewItem). Additionally, the TileView defines a prop-
erty named ItemTemplate so the developer using the TileView can supply the right data
template. This template is then inserted inside each ListViewItem and used to create the tile
content.

public class TileView : ViewBase
{

private DataTemplate itemTemplate;
public DataTemplate ItemTemplate
{

get { return itemTemplate; }
set { itemTemplate = value; }

}

protected override object DefaultStyleKey
{

get { return new ComponentResourceKey(GetType(), "TileView"); }
}

protected override object ItemContainerDefaultStyleKey
{

get { return new ComponentResourceKey(GetType(), "TileViewItem"); }
}

}

As you can see, the TileView class doesn’t do much. It simply provides a Component-
ResourceKey reference that points to the right style. You first learned about the Component-
ResourceKey in Chapter 11, when considering how you could retrieve shared resources from a
DLL assembly.

The ComponentResourceKey wraps two pieces of information: the type of class that owns
the style, and a descriptive ResourceId string that identifies the resource. In this example, the
type is obviously the TileView class for both resource keys. The descriptive ResourceId names
aren’t as important, but you’ll need to be consistent. In this example, the default style key is
named TileView, and the style key for each ListViewItem is named TileViewItem. In the follow-
ing section, you’ll dig into both these styles and see how they’re defined.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 615

9551CH18 2/8/08 2:12 PM Page 615

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The View Styles
For the TileView to work as written, WPF needs to be able to find the styles that you want to
use. The trick to making sure styles are automatically available is creating a resource diction-
ary named generic.xaml. This resource dictionary must be placed in a project subfolder
named Themes. WPF uses the generic.xaml file to get the default styles that are associated
with a class. (You’ll learn more about this system when you consider custom control develop-
ment in Chapter 24.)

In this example, the generic.xaml file defines the styles that are associated with the Tile-
View class. To set up the association between your styles and the TileView, you need to give
your style the correct key in the generic.xaml resource dictionary. Rather than using an ordi-
nary string key, WPF expects your key to be a ComponentResourceKey object, and this
ComponentResourceKey needs to match the information that’s returned by the Default-
StyleKey and ItemContainerDefaultStyleKey properties of the TileView class.

Here’s the basic structure of the Generic.xaml resource dictionary, with the correct keys:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:DataBinding">

<Style x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:TileView},
ResourceId=TileView}"

TargetType="{x:Type ListView}"
BasedOn="{StaticResource {x:Type ListBox}}">
...

</Style>

<Style x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:TileView},
ResourceId=TileViewItem}"

TargetType="{x:Type ListViewItem}"
BasedOn="{StaticResource {x:Type ListBoxItem}}">
...

</Style>

</ResourceDictionary>

As you can see, the key of each style is set to match the information provided by the Tile-
View class. Additionally, the styles also set the TargetType property (to indicate what element
the style modifies) and the BasedOn property (to inherit basic style settings from more funda-
mental styles used with the ListBox and ListBoxItem). This saves some work, and it allows you
to focus on extending these styles with custom settings.

Because these two styles are associated with the TileView, they’ll be used to configure the
ListView whenever you’ve set the View property to a TileView object. If you’re using a different
view object, these styles will be ignored. This is the magic that makes the ListView work the
way you want so that it seamlessly reconfigures itself every time you change the View property.

The TileView style that applies to the ListView makes three changes:

• It adds a slightly different border around the ListView.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS616

9551CH18 2/8/08 2:12 PM Page 616

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

• It sets the attached Grid.IsSharedSizeScope property to true. This allows different list
items to use shared column or row settings if they use the Grid layout container (a fea-
ture first explained in Chapter 4). In this example, it makes sure each item has the same
dimensions in the detailed tile view.

• It changes the ItemsPanel from a StackPanel to a WrapPanel, allowing the tiling behav-
ior. The WrapPanel width is set to match the width of the ListView.

Here’s the full markup for this style:

<Style x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:TileView},
ResourceId=TileView}"
TargetType="{x:Type ListView}" BasedOn="{StaticResource {x:Type ListBox}}">
<Setter Property="BorderBrush" Value="Black"></Setter>
<Setter Property="BorderThickness" Value="0.5"></Setter>
<Setter Property="Grid.IsSharedSizeScope" Value="True"></Setter>

<Setter Property="ItemsPanel">
<Setter.Value>
<ItemsPanelTemplate>
<WrapPanel Width="{Binding (FrameworkElement.ActualWidth),

RelativeSource={RelativeSource
AncestorType=ScrollContentPresenter}}">

</WrapPanel>
</ItemsPanelTemplate>

</Setter.Value>
</Setter>

</Style>

These are relatively minor changes. A more ambitious view could link to a style that
changes the control template that’s used for the ListView, changing it much more dramati-
cally. This is where you begin to see the benefits of the view model. By changing a single
property in the ListView, you can apply a combination of related settings through two styles.
The TileView style that applies to the ListViewItem changes a few other details. It sets the
padding and content alignment and, most important, sets the DataTemplate that’s used to
display content.

Here’s the full markup for this style:

<Style x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:TileView},
ResourceId=TileViewItem}"
TargetType="{x:Type ListViewItem}"
BasedOn="{StaticResource {x:Type ListBoxItem}}">
<Setter Property="Padding" Value="3"/>
<Setter Property="HorizontalContentAlignment" Value="Center"></Setter>
<Setter Property="ContentTemplate" Value="{Binding Path=View.ItemTemplate,
RelativeSource={RelativeSource Mode=FindAncestor, AncestorType={x:Type ListView}

}}"></Setter>
</Style>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 617

9551CH18 2/8/08 2:12 PM Page 617

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Remember, to ensure maximum flexibility, the TileView is designed to use a data template
that’s supplied by the developer. To apply this template, the TileView style needs to retrieve the
TileView object (using the ListView.View property) and then pull the data template from the Tile-
View.ItemTemplate property. This step is performed using a binding expression that searches up
the element tree (using the FindAncestor RelativeSource mode) until it finds the containing
ListView.

■Note Rather than setting the ListViewItem.ContentTemplate property, you could achieve the same result
by setting the ListView.ItemTemplate property. It’s really just a matter of preference.

Using the ListView
Once you’ve built your view class and the supporting styles, you’re ready to put them to use in
a ListView control. To use a custom view, you simply need to set the ListView.View property to
an instance of your view object, as shown here:

<ListView Name="lstProducts">
<ListView.View>
<TileView ... >

</ListView.View>
</ListView>

However, this example demonstrates a ListView that can switch between three views. As a
result, you need to instantiate three distinct view objects. The easiest way to manage this is to
define each view object separately in the Windows.Resources collection. You can then load the
view you want when the user makes a selection from the ComboBox control using this code:

private void lstView_SelectionChanged(object sender, SelectionChangedEventArgs e)
{

ComboBoxItem selectedItem = (ComboBoxItem)lstView.SelectedItem;
lstProducts.View = (ViewBase)this.FindResource(selectedItem.Content);

}

The first view is simple enough—it uses the familiar GridView class that you considered
earlier to create a multicolumn display. Here’s the markup it uses:

<GridView x:Key="GridView">
<GridView.Columns>
<GridViewColumn Header="Name"
DisplayMemberBinding="{Binding Path=ModelName}" />
<GridViewColumn Header="Model"
DisplayMemberBinding="{Binding Path=ModelNumber}" />
<GridViewColumn Header="Price"
DisplayMemberBinding="{Binding Path=UnitCost,

Converter={StaticResource PriceConverter} }" />
</GridView.Columns>

</GridView>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS618

9551CH18 2/8/08 2:12 PM Page 618

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The two TileView objects are more interesting. Both of them supply a template to deter-
mine what the tile looks like. The ImageView (shown in Figure 18-6) uses a StackPanel that
stacks the product image above the product title:

<local:TileView x:Key="ImageView">
<local:TileView.ItemTemplate>
<DataTemplate>
<StackPanel Width="150" VerticalAlignment="Top">
<Image Source="{Binding Path=ProductImagePath,

Converter={StaticResource ImagePathConverter}}">
</Image>
<TextBlock TextWrapping="Wrap" HorizontalAlignment="Center"
Text="{Binding Path=ModelName}"></TextBlock>

</StackPanel>
</DataTemplate>

</local:TileView.ItemTemplate>
</local:TileView>

The ImageDetailView uses a two-column grid. A small version of the image is placed on
the left, and more detailed information is placed on the right. The second column is placed
into a shared size group so that all the items have the same width (as determined by the
largest text value).

<local:TileView x:Key="ImageDetailView">
<local:TileView.ItemTemplate>
<DataTemplate>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition Width="Auto" SharedSizeGroup="Col2"></ColumnDefinition>

</Grid.ColumnDefinitions>

<Image Margin="5" Width="100"
Source="{Binding Path=ProductImagePath,

Converter={StaticResource ImagePathConverter}}">
</Image>
<StackPanel Grid.Column="1" VerticalAlignment="Center">
<TextBlock FontWeight="Bold" Text="{Binding Path=ModelName}"></TextBlock>
<TextBlock Text="{Binding Path=ModelNumber}"></TextBlock>
<TextBlock Text="{Binding Path=UnitCost,

Converter={StaticResource PriceConverter} }">
</TextBlock>

</StackPanel>
</Grid>

</DataTemplate>
</local:TileView.ItemTemplate>

</local:TileView>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 619

9551CH18 2/8/08 2:12 PM Page 619

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This is undoubtedly more code than you wanted to generate to create a ListView with
multiple viewing options. However, the example is now complete, and you can easily create
additional views (based on the TileView class) that supply different item templates and give
you even more viewing options.

Passing Information to a View
You can make your view classes more flexible by adding properties that the consumer can set
when using the view. Your style can then retrieve these values using data binding and use
them to configure the Setter objects.

For example, the TileView currently highlights selected items with an unattractive blue
color. The effect is all the more jarring because it makes the black text with the product details
more difficult to read. As you probably remember from Chapter 15, you can fix these details by
using a customized control template with the right triggers.

But rather than hard-code a set of pleasing colors, it makes sense to let the view consumer
specify this detail. To do with the TileView, you could add a set of properties like these:

private Brush selectedBackground = Brushes.Transparent;
public Brush SelectedBackground
{

get { return selectedBackground; }
set { selectedBackground = value; }

}

private Brush selectedBorderBrush = Brushes.Black;
public Brush SelectedBorderBrush
{

get { return selectedBorderBrush; }
set { selectedBorderBrush = value; }

}

Now you can set these details when instantiating a view object:

<local:TileView x:Key="ImageDetailView" SelectedBackground="LightSteelBlue">
...

</local:TileView>

The final step is to use these colors in the ListViewItem style. To do so, you need to add a
Setter that replaces the ControlTemplate. In this case, a simple rounded border is used with
a ContentPresenter. When the item is selected, a trigger fires and applies the new border and
background colors:

<Style x:Key="{ComponentResourceKey TypeInTargetAssembly={x:Type local:TileView},
ResourceId=TileViewItem}"
TargetType="{x:Type ListViewItem}"
BasedOn="{StaticResource {x:Type ListBoxItem}}">
...
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBoxItem}">

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS620

9551CH18 2/8/08 2:12 PM Page 620

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Border Name="Border" BorderThickness="1" CornerRadius="3">
<ContentPresenter />

</Border>
<ControlTemplate.Triggers>
<Trigger Property="IsSelected" Value="True">
<Setter TargetName="Border" Property="BorderBrush"
Value="{Binding Path=View.SelectedBorderBrush,

RelativeSource={RelativeSource Mode=FindAncestor,
AncestorType={x:Type ListView}}}"></Setter>

<Setter TargetName="Border" Property="Background"
Value="{Binding Path=View.SelectedBackground,

RelativeSource={RelativeSource Mode=FindAncestor,
AncestorType={x:Type ListView}}}"></Setter>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

Figure 18-9 and Figure 18-10 show this selection behavior. Figure 18-9 uses a transparent
background, while Figure 18-10 uses a light blue highlight color.

■Note Unfortunately, this technique of passing information to a view still doesn’t help you make a truly
generic view. That’s because there’s no way to modify the data templates based on this information.

The TreeView
The TreeView is a Windows staple, and it’s a common ingredient in everything from the Win-
dows Explorer file browser to the .NET help library. WPF’s implementation of the TreeView is
impressive, because it has full support for data binding.

■Note The Windows Forms toolkit beats WPF with its rich DataGridView control for displaying and brows-
ing data. However, it falls behind with weaker implementations of the ListView and TreeView, neither of
which supports data binding.

The TreeView is, at its heart, a specialized ItemsControl that hosts TreeViewItem objects.
But unlike the ListViewItem, the TreeViewItem is not a content control. Instead, each Tree-
ViewItem is a separate ItemsControl, with the ability to hold more TreeViewItem objects. This
flexibility allows you to create a deeply layered data display.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 621

9551CH18 2/8/08 2:12 PM Page 621

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Technically, the TreeViewItem derives from HeaderedItemsControl, which derives from ItemsControl.
The HeaderedItemsControl class adds a Header property, which holds the content (usually text) that you
want to display for that item in the tree. WPF includes two other HeaderedItemsControls: the MenuItem and
the ToolBar.

Here’s the skeleton of a very basic TreeView, which is declared entirely in markup:

<TreeView>
<TreeViewItem Header="Fruit">
<TreeViewItem Header="Orange"/>
<TreeViewItem Header="Banana"/>
<TreeViewItem Header="Grapefruit"/>

</TreeViewItem>
<TreeViewItem Header="Vegetables">

<TreeViewItem Header="Aubergine"/>
<TreeViewItem Header="Squash"/>
<TreeViewItem Header="Spinach"/>

</TreeViewItem>
</TreeView>

It’s not necessary to construct a TreeView out of TreeViewItem objects. In fact, you have
the ability to add virtually any element to a TreeView, including buttons, panels, and images.
However, if you want to display nontext content, the best approach is to use a TreeViewItem
wrapper and supply your content through the TreeViewItem.Header property. This gives you
the same effect as adding non-TreeViewItem elements directly to your TreeView but makes it
easier to manage a few TreeView-specific details, such as selection and node expansion. If you
want to display a non-UIElement object, you can format it using data templates with the
HeaderTemplate or HeaderTemplateSelector property.

A Data-Bound TreeView
Usually, you won’t fill a TreeView with fixed information that’s hard-coded in your markup.
Instead, you’ll construct the TreeViewItem objects you need programmatically, or you’ll use
data binding to display a collection of objects.

Filling a TreeView with data is easy enough—as with any ItemsControl, you simply set the
ItemsSource property. However, this technique fills only the first level of the TreeView. A more
interesting use of the TreeView incorporates hierarchical data that has some sort of nested
structure.

For example, consider the TreeView shown in Figure 18-11. The first level consists of Cate-
gory objects, while the second level shows the Product objects that fall into each category.

The TreeView makes hierarchical data display easy, whether you’re working with hand-
crafted classes or the ADO.NET DataSet. You simply need to specify the right data templates.
Your templates indicate the relationship between the different levels of the data.

For example, imagine you want to build the example shown in Figure 18-11. You’ve
already seen the Products class that’s used to represent a single Product. But to create
the example shown in Figure 18-9, you also need a Category class. Like the Product class, the

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS622

9551CH18 2/8/08 2:12 PM Page 622

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Category class implements the INotifyPropertyChanged to provide change notifications. The
only new detail is that the Category class exposes a collection of Product objects through its
Product property.

Figure 18-11. A TreeView of categories and products

public class Category : INotifyPropertyChanged
{

private string categoryName;
public string CategoryName
{

get { return categoryName; }
set { categoryName = value;

OnPropertyChanged(new PropertyChangedEventArgs("CategoryName"));
}

}

private ObservableCollection<Product> products;
public ObservableCollection<Product> Products
{

get { return products; }
set { products = value;

OnPropertyChanged(new PropertyChangedEventArgs("Products"));
}

}

public event PropertyChangedEventHandler PropertyChanged;

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 623

9551CH18 2/8/08 2:12 PM Page 623

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public void OnPropertyChanged(PropertyChangedEventArgs e)
{

if (PropertyChanged != null)
PropertyChanged(this, e);

}

public Category(string categoryName, ObservableCollection<Product> products)
{

CategoryName = categoryName;
Products = products;

}
}

■Tip This trick—creating a collection that exposes another collection through a property—is the secret to
navigating parent-child relationships with WPF data binding. For example, you can bind a collection of Cate-
gory objects to one list control and then bind another list control to the Products property of the currently
selected Category object to show the related Product objects.

To use the Category class, you also need to modify the data access code that you saw in
Chapter 17. Now, you’ll query the information about products and categories from the data-
base. In this example, the window calls the StoreDB.GetCategoriesAndProducts() method to
get a collection of Category objects, each of which has a nested collection of Product objects.
The Category collection is then bound to the tree so that it will appear in the first level:

treeCategories.ItemsSource = App.StoreDB.GetCategoriesAndProducts();

To display the categories, you need to supply a TreeView.ItemTemplate that can process
the bound objects. In this example, you need to display the CategoryName property of each
Category object. Here’s the data template that does it:

<TreeView Name="treeCategories" Margin="5">
<TreeView.ItemTemplate>
<HierarchicalDataTemplate>
<TextBlock Text="{Binding Path=CategoryName}" />

</HierarchicalDataTemplate>
</TreeView.ItemTemplate>

</TreeView>

The only unusual detail here is that the TreeView.ItemTemplate is set using a Hierarchical-
DataTemplate object instead of a DataTemplate. The HierarchicalDataTemplate has the added
advantage that it can wrap a second template. The HierarchicalDataTemplate can then pull a
collection of items from the first level and provide that to the second-level template. You sim-
ply set the ItemsSource property to identify the property that has the child items, and you set
the ItemTemplate property to indicate how each object should be formatted.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS624

9551CH18 2/8/08 2:12 PM Page 624

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the revised date template:

<TreeView Name="treeCategories" Margin="5">
<TreeView.ItemTemplate>
<HierarchicalDataTemplate ItemsSource="{Binding Path=Products}">
<TextBlock Text="{Binding Path=CategoryName}" />
<HierarchicalDataTemplate.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=ModelName}" />

</DataTemplate>
</HierarchicalDataTemplate.ItemTemplate>

</HierarchicalDataTemplate>
</TreeView.ItemTemplate>

</TreeView>

Essentially, you now have two templates, one for each level of the tree. The second tem-
plate uses the selected item from the first template as its data source.

Although this markup works perfectly well, it’s common to factor out each data template
and apply it to your data objects by data type instead of by position. To understand what that
means, it helps to consider a revised version of the markup for the data-bound TreeView:

<Window x:Class="DataBinding.BoundTreeView" ...
xmlns:local="clr-namespace:DataBinding">

<Window.Resources>
<HierarchicalDataTemplate DataType="{x:Type local:Category}"
ItemsSource="{Binding Path=Products}">
<TextBlock Text="{Binding Path=CategoryName}"/>

</HierarchicalDataTemplate>

<HierarchicalDataTemplate DataType="{x:Type local:Product}">
<TextBlock Text="{Binding Path=ModelName}" />

</HierarchicalDataTemplate>
</Window.Resources>

<Grid>
<TreeView Name="treeCategories" Margin="5">
</TreeView>

</Grid>
</Window>

In this example, the TreeView doesn’t explicitly set its ItemTemplate. Instead, the appro-
priate ItemTemplate is used based on the data type of the bound object. Similarly, the
Category template doesn’t specify the ItemTemplate that should be used to process the Prod-
ucts collection. It’s also chosen automatically by data type. This tree is now able to show a list
of products or a list of categories that contain groups of products.

In the current example, these changes don’t add anything new. This approach simplifies
the markup and makes it easier to reuse your templates, but it doesn’t change the way your
data is displayed. However, if you have deeply nested trees that have looser structures, this
design is invaluable. For example, imagine you’re creating a tree of Manager objects, and each

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 625

9551CH18 2/8/08 2:12 PM Page 625

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Manager object has an Employees collection. This collection might contain ordinary
Employee objects or other Manager objects, which would in turn contain more Employees.
If you use the type-based template system shown earlier, each object automatically gets the
template that’s right for its data type.

Binding a DataSet to a TreeView
You can also use a TreeView to show a multilayered DataSet—one that has relationships link-
ing one DataTable to another.

For example, here’s a code routine that creates a DataSet, fills it with a table of products
and a separate table of categories, and links the two tables together with a DataRelation
object:

public DataSet GetCategoriesAndProductsDataSet()
{

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand("GetProducts", con);
cmd.CommandType = CommandType.StoredProcedure;
SqlDataAdapter adapter = new SqlDataAdapter(cmd);

DataSet ds = new DataSet();
adapter.Fill(ds, "Products");
cmd.CommandText = "GetCategories";
adapter.Fill(ds, "Categories");

// Set up a relation between these tables.
DataRelation relCategoryProduct = new DataRelation("CategoryProduct",
ds.Tables["Categories"].Columns["CategoryID"],
ds.Tables["Products"].Columns["CategoryID"]);
ds.Relations.Add(relCategoryProduct);

return ds;
}

To use this in a TreeView, you begin by binding to the DataTable you want to use for the
first level:
DataSet ds = App.StoreDB.GetCategoriesAndProductsDataSet();

treeCategories.ItemsSource = ds.Tables["Categories"].DefaultView;

But how do you get the related rows? After all, you can’t call a method like GetChildRows()
from XAML. Fortunately, the WPF data binding system has built-in support for this scenario.
The trick is to use the name of your DataRelation as the ItemsSource for your second level. In
this example, the DataRelation was created with the name CategoryProduct, so this markup
does the trick:

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS626

9551CH18 2/8/08 2:12 PM Page 626

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<TreeView Name="treeCategories" Margin="5">
<TreeView.ItemTemplate>
<HierarchicalDataTemplate ItemsSource="{Binding CategoryProduct}">
<TextBlock Text="{Binding CategoryName}" Padding="2" />
<HierarchicalDataTemplate.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding ModelName}" Padding="2" />

</DataTemplate>
</HierarchicalDataTemplate.ItemTemplate>

</HierarchicalDataTemplate>
</TreeView.ItemTemplate>

</TreeView>

Now this example works in the same way as the previous example, which used custom
Product and Category objects.

Just-in-Time Node Creation
TreeView controls are often used to hold huge amounts of data. As you learned earlier, data-
laden ListView objects are a problem, because the ListView doesn’t include any virtualization
or paging feature. As a result, all your data needs to be loaded at once and submitted to the
ListView as a single in-memory object. The situation with the TreeView is a bit better. That’s
because the TreeView display is collapsible. Even if the user scrolls from top to bottom, not all
the information is necessarily visible. The information that isn’t visible can be omitted from
the TreeView altogether, reducing its overhead (and the amount of time required to fill the
tree). Even better, each TreeViewItem fires an Expanded event when it’s opened and a Col-
lapsed event when it’s closed. You can use this point in time to fill in missing nodes or discard
one that you don’t need. This technique is called just-in-time node creation.

Just-in-time node creation can be applied to applications that pull their data from a
database, but the classic example is a directory-browsing application. In current times, most
people have huge, sprawling hard drives. Although you could fill a TreeView with the directory
structure of a hard drive, the process is aggravatingly slow. A better idea is to begin with a par-
tially collapsed view and allow the user to dig down into specific directories (as shown in
Figure 18-12). As each node is opened, the corresponding subdirectories are added to the
tree—a process that’s nearly instantaneous.

Using a just-in-time TreeView to display the folders on a hard drive is nothing new. (In
fact, the technique is demonstrated in my book Pro .NET 2.0 Windows Forms and Custom
Controls in C# [Apress, 2005].) However, event routing makes the WPF solution just a bit more
elegant.

The first step is to add a list of drives to the TreeView when the window first loads. Ini-
tially, the node for each drive is collapsed. The drive letter is displayed in the header, and the
DriveInfo object is stored in the TreeViewItem.Tag property to make it easier to find the nested
directories later without re-creating the object. (This increases the memory overhead of the
application, but it also reduces the number of file access security checks. The overall effect is
small, but it improves performance slightly and simplifies the code.)

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 627

9551CH18 2/8/08 2:12 PM Page 627

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 18-12. Digging into a directory tree

Here’s the code that fills the TreeView with a list of drives, using the System.IO.DriveInfo
class:

foreach (DriveInfo drive in DriveInfo.GetDrives())
{

TreeViewItem item = new TreeViewItem();
item.Tag = drive;
item.Header = drive.ToString();

item.Items.Add("*");
treeFileSystem.Items.Add(item);

}

This code adds a placeholder (a string with an asterisk) under each drive node. The place-
holder is not shown, because the node begins in a collapsed state. As soon as the node is
expanded, you can remove the placeholder and add the list of subdirectories in its place.

■Note The placeholder is a useful tool that can allow you to determine whether the user has expanded this
folder to view its contents yet. However, the primary purpose of the placeholder is to make sure the expand
icon appears next to this item. Without that, the user won’t be able to expand the directory to look for sub-
folders. If the directory doesn’t include any subfolders, the expand icon will simply disappear when the user
attempts to expand it—which is similar to the behavior of Windows Explorer when viewing network folders.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS628

9551CH18 2/8/08 2:12 PM Page 628

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To perform the just-in-time node creation, you must handle the TreeViewItem.Expanded
event. Because this event uses bubbling, you can attach an event handler directly on the Tree-
View to handle the Expanded event for any TreeViewItem inside:

<TreeView Name="treeFileSystem" TreeViewItem.Expanded="item_Expanded">
</TreeView>

Here’s the code that handles the event and fills in the missing next level of the tree using
the System.IO.DirectoryInfo class:

private void item_Expanded(object sender, RoutedEventArgs e)
{

TreeViewItem item = (TreeViewItem)e.OriginalSource;
item.Items.Clear();

DirectoryInfo dir;
if (item.Tag is DriveInfo)
{

DriveInfo drive = (DriveInfo)item.Tag;
dir = drive.RootDirectory;

}
else
{

dir = (DirectoryInfo)item.Tag;
}

try
{

foreach (DirectoryInfo subDir in dir.GetDirectories())
{

TreeViewItem newItem = new TreeViewItem();
newItem.Tag = subDir;
newItem.Header = subDir.ToString();
newItem.Items.Add("*");
item.Items.Add(newItem);

}
}
catch
{

// An exception could be thrown in this code if you don't
// have sufficient security permissions for a file or directory.
// You can catch and then ignore this exception.

}
}

Currently, this code performs a refresh every time the item is expanded. Optionally,
you could perform this only the first time it’s expanded, when the placeholder is found. This
reduces the work your application needs to do but increases the chance of out-of-date infor-
mation. Alternatively, you could perform a refresh every time an item is selected by handling

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 629

9551CH18 2/8/08 2:12 PM Page 629

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the TreeViewItem.Selected event, or you could use a component such as the System.IO.File-
SystemWatcher to wait for operating system notifications when a folder is added, removed, or
renamed. The FileSystemWatcher is the only way to ensure that you update the directory tree
immediately when a change happens, but it also has the greatest overhead.

CREATING ADVANCED TREEVIEW CONTROLS

There’s a lot you can accomplish when you combine the power of control templates (discussed in Chapter 15)
with the TreeView. In fact, you can create a control that looks and behaves in a radically different way simply
by replacing the templates for the TreeView and TreeViewItem controls.

Making these adjustments requires some deeper template exploration. You can get started with some
eye-opening examples. Visual Studio includes a sample of a multicolumned TreeView that unites a tree with
a grid. To browse it, look for the index entry “TreeListView sample [WPF]” in the Visual Studio help. Another
intriguing example is Josh Smith’s layout experiment, which transforms the TreeView into something that
more closely resembles an organization chart. You can view the full code at http://www.codeproject.
com/KB/WPF/CustomTreeViewLayout.aspx.

Menus
WPF provides two menu controls: Menu (for main menus) and ContextMenu (for popup
menus that are attached to other elements). Like all the WPF classes, WPF performs the ren-
dering for the Menu and ContextMenu controls. That means these controls aren’t simple
Win32 wrappers, and they have the flexibility to be used in some unusual ways.

■Note If you use the Menu class in a browser-hosted application, it appears at the top of the page. The
browser window wraps your page, and it may or may not include a menu of its own, which will be com-
pletely separate.

The Menu Class
WPF doesn’t make any assumption about where a stand-alone menu should be placed. Ordi-
narily, you’ll dock it at the top of your window using a DockPanel or the top row of a Grid, and
you’ll stretch it across the entire width of your window. However, you can place a menu any-
where, even alongside other controls (as shown in Figure 18-13). Furthermore, you can add as
many menus in a window as you want. Although it might not make much sense, you have the
ability to stack menu bars or scatter them throughout your user interface.

This freedom provides some interesting possibilities. For example, if you create a menu
with one top-level heading and style it to look like button, you’ll end up with a one-click
popup menu (like the menu that’s activated in Figure 18-13). This sort of user interface trick-
ery might help you get the exact effect you want in a highly customized interface. Or, it might
just be a more powerful way to confuse users.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS630

9551CH18 2/8/08 2:12 PM Page 630

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeproject

Figure 18-13. Mixed menus

The Menu class adds a single new property: IsMainMenu. When true (which is the default
value), pressing the Alt key or F10 gives the menu focus, just as in any other Windows applica-
tion. Along with this small detail, the Menu container has a few of the familiar ItemsControl
properties for you to play with. That means you can create data-bound menus using the
ItemsSource, DisplayMemberPath, ItemTemplate, and ItemTemplateSelector properties. You
can also apply grouping, change the layout of menu items inside the menu, and apply styles to
your menu items.

For example, Figure 18-14 shows a scrollable sidebar menu. You can create it by supplying
a StackPanel for the ItemsPanel property, changing its background, and wrapping the entire
Menu in a ScrollViewer. Obviously, you can make more radical changes to the visual appear-
ance of menus and submenus using triggers and control templates. The bulk of the styling
logic is in the default control template for the MenuItem.

Figure 18-14. A Menu in a StackPanel

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 631

9551CH18 2/8/08 2:12 PM Page 631

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Menu Items
Menus are composed of MenuItem objects and Separator objects. The MenuItem class derives
from HeaderedItemsControl, because each menu item has a header (which contains the text
for that item) and can hold a collection of MenuItem objects (which represents a submenu).
The Separator simply displays a horizontal line separating menu items.

Here’s a straightforward combination of MenuItem objects that creates the rudimentary
menu structure shown in Figure 18-15:

<Menu>
<MenuItem Header="File">
<MenuItem Header="New"></MenuItem>
<MenuItem Header="Open"></MenuItem>
<MenuItem Header="Save"></MenuItem>
<Separator></Separator>
<MenuItem Header="Exit"></MenuItem>

</MenuItem>
<MenuItem Header="Edit">
<MenuItem Header="Undo"></MenuItem>
<MenuItem Header="Redo"></MenuItem>
<Separator></Separator>
<MenuItem Header="Cut"></MenuItem>
<MenuItem Header="Copy"></MenuItem>
<MenuItem Header="Paste"></MenuItem>

</MenuItem>
</Menu>

As with buttons, you can use the underscore to indicate an Alt+ shortcut key combina-
tion. Whereas this is often considered an optional feature in buttons, most menu users expect
to have keyboard shortcuts.

Figure 18-15. A basic menu

WPF allows you to break most of the common sense rules of structuring a menu. For
example, you can have non-MenuItem objects inside a Menu or MenuItem. This allows you
to create menus that hold ordinary WPF elements, ranging from the ordinary CheckBox to a
DocumentViewer. For a variety of reasons, placing non-MenuItem objects in a menu is almost

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS632

9551CH18 2/8/08 2:12 PM Page 632

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

always a bad way to go. If you place non-MenuItem objects in a menu, they’ll exhibit a few
oddities that you’ll need to track down and correct. For example, a TextBox in a MenuItem will
lose focus as soon as you move the mouse out of the bounds of the MenuItem. If you really
want a user interface that includes some sort of drop-down menu with controls, consider
using another element (such as the Expander) and styling it to suit your needs. Use menus
only when you really want the behavior of a menu—in other words, a group of clickable
commands.

■Note Set the MenuItem.StaysOpenOnClick property to true if you want submenus to remain visible when
opened until the user clicks somewhere else.

MenuItem objects can also be used outside the standard Menu, ContextMenu, and Menu-
Item containers. These items behave just like ordinary menu items—they glow blue when you
hover over them, and they can be clicked to trigger actions. However, any submenus they
include won’t be accessible. Again, this is an aspect of Menu flexibility you probably won’t
want to use.

To react when a MenuItem is clicked, you may choose to handle the MenuItem.Click event.
You can handle it for individual items, or you can attach an event handler to the root Menu tag.
Your other alternative is to use the Command, CommandParameter, and CommandTarget
properties to connect a MenuItem to a Command object, as you learned to do with buttons in
Chapter 10. This is particularly useful if your user interface includes multiple menus (for exam-
ple, a main menu and a context menu) that use the same commands or includes a menu and a
toolbar that do.

Along with text content (which is supplied through the Header property), MenuItem
objects can actually show several more details:

• A thumbnail icon in the margin area just to the left of the menu command.

• A check mark in the margin area. If you set the check mark and an icon, only the check
mark appears.

• Shortcut text to the right of the menu text. For example, you might see Ctrl+O to indi-
cate the shortcut key for the Open command.

Setting all these ingredients is easy. To show a thumbnail icon, you set the MenuItem.Icon
property. Interestingly, the Icon property accepts any object, which gives you the flexibility
to construct a miniature vector drawing. This way, you can take full advantage of WPF’s
resolution-independent scaling to show more detail at higher system DPI settings. If you
want to use an ordinary icon, simply use an Image element with a bitmap source.

To show a check mark next to a menu item, you simply need to set the MenuItem.Is-
Checked property to true. Additionally, if IsCheckable is true, clicking the menu item will
toggle back and forth between its checked and unchecked state. However, there’s no way to
associate a group of checked menu items. If that’s the effect you want, you need to write the
code to clear the other check boxes when an item is checked.

You can set the shortcut text for a menu item using the MenuItem.InputGestureText
property. However, simply displaying this text doesn’t make it active. It’s up to you to watch for

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 633

9551CH18 2/8/08 2:12 PM Page 633

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

the key presses you want. This is almost always too much work, so menu items are commonly
used with commands, which gives you the shortcut key behavior and the InputGestureText in
one step.

For example, the following MenuItem is linked to the ApplicationsCommands.Open com-
mand:

<MenuItem Command="ApplicationCommands.Open"></MenuItem>

This command already has the Ctrl+O keystroke defined in the
RoutedUICommand.InputGestures command collection. As a result, Ctrl+O appears for the
shortcut text, and the Ctrl+O keystroke triggers the command (assuming you’ve wired up
the appropriate event handler). If a keystroke wasn’t defined, you could add it to the Input-
Gestures collection yourself.

■Tip Several useful properties indicate the current state of the MenuItem, including IsChecked,
IsHighlighted, IsPressed, and IsSubmenuOpen. You can use these to write triggers that apply different
styling in response to certain actions.

The ContextMenu Class
Like the Menu, the ContextMenu class holds a collection of MenuItem objects. The difference
is that a ContextMenu can’t be placed in a window. Instead, it can be used only to set the
ContextMenu property of another element:

<TextBox>
<TextBox.ContextMenu>
<MenuItem ... >
...
</MenuItem>

</TextBox.ContextMenu>
</TextBox>

The ContextMenu property is defined in the FrameworkElement class, so it’s supported
by virtually all WPF elements. If you set the ContextMenu property of an element that ordinar-
ily has its own context menu, your menu replaces the standard menu. If you simply want to
remove an existing context menu, just set it to a null reference.

When you attach a ContextMenu object to an element, it appears automatically when the
user right-clicks that control (or presses Shift+F10 while it has focus). The context menu won’t
appear if the element has IsEnabled set to false, unless you explicitly allow this with the
ContextMenuService.ShowOnDisabled attached property:

<TextBox ContextMenuService.ShowOnDisabled="True">
<TextBox.ContextMenu>

...
</TextBox.ContextMenu>

</TextBox>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS634

9551CH18 2/8/08 2:12 PM Page 634

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Menu Separators
The Separator is a standard element for dividing menus into groups of related commands.
However, the content of the separator is completely fluid, thanks to control templates. By tak-
ing a separator and supplying a new template, you can add other, nonclickable elements to
your menus, such as subheadings.

You might expect that you could add a subheading simply by adding a non-MenuItem
object to a menu, such as a TextBlock with some text. However, if you take this step, the newly
added element keeps the menu selection behavior; this means you can step through it with
the keyboard, and when you hover over it with the mouse, the edges glow blue. The Separator
doesn’t exhibit this behavior—it’s a fixed piece of content that doesn’t react to keyboard or
mouse actions.

Here’s an example of a Separator that defines a text title:

<Separator>
<Separator.Template>
<ControlTemplate>
<Border CornerRadius="2" Padding="5" Background="PaleGoldenrod"
BorderBrush="Black" BorderThickness="1">
<TextBlock FontWeight="Bold">
Editing Commands
</TextBlock>

</Border>
</ControlTemplate>

</Separator.Template>
</Separator>

Figure 18-16 shows the title this creates.

Figure 18-16. A menu that includes a fixed subheading

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 635

9551CH18 2/8/08 2:12 PM Page 635

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Unfortunately, the Separator isn’t a content control, so it’s not possible to separate the
content you want to show (for example, the string of text) from the formatting you want to
use. That means you’ll be forced to define the same template each time you use the separator
if you want to vary its text. To make this process a bit simpler, you can create a separator style
that bundles together all the properties you want to set on the TextBlock inside the Separator,
except for the text.

Toolbars and Status Bars
Toolbars and status bars are two staples of the Windows world. Both are specialized containers
that hold a collection of items. Traditionally, a toolbar holds buttons, and a status bar consists
primarily of text and other noninteractive indicators (like a progress bar). However, both tool-
bars and status bars are used with a variety of different controls.

In Windows Forms, toolbars and status bars have their own content model. Although it’s
still possible to place arbitrary controls inside a toolbar and status bar using a wrapper, the
process isn’t seamless. Thanks to the new content model in WPF, this situation has improved
dramatically. The WPF ToolBar and StatusBar classes support all WPF elements, giving you
unparalleled flexibility. In fact, there are no toolbar-specific or status bar–specific elements.
Everything you need is already available in the basic collection of WPF elements.

The ToolBar
A typical WPF ToolBar is filled with Button, ComboBox, CheckBox, RadioButton, and Separa-
tor objects. Because these elements are all content controls (except for the Separator), you can
place text and image content inside. Although you can use other elements, such as Label and
Image to put noninteractive elements into the ToolBar, the effect is often confusing.

At this point, you might be wondering how you can place these common controls in a
toolbar without creating an odd visual effect. After all, the content that appears in standard
Windows toolbars looks quite a bit different from similar content that appears in a window.
For example, the buttons in a toolbar are displayed with a flat, streamlined appearance that
removes the border and the shaded background. The toolbar surface shows through under-
neath, and the button glows blue when you hover over it with the mouse.

In the WPF way of thinking, the button in a toolbar is the same as a button in a window—
both are clickable regions you can use to perform an action. The only difference is the visual
appearance. Thus, the perfect solution is to use the existing Button class but adjust various
properties or change the control template. This is exactly what the ToolBar class does—it over-
rides the default style of some types of children, including the buttons. You can still have the
last word by manually setting the Button.Style property if you want to create your own cus-
tomized toolbar button, but usually you’ll get all the control you need by setting the button
content.

Not only does the ToolBar change the appearance of many of the controls its holds, but it
also changes the behavior of the ToggleButton and the CheckBox and RadioButton that derive
from it. A ToggleButton or CheckBox in a ToolBar is rendered like an ordinary button, but
when you click it, the button remains highlighted (until you click it again). The RadioButton
has a similar appearance, but you must click another RadioButton in a group to clear the high-
lighting. (To prevent confusion, it’s always best to separate a group of RadioButton objects in a
toolbar using the Separator.)

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS636

9551CH18 2/8/08 2:12 PM Page 636

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To demonstrate what this looks like, consider the simple markup shown here:

<ToolBar>
<Button Content="{StaticResource DownloadFile}"></Button>
<CheckBox FontWeight="Bold">Bold</CheckBox>
<CheckBox FontStyle="Italic">Italic</CheckBox>
<CheckBox>
<TextBlock TextDecorations="Underline">Underline</TextBlock>

</CheckBox>
<Separator></Separator>
<ComboBox SelectedIndex="0">
<ComboBoxItem>100%</ComboBoxItem>
<ComboBoxItem>50%</ComboBoxItem>
<ComboBoxItem>25%</ComboBoxItem>

</ComboBox>
<Separator></Separator>

</ToolBar>

Figure 18-17 shows this toolbar in action, with two CheckBox controls in the checked
state and the drop-down list on display.

Figure 18-17. Different controls in a toolbar

Although the example in Figure 18-17 is limited to buttons that contain text, ToolBar but-
tons usually hold image content. (You can also combine both by wrapping an Image element
and a TextBlock or Label in a horizontal StackPanel.) If you’re using image content, you need
to decide whether you want to use bitmap images (which may show scaling artifacts at differ-
ent resolutions), icons (which improve this situation somewhat because you can supply
several differently sized images in one file), or vector images (which require the most markup
but provide flawless resizing).

The ToolBar control has a few oddities. First, unlike other controls that derive from Items-
Control, it doesn’t supply a dedicated wrapper class. (In other words, there is a ToolBarItem
class.) The ToolBar simply doesn’t require this wrapper to manage items, track selection, and
so on, as other list controls. Another quirk in the ToolBar is that it derives from HeaderedItems-
Control even though the Header property has no effect. It’s up to you to use this property in
some interesting way. For example, if you have an interface that uses several ToolBar objects,
you could allow users to choose which ones to display from a context menu. In that menu,
you could use the toolbar name that’s set in the Header property.

The ToolBar has one more interesting property: Orientation. You can create a top-to-bottom
toolbar that’s docked to one of the sides of your window by setting the ToolBar.Orientation

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 637

9551CH18 2/8/08 2:12 PM Page 637

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

property to Vertical. However, each element in the toolbar will still be oriented horizontally (for
example, text won’t be turned on its side), unless you use a LayoutTransform to rotate it.

The Overflow Menu
If a toolbar has more content than it can fit in a window, it removes items until the content
fits. These extra items are placed into an overflow menu, which you can see by clicking the
drop-down arrow at the end of the toolbar. Figure 18-18 shows the same toolbar shown in
Figure 18-17 but in a smaller window that necessitates an overflow menu.

The ToolBar control adds items to the overflow menu automatically, starting with the last
item. However, you can configure the way this behavior works to a limited degree by applying
the attached ToolBar.OverflowMode property to the items in the toolbar. Use Overflow-
Mode.Never to ensure that an important item is never placed in the overflow menu, Overflow-
Mode.AsNeeded (the default) to allow it to be placed in the overflow menu when space is
scarce, or OverflowMode.Always to force an item to remain permanently in the overflow
menu. (For example, Visual Studio keeps the customization command Add or Remove buttons
in the overflow menu of its toolbars, and the main Excel 2003 and Word 2003 toolbars include
a command named Show Buttons on Two Rows or Show Buttons on One Row that’s always in
the overflow menu.)

Figure 18-18. The automatic overflow menu

■Note If the toolbar’s container (usually, a window) is smaller than the required space to display all the
OverflowMode.Always items, the items that don’t fit will be clipped off at the bounds of the container and
will be inaccessible to the user.

If your toolbar contains more than one OverflowMode.AsNeeded item, the ToolBar
removes items that are at the end of the toolbar first. Unfortunately, there’s no way to assign
relative priorities to toolbar items. For example, there’s no way to create an item that’s allowed
in the overflow menu but won’t be placed there until every other relocatable item has already
been moved. There’s also no way to create buttons that adapt their sizes based on the available
space, as in the Office 2007 ribbon. Look for third-party controls to bridge these gaps.

The ToolBarTray
Although you’re free to add multiple ToolBar controls to your window and manage them
using a layout container, WPF has a class that’s designed to take care of some of the work: the

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS638

9551CH18 2/8/08 2:12 PM Page 638

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ToolBarTray. Essentially, the ToolBarTray holds a collection of ToolBar objects (which are
exposed through a property named ToolBars).

The ToolBarTray makes it easier for toolbars to share the same row, or band. You can config-
ure the ToolBarTray so that toolbars share a band, while others are placed on other bands. The
ToolBarTray provides the shaded background behind the entire ToolBar area. But most impor-
tant, the ToolBarTray adds support for toolbar drag-and-drop functionality. Unless you set the
ToolBarTray.IsLocked property to true, the user can rearrange your toolbars in a ToolBar tray by
clicking the grip at the left side. Toolbars can be repositioned in the same band or moved to a dif-
ferent band. However, the user is not able to drag a toolbar from one ToolBarTray to another. If
you want to lock down individual toolbars, simply set the ToolBarTray.IsLocked attached prop-
erty on the appropriate ToolBar objects.

■Note When moving toolbars, it’s possible that some content may be obscured. For example, the user may
move a toolbar to a position that leaves very little room for another adjacent toolbar. In this situation, the
missing items are added to the overflow menu.

You can place as many ToolBar objects as you want in a ToolBarTray. By default, all your
toolbars will be placed in left-to-right order on the topmost band. Initially, each toolbar is
given its full desired width. (If a subsequent toolbar doesn’t fit, some or all of its buttons are
moved to the overflow menu.) To get more control, you can specify which band a toolbar
should occupy by setting the Band property using a numeric index (where 0 is the topmost
band). You can also set the placement inside the band explicitly by using the BandIndex prop-
erty. A BandIndex of 0 puts the toolbar at the beginning of the band.

Here’s some sample markup that creates several toolbars in a ToolBarTray. Figure 18-19
shows the result.

<ToolBarTray>
<ToolBar>
<Button>One</Button>
<Button>Two</Button>
<Button>Three</Button>

</ToolBar>
<ToolBar>
<Button>A</Button>
<Button>B</Button>
<Button>C</Button>

</ToolBar>
<ToolBar Band="1">
<Button>Red</Button>
<Button>Blue</Button>
<Button>Green</Button>
<Button>Black</Button>

</ToolBar>
</ToolBarTray>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 639

9551CH18 2/8/08 2:12 PM Page 639

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 18-19. Grouping toolbars in the ToolBarTray

The StatusBar
Compared to the ToolBar, the StatusBar is a much less glamorous control class. Like the Tool-
Bar, it holds any content (which it wraps implicitly in StatusBarItem objects), and it overrides
the default styles of some elements to provide more suitable rendering. However, the Status-
Bar control doesn’t have the support for draggable rearranging or an overflow menu. It’s
primarily used to display text and image indicators (and the occasional progress bar).

The StatusBar doesn’t work very well if you want to use one of the ButtonBase-derived
elements or the ComboBox. It doesn’t override the styles of any of these controls, so they look
out of place in the status bar. If you need to create a status bar that includes these controls,
you might consider docking an ordinary ToolBar control to the bottom of your window.
It’s probably as a result of this general lack of features that the StatusBar is found in the
System.Windows.Controls.Primitives namespace rather than in the more mainstream
System.Windows.Controls namespace where the ToolBar control exists.

There’s one tip worth noting if you’re using a status bar. Ordinarily, the StatusBar control
lays its children out from left to right using a horizontal StackPanel. However, applications
often use proportionately sized status bar items or keep items locked to the right side of the
status bar. You can implement this design by specifying that the status bar should use a differ-
ent panel. (This is a technique you saw earlier in this chapter with the tile-based ListView.)
One way to get proportionally or right-aligned items is to use a Grid for your layout container.
The only trick is that you must wrap the child element in a StatusBarItem object in order to set
the Grid.Column property appropriately.

Here’s an example that places one TextBlock on the left side of a StatusBar and another on
the right side:

<StatusBar Grid.Row="1">
<StatusBar.ItemsPanel>
<ItemsPanelTemplate>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>
</Grid>

</ItemsPanelTemplate>

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS640

9551CH18 2/8/08 2:12 PM Page 640

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</StatusBar.ItemsPanel>
<TextBlock>Left Side</TextBlock>
<StatusBarItem Grid.Column="1">
<TextBlock>Right Side</TextBlock>

</StatusBarItem>
</StatusBar>

This highlights one of the key advantages of WPF—other controls can benefit from the
core layout model without needing to re-create it. By contrast, Windows Forms included sev-
eral controls that wrapped some sort of proportionally sized items, including the StatusBar
and the DataGridView. Despite the conceptual scenario, these controls were forced to include
their own layout model and add their own layout-specific properties to manage child items. In
WPF, this isn’t the case—every control that derives from ItemsControl can use any panel to
arrange its child items.

The Last Word
In this chapter, you took a closer look at the ItemsControl classes provided by WPF. You started
out with the basic ComboBox and ListBox, and then you considered how to use the ListView to
create lists with multiple viewing modes and the TreeView to show hierarchical data. Finally, you
considered three more specialized list controls: the Menu, ToolBar, and StatusBar.

The most impressive aspect of all these classes is that they derive from a single base
class—the ItemsControl—that defines their essential functionality. The fact that all these con-
trols share the same content model, the same data binding ability, and the same styling and
templating features is one of WPF’s small miracles. Remarkably, the ItemsControl defines all
the basics for any WPF list control, even those that wrap hierarchical data, like the TreeView
and Menu. The only change in the model is that the children of these controls (TreeViewItem
and MenuItem objects) are themselves ItemsControl objects, with the ability to host their own
children.

The next chapter shifts away from the data binding story to tackle WPF’s document
features. You’ll learn how to show richly formatted, reflowable document content in your
applications and how to use the RichTextBox to allow users to edit it.

CHAPTER 18 ■ LISTS, TREES, TOOLBARS, AND MENUS 641

9551CH18 2/8/08 2:12 PM Page 641

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH18 2/8/08 2:12 PM Page 642

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Documents

Using the WPF skills you’ve picked up so far, you can craft windows and pages that include a
wide variety of elements. Displaying fixed text is easy—you simply need to add the TextBlock
and Label elements to the mix.

However, the Label and TextBlock aren’t a good solution if you need to display large
volumes of text (such as a newspaper article or detailed instructions for online help). Large
amounts of text are particularly problematic if you want your text to fit in a resizable window
in the best possible way. For example, if you pile a large swath of text into a TextBlock and
stretch it to fit a wide window, you’ll end up with long lines that are difficult to read. Similarly,
if you combine text and pictures using the ordinary TextBlock and Image elements, you’ll find
that they no longer line up correctly when the window changes size.

To deal with these issues, WPF includes a set of higher-level features that work with docu-
ments. These features allow you to display large amounts of content in a way that makes them
easy to read regardless of the size of the containing window. For example, WPF can hyphenate
words (if you only have a narrow space available) or place your text into multiple columns (if
you have a wide space to work with).

In this chapter, you’ll learn how to use flow documents to display content. You’ll also learn
how to let users edit flow document content with the RichTextBox control. Once you’ve mas-
tered flow documents, you’ll take a quick look at XPS, Microsoft’s new technology for creating
print-ready documents. Finally, you’ll consider WPF’s annotation feature, which allows users
to add comments and other markers to documents and store them permanently.

Understanding Documents
WPF separates documents into two broad categories:

• Fixed documents. These are typeset, print-ready documents. The positioning of all
content is fixed (for example, the way text is wrapped over multiple lines and hyphen-
ated can’t change). Although you might choose to read a fixed document on a computer
monitor, fixed documents are intended for print output. Conceptually, they’re equiva-
lent to Adobe PDF files. WPF includes a single type of fixed document, which uses
Microsoft’s XPS (XML Paper Specification) standard.

• Flow documents. These are documents that are designed for viewing on a computer.
Like fixed documents, flow documents support rich layout. However, WPF can optimize
a flow document based on the way you want to view it. It can lay out the content
dynamically based on details such as the size of the view window, the display resolu-
tion, and so on. Conceptually, flow documents are used for many of the same reasons
as HTML documents, but they have more advanced text layout features. 643

C H A P T E R 1 9

9551CH19 2/8/08 2:13 PM Page 643

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although flow documents are obviously more important from an application-building
point of view, fixed documents are important for documents that need to be printed without
alteration (such as forms and publications).

WPF provides support for both types of documents using different containers. The
DocumentViewer allows you to show fixed documents in a WPF window. The FlowDocument-
Reader, FlowDocumentPageViewer, and FlowDocumentScrollViewer give you different ways
to look at flow documents. All of these containers are read-only. However, WPF includes APIs
for creating fixed documents programmatically, and you can use the RichTextBox to allow the
user to edit flow content.

In this chapter, you’ll spend most of your time exploring flow documents and the ways
they can be used in a WPF application. Toward the end of this chapter, you’ll take a look at
fixed documents, which are more straightforward.

Flow Documents
In a flow document, the content adapts itself to fit the container. Flow content is ideal for
onscreen viewing. In fact, it avoids many of the pitfalls of HTML.

Ordinary HTML content uses flow layout to fill the browser window. (This is the same way
WPF organizes elements if you use a WrapPanel.) Although this approach is very flexible, it
only gives a good result for a small range of window sizes. If you maximize a window on a
high-resolution monitor (or, even worse, a widescreen display), you’ll end up with long lines
that are extremely difficult to read. Figure 19-1 shows this problem with a portion of a web
page from Wikipedia.

Figure 19-1. Long lines in flow content

Many websites avoid this problem by using some sort of fixed layout that forces content
to fit a narrow column. (In WPF, you can create this sort of design by placing your content in a
column inside a Grid container and setting the ColumnDefinition.MaxWidth property.) This
prevents the readability problem, but it results in a fair bit of wasted screen space in large win-
dows. Figure 19-2 shows this problem on a portion of a page from the New York Times website.

CHAPTER 19 ■ DOCUMENTS644

9551CH19 2/8/08 2:13 PM Page 644

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-2. Wasted space in flow content

Flow document content in WPF improves upon these current-day approaches by incor-
porating better pagination, multicolumn display, sophisticated hyphenation and text flow
algorithms, and user-adjustable viewing preferences. The end result is that WPF gives the user
a much better experience when reading large amounts of content.

The Flow Elements
You build a WPF flow document using a combination of flow elements. Flow elements have an
important difference from the elements you’ve seen so far. They don’t inherit from the familiar
UIElement and FrameworkElement classes. Instead, they form an entirely separate branch of
classes that derive from ContentElement and FrameworkContentElement.

The content element classes are simpler than the non-content element classes that
you’ve seen throughout this book. However, content elements support a similar set of basic
events, including events for keyboard and mouse handling, drag-and-drop operations, tooltip
display, and initialization. The key difference between content and non-content elements is
that content elements do not handle their own rendering. Instead, they require a container
that can render all its content elements. This deferred rendering allows the container to intro-
duce various optimizations. For example, it allows the container to choose the best way to
wrap lines of text in a paragraph, even though a paragraph is a single element.

■Note Content elements can accept focus, but ordinarily they don’t (because the Focusable property is
set to false by default). You can make a content element focusable by setting Focusable to true on individual
elements, by using an element type style that changes a whole group of elements, or by deriving your own
custom element that sets Focusable to true. The Hyperlink is an example of a content element that sets its
Focusable property to true.

CHAPTER 19 ■ DOCUMENTS 645

9551CH19 2/8/08 2:13 PM Page 645

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-3 shows the inheritance hierarchy of content elements.

Figure 19-3. Content elements

There are two key branches of content elements:

• Block elements. These elements can be used to group other content elements. For
example, a Paragraph is a block element. It can hold text that’s formatted in various
different ways. Each section of separately formatted text is a distinct element in the
paragraph.

• Inline elements. These elements are nested inside a block element (or another inline
element). For example, the Run element wraps a bit of text, which can then be nested in
a Paragraph element.

The content model allows multiple layers of nesting. For example, you can place a Bold
element inside an Underline element to create text that’s both bold and underlined. Similarly,

CHAPTER 19 ■ DOCUMENTS646

9551CH19 2/8/08 2:13 PM Page 646

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

you might create a Section element that wraps together multiple Paragraph elements, each of
which contains a variety of inline elements with the actual text content. All of these elements
are defined in the System.Windows.Documents namespace.

■Tip If you’re familiar with HTML, this model will seem more than a little familiar. WPF adopts many of the
same conventions (such as the distinction between block and inline elements). If you’re an HTML pro, you
might consider using the surprisingly capable HTML-to-XAML translator at http://wpf.netfx3.com/
files/folders/developer/entry816.aspx. With the help of this translator, which is implemented in
C# code, you can use an HTML page as the starting point for a flow document.

Formatting Content Elements
Although the content elements don’t share the same class hierarchy as non-content elements,
they feature many of the same formatting properties as ordinary elements. Table 19-1 lists
some properties that you’ll recognize from your work with non-content elements.

Table 19-1. Basic Formatting Properties for Content Elements

Name Description

Foreground and Background Accept brushes that will be used to paint the foreground text and
the background surface. You can also set the Background property
on the FlowDocument object that contains all your markup.

FontFamily, FontSize, Allow you to configure the font that’s used to display text. You can
FontStretch, FontStyle, also set these properties on the FlowDocument object that
and FontWeight contains all your markup.

ToolTip Allows you to set a tooltip that will appear when the user hovers
over this element. You can use a string of text, or a full ToolTip
object, as described in Chapter 7.

Style Identifies the style that should be used to set the properties of an
element automatically.

Block elements also add the properties shown in Table 19-2.

Table 19-2. Additional Formatting Properties for Block Elements

Name Description

BorderBrush and BorderThickness Allow you to create a border that will be shown around the
edge of an element.

Margin Sets the spacing between the current element and its
container (or any adjacent elements). When the margin is not
set, flow containers add a default space of about 18 units in
between block elements and the edges of the container. If you
don’t want this spacing, you can explicitly set smaller margins.
However, to reduce the space between two paragraphs you’ll
need to shrink both the bottom margin of the first paragraph
and the top margin of the second paragraph. If you want all
paragraphs to start out with reduced margins, consider using
an element-type style rule that acts on all paragraphs.

Continued

CHAPTER 19 ■ DOCUMENTS 647

9551CH19 2/8/08 2:13 PM Page 647

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://wpf.netfx3.com

Table 19-2. Continued

Name Description

Padding Sets the spacing between its edges and any nested elements
inside. The default padding is 0.

TextAlignment Sets the horizontal alignment of nested text content (which
can be Left, Right, Center, or Justify). Ordinarily, content is
justified.

LineHeight Sets the spacing between lines in the nested text content.
Line height is specified as a number of device-independent
pixels. If you don’t supply this value, the text is single-spaced
based on the characteristics of the font you’re using.

LineStackingStrategy Determines how lines are spaced if they contain mixed font
sizes. The default option, MaxHeight, makes the line as tall as
the largest text inside. The alternative, BlockLineHeight, uses
the height configured in the LineHeight property for all lines,
which means the text is spaced based on the font of the para-
graph. If this font is smaller than the largest text in the para-
graph, the text in some lines may overlap. If it’s equal or
larger, you’ll get a consistent spacing that leaves extra
whitespace between some lines.

Along with the properties described in these two tables, there are some additional details
that you can tweak in specific elements. Some of these pertain to pagination and multicolumn
displays and are discussed in the “Pages and Columns” section later in this chapter. A few
other properties of interest include the following:

• TextDecorations, which is provided by the Paragraph and all Inline-derived elements. It
takes a value of strikethrough, overline, or (most commonly) underline. You can com-
bine these values to draw multiple lines on a block of text, although it’s not common.

• Typography, which is provided by the top-level FlowDocument element, as well as
TextBlock and all TextElement-derived types. It provides a Typography object that you
can use to alter a variety of details about the way text is rendered (most of which only
apply to OpenType fonts).

Constructing a Simple Flow Document
Now that you’ve taken a look at the content element model, you’re ready to assemble some
content elements into a simple flow document.

You create a flow document using the FlowDocument class. Visual Studio allows you to
create a new flow document as a separate file, or you can define it inside an existing window
by using one of the supported containers. For now, start building a simple flow document
using the FlowDocumentScrollViewer as a container. Here’s how your markup should start:

<Window x:Class="Documents.FlowContent"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FlowContent" Height="381" Width="525" >

CHAPTER 19 ■ DOCUMENTS648

9551CH19 2/8/08 2:13 PM Page 648

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<FlowDocumentScrollViewer>
<FlowDocument>
...

</FlowDocument>
</FlowDocumentScrollViewer>

</Window>

■Tip Currently, there’s no WYSIWYG interface for creating flow documents. Some developers are creating
tools that can transform files written in Word 2007 XML (known as WordML) to XAML files with flow docu-
ment markup. However, these tools aren’t production ready. In the meantime, you can create a basic text
editor using a RichTextBox (as described in the “Editing a Flow Document” section later in this chapter) and
use it to create flow document content.

You might assume that you could begin typing your text inside the FlowDocument ele-
ment, but you can’t. Instead, the top-level of a flow document must use a block-level element.
Here’s an example with a Paragraph:

<FlowDocumentScrollViewer>
<FlowDocument>
<Paragraph>Hello, world of documents.</Paragraph>

</FlowDocument>
</FlowDocumentScrollViewer>

There’s no limit on the number of top-level elements you can use. So this example with
two paragraphs is also acceptable:

<FlowDocumentScrollViewer>
<FlowDocument>
<Paragraph>Hello, world of documents.</Paragraph>
<Paragraph>This is a second paragraph.</Paragraph>

</FlowDocument>
</FlowDocumentScrollViewer>

Figure 19-4 shows the modest result.
The scroll bar is added automatically. The font (Segoe UI) is picked up from the Windows

system settings, not the containing window.

■Note Ordinarily, the FlowDocumentScrollViewer allows text to be selected (as in a web browser). This
way, a user can copy portions of a document to the Windows clipboard and paste them in other applications.
If you don’t want this behavior, set the FlowDocumentScrollViewer.IsSelectionEnabled property to false.

CHAPTER 19 ■ DOCUMENTS 649

9551CH19 2/8/08 2:13 PM Page 649

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-4. A bare-bones flow document

Block Elements
Creating a basic document is easy, but to get the result you really want you need to master a
range of different elements. Among them are the five block elements described in the follow-
ing sections.

Paragraph
You’ve already seen the Paragraph element, which represents a paragraph of text. Technically,
paragraph doesn’t contain text—instead, it contains a collection of inline elements, which are
stored in the Paragraph.Inlines collection.

There are two consequences of this fact. First, it means a paragraph can contain a whole
lot more than text. Second, it means that in order for a paragraph to contain text, the para-
graph needs to contain an inline Run element. The Run element contains the actual text, as
shown here:

<Paragraph>
<Run>Hello, world of documents.</Run>

</Paragraph>

This long-winded syntax wasn’t required in the previous example. That’s because the
Paragraph class is intelligent enough to create a Run implicitly when you place text directly
inside.

However, in some cases it’s important to understand the behind-the-scenes reality of how
a paragraph works. For example, imagine you want to retrieve the text from a paragraph pro-
grammatically and you have the following markup:

<Paragraph Name="paragraph">Hello, world of documents.</Paragraph>

CHAPTER 19 ■ DOCUMENTS650

9551CH19 2/8/08 2:13 PM Page 650

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You’ll quickly discover that the Paragraph class doesn’t contain a Text property. In fact,
there’s no way to get the text from the paragraph. Instead, to retrieve the text (or change it),
you need to grab the nested Run object, as shown here:

((Run)paragraph.Inlines.FirstInline).Text = "Hello again.";

■Tip You can improve the readability of this code by using a Span element to wrap the text you want to
modify. You can then give the Span element a name and access it directly. The Span element is described in
the “Inline Elements” section.

The Paragraph class includes a TextIndent property that allows you to set the amount that
the first line should be indented. (By default, it’s 0.) You supply a value in device-independent
units.

The Paragraph class also includes a few properties that determine how it splits lines over
column and page breaks. You’ll consider these details in the “Pages and Columns” section later
in this chapter.

■Note Unlike HTML, WPF doesn’t have block elements for headings. Instead, you simply use paragraphs
with different font sizes.

List
The List element represents a bulleted or numeric list. You choose by setting the MarkerStyle
property. Table 19-3 lists your options. You can also set the distance between each list item
and its marker using the MarkerOffset property.

Table 19-3. Values from the TextMarkerStyle Enumeration

Name Appears As . . .

Disc A solid bullet. This is the default.

Box A solid square box.

Circle A bullet with no fill.

Square A square box with no fill.

Decimal An incrementing number (1, 2, 3). Ordinarily, it starts at 1, but you can adjust the
StartingIndex to begin counting at a higher number. Despite the name, a
MarkerStyle of Decimal will not show fractional values, just integral numbers.

LowerLatin A lowercase letter that’s incremented automatically (a, b, c).

UpperLatin An uppercase letter that’s incremented automatically (A, B, C).

LowerRoman A lowercase Roman numeral that’s incremented automatically (i, ii, iii, iv).

UpperRoman An uppercase Roman numeral that’s incremented automatically (I, II, III, IV).

None Nothing.

CHAPTER 19 ■ DOCUMENTS 651

9551CH19 2/8/08 2:13 PM Page 651

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You nest ListItem elements inside the List element to represent individual items in the
list. However, each ListItem must itself include a suitable block element (such as a Paragraph).
Here’s an example that creates two lists, one with bullets and one with numbers:

<Paragraph>Top programming languages:</Paragraph>
<List>
<ListItem>
<Paragraph>C#</Paragraph>

</ListItem>
<ListItem>
<Paragraph>C++</Paragraph>

</ListItem>
<ListItem>
<Paragraph>Perl</Paragraph>

</ListItem>
<ListItem>
<Paragraph>Logo</Paragraph>

</ListItem>
</List>

<Paragraph Margin="0,30,0,0">To-do list:</Paragraph>
<List MarkerStyle="Decimal">
<ListItem>
<Paragraph>Program a WPF application</Paragraph>

</ListItem>
<ListItem>
<Paragraph>Bake bread</Paragraph>

</ListItem>
</List>

Figure 19-5 shows the result.

Figure 19-5. Two lists

CHAPTER 19 ■ DOCUMENTS652

9551CH19 2/8/08 2:13 PM Page 652

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table
The Table element is designed to display tabular information. It’s modeled after the HTML
<table> element.

To create a table, you must follow these steps:

1. Place a TableRowGroup element inside the Table. The TableRowGroup holds a group of
rows, and every table consists of one or more TableRowGroup elements. On its own,
the TableRowGroup doesn’t do anything. However, if you use multiple groups and give
them each different formatting, you get an easy way to change the overall look of your
table without setting repetitive formatting properties on each row.

2. Place a TableRow element inside your TableRowGroup for each row.

3. Place a TableCell element inside each TableRow to represent each column in the row.

4. Place a block element (typically a Paragraph) in each TableCell. This is where you’ll add
your content for that cell.

Here are the first two rows of the simple table shown in Figure 19-6:

<Paragraph FontSize="20pt">Largest Cities in the Year 100</Paragraph>
<Table>
<TableRowGroup Paragraph.TextAlignment="Center">
<TableRow FontWeight="Bold" >
<TableCell>
<Paragraph>Rank</Paragraph>

</TableCell>
<TableCell>
<Paragraph>Name</Paragraph>

</TableCell>
<TableCell>
<Paragraph>Population</Paragraph>

</TableCell>
</TableRow>
<TableRow>
<TableCell>
<Paragraph>1</Paragraph>

</TableCell>
<TableCell>
<Paragraph>Rome</Paragraph>

</TableCell>
<TableCell>
<Paragraph>450,000</Paragraph>

</TableCell>
</TableRow>
...

</TableRowGroup>
</Table>

CHAPTER 19 ■ DOCUMENTS 653

9551CH19 2/8/08 2:13 PM Page 653

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-6. A basic table

■Note Unlike a Grid, cells in a Table are filled by position. You must include a TableCell element for each
cell in the table, and you must place each row and value in the correct display order.

If you don’t supply explicit column widths, WPF splits the space evenly between all its
columns. You can override this behavior by supplying a set of TableColumn objects for the
Table.Rows property and setting the Width of each one. Here’s the markup that the previous
example uses to make the middle column three times as big as the first and last columns:

<Table.Columns>
<TableColumn Width="*"></TableColumn>
<TableColumn Width="3*"></TableColumn>
<TableColumn Width="*"></TableColumn>

</Table.Columns>

There are a few more tricks you can perform with a table. You can set the ColumnSpan
and RowSpan properties of a cell to make it stretch over multiple rows. You can also use the
CellSpacing property of the table to set the number of units of space that’s used to pad in
between cells. You can also apply individual formatting (such as different text and background
colors) to different cells. However, don’t expect to find good support for table borders. You can
use the BorderThickness and BorderBrush properties of the TableCell, but this forces you to
draw a separate border around the edge of each cell with separate borders. These borders
don’t look quite right when you use them on a group of contiguous cells. Although the Table
element provides the BorderThickness and BorderBrush properties, these only allow you to
draw a border around the entire table. If you’re hoping for a more sophisticated effect (for
example, adding lines in between columns), you’re out of luck.

CHAPTER 19 ■ DOCUMENTS654

9551CH19 2/8/08 2:13 PM Page 654

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Another limitation is the fact that columns must be sized explicitly or proportionately
(using the asterisk syntax shown previously). However, you can’t combine the two approaches.
For example, there’s no way to create two fixed-width columns and one proportional column
to receive the leftover space, as you can with the Grid.

■Note Some content elements are similar to other non-content elements. However, the content elements
are designed solely for use inside a flow document. For example, there’s no reason to try to swap a Grid with
a Table. The Grid is designed to be the most efficient option when laying out the controls in a window, while
a Table is optimized to present text in the most readable way possible in a document.

Section
The Section element doesn’t have any built-in formatting of its own. Instead, it’s used to wrap
other block elements in a convenient package. By grouping elements in a Section element,
you can apply common formatting to an entire portion of a document. For example, if you
want the same background color and font in several contiguous paragraphs, you can place
these paragraphs in a section and then set the Section.Background property, as shown here:

<Section FontFamily="Palatino" Background="LightYellow">
<Paragraph>Lorem ipsum dolor sit amet... </Paragraph>
<Paragraph>Ut enim ad minim veniam...</Paragraph>
<Paragraph>Duis aute irure dolor in reprehenderit...</Paragraph>

</Section>

This works because the font settings are inherited by the contained paragraphs. The back-
ground value is not inherited, but because the background of every paragraph is transparent
by default, the section background shows through.

Even better, you can set the Section.Style property to format your section using a style:

<Section Style="IntroText">

The Section element is analogous to the <div> element in HTML.

■Tip Many flow documents use style extensively to categorize content formatting based on its type. For
example, a book reviewing site might create separate styles for review titles, review text, emphasized pull
quotes, and bylines. These styles could then define whatever formatting is appropriate.

BlockUIContainer
The BlockUIContainer allows you to place non-content elements (classes that derive from
UIElement) inside a document, where a block element would otherwise go. For example, you
can use the BlockUIContainer to add buttons, check boxes, and even entire layout containers
such as the StackPanel and Grid to a document. The only rule is that the BlockUIContainer is
limited to a single child.

CHAPTER 19 ■ DOCUMENTS 655

9551CH19 2/8/08 2:13 PM Page 655

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You might wonder why you would ever want to place controls inside a document. After
all, isn’t the best rule of thumb to use layout containers for user-interactive portions of your
interface, and flow layout for length, read-only blocks of content? However, in real-world
applications there are many types of documents that need to provide some sort of user inter-
action (beyond what the Hyperlink content element provides). For example, if you’re using the
flow layout system to create online help pages, you might want to include a button that trig-
gers an action.

Here’s an example that places a button under a paragraph:

<Paragraph>
You can configure the foof feature using the Foof Options dialog box.

</Paragraph>
<BlockUIContainer>
<Button HorizontalAlignment="Left" Padding="5">Open Foof Options</Button>

</BlockUIContainer>

You can connect an event handler to the Button.Click event in the usual way.

■Tip Mingling content elements and ordinary non-content elements makes sense if you have a user-
interactive document. For example, if you’re creating a survey application that lets users fill out different
surveys, it may make sense to take advantage of the advanced text layout provided by the flow document
model, without sacrificing the user’s ability to enter values and make choices using common controls.

Inline Elements
WPF provides a larger set of inline elements, which can be placed inside block elements or
other inline elements. Most of the inline elements are quite straightforward. Table 19-4 lists
your options.

Table 19-4. Inline Content Elements

Name Description

Run Contains ordinary text. Although you can apply formatting to a Run
element, it’s generally preferred to use a Span element instead. Run
elements are often created implicitly (such as when you add text to a
paragraph).

Span Wraps any amount of other inline elements. Usually, you’ll use a span
to specifically format a piece of text. To do so, you wrap the Span
element around a Run element and set the properties of the Span
element. (For a shortcut, just place text inside the Span element, and
the nested Run element will be created automatically.) Another reason
to use a Span is to make it easy for your code to find and manipulate a
specific piece of text. The Span element is analogous to the
element in HTML.

CHAPTER 19 ■ DOCUMENTS656

9551CH19 2/8/08 2:13 PM Page 656

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

Bold, Italic, and Underline Apply bold, italic, and underline formatting. These elements derive
from Span. Although you can use these tags, it usually makes more
sense to wrap the text you want to format inside a Span element and
then set the Span.Style property to point to a style that applies the
formatting you want. That way, you have the flexibility to easily adjust
the formatting characteristics later on, without altering the markup of
your document.

Hyperlink Represents a clickable link inside a flow document. In a window-based
application, you can respond to the Click event to perform an action
(for example, showing a different document). In a page-based
application, you can use the NavigateUri property to let the user
browse directly to another page (as explained in Chapter 9).

LineBreak Adds a line break inside a block element. Before using a line break,
consider whether it would be clearer to use increased Margin or
Padding values to add whitespace between elements.

InlineUIContainer Allows you to place non-content elements (classes that derive from
UIElement) where an inline element would otherwise go (for example,
in a Paragraph element). The InlineUIContainer is similar to the
BlockUIElement, but it’s an inline element rather than a block element.

Floater and Figure Allow you to embed a floating box of content that you can use to
highlight important information, display a figure, or show related
content (such as advertisements, links, code listings, and so on).

Preserving Whitespace
Ordinarily, whitespace in XML is collapsed. Because XAML is an XML-based language, it fol-
lows the same rules.

As a result, if you include a string of spaces in your content, it’s converted to single space.
That means this markup

<Paragraph>hello there</Paragraph>

is equivalent to this:

<Paragraph>hello there</Paragraph>

Spaces between content and tags are also collapsed. So this line of markup

<Paragraph> Hello there</Paragraph>

becomes

<Paragraph>Hello there</Paragraph>

For the most part, this behavior makes sense. It allows you to indent your document
markup using line breaks and tabs where convenient without altering the way that content is
interpreted.

CHAPTER 19 ■ DOCUMENTS 657

9551CH19 2/8/08 2:13 PM Page 657

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Tabs and line breaks are treated in the same way as spaces. They’re collapsed to a single
space when they appear inside your content, and ignored when they appear on the edges of
your content. However, there’s one exception to this rule. If you have a space before an inline
element, WPF preserves that space. (And if you have several spaces, WPF collapses these
spaces to a single space.) That means you can write markup like this:

<Paragraph>A common greeting is <Bold>hello</Bold>.</Paragraph>

Here, the space between the content “A common greeting is” and the nested Bold element
is retained, which is what you want. However, if you rewrote the markup like this, you’d lose
the space:

<Paragraph>A common greeting is<Bold> hello</Bold>.</Paragraph>

In this case, you’ll see the text “A common greeting ishello” in your user interface. Inci-
dentally, Visual Studio 2005 incorrectly ignores the space in both examples when you’re
viewing flow document content in a design window. However, when you run your application
you’ll get the correct behavior.

In some situations, you might want to add space where it would ordinarily be ignored or
include a series of spaces. In this situation, you need to use the xml:space attribute with the
value preserve, which is an XML convention that tells an XML parser to keep all the whitespace
characters in nested content:

<Paragraph xml:space="preserve">This text is spaced out</Paragraph>

This seems like the perfect solution, but there are still a few headaches. Now that the XML
parser is paying attention to whitespace, you can no longer use line breaks and tabs to indent
your content for easier reading. In a long paragraph, this is a significant trade-off that makes
the markup more difficult to understand. (Of course, this won’t be an issue if you’re using
another tool to generate the markup for your flow document, in which case you really don’t
care what the serialized XAML looks like.)

Because you can use the xml:space attribute on any element, you can pay attention to
whitespace more selectively. For example, the following markup preserves whitespace in the
nested Run element only:

<Paragraph>
<Run xml:space="preserve">This text </Run> is spaced out.

</Paragraph>

Floater
The Floater element gives you a way to set some content off from the main document. Essen-
tially, this content is placed in a “box” that floats somewhere in your document. (Often, it’s
displayed off to one side.) Figure 19-7 shows an example with a single line of text.

CHAPTER 19 ■ DOCUMENTS658

9551CH19 2/8/08 2:13 PM Page 658

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-7. A floating pull quote

To create this floater, you simply insert a Floater element somewhere inside another block
element (such as a paragraph). The Floater itself can contain one or more block elements. Here’s
the markup used to create the example in Figure 19-7. (The ellipses indicate omitted text.)

<Paragraph>
It was a bright cold day in April, and the clocks were striking thirteen ...

</Paragraph>
<Paragraph>The hallway smelt of boiled cabbage and old rag mats.
<Run xml:space="preserve"> </Run>
<Floater Style="{StaticResource PullQuote}">
<Paragraph>"The hallway smelt of boiled cabbage"</Paragraph>

</Floater>
At one end of it a coloured poster, too large for indoor display ...

</Paragraph>

Here’s the style that this Floater uses:

<Style x:Key="PullQuote">
<Setter Property="Paragraph.FontSize" Value="30"></Setter>
<Setter Property="Paragraph.FontStyle" Value="Italic"></Setter>
<Setter Property="Paragraph.Foreground" Value="Green"></Setter>
<Setter Property="Paragraph.Padding" Value="5"></Setter>
<Setter Property="Paragraph.Margin" Value="5,10,15,10"></Setter>

</Style>

CHAPTER 19 ■ DOCUMENTS 659

9551CH19 2/8/08 2:13 PM Page 659

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Ordinarily, the flow document widens the floater so that all its content fits on one line or,
if that’s not possible, so that it takes the full width of one column in the document window. (In
the current example, there’s only one column, so the Floater takes the full width of the docu-
ment window.)

If this isn’t what you want, you can specify the width in device-independent units using the
Width property. You can also use the HorizontalAlignment property to choose whether the floater
is centered, placed on the left edge, or placed on the right edge of the line where the Floater ele-
ment is placed. Here’s how you can create the left-aligned floater shown in Figure 19-8:

<Floater Style="{StaticResource PullQuote}" Width="205" HorizontalAlignment="Left">
<Paragraph>"The hallway smelt of boiled cabbage"</Paragraph>

</Floater>

The Floater will use the specified width, unless it stretches beyond the bounds of the doc-
ument window (in which case the floater gets the full width of the window).

Figure 19-8. A left-aligned floater

By default, the floating box that’s used for the Floater is invisible. However, you can set a
shaded background (through the Background property) or a border (through the BorderBrush
and BorderThickness properties) to clearly separate this content from the rest of your document.
You can also use the Margin property to add space between the floating box and the document,
and the Padding property to add space between the edges of the box and its contents.

■Note Ordinarily, the Background, BorderBrush, BorderThickness, Margin, and Padding properties are only
available to block elements. However, they’re also defined in the Floater and Figure classes, which are inline
elements.

CHAPTER 19 ■ DOCUMENTS660

9551CH19 2/8/08 2:13 PM Page 660

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also use a floater to show a picture. But oddly enough, there is no flow content
element that’s up to the task. Instead, you’ll need to use the Image element in conjunction
with the BlockUIContainer or the InlineUIContainer.

However, there’s a catch. When inserting a floater that wraps an image, the flow document
assumes the figure should be as wide as a full column of text. The Image inside will then
stretch to fit, which could result in problems if you’re displaying a bitmap and it has to be
scaled up or down a large amount. You could change the Image.Stretch property to disable
this image resizing feature, but in that case the floater will still take the full width of the
column—it simply leaves extra blank space at the sides of the figure.

The only reasonable solution when embedding a bitmap in a flow document is to set a
fixed size for the floater box. You can then choose how the image sizes itself in that box using
the Image.Stretch property. Here’s an example:

<Paragraph>
It was a bright cold day in April,
<Floater Width="100" Padding="5,0,5,0" HorizontalAlignment="Right">
<BlockUIContainer>
<Image Source="BigBrother.jpg"></Image>

</BlockUIContainer>
</Floater>
and the clocks ...

</Paragraph>

Figure 19-9 shows the result. Notice that the image actually stretches out over two para-
graphs, but this doesn’t pose a problem. The flow document wraps the text around all the
floaters.

Figure 19-9. A floater with an image

CHAPTER 19 ■ DOCUMENTS 661

9551CH19 2/8/08 2:13 PM Page 661

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Using a fixed-size floater also gives the most sensible result when you use zooming. As the zoom
percentage changes, so does the size of your floater. The image inside the floater can then stretch itself as
needed (based on the Image.Stretch property) to fill or center itself in the floater box.

Figure
The Figure element is similar to the Floater element, but it gives a bit more control over posi-
tioning. Usually, you’ll use floaters and give WPF a little more control to arrange your content.
But if you have a complex, rich document, you might prefer to use figures to make sure your
floating boxes aren’t bumped too far away as the window is resized, or to put boxes in specific
positions.

So what does the Figure class offer that the Floater doesn’t? Table 19-5 describes the prop-
erties you have to play with. However, there’s one caveat: many of these properties (including
HorizontalAnchor, VerticalOffset, and HorizontalOffset) aren’t supported by the FlowDocu-
mentScrollViewer that you’ve been using to display your flow document. Instead, they need
one of the more sophisticated containers you’ll learn about later in the “Read-Only Flow Doc-
ument Containers” section. For now, replace the FlowDocumentScrollViewer tags with tags for
the FlowDocumentReader if you want to use the figure placement properties.

Table 19-5. Figure Properties

Name Description

Width Sets the width of the figure. You can size a figure just as you
size a floater, using device-independent pixels. However, you
have the additional ability of sizing the figure proportionately,
respective to the overall window or the current column. For
example, in your XAML, you can supply the text “0.25
content” to create a box that takes 25% of the width of the
window, or “2 Column” to create a box that’s two columns
wide.

Height Sets the height of the figure. You can also set the exact height
of a figure in device-independent units. (By comparison, a
floater makes itself as tall as required to fit all its content in
the specified width.) If your use of the Width and Height
properties creates a floating box that’s too small for all of its
content, some content will be truncated.

HorizontalAnchor Replaces the HorizontalAlignment property in the Floater
class. However, along with three equivalent options
(ContentLeft, ContentRight, and ContentCenter), it also
includes options that allow you to orient the figure relative to
the current page (such as PageCenter) or column (such as
ColumnCenter).

VerticalAnchor Allows you to align the image vertically with respect to the
current line of text, the current column, or the current page.

CHAPTER 19 ■ DOCUMENTS662

9551CH19 2/8/08 2:13 PM Page 662

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

HorizontalOffset and VerticalOffset Set the figure alignment. These properties allow you to move
the figure from its anchored position. For example, a negative
VerticalOffset will shift the figure box up the number of units
you specify. If you use this technique to move a figure away
from the edge of the containing window, text will flow into the
space you free up. (If you want to increase spacing on one side
of a figure but you don’t want text to enter that area, adjust the
Figure.Padding property instead.)

WrapDirection Determines whether text is allowed to wrap on one side or
both sides (space permitting) of a figure.

Interacting with Elements Programmatically
So far, you’ve seen examples of how to create the markup required for flow documents. It
should come as no surprise that flow documents can also be constructed programmatically.
(After all, that’s what the XAML parser does when it reads your flow document markup.)

Creating a flow document programmatically is fairly tedious because of a number of dis-
parate elements that need to be created. As with all XAML elements, you must create each
element and then set all its properties, as there are no constructors to help you out. You also
need to create a Run element to wrap every piece of text, as it won’t be generated automatically.

Here’s a snippet of code that creates a document with a single paragraph and some
bolded text. It then displays the document in an existing FlowDocumentScrollViewer named
docViewer:

// Create the first part of the sentence.
Run runFirst = new Run();
runFirst.Text = "Hello world of ";

// Create bolded text.
Bold bold = new Bold();
Run runBold = new Run();
runBold.Text = "dynamically generated";
bold.Inlines.Add(runBold);

// Create last part of sentence.
Run runLast = new Run();
runLast.Text = " documents";

// Add three parts of sentence to a paragraph, in order.
Paragraph paragraph = new Paragraph();
paragraph.Inlines.Add(runFirst);
paragraph.Inlines.Add(bold);
paragraph.Inlines.Add(runLast);

// Create a document and add this paragraph.
FlowDocument document = new FlowDocument();
document.Blocks.Add(paragraph);

CHAPTER 19 ■ DOCUMENTS 663

9551CH19 2/8/08 2:13 PM Page 663

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Show the document.
docViewer.Document = document;

The result is the sentence “Hello world of dynamically generated documents.”
Most of the time, you won’t create flow documents programmatically. However, you might

want to create an application that browses through portions of a flow document and modifies
them dynamically. You can do this in the same way that you interact with any other WPF ele-
ments: by responding to element events, and by attaching a name to the elements that you
want to change. However, because flow documents use deeply nested content with a free-
flowing structure, you may need to dig through several layers to find the actual content you
want to modify. (Remember, this content is always stored in a Run element, even if the run
isn’t declared explicitly.)

There are some properties that can help you navigate the structure of a flow document:

• To get the block elements in a flow document, use the FlowDocument.Blocks collection.
Use FlowDocument.Blocks.FirstBlock or FlowDocument.Blocks.LastBlock to jump to the
first or last block element.

• To move from one block element to the next (or previous) block, use the Block.NextBlock
property (or Block.PreviousBlock). You can also use the Block.SiblingBlocks collection to
browse all the block elements that are at the same level.

• Many block elements can contain other elements. For example, the List element pro-
vides a ListItem collection, the Section provides a Blocks collection, and the Paragraph
provides an Inlines collection.

If you need to modify the text inside a flow document, the easiest way is to isolate exactly
what you want to change (and no more) using a Span element. For example, the following flow
document highlights selected nouns, verbs, and adverbs in a block of text so they can be mod-
ified programmatically. The type of selection is indicated with an extra bit of information—a
string that’s stored in the Span.Tag property.

■Tip Remember, the Tag property in any element is reserved for your use. It can store any value or object
that you want to use later on.

<FlowDocument Name="document">
<Paragraph FontSize="20" FontWeight="Bold">
Release Notes

</Paragraph>
<Paragraph>
These are the release notes
for Linux version 1.2.13.

</Paragraph>
<Paragraph>
Read them carefully, as they
tell you what this is all about, how to boot
the kernel, and what to do if

CHAPTER 19 ■ DOCUMENTS664

9551CH19 2/8/08 2:13 PM Page 664

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

something goes wrong.
</Paragraph>

</FlowDocument>

This design allows you to create the straightforward Mad Libs game shown in Figure 19-10.
In this game, the user gets the chance to supply values for all the span tags before seeing the
source document. These user-supplied values are then substituted for the original values to
humorous effect.

Figure 19-10. Dynamically modifying a flow document

To make this example as generic as possible, the code doesn’t have any specific knowl-
edge about the document that you’re using. Instead, it’s written generically so that it can pull
the named Span elements out of all the top-level paragraphs in any document. It simply walks
through the Blocks collection looking for paragraphs and then walks through the Inlines col-
lection of each paragraph looking for spans. Each time it finds a Span object, it creates the text
box that the user can use to supply a new value and adds it to a grid above the document
(along with a descriptive label). And to make the substitution process easier, each text box
stores a reference (through the TextBox.Tag property) to the Run element with the text inside
the corresponding Span element:

private void WindowLoaded(Object sender, RoutedEventArgs e)
{

// Clear grid of text entry controls.
gridWords.Children.Clear();

// Look at paragraphs.
foreach (Block block in document.Blocks)
{

Paragraph paragraph = block as Paragraph;

// Look for spans.
foreach (Inline inline in paragraph.Inlines)

CHAPTER 19 ■ DOCUMENTS 665

9551CH19 2/8/08 2:13 PM Page 665

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
Span span = inline as Span;
if (span != null)
{

// Create a slot in the row for this term.
RowDefinition row = new RowDefinition();
gridWords.RowDefinitions.Add(row);

// Add the descriptive label for this term.
Label lbl = new Label();
lbl.Content = inline.Tag.ToString() + ":";
Grid.SetColumn(lbl, 0);
Grid.SetRow(lbl, gridWords.RowDefinitions.Count - 1);
gridWords.Children.Add(lbl);

// Add the text box where the user can supply a value for this term.
TextBox txt = new TextBox();
Grid.SetColumn(txt, 1);
Grid.SetRow(txt, gridWords.RowDefinitions.Count - 1);
gridWords.Children.Add(txt);

// Link the text box to the run where the text should appear.
txt.Tag = span.Inlines.FirstInline;

}
}

}
}

When the user clicks the Generate button, the code walks through all the text boxes that
were added dynamically in the previous step. It then copies the text from the text box to the
related Run in the flow document:

private void cmdGenerate_Click(Object sender, RoutedEventArgs e)
{

foreach (UIElement child in gridWords.Children)
{

if (Grid.GetColumn(child) == 1)
{

TextBox txt = (TextBox)child;
if (txt.Text != "") ((Run)txt.Tag).Text = txt.Text;

}
}
docViewer.Visibility = Visibility.Visible;

}

It might occur to you to do the reverse—in other words, walk through the document
again, inserting the matching text each time you find a Span. However, this approach is more
problematic because you can’t enumerate through the collections of inline elements in a para-
graph at the same time that you’re modifying its content.

CHAPTER 19 ■ DOCUMENTS666

9551CH19 2/8/08 2:13 PM Page 666

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Text Justification
You may have already noticed that text content in a flow document is, by default, justified so
that every line stretches from the left to the right margin. You can change this behavior using
the TextAlignment property, but most flow documents in WPF are justified.

To improve the readability of justified text, you can use a WPF feature called optimal
paragraph layout that ensures that whitespace is distributed as evenly as possible. This avoids
the distracting rivers of whitespace and oddly spaced out words that can occur with more
primitive line-justification algorithms (such as those provided by web browsers).

■Note Basic line justification algorithms work on one line at a time. WPF’s optimal paragraph justification
uses a total-fit algorithm that looks ahead at the lines to come. It then chooses line breaks that balance the
word spacing throughout the entire paragraph and result in the minimal cost over all lines.

Ordinarily, WPF’s optimal paragraph feature isn’t enabled. Presumably, this is because of
the additional overhead in the total-fit algorithm. However, in most cases you’ll find that the
responsiveness of your application (how it “feels” as you resize the window) is the same with
optimal paragraphs enabled.

To enable optimal paragraphs, set the FlowDocument.IsOptimalParagraphEnabled prop-
erty to true. Figure 19-11 compares the difference by placing a flow document that uses
normal paragraphs on top, and one that uses the total-fit algorithm below.

Figure 19-11. Comparing ordinary justification (top) with optimal paragraphs (bottom)

CHAPTER 19 ■ DOCUMENTS 667

9551CH19 2/8/08 2:13 PM Page 667

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To further improve text justification, particularly in narrow windows, set the
FlowDocument.IsHyphenationEnabled property to true. This way, WPF will break long
words where necessary to keep the space between words small. Hyphenation works well
with the optimal paragraph feature, and it’s particularly important when using multicolumn
displays. WPF uses a hyphenating dictionary to make sure that hyphens fall in the appropriate
places (between syllables, as in “algo-rithm” rather than “algori-thm”).

Read-Only Flow Document Containers
WPF provides three read-only containers that you can use to display flow documents:

• FlowDocumentScrollViewer shows the entire document with a scroll bar to let you
move through it if the document exceeds the size of the FlowDocumentScrollViewer.
The FlowDocumentScrollViewer doesn’t support pagination or multicolumn displays
(although it does support printing and zooming, as all containers do). All of the exam-
ples you’ve seen up to this point have used the FlowDocumentScrollViewer.

• FlowDocumentPageViewer splits a flow document into multiple pages. Each page is as
large as the available space and the user can step from one page to the next. The Flow-
DocumentPageViewer has more overhead than the FlowDocumentScrollViewer (due to
the additional calculations required for breaking content into pages).

• FlowDocumentReader combines the features of the FlowDocumentScrollViewer and
FlowDocumentPageViewer. It lets the user choose whether to read content in a scrollable
or paginated display. It also includes searching functionality. The FlowDocumentReader
has the most overhead of any flow document container.

Switching from one container to another is simply a matter of modifying the containing
tag. For example, here’s a flow document in a FlowDocumentPageViewer:

<FlowDocumentPageViewer>
<FlowDocument>
<Paragraph>Hello, world of documents.</Paragraph>

</FlowDocument>
</FlowDocumentPageViewer>

Each of these containers provides additional features, such as zooming, pagination, and
printing. You’ll learn about them in the following sections.

THE TEXTBLOCK

You can display small amounts of flow content using the familiar TextBlock, a text display element that you’ve
seen extensively over the past chapters. Although the TextBlock is often used to hold ordinary text (in which
case the TextBlock creates a Run object to wrap that text), you can actually place any combination of inline
elements inside. They’ll all be added to the TextBlock.Inlines collection.

The TextBlock provides text wrapping (through the TextWrapping property), and a TextTrimming property
that allows you to control how text is treated when it can’t fit in the bounds of the TextBlock. When this
occurs, the extra text is trimmed off, but you can choose whether an ellipse is used to indicate that trimming
has taken place. Your options are the following:

CHAPTER 19 ■ DOCUMENTS668

9551CH19 2/8/08 2:13 PM Page 668

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• None. The text is trimmed with no ellipse. “This text is too big” might become “This text is to”.

• WordEllipse. The ellipse is inserted after the last word that fits (as in “This text is . . .”).

• CharacterEllipse. The ellipse is inserted after the last character that fits (as in “This text is t . . .”).

The TextBlock can’t match the scrolling and paging features of the more sophisticated FlowDocument
containers. For that reason, the TextBlock is best for displaying small amounts of flow content, such as con-
trol labels and hyperlinks. The TextBlock can’t accommodate block elements at all.

Zooming
All three document containers support zooming: the ability for you to shrink or magnify the
displayed content. The Zoom property of the container (for example, FlowDocumentScrol-
lViewer.Zoom) sets the size of the content as a percentage value. Ordinarily, the Zoom value
begins at 100, and the FontSize values correspond to any other elements in your window. If
you increase the Zoom value to 200, the text size is doubled. Similarly, if you reduce it to 50,
the text size is halved (although you can use any value in between).

Obviously, you can set the zoom percentage by hand. You can also change the zoom pro-
grammatically using IncreaseZoom() and DecreaseZoom(), which change the Zoom value by
the amount specified by the ZoomIncrement property. You can also wire up other controls to
these features using commands (Chapter 10). But there’s no need to go to any of this trouble.
The simplest approach is to let users set the zoom percentage to match their preferences. The
FlowDocumentScrollViewer includes a toolbar with a zoom slider bar for just this purpose. To
make it visible, set IsToolbarVisible to true, as shown here:

<FlowDocumentScrollViewer MinZoom="50" MaxZoom="1000"
Zoom="100" ZoomIncrement="5" IsToolbarVisible="True">

Figure 19-12 shows a flow document with a zoom slider bar at the bottom.

Figure 19-12. Scaling down a document

CHAPTER 19 ■ DOCUMENTS 669

9551CH19 2/8/08 2:13 PM Page 669

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

If you’re using the FlowDocumentPageViewer or FlowDocumentReader, the zoom slider is
always visible (although you can still configure the zoom increment and the minimum and
maximum allowed zoom values).

■Tip Zooming affects the size of anything that’s set in device-independent units (not just font sizes). For
example, if your flow document uses floater or figure boxes with explicit widths, these widths are also sized
proportionately.

Pages and Columns
The FlowDocumentPageViewer can split a long document into separate pages. This makes it
easier to read long content. (When scrolling, readers are constantly forced to stop reading,
scroll down, and then find the point where they left off. But when readers browse through a
series of pages, they know exactly where to start reading—at the top of each page.)

The number of pages depends on the size of the window. For example, if you allow a
FlowDocumentPageViewer to take the full size of a window, you’ll notice that the number of
pages changes as you resize the window, as shown in Figure 19-13.

Figure 19-13. Dynamically repaginated content

If you make the window wide enough, the FlowDocumentPageViewer splits the text into
multiple columns to make it easier to read (Figure 19-14). Figure 19-13 and Figure 19-14 show
the same window. This window simply adjusts itself to make the best use of the available space.

■Note Remember, Floater elements like to make themselves as wide as a single column. You can make
them smaller by setting an explicit width, but not wider. On the other hand, Figure elements can easily span
multiple columns.

CHAPTER 19 ■ DOCUMENTS670

9551CH19 2/8/08 2:13 PM Page 670

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-14. Automatic columns

Although the standard settings give good page breaking and column breaking, you can
tweak them in a number of ways to get exactly the result you want. There are two key extensi-
bility points that you can use: the FlowDocument class that contains the content (which
provides the properties listed in Table 19-6) and individual Paragraph elements in the docu-
ment (which provide the properties listed in Table 19-7).

Table 19-6. FlowDocument Properties for Controlling Columns

Name Description

ColumnWidth Specifies the preferred size of text columns. This acts as a minimum
size, and the FlowDocumentPageViewer adjusts the width to make sure
all the space is used on the page.

IsColumnWidthFlexible Determines whether the document container can adjust the column
size. If false, the exact column width specified by the ColumnWidth
property is used. The FlowDocumentPageViewer will not create partial
columns, so this may leave some blank space at the right edge of the
page (or on either side if FlowDocumentMaxPageWidth is less
than the width of the document window). If true (the default), the
FlowDocumentPageViewer splits the space evenly to create columns,
respecting the ColumnWidth property as a minimum.

ColumnGap Sets the blank space in between columns.

ColumnRuleWidth and Allow you to draw a vertical line in between columns. You can choose
ColumnRuleBrush the width and fill of that line.

CHAPTER 19 ■ DOCUMENTS 671

9551CH19 2/8/08 2:13 PM Page 671

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 19-7. Paragraph Properties for Controlling Columns

Name Description

KeepTogether Determines whether a paragraph can be split over a page break. If true,
this paragraph will not be split over a page break. Usually, it will all be
bumped to the next page. (This setting makes sense for small amounts
of text that need to be read in one piece.)

KeepWithNext Determines whether a pair of paragraphs can be separated by a page
break. If true, this paragraph will not be divided from the following
paragraph over a page break. (This setting makes sense for headings.)

MinOrphanLines Controls how a paragraph can be split over a page break. When this
paragraph is split over a page break, this is the minimum number of
lines that needs to appear on the first page. If there isn’t enough space
for this number of lines, the entire paragraph will be bumped to the
next page.

MinWindowLines Controls how a paragraph can be split over a page break. When this
paragraph is split over a page break, this is the minimum number of
lines that needs to appear on the second page. The FlowDocument-
PageViewer will move lines from the first page to the second to meet
this criteria.

■Note Obviously, there are situations when the column-break properties of the Paragraph element can’t
be met. For example, if a paragraph is too large to fit on a single page, it doesn’t matter whether you set
KeepTogether to true, as the paragraph must be broken.

The FlowDocumentPageViewer isn’t the only container that supports pagination. The
FlowDocumentReader allows the user to choose between a scroll mode (which works exactly
like the FlowDocumentScrollViewer) and two page modes. You can choose to see one page at
a time (which works exactly like the FlowDocumentPageViewer), or two pages side by side. To
switch between viewing modes, you simply click one of the icons in the bottom-right corner
of the FlowDocumentReader toolbar.

Loading Documents from a File
So far, the examples you’ve seen declare the FlowDocument inside its container. However, it’s
no stretch to imagine that once you’ve created the perfect document viewer, you might want
to reuse it to show different document content. (For example, you might show different topics
in a help window.) To make this possible, you need to dynamically load content into the con-
tainer using the XamlReader class in the System.Windows.Markup namespace.

Fortunately, it’s a fairly easy task. Here’s the code you need (without the obligatory error-
handling you’d use to catch file access problems):

using (FileStream fs = File.Open(documentFile, FileMode.Open))
{

FlowDocument document = XamlReader.Load(fs) as FlowDocument;

if (document == null)

CHAPTER 19 ■ DOCUMENTS672

9551CH19 2/8/08 2:13 PM Page 672

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
MessageBox.Show("Problem loading document.");

}
else
{

flowContainer.Document = document;
}

}

It’s just as easy to take the current content of a FlowDocument and save it to a XAML file
using the XamlWriter class. This functionality is less useful (after all, the containers you’ve
seen so far don’t allow the user to make changes). However, it’s a worthwhile technique if you
need to make programmatic changes to a document based on user actions (for example, you
want to save the text from the completed Mad Libs game shown earlier), or you want to con-
struct a FlowDocument programmatically and save it directly to disk.

Here’s the code that serializes a FlowDocument object to XAML:

using (FileStream fs = File.Open(documentFile, FileMode.Create))
{

XamlWriter.Save(flowContainer.Document, fs);
}

Printing
If you want to print a flow document, it’s easy. Just use the Print() method of the container.
(All flow document containers support printing.) The Print() method shows the Windows Print
dialog box where the user can choose the printer and other printing preferences, such as the
number of copies, before choosing to cancel the operation or to go ahead and send the job to
the printer.

Printing, like many of the features in the flow document containers, works through com-
mands. As a result, if you want to wire a control up to this functionality, you don’t need to
write code that calls the Print() method. Instead, you can simply use the appropriate com-
mand, as shown here:

<Button Command="ApplicationCommands.Print" CommandTarget="docViewer">Print</Button>

Along with printing, the flow document containers also support commands for searching,
zooming, and page navigation.

Commands may also have key bindings. For example, the Print command has a default
key binding that maps the Ctrl+P keystroke. As a result, even if you don’t include a button or
code to call the Print() method, the user can still hit Ctrl+P to trigger it and show the Print win-
dow. If you don’t want this behavior, you need to remove the key binding from the command.

■Note It’s possible to customize the printout of a flow document. You’ll learn how to do this, and how to
print other types of content, in Chapter 20.

CHAPTER 19 ■ DOCUMENTS 673

9551CH19 2/8/08 2:13 PM Page 673

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Editing a Flow Document
All the flow document containers you’ve seen so far are read-only. They’re ideal for displaying
document content, but they don’t allow the user to make changes. Fortunately, there’s another
WPF element that fills the gap: the RichTextBox control.

Programming toolkits have included rich text controls, in some form or another, for more
than a decade. However, the RichTextBox control that WPF includes is significantly different
than its predecessors. It’s no longer bound to the dated RTF standard that’s found in word pro-
cessing programs. Instead, it now stores its content as a FlowDocument object.

The consequences of this change are significant. Although you can still load RTF content
into a RichTextBox control, internally the RichTextBox uses the much more straightforward
flow content model that you’ve studied in this chapter. That makes it far easier to manipulate
document content programmatically.

The RichTextBox control also exposes a rich programming model that provides plenty of
extensibility points so you can plug in your own logic, which allows you to use the Rich-
TextBox as a building block for your own customized text editor. The one drawback is speed.
The WPF RichTextBox, like most of the rich text controls that have preceded it, can be a bit
sluggish. If you need to hold huge amounts of data, use intricate logic to handle key presses,
or add effects such as automatic formatting (for example, Visual Studio’s syntax highlighting or
Word’s spelling-checker underlining), the WPF RichTextBox probably won’t provide the per-
formance you need.

■Note The RichTextBox doesn’t support all the features that read-only flow document containers do.
Zooming, pagination, multicolumn displays, and search are all features that the RichTextBox doesn’t provide.

Loading a File
To try out the RichTextBox, you can declare one of the flow documents you’ve already seen
inside a RichTextBox element, as shown here:

<RichTextBox>
<FlowDocument>
<Paragraph>Hello, world of editable documents.</Paragraph>

</FlowDocument>
</RichTextBox>

More practically, you may choose to retrieve a document from a file and then insert
it in the RichTextBox. To do this, you can use the same approach that you used to load and
save the content of a FlowDocument before displaying it in a read-only container—namely,
the static XamlReader.Load() method. However, you might want the additional ability to
load and save files in other formats (namely, .rtf files). To do this, you need to use the
System.Windows.Documents.TextRange class, which wraps a chunk of text. The TextRange
is a miraculously useful container that allows you to convert text from one format to another
and apply formatting (as described in the next section).

CHAPTER 19 ■ DOCUMENTS674

9551CH19 2/8/08 2:13 PM Page 674

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s a simple code snippet that translates an .rtf document into a selection of text in a
TextRange and then inserts it into a RichTextBox:

OpenFileDialog openFile = new OpenFileDialog();
openFile.Filter = "RichText Files (*.rtf)|*.rtf|All Files (*.*)|*.*";

if (openFile.ShowDialog() == true)
{

TextRange documentTextRange = new TextRange(
richTextBox.Document.ContentStart, richTextBox.Document.ContentEnd);

using (FileStream fs = File.Open(openFile.FileName, FileMode.Open))
{

documentTextRange.Load(fs, DataFormats.Rtf);
}

}

Notice that before you can do anything, you need to create a TextRange that wraps the por-
tion of the document you want to change. Even though there’s currently no document content,
you still need to specify the starting point and ending point of the selection. To select the whole
document, you can use the FlowDocument.ContentStart and FlowDocument.ContentEnd prop-
erties, which provide the TextPointer objects the TextRange requires.

Once the TextRange has been created, you can fill it with data using the Load() method.
However, you need to supply a string that identifies the type of data format you’re attempting
to convert. You can use one of the following:

• DataFormat.Xaml for XAML flow content

• DataFormats.Rtf for rich text (as in the previous example)

• DataFormats.XamlPackage for XAML flow content with embedded images

• DataFormats.Text for plain text

■Note The DataFormats.XamlPackage format is essentially the same as DataFormats.Xaml. The only dif-
ference is that DataFormats.XamlPackage stores the binary data for any embedded images (which is left out
if you use the ordinary DataFormats.Xaml serialization). The XAML package format is not a true standard—
it’s just a feature that WPF provides to make it easier to serialize document content and support other
features you might want to implement, such as cut-and-paste or drag-and-drop.

Although the DataFormats class provides many additional fields, the rest aren’t sup-
ported. For example, you won’t have any luck attempting to convert an HTML document to
flow content using DataFormats.Html. Both the XAML package format and RTF require
unmanaged code permission, which means you can’t use them in a limited-trust scenario
(such as a browser-based application).

The TextRange.Load() method only works if you specify the correct file format. However,
it’s quite possible that you might want to create a text editor that supports both XAML (for best

CHAPTER 19 ■ DOCUMENTS 675

9551CH19 2/8/08 2:13 PM Page 675

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

fidelity) and RTF (for compatibility with other programs, such as word processors). In this sit-
uation, the standard approach is to let the user specify the file format or make an assumption
about the format based on the file extension, as shown here:

using (FileStream fs = File.Open(openFile.FileName, FileMode.Open))
{

if (Path.GetExtension(openFile.FileName).ToLower() == ".rtf")
{

documentTextRange.Load(fs, DataFormats.Rtf);
}
else
{

documentTextRange.Load(fs, DataFormats.Xaml);
}

}

This code will encounter an exception if the file isn’t found, can’t be accessed, or can’t be
loaded using the format you specify. For all these reasons, you should wrap this code in an
exception handler.

Remember, no matter how you load your document content, it’s converted to a Flow-
Document in order to be displayed by the RichTextBox. To study exactly what’s taking place,
you can write a simple routine that grabs the content from the FlowDocument and converts it
to a string text using the XamlWriter or a TextRange. Here’s an example that displays the
markup for the current flow document in another text box:

// Copy the document content to a MemoryStream.
using (MemoryStream stream = new MemoryStream())
{

TextRange range = new TextRange(richTextBox.Document.ContentStart,
richTextBox.Document.ContentEnd);

range.Save(stream, DataFormats.Xaml);
stream.Position = 0;

// Read the content from the stream and display it in a text box.
using (StreamReader r = new StreamReader(stream))
{

txtFlowDocumentMarkup.Text = r.ReadToEnd();
}

}

This trick is extremely useful as a debugging tool for investigating how the markup for a
document changes after it’s been edited.

Saving a File
You can also save your document using a TextRange object. You need to supply two Text-
Pointer objects—one that identifies the start of the content, and one that demarcates the end.
You can then call the TextRange.Save() method and specify the desired export format (text,
XAML, XAML package, or RTF) using a field from the DataFormats class. Once again, the
XAML package and RTF formats require unmanaged code permission.

CHAPTER 19 ■ DOCUMENTS676

9551CH19 2/8/08 2:13 PM Page 676

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following block of code saves the document using the XAML format unless the file
name has an .rtf extension. (Another, more explicit approach is to give the user the choice of
using a save feature that uses XAML and an export feature that uses RTF.)

