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Chapter 2

Preface

During the summer before my final undergraduate year at Caltech I set out to write a math text unlike any
other, namely, one written by me. In that respect I have succeeded beautifully. Unfortunately, the text is neither
complete nor polished. I have a “Warnings and Disclaimers” section below that is a little amusing, and an
appendix on probability that I feel concisesly captures the essence of the subject. However, all the material in
between is in some stage of development. I am currently working to improve and expand this text.

This text is freely available from my web set. Currently I’m at http://www.its.caltech.edu/˜sean. I post
new versions a couple of times a year.

2.1 Advice to Teachers

If you have something worth saying, write it down.

2.2 Acknowledgments

I would like to thank Professor Saffman for advising me on this project and the Caltech SURF program for
providing the funding for me to write the first edition of this book.

23

http://www.its.caltech.edu/~sean


2.3 Warnings and Disclaimers

• This book is a work in progress. It contains quite a few mistakes and typos. I would greatly appreciate
your constructive criticism. You can reach me at ‘sean@its.caltech.edu’.

• Reading this book impairs your ability to drive a car or operate machinery.

• This book has been found to cause drowsiness in laboratory animals.

• This book contains twenty-three times the US RDA of fiber.

• Caution: FLAMMABLE - Do not read while smoking or near a fire.

• If infection, rash, or irritation develops, discontinue use and consult a physician.

• Warning: For external use only. Use only as directed. Intentional misuse by deliberately concentrating
contents can be harmful or fatal. KEEP OUT OF REACH OF CHILDREN.

• In the unlikely event of a water landing do not use this book as a flotation device.

• The material in this text is fiction; any resemblance to real theorems, living or dead, is purely coincidental.

• This is by far the most amusing section of this book.

• Finding the typos and mistakes in this book is left as an exercise for the reader. (Eye ewes a spelling
chequer from thyme too thyme, sew their should knot bee two many misspellings. Though I ain’t so sure
the grammar’s too good.)

• The theorems and methods in this text are subject to change without notice.

• This is a chain book. If you do not make seven copies and distribute them to your friends within ten days
of obtaining this text you will suffer great misfortune and other nastiness.

• The surgeon general has determined that excessive studying is detrimental to your social life.
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• This text has been buffered for your protection and ribbed for your pleasure.

• Stop reading this rubbish and get back to work!

2.4 Suggested Use

This text is well suited to the student, professional or lay-person. It makes a superb gift. This text has a boquet
that is light and fruity, with some earthy undertones. It is ideal with dinner or as an apertif. Bon apetit!

2.5 About the Title

The title is only making light of naming conventions in the sciences and is not an insult to engineers. If you want to
find a good math text to learn a subject, look for books with “Introduction” and “Elementary” in the title. If it is
an “Intermediate” text it will be incomprehensible. If it is “Advanced” then not only will it be incomprehensible,
it will have low production qualities, i.e. a crappy typewriter font, no graphics and no examples. There is an
exception to this rule when the title also contains the word “Scientists” or “Engineers”. Then an advanced book
may be quite suitable for actually learning the material.
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Chapter 3

Sets and Functions

3.1 Sets

Definition. A set is a collection of objects. We call the objects, elements. A set is denoted by listing the
elements between braces. For example: {e, i, π, 1}. We use ellipses to indicate patterns. The set of positive
integers is {1, 2, 3, . . . }. We also denote a sets with the notation {x|conditions on x} for sets that are more easily
described than enumerated. This is read as “the set of elements x such that x satisfies . . . ”. x ∈ S is the notation
for “x is an element of the set S.” To express the opposite we have x 6∈ S for “x is not an element of the set S.”

Examples. We have notations for denoting some of the commonly encountered sets.

• ∅ = {} is the empty set, the set containing no elements.

• Z = {. . . ,−1, 0, 1 . . . } is the set of integers. (Z is for “Zahlen”, the German word for “number”.)

• Q = {p/q|p, q ∈ Z, q 6= 0} is the set of rational numbers. (Q is for quotient.)

• R = {x|x = a1a2 · · · an.b1b2 · · · } is the set of real numbers, i.e. the set of numbers with decimal expansions.

2



• C = {a + ib|a, b ∈ R, i2 = −1} is the set of complex numbers. i is the square root of −1. (If you haven’t
seen complex numbers before, don’t dismay. We’ll cover them later.)

• Z+, Q+ and R+ are the sets of positive integers, rationals and reals, respectively. For example, Z+ =
{1, 2, 3, . . . }.

• Z0+, Q0+ and R0+ are the sets of non-negative integers, rationals and reals, respectively. For example,
Z

0+ = {0, 1, 2, . . . }.

• (a . . . b) denotes an open interval on the real axis. (a . . . b) ≡ {x|x ∈ R, a < x < b}

• We use brackets to denote the closed interval. [a . . . b] ≡ {x|x ∈ R, a ≤ x ≤ b}

The cardinality or order of a set S is denoted |S|. For finite sets, the cardinality is the number of elements
in the set. The Cartesian product of two sets is the set of ordered pairs:

X × Y ≡ {(x, y)|x ∈ X, y ∈ Y }.

The Cartesian product of n sets is the set of ordered n-tuples:

X1 ×X2 × · · · ×Xn ≡ {(x1, x2, . . . , xn)|x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn}.

Equality. Two sets S and T are equal if each element of S is an element of T and vice versa. This is denoted,
S = T . Inequality is S 6= T , of course. S is a subset of T , S ⊆ T , if every element of S is an element of T . S is
a proper subset of T , S ⊂ T , if S ⊆ T and S 6= T . For example: The empty set is a subset of every set, ∅ ⊆ S.
The rational numbers are a proper subset of the real numbers, Q ⊂ R.

Operations. The union of two sets, S ∪ T , is the set whose elements are in either of the two sets. The union
of n sets,

∪nj=1Sj ≡ S1 ∪ S2 ∪ · · · ∪ Sn
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is the set whose elements are in any of the sets Sj. The intersection of two sets, S ∩ T , is the set whose elements
are in both of the two sets. In other words, the intersection of two sets in the set of elements that the two sets
have in common. The intersection of n sets,

∩nj=1Sj ≡ S1 ∩ S2 ∩ · · · ∩ Sn

is the set whose elements are in all of the sets Sj. If two sets have no elements in common, S ∩ T = ∅, then the
sets are disjoint. If T ⊆ S, then the difference between S and T , S \ T , is the set of elements in S which are not
in T .

S \ T ≡ {x|x ∈ S, x 6∈ T}

The difference of sets is also denoted S − T .

Properties. The following properties are easily verified from the above definitions.

• S ∪ ∅ = S, S ∩ ∅ = ∅, S \ ∅ = S, S \ S = ∅.

• Commutative. S ∪ T = T ∪ S, S ∩ T = T ∩ S.

• Associative. (S ∪ T ) ∪ U = S ∪ (T ∪ U) = S ∪ T ∪ U , (S ∩ T ) ∩ U = S ∩ (T ∩ U) = S ∩ T ∩ U .

• Distributive. S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U), S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U).

3.2 Single Valued Functions

Single-Valued Functions. A single-valued function or single-valued mapping is a mapping of the elements

x ∈ X into elements y ∈ Y . This is expressed notationally as f : X → Y or X
f→ Y . If such a function is

well-defined, then for each x ∈ X there exists a unique element of y such that f(x) = y. The set X is the domain
of the function, Y is the codomain, (not to be confused with the range, which we introduce shortly). To denote
the value of a function on a particular element we can use any of the notations: f(x) = y, f : x 7→ y or simply
x 7→ y. f is the identity map on X if f(x) = x for all x ∈ X.
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Let f : X → Y . The range or image of f is

f(X) = {y|y = f(x) for some x ∈ X}.

The range is a subset of the codomain. For each Z ⊆ Y , the inverse image of Z is defined:

f−1(Z) ≡ {x ∈ X|f(x) = z for some z ∈ Z}.

Examples.

• Finite polynomials and the exponential function are examples of single valued functions which map real
numbers to real numbers.

• The greatest integer function, b·c, is a mapping from R to Z. bxc in the greatest integer less than or equal
to x. Likewise, the least integer function, dxe, is the least integer greater than or equal to x.

The -jectives. A function is injective if for each x1 6= x2, f(x1) 6= f(x2). In other words, for each x in the
domain there is a unique y = f(x) in the range. f is surjective if for each y in the codomain, there is an x such
that y = f(x). If a function is both injective and surjective, then it is bijective. A bijective function is also called
a one-to-one mapping.

Examples.

• The exponential function y = ex is a bijective function, (one-to-one mapping), that maps R to R+. (R is
the set of real numbers; R+ is the set of positive real numbers.)

• f(x) = x2 is a bijection from R
+ to R+. f is not injective from R to R+. For each positive y in the range,

there are two values of x such that y = x2.

• f(x) = sinx is not injective from R to [−1..1]. For each y ∈ [−1, 1] there exists an infinite number of values
of x such that y = sinx.
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Injective Surjective Bijective

Figure 3.1: Depictions of Injective, Surjective and Bijective Functions

3.3 Inverses and Multi-Valued Functions

If y = f(x), then we can write x = f−1(y) where f−1 is the inverse of f . If y = f(x) is a one-to-one function,
then f−1(y) is also a one-to-one function. In this case, x = f−1(f(x)) = f(f−1(x)) for values of x where both
f(x) and f−1(x) are defined. For example log x, which maps R+ to R is the inverse of ex. x = elog x = log( ex)
for all x ∈ R+. (Note the x ∈ R+ ensures that log x is defined.)

If y = f(x) is a many-to-one function, then x = f−1(y) is a one-to-many function. f−1(y) is a multi-valued
function. We have x = f(f−1(x)) for values of x where f−1(x) is defined, however x 6= f−1(f(x)). There are
diagrams showing one-to-one, many-to-one and one-to-many functions in Figure 3.2.

Example 3.3.1 y = x2, a many-to-one function has the inverse x = y1/2. For each positive y, there are two
values of x such that x = y1/2. y = x2 and y = x1/2 are graphed in Figure 3.3.

We say that there are two branches of y = x1/2: the positive and the negative branch. We denote the positive
branch as y =

√
x; the negative branch is y = −

√
x. We call

√
x the principal branch of x1/2. Note that

√
x

is a one-to-one function. Finally, x = (x1/2)2 since (±
√
x)2 = x, but x 6= (x2)1/2 since (x2)1/2 = ±x. y =

√
x is
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rangedomain rangedomain rangedomain

one-to-one many-to-one one-to-many

Figure 3.2: Diagrams of One-To-One, Many-To-One and One-To-Many Functions

Figure 3.3: y = x2 and y = x1/2

graphed in Figure 3.4.

Figure 3.4: y =
√
x
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Now consider the many-to-one function y = sinx. The inverse is x = arcsin y. For each y ∈ [−1, 1] there are
an infinite number of values x such that x = arcsin y. In Figure 3.5 is a graph of y = sinx and a graph of a few
branches of y = arcsinx.

Figure 3.5: y = sinx and y = arcsinx

Example 3.3.2 arcsinx has an infinite number of branches. We will denote the principal branch by Arcsinx
which maps [−1, 1] to

[
−π

2
, π

2

]
. Note that x = sin(arcsinx), but x 6= arcsin(sinx). y = Arcsinx in Figure 3.6.

Figure 3.6: y = Arcsinx

Example 3.3.3 Consider 11/3. Since x3 is a one-to-one function, x1/3 is a single-valued function. (See Figure 3.7.)
11/3 = 1.
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Figure 3.7: y = x3 and y = x1/3

Example 3.3.4 Consider arccos(1/2). cosx and a few branches of arccos x are graphed in Figure 3.8. cos x = 1/2

Figure 3.8: y = cos x and y = arccos x

has the two solutions x = ±π/3 in the range x ∈ [−π, π]. Since cos(x+ π) = − cos x,

arccos(1/2) = {±π/3 + nπ}.

3.4 Transforming Equations

We must take care in applying functions to equations. It is always safe to apply a one-to-one function to an
equation, (provided it is defined for that domain). For example, we can apply y = x3 or y = ex to the equation
x = 1. The equations x3 = 1 and ex = e have the unique solution x = 1.
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If we apply a many-to-one function to an equation, we may introduce spurious solutions. Applying y = x2 and
y = sinx to the equation x = π

2
results in x2 = π2

4
and sinx = 1. The former equation has the two solutions

x = ±π
2
; the latter has the infinite number of solutions x = π

2
+ 2nπ, n ∈ Z.

We do not generally apply a one-to-many function to both sides of an equation as this rarely is useful. Consider
the equation

sin2 x = 1.

Applying the function f(x) = x1/2 to the equation would not get us anywhere

(sin2 x)1/2 = 11/2.

Since (sin2 x)1/2 6= sinx, we cannot simplify the left side of the equation. Instead we could use the definition of
f(x) = x1/2 as the inverse of the x2 function to obtain

sinx = 11/2 = ±1.

Then we could use the definition of arcsin as the inverse of sin to get

x = arcsin(±1).

x = arcsin(1) has the solutions x = π/2 + 2nπ and x = arcsin(−1) has the solutions x = −π/2 + 2nπ. Thus

x =
π

2
+ nπ, n ∈ Z.

Note that we cannot just apply arcsin to both sides of the equation as arcsin(sinx) 6= x.
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Chapter 4

Vectors

4.1 Vectors

4.1.1 Scalars and Vectors

A vector is a quantity having both a magnitude and a direction. Examples of vector quantities are velocity, force
and position. One can represent a vector in n-dimensional space with an arrow whose initial point is at the origin,
(Figure 4.1). The magnitude is the length of the vector. Typographically, variables representing vectors are often
written in capital letters, bold face or with a vector over-line, A, a,~a. The magnitude of a vector is denoted |a|.

A scalar has only a magnitude. Examples of scalar quantities are mass, time and speed.

Vector Algebra. Two vectors are equal if they have the same magnitude and direction. The negative of a
vector, denoted −a, is a vector of the same magnitude as a but in the opposite direction. We add two vectors a
and b by placing the tail of b at the head of a and defining a + b to be the vector with tail at the origin and
head at the head of b. (See Figure 4.2.)

The difference, a − b, is defined as the sum of a and the negative of b, a + (−b). The result of multiplying
a by a scalar α is a vector of magnitude |α| |a| with the same/opposite direction if α is positive/negative. (See
Figure 4.2.)
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x

z

y

Figure 4.1: Graphical Representation of a Vector in Three Dimensions

a+b

a

b

-a

a
2a

Figure 4.2: Vector Arithmetic

Here are the properties of adding vectors and multiplying them by a scalar. They are evident from geometric
considerations.

a + b = b + a αa = aα commutative laws

(a + b) + c = a + (b + c) α(βa) = (αβ)a associative laws

α(a + b) = αa + αb (α + β)a = αa + βa distributive laws

12



Zero and Unit Vectors. The additive identity element for vectors is the zero vector or null vector. This is a
vector of magnitude zero which is denoted as 0. A unit vector is a vector of magnitude one. If a is nonzero then
a/|a| is a unit vector in the direction of a. Unit vectors are often denoted with a caret over-line, n̂.

Rectangular Unit Vectors. In n dimensional Cartesian space, Rn, the unit vectors in the directions of the
coordinates axes are e1, . . . en. These are called the rectangular unit vectors. To cut down on subscripts, the unit
vectors in three dimensional space are often denoted with i, j and k. (Figure 4.3).

x

z

y
j

k

i

Figure 4.3: Rectangular Unit Vectors

Components of a Vector. Consider a vector a with tail at the origin and head having the Cartesian coordinates
(a1, . . . , an). We can represent this vector as the sum of n rectangular component vectors, a = a1e1 + · · ·+ anen.
(See Figure 4.4.) Another notation for the vector a is 〈a1, . . . , an〉. By the Pythagorean theorem, the magnitude
of the vector a is |a| =

√
a2

1 + · · ·+ a2
n.
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x

z

y

a

a

a

1

3

i

k

ja2

Figure 4.4: Components of a Vector

4.1.2 The Kronecker Delta and Einstein Summation Convention

The Kronecker Delta tensor is defined

δij =

{
1 if i = j,

0 if i 6= j.

This notation will be useful in our work with vectors.

Consider writing a vector in terms of its rectangular components. Instead of using ellipses: a = a1e1+· · ·+anen,
we could write the expression as a sum: a =

∑n
i=1 aiei. We can shorten this notation by leaving out the sum:

a = aiei, where it is understood that whenever an index is repeated in a term we sum over that index from 1 to
n. This is the Einstein summation convention. A repeated index is called a summation index or a dummy index.
Other indices can take any value from 1 to n and are called free indices.
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Example 4.1.1 Consider the matrix equation: A · x = b. We can write out the matrix and vectors explicitly.a11 · · · a1n
...

. . .
...

an1 · · · ann


x1

...
xn

 =

b1
...
bn


This takes much less space when we use the summation convention.

aijxj = bi

Here j is a summation index and i is a free index.

4.1.3 The Dot and Cross Product

Dot Product. The dot product or scalar product of two vectors is defined,

a · b ≡ |a||b| cos θ,

where θ is the angle from a to b. From this definition one can derive the following properties:

• a · b = b · a, commutative.

• α(a · b) = (αa) · b = a · (αb), associativity of scalar multiplication.

• a · (b + c) = a · b + a · c, distributive.

• eiej = δij. In three dimension, this is

i · i = j · j = k · k = 1, i · j = j · k = k · i = 0.

• a · b = aibi ≡ a1b1 + · · ·+ anbn, dot product in terms of rectangular components.

• If a · b = 0 then either a and b are orthogonal, (perpendicular), or one of a and b are zero.
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The Angle Between Two Vectors. We can use the dot product to find the angle between two vectors, a and
b. From the definition of the dot product,

a · b = |a||b| cos θ.

If the vectors are nonzero, then

θ = arccos

(
a · b
|a||b|

)
.

Example 4.1.2 What is the angle between i and i + j?

θ = arccos

(
i · (i + j)

|i||i + j|

)
= arccos

(
1√
2

)
=
π

4
.

Parametric Equation of a Line. Consider a line that passes through the point a and is parallel to the vector
t, (tangent). A parametric equation of the line is

x = a + ut, u ∈ R.

Implicit Equation of a Line. Consider a line that passes through the point a and is normal, (orthogonal,
perpendicular), to the vector n. All the lines that are normal to n have the property that x · n is a constant,
where x is any point on the line. (See Figure 4.5.) x · n = 0 is the line that is normal to n and passes through
the origin. The line that is normal to n and passes through the point a is

x · n = a · n.
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=0

=1 = a n

n a

=-1

x n

x n

x n

x n

Figure 4.5: Equation for a Line

The normal to a line determines an orientation of the line. The normal points in the direction that is above
the line. A point b is (above/on/below) the line if (b− a) · n is (positive/zero/negative). The signed distance of
a point b from the line x · n = a · n is

(b− a) · n

|n|
.

Implicit Equation of a Hyperplane. A hyperplane in Rn is an n − 1 dimensional “sheet” which passes
through a given point and is normal to a given direction. In R3 we call this a plane. Consider a hyperplane that
passes through the point a and is normal to the vector n. All the hyperplanes that are normal to n have the
property that x · n is a constant, where x is any point in the hyperplane. x · n = 0 is the hyperplane that is
normal to n and passes through the origin. The hyperplane that is normal to n and passes through the point a is

x · n = a · n.

The normal determines an orientation of the hyperplane. The normal points in the direction that is above the
hyperplane. A point b is (above/on/below) the hyperplane if (b− a) · n is (positive/zero/negative). The signed
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distance of a point b from the hyperplane x · n = a · n is

(b− a) · n

|n|
.

Right and Left-Handed Coordinate Systems. Consider a rectangular coordinate system in two dimensions.
Angles are measured from the positive x axis in the direction of the positive y axis. There are two ways of labeling
the axes. (See Figure 4.6.) In one the angle increases in the counterclockwise direction and in the other the angle
increases in the clockwise direction. The former is the familiar Cartesian coordinate system.

x y

xy

θ
θ

Figure 4.6: There are Two Ways of Labeling the Axes in Two Dimensions.

There are also two ways of labeling the axes in a three-dimensional rectangular coordinate system. These are
called right-handed and left-handed coordinate systems. See Figure 4.7. Any other labelling of the axes could be
rotated into one of these configurations. The right-handed system is the one that is used by default. If you put
your right thumb in the direction of the z axis in a right-handed coordinate system, then your fingers curl in the
direction from the x axis to the y axis.

Cross Product. The cross product or vector product is defined,

a× b = |a||b| sin θ n,

where θ is the angle from a to b and n is a unit vector that is orthogonal to a and b and in the direction such
that a, b and n form a right-handed system.
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Figure 4.7: Right and Left Handed Coordinate Systems

You can visualize the direction of a × b by applying the right hand rule. Curl the fingers of your right hand
in the direction from a to b. Your thumb points in the direction of a× b. Warning: Unless you are a lefty, get
in the habit of putting down your pencil before applying the right hand rule.

The dot and cross products behave a little differently. First note that unlike the dot product, the cross product
is not commutative. The magnitudes of a × b and b × a are the same, but their directions are opposite. (See
Figure 4.8.)

Let

a× b = |a||b| sin θ n and b× a = |b||a| sinφ m.

The angle from a to b is the same as the angle from b to a. Since {a,b,n} and {b, a,m} are right-handed systems,
m points in the opposite direction as n. Since a×b = −b×a we say that the cross product is anti-commutative.

Next we note that since

|a× b| = |a||b| sin θ,

the magnitude of a× b is the area of the parallelogram defined by the two vectors. (See Figure 4.9.) The area of
the triangle defined by two vectors is then 1

2
|a× b|.
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a

b

b  a

a  b

Figure 4.8: The Cross Product is Anti-Commutative.

b
sin

b
b

a

θ

a

Figure 4.9: The Parallelogram and the Triangle Defined by Two Vectors

From the definition of the cross product, one can derive the following properties:

• a× b = −b× a, anti-commutative.

• α(a× b) = (αa)× b = a× (αb), associativity of scalar multiplication.

• a× (b + c) = a× b + a× c, distributive.

• (a× b)× c 6= a× (b× c). The cross product is not associative.

• i× i = j× j = k× k = 0.
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• i× j = k, j× k = i, k× i = j.

•

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ ,
cross product in terms of rectangular components.

• If a · b = 0 then either a and b are parallel or one of a or b is zero.

Scalar Triple Product. Consider the volume of the parallelopiped defined by three vectors. (See Figure 4.10.)
The area of the base is ||b||c| sin θ|, where θ is the angle between b and c. The height is |a| cosφ, where φ is the
angle between b× c and a. Thus the volume of the parallelopiped is |a||b||c| sin θ cosφ.

φ

θ

b  c
a

b

c

Figure 4.10: The Parallelopiped Defined by Three Vectors

Note that

|a · (b× c)| = |a · (|b||c| sin θ n)|
= ||a||b||c| sin θ cosφ| .
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Thus |a · (b× c)| is the volume of the parallelopiped. a · (b × c) is the volume or the negative of the volume
depending on whether {a,b, c} is a right or left-handed system.

Note that parentheses are unnecessary in a ·b×c. There is only one way to interpret the expression. If you did
the dot product first then you would be left with the cross product of a scalar and a vector which is meaningless.
a · b× c is called the scalar triple product.

Plane Defined by Three Points. Three points which are not collinear define a plane. Consider a plane that
passes through the three points a, b and c. One way of expressing that the point x lies in the plane is that the
vectors x−a, b−a and c−a are coplanar. (See Figure 4.11.) If the vectors are coplanar, then the parallelopiped
defined by these three vectors will have zero volume. We can express this in an equation using the scalar triple
product,

(x− a) · (b− a)× (c− a) = 0.

b

c

x

a

Figure 4.11: Three Points Define a Plane.
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4.2 Sets of Vectors in n Dimensions

Orthogonality. Consider two n-dimensional vectors

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

The inner product of these vectors can be defined

〈x|y〉 ≡ x · y =
n∑
i=1

xiyi.

The vectors are orthogonal if x·y = 0. The norm of a vector is the length of the vector generalized to n dimensions.

‖x‖ =
√

x · x

Consider a set of vectors

{x1,x2, . . . ,xm}.

If each pair of vectors in the set is orthogonal, then the set is orthogonal.

xi · xj = 0 if i 6= j

If in addition each vector in the set has norm 1, then the set is orthonormal.

xi · xj = δij =

{
1 if i = j

0 if i 6= j

Here δij is known as the Kronecker delta function.
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Completeness. A set of n, n-dimensional vectors

{x1,x2, . . . ,xn}

is complete if any n-dimensional vector can be written as a linear combination of the vectors in the set. That is,
any vector y can be written

y =
n∑
i=1

cixi.

Taking the inner product of each side of this equation with xm,

y · xm =

(
n∑
i=1

cixi

)
· xm

=
n∑
i=1

cixi · xm

= cmxm · xm
cm =

y · xm
‖xm‖2

Thus y has the expansion

y =
n∑
i=1

y · xi
‖xi‖2

xi.

If in addition the set is orthonormal, then

y =
n∑
i=1

(y · xi)xi.
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4.3 Exercises

The Dot and Cross Product

Exercise 4.1
Prove the distributive law for the dot product,

a · (b + c) = a · b + a · c.

Exercise 4.2
Prove that

a · b = aibi ≡ a1b1 + · · ·+ anbn.

Exercise 4.3
What is the angle between the vectors i + j and i + 3j?

Exercise 4.4
Prove the distributive law for the cross product,

a× (b + c) = a× b + a× b.

Exercise 4.5
Show that

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
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Exercise 4.6
What is the area of the quadrilateral with vertices at (1, 1), (4, 2), (3, 7) and (2, 3)?

Exercise 4.7
What is the volume of the tetrahedron with vertices at (1, 1, 0), (3, 2, 1), (2, 4, 1) and (1, 2, 5)?

Exercise 4.8
What is the equation of the plane that passes through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2)? What is the
distance from the point (2, 3, 5) to the plane?
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4.4 Hints

The Dot and Cross Product

Hint 4.1
First prove the distributive law when the first vector is of unit length,

n · (b + c) = n · b + n · c.
Then all the quantities in the equation are projections onto the unit vector n and you can use geometry.

Hint 4.2
First prove that the dot product of a rectangular unit vector with itself is one and the dot product of two distinct
rectangular unit vectors is zero. Then write a and b in rectangular components and use the distributive law.

Hint 4.3
Use a · b = |a||b| cos θ.

Hint 4.4
First consider the case that both b and c are orthogonal to a. Prove the distributive law in this case from
geometric considerations.

Next consider two arbitrary vectors a and b. We can write b = b⊥ + b‖ where b⊥ is orthogonal to a and b‖
is parallel to a. Show that

a× b = a× b⊥.

Finally prove the distributive law for arbitrary b and c.

Hint 4.5
Write the vectors in their rectangular components and use,

i× j = k, j× k = i, k× i = j,
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and,

i× i = j× j = k× k = 0.

Hint 4.6
The quadrilateral is composed of two triangles. The area of a triangle defined by the two vectors a and b is
1
2
|a · b|.

Hint 4.7
Justify that the area of a tetrahedron determined by three vectors is one sixth the area of the parallelogram
determined by those three vectors. The area of a parallelogram determined by three vectors is the magnitude of
the scalar triple product of the vectors: a · b× c.

Hint 4.8
The equation of a line that is orthogonal to a and passes through the point b is a · x = a · b. The distance of a
point c from the plane is ∣∣∣∣(c− b) · a

|a|

∣∣∣∣

28



4.5 Solutions

The Dot and Cross Product

Solution 4.1
First we prove the distributive law when the first vector is of unit length, i.e.,

n · (b + c) = n · b + n · c. (4.1)

From Figure 4.12 we see that the projection of the vector b + c onto n is equal to the sum of the projections b ·n
and c · n.

b

c

n b

n c

b+c
n

n (b+c)

Figure 4.12: The Distributive Law for the Dot Product

Now we extend the result to the case when the first vector has arbitrary length. We define a = |a|n and
multiply Equation 4.1 by the scalar, |a|.

|a|n · (b + c) = |a|n · b + |a|n · c

a · (b + c) = a · b + a · c.
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Solution 4.2
First note that

ei · ei = |ei||ei| cos(0) = 1.

Then note that that dot product of any two distinct rectangular unit vectors is zero because they are orthogonal.
Now we write a and b in terms of their rectangular components and use the distributive law.

a · b = aiei · bjej
= aibjei · ej
= aibjδij

= aibi

Solution 4.3
Since a · b = |a||b| cos θ, we have

θ = arccos

(
a · b
|a||b|

)
when a and b are nonzero.

θ = arccos

(
(i + j) · (i + 3j)

|i + j||i + 3j|

)
= arccos

(
4√

2
√

10

)
= arccos

(
2
√

5

5

)
≈ 0.463648

Solution 4.4
First consider the case that both b and c are orthogonal to a. b + c is the diagonal of the parallelogram defined
by b and c, (see Figure 4.13). Since a is orthogonal to each of these vectors, taking the cross product of a with
these vectors has the effect of rotating the vectors through π/2 radians about a and multiplying their length by
|a|. Note that a× (b + c) is the diagonal of the parallelogram defined by a× b and a× c. Thus we see that the
distributive law holds when a is orthogonal to both b and c,

a× (b + c) = a× b + a× c.
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b

cb+c

a  c

a

a  b

a  (b+c)

Figure 4.13: The Distributive Law for the Cross Product

Now consider two arbitrary vectors a and b. We can write b = b⊥ + b‖ where b⊥ is orthogonal to a and b‖
is parallel to a, (see Figure 4.14).

a

b
b

θ

b

Figure 4.14: The Vector b Written as a Sum of Components Orthogonal and Parallel to a
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By the definition of the cross product,

a× b = |a||b| sin θ n.

Note that

|b⊥| = |b| sin θ,

and that a× b⊥ is a vector in the same direction as a× b. Thus we see that

a× b = |a||b| sin θ n

= |a|(sin θ|b|)n
= |a||b⊥|n = |a||b⊥| sin(π/2)n

a× b = a× b⊥.

Now we are prepared to prove the distributive law for arbitrary b and c.

a× (b + c) = a× (b⊥ + b‖ + c⊥ + c‖)

= a× ((b + c)⊥ + (b + c)‖)

= a× ((b + c)⊥)

= a× b⊥ + a× c⊥

= a× b + a× c

a× (b + c) = a× b + a× c

Solution 4.5
We know that

i× j = k, j× k = i, k× i = j,
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and that

i× i = j× j = k× k = 0.

Now we write a and b in terms of their rectangular components and use the distributive law to expand the cross
product.

a× b = (a1i + a2j + a3k)× (b1i + b2j + b3k)

= a1i× (b1i + b2j + b3k) + a2j× (b1i + b2j + b3k) + a3k× (b1i + b2j + b3k)

= a1b2k + a1b3(−j) + a2b1(−k) + a2b3i + a3b1j + a3b2(−i)

= (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k

Next we evaluate the determinant.∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = i

∣∣∣∣a2 a3

b2 b3

∣∣∣∣− j

∣∣∣∣a1 a3

b1 b3

∣∣∣∣+ k

∣∣∣∣a1 a2

b1 b2

∣∣∣∣
= (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k

Thus we see that,

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
Solution 4.6
The area area of the quadrilateral is the area of two triangles. The first triangle is defined by the vector from
(1, 1) to (4, 2) and the vector from (1, 1) to (2, 3). The second triangle is defined by the vector from (3, 7) to (4, 2)
and the vector from (3, 7) to (2, 3). (See Figure 4.15.) The area of a triangle defined by the two vectors a and b
is 1

2
|a · b|. The area of the quadrilateral is then,

1

2
|(3i + j) · (i + 2j)|+ 1

2
|(i− 5j) · (−i− 4j)| = 1

2
(5) +

1

2
(19) = 12.
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x

y (3,7)

(4,2)

(2,3)

(1,1)

Figure 4.15: Quadrilateral

Solution 4.7
The tetrahedron is determined by the three vectors with tail at (1, 1, 0) and heads at (3, 2, 1), (2, 4, 1) and
(1, 2, 5). These are 〈2, 1, 1〉, 〈1, 3, 1〉 and 〈0, 1, 5〉. The area of the tetrahedron is one sixth the area of the
parallelogram determined by these vectors. (This is because the area of a pyramid is 1

3
(base)(height). The base

of the tetrahedron is half the area of the parallelogram and the heights are the same. 1
2

1
3

= 1
6

) Thus the area of
a tetrahedron determined by three vectors is 1

6
|a · b× c|. The area of the tetrahedron is

1

6
|〈2, 1, 1〉 · 〈1, 3, 1〉 × 〈1, 2, 5〉| = 1

6
|〈2, 1, 1〉 · 〈13,−4,−1〉| = 7

2

Solution 4.8
The two vectors with tails at (1, 2, 3) and heads at (2, 3, 1) and (3, 1, 2) are parallel to the plane. Taking the cross
product of these two vectors gives us a vector that is orthogonal to the plane.

〈1, 1,−2〉 × 〈2,−1,−1〉 = 〈−3,−3,−3〉

We see that the plane is orthogonal to the vector 〈1, 1, 1〉 and passes through the point (1, 2, 3). The equation of
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the plane is

〈1, 1, 1〉 · 〈x, y, z〉 = 〈1, 1, 1〉 · 〈1, 2, 3〉,

x+ y + z = 6.

Consider the vector with tail at (1, 2, 3) and head at (2, 3, 5). The magnitude of the dot product of this vector
with the unit normal vector gives the distance from the plane.∣∣∣∣〈1, 1, 2〉 · 〈1, 1, 1〉|〈1, 1, 1〉|

∣∣∣∣ =
4√
3

=
4
√

3

3
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Part II

Calculus
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Chapter 5

Differential Calculus

5.1 Limits of Functions

Definition of a Limit. If the value of the function y(x) gets arbitrarily close to η as x approaches the point ξ,
then wee say that the limit of the function as x approaches ξ is equal to η. This is written:

lim
x→ξ

y(x) = η

To make the notion of “arbitrarily close” precise: for any ε > 0 there exists a δ > 0 such that |y(x) − η| < ε for
all 0 < |x − ξ| < δ. That is, there is an interval surrounding the point x = ξ for which the function is within
ε of η. See Figure 5.1. Note that the interval surrounding x = ξ is a deleted neighborhood, that is it does not
contain the point x = ξ. Thus the value function at x = ξ need not be equal to η for the limit to exist. Indeed
the function need not even be defined at x = ξ.

To prove that a function has a limit at a point ξ we first bound |y(x)−η| in terms of δ for values of x satisfying
0 < |x− ξ| < δ. Denote this upper bound by u(δ). Then for an arbitrary ε > 0, we determine a δ > 0 such that
the the upper bound u(δ) and hence |y(x)− η| is less than ε.
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x

y

η+ε

η−ε

ξ−δ ξ+δ

Figure 5.1: The δ neighborhood of x = ξ such that |y(x)− η| < ε.

Example 5.1.1 Show that

lim
x→1

x2 = 1.

Consider any ε > 0. We need to show that there exists a δ > 0 such that |x2 − 1| < ε for all |x− 1| < δ. First we
obtain a bound on |x2 − 1|.

|x2 − 1| = |(x− 1)(x+ 1)|
= |x− 1||x+ 1|
< δ|x+ 1|
= δ|(x− 1) + 2|
< δ(δ + 2)

Now we choose a positive δ such that,

δ(δ + 2) = ε.

We see that

δ =
√

1 + ε− 1,
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is positive and satisfies the criterion that |x2 − 1| < ε for all 0 < |x− 1| < δ. Thus the limit exists.

Note that the value of the function y(ξ) need not be equal to limx→ξ y(x). This is illustrated in Example 5.1.2.

Example 5.1.2 Consider the function

y(x) =

{
1 for x ∈ Z,
0 for x 6∈ Z.

For what values of ξ does limx→ξ y(x) exist?
First consider ξ 6∈ Z. Then there exists an open neighborhood a < ξ < b around ξ such that y(x) is identically

zero for x ∈ (a, b). Then trivially, limx→ξ y(x) = 0.
Now consider ξ ∈ Z. Consider any ε > 0. Then if |x − ξ| < 1 then |y(x) − 0| = 0 < ε. Thus we see that

limx→ξ y(x) = 0.
Thus, regardless of the value of ξ, limx→ξ y(x) = 0.

Left and Right Limits. With the notation limx→ξ+ y(x) we denote the right limit of y(x). This is the limit
as x approaches ξ from above. Mathematically: limx→ξ+ exists if for any ε > 0 there exists a δ > 0 such that
|y(x)− η| < ε for all 0 < ξ − x < δ. The left limit limx→ξ− y(x) is defined analogously.

Example 5.1.3 Consider the function, sinx
|x| , defined for x 6= 0. (See Figure 5.2.) The left and right limits exist

as x approaches zero.

lim
x→0+

sinx

|x|
= 1, lim

x→0−

sinx

|x|
= −1

However the limit,

lim
x→0

sinx

|x|
,

does not exist.
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Figure 5.2: Plot of sin(x)/|x|.

Properties of Limits. Let limx→ξ u(x) and limx→ξ v(x) exist.

• limx→ξ (au(x) + bv(x)) = a limx→ξ u(x) + b limx→ξ v(x).

• limx→ξ (u(x)v(x)) = (limx→ξ u(x)) (limx→ξ v(x)).

• limx→ξ

(
u(x)
v(x)

)
=

limx→ξ u(x)

limx→ξ v(x)
if limx→ξ v(x) 6= 0.

Example 5.1.4 Prove that if limx→ξ u(x) = µ and limx→ξ v(x) = ν exist then

lim
x→ξ

(u(x)v(x)) =

(
lim
x→ξ

u(x)

)(
lim
x→ξ

v(x)

)
.

Assume that µ and ν are nonzero. (The cases where one or both are zero are similar and simpler.)

|u(x)v(x)− µν| = |uv − (u+ µ− u)ν|
= |u(v − ν) + (u− µ)ν|
= |u||v − ν|+ |u− µ||ν|

A sufficient condition for |u(x)v(x)− µν| < ε is

|u− µ| < ε

2|ν|
and |v − ν| < ε

2
(
|µ|+ ε

2|ν|

) .
40



Since the two right sides of the inequalities are positive, there exists δ1 > 0 and δ2 > 0 such that the first inequality
is satisfied for all |x − ξ| < δ1 and the second inequality is satisfied for all |x − ξ| < δ2. By choosing δ to be the
smaller of δ1 and δ2 we see that

|u(x)v(x)− µν| < ε for all |x− ξ| < δ.

Thus

lim
x→ξ

(u(x)v(x)) =

(
lim
x→ξ

u(x)

)(
lim
x→ξ

v(x)

)
= µν.
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Result 5.1.1 Definition of a Limit. The statement:

lim
x→ξ

y(x) = η

means that y(x) gets arbitrarily close to η as x approaches ξ. For any ε > 0 there exists
a δ > 0 such that |y(x)− η| < ε for all x in the neighborhood 0 < |x− ξ| < δ. The left
and right limits,

lim
x→ξ−

y(x) = η and lim
x→ξ+

y(x) = η

denote the limiting value as x approaches ξ respectively from below and above. The
neighborhoods are respectively −δ < x− ξ < 0 and 0 < x− ξ < δ.
Properties of Limits. Let limx→ξ u(x) and limx→ξ v(x) exist.

• limx→ξ (au(x) + bv(x)) = a limx→ξ u(x) + b limx→ξ v(x).

• limx→ξ (u(x)v(x)) = (limx→ξ u(x)) (limx→ξ v(x)).

• limx→ξ

(
u(x)
v(x)

)
=

limx→ξ u(x)
limx→ξ v(x) if limx→ξ v(x) 6= 0.

5.2 Continuous Functions

Definition of Continuity. A function y(x) is said to be continuous at x = ξ if the value of the function is
equal to its limit, that is, limx→ξ y(x) = y(ξ). Note that this one condition is actually the three conditions: y(ξ)
is defined, limx→ξ y(x) exists and limx→ξ y(x) = y(ξ). A function is continuous if it is continuous at each point
in its domain. A function is continuous on the closed interval [a, b] if the function is continuous for each point
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x ∈ (a, b) and limx→a+ y(x) = y(a) and limx→b− y(x) = y(b).

Discontinuous Functions. If a function is not continuous at a point it is called discontinuous at that point.
If limx→ξ y(x) exists but is not equal to y(ξ), then the function has a removable discontinuity. It is thus named
because we could define a continuous function

z(x) =

{
y(x) for x 6= ξ,

limx→ξ y(x) for x = ξ,

to remove the discontinuity. If both the left and right limit of a function at a point exist, but are not equal, then
the function has a jump discontinuity at that point. If either the left or right limit of a function does not exist,
then the function is said to have an infinite discontinuity at that point.

Example 5.2.1 sinx
x

has a removable discontinuity at x = 0. The Heaviside function,

H(x) =


0 for x < 0,

1/2 for x = 0,

1 for x > 0,

has a jump discontinuity at x = 0. 1
x

has an infinite discontinuity at x = 0. See Figure 5.3.

Figure 5.3: A Removable discontinuity, a Jump Discontinuity and an Infinite Discontinuity
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Properties of Continuous Functions.

Arithmetic. If u(x) and v(x) are continuous at x = ξ then u(x) ± v(x) and u(x)v(x) are continuous at x = ξ.
u(x)
v(x)

is continuous at x = ξ if v(ξ) 6= 0.

Function Composition. If u(x) is continuous at x = ξ and v(x) is continuous at x = µ = u(ξ) then u(v(x)) is
continuous at x = ξ. The composition of continuous functions is a continuous function.

Boundedness. A function which is continuous on a closed interval is bounded in that closed interval.

Nonzero in a Neighborhood. If y(ξ) 6= 0 then there exists a neighborhood (ξ− ε, ξ+ ε), ε > 0 of the point ξ such
that y(x) 6= 0 for x ∈ (ξ − ε, ξ + ε).

Intermediate Value Theorem. Let u(x) be continuous on [a, b]. If u(a) ≤ µ ≤ u(b) then there exists ξ ∈ [a, b]
such that u(ξ) = µ. This is known as the intermediate value theorem. A corollary of this is that if u(a) and
u(b) are of opposite sign then u(x) has at least one zero on the interval (a, b).

Maxima and Minima. If u(x) is continuous on [a, b] then u(x) has a maximum and a minimum on [a, b]. That
is, there is at least one point ξ ∈ [a, b] such that u(ξ) ≥ u(x) for all x ∈ [a, b] and there is at least one point
η ∈ [a, b] such that u(η) ≤ u(x) for all x ∈ [a, b].

Piecewise Continuous Functions. A function is piecewise continuous on an interval if the function is bounded
on the interval and the interval can be divided into a finite number of intervals on each of which the function is
continuous. For example, the greatest integer function, bxc, is piecewise continuous. (bxc is defined to the the
greatest integer less than or equal to x.) See Figure 5.4 for graphs of two piecewise continuous functions.

Uniform Continuity. Consider a function f(x) that is continuous on an interval. This means that for any
point ξ in the interval and any positive ε there exists a δ > 0 such that |f(x)−f(ξ)| < ε for all 0 < |x− ξ| < δ. In
general, this value of δ depends on both ξ and ε. If δ can be chosen so it is a function of ε alone and independent
of ξ then the function is said to be uniformly continuous on the interval. A sufficient condition for uniform
continuity is that the function is continuous on a closed interval.
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Figure 5.4: Piecewise Continuous Functions

5.3 The Derivative

Consider a function y(x) on the interval (x . . . x + ∆x) for some ∆x > 0. We define the increment ∆y =
y(x+∆x)−y(x). The average rate of change, (average velocity), of the function on the interval is ∆y

∆x
. The average

rate of change is the slope of the secant line that passes through the points (x, y(x)) and (x + ∆x, y(x + ∆x)).
See Figure 5.5.

y

x

∆y

∆ x

Figure 5.5: The increments ∆x and ∆y.

If the slope of the secant line has a limit as ∆x approaches zero then we call this slope the derivative or
instantaneous rate of change of the function at the point x. We denote the derivative by dy

dx
, which is a nice
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notation as the derivative is the limit of ∆y
∆x

as ∆x→ 0.

dy

dx
≡ lim

∆x→0

y(x+ ∆x)− y(x)

∆x
.

∆x may approach zero from below or above. It is common to denote the derivative dy
dx

by d
dx
y, y′(x), y′ or Dy.

A function is said to be differentiable at a point if the derivative exists there. Note that differentiability implies
continuity, but not vice versa.

Example 5.3.1 Consider the derivative of y(x) = x2 at the point x = 1.

y′(1) ≡ lim
∆x→0

y(1 + ∆x)− y(1)

∆x

= lim
∆x→0

(1 + ∆x)2 − 1

∆x
= lim

∆x→0
(2 + ∆x)

= 2

Figure 5.6 shows the secant lines approaching the tangent line as ∆x approaches zero from above and below.

Example 5.3.2 We can compute the derivative of y(x) = x2 at an arbitrary point x.

d

dx

[
x2
]

= lim
∆x→0

(x+ ∆x)2 − x2

∆x
= lim

∆x→0
(2x+ ∆x)

= 2x
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Figure 5.6: Secant lines and the tangent to x2 at x = 1.

Properties. Let u(x) and v(x) be differentiable. Let a and b be constants. Some fundamental properties of
derivatives are:

d

dx
(au+ bv) = a

du

dx
+ b

dv

dx
Linearity

d

dx
(uv) =

du

dx
v + u

dv

dx
Product Rule

d

dx

(u
v

)
=
v du

dx
− udv

dx

v2
Quotient Rule

d

dx
(ua) = aua−1 du

dx
Power Rule

d

dx
(u(v(x))) =

du

dv

dv

dx
= u′(v(x))v′(x) Chain Rule

These can be proved by using the definition of differentiation.
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Example 5.3.3 Prove the quotient rule for derivatives.

d

dx

(u
v

)
= lim

∆x→0

u(x+∆x)
v(x+∆x)

− u(x)
v(x)

∆x

= lim
∆x→0

u(x+ ∆x)v(x)− u(x)v(x+ ∆x)

∆xv(x)v(x+ ∆x)

= lim
∆x→0

u(x+ ∆x)v(x)− u(x)v(x)− u(x)v(x+ ∆x) + u(x)v(x)

∆xv(x)v(x)

= lim
∆x→0

(u(x+ ∆x)− u(x))v(x)− u(x)(v(x+ ∆x)− v(x))

∆xv2(x)

=
lim∆x→0

u(x+∆x)−u(x)
∆x

v(x)− u(x) lim∆x→0
v(x+∆x)−v(x)

∆x

v2(x)

=
v du

dx
− udv

dx

v2
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Trigonometric Functions. Some derivatives of trigonometric functions are:

d

dx
sinx = cos x

d

dx
arcsinx =

1

(1− x2)1/2

d

dx
cos x = − sinx

d

dx
arccosx = − 1

(1− x2)1/2

d

dx
tanx =

1

cos2 x

d

dx
arctanx =

1

1 + x2

d

dx
ex = ex

d

dx
log x =

1

x
d

dx
sinhx = cosh x

d

dx
arcsinhx =

1

(x2 + 1)1/2

d

dx
cosh x = sinhx

d

dx
arccosh x =

1

(x2 − 1)1/2

d

dx
tanhx =

1

cosh2 x

d

dx
arctanhx =

1

1− x2

Example 5.3.4 We can evaluate the derivative of xx by using the identity ab = eb log a.

d

dx
xx =

d

dx
ex log x

= ex log x d

dx
(x log x)

= xx(1 · log x+ x
1

x
)

= xx(1 + log x)
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Inverse Functions. If we have a function y(x), we can consider x as a function of y, x(y). For example, if
y(x) = 8x3 then x(y) = 2 3

√
y; if y(x) = x+2

x+1
then x(y) = 2−y

y−1
. The derivative of an inverse function is

d

dy
x(y) =

1
dy
dx

.

Example 5.3.5 The inverse function of y(x) = ex is x(y) = log y. We can obtain the derivative of the logarithm
from the derivative of the exponential. The derivative of the exponential is

dy

dx
= ex.

Thus the derivative of the logarithm is

d

dy
log y =

d

dy
x(y) =

1
dy
dx

=
1

ex
=

1

y
.

5.4 Implicit Differentiation

An explicitly defined function has the form y = f(x). A implicitly defined function has the form f(x, y) = 0. A
few examples of implicit functions are x2 + y2 − 1 = 0 and x + y + sin(xy) = 0. Often it is not possible to write
an implicit equation in explicit form. This is true of the latter example above. One can calculate the derivative
of y(x) in terms of x and y even when y(x) is defined by an implicit equation.

Example 5.4.1 Consider the implicit equation

x2 − xy − y2 = 1.

This implicit equation can be solved for the dependent variable.

y(x) =
1

2

(
−x±

√
5x2 − 4

)
.

50



We can differentiate this expression to obtain

y′ =
1

2

(
−1± 5x√

5x2 − 4

)
.

One can obtain the same result without first solving for y. If we differentiate the implicit equation, we obtain

2x− y − xdy

dx
− 2y

dy

dx
= 0.

We can solve this equation for dy
dx

.

dy

dx
=

2x− y
x+ 2y

We can differentiate this expression to obtain the second derivative of y.

d2y

dx2
=

(x+ 2y)(2− y′)− (2x− y)(1 + 2y′)

(x+ 2y)2

=
5(y − xy′)
(x+ 2y)2

Substitute in the expression for y′.

= −10(x2 − xy − y2)

(x+ 2y)2

Use the original implicit equation.

= − 10

(x+ 2y)2
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5.5 Maxima and Minima

A differentiable function is increasing where f ′(x) > 0, decreasing where f ′(x) < 0 and stationary where f ′(x) = 0.
A function f(x) has a relative maxima at a point x = ξ if there exists a neighborhood around ξ such that

f(x) ≤ f(ξ) for x ∈ (x − δ, x + δ), δ > 0. The relative minima is defined analogously. Note that this definition
does not require that the function be differentiable, or even continuous. We refer to relative maxima and minima
collectively are relative extrema.

Relative Extrema and Stationary Points. If f(x) is differentiable and f(ξ) is a relative extrema then x = ξ
is a stationary point, f ′(ξ) = 0. We can prove this using left and right limits. Assume that f(ξ) is a relative
maxima. Then there is a neighborhood (x − δ, x + δ), δ > 0 for which f(x) ≤ f(ξ). Since f(x) is differentiable
the derivative at x = ξ,

f ′(ξ) = lim
∆x→0

f(ξ + ∆x)− f(ξ)

∆x
,

exists. This in turn means that the left and right limits exist and are equal. Since f(x) ≤ f(ξ) for ξ − δ < x < ξ
the left limit is non-positive,

f ′(ξ) = lim
∆x→0−

f(ξ + ∆x)− f(ξ)

∆x
≤ 0.

Since f(x) ≤ f(ξ) for ξ < x < ξ + δ the right limit is nonnegative,

f ′(ξ) = lim
∆x→0+

f(ξ + ∆x)− f(ξ)

∆x
≥ 0.

Thus we have 0 ≤ f ′(ξ) ≤ 0 which implies that f ′(ξ) = 0.

It is not true that all stationary points are relative extrema. That is, f ′(ξ) = 0 does not imply that x = ξ is
an extrema. Consider the function f(x) = x3. x = 0 is a stationary point since f ′(x) = x2, f ′(0) = 0. However,
x = 0 is neither a relative maxima nor a relative minima.
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It is also not true that all relative extrema are stationary points. Consider the function f(x) = |x|. The point
x = 0 is a relative minima, but the derivative at that point is undefined.

First Derivative Test. Let f(x) be differentiable and f ′(ξ) = 0.

• If f ′(x) changes sign from positive to negative as we pass through x = ξ then the point is a relative maxima.

• If f ′(x) changes sign from negative to positive as we pass through x = ξ then the point is a relative minima.

• If f ′(x) is not identically zero in a neighborhood of x = ξ and it does not change sign as we pass through
the point then x = ξ is not a relative extrema.

Example 5.5.1 Consider y = x2 and the point x = 0. The function is differentiable. The derivative, y′ = 2x,
vanishes at x = 0. Since y′(x) is negative for x < 0 and positive for x > 0, the point x = 0 is a relative minima.
See Figure 5.7.

Example 5.5.2 Consider y = cos x and the point x = 0. The function is differentiable. The derivative, y′ =
− sinx is positive for −π < x < 0 and negative for 0 < x < π. Since the sign of y′ goes from positive to negative,
x = 0 is a relative maxima. See Figure 5.7.

Example 5.5.3 Consider y = x3 and the point x = 0. The function is differentiable. The derivative, y′ = 3x2 is
positive for x < 0 and positive for 0 < x. Since y′ is not identically zero and the sign of y′ does not change, x = 0
is not a relative extrema. See Figure 5.7.

Concavity. If the portion of a curve in some neighborhood of a point lies above the tangent line through that
point, the curve is said to be concave upward. If it lies below the tangent it is concave downward. If a function
is twice differentiable then f ′′(x) > 0 where it is concave upward and f ′′(x) < 0 where it is concave downward.
Note that f ′′(x) > 0 is a sufficient, but not a necessary condition for a curve to be concave upward at a point. A
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Figure 5.7: Graphs of x2, cos x and x3.

curve may be concave upward at a point where the second derivative vanishes. A point where the curve changes
concavity is called a point of inflection. At such a point the second derivative vanishes, f ′′(x) = 0. For twice
continuously differentiable functions, f ′′(x) = 0 is a necessary but not a sufficient condition for an inflection point.
The second derivative may vanish at places which are not inflection points. See Figure 5.8.

Figure 5.8: Concave Upward, Concave Downward and an Inflection Point.

Second Derivative Test. Let f(x) be twice differentiable and let x = ξ be a stationary point, f ′(ξ) = 0.

• If f ′′(ξ) < 0 then the point is a relative maxima.

• If f ′′(ξ) > 0 then the point is a relative minima.

• If f ′′(ξ) = 0 then the test fails.
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Example 5.5.4 Consider the function f(x) = cos x and the point x = 0. The derivatives of the function are
f ′(x) = − sinx, f ′′(x) = − cos x. The point x = 0 is a stationary point, f ′(0) = − sin(0) = 0. Since the second
derivative is negative there, f ′′(0) = − cos(0) = −1, the point is a relative maxima.

Example 5.5.5 Consider the function f(x) = x4 and the point x = 0. The derivatives of the function are
f ′(x) = 4x3, f ′′(x) = 12x2. The point x = 0 is a stationary point. Since the second derivative also vanishes at
that point the second derivative test fails. One must use the first derivative test to determine that x = 0 is a
relative minima.

5.6 Mean Value Theorems

Rolle’s Theorem. If f(x) is continuous in [a, b], differentiable in (a, b) and f(a) = f(b) = 0 then there exists
a point ξ ∈ (a, b) such that f ′(ξ) = 0. See Figure 5.9.

Figure 5.9: Rolle’s Theorem.

To prove this we consider two cases. First we have the trivial case that f(x) ≡ 0. If f(x) is not identically
zero then continuity implies that it must have a nonzero relative maxima or minima in (a, b). Let x = ξ be one
of these relative extrema. Since f(x) is differentiable, x = ξ must be a stationary point, f ′(ξ) = 0.
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Theorem of the Mean. If f(x) is continuous in [a, b] and differentiable in (a, b) then there exists a point x = ξ
such that

f ′(ξ) =
f(b)− f(a)

b− a
.

That is, there is a point where the instantaneous velocity is equal to the average velocity on the interval.

Figure 5.10: Theorem of the Mean.

We prove this theorem by applying Rolle’s theorem. Consider the new function

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

Note that g(a) = g(b) = 0, so it satisfies the conditions of Rolle’s theorem. There is a point x = ξ such that
g′(ξ) = 0. We differentiate the expression for g(x) and substitute in x = ξ to obtain the result.

g′(x) = f ′(x)− f(b)− f(a)

b− a

g′(ξ) = f ′(ξ)− f(b)− f(a)

b− a
= 0

f ′(ξ) =
f(b)− f(a)

b− a
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Generalized Theorem of the Mean. If f(x) and g(x) are continuous in [a, b] and differentiable in (a, b), then
there exists a point x = ξ such that

f ′(ξ)

g′(ξ)
=
f(b)− f(a)

g(b)− g(a)
.

We have assumed that g(a) 6= g(b) so that the denominator does not vanish and that f ′(x) and g′(x) are not
simultaneously zero which would produce an indeterminate form. Note that this theorem reduces to the regular
theorem of the mean when g(x) = x. The proof of the theorem is similar to that for the theorem of the mean.

Taylor’s Theorem of the Mean. If f(x) is n + 1 times continuously differentiable in (a, b) then there exists
a point x = ξ ∈ (a, b) such that

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + · · ·+ (b− a)n

n!
f (n)(a) +

(b− a)n+1

(n+ 1)!
f (n+1)(ξ). (5.1)

For the case n = 0, the formula is

f(b) = f(a) + (b− a)f ′(ξ),

which is just a rearrangement of the terms in the theorem of the mean,

f ′(ξ) =
f(b)− f(a)

b− a
.

5.6.1 Application: Using Taylor’s Theorem to Approximate Functions.

One can use Taylor’s theorem to approximate functions with polynomials. Consider an infinitely differentiable
function f(x) and a point x = a. Substituting x for b into Equation 5.1 we obtain,

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) +

(x− a)n+1

(n+ 1)!
f (n+1)(ξ).
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If the last term in the sum is small then we can approximate our function with an nth order polynomial.

f(x) ≈ f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a)

The last term in Equation 5.6.1 is called the remainder or the error term,

Rn =
(x− a)n+1

(n+ 1)!
f (n+1)(ξ).

Since the function is infinitely differentiable, f (n+1)(ξ) exists and is bounded. Therefore we note that the error
must vanish as x→ 0 because of the (x− a)n+1 factor. We therefore suspect that our approximation would be a
good one if x is close to a. Also note that n! eventually grows faster than (x− a)n,

lim
n→∞

(x− a)n

n!
= 0.

So if the derivative term, f (n+1)(ξ), does not grow to quickly, the error for a certain value of x will get smaller
with increasing n and the polynomial will become a better approximation of the function. (It is also possible that
the derivative factor grows very quickly and the approximation gets worse with increasing n.)

Example 5.6.1 Consider the function f(x) = ex. We want a polynomial approximation of this function near
the point x = 0. Since the derivative of ex is ex, the value of all the derivatives at x = 0 is f (n)(0) = e0 = 1.
Taylor’s theorem thus states that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
eξ,

for some ξ ∈ (0, x). The first few polynomial approximations of the exponent about the point x = 0 are

f1(x) = 1

f2(x) = 1 + x

f3(x) = 1 + x+
x2

2

f4(x) = 1 + x+
x2

2
+
x3

6
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The four approximations are graphed in Figure 5.11.
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Figure 5.11: Four Finite Taylor Series Approximations of ex

Note that for the range of x we are looking at, the approximations become more accurate as the number of
terms increases.

Example 5.6.2 Consider the function f(x) = cos x. We want a polynomial approximation of this function near
the point x = 0. The first few derivatives of f are

f(x) = cos x

f ′(x) = − sinx

f ′′(x) = − cos x

f ′′′(x) = sinx

f (4)(x) = cos x

It’s easy to pick out the pattern here,

f (n)(x) =

{
(−1)n/2 cos x for even n,

(−1)(n+1)/2 sinx for odd n.

Since cos(0) = 1 and sin(0) = 0 the n-term approximation of the cosine is,

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)2(n−1) x2(n−1)

(2(n− 1))!
+

x2n

(2n)!
cos ξ.
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Here are graphs of the one, two, three and four term approximations.
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Figure 5.12: Taylor Series Approximations of cosx

Note that for the range of x we are looking at, the approximations become more accurate as the number of
terms increases. Consider the ten term approximation of the cosine about x = 0,

cosx = 1− x2

2!
+
x4

4!
− · · · − x18

18!
+
x20

20!
cos ξ.

Note that for any value of ξ, | cos ξ| ≤ 1. Therefore the absolute value of the error term satisfies,

|R| =
∣∣∣∣x20

20!
cos ξ

∣∣∣∣ ≤ |x|20

20!
.

x20/20! is plotted in Figure 5.13.

Note that the error is very small for x < 6, fairly small but non-negligible for x ≈ 7 and large for x > 8. The
ten term approximation of the cosine, plotted below, behaves just we would predict.

The error is very small until it becomes non-negligible at x ≈ 7 and large at x ≈ 8.

Example 5.6.3 Consider the function f(x) = log x. We want a polynomial approximation of this function near
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Figure 5.13: Plot of x20/20!.

-10 -5 5 10

-2

-1.5

-1

-0.5

0.5

1

Figure 5.14: Ten Term Taylor Series Approximation of cosx

the point x = 1. The first few derivatives of f are

f(x) = log x

f ′(x) =
1

x

f ′′(x) = − 1

x2

f ′′′(x) =
2

x3

f (4)(x) = − 3

x461



The derivatives evaluated at x = 1 are

f(0) = 0, f (n)(0) = (−1)n−1(n− 1)!, for n ≥ 1.

By Taylor’s theorem of the mean we have,

log x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·+ (−1)n−1 (x− 1)n

n
+ (−1)n

(x− 1)n+1

n+ 1

1

ξn+1
.

Below are plots of the 2, 4, 10 and 50 term approximations.
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Figure 5.15: The 2, 4, 10 and 50 Term Approximations of log x

Note that the approximation gets better on the interval (0, 2) and worse outside this interval as the number
of terms increases. The Taylor series converges to log x only on this interval.

5.6.2 Application: Finite Difference Schemes

Example 5.6.4 Suppose you sample a function at the discrete points n∆x, n ∈ Z. In Figure 5.16 we sample the
function f(x) = sinx on the interval [−4, 4] with ∆x = 1/4 and plot the data points.

We wish to approximate the derivative of the function on the grid points using only the value of the function
on those discrete points. From the definition of the derivative, one is lead to the formula

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
. (5.2)
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Figure 5.16: Sampling of sinx

Taylor’s theorem states that

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(ξ).

Substituting this expression into our formula for approximating the derivative we obtain

f(x+ ∆x)− f(x)

∆x
=
f(x) + ∆xf ′(x) + ∆x2

2
f ′′(ξ)− f(x)

∆x
= f ′(x) +

∆x

2
f ′′(ξ).

Thus we see that the error in our approximation of the first derivative is ∆x
2
f ′′(ξ). Since the error has a linear

factor of ∆x, we call this a first order accurate method. Equation 5.2 is called the forward difference scheme for
calculating the first derivative. Figure 5.17 shows a plot of the value of this scheme for the function f(x) = sin x
and ∆x = 1/4. The first derivative of the function f ′(x) = cos x is shown for comparison.

Another scheme for approximating the first derivative is the centered difference scheme,

f ′(x) ≈ f(x+ ∆x)− f(x−∆x)

2∆x
.
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Figure 5.17: The Forward Difference Scheme Approximation of the Derivative

Expanding the numerator using Taylor’s theorem,

f(x+ ∆x)− f(x−∆x)

2∆x

=
f(x) + ∆xf ′(x) + ∆x2

2
f ′′(x) + ∆x3

6
f ′′′(ξ)− f(x) + ∆xf ′(x)− ∆x2

2
f ′′(x) + ∆x3

6
f ′′′(η)

2∆x

= f ′(x) +
∆x2

12
(f ′′′(ξ) + f ′′′(η)).

The error in the approximation is quadratic in ∆x. Therefore this is a second order accurate scheme. Below is a
plot of the derivative of the function and the value of this scheme for the function f(x) = sinx and ∆x = 1/4.

Notice how the centered difference scheme gives a better approximation of the derivative than the forward
difference scheme.

5.7 L’Hospital’s Rule

Some singularities are easy to diagnose. Consider the function cosx
x

at the point x = 0. The function evaluates
to 1

0
and is thus discontinuous at that point. Since the numerator and denominator are continuous functions and
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Figure 5.18: Centered Difference Scheme Approximation of the Derivative

the denominator vanishes while the numerator does not, the left and right limits as x → 0 do not exist. Thus
the function has an infinite discontinuity at the point x = 0. More generally, a function which is composed of
continuous functions and evaluates to a

0
at a point where a 6= 0 must have an infinite discontinuity there.

Other singularities require more analysis to diagnose. Consider the functions sinx
x

, sinx
|x| and sinx

1−cosx
at the point

x = 0. All three functions evaluate to 0
0

at that point, but have different kinds of singularities. The first has
a removable discontinuity, the second has a finite discontinuity and the third has an infinite discontinuity. See
Figure 5.19.

An expression that evaluates to 0
0
, ∞∞ , 0 · ∞, ∞ −∞, 1∞, 00 or ∞0 is called an indeterminate. A function

f(x) which is indeterminate at the point x = ξ is singular at that point. The singularity may be a removable
discontinuity, a finite discontinuity or an infinite discontinuity depending on the behavior of the function around
that point. If limx→ξ f(x) exists, then the function has a removable discontinuity. If the limit does not exist, but
the left and right limits do exist, then the function has a finite discontinuity. If either the left or right limit does
not exist then the function has an infinite discontinuity.
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Figure 5.19: The functions sinx
x

, sinx
|x| and sinx

1−cosx
.

L’Hospital’s Rule. Let f(x) and g(x) be differentiable and f(ξ) = g(ξ) = 0. Further, let g(x) be nonzero in a
deleted neighborhood of x = ξ, (g(x) 6= 0 for x ∈ 0 < |x− ξ| < δ). Then

lim
x→ξ

f(x)

g(x)
= lim

x→ξ

f ′(x)

g′(x)
.

To prove this, we note that f(ξ) = g(ξ) = 0 and apply the generalized theorem of the mean. Note that

f(x)

g(x)
=
f(x)− f(ξ)

g(x)− g(ξ)
=
f ′(η)

g′(η)

for some η between ξ and x. Thus

lim
x→ξ

f(x)

g(x)
= lim

η→ξ

f ′(η)

g′(η)
= lim

x→ξ

f ′(x)

g′(x)

provided that the limits exist.
L’Hospital’s Rule is also applicable when both functions tend to infinity instead of zero or when the limit

point, ξ, is at infinity. It is also valid for one-sided limits.
L’Hospital’s rule is directly applicable to the indeterminate forms 0

0
and ∞

∞ .

66



Example 5.7.1 Consider the three functions sinx
x

, sinx
|x| and sinx

1−cosx
at the point x = 0.

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1

Thus sinx
x

has a removable discontinuity at x = 0.

lim
x→0+

sinx

|x|
= lim

x→0+

sinx

x
= 1

lim
x→0−

sinx

|x|
= lim

x→0−

sinx

−x
= −1

Thus sinx
|x| has a finite discontinuity at x = 0.

lim
x→0

sinx

1− cosx
= lim

x→0

cosx

sinx
=

1

0
=∞

Thus sinx
1−cosx

has an infinite discontinuity at x = 0.

Example 5.7.2 Let a and d be nonzero.

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
= lim

x→∞

2ax+ b

2dx+ e

= lim
x→∞

2a

2d

=
a

d
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Example 5.7.3 Consider

lim
x→0

cos x− 1

x sinx
.

This limit is an indeterminate of the form 0
0
. Applying L’Hospital’s rule we see that limit is equal to

lim
x→0

− sinx

x cos x+ sinx
.

This limit is again an indeterminate of the form 0
0
. We apply L’Hospital’s rule again.

lim
x→0

− cos x

−x sinx+ 2 cos x
= −1

2

Thus the value of the original limit is −1
2
. We could also obtain this result by expanding the functions in Taylor

series.

lim
x→0

cos x− 1

x sinx
= lim

x→0

(
1− x2

2
+ x4

24
− · · ·

)
− 1

x
(
x− x3

6
+ x5

120
− · · ·

)
= lim

x→0

−x2

2
+ x4

24
− · · ·

x2 − x4

6
+ x6

120
− · · ·

= lim
x→0

−1
2

+ x2

24
− · · ·

1− x2

6
+ x4

120
− · · ·

= −1

2

We can apply L’Hospital’s Rule to the indeterminate forms 0 · ∞ and ∞−∞ by rewriting the expression in
a different form, (perhaps putting the expression over a common denominator). If at first you don’t succeed, try,
try again. You may have to apply L’Hospital’s rule several times to evaluate a limit.
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Example 5.7.4

lim
x→0

(
cotx− 1

x

)
= lim

x→0

x cos x− sinx

x sinx

= lim
x→0

cosx− x sinx− cos x

sinx+ x cosx

= lim
x→0

−x sinx

sinx+ x cosx

= lim
x→0

−x cosx− sinx

cosx+ cosx− x sinx

= 0

You can apply L’Hospital’s rule to the indeterminate forms 1∞, 00 or ∞0 by taking the logarithm of the
expression.

Example 5.7.5 Consider the limit,

lim
x→0

xx,

which gives us the indeterminate form 00. The logarithm of the expression is

log(xx) = x log x.

As x→ 0 we now have the indeterminate form 0 ·∞. By rewriting the expression, we can apply L’Hospital’s rule.

lim
x→0

log x

1/x
= lim

x→0

1/x

−1/x2

= lim
x→0

(−x)

= 0

Thus the original limit is

lim
x→0

xx = e0 = 1.
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5.8 Exercises

Limits and Continuity

Exercise 5.1
Does

lim
x→0

sin

(
1

x

)
exist?

Exercise 5.2
Is the function sin(1/x) continuous in the open interval (0, 1)? Is there a value of a such that the function defined
by

f(x) =

{
sin(1/x) for x 6= 0,

a for x = 0

is continuous on the closed interval [0, 1]?

Exercise 5.3
Is the function sin(1/x) uniformly continuous in the open interval (0, 1)?

Exercise 5.4
Are the functions

√
x and 1

x
uniformly continuous on the interval (0, 1)?

Exercise 5.5
Prove that a function which is continuous on a closed interval is uniformly continuous on that interval.
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Definition of Differentiation

Exercise 5.6 (mathematica/calculus/differential/definition.nb)
Use the definition of differentiation to prove the following identities where f(x) and g(x) are differentiable functions
and n is a positive integer.

a. d
dx

(xn) = nxn−1, (I suggest that you use Newton’s binomial formula.)

b. d
dx

(f(x)g(x)) = f dg
dx

+ g df
dx

c. d
dx

(sinx) = cos x. (You’ll need to use some trig identities.)

d. d
dx

(f(g(x))) = f ′(g(x))g′(x)

Rules of Differentiation

Exercise 5.7 (mathematica/calculus/differential/rules.nb)
Find the first derivatives of the following:

a. x sin(cosx)

b. f(cos(g(x)))

c. 1
f(log x)

d. xx
x

e. |x| sin |x|

Exercise 5.8 (mathematica/calculus/differential/rules.nb)
Using

d

dx
sinx = cos x and

d

dx
tanx =

1

cos2 x

find the derivatives of arcsinx and arctanx.
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Implicit Differentiation

Exercise 5.9 (mathematica/calculus/differential/implicit.nb)
Find y′(x), given that x2 + y2 = 1. What is y′(1/2)?

Exercise 5.10 (mathematica/calculus/differential/implicit.nb)
Find y′(x) and y′′(x), given that x2 − xy + y2 = 3.

Maxima and Minima

Exercise 5.11 (mathematica/calculus/differential/maxima.nb)
Identify any maxima and minima of the following functions.

a. f(x) = x(12− 2x)2.

b. f(x) = (x− 2)2/3.

Exercise 5.12 (mathematica/calculus/differential/maxima.nb)
A cylindrical container with a circular base and an open top is to hold 64 cm3. Find its dimensions so that the
surface area of the cup is a minimum.

Mean Value Theorems

Exercise 5.13
Prove the generalized theorem of the mean. If f(x) and g(x) are continuous in [a, b] and differentiable in (a, b),
then there exists a point x = ξ such that

f ′(ξ)

g′(ξ)
=
f(b)− f(a)

g(b)− g(a)
.

Assume that g(a) 6= g(b) so that the denominator does not vanish and that f ′(x) and g′(x) are not simultaneously
zero which would produce an indeterminate form.
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Exercise 5.14 (mathematica/calculus/differential/taylor.nb)
Find a polynomial approximation of sinx on the interval [−1, 1] that has a maximum error of 1

1000
. Don’t use any

more terms that you need to. Prove the error bound. Use your polynomial to approximate sin 1.

Exercise 5.15 (mathematica/calculus/differential/taylor.nb)
You use the formula f(x+∆x)−2f(x)+f(x−∆x)

∆x2 to approximate f ′′(x). What is the error in this approximation?

Exercise 5.16
The formulas f(x+∆x)−f(x)

∆x
and f(x+∆x)−f(x−∆x)

2∆x
are first and second order accurate schemes for approximating

the first derivative f ′(x). Find a couple other schemes that have successively higher orders of accuracy. Would
these higher order schemes actually give a better approximation of f ′(x)? Remember that ∆x is small, but not
infinitesimal.

L’Hospital’s Rule

Exercise 5.17 (mathematica/calculus/differential/lhospitals.nb)
Evaluate the following limits.

a. limx→0
x−sinx
x3

b. limx→0

(
csc x− 1

x

)
c. limx→+∞

(
1 + 1

x

)x
d. limx→0

(
csc2 x− 1

x2

)
. (First evaluate using L’Hospital’s rule then using a Taylor series expansion. You will

find that the latter method is more convenient.)

Exercise 5.18 (mathematica/calculus/differential/lhospitals.nb)
Evaluate the following limits,

lim
x→∞

xa/x, lim
x→∞

(
1 +

a

x

)bx
,
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where a and b are constants.

74



5.9 Hints

Limits and Continuity

Hint 5.1
Apply the ε, δ definition of a limit.

Hint 5.2
The composition of continuous functions is continuous. Apply the definition of continuity and look at the point
x = 0.

Hint 5.3
Note that for x1 = 1

(n−1/2)π
and x2 = 1

(n+1/2)π
where n ∈ Z we have | sin(1/x1)− sin(1/x2)| = 2.

Hint 5.4
Note that the function

√
x+ δ −

√
x is a decreasing function of x and an increasing function of δ for positive x

and δ. Bound this function for fixed δ.
Consider any positive δ and ε. For what values of x is

1

x
− 1

x+ δ
> ε.

Hint 5.5
Let the function f(x) be continuous on a closed interval. Consider the function

e(x, δ) = sup
|ξ−x|<δ

|f(ξ)− f(x)|.

Bound e(x, δ) with a function of δ alone.
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Definition of Differentiation

Hint 5.6
a. Newton’s binomial formula is

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk = an + an−1b+

n(n− 1)

2
an−2b2 + · · ·+ nabn−1 + bn.

Recall that the binomial coefficient is (
n

k

)
=

n!

(n− k)!k!
.

b. Note that

d

dx
(f(x)g(x)) = lim

∆x→0

[
f(x+ ∆x)g(x+ ∆x)− f(x)g(x)

∆x

]
and

g(x)f ′(x) + f(x)g′(x) = g(x) lim
∆x→0

[
f(x+ ∆x)− f(x)

∆x

]
+ f(x) lim

∆x→0

[
g(x+ ∆x)− g(x)

∆x

]
.

Fill in the blank.

c. First prove that

lim
θ→0

sin θ

θ
= 1.

and

lim
θ→0

[
cos θ − 1

θ

]
= 0.
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d. Let u = g(x). Consider a nonzero increment ∆x, which induces the increments ∆u and ∆f . By definition,

∆f = f(u+ ∆u)− f(u), ∆u = g(x+ ∆x)− g(x),

and ∆f,∆u→ 0 as ∆x→ 0. If ∆u 6= 0 then we have

ε =
∆f

∆u
− df

du
→ 0 as ∆u→ 0.

If ∆u = 0 for some values of ∆x then ∆f also vanishes and we define ε = 0 for theses values. In either case,

∆y =
df

du
∆u+ ε∆u.

Continue from here.

Rules of Differentiation

Hint 5.7
a. Use the product rule and the chain rule.

b. Use the chain rule.

c. Use the quotient rule and the chain rule.

d. Use the identity ab = eb log a.

e. For x > 0, the expression is x sinx; for x < 0, the expression is (−x) sin(−x) = x sinx. Do both cases.

Hint 5.8
Use that x′(y) = 1/y′(x) and the identities cosx = (1− sin2 x)1/2 and cos(arctan x) = 1

(1+x2)1/2 .

Implicit Differentiation

77



Hint 5.9
Differentiating the equation

x2 + [y(x)]2 = 1

yields

2x+ 2y(x)y′(x) = 0.

Solve this equation for y′(x) and write y(x) in terms of x.

Hint 5.10
Differentiate the equation and solve for y′(x) in terms of x and y(x). Differentiate the expression for y′(x) to
obtain y′′(x). You’ll use that

x2 − xy(x) + [y(x)]2 = 3

Maxima and Minima

Hint 5.11
a. Use the second derivative test.

b. The function is not differentiable at the point x = 2 so you can’t use a derivative test at that point.

Hint 5.12
Let r be the radius and h the height of the cylinder. The volume of the cup is πr2h = 64. The radius and height
are related by h = 64

πr2 . The surface area of the cup is f(r) = πr2 + 2πrh = πr2 + 128
r

. Use the second derivative
test to find the minimum of f(r).

Mean Value Theorems

Hint 5.13
The proof is analogous to the proof of the theorem of the mean.
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Hint 5.14
The first few terms in the Taylor series of sin(x) about x = 0 are

sin(x) = x− x3

6
+

x5

120
− x7

5040
+

x9

362880
+ · · · .

When determining the error, use the fact that | cosx0| ≤ 1 and |xn| ≤ 1 for x ∈ [−1, 1].

Hint 5.15
The terms in the approximation have the Taylor series,

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(x) +

∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x1),

f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x2),

where x ≤ x1 ≤ x+ ∆x and x−∆x ≤ x2 ≤ x.

Hint 5.16

L’Hospital’s Rule

Hint 5.17
a. Apply L’Hospital’s rule three times.

b. You can write the expression as

x− sinx

x sinx
.

c. Find the limit of the logarithm of the expression.
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d. It takes four successive applications of L’Hospital’s rule to evaluate the limit.

For the Taylor series expansion method,

csc2 x− 1

x2
=
x2 − sin2 x

x2 sin2 x
=
x2 − (x− x3/6 +O(x5))2

x2(x+O(x3))2

Hint 5.18
To evaluate the limits use the identity ab = eb log a and then apply L’Hospital’s rule.
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5.10 Solutions

Limits and Continuity

Solution 5.1
Note that in any open neighborhood of zero, (−δ, δ), the function sin(1/x) takes on all values in the interval
[−1, 1]. Thus if we choose a positive ε such that ε < 1 then there is no value of η for which | sin(1/x)− η| < ε for
all x ∈ (−ε, ε). Thus the limit does not exist.

Solution 5.2
Since 1

x
is continuous in the interval (0, 1) and the function sin(x) is continuous everywhere, the composition

sin(1/x) is continuous in the interval (0, 1).

Since limx→0 sin(1/x) does not exist, there is no way of defining sin(1/x) at x = 0 to produce a function that
is continuous in [0, 1].

Solution 5.3
Note that for x1 = 1

(n−1/2)π
and x2 = 1

(n+1/2)π
where n ∈ Z we have | sin(1/x1) − sin(1/x2)| = 2. Thus for any

0 < ε < 2 there is no value of δ > 0 such that | sin(1/x1)− sin(1/x2)| < ε for all x1, x2 ∈ (0, 1) and |x1 − x2| < δ.
Thus sin(1/x) is not uniformly continuous in the open interval (0, 1).

Solution 5.4
First consider the function

√
x. Note that the function

√
x+ δ−

√
x is a decreasing function of x and an increasing

function of δ for positive x and δ. Thus for any fixed δ, the maximum value of
√
x+ δ −

√
x is bounded by

√
δ.

Therefore on the interval (0, 1), a sufficient condition for |
√
x −
√
ξ| < ε is |x − ξ| < ε2. The function

√
x is

uniformly continuous on the interval (0, 1).

Consider any positive δ and ε. Note that

1

x
− 1

x+ δ
> ε
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for

x <
1

2

(√
δ2 +

4δ

ε
− δ

)
.

Thus there is no value of δ such that ∣∣∣∣1x − 1

ξ

∣∣∣∣ < ε

for all |x− ξ| < δ. The function 1
x

is not uniformly continuous on the interval (0, 1).

Solution 5.5
Let the function f(x) be continuous on a closed interval. Consider the function

e(x, δ) = sup
|ξ−x|<δ

|f(ξ)− f(x)|.

Since f(x) is continuous, e(x, δ) is a continuous function of x on the same closed interval. Since continuous
functions on closed intervals are bounded, there is a continuous, increasing function ε(δ) satisfying,

e(x, δ) ≤ ε(δ),

for all x in the closed interval. Since ε(δ) is continuous and increasing, it has an inverse δ(ε). Now note that
|f(x) − f(ξ)| < ε for all x and ξ in the closed interval satisfying |x − ξ| < δ(ε). Thus the function is uniformly
continuous in the closed interval.

Definition of Differentiation
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Solution 5.6
a.

d

dx
(xn) = lim

∆x→0

[
(x+ ∆x)n − xn

∆x

]

= lim
∆x→0


(
xn + nxn−1∆x+ n(n−1)

2
xn−2∆x2 + · · ·+ ∆xn

)
− xn

∆x


= lim

∆x→0

[
nxn−1 +

n(n− 1)

2
xn−2∆x+ · · ·+ ∆xn−1

]
= nxn−1

d

dx
(xn) = nxn−1

b.

d

dx
(f(x)g(x)) = lim

∆x→0

[
f(x+ ∆x)g(x+ ∆x)− f(x)g(x)

∆x

]
= lim

∆x→0

[
[f(x+ ∆x)g(x+ ∆x)− f(x)g(x+ ∆x)] + [f(x)g(x+ ∆x)− f(x)g(x)]

∆x

]
= lim

∆x→0
[g(x+ ∆x)] lim

∆x→0

[
f(x+ ∆x)− f(x)

∆x

]
+ f(x) lim

∆x→0

[
g(x+ ∆x)− g(x)

∆x

]
= g(x)f ′(x) + f(x)g′(x)

d

dx
(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x)
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c. Consider a right triangle with hypotenuse of length 1 in the first quadrant of the plane. Label the vertices
A, B, C, in clockwise order, starting with the vertex at the origin. The angle of A is θ. The length of a
circular arc of radius cos θ that connects C to the hypotenuse is θ cos θ. The length of the side BC is sin θ.
The length of a circular arc of radius 1 that connects B to the x axis is θ. (See Figure 5.20.)

B

θ

sin

A
C

θ

θθcosθ

Figure 5.20:

Considering the length of these three curves gives us the inequality:

θ cos θ ≤ sin θ ≤ θ.

Dividing by θ,

cos θ ≤ sin θ

θ
≤ 1.

Taking the limit as θ → 0 gives us

lim
θ→0

sin θ

θ
= 1.
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One more little tidbit we’ll need to know is

lim
θ→0

[
cos θ − 1

θ

]
= lim

θ→0

[
cos θ − 1

θ

cos θ + 1

cos θ + 1

]
= lim

θ→0

[
cos2 θ − 1

θ(cos θ + 1)

]
= lim

θ→0

[
− sin2 θ

θ(cos θ + 1)

]
= lim

θ→0

[
− sin θ

θ

]
lim
θ→0

[
sin θ

(cos θ + 1)

]
= (−1)

(
0

2

)
= 0.

Now we’re ready to find the derivative of sinx.

d

dx
(sinx) = lim

∆x→0

[
sin(x+ ∆x)− sinx

∆x

]
= lim

∆x→0

[
cos x sin ∆x+ sinx cos ∆x− sinx

∆x

]
= cos x lim

∆x→0

[
sin ∆x

∆x

]
+ sinx lim

∆x→0

[
cos ∆x− 1

∆x

]
= cos x

d

dx
(sinx) = cos x

d. Let u = g(x). Consider a nonzero increment ∆x, which induces the increments ∆u and ∆f . By definition,

∆f = f(u+ ∆u)− f(u), ∆u = g(x+ ∆x)− g(x),
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and ∆f,∆u→ 0 as ∆x→ 0. If ∆u 6= 0 then we have

ε =
∆f

∆u
− df

du
→ 0 as ∆u→ 0.

If ∆u = 0 for some values of ∆x then ∆f also vanishes and we define ε = 0 for theses values. In either case,

∆y =
df

du
∆u+ ε∆u.

We divide this equation by ∆x and take the limit as ∆x→ 0.

df

dx
= lim

∆x→0

∆f

∆x

= lim
∆x→0

(
df

du

∆u

∆x
+ ε

∆u

∆x

)
=

(
df

du

)(
lim

∆x→0

∆f

∆x

)
+
(

lim
∆x→0

ε
)(

lim
∆x→0

∆u

∆x

)
=

df

du

du

dx
+ (0)

(
du

dx

)
=

df

du

du

dx

Thus we see that

d

dx
(f(g(x))) = f ′(g(x))g′(x).

Rules of Differentiation
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Solution 5.7
a.

d

dx
[x sin(cosx)] =

d

dx
[x] sin(cosx) + x

d

dx
[sin(cosx)]

= sin(cosx) + x cos(cos x)
d

dx
[cosx]

= sin(cosx)− x cos(cos x) sinx

d

dx
[x sin(cosx)] = sin(cosx)− x cos(cos x) sinx

b.

d

dx
[f(cos(g(x)))] = f ′(cos(g(x)))

d

dx
[cos(g(x))]

= −f ′(cos(g(x))) sin(g(x))
d

dx
[g(x)]

= −f ′(cos(g(x))) sin(g(x))g′(x)

d

dx
[f(cos(g(x)))] = −f ′(cos(g(x))) sin(g(x))g′(x)

c.

d

dx

[
1

f(log x)

]
= −

d
dx

[f(log x)]

[f(log x)]2

= −
f ′(log x) d

dx
[log x]

[f(log x)]2

= − f ′(log x)

x[f(log x)]2
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d

dx

[
1

f(log x)

]
= − f ′(log x)

x[f(log x)]2

d. First we write the expression in terms exponentials and logarithms,

xx
x

= xexp(x log x) = exp(exp(x log x) log x).

Then we differentiate using the chain rule and the product rule.

d

dx
exp(exp(x log x) log x) = exp(exp(x log x) log x)

d

dx
(exp(x log x) log x)

= xx
x

(
exp(x log x)

d

dx
(x log x) log x+ exp(x log x)

1

x

)
= xx

x

(
xx(log x+ x

1

x
) log x+ x−1 exp(x log x)

)
= xx

x (
xx(log x+ 1) log x+ x−1xx

)
= xx

x+x
(
x−1 + log x+ log2 x

)
d

dx
xx

x

= xx
x+x
(
x−1 + log x+ log2 x

)
e. For x > 0, the expression is x sinx; for x < 0, the expression is (−x) sin(−x) = x sinx. Thus we see that

|x| sin |x| = x sinx.

The first derivative of this is

sinx+ x cosx.

d

dx
(|x| sin |x|) = sinx+ x cos x
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Solution 5.8
Let y(x) = sin x. Then y′(x) = cos x.

d

dy
arcsin y =

1

y′(x)

=
1

cosx

=
1

(1− sin2 x)1/2

=
1

(1− y2)1/2

d

dx
arcsinx =

1

(1− x2)1/2

Let y(x) = tanx. Then y′(x) = 1/ cos2 x.

d

dy
arctan y =

1

y′(x)

= cos2 x

= cos2(arctan y)

=

(
1

(1 + y2)1/2

)
=

1

1 + y2

d

dx
arctanx =

1

1 + x2
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Implicit Differentiation

Solution 5.9
Differentiating the equation

x2 + [y(x)]2 = 1

yields

2x+ 2y(x)y′(x) = 0.

We can solve this equation for y′(x).

y′(x) = − x

y(x)

To find y′(1/2) we need to find y(x) in terms of x.

y(x) = ±
√

1− x2

Thus y′(x) is

y′(x) = ± x√
1− x2

.

y′(1/2) can have the two values:

y′
(

1

2

)
= ± 1√

3
.

Solution 5.10
Differentiating the equation

x2 − xy(x) + [y(x)]2 = 3
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yields

2x− y(x)− xy′(x) + 2y(x)y′(x) = 0.

Solving this equation for y′(x)

y′(x) =
y(x)− 2x

2y(x)− x
.

Now we differentiate y′(x) to get y′′(x).

y′′(x) =
(y′(x)− 2)(2y(x)− x)− (y(x)− 2x)(2y′(x)− 1)

(2y(x)− x)2
,

y′′(x) = 3
xy′(x)− y(x)

(2y(x)− x)2
,

y′′(x) = 3
xy(x)−2x

2y(x)−x − y(x)

(2y(x)− x)2
,

y′′(x) = 3
x(y(x)− 2x)− y(x)(2y(x)− x)

(2y(x)− x)3
,

y′′(x) = −6
x2 − xy(x) + [y(x)]2

(2y(x)− x)3
,

y′′(x) =
−18

(2y(x)− x)3
,
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Maxima and Minima

Solution 5.11
a.

f ′(x) = (12− 2x)2 + 2x(12− 2x)(−2)

= 4(x− 6)2 + 8x(x− 6)

= 12(x− 2)(x− 6)

There are critical points at x = 2 and x = 6.

f ′′(x) = 12(x− 2) + 12(x− 6) = 24(x− 4)

Since f ′′(2) = −48 < 0, x = 2 is a local maximum. Since f ′′(6) = 48 > 0, x = 6 is a local minimum.

b.

f ′(x) =
2

3
(x− 2)−1/3

The first derivative exists and is nonzero for x 6= 2. At x = 2, the derivative does not exist and thus x = 2
is a critical point. For x < 2, f ′(x) < 0 and for x > 2, f ′(x) > 0. x = 2 is a local minimum.

Solution 5.12
Let r be the radius and h the height of the cylinder. The volume of the cup is πr2h = 64. The radius and height
are related by h = 64

πr2 . The surface area of the cup is f(r) = πr2 + 2πrh = πr2 + 128
r

. The first derivative of the
surface area is f ′(r) = 2πr − 128

r2 . Finding the zeros of f ′(r),

2πr − 128

r2
= 0,

2πr3 − 128 = 0,
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r =
4

3
√
π
.

The second derivative of the surface area is f ′′(r) = 2π + 256
r3 . Since f ′′( 4

3√π ) = 6π, r = 4
3√π is a local minimum of

f(r). Since this is the only critical point for r > 0, it must be a global minimum.
The cup has a radius of 4

3√π cm and a height of 4
3√π .

Mean Value Theorems

Solution 5.13
We define the function

h(x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Note that h(x) is differentiable and that h(a) = h(b) = 0. Thus h(x) satisfies the conditions of Rolle’s theorem
and there exists a point ξ ∈ (a, b) such that

h′(ξ) = f ′(ξ)− f(b)− f(a)

g(b)− g(a)
g′(ξ) = 0,

f ′(ξ)

g′(ξ)
=
f(b)− f(a)

g(b)− g(a)
.

Solution 5.14
The first few terms in the Taylor series of sin(x) about x = 0 are

sin(x) = x− x3

6
+

x5

120
− x7

5040
+

x9

362880
+ · · · .

The seventh derivative of sinx is − cosx. Thus we have that

sin(x) = x− x3

6
+

x5

120
− cos x0

5040
x7,
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where 0 ≤ x0 ≤ x. Since we are considering x ∈ [−1, 1] and −1 ≤ cos(x0) ≤ 1, the approximation

sinx ≈ x− x3

6
+

x5

120

has a maximum error of 1
5040
≈ 0.000198. Using this polynomial to approximate sin(1),

1− 13

6
+

15

120
≈ 0.841667.

To see that this has the required accuracy,

sin(1) ≈ 0.841471.

Solution 5.15
Expanding the terms in the approximation in Taylor series,

f(x+ ∆x) = f(x) + ∆xf ′(x) +
∆x2

2
f ′′(x) +

∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x1),

f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2
f ′′(x)− ∆x3

6
f ′′′(x) +

∆x4

24
f ′′′′(x2),

where x ≤ x1 ≤ x+ ∆x and x−∆x ≤ x2 ≤ x. Substituting the expansions into the formula,

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
= f ′′(x) +

∆x2

24
[f ′′′′(x1) + f ′′′′(x2)].

Thus the error in the approximation is

∆x2

24
[f ′′′′(x1) + f ′′′′(x2)].
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Solution 5.16

L’Hospital’s Rule

Solution 5.17
a.

lim
x→0

[
x− sinx

x3

]
= lim

x→0

[
1− cosx

3x2

]
= lim

x→0

[
sinx

6x

]
= lim

x→0

[cos x

6

]
=

1

6

lim
x→0

[
x− sinx

x3

]
=

1

6
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b.

lim
x→0

(
cscx− 1

x

)
= lim

x→0

(
1

sinx
− 1

x

)
= lim

x→0

(
x− sinx

x sinx

)
= lim

x→0

(
1− cosx

x cos x+ sinx

)
= lim

x→0

(
sinx

−x sinx+ cosx+ cos x

)
=

0

2
= 0

lim
x→0

(
csc x− 1

x

)
= 0
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c.

log

(
lim

x→+∞

[(
1 +

1

x

)x])
= lim

x→+∞

[
log

((
1 +

1

x

)x)]
= lim

x→+∞

[
x log

(
1 +

1

x

)]
= lim

x→+∞

[
log
(
1 + 1

x

)
1/x

]

= lim
x→+∞

[(
1 + 1

x

)−1 (− 1
x2

)
−1/x2

]

= lim
x→+∞

[(
1 +

1

x

)−1
]

= 1

Thus we have

lim
x→+∞

[(
1 +

1

x

)x]
= e.
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d. It takes four successive applications of L’Hospital’s rule to evaluate the limit.

lim
x→0

(
csc2 x− 1

x2

)
= lim

x→0

x2 − sin2 x

x2 sin2 x

= lim
x→0

2x− 2 cos x sinx

2x2 cosx sinx+ 2x sin2 x

= lim
x→0

2− 2 cos2 x+ 2 sin2 x

2x2 cos2 x+ 8x cos x sinx+ 2 sin2 x− 2x2 sin2 x

= lim
x→0

8 cos x sinx

12x cos2 x+ 12 cos x sinx− 8x2 cos x sinx− 12x sin2 x

= lim
x→0

8 cos2 x− 8 sin2 x

24 cos2 x− 8x2 cos2 x− 64x cosx sinx− 24 sin2 x+ 8x2 sin2 x

=
1

3

It is easier to use a Taylor series expansion.

lim
x→0

(
csc2 x− 1

x2

)
= lim

x→0

x2 − sin2 x

x2 sin2 x

= lim
x→0

x2 − (x− x3/6 +O(x5))2

x2(x+O(x3))2

= lim
x→0

x2 − (x2 − x4/3 +O(x6))

x4 +O(x6)

= lim
x→0

(
1

3
+O(x2)

)
=

1

3
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Solution 5.18
To evaluate the first limit, we use the identity ab = eb log a and then apply L’Hospital’s rule.

lim
x→∞

xa/x = lim
x→∞

e
a log x
x

= exp

(
lim
x→∞

a log x

x

)
= exp

(
lim
x→∞

a/x

1

)
= e0

lim
x→∞

xa/x = 1

We use the same method to evaluate the second limit.

lim
x→∞

(
1 +

a

x

)bx
= lim

x→∞
exp

(
bx log

(
1 +

a

x

))
= exp

(
lim
x→∞

bx log
(

1 +
a

x

))
= exp

(
lim
x→∞

b
log(1 + a/x)

1/x

)

= exp

 lim
x→∞

b

−a/x2

1+a/x

−1/x2


= exp

(
lim
x→∞

b
a

1 + a/x

)

lim
x→∞

(
1 +

a

x

)bx
= eab
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Chapter 6

Integral Calculus

6.1 The Indefinite Integral

The opposite of a derivative is the anti-derivative or the indefinite integral. The indefinite integral of a function
f(x) is denoted, ∫

f(x) dx.

It is defined by the property that

d

dx

∫
f(x) dx = f(x).

While a function f(x) has a unique derivative if it is differentiable, it has an infinite number of indefinite integrals,
each of which differ by an additive constant.

Zero Slope Implies a Constant Function. If the value of a function’s derivative is identically zero, df
dx

= 0,
then the function is a constant, f(x) = c. To prove this, we assume that there exists a non-constant differentiable
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function whose derivative is zero and obtain a contradiction. Let f(x) be such a function. Since f(x) is non-
constant, there exist points a and b such that f(a) 6= f(b). By the Mean Value Theorem of differential calculus,
there exists a point ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
6= 0,

which contradicts that the derivative is everywhere zero.

Indefinite Integrals Differ by an Additive Constant. Suppose that F (x) and G(x) are indefinite integrals
of f(x). Then we have

d

dx
(F (x)−G(x)) = F ′(x)−G′(x) = f(x)− f(x) = 0.

Thus we see that F (x) − G(x) = c and the two indefinite integrals must differ by a constant. For example, we
have

∫
sinx dx = − cos x+ c. While every function that can be expressed in terms of elementary functions, (the

exponent, logarithm, trigonometric functions, etc.), has a derivative that can be written explicitly in terms of
elementary functions, the same is not true of integrals. For example,

∫
sin(sinx) dx cannot be written explicitly

in terms of elementary functions.

Properties. Since the derivative is linear, so is the indefinite integral. That is,∫
(af(x) + bg(x)) dx = a

∫
f(x) dx+ b

∫
g(x) dx.

For each derivative identity there is a corresponding integral identity. Consider the power law identity, d
dx

(f(x))a =
a(f(x))a−1f ′(x). The corresponding integral identity is∫

(f(x))af ′(x) dx =
(f(x))a+1

a+ 1
+ c, a 6= −1,
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where we require that a 6= −1 to avoid division by zero. From the derivative of a logarithm, d
dx

ln(f(x)) = f ′(x)
f(x)

,
we obtain, ∫

f ′(x)

f(x)
dx = ln |f(x)|+ c.

Note the absolute value signs. This is because d
dx

ln |x| = 1
x

for x 6= 0. In Figure 6.1 is a plot of ln |x| and 1
x

to
reinforce this.

Figure 6.1: Plot of ln |x| and 1/x.

Example 6.1.1 Consider

I =

∫
x

(x2 + 1)2
dx.

We evaluate the integral by choosing u = x2 + 1, du = 2x dx.

I =
1

2

∫
2x

(x2 + 1)2
dx

=
1

2

∫
du

u2

=
1

2

−1

u

= − 1

2(x2 + 1)
.
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Example 6.1.2 Consider

I =

∫
tanx dx =

∫
sinx

cosx
dx.

By choosing f(x) = cos x, f ′(x) = − sinx, we see that the integral is

I = −
∫
− sinx

cosx
dx = − ln | cos x|+ c.

Change of Variable. The differential of a function g(x) is dg = g′(x) dx. Thus one might suspect that for
ξ = g(x), ∫

f(ξ) dξ =

∫
f(g(x))g′(x) dx, (6.1)

since dξ = dg = g′(x) dx. This turns out to be true. To prove it we will appeal to the the chain rule for
differentiation. Let ξ be a function of x. The chain rule is

d

dx
f(ξ) = f ′(ξ)ξ′(x),

d

dx
f(ξ) =

df

dξ

dξ

dx
.

We can also write this as

df

dξ
=

dx

dξ

df

dx
,

or in operator notation,

d

dξ
=

dx

dξ

d

dx
.
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Now we’re ready to start. The derivative of the left side of Equation 6.1 is

d

dξ

∫
f(ξ) dξ = f(ξ).