SaveFileDialog saveFile = new SaveFileDialog();
saveFile.Filter =
"XAML Files (*.xaml)|*.xaml|RichText Files (*.rtf)|*.rtf|All Files (*.*)|*.*";

if (saveFile.ShowDialog() == true)
{

// Create a TextRange around the entire document.
TextRange documentTextRange = new TextRange(
richTextBox.Document.ContentStart, richTextBox.Document.ContentEnd);

// If this file exists, it's overwritten.
using (FileStream fs = File.Create(saveFile.FileName))
{

if (Path.GetExtension(saveFile.FileName).ToLower() == ".rtf")
{

documentTextRange.Save(fs, DataFormats.Rtf);
}
else
{

documentTextRange.Save(fs, DataFormats.Xaml);
}

}
}

When you use the XAML format to save a document, you probably assume that the docu-
ment is stored as an ordinary XAML file with a top-level FlowDocument element. This is close,
but not quite right. Instead, the top-level element must be a Section element.

As you learned earlier in this chapter, the Section is an all-purpose container that wraps
other block elements. This makes sense—after all, the TextRange object represents a section of
selected content. However, make sure that you don’t try to use the TextRange.Load() method
with other XAML files, including those that have a top-level FlowDocument, Page, or Window
element, as none of these files will be parsed successfully. (Similarly, the document file can’t
link to code-behind file or attach any event handlers.) If you have a XAML file that has a top-
level FlowDocument element, you can create a corresponding FlowDocument object using
the XamlReader.Load() method, as you did with the other FlowDocument containers.

■Tip If you want to convert your document to other popular formats, such as the WordML format used
by Word 2007, be sure to check out the serialization sample at http://msdn2.microsoft.com/en-us/
library/ms771375.aspx. Although the XML processing code is lengthy and tedious, you can reuse it to get
the same functionality in your own applications.

CHAPTER 19 ■ DOCUMENTS 677

9551CH19 2/8/08 2:13 PM Page 677

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn2.microsoft.com/en-us

Formatting Selected Text
You can learn a fair bit about the RichTextBox control by building a simple rich text editor, like
the one shown in Figure 19-15. Here, toolbar buttons allow the user to quickly apply bold for-
matting, italic formatting, and underlining. But the most interesting part of this example is the
ordinary TextBox control underneath, which shows the XAML markup for the FlowDocument
object that’s currently displayed in the RichTextBox. This allows you to study how the
RichTextBox modifies the FlowDocument object as you make edits.

■Note Technically, you don’t need to code the logic for bolding, italicizing, and underlining selected text.
That’s because the RichTextBox supports the ToggleBold, ToggleItalic, and ToggleUnderline commands from
the EditingCommands class. You can wire your buttons up to these commands directly. However, it’s still
worth considering this example to learn more about how the RichTextBox works. The knowledge you gain is
indispensable if you need to process text in another way. (The downloadable code for this chapter demon-
strates both the code-based approach and the command-based approach.)

Figure 19-15. Editing text

All of the buttons work in a similar way. They use the RichTextBox.Selection property,
which provides a TextSelection object that wraps the currently selected text. (TextSelection is
a slightly more advanced class that derives from the TextRange class you saw in the previous
section.)

CHAPTER 19 ■ DOCUMENTS678

9551CH19 2/8/08 2:13 PM Page 678

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Making changes with the TextSelection object is easy enough, but not obvious. The sim-
plest approach is to use the ApplyPropertyValue() to change a dependency property in the
selection. For example, you could apply bold formatting to any text elements in the selection
using this code:

richTextBox.Selection.ApplyPropertyValue(
TextElement.FontWeightProperty, FontWeights.Bold);

There’s more happening here than meets the eye. For example, if you try this out on a
small piece of text inside a larger paragraph, you’ll find that this code automatically creates an
inline Run element to wrap the selection and then applies the bold formatting to just that run.
This way, you can use the same line of code to format individual words, entire paragraphs, and
irregular selections that involve more than one paragraph (in which case you’ll end up with a
separate run being created in each affected paragraph).

Of course, this code as written isn’t a complete solution. If you want to toggle the bold for-
matting, you’ll also need to use the TextSelection.GetPropertyValue() to check whether bold
formatting is already applied:

Object obj = richTextBox.Selection.GetPropertyValue(
TextElement.FontWeightProperty);

This method is a little trickier. If your selection encloses text that is all unambiguously
bold or unambiguously normal, you’ll receive the FontWeights.Bold or FontWeights.Normal
property. However, if your selection contains some bold text and some normal text, you’ll get a
DependencyProperty.UnsetValue instead.

It’s up to you how you want to handle a mixed selection. You might want to do nothing,
always apply the formatting, or decide based on the first character (which is what the Editing-
Commands.ToggleBold command does). To do this, you’d need to create a new TextRange that
wraps just the starting point of the selection. Here’s the code that implements the latter
approach and checks the first letter in ambiguous cases:

Object obj = richTextBox.Selection.GetPropertyValue(
TextElement.FontWeightProperty);

if (obj == DependencyProperty.UnsetValue)
{

TextRange range = new TextRange(richTextBox.Selection.Start,
richTextBox.Selection.Start);

obj = range.GetPropertyValue(TextElement.FontWeightProperty).ToString());
}

FontWeight fontWeight = (FontWeight)obj;

if (fontWeight == FontWeights.Bold)
fontWeight = FontWeights.Normal;

else
fontWeight = FontWeights.Bold;

CHAPTER 19 ■ DOCUMENTS 679

9551CH19 2/8/08 2:13 PM Page 679

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

richTextBox.Selection.ApplyPropertyValue(
TextElement.FontWeightProperty, fontWeight);

In some cases, a user might trigger the bold command without any selected text at all. Just
for fun, here’s a code routine that checks for this condition and then checks the formatting
that’s applied to the entire paragraph that contains this text. The font weight of that paragraph
is then flipped from bold to normal or from normal to bold:

if (richTextBox.Selection.Text == "")
{

FontWeight fontWeight = richTextBox.Selection.Start.Paragraph.FontWeight;
if (fontWeight == FontWeights.Bold)
fontWeight = FontWeights.Normal;

else
fontWeight = FontWeights.Bold;

richTextBox.Selection.Start.Paragraph.FontWeight = fontWeight;
}

■Tip To get the plain, unformatted text in a selection, use the TextRange.Text property.

There are many more methods for manipulating text in a RichTextBox. For example, the
TextRange class and RichTextBox class both include a range of properties that let you get char-
acter offsets, count lines, and navigate through the flow elements in a portion of a document.
To get more information, consult the Visual Studio help.

Getting Individual Words
One frill that the RichTextBox lacks is the ability to isolate specific words in a document.
Although it’s easy enough to find the flow document element that exists in a given position (as
you saw in the previous section), the only way to grab the nearest word is to move character by
character, checking for whitespace. This type of code is tedious and extremely difficult to write
without error.

Prajakta Joshi of the WPF editing team has posted a reasonably complete solution at
http://blogs.msdn.com/prajakta/archive/2006/11/01/navigate-words-in-richtextbox.aspx
that detects word breaks. Using this code, you can quickly create a host of interesting effects,
such as the following routine that grabs a word when the user right-clicks, and then displays
that word in a separate text box. Another option might be to show a popup with a dictionary
definition, launch an e-mail program or a web browser to follow a link, and so on:

private void richTextBox_MouseDown(object sender, MouseEventArgs e)
{

if (e.RightButton == MouseButtonState.Pressed)
{

// Get the nearest TextPointer to the mouse position.

CHAPTER 19 ■ DOCUMENTS680

9551CH19 2/8/08 2:13 PM Page 680

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/prajakta/archive/2006/11/01/navigate-words-in-richtextbox.aspx

TextPointer location = richTextBox.GetPositionFromPoint(
Mouse.GetPosition(richTextBox), true);

// Get the nearest word using this TextPointer.
TextRange word = WordBreaker.GetWordRange(location);

// Display the word.
txtSelectedWord.Text = word.Text;

}
}

■Note This code doesn’t actually connect to the MouseDown event because the RichTextBox intercepts
and suppresses MouseUp and MouseDown. Instead, this event handler is attached to the PreviewMouse-
Down event, which occurs just before MouseDown.

PLACING UIELEMENT OBJECTS IN A RICHTEXTBOX

As you learned earlier in this chapter, you can use the BlockUIContainer and InlineUIContainer classes to
place non-content elements (classes that derive from UIElement) inside a flow document. However, if you use
this technique to add interactive controls (such as text boxes, buttons, check boxes, hyperlinks, and so on) to
a RichTextBox, they’ll be disabled automatically and will appear grayed out.

You can opt out of this behavior and force the RichTextBox to enable embedded controls, much like the
read-only FlowDocument containers do. To do so, simply set the RichTextBox.IsDocumentEnabled property to
true. (It’s worth noting that this property was added in .NET 3.5. You could get the same result in .NET 3.0,
but it required an awkward workaround.)

Although it’s easy, you may want to think twice before you set IsDocumentEnabled to true. Including
element content inside a RichTextBox introduces all sorts of odd usability quirks. For example, controls can
be deleted and undeleted (using Ctrl+Z or the Undo command), but undeleting them loses their event han-
dlers. Furthermore, text can be inserted in between adjacent containers, but if you attempt to cut and paste a
block of content that includes UIElement objects, they’ll be discarded. For reasons like these, it’s probably not
worth the trouble to use embedded controls inside a RichTextBox.

Fixed Documents
Flow documents allow you to dynamically lay out complex, text-heavy content in a way that’s
naturally suited to onscreen reading. Fixed documents—those that use XPS (the XML Paper
Specification)—are much less flexible. They serve as print-ready documents that can be dis-
tributed and printed on any output device with full fidelity to the original source. Toward that
end, they use a precise, fixed layout, have support for font embedding, and can’t be casually
rearranged.

CHAPTER 19 ■ DOCUMENTS 681

9551CH19 2/8/08 2:13 PM Page 681

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

XPS isn’t just a part of WPF. It’s a standard that’s tightly integrated into Windows Vista.
Windows Vista includes a print driver that can create XPS documents (in any application) and
a viewer that allows you to display them. These two pieces work similarly to Adobe Acrobat,
allowing users to create, review, and annotate print-ready electronic documents. Additionally,
Microsoft Office 2007 includes a free downloadable add-in (available at http://tinyurl.com/
v46jc) that allows the creation of XPS and PDF documents.

■Note Under the hood, XPS files are actually ZIP files that contain a library of compressed files, including
fonts, images, and text content for individual pages (using a XAML-like XML markup). To browse the inner
contents of an XPS file, just rename the extension to .zip and open it. You can also refer to http://msdn.
microsoft.com/msdnmag/issues/06/01/XMLPaperSpecification for an overview of the XPS file format.

You can display an XPS document just as easily as you display a flow document. The only
difference is the viewer. Instead of using one of the FlowDocument containers (FlowDocument-
Reader, FlowDocumentScrollViewer, or FlowDocumentPageViewer), you use the simply
named DocumentViewer. It includes controls for searching and zooming (Figure 19-16). It
also provides a similar set of properties, methods, and commands as the FlowDocument
containers.

Here’s the code you might use to load an XPS file into memory and show it in a Document-
Viewer:

XpsDocument doc = new XpsDocument("filename.xps", FileAccess.Read);
docViewer.Document = doc.GetFixedDocumentSequence();
doc.Close();

The XpsDocument class isn’t terribly exciting. It provides the GetFixedDocument-
Sequence() method used previously, which returns a reference to the document root with all
its content. It also includes an AddFixedDocument() method for creating the document
sequence in a new document, and two methods for managing digital signatures (SignDigitally()
and RemoveSignature()).

XPS documents are closely associated with the concept of printing. A single XPS docu-
ment is fixed at a particular page size and lays its text out to fit the available space. As with
flow documents, you can get straightforward support for printing a fixed document using the
ApplicationCommands.Print command. In Chapter 20, you’ll learn how to get fine-grained
control of printing, and you’ll see how the XPS model allows you to create a straightforward
print preview feature.

CHAPTER 19 ■ DOCUMENTS682

9551CH19 2/8/08 2:13 PM Page 682

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com
http://msdn

Figure 19-16. A fixed document

Annotations
WPF provides an annotation feature that allows you to add comments and highlights to flow
documents and fixed documents. These annotations can be used to suggest revisions, high-
light errors, or flag important pieces of information.

Many products provide a wide range of annotation types. For example, Adobe Acrobat
allows you to draw revision marks and shapes on a document. WPF isn’t quite as flexible. It
allows you to use two types of annotations:

• Highlighting. You can select some text and give it a colored background of your choice.
(Technically, WPF highlighting applies a partially transparent color over your text, but
the effect makes it seem as if you were changing the background.)

• Sticky notes. You can select some text and attach a floating box that contains additional
text information or ink content.

Figure 19-17 shows the sample you’ll learn how to build in this section. It shows a flow
document with a highlighted text region and two sticky notes, one with ink content and one
with text content.

CHAPTER 19 ■ DOCUMENTS 683

9551CH19 2/8/08 2:13 PM Page 683

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-17. Annotating a flow document

All four of the WPF document containers—FlowDocumentReader, FlowDocumentScroll-
Viewer, FlowDocumentPageViewer, and DocumentViewer—support annotations. But in order
to use annotations, you need to take two steps. First, you need to manually enable the annota-
tion service using a bit of initialization code. Second, you need to add controls (such as
toolbar buttons) that allow users to add the types of annotations you want to support.

The Annotation Classes
WPF’s annotation system relies on several classes from the System.Windows.Annotations and
System.Windows.Annotations.Storage namespace. Here are the key players:

• AnnotationService. This class manages the annotations feature. In order to use anno-
tations, it’s up to you to create this object.

• AnnotationStore. This class manages the storage of your annotations. It defines several
methods that you can use to create and delete individual annotations. It also includes
events that you can use to react to annotations being created or changed. Annotation-
Store is an abstract class, and there’s currently just one class that derives from it:
XmlStreamStore. XmlStreamStore serializes annotations to an XML-based format and
allows you to store your annotation XML in any stream.

CHAPTER 19 ■ DOCUMENTS684

9551CH19 2/8/08 2:13 PM Page 684

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• AnnotationHelper. This class provides a small set of static methods for dealing with
annotations. These methods bridge the gap between the stored annotations and the
document container. Most of the AnnotationHelper methods work with the currently
selected text in the document container (allowing you to highlight it, annotate it, or
remove its existing annotations). The AnnotationHelper also allows you to find where a
specific annotation is placed in a document.

In the following sections, you’ll use all three of these key ingredients.

■Tip Both the AnnotationStore and the AnnotationHelper provide methods for creating and deleting annota-
tions. However, the methods in the AnnotationStore class work with the currently selected text in a document
container. For that reason, the AnnotationStore methods are best for programmatically manipulating annota-
tions without user interaction, while the AnnotationHelper methods are best for implementing user-initiated
annotation changes (for example, adding an annotation when the user selects some text and clicks a button).

Enabling the Annotation Service
Before you can do anything with annotations, you need to enable the annotation service with
the help of an AnnotationService and AnnotationStream object.

In the example shown in Figure 19-17, it makes sense to create the AnnotationService
when the window first loads. Creating the service is simple enough—you just need to create
an AnnotationService object for the document reader and call AnnotationService.Enable().
However, when you call Enable() you need to pass in an AnnotationStore object. The Annotation-
Service manages the information for your annotations, while the AnnotationStore manages the
storage of these annotations.

Here’s the code that creates and enables annotations:

// A stream for storing annotation.
private MemoryStream annotationStream;

// The service that manages annotations.
private AnnotationService service;

protected void window_Loaded(object sender, RoutedEventArgs e)
{

// Create the AnnotationService for your document container.
service = new AnnotationService(docReader);

// Create the annotation storage.
annotationStream = new MemoryStream();
AnnotationStore store = new XmlStreamStore(annotationStream);

// Enable annotations.
service.Enable(store);

}

CHAPTER 19 ■ DOCUMENTS 685

9551CH19 2/8/08 2:13 PM Page 685

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Notice that in this example, annotations are stored in a MemoryStream. As a result, they’ll
be discarded as soon as the MemoryStream is garbage collected. If you want to store annota-
tions so they can be reapplied to the original document, you have two choices. You can create
a FileStream instead of a MemoryStream, which ensures the annotation data is written as the
user applies it. Or you can copy the data in the MemoryStream to another location (such as a
file or a database record) after the document is closed.

■Tip If you aren’t sure whether annotations have been enabled for your document container, you can use
the static AnnotionService.GetService() method and pass in a reference to the document container. This
method returns a null reference if annotations haven’t been enabled yet.

At some point, you’ll also need to close your annotation stream and switch off the
AnnotationService. In this example, these tasks are performed when the user closes the window:

protected void window_Unloaded(object sender, RoutedEventArgs e)
{

if (service != null && service.IsEnabled)
{

// Flush annotations to stream.
service.Store.Flush();

// Disable annotations.
service.Disable();
annotationStream.Close();

}
}

This is all you need to enable annotations in a document. If there are any annotations
defined in the stream object when you call AnnotationService.Enable(), these annotations will
appear immediately. However, you still need to add the controls that will allow the user to add
or remove annotations. That’s the topic of the next section.

■Tip Every document container can have one instance of the AnnotationService. Every document should
have its own instance of the AnnotationStore. When you open a new document, you should disable the
AnnotationService, save and close the current annotation stream, create a new AnnotationStore, and then
reenable the AnnotationService.

CHAPTER 19 ■ DOCUMENTS686

9551CH19 2/8/08 2:13 PM Page 686

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Creating Annotations
There are two ways to manipulate annotations. You can use one of the methods of the Annota-
tionHelper class that allows you to create annotations (CreateTextStickyNoteForSelection()
and CreateInkStickyNoteForSelection()), delete them (DeleteTextStickyNotesForSelection()
and DeleteInkStickyNotesForSelection()), and apply highlighting (CreateHighlightsFor-
Selection() and ClearHighlightsForSelection()). The “ForSelection” part of the method name
indicates that these methods apply the annotation to whatever text is currently selected.

Although the AnnotationHelper methods work perfectly well, it’s far easier to use the cor-
responding commands that are exposed by the AnnotationService class. You can wire these
commands directly to the buttons in your user interface. That’s the approach we’ll take in this
example.

Before you can use the AnnotationService class in XAML you need to map the
System.Windows.Annotations namespace to an XML namespace, as it isn’t one of the core
WPF namespaces. You can add a mapping like this:

<Window x:Class="XpsAnnotations.FlowDocumentAnnotations"
xmlns:annot=
"clr-namespace:System.Windows.Annotations;assembly=PresentationFramework" ... >

Now you can create a button like this, which creates a text note for the currently selected
portion of the document:

<Button Command="annot:AnnotationService.CreateTextStickyNoteCommand">
Text Note

</Button>

Now when the user clicks this button, a green note window will appear. The user can type
text inside this note. (If you create an ink sticky note with the CreateInkStickyNoteCommand,
the user can draw inside the note window instead.)

■Note This Button element doesn’t set the CommandTarget property. That’s because the button is placed
in a toolbar. As you learned in Chapter 10, the Toolbar class is intelligent enough to automatically set the
CommandTarget to the element that has focus. Of course, if you use the same command in a button outside
of a toolbar, you’ll need to set the CommandTarget to point to your document viewer.

Sticky notes don’t need to remain visible at all times. If you click the minimize button in
the top-right corner of the note window, it will disappear. All you’ll see is the highlighted por-
tion of the document where the note is set. If you hover over this highlighted region with the
mouse, a note icon appears (see Figure 19-18)—click this to restore the sticky note window.
The AnnotationService stores the position of each note window, so if you drag one somewhere
specific in your document, close it and then reopen it; it will reappear in its previous place.

CHAPTER 19 ■ DOCUMENTS 687

9551CH19 2/8/08 2:13 PM Page 687

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 19-18. A “hidden” annotation

In the previous example, the annotation is created without any author information. If you
plan to have multiple users annotating the same document, you’ll almost certainly want to
store some identifying information. Just pass a string that identifies the author as a parameter
to the command, as shown here:

<Button Command="annot:AnnotationService.CreateTextStickyNoteCommand"
CommandParameter="{StaticResource AuthorName}">
Text Note

</Button>

This markup assumes the author name is set as a resource:

<sys:String x:Key="AuthorName">[Anonymous]</sys:String>

This allows you to set the author name when the window first loads, at the same time as
you initialize the annotation service. You can use a name that the user supplies, which you’ll
probably want to store in a user-specific .config file as an application setting. Alternatively,
you can use the following code to grab the current user’s Windows user account name with the
help of the System.Security.Principal.WindowsIdentity class:

WindowsIdentity identity = WindowsIdentity.GetCurrent();
this.Resources["AuthorName"] = identity.Name;

To create the window shown in Figure 19-17, you’ll also want to create buttons that use
the CreateInkStickyNoteCommand (to create a note window that accepts hand-drawn ink
content) and DeleteStickyNotesCommand (to remove previously created sticky notes):

CHAPTER 19 ■ DOCUMENTS688

9551CH19 2/8/08 2:13 PM Page 688

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Button Command="annot:AnnotationService.CreateInkStickyNoteCommand"
CommandParameter="{StaticResource AuthorName}">
Ink Note

</Button>
<Button Command="annot:AnnotationService.DeleteStickyNotesCommand">
Delete Note(s)

</Button>

The DeleteStickyNotesCommand removes all the sticky notes in the currently selected
text. Even if you don’t provide this command, the user can still remove annotations using the
Edit menu in the note window (unless you’ve given the note window a different control tem-
plate that doesn’t include this feature).

The final detail is to create the buttons that allow you to apply highlighting. To add a high-
light, you use the CreateHighlightCommand and you pass the Brush object that you want to
use as the CommandParameter. However, it’s important to make sure you use a brush that has
a partially transparent color. Otherwise, your highlighted content will be completely obscured,
as shown in Figure 19-19.

For example, if you want to use the solid color #FF32CD32 (for lime green) to highlight
your text, you should reduce the alpha value, which is stored as a hexadecimal number in the
first two characters. (The alpha value ranges from 0 to 255, where 0 is fully transparent and
255 is fully opaque.) For example, the color #54FF32CD32 gives you a semitransparent version
of the lime green color, with an alpha value of 84 (or 54 in hexadecimal notation).

Figure 19-19. Highlighting content with a nontransparent color

CHAPTER 19 ■ DOCUMENTS 689

9551CH19 2/8/08 2:13 PM Page 689

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following markup defines two highlighting buttons, one for applying yellow high-
lights and one for green highlights. The button itself doesn’t include any text. It simply shows a
15-by-15 square of the appropriate color. The CommandParameter defines a SolidColorBrush
that uses the same color but with reduced opacity so the text is still visible:

<Button Background="Yellow" Width="15" Height="15" Margin="2,0"
Command="annot:AnnotationService.CreateHighlightCommand">
<Button.CommandParameter>
<SolidColorBrush Color="#54FFFF00"></SolidColorBrush>

</Button.CommandParameter>
</Button>

<Button Background="LimeGreen" Width="15" Height="15" Margin="2,0"
Command="annot:AnnotationService.CreateHighlightCommand">
<Button.CommandParameter>
<SolidColorBrush Color="#5432CD32"></SolidColorBrush>

</Button.CommandParameter>
</Button>

You can add a final button to remove highlighting in the selected region:

<Button Command="annot:AnnotationService.ClearHighlightsCommand">
Clear Highlights

</Button>

■Note When you print a document that includes annotations using the ApplicationCommands.Print com-
mand, the annotations are printed just as they appear. In other words, minimized annotations will appear
minimized, visible annotations will appear overtop of content (and may obscure other parts of the docu-
ment), and so on. If you want to create a printout that doesn’t include annotations, simply disable the
annotation service before you begin your printout.

Examining Annotations
At some point, you may want to examine all the annotations that are attached to a document.
There are many possible reasons—you may want to display a summary report about your
annotations, print an annotation list, export annotation text to a file, and so on.

The AnnotationStore makes it relatively easy to get a list of all the annotations it contains
using the GetAnnotations() method. You can then examine each annotation as an Annotation
object:

IList<Annotation> annotations = service.Store.GetAnnotations();
foreach (Annotation annotation in annotations)
{

...
}

CHAPTER 19 ■ DOCUMENTS690

9551CH19 2/8/08 2:13 PM Page 690

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In theory, you can find annotations in a specific portion of a document using the over-
loaded version of the GetAnnotations() method that takes a ContentLocator object. In
practice, however, this is tricky, because the ContentLocator object is difficult to use correctly
and you need to match the starting position of the annotation precisely.

Once you’ve retrieved an Annotation object, you’ll find that it provides the properties
listed in Table 19-8.

Table 19-8. Annotation Properties

Name Description

Id A global identifier (GUID) that uniquely identifies this annotation. If
you know the GUID for an annotation, you can retrieve the
corresponding Annotation object using the AnnotationStore.Get-
Annotation() method. (Of course, there’s no reason you’d know the
GUID of an existing annotation unless you had previously retrieved it
by calling GetAnnotations(), or you had reacted to an AnnotationStore
event when the annotation was created or changed.)

AnnotationType The XML element name that identifies this type of annotation, in the
format namespace:localname.

Anchors A collection of zero, one, or more AnnotationResource objects that
identify what text is being annotated.

Cargos A collection of zero, one, or more AnnotationResource objects that
contain the user data for the annotation. This includes the text of a text
note, or the ink strokes for an ink note.

Authors A collection of zero, one, or more strings that identify who created the
annotation.

CreationTime The date and time when the annotation was created.

LastModificationTime The date and time the annotation was last updated.

The Annotation object is really just a thin wrapper over the XML data that’s stored for the
annotation. One consequence of this design is that it’s difficult to pull information out of the
Anchors and Cargos properties. For example, if you want to get the actual text of an annota-
tion, you need to look at the second item in the Cargos selection. This contains the text, but it’s
stored as a Base64-encoded string (which avoids problems if the note contains characters that
wouldn’t otherwise be allowed in XML element content). If you want to actually view this text,
it’s up to you to write tedious code like this to crack it open:

// Check for text information.
if (annotation.Cargos.Count > 1)
{

// Decode the note text.
string base64Text = annotation.Cargos[1].Contents[0].InnerText;
byte[] decoded = Convert.FromBase64String(base64Text);

// Write the decoded text to a stream.
MemoryStream m = new MemoryStream(decoded);

// Using the StreamReader, convert the text bytes into a more

CHAPTER 19 ■ DOCUMENTS 691

9551CH19 2/8/08 2:13 PM Page 691

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// useful string.
StreamReader r = new StreamReader(m);
string annotationXaml = r.ReadToEnd();
r.Close();

// Show the annotation content.
MessageBox.Show(annotationXaml);

}

This code gets the text of the annotation, wrapped in the XAML <Section> element. The
opening <Section> tag includes attributes that specify a wide range of typography details.
Inside the <Section> element are more <Paragraph> and <Run> elements.

■Note Like a text annotation, an ink annotation will also have a Cargos collection with more than one item.
However, in this case the Cargos collection will contain the ink data but no decodable text. If you use the
previous code on an ink annotation, you’ll get an empty message box. Thus, if your document contains both
text and ink annotations, you should check the Annotation.AnnotationType property to make sure you’re
dealing with a text annotation before you use this code.

If you just want to get the text without the surrounding XML, you can use the XamlReader
to deserialize it (and avoid using the StreamReader). The XML can be deserialized into a Sec-
tion object, using code like this:

if (annotation.Cargos.Count > 1)
{

// Decode the note text.
string base64Text = annotation.Cargos[1].Contents[0].InnerText;
byte[] decoded = Convert.FromBase64String(base64Text);

// Write the decoded text to a stream.
MemoryStream m = new MemoryStream(decoded);

// Deserialize the XML into a Section object.
Section section = XamlReader.Load(m) as Section;
m.Close();

// Get the text inside the Section.
TextRange range = new TextRange(section.ContentStart, section.ContentEnd);

// Show the annotation content.
MessageBox.Show(range.Text);

}

As Table 19-8 shows, text isn’t the only detail you can recover from an annotation. It’s easy
to get the annotation author, the time it was created, and the time it was last modified.

CHAPTER 19 ■ DOCUMENTS692

9551CH19 2/8/08 2:13 PM Page 692

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also retrieve information about where an annotation is anchored in your docu-
ment. However, the Anchors collection isn’t much help for this task, because it provides a
low-level collection of AnnotationResource objects that wrap additional XML data. To make
life easier, .NET 3.5 adds a GetAnchorInfo() method to the AnnotationHelper class. This
method takes an annotation and returns an object that implements IAnchorInfo.

IAnchorInfo anchorInfo = AnnotationHelper.GetAnchorInfo(service, annotation);

IAnchorInfo combines the AnnotationResource (the Anchor property), the annotation
(Annotation), and an object that represents the location of the annotation in the document
tree (ResolvedAnchor), which is the most useful detail. Although the ResolvedAnchor property
is typed as an object, text annotations and highlights always return a TextAnchor object. The
TextAnchor describes the starting point of the anchored text (BoundingStart) and the ending
point (BoundingEnd).

Here’s how you could determine the highlighted text for an annotation using the IAnchor-
Info:

IAnchorInfo anchorInfo = AnnotationHelper.GetAnchorInfo(service, annotation);
TextAnchor resolvedAnchor = anchorInfo.ResolvedAnchor as TextAnchor;
if (resolvedAnchor != null)
{

TextPointer startPointer = (TextPointer)resolvedAnchor.BoundingStart;
TextPointer endPointer = (TextPointer)resolvedAnchor.BoundingEnd;

TextRange range = new TextRange(startPointer, endPointer);
MessageBox.Show(range.Text);

}

You can also use the TextAnchor objects as a jumping-off point to get to the rest of the
document tree, as shown here:

// Scroll the document so the paragraph with the annotated text is displayed.
TextPointer textPointer = (TextPointer)resolvedAnchor.BoundingStart;
textPointer.Paragraph.BringIntoView();

The samples for this chapter include an example that uses this technique to create an
annotation list. When an annotation is selected in the list, the annotated portion of the docu-
ment is shown automatically.

In both cases, the AnnotationHelper.GetAnchorInfo() method allows you to travel from
the annotation to the annotated text, much as the AnnotationStore.GetAnnotations() method
allows you to travel from the document content to the annotations.

Although it’s relatively easy to examine existing annotations, the WPF annotation feature
isn’t as strong when it comes to manipulating these annotations. It’s easy enough for the user
to open a sticky note, drag it to a new position, change the text, and so on, but it’s not easy for
you to perform these tasks programmatically. In fact, all the properties of the Annotation
object are read-only. There are no readily available methods to modify an annotation, so
annotation editing involves deleting and re-creating the annotation. You can do this using the
methods of the AnnotationStore or the AnnotationHelper (if the annotation is attached to the

CHAPTER 19 ■ DOCUMENTS 693

9551CH19 2/8/08 2:13 PM Page 693

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

currently selected text). However, both approaches require a fair bit of grunt work. If you use
the AnnotationStore, you need to construct an Annotation object by hand. If you use the
AnnotationHelper, you need to explicitly set the text selection to include the right text before
you create the annotation. Both approaches are tedious and unnecessarily error-prone.

Reacting to Annotation Changes
You’ve already() learned how the AnnotationStore allows you to retrieve the annotations in
a document (with GetAnnotations()) and manipulate them (with DeleteAnnotation() and
AddAnnotation()). The AnnotationStore provides one additional feature—it raises events that
inform you when annotations are changed.

The AnnotationStore provides four events: AnchorChanged (which fires when an annota-
tion is moved), AuthorChanged (which fires when the author information of an annotation
changes), CargoChanged (which fires when annotation data, including text, is modified),
and StoreContentChanged (which fires when an annotation is created, deleted, or modified in
any way).

The online samples for this chapter include an annotation-tracking example. An event
handler for the StoreContentChanged event reacts when annotation changes are made. It
retrieves all the annotation information (using the GetAnnotations() method) and then dis-
plays the annotation text in a list.

■Note The annotation events occur after the change has been made. That means there’s no way to plug in
custom logic that extends an annotation action. For example, you can’t add just-in-time information to an
annotation or selectively cancel a user’s attempt to edit or delete an annotation.

Storing Annotations in a Fixed Document
The previous examples used annotations on a flow document. In this scenario, annotations
can be stored for future use, but they must be stored separately—for example, in a distinct
XML file.

When using a fixed document, you can use the same approach, but you have an addi-
tional option—you can store annotations directly in the XPS document file. In fact, you could
even store multiple sets of distinct annotations, all in the same document. You simply need to
use the package support in the System.IO.Packaging namespace.

As you learned earlier, every XPS document is actually a ZIP archive that includes several
files. When you store annotations in an XPS document, you are actually creating another file
inside the ZIP archive.

The first step is to choose a URI to identify your annotations. Here’s an example that uses
the name AnnotationStream:

Uri annotationUri = PackUriHelper.CreatePartUri(
new Uri("AnnotationStream", UriKind.Relative));

Now you need to get the Package for your XPS document using the static Package-
Store.GetPackage() method:

Package package = PackageStore.GetPackage(doc.Uri);

CHAPTER 19 ■ DOCUMENTS694

9551CH19 2/8/08 2:13 PM Page 694

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can then create the package part that will store your annotations inside the XPS docu-
ment. However, you need to check if the annotation package part already exists (in case you’ve
loaded the document before and already added annotations). If it doesn’t exist, you can create
it now:

PackagePart annotationPart = null;
if (package.PartExists(annotationUri))
{

annotationPart = package.GetPart(annotationUri);
}
else
{

annotationPart = package.CreatePart(annotationUri, "Annotations/Stream");
}

The last step is to create an AnnotationStore that wraps the annotation package part, and
then enable the AnnotationService in the usual way:

AnnotationStore store = new XmlStreamStore(annotationPart.GetStream());
service = new AnnotationService(docViewer);
service.Enable(store);

In order for this technique to work, you must open the XPS file using FileMode.ReadWrite
mode rather than FileMode.Read, so the annotations can be written to the XPS file. For the
same reason, you need to keep the XPS document open while the annotation service is at
work. You can close the XPS document when the window is closed (or you choose to open a
new document).

Customizing the Appearance of Sticky Notes
The note windows that appear when you create a text note or ink note are instances of the
StickyNoteControl class, which is found in the System.Windows.Controls namespace. Like all
WPF controls, you can customize the visual appearance of the StickyNoteControl using style
setters or applying a new control template.

For example, you can easily create a style that applies to all StickyNoteControl instances
using the Style.TargetType property. Here’s an example that gives every StickyNoteControl a
new background color:

<Style TargetType="{x:Type StickyNoteControl}">
<Setter Property="Background" Value="LightGoldenrodYellow"/>

</Style>

To make a more dynamic version of the StickyNoteControl, you can write a style trigger
that responds to the StickyNoteControl.IsActive property, which is true when the sticky note
has focus.

For more control, you can use a completely different control template for your Sticky-
NoteControl. The only trick is that the StickyNoteControl template varies depending on
whether it’s used to hold an ink note or a text note. If you allow the user to create both types of
notes, you need a trigger that can choose between two templates. Ink notes must include an

CHAPTER 19 ■ DOCUMENTS 695

9551CH19 2/8/08 2:13 PM Page 695

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

InkCanvas, and text notes must contain a RichTextBox. In both cases, this element should be
named PART_ContentControl.

Here’s a style that applies the bare minimum control template for both ink and text sticky
notes. It sets the dimensions of the note window and chooses the appropriate template based
on the type of note content:

<Style x:Key="MinimumStyle" TargetType="{x:Type StickyNoteControl}">
<Setter Property="OverridesDefaultStyle" Value="true" />
<Setter Property="Width" Value="100" />
<Setter Property="Height" Value ="100" />
<Style.Triggers>
<Trigger Property="StickyNoteControl.StickyNoteType"
Value="{x:Static StickyNoteType.Ink}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate>
<InkCanvas Name="PART_ContentControl" Background="LightYellow" />

</ControlTemplate>
</Setter.Value>

</Setter>
</Trigger>
<Trigger Property="StickyNoteControl.StickyNoteType"
Value="{x:Static StickyNoteType.Text}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate>

<RichTextBox Name="PART_ContentControl" Background="LightYellow"/>
</ControlTemplate>

</Setter.Value>
</Setter>

</Trigger>
</Style.Triggers>

</Style>

Last Word
Most developers already know that WPF offers a new model for drawing, layout, and anima-
tion. However, its rich document features are often overlooked.

In this chapter, you’ve seen how to create flow documents, lay out text inside them in a vari-
ety of ways, and control how that text is displayed in different containers. You also learned how
to use the FlowDocument object model to change portions of the document dynamically, and
you considered the RichTextBox, which provides a solid base for advanced text editing features.

Lastly, you took a quick look at fixed documents and the XpsDocument class. The XPS
model provides the plumbing for WPF’s new printing feature, which is the subject of the next
chapter.

CHAPTER 19 ■ DOCUMENTS696

9551CH19 2/8/08 2:13 PM Page 696

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Printing

Printing in WPF is vastly more powerful than it was with Windows Forms. Tasks that weren’t
possible using the .NET libraries and that would have forced you to use the Win32 API or WMI
(such as checking a print queue) are now fully supported using the classes in the new System.
Printing namespace.

Even more dramatic is the thoroughly revamped printing model that organizes all your
coding around a single ingredient: the PrintDialog class in the System.Windows.Controls
namespace. Using the PrintDialog class, you can show a Print dialog box where the user can
pick a printer and change its setting, and you can send elements, documents, and low-level
visuals directly to the printer. In this chapter, you’ll learn how to use the PrintDialog class to
create properly scaled and paginated printouts.

Basic Printing
Although WPF includes dozens of print-related classes (most of which are found in the System.
Printing namespace), there’s a single starting point that makes life easy: the PrintDialog class.

The PrintDialog wraps the familiar Print dialog box that lets the user choose the printer
and a few other standard print options, such as the number of copies (Figure 20-1). However,
the PrintDialog class is more than just a pretty window—it also has the built-in ability to trig-
ger a printout.

To submit a print job with the PrintDialog class, you need to use one of two methods:

• PrintVisual() works with any class that derives from System.Windows.Media.Visual.
This includes any graphic you draw by hand and any element you place in a window.

• PrintDocument() works with any DocumentPaginator object. This includes the ones
that are used to split a FlowDocument (or XpsDocument) into pages and any custom
DocumentPaginator you create to deal with your own data.

In the following sections, you’ll consider a variety of strategies that you can use to create a
printout.

697

C H A P T E R 2 0

■ ■ ■

9551CH20 2/8/08 2:13 PM Page 697

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 20-1. The PrintDialog in Windows Vista

Printing an Element
The simplest approach to printing is to take advantage of the model you’re already using for
onscreen rendering. Using the PrintDialog.PrintVisual() method, you can send any element in
a window (and all its children) straight to the printer.

To see an example in action, consider the window shown in Figure 20-2. It contains a Grid
that lays out all the elements. In the topmost row is a Canvas, and in that Canvas is a drawing
that consists of a TextBlock and a Path (which renders itself as a rectangle with an elliptic hole
in the middle).

Figure 20-2. A simple drawing

CHAPTER 20 ■ PRINTING698

9551CH20 2/8/08 2:13 PM Page 698

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To send the Canvas to the printer, complete with all the elements it contains, you can use
this snippet of code when the Print button is clicked:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

printDialog.PrintVisual(canvas, "A Simple Drawing");
}

The first step is to create a PrintDialog object. The next step is to call ShowDialog() to show
the Print dialog box. ShowDialog returns a nullable Boolean value. A return value of true indi-
cates that the user clicked OK, a return value of false indicates that the user clicked Cancel, and a
null value indicates that the dialog box was closed without either button being clicked.

When calling the PrintVisual() method, you pass two arguments. The first is the element
that you want to print, and the second is a string that’s used to identify the print job. You’ll see
it appear in the Windows print queue (under the Document Name column).

When printing this way, you don’t have much control over the output. The element is
always lined up with the top-left corner of the page. If your element doesn’t include nonzero
Margin values, the edge of your content might land in the nonprintable area of the page,
which means it won’t appear in the printed output.

The lack or margin control is only the beginning of the limitations that you’ll face using
this approach. You also can’t paginate your content if it’s extremely long, so if you have more
content than can fit on a single page, some will be left out at the bottom. Finally, you have no
control over the scaling that’s used to render your job to the printing. Instead, WPF uses the
same device-independent rendering system based on 1/96th-inch units. For example, if you
have a rectangle that’s 96 units wide, that rectangle will appear to be an inch wide on your
monitor (assuming you’re using the standard 96 dpi Windows system setting) and an inch
wide on the printed page. Often, this results in a printout that’s quite a bit smaller than what
you want.

■Note Obviously, WPF will fill in much more detail in the printed page, because virtually no printer has a
resolution as low as 96 dpi (600 dpi and 1200 dpi are much more common printer resolutions). However,
WPF will keep your content the same size in the printout as it is on your monitor.

CHAPTER 20 ■ PRINTING 699

9551CH20 2/8/08 2:13 PM Page 699

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 20-3 shows the full-page printout of the Canvas from the window shown in
Figure 20-2.

Figure 20-3. A printed element

PRINTDIALOG QUIRKS

The PrintDialog class wraps a lower-level internal .NET class named Win32PrintDialog, which in turns wraps
the Print dialog box that’s exposed by the Win32 API. Unfortunately, these extra layers remove a little bit of
your flexibility.

One potential problem is the way that the PrintDialog class works with modal windows. Buried in the
inaccessible Win32PrintDialog code is a bit of logic that always makes the Print dialog box modal with
respect to your application’s main window. This leads to an odd problem if you show a modal window from
your main window and then call the PrintDialog.ShowDialog() method from that window. Although you’d
expect the Print dialog box to be modal to your second window, it will actually be modal with respect to your
main window, which means the user can return to your second window and interact with it (even clicking the
Print button to show multiple instances of the Print dialog box)! The somewhat clumsy solution is to manually
change your application’s main window to the current window before you call PrintDialog.ShowDialog() and
then switch it back immediately afterward.

There’s another limitation to the way the PrintDialog class works. Because your main application thread
owns the content you’re printing, it’s not possible to perform your printing on a background thread. This
becomes a concern if you have time-consuming printing logic. Two possible solutions exist. If you construct
the visuals you want to print on the background thread (rather than pulling them out of an existing window),
you’ll be able to perform your printing on the background thread. However, a simpler solution is to use the
PrintDialog box to let the user specify the print settings and then use the XpsDocumentWriter class to actually
print the content instead of the printing methods of the PrintDialog class. The XpsDocumentWriter includes
the ability to send content to the printer asynchronously, and it’s described in the “Printing Through XPS"
section later in this chapter.

CHAPTER 20 ■ PRINTING700

9551CH20 2/8/08 2:13 PM Page 700

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Transforming Printed Output
You may remember (from Chapter 13) that you can attach the Transform object to the Render-
Transform or LayoutTransform property of any element to change the way it’s rendered.
Transform objects could solve the problem of inflexible printouts, because you could use
them to resize an element (ScaleTransform), move it around the page (TranslateTransform), or
both (TransformGroup). Unfortunately, visuals have the ability to lay themselves out only one
way at a time. That means there’s no way to scale an element one way in a window and
another way in a printout—instead, any Transform objects you apply will change both the
printed output and the onscreen appearance of your element.

If you aren’t intimidated by a bit of messy compromise, you can work around this issue in
several ways. The basic idea is to apply your transform objects just before you create the print-
out and then remove them. To prevent the resized element from appearing in the window, you
can temporarily hide it.

You might expect to hide your element by changing its Visibility property, but this will
hide your element from both the window and the printout, which obviously isn’t what you
want. One possible solution is to change the Visibility of the parent (in this example, the layout
Grid). This works because the PrintVisual() method considers only the element you specify
and its children, not the details of the parent.

Here’s the code that puts it all together and prints the Canvas shown in Figure 20-2, but
five times bigger in both dimensions:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

// Hide the Grid.
grid.Visibility = Visibility.Hidden;

// Magnify the output by a factor of 5.
canvas.LayoutTransform = new ScaleTransform(5, 5);

// Print the element.
printDialog.PrintVisual(canvas, "A Scaled Drawing");

// Remove the transform and make the element visible again.
canvas.LayoutTransform = null;
grid.Visibility = Visibility.Visible;

}

This example has one missing detail. Although the Canvas (and its contents) is stretched,
the Canvas is still using the layout information from the containing Grid. In other words, the
Canvas still believes it has an amount of space to work with that’s equal to the dimensions of
the Grid cell in which it’s placed. In this example, this oversight doesn’t cause a problem,
because the Canvas doesn’t limit itself to the available space (unlike some other containers).
However, you will run into trouble if you have text and you want it to wrap to fit the bounds of
the printed page or if your Canvas has a background (which, in this example, will occupy the
smaller size of the Grid cell rather than the whole area behind the Canvas).

CHAPTER 20 ■ PRINTING 701

9551CH20 2/8/08 2:13 PM Page 701

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The solution is easy. After you set the LayoutTransform (but before you print the Canvas),
you need to trigger the layout process manually using the Measure() and Arrange() methods
that every element inherits from the UIElement class. The trick is that when you call these
methods, you’ll pass in the size of the page, so the Canvas stretches itself to fit. (Incidentally,
this is also why you set the LayoutTransform instead of the RenderTransform property,
because you want the layout to take the newly expanded size into account.) You can get the
page size from the PrintableAreaWidth and PrintableAreaHeight properties.

■Note Based on the property names, it’s reasonable to assume that PrintableAreaWidth and PrintableArea-
Height reflect the printable area of the page—in other words, the part of the page on which the printer can
actually print. (Most printers can’t reach the very edges, usually because that’s where the rollers grip onto
the page.) But in truth, PrintableAreaWidth and PrintableAreaHeight simply return the full width and height of
the page in device-independent units. For a sheet of 8.5✕11 paper, that’s 816 and 1056. (Try dividing these
numbers by 96 dpi, and you’ll get the full paper size.)

The following example demonstrates how to use the PrintableAreaWidth and Printable-
AreaHeight properties. To be a bit nicer, it leaves off 10 units (about 0.1 of an inch) as a border
around all edges of the page.

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

// Hide the Grid.
grid.Visibility = Visibility.Hidden;

// Magnify the output by a factor of 5.
canvas.LayoutTransform = new ScaleTransform(5, 5);

// Define a margin.
int pageMargin = 5;

// Get the size of the page.
Size pageSize = new Size(printDialog.PrintableAreaWidth – pageMargin * 2,
printDialog.PrintableAreaHeight - 20);

// Trigger the sizing of the element.
canvas.Measure(pageSize);
canvas.Arrange(new Rect(pageMargin, pageMargin,
pageSize.Width, pageSize.Height));

// Print the element.
printDialog.PrintVisual(canvas, "A Scaled Drawing");

CHAPTER 20 ■ PRINTING702

9551CH20 2/8/08 2:13 PM Page 702

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Remove the transform and make the element visible again.
canvas.LayoutTransform = null;
grid.Visibility = Visibility.Visible;

}

The end result is a way to print any element and scale it to suit your needs (see the full-page
printout in Figure 20-4). This approach works perfectly well, but you can see the (somewhat
messy) glue that’s holding it all together.

Figure 20-4. A scaled printed element

Printing Elements Without Showing Them
Because the way you want to show data in your application and the way you want it to appear
in a printout are often different, it sometimes makes sense to create your visual programmati-
cally (rather than using one that appears in an existing window). For example, the following
code creates an in-memory TextBlock object, fills it with text, sets it to wrap, sizes it to fit the
printed page, and then prints it:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

// Create the text.
Run run = new Run("This is a test of the printing functionality " +
"in the Windows Presentation Foundation.");

// Wrap it in a TextBlock.
TextBlock visual = new TextBlock();
TextBlock.Inlines.Add(run);

// Use margin to get a page border.
visual.Margin = new Thickness(15);

CHAPTER 20 ■ PRINTING 703

9551CH20 2/8/08 2:13 PM Page 703

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Allow wrapping to fit the page width.
visual.TextWrapping = TextWrapping.Wrap;

// Scale the TextBlock up in both dimensions by a factor of 5.
// (In this case, increasing the font would have the same effect,
// because the TextBlock is the only element.)
visual.LayoutTransform = new ScaleTransform(5, 5);

// Size the element.
Size pageSize = new Size(printDialog.PrintableAreaWidth,
printDialog.PrintableAreaHeight);

visual.Measure(pageSize);
visual.Arrange(new Rect(0,0, pageSize.Width, pageSize.Height));

// Print the element.
printDialog.PrintVisual(visual, "A Scaled Drawing");

}

Figure 20-5 shows the printed page that this code creates.

Figure 20-5. Wrapped text using a TextBlock

This approach allows you to grab the content you need out of a window but customize its
printed appearance separately. However, it’s of no help if you have content that needs to span
more than one page (in which case you’ll need the printing techniques described in the fol-
lowing sections).

Printing a Document
The PrintVisual() method may be the most versatile printing method, but the PrintDialog class
also includes another option. You can use PrintDocument() to print the content from a flow
document. The advantage of this approach is that a flow document can handle a huge amount
of complex content and can split that content over multiple pages (just as it does onscreen).

CHAPTER 20 ■ PRINTING704

9551CH20 2/8/08 2:13 PM Page 704

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You might expect that the PrintDialog.PrintDocument() method would require a Flow-
Document object, but it actually takes a DocumentPaginator object. The DocumentPaginator
is a specialized class whose sole role in life is to take content, split it into multiple pages, and
supply each page when requested. Each page is represented by a DocumentPage object,
which is really just a wrapper for a single Visual object with a little bit of sugar on top. You’ll
find just three more properties in the DocumentPage class. Size returns the size of the page,
ContentBox is the size of the box where content is placed on the page after margins are added,
and BleedBox is the area where print production-related bleeds, registration marks, and crop
marks appear on the sheet, outside the page boundaries.

What this means is that PrintDocument() works in much the same way as PrintVisual().
The difference is that it prints several visuals—one for each page.

■Note Although you could split your content into separate pages without using a DocumentPaginator and
make repeated calls to PrintVisual(), this isn’t a good approach. If you do, each page will become a separate
print job.

So how do you get a DocumentPaginator object for a FlowDocument? The trick is to cast
the FlowDocument to an IDocumentPaginatorSource and then use the DocumentPaginator
property. Here’s an example:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

printDialog.PrintDocument(
((IDocumentPaginatorSource)docReader.Document).DocumentPaginator,
"A Flow Document");

}

This code may or may not produce the desired result, depending on the container that’s
currently housing your document. If your document is in-memory (but not in a window) or if
it’s stored in RichTextBox or FlowDocumentScrollViewer, this codes works fine. You’ll end up
with a multipaged printout with two columns (on a standard sheet of 8.5✕11 paper in portrait
orientation). This is the same result you’ll get if you use the ApplicationCommands.Print
command.

■Note As you learned in Chapter 10, some controls include built-in command wiring. The FlowDocument
containers (like the FlowDocumentScrollViewer used here) is one example. It handles the Application-
Commands.Print command to perform a basic printout. This hardwired printing code is similar to the code
shown previously, although it uses the XpsDocumentWriter, which is described in the “Printing Through XPS”
section of this chapter.

However, if your document is stored in a FlowDocumentPageViewer or a FlowDocument-
Reader, the result isn’t as good. In this case, your document is paginated the same way as the

CHAPTER 20 ■ PRINTING 705

9551CH20 2/8/08 2:13 PM Page 705

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

current view in the container. So if there are 24 pages required to fit the content into the cur-
rent window, you’ll get 24 pages in the printed output, each with a tiny window worth of data.
Again, the solution is a bit messy, but it works. (It’s also essentially the same solution that the
ApplicationCommands.Print command takes.) The trick is to force the FlowDocument to
paginate itself for the printer. You can do this by setting the FlowDocument.PageHeight and
FlowDocument.PageWidth properties to the boundaries of the page, not the boundaries of the
container. (In containers such as the FlowDocumentScrollViewer, these properties aren’t set
because pagination isn’t used. That’s why the printing feature works without a hitch—it pagi-
nates itself automatically when you create the printout.)

FlowDocument doc = docReader.Document;

doc.PageHeight = printDialog.PrintableAreaHeight;
doc.PageWidth = printDialog.PrintableAreaWidth;
printDialog.PrintDocument(
((IDocumentPaginatorSource)doc).DocumentPaginator,
"A Flow Document");

You’ll probably also want to set properties such as ColumnWidth and ColumnGap so you
can get the number of columns you want. Otherwise, you’ll get whatever is used in the current
window.

The only problem with this approach is that once you’ve changed these properties, they
apply to the container that displays your document. As a result, you’ll end up with a com-
pressed version of your document that’s probably too small to read in the current window. A
proper solution takes this into account by storing all these values, changing them, and then
reapplying the original values.

Here’s the complete code printing a two-column printout with a generous margin (added
through the FlowDocument.PagePadding property):

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

FlowDocument doc = docReader.Document;

// Save all the existing settings.
double pageHeight = doc.PageHeight;
double pageWidth = doc.PageWidth;
Thickness pagePadding = doc.PagePadding;
double columnGap = doc.ColumnGap;
double columnWidth = doc.ColumnWidth;

// Make the FlowDocument page match the printed page.
doc.PageHeight = printDialog.PrintableAreaHeight;
doc.PageWidth = printDialog.PrintableAreaWidth;
doc.PagePadding = new Thickness(50);

// Use two columns.
doc.ColumnGap = 25;

CHAPTER 20 ■ PRINTING706

9551CH20 2/8/08 2:13 PM Page 706

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

doc.ColumnWidth = (doc.PageWidth - doc.ColumnGap
- doc.PagePadding.Left - doc.PagePadding.Right) / 2;

printDialog.PrintDocument(
((IDocumentPaginatorSource)doc).DocumentPaginator, "A Flow Document");

// Reapply the old settings.
doc.PageHeight = pageHeight;
doc.PageWidth = pageWidth;
doc.PagePadding = pagePadding;
doc.ColumnGap = columnGap;
doc.ColumnWidth = columnWidth;

}

This approach has a few limitations. Although you’re able to tweak properties that adjust
the margins and number of columns, you don’t have much control. Of course, you can modify
the FlowDocument programmatically (for example, temporarily increasing its FontSize), but
you can’t tailor the printout with details such as page numbers. You’ll learn one way to get
around this restriction in the next section.

PRINTING ANNOTATIONS

WPF includes two classes that derive from DocumentPaginator. FlowDocumentPaginator paginates flow doc-
uments—it’s what you get when you examine the FlowDocument.DocumentPaginator property. Similarly,
FixedDocumentPaginator paginates XPS documents, and it’s used automatically by the XpsDocument class.
However, both of these classes are marked internal and aren’t accessible to your code. Instead, you can
interact with these paginators by using the members of the base DocumentPaginator class.

WPF includes just one public, concrete paginator class, AnnotationDocumentPaginator, which is used to
print a document with its associated annotations. (Chapter 19 discussed annotations.) AnnotationDocument-
Paginator is public so that you can create it, if necessary, to trigger a printout of an annotated document.

To use the AnnotationDocumentPaginator, you must wrap an existing DocumentPaginator in a new
AnnotationDocumentPaginator object. To do so, simply create an AnnotationDocumentPaginator, and pass in
two references. The first reference is the original paginator for your document, and the second reference is
the annotation store that contains all the annotations. Here’s an example:

// Get the ordinary paginator.
FlowDocument doc = ((IDocumentPaginatorSource)doc).DocumentPaginator;

// Get the (currently running) annotation service for a
// specific document container.
AnnotationService service = AnnotationService.GetService(docViewer);

// Create the paginator.
AnnotationDocumentPaginator paginator = new AnnotationDocumentPaginator(
doc, service.Store);

Now, you can print the document with the superimposed annotations (in their current minimized or maxi-
mized state) by calling PrintDialog.PrintDocument() and passing in the AnnotationDocumentPaginator object.

CHAPTER 20 ■ PRINTING 707

9551CH20 2/8/08 2:13 PM Page 707

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Manipulating the Pages in a Document Printout
You can gain a bit more control over how a FlowDocument is printed by creating your own
DocumentPaginator. As you might guess from its name, a DocumentPaginator divides the
content of a document into distinct pages for printing (or displaying in a page-based Flow-
Document viewer). The DocumentPaginator is responsible for returning the total number
of pages based on a given page size and providing the laid-out content for each page as a
DocumentPage object.

Your DocumentPaginator doesn’t need to be complex—in fact, it can simply wrap the
DocumentPaginator that’s provided by the FlowDocument and allow it to do all the hard work
of breaking the text up into individual pages. However, you can use your DocumentPaginator
to make minor alterations, such as adding a header and a footer. The basic trick is to intercept
every request the PrintDialog makes for a page and then alter that page before passing it
along.

The first ingredient of this solution is building a HeaderedFlowDocumentPaginator class
that derives from DocumentPaginator. Because DocumentPaginator is an abstract class,
HeaderedFlowDocument needs to implement several methods. However, HeaderedFlow-
Document can pass most of the work on to the standard DocumentPaginator that’s provided
by the FlowDocument.

Here’s the basic skeleton of the HeaderedFlowDocumentPaginator class:

public class HeaderedFlowDocumentPaginator : DocumentPaginator
{

// The real paginator (which does all the pagination work).
private DocumentPaginator flowDocumentPaginator;

// Store the FlowDocument paginator from the given document.
public HeaderedFlowDocumentPaginator(FlowDocument document)
{

flowDocumentPaginator =
((IDocumentPaginatorSource)document).DocumentPaginator;

}

public override bool IsPageCountValid
{

get { return flowDocumentPaginator.IsPageCountValid; }
}

public override int PageCount
{

get { return flowDocumentPaginator.PageCount; }
}

public override Size PageSize
{

get { return flowDocumentPaginator.PageSize; }
set { flowDocumentPaginator.PageSize = value; }

}

CHAPTER 20 ■ PRINTING708

9551CH20 2/8/08 2:13 PM Page 708

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public override IDocumentPaginatorSource Source
{

get { return flowDocumentPaginator.Source; }
}

public override DocumentPage GetPage(int pageNumber)
{ ... }

}

Because the HeaderedFlowDocumentPaginator hands off its work to its private
DocumentPaginator, this code doesn’t indicate how the PageSize, PageCount, and
IsPageCountValid properties work. The PageSize is set by the DocumentPaginator
consumer (the code that’s using the DocumentPaginator). This property tells the
DocumentPaginator how much space is available in each printed page (or onscreen).
The PageCount and IsPageCountValid properties are provided to the DocumentPaginator
consumer to indicate the pagination result. Whenever PageSize is changed, the
DocumentPaginator will recalculate the size of each page. (Later in this chapter, you’ll
see a more complete DocumentPaginator that was created from scratch and includes the
implementation details for these properties.)

The GetPage() method is where the action happens. This code calls the GetPage() method
of the real DocumentPaginator and then gets to work on the page. The basic strategy is to pull
the Visual object out of the page and place it in a new ContainerVisual object. You can then
add the text you want to that ContainerVisual. Finally, you can create a new DocumentPage
that wraps the ContainerVisual, with its newly inserted header.

■Note This code uses visual-layer programming (Chapter 14). That’s because you need a way to create
visuals that represent your printed output. You don’t need the full overhead of elements, which include event
handling, dependency properties, and other plumbing. Custom print routines (as described in the next sec-
tion) will almost always use visual-layer programming and the ContainerVisual, DrawingVisual, and
DrawingContext classes.

Here’s the complete code:

public override DocumentPage GetPage(int pageNumber)
{

// Get the requested page.
DocumentPage page = flowDocumentPaginator.GetPage(pageNumber);

// Wrap the page in a Visual object. You can then apply transformations
// and add other elements.
ContainerVisual newVisual = new ContainerVisual();
newVisual.Children.Add(page.Visual);

// Create a header.
DrawingVisual header = new DrawingVisual();
using (DrawingContext dc = header.RenderOpen())

CHAPTER 20 ■ PRINTING 709

9551CH20 2/8/08 2:13 PM Page 709

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
Typeface typeface = new Typeface("Times New Roman");
FormattedText text = new FormattedText("Page " +
(pageNumber + 1).ToString(), CultureInfo.CurrentCulture,
FlowDirection.LeftToRight, typeface, 14, Brushes.Black);

// Leave a quarter inch of space between the page edge and this text.
dc.DrawText(text, new Point(96*0.25, 96*0.25));

}

// Add the title to the visual.
newVisual.Children.Add(header);

// Wrap the visual in a new page.
DocumentPage newPage = new DocumentPage(newVisual);
return newPage;

}

This implementation assumes the page size doesn’t change because of the addition of
your header. Instead, the assumption is that there’s enough empty space in the margin to
accommodate the header. If you use this code with a small margin, the header will be printed
overtop of your document content. This is the same way headers work in programs such as
Microsoft Word. Headers aren’t considered part of the main document, and they’re positioned
separately from the main document content.

There’s one minor messy bit. You won’t be able to add the Visual object for the page to the
ContainerVisual while it’s displayed in a window. The workaround is to temporarily remove it
from the container, perform the printing, and then add it back.

FlowDocument document = docReader.Document;
docReader.Document = null;

HeaderedFlowDocumentPaginator paginator =
new HeaderedFlowDocumentPaginator(document);

printDialog.PrintDocument(paginator, "A Headered Flow Document");

docReader.Document = document;

The HeaderedFlowDocumentPaginator is used for the printing, but it’s not attached to the
FlowDocument, so it won’t change the way the document appears onscreen.

Custom Printing
By this point, you’ve probably realized the fundamental truth of WPF printing. You can use the
quick-and-dirty techniques described in the previous section to send content from a window
to your printer and even tweak it a bit. But if you want to build a first-rate printing feature for
your application, you’ll need to design it yourself.

CHAPTER 20 ■ PRINTING710

9551CH20 2/8/08 2:13 PM Page 710

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Printing with the Visual Layer Classes
The best way to construct a custom printout is to use the visual-layer classes. Two classes are
particularly useful:

• ContainerVisual is a stripped-down visual that can hold a collection of one or more
other Visual objects (in its Children collection).

• DrawingVisual derives from ContainerVisual and adds a RenderOpen() method and a
Drawing property. The RenderOpen() method creates a DrawingContext object that
you can use to draw content in the visual (such as text, shapes, and so on), and the
Drawing property lets you retrieve the final product as a DrawingGroup object.

Once you understand how to use these classes, the process for creating a custom printout
is fairly straightforward.

1. Create your DrawingVisual. (You can also create a ContainerVisual in the less common
case that you want to combine more than one separate drawn DrawingVisual object
on the same page.)

2. Call DrawingVisual.RenderOpen() to get the DrawingContext object.

3. Use the methods of the DrawingContext to create your output.

4. Close the DrawingContext. (If you’ve wrapped the DrawingContext in a using block,
this step is automatic.)

5. Using PrintDialog.PrintVisual() to send your visual to the printer.

Not only does this approach give you more flexibility than the print-an-element tech-
niques you’ve used so far, it also has less overhead.

Obviously, the key to making this work is knowing what methods the DrawingContext
class has for you to create your output. Table 20-1 describes the methods you can use. The
PushXxx() methods are particularly interesting, because they apply settings that will apply to
future drawing operations. You can use Pop() to reverse the most recent PushXxx() method.
If you call more than one PushXxx() method, you can switch them off one at a time with
subsequent Pop() calls.

Table 20-1. DrawingContext Methods

Name Description

DrawLine(), DrawRectangle(), Draws the specified shape at the point you specify, with the fill
DrawRoundedRectangle(), and outline you specify. These methods mirror the shapes you
and DrawEllipse() saw in Chapter 13.

DrawGeometry () and Draws more complex Geometry and Drawing objects. You saw
DrawDrawing() these in Chapter 14.

DrawText() Draws text at the specified location. You specify the text, font, fill,
and other details by passing a FormattedText object to this
method. You can use DrawText() to draw wrapped text if you set
the FormattedText.MaxTextWidth property.

DrawImage() Draws a bitmap image in a specific region (as defined by a Rect).

Continued

CHAPTER 20 ■ PRINTING 711

9551CH20 2/8/08 2:13 PM Page 711

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 20-1. Continued

Name Description

Pop() Reverse the last PushXxx() method that was called. You use the
PushXxx() method to temporarily apply one or more effects and
the Pop() method to reverse them.

PushClip() Limits drawing to a specific clip region. Content that falls outside
this region isn’t drawn.

PushEffect () Applies a BitmapEffect to subsequent drawing operations.

PushOpacity() Applies a new opacity setting to make subsequent drawing
operations partially transparent.

PushTransform() Sets a Transform object that will be applied to subsequent
drawing operations. You can use a transformation to scale,
displace, rotate, or skew content.

These are all the ingredients that are required to create a respectable printout (along with
a healthy dash of math to work out the optimum placement of all your content). The following
code uses this approach to center a block of formatted text on a page and add a border around
the page:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

// Create a visual for the page.
DrawingVisual visual = new DrawingVisual();

// Get the drawing context.
using (DrawingContext dc = visual.RenderOpen())
{

// Define the text you want to print.
FormattedText text = new FormattedText(txtContent.Text,
CultureInfo.CurrentCulture, FlowDirection.LeftToRight,
new Typeface("Calibri"), 20, Brushes.Black);

// You must pick a maximum width to use text wrapping.
text.MaxTextWidth = printDialog.PrintableAreaWidth / 2;

// Get the size required for the text.
Size textSize = new Size(text.Width, text.Height);

// Find the top-left corner where you want to place the text.
double margin = 96*0.25;
Point point = new Point(
(printDialog.PrintableAreaWidth - textSize.Width) / 2 - margin,
(printDialog.PrintableAreaHeight - textSize.Height) / 2 - margin);

// Draw the content.
dc.DrawText(text, point);

CHAPTER 20 ■ PRINTING712

9551CH20 2/8/08 2:13 PM Page 712

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Add a border (a rectangle with no background).
dc.DrawRectangle(null, new Pen(Brushes.Black, 1),
new Rect(margin, margin, printDialog.PrintableAreaWidth - margin * 2,
printDialog.PrintableAreaHeight - margin * 2));

}

// Print the visual.
printDialog.PrintVisual(visual, "A Custom-Printed Page");

}

■Tip To improve this code, you’ll probably want to move your drawing logic to a separate class (possibly
the document class that wraps the content you’re printing). You can then call a method in that class to get
your visual and pass the visual to the PrintVisual() method in the event handling in your window code.

Figure 20-6 shows the output.

Figure 20-6. A custom printout

CHAPTER 20 ■ PRINTING 713

9551CH20 2/8/08 2:13 PM Page 713

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Custom Printing with Multiple Pages
A visual can’t span pages. If you want a multipage printout, you need to use the same class
you used when printing a FlowDocument: the DocumentPaginator. The difference is that you
need to create the DocumentPaginator yourself from scratch. And this time you won’t have a
private DocumentPaginator on the inside to take care of all the heavy lifting.

Implementing the basic design of a DocumentPaginator is easy enough. You need to add
a method that splits your content into pages, and you need to store the information about
those pages internally. Then, you simply respond to the GetPage() method to provide the page
that the PrintDialog needs. Each page is generated as a DrawingVisual, but the DrawingVisual
is wrapped by the DocumentPage class.

The tricky part is separating your content into pages. There’s no WPF magic here—it’s up to
you to decide how to divide your content. Some content is relatively easy to separate (like the
long table you’ll see in the next example), while some types of content are much more problem-
atic. For example, if you want to print a long, text-based document, you’ll need to move word by
word through all your text, adding words to lines and lines to pages. You’ll need to measure each
separate piece of text to see whether it fits in the line. And that’s just to split text content using
ordinary left justification—if you want something comparable to the best-fit justification used
for the FlowDocument, you’re better off using the PrintDialog.PrintDocument() method, as
described earlier, because there’s a huge amount of code to write and some very specialized
algorithms to use.

The following example demonstrates a typical not-too-difficult pagination job. The con-
tents of a DataTable are printed in a tabular structure, putting each record on a separate row.
The rows are split into pages based on how many lines fit on a page using the chosen font.
Figure 20-7 shows the final result.

Figure 20-7. A table of data split over two pages

CHAPTER 20 ■ PRINTING714

9551CH20 2/8/08 2:13 PM Page 714

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 20 ■ PRINTING 715

In this example, the custom DocumentPaginator contains the code for splitting the data
into pages and the code for printing each page to a Visual object. Although you could factor
this into two classes (for example, if you want to allow the same data to be printed in the same
way but paginated differently), usually you won’t because the code required to calculate the
page size is tightly bound to the code that actually prints the page.

The custom DocumentPaginator implementation is fairly long, so I’ll break it down piece
by piece. First, the StoreDataSetPaginator stores a few important details in private variables,
including the DataTable that you plan to print and the chosen typeface, font size, page size,
and margin:

public class StoreDataSetPaginator : DocumentPaginator
{

private DataTable dt;

private Typeface typeface;
private double fontSize;
private double margin;

private Size pageSize;
public override Size PageSize
{

get { return pageSize; }
set
{

pageSize = value;
PaginateData();

}
}

public StoreDataSetPaginator(DataTable dt, Typeface typeface,
double fontSize, double margin, Size pageSize)

{
this.dt = dt;
this.typeface = typeface;
this.fontSize = fontSize;
this.margin = margin;
this.pageSize = pageSize;
PaginateData();

}
...

Notice that these details are supplied in the constructor and then can’t be changed.
The only exception is the PageSize property, which is a required abstract property from the
DocumentPaginator class. You could create properties to wrap the other details if you wanted
to allow your code to alter these details after creating the paginator. You’d simply need to make
sure you call PaginateData() when any of these details are changed.

9551CH20 2/8/08 2:13 PM Page 715

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The PaginateData() isn’t a required member. It’s just a handy place to calculate how many
pages are needed. The StoreDataSetPaginator paginates its data as soon as the DataTable is
supplied in the constructor.

When the PaginateData() method runs, it measures the amount of space required for a
line of text and compares that against the size of the page to find out how many lines will fit on
each page. The result is stored in a field named rowsPerPage.

...
private int rowsPerPage;
private int pageCount;

private void PaginateData()
{

// Create a test string for the purposes of measurement.
FormattedText text = GetFormattedText("A");

// Count the lines that fit on a page.
rowsPerPage = (int)((pageSize.Height-margin*2) / text.Height);

// Leave a row for the headings
rowsPerPage -= 1;

pageCount = (int)Math.Ceiling((double)dt.Rows.Count / rowsPerPage);
}
...

This code assumes that a capital letter A is sufficient for calculating the line height. How-
ever, this might not be true for all fonts, in which case you’d need to pass a string that includes
a complete list of all characters, numbers, and punctuation to GetFormattedText().

■Note To calculate the number of lines that fit on a page, you use the FormattedText.Height property. You
don’t use FormattedText.LineHeight, which is 0 by default. The LineHeight property is provided for you to
override the default line spacing when drawing a block with multiple lines of text. However, if you don’t set
it, the FormattedText class uses its own calculation, which uses the Height property.

In some cases, you’ll need to do a bit more work and store a custom object for each page
(for example an array of strings with the text for each line). However, this isn’t required in the
StoreDataSetPaginator example because all the lines are the same, and there isn’t any text
wrapping to worry about.

The PaginateData() uses a private helper method named GetFormattedText(). When
printing text, you’ll find that you need to construct a great number of FormattedText objects.
These FormattedText objects will always share the same culture and left-to-right text flow
options. In many cases, they’ll also use the same typeface. The GetFormattedText() encapsu-
lates these details and so simplifies the rest of your code. The StoreDataSetPaginator uses two
overloaded versions of GetFormattedText(), one of which accepts a different typeface to use:

CHAPTER 20 ■ PRINTING716

9551CH20 2/8/08 2:13 PM Page 716

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

...
private FormattedText GetFormattedText(string text)
{

return GetFormattedText(text, typeface);
}
private FormattedText GetFormattedText(string text, Typeface typeface)
{

return new FormattedText(
text, CultureInfo.CurrentCulture, FlowDirection.LeftToRight,
typeface, fontSize, Brushes.Black);

}
...

Now that you have the number of pages, you can implement the remainder of the
required DocumentPaginator properties:

...
// Always returns true, because the page count is updated immediately,
// and synchronously, when the page size changes.
// It's never left in an indeterminate state.
public override bool IsPageCountValid
{

get { return true; }
}

public override int PageCount
{

get { return pageCount; }
}

public override IDocumentPaginatorSource Source
{

get { return null; }
}
...

There’s no factory class that can create this custom DocumentPaginator, so the Source
property returns null.

The last implementation detail is also the longest. The GetPage() method returns a
DocumentPage object for the requested page, with all the data.

The first step is to find the position where the two columns will begin. This example sizes
the columns relative to the width of one capital letter A, which is a handy shortcut when you
don’t want to perform more detailed calculations.

...
public override DocumentPage GetPage(int pageNumber)
{

// Create a test string for the purposes of measurement.
FormattedText text = GetFormattedText("A");

CHAPTER 20 ■ PRINTING 717

9551CH20 2/8/08 2:13 PM Page 717

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

double col1_X = margin;
double col2_X = col1_X + text.Width * 15;
...

The next step is to find the offsets that identify the range of records that belong on this page:

...

// Calculate the range of rows that fits on this page.
int minRow = pageNumber * rowsPerPage;
int maxRow = minRow + rowsPerPage;
...

Now the print operation can begin. There are three elements to print: column headers, a
separating line, and the rows. The underlined header is drawn using DrawText() and Draw-
Line() methods from the DrawingContext class. For the rows, the code loops from the first row
to the last row, drawing the text from the corresponding DataRow in the two columns and
then increasing the Y-coordinate position by an amount equal to the line height of the text.

...
// Create the visual for the page.
DrawingVisual visual = new DrawingVisual();

// Initial, set the position to the top-left corner of the printable area.
Point point = new Point(margin, margin);

using (DrawingContext dc = visual.RenderOpen())
{

// Draw the column headers.
Typeface columnHeaderTypeface = new Typeface(
typeface.FontFamily, FontStyles.Normal, FontWeights.Bold,
FontStretches.Normal);

point.X = col1_X;
text = GetFormattedText("Model Number", columnHeaderTypeface);
dc.DrawText(text, point);
text = GetFormattedText("Model Name", columnHeaderTypeface);
point.X = col2_X;
dc.DrawText(text, point);

// Draw the line underneath.
dc.DrawLine(new Pen(Brushes.Black, 2),
new Point(margin, margin + text.Height),
new Point(pageSize.Width - margin, margin + text.Height));

point.Y += text.Height;

// Draw the column values.
for (int i = minRow; i < maxRow; i++)

CHAPTER 20 ■ PRINTING718

9551CH20 2/8/08 2:13 PM Page 718

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
// Check for the end of the last (half-filled) page.
if (i > (dt.Rows.Count - 1)) break;

point.X = col1_X;
text = GetFormattedText(dt.Rows[i]["ModelNumber"].ToString());
dc.DrawText(text, point);

// Add second column.
text = GetFormattedText(dt.Rows[i]["ModelName"].ToString());
point.X = col2_X;
dc.DrawText(text, point);
point.Y += text.Height;

}
}
return new DocumentPage(visual);

}

Now that the StoreDateSetDocumentPaginator is complete, you can use it whenever you
want to print the contents of the DataTable with the product list, as shown here:

PrintDialog printDialog = new PrintDialog();
if (printDialog.ShowDialog() == true)
{

StoreDataSetPaginator paginator = new StoreDataSetPaginator(ds.Tables[0],
new Typeface("Calibri"), 24, 96*0.75,
new Size(printDialog.PrintableAreaWidth, printDialog.PrintableAreaHeight));

printDialog.PrintDocument(paginator, "Custom-Printed Pages");
}

The StoreDataSetPaginator has a certain amount of flexibility built in—for example, it can
work with different fonts, margins, and paper sizes—but it can’t deal with data that has a dif-
ferent schema. Clearly, there’s still room in the WPF library for a handy class that could accept
data, column and row definitions, headers and footers, and so on, and then print a properly
paginated table. WPF doesn’t have anything like this currently, but you can expect third-party
vendors to provide components that fill the gaps.

Print Settings and Management
So far, you’ve focused all your attention on two methods of the PrintDialog class: PrintVisual()
and PrintDocument(). This is all you need to use to get a decent printout, but you have more
to do if you want to manage printer settings and jobs. Once again, the PrintDialog class is your
starting point.

CHAPTER 20 ■ PRINTING 719

9551CH20 2/8/08 2:13 PM Page 719

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Maintaining Print Settings
In the previous examples, you saw how the PrintDialog class allows you to choose a printer
and its settings. However, if you’ve used these examples to make more than one printout, you
may have noticed a slight anomaly. Each time you return to the Print dialog box, it reverts to
the default print settings. You need to pick the printer you want and adjust it all over again.

Life doesn’t need to be this difficult. You have the ability to store this information and
reuse it. One good approach is to store the PrintDialog as a member variable in your window.
That way, you don’t need to create the PrintDialog before each new print operation—you just
keep using the existing object. This works because the PrintDialog encapsulates the printer
selection and printer settings through two properties: PrintQueue and PrintTicket.

The PrintQueue property refers to a System.Printing.PrintQueue object, which represents
the print queue for the selected printer. And as you’ll discover in the next section, the Print-
Queue also encapsulates a good deal of features for managing your printer and its jobs.

The PrintTicket property refers to a System.Printing.PrintTicket object, which defines the
settings for a print job. It includes details such as print resolution and duplexing. If you want,
you’re free to tweak the settings of a PrintTicket programmatically. The PrintTicket class even
has a GetXmlStream() method and a SaveTo() method, both of which let you serialize the
ticket to a stream, and a constructor that lets you re-create a PrintTicket object based on the
stream. This is an interesting option if you want to persist specific print settings between
application sessions. (For example, you could use this ability to create a “print profile” fea-
ture.)

As long as these PrintQueue and PrintTicket properties remain consistent, the selected
printer and its properties will remain the same each time you show the Print dialog box. So
even if you need to create the PrintDialog box multiple times, you can simply set these proper-
ties to keep the user’s selections.

Printing Page Ranges
You haven’t yet considered one of the features in the PrintDialog class. You can allow the user
to choose to print only a subset of a larger printout using the Pages text box in the Page Range
box. The Pages text box lets the user specify a group of pages by entering the starting and end-
ing page (for example, 4–6) or pick a specific page (for example, 4). It doesn’t allow multiple
page ranges (such as 1–3,5).

The Pages text box is disabled by default. To switch it on, you simply need to set the Print-
Dialog.UserPageRangeEnabled property to true before you call ShowDialog(). The Selection
and Current Page options will remain disabled, because they aren’t supported by the Print-
Dialog class. You can also set the MaxPage and MinPage properties to constrain the pages that
the user can pick.

After you’ve shown the Print dialog box, you can determine whether the user entered a
page range by checking the PageRangeSelection property. If it provides a value of UserPages,
there’s a page range present. The PageRange property provides a PageRange property that
indicates the starting page (PageRange.PageFrom) and ending page (PageRange.PageTo). It’s
up to your printing code to take these values into account and print only the requested pages.

CHAPTER 20 ■ PRINTING720

9551CH20 2/8/08 2:13 PM Page 720

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Managing a Print Queue
Typically, a client application has a limited amount of interaction with the print queue. After a
job is dispatched, you may want to display its status or (rarely) provide the option to pause,
resume, or cancel the job. The WPF print classes go far beyond this level and allow you to build
tools that can manage local or remote print queues.

The classes in the System.Printing namespace provide the support for managing print
queues. You can use a few key classes to do most of the work, and they’re outlined in Table 20-2.

Table 20-2. Key Classes for Print Management

Name Description

PrintServer and LocalPrintServer Represents a computer that provides printers or another
device that does. (This “other device” might include a printer
with built-in networking or a dedicated piece of network
hardware that acts as a print server.) Using the PrintServer
class, you can get a collection of PrintQueue objects for that
computer. You can also use the LocalPrintServer class, which
derives from PrintServer and always represents the current
computer. It adds a DefaultPrintQueue property that you can
use to get (or set) the default printer and a static GetDefault-
PrintQueue() method that you can use without creating a
LocalPrintServer instance.

PrintQueue Represents a configured printer on a print server. The
PrintQueue class allows you to get information about that
printer’s status and manage the print queue. You can also get
a collection of PrintQueueJobInfo objects for that printer.

PrintSystemJobInfo Represents a job that’s been submitted to a print queue. You
can get information about its status and modify its state or
delete it.

Using these basic ingredients, you can create a program that launches a printout without
any user intervention.

PrintDialog dialog = new PrintDialog();

// Pick the default printer.
dialog.PrintQueue = LocalPrintServer.GetDefaultPrintQueue();

// Print something.
dialog.PrintDocument(someContent, "Automatic Printout");

You can also create and apply a PrintTicket object to the PrintDialog to configure other
print-related settings. More interestingly, you can delve deeper in the PrintServer, PrintQueue,
and PrintSystemJobInfo classes to study what’s taking place.

CHAPTER 20 ■ PRINTING 721

9551CH20 2/8/08 2:13 PM Page 721

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 20-8 shows a simple program that allows you to browse the print queues on the
current computer and see the outstanding jobs for each one. This program also allows you to
perform some basic printer management tasks, such as suspending a printer (or a print job),
resuming the printer (or print job), and canceling one job or all the jobs in a queue. By consid-
ering how this application works, you can learn the basics of the WPF print management
model.

Figure 20-8. Browsing printer queues and jobs

This example uses a single PrintServer object, which is created as member field in the
window class:

private PrintServer printServer = new PrintServer();

When you create a PrintServer object without passing any arguments to the constructor,
the PrintServer represents the current computer. Alternatively, you could pass the UNC path
that points to a print server on the network, like this:

private PrintServer printServer = new PrintServer(\\Warehouse\PrintServer);

Using the PrintServer object, the code grabs a list of print queues that represent the print-
ers that are configured on the current computer. This step is easy—all you need to do is call
the PrintServer.GetPrintQueues() method when the window is first loaded:

private void Window_Loaded(object sender, EventArgs e)
{

lstQueues.DisplayMemberPath = "FullName";

CHAPTER 20 ■ PRINTING722

9551CH20 2/8/08 2:13 PM Page 722

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

lstQueues.SelectedValuePath = "FullName";
lstQueues.ItemsSource = printServer.GetPrintQueues();

}

The only piece of information this code snippet uses is the PrintQueue.FullName prop-
erty. However, the PrintQueue class is stuffed with properties you can examine. You can get
the default print settings (using properties such as DefaultPriority, DefaultPrintTicket, and so
on), you can get the status and general information (using properties such as QueueStatus
and NumberOfJobs), and you can isolate specific problems using Boolean IsXxx and HasXxx
properties (such as IsManualFeedRequired, IsWarmingUp, IsPaperJammed, IsOutOfPaper,
HasPaperProblem, and NeedUserIntervention).

The current example reacts when a printer is selected in the list by displaying the status
for that printer and then fetching all the jobs in the queue. The PrintQueue.GetPrintJobInfo-
Collection() performs this task.

private void lstQueues_SelectionChanged(object sender, SelectionChangedEventArgs e)
{

try
{

PrintQueue queue =
printServer.GetPrintQueue(lstQueues.SelectedValue.ToString());

lblQueueStatus.Text = "Queue Status: " + queue.QueueStatus.ToString();
lstJobs.DisplayMemberPath = "JobName";
lstJobs.SelectedValuePath = "JobIdentifier";

lstJobs.ItemsSource = queue.GetPrintJobInfoCollection();
}
catch (Exception err)
{

MessageBox.Show(err.Message,
"Error on " + lstQueues.SelectedValue.ToString());

}
}

Each job is represented as a PrintSystemJobInfo object. When a job is selected in the list,
this code shows its status:

private void lstJobs_SelectionChanged(object sender, SelectionChangedEventArgs e)
{

if (lstJobs.SelectedValue == null)
{

lblJobStatus.Text = "";
}
else
{

PrintQueue queue =
printServer.GetPrintQueue(lstQueues.SelectedValue.ToString());

PrintSystemJobInfo job = queue.GetJob((int)lstJobs.SelectedValue);

CHAPTER 20 ■ PRINTING 723

9551CH20 2/8/08 2:13 PM Page 723

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

lblJobStatus.Text = "Job Status: " + job.JobStatus.ToString();
}

}

The only remaining detail is the event handlers that manipulate the queue or job when
you click one of the buttons in the window. This code is extremely straightforward. All you
need to do is get a reference to the appropriate queue or job and then call the corresponding
method. For example, here’s how to pause a PrintQueue:

PrintQueue queue = printServer.GetPrintQueue(lstQueues.SelectedValue.ToString());
queue.Pause();

And here’s how to pause a print job:

PrintQueue queue = printServer.GetPrintQueue(lstQueues.SelectedValue.ToString());
PrintSystemJobInfo job = queue.GetJob((int)lstJobs.SelectedValue);
job.Pause();

■Note It’s possible to pause (and resume) an entire printer or a single job. You can do both tasks using the
Printers icon in the Control Panel. Right-click a printer to pause or resume a queue, or double-click a printer
to see its jobs, which you can manipulate individually.

Obviously, you’ll need to add error handling when you perform this sort of task, because it
won’t necessarily succeed. For example, Windows security might stop you from attempting to
cancel someone else’s print job or an error might occur if you try to print to a networked
printer after you’ve lost your connection to the network.

WPF includes quite a bit of print-related functionality. If you’re interested in using this
specialized functionality (perhaps because you’re building some sort of tool or creating a
long-running background task), check out the classes in the System.Printing namespace in
the .NET SDK.

Printing Through XPS
As you learned in Chapter 19, WPF supports two complementary types of documents. Flow
documents handle flexible content that flows to fit any page size you specify. XPS documents
store print-ready content that’s based on a fixed-page size. The content is frozen in place and
preserved in its precise, original form.

As you’d expect, printing an XpsDocument is easy. The XpsDocument class exposes a
DocumentPaginator, just like the FlowDocument. However, the DocumentPaginator of an
XpsDocument has little to do, because the content is already laid out in fixed, unchanging
pages.

Here’s the code you might use to load an XPS file into memory, show it in a Document-
Viewer, and then send it to the printer:

CHAPTER 20 ■ PRINTING724

9551CH20 2/8/08 2:13 PM Page 724

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Display the document.
XpsDocument doc = new XpsDocument("filename.xps", FileAccess.ReadWrite);
docViewer.Document = doc.GetFixedDocumentSequence();
doc.Close();

// Print the document.
if (printDialog.ShowDialog() == true)
{

printDialog.PrintDocument(docViewer.Document.DocumentPaginator,
"A Fixed Document");

}

Obviously, you don’t need to show a fixed document in a DocumentViewer before you
print it. This code includes that step because it’s the most common option. In many scenarios,
you’ll load up the XpsDocument for review and print it after the user clicks a button.

As with the viewers for FlowDocument objects, the DocumentViewer also handles the
ApplicationCommands.Print command, which means you can send an XPS document from
the DocumentViewer to the printer with no code required.

XPS SUPPORT ON WINDOWS XP

XPS document support is a built-in part of the .NET Framework 3.0. However, the ability to print XPS content
directly is a Windows Vista feature, because it requires the XPS printing model. Furthermore, the XPS print
path requires an XPS-enabled print driver, and these aren’t broadly available for older printers.

Fortunately, WPF includes an interoperability layer that ensures you can print XPS content on either
operating system without any noticeable differences. When printing XPS content on Windows Vista with an
XPS-enabled print driver, WPF uses the XPS print path. When printing without an XPS-enabled print driver,
WPF performs some behind-the-scenes translation that seamlessly converts the XPS content to the GDI
model used by traditional printer drivers.

Creating an XPS Document for a Print Preview
WPF also includes all the support you need to programmatically create XPS documents. Creat-
ing an XPS document is conceptually similar to printing some content—once you’ve built
your XPS document, you’ve chosen a fixed page size and frozen your layout. So why bother
taking this extra step? There are two good reasons:

• Print preview. You can use your generated XPS document as a print preview by display-
ing it in a DocumentViewer. The user can then choose whether to go ahead with the
printout.

• Asynchronous printing. The XpsDocumentWriter class includes both a Write() method
for synchronous printing and a WriteAsync() method that lets you send content to the
printer asynchronously. For a long, complex print operation, the asynchronous option
is preferred. It allows you to create a more responsive application.

CHAPTER 20 ■ PRINTING 725

9551CH20 2/8/08 2:13 PM Page 725

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The only limitation when creating an XPS document is that you need to write it to a file.
You can’t simply create an XPS document in memory. You may want to use a method like
Path.GetTempFileName() to get a suitable temporary file path.

The basic technique for creating an XPS document is create an XpsDocumentWriter
object using the static XpsDocument.CreateXpsDocumentWriter () method. Here’s an
example:

XpsDocument xpsDocument = new XpsDocument("filename.xps", FileAccess.ReadWrite);
XpsDocumentWriter writer = XpsDocument.CreateXpsDocumentWriter(xpsDocument);

The XpsDocumentWriter is a stripped-down class—its functionality revolves around the
Write() and WriteAsync() methods that write content to your XPS document. Both of these
methods are overloaded multiple times, allowing you to write different types of content,
including another XPS document, a page that you’ve extracted from an XPS document, a
visual (which allows you to write any element), and a DocumentPaginator. The last two
options are the most interesting, because they duplicate the options you have with printing.
For example, if you’ve created a DocumentPaginator to enable custom printing (as described
earlier in this chapter), you can also use it to write an XPS document.

Here’s an example that opens an existing flow document and then writes it in the
XpsDocumentWriter using the Write() method. The newly created XPS document is then
displayed in a DocumentViewer, which acts as a print preview.

using (FileStream fs = File.Open("FlowDocument1.xaml", FileMode.Open))
{

FlowDocument flowDocument = (FlowDocument)XamlReader.Load(fs);
writer.Write(((IDocumentPaginatorSource)flowDocument).DocumentPaginator);

// Display the new XPS document in a viewer.
docViewer.Document = xpsDocument.GetFixedDocumentSequence();
xpsDocument.Close();

}

You can get a visual or paginator in a WPF application in an endless variety of ways.
Because the XpsDocumentWriter supports these classes, it allows you to write any WPF
content to an XPS document.

Printing Directly to the Printer via XPS
As you’ve learned in this chapter, the printing support in WPF is built on the XPS print path. If
you use the PrintDialog class, you might not see any sign of this low-level reality. If you use the
XpsDocumentWriter, it’s impossible to miss.

So far, you’ve been funneling all your printing through the PrintDialog class. This isn’t
necessary—in fact, the PrintDialog delegates the real work to the XpsDocumentWriter. The
trick is to create an XpsDocumentWriter that wraps a PrintQueue rather than a FileStream.
The actual code for writing the printed output is identical—you simply rely on the Write() and
WriteAsync() methods.

CHAPTER 20 ■ PRINTING726

9551CH20 2/8/08 2:13 PM Page 726

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s a snippet of code that shows the Print dialog box, gets the selected printer, and uses
it to create an XpsDocumentWriter that submits the print job:

string filePath = Path.Combine(appPath, "FlowDocument1.xaml");

if (printDialog.ShowDialog() == true)
{

PrintQueue queue = printDialog.PrintQueue;
XpsDocumentWriter writer = PrintQueue.CreateXpsDocumentWriter(queue);

using (FileStream fs = File.Open(filePath, FileMode.Open))
{

FlowDocument flowDocument = (FlowDocument)XamlReader.Load(fs);
writer.Write(((IDocumentPaginatorSource)flowDocument).DocumentPaginator);

}
}

Interestingly, this example still uses the PrintDialog class. However, it simply uses it to dis-
play the standard Print dialog box and allow the user to choose a printer. The actual printing is
performed through the XpsDocumentWriter.

Asynchronous Printing
The XpsDocumentWriter makes asynchronous printing easy. In fact, you can convert the pre-
vious example to use asynchronous printing by simply replacing the call to the Write() method
with a call to WriteAsync().

■Note In Windows, all print jobs are printed asynchronously. However, the process of submitting the print
job takes place synchronously if you use Write() and asynchronously if you use WriteAsync(). In many cases,
the time taken to submit a print job won’t be significant, and you won’t need this feature. Another considera-
tion is that if you want to build (and paginate) the content you want to print asynchronously, this is often the
most time-consuming stage of printing, and if you want this ability, you’ll need to write the code that runs
your printing logic on a background thread. You can use the techniques described in Chapter 3 (such as the
BackgroundWorker) to make this process relatively easy.

The signature of the WriteAsync() method matches the signature of the Write() method—
in other words, WriteAsync() accepts a paginator, visual, or one of a few other types of objects.
Additionally, the WriteAsync() method includes overloads that accept an optional second
parameter with state information. This state information can be any object you want to use to
identify the print job. This object is provided through the WritingCompletedEventArgs object
when the WritingCompleted event fires. This allows you to fire off multiple print jobs at once,
handle the WritingCompleted event for each one with the same event handler, and determine
which one has been submitted each time the event fires.

CHAPTER 20 ■ PRINTING 727

9551CH20 2/8/08 2:13 PM Page 727

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 20 ■ PRINTING728

When an asynchronous print job is underway, you can cancel it by calling the Cancel-
Async() method. The XpsDocumentWriter also includes a small set of events that allow you to
react as a print job is submitted, including WritingProgressChanged, WritingCompleted, and
WritingCancelled. Keep in mind that the WritingCompleted event fires when the print job has
been written to the print queue, but this doesn’t mean the printer has printed it yet.

The Last Word
In this chapter, you learned about the new printing model that’s introduced in WPF. First you
considered the easiest entry point: the all-in-one PrintDialog class that allows users to config-
ure print settings and allows your application to send a document or visual to the printer.
After considering a variety of ways to extend the PrintDialog and use it with onscreen and
dynamically generated content, you looked at the lower-level XPS printing model. You then
learned about the XpsDocumentWriter, which supports the PrintDialog and can be used inde-
pendently. The XpsDocumentWriter gives you an easy way to create a print preview (because
WPF doesn’t include any print preview control), and it allows you to submit your print job
asynchronously.

9551CH20 2/8/08 2:13 PM Page 728

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Animation

Animation allows you to create truly dynamic user interfaces. It’s often used to apply
effects—for example, icons that grow when you move over them, logos that spin, text that
scrolls into view, and so on. Sometimes, these effects seem like excessive glitz. But used
properly, animations can enhance an application in a number of ways. They can make an
application seem more responsive, natural, and intuitive. (For example, a button that slides
in when you click it feels like a real, physical button—not just another gray rectangle.) Anima-
tions can also draw attention to important elements and guide the user through transitions to
new content. (For example, an application could advertise newly downloaded content with a
twinkling, blinking, or pulsing icon in the status bar.)

Animations are a core part of the WPF model. That means you don’t need to use timers
and event handling code to put them into action. Instead, you can create them declaratively,
configure them using one of a handful of classes, and put them into action without writing a
single line of C# code. Animations also integrate themselves seamlessly into ordinary WPF
windows and pages. For example, if you animate a button so it drifts around the window, the
button still behaves like a button. It can be styled, it can receive focus, and it can be clicked to
fire off the typical event handling code. This is what separates animation from traditional
media files, such as video. (In Chapter 22, you’ll learn how to put a video window in your
application. A video window is a completely separate region of your application—it’s able to
play video content, but it’s not user interactive.)

In this chapter, you’ll consider the rich set of animation classes that WPF provides. You’ll
see how to use them in code and (more commonly) how to construct and control them with
XAML. Along the way, you’ll see a wide range of animation examples, including fading pic-
tures, rotating buttons, and expanding elements.

Understanding WPF Animation
In previous Windows-based platforms (such as Windows Forms and MFC), developers had to
build their own animation systems from scratch. The most common technique was to use a
timer in conjunction with some custom painting logic. WPF changes the game with a new
property-based animation system. The following two sections describe the difference.

729

C H A P T E R 2 1

■ ■ ■

9551CH21 2/8/08 2:14 PM Page 729

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Timer-Based Animation
Imagine you need to make a piece of text spin in the About box of a Windows Forms applica-
tion. Here’s the traditional way you would structure your solution:

1. Create a timer that fires periodically (say, every 50 milliseconds).

2. When the timer fires, use an event handler to calculate some animation-related
details, such as the new degree of rotation. Then, invalidate part or all of the window.

3. Shortly thereafter, Windows will ask the window to repaint itself, triggering your cus-
tom painting code.

4. In your painting code, render the rotated text.

Although this timer-based solution isn’t very difficult to implement, integrating it into an
ordinary application window is more trouble than it’s worth. Here are some of the problems:

• It paints pixels, not controls. To rotate text in Windows Forms, you need the lower-level
GDI+ drawing support. It’s easy enough to use, but it doesn’t mix well with ordinary
window elements, such as buttons, text boxes, labels, and so on. As a result, you need
to segregate your animated content from your controls, and you can’t incorporate any
user-interactive elements into an animation. If you want a rotating button, you’re out
of luck.

• It assumes a single animation. If you decide you want to have two animations running
at the same time, you need to rewrite all your animation code—and it could become
much more complex. WPF is much more powerful in this regard, allowing you to build
more complex animations out of individual, simpler animations.

• The animation frame rate is fixed. It’s whatever the timer is set at. And if you change
the timer interval, you might need to change your animation code (depending on how
your calculations are performed). Furthermore, the fixed frame rate you choose is not
necessarily the ideal one for the computer’s video hardware.

• Complex animations require exponentially more complex code. The spinning text
example is easy enough, but moving a small vector drawing along a path is quite a bit
more difficult. In WPF, even intricate animations can be defined in XAML (and gener-
ated with a third-party design tool).

Even without WPF’s animation support, you can already simplify the spinning text exam-
ple. That’s because WPF provides a retained graphics model, which ensures that a window is
automatically rerendered when it changes. This means you don’t need to worry about invali-
dating and repainting it yourself. Instead, the following steps work just fine:

1. Create a timer that fires periodically. (WPF provides a System.Windows.Threading.
DispatcherTimer that works on the user interface thread.)

2. When the timer fires, use an event handler to calculate some animation-related
details, such as the new degree of rotation. Then, modify the corresponding elements.

3. WPF notices the changes you’ve made to the elements in your window. It then repaints
(and caches) the new window content.

CHAPTER 21 ■ ANIMATION730

9551CH21 2/8/08 2:14 PM Page 730

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

With this new solution, you don’t need to fiddle with low-level drawing classes, and you
don’t need to segregate your animated content from ordinary elements in the same window.

Although this is an improvement, timer-based animation still suffers from several flaws:
it results in code that isn’t very flexible, it becomes horribly messy for complex effects, and it
doesn’t get the best possible performance. Instead, WPF includes a higher-level model that
allows you to focus on defining your animations, without worrying about the way they’re ren-
dered. This model is based on the dependency property infrastructure, which is described in
the next section.

Property-Based Animation
Often, an animation is thought of as a series of frames. To perform the animation, these
frames are shown one after the other, like a stop-motion video. WPF animations use a dramat-
ically different model. Essentially, a WPF animation is simply a way to modify the value of a
dependency property over an interval of time.

For example, to make a button that grows and shrinks, you can modify its Width property
in an animation. To make it shimmer, you could change the properties of the LinearGradient-
Brush that it uses for its background. The secret to creating the right animation is determining
what properties you need to modify.

If you want to make other changes that can’t be made by modifying a property, you’re out
of luck. For example, you can’t add or remove elements as part of animation. Similarly, you
can’t ask WPF to perform a transition between a starting scene and an ending scene (although
some crafty workarounds can simulate this effect). And finally, you can use animation only
with a dependency property, because only dependency properties use the dynamic property
resolution system (described in Chapter 6) that takes animations into account.

At first glance, the property-focused nature of WPF animations seems terribly limiting.
However, as you work with WPF, you’ll find that it’s surprisingly capable. In fact, you can create
a wide range of animated effects using common properties that every element supports.

That said, there are many cases where the property-based animation system won’t work.
As a rule of thumb, the property-based animation is a great way to add dynamic effects to oth-
erwise ordinary Windows applications. For example, if you want a slick front end for your
interactive shopping tool, property-based animations will work perfectly well. However, if you
need to use animations as part of the core purpose of your application and you want them to
continue running over the lifetime of your application, you probably need something more
flexible and more powerful. For example, if you’re creating a basic arcade game or using com-
plex physics calculations to model collisions, you’ll need greater control over the animation.
In these situations, you’ll be forced to do most of the work yourself using WPF’s lower-level
frame-based rendering support, which is described at the end of this chapter.

Basic Animation
You’ve already learned the first rule of WPF animation—every animation acts on a single
dependency property. However, there’s another restriction. To animate a property (in other
words, change its value in a time-dependent way), you need to have an animation class that
supports its data type. For example, the Button.Width property uses the double data type. To
animate it, you use the DoubleAnimation class. However, Button.Padding uses the Thickness
structure, so it requires the ThicknessAnimation class.

CHAPTER 21 ■ ANIMATION 731

9551CH21 2/8/08 2:14 PM Page 731

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This requirement isn’t as absolute as the first rule of WPF animation, which limits anima-
tions to dependency properties. That’s because you can animate a dependency property that
doesn’t have a corresponding animation class by creating your own animation class for that
data type. However, you’ll find that the System.Windows.Media.Animation namespace
includes animation classes for most of the data types that you’ll want to use.

Many data types don’t have a corresponding animation class because it wouldn’t be
practical. A prime example is enumerations. For example, you can control how an element is
placed in a layout panel using the HorizontalAlignment property, which takes a value from the
HorizontalAlignment enumeration. However, the HorizontalAlignment enumeration allows
you to choose between only four values (Left, Right, Center, and Stretch), which greatly limits
its use in an animation. Although you can swap between one orientation and another, you
can’t smoothly transition an element from one alignment to another. For that reason, there’s
no animation class for the HorizontalAlignment data type. You can build one yourself, but
you’re still constrained by the four values of the enumeration.

Reference types are not usually animated. However, their subproperties are. For example,
all content controls sport a Background property that allows you to set a Brush object that’s
used to paint the background. It’s rarely efficient to use animation to switch from one brush to
another, but you can use animation to vary the properties of a brush. For example, you could
vary the Color property of a SolidColorBrush (using the ColorAnimation class) or the Offset
property of a GradientStop in a LinearGradientBrush (using the DoubleAnimation class). This
extends the reach of WPF animation, allowing you to animate specific aspects of an element’s
appearance.

The Animation Classes
Based on the animation types mentioned so far—DoubleAnimation and ColorAnimation—
you might assume all animation classes are named in the form TypeNameAnimation. This is
close but not exactly true.

There are actually two types of animations—those that vary a property incrementally
between the starting and finishing values (a process called linear interpolation) and those that
abruptly change a property from one value to another. DoubleAnimation and ColorAnimation
are examples of the first category; they use interpolation to smoothly change the value. How-
ever, interpolation doesn’t make sense when changing certain data types, such as strings and
reference type objects. Rather than use interpolation, these data types are changed abruptly at
specific times using a technique called key frame animation. All key frame animation classes
are named in the form TypeNameAnimationUsingKeyFrames, as in StringAnimationUsing-
KeyFrames and ObjectAnimationUsingKeyFrames.

Some data types have a key frame animation class but no interpolation animation class.
For example, you can animate a string using key frames, but you can’t animate a string using
interpolation. However, every data type supports key frame animations, unless they have no
animation support at all. In other words, every data type that has a normal animation class
that uses interpolation (such as DoubleAnimation and ColorAnimation) also has a correspon-
ding animation type for key frame animation (such as DoubleAnimationUsingKeyFrames and
ColorAnimationUsingKeyFrames).

CHAPTER 21 ■ ANIMATION732

9551CH21 2/8/08 2:14 PM Page 732

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Truthfully, there’s still one more type of animation. The third type is called a path-based
animation, and it’s much more specialized than animation that uses interpolation or key
frames. A path-based animation modifies a value to correspond with the shape that’s
described by a PathGeometry object, and it’s primarily useful for moving an element along a
path. The classes for path-based animations have names in the form TypeNameAnimation-
UsingPath, such as DoubleAnimationUsingPath and PointAnimationUsingPath.

■Note Although WPF currently uses three approaches to animation (linear interpolation, key frames, and
paths), there’s no reason you can’t create more animation classes that modify values using a completely
different approach. The only requirement is that your animation class must modify values in a time-
dependent way.

All in all, you’ll find the following in the System.Windows.Media.Animation namespace:

• Seventeen TypeNameAnimation classes, which use interpolation

• Twenty-two TypeNameAnimationUsingKeyFrames classes, which use key frame
animation

• Three TypeNameAnimationUsingPath classes, which use path-based animation

Every one of these animation classes derives from an abstract TypeNameAnimationBase
class that implements a few fundamentals. This gives you a shortcut to creating your own
animation classes. If a data type supports more than one type of animation, both animation
classes derive from the abstract animation base class. For example, DoubleAnimation and
DoubleAnimationUsingKeyFrames both derive from DoubleAnimationBase.

■Note These 42 classes aren’t the only things you’ll find in the System.Windows.Media.Animation name-
space. Every key frame animation also works with its own key frame class and key frame collection classes,
which adds to the clutter. In total, there are more than 100 classes in System.Windows.Media.Animation.

CHAPTER 21 ■ ANIMATION 733

9551CH21 2/8/08 2:14 PM Page 733

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can quickly determine what data types have native support for animation by review-
ing these 42 classes. The following is the complete list:

CHAPTER 21 ■ ANIMATION734

BooleanAnimationUsingKeyFrames

ByteAnimation

ByteAnimationUsingKeyFrames

CharAnimationUsingKeyFrames

ColorAnimation

ColorAnimationUsingKeyFrames

DecimalAnimation

DecimalAnimationUsingKeyFrames

DoubleAnimation

DoubleAnimationUsingKeyFrames

DoubleAnimationUsingPath

Int16Animation

Int16AnimationUsingKeyFrames

Int32Animation

Int32AnimationUsingKeyFrames

Int64Animation

Int64AnimationUsingKeyFrames

MatrixAnimationUsingKeyFrames

MatrixAnimationUsingPath

ObjectAnimationUsingKeyFrames

PointAnimation

PointAnimationUsingKeyFrames

PointAnimationUsingPath

Point3DAnimation

Point3DAnimationUsingKeyFrames

QuarternionAnimation

QuarternionAnimationUsingKeyFrames

RectAnimation

RectAnimationUsingKeyFrames

Rotation3DAnimation

Rotation3DAnimationUsingKeyFrames

SingleAnimation

SingleAnimationUsingKeyFrames

SizeAnimation

SizeAnimationUsingKeyFrames

StringAnimationUsingKeyFrames

ThicknessAnimation

ThicknessAnimationUsingKeyFrames

VectorAnimation

VectorAnimationUsingKeyFrames

Vector3DAnimation

Vector3DAnimationUsingKeyFrames

Many of these types are self-explanatory. For example, once you master the Double-
Animation class, you won’t think twice about SingleAnimation, Int16Animation, Int32Animation,
and all the other animation classes for simple numeric types, which work in the same way.
Along with the animation classes for numeric types, you’ll find a few that work with other
basic data types (byte, bool, string, and char) and many more that deal with two-dimensional
and three-dimensional Drawing primitives (Point, Size, Rect, Vector, and so on). You’ll also
find an animation class for the Margin and Padding properties of any element (Thickness-
Animation), one for color (ColorAnimation), and one for any reference type object (Object-
AnimationUsingKeyFrames). You’ll consider many of these animation types as you work
through the examples in this chapter.

9551CH21 2/8/08 2:14 PM Page 734

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

THE CLUTTERED ANIMATION NAMESPACE

If you look in the System.Windows.Media.Animation namespace, you may be a bit shocked. It’s packed full
with different animation classes for different data types. The effect is a bit overwhelming. It would be nice if
there were a way to combine all the animation features into a few core classes. And what developer wouldn’t
appreciate a generic Animate<T> class that could work with any data type? However, this model isn’t cur-
rently possible, for a variety of reasons. First, different animation classes may perform their work in slightly
different ways, which means the code required will differ. For example, the way a color value is blended from
one shade to another by the ColorAnimation class differs from the way a single numeric value is modified by
the DoubleAnimation class. In other words, although the animation classes expose the same public interface
for you to use, their internal workings may differ. Their interface is standardized through inheritance, because
all animation classes derive from the same base classes (beginning with Animatable).

However, this isn’t the full story. Certainly, many animation classes do share a significant amount of
code, and a few areas absolutely cry out for a dash of generics, such as the 100 or so classes used to repre-
sent key frames and key frame collections. In an ideal world, animation classes would be distinguished by
the type of animation they perform, so you could use classes such as NumericAnimation<T>, KeyFrame-
Animation<T>, or LinearInterpolationAnimation<T>. One can only assume that the deeper reason that
prevents solutions like these is that XAML lacks direct support for generics.

Animations in Code
As you’ve already learned, the most common animation technique is linear interpolation,
which modifies a property smoothly from its starting point to its end point. For example, if
you set a starting value of 1 and an ending value of 10, your property might be rapidly changed
from 1 to 1.1, 1.2, 1.3, and so on, until the value reaches 10.

At this point, you’re probably wondering how WPF determines the increments it will use
when performing interpolation. Happily, this detail is taken care of automatically. WPF uses
whatever increment it needs to ensure a smooth animation at the currently configured frame
rate. The standard frame rate WPF uses is 60 frames per second. (You’ll learn how to tweak
this detail later in this chapter.) In other words, every 1/60th of a second WPF calculates all
animated values and updates the corresponding properties.

The simplest way to use an animation is to instantiate one of the animation classes listed
earlier, configure it, and then use the BeginAnimation() of the element you want to modify. All
WPF elements inherit BeginAnimation(), which is part of the IAnimatable interface, from the
base UIElement class. Other classes that implement IAnimatable include ContentElement
(the base class for bits of document flow content) and Visual3D (the base class for 3D visuals).

■Note This isn’t the most common approach—it most situations, you’ll create animations declaratively
using XAML, as described later in the “Declarative Animation and Storyboards” section. However, using
XAML is slightly more involved because you need another object—called a storyboard—to connect the
animation to the appropriate property. Code-based animations are also useful in certain scenarios where
you need to use complex logic to determine the starting and ending values for your animation.

CHAPTER 21 ■ ANIMATION 735

9551CH21 2/8/08 2:14 PM Page 735

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 21-1 shows an extremely simple animation that widens a button. When you click
the button, WPF smoothly extends both sides until the button fills the window.

Figure 21-1. An animated button

To create this effect, you use an animation that modifies the Width property of the button.
Here’s the code that creates and launches this animation when the button is clicked:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.From = 160;
widthAnimation.To = this.Width - 30;
widthAnimation.Duration = TimeSpan.FromSeconds(5);
cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);

Three details are the bare minimum of any animation that uses linear interpolation: the
starting value (From), the ending value (To), and the time that the entire animation should
take (Duration). In this example, the ending value is based on the current width of the con-
taining window. These three properties are found in all the animation classes that use
interpolation.

The From, To, and Duration properties seem fairly straightforward, but you should note a
few important details. The following sections explore these properties more closely.

CHAPTER 21 ■ ANIMATION736

9551CH21 2/8/08 2:14 PM Page 736

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

From
The From value is the starting value for the Width property. If you click the button multiple
times, each time you click it the Width is reset to 160, and the animation runs again. This is
true even if you click the button while an animation is already underway.

■Note This example exposes another detail about WPF animations; namely, every dependency property
can be acted on by only one animation at a time. If you start a second animation, the first one is automati-
cally discarded.

In many situations, you don’t want an animation to begin at the original From value.
There are two common reasons:

• You have an animation that can be triggered multiple times in a row for a cumulative
effect. For example, you might want to create a button that grows a bit more each time
it’s clicked.

• You have animations that may overlap. For example, you might use the MouseEnter
event to trigger an animation that expands a button and the MouseLeave event to
trigger a complementary animation that shrinks it back. (This is often known as a
“fish-eye” effect.) If you move the mouse over and off this sort of button several times
in quick succession, each new animation will interrupt the previous one, causing the
button to “jump” back to the size that’s set by the From property.

The current example falls into the second category. If you click the button while it’s
already growing, the width is reset to 160 pixels—which can be a bit jarring. To correct the
problem, just leave out the code statement that sets the From property:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.To = this.Width - 30;
widthAnimation.Duration = TimeSpan.FromSeconds(5);
cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);

There’s one catch. For this technique to work, the property you’re animating must have a
previously set value. In this example, that means the button must have a hard-coded width
(whether it’s defined directly in the button tag or applied through a style setter). The problem
is that in many layout containers, it’s common not to specify a width and to allow the con-
tainer to control it based on the element’s alignment properties. In this case, the default width
applies, which is the special value Double.NaN (where NaN stands for “not a number”). You
can’t animate a property that has this value using linear interpolation.

So, what’s the solution? In many cases, the answer is to hard-code the button’s width. As
you’ll see, animations often require a more fine-grained control of element sizing and posi-
tioning than you’d otherwise use. In fact, the most common layout container for “animatable”
content is the Canvas, because it makes it easy to move content around (with possible over-
lap) and resize it. The Canvas is also the most lightweight layout container, because no extra
layout work is needed when a property like Width is changed.

CHAPTER 21 ■ ANIMATION 737

9551CH21 2/8/08 2:14 PM Page 737

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In the current example, there’s another option. You could retrieve the current value of the
button using its ActualWidth property, which indicates the current rendered width. You can’t
animate ActualWidth (it’s read-only), but you can use it to set the From property of your ani-
mation:

widthAnimation.From = cmdGrow.ActualWidth;

This technique works for both code-based animations (like the current example) and the
declarative animations you’ll see later (which require the use of a binding expression to get
the ActualWidth value).

■Note It’s important to use the ActualWidth property in this example rather than the Width property. That’s
because Width reflects the desired width that you choose, while ActualWidth indicates the rendered width
that was used. If you’re using automatic layout, you probably won’t set a hard-coded Width at all, so the
Width property will simply return Double.NaN, and an exception will be raised when you attempt to start the
animation.

You need to be aware of another issue when you use the current value as a starting point
for an animation—it may change the speed of your animation. That’s because the duration
isn’t adjusted to take into account that there’s a smaller spread between the initial value and
the final value. For example, imagine you create a button that doesn’t use the From value and
instead animates from its current position. If you click the button when it has almost reached
its maximum width, a new animation begins. This animation is configured to take five sec-
onds (through the Duration property), even though there are only a few more pixels to go. As a
result, the growth of the button will appear to slow down.

This effect appears only when you restart an animation that’s almost complete. Although
it’s a bid odd, most developers don’t bother trying to code around it. Instead, it’s considered to
be an acceptable quirk.

■Note You could compensate for this problem by writing some custom logic that modifies the animation
duration, but it’s seldom worth the effort. To do so, you’d need to make assumptions about the standard size
of the button (which limits the reusability of your code), and you’d need to create your animations program-
matically so that you could run this code (rather than declaratively, which is the more common approach
you’ll see a bit later).

To
Just as you can omit the From property, you can omit the To property. In fact, you could leave
out both the From and To properties to create an animation like this:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.Duration = TimeSpan.FromSeconds(5);
cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);

CHAPTER 21 ■ ANIMATION738

9551CH21 2/8/08 2:14 PM Page 738

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

At first glance, this animation seems like a long-winded way to do nothing at all. It’s logi-
cal to assume that because both the To and From properties are left out, they’ll both use the
same value. But there’s a subtle and important difference.

When you leave out From, the animation uses the current value and takes animation
into account. For example, if the button is midway through a grow operation, the From value
uses the expanded width. However, when you leave out To, the animation uses the current
value without taking animation into account. Essentially, that means the To value becomes
the original value—whatever you last set in code, on the element tag, or through a style. (This
works thanks to WPF’s property resolution system, which is able to calculate a value for a
property based on several overlapping property providers, without discarding any informa-
tion. Chapter 6 describes this system in more detail.)

In the button example, that means if you start a grow animation and then interrupt it with
the animation shown previously (perhaps by clicking another button), the button will shrink
from its half-grown size until it reaches the original width that’s set in the XAML markup. On
the other hand, if you run this code while no other animation is underway, nothing will hap-
pen. That’s because the From value (the animated width) and the To value (the original width)
are the same.

By
Instead of using To, you can use the By property. The By property is used to create an anima-
tion that changes a value by a set amount, rather than to a specific target. For example, you
could great an animation that enlarges a button by 10 units more than its current size, as
shown here:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.By = 10;
widthAnimation.Duration = TimeSpan.FromSeconds(0.5);
cmdGrowIncrementally.BeginAnimation(Button.WidthProperty, widthAnimation);

This approach isn’t necessary in the button example, because you could achieve the same
result using a simple calculation to set the To property, like this:

widthAnimation.To = cmdGrowIncrementally.Width + 10;

However, the By value makes more sense when you’re defining your animation in XAML,
because XAML doesn’t provide a way to perform simple calculations.

■Note You can use By and From in combination, but it doesn’t save you any work. The By value is simply
added to the From value to arrive at the To value.

The By property is offered by most, but not all, animation classes that use interpolation.
For example, it doesn’t make sense with non-numeric data types, such as a Color structure (as
used by ColorAnimation).

There’s one other way to get similar behavior without using the By property—you can cre-
ate an additive animation by setting the IsAdditive property. When you do, the current value is
added to both the From and To values automatically. For example, consider this animation:

CHAPTER 21 ■ ANIMATION 739

9551CH21 2/8/08 2:14 PM Page 739

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.From = 0;
widthAnimation.To = -10;
widthAnimation.Duration = TimeSpan.FromSeconds(0.5);
widthAnimation.IsAdditive = true;

It starts from the current value and finishes at a value that’s reduced by 10 units. On the
other hand, if you use this animation:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.From = 10;
widthAnimation.To = 50;
widthAnimation.Duration = TimeSpan.FromSeconds(0.5);
widthAnimation.IsAdditive = true;

the property jumps to the new value (which is 10 units greater than the current value) and
then increases until it reaches a final value that is 50 more units than the current value before
the animation began.

Duration
The Duration property is straightforward enough—it takes the time interval (in milliseconds,
minutes, hours, or whatever else you’d like to use) between the time the animation starts and
the time it ends. Although the duration of the animations in the previous examples is set using
a TimeSpan, the Duration property actually requires a Duration object. Fortunately, Duration
and TimeSpan are quite similar, and the Duration structure defines an implicit cast that can
convert System.TimeSpan to System.Windows.Duration as needed. That’s why this line of
code is perfectly reasonable:

widthAnimation.Duration = TimeSpan.FromSeconds(5);

So, why bother introducing a whole new type? The Duration also includes two special val-
ues that can’t be represented by a TimeSpan object—Duration.Automatic and Duration.Forever.
Neither of these values is useful in the current example. (Automatic simply sets the animation
to a 1-second duration, and Forever makes the animation infinite in length, which prevents it
from having any effect.) However, these values become useful when creating more complex
animations.

Simultaneous Animations
You can use BeginAnimation() to launch more than one animation at a time. The Begin-
Animation() method returns almost immediately, allowing you to use code like this to animate
two properties simultaneously:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.From = 160;
widthAnimation.To = this.Width - 30;
widthAnimation.Duration = TimeSpan.FromSeconds(5);

DoubleAnimation heightAnimation = new DoubleAnimation();
heightAnimation.From = 40;

CHAPTER 21 ■ ANIMATION740

9551CH21 2/8/08 2:14 PM Page 740

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

heightAnimation.To = this.Height - 50;
heightAnimation.Duration = TimeSpan.FromSeconds(5);

cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);
cmdGrow.BeginAnimation(Button.HeightProperty, heightAnimation);

In this example, the two animations are not synchronized. That means the width and
height won’t grow at exactly the same intervals. (Typically, you’ll see the button grow wider
and then grow taller just after.) You can overcome this limitation by creating animations that
are bound to the same timeline. You’ll learn this technique later in this chapter, when you con-
sider storyboards.

Animation Lifetime
Technically, WPF animations are temporary, which means they don’t actually change the value
of the underlying property. While an animation is active, it simply overrides the property
value. This is because of the way that dependency properties work (as described in Chapter 6),
and it’s an often overlooked detail that can cause significant confusion.

A one-way animation (like the button growing animation) remains active after it finishes
running. That’s because the animation needs to hold the button’s width at the new size. This
can lead to an unusual problem—namely, if you try to modify the value of the property using
code after the animation has completed, your code will appear to have no effect. That’s
because your code simply assigns a new local value to the property, but the animated value
still takes precedence.

You can solve this problem in several ways, depending on what you’re trying to accomplish:

• Create an animation that resets your element to its original state. You do this by not set-
ting the To property. For example, the button shrinking animation reduces the width of
the button to its last set size, after which you can change it in your code.

• Create a reversible animation. You do this by setting the AutoReverse property to true.
For example, when the button growing animation finishes widening the button, it will
play out the animation in reverse, returning it to its original width. The total duration of
your animation will be doubled.

• Change the FillBehavior property. Ordinarily, FillBehavior is set to HoldEnd, which
means that when an animation ends, it continues to apply its final value to the target
property. If you change FillBehavior to Stop, as soon as the animation ends the property
reverts to its original value.

• Remove the animation object when the animation is complete by handling the
Completed event of the animation object.

The first three options change the behavior of your animation. One way or another, they
return the animated property to its original value. If this isn’t what you want, you need to use
the last option.

First, before you launch the animation, attach an event handler that reacts when the ani-
mation finishes:

widthAnimation.Completed += animation_Completed;

CHAPTER 21 ■ ANIMATION 741

9551CH21 2/8/08 2:14 PM Page 741

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The Completed event is a normal .NET event that takes an ordinary EventArgs object with no addi-
tional information. It’s not a routed event.

When the Completed event fires, you can render the animation inactive by calling the
BeginAnimation() method. You simply need to specify the property and pass in a null refer-
ence for the animation object:

cmdGrow.BeginAnimation(Button.WidthProperty, null);

When you call BeginAnimation(), the property returns to the value it had before the ani-
mation started. If this isn’t what you want, you can take note of the current value that’s being
applied by the animation, remove the animation, and then manually set the new property,
like so:

double currentWidth = cmdGrow.Width;
cmdGrow.BeginAnimation(Button.WidthProperty, null);
cmdGrow.Width = currentWidth;

Keep in mind that this changes the local value of the property. That may affect how other
animations work. For example, if you animate this button with an animation that doesn’t
specify the From property, it uses this newly applied value as a starting point. In most cases,
this is the behavior you want.

The Timeline Class
As you’ve seen, every animation revolves around a few key properties. You’ve seen several of
these properties: From and To (which are provided in animation classes that use interpola-
tion) and Duration and FillBehavior (which are provided in all animation classes). Before
going any further, it’s worth taking a closer look at the properties you have to work with.

Figure 21-2 shows the inheritance hierarchy of the WPF animation types. It includes
all the base classes, but it leaves out the full 42 animation types (and the corresponding
TypeNameAnimationBase classes).

The class hierarchy includes three main branches that derive from the abstract Timeline
class. MediaTimeline is used when playing audio or video files—it’s described in Chapter 22.
AnimationTimeline is used for the property-based animation system you’ve considered so
far. And TimelineGroup allows you to synchronize timelines and control their playback. It’s
described later in this chapter in the “Simultaneous Animations” section, when you tackle
storyboards.

The first useful members appear in the Timeline class, which defines the Duration prop-
erty you’ve already considered and a few more. Table 21-1 lists its properties.

CHAPTER 21 ■ ANIMATION742

9551CH21 2/8/08 2:14 PM Page 742

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 21-2. The animation class hierarchy

Table 21-1. Timeline Properties

Name Description

BeginTime Sets a delay that will be added before the animation starts (as a
TimeSpan). This delay is added to the total time, so a five-second
animation with a five-second delay takes ten seconds. BeginTime is
useful when synchronizing different animations that start at the same
time but should apply their effects in sequence.

Duration Sets the length of time the animation runs, from start to finish, as a
Duration object.

SpeedRatio Increases or decreases the speed of the animation. Ordinarily,
SpeedRatio is 1. If you increase it, the animation completes more
quickly (for example, a SpeedRatio of 5 completes five times faster).
If you decrease it, the animation is slowed down (for example, a
SpeedRatio of 0.5 takes twice as long). You can change the Duration of
your animation for an equivalent result. The SpeedRatio is not taken
into account when applying the BeginTime delay.

Continued

... ...

...

DispatcherObject

DependencyObject

Legend

Abstract Class

Concrete Class

Freezable

Animatable

Timeline

Animation Timeline

DoubleAnimationBase ColorAnimationBase StringAnimationBase

Media Timeline

DoubleAnimation

DoubleAnimationUsingKeyFrames

DoubleAnimationUsingPath

TimelineGroup

ParallelTimeline

Storyboard

CHAPTER 21 ■ ANIMATION 743

9551CH21 2/8/08 2:14 PM Page 743

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 21-1. Continued

Name Description

AccelerationRatio and Makes an animation nonlinear, so it starts off slow and then speeds up
DecelerationRatio (by increasing the AccelerationRatio) or slows down at the end (by

increasing the DecelerationRatio). Both values are set from 0 to 1 and
begin at 0. Furthermore, the total of both values cannot exceed 1.

AutoReverse If true, the animation will play out in reverse once it’s complete,
reverting to the original value. This also doubles the time the animation
takes. If you’ve increased the SpeedRatio, it applies to both the initial
playback of the animation and the reversal. The BeginTime applies only
to the very beginning of the animation—it doesn’t delay the reversal.

FillBehavior Determines what happens when the animation ends. Usually, it keeps
the property fixed at the ending value (FillBehavior.HoldEnd), but you
can also choose to return it to its original value (FillBehavior.Stop).

RepeatBehavior Allows you to repeat an animation a specific number of times or for a
specific time interval. The RepeatBehavior object that you use to set
this property determines the exact behavior.

Although BeginTime, Duration, SpeedRatio, and AutoReverse are all fairly straightforward,
some of the other properties warrant closer examination. The following sections delve into
AccelerationRatio, DecelerationRatio, and RepeatBehavior.

AccelerationRatio and DecelerationRatio
AccelerationRatio and DecelerationRatio allow you to compress part of the timeline so it
passes by more quickly. The rest of the timeline is stretched to compensate so that the total
time is unchanged.

Both of these properties represent a percentage value. For example, an AccelerationRatio
of 0.3 indicates that you want to spend the first 30% of the duration of the animation acceler-
ating. For example, in a ten-second animation, the first three seconds would be taken up
with acceleration, and the remaining seven seconds would pass at a consistent speed.
(Obviously, the speed in the last seven seconds is faster than the speed of a nonaccelerated
animation, because it needs to make up for the slow start.) If you set AccelerationRatio to 0.3
and DecelerationRatio to 0.3, acceleration takes place for the first three seconds, the middle
four seconds are at a fixed maximum speed, and deceleration takes place for the last three sec-
onds. Viewed this way, it’s obvious that the total of AccelerationRatio and DecelerationRatio
can’t top 1, because then it required more than 100% of the available time to perform the
requested acceleration and deceleration. Of course, you could set AccelerationRatio to 1 (in
which case the animation speeds up from start to finish) or DecelerationRatio to 1 (in which
case the animation slows down from start to finish).

Animations that accelerate and decelerate are often used to give a more natural appear-
ance. However, the AccelerationRatio and DecelerationRatio give you only relatively crude
control. For example, they don’t let you vary the acceleration or set it specifically. If you want
to have an animation that uses varying degrees of acceleration, you’ll need to define a series of
animations, one after the other, and set the AccelerationRatio and DecelerationRatio property
of each one, or you’ll need to use a key frame animation with key spline frames (as described
at the end of this chapter). Although this technique gives you plenty of flexibility, keeping
track of all the details is a headache, and it’s a perfect case for using a design tool to construct
your animations.

CHAPTER 21 ■ ANIMATION744

9551CH21 2/8/08 2:14 PM Page 744

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

RepeatBehavior
The RepeatBehavior property allows you to control how an animation is repeated. If you want
to repeat it a fixed number of times, pass the appropriate number of times the RepeatBehavior
constructor. For example, this animation repeats twice:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.To = this.Width - 30;
widthAnimation.Duration = TimeSpan.FromSeconds(5);
widthAnimation.RepeatBehavior = new RepeatBehavior(2);
cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);

When you run this animation, the button will increase in size (over five seconds), jump
back to its original value, and then increase in size again (over five seconds), ending at the full
width of the window. If you’ve set AutoReverse to true, the behavior is slightly different—the
entire animation is completed forward and backward (meaning the button expands and then
shrinks), and then it’s repeated again.

■Note Animations that use interpolation provide an IsCumulative property, which tells WPF how to deal
with each repetition. If IsCumulative is true, the animation isn’t repeated from start to finish. Instead, each
subsequent animation adds to the previous one. For example, if you use IsCumulative with the animation
shown earlier, the button will expand twice as wide over twice as much time. To put it another way, the first
iteration is treated normally, but every repetition after that is treated as though you set IsAdditive to true.

Rather than using RepeatBehavior to set a repeat count, you can use it to set a repeat
interval. To do so, simply pass a TimeSpan to the RepeatBehavior constructor. For example,
the following animation repeats itself for 13 seconds:

DoubleAnimation widthAnimation = new DoubleAnimation();
widthAnimation.To = this.Width - 30;
widthAnimation.Duration = TimeSpan.FromSeconds(5);
widthAnimation.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(13));
cmdGrow.BeginAnimation(Button.WidthProperty, widthAnimation);

In this example, the Duration property specifies that the entire animation takes five sec-
onds. As a result, the RepeatBehavior of 13 seconds will trigger two repeats and then leave the
button halfway through a third repeat (at the three-second mark).

■Tip You can use RepeatBehavior to perform just part of an animation. To do so, use a fractional number of
repetitions, or use a TimeSpan that’s less than the duration.

Finally, you can cause an animation to repeat itself endlessly with the
RepeatBehavior.Forever value:

widthAnimation.RepeatBehavior = RepeatBehavior.Forever;

CHAPTER 21 ■ ANIMATION 745

9551CH21 2/8/08 2:14 PM Page 745

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Declarative Animation and Storyboards
As you’ve seen, WPF animations are represented by a group of animation classes. You set the
relevant information, such as the starting value, ending value, and duration, using a handful
of properties. This obviously makes them a great fit for XAML. What’s less clear is how you wire
an animation up to a particular element and property and how you trigger it at the right time.

It turns out that two ingredients are at work in any declarative animation:

• A storyboard. It’s the XAML equivalent of the BeginAnimation() method. It allows you
to direct an animation to the right element and property.

• An event trigger. It responds to a property change or event (such as the Click event of a
button) and controls the storyboard. For example, to start an animation, the event trig-
ger must begin the storyboard.

You’ll learn how both pieces work in the following sections.

The Storyboard
A storyboard is an enhanced timeline. You can use it to group multiple animations, and it also
has the ability to control the playback of animation—pausing it, stopping it, and changing its
position. However, the most basic feature provided by the Storyboard class is its ability to
point to a specific property and specific element using the TargetProperty and TargetName
properties. In other words, the storyboard bridges the gap between your animation and the
property you want to animate.

Here’s how you might define a storyboard that manages a DoubleAnimation:

<Storyboard TargetName="cmdGrow" TargetProperty="Width">
<DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>

</Storyboard>

Both TargetName and TargetProperty are attached properties. That means you can apply
them directly to the animation, as shown here:

<Storyboard>
<DoubleAnimation
Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
From="160" To="300" Duration="0:0:5"></DoubleAnimation>

</Storyboard>

This syntax is more common, because it allows you to put several animations in the same
storyboard but allow each animation to act on a different element and property.

Defining a storyboard is the first step to creating an animation. To actually put this story-
board into action, you need an event trigger.

CHAPTER 21 ■ ANIMATION746

9551CH21 2/8/08 2:14 PM Page 746

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Event Triggers
You first learned about event triggers in Chapter 12, when you considered styles. Styles give
you one way to attach an event trigger to an element. However, you can define an event trigger
in four places:

• In a style (the Styles.Triggers collection)

• In a data template (the DataTemplate.Triggers collection)

• In a control template (the ControlTemplate.Triggers collection)

• In an element directly (the FrameworkElement.Triggers collection)

When creating an event trigger, you need to indicate the routed event that starts the trig-
ger and the action (or actions) that are performed by the trigger. With animations, the most
common action is BeginStoryboard, which is equivalent to calling BeginAnimation().

The following example uses the Triggers collection of a button to attach an animation to
the Click event. When the button is clicked, it grows.

<Button Padding="10" Name="cmdGrow" Height="40" Width="160"
HorizontalAlignment="Center" VerticalAlignment="Center">
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="Width"
To="300" Duration="0:0:5"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Button.Triggers>

<Button.Content>
Click and Make Me Grow

</Button.Content>
</Button>

■Tip To create an animation that fires when the window first loads, add an event trigger in the
Window.Triggers collection that responds to the Window.Loaded event.

CHAPTER 21 ■ ANIMATION 747

9551CH21 2/8/08 2:14 PM Page 747

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Storyboard.TargetProperty property identifies the property you want to change (in
this case, Width). If you don’t supply a class name, the storyboard uses the parent element,
which is the button you want to expand. If you want to set an attached property (for example,
Canvas.Left or Canvas.Top), you need to wrap the entire property in brackets, like this:

<DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)" ... />

The Storyboard.TargetName property isn’t required in this example. When you leave it
out, the storyboard uses the parent element, which is the button.

■Note All an event trigger is able to do is launch actions. All actions are represented by classes that derive
from System.Windows.TriggerAction. Currently, WPF includes a very small set of actions that are designed
for interacting with a storyboard and controlling media playback.

There’s one difference between the declarative approach shown here and the code-only
approach demonstrated earlier. Namely, the To value is hard-coded at 300 units, rather than
set relative to the size of the containing window. If you wanted to use the window width, you’d
need to use a data binding expression, like so:

<DoubleAnimation Storyboard.TargetProperty="Width"
To="{Binding ElementName=window,Path=Width}" Duration="0:0:5">
</DoubleAnimation>

This still doesn’t get exactly the result you need. Here, the button grows from its current
size to full width of the window. The code-only approach enlarges the button to 30 units less
than the full size, using a trivial calculation. Unfortunately, XAML doesn’t support inline calcu-
lations. One solution is to build an IValueConverter that does the work for you. Fortunately,
this odd trick is easy to implement (and many developers have). You can find one example at
http://blogs.msdn.com/llobo/archive/2006/11/13/Arithmetic-operations-in-Xaml.aspx or
check out the downloadable examples for this chapter.

■Note Another option is to create a custom dependency property in your window class that performs the
calculation. You can then bind your animation to the custom dependency property. For more information
about creating dependency properties, see Chapter 6.

You can now duplicate all the examples you’ve seen so far by creating triggers and story-
boards and setting the appropriate properties of the DoubleAnimation object.

Attaching Triggers with a Style
The FrameworkElement.Triggers collection is a bit of an oddity. It supports only event triggers.
The other trigger collections (Styles.Triggers, DataTemplate.Triggers, and ControlTemplate.
Triggers) are more capable. They support the three basic types of WPF triggers: property triggers,
data triggers, and event triggers.

CHAPTER 21 ■ ANIMATION748

9551CH21 2/8/08 2:14 PM Page 748

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/llobo/archive/2006/11/13/Arithmetic-operations-in-Xaml.aspx

■Note There’s no technical reason why the FrameworkElement.Triggers collection shouldn’t support addi-
tional trigger types, but this functionality wasn’t implemented in time for the first version of WPF.

Using an event trigger is the most common way to attach an animation. However, it’s not
your only option. If you’re using the Triggers collection in a style, data template, or control
template, you can also create a property trigger that reacts when a property value changes. For
example, here’s a style that duplicates the example shown earlier. It triggers a storyboard when
IsPressed is true:

<Window.Resources>
<Style x:Key="GrowButtonStyle">
<Style.Triggers>
<Trigger Property="Button.IsPressed" Value="True">
<Trigger.EnterActions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="Width"
To="250" Duration="0:0:5"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</Trigger.EnterActions>
</Trigger>

</Style.Triggers>
</Style>

</Window.Resources>

You can attach actions to a property trigger in two ways. You can use Trigger.EnterActions
to set actions that will be performed when the property changes to the value you specify (in
the previous example, when IsPressed becomes true) and use Trigger.ExitActions to set actions
that will be performed when the property changes back (when the value of IsPressed returns
to false). This is a handy way to wrap together a pair of complementary animations.

Here’s the button that uses the style shown earlier:

<Button Padding="10" Name="cmdGrow" Height="40" Width="160"
Style="{StaticResource GrowButtonStyle}"
HorizontalAlignment="Center" VerticalAlignment="Center">
Click and Make Me Grow
</Button>

Remember, you don’t need to use property triggers in a style. You can also use event trig-
gers, as you saw in the previous section. Finally, you don’t need to define a style separately
from the button that uses it (you can set the Button.Style property with an inline style), but
this two-part separation is more common, and it gives you the flexibility to apply the same
animation to multiple elements.

CHAPTER 21 ■ ANIMATION 749

9551CH21 2/8/08 2:14 PM Page 749

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Attaching Triggers with a Template
One of the most powerful ways to reuse an animation is by defining it in a template. In Chap-
ter 15, you saw a stylized ListBox that used curved borders and a shaded background. This
ListBox also used property triggers to change the font size of a ListBoxItem when you hovered
over it with the mouse. This effect was a little jarring, because the text would jump immedi-
ately from its initial size to the new, larger size. Using animation, you can create a much
smoother experience and increase the text size gradually over a short interval of time. And
because each ListBoxItem can have its own animation, when you run your mouse up and
down the list, you’ll see several items start to grow and then shrink back again, creating an
intriguing “fish-eye” effect. (A more extravagant fish-eye effect would enlarge and warp the
item over which you’re hovering. This is also possible in WPF using animated transforms, as
you’ll see later.)

Although it’s not possible to capture this effect in a single image, Figure 21-3 shows a
snapshot of this list after the mouse has moved rapidly over several items.

Figure 21-3. Individual animations on each ListBoxItem

You won’t reconsider the entire template ListBoxItem example here, because it’s built
from many different pieces that style the ListBox, the ListBoxItem, and the various con-
stituents of the ListBox (such as the scroll bar). The important piece is the style that changes
the ListBoxItem template.

You can add the mouseover animation in two equivalent ways—by creating an event trig-
ger that responds to the MouseEnter and MouseLeave events or by creating a property trigger
that adds enter and exit actions when the IsMouseOver property changes. The following
example uses the event trigger approach:

<Style TargetType="{x:Type ListBoxItem}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type ListBoxItem}">
<Border ... >
<ContentPresenter />

</Border>
<ControlTemplate.Triggers>

<EventTrigger RoutedEvent="ListBoxItem.MouseEnter">

CHAPTER 21 ■ ANIMATION750

9551CH21 2/8/08 2:14 PM Page 750

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="FontSize"
To="20" Duration="0:0:1"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="ListBoxItem.MouseLeave">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="FontSize"
BeginTime="0:0:0.5" Duration="0:0:0.2"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

<Trigger Property="IsMouseOver" Value="True">
<Setter TargetName="Border" Property="BorderBrush" ... />

</Trigger>
<Trigger Property="IsSelected" Value="True">
<Setter TargetName="Border" Property="Background" ... />
<Setter TargetName="Border" Property="TextBlock.Foreground" ... />

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

In this example, the ListBoxItem enlarges relatively slowly (over one second) and then
decreases much more quickly (in 0.2 seconds). However, there is a 0.5-second delay before the
shrinking animation begins.

Note that the shrinking animation leaves out the From and To properties. That way, it
always shrinks the text from its current size to its original size, as described earlier in this
chapter. If you move the mouse on and off a ListBoxItem, you’ll get the result you expect—it
appears as though the item simply continues expanding while the mouse is overtop and con-
tinues shrinking when the mouse is moved away.

■Tip This example works well, but it’s not the snappiest animation you’ll see. Every time the size of a List-
BoxItem changes, WPF must perform a layout pass to arrange the items in the ListBox. It’s for reasons like
these that animations often take place outside automatic layout containers and use the simpler (and more
performant) Canvas instead.

CHAPTER 21 ■ ANIMATION 751

9551CH21 2/8/08 2:14 PM Page 751

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Overlapping Animations
The storyboard gives you the ability to change the way you deal with animations that over-
lap—in other words, when a second animation is applied to a property that is already being
animated. You do this using the BeginStoryboard.HandoffBehavior property.

Ordinarily, when two animations overlap, the second animation overrides the first
one immediately. This behavior is known as snapshot-and-replace (and represented by the
SnapshotAndReplace value in the HandoffBehavior enumeration). When the second anima-
tion starts, it takes a snapshot of the property as it currently is (based on the first animation),
stops the animation, and replaces it with the new animation.

The only other HandoffBehavior option is Compose, which fused the second animation
into the first animation’s timeline. For example, consider a revised version of the ListBox
example that uses HandoffBehavior.Compose when shrinking the button:

<EventTrigger RoutedEvent="ListBoxItem.MouseLeave">
<EventTrigger.Actions>
<BeginStoryboard HandoffBehavior="Compose">
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="FontSize"
BeginTime="0:0:0.5" Duration="0:0:0.2"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

Now, if you move the mouse onto a ListBoxItem and off it, you’ll see a different behavior.
When you move the mouse off the item, it will continue expanding, which will be clearly visi-
ble until the second animation reaches its begin time delay of 0.5 seconds. Then, the second
animation will shrink the button. Without the Compose behavior, the button would simply
wait, fixed at its current size, for the 0.5-second time interval before the second animation
kicks in.

Using a HandoffBehavior of compose requires more overhead. That’s because the clock
that’s used to run the original animation won’t be released when the second animation starts.
Instead, it will stay alive until the ListBoxItem is garbage collected or a new animation is used
on the same property.

■Tip If performance becomes an issue, the WPF team recommends that you manually release the anima-
tion clock for your animations as soon as they are complete (rather than waiting for the garbage collector to
find them). To do this, you need to handle an event like Storyboard.Completed. Then, call BeginAnimation()
on the element that has just finished its animation, supplying the appropriate property and a null reference in
place of an animation.

CHAPTER 21 ■ ANIMATION752

9551CH21 2/8/08 2:14 PM Page 752

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Simultaneous Animations
The Storyboard class derives indirectly from TimelineGroup, which gives it the ability to hold
more than one animation. Best of all, these animations are managed as one group—meaning
they’re started at the same time.

To see an example, consider the following storyboard. It starts two animations, one that
acts on the Width property of a button and the other that acts on the Height property. Because
the animations are grouped into one storyboard, they increment the button’s dimensions in
unison, which gives a more synchronized effect than simply calling BeginAnimation() multi-
ple times in your code.

<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="Width"
To="300" Duration="0:0:5"></DoubleAnimation>
<DoubleAnimation Storyboard.TargetProperty="Height"
To="300" Duration="0:0:5"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

In this example, both animations have the same duration, but this isn’t a requirement.
The only consideration with animations that end at different times is their FillBehavior. If an
animation’s FillBehavior property is set to HoldEnd, it holds the value until all the animations
in the storyboard are completed. If the storyboard’s FillBehavior property is HoldEnd, the final
animated values are held indefinitely (until a new animation replaces this one or until you
manually remove the animation).

It’s at this point that the Timeline properties you learned about in Table 21-1 start to
become particularly useful. For example, you can use SpeedRatio to make one animation in a
storyboard run faster than the other. Or, you can use BeginTime to offset one animation rela-
tive to another so that it starts at a specific point.

■Note Because Storyboard derives from Timeline, you can use all the properties that were described in
Table 21-1 to configure its speed, use acceleration or deceleration, introduce a delay time, and so on. These
properties will affect all the contained animations, and they’re cumulative. For example, if you set the Story-
board.SpeedRatio to 2 and the DoubleAnimation.SpeedRatio to 2, that animation will run four times faster
than usual.

CHAPTER 21 ■ ANIMATION 753

9551CH21 2/8/08 2:14 PM Page 753

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Controlling Playback
So far, you’ve been using one action in your event triggers—the BeginStoryboard action that
launches an animation. However, you can use several other actions to control a storyboard
once it’s created. These actions, which derive from the ControllableStoryboardAction class, are
listed in Table 21-2.

Table 21-2. Action Classes for Controlling a Storyboard

Name Description

PauseStoryboard Stops playback of an animation and keeps it at the current position.

ResumeStoryboard Resumes playback of a paused animation.

StopStoryboard Stops playback of an animation and resets the animation clock to the
beginning.

SeekStoryboard Jumps to a specific position in an animation’s timeline. If animation is
currently playing, it continues playback from the new position. If the
animation is currently paused, it remains paused.

SetStoryboardSpeedRatio Changes the SpeedRatio of the entire storyboard (rather than just one
animation inside).

SkipStoryboardToFill Moves the storyboard to the end of its timeline. Technically, this period
is known as the fill region. For a standard animation, with FillBehavior
set to HoldEnd, the animation continues to hold the final value.

RemoveStoryboard Removes a storyboard, halting any in-progress animation and returning
the property to its original, last-set value. This has the same effect as
calling BeginAnimation() on the appropriate element with a null
animation object.

■Note Stopping an animation is not equivalent to completing an animation (unless FillBehavior is set to
Stop). That’s because even when an animation reaches the end of its timeline, it continues to apply its final
value. Similarly, when an animation is paused, it continues to apply the most recent intermediary value.
However, when an animation is stopped, it no longer applies any value, and the property reverts to its prean-
imation value.

There’s an undocumented stumbling block to using these actions. For them to work suc-
cessfully, you must define all the triggers in one Triggers collection. If you place the Begin-
Storyboard action in a different trigger collection than the PauseStoryboard action, the
PauseStoryboard action won’t work. To see the design you need to use, it helps to consider an
example.

For example, consider the window shown in Figure 21-4. It superimposes two Image ele-
ments in exactly the same position, using a grid. Initially, only the topmost image—which shows
a day scene of a Toronto city landmark—is visible. But as the animation runs, it reduces the
opacity from 1 to 0, eventually allowing the night scene to show through completely. The effect
is as if the image is changing from day to night, like a sequence of time-lapse photography.

CHAPTER 21 ■ ANIMATION754

9551CH21 2/8/08 2:14 PM Page 754

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 21-4. A controllable animation

Here’s the markup that defines the Grid with its two images:

<Grid>
<Image Source="night.jpg"></Image>
<Image Source="day.jpg" Name="imgDay"></Image>

</Grid>

and here’s the animation that fades from one to the other:

<DoubleAnimation
Storyboard.TargetName="imgDay" Storyboard.TargetProperty="Opacity"
From="1" To="0" Duration="0:0:10">

</DoubleAnimation>

To make this example more interesting, it includes several buttons at the bottom that
allow you to control the playback of this animation. Using these buttons, you can perform the
typical media player actions, such as pausing, resuming, and stopping. (You could add other
buttons to change the speed ratio and seek out specific times.)

Here’s the markup that defines these buttons:

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="5">
<Button Name="cmdStart">Start</Button>
<Button Name="cmdPause">Pause</Button>
<Button Name="cmdResume">Resume</Button>
<Button Name="cmdStop">Stop</Button>
<Button Name="cmdMiddle">Move To Middle</Button>

</StackPanel>

CHAPTER 21 ■ ANIMATION 755

9551CH21 2/8/08 2:14 PM Page 755

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Ordinarily, you might choose to place the event trigger in the Triggers collection of each
individual button. However, as explained earlier, that doesn’t work for animations. The easiest
solution is to define all the event triggers in one place, such as the Triggers collection of a con-
taining element, and wire them up using the EventTrigger.SourceName property. As long as
the SourceName matches the Name property you’ve given the button, the trigger will be
applied to the appropriate button.

In this example, you could use the Triggers collection of the StackPanel that holds the but-
tons. However, it’s often easier to use the Triggers collection of the top-level element, which is
the window in this case. That way, you can move your buttons to different places in your user
interface without disabling their functionality.

<Window.Triggers>
<EventTrigger SourceName="cmdStart" RoutedEvent="Button.Click">
<BeginStoryboard Name="fadeStoryboardBegin">
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="imgDay" Storyboard.TargetProperty="Opacity"
From="1" To="0" Duration="0:0:10">

</DoubleAnimation>
</Storyboard>

</BeginStoryboard>
</EventTrigger>

<EventTrigger SourceName="cmdPause" RoutedEvent="Button.Click">
<PauseStoryboard BeginStoryboardName="fadeStoryboardBegin"></PauseStoryboard>

</EventTrigger>
<EventTrigger SourceName="cmdResume" RoutedEvent="Button.Click">
<ResumeStoryboard BeginStoryboardName="fadeStoryboardBegin"></ResumeStoryboard>

</EventTrigger>
<EventTrigger SourceName="cmdStop" RoutedEvent="Button.Click">
<StopStoryboard BeginStoryboardName="fadeStoryboardBegin"></StopStoryboard>

</EventTrigger>
<EventTrigger SourceName="cmdMiddle" RoutedEvent="Button.Click">
<SeekStoryboard BeginStoryboardName="fadeStoryboardBegin"
Offset="0:0:5"></SeekStoryboard>

</EventTrigger>
</Window.Triggers>

Notice that you must give a name to the BeginStoryboard action. (In this example, it’s
fadeStoryboardBegin). The other triggers specify this name in the BeginStoryboardName
property to link up to the same storyboard.

CHAPTER 21 ■ ANIMATION756

9551CH21 2/8/08 2:14 PM Page 756

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You’ll encounter one limitation when using storyboard actions. The properties they
provide (such as SeekStoryboard.Offset and SetStoryboardSpeedRatio.SpeedRatio) are not
dependency properties. That limits your ability to use data binding expressions. For example,
you can’t automatically read the Slider.Value property and apply it to the SetStoryboard-
SpeedRatio.SpeedRatio action, because the SpeedRatio property doesn’t accept a data binding
expression. You might think you could code around this problem by using the SpeedRatio
property of the Storyboard object, but this won’t work. When the animation starts, the
SpeedRatio value is read and used to create an animation clock. If you change it after that
point, the animation continues at its normal pace.

If you want to adjust the speed or position dynamically, the only solution is to use code.
The Storyboard class exposes methods that provide the same functionality as the triggers
described in Table 21-2, including Begin(), Pause(), Resume(), Seek(), Stop(), SkipToFill(),
SetSpeedRatio(), and Remove().

To access the Storyboard object, you need to make sure you set its Name property in the
markup:

<Storyboard Name="fadeStoryboard">

■Note Don’t confuse the name of the Storyboard object (which is required to use the storyboard in your
code) with the name of the BeginStoryboard action (which is required to wire up other trigger actions that
manipulate the storyboard). To prevent confusion, you may want to adopt a convention like adding the word
Begin to the end of the BeginStoryboard name.

Now you simply need to write the appropriate event handler and use the methods of the
Storyboard object. (Remember, simply changing storyboard properties such as SpeedRatio
won’t have any effect. They simply configure the settings that will be used when the animation
starts.)

Here’s an event handler that reacts when you drag the thumb on a Slider. It then takes the
value of the slider (which ranges from 0 to 3) and uses it to apply a new speed ratio:

private void sldSpeed_ValueChanged(object sender, RoutedEventArgs e)
{

fadeStoryboard.SetSpeedRatio(this, sldSpeed.Value);
}

Notice that the SetSpeedRatio() requires two arguments. The first argument is the top-
level animation container (in this case, the current window). All the storyboard methods
require this reference. The second argument is the new speed ratio.

CHAPTER 21 ■ ANIMATION 757

9551CH21 2/8/08 2:14 PM Page 757

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

THE WIPE EFFECT

The previous example provides a gradual transition between the two images you’re using by varying the
Opacity of the topmost image. Another common way to transition between images is to perform a “wipe” that
unveils the new image overtop the existing one.

The trick to using this technique is to create an opacity mask for the topmost image. Here’s an example:

<Image Source="day.jpg" Name="imgDay">
<Image.OpacityMask>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
<GradientStop Offset="0" Color="Transparent" x:Name="transparentStop" />
<GradientStop Offset="0" Color="Black" x:Name="visibleStop" />

</LinearGradientBrush>
</Image.OpacityMask>

</Image>

This opacity mask uses a gradient that defines two gradient stops, Black (where the image will be com-
pletely visible) and Transparent (where the image will be completely transparent). Initially, both stops are
positioned at the left edge of the image. Because the visible stop is declared last, it takes precedence, and
the image will be completely opaque. Notice that both stops are named so they can be easily accessed by
your animation.

Next, you need to perform your animation on the offsets of the LinearGradientBrush. In this example,
both offsets are moved from the left side to the right side, allowing the image underneath to appear. To make
this example a bit fancier, the offsets don’t occupy the same position while they move. Instead, the visible
offset leads the way, followed by the transparent offset after a short delay of 0.2 seconds. This creates a
blended fringe at the edge of the wipe while the animation is underway.

<Storyboard>
<DoubleAnimation
Storyboard.TargetName="visibleStop"
Storyboard.TargetProperty="Offset"
From="0" To="1.2" Duration="0:0:1.2" ></DoubleAnimation>

<DoubleAnimation
Storyboard.TargetName="transparentStop"
Storyboard.TargetProperty="Offset" BeginTime="0:0:0.2"
From="0" To="1" Duration="0:0:1" ></DoubleAnimation>

</Storyboard>

There’s one odd detail here. The visible stop moves to 1.2 rather than simply 1, which denotes the right
edge of the image. This ensures that both offsets move at the same speed, because the total distance each
one must cover is proportional to the duration of its animation.

Wipes commonly work from left to right or top to bottom, but more creative effects are possible by
using difference opacity masks. For example, you could use a DrawingBrush for your opacity mask and mod-
ify its geometry to let the content underneath show through in a tiled pattern. You’ll see more examples that
animate brushes later in this chapter.

CHAPTER 21 ■ ANIMATION758

9551CH21 2/8/08 2:14 PM Page 758

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Monitoring Progress
The animation player shown in Figure 21-4 still lacks one feature that’s common in most
media players—the ability to determine your current position. To make it a bit fancier, you can
add some text that shows the time offset and a progress bar that provides a visual indication of
how far you are in the animation. Figure 21-5 shows a revised animation player with both
details (along with the Slider for controlling speed that was explained in the previous section).

Figure 21-5. Displaying position and progress in an animation

Adding these details is fairly straightforward. First you need a TextBlock element to show
the time and a ProgressBar control to show the graphical bar. You might assume you could set
the TextBlock value and the ProgressBar content using a data binding expression, but this isn’t
possible. That’s because the only way to retrieve the information about the current animation
clock from the Storyboard is to use methods such as GetCurrentTime() and GetCurrent-
Progress(). There isn’t any way to get the same information from properties.

The easiest solution is to react to one of the storyboard events listed in Table 21-3.

Table 21-3. Storyboard Events

Name Description

Completed The animation has reached its ending point.

CurrentGlobalSpeedInvalidated The speed has changed, or the animation has been paused,
resumed, stopped, or moved to a new position. This event also
occurs when the animation clock reverses (at the end of a
reversible animation) and when it accelerates or decelerates.

Continued

CHAPTER 21 ■ ANIMATION 759

9551CH21 2/8/08 2:14 PM Page 759

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 21-3. Continued

Name Description

CurrentStateInvalidated The animation has started or ended.

CurrentTimeInvalidated The animation clock has moved forward an increment,
changing the animation. This event also occurs when the
animation starts, stops, or ends.

RemoveRequested The animation is being removed. The animated property will
subsequently return to its original value.

In this case, the event you need is CurrentTimeInvalidated, which fires every time the ani-
mation clock moves forward. (Typically, this will be 60 times per second, but if your code takes
more time to execute, you may miss clock ticks.)

When the CurrentTimeInvalidated event fires, the sender is a Clock object (from the
System.Windows.Media.Animation namespace). The Clock object allows you to retrieve the
current time as a TimeSpan and the current progress as a value from 0 to 1.

Here’s the code that updates the label and the progress bar:

private void storyboard_CurrentTimeInvalidated(object sender, EventArgs e)
{

Clock storyboardClock = (Clock)sender;

if (storyboardClock.CurrentProgress == null)
{

lblTime.Text = "[[stopped]]";
progressBar.Value = 0;

}
else
{

lblTime.Text = storyboardClock.CurrentTime.ToString();
progressBar.Value = (double)storyboardClock.CurrentProgress;

}
}

■Tip If you use the Clock.CurrentProgress property, you don’t need to perform any calculation to determine
the value for your progress bar. Instead, simply configure your progress bar with a minimum of 0 and a max-
imum of 1. That way, you can simply use the Clock.CurrentProgress to set the ProgressBar.Value, as in this
example.

Desired Frame Rate
As you learned earlier in this chapter, WPF attempts to keep animations running at 60 frames
per second. This ensures smooth, fluid animations from start to finish. Of course, WPF might
not be able to deliver on its intentions. If you have multiple complex animations running at

CHAPTER 21 ■ ANIMATION760

9551CH21 2/8/08 2:14 PM Page 760

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

once and the CPU or video card can’t keep up, the overall frame rate may drop (in the best-
case scenario), or it may jump to catch up (in the worst-case scenario).

Although it’s rare to increase the frame rate, you may choose to decrease the frame rate.
You might take this step for one of two reasons:

• Your animation looks good at a lower frame rate, so you don’t want to waste the extra
CPU cycles.

• Your application is running on a less powerful CPU or video card, and you know your
complete animation won’t be rendered as well at a high frame rate as it would at a
lower rate.

■Note Developers sometimes assume that WPF includes code that scales the frame rate down based on
the video card hardware. It does not. Instead, WPF always attempts 60 frames per second, unless you tell it
otherwise.

Adjusting the frame rate is easy. You simply use the Timeline.DesiredFrameRate attached
property on the storyboard that contains your animations. Here’s an example that halves the
frame rate:

<Storyboard Timeline.DesiredFrameRate="30">

Figure 21-6 shows a simple test application that animates a circle so that it arcs across a
Canvas.

Figure 21-6. Testing frame rates with a simple animation

CHAPTER 21 ■ ANIMATION 761

9551CH21 2/8/08 2:14 PM Page 761

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The application begins with an Ellipse object in a Canvas. The Canvas.ClipToBounds
property is set to true so the edges of the circle won’t leak over the edge of the Canvas into the
rest of the window.

<Canvas ClipToBounds="True">
<Ellipse Name="ellipse" Fill="Red" Width="10" Height="10"></Ellipse>

</Canvas>

To move the circle across the Canvas, two animations take place at once—one that updates
the Canvas.Left property (moving it from left to right) and one that changes the Canvas.Top
property (causing it to rise up and then fall back down). The Canvas.Top animation is
reversible—once the circle reaches its highest point, it falls back down. The Canvas.Left anima-
tion is not, but it takes twice as long, so both animations move the circle simultaneously. The
final trick is using the DecelerationRatio property on the Canvas.Top animation. That way, the
circle rises more slowly as it reaches the summit, which creates a more realistic effect.

Here’s the complete markup for the animation:

<Window.Resources>
<BeginStoryboard x:Key="beginStoryboard">
<Storyboard Timeline.DesiredFrameRate=
"{Binding ElementName=txtFrameRate,Path=Text}">
<DoubleAnimation Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="(Canvas.Left)"
From="0" To="300" Duration="0:0:5">
</DoubleAnimation>
<DoubleAnimation Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="(Canvas.Top)"
From="300" To="0" AutoReverse="True" Duration="0:0:2.5"
DecelerationRatio="1">
</DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</Window.Resources>

Notice that the Canvas.Left and Canvas.Top properties are wrapped in brackets—this
indicates that they aren’t found on the target element (the ellipse) but are attached properties.
You’ll also see that the animation is defined in the Resources collection for the window. This
allows the animation to be started in more than one way. In this example, the animation is
started when the Repeat button is clicked and when the window is first loaded, using code
like this:

<Window.Triggers>
<EventTrigger RoutedEvent="Window.Loaded">
<EventTrigger.Actions>
<StaticResource ResourceKey="beginStoryboard"></StaticResource>

</EventTrigger.Actions>
</EventTrigger>

</Window.Triggers>

CHAPTER 21 ■ ANIMATION762

9551CH21 2/8/08 2:14 PM Page 762

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The real purpose of this example is to try different frame rates. To see the effect of a par-
ticularly frame rate, you simply need to type the appropriate number in the text box and click
Repeat. The animation is then triggered with the new frame rate (which it picks up through a
data binding expression), and you can watch the results. At lower frame rates, the ellipse won’t
appear to move evenly—instead, it will hop across the Canvas.

You can also adjust the Timeline.DesiredFrame property in code. For example, you may
want to read the static RenderCapability.Tier to determine the level of video card support.

■Note With a little bit of work, you can also create a helper class that lets you put the same logic into work
in your XAML markup. You’ll find one example at http://blogs.msdn.com/henryh/archive/2006/08/
23/719568.aspx, which demonstrates how you can lower the frame rate declaratively based on the tier.

Animation Types Revisited
You now know the fundamentals of WPF’s property animation system—how animations are
defined, how they’re connected to elements, and how you can control playback with a story-
board. Now is a good time to take a step back and take a closer look at the animation classes
for different data types, and consider how you can use them to achieve the effect you want.

The first challenge in creating any animation is choosing the right property to animate.
Making the leap between the result you want (for example, an element moving across the win-
dow) and the property you need to use (in this case, Canvas.Left and Canvas.Top) isn’t always
intuitive. Here are a few guidelines:

• If you want to use an animation to make an element appear or disappear, don’t use the
Visibility property (which allows you to switch only between completely visible or com-
pletely invisible). Instead, use the Opacity to fade it in or out.

• If you want to animate the position of an element, consider using a Canvas. It provides
the most direct properties (Canvas.Left and Canvas.Top) and requires the least over-
head. Alternatively, you can get similar effects in other layout containers by animating
properties such as Margin and Padding using the ThicknessAnimation class. You can
also animate the MinWidth or MinHeight or a column or row in a Grid.

■Tip Many animation effects are designed to progressively “reveal” an element. Common options include
making an element fade into visibility, slide into view, or expand from a tiny point. However, there are many
alternatives. For example, you could blur out an element using the BlurBitmapEffect described in Chapter 13
and animate the Radius property to reduce the blur and allow the element to come gradually into focus.

• The most common properties to animate are transforms. You can use them to move or
flip an element (TranslateTransform), rotate it (RotateTransform), resize or stretch it
(ScaleTransform), and more. Used carefully, they can sometimes allow you to avoid
hard-coding sizes and positions in your animation.

CHAPTER 21 ■ ANIMATION 763

9551CH21 2/8/08 2:14 PM Page 763

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/henryh/archive/2006/08

• One good way to change the surface of an element through an animation is to modify
the properties of the brush. You can use a ColorAnimation to change the color or
another animation object to transform a property of a more complex brush, like the
offset in a gradient.

The following examples demonstrate how to animate transforms and brushes and how to
use a few more animation types. You’ll also learn how to create multisegmented animations
with key frames, path-based animations, and frame-based animations.

Animating Transforms
Transforms offer one of the most powerful ways to customize an element. When you use
transforms, you don’t simply change the bounds of an element. Instead, the entire visual
appearance of the element is moved, flipped, skewed, stretched, enlarged, shrunk, or rotated.
For example, if you animate the size of a button using a ScaleTransform, the entire button is
resized, including its border and its inner content. The effect is much more impressive than if
you animate its Width and Height or the FontSize property that affects its text.

As you learned in Chapter 13, every element has the ability to use transform in two differ-
ent ways: the RenderTransform property and the LayoutTransform property.
RenderTransform is more efficient, because it’s applied after the layout pass and used to trans-
form the final rendered output. LayoutTransform is applied before the layout pass, and as a
result, other controls are rearranged to fit. Changing the LayoutTransform property triggers a
new layout operation (unless you’re using your element in a Canvas, in which case Render-
Transform and LayoutTransform are equivalent).

To use a transform in animation, the first step is to define the transform. (An animation
can change an existing transform but not create a new one.) For example, imagine you want to
allow a button to rotate. This requires the RotateTransform:

<Button>
<Button.Content>A Button</Button.Content>
<RenderTransform>
<RotateTransform></RotateTransform>

</RenderTransform>
</Button>

Now here’s an event trigger that makes the button rotate when the mouse moves over it. It
uses the target property RenderTransform.Angle—in other words, it reads the button’s Render-
Transform property and modifies the Angle property of the RotateTransform object that’s
defined there. The fact that the RenderTransform property can hold a variety of different
transform objects, each with different properties, doesn’t cause a problem. As long as you’re
using a transform that has an angle property, this trigger will work.

<EventTrigger RoutedEvent="Button.MouseEnter">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="RenderTransform.Angle"
To="360" Duration="0:0:0.8" RepeatBehavior="Forever"></DoubleAnimation>

</Storyboard>

CHAPTER 21 ■ ANIMATION764

9551CH21 2/8/08 2:14 PM Page 764

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</BeginStoryboard>
</EventTrigger.Actions>

</EventTrigger>

The button rotates one revolution every 0.8 seconds and continues rotating perpetually.
While the mouse is rotating, it’s still completely usable—for example, you can click it and han-
dle the Click event.

To make sure the button rotates around its center point (not the top-left corner), you
need to set the RenderTransformOrigin property as shown here:

<Button RenderTransformOrigin="0.5,0.5">

Remember, the RenderTransformOrigin property uses relative units from 0 to 1, so 0.5
represents a midpoint.

To stop the rotation, you can use a second trigger that responds to the MouseLeave event.
At this point, you could remove the storyboard that performs the rotation, but this causes the
button to jump back to its original orientation in one step. A better approach is to start a sec-
ond animation that replaces the first. This animation leaves out the To and From properties,
which means it seamlessly rotates the button back to its original orientation in a snappy
0.2 seconds:

<EventTrigger RoutedEvent="Button.MouseLeave">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetProperty="LayoutTransform.Angle"
Duration="0:0:0.2"></DoubleAnimation>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

To create your rotating button, you’ll need to add both these triggers to the Button.Triggers
collection. Or, you could pull them (and the transform) into a style and apply that style to as
many buttons as you want. For example, here’s the markup for the window full of “rotatable”
buttons shown in Figure 21-7:

<Window x:Class="Animation.RotateButton" ... >
<Window.Resources>
<Style TargetType="{x:Type Button}">
<Setter Property="HorizontalAlignment" Value="Center"></Setter>
<Setter Property="RenderTransformOrigin" Value="0.5,0.5"></Setter>
<Setter Property="Padding" Value="20,15"></Setter>
<Setter Property="Margin" Value="2"></Setter>
<Setter Property="LayoutTransform">
<Setter.Value>
<RotateTransform></RotateTransform>

</Setter.Value>
</Setter>
<Style.Triggers>

CHAPTER 21 ■ ANIMATION 765

9551CH21 2/8/08 2:14 PM Page 765

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<EventTrigger RoutedEvent="Button.MouseEnter">
...

</EventTrigger>
<EventTrigger RoutedEvent="Button.MouseLeave">
...

</EventTrigger>
</Style.Triggers>

</Style>

</Window.Resources>
<StackPanel Margin="5" Button.Click="cmd_Clicked">
<Button>One</Button>
<Button>Two</Button>
<Button>Three</Button>
<Button>Four</Button>
<TextBlock Name="lbl" Margin="5"></TextBlock>

</StackPanel>
</Window>

When any button is clicked, a message is displayed in the TextBlock.

Figure 21-7. Using a render transform

This example also gives you a great chance to consider the difference between the
RenderTransform and the LayoutTransform. If you modify the code to use a LayoutTransform,
you’ll see that the other buttons are pushed out of the way as a button spins (see Figure 21-8).
For example, if the topmost button turns, the buttons underneath bounce up and down to
avoid it.

Of course, to get a sense of how the buttons “feel,” it’s worth trying this example with the
downloadable code.

CHAPTER 21 ■ ANIMATION766

9551CH21 2/8/08 2:14 PM Page 766

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 21-8. Using a layout transform

Animating Multiple Transforms
You can easily use transforms in combination. In fact, it’s easy—you simply need to use the
TransformGroup to set the LayoutTransform or RenderTransform property. You can nest as
many transforms as you need inside the TransformGroup.

Figure 21-9 shows an interesting effect that was created using two transforms. A docu-
ment window begins as a small thumbnail in the top-left corner of the window. When the
window appears, this content rotates, expands, and fades into view rapidly. This is conceptu-
ally similar to the effect that Windows uses when you maximize a window. In WPF, you can use
this trick with any element using transforms.

To create this effect, two transforms are defined in a TransformGroup and used to set the
RenderTransform property of a Border object that contains all the content.

<Border.RenderTransform>
<TransformGroup>
<ScaleTransform></ScaleTransform>
<RotateTransform></RotateTransform>

</TransformGroup>
</Border.RenderTransform>

Your animation can interact with both of these transform objects by specifying a numeric
offset (0 for the ScaleTransform that appears first and 1 for the RotateTransform that’s next).
For example, here’s the animation that enlarges the content:

<DoubleAnimation Storyboard.TargetName="element"
Storyboard.TargetProperty="RenderTransform.Children[0].ScaleX"
From="0" To="1" Duration="0:0:2" AccelerationRatio="1">

</DoubleAnimation>
<DoubleAnimation Storyboard.TargetName="element"
Storyboard.TargetProperty="RenderTransform.Children[0].ScaleY"
From="0" To="1" Duration="0:0:2" AccelerationRatio="1">

</DoubleAnimation>

CHAPTER 21 ■ ANIMATION 767

9551CH21 2/8/08 2:14 PM Page 767

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

and here’s the animation in the same storyboard that rotates it:

<DoubleAnimation Storyboard.TargetName="element"
Storyboard.TargetProperty="RenderTransform.Children[1].Angle"
From="70" To="0" Duration="0:0:2" >

</DoubleAnimation>

Figure 21-9. Content that “jumps” into view

CHAPTER 21 ■ ANIMATION768

9551CH21 2/8/08 2:14 PM Page 768

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The animation is slightly more involved than shown here. For example, there’s an anima-
tion that increases the Opacity property at the same time, and when the Border reaches full
size, it briefly “bounces” back, creating a more natural feel. Creating the timeline for this ani-
mation and tweaking the various animation object properties takes time—ideally, you’ll
perform tasks like this using a design tool such as Expression Blend rather than code them
by hand. An even better scenario would be if a third-party developer grouped this logic into a
single custom animation that you could then reuse and apply to your objects as needed. (As it
currently stands, you could reuse this animation by storing the Storyboard as an application-
level resource.)

This effect is surprisingly practical. For example, you could use it to draw attention to new
content—such as a file that the user has just opened. The possible variations are endless. For
example, a retail company could create a product catalog that slides a panel with product
details or rolls a product image into view when you hover over the corresponding product
name.

Animating Brushes
Animating brushes is another common technique in WPF animations, and it’s just as easy as
animating transforms. Once again, the technique is to dig into the particular subproperty you
want to change, using the appropriate animation type.

Figure 21-10 shows an example that tweaks a RadialGradientBrush. As the animation runs,
the center point of the radial gradient drifts along the ellipse, giving it a three-dimensional effect.
At the same time, the outer color of the gradient changes from blue to black.

Figure 21-10. Altering a radial gradient

To perform this animation, you need to use two animation types that you haven’t consid-
ered yet. ColorAnimation blends gradually between two colors, creating a subtle color-shift
effect. PointAnimation allows you to move a point from one location to another. (It’s essen-
tially the same as if you modified both the X coordinate and the Y coordinate using a separate

CHAPTER 21 ■ ANIMATION 769

9551CH21 2/8/08 2:14 PM Page 769

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DoubleAnimation, with linear interpolation.) You can use a PointAnimation to deform a figure
that you’ve constructed out of points or to change the location of the radial gradient’s center
point, as in this example.

Here’s the markup that defines the ellipse and its brush:

<Ellipse Name="ellipse" Margin="5" Grid.Row="1" Stretch="Uniform">
<Ellipse.Fill>
<RadialGradientBrush
RadiusX="1" RadiusY="1" GradientOrigin="0.7,0.3">
<GradientStop Color="White" Offset="0"></GradientStop>
<GradientStop Color="Blue" Offset="1"></GradientStop>

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>

and here are the two animations that move the center point and change the second color:

<PointAnimation Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientOrigin"
From="0.7,0.3" To="0.3,0.7" Duration="0:0:10" AutoReverse="True"
RepeatBehavior="Forever">
</PointAnimation>
<ColorAnimation Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientStops[1].Color"
To="Black" Duration="0:0:10" AutoReverse="True"
RepeatBehavior="Forever">
</ColorAnimation>

You can create a huge range of hypnotic effects by varying the colors and offsets in Linear-
GradientBrush and RadialGradientBrush. And if that’s not enough, gradient brushes also have
their own RelativeTransform property that you can use to rotate, scale, stretch, and skew
them. The WPF team has a fun tool called Gradient Obsession for building gradient-based
animations. You can find it (and the source code) at http://wpf.netfx3.com/files/folders/
designer/entry7718.aspx. For some additional ideas, check out the animation examples
Charles Petzold provides at http://www.charlespetzold.com/blog/2006/07/230620.html,
which change the geometry of different DrawingBrush objects, creating tiled patterns that
morph into different shapes.

VisualBrush
As you learned in Chapter 13, a VisualBrush allows you to take the appearance of any element
and use it to fill another surface. That other surface can be anything from an ordinary rectan-
gle to letters of text.

Figure 21-11 shows a basic example. On top sits a real, live button. Underneath, a Visual-
Brush is used to fill a rectangle with a picture of the button that stretches and rotates under
the effect of various transforms.

CHAPTER 21 ■ ANIMATION770

9551CH21 2/8/08 2:14 PM Page 770

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://wpf.netfx3.com/files/folders
http://www.charlespetzold.com/blog/2006/07/230620.html

Figure 21-11. Animating an element that’s filled with a VisualBrush

The VisualBrush also opens up some interesting possibilities for animation. For example,
instead of animating the live, real element, you can animate a simple rectangle that has the
same fill.

To understand how this works, consider the example shown earlier in Figure 21-9, which
pops an element into view. While this animation is underway, the animated element is treated
the same as any other WPF element, which means it’s possible to click the button inside or
scroll through the content with the keyboard (if you’re fast enough). In some situations, this
could cause confusion. In other situations, it might result in worse performance because of
the extra overhead required to transform input (like mouse clicks) and pass it along to the
original element.

Replacing this effect with a VisualBrush is easy. First you need to create another element
that fills itself using a VisualBrush. That VisualBrush must draw its visual from the element you
want to animate (which, in this example, is the border named element).

<Rectangle Name="rectangle">
<Rectangle.Fill>
<VisualBrush Visual="{Binding ElementName=element}">
</VisualBrush>

</Rectangle.Fill>
<Rectangle.RenderTransform>
<TransformGroup>
<ScaleTransform></ScaleTransform>
<RotateTransform></RotateTransform>

</TransformGroup>
</Rectangle.RenderTransform>

</Rectangle>

CHAPTER 21 ■ ANIMATION 771

9551CH21 2/8/08 2:14 PM Page 771

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To place the rectangle into the same position as the original element, you can place them
both into the same cell of a Grid. The cell is sized to fit original element (the border), and the
rectangle is stretched along to match. Another option is to overlay a Canvas on top of your real
application layout container. (You could then bind your animation properties to the Actual-
Width and ActualHeight properties of the real element underneath to make sure it lines up.)

Once you’ve added the rectangle, you simply need to adjust your animations to animate
its transforms. The final step is to hide the rectangle when the animations are complete:

private void storyboardCompleted(object sender, EventArgs e)
{

rectangle.Visibility = Visibility.Collapsed;
}

Key Frame Animation
All the animations you’ve seen so far have used linear interpolation to move from a starting
point to an ending point. But what if you need to create an animation that has multiple seg-
ments and moves less regularly? For example, you might want to create an animation that
slides an element into view quickly and then slowly moves it the rest of the way into place. You
could achieve this effect by creating a sequence of two animations and using the BeginTime
property to start the second animation after the first one. However, there’s an easier
approach—you can use a key frame animation.

A key frame animation is an animation that’s made up of many short segments. Each seg-
ment represents an initial, final, or intermediary value in the animation. When you run the
animation, it moves smoothly from one value to another.

For example, consider the Point animation that allowed you to move the center point of a
RadialGradientBrush from one spot to another:

<PointAnimation Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientOrigin"
From="0.7,0.3" To="0.3,0.7" Duration="0:0:10" AutoReverse="True"
RepeatBehavior="Forever">
</PointAnimation>

You can replace this PointAnimation object with an equivalent PointAnimationUsing-
KeyFrames object, as shown here:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientOrigin"
AutoReverse="True" RepeatBehavior="Forever" >
<LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.3,0.7" KeyTime="0:0:10"></LinearPointKeyFrame>

</PointAnimationUsingKeyFrames>

This animation includes two key frames. The first sets the Point value when the animation
first starts. (If you want to use the current value that’s set in the RadialGradientBrush, you can
leave out this key frame.) The second key frame defines the end value, which is reached after
ten seconds. The PointAnimationUsingKeyFrames object performs linear interpolation to

CHAPTER 21 ■ ANIMATION772

9551CH21 2/8/08 2:14 PM Page 772

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

move smoothly from the first key frame value to the second, just as the PointAnimation does
with the From and To values.

■Note Every key frame animation uses its own key frame animation object (like LinearPointKeyFrame).
For the most point, these classes are the same—they include a Value property that stores the target value
and a KeyTime property that indicates when the frame reaches the target value. The only difference is the
data type of the Value property. In a LinearPointKeyFrame it’s a Point, in a DoubleKeyFrame it’s a double, and
so on.

You can create a more interesting example using a series of key frames. The following ani-
mation walks the center point through a series of positions that are reached at different times.
The speed that the center point moves will change depending on how long the duration is
between key frames and how much distance needs to be covered.

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientOrigin"
RepeatBehavior="Forever" >
<LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.3,0.7" KeyTime="0:0:5"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.5,0.9" KeyTime="0:0:8"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.9,0.6" KeyTime="0:0:10"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.8,0.2" KeyTime="0:0:12"></LinearPointKeyFrame>
<LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:14"></LinearPointKeyFrame>

</PointAnimationUsingKeyFrames>

This animation isn’t reversible, but it does repeat. To make sure there’s no jump between
the final value of one iteration and the starting value of the next iteration, the animation ends
at the same center point that it began.

Chapter 23 shows another key frame example. It uses a Point3DAnimationUsingKeyFrames
animation to move the camera through a 3D scene and a Vector3DAnimationUsingKeyFrames
to rotate the camera at the same time.

■Note Using a key frame animation isn’t quite as powerful as using a sequence of multiple animations.
The most important difference is that you can’t apply different AccelerationRatio and DecelerationRatio
values to each key frame. Instead, you can apply only a single value to the entire animation.

Discrete Key Frame Animations
The key frame animation you saw in the previous example uses linear key frames. As a result,
it transitions smoothly between the key frame values. Another option is to use discrete key
frames. In this case, no interpolation is performed. When the key time is reached, the property
changes abruptly to the new value.

CHAPTER 21 ■ ANIMATION 773

9551CH21 2/8/08 2:14 PM Page 773

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Linear key frame classes are named in the form LinearDataTypeKeyFrame. Discrete key
frame classes are named in the form DiscreteDataTypeKeyFrame. Here’s a revised version of
the RadialGradientBrush example that uses discrete key frames:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Fill.GradientOrigin"
RepeatBehavior="Forever" >
<DiscretePointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></DiscretePointKeyFrame>
<DiscretePointKeyFrame Value="0.3,0.7" KeyTime="0:0:5"></DiscretePointKeyFrame>
<DiscretePointKeyFrame Value="0.5,0.9" KeyTime="0:0:8"></DiscretePointKeyFrame>
<DiscretePointKeyFrame Value="0.9,0.6" KeyTime="0:0:10"></DiscretePointKeyFrame>
<DiscretePointKeyFrame Value="0.8,0.2" KeyTime="0:0:12"></DiscretePointKeyFrame>
<DiscretePointKeyFrame Value="0.7,0.3" KeyTime="0:0:14"></DiscretePointKeyFrame>

</PointAnimationUsingKeyFrames>

When you run this animation, the center point will jump from one position to the next at
the appropriate time. It’s a dramatic (but jerky) effect.

All key frame animation classes support discrete key frames, but only some support linear
key frames. It all depends on the data type. The data types that support linear key frames are
the same ones that support linear interpolation and provide a DataTypeAnimation class.
Examples include Point, Color, and double. Data types that don’t support linear interpolation
include string and object. You’ll see an example in Chapter 22 that uses the StringAnimation-
UsingKeyFrames class to display different pieces of text as an animation progresses.

■Tip You can combine both types of key frame—linear and discrete—in the same key frame animation.

Spline Key Frame Animations
There’s one more type of key frame: a spline key frame. Every class that supports linear key
frames also supports spline key frames, and they’re named in the form SplineDataType-
KeyFrame.

Like linear key frames, spline key frames use interpolation to move smoothly from one
key value to another. The difference is that every spline key frame sports a KeySpline property.
Using the KeySpline property, you define a cubic Bézier curve that influences the way interpo-
lation is performed. Although it’s tricky to get the effect you want (at least without an
advanced design tool to help you), this technique gives the ability to create more seamless
acceleration and deceleration and more lifelike motion.

As you may remember from Chapter 14, a Bézier curve is defined by a start point, an end
point, and two control points. In the case of a key spline, the start point is always (0,0), and the
end point is always (1,1). You simply supply the two control points. The curve that you create
describes the relationship between time (in the X axis) and the animated value (in the Y axis).

Here’s an example that demonstrates a key spline animation by comparing the motion of
two ellipses across a Canvas. The first ellipse uses a DoubleAnimation to move slowly and
evenly across the window. The second ellipse uses a DoubleAnimationUsingKeyFrames with
two SplineDoubleKeyFrame objects. It reaches the destination at the same times (after ten
seconds), but it accelerates and decelerates during its travel, pulling ahead and dropping
behind the other ellipse.

CHAPTER 21 ■ ANIMATION774

9551CH21 2/8/08 2:14 PM Page 774

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 21 ■ ANIMATION 775

<DoubleAnimation Storyboard.TargetName="ellipse1"
Storyboard.TargetProperty="(Canvas.Left)"
To="500" Duration="0:0:10">
</DoubleAnimation>

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="ellipse2"
Storyboard.TargetProperty="(Canvas.Left)" >
<SplineDoubleKeyFrame KeyTime="0:0:5" Value="250"
KeySpline="0.25,0 0.5,0.7"></SplineDoubleKeyFrame>
<SplineDoubleKeyFrame KeyTime="0:0:10" Value="500"
KeySpline="0.25,0.8 0.2,0.4"></SplineDoubleKeyFrame>

</DoubleAnimationUsingKeyFrames>

The fastest acceleration occurs shortly after the five-second mark, when the second
SplineDoubleKeyFrame kicks in. Its first control point matches a relatively large Y axis
value, which represents the animation progress (0.8) against a correspondingly smaller
X axis value, which represents the time. As a result, the ellipse increases its speed over a
small distance, before slowing down again.

Figure 21-12 shows a graphical depiction of the two curves that control the movement of
the ellipse. To interpret these curves, remember that they chart the progress of the animation
from top to bottom. Looking at the first curve, you can see that it follows a fairly even progress
downward, with a short pause at the beginning and a gradual leveling off at the end. However,
the second curve plummets downward quite quickly, achieving the bulk of its progress, and
then levels off for the remainder of the animation.

Figure 21-12. Charting the progress of a key spline animation

Path-Based Animation
A path-based animation uses a PathGeometry object to set a property. Although a path-based
animation can, in principle, be used to modify any property that has the right data type, it’s
most useful when animating position-related properties. In fact, the path-based animation
classes are primarily intended to help you move a visual object along a path.

9551CH21 2/8/08 2:14 PM Page 775

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

As you learned in Chapter 14, a PathGeometry object describes a figure that can include
lines, arcs, and curves. Figure 21-13 shows an example with a PathGeometry object that con-
sists of two arcs and a straight line segment that joins the last defined point to the starting
point. This creates a closed routed over which a small vector image travels at a constant rate.

Figure 21-13. Moving an image along a path

Creating this example is easy. The first step is to build the path you want to use. In this
example, the path is defined as a resource:

<Window.Resources>
<PathGeometry x:Key="path">
<PathFigure IsClosed="True">
<ArcSegment Point="100,200" Size="15,10"
SweepDirection="Clockwise"></ArcSegment>
<ArcSegment Point="400,50" Size="5,5" ></ArcSegment>

</PathFigure>
</PathGeometry>

</Window.Resources>

Although it’s not necessary, this example displays the path. That way, you can clearly see
that the image follows the route you’ve defined. To show the path, you simply need to add a
Path element that uses the geometry you’ve defined:

<Path Stroke="Red" StrokeThickness="1" Data="{StaticResource path}"
Canvas.Top="10" Canvas.Left="10">
</Path>

CHAPTER 21 ■ ANIMATION776

9551CH21 2/8/08 2:14 PM Page 776

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Path element is placed in a Canvas, along with the Image element that you want to
move around the path:

<Image Name="image">
<Image.Source>
<DrawingImage>
<DrawingImage.Drawing>
<GeometryDrawing Brush="LightSteelBlue">
<GeometryDrawing.Geometry>
<GeometryGroup>
<EllipseGeometry Center="10,10" RadiusX="9" RadiusY="4" />
<EllipseGeometry Center="10,10" RadiusX="4" RadiusY="9" />

</GeometryGroup>
</GeometryDrawing.Geometry>
<GeometryDrawing.Pen>
<Pen Thickness="1" Brush="Black" />

</GeometryDrawing.Pen>
</GeometryDrawing>

</DrawingImage.Drawing>
</DrawingImage>

</Image.Source>
</Image>

The final step is to create the animations that move the image. To move the image, you
need to adjust the Canvas.Left and Canvas.Top properties. The DoubleAnimationUsingPath
does the trick, but you’ll need two—one to work on the Canvas.Left property and one to deal
with the Canvas.Top property. Here’s the complete storyboard:

<Storyboard>
<DoubleAnimationUsingPath Storyboard.TargetName="image"
Storyboard.TargetProperty="(Canvas.Left)"
PathGeometry="{StaticResource path}"
Duration="0:0:5" RepeatBehavior="Forever" Source="X" />
<DoubleAnimationUsingPath Storyboard.TargetName="image"
Storyboard.TargetProperty="(Canvas.Top)"
PathGeometry="{StaticResource path}"
Duration="0:0:5" RepeatBehavior="Forever" Source="Y" />

</Storyboard>

As you can see, when creating a path-based animation, you don’t supply starting and
ending values. Instead, you indicate the PathGeometry that you want to use with the Path-
Geometry property. Some path-based animation classes, such as PointAnimationUsingPath,
apply both the X and Y components to the destination property. The DoubleAnimationUsing-
Path class doesn’t have this ability, because it sets just one double value. As a result, you also
need to set the Source property to X or Y to indicate whether you’re using the X coordinate or
the Y coordinate from the path.

Although a path-based animation can use a path that includes a Bézier curve, it’s quite a
bit different from the key spline animations you learned about in the previous section. In a key
spline animation, the Bézier curve describes the relationship between animation progress and

CHAPTER 21 ■ ANIMATION 777

9551CH21 2/8/08 2:14 PM Page 777

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

time, allowing you to create an animation that changes speed. But in a path-based animation,
the collection of lines and curves that constitutes the path determines the values that will be
used for the animated property.

■Note A path-based animation always runs at a continuous speed. WPF considers the total length of the
path and the duration you’ve specified to determine that speed.

Frame-Based Animation
Along with the property-based animation system, WPF provides a way to create frame-based
animation using nothing but code. All you need to do is respond to the static Composition-
Target.Rendering event, which is fired to get the content for each frame. This is a far lower-
level approach, which you won’t want to tackle unless you’re sure the standard property-based
animation model won’t work for your scenario (for example, if you’re building a simple side-
scrolling game, creating physics-based animations, or modeling particle effects such as fire,
snow, and bubbles).

The basic technique for building a frame-based animation is easy. You simply need to
attach an event handler to the static CompositionTarget.Rendering event. Once you do, WPF
will begin calling this event handler continuously. (As long as your rendering code executes
quickly enough, WPF will call it 60 times each second.) In the rendering event handler, it’s up
to you to create or adjust the elements in the window accordingly. In other words, you need to
manage all the work yourself. When the animation has ended, detach the event handler.

Figure 21-14 shows a straightforward example. Here, a random number of circles fall from
the top of a Canvas to the bottom. They fall at different speeds (based on a random starting
velocity), but they accelerate downward at the same rate. The animation ends when all the
circles reach the bottom.

In this example, each falling circle is represented by an Ellipse element. A custom class
named EllipseInfo keeps a reference to the ellipse and tracks the details that are important for
the physics model. In this case, there’s only one piece of information—the velocity at which
the ellipse is moving along the X axis. (You could easily extend this class to include a velocity
along the Y axis, additional acceleration information, and so on.)

public class EllipseInfo
{

private Ellipse ellipse;
public Ellipse Ellipse
{

get { return ellipse; }
set { ellipse = value; }

}

private double velocityY;
public double VelocityY
{

get { return velocityY; }

CHAPTER 21 ■ ANIMATION778

9551CH21 2/8/08 2:14 PM Page 778

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

set { velocityY = value; }
}

public EllipseInfo(Ellipse ellipse, double velocityY)
{

VelocityY = velocityY;
Ellipse = ellipse;

}
}

Figure 21-14. A frame-based animation of falling circles

The application keeps track of the EllipseInfo object for each ellipse using a collection.
There are several more window-level fields, which record various details that are used when
calculating the fall of the ellipse. You could easily make these details configurable.

private List<EllipseInfo> ellipses = new List<EllipseInfo>();

private double accelerationY = 0.1;
private int minStartingSpeed = 1;
private int maxStartingSpeed = 50;
private double speedRatio = 0.1;
private int minEllipses = 20;
private int maxEllipses = 100;
private int ellipseRadius = 10;

CHAPTER 21 ■ ANIMATION 779

9551CH21 2/8/08 2:14 PM Page 779

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When a button is clicked, the collection is cleared, and the event handler is attached to
the CompositionTarget.Rendering event:

private bool rendering = false;

private void cmdStart_Clicked(object sender, RoutedEventArgs e)
{

if (!rendering)
{

ellipses.Clear();
canvas.Children.Clear();

CompositionTarget.Rendering += RenderFrame;
rendering = true;

}
}

If the ellipses don’t exist, the rendering code creates them automatically. It creates a ran-
dom number of ellipses (currently, between 20 and 100) and gives each of them the same size
and color. The ellipses are placed at the top of the Canvas, but they’re offset randomly along
the X axis.

private void RenderFrame(object sender, EventArgs e)
{

if (ellipses.Count == 0)
{

// Animation just started. Create the ellipses.
int halfCanvasWidth = (int)canvas.ActualWidth / 2;

Random rand = new Random();
int ellipseCount = rand.Next(minEllipses, maxEllipses+1);
for (int i = 0; i < ellipseCount; i++)
{

// Create the ellipse.
Ellipse ellipse = new Ellipse();
ellipse.Fill = Brushes.LimeGreen;
ellipse.Width = ellipseRadius;
ellipse.Height = ellipseRadius;

// Place the ellipse.
Canvas.SetLeft(ellipse, halfCanvasWidth +
rand.Next(-halfCanvasWidth, halfCanvasWidth));

Canvas.SetTop(ellipse, 0);
canvas.Children.Add(ellipse);

// Track the ellipse.
EllipseInfo info = new EllipseInfo(ellipse,
speedRatio * rand.Next(minStartingSpeed, maxStartingSpeed));

CHAPTER 21 ■ ANIMATION780

9551CH21 2/8/08 2:14 PM Page 780

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ellipses.Add(info);
}

}
...

If the ellipses already exist, the code tackles the more interesting job of animating them.
Each ellipse is moved slightly using the Canvas.SetTop() method. The amount of movement
depends on the assigned velocity.

...
else
{

for (int i = ellipses.Count-1; i >= 0; i--)
{

EllipseInfo info = ellipses[i];
double top = Canvas.GetTop(info.Ellipse);
Canvas.SetTop(info.Ellipse, top + 1 * info.VelocityY);
...

To improve performance, the ellipses are removed from the tracking collection as soon as
they’ve reached the bottom of the Canvas. That way, you don’t need to process them again. To
allow this to work without causing you to lose your place while stepping through the collec-
tion, you need to iterate backward, from the end of the collection to the beginning.

If the ellipse hasn’t yet reached the bottom of the Canvas, the code increases the velocity.
(Alternatively, you could set the velocity based on how close the ellipse is to the bottom of the
Canvas for a magnet-like effect.)

...
if (top >= (canvas.ActualHeight - ellipseRadius*2))
{

// This circle has reached the bottom.
// Stop animating it.
ellipses.Remove(info);

}
else
{

// Increase the velocity.
info.VelocityY += accelerationY;

}
...

Finally, if all the ellipses have been removed from the collection, the event handler is
removed, allowing the animation to end:

...
if (ellipses.Count == 0)
{

// End the animation.
// There's no reason to keep calling this method
// if it has no work to do.

CHAPTER 21 ■ ANIMATION 781

9551CH21 2/8/08 2:14 PM Page 781

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 21 ■ ANIMATION782

CompositionTarget.Rendering -= RenderFrame;
rendering = false;

}
}

}
}

Obviously, you could extend this animation to make the circles bounce, scatter, and so on.
The technique is the same—you simply need to use more complex formulas to arrive at the
velocity.

There’s one caveat to consider when building frame-based animations: they aren’t time-
dependent. In other words, your animation may run faster on fast computers, because the
frame rate will increase and your CompositionTarget.Rendering event will be called more fre-
quently. To compensate for this effect, you need to write code that takes the current time into
account.

The best way to get started with frame-based animations is to check out the surprisingly
detailed per-frame animation sample included with the WPF SDK (and also provided with the
sample code for this chapter). It demonstrates several particle effects and uses a custom Time-
Tracker class to implement time-dependent frame-based animations.

The Last Word
In this chapter, you explored WPF’s animation support in detail. Now that you’ve mastered the
basics, you can spend more time with the art of animation—deciding what properties to ani-
mate and how to modify them to get the effect you want. You’ll find countless examples on the
Web, including several that are referred to in this chapter. (If you want to avoid tired fingers from
typing in long URLs, refer to the book page at www.prosetech.com to get a list with all the links.)

THE FUTURE OF WPF ANIMATION

The animation model in WPF is surprisingly full-featured. However, getting the result you want isn’t always
easy. If you want to animate separate portions of your interface as part of a single animated “scene,” you’re
often forced to write a fair bit of markup with interdependent details that aren’t always clear. In more com-
plex animations, you may be forced to hard-code details and fall back to code to perform calculations for the
ending value of animation. And if you need fine-grained control over an animation, such as when modeling a
physical particle system, you’ll need to control every step of the way using frame-based animation.

The future of WPF animation promises higher-level classes that are built on the basic plumbing you’ve
learned about in this chapter. Ideally, you’ll be able to plug animations into your application simply by using
prebuilt animation classes, wrapping your elements in specialized containers, and setting a few attached
properties. The actual implementation that generates the effect you want—whether it’s a smooth dissolve
between two images or a series of animated fly-ins that builds a window—will be provided for you.

To see an example of this future direction, check out the open source Animation Behaviors project at
http://www.codeplex.com/AnimationBehaviors, which provides an easy way to attach a small set
of prebuilt animation effects to your user interface elements. Although this is just one early example (which
may or may not flourish), the WPF team has indicated that prebuilt animations are a hotly requested feature
and one that they want to support in the future.

9551CH21 2/8/08 2:14 PM Page 782

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.prosetech.com
http://www.codeplex.com/AnimationBehaviors

Sound and Video

In this chapter, you’ll tackle two more areas of WPF functionality: audio and video.
The support WPF provides for audio is a significant step up from previous versions of

.NET, but it’s far from groundbreaking. WPF gives you the ability to play a wide variety of
sound formats, including MP3 files and anything else supported by Windows Media Player.
However, WPF’s sound capabilities still fall far short of DirectSound (the advanced audio API
in DirectX), which allows you to apply dynamic effects and place sounds in a simulated 3D
space. WPF also lacks a way to retrieve spectrum data that tells you the highs and lows of
sound, which is useful for creating some types of synchronized effects and sound-driven
animations.

WPF’s video support is more impressive. Although the ability to play video (such as MPEG
and WMV files) isn’t earth-shattering, the way it integrates into the rest of the WPF model is
dramatic. For example, you can use video to fill thousands of elements at once and combine it
with effects, animation, transparency, and even 3D objects.

In this chapter, you’ll see how to integrate video and audio content into your applications.
You'll even take a quick look at WPF’s support for speech synthesis and speech recognition.
But before you get to the more exotic examples, you’ll begin by considering the basic code
required to play humble WAV audio.

Playing WAV Audio
The .NET Framework has a sketchy history of sound support. Versions 1.0 and 1.1 didn’t
include any managed way to play audio, and when the long-delayed support finally appeared
in .NET 2.0, it was in the form of the rather underwhelming SoundPlayer class (which you can
find in the underpopulated System.Media namespace). The SoundPlayer is severely limited: it
can play only WAV audio files, it doesn’t support playing more than one sound at once, and it
doesn’t provide the ability to control any aspect of the audio playback (for example, details
such as volume and balance). To get these features, developers using the Windows Forms
toolkit had to work with the unmanaged quartz.dll library.

783

C H A P T E R 2 2

■ ■ ■

9551CH22 2/8/08 2:14 PM Page 783

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The quartz.dll library is a key part of DirectX, and it’s included with Windows Media Player and the
Windows operating system. (Sometimes, the same component is known by the more marketing-friendly
term DirectShow, and previous versions were called ActiveMovie.) For the gory details that describe how to
use quartz.dll with Windows Forms, refer to my book Pro .NET 2.0 Windows Forms and Custom Controls in
C# (Apress, 2005).

The SoundPlayer class is supported in WPF applications. If you can live with its significant
limitations, it still presents the easiest, most lightweight way to add audio to an application.
The SoundPlayer class is also wrapped by the SoundPlayerAction class, which allows you to
play sounds through a declarative trigger (rather than writing a few lines of C# code in an
event handler). In the following sections, you’ll take a quick look at both classes, before you
move on to WPF’s much more powerful MediaPlayer and MediaElement classes.

The SoundPlayer
To play a sound with the SoundPlayer class, you follow several steps:

1. Create a SoundPlayer instance.

2. Specify the sound content by setting either the Stream property or the SoundLocation
property. If you have a Stream-based object that contains WAV audio content, use the
Stream property. If you have a file path or URL that points to a WAV file, use the Sound-
Location property.

3. Once you’ve set the Stream or SoundLocation property, you can tell SoundPlayer to
actually load the audio data by calling the Load() or LoadAsync() method. The Load()
method is the simplest—it stalls your code until all the audio is loaded into memory.
LoadAsync() quietly carries its work out on another thread and fires the LoadCom-
pleted event when it’s finished.

■Note Technically, you don’t need to use Load() or LoadAsync(). The SoundPlayer will load the audio data if
needed when you call Play() or PlaySync(). However, it’s a good idea to explicitly load the audio—not only
does that save you the overhead if you need to play it multiple times, but it also makes it easy to handle
exceptions related to file problems separately from exceptions related to audio playback problems.

4. Now, you can call PlaySync() to pause your code while the audio plays, or you can use
Play() to play the audio on another thread, ensuring that your application’s interface
remains responsive. Your only other option is PlayLooping(), which plays the audio
asynchronously in an unending loop (perfect for those annoying soundtracks). To halt
the current playback at any time, just call Stop().

CHAPTER 22 ■ SOUND AND VIDEO784

9551CH22 2/8/08 2:14 PM Page 784

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip If you’re hunting for WAV files to test with the SoundPlayer, look for the Media directory in the
Windows directory, which holds WAV files for all the Windows system sounds.

The following code snippet shows the simplest approach to load and play a sound asyn-
chronously:

SoundPlayer player = new SoundPlayer();
player.SoundLocation = "test.wav";
try
{

player.Load();
player.Play();

}
catch (System.IO.FileNotFoundException err)
{

// An error will occur here if the file can't be found.
}
catch (FormatException err)
{

// A FormatException will occur here if the file doesn't
// contain valid WAV audio.

}

So far, the code has assumed that the audio is present in the same directory as the com-
piled application. However, you don’t need to load the SoundPlayer audio from a file. If you’ve
created small sounds that are played in several points in your application, it may make more
sense to embed the sound files into your compiled assembly as a binary resource (not to be
confused with the declarative resources, which are the resources you define in XAML
markup). This technique, which was discussed in Chapter 11, works just as well with sound
files as it does with images. For example, if you add the ding.wav audio file with the resource
name Ding (just browse to the Properties ➤ Resources node in the Solution Explorer and use
the designer support), you could use this code to play it:

SoundPlayer player = new SoundPlayer();
player.Stream = Properties.Resources.Ding;
player.Play();

■Note The SoundPlayer class doesn’t deal well with large audio files, because it needs to load the entire
file into memory at once. You might think that you can resolve this problem by submitting a large audio file in
smaller chunks, but the SoundPlayer wasn’t designed with this technique in mind. There’s no easy way to
synchronize the SoundPlayer so that it plays multiple audio snippets one after the other, because it doesn’t
provide any sort of queuing feature. Each time you call PlaySync() or Play(), the current audio playback stops.
Workarounds are possible, but you’ll be far better off using the MediaElement class discussed later in this
chapter.

CHAPTER 22 ■ SOUND AND VIDEO 785

9551CH22 2/8/08 2:14 PM Page 785

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The SoundPlayerAction
The SoundPlayerAction is a new feature that WPF introduces to make it more convenient to
use the SoundPlayer class. The SoundPlayerAction class derives from TriggerAction, which
allows you to use it in response to any event.

■Note You first considered event triggers in Chapter 12. Additionally, Chapter 21 shows several examples
that use event triggers with animations.

The SoundPlayerAction uses a single property, Source, which maps to the SoundPlayer.
Source property. Here’s a button that uses a SoundPlayerAction to connect the Click event to a
sound. The trigger is wrapped in a style that you could apply to multiple buttons (if you pulled
it out of the button and placed it in a Resources collection).

<Button>
<Button.Content>Play Sound</Button.Content>
<Button.Style>
<Style>
<Style.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<SoundPlayerAction Source="test.wav"></SoundPlayerAction>

</EventTrigger.Actions>
</EventTrigger>

</Style.Triggers>
</Style>

</Button.Style>
</Button>

When using the SoundPlayerAction, the sound is always played asynchronously. You’re
also limited to the Source property—there’s no handy Stream property to play the audio in an
embedded resource. That means the only place you can grab your audio from is a nearby file.
(Unfortunately, the application pack URI system that’s described in Chapter 11 doesn’t apply
to the SoundPlayer class, because it’s not part of WPF.)

System Sounds
One of the shameless frills of the Windows operating system is its ability to map audio files
to specific system events. Along with SoundPlayer, .NET 2.0 also introduced a System.Media.
SystemSounds class that allows you to access the most common of these sounds and use them
in your own applications. This technique works best if all you want is a simple chime to indi-
cate the end of a long-running operation or an alert sound to indicate a warning condition.

Unfortunately, the SystemSounds class is based on the MessageBeep Win32 API, and as a
result, it provides access only to the following generic system sounds:

• Asterisk

• Beep

CHAPTER 22 ■ SOUND AND VIDEO786

9551CH22 2/8/08 2:14 PM Page 786

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Exclamation

• Hand

• Question

The SystemSounds class provides a property for each of these sounds, which returns a
SystemSound object you can use to play the sound through its Play() method. For example, to
sound a beep in your code, you simply need to execute this line of code:

SystemSounds.Beep.Play();

To configure what WAV files are used for each sound, head to the Control Panel, and select
the Sounds and Audio Devices icon (in Windows XP) or the Sound icon (in Windows Vista).

The MediaPlayer
The SoundPlayer, SoundPlayerAction, and SystemSounds classes are easy to use but relatively
underpowered. In today’s world, it’s much more common to use compressed MP3 audio for
everything except the simplest of sounds, instead of the original WAV format. But if you want
to play MP3 audio or MPEG video, you need to turn to two different classes: MediaPlayer and
MediaElement. Both classes depend on key pieces of technology that are provided through
Windows Media Player. However, there’s a catch—they require Windows Media Player version 10
or later. Windows Vista makes the cut easily, because it includes Windows Media Player 11, but
existing Windows XP installations have no such guarantee.

■Note Windows XP introduces another catch for 64-bit programmers—namely, the 64-bit version of
Windows XP includes a 32-bit version of Media Player. As a result, you must compile your WPF application in
32-bit to ensure that you have audio and video support. (This is the default for any new WPF project, unless
you explicitly configure it as a 64-bit application, which will run only on 64-bit versions of Windows.)

The MediaPlayer class (found in the WPF-specific System.Windows.Media namespace) is
the WPF equivalent to the SoundPlayer class. Although it’s clearly not as lightweight, it works
in a similar way—namely, you create a MediaPlayer object, call the Open() method to load
your audio file, and call Play() to begin playing it asynchronously. (There’s no option for syn-
chronous playback.) Here’s a barebones example:

private MediaPlayer player = new MediaPlayer();

private void cmdPlayWithMediaPlayer_Click(object sender, RoutedEventArgs e)
{

player.Open(new Uri("test.mp3", UriKind.Relative));
player.Play();

}

CHAPTER 22 ■ SOUND AND VIDEO 787

9551CH22 2/8/08 2:14 PM Page 787

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

There are a few important details to notice in this example:

• The MediaPlayer is created outside the event handler, so it lives for the lifetime of the
window. That’s because the MediaPlayer.Close() method is called when the MediaPlayer
object is disposed from memory. If you create a MediaPlayer object in the event han-
dler, it will be released from memory almost immediately and probably garbage
collected shortly after, at which point the Close() method will be called and playback
will be halted.

■Tip You should create a Window.Unloaded event handler to call Close() to stop any currently playing audio
when the window is closed.

• You supply the location of your file as a URI. Unfortunately, this URI doesn’t use the
application pack syntax that you learned about in Chapter 11, so it’s not possible to
embed an audio file and play it using the MediaPlayer class. This limitation is because
the MediaPlayer class is built on functionality that’s not native to WPF—instead, it’s
provided by a distinct, unmanaged component of the Windows Media Player.

• There’s no exception handling code. Irritatingly, the Open() and Play() methods don’t
throw exceptions (the asynchronous load and playback process is partly to blame).
Instead, it’s up to you to handle the MediaOpened and MediaFailed events if you want
to determine whether your audio is being played.

The MediaPlayer is fairly straightforward but still more capable than SoundPlayer. It
provides a small set of useful methods, properties, and events. Table 22-1 has the full list.

Table 22-1. Key MediaPlayer Members

Member Description

Balance Sets the balance between the left and right speaker as a number from –1
(left speaker only) to 1 (right speaker only).

Volume Sets the volume as a number from 0 (completely muted) to 1 (full volume).
The default value is 0.5.

SpeedRatio Sets a speed multiplier to play audio (or video) at faster than normal
speed. The default value of 1 is normal speed, while 2 is two-times normal
speed, 10 is ten-times speed, 0.5 is half-times speed, and so on. You can
use any positive double value.

HasAudio and Indicates whether the currently loaded media file includes audio or video,
HasVideo respectively. To show video, you need to use the MediaElement class

described next.

NaturalDuration, Indicates the play duration at normal speed and the size of the video
NaturalVideoHeight, window. (As you’ll discover later, you can scale or stretch a video to fit
NaturalVideoWidth different window sizes.)

Position A TimeSpan indicating the current location in the media file. You can set
this property to skip to a specific time position.

CHAPTER 22 ■ SOUND AND VIDEO788

9551CH22 2/8/08 2:14 PM Page 788

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Member Description

DownloadProgress and Indicates the percentage of a file that has been downloaded (useful if the
BufferingProgress Source is a URL pointing to a web or remote computer) or buffered (if the

media file you’re using is encoded in a streaming format so it can be
played before it’s entirely downloaded). The percentage is represented as a
number from 0 to 1.

Clock Gets or sets the MediaClock that’s associated with this player. The
MediaClock is used only when you’re synchronizing audio to a timeline
(in much the same way that you learned to synchronize an animation to a
timeline in Chapter 21). If you’re using the methods of the MediaPlayer to
perform manual playback, this property is null.

Open() Loads a new media file.

Play() Begins playback. Has no effect if the file is already being played.

Pause() Pauses playback but doesn’t change the position. If you call Play() again,
playback will begin at the current position. Has no effect if the audio is
not playing.

Stop() Stops playback and resets the position to the beginning of the file. If you
call Play() again, playback will begin at the beginning of the file. Has no
effect if the audio has already been stopped.

Using these members, you could build a basic but full-featured media player. However,
WPF programmers usually use another quite similar element, which is defined in the next sec-
tion: the MediaElement class.

The MediaElement
The MediaElement is a WPF element that wraps all the functionality of the MediaPlayer class.
Like all elements, the MediaElement is placed directly in your user interface. If you’re using the
MediaElement to play audio, this fact isn’t important, but if you’re using the MediaElement for
video, you place it where the video window should appear.

A simple MediaElement tag is all you need to play a sound. For example, if you add this
markup to your user interface:

<MediaElement Source="test.mp3"></MediaElement>

the test.mp3 audio will be played as soon as it’s loaded (which is more or less as soon as the
window is loaded).

Playing Audio Programmatically
Usually, you’ll want the ability to control playback more precisely. For example, you might
want it to be triggered at a specific time, repeated indefinitely, and so on. One way to achieve
this result is to use the methods of the MediaElement class at the appropriate time.

The startup behavior of the MediaElement is determined by its LoadedBehavior property,
which is one of the few properties that the MediaElement class adds, which isn’t found in the
MediaPlayer class. The LoadedBehavior takes any value from the MediaState enumeration.

CHAPTER 22 ■ SOUND AND VIDEO 789

9551CH22 2/8/08 2:14 PM Page 789

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The default value is Play, but you can also use Manual, in which case the audio file is loaded,
and your code takes responsibility for starting the playback at the right time. Another option
is Pause, which also suspends playback but doesn’t allow you to use the playback methods.
(Instead, you’ll need to start playback using triggers and a storyboard, as described in the next
section.)

■Note The MediaElement class also provides an UnloadedBehavior property, which determines what
should happen when the element is unloaded. In this case, Close is really the only sensible choice, because
it closes the file and releases all system resources.

So to play audio programmatically, you must begin by changing the LoadedBehavior, as
shown here:

<MediaElement Source="test.mp3" LoadedBehavior="Manual" Name="media"></MediaElement>

You must also choose a name so that you can interact with the media element in code.
Generally, interaction consists of the straightforward Play(), Pause(), and Stop() methods. You
can also set Position to move through the audio. Here’s a simple event handler that seeks to
the beginning and starts playback:

private void cmdPlay_Click(object sender, RoutedEventArgs e)
{

media.Position = TimeSpan.Zero;
media.Play();

}

If this code runs while playback is already underway, the first line will reset the position to
the beginning, and playback will continue from that point. The second line will have no effect,
because the media file is already being played. If you try to use this code on a MediaElement
that doesn’t have the LoadedBehavior property set to Manual, you’ll receive an exception.

■Note In a typical media player, you can trigger basic commands like play, pause, and stop in more than
one way. Obviously, this is a great place to use the WPF command model. In fact, there’s a command class
that already includes some handy infrastructure, the System.Windows.Input.MediaCommands class. How-
ever, the MediaElement does not have any default command bindings that support the MediaCommands
class. In other words, it’s up to you to write the event handling logic that implements each command and
calls the appropriate MediaElement method. The savings to you is that multiple user interface elements can
be hooked up to the same command, reducing code duplication. Chapter 10 has more about commands.

CHAPTER 22 ■ SOUND AND VIDEO790

9551CH22 2/8/08 2:14 PM Page 790

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Handling Errors
The MediaElement doesn’t throw an exception if it can’t find or load a file. Instead, it’s up to
you to handle the MediaFailed event. Fortunately, this task is easy. Just tweak your Media-
Element tag:

<MediaElement ... MediaFailed="media_MediaFailed"></MediaElement>

And, in the event handler, use the ExceptionRoutedEventArgs.ErrorException property to
get an exception object that describes the problem:

private void media_MediaFailed(object sender, ExceptionRoutedEventArgs e)
{

lblErrorText.Content = e.ErrorException.Message;
}

Playing Audio with Triggers
So far, you haven’t received any advantage by switching from the MediaPlayer to the Media-
Element class (other than support for video, which is discussed later in this chapter). However,
by using a MediaElement, you also gain the ability to control audio declaratively, through
XAML markup rather than code. You do this using triggers and storyboards, which you first
saw when you considered animation in Chapter 21. The only new ingredient is the Media-
Timeline, which controls the timing of your audio or video file and works with MediaElement
to coordinates its playback. MediaTimeline derives from Timeline and adds a Source property
that identifies the audio file you want to play.

The following markup demonstrates a simple example. It uses the BeginStoryboard action
to begin playing a sound when the mouse clicks a button. (Obviously, you could respond
equally well to other mouse and keyboard events.)

<Grid>
<Grid.RowDefinitions>
<RowDefinition Size="Auto"></RowDefinition>
<RowDefinition Size="Auto"></RowDefinition>
</Grid.RowDefinitions>
<MediaElement x:Name="media"></MediaElement>

<Button>
<Button.Content>Click me to hear a sound.</Button.Content>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<MediaTimeline Source="soundA.wav"
Storyboard.TargetName="media"></MediaTimeline>

</Storyboard>

CHAPTER 22 ■ SOUND AND VIDEO 791

9551CH22 2/8/08 2:14 PM Page 791

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</BeginStoryboard>
</EventTrigger.Actions>

</EventTrigger>
</Button.Triggers>

</Button>
</Grid>

Because this example plays audio, the positioning of the MediaElement isn’t important. In
this example, it’s placed inside a Grid, behind a Button. (The ordering isn’t important, because
the MediaElement won’t have any visual appearance at runtime.) When the button is clicked,
a Storyboard is created with a MediaTimeline. Notice that the source isn’t specified in
the MediaElement.Source property. Instead, the source is passed along through the
MediaTimeline.Source property.

■Note When you use MediaElement as the target of a MediaTimeline, it no longer matters what you set
the LoadedBehavior and UnloadedBehavior to. Once you use a MediaTime, your audio or video is driven
by a WPF animation clock (technically, an instance of the MediaClock class, which is exposed through the
MediaElement.Clock property).

You can use a single Storyboard to control the playback of a single MediaElement—in
other words, not only stopping it but also pausing, resuming, and stopping it at will. For exam-
ple, consider the extremely simple four-button media player shown in Figure 22-1.

Figure 22-1. A window for controlling playback

This window uses a single MediaElement, MediaTimeline, and Storyboard. The
Storyboard and MediaTimeline are declared in the Window.Resources collection:

<Window.Resources>
<Storyboard x:Key="MediaStoryboardResource">
<MediaTimeline Storyboard.TargetName="media" Source="test.mp3"></MediaTimeline>
</Storyboard>

</Window.Resources>

The only challenge is that you must remember to define all the triggers for managing the
storyboard in one collection. You can then attach them to the appropriate controls using the
EventTrigger.SourceName property.

CHAPTER 22 ■ SOUND AND VIDEO792

9551CH22 2/8/08 2:14 PM Page 792

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In this example, the triggers are all declared inside the StackPanel that holds the buttons.
Here are the triggers and the buttons that use them to manage the audio:

<StackPanel Orientation="Horizontal">
<StackPanel.Triggers>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="cmdPlay">
<EventTrigger.Actions>
<BeginStoryboard Name="MediaStoryboard"
Storyboard="{StaticResource MediaStoryboardResource}"/>

</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="cmdStop">
<EventTrigger.Actions>
<StopStoryboard BeginStoryboardName="MediaStoryboard"/>

</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="cmdPause">
<EventTrigger.Actions>
<PauseStoryboard BeginStoryboardName="MediaStoryboard"/>

</EventTrigger.Actions>
</EventTrigger>
<EventTrigger RoutedEvent="ButtonBase.Click" SourceName="cmdResume">
<EventTrigger.Actions>
<ResumeStoryboard BeginStoryboardName="MediaStoryboard"/>

</EventTrigger.Actions>
</EventTrigger>

</StackPanel.Triggers>

<MediaElement Name="media"></MediaElement>
<Button Name="cmdPlay">Play</Button>
<Button Name="cmdStop">Stop</Button>
<Button Name="cmdPause">Pause</Button>
<Button Name="cmdResume">Resume</Button>

</StackPanel>

Notice that even though the implementation of MediaElement and MediaPlayer allows
you to resume playback after pausing by calling Play(), the Storyboard doesn’t work in the
same way. Instead, a separate ResumeStoryboard action is required. If this isn’t the behavior
you want, you can consider adding some code for your play button instead of using the
declarative approach.

■Note The downloadable code samples for this chapter include a declarative media player window and a
more flexible code-driven media player window.

CHAPTER 22 ■ SOUND AND VIDEO 793

9551CH22 2/8/08 2:14 PM Page 793

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Playing Multiple Sounds
Although the previous example showed you how to control the playback of a single media
file, there’s no reason you can’t extend it to play multiple audio files. The following example
includes two buttons, each of which plays its own sound. When the button is clicked, a new
Storyboard is created, with a new MediaTimeline, which is used to play a different audio file
through the same MediaElement.