Next we differentiate the right side,

d

dξ

∫
f(g(x))g′(x) dx =

dx

dξ

d

dx

∫
f(g(x))g′(x) dx

=
dx

dξ
f(g(x))g′(x)

=
dx

dg
f(g(x))

dg

dx

= f(g(x))

= f(ξ)

to see that it is in fact an identity for ξ = g(x).

Example 6.1.3 Consider ∫
x sin(x2) dx.

We choose ξ = x2, dξ = 2xdx to evaluate the integral.∫
x sin(x2) dx =

1

2

∫
sin(x2)2x dx

=
1

2

∫
sin ξ dξ

=
1

2
(− cos ξ) + c

= −1

2
cos(x2) + c
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Integration by Parts. The product rule for differentiation gives us an identity called integration by parts. We
start with the product rule and then integrate both sides of the equation.

d

dx
(u(x)v(x)) = u′(x)v(x) + u(x)v′(x)∫

(u′(x)v(x) + u(x)v′(x)) dx = u(x)v(x) + c∫
u′(x)v(x) dx+

∫
u(x)v′(x)) dx = u(x)v(x)∫

u(x)v′(x)) dx = u(x)v(x)−
∫
v(x)u′(x) dx

The theorem is most often written in the form∫
u dv = uv −

∫
v du.

So what is the usefulness of this? Well, it may happen for some integrals and a good choice of u and v that the
integral on the right is easier to evaluate than the integral on the left.

Example 6.1.4 Consider
∫
x ex dx. If we choose u = x, dv = ex dx then integration by parts yields∫

x ex dx = x ex −
∫

ex dx = (x− 1) ex.

Now notice what happens when we choose u = ex, dv = x dx.∫
x ex dx =

1

2
x2 ex −

∫
1

2
x2 ex dx

The integral gets harder instead of easier.

When applying integration by parts, one must choose u and dv wisely. As general rules of thumb:
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• Pick u so that u′ is simpler than u.

• Pick dv so that v is not more complicated, (hopefully simpler), than dv.

Also note that you may have to apply integration by parts several times to evaluate some integrals.

6.2 The Definite Integral

6.2.1 Definition

The area bounded by the x axis, the vertical lines x = a and x = b and the function f(x) is denoted with a
definite integral, ∫ b

a

f(x) dx.

The area is signed, that is, if f(x) is negative, then the area is negative. We measure the area with a divide-and-
conquer strategy. First partition the interval (a, b) with a = x0 < x1 < · · · < xn−1 < xn = b. Note that the area
under the curve on the subinterval is approximately the area of a rectangle of base ∆xi = xi+1 − xi and height
f(ξi), where ξi ∈ [xi, xi+1]. If we add up the areas of the rectangles, we get an approximation of the area under
the curve. See Figure 6.2

∫ b

a

f(x) dx ≈
n−1∑
i=0

f(ξi)∆xi

As the ∆xi’s get smaller, we expect the approximation of the area to get better. Let ∆x = max0≤i≤n−1 ∆xi. We
define the definite integral as the sum of the areas of the rectangles in the limit that ∆x→ 0.∫ b

a

f(x) dx = lim
∆x→0

n−1∑
i=0

f(ξi)∆xi

The integral is defined when the limit exists. This is known as the Riemann integral of f(x). f(x) is called the
integrand.
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a x x x xx
x∆1 2 3

i
n-2 n-1 b

f(   )ξ1

Figure 6.2: Divide-and-Conquer Strategy for Approximating a Definite Integral.

6.2.2 Properties

Linearity and the Basics. Because summation is a linear operator, that is

n−1∑
i=0

(cfi + dgi) = c
n−1∑
i=0

fi + d
n−1∑
i=0

gi,

definite integrals are linear, ∫ b

a

(cf(x) + dg(x)) dx = c

∫ b

a

f(x) dx+ d

∫ b

a

g(x) dx.

One can also divide the range of integration.∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx
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We assume that each of the above integrals exist. If a ≤ b, and we integrate from b to a, then each of the ∆xi
will be negative. From this observation, it is clear that∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

If we integrate any function from a point a to that same point a, then all the ∆xi are zero and∫ a

a

f(x) dx = 0.

Bounding the Integral. Recall that if fi ≤ gi, then

n−1∑
i=0

fi ≤
n−1∑
i=0

gi.

Let m = minx∈[a,b] f(x) and M = maxx∈[a,b] f(x). Then

(b− a)m =
n−1∑
i=0

m∆xi ≤
n−1∑
i=0

f(ξi)∆xi ≤
n−1∑
i=0

M∆xi = (b− a)M

implies that

(b− a)m ≤
∫ b

a

f(x) dx ≤ (b− a)M.

Since ∣∣∣∣∣
n−1∑
i=0

fi

∣∣∣∣∣ ≤
n−1∑
i=0

|fi|,

we have ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.
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Mean Value Theorem of Integral Calculus. Let f(x) be continuous. We know from above that

(b− a)m ≤
∫ b

a

f(x) dx ≤ (b− a)M.

Therefore there exists a constant c ∈ [m,M ] satisfying

∫ b

a

f(x) dx = (b− a)c.

Since f(x) is continuous, there is a point ξ ∈ [a, b] such that f(ξ) = c. Thus we see that

∫ b

a

f(x) dx = (b− a)f(ξ),

for some ξ ∈ [a, b].

6.3 The Fundamental Theorem of Integral Calculus

Definite Integrals with Variable Limits of Integration. Consider a to be a constant and x variable, then
the function F (x) defined by

F (x) =

∫ x

a

f(t) dt (6.2)
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is an anti-derivative of f(x), that is F ′(x) = f(x). To show this we apply the definition of differentiation and the
integral mean value theorem.

F ′(x) = lim
∆x→0

F (x+ ∆x)− F (x)

∆x

= lim
∆x→0

∫ x+∆x

a
f(t) dt−

∫ x
a
f(t) dt

∆x

= lim
∆x→0

∫ x+∆x

x
f(t) dt

∆x

= lim
∆x→0

f(ξ)∆x

∆x
, ξ ∈ [x, x+ ∆x]

= f(x)

The Fundamental Theorem of Integral Calculus. Let F (x) be any anti-derivative of f(x). Noting that
all anti-derivatives of f(x) differ by a constant and replacing x by b in Equation 6.2, we see that there exists a
constant c such that ∫ b

a

f(x) dx = F (b) + c.

Now to find the constant. By plugging in b = a,∫ a

a

f(x) dx = F (a) + c = 0,

we see that c = −F (a). This gives us a result known as the Fundamental Theorem of Integral Calculus.∫ b

a

f(x) dx = F (b)− F (a).

We introduce the notation

[F (x)]ba ≡ F (b)− F (a).
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Example 6.3.1 ∫ π

0

sinx dx = [− cosx]π0 = − cos(π) + cos(0) = 2

6.4 Techniques of Integration

6.4.1 Partial Fractions

A proper rational function

p(x)

q(x)
=

p(x)

(x− a)nr(x)

Can be written in the form

p(x)

(x− α)nr(x)
=

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+ (· · · )

where the ak’s are constants and the last ellipses represents the partial fractions expansion of the roots of r(x).
The coefficients are

ak =
1

k!

dk

dxk

(
p(x)

r(x)

) ∣∣∣∣
x=α

.

Example 6.4.1 Consider the partial fraction expansion of

1 + x+ x2

(x− 1)3
.

The expansion has the form

a0

(x− 1)3
+

a1

(x− 1)2
+

a2

x− 1
.
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The coefficients are

a0 =
1

0!
(1 + x+ x2)|x=1 = 3,

a1 =
1

1!

d

dx
(1 + x+ x2)|x=1 = (1 + 2x)|x=1 = 3,

a2 =
1

2!

d2

dx2
(1 + x+ x2)|x=1 =

1

2
(2)|x=1 = 1.

Thus we have

1 + x+ x2

(x− 1)3
=

3

(x− 1)3
+

3

(x− 1)2
+

1

x− 1
.

Example 6.4.2 Suppose we want to evaluate ∫
1 + x+ x2

(x− 1)3
dx.

If we expand the integrand in a partial fraction expansion, then the integral becomes easy.∫
1 + x+ x2

(x− 1)3
dx. =

∫ (
3

(x− 1)3
+

3

(x− 1)2
+

1

x− 1

)
dx

= − 3

2(x− 1)2
− 3

(x− 1)
+ ln(x− 1)

Example 6.4.3 Consider the partial fraction expansion of

1 + x+ x2

x2(x− 1)2
.
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The expansion has the form

a0

x2
+
a1

x
+

b0

(x− 1)2
+

b1

x− 1
.

The coefficients are

a0 =
1

0!

(
1 + x+ x2

(x− 1)2

) ∣∣∣∣
x=0

= 1,

a1 =
1

1!

d

dx

(
1 + x+ x2

(x− 1)2

) ∣∣∣∣
x=0

=

(
1 + 2x

(x− 1)2
− 2(1 + x+ x2)

(x− 1)3

) ∣∣∣∣
x=0

= 3,

b0 =
1

0!

(
1 + x+ x2

x2

) ∣∣∣∣
x=1

= 3,

b1 =
1

1!

d

dx

(
1 + x+ x2

x2

) ∣∣∣∣
x=1

=

(
1 + 2x

x2
− 2(1 + x+ x2)

x3

) ∣∣∣∣
x=1

= −3,

Thus we have

1 + x+ x2

x2(x− 1)2
=

1

x2
+

3

x
+

3

(x− 1)2
− 3

x− 1
.

If the rational function has real coefficients and the denominator has complex roots, then you can reduce the
work in finding the partial fraction expansion with the following trick: Let α and α be complex conjugate pairs
of roots of the denominator.

p(x)

(x− α)n(x− α)nr(x)
=

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+ (· · · )

Thus we don’t have to calculate the coefficients for the root at α. We just take the complex conjugate of the
coefficients for α.
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Example 6.4.4 Consider the partial fraction expansion of

1 + x

x2 + 1
.

The expansion has the form

a0

x− i
+

a0

x+ i

The coefficients are

a0 =
1

0!

(
1 + x

x+ i

) ∣∣∣∣
x=i

=
1

2
(1− i),

a0 =
1

2
(1− i) =

1

2
(1 + i)

Thus we have

1 + x

x2 + 1
=

1− i
2(x− i)

+
1 + i

2(x+ i)
.

6.5 Improper Integrals

If the range of integration is infinite or f(x) is discontinuous at some points then
∫ b
a
f(x) dx is called an improper

integral.

Discontinuous Functions. If f(x) is continuous on the interval a ≤ x ≤ b except at the point x = c where
a < c < b then ∫ b

a

f(x) dx = lim
δ→0+

∫ c−δ

a

f(x) dx+ lim
ε→0+

∫ b

c+ε

f(x) dx

provided that both limits exist.
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Example 6.5.1 Consider the integral of lnx on the interval [0, 1]. Since the logarithm has a singularity at x = 0,
this is an improper integral. We write the integral in terms of a limit and evaluate the limit with L’Hospital’s
rule. ∫ 1

0

lnx dx = lim
δ→0

∫ 1

δ

lnx dx

= lim
δ→0

[x lnx− x]1δ

= 1 ln(1)− 1− lim
δ→0

(δ ln δ − δ)

= −1− lim
δ→0

(δ ln δ)

= −1− lim
δ→0

(
ln δ

1/δ

)
= −1− lim

δ→0

(
1/δ

−1/δ2

)
= −1

Example 6.5.2 Consider the integral of xa on the range [0, 1]. If a < 0 then there is a singularity at x = 0. First
assume that a 6= −1. ∫ 1

0

xa dx = lim
δ→0+

[
xa+1

a+ 1

]1

δ

=
1

a+ 1
− lim

δ→0+

δa+1

a+ 1

This limit exists only for a > −1. Now consider the case that a = −1.∫ 1

0

x−1 dx = lim
δ→0+

[lnx]1δ

= ln(0)− lim
δ→0+

ln δ
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This limit does not exist. We obtain the result,∫ 1

0

xa dx =
1

a+ 1
, for a > −1.

Infinite Limits of Integration. If the range of integration is infinite, say [a,∞) then we define the integral as∫ ∞
a

f(x) dx = lim
α→∞

∫ α

a

f(x) dx,

provided that the limit exists. If the range of integration is (−∞,∞) then∫ ∞
−∞

f(x) dx = lim
α→−∞

∫ a

α

f(x) dx+ lim
β→+∞

∫ β

a

f(x) dx.

Example 6.5.3 ∫ ∞
1

lnx

x2
dx =

∫ ∞
1

lnx

(
d

dx

−1

x

)
dx

=

[
lnx
−1

x

]∞
1

−
∫ ∞

1

−1

x

1

x
dx

= lim
x→+∞

(
− lnx

x

)
−
[

1

x

]∞
1

= lim
x→+∞

(
−1/x

1

)
− lim

x→∞

1

x
+ 1

= 1

116



Example 6.5.4 Consider the integral of xa on [1,∞). First assume that a 6= −1.∫ ∞
1

xa dx = lim
β→+∞

[
xa+1

a+ 1

]β
1

= lim
β→+∞

βa+1

a+ 1
− 1

a+ 1

The limit exists for β < −1. Now consider the case a = −1.∫ ∞
1

x−1 dx = lim
β→+∞

[lnx]β1

= lim
β→+∞

ln β − 1

a+ 1

This limit does not exist. Thus we have∫ ∞
1

xa dx = − 1

a+ 1
, for a < −1.
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6.6 Exercises

Fundamental Integration Formulas

Exercise 6.1 (mathematica/calculus/integral/fundamental.nb)
Evaluate

∫
(2x+ 3)10 dx.

Exercise 6.2 (mathematica/calculus/integral/fundamental.nb)
Evaluate

∫ (lnx)2

x
dx.

Exercise 6.3 (mathematica/calculus/integral/fundamental.nb)
Evaluate

∫
x
√
x2 + 3 dx.

Exercise 6.4 (mathematica/calculus/integral/fundamental.nb)
Evaluate

∫
cosx
sinx

dx.

Exercise 6.5 (mathematica/calculus/integral/fundamental.nb)
Evaluate

∫
x2

x3−5
dx.

Integration by Parts

Exercise 6.6 (mathematica/calculus/integral/parts.nb)
Evaluate

∫
x sinx dx.

Exercise 6.7 (mathematica/calculus/integral/parts.nb)
Evaluate

∫
x3 e2x dx.
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Partial Fractions

Exercise 6.8 (mathematica/calculus/integral/partial.nb)
Evaluate

∫
1

x2−4
dx.

Exercise 6.9 (mathematica/calculus/integral/partial.nb)
Evaluate

∫
x+1

x3+x2−6x
dx.

Definite Integrals

Exercise 6.10 (mathematica/calculus/integral/definite.nb)
Use the result ∫ b

a

f(x) dx = lim
N→∞

N−1∑
n=0

f(xn)∆x

where ∆x = b−a
N

and xn = a+ n∆x, to show that∫ 1

0

x dx =
1

2
.

Exercise 6.11 (mathematica/calculus/integral/definite.nb)
Evaluate the following integral using integration by parts and the Pythagorean identity.

∫ π
0

sin2 x dx

Exercise 6.12 (mathematica/calculus/integral/definite.nb)
Prove that

d

dx

∫ f(x)

g(x)

h(ξ) dξ = h(f(x))f ′(x)− h(g(x))g′(x).

(Don’t use the limit definition of differentiation, use the Fundamental Theorem of Integral Calculus.)
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Improper Integrals

Exercise 6.13 (mathematica/calculus/integral/improper.nb)
Evaluate

∫ 4

0
1

(x−1)2 dx.

Exercise 6.14 (mathematica/calculus/integral/improper.nb)
Evaluate

∫ 1

0
1√
x

dx.

Exercise 6.15 (mathematica/calculus/integral/improper.nb)
Evaluate

∫∞
0

1
x2+4

dx.

Taylor Series

Exercise 6.16 (mathematica/calculus/integral/taylor.nb)
a. Show that

f(x) = f(0) +

∫ x

0

f ′(x− ξ) dξ.

b. From the above identity show that

f(x) = f(0) + xf ′(0) +

∫ x

0

ξf ′′(x− ξ) dξ.

c. Using induction, show that

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·+ 1

n!
xnf (n)(0) +

∫ x

0

1

n!
ξnf (n+1)(x− ξ) dξ.
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6.7 Hints

Fundamental Integration Formulas

Hint 6.1
Make the change of variables u = 2x+ 3.

Hint 6.2
Make the change of variables u = lnx.

Hint 6.3
Make the change of variables u = x2 + 3.

Hint 6.4
Make the change of variables u = sinx.

Hint 6.5
Make the change of variables u = x3 − 5.

Integration by Parts

Hint 6.6
Let u = x, and dv = sinx dx.

Hint 6.7
Perform integration by parts three successive times. For the first one let u = x3 and dv = e2x dx.

Partial Fractions
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Hint 6.8
Expanding the integrand in partial fractions,

1

x2 − 4
=

1

(x− 2)(x+ 2)
=

a

(x− 2)
+

b

(x+ 2)

1 = a(x+ 2) + b(x− 2)

Set x = 2 and x = −2 to solve for a and b.

Hint 6.9
Expanding the integral in partial fractions,

x+ 1

x3 + x2 − 6x
=

x+ 1

x(x− 2)(x+ 3)
=
a

x
+

b

x− 2
+

c

x+ 3

x+ 1 = a(x− 2)(x+ 3) + bx(x+ 3) + cx(x− 2)

Set x = 0, x = 2 and x = −3 to solve for a, b and c.

Definite Integrals

Hint 6.10

∫ 1

0

x dx = lim
N→∞

N−1∑
n=0

xn∆x

= lim
N→∞

N−1∑
n=0

(n∆x)∆x
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Hint 6.11
Let u = sinx and dv = sinx dx. Integration by parts will give you an equation for

∫ π
0

sin2 x dx.

Hint 6.12
Let H ′(x) = h(x) and evaluate the integral in terms of H(x).

Improper Integrals

Hint 6.13

∫ 4

0

1

(x− 1)2
dx = lim

δ→0+

∫ 1−δ

0

1

(x− 1)2
dx+ lim

ε→0+

∫ 4

1+ε

1

(x− 1)2
dx

Hint 6.14

∫ 1

0

1√
x

dx = lim
ε→0+

∫ 1

ε

1√
x

dx

Hint 6.15

∫
1

x2 + a2
dx =

1

a
arctan

(x
a

)
Taylor Series

Hint 6.16
a. Evaluate the integral.
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b. Use integration by parts to evaluate the integral.

c. Use integration by parts with u = f (n+1)(x− ξ) and dv = 1
n!
ξn.
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6.8 Solutions

Fundamental Integration Formulas

Solution 6.1

∫
(2x+ 3)10 dx

Let u = 2x+ 3, g(u) = x = u−3
2

, g′(u) = 1
2
.

∫
(2x+ 3)10 dx =

∫
u10 1

2
du

=
u11

11

1

2

=
(2x+ 3)11

22

Solution 6.2

∫
(lnx)2

x
dx =

∫
(lnx)2 d(lnx)

dx
dx

=
(lnx)3

3
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Solution 6.3

∫
x
√
x2 + 3 dx =

∫ √
x2 + 3

1

2

d(x2)

dx
dx

=
1

2

(x2 + 3)3/2

3/2

=
(x2 + 3)3/2

3

Solution 6.4

∫
cosx

sinx
dx =

∫
1

sinx

d(sinx)

dx
dx

= ln | sinx|

Solution 6.5

∫
x2

x3 − 5
dx =

∫
1

x3 − 5

1

3

d(x3)

dx
dx

=
1

3
ln |x3 − 5|

Integration by Parts
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Solution 6.6
Let u = x, and dv = sinx dx. Then du = dx and v = − cosx.∫

x sinx dx = −x cosx+

∫
cos x dx

= −x cosx+ sinx+ C

Solution 6.7
Let u = x3 and dv = e2x dx. Then du = 3x2 dx and v = 1

2
e2x.∫

x3 e2x dx =
1

2
x3 e2x − 3

2

∫
x2 e2x dx

Let u = x2 and dv = e2x dx. Then du = 2x dx and v = 1
2

e2x.∫
x3 e2x dx =

1

2
x3 e2x − 3

2

(
1

2
x2 e2x −

∫
x e2x dx

)
∫
x3 e2x dx =

1

2
x3 e2x − 3

4
x2 e2x +

3

2

∫
x e2x dx

Let u = x and dv = e2x dx. Then du = dx and v = 1
2

e2x.∫
x3 e2x dx =

1

2
x3 e2x − 3

4
x2 e2x +

3

2

(
1

2
x e2x − 1

2

∫
e2x dx

)
∫
x3 e2x dx =

1

2
x3 e2x − 3

4
x2 e2x +

3

4
x e2x − 3

8
e2x + C

Partial Fractions
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Solution 6.8
Expanding the integrand in partial fractions,

1

x2 − 4
=

1

(x− 2)(x+ 2)
=

A

(x− 2)
+

B

(x+ 2)

1 = A(x+ 2) +B(x− 2)

Setting x = 2 yields A = 1
4
. Setting x = −2 yields B = −1

4
. Now we can do the integral.∫

1

x2 − 4
dx =

∫ (
1

4(x− 2)
− 1

4(x+ 2)

)
dx

=
1

4
ln |x− 2| − 1

4
ln |x+ 2|+ C

=
1

4

∣∣∣∣x− 2

x+ 2

∣∣∣∣+ C

Solution 6.9
Expanding the integral in partial fractions,

x+ 1

x3 + x2 − 6x
=

x+ 1

x(x− 2)(x+ 3)
=
A

x
+

B

x− 2
+

C

x+ 3

x+ 1 = A(x− 2)(x+ 3) +Bx(x+ 3) + Cx(x− 2)

Setting x = 0 yields A = −1
6
. Setting x = 2 yields B = 3

10
. Setting x = −3 yields C = − 2

15
.∫

x+ 1

x3 + x2 − 6x
dx =

∫ (
− 1

6x
+

3

10(x− 2)
− 2

15(x+ 3)

)
dx

= −1

6
ln |x|+ 3

10
ln |x− 2| − 2

15
ln |x+ 3|+ C

= ln
|x− 2|3/10

|x|1/6|x+ 3|2/15
+ C
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Definite Integrals

Solution 6.10

∫ 1

0

x dx = lim
N→∞

N−1∑
n=0

xn∆x

= lim
N→∞

N−1∑
n=0

(n∆x)∆x

= lim
N→∞

∆x2

N−1∑
n=0

n

= lim
N→∞

∆x2N(N − 1)

2

= lim
N→∞

N(N − 1)

2N2

=
1

2
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Solution 6.11
Let u = sinx and dv = sinx dx. Then du = cos x dx and v = − cosx.∫ π

0

sin2 x dx =
[
− sinx cos x

]π
0

+

∫ π

0

cos2 x dx

=

∫ π

0

cos2 x dx

=

∫ π

0

(1− sin2 x) dx

= π −
∫ π

0

sin2 x dx

2

∫ π

0

sin2 x dx = π

∫ π

0

sin2 x dx =
π

2

Solution 6.12
Let H ′(x) = h(x).

d

dx

∫ f(x)

g(x)

h(ξ) dξ =
d

dx
(H(f(x))−H(g(x)))

= H ′(f(x))f ′(x)−H ′(g(x))g′(x)

= h(f(x))f ′(x)− h(g(x))g′(x)

Improper Integrals
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Solution 6.13

∫ 4

0

1

(x− 1)2
dx = lim

δ→0+

∫ 1−δ

0

1

(x− 1)2
dx+ lim

ε→0+

∫ 4

1+ε

1

(x− 1)2
dx

= lim
δ→0+

[
− 1

x− 1

]1−δ

0

+ lim
ε→0+

[
− 1

x− 1

]4

1+ε

= lim
δ→0+

(
1

δ
− 1

)
+ lim

ε→0+

(
−1

3
+

1

ε

)
=∞+∞

The integral diverges.

Solution 6.14

∫ 1

0

1√
x

dx = lim
ε→0+

∫ 1

ε

1√
x

dx

= lim
ε→0+

[
2
√
x
]1
ε

= lim
ε→0+

2(1−
√
ε)

= 2
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Solution 6.15

∫ ∞
0

1

x2 + 4
dx = lim

α→∞

∫ α

0

1

x2 + 4
dx

= lim
α→∞

[
1

2
arctan

(x
2

)]α
0

=
1

2

(π
2
− 0
)

=
π

4

Taylor Series

Solution 6.16
a.

f(0) +

∫ x

0

f ′(x− ξ) dξ = f(0) + [−f(x− ξ)]x0

= f(0)− f(0) + f(x)

= f(x)

b.

f(0) + xf ′(0) +

∫ x

0

ξf ′′(x− ξ) dξ = f(0) + xf ′(0) + [−ξf ′(x− ξ)]x0 −
∫ x

0

−f ′(x− ξ) dξ

= f(0) + xf ′(0)− xf ′(0)− [f(x− ξ)]x0
= f(0)− f(0) + f(x)

= f(x)
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c. Above we showed that the hypothesis holds for n = 0 and n = 1. Assume that it holds for some n = m ≥ 0.

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·+ 1

n!
xnf (n)(0) +

∫ x

0

1

n!
ξnf (n+1)(x− ξ) dξ

= f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·+ 1

n!
xnf (n)(0) +

[
1

(n+ 1)!
ξn+1f (n+1)(x− ξ)

]x
0

−
∫ x

0

− 1

(n+ 1)!
ξn+1f (n+2)(x− ξ) dξ

= f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·+ 1

n!
xnf (n)(0) +

1

(n+ 1)!
xn+1f (n+1)(0)

+

∫ x

0

1

(n+ 1)!
ξn+1f (n+2)(x− ξ) dξ

This shows that the hypothesis holds for n = m+ 1. By induction, the hypothesis hold for all n ≥ 0.
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Chapter 7

Vector Calculus

7.1 Vector Functions

Vector-valued Functions. A vector-valued function, r(t), is a mapping r : R 7→ R
n that assigns a vector to

each value of t.

r(t) = r1(t)e1 + · · ·+ rn(t)en.

An example of a vector-valued function is the position of an object in space as a function of time. The function
is continous at a point t = τ if

lim
t→τ

r(t) = r(τ).

This occurs if and only if the component functions are continuous. The function is differentiable if

dr

dt
≡ lim

∆t→0

r(t+ ∆t)− r(t)

∆t

exists. This occurs if and only if the component functions are differentiable.
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If r(t) represents the position of a particle at time t, then the velocity and acceleration of the particle are

dr

dt
and

d2r

dt2
,

respectively. The speed of the particle is |r′(t)|.

Differentiation Formulas. Let f(t) and g(t) be vector functions and a(t) be a scalar function. By writing out
components you can verify the differentiation formulas:

d

dt
(f · g) = f ′ · g + f · g′

d

dt
(f × g) = f ′ × g + f × g′

d

dt
(af) = a′f + af ′

7.2 Gradient, Divergence and Curl

Scalar and Vector Fields. A scalar field is a function of position u(x) that assigns a scalar to each point in
space. A function that gives the temperature of a material is an example of a scalar field. In two dimensions, you
can graph a scalar field as a surface plot, (Figure 7.1), with the vertical axis for the value of the function.

A vector field is a function of position u(x) that assigns a vector to each point in space. Examples of vectors
fields are functions that give the acceleration due to gravity or the velocity of a fluid. You can graph a vector
field in two or three dimension by drawing vectors at regularly spaced points. (See Figure 7.1 for a vector field in
two dimensions.)

Partial Derivatives of Scalar Fields. Consider a scalar field u(x). The partial derivative of u with respect
to xk is the derivative of u in which xk is considered to be a variable and the remaining arguments are considered
to be parameters. The partial derivative is denoted ∂

∂xk
u(x), ∂u

∂xk
or uxk and is defined

∂u

∂xk
≡ lim

∆x→0

u(x1, . . . , xk + ∆x, . . . , xn)− u(x1, . . . , xk, . . . , xn)

∆x
.
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Figure 7.1: A Scalar Field and a Vector Field

Partial derivatives have the same differentiation formulas as ordinary derivatives.

Consider a scalar field in R3, u(x, y, z). Higher derivatives of u are denoted:

uxx ≡
∂2u

∂x2
≡ ∂

∂x

∂u

∂x
,

uxy ≡
∂2u

∂x∂y
≡ ∂

∂x

∂u

∂y
,

uxxyz ≡
∂4u

∂x2∂y∂z
≡ ∂2

∂x2

∂

∂y

∂u

∂z
.
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If uxy and uyx are continuous, then

∂2u

∂x∂y
=

∂2u

∂y∂x
.

This is referred to as the equality of mixed partial derivatives.

Partial Derivatives of Vector Fields. Consider a vector field u(x). The partial derivative of u with respect
to xk is denoted ∂

∂xk
u(x), ∂u

∂xk
or uxk and is defined

∂u

∂xk
≡ lim

∆x→0

u(x1, . . . , xk + ∆x, . . . , xn)− u(x1, . . . , xk, . . . , xn)

∆x
.

Partial derivatives of vector fields have the same differentiation formulas as ordinary derivatives.

Gradient. We introduce the vector differential operator,

∇ ≡ ∂

∂x1

e1 + · · ·+ ∂

∂xn
en,

which is known as del or nabla. In R3 it is

∇ ≡ ∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

Let u(x) be a differential scalar field. The gradient of u is,

∇u ≡ ∂u

∂x1

e1 + · · ·+ ∂u

∂xn
en,
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Directional Derivative. Suppose you are standing on some terrain. The slope of the ground in a particular
direction is the directional derivative of the elevation in that direction. Consider a differentiable scalar field, u(x).
The derivative of the function in the direction of the unit vector a is the rate of change of the function in that
direction. Thus the directional derivative, Dau, is defined:

Dau(x) = lim
ε→0

u(x + εa)− u(x)

ε

= lim
ε→0

u(x1 + εa1, . . . , xn + εan)− u(x1, . . . , xn)

ε

= lim
ε→0

(u(x) + εa1ux1(x) + · · ·+ εanuxn(x) +O(ε2))− u(x)

ε
= a1ux1(x) + · · ·+ anuxn(x)

Dau(x) = ∇u(x) · a.

Tangent to a Surface. The gradient, ∇f , is orthogonal to the surface f(x) = 0. Consider a point ξ on the
surface. Let the differential dr = dx1e1 + · · · dxnen lie in the tangent plane at ξ. Then

df =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn
dxn = 0

since f(x) = 0 on the surface. Then

∇f · dr =

(
∂f

∂x1

e1 + · · ·+ ∂f

∂xn
en

)
· (dx1e1 + · · ·+ dxnen)

=
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn
dxn

= 0

Thus ∇f is orthogonal to the tangent plane and hence to the surface.
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Example 7.2.1 Consider the paraboloid, x2 + y2 − z = 0. We want to find the tangent plane to the surface at
the point (1, 1, 2). The gradient is

∇f = 2xi + 2yj− k.

At the point (1, 1, 2) this is

∇f(1, 1, 2) = 2i + 2j− k.

We know a point on the tangent plane, (1, 1, 2), and the normal, ∇f(1, 1, 2). The equation of the plane is

∇f(1, 1, 2) · (x, y, z) = ∇f(1, 1, 2) · (1, 1, 2)

2x+ 2y − z = 2

The gradient of the function f(x) = 0, ∇f(x), is in the direction of the maximum directional derivative. The
magnitude of the gradient, |∇f(x)|, is the value of the directional derivative in that direction. To derive this,
note that

Daf = ∇f · a = |∇f | cos θ,

where θ is the angle between ∇f and a. Daf is maximum when θ = 0, i.e. when a is the same direction as ∇f .
In this direction, Daf = |∇f |. To use the elevation example, ∇f points in the uphill direction and |∇f | is the
uphill slope.

Example 7.2.2 Suppose that the two surfaces f(x) = 0 and g(x) = 0 intersect at the point x = ξ. What is the
angle between their tangent planes at that point? First we note that the angle between the tangent planes is by
definition the angle between their normals. These normals are in the direction of ∇f(ξ) and ∇g(ξ). (We assume
these are nonzero.) The angle, θ, between the tangent planes to the surfaces is

θ = arccos

(
∇f(ξ) · ∇g(ξ)

|∇f(ξ)| |∇g(ξ)|

)
.
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Example 7.2.3 Let u be the distance from the origin:

u(x) =
√

x · x =
√
xixi.

In three dimensions, this is

u(x, y, z) =
√
x2 + y2 + z2.

The gradient of u, ∇(x), is a unit vector in the direction of x. The gradient is:

∇u(x) =

〈
x1√
x · x

, . . .
xn√
x · x

〉
=

xiei√
xjxj

.

In three dimensions, we have

∇u(x, y, z) =

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉
.

This is a unit vector because the sum of the squared components sums to unity.

∇u · ∇u =
xiei√
xjxj

· xkek√
xlxl

xixi
xjxj

= 1

Figure 7.2 shows a plot of the vector field of ∇u in two dimensions.

Example 7.2.4 Consider an ellipse. An implicit equation of an ellipse is

x2

a2
+
y2

b2
= 1.

We can also express an ellipse as u(x, y) + v(x, y) = c where u and v are the distance from the two foci. That is,
an ellipse is the set of points such that the sum of the distances from the two foci is a constant. Let n = ∇(u+v).
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Figure 7.2: The gradient of the distance from the origin.

This is a vector which is orthogonal to the ellipse when evaluated on the surface. Let t be a unit tangent to the
surface. Since n and t are orthogonal,

n · t = 0

(∇u+∇v) · t = 0

∇u · t = ∇v · (−t).

Since these are unit vectors, the angle between ∇u and t is equal to the angle between ∇v and −t. In other
words: If we draw rays from the foci to a point on the ellipse, the rays make equal angles with the ellipse. If the
ellipse were a reflective surface, a wave starting at one focus would be reflected from the ellipse and travel to the
other focus. See Figure 8.3. This result also holds for ellipsoids, u(x, y, z) + v(x, y, z) = c.

We see that an ellipsoidal dish could be used to collect spherical waves, (waves emanating from a point). If
the dish is shaped so that the source of the waves is located at one foci and a collector is placed at the second,
then any wave starting at the source and reflecting off the dish will travel to the collector. See Figure 7.4.
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θ
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n

t

v

u-t θ
θ

Figure 7.3: An ellipse and rays from the foci.

Figure 7.4: An elliptical dish.

7.3 Exercises

Vector Functions
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Exercise 7.1
Consider the parametric curve

r = cos

(
t

2

)
i + sin

(
t

2

)
j.

Calculate dr
dt

and d2r
dt2

. Plot the position and some velocity and acceleration vectors.

Exercise 7.2
Let r(t) be the position of an object moving with constant speed. Show that the acceleration of the object is
orthogonal to the velocity of the object.

Vector Fields

Exercise 7.3
Consider the paraboloid x2 +y2−z = 0. What is the angle between the two tangent planes that touch the surface
at (1, 1, 2) and (1,−1, 2)? What are the equations of the tangent planes at these points?

Exercise 7.4
Consider the paraboloid x2 + y2 − z = 0. What is the point on the paraboloid that is closest to (1, 0, 0)?
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7.4 Hints

Vector Functions

Hint 7.1
Plot the velocity and acceleration vectors at regular intervals along the path of motion.

Hint 7.2
If r(t) has constant speed, then |r′(t)| = c. The condition that the acceleration is orthogonal to the velocity can
be stated mathematically in terms of the dot product, r′′(t) · r′(t) = 0. Write the condition of constant speed in
terms of a dot product and go from there.

Vector Fields

Hint 7.3
The angle between two planes is the angle between the vectors orthogonal to the planes. The angle between the
two vectors is

θ = arccos

(
〈2, 2,−1〉 · 〈2,−2,−1〉
|〈2, 2,−1〉||〈2,−2,−1〉|

)
The equation of a line orthogonal to a and passing through the point b is a · x = a · b.

Hint 7.4
Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to
the vector from the closest point to (1, 0, 0). We can express this using the gradient and the cross product. If
(x, y, z) is the closest point on the paraboloid, then a vector orthogonal to the surface there is ∇f = 〈2x, 2y,−1〉.
The vector from the surface to the point (1, 0, 0) is 〈1 − x,−y,−z〉. These two vectors are parallel if their cross
product is zero.
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7.5 Solutions

Vector Functions

Solution 7.1
The velocity is

r′ = −1

2
sin

(
t

2

)
i +

1

2
cos

(
t

2

)
j.

The acceleration is

r′ = −1

4
cos

(
t

2

)
i− 1

4
sin

(
t

2

)
j.

See Figure 7.5 for plots of position, velocity and acceleration.

Figure 7.5: A Graph of Position and Velocity and of Position and Acceleration
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Solution 7.2
If r(t) has constant speed, then |r′(t)| = c. The condition that the acceleration is orthogonal to the velocity can
be stated mathematically in terms of the dot product, r′′(t) · r′(t) = 0. Note that we can write the condition of
constant speed in terms of a dot product, √

r′(t) · r′(t) = c,

r′(t) · r′(t) = c2.

Differentiating this equation yields,

r′′(t) · r′(t) + r′(t) · r′′(t) = 0

r′′(t) · r′(t) = 0.

This shows that the acceleration is orthogonal to the velocity.

Vector Fields

Solution 7.3
The gradient, which is orthogonal to the surface when evaluated there is ∇f = 2xi + 2yj − k. 2i + 2j − k and
2i− 2j−k are orthogonal to the paraboloid, (and hence the tangent planes), at the points (1, 1, 2) and (1,−1, 2),
respectively. The angle between the tangent planes is the angle between the vectors orthogonal to the planes.
The angle between the two vectors is

θ = arccos

(
〈2, 2,−1〉 · 〈2,−2,−1〉
|〈2, 2,−1〉||〈2,−2,−1〉|

)

θ = arccos

(
1

9

)
≈ 1.45946.
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Recall that the equation of a line orthogonal to a and passing through the point b is a · x = a · b. The equations
of the tangent planes are

〈2,±2,−1〉 · 〈x, y, z〉 = 〈2,±2,−1〉 · 〈1,±1, 2〉,

2x± 2y − z = 2.

The paraboloid and the tangent planes are shown in Figure 7.6.

-1
0

1

-1

0

1

0

2

4

0

2

4

Figure 7.6: Paraboloid and Two Tangent Planes

Solution 7.4
Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to
the vector from the closest point to (1, 0, 0). We can express this using the gradient and the cross product. If
(x, y, z) is the closest point on the paraboloid, then a vector orthogonal to the surface there is ∇f = 〈2x, 2y,−1〉.
The vector from the surface to the point (1, 0, 0) is 〈1 − x,−y,−z〉. These two vectors are parallel if their cross
product is zero,

〈2x, 2y,−1〉 × 〈1− x,−y,−z〉 = 〈−y − 2yz,−1 + x+ 2xz,−2y〉 = 0.
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This gives us the three equations,

−y − 2yz = 0,

−1 + x+ 2xz = 0,

−2y = 0.

The third equation requires that y = 0. The first equation then becomes trivial and we are left with the second
equation,

−1 + x+ 2xz = 0.

Substituting z = x2 + y2 into this equation yields,

2x3 + x− 1 = 0.

The only real valued solution of this polynomial is

x =
6−2/3

(
9 +
√

87
)2/3 − 6−1/3(

9 +
√

87
)1/3

≈ 0.589755.

Thus the closest point to (1, 0, 0) on the paraboloid is6−2/3
(
9 +
√

87
)2/3 − 6−1/3(

9 +
√

87
)1/3

, 0,

(
6−2/3

(
9 +
√

87
)2/3 − 6−1/3(

9 +
√

87
)1/3

)2
 ≈ (0.589755, 0, 0.34781).

The closest point is shown graphically in Figure 7.7.
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Figure 7.7: Paraboloid, Tangent Plane and Line Connecting (1, 0, 0) to Closest Point
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Part III

Functions of a Complex Variable
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Chapter 8

Complex Numbers

For every complex problem, there is a solution that is simple, neat, and wrong.

- H. L. Mencken

8.1 Complex Numbers

When you started algebra, you learned that the quadratic equation: x2 + 2ax+ b = 0 has either two, one or no
solutions. For example:

• x2 − 3x+ 2 = 0 has the two solutions x = 1 and x = 2.

• x2 − 2x+ 1 = 0 has the one solution x = 1.

• x2 + 1 = 0 has no solutions.
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This is a little unsatisfactory. We can formally solve the general quadratic equation.

x2 + 2ax+ b = 0

(x+ a)2 = a2 − b
x = −a±

√
a2 − b

However, the solutions are defined only when a2 ≥ b. The square root function,
√
x, is a bijection from R

0+ to
R

0+. We cannot solve x2 = −1 because
√
−1 is not defined. To overcome this apparent shortcoming of the real

number system, we create a new symbolic constant, i ≡
√
−1. Now we can express the solutions of x2 = −1 as

x = i and x = −i. These satisfy the equation since i2 =
(√
−1
)2

= −1 and (−i)2 =
(
−
√
−1
)2

= −1. Note that

we can express the square root of any negative real number in terms of i:
√
−r =

√
−1
√
r = i

√
r. We call any

number of the form ib, b ∈ R, a pure imaginary number. 1 We call numbers of the form a + ib, where a, b ∈ R,
complex numbers 2

The quadratic with real coefficients, x2 + 2ax + b = 0, has solutions x = −a ±
√
a2 − b. The solutions are

real-valued only if a2 − b ≥ 0. If not, then we can define solutions as complex numbers. If the discriminant is
negative, then we write x = −a± i

√
b− a2. Thus every quadratic polynomial has exactly two solutions, counting

multiplicities. The fundamental theorem of algebra states that an nth degree polynomial with complex coefficients
has n, not necessarily distinct, complex roots. We will prove this result later using the theory of functions of a
complex variable.

Consider the complex number z = x+ iy, (x, y ∈ R). The real part of z is <(z) = x; the imaginary part of z is
=(z) = y. Two complex numbers, z1 = x1 + iy1 and z2 = x2 + iy2, are equal if and only if x1 = x2 and y1 = y2.
The complex conjugate 3 of z = x+ iy is z = x− iy. The notation z∗ = x− iy is also used.

1“Imaginary” is an unfortunate term. Real numbers are artificial; constructs of the mind. Real numbers are no more real than
imaginary numbers.

2Here complex means “composed of two or more parts”, not “hard to separate, analyze, or solve”. Those who disagree have a
complex number complex.

3Conjugate: having features in common but opposite or inverse in some particular.
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The set of complex numbers, C, form a field. That essentially means that we can do arithmetic with complex
numbers. We treat i as a symbolic constant with the property that i2 = −1. The field of complex numbers satisfy
the following properties: (Let z, z1, z2, z3 ∈ C.)

1. Closure under addition and multiplication.

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i(y1 + y2) ∈ C
z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1) ∈ C

2. Commutativity of addition and multiplication. z1 + z2 = z2 + z1. z1z2 = z2z1.

3. Associativity of addition and multiplication. (z1 + z2) + z3 = z1 + (z2 + z3). (z1z2)z3 = z1(z2z3).

4. Distributive law. z1(z2 + z3) = z1z2 + z1z3.

5. Identity with respect to addition and multiplication. z + 0 = z. z(1) = z.

6. Inverse with respect to addition. z + (−z) = (x+ iy) + (−x− iy) = 0.

7. Inverse with respect to multiplication for nonzero numbers. zz−1 = 1, where

z−1 =
1

z
=

1

x+ iy
=

x− iy
x2 + y2

=
x

x2 + y2
− i y

x2 + y2

Complex Conjugate. Using the field properties of complex numbers, we can derive the following properties
of the complex conjugate, z = x− iy.

1. (z) = z,

2. z + ζ = z + ζ,
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3. zζ = zζ,

4.

(
z

ζ

)
=

z

ζ
.

8.2 The Complex Plane

We can denote a complex number z = x+ iy as an ordered pair of real numbers (x, y). Thus we can represent
a complex number as a point in R2 where the x component is the real part and the y component is the imaginary
part of z. This is called the complex plane or the Argand diagram. (See Figure 8.1.)

Im(z)

Re(z)

r

(x,y)

θ

Figure 8.1: The Complex Plane

There are two ways of describing a point in the complex plane: an ordered pair of coordinates (x, y) that give
the horizontal and vertical offset from the origin or the distance r from the origin and the angle θ from the positive
horizontal axis. The angle θ is not unique. It is only determined up to an additive integer multiple of 2π.

Modulus. The magnitude or modulus of a complex number is the distance of the point from the origin. It is
defined as |z| = |x + iy| =

√
x2 + y2. Note that zz = (x + iy)(x − iy) = x2 + y2 = |z|2. The modulus has the

following properties.
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1. |z1z2| = |z1| |z2|

2.

∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

for z2 6= 0.

3. |z1 + z2| ≤ |z1|+ |z2|

4. |z1 + z2| ≥ ||z1| − |z2||

We could prove the first two properties by expanding in x + iy form, but it would be fairly messy. The proofs
will become simple after polar form has been introduced. The second two properties follow from the triangle
inequalities in geometry. This will become apparent after the relationship between complex numbers and vectors
is introduced. One can show that

|z1z2 · · · zn| = |z1| |z2| · · · |zn|

and

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|

with proof by induction.

Argument. The argument of a complex number is the angle that the vector with tail at the origin and head
at z = x+ iy makes with the positive x-axis. The argument is denoted arg(z). Note that the argument is defined
for all nonzero numbers and is only determined up to an additive integer multiple of 2π. That is, the argument
of a complex number is the set of values: {θ+ 2πn |n ∈ Z}. The principal argument of a complex number is that
angle in the set arg(z) which lies in the range (−π, π]. The principal argument is denoted Arg (z). We prove the
following identities in Exercise 8.7.

arg(zζ) = arg(z) + arg(ζ)

Arg (zζ) 6= Arg (z) + Arg (ζ)

arg(z2) = arg(z) + arg(z) 6= 2 arg(z)
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Example 8.2.1 Consider the equation |z − 1 − i| = 2. The set of points satisfying this equation is a circle of
radius 2 and center at 1 + i in the complex plane. You can see this by noting that |z− 1− i| is the distance from
the point (1, 1). (See Figure 8.2.)

-1 1 2 3

-1

1

2

3

Figure 8.2: Solution of |z − 1− i| = 2

Another way to derive this is to substitute z = x+ iy into the equation.

|x+ iy − 1− i| = 2√
(x− 1)2 + (y − 1)2 = 2

(x− 1)2 + (y − 1)2 = 4

This is the analytic geometry equation for a circle of radius 2 centered about (1, 1).

Example 8.2.2 Consider the curve described by

|z|+ |z − 2| = 4.
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Note that |z| is the distance from the origin in the complex plane and |z − 2| is the distance from z = 2. The
equation is

(distance from (0, 0)) + (distance from (2, 0)) = 4.

From geometry, we know that this is an ellipse with foci at (0, 0) and (2, 0), major axis 2, and minor axis
√

3.
(See Figure 8.3.)

-1 1 2 3

-2

-1

1

2

Figure 8.3: Solution of |z|+ |z − 2| = 4
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We can use the substitution z = x+ iy to get the equation an algebraic form.

|z|+ |z − 2| = 4

|x+ iy|+ |x+ iy − 2| = 4√
x2 + y2 +

√
(x− 2)2 + y2 = 4

x2 + y2 = 16− 8
√

(x− 2)2 + y2 + x2 − 4x+ 4 + y2

x− 5 = −2
√

(x− 2)2 + y2

x2 − 10x+ 25 = 4x2 − 16x+ 16 + 4y2

1

4
(x− 1)2 +

1

3
y2 = 1

Thus we have the standard form for an equation describing an ellipse.

8.3 Polar Form

Polar Form. A complex number written as z = x + iy is said to be in Cartesian form, or a + ib form.
We can convert this representation to polar form, z = r(cos θ + i sin θ), using trigonometry. Here r = |z| is
the modulus and θ = arctan(x, y) is the argument of z. The argument is the angle between the x axis and
the vector with its head at (x, y). (See Figure 8.4.) Note that θ is not unique. If z = r(cos θ + i sin θ) then
z = r(cos(θ + 2nπ) + i sin(θ + 2nπ)) for any n ∈ Z.

The Arctangent. Note that arctan(x, y) is not the same thing as the old arctangent that you learned about
in trigonometry, arctan

(
y
x

)
. For example,

arctan(1, 1) =
π

4
+ 2nπ and arctan(−1,−1) =

−3π

4
+ 2nπ,

whereas

arctan

(
−1

−1

)
= arctan

(
1

1

)
= arctan(1).
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θ
sinθ

z
θcosr

Figure 8.4: Polar Form

Euler’s Formula. Euler’s formula, eiθ = cos θ + i sin θ, allows us to write the polar form more compactly.
Expressing the polar form in terms of the exponential function of imaginary argument makes arithmetic with
complex numbers much more convenient. (See Exercise 8.14 for a proof of Euler’s formula.)

z = r(cos θ + i sin θ) = r eiθ

Arithmetic With Complex Numbers. Note that it is convenient to add complex numbers in Cartesian form.

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

However, it is difficult to multiply or divide them in Cartesian form.

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

x1 + iy1

x2 + iy2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=
x1x2 + y1y2

x2
2 + y2

2

+ i
x2y1 − x1y2

x2
2 + y2

2
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On the other hand, it is difficult to add complex numbers in polar form.

r1 eiθ1 + r2 eiθ2 = r1(cos θ1 + i sin θ1) + r2(cos θ2 + i sin θ2)

= r1 cos θ1 + r2 cos θ2 + i(r1 sin θ1 + r2 sin θ2)

=
√

(r1 cos θ1 + r2 cos θ2)2 + (r1 sin θ1 + r2 sin θ2)2

× ei arctan(r1 cos θ1+r2 cos θ2,r1 sin θ1+r2 sin θ2)

=
√
r2

1 + r2
2 + 2 cos(θ1 − θ2) ei arctan(r1 cos θ1+r2 cos θ2,r1 sin θ1+r2 sin θ2)

However, it is convenient to multiply and divide them in polar form.

r1 eiθ1r2 eiθ2 = r1r2 ei(θ1+θ2)

r1 eiθ1

r2 eiθ2
=
r1

r2

ei(θ1−θ2)

Keeping this in mind will make working with complex numbers a shade or two less grungy.