<Grid>
<Grid.RowDefinitions>
<RowDefinition Size="Auto"></RowDefinition>
<RowDefinition Size="Auto"></RowDefinition>
</Grid.RowDefinitions>
<MediaElement x:Name="media"></MediaElement>

<Button>
<Button.Content>Click me to hear a sound.</Button.Content>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<MediaTimeline Source="soundA.wav"
Storyboard.TargetName="media"></MediaTimeline>

</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>

</EventTrigger>
</Button.Triggers>

</Button>

<Button Grid.Row="1">
<Button.Content >Click me to hear a different sound.</Button.Content>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<MediaTimeline Source="soundB.wav"
Storyboard.TargetName="media"></MediaTimeline>

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Button.Triggers>
</Button>

</Grid>

CHAPTER 22 ■ SOUND AND VIDEO794

9551CH22 2/8/08 2:14 PM Page 794

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In this example, if you click both buttons in quick succession, you’ll see that the second
sound interrupts the playback of the first. This is a consequence of using the same Media-
Element for both timelines. A slicker (but more resource-heavy) approach is to use a separate
MediaElement for each button and point the MediaTimeline to the corresponding Media-
Element. (In this case, you can specify the Source directly in the MediaElement tag, because it
doesn’t change.) Now, if you click both buttons in quick succession, both sounds will play at
the same time.

The same applies to the MediaPlayer class—if you want to play multiple audio files, you
need multiple MediaPlayer objects. If you decide to use the MediaPlayer or MediaElement
with code, you have the opportunity to use more intelligent optimization that allows exactly
two simultaneous sounds, but no more. The basic technique is to define two MediaPlayer
objects and flip between them each time you play a new sound. (You can keep track of which
object you used last using a Boolean variable.) To make this technique really effortless, you
can store the audio file names in the Tag property of the appropriate element, so all your event
handling code needs to do is find the right MediaPlayer to use, set its Source property, and call
its Play() method.

Changing Volume, Balance, Speed, and Position
The MediaElement exposes the same properties as the MediaPlayer (detailed in Table 22-1)
for controlling the volume, the balance, the speed, and the current position in the media file.
Figure 22-2 shows a simple window that extends the sound player example from Figure 22-1
with additional controls for adjusting these details.

Figure 22-2. Controlling more playback details

CHAPTER 22 ■ SOUND AND VIDEO 795

9551CH22 2/8/08 2:14 PM Page 795

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The volume and balance sliders are the easiest to wire up. Because Volume and Balance
are dependency properties, you can connect the slider to the MediaElement with a two-way
binding expression. Here’s what you need:

<Slider Grid.Row="1" Minimum="0" Maximum="1"
Value="{Binding ElementName=media, Path=Volume, Mode=TwoWay}"></Slider>
<Slider Grid.Row="2" Minimum="-1" Maximum="1"
Value="{Binding ElementName=media, Path=Balance, Mode=TwoWay}"></Slider>

Although two-way data binding expressions incur slightly more overhead, they ensure
that if the MediaElement properties are changed some other way, the slider controls remain
synchronized.

The SpeedRatio property can be connected in the same way:

<Slider Grid.Row="3" Minimum="0" Maximum="2"
Value="{Binding ElementName=media, Path=SpeedRatio}"></Slider>

However, this has a few quirks. First, SpeedRatio isn’t used in a clock-driven audio (one that
uses a MediaTimeline). To use it, you need to set the LoadedBehavior property of SpeedRatio to
Manual and take control of its playback manually through the playback methods.

■Tip If you’re using a MediaTimeline, you can get the same effect from the SetStoryboardSpeedRatio
action as setting the MediaElement.SpeedRatio property. You learned about these details in Chapter 21.

Second, SpeedRatio isn’t a dependency property, and WPF doesn’t receive change notifi-
cations when it’s modified. That means if you include code that modifies the SpeedRatio
property, the slider won’t be updated accordingly. (One workaround is to modify the slider in
your code, rather than modify the MediaElement directly.)

■Note Changing the playback speed of audio can distort the audio and cause sound artifacts, such as
echoes.

The last detail is the current position, which is provided by the Position property. Once
again, the MediaElement needs to be in Manual mode before you can set the Position prop-
erty, which means you can’t use the MediaTimeline. (If you’re using a MediaTimeline, consider
using the BeginStoryboard action with an Offset to the position you want, as described in
Chapter 21.)

To make this work, you don’t use any data binding in the slider:

<Slider Minimum="0" Name="sliderPosition"
ValueChanged="sliderPosition_ValueChanged"></Slider>

CHAPTER 22 ■ SOUND AND VIDEO796

9551CH22 2/8/08 2:14 PM Page 796

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You use code like this to set up the position slider when you open a media file:

private void media_MediaOpened(object sender, RoutedEventArgs e)
{

sliderPosition.Maximum = media.NaturalDuration.TimeSpan.TotalSeconds;
}

You can then jump to a specific position when the slider tab is moved:

private void sliderPosition_ValueChanged(object sender, RoutedEventArgs e)
{

// Pausing the player before moving it reduces audio "glitches"
// when the value changes several times in quick succession.
media.Pause();
media.Position = TimeSpan.FromSeconds(sliderPosition.Value);
media.Play();

}

The drawback here is that the slider isn’t updated as the media advances. If you want this
feature, you need to cook up a suitable workaround (like a DispatcherTimer that triggers a peri-
odic check while playback is taking place and updates the slider then). The same is true if you’re
using the MediaTimeline. For various reasons you can’t bind directly to the MediaElement.
Clock information. Instead, you’ll need to handle the Storyboard.CurrentTimeInvalidated event,
as demonstrated in the AnimationPlayer example in Chapter 21.

Synchronizing an Animation with Audio
In some cases, you may want to synchronize another animation to a specific point in a media
file (audio or video). For example, if you have a lengthy audio file that features a person
describing a series of steps, you might want to fade in different images after each pause.

Depending on your needs, this design may be overly complex, and you may be able to
achieve better performance and simpler design by segmenting the audio into separate files.
That way, you can load the new audio and perform the correlated action all at once, simply by
responding to the MediaEnded event. In other situations, you need to synchronize something
with continuous, unbroken playback of a media file.

One technique that allows you to pair playback with other actions is a key frame anima-
tion (which was introduced in Chapter 21). You can then wrap this key frame animation and
your MediaTimeline into a single storyboard. That way you can supply specific time offsets for
your animation, which will then correspond to precise times in the audio file. In fact, you can
even use a third-party program that allows you to annotate audio and export a list of impor-
tant times. You can then use this information to set up the time for each key frame.

When using a key frame animation, it’s important to set the Storyboard.SlipBehavior
property to Slip. This specifies that your key frame animation should not creep ahead of the
MediaTimeline, if the media file is delayed. This is important because the MediaTimeline
could be delayed by buffering (if it’s being streamed from a server) or, more commonly, by
load time.

CHAPTER 22 ■ SOUND AND VIDEO 797

9551CH22 2/8/08 2:14 PM Page 797

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following markup demonstrates a basic example of an audio file with two synchro-
nized animations. The first varies the text in a label as specific parts of the audio file are
reached. The second shows a small circle halfway through the audio and pulses it in time to
the beat by varying the value of the Opacity property.

<Window.Resources>
<Storyboard x:Key="Board" SlipBehavior="Slip">
<MediaTimeline Source="sq3gm1.mid"
Storyboard.TargetName="media"/>

<StringAnimationUsingKeyFrames
Storyboard.TargetName="lblAnimated"
Storyboard.TargetProperty="(Label.Content)" FillBehavior="HoldEnd">
<DiscreteStringKeyFrame Value="First note..." KeyTime="0:0:3.4" />
<DiscreteStringKeyFrame Value="Introducing the main theme..."
KeyTime="0:0:5.8" />
<DiscreteStringKeyFrame Value="Irritating bass begins..."
KeyTime="0:0:28.7" />
<DiscreteStringKeyFrame Value="Modulation!" KeyTime="0:0:53.2" />
<DiscreteStringKeyFrame Value="Back to the original theme."
KeyTime="0:1:8" />

</StringAnimationUsingKeyFrames>

<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="ellipse"
Storyboard.TargetProperty="Opacity" BeginTime="0:0:29.36"
RepeatBehavior="30x">

<LinearDoubleKeyFrame Value="1" KeyTime="0:0:0" />
<LinearDoubleKeyFrame Value="0" KeyTime="0:0:0.64" />

</DoubleAnimationUsingKeyFrames>
</Storyboard>

</Window.Resources>

<Window.Triggers>
<EventTrigger RoutedEvent="MediaElement.Loaded">
<EventTrigger.Actions>
<BeginStoryboard Name="mediaStoryboard" Storyboard="{StaticResource Board}">
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Window.Triggers>

CHAPTER 22 ■ SOUND AND VIDEO798

9551CH22 2/8/08 2:14 PM Page 798

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To make this example even more interesting, it also includes a slider that allows you
to change your position. You’ll see that even if you change the position using the slider, the
three animations are adjusted automatically to the appropriate point by the MediaTimeline.
(The slider is kept synchronized using the Storyboard.CurrentTimeInvalidated event, and the
ValueChanged event is handled to seek to a new position after the user drags the slider thumb.
You saw both of these techniques in Chapter 21, with the AnimationPlayer example.)

Figure 22-3 shows the program in action.

Figure 22-3. Synchronized animations

Playing Video
Everything you’ve learned about using the MediaElement class applies equally well when you
use a video file instead of an audio file. As you’d expect, the MediaElement class supports all
the video formats that are supported by Windows Media Player. Although support depends on
the codecs you’ve installed, you can’t count on basic support for WMV, MPEG, and AVI files.

The key difference with video files is that the visual and layout-related properties of the
MediaElement are suddenly important. Most important, the Stretch and StretchDirection
properties determine how the video window is scaled to fit its container (and work in the
same way as the Stretch and StretchDirection properties that you learned about on all Shape-
derived classes). When setting the Stretch value, you can use None to keep the native size,
Uniform to stretch it to fit its container without changing its aspect ratio, Uniform to stretch
it to fit its container in both dimensions (even if that means stretching the picture), and
UniformToFill to resize the picture to fit the largest dimension of its container while preserv-
ing its aspect ratio (which guarantees that part of the video window will be clipped out if the
container doesn’t have the same aspect ratio as the video).

CHAPTER 22 ■ SOUND AND VIDEO 799

9551CH22 2/8/08 2:14 PM Page 799

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip The MediaElement’s preferred size is based on the native video dimensions. For example, if you cre-
ate a MediaElement with a Stretch value of Uniform (the default) and place it inside a Grid row with a Height
value of Auto, the row will be sized just large enough to keep the video at its standard size, so no scaling is
required.

Video Effects
Because the MediaElement works like any other WPF element, you have the ability to manipu-
late it in some surprising ways. Here are some examples:

• You can use a MediaElement as the content inside a content control, such as a button.

• You can set the content for thousands of content controls at once with multiple
MediaElement objects—although your CPU probably won’t bear up very well under
the strain.

• You can also combine video with transformations through the LayoutTransform or
RenderTransform property. This allows you to move your video window, stretch it, skew
it, or rotate it.

■Tip Generally, RenderTransform is preferred over LayoutTransform for the MediaElement, because it’s
lighter weight. It also takes the value of the handy RenderTransformOrigin property into account, allowing
you to use relative coordinates for certain transforms (such as rotation).

• You can set the Clipping property of the MediaElement to cut down the video window
to a specific shape or path and show only a portion of the full window.

• You can set the Opacity property to allow other content to show through behind your
video window. In fact, you can even stack multiple semitransparent video windows on
top of each other (with dire consequences for performance).

• You can use an animation to change a property of the MediaElement (or one of its
transforms) dynamically.

• You can copy the current content of the video window to another place in your user
interface using a VisualBrush, which allows you to create specific effects like reflection.

• You can place a video window on a three-dimensional surface and use an animation to
move it as the video is being played (as described in Chapter 23).

For example, the following markup creates the reflection effect shown in Figure 22-4. It
does so by creating a Grid with two rows. The top row holds a MediaElement that plays a video
file. The bottom row holds a Rectangle that’s painted with a VisualBrush. The trick is that the
VisualBrush takes its content from the video window above it, using a binding expression. The

CHAPTER 22 ■ SOUND AND VIDEO800

9551CH22 2/8/08 2:14 PM Page 800

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

video content is then flipped over by using the RelativeTransform property and then faded out
gradually toward the bottom using an OpacityMask gradient.

<Grid Margin="15" HorizontalAlignment="Center">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>

<Border BorderBrush="DarkGray" BorderThickness="1" CornerRadius="2">
<MediaElement x:Name="video" Source="test.mpg" LoadedBehavior="Manual"
Stretch="Fill"></MediaElement>

</Border>

<Border Grid.Row="1" BorderBrush="DarkGray" BorderThickness="1" CornerRadius="2">
<Rectangle VerticalAlignment="Stretch" Stretch="Uniform">
<Rectangle.Fill>
<VisualBrush Visual="{Binding ElementName=video}">
<VisualBrush.RelativeTransform>
<ScaleTransform ScaleY="-1" CenterY="0.5"></ScaleTransform>

</VisualBrush.RelativeTransform>
</VisualBrush>

</Rectangle.Fill>

<Rectangle.OpacityMask>
<LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
<GradientStop Color="Black" Offset="0"></GradientStop>
<GradientStop Color="Transparent" Offset="0.6"></GradientStop>

</LinearGradientBrush>
</Rectangle.OpacityMask>
</Rectangle>

</Border>
</Grid>

This example performs fairly well. The reflection effect has a similar rendering overhead
to two video windows, because each frame must be copied to the lower rectangle. In addition,
each frame needs to be flipped and faded to create the reflection effect. (WPF uses an inter-
mediary rendering surface to perform these transformations.) But on a modern computer, the
extra overhead is barely noticeable.

This isn’t the case with other video effects. In fact, video is one of the few areas in WPF
where it’s extremely easy to overtask the CPU and create interfaces that perform poorly.
Average computers can’t handle more than a few simultaneous video windows (depending,
obviously, on the size of your video file—higher resolutions and higher frame rates obviously
mean more data, which is more time-consuming to process).

CHAPTER 22 ■ SOUND AND VIDEO 801

9551CH22 2/8/08 2:14 PM Page 801

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The downloadable examples for this chapter include another example that demonstrates
video effects: an animation that rotates a video window as it plays. The need to wipe out each
video frame and redraw a new one at a slightly different angle runs relatively well on modern
video cards but causes a noticeable flicker on lower-tier cards. If in doubt, you should profile
your user interface plans on a lesser-powered computer to see whether they stand up and
should provide a way to opt out of the more complex effects your application provides or
gracefully disable them on lower-tier cards.

Figure 22-4. Reflected video

CHAPTER 22 ■ SOUND AND VIDEO802

9551CH22 2/8/08 2:14 PM Page 802

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

THE VIDEODRAWING CLASS

WPF includes a VideoDrawing class that derives from the Drawing class you learned about in Chapter 14.
The VideoDrawing can be used to create a DrawingBrush, which can then be used to fill the surface of an
element, creating much the same effect as demonstrated in the previous example with the VisualBrush.

However, there’s a difference that may make the VideoDrawing approach more efficient. That’s
because VideoDrawing uses the MediaPlayer class, while the VisualBrush approach requires the use of the
MediaElement class. The MediaPlayer class doesn’t need to manage layout, focus, or any other element
details, so it’s more lightweight than the MediaElement class. In some situations, using the VideoDrawing and
DrawingBrush instead of the MediaElement and VisualBrush can avoid the need for an intermediary rendering
surface and thus improve performance (although in my information testing, I didn’t notice much of a differ-
ence between the two approaches).

Using the VideoDrawing takes a fair bit more work, because the MediaPlayer needs to be started in
code (by calling its Play() method). Usually, you’ll create all three objects—the MediaPlayer, VideoDrawing,
and DrawingBrush—in code. Here’s a basic example that paints the video on the background of the current
window:

// Create the timeline.
// This isn't required, but it allows you to configure details
// that wouldn't otherwise be possible (like repetition).
MediaTimeline timeline = new MediaTimeline(
new Uri("test.mpg", UriKind.Relative));

timeline.RepeatBehavior = RepeatBehavior.Forever;

// Create the clock, which is shared with the MediaPlayer.
MediaClock clock = timeline.CreateClock();
MediaPlayer player = new MediaPlayer();
player.Clock = clock;

// Create the VideoDrawing.
VideoDrawing videoDrawing = new VideoDrawing();
videoDrawing.Rect = new Rect(150, 0, 100, 100);
videoDrawing.Player = player;

// Assign the DrawingBrush.
DrawingBrush brush = new DrawingBrush(videoDrawing);
this.Background = brush;

// Start the timeline.
clock.Controller.Begin();

CHAPTER 22 ■ SOUND AND VIDEO 803

9551CH22 2/8/08 2:14 PM Page 803

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Speech
Audio and video support is a core pillar of the WPF platform. However, WPF also includes
libraries that wrap two less commonly used multimedia features: speech synthesis and speech
recognition.

Both of these features are supported through classes in the System.Speech.dll assembly.
By default, Visual Studio doesn’t add a reference to this assembly in a new WPF project, so it’s
up to you to add one to your project.

■Note Speech is a peripheral part of WPF. Although the speech support is technically considered to be part
of WPF and it was released with WPF in the .NET Framework 3.0, the speech namespaces start with System.
Speech, not System.Windows.

Speech Synthesis
Speech synthesis is a feature that generates spoken audio based on text you supply. Speech
synthesis isn’t built into WPF—instead, it’s a Windows accessibility feature. System utilities
such as Narrator, a lightweight screen reader included with Windows XP and Windows Vista,
use speech synthesis to help blind users to navigate basic dialog boxes. More generally, speech
synthesis can be used to create audio tutorials and spoken instructions, although prerecorded
audio provides better quality.

■Note Speech synthesis makes sense when you need to create audio for dynamic text—in other words,
when you don’t know at compile time what words need to be spoken at runtime. But if the audio is fixed,
prerecorded audio is easier to use, is more efficient, and sounds better. The only other reason you might
consider speech synthesis is if you need to narrate a huge amount of text and prerecording it all would be
impractical.

Although both Windows XP and Windows Vista have speech synthesis built in, the com-
puterized voice they use is different. Windows XP uses the robotic-sounding Sam voice, while
Windows Vista includes a more natural female voice named Anna. You can download and
install additional voices on either operating system.

Playing speech is deceptively simple. All you need to do is create an instance of the
SpeechSynthesizer class from the System.Speech.Synthesis namespace and call its Speak()
method with a string of text. Here’s an example:

SpeechSynthesizer synthesizer = new SpeechSynthesizer();
synthesizer.Speak("Hello, world");

CHAPTER 22 ■ SOUND AND VIDEO804

9551CH22 2/8/08 2:14 PM Page 804

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When using this approach—passing plain text to the SpeechSynthesizer—you give up a
fair bit of control. You may run into words that aren’t pronounced properly, emphasized
appropriately, or spoken at the correct speed. To get more control over spoken text, you need
to use the PromptBuilder class to construct a definition of the speech. Here’s how you could
replace the earlier example with completely equivalent code that uses the PromptBuilder:

PromptBuilder prompt = new PromptBuilder();
prompt.AppendText("Hello, world");

SpeechSynthesizer synthesizer = new SpeechSynthesizer();
synthesizer.Speak(prompt);

This code doesn’t provide any advantage. However, the PromptBuilder class has a number
of other methods that you can use to customize the way text is spoken. For example, you can
emphasize a specific word (or several words) by using an overloaded version of the Append-
Text() method that takes a value from the PromptEmphasis enumeration. Although the
precise effect of emphasizing a word depends on the voice you’re using, the following code
stresses the are in the sentence “How are you?”

PromptBuilder prompt = new PromptBuilder();
prompt.AppendText("How ");
prompt.AppendText("are ", PromptEmphasis.Strong);
prompt.AppendText("you");

The AppendText() method has two other overloads—one that takes a PromptRate value
that lets you increase or decrease speed and one that takes a PromptVolume value that lets
you increase or decrease the volume.

If you want to change more than one of these details at the same time, you need to use
a PromptStyle object. The PromptStyle wraps PromptEmphasis, PromptRate, and Prompt-
Volume values. You can supply values for all three details or just the one or two you want to use.

To use a PromptStyle object, you call PromptBuilder.BeginStyle(). The PromptStyle you’ve
created is then applied to all the spoken text until you can EndStyle(). Here’s a revised example
that uses emphasis and a change in speed to put the stress on the word are:

PromptBuilder prompt = new PromptBuilder();
prompt.AppendText("How ");
PromptStyle style = new PromptStyle();
style.Rate = PromptRate.ExtraSlow;
style.Emphasis = PromptEmphasis.Strong;
prompt.StartStyle(style);
prompt.AppendText("are ");
prompt.EndStyle();
prompt.AppendText("you");

CHAPTER 22 ■ SOUND AND VIDEO 805

9551CH22 2/8/08 2:14 PM Page 805

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note If you call BeginStyle(), you must call EndStyle() later in your code. If you fail to do so, you’ll receive
a runtime error.

The PromptEmphasis, PromptRate, and PromptVolume enumerations provide relatively
crude ways to influence a voice. There’s no way to get finer-grained control or introduce
nuances or subtler specific speech patterns into spoken text. However, the PromptBuilder
includes a AppendTextWithHind() method that allows you to deal with telephone numbers,
dates, times, and words that need to spelled out. You supply your choice using the SayAs
enumeration. Here’s an example:

prompt.AppendText("The word laser is spelt ");
prompt.AppendTextWithHint("laser", SayAs.SpellOut);

This produces the narration “The word laser is spelt l-a-s-e-r.”
Along with the AppendText() and AppendTextWithHint() methods, the PromptBuilder

also includes a small collection of additional methods for adding ordinary audio to the stream
(AppendAudio()), creating pauses of a specified duration (AppendBreak()), switching voices
(StartVoice() and EndVoice()), and speaking text according to a specified phonetic pronuncia-
tion (AppendTextWithPronounciation()).

The PromptBuilder is really a wrapper for the Synthesis Markup Language (SSML) stan-
dard, which is described at http://www.w3.org/TR/speech-synthesis. As such, it shares the
limitations of that standard. As you call the PromptBuilder methods, the corresponding SSML
markup is generated behind the scenes. You can see the final SSML representation of your
code by calling PromptBuilder.ToXml() at the end of your work, and you can call Prompt-
Builder.AppendSsml() to take existing SSML markup and read it into your prompt.

Speech Recognition
Speech recognition is a feature that translates user-spoken audio into text. As with speech
synthesis, speech recognition is a feature of the Windows operating system. Speech recogni-
tion is built into Windows Vista but not Windows XP. Instead, it’s available to Windows XP users
through Office XP or later, the Windows XP Plus! Pack, or the free Microsoft Speech Software
Development Kit (which is downloadable at http://www.microsoft.com/speech/download/
sdk51).

■Note If speech recognition isn’t currently running, the speech recognition toolbar will appear when you
instantiate the SpeechRecognizer class. If you attempt to instantiate the SpeechRecognizer class and you
haven’t configured speech recognition for your voice, Windows will automatically start a wizard that leads
you through the process.

CHAPTER 22 ■ SOUND AND VIDEO806

9551CH22 2/8/08 2:14 PM Page 806

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.w3.org/TR/speech-synthesis
http://www.microsoft.com/speech/download

Speech recognition is also a Windows accessibility feature. For example, it allows users
with disabilities to interact with common controls by voice. Speech recognition also allows
hands-free computer use, which is useful in certain environments.

The most straightforward way to use speech recognition is to create an instance of the
SpeechRecognizer class from the System.Speech.Recognition namespace. You can then attach
an event handler to the SpeechRecognized event, which is fired whenever spoken words are
successfully converted to text:

SpeechRecognizer recognizer = new SpeechRecognizer();
recognizer.SpeechRecognized += recognizer_SpeechReconized;

You can then retrieve the text in the event handler from the SpeechRecognizedEvent-
Args.Result property:

private void recognizer_SpeechReconized(object sender, SpeechRecognizedEventArgs e)
{

MessageBox.Show("You said:" + e.Result.Text);
}

The SpeechRecognizer wraps a COM object. To avoid unseemly glitches, you should
declare it as a member variable in your window class (so the object remains alive as long as
the window exists) and you should call its Dispose() method when the window is closed (to
remove your speech recognition hooks).

■Note The SpeechRecognizer class actually raises a sequence of events when audio is detected. First,
SpeechDetected is raised if the audio appears to be speech. SpeechHypothesized then fires one or more
times, as the words are tentatively recognized. Finally, the SpeechRecognizer raises a SpeechRecognized if it
can successfully process the text or SpeechRecognitionRejected event if it cannot. The SpeechRecognition-
Rejected event includes information about what the SpeechRecognizer believes the spoken input might have
been, but its confident level is not high enough to accept the input.

It’s generally not recommended that you use speech recognition in this fashion. That’s
because WPF has its own UI Automation feature that works seamlessly with the speech recog-
nition engine. When configured, it allows users to enter text in text controls and trigger button
controls by speaking their automation names. However, you could use the SpeechRecognition
class to add support for more specialized commands to support specific scenarios. You do this
by specifying a grammar based on the Speech Recognition Grammar Specification (SRGS).

The SRGS grammar identifies what commands are valid for your application. For exam-
ple, it may specify that commands can use only one of a small set of words (in or off) and that
these words can be used only in specific combinations (blue on, red on, blue off, and so on).

You can construct an SRGS grammar in two ways. You can load it from an SRGS docu-
ment, which specifies the grammar rules using an XML-based syntax. To do this, you need to
use the SrgsDocument from the System.Speech.Recognition.SrgsGrammar namespace:

SrgsDocument doc = new SrgsDocument("app_grammar.xml");
Grammar grammar = new Grammar(doc);
recognizer.LoadGrammar(grammar);

CHAPTER 22 ■ SOUND AND VIDEO 807

9551CH22 2/8/08 2:14 PM Page 807

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CHAPTER 22 ■ SOUND AND VIDEO808

Alternatively, you can construct your grammar declaratively using the GrammarBuilder.
The GrammarBuilder plays an analogous role the PromptBuilder you considered in the previ-
ous section—it allows you to append grammar rules bit by bit to create a complete grammar.
For example, here’s a declaratively constructed grammar that accepts two-word input, where
the first words has five possibilities and the second word has just two:

GrammarBuilder grammar = new GrammarBuilder();
grammar.Append(new Choices("red", "blue", "green", "black", "white"));
grammar.Append(new Choices("on", "off"));

recognizer.LoadGrammar(new Grammar(grammar));

This markup allows commands like red on and green off. Alternate input like yellow on or
on red won’t be recognized.

The Choices object represents the SRGS one-of rule, which allows the user to speak one
word out of a range of choices. It’s the most versatile ingredient when building a grammar.
Several more overloads to the GrammarBuilder.Append() method accept different input. You
can pass an ordinary string, in which case the grammar will require the user to speak exactly
that word. You can pass a string followed by a value from the SubsetMatchingMode enumera-
tion to require the user to speak some part of a word or phrase. Finally, you can pass a string
followed by a number of minimum and maximum repetitions. This allows the grammar to
ignore the same word if it’s repeated multiple times, and it also allows you to make a word
optional (by giving it a minimum repetition of 0).

Grammars that use all these features can become quite complex. For more information
about the SRGS standard and its grammar rules, refer to http://www.w3.org/TR/speech-grammar.

The Last Word
In this example, you explored how to integrate sound and video into a WPF application. You
learned about two different ways to control the playback of media files—either programmati-
cally using the methods of the MediaPlayer or MediaTimeline classes or declaratively using a
storyboard.

As always, the best approach depends on your requirements. The code-based approach
gives you more control and flexibility, but it also forces you to manage more details and intro-
duces additional complexity. As a general rule, the code-based approach is best if you need
fine-grained control over audio playback. However, if you need to combine media playback
with animations, the declarative approach is far easier.

9551CH22 2/8/08 2:14 PM Page 808

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.w3.org/TR/speech-grammar

3-D Drawing

Developers have used DirectX and OpenGL to build three-dimensional interfaces for many
years. However, the difficult programming model and the substantial video card requirements
have kept 3-D programming out of most mainstream consumer applications and business
software.

WPF introduces a new expansive 3-D model that promises to change all that. Using WPF,
you can build complex 3-D scenes out of straightforward markup. Helper classes provide hit-
testing, mouse-based rotation, and other fundamental building blocks. And virtually any
computer running Windows XP or Windows Vista can display the 3-D content, thanks to
WPF’s ability to fall back on software rendering when video card support is lacking.

The most remarkable part of WPF’s libraries for 3-D programming is that they are
designed to be a clear, consistent extension of the WPF model you’ve already learned about.
For example, you use the same set of brush classes to paint 3-D surfaces as you use to paint
2-D shapes. You use a similar transform model to rotate, skew, and move 3-D objects, and a
similar geometry model to define their contours. More dramatically, you can use the same
styling, data binding, and animation features on 3-D objects as you use with 2-D content. It’s
this support of high-level WPF features that makes WPF’s 3-D graphics suitable for everything
from eye-catching effects in simple games to charting and data visualization in a business
application. (The one situation where WPF’s 3-D model isn’t sufficient is high-powered real-
time games. If you’re planning to build the next Halo, you’re much better off with the raw
power of DirectX.)

Even though WPF’s model for 3-D drawing is surprisingly clear and consistent, creating
rich 3-D interfaces is still difficult. In order to code 3-D animations by hand (or just under-
stand the underlying concepts), you need to master more than a little math. And modeling
anything but a trivial 3-D scene with handwritten XAML is a huge, error-prone chore—it’s far
more involved than the 2-D equivalent of creating a XAML vector image by hand. For that rea-
son, you’re much more likely to rely on a third-party tool to create 3-D objects, export them to
XAML, and then add them to your WPF applications.

Entire books have been written about all these issues—3-D programming math, 3-D
design tools, and the 3-D libraries in WPF. In this chapter, you’ll learn enough to understand
the WPF model for 3-D drawing, create basic 3-D shapes, design more advanced 3-D scenes
with a 3-D modeling tool, and use some of the invaluable code released by the WPF team and
other third-party developers.

809

C H A P T E R 2 3

9551CH23 2/8/08 2:15 PM Page 809

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

3-D Drawing Basics
A 3-D drawing in WPF involves four ingredients:

• A viewport, which hosts your 3-D content

• A 3-D object

• A light source that illuminates part or all of your 3-D scene

• A camera, which provides the vantage point from which you view the 3-D scene

Of course, more complex 3-D scenes will feature multiple objects and may include multi-
ple light sources. (It’s also possible to create a 3-D object that doesn’t require a light source, if
the 3-D object itself gives off light.) However, these basic ingredients provide a good starting
point.

Compared to 2-D graphics, it’s the second and third points that really make a difference.
Programmers who are new to 3-D programming sometimes assume that 3-D libraries are just
a simpler way to create an object that has a 3-D appearance, such as a glowing cube or a spin-
ning sphere. But if that’s all you need, you’re probably better off creating a 3-D drawing using
the 2-D drawing classes you’ve already learned about. After all, there’s no reason that you can’t
use the shapes, transforms, and geometries you learned about in Chapter 13 and Chapter 14
to construct a shape that appears to be 3-D—in fact, it’s usually easier than working with the
3-D libraries.

So what’s the advantage of using the 3-D support in WPF? The first advantage is that you
can create effects that would be extremely complex to calculate using a simulated 3-D model.
One good example is light effects such as reflection, which become very involved when work-
ing with multiple light sources and different materials with different reflective properties. The
other advantage to using a 3-D drawing model is that it allows you to interact with your draw-
ing as a set of 3-D objects. This greatly extends what you can do programmatically. For
example, once you build the 3-D scene you want, it becomes almost trivially easy to rotate
your object or rotate the camera around your object. Doing the same work with 2-D program-
ming would require an avalanche of code (and math).

Now that you know what you need, it’s time to build an example that has all these pieces.
This is the task you’ll tackle in the following sections.

The Viewport
If you want to work with 3-D content, you need a container that can host it. This container is the
Viewport3D class, which is found in the System.Windows.Controls namespace. Viewport3D
derives from FrameworkElement, and so it can be placed anywhere you’d place a normal ele-
ment. For example, you can use it as the content of a window or a page, or you can place it inside
a more complex layout.

The Viewport3D class only hints at the complexity of 3-D programming. It adds just two
properties—Camera, which defines your lookout onto the 3-D scene, and Children, which
holds all the 3-D objects you want to place in the scene. Interestingly enough, the light source
that illuminates your 3-D scene is itself an object in the viewport.

CHAPTER 23 ■ 3-D DRAWING810

9551CH23 2/8/08 2:15 PM Page 810

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Among the inherited properties in the Viewport3D class, one is particularly significant: ClipToBounds. If
set to true (the default), content that stretches beyond the bounds of the viewport is trimmed out. If set to false,
this content appears overtop of any adjacent elements. This is the same behavior you get from the ClipToBounds
property of the Canvas. However, there’s an important difference when using the Viewport3D: performance.
Setting Videport3D.ClipToBounds to false can dramatically improve performance when rendering a complex,
frequently refreshed 3-D scene.

3-D Objects
The viewport can host any 3-D object that derives from Visual3D (from the System.Win-
dows.Media.Media3D namespace, where the vast majority of the 3-D classes live). However,
you’ll need to perform a bit more work than you might expect to create a 3-D visual. In version
1.0, the WPF library lacks a collection of 3-D shape primitives. If you want a cube, a cylinder, a
torus, and so on, you’ll need to build it yourself.

One of the nicest design decisions that the WPF team made when building the 3-D draw-
ing classes was to structure them in a similar way as the 2-D drawing classes. That means
you’ll immediately be able to understand the purpose of a number of core 3-D classes (even if
you don’t yet know how to use them). Table 23-1 spells out the relationships.

Table 23-1. 2-D Classes and 3-D Classes Compared

2-D Class 3-D Class Notes

Visual Visual3D Visual3D is the base class for all 3-D objects
(objects that are rendered in a Viewport3D
container). Like the Visual class, you could use
the Visual3D class to derive lightweight 3-D
shapes or to create more complex 3-D controls
that provide a richer set of events and framework
services. However, you won’t get much help.
You’re more likely to use one of the classes that
derive from Visual3D, such as ModelVisual3D or
ModelUIElement3D.

Geometry Geometry3D The Geometry class is an abstract way to define a
2-D figure. Often geometries are used to define
complex figures that are composed out of arcs,
lines, and polygons. The Geometry3D class is the
3-D analogue—it represents a 3-D surface.
However, while there are several 2-D geometries,
WPF includes just a single concrete class that
derives from Geometry3D: MeshGeometry3D.
The MeshGeometry3D has a central importance
in 3-D drawing because you’ll use it to define all
your 3-D objects.

GeometryDrawing GeometryModel3D There are several ways to use a 2-D Geometry
object. You can wrap it in a GeometryDrawing
and use that to paint the surface of an element or
the content of a Visual. The GeometryModel3D
class serves the same purpose—it takes a
Geometry3D, which can then be used to fill your
Visual3D.

Continued

CHAPTER 23 ■ 3-D DRAWING 811

9551CH23 2/8/08 2:15 PM Page 811

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Table 23-1. Continued

2-D Class 3-D Class Notes

Transform Transform3D You already know that 2-D transforms are
incredibly useful tools for manipulating
elements and shapes in all kinds of ways,
including moving, skewing, and rotating them.
Transforms are also indispensable when
performing animations. Classes that derive
from Transform3D perform the same magic
with 3-D objects. In fact, you’ll find surprisingly
similar transform classes such as Rotate-
Transform3D, ScaleTransform3D, Translate-
Transform3D, Transform3DGroup, and Matrix-
Transform3D. Of course, the options provided by
an extra dimension are considerable, and 3-D
transforms are able to warp and distort visuals in
ways that look quite different.

At first, you may find it a bit difficult to untangle the relationships between these classes.
Essentially, the Viewport3D holds Visual3D objects. To actually give a Visual3D some content,
you’ll need to define a Geometry3D that describes the shape and wrap it in a Geometry-
Model3D. You can then use that as the content for your Visual3D. Figure 23-1 shows this
relationship.

Figure 23-1. How a 3-D object is defined

This two-step process—defining the shapes you want to use in abstract and then fusing
them with a visual—is an optional approach for 2-D drawing. However, it’s mandatory for 3-D
drawing because there are no prebuilt 3-D classes in the library. (The members of the WPF
team and others have released some sample code online that starts to fill this gap, but it’s still
evolving.)

The two-step process is also important because 3-D models are a bit more complex than
2-D models. For example, when you create a Geometry3D object, you not only specify the
vertexes of your shape, you also specify the material out of which it’s composed. Different
materials have different properties for reflecting and absorbing light.

Geometry
To build a 3-D object, you need to start by building the geometry. As you’ve already learned,
there’s just one class that fills this purpose: MeshGeometry3D.

CHAPTER 23 ■ 3-D DRAWING812

9551CH23 2/8/08 2:15 PM Page 812

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Unsurprisingly, a MeshGeometry3D object represents a mesh. If you’ve ever dealt with
3-D drawing before (or if you’ve read a bit about the technology that underlies modern-day
video cards), you may already know that computers prefer to build 3-D drawings out of trian-
gles. That’s because a triangle is the simplest, most granular way to define a surface. Triangles
are simple because every triangle is defined by just three points (the vertexes at the corner).
Arcs and curved surfaces are obviously more complex. Triangles are granular because other
straight-edged shapes (squares, rectangles, and more complex polygons) can be broken down
into a collection of triangles. For better or worse, modern-day graphics hardware and graphics
programming is built on this core abstraction.

Obviously, most of the 3-D objects you want won’t look like simple, flat triangles. Instead
you’ll need to combine triangles—sometimes just a few, but often hundreds or thousands that
line up with one another at varying angles. A mesh is this combination of triangles. With
enough triangles, you can ultimately create the illusion of anything, including a complex sur-
face. (Of course, there are performance considerations involved, and 3-D scenes often map
some sort of bitmap or 2-D content onto a triangle in a mesh to create the illusion of a com-
plex surface with less overhead. WPF supports this technique.)

Understanding how a mesh is defined is one of the first keys to 3-D programming. If you
look at the MeshGeometry3D class, you’ll find that it adds the four properties listed in Table 23-2.

Table 23-2. Properties of the MeshGeometry3D Class

Name Description

Positions Contains a collection of all the points that define the mesh. Each point
is a vertex in a triangle. For example, if your mesh has 10 completely
separate triangles, you’ll have 30 points in this collection. More
commonly, some of your triangles will join at their edges, which means
one point will become the vertex of several triangles. For example, a
cube requires 12 triangles (two for each side), but only 8 distinct points.
Making matters even more complicated, you may choose to define the
same shared vertex multiple times, so that you can better control how
separate triangles are shaded with the Normals property.

TriangleIndices Defines the triangles. Each entry in this collection represents a single
triangle by referring to three points from the Positions collection.

Normals Provides a vector for each vertex (each point in the Positions
collection). This vector indicates how the point is angled for lighting
calculations. When WPF shades the face of a triangle, it measures the
light at each of the three vertexes using the normal vector. Then, it
interpolates between these three points to fill the surface of the
triangle. Getting the right normal vectors makes a substantial
difference to how a 3-D object is shaded—for example, it can make the
divisions between triangles blend together or appear as sharp lines.

TextureCoordinates Defines how a 2-D texture is mapped onto your 3-D object when you
use a VisualBrush to paint it. The TextureCoordinates collection pro-
vides a 2-D point for each 3-D point in the Positions collection.

You’ll consider shading with normals and texture mapping later in this chapter. But first,
you’ll learn how to build a basic mesh.

CHAPTER 23 ■ 3-D DRAWING 813

9551CH23 2/8/08 2:15 PM Page 813

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following example shows the simplest possible mesh, which consists of a single trian-
gle. The units you use aren’t important because you can move the camera closer or farther
away, and you can change the size or placement of individual 3-D objects using transforms.
What is important is the coordinate system, which is shown in Figure 23-2. As you can see, the
X and Y axes have the same orientation as in 2-D drawing. What’s new is the Z axis. As the Z
axis value decreases, the point moves farther away. As it increases, the point moves closer.

Figure 23-2. A triangle in 3-D space

Here’s the MeshGeometry element that you can use to define this shape inside a 3-D
visual. The MeshGeometry3D object in this example doesn’t use the Normals property or the
TextureCoordinates property because the shape is so simple and will be painted with a Solid-
ColorBrush:

<MeshGeometry3D Positions="-1,0,0 0,1,0 1,0,0" TriangleIndices="0,2,1" />

Here, there are obviously just three points, which are listed one after the other in the
Positions property. The order you use in the Positions property isn’t important because the
TriangleIndices property clearly defines the triangle. Essentially, the TriangleIndices property
states that there is a single triangle made of point #0, #2, and #1. In other words, the Trian-
gleIndices property tells WPF to draw the triangle by drawing a line from (-1, 0 ,0) to (1, 0, 0)
and then to (0, 1, 0).

Note that 3-D programming has several subtle, easily violated rules. When defining a
shape, you’ll face the first one—namely, you must list the points in a counterclockwise order
around the Z axis. This example follows that rule. However, you could easily violate it if you
changed the TriangleIndices to 0, 1, 2. In this case, you’d still define the same triangle, but that
triangle would be backward—in other words, if you look at it down the Z axis (as in Figure 23-
2), you’ll actually be looking at the back of the triangle.

CHAPTER 23 ■ 3-D DRAWING814

9551CH23 2/8/08 2:15 PM Page 814

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note The difference between the back of a 3-D shape and the front is not a trivial one. In some cases, you
may paint both with a different brush. Or you may choose not to paint the back at all in order to avoid using any
resources for a part of the scene that you’ll never see. If you inadvertently define the points in a clockwise
order, and you haven’t defined the material for the back of your shape, it will disappear from your 3-D scene.

Geometry Model and Surfaces
Once you have the properly configured MeshGeometry3D that you want, you need to wrap it
in a GeometryModel3D.

The GeometryModel3D class has just three properties: Geometry, Material, and Back-
Material. The Geometry property takes the MeshGeometry3D that defines the shape of your
3-D object. In addition, you can use the Material and BackMaterial properties to define the
surface out of which your shape is composed.

The surface is important for two reasons. First, it defines the color of the object (although
you can use more complex brushes that paint textures rather than solid colors). Second, it
defines how that material responds to light.

WPF includes four material classes, all of which derive from the abstract Material class in
the System.Windows.Media.Media3D namespace). They’re listed in Table 23-3. In this exam-
ple, we’ll stick with DiffuseMaterial, which is the most common choice because its behavior is
closest to a real-world surface.

Table 23-3. Material Classes

Name Description

DiffuseMaterial Creates a flat, matte surface. It diffuses light evenly in all directions.

SpecularMaterial Creates a glossy, highlighted look (think metal or glass). It reflects light back
directly, like a mirror.

EmissiveMaterial Creates a glowing look. It generates its own light (although this light does not
reflect off other objects in the scene).

MaterialGroup Lets you combine more than one material. The materials are then layered
overtop of one another in the order they’re added to the MaterialGroup.

DiffuseMaterial offers a single Brush property that takes the Brush object you want to use
to paint the surface of your 3-D object. (If you use anything other than a SolidColorBrush,
you’ll need to set the MeshGeometry3D.TextureCoordinates property to define the way it’s
mapped onto the object, as you’ll see later in this chapter.)

Here’s how you can configure the triangle to be painted with a yellow matte surface:

<GeometryModel3D>
<GeometryModel3D.Geometry>
<MeshGeometry3D Positions="-1,0,0 0,1,0 1,0,0" TriangleIndices="0,2,1" />

</GeometryModel3D.Geometry>

<GeometryModel3D.Material>
<DiffuseMaterial Brush="Yellow" />

</GeometryModel3D.Material>
</GeometryModel3D>

CHAPTER 23 ■ 3-D DRAWING 815

9551CH23 2/8/08 2:15 PM Page 815

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In this example, the BackMaterial property is not set, so the triangle will disappear if
viewed from behind.

All that remains is to use this GeometryModel3D to set the Content property of a Model-
Visual3D and then place that ModelVisual3D in a viewport. But in order to see your object,
you’ll also need two more details: a light source and a camera.

Light Sources
In order to create realistically shaded 3-D objects, WPF uses a lighting model. The basic idea is
that you add one (or several) light sources to your 3-D scene. Your objects are then illuminated
based on the type of light you’ve chosen, its position, direction, and intensity.

Before you delve into WPF lighting, it’s important that you realize that the WPF lighting
model doesn’t behave like light in the real world. Although the WPF lighting system is con-
structed to emulate the real world, calculating true light reflections is a processor-intensive
task. WPF makes use of a number of simplifications that ensure the lighting model is practical,
even in animated 3-D scenes with multiple light sources. These simplifications include the
following:

• Light effects are calculated for objects individually. Light reflected from one object will
not reflect off another object. Similarly, an object will not cast a shadow on another
object, no matter where it’s placed.

• Lighting is calculated at the vertexes of each triangle and then interpolated over the
surface of the triangle. (In other words, WPF determines the light strength at each cor-
ner and blends that to fill in the triangle.) As a result of this design, objects that have
relatively few triangles may not be illuminated correctly. To achieve better lighting,
you’ll need to divide your shapes into hundreds or thousands of triangles.

Depending on the effect you’re trying to achieve, you may need to work around these
issues by combining multiple light sources, using different materials, and even adding extra
shapes. In fact, getting the precise result you want is part of the art of 3-D scene design.

■Note Even if you don’t provide a light source, your object will still be visible. However, without a light
source, all you’ll see is a solid black silhouette.

WPF provides four light classes, all of which derive from the abstract Light class. Table 23-4
lists them all. In this example, we’ll stick with a single DirectionalLight, which is the most com-
mon type of lighting.

Table 23-4. Light Classes

Name Description

DirectionalLight Fills the scene with parallel rays of light traveling in the direction you specify.

AmbientLight Fills the scene with scattered light.

PointLight Radiates light in all directions, beginning at a single point in space.

SpotLight Radiates light outward in a cone, starting from a single point.

CHAPTER 23 ■ 3-D DRAWING816

9551CH23 2/8/08 2:15 PM Page 816

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s how you can define a white DirectionalLight:

<DirectionalLight Color="White" Direction="-1,-1,-1" />

In this example, the vector that determines the path of the light starts at the origin (0, 0, 0)
and goes to (-1, -1, -1). That means that each ray of light is a straight line that travels from top-
right front toward the bottom-left back. This makes sense in this example because the triangle
(shown in Figure 23-2) is angled to face this light.

When calculating the light direction, it’s the angle that’s important, not the length of your
vector. That means a light direction of (-2, -2, -2) is equivalent to the normalized vector (-1, -1,
-1) because the angle it describes is the same.

In this example, the direction of the light doesn’t line up exactly with the triangle’s surface.
If that’s the effect you want, you’ll need a light source that sends its beams straight down the
Z axis, using a direction of (0, 0, -1). This distinction is deliberate. Because the beams strike the
triangle at an angle, the triangle’s surface will be shaded, which creates a more pleasing effect.

Figure 23-3 shows an approximation of the (-1, -1, -1) directional light as it strikes the tri-
angle. Remember, a directional light fills the entire 3-D space.

Figure 23-3. The path of a (-1, -1, -1) directional light

■Note Directional lights are sometimes compared to sunlight. That’s because the light rays received from
a faraway light source (such as the sun) become almost parallel.

All light objects derive indirectly from GeometryModel3D. That means that you treat
them exactly like 3-D objects by placing them inside a ModelVisual3D and adding them to a
viewport. Here’s a viewport that includes both the triangle you saw earlier and the light source:

<Viewport3D>
<Viewport3D.Camera>...</Viewport3D.Camera>

<ModelVisual3D>
<ModelVisual3D.Content>
<DirectionalLight Color="White" Direction="-1,-1,-1" />

CHAPTER 23 ■ 3-D DRAWING 817

9551CH23 2/8/08 2:15 PM Page 817

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</ModelVisual3D.Content>
</ModelVisual3D>

<ModelVisual3D>
<ModelVisual3D.Content>
<GeometryModel3D>
<GeometryModel3D.Geometry>
<MeshGeometry3D Positions="-1,0,0 0,1,0 1,0,0" TriangleIndices="0,2,1" />

</GeometryModel3D.Geometry>
<GeometryModel3D.Material>
<DiffuseMaterial Brush="Yellow" />

</GeometryModel3D.Material>
</GeometryModel3D>

</ModelVisual3D.Content>
</ModelVisual3D>

</Viewport3D>

There’s one detail that’s left out of this example—the viewport doesn’t include a camera
that defines your vantage point on the scene. That’s the task you’ll tackle in the next section.

A CLOSER LOOK AT 3-D LIGHTING

Along with DirectionalLight, AmbientLight is another all-purpose lighting class. Using AmbientLight on its own
gives 3-D shapes a flat look, but you can combine it with another light source to add some illumination that
brightens up otherwise darkened areas. The trick is to use an AmbientLight that’s less than full strength.
Instead of using a white AmbientLight, use one-third white (set the Color property to #555555) or less. You
can also set the DiffuseMaterial.AmbientColor property to control how strongly an AmbientLight affects the
material in a given mesh. Using white (the default) gives the strongest effect, while using black creates a
material that doesn’t reflect any ambient light.

The DirectionalLight and AmbientLight are the most useful lights for simple 3-D scenes. The PointLight
and SpotLight only give the effect you want if your mesh includes a large number of triangles—typically hun-
dreds. This is due to the way that WPF shades surfaces.

As you’ve already learned, WPF saves time by calculating the lighting intensity only at the vertexes of a
triangle. If your shape uses a small number of triangles, this approximation breaks down. Some points will
fall inside the range of the SpotLight or PointLight, while others won’t. The result is that some triangles will
be illuminated while others will remain in complete darkness. Rather than getting a soft rounded circle of
light on your object, you’ll end up with a group of illuminated triangles, giving the illuminated area a jagged
edge.

The problem here is that PointLight and SpotLight are used to create soft, circular lighting effects, but
you need a very large number of triangles to create a circular shape. (To create a perfect circle, you need one
triangle for each pixel that lies on the perimeter of the circle.) If you have a 3-D mesh with hundreds or thou-
sands of triangles, the pattern of partially illuminated triangles can more easily approximate a circle, and
you’ll get the lighting effect you want.

CHAPTER 23 ■ 3-D DRAWING818

9551CH23 2/8/08 2:15 PM Page 818

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Camera
Before a 3-D scene can be rendered, you need to place a camera at the correct position and
orient it in the correct direction. You do this by setting the Viewport3D.Camera property with a
Camera object.

In essence, the camera determines how a 3-D scene is projected onto the 2-D surface of a
Viewport. WPF includes three camera classes: the commonly used PerspectiveCamera and the
more exotic OrthographicCamera and MatrixCamera. The PerspectiveCamera renders the
scene so that objects that are farther away appear smaller. This is the behavior that most peo-
ple expect in a 3-D scene. The OrthographicCamera flattens 3-D objects so that the exact scale
is preserved, no matter where a shape is positioned. This looks a bit odd, but it’s useful for
some types of visualization tools. For example, technical drawing applications often rely on
this type of view. (Figure 23-4 shows the difference between the PerspectiveCamera and the
OrthographicCamera.) Finally, the MatrixCamera allows you to specify a matrix that’s used to
transform the 3-D scene to 2-D view. It’s an advanced tool that’s intended for highly special-
ized effect and for porting code from other frameworks (such as Direct3D) that use this type
of camera.

Figure 23-4. Perspective in different types of cameras

Choosing the right camera is relatively easy, but placing and configuring it is a bit trickier.
The first detail is to specify a point in 3-D space where the camera will be positioned by setting
its Position property. The second step is to set a 3-D vector in the LookDirection property that
indicates how the camera is oriented. In a typical 3-D scene, you’ll place the camera slightly
off to one corner using the Position property, and then tilt it to survey the view using the
LookDirection property.

■Note The position of the camera determines how large your scene appears in the viewport. The closer
the camera, the larger the scale. In addition, the viewport is stretched to fit its container and the content
inside is scaled accordingly. For example, if you create a viewport that fills a window, you can expand or
shrink your scene by resizing the window.

CHAPTER 23 ■ 3-D DRAWING 819

9551CH23 2/8/08 2:15 PM Page 819

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You need to set the Position and LookDirection properties in concert. If you use Position
to offset the camera but fail to compensate by turning the camera back in the right direction
using LookDirection, you won’t see the content you’ve created in your 3-D scene. To make sure
you’re correctly oriented, pick a point that you want to see square on from your camera. You
can then calculate the look direction using this formula:

CameraLookDirection = CenterPointOfInterest - CameraPosition

In the triangle example, the camera is placed in the top-left corner using a position of
(-2, 2, 2). Assuming you want to focus on the origin point (0, 0, 0), which falls in the middle
of the triangle’s bottom edge, you would use this look direction:

CameraLookDirection = (0, 0, 0) - (-2, 2, 2)
= (2, -2, -2)

This is equivalent to the normalized vector (1, -1, -1) because the direction it describes is
the same. As with the Direction property of a DirectionalLight, it’s the direction of the vector
that’s important, not its magnitude.

Once you’ve set the Position and LookDirection properties, you may also want to set
the UpDirection properties. UpDirection determines how the camera is titled. Ordinarily, Up-
Direction is set to (0, 1, 0), which means the up direction is straight up, as shown in Figure 23-5.

Figure 23-5. Positioning and angling the camera

If you offset this slightly—say to (0.25, 1, 0)—the camera is tilted around the X axis, as
shown in Figure 23-6. As a result, the 3-D objects will appear to be tilted a bit in the other
direction. It’s just as if you’d cocked your head to one side while surveying the scene.

With these details in mind, you can define the PerspectiveCamera for the simple one-
triangle scene that’s been described over the previous sections:

<Viewport3D>
<Viewport3D.Camera>
<PerspectiveCamera Position="-2,2,2" LookDirection="2,-2,-2"

CHAPTER 23 ■ 3-D DRAWING820

9551CH23 2/8/08 2:15 PM Page 820

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

UpDirection="0,1,0" />
</Viewport3D.Camera>
...

</Viewport3D>

Figure 23-7 shows the final scene.

Figure 23-6. Another way to angle the camera

Figure 23-7. A complete 3-D scene with one triangle

CHAPTER 23 ■ 3-D DRAWING 821

9551CH23 2/8/08 2:15 PM Page 821

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

AXIS LINES

There’s one added detail in Figure 23-7: the axis lines. These lines are a great testing tool, as they make it
easy to see where your axes are placed. If you render a 3-D scene and nothing appears, the axis lines can
help you isolate the potential problem, which could include a camera pointing the wrong direction or posi-
tioned off to one side, or a shape that’s flipped backward (and thus invisible). Unfortunately, WPF doesn’t
include any class for drawing straight lines. Instead, you need to render long, vanishingly narrow triangles.

Fortunately, there’s a tool that can help. The WPF 3-D team has created a handy ScreenSpaceLines3D
that solves the problem in a freely downloadable class library that’s available (with complete source code) at
http://www.codeplex.com/3DTools. This project includes several other useful code ingredients, includ-
ing the Trackball described later in this chapter in the “Interactivity and Animations” section.

The ScreenSpaceLines3D class allows you to draw straight lines with an invariant width. In other words,
these lines have the fixed thickness that you choose no matter where you place the camera. (They do not
become thicker as the camera gets closer, and thinner as it recedes.) This makes these lines useful to create
wireframes, boxes that indicate content regions, vector lines that indicate the normal for lighting calculations,
and so on. These applications are most useful when building a 3-D design tool or when debugging an appli-
cation. The example in Figure 23-5 uses the ScreenSpaceLines3D class to draw the axis lines.

There are a few other camera properties that are often important. One of these is Field-
OfView, which controls how much of your scene you can see at once. FieldOfView is comparable
to a zoom lens on a camera—as you decrease the FieldOfView, you see a smaller portion of the
scene (which is then enlarged to fit the Viewport3D). As you increase the FieldOfView, you see a
larger part of the scene. However, it’s important to remember that changing the field of view is
not the same as moving the camera closer or farther away from the objects in your scene.
Smaller fields of view tend to compress the distance between near and far objects, while wider
fields of view exaggerate the perspective difference between near and far objects. (If you’ve
played with camera lenses before, you may have noticed this effect.)

■Note The FieldOfView property only applies to the PerspectiveCamera. The OrthographicCamera includes
a Width property that’s analogous. The Width property determines the viewable area but it doesn’t change
the perspective because no perspective effect is used for the OrthographicCamera.

The camera classes also include NearPlaneDistance and FarPlaneDistance properties that
set the blind spots of the camera. Objects closer than the NearPlaneDistance won’t appear at
all, and objects farther than the FarPlaneDistance are similarly invisible. Ordinarily, Near-
PlaneDistance defaults to 0.125, and FarPlaneDistance defaults to Double.PositiveInfinity,
which renders both effects negligible. However, there are some cases where you’ll need to
change these values to prevent rendering artifacts. The most common example is when a
complex mesh is extremely close to the camera, which can cause z-fighting (also known as
stitching). In this situation, the video card is unable to correctly determine which triangles are
closest to the camera and should be rendered. The result is a pattern of artifacts of the surface
of your mesh.

CHAPTER 23 ■ 3-D DRAWING822

9551CH23 2/8/08 2:15 PM Page 822

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeplex.com/3DTools

Z-fighting usually occurs because of floating point round-off errors in the video card. To
avoid this problem, you can increase the NearPlaneDistance to clip objects that are extremely
close to the camera. Later in this chapter, you’ll see an example that animates the camera so it
flies through the center of a torus. To create this effect without causing z-fighting, it’s neces-
sary to increase the NearPlaneDistance.

■Note Rendering artifacts are almost always the result of objects close to the camera and a NearPlane-
Distance that’s too large. Similar problems with very distant objects and the FarPlaneDistance are much less
common.

Deeper into 3-D
Going to the trouble of cameras, lights, materials, and mesh geometries is a lot of work for an
unimpressive triangle. However, you’ve now seen the bare bones of WPF’s 3-D support. In this
section, you’ll learn how to use it to introduce more complex shapes.

Once you’ve mastered the lowly triangle, the next step up is to create a solid, faceted
shape by assembling a small group of triangles. In the following example, you’ll create the
markup for the cube shown in Figure 23-8.

Figure 23-8. A 3-D cube

CHAPTER 23 ■ 3-D DRAWING 823

9551CH23 2/8/08 2:15 PM Page 823

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note You’ll notice that the edges of the cube in Figure 23-8 have smooth, anti-aliased edges. Unfortu-
nately, if you’re rendering 3-D on Windows XP you won’t get this level of quality. Due to sketchy support in
XP video drivers, WPF doesn’t attempt to perform anti-aliasing with the edges of 3-D shapes, leaving them
jagged.

The first challenge to building your cube is determining how to break it down into the
triangles that the MeshGeometry object recognizes. Each triangle acts like a flat, 2-D shape.

A cube consists of six square sides. Each square side needs two triangles. Each square side
can then be joined to the adjacent side at an angle. Figure 23-9 shows how a cube breaks down
into triangles.

Figure 23-9. Breaking the cube into triangles

To reduce overhead and improve performance in a 3-D program it’s common to avoid
rendering shapes that you won’t see. For example, if you know you’ll never look at the under-
side of the cube shown in Figure 23-8, there’s no reason to define the two triangles for that
side. However, in this example you’ll define every side so you can rotate the cube freely.

Here’s a MeshGeometry3D that creates a cube:

<MeshGeometry3D Positions="0,0,0 10,0,0 0,10,0 10,10,0
0,0,10 10,0,10 0,10,10 10,10,10"

TriangleIndices="0,2,1 1,2,3 0,4,2 2,4,6
0,1,4 1,5,4 1,7,5 1,3,7
4,5,6 7,6,5 2,6,3 3,6,7" />

First, the Positions collection defines the corners of the cube. It begins with the four
points in the back (where z = 0) and then adds the four in the front (where z = 10). The
TriangleIndices property maps these points to triangles. For example, the first entry in the
collection is 0, 2, 1. It creates a triangle from the first point (0, 0, 0) to the second point (0, 0, 10)
to the third point (0, 10, 0). This is one of the triangles required for the back side of the square.
(The index 1, 2, 3 fills in the other backside triangle.)

Remember, when defining triangles, you must define them in counterclockwise order to
make their front side face forward. However, the cube appears to violate that rule. The squares
on the front side are defined in counterclockwise order (see the index 4, 5, 6 and 7, 6, 5, for
instance), but those on the back side are defined in clockwise order, including the index 0, 2, 1
and 1, 2, 3. This is because the back side of the cube must have its triangle facing backward. To

CHAPTER 23 ■ 3-D DRAWING824

9551CH23 2/8/08 2:15 PM Page 824

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

better visualize this, imagine rotating the cube around the Y axis so that the back side is facing
forward. Now, the backward-facing triangles will be facing forward, making them completely
visible, which is the behavior you want.

Shading and Normals
There’s one issue with the cube mesh demonstrated in the previous section. It doesn’t create
the faceted cube shown in Figure 23-8. Instead, it gives you the cube shown in Figure 23-10,
with clearly visible seams where the triangles meet.

Figure 23-10. A cube with lighting artifacts

This problem results from the way that WPF calculates lighting. In order to simplify the
calculation process, WPF computes the amount of light that reaches each vertex in a shape—
in other words, it only pays attention to the corners of your triangles. It then blends the
lighting over the surface of the triangle. While this ensures that every triangle is nicely shaded,
it may cause other artifacts. For example, in this situation it prevents the adjacent triangles
that share a cube side from being shaded evenly.

To understand why this problem occurs, you need to know a little more about normals.
Each normal defines how a vertex is oriented toward the light source. In most cases, you’ll
want your normal to be perpendicular to the surface of your triangle.

Figure 23-11 illustrates the front face of a cube. The front face has two triangles and a total
of four vertexes. Each of these four vertexes should have a normal that points outward at a right
angle to the square’s surface. In other words, each normal should have a direction of (0, 0, 1).

CHAPTER 23 ■ 3-D DRAWING 825

9551CH23 2/8/08 2:15 PM Page 825

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 23-11. Normals on the front side of a cube

■Tip Here’s another way to think about normals. When the normal vector lines up with the light direction
vector, but in opposite directions, the surface will be fully illuminated. In this example, that means a direc-
tional light with a direction of (0, 0, -1) will completely light up the front surface of the cube, which is what
you expect.

The triangles on the other sides of the square need their own normals as well. In each
case, the normals should be perpendicular to the surface. Figure 23-12 fills in the normals on
the front, top, and right sides of the cube.

Figure 23-12. Normals on the visible faces of a cube

The cube diagrammed in Figure 23-12 is the same cube shown in Figure 23-8. When WPF
shades this cube, it examines it one triangle at a time. For example, consider the front surface.
Each point faces the directional light in exactly the same way. For that reason, each point will
have exactly the same illumination. As a result, when WPF blends the illumination at the four
corners, it creates a flat, consistently colored surface with no shading.

So why doesn’t the cube you’ve just created exhibit this lighting behavior? The culprit is
the shared points in the Positions collection. Although normals apply to the way triangles
are shaded, they’re only defined on the vertexes of the triangle. Each point in the Positions

CHAPTER 23 ■ 3-D DRAWING826

9551CH23 2/8/08 2:15 PM Page 826

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

collection has just a single normal defined for it. That means if you share points between two
different triangles, you also end up sharing normals.

That’s what’s happened in Figure 23-10. The different points on the same side are illumi-
nated differently because they don’t all have the same normal. WPF then blends the illumination
from these points to fill in the surface of each triangle. This is a reasonable default behavior, but
because the blending is performed on each triangle, different triangles won’t line up exactly, and
you’ll see the seams of color where the separate triangles meet.

One easy (but tedious) way to solve this problem is to make sure no points are shared
between triangles by declaring each point several times (once for each time it’s used). Here’s
the lengthier markup that does this:

<MeshGeometry3D Positions="0,0,0 10,0,0 0,10,0 10,10,0
0,0,0 0,0,10 0,10,0 0,10,10
0,0,0 10,0,0 0,0,10 10,0,10
10,0,0 10,10,10 10,0,10 10,10,0
0,0,10 10,0,10 0,10,10 10,10,10
0,10,0 0,10,10 10,10,0 10,10,10"

TriangleIndices="0,2,1 1,2,3
4,5,6 6,5,7
8,9,10 9,11,10
12,13,14 12,15,13
16,17,18 19,18,17
20,21,22 22,21,23" />

In this example, this step saves you from needing to code the normals by hand. WPF cor-
rectly generates them for you, making each normal perpendicular to the triangle surface, as
shown in Figure 23-11. The result is the faceted cube shown in Figure 23-8.

■Note Although this markup is much longer, the overhead is essentially unchanged. That’s because WPF
always renders your 3-D scene as a collection of distinct triangles, whether or not you share points in the
Positions collection.

It’s important to realize that you don’t always want your normals to match. In the cube
example, it’s a requirement to get the faceted appearance. However, you might want a differ-
ent lighting effect. For example, you might want a blended cube that avoids the seam problem
shown earlier. In this case, you’ll need to define your normal vectors explicitly.

Choosing the right normals can be a bit tricky. However, to get the result you want, keep
these two principles in mind:

• To calculate a normal that’s perpendicular to a surface, calculate the cross product of
the vectors that make up any two sides of your triangle. However, make sure to keep the
points in counterclockwise order so that the normal points out from the surface
(instead of into it).

• If you want the blending to be consistent over a surface that includes more than one
triangle, make sure all the points in all the triangles share the same normal.

CHAPTER 23 ■ 3-D DRAWING 827

9551CH23 2/8/08 2:15 PM Page 827

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To calculate the normal you need for a surface, you can use a bit of C# code. Here’s a sim-
ple code routine that can help you calculate a normal that’s perpendicular to the surface of a
triangle based on its three points:

private Vector3D CalculateNormal(Point3D p0, Point3D p1, Point3D p2)
{

Vector3D v0 = new Vector3D(p1.X - p0.X, p1.Y - p0.Y, p1.Z - p0.Z);
Vector3D v1 = new Vector3D(p2.X - p1.X, p2.Y - p1.Y, p2.Z - p1.Z);
return Vector3D.CrossProduct(v0, v1);

}

Next, you need to set the Normals property by hand by filling it with vectors. Remember,
you must add one normal for each position.

The following example smoothens the blending between adjacent triangles on the same
side of a rectangle by sharing normals. The adjacent triangles on a cube face share two of the
same points. Therefore it’s only the two nonshared points that need to be adjusted. As long as
they match, the shading will be consistent over the entire surface:

<MeshGeometry3D Positions="0,0,0 10,0,0 0,10,0 10,10,0
0,0,10 10,0,10 0,10,10 10,10,10"

TriangleIndices="0,2,1 1,2,3 0,4,2 2,4,6
0,1,4 1,5,4 1,7,5 1,3,7
4,5,6 7,6,5 2,6,3 3,6,7"

Normals="0,1,0 0,1,0 1,0,0 1,0,0
0,1,0 0,1,0 1,0,0 1,0,0" />

This creates the smoother cube shown in Figure 23-13. Now large portions of the cube
end up sharing the same normal. This causes an extremely smooth effect that blends the
edges of the cube, making it more difficult to distinguish the sides.

Figure 23-13. An extremely smooth cube

CHAPTER 23 ■ 3-D DRAWING828

9551CH23 2/8/08 2:15 PM Page 828

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

This effect isn’t correct or incorrect—it simply depends on the effect you’re trying to
achieve. For example, faceted sides create a more geometric look, while blended sides look
more organic. One common trick is to use blending with a large multifaceted polygon to make
it look like a sphere, a cylinder, or another sort of curved shape. Because the blending hides
the edges of the shape, this effect works remarkably well.

More Complex Shapes
Realistic 3-D scenes usually involve hundreds or thousands of triangles. For example, one
approach to building a simple sphere is to split the sphere into bands and then split each
band into a faceted series of squares, as shown in the leftmost example in Figure 23-14. Each
square then requires two triangles.

Figure 23-14. Two ways to model a basic sphere

To build this sort of nontrivial mesh, you need to construct it in code or use a dedicated
3-D modeling program. The code-only approach requires significant math. (For a WPF exam-
ple that builds a sphere in code, see http://www.codeproject.com/WPF/XamlUVSphere.asp.) The
design approach requires a sophisticated application.

Fortunately, there are plenty of tools for building 3-D scenes that you can use in WPF
applications. Here are a few:

• ZAM 3D is a 3-D modeling tool designed explicitly for XAML. It’s available at
http://www.erain.com/Products/ZAM3D.

• Blender is an open source toolkit for 3-D modeling. It’s available at
http://www.blender.org, and there’s an experimental XAML export script at
http://codeplex.com/xamlexporter. Taken together, this provides a sophisticated
and completely free platform for building 3-D content for WPF applications.

• Export plug-ins are beginning to appear for a range of professional 3-D modeling
programs such as Maya and LightWave. For a list of some, check out http://
blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx.

CHAPTER 23 ■ 3-D DRAWING 829

9551CH23 2/8/08 2:15 PM Page 829

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeproject.com/WPF/XamlUVSphere.asp
http://www.erain.com/Products/ZAM3D
http://www.blender.org
http://codeplex.com/xamlexporter
http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx
http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx

All 3-D modeling programs include basic primitives, such as the sphere, that are built out
of smaller triangles. You can then use these primitives to construct a scene. 3-D modeling pro-
grams also let you add and position your light sources and apply textures. Some, such as ZAM
3D, also allow you to define animations you want to perform on the objects in your 3-D scene.

Model3DGroup Collections
When working with complex 3-D scenes, you’ll usually need to arrange multiple objects. As
you already know, a Viewport3D can hold multiple Visual3D objects, each of which uses a
different mesh. However, this isn’t the best way to build a 3-D scene. You’ll get far better per-
formance by creating as few meshes as possible and combining as much content as possible
into each mesh.

Obviously, there’s another consideration: flexibility. If your scene is broken down into sep-
arate objects, you have the ability to hit test, transform, and animate these pieces individually.
However, you don’t need to create distinct Visual3D objects to get this flexibility. Instead, you
can use the Model3DGroup class to place several meshes in a single Visual3D.

Model3DGroup derives from Model3D (as do the GeometryModel3D and Light classes).
However, it’s designed to group together a combination of meshes. Each mess remains a dis-
tinct piece of your scene that you can manipulate individually.

For example, consider the 3-D character shown in Figure 23-15. This character was cre-
ated in ZAM 3D and exported to XAML. His individual body parts—head, torso, belt, arm, and
so on—are separate meshes grouped into a single Model3DGroup object.

Figure 23-15. A 3-D character

CHAPTER 23 ■ 3-D DRAWING830

9551CH23 2/8/08 2:15 PM Page 830

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The following is a portion of the markup, which draws the appropriate meshes from a
resource dictionary:

<ModelVisual3D>
<ModelVisual3D.Content>
<Model3DGroup x:Name="Scene" Transform="{DynamicResource SceneTR20}">
<AmbientLight ... />
<DirectionalLight ... />
<DirectionalLight ... />
<Model3DGroup x:Name="CharacterOR22">
<Model3DGroup x:Name="PelvisOR24">
<Model3DGroup x:Name="BeltOR26">
<GeometryModel3D x:Name="BeltOR26GR27"
Geometry="{DynamicResource BeltOR26GR27}"
Material="{DynamicResource ER_Vector___Flat_Orange___DarkMR10}"
BackMaterial="{DynamicResource ER_Vector___Flat_Orange___DarkMR10}" />

</Model3DGroup>
<Model3DGroup x:Name="TorsoOR29">
<Model3DGroup x:Name="TubesOR31">
<GeometryModel3D x:Name="TubesOR31GR32"
Geometry="{DynamicResource TubesOR31GR32}"
Material="{DynamicResource ER___Default_MaterialMR1}"
BackMaterial="{DynamicResource ER___Default_MaterialMR1}"/>

</Model3DGroup>
...

</ModelVisual3D.Content>
</ModelVisual3D>

The entire scene is defined in a single ModelVisual3D, which contains a Model3DGroup.
That Model3DGroup contains other nested Model3DGroup objects. For example, the top-
level Model3DGroup contains the lights and the character, while the Model3DGroup for the
character contains another Model3DGroup that contains the torso, and that Model3DGroup
contains details such as the arms, which contain the palms, which contain the thumbs, and so
on, leading eventually to the GeometryModel3D objects that actually define the objects and
their material. As a result of this carefully segmented, nested design (which is implicit in the
way you create these objects in a design tool such as ZAM 3D), you can animate these body
parts individually, making the character walk, gesture, and so on. (You’ll take a look at animat-
ing 3-D content a bit later in this chapter in the “Interactivity and Animations” section.)

■Note Remember, the lowest overhead is achieved by using the fewest number of meshes and the fewest
number of ModelVisual3D objects. The Model3DGroup allows you to reduce the number of ModelVisual3D
objects you use (there’s no reason to have more than one) while retaining the flexibility to manipulate parts
of your scene separately.

CHAPTER 23 ■ 3-D DRAWING 831

9551CH23 2/8/08 2:15 PM Page 831

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Materials Revisited
So far, you’ve used just one of the types of material that WPF supports for constructing 3-D
objects. The DiffuseMaterial is by far the most useful material type—it scatters light in all
directions, like a real-world object.

When you create a DiffuseMaterial, you supply a Brush. So far, the examples you’ve seen
have used solid color brushes. However, the color you see is determined by the brush color
and the lighting. If you have direct, full-strength lighting, you’ll see the exact brush color. But if
your lighting hits a surface at an angle (as in the previous triangle and cube examples), you’ll
see a darker, shaded color.

■Note Interestingly, WPF does allow you to make partially transparent 3-D objects. The easiest approach is
to set the Opacity property of the brush that you use with the material to a value less than 1.

The SpecularMaterial and EmissiveMaterial types work a bit differently. Both are addi-
tively blended into any content that appears underneath. For that reason, the most common
way to use both types of material is in conjunction with a DiffuseMaterial.

Consider the SpecularMaterial. It reflects light much more sharply than DiffuseMaterial.
You can control how sharply the light is reflected using the SpecularPower property. Use a low
number, and light is reflected more readily, no matter at what angle it strikes the surface. Use a
higher number, and direct light is favored more strongly. Thus, a low SpecularPower produces
a washed-out, shiny effect, while a high SpecularPower produces sharply defined highlights.

On its own, placing a SpecularMaterial over a dark surface creates a glasslike effect. How-
ever, SpecularMaterial is more commonly used to add highlights to a DiffuseMaterial. For
example, using a white SpecularMaterial overtop of a DiffuseMaterial creates a plastic-like
surface, while a darker SpecularMaterial and DiffuseMaterial produce a more metallic effect.
Figure 23-16 shows two versions of a torus (a 3-D ring). The version on the left uses an ordi-
nary DiffuseMaterial. The version on the right adds a SpecularMaterial overtop. The highlights
appear in several places because the scene includes two directional lights that are pointed in
different directions.

To combine two surfaces, you need to wrap them in a MaterialGroup. Here’s the markup
that creates the highlights shown in Figure 23-16:

<GeometryModel3D>
<GeometryModel3D.Material>
<MaterialGroup>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<SolidColorBrush Color="DarkBlue" />

</DiffuseMaterial.Brush>
</DiffuseMaterial>
<SpecularMaterial SpecularPower="24">
<SpecularMaterial.Brush>
<SolidColorBrush Color="LightBlue" />

</SpecularMaterial.Brush>

CHAPTER 23 ■ 3-D DRAWING832

9551CH23 2/8/08 2:15 PM Page 832

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</SpecularMaterial>
</GeometryModel3D.Material>

<GeometryModel3D.Geometry>...</GeometryModel3D.Geometry>
<GeometryModel3D>

Figure 23-16. Adding a SpecularMaterial

■Note If you place a SpecularMaterial or an EmissiveMaterial on a white surface, you won’t see anything
at all. That’s because the SpecularMaterial and EmissiveMaterial contribute their color additively, and the
color white is already maxed out with the maximum possible red, green, and blue contributions. To see the
full effect of SpecularMaterial or EmissiveMaterial, place them on a black surface (or use them over a black
DiffuseMaterial).

The EmissiveMaterial is stranger still. It emits light, which means that a green Emissive-
Material that’s displayed over a dark surface shows up as a flat green silhouette, regardless of
whether your scene includes any light sources.

Once again, you can get a more interesting effect by layering an EmissiveMaterial over a
DiffuseMaterial. Because of the additive nature of EmissiveMaterial, the colors are blended.
For example, if you place a red EmissiveMaterial over a blue DiffuseMaterial, your shape will
acquire a purple tinge. The EmissiveMaterial will contribute the same amount of red over the
entire surface of the shape, while the DiffuseMaterial will be shaded according to the light
sources in your scene.

CHAPTER 23 ■ 3-D DRAWING 833

9551CH23 2/8/08 2:15 PM Page 833

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip The light “radiated” from an EmissiveMaterial doesn’t reach other objects. To create the effect of a
glowing object that illuminates other nearby objects, you may want to place a light source (such as Point-
Light) near your EmissiveMaterial.

Texture Mapping
So far, you’ve used the SolidColorBrush to paint your objects. However, WPF allows you to
paint a DiffuseMaterial object using any brush. That means you can paint it with gradients
(LinearGradientBrush and RadialGradientBrush), vector or bitmap images (ImageBrush), or
the content from a 2-D element (VisualBrush).

There’s one catch. When you use anything other than a SolidColorBrush, you need to sup-
ply additional information that tells WPF how to map the 2-D content of the brush onto the
3-D surface you’re painting. You supply this information using the MeshGeometry.Texture-
Coordinates collection. Depending on your choice, you can tile the brush content, extract just
a part of it, and stretch, warp, and otherwise mangle it to fit curved and angular surfaces.

So how does the TextureCoordinates collection work? The basic idea is that each coordi-
nate in your mesh needs a corresponding point in TextureCoordinates. The coordinate in the
mesh is a point in 3-D space, while the point in the TextureCoordinates collection is a 2-D
point because the content of a brush is always 2-D. The following sections show you how to
use texture mapping to display image and video content on a 3-D shape.

Mapping the ImageBrush
The easiest way to understand how TextureCoordinates work is to use an ImageBrush that
allows you to paint a bitmap. Here’s an example that uses a misty scene of a tree at dawn:

<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<ImageBrush ImageSource="Tree.jpg"></ImageBrush>

</DiffuseMaterial.Brush>
</DiffuseMaterial>

</GeometryModel3D.Material>

In this example, the ImageBrush is used to paint the content of the cube you created ear-
lier. Depending on the TextureCoordinates you choose, you could stretch the image, wrapping
it over the entire cube, or you could put a separate copy of it on each face (as we do in this
example). Figure 23-17 shows the end result.

■Note This example adds one extra detail. It uses a Slider at the bottom of the window that allows the
user to rotate the cube, viewing it from all angles. This is made possible by a transform, as you’ll learn in the
next section.

CHAPTER 23 ■ 3-D DRAWING834

9551CH23 2/8/08 2:15 PM Page 834

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 23-17. A textured cube

Initially, the TextureCoordinates collection is empty and your image won’t appear on the
3-D surface. To get started with the cube example, you may want to concentrate on mapping
just a single face. In the current example, the cube is oriented so that its left side is facing the
camera. Here is the mesh for the cube. The two triangles that make up the left (front-facing)
side are in bold:

<MeshGeometry3D
Positions="0,0,0 10,0,0 0,10,0 10,10,0

0,0,0 0,0,10 0,10,0 0,10,10
0,0,0 10,0,0 0,0,10 10,0,10
10,0,0 10,10,10 10,0,10 10,10,0
0,0,10 10,0,10 0,10,10 10,10,10
0,10,0 0,10,10 10,10,0 10,10,10"

TriangleIndices="
0,2,1 1,2,3
4,5,6 6,5,7
8,9,10 9,11,10
12,13,14 12,15,13
16,17,18 19,18,17
20,21,22 22,21,23" />

Most of the mesh points aren’t mapped at all. In fact, the only points that are mapped are
these four, which define the face of the cube that’s oriented toward the camera:

(0,0,0) (0,0,10) (0,10,0) (0,10,10)

CHAPTER 23 ■ 3-D DRAWING 835

9551CH23 2/8/08 2:15 PM Page 835

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Because this is actually a flat surface, mapping is relatively easy. You can choose a set of
TextureCoordinates for this face by removing the dimension that has a value of 0 in all four
points. (In this example, that’s the X coordinate because the visible face is actually on the left
side of the cube.)

Here’s the TextureCoordinates that fill this requirement:

(0,0) (0,10) (10,0) (10,10)

The TextureCoordinates collection uses relative coordinates. To keep things simple, you
may want to use 1 to indicate the maximum value. In this example, that transformation is easy:

(0,0) (0,1) (1,0) (1,1)

This set of TextureCoordinates essentially tells WPF to take the point (0, 0) at the bottom left
of the rectangle that represents the brush content, and map that to the corresponding point (0,
0, 0) in 3-D space. Similarly, take the bottom-right corner (0, 1) and map that to (0, 0, 10), make
the top-left corner (1, 0) map to (0, 10, 0), and make the top-right corner (1, 1) map to (0, 10, 10).

Here’s the cube mesh that uses this texture mapping. All the other coordinates in the Posi-
tions collection are mapped to (0, 0), so that the texture is not applied to these areas:

<MeshGeometry3D
Positions="0,0,0 10,0,0 0,10,0 10,10,0

0,0,0 0,0,10 0,10,0 0,10,10
0,0,0 10,0,0 0,0,10 10,0,10
10,0,0 10,10,10 10,0,10 10,10,0
0,0,10 10,0,10 0,10,10 10,10,10
0,10,0 0,10,10 10,10,0 10,10,10"

TriangleIndices="..."
TextureCoordinates="

0,0 0,0 0,0 0,0
0,0 0,1 1,0 1,1
0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0
0,0 0,0 0,0 0,0" />

This markup maps the texture to a single face on the cube. Although it is mapped success-
fully, the image is turned on its side. To get a top-up image, you need to rearrange your
coordinates to use this order:

1,1 0,1 1,0 0,0

You can extend this process to map each face of the cube. Here’s a set of TextureCoordinates
that does exactly that and creates the multifaceted cube shown in Figure 23-17:

TextureCoordinates="0,0 0,1 1,0 1,1
1,1 0,1 1,0 0,0
0,0 1,0 0,1 1,1
0,0 1,0 0,1 1,1
1,1 0,1 1,0 0,0
1,1 0,1 1,0 0,0"

CHAPTER 23 ■ 3-D DRAWING836

9551CH23 2/8/08 2:15 PM Page 836

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

There are obviously many more effects you can create by tweaking these points. For
example, you could stretch your texture around a more complex object like a sphere. Because
the meshes required for this sort of object typically include hundreds of points, you won’t fill
the TextureCoordinates collection by hand. Instead, you’ll rely on a 3-D modeling program (or
a math-crunching code routine that does it at runtime). If you want to apply different brushes
to different portions of your mesh, you’ll need to split your 3-D object into multiple meshes,
each of which will have a different material that uses a different brush. You can then combine
those meshes into one Model3DGroup for the lowest overhead.

Video and the VisualBrush
Ordinary images aren’t the only kind of content you can map to a 3-D surface. You can also
map content that changes, such as gradient brushes that have animated values. One common
technique in WPF is to map a video to a 3-D surface. As the video plays, its content is dis-
played in real time on the 3-D surface.

Achieving this somewhat overused effect is surprisingly easy. In fact, you can map a video
brush to the faces of a cube, with different orientations, using the exact same set of Texture-
Coordinates you used in the previous example to map the image. All you need to do is replace
the ImageBrush with a more capable VisualBrush and use a MediaElement for your visual.
With the help of an event trigger, you can even start a looping playback of your video without
requiring any code.

The following markup creates a VisualBrush that performs looping playback and rotates
the cube at the same time, displaying its different axes. (You’ll learn more about how you can
use animation and rotation to achieve this effect in the next section.)

<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<VisualBrush>
<VisualBrush.Visual>
<MediaElement>
<MediaElement.Triggers>
<EventTrigger RoutedEvent="MediaElement.Loaded">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard >
<MediaTimeline Source="test.mpg"
RepeatBehavior="Forever" />

<DoubleAnimation Storyboard.TargetName="rotate"
Storyboard.TargetProperty="Angle"
To="360" Duration="0:0:5" RepeatBehavior="Forever" />

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</MediaElement.Triggers>
</MediaElement>

</VisualBrush.Visual>

CHAPTER 23 ■ 3-D DRAWING 837

9551CH23 2/8/08 2:15 PM Page 837

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

</VisualBrush>
</DiffuseMaterial.Brush>

</DiffuseMaterial>
</GeometryModel3D.Material>

Figure 23-18 shows a snapshot of this example in action.

Figure 23-18. Displaying video on several 3-D surfaces

Interactivity and Animations
To get the full value out of your 3-D scene, you need to make it dynamic. In other words, you
need to have some way to modify part of the scene, either automatically or in response to user
actions. After all, if you don’t need a dynamic 3-D scene, you’d be better off creating a 3-D
image in your favorite illustration program and then exporting it as an ordinary XAML vector
drawing. (Some 3-D modeling tools, such as ZAM 3D, provide exactly this option.)

In the following sections, you’ll learn how to manipulate 3-D objects using transforms
and how to add animation and move the camera. You’ll also consider a separately released
tool: a Trackball class that allows you to rotate a 3-D scene interactively. Finally, you’ll learn
how to perform hit testing in a 3-D scene and how to place interactive 2-D elements, such as
buttons and text boxes, on a 3-D surface.

Transforms
As with 2-D content, the most powerful and flexible way to change an aspect of your 3-D
scene is to use transforms. This is particularly the case with 3-D, as the classes you work with
are relatively low-level. For example, if you want to scale a sphere, you need to construct the
appropriate geometry and use the ScaleTransform3D to animate it. If you had a 3-D sphere

CHAPTER 23 ■ 3-D DRAWING838

9551CH23 2/8/08 2:15 PM Page 838

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

primitive to work with, this might not be necessary because you might be able to animate a
higher-level property like Radius.

Transforms are obviously the answer to creating dynamic effects. However, before you
can use transforms, you need to decide how you want to apply them. There are several possi-
ble approaches:

• Modify a transform that’s applied to your Model3D. This allows you to change a single
aspect of a single 3-D object. You can also use this technique on a Model3DGroup, as it
derives from Model3D.

• Modify a transform that’s applied to your ModelVisual3D. This allows you to change an
entire scene.

• Modify a transform that’s applied to your light. This allows you to change the lighting of
your scene (for example, to create a “sunrise” effect).

• Modify a transform that’s applied to your camera. This allows you to move the camera
through your scene.

Transforms are so useful in 3-D drawing that it’s a good idea to get into the habit of using
a Transform3DGroup whenever you need a transform. That way, you can add additional trans-
forms afterward without being forced to change your animation code. The ZAM 3D modeling
program always adds a set of four placeholder transforms to every Model3DGroup, so that the
object represented by that group can be manipulated in various ways:

<Model3DGroup.Transform>
<Transform3DGroup>
<TranslateTransform3D OffsetX="0" OffsetY="0" OffsetZ="0"/>
<ScaleTransform3D ScaleX="1" ScaleY="1" ScaleZ="1"/>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D Angle="0" Axis="0 1 0"/>

</RotateTransform3D.Rotation>
</RotateTransform3D>
<TranslateTransform3D OffsetX="0" OffsetY="0" OffsetZ="0"/>

</Transform3DGroup>
</Model3DGroup.Transform>

Notice that this set of transforms includes two TranslateTransform3D objects. That’s
because translating an object before it’s been rotated produces a different result than translat-
ing it after it’s been rotated, and you may want to use both effects.

Another handy technique is to name your transform objects in XAML using the x:Name
attribute. Even though the transform objects don’t have a name property, this creates a private
member variable you can use to access them more easily without being forced to dig through
a deep hierarchy of objects. This is particularly important because complex 3-D scenes often
have multiple layers of Model3DGroup objects, as described earlier. Walking down this ele-
ment tree from the top-level ModelVisual3D is awkward and error-prone.

CHAPTER 23 ■ 3-D DRAWING 839

9551CH23 2/8/08 2:15 PM Page 839

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Rotations
To get a taste of the ways you might use transforms, consider the following markup. It applies
a RotateTransform3D, which allows you to rotate a 3-D object around an axis you specify. In
this case, the axis of rotation is set to line up exactly with the Y axis in your coordinate system:

<ModelVisual3D.Transform>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D x:Name="rotate" Axis="0 1 0" />
</RotateTransform3D.Rotation>

</RotateTransform3D>
</ModelVisual3D.Transform>

Using this named rotation, you can create a databound Slider that allows the user to spin
the cube around its axis:

<Slider Grid.Row="1" Minimum="0" Maximum="360" Orientation="Horizontal"
Value="{Binding ElementName=rotate, Path=Angle}" ></Slider>

Just as easily, you can use this rotation in an animation. Here’s an animation that spins a
torus (a 3-D ring) simultaneously along two different axes. It all starts when a button is clicked:

<Button>
<Button.Content>Rotate Torus</Button.Content>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard RepeatBehavior="Forever">
<DoubleAnimation Storyboard.TargetName="ring"
Storyboard.TargetProperty="rotate1" To="360" Duration="0:0:2.5"/>
<DoubleAnimation Storyboard.TargetName="ring"
Storyboard.TargetProperty="rotate2" To="360" Duration="0:0:2.5"/>

</Storyboard>
</BeginStoryboard>

</EventTrigger>
</Button.Triggers>

</Button>

Figure 23-19 shows four snapshots of the torus in various stages of rotation.

■Note WPF masters are exploring ways to provide reusable 3-D effects that other developers can apply to
their content with a minimum of fuss. One early example is the Planerator, a Decorator that rotates the 2-D
element content you place inside. (You can download it at http://tinyurl.com/2j6thq.) Similar work is
underway to create reusable 3-D transitions (for example, creating content that flies in to view or duplicating
the Mac OS X “Genie” effect, which warps a window and funnels it down to the bottom of the screen when
it’s minimized).

CHAPTER 23 ■ 3-D DRAWING840

9551CH23 2/8/08 2:15 PM Page 840

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com/2j6thq

Figure 23-19. A rotating 3-D shape

A Fly Over
A common effect in 3-D scenes is to move the camera around the object. This task is concep-
tually quite easy in WPF. You simply need a TranslateTransform to move the camera. However,
two considerations apply:

• Usually, you’ll want to move the camera along a route rather than in a straight line from
a start point to an end point. There are two ways to solve this challenge—you can use a
path-based animation to follow a geometrically defined route, or you can use a key
frame animation that defines several smaller segments.

• As the camera moves, it also needs to adjust the direction in which it’s looking. You’ll
also need to animate the LookDirection property to keep focused on the object.

The following markup shows an animation that flies through the center of a torus, spins
around its outer edge, and eventually drifts back to the starting point. To see this animation in
action, check out the samples for this chapter:

<StackPanel Orientation="Horizontal">
<Button>
<Button.Content>Begin Fly-Through</Button.Content>
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<Point3DAnimationUsingKeyFrames
Storyboard.TargetName="camera"
Storyboard.TargetProperty="Position">
<LinearPoint3DKeyFrame Value="0,0.2,-1" KeyTime="0:0:10"/>
<LinearPoint3DKeyFrame Value="-0.5,0.2,-1" KeyTime="0:0:15"/>
<LinearPoint3DKeyFrame Value="-0.5,0.5,0" KeyTime="0:0:20"/>
<LinearPoint3DKeyFrame Value="0,0,2" KeyTime="0:0:23"/>
</Point3DAnimationUsingKeyFrames>

CHAPTER 23 ■ 3-D DRAWING 841

9551CH23 2/8/08 2:15 PM Page 841

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Vector3DAnimationUsingKeyFrames
Storyboard.TargetName="camera"
Storyboard.TargetProperty="LookDirection">
<LinearVector3DKeyFrame Value="-1,-1,-3" KeyTime="0:0:4"/>
<LinearVector3DKeyFrame Value="-1,-1,3" KeyTime="0:0:10"/>
<LinearVector3DKeyFrame Value="1,0,3" KeyTime="0:0:14"/>
<LinearVector3DKeyFrame Value="0,0,-1" KeyTime="0:0:22"/>

</Vector3DAnimationUsingKeyFrames>
</Storyboard>

</BeginStoryboard>
</EventTrigger>

</Button.Triggers>
</Button>

</StackPanel>

For a bit more fun, you can start both animations (the rotation shown earlier and the fly-
over effect shown here), which will cause the camera to pass through the edge of the ring as it
rotates. You can also animate the UpDirection property of the camera to wiggle it as it moves:

<Vector3DAnimation
Storyboard.TargetName="camera" Storyboard.TargetProperty="UpDirection"
From="0,0,-1" To="0,0.1,-1" Duration="0:0:0.5" AutoReverse="True"
RepeatBehavior="Forever" />

3-D PERFORMANCE

Rendering a 3-D scene requires much more work than rendering a 2-D scene. When you animate a 3-D
scene, WPF attempts to refresh the parts that have changed 60 times per second. Depending on the com-
plexity of your scene, this can easily use up the memory resources on your video card, which will cause the
frame rate to fall and the animation to become choppy.

There are a few basic techniques you can use to get better 3-D performance. Here are some strategies
for tweaking the viewport to reduce the 3-D rendering overhead:

• If you don’t need to crop content that extends beyond the bounds of your viewport, set
Viewport3D.ClipToBounds to false.

• If you don’t need to provide hit testing in your 3-D scene, set Viewport3D.IsHitTestVisible to false.

• If you don’t mind lower quality—jagged edges on 3-D shapes—set the attached property Render-
Options.EdgeMode to Aliased on the Viewport3D.

• If your Viewport3D is larger than it needs to be, resize it to be smaller.

It’s also important to ensure that your 3-D scene is as lightweight as possible. Here are a few critical
tips for creating the most efficient meshes and models:

• Whenever possible, create a single complex mesh rather than several smaller meshes.

• If you need to use different materials for the same mesh, define the MeshGeometry object once (as a
resource) and then reuse it to create multiple GeometryModel3D objects.

CHAPTER 23 ■ 3-D DRAWING842

9551CH23 2/8/08 2:15 PM Page 842

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• Whenever possible, wrap a group of GeometryModel3D objects in a Model3DGroup, and place that
group in a single ModelVisual3D object. Don’t create a separate ModelVisual3D object for each
GeometryModel3D.

• Don’t define a back material (using GeometryModel3D.BackMaterial) unless the user will actually see
the back of the object. Similarly, when defining meshes, consider leaving out triangles that won’t be
visible (for example, the bottom surface of a cube).

• Prefer solid brushes, gradient brushes, and the ImageBrush over the DrawingBrush and VisualBrush,
both of which have more overhead. When using the DrawingBrush and VisualBrush to paint static con-
tent, you can cache the brush content to improve performance. To do so, use the attached property
RenderOptions.CachingHint on the brush and set it to Cache.

If you keep these guidelines in mind, you’ll be well on the way to ensuring the best possible 3-D draw-
ing performance, and the highest possible frame rate for 3-D animation.

The Trackball
One of the most commonly requested behaviors in a 3-D scene is the ability to rotate an
object using the mouse. One of the most common implementations is called a virtual track-
ball, and it’s found in many 3-D graphics and 3-D design programs. Although WPF doesn’t
include a native implementation of a virtual trackball, the WPF 3-D team has released a free
sample class that performs this function. This virtual trackball is a robust, extremely popular
piece of code that finds its way into most of the 3-D demo applications that are provided by
the WPF team.

The basic principle of the virtual trackball is that the user clicks somewhere on the 3-D
object and drags it around an imaginary center axis. The amount of rotation depends on the
distance the mouse is dragged. For example, if you click in the middle of the right side of a
Viewport3D and drag the mouse to the left, the 3-D scene will appear to rotate around an
imaginary vertical line. If you move the mouse all the way to the left side, the 3-D scene will be
flipped 180 degrees to expose its back, as shown in Figure 23-20.

Although the virtual trackball appears to rotate the 3-D scene, it actually works by moving
the camera. The camera always remains equally distant from the center point of the 3-D
scene—essentially, the camera is moved along the contour of a big sphere that contains the
entire scene. For a description of how the WPF virtual trackball works and the calculations
that are involved, refer to http://viewport3d.com/trackball.htm. You can download the vir-
tual trackball code with the 3-D tools projects described earlier at http://www.codeplex.com/
3DTools.

■Note Because the virtual trackball moves the camera, you shouldn’t use it in conjunction with your own
camera-moving animation. However, you can use it in conjunction with an animated 3-D scene (for example,
a 3-D scene that contains a rotating torus like the one described earlier).

CHAPTER 23 ■ 3-D DRAWING 843

9551CH23 2/8/08 2:15 PM Page 843

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://viewport3d.com/trackball.htm
http://www.codeplex.com

Figure 23-20. Changing your viewpoint with the virtual trackball

Using the virtual trackball is absurdly easy. All you need to do is wrap your Viewport3D in
the TrackballDecorator class. The TrackballDecorator class is included with the 3-D tools proj-
ect, so you’ll need to begin by adding an XML alias for the namespace:

<Window xmlns:tools="clr-namespace:_3DTools;assembly=3DTools" ... >

Then you can easily add the TrackballDecorator to your markup:

<tools:TrackballDecorator>
<Viewport3D>
...

</Viewport3D>
</tools:TrackballDecorator>

Once you take this step, the virtual trackball functionality is automatically available—just
click with the mouse and drag.

CHAPTER 23 ■ 3-D DRAWING844

9551CH23 2/8/08 2:15 PM Page 844

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Hit Testing
Sooner or later, you’ll want to create an interactive 3-D scene—one where the user can click
3-D shapes to perform different actions. The first step to implementing this design is hit test-
ing, the process by which you intercept a mouse click and determine what region was clicked.
Hit testing is easy in the 2-D world, but it’s not quite as straightforward in a Viewport3D.

Fortunately, WPF provides sophisticated 3-D hit-testing support. You have three options
for performing hit-testing in a 3-D scene:

• You can handle the mouse events of the viewport (such as MouseUp or MouseDown).
Then you can call the VisualTreeHelper.HitTest() method to determine what object was
hit. In the first version of WPF (released with .NET 3.0), this was the only possible
approach.

• You can create your own 3-D control by deriving a custom class from the abstract
UIElement3D class. This approach works, but it requires a lot of work. You need to
implement all the UIElement-type plumbing on your own.

• You can replace one of your ModelVisual3D objects with a ModelUIElement3D object.
The ModelUIElement3D class is derived from UIElement3D. It fuses the all-purpose
3-D model you’ve used so far with the interactive capabilities of a WPF element, includ-
ing mouse handling.

To understand how 3-D hit testing works, it helps to consider a simple example. In the fol-
lowing section, you’ll add hit testing to the familiar torus.

Hit Testing in the Viewport
To use the first approach to hit testing, you need to attach an event handler to one of the
mouse events of the Viewport3D, such as MouseDown:

<Viewport3D MouseDown="viewport_MouseDown">

The MouseDown event handler uses hit-testing code at its simplest. It takes the current
position of the mouse and returns a reference for the topmost ModelVisual3D that the point
intercepts (if any):

private void viewport_MouseDown(object sender, MouseButtonEventArgs e)
{

Viewport3D viewport = (Viewport3D)sender;
Point location = e.GetPosition(viewport);
HitTestResult hitResult = VisualTreeHelper.HitTest(viewport, location);

if (hitResult != null && hitResult.VisualHit == ringVisual)
{

// The click hit the ring.
}

}

Although this code works in simple examples, it’s usually not sufficient. As you learned
earlier, it’s almost always better to combine multiple objects in the same ModelVisual3D. In

CHAPTER 23 ■ 3-D DRAWING 845

9551CH23 2/8/08 2:15 PM Page 845

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

many cases, all the objects in your entire scene will be placed in the same ModelVisual3D, so
the hit doesn’t provide enough information.

Fortunately, if the click intercepts a mesh, you can cast the HitTestResult to the more
capable RayMeshGeometry3DHitTestResult object. You can find out which ModelVisual3D
was hit using the RayMeshGeometry3DHitTestResult:

RayMeshGeometry3DHitTestResult meshHitResult =
hitResult as RayMeshGeometry3DHitTestResult;

if (meshHitResult != null && meshHitResult.ModelHit == ringModel)
{

// Hit the ring.
}

Or for even more fine-grained hit testing, you can use the MeshHit property to determine
which specific mesh was hit. In the following example, the code determines whether the mesh
representing the torus was hit. If it has been hit, the code creates and starts a new animation
that rotates the torus. Here’s the trick—the rotation axis is set so that it runs through the center
of the torus, perpendicular to an imaginary line that connects the center of the torus to the
location where the mouse was clicked. The effect makes it appear that the torus has been “hit”
and is rebounding away from the click by twisting slightly away from the foreground and in
the opposite direction.

Here’s the code that implements that effect:

private void viewport_MouseDown(object sender, MouseButtonEventArgs e)
{

Viewport3D viewport = (Viewport3D)sender;
Point location = e.GetPosition(viewport);
HitTestResult hitResult = VisualTreeHelper.HitTest(viewport, location);
RayMeshGeometry3DHitTestResult meshHitResult =
hitResult as RayMeshGeometry3DHitTestResult;

if (meshHitResult != null && meshHitResult.MeshHit == ringMesh)
{

// Set the axis of rotation.
axisRotation.Axis = new Vector3D(
-meshHitResult.PointHit.Y, meshHitResult.PointHit.X, 0);

// Start the animation.
DoubleAnimation animation = new DoubleAnimation();
animation.To = 40;
animation.DecelerationRatio = 1;
animation.Duration = TimeSpan.FromSeconds(0.15);
animation.AutoReverse = true;
axisRotation.BeginAnimation(AxisAngleRotation3D.AngleProperty, animation);

}
}

This approach to hit testing works perfectly well. However, if you have a scene with a large
number of 3-D objects and the interaction you require with these objects is straightforward

CHAPTER 23 ■ 3-D DRAWING846

9551CH23 2/8/08 2:15 PM Page 846

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

(for example, you have a dozen buttons), this approach to hit testing makes for more work
than necessary. In this situation, you’re better off using the ModelUIElement3D class, which is
introduced in the next section.

The ModelUIElement3D
The ModelUIElement3D is a type of Visual3D. Like all the Visual3D objects, it can be placed in
a Viewport3D container.

Figure 23-21 shows the inheritance hierarchy for all the classes that derive from Visual3D.
The three key classes that derive from Visual3D are ModelVisual3D (which you’ve used up to
this point), UIElement3D (which defines the 3-D equivalent of the WPF element), and View-
port2DVisual3D (which allows you to place 2-D content in a 3-D scene, as described in the
section “2-D Elements on 3-D Surfaces” later in this chapter).

Figure 23-21. The 3-D visual classes

The UIElement3D class plays an analogous role to the UIElement class in the 2-D world,
by adding support for mouse, keyboard, and stylus events, along with focus tracking. However,
UIElement3D doesn’t support any sort of layout system. The UIElement3D class, its descen-
dants, and the Viewport2DVisual3D class are all new in WPF 3.5.

Although you can create a custom 3-D element by deriving from UIElement3D, it’s far
easier to use the ready-made classes that derive from UIElement3D: ModelUIElement3D and
ContainerUIElement3D.

Using a ModelUIElement3D is not much different from using the ModelVisual3D class
with which you’re already familiar. The ModelUIElement3D class supports transforms
(through the Transform property) and allows you to define its shape with a GeometryModel3D
object (by setting the Model property, not the Content property as you do with
ModelVisual3D).

CHAPTER 23 ■ 3-D DRAWING 847

9551CH23 2/8/08 2:15 PM Page 847

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Hit Testing with the ModelUIElement3D
Right now, the torus consists of a single ModelVisual3D, which contains a Model3DGroup.
This group includes the torus geometry and the light sources that illuminate it. To change the
torus example so that it uses the ModelUIElement3D, you simply need to replace the Model-
Visual3D that represents the torus with a ModelUIElement3D:

<Viewport3D x:Name="viewport">
<Viewport3D.Camera>...</Viewport3D.Camera>

<ModelUIElement3D>
<ModelUIElement3D.Model>
<Model3DGroup>...<Model3DGroup>

</ModelUIElement3D.Model>
</ModelUIElement3D>

</Viewport3D>

Now you can perform hit testing directly with the ModelUIElement3D:

<ModelUIElement3D MouseDown="ringVisual_MouseDown">

The difference between this example and the previous one is that now the MouseDown
event will fire only when the ring is clicked (rather than any time a point inside the viewport is
clicked). However, the event-handling code still needs a bit of tweaking to get the result you
want in this example.

The MouseDown event provides a standard MouseButtonEventArgs object to the event
handler. This object provides the standard mouse event details, such as the exact time the
event occurred, the state of the mouse buttons, and a GetPosition() method that allows you to
determine the clicked coordinates relative to any element that implements IInputElement
(such as the Viewport3D or the MouseUIElement3D). In many cases, these 2-D coordinates
are exactly what you need. (For example, they are a requirement if you’re using 2-D content on
a 3-D surface, as described in the next section. In this case, any time you move, resize, or cre-
ate elements, you’re positioning them in 2-D space, which is then mapped to a 3-D surface
based on a preexisting set of texture coordinates.)

However, in the current example it’s important to get the 3-D coordinates on the torus
mesh so that the appropriate animation can be created. That means you still need to use the
VisualTreeHelper.HitTest() method, as shown here:

private void ringVisual_MouseDown(object sender, MouseButtonEventArgs e)
{

// Get the 2-D coordinates relative to the viewport.
Point location = e.GetPosition(viewport);

// Get the 3-D coordinates relative to the mesh.
RayMeshGeometry3DHitTestResult meshHitResult =
(RayMeshGeometry3DHitTestResult)VisualTreeHelper.HitTest(
viewport, location);

CHAPTER 23 ■ 3-D DRAWING848

9551CH23 2/8/08 2:15 PM Page 848

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Create the animation.
axisRotation.Axis = new Vector3D(
-meshHitResult.PointHit.Y, meshHitResult.PointHit.X, 0);

DoubleAnimation animation = new DoubleAnimation();
animation.To = 40;
animation.DecelerationRatio = 1;
animation.Duration = TimeSpan.FromSeconds(0.15);
animation.AutoReverse = true;
axisRotation.BeginAnimation(AxisAngleRotation3D.AngleProperty, animation);

}

Using this sort of realistic 3-D behavior, you could create a true 3-D “control,” such as a
button that deforms when you click it.

If you simply want to react to clicks on a 3-D object and you don’t need to perform calcu-
lations that involve the mesh, you won’t need to use the VisualTreeHelper at all. The fact that
the MouseDown event fired tells you that the torus was clicked.

■Tip In most cases, the ModelUIElement3D provides a simpler approach to hit testing than using the
mouse events of the viewport. If you simply want to detect when a given shape is clicked (for example, you
have a 3-D shape that represents a button and triggers an action), the ModelUIElement3D class is perfect.
On the other hand, if you want to perform more complex calculations with the clicked coordinates or exam-
ine all the shapes that exist at a clicked location (not just the topmost one), you’ll need more sophisticated
hit testing code, and you’ll probably want to respond to the mouse events of the viewport.

The ContainerUIElement3D
The ModelUIElement3D class is intended to represent a single control-like object. If you want
to place more than one ModelUIElement3D in a 3-D scene and allow the user to interact with
them independently, you need to create ModelUIElement3D objects and wrap them in a sin-
gle ContainerUIElement3D. You can then add that ContainerUIElement3D to the viewport.

The ContainerUIElement3D has one other advantage. It supports any combination of
objects that derive from Visual3D. That means it can hold ordinary ModelVisual3D objects,
interactive ModelUIElement3D objects, and Viewport2DVisual3D objects, which represent
2-D elements that have been placed in 3-D space. You’ll learn more about this trick in the next
section.

2-D Elements on 3-D Surfaces
As you learned earlier in this chapter, you can use texture mapping to place 2-D brush content
on a 3-D surface. You can use this to place images or videos in a 3-D scene. Using a Visual-
Brush, you can even take the visual appearance of an ordinary WPF element (such as a
button), and place it in your 3-D scene.

However, the VisualBrush is inherently limited. As you already know, the VisualBrush can
copy the visual appearance of an element, but it doesn’t actually duplicate the element. If you
use the VisualBrush to place the visual for a button in a 3-D scene, you’ll end up with a 3-D
picture of a button. In other words, you won’t be able to click it.

CHAPTER 23 ■ 3-D DRAWING 849

9551CH23 2/8/08 2:15 PM Page 849

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

WPF 3.5 includes the solution to this problem: the Viewport2DVisual3D class. The
Viewport2DVisual3D class wraps another element and maps it to a 3-D surface using texture
mapping. You can place the Viewport2DVisual3D directly in a Viewport3D, alongside other
Visual3D objects (such as ModelVisual3D objects and ModelUIElement3D objects). However,
the element inside the Viewport2DVisual3D retains its interactivity and has all the WPF fea-
tures you’re accustomed to, including layout, styling, templates, mouse events,
drag-and-drop, and so on.