Result 8.3.1 To change between Cartesian and polar form, use the identities

r eiθ = r cos θ + ir sin θ,

x+ iy =
√
x2 + y2 ei arctan(x,y).

Cartesian form is convenient for addition. Polar form is convenient for multiplication
and division.

Example 8.3.1 The polar form of 5 + 7i is

5 + 7i =
√

74 ei arctan(5,7).
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2 eiπ/6 in Cartesian form is

2 eiπ/6 = 2 cos
(π

6

)
+ 2i sin

(π
6

)
=
√

3 + i.

Example 8.3.2 We will show that

cos4 θ =
1

8
cos 4θ +

1

2
cos 2θ +

3

8
.

Recall that

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

cos4 θ =

(
eiθ + e−iθ

2

)4

=
1

16
( e4iθ + 4 e2iθ + 6 + 4 e−2iθ + e−4iθ)

=
1

8

(
e4iθ + e−4iθ

2

)
+

1

2

(
e2iθ + e−2iθ

2

)
+

3

8

=
1

8
cos 4θ +

1

2
cos 2θ +

3

8

By the definition of exponentiation, we have einθ = ( eiθ)n We apply Euler’s formula to obtain a result which is
useful in deriving trigonometric identities.

cos(nθ) + i sin(nθ) = (cos(θ) + i sin(θ))n
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Result 8.3.2 DeMoivre’s Theorem. a

cos(nθ) + i sin(nθ) = (cos(θ) + i sin(θ))n

aIt’s amazing what passes for a theorem these days. I would think that this would be a corollary at most.

Example 8.3.3 We will express cos 5θ in terms of cos θ and sin 5θ in terms of sin θ.
We start with DeMoivre’s theorem.

ei5θ = ( eiθ)5

cos 5θ + i sin 5θ = (cos θ + i sin θ)5

=

(
5

0

)
cos5 θ + i

(
5

1

)
cos4 θ sin θ −

(
5

2

)
cos3 θ sin2 θ − i

(
5

3

)
cos2 θ sin3 θ

+

(
5

4

)
cos θ sin4 θ + i

(
5

5

)
sin5 θ

=
(
cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

)
+ i
(
5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

)
Equating the real and imaginary parts we obtain

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

sin 5θ = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

Now we use the Pythagorean identity, cos2 θ + sin2 θ = 1.

cos 5θ = cos5 θ − 10 cos3 θ(1− cos2 θ) + 5 cos θ(1− cos2 θ)2

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ

sin 5θ = 5(1− sin2 θ)2 sin θ − 10(1− sin2 θ) sin3 θ + sin5 θ

sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ
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8.4 Arithmetic and Vectors

Addition. We can represent the complex number z = x+ iy = r eiθ as a vector in Cartesian space with tail at
the origin and head at (x, y), or equivalently, the vector of length r and angle θ. With the vector representation,
we can add complex numbers by connecting the tail of one vector to the head of the other. The vector z + ζ is
the diagonal of the parallelogram defined by z and ζ. (See Figure 8.5.)

Negation. The negative of z = x + iy is −z = −x − iy. In polar form we have z = r eiθ and −z = r ei(θ+π),
(more generally, z = r ei(θ+(2n+1)π), n ∈ Z. In terms of vectors, −z has the same magnitude but opposite direction
as z. (See Figure 8.5.)

Multiplication. The product of z = r eiθ and ζ = ρ eiφ is zζ = rρ ei(θ+φ). The length of the vector zζ is the
product of the lengths of z and ζ. The angle of zζ is the sum of the angles of z and ζ. (See Figure 8.5.)

Note that arg(zζ) = arg(z) + arg(ζ). Each of these arguments has an infinite number of values. If we write
out the multi-valuedness explicitly, we have

{θ + φ+ 2πn : n ∈ Z} = {θ + 2πn : n ∈ Z}+ {φ+ 2πn : n ∈ Z}

The same is not true of the principal argument. In general, Arg (zζ) 6= Arg (z) + Arg (ζ). Consider the case
z = ζ = ei3π/4. Then Arg (z) = Arg (ζ) = 3π/4, however, Arg (zζ) = −π/2.

Multiplicative Inverse. Assume that z is nonzero. The multiplicative inverse of z = r eiθ is 1
z

= 1
r

e−iθ. The
length of 1

z
is the multiplicative inverse of the length of z. The angle of 1

z
is the negative of the angle of z. (See

Figure 8.6.)

Division. Assume that ζ is nonzero. The quotient of z = r eiθ and ζ = ρ eiφ is z
ζ

= r
ρ

ei(θ−φ). The length of the

vector z
ζ

is the quotient of the lengths of z and ζ. The angle of z
ζ

is the difference of the angles of z and ζ. (See

Figure 8.6.)
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Im(  )z

ζ ξz+  =(x+  )+i(y+  )η

ζ=ξ+ ηi z=x+iy

Re(  )z Re(  )

=re

Im(  )z

z=x+iy
iθ

z

-z=-x-iy
=rei(  +  )θ π

ζ=(xξ−yη)+ i(xη+yξ)

Re(  )

Im(  )z
=r  eρ i(  +  )θ φ

z

ζ=ξ+ η=ρi eiφ

z=x+iy=reiθ

z

Figure 8.5: Addition, Negation and Multiplication

Complex Conjugate. The complex conjugate of z = x+ iy = r eiθ is z = x− iy = r e−iθ. z is the mirror image
of z, reflected across the x axis. In other words, z has the same magnitude as z and the angle of z is the negative
of the angle of z. (See Figure 8.6.)

8.5 Integer Exponents

Consider the product (a + b)n, n ∈ Z. If we know arctan(a, b) then it will be most convenient to expand the
product working in polar form. If not, we can write n in base 2 to efficiently do the multiplications.

Example 8.5.1 Suppose that we want to write (
√

3 + i)20 in Cartesian form. 4 We can do the multiplication
directly. Note that 20 is 10100 in base 2. That is, 20 = 24 +22. We first calculate the powers of the form (

√
3+i)2n

4No, I have no idea why we would want to do that. Just humor me. If you pretend that you’re interested, I’ll do the same. Believe
me, expressing your real feelings here isn’t going to do anyone any good.
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=−e

Re(  )

Im(  )

-

z

z=reiθ

z

1
z

1
r

-i θ
=- e

Re(  )

Im(  ) ζ=ρ

z=re

-

z eiφ

iθ

z
z
ζ ρ

ir (θ−φ)
Re(  )

Im(  )

z=x+iy=re

z=x-iy=re

z
iθ

z

- -i θ

Figure 8.6: Multiplicative Inverse, Division and Complex Conjugate

by successive squaring.

(
√

3 + i)2 = 2 + i2
√

3

(
√

3 + i)4 = −8 + i8
√

3

(
√

3 + i)8 = −128− i128
√

3

(
√

3 + i)16 = −32768 + i32768
√

3

Next we multiply (
√

3 + i)4 and (
√

3 + i)16 to obtain the answer.

(
√

3 + i)20 = (−32768 + i32768
√

3)(−8 + i8
√

3) = −524288− i524288
√

3

Since we know that arctan(
√

3, 1) = π/6, it is easiest to do this problem by first changing to modulus-argument
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form. (√
3 + i

)20

=

(√(√
3
)2

+ 12 ei arctan(
√

3,1)

)20

=
(
2 eiπ/6

)20

= 220 ei4π/3

= 1048576

(
−1

2
− i
√

3

2

)
= −524288− i524288

√
3

Example 8.5.2 Consider (5+7i)11. We will do the exponentiation in polar form and write the result in Cartesian
form.

(5 + 7i)11 =
(√

74 ei arctan(5,7)
)11

= 745
√

74(cos(11 arctan(5, 7)) + i sin(11 arctan(5, 7)))

= 2219006624
√

74 cos(11 arctan(5, 7)) + i2219006624
√

74 sin(11 arctan(5, 7))

The result is correct, but not very satisfying. This expression could be simplified. You could evaluate the
trigonometric functions with some fairly messy trigonometric identities. This would take much more work than
directly multiplying (5 + 7i)11.

8.6 Rational Exponents

In this section we consider complex numbers with rational exponents, zp/q, where p/q is a rational number.
First we consider unity raised to the 1/n power. We define 11/n as the set of numbers {z} such that zn = 1.

11/n = {z | zn = 1}

166



We can find these values by writing z in modulus-argument form.

zn = 1

rn einθ = 1

rn = 1 nθ = 0 mod 2π

r = 1 θ = 2πk for k ∈ Z

There are only n distinct solutions as a result of the 2π periodicity of eiθ. Thus

11/n = { ei2πk/n | k = 0, . . . , n− 1}.

These values are equally spaced points on the unit circle in the complex plane.

Example 8.6.1 11/6 has the 6 values,{
ei0, eiπ/3, ei2π/3, eiπ, ei4π/3, ei5π/3

}
.

In Cartesian form this is {
1,

1 + i
√

3

2
,
−1 + i

√
3

2
,−1,

−1− i
√

3

2
,
1− i

√
3

2

}
.

The sixth roots of unity are plotted in Figure 8.7.

The nth roots of the complex number c = α eiβ are the set of numbers z = r eiθ such that

zn = c = α eiβ

rn einθ = α eiβ

r = n
√
α nθ = β mod 2π

r = n
√
α θ = (β + 2πk)/n for k = 0, . . . , n− 1.

Thus

c1/n = { n
√
α ei(β+2πk)/n | k = 0, . . . , n− 1} = { n

√
|c| ei( Arg (c)+2πk)/n | k = 0, . . . , n− 1}
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-1 1

-1

1

Figure 8.7: The Sixth Roots of Unity.

Principal Roots. The principal nth root is denoted

n
√
z ≡ n
√
z eiArg (z)/n.

Thus the principal root has the property

−π/n < Arg
(
n
√
z
)
≤ π/n.

This is consistent with the notation you learned back in algebra where n
√
x denoted the positive nth root of a

positive real number. We adopt the convention that z1/n denotes the nth roots of z, which is a set of n numbers
and n

√
z is the principal nth root of z, which is a single number. With the principal root we can write,

z1/n = n
√
r ei( Arg (z)+2πk)/n | k = 0, . . . , n− 1}

= n
√
z ei2πk/n | k = 0, . . . , n− 1}

z1/n = n
√
z11/n.

That is, the nth roots of z are the principal nth root of z times the nth roots of unity.
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Rational Exponents. We interpret zp/q to mean z(p/q). That is, we first simplify the exponent, i.e. reduce
the fraction, before carrying out the exponentiation. Therefore z2/4 = z1/2 and z10/5 = z2. If p/q is a reduced
fraction, (p and q are relatively prime, in other words, they have no common factors), then

zp/q ≡ (zp)1/q .

Thus zp/q is a set of q values. Note that for an un-reduced fraction r/s,

(zr)1/s 6=
(
z1/s
)r
.

The former expression is a set of s values while the latter is a set of no more that s values. For instance,
(12)1/2 = 11/2 = ±1 and (11/2)2 = (±1)2 = 1.

Example 8.6.2 Consider 21/5, (1 + i)1/3 and (2 + i)5/6.

21/5 =
5
√

2 ei2πk/5, for k = 0, 1, 2, 3, 4

(1 + i)1/3 =
(√

2 eiπ/4
)1/3

=
6
√

2 eiπ/12 ei2πk/3, for k = 0, 1, 2

(2 + i)5/6 =
(√

5 eiArctan (2,1)
)5/6

=
(√

55 ei5 Arctan (2,1)
)1/6

=
12
√

55 ei
5
6

Arctan (2,1) eiπk/3, for k = 0, 1, 2, 3, 4, 5

Example 8.6.3 The roots of the polynomial z5 + 4 are

(−4)1/5 =
(
4 eiπ

)1/5

=
5
√

4 eiπ(1+2k)/5, for k = 0, 1, 2, 3, 4.
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8.7 Exercises

Complex Numbers

Exercise 8.1
Verify that:

1.
1 + 2i

3− 4i
+

2− i
5i

= −2

5

2. (1− i)4 = −4

Exercise 8.2
Write the following complex numbers in the form a+ ib.

1.
(

1 + i
√

3
)−10

2. (11 + 4i)2

Exercise 8.3
Write the following complex numbers in the form a+ ib

1.

(
2 + i

i6− (1− i2)

)2

2. (1− i)7

Exercise 8.4
If z = x+ iy, write the following in the form u(x, y) + iv(x, y).
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1.

(
z

z

)
2.

z + 2i

2− iz

Exercise 8.5
Quaternions are sometimes used as a generalization of complex numbers. A quaternion u may be defined as

u = u0 + iu1 + ju2 + ku3

where u0, u1, u2 and u3 are real numbers and i, j and k are objects which satisfy

i2 = j2 = k2 = −1, ij = k, ji = −k

and the usual associative and distributive laws. Show that for any quaternions u, w there exists a quaternion v
such that

uv = w

except for the case u0 = u1 = u2 = u3.

Exercise 8.6
Let α 6= 0, β 6= 0 be two complex numbers. Show that α = tβ for some real number t (i.e. the vectors defined by

α and β are parallel) if and only if =(αβ) = 0.

The Complex Plane

Exercise 8.7
Prove the following identities.

1. arg(zζ) = arg(z) + arg(ζ)
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2. Arg (zζ) 6= Arg (z) + Arg (ζ)

3. arg(z2) = arg(z) + arg(z) 6= 2 arg(z)

Exercise 8.8
Show, both by geometric and algebraic arguments, that for complex numbers z1 and z2 the inequalities

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|

hold.

Exercise 8.9
Find all the values of

1. (−1)−3/4

2. 81/6

and show them graphically.

Exercise 8.10
Find all values of

1. (−1)−1/4

2. 161/8

and show them graphically.
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Exercise 8.11
Sketch the regions or curves described by

1. 1 < |z − 2i| < 2

2. |<(z)|+ 5|=(z)| = 1

Exercise 8.12
Sketch the regions or curves described by

1. |z − 1 + i| ≤ 1

2. |z − i| = |z + i|

3. <(z)−=(z) = 5

4. |z − i|+ |z + i| = 1

Exercise 8.13
Solve the equation

| eiθ − 1| = 2

for θ (0 ≤ θ ≤ π) and verify the solution geometrically.

Polar Form

Exercise 8.14
Prove Euler’s formula, eiθ = cos θ+ i sin θ. Consider the Taylor series of ez to be the definition of the exponential
function.
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Exercise 8.15
Use de Moivre’s formula to derive the trigonometric identity

cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ).

Exercise 8.16
Establish the formula

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
, (z 6= 1),

for the sum of a finite geometric series; then derive the formulas

1. 1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin((n+ 1/2))

2 sin(θ/2)

2. sin θ + sin 2θ + · · ·+ sinnθ =
1

2
cot

θ

2
− cos((n+ 1/2))

2 sin(θ/2)

where 0 < θ < 2π.

Arithmetic and Vectors

Exercise 8.17
Prove |z1z2| = |z1||z2| and

∣∣∣ z1z2 ∣∣∣ = |z1|
|z2| using polar form.

Exercise 8.18
Prove that

|z + ζ|2 + |z − ζ|2 = 2
(
|z|2 + |ζ|2

)
.

Interpret this geometrically.
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Integer Exponents

Exercise 8.19
Write (1 + i)10 in Cartesian form with the following two methods:

1. Just do the multiplication. If it takes you more than four multiplications, you suck.

2. Do the multiplication in polar form.

Rational Exponents

Exercise 8.20
Show that each of the numbers z = −a+ (a2 − b)1/2 satisfies the equation z2 + 2az + b = 0.
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8.8 Hints

Complex Numbers

Hint 8.1

Hint 8.2

Hint 8.3

Hint 8.4

Hint 8.5

Hint 8.6

The Complex Plane

Hint 8.7
Write the multivaluedness explicitly.
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Hint 8.8
Consider a triangle with vertices at 0, z1 and z1 + z2.

Hint 8.9

Hint 8.10

Hint 8.11

Hint 8.12

Hint 8.13

Polar Form

Hint 8.14
Find the Taylor series of eiθ, cos θ and sin θ. Note that i2n = (−1)n.

Hint 8.15

177



Hint 8.16

Arithmetic and Vectors

Hint 8.17
| eiθ| = 1.

Hint 8.18
Consider the parallelogram defined by z and ζ.

Integer Exponents

Hint 8.19
For the first part,

(1 + i)10 =
((

(1 + i)2
)2
)2

(1 + i)2.

Rational Exponents

Hint 8.20
Substitite the numbers into the equation.
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8.9 Solutions

Complex Numbers

Solution 8.1
1.

1 + 2i

3− 4i
+

2− i
5i

=
1 + 2i

3− 4i

3 + 4i

3 + 4i
+

2− i
5i

−i
−i

=
−5 + 10i

25
+
−1− 2i

5

= −2

5

2.

(1− i)4 = (−2i)2 = −4
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Solution 8.2
1. First we do the multiplication in Cartesian form.

(
1 + i

√
3
)−10

=

((
1 + i

√
3
)2 (

1 + i
√

3
)8
)−1

=

((
−2 + i2

√
3
)(
−2 + i2

√
3
)4
)−1

=

((
−2 + i2

√
3
)(
−8− i8

√
3
)2
)−1

=
((
−2 + i2

√
3
)(
−128 + i128

√
3
))−1

=
(
−512− i512

√
3
)−1

=
1

512

−1

1 + i
√

3

=
1

512

−1

1 + i
√

3

1− i
√

3

1− i
√

3

= − 1

2048
+ i

√
3

2048
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Now we do the multiplication in modulus-argument, (polar), form.(
1 + i

√
3
)−10

=
(
2 eiπ/3

)−10

= 2−10 e−i10π/3

=
1

1024

(
cos

(
−10π

3

)
+ i sin

(
−10π

3

))
=

1

1024

(
cos

(
4π

3

)
− i sin

(
4π

3

))
=

1

1024

(
−1

2
+ i

√
3

2

)

= − 1

2048
+ i

√
3

2048

2.

(11 + 4i)2 = 105 + i88

Solution 8.3
1. (

2 + i

i6− (1− i2)

)2

=

(
2 + i

−1 + i8

)2

=
3 + i4

−63− i16

=
3 + i4

−63− i16

−63 + i16

−63 + i16

= − 253

4225
− i 204

4225
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2.

(1− i)7 = ((1− i)2)2(1− i)2(1− i)
= (−i2)2(−i2)(1− i)
= (−4)(−2− i2)

= 8 + i8

Solution 8.4
1.

(
z

z

)
=

(
x+ iy

x+ iy

)
=

(
x− iy
x+ iy

)
=
x+ iy

x− iy

=
x+ iy

x− iy
x+ iy

x+ iy

=
x2 − y2

x2 + y2
+ i

2xy

x2 + y2
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2.

z + 2i

2− iz
=

x+ iy + 2i

2− i(x− iy)

=
x+ i(y + 2)

2− y − ix

=
x+ i(y + 2)

2− y − ix
2− y + ix

2− y + ix

=
x(2− y)− (y + 2)x

(2− y)2 + x2
+ i

x2 + (y + 2)(2− y)

(2− y)2 + x2

=
−2xy

(2− y)2 + x2
+ i

4 + x2 − y2

(2− y)2 + x2

Solution 8.5
Method 1. We expand the equation uv = w in its components.

uv = w

(u0 + iu1 + ju2 + ku3)(v0 + iv1 + jv2 + kv3) = w0 + iw1 + jw2 + kw3

(u0v0 − u1v1 − u2v2 − u3v3) + i(u1v0 + u0v1 − u3v2 + u2v3) + j(u2v0 + u3v1 + u0v2 − u1v3)

+ k(u3v0 − u2v1 + u1v2 + u0v3) = w0 + iw1 + jw2 + kw3

We can write this as a matrix equation.
u0 −u1 −u2 −u3

u1 u0 −u3 u2

u2 u3 u0 −u1

u3 −u2 u1 u0



v0

v1

v2

v3

 =


w0

w1

w2

w3


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This linear system of equations has a unique solution for v if and only if the determinant of the matrix is nonzero.
The determinant of the matrix is (u2

0 + u2
1 + u2

2 + u2
3)

2
. This is zero if and only if u0 = u1 = u2 = u3 = 0. Thus

there exists a unique v such that uv = w if u is nonzero. This v is

v =
(
(u0w0 + u1w1 + u2w2 + u3w3) + i(−u1w0 + u0w1 + u3w2 − u2w3) + j(−u2w0 − u3w1 + u0w2 + u1w3)

+ k(−u3w0 + u2w1 − u1w2 + u0w3)
)
/(u2

0 + u2
1 + u2

2 + u2
3)

Method 2. Note that uu is a real number.

uu = (u0 − iu1 − ju2 − ku3)(u0 + iu1 + ju2 + ku3)

= (u2
0 + u2

1 + u2
2 + u2

3) + i(u0u1 − u1u0 − u2u3 + u3u2)

+ j(u0u2 + u1u3 − u2u0 − u3u1) + k(u0u3 − u1u2 + u2u1 − u3u0)

= (u2
0 + u2

1 + u2
2 + u2

3)

uu = 0 only if u = 0. We solve for v by multiplying by the conjugate of u and divide by uu.

uv = w

uuv = uw

v =
uw

uu

v =
(u0 − iu1 − ju2 − ku3)(w0 + iw1 + jw2 + kw3)

u2
0 + u2

1 + u2
2 + u2

3

v =
(
(u0w0 + u1w1 + u2w2 + u3w3) + i(−u1w0 + u0w1 + u3w2 − u2w3) + j(−u2w0 − u3w1 + u0w2 + u1w3)

+ k(−u3w0 + u2w1 − u1w2 + u0w3)
)
/(u2

0 + u2
1 + u2

2 + u2
3)

Solution 8.6
If α = tβ, then αβ = t|β|2, which is a real number. Hence =(αβ) = 0.

184



Now assume that =(αβ) = 0. This implies that αβ = r for some r ∈ R. We multiply by β and simplify.

α|β|2 = rβ

α =
r

|β|2
β

By taking t = r
|β|2 We see that α = tβ for some real number t.

The Complex Plane

Solution 8.7
Let z = r eiθ and ζ = ρ eiϑ.

1.

arg(zζ) = arg(z) + arg(ζ)

arg(rρ ei(θ+ϑ)) = {θ + 2πm}+ {ϑ+ 2πn}
{θ + ϑ+ 2πk} = {θ + ϑ+ 2πm}

2.

Arg (zζ) 6= Arg (z) + Arg (ζ)

Consider z = ζ = −1. Arg (z) = Arg (ζ) = π, however Arg (zζ) = Arg (1) = 0. The identity becomes
0 6= 2π.

3.

arg(z2) = arg(z) + arg(z) 6= 2 arg(z)

arg(r2 ei2θ) = {θ + 2πk}+ {θ + 2πm} 6= 2{θ + 2πn}
{2θ + 2πk} = {2θ + 2πm} 6= {2θ + 4πn}
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Figure 8.8: Triangle Inequality

Solution 8.8
Consider a triangle in the complex plane with vertices at 0, z1 and z1 + z2. (See Figure 8.8.)

The lengths of the sides of the triangle are |z1|, |z2| and |z1 + z2| The second inequality shows that one side of
the triangle must be less than or equal to the sum of the other two sides.

|z1 + z2| ≤ |z1|+ |z2|

The first inequality shows that the length of one side of the triangle must be greater than or equal to the difference
in the length of the other two sides.

|z1 + z2| ≥ ||z1| − |z2||
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Now we prove the inequalities algebraically. We will reduce the inequality to an identity. Let z1 = r1 eiθ1 ,
z2 = r2 eiθ2 .

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|
|r1 − r2| ≤ |r1 eiθ1 + r2 eiθ2| ≤ r1 + r2

(r1 − r2)2 ≤ (r1 eiθ1 + r2 eiθ2)(r1 e−iθ1 + r2 e−iθ2) ≤ (r1 + r2)2

r2
1 + r2

2 − 2r1r2 ≤ r2
1 + r2

2 + r1r2 ei(θ1−θ2) + r1r2 ei(−θ1+θ2) ≤ r2
1 + r2

2 + 2r1r2

−2r1r2 ≤ 2r1r2 cos(θ1 − θ2) ≤ 2r1r2

−1 ≤ cos(θ1 − θ2) ≤ 1

Solution 8.9
1.

(−1)−3/4 =
(
(−1)−3

)1/4

= (−1)1/4

= ( eiπ)1/4

= eiπ/411/4

= eiπ/4 eikπ/2, k = 0, 1, 2, 3

=
{

eiπ/4, ei3π/4, ei5π/4, ei7π/4
}

=

{
1 + i√

2
,
−1 + i√

2
,
−1− i√

2
,
1− i√

2

}

See Figure 8.9.
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-1 1

-1

1

Figure 8.9: (−1)−3/4

2.

81/6 =
6
√

811/6

=
√

2 eikπ/3, k = 0, 1, 2, 3, 4, 5

=
{√

2,
√

2 eiπ/3,
√

2 ei2π/3,
√

2 eiπ,
√

2 ei4π/3,
√

2 ei5π/3
}

=

{
√

2,
1 + i

√
3√

2
,
−1 + i

√
3√

2
,−
√

2
−1− i

√
3√

2
,
1− i

√
3√

2

}

See Figure 8.10.
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Figure 8.10: 81/6

Solution 8.10
1.

(−1)−1/4 = ((−1)−1)1/4

= (−1)1/4

= ( eiπ)1/4

= eiπ/411/4

= eiπ/4 eikπ/2, k = 0, 1, 2, 3

=
{

eiπ/4, ei3π/4, ei5π/4, ei7π/4
}

=

{
1 + i√

2
,
−1 + i√

2
,
−1− i√

2
,
1− i√

2

}

See Figure 8.11.

189
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-1

1

Figure 8.11: (−1)−1/4

2.

161/8 =
8
√

16 11/8

=
√

2 eikπ/4, k = 0, 1, 2, 3, 4, 5, 6, 7

=
{√

2,
√

2 eiπ/4,
√

2 eiπ/2,
√

2 ei3π/4,
√

2 eiπ,
√

2 ei5π/4,
√

2 ei3π/2,
√

2 ei7π/4
}

=
{√

2, 1 + i,
√

2i,−1 + i,−
√

2,−1− i,−
√

2i, 1− i
}

See Figure 8.12.

Solution 8.11
1. |z − 2i| is the distance from the point 2i in the complex plane. Thus 1 < |z − 2i| < 2 is an annulus. See

Figure 8.13.
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Figure 8.12: 16−1/8
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Figure 8.13: 1 < |z − 2i| < 2
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2.

|<(z)|+ 5|=(z)| = 1

|x|+ 5|y| = 1

In the first quadrant this is the line y = (1− x)/5. We reflect this line segment across the coordinate axes
to obtain line segments in the other quadrants. Explicitly, we have the set of points: {z = x + iy : −1 <
x < 1 ∧ y = ±(1− |x|)/5}. See Figure 8.14.

-1 1

-0.4

-0.2

0.2

0.4

Figure 8.14: |<(z)|+ 5|=(z)| = 1

Solution 8.12
1. |z − 1 + i| is the distance from the point (1− i). Thus |z − 1 + i| ≤ 1 is the disk of unit radius centered at

(1− i). See Figure 8.15.

2. The set of points equidistant from i and −i is the real axis. See Figure 8.16.
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Figure 8.15: |z − 1 + i| < 1

-1 1

-1

1

Figure 8.16: |z − i| = |z + i|
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3.

<(z)−=(z) = 5

x− y = 5

y = x− 5

See Figure 8.17.

-10 -5 5 10

-15

-10

-5

5

Figure 8.17: <(z)−=(z) = 5

4. Since |z − i|+ |z + i| ≥ 2, there are no solutions of |z − i|+ |z + i| = 1.
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Solution 8.13

| eiθ − 1| = 2

( eiθ − 1)( e−iθ − 1) = 4

1− eiθ − e−iθ + 1 = 4

−2 cos(θ) = 2

θ = π

{ eiθ | 0 ≤ θ ≤ π} is a unit semi-circle in the upper half of the complex plane from 1 to -1. The only point on
this semi-circle that is a distance 2 from the point 1 is the point -1, which corresponds to θ = π.

Polar Form

Solution 8.14
The Taylor series expansion of ex is

ex =
∞∑
n=0

xn

n!
.

Taking this as the definition of the exponential function for complex argument,

eiθ =
∞∑
n=0

(iθ)n

n!

=
∞∑
n=0

in
θn

n!

=
∞∑
n=0

(−1)n
θ2n

(2n)!
+ i

∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!
.
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The sine and cosine have the Taylor series

cos θ =
∞∑
n=0

(−1)n
θ2n

(2n)!
, sin θ =

∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!
,

Thus eiθ and cos θ + i sin θ have the same Taylor series expansions about θ = 0. Since the radius of convergence
of the series is infinite we conclude that,

eiθ = cos θ + i sin θ.

Solution 8.15

cos(3θ) + i sin(3θ) = (cos(θ) + i sin(θ))3

cos(3θ) + i sin(3θ) = cos3(θ) + i3 cos2(θ) sin(θ)− 3 cos(θ) sin2(θ)− i sin3(θ)

We equate the real parts of the equation.

cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ)

Solution 8.16
Define the partial sum,

Sn(z) =
n∑
k=0

zk.
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Now consider (1− z)Sn(z).

(1− z)Sn(z) = (1− z)
n∑
k=0

zk

(1− z)Sn(z) =
n∑
k=0

zk −
n+1∑
k=1

zk

(1− z)Sn(z) = 1− zn+1

We divide by 1− z. Note that 1− z is nonzero.

Sn(z) =
1− zn+1

1− z

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
, (z 6= 1)

Now consider z = eiθ where 0 < θ < 2π so that z is not unity.

n∑
k=0

(
eiθ
)k

=
1−

(
eiθ
)n+1

1− eiθ

n∑
k=0

eikθ =
1− ei(n+1)θ

1− eiθ
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In order to get sin(θ/2) in the denominator, we multiply top and bottom by e−iθ/2.

n∑
k=0

(cos kθ + i sin kθ) =
e−iθ/2 − ei(n+1/2)θ

e−iθ/2 − eiθ/2

n∑
k=0

cos kθ + i
n∑
k=0

sin kθ =
cos(θ/2)− i sin(θ/2)− cos((n+ 1/2)θ)− i sin((n+ 1/2)θ)

−2i sin(θ/2)

n∑
k=0

cos kθ + i
n∑
k=1

sin kθ =
1

2
+

sin((n+ 1/2)θ)

sin(θ/2)
+ i

(
1

2
cot(θ/2)− cos((n+ 1/2)θ)

sin(θ/2)

)
1. We take the real and imaginary part of this to obtain the identities.

n∑
k=0

cos kθ =
1

2
+

sin((n+ 1/2)θ)

2 sin(θ/2)

2.

n∑
k=1

sin kθ =
1

2
cot(θ/2)− cos((n+ 1/2)θ)

2 sin(θ/2)

Arithmetic and Vectors

Solution 8.17

|z1z2| = |r1 eiθ1r2 eiθ2|
= |r1r2 ei(θ1+θ2)|
= |r1r2|
= |r1||r2|
= |z1||z2|
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∣∣∣∣z1

z2

∣∣∣∣ =

∣∣∣∣r1 eiθ1

r2 eiθ2

∣∣∣∣
=

∣∣∣∣r1

r2

ei(θ1−θ2)

∣∣∣∣
=

∣∣∣∣r1

r2

∣∣∣∣
=
|r1|
|r2|

=
|z1|
|z2|

Solution 8.18

|z + ζ|2 + |z − ζ|2 = (z + ζ)
(
z + ζ

)
+ (z − ζ)

(
z − ζ

)
= zz + zζ + ζz + ζζ + zz − zζ − ζz + ζζ

= 2
(
|z|2 + |ζ|2

)

Consider the parallelogram defined by the vectors z and ζ. The lengths of the sides are z and ζ and the lengths of
the diagonals are z + ζ and z − ζ. We know from geometry that the sum of the squared lengths of the diagonals
of a parallelogram is equal to the sum of the squared lengths of the four sides. (See Figure 8.18.)

Integer Exponents
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z+

z-

z

ζ

ζ

ζ

Figure 8.18: The parallelogram defined by z and ζ.

Solution 8.19
1.

(1 + i)10 =
((

(1 + i)2
)2
)2

(1 + i)2

=
(
(i2)2)2

(i2)

= (−4)2 (i2)

= 16(i2)

= i32

2.

(1 + i)10 =
(√

2 eiπ/4
)10

=
(√

2
)10

ei10π/4

= 32 eiπ/2

= i32
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Rational Exponents

Solution 8.20
We substitite the numbers into the equation to obtain an identity.

z2 + 2az + b = 0

(−a+ (a2 − b)1/2)2 + 2a(−a+ (a2 − b)1/2) + b = 0

a2 − 2a(a2 − b)1/2 + a2 − b− 2a2 + 2a(a2 − b)1/2 + b = 0

0 = 0
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Chapter 9

Functions of a Complex Variable

If brute force isn’t working, youŕe not using enough of it.

-Tim Mauch

In this chapter we introduce the algebra of functions of a complex variable. We will cover the trigonometric and
inverse trigonometric functions. The properties of trigonometric function carry over directly from real-variable
theory. However, because of multi-valuedness, the inverse trigonometric functions are significantly trickier than
their real-variable counterparts.

9.1 Curves and Regions

In this section we introduce curves and regions in the complex plane. This material is necessary for the study
of branch points in this chapter and later for contour integration.
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Curves. Consider two continuous functions, x(t) and y(t), defined on the interval t ∈ [t0 . . . t1]. The set of
points in the complex plane

{z(t) = x(t) + iy(t) | t ∈ [t0 . . . t1]}

defines a continuous curve or simply a curve. If the endpoints coincide, z(t0) = z(t1), it is a closed curve. (We
assume that t0 6= t1.) If the curve does not intersect itself, then it is said to be a simple curve.

If x(t) and y(t) have continuous derivatives and the derivatives do not both vanish at any point 1 , then it is
a smooth curve. This essentially means that the curve does not have any corners or other nastiness.

A continuous curve which is composed of a finite number of smooth curves is called a piecewise smooth curve.
We will use the word contour as a synonym for a piecewise smooth curve.

See Figure 9.1 for a smooth curve, a piecewise smooth curve, a simple closed curve and a non-simple closed
curve.

(a) (b) (c) (d)

Figure 9.1: (a) Smooth Curve, (b) Piecewise Smooth Curve, (c) Simple Closed Curve, (d) Non-Simple Closed
Curve

Regions. A region R is connected if any two points in R can be connected by a curve which lies entirely in
R. A region is simply-connected if every closed curve in R can be continuously shrunk to a point without leaving
R. A region which is not simply-connected is said to be multiply-connected region. Another way of defining

1Why is it necessary that the derivatives do not both vanish?
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simply-connected is that a path connecting two points in R can be continuously deformed into any other path
that connects those points. Figure 9.2 shows a simply-connected region with two paths which can be continuously
deformed into one another and a multiply-connected region with paths which cannot be deformed into one another.

Figure 9.2: Simply-connected and multiply-connected regions.

Jordan Curve Theorem. A continuous, simple, closed curve is known as a Jordan curve. The Jordan Curve
Theorem, which seems intuitively obvious but is difficult to prove, states that a Jordan curve divides the plane
into a simply-connected, bounded region and an unbounded region. These two regions are called the interior and
exterior regions, respectively. The two regions share the curve as a boundary. Points in the interior are said to
be inside the curve; points in the exterior are said to be outside the curve.

Traversal of a Contour. Consider a Jordan curve. If you traverse the curve in the positive direction, then the
inside is to your left. If you traverse the curve in the opposite direction, then the outside will be to your left and
you will go around the curve in the negative direction. For circles, the positive direction is the counter-clockwise
direction. The positive direction is consistent with the way angles are measured in a right-handed coordinate
system, i.e. for a circle centered on the origin, the positive direction is the direction of increasing angle. For an
oriented contour C, we denote the contour with opposite orientation as −C.

204



Boundary of a Region. Consider a simply-connected region. The boundary of the region is traversed in the
positive direction if the region is to the left as you walk along the contour. For multiply-connected regions, the
boundary may be a set of contours. In this case the boundary is traversed in the positive direction if each of the
contours is traversed in the positive direction. When we refer to the boundary of a region we will assume it is
given the positive orientation. In Figure 9.3 the boundaries of three regions are traversed in the positive direction.

Figure 9.3: Traversing the boundary in the positive direction.

Two Interpretations of a Curve. Consider a simple closed curve as depicted in Figure 9.4a. By giving it
an orientation, we can make a contour that either encloses the bounded domain Figure 9.4b or the unbounded
domain Figure 9.4c. Thus a curve has two interpretations. It can be thought of as enclosing either the points
which are “inside” or the points which are “outside”. 2

2A farmer wanted to know the most efficient way to build a pen to enclose his sheep, so he consulted an engineer, a physicist
and a mathematician. The engineer suggested that he build a circular pen to get the maximum area for any given perimeter. The
physicist suggested that he build a fence at infinity and then shrink it to fit the sheep. The mathematician constructed a little fence
around himself and then defined himself to be outside.
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(a) (b) (c)

Figure 9.4: Two interpretations of a curve.

9.2 Cartesian and Modulus-Argument Form

We can write a function of a complex variable z as a function of x and y or as a function of r and θ with the
substitutions z = x+ iy and z = r eiθ, respectively. Then we can separate the real and imaginary components or
write the function in modulus-argument form,

f(z) = u(x, y) + iv(x, y), or f(z) = u(r, θ) + iv(r, θ),

f(z) = ρ(x, y) eiφ(x,y), or f(z) = ρ(r, θ) eiφ(r,θ).

Example 9.2.1 Consider the functions f(z) = z, f(z) = z3 and f(z) = 1
1−z . We write the functions in terms of

x and y and separate them into their real and imaginary components.

f(z) = z

= x+ iy
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f(z) = z3

= (x+ iy)3

= x3 + ix2y − xy2 − iy3

= (x3 − xy2) + i(x2y − y3)

f(z) =
1

1− z

=
1

1− x− iy

=
1

1− x− iy
1− x+ iy

1− x+ iy

=
1− x

(1− x)2 + y2
+ i

y

(1− x)2 + y2

Example 9.2.2 Consider the functions f(z) = z, f(z) = z3 and f(z) = 1
1−z . We write the functions in terms of

r and θ and write them in modulus-argument form.

f(z) = z

= r eiθ

f(z) = z3

=
(
r eiθ

)3

= r3 ei3θ
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f(z) =
1

1− z

=
1

1− r eiθ

=
1

1− r eiθ
1

1− r e−iθ

=
1− r e−iθ

1− r eiθ − r e−iθ + r2

=
1− r cos θ + ir sin θ

1− 2r cos θ + r2

Note that the denominator is real and non-negative.

=
1

1− 2r cos θ + r2
|1− r cos θ + ir sin θ| ei arctan(1−r cos θ,r sin θ)

=
1

1− 2r cos θ + r2

√
(1− r cos θ)2 + r2 sin2 θ ei arctan(1−r cos θ,r sin θ)

=
1

1− 2r cos θ + r2

√
1− 2r cos θ + r2 cos2 θ + r2 sin2 θ ei arctan(1−r cos θ,r sin θ)

=
1√

1− 2r cos θ + r2
ei arctan(1−r cos θ,r sin θ)

9.3 Graphing Functions of a Complex Variable

We cannot directly graph a function of a complex variable as they are mappings from R
2 to R2. To do so would

require four dimensions. However, we can can use a surface plot to graph the real part, the imaginary part, the
modulus or the argument of a function of a complex variable. Each of these are scalar fields, mappings from R

2

to R.
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Example 9.3.1 Consider the identity function, f(z) = z. In Cartesian coordinates and Cartesian form, the
function is f(z) = x+ iy. The real and imaginary components are u(x, y) = x and v(x, y) = y. (See Figure 9.5.)
In modulus argument form the function is
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Figure 9.5: The real and imaginary parts of f(z) = z = x+ iy

f(z) = z = r eiθ =
√
x2 + y2 ei arctan(x,y).

The modulus of f(z) is a single-valued function which is the distance from the origin. The argument of f(z) is a
multi-valued function. Recall that arctan(x, y) has an infinite number of values each of which differ by an integer
multiple of 2π. A few branches of arg(f(z)) are plotted in Figure 9.6. The modulus and principal argument of
f(z) = z are plotted in Figure 9.7.

Example 9.3.2 Consider the function f(z) = z2. In Cartesian coordinates and separated into its real and
imaginary components the function is

f(z) = z2 = (x+ iy)2 = (x2 − y2) + i2xy.

Figure 9.8 shows surface plots of the real and imaginary parts of z2. The magnitude of z2 is

|z2| =
√
z2z2 = zz = (x+ iy)(x− iy) = x2 + y2.
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Figure 9.6: A Few Branches of arg(z)
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Figure 9.7: Plots of |z| and Arg (z)

Note that

z2 = (r eiθ)2 = r2 ei2θ.
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Figure 9.8: Plots of <(z2) and =(z2)

In Figure 9.9 are plots of |z2| and a branch of arg(z2).
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Figure 9.9: Plots of |z2| and a branch of arg(z2)
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9.4 Trigonometric Functions

The Exponential Function. Consider the exponential function ez. We can use Euler’s formula to write
ez = ex+iy in terms of its real and imaginary parts.

ez = ex+iy = ex eiy = ex cos y + i ex sin y

From this we see that the exponential function is i2π periodic: ez+i2π = ez, and iπ odd periodic: ez+iπ = − ez.
Figure 9.10 has surface plots of the real and imaginary parts of ez which show this periodicity.
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Figure 9.10: Plots of <( ez) and =( ez)

The modulus of ez is a function of x alone.

| ez| =
∣∣ ex+iy

∣∣ = ex

The argument of ez is a function of y alone.

arg ( ez) = arg
(

ex+iy
)

= {y + 2πn |n ∈ Z}

In Figure 9.11 are plots of | ez| and a branch of arg( ez).
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Figure 9.11: Plots of | ez| and a branch of arg( ez)

Example 9.4.1 Show that the transformation w = ez maps the infinite strip, −∞ < x < ∞, 0 < y < π, onto
the upper half-plane.

Method 1. Consider the line z = x+ ic, −∞ < x <∞. Under the transformation, this is mapped to

w = ex+ic = eic ex, −∞ < x <∞.

This is a ray from the origin to infinity in the direction of eic. Thus we see that z = x is mapped to the positive,
real w axis, z = x + iπ is mapped to the negative, real axis, and z = x + ic, 0 < c < π is mapped to a ray with
angle c in the upper half-plane. Thus the strip is mapped to the upper half-plane. See Figure 9.12.

Method 2. Consider the line z = c+ iy, 0 < y < π. Under the transformation, this is mapped to

w = ec+iy + ec eiy, 0 < y < π.

This is a semi-circle in the upper half-plane of radius ec. As c → −∞, the radius goes to zero. As c → ∞, the
radius goes to infinity. Thus the strip is mapped to the upper half-plane. See Figure 9.13.
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Figure 9.12: ez maps horizontal lines to rays.
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Figure 9.13: ez maps vertical lines to circular arcs.

The Sine and Cosine. We can write the sine and cosine in terms of the exponential function.

eiz + e−iz

2
=

cos(z) + i sin(z) + cos(−z) + i sin(−z)

2

=
cos(z) + i sin(z) + cos(z)− i sin(z)

2
= cos z
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eiz − e−iz

i2
=

cos(z) + i sin(z)− cos(−z)− i sin(−z)

2

=
cos(z) + i sin(z)− cos(z) + i sin(z)

2
= sin z

We separate the sine and cosine into their real and imaginary parts.

cos z = cos x cosh y − i sinx sinh y sin z = sinx cosh y + i cosx sinh y

For fixed y, the sine and cosine are oscillatory in x. The amplitude of the oscillations grows with increasing |y|.
See Figure 9.14 and Figure 9.15 for plots of the real and imaginary parts of the cosine and sine, respectively.
Figure 9.16 shows the modulus of the cosine and the sine.
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Figure 9.14: Plots of <(cos(z)) and =(cos(z))

The Hyperbolic Sine and Cosine. The hyperbolic sine and cosine have the familiar definitions in terms of
the exponential function. Thus not surprisingly, we can write the sine in terms of the hyperbolic sine and write
the cosine in terms of the hyperbolic cosine. Below is a collection of trigonometric identities.
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Figure 9.15: Plots of <(sin(z)) and =(sin(z))
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Figure 9.16: Plots of | cos(z)| and | sin(z)|

Result 9.4.1

ez = ex(cos y + i sin y)

cos z =
eiz + e−iz

2
sin z =

eiz − e−iz

2i
cos z = cos x cosh y − i sinx sinh y sin z = sinx cosh y + i cos x sinh y

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2
cosh z = cosh x cos y + i sinhx sin y sinh z = sinhx cos y + i cosh x sin y

sin iz = i sinh z sinh iz = i sin z

cos iz = cosh z cosh iz = cos z

log z = Log |z|+ i arg(z) = Log |z|+ i Arg (z) + 2iπn
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9.5 Inverse Trigonometric Functions

The Logarithm. The logarithm, log(z), is defined as the inverse of the exponential function ez. The exponential
function is many-to-one and thus has a multi-valued inverse. From what we know of many-to-one functions, we
conclude that

elog z = z, but log( ez) 6= z.

This is because elog z is single-valued but log( ez) is not. Because ez is i2π periodic, the logarithm of a number is
a set of numbers which differ by integer multiples of i2π. For instance, ei2πn = 1 so that log(1) = {i2πn : n ∈ Z}.
The logarithmic function has an infinite number of branches. The value of the function on the branches differs
by integer multiples of i2π. It has singularities at zero and infinity. | log(z)| → ∞ as either z → 0 or z →∞.

We will derive the formula for the complex variable logarithm. For now, let Log (x) denote the real variable
logarithm that is defined for positive real numbers. Consider w = log z. This means that ew = z. We write
w = u+ iv in Cartesian form and z = r eiθ in polar form.

eu+iv = r eiθ

We equate the modulus and argument of this expression.

eu = r v = θ + 2πn

u = Log r v = θ + 2πn

With log z = u+ iv, we have a formula form the logarithm.

log z = Log |z|+ i arg(z)

If we write out the multi-valuedness of the argument function we note that this has the form that we expected.

log z = Log |z|+ i( Arg (z) + 2πn), n ∈ Z

We check that our formula is correct by showing that elog z = z

elog z = e Log |z|+i arg(z) = e Log r+iθ+i2πn = r eiθ = z
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Note again that log( ez) 6= z.

log( ez) = Log | ez|+ i arg( ez) = Log ( ex) + i arg( ex+iy) = x+ i(y + 2πn) = z + i2nπ 6= z

The real part of the logarithm is the single-valued Log r; the imaginary part is the multi-valued arg(z). We
define the principal branch of the logarithm Log z to be the branch that satisfies −π < =( Log z) ≤ π. For
positive, real numbers the principal branch, Log x is real-valued. We can write Log z in terms of the principal
argument, Arg z.

Log z = Log |z|+ iArg (z)

See Figure 9.17 for plots of the real and imaginary part of Log z.
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Figure 9.17: Plots of <( Log z) and =( Log z).

The Form: ab. Consider ab where a and b are complex and a is nonzero. We define this expression in terms of
the exponential and the logarithm as

ab = eb log a.
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Note that the multi-valuedness of the logarithm may make ab multi-valued. First consider the case that the
exponent is an integer.

am = em log a = em( Log a+i2nπ) = emLog a ei2mnπ = emLog a

Thus we see that am has a single value where m is an integer.
Now consider the case that the exponent is a rational number. Let p/q be a rational number in reduced form.

ap/q = e
p
q

log a = e
p
q

( Log a+i2nπ) = e
p
q

Log a ei2npπ/q.

This expression has q distinct values as

ei2npπ/q = ei2mpπ/q if and only if n = m mod q.

Finally consider the case that the exponent b is an irrational number.

ab = eb log a = eb( Log a+i2nπ) = ebLog a ei2bnπ

Note that ei2bnπ and ei2bmπ are equal if and only if i2bnπ and i2bmπ differ by an integer multiple of i2π, which
means that bn and bm differ by an integer. This occurs only when n = m. Thus ei2bnπ has a distinct value for
each different integer n. We conclude that ab has an infinite number of values.

You may have noticed something a little fishy. If b is not an integer and a is any non-zero complex number,
then ab is multi-valued. Then why have we been treating eb as single-valued, when it is merely the case a = e?
The answer is that in the realm of functions of a complex variable, ez is an abuse of notation. We write ez when
we mean exp(z), the single-valued exponential function. Thus when we write ez we do not mean “the number e
raised to the z power”, we mean “the exponential function of z”. We denote the former scenario as (e)z, which
is multi-valued.

Logarithmic Identities. Back in high school trigonometry when you thought that the logarithm was only
defined for positive real numbers you learned the identity log xa = a log x. This identity doesn’t hold when the
logarithm is defined for nonzero complex numbers. Consider the logarithm of za.

log za = Log za + i2πn
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a log z = a( Log z + i2πn) = aLog z + i2aπn

Note that

log za 6= a log z

Furthermore, since

Log za = Log |za|+ iArg (za), aLog z = aLog |z|+ iaArg (z)

and Arg (za) is not necessarily the same as aArg (z) we see that

Log za 6= aLog z.

Consider the logarithm of a product.

log(ab) = Log |ab|+ i arg(ab)

= Log |a|+ Log |b|+ i arg(a) + i arg(b)

= log a+ log b

There is not an analogous identity for the principal branch of the logarithm since Arg (ab) is not in general the
same as Arg (a) + Arg (b).

Using log(ab) = log(a) + log(b) we can deduce that log(an) =
∑n

k=1 log a = n log a, where n is a positive
integer. This result is simple, straightforward and wrong. I have led you down the merry path to damnation. 3

In fact, log(a2) 6= 2 log a. Just write the multi-valuedness explicitly,

log(a2) = Log (a2) + i2nπ, 2 log a = 2( Log a+ i2nπ) = 2 Log a+ i4nπ.

3Don’t feel bad if you fell for it. The logarithm is a tricky bastard.
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You can verify that

log

(
1

a

)
= − log a.

We can use this and the product identity to expand the logarithm of a quotient.

log
(a
b

)
= log a− log b

For general values of a, log za 6= a log z. However, for some values of a, equality holds. We already know
that a = 1 and a = −1 work. To determine if equality holds for other values of a, we explicitly write the
multi-valuedness.

log za = log
(

ea log z
)

= a log z + i2πk, k ∈ Z
a log z = aLog |z|+ iaArg z + ia2πm, m ∈ Z

We see that log za = a log z if and only if

{am |m ∈ Z} = {am+ k | k,m ∈ Z}.

The sets are equal if and only if a = 1/n, n ∈ Z±. Thus we have the identity:

log
(
z1/n

)
=

1

n
log z, n ∈ Z±
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Result 9.5.1 Logarithmic Identities.

ab = eb log a

elog z = eLog z = z

log(ab) = log a+ log b

log(1/a) = − log a

log(a/b) = log a− log b

log
(
z1/n

)
=

1

n
log z, n ∈ Z±

Logarithmic Inequalities.

Log (uv) 6= Log (u) + Log (v)

log za 6= a log z

Log za 6= aLog z

log ez 6= z

Example 9.5.1 Consider 1π. We apply the definition ab = eb log a.

1π = eπ log(1)

= eπ( Log (1)+i2nπ)

= ei2nπ
2

Thus we see that 1π has an infinite number of values, all of which lie on the unit circle |z| = 1 in the complex
plane. However, the set 1π is not equal to the set |z| = 1. There are points in the latter which are not in the
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former. This is analogous to the fact that the rational numbers are dense in the real numbers, but are a subset
of the real numbers.

Example 9.5.2 We find the zeros of sin z.

sin z =
eiz − e−iz

2i
= 0

eiz = e−iz

ei2z = 1

2z mod 2π = 0

z = nπ, n ∈ Z

Equivalently, we could use the identity

sin z = sinx cosh y + i cosx sinh y = 0.

This becomes the two equations (for the real and imaginary parts)

sinx cosh y = 0 and cos x sinh y = 0.

Since cosh is real-valued and positive for real argument, the first equation dictates that x = nπ, n ∈ Z. Since
cos(nπ) = (−1)n for n ∈ Z, the second equation implies that sinh y = 0. For real argument, sinh y is only zero at
y = 0. Thus the zeros are

z = nπ, n ∈ Z

Example 9.5.3 Since we can express sin z in terms of the exponential function, one would expect that we could
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express the sin−1 z in terms of the logarithm.

w = sin−1 z

z = sinw

z =
eiw − e−iw

2i
e2iw − 2iz eiw − 1 = 0

eiw = iz ±
√

1− z2

w = −i log
(
iz ±

√
1− z2

)
Thus we see how the multi-valued sin−1 is related to the logarithm.

sin−1 z = −i log
(
iz ±

√
1− z2

)
Example 9.5.4 Consider the equation sin3 z = 1.

sin3 z = 1

sin z = 11/3

eiz − e−iz

2i
= 11/3

eiz − 2i(1)1/3 − e−iz = 0

e2iz − 2i(1)1/3 eiz − 1 = 0

eiz =
2i(1)1/3 ±

√
−4(1)2/3 + 4

2

eiz = i(1)1/3 ±
√

1− (1)2/3

z = −i log
(
i(1)1/3 ±

√
1− 12/3

)
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Note that there are three sources of multi-valuedness in the expression for z. The two values of the square root are
shown explicitly. There are three cube roots of unity. Finally, the logarithm has an infinite number of branches.
To show this multi-valuedness explicitly, we could write

z = −iLog
(
i ei2mπ/3 ±

√
1− ei4mπ/3

)
+ 2πn, m = 0, 1, 2, n = . . . ,−1, 0, 1, . . .

Example 9.5.5 Consider the harmless looking equation, iz = 1.
Before we start with the algebra, note that the right side of the equation is a single number. iz is single-valued

only when z is an integer. Thus we know that if there are solutions for z, they are integers. We now proceed to
solve the equation.

iz = 1

( eiπ/2)z = 1

Use the fact that z is an integer.

eiπz/2 = 1

iπz/2 = 2inπ, for some n ∈ Z
z = 4n, n ∈ Z

Here is a different approach. We write down the multi-valued form of iz. We solve the equation by requiring
that all the values of iz are 1.

iz = 1

ez log i = 1

z log i = 2πin, for some n ∈ Z

z
(
i
π

2
+ 2πim

)
= 2πin, ∀m ∈ Z, for some n ∈ Z

i
π

2
z + 2πimz = 2πin, ∀m ∈ Z, for some n ∈ Z

225



The only solutions that satisfy the above equation are

z = 4k, k ∈ Z.

Now let’s consider a slightly different problem: 1 ∈ iz. For what values of z does iz have 1 as one of its values.

1 ∈ iz

1 ∈ ez log i

1 ∈ { ez(iπ/2+i2πn) |n ∈ Z}
z(iπ/2 + i2πn) = i2πm, m, n ∈ Z

z =
4m

1 + 4n
, m, n ∈ Z

There are an infinite set of rational numbers for which iz has 1 as one of its values. For example,

i4/5 = 11/5 =
{

1, ei2π/5, ei4π/5, ei6π/5, ei8π/5
}

9.6 Branch Points

Example 9.6.1 Consider the function z1/2. For each value of z, there are two values of z1/2. We write z1/2 in
modulus-argument and Cartesian form.

z1/2 =
√
|z| ei arg(z)/2

z1/2 =
√
|z| cos(arg(z)/2) + i

√
|z| sin(arg(z)/2)

Figures 9.18 and 9.19 show the real and imaginary parts of z1/2 from three different viewpoints. The second
and third views are looking down the x axis and y axis, respectively. Consider <(z1/2). This is a double layered
sheet which intersects itself on the negative real axis. (=(z1/2) has a similar structure, but intersects itself on the
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positive real axis.) Let’s start at a point on the positive real axis on the lower sheet. If we walk around the origin
once and return to the positive real axis, we will be on the upper sheet. If we do this again, we will return to the
lower sheet.

Suppose we are at a point in the complex plane. We pick one of the two values of z1/2. If the function varies
continuously as we walk around the origin and back to our starting point, the value of z1/2 will have changed.
We will be on the other branch. Because walking around the point z = 0 takes us to a different branch of the
function, we refer to z = 0 as a branch point.
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Figure 9.18: Plots of <(z1/2) from three viewpoints.

Now consider the modulus-argument form of z1/2:

z1/2 =
√
|z| ei arg(z)/2.

Figure 9.20 shows the modulus and the principal argument of z1/2. We see that each time we walk around the
origin, the argument of z1/2 changes by π. This means that the value of the function changes by the factor
eiπ = −1, i.e. the function changes sign. If we walk around the origin twice, the argument changes by 2π, so that
the value of the function does not change, ei2π = 1.

z1/2 is a continuous function except at z = 0. Suppose we start at z = 1 = ei0 and the function value
( ei0)1/2 = 1. If we follow the first path in Figure 9.21, the argument of z varies from up to about π

4
, down to

about −π
4

and back to 0. The value of the function is still ( ei0)1/2.
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Figure 9.19: Plots of =(z1/2) from three viewpoints.
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Figure 9.20: Plots of |z1/2| and Arg (z1/2).

Now suppose we follow a circular path around the origin in the positive, counter-clockwise, direction. (See the
second path in Figure 9.21.) The argument of z increases by 2π. The value of the function at half turns on the
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Re(z)

Im(z)

Re(z)

Im(z)

Figure 9.21: A path that does not encircle the origin and a path around the origin

path is

( ei0)1/2 = 1,

( eiπ)1/2 = eiπ/2 = i,

( ei2π)1/2 = eiπ = −1

As we return to the point z = 1, the argument of the function has changed by π and the value of the function
has changed from 1 to −1. If we were to walk along the circular path again, the argument of z would increase
by another 2π. The argument of the function would increase by another π and the value of the function would
return to 1.

( e4πi)1/2 = e2πi = 1

In general, any time we walk around the origin, the value of z1/2 changes by the factor −1. We call z = 0 a
branch point. If we want a single-valued square root, we need something to prevent us from walking around the
origin. We achieve this by introducing a branch cut. Suppose we have the complex plane drawn on an infinite
sheet of paper. With a scissors we cut the paper from the origin to −∞ along the real axis. Then if we start
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at z = ei0, and draw a continuous line without leaving the paper, the argument of z will always be in the range
−π < arg z < π. This means that −π

2
< arg(z1/2) < π

2
. No matter what path we follow in this cut plane, z = 1

has argument zero and (1)1/2 = 1. By never crossing the negative real axis, we have constructed a single valued
branch of the square root function. We call the cut along the negative real axis a branch cut.

Example 9.6.2 Consider the logarithmic function log z. For each value of z, there are an infinite number of
values of log z. We write log z in Cartesian form.

log z = Log |z|+ i arg z

Figure 9.22 shows the real and imaginary parts of the logarithm. The real part is single-valued. The imaginary
part is multi-valued and has an infinite number of branches. The values of the logarithm form an infinite-layered
sheet. If we start on one of the sheets and walk around the origin once in the positive direction, then the value
of the logarithm increases by i2π and we move to the next branch. z = 0 is a branch point of the logarithm.
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Figure 9.22: Plots of <(log z) and a portion of =(log z).

The logarithm is a continuous function except at z = 0. Suppose we start at z = 1 = ei0 and the function
value log( ei0) = Log (1) + i0 = 0. If we follow the first path in Figure 9.21, the argument of z and thus the
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imaginary part of the logarithm varies from up to about π
4
, down to about −π

4
and back to 0. The value of the

logarithm is still 0.
Now suppose we follow a circular path around the origin in the positive direction. (See the second path in

Figure 9.21.) The argument of z increases by 2π. The value of the logarithm at half turns on the path is

log( ei0) = 0,

log( eiπ) = iπ,

log( ei2π) = i2π

As we return to the point z = 1, the value of the logarithm has changed by i2π. If we were to walk along the
circular path again, the argument of z would increase by another 2π and the value of the logarithm would increase
by another i2π.

Result 9.6.1 A point z0 is a branch point of a function f(z) if the function changes
value when you walk around the point on any path that encloses no singularities other
than the one at z = z0.

Branch Points at Infinity : Mapping Infinity to the Origin. Up to this point we have considered only
branch points in the finite plane. Now we consider the possibility of a branch point at infinity. As a first method
of approaching this problem we map the point at infinity to the origin with the transformation ζ = 1/z and
examine the point ζ = 0.

Example 9.6.3 Again consider the function z1/2. Mapping the point at infinity to the origin, we have f(ζ) =
(1/ζ)1/2 = ζ−1/2. For each value of ζ, there are two values of ζ−1/2. We write ζ−1/2 in modulus-argument form.

ζ−1/2 =
1√
|ζ|

e−i arg(ζ)/2

Like z1/2, ζ−1/2 has a double-layered sheet of values. Figure 9.23 shows the modulus and the principal argument
of ζ−1/2. We see that each time we walk around the origin, the argument of ζ−1/2 changes by −π. This means
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that the value of the function changes by the factor e−iπ = −1, i.e. the function changes sign. If we walk around
the origin twice, the argument changes by −2π, so that the value of the function does not change, e−i2π = 1.
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Figure 9.23: Plots of |ζ−1/2| and Arg (ζ−1/2).

Since ζ−1/2 has a branch point at zero, we conclude that z1/2 has a branch point at infinity.

Example 9.6.4 Again consider the logarithmic function log z. Mapping the point at infinity to the origin, we
have f(ζ) = log(1/ζ) = − log(ζ). From Example 9.6.2 we known that − log(ζ) has a branch point at ζ = 0. Thus
log z has a branch point at infinity.

Branch Points at Infinity : Paths Around Infinity. We can also check for a branch point at infinity by
following a path that encloses the point at infinity and no other singularities. Just draw a simple closed curve
that separates the complex plane into a bounded component that contains all the singularities of the function in
the finite plane. Then, depending on orientation, the curve is a contour enclosing all the finite singularities, or
the point at infinity and no other singularities.
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Example 9.6.5 Once again consider the function z1/2. We know that the function changes value on a curve that
goes once around the origin. Such a curve can be considered to be either a path around the origin or a path
around infinity. In either case the path encloses one singularity. There are branch points at the origin and at
infinity. Now consider a curve that does not go around the origin. Such a curve can be considered to be either a
path around neither of the branch points or both of them. Thus we see that z1/2 does not change value when we
follow a path that encloses neither or both of its branch points.

Example 9.6.6 Consider f(z) = (z2 − 1)1/2. We factor the function.

f(z) = (z − 1)1/2(z + 1)1/2

There are branch points at z = ±1. Now consider the point at infinity.

f(ζ−1) = (ζ−2 − 1)1/2 = ±ζ−1(1− ζ2)1/2

Since f(ζ−1) does not have a branch point at ζ = 0, f(z) does not have a branch point at infinity. We could
reach the same conclusion by considering a path around infinity. Consider a path that circles the branch points
at z = ±1 once in the positive direction. Such a path circles the point at infinity once in the negative direction.
In traversing this path, the value of f(z) is multiplied by the factor ( ei2π)1/2( ei2π)1/2 = ei2π = 1. Thus the value
of the function does not change. There is no branch point at infinity.

Diagnosing Branch Points. We have the definition of a branch point, but we do not have a convenient
criterion for determining if a particular function has a branch point. We have seen that log z and zα for non-
integer α have branch points at zero and infinity. The inverse trigonometric functions like the arcsine also have
branch points, but they can be written in terms of the logarithm and the square root. In fact all the elementary
functions with branch points can be written in terms of the functions log z and zα. Furthermore, note that the
multi-valuedness of zα comes from the logarithm, zα = eα log z. This gives us a way of quickly determining if and
where a function may have branch points.
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Result 9.6.2 Let f(z) be a single-valued function. Then log(f(z)) and (f(z))α may
have branch points only where f(z) is zero or singular.

Example 9.6.7 Consider the functions,

1. (z2)1/2

2. (z1/2)2

3. (z1/2)3

Are they multi-valued? Do they have branch points?

1.

(z2)1/2 = ±
√
z2 = ±z

Because of the (·)1/2, the function is multi-valued. The only possible branch points are at zero and infinity.
If (( ei0)2)1/2 = 1, then (( e2πi)2)1/2 = ( e4πi)1/2 = e2πi = 1. Thus we see that the function does not change
value when we walk around the origin. We can also consider this to be a path around infinity. This function
is multi-valued, but has no branch points.

2.

(z1/2)2 = (±
√
z)2 = z

This function is single-valued.

3.

(z1/2)3 = (±
√
z)3 = ±(

√
z)3

This function is multi-valued. We consider the possible branch point at z = 0. If (( e0)1/2)3 = 1, then
(( e2πi)1/2)3 = ( eπi)3 = e3πi = −1. Since the function changes value when we walk around the origin, it has
a branch point at z = 0. Since this is also a path around infinity, there is a branch point there.
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Example 9.6.8 Consider the function f(z) = log
(

1
z−1

)
. Since 1

z−1
is only zero at infinity and its only singularity

is at z = 1, the only possibilities for branch points are at z = 1 and z =∞. Since

log

(
1

z − 1

)
= − log(z − 1)

and logw has branch points at zero and infinity, we see that f(z) has branch points at z = 1 and z =∞.

Example 9.6.9 Consider the functions,

1. elog z

2. log ez.

Are they multi-valued? Do they have branch points?

1.

elog z = exp( Log z + 2πin) = e Log z e2πin = z

This function is single-valued.

2.

log ez = Log ez + 2πin = z + 2πim

This function is multi-valued. It may have branch points only where ez is zero or infinite. This only
occurs at z =∞. Thus there are no branch points in the finite plane. The function does not change when
traversing a simple closed path. Since this path can be considered to enclose infinity, there is no branch
point at infinity.
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Consider (f(z))α where f(z) is single-valued and f(z) has either a zero or a singularity at z = z0. (f(z))α

may have a branch point at z = z0. If f(z) is not a power of z, then it may be difficult to tell if (f(z))α changes
value when we walk around z0. Factor f(z) into f(z) = g(z)h(z) where h(z) is nonzero and finite at z0. Then
g(z) captures the important behavior of f(z) at the z0. g(z) tells us how fast f(z) vanishes or blows up. Since
(f(z))α = (g(z))α(h(z))α and (h(z))α does not have a branch point at z0, (f(z))α has a branch point at z0 if and
only if (g(z))α has a branch point there.

Similarly, we can decompose

log(f(z)) = log(g(z)h(z)) = log(g(z)) + log(h(z))

to see that log(f(z)) has a branch point at z0 if and only if log(g(z)) has a branch point there.

Result 9.6.3 Consider a single-valued function f(z) that has either a zero or a singu-
larity at z = z0. Let f(z) = g(z)h(z) where h(z) is nonzero and finite. (f(z))α has a
branch point at z = z0 if and only if (g(z))α has a branch point there. log(f(z)) has a
branch point at z = z0 if and only if log(g(z)) has a branch point there.

Example 9.6.10 Consider the functions,

1. sin z1/2

2. (sin z)1/2

3. z1/2 sin z1/2

4. (sin z2)1/2

Find the branch points and the number of branches.

1.

sin z1/2 = sin(±
√
z) = ± sin

√
z
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sin z1/2 is multi-valued. It has two branches. There may be branch points at zero and infinity. Consider
the unit circle which is a path around the origin or infinity. If sin(( ei0)1/2) = sin(1), then sin(( ei2π)1/2) =
sin( eiπ) = sin(−1) = − sin(1). There are branch points at the origin and infinity.

2.

(sin z)1/2 = ±
√

sin z

The function is multi-valued with two branches. The sine vanishes at z = nπ and is singular at infinity.
There could be branch points at these locations. Consider the point z = nπ. We can write

sin z = (z − nπ)
sin z

z − nπ

Note that sin z
z−nπ is nonzero and has a removable singularity at z = nπ.

lim
z→nπ

sin z

z − nπ
= lim

z→nπ

cos z

1
= (−1)n

Since (z − nπ)1/2 has a branch point at z = nπ, (sin z)1/2 has branch points at z = nπ.

Since the branch points at z = nπ go all the way out to infinity. It is not possible to make a path that
encloses infinity and no other singularities. The point at infinity is a non-isolated singularity. A point can
be a branch point only if it is an isolated singularity.

3.

z1/2 sin z1/2 = ±
√
z sin(±

√
z)

= ±
√
z(± sin

√
z)

=
√
z sin

√
z

The function is single-valued. Thus there could be no branch points.
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4.

(sin z2)1/2 = ±
√

sin z2

This function is multi-valued. Since sin z2 = 0 at z = (nπ)1/2, there may be branch points there. First
consider the point z = 0. We can write

sin z2 = z2 sin z2

z2

where sin(z2)/z2 is nonzero and has a removable singularity at z = 0.

lim
z→0

sin z2

z2
= lim

z→0

2z cos z2

2z
= 1.

Since (z2)1/2 does not have a branch point at z = 0, (sin z2)1/2 does not have a branch point there either.

Now consider the point z =
√
nπ.

sin z2 = (z −
√
nπ)

sin z2

z −
√
nπ

sin(z2)/(z −
√
nπ) in nonzero and has a removable singularity at z =

√
nπ.

lim
z→
√
nπ

sin z2

z −
√
nπ

= lim
z→
√
nπ

2z cos z2

1
= 2
√
nπ(−1)n

Since (z −
√
nπ)1/2 has a branch point at z =

√
nπ, (sin z2)1/2 also has a branch point there.

Thus we see that (sin z2)1/2 has branch points at z = (nπ)1/2 for n ∈ Z \ {0}. This is the set of numbers:
{±
√
π,±
√

2π, . . . ,±i
√
π,±i

√
2π, . . . }. The point at infinity is a non-isolated singularity.
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Example 9.6.11 Find the branch points of

f(z) = (z3 − z)1/3.

Introduce branch cuts. If f(2) = 3
√

6 then what is f(−2)?
We expand f(z).

f(z) = z1/3(z − 1)1/3(z + 1)1/3.

There are branch points at z = −1, 0, 1. We consider the point at infinity.

f

(
1

ζ

)
=

(
1

ζ

)1/3(
1

ζ
− 1

)1/3(
1

ζ
+ 1

)1/3

=
1

ζ
(1− ζ)1/3 (1 + ζ)1/3

Since f(1/ζ) does not have a branch point at ζ = 0, f(z) does not have a branch point at infinity. Consider the
three possible branch cuts in Figure 9.24.

Figure 9.24: Three Possible Branch Cuts for f(z) = (z3 − z)1/3

The first and the third branch cuts will make the function single valued, the second will not. It is clear that
the first set makes the function single valued since it is not possible to walk around any of the branch points.
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The second set of branch cuts would allow you to walk around the branch points at z = ±1. If you walked
around these two once in the positive direction, the value of the function would change by the factor e4πi/3.

The third set of branch cuts would allow you to walk around all three branch points together. You can verify
that if you walk around the three branch points, the value of the function will not change ( e6πi/3 = e2πi = 1).

Suppose we introduce the third set of branch cuts and are on the branch with f(2) = 3
√

6.

f(2) = (2 ei0)1/3(1 ei0)1/3(3 ei0)1/3 =
3
√

6.

The value of f(−2) is

f(−2) = (2 eiπ)1/3(3 eiπ)1/3(1 eiπ)1/3

=
3
√

2 eiπ/3
3
√

3 eiπ/3
3
√

1 eiπ/3

=
3
√

6 eiπ

= − 3
√

6.

Example 9.6.12 Find the branch points and number of branches for

f(z) = zz
2

.

zz
2

= exp(z2 log z)

There may be branch points at the origin and infinity due to the logarithm. Consider walking around a circle of
radius r centered at the origin in the positive direction. Since the logarithm changes by i2π, the value of f(z)
changes by the factor ei2πr

2
. There are branch points at the origin and infinity. The function has an infinite

number of branches.

Example 9.6.13 Construct a branch of

f(z) = (z2 + 1)1/3
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such that

f(0) =
1

2
(−1 +

√
3i).

First we factor f(z).

f(z) = (z − i)1/3(z + i)1/3

There are branch points at z = ±i. Figure 9.25 shows one way to introduce branch cuts.

θ
r

φ
ρ

Figure 9.25: Branch Cuts for f(z) = (z2 + 1)1/3

Since it is not possible to walk around any branch point, these cuts make the function single valued. We
introduce the coordinates:

z − i = ρ eiφ, z + i = r eiθ.

f(z) = (ρ eiφ)1/3(r eiθ)1/3

= 3
√
ρr ei(φ+θ)/3
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The condition

f(0) =
1

2
(−1 +

√
3i) = ei(2π/3+2πn)

can be stated
3
√

1 ei(φ+θ)/3 = ei(2π/3+2πn)

φ+ θ = 2π + 6πn

The angles must be defined to satisfy this relation. One choice is

π

2
< φ <

5π

2
, −π

2
< θ <

3π

2
.

Principal Branches. We construct the principal branch of the logarithm by putting a branch cut on the
negative real axis choose z = r eiθ, θ ∈ (−π, π). Thus the principal branch of the logarithm is

Log z = Log r + iθ, −π < θ < π.

Note that the if x is a negative real number, (and thus lies on the branch cut), then Log x is undefined.
The principal branch of zα is

zα = eαLog z.

Note that there is a branch cut on the negative real axis.

−απ < arg( eαLog z) < απ

The principal branch of the z1/2 is denoted
√
z. The principal branch of z1/n is denoted n

√
z.

Example 9.6.14 Construct
√

1− z2, the principal branch of (1− z2)1/2.
First note that since (1 − z2)1/2 = (1 − z)1/2(1 + z)1/2 there are branch points at z = 1 and z = −1. The

principal branch of the square root has a branch cut on the negative real axis. 1 − z2 is a negative real number
for z ∈ (−∞,−1) ∪ (1,∞). Thus we put branch cuts on (−∞,−1] and [1,∞).
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9.7 Exercises

Cartesian and Modulus-Argument Form

Exercise 9.1
For a given real number φ, 0 ≤ φ < 2π, find the image of the sector 0 ≤ arg(z) < φ under the transformation
w = z4. How large should φ be so that the w plane is covered exactly once?
Hint, Solution

Trigonometric Functions

Exercise 9.2
In Cartesian coordinates, z = x+ iy, write sin(z) in Cartesian and modulus-argument form.
Hint, Solution

Exercise 9.3
Show that ez in nonzero for all finite z.
Hint, Solution

Exercise 9.4
Show that ∣∣∣ ez2

∣∣∣ ≤ e|z|
2

.

When does equality hold?
Hint, Solution

Exercise 9.5
Solve coth(z) = 1.
Hint, Solution

243



Exercise 9.6
Solve 2 ∈ 2z. That is, for what values of z is 2 one of the values of 2z? Derive this result then verify your answer
by evaluating 2z for the solutions that your find.
Hint, Solution

Exercise 9.7
Solve 1 ∈ 1z. That is, for what values of z is 1 one of the values of 1z? Derive this result then verify your answer
by evaluating 1z for the solutions that your find.
Hint, Solution

Logarithmic Identities

Exercise 9.8
Find the fallacy in the following arguments:

1. log(−1) = log
(

1
−1

)
= log(1)− log(−1) = − log(−1), therefore, log(−1) = 0.

2. 1 = 11/2 = ((−1)(−1))1/2 = (−1)1/2(−1)1/2 = ii = −1, therefore, 1 = −1.

Hint, Solution

Exercise 9.9
Write the following expressions in modulus-argument or Cartesian form. Denote any multi-valuedness explicitly.

22/5, 31+i, (
√

3− i)1/4, 1i/4.

Hint, Solution

Exercise 9.10
Solve cos z = 69.
Hint, Solution
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Exercise 9.11
Solve cot z = i47.
Hint, Solution

Exercise 9.12
Determine all values of

1. log(−i)

2. (−i)−i

3. 3π

4. log(log(i))

and plot them in the complex plane.
Hint, Solution

Exercise 9.13
Determine all values of ii and log((1 + i)iπ) and plot them in the complex plane.
Hint, Solution

Exercise 9.14
Find all z for which

1. ez = i

2. cos z = sin z

3. tan2 z = −1

Hint, Solution
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Exercise 9.15
Show that

tan−1(z) =
i

2
log

(
i+ z

i− z

)
and

tanh−1(z) =
1

2
log

(
1 + z

1− z

)
.

Hint, Solution

Branch Points and Branch Cuts

Exercise 9.16
Determine the branch points of the function

f(z) = (z3 − 1)1/2.

Construct cuts and define a branch so that z = 0 and z = −1 do not lie on a cut, and such that f(0) = −i. What
is f(−1) for this branch?
Hint, Solution

Exercise 9.17
Determine the branch points of the function

w(z) = ((z − 1)(z − 6)(z + 2))1/2

Construct cuts and define a branch so that z = 4 does not lie on a cut, and such that w = 6i when z = 4.
Hint, Solution
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Exercise 9.18
Give the number of branches and locations of the branch points for the functions

1. cos z1/2

2. (z + i)−z

Hint, Solution

Exercise 9.19
Find the branch points of the following functions in the extended complex plane, (the complex plane including
the point at infinity).

1. (z2 + 1)1/2

2. (z3 − z)1/2

3. log(z2 − 1)

4. log

(
z + 1

z − 1

)
Introduce branch cuts to make the functions single valued.
Hint, Solution

Exercise 9.20
Find all branch points and introduce cuts to make the following functions single-valued: For the first function,
choose cuts so that there is no cut within the disk |z| < 2.

1. f(z) =
(
z3 + 8

)1/2

2. f(z) = log

(
5 +

(
z + 1

z − 1

)1/2
)
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3. f(z) = (z + i3)1/2

Hint, Solution

Exercise 9.21
Let f(z) have branch points at z = 0 and z = ±i, but nowhere else in the extended complex plane. How does
the value and argument of f(z) change while traversing the contour in Figure 9.26? Does the branch cut in
Figure 9.26 make the function single-valued?

Figure 9.26: Contour Around the Branch Points and Branch Cut.

Hint, Solution

Exercise 9.22
Let f(z) be analytic except for no more than a countably infinite number of singularities. Suppose that f(z) has
only one branch point in the finite complex plane. Does f(z) have a branch point at infinity? Now suppose that
f(z) has two or more branch points in the finite complex plane. Does f(z) have a branch point at infinity?
Hint, Solution
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Exercise 9.23
Find all branch points of (z4 + 1)1/4 in the extended complex plane. Which of the branch cuts in Figure 9.27
make the function single-valued.

Figure 9.27: Four Candidate Sets of Branch Cuts for (z4 + 1)1/4

Hint, Solution

Exercise 9.24
Find the branch points of

f(z) =

(
z

z2 + 1

)1/3

in the extended complex plane. Introduce branch cuts that make the function single-valued and such that the
function is defined on the positive real axis. Define a branch such that f(1) = 1/ 3

√
2. Write down an explicit

formula for the value of the branch. What is f(1 + i)? What is the value of f(z) on either side of the branch
cuts?
Hint, Solution

Exercise 9.25
Find all branch points of

f(z) = ((z − 1)(z − 2)(z − 3))1/2
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in the extended complex plane. Which of the branch cuts in Figure 9.28 will make the function single-valued.
Using the first set of branch cuts in this figure define a branch on which f(0) = i

√
6. Write out an explicit formula

for the value of the function on this branch.

Figure 9.28: Four Candidate Sets of Branch Cuts for ((z − 1)(z − 2)(z − 3))1/2

Hint, Solution

Exercise 9.26
Determine the branch points of the function

w =
(
(z2 − 2)(z + 2)

)1/3
.

Construct and define a branch so that the resulting cut is one line of finite extent and w(2) = 2. What is w(−3)
for this branch? What are the limiting values of w on either side of the branch cut?
Hint, Solution

Exercise 9.27
Construct the principal branch of arccos(z). ( Arccos (z) has the property that if x ∈ [−1, 1] then Arccos (x) ∈
[0, π]. In particular, Arccos (0) = π

2
).

Hint, Solution
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Exercise 9.28
Find the branch points of (z1/2 − 1)1/2 in the finite complex plane. Introduce branch cuts to make the function
single-valued.
Hint, Solution

Exercise 9.29
For the linkage illustrated in Figure 9.29, use complex variables to outline a scheme for expressing the angular
position, velocity and acceleration of arm c in terms of those of arm a. (You needn’t work out the equations.)

θ φ

a

b

c

l

Figure 9.29: A linkage

Hint, Solution

Exercise 9.30
Find the image of the strip |<(z)| < 1 and of the strip 1 < =(z) < 2 under the transformations:

1. w = 2z2

2. w = z+1
z−1

Hint, Solution
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Exercise 9.31
Locate and classify all the singularities of the following functions:

1.
(z + 1)1/2

z + 2

2. cos

(
1

1 + z

)
3.

1

(1− ez)2

In each case discuss the possibility of a singularity at the point ∞.
Hint, Solution

Exercise 9.32
Describe how the mapping w = sinh(z) transforms the infinite strip −∞ < x < ∞, 0 < y < π into the w-plane.
Find cuts in the w-plane which make the mapping continuous both ways. What are the images of the lines (a)
y = π/4; (b) x = 1?
Hint, Solution
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9.8 Hints

Cartesian and Modulus-Argument Form

Hint 9.1

Trigonometric Functions

Hint 9.2
Recall that sin(z) = 1

2i
( eiz − e−iz). Use Result 8.3.1 to convert between Cartesian and modulus-argument form.

Hint 9.3
Write ez in polar form.

Hint 9.4
The exponential is an increasing function for real variables.

Hint 9.5
Write the hyperbolic cotangent in terms of exponentials.

Hint 9.6
Write out the multi-valuedness of 2z. There is a doubly-infinite set of solutions to this problem.

Hint 9.7
Write out the multi-valuedness of 1z.

Logarithmic Identities
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Hint 9.8
Write out the multi-valuedness of the expressions.

Hint 9.9
Do the exponentiations in polar form.

Hint 9.10
Write the cosine in terms of exponentials. Multiply by eiz to get a quadratic equation for eiz.

Hint 9.11
Write the cotangent in terms of exponentials. Get a quadratic equation for eiz.

Hint 9.12

Hint 9.13
ii has an infinite number of real, positive values. ii = ei log i. log((1 + i)iπ) has a doubly infinite set of values.
log((1 + i)iπ) = log(exp(iπ log(1 + i))).

Hint 9.14

Hint 9.15

Branch Points and Branch Cuts
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Hint 9.16

Hint 9.17

Hint 9.18

Hint 9.19
1. (z2 + 1)1/2 = (z − i)1/2(z + i)1/2

2. (z3 − z)1/2 = z1/2(z − 1)1/2(z + 1)1/2

3. log(z2 − 1) = log(z − 1) + log(z + 1)

4. log
(
z+1
z−1

)
= log(z + 1)− log(z − 1)

Hint 9.20

Hint 9.21
Reverse the orientation of the contour so that it encircles infinity and does not contain any branch points.

Hint 9.22
Consider a contour that encircles all the branch points in the finite complex plane. Reverse the orientation of
the contour so that it contains the point at infinity and does not contain any branch points in the finite complex
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plane.

Hint 9.23
Factor the polynomial. The argument of z1/4 changes by π/2 on a contour that goes around the origin once in
the positive direction.

Hint 9.24

Hint 9.25
To define the branch, define angles from each of the branch points in the finite complex plane.

Hint 9.26

Hint 9.27

Hint 9.28

Hint 9.29
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Hint 9.30

Hint 9.31

Hint 9.32
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9.9 Solutions

Cartesian and Modulus-Argument Form

Solution 9.1
We write the mapping w = z4 in polar coordinates.

w = z4 = (r eiθ)4 = r4 ei4θ

Thus we see that

w : {r eiθ | r ≥ 0, 0 ≤ θ < φ} → {r4 ei4θ | r ≥ 0, 0 ≤ θ < φ} = {r eiθ | r ≥ 0, 0 ≤ θ < 4φ}.

We can state this in terms of the argument.

w : {z | 0 ≤ arg(z) < φ} → {z | 0 ≤ arg(z) < 4φ}

If φ = π/2, the sector will be mapped exactly to the whole complex plane.

Trigonometric Functions

Solution 9.2

sin z =
1

2i

(
eiz − e−iz

)
=

1

2i

(
e−y+ix − ey−ix

)
=

1

2i

(
e−y(cosx+ i sinx)− ey(cosx− i sinx)

)
=

1

2

(
e−y(sinx− i cosx) + ey(sinx+ i cosx)

)
= sinx cosh y + i cos x sinh y
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sin z =

√
sin2 x cosh2 y + cos2 x sinh2 y exp(i arctan(sinx cosh y, cosx sinh y))

=

√
cosh2 y − cos2 x exp(i arctan(sinx cosh y, cos x sinh y))

=

√
1

2
(cosh(2y)− cos(2x)) exp(i arctan(sinx cosh y, cosx sinh y))

Solution 9.3
In order that ez be zero, the modulus, ex must be zero. Since ex has no finite solutions, ez = 0 has no finite
solutions.

Solution 9.4

∣∣∣ ez2
∣∣∣ =

∣∣∣ e(x+iy)2
∣∣∣

=
∣∣∣ ex2−y2+i2xy

∣∣∣
= ex

2−y2

e|z|
2

= e|x+iy|2 = ex
2+y2

The exponential function is an increasing function for real variables. Since x2 − y2 ≤ x2 + y2,∣∣∣ ez2
∣∣∣ ≤ e|z|

2

.

Equality holds when y = 0.
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Solution 9.5

coth(z) = 1

( ez + e−z)/2

( ez − e−z)/2
= 1

ez + e−z = ez − e−z

e−z = 0

There are no solutions.

Solution 9.6
We write out the multi-valuedness of 2z.

2 ∈ 2z

e Log 2 ∈ ez log(2)

e Log 2 ∈ { ez( Log (2)+i2πn) |n ∈ Z}
Log 2 ∈ z{Log 2 + i2πn+ i2πm |m,n ∈ Z}

z =

{
Log (2) + i2πm

Log (2) + i2πn
|m,n ∈ Z

}
We verify this solution. Consider m and n to be fixed integers. We express the multi-valuedness in terms of k.

2( Log (2)+i2πm)/( Log (2)+i2πn) = e( Log (2)+i2πm)/( Log (2)+i2πn) log(2)

= e( Log (2)+i2πm)/( Log (2)+i2πn)( Log (2)+i2πk)

For k = n, this has the value, e Log (2)+i2πm = e Log (2) = 2.
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Solution 9.7
We write out the multi-valuedness of 1z.

1 ∈ 1z

1 ∈ ez log(1)

1 ∈ { ezi2πn |n ∈ Z}

The element corresponding to n = 0 is e0 = 1. Thus 1 ∈ 1z has the solutions,

z ∈ C.

That is, z may be any complex number. We verify this solution.

1z = ez log(1) = ezi2πn

For n = 0, this has the value 1.

Logarithmic Identities

Solution 9.8
1. The algebraic manipulations are fine. We write out the multi-valuedness of the logarithms.

log(−1) = log

(
1

−1

)
= log(1)− log(−1) = − log(−1)

{iπ + i2πn : n ∈ Z} = {iπ + i2πn : n ∈ Z} = {i2πn : n ∈ Z} − {iπ + i2πn : n ∈ Z} = {−iπ − i2πn : n ∈ Z}

Thus log(−1) = − log(−1). However this does not imply that log(−1) = 0. This is because the logarithm
is a set-valued function log(−1) = − log(−1) is really saying:

{iπ + i2πn : n ∈ Z} = {−iπ − i2πn : n ∈ Z}
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2. We consider

1 = 11/2 = ((−1)(−1))1/2 = (−1)1/2(−1)1/2 = ii = −1.

There are three multi-valued expressions above.

11/2 = ±1

((−1)(−1))1/2 = ±1

(−1)1/2(−1)1/2 = (±i)(±i) = ±1

Thus we see that the first and fourth equalities are incorrect.

1 6= 11/2, (−1)1/2(−1)1/2 6= ii

Solution 9.9

22/5 = 41/5

=
5
√

4 11/5

=
5
√

4 ei2nπ/5, n = 0, 1, 2, 3, 4

31+i = e(1+i) log 3

= e(1+i)( Log 3+i2πn)

= e Log 3−2πn ei( Log 3+2πn), n ∈ Z

(
√

3− i)1/4 = (2 e−iπ/6)1/4

=
4
√

2 e−iπ/2411/4

=
4
√

2 ei(πn/2−π/24), n = 0, 1, 2, 3
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1i/4 = e(i/4) log 1

= e(i/4)(i2πn)

= e−πn/2, n ∈ Z

Solution 9.10

cos z = 69

eiz + e−iz

2
= 69

ei2z − 138 eiz + 1 = 0

eiz =
1

2

(
138±

√
1382 − 4

)
z = −i log

(
69± 2

√
1190

)
z = −i

(
Log

(
69± 2

√
1190

)
+ i2πn

)
z = 2πn− iLog

(
69± 2

√
1190

)
, n ∈ Z
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Solution 9.11

cot z = i47

( eiz + e−iz)/2

( eiz − e−iz)/(2i)
= i47

eiz + e−iz = 47( eiz − e−iz)

46 ei2z − 48 = 0

i2z = log
24

23

z = − i
2

log
24

23

z = − i
2

(
Log

24

23
+ i2πn

)
, n ∈ Z

z = πn− i

2
Log

24

23
, n ∈ Z

Solution 9.12
1.

log(−i) = Log (| − i|) + i arg(−i)

= Log (1) + i
(
−π

2
+ 2πn

)
, n ∈ Z

log(−i) = −iπ
2

+ i2πn, n ∈ Z

These are equally spaced points in the imaginary axis. See Figure 9.30.
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Figure 9.30: log(−i)

2.

(−i)−i = e−i log(−i)

= e−i(−iπ/2+i2πn), n ∈ Z

(−i)−i = e−π/2+2πn, n ∈ Z

These are points on the positive real axis with an accumulation point at the origin. See Figure 9.31.

3.

3π = eπ log(3)

= eπ( Log (3)+i arg(3))

3π = eπ( Log (3)+i2πn), n ∈ Z

These points all lie on the circle of radius |eπ| centered about the origin in the complex plane. See Figure 9.32.
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Figure 9.31: (−i)−i
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Figure 9.32: 3π

4.

log(log(i)) = log
(
i
(π

2
+ 2πm

))
, m ∈ Z

= Log
∣∣∣π
2

+ 2πm
∣∣∣+ iArg

(
i
(π

2
+ 2πm

))
+ i2πn, m, n ∈ Z

= Log
∣∣∣π
2

+ 2πm
∣∣∣+ i sign (1 + 4m)

π

2
+ i2πn, m, n ∈ Z
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These points all lie in the right half-plane. See Figure 9.33.

1 2 3 4 5

-20

-10

10

20

Figure 9.33: log(log(i))

Solution 9.13

ii = ei log(i)

= ei( Log |i|+iArg (i)+i2πn), n ∈ Z
= ei(iπ/2+i2πn), n ∈ Z
= e−π(1/2+2n), n ∈ Z

These are points on the positive real axis. There is an accumulation point at z = 0. See Figure 9.34.
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Figure 9.34: ii

log
(
(1 + i)iπ

)
= log

(
eiπ log(1+i)

)
= iπ log(1 + i) + i2πn, n ∈ Z
= iπ( Log |1 + i|+ iArg (1 + i) + i2πm) + i2πn, m, n ∈ Z

= iπ

(
1

2
Log 2 + i

π

4
+ i2πm

)
+ i2πn, m, n ∈ Z

= −π2

(
1

4
+ 2m

)
+ iπ

(
1

2
Log 2 + 2n

)
, m, n ∈ Z

See Figure 9.35 for a plot.
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Figure 9.35: log((1 + i)iπ)

Solution 9.14
1.

ez = i

z = log i

z = Log (|i|) + i arg(i)

z = Log (1) + i
(π

2
+ 2πn

)
, n ∈ Z

z = i
π

2
+ i2πn, n ∈ Z
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2. We can solve the equation by writing the cosine and sine in terms of the exponential.

cos z = sin z

eiz + e−iz

2
=

eiz − e−iz

i2
(1 + i) eiz = (−1 + i) e−iz

ei2z =
−1 + i

1 + i

ei2z = i

i2z = log(i)

i2z = i
π

2
+ i2πn, n ∈ Z

z =
π

4
+ πn, n ∈ Z

3.

tan2 z = −1

sin2 z = − cos2 z

cos z = ±i sin z

eiz + e−iz

2
= ±i eiz − e−iz

2i
e−iz = − e−iz or eiz = − eiz

e−iz = 0 or eiz = 0

ey−ix = 0 or e−y+ix = 0

ey = 0 or e−y = 0

z = ∅

There are no solutions for finite z.
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Solution 9.15
First we consider tan−1(z).

w = tan−1(z)

z = tan(w)

z =
sin(w)

cos(w)

z =
( eiw − e−iw)/(2i)

( eiw + e−iw)/2

z eiw + z e−iw = −i eiw + i e−iw

(i+ z) ei2w = (i− z)

eiw =

(
i− z
i+ z

)1/2

w = −i log

(
i− z
i+ z

)1/2

tan−1(z) =
i

2
log

(
i+ z

i− z

)
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Now we consider tanh−1(z).

w = tanh−1(z)

z = tanh(w)

z =
sinh(w)

cosh(w)

z =
( ew − e−w)/2

( ew + e−w)/2

z ew + z e−w = ew − e−w

(z − 1) e2w = −z − 1

ew =

(
−z − 1

z − 1

)1/2

w = log

(
z + 1

1− z

)1/2

tanh−1(z) =
1

2
log

(
z + 1

1− z

)
Branch Points and Branch Cuts

Solution 9.16
The cube roots of 1 are

{
1, ei2π/3, ei4π/3

}
=

{
1,
−1 + i

√
3

2
,
−1− i

√
3

2

}
.

Thus we can write

(
z3 − 1

)1/2
= (z − 1)1/2

(
z +

1− i
√

3

2

)1/2(
z +

1 + i
√

3

2

)1/2

.
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There are three branch points on the circle of radius 1.

z =

{
1,
−1 + i

√
3

2
,
−1− i

√
3

2

}

We examine the point at infinity.

f(1/ζ) = (1/ζ3 − 1)1/2 = ζ−3/2(1− ζ3)1/2

Since f(1/ζ) has a branch point at ζ = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts to separate the branches of the function. The easiest
approach is to put a branch cut from each of the three branch points in the finite complex plane out to the
branch point at infinity. See Figure 9.36a. Clearly this makes the function single valued as it is impossible to
walk around any of the branch points. Another approach is to have a branch cut from one of the branch points
in the finite plane to the branch point at infinity and a branch cut connecting the remaining two branch points.
See Figure 9.36bcd. Note that in walking around any one of the finite branch points, (in the positive direction),
the argument of the function changes by π. This means that the value of the function changes by eiπ, which is
to say the value of the function changes sign. In walking around any two of the finite branch points, (again in
the positive direction), the argument of the function changes by 2π. This means that the value of the function
changes by ei2π, which is to say that the value of the function does not change. This demonstrates that the latter
branch cut approach makes the function single-valued.

Now we construct a branch. We will use the branch cuts in Figure 9.36a. We introduce variables to measure
radii and angles from the three finite branch points.

z − 1 = r1 eiθ1 , 0 < θ1 < 2π

z +
1− i

√
3

2
= r2 eiθ2 , −2π

3
< θ2 <

π

3

z +
1 + i

√
3

2
= r3 eiθ3 , −π

3
< θ3 <

2π

3
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a b c d

Figure 9.36: (z3 − 1)1/2

We compute f(0) to see if it has the desired value.

f(z) =
√
r1r2r3 ei(θ1+θ2+θ3)/2

f(0) = ei(π−π/3+π/3)/2 = i

Since it does not have the desired value, we change the range of θ1.

z − 1 = r1 eiθ1 , 2π < θ1 < 4π

f(0) now has the desired value.

f(0) = ei(3π−π/3+π/3)/2 = −i

We compute f(−1).

f(−1) =
√

2 ei(3π−2π/3+2π/3)/2 = −i
√

2

Solution 9.17
First we factor the function.

w(z) = ((z + 2)(z − 1)(z − 6))1/2 = (z + 2)1/2(z − 1)1/2(z − 6)1/2
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There are branch points at z = −2, 1, 6. Now we examine the point at infinity.

w

(
1

ζ

)
=

((
1

ζ
+ 2

)(
1

ζ
− 1

)(
1

ζ
− 6

))1/2

= ζ−3/2

((
1 +

2

ζ

)(
1− 1

ζ

)(
1− 6

ζ

))1/2

Since ζ−3/2 has a branch point at ζ = 0 and the rest of the terms are analytic there, w(z) has a branch point at
infinity.

Consider the set of branch cuts in Figure 9.37. These cuts let us walk around the branch points at z = −2
and z = 1 together or if we change our perspective, we would be walking around the branch points at z = 6 and
z =∞ together. Consider a contour in this cut plane that encircles the branch points at z = −2 and z = 1. Since
the argument of (z − z0)1/2 changes by π when we walk around z0, the argument of w(z) changes by 2π when we
traverse the contour. Thus the value of the function does not change and it is a valid set of branch cuts.

Figure 9.37: Branch Cuts for ((z + 2)(z − 1)(z − 6))1/2

Now to define the branch. We make a choice of angles.

z + 2 = r1 eiθ1 , θ1 = θ2 for z ∈ (1..6),

z − 1 = r2 eiθ2 , θ2 = θ1 for z ∈ (1..6),

z − 6 = r3 eiθ3 , 0 < θ3 < 2π
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The function is

w(z) =
(
r1 eiθ1r2 eiθ2r3 eiθ3

)1/2
=
√
r1r2r3 ei(θ1+θ2+θ3)/2.

We evaluate the function at z = 4.

w(4) =
√

(6)(3)(2) ei(2πn+2πn+π)/2 = i6

We see that our choice of angles gives us the desired branch.

Solution 9.18
1.

cos z1/2 = cos(±
√
z) = cos(

√
z)

This is a single-valued function. There are no branch points.

2.

(z + i)−z = e−z log(z+i)

= e−z( Log |z+i|+iArg (z+i)+i2πn), n ∈ Z

There is a branch point at z = −i. There are an infinite number of branches.

Solution 9.19
1.

f(z) = (z2 + 1)1/2 = (z + i)1/2(z − i)1/2

We see that there are branch points at z = ±i. To examine the point at infinity, we substitute z = 1/ζ and
examine the point ζ = 0. ((

1

ζ

)2

+ 1

)1/2

=
1

(ζ2)1/2
(1 + ζ2)1/2
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Since there is no branch point at ζ = 0, f(z) has no branch point at infinity.

A branch cut connecting z = ±i would make the function single-valued. We could also accomplish this with
two branch cuts starting z = ±i and going to infinity.