■Note The Viewport2DVisual3D class was introduced in WPF 3.5. You can find an earlier solution in the
3-D tools project that you’ve already learned about (http://www.codeplex.com/3DTools). It includes two
classes (Interactive3DDecorator and InteractiveVisual3D) which provide a similar but subtly different 2-D to
3-D mapping service. If you’re working with WPF applications that target .NET 3.0, you might still use these
classes. Otherwise, you’ll have no need for them (although you’ll find other goodies in the 3-D tools project).

Figure 23-22 shows an example. A StackPanel containing a TextBlock, Button, and TextBox
is placed on one of the faces of a 3-D cube. The user is in the process of typing text into the
TextBox, and you can see the I-beam cursor that shows the insertion point.

Figure 23-22. Interactive WPF elements in 3-D

CHAPTER 23 ■ 3-D DRAWING850

9551CH23 2/8/08 2:15 PM Page 850

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeplex.com/3DTools

In your Viewport3D, you can place all the usual ModelVisual3D objects. In the example
shown in Figure 23-22, there’s a ModelVisual3D for the cube. To place your 2-D element con-
tent in the scene, you use a Viewport2DVisual3D object instead. The Viewport2DVisual3D
class provides the properties listed in Table 23-5.

Table 23-5. Properties of the InteractiveVisual3D

Name Description

Geometry The mesh that defines the 3-D surface.

Visual The 2-D element that will be placed on the 3-D surface. You can use only a single
element, but it’s perfectly legitimate to use a container panel to wrap multiple
elements together. The example in Figure 23-22 uses a Border that contains a
StackPanel with three child elements.

Material The material that will be used to render the 2-D content. Usually, you’ll use a
DiffuseMaterial. You must set the attached Viewport2DVisual3D.IsVisualHost-
Material on the DiffuseMaterial to true so that the material is able to show
element content.

Transform A Transform3D or Transform3DGroup that determines how your mesh should be
altered (rotated, scaled, skewed, and so on).

Using the 2-D on 3-D technique is relatively straightforward, provided you’re already
familiar with texture mapping (as described in the “Texture Mapping” section earlier in this
chapter). Here’s the markup that creates the WPF elements shown in Figure 23-22:

<Viewport2DVisual3D>
<Viewport2DVisual3D.Geometry>
<MeshGeometry3D
Positions="0,0,0 0,0,10 0,10,0 0,10,10"
TriangleIndices="0,1,2 2,1,3"
TextureCoordinates="0,1 1,1 0,0 1,0"

/>
</Viewport2DVisual3D.Geometry>

<Viewport2DVisual3D.Material>
<DiffuseMaterial Viewport2DVisual3D.IsVisualHostMaterial="True" />

</Viewport2DVisual3D.Material>

<Viewport2DVisual3D.Visual>
<Border BorderBrush="Yellow" BorderThickness="1">
<StackPanel Margin="10">
<TextBlock Margin="3">This is 2D content on a 3D surface.</TextBlock>
<Button Margin="3">Click Me</Button>
<TextBox Margin="3">[Enter Text Here]</TextBox>

</StackPanel>
</Border>

</Viewport2DVisual3D.Visual>

CHAPTER 23 ■ 3-D DRAWING 851

9551CH23 2/8/08 2:15 PM Page 851

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Viewport2DVisual3D.Transform>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D
Angle="{Binding ElementName=sliderRotate, Path=Value}"
Axis="0 1 0" />

</RotateTransform3D.Rotation>
</RotateTransform3D>

</Viewport2DVisual3D.Transform>
</Viewport2DVisual3D>

In this example, the Viewport2DVisual3D.Geometry property supplies a mesh that mir-
rors a single face of the cube. The TextureCoordinates of the mesh define how the 2-D content
(the Border that wraps the StackPanel) should be mapped to the 3-D surface (the cube face).
The texture mapping that you use with the Viewport2DVisual3D works in the same way as the
texture mapping you used earlier with the ImageBrush and VisualBrush.

■Note When defining the TextureCoordinates, it’s important to make sure you have the element facing
the camera. WPF does not render anything for the back surface of Viewport2DVisual3D, so if you flip it
around and stare at its back, the element will disappear. (If this isn’t the result you want, you can use
another Viewport2DVisual3D to create content for the back side.)

This example also uses a RotateTransform3D to allow the user to turn the cube around
using a slider underneath the Viewport3D. The ModelVisual3D that represents the cube
includes the same RotateTransform3D, so the cube and 2-D element content move together.

Currently, this example doesn’t use any event handling in the Viewport2DVisual3D con-
tent. However, it’s easy enough to add an event handler:

<Button Margin="3" Click="cmd_Click">Click Me</Button>

WPF handles mouse events in a clever way. It uses texture mapping to translate the virtual
3-D coordinates (where the mouse is) to ordinary, non-texture-mapped 2-D coordinates.
From the element’s point of view, the mouse events are exactly the same in the 3-D world as
they are in the 2-D world. This is part of the magic that holds the solution together.

■Tip For a more elaborate example of 2-D content on a 3-D surface, refer to http://tinyurl.com/
3cnfxx. You’ll find a spinning globe example that lets you plant markers (with descriptive text) at arbitrary
locations. All the content in this example consists of 2-D elements that are mapped to 3-D space.

CHAPTER 23 ■ 3-D DRAWING852

9551CH23 2/8/08 2:15 PM Page 852

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://tinyurl.com

The Last Word
3-D support is one of the gems of the WPF platform. Previous high-level development toolkits,
such as Windows Forms, have avoided 3-D support altogether, leaving it to hard-core DirectX
junkies. In fact, the most impressive part of WPF’s 3-D features is their ease of use. Although
it’s possible to create complex code that creates and modifies 3-D meshes using intense math,
it’s just as possible to export 3-D models from a design tool and manipulate them using
straightforward transformations. And key features such as a virtual trackball implementation
and 2-D element interactivity are provided by high-level classes that take no expertise at all.

This chapter provided a tour of the core pillars of WPF’s 3-D support and introduced
some of the indispensable tools that have emerged since WPF 1.0 was released. However, 3-D
programming is a detailed topic, and it’s certainly possible to delve much more deeply into
3-D theory. If you want to brush up on the math that underlies 3-D development, you may
want to consider the book 3D Math Primer for Graphics and Game Development by Fletcher
Dunn (Wordware Publishing, 2002). You’re also certain to find complete books on 3-D pro-
gramming with WPF.

The easiest way to continue your exploration into the world of 3-D is to head to the Web
and check out the resources and sample code provided by the WPF team and other independ-
ent developers. Here’s a short list of useful links, including some that have already been
referenced in this chapter:

• http://www.codeplex.com/3DTools provides an essential library of tools for developers
doing 3-D work in WPF, including the virtual trackball and the ScreenSpaceLines3D
class discussed in this chapter.

• http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx provides a list
of WPF tools, including 3-D design programs that use XAML natively and export scripts
that can transform other 3-D formats (including Maya, LightWave, Blender, and 3ds) to
XAML.

• http://www.therhogue.com/WinFX includes samples that demonstrate several common
3-D effects (such as a carousel of images) and some more complex techniques (such as
an animated mesh).

• http://blogs.msdn.com/danlehen/archive/2005/10/16/481597.aspx includes classes
that wrap the meshes required for three common 3-D primitives: a cone, a sphere, and
a cylinder.

• http://wpf.netfx3.com/files/folders/applications/entry3377.aspx provides a Sand-
Box3D project that allows you to load simple 3-D meshes and manipulate them with
transforms.

If you’re in no mood to type in lengthy links, or you want to find out if these addresses
have changed, check out the link page for this book at http://www.prosetech.com.

CHAPTER 23 ■ 3-D DRAWING 853

9551CH23 2/8/08 2:15 PM Page 853

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeplex.com/3DTools
http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx
http://www.therhogue.com/WinFX
http://blogs.msdn.com/danlehen/archive/2005/10/16/481597.aspx
http://wpf.netfx3.com/files/folders/applications/entry3377.aspx
http://www.prosetech.com

9551CH23 2/8/08 2:15 PM Page 854

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Custom Elements

In previous Windows development frameworks, custom controls played a central role. But in
WPF, the emphasis has shifted. Custom controls are still a useful way to build custom widgets
that you can share between applications, but they’re no longer a requirement when you want to
enhance and customize core controls. (To understand how remarkable this change is, it helps
to point out that this book’s predecessor, Pro .NET 2.0 Windows Forms and Custom Controls, had
nine complete chapters about custom controls and additional examples in other chapters. But
in this book, you’ve made it to Chapter 24 without a single custom control sighting!)

WPF de-emphasizes custom controls because of its support for styles, content controls,
and templates. These features give every developer several ways to refine and extend standard
controls without deriving a new control class. Here are your possibilities:

• Styles. You can use a style to painlessly reuse a combination of control properties. You
can even apply effects using triggers. To get the same effect in Windows Forms, devel-
opers needed to copy and paste code (which was impractical) or derive a custom
control with hardwired property setting logic in the constructor.

• Content controls. Any control that derives from ContentControl supports nested con-
tent. Using content controls, you can quickly create compound controls that aggregate
other elements. (For example, you can transform a button into an image button or a list
box into an image list.)

• Control templates. All WPF controls are lookless, which means they have hardwired
functionality but the appearance is defined separately through the control template.
Replace the default template with something new, and you can revamp basic controls
such as buttons, check boxes, radio buttons, and even windows.

• Data templates. All ItemsControl-derived classes support data templates, which allow
you to create a rich list representation of some type of data object. Using the right data
template, you can display each item using a combination of text, images, and even
editable controls, all in a layout container of your choosing.

If possible, you should pursue these avenues before you decide to create a custom control
or another type of custom element. That’s because these solutions are simpler, easier to
implement, and often easier to reuse.

So, when should you create a custom element? Custom elements aren’t the best choice
when you want to fine-tune the appearance of an element, but they do make sense when you
want to change its underlying functionality. For example, there’s a reason that WPF has sepa-
rate classes for the TextBox and PasswordBox classes. They handle key presses differently,

855

C H A P T E R 2 4

■ ■ ■

9551CH24 2/8/08 2:15 PM Page 855

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

store their data internally in a different way, interact with other components such as the
clipboard differently, and so on. Similarly, if you want to design a control that has its own
distinct set of properties, methods, and events, you’ll need to build it yourself.

In this chapter, you’ll learn how to create custom elements and how to make them into
first-class WPF citizens. That means you’ll outfit them with dependency properties and routed
events to get support for essential WPF services such as data binding, styles, and animation.
You’ll also learn how to create a lookless control—a template-driven control that allows the
control consumer to supply different visuals for greater flexibility.

■Note Although you can create a custom element that isn’t a control, most custom elements you create in
WPF will be controls—that is to say they’ll be able to receive focus, and they’ll interact with the user’s key
presses and mouse actions. For that reason, the terms custom elements and custom controls are sometimes
used interchangeably in WPF development.

Understanding Custom Elements in WPF
Although you can code a custom element in any WPF project, you’ll usually want to place cus-
tom elements in a dedicated class library (DLL) assembly. That way, you can share your work
with multiple WPF applications.

To make sure you have the right assembly references and namespace imports, you should
choose the Custom Control Library (WPF) project type when you create your application in
Visual Studio. Inside your class library, you can create as many or as few controls as you like.

■Tip As with all class library development, it’s often a good practice to place both your class library and the
application that uses your class library in the same Visual Studio solution. That way you can easily modify
and debug both pieces at once.

The first step in creating a custom control is choosing the right base class to inherit from.
Table 24-1 lists some commonly used classes for creating custom controls, and Figure 24-1
shows where they fit into the element hierarchy.

Table 24-1. Base Classes for Creating a Custom Element

Name Description

FrameworkElement This is the lowest level you’ll typically use when creating a custom
element. Usually, you’ll take this approach only if you want to draw
your content from scratch by overriding OnRender() and using the
System.Windows.Media.DrawingContext. It’s similar to the
approach you saw in Chapter 14, where a user interface was
constructed using Visual objects. The FrameworkElement class
provides the basic set of properties and events for elements that
aren’t intended to interact with the user.

CHAPTER 24 ■ CUSTOM ELEMENTS856

9551CH24 2/8/08 2:15 PM Page 856

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Name Description

Control This is the most common starting point when building a control
from scratch. It’s the base class for all user-interactive widgets.
The Control class adds properties for setting the background and
foreground, as well as the font and alignment of content. The
control class also places itself into the tab order (through the
IsTabStop property) and introduces the notion of double-clicking
(through the MouseDoubleClick and PreviewMouseDoubleClick
events). But most important, the Control class defines the Template
property that allows its appearance to be swapped out with a
customized element tree for endless flexibility.

ContentControl This is the base class for controls that can display a single piece
of arbitrary content. That content can be an element or a custom
object that’s used in conjunction with a template. (The content is
set through the Content property, and an optional template can be
provided in the ContentTemplate property.) Many controls wrap a
specific, limited type of content (like a string of text in a text box).
Because these controls don’t support all elements, they shouldn’t be
defined as content controls.

UserControl This is a content control that can be configured using a design-time
surface. Although a user control isn’t that different from an ordinary
content control, it’s typically used when you want to quickly reuse
an unchanging block of user interface in more than one window
(rather than create a true stand-alone control that can be
transported from one application to another).

ItemsControl or Selector ItemsControl is the base class for controls that wrap a list of items
but don’t support selection, while Selector is the more specialized
base class for controls that do support selection. These classes aren’t
often used to create custom controls, because the data templating
features of the ListBox, ListView, and TreeView provide a great deal
of flexibility.

Panel This is the base class for controls with layout logic. A layout control
can hold multiple children and arranges them according to specific
layout semantics. Often, panels include attached properties that can
be set on the children to configure how the children are arranged.

Decorator This is the base class for elements that wrap another element and
provide a graphical effect or specific feature. Two prominent
examples are the Border, which draws a line around an element, and
the Viewbox, which scales its content dynamically using a
transform. Other decorators include the chrome classes used to give
the familiar border and background to common controls like the
button.

A specific control class If you want to introduce a refinement to an existing control, you
can derive directly from that control. For example, you can create a
TextBox with built-in validation logic (as demonstrated later in this
chapter). However, before you take this step, consider whether you
could accomplish the same thing using event handling code or a
separate component. Both approaches allow you to decouple your
logic from the control and reuse it with other controls.

In this chapter, you’ll see a user control, a lookless color picker that derives directly from
the Control class, a custom text box, a custom layout panel, and a custom-drawn element that
derives from FrameworkElement and overrides OnRender().

CHAPTER 24 ■ CUSTOM ELEMENTS 857

9551CH24 2/8/08 2:15 PM Page 857

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 24-1. Element and control base classes

Building a Basic User Control
A good way to get started with custom controls is to take a crack at creating a straightforward
user control. In this section, we’ll begin by creating a basic color picker. Later, you’ll see how to
refactor this control into a more capable template-based control.

Creating a basic color picker is easy—in fact, several examples are available online, one
with the .NET Framework SDK and another with the Bag-O-Tricks custom control library
that’s provided by the WPF team. However, creating a custom color picker is still a worthy
exercise. Not only does it demonstrate a variety of important control building concepts, but
it also gives you a practical piece of functionality.

You could create a custom dialog box for your color picker, such as the kind that’s
included with Windows Forms. But if you want to create a color picker that you can integrate
into different windows, a custom control is a far better choice. The most straightforward type
of custom control is a user control, which allows you to assemble a combination of elements
in the same way as when you design a window or page. Because the color picker appears to be

Legend

Abstract Class

Concrete Class

DispatcherObject

DependencyObject

UIElement

ItemsControl

ContentControl

FrameworkElement

Panel DecoratorShape Control

UserControl

Visual

CHAPTER 24 ■ CUSTOM ELEMENTS858

9551CH24 2/8/08 2:15 PM Page 858

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

little more than a fairly straightforward grouping of existing controls with added functionality,
a user control seems like a perfect choice.

A typical color picker allows a user to select a color by clicking somewhere in a color gra-
dient or specifying individual red, green, and blue components. Figure 24-2 shows the basic
color picker you’ll create in this section (at the top of the window). It consists of three Slider
controls for adjusting color components, along with a Rectangle that shows a preview of the
selected color.

Figure 24-2. A color picker user control

■Note The user control approach has one significant flaw—it limits your ability to customize the appear-
ance of your color picker to suit different windows, applications, and uses. Fortunately, it’s not much harder
to step up to a more template-based control, as you’ll see a bit later.

Defining Dependency Properties
The first step you need to create the color picker is to add a user control to your custom
control library project. When you do, Visual Studio creates a XAML markup file and a corre-
sponding custom class to hold your initialization and event handling code. This is the same
experience as when you create a new window or page—the only difference is that the top-level
container is the UserControl class:

public partial class ColorPicker : System.Windows.Controls.UserControl
{ ... }

The easiest starting point is to design the public interface that the user control exposes to
the outside world. In other words, it’s time to create the properties, methods, and events that
the control consumer (the application that uses the control) will rely on to interact with the
color picker.

CHAPTER 24 ■ CUSTOM ELEMENTS 859

9551CH24 2/8/08 2:15 PM Page 859

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The most fundamental detail is the Color property—after all, the color picker is nothing
more than a specialized tool for displaying and choosing a color value. To support WPF fea-
tures such as data binding, styles, and animation, writeable control properties are almost
always dependency properties.

As you learned in Chapter 6, the first step to creating a dependency property is to define a
static field for it, with the word Property added to the end of your property name:

public static DependencyProperty ColorProperty;

The Color property will allow the control consumer to set or retrieve the color value
programmatically. However, the sliders in the color picker also allow the user to modify one
aspect of the current color. To implement this design, you could use event handlers that
respond when a slider value is changed and update the Color property accordingly. But it’s
cleaner to wire the sliders up using data binding. To make this possible, you need to define
each of the color components as a separate dependency property:

public static DependencyProperty RedProperty;
public static DependencyProperty GreenProperty;
public static DependencyProperty BlueProperty;

Although the Color property will store a System.Windows.Media.Color object, the Red,
Green, and Blue properties will store individual byte values that represent each color compo-
nent. (You could also add a slider and a property for managing the alpha value, which allows
you to create a partially transparent color, but this example doesn’t add this detail.)

Defining the static fields for your properties is just the first step. You also need a static
constructor in your user control that registers them, specifying the property name, the data
type, and the control class that owns the property. As you learned in Chapter 6, this is the
point where you can opt in to specific property features (such as value inheritance) by passing
a FrameworkPropertyMetadata object with the right flags set. It’s also the point where you can
attach callbacks for validation, value coercion, and property change notifications.

In the color picker, you have just one consideration—you need to attach callbacks that
respond when the various properties are changed. That’s because the Red, Green, and Blue
properties are really a different representation of the Color property, and if one property
changes, you need to make sure the others stay synchronized.

Here’s the static constructor code that registers the four dependency properties of the
color picker:

static ColorPicker()
{

ColorProperty = DependencyProperty.Register(
"Color", typeof(Color), typeof(ColorPicker),
new FrameworkPropertyMetadata(Colors.Black,
new PropertyChangedCallback(OnColorChanged)));

RedProperty = DependencyProperty.Register(
"Red", typeof(byte), typeof(ColorPicker),
new FrameworkPropertyMetadata(
new PropertyChangedCallback(OnColorRGBChanged)));

GreenProperty = DependencyProperty.Register(

CHAPTER 24 ■ CUSTOM ELEMENTS860

9551CH24 2/8/08 2:15 PM Page 860

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

"Green", typeof(byte), typeof(ColorPicker),
new FrameworkPropertyMetadata(
new PropertyChangedCallback(OnColorRGBChanged)));

BlueProperty = DependencyProperty.Register(
"Blue", typeof(byte), typeof(ColorPicker),
new FrameworkPropertyMetadata(
new PropertyChangedCallback(OnColorRGBChanged)));

}

Now that you have your dependency properties defined, you can add standard property
wrappers that make them easier to access and usable in XAML.

public Color Color
{

get { return (Color)GetValue(ColorProperty); }
set { SetValue(ColorProperty, value); }

}

public byte Red
{

get { return (byte)GetValue(RedProperty); }
set { SetValue(RedProperty, value); }

}

public byte Green
{

get { return (byte)GetValue(GreenProperty); }
set { SetValue(GreenProperty, value); }

}

public byte Blue
{

get { return (byte)GetValue(BlueProperty); }
set { SetValue(BlueProperty, value); }

}

Remember, the property wrappers shouldn’t contain any logic, because properties
may be set and retrieved directly using the SetValue() and GetValue() methods of the base
DependencyObject class. For example, the property synchronization logic in this example is
implemented using callbacks that fire when the property changes through the property wrap-
per or a direct SetValue() call.

The property change callbacks are responsible for keeping the Color property consistent
with the Red, Green, and Blue properties. Whenever the Red, Green, or Blue property is
changed, the Color property is adjusted accordingly:

private static void OnColorRGBChanged(DependencyObject sender,
DependencyPropertyChangedEventArgs e)

{

CHAPTER 24 ■ CUSTOM ELEMENTS 861

9551CH24 2/8/08 2:15 PM Page 861

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ColorPicker colorPicker = (ColorPicker)sender;
Color color = colorPicker.Color;

if (e.Property == RedProperty)
color.R = (byte)e.NewValue;

else if (e.Property == GreenProperty)
color.G = (byte)e.NewValue;

else if (e.Property == BlueProperty)
color.B = (byte)e.NewValue;

colorPicker.Color = color;
}

and when the Color property is set, the Red, Green, and Blue values are also updated:

private static void OnColorChanged(DependencyObject sender,
DependencyPropertyChangedEventArgs e)

{
Color newColor = (Color)e.NewValue;

ColorPicker colorPicker = (ColorPicker)sender;
colorPicker.Red = newColor.R;
colorPicker.Green = newColor.G;
colorPicker.Blue = newColor.B;

}

Despite its appearances, this code won’t cause an infinite series of calls as each property
tries to change the other. That’s because WPF doesn’t allow reentrancy in the property change
callbacks. For example, if you change the Color property, the OnColorChanged() method will
be triggered. The OnColorChanged() method will modify the Red, Green, and Blue properties,
triggering the OnColorRGBChanged() callback three times (once for each property). However,
the OnColorRBGChanged() will not trigger the OnColorChanged() method again.

■Tip It might occur to you to use the coercion callbacks discussed in Chapter 6 to deal with the color prop-
erties. However, this approach isn’t appropriate. Property coercion callbacks are designed for properties that
are interrelated and may override or influence one other. They don’t make sense for properties that expose
the same data in different ways. If you used property coercion in this example, it would be possible to set
different values in the Red, Green, and Blue properties and have that color information override the Color
property. The behavior you really want is to set the Red, Green, and Blue properties and use that color infor-
mation to permanently change the value of the Color property.

Defining Routed Events
You might also want to add routed events that can be used to notify the control consumer
when something happens. In the color picker example, it’s useful to have an event that fires
when the color is changed. Although you could define this event as an ordinary .NET event,

CHAPTER 24 ■ CUSTOM ELEMENTS862

9551CH24 2/8/08 2:15 PM Page 862

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

using a routed event allows you to provide event bubbling and tunneling, so the event can be
handled in a higher-level parent, such as the containing window.

As with the dependency properties, the first step to defining a routed event is to create a
static property for it, with the word Event added to the end of the event name:

public static readonly RoutedEvent ColorChangedEvent;

You can then register the event in the static constructor. At this point you specify the
event name, the routing strategy, the signature, and the owning class:

ColorChangedEvent = EventManager.RegisterRoutedEvent(
"ColorChanged", RoutingStrategy.Bubble,
typeof(RoutedPropertyChangedEventHandler<Color>), typeof(ColorPicker));

Rather than going to the work of creating a new delegate for your event
signature, you can sometimes reuse existing delegates. The two useful delegates are
RoutedEventHandler (for a routed event that doesn’t pass along any extra information) and
RoutedPropertyChangedEventHandler (for a routed event that provides the old and new
values after a property has been changed). The RoutedPropertyChangedEventHandler, which
is used in the previous example, is a generic delegate that’s parameterized by type. As a result,
you can use it with any property data type without sacrificing type safety.

Once you’ve defined and registered the event, you need to create a standard .NET event
wrapper that exposes your event. This event wrapper can be used to attach (and remove)
event listeners:

public event RoutedPropertyChangedEventHandler<Color> ColorChanged
{

add { AddHandler(ColorChangedEvent, value); }
remove { RemoveHandler(ColorChangedEvent, value); }

}

The final detail is the code that raises the event at the appropriate time. This code must
call the RaiseEvent() method that’s inherited from the base DependencyObject class.

In the color picker example, you simply need to add these lines of code to the end of the
OnColorChanged() method:

RoutedPropertyChangedEventArgs<Color> args =
new RoutedPropertyChangedEventArgs<Color>(oldColor, newColor);

args.RoutedEvent = ColorPicker.ColorChangedEvent;

colorPicker.RaiseEvent(args);

Remember, the OnColorChanged() callback is triggered whenever the Color property is
modified, either directly or by modifying the Red, Green, and Blue color components.

Adding Markup
Now that your user control’s public interface is in place, all you need is the markup that cre-
ates the control’s appearance. In this case, a basic Grid is all that’s needed to bring together the
three Slider controls and the Rectangle with the color preview. The trick is the data binding
expressions that tie these controls to the appropriate properties, with no event handling code
required.

CHAPTER 24 ■ CUSTOM ELEMENTS 863

9551CH24 2/8/08 2:15 PM Page 863

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

All in all, four data binding expressions are at work in the color picker. The three sliders
are bound to the Red, Green, and Blue properties and are allowed to range from 0 to 255 (the
acceptable values for a byte). The Rectangle.Fill property is set using a SolidColorBrush, and
the Color property of that brush is bound to the Color property of the user control.

Here’s the complete markup:

<UserControl x:Class="CustomControls.ColorPicker"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Name="colorPicker">

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>

<Slider Name="sliderRed" Minimum="0" Maximum="255"
Value="{Binding ElementName=colorPicker,Path=Red}"></Slider>
<Slider Grid.Row="1" Name="sliderGreen" Minimum="0" Maximum="255"
Value="{Binding ElementName=colorPicker,Path=Green}"></Slider>
<Slider Grid.Row="2" Name="sliderBlue" Minimum="0" Maximum="255"
Value="{Binding ElementName=colorPicker,Path=Blue}"></Slider>

<Rectangle Grid.Column="1" Grid.RowSpan="3"
Width="50" Stroke="Black" StrokeThickness="1">
<Rectangle.Fill>
<SolidColorBrush Color="{Binding ElementName=colorPicker,Path=Color}">
</SolidColorBrush>

</Rectangle.Fill>
</Rectangle>

</Grid>
</UserControl>

The markup for a user control plays the same role as the control template for a lookless
control. If you want to make some of the details in your markup configurable, you can use
binding expressions that link them to control properties. For example, currently the Rectan-
gle’s width is hard-coded at 50 units. However, you could replace this detail with a data
binding expression that pulls the value from a dependency property in your user control. That
way, the control consumer could modify that property to choose a different width. Similarly,
you could make the stroke color and thickness variable. However, if you want to make a con-
trol with real flexibility, you’re much better off to create a lookless control and define the
markup in a template, as described later in this chapter.

CHAPTER 24 ■ CUSTOM ELEMENTS864

9551CH24 2/8/08 2:15 PM Page 864

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Occasionally, you might choose to use binding expressions to repurpose one of the core
properties that’s already defined in your control. For example, the UserControl class uses its
Padding property to add space between the outer edge and the inner content that you define.
(This detail is implemented through the control template for the UserControl.) However, you
could also use the Padding property to set the spacing around each slider, as shown here:

<Slider Name="sliderRed" Minimum="0" Maximum="255"
Margin="{Binding ElementName=colorPicker,Path=Padding}"
Value="{Binding ElementName=colorPicker,Path=Red}"></Slider>

Similarly, you could grab the border settings for the Rectangle from the BorderThickness
and BorderBrush properties of the UserControl. Once again, this is a shortcut that may make
perfect sense for creating simple controls but can be improved by introducing additional
properties (for example, SliderMargin, PreviewBorderBrush, and PreviewBorderThickness)
or creating a full-fledged template-based control.

NAMING A USER CONTROL

In the example shown here, the top-level UserControl is assigned a name (colorPicker). This allows you to
write straightforward data binding expressions that bind to properties in the custom user control class. How-
ever, this technique raises an obvious question. Namely, what happens when you create an instance of the
user control in a window (or page) and assign a new name to it?

Fortunately, this situation works without a hitch, because the user control performs its initialization
before that of the containing window. First, the user control is initialized, and its data bindings are connected.
Next, the window is initialized, and the name that’s set in the window markup is applied to the user control.
The data binding expressions and event handlers in the window can now use the window-defined name to
access the user control, and everything works the way you’d expect.

Although this sounds straightforward, you might notice a couple of quirks if you use code that examines
the UserControl.Name property directly. For example, if you examine the Name property in an event handler
in the user control, you’ll see the new name that was applied by the window. Similarly, if you don’t set a
name in the window markup, the user control will retain the original name from the user control markup.
You’ll then see this name if you examine the Name property in the window code.

Neither of these quirks represents a problem, but a better approach would be to avoid naming the user
control in the user control markup and use the Binding.RelativeSource property to search up the element tree
until you find the UserControl parent. Here’s the lengthier syntax that does this:

<Slider Name="sliderRed" Minimum="0" Maximum="255"
Value="{Binding Path=Red,

RelativeSource={RelativeSource FindAncestor,
AncestorType={x:Type UserControl}}

}">
</Slider>

You’ll see this approach later, when you build a template-based control in the section “Refactoring the
Color Picker Markup.”

CHAPTER 24 ■ CUSTOM ELEMENTS 865

9551CH24 2/8/08 2:15 PM Page 865

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Using the Control
Now that you’ve completed the control, using it is easy. To use the color picker in another
window, you need to begin by mapping the assembly and .NET namespace to an XML name-
space, as shown here:

<Window x:Class="CustomControlsClient.ColorPickerUserControlTest"
xmlns:lib="clr-namespace:CustomControls;assembly=CustomControls" ... >

Using the XML namespace you’ve defined and the user control class name, you can create
your user control exactly as you create any other type of object in XAML markup. You can also
set its properties and attach event handlers directly in the control tag, as shown here:

<lib:ColorPickerUserControl Name="colorPicker" Color="Beige"
ColorChanged="colorPicker_ColorChanged"></lib:ColorPickerUserControl>

Because the Color property uses the Color data type and the Color data type is decorated
with a TypeConverter attribute, WPF knows to use the ColorConverter to change the string
color name into the corresponding Color object before setting the Color property.

The code that handles the ColorChanged event is straightforward:

private void colorPicker_ColorChanged(object sender,
RoutedPropertyChangedEventArgs<Color> e)

{
lblColor.Text = "The new color is " + e.NewValue.ToString();

}

This completes your custom control. However, there’s still one frill worth adding. In the
next section, you’ll enhance the color picker with support for WPF’s command feature.

Command Support
Many controls have baked-in command support. You can add this to your controls in two ways:

• Add command bindings that link your control to specific commands. That way, your
control can respond to a command without the help of any external code.

• Create a new RoutedUICommand object for your command as a static field in your
control. Then, add a command binding for that command. This allows your control to
automatically support commands that aren’t already defined in the basic set of com-
mand classes that you learned about in Chapter 10.

In the following example, you’ll use the first approach to add support for the
ApplicationCommands.Undo command.

■Tip For more information about commands and how to create custom RoutedUICommand objects, refer to
Chapter 10.

CHAPTER 24 ■ CUSTOM ELEMENTS866

9551CH24 2/8/08 2:15 PM Page 866

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To support an Undo feature in the color picker, you need to track the previous color in a
member field:

private Color? previousColor;

It makes sense to make this field nullable, because when the control is first created, there
shouldn’t be a previous color set. (You can also clear the previous color programmatically after
an action that you want to make irreversible.)

When the color is changed, you simply need to record the old value. You can take care of
this task by adding this line to the end of the OnColorChanged() method:

colorPicker.previousColor = (Color)e.OldValue;

Now you have the infrastructure in place that you need to support the Undo command.
All that’s left is to create the command binding that connects your control to the command
and handle the CanExecute and Executed events.

The best place to create command bindings is when the control is first created. For exam-
ple, the following code uses the color picker’s constructor to add a command binding to the
ApplicationCommands.Undo command:

public ColorPicker()
{

InitializeComponent();
SetUpCommands();

}

private void SetUpCommands()
{

// Set up command bindings.
CommandBinding binding = new CommandBinding(ApplicationCommands.Undo,
UndoCommand_Executed, UndoCommand_CanExecute);

this.CommandBindings.Add(binding);
}

To make your command functional, you need to handle the CanExecute event and allow
the command as long as there is a previous value:

private void UndoCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
{

e.CanExecute = previousColor.HasValue;
}

Finally, when the command is executed, you can swap in the new color.

private void UndoCommand_Executed(object sender, ExecutedRoutedEventArgs e)
{

this.Color = (Color)previousColor;
}

CHAPTER 24 ■ CUSTOM ELEMENTS 867

9551CH24 2/8/08 2:15 PM Page 867

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can trigger the Undo command in two different ways. You can use the default Ctrl+Z
key binding when an element in the user control has focus, or you can add a button to the
client that triggers the command, like this one:

<Button Command="Undo" CommandTarget="{Binding ElementName=colorPicker}">
Undo

</Button>

Either way, the current color is abandoned and the previous color is applied.

■Tip The current example stores just one level of undo information. However, it’s easy to create an undo
stack that stores a series of values. You just need to store Color values in the appropriate type of collection.
The Stack<T> collection in the System.Collections.Generic namespaces is a good choice, because it imple-
ments a last-in first-out approach that makes it easy to grab the most recent Color object when performing
an undo operation.

More Robust Commands
The technique described earlier is a perfectly legitimate way to connect commands to
controls, but it’s not the technique that’s used in WPF elements and professional controls.
These elements use a more robust approach and attach static command handlers using the
CommandManager.RegisterClassCommandBinding() method.

The problem with the implementation shown in the previous example is that it
uses the public CommandBindings collection. This makes it a bit fragile, because the
client can modify the CommandBindings collection freely. This isn’t possible if you use the
RegisterClassCommandBinding() method. This is the approach that WPF controls use. For
example, if you look at the CommandBindings collection of a TextBox, you won’t find any of
the bindings for hardwired commands such as Undo, Redo, Cut, Copy, and Paste, because
these are registered as class bindings.

The technique is fairly straightforward. Instead creating the command binding in the
instance constructor, you must create the command binding in the static constructor, using
code like this:

CommandManager.RegisterClassCommandBinding(typeof(ColorPicker),
new CommandBinding(ApplicationCommands.Undo,
UndoCommand_Executed, UndoCommand_CanExecute));

Although this code hasn’t changed much, there’s an important shift. Because the
UndoCommand_Executed() and UndoCommand_CanExecute() methods are referred to
in the constructor, they must both be static methods. To retrieve instance data (such as the
current color and the previous color information), you need to cast the event sender to a
ColorPicker object and use it.

Here’s the revised command handling code:

private static void UndoCommand_CanExecute(object sender,
CanExecuteRoutedEventArgs e)

{

CHAPTER 24 ■ CUSTOM ELEMENTS868

9551CH24 2/8/08 2:15 PM Page 868

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ColorPicker colorPicker = (ColorPicker)sender;
e.CanExecute = colorPicker.previousColor.HasValue;

}

private static void UndoCommand_Executed(object sender,
ExecutedRoutedEventArgs e)

{
ColorPicker colorPicker = (ColorPicker)sender;
Color currentColor = colorPicker.Color;
colorPicker.Color = (Color)colorPicker.previousColor;

}

Incidentally, this technique isn’t limited to commands. If you want to hardwire
event handling logic into your control, you can use a class event handler with the
EventManager.RegisterClassHandler() method. Class event handlers are always invoked
before instance event handlers, allowing you to easily suppress events.

A Closer Look at User Controls
User controls provide a fairly painless but somewhat limited way to create a custom control.
To understand why, it helps to take a closer look at how user controls work.

Behind the scenes, the UserControl class works a lot like the ContentControl class from
which it derives. In fact, it has just a few key differences:

• The UserControl class changes some default values. Namely, it sets IsTabStop and
Focusable to false (so it doesn’t occupy a separate place in the tab order), and it sets
HorizontalAlignment and VerticalAlignment to Stretch (rather than Left and Top) so it
fills the available space.

• The UserControl class applies a new control template that consists of a Border element
that wraps a ContentPresenter. The ContentPresenter holds the content you add using
markup.

• The UserControl class changes the source of routed events. When events bubble or
tunnel from controls inside the user control to elements outside the user control,
the source changes to point to the user control rather than the original element.
This gives you a bit more encapsulation. (For example, if you handle the
UIElement.MouseLeftButtonDown event in the layout container that holds the
color picker, you’ll receive an event when you click the Rectangle inside. However,
the source of this event won’t be the Rectangle element but the ColorPicker object
that contains the Rectangle. If you create the same color picker as an ordinary content
control, this isn’t the case—it’s up to you to intercept the event in your control, handle
it, and reraise it.)

The most significant difference between user controls and other types of custom
controls is the way that a user control is designed. Like all controls, user controls have a
control template. However, you’ll rarely change this template—instead, you’ll supply the
markup as part of your custom user control class, and this markup is processed using the
InitializeComponent() method when the control is created. On the other hand, a lookless
control has no markup—everything it needs is in the template.

CHAPTER 24 ■ CUSTOM ELEMENTS 869

9551CH24 2/8/08 2:15 PM Page 869

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

An ordinary ContentControl has the following stripped-down template:

<ControlTemplate TargetType="ContentControl">
<ContentPresenter
ContentTemplate="{TemplateBinding ContentControl.ContentTemplate}"
Content="{TemplateBinding ContentControl.Content}" />

</ControlTemplate>

This template does little more than fill in the supplied content and apply the optional
content template. Properties such as Padding, Background, HorizontalAlignment, and
VerticalAlignment won’t have any effect unless you explicitly bind to it.

The UserControl has a similar template with a few more niceties. Most obviously, it adds a
Border element and binds its properties to the BorderBrush, BorderThickness, Background,
and Padding properties of the user control to make sure they have some meaning. Addition-
ally, the ContentPresenter inside binds to the alignment properties.

<ControlTemplate TargetType="UserControl">
<Border BorderBrush="{TemplateBinding Border.BorderBrush}"
BorderThickness="{TemplateBinding Border.BorderThickness}"
Background="{TemplateBinding Panel.Background}" SnapsToDevicePixels="True"
Padding="{TemplateBinding Control.Padding}">

<ContentPresenter
HorizontalAlignment="{TemplateBinding Control.HorizontalContentAlignment}"
VerticalAlignment="{TemplateBinding Control.VerticalContentAlignment}"
SnapsToDevicePixels="{TemplateBinding UIElement.SnapsToDevicePixels}"
ContentTemplate="{TemplateBinding ContentControl.ContentTemplate}"
Content="{TemplateBinding ContentControl.Content}" />

</Border>
</ControlTemplate>

Technically, you could change the template of a user control. In fact, you could move all
your markup into the template, with only slight readjusting. But there’s really no reason to take
this step—if you want a more flexible control that separates the visual look from the interface
that’s defined by your control class, you’d be much better off creating a custom lookless con-
trol, as described in the next section.

Lookless Controls
The goal of user controls is to provide a design surface that supplements the control template,
giving you a quicker way to define the control at the price of future flexibility. This causes a
problem if you’re happy with the functionality of a user control, but you need to tailor its
visual appearance. For example, imagine you want to use the same color picker but give it a
different “skin” that blends better into an existing application window. You may be able to
change some aspects of the user control through styles, but parts of it are locked away inside,
hard-coded into the markup. For example, there’s no way to move the preview rectangle to the
left side of the sliders.

CHAPTER 24 ■ CUSTOM ELEMENTS870

9551CH24 2/8/08 2:15 PM Page 870

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The solution is to create a lookless control—a control that derives from one of the control
base classes but doesn’t have a design surface. Instead, this control places its markup into a
default template that can be replaced at will without disturbing the control logic.

Refactoring the Color Picker Code
Changing the color picker into a lookless control isn’t too difficult. The first step is easy—you
simply need to change the class declaration, as shown here:

public class ColorPicker : System.Windows.Controls.Control
{ ... }

In this example, the ColorPicker class derives from Control. FrameworkElement isn’t suit-
able, because the color picker does allow user interaction and the other higher-level classes
don’t accurately describe the color picker’s behavior. For example, the color picker doesn’t
allow you to nest other content inside, so the ContentControl class isn’t appropriate.

The code inside the ColorPicker class is the same as the code for the user control (aside
from the fact that you must remove the call to InitializeComponent() in the constructor). You
follow the same approach to define dependency properties and routed events. The only differ-
ence is that you need to tell WPF that you will be providing a new style for your control class.
This style will provide the new control template. (If you don’t take this step, you’ll continue
whatever template is defined in the base class.)

To tell WPF that you’re providing a new style, you need to call the
OverrideMetadata() method in the static constructor your class. You call this method
on the DefaultStyleKeyProperty, which is a dependency property that defines the default
style for your control. The code you need is as follows:

DefaultStyleKeyProperty.OverrideMetadata(typeof(ColorPicker),
new FrameworkPropertyMetadata(typeof(ColorPicker)));

You could supply a different type if you want to use the template of another control class,
but you’ll almost always create a specific style for each one of your custom controls.

Refactoring the Color Picker Markup
Once you’ve added the added the call to OverrideMetadata, you simply need to plug in the
right style. This style needs to be placed in a resource dictionary named generic.xaml, which
must be placed in a Themes subfolder in your project. That way, your style will be recognized
as the default style for your control. Additionally, you can create different styles for different
theme settings by giving the resource dictionaries the right name. (You’ll learn more about
this system a little later in this chapter, in the “Theme-Specific Styles and the Default Style”
section.)

Often, a custom control library has several controls. To keep their styles separate for eas-
ier editing, the generic.xaml file often uses resource dictionary merging. The following markup
shows a generic.xaml file that pulls in the resources from the ColorPicker.xaml resource dic-
tionary in the same Themes subfolder of a control library named CustomControls:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

CHAPTER 24 ■ CUSTOM ELEMENTS 871

9551CH24 2/8/08 2:15 PM Page 871

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="/CustomControls;component/themes/ColorPicker.xaml">
</ResourceDictionary>

</ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

Your custom control style must use the TargetType attribute to attach itself to the
color picker automatically. Here’s the basic structure of the markup that appears in
the ColorPicker.xaml file:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:CustomControls">
<Style TargetType="{x:Type local:ColorPicker}">
...

</Style>
</ResourceDictionary>

You can use your style to set any properties in the control class (whether they’re inherited
from the base class or new properties you’ve added). However, the most useful task that your
style performs is to apply a new template that defines the default visual appearance of your
control.

It’s fairly easy to convert ordinary markup (like that used by the color picker) into a con-
trol template. Keep these considerations in mind:

• When creating binding expressions that link to properties in the parent control class,
you can’t use the ElementName property. Instead, you need to use the RelativeSource
property to indicate that you want to bind to the parent control. If one-way data bind-
ing is all that you need, you can usually use the lightweight TemplateBinding markup
extension instead of the full-fledged Binding.

• You can’t attach event handlers in the control template. Instead, you’ll need to give your
elements recognizable names and attach event handlers to them programmatically in
the control constructor.

• Don’t name an element in a control template unless you want to attach an event han-
dler or interact with it programmatically. When naming an element you want to use,
give it a name in the form PART_ElementName.

With these considerations in mind, you can create the following template for the color
picker. The most important changed details are highlighted in bold.

<Style TargetType="{x:Type local:ColorPicker}">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type local:ColorPicker}">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>

CHAPTER 24 ■ CUSTOM ELEMENTS872

9551CH24 2/8/08 2:15 PM Page 872

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>

</Grid.ColumnDefinitions>

<Slider Minimum="0" Maximum="255"
Margin="{TemplateBinding Padding}"
Value="{Binding Path=Red,

RelativeSource={RelativeSource TemplatedParent}}">
</Slider>
<Slider Grid.Row="1" Minimum="0" Maximum="255"
Margin="{ TemplateBinding Padding}"
Value="{Binding Path=Red,

RelativeSource={RelativeSource TemplatedParent}}">
</Slider>
<Slider Grid.Row="2" Minimum="0" Maximum="255"
Margin="{ TemplateBinding Padding}"
Value="{Binding Path=Red,

RelativeSource={RelativeSource TemplatedParent}}">
</Slider>

<Rectangle Grid.Column="1" Grid.RowSpan="3"
Margin="{ TemplateBinding Padding}"
Width="50" Stroke="Black" StrokeThickness="1">
<Rectangle.Fill>
<SolidColorBrush
Color="{Binding Path=Color,

RelativeSource={RelativeSource TemplatedParent}}">
</SolidColorBrush>

</Rectangle.Fill>
</Rectangle>

</Grid>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>

As you’ll notice, some binding expressions have been replaced with the TemplateBinding
extension. Others still use the Binding extension but have the RelativeSource set to point to
the template parent (the custom control). Although both TemplateBinding and Binding with a
RelativeSource of TemplatedParent are for the same purpose—extracting data from the prop-
erties of your custom control—the lighter-weight TemplateBinding is always appropriate. It
won’t work if you need two-way binding (as with the sliders) or when binding to the property
of a class that derives from Freezable (like the SolidColorBrush).

CHAPTER 24 ■ CUSTOM ELEMENTS 873

9551CH24 2/8/08 2:15 PM Page 873

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Streamlining the Control Template
As it stands, the color picker control template fills in everything you need, and you can use it
in the same way that you use the color picker user control. However, it’s still possible to sim-
plify the template by removing some of the details.

Currently, any control consumer that wants to supply a custom template will be forced to
add a slew of data binding expressions to ensure that the control continues to work. This isn’t
difficult, but it is tedious. Another option is to configure all the binding expressions in the initial-
ization code of the control itself. This way, the template doesn’t need to specify these details.

■Note This is the same technique you use when attaching event handlers to the elements that make up
a custom control. You attach each event handler programmatically, rather than use event attributes in the
template.

Adding Part Names
For this system to work, your code needs to be able to find the elements it needs. WPF controls
locate the elements they need by name. As a result, your element names become part of the
public interface of your control and need suitably descriptive names. By convention, these
names begin with the text PART_ followed by the element name. The element name uses ini-
tial caps, just like a property name. PART_RedSlider is a good choice for a required element
name, while PART_sldRed, PART_redSlider, and RedSlider are all poor choices.

For example, here’s how you would prepare the three sliders for programmatic binding, by
removing the binding expression from the Value property and adding a PART_ name:

<Slider Name="PART_RedSlider" Minimum="0" Maximum="255"
Margin="{TemplateBinding Padding}"></Slider>
<Slider Grid.Row="1" Name="PART_GreenSlider" Minimum="0" Maximum="255"
Margin="{TemplateBinding Padding}"></Slider>
<Slider Grid.Row="2" Name="PART_BlueSlider" Minimum="0" Maximum="255"
Margin="{TemplateBinding Padding}"></Slider>

Notice that the Margin property still uses a binding expression to add padding, but this is
an optional detail that can easily be left out of custom template (which may choose to hard-
code the padding or use a different layout).

To ensure maximum flexibility, the Rectangle isn’t given a name. Instead, the
SolidColorBrush inside is given a name. That way, the color preview feature can be
used with any shape or an arbitrary element, depending on the template.

<Rectangle Grid.Column="1" Grid.RowSpan="3"
Margin="{TemplateBinding Padding}"
Width="50" Stroke="Black" StrokeThickness="1">
<Rectangle.Fill>
<SolidColorBrush x:Name="PART_PreviewBrush"></SolidColorBrush>

</Rectangle.Fill>
</Rectangle>

CHAPTER 24 ■ CUSTOM ELEMENTS874

9551CH24 2/8/08 2:15 PM Page 874

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Manipulating Template Parts
You could connect your binding expressions when the control is initialized, but there’s a better
approach. WPF has a dedicated OnApplyTemplate() method that you should override if you
need to search for elements in the template and attach event handlers or add data binding
expressions. In that method, you can use the GetTemplateChild() method (which is inherited
from FrameworkElement) to find the elements you need.

If you don’t find an element that you want to work with, the recommended pattern is
to do nothing. Optionally, you can add code that checks that the element, if present, is the
correct type and raises an exception if it isn’t. (The thinking here is that a missing element
represents a conscious opting out of a specific feature, whereas an incorrect element type
represents a mistake.)

Here’s how you can connect the data binding expression for a single slider in the
OnApplyTemplate() method:

public override void OnApplyTemplate()
{

base.OnApplyTemplate();

RangeBase slider = GetTemplateChild("PART_RedSlider") as RangeBase;
if (slider != null)
{

// Bind to the Red property in the control, using a two-way binding.
Binding binding = new Binding("Red");
binding.Source = this;
binding.Mode = BindingMode.TwoWay;
slider.SetBinding(RangeBase.ValueProperty, binding);

}
...

}

Notice that the code uses the System.Windows.Controls.Primitives.RangeBase class (from
which Slider derives) instead of the Slider class. That’s because the RangeBase class provides
the minimum required functionality—in this case, the Value property. By making the code as
generic as possible, the control consumer gains more freedom. For example, it’s now possible
to supply a custom template that uses a different RangeBase-derived control in place of the
color sliders.

The code for binding the other two sliders is virtually identical. The code for binding
the SolidColorBrush is slightly different, because the SolidColorBrush does not include
the SetBinding() method (which is defined in the FrameworkElement class). One easy
workaround is to create a binding expression for the ColorPicker.Color property, which uses
the one-way-to-source direction. That way, when the color picker’s color is changed, the brush
is updated automatically.

SolidColorBrush brush = GetTemplateChild("PART_PreviewBrush") as SolidColorBrush;
if (brush != null)
{

Binding binding = new Binding("Color");
binding.Source = brush;

CHAPTER 24 ■ CUSTOM ELEMENTS 875

9551CH24 2/8/08 2:15 PM Page 875

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

binding.Mode = BindingMode.OneWayToSource;
this.SetBinding(ColorPicker.ColorProperty, binding);

}

To see the benefit of this change in design, you need to create a control that uses the color
picker but supplies a new control template. Figure 24-3 shows one possibility.

Figure 24-3. A color picker custom control with two different templates

Documenting Template Parts
There’s one last refinement that you should make to the previous example. Good design
guidelines suggest that you add the TemplatePart attribute to your control declaration to doc-
ument what part names you use in your template and what type of control you use for each
part. Technically, this step isn’t required, but it’s a piece of documentation that can help others
who are using your class (and it can also be inspected by design tools that let you build cus-
tomized control templates, such as Expression Blend).

Here are the TemplatePart attributes you should add to the ColorPicker control class:

[TemplatePart(Name="PART_RedSlider", Type=typeof(RangeBase))]
[TemplatePart(Name = "PART_BlueSlider", Type=typeof(RangeBase))]
[TemplatePart(Name="PART_GreenSlider", Type=typeof(RangeBase))]
public class ColorPicker : System.Windows.Controls.Control
{ ... }

Theme-Specific Styles and the Default Style
As you’ve seen, the ColorPicker gets its default control template from a file named generic.xaml,
which is placed in a project folder named Themes. This slightly strange convention is actually
part of the theme support that’s built into WPF.

The Themes folder holds the default styles for the controls you create, customized for the
different versions and themes of the Windows operating system. If you aren’t interested in cre-

CHAPTER 24 ■ CUSTOM ELEMENTS876

9551CH24 2/8/08 2:15 PM Page 876

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ating theme-specific styles, all you need is the generic.xaml file. This resource dictionary holds
the fallback styles that are used for your controls if no theme-specific files are available.

If you do want to create controls that are aware of the current theme and vary themselves
in minor or major ways, you simply need to add the right files to the Themes folder. Table 24-2
lists the themes you can set, and the file name you need to use for your resource dictionary. If
you choose not the supply a file for a specific theme, your control falls back to the
generic.xaml dictionary when that theme is active.

■Note The theme-specific resource dictionaries are used to set the default control style (which should
contain the default control template). However, no matter what default or theme-specific styles you use,
you’re always free to replace the control template by setting the Template property of a control object.

Table 24-2. File Names for Theme-Specific Resource Dictionaries

Operating System Base Theme File
Theme Color Name
Name Name

Windows Vista (default) Aero NormalColor Aero.NormalColor.xaml

Windows XP (blue, the default) Luna NormalColor Luna.NormalColor.xaml

Windows XP (olive green) Luna Homestead Luna.Homestead.xaml

Windows XP (silver) Luna Metallic Luna.Metallic.xaml

Window XP Media Center Edition 2005 Royale Normal Royale.NormalColor.xaml

Windows XP (Zune, released separately) Zune NormalColor Zune.NormalColor.xaml

Windows XP or Windows Vista Classic Classic.xaml

The set of defined themes is relatively small (although new ones may be added to this list
in the future). Currently, Windows Vista supports only two themes—the standard Aero theme
and the legacy Windows Classic look.

■Tip It doesn’t matter if the user has saved a custom theme under a new name or applied a custom color
scheme. All user-created themes are based on one of the themes in the list shown in Table 24-2. This detail
determines the style for your control. If needed, you can access the currently configured current system col-
ors (and even use them in your template) using the system resources that are exposed by the SystemColors
class, as described in Chapter 11.

If you decide to create a theme-specific look for one of your controls, you need to start
by creating the appropriate resource dictionaries with the right file names. However, this step
isn’t quite enough to get these styles working in your application. You also need to use the
ThemeInfo attribute on your assembly to enable theme support.

CHAPTER 24 ■ CUSTOM ELEMENTS 877

9551CH24 2/8/08 2:15 PM Page 877

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ThemeInfo attribute is an assembly-level attribute that takes two parameters in its
constructor. The first configures theme-specific style support, and the second configures sup-
port for the generic.xaml fallback. When you create a new WPF project in Visual Studio, the
ThemeInfo attribute is added to the AssemblyInfo.cs file that configures generic.xaml support
but not theme-specific style. (You can find the AssemblyInfo.cs file under the Properties node
in the Solution Explorer.)

By default, the ThemeInfo attribute looks like this:

[assembly: ThemeInfo(ResourceDictionaryLocation.None,
ResourceDictionaryLocation.SourceAssembly)]

To enable theme-specific style support, you need to change the ThemeInfo attribute to this:

[assembly: ThemeInfo(ResourceDictionaryLocation.SourceAssembly,
ResourceDictionaryLocation.SourceAssembly)]

Although None and SourceAssembly are the two most commonly used values from the
ResourceDictionaryLocation enumeration, you can also use ExternalAssembly. In this case,
WPF looks for an assembly with the file name AssemblyName.ThemeName.dll in the same
folder as your application. For example, if you’ve created a library named CustomControls.dll,
the resources for the Windows Vista styles will be found in an assembly named
CustomControls.Aero.dll. Windows XP styles will be in CustomControls.Luna.dll,
CustomControls.Royale.dll, and so on. (Notice that the color part of the theme name isn’t
used. Instead, it’s assumed that you’ll put all the color-specific themes in one assembly for
each base theme.) You’ve already seen this system when you considered the chrome classes
in Chapter 15 that support controls like the Button. They use resources from assemblies with
names like PresentationFramework.Aero.dll and PresentationFramework.Luna.dll.

THEME STYLES VERSUS APPLICATION STYLES

Every control has a default style (or several theme-dependent default styles). You call
DefaultStyleKeyProperty.OverrideMetadata() in the static constructor of your control class to indicate what
default style your custom control should use. If you don’t your control will simply use the default style that’s
defined for the control that your class derives from.

Contrary to what you might expect, the default theme style is not exposed through the Style property.
All the controls in the WPF library return a null reference for their Style property.

Instead, the Style property is reserved for an application style (the type you learned to build in
Chapter 12). If you set an application style, it’s merged into the default theme style. If you set an application
style that conflicts with the default style, the application style wins and overrides the property setter or trigger
in the default style. However, the details you don’t override remain. This is the behavior you want. It allows
you to create an application style that changes just a few properties (for example, the text font in a button),
without removing the other essential details that are supplied in the default theme style (like the control
template).

Incidentally, you can retrieve the default style programmatically. To do so, you can use the
FindResource() method to search up the resource hierarchy for a style that has the right element-type key.
For example, if you want to find the default style that’s applied to the Button class, you can use this code
statement:
Style style = Application.Current.FindResource(typeof(Button));

CHAPTER 24 ■ CUSTOM ELEMENTS878

9551CH24 2/8/08 2:15 PM Page 878

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Extending an Existing Control
Most of the time when you build a custom element, you’ll derive from one of the base classes
listed in Table 24-1, such as FrameworkElement, Control, ContentControl, or Panel. In some
cases, however, you might be able to tweak an existing control so that it does what you want.

One example is the basic WPF TextBox, which can be enhanced it countless ways. In this
section, you’ll learn how to create a text box that approximates the MaskedTextBox from the
Windows Forms world, which has no WPF equivalent.

Understanding Masked Edit Controls
A masked text box is a text box that automatically formats input as it’s entered. For example, if
you type 1234567890 into a masked edit control that uses a U.S. telephone number mask, the
number will be displayed as the string (123) 456-7890. Masked edit controls have numerous
advantages:

• They provide more guidance. When empty, a masked edit control shows all the literal
values, along with placeholders where the user supplied values need to go. For example,
the phone number control shows the text string (___) ___-____ when it’s empty, clearly
indicating what type of information it needs.

• They make data easier to understand. Many values are easier to read and interpret
when formatted a certain way. Examples include Social Security numbers, phone num-
bers, ZIP codes, and IP addresses.

• They prevent errors. Masks not only enforce details such as data length and format, but
they also reject invalid characters (such as letters in a phone number or a second deci-
mal place in a number).

One of the most interesting aspects of a masked edit control is the way it avoids canoni-
calization errors, which occur when there is more than one way of representing the same
information. One example of a canonicalization error is when a date is entered in day-month
format when your code expects month-day. Phone numbers can also suffer from canonical-
ization errors. For example, your code might assume that the user will enter a series of
ordinary numbers and fail if the user adds dashes or forgets to include the area code. Masked
edit controls neatly sidestep many of these problems.

The Windows Forms toolkit includes a MaskedTextBox that uses masking to prompt
the user and reject invalid characters. However, the MaskedTextBox control doesn’t actually
include the functionality needed to validate masks. Instead, the MaskedTextBox control relies
on a more generic service provided by another class—the MaskedTextProvider class in the
System.ComponentModel namespace. You can use the MaskedTextProvider to implement a
WPF masked edit control. However, the process isn’t easy because you need to have fine-
grained control over the display and keyboard handling of the control.

Mask Syntax
Every mask is built out of two types of characters: placeholders, which designate where the
user must supply a character, and literals, which are used to format the value.

For example, the mask 990.990.990.990 represents an IP address. The periods (.) are
literals that are always displayed. They can’t be deleted, modified, or moved by the user. In

CHAPTER 24 ■ CUSTOM ELEMENTS 879

9551CH24 2/8/08 2:15 PM Page 879

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

fact, as the user types, the cursor automatically jumps over the literal characters. The 0 and 9
characters are placeholders; 0 represents a required number, and 9 represents an optional
number. Thus, the IP address mask requires four numbers separated by periods, each with
one to three digits.

A masked edit control displays all the literal characters and puts a prompt character where
each placeholder is defined. For example, if you have the mask 990.990.990.990 and you are
using the underscore for your prompt character (which is the default), a masked text box will
show ___.___.___.___ initially.

Table 24-3 shows the characters you can use to build a mask.

Table 24-3. Basic Properties of the MaskedTextBox

Character Description

0 Required digit (0–9).

9 Optional digit or space. If left blank, a space is inserted automatically.

Optional digit, space, or plus/minus symbol. If left blank, a space is inserted
automatically.

L Required ASCII letter (a–z or A–Z).

? Optional ASCII letter.

& Required Unicode character. Allows anything that isn’t a control key,
including punctuation and symbols.

C Optional Unicode character.

A Required alphanumeric character (allows letter or number but not
punctuation or symbols).

a Optional alphanumeric character.

. Decimal placeholder.

, Thousands placeholder.

: Time separator.

/ Date separator.

$ Currency symbol.

< All the characters that follow will be converted automatically to lowercase as
the user types them. (There is no way to switch back to mixed-case entry
mode once you use this character.)

> All the characters that follow will be converted automatically to uppercase
as the user types them.

\ Escapes a masked character, turning it into a literal. Thus, if you use \&, it is
interpreted as the literal character &, which will be inserted in the text box.

All other characters All other characters are treated as literals and are shown in the text box.

The MaskedTextProvider
Behind the scenes, the MaskedTextBox that’s provided with Windows Forms relies on
another component: the System.ComponentModel.MaskedTextProvider. Although
the System.Windows.Forms.MaskedTextBox control is specific to Windows Forms, the
MaskedTextProvider can be used to implement masked editing with any display technology,
so long as you’re able to intercept key presses before the editing control.

CHAPTER 24 ■ CUSTOM ELEMENTS880

9551CH24 2/8/08 2:15 PM Page 880

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To create a custom masked control, you need to follow these guidelines:

• Create a control that maintains an instance of MaskedTextProvider internally. The
MaskedTextProvider is stateful—it maintains the text that the user has entered into the
mask so far.

• Whenever the custom control receives a key press, you need to determine the
attempted action and pass it on to the MaskedTextProvider using methods such as
Add(), Insert(), Remove(), and Replace(). The MaskedTextProvider will automatically
ignore invalid characters.

• After you’ve sent a change to the MaskedTextProvider, you need to call
MaskedTextProvider.ToDisplayString() to get the latest text. You can then refresh your
custom control. Ideally, you’ll update just those characters that have changed, although
that often isn’t when you’re deriving from other controls, in which case you may need to
replace all the text in one operation, which might cause flicker.

The difficulty in using the MaskedTextProvider is keeping track of all the low-level details,
such as the user’s current position in the input string.

Implementing a WPF Masked Text Box
To create the most robust text-based control in WPF, you would derive from the
lower-level System.Windows.Controls.Primitives.TextBoxBase class (from which TextBox
and PasswordBox inherit). However, you can make a relatively well-rounded masked edit
control with a lot less effort by deriving directly from TextBox, as in this example.

The MaskedTextBox begins by declaring the all-important Mask property. This depend-
ency property stores a string that uses the masking syntax explained earlier. The Mask
property is connected to a property change callback that resets the text in the control when
the mask changes.

public class MaskedTextBox : System.Windows.Controls.TextBox
{

public static DependencyProperty MaskProperty;

static MaskedTextBox()
{

MaskProperty = DependencyProperty.Register("Mask",
typeof(string), typeof(MaskedTextBox),
new FrameworkPropertyMetadata(MaskChanged));

}

public string Mask
{

get { return (string)GetValue(MaskProperty); }
set { SetValue(MaskProperty, value); }

}
...

}

CHAPTER 24 ■ CUSTOM ELEMENTS 881

9551CH24 2/8/08 2:15 PM Page 881

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The next step is to add two important private methods. The first, GetMaskProvider(), cre-
ates a MaskedTextProvider using the current mask and then applies the text from the control.

private MaskedTextProvider GetMaskProvider()
{

MaskedTextProvider maskProvider = new MaskedTextProvider(Mask);
maskProvider.Set(Text);
return maskProvider;

}

The second, RefreshText(), gets the most recent text from the MaskedTextProvider, dis-
plays it in the current control, and resets the cursor to the correct position.

private void RefreshText(MaskedTextProvider maskProvider, int pos)
{

// Refresh string.
this.Text = maskProvider.ToDisplayString();

// Position cursor.
this.SelectionStart = pos;

}

With these details in place, you’re ready to begin working with the masked text. For
example, it’s easy to add a read-only property that evaluates the current mask and text
and determines whether the mask has been completely filled in using the MaskedText-
Provider.MaskCompleted property:

public bool MaskCompleted
{

get
{

MaskedTextProvider maskProvider = GetMaskProvider();
return maskProvider.MaskCompleted;

}
}

It’s just as easy to write the property change callback that updates the text when the mask
changes:

private static void MaskChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
MaskedTextBox textBox = (MaskedTextBox)d;
MaskedTextProvider maskProvider = textBox.GetMaskProvider();
textBox.RefreshText(maskProvider, 0);

}

Before you go any further, you can simplify your life by coding one more handy
private function. This method, named SkipToEditableCharacter(), returns the edit
position where the cursor should be positioned. You need to call this at various times
as the user moves through the mask to make sure you skip over mask characters. The

CHAPTER 24 ■ CUSTOM ELEMENTS882

9551CH24 2/8/08 2:15 PM Page 882

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

MaskedTextProvider.FindEditPositionFrom() performs the hard work, finding the next
valid insertion point to the right of the current cursor position.

private int SkipToEditableCharacter(int startPos)
{

MaskedTextProvider maskProvider = GetMaskProvider();

int newPos = maskProvider.FindEditPositionFrom(startPos, true);
if (newPos == -1)
{

// Already at the end of the string.
return startPos;

}
else
{

return newPos;
}

}

As you learned in Chapter 6, handling key presses in the TextBox is a somewhat
awkward affair. To receive all the key events you need, you’ll be forced to handle two events:
PreviewKeyDown and PreviewTextInput. Rather than attaching event handlers to these events,
you can override the corresponding OnEvent() method.

■Tip There’s no guarantee that a given event will have a corresponding OnEvent() method that you can
override. However, this is a convention that many control developers follow, and it’s respected in all WPF
elements.

You can use OnPreviewTextInput to react to ordinary characters and the Backspace key.
However, when inserting a character, you need to take special care to find out whether the
insert key is currently on. Notice the code sets the e.Handled property to true so that the key
won’t be processed any further by other event handlers.

protected override void OnPreviewTextInput(TextCompositionEventArgs e)
{

MaskedTextProvider maskProvider = GetMaskProvider();
int pos = this.SelectionStart;

// Adding a character.
if (pos < this.Text.Length)
{

pos = SkipToEditableCharacter(pos);

// Overwrite mode is on.
if (Keyboard.IsKeyToggled(Key.Insert))

CHAPTER 24 ■ CUSTOM ELEMENTS 883

9551CH24 2/8/08 2:15 PM Page 883

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
if (maskProvider.Replace(e.Text, pos))
{

pos++;
}

}
// Insert mode is on.
else
{

if (maskProvider.InsertAt(e.Text, pos))
{

pos++;
}

}

// Find the new cursor position.
pos = SkipToEditableCharacter(pos);

}
RefreshText(maskProvider, pos);
e.Handled = true;

base.OnPreviewTextInput(e);
}

The OnPreviewKeyDown() method allows you to handle special extended keys, such as
Delete.

protected override void OnPreviewKeyDown(KeyEventArgs e)
{

base.OnKeyDown(e);

MaskedTextProvider maskProvider = GetMaskProvider();
int pos = this.SelectionStart;

// Deleting a character (Delete key).
// This does nothing if you try to delete
// a format character.
if (e.Key == Key.Delete && pos < (this.Text.Length))
{

if (maskProvider.RemoveAt(pos))
{

RefreshText(maskProvider, pos);
}
e.Handled = true;

}

CHAPTER 24 ■ CUSTOM ELEMENTS884

9551CH24 2/8/08 2:15 PM Page 884

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Deleting a character (backspace).
// This steps over a format character, but doesn't
// delete the next character.
else if (e.Key == Key.Back)
{

if (pos > 0)
{

pos--;
if (maskProvider.RemoveAt(pos))
{

RefreshText(maskProvider, pos);
}

}
e.Handled = true;

}
}

Figure 24-4 shows the MaskedTextBox at work. Editing with the MaskedTextBox is quite
intuitive. The user can move to any position in the text box and delete or insert characters (in
which case existing characters are moved to the right or left, provided they are allowed in their
new positions). Optional characters can be ignored (the user can just skip over them using the
arrow keys), or space characters can be inserted in their place.

Figure 24-4. Entering data in a masked text box

Improving the MaskedTextBox
This lengthy code still doesn’t provide all the functionality you probably want. Currently, the
masked text box exhibits some odd behavior when you cut or paste text. Either one of these
actions can mangle the mask, and it won’t be stored until the next keystroke. Similarly, setting
the Text property programmatically provides another way to submit values that aren’t allowed
by the mask.

Correcting these problems requires some slightly messy workarounds. Ideally, you’d cre-
ate a custom masked text box by deriving from TextBoxBase and implementing a significant
amount of the functionality yourself. However, even with the current design it’s possible to
sidestep the problems that appear.

CHAPTER 24 ■ CUSTOM ELEMENTS 885

9551CH24 2/8/08 2:15 PM Page 885

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The easiest way to deal with the paste and cut problems is to disable these features
altogether. As you learned in Chapter 10, you can accomplish this by adding a new command
binding that overrides the class command binding and marks the command as handled.
Here’s the code you need:

public MaskedTextBox() : base()
{

CommandBinding commandBinding1 = new CommandBinding(
ApplicationCommands.Paste, null, SuppressCommand);

this.CommandBindings.Add(commandBinding1);
CommandBinding commandBinding2 = new CommandBinding(
ApplicationCommands.Cut, null, SuppressCommand);

this.CommandBindings.Add(commandBinding2);
}

private void SuppressCommand(object sender, CanExecuteRoutedEventArgs e)
{

e.CanExecute = false;
e.Handled = true;

}

You can close the backdoor provided by the Text property in several ways. One obvious
approach is to use dependency property features such as a validation callback. (Truthfully,
property value coercion makes more sense, because you might want to allow the Text property
to be set before the Mask property, while the previous mask is still in effect.) However, there’s a
problem—the Text property is defined in the base class, so you don’t have the chance to regis-
ter it and set the appropriate metadata.

Fortunately, there’s an easy solution. You can call the OverrideMetadata property on
TextProperty to supply new metadata that will apply exclusively to the MaskedTextBox. This
technique is conceptually the same as the technique you use to override the DefaultStyleKey
property when specifying the default style for a template-driven control.

To use this technique, you need to add this code to the static constructor:

FrameworkPropertyMetadata metadata = new FrameworkPropertyMetadata();
metadata.CoerceValueCallback = CoerceText;
TextProperty.OverrideMetadata(typeof(MaskedTextBox), metadata);

Then you can use the following callback method to coerce the Text property:

private static object CoerceText(DependencyObject d, object value)
{

MaskedTextBox textBox = (MaskedTextBox)d;
MaskedTextProvider maskProvider = new MaskedTextProvider(textBox.Mask);
maskProvider.Set((string)value);
return maskProvider.ToDisplayString();

}

The MaskedTextProvider.Set() method automatically discards the input you supply if
there are characters that contradict the mask. However, placeholders aren’t required, so both
of the following assignment statements are equivalent:

CHAPTER 24 ■ CUSTOM ELEMENTS886

9551CH24 2/8/08 2:15 PM Page 886

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

maskedTextBox.Text = "(123) 456-7890";
maskedTextBox.Text = "1234567890";

Lastly, to make sure the Text property is reinterpreted when the Mask property is
changed, your MaskChanged() callback should trigger the Text property coercion, as shown
here. This is also enough to update the display text in the control.

private static void MaskChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
MaskedTextBox textBox = (MaskedTextBox)d;
d.CoerceValue(TextProperty);

}

Custom Panels
One common type of custom element is a custom panel. As you learned in Chapter 4, panels
host one or more children and implement specific layout logic to arrange them appropriately.
Custom panels are an essential ingredient if you want to build your own system for tear-off
toolbars or dockable windows. Custom panels are often useful when creating composite con-
trols that need a specific nonstandard layout. For example, you could create a custom panel as
part of an Office 2007–style “ribbon” that rearranges and resizes its buttons dynamically as the
available space changes.

You’re already familiar with the basic types of panels that WPF includes for
organizing content (such as the StackPanel, DockPanel, WrapPanel, Canvas, and Grid).
You’ve also seen that some WPF elements use their own custom panels (such as the TabPanel,
ToolBarOverflowPanel, and VirtualizingPanel). You can find many more examples of custom
panels online. Here are some worth exploring:

• A RadialPanel that organizes items in a circular fashion around a center point (in the
help that’s included with the .NET 3.0 SDK)

• A custom Canvas that allows its children to be dragged with no extra event handling
code (http://www.codeproject.com/WPF/DraggingElementsInCanvas.asp)

• Two panels that implements fisheye and fanning effects on a list of items
(http://www.codeproject.com/WPF/Panels.asp)

• A panel that uses a frame-based animation to transition from one layout to another
(http://wpf.netfx3.com/files/folders/controls/entry8196.aspx)

In the next sections, you’ll learn how to create a custom panel, and you’ll consider two
straightforward examples—a basic Canvas clone and an enhanced version of the WrapPanel.

The Two-Step Layout Process
Every panel uses the same plumbing: a two-step process that’s responsible for sizing and
arranging children. The first stage is the measure pass, and it’s at this point that the panel
determines how large its children want to be. The second stage is the layout pass, and it’s at
this point that each control is assigned its bounds. Two steps are required because the panel

CHAPTER 24 ■ CUSTOM ELEMENTS 887

9551CH24 2/8/08 2:15 PM Page 887

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://www.codeproject.com/WPF/DraggingElementsInCanvas.asp
http://www.codeproject.com/WPF/Panels.asp
http://wpf.netfx3.com/files/folders/controls/entry8196.aspx

might need to take into account the desires of all its children before it decides how to partition
the available space.

You add the logic for these two steps by overriding the oddly named MeasureOverride()
and ArrangeOverride() methods, which are defined in the FrameworkElement class as
part of the WPF layout system. The odd names represent that the MeasureOverride()
and ArrangeOverride() methods replace the logic that’s defined in the MeasureCore() and
ArrangeCore() methods that are defined in the UIElement class. These methods are not
overridable.

MeasureOverride()
The first step is to determine how much space each child wants using the MeasureOverride()
method. However, even in the MeasureOverride() method children aren’t given unlimited
room. At a bare minimum, children are confined to fit in the space that’s available to the
panel. Optionally, you might want to limit them more stringently. For example, a Grid with
two proportionally sized rows will give children half the available height. A StackPanel will
offer the first element all the space that’s available, then offer the second element whatever’s
left, and so on.

Every MeasureOverride() implementation is responsible for looping through the collec-
tion of children and calling the Measure() method of each one. When you call the Measure()
method, you supply the bounding box—a Size object that determines the maximum available
space for the child control. At the end of the MeasureOverride() method, the panel returns the
space it needs to display all its children and their desired sizes.

Here’s the basic structure of the MeasureOverride() method, without the specific sizing
details:

protected override Size MeasureOverride(Size constraint)
{

// Examine all the children.
foreach (UIElement element in base.InternalChildren)
{

// Ask each child how much space it would like, given the
// availableSize constraint.
Size availableSize = new Size(...);
element.Measure(availableSize);
// (You can now read element.DesiredSize to get the requested size.)

}

// Indicate how much space this panel requires.
// This will be used to set the DesiredSize property of the panel.
return new Size(...);

}

The Measure() method doesn’t return a value. After you call Measure() on a child, that
child’s DesiredSize property provides the requested size. You can use this information in your
calculations for future children (and to determine the total space required for the panel).

You must call Measure() on each child, even if you don’t want to constrain the child’s size
or use the DesiredSize property. Many elements will not render themselves until you’ve called

CHAPTER 24 ■ CUSTOM ELEMENTS888

9551CH24 2/8/08 2:15 PM Page 888

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Measure(). If you want to give a child free reign to take all the space it wants, pass a Size object
with a value of Double.PositiveInfinity for both dimensions. (The ScrollViewer is one element
that uses this strategy, because it can handle any amount of content.) The child will then
return the space it needs for all its content. Otherwise, the child will normally return the
space it needs for its content or the space that’s available—whichever is smaller.

At the end of the measuring process, the layout container must return its desired size. In a
simple panel, you might calculate the panel’s desired size by combining the desired size of
every child.

■Note You can’t simply return the constraint that’s passed to the MeasureOverride() method for the
desired size of your panel. Although this seems like a good way to take all the available size, it runs into
trouble if the container passes in a Size object with Double.PositiveInfinity for one or both dimensions (which
means “take all the space you want”). Although an infinite size is allowed as a sizing constraint, it’s not
allowed as a sizing result, because WPF won’t be able to figure out how large your element should be.
Furthermore, you really shouldn’t take more space than you need. Doing so can cause extra whitespace
and force elements that occur after your layout panel to be bumped further down the window.

Attentive readers may have noticed that there’s a close similarity between the Measure()
method that’s called on each child and the MeasureOverride() method that defines the first
step of the panel’s layout logic. In fact, the Measure() method triggers the MeasureOverride()
method. Thus, if you place one layout container inside another, when you call Measure(),
you’ll get the total size required for the layout container and all its children.

■Tip One reason the measuring process goes through two steps (a Measure() method that triggers the
MeasureOverride() method) is to deal with margins. When you call Measure(), you pass in the total available
space. When WPF calls the MeasureOverride() method, it automatically reduces the available space to take
margin space into account (unless you’ve passed in an infinite size).

ArrangeOverride()
Once every element has been measured, it’s time to lay them out in the space that’s available.
The layout system calls the ArrangeOverride() method of your panel, and the panel calls
the Arrange() method of each child to tell it how much space it’s been allotted. (As you can
probably guess, the Arrange() method triggers the ArrangeOverride() method, much as the
Measure() method triggers the MeasureOverride() method.)

When measuring items with the Measure() method, you pass in a Size object that defines
the bounds of the available space. When placing an item with the Arrange() method, you pass
in a System.Windows.Rect object that defines the size and position of the item. At this point,
it’s as though every element is placed with Canvas-style X and Y coordinates that determine
the distance between the top-left corner of your layout container and the element.

CHAPTER 24 ■ CUSTOM ELEMENTS 889

9551CH24 2/8/08 2:15 PM Page 889

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Elements (and layout panels) are free to break the rules and attempt to draw outside of their allo-
cated bounds. For example, in Chapter 13 you saw how the Line can overlap adjacent items. However,
ordinary elements should respect the bounds they’re given. Additionally, most containers will clip children
that extend outside their bounds.

Here’s the basic structure of the ArrangeOverride() method, without the specific sizing
details:

protected override Size ArrangeOverride(Size arrangeSize)
{

// Examine all the children.
foreach (UIElement element in base.InternalChildren)
{

// Assign the child it's bounds.
Rect bounds = new Rect(...);
element.Arrange(bounds);
// (You can now read element.ActualHeight and element.ActualWidth
// to find out the size it used..)

}

// Indicate how much space this panel occupies.
// This will be used to set the ActualHeight and ActualWidth properties
// of the panel.
return arrangeSize;

}

When arranging elements, you can’t pass infinite sizes. However, you can give an element
its desired size by passing in the value from its DesiredSize property. You can also give an ele-
ment more space than it requires. In fact, this happens frequently. For example, a vertical
StackPanel gives a child as much height as it requests but gives it the full width of the panel
itself. Similarly, a Grid might use fixed or proportionally sized rows that are larger than the
desired size of the element inside. And even if you’ve placed an element in a size-to-content
container, that element can still be enlarged if an explicit size has been set using the Height
and Width properties.

When an element is made larger than its desired size, the HorizontalAlignment and
VerticalAlignment properties come into play. The element content is placed somewhere
inside the bounds that it has been given.

Because the ArrangeOverride() method always receives a defined size (not an infinite
size), you can return the Size object that’s passed in to set the final size of your panel. In fact,
many layout containers take this step to occupy all the space that’s been given. (You aren’t in
danger of taking up space that could be needed for another control, because the measure step
of the layout system ensures that you won’t be given more space than you need unless that
space is available.)

CHAPTER 24 ■ CUSTOM ELEMENTS890

9551CH24 2/8/08 2:15 PM Page 890

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Canvas Clone
The quickest way to get a grasp of these two methods is to explore the inner workings of the
Canvas class, which is the simplest layout container. To create your own Canvas-style panel,
you simply need to derive from Panel and add the MeasureOverride() and ArrangeOverride()
methods shown next:

public class CanvasClone : System.Windows.Controls.Panel
{ ... }

The Canvas places children where they want to be placed and gives them the size they
want. As a result, it doesn’t need to calculate how the available space should be divided. That
makes its MeasureOverride() method extremely simple. Each child is given infinite space to
work with:

protected override Size MeasureOverride(Size constraint)
{

Size size = new Size(double.PositiveInfinity, double.PositiveInfinity);
foreach (UIElement element in base.InternalChildren)
{

element.Measure(size);
}
return new Size();

}

Notice that the MeasureOverride() returns an empty Size object, which means the Canvas
doesn’t request any space at all. It’s up to you to specify an explicit size for the Canvas or place
it in a layout container that will stretch it to fill the available space.

The ArrangeOverride() method is only slightly more involved. To determine the proper
placement of each element, the Canvas uses attached properties (Left, Right, Top, and Bot-
tom). As you learned in Chapter 6 (and as you’ll see in the WrapBreakPanel next), attached
properties are implemented with two helper methods in the defining class: a GetProperty()
and a SetProperty() method.

The Canvas clone that you’re considering is a bit simpler—it respects only the Left and
Top attached properties (not the redundant Right and Bottom properties). Here’s the code it
uses to arrange elements:

protected override Size ArrangeOverride(Size arrangeSize)
{

foreach (UIElement element in base.InternalChildren)
{

double x = 0;
double y = 0;
double left = Canvas.GetLeft(element);
if (!DoubleUtil.IsNaN(left))
{

x = left;
}
double top = Canvas.GetTop(element);
if (!DoubleUtil.IsNaN(top))

CHAPTER 24 ■ CUSTOM ELEMENTS 891

9551CH24 2/8/08 2:15 PM Page 891

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
y = top;

}
element.Arrange(new Rect(new Point(x, y), element.DesiredSize));

}
return arrangeSize;

}

A Better Wrapping Panel
Now that you’ve examined the panel system in a fair bit of detail, it’s worth creating your own
layout container that adds something you can’t get with the basic set of WPF panels. In this
section, you’ll see an example that extends the capabilities of the WrapPanel.

The WrapPanel performs a simple function that’s occasionally quite useful. It lays out its
children one after the other, moving to the next line once the width in the current line is used
up. Windows Forms included a similar layout tool, called the FlowLayoutPanel. Unlike the
WrapPanel, the FlowLayoutPanel added one extra ability—an attached property that children
could use to force an immediate line break. (Technically, this wasn’t an attached property but
a property that’s added through an extender provider, but the two concepts are analogous.)

Although the WrapPanel doesn’t provide this capability, it’s fairly easy to add one. All you
need is a custom panel that adds the necessary attached property. The following listing shows
a WrapBreakPanel that adds an attached LineBreakBeforeProperty. When set to true, this
property causes an immediate line break before the element.

public class WrapBreakPanel : Panel
{

public static DependencyProperty LineBreakBeforeProperty;

static WrapBreakPanel()
{

FrameworkPropertyMetadata metadata = new FrameworkPropertyMetadata();
metadata.AffectsArrange = true;
metadata.AffectsMeasure = true;
LineBreakBeforeProperty = DependencyProperty.RegisterAttached(
"LineBreakBefore", typeof(bool), typeof(WrapBreakPanel), metadata);

}
...

}

As with any dependency property, the LineBreakBefore property is defined as a static field
and then registered in the static constructor for your class. The only difference is that you use
the RegisterAttached() method rather than Register().

The FrameworkPropertyMetadata object for the LineBreakBefore property specifically
indicates that it affects the layout process. As a result, a new layout pass will be triggered
whenever this property is set.

Attached properties aren’t wrapped by normal property wrappers, because they aren’t set
in the same class that defines them. Instead, you need to provide two static methods that can
use the DependencyObject.SetValue() method to set this property on any arbitrary element.
Here’s the code that you need for the LineBreakBefore property:

CHAPTER 24 ■ CUSTOM ELEMENTS892

9551CH24 2/8/08 2:15 PM Page 892

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public static void SetLineBreakBefore(UIElement element, Boolean value)
{

element.SetValue(LineBreakBeforeProperty, value);
}
public static Boolean GetLineBreakBefore(UIElement element)
{

return (bool)element.GetValue(LineBreakBeforeProperty);
}

The only remaining detail is to take this property into account when performing the
layout logic. The layout logic of the WrapBreakPanel is based on the WrapPanel. During
the measure stage, elements are arranged into lines so that the panel can calculate the
total space it needs. Each element is added into the current line unless it’s too large or
the LineBreakBefore property is set to true. Here’s the full code:

protected override Size MeasureOverride(Size constraint)
{

Size currentLineSize = new Size();
Size panelSize = new Size();

foreach (UIElement element in base.InternalChildren)
{

element.Measure(constraint);
Size desiredSize = element.DesiredSize;

if (GetLineBreakBefore(element) ||
currentLineSize.Width + desiredSize.Width > constraint.Width)

{
// Switch to a new line (either because the element has requested it
// or space has run out).
panelSize.Width = Math.Max(currentLineSize.Width, panelSize.Width);
panelSize.Height += currentLineSize.Height;
currentLineSize = desiredSize;

// If the element is too wide to fit using the maximum width
// of the line, just give it a separate line.
if (desiredSize.Width > constraint.Width)
{

panelSize.Width = Math.Max(desiredSize.Width, panelSize.Width);
panelSize.Height += desiredSize.Height;
currentLineSize = new Size();

}
}
else
{

// Keep adding to the current line.
currentLineSize.Width += desiredSize.Width;

CHAPTER 24 ■ CUSTOM ELEMENTS 893

9551CH24 2/8/08 2:15 PM Page 893

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

// Make sure the line is as tall as its tallest element.
currentLineSize.Height = Math.Max(desiredSize.Height,
currentLineSize.Height);

}
}

// Return the size required to fit all elements.
// Ordinarily, this is the width of the constraint, and the height
// is based on the size of the elements.
// However, if an element is wider than the width given to the panel,
// the desired width will be the width of that line.
panelSize.Width = Math.Max(currentLineSize.Width, panelSize.Width);
panelSize.Height += currentLineSize.Height;
return panelSize;

}

The key detail in this code is the test that checks the LineBreakBefore property. This
implements the additional logic that’s not provided in the ordinary WrapPanel.

The code for the ArrangeOverride() is almost the same but slightly more tedious. The
difference is that the panel needs to determine the maximum height of the line (which is
determined by the tallest element) before it begins laying out that line. That way, each element
can be given the full amount of available space, which takes into account the full height of the
line. This is the same process that’s used to lay out an ordinary WrapPanel. To see the full
details, refer to the downloadable code examples for this chapter.

Using the WrapBreakPanel is easy. Here’s some markup that demonstrates that the
WrapBreakPanel correctly separates lines and calculates the right desired size based on
the size of its children:

<StackPanel>
<StackPanel.Resources>
<Style TargetType="{x:Type Button}">
<Setter Property="Margin" Value="3"></Setter>
<Setter Property="Padding" Value="3"></Setter>

</Style>
</StackPanel.Resources>

<TextBlock Padding="5" Background="LightGray">
Content above the WrapBreakPanel.

</TextBlock>
<lib:WrapBreakPanel>
<Button>No Break Here</Button>
<Button>No Break Here</Button>
<Button>No Break Here</Button>
<Button>No Break Here</Button>
<Button lib:WrapBreakPanel.LineBreakBefore="True" FontWeight="Bold">
Button with Break
</Button>
<Button>No Break Here</Button>

CHAPTER 24 ■ CUSTOM ELEMENTS894

9551CH24 2/8/08 2:15 PM Page 894

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<Button>No Break Here</Button>
<Button>No Break Here</Button>
<Button>No Break Here</Button>

</lib:WrapBreakPanel>
<TextBlock Padding="5" Background="LightGray">
Content below the WrapBreakPanel.

</TextBlock>
</StackPanel>

Figure 24-5 shows how this markup is interpreted.

Figure 24-5. The WrapBreakPanel

Custom-Drawn Elements
In the previous section, you began to explore the inner workings of WPF elements—namely,
the MeasureOverride() and ArrangeOverride() methods that allow every element to plug into
WPF’s layout system. In this section, you’ll delve a bit deeper and consider how elements ren-
der themselves.

Most WPF elements use composition to create their visual appearance. In other words, a
typical element builds itself out of other, more fundamental elements. You’ve seen this pattern
at work throughout this chapter. For example, you define the composite elements of a user
control using markup that’s processed in the same way as the XAML in a custom window. You
define the visual tree for a custom control using a control template. And when creating a cus-
tom panel, you don’t need to define any visual details at all. The composite elements are
provided by the control consumer and added to the Children collection.

This emphasis is different from what you see in previous user interface technologies
such as Windows Forms. In Windows Forms, some controls draw themselves using the User32
library that’s part of the Windows API, but most custom controls rely on the GDI+ drawing
classes to render themselves from scratch. Because Windows Forms doesn’t provide high-level
graphical primitives that can be added directly to a user interface (like WPF’s rectangles,

CHAPTER 24 ■ CUSTOM ELEMENTS 895

9551CH24 2/8/08 2:15 PM Page 895

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ellipses, and paths), any control that needs a nonstandard visual appearance requires custom
rendering code.

Of course, composition can take you only so far. Eventually, some class needs to take
responsibility for drawing content. In WPF, this point is a long way down the element tree. In a
typical window, the rendering is performed by individual bits of text, shapes, and bitmaps,
rather than high-level elements.

The OnRender() Method
To perform custom rendering, an element must override the OnRender() method, which is
inherited from the base UIElement class. The OnRender() method doesn’t necessarily replace
composition—some controls use OnRender() to paint a visual detail and use composition to
layer other elements over it. Two examples are the Border class, which draws its border in the
OnRender() method, and the Panel class, which draws its background in the OnRender()
method. Both the Border and Panel support child content, and this content is rendered over-
top the custom-drawn details.

The OnRender() method receives a DrawingContext object, which provides a set of useful
methods for drawing content. You first learned about the DrawingContext class in Chapter 14,
when you used it to draw the content for a Visual object. The key difference when performing
drawing in the OnRender() method is that you don’t explicitly create and close the Drawing-
Context. That’s because several different OnRender() methods could conceivable use the same
DrawingContext. For example, a derived element might perform some custom drawing and
call the OnRender() implementation in the base class to draw additional content. This works
because WPF automatically creates the DrawingContext object at the beginning of this
process and closes it when it’s no longer needed.

■Note Technically, the OnRender() method doesn’t actually draw your content to the screen. Instead, it
draws your content to the DrawingContext object, and WPF then caches that information. WPF determines
when your element needs to be repainted and paints the content that you created with the DrawingContext.
This is the essence of WPF’s retained graphics system—you define the content, and it manages the painting
and refreshing process seamlessly.

The most surprising detail about WPF rendering is that so few classes actually do it. Most
classes are built out of other simpler classes, and you need to dig quite a way down the ele-
ment tree of a typical control before you discover a class that actually overrides OnRender().
Here are some that do:

• The TextBlock class. Wherever you place text, there’s TextBlock object using OnRender()
to draw it.

• The Image class. The Image class overrides OnRender() to paint its image content using
the DrawingContext.DrawImage() method.

• The MediaElement class. The MediaElement overrides OnRender() to draw a frame of
video, if it’s being used to play a video file.

CHAPTER 24 ■ CUSTOM ELEMENTS896

9551CH24 2/8/08 2:15 PM Page 896

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• The shape classes. The base Shape class overrides OnRender() to draw its internally
stored Geometry object, with the help of the DrawingContext.DrawGeometry()
method. This Geometry object could represent an ellipse, a rectangle, or a more com-
plex path composed of lines and curves, depending on the specific Shape-derived class.
Many elements use shapes to draw small visual details.

• The chrome classes. Classes such as ButtonChrome and ListBoxChrome draw the outer
appearance of a common control and place the content you specify inside. Many other
Decorator-derived classes, such as Border, also override OnRender().

• The panel classes. Although the content of a panel is supplied by its children, the
OnRender() method takes care of drawing a rectangle with the background color if the
Background property is set.

Often, the OnRender() implementation is deceptively simple. For example, here’s the
rendering code for any Shape-derived class:

protected override void OnRender(DrawingContext drawingContext)
{

this.EnsureRenderedGeometry();
if (this._renderedGeometry != Geometry.Empty)
{

drawingContext.DrawGeometry(this.Fill, this.GetPen(),
this._renderedGeometry);

}
}

Remember, overriding OnRender() isn’t the only way to render content and add it to your
user interface. You can also create a DrawingVisual object and add that visual to a UIElement
using the AddVisualChild() method (and implementing a few other details, as described in
Chapter 14). You can then call DrawingVisual.RenderOpen() to retrieve a DrawingContext for
your DrawingVisual and use it to render its content.

Some elements use this strategy in WPF to display some graphical detail overtop other
element content. For example, you’ll see it with drag-and-drop indicators, error indicators,
and focus boxes. In all these cases, the DrawingVisual approach allows the element to draw
content over other content, rather than under it. But for the most part, rendering takes place
in the dedicated OnRender() method.

Evaluating Custom Drawing
When you create your own custom elements, you may choose to override OnRender() to draw
custom content. You might override OnRender() in an element that contains content (most
commonly, a Decorator-derived class) so you can add a graphical embellishment around that
content. Or, you might override OnRender() in an element that doesn’t have any nested con-
tent so that you can draw its full visual appearance. For example, you might create a custom
element that draws a small graphical detail, which you can then use in another control
through composition. One example in WPF is the TickBar element, which draws the tick
marks for a Slider. The TickBar is embedded in the visual tree of a Slider through the Slider’s
default control template (along with a Border and a Track that includes two RepeatButton
controls and a Thumb).

CHAPTER 24 ■ CUSTOM ELEMENTS 897

9551CH24 2/8/08 2:15 PM Page 897

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The obvious question is when to use the comparatively low-level OnRender() approach
and when to use composition with other classes (such as the Shape-derived elements) to draw
what you need. To decide, you need to evaluate the complexity of the graphics you need and
the interactivity you want to provide.

For example, consider the ButtonChrome class. In WPF’s implementation of the
ButtonChrome class, the custom rendering code takes various properties into account,
including RenderDefaulted, RenderMouseOver, and RenderPressed. The default control
template for the Button uses triggers to set these properties at the appropriate time, as you
saw in Chapter 15. For example, the when the mouse moves over the button, the Button class
uses a trigger to set the ButtonChrome.RenderMouseOver property to true.

Whenever the RenderDefaulted, RenderMouseOver, or RenderPressed property is
changed, the ButtonChrome calls the base InvalidateVisual() method to indicate that its cur-
rent appearance is no longer valid. WPF then calls the ButtonChrome.OnRender() method to
get its new graphical representation.

If the ButtonChrome class used composition, this behavior would be more difficult to
implement. It’s easy enough to create the standard appearance for the ButtonChrome class
using the right elements, but it’s more work to modify it when the button’s state changes. You’d
need to dynamically change the nested elements that compose the ButtonChrome class or—if
the appearance changes more dramatically—you’d be forced to hide one element and show
another one in its place.

Most custom elements won’t need custom rendering. But if you need to render complex
visuals that change significantly when properties are changed or certain actions take place,
the custom rendering approach just might be easier to use and more lightweight.

A Custom-Drawn Element
Now that you know how the OnRender() method works and when to use it, the last step is to
consider a custom control that demonstrates it in action.

The following code defines an element named CustomDrawnElement that demonstrates
a simple effect. It paints a shaded background uses the RadialGradientBrush. The trick is the
highlight point where the gradient starts is set dynamically so it follows the mouse. Thus, as
the user moves the mouse over the control, the white glowing center point follows, as shown
in Figure 24-6.

The CustomDrawnElement doesn’t need to contain any child content, so it derives
directly from FrameworkElement. It allows only a single property to be set—the background
color of the gradient. (The foreground color is hard-coded to be white, although you could
easily change this detail.)

public class CustomDrawnElement : FrameworkElement
{

public static DependencyProperty BackgroundColorProperty;

static CustomDrawnElement()
{

FrameworkPropertyMetadata metadata =
new FrameworkPropertyMetadata(Colors.Yellow);

metadata.AffectsRender = true;
BackgroundColorProperty = DependencyProperty.Register("BackgroundColor",

CHAPTER 24 ■ CUSTOM ELEMENTS898

9551CH24 2/8/08 2:15 PM Page 898

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

typeof(Color), typeof(CustomDrawnElement), metadata);
}

public Color BackgroundColor
{

get { return (Color)GetValue(BackgroundColorProperty); }
set { SetValue(BackgroundColorProperty, value); }

}
...

Figure 24-6. A custom-drawn element

The BackgroundColor dependency property is specifically marked with the
FrameworkPropertyMetadata.AffectRender flag. As a result, WPF will automatically
call OnRender() whenever the color is changed. However, you also need to make sure
OnRender() is called when the mouse moves to a new position. This is handled by calling
the InvalidateVisual() method at the right times:

...
protected override void OnMouseMove(MouseEventArgs e)
{

base.OnMouseMove(e);
this.InvalidateVisual();

}

protected override void OnMouseLeave(MouseEventArgs e)
{

base.OnMouseLeave(e);
this.InvalidateVisual();

}
...

CHAPTER 24 ■ CUSTOM ELEMENTS 899

9551CH24 2/8/08 2:15 PM Page 899

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The only remaining detail is the rendering code. It uses the DrawingContext.Draw-
Rectangle() method to paint the element’s background. The ActualWidth and ActualHeight
properties indicate the final rendered dimensions of the control.

...
protected override void OnRender(DrawingContext dc)
{

base.OnRender(dc);

Rect bounds = new Rect(0, 0, base.ActualWidth, base.ActualHeight);
dc.DrawRectangle(GetForegroundBrush(), null, bounds);

}
...

Finally, a private helper method named GetForegroundBrush() constructs the correct
RadialGradientBrush based on the current position of the mouse. To calculate the center
point, you need to convert the current position of the mouse over the element to a relative
position from 0 to 1, which is what the RadialGradientBrush expects.

...
private Brush GetForegroundBrush()
{

if (!IsMouseOver)
{

return new SolidColorBrush(BackgroundColor);
}
else
{

RadialGradientBrush brush = new RadialGradientBrush(
Colors.White, BackgroundColor);

// Get the position of the mouse in device-independent units,
// relative to the control itself.
Point absoluteGradientOrigin = Mouse.GetPosition(this);

// Convert the point coordinates to proportional (0 to 1) values.
Point relativeGradientOrigin = new Point(
absoluteGradientOrigin.X / base.ActualWidth,
absoluteGradientOrigin.Y / base.ActualHeight);

// Adjust the brush.
brush.GradientOrigin = relativeGradientOrigin;
brush.Center = relativeGradientOrigin;

return brush;
}

}
}

This completes the example.

CHAPTER 24 ■ CUSTOM ELEMENTS900

9551CH24 2/8/08 2:15 PM Page 900

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

A Custom Decorator
As a general rule, you should never use custom drawing in a control. If you do, you violate the
premise of WPF’s lookless controls. The problem is that once you hardwire in some drawing
logic, you’ve ensured that a portion of your control’s visual appearance cannot be customized
through the control template.

A much better approach is to design a separate element that draws your custom content
(such as the CustomDrawnElement class in the previous example) and then use that element
inside the default control template for your control. That’s the approach used in both of the
controls that you’ve considered in this chapter—the Button and the Slider.

It’s worth quickly considering how you can adapt the previous example so that it can
function as part of a control template. Custom-drawn elements usually play two roles in a
control template:

• They draw some small graphical detail (like the arrow on a scroll button).

• They provide a more detailed background or frame around another element.

The second approach requires a custom decorator. You can change the
CustomDrawnElement into a custom-drawn element by making two small changes.
First, derive it from Decorator:

public class CustomDrawnDecorator : Decorator

Next, override the OnMeasure() method to specify the required size. It’s the responsibility
of all decorators to consider their children, add the extra space required for their embellish-
ments, and then return the combined size. The CustomDrawnDecorator doesn’t need any
extra space to draw a border. Instead, it simply makes itself as large as the content warrants
using this code:

protected override Size MeasureOverride(Size constraint)
{

UIElement child = this.Child;
if (child != null)
{

child.Measure(constraint);
return child.DesiredSize;

}
else
{

return new Size();
}

}
Once you’ve created your custom decorator, you can use it in a custom control template.

For example, here’s a button template that places the mouse-tracking gradient background
behind the button content. It uses template bindings to make sure the properties for align-
ment and padding are respected.

<ControlTemplate x:Key="ButtonWithCustomChrome">
<lib:CustomDrawnDecorator BackgroundColor="LightGreen">
<ContentPresenter Margin="{TemplateBinding Padding}"

CHAPTER 24 ■ CUSTOM ELEMENTS 901

9551CH24 2/8/08 2:15 PM Page 901

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
ContentTemplate="{TemplateBinding ContentControl.ContentTemplate}"
Content="{TemplateBinding ContentControl.Content}"
RecognizesAccessKey="True" />

</lib:CustomDrawnDecorator>
</ControlTemplate>

You can now use this template to restyle your buttons with a new look. Of course, to make
your decorator more practical, you’d probably want to make it vary its appearance when the
mouse button is clicked. You can do this using triggers that modify properties in your chrome
class. Chapter 15 has a complete discussion of this design.

The Last Word
In this chapter, you took a detailed look at custom control development in WPF. You saw how
to build basic user controls and extend existing WPF controls and how to create the WPF gold
standard—a template-based lookless control. Finally, you considered custom drawing and
how you can use custom-drawn content with a lookless control.

If you’re planning to dive deeper into the world of custom control development, you’ll
find some excellent samples online. One good starting point is the Bag-O-Tricks sample project
provided by Kevin Moore (a program manager on the WPF team) at http://wpf.netfx3.com/
files/folders/controls/entry8196.aspx. This sample includes a variety of custom controls that
range from simple to complex, including date controls, an up-down numeric text box, a color
picker, and a panel with built-in animation.

CHAPTER 24 ■ CUSTOM ELEMENTS902

9551CH24 2/8/08 2:15 PM Page 902

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://wpf.netfx3.com

Interacting with Windows Forms

In an ideal world, once developers master a new technology such as WPF they’d leave the pre-
vious framework behind. Everything would be written using the latest, most capable toolkit,
and no one would ever worry about legacy code. Of course, this ideal world is nothing like the
real world, and there are two reasons why most WPF developers will need to interact with the
Windows Forms platform at some point: to leverage existing code investments and to com-
pensate for missing features in WPF.

In this chapter, you’ll look at different strategies for integrating Windows Forms and WPF
content. You’ll consider how to use both types of windows in a single application, and you’ll
explore the more impressive trick of mixing content from both platforms in a single window.
But before you delve into WPF and Windows Forms interoperability, it’s worth taking a step
back and assessing the reasons you should (and shouldn’t) use WPF interoperability.

Assessing Interoperability
If you’ve spent the past few years programming in Windows Forms, you probably have more
than a few applications and a library of custom code that you rely on. Currently, there’s no tool
to transform Windows Forms interfaces into similar WPF interfaces (and even if there were,
such a tool would be only a starting point of a long and involved migration process). Of course,
there’s no need to transplant a Windows Forms application into the WPF environment—most
of the time, you’re better off keeping your application as is and moving to WPF for new proj-
ects. However, life isn’t always that simple. You might decide that you want to add a WPF
feature (such as an eye-catching 3-D animation) to an existing Windows Forms application.
Or you might decide that you want to eventually move an existing Windows Forms application
to WPF by gradually migrating it piece by piece as you release updated versions. Either way,
the interoperability support in WPF can help you make the transition gradually and without
sacrificing all the work you’ve done before.

The other reason to consider integration is to get features that are missing in WPF.
Although WPF extends its feature set into areas that Windows Forms never touched (such as
animation, 3-D drawing, and rich document display), there are still some Windows Forms fea-
tures that are missing in WPF or have more mature implementations in Windows Forms. This
doesn’t mean you should fill the gap using Windows Forms controls—after all, it may be sim-
pler to rebuild these features, use alternatives, or just wait for future WPF releases—but it is a
compelling option.

Before you toss WPF elements and Windows Forms controls together, it’s important to
assess your overall goals. In many situations, developers are faced with a decision between

903

C H A P T E R 2 5

9551CH25 2/8/08 2:16 PM Page 903

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

incrementally enhancing a Windows Forms application (and gradually moving it into the WPF
world) or replacing it with a newly rewritten WPF masterpiece. Obviously, the first approach is
faster and easier to test, debug, and release. However, in a suitably complex application that
needs a major WPF injection, there may come a point where it’s simpler to start over in WPF
and import the legacy bits that you need.

■Note As always, when moving from one user interface platform to another, you should only be forced to
migrate the user interface. Other details, such as data access code, validation rules, file access, and so on,
should be abstracted away in separate classes (and possibly even separate assemblies), which you can plug
into a WPF front-end just as easily as a Windows Forms application. Of course, this level of componentization
isn’t always possible, and sometimes other details (such as data binding considerations and validation
strategies) can lead you to shape your classes a certain way and inadvertently limit their reusability.

Missing Features in WPF
You might turn to WPF to use a control you know and love from Windows Forms if there’s no
equivalent in WPF. As always, you need to evaluate your options carefully and check for possi-
ble alternatives before using the interoperability layer. Table 25-1 presents an overview of
missing controls and where to the find equivalent functionality.

Table 25-1. Missing Controls and Features in WPF

Windows Forms Control Closest WPF Equivalent Consider
Windows
Forms?

LinkLabel Use the inline Hyperlink in a TextBlock. No
Chapter 9 shows how.

MaskedTextBox There is no equivalent control (although Yes
you can build one yourself using the
System.ComponentModel.MaskedTextProvider
class, as described in Chapter 24).

DateTimePicker and The Windows Forms versions of these controls wrap No
MonthCalendar Win32 controls that are far from perfect. (For example,

they do not always display correctly depending on the
properties you’ve set, and they don’t support null values.)
Although native WPF versions of these controls aren’t
included in .NET 3.5, you can download them at
http://j832.com/BagOTricks.

DomainUpDown and Use a TextBox with two RepeatButton controls to No
NumericUpDown emulate these controls.

CheckedListBox If you don’t use data binding, you can place multiple No
CheckBox elements in a ScrollViewer. If you need
binding support, you can use the ListBox with a custom
control template. See Chapter 18 for an example
(and for a RadioButtonList).

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS904

9551CH25 2/8/08 2:16 PM Page 904

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://j832.com/BagOTricks

Windows Forms Control Closest WPF Equivalent Consider
Windows
Forms?

DataGridView The ListView and GridView provide a different way to Yes
get some of the same features as the DataGridView, but
not all of them. For example, only the DataGridView
provides column freezing, virtualization, and a
multilayered style system that allows you to format
different types of cells in different ways.

WebBrowser There is no equivalent control, but you can use the Yes
Frame control to host HTML pages (as described in
Chapter 9). However, the Frame doesn’t provide access
to the HTML object model of the page. That means
you’ll need to use the WebBrowser if you want to
interact with the page programmatically.

PropertyGrid There is no equivalent control. Yes

ColorDialog, You can use these components in WPF. However, most No
FolderBrowserDialog, of these common dialog boxes are easily re-created in
FontDialog, WPF, without the old-fashioned look. You can find
PageSetupDialog examples with the sample code or search online.

(And Chapter 24 demonstrates a basic color-picking
custom control.)

PrintPreviewControl There are several do-it-yourself approaches. The easiest Maybe
and PrintPreviewDialog is to construct a FlowDocument programmatically,

which you can then display in a document viewer and
send to the printer. Although the PrintPreviewControl
and PrintPreviewDialog are a more mature solution and
require less work, using them in WPF is not recommended.
That’s because you’d need to switch to the older Windows
Forms printing model. Of course, if you have existing
printing code that uses the Windows Forms libraries,
interoperability avoids a lot of work.

ErrorProvider, There is no support in WPF for Windows Forms extender Yes
HelpProvider providers. If you have forms that use these features, you

may continue using them in a WPF application through
interoperability. However, you can’t use these providers
to display error messages or context-sensitive help for
WPF controls.

AutoComplete Although WPF includes AutoComplete functionality in Maybe
the ComboBox (Chapter 18) through the IsTextSearching-
enabled property, it’s a simple AutoComplete feature
that fills in a single suggestion from the current list. It
doesn’t provide the full list of suggestions that Windows
Forms does with its AutoComplete feature, and it
doesn’t provide access to the recent URLs recorded
by the operating system. Using Windows Forms to get
this support is generally overkill—it’s better to leave
this feature out or dig in and build it yourself.

MDI WPF does not support MDI windows. However, the Yes
layout system is flexible to accommodate a wide range
of different custom-built approaches, including do-it-
yourself tabbed windows. However, this involves
significant work. If you need MDI, it’s best to build a
full Windows Forms application, rather than try to
combine WPF and Windows Forms.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 905

9551CH25 2/8/08 2:16 PM Page 905

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note For more information about Windows Forms specifics, including AutoComplete, its support for MDI,
and its print model and extender providers, refer to my book Pro .NET 2.0 Windows Forms and Custom
Controls in C# (Apress, 2005).