2.

f(z) = (z3 − z)1/2 = z1/2(z − 1)1/2(z + 1)1/2

There are branch points at z = −1, 0, 1. Now we consider the point at infinity.

f

(
1

ζ

)
=

((
1

ζ

)3

− 1

ζ

)1/2

= ζ−3/2(1− ζ2)1/2

There is a branch point at infinity.

One can make the function single-valued with three branch cuts that start at z = −1, 0, 1 and each go to
infinity. We can also make the function single-valued with a branch cut that connects two of the points
z = −1, 0, 1 and another branch cut that starts at the remaining point and goes to infinity.

3.

f(z) = log(z2 − 1) = log(z − 1) + log(z + 1)

There are branch points at z = ±1.

f

(
1

ζ

)
= log

(
1

ζ2
− 1

)
= log(ζ−2) + log(1− ζ2)

log(ζ−2) has a branch point at ζ = 0.

log(ζ−2) = Log |ζ−2|+ i arg(ζ−2) = Log |ζ−2| − i2 arg(ζ)

Every time we walk around the point ζ = 0 in the positive direction, the value of the function changes by
−i4π. f(z) has a branch point at infinity.

We can make the function single-valued by introducing two branch cuts that start at z = ±1 and each go
to infinity.
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4.

f(z) = log

(
z + 1

z − 1

)
= log(z + 1)− log(z − 1)

There are branch points at z = ±1.

f

(
1

ζ

)
= log

(
1/ζ + 1

1/ζ − 1

)
= log

(
1 + ζ

1− ζ

)
There is no branch point at ζ = 0. f(z) has no branch point at infinity.

We can make the function single-valued by introducing two branch cuts that start at z = ±1 and each go
to infinity. We can also make the function single-valued with a branch cut that connects the points z = ±1.
This is because log(z + 1) and − log(z − 1) change by i2π and −i2π, respectively, when you walk around
their branch points once in the positive direction.

Solution 9.20
1. The cube roots of −8 are {

−2,−2 ei2π/3,−2 ei4π/3
}

=
{
−2, 1 + i

√
3, 1− i

√
3
}
.

Thus we can write (
z3 + 8

)1/2
= (z + 2)1/2(z − 1− i

√
3)1/2(z − 1 + i

√
3)1/2.

There are three branch points on the circle of radius 2.

z =
{
−2, 1 + i

√
3, 1− i

√
3
}
.

We examine the point at infinity.

f(1/ζ) = (1/ζ3 + 8)1/2 = ζ−3/2(1 + 8ζ3)1/2
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Since f(1/ζ) has a branch point at ζ = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts outside of the disk |z| < 2 to separate the branches of
the function. The easiest approach is to put a branch cut from each of the three branch points in the finite
complex plane out to the branch point at infinity. See Figure 9.38a. Clearly this makes the function single
valued as it is impossible to walk around any of the branch points. Another approach is to have a branch cut
from one of the branch points in the finite plane to the branch point at infinity and a branch cut connecting
the remaining two branch points. See Figure 9.38bcd. Note that in walking around any one of the finite
branch points, (in the positive direction), the argument of the function changes by π. This means that the
value of the function changes by eiπ, which is to say the value of the function changes sign. In walking
around any two of the finite branch points, (again in the positive direction), the argument of the function
changes by 2π. This means that the value of the function changes by ei2π, which is to say that the value of
the function does not change. This demonstrates that the latter branch cut approach makes the function
single-valued.

a b c d

Figure 9.38: (z3 + 8)1/2

2.

f(z) = log

(
5 +

(
z + 1

z − 1

)1/2
)
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First we deal with the function

g(z) =

(
z + 1

z − 1

)1/2

Note that it has branch points at z = ±1. Consider the point at infinity.

g(1/ζ) =

(
1/ζ + 1

1/ζ − 1

)1/2

=

(
1 + ζ

1− ζ

)1/2

Since g(1/ζ) has no branch point at ζ = 0, g(z) has no branch point at infinity. This means that if we
walk around both of the branch points at z = ±1, the function does not change value. We can verify this
with another method: When we walk around the point z = −1 once in the positive direction, the argument
of z + 1 changes by 2π, the argument of (z + 1)1/2 changes by π and thus the value of (z + 1)1/2 changes
by eiπ = −1. When we walk around the point z = 1 once in the positive direction, the argument of z − 1
changes by 2π, the argument of (z − 1)−1/2 changes by −π and thus the value of (z − 1)−1/2 changes by
e−iπ = −1. f(z) has branch points at z = ±1. When we walk around both points z = ±1 once in the

positive direction, the value of
(
z+1
z−1

)1/2
does not change. Thus we can make the function single-valued with

a branch cut which enables us to walk around either none or both of these branch points. We put a branch
cut from −1 to 1 on the real axis.

f(z) has branch points where

5 +

(
z + 1

z − 1

)1/2

is either zero or infinite. The only place in the extended complex plane where the expression becomes infinite
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is at z = 1. Now we look for the zeros.

5 +

(
z + 1

z − 1

)1/2

= 0.(
z + 1

z − 1

)1/2

= −5.

z + 1

z − 1
= 25.

z + 1 = 25z − 25

z =
13

12

Note that (
13/12 + 1

13/12− 1

)1/2

= 251/2 = ±5.

On one branch, (which we call the positive branch), of the function g(z) the quantity

5 +

(
z + 1

z − 1

)1/2

is always nonzero. On the other (negative) branch of the function, this quantity has a zero at z = 13/12.

The logarithm introduces branch points at z = 1 on both the positive and negative branch of g(z). It
introduces a branch point at z = 13/12 on the negative branch of g(z). To determine if additional branch
cuts are needed to separate the branches, we consider

w = 5 +

(
z + 1

z − 1

)1/2
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and see where the branch cut between ±1 gets mapped to in the w plane. We rewrite the mapping.

w = 5 +

(
1 +

2

z − 1

)1/2

The mapping is the following sequence of simple transformations:

(a) z 7→ z − 1

(b) z 7→ 1

z

(c) z 7→ 2z

(d) z 7→ z + 1

(e) z 7→ z1/2

(f) z 7→ z + 5

We show these transformations graphically below.

-1 1

z 7→ z− 1

-2 0

z 7→ 1

z

-1/2

z 7→ 2z

-1

z 7→ z+ 1

0

z 7→ z1/2 z 7→ z + 5

For the positive branch of g(z), the branch cut is mapped to the line x = 5 and the z plane is mapped to
the half-plane x > 5. log(w) has branch points at w = 0 and w =∞. It is possible to walk around only one
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of these points in the half-plane x > 5. Thus no additional branch cuts are needed in the positive sheet of
g(z).

For the negative branch of g(z), the branch cut is mapped to the line x = 5 and the z plane is mapped to
the half-plane x < 5. It is possible to walk around either w = 0 or w = ∞ alone in this half-plane. Thus
we need an additional branch cut. On the negative sheet of g(z), we put a branch cut beteen z = 1 and
z = 13/12. This puts a branch cut between w = ∞ and w = 0 and thus separates the branches of the
logarithm.

Figure 9.39 shows the branch cuts in the positive and negative sheets of g(z).

Im(z)

Re(z)
g(13/12)=-5

Im(z)

Re(z)
g(13/12)=5

Figure 9.39: The branch cuts for f(z) = log
(

5 +
(
z+1
z−1

)1/2
)

.

3. The function f(z) = (z + i3)1/2 has a branch point at z = −i3. The function is made single-valued by
connecting this point and the point at infinity with a branch cut.

Solution 9.21
Note that the curve with opposite orientation goes around infinity in the positive direction and does not enclose
any branch points. Thus the value of the function does not change when traversing the curve, (with either
orientation, of course). This means that the argument of the function must change my an integer multiple of 2π.
Since the branch cut only allows us to encircle all three or none of the branch points, it makes the function single
valued.
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Solution 9.22
We suppose that f(z) has only one branch point in the finite complex plane. Consider any contour that encircles
this branch point in the positive direction. f(z) changes value if we traverse the contour. If we reverse the
orientation of the contour, then it encircles infinity in the positive direction, but contains no branch points in the
finite complex plane. Since the function changes value when we traverse the contour, we conclude that the point
at infinity must be a branch point. If f(z) has only a single branch point in the finite complex plane then it must
have a branch point at infinity.

If f(z) has two or more branch points in the finite complex plane then it may or may not have a branch point
at infinity. This is because the value of the function may or may not change on a contour that encircles all the
branch points in the finite complex plane.

Solution 9.23
First we factor the function,

f(z) =
(
z4 + 1

)1/4
=

(
z − 1 + i√

2

)1/4(
z − −1 + i√

2

)1/4(
z − −1− i√

2

)1/4(
z − 1− i√

2

)1/4

.

There are branch points at z = ±1±i√
2

. We make the substitution z = 1/ζ to examine the point at infinity.

f

(
1

ζ

)
=

(
1

ζ4
+ 1

)1/4

=
1

(ζ4)1/4

(
1 + ζ4

)1/4

(ζ1/4)4 has a removable singularity at the point ζ = 0, but no branch point there. Thus (z4 + 1)1/4 has no branch
point at infinity.

Note that the argument of (z4− z0)1/4 changes by π/2 on a contour that goes around the point z0 once in the
positive direction. The argument of (z4 + 1)1/4 changes by nπ/2 on a contour that goes around n of its branch
points. Thus any set of branch cuts that permit you to walk around only one, two or three of the branch points
will not make the function single valued. A set of branch cuts that permit us to walk around only zero or all four
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of the branch points will make the function single-valued. Thus we see that the first two sets of branch cuts in
Figure 9.27 will make the function single-valued, while the remaining two will not.

Consider the contour in Figure ??. There are two ways to see that the function does not change value while
traversing the contour. The first is to note that each of the branch points makes the argument of the function
increase by π/2. Thus the argument of (z4 + 1)1/4 changes by 4(π/2) = 2π on the contour. This means that the
value of the function changes by the factor ei2π = 1. If we change the orientation of the contour, then it is a
contour that encircles infinity once in the positive direction. There are no branch points inside the this contour
with opposite orientation. (Recall that the inside of a contour lies to your left as you walk around it.) Since there
are no branch points inside this contour, the function cannot change value as we traverse it.

Solution 9.24

f(z) =

(
z

z2 + 1

)1/3

= z1/3(z − i)−1/3(z + i)−1/3

There are branch points at z = 0,±i.

f

(
1

ζ

)
=

(
1/ζ

(1/ζ)2 + 1

)1/3

=
ζ1/3

(1 + ζ2)1/3

There is a branch point at ζ = 0. f(z) has a branch point at infinity.
We introduce branch cuts from z = 0 to infinity on the negative real axis, from z = i to infinity on the positive

imaginary axis and from z = −i to infinity on the negative imaginary axis. As we cannot walk around any of the
branch points, this makes the function single-valued.

We define a branch by defining angles from the branch points. Let

z = r eiθ − π < θ < π,

(z − i) = s eiφ − 3π/2 < φ < π/2,

(z + i) = t eiψ − π/2 < ψ < 3π/2.
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With

f(z) = z1/3(z − i)−1/3(z + i)−1/3

= 3
√
r eiθ/3

1
3
√
s

e−iφ/3
1
3
√
t

e−iψ/3

= 3

√
r

st
ei(θ−φ−ψ)/3

we have an explicit formula for computing the value of the function for this branch. Now we compute f(1) to see
if we chose the correct ranges for the angles. (If not, we’ll just change one of them.)

f(1) = 3

√
1√
2
√

2
ei(0−π/4−(−π/4))/3 =

1
3
√

2

We made the right choice for the angles. Now to compute f(1 + i).

f(1 + i) =
3

√ √
2

1
√

5
ei(π/4−0−Arctan (2))/3 =

6

√
2

5
ei(π/4−Arctan (2))/3

Consider the value of the function above and below the branch cut on the negative real axis. Above the branch
cut the function is

f(−x+ i0) = 3

√
x√

x2 + 1
√
x2 + 1

ei(π−φ−ψ)/3

Note that φ = −ψ so that

f(−x+ i0) = 3

√
x

x2 + 1
ei(π)/3 = 3

√
x

x2 + 1

1 + i
√

3

2
.

Below the branch cut θ = −π and

f(−x− i0) = 3

√
x

x2 + 1
ei(−π)/3 = 3

√
x

x2 + 1

1− i
√

3

2
.
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For the branch cut along the positive imaginary axis,

f(iy + 0) = 3

√
y

(y − 1)(y + 1)
ei(π/2−π/2−π/2)/3

= 3

√
y

(y − 1)(y + 1)
e−iπ/6

= 3

√
y

(y − 1)(y + 1)

√
3− i
2

,

f(iy − 0) = 3

√
y

(y − 1)(y + 1)
ei(π/2−(−3π/2)−π/2)/3

= 3

√
y

(y − 1)(y + 1)
eiπ/2

= i 3

√
y

(y − 1)(y + 1)
.

For the branch cut along the negative imaginary axis,

f(−iy + 0) = 3

√
y

(y + 1)(y − 1)
ei(−π/2−(−π/2)−(−π/2))/3

= 3

√
y

(y + 1)(y − 1)
eiπ/6

= 3

√
y

(y + 1)(y − 1)

√
3 + i

2
,
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f(−iy − 0) = 3

√
y

(y + 1)(y − 1)
ei(−π/2−(−π/2)−(3π/2))/3

= 3

√
y

(y + 1)(y − 1)
e−iπ/2

= −i 3

√
y

(y + 1)(y − 1)
.

Solution 9.25
First we factor the function.

f(z) = ((z − 1)(z − 2)(z − 3))1/2 = (z − 1)1/2(z − 2)1/2(z − 3)1/2

There are branch points at z = 1, 2, 3. Now we examine the point at infinity.

f

(
1

ζ

)
=

((
1

ζ
− 1

)(
1

ζ
− 2

)(
1

ζ
− 3

))1/2

= ζ−3/2

((
1− 1

ζ

)(
1− 2

ζ

)(
1− 3

ζ

))1/2

Since ζ−3/2 has a branch point at ζ = 0 and the rest of the terms are analytic there, f(z) has a branch point at
infinity.

The first two sets of branch cuts in Figure 9.28 do not permit us to walk around any of the branch points,
including the point at infinity, and thus make the function single-valued. The third set of branch cuts lets us
walk around the branch points at z = 1 and z = 2 together or if we change our perspective, we would be walking
around the branch points at z = 3 and z = ∞ together. Consider a contour in this cut plane that encircles the
branch points at z = 1 and z = 2. Since the argument of (z − z0)1/2 changes by π when we walk around z0, the
argument of f(z) changes by 2π when we traverse the contour. Thus the value of the function does not change
and it is a valid set of branch cuts. Clearly the fourth set of branch cuts does not make the function single-valued
as there are contours that encircle the branch point at infinity and no other branch points. The other way to see
this is to note that the argument of f(z) changes by 3π as we traverse a contour that goes around the branch
points at z = 1, 2, 3 once in the positive direction.
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Now to define the branch. We make the preliminary choice of angles,

z − 1 = r1 eiθ1 , 0 < θ1 < 2π,

z − 2 = r2 eiθ2 , 0 < θ2 < 2π,

z − 3 = r3 eiθ3 , 0 < θ3 < 2π.

The function is

f(z) =
(
r1 eiθ1r2 eiθ2r3 eiθ3

)1/2
=
√
r1r2r3 ei(θ1+θ2+θ3)/2.

The value of the function at the origin is

f(0) =
√

6 ei(3π)/2 = −i
√

6,

which is not what we wanted. We will change range of one of the angles to get the desired result.

z − 1 = r1 eiθ1 , 0 < θ1 < 2π,

z − 2 = r2 eiθ2 , 0 < θ2 < 2π,

z − 3 = r3 eiθ3 , 2π < θ3 < 4π.

f(0) =
√

6 ei(5π)/2 = i
√

6,

Solution 9.26

w =
(
(z2 − 2)(z + 2)

)1/3
(z +

√
2)1/3(z −

√
2)1/3(z + 2)1/3

There are branch points at z = ±
√

2 and z = −2. If we walk around any one of the branch points once in the
positive direction, the argument of w changes by 2π/3 and thus the value of the function changes by ei2π/3. If we
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walk around all three branch points then the argument of w changes by 3× 2π/3 = 2π. The value of the function
is unchanged as ei2π = 1. Thus the branch cut on the real axis from −2 to

√
2 makes the function single-valued.

Now we define a branch. Let

z −
√

2 = a eiα, z +
√

2 = b eiβ, z + 2 = c eiγ.

We constrain the angles as follows: On the positive real axis, α = β = γ. See Figure 9.40.

αβ

γ

ac b

Re(z)

Im(z)

Figure 9.40: A branch of ((z2 − 2)(z + 2))
1/3

.

Now we determine w(2).

w(2) = (2−
√

2)1/3(2 +
√

2)1/3(2 + 2)1/3

=
3

√
2−
√

2 ei0
3

√
2 +
√

2 ei0
3
√

4 ei0

=
3
√

2
3
√

4

= 2.

Note that we didn’t have to choose the angle from each of the branch points as zero. Choosing any integer multiple
of 2π would give us the same result.
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w(−3) = (−3−
√

2)1/3(−3 +
√

2)1/3(−3 + 2)1/3

=
3

√
3 +
√

2 eiπ/3
3

√
3−
√

2 eiπ/3
3
√

1 eiπ/3

=
3
√

7 eiπ

= − 3
√

7

The value of the function is

w =
3
√
abc ei(α+β+γ)/3.

Consider the interval (−
√

2 . . .
√

2). As we approach the branch cut from above, the function has the value,

w =
3
√
abc eiπ/3 =

3

√
(
√

2− x)(x+
√

2)(x+ 2) eiπ/3.

As we approach the branch cut from below, the function has the value,

w =
3
√
abc e−iπ/3 =

3

√
(
√

2− x)(x+
√

2)(x+ 2) e−iπ/3.

Consider the interval (−2 . . .−
√

2). As we approach the branch cut from above, the function has the value,

w =
3
√
abc ei2π/3 =

3

√
(
√

2− x)(−x−
√

2)(x+ 2) ei2π/3.

As we approach the branch cut from below, the function has the value,

w =
3
√
abc e−i2π/3 =

3

√
(
√

2− x)(−x−
√

2)(x+ 2) e−i2π/3.
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Figure 9.41: The Principal Branch of the arc cosine, Arccos(x).

Solution 9.27
Arccos (x) is shown in Figure 9.41 for real variables in the range [−1, 1].

First we write arccos(z) in terms of log(z). If cos(w) = z, then w = arccos(z).

cos(w) = z

eiw + e−iw

2
= z

( eiw)2 − 2z eiw + 1 = 0

eiw = z + (z2 − 1)1/2

w = −i log(z + (z2 − 1)1/2)

Thus we have

arccos(z) = −i log(z + (z2 − 1)1/2).

Since Arccos (0) = π
2
, we must find the branch such that

−i log(0 + (02 − 1)1/2) = 0

−i log((−1)1/2) = 0.
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Since

−i log(i) = −i
(
i
π

2
+ i2πn

)
=
π

2
+ 2πn

and

−i log(−i) = −i
(
−iπ

2
+ i2πn

)
= −π

2
+ 2πn

we must choose the branch of the square root such that (−1)1/2 = i and the branch of the logarithm such that
log(i) = iπ

2
.

First we construct the branch of the square root.

(z2 − 1)1/2 = (z + 1)1/2(z − 1)1/2

We see that there are branch points at z = −1 and z = 1. In particular we want the Arccos to be defined for
z = x, x ∈ [−1, 1]. Hence we introduce branch cuts on the lines −∞ < x ≤ −1 and 1 ≤ x <∞. Define the local
coordinates

z + 1 = r eiθ, z − 1 = ρ eiφ.

With the given branch cuts, the angles have the possible ranges

{θ} = {. . . , (−π..π), (π..3π), . . . }, {φ} = {. . . , (0..2π), (2π..4π), . . . }.

Now we choose ranges for θ and φ and see if we get the desired branch. If not, we choose a different range for one
of the angles. First we choose the ranges

θ ∈ (−π..π), φ ∈ (0..2π).

If we substitute in z = 0 we get

(02 − 1)1/2 = (1 ei0)1/2(1 eiπ)1/2 = ei0 eiπ/2 = i

293



θ=π

θ=−π

φ=0

φ=2π

Figure 9.42: Branch Cuts and Angles for (z2 − 1)1/2

Thus we see that this choice of angles gives us the desired branch.
Now we go back to the expression

arccos(z) = −i log(z + (z2 − 1)1/2).

We have already seen that there are branch points at z = −1 and z = 1 because of (z2 − 1)1/2. Now we must
determine if the logarithm introduces additional branch points. The only possibilities for branch points are where
the argument of the logarithm is zero.

z + (z2 − 1)1/2 = 0

z2 = z2 − 1

0 = −1

We see that the argument of the logarithm is nonzero and thus there are no additional branch points. Introduce
the variable, w = z + (z2 − 1)1/2. What is the image of the branch cuts in the w plane? We parameterize the
branch cut connecting z = 1 and z = +∞ with z = r + 1, r ∈ [0,∞).

w = r + 1 + ((r + 1)2 − 1)1/2

= r + 1±
√
r(r + 2)

= r(1± r
√

1 + 2/r) + 1
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r(1 +
√

1 + 2/r) + 1 is the interval [1,∞); r(1−
√

1 + 2/r) + 1 is the interval (0, 1]. Thus we see that this branch
cut is mapped to the interval (0,∞) in the w plane. Similarly, we could show that the branch cut (−∞,−1] in
the z plane is mapped to (−∞, 0) in the w plane. In the w plane there is a branch cut along the real w axis from
−∞ to ∞. Thus cut makes the logarithm single-valued. For the branch of the square root that we chose, all the
points in the z plane get mapped to the upper half of the w plane.

With the branch cuts we have introduced so far and the chosen branch of the square root we have

arccos(0) = −i log(0 + (02 − 1)1/2)

= −i log i

= −i
(
i
π

2
+ i2πn

)
=
π

2
+ 2πn

Choosing the n = 0 branch of the logarithm will give us Arccos (z). We see that we can write

Arccos (z) = −iLog (z + (z2 − 1)1/2).

Solution 9.28
We consider the function f(z) = (z1/2−1)1/2. First note that z1/2 has a branch point at z = 0. We place a branch

cut on the negative real axis to make it single valued. f(z) will have a branch point where z1/2 − 1 = 0. This
occurs at z = 1 on the branch of z1/2 on which 11/2 = 1. (11/2 has the value 1 on one branch of z1/2 and −1 on
the other branch.) For this branch we introduce a branch cut connecting z = 1 with the point at infinity. (See
Figure 9.43.)

Solution 9.29
The distance between the end of rod a and the end of rod c is b. In the complex plane, these points are a eiθ and
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1   =1 1   =-11/2 1/2

Figure 9.43: Branch Cuts for (z1/2 − 1)1/2

l + c eiφ, respectively. We write this out mathematically.∣∣l + c eiφ − a eiθ
∣∣ = b(

l + c eiφ − a eiθ
) (
l + c e−iφ − a e−iθ

)
= b2

l2 + cl e−iφ − al e−iθ + cl eiφ + c2 − ac ei(φ−θ) − al eiθ − ac ei(θ−φ) + a2 = b2

cl cosφ− ac cos(φ− θ)− al cos θ =
1

2

(
b2 − a2 − c2 − l2

)
This equation relates the two angular positions. One could differentiate the equation to relate the velocities and
accelerations.

Solution 9.30
1. Let w = u+ iv. First we do the strip: |<(z)| < 1. Consider the vertical line: z = c+ iy, y ∈ R. This line is

mapped to

w = 2(c+ iy)2

w = 2c2 − 2y2 + i4cy

u = 2c2 − 2y2, v = 4cy

This is a parabola that opens to the left. For the case c = 0 it is the negative u axis. We can parametrize
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the curve in terms of v.

u = 2c2 − 1

8c2
v2, v ∈ R

The boundaries of the region are both mapped to the parabolas:

u = 2− 1

8
v2, v ∈ R.

The image of the mapping is {
w = u+ iv : v ∈ R and u < 2− 1

8
v2

}
.

Note that the mapping is two-to-one.

Now we do the strip 1 < =(z) < 2. Consider the horizontal line: z = x+ ic, x ∈ R. This line is mapped to

w = 2(x+ ic)2

w = 2x2 − 2c2 + i4cx

u = 2x2 − 2c2, v = 4cx

This is a parabola that opens upward. We can parametrize the curve in terms of v.

u =
1

8c2
v2 − 2c2, v ∈ R

The boundary =(z) = 1 is mapped to

u =
1

8
v2 − 2, v ∈ R.

The boundary =(z) = 2 is mapped to

u =
1

32
v2 − 8, v ∈ R

297



The image of the mapping is{
w = u+ iv : v ∈ R and

1

32
v2 − 8 < u <

1

8
v2 − 2

}
.

2. We write the transformation as

z + 1

z − 1
= 1 +

2

z − 1
.

Thus we see that the transformation is the sequence:

(a) translation by -1

(b) inversion

(c) magnification by 2

(d) translation by 1

Consider the strip |<(z)| < 1. The translation by −1 maps this to −2 < <(z) < 0. Now we do the
inversion. The left edge, <(z) = 0, is mapped to itself. The right edge, <(z) = −2, is mapped to the circle
|z + 1/4| = 1/4. Thus the current image is the left half plane minus a circle:

<(z) < 0 and

∣∣∣∣z +
1

4

∣∣∣∣ > 1

4
.

The magnification by 2 yields

<(z) < 0 and

∣∣∣∣z +
1

2

∣∣∣∣ > 1

2
.

The final step is a translation by 1.

<(z) < 1 and

∣∣∣∣z − 1

2

∣∣∣∣ > 1

2
.
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Now consider the strip 1 < =(z) < 2. The translation by −1 does not change the domain. Now we do the
inversion. The bottom edge, =(z) = 1, is mapped to the circle |z + i/2| = 1/2. The top edge, =(z) = 2, is
mapped to the circle |z + i/4| = 1/4. Thus the current image is the region between two circles:∣∣∣∣z +

i

2

∣∣∣∣ < 1

2
and

∣∣∣∣z +
i

4

∣∣∣∣ > 1

4
.

The magnification by 2 yields

|z + i| < 1 and

∣∣∣∣z +
i

2

∣∣∣∣ > 1

2
.

The final step is a translation by 1.

|z − 1 + i| < 1 and

∣∣∣∣z − 1 +
i

2

∣∣∣∣ > 1

2
.

Solution 9.31
1. There is a simple pole at z = −2. The function has a branch point at z = −1. Since this is the only

branch point in the finite complex plane there is also a branch point at infinity. We can verify this with the
substitution z = 1/ζ.

f

(
1

ζ

)
=

(1/ζ + 1)1/2

1/ζ + 2

=
ζ1/2(1 + ζ)1/2

1 + 2ζ

Since f(1/ζ) has a branch point at ζ = 0, f(z) has a branch point at infinity.

2. cos z is an entire function with an essential singularity at infinity. Thus f(z) has singularities only where
1/(1 + z) has singularities. 1/(1 + z) has a first order pole at z = −1. It is analytic everywhere else,
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including the point at infinity. Thus we conclude that f(z) has an essential singularity at z = −1 and is
analytic elsewhere. To explicitly show that z = −1 is an essential singularity, we can find the Laurent series
expansion of f(z) about z = −1.

cos

(
1

1 + z

)
=
∞∑
n=0

(−1)n

(2n)!
(z + 1)−2n

3. 1− ez has simple zeros at z = i2nπ, n ∈ Z. Thus f(z) has second order poles at those points.

The point at infinity is a non-isolated singularity. To justify this: Note that

f(z) =
1

(1− ez)2

has second order poles at z = i2nπ, n ∈ Z. This means that f(1/ζ) has second order poles at ζ = 1
i2nπ

,
n ∈ Z. These second order poles get arbitrarily close to ζ = 0. There is no deleted neighborhood around
ζ = 0 in which f(1/ζ) is analytic. Thus the point ζ = 0, (z =∞), is a non-isolated singularity. There is no
Laurent series expansion about the point ζ = 0, (z =∞).

The point at infinity is neither a branch point nor a removable singularity. It is not a pole either. If it were,
there would be an n such that limz→∞ z

−nf(z) = const 6= 0. Since z−nf(z) has second order poles in every
deleted neighborhood of infinity, the above limit does not exist. Thus we conclude that the point at infinity
is an essential singularity.

Solution 9.32
We write sinh z in Cartesian form.

w = sinh z = sinhx cos y + i cosh x sin y = u+ iv

Consider the line segment x = c, y ∈ (0 . . . π). Its image is

{sinh c cos y + i cosh c sin y | y ∈ (0 . . . π)}.
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This is the parametric equation for the upper half of an ellipse. Also note that u and v satisfy the equation for
an ellipse.

u2

sinh2 c
+

v2

cosh2 c
= 1

The ellipse starts at the point (sinh(c), 0), passes through the point (0, cosh(c)) and ends at (−sinh(c), 0). As c
varies from zero to ∞ or from zero to −∞, the semi-ellipses cover the upper half w plane. Thus the mapping is
2-to-1.

Consider the infinite line y = c, x ∈ (−∞ . . .∞).Its image is

{sinhx cos c+ i cosh x sin c |x ∈ (−∞ . . .∞)}.

This is the parametric equation for the upper half of a hyperbola. Also note that u and v satisfy the equation for
a hyperbola.

− u2

cos2 c
+

v2

sin2 c
= 1

As c varies from 0 to π/2 or from π/2 to π, the semi-hyperbola cover the upper half w plane. Thus the mapping
is 2-to-1.

We look for branch points of sinh−1 w.

w = sinh z

w =
ez − e−z

2
e2z − 2w ez − 1 = 0

ez = w + (w2 + 1)1/2

z = log
(
w + (w − i)1/2(w + i)1/2

)
There are branch points at w = ±i. Since w + (w2 + 1)1/2 is nonzero and finite in the finite complex plane, the
logarithm does not introduce any branch points in the finite plane. Thus the only branch point in the upper
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half w plane is at w = i. Any branch cut that connects w = i with the boundary of =(w) > 0 will separate the
branches under the inverse mapping.

Consider the line y = π/4. The image under the mapping is the upper half of the hyperbola

2u2 + 2v2 = 1.

Consider the segment x = 1.The image under the mapping is the upper half of the ellipse

u2

sinh2 1
+

v2

cosh2 1
= 1.
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Chapter 10

Analytic Functions

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way,
they develop a good, lucky feeling. 1

-Jack Handey

10.1 Complex Derivatives

Functions of a Real Variable. The derivative of a function of a real variable is

d

dx
f(x) = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
.

If the limit exists then the function is differentiable at the point x. Note that ∆x can approach zero from above
or below. The limit cannot depend on the direction in which ∆x vanishes.

Consider f(x) = |x|. The function is not differentiable at x = 0 since

lim
∆x→0+

|0 + ∆x| − |0|
∆x

= 1

1Quote slightly modified.
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and

lim
∆x→0−

|0 + ∆x| − |0|
∆x

= −1.

Analyticity. The complex derivative, (or simply derivative if the context is clear), is defined,

d

dz
f(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
.

The complex derivative exists if this limit exists. This means that the value of the limit is independent of the
manner in which ∆z → 0. If the complex derivative exists at a point, then we say that the function is complex
differentiable there.

A function of a complex variable is analytic at a point z0 if the complex derivative exists in a neighborhood
about that point. The function is analytic in an open set if it has a complex derivative at each point in that set.
Note that complex differentiable has a different meaning than analytic. Analyticity refers to the behavior of a
function on an open set. A function can be complex differentiable at isolated points, but the function would not
be analytic at those points. Analytic functions are also called regular or holomorphic. If a function is analytic
everywhere in the finite complex plane, it is called entire.

Example 10.1.1 Consider zn, n ∈ Z+, Is the function differentiable? Is it analytic? What is the value of the
derivative?

We determine differentiability by trying to differentiate the function. We use the limit definition of differenti-
ation. We will use Newton’s binomial formula to expand (z + ∆z)n.

d

dz
zn = lim

∆z→0

(z + ∆z)n − zn

∆z

= lim
∆z→0

(
zn + nzn−1∆z + n(n−1)

2
zn−2∆z2 + · · ·+ ∆zn

)
− zn

∆z

= lim
∆z→0

(
nzn−1 +

n(n− 1)

2
zn−2∆z + · · ·+ ∆zn−1

)
= nzn−1
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The derivative exists everywhere. The function is analytic in the whole complex plane so it is entire. The value
of the derivative is d

dz
= nzn−1.

Example 10.1.2 We will show that f(z) = z is not differentiable. The derivative is,

d

dz
f(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
.

d

dz
z = lim

∆z→0

z + ∆z − z
∆z

= lim
∆z→0

∆z

∆z

If we take ∆z = ∆x, the limit is

lim
∆x→0

∆x

∆x
= 1.

If we take ∆z = i∆y, the limit is

lim
∆y→0

−i∆y
i∆y

= −1.

Since the limit depends on the way that ∆z → 0, the function is nowhere differentiable. Thus the function is not
analytic.

Complex Derivatives in Terms of Plane Coordinates. Let z = ζ(ξ, η) be a system of coordinates in the
complex plane. (For example, we could have Cartesian coordinates z = ζ(x, y) = x + iy or polar coordinates
z = ζ(r, θ) = r eiθ). Let f(z) = ψ(ξ, η) be a complex-valued function. (For example we might have a function
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in the form ψ(x, y) = u(x, y) + iv(x, y) or ψ(r, θ) = R(r, θ) eiΘ(r,θ).) If f(z) = ψ(ξ, η) is analytic, its complex
derivative is equal to the derivative in any direction. In particular, it is equal to the derivatives in the coordinate
directions.

df

dz
= lim

∆ξ→0,∆η=0

f(z + ∆z)− f(z)

∆z
= lim

∆ξ→0

ψ(ξ + ∆ξ, η)− ψ(ξ, η)
∂ζ
∂ξ

∆ξ
=

(
∂ζ

∂ξ

)−1
∂ψ

∂ξ
,

df

dz
= lim

∆ξ=0,∆η→0

f(z + ∆z)− f(z)

∆z
= lim

∆η→0

ψ(ξ, η + ∆η)− ψ(ξ, η)
∂ζ
∂η

∆η
=

(
∂ζ

∂η

)−1
∂ψ

∂η
.

Example 10.1.3 Consider the Cartesian coordinates z = x+ iy. We write the complex derivative as derivatives
in the coordinate directions for f(z) = ψ(x, y).

df

dz
=

(
∂(x+ iy)

∂x

)−1
∂ψ

∂x
=
∂ψ

∂x
,

df

dz
=

(
∂(x+ iy)

∂y

)−1
∂ψ

∂y
= −i∂ψ

∂y
.

We write this in operator notation.

d

dz
=

∂

∂x
= −i ∂

∂y
.

Example 10.1.4 In Example 10.1.1 we showed that zn, n ∈ Z+, is an entire function and that d
dz
zn = nzn−1.

Now we corroborate this by calculating the complex derivative in the Cartesian coordinate directions.

d

dz
zn =

∂

∂x
(x+ iy)n

= n(x+ iy)n−1

= nzn−1
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d

dz
zn = −i ∂

∂y
(x+ iy)n

= −i(i)n(x+ iy)n−1

= nzn−1

Complex Derivatives are Not the Same as Partial Derivatives Recall from calculus that

f(x, y) = g(s, t) ⇒ ∂f

∂x
=
∂g

∂s

∂s

∂x
+
∂g

∂t

∂t

∂x

Do not make the mistake of using a similar formula for functions of a complex variable. If f(z) = ψ(x, y) then

df

dz
6= ∂ψ

∂x

∂x

∂z
+
∂ψ

∂y

∂y

∂z
.

This is because the d
dz

operator means “The derivative in any direction in the complex plane.” Since f(z) is
analytic, f ′(z) is the same no matter in which direction we take the derivative.

Rules of Differentiation. For an analytic function defined in terms of z we can calculate the complex derivative
using all the usual rules of differentiation that we know from calculus like the product rule,

d

dz
f(z)g(z) = f ′(z)g(z) + f(z)g′(z),

or the chain rule,

d

dz
f(g(z)) = f ′(g(z))g′(z).

This is because the complex derivative derives its properties from properties of limits, just like its real variable
counterpart.
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Result 10.1.1 The complex derivative is,

d

dz
f(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
.

The complex derivative is defined if the limit exists and is independent of the manner
in which ∆z → 0. A function is analytic at a point if the complex derivative exists in a
neighborhood of that point.
Let z = ζ(ξ, η) be coordinates in the complex plane. The complex derivative in the
coordinate directions is

d

dz
=

(
∂ζ

∂ξ

)−1
∂

∂ξ
=

(
∂ζ

∂η

)−1
∂

∂η
.

In Cartesian coordinates, this is

d

dz
=

∂

∂x
= −i ∂

∂y
.

In polar coordinates, this is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ

Since the complex derivative is defined with the same limit formula as real derivatives,
all the rules from the calculus of functions of a real variable may be used to differentiate
functions of a complex variable.
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Example 10.1.5 We have shown that zn, n ∈ Z+, is an entire function. Now we corroborate that d
dz
zn = nzn−1

by calculating the complex derivative in the polar coordinate directions.

d

dz
zn = e−iθ

∂

∂r
rn einθ

= e−iθnrn−1 einθ

= nrn−1 ei(n−1)θ

= nzn−1

d

dz
zn = − i

r
e−iθ

∂

∂θ
rn einθ

= − i
r

e−iθrnin einθ

= nrn−1 ei(n−1)θ

= nzn−1

Analytic Functions can be Written in Terms of z. Consider an analytic function expressed in terms of x
and y, ψ(x, y). We can write ψ as a function of z = x+ iy and z = x− iy.

f(z, z) = ψ

(
z + z

2
,
z − z
i2

)
We treat z and z as independent variables. We find the partial derivatives with respect to these variables.

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
+ i

∂

∂y

)
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Since ψ is analytic, the complex derivatives in the x and y directions are equal.

∂ψ

∂x
= −i∂ψ

∂y

The partial derivative of f(z, z) with respect to z is zero.

∂f

∂z
=

1

2

(
∂ψ

∂x
+ i

∂ψ

∂y

)
= 0

Thus f(z, z) has no functional dependence on z, it can be written as a function of z alone.
If we were considering an analytic function expressed in polar coordinates φ(r, θ), then we could write it in

Cartesian coordinates with the substitutions:

r =
√
x2 + y2, θ = arctan(x, y).

Thus we could write φ(r, θ) as a function of z alone.

Result 10.1.2 Any analytic function ψ(x, y) or φ(r, θ) can be written as a function of z
alone.

10.2 Cauchy-Riemann Equations

If we know that a function is analytic, then we have a convenient way of determining its complex derivative.
We just express the complex derivative in terms of the derivative in a coordinate direction. However, we don’t
have a nice way of determining if a function is analytic. The definition of complex derivative in terms of a limit
is cumbersome to work with. In this section we remedy this problem.

Consider a function f(z) = ψ(x, y). If f(z) is analytic, the complex derivative is equal to the derivatives in
the coordinate directions. We equate the derivatives in the x and y directions to obtain the Cauchy-Riemann
equations in Cartesian coordinates.

ψx = −iψy (10.1)
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This equation is a necessary condition for the analyticity of f(z).
Let ψ(x, y) = u(x, y) + iv(x, y) where u and v are real-valued functions. We equate the real and imaginary

parts of Equation 10.1 to obtain another form for the Cauchy-Riemann equations in Cartesian coordinates.

ux = vy, uy = −vx.
Note that this is a necessary and not a sufficient condition for analyticity of f(z). That is, u and v may satisfy
the Cauchy-Riemann equations but f(z) may not be analytic. The Cauchy-Riemann equations give us an easy
test for determining if a function is not analytic.

Example 10.2.1 In Example 10.1.2 we showed that z is not analytic using the definition of complex differenti-
ation. Now we obtain the same result using the Cauchy-Riemann equations.

z = x− iy
ux = 1, vy = −1

We see that the first Cauchy-Riemann equation is not satisfied; the function is not analytic at any point.

A sufficient condition for f(z) = ψ(x, y) to be analytic at a point z0 = (x0, y0) is that the partial derivatives
of ψ(x, y) exist and are continuous in some neighborhood of z0 and satisfy the Cauchy-Riemann equations there.
If the partial derivatives of ψ exist and are continuous then

ψ(x+ ∆x, y + ∆y) = ψ(x, y) + ∆xψx(x, y) + ∆yψy(x, y) + o(∆x) + o(∆y).

Here the notation o(∆x) means “terms smaller than ∆x”. We calculate the derivative of f(z).

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

= lim
∆x,∆y→0

ψ(x+ ∆x, y + ∆y)− ψ(x, y)

∆x+ i∆y

= lim
∆x,∆y→0

ψ(x, y) + ∆xψx(x, y) + ∆yψy(x, y) + o(∆x) + o(∆y)− ψ(x, y)

∆x+ i∆y

= lim
∆x,∆y→0

∆xψx(x, y) + ∆yψy(x, y) + o(∆x) + o(∆y)

∆x+ i∆y
.
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Here we use the Cauchy-Riemann equations.

= lim
∆x,∆y→0

(∆x+ i∆y)ψx(x, y)

∆x+ i∆y
+ lim

∆x,∆y→0

o(∆x) + o(∆y)

∆x+ i∆y
.

= ψx(x, y)

Thus we see that the derivative is well defined.

Cauchy-Riemann Equations in General Coordinates Let z = ζ(ξ, η) be a system of coordinates in the
complex plane. Let ψ(ξ, η) be a function which we write in terms of these coordinates, A necessary condition for
analyticity of ψ(ξ, η) is that the complex derivatives in the coordinate directions exist and are equal. Equating
the derivatives in the ξ and η directions gives us the Cauchy-Riemann equations.

(
∂ζ

∂ξ

)−1
∂ψ

∂ξ
=

(
∂ζ

∂η

)−1
∂ψ

∂η

We could separate this into two equations by equating the real and imaginary parts or the modulus and argument.
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Result 10.2.1 A necessary condition for analyticity of ψ(ξ, η), where z = ζ(ξ, η), at
z = z0 is that the Cauchy-Riemann equations are satisfied in a neighborhood of z = z0.(

∂ζ

∂ξ

)−1
∂ψ

∂ξ
=

(
∂ζ

∂η

)−1
∂ψ

∂η
.

(We could equate the real and imaginary parts or the modulus and argument of this to
obtain two equations.) A sufficient condition for analyticity of f(z) is that the Cauchy-
Riemann equations hold and the first partial derivatives of ψ exist and are continuous in
a neighborhood of z = z0.
Below are the Cauchy-Riemann equations for various forms of f(z).

f(z) = ψ(x, y), ψx = −iψy
f(z) = u(x, y) + iv(x, y), ux = vy, uy = −vx

f(z) = ψ(r, θ), ψr = − i
r
ψθ

f(z) = u(r, θ) + iv(r, θ), ur =
1

r
vθ, uθ = −rvr

f(z) = R(r, θ) eiΘ(r,θ), Rr =
R

r
Θθ,

1

r
Rθ = −RΘr

Example 10.2.2 Consider the Cauchy-Riemann equations for f(z) = u(r, θ) + iv(r, θ). From Exercise 10.2 we
know that the complex derivative in the polar coordinate directions is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.
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From Result 10.2.1 we have the equation,

e−iθ
∂

∂r
[u+ iv] = − i

r
e−iθ

∂

∂θ
[u+ iv].

We multiply by eiθ and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

ur =
1

r
vθ, uθ = −rvr

Example 10.2.3 Consider the exponential function.

ez = ψ(x, y) = ex(cos y + i sin(y))

We use the Cauchy-Riemann equations to show that the function is entire.

ψx = −iψy
ex(cos y + i sin(y)) = −i ex(− sin y + i cos(y))

ex(cos y + i sin(y)) = ex(cos y + i sin(y))

Since the function satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous every-
where in the finite complex plane, the exponential function is entire.

Now we find the value of the complex derivative.

d

dz
ez =

∂ψ

∂x
= ex(cos y + i sin(y)) = ez

The differentiability of the exponential function implies the differentiability of the trigonometric functions, as they
can be written in terms of the exponential.

In Exercise 10.11 you can show that the logarithm log z is differentiable for z 6= 0. This implies the differen-
tiability of zα and the inverse trigonometric functions as they can be written in terms of the logarithm.
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Example 10.2.4 We compute the derivative of zz.

d

dz
(zz) =

d

dz
ez log z

= (1 + log z) ez log z

= (1 + log z)zz

= zz + zz log z

10.3 Harmonic Functions

A function u is harmonic if its second partial derivatives exist, are continuous and satisfy Laplace’s equation
∆u = 0. 2 (In Cartesian coordinates the Laplacian is ∆u ≡ uxx + uyy.) If f(z) = u + iv is an analytic function
then u and v are harmonic functions. To see why this is so, we start with the Cauchy-Riemann equations.

ux = vy, uy = −vx

We differentiate the first equation with respect to x and the second with respect to y. (We assume that u and v
are twice continuously differentiable. We will see later that they are infinitely differentiable.)

uxx = vxy, uyy = −vyx

Thus we see that u is harmonic.

∆u ≡ uxx + uyy = vxy − vyx = 0

One can use the same method to show that ∆v = 0.

2 The capital Greek letter ∆ is used to denote the Laplacian, like ∆u(x, y), and differentials, like ∆x.
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If u is harmonic on some simply-connected domain, then there exists a harmonic function v such that f(z) =
u + iv is analytic in the domain. v is called the harmonic conjugate of u. The harmonic conjugate is unique up
to an additive constant. To demonstrate this, let w be another harmonic conjugate of u. Both the pair u and v
and the pair u and w satisfy the Cauchy-Riemann equations.

ux = vy, uy = −vx, ux = wy, uy = −wx

We take the difference of these equations.

vx − wx = 0, vy − wy = 0

On a simply connected domain, the difference between v and w is thus a constant.
To prove the existence of the harmonic conjugate, we first write v as an integral.

v(x, y) = v(x0, y0) +

∫ (x,y)

(x0,y0)

vx dx+ vy dy

On a simply connected domain, the integral is path independent and defines a unique v in terms of vx and vy.
We use the Cauchy-Riemann equations to write v in terms of ux and uy.

v(x, y) = v(x0, y0) +

∫ (x,y)

(x0,y0)

−uy dx+ ux dy

Changing the starting point (x0, y0) changes v by an additive constant. The harmonic conjugate of u to within
an additive constant is

v(x, y) =

∫
−uy dx+ ux dy.

This proves the existence 3 of the harmonic conjugate. This is not the formula one would use to construct the
harmonic conjugate of a u. One accomplishes this by solving the Cauchy-Riemann equations.

3 A mathematician returns to his office to find that a cigarette tossed in the trash has started a small fire. Being calm and a
quick thinker he notes that there is a fire extinguisher by the window. He then closes the door and walks away because “the solution
exists.”
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Result 10.3.1 If f(z) = u + iv is an analytic function then u and v are harmonic
functions. That is, the Laplacians of u and v vanish ∆u = ∆v = 0. The Laplacian in
Cartesian and polar coordinates is

∆ =
∂2

∂x2 +
∂2

∂y2 , ∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2 .

Given a harmonic function u in a simply connected domain, there exists a harmonic
function v, (unique up to an additive constant), such that f(z) = u + iv is analytic in
the domain. One can construct v by solving the Cauchy-Riemann equations.

Example 10.3.1 Is x2 the real part of an analytic function?
The Laplacian of x2 is

∆[x2] = 2 + 0

x2 is not harmonic and thus is not the real part of an analytic function.

Example 10.3.2 Show that u = e−x(x sin y − y cos y) is harmonic.

∂u

∂x
= e−x sin y − ex(x sin y − y cos y)

= e−x sin y − x e−x sin y + y e−x cos y

∂2u

∂x2
= − e−x sin y − e−x sin y + x e−x sin y − y e−x cos y

= −2 e−x sin y + x e−x sin y − y e−x cos y
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∂u

∂y
= e−x(x cos y − cos y + y sin y)

∂2u

∂y2
= e−x(−x sin y + sin y + y cos y + sin y)

= −x e−x sin y + 2 e−x sin y + y e−x cos y

Thus we see that ∂2u
∂x2 + ∂2u

∂y2 = 0 and u is harmonic.

Example 10.3.3 Consider u = cos x cosh y. This function is harmonic.

uxx + uyy = − cos x cosh y + cosx cosh y = 0

Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy = ux = − sinx cosh y

v = − sinx sinh y + a(x)

Here a(x) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine
a(x).

vx = −uy
− cos x sinh y + a′(x) = − cos x sinh y

a′(x) = 0

a(x) = c

Here c is a real constant. Thus the harmonic conjugate is

v = − sinx sinh y + c.
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The analytic function is

f(z) = cos x cosh y − i sinx sinh y + ic

We recognize this as

f(z) = cos z + ic.

Example 10.3.4 Here we consider an example that demonstrates the need for a simply connected domain.
Consider u = Log r in the multiply connected domain, r > 0. u is harmonic.

∆ Log r =
1

r

∂

∂r

(
r
∂

∂r
Log r

)
+

1

r2

∂2

∂θ2
Log r = 0

We solve the Cauchy-Riemann equations to try to find the harmonic conjugate.

ur =
1

r
vθ, uθ = −rvr

vr = 0, vθ = 1

v = θ + c

We are able to solve for v, but it is multi-valued. Any single-valued branch of θ that we choose will not be
continuous on the domain. Thus there is no harmonic conjugate of u = Log r for the domain r > 0.

If we had instead considered the simply-connected domain r > 0, | arg(z)| < π then the harmonic conjugate
would be v = Arg (z) + c. The corresponding analytic function is f(z) = Log z + ic.