As you can see from Table 25-1, a few Windows Forms controls are good candidates for
integration because they can be easily inserted into WPF windows and would take consider-
able work to re-create. These include the MaskedTextBox, DataGridView, PropertyGrid, and
WebBrowser (if you need to interact with the HTML object model of a page). If you’ve created
your own custom Windows Forms controls, they probably also belong to this list—in other
words, they’re easier to port to WPF than re-create from scratch.

There’s a broader set of controls that aren’t available in WPF but have reasonable (or
sometimes improved) equivalents. These include the DateTimePicker, CheckedListBox, and
ImageList. Finally, there are some features that are out of reach in WPF, which means they aren’t
provided in WPF and there isn’t a viable interoperability strategy. If you need to build or update
an application that makes heavy use of an extender provider (such as the ErrorProvider, Help-
Provider, or a custom provider of your own creation) or uses MDI windows, it’s better to stick
with a Windows Forms application. You may choose to integrate WPF content into your Win-
dows Forms application, but the reverse tasks—migrating to WPF—will require more work.

Mixing Windows and Forms
The cleanest way to integrate WPF and Windows Forms content is to place each in a separate
window. That way your application consists of well-encapsulated window classes, each of
which deals with just a single technology. Any interoperability details are handled in the glue
code—the logic that creates and shows your windows.

Adding Forms to a WPF Application
The easiest approach to mixing windows and forms is to add one or more forms (from the
Windows Forms toolkit) to an otherwise ordinary WPF application. Visual Studio makes this
easy—just right-click the project name in the Solution Explorer and choose Add ➤ New Item.
Then, select the Windows Forms category on the left side, and choose the Windows Form
template. Lastly, give your form a file name, and click Add. The first time you add a form,
Visual Studio adds references to all the required Windows Forms assemblies, including
System.Windows.Forms.dll and System.Drawing.dll.

You can design a form in a WPF project in the same way that you design it in a Windows
Forms project. When you open a form, Visual Studio loads the normal Windows Forms designer
and fills the Toolbox with Windows Forms controls. When you open the XAML file for a WPF
window, you get the familiar WPF design surface instead.

■Tip For better separation between WPF and Windows Forms content, you might choose to place the
“foreign” content in a separate class library assembly. For example, a Windows Forms application might use
the WPF windows defined in a separate assembly. This approach makes especially good sense if you plan to
reuse some of these windows in both Windows Forms and WPF applications.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS906

9551CH25 2/8/08 2:16 PM Page 906

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Adding WPF Windows to a Windows Forms Application
The reverse trick is a bit more awkward. Visual Studio doesn’t directly allow you to create a
new WPF window in a Windows Forms application. (In other words, you won’t see it as one of
the available templates when you right-click your project and choose Add ➤ New Item.) How-
ever, you can add the existing .cs and .xaml files that define a WPF window from another WPF
project. To do so, right-click your project in the Solution Explorer, choose Add ➤ Existing Item,
and find both these files. You’ll also need to add references to the core WPF assemblies (Pre-
sentationCore.dll, PresentationFramework.dll, and WindowsBase.dll).

■Tip There’s a shortcut to adding the WPF references you need. You can add a WPF user control (which
Visual Studio does support), which causes Visual Studio to add these references automatically. You can then
delete the user control from your project. To add a WPF user control, right-click the project, choose Add ➤
New Item, pick the WPF category, and select the User Control (WPF) template.

Once you add a WPF window to a Windows Forms application, it’s treated correctly. When
you open it, you’ll be able to use the WPF designer to modify it. When you build the project,
the XAML will be compiled and the automatically generated code will be merged with your
code-behind class, just as it is in a full-fledged WPF application.

Creating a project that uses forms and windows isn’t too difficult. However, there are a few
extra considerations when you show these forms and windows at runtime. If you need to show
a window or form modally (as you would with a dialog box), the task is straightforward and
your code is essentially unchanged. But if you want to show a window modelessly, you need a
bit of extra code to ensure proper keyboard support, as you’ll see in the following sections.

Showing Modal Windows and Forms
Showing a modal form from a WPF application is effortless. You use exactly the same code you’d
use in a Windows Forms project. For example, if you have a form class named Form1, you’d use
code like this to show it modally:

Form1 frm = new Form1();
if (frm.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{

MessageBox.Show("You clicked OK in a Windows Forms form.");
}

You’ll notice that the Form.ShowDialog() method works in a slightly different way than WPF’s
Window.ShowDialog() method (described in Chapter 8). While Window.ShowDialog() returns
true, false, or null, Form.ShowDialog() returns a value from the DialogResult enumeration.

The reverse trick—showing a WPF window from a form—is just as easy. Once again, you
simply interact with the public interface of your Window class, and WPF takes care of the rest:

Window1 win = new Window1();
if (win.ShowDialog() == true)
{

MessageBox.Show("You clicked OK in a WPF window.");
}

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 907

9551CH25 2/8/08 2:16 PM Page 907

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Showing Modeless Windows and Forms
It’s not quite as straightforward if you want to show windows or forms modelessly. The chal-
lenge is that keyboard input is received by the root application and needs to be delivered to
the appropriate window. In order for this to work between WPF and Windows Forms content,
you need a way to forward these messages along to the right window or form.

If you want to show a WPF window modelessly from inside a Windows Forms application,
you must use the static ElementHost.EnableModelessKeyboardInterop() method. You’ll also
need a reference to the WindowsFormsIntegration.dll assembly, which defines the Element-
Host class in the System.Windows.Forms.Integration namespace. (You’ll learn more about the
ElementHost class later in this chapter.)

You call the EnableModelessKeyboardInterop() method after you create the window,
but before you show it. When you call it, you pass in a reference to the new WPF window, as
shown here:

Window1 win = new Window1();
ElementHost.EnableModelessKeyboardInterop(win);
win.Show();

When you call EnableModelessKeyboardInterop(), the ElementHost adds a message filter
to the Windows Forms application. This message filter intercepts keyboard messages when
your WPF window is active and forwards them to your window. Without this detail, your WPF
controls won’t receive any keyboard input.

If you need to show a modeless Windows Forms application inside a WPF application, you
use the similar WindowsFormsHost.EnableWindowsFormsInterop() method. However, you
don’t need to pass in a reference to the form you plan to show. Instead, you simply need to call
this method once before you show any form. (One good choice is to call this method at appli-
cation startup.)

WindowsFormsHost.EnableWindowsFormsInterop();

Now you can show your form modelessly without a hitch:

Form1 frm = new Form1();
frm.Show();

Without the call to EnableWindowsFormsInterop(), your form will still appear, but it won’t
recognize all keyboard input. For example, you won’t be able to use the Tab key to move from
one control to the next.

You can extend this process to multiple levels. For example, you could create a WPF
window that shows a form (modally or modelessly), and that form could then show a WPF
window. Although you won’t need to do this very often, it’s more powerful than the element-
based interoperability support you’ll learn about later. This support allows you to integrate
different types of content in the same window but doesn’t allow you to nest more than one
layer deep (for example, creating a WPF window that contains a Windows Forms control
which, in turn, hosts a WPF control).

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS908

9551CH25 2/8/08 2:16 PM Page 908

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Visual Styles for Windows Forms Controls
When you show a form in a WPF application, that form uses the old fashioned (pre–Windows XP)
styles for buttons and other common controls. That’s because support for the newer styles must
be explicitly enabled by calling the Application.EnableVisualStyles() method. Ordinarily, Visual
Studio adds this line of code to the Main() method of every new Windows Forms application.
However, when you create a WPF application, this detail isn’t included.

To resolve this issue, just call the EnableVisualStyles() method once before showing any
Windows Forms content. A good place to do this is when the application is first started, as
shown here:

public partial class App : System.Windows.Application
{

protected override void OnStartup(StartupEventArgs e)
{

// Raises the Startup event.
base.OnStartup(e);

System.Windows.Forms.Application.EnableVisualStyles();
}

}

Notice that the EnableVisualStyles() method is defined in the System.Win-
dows.Forms.Application class, not the System.Windows.Application class that forms the
core of your WPF application.

Windows Forms Classes That Don’t Need Interoperability
As you know, Windows Forms controls have a different inheritance hierarchy than WPF ele-
ments. These controls can’t be used in a WPF window without interoperability. However, there
are some Windows Forms components that don’t have this limitation. Provided you have a ref-
erence to the necessary assembly (usually System.Windows.Forms.dll), you can use these
types without any special considerations.

For example, you can use the dialog classes (such as ColorDialog, FontDialog, PageSetup-
Dialog, and so on) directly. In practice, this isn’t terribly useful because these dialog boxes are
slightly outdated and because they wrap structures that are a part of Windows Forms, not WPF.
For example, if you use the ColorDialog, you’ll get a System.Drawing.Color object rather than
the System.Windows.Media.Color object you really want. The same is true when you use the
FontDialog and the PageSetupDialog and PrintPreviewDialog that are designed to work with
the older Windows Forms printing model. In fact, the only Windows Forms dialog box that’s of
any use and that doesn’t have a WPF equivalent in the Microsoft.Win32 namespace is Folder-
BrowserDialog, which lets the user pick a folder.

More useful Windows Forms components include the SoundPlayer (described in Chap-
ter 22), which you can use as a lightweight equivalent to WPF’s MediaPlayer and MediaElement;
the BackgroundWorker (described in Chapter 3), which you can use to manage an asynchronous
task safely; and the NotifyIcon (described next), which allows you to show a system tray icon.

The only disadvantage to using the NotifyIcon in a WPF window is that there’s no design-
time support. It’s up to you to create the NotifyIcon by hand, attach event handlers, and so on.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 909

9551CH25 2/8/08 2:16 PM Page 909

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Once you supply an icon using the Icon property and set Visible to true, your icon will appear
in the system tray (shown in Figure 25-1). When your application ends, you should call
Dispose() on the NotifyIcon to remove it from the system tray immediately.

Figure 25-1. A system tray icon

The NotifyIcon does use some Windows Forms–specific bits. For example, it uses a
Windows Forms context menu, which is an instance of the System.Windows.Forms.Context-
MenuStrip class. Thus, even if you’re using the NotifyIcon with a WPF application, you need to
define its context menu using the Windows Forms model.

Creating all the objects for a menu in code and attaching event handlers is more than a
little tedious. Fortunately, there’s a simpler solution when building a WPF application that
uses the NotifyIcon—you can create a component class. A component class is a custom class
that derives from System.ComponentModel.Component. It provides two features that ordi-
nary classes lack: support for deterministically releasing resources (when its Dispose() method
is called) and design-time support in Visual Studio.

Every custom component gets a design surface (technically known as the component tray)
where you can drag and configure other classes that implement IComponent, including
Windows Forms. In other words, you can use the component tray to build and configure a
NotifyIcon, complete with a context menu and event handlers. Here’s what you need to do to
build a custom component that wraps an instance of the NotifyIcon and includes a context
menu:

1. Open or create a new WPF project.

2. Right-click the project name in the Solution Explorer and choose Add ➤ New Item.
Pick the Component Class template, supply a name for your custom component class,
and click Add.

3. Drop a NotifyIcon onto the design surface of your component. (You’ll find the
NotifyIcon in the Common Controls section of the Toolbox.)

4. At this point, Visual Studio adds the reference you need to the System.Windows.Forms.dll
assembly. However, it won’t add a reference to the System.Drawing.dll namespace, which
has many core Windows Forms types. You must add a reference to System.Drawing.dll
manually.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS910

9551CH25 2/8/08 2:16 PM Page 910

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

5. Drop a ContextMenuStrip onto the design surface of your component (from the
Menus & Toolbars section of the Toolbox). This will represent the context menu for
your NotifyIcon. Figure 25-2 shows both ingredients in Visual Studio.

Figure 25-2. The design surface of a component

6. Select the NotifyIcon and configure it using the Properties window. You’ll want to set
the following properties: Text (the tooltip text that appears when you hover over the
NotifyIcon), Icon (the icon that appears in the system tray), and ContextMenuStrip
(the ContextMenuStrip you added in the previous step).

7. To build the context menu, right-click the ContextMenuStrip and choose Edit Items.
You’ll see a collection editor that you can use to add the menu items (which you
should place after the root menu item). Give them easily recognizable names because
you’ll need to connect the event handlers yourself.

8. To see your component class code, right-click the component in the Solution Explorer
and choose View Code. (Don’t open the .Designer.cs code file. This file contains the
code that Visual Studio generates automatically, which is combined with the rest of the
component code using partial classes.)

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 911

9551CH25 2/8/08 2:16 PM Page 911

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9. Add the code that connects your menu’s event handlers. Here’s an example that adds
the event handler for two menu commands—a Close button and a Show Window
button:

public partial class NotifyIconWrapper : Component
{

public NotifyIconWrapper()
{

InitializeComponent();

// Attach event handlers.
cmdClose.Click += cmdClose_Click;
cmdShowWindow.Click += cmdShowWindow_Click;

}

// Use just one instance of this window.
private Window1 win = new Window1();

private void cmdShowWindow_Click(object sender, EventArgs e)
{

// Show the window (and bring it to the forefront if it's already visible).
if (win.WindowState == System.Windows.WindowState.Minimized)
win.WindowState = System.Windows.WindowState.Normal;

win.Show();
win.Activate();

}

private void cmdClose_Click(object sender, EventArgs e)
{

System.Windows.Application.Current.Shutdown();
}

// Clean up when this component is released by releasing all
// contained components (including the NotifyIcon).
protected override void Dispose(bool disposing)
{

if (disposing && (components != null)) components.Dispose();
base.Dispose(disposing);

}

// (Designer code omitted.)
}

Now that you’ve created the custom component class, you simply need to create an
instance of it when you want to show the NotifyIcon. This triggers the designer code in your
component, which creates the NotifyIcon object, making it visible in the system tray.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS912

9551CH25 2/8/08 2:16 PM Page 912

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Removing the system tray icon is just as easy—you just need to call Dispose() on your
component. This step forces the component to call Dispose() on all contained components,
including the NotifyIcon.

Here’s a custom application class that shows the icon when the application starts and
removes it when the application ends:

public partial class App : System.Windows.Application
{

private NotifyIconWrapper component;

protected override void OnStartup(StartupEventArgs e)
{

base.OnStartup(e);

this.ShutdownMode = ShutdownMode.OnExplicitShutdown;
component = new NotifyIconWrapper();

}

protected override void OnExit(ExitEventArgs e)
{

base.OnExit(e);
component.Dispose();

}
}

To complete this example, make sure you remove the StartupUri attribute from the
App.xaml file. This way, the application starts by showing the NotifyIcon but doesn’t show any
additional windows until the user clicks an option from the menu.

This example relies on one more trick. A single main window is kept alive for the entire
application and shown whenever the user chooses Show Window from the menu. However, this
runs into trouble if the user closes the window. There are two possible solutions—you can re-
create the window as needed the next time the user clicks Show Window, or you can intercept
the Window.Closing event and quietly conceal the window instead of destroying it. Here’s how:

private void window_Closing(object sender, CancelEventArgs e)
{

e.Cancel = true;
this.WindowState = WindowState.Minimized;
this.ShowInTaskbar = false;

}

Notice that this code doesn’t change the Visibility property of the window or call its Hide()
method because neither action is allowed when the window is closing. Instead, it minimizes it
and removes it from the taskbar. When restoring the window you’ll need to check the window
state and return the window to its normal state along with its taskbar button.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 913

9551CH25 2/8/08 2:16 PM Page 913

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Creating Windows with Mixed Content
In some cases the clean window-by-window separation isn’t suitable. For example, you might
want to place WPF content in an existing form alongside Windows Form content. Although
this model is conceptually messier, WPF handles it quite gracefully.

In fact, including Windows Forms content in a WPF application (or vice versa) is more
straightforward than adding ActiveX content to a Windows Forms application. In the latter
scenario, Visual Studio must generate a wrapper class that sits between the ActiveX control
and your code, which manages the transition from managed to unmanaged code. This wrap-
per is component-specific, which means each ActiveX control you use requires a separate
customized wrapper. And because of the quirks of COM, the interface exposed by the wrapper
might not match the interface of the underlying component exactly.

When integrating Windows Forms and WPF content, you don’t need a wrapper class.
Instead, you use one of a small set of containers, depending on the scenario. These containers
work with any class, so there’s no code generation step. This simpler model is possible because
even though Windows Forms and WPF are dramatically different technologies, they are both
firmly grounded in the world of managed code.

The most significant advantage of this design is that you can interact with Windows
Forms controls and WPF elements in your code directly. The interoperability layer only comes
into effect when this content is rendered in the window. This part takes place automatically
without requiring any developer intervention. You also don’t need to worry about keyboard
handling in modeless windows because the interoperability classes you’ll use (ElementHost
and WindowsFormsHost) handle that automatically.

WPF and Windows Forms “Airspace”
In order to integrate WPF and Windows Forms content in the same window, you need to be
able to segregate a portion of your window for “foreign” content. For example, it’s completely
reasonable to throw a 3-D graphic into a Windows Forms application because you can place
that 3-D graphic in a distinct region of a window (or even make it take up the entire window).
However, it’s not easy or worthwhile to reskin all the buttons in your Windows Forms applica-
tion by making them WPF elements because you’ll need to create a separate WPF region for
each button.

Along with the considerations of complexity, there are also some things that just aren’t
possible with WPF interoperability. For example, you can’t combine WPF and Windows Forms
content by overlapping it. That means you can’t have a WPF animation send an element flying
over a region that’s rendered with Windows Forms. Similarly, you can’t overlap partially trans-
parent Windows Forms content over a WPF region to blend them together. Both of these
violate what’s known as the airspace rule, which dictates that WPF and Windows Forms must
always have their own distinct window regions, which they manage exclusively. Figure 25-3
shows what’s allowed and what isn’t.

Technically, the airspace rule results from the fact that in a window that includes WPF
content and Windows Forms content, both regions have a separate window handle, or hwnd.
Each hwnd is managed, rendered, and refreshed separately.

Window handles are managed by the Windows operating system. In classic Windows
applications, every control is a separate window, which means each control has ownership of
a distinct piece of screen real estate. Obviously, this type of “window” isn’t the same as the top-
level windows that float around your screen—it’s simply a self-contained region (rectangular

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS914

9551CH25 2/8/08 2:16 PM Page 914

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

or otherwise). In WPF, the model is dramatically different—there’s a single, top-level hwnd,
and the WPF engine does the compositing for the entire window, which allows more pleasing
rendering (for example, effects such as dynamic antialiasing) and far greater flexibility (for
example, visuals that render content outside their bounds).

Figure 25-3. The airspace rule

■Note There are a few WPF elements that use separate window handles. These include menus, tooltips,
and the drop-downs portion of a combo box, all of which need the ability to extend beyond the bounds of
the window.

The implementation of the airspace rule is fairly straightforward. If you place Windows
Forms content overtop of WPF content, you’ll find that the Windows Forms content is always
overtop, no matter where it’s declared in the markup or what layout container you use. That’s
because the WPF content is a single window, and the container with Windows Forms content
is implemented as a separate window that’s displayed overtop of a portion of the WPF window.

If you place WPF content in a Windows Forms form, the result is a bit different. Every con-
trol in Windows Forms is a distinct window and therefore has its own hwnd. So WPF content can
be layered anywhere with relation to other Windows Forms controls in the same window,
depending on its z-index. (The z-index is determined by the order in which you add controls to
the parent’s Controls collection, so that controls added later appear on top of those added

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 915

9551CH25 2/8/08 2:16 PM Page 915

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

before.) However, the WPF content still has its own completely distinct region. That means you
can’t use transparency or any other technique to partially overwrite (or combine your element
with) Windows Forms content. Instead, the WPF content exists in its own self-contained region.

Hosting Windows Forms Controls in WPF
To show a Windows Forms control in a WPF window, you use the WindowsFormsHost class
in the System.Windows.Forms.Integration namespace. The WindowsFormsHost is a WPF
element (it derives from FrameworkElement) that has the ability to hold exactly one Windows
Forms control, which is provided in the Child property.

It’s easy enough to create and use WindowsFormsHost programmatically. However, in
most cases it’s easiest to create it declaratively in your XAML markup. The only disadvantage is
that Visual Studio doesn’t include much designer support for the WindowsFormsHost control.
Although you can drag and drop it onto a window, you need to fill in its content (and map the
required namespace) by hand.

The first step is to map the System.Windows.Forms namespace, so you can refer to the
Windows Forms control you want to use:

<Window x:Class="InteroperabilityWPF.HostWinFormControl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"
Title="HostWinFormControl" Height="300" Width="300" >

Now you can create the WindowsFormsHost and the control inside just as you would any
other WPF element. Here’s an example that uses the MaskedTextBox from Windows Forms:

<Grid>
<WindowsFormsHost>
<wf:MaskedTextBox x:Name="maskedTextBox"></wf:MaskedTextBox>

</WindowsFormsHost>
</Grid>

■Note The WindowsFormsHost can hold any Windows Forms control (that is, any class that derives from
System.Windows.Forms.Control). It can’t hold Windows Forms components that aren’t controls, such as the
HelpProvider or the NotifyIcon.

Figure 25-4 shows a MaskedTextBox in a WPF window.
You can set most of the properties of your MaskedTextBox directly in your markup. That’s

because Windows Forms uses the same TypeConverter infrastructure (discussed in Chapter 2)
to change strings into property values of a specific type. This isn’t always convenient—for
example, the string representation of a type may be awkward to enter by hand—but it usually
allows you to configure your Windows Forms controls without resorting to code. For example,
here’s a MaskedTextBox equipped with a mask that shapes user input into a seven-digit phone
number with an optional area code:

<wf:MaskedTextBox x:Name="maskedTextBox" Mask="(999)-000-0000"></wf:MaskedTextBox>

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS916

9551CH25 2/8/08 2:16 PM Page 916

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 25-4. A masked text box for a phone number

You can also use ordinary XAML markup extensions to fill in null values, use static prop-
erties, create type objects, or use objects that you’ve defined in the Resources collection of the
window. Here’s an example that uses the type extension to set the MaskedTextBox.Validating-
Type property. This specifies that the MaskedTextBox should change the supplied input (a
phone number string) into an Int32 when the Text property is read or the focus changes:

<wf:MaskedTextBox x:Name="maskedTextBox" Mask="(999)-000-0000"
ValidatingType="{x:Type sys:Int32}"></wf:MaskedTextBox>

One markup extension that won’t work is a data binding expression because it requires a
dependency property. (Windows Forms controls are constructed out of normal .NET proper-
ties.) If you want to bind a property of a Windows Forms control to the property of a WPF
element, there’s an easy workaround—just set the dependency property on the WPF element
and adjust the BindingDirection as required. (Chapter 16 has the full details.)

Finally, it’s important to note that you can hook events up to your Windows Forms control
using the familiar XAML syntax. Here’s an example that attaches an event handler for the
MaskInputRejected event, which occurs when a keystroke is discarded because it doesn’t suit
the mask:

<wf:MaskedTextBox x:Name="maskedTextBox" Mask="(999)-000-0000"
MaskInputRejected="maskedTextBox_MaskInputRejected"></wf:MaskedTextBox>

Obviously, these aren’t routed events, so you can’t define them at higher levels in the ele-
ment hierarchy.

When the event fires, your event handler responds by showing an error message in
another element. In this case, it’s a WPF label that’s located elsewhere on the window:

private void maskedTextBox_MaskInputRejected(object sender,
System.Windows.Forms.MaskInputRejectedEventArgs e)

{
lblErrorText.Content = "Error: " + e.RejectionHint.ToString();

}

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 917

9551CH25 2/8/08 2:16 PM Page 917

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Tip Don’t import the Windows Forms namespaces (such as System.Windows.Forms) in a code file that
already uses WPF namespaces (such as System.Windows.Controls). The Windows Forms classes and the
WPF classes share many names. Basic ingredients (such as Brush, Pen, Font, Color, Size, and Point) and
common controls (such as Button, TextBox, and so on) are found in both libraries. To prevent naming clashes,
it’s best to import just one set of namespaces in your window (WPF namespaces for a WPF window,
Windows Forms namespaces for a form) and use fully qualified names or a namespace alias to access
the others.

This example illustrates the nicest feature about WPF and Windows Forms interoperability:
it doesn’t affect your code. Whether you’re manipulating a Windows Forms control or a WPF ele-
ment, you use the familiar class interface for that object. The interoperability layer is simply the
magic that lets both ingredients coexist in the window. It doesn’t require any extra code.

■Note In order to have Windows Forms controls use more up-to-date control styles introduced with
Windows XP, you must call EnableVisualStyles() when your application starts, as described in the “Visual
Styles for Windows Forms Controls” section earlier in this chapter.

Windows Forms content is rendered by Windows Forms, not WPF. Therefore, display-
related properties of the WindowsFormsHost container (properties such as Transform, Clip,
and Opacity) have no effect on the content inside. That means that even if you set a rotational
transform, set a narrow clipping region, and make your content 50% transparent, you’ll see no
change. Similarly, Windows Forms uses a different coordinate system that sizes controls using
physical pixels. As a result, if you increase the system DPI setting of your computer, you’ll find
that the WPF content resizes cleanly to be more detailed, but the Windows Forms content
does not.

WPF and Windows Forms User Controls
One of the most significant limitations of the WindowsFormsHost element is the fact that it
can only hold a single Windows Forms control. To compensate, you could use a Windows
Forms container control. Unfortunately, Windows Forms container controls don’t support
XAML content models, so you’ll need to fill in the contents of the container control program-
matically.

A much better approach is to create a Windows Forms user control. This user control can
be defined in a separate assembly that you reference, or you can add it directly to your WPF
project (using the familiar Add ➤ New Item command). This gives you the best of both
worlds—you have full design support to build your user control, and an easy way to integrate
it into your WPF window.

In fact, using a user control gives you an extra layer of abstraction similar to using separate
windows. That’s because the containing WPF window won’t be able to access the individual con-
trols in your user control. Instead, it will interact with the higher-level properties you’ve added to

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS918

9551CH25 2/8/08 2:16 PM Page 918

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

your user control, which can then modify the controls inside. This makes your code better
encapsulated and simpler because it limits the points of interaction between the WPF window
and your Windows Forms content. It also makes it easier to migrate to a WPF-only solution in
the future, simply by creating a WPF user control that has the same properties and swapping
that in place of the WindowsFormsHost. (And once again, you can further improve the design
and flexibility of your application by moving the user control into a separate class library
assembly.)

■Note Technically, your WPF window can access the controls in a user control by accessing the Controls
collection of the user control. However, in order to use this back door you need to write error-prone lookup
code that searches for specific controls using a string name. That’s always a bad idea.

As long as you’re creating a user control, it’s a good idea to make it behave as much like
WPF content as possible so it’s easier to integrate into your WPF window layout. For example,
you may want to consider using the FlowLayoutPanel and TableLayoutPanel container con-
trols so that the content inside your user controls flows to fit its dimensions. Simply add the
appropriate control and set its Dock property to DockStyle.Fill. Then place the controls you
want to use inside. For more information about using the Windows Forms layout controls
(which are subtly different than the WPF layout panels), refer to my book Pro .NET 2.0
Windows Forms and Custom Controls in C# (Apress, 2005).

ACTIVEX INTEROPERABILITY

WPF has no direct support for ActiveX interoperability. However, Windows Forms has extensive support in
the form of runtime callable wrappers (RCWs), dynamically generated interop classes that allow a managed
Windows Forms application to host an Active component. Although there are .NET-to-COM quirks that can
derail some controls, this approach works reasonably well for most scenarios, and it works seamlessly if
the person who creates the component also provides a primary interop assembly, which is a handcrafted,
fine-tuned RCW that’s guaranteed to dodge interop issues.

So how does this help you if you need to design a WPF application that uses an ActiveX control? In this
case, you need to layer two levels of interoperability. First, you place the ActiveX control in a Windows Forms
user control or form. You then place that user control in your WPF window, or show the form from your WPF
application.

Hosting WPF Controls in Windows Forms
The reverse approach—hosting WPF content in a form built with Windows Forms—is just as
easy. In this situation, you don’t need the WindowsFormsHost class. Instead, you use the
System.Windows.Forms.Integration.ElementHost class, which is part of the WindowsForms-
Integration.dll assembly.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 919

9551CH25 2/8/08 2:16 PM Page 919

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The ElementHost has the ability to wrap any WPF element. However, the ElementHost
is a genuine Windows Forms control, which means you can place it in a form alongside other
Windows Forms content. In some respects, the ElementHost is more straightforward than the
WindowsFormsHost, because every control in Windows Forms is displayed as a separate
hwnd. Thus, it’s not terribly difficult for one of these windows to be rendered with WPF instead
of User32/GDI+.

Visual Studio provides some design-time support for the ElementHost control, but only if
you place your WPF content in a WPF user control. Here’s what to do:

1. Right-click the project name in the Solution Explorer, and choose Add ➤ New Item.
Pick the User Control (WPF) template, supply a name for your custom component
class, and click Add.

■Note This example assumes you’re placing the WPF user control directly in your Windows Forms project.
If you have a complex user control, you must choose to use a more structured approach and place it in a
separate class library assembly.

2. Add the WPF controls you need to your new WPF user control. Visual Studio gives you
the usual level of design-time support for this step, so you can drag WPF controls from
the Toolbox, configure them with the Properties window, and so on.

3. When you’re finished, rebuild your project (choose Build ➤ Build Solution). You can’t
use your WPF user control in a form until you’ve compiled it.

4. Open to the Windows Forms form where you want to add your WPF user control (or
create a new form by right-clicking the project in the Solution Explorer and choosing
Add ➤ Windows Form).

5. To place the WPF user control in a form, you need the help of the ElementHost control.
The ElementHost control appears on the WPF Interoperability tab of the Toolbox. Drag
it onto your form, and size it accordingly.

■Tip For better separation, it’s a good idea to add the ElementHost to a specific container rather than
directly to the form. This makes it easier to separate your WPF content from the rest of the window. Typically,
you’ll use the Panel, FlowLayoutPanel, or TableLayoutPanel.

6. To choose the content for the ElementHost, you use the smart tag. If the smart tag
isn’t visible, you can show it by selecting the ElementHost and clicking the arrow in the
top-right corner. In the smart tag you’ll find a drop-down list named Select Hosted
Content. Using this list, you can pick the WPF user control you want to use, as shown
in Figure 25-5.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS920

9551CH25 2/8/08 2:16 PM Page 920

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 25-5. Selecting WPF content for an ElementHost

7. Although the WPF user control will appear in your form, you can’t edit its content
there. To jump to the corresponding XAML file in a hurry, click the Edit Hosted Content
link in the ElementHost smart tag.

Technically, the ElementHost can hold any type of WPF element. However, the Element-
Host smart tag expects you to choose a user control that’s in your project (or a referenced
assembly). If you want to use a different type of control, you’ll need to write code that adds it
to the ElementHost programmatically.

Access Keys, Mnemonics, and Focus
The WPF and Windows Forms interoperability works because the two types of content can be
rigorously separated. Each region handles its own rendering and refreshing and interacts with
the mouse independently. However, this segregation isn’t always appropriate. For example, it
runs into potential problems with keyboard handling, which sometimes needs to be global
across an entire form. Here are some examples:

• When you tab from the last control in one region, you expect focus to move to the first
control in the next region.

• When you use a shortcut key to trigger a control (such as a button), you expect that but-
ton to respond no matter what region of the window it’s located in.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 921

9551CH25 2/8/08 2:16 PM Page 921

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

• When you use a label mnemonic, you expect the focus to move to the linked control.

• Similarly, if you suppress a keystroke using a preview event, you don’t expect the corre-
sponding key event to occur in either region, no matter what control currently has
focus.

The good news is that all these expected behaviors work without any customization
needed. For example, consider the WPF window shown in Figure 25-6. It includes two WPF
buttons (top and bottom) and a Windows Forms button (in the middle).

Figure 25-6. Three buttons with shortcut keys

Here’s the markup:

<Grid>
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>
<Button Click="cmdClicked">Use Alt+_A</Button>
<WindowsFormsHost Grid.Row="1">
<wf:Button Text="Use Alt+&B" Click="cmdClicked"></wf:Button>

</WindowsFormsHost>
<Button Grid.Row="2" Click="cmdClicked">Use Alt+_C</Button>

</Grid>

■Note The syntax for identifying accelerator keys is slightly different in WPF (which uses an underscore)
than in Windows Forms. Windows Forms uses the & character, which must be escaped as & in XML
because it’s a special character.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS922

9551CH25 2/8/08 2:16 PM Page 922

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When this window first appears, the text in all buttons is normal. When the user presses
and holds the Alt key, all three shortcuts are underlined. The user can then trigger any one of
the three buttons by pressing the A, B, or C key (while holding down Alt).

The same magic works with mnemonics, which allows labels to forward the focus to a
nearby control (typically a text box). You can also tab through the three buttons in this window
as though they were all WPF-defined controls, moving from top to bottom. Finally, the same
example continues to work if you host a combination of Windows Forms and WPF content in a
Windows Forms form.

Keyboard support isn’t always this pretty, and there are a few focus-related quirks that you
may run into. Here’s a list of issues to watch out for:

• Although WPF supports a keystroke forwarding system to make sure every element and
control gets a chance to handle keyboard input, the keyboard handling models of WPF
and Windows Forms still differ. For that reason, you won’t receive keyboard events from
the WindowsFormsHost when the focus is in the Windows Forms content inside. Simi-
larly, if the user moves from one control to another inside a WindowsFormsHost, you
won’t receive the GotFocus and LostFocus events from the WindowsFormsHost.

■Note Incidentally, the same is true for WPF mouse events. For example, the MouseMove event won’t fire
for the WindowsFormsHost while you move the mouse inside its bounds.

• Windows Forms validation won’t fire when you move the focus from a control inside
the WindowsFormsHost to an element outside the WindowsFormsHost. Instead, it will
only fire when you move from one control to another inside the WindowsFormsHost.
(When you remember that the WPF content and the Windows Forms content are essen-
tially separated windows, this makes perfect sense because it’s the same behavior you
experience if you switch between different applications.)

• If the window is minimized while the focus is somewhere inside a WindowsFormsHost,
the focus may not be restored when the window is restored.

Property Mapping
One of the most awkward details in interoperability between WPF and Windows Forms is the
way they use similar but different properties. For example, WPF controls have a Background
property that allows you to supply a brush that paints the background. Windows Forms con-
trols use a simpler BackColor property that fills the background with a color based on an
ARGB value. Obviously, there’s a disconnect between these two properties, even though
they’re often used to set the same aspect of a control’s appearance.

Most of the time, this isn’t a problem. As a developer, you’ll simply be forced to switch
between both APIs, depending on the object you’re working with. However, WPF adds a little
bit of extra support through a feature called property translators.

Property translators won’t allow you to write WPF-style markup and have it work with
Windows Forms controls. In fact, property translators are quite modest. They simply convert a

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 923

9551CH25 2/8/08 2:16 PM Page 923

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

few basic properties of the WindowsFormsHost (or ElementHost) from one system to another,
so that they can be applied on the child control.

For example, if you set the WindowsFormsHost.IsEnabled property, the Enabled property
of the control inside is modified accordingly. This isn’t a necessary feature (you could do
much the same thing by modifying the Enabled property of the child directly, instead of the
IsEnabled property of the container), but it can often make your code a bit clearer.

To make this work, the WindowsFormsHost and ElementHost classes both have a
PropertyMap collection, which is responsible for associating a property name with a delegate
that identifies a method that performs the conversion. By using a method, the property map
system is able to handle sticky conversions such as BackColor to Background and vice versa.
By default, each is filled with a default set of associations. (You’re free to create your own or
replace the existing ones, but this degree of low-level fiddling seldom makes sense).

Table 25-2 lists the standard property map conversions that are provided by the Windows-
FormHost and ElementHost classes.

Table 25-2. Property Maps

WPF Property Windows Forms Comments
Property

Foreground ForeColor Converts any ColorBrush into the corresponding
Color object. In the case of a GradientBrush, the
color of the GradientStop with the lowest offset
value is used instead. For any other type of brush,
the ForeColor is not changed and the default
is used.

Background BackColor or Converts any SolidColorBrush to the corresponding
BackgroundImage Color object. Transparency is not supported. If a

more exotic brush is used, the WindowsFormsHost
creates a bitmap and assigns it to the Background-
Image property instead.

Cursor Cursor

FlowDirection RightToLeft

FontFamily, FontSize, Font
FontStretch, FontStyle,
FontWeight

IsEnabled Enabled

Padding Padding

Visibility Visible Converts a value from the Visibility enumeration
into a Boolean value. If Visibility is Hidden, the
Visible property is set to true, so that the content
size can be used for layout calculations but the
WindowsFormsHost does not draw the content.
If Visibility is Collapsed, the Visible property is not
changed (so it remains with its currently set or
default value) and the WindowsFormsHost does
not draw the content.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS924

9551CH25 2/8/08 2:16 PM Page 924

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Property maps work dynamically. For example, if the WindowsFormsHost.FontFamily property is
changed, a new Font object is constructed and applied to the Font property of the child control.

WIN32 INTEROPERABILITY

With Windows Forms entering its twilight years and no major feature enhancements planned, it’s hard to
remember that Windows Forms was a new kid on the block just a few years ago. WPF certainly doesn’t limit
its interoperability to Windows Forms application—if you want to work with the Win32 API or place WPF
content in a C++ MFC application, you can do that too.

You can host Win32 in WPF using the System.Windows.Interop.HwndHost class, which works analo-
gously to the WindowsFormsHost class. The same limitations that apply to WindowsFormsHost apply to
HwndSource (for example, the airspace rule, focus quirks, and so on). In fact, WindowsFormsHost derives
from HwndHost.

The HwndHost is your gateway to the traditional world of C++ and MFC applications. However, it also
allows you to integrate managed DirectX content. Currently, WPF does not include any DirectX interoperability
features, and you can’t use the DirectX libraries to render content in a WPF window. However, you can use
DirectX to build a separate window and then host that inside a WPF window using the HwndHost. Although
DirectX is far beyond the scope of this book (and an order of magnitude more complex than WPF program-
ming), you can download the managed DirectX libraries at http://msdn.microsoft.com/directx.

The complement of HwndHost is the HwndSource class. While HwndHost allows you to place any hwnd
in a WPF window, HwndSource wraps any WPF visual or element in an hwnd so it can be inserted in a
Win32-based application, such as an MFC application. The only limitation is that your application needs a
way to access the WPF libraries, which are managed .NET code. This isn’t a trivial task. If you’re using a C++
application, the simplest approach is to use the Managed Extensions for C++. You can then create your WPF
content, create an HwndSource to wrap it, set the HwndHost.RootVisual property to the top-level element,
and then place the HwndSource into your window.

You’ll find much more content to help you with complex integration projects and legacy code online and
in the Visual Studio help.

The Last Word
In this chapter you considered the interoperability support that allows WPF applications to
show Windows Forms content (and vice versa). Then you examined the WindowsFormsHost
element, which lets you embed a Windows Forms control in a WPF window, and the Element-
Host, which lets you embed a WPF element in a form. Both of these classes provide a simple,
effective way to manage the transition from Windows Forms to WPF.

CHAPTER 25 ■ INTERACTING WITH WINDOWS FORMS 925

9551CH25 2/8/08 2:16 PM Page 925

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://msdn.microsoft.com/directx

9551CH25 2/8/08 2:16 PM Page 926

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Multithreading and Add-Ins

As you’ve discovered over the previous 25 chapters, WPF revolutionizes almost all the con-
ventions of Windows programming. It introduces a new approach to everything from defining
the content in a window to rendering 3D graphics. WPF even introduces a few new concepts
that aren’t obviously UI-focused, such as dependency properties and routed events.

Of course, a great number of coding tasks fall outside the scope of user interface
programming and haven’t changed in the WPF world. For example, WPF applications use the
same classes as other .NET applications when contacting databases, manipulating files, and
performing diagnostics. Also, a few features fall somewhere between traditional .NET pro-
gramming and WPF. These features aren’t strictly limited to WPF applications, but they have
specific WPF considerations. In this chapter, you’ll take a look at the two notable examples.

First, you’ll look at multithreading, which allows your WPF application to perform
background work while keeping a responsive user interface. To design a safe and stable multi-
threading application, you need to understand WPF’s threading rules. Next, you’ll try the new
add-in model, which allows your WPF application to dynamically load and use separately
compiled components with useful bits of functionality.

■Note Both multithreading and the add-in model are advanced topics that could occupy an entire book
worth of material; therefore, you won’t get an exhaustive examination of either feature in this chapter. How-
ever, you will get the basic outline you need to use them with WPF, and you’ll establish a solid foundation for
future exploration.

Multithreading
Multithreading is the art of executing more than one piece of code at once. The goal of multi-
threading is usually to create a more responsive interface—one that doesn’t freeze up while it’s
in the midst of other work—although you can also use multithreading to take better advan-
tage of dual-core CPUs when executing a processor-intensive algorithm or to perform other
work during a high-latency operation (for example, to perform some calculations while wait-
ing for a response from a web service).

Early in the design of WPF, the creators considered a new threading model. This model—
called thread rental—allowed user interface objects to be accessed on any thread. To reduce
the cost of locking, groups of related objects could be grouped under a single lock (called a
context). Unfortunately, this design introduced additional complexity for single-threaded 927

C H A P T E R 2 6

9551Ch26 2/8/08 2:16 PM Page 927

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

applications (which needed to be context-aware) and made it more difficult to interoperate
with legacy code (like the Win32 API). Ultimately, the plan was abandoned.

The result is that WPF supports a single-threaded apartment model that’s very much like
the one used in Windows Forms applications. It has a few core rules:

• WPF elements have thread affinity. The thread that creates them owns them, and other
threads can’t interact with them directly. (An element is a WPF object that’s displayed in
a window.)

• WPF objects that have thread affinity derive from DispatcherObject at some point in
their class hierarchy. DispatcherObject includes a small set of members that allow you
to verify whether code is executing on the right thread to use a specific object and (if
not) switch it over.

• In practice, one thread runs your entire application and owns all WPF objects. Although
you could use separate threads to show separate windows, this design is rare.

In the following sections, you’ll explore the DispatcherObject class and learn the simplest
way to perform an asynchronous operation in a WPF application.

The Dispatcher
A dispatcher manages the work that takes place in a WPF application. The dispatcher owns the
application thread and manages a queue of work items. As your application runs, the dispatcher
accepts new work requests and executes one at a time.

Technically, a dispatcher is created the first time you instantiate a class that derives from
DispatcherObject on a new thread. If you create separate threads and use them to show sepa-
rate windows, you’ll wind up with more than one dispatcher. However, most applications keep
things simple and stick to one user interface thread and one dispatcher. They then use multi-
threading to manage data operations and other background tasks.

■Note The dispatcher is an instance of the System.Windows.Threading.Dispatcher class. All the dispatcher-
related objects are also found in the small System.Windows.Threading namespace, which is new to WPF.
(The core threading classes that have existed since .NET 1.0 are found in System.Threading.)

You can retrieve the dispatcher for the current thread using the static Dispatcher.Current-
Dispatcher property. Using this Dispatcher object, you can attach event handlers that respond
to unhandled exceptions or respond when the dispatcher shuts down. You can also get a refer-
ence to the System.Threading.Thread that the dispatcher controls, shut down the dispatcher,
or marshal code to the correct thread (a technique you’ll see in the next section).

The DispatcherObject
Most of the time, you won’t interact with a dispatcher directly. However, you’ll spend plenty of
time using instances of DispatcherObject, because every visual WPF object derives from this
class. A DispatcherObject is simply an object that’s linked to a dispatcher—in other words, an
object that’s bound to the dispatcher’s thread.

CHAPTER 26 ■ MULTITHREADING ADD-INS928

9551Ch26 2/8/08 2:16 PM Page 928

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The DispatcherObject introduces just three members, as listed in Table 26-1.

Table 26-1. Members of the DispatcherObject Class

Name Description

Dispatcher Returns the dispatcher that’s managing this object

CheckAccess() Returns true if the code is on the right thread to use the object; returns
false otherwise

VerifyAccess() Does nothing if the code is on the right thread to use the object; throws
an InvalidOperationException otherwise

WPF objects call VerifyAccess() frequently to protect themselves. They don’t call
VerifyAccess() in response to every operation (because that would impose too great a
performance overhead), but they do call it often enough that you’re unlikely to use an object
from the wrong thread for very long.

For example, the following code responds to a button click by creating a new
System.Threading.Thread object. It then uses that thread to launch a small bit of code that
changes a text box in the current window.

private void cmdBreakRules_Click(object sender, RoutedEventArgs e)
{

Thread thread = new Thread(UpdateTextWrong);
thread.Start();

}

private void UpdateTextWrong()
{

// Simulate some work taking place with a five-second delay.
Thread.Sleep(TimeSpan.FromSeconds(5));

txt.Text = "Here is some new text.";
}

This code is destined to fail. The UpdateTextWrong() method will be executed on a new
thread, and that thread isn’t allowed to access WPF objects. In this case, the TextBox object
catches the violation by calling VerifyAccess(), and an InvalidOperationException is thrown.

To correct this code, you need to get a reference to the dispatcher that owns the TextBox
object (which is the same dispatcher that owns the window and all the other WPF objects in the
application). Once you have access to that dispatcher, you can call Dispatcher.BeginInvoke() to
marshal some code to the dispatcher thread. Essentially, BeginInvoke() schedules your code as a
task for the dispatcher. The dispatcher then executes that code.

Here’s the corrected code:

private void cmdFollowRules_Click(object sender, RoutedEventArgs e)
{

Thread thread = new Thread(UpdateTextRight);
thread.Start();

}

CHAPTER 26 ■ MULTITHREADING ADD-INS 929

9551Ch26 2/8/08 2:16 PM Page 929

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

private void UpdateTextRight()
{

// Simulate some work taking place with a five-second delay.
Thread.Sleep(TimeSpan.FromSeconds(5));

// Get the dispatcher from the current window, and use it to invoke
// the update code.
this.Dispatcher.BeginInvoke(DispatcherPriority.Normal,
(ThreadStart) delegate() {

txt.Text = "Here is some new text.";
}

);
}

The Dispatcher.BeginInvoke() method takes two parameters. The first indicates the priority
of the task. In most cases, you’ll use DispatcherPriority.Normal, but you can also use a lower pri-
ority if you have a task that doesn’t need to be completed immediately and that should be kept
on hold until the dispatcher has nothing else to do. For example, this might make sense if you
need to display a status message about a long-running operation somewhere in your user inter-
face. You can use DispatcherPriority.ApplicationIdle to wait until the application is finished all
other work or the even more laid-back DispatcherPriority.SystemIdle to wait until the entire
system is at rest and the CPU is idle.

You can also use an above-normal priority to get the dispatcher’s attention right away.
However, it’s recommended that you leave higher priorities to input messages (such as key
presses). These need to be handled nearly instantaneously, or the application will feel slug-
gish. On the other hand, adding a few milliseconds of extra time to a background operation
won’t be noticeable, so a priority of DispatcherPriority.Normal makes more sense in this
situation.

The second BeginInvoke() parameter is a delegate that points to the method with the
code you want to execute. This could be a method somewhere else in your code, or you
can use an anonymous method to define your code inline (as in this example). The inline
approach works well for simple operations, like this single-line update. However, if you need
to use a more complex process to update the user interface, it’s a good idea to factor this code
into a separate method.

■Note The BeginInvoke() method also has a return value, which isn’t used in the earlier example.
BeginInvoke() returns a DispatcherOperation object, which allows you to follow the status of your marshaling
operation and determine when your code has actually been executed. However, the DispatcherOperation is
rarely useful, because the code you pass to BeginInvoke() should take very little time.

Remember, if you’re performing a time-consuming background operation, you need
to perform this operation on a separate thread and then marshal its result to the dispatcher
thread (at which point you’ll update the user interface or change a shared object). It makes no
sense to perform your time-consuming code in the method that you pass to BeginInvoke().

CHAPTER 26 ■ MULTITHREADING ADD-INS930

9551Ch26 2/8/08 2:16 PM Page 930

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

For example, this slightly rearranged code still works but is impractical:

private void UpdateTextRight()
{

// Get the dispatcher from the current window.
this.Dispatcher.BeginInvoke(DispatcherPriority.Normal,
(ThreadStart) delegate() {

// Simulate some work taking place.
Thread.Sleep(TimeSpan.FromSeconds(5));

txt.Text = "Here is some new text.";
}

);
}

The problem here is that all the work takes place on the dispatcher thread. That means
this code ties up the dispatcher in the same way a non-multithreaded application would.

■Note The dispatcher also provides an Invoke() method. Like BeginInvoke(), Invoke() marshals the code
you specify to the dispatcher thread. But unlike BeginInvoke(), Invoke() stalls your thread until the dispatcher
executes your code. You might use Invoke() if you need to pause an asynchronous operation until the user
has supplied some sort of feedback. For example, you could call Invoke() to run a snippet of code that shows
an OK/Cancel dialog box. After the user clicks a button and your marshaled code completes, the Invoke()
method will return, and you can act upon the user’s response.

The BackgroundWorker
You can perform asynchronous operations in many ways. You’ve already seen one no-frills
approach—creating a new System.Threading.Thread object by hand, supplying your asyn-
chronous code, and launching it with the Thread.Start() method. This approach is powerful,
because the Thread object doesn’t hold anything back. You can create dozens of threads at
will, set their priorities, control their status (for example, pausing, resuming, and aborting
them), and so on. However, this approach is also a bit dangerous. If you access shared data,
you need to use locking to prevent subtle errors. If you create threads frequently or in large
numbers, you’ll generate additional, unnecessary overhead.

The techniques to write good multithreading code—and the .NET classes you’ll use—aren’t
WPF-specific. If you’ve written multithreaded code in a Windows Forms application, you can
use the same techniques in the WPF world. In the remainder of this chapter, you’ll consider
one of the simplest and safest approaches: the System.ComponentModel.BacgroundWorker
component.

■Tip To see several different approaches, ranging from simple to more complex, you may want to refer to
my book Programming .NET 2.0 Windows Forms and Custom Controls in C# (Apress, 2005).

CHAPTER 26 ■ MULTITHREADING ADD-INS 931

9551Ch26 2/8/08 2:16 PM Page 931

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The BackgroundWorker was introduced in .NET 2.0 to simplify threading considerations
in Windows Forms applications. However, the BackgroundWorker is equally at home in WPF.
The BackgroundWorker component gives you a nearly foolproof way to run a time-consuming
task on a separate thread. It uses the dispatcher behind the scenes and abstracts away the
marshaling issues with an event-based model.

As you’ll see, the BackgroundWorker also supports two frills: progress events and cancel
messages. In both cases the threading details are hidden, making for easy coding.

■Note The BackgroundWorker is perfect if you have a single asynchronous task that runs in the back-
ground from start to finish (with optional support for progress reporting and cancellation). If you have
something else in mind—for example, an asynchronous task that runs throughout the entire life of your
application or an asynchronous task that communicates with your application while it does its work, you’ll
need to design a customized solution using .NET’s threading support.

A Simple Asynchronous Operation
To try the BackgroundWorker, it helps to consider a sample application. The basic ingredient
for any test is a time-consuming process. The following example uses a common algorithm for
finding prime numbers in a given range called the sieve of Eratosthenes, which was invented
by Eratosthenes himself in about 240 BC. With this algorithm, you begin by making a list of all
the integers in a range of numbers. You then strike out the multiples of all primes less than or
equal to the square root of the maximum number. The numbers that are left are the primes.

In this example, I won’t go into the theory that proves the sieve of Eratosthenes works or
show the fairly trivial code that performs it. (Similarly, don’t worry about optimizing it or com-
paring it against other techniques.) However, you will see how to perform the sieve of
Eratosthenes algorithm asynchronously.

The full code is available with the online examples for this chapter. It takes this form:

public class Worker
{

public static int[] FindPrimes(int fromNumber, int toNumber)
{

// Find the primes between fromNumber and toNumber,
// and return them as an array of integers.

}
}

The FindPrimes() method takes two parameters that delimit a range of numbers. The
code then returns an integer array with all the prime numbers that occur in that range.

Figure 26-1 shows the example we’re building. This window allows the user to choose the
range of numbers to search. When the user clicks Find Primes, the search begins, but it takes
place in the background. When the search is finished, the list of prime numbers appears in the
list box.

CHAPTER 26 ■ MULTITHREADING ADD-INS932

9551Ch26 2/8/08 2:16 PM Page 932

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 26-1. A completed prime number search

Creating the BackgroundWorker
To use the BackgroundWorker, you begin by creating an instance. Here, you have two options:

• You can create the BackgroundWorker in your code and attach all the event handlers
programmatically.

• You can declare the BackgroundWorker in your XAML. The advantage of this approach
is that you can hook up your event handlers using attributes. Because the Background-
Worker isn’t a visible WPF element, you can’t place it just anywhere. Instead you need to
declare it as a resource for your window. (You’ll learn all about resources in Chapter 11.)

Both approaches are equivalent. The downloadable sample uses the second approach.
The first step is to make the System.ComponentModel namespace accessible in your XAML
document through a namespace import. To do this, you need to use the namespace mapping
technique you learned about in Chapter 2:

<Window x:Class="Multithreading.BackgroundWorkerTest"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:cm="clr-namespace:System.ComponentModel;assembly=System"
... >

CHAPTER 26 ■ MULTITHREADING ADD-INS 933

9551Ch26 2/8/08 2:16 PM Page 933

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Now you can create an instance of the BackgroundWorker in the Window.Resources
collection. When doing this, you need to supply a key name so the object can be retrieved
later. In this example, the key name is backgroundWorker:

<Window.Resources>
<cm:BackgroundWorker x:Key="backgroundWorker"></cm:BackgroundWorker>

</Window.Resources>

The advantage of declaring the BackgroundWorker in the Window.Resources section is
that you can set its properties and attach its event handlers using attributes. For example,
here’s the BackgroundWorker tag you’ll end up with at the end of this example, which enables
support for progress notification and cancellation and attaches event handlers to the DoWork,
ProgressChanged, and RunWorkerCompleted events:

<cm:BackgroundWorker x:Key="backgroundWorker"
WorkerReportsProgress="True" WorkerSupportsCancellation="True"
DoWork="backgroundWorker_DoWork"
ProgressChanged="backgroundWorker_ProgressChanged"
RunWorkerCompleted="backgroundWorker_RunWorkerCompleted">

</cm:BackgroundWorker>

To get access to this resource in your code, you need to pull it out of the Resources collec-
tion. In this example, the window performs this step in its constructor so that all your event
handling code can access it more easily:

public partial class BackgroundWorkerTest : Window
{

private BackgroundWorker backgroundWorker;

public BackgroundWorkerTest()
{

InitializeComponent();
backgroundWorker =
((BackgroundWorker)this.FindResource("backgroundWorker"));

}

...
}

■Note You’ll learn much more about the Resources collection in Chapter 11.

Running the BackgroundWorker
The first step to using the BackgroundWorker with the prime number search example is to
create a custom class that allows you to transmit the input parameters to the Background-
Worker. When you call BackgroundWorker.RunWorkerAsync(), you can supply any object,

CHAPTER 26 ■ MULTITHREADING ADD-INS934

9551Ch26 2/8/08 2:16 PM Page 934

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

which will be delivered to the DoWork event. However, you can supply only a single object, so
you need to wrap the to and from numbers into one class, as shown here:

public class FindPrimesInput
{

public int From
{ get; set; }

public int To
{ get; set; }

public FindPrimesInput(int from, int to)
{

From = from;
To = to;

}
}

To start the BackgroundWorker on its way, you need to call the BackgroundWorker.Run-
WorkerAsync() method and pass in the FindPrimesInput object. Here’s the code that does this
when the user clicks the Find Primes button:

private void cmdFind_Click(object sender, RoutedEventArgs e)
{

// Disable this button and clear previous results.
cmdFind.IsEnabled = false;
cmdCancel.IsEnabled = true;
lstPrimes.Items.Clear();

// Get the search range.
int from, to;
if (!Int32.TryParse(txtFrom.Text, out from))
{

MessageBox.Show("Invalid From value.");
return;

}
if (!Int32.TryParse(txtTo.Text, out to))
{

MessageBox.Show("Invalid To value.");
return;

}

// Start the search for primes on another thread.
FindPrimesInput input = new FindPrimesInput(from, to);
backgroundWorker.RunWorkerAsync(input);

}

CHAPTER 26 ■ MULTITHREADING ADD-INS 935

9551Ch26 2/8/08 2:16 PM Page 935

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When the BackgroundWorker begins executing, it grabs a free thread from the CLR thread
pool and then fires the DoWork event from this thread. You handle the DoWork event and
begin your time-consuming task. However, you need to be careful not to access shared data
(such as fields in your window class) or user interface objects. Once the work is complete, the
BackgroundWorker fires the RunWorkerCompleted event to notify your application. This
event fires on the dispatcher thread, which allows you to access shared data and your user
interface, without incurring any problems.

Once the BackgroundWorker acquires the thread, it fires the DoWork event. You can
handle this event to call the Worker.FindPrimes() method. The DoWork event provides a
DoWorkEventArgs object, which is the key ingredient for retrieving and returning information.
You retrieve the input object through the DoWorkEventArgs.Argument property and return
the result by setting the DoWorkEventArgs.Result property.

private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{

// Get the input values.
FindPrimesInput input = (FindPrimesInput)e.Argument;

// Start the search for primes and wait.
// This is the time-consuming part, but it won't freeze the
// user interface because it takes place on another thread.
int[] primes = Worker.FindPrimes(input.From, input.To);

// Return the result.
e.Result = primes;

}

Once the method completes, the BackgroundWorker fires the RunWorkerCompleted-
EventArgs on the dispatcher thread. At this point, you can retrieve the result from the
RunWorkerCompletedEventArgs.Result property. You can then update the interface and
access window-level variables without worry.

private void backgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
if (e.Error != null)
{

// An error was thrown by the DoWork event handler.
MessageBox.Show(e.Error.Message, "An Error Occurred");

}
else
{

int[] primes = (int[])e.Result;
foreach (int prime in primes)
{

lstPrimes.Items.Add(prime);
}

}

CHAPTER 26 ■ MULTITHREADING ADD-INS936

9551Ch26 2/8/08 2:16 PM Page 936

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

cmdFind.IsEnabled = true;
cmdCancel.IsEnabled = false;
progressBar.Value = 0;

}

Notice that you don’t need any locking code, and you don’t need to use the
Dispatcher.BeginInvoke() method. The BackgroundWorker takes care of these issues for you.

Behind the scenes, the BackgroundWorker uses a few multithreading classes that were
introduced in .NET 2.0, including AsyncOperationManager, AsyncOperation, and Synchro-
nizationContext. Essentially, the BackgroundWorker uses AsyncOperationManager to manage
the background task. The AsyncOperationManager has some built-in intelligence—namely,
it’s able to get the synchronization context for the current thread. In a Windows Forms appli-
cation, the AsyncOperationManager gets a WindowsFormsSynchronizationContext object,
whereas a WPF application gets a DispatcherSynchronizationContext object. Conceptually,
these classes do the same job, but their internal plumbing is different.

Tracking Progress
The BackgroundWorker also provides built-in support for tracking progress, which is useful
for keeping the client informed about how much work has been completed in a long-running
task.

To add support for progress, you need to first set the BackgroundWorker.Worker-
ReportsProgress property to true. Actually, providing and displaying the progress information
is a two-step affair. First, the DoWork event handling code needs to call the Background-
Worker.ReportProgress() method and provide an estimated percent complete (from 0% to
100%). You can do this as little or as often as you like. Every time you call ReportProgress(), the
BackgroundWorker fires the ProgressChanged event. You can react to this event to read the
new progress percentage and update the user interface. Because the ProgressChanged event
fires from the user interface thread, there’s no need to use Dispatcher.BeginInvoke().

The FindPrimes() method reports progress in 1% increments, using code like this:

int iteration = list.Length / 100;
for (int i = 0; i < list.Length; i++)
{

...

// Report progress only if there is a change of 1%.
// Also, don't bother performing the calculation if there
// isn't a BackgroundWorker or if it doesn't support
// progress notifications.
if ((i % iteration == 0) &&
(backgroundWorker != null) && backgroundWorker.WorkerReportsProgress)

{
backgroundWorker.ReportProgress(i / iteration);

}
}

CHAPTER 26 ■ MULTITHREADING ADD-INS 937

9551Ch26 2/8/08 2:16 PM Page 937

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Once you’ve set the BackgroundWorker.WorkerReportsProgress property, you can
respond to these progress notifications by handling the ProgressChanged event. In this
example, a progress bar is updated accordingly:

private void backgroundWorker_ProgressChanged(object sender,
ProgressChangedEventArgs e)

{
progressBar.Value = e.ProgressPercentage;

}

Figure 26-2 shows the progress meter while the task is in progress.

Figure 26-2. Tracking progress for an asynchronous task

Supporting Cancellation
It’s just as easy to add support for canceling a long-running task with the BackgroundWorker.
The first step is to set the BackgroundWorker.WorkerSupportsCancellation property to true.

To request a cancellation, your code needs to call the BackgroundWorker.CancelAsync()
method. In this example, the cancellation is requested when a Cancel button is clicked:

private void cmdCancel_Click(object sender, RoutedEventArgs e)
{

backgroundWorker.CancelAsync();
}

Nothing happens automatically when you call CancelAsync(). Instead, the code that’s
performing the task needs to explicitly check for the cancel request, perform any required
cleanup, and return. Here’s the code in the FindPrimes() method that checks for cancellation
requests just before it reports progress:

CHAPTER 26 ■ MULTITHREADING ADD-INS938

9551Ch26 2/8/08 2:16 PM Page 938

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

for (int i = 0; i < list.Length; i++)
{

...
if ((i % iteration) && (backgroundWorker != null))
{

if (backgroundWorker.CancellationPending)
{

// Return without doing any more work.
return;

}

if (backgroundWorker.WorkerReportsProgress)
{

backgroundWorker.ReportProgress(i / iteration);
}

}
}

The code in your DoWork event handler also needs to explicitly set the DoWork-
EventArgs.Cancel property to true to complete the cancellation. You can then return from
that method without attempting to build up the string of primes.

private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{

FindPrimesInput input = (FindPrimesInput)e.Argument;
int[] primes = Worker.FindPrimes(input.From, input.To,
backgroundWorker);

if (backgroundWorker.CancellationPending)
{

e.Cancel = true;
return;

}

// Return the result.
e.Result = primes;

}

Even when you cancel an operation, the RunWorkerCompleted event still fires. At this
point, you can check whether the task was cancelled and handle it accordingly.

private void backgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
if (e.Cancelled)
{

MessageBox.Show("Search cancelled.");
}
else if (e.Error != null)

CHAPTER 26 ■ MULTITHREADING ADD-INS 939

9551Ch26 2/8/08 2:16 PM Page 939

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

{
// An error was thrown by the DoWork event handler.
MessageBox.Show(e.Error.Message, "An Error Occurred");

}
else
{

int[] primes = (int[])e.Result;
foreach (int prime in primes)
{

lstPrimes.Items.Add(prime);
}

}
cmdFind.IsEnabled = true;
cmdCancel.IsEnabled = false;
progressBar.Value = 0;

}

Now the BackgroundWorker component allows you to start a search and end it prematurely.

Application Add-Ins
Add-ins (also known as plug-ins) are separately compiled components that your application
can find, load, and use dynamically. Often, an application is designed to use add-ins so that it
can be enhanced in the future without needing to be modified, recompiled, and retested.
Add-ins also give you the flexibility to customize separate instances of an application for a
particular market or client. But the most common reason to use the add-in model is to allow
third-party developers to extend the functionality of your application. For example, add-ins in
Adobe Photoshop provide a wide range of picture-processing effects. Add-ins in Firefox pro-
vide enhanced web surfing features and entirely new functionality. In both cases, the add-ins
are created by third-party developers.

Since .NET 1.0, developers have had all the technology they need to create their own add-
in system. The two basic ingredients are interfaces (which allow you to define the contracts
through which the application interacts with the add-in and the add-in interacts with the
application) and reflection (which allows your application to dynamically discover and load
add-in types from a separate assembly). However, building an add-in system from scratch
requires a fair bit of work. You need to devise a way to locate add-ins, and you need to ensure
that they’re managed correctly (in other words, that they execute in a restricted security con-
text and can be unloaded when necessary).

.NET 3.5 introduces a prebuilt add-in model that uses the same infrastructure of inter-
faces and reflection. The key advantage of the add-in model is that you don’t need to write the
underlying plumbing for tasks such as discovery. The key disadvantage is the add-in model’s
sheer complexity. The designers of .NET have taken great care to make the add-in model flexi-
ble enough to handle a wide range of versioning and hosting scenarios. The end result is that
you must create at least seven (!) separate components to implement the add-in model in an
application, even if you don’t need to use its most sophisticated features.

CHAPTER 26 ■ MULTITHREADING ADD-INS940

9551Ch26 2/8/08 2:16 PM Page 940

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Add-in Pipeline
The heart of the add-in model is the add-in pipeline, which is a chain of components that
allows the hosting application to interact with an add-in (see Figure 26-3). At one end of the
pipeline is the hosting application. At the other end is the add-in. In between are the five
components that govern the interaction.

Figure 26-3. Communicating through the add-in pipeline

At first glance, this model seems a bit excessive. A simpler scenario would put a single
layer (the contract) between the application and the add-in. However, the additional layers
(the views and adapters) allow the add-in model to be much more flexible in certain situations
(as described in the sidebar “More Advanced Adapters”).

How the Pipeline Works
The contract is the cornerstone of the add-in pipeline. It includes one or more interfaces that
define how the host application can interact with its add-ins and how the add-ins can interact
with the host application. The contract assembly can also include custom serializable types
that you plan to use to transmit data between the host application and the add-in.

The add-in pipeline is designed with extensibility and flexibility in mind. It’s for this rea-
son that the host application and the add-in don’t directly use the contract. Instead, they use
their own respective versions of the contract, called views. The host application uses the host
view, while the add-in uses the add-in view. Typically, the view includes abstract classes that
closely match the interfaces in the contract.

Although they’re usually quite similar, the contracts and views are completely independ-
ent. It’s up to the adapters to link these two pieces together. The adapters perform this linkage
by providing classes that simultaneously inherit from the view classes and implement the
contract interfaces. Figure 26-4 shows this design.

Essentially, the adapters bridge the gap between the views and the contract interface.
They map calls on a view to calls on the contract interface. They also map calls on the contract
interface to the corresponding method on the view. This complicates the design somewhat
but adds an all-important extra layer of flexibility.

To understand how the adapters work, consider what happens when an application uses
an add-in. First, the host application calls one of the methods in the host view. But remember,
the host view is an abstract class. Behind the scenes, the application is actually calling a
method on the host adapter through the host view. (This is possible because the host adapter

CHAPTER 26 ■ MULTITHREADING ADD-INS 941

9551Ch26 2/8/08 2:16 PM Page 941

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

class derives from the host view class.) The host adapter then calls the corresponding method
in the contract interface, which is implemented by the add-in adapter. Finally, the add-in
adapter calls a method in the add-in view. This method is implemented by the add-in, which
performs the actual work.

Figure 26-4. Class relationships in the pipeline

MORE ADVANCED ADAPTERS

If you don’t have any specialized versioning or hosting needs, the adapters are fairly straightforward. They
simply pass the work along through the pipeline. However, the adapters are also an important extensibility
point for more sophisticated scenarios. One example is versioning. Obviously, you can independently update
an application or its add-ins without changing the way they interact, as long as you continue to use the same
interfaces in the contract. However, in some cases you might need to change the interfaces to expose new
features. This causes a bit of a problem, because the old interfaces must still be supported for backward
compatibility with old add-ins. After a few revisions, you’ll end up with a complex mess of similar yet differ-
ent interfaces, and the application will need to recognize and support them all.

With the add-in model, you can take a different approach to backward compatibility. Instead of provid-
ing multiple interfaces, you can provide a single interface in your contract and use adapters to create
different views. For example, a version 1 add-in can work with a version 2 application (which exposes a ver-
sion 2 contract) as long as you have an add-in adapter that spans the gap. Similarly, if you develop an add-in
that uses the version 2 contract, you can use it with the original version 1 application (and version 1 contract)
by using a different add-in adapter.

It’s possible to work similar magic if you have specialized hosting needs. For example, you can use
adapters to load add-ins with different isolation levels or even share them between applications. The hosting
application and the add-in don’t need to be aware of these details, because the adapters handle all the details.

Even if you don’t need to create custom adapters to implement specialized versioning and
hosting strategies, you still need to include these components. However, all your add-ins can
use the same view and adapter components. In other words, once you’ve gone to the trouble

CHAPTER 26 ■ MULTITHREADING ADD-INS942

9551Ch26 2/8/08 2:16 PM Page 942

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

of setting up the complete pipeline for one add-in, you can add more add-ins without much
work, as illustrated in Figure 26-5.

Figure 26-5. Multiple add-ins that use the same pipeline

In the following sections, you’ll learn how to implement the add-in pipeline for a WPF
application.

The Add-in Folder Structure
To use the add-in pipeline, you must follow a strict directory structure. This directory structure
is separate from the application. In other words, it’s perfectly acceptable to have your applica-
tion residing at one location and all the add-ins and pipeline components residing at another
location. However, the add-in components must be arranged in specifically named subdirec-
tories with respect to one another. For example, if your add-in system uses the root directory
c:\MyApp, you need the following subdirectories:

c:\MyApp\AddInSideAdapters

c:\MyApp\AddInViews

c:\MyApp\Contracts

c:\MyApp\HostSideAdapters

c:\MyApp\AddIns

Finally, the AddIns directory (shown last in this list) must have a separate subdirectory for
each add-in your application is using, such as c:\MyApp\AddIns\MyFirstAddIn, c:\MyApp\
AddIns\MySecondAddIn, and so on.

In this example, it’s assumed that the application executable is deployed in the c:\MyApp
subdirectory. In other words, the same directory does double duty as the application folder and
as the add-in root. This is a common deployment choice, but it’s certainly not a requirement.

CHAPTER 26 ■ MULTITHREADING ADD-INS 943

9551Ch26 2/8/08 2:16 PM Page 943

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note If you’ve been paying close attention to the pipeline diagrams, you may have noticed that there’s
a subdirectory for each component except the host-side views. That’s because the host views are used
directly by the host application, so they’re deployed alongside the application executable. (In this example,
that means they are in c:\MyApp.) The add-in views aren’t deployed in the same way, because it’s likely that
several add-ins will use the same add-in view. Thanks to the dedicated AddInViews folder, you need to
deploy (and update) just one copy of each add-in view assembly.

Preparing a Solution That Uses the Add-In Model
The add-in folder structure is mandatory. If you leave out one of the subdirectories listed in
the previous section, you’ll encounter a runtime exception when you search for add-ins.

Currently, Visual Studio doesn’t have a template for creating applications that use add-ins.
Thus, it’s up to you to create these folders and set up your Visual Studio project to use them.

Here’s the easiest approach to follow:

1. Create a top-level directory that will hold all the projects you’re about to create. For
example, you might name this directory c:\AddInTest.

2. Create a new WPF project for the host application in this directory. It doesn’t matter
what you name the project, but you must place it in the top-level directory you created
in step 1 (for example, c:\AddInTest\HostApplication).

3. Add a new class library project for each pipeline component, and place them all in the
same solution. At a bare minimum, you’ll need to create a project for one add-in (for
example, c:\AddInTest\MyAddIn), one add-in view (c:\AddInTest\MyAddInView), one
add-in side adapter (c:\AddInTest\MyAddInAdapter), one host view (c:\AddInTest\
HostView), and one host-side adapter (c:\AddInTest\HostAdapter). Figure 26-6 shows
an example from the downloadable code for this chapter, which you’ll consider in the
following sections. It includes an application (named HostApplication) and two add-
ins (named FadeImageAddIn and NegativeImageAddIn).

Figure 26-6. A solution that uses the add-in pipeline

CHAPTER 26 ■ MULTITHREADING ADD-INS944

9551Ch26 2/8/08 2:16 PM Page 944

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note Technically, it doesn’t matter what project names and directory names you use when you create the
pipeline components. The required folder structure, which you learned about in the previous section, will be
created when you build the application (provided you configure your project settings properly, as described
in the following two steps). However, to simplify the configuration process, it’s strongly recommended that
you create all the project directories in the top-level directory you established in step 1.

4. Now you need to create a build directory inside the top-level directory. This is where
your application and all the pipeline components will be placed once they’re com-
piled. It’s common to name this directory Output (as in c:\AddInTest\Output).

5. As you design the various pipeline components, you’ll modify the build path of
each one so that the component is placed in the right subdirectory. For example,
your add-in adapter should be compiled to a directory like c:\AddInTest\Output\
AddInSideAdapters. To modify the build path, double-click the Properties node in
the Solution Explorer. Then, click the Build tab. In the Output section (at the bottom),
you’ll find a text box named Output Path. You need to use a relative output path that
travels one level up the directory tree and then uses the Output directory. For example,
the output path for an add-in adapter would be ..\Output\AddInSideAdapters. As you
build each component in the following sections, you’ll learn which build path to
use. Figure 26-7 shows a preview of the final result, based on the solution shown in
Figure 26-6.

Figure 26-7. The folder structure for a solution that uses the add-in pipeline

There’s one more consideration when developing with the add-in model in Visual Studio:
references. Some pipeline components need to reference other pipeline components. How-
ever, you don’t want the referenced assembly to be copied with the assembly that contains the
reference. Instead, you rely on the add-in model’s directory system.

CHAPTER 26 ■ MULTITHREADING ADD-INS 945

9551Ch26 2/8/08 2:16 PM Page 945

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

To prevent a referenced assembly from being copied, you need to select the assembly in
the Solution Explorer (it appears under the References node). Then, set Copy Local to False
in the Properties window. As you build each component in the following sections, you’ll learn
which references to add.

■Tip Correctly configuring an add-in project can take a bit of work. To start off on the right foot, you can
use the add-in example that’s discussed in this chapter, which is available with the downloadable code for
this book.

An Application That Uses Add-Ins
In the following sections, you’ll create an application that uses the add-in model to support
different ways of processing a picture (Figure 26-8). When the application starts, it lists all the
add-ins that are currently present. The user can then select one of the add-ins from the list
and use it to modify the currently displayed picture.

Figure 26-8. An application that uses add-ins to manipulate a picture

The Contract
The starting point for defining the add-in pipeline for your application is to create a contract
assembly. The contract assembly defines two things:

• The interfaces that determine how the host will interact with the add-in and how the
add-in will interact with the host.

• Custom types that you use to exchange information between the host and add-in.
These types must be serializable.

CHAPTER 26 ■ MULTITHREADING ADD-INS946

9551Ch26 2/8/08 2:16 PM Page 946

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The example shown in Figure 26-8 uses an exceedingly simple contract. Plug-ins provide
a method named ProcessImageBytes() that accepts a byte array with image data, modifies it,
and returns the modified byte array. Here’s the contract that defines this method:

[AddInContract]
public interface IImageProcessorContract : IContract
{

byte[] ProcessImageBytes(byte[] pixels);
}

When creating a contract, you must derive from the IContract interface, and you must
decorate the class with the AddInContract attribute. Both the interface and the attribute are
found in the System.AddIn.Contract namespace. To have access to them in your contract
assembly, you must add a reference to the System.AddIn.Contract.dll assembly.

Because the image-processing example doesn’t use custom types to transmit data (just
ordinary byte arrays), no types are defined in the contract assembly. Byte arrays can be trans-
mitted between the host application and add-in because arrays and bytes are serializable.

The only additional step you need is to configure the build directory. The contract assem-
bly must be placed in the Contracts subdirectory of the add-in root, which means you can use
an output path of ..\Output\Contracts in the current example.

■Note In this example, the interfaces are kept as simple as possible to avoid clouding the code with extra
details. In a more realistic image-processing scenario, you might include a method that returns a list of
configurable parameters that affect how the add-in processes the image. Each add-in would have its own
parameters. For example, a filter that darkens a picture might include an Intensity setting, a filter that skews
a picture might have an Angle setting, and so on. The host application could then supply these parameters
when calling the ProcessImageBytes() method.

The Add-in View
The add-in view provides an abstract class that mirrors the contract assembly and is used on
the add-in side. Creating this class is easy:

[AddInBase]
public abstract class ImageProcessorAddInView
{

public abstract byte[] ProcessImageBytes(byte[] pixels);
}

Notice that the add-in view class must be decorated with the AddInBase attribute. This
attribute is found in the System.AddIn.Pipeline namespace. The add-in view assembly
requires a reference to the System.AddIn.dll assembly in order to access it.

The add-in view assembly must be placed in the AddInViews subdirectory of the add-in
root, which means you can use an output path of ..\Output\AddInViews in the current example.

CHAPTER 26 ■ MULTITHREADING ADD-INS 947

9551Ch26 2/8/08 2:16 PM Page 947

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Add-In
The add-in view is an abstract class that doesn’t provide any functionality. To create a usable
add-in, you need a concrete class that derives from the abstract view class. This class can then
add the code that actually does the work (in this case, processing the image).

The following add-in inverts the color values to create an effect that’s similar to a photo
negative. Here’s the complete code:

[AddIn("Negative Image Processor", Version = "1.0.0.0",
Publisher = "Imaginomics",
Description = "Inverts colors to look like a photo negative")]
public class NegativeImageProcessor : AddInView.ImageProcessorAddInView
{

public override byte[] ProcessImageBytes(byte[] pixels)
{

for (int i = 0; i < pixels.Length - 2; i++)
{

// Assuming 24-bit, color, each pixel has three bytes of data.
pixels[i] = (byte)(255 - pixels[i]);
pixels[i + 1] = (byte)(255 - pixels[i + 1]);
pixels[i + 2] = (byte)(255 - pixels[i + 2]);

}
return pixels;

}
}

■Note In this example, the byte array is passed into the ProcessImageBytes() method through a parameter,
modified directly, and then passed back to the calling code as the return value. However, when you call
ProcessImageBytes() from a different application domain, this behavior isn’t as simple as it seems. The
add-in infrastructure actually makes a copy of the original byte array and passes that copy to the add-in’s
application domain. Once the byte array is modified and has been returned from the method, the add-in
infrastructure copies it back into the host’s application domain. If ProcessImageBytes() didn’t return the
modified byte array in this way, the host would never see the changed picture data.

To create an add-in, you simply need to derive a class from the abstract view class and
decorate it with the AddIn attribute. Additionally, you can use the properties of the AddIn
attribute to supply an add-in name, version, publisher, and description, as done here. This
information is made available to the host during add-in discovery.

The add-in assembly requires two references: one to the System.AddIn.dll assembly and
one to the add-in view project. However, you must set the Copy Local property of the add-in
view reference to False (as described earlier in the section “Preparing a Solution That Uses the
Add-in Model”). That’s because the add-in view isn’t deployed with the add-in—instead, it’s
placed in the designated AddInViews subdirectory.

CHAPTER 26 ■ MULTITHREADING ADD-INS948

9551Ch26 2/8/08 2:16 PM Page 948

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The add-in must be placed in its own subdirectory in the AddIns subdirectory of the
add-in root. In the current example, you would use an output path like ..\Output\AddIns\
NegativeImageAddIn.

The Add-in Adapter
The current example has all the add-in functionality that you need, but there’s still a gap
between the add-in and the contract. Although the add-in view is modeled after the contract,
it doesn’t implement the contract interface that’s used for communication between the appli-
cation and the add-in.

The missing ingredient is the add-in adapter. It implements the contract interface. When
a method is called in the contract interface, it calls the corresponding method in the add-in
view. Here’s the code for the most straightforward add-in adapter that you can create:

[AddInAdapter]
public class ImageProcessorViewToContractAdapter :
ContractBase, Contract.IImageProcessorContract

{
private AddInView.ImageProcessorAddInView view;

public ImageProcessorViewToContractAdapter(
AddInView.ImageProcessorAddInView view)

{
this.view = view;

}

public byte[] ProcessImageBytes(byte[] pixels)
{

return view.ProcessImageBytes(pixels);
}

}

All add-in adapters must derive from ContractBase (from the System.AddIn.Pipeline
namespace). ContractBase derives from MarshalByRefObject, which allows the adapter to be
called over an application domain boundary. All add-in adapters must also be decorated with
the AddInAdapter attribute (from the System.AddIn.Pipeline namespace). Furthermore, the
add-in adapter must include a constructor that receives an instance of the appropriate view as
an argument. When the add-in infrastructure creates the add-in adapter, it automatically uses
this constructor and passes in the add-in itself. (Remember, the add-in derives from the
abstract add-in view class expected by the constructor.) Your code simply needs to store this
view for later use.

The add-in adapter requires three references: one to System.AddIn.dll, one to
System.AddIn.Contract.dll, and one to the contract project. You must set the Copy Local
property of the contract reference to False (as described earlier in the section “Preparing a
Solution That Uses the Add-in Model”).

The add-in adapter assembly must be placed in the AddInSideAdapters subdirectory of
the add-in root, which means you can use an output path of ..\Output\AddInSideAdapters in
the current example.

CHAPTER 26 ■ MULTITHREADING ADD-INS 949

9551Ch26 2/8/08 2:16 PM Page 949

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Host View
The next step is to build the host side of the add-in pipeline. The host interacts with the host
view. Like the add-in view, the host view is an abstract class that closely mirrors the contract
interface. The only difference is that it doesn’t require any attributes.

public abstract class ImageProcessorHostView
{

public abstract byte[] ProcessImageBytes(byte[] pixels);
}

The host view assembly must be deployed along with the host application. You can adjust
the output path manually (for example, so the host view assembly is placed in the ..\Output
folder in the current example). Or, when you add the host view reference to the host applica-
tion, you can leave the Copy Local property set to True. This way, the host view will be copied
automatically to the same output directory as the host application.

The Host Adapter
The host-side adapter derives from the host view. It receives an object that implements the con-
tract, which it can then use when its methods are called. This is the same forwarding process
that the add-in adapter uses, but in reverse. In this example, when the host application calls the
ProcessImageBytes() method of the host view, it’s actually calling ProcessImageBytes() in the
host adapter. The host adapter calls ProcessImageBytes() on the contract interface (which is
then forwarded across the application boundary and transformed into a method call on the
add-in adapter).

Here’s the complete code for the host adapter:

[HostAdapter]
public class ImageProcessorContractToViewHostAdapter :
HostView.ImageProcessorHostView
{

private Contract.IImageProcessorContract contract;
private ContractHandle contractHandle;

public ImageProcessorContractToViewHostAdapter(
Contract.IImageProcessorContract contract)

{
this.contract = contract;
contractHandle = new ContractHandle(contract);

}

public override byte[] ProcessImageBytes(byte[] pixels)
{

return contract.ProcessImageBytes(pixels);
}

}

CHAPTER 26 ■ MULTITHREADING ADD-INS950

9551Ch26 2/8/08 2:16 PM Page 950

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You’ll notice the host adapter actually uses two member fields. It stores a reference to the
current contract object, and it stores a reference to a System.AddIns.Pipeline.ContractHandle
object. The ContractHandle object manages the lifetime of the add-in. If the host adapter
doesn’t create a ContractHandle object (and keep a reference to it), the add-in will be released
immediately after the constructor code ends. When the host application attempts to use the
add-in, it will receive an AppDomainUnloadedException.

The host adapter project needs references to System.Add.dll and System.AddIn.Contract.dll.
It also needs references to the contract assembly and the host view assembly (both of which
must have Copy Local set to false). The output path is the HostSideAdapters subdirectory in the
add-in root (in this example it’s ..\Output\HostSideAdapters).

The Host
Now that the infrastructure is in place, the final step is to create the application that uses the
add-in model. Although any type of executable .NET application could be a host, this example
uses a WPF application.

The host needs just one reference that points to the host view project. The host view is the
entry point to the add-in pipeline. In fact, now that you’ve done the heavy lifting in imple-
menting the pipeline, the host doesn’t need to worry about how it’s managed. It simply needs
to find the available add-ins, activate the ones it wants to use, and then call the methods that
are exposed by the host view.

The first step—finding the available add-ins—is called discovery. It works through the
static methods of the System.AddIn.Hosting.AddInStore class. To load add-ins, you simply
supply the add-in root path and call AddInStore.Update(), as shown here:

// In this example, the path where the application is running
// is also the add-in root.
string path = Environment.CurrentDirectory;
AddInStore.Update(path);

After calling Update(), the add-in system will create two files with cached information. A
file named PipelineSegments.store will be placed in the add-in root. This file includes infor-
mation about the different views and adapters. A file named AddIns.store will be placed in the
AddIns subdirectory, with information about all the available add-ins. If new views, adapters,
or add-ins are added, you can update these files by calling AddInStore.Update() again. (This
method returns quite quickly if there are no new add-ins or pipeline components.) If there is
reason to expect that there is a problem with existing add-in files, you can call AddIn-
Store.Rebuild() instead, which always rebuilds the add-in files from scratch.

Once you’ve created the cache files, you can search for the specific add-ins. You can use the
FindAddIn() method to find a single specific add-in, or you can use the FindAddIns() method to
find all the add-ins that match a specified host view. The FindAddIns() method returns a collec-
tion of tokens, each of which is an instance of the System.AddIn.Hosting.AddInToken class.

IList<AddInToken> tokens = AddInStore.FindAddIns(
typeof(HostView.ImageProcessorHostView), path);

lstAddIns.ItemsSource = tokens;

You can get information about the add-in through a few key properties (Name, Descrip-
tion, Publisher, and Version). In the image-processing application (shown in Figure 26-8), the

CHAPTER 26 ■ MULTITHREADING ADD-INS 951

9551Ch26 2/8/08 2:16 PM Page 951

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

token list is bound to a ListBox control, and some basic information is shown about each add-
in using the following data template:

<ListBox Name="lstAddIns" Margin="3">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Margin="3,3,0,8" HorizontalAlignment="Stretch">
<TextBlock Text="{Binding Path=Name}" FontWeight="Bold" />
<TextBlock Text="{Binding Path=Publisher}" />
<TextBlock Text="{Binding Path=Description}"
FontSize="10" FontStyle="Italic" />

</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

You can create an instance of the add-in by calling the AddInToken.Activate<T> method.
In the current application, the user clicks the Go button to activate an add-in. The information
is then pulled out of the current image (which is shown in the window) and passed to the
ProcessImageBytes() method of the host view. Here’s how it works:

private void cmdProcessImage_Click(object sender, RoutedEventArgs e)
{

// Copy the image information from the image to a byte array.
BitmapSource source = (BitmapSource)img.Source;
int stride = source.PixelWidth * source.Format.BitsPerPixel/8;
stride = stride + (stride % 4) * 4;
int arraySize = stride * source.PixelHeight *
source.Format.BitsPerPixel / 8;

byte[] originalPixels = new byte[arraySize];
source.CopyPixels(originalPixels, stride, 0);

// Get the selected add-in token.
AddInToken token = (AddInToken)lstAddIns.SelectedItem;

// Get the host view.
HostView.ImageProcessorHostView addin =
token.Activate<HostView.ImageProcessorHostView>(
AddInSecurityLevel.Internet);

// Use the add-in.
byte[] changedPixels = addin.ProcessImageBytes(originalPixels);

// Create a new BitmapSource with the changed image data, and display it.
BitmapSource newSource = BitmapSource.Create(source.PixelWidth,

CHAPTER 26 ■ MULTITHREADING ADD-INS952

9551Ch26 2/8/08 2:16 PM Page 952

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

source.PixelHeight, source.DpiX, source.DpiY, source.Format,
source.Palette, changedPixels, stride);

img.Source = newSource;
}

When you call the AddInToken.Activate<T> method, quite a few steps unfold behind the
scenes:

1. A new application domain is created for the add-in. Alternatively, you can load the
add-in into the application domain of the host application or into a completely sepa-
rate process. However, the default is to place it in a distinct application domain in the
current process, which usually gives the best compromise between stability and per-
formance. You can also choose the level of permissions that are given to the new
application domain. (In this example, they’re limited to the Internet set of permissions,
which is a heavily restricted permission set that’s applied to code that’s executed from
the Web.)

2. The add-in assembly is loaded into the new application domain. The add-in is then
instantiated through reflection, using its no-argument constructor. As you’ve already
seen, the add-in derives from an abstract class in the add-in view assembly. As a result,
loading the add-in also loads the add-in view assembly into the new application
domain.

3. The add-in adapter is instantiated in the new application domain. The add-in is
passed to the add-in adapter as a constructor argument. (The add-in is typed as the
add-in view.)

4. The add-in adapter is made available to the host’s application domain (through a
remoting proxy). However, it’s typed as the contract that it implements.

5. In the host application domain, the host adapter is instantiated. The add-in adapter is
passed to the host adapter through its constructor.

6. The host adapter is returned to the host application (typed as the host view). The
application can now call the methods of the host view to interact with the add-in
through the add-in pipeline.

There are other overloads for the Activate<T> method that allow you to supply a custom
permission set (to fine-tune security), a specific application domain (which is useful if you
want to run several add-ins in the same application domain), and an outside process (which
allows you to host the add-in in a completely separate EXE application for even greater isola-
tion). All of these examples are illustrated in the Visual Studio help.

This code completes the example. The host application can now discover its add-ins, acti-
vate them, and interact with them through the host view.

CHAPTER 26 ■ MULTITHREADING ADD-INS 953

9551Ch26 2/8/08 2:16 PM Page 953

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ADD-IN LIFETIME

You don’t need to manage the lifetime of your add-ins by hand. Instead, the add-in system will automatically
release an add-in and shut down its application domain. In the previous example, the add-in is released
when the variable that points to the host view goes out of scope. If you want to keep the same add-in active
for a longer time, you could assign it to a member variable in the window class.

In some situations, you might want more control over the add-in lifetime. The add-in model gives the
host application the ability to shut down an add-in automatically using the AddInController class (from the
System.AddIn.Hosting namespace), which tracks all the currently active add-ins. The AddInControls provides
a static method named GetAddInController(), which accepts a host view and returns an AddInController for
that add-in. You can then use the AddInController.Shutdown() method to end it, as shown here:

AddInController controller = AddInController.GetAddInController(addin);
controller.Shutdown();

At this point, the adapters will be disposed, the add-in will be released, and the add-in’s application
domain will be shut down if it doesn’t contain any other add-ins.

Adding More Add-Ins
Using the same add-in view, it’s possible to create an unlimited number of distinct add-ins.
In this example there are two, which process images in two different ways. The second add-in
uses a crude algorithm to darken the picture by removing part of the color from random
pixels:

[AddIn("Fade Image Processor", Version = "1.0.0.0", Publisher = "SupraImage",
Description = "Darkens the picture")]
public class FadeImageProcessor : AddInView.ImageProcessorAddInView
{

public override byte[] ProcessImageBytes(byte[] pixels)
{

Random rand = new Random();
int offset = rand.Next(0, 10);
for (int i = 0; i < pixels.Length - 1 - offset; i++)
{

if ((i + offset) % 5 == 0)
{

pixels[i] = 0;
}

}
return pixels;

}
}

In the current example, this add-in builds to the output path ..\Output\AddIns\
FadeImageAddIn. There’s no need to create additional views or adapters. Once you deploy
this add-in (and then call the Rebuild() or Update() method of the AddInStore class), your
host application will find both add-ins.

CHAPTER 26 ■ MULTITHREADING ADD-INS954

9551Ch26 2/8/08 2:16 PM Page 954

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Interacting with the Host
In the current example, the host is in complete control of the add-in. However, the relation-
ship is often reversed. A common example is an add-in that drives an area of application
functionality. This is particularly common with visual add-ins (the subject of the next section),
such as custom toolbars. Often, this process of allowing the add-in to call the host is called
automation.

From a conceptual standpoint, automation is quite straightforward. The add-in simply
needs a reference to an object in the host’s application domain, which it can manipulate
through a separate interface. However, the add-in system’s emphasis on versioning flexibility
makes the implementation of this technique a bit more complicated. A single host interface is
not enough, because it tightly binds the host and the add-in together. Instead, you’ll need to
implement a pipeline with views and adapters.

To see this challenge, consider the slightly updated version of the image-processing appli-
cation, which is shown in Figure 26-9. It features a progress bar at the bottom of the window
that’s updated as the add-in processes the image data.

Figure 26-9. An add-in that reports progress

■Tip The rest of this section explores the changes you need to make to the image processor to support
host automation. To see how these pieces fit together and examine the full code, download the code sam-
ples for this chapter.

For this application to work, the add-in needs a way to pass progress information to the
host while it works. The first step in implementing this solution is to create the interface that
defines how the add-in can interact with the host. This interface should be placed in the con-
tract assembly (or in a separate assembly in the Contracts folder).

CHAPTER 26 ■ MULTITHREADING ADD-INS 955

9551Ch26 2/8/08 2:16 PM Page 955

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the interface that describes how the add-in should be allowed to report progress,
by calling a method named ReportProgress() in the host application:

public interface IHostObjectContract : IContract
{

void ReportProgress(int progressPercent);
}

As with the add-in interface, the host interface must inherit from IContract. Unlike the
add-in interface, the host interface does not use the AddInContract attribute, because it isn’t
implemented by an add-in.

The next step is to create the add-in view and host view. As when designing an add-in,
you simply need an abstract class that closely corresponds to the interface you’re using. To use
the IHostObjectContract interface shown earlier, you simply need to add the following class
definition to both the add-in view and host view projects.

public abstract class HostObject
{

public abstract void ReportProgress(int progressPercent);
}

Notice that the class definition does not use the AddInBase attribute in either project.
The actual implementation of the ReportProgress() method is in the host application.

It needs a class that derives from the HostObject class (in the host view assembly). Here’s a
slightly simplified example that uses the percentage to update a ProgressBar control:

public class AutomationHost : HostView.HostObject
{

private ProgressBar progressBar;

public Host(ProgressBar progressBar)
{

this.progressBar = progressBar;
}

public override void ReportProgress(int progressPercent)
{

progressBar.Value = progressPercent;
}

}

You now have a mechanism that the add-in can use to send progress information to the
host application. However, there’s one problem—the add-in doesn’t have any way to get a ref-
erence to the HostObject. This problem doesn’t occur when the host application is using an
add-in, because it has a discovery feature that it can use to search for add-ins. There’s no com-
parable service for add-ins to locate their host.

The solution is for the host application to pass the HostObject reference to the add-in.
Typically, this step will be performed when the add-in is first activated. By convention, the
method that the host application uses to pass this reference is often called Initialize().

CHAPTER 26 ■ MULTITHREADING ADD-INS956

9551Ch26 2/8/08 2:16 PM Page 956

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Here’s the updated contract for image processor add-ins:

[AddInContract]
public interface IImageProcessorContract : IContract
{

byte[] ProcessImageBytes(byte[] pixels);
void Initialize(IHostObjectContract hostObj);

}

When Initialize() is called, the add-in will simply store the reference for later use. It can
then call the ReportProgress() method whenever is appropriate, as shown here:

[AddIn]
public class NegativeImageProcessor : AddInView.ImageProcessorAddInView
{

private AddInView.HostObject host;
public override void Initialize(AddInView.HostObject hostObj)
{

host = hostObj;
}

public override byte[] ProcessImageBytes(byte[] pixels)
{

int iteration = pixels.Length / 100;

for (int i = 0; i < pixels.Length - 2; i++)
{

pixels[i] = (byte)(255 - pixels[i]);
pixels[i + 1] = (byte)(255 - pixels[i + 1]);
pixels[i + 2] = (byte)(255 - pixels[i + 2]);

if (i % iteration == 0)
host.ReportProgress(i / iteration);

}
return pixels;

}
}

So far, the code hasn’t posed any real challenges. However, the last piece—the adapters—
is a bit more complicated. Now that you’ve added the Initialize() method to the add-in
contract, you need to also add it to the host view and add-in view. However, the signature of
the method can’t match the contract interface. That’s because the Initialize() method in the
interface expects an IHostObjectContract as an argument. The views, which are not linked the
contract in any way, have no knowledge of the IHostObjectContract. Instead, they use the
abstract HostObject class that was described earlier:

public abstract class ImageProcessorHostView
{

public abstract byte[] ProcessImageBytes(byte[] pixels);

public abstract void Initialize(HostObject host);
}

CHAPTER 26 ■ MULTITHREADING ADD-INS 957

9551Ch26 2/8/08 2:16 PM Page 957

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The adapters are the tricky part. They need to bridge the gap between the abstract
HostObject view classes and the IHostObjectContract interface.

For example, consider the ImageProcessorContractToViewHostAdapter on the host side.
It derives from the abstract ImageProcessorHostView class, and as a result it implements the
version of Initialize() that receives a HostObject instance. This Initialize() method needs to
convert this view to the contract and then call the IHostObjectContract.Initialize() method.

The trick is to create an adapter that performs this transformation (much like the adapter
that performs the same transformation with the add-in view and add-in interface). The fol-
lowing code shows the new HostObjectViewToContractHostAdapter that does the work and
the Initialize() method that uses it to make the jump from the view class to the contract
interface:

public class HostObjectViewToContractHostAdapter : ContractBase,
Contract.IHostObjectContract

{
private HostView.HostObject view;

public HostObjectViewToContractHostAdapter(HostView.HostObject view)
{

this.view = view;
}

public void ReportProgress(int progressPercent)
{

view.ReportProgress(progressPercent);
}

}

[HostAdapter]
public class ImageProcessorContractToViewHostAdapter :
HostView.ImageProcessorHostView

{
private Contract.IImageProcessorContract contract;
private ContractHandle contractHandle;

...

public override void Initialize(HostView.HostObject host)
{

HostObjectViewToContractHostAdapter hostAdapter =
new HostObjectViewToContractHostAdapter(host);

contract.Initialize(hostAdapter);
}

}

A similar transformation takes place in the add-in adapter, but in reverse. Here, the
ImageProcessorViewToContractAdapter implements the IImageProcessorContract interface.
It needs to take the IHostObjectContract object that it receives in its version of the Initialize()

CHAPTER 26 ■ MULTITHREADING ADD-INS958

9551Ch26 2/8/08 2:16 PM Page 958

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

method and then convert the contract to a view. Next, it can pass the call along by calling the
Initialize() method in the view. Here’s the code:

[AddInAdapter]
public class ImageProcessorViewToContractAdapter : ContractBase,
Contract.IImageProcessorContract

{
private AddInView.ImageProcessorAddInView view;
...

public void Initialize(Contract.IHostObjectContract hostObj)
{

view.Initialize(new HostObjectContractToViewAddInAdapter(hostObj));
}

}

public class HostObjectContractToViewAddInAdapter : AddInView.HostObject
{

private Contract.IHostObjectContract contract;
private ContractHandle handle;

public HostObjectContractToViewAddInAdapter(
Contract.IHostObjectContract contract)

{
this.contract = contract;
this.handle = new ContractHandle(contract);

}

public override void ReportProgress(int progressPercent)
{

contract.ReportProgress(progressPercent);
}

}

Now, when the host calls Initialize() on an add-in, it can flow through the host adapter
(ImageProcessorContractToViewHostAdapter) and the add-in adapter (ImageProcessor-
ViewToContractAdapter), before being called on the add-in. When the add-in calls the
ReportProgress() method, it flows through similar steps, but in reverse. First, it flows through
the add-in adapter (HostObjectContractToViewAddInAdapter) and then it passes to the host
adapter (HostObjectViewToContractHostAdapter).

This walk-through completes the example—sort of. The problem is that the host applica-
tion calls the ProcessImageBytes() method on the main user interface thread. As a result, the
user interface is effectively locked up. Although the calls to ReportProgress() are handled and
the progress bar is updated, the window isn’t refreshed until the operation is complete.

A far better approach is to perform the time-consuming call to ProcessImageBytes() on a
background thread, either by creating a Thread object by hand or by using the Background-
Worker. Then, when the user interface needs to be updated (when ReportProgress() is called
and when the final image is returned), you must use the Dispatcher.BeginInvoke() method to

CHAPTER 26 ■ MULTITHREADING ADD-INS 959

9551Ch26 2/8/08 2:16 PM Page 959

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

marshal the call back to the user interface thread. All of these techniques were demonstrated
earlier in this chapter. To see the threading code in action in this example, refer to the down-
loadable code for this chapter.

Visual Add-Ins
Considering that the WPF is a display technology, you’ve probably started to wonder whether
there’s a way to have an add-in generate a user interface. This isn’t a small challenge. The
problem is that the user interface elements in WPF aren’t serializable. Thus, they can’t be
passed between the host application and the add-in.

Fortunately, the designers of the add-in system created a sophisticated workaround. The
solution is to allow WPF applications to display user interface content that’s hosted in separate
application domains. In other words, your host application can display controls that are actu-
ally running in the application domain of an add-in. If you interact with these controls
(clicking them, typing in them, and so on), the events are fired in the add-in’s application
domain. If you need to pass information from the add-in to the application, or vice versa, you
use the contract interfaces, as you’ve explored in the previous sections.

Figure 26-10 shows this technique in action in a modified version of the image-processing
application. When an add-in is selected, the host application asks the add-in to provide a con-
trol with suitable content. That control is then displayed at the bottom of the window.

Figure 26-10. A visual add-in

In this example, the negative image add-in has been selected. It provides a user control
that wraps an Image control (with a preview of the effect) and a Slider control. As the slider is
adjusted, the intensity of the effect is changed, and the preview is updated. (The update process
is sluggish, because of the poorly optimized image-processing code. Much better algorithms
could be used, possibly incorporating unsafe code blocks for maximum performance.)

CHAPTER 26 ■ MULTITHREADING ADD-INS960

9551Ch26 2/8/08 2:16 PM Page 960

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Although the plumbing that makes this work is fairly sophisticated, it’s surprisingly
easy to use. The key ingredient is the INativeHandleContract interface from the
System.AddIn.Contract namespace. It allows a window handle to be passed between
an add-in and the host application.

Here’s the revised IImageProcessorContract from the contract assembly. It replaces the
ProcessImageBytes() method with a GetVisual() method that accepts similar image data but
returns a chunk of user interface:

[AddInContract]
public interface IImageProcessorContract : IContract
{

INativeHandleContract GetVisual(Stream imageStream);
}

You don’t use the INativeHandlerContract in the view classes, because it isn’t directly
usable in your WPF applications. Instead, you use the type you expect to see—a Frame-
workElement. Here’s the host view:

public abstract class ImageProcessorHostView
{

public abstract FrameworkElement GetVisual(Stream imageStream);
}

And here’s the nearly identical add-in view:

[AddInBase]
public abstract class ImageProcessorAddInView
{

public abstract FrameworkElement GetVisual(Stream imageStream);
}

This example is surprisingly similar to the automation challenge in the previous section.
Once again, you have a different type being passed in the contract from the one that’s used in
the views. And once again, you need to use the adapters to perform the contract-to-view and
view-to-contract conversion. However, this time the work is done for you by a specialized
class called FrameworkElementAdapters.

FrameworkElementAdapters is found in the System.AddIn.Pipeline namespace, but it’s
actually part of WPF, and it’s part of the System.Windows.Presentation.dll assembly. The
FrameworkElementAdapters class provides two static methods that perform the conversion
work: ContractToViewAdapter() and ViewToContractAdapter().

Here’s how the FrameworkElementAdapters.ContractToViewAdapter() method bridges
the gap in the host adapter:

[HostAdapter]
public class ImageProcessorContractToViewHostAdapter :
HostView.ImageProcessorHostView

{
private Contract.IImageProcessorContract contract;
private ContractHandle contractHandle;
...

CHAPTER 26 ■ MULTITHREADING ADD-INS 961

9551Ch26 2/8/08 2:16 PM Page 961

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

public override FrameworkElement GetVisual(Stream imageStream)
{

return FrameworkElementAdapters.ContractToViewAdapter(
contract.GetVisual(imageStream));

}
}

And here’s how the FrameworkElementAdapters.ViewToContractAdapter() method
bridges the gap in the add-in adapter:

[AddInAdapter]
public class ImageProcessorViewToContractAdapter : ContractBase,
Contract.IImageProcessorContract

{
private AddInView.ImageProcessorAddInView view;
...

public INativeHandleContract GetVisual(Stream imageStream)
{

return FrameworkElementAdapters.ViewToContractAdapter(
view.GetVisual(imageStream));

}
}

Now the final detail is to implement the GetVisual() method in the add-in. In the negative
image processor, a new user control named ImagePreview is created. The image data is passed
to the ImagePreview control, which sets up the preview image and handles slider clicks. (The
user control code is beside the point for this example, but you can see the full details by down-
loading the samples for this chapter.)

[AddIn]
public class NegativeImageProcessor : AddInView.ImageProcessorAddInView
{

public override FrameworkElement GetVisual(System.IO.Stream imageStream)
{

return new ImagePreview(imageStream);
}

}

Now that you’ve seen how to return a user interface object from an add-in, there’s no limit
to what type of content you can generate. The basic infrastructure—the INativeHandleCon-
tract interface and the FrameworkElementAdapters class—remains the same.

CHAPTER 26 ■ MULTITHREADING ADD-INS962

9551Ch26 2/8/08 2:16 PM Page 962

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The Last Word
In this chapter, you took a look at two advanced topics that could occupy entire books of their
own. First you considered the multithreading considerations of WPF applications (which are
essentially the same as the considerations for any other type of Windows application) and saw
how to safely update controls from other threads and make multithreading easy with Back-
groundWorker. Next you dove into the deeply layered add-in model. You learned how its
pipeline works, why it works the way it does, and how to create basic add-ins that support
host automation and provide visual content.

There’s quite a bit more you can learn about the add-in model. If you plan to make add-
ins a key part of a professional application, you’ll want to take a closer look at specialized
versioning and hosting scenarios and deployment, best practices for dealing with unhandled
add-in exceptions, and how to allow more complex interactions between the host and add-in
and between separate add-ins. You can find some additional information in the Visual Studio
help (look under the index entry “add-ins [.NET Framework]”), but you won’t find much
advanced content. To get the real details, you’ll need to visit the team blog for the Microsoft
developers who created the add-in system at http://blogs.msdn.com/clraddins. You may also
be interested in Jason He’s blog (http://blogs.msdn.com/zifengh). He’s a member of the add-
in team who has written about his experience adapting Paint.NET to use the add-in model.

CHAPTER 26 ■ MULTITHREADING ADD-INS 963

9551Ch26 2/8/08 2:16 PM Page 963

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://blogs.msdn.com/clraddins
http://blogs.msdn.com/zifengh

9551Ch26 2/8/08 2:16 PM Page 964

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ClickOnce Deployment

Sooner or later, you’ll want to unleash your WPF applications on the world. Although you can
use dozens of different ways to transfer an application from your development computer to an
end user’s desktop, most WPF applications use one of the following deployment strategies:

• Run in the browser. If you create a page-based WPF application, you can run it right in
the browser. You don’t need to install anything. However, your application needs to be
able to function with a very limited set of privileges. (For example, you won’t be allowed
to access arbitrary files, use the Windows registry, pop up new windows, and so on.) You
learned about this approach in Chapter 9.

• Deploy via the browser. WPF applications integrate closely with the ClickOnce setup
feature, which allows users to launch a setup program from a browser page. Best of all,
applications that are installed through ClickOnce can be configured to check for
updates automatically. On the negative side, you have little ability to customize your
setup and no way to perform system configuration tasks (such as registering file types,
creating a database, and so on).

• Deploy via a traditional setup program. This approach still lives on in the WPF world.
If you choose this option, it’s up to you whether you want to create a full-fledged
Microsoft Installer (MSI) setup or a more streamlined (but more limited) ClickOnce
setup. Once you’ve built your setup, you can choose to distribute it by placing it on a
CD, in an e-mail attachment, on a network share, and so on.

In this chapter, you’ll consider the second approach: deploying your application with the
ClickOnce deployment model.

Application Deployment
Although it’s technically possible to move a .NET application from one computer to another
just by copying the folder that contains it, professional applications often require a few more
frills. For example, you might need to add shortcuts to the Start menu or desktop, register file
types, and set up additional resources (such as a custom event log or a database). To get these
features, you need to create a custom setup program.

You have many options for creating a setup program. You can use a retail product like
InstallShield, or you can create an MSI setup using the Setup Project template in Visual Studio.
Traditional setup programs give you a familiar setup wizard, with plenty of features for trans-
ferring files and performing a variety of configuration actions.

965

C H A P T E R 2 7

9551CH27 2/8/08 2:17 PM Page 965

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Your other choice is to use the ClickOnce deployment system that’s closely integrated in
WPF. ClickOnce has plenty of limitations (most of them by design), but it offers two important
advantages:

• Support for automatically downloading updates from the Web.

• Support for installing and running applications in limited trust scenarios. This feature
is available only if you create a XAML browser application (XBAP), as described in
Chapter 9.

In the near term, these two features might not be enough to entice developers to give up
the features of a full-fledged setup program. But in the future, as it becomes more common to
run Windows using an account with limited trust (for example, in Windows Vista) and as
browser-based WPF applications become more widespread, ClickOnce will gain in impor-
tance. And if browser-based WPF applications ever begin to displace today’s generation of
web-only applications, ClickOnce will be a key piece of the puzzle.

If you’ve worked with Windows Forms in .NET 2.0, you’ll notice that ClickOnce is actually
scaled back in WPF. In .NET 2.0, ClickOnce was the preferred way to deploy an application
over the Web and the only way to compete with traditional websites. In WPF, browser-based
applications offer a more effective way to build a WPF-powered web application, and they
don’t need to be explicitly deployed. In WPF, you’ll use ClickOnce to deploy stand-alone appli-
cations only.

There’s another change in the mix. In .NET 2.0, a Windows Forms application could be
configured to use partial trust and then deployed using ClickOnce. This isn’t possible in WPF,
because unmanaged code permission is required to create a WPF window. To have unman-
aged code permission, your application must run with full trust. That means installing a
stand-alone WPF application using ClickOnce presents the same security roadblock as
installing any type of application from the Web—namely, Internet Explorer will present a
security warning. If the user goes ahead, the installed application will have the ability to do
anything that the current user can do.

Understanding ClickOnce
Although ClickOnce allows some customization, some details never change. Before you start
using ClickOnce, it’s important to get an understanding of the basic model and its limitations.

ClickOnce is designed with simple, straightforward applications in mind. It’s particularly
suitable for line-of-business applications and internal company software. Typically, these
applications perform their work with the data and services on middle-tier server computers.
As a result, they don’t need privileged access to the local computer. These applications are also
deployed in enterprise environments that may include thousands of workstations. In these
environments, the cost of application deployment and updating isn’t trivial, especially if it
needs to be handled by an administrator. As a result, it’s more important to provide a simple,
streamlined setup process than to pack in features.

ClickOnce may also make sense for consumer applications that are deployed over the
Web, particularly if these applications are updated frequently and don’t have extensive instal-
lation requirements. However, the limitations of ClickOnce (such as the lack of flexibility for
customizing the setup wizard) don’t make it practical for sophisticated consumer applications
that have detailed setup requirements or need to guide the user through a set of proprietary

CHAPTER 27 ■ CLICKONCE DEPLOYMENT966

9551CH27 2/8/08 2:17 PM Page 966

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

configuration steps. In these cases, you’ll need the more sophisticated setup applications you
can create using MSI.

■Note For ClickOnce to install a WPF application, the computer must already have the .NET Framework 3.0
or 3.5 runtime, depending on the version that you’re targeting (as described in Chapter 1). When you first
launch a ClickOnce setup, a bootstrapper runs that verifies this requirement. If the .NET Framework runtime
isn’t installed, the bootstrapper shows a message box that explains the issue and prompts the user to install
.NET from Microsoft’s website.

The ClickOnce Installation Model
Although ClickOnce supports several types of deployment, the overall model is designed to
make web deployment practical and easy. Here’s how it works: You use Visual Studio to publish
your ClickOnce application to a web server. Then, the user surfs to an automatically generated
web page (named publish.htm) that provides a link to install the application. When the user
clicks that link, the application is downloaded, installed, and added to the Start menu.
Figure 27-1 shows this process.

Figure 27-1. Installing a ClickOnce application

Although ClickOnce is ideal for web deployment, the same basic model lends itself to
other scenarios, including the following:

• Deploying your application from a network file share

• Deploying your application from a CD or DVD

• Deploying your application to a web server or network file share and then sending a
link to the setup program via e-mail

The installation web page isn’t created when deploying to a network share, a CD, or a
DVD. Instead, in these cases users must install the application by running the setup.exe
program directly.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 967

9551CH27 2/8/08 2:17 PM Page 967

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Note These options aren’t as compelling as the deploy-from-the-Web approach. After all, if you’ve
already distributed a CD or directed users to run a specific setup program, it’s safe to assume they’ve
decided to trust your application. In this case, it may make more sense to use a full-fledged setup program
that offers more features. However, you may still choose to use ClickOnce if you’re deploying an application
in more than one way (including a web-based deployment), if you have relatively modest setup require-
ments, or if you want to use the automatic update feature.

The most interesting part of a ClickOnce deployment is the way it supports updating.
Essentially, you (the developer) have control over several update settings. For example, you
can configure the application to check for updates automatically or periodically at certain
intervals. When users launch your application, they actually run a shim that checks for newer
versions and offers to download them.

You can even configure your application to use a web-like online-only mode. In this situa-
tion, the application must be launched from the ClickOnce web page. The application is still
cached locally for optimum performance, but users won’t be able to run the application unless
they’re able to connect to the site where the application was published. This ensures that users
always run the latest, most up-to-date version of your application.

■Tip You don’t need to create a ClickOnce application to get the automatic updating feature. You
could build a similar feature yourself. The easiest way is to adapt the code for the Application Updater
Component that’s provided by the Windows Forms team at http://windowsclient.net/articles/
appupdater.aspx. Another option is to use the more flexible (but somewhat convoluted) Application
Updater Starter Block from the Practices and Guidance Group at Microsoft. You can find it by surfing to
http://www.microsoft.com/downloads and searching for “Application Updater Block.”

ClickOnce Limitations
ClickOnce is designed to be a lighter setup option than MSI-based setups. As a result, Click-
Once deployment doesn’t allow for much configuration. Many aspects of its behavior are
completely fixed, either to guarantee a consistent user experience or to encourage enterprise-
friendly security policies.

The limitations of ClickOnce include the following:

• ClickOnce applications are installed for a single user. You cannot install an application
for all users on a workstation.

• ClickOnce applications are always installed in a system-managed user-specific folder.
You cannot change or influence the folder where the application is installed.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT968

9551CH27 2/8/08 2:17 PM Page 968

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://windowsclient.net/articles
http://www.microsoft.com/downloads

• If ClickOnce applications are installed in the Start menu, they show up as a single short-
cut in the form [Publisher Name] ➤ [Product Name]. You can’t change this, and you
can’t add other shortcuts, such as a shortcut for a help file, related website, or an unin-
stall feature. Similarly, you can’t add a ClickOnce application to the Startup group, the
Favorites menu, and so on.

• You can’t change the user interface of the setup wizard. That means you can’t add new
dialog boxes, change the wording of existing ones, and so on.

• You can’t change the installation page that ClickOnce applications generate. However,
you can edit the HTML by hand after it’s generated.

• A ClickOnce setup can’t install shared components in the global assembly cache (GAC).

• A ClickOnce setup can’t perform custom actions (such as creating a database, register-
ing file types, or configuring registry settings).

You can work around some of these issues. For example, you could configure your appli-
cation to register custom file types or set registry defaults the first time it’s launched on a new
computer. However, if you have complex setup requirements, you’re much better off creating
a full-fledged MSI setup program. You can use a third-party tool, or you can create a Setup
Project in Visual Studio. Both of these options are beyond the scope of this book.

A Simple ClickOnce Publication
The easiest way to publish an application through ClickOnce is to choose Build ➤ Publish
[ProjectName] from the Visual Studio menu, which walks you through a short wizard. This
wizard doesn’t give you access to all the ClickOnce features you’ll learn about in this chapter,
but it’s a quick way to get started.

CREATING A CLICKONCE SETUP ON WINDOWS VISTA

Before you get started, there are some additional considerations for Windows Vista users who want to publish
their applications to a local web server. If you’re publishing your application to a virtual directory on the local
computer, you’ll need to ensure that Internet Information Services (IIS) 7 is installed using the Programs and
Features entry in the Control Panel, which allows you to turn Windows features on or off. When you choose to
install IIS 7, make sure you include the .NET Extensibility option and the IIS 6 Management Compatibility
option (which allows Visual Studio to interact with IIS).

If you’re publishing to a virtual directory in Visual Studio. However, the User Account Control (UAC)
security feature restricts administrator privileges unless they’re specifically requested. In order to get admin-
istrator privileges in Visual Studio so you can access IIS, you need to explicitly run Visual Studio as an
administrator. The easiest way to do this is to right-click the Microsoft Visual Studio 2008 shortcut in the
Start menu and choose Run As Administrator. You can also configure your computer to always run Visual
Studio as an administrator, which is a trade-off between convenience and security that needs to be weighed
carefully. To put this in place, right-click the Visual Studio shortcut, choose Properties, and then head to the
Compatibility tab, where you’ll find an option named Run This Program As An Administrator.

UAC can also cause some problems when installing a ClickOnce application. See the sidebar “ClickOnce
Setups and UAC” later in this chapter for more details.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 969

9551CH27 2/8/08 2:17 PM Page 969

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

The first choice you’re faced with in the publishing wizard is choosing the location where
you want to publish the application (see Figure 27-2).

Figure 27-2. Choosing a publish location

There’s nothing particularly important about the location where you first publish your
application, because this isn’t necessarily the same location you’ll use to host the setup files
later. In other words, you could publish to a local directory and then transfer the files to a web
server. The only caveat is that you need to know the ultimate destination of your files when
you run the publishing wizard, because you need to supply this information. Without it, the
automatic update feature won’t work.

Of course, you could choose to publish the application directly to its final destination, but
it’s not necessary. In fact, building the installation locally is often the easiest option.

Choosing a Location
To get a better sense for how this works, start by choosing a local file path location (such as
c:\Temp\ClickOnceApp). Then click Next. You’re now faced with the real question—where
users will go to install this application (see Figure 24-3).

This bit is important, because it influences your update strategy. The choices you make
are stored in a manifest file that’s deployed with your application.

■Note There is one case in which you won’t see the dialog box in Figure 27-3. If you enter a virtual
directory to a web server for the publish location (in other words, a URL starting with http://), the wizard
assumes this is the final installation location.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT970

9551CH27 2/8/08 2:17 PM Page 970

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

In Figure 27-3, you have essentially three choices. You can create an installation for a
network file share, a web server, or CD or DVD media. The following sections explain each
approach.

Figure 27-3. Choosing the installation type

Publishing for a Network File Share
In this case, all the users in your network will access the installation by browsing to a specific
UNC path and running a file named setup.exe at that location.

A UNC path is a network path in the form \\ComputerName\ShareName. You can’t use
a networked drive, because networked drives depend on system settings (so different users
might have their drives mapped differently). To provide automatic updates, the ClickOnce
infrastructure needs to know exactly where it can find the installation files, because this is also
the location where you’ll deploy updates.

Publishing for a Web Server
You can create an installation for a web server on a local intranet or the Internet. Visual Studio
will generate an HTML file named publish.htm that simplifies the process. Users request this
page in a browser and click a link to download and install the application.

You have several options for transferring your files to a web server. If you want to take a
two-step approach (publish the files locally and then transfer them to the right location), you
simply need to copy the files from the local directory to your web server using the appropriate
mechanism (such as FTP). Make sure you preserve the directory structure.

If you want to publish your files straight to the web server without any advance testing,
you have two choices. If you are using IIS and the current account you’re running has the nec-
essary permissions to create a new virtual directory on the web server (or upload files to an
existing one), you can publish files straight to your web server. Just supply the virtual directory

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 971

9551CH27 2/8/08 2:17 PM Page 971

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

path in the first step of the wizard. For example, you could use the publish location http://
ComputerName/VirtualDirectoryName (in the case of an intranet) or http://DomainName/
VirtualDirectoryName (for a server on the Internet).

You can also publish straight to a web server using FTP. This is often required in Internet
(rather than intranet) scenarios. In this case, Visual Studio will contact your web server and
transfer the ClickOnce files over FTP. You’ll be prompted for user and password information
when you connect.

■Note FTP is used to transfer files—it’s not used for the actual installation process. Instead, the idea is
that the files you upload become visible on some web server, and users install the application from the
publish.htm file on that web server. As a result, when you use an FTP path in the first step of the wizard
(Figure 27-2), you’ll still need to supply the corresponding web URL in the second step (Figure 27-3). This
is important, because the ClickOnce publication needs to return to this location to perform its automatic
update checks.

Publishing for a CD or DVD
If you choose to publish to setup media such as a CD or DVD, you still need to decide whether
you plan to support the automatic update feature. Some organizations will use CD-based
deployment exclusively, while others will use it to supplement their existing web-based or net-
worked-based deployment. You choose which option applies for use in the third step of the
wizard (see Figure 27-4).

Figure 27-4. Support for automatic updates

CHAPTER 27 ■ CLICKONCE DEPLOYMENT972

9551CH27 2/8/08 2:17 PM Page 972

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://ComputerName/VirtualDirectoryName
http://ComputerName/VirtualDirectoryName
http://DomainName

Here, you have a choice. You can supply a URL or UNC path that the application will
check for updates. This assumes that you plan to publish the application to that location.
Alternatively, you can omit this information and bypass the automatic update feature
altogether.

■Note The publishing wizard doesn’t give you an option for how often to check for updates. By default,
ClickOnce applications check for an update whenever they’re launched. If a new version is found, .NET
prompts the user to install it before launching the application. You’ll learn how to change these settings
later in this chapter.

Online or Offline
If you’re creating a deployment for a web server or network share, you’ll get one additional
option, as shown in Figure 27-5.

Figure 27-5. Support for offline use

The default choice is to create an online/offline application that runs whether or not the
user can connect to the published location. In this case, a shortcut for the application is added
to the Start menu.

If you choose to create an online-only application, the user needs to return to the pub-
lished location to run the application. (To help make this clear, the publish.htm web page will
show a button labeled Run instead of Install.) This ensures that an old version of the applica-
tion can’t be used after you roll out an update. This part of the deployment model is analogous
to a web application.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 973

9551CH27 2/8/08 2:17 PM Page 973

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When you create an online-only application, the application will still be downloaded (into
a locally cached location) the first time it’s launched. Thus, while startup times may be longer
(because of the initial download), the application will still run as quickly as any other installed
Windows application. However, the application can’t be launched when the user isn’t con-
nected to the network or Internet, which makes it unsuitable for mobile users (such as laptop
users who don’t always have an Internet connection available).

If you choose to create an application that supports offline use, the setup program will add
a Start menu shortcut. The user can launch the application from this shortcut, regardless of
whether the computer is online or offline. If the computer is online, the application will check
for new versions in the location where the application was published. If an update exists, the
application will prompt the user to install it. You’ll learn how to configure this policy later.

■Note If you choose to publish for a CD installation, you don’t have the option of creating an online-only
application.

This is the final choice in the publishing wizard. Click Next to see the final summary, and
click Finish to generate the deployment files and copy them to the location you chose in step 1.

Deployed Files
ClickOnce uses a fairly straightforward directory structure. It creates a setup.exe file in the
location you chose and a subdirectory for the application.

For example, if you deployed an application named ClickOnceTest to the location
c:\ClickOnceTest, you’ll end up with files like these:

c:\ClickOnceTest\setup.exe

c:\ClickOnceTest\publish.htm

c:\ClickOnceTest\ClickOnceTest.application

c:\ClickOnceTest\ClickOnceTest_1_0_0_0.application

c:\ClickOnceTest\ClickOnceTest_1_0_0_0\ClickOnceTest.exe.deploy

c:\ClickOnceTest\ClickOnceTest_1_0_0_0\ClickOnceTest.exe.manifest

The publish.htm file is present only if you’re deploying to a web server. The .manifest and
.application files store information about required files, update settings, and other details.
(You can get a low-level look at these files and their XML file in the MSDN Help.) The .manifest
and .application files are digitally signed at the time of publication, so these files can’t be mod-
ified by hand. If you do make a change, ClickOnce will notice the discrepancy and refuse to
install the application.

As you publish newer versions of your application, ClickOnce adds new subdirectories
for each new version. For example, if you change the publish version of your application to
1.0.0.1, you’ll get a new directory like this:

c:\ClickOnceTest\ClickOnceTest_1_0_0_1\ClickOnceTest.exe.deploy

c:\ClickOnceTest\ClickOnceTest_1_0_0_1\ClickOnceTest.exe.manifest

CHAPTER 27 ■ CLICKONCE DEPLOYMENT974

9551CH27 2/8/08 2:17 PM Page 974

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

When you run the setup.exe program, it handles the process of installing any prerequisites
(such as the .NET Framework) and then installs the most recent version of your application.

Installing a ClickOnce Application
To see ClickOnce in action with a web deployment, follow these steps:

1. Make sure you have the optional IIS web server component installed. In Windows XP,
choose Settings ➤ Control Panel ➤ Add or Remove Programs from the Start menu,
choose the Add/Remove Windows Components section, and scroll through the list
until you find Internet Information Services (IIS). This option must be checked. In
Windows Vista, follow the instructions in the “Using ClickOnce on Windows Vista”
sidebar earlier in this chapter.

2. Using Visual Studio, create a basic Windows application, and compile it.

3. Launch the publishing wizard (by choosing Build ➤ Publish), and select http://
localhost/ClickOnceTest for the publish location. The localhost portion of the URL
points to the current computer. As long as IIS is installed and you are running with
sufficient privileges, Visual Studio will be able to create this virtual directory.

4. Choose to create an online and offline application, and then click Finish to end the
wizard. The files will be deployed to a folder named ClickOnceTest in the IIS web server
root (by default, the directory c:\Inetpub\wwwroot).

5. Run the setup.exe program directly, or load up the publish.htm page (shown in
Figure 27-6) and click Install. You’ll receive a security message asking whether you
want to trust the application (similar to when you download an ActiveX control in a
web browser).

Figure 27-6. The publish.htm installation page

6. If you choose to continue, the application will be downloaded, and you’ll be asked to
verify that you want to install it.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 975

9551CH27 2/8/08 2:17 PM Page 975

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

http://localhost/ClickOnceTest
http://localhost/ClickOnceTest

7. Once the application is installed, you can run it from the Start menu shortcut or unin-
stall it using the Add/Remove Programs dialog box.

The shortcut for ClickOnce applications isn’t the standard shortcut to which you’re proba-
bly accustomed. Instead, it’s an application reference—a text file with information about the
application name and the location of the deployment files. The actual program files for your
application are stored in a location that’s difficult to find and impossible to control. The loca-
tion follows this pattern:

c:\Documents and Settings\[UserName]\Local Settings\Apps\2.0\[...]\[...]\[...]

The final three portions of this path are opaque, automatically generated strings like
C6VLXKCE.828. Clearly, you aren’t expected to access this directory directly.

CLICKONCE SETUPS AND UAC

As you no doubt already know, Windows Vista includes a feature called User Account Control (UAC), which
restricts administrator privileges to reduce the damage that can be caused by a malicious application. If the
current user attempts to perform a task that requires administrator privileges, a special UAC dialog box
appears that asks the user to confirm the permission elevation before continuing. This step can be performed
only when a new process is started. Once the process is running, it cannot elevate its permissions.

When designing UAC, Microsoft was faced with the challenge of ensuring that most existing programs
would work correctly most of the time. One of the compromises it made was with installation programs.
Because many setup programs require administrator privileges, Windows Vista prompts the user to elevate to
administrator level when a setup program is launched. Windows Vista “detects” a setup program based on
the file name, so a file named setup.exe is automatically treated as an installation program and running it
triggers permission elevation.

The problem is that not all setup programs require this permission elevation. The setup applications
used by ClickOnce applications are perfect examples. However, if you run a ClickOnce setup, you’ll be faced
with the unnecessary UAC prompt. Even worse, if you’re running under an account that doesn’t have admin-
istrator privileges, you’ll be forced to supply administrator credentials, and the ClickOnce application will be
installed for that administrator account, not the current user account. As a result, it won’t appear in your
Start menu.

A few solutions are possible. One option is to direct users to launch the setup by double-clicking the
.application file (like ClickOnceTest.application) rather than using the setup.exe application or the publish.htm
page (which also uses setup.exe). Unfortunately, this breaks web-based deployment unless you create your
own installation page that points to the .application file. This approach also won’t work if the user doesn’t at
least have .NET 2.0 runtime—without it, the .application extension won’t be recognized. Another option is to
rename the setup.exe file to something else (like MyApp.exe). Unfortunately, this approach doesn’t work
because Vista still detects that the executable uses an internal resource named setup. You can use a resource
editor to manually change this detail, but this approach is an awkward workaround at best. Microsoft plans to
fix these limitations in the next build of Visual Studio.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT976

9551CH27 2/8/08 2:17 PM Page 976

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Updating a ClickOnce Application
To see how a ClickOnce application can update itself automatically, follow these steps with the
installation from the previous example:

1. Make a minor but noticeable change in the application (for example, adding a button).

2. Recompile the application, and republish it to the same location.

3. Run the application from the Start menu. The application will detect the new version
and ask you whether you’d like to install it (see Figure 27-7).

4. Once you accept the update, the new version of the application will install and start.

Figure 27-7. Detecting a newer version of a ClickOnce application

In the following sections, you’ll learn how to customize some additional ClickOnce
options.

■Note The ClickOnce engine, dfsvc.exe, handles updates and downloads.

ClickOnce Options
The publishing wizard is a quick way to create a ClickOnce deployment, but it doesn’t allow
you to adjust all the possible options. To get access to more ClickOnce settings, double-click
the Properties node in the Solution Explorer, and then click the Publish tab. You’ll see the set-
tings shown in Figure 27-8.

Some of these settings duplicate details you’ve already seen in the wizard. For example,
the first two text boxes allow you to choose the publishing location (the place where the Click-
Once files will be placed, as set in step 1 of the wizard) and the installation location (the place
from which the user will run the setup, as set in step 2 of the wizard). The Install Mode setting
allows you to choose whether the application should be installed on the local computer or run
in an online-only mode, as described earlier in this chapter. At the bottom of the window, the
Publish Wizard button launches the wizard you saw earlier, and the Publish Now button pub-
lishes the project using the previous settings.

The following sections discuss the settings you haven’t already seen.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 977

9551CH27 2/8/08 2:17 PM Page 977

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Figure 27-8. ClickOnce project settings

Publish Version
The Publish Version section sets the version of your application that’s stored in the ClickOnce
manifest file. This isn’t the same as the assembly version, which you can set on the Application
tab, although you might set both to match.

The key difference is that the publish version is the criteria that are used to determine
whether a new update is available. If a user launches version 1.5.0.0 of an application and
version 1.5.0.1 is available, the ClickOnce infrastructure will show the update dialog box
shown in Figure 27-7.

By default, the Automatically Increment Revision with Each Publish check box is set, in
which case the final part of the publish version (the revision number) is incremented by 1
after each publication, so 1.0.0.0 becomes 1.0.0.1, then 1.0.0.2, and so on. If you want to pub-
lish the same version of your application to multiple locations using Visual Studio, you should
switch off this option. However, keep in mind that the automatic update feature springs into
action only if it finds a higher version number. The date stamp on the deployed files has no
effect (and isn’t reliable).

It may seem horribly inelegant to track separate assembly and publication version num-
bers. However, sometimes it makes sense. For example, while testing an application, you may
want to keep the assembly version number fixed without preventing testers from getting the
latest version. In this case, you can use the same assembly version number but keep the
autoincrementing publish version number. When you’re ready to release an official update,
you can set the assembly version and the publish version to match. Also, a published applica-
tion might contain multiple assemblies with different version numbers. In this case, it
wouldn’t be realistic to use the assembly version number—instead, the ClickOnce infrastruc-
ture needs to consider a single version number to determine whether an update is warranted.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT978

9551CH27 2/8/08 2:17 PM Page 978

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Updates
Click the Updates button to show the Application Updates dialog box (Figure 27-9), where you
can choose your update strategy.

Figure 27-9. Setting update options

■Note The Updates button isn’t available if you’re creating an online-only application. An online-only
application always runs from its published location on a website or network share.

You first choose whether the application performs update checking. If it does, you can
choose when updates are performed. You have two options:

• Before the application starts. If you use this model, the ClickOnce infrastructure
checks for an application update (on the website or network share) every time the user
runs the application. If an update is detected, it’s installed, and then the application is
launched. This option is a good choice if you want to make sure the user gets an update
as soon as it’s available.

• After the application starts. If you use this model, the ClickOnce infrastructure checks
for a new update after the application is launched. If an updated version is detected,
this version is installed the next time the user starts the application. This is the recom-
mended option for most applications, because it improves load times.

If you choose to perform checks after the application starts, the check is performed in the
background. You can choose to perform it every time the application is run (the default

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 979

9551CH27 2/8/08 2:17 PM Page 979

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

option) or in less frequent intervals. For example, you can limit checks to once per number of
hours, days, or weeks.

You can also specify a minimum required version. You can use this to make updates
mandatory. For example, if you set the publish version to 1.5.0.1 and the minimum version to
1.5.0.0 and then publish your application, any user who has a version older than 1.5.0.0 will be
forced to update before being allowed to run the application. (By default there is no minimum
version, and all updates are optional.)

■Note Even if you specify a minimum version and require the application to check for updates before
starting, a user could end up running an old version of your application. This happens if the user is offline,
in which case the update check will fail without an error. The only way around this limitation is to create an
online-only application.

Publish Options
The Publish Options dialog box has a slew of miscellaneous options (see Figure 27-10).

Figure 27-10. Miscellaneous ClickOnce options

The publisher and product names are used to create the Start menu hierarchy. In the
example shown in Figure 27-10, the shortcut will be generated as Start ➤ Acme Software ➤
ClickOnceTest. This information also turns up with the application information in the
Add/Remove Programs dialog box, along with the support URL.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT980

9551CH27 2/8/08 2:17 PM Page 980

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

You can also use the Publish Options dialog box to change the name of the installation page
in web deployments (which is publish.htm by default), and you can choose whether you want
Visual Studio to launch this page automatically after a successful publication (presumably so
you can test it). Two more options give you control over how the setup works—allowing you
to set whether the application is launched automatically once it’s installed and whether an
autorun.inf file should be generated to tell CD players to launch the setup program immediately
when the CD is inserted into the CD drive.

The Last Word
This chapter gave a quick tour of the ClickOnce deployment model, which was introduced
in .NET 2.0 and remains a good choice for deploying stand-alone WPF applications. As with
XBAPs, ClickOnce entails certain compromises—for example, you need to accept compro-
mises about certain client configuration details you can’t control. You also need to resign
yourself to the fact that ClickOnce won’t truly be a preferred way to deploy applications until it
becomes more established, which means computers need to be running Windows Vista or the
.NET 2.0 Framework. However, it’s likely that ClickOnce will be a key deployment technology
in the future and will continue to gain importance.

CHAPTER 27 ■ CLICKONCE DEPLOYMENT 981

9551CH27 2/8/08 2:17 PM Page 981

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

9551CH27 2/8/08 2:17 PM Page 982

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

■Numbers
2-D element, placing on 3-D surfaces, 12
3-D drawing

2-D and 3-D drawing classes, table of, 811
adjusting camera’s blind spots, 822
advantages of, 810
AmbientLight class, 818
animation that flies around torus, 841
avoiding z-fighting (stitching), 822
Blender, 829
breaking cube down into triangles, 824
brush color and lighting, 832
building basic mesh, 813
building geometry for 3-D object, 812
calculating light direction, 817
calculating normal that’s perpendicular to

triangle’s surface, 828
changing 3-D scene using virtual trackball,

843
changing FieldOfView property, 822
combining two surfaces by wrapping

them in MaterialGroup, 832
coordinate system for describing 3-D

objects, 814
creating 3-D fly-over scene, 841
creating solid and faceted cube, 823
declaring each Position point several

times, 827
defining back and front of 3-D shape, 815
defining geometry model and surfaces,

815
defining Geometry3D and wrapping it in

GeometryModel3D, 812
defining PerspectiveCamera, 820
defining white DirectionalLight, 817
DiffuseMaterial class, 815, 832
DirectionalLight class, 818
downloading virtual trackball code, 843
Dunn, Fletcher, 853
EmissiveMaterial class, 832
faceted vs. blended sides, 829
FarPlaneDistance property, 822
formula for calculating LookDirection, 820
four ingredients of, 810
guidelines for choosing right normals, 827
hit-testing

with ModelUIElement3D, 848–849
overview, 845
in Viewport, 845–847

HitTestResult, 846
how light and shadow effects are

calculated, 816
Interactive3DDecorator class, 850
Light class, 816
light classes, table of, 816
light source as object in viewport, 810
LightWave, 829
listing points in counterclockwise order

around Z axis, 814
making 3-D scene dynamic, 838
making partially transparent 3-D objects,

832
manipulating 3-D objects using

transforms, 838
mapping video to 3-D surface, 837
markup for 3-D character, 831
markup for creating VisualBrush that

loops video playback, 837
Material class, 815
material classes, table of, 815
MatrixCamera class, 819
Maya, 829
MeshGeometry3D class, table of

properties, 813
MeshGeometry3D for creating cube, 824
MeshGeometry3D object as representing

mesh of triangles, 813
MeshGeometry.TextureCoordinates

collection, 834
MeshHit property, 846
Model3DGroup class, 830
ModelVisual3D class, 845–851
NearPlaneDistance property, 822
no WPF collection of 3-D shape primitives,

811
normal, defined, 825
Normals property, 828
not rendering unseen shapes, 824
OrthographicCamera class, 819
painting 3-D object with yellow matte

surface, 815
PerspectiveCamera class, 819
placing and configuring camera, 819
placing light objects inside

ModelVisual3D, 817
PointLight class, 818
preventing rendering artifacts, 822

Index

983

9551CH28 2/8/08 2:17 PM Page 983

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

3-D drawing (continued)
problem of sharing Position points and

sharing normals, 827
RayMeshGeometry3DHitTestResult, 846
relying on third-party 3-D design tools,

809
setting camera’s LookDirection property,

819
setting camera’s Position property, 819
setting camera’s UpDirection property, 820
setting Viewport3D.Camera property with

Camera object, 819
SpecularMaterial class, 832
SpotLight class, 818
techniques for building basic sphere, 829
texture mapping, 834
tools for building 3-D scenes, 829
TrackballDecorator class, 844
TriangleIndices property, 824
two-step process for creating 3-D models,

812
unequal shading of cube sides, 825
useful links on 3-D programming with

WPF, 853
using axis lines as testing tool, 822
using texture mapping to place 2-D brush

content on 3-D surface, 849
using viewport to host 3-D content, 810
viewport, camera position, and window

size, 819
viewport with triangle and light source,

817
Viewport3D class, 810
VisualBrush, limitations of, 849
VisualTreeHelper.HitTest(), 845
WPF lighting model, 816
WPF’s libraries for 3-D programming, 809
WPF’s three camera classes, 819
ZAM 3D, 829

3-D surfaces, placing 2-D elements on, 12

■A
AccelerationRatio property, 744
accelerator keys, 922
AcceptsReturn property, 203
AcceptsTab property, 203
Activate<T> method, 953
ActiveEditingMode property, 108
ActiveMovie (DirectShow), 784
ActiveX, 914
ActualHeight property, 86
ActualWidth property, 86
adapters, 941

add-in, 949
host, 950–951

AddBackEntry() method, 264–265
AddBackReference() method, 267–269

AddFixedDocument() method, 682
AddHandler() method, 150, 159, 313
add-in adapters, 949
AddIn attribute, 948
add-in model, 12
add-in view, 947
AddInAdapter attribute, 949
AddInBase attribute, 947, 956
AddInContract attribute, 947, 956
AddInController class, 954
AddInController.Shutdown() method, 954
add-ins, 940–963

creating applications that use, 946–954
add-in adapter, 949
add-in view, 947
adding more add-ins, 954
contract assemblies, 946–947
host, 951–954
host adapter, 950–951
host view, 950
overview, 946

interacting with host, 955–960
overview, 940
pipeline, 941–946

folder structure, 943–944
how works, 941–943
overview, 941
preparing solution, 944–946

visual, 960–962
AddIns directory, 943, 951
AddInSideAdapters subdirectory, 949
AddInStore.Rebuild() method, 951
AddInStore.Update() method, 951
AddInToken.Activate<T> method, 952–953
AddInViews subdirectory, 947
AddLogicalChild() method, 434
AddOwner() method, 145
AddVisual() method, 435
AddVisualChild() method, 434, 897
Adjust Font Size (DPI), 9
Adobe Flash, 1, 430
Adobe Illustrator, 430
ADO.NET

data objects, 491
binding to, 521
creating DataView, 522
DataTable.DefaultView property, 522
DisplayMemberPath property, 522

DataTables and DataView objects, 578
AdornedElementPlaceholder, 545–547
adorner layer, 449, 483, 545
AdornerDecorator class, 449, 483
Aero Glass effect, 236–240
airspace rule, 914
AllowDrop property, 176
AllowsTransparency property, 200, 227, 283
ambient properties, 186

■INDEX984

9551CH28 2/8/08 2:17 PM Page 984

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

AmbientColor property, 818
AmbientLight class, 818
AncestorType property, 505
anchoring, 75
animation, 5

3-D, that flies around torus, 841
accelerating and decelerating, 744
AccelerationRatio property, 744
accessing Storyboard object, 757
adding mouseover animation, 750
adding standard playback buttons for

animation, 755
animating element that’s filled with

VisualBrush, 770
Animation Behaviors project, 782
animation classes, complete list of, 734
AnimationTimeline class, 742
applying same animation to multiple

elements, 749
applying second animation to already

animated property, 752
attaching animation to Click event, 747
attaching event handler to

CompositionTarget.Rendering event,
778

attaching triggers with style, 748
attaching triggers with template, 750
AutoReverse property, 741–745
BeginStoryboard action, 747
BeginStoryboard.HandoffBehavior

property, 752
brushes, 769
building gradient-based animations, 770
canvas as most common layout container

for animation, 737
causing animation to repeat itself

endlessly, 745
changing 3-D scene using virtual trackball,

843
changing FillBehavior property, 741, 753
code-based animations, 735
ColorAnimation class, 769
comparing key frame animation and

sequence of multiple animations,
773

comparing RenderTransform and
LayoutTransform, 766

comparing Visibility and Opacity
properties, 763

ControllableStoryboardAction class, 754
controlling how animation is repeated,

745
controlling playback, 754
creating 3-D fly-over scene, 841
creating additive animation by setting

IsAdditive property, 739

creating animation
that fires when window first loads, 747
that widens button, 736

creating animation class for data type, 732
creating document window that jumps

into view, 767
creating dynamic user interfaces, 729
creating event trigger for MouseEnter and

MouseLeave events, 750
creating fish-eye effect, 750
creating frame-based animation using

nothing but code, 778
creating property trigger that triggers

storyboard, 749
creating reversible animation, 741
CurrentTimeInvalidated event, 760
data types and key frame animation,

732–774
DataTypeAnimation class, 774
DecelerationRatio property, 744
declarative animation, 746
decreasing frame rate, 761
defining, 22
defining storyboard, 746
defining transform, 764
defining with declarative tags, 5
determining increment size when

performing interpolation, 735
determining whether torus mesh has been

hit, 846
differentiating from traditional media

files, 729
discrete key frame classes, naming format,

774
discrete key frames, 773
displaying position and progress in

animation, 759
DoubleAnimation class, 770
DoubleAnimationUsingPath, 777
downloading virtual trackball code, 843
Duration property, 740
EventTrigger.SourceName property, 756
Expression Blend design tool, 769
frame-based animation

of falling circles, 778
as not time-dependent, 782

From, To, and Duration properties, 736
fusing second animation into first

animation’s timeline, 752
future of WPF animation, 782
gradient brushes and RelativeTransform

property, 770
Gradient Obsession tool, 770
guidelines for choosing right property to

animate, 763
handling Completed event of animation

object, 741

■INDEX 985

9551CH28 2/8/08 2:17 PM Page 985

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

animation (continued)
handling one-way animations that remain

active after finishing, 741
HandoffBehavior.Compose, 752
IAnimatable interface, 735
inheritance hierarchy of WPF animation

types, 742
IsCumulative property, 745
key frame animation

defined, 772
naming format, 732

KeySpline property, 774
LayoutTransform property, 764
linear interpolation, naming format, 732
linear key frame classes, naming format,

774
linear key frames, 773
LinearGradientBrush, 758, 770
managing simultaneous animations as

one group, 753
manipulating 3-D objects using

transforms, 838
moving camera along route rather than

straight line, 841
moving element along path, 733
moving image along path, 776
multiple transforms, 767
nesting transforms inside

TransformGroup, 767
omitting both From and To properties, 738
omitting From property, 737
omitting To property, 738
path-based animation, naming format,

733
PathGeometry object, 733
performing linear interpolation between

key frames, 772
performing wipe transition, 758
Petzold, Charles, 770
Point3DAnimationUsingKeyFrames, 773
PointAnimation class, 769
PointAnimationUsingKeyFrames object,

772
PointAnimationUsingPath class, 777
position-related properties, 775
procedure for creating timer-based

animation, 730
progressively revealing element, 763
property with special value of

Double.NaN, 737
property-based animation, defined, 731
radial gradient along ellipse, 769
RadialGradientBrush, 769–770
reference types as not usually animated,

732
rendering animation inactive by calling

BeginAnimation(), 742

RenderTransform property, 764
RepeatBehavior property, 745
resetting animated element to its original

state, 741
reusing animation by defining it in

template, 750
RotateTransform, 763–764, 767
rotating 3-D object around specified axis,

840, 852
rotating button on mouseover, 764
ScaleTransform, 763, 767
setting RenderTransform property of

Border object, 767
setting RenderTransformOrigin property,

765
similarity of Duration property and

TimeSpan object, 740
snapshot-and-replace behavior, 752
specific aspects of element’s appearance,

732
spline key frames, 774
stopping vs. completing animation, 754
storyboard

actions and properties, 757
defined, 746
table of events, 759

style to change ListBoxItem template, 750
TargetName property, 746
TargetProperty property, 746
Timeline class, table of properties, 742
TimelineGroup class, 742
TranslateTransform, 763
two properties simultaneously, 740
TypeNameAnimationBase class, 733
using animation class that supports

dependency property’s data type, 731
using BeginAnimation(), 735, 740
using brush properties to animate

element’s surface, 764
using By property instead of To property,

739
using Canvas to animate position, 763
using discrete key frames in

RadialGradientBrush example, 774
using event trigger to control storyboard,

746
using event triggers to attach animation,

749
using opacity masks, 758
using PathGeometry object to set

property, 775
using RepeatBehavior property to set

repeat interval, 745
using series of key frames, 773
using transforms to animate element’s

visual appearance, 764

■INDEX986

9551CH28 2/8/08 2:17 PM Page 986

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

using Trigger.EnterActions and
Trigger.ExitActions, 749

Vector3DAnimationUsingKeyFrames, 773
working with Bézier curves, 774
working with overlapping animations, 752
working with various animation classes

for different data types, 735
with WPF dependency property only, 731
WPF’s standard frame rate, 735

Animation Behaviors project, 782
AnimationTimeline class, 742
Annotation class

properties as read-only, 693
retrieving information from Anchors and

Cargos properties, 691
table of properties, 691

Annotation.AnnotationType property, 692
AnnotationDocumentPaginator class, 707
AnnotationHelper class, 685–693
annotations

accepting hand-drawn ink content in note
window, 688

adding comments and highlights to
flow/fixed documents, 683

Annotation class, 691
AnnotationHelper class, 685–687
AnnotationService class, 684
AnnotationStore class, 684
attaching sticky notes to selected text, 683
CreateHighlightCommand, 689
CreateInkStickyNoteCommand, 688
creating, deleting, and highlighting

annotations, 687
creating FileStream, 686
customizing appearance of sticky notes,

695
DeleteStickyNotesCommand, 688
enabling Annotation Service, 685
examining and manipulating existing

annotations, 693
GetAnnotations() method, 690
giving every StickyNoteControl new

background color, 695
having multiple users annotate same

document, 688
hiding and restoring sticky notes, 687
highlighting content with semitransparent

color, 689
highlighting text, 683
mapping System.Windows.Annotations

namespace, 687
printing document that includes

annotations, 690
procedure for storing annotations in XPS

document file, 694
reacting to annotation changes, 694
StickyNoteControl class, 695

storing annotations in MemoryStream,
686

storing position of each note window in
AnnotationService, 687

support for, in WPF document containers,
684

System.IO.Packaging namespace, 694
using different control template for

StickyNoteControl, 695
XmlStreamStore class, 684

Annotations classes, WPF, 684–685
AnnotationService class, Enable() method,

685
AnnotationStore class, 684, 690
AnnotionService class, 686
antialiasing, 2, 3, 8
App_Startup() method, 64
AppDomainUnloadedException attribute,

951
AppendSsml() method, 806
AppendText() method, 805
AppendTextWithHind() method, 806
application add-ins. See add-ins
Application class, 251, 262

accessing current application instance, 65
allowing interactions between windows,

66
App_Startup() method, 64
Application events, table of, 61
Application.g.vb App.g.cs file, 59
Application.xaml.vb App.xaml.cs file, 61
App.xaml, 59
calling base class implementation, 63
casting window object to right type, 65
creating dedicated method in target

window, 222
Current property, 65
custom Application class overriding

OnSessionEnding, 63
deriving custom class from, 58
DispatcherExceptionUnhandled event, 62
DoUpdate() method, 223
examining contents of

Application.Windows collection, 65
function of, 57
Main() method, 58–61
MainWindow property, 58, 222
minimizing need for window interactions,

222
one-to-many window interaction, 223
reading command-line arguments, 64
ReasonSessionEnding property, 61
Run() method, 58, 61
Shutdown() method, 61
ShutdownMode property, enumeration

values, 60
single window interaction, 223

■INDEX 987

9551CH28 2/8/08 2:17 PM Page 987

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Application class (continued)
Startup event, 58
storing references to important windows,

66
Visual Studio and, 58

Application element, 25
application life cycle

application events, 61–63
creating application object, 57–58
deriving custom application class, 58–60
overview, 57
shutdown, 60–61

application resources, considering trade-off
between complexity and reuse, 340

Application tag, 59
application tasks, 64–65
Application Updater Component, 968
Application Updater Starter Block

(Microsoft), 968
Application Updates dialog box, 979
application windows, determining size of, 6
ApplicationCommands class, 294, 310
ApplicationCommands.Print command, 705,

725
ApplicationCommands.Undo command, 866
ApplicationExtension tag, 274
Application.GetResourceStream() method,

190
Application.g.vb App.g.cs file, 59
ApplicationName.exe.manifest, 276
ApplicationName.xbap, 276
applications, single-instance

Application.Startup event, 68
creating, 68
FileRegistrationHelper class, 72
Microsoft Word, 68
registering file extension using

Microsoft.Win32 namespace, 72
ShowDocument() method, 70
SingleInstanceApplicationWrapper class,

70
using systemwide mutex, 68
Windows Communication Foundation

(WCF), 69
WpfApp class, 70
wrapping WPF application with

WindowsFormsApplicationBase
class, 69

Application.Startup event, 68
Application.StartupUri property, 64
Application.Windows collection, 65
Application.xaml.vb App.xaml.cs file, 61
ApplyPropertyValue() method, 679
App.xaml, 59, 913
architecture of WPF

core WPF namespaces, 17
DependencyObject class, 16

Direct3D, 16
dispatcher, 18
DispatcherObject class, 16–18
elements and controls compared, 19
Media Integration Layer (MIL), 16
milcore.dll, 16
PresentationCore.dll, 16
PresentationFramework.dll, 16
single-thread affinity (STA), 18
UIElement class, 16
User32, 16
Visual class, 16
WindowsBase.dll, 16
WindowsCodecs.dll, 16

ArcSegment class, 418–419
Arrange() method, 702, 889
arrange stage, 77
ArrangeCore() method, 888
ArrangeOverride() method, 78, 888–891, 894

basic structure of, 890
DesiredSize property, 890
giving element its desired size, 890
giving element more space than it

requires, 890
making element larger than its desired

size, 890
asInvoker application, 73
ASP.NET, similarity of tagging syntax to

HTML, 23
assembly resources

accessing AssemblyName.g.resources
resource stream, 320

adding resources, 318
AssemblyAssociatedContentFile attribute,

323
binary resources, 317
BitmapImage object, 321
Build Action property, 318
ContentType property, 320
defined, 317
Embedded Resource build action, 318
GetResourceStream() method, 319–320
grouping and organizing, 318
marking noncompiled files as content

files, 323
Reflector, 319
resource stream, naming convention, 319
resource-aware classes, 320
ResourceManager class, 320
Resources tab, Project Properties window,

318
ResourceSet class, 320
retrieving, 319
retrieving resources embedded in another

library, 322
Stream property, 320
StreamResourceInfo object, 319

■INDEX988

9551CH28 2/8/08 2:17 PM Page 988

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

syntax in WPF, 321
UnmanagedMemoryStream object, 320
using build type of Resource, 318
using disassembler, 319
using strong-named assembly, 322
when deploying resource files isn’t

practical, 322
working with resources natively, 321

AssemblyAssociatedContentFile attribute,
323

AssemblyName, 45
asynchronous printing, 728
AsyncOperation class, 937
AsyncOperationManager class, 937
attached events, 159
attached properties, 36, 82, 146
attributes

Class, 27
ContentProperty, 37–39
Name, 29
RuntimeNameProperty, 29
setting XAML class properties through

attributes, 25
TypeConverter, 32
using to attach event handlers, 42
XAML start tag, 26
x:Key, 37
xmlns, 26
xml:space="preserve", 41

audio
audio file with two synchronized

animations, code example, 798
MediaElement class, 789
MediaPlayer class, 787
playing WAV audio, 783
SoundPlayer class, 784
SoundPlayerAction class, 786

authority, 257
AutoComplete feature, 600
automation, 955
AutoReverse property, 741–745
AutoWordSelection, 204
axis lines, using as testing tool, 822

■B
Background property, 215
BackgroundWorker class, 909
BackgroundWorker component

adding support for canceling long-
running task, 938

adding support for tracking progress, 937
AsyncOperation class, 937
AsyncOperationManager class, 937
calling ReportProgresss() method, 937
cancel messages, 932
CancelAsync() method, 938
creating, 933

declaring in XAML, 933
DoWork event, 936
executing, 934
FindPrimes() method, 932
performing sieve of Eratosthenes

algorithm asynchronously, 932
progress events, 932
ProgressChanged event, 937
RunWorkerCompleted event, 936–939
SynchronizationContext class, 937
System.ComponentModel namespace,

933
using with single asynchronous

background task, 932
Window.Resources collection, 934
WorkerReportsProgress property, 937–938
WorkerSupportsCancellation property,

938
BackMaterial property, 815–816
BackStack property, 264
Bag-O-Tricks custom control library, 858
Balance property, 796
BAML (Binary Application Markup

Language), 24, 47, 51
Band property, 639
BandIndex property, 639
BasedOn attribute, 357
BasedOn property, 616
BeginAnimation() method, 735–742
BeginChange() method, 205
BeginInit() method, 163
BeginInvoke() method, 929–930
BeginStoryboard action, 747
BeginStoryboard.HandoffBehavior property,

752
BeginStyle() method, 805
Bevel line join, 381
BevelBitmapEffect class, 406
BevelWidth property, 406
Bézier curves, 774, 777
BezierSegment class, 420
Binary Application Markup Language

(BAML), 24, 47, 51
binary resources, 317
Binding class, 493, 498
Binding markup extension, 493–495
BindingExpression class, 503
BindingExpression.UpdateSource() method,

502–503
BindingList collection, 521
BindingListCollectionView, 574, 579
BindingMode enumeration, 499
BindingOperations class, 495
Binding.RelativeSource property, 566–569,

865
Binding.ValidatesOnDataErrors property, 540
Binding.ValidatesOnExceptions property, 540

■INDEX 989

9551CH28 2/8/08 2:17 PM Page 989

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Binding.ValidationRules collection, 541
Binding.XPath property, 596
bi-pane proportional resizing, 75
bitmap effects

adding diffuse halo of light around
element, 407

applying blur effect to button, 404
BevelBitmapEffect class, 405
BitmapEffect class, 403
BlurBitmapEffect class, 404
creating glows and shadows, 407
creating raised edge (bevel) around

element’s border, 405
disadvantages of, 403
DropShadowBitmapEffect class, 407
EmbossBitmapEffect class, 406
embossing edges, 406
Gaussian blur, 404
goal of, 403
implementing only in unmanaged code,

403
OuterGlowBitmapEffect class, 407
rendering in software and not on video

card, 403
simulating drop shadow effect, 408

bitmap scaling, 10
BitmapEffect class, 404
BitmapImage class, 321, 532, 556
BleedBox property, 705
Blender, 829
block elements

BlockUIContainer class, 655
defined, 646
List element, 651
Paragraph element, 650
Section element, 655
Table element, 653
table of formatting properties, 647

Blocks collection, 664
BlockUIContainer class, 655, 656, 681
BlurBitmapEffect class, 404
Border class, 133, 459, 896
Border element, 869
BorderBrush property, 182, 215, 654
BorderThickness property, 133, 182, 215, 654
Bottom property, 105
Brush class

classes deriving from, 390
Opacity property, 182

Brush object, 179
brushes

adding more than two GradientStops, 392
adding one GradientStop for each blended

color, 391
animating, 769
animating element that’s filled with

VisualBrush, 770

animating radial gradient along ellipse,
769

automatic change notification, 182
background and foreground, 179
BorderBrush property, 182
BorderThickness property, 182
Brush object, 179
building gradient-based animations, 770
ColorAnimation class, 769
comparing proportionally sized and fixed-

sized tiles, 397
creating gradients with more than two

colors, 392
creating radial gradient with offset center,

394
deriving from Freezable, 390
DoubleAnimation class, 770
gradient brushes and RelativeTransform

property, 770
Gradient Obsession tool, 770
ImageBrush, 182, 395
LinearGradientBrush, 181, 390, 770
markup for button that fades from solid to

transparent, 401
markup for shading rectangle diagonally,

390
Opacity property, 390
OpacityMask property, 401
painting border around controls, 182
PointAnimation class, 769
RadialGradientBrush, 393, 769–770
setting button’s surface color, 180
SolidColorBrush, 180
support for change notification, 390
support for partial transparency, 390
SystemBrushes class, 390
TileBrush, 183
tiling image across surface of brush, 397
using color that has nonopaque alpha

value, 401
using tiled ImageBrush, 397
VisualBrush, 399

bubbling events, 154–156, 161
Build Action property, 318
BulletChrome class, 454
Button class, 192, 459
Button control, 119, 191
Button object, 182
<Button> element, 25
ButtonBase class, 191
ButtonChrome class, 451–454, 898–899
ButtonChrome decorator, 133, 182
ButtonState event, 173
By property

not using with non-numeric data types,
739

using instead of To property, 739

■INDEX990

9551CH28 2/8/08 2:17 PM Page 990

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

using when defining animation in XAML,
739

byte arrays, 947

■C
C#, partial classes, 28
caller inform design pattern, 510
camera

3-D animation that flies around torus, 841
animating camera’s LookDirection

property, 841
animating camera’s UpDirection property,

842
changing 3-D scene using virtual trackball,

843
creating 3-D fly-over scene, 841
downloading virtual trackball code, 843
moving along route rather than straight

line, 841
placing and configuring, 819
setting Viewport3D.Camera property with

Camera object, 819
Camera property, 810
CancelAsync() method, 728, 938
CanContentScroll property, 126
CanExecute() method, 292, 301, 303
CanExecute property, 303
CanExecuteChanged event, 292, 301–303
CanExecuteRoutedEventArg class, 303
CanGoBack property, 262–264
CanGoForward property, 262
canonicalization errors, 879
CanUndo property, 205
Canvas

animation and, 737
Bottom property, 105
ClipToBounds property, 106, 376, 762
code example with four buttons, 105
controlling layering of overlapping

elements, 106
controlling shape placement and overlap,

373
description of, 78
Height property, 105
Left property, 104
lightweight features of, 105
nesting inside user interface, 106
placing elements using exact coordinates,

104
placing Line in Canvas, 377
promoting element by increasing its

ZIndex, 106
Right property, 105
SetZIndex(), 106
tag order and overlapping shapes, 374
Top property, 104
using to animate position, 763

using Viewbox element to resize shapes
proportionally, 374

Width property, 105
ZIndex property, 106

Canvas class, 891
Cargos collection, 692
CellSpacing property, 654
CellTemplate property, 610
CellTemplateSelector property, 612
Center property, 393, 411
CenterOwner, 219
CenterX property, 387
CenterY property, 387
certmgr.exe tool, 280
change notification, 147
CheckBox class, 193
CheckBox control, 119
CheckBox element, 604–606
CheckBox.IsChecked property, 158
CheckedListBox, 906
CheckFileExists property, 226
Child property, 200
Children property, 810
chrome classes, 454
Class attribute, 27, 59
class bindings, 306
class hierarchy, 18, 19
ClearAllBindings() method, 495
ClearHighlightsForSelection() method, 687
ClearSelection() method, 438
ClearValue() method, 141–145, 495
Click event, 159, 191, 633
ClickCount event, 173
ClickMode property, 191
clickOffset field, 437
ClickOnce

accessing advanced project settings, 977
accessing installation from UNC path, 971
adding subdirectories for each new

application version, 974
advantages and disadvantages of, 965–966
automatically downloading application

updates from Web, 966
bypassing automatic update feature, 973
choosing installation type, 971
choosing publishing location, 970
choosing update options in Application

Updates dialog box, 979
choosing when application updates are

performed, 979
configuring application for web-like

online-only mode, 968
consumer applications deployed over

Web, 966
contents of .manifest and .application

files, 974

■INDEX 991

9551CH28 2/8/08 2:17 PM Page 991

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ClickOnce (continued)
creating application that supports offline

use, 974
creating online-only application, 973
deploying stand-alone WPF applications

only, 966
deployment scenarios and options, 967
developer control over update settings,

968
dfsvc.exe, 977
entering virtual directory on web server

for publish location, 970
enterprise environments and, 966
handling permission elevation on

Windows Vista installations, 976
inability to install shared components in

GAC, 969
Install Mode setting, 977
installation and configuration limitations,

968
installation model, 967
installing and running applications in

limited trust scenarios, 966
link to publish.htm website for application

downloading and installation, 967
location of setup.exe and other deployed

files, 974
making application updates mandatory,

980
procedure for installing ClickOnce

application, 975–976
publication considerations for Windows

Vista users, 969
Publish Now button, 977
Publish Options dialog box, 980
Publish Wizard button, 977
publishing application, 969
publishing application to virtual directory

in Visual Studio, 969
publishing straight to web server using

FTP, 972
publishing to CD or DVD, 972
publishing to network file share, 971
publishing to web server or local intranet,

971
running setup.exe program, 975
running WPF applications with

unmanaged code permission and full
trust, 966

scaling back of, from .NET 2.0 to WPF, 966
setting miscellaneous options, 980
setting publish version, 978
shortcut for ClickOnce applications, 976
tracking separate assembly and

publication version numbers, 978
transferring application files to web server,

971

understanding basic deployment model,
966

unsuitability for sophisticated consumer
applications, 966

updating ClickOnce application
automatically, 977

using Visual Studio publishing wizard, 969
using Visual Studio to publish ClickOnce

application to web server, 967
verifying that .NET Framework 3.0

runtime is installed, 967
ClickOnce cache, 277
client area, defined, 215
clip art, exporting, 429
Clip property, 424, 425
clipboard, 205
Clipping property, 800
ClipToBounds property, 106, 376, 762, 811
Clock class, 760
Clock property, 792
Close() method, 218
CLR (common language runtime), 16

global assembly cache (GAC), 326
probing for satellite assembly, 325

Code DOM model, 52
code only development, 46, 47
CodeAccessPermission class, 281
code-based animations, 735
code-behind class, 27
CoerceValueCallback, 142–149
coercion, 140–142

examples of property coercion, 143
WPF dependency property system and,

144
CollectionView, 574–588
CollectionView.GroupDescriptions

collection, 581
CollectionViewSource class

example of defining converter and
CollectionViewSource declaratively,
586

Filter event, 586
GetDefaultView() method, 575
GroupDescriptions property, 586
as helper class and factory, 586
SortDescriptions property, 586
Source property, 586
View property, 586

color picker
adding basic Grid, 863
adding command bindings, 866
adding command support to controls, 866
adding standard property wrappers, 861
adding support for

ApplicationCommands.Undo
command, 866

■INDEX992

9551CH28 2/8/08 2:17 PM Page 992

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

adding TemplatePart attribute to control
declaration, 876

adding user control to custom control
library project, 859

adjusting color components with Slider
controls, 859

attaching callbacks that respond to
changed properties, 860

calling OverrideMetadata() method, 871
calling RaiseEvent() method, 863
changing color picker into lookless

control, 871
checking for correct type of element, 875
code for binding SolidColorBrush, 875
Color property, 860, 866
ColorChanged event, 866
complete markup, 864
connecting data binding expression using

OnApplyTemplate(), 875
control consumer, 859
converting ordinary markup into control

template, 872
creating basic color picker, 858
creating different styles for different

theme settings, 871
creating standard .NET event wrapper, 863
creating template for, 872
DefaultStyleKeyProperty, 871
defined, 859
defining and adding routed events, 862
defining static fields for properties, 860
designing public interface, 859
generic.xaml resource dictionary, 871
handling CanExecute and Executed

events, 867
mapping assembly and .NET namespace

to XML namespace, 866
markup structure for ColorPicker.xaml,

872
not using coercion callbacks with color

properties, 862
OnColorChanged(), 863
overriding OnApplyTemplate() method,

875
property change callbacks for updating

properties, 861
providing descriptive names for element

names, 874
Red, Green, and Blue properties, 860
revised command handling code, 868
RoutedEventHandler, 863
RoutedPropertyChangedEventHandler,

863
SetValue(), 861
static constructor code for registering

dependency properties, 860

streamlining color picker control
template, 874

tracking previous color in member field,
867

triggering Undo command, 868
UserControl class, 859
using binding expressions to repurpose

core property, 865
using data binding for color sliders, 860
using in another window, 866
using TargetType attribute, 872

Color property, 408, 860, 862
ColorAnimation class, 732, 769
ColorChanged event, 866
ColorDialog class, 909
Color.FromArgb() method, 181
Colors class, 180–181
Column property, 92
ColumnDefinition element, 92–110
ColumnDefinition object, 94
ColumnGap property, 706
ColumnHeaderContainerStyle property, 612
ColumnSpan property, 96, 111, 654
ColumnWidth property, 706
CombinedGeometry class

applying transform to geometry, 416
building up distinct shapes with many

geometries, 414
combining overlapping shapes, 414
creating simple “No” sign (circle with slash

through it), 414–417
GeometryCombineMode property,

enumeration values, 414
merging two shapes to create one shape,

414
using Geometry1 and Geometry2

properties, 414
ComboBox control

adding complex objects to, 601
AutoComplete feature, 600
ComboBoxItem object, 210
components of, 600
DisplayMemberPath property, 602
hard-coding value for Width property, 211
improving performance of, 603–604
IsEditable property, 211, 600–602
IsReadOnly property, 600–602
IsTextSearchEnabled property, 601
not placing user-interactive controls in

drop-down list, 602
SelectionBoxItemTemplate property, 603
setting IsDropDownOpen property, 600
setting TextSearch.TextPath property, 602
use of drop-down list, 211
using automatic sizing, 211
using nontext content in, 601

ComboBoxItem object, 210

■INDEX 993

9551CH28 2/8/08 2:17 PM Page 993

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Command class, 299
Command property, 633
CommandBinding class, 297
CommandBindings collection, 308, 868
CommandHistoryItem class, 311, 312
command-line arguments, 64–65
CommandManager class

InvalidateRequerySuggested(), 303, 307
keeping command history, 311
RegisterClassCommandBinding(), 868

CommandParameter property, 297, 310, 633
commands

adding command bindings to top-level
window, 297

adding new binding for command you
want to disable, 305

adding new command bindings or input
bindings to disable features, 306

ApplicationCommands class, 294
basic command library, 294
binding custom command differently in

two places, 308
calling static

CommandManager.Invalidate-
RequerySuggested(), 303

calling Undo() method of
CommandHistoryItem, 315

CanExecute(), 292
CanExecuteChanged event, 292
class bindings, 306
command binding, defined, 291
command sources, 291, 292, 295
command target, defined, 291
CommandBinding class, 297
CommandHistoryItem class, 311, 312
commands as static objects global to

application, 295
ComponentCommands class, 294
controls raising CanExecuteChanged

event, 303
controls with built-in commands, 304
creating all-purpose, application-wide

Undo() command, 312–313
creating command binding, 296
custom commands, 306
dealing with user-interface state, 290
default input bindings and command

objects, 295
defined, 224, 291–292
disabling commands, 296, 301
disabling input bindings, 305
EditingCommands class, 294
Execute(), 292
features of, 289
forcing WPF to call CanExecute() on all

used commands, 303

handling commands that vary between
enabled and disabled state, 301

ICommand interface, 291
ICommandSource interface, table of

properties, 295
instantiating new RoutedUICommand

object, 306
localization and setting Text property, 299
mapping events to same command, 290
mapping .NET namespace to XML

namespace, 307
MediaCommands class, 294
modifying

RoutedCommand.InputGestures
collection of command, 307

namespace requirement for using custom
command in XAML, 307

NavigationCommands class, 294
not adding unwanted commands to Undo

history, 314
pulling text out of static command object,

300
reacting to executed commands using

CommandManager, 313
refining Undo feature for real-world

application, 315
Requery command, 307
RequerySuggested event, 303
responding to PreviewExecuted event, 313
RoutedCommand class, 292
RoutedUICommand class, 292–293
setting Boolean isDirty flag, 302
setting CommandParameter property,

297, 310
setting text for menu access keys, 299
storing CommandHistoryItem objects in

ListBox, 315
supplying keyboard shortcut for

InputGestures collection, 306
supporting application-wide Undo

feature, 310
switching off control’s built-in command

support, 305
techniques for reusing command text, 300
tracking and reversing commands, 310
using ApplicationCommands.NotA-

Command value, 305
using command parameter to pass extra

information, 310
using CommandManager class to keep

command history, 311
using data binding expression to pull out

Text property, 300
using event handlers to call appropriate

application methods, 289

■INDEX994

9551CH28 2/8/08 2:17 PM Page 994

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

using Execute() to invoke command
directly, 300

using multiple command sources, 299
using same command in different places,

308
using WPF resources, 309
when user-interface state falls outside

WPF command model, 303
why WPF commands require routed

events, 293
wiring up commands declaratively using

XAML, 298
WPF command model, 290, 291, 293

CommandTarget property, 304, 633
common language runtime. See CLR
Community Technology Preview (CTP), 11
component class, 910
component tray, 910
ComponentCommands class, 294
ComponentResourceKey, 345, 347, 615–616
CompositionTarget.Rendering event, 778
Connect() method, 52
container controls, 39
ContainerFromElement() method, 210
containers, 75, 78
ContainerVisual class, 431, 711
content controls

button controls and access keys, 191
ButtonBase class, 191
CheckBox class, 193
CheckBox control, 193
Escape key, 192
GridViewColumnHeader class, 192
Label control, 190
mnemonics, 190
Popup control, 200
RadioButton control, 193–194
RepeatButton class, 193
ToggleButton class, 193
ToolTip class, 195
ToolTip property, 195
Tooltips control, 194

content elements, 647
Content property, 40, 119, 266, 552
ContentBox property, 705
ContentControl class, 19, 40

aligning content relative to its borders, 121
Button control, 119
CheckBox control, 119
class hierarchy of, 118
combining text and images in StackPanel,

120
content controls and content nesting, 123
content controls, defined, 117
Content property, 119, 857
ContentTemplate property, 121, 857
description of, 857

differentiating content controls from
layout containers, 117

displaying text string on button surface,
119

drawing vector image inside button, 122
HasContent property, 121
HeaderedContentControl class, 119
Label, 119
OnRender(), 119
placing image inside button, 119
RadioButton control, 119
ScrollViewer, 119, 123
System.Windows.Shapes namespace, 122
TextBlock element, 120
ToolTip, 119
ToString(), 119, 121
UserControl class, 119
using Image class, 119
Window class, 118–119, 215
WPF windows and, 65

ContentElement class, 151, 645, 735
ContentEnd property, 675
ContentLocator object, 691
ContentPresenter, 451, 459, 605, 620, 869–870
ContentProperty attribute, 37–39
ContentStart property, 675
ContentTemplate property, 121, 552
ContentType property, 320
context, 927
ContextMenu class, 634
ContextMenuStrip class, 910–911
contract assemblies, 946–947
ContractBase attribute, 948
ContractHandle object, 951
Contracts subdirectory, 947
ContractToViewAdapter() method, 961
Control class

automatic change notification in brushes,
182

Background and Foreground properties,
179

BorderBrush property, 182
BorderThickness property, 182
Brush object, 179
brushes, 179
Cursor property, 189
Cursors class, 189
description of, 857
font embedding, procedure for, 187
font family, defined, 185
font inheritance, 186
font properties as dependency properties,

186
font substitution, 187
font-related properties of, 184
FontStretches class, 185
FontStyles class, 185

■INDEX 995

9551CH28 2/8/08 2:17 PM Page 995

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Control class (continued)
FontWeights class, 185
ForceCursor property, 189
functions of, 179
HorizontalContentAlignment property,

121
identifying FontFamily, 185
ImageBrush, 182
IsTabStop property, 857
LinearGradientBrush, 181
making element partly transparent,

182–184
mouse cursors, 189
MouseDoubleClick event, 173, 857
Opacity property, 182
OpenType, 185
OverrideCursor property, 189
padding content of button, 121
Padding property, 121
painting border around controls, 182
PreviewMouseDoubleClick event, 173, 857
property value inheritance, 186
scRGB standard, 181
setting background and foreground colors

in XAML, 181
setting button’s surface color, 180
setting FontFamily to list of font options,

187
SolidColorBrush, 180
template support, 19
TextDecorations class, 185
TextDecorations property, 185
TileBrush, 183
Typography property, 185
using custom cursor, 189
using transparent colors, 182
VerticalContentAlignment property, 121
WPF Color structure, 181
WPF font size compared to Windows point

size, 184
control classes, 877
control consumer, 859
control templates

adapting custom-window markup into
reusable control template, 483

adding basic window behaviors to window
template, 485

adding control template for ListBoxItem,
476

adding trigger to change button’s
background, 464

adding triggers to, 462
applying custom control template by

setting Template property, 458
applying templates automatically, 470
applying window template using simple

style, 484

basic markup for Button control template,
459

basic structural markup for window’s
control template, 483–484

Border class, 459
browsing WPF control templates, 455
building complex, multipart templates,

474
Button class example, 451
ButtonChrome class, 451
characteristics of complex templates, 474
chrome classes, 454
comparing template bindings to data

bindings, 461
comparing to custom controls, 470
ContentPresenter, 451
converting live ControlTemplate object to

XAML markup, 457
creating, 458
creating code-behind class for resource

dictionary, 472, 486
creating focus indicator for button, 462
creating new styles that use same

template, 469
creating separate resource dictionary for

each control template, 465
creating template for revamped ListBox

control, 475
custom controls and user interface

standardization, 458
customizing template for vertical

ScrollBar, 477–480
deciding where to apply your templates,

465
defining, 22
defining control template as resource, 458
defining resources in separate resource

dictionaries, 465
defining template details as separate

resources, 466
defining templates in Resources collection

of Application class, 465
dependencies, 475
dissecting controls, 455
handling click of window’s close button,

488
IsMouseOver property, 462
IsPressed property, 462
isResizing field, 487
jazzing up customized controls, 474
keeping all triggers in control template,

469
loading resource dictionary defined in

another assembly, 472
making window draggable, 486
making window resizable, 486
MergedDictionaries collection, 465, 472

■INDEX996

9551CH28 2/8/08 2:17 PM Page 996

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

obtaining XAML for standard control
templates, 455

organizing template resources, 465
practical examples of other custom

control templates, 490
problems in giving new template to

common control, 488
providing user-selectable skins, 471
putting template details into associated

style, 468
reasons to avoid template bindings, 461
Rectangle class, 459
refactoring Button control template, 466
reflection, 455
RepeatButton class, 478
replacing current resource dictionary at

runtime, 471
ResizeGrip element, markup example, 454
resizeType field, 487
resource dictionary for button, complete

markup, 466
retrieving control’s template and

serializing it to XAML, 455
retrieving Padding property using

template binding, 460
ScrollBar class, 480
Setter.TargetName property, 470
setting key name on style, 480
setting sequential order for conflicting

trigger settings, 464
setting TargetName property of each

Setter, 462
similarity between templates and styles,

464
SimpleStyles project, 488
styling ScrollBar’s RepeatButton objects

and Thumb, 481–482
template bindings, 460
Track class, 478
using adorner layer to draw superimposed

content, 483
using DynamicResource reference, 472
using focus and click triggers, 452
using FrameworkElement.Templated-

Parent property, 486
using resource dictionary, 465
using ResourceManager class, 471
using StaticResource reference, 458
using styles and control templates to skin

any application, 470
using TargetName property, 452
using template bindings to pull details out

of control properties, 468
when to switch from custom control

templates to custom controls, 470
XamlReader class, 457

XamlWriter class, 455
XamlWriter.Save(), 457

ControllableStoryboardAction class, 754, 757
controls

arranging based on their content, 4
base classes for creating custom element,

856
choosing Custom Control Library project

type, 856
choosing right base class to inherit from,

856
concept of background and foreground in,

179
content controls, defined, 117
control templates, 451
creating custom control, 856
creating undo stack that stores series of

values, 868
defined, 19, 179
Label, 117
logical tree, building, 446
lookless controls, 855
lookless controls, defined, 451
mnemonics, 117
never using custom drawing in control,

901
past problems in control customization,

445
placing custom controls in dedicated class

library (DLL) assembly, 856
ToolTip, 117
visual tree, defined, 446
writeable control properties as usually

dependency properties, 860
ControlTemplate, 613
ConvertToString() method, 168
Copy Local property, 950
Copy to Output Directory, 323
CornerRadius property, 133, 408
Count property, 587
CreateHighlightCommand, 689
CreateHighlightsForSelection() method, 687
CreateInkStickyNoteCommand, 688
CreateInkStickyNoteForSelection() method,

687
CreateTextStickyNoteForSelection() method,

687
CreateXpsDocumentWriter () method, 726
CrossTechnologySamples.exe, 241
CTP (Community Technology Preview), 11
CultureInfo class, 331
Currency data type, 529
Current property, 65
CurrentChanged event, 588
CurrentDispatcher property, 928
CurrentProgress property, 760

■INDEX 997

9551CH28 2/8/08 2:17 PM Page 997

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

CurrentTimeInvalidated event, 760
CurrentUICulture property, 323
Cursor property, 189
Cursors class, 189
Custom Control Library, 258, 856
custom controls, alternatives to, 855
Custom DPI Setting dialog box, 10
custom panels

adding attached LineBreakBeforeProperty
to WrapBreakPanel, 892

Arrange() as triggering ArrangeOverride(),
889

ArrangeCore(), 888
ArrangeOverride(), 888–891
basing WrapBreakPanel on WrapPanel, 893
Canvas class, 891
creating Canvas-style panel, 891
examples of, 887
extending capabilities of WrapPanel, 892
layout pass, 887
Measure() as triggering

MeasureOverride(), 889
measure pass, 887
MeasureCore(), 888
MeasureOverride(), 888–891
overriding MeasureOverride() and

ArrangeOverride(), 888
RegisterAttached(), 892
two-step layout process, 887
uses for, 887

CustomContentState class, 265, 269
CustomDrawnDecorator, 901
CustomDrawnElement

BackgroundColor property, 898
creating, 898
RadialGradientBrush, 898

CustomFilter property, 579
CustomPopupPlacementCallback property,

198
CustomSort property, 580

■D
dashed lines, 382–383
data binding, 917

adding validation rule to
Binding.ValidationRules collection,
541

ADO.NET data objects, 491
AdornedElementPlaceholder, 545–547
AncestorType property, 505
automatic target updating, 493
Binding class, 493
binding elements closely to their data, 497
binding markup extension, 493–495
binding to ADO.NET data objects, 521
binding to collection of objects, 516
binding to LINQ expression

converting IEnumerable(Of T)
IEnumerable<T> to ordinary
collection, 524–525

deferred execution, 525–526
overview, 523–524

binding to non-element objects, 503
binding to nonexistent property, 494
binding updates, 502
BindingExpression class, 503
BindingExpression.UpdateSource(),

502–503
BindingMode enumeration, table of

values, 499
BindingOperations class, 495
Binding.RelativeSource property, 566–569
bubbling, 543
building data access components, 507
building data object, 510
building validation directly into controls,

536
caller inform design pattern, 510
chaining bindings, 497
change notification and dependency

properties, 491
checking InnerException property of

TargetInvocationException, 543
ClearAllBindings(), 495
ClearValue(), 495
collection items, displaying and editing,

516
collection items, inserting and removing,

520
contents of ValidationError object, 543
creating and using value converter class,

526
creating Binding object with nested

RelativeSource object inside, 504
creating binding using code, 495
creating custom controls, 496
creating DataView, 522
creating dynamic binding, 495
creating error templates, 545
creating multiple binding expressions that

set same property, 497
creating multiple bindings, 496
creating XAML pages to run in browser,

492
data conversion, defined, 526
data templates and, 555
DataContent property, 519
DataContext property, 503, 505, 512
DataErrorValidationRule, 539–540
DataTable.DefaultView property, 522
defined, 491
defining validation at binding level, 536
displaying bound object, 511
displaying error content in ToolTip, 546

■INDEX998

9551CH28 2/8/08 2:17 PM Page 998

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DisplayMemberPath property, 518, 522,
552

element-to-element binding, 491
enabling database updates, 513
ErrorContent property, 541–543
ExceptionValidationRule, 537–542
Explicit update mode, 503
FindAncestor mode, 505
forcing values to flow bidirectionally

between source and target, 495
FormHasErrors(), 545
getting list of all outstanding errors, 544
guidelines for designing data access

components, 507
handling change notification, 514
handling Error event, 543
HasError property, 538
how WPF handles validation failures, 538
IEnumerable interface, 516
INotifyCollectionChanged interface, 521
INotifyPropertyChanged interface, 514
IsValid property, 541
ItemsControl class, 516, 551–552, 566
ItemsSource property, 552–555
linking controls through, 492
LostFocus update mode, 502
markup-based vs. programmatic binding,

495
modifying data binding source

programmatically, 493
NotifyOnValidationError property, 538
OnPropertyChanged(), 515
options for binding two properties, 499
options for catching invalid values, 536
outputting trace information on binding

failures, 494
preventing field from being edited, 520
PropertyChanged event, 514
PropertyChanged update mode, 502
raising errors in data object, 536
reacting to validation errors, 543
reducing overhead by setting mode to

one-way binding, 501
RelativeSource property, 503–504
RelativeSourceMode enumeration, table

of values, 505
removing binding with code, 495
setting DataContext property of container,

552
setting ElementName property, 493
setting Mode property of Binding, 495
setting NotifyOnValidationError property,

543
setting Path property, 493
setting property that isn’t dependency

property, 500
Source property, 503–504

StoreDB class, 508
summary of data-binding procedure, 552
support for IDataErrorInfo, 11
support for LINQ, 11
TargetInvocationException, 543
TemplateBinding, 872–873
two-way bindings, 491–499
understanding OneWayToSource

BindingMode, 500
UpdateSourceTrigger property, 502–542
using same validation rule for more than

one binding, 542
Validation class, 538
validation rule for restricting decimal

values, 540
ValidationError object, 538
Validation.ErrorTemplate property, 538
ValidationResult object, 541
ValidationRules collection, 537
ValidationRule.Validate(), 538
visual indication of errors in bound

controls, 538
writing custom validation rules, 540
writing data binding expressions, 22, 493

data conversion
applying conditional formatting, 533
BitmapImage class, 532
converting from display format back to

number, 529
converting raw binary data into WPF

BitmapImage object, 531
creating converter object in Resources

collection, 530
creating objects with value converter, 531
creating value converter class, 526
data triggers, 534
Decimal.ToString(), 528
defined, 526
evaluating multiple properties, 535
format strings, 528
formatting strings with data converter, 527
ImagePathConverter, code example, 531
IMultiValueConveter interface, 535
mapping project namespace to XML

namespace prefix, 530
MultiBinding, 535
Parse(), 529
PriceConverter class, 530
SuppressExceptions property, 533
System.Globalization.NumberStyles value,

529
TryParse(), 529
using custom IValueConverter, 533

Data property, 409
data providers, 591, 594

■INDEX 999

9551CH28 2/8/08 2:17 PM Page 999

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

data templates
adding elements inside existing control,

453
binding Visibility property to IsSelected

property, 569
building specialized class deriving from

DataTemplateSelector, 560
changing item layout by setting

ItemsPanelTemplate property, 573
code examples, 553
comparing template selectors and style

selectors, 571
composition of, 553
Content property, 552
ContentTemplate property, 552
creating template selector, 560
creating template that adjusts to bound

object, 560
creating value converter that applies

conditional formatting, 560
data binding and, 555
data triggers, 559
defined, 552
defining in resources collection, 554
functions of, 453
ItemContainerStyle property, 571
ItemTemplate property, 552
list-based and content-control templates,

553
modifying template of selected or

deselected item, 565
placing controls directly inside template,

556
presenting different data items in different

ways, 559
retrieving all information about selected

data item, 558
reusing same data template in different

types of controls, 555
SelectStyle(), 571
SelectTemplate(), 560–561
setting DataType property, 555
setting SnapsToDevicePixels property, 568
setting style of inner StackPanel using

trigger, 569
setting template’s element property based

on data-item property, 559
SingleCriteriaHighlightTemplateSelector

class, 562–564, 581
style selectors, defined, 571
StyleSelector class, 571
template selection and displaying editable

data, 564
template selectors, 559
using binding expression to alter

template, 566

using ImagePathConverter, code example,
556

using IValueConverter objects in data
binding, 556

using style triggers to modify selected
item, 566

using with StaticResource reference, 555
value converters, 559

data triggers, 534, 559, 560
data types

data binding format string, 529
DataTypeAnimation class, 774
having or not having corresponding

animation class, 732
key frame vs. interpolation animation

classes, 732
linear and discrete key frames, 774
setting properties using resource, 350

data views
adding group header, 582
adding multiple levels of grouping, 583
adjusting filtering through WPF view

object, 579
ADO.NET DataView, function of, 578
applying grouping, 581
binding ObservableCollection, 574
binding same data in different ways within

window, 574
clearing existing SortDescriptions

collection, 580
code for connecting IComparer to view,

581
combining grouping with sorting, 583
constructing CollectionViewSource

declaratively in XAML, 585
Count property, 587
creating filtering class, 576
creating more than one DataView to wrap

same DataTable, 580
creating multiple views, 587
creating Predicate object, 575
creating separate GroupItem object for

each group, 581
creating single filtering class for each

window, 577
creating views declaratively, 585
CurrentChanged event, 588
defined, 574
defining inline filtering method, 576
filtering collections, 575
filtering DataTable, 578
filtering dynamically, 576
forcing list to be refiltered, 578
GetDefaultView(), 575
grouping data objects in ranges, 583
ICollectionView interface, 588
implementing IBindingList, 574

■INDEX1000

9551CH28 2/8/08 2:17 PM Page 1000

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

implementing IEnumerable, 574
implementing IList, 574
navigating data objects and records with

view, 587
removing filter, 578
retrieving bound DataView and modifying

its properties directly, 579
retrieving view object, 575
setting GroupStyle.HeaderTemplate

property, 582
sorting based on property values in each

data item, 580
storing reference to filter object as

member variable, 578
using Filter property of view object, 575
using lookup list for editing, 590
using SortDescription to identify sort field

and sort direction, 580
using value converter to apply range

grouping, 585
using view to implement sorting, 580
view objects and CollectionView, 574
writing logic for previous and next

buttons, 589
DataContent property, 519
DataContext property, 503, 505, 512, 552
DataFormats class, 675–676
DataGridView control, 13, 608, 621, 906
DataTable, 578, 579
DataTable.DefaultView property, 522
DataTemplate, 613
DataTemplateSelector class, 560–566
DataType property, 555
DataTypeAnimation class, 774
DataView, 522, 579
Date data types, 529
DateTimePicker, 906
DecelerationRatio property, 744, 762
Decimal.ToString(), 528
declarative resources, 333
declarative user interfaces, 5, 20
Decorator class, 857
decorators, 133, 134
DecreaseZoom() method, 669
default constructor, 28
DefaultStyleKey property, 607, 613, 871
DefaultView property, 579
DeflateStream, 283
DeleteInkStickyNotesForSelection() method,

687
DeleteStickyNotesCommand, 688
DeleteTextStickyNotesForSelection()

method, 687
DeleteVisual() method, 435
Demand() method, 281
dependency properties, 36

AddOwner(), 145

attached properties, 146
calling static

DependencyProperty.Register()
method, 139

change notification, 147
classes sharing same dependency

property, 145
ClearValue(), 141, 145
CoerceValueCallback, 142–143, 148–149
coercion, 140–142
creating custom dependency properties,

138
defining DependencyProperty object as

static field, 138
defining object that represents property,

138
defining static field, 860
defining with readonly keyword, 138
DependencyObject class, 140
DependencyProperty class, 138
DependencyProperty.Register(), 142
DependencyProperty.UnsetValue, 142
Dependency.Register(), 141
determining base value of, 149
determining property value, 149
differentiating from normal properties,

138
dynamic value resolution, 148
events not automatically fired, 147
FrameworkPropertyMetadata object,

139–146
GetValue(), 146
handling interrelated properties, 143
IsMarginValid property, 140
naming convention, 138
OnPropertyChangedCallback(), 147
PasswordChar property, 147
performing action when property

changes, 148
property metadata, 141
property validation, 139
property value inheritance, 349
property wrapper, 140
PropertyChangedCallback, 141–149
RegisterAttached(), 146
registering with WPF, 138
retrieving value from property value, 148
reusing, 146
rules of precedence, 141
SetValue(), 146
triggering callback, 147
using overloaded version of SetValue(),

147
ValidateValueCallback, 141–143, 146
validation callback, 139
WPF’s property resolution system, 145
WPF’s use of, 147

■INDEX 1001

9551CH28 2/8/08 2:17 PM Page 1001

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

dependency properties (continued)
wrapped by .NET property procedures,

138
writeable control properties as usually

dependency properties, 860
DependencyObject class, 16–18, 36, 50, 140

ClearValue(), 495
GetValue(), 861
SetValue(), 861
using GetValue() and SetValue() methods,

260
DependencyProperty class, 138, 679
DependencyProperty.Register() method, 139,

142
DependencyProperty.UnsetValue, 142
Dependency.Register() method, 141
design tools, 429–430
DesiredSize property, 85, 888–890
Device property, 166
device-independent units, 7, 26
dfsvc.exe, 977
dialog model, 225
DialogResult enumeration, 907
DialogResult property, 225
DiffuseMaterial class

AmbientColor property, 818
Brush property, 815, 832
comparing two versions of torus, 832
MeshGeometry.TextureCoordinates

collection, 834
painting DiffuseMaterial object with any

brush, 834
direct events, 154, 171
Direct3D, 16
Direction property, 407
DirectionalLight class, 818
DirectShow (ActiveMovie), 784
DirectX, 20, 809, 925

3-D graphics, 2
antialiasing, 2
comparison to WPF, 14
downloading managed .NET libraries for,

14
games and hardware acceleration, 2
GPU (graphics processing unit), 2
origins of, 2
programming API, 2
quartz.dll library, 783
rendering tiers, 4
transparency, 2

Disable Display Scaling on High DPI Settings,
10

discovery, 951
discrete key frames, 773
dispatcher, 18, 928
Dispatcher.BeginInvoke() method, 959
DispatcherExceptionUnhandled event, 62

DispatcherObject class, 16–18, 928, 929
DispatcherOperation object, 930
DispatcherPriority, 930
DispatcherUnhandledException event, 251
DisplayMemberBinding property, 608–610
DisplayMemberPath property, 518, 522, 602,

605, 631
Dispose() method, 206, 910, 913
Dock property, 88
docking, 75
DockPanel, 51, 78, 90
Document class, 67
DocumentPage class, 705
DocumentPaginator class, 697

building
HeaderedFlowDocumentPaginator
class, 708–710

creating custom DocumentPaginator from
scratch, 714

FixedDocumentPaginator class, 707
FlowDocumentPaginator class, 707
function of, 705
GetFormattedText(), 716
GetPage(), 709, 717
IsPageCountValid property, 709
PageCount property, 709
PageSize property, 709, 715
PaginateData(), 715–716
rowsPerPage field, 716
StoreDataSetPaginator class, 715–719
XpsDocument class, 707

documents
displaying large amounts of text, 643
DocumentViewer, 644
fixed documents, defined, 643, 681
flow documents, defined, 643
FlowDocumentPageViewer, 644
FlowDocumentReader, 644
FlowDocumentScrollViewer, 644, 663
read-only containers for displaying flow

documents, 668
RichTextBox, 644
System.Windows.Documents namespace,

647
using XAML format to save document, 677
XPS (XML Paper Specification), 643, 681

DocumentViewer, 682
DoDragDrop() method, 176
DoubleAnimation class, 732–734, 770
DoubleAnimationUsingPath, 777
Double.NaN, 737
DoUpdate() method, 223
DoWork event, 936
DpiX property, 237
DpiY property, 237
drag-and-drop operations, 174
DragDrop class, 175

■INDEX1002

9551CH28 2/8/08 2:17 PM Page 1002

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

DragEnter event, 176
DragIncrement property, 99
DragMove() method, 232
DrawGeometry() method, 897
DrawImage() method, 896
Drawing class

classes deriving from, 426
classes for displaying drawing, 427
differentiating DrawingImage and

ImageDrawing classes, 428
displaying 2-D piece of vector or bitmap

art, 425
fusing drawings together in

DrawingGroup, 428
GeometryDrawing class, 425

Drawing property, 432
DrawingBrush class, 427, 428, 429
DrawingCanvas class

AddVisual(), 435
casting HitTestResult to

GeometryHitTestResult, 440
ClearSelection(), 438
clickOffset field, 437
code from MouseLeftButtonDown event

handler, 438
creating callback, 439
creating square-drawing application, 434
DeleteVisual(), 435
deleting square, 437
dragging square, 437–439
DrawSelectionSquare(), 442
DrawSquare() rendering code, 436
GetVisual(), 437
GetVisualChild(), 435
GetVisuals(), 439–441
hit testing, defined, 437
HitTestResultCallback(), 440
isDragging field, 437
isMultiSelecting flag, 441
markup for creating squares, 436
performing more sophisticated hit testing,

439
reporting number of squares in user-

selected region, 441
selectedVisual field, 437
selectionSquareTopLeft field, 441
VisualChildrenCount property, 435
XAML markup for declaring

DrawingCanvas in window, 436
DrawingContext class, 896

Close(), 431
DrawGeometry(), 897
DrawImage(), 896
DrawLine(), 718
DrawRectangle(), 900
DrawText(), 718
Pop(), 433, 711

PushOpacity(), 433
table of methods, 432, 711

DrawingContext object, 711
DrawingGroup class, 428
DrawingImage class, 427, 428
DrawingImage object, 395
DrawingVisual class, 427

calling methods in DrawingContext class,
431

drawing content over other content, not
under it, 897

Drawing property, 432, 711
Opacity property, 433
RenderOpen(), 431–433, 711, 897
Transform property, 433

DrawLine() method, 718
DrawRectangle() method, 900
DrawSelectionSquare() method, 442
DrawText() method, 718
DrawThemeTextEx() function, 240
Dreamweaver, 23
DropShadowBitmapEffect class, 407
dual-core CPUs, 927
Dunn, Fletcher, 853
Duration property, 736, 740
DwmEnableBlurBehindWindow() function,

240
DwmExtendFrameIntoClientArea() function,

236–237, 240
DwmIsCompositionEnabled() function, 240
dynamic resources, 335

guidelines for using, 338
improving first-time-load performance of

form, 339
responding to changes in system

environment settings, 341
dynamic value resolution, 148

■E
EdgeProfile property, 406
EditingCommands class, 304

ToggleBold, ToggleItalic, and ToggleItalic
commands, 678

types of included commands, 294
EditingMode property, 107
eight ball example, 43
ElementHost class, 908, 914, 924
ElementName property, 493, 872
elements

AddLogicalChild(), 434
AddVisualChild(), 434
base classes for creating custom element,

856
compared to controls, 19
convention for naming element, 872
creating custom decorator, 901
creating CustomDrawnElement, 898

■INDEX 1003

9551CH28 2/8/08 2:17 PM Page 1003

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

elements (continued)
custom rendering, benefits of, 898
custom-drawn, 895
CustomDrawnDecorator, 901
defined, 117, 928
evaluating when to use OnRender(), 897
GetForegroundBrush(), 900
overriding GetVisualChild(), 434
overriding VisualChildrenCount property,

434
performing custom rendering by

overriding OnRender(), 896
placing custom elements in DLL assembly,

856
registering and hosting visual in element,

434
role of custom-drawn elements in control

template, 901
using composition to build more complex

elements, 895
when to create custom element, 855

Ellipse class, 368
creating ellipse, 370
creating ellipse that fills window, 372
sizing to fill available space, 371

EllipseGeometry class, 411
Embedded Resource build action, 318
EmbossBitmapEffect class, 406
EmissiveMaterial class, 832, 833
Enable() method, 685
EnableModelessKeyboardInterop() method,

908
EnableVisualStyles() method, 909, 918
EnableWindowsFormsInterop() method, 908
EndChange() method, 205
EndInit() method, 163
EndLineCap property, 381
EndPoint property, 391
EndStyle() method, 805
entity references, 40
enumerations, 32
Environment class, 235
error messages, 332
error templates

AdornedElementPlaceholder, 545–547
displaying error content in ToolTip, 546
using adorner layer, 545

ErrorContent property, 541–543
ErrorException property, 791
ErrorProvider, 906
Escape key, 192
event handlers, 22, 42
event routing, 42

AddHandler(), 150, 159
attached events, 159
attaching event handler, 151
bubbled image click, code example, 156

bubbling events, 154–156
button control and Click event, 159
connecting event directly by calling

AddHandler(), 152
connecting event with delegates and code,

152
ContentElement class, 151
creating appropriate delegate type, 152
creating delegate object with right

signature, 152
defined, 149
defining and registering, 149
detaching event handler, 153
direct events, 154
ensuring each button has Name property

set in XAML, 160
event signatures, 151
event wrapper, 150
firing sequence for tunneling and

bubbling events, 161
handling suppressed events, 159
identifying routing strategy of event, 162
KeyDown event, 161
marking tunneling event as handled, 163
MouseDown event, 154
MouseEnter event, 154
MouseEventArgs object, 151
MouseUp event, 151
naming event handler methods, 151
PreviewKeyDown event, 154, 161
RaiseEvent(), 150
RegisterEvent(), 154
RegisterRoutedEvent(), 150
RemoveHandler(), 150
RoutedEventArgs class, 151, 155
sharing between classes, 151
three types of routed events, 154
tunneling events, 154, 161, 297
UIElement class, 151
understanding, 149
using -= operator, 153
using event wrapper, 151
using RemoveHandler() helper method,

153
wiring up attached event in code, 160
WPF event model, 149
wrapping of routed events by .NET events,

150
event signatures, 151
event triggers

attaching actions to property trigger, 749
attaching triggers with style, 748
BeginStoryboard action, 747
creating event trigger for MouseEnter and

MouseLeave events, 750
creating property trigger that triggers

storyboard, 749

■INDEX1004

9551CH28 2/8/08 2:17 PM Page 1004

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

defining, 747
EventTrigger.SourceName property, 756
launching animation, 363
returning element to its original state, 364
supplying series of actions to modify

control, 363
Triggers collection, 748
using to attach animation, 749
using to control animation storyboard,

746
using Trigger.EnterActions and

Trigger.ExitActions, 749
waiting for specific event to be fired, 363

event wrapper, 150
EventManager class, 869
events, defined, 149
EventTrigger class, 792
EventTrigger.SourceName property, 756
ExceptionValidationRule, 538
Execute() method, 292
Executed event, 297
ExecutedRoutedEventArgs, 297
ExpandDirection property, 131
Expanded event, 629
Expander control, 119

combining with ScrollViewer, 132
ExpandDirection property, 131
implementing lazy load, 132
IsExpanded property, 130
synchronizing other controls with, 132
use in online help and on web pages, 129
window size and expanding content, 132

Explicit update mode, 503
Exponential data type, 529
Expression Blend design tool, 23, 227, 379,

422, 429, 430, 458, 490, 769
extender providers, 37
ExtendGlass() method, 239
Extensible Application Markup Language.

See XAML
extension classes, 35
ExtraData property, 262

■F
FarPlaneDistance property, 822
FieldOfView property, 822
Figure element, 662
FileDialog class, 226
FileRegistrationHelper class, 72
FileStream class, 46, 686
FileViewer class, 64
FillBehavior property, 741, 753
FillRule property, 379, 412
Filter event, 586
Filter property, 575
FindAddIn() method, 951
FindAncestor mode, 505

FindEditPositionFrom() method, 883
FindPrimes() method, 932
FindResource() method, 351
Firefox, support for XBAPs, 11
Fixed Decimal data type, 529
fixed documents

browsing inner contents of XPS file, 682
creating and viewing XPS documents, 682
defined, 643, 681
DocumentViewer, 644
features of, 681
printing documents without alteration,

644
printing fixed document using

ApplicationCommands.Print, 682
using DocumentViewer to display XPS

document, 682
XPS (XML Paper Specification), 643, 681
XpsDocument class, 682

FixedDocumentPaginator class, 707
Flash, Adobe, 1, 430
Floater element, 658
flow documents

benefits of using, 645
block elements, 646, 647
building from flow elements, 645
changing text justification, 667
collapsing whitespace, tabs, and line

breaks in XAML, 657
comparing content and noncontent

elements, 645
constructing, 648, 663
content elements, 646, 647
ContentElement class, 645
creating Floater, 659
creating Mad Libs game, 665
creating simple document, code example,

663
creating table, procedure and markup for,

653–654
defined, 643
distinguishing block and inline elements,

646
editing flow document using RichTextBox

control, 674
embedding bitmap in flow document, 661
enabling optimal paragraph layout, 667
Figure element, table of properties, 662
Floater element, 658
FlowDocument class, 648
FlowDocumentPageViewer, 644, 668
FlowDocumentReader, 644, 668
FlowDocumentScrollViewer, 644, 663, 668
Focusable property, 645
FrameworkContentElement class, 645
function of, 724

■INDEX 1005

9551CH28 2/8/08 2:17 PM Page 1005

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

flow documents (continued)
getting block elements in flow document,

664
HTML content and flow layout, 644
HTML-to-XAML translator, 647
improving readability of justified text, 667
inline elements, 646, 656
IsHyphenationEnabled property, 668
IsOptimalParagraphEnabled property, 667
laying out content dynamically, 643
List element, 651
making content element focusable, 645
modifying text inside flow document, 664
moving from one block element to next,

664
navigating structure of, 664
no WYSIWYG interface for creating, 649
onscreen viewing of, 644
Paragraph element, 650
printing flow document using Print(), 673
readability problems and window size, 644
read-only containers for displaying flow

documents, 668
reusing created document viewer, 672
RichTextBox, 644
Run element, 650, 664
Section element, 655
sizing table columns explicitly or

proportionately, 655
Span.Tag property, 664
supplying TableColumn objects for

Table.Rows property, 654
System.Windows.Documents namespace,

647
Table element, 653
TextAlignment property, 667
TextDecorations, 648
total-fit algorithm, 667
Typography object, 648
using block-level element inside

FlowDocument element, 649
using BlockUIContainer to place

noncontent elements inside flow
document, 655, 681

using fixed-size Floater, 662
using FlowDocument.Blocks collection,

664
using FlowDocumentScrollViewer as

container, 648
using hyphenation to improve text

justification, 668
using XAML format to save document, 677
using XamlReader class, 672
using XamlWriter class, 673
using xml:space attribute with value

preserve, 658
flow layout, 4

FlowDirection property, 324
FlowDocument class, 202, 648, 697

ColumnGap property, 706
ColumnWidth property, 706
ContentStart and ContentEnd properties,

675
FlowDocument properties for controlling

columns, table of, 671
PageHeight property, 706
PagePadding property, 706
PageWidth property, 706
Paragraph properties for controlling

columns, table of, 671
FlowDocumentPageViewer

repaginating content dynamically, 670
splitting flow document into separate

pages, 668–670
splitting text into multiple columns, 670
support for zooming, 669
using IncreaseZoom() and

DecreaseZoom(), 669
FlowDocumentPaginator class, 707
FlowDocumentReader, 662

choosing between scroll mode and two
page modes, 672

reading content in scrollable or paginated
display, 668

support for zooming, 669
using IncreaseZoom() and

DecreaseZoom(), 669
FlowDocumentScrollViewer

displaying entire document with scroll
bar, 668

IsSelectionEnabled property, 649
no support for pagination or multicolumn

displays, 668
support for zooming, 669
using as container for flow document, 648
using IncreaseZoom() and

DecreaseZoom(), 669
FlowDocumentScrollViewer container,

705–706
FlowLayoutPanel, 75, 892, 919
focus, 169
Focusable property, 169, 645, 869
FocusManager.IsFocusScope property, 304
folder structure, 943–944
FolderBrowserDialog class, 909
font family, 185
FontDialog class, 909
FontFamily property, 324
fonts

Control class, font-related properties, 184
embedded fonts and licensing

permissions, 188
font family, defined, 185

■INDEX1006

9551CH28 2/8/08 2:17 PM Page 1006

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

font properties as dependency properties,
186

FontStretches class, 185
FontStyles class, 185
FontWeights class, 185
identifying FontFamily, 185
inheritance of, 186
OpenType, 185–187
procedure for embedding, 187
property value inheritance, 186
setting FontFamily to list of font options,

187
substitution of, 187
TextDecorations class, 185
TextDecorations property, 185
Typography property, 185
WPF font size compared to Windows point

size, 184
FontStretches class, 185
FontStyles class, 185
FontWeights class, 185
ForceCursor property, 189
Form class, 215
format strings, 528
FormattedText class, 716
FormHasErrors() method, 545
Form.ShowDialog() method, 907
ForwardStack property, 264
fragment navigation, 252
Frame class

controlling navigation of parent frame
only, 255

creating nested page, 254
creating XBAP, 256
embedding page inside window, 252
handling back button, 255
hosting pages, 252, 254, 256
including navigation buttons inside frame,

254
setting JournalOwnership property of

embedded frame, 255
Source property, 252
using several frames in single window, 253

Frame element, 119, 389
frame rate

decreasing, 761
testing frame rates with simple animation,

761
Timeline.DesiredFrameRate attached

property, 761
using fixed frame rate, 730
viewing effect of different frame rates, 763

frame-based animation
animation of falling circles, 778
animations not time-dependent, 782

attaching event handler to
CompositionTarget.Rendering event,
778

creating using nothing but code, 778
uses for, 778

FrameworkContentElement class, 645
FrameworkElement class, 18, 29, 82

Cursor property, 189
defining Margin property as dependency

property, 138
description of, 856
GetTemplateChild(), 875
TemplatedParent property, 486
ToolTip property, 195
Triggers collection, 748

FrameworkElementAdapters class, 961–962
FrameworkElementAdapters.ContractTo-

ViewAdapter() method, 961
FrameworkElementAdapters.ViewTo-

ContractAdapter() method, 962
FrameworkElement.FindResource() method,

340
FrameworkElement.Triggers collection, 360
FrameworkPropertyMetadata class, 186
FrameworkPropertyMetadata object, 146,

892
configuring dependency property

features, 141
creating, 139
setting journal flag, 258
table of available properties, 141

FrameworkTemplate class, 453
Freezable class, 337
From property, 737, 738
FrontPage, 23
FullName property, 723
FullPrimaryScreenHeight, 219
FullPrimaryScreenWidth, 219

■G
GAC (global assembly cache), 326, 969
garbage collector, 752
Gaussian blur, 404
GDI/GDI+, 1, 6, 20, 368
generic.xaml, 345–346, 616, 871
geometry, building for 3-D object, 812
Geometry class, 409, 410, 424
geometry mini-language

command sequences in, 422
creating StreamGeometry object, not

PathGeometry, 423
representing detailed figures with less

markup, 422
table of commands and parameters, 423
using relative vs. absolute coordinates, 424

Geometry property, 815, 852
GeometryCombineMode property, 414

■INDEX 1007

9551CH28 2/8/08 2:17 PM Page 1007

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

GeometryDrawing class, 425, 426
GeometryGroup class

advantages and disadvantages of, 412
creating square-with-a-hole effect, 413
determining fills of intersecting shapes,

412
FillRule property, 412
nesting Geometry-derived objects inside,

411
reducing overhead of user interface, 412
reusing same geometry in several separate

Path elements, 412
GeometryModel3D class, 815–816
GetAddInController() method, 954
GetAnchorInfo() method, 693
GetAnnotation() method, 691
GetAnnotations() method, 690, 691
GetChild() method, 449
GetContentState() method, 267–269
GetDefaultView() method, 575
GetFileName() method, 264
GetFixedDocumentSequence() method, 682
GetForegroundBrush() method, 900
GetFormattedText() method, 716
GetMaskProvider() method, 882
GetNavigationService() method, 261
GetPackage() method, 694
GetPage() method, 709, 717
GetPosition() method, 172
GetPrintJobInfoCollection() method, 723
GetPrintQueues() method, 722
GetProduct() method, 508
GetProducts() method, 517
GetProperty() method, 891
GetPropertyValue() method, 679
GetResourceStream() method, 319–320
GetService() method, 686
GetTempFileName() method, 726
GetTemplateChild() method, 875
GetUserStoreForApplication() method, 282
GetValue() method, 140, 146
GetVisual() method, 437, 961–962
GetVisualChild() method, 434–435
GetVisuals() method, 439–441
GetXmlStream() method, 720
global assembly cache (GAC), 326, 969
Global Sans Serif, 324
Global Serif, 324
Global User Interface, 324
GlowColor property, 407
GlowSize property, 407
glue code, 906
GoBack() method, 262
GoForward() method, 262
GPU (graphics processing unit), 2
Gradient Obsession tool, 770
GradientOrigin property, 393

GradientStop, 391, 392
GrammarBuilder class, 808
Graphics class, 237
graphics processing unit (GPU), 2
Grid

absolute sizes, 94
assigning weight for dividing space

unequally, 95
automatic sizes, 94
changing row and column sizes, 94
Column property, 92
ColumnDefinition object, Width property,

94
ColumnSpan property, 96
creating Grid-based layout, 92
creating shared group, code example, 103
defining controls row by row and from

right to left, 93
description of, 78
filling ColumnDefinition and

RowDefinition elements, 92
giving same proportions to separate Grid

controls, 101
GridSplitter class, 97
IsSharedSizeScope property, 103, 617
nesting one Grid inside another, code

example, 100
placing individual elements into cells, 92
proportional sizes, 94
resizing rows or columns, 97
Row property, 92
RowDefinition object, Height property, 94
RowSpan property, 96
separating elements into invisible grid of

rows and columns, 91
shared size groups, 101
shared size groups as not global to

application, 103
SharedSizeGroup property, 103, 554
ShowGridLines property, 92
spanning rows and columns, 96
splitting window into two rows, code

example, 95
using in Visual Studio, 94
using mix of proportional and other sizing

modes, 95
using nested Grid containers, 96

GridSplitter class, 98, 99
GridView

adding GridViewColumn objects to
GridView.Columns collection, 608

advantages of DataGridView over, 608
cell templates, 610
changing content and appearance of

column headers, 612
ColumnHeaderContainerStyle property,

612

■INDEX1008

9551CH28 2/8/08 2:17 PM Page 1008

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

creating columns with, 608
customizing column headers, 612
defining three-column, grid-based

ListView, 609
ProductImagePath converter, 611
reordering columns, 610
sizing and resizing columns, 609–610
supplying new control template for

header, 613
using column header templates, 612
using date templates to supply different

elements, 611
wrapping text in columns, 610

GridViewColumn
CellTemplate property, 610
CellTemplateSelector property, 612
DisplayMemberBinding property, 608–610
Header property, 608, 612
HeaderContainerStyle property, 612
HeaderTemplate property, 612

GridViewColumnHeader class, 192
GroupBox control, 119, 127
GroupDescriptions property, 586
GroupItem object, 581
GroupName property, 194
GroupStyle class, 582
GroupStyle.HeaderTemplate property, 582
GZipStream, 283

■H
Handled property, 262, 297
Handles statement, 157–158
hardware acceleration, 2, 20

rendering tiers, 4
running rich WPF applications on older

video cards, 3
WDDM and XPDM drivers, 3

HasContent property, 121
HasError property, 538
Header property, 608, 612, 622
HeaderContainerStyle property, 612
HeaderedContentControl class

Expander control, 119, 129
GroupBox control, 119, 127
TabItem control, 119, 128

HeaderedFlowDocumentPaginator class,
708–710

HeaderedItemsControl class, 622
HeaderTemplate property, 612
Height property, 84, 213, 716
HelpProvider, 13, 906
Hide() method, 218
HierarchicalDataTemplate, 624
highestAvailable application, 73
hit testing

creating callback, 439
defined, 437

performing more sophisticated hit testing,
439

square-drawing application, 437
HitTest() method, 437–439, 845
HitTestResult, 846
HitTestResultCallback() method, 440
HorizontalAlignment property, 82, 869
HorizontalContentAlignment property, 121
HorizontalScrollBarVisibility property, 125,

203
host adapters, 950–951
host view, 950
HostInBrowser tag, 274
HostObject class, 956–957
HostObjectViewToContractHostAdapter

class, 958
hosts, 951–954, 955–960
HostSideAdapters subdirectory, 951
HTML, 1
HTML-to-XAML translator, 647
hwnd, 914
HwndSource class, 925
HwndSource property, 164
Hyperlink class, 250
Hyperlink element, 201
hyperlinks

directing user to another page, 250
DispatcherUnhandledException event,

251
fragment navigation, 252
handling clicks on, 250
handling WebException, 251
as inline flow elements in WPF, 249
jumping to specific control on page, 252
navigating to websites, 251
NavigationFailed event, 251
responding to Click event to perform task,

250
TextBlock elements and, 249
using relative URIs in, 257

■I
IAnimatable interface, 735
IBindingList, 574
.ico (icon) files, 216
ICollectionView interface, 588
ICommand interface, 291
ICommandSource interface, 295
IComponent, 910
icon (.ico) files, 216
Icon property, 633, 910
IContract interface, 947
IDataErrorInfo interface, 11, 536
IDictionary, 37
IEnumerable interface, 516, 574
IEnumerable(Of T) IEnumerable<T>,

524–525

■INDEX 1009

9551CH28 2/8/08 2:17 PM Page 1009

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

<iframe> tag, 286
IHostObjectContract argument, 957
IHostObjectContract interface, 956–958
IHostObjectContract.Initialize() method, 958
IImageProcessorContract interface, 958–961
IIS (Internet Information Services) 7, 969
ildasm, 319
IList, 37, 574
Illustrator, Adobe, 430
Image class, 119
ImageBrush, 182

changing TileMode property, 399
comparing proportionally sized and fixed-

sized tiles, 397
filling area with bitmap image, 395
flipping tiles, 399
ImageSource property, 395
Stretch property, 396–398
supplying DrawingImage object for

ImageSource property, 395
tiling image across surface of brush, 397
using Viewbox property, 396
Viewport property, 397
ViewportUnits property, 397

ImageDetailView object, 619
ImageList, 906
ImagePathConverter, 531, 556
ImagePreview control, 962
ImageProcessorContractToViewHostAdapter

class, 958
ImageProcessorViewToContractAdapter

class, 958
ImageSource class, 427
ImageSource property, 346, 395
ImageView object, 619
IMultiValueConverter interface, 535, 560
INativeHandleContract interface, 961–962
IncreaseZoom() method, 669
Initialize() method, 956
InitializeComponent() method, 28, 47, 165,

261, 869
Initialized event, 163
InkCanvas

ActiveEditingMode property, 108
annotating content with user-drawn

strokes, 107
description of, 79, 106
EditingMode property, enumeration

values, 107
FrameworkElement class, 107
predefined gestures, 108
Stroke objects, 107
Strokes collection, 107
stylus input and tablet PCs, 107

inline elements
collapsing whitespace, tabs, and line

breaks in XAML, 657

creating Floater, 659
defined, 646
embedding bitmap in flow document, 661
Figure element, table of properties, 662
Floater element, 658
table of, 656
using fixed-size Floater, 662
using xml:space attribute with value

preserve, 658
Inlines collection, 650, 668
InlineUIContainer class, 681
InnerException property, 165
INotifyCollectionChanged interface, 521
INotifyPropertyChanged interface, 514, 560
input events, 163, 165
InputBindings collection, 299
InputDevice class, 166
InputEventArgs class, 166
InputGestures collection, 292, 634
InputGestureText property, 633
Install Mode setting, 977
Install tag, 274
InstallShield, 965
interactive controls, 11
Interactive3DDecorator class, 850
InteractiveVisual3D class, 852
interfaces, 940
Internet Explorer

IE 7’s ability to launch .xbap files, 274
opening loose XAML files in, 53
page-based applications and, 245
Quick Tabs view, 401
StartupUri property, 256
WebBrowser control, 246

Internet Information Services (IIS) 7, 969
Internet zone, 278
InvalidateRequerySuggested() method, 303,