Example 10.3.5 Consider u = x3 − 3xy2 + x. This function is harmonic.

uxx + uyy = 6x− 6x = 0

319



Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy = ux = 3x2 − 3y2 + 1

v = 3x2y − y3 + y + a(x)

Here a(x) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine
a(x).

vx = −uy
6xy + a′(x) = 6xy

a′(x) = 0

a(x) = c

Here c is a real constant. The harmonic conjugate is

v = 3x2y − y3 + y + c.

The analytic function is

f(z) = x3 − 3xy2 + x+ i(3x2y − y3 + y) + ic

f(z) = x3 + i3x2y − 3xy2 − iy2 + x+ iy + ic

f(z) = z3 + z + ic

10.4 Singularities

Any point at which a function is not analytic is called a singularity. In this section we will classify the different
flavors of singularities.

Result 10.4.1 Singularities. If a function is not analytic at a point, then that point
is a singular point or a singularity of the function.
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10.4.1 Categorization of Singularities

Branch Points. If f(z) has a branch point at z0, then we cannot define a branch of f(z) that is continuous
in a neighborhood of z0. Continuity is necessary for analyticity. Thus all branch points are singularities. Since
function are discontinuous across branch cuts, all points on a branch cut are singularities.

Example 10.4.1 Consider f(z) = z3/2. The origin and infinity are branch points and are thus singularities of
f(z). We choose the branch g(z) =

√
z3. All the points on the negative real axis, including the origin, are

singularities of g(z).

Removable Singularities.

Example 10.4.2 Consider

f(z) =
sin z

z
.

This function is undefined at z = 0 because f(0) is the indeterminate form 0/0. f(z) is analytic everywhere in
the finite complex plane except z = 0. Note that the limit as z → 0 of f(z) exists.

lim
z→0

sin z

z
= lim

z→0

cos z

1
= 1

If we were to fill in the hole in the definition of f(z), we could make it differentiable at z = 0. Consider the
function

g(z) =

{
sin z
z

z 6= 0,

1 z = 0.
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We calculate the derivative at z = 0 to verify that g(z) is analytic there.

f ′(0) = lim
z→0

f(0)− f(z)

z

= lim
z→0

1− sin(z)/z

z

= lim
z→0

z − sin(z)

z2

= lim
z→0

1− cos(z)

2z

= lim
z→0

sin(z)

2
= 0

We call the point at z = 0 a removable singularity of sin(z)/z because we can remove the singularity by defining
the value of the function to be its limiting value there.

Consider a function f(z) that is analytic in a deleted neighborhood of z = z0. If f(z) is not analytic at z0,
but limz→z0 f(z) exists, then the function has a removable singularity at z0. The function

g(z) =

{
f(z) z 6= z0

limz→z0 f(z) z = z0

is analytic in a neighborhood of z = z0. We show this by calculating g′(z0).

g′(z0) = lim
z→z0

g(z0)− g(z)

z0 − z

= lim
z→z0

−g′(z)

−1

= lim
z→z0

f ′(z)

This limit exists because f(z) is analytic in a deleted neighborhood of z = z0.
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Poles. If a function f(z) behaves like c/(z − z0)n near z = z0 then the function has an nth order pole at that
point. More mathematically we say

lim
z→z0

(z − z0)nf(z) = c 6= 0.

We require the constant c to be nonzero so we know that it is not a pole of lower order. We can denote a removable
singularity as a pole of order zero.

Another way to say that a function has an nth order pole is that f(z) is not analytic at z = z0, but (z−z0)nf(z)
is either analytic or has a removable singularity at that point.

Example 10.4.3 1/ sin(z2) has a second order pole at z = 0 and first order poles at z = (nπ)1/2, n ∈ Z±.

lim
z→0

z2

sin(z2)
= lim

z→0

2z

2z cos(z2)

= lim
z→0

2

2 cos(z2)− 4z2 sin(z2)

= 1

lim
z→(nπ)1/2

z − (nπ)1/2

sin(z2)
= lim

z→(nπ)1/2

1

2z cos(z2)

=
1

2(nπ)1/2(−1)n

Example 10.4.4 e1/z is singular at z = 0. The function is not analytic as limz→0 e1/z does not exist. We check
if the function has a pole of order n at z = 0.

lim
z→0

zn e1/z = lim
ζ→∞

eζ

ζn

= lim
ζ→∞

eζ

n!

323



Since the limit does not exist for any value of n, the singularity is not a pole. We could say that e1/z is more
singular than any power of 1/z.

Essential Singularities. If a function f(z) is singular at z = z0, but the singularity is not a branch point, or
a pole, the the point is an essential singularity of the function.

The point at infinity. We can consider the point at infinity z →∞ by making the change of variables z = 1/ζ
and considering ζ → 0. If f(1/ζ) is analytic at ζ = 0 then f(z) is analytic at infinity. We have encountered
branch points at infinity before (Section 9.6). Assume that f(z) is not analytic at infinity. If limz→∞ f(z) exists
then f(z) has a removable singularity at infinity. If limz→∞ f(z)/zn = c 6= 0 then f(z) has an nth order pole at
infinity.

Result 10.4.2 Categorization of Singularities. Consider a function f(z) that has a
singularity at the point z = z0. Singularities come in four flavors:

Branch Points. Branch points of multi-valued functions are singularities.

Removable Singularities. If limz→z0
f(z) exists, then z0 is a removable singularity. It

is thus named because the singularity could be removed and thus the function made
analytic at z0 by redefining the value of f(z0).

Poles. If limz→z0
(z − z0)

nf(z) = const 6= 0 then f(z) has an nth order pole at z0.

Essential Singularities. Instead of defining what an essential singularity is, we say
what it is not. If z0 neither a branch point, a removable singularity nor a pole, it is
an essential singularity.
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A pole may be called a non-essential singularity. This is because multiplying the function by an integral power
of z− z0 will make the function analytic. Then an essential singularity is a point z0 such that there does not exist
an n such that (z − z0)nf(z) is analytic there.

10.4.2 Isolated and Non-Isolated Singularities

Result 10.4.3 Isolated and Non-Isolated Singularities. Suppose f(z) has a singu-
larity at z0. If there exists a deleted neighborhood of z0 containing no singularities then
the point is an isolated singularity. Otherwise it is a non-isolated singularity.

If you don’t like the abstract notion of a deleted neighborhood, you can work with a deleted circular neighbor-
hood. However, this will require the introduction of more math symbols and a Greek letter. z = z0 is an isolated
singularity if there exists a δ > 0 such that there are no singularities in 0 < |z − z0| < δ.

Example 10.4.5 We classify the singularities of f(z) = z/ sin z.
z has a simple zero at z = 0. sin z has simple zeros at z = nπ. Thus f(z) has a removable singularity at z = 0

and has first order poles at z = nπ for n ∈ Z±. We can corroborate this by taking limits.

lim
z→0

f(z) = lim
z→0

z

sin z
= lim

z→0

1

cos z
= 1

lim
z→nπ

(z − nπ)f(z) = lim
z→nπ

(z − nπ)z

sin z

= lim
z→nπ

2z − nπ
cos z

=
nπ

(−1)n

6= 0
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Now to examine the behavior at infinity. There is no neighborhood of infinity that does not contain first order
poles of f(z). (Another way of saying this is that there does not exist an R such that there are no singularities
in R < |z| <∞.) Thus z =∞ is a non-isolated singularity.

We could also determine this by setting ζ = 1/z and examining the point ζ = 0. f(1/ζ) has first order poles
at ζ = 1/(nπ) for n ∈ Z\{0}. These first order poles come arbitrarily close to the point ζ = 0 There is no deleted
neighborhood of ζ = 0 which does not contain singularities. Thus ζ = 0, and hence z = ∞ is a non-isolated
singularity.

The point at infinity is an essential singularity. It is certainly not a branch point or a removable singularity.
It is not a pole, because there is no n such that limz→∞ z

−nf(z) = const 6= 0. z−nf(z) has first order poles in any
neighborhood of infinity, so this limit does not exist.
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10.5 Exercises

Complex Derivatives

Exercise 10.1
Show that if f(z) is analytic and ψ(x, y) = f(z) is twice continuously differentiable then f ′(z) is analytic.

Exercise 10.2
Find the complex derivative in the coordinate directions for f(z) = ψ(r, θ).
Hint, Solution

Exercise 10.3
Show that the following functions are nowhere analytic by checking where the derivative with respect to z exists.

1. sinx cosh y − i cosx sinh y

2. x2 − y2 + x+ i(2xy − y)

Hint, Solution

Exercise 10.4
f(z) is analytic for all z, (|z| < ∞). f(z1 + z2) = f(z1)f(z2) for all z1 and z2. (This is known as a functional
equation). Prove that f(z) = exp(f ′(0)z).
Hint, Solution

Cauchy-Riemann Equations

Exercise 10.5
Find the Cauchy-Riemann equations for

f(z) = R(r, θ) eiΘ(r,θ).
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Hint, Solution

Exercise 10.6
Let

f(z) =

{
x4/3y5/3+ix5/3y4/3

x2+y2 for z 6= 0,

0 for z = 0.

Show that the Cauchy-Riemann equations hold at z = 0, but that f is not differentiable at this point.
Hint, Solution

Exercise 10.7
Consider the complex function

f(z) = u+ iv =

{
x3(1+i)−y3(1−i)

x2+y2 for z 6= 0,

0 for z = 0.

Show that the partial derivatives of u and v with respect to x and y exist at z = 0 and that ux = vy and uy = −vx
there: the Cauchy-Riemann equations are satisfied at z = 0. On the other hand, show that

lim
z→0

f(z)

z

does not exist, that is, f is not complex-differentiable at z = 0.
Hint, Solution

Exercise 10.8
Show that the function

f(z) =

{
e−z

−4
for z 6= 0,

0 for z = 0.
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satisfies the Cauchy-Riemann equations everywhere, including at z = 0, but f(z) is not analytic at the origin.
Hint, Solution

Exercise 10.9
1. Show that ez is not analytic.

2. f(z) is an analytic function of z. Show that f(z) = f(z) is also an analytic function of z.
Hint, Solution

Exercise 10.10
1. Determine all points z = x+ iy where the following functions are differentiable with respect to z:

(i) x3 + y3 (ii)
x− 1

(x− 1)2 + y2
− i y

(x− 1)2 + y2

2. Determine all points z where the functions in part (a) are analytic.

3. Determine which of the following functions v(x, y) are the imaginary part of an analytic function u(x, y) +
iv(x, y). For those that are, compute the real part u(x, y) and re-express the answer as an explicit function
of z = x+ iy:

(i) x2 − y2 (ii) 3x2y

Hint, Solution

Exercise 10.11
Show that the logarithm log z is differentiable for z 6= 0. Find the derivative of the logarithm.
Hint, Solution
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Exercise 10.12
Show that the Cauchy-Riemann equations for the analytic function f(z) = u(r, θ) + iv(r, θ) are

ur = vθ/r, uθ = −rvr.

Hint, Solution

Exercise 10.13
w = u + iv is an analytic function of z. φ(x, y) is an arbitrary smooth function of x and y. When expressed in
terms of u and v, φ(x, y) = Φ(u, v). Show that (w′ 6= 0)

∂Φ

∂u
− i∂Φ

∂v
=

(
dw

dz

)−1(
∂φ

∂x
− i∂φ

∂y

)
.

Deduce

∂2Φ

∂u2
+
∂2Φ

∂v2
=

∣∣∣∣dwdz
∣∣∣∣−2(

∂2φ

∂x2
+
∂2φ

∂y2

)
.

Hint, Solution

Exercise 10.14
Show that the functions defined by f(z) = log |z| + i arg(z) and f(z) =

√
|z| ei arg(z)/2 are analytic in the sector

|z| > 0, | arg(z)| < π. What are the corresponding derivatives df/dz?
Hint, Solution

Exercise 10.15
Show that the following functions are harmonic. For each one of them find its harmonic conjugate and form the
corresponding holomorphic function.

1. u(x, y) = xLog (r)− y arctan(x, y) (r 6= 0)
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2. u(x, y) = arg(z) (| arg(z)| < π, r 6= 0)

3. u(x, y) = rn cos(nθ)

4. u(x, y) = y/r2 (r 6= 0)

Hint, Solution
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10.6 Hints

Complex Derivatives

Hint 10.1
Start with the Cauchy-Riemann equation and then differentiate with respect to x.

Hint 10.2
Read Example 10.1.3 and use Result 10.1.1.

Hint 10.3
Use Result 10.1.1.

Hint 10.4
Take the logarithm of the equation to get a linear equation.

Cauchy-Riemann Equations

Hint 10.5
Use the result of Exercise 10.2.

Hint 10.6
To evaluate ux(0, 0), etc. use the definition of differentiation. Try to find f ′(z) with the definition of complex
differentiation. Consider ∆z = ∆r eiθ.

Hint 10.7
To evaluate ux(0, 0), etc. use the definition of differentiation. Try to find f ′(z) with the definition of complex
differentiation. Consider ∆z = ∆r eiθ.
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Hint 10.8

Hint 10.9
Use the Cauchy-Riemann equations.

Hint 10.10

Hint 10.11

Hint 10.12

Hint 10.13

Hint 10.14

Hint 10.15
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10.7 Solutions

Complex Derivatives

Solution 10.1
We start with the Cauchy-Riemann equation and then differentiate with respect to x.

ψx = −iψy
ψxx = −iψyx

We interchange the order of differentiation.

(ψx)x = −i(ψx)y
(f ′)x = −i(f ′)y

Since f ′(z) satisfies the Cauchy-Riemann equation and its partial derivatives exist and are continuous, it is
analytic.

Solution 10.2
The complex derivative in the coordinate directions is

df

dz
=

(
∂r eiθ

∂r

)−1
∂ψ

∂r
= e−iθ

∂ψ

∂r
,

df

dz
=

(
∂r eiθ

∂θ

)−1
∂ψ

∂θ
= − i

r
e−iθ

∂ψ

∂θ
.

We write this in operator notation.

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
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Solution 10.3
1. Consider f(x, y) = sinx cosh y − i cosx sinh y. The derivatives in the x and y directions are

∂f

∂x
= cos x cosh y + i sinx sinh y

−i∂f
∂y

= − cosx cosh y − i sinx sinh y

These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two
equations.

cosx cosh y = − cosx cosh y, sinx sinh y = − sinx sinh y

cosx cosh y = 0, sinx sinh y = 0(
x =

π

2
+ nπ

)
and (x = mπ or y = 0)

The function may be differentiable only at the points

x =
π

2
+ nπ, y = 0.

Thus the function is nowhere analytic.

2. Consider f(x, y) = x2 − y2 + x+ i(2xy − y). The derivatives in the x and y directions are

∂f

∂x
= 2x+ 1 + i2y

−i∂f
∂y

= i2y + 2x− 1

These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two
equations.

2x+ 1 = 2x− 1, 2y = 2y.

Since this set of equations has no solutions, there are no points at which the function is differentiable. The
function is nowhere analytic.
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Solution 10.4

f(z1 + z2) = f(z1)f(z2)

log(f(z1 + z2)) = log(f(z1)) + log(f(z2))

We define g(z) = log(f(z)).

g(z1 + z2) = g(z1) + g(z2)

This is a linear equation which has exactly the solutions:

g(z) = cz.

Thus f(z) has the solutions:

f(z) = ecz,

where c is any complex constant. We can write this constant in terms of f ′(0). We differentiate the original
equation with respect to z1 and then substitute z1 = 0.

f ′(z1 + z2) = f ′(z1)f(z2)

f ′(z2) = f ′(0)f(z2)

f ′(z) = f ′(0)f(z)

We substitute in the form of the solution.

c ecz = f ′(0) ecz

c = f ′(0)

Thus we see that

f(z) = ef
′(0)z.
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Cauchy-Riemann Equations

Solution 10.5
We find the Cauchy-Riemann equations for

f(z) = R(r, θ) eiΘ(r,θ).

From Exercise 10.2 we know that the complex derivative in the polar coordinate directions is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.

We equate the derivatives in the two directions.

e−iθ
∂

∂r

[
R eiΘ

]
= − i

r
e−iθ

∂

∂θ

[
R eiΘ

]
(Rr + iRΘr) eiΘ = − i

r
(Rθ + iRΘθ) eiΘ

We divide by eiΘ and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

Rr =
R

r
Θθ,

1

r
Rθ = −RΘr

Solution 10.6

u =

{
x4/3y5/3

x2+y2 if z 6= 0,

0 if z = 0.
, v =

{
x5/3y4/3

x2+y2 if z 6= 0,

0 if z = 0.

The Cauchy-Riemann equations are

ux = vy, uy = −vx.
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The partial derivatives of u and v at the point x = y = 0 are,

ux(0, 0) = lim
∆x→0

u(∆x, 0)− u(0, 0)

∆x

= lim
∆x→0

0− 0

∆x
= 0,

vx(0, 0) = lim
∆x→0

v(∆x, 0)− v(0, 0)

∆x

= lim
∆x→0

0− 0

∆x
= 0,

uy(0, 0) = lim
∆y→0

u(0,∆y)− u(0, 0)

∆y

= lim
∆y→0

0− 0

∆y

= 0,

vy(0, 0) = lim
∆y→0

v(0,∆y)− v(0, 0)

∆y

= lim
∆y→0

0− 0

∆y

= 0.

Since ux(0, 0) = uy(0, 0) = vx(0, 0) = vy(0, 0) = 0 the Cauchy-Riemann equations are satisfied.
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f(z) is not analytic at the point z = 0. We show this by calculating the derivative.

f ′(0) = lim
∆z→0

f(∆z)− f(0)

∆z
= lim

∆z→0

f(∆z)

∆z

Let ∆z = ∆r eiθ, that is, we approach the origin at an angle of θ. Then x = ∆r cos θ and y = ∆r sin θ.

f ′(0) = lim
∆r→0

f(∆r eiθ)

∆r eiθ

= lim
∆r→0

∆r4/3 cos4/3 θ∆r5/3 sin5/3 θ+i∆r5/3 cos5/3 θ∆r4/3 sin4/3 θ
∆r2

∆r eiθ

= lim
∆r→0

cos4/3 θ sin5/3 θ + i cos5/3 θ sin4/3 θ

eiθ

The value of the limit depends on θ and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0.

Solution 10.7

u =

{
x3−y3

x2+y2 for z 6= 0,

0 for z = 0.
, v =

{
x3+y3

x2+y2 for z 6= 0,

0 for z = 0.

The Cauchy-Riemann equations are

ux = vy, uy = −vx.

The partial derivatives of u and v at the point x = y = 0 are,

ux(0, 0) = lim
∆x→0

u(∆x, 0)− u(0, 0)

∆x

= lim
∆x→0

∆x− 0

∆x
= 1,
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vx(0, 0) = lim
∆x→0

v(∆x, 0)− v(0, 0)

∆x

= lim
∆x→0

∆x− 0

∆x
= 1,

uy(0, 0) = lim
∆y→0

u(0,∆y)− u(0, 0)

∆y

= lim
∆y→0

−∆y − 0

∆y

= −1,

vy(0, 0) = lim
∆y→0

v(0,∆y)− v(0, 0)

∆y

= lim
∆y→0

∆y − 0

∆y

= 1.

We see that the Cauchy-Riemann equations are satisfied at x = y = 0
f(z) is not analytic at the point z = 0. We show this by calculating the derivative.

f ′(0) = lim
∆z→0

f(∆z)− f(0)

∆z
= lim

∆z→0

f(∆z)

∆z

Let ∆z = ∆r eiθ, that is, we approach the origin at an angle of θ. Then x = ∆r cos θ and y = ∆r sin θ.

f ′(0) = lim
∆r→0

f(∆r eiθ)

∆r eiθ

= lim
∆r→0

∆r3 cos3 θ(1+i)−∆r3 sin3 θ(1−i)
∆r2

∆r eiθ

= lim
∆r→0

cos3 θ(1 + i)− sin3 θ(1− i)
eiθ
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The value of the limit depends on θ and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0. Recall that satisfying the Cauchy-Riemann equations is a necessary, but not a sufficient
condition for differentiability.

Solution 10.8
First we verify that the Cauchy-Riemann equations are satisfied for z 6= 0. Note that the form

fx = −ify
will be far more convenient than the form

ux = vy, uy = −vx
for this problem.

fx = 4(x+ iy)−5 e−(x+iy)−4

−ify = −i4(x+ iy)−5i e−(x+iy)−4

= 4(x+ iy)−5 e−(x+iy)−4

The Cauchy-Riemann equations are satisfied for z 6= 0.
Now we consider the point z = 0.

fx(0, 0) = lim
∆x→0

f(∆x, 0)− f(0, 0)

∆x

= lim
∆x→0

e−∆x−4

∆x
= 0

−ify(0, 0) = −i lim
∆y→0

f(0,∆y)− f(0, 0)

∆y

= −i lim
∆y→0

e−∆y−4

∆y

= 0
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The Cauchy-Riemann equations are satisfied for z = 0.
f(z) is not analytic at the point z = 0. We show this by calculating the derivative.

f ′(0) = lim
∆z→0

f(∆z)− f(0)

∆z
= lim

∆z→0

f(∆z)

∆z

Let ∆z = ∆r eiθ, that is, we approach the origin at an angle of θ.

f ′(0) = lim
∆r→0

f(∆r eiθ)

∆r eiθ

= lim
∆r→0

e−r
−4 e−i4θ

∆r eiθ

For most values of θ the limit does not exist. Consider θ = π/4.

f ′(0) = lim
∆r→0

er
−4

∆r eiπ/4
=∞

Because the limit does not exist, the function is not differentiable at z = 0. Recall that satisfying the Cauchy-
Riemann equations is a necessary, but not a sufficient condition for differentiability.

Solution 10.9
1. A necessary condition for analyticity in an open set is that the Cauchy-Riemann equations are satisfied in

that set. We write ez in Cartesian form.

ez = ex−iy = ex cos y − i ex sin y.

Now we determine where u = ex cos y and v = − ex sin y satisfy the Cauchy-Riemann equations.

ux = vy, uy = −vx
ex cos y = − ex cos y, − ex sin y = ex sin y

cos y = 0, sin y = 0

y =
π

2
+ πm, y = πn

Thus we see that the Cauchy-Riemann equations are not satisfied anywhere. ez is nowhere analytic.
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2. Since f(z) = u + iv is analytic, u and v satisfy the Cauchy-Riemann equations and their first partial
derivatives are continuous.

f(z) = f(z) = u(x,−y) + iv(x,−y) = u(x,−y)− iv(x,−y)

We define f(z) ≡ µ(x, y)+ iν(x, y) = u(x,−y)− iv(x, y). Now we see if µ and ν satisfy the Cauchy-Riemann
equations.

µx = νy, µy = −νx
(u(x,−y))x = (−v(x,−y))y, (u(x,−y))y = −(−v(x,−y))x

ux(x,−y) = vy(x,−y), −uy(x,−y) = vx(x,−y)

ux = vy, uy = −vx
Thus we see that the Cauchy-Riemann equations for µ and ν are satisfied if and only if the Cauchy-Riemann
equations for u and v are satisfied. The continuity of the first partial derivatives of u and v implies the same
of µ and ν. Thus f(z) is analytic.

Solution 10.10
1. The necessary condition for a function f(z) = u + iv to be differentiable at a point is that the Cauchy-

Riemann equations hold and the first partial derivatives of u and v are continuous at that point.

(a)

f(z) = x3 + y3 + i0

The Cauchy-Riemann equations are

ux = vy and uy = −vx
3x2 = 0 and 3y2 = 0

x = 0 and y = 0

The first partial derivatives are continuous. Thus we see that the function is differentiable only at the
point z = 0.
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(b)

f(z) =
x− 1

(x− 1)2 + y2
− i y

(x− 1)2 + y2

The Cauchy-Riemann equations are

ux = vy and uy = −vx
−(x− 1)2 + y2

((x− 1)2 + y2)2
=
−(x− 1)2 + y2

((x− 1)2 + y2)2
and

2(x− 1)y

((x− 1)2 + y2)2
=

2(x− 1)y

((x− 1)2 + y2)2

The Cauchy-Riemann equations are each identities. The first partial derivatives are continuous every-
where except the point x = 1, y = 0. Thus the function is differentiable everywhere except z = 1.

2. (a) The function is not differentiable in any open set. Thus the function is nowhere analytic.

(b) The function is differentiable everywhere except z = 1. Thus the function is analytic everywhere except
z = 1.

3. (a) First we determine if the function is harmonic.

v = x2 − y2

vxx + vyy = 0

2− 2 = 0

The function is harmonic in the complex plane and this is the imaginary part of some analytic function.
By inspection, we see that this function is

iz2 + c = −2xy + c+ i(x2 − y2),

where c is a real constant. We can also find the function by solving the Cauchy-Riemann equations.

ux = vy and uy = −vx
ux = −2y and uy = −2x
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We integrate the first equation.

u = −2xy + g(y)

Here g(y) is a function of integration. We substitute this into the second Cauchy-Riemann equation
to determine g(y).

uy = −2x

−2x+ g′(y) = −2x

g′(y) = 0

g(y) = c

u = −2xy + c

f(z) = −2xy + c+ i(x2 − y2)

f(z) = iz2 + c

(b) First we determine if the function is harmonic.

v = 3x2y

vxx + vyy = 6y

The function is not harmonic. It is not the imaginary part of some analytic function.

Solution 10.11
We show that the logarithm log z = ψ(r, θ) = Log r + iθ satisfies the Cauchy-Riemann equations.

ψr = − i
r
ψθ

1

r
= − i

r
i

1

r
=

1

r
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Since the logarithm satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous for
z 6= 0, the logarithm is analytic for z 6= 0.

Now we compute the derivative.

d

dz
log z = e−iθ

∂

∂r
( Log r + iθ)

= e−iθ
1

r

=
1

z

Solution 10.12
The complex derivative in the coordinate directions is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.

We substitute f = u+ iv into this identity to obtain the Cauchy-Riemann equation in polar coordinates.

e−iθ
∂f

∂r
= − i

r
e−iθ

∂f

∂θ
∂f

∂r
= − i

r

∂f

∂θ

ur + ivr = − i
r

(uθ + ivθ)

We equate the real and imaginary parts.

ur =
1

r
vθ, vr = −1

r
uθ

ur =
1

r
vθ, uθ = −rvr
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Solution 10.13
Since w is analytic, u and v satisfy the Cauchy-Riemann equations,

ux = vy and uy = −vx.

Using the chain rule we can write the derivatives with respect to x and y in terms of u and v.

∂

∂x
= ux

∂

∂u
+ vx

∂

∂v
∂

∂y
= uy

∂

∂u
+ vy

∂

∂v

Now we examine φx − iφy.

φx − iφy = uxΦu + vxΦv − i(uyΦu + vyΦv)

φx − iφy = (ux − iuy)Φu + (vx − ivy)Φv

φx − iφy = (ux − iuy)Φu − i(vy + ivx)Φv

We use the Cauchy-Riemann equations to write uy and vy in terms of ux and vx.

φx − iφy = (ux + ivx)Φu − i(ux + ivx)Φv

Recall that w′ = ux + ivx = vy − iuy.

φx − iφy =
dw

dz
(Φu − iΦv)

Thus we see that,

∂Φ

∂u
− i∂Φ

∂v
=

(
dw

dz

)−1(
∂φ

∂x
− i∂φ

∂y

)
.
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We write this in operator notation.

∂

∂u
− i ∂

∂v
=

(
dw

dz

)−1(
∂

∂x
− i ∂

∂y

)
The complex conjugate of this relation is

∂

∂u
+ i

∂

∂v
=

(
dw

dz

)−1(
∂

∂x
+ i

∂

∂y

)
Now we apply both these operators to Φ = φ.(

∂

∂u
+ i

∂

∂v

)(
∂

∂u
− i ∂

∂v

)
Φ =

(
dw

dz

)−1(
∂

∂x
+ i

∂

∂y

)(
dw

dz

)−1(
∂

∂x
− i ∂

∂y

)
φ

(
∂2

∂u2
+ i

∂2

∂u∂v
− i ∂2

∂v∂u
+

∂2

∂v2

)
Φ

=

(
dw

dz

)−1
[((

∂

∂x
+ i

∂

∂y

)(
dw

dz

)−1
)(

∂

∂x
− i ∂

∂y

)
+

(
dw

dz

)−1(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)]
φ

(w′)−1 is an analytic function. Recall that for analytic functions f , f ′ = fx = −ify. So that fx + ify = 0.

∂2Φ

∂u2
+
∂2Φ

∂v2
=

(
dw

dz

)−1
[(

dw

dz

)−1(
∂2

∂x2
+

∂2

∂y2

)]
φ

∂2Φ

∂u2
+
∂2Φ

∂v2
=

∣∣∣∣dwdz
∣∣∣∣−2(

∂2φ

∂x2
+
∂2φ

∂y2

)
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Solution 10.14
1. We consider

f(z) = log |z|+ i arg(z) = log r + iθ.

The Cauchy-Riemann equations in polar coordinates are

ur =
1

r
vθ, uθ = −rvr.

We calculate the derivatives.

ur =
1

r
,

1

r
vθ =

1

r
uθ = 0, −rvr = 0

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic
in |z| > 0, | arg(z)| < π. The complex derivative in terms of polar coordinates is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.

We use this to differentiate f(z).

df

dz
= e−iθ

∂

∂r
[log r + iθ] = e−iθ

1

r
=

1

z

2. Next we consider

f(z) =
√
|z| ei arg(z)/2 =

√
r eiθ/2.

The Cauchy-Riemann equations for polar coordinates and the polar form f(z) = R(r, θ) eiΘ(r,θ) are

Rr =
R

r
Θθ,

1

r
Rθ = −RΘr.
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We calculate the derivatives for R =
√
r, Θ = θ/2.

Rr =
1

2
√
r
,

R

r
Θθ =

1

2
√
r

1

r
Rθ = 0, −RΘr = 0

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic
in |z| > 0, | arg(z)| < π. The complex derivative in terms of polar coordinates is

d

dz
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.

We use this to differentiate f(z).

df

dz
= e−iθ

∂

∂r
[
√
r eiθ/2] =

1

2 eiθ/2
√
r

=
1

2
√
z

Solution 10.15
1. We consider the function

u = xLog r − y arctan(x, y) = r cos θ Log r − rθ sin θ

We compute the Laplacian.

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

=
1

r

∂

∂r
(cos θ(r + r Log r)− θ sin θ) +

1

r2
(r(θ sin θ − 2 cos θ)− r cos θ Log r)

=
1

r
(2 cos θ + cos θ Log r − θ sin θ) +

1

r
(θ sin θ − 2 cos θ − cos θ Log r)

= 0
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The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

vr = −1

r
uθ, vθ = rur

vr = sin θ(1 + Log r) + θ cos θ, vθ = r(cos θ(1 + Log r)− θ sin θ)

We integrate the first equation with respect to r to determine v to within the constant of integration g(θ).

v = r(sin θ Log r + θ cos θ) + g(θ)

We differentiate this expression with respect to θ.

vθ = r(cos θ(1 + Log r)− θ sin θ) + g′(θ)

We compare this to the second Cauchy-Riemann equation to see that g′(θ) = 0. Thus g(θ) = c. We have
determined the harmonic conjugate.

v = r(sin θ Log r + θ cos θ) + c

The corresponding analytic function is

f(z) = r cos θ Log r − rθ sin θ + i(r sin θ Log r + rθ cos θ + c).

On the positive real axis, (θ = 0), the function has the value

f(z = r) = r Log r + ic.

We use analytic continuation to determine the function in the complex plane.

f(z) = z log z + ic
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2. We consider the function

u = Arg (z) = θ.

We compute the Laplacian.

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0

The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

vr = −1

r
uθ, vθ = rur

vr = −1

r
, vθ = 0

We integrate the first equation with respect to r to determine v to within the constant of integration g(θ).

v = −Log r + g(θ)

We differentiate this expression with respect to θ.

vθ = g′(θ)

We compare this to the second Cauchy-Riemann equation to see that g′(θ) = 0. Thus g(θ) = c. We have
determined the harmonic conjugate.

v = −Log r + c

The corresponding analytic function is

f(z) = θ − iLog r + ic
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On the positive real axis, (θ = 0), the function has the value

f(z = r) = −iLog r + ic

We use analytic continuation to determine the function in the complex plane.

f(z) = −i log z + ic

3. We consider the function

u = rn cos(nθ)

We compute the Laplacian.

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

=
1

r

∂

∂r
(nrn cos(nθ))− n2rn−2 cos(nθ)

= n2rn−2 cos(nθ)− n2rn−2 cos(nθ)

= 0

The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

vr = −1

r
uθ, vθ = rur

vr = nrn−1 sin(nθ), vθ = nrn cos(nθ)

We integrate the first equation with respect to r to determine v to within the constant of integration g(θ).

v = rn sin(nθ) + g(θ)

We differentiate this expression with respect to θ.

vθ = nrn cos(nθ) + g′(θ)
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We compare this to the second Cauchy-Riemann equation to see that g′(θ) = 0. Thus g(θ) = c. We have
determined the harmonic conjugate.

v = rn sin(nθ) + c

The corresponding analytic function is

f(z) = rn cos(nθ) + irn sin(nθ) + ic

On the positive real axis, (θ = 0), the function has the value

f(z = r) = rn + ic

We use analytic continuation to determine the function in the complex plane.

f(z) = zn

4. We consider the function

u =
y

r2
=

sin θ

r

We compute the Laplacian.

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

=
1

r

∂

∂r

(
−sin θ

r

)
− sin θ

r3

=
sin θ

r3
− sin θ

r3

= 0

354



The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

vr = −1

r
uθ, vθ = rur

vr = −cos θ

r2
, vθ = −sin θ

r

We integrate the first equation with respect to r to determine v to within the constant of integration g(θ).

v =
cos θ

r
+ g(θ)

We differentiate this expression with respect to θ.

vθ = −sin θ

r
+ g′(θ)

We compare this to the second Cauchy-Riemann equation to see that g′(θ) = 0. Thus g(θ) = c. We have
determined the harmonic conjugate.

v =
cos θ

r
+ c

The corresponding analytic function is

f(z) =
sin θ

r
+ i

cos θ

r
+ ic

On the positive real axis, (θ = 0), the function has the value

f(z = r) =
i

r
+ ic.

We use analytic continuation to determine the function in the complex plane.

f(z) =
i

z
+ ic
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Chapter 11

Analytic Continuation

I’m about two beers away from fine.

11.1 Analytic Continuation

Suppose there is a function, f1(z) that is analytic in the domain D1 and another analytic function, f2(z) that
is analytic in the domain D2. (See Figure 11.1.)

If the two domains overlap and f1(z) = f2(z) in the overlap region D1 ∩D2, then f2(z) is called an analytic
continuation of f1(z). This is an appropriate name since f2(z) continues the definition of f1(z) outside of its
original domain of definition D1. We can define a function f(z) that is analytic in the union of the domains
D1 ∪D2. On the domain D1 we have f(z) = f1(z) and f(z) = f2(z) on D2. f1(z) and f2(z) are called function
elements. There is an analytic continuation even if the two domains only share an arc and not a two dimensional
region.

With more overlapping domains D3, D4, . . . we could perhaps extend f1(z) to more of the complex plane.
Sometimes it is impossible to extend a function beyond the boundary of a domain. This is known as a natural
boundary. If a function f1(z) is analytically continued to a domain Dn along two different paths, (See Figure 11.2.),
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Im(z)

Re(z)

D
D1

2

Figure 11.1: Overlapping Domains

then the two analytic continuations are identical as long as the paths do not enclose a branch point of the function.
This is the uniqueness theorem of analytic continuation.

D1

Dn

Figure 11.2: Two Paths of Analytic Continuation

Consider an analytic function f(z) defined in the domain D. Suppose that f(z) = 0 on the arc AB, (see
Figure 11.3.) Then f(z) = 0 in all of D.

Consider a point ζ on AB. The Taylor series expansion of f(z) about the point z = ζ converges in a circle C
at least up to the boundary of D. The derivative of f(z) at the point z = ζ is

f ′(ζ) = lim
∆z→0

f(ζ + ∆z)− f(ζ)

∆z
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D

Bζ
C

A

Figure 11.3: Domain Containing Arc Along Which f(z) Vanishes

If ∆z is in the direction of the arc, then f ′(ζ) vanishes as well as all higher derivatives, f ′(ζ) = f ′′(ζ) = f ′′′(ζ) =
· · · = 0. Thus we see that f(z) = 0 inside C. By taking Taylor series expansions about points on AB or inside of
C we see that f(z) = 0 in D.

Result 11.1.1 Let f1(z) and f2(z) be analytic functions defined in D. If f1(z) = f2(z)
for the points in a region or on an arc in D, then f1(z) = f2(z) for all points in D.

To prove Result 11.1.1, we define the analytic function g(z) = f1(z)− f2(z). Since g(z) vanishes in the region
or on the arc, then g(z) = 0 and hence f1(z) = f2(z) for all points in D.

Result 11.1.2 Consider analytic functions f1(z) and f2(z) defined on the domains D1

and D2, respectively. Suppose that D1 ∩D2 is a region or an arc and that f1(z) = f2(z)
for all z ∈ D1 ∩D2. (See Figure 11.4.) Then the function

f(z) =

{
f1(z) for z ∈ D1,

f2(z) for z ∈ D2,

is analytic in D1 ∪D2.

Result 11.1.2 follows directly from Result 11.1.1.
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D1
D2 D1 D2

Figure 11.4: Domains that Intersect in a Region or an Arc

11.2 Analytic Continuation of Sums

Example 11.2.1 Consider the function

f1(z) =
∞∑
n=0

zn.

The sum converges uniformly for D1 = |z| ≤ r < 1. Since the derivative also converges in this domain, the
function is analytic there.

Im(z)

Re(z)

Im(z)

Re(z)

D2

D1

Figure 11.5: Domain of Convergence for
∑∞

n=0 z
n.
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Now consider the function

f2(z) =
1

1− z
.

This function is analytic everywhere except the point z = 1. On the domain D1,

f2(z) =
1

1− z
=
∞∑
n=0

zn = f1(z)

Analytic continuation tells us that there is a function that is analytic on the union of the two domains. Here,
the domain is the entire z plane except the point z = 1 and the function is

f(z) =
1

1− z
.

1
1−z is said to be an analytic continuation of

∑∞
n=0 z

n.

11.3 Analytic Functions Defined in Terms of Real Variables

Result 11.3.1 An analytic function, u(x, y) + iv(x, y) can be written in terms of a
function of a complex variable, f(z) = u(x, y) + iv(x, y).

Result 11.3.1 is proved in Exercise 11.1.

Example 11.3.1

f(z) = cosh y sinx(x ex cos y − y ex sin y)− cosx sinh y(y ex cos y + x ex sin y)

+ i
[

cosh y sinx(y ex cos y + x ex sin y) + cos x sinh y(x ex cos y − y ex sin y)
]
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is an analytic function. Express f(z) in terms of z.

On the real line, y = 0, f(z) is

f(z = x) = x ex sinx

(Recall that cos(0) = cosh(0) = 1 and sin(0) = sinh(0) = 0.)

The analytic continuation of f(z) into the complex plane is

f(z) = z ez sin z.

Alternatively, for x = 0 we have

f(z = iy) = y sinh y(cos y − i sin y).

The analytic continuation from the imaginary axis to the complex plane is

f(z) = −iz sinh(−iz)(cos(−iz)− i sin(−iz))

= iz sinh(iz)(cos(iz) + i sin(iz))

= z sin z ez.

Example 11.3.2 Consider u = e−x(x sin y − y cos y). Find v such that f(z) = u+ iv is analytic.

From the Cauchy-Riemann equations,

∂v

∂y
=
∂u

∂x
= e−x sin y − x e−x sin y + y e−x cos y

∂v

∂x
= −∂u

∂y
= e−x cos y − x e−x cos y − y e−x sin y
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Integrate the first equation with respect to y.

v = − e−x cos y + x e−x cos y + e−x(y sin y + cos y) + F (x)

= y e−x sin y + x e−x cos y + F (x)

F (x) is an arbitrary function of x. Substitute this expression for v into the equation for ∂v/∂x.

−y e−x sin y − x e−x cos y + e−x cos y + F ′(x) = −y e−x sin y − x e−x cos y + e−x cos y

Thus F ′(x) = 0 and F (x) = c.

v = e−x(y sin y + x cos y) + c

Example 11.3.3 Find f(z) in the previous example. (Up to the additive constant.)

Method 1

f(z) = u+ iv

= e−x(x sin y − y cos y) + i e−x(y sin y + x cos y)

= e−x
{
x

(
eiy − e−iy

2i

)
− y

(
eiy + e−iy

2

)}
+ i e−x

{
y

(
eiy − e−iy

2i

)
+ x

(
eiy + e−iy

2

)}
= i(x+ iy) e−(x+iy)

= iz e−z

Method 2 f(z) = f(x+ iy) = u(x, y) + iv(x, y) is an analytic function.
On the real axis, y = 0, f(z) is

f(z = x) = u(x, 0) + iv(x, 0)

= e−x(x sin 0− 0 cos 0) + i e−x(0 sin 0 + x cos 0)

= ix e−x
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Suppose there is an analytic continuation of f(z) into the complex plane. If such a continuation, f(z), exists,
then it must be equal to f(z = x) on the real axis An obvious choice for the analytic continuation is

f(z) = u(z, 0) + iv(z, 0)

since this is clearly equal to u(x, 0) + iv(x, 0) when z is real. Thus we obtain

f(z) = iz e−z

Example 11.3.4 Consider f(z) = u(x, y) + iv(x, y). Show that f ′(z) = ux(z, 0)− iuy(z, 0).

f ′(z) = ux + ivx

= ux − iuy

f ′(z) is an analytic function. On the real axis, z = x, f ′(z) is

f ′(z = x) = ux(x, 0)− iuy(x, 0)

Now f ′(z = x) is defined on the real line. An analytic continuation of f ′(z = x) into the complex plane is

f ′(z) = ux(z, 0)− iuy(z, 0).

Example 11.3.5 Again consider the problem of finding f(z) given that u(x, y) = e−x(x sin y− y cos y). Now we
can use the result of the previous example to do this problem.

ux(x, y) =
∂u

∂x
= e−x sin y − x e−x sin y + y e−x cos y

uy(x, y) =
∂u

∂y
= x e−x cos y + y e−x sin y − e−x cos y
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f ′(z) = ux(z, 0)− iuy(z, 0)

= 0− i(z e−z − e−z)

= i(−z e−z + e−z)

Integration yields the result

f(z) = iz e−z + c

Example 11.3.6 Find f(z) given that

u(x, y) = cos x cosh2 y sinx+ cos x sinx sinh2 y

v(x, y) = cos2 x cosh y sinh y − cosh y sin2 x sinh y

f(z) = u(x, y) + v(x, y) is an analytic function. On the real line, f(z) is

f(z = x) = u(x, 0) + iv(x, 0)

= cos x cosh2 0 sinx+ cos x sinx sinh2 0 + i(cos2 x cosh 0 sinh 0− cosh 0 sin2 x sinh 0)

= cos x sinx

Now we know the definition of f(z) on the real line. We would like to find an analytic continuation of f(z) into
the complex plane. An obvious choice for f(z) is

f(z) = cos z sin z

Using trig identities we can write this as

f(z) =
sin 2z

2
.
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Example 11.3.7 Find f(z) given only that

u(x, y) = cos x cosh2 y sinx+ cosx sinx sinh2 y.

Recall that

f ′(z) = ux + ivx

= ux − iuy

Differentiating u(x, y),

ux = cos2 x cosh2 y − cosh2 y sin2 x+ cos2 x sinh2 y − sin2 x sinh2 y

uy = 4 cos x cosh y sinx sinh y

f ′(z) is an analytic function. On the real axis, f ′(z) is

f ′(z = x) = cos2 x− sin2 x

Using trig identities we can write this as

f ′(z = x) = cos(2x)

Now we find an analytic continuation of f ′(z = x) into the complex plane.

f ′(z) = cos(2z)

Integration yields the result

f(z) =
sin(2z)

2
+ c
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11.3.1 Polar Coordinates

Example 11.3.8 Is

u(r, θ) = r
(

log r cos θ − θ sin θ
)

the real part of an analytic function?
The Laplacian in polar coordinates is

∆φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
.

Calculating the partial derivatives of u,

∂u

∂r
= cos θ + log r cos θ − θ sin θ

r
∂u

∂r
= r cos θ + r log r cos θ − rθ sin θ

∂

∂r

(
r
∂u

∂r

)
= 2 cos θ + log r cos θ − θ sin θ

1

r

∂

∂r

(
r
∂u

∂r

)
=

1

r

(
2 cos θ + log r cos θ − θ sin θ

)
∂u

∂θ
= −r

(
θ cos θ + sin θ + log r sin θ

)
∂2u

∂θ2
= r
(
− 2 cos θ − log r cos θ + θ sin θ

)
1

r2

∂2u

∂θ2
=

1

r

(
− 2 cos θ − log r cos θ + θ sin θ

)
From the above we see that

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0.

Therefore u is harmonic and is the real part of some analytic function.
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Example 11.3.9 Find an analytic function f(z) whose real part is

u(r, θ) = r
(

log r cos θ − θ sin θ
)
.

Let f(z) = u(r, θ) + iv(r, θ). The Cauchy-Riemann equations are

ur =
vθ
r
, uθ = −rvr.

Using the partial derivatives in the above example, we obtain two partial differential equations for v(r, θ).

vr = −uθ
r

= θ cos θ + sin θ + log r sin θ

vθ = rur = r
(

cos θ + log r cos θ − θ sin θ
)

Integrating the equation for vθ yields

v = r
(
θ cos θ + log r sin θ

)
+ F (r)

where F (r) is a constant of integration.
Substituting our expression for v into the equation for vr yields

θ cos θ + log r sin θ + sin θ + F ′(r) = θ cos θ + sin θ + log r sin θ

F ′(r) = 0

F (r) = const

Thus we see that

f(z) = u+ iv

= r
(

log r cos θ − θ sin θ
)

+ ir
(
θ cos θ + log r sin θ

)
+ const

f(z) is an analytic function. On the line θ = 0, f(z) is

f(z = r) = r
(

log r
)

+ ir
(
0
)

+ const

= r log r + const
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The analytic continuation into the complex plane is

f(z) = z log z + const

Example 11.3.10 Find the formula in polar coordinates that is analogous to

f ′(z) = ux(z, 0)− iuy(z, 0).

We know that

df

dz
= e−iθ

∂f

∂r
.

If f(z) = u(r, θ) + iv(r, θ) then

df

dz
= e−iθ(ur + ivr)

From the Cauchy-Riemann equations, we have vr = −uθ/r.

df

dz
= e−iθ

(
ur − i

uθ
r

)
f ′(z) is an analytic function. On the line θ = 0, f(z) is

f ′(z = r) = ur(r, 0)− iuθ(r, 0)

r

The analytic continuation of f ′(z) into the complex plane is

f ′(z) = ur(z, 0)− i

r
uθ(z, 0).
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Example 11.3.11 Find an analytic function f(z) whose real part is

u(r, θ) = r
(

log r cos θ − θ sin θ
)
.

ur(r, θ) = (log r cos θ − θ sin θ) + cos θ

uθ(r, θ) = r(− log r sin θ − sin θ − θ cos θ

f ′(z) = ur(z, 0)− i

r
uθ(z, 0)

= log z + 1

Integrating f ′(z) yields

f(z) = z log z + ic.

11.3.2 Analytic Functions Defined in Terms of Their Real or Imaginary Parts

Consider an analytic function: f(z) = u(x, y) + iv(x, y). We differentiate this expression.

f ′(z) = ux(x, y) + ivx(x, y)

We apply the Cauchy-Riemann equation vx = −uy.

f ′(z) = ux(x, y)− iuy(x, y). (11.1)

Now consider the function of a complex variable, g(ζ):

g(ζ) = ux(x, ζ)− iuy(x, ζ) = ux(x, ξ + iη)− iuy(x, ξ + iη).
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This function is analytic where f(ζ) is analytic. To show this we first verify that the derivatives in the ξ and η
directions are equal.

∂

∂ξ
g(ζ) = uxy(x, ξ + iη)− iuyy(x, ξ + iη)

−i ∂
∂η
g(ζ) = −i(iuxy(x, ξ + iη) + uyy(x, ξ + iη)) = uxy(x, ξ + iη)− iuyy(x, ξ + iη)

Since these partial derivatives are equal and continuous, g(ζ) is analytic. We evaluate the function g(ζ) at ζ = −ix.
(Substitute y = −ix into Equation 11.1.)

f ′(2x) = ux(x,−ix)− iuy(x,−ix)

We make a change of variables to solve for f ′(x).

f ′(x) = ux

(x
2
,−ix

2

)
− iuy

(x
2
,−ix

2

)
.

If the expression is nonsingular, then this defines the analytic function, f ′(z), on the real axis. The analytic
continuation to the complex plane is

f ′(z) = ux

(z
2
,−iz

2

)
− iuy

(z
2
,−iz

2

)
.

Note that d
dz

2u(z/2,−iz/2) = ux(z/2,−iz/2)− iuy(z/2,−iz/2). We integrate the equation to obtain:

f(z) = 2u
(z

2
,−iz

2

)
+ c.

We know that the real part of an analytic function determines that function to within an additive constant.
Assuming that the above expression is non-singular, we have found a formula for writing an analytic function
in terms of its real part. With the same method, we can find how to write an analytic function in terms of its
imaginary part, v.
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We can also derive formulas if u and v are expressed in polar coordinates:

f(z) = u(r, θ) + iv(r, θ).