307
InvalidateVisual() method, 898–899
InvalidOperationException, 262, 929
Invoke() method, 931
IOException, 325
IProvideCustomContentState interface,

267–269
IsAdditive property, 739
IsAsync property, 593
IsAsynchronous property, 593–595
IsBrowserHosted property, 280
IsCancel property, 192, 225
IsChecked property, 193, 633
IScrollInfo, 126
IsCumulative property, 745
IsDefault property, 192, 225
IsDefaulted property, 192
isDragging field, 437
IsDropDownOpen property, 600
IsEditable property, 211, 600–602

■INDEX1010

9551CH28 2/8/08 2:17 PM Page 1010

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

IsEnabled property, 170
IsExpanded property, 130
IsHyphenationEnabled property, 668
IsIndeterminate property, 213
IsInitialized property, 163
IsInitialLoadEnabled property, 592
IsLargeArc property, 419
IsLoaded property, 163
IsLocked property, 639
IsMainMenu property, 631
IsMarginValid property, 140
IsMouseDirectlyOver property, 173
IsMouseOver property, 173, 462
isMultiSelecting flag, 441
IsolatedStorageFile.GetDirectoryNames()

method, 283
IsolatedStorageFile.GetFileNames() method,

283
IsolatedStorageFileStream, 282
IsOpen property, 199–200
IsOptimalParagraphEnabled property, 667
IsPageCountValid property, 709
IsPressed property, 462
IsReadOnly property, 203, 600–602
IsRepeat property, 167
isResizing field, 487
IsSelected property, 128, 210
IsSelectionEnabled property, 649
IsSharedSizeScope property, 103, 617
IsSingleInstance property, 69
IsSnapToTickEnabled property, 498
IsSynchronizedWithCurrentItem, 590
IsTabStop property, 170, 869
IsTextSearchEnabled property, 601
IsThreeState property, 193
IsToolbarVisible property, 669
ISupportInitialize interface, 145, 163
IsValid property, 541
IsVisible property, 284
ItemContainerDefaultKeyStyle property, 613
ItemContainerDefaultStyleKey property, 607
ItemContainerStyle property, 571, 605–606
Items collection, 207
ItemsControl, 78
ItemsControl class, 19, 40, 551–552, 566

classes deriving from, 598
description of, 857
GroupStyle property, 581
IsSynchronizedWithCurrentItem, 590
ItemSource property, 516
ItemsSource property, 206
list-based controls and, 598
Selector class, 600
selectors, 206
table of properties, 516, 599
using with data binding, 206

ItemSource property, 516

ItemsPanelTemplate property, 573
ItemsSource property, 552–555, 590, 622–624,

631
ItemTemplate property, 552, 605, 615, 624,

631
ItemTemplateSelector property, 631
IValueConverter objects, 556

■J
Joshi, Prajakta, 680
journal, 258, 265
journal flag, setting, 258
JournalEntry class, 265
JournalEntryName property, 266
JournalOwnership property, 255
just-in-time node creation, 627

■K
KeepAlive property, 259
Key attribute, 334
key frame animation

audio file with two synchronized
animations, 798

comparing with sequence of multiple
animations, 773

data types and, 774
DataTypeAnimation class, 774
defined, 772
discrete key frame classes, naming format,

774
discrete key frames, 773
key frame class and key frame collection

classes, 733
KeySpline property, 774
linear key frames, 773, 774
naming format, 732
pairing playback with other actions, 797
performing linear interpolation between

key frames, 772
Point3DAnimationUsingKeyFrames, 773
PointAnimationUsingKeyFrames object,

772
setting Storyboard.SlipBehavior property

to Slip, 797
spline key frames, 774
supplying specific time offsets for

animation, 797
using discrete key frames in

RadialGradientBrush example, 774
using series of key frames, 773
Vector3DAnimationUsingKeyFrames, 773
working with Bézier curves, 774

Key property, 167
Keyboard class, 171
keyboard events, 163, 166
KeyboardDevice class, 170, 171
KeyboardDevice property, 170

■INDEX 1011

9551CH28 2/8/08 2:17 PM Page 1011

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

KeyConverter, 168
KeyDown event, 161, 168
KeyEventArgs object, 167, 170
KeySpline property, 774
KeyStates property, 170
keystroke forwarding, 923

■L
Label control, 117–119, 190
Language Integrated Query. See LINQ
Language property, 204
LastChildFill, 88–90
layout in WPF

ActualHeight property, 86
ActualWidth property, 86
adding elements through containers, 76
adding whitespace using Margin property,

76
adjusting when content changes, 76
arrange stage, 77
arranging window components in tabular

structure, 109
building layout structure easy to maintain

and enhance, 97
Canvas, 78, 104
containers, 75
core layout containers, table of, 78
creating dialog box with OK and Cancel

buttons, 90
creating Grid-based layout, 92
creating modular user interfaces, 112
creating resolution-independent, size-

independent interfaces, 76
DesiredSize property, 85
displaying dynamic content, 111
Dock property, 88
DockPanel, 78–90
elements growing to fit their content, 76
elements not positioned using screen

coordinates, 76
flow-based layout as standard, 76
Grid, 78, 91
guidelines for layout containers, 76
handling localized text, 111
handling transition to other languages, 76
Height property, 84
hiding and showing individual panels, 113
HorizontalAlignment property, 82
InkCanvas, 79, 106
LastChildFill, 90
layout containers and attached properties,

82
layout containers as nested, 76
layout containers as sharing and

distributing space, 76
layout model in .NET 1.x, 75
layout model in .NET 2.0, 75

layout properties, table of, 81
Margin property, 83
measure stage, 77
nesting layout containers, 90
no scrolling support in layout containers,

77
Padding property, 90
Panel class, table of public properties, 77
Panel-derived classes for arranging layout,

78
principles of, 76
rudimentary support for coordinate-

based layout, 75–76
ScrollViewer, 77
SizeToContent property, 86
StackPanel, 78–90
stages of, 77
TabPanel, 79
Thickness structure, 83
ToolbarOverflowPanel, 79
ToolbarPanel, 79
UniformGrid, 78, 104
use of automatic layout in most layout

containers, 82
using maximum and minimum size

properties to lock control, 84
VerticalAlignment property, 82
VirtualizingStackPanel, 79
Visibility property, 113
Width property, 84
window sizing, hard-coded vs. automatic,

86
Windows Forms layout model, 76
WrapPanel, 78, 86
WrapPanel class, 112

layout pass, 887
LayoutTransform property, 388, 701–702,

764, 800
LCD monitors, 7
Left property, 104, 220
LIFE, 18
lifetime events, 163, 164
Light class, 816
light sources, 816
LightAngle property, 406
LightWave, 829
line caps, 381
Line class, 368

inability to use flow content model, 377
placing Line in Canvas, 377
setting starting and ending points, 376
Stroke property, 376
understanding line caps, 381
using negative coordinates for line, 377
using StartLineCap and EndLineCap

properties, 381
line joins, 381

■INDEX1012

9551CH28 2/8/08 2:17 PM Page 1012

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

linear interpolation
animating property with special value of

Double.NaN, 737
animating two properties simultaneously,

740
Canvas as most common layout container

for animation, 737
creating additive animation by setting

IsAdditive property, 739
creating animation that widens button,

736
Duration property, 740
From, To, and Duration properties, 736
IsCumulative property, 745
naming format, 732
omitting both From and To properties, 738
similarity of Duration property and

TimeSpan object, 740
using BeginAnimation() to launch more

than one animation at time, 740
using By property instead of To property,

739
linear key frames, 773
LinearGradientBrush, 181, 758, 770

creating blended fill, 390
markup for shading rectangle diagonally,

390
proportional coordinate system, 391
SpreadMethod property, 392
using StartPoint and EndPoint properties,

391
LineBreakBefore property, 892
LineCount property, 203
LineDown() method, 125
LineGeometry class, 411
LineHeight property, 716
LineLeft() method, 125
LineRight() method, 125
LineSegment class, 418
LineUp() method, 125
LINQ (Language Integrated Query)

binding to LINQ expression
converting IEnumerable(Of T)

IEnumerable<T> to ordinary
collection, 524–525

deferred execution, 525–526
overview, 523–524

data binding support for, 11
list controls

ComboBox control, 210
ItemsControl class, 206
ListBox control, 206

List element, 651–652
ListBox class, 207
ListBox control, 952

binding expression for
RadioButton.IsChecked property, 605

changing control template for each list
item, 604

changing SelectionMode property to allow
multiple selection, 606

CheckBox element, 604–606
combining text and image content in, 207
ContainerFromElement(), 210
ContentPresenter element, 605
displaying check boxes in, 606
DisplayMemberPath property, 605
IsSelected property, 210
ItemContainerStyle property, 605–606
Items collection, 207
ItemTemplate property, 605
ListBoxItem.Control template, 606
manually placing items in list, 210
modifying ListBoxItem.Template property,

605
nesting arbitrary elements inside list box

items, 208
RadioButton element, 604–606
RemovedItems property, 209
retrieving ListBoxItem wrapper for specific

object, 210
Selected event, 210
SelectedItem property, 209
SelectedItems property, 600
SelectionChanged event, 209–210
SelectionMode property, 600
setting RadioButton.Focusable property,

605
Unselected event, 210

ListBoxChrome class, 454
ListBoxChrome decorator, 133
ListBoxItem elements, 207
ListBox.ItemsPanel property, 604
ListCollectionView, 574, 580, 588
ListSelectionJournalEntry callback, 267
ListView class

ControlTemplate, 613
creating custom view, 613
creating customizable multicolumned

lists, 607
creating grid that can switch views, 614
DataTemplate, 613
DefaultStyleKey property, 613
function of, 607
ItemContainerDefaultKeyStyle property,

613
ResourceKey, 613
separating ListView control from View

objects, 607
switching between multiple views with

same list, 607
TileView class, 615
View property, 607
View property, advantages of, 607

■INDEX 1013

9551CH28 2/8/08 2:17 PM Page 1013

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ListView class (continued)
ViewBase class, 607

ListView control
adding properties to view classes, 620
adding Setter to replace ControlTemplate,

620
defining view objects in

Windows.Resources collection, 618
GridView class, 618
ImageDetailView object, 619
ImageView object, 619
passing information to view, 620
setting ListView.View property, 618
using custom view, 618

literals, 879
Load() method, 784
LoadAsync() method, 784
LoadCompleted event, 784
LoadComponent() method, 28
Loaded event, 163–164, 238
LoadedBehavior property, 789
LoadFile() method, 64
LocalizabilityAttribute, 326
localization

adding <PropertyGroup> element to
.csproj file, 325

adding specialized Uid attribute to
elements, 326

adding support for more than one culture
to application, 325

building localizable user interfaces, 324
building satellite assembly, 331
culture names and their two-part

identifiers, 325
CultureInfo class, 331
CurrentUICulture property, 323
extracting localizable content, 327
global assembly cache (GAC), 326
Global Sans Serif, 324
Global Serif, 324
Global User Interface, 324
LocalizabilityAttribute, 326
localizing FontFamily property in user

interface, 324
managing localization process, 326
placing localized BAML resources in

satellite assemblies, 324
preparing application for, 325
preparing markup elements for, 326
probing, 324
setting FlowDirection property for right-

to-left layouts, 324
using locbaml.exe command-line tool,

327
using msbuild.exe to generate Uid

attributes, 327
XAML file as unit of localization, 323

localized text, 111
LocalPrintServer class, 721
LocationChanged event, 218
locbaml.exe

building satellite assembly, 331
compiling by hand, 327
/cul: parameter, 331
/generate parameter, 331
/parse parameter, 327
table of localizable properties, 329
/trans: parameter, 331

logical resources, 333
logical scrolling, 126
logical tree, 446, 448
LogicalTreeHelper class, 51, 448
Long Date data types, 529
lookless controls, 20

adding TemplatePart attribute to control
declaration, 876

calling OverrideMetadata() method, 871
changing color picker into lookless

control, 871
checking for correct type of element, 875
code for binding SolidColorBrush, 875
connecting data binding expression using

OnApplyTemplate(), 875
converting ordinary markup into control

template, 872
creating, 870
creating different styles for different

theme settings, 871
creating template for color picker, 872
DefaultStyleKeyProperty, 871
defined, 451, 871
ElementName property, 872
generic.xaml resource dictionary, 871
markup structure for ColorPicker.xaml,

872
providing descriptive names for element

names, 874
RelativeSource property, 872
streamlining color picker control

template, 874
TemplateBinding, 872–873
using TargetType attribute, 872

LostFocus event, 164
LostFocus update mode, 502
LostMouseCapture event, 174

■M
Mad Libs game, creating, 665
Main() method, 58–61
MainWindow property, 58, 222
manifests, 73
margins, 83
MarkerStyle property, 651
markup extensions, 35

■INDEX1014

9551CH28 2/8/08 2:17 PM Page 1014

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

MarshalByRefObject attribute, 949
Mask property, 881
MaskCompleted property, 882
masked edit controls

adding read-only property to evaluate
mask and text, 882

advantages of, 879
avoiding canonicalization errors, 879
calling OverrideMetadata property on

TextProperty, 886
calling SkipToEditableCharacter(), 882
guidelines for creating custom masked

control, 881
handling key events, 883
handling special extended keys, 884
handling text cut-and-paste problems, 886
having MaskChanged() callback trigger

Text property, 887
implementing WPF masked text box, 881
improving MaskedTextBox, 885
literals, 879
mask characters, table of, 880
mask syntax, 879
masked text box, defined, 879
OnPreviewKeyDown(), 884
OnPreviewTextInput event, 883
overriding OnEvent() method, 883
phone number control, 879
placeholders, 879
PreviewKeyDown event, 883
PreviewTextInput event, 883
prompt character, 880
using MaskedTextProvider, 880
writing property change callback to

update text, 882
MaskedTextBox, 906

GetMaskProvider(), 882
improving, 885
Mask property, 881
RefreshText(), 882
ValidatingType property, 917

MaskedTextProvider
FindEditPositionFrom(), 883
MaskCompleted property, 882
Set(), 886
ToDisplayString(), 881
tracking user’s current position in input

string, 881
MaskedTextProvider class, 879
Material class, 815
Material property, 815
MatrixCamera, 819
MaxLength property, 202, 205
MaxLines property, 203
Maya, 829
MDI (multiple document interface), 224
MDI windows, 906

Measure() method, 702, 888
measure stage, 77
MeasureCore() method, 888
MeasureOverride() method, 78, 891

allowing child to take all space it wants,
889

basic structure of, 888
calling Measure() method of each child,

888
DesiredSize property, 888
determining how much space each child

wants, 888
passing Size object with value of

Double.PositiveInfinity, 889
Media Integration Layer (MIL), 16
MediaClock class, 792
MediaCommands class, 294
MediaElement class, 323, 909

adding MediaElement tag for playing
sound, 789

Balance property, 796
Clock property, 792
controlling additional playback details,

795
controlling audio declaratively through

XAML markup, 791
controlling audio playback

programmatically, 789
creating video-reflection effect, code

example, 800
error handling, 791
ErrorException property, 791
LayoutTransform property, 800
LoadedBehavior property, 789
Manual mode, 796
MediaState enumeration, 789
Pause() method, 790
placement of, for audio and video, 789
Play() method, 790
playing audio with triggers, 791
playing multiple audio files, code

example, 794
playing video, 799
Position property, 796
RenderTransform property, 800
RenderTransformOrigin property, 800
requirement for Windows Media Player

version 10 or later, 787
setting Clipping property, 800
setting Opacity property, 800
setting Position to move through audio

file, 790
SpeedRatio property, 796
Stop() method, 790
Stretch property, 799
StretchDirection property, 799
support for WMV, MPEG, and AVI files, 799

■INDEX 1015

9551CH28 2/8/08 2:17 PM Page 1015

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

MediaElement class (continued)
synchronizing animation with audio or

video file, 797
types of video effects, 800
using separate ResumeStoryboard action

after pausing playback, 793
using single Storyboard to control audio

playback, 792
Volume property, 796

MediaFailed event, 788
MediaOpened event, 788
MediaPlayer class, 909

creating Window.Unloaded event handler
to call Close(), 788

lack of exception handling code, 788
MediaFailed event, 788
MediaOpened event, 788
no option for synchronous playback, 787
Open(), 787
Play(), 787
playing multiple audio files, 795
requirement for Windows Media Player

version 10 or later, 787
supplying location of audio file as URI,

788
table of useful methods, properties, and

events, 788
MediaState enumeration, 789
MediaTimeline class, 742, 791
MemoryStream, 686
Menu class

creating scrollable sidebar menu, 631
DisplayMemberPath property, 631
dividing menus into groups of related

commands, 635
example of Separator that defines text

title, 635
IsMainMenu property, 631
ItemsSource property, 631
ItemTemplate property, 631
ItemTemplateSelector property, 631
Separator as not content control, 636
using menu separators, 635

MenuItem class
Command property, 633
CommandParameter property, 633
CommandTarget property, 633
creating rudimentary menu structure, 632
displaying check mark next to menu item,

633
handling Click event, 633
having non-MenuItem objects inside

Menu or MenuItem, 632
Icon property, 633
including keyboard shortcuts, 632
InputGestureText property, 633
IsChecked property, 633

Separator objects, 632
setting shortcut text for menu item, 633
showing thumbnail icon, 633
StaysOpenOnClick property, 633

MergedDictionaries collection, 465, 472
MergedDictionaries property, 343
mesh, 813
MeshGeometry class, 834
MeshGeometry3D class

Normals property, 813–814
Positions property, 813–814
table of properties, 813
TextureCoordinates property, 813–815
TriangleIndices property, 813–814

MeshHit property, 846
MessageBeep Win32 API, 786
MessageBox class, 226
MessageBoxButton enumeration, 226
MessageBoxImage enumeration, 226
Microsoft Application Updater Starter Block,

968
Microsoft Expression Blend, 21
Microsoft Installer (MSI), 965
Microsoft Money, 246
Microsoft .NET 2.0 Framework Configuration

Tool, 280
Microsoft Office 2007, 682
Microsoft Speech Software Development Kit,

806
Microsoft Word, 68, 677
Microsoft XPS (XML Paper Specification), 24,

322, 643, 681, 682
Microsoft.Win32 namespace, 226, 909
Microsoft.Windows.Themes, 408, 454
MIL (Media Integration Layer), 16
milcore.dll, 16
MinLines property, 203
Miter line join, 381
mnemonics, 117, 190, 923
modal windows, 218
Mode property, 495
Model3D class, 839
Model3DGroup class, 830, 831
modeless windows, 218
ModelUIElement3D class, 845–849
ModelVisual3D class, 839, 845, 851
modifier keys, 170
Money, Microsoft, 246
Mouse class, 174
mouse cursors, 189
mouse events, 163

AllowDrop property, 176
ButtonState event, 173
capturing mouse by calling

Mouse.Capture(), 174
ClickCount event, 173
creating drag-and-drop source, 176

■INDEX1016

9551CH28 2/8/08 2:17 PM Page 1016

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

direct events, defined, 171
DoDragDrop(), 176
drag-and-drop operations, 174
DragDrop class, 175
DragEnter event, 176
dragging-and-dropping into other

applications, 176
GetPosition(), 172
getting mouse coordinates, 172
IsMouseDirectlyOver property, 173
IsMouseOver property, 173
losing mouse capture, 174
LostMouseCapture event, 174
Mouse class, 174
mouse click events for all elements, 173
MouseButton event, 173
MouseButtonEventArgs object, 173
MouseDoubleClick event, 173
MouseEnter event, 171
MouseLeave event, 171
MouseMove event, 172
PreviewMouseDoubleClick event, 173
PreviewMouseMove event, 172

MouseButton event, 173
MouseButtonEventArgs object, 157, 173, 848
Mouse.Capture() method, 174
MouseDoubleClick event, 173, 857
MouseDown event, 154
MouseEnter event, 154, 171, 356
MouseEventArgs object, 151, 172
MouseLeave event, 171, 356, 765
MouseLeftButtonDown event, 232
MouseMove event, 172
MouseUp event, 151
MouseUp() method, 152
msbuild.exe, 327
MSDN Magazine, 490
MSI (Microsoft Installer), 965
MultiBinding, 535
multiple document interface (MDI), 224
Multiselect property, 226
multitargeting, 12
multithreading

BackgroundWorker component, 931
BeginInvoke(), 929–930
context, 927
CurrentDispatcher property, 928
defined, 927
dispatcher, 928
DispatcherObject class, 928
DispatcherOperation object, 930
DispatcherPriority, 930
dual-core CPUs, 927
Invoke(), 931
performing asynchronous operations, 931
performing time-consuming background

operation, 930

single-threaded apartment model, 928
System.Threading.Thread, 931
thread affinity, 928
thread rental, 927
VerifyAccess(), 929
writing good multithreading code, 931

MultiTrigger, 363
MustInherit abstract classes, 941
MustInherit abstract view class, 948
mutex, defined, 68

■N
Name attribute, 29
Name property, 292, 865
namespaces

core WPF namespace, 27
core XAML namespace, 27
declaring in XML, 26
defining in XAML, 26
.NET and, 27
System.Windows.Shapes, 122
using namespace prefixes, 45
in WPF, 27
XML namespaces as URIs, 27

Narrator screen reader, 804
native resolution, 7
Navigate() method, 261, 262
NavigateUri property, 250, 657
NavigationCommands class, 294
NavigationFailed event, 251
NavigationService class

AddBackEntry(), 264–265
AddBackReference(), 267–269
adding custom items to journal, 265
Application class, 262
building linear navigation-based

application, 263
CanGoBack property, 262–264
CanGoForward property, 262
Content property, 266
creating page object manually, 261
ExtraData property, 262
GetContentState(), 267–269
GoBack(), 262
GoForward(), 262
Handled property, 262
how WPF navigation occurs, 262
InitializeComponent(), 261
IProvideCustomContentState interface,

267–269
JournalEntryName property, 266
ListSelectionJournalEntry callback, 267
methods for controlling navigation stack,

264
Navigate(), 261–262
navigating to page based on its URI, 261
RemoveBackEntry(), 264

■INDEX 1017

9551CH28 2/8/08 2:17 PM Page 1017

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

NavigationService class (continued)
Replay(), 266–268
ReplayListChange delegate, 267
returning information from page, 270
SourceItems property, 267
StopLoading(), 261
suppressing navigation events, 262
table of navigation events, 262
TargetItems property, 267
using Refresh() to reload page, 261
WPF navigation as asynchronous, 261

NavigationUIVisibility property, 254–255
NavigationWindow class

creating page-based application with, 247
forward and back buttons, 250

NearPlaneDistance property, 822
.NET

Code DOM model, 52
global assembly cache (GAC), 326
ildasm, 319
mapping .NET namespace to XML

namespace, 44
namespaces in, 27
p/invoke, 233–235
probing, 324
replacing .NET properties with

dependency properties, 137
ResourceManager class, 320
ResourceSet class, 320
satellite assemblies, 324
type converters, 32
window ownership, 224
XML capabilities in, 594

.NET 1.x
anchoring, 75
docking, 75
fixed controls using hard-coded

coordinates, 75
lack of bi-pane proportional resizing, 75
layout system as fairly primitive, 75

.NET 2.0, 1
BackgroundWorker component, 931
coordinate-based layout, 76
enhancing Button and Label classes, 123
flow-based layout panels, 76
FlowLayoutPanel, 75
SoundPlayer class, 783
System.Drawing namespace, 341
System.Media.SystemSounds class, 786
TableLayoutPanel, 75

.NET 2.0 Framework Configuration Tool, 280

.NET 3.0
XBAPs and, 273
XPS document support, 725

.NET Framework 3.0, 11
no fixed control appearance, 20
no-argument constructors, 45

Noise property, 407
nonclient area, defined, 215
nonrectangular windows

adding sizing grip to shaped window, 233
comparing background-based and shape-

drawing approaches, 231
creating shaped window with rounded

Border element, 228
creating simple transparent window, 228
creating transparent window with shaped

content, 231
detecting mouse movements over edges of

window, 233
Expression Blend design tool, 227
initiating window dragging mode by

calling Window.DragMove(), 232
moving shaped windows, 232
placing Rectangle that allows right-side

window resizing, 233
placing sizing grip correctly, 233
procedure for creating shaped window,

227
providing background art, 227
removing standard window appearance

(window chrome), 227
resizing shaped windows, 233
resizing window manually by setting its

Width property, 233
setting Window.ResizeMode property, 233
using Path element to create background,

231
Nonzero fill rule, 380
normal

defined, 825
guidelines for choosing right normals, 827
problem of sharing Position points and

sharing normals, 827
that’s perpendicular to triangle’s surface,

calculating, 828
understanding, 825

Normals property, 813–814, 828
NotifyIcon class, 909
NotifyOnValidationError property, 538, 543
null markup extension, 193
NullExtension, 35

■O
object resources

accessing resources in code, 339
adding resources programmatically, 340
advantages of, 333
application resources, 340
ComponentResourceKey, 345
creating resource dictionary, 342
declarative resources, 333
defined, 317
defining image brush as resource, 334

■INDEX1018

9551CH28 2/8/08 2:17 PM Page 1018

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

defining resources at window level, 333
FrameworkElement.FindResource(), 340
Freezable class, 337
generic.xaml file, code example, 346
hierarchy of resources, 335
ImageSource property, 346
Key attribute, 334
logical resources, 333
nonshared resources, reasons for using,

339
resource keys, 342
ResourceDictionary class, 333
ResourceKey property, 336
resources collection, 333
Resources property, 333
reusing resource names, 336
sharing resources among assemblies, 344
static vs. dynamic resources, 335–338
system resources, 341
TryFindResource(), 340
using markup extension, 335
using .NET object for resource, 335
using Shared attribute to turn off sharing,

339
object-based drawing, 20
ObjectDataProvider, 591

error handling, 592
features of, 592
getting information from another class in

application, 592
IsAsynchronous property, 593
IsInitialLoadEnabled property, 592
retrieving data but not updating it, 592
support for asynchronous data querying,

593
ObservableCollection, 574
ObservableCollection class, 521
Office 2007, 682
OnApplyTemplate() method, 875
OnColorChanged() method, 862–863
OnColorRGBChanged() method, 862
OnEvent() method, 883
OneWayToSource option, 500
OnPreviewKeyDown() method, 884
OnPreviewTextInput event, 883
OnPropertyChanged() method, 515
OnPropertyChangedCallback() method, 147
OnRender() method, 119, 856, 896, 897
OnReturn() method, 271
OnStartup() method, 69
OnStartupNextInstance() method, 69
opacity masks, 758
Opacity property, 182, 390, 401, 407, 433, 800
OpacityMask property, 401, 402
Open() method, 787
OpenFileDialog class, 226, 533
OpenGL, 809

OpenType, 185–187
Orientation property, 638
OrthographicCamera class, 819
OSVersion property, 235
OuterGlowBitmapEffect class, 407
OverflowMode property, 638
OverrideCursor property, 189
OverrideMetadata() method, 871
owned windows, 224
OwnedWindows property, 224
Owner property, 224
owner-drawn controls, 20
OwnerType property, 292

■P
pack URIs, 257, 321
PackageStore class, 694
Padding property, 90, 121, 865
Page class

comparison to PageFunction class, 270
comparison to Window class, 248
table of properties, 248
using navigation to show different page,

249
Page element, 25
page functions, 259
page-based navigation

accessing WPF navigation service, 261
browser applications (XBAPs) and, 256
controlling navigation of parent frame

only, 255
creating dependency property in page

class, 259
creating nested page, 254
creating new NavigationWindow object as

container, 247
creating page-based application with

NavigationWindow, 247
creating XBAP, 256
differences between page and window,

248
DispatcherUnhandledException event,

251
embedding page inside window, 252
fragment navigation, 252
GetNavigationService(), 261
handling back button, 255
handling WebException, 251
hosting pages

in another container, 246
in another page, 254
in frame, 252
in Web browser, 256

Hyperlink class, 250
hyperlinks as inline flow elements, 249
maintaining state of previously visited

pages, 258

■INDEX 1019

9551CH28 2/8/08 2:17 PM Page 1019

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

page-based navigation (continued)
Microsoft Money and its weblike interface,

246
NavigationFailed event, 251
NavigationUIVisibility property, 254–255
operation of WPF page history, 258
Page class, table of properties, 248
programmatic navigation, 261
RequestNavigate event, 250
returning information from page, 270
setting JournalOwnership property of

embedded frame, 255
ShowsNavigationUI property, 250
stand-alone Windows applications, 256
StartupUri property, 256
understanding, 245
understanding XAML URIs, 257
using hyperlinks to navigate to websites,

251
using KeepAlive property, 259
using navigation to show different page,

249
using several frames in single window, 253
web model of application design, 245
WindowTitle property, 250

PageCount property, 709
PageDown() method, 125
PageFunction class

comparison to Page class, 270
creating PageFunction in Visual Studio,

270
OnReturn() method, 271
RemoveFromJournal property, 272
returning SelectedProduct object to

calling page, 270
using PageFunction, 271

PageFunction classes, 271
PageHeight property, 706
Page.Initialized event, 261
PageLeft() method, 125
Page.Loaded event, 261
PagePadding property, 706
PageRangeSelection property, 720
PageRight() method, 125
Pages text box, 720
PageSetupDialog class, 909
PageSize property, 709, 715
PageUp() method, 125
PageWidth property, 706
PaginateData() method, 715–716
Panel class, 19, 39–40, 896

description of, 857
IsItemsHost, 78
layout containers as deriving from, 118
overriding MeasureOverride() and

ArrangeOverride(), 78
public properties, table of, 77

panel templates, 453
<Paragraph> element, 650, 651, 692
parameterized constructors, 45
Parse() method, 529
partial classes, 28, 51
Password property, 202
PasswordBox control, 202, 205, 206
PasswordChanged property, 205
PasswordChar property, 147, 205
Path class, 368

Data property, 409
differentiating Geometry and Path objects,

410
GetFileName(), 264
switching from separate shapes to distinct

geometries, 428
Path element, 231
Path property, 493
path-based animation

animating position-related properties, 775
Bézier curves in, 777
DoubleAnimationUsingPath, 777
moving image along path, 776
naming format, 733
PointAnimationUsingPath class, 777
running at continuous speed, 778
using PathGeometry object to set

property, 775
PathFigure class, 417
PathGeometry class, 417, 733, 775
PathSegment class, 417
Pause() method, 790
Pen class, 426
Percentage data type, 529
PerspectiveCamera class, 819, 822
Petzold, Charles, 770
phone number control, 879
p/invoke, 233–235
pipelines, add-in, 941–946

folder structure, 943–944
how works, 941–943
overview, 941
preparing solution, 944–946

PipelineSegments.store file, 951
pixel shaders, defined, 4
pixel snapping, 384
placeholders, 879
Placement property, 197, 283
PlacementTarget property, 198
Play() method, 784–790
PlayLooping() method, 784
PlaySync() method, 784–785
plug-ins. See add-ins
Point property, 418
Point3DAnimationUsingKeyFrames, 773
PointAnimation class, 769
PointAnimationUsingPath class, 777

■INDEX1020

9551CH28 2/8/08 2:17 PM Page 1020

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

PointLight class, 818
Points property, 378
Polygon class, 368

determining fill areas in complex
Polygons, 379

FillRule property, 379
markup for drawing star, 381
setting FillRule to NonZero, 380
using Fill brush to fill interior shape, 379

Polyline class, 368
drawing sequence of connected straight

lines, 378
Points property, 378
understanding line caps, 381
using StartLineCap and EndLineCap

properties, 381
Pop() method, 433, 711
Popup control

accepting focus, 200
AllowsTransparency property, 200, 283
characteristics of, 200
Child property, 200
defining in XAML, 200
IsOpen property, 200
IsVisible property, 284
opening secondary window in XBAP, 283
Placement property, 283
PopupAnimation property, 200, 283
StaysOpen property, 200, 283

PopupAnimation property, 200, 283
Position property, 796
Positions property, 813–814
PresentationCore.dll, 16
PresentationFramework.Aero.dll assembly,

454
PresentationFramework.dll assembly, 16,

454–455
PresentationFramework.Luna.dll assembly,

454
PresentationFramework.Royale.dll assembly,

454
PreviewExecuted event, 297, 313
PreviewKeyDown event, 154, 161, 168, 883
PreviewMouseDoubleClick event, 173, 857
PreviewMouseMove event, 172
PreviewTextInput event, 168, 883
PriceConverter class, 530
primary interop assembly, 919
primitives, 5
Print dialog box, 697
Print() method, 673
PrintableAreaHeight property, 702
PrintableAreaWidth property, 702
PrintDialog class, 226

Arrange(), 702
calling ShowDialog(), 699

checking PageRangeSelection property,
720

creating PrintDialog object, 699
DocumentPage class, 705
DocumentPaginator class, 697, 705–708
FlowDocument class, 697, 706
handling of modal windows, 700
hiding element by changing its Visibility

property, 701
inability to print on background thread,

700
limitations of, 699
maintaining and reusing your printer

settings, 720
managing printer settings and jobs, 719
manipulating pages in document

printout, 708
margin and header positions, 710
Measure(), 702
Print dialog box, 697
PrintableAreaHeight property, 702
PrintableAreaWidth property, 702
PrintDocument(), 697, 704, 714
printing content of FlowDocument, 704
printing document with its associated

annotations, 707
printing elements without showing them,

703
printing range of pages, 720
printing two-column printout with

margin, 706
PrintQueue property, 720
PrintTicket property, 720
PrintVisual(), 697, 711
storing PrintDialog as member variable,

720
submitting print job, 697
System.Printing.PrintQueue object, 720
Transform object and inflexible printouts,

701
triggering printout, 697
using Pages text box, 720
Win32PrintDialog, 700
Windows print queue, 699
XpsDocument class, 697
XpsDocumentWriter class, 700

PrintDocument() method, 697, 704, 714
printing

browsing and managing jobs in print
queue, 722

centering block of formatted text on page,
712

constructing custom printout using
visual-layer classes, 710

creating multipage printout, 714
launching printout without user

intervention, 721

■INDEX 1021

9551CH28 2/8/08 2:17 PM Page 1021

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

printing (continued)
managing local or remote print queues,

721
managing printer settings and jobs, 719
pausing PrintQueue or print job, 724
PrintDialog class, 697
separating content into pages, 714
setting column positions, 717
System.Printing namespace, 697, 724
System.Windows.Controls namespace,

697
Windows print queue, 699

PrintPreviewDialog class, 909
PrintQueue class, 721, 723
PrintQueue property, 720
PrintServer class, 722
PrintSystemJobInfo class, 721–723
PrintTicket class, 720
PrintTicket property, 720
PrintVisual() method, 698, 699, 711
priority binding, 594
probing, 324
ProcessImageBytes() method, 947–952, 959,

961
Product object, 510
ProductImagePath converter, 611
ProgressBar control, 213, 956
ProgressChanged event, 937
prompt character, 880
PromptBuilder class, 805, 806
PromptEmphasis enumeration, 805
PromptRate value, 805
PromptVolume value, 805
properties

attached, 36
complex, 32
Content, 40
ContentProperty attribute, 39
dependency properties, 36
distinguishing from other types of nested

content, 33
NullExtension, 35
property-element syntax, 33
ProvideValue(), 35
setting complex property, 33
setting property value dynamically, 35
similarity of attached properties to

extender providers, 37
simple, and type converters, 31
StaticExtension, 35
supporting more than one type of

collection, 38
System.Windows.Markup.MarkupExtensio

n, 35
Text, 40
TypeExtension, 35
using markup extension, 35

property mapping, 923
property metadata, 141
property resolution system, 731–739
property translators, 923
property value inheritance, 186, 349
property wrapper, 140
property-based animation, 731
PropertyChanged event, 514
PropertyChanged update mode, 502
PropertyChangedCallback, 141–149
property-element syntax, 33
PropertyGrid, 906
<PropertyGroup> element, 325
ProvideValue() method, 35
public key token, 322
Publish Now button, 977
Publish Options dialog box, 980
Publish Wizard button, 977
PushOpacity() method, 433

■Q
quartz.dll library, 783
Quick Tabs view (IE 7), 401

■R
RadialGradientBrush, 393, 394, 769–770, 898
RadioButton control, 119, 194
RadioButton element, 604–606
RadioButton.Focusable property, 605
RadiusX property, 371, 393, 411
RadiusY property, 371, 393, 411
RaiseEvent() method, 150, 863
RangeBase class

table of properties, 211–212
Value property, 211, 875
ValueChanged event, 211

range-based controls
ProgressBar control, 213
ScrollBar control, 211
Slider control, 212

RayMeshGeometry3DHitTestResult, 846
RCWs (runtime callable wrappers), 919
ReasonSessionEnding property, 61
RecognizesAccessKey property, 459
Rectangle class, 368, 370, 371, 459
RectangleGeometry class, 411
reflection, 455, 940
Reflector, 177

using Reflector plug-in, 431
viewing embedded resources, 319

Refresh() method, 261
RefreshText() method, 882
Register() method, 139
RegisterAttached() method, 146, 892
RegisterClassCommandBinding() method,

868
RegisterClassHandler() method, 869

■INDEX1022

9551CH28 2/8/08 2:17 PM Page 1022

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

RegisterEvent() method, 154
RegisterRoutedEvent() method, 150
RelativeSource property, 503–504, 872
RelativeSourceMode enumeration, 505
Relief property, 406
RemoveBackEntry() method, 264
RemovedItems property, 209
RemoveFromJournal property, 272
RemoveHandler() method, 150
RemoveSignature() method, 682
RenderCapability class, 4
RenderCapability.Tier property, 3–4
RenderDefaulted property, 452
rendering artifacts (3-D), 822
RenderOpen() method, 431–433, 711, 897
RenderPressed property, 452
RenderTransform property, 386, 701–702,

764, 800
RenderTransformOrigin property, 387, 765,

800
RepeatBehavior property, 745
RepeatButton class, 193, 478
Replay() method, 266–268
ReplayListChange delegate, 267
ReportProgress() method, 937, 956–959
Requery command, 307
RequerySuggested event, 303
RequestNavigate event, 250
requireAdministrator application, 73
ResizeBehavior property, 98
ResizeDirection property, 98
ResizeGrip element, 454
ResizeMode property, 233, 484
resizeType field, 487
resolution independence, 6, 20
ResolvedAnchor property, 693
resource dictionaries

adding resource dictionary in Visual
Studio, 465

creating, 342
generic.xaml, 345
MergedDictionaries property, 343
merging individual dictionaries into

generic.xaml file, 345
merging it into application’s resource

collection, 343
naming correctly, 345
reasons for using, 344
ResourceDictionary object, 343
setting application’s Build Action, 342
using in other applications, 346

ResourceDictionary class, 333, 473
ResourceDictionary object, 343
ResourceId, 615
ResourceKey property, 336, 613
ResourceManager class, 320, 471

resources
accessing in code, 339
adding programmatically, 340
application resources, 340
assembly resources, defined, 317
benefits of, 349
binary resources, 317
ComponentResourceKey, 345
creating resource dictionary, 342
defining, 22
FrameworkElement.FindResource(), 340
generic.xaml file, code example, 346
object resources, defined, 317
resource keys, 342
sharing resources among assemblies, 344
static vs. dynamic, 337
storing error message strings as resources,

332
system resources, 341
TryFindResource(), 340

Resources property, 333
Resources tab, Project Properties window,

318
ResourceSet class, 320
RestoreBounds property, 221
retained graphics model, 730
RichTextBox control

building simple rich text editor, 678
declaring FlowDocument, 674
detecting word breaks and grabbing word,

code example, 680
displaying markup for current flow

document, 676
FlowDocument, 202
formatting selected text, 678
loading and saving files in different

formats, 674–675
not using embedded controls inside of,

681
placing interactive controls inside, 11
RTF content and, 674
saving document using TextRange object,

676
Section element, 677
setting MaxLength property, 202
sluggish performance as drawback, 674
storing content as FlowDocument object,

674
TextSelection class, 678
unsupported features, 674
using XAML format to save document, 677
using XamlReader.Load(), 674

Right property, 105
Roeder, Lutz, 177
RotateTransform class, 386, 387, 763–767
RotateTransform3D, 840, 852
Round line join, 381

■INDEX 1023

9551CH28 2/8/08 2:17 PM Page 1023

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

routed events, 18
defined, 137
defining and adding, 862
providing event bubbling and tunneling,

863
RoutedCommand class, 292, 301–303
RoutedEventArgs class, 151, 155, 297
RoutedEventArgs.Handled property, 158
RoutedEventHandler, 863
RoutedPropertyChangedEventHandler, 863
RoutedUICommand class, 292, 293
Row property, 92
RowDefinition element, 92
RowDefinition object, 94
RowFilter property, 579
RowSpan property, 96, 654
rowsPerPage field, 716
RowStateFilter property, 579
Run element, 201, 650, 664
Run() method, 58, 61
<Run> element, 692
runtime callable wrappers (RCWs), 919
RuntimeNameProperty attribute, 29
RunWorkerCompleted event, 936, 939

■S
satellite assemblies, 324
SaveFileDialog class, 226
SaveSize() method, 222
SaveTo() method, 720
ScaleTransform, 763, 767
ScaleTransform3D, 838
scheme, 257
scope, 308
ScreenSpaceLines3D class, 822
scRGB standard, 181
ScrollBar class, 144, 480
ScrollBar control, 211
ScrollBar element, 454
ScrollBarVisibility enumeration, 125
ScrollChrome class, 454
ScrollToXxx() method, 125
ScrollViewer, 77, 119

CanContentScroll property, 126
combining with Expander, 132
custom scrolling, 126
Grid layout container and, 133
HorizontalScrollBarVisibility property, 125
IScrollInfo, 126
ScrollBarVisibility enumeration, 125
scrolling content programmatically, 125
using ScrollToXxx() methods, 125
VerticalScrollBarVisibility property, 125
wrapping layout container in, 124

Section element, 655, 677
<Section> element, 692
SecureString object, 202, 205, 206

Selected event, 210
SelectedIndex property, 600
SelectedItem property, 209, 600
SelectedItemChanged event, 600
SelectedItems property, 600
SelectedProduct object, 270
SelectedText property, 204
SelectedValue property, 600
selectedVisual field, 437
SelectionBoxItemTemplate property, 603
SelectionChanged event, 204, 209–210, 600
SelectionEnd property, 212
SelectionLength property, 204
SelectionMode property, 207, 600
selectionSquareTopLeft field, 441
SelectionStart property, 204, 212
Selector class, 600, 857
selectors, 206
SelectStyle() method, 571
SelectTemplate() method, 560–561
Separator objects, 632
SetContent() method, 67
SetProperty() method, 891
SetSize() method, 222
SetSpeedRatio() method, 757
Setter objects, 351
Setter.TargetName property, 354, 470
Setup Project template, 965
SetValue() method, 140, 147, 861
SetZIndex() method, 106
ShadowDepth property, 407
Shape class, 19

angling shape, 386
animating shape, 386
Bevel line join, 381
choosing layout containers for shapes, 373
comparing RenderTransform and

LayoutTransform, 389
creating ellipse, 370
creating rectangle, 370
drawing dashed lines, 382
Ellipse class, 368
Geometry object, 369
LayoutTransform property, 388
Line class, 368, 376
markup for rotating square, 386
Miter line join, 381
not using antialiasing for specific shape,

384
Path class, 368, 409
pixel snapping, 384
placing certain shapes in autosized

container, 376
Polygon class, 368, 379
Polyline class, 368, 378
Rectangle class, 368
RenderTransformOrigin property, 387

■INDEX1024

9551CH28 2/8/08 2:17 PM Page 1024

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

repeating shape, 386
resizing to compensate for different

system DPI settings, 376
Round line join, 381
setting line joins, 381
setting shape’s center point, 387
setting SnapsToDevicePixels property of

UIElement, 384
shape resizing and border thickness, 375
shapes (primitives) as elements, 367
Stretch property, table of enumeration

values, 372
StretchDirection property, 375
StrokeDashArray property, 382
StrokeDashCap, 383
StrokeDashOffset property, 383
StrokeLineJoin property, 381
StrokeMiterLimit, 381
supplying brush for Stroke or Fill property,

370
table of properties, 368
Transform class, 385
Transform object, 369
using Canvas to control shape placement

and overlap, 373
using Viewbox element to resize shapes

proportionally, 374
Shared attribute, 339
shared size groups, 101
SharedSizeGroup property, 103, 554
Short Date data type, 529
Show() method, 218, 226
ShowDialog() method, 218, 225, 699
ShowDocument() method, 70
ShowGridLines property, 92
ShowsNavigationUI property, 250
ShowsPreview property, 99
Shutdown() method, 61
ShutdownMode property, 60
sieve of Eratosthenes, 932
SignDigitally() method, 682
Silverlight, 14, 24, 287
SimpleStyles project, 488
SingleCriteriaHighlightTemplateSelector

class, 562–564, 581
SingleInstanceApplicationWrapper class, 70
SingleInstanceApplicationWrapper.On-

StartupNextInstance() method, 72
single-thread affinity (STA), 18
Size property, 418, 705
SizeToContent property, 86, 132, 324
SkipToEditableCharacter() method, 882
Slider control, 960

IsSnapToTickEnabled property, 498
RangeBase class, table of properties, 212
SelectionEnd property, 212
SelectionStart property, 212

setting position selection range, 212
TickFrequency property, 498
Ticks collection, 212
uses for, 212
using in color picker, 859

Smoothness property, 406
snapshot-and-replace behavior, 752
SnapsToDevicePixels property, 384, 455, 568
Snoop utility, 451
SolidColorBrush, 180
Solution Explorer, 58, 323
Sort property, 579
SortDescription objects, 580
SortDescriptions property, 586
Sound icon, 787
SoundLocation property, 784
SoundPlayer class, 909

embedding sound files into compiled
assembly as binary resource, 785

limitations of, 783
Load(), 784
LoadAsync(), 784
LoadCompleted event, 784
loading and playing sound

asynchronously, 785
no queueing feature for playing multiple

audio snippets, 785
Play(), 784–785
PlayLooping(), 784
PlaySync(), 784–785
procedure for playing sound, 784
SoundLocation property, 784
Stream property, 784
WAV audio files, 783

SoundPlayerAction class, 784, 786
Sounds and Audio Devices icon, 787
Source property, 252, 473, 503–504, 586, 595,

786, 791
SourceItems property, 267
SourceName property, 792
Span.Tag property, 664
Speak() method, 804
SpecularMaterial class, 832
SpecularPower property, 832
speech recognition, 806, 807
Speech Recognition Grammar Specification

(SRGS), 807, 808
Speech Software Development Kit, Microsoft,

806
speech synthesis, 804
SpeechDetected event, 807
SpeechHypothesized event, 807
SpeechRecognitionRejected event, 807
SpeechRecognized event, 807
SpeechRecognizer class, 807, 808
SpeechSynthesizer class, 804
SpeedRatio property, 796

■INDEX 1025

9551CH28 2/8/08 2:17 PM Page 1025

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

SpellCheck.IsEnabled property, 204
SpellingReform property, 205
spline key frames, 774
splitter bars, 97
SpotLight class, 818
SpreadMethod property, 392
square-drawing application, 434
SRGS (Speech Recognition Grammar

Specification), 807, 808
SrgsDocument, 807
SSML (Synthesis Markup Language), 806
STA (single-thread affinity), 18
StackPanel, 90

arranging elements vertically or
horizontally, 80

button stack example, 79
changing alignment defaults, 82
considerations when sizing button, 85
description of, 78
DesiredSize property, 85
Height property, 84
HorizontalAlignment property, 82
IScrollInfo and logical scrolling, 126
layout properties, table of, 81
Margin property, 83
setting control margins, 83
Thickness structure, 83
using in Visual Studio, 80
VerticalAlignment property, 82
Width property, 84

StartLineCap property, 381
StartPoint property, 391, 418
Startup event, 58
StartupUri attribute, 913
StartupUri property, 59, 256
static resources, 335
StaticExtension, 35
StaticResource, 458, 555
StatusBar class, 636, 640
StatusBarItem object, 640
StaysOpen property, 200, 283
StaysOpenOnClick property, 633
StickyNoteControl class, 695
stitching (z-fighting), 822
Stop() method, 790
StopLoading() method, 261
Store database

installing, 507
ProductImage field, 531
two tables and their schemas, 507

StoreDataSetPaginator class, 715–719
StoreDB class

adding UpdateProduct(), 513
binding to ADO.NET data objects, 521
binding to collection of objects, 516
building data object, 510
caller inform design pattern, 510

collection items, displaying and editing,
516

collection items, inserting and removing,
520

DataContent property, 519
DataContext property, 512
displaying bound object, 511
DisplayMemberPath property, 518
enabling database updates, 513
GetProduct(), 508
GetProducts(), 517
handling change notification, 514
IEnumerable interface, 516
INotifyCollectionChanged interface, 521
INotifyPropertyChanged interface, 514
ItemsControl class, table of properties, 516
making instance available through

Application class, 509
OnPropertyChanged(), 515
options for making it available to

application windows, 508
preventing field from being edited, 520
Product object, 510
PropertyChanged event, 514

Storyboard class
BeginStoryboard action, 747
BeginStoryboard.HandoffBehavior

property, 752
creating property trigger that triggers

storyboard, 749
defining storyboard, 746
fusing second animation into first

animation’s timeline, 752
HandoffBehavior.Compose, 752
managing simultaneous animations as

one group, 753
SetSpeedRatio(), 757
snapshot-and-replace behavior, 752
storyboard, defined, 746
TargetName property, 746–748
TargetProperty property, 746–748

Stream property, 320, 784
StreamResourceInfo object, 319
Stretch property, 121, 136, 372, 375, 396, 398,

799
StretchDirection property, 136, 375, 799
Stroke objects, 107
Stroke property, 376
StrokeDashArray property, 382
StrokeDashCap, 383
StrokeDashOffset property, 383
StrokeLineJoin property, 381
StrokeMiterLimit, 381
Strokes collection, 107
Style class

creating Style object, 353
table of properties, 352

■INDEX1026

9551CH28 2/8/08 2:17 PM Page 1026

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

TargetType property, 448
Style property, 351
style selectors, 571
styles, 5

adding Setter objects, 351
advantages of, 339
applying different style formats to

different element types, 355
applying only one Style object to element

at once, 357
applying style-based event handlers, 356
attaching event handlers for MouseEnter

and MouseLeave events, 356
automatically applying styles by type, 359
benefits of, 352
comparing event setters and event

triggers, 356
comparing to CSS, 349
complications arising from automatic

styles, 360
creating collection of EventSetter objects,

356
creating Style object, 353
creating style that builds upon another

style, 357
creating System.Windows.Style object as

resource, 351
defined, 349
defining style to wrap various font

properties, 351
disadvantages of style inheritance, 359
example of standardizing font properties

of window, 349
identifying property to be set, 354
linking triggers to styles through

Style.Triggers collection, 360
naming convention, 351
not using styles and resources together,

353
omitting key name when setting

TargetType property, 359
overriding style characteristics, 352
pulling style out of Resources collection

using FindResource(), 351
setters as only changing dependency

property, 354
setting BasedOn attribute of, 357
setting element’s Style property, 351
setting style programmatically, 351
setting TargetType property of Style object,

355
Style class, table of properties, 352
Style objects as wrapping collection of

Setter objects, 354
support for triggers and templates, 349
using BasedOn property to create chain of

inherited styles, 358

using resources to hold styles, 349
using Setter.TargetName property, 354
using styles and resources together, 353
using to set any dependency property, 349
wiring up events to event handlers, 356

StyleSelector class, 571
Style.Triggers collection, 360
stylus events, 163
SuppressExceptions property, 533
SweepDirection property, 419
SynchronizationContext class, 937
Synthesis Markup Language (SSML), 806
system DPI setting, 6–9
System.Add.dll assembly, 951
System.AddIn.Contract namespace, 947, 961
System.AddIn.Contract.dll assembly, 951
System.AddIn.dll assembly, 948
System.AddIn.Hosting namespace, 954
System.AddIn.Hosting.AddInStore class, 951
System.AddIn.Hosting.AddInToken class, 951
System.AddIn.Pipeline namespace, 947, 961
System.AddIns.Pipeline.ContractHandle

object, 951
SystemBrushes class, 390
System.Collections.Generic namespace, 868
SystemColors class, 180
System.ComponentModel namespace, 879,

933
System.ComponentModel.Component class,

910
System.ComponentModel.MaskedText-

Provider, 880
System.ComponentModel.PropertyGroup-

Description, 581
System.ComponentModel.SortDescription,

580
System.Data namespace, 578
System.Drawing namespace, 341
System.Drawing.dll, 906, 910
System.Drawing.Graphics class, 237
SystemDropShadowChrome class, 408, 454
System.Environment class, 235
System.Globalization.NumberStyles value,

529
System.IO.Compression namespace, 283
System.IO.DriveInfo class, 628
System.IO.FileSystemWatcher, 630
System.IO.IsolatedStorage namespace, 282
System.IO.Packaging namespace, 694
System.Linq.Enumerable class, 525
System.Media namespace, 783
SystemParameters class, 219
System.Printing namespace, 697, 721, 724
System.Printing.PrintQueue object, 720
System.Security.Principal.WindowsIdentity

class, 688
SystemSounds class, 786, 787

■INDEX 1027

9551CH28 2/8/08 2:17 PM Page 1027

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

System.Speech.dll assembly, 804
System.Speech.Recognition namespace, 807
System.Speech.Recognition.SrgsGrammar

namespace, 807
System.Speech.Synthesis namespace, 804
System.Threading.DispatcherObject, 18
System.Threading.Thread, 928–931
System.TimeSpan, 740
System.Windows namespace, 341
System.Windows.Annotations namespace,

684–685
System.Windows.Application class, 909
System.Windows.Clipboard class, 177
System.Windows.Controls namespace, 540,

695, 697, 810
System.Windows.Controls.ContentControl,

19
System.Windows.Controls.Control, 19, 117
System.Windows.Controls.Decorator, 133
System.Windows.Controls.ItemsControl, 19
System.Windows.Controls.Page class, 246
System.Windows.Controls.Panel, 19, 573
System.Windows.Controls.Primitives

namespace, 193, 200, 454–455, 640
System.Windows.Controls.Primitives.Range-

Base class, 875
System.Windows.Controls.Primitives.TextBox

Base class, 881
System.Windows.Data.CollectionViewSource

class, 575
System.Windows.Data.DataSourceProvider

class, 591
System.Windows.DependencyObject, 18
System.Windows.Documents namespace,

647
System.Windows.Documents.TextRange

class, 674
System.Windows.Forms.Application class,

57, 909
System.Windows.Forms.Control class, 916
System.Windows.Forms.dll, 906, 910
System.Windows.Forms.Integration

namespace, 916
System.Windows.FrameworkElement, 18
System.Windows.Freezable class, 182
System.Windows.Input.Cursor, 189
System.Windows.Input.ICommand interface,

291
System.Windows.Input.RoutedCommand

class, 292
System.Windows.Interop.HwndHost class,

925
System.Windows.LogicalTreeHelper, 448
System.Windows.Markup, 672
System.Windows.Markup.MarkupExtension,

35
System.Windows.Media namespace, 787

System.Windows.Media.Animation
namespace, 732–733, 735, 760

System.Windows.Media.Brush, 390
System.Windows.Media.Color, 860
System.Windows.Media.DrawingContext,

856
System.Windows.Media.Effects namespace,

403
System.Windows.Media.Fonts class, 187
System.Windows.Media.Media3D

namespace, 811
System.Windows.Media.Pen class, 426
System.Windows.Media.Transform class, 385
System.Windows.Media.Visual, 18, 697
System.Windows.Media.VisualTreeHelper,

448
System.Windows.MessageBox class, 226
System.Windows.Presentation.dll assembly,

961
System.Windows.Rect, 220
System.Windows.Shapes namespace, 122
System.Windows.Shapes.Shape, 19
System.Windows.Shapes.Shape class, 368
System.Windows.Threading namespace, 928
System.Windows.Threading.DispatcherTimer,

730
System.Windows.TriggerAction, 748
System.Windows.TriggerBase, 360
System.Windows.UIElement, 18

■T
TabControl, 128
TabIndex property, 170
TabItem control, 119, 128
Table element

CellSpacing property, 654
creating table, procedure and markup for,

653–654
sizing table columns explicitly or

proportionately, 655
supplying TableColumn objects for

Table.Rows property, 654
TableCell element, 653
TableRow element, 653
TableRowGroup element, 653

TableCell element, 654
TableLayoutPanel, 75, 919
TableRow element, 653
TableRowGroup element, 653
TabletPC, 79
TabPanel, 79
TabStripPlacement property, 128
Tag property, 484, 627
Target property, 190
TargetInvocationException, 543
TargetItems property, 267
TargetName property, 452, 462, 746–748

■INDEX1028

9551CH28 2/8/08 2:17 PM Page 1028

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

TargetProperty property, 746–748
TargetType attribute, 872
TargetType property, 355, 448, 616
TargetZone tag, 274
TaskDialog class, 241
TaskDialogResult object, 242
template selectors, 559
TemplateBinding, 872–873
TemplatedParent property, 486
TemplatePart attributes, 480
templates, 5

attaching triggers with template, 750
building complex, multipart templates,

474
characteristics of complex templates, 474
combining template types in same

control, 453
control template dependencies, 475
control templates, 453
data templates, 453
FrameworkTemplate class, 453
hiding or showing elements in response to

trigger, 463
panel templates, 453
retrieving control’s template and

serializing it to XAML, 455
reusing, 554
setting sequential order for conflicting

trigger settings, 464
similarity between templates and styles,

464
template bindings, 460
types of, 453

text controls, 202
text handling, 5
Text property, 40, 202, 293
TextAlignment property, 667
TextBlock, 120, 668, 669
TextBox class, 31, 36, 40, 186, 203
TextBox control

AcceptsReturn property, 203
AcceptsTab property, 203
AutoWordSelection, 204
BeginChange(), 205
CanUndo property, 205
creating multiline text box, 202
EndChange(), 205
IsReadOnly property, 203
Language property, 204
LineCount property, 203
pressing Enter key in, 203
SelectedText property, 204
selecting text, 203
SelectionChanged event, 204
SelectionLength property, 204
SelectionStart property, 204

setting HorizontalScrollBarVisibility
property, 203

setting VerticalScrollBarVisibility property,
203

SpellCheck.IsEnabled property, 204
spelling-checker feature, 204
SpellingReform property, 205
Text property, 202
TextBox class, 203
TextChanged event, 166
TextWrapping property, 203
Undo feature, 205
using MinLines and MaxLines properties,

203
TextChanged event, 166
TextCompositionEventArgs object, 168
TextDecorations class, 185, 648
TextDecorations property, 185
TextIndent property, 651
TextInput event, 166–168
TextMarkerStyle enumeration, 651
TextPointer objects, 676
TextRange class, 675, 676
TextSearch.TextPath property, 602
TextSelection class, 678, 679
TextTrimming property, 668
texture mapping, 834
TextureCoordinates collection

creating multifaceted cube, 836
markup for creating VisualBrush that

loops video playback, 837
markup for mapping one face of cube, 835
using ImageBrush to paint bitmap, 834
using relative coordinates in, 836

TextureCoordinates property, 813–815
TextWrapping property, 203, 668
Thickness structure, 83
ThicknessAnimation class, 731, 763
this keyword, 486
thread affinity, 928
Thread object, 959
thread rental, 927
Thumb element, 454
TickBar element, 454, 897
TickFrequency property, 498
Ticks collection, 212
TileBrush, 183
TileMode property, 399, 429
TileView class

adding set of properties to, 620
BasedOn property, 616
changes to, after selecting TileView style,

616
ComponentResourceKey, 615–616
ItemTemplate property, 615
markup for TileView style, 617

■INDEX 1029

9551CH28 2/8/08 2:17 PM Page 1029

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

TileView class (continued)
retrieving default styles using

generic.xaml, 616
TargetType property, 616
TileView style, 615
TileViewItem style, 615

Time data types, 529
Timeline class

AccelerationRatio property, 744
BeginTime property, 753
DecelerationRatio property, 744, 762
DesiredFrameRate attached property, 761
RepeatBehavior property, 745
SpeedRatio property, 753
table of properties, 742

TimelineGroup class, 742
timer-based animation, 730
Timestamp property, 166
Title property, 484
To property, 736, 738
ToggleButton class, 193
ToList() method, 525
ToolBar class

adding items automatically to overflow
menu, 638

changing behavior of ToggleButton, 636
components of, 636
configuring OverflowMode property, 638
holding image content in buttons, 637
lack of dedicated wrapper class, 637
overriding default style of some types of

children, 636
setting Orientation property, 638
toolbar, function of, 636

ToolbarOverflowPanel, 79
ToolbarPanel, 79
ToolBarTray class, 639
ToolTip, 117–119
ToolTip class, 195
ToolTip property, 195
Tooltips control

configuring ToolTip-related settings, 196
CustomPopupPlacementCallback

property, 198
inability of ToolTip window to accept

focus, 196
options for placing ToolTip, 197
Placement property, 197
PlacementTarget property, 198
ToolTip class, 195
ToolTip properties, table of, 196
ToolTipService class, 198

ToolTipService class, 199
Top property, 104, 220
top-level elements in XAML, 25
ToString() method, 119, 121, 168, 207, 211,

518

total-fit algorithm, 667
ToXml() method, 806
Track class, 478, 480
TrackballDecorator class, 844
Transform class, 385
Transform object, 701–702
Transform property, 433
Transform3DGroup class, 839
transforms

animating element’s visual appearance,
764

approaches for creating dynamic 3-D
effects, 839

assigning RenderTransform property to
transform object, 386

comparing RenderTransform and
LayoutTransform, 389, 766

creating databound Slider for rotating 3-D
objects, 840

creating document window that jumps
into view, 767

defined, 385
deriving from Freezable, 386
Expression Blend design tool, 769
Frame element, 389
LayoutTransform property, 388, 764
manipulating 3-D objects using, 838
Model3D class, 839
Model3DGroup class, 839
ModelVisual3D class, 839
multiple, animating, 767
naming transform objects using x:Name

attribute, 839
nesting inside TransformGroup, 767
RenderTransform property, 764
RenderTransformOrigin property, 387
RotateTransform, 763–764, 767
RotateTransform class, 386
RotateTransform3D, 840, 852
rotating button on mouseover, 764
ScaleTransform, 763, 767
ScaleTransform3D, 838
setting RenderTransform property of

Border object, 767
setting RenderTransformOrigin property,

765
setting shape’s center point, 387
Transform3DGroup class, 839
transforming any element, 388
TranslateTransform, 763
TranslateTransform3D class, 839
use of matrix math to alter shape

coordinates, 385
WindowsFormsHost, 389

TranslateTransform, 763
TranslateTransform3D class, 839
transparency, 2, 182–184

■INDEX1030

9551CH28 2/8/08 2:17 PM Page 1030

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

TreeView class, 78, 600
TreeView control

adding non-TreeViewItem elements to
TreeView, 622

adding placeholder under each drive
node, 628

applying data templates by data type
instead of by position, 625

constructing TreeViewItem objects
programmatically, 622

displaying CategoryName property of
each Category object, 624

displaying folders on hard drive using
just-in-time TreeView, 627

displaying non-UIElement object, 622
filling TreeView with data, 622
handling TreeViewItem.Expanded event,

629
HierarchicalDataTemplate, 624
implementing Category class and

INotifyPropertyChanged, 623
incorporating hierarchical data with

nested structure, 622
ItemsSource property, 624
ItemTemplate property, 624
just-in-time node creation, 627
markup for basic TreeView, 622
setting ItemsSource property, 622
as specialized ItemsControl that hosts

TreeViewItem objects, 621
specifying right data templates for

different levels of data, 622
System.IO.DriveInfo class, 628
System.IO.FileSystemWatcher, 630
TreeViewItem objects, 622
using name of DataRelation as

ItemsSource, 626
using TreeView to show multilayered

DataSet, 626
TreeViewItem, 627, 629
TriangleIndices property, 813–814, 824
Trigger.EnterActions, 749
Trigger.ExitActions, 749
triggers

applying event triggers using
FrameworkElement.Triggers
collection, 360

attaching simple trigger to dependency
property, 361

automating simple style changes, 360
Conditions collection, 363
considering trigger order when modifying

elements, 362
creating multiple triggers that apply to

same element, 362
event triggers, 363

linking to styles through Style.Triggers
collection, 360

performing animation when dependency
property hits specific value, 364

returning to pre-trigger appearance of
element, 361

setting sequential order for conflicting
trigger settings, 464

setting Trigger.EnterActions and
Trigger.ExitActions properties, 365

System.Windows.TriggerBase, classes
deriving from, 360

TargetName property and, 452
using MultiTrigger, 363
waiting for button to get keyboard focus,

361
Triggers collection, 748
Trusted Publishers store, 280
TryFindResource() method, 340
TryParse() method, 529
tunneling events, 154, 161
type converters, 32
TypeArguments attribute, 270
TypeConverter attribute, 32
TypeExtension, 35
TypeNameAnimationBase class, 733
Typography object, 648
Typography property, 185

■U
UAC (User Account Control), 73, 969, 976
Uid attribute, 326
UIElement class, 16–18, 151, 431

AddHandler(), 313
Arrange(), 702
IsMouseDirectlyOver property, 173
IsMouseOver property, 173
Label, 120
Measure(), 702
OnRender(), 896
Opacity property, 182
TextBlock, 120
Visibility property, enumeration values,

113
UIElement3D class, 847
UIElement.AddHandler() method, 152
UNC path, 971
Undo feature, 205, 310
UndoCommand_CanExecute() method, 868
UndoCommand_Executed() method, 868
UniformGrid, 78, 104
UnionIterator class, 525
UnmanagedMemoryStream object, 320
Unselected event, 210
Update() method, 951
UpdateProduct() method, 513
UpdateSourceTrigger property, 498, 502, 542

■INDEX 1031

9551CH28 2/8/08 2:17 PM Page 1031

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

URIs, 321–322
Use Windows XP Style DPI Scaling, 9–10
User Account Control (UAC), 73, 969, 976
user controls

adding command bindings, 866
adding command support to controls, 866
adding user control to custom control

library project, 859
Color property, 860
ContentControl template, 870
control consumer, 859
control template, 869
creating basic color picker, 858
creating lookless control, 870
creating new RoutedUICommand object

for command, 866
creating undo stack that stores series of

values, 868
defining and adding routed events, 862
designing public interface, 859
goal of, 870
InitializeComponent(), 869
naming, 865
property coercion callbacks, role of, 862
UserControl class, 859, 869
using binding expressions to repurpose

core property, 865
writeable control properties as usually

dependency properties, 860
user interface

accommodating large monitors and high-
resolution displays, 23

bitmap-based interfaces as resolution-
dependent, 23

building localizable interfaces, 324
creating modular interfaces, 112
creating resolution-independent, size-

independent interfaces in WPF, 76
handling localized text, 111
integrating video content into, 5
localizing FontFamily property, 324
migrating from Windows Forms to WPF,

904
separating completely from code, 5
vector graphics and, 10
window as only holding single element, 76

User32, 1, 16, 20
lack of support for graphical scaling, 6
windowing model, 368
WPF and, 2

UserControl class, 119, 859
Binding.RelativeSource property, 865
Border element, 869
changing source of routed events, 869
ContentPresenter, 869–870
description of, 857

differentiating user controls and custom
controls, 869

Focusable property, 869
HorizontalAlignment property, 869
InitializeComponent(), 869
IsTabStop property, 869
Name property, 865
Padding property, 865
VerticalAlignment property, 869

UserPageRangeEnabled property, 720

■V
ValidateValueCallback, 141–143, 146
ValidatingType property, 917
validation

adding it to Binding.ValidationRules
collection, 541

AdornedElementPlaceholder, 545–547
applying property validation carelessly,

537
applying when using TwoWay or

OneWayToSource binding, 536
bubbling, 543
building validation directly into controls,

536
checking InnerException property of

TargetInvocationException, 543
code example for disallowing negative

numbers, 536
contents of ValidationError object, 543
creating error templates, 545
DataErrorValidationRule, 539–540
defining at binding level, 536
displaying error content in ToolTip, 546
ErrorContent property, 541–543
ExceptionValidationRule, 537–542
FormHasErrors(), 545
getting list of all outstanding errors, 544
handling Error event, 543
HasError property, 538
how WPF handles validation failures, 538
IsValid property, 541
NotifyOnValidationError property, 538
options for catching invalid values, 536
raising errors in data object, 536
reacting to validation errors, 543
setting NotifyOnValidationError property,

543
TargetInvocationException, 543
using same validation rule for more than

one binding, 542
Validation class, 538
validation rule for restricting decimal

values, 540
ValidationError object, 538
Validation.ErrorTemplate property, 538
ValidationResult object, 541

■INDEX1032

9551CH28 2/8/08 2:17 PM Page 1032

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

ValidationRules collection, 537
ValidationRule.Validate(), 538
visual indication of errors in bound

controls, 538
writing custom validation rules, 540

validation callback, 139, 140
Validation class, 538
ValidationError object, 538, 543
Validation.ErrorTemplate property, 538
ValidationResult object, 541
ValidationRules collection, 537
ValidationRule.Validate(), 538
validator controls, 877
value converters, 559

applying conditional formatting, 533
BitmapImage class, 532
converting from display format back to

number, 529
converting raw binary data into WPF

BitmapImage object, 531
creating, 528
creating converter object in Resources

collection, 530
creating objects with, 531
data triggers, 534
Decimal.ToString(), 528
evaluating multiple properties, 535
format strings, 528
formatting strings, 527
ImagePathConverter, code example, 531
IMultiValueConveter interface, 535
mapping project namespace to XML

namespace prefix, 530
MultiBinding, 535
Parse(), 529
PriceConverter class, 530
reusing your formatting logic with other

templates, 560
SuppressExceptions property, 533
System.Globalization.NumberStyles value,

529
TryParse(), 529
uses for, 527
using custom IValueConverter, 533

Value property, 211, 875
ValueChanged event, 211
vbc.exe csc.exe compiler, 53
.vbproj .csproj file, 274
vector graphics, 10
Vector3DAnimationUsingKeyFrames, 773
VerifyAccess() method, 929
vertex shaders, defined, 4
VerticalAlignment property, 82, 869
VerticalContentAlignment property, 121
VerticalScrollBarVisibility property, 125, 203
video cards, 3–4
video, mapping to 3-D surface, 837

VideoDrawing class, 803
View property, 586, 607
ViewBase class, 607
Viewbox class

determining shape’s ordinary, non-
Viewbox size, 376

resizing shapes proportionally in canvas,
374

Stretch property, 375
Viewport, 397, 845–847
Viewport2DVisual3D class, 850–851
Viewport3D class

Camera property, 810, 819
Children property, 810
ClipToBounds inherited property, 811
hosting any 3-D object that derives from

Visual3D, 811
light source as object in viewport, 810
using as content of window or page, 810

Viewport3DVisual class, 431
ViewportSize property, 480
ViewportUnits property, 397
views, 941

add-in, 947
host, 950

ViewToContractAdapter() method, 961
virtual key state, 171
VirtualizingStackPanel, 79, 604
Visibility property, 113, 170, 218, 913
visual add-ins, 960–962
Visual Basic C#, 22
Visual class, 16–18

AddLogicalChild(), 434
AddVisualChild(), 434
ContainerVisual class, 431
defining graphical element as Visual

object, 431
DrawingVisual class, 427, 431
overriding GetVisualChild(), 434
overriding VisualChildrenCount property,

434
UIElement class, 431
Viewport3DVisual class, 431

visual layer model, 431
Visual Studio, 5, 21, 318

adding resource dictionary, 465
Application class and, 58
App.xaml, 59
automatically creating partial class for

event handling code, 28
Automatically Increment Revision with

Each Publish setting, 278
choosing Custom Control Library (WPF)

project type, 856
choosing Run As Administrator option,

969
creating PageFunction in, 270

■INDEX 1033

9551CH28 2/8/08 2:17 PM Page 1033

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Visual Studio (continued)
creating XAML with, 21–22
debugging XBAP projects in, 275
format strings, 528
Main(), creating, 58
procedure for installing ClickOnce

application, 975–976
publishing application to virtual directory

in, 969
publishing ClickOnce application to web

server, 967
setting Build Action to Resource, 187
Setup Project template, 965
Solution Explorer, 58, 906, 910, 920
two-stage compilation process for WPF

applications, 51
updating ClickOnce application

automatically, 977
using Grid in, 94
using StackPanel in, 80
using XAML Browser Application

template, 274
Windows Forms designer, 906
wrapper class as component-specific, 914

visual tree
defined, 446
examining programmatically, 449
expanding upon logical tree, 446
Snoop utility, 451
using with styles and templates, 448
VisualTreeDisplay window, code example,

450
VisualTreeHelper class, list of methods, 448

Visual3D class, 735
VisualBrush

animating special effects, 401
animation possibilities of, 770
creating reflection effect using

OpacityMask property, 402
filling surface with element’s visual

content, 399
markup for copying button’s appearance,

400
markup for creating VisualBrush that

loops video playback, 837
markup for painting text box with

mirrored text, 402
VisualChildrenCount property, 434–435
visual-layer classes, 711
VisualTreeHelper class

drilling down through visual tree of
window, 449

GetChild(), 449
HitTest(), 437, 439, 845
list of methods, 448

VisualTreeHelper.HitTest() method, 848
Volume property, 796

■W
WAV audio, 783
WCF (Windows Communication

Foundation), 11, 69
WDDM (Windows Vista Display Driver

Model), 3
WebBrowser control, 13, 246, 252
WebException, 251
weight, 95
WF (Windows Workflow Foundation), 11, 24
WF XAML, 24
WhereIterator class, 525
whitespace, handling, 40–41
Width property, 84
Win32, hosting in WPF, 925
Win32PrintDialog, 700
Window class, 118–119, 248

adding sizing grip to shaped window, 233
AdornerDecorator class, 483
allowing single nested element, 121
AllowsTransparency property, 227
Background property, 215
BorderBrush property, 215
BorderThickness property, 215
calling SaveSize() when window is closing,

222
calling SetSize() when window is first

opened, 222
centering window in available screen area,

219
checking result of dialog box window, 225
client and nonclient areas defined, 215
Close(), 218
closing window, 218
comparison to Page class, 248
creating and displaying several modeless

windows, 218
creating public property in dialog window,

225
creating resizable window, 219
deciding window location at runtime, 219
designating accept and cancel buttons in

dialog window, 225
dialog model, defined, 225
DialogResult property, 225
displaying modal window, 218
displaying modeless window, 218
DragMove(), 232
Hide(), 218
hiding window from view, 218
icon (.ico) files, 216
Left property, 220
Loaded event, 238
LocationChanged event, 218
modeless windows and synchronization

code, 218

■INDEX1034

9551CH28 2/8/08 2:17 PM Page 1034

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

MouseLeftButtonDown event, 232
obtaining dimensions of current screen,

219
owned windows as displayed modelessly,

224
OwnedWindows property, 224
positioning window on screen, 219
removing owned windows, 224
removing window frame, 215
ResizeMode property, 233, 484
RestoreBounds property, 221
saving and restoring window location, 220
setting exact window position, 219
setting Owner property, 224
setting Visibility property to Hidden, 218
Show(), 218
ShowDialog(), 218, 225
storing current position of several

windows, 221
storing window position in user-specific

configuration file, 220
SystemParameters class, 219
System.Windows.Rect, 220
table of properties, 215
Tag property, 484
Title property, 484
Top property, 220
using CenterOwner for WindowState, 219
using Left and Right properties, 219
window ownership, 224
Windows property, 222
WindowStartupPosition property, 216
WindowStateChanged event, 218
WindowStyle property, 215, 227

Window element, 25
window handles, 914
Window.Loaded event, 67
Window.Owner property, 67
Window.Resources collection, 934
windows

enabling automatic sizing, 86
hard-coding of sizes, 86
SizeToContent property, 86

Windows 3.0, 1
Windows Communication Foundation

(WCF), 11, 69
Windows Forms, 75

accelerator keys, 922
adding ActiveX content to Windows Forms

application, 914
advantages of DataGridView over

GridView, 608
airspace rule, 914
ambient properties, 186
Application Updater Component, 968
assessing interoperability with WPF, 903
BackgroundWorker class, 909

BindingList collection, 521
CheckedListBox, 906
CheckedListBox control, 604
classes not needing interoperability, 909
ColorDialog class, 909
comparing dialog model to that in WPF,

226
comparison to WPF, 13
ContextMenuStrip class, 910–911
coordinate system for sizing controls, 918
creating user controls, 918
data binding, 917
DataGridView, 906
DataGridView control, 13, 621
DateTimePicker, 906
DialogResult enumeration, 907
ElementHost class, 908, 914, 924
EnableModelessKeyboardInterop(), 908
EnableVisualStyles(), 909, 918
EnableWindowsFormsInterop(), 908
ErrorProvider, 906
extender providers, 37
FlowLayoutPanel, 892
FolderBrowserDialog class, 909
FontDialog class, 909
Form class, 215
Form.ShowDialog(), 907
glue code, 906
having WPF controls receive keyboard

input, 908
HelpProvider, 906
HelpProvider component, 13
hooking events up to control using XAML,

917
hosting Windows Forms controls in WPF,

916
hosting WPF controls in, 919
Icon property, 910
ImageList, 906
incorporating lower-level GDI+ drawing

support in animation, 730
interoperability problems with keyboard

handling, 921
ISupportInitialize interface, 145
MaskedTextBox, 906
MaskedTextBox control, 879–880
MaskedTextProvider class, 879
MDI windows, 906
migrating applications to WPF, 903
missing WPF controls and features, table

of, 904
mixing windows and forms, 906–909
mnemonics, 923
no need for wrapper class, 914
NotifyIcon class, 909
overlapping of WPF and Windows Forms

content, 914

■INDEX 1035

9551CH28 2/8/08 2:17 PM Page 1035

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

Windows Forms (continued)
PageSetupDialog class, 909
preventing naming clashes among

Windows Forms and WPF
namespaces, 918

primary interop assembly, 919
PrintPreviewDialog class, 909
property map conversions, table of, 924
property mapping, 923
property translators, 923
PropertyGrid, 906
quartz.dll library, 783
runtime callable wrappers (RCWs), 919
SoundPlayer class, 909
System.ComponentModel.MaskedText-

Provider, 880
System.Drawing namespace, 341
System.Drawing.dll, 906, 910
System.Drawing.Graphics class, 237
System.Windows.Forms.dll, 906, 910
TypeConverter infrastructure, 916
User32 library, 895
using ampersand character to identify

shortcut key, 190
using separate window handle (hwnd),

914
Visual Basic C# and, 22
visual styles for controls and, 909
visual styles for Windows Forms controls,

909
WebBrowser, 906
WebBrowser control, 13
Windows Forms toolkit, 906
WindowsFormsHost class, 914, 916, 918,

924
z-index, 915

Windows Forms toolkit, 208
Windows graphics, 1
Windows Media Player, 5, 783, 784
Windows print queue, 699
Windows property, 222
Windows SDK .NET Framework 3.0 Samples,

241
Windows Vista

Adjust Font Size (DPI), 9
adjusting system DPI setting, 9
bitmap scaling, 10
built-in support for speech recognition,

806
creating and viewing XPS documents, 682
Custom DPI Setting dialog box, 10
Desktop Window Manager (DWM), 16
Disable Display Scaling on High DPI

Settings, 10
Internet Information Services (IIS) 7, 969
milcore.dll, 16
Narrator screen reader, 804

new task dialog box, functions of, 241
no WPF support for Vista-style dialog

boxes, 241
printing XPS content, 725
publishing applications to local web

server, 969
Sound icon, 787
taking advantage of Vista-specific APIs,

242
Use Windows XP Style DPI Scaling, 9–10
User Account Control (UAC), 73, 969, 976
using Aero Glass effect, 236

Windows Vista Display Driver Model
(WDDM), 3

Windows Workflow Foundation (WF), 11, 24
Windows XP

lack of support for speech recognition, 806
MediaPlayer and 64-bit version of, 787
Narrator screen reader, 804
no antialiasing on edges of 3-D shapes,

824
Sounds and Audio Devices icon, 787

Windows XP Display Driver Model (XPDM), 3
WindowsBase.dll, 16
WindowsCodecs.dll, 16
WindowsFormsApplicationBase class, 69
WindowsFormsHost, 389
WindowsFormsHost class, 914, 916, 918, 924
Window.ShowDialog() method, 907
WindowStartupPosition property, 216
WindowStateChanged event, 218
WindowStyle property, 215, 227
WindowTitle property, 249–250
Word 2007 XML (WordML), 649
Word, Microsoft, 68, 677
WordML (Word 2007 XML), 649
WorkArea property, 219
WorkerReportsProgress property, 937–938
WorkerSupportsCancellation property, 938
WPF browser-hosted applications (XBAPs),

11
WPF Everywhere (WPF/E), 14
WPF XAML, 24
WpfApp class, 70
WPF/E (WPF Everywhere), 14
WrapBreakPanel, 892, 894
WrapPanel, 96

basing WrapBreakPanel on, 893
code example for series of buttons, 87
controlling small-scale details in user

interface, 87
default settings, 86
description of, 78
Dock property, 88
extending capabilities of, 892
LastChildFill, 88
setting order of docking controls, 89

■INDEX1036

9551CH28 2/8/08 2:17 PM Page 1036

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

wrapper classes, 46, 914
Write() method, 725–727
WriteAsync() method, 725–727
WritingCompleted event, 727–728

■X
XAML, 47–49

<Button> element, 25
Adobe Illustrator plug-in for, 430
advantages of, 20
Application element, 25
Application tag, 59
Application.g.vb App.g.cs file, 59
Application.xaml.vb App.xaml.cs file, 61
AssemblyName, 45
attached properties, translating into

method calls, 36
attached properties, two-part naming

syntax, 36
attached properties, using to control

layout, 36
attaching name to Grid element, 29
automatically creating partial class for

event handling code, 28
BAML, 24
basics of, 25
bridging gap between string values and

nonstring properties, 32
building simple no-code XAML files, 53
C# and, 20
case-insensitivity of type converters, 32
case-sensitivity of, 32
Class attribute, 27, 59
classes that define their own Name

property, 29
code-behind class, 27
coding styles for creating WPF application,

46
collapsing whitespace, tabs, and line

breaks in XAML, 657
compiling, 24
complex properties, 32
Connect(), 52
connecting event handlers, 27
container controls, 39
containment, 25
Content property, 40
ContentControl class, 40
ContentProperty attribute, 37–39
controls containing collection of visual

items, 39
controls containing singular content, 39
converter for Adobe Flash files, 430
core WPF namespace, 27
core XAML namespace, 27
creating blank window with, 25
creating custom wrapper classes, 46

creating with Visual Studio, 21–22
declarative animation, 746
default constructor, 28
defined, 24
dependency properties, 36
DependencyObject class, 36, 50
design tools and, 23
designing WPF application in Visual

Studio, 23
distinguishing properties from other types

of nested content, 33
DockPanel object, 51
eight ball example, full window definition,

43
eight ball window and its controls, 30
element attributes as setting element

properties, 31
embedding BAML as resource into DLL or

EXE assembly, 24
entity references, 40
enumerations, 32
event model in WPF, 42
event routing, 42
example of bare-bones XAML document,

25
Expression Design’s built-in XAML export,

430
extension classes, 35
FileStream class, 46
FrameworkElement class, 29
graphical user interfaces before WPF, 22
Grid element, 25
IDictionary, 37
IList, 37
including Name attribute in control, 29
InitializeComponent(), 47
InitializeComponent() method, 28
instantiating .NET objects, 21
integrating workflow between developers

and designers, 21
ItemsControl class, 40
lack of public fields or call methods in, 45
lack of support for inline calculations, 748
LoadComponent(), 28
loading and compiling, 46
loading XAML dynamically vs. compiling

XAML to BAML, 51
LogicalTreeHelper, 51
loose XAML files, 53
mapping element to instance of .NET

class, 25
mapping .NET namespace to XML

namespace, 44
merging code with designer-generated

file, 28
Microsoft Expression Blend, 21
namespace prefixes, 45

■INDEX 1037

9551CH28 2/8/08 2:17 PM Page 1037

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

XAML (continued)
namespaces, defining, 26
nesting elements, 25, 37
.NET objects and, 24
no one-to-one mapping between XML

and .NET namespaces, 27
no support for parameterized

constructors, 45
no-argument constructors, 45
NullExtension, 35
Page element, 25
Panel class, 39–40
parser, 26
parser error due to no associated type

converter, 32
parser’s procedure for finding type

converter, 32
parsing and validation of at compile time,

32
partial classes, contents of, 51
problems in exporting content to bitmap

format, 22
properties supporting more than one type

of collection, 38
property-element syntax, 33
ProvideValue(), 35
replacing attribute with nested element,

354
replacing XAML tags with set of code

statements, 34
RuntimeNameProperty attribute, 29
separating graphical content from code,

22
setting background and foreground colors

in, 181
setting class properties through attributes,

25
setting complex property, 33
setting mouse cursor in, 189
setting property value dynamically, 35
setting type converter at class level, 32
setting x:Key attribute, 37
Silverlight XAML, 24
similarity of attached properties to

extender providers, 37
simple properties and type converters, 31
special characters, 40
start tag attributes, 26
StartupUri property, 59
StaticExtension, 35
subsets of, 24
System.Windows.Markup.Markup-

Extension, 35
Text property, 40
TextBox class, 31, 36, 40
top-level elements, 25
type converters, 32

TypeConverter attribute, 32
TypeExtension, 35
using code-behind class to manipulate

controls programmatically, 29
using device-independent units in

measurements, 26
using dictionary collection, 37
using markup extension, 35
using markup extensions as nested

properties, 35
using to construct WPF user interfaces, 21
using TypeConverter attribute on property

declaration, 32
using types from other namespaces, 44
using underscore to identify shortcut key,

190
using without compiling, 24
using xml:space="preserve" attribute on

element, 41
Visual Studio, 21
WF XAML, 24
whitespace, handling, 40–41
Window element, 25
Windows Workflow Foundation (WF), 24
WPF XAML, 24
xamlc.exe compiler, 51
XamlReader class, 47–49
XML character entities, table of, 40
XML Paper Specification (XPS), 24
xmlns attribute, 26
XPS XAML, 24

XAML browser application (XBAP)
advantages of, 273
ApplicationExtension tag, 274
ApplicationName.exe, 276
ApplicationName.exe.manifest, 276
ApplicationName.xbap, 276
automatically generated certificate file,

277
CodeAccessPermission class, 281
coding for different security levels, 281
combining XBAP and stand-alone

applications, 280
creating, 256, 274
creating XBAP that runs with full trust, 280
debugging, 277
defined, 273
Demand(), 281
deploying, 276
designing and coding pages, 275
displaying more than one XBAP in same

browser window, 286
as downloaded but not installed, 273
embedding XBAP in web page, 286
four key elements in .csproj project file,

274
GetUserStoreForApplication(), 282

■INDEX1038

9551CH28 2/8/08 2:17 PM Page 1038

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

HostInBrowser tag, 274
Install tag, 274
Internet Explorer 6 or 7, 274
IsBrowserHosted property, 280
IsolatedStorageFile.GetDirectoryNames(),

283
IsolatedStorageFile.GetFileNames(), 283
IsolatedStorageFileStream, 282
key supported and disallowed features,

table of, 278
limited permissions and stringent security

of, 273
manually clearing ClickOnce cache, 277
.NET 3.0, 273
.NET Framework and code access security,

278
not having FileIOPermission for local hard

drive, 283
opening secondary window using Popup

control, 283
performing disallowed action, 279
rebuilding application and applying new

publication version, 278
requirements, 273
running inside browser window, 273
running with permissions of Internet

zone, 278
security, 278
setting IsEnabled property to disable user

interface, 284
TargetZone tag, 274
updating publish version, 277
using <iframe> tag, 286
using isolated storage to provide virtual

file system, 282
using .xbap extension, 274

XAML URIs, 257
xamlc.exe compiler, 51
XamlParseException, 165, 343
XamlReader class, 47–49, 457, 672, 674
XamlWriter class, 455, 457, 673
XBAP (XAML browser application)

advantages of, 273
ApplicationExtension tag, 274
ApplicationName.exe, 276
ApplicationName.exe.manifest, 276
ApplicationName.xbap, 276
automatically generated certificate file,

277
CodeAccessPermission class, 281
coding for different security levels, 281
combining XBAP and stand-alone

applications, 280
creating, 256, 274
creating XBAP that runs with full trust, 280
debugging, 277
defined, 273

Demand(), 281
deploying, 276
designing and coding pages, 275
displaying more than one XBAP in same

browser window, 286
as downloaded but not installed, 273
embedding XBAP in web page, 286
four key elements in .csproj project file,

274
GetUserStoreForApplication(), 282
HostInBrowser tag, 274
Install tag, 274
Internet Explorer 6 or 7, 274
IsBrowserHosted property, 280
IsolatedStorageFile.GetDirectoryNames(),

283
IsolatedStorageFile.GetFileNames(), 283
IsolatedStorageFileStream, 282
key supported and disallowed features,

table of, 278
limited permissions and stringent security

of, 273
manually clearing ClickOnce cache, 277
.NET 3.0, 273
.NET Framework and code access security,

278
not having FileIOPermission for local hard

drive, 283
opening secondary window using Popup

control, 283
performing disallowed action, 279
rebuilding application and applying new

publication version, 278
requirements, 273
running inside browser window, 273
running with permissions of Internet

zone, 278
security, 278
setting IsEnabled property to disable user

interface, 284
TargetZone tag, 274
updating publish version, 277
using <iframe> tag, 286
using isolated storage to provide virtual

file system, 282
using .xbap extension, 274

.xbap extension, 274
XBAPs (WPF browser-hosted applications),

11
Xceed Software, 608
x:Key attribute, setting, 37
XML

character entities, table of, 40
declaring namespaces in, 26
namespaces as URIs, 27
xmlns attribute, 26

■INDEX 1039

9551CH28 2/8/08 2:17 PM Page 1039

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

XML Paper Specification (Microsoft XPS), 24,
322, 643, 681, 682

XmlDataProvider, 591, 594, 595, 596
xmlns attribute, 26
xml:space attribute, 658
xml:space="preserve" attribute, 41
XmlStreamStore class, 684
XPath expressions, 595
XPDM (Windows XP Display Driver Model), 3
XpsDocument class, 697, 707

AddFixedDocument(), 682
CreateXpsDocumentWriter (), 726
GetFixedDocumentSequence(), 682
GetTempFileName(), 726
loading, displaying, and printing XPS file,

724
RemoveSignature(), 682
role of DocumentPaginator in printing,

724
SignDigitally(), 682
using XPS document as print preview, 725

XpsDocumentWriter class
CancelAsync(), 728
printing directly to printer via XPS, 726
sending content to printer

asynchronously, 700
using asynchronous printing, 727
Write(), 725–727
WriteAsync(), 725–727
WritingCompleted event, 727–728

■Z
ZAM 3D, 829
z-fighting (stitching), 822
z-index, 915
ZIndex property, 106

■INDEX1040

9551CH28 2/8/08 2:17 PM Page 1040

For more ebooks: http://latestebook.com

For more ebooks: http://latestebook.com

	Pro WPF in C# 2008
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	About This Book
	Chapter Overview
	What You Need to Use This Book
	Code Samples and URLs
	Feedback

	Introducing WPF
	Understanding Windows Graphics
	DirectX: The New Graphics Engine
	Hardware Acceleration and WPF

	WPF: A Higher-Level API
	Resolution Independence
	WPF Units
	System DPI
	Bitmap and Vector Graphics

	The Evolution of WPF
	New Features in WPF 3.5
	Multitargeting

	Windows Forms Lives On
	DirectX Also Lives On
	Silverlight

	The Architecture of WPF
	The Class Hierarchy
	System.Threading.DispatcherObject
	System.Windows.DependencyObject
	System.Windows.Media.Visual
	System.Windows.UIElement
	System.Windows.FrameworkElement
	System.Windows.Shapes.Shape
	System.Windows.Controls.Control
	System.Windows.Controls.ContentControl
	System.Windows.Controls.ItemsControl
	System.Windows.Controls.Panel

	The Last Word

	XAML
	Understanding XAML
	Graphical User Interfaces Before WPF
	The Variants of XAML
	XAML Compilation

	XAML Basics
	XAML Namespaces
	The Code-Behind Class
	The InitializeComponent() Method
	Naming Elements

	Properties and Events in XAML
	Simple Properties and Type Converters
	Complex Properties
	Markup Extensions
	Attached Properties
	Nesting Elements
	Special Characters and Whitespace
	Events
	The Full Eight Ball Example

	Using Types from Other Namespaces
	Loading and Compiling XAML
	Code-Only
	Code and Uncompiled XAML
	Code and Compiled XAML
	XAML Only

	The Last Word

	The Application
	The Application Life Cycle
	Creating an Application Object
	Deriving a Custom Application Class
	Application Shutdown
	Application Events

	Application Tasks
	Handling Command-Line Arguments
	Accessing the Current Application
	Interacting Between Windows
	Single-Instance Applications

	The Last Word

	Layout
	Understanding Layout in WPF
	The WPF Layout Philosophy
	The Layout Process
	The Layout Containers

	Simple Layout with the StackPanel
	Layout Properties
	Alignment
	Margin
	Minimum, Maximum, and Explicit Sizes

	The WrapPanel and DockPanel
	The WrapPanel
	The DockPanel
	Nesting Layout Containers

	The Grid
	Fine-Tuning Rows and Columns
	Spanning Rows and Columns
	Split Windows
	Shared Size Groups
	The UniformGrid

	Coordinate-Based Layout with the Canvas
	Z-Order
	The InkCanvas

	Layout Examples
	A Column of Settings
	Dynamic Content
	A Modular User Interface

	The Last Word

	Content
	Understanding Content Controls
	The Content Property
	Aligning Content
	The WPF Content Philosophy

	Specialized Containers
	The ScrollViewer
	Programmatic Scrolling
	Custom Scrolling

	The GroupBox and TabItem: Headered Content Controls
	The Expander

	Decorators
	The Border
	The Viewbox

	The Last Word

	Dependency Properties and Routed Events
	Understanding Dependency Properties
	Defining and Registering a Dependency Property
	Property Validation
	The Property Wrapper
	Property Metadata
	Property Coercion
	Shared Dependency Properties
	Attached Dependency Properties

	How WPF Uses Dependency Properties

	Understanding Routed Events
	Defining and Registering a Routed Event
	Attaching an Event Handler
	Event Routing
	The RoutedEventArgs Class
	Bubbling Events
	Handling a Suppressed Event
	Attached Events
	Tunneling Events

	WPF Events
	Lifetime Events
	Input Events
	Keyboard Input
	Handling a Key Press
	Focus
	Getting Key State

	Mouse Input
	Mouse Clicks
	Capturing the Mouse
	Drag-and-Drop

	The Last Word

	Classic Controls
	The Control Class
	Background and Foreground Brushes
	Setting Colors in Code
	Setting Colors in XAML
	Transparency

	Fonts
	Text Decorations and Typography
	Font Inheritance
	Font Substitution
	Font Embedding

	Mouse Cursors

	Content Controls
	Labels
	Buttons
	The Button
	The ToggleButton and RepeatButton
	The CheckBox
	The RadioButton

	Tooltips
	Setting ToolTip Properties
	Setting ToolTipService Properties
	The Popup

	Text Controls
	Multiple Lines of Text
	Text Selection
	Miscellaneous TextBox Features
	The PasswordBox

	List Controls
	The ListBox
	The ComboBox

	Range-Based Controls
	The Slider
	The ProgressBar

	The Last Word

	Windows
	The Window Class
	Showing a Window
	Positioning a Window
	Saving and Restoring Window Location

	Window Interaction
	Window Ownership
	The Dialog Model
	Common Dialog Boxes

	Nonrectangular Windows
	A Simple Shaped Window
	A Transparent Window with Shaped Content
	Moving Shaped Windows
	Resizing Shaped Windows

	Vista-Style Windows
	Using the Windows Vista Glass Effect
	The Task Dialog and File Dialog Boxes

	The Last Word

	Pages and Navigation
	Understanding Page-Based Navigation
	Page-Based Interfaces
	A Simple Page-Based Application with NavigationWindow
	The Page Class
	Hyperlinks
	Navigating to Websites
	Fragment Navigation

	Hosting Pages in a Frame
	Hosting Pages in Another Page
	Hosting Pages in a Web Browser

	The Page History
	A Closer Look at URIs in WPF
	Navigation History
	Maintaining Custom Properties

	The Navigation Service
	Programmatic Navigation
	Navigation Events
	Managing the Journal
	Adding Custom Items to the Journal
	Page Functions

	XAML Browser Applications
	XBAP Requirements
	Creating an XBAP
	Deploying an XBAP
	Updating an XBAP
	XBAP Security
	Full-Trust XBAPs
	Combination XBAP/Stand-Alone Applications
	Coding for Different Security Levels
	Isolated Storage
	Simulating Dialog Boxes with the Popup Control

	Embedding an XBAP in a Web Page

	The Last Word

	Commands
	Understanding Commands
	The WPF Command Model
	The ICommand Interface
	The RoutedCommand Class
	The RoutedUICommand Class
	The Command Library

	Executing Commands
	Command Sources
	Command Bindings
	Using Multiple Command Sources
	Fine-Tuning Command Text
	Invoking a Command Directly
	Disabling Commands
	Controls with Built-in Commands

	Advanced Commands
	Custom Commands
	Using the Same Command in Different Places
	Using a Command Parameter
	Tracking and Reversing Commands

	The Last Word

	Resources
	Assembly Resources
	Adding Resources
	Retrieving Resources
	Resource-Aware Classes

	Pack URIs
	Resources in Other Assemblies

	Content Files

	Localization
	Building Localizable User Interfaces
	Preparing an Application for Localization
	The Translation Process
	Preparing Markup Elements for Localization
	Extracting Localizable Content
	Building a Satellite Assembly

	Object Resources
	The Resources Collection
	The Hierarchy of Resources
	Static and Dynamic Resources
	Nonshared Resources
	Accessing Resources in Code
	Application Resources
	System Resources
	Organizing Resources with Resource Dictionaries
	Sharing Resources Between Assemblies

	The Last Word

	Styles
	Style Basics
	Creating a Style Object
	Setting Properties
	Attaching Event Handlers
	The Many Layers of Styles
	Automatically Applying Styles by Type

	Triggers
	A Simple Trigger
	An Event Trigger

	Last Word

	Shapes, Transforms, and Brushes
	Understanding Shapes
	The Shape Classes
	Rectangle and Ellipse
	Sizing and Placing Shapes
	Sizing Shapes Proportionately with a Viewbox
	Line
	Polyline
	Polygon
	Line Caps and Line Joins
	Dashes
	Pixel Snapping
	Not
	nappe

	Transforms
	Transforming Shapes
	Transforming Elements

	Better Brushes
	The LinearGradientBrush
	The RadialGradientBrush
	The ImageBrush
	A Tiled ImageBrush
	The VisualBrush
	Opacity Masks

	Bitmap Effects
	Blurs
	Beveled Edges
	Embossed Edges
	Glows and Shadows

	The Last Word

	Geometries, Drawings, and Visuals
	Paths and Geometries
	Line, Rectangle, and Ellipse Geometries
	Combining Shapes with GeometryGroup
	Fusing Geometries with CombinedGeometry
	Curves and Lines with PathGeometry
	Straight Lines
	Arcs
	Bézier Curves

	The Geometry Mini-Language
	Clipping with Geometry

	Drawings
	Displaying a Drawing
	Exporting Clip Art

	Visuals
	Drawing Visuals
	Wrapping Visuals in an Element
	Hit Testing
	Complex Hit Testing

	The Last Word

	Control Templates
	Understanding Logical Trees and Visual Trees
	Understanding Templates
	The Chrome Classes
	Dissecting Controls

	Creating Control Templates
	A Simple Button
	Template Bindings
	Template Triggers

	Organizing Template Resources
	Refactoring the Button Control Template
	Applying Templates with Styles
	Applying Templates Automatically
	User-Selected Skins

	Building More Complex Templates
	Multipart Templates
	Control Templates in an ItemsControl
	Modifying the Scroll Bar
	Creating a Custom Window
	The Simple Styles

	The Last Word

	Data Binding
	Data Binding Basics
	Binding to the Properties of an Element
	Creating Bindings with Code
	Multiple Bindings
	Binding Direction
	OneWayToSource
	Default

	Binding Updates
	Binding to Objects That Aren’t Elements
	Source
	RelativeSource
	DataContext

	Binding to a Database with Custom Objects
	Building a Data Access Component
	Building a Data Object
	Displaying the Bound Object
	Updating the Database
	Change Notification

	Binding to a Collection of Objects
	Displaying and Editing Collection Items
	Inserting and Removing Collection Items
	Binding to the ADO.NET Objects
	Binding to a LINQ Expression
	Converting IEnumerable<T> to an Ordinary Collection
	Deferred Execution

	Data Conversion
	Formatting Strings with a Value Converter
	Creating Objects with a Value Converter
	Applying Conditional Formatting
	Evaluating Multiple Properties

	Validation
	Validation in the Data Object
	The ExceptionValidationRule
	The DataErrorValidationRule

	Custom Validation Rules
	Reacting to Validation Errors
	Getting a List of Exceptions
	Showing a Different Error Indicator

	The Last Word

	Data Templates, Data Views, and Data Providers
	Data Binding Redux
	Data Templates
	Separating and Reusing Templates
	More Advanced Templates
	Varying Templates
	Template Selectors
	Templates and Selection
	Style Selectors
	Changing Item Layout

	Data Views
	Retrieving a View Object
	Filtering Collections
	Filtering the DataTable
	Sorting
	Grouping
	Creating Views Declaratively
	Navigating with a View

	Data Providers
	The ObjectDataProvider
	Error Handling
	Asynchronous Support

	The XmlDataProvider

	The Last Word

	Lists, Trees, Toolbars, and Menus
	The ItemsControl Class
	The ComboBox
	Lists of Complex Objects
	Improving the Performance of the ComboBox

	A ListBox with Check Boxes or Radio Buttons

	The ListView
	Creating Columns with the GridView
	Resizing Columns
	Cell Templates
	Creating a Custom View
	The View Class
	The View Styles
	Using the ListView
	Passing Information to a View

	The TreeView
	A Data-Bound TreeView
	Binding a DataSet to a TreeView
	Just-in-Time Node Creation

	Menus
	The Menu Class
	Menu Items
	The ContextMenu Class
	Menu Separators

	Toolbars and Status Bars
	The ToolBar
	The Overflow Menu
	The ToolBarTray

	The StatusBar

	The Last Word

	Documents
	Understanding Documents
	Flow Documents
	The Flow Elements
	Formatting Content Elements
	Constructing a Simple Flow Document
	Block Elements
	Paragraph
	List
	Table
	Section
	BlockUIContainer

	Inline Elements
	Preserving Whitespace
	Floater
	Figure

	Interacting with Elements Programmatically
	Text Justification

	Read-Only Flow Document Containers
	Zooming
	Pages and Columns
	Loading Documents from a File
	Printing

	Editing a Flow Document
	Loading a File
	Saving a File
	Formatting Selected Text
	Getting Individual Words

	Fixed Documents
	Annotations
	The Annotation Classes
	Enabling the Annotation Service
	Creating Annotations
	Examining Annotations
	Reacting to Annotation Changes
	Storing Annotations in a Fixed Document
	Customizing the Appearance of Sticky Notes

	Last Word

	Printing
	Basic Printing
	Printing an Element
	Transforming Printed Output
	Printing Elements Without Showing Them
	Printing a Document
	Manipulating the Pages in a Document Printout

	Custom Printing
	Printing with the Visual Layer Classes
	Custom Printing with Multiple Pages

	Print Settings and Management
	Maintaining Print Settings
	Printing Page Ranges
	Managing a Print Queue

	Printing Through XPS
	Creating an XPS Document for a Print Preview
	Printing Directly to the Printer via XPS
	Asynchronous Printing

	The Last Word

	Animation
	Understanding WPF Animation
	Timer-Based Animation
	Property-Based Animation

	Basic Animation
	The Animation Classes
	Animations in Code
	From
	To
	By
	Duration

	Simultaneous Animations
	Animation Lifetime
	The Timeline Class
	AccelerationRatio and DecelerationRatio
	RepeatBehavior

	Declarative Animation and Storyboards
	The Storyboard
	Event Triggers
	Attaching Triggers with a Style
	Attaching Triggers with a Template

	Overlapping Animations
	Simultaneous Animations
	Controlling Playback
	Monitoring Progress
	Desired Frame Rate

	Animation Types Revisited
	Animating Transforms
	Animating Multiple Transforms

	Animating Brushes
	VisualBrush

	Key Frame Animation
	Discrete Key Frame Animations
	Spline Key Frame Animations

	Path-Based Animation
	Frame-Based Animation

	The Last Word

	Sound and Video
	Playing WAV Audio
	The SoundPlayer
	The SoundPlayerAction
	System Sounds

	The MediaPlayer
	The MediaElement
	Playing Audio Programmatically
	Handling Errors
	Playing Audio with Triggers
	Playing Multiple Sounds
	Changing Volume, Balance, Speed, and Position
	Synchronizing an Animation with Audio
	Playing Video
	Video Effects

	Speech
	Speech Synthesis
	Speech Recognition

	The Last Word

	3-D Drawing
	3-D Drawing Basics
	The Viewport
	3-D Objects
	Geometry
	Geometry Model and Surfaces
	Light Sources

	The Camera

	Deeper into 3-D
	Shading and Normals
	More Complex Shapes
	Model3DGroup Collections
	Materials Revisited
	Texture Mapping
	Mapping the ImageBrush
	Video and the VisualBrush

	Interactivity and Animations
	Transforms
	Rotations
	A Fly Over
	The Trackball
	Hit Testing
	Hit Testing in the Viewport
	The ModelUIElement3D
	Hit Testing with the ModelUIElement3D
	The ContainerUIElement3D

	2-D Elements on 3-D Surfaces

	The Last Word

	Custom Elements
	Understanding Custom Elements in WPF
	Building a Basic User Control
	Defining Dependency Properties
	Defining Routed Events
	Adding Markup
	Using the Control
	Command Support
	More Robust Commands

	A Closer Look at User Controls

	Lookless Controls
	Refactoring the Color Picker Code
	Refactoring the Color Picker Markup
	Streamlining the Control Template
	Adding Part Names
	Manipulating Template Parts
	Documenting Template Parts

	Theme-Specific Styles and the Default Style

	Extending an Existing Control
	Understanding Masked Edit Controls
	Mask Syntax
	The MaskedTextProvider
	Implementing a WPF Masked Text Box
	Improving the MaskedTextBox

	Custom Panels
	The Two-Step Layout Process
	MeasureOverride()
	ArrangeOverride()

	The Canvas Clone
	A Better Wrapping Panel

	Custom-Drawn Elements
	The OnRender() Method
	Evaluating Custom Drawing
	A Custom-Drawn Element
	A Custom Decorator

	The Last Word

	Interacting with Windows Forms
	Assessing Interoperability
	Missing Features in WPF

	Mixing Windows and Forms
	Adding Forms to a WPF Application
	Adding WPF Windows to a Windows Forms Application
	Showing Modal Windows and Forms
	Showing Modeless Windows and Forms
	Visual Styles for Windows Forms Controls
	Windows Forms Classes That Don’t Need Interoperability

	Creating Windows with Mixed Content
	WPF and Windows Forms “Airspace”
	Hosting Windows Forms Controls in WPF
	WPF and Windows Forms User Controls
	Hosting WPF Controls in Windows Forms
	Access Keys, Mnemonics, and Focus
	Property Mapping

	The Last Word

	Multithreading and Add-Ins
	Multithreading
	The Dispatcher
	The DispatcherObject
	The BackgroundWorker
	A Simple Asynchronous Operation
	Creating the BackgroundWorker
	Running the BackgroundWorker
	Tracking Progress
	Supporting Cancellation

	Application Add-Ins
	The Add-in Pipeline
	How the Pipeline Works
	The Add-in Folder Structure
	Preparing a Solution That Uses the Add-In Model

	An Application That Uses Add-Ins
	The Contract
	The Add-in View
	The Add-In
	The Add-in Adapter
	The Host View
	The Host Adapter
	The Host
	Adding More Add-Ins

	Interacting with the Host
	Visual Add-Ins

	The Last Word

	ClickOnce Deployment
	Application Deployment
	Understanding ClickOnce
	The ClickOnce Installation Model
	ClickOnce Limitations

	A Simple ClickOnce Publication
	Choosing a Location
	Publishing for a Network File Share
	Publishing for a Web Server
	Publishing for a CD or DVD
	Online or Offline

	Deployed Files
	Installing a ClickOnce Application
	Updating a ClickOnce Application

	ClickOnce Options
	Publish Version
	Updates
	Publish Options

	The Last Word

	Index