Result 11.3.2 If f(z) = u(x, y) + iv(x, y) is analytic and the expressions are non-
singular, then

f(z) = 2u
(z

2
,−iz

2

)
+ const (11.2)

f(z) = i2v
(z

2
,−iz

2

)
+ const. (11.3)

If f(z) = u(r, θ) + iv(r, θ) is analytic and the expressions are non-singular, then

f(z) = 2u

(
z1/2,− i

2
log z

)
+ const (11.4)

f(z) = i2v

(
z1/2,− i

2
log z

)
+ const. (11.5)

Example 11.3.12 Consider the problem of finding f(z) given that u(x, y) = e−x(x sin y − y cos y).

f(z) = 2u
(z

2
,−iz

2

)
= 2 e−z/2

(z
2

sin
(
−iz

2

)
+ i

z

2
cos
(
−iz

2

))
+ c

= iz e−z/2
(
i sin

(
i
z

2

)
+ cos

(
−iz

2

))
+ c

= iz e−z/2( e−z/2) + c

= iz e−z + c
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Example 11.3.13 Consider

Log z =
1

2
Log

(
x2 + y2

)
+ iArctan (x, y).

We try to construct the analytic function from it’s real part using Equation 11.2.

f(z) = 2u
(z

2
,−iz

2

)
+ c

= 2
1

2
Log

((z
2

)2

+
(
−iz

2

)2
)

+ c

= Log (0) + c

We obtain a singular expression, so the method fails.

Example 11.3.14 Again consider the logarithm, this time written in terms of polar coordinates,

Log z = Log r + iθ.

We try to construct the analytic function from it’s real part using Equation 11.4.

f(z) = 2u

(
z1/2,−i i

2
log z

)
+ c

= 2 Log
(
z1/2

)
+ c

= Log z + c

With this method we recover the analytic function.
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11.4 Exercises
Exercise 11.1
Consider two functions, f(x, y) and g(x, y). They are said to be functionally dependent if there is a an h(g) such
that

f(x, y) = h(g(x, y)).

f and g will be functionally dependent if and only if their Jacobian vanishes.
If f and g are functionally dependent, then the derivatives of f are

fx = h′(g)gx

fy = h′(g)gy.

Thus we have

∂(f, g)

∂(x, y)
=

∣∣∣∣fx fy
gx gy

∣∣∣∣ = fxgy − fygx = h′(g)gxgy − h′(g)gygx = 0.

If the Jacobian of f and g vanishes, then

fxgy − fygx = 0.

This is a first order partial differential equation for f that has the general solution

f(x, y) = h(g(x, y)).

Prove that an analytic function u(x, y) + iv(x, y) can be written in terms of a function of a complex variable,
f(z) = u(x, y) + iv(x, y).

Exercise 11.2
Which of the following functions are the real part of an analytic function? For those that are, find the harmonic
conjugate, v(x, y), and find the analytic function f(z) = u(x, y) + iv(x, y) as a function of z.
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1. x3 − 3xy2 − 2xy + y

2. ex sinh y

3. ex(sinx cos y cosh y − cosx sin y sinh y)

Exercise 11.3
For an analytic function, f(z) = u(r, θ) + iv(r, θ) prove that under suitable restrictions:

f(z) = 2u

(
z1/2,− i

2
log z

)
+ const.
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11.5 Hints
Hint 11.1
Show that u(x, y) + iv(x, y) is functionally dependent on x + iy so that you can write f(z) = f(x + iy) =
u(x, y) + iv(x, y).

Hint 11.2

Hint 11.3
Check out the derivation of Equation 11.2.
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11.6 Solutions
Solution 11.1
u(x, y) + iv(x, y) is functionally dependent on z = x+ iy if and only if

∂(u+ iv, x+ iy)

∂(x, y)
= 0.

∂(u+ iv, x+ iy)

∂(x, y)
=

∣∣∣∣ux + ivx uy + ivy
1 i

∣∣∣∣
= −vx − uy + i(ux − vy)

Since u and v satisfy the Cauchy-Riemann equations, this vanishes

= 0

Thus we see that u(x, y) + iv(x, y) is functionally dependent on x+ iy so we can write

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

Solution 11.2
1. Consider u(x, y) = x3 − 3xy2 − 2xy + y. The Laplacian of this function is

∆u ≡ uxx + uyy

= 6x− 6x

= 0

Since the function is harmonic, it is the real part of an analytic function. Clearly the analytic function is of
the form,

az3 + bz2 + cz + id,
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with a, b and c complex-valued constants and d a real constant. Substituting z = x + iy and expanding
products yields,

a(x3 + i3x2y − 3xy2 − iy3) + b(x2 + i2xy − y2) + c(x+ iy) + id.

By inspection, we see that the analytic function is

f(z) = z3 + iz2 − iz + id.

The harmonic conjugate of u is the imaginary part of f(z),

v(x, y) = 3x2y − y3 + x2 − y2 − x+ d.

We can also do this problem with analytic continuation. The derivatives of u are

ux = 3x2 − 3y2 − 2y,

uy = −6xy − 2x+ 1.

The derivative of f(z) is

f ′(z) = ux − iuy = 3x2 − 2y2 − 2y + i(6xy − 2x+ 1).

On the real axis we have

f ′(z = x) = 3x2 − i2x+ i.

Using analytic continuation, we see that

f ′(z) = 3z2 − i2z + i.

Integration yields

f(z) = z3 − iz2 + iz + const
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2. Consider u(x, y) = ex sinh y. The Laplacian of this function is

∆u = ex sinh y + ex sinh y

= 2 ex sinh y.

Since the function is not harmonic, it is not the real part of an analytic function.

3. Consider u(x, y) = ex(sinx cos y cosh y − cos x sin y sinh y). The Laplacian of the function is

∆u =
∂

∂x
( ex(sinx cos y cosh y − cosx sin y sinh y + cos x cos y cosh y + sinx sin y sinh y))

+
∂

∂y
( ex(− sinx sin y cosh y − cosx cos y sinh y + sinx cos y sinh y − cosx sin y cosh y))

= 2 ex(cos x cos y cosh y + sinx sin y sinh y)− 2 ex(cos x cos y cosh y + sinx sin y sinh y)

= 0.

Thus u is the real part of an analytic function. The derivative of the analytic function is

f ′(z) = ux + ivx = ux − iuy

From the derivatives of u we computed before, we have

f(z) = ( ex(sinx cos y cosh y − cos x sin y sinh y + cos x cos y cosh y + sinx sin y sinh y))

− i ( ex(− sinx sin y cosh y − cos x cos y sinh y + sinx cos y sinh y − cosx sin y cosh y))

Along the real axis, f ′(z) has the value,

f ′(z = x) = ex(sinx+ cosx).

By analytic continuation, f ′(z) is

f ′(z) = ez(sin z + cos z)
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We obtain f(z) by integrating.

f(z) = ez sin z + const.

u is the real part of the analytic function

f(z) = ez sin z + ic,

where c is a real constant. We find the harmonic conjugate of u by taking the imaginary part of f .

f(z) = ex(cosy + i sin y)(sinx cosh y + i cosx sinh y) + ic

v(x, y) = ex sinx sin y cosh y + cosx cos y sinh y + c

Solution 11.3
We consider the analytic function: f(z) = u(r, θ) + iv(r, θ). Recall that the complex derivative in terms of polar
coordinates is

z
= e−iθ

∂

∂r
= − i

r
e−iθ

∂

∂θ
.

The Cauchy-Riemann equations are

ur =
1

r
vθ, vr = −1

r
uθ.

We differentiate f(z) and use the partial derivative in r for the right side.

f ′(z) = e−iθ (ur + ivr)

We use the Cauchy-Riemann equations to right f ′(z) in terms of the derivatives of u.

f ′(z) = e−iθ
(
ur − i

1

r
uθ

)
(11.6)
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Now consider the function of a complex variable, g(ζ):

g(ζ) = e−iζ
(
ur(r, ζ)− i1

r
uθ(r, ζ)

)
= eη−iξ

(
ur(r, ξ + iη)− i1

r
uθ(r, ξ + iη)

)
This function is analytic where f(ζ) is analytic. It is a simple calculus exercise to show that the complex derivative
in the ξ direction, ∂

∂ξ
, and the complex derivative in the η direction, −i ∂

∂η
, are equal. Since these partial derivatives

are equal and continuous, g(ζ) is analytic. We evaluate the function g(ζ) at ζ = −i log r. (Substitute θ = −i log r
into Equation 11.6.)

f ′
(
r ei(−i log r)

)
= e−i(−i log r)

(
ur(r,−i log r)− i1

r
uθ(r,−i log r)

)
rf ′
(
r2
)

= ur(r,−i log r)− i1
r
uθ(r,−i log r)

If the expression is nonsingular, then it defines the analytic function, f ′(z), on a curve. The analytic continuation
to the complex plane is

zf ′
(
z2
)

= ur(z,−i log z)− i1
z
uθ(z,−i log z).

We integrate to obtain an expression for f(z2).

1

2
f
(
z2
)

= u(z,−i log z) + const

We make a change of variables and solve for f(z).

f(z) = 2u

(
z1/2,− i

2
log z

)
+ const.

Assuming that the above expression is non-singular, we have found a formula for writing the analytic function in
terms of its real part, u(r, θ). With the same method, we can find how to write an analytic function in terms of
its imaginary part, v(r, θ).
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Chapter 12

Contour Integration and Cauchy’s Theorem

Between two evils, I always pick the one I never tried before.

- Mae West

12.1 Line Integrals

In this section we will recall the definition of a line integral of real-valued functions in the Cartesian plane. We
will use this to define the contour integral of complex-valued functions in the complex plane.

Definition. Consider a curve C in the Cartesian plane joining the points (a0, b0) and (a1, b1). Partition the
curve into n+ 1 segments with the points (x0, y0), . . . , (xn, yn) where the first and last points are at the endpoints
of the curve. Define ∆xk = xk+1 − xk and ∆yk = yk+1 − yk. Let (ξk, ηk) be points on the curve between (xk, yk)
and (xk+1, yk+1). (See Figure 12.1.)

Consider the sum

n−1∑
k=0

(P (ξk, ηk)∆xk +Q(ξk, ηk)∆yk) ,
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(x  ,y )00

(ξ  ,η )0 0

(x  ,y )1 1

(ξ  ,η )1 1
(x  ,y )2 2

(ξ  ,η )2 2
(ξ     ,η    )n-1 n-1

(x  ,y )n n

(x     ,y    )n-1 n-1

y

x

Figure 12.1: A curve in the Cartesian plane.

where P and Q are continuous functions on the curve. In the limit as each of the ∆xk and ∆yk approach zero
the value of the sum, (if the limit exists), is denoted by∫

C

P (x, y) dx+Q(x, y) dy.

This is a line integral along the curve C. The value of the line integral depends on the functions P (x, y) and
Q(x, y), the endpoints of the curve and the curve C. One can also write a line integral in vector notation,∫

C

f(x) · dx,

where x = (x, y) and f(x) = (P (x, y), Q(x, y)).

Evaluation. Let the curve C be parametrized by x = x(t), y = y(t) for t0 ≤ t ≤ t1. The differentials on the
curve are dx = x′(t) dt and dy = y′(t) dt. Thus the line integral is∫ t1

t0

(
P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t)

)
dt,
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which is a definite integral.

Example 12.1.1 Consider the line integral ∫
C

x2 dx+ (x+ y) dy,

where C is the semi-circle from (1, 0) to (−1, 0) in the upper half plane. We parameterize the curve with x = cos t,
y = sin t for 0 ≤ t ≤ π.∫

C

x2 dx+ (x+ y) dy =

∫ π

0

(
cos2 t(− sin t) + (cos t+ sin t) cos t

)
dt

=
π

2
− 2

3

Complex Line Integrals. Consider a curve C in the complex plane joining the points c0 and c1. Partition the
curve into n + 1 segments with the points z0, . . . , zn where the first and last points are at the endpoints of the
curve. Define ∆zk = zk+1 − zk. Let ζk be points on the curve between zk and zk+1. Consider the sum

n−1∑
k=0

f(ζk)∆zk,

where f is a continuous, complex-valued function on the curve. In the limit as each of the ∆zk approach zero the
value of the sum, (if the limit exists), is denoted by∫

C

f(z) dz.

This is a complex line integral along the curve C.
We can write a complex line integral in terms of real line integrals. Let f(z) = u(x, y) + iv(x, y).∫

C

f(z) dz =

∫
C

(u(x, y) + iv(x, y))( dx+ i dy)∫
C

f(z) dz =

∫
C

(u(x, y) dx− v(x, y) dy) + i

∫
C

(v(x, y) dx+ u(x, y) dy). (12.1)
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Evaluation. Let the curve C be parametrized by z = z(t) for t0 ≤ t ≤ t1. Then the complex line integral is∫ t1

t0

f(z(t))z′(t) dt,

which is a definite integral of a complex-valued function.

Example 12.1.2 Let C be the positively oriented unit circle about the origin in the complex plane. Evaluate:

1.
∫
C
z dz

2.
∫
C

1
z

dz

3.
∫
C

1
z
|dz|

1. We parameterize the curve and then do the integral.

z = eiθ, dz = i eiθ dθ

∫
C

z dz =

∫ 2π

0

eiθi eiθ dθ

=

[
1

2
ei2θ
]2π

0

=

(
1

2
ei4π − 1

2
ei0
)

= 0

2. ∫
C

1

z
dz =

∫ 2π

0

1

eiθ
i eiθ dθ = i

∫ 2π

0

dθ = i2π
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3.

|dz| =
∣∣i eiθ dθ

∣∣ =
∣∣i eiθ

∣∣ |dθ| = |dθ|
Since dθ is positive in this case, |dθ| = dθ.∫

C

1/z |dz| =
∫ 2π

0

1

eiθ
dθ =

[
i e−iθ

]2π
0

= 0

Maximum Modulus Integral Bound. The absolute value of a real integral obeys the inequality∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| |dx| ≤ (b− a) max
a≤x≤b

|f(x)|.

Now we prove the analogous result for the modulus of a complex line integral.∣∣∣∣∫
C

f(z) dz

∣∣∣∣ =

∣∣∣∣∣ lim
∆z→0

n−1∑
k=0

f(ζk)∆zk

∣∣∣∣∣
≤ lim

∆z→0

n−1∑
k=0

|f(ζk)| |∆zk|

=

∫
C

|f(z)| |dz|

≤
∫
C

(
max
z∈C
|f(z)|

)
|dz|

=

(
max
z∈C
|f(z)|

)∫
C

|dz|

=

(
max
z∈C
|f(z)|

)
× (length of C)
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Result 12.1.1 Maximum Modulus Integral Bound.∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ ∫
C

|f(z)| |dz| ≤
(

max
z∈C
|f(z)|

)
(length of C)

12.2 Under Construction

Cauchy’s Theorem. Let f(z) be analytic in a compact, closed, connected domain D. Consider the integral of
f(z) on the boundary of the domain.∫

∂D

f(z) dz =

∫
∂D

ψ(x, y) (dx+ idy) =

∫
∂D

ψ dx+ iψ dy

Recall Green’s Theorem. ∫
∂D

P dx+Q dy =

∫
D

(Qx − Py) dxy

We apply Green’s Theorem to the integral of f(z) on ∂D.∫
∂D

f(z) dz =

∫
∂D

ψ dx+ iψ dy =

∫
D

(iψx − ψy) dxy

Since f(z) is analytic, ψx = −iψy. The integrand iψx − ψy is zero. Thus we have∫
∂D

f(z) dz = 0.

This is known as Cauchy’s Theorem.
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Fundamental Theorem of Calculus. First note that <(·) and =(·) commute with derivatives and integrals.
Let P (x, y) and Q(x, y) be defined on a simply connected domain. A necessary and sufficient condition for the
existence of a primitive φ is that Py = Qx. The primitive satisfies

dφ = P dx+Q dy.

Definite integral can be evaluated in terms of the primitive.∫ (c,d)

(a,b)

P dx+Q dy = φ(c, d)− φ(a, b)

Now consider integral along the contour C of the complex-valued function ψ(x, y).∫
C

ψ dz =

∫
C

ψ dx+ iψ dy

If ψ(x, y) is analytic then there exists a function Ψ such that

dΨ = ψ dx+ iψ dy.

Then ψ satisfies the Cauchy-Riemann equations. How do we find the primitive Ψ that satisfies Ψx = ψ and
Ψy = iψ? Note that choosing Ψ(x, y) = F (z) where F (z) is an anti-derivative of f(z), F ′(z) = f(z), does the
trick.

F ′(z) = Ψx = −iΨy = f = ψ

The differential of Ψ is

dΨ = Ψx dx+ Ψy dy = ψ dx+ ψ dy.

We can evaluate a definite integral of f in terms of F .∫ b

a

f(z) dz = F (b)− F (a).

This is the Fundamental Theorem of Calculus for functions of a complex variable.
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12.3 Cauchy’s Theorem

Result 12.3.1 Cauchy’s Theorem. If f(z) is analytic in a compact, closed, connected
domain D then the integral of f(z) on the boundary of the domain vanishes.∮

∂D

f(z) dz =
∑
k

∮
Ck

f(z) dz = 0

Here the set of contours {Ck}make up the positively oriented boundary ∂D of the domain
D.

This result follows from Green’s Theorem. Since Green’s theorem holds for both simply and multiply connected
domains, so does Cauchy’s theorem.

Proof of Cauchy’s Theorem. We will assume that f ′(z) is continuous. This assumption is not necessary,
but it allows us to use Green’s Theorem, which makes for a simpler proof. We consider the integral of f(z) =
u(x, y) + iv(x, y) along the boundary of the domain. From Equation 12.1 we have,∫

∂D

f(z) dz =

∫
∂D

(u dx− v dy) + i

∫
∂D

(v dx+ u dy)

We use Green’s theorem to write this as an area integral.∫
∂D

f(z) dz =

∫
D

(−vx − uy) dx dy + i

∫
D

(ux − vy) dx dy

Since u and v satisfy the Cauchy-Riemann Equations, ux = vy and uy = −vx, the two integrands on the right
side are identically zero. Thus the two area integrals vanish and Cauchy’s theorem is proved.

As a special case of Cauchy’s theorem we can consider a simply-connected region. For this the boundary is a
Jordan curve. We can state the theorem in terms of this curve instead of referring to the boundary.
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Result 12.3.2 Cauchy’s Theorem for Jordan Curves. If f(z) is analytic inside and
on a simple, closed contour C, then ∮

C

f(z) dz = 0

Example 12.3.1 In Example 12.1.2 we calculated that

∫
C

z dz = 0

where C is the unit circle about the origin. Now we can evaluate the integral without parameterizing the curve.
We simply note that the integrand is analytic inside and on the circle, which is simple and closed. By Cauchy’s
Theorem, the integral vanishes.

We cannot apply Cauchy’s theorem to evaluate

∫
C

1

z
dz = i2π

as the integrand is not analytic at z = 0.

Morera’s Theorem. The converse of Cauchy’s theorem, is Morera’s Theorem. If the integrals of a continuous
function f(z) vanish along all possible simple, closed contours in a domain, then f(z) is analytic on that domain.
To prove Morera’s Theorem we will assume that first partial derivatives of f(z) = u(x, y)+iv(x, y) are continuous,
although the result can be derived without this restriction. Let the simple, closed contour C be the boundary of
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D which is contained in the domain Ω.∮
C

f(z) dz =

∮
C

(u+ iv)( dx+ i dy)

=

∮
C

u dx− v dy + i

∮
C

v dx+ u dy

=

∫
D

(−vx − uy) dx dy + i

∫
D

(ux − vy) dx dy

= 0

Since the two integrands are continuous and vanish for all C in Ω, we conclude that the integrands are identically
zero. This implies that the Cauchy-Riemann equations,

ux = vy, uy = −vx,

are satisfied. f(z) is analytic in Ω.

Result 12.3.3 Morera’s Theorem. If f(z) is continuous in a simply connected domain
Ω and ∮

C

f(z) dz = 0

for all possible simple, closed contours C in the domain, the f(z) is analytic in Ω.

12.4 Indefinite Integrals

Consider a function f(z) which is analytic in a domain D. An anti-derivative or indefinite integral (or simply
integral) is a function F (z) which satisfies F ′(z) = f(z). This integral exists and is unique up to an additive
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constant. Note that if the domain is not connected, then the additive constants in each connected component are
independent. The indefinite integrals are denoted:∫

f(z) dz = F (z) + c.

We will prove existence in the next section by writing an indefinite integral as a contour integral. We consider
uniqueness here. Let F (z) and G(z) be integrals of f(z). Then F ′(z) − G′(z) = f(z) − f(z) = 0. One can use
this to show that F (z) − G(z) is a constant on each connected component of the domain. This demonstrates
uniqueness.

Integrals of analytic functions have all the nice properties of integrals of functions of a real variables. All the
formulas from integral tables, including things like integration by parts, carry over directly.

12.5 Contour Integrals

Result 12.5.1 Path Independence. Let f(z) be analytic on a simply connected do-
main. For points a and b in the domain, the contour integral,∫ b

a

f(z) dz

is independent of the path connecting the points.

(Here we assume that the paths lie entirely in the domain.) This result is a direct consequence of Cauchy’s
Theorem. Let C1 and C2 be two different paths connecting the points. Let −C2 denote the second curve with the
opposite orientation. Let C be the contour which is the union of C1 and −C2. By Cauchy’s theorem, the integral
along this contour vanishes. ∫

C1

f(z) dz +

∫
−C2

f(z) dz = 0
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This implies that ∫
C1

f(z) dz =

∫
C2

f(z) dz.

Thus contour integrals on simply connected domains are independent of path. This result does not hold for
multiply connected domains.

Result 12.5.2 Constructing an Indefinite Integral. If f(z) is analytic in a simply
connected domain D and a is a point in the domain, then

F (z) =

∫ z

a

f(ζ) dζ

is analytic in D and is an indefinite integral of f(z), (F ′(z) = f(z)).

To prove this, we use the limit definition of differentiation.

F ′(z) = lim
∆z→0

F (z + ∆z)− F (z)

∆z

= lim
∆z→0

1

∆z

(∫ z+∆z

a

f(ζ) dζ −
∫ z

a

f(ζ) dζ

)
= lim

∆z→0

1

∆z

∫ z+∆z

z

f(ζ) dζ

The integral is independent of path. We choose a straight line connecting z and z + ∆z. We add and subtract
∆zf(z) =

∫ z+∆z

z
f(z) dζ from the expression for F ′(z).

F ′(z) = lim
∆z→0

1

∆z

(
∆zf(z) +

∫ z+∆z

z

(f(ζ)− f(z)) dζ

)
= f(z) + lim

∆z→0

1

∆z

∫ z+∆z

z

(f(ζ)− f(z)) dζ
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Since f(z) is analytic, it is certainly continuous. This means that

lim
ζ→z

f(ζ) = 0.

The limit term vanishes as a result of this continuity.

lim
∆z→0

∣∣∣∣ 1

∆z

∫ z+∆z

z

(f(ζ)− f(z)) dζ

∣∣∣∣ ≤ lim
∆z→0

1

|∆z|
|∆z| max

ζ∈[z...z+∆z]
|f(ζ)− f(z)|

= lim
∆z→0

max
ζ∈[z...z+∆z]

|f(ζ)− f(z)|

= 0

Thus F ′(z) = f(z).
This results demonstrates the existence of the indefinite integral. We will use this to prove the Fundamental

Theorem of Calculus for functions of a complex variable.

Result 12.5.3 Fundamental Theorem of Calculus. If f(z) is analytic in a simply
connected domain D then ∫ b

a

f(z) dz = F (b)− F (a)

where F (z) is any indefinite integral of f(z).

From Result 12.5.2 we know that ∫ b

a

f(z) dz = F (b) + c.

(Here we are considering b to be a variable.) The case b = a determines the constant.∫ a

a

f(z) dz = F (a) + c = 0

c = −F (a)
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This proves the Fundamental Theorem of Calculus for functions of a complex variable.

Example 12.5.1 Consider the integral ∫
C

1

z − a
dz

where C is any closed contour that goes around the point z = a once in the positive direction. We use the
Fundamental Theorem of Calculus to evaluate the integral. We start at a point on the contour z − a = r eiθ.
When we traverse the contour once in the positive direction we end at the point z − a = r ei(θ+2π).∫

C

1

z − a
dz = [log(z − a)]z−a=r ei(θ+2π)

z−a=r eiθ

= Log r + i(θ + 2π)− ( Log r + iθ)

= i2π
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12.6 Exercises
Exercise 12.1
C is the arc corresponding to the unit semi-circle, |z| = 1, =(z) ≥ 0, directed from z = −1 to z = 1. Evaluate

1.

∫
C

z2 dz

2.

∫
C

∣∣z2
∣∣ dz

3.

∫
C

z2 |dz|

4.

∫
C

∣∣z2
∣∣ |dz|

Exercise 12.2
Evaluate ∫ ∞

−∞
e−(ax2+bx) dx,

where a, b ∈ C and <(a) > 0. Use the fact that∫ ∞
−∞

e−x
2

dx =
√
π.

Exercise 12.3
Evaluate

2

∫ ∞
0

e−ax
2

cos(ωx) dx, and 2

∫ ∞
0

x e−ax
2

sin(ωx) dx,
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where <(a) > 0 and ω ∈ R.
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12.7 Hints
Hint 12.1

Hint 12.2
Let C be the parallelogram in the complex plane with corners at ±R and ±R + b/(2a). Consider the integral of

e−az
2

on this contour. Take the limit as R→∞.

Hint 12.3
Extend the range of integration to (−∞ . . .∞). Use eiωx = cos(ωx) + i sin(ωx) and the result of Exercise 12.2.
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12.8 Solutions

Solution 12.1
We parameterize the path with z = eiθ, with θ ranging from π to 0.

dz = i eiθ dθ

|dz| = |i eiθ dθ| = |dθ| = −dθ

1.

∫
C

z2 dz =

∫ 0

π

ei2θi eiθ dθ

=

∫ 0

π

i ei3θ dθ

=

[
1

3
ei3θ
]0

π

=
1

3

(
ei0 − ei3π

)
=

1

3
(1− (−1))

=
2

3
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2. ∫
C

|z2| dz =

∫ 0

π

| ei2θ|i eiθ dθ

=

∫ 0

π

i eiθ dθ

=
[

eiθ
]0
π

= 1− (−1)

= 2

3. ∫
C

z2 |dz| =
∫ 0

π

ei2θ|i eiθ dθ|

=

∫ 0

π

− ei2θ dθ

=

[
i

2
ei2θ
]0

π

=
i

2
(1− 1)

= 0

4. ∫
C

|z2| |dz| =
∫ 0

π

| ei2θ||i eiθ dθ|

=

∫ 0

π

− dθ

= [−θ]0π
= π
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Solution 12.2

I =

∫ ∞
−∞

e−(ax2+bx) dx

First we complete the square in the argument of the exponential.

I = eb
2/(4a)

∫ ∞
−∞

e−a(x+b/(2a))2

dx

Consider the parallelogram in the complex plane with corners at ±R and ±R + b/(2a). The integral of e−az
2

on
this contour vanishes as it is an entire function. We can write this as∫ R+b/(2a)

−R+b/(2a)

e−az
2

dz =

(∫ −R
−R+b/(2a)

+

∫ R

−R
+

∫ R+b/(2a)

R

)
e−az

2

dz.

The first and third integrals on the right side vanish as R → ∞ because the integrand vanishes and the lengths
of the paths of integration are finite. Taking the limit as R→∞ we have,∫ ∞+b/(2a)

−∞+b/(2a)

e−az
2

dz ≡
∫ ∞
−∞

e−a(x+b/(2a))2

dx =

∫ ∞
−∞

e−ax
2

dx.

Now we have

I = eb
2/(4a)

∫ ∞
−∞

e−ax
2

dx.

We make the change of variables ξ =
√
ax.

I = eb
2/(4a) 1√

a

∫ ∞
−∞

e−ξ
2

dx

∫ ∞
−∞

e−(ax2+bx) dx =

√
π

a
eb

2/(4a)
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Solution 12.3
Consider

I = 2

∫ ∞
0

e−ax
2

cos(ωx) dx.

Since the integrand is an even function,

I =

∫ ∞
−∞

e−ax
2

cos(ωx) dx.

Since e−ax
2

sin(ωx) is an odd function,

I =

∫ ∞
−∞

e−ax
2

eiωx dx.

We evaluate this integral with the result of Exercise 12.2.

2

∫ ∞
0

e−ax
2

cos(ωx) dx =

√
π

a
e−ω

2/(4a)

Consider

I = 2

∫ ∞
0

x e−ax
2

sin(ωx) dx.

Since the integrand is an even function,

I =

∫ ∞
−∞

x e−ax
2

sin(ωx) dx.

Since x e−ax
2

cos(ωx) is an odd function,

I = −i
∫ ∞
−∞

x e−ax
2

eiωx dx.
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We add a dash of integration by parts to get rid of the x factor.

I = −i
[
− 1

2a
e−ax

2

eiωx
]∞
−∞

+ i

∫ ∞
−∞

(
− 1

2a
e−ax

2

iω eiωx
)

dx.

I =
ω

2a

∫ ∞
−∞

e−ax
2

eiωx dx.

2

∫ ∞
0

x e−ax
2

sin(ωx) dx. =
ω

2a

√
π

a
e−ω

2/(4a)
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Chapter 13

Cauchy’s Integral Formula

If I were founding a university I would begin with a smoking room; next a dormitory; and then a decent reading
room and a library. After that, if I still had more money that I couldn’t use, I would hire a professor and get
some text books.

- Stephen Leacock

403



13.1 Cauchy’s Integral Formula

Result 13.1.1 Cauchy’s Integral Formula. If f(ζ) is analytic in a compact, closed,
connected domain D and z is a point in the interior of D then

f(z) =
1

i2π

∮
∂D

f(ζ)

ζ − z
dζ =

1

i2π

∑
k

∮
Ck

f(ζ)

ζ − z
dζ. (13.1)

Here the set of contours {Ck}make up the positively oriented boundary ∂D of the domain
D. More generally, we have

f (n)(z) =
n!

i2π

∮
∂D

f(ζ)

(ζ − z)n+1 dζ =
n!

i2π

∑
k

∮
Ck

f(ζ)

(ζ − z)n+1 dζ. (13.2)

Cauchy’s Formula shows that the value of f(z) and all its derivatives in a domain are determined by the value
of f(z) on the boundary of the domain. Consider the first formula of the result, Equation 13.1. We deform the
contour to a circle of radius δ about the point ζ = z.∮

C

f(ζ)

ζ − z
dζ =

∮
Cδ

f(ζ)

ζ − z
dζ

=

∮
Cδ

f(z)

ζ − z
dζ +

∮
Cδ

f(ζ)− f(z)

ζ − z
dζ

We use the result of Example 12.5.1 to evaluate the first integral.∮
C

f(ζ)

ζ − z
dζ = i2πf(z) +

∮
Cδ

f(ζ)− f(z)

ζ − z
dζ
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The remaining integral along Cδ vanishes as δ → 0 because f(ζ) is continuous. We demonstrate this with the
maximum modulus integral bound. The length of the path of integration is 2πδ.

lim
δ→0

∣∣∣∣∮
Cδ

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ lim
δ→0

(
(2πδ)

1

δ
max
|ζ−z|=δ

|f(ζ)− f(z)|
)

≤ lim
δ→0

(
2π max
|ζ−z|=δ

|f(ζ)− f(z)|
)

= 0

This gives us the desired result.

f(z) =
1

i2π

∮
C

f(ζ)

ζ − z
dζ

We derive the second formula, Equation 13.2, from the first by differentiating with respect to z. Note that the
integral converges uniformly for z in any closed subset of the interior of C. Thus we can differentiate with respect
to z and interchange the order of differentiation and integration.

f (n)(z) =
1

i2π

dn

dzn

∮
C

f(ζ)

ζ − z
dζ

=
1

i2π

∮
C

dn

dzn
f(ζ)

ζ − z
dζ

=
n!

i2π

∮
C

f(ζ)

(ζ − z)n+1
dζ

Example 13.1.1 Consider the following integrals where C is the positive contour on the unit circle. For the
third integral, the point z = −1 is removed from the contour.

1.

∮
C

sin(cos(z5)) dz

405



2.

∮
C

1

(z − 3)(3z − 1)
dz

3.

∫
C

√
z dz

1. Since sin(cos(z5)) is an analytic function inside the unit circle,∮
C

sin(cos(z5)) dz = 0

2. 1
(z−3)(3z−1)

has singularities at z = 3 and z = 1/3. Since z = 3 is outside the contour, only the singularity at

z = 1/3 will contribute to the value of the integral. We will evaluate this integral using the Cauchy integral
formula. ∮

C

1

(z − 3)(3z − 1)
dz = i2π

(
1

(1/3− 3)3

)
= −πi

4

3. Since the curve is not closed, we cannot apply the Cauchy integral formula. Note that
√
z is single-valued

and analytic in the complex plane with a branch cut on the negative real axis. Thus we use the Fundamental
Theorem of Calculus. ∫

C

√
z dz =

[
2

3

√
z3

] eiπ

e−iπ

=
2

3

(
ei3π/2 − e−i3π/2

)
=

2

3
(−i− i)

= −i4
3
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Cauchy’s Inequality. Suppose the f(ζ) is analytic in the closed disk |ζ−z| ≤ r. By Cauchy’s integral formula,

f (n)(z) =
n!

i2π

∮
C

f(ζ)

(ζ − z)n+1
dζ,

where C is the circle of radius r centered about the point z. We use this to obtain an upper bound on the modulus
of f (n)(z).

∣∣f (n)(z)
∣∣ =

n!

2π

∣∣∣∣∮
C

f(ζ)

(ζ − z)n+1
dζ

∣∣∣∣
≤ n!

2π
2πr max

|ζ−z|=r

∣∣∣∣ f(ζ)

(ζ − z)n+1

∣∣∣∣
=
n!

rn
max
|ζ−z|=r

|f(ζ)|

Result 13.1.2 Cauchy’s Inequality. If f(ζ) is analytic in |ζ − z| ≤ r then∣∣∣f (n)(z)
∣∣∣ ≤ n!M

rn

where |f(ζ)| ≤M for all |ζ − z| = r.

Liouville’s Theorem. Consider a function f(z) that is analytic and bounded, (f(z) ≤ M), in the complex
plane. From Cauchy’s inequality,

|f ′(z)| ≤ M

r

for any positive r. By taking r →∞, we see that f ′(z) is identically zero for all z. Thus f(z) is a constant.

407



Result 13.1.3 Liouville’s Theorem. If f(z) is analytic and bounded in the complex
plane then f(z) is a constant.

The Fundamental Theorem of Algebra. We will prove that every polynomial of degree n ≥ 1 has exactly
n roots, counting multiplicities. First we demonstrate that each such polynomial has at least one root. Suppose
that an nth degree polynomial p(z) has no roots. Let the lower bound on the modulus of p(z) be 0 < m ≤ |p(z)|.
The function f(z) = 1/p(z) is analytic, (f ′(z) = p′(z)/p2(z)), and bounded, (|f(z)| ≤ 1/m), in the extended
complex plane. Using Liouville’s theorem we conclude that f(z) and hence p(z) are constants, which yields a
contradiction. Therefore every such polynomial p(z) must have at least one root.

Now we show that we can factor the root out of the polynomial. Let

p(z) =
n∑
k=0

pkz
k.

We note that

(zn − cn) = (z − c)
n−1∑
k=0

cn−1−kzk.
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Suppose that the nth degree polynomial p(z) has a root at z = c.

p(z) = p(z)− p(c)

=
n∑
k=0

pkz
k −

n∑
k=0

pkc
k

=
n∑
k=0

pk(z
k − ck)

=
n∑
k=0

pk(z − c)
k−1∑
j=0

ck−1−jzj

= (z − c)q(z)

Here q(z) is a polynomial of degree n− 1. By induction, we see that p(z) has exactly n roots.

Result 13.1.4 Fundamental Theorem of Algebra. Every polynomial of degree n ≥
1 has exactly n roots, counting multiplicities.

Gauss’ Mean Value Theorem. Let f(ζ) be analytic in |ζ − z| ≤ r. By Cauchy’s integral formula,

f(z) =
1

2πi

∮
C

f(ζ)

ζ − z
dζ,

where C is the circle |ζ − z| = r. We parameterize the contour with ζ = z + r eiθ.

f(z) =
1

2πi

∫ 2π

0

f(z + r eiθ)

r eiθ
ir eiθ dθ

Writing this in the form,

f(z) =
1

2πr

∫ 2π

0

f(z + r eiθ)r dθ,
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we see that f(z) is the average value of f(ζ) on the circle of radius r about the point z.

Result 13.1.5 Gauss’ Average Value Theorem. If f(ζ) is analytic in |ζ − z| ≤ r
then

f(z) =
1

2π

∫ 2π

0
f(z + r eiθ) dθ.

That is, f(z) is equal to its average value on a circle of radius r about the point z.

Extremum Modulus Theorem. Let f(z) be analytic in closed, connected domain, D. The extreme values
of the modulus of the function must occur on the boundary. If |f(z)| has an interior extrema, then the function
is a constant. We will show this with proof by contradiction. Assume that |f(z)| has an interior maxima at the
point z = c. This means that there exists an neighborhood of the point z = c for which |f(z)| ≤ |f(c)|. Choose
an ε so that the set |z − c| ≤ ε lies inside this neighborhood. First we use Gauss’ mean value theorem.

f(c) =
1

2π

∫ 2π

0

f
(
c+ ε eiθ

)
dθ

We get an upper bound on |f(c)| with the maximum modulus integral bound.

|f(c)| ≤ 1

2π

∫ 2π

0

∣∣f (c+ ε eiθ
)∣∣ dθ

Since z = c is a maxima of |f(z)| we can get a lower bound on |f(c)|.

|f(c)| ≥ 1

2π

∫ 2π

0

∣∣f (c+ ε eiθ
)∣∣ dθ

If |f(z)| < |f(c)| for any point on |z − c| = ε, then the continuity of f(z) implies that |f(z)| < |f(c)| in a
neighborhood of that point which would make the value of the integral of |f(z)| strictly less than |f(c)|. Thus we
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conclude that |f(z)| = |f(c)| for all |z − c| = ε. Since we can repeat the above procedure for any circle of radius
smaller than ε, |f(z)| = |f(c)| for all |z − c| ≤ ε, i.e. all the points in the disk of radius ε about z = c are also
maxima. By recursively repeating this procedure points in this disk, we see that |f(z)| = |f(c)| for all z ∈ D.
This implies that f(z) is a constant in the domain. By reversing the inequalities in the above method we see that
the minimum modulus of f(z) must also occur on the boundary.

Result 13.1.6 Extremum Modulus Theorem. Let f(z) be analytic in a closed,
connected domain, D. The extreme values of the modulus of the function must occur on
the boundary. If |f(z)| has an interior extrema, then the function is a constant.

13.2 The Argument Theorem

Result 13.2.1 The Argument Theorem. Let f(z) be analytic inside and on C except
for isolated poles inside the contour. Let f(z) be nonzero on C.

1

i2π

∫
C

f ′(z)

f(z)
dz = N − P

Here N is the number of zeros and P the number of poles, counting multiplicities, of
f(z) inside C.

First we will simplify the problem and consider a function f(z) that has one zero or one pole. Let f(z) be
analytic and nonzero inside and on A except for a zero of order n at z = a. Then we can write f(z) = (z−a)ng(z)
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where g(z) is analytic and nonzero inside and on A. The integral of f ′(z)
f(z)

along A is

1

i2π

∫
A

f ′(z)

f(z)
dz =

1

i2π

∫
A

d

dz
(log(f(z))) dz

=
1

i2π

∫
A

d

dz
(log((z − a)n) + log(g(z))) dz

=
1

i2π

∫
A

d

dz
(log((z − a)n)) dz

=
1

i2π

∫
A

n

z − a
dz

= n

Now let f(z) be analytic and nonzero inside and on B except for a pole of order p at z = b. Then we can write

f(z) = g(z)
(z−b)p where g(z) is analytic and nonzero inside and on B. The integral of f ′(z)

f(z)
along B is

1

i2π

∫
B

f ′(z)

f(z)
dz =

1

i2π

∫
B

d

dz
(log(f(z))) dz

=
1

i2π

∫
B

d

dz

(
log((z − b)−p) + log(g(z))

)
dz

=
1

i2π

∫
B

d

dz

(
log((z − b)−p)+

)
dz

=
1

i2π

∫
B

−p
z − b

dz

= −p

Now consider a function f(z) that is analytic inside an on the contour C except for isolated poles at the points
b1, . . . , bp. Let f(z) be nonzero except at the isolated points a1, . . . , an. Let the contours Ak, k = 1, . . . , n,
be simple, positive contours which contain the zero at ak but no other poles or zeros of f(z). Likewise, let the
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contours Bk, k = 1, . . . , p be simple, positive contours which contain the pole at bk but no other poles of zeros of
f(z). (See Figure 13.1.) By deforming the contour we obtain∫

C

f ′(z)

f(z)
dz =

n∑
j=1

∫
Aj

f ′(z)

f(z)
dz +

p∑
k=1

∫
Bj

f ′(z)

f(z)
dz.

From this we obtain Result 13.2.1.

CA1

B1

B3

B2

A2

Figure 13.1: Deforming the contour C.

13.3 Rouche’s Theorem

Result 13.3.1 Rouche’s Theorem. Let f(z) and (g) be analytic inside and on a
simple, closed contour C. If |f(z)| > |g(z)| on C then f(z) and f(z) + g(z) have the
same number of zeros inside C and no zeros on C.

First note that since |f(z)| > |g(z)| on C, f(z) is nonzero on C. The inequality implies that |f(z) + g(z)| > 0
on C so f(z) + g(z) has no zeros on C. We well count the number of zeros of f(z) and g(z) using the Argument
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Theorem, (Result 13.2.1). The number of zeros N of f(z) inside the contour is

N =
1

i2π

∮
C

f ′(z)

f(z)
dz.

Now consider the number of zeros M of f(z) + g(z). We introduce the function h(z) = g(z)/f(z).

M =
1

i2π

∮
C

f ′(z) + g′(z)

f(z) + g(z)
dz

=
1

i2π

∮
C

f ′(z) + f ′(z)h(z) + f(z)h′(z)

f(z) + f(z)h(z)
dz

=
1

i2π

∮
C

f ′(z)

f(z)
dz +

1

i2π

∮
C

h′(z)

1 + h(z)
dz

= N +
1

i2π
[log(1 + h(z))]C

= N

(Note that since |h(z)| < 1 on C, <(1 + h(z)) > 0 on C and the value of log(1 + h(z)) does not not change in
traversing the contour.) This demonstrates that f(z) and f(z) + g(z) have the same number of zeros inside C
and proves the result.
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13.4 Exercises
Exercise 13.1
What is

(arg(sin z))
∣∣
C

where C is the unit circle?

Exercise 13.2
Let C be the circle of radius 2 centered about the origin and oriented in the positive direction. Evaluate the
following integrals:

1.
∮
C

sin z
z2+5

dz

2.
∮
C

z
z2+1

dz

3.
∮
C
z2+1
z
dz

Exercise 13.3
Let f(z) be analytic and bounded (i.e. |f(z)| < M) for |z| > R, but not necessarily analytic for |z| ≤ R. Let the
points α and β lie inside the circle |z| = R. Evaluate∮

C

f(z)

(z − α)(z − β)
dz

where C is any closed contour outside |z| = R, containing the circle |z| = R. [Hint: consider the circle at infinity]
Now suppose that in addition f(z) is analytic everywhere. Deduce that f(α) = f(β).

Exercise 13.4
Using Rouche’s theorem show that all the roots of the equation p(z) = z6 − 5z2 + 10 = 0 lie in the annulus
1 < |z| < 2.
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Exercise 13.5
Evaluate as a function of t

ω =
1

i2π

∮
C

ezt

z2(z2 + a2)
dz,

where C is any positively oriented contour surrounding the circle |z| = a.
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13.5 Hints
Hint 13.1
Use the argument theorem.

Hint 13.2

Hint 13.3
To evaluate the integral, consider the circle at infinity.

Hint 13.4

Hint 13.5
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13.6 Solutions
Solution 13.1
Let f(z) be analytic inside and on the contour C. Let f(z) be nonzero on the contour. The argument theorem
states that

1

i2π

∫
C

f ′(z)

f(z)
dz = N − P,

where N is the number of zeros and P is the number of poles, (counting multiplicities), of f(z) inside C. The
theorem is aptly named, as

1

i2π

∫
C

f ′(z)

f(z)
dz =

1

i2π
[log(f(z))]C

=
1

i2π
[log |f(z)|+ i arg(f(z))]C

=
1

2π
[arg(f(z))]C .

Thus we could write the argument theorem as

1

i2π

∫
C

f ′(z)

f(z)
dz =

1

2π
[arg(f(z))]C = N − P.

Since sin z has a single zero and no poles inside the unit circle, we have

1

2π
arg(sin(z))

∣∣
C

= 1− 0

arg(sin(z))
∣∣
C

= 2π

Solution 13.2
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1. Since the integrand sin z
z2+5

is analytic inside and on the contour, (the only singularities are at z = ±i
√

5 and
at infinity), the integral is zero by Cauchy’s Theorem.

2. First we expand the integrand in partial fractions.

z

z2 + 1
=

a

z − i
+

b

z + i

a =
z

z + i

∣∣∣∣
z=i

=
1

2
, b =

z

z − i

∣∣∣∣
z=−i

=
1

2

Now we can do the integral with Cauchy’s formula.∫
C

z

z2 + 1
dz =

∫
C

1/2

z − i
dz +

∫
C

1/2

z + i
dz

=
1

2
i2π +

1

2
i2π

= i2π

3. ∫
C

z2 + 1

z
dz =

∫
C

(
z +

1

z

)
dz

=

∫
C

z dz +

∫
C

1

z
dz

= 0 + i2π

= i2π
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Solution 13.3
Let C be the circle of radius r, (r > R), centered at the origin. We get an upper bound on the integral with the
Maximum Modulus Integral Bound, (Result 12.1.1).∣∣∣∣∮

C

f(z)

(z − α)(z − β)
dz

∣∣∣∣ ≤ 2πrmax
|z|=r

∣∣∣∣ f(z)

(z − α)(z − β)

∣∣∣∣ ≤ 2πr
M

(r − |α|)(r − |β|)

By taking the limit as r →∞ we see that the modulus of the integral is bounded above by zero. Thus the integral
vanishes.

Now we assume that f(z) is analytic and evaluate the integral with Cauchy’s Integral Formula. (We assume
that α 6= β.) ∮

C

f(z)

(z − α)(z − β)
dz = 0∮

C

f(z)

(z − α)(α− β)
dz +

∮
C

f(z)

(β − α)(z − β)
dz = 0

i2π
f(α)

α− β
+ i2π

f(β)

β − α
= 0

f(α) = f(β)

Solution 13.4
Consider the circle |z| = 2. On this circle:

|z6| = 64

| − 5z2 + 10| ≤ | − 5z2|+ |10| = 30

Since |z6| < |−5z2 +10| on |z| = 2, p(z) has the same number of roots as z6 in |z| < 2. p(z) has 6 roots in |z| < 2.
Consider the circle |z| = 1. On this circle:

|10| = 10

|z6 − 5z2| ≤ |z6|+ | − 5z2| = 6
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Since |z6− 5z2| < |10| on |z| = 1, p(z) has the same number of roots as 10 in |z| < 1. p(z) has no roots in |z| < 1.
On the unit circle,

|p(z)| ≥ |10| − |z6| − |5z2| = 4.

Thus p(z) has no roots on the unit circle.
We conclude that p(z) has exactly 6 roots in 1 < |z| < 2.

Solution 13.5
We evaluate the integral with Cauchy’s Integral Formula.

ω =
1

2πi

∮
C

ezt

z2(z2 + a2)
dz

ω =
1

2πi

∮
C

(
ezt

a2z2
+

i ezt

2a3(z − ia)
− i ezt

2a3(z + ia)

)
dz

ω =

[
d

dz

ezt

a2

]
z=0

+
i eiat

2a3
− i e−iat

2a3

ω =
t

a2
− sin(at)

a3

ω =
at− sin(at)

a3
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Chapter 14

Series and Convergence

You are not thinking. You are merely being logical.

- Neils Bohr

14.1 Series of Constants

14.1.1 Definitions

Convergence of Sequences. The infinite sequence {an}∞n=0 ≡ a0, a1, a2, . . . is said to converge if

lim
n→∞

an = a

for some constant a. If the limit does not exist, then the sequence diverges. Recall the definition of the limit in
the above formula: For any ε > 0 there exists an N ∈ Z such that |a− an| < ε for all n > N .

Example 14.1.1 The sequence {sin(n)} is divergent. The sequence is bounded above and below, but bounded-
ness does not imply convergence.
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Cauchy Convergence Criterion. Note that there is something a little fishy about the above definition. We
should be able to say if a sequence converges without first finding the constant to which it converges. We fix this
problem with the Cauchy convergence criterion. A sequence {an} converges if and only if for any ε > 0 there
exists an N such that |an − am| < ε for all n,m > N . The Cauchy convergence criterion is equivalent to the
definition we had before. For some problems it is handier to use. Now we don’t need to know the limit of a
sequence to show that it converges.

Convergence of Series. The series
∑∞

n=1 an converges if the sequence of partial sums, SN =
∑N−1

n=0 an, con-
verges. That is,

lim
N→∞

SN = lim
N→∞

N−1∑
n=0

an = constant.

If the limit does not exist, then the series diverges. A necessary condition for the convergence of a series is that

lim
n→∞

an = 0.

Otherwise the sequence of partial sums would not converge.

Example 14.1.2 The series
∑∞

n=0(−1)n = 1− 1 + 1− 1 + · · · is divergent because the sequence of partial sums,
{SN} = 1, 0, 1, 0, 1, 0, . . . is divergent.

Tail of a Series. An infinite series,
∑∞

n=0 an, converges or diverges with its tail. That is, for fixed N ,
∑∞

n=0 an
converges if and only if

∑∞
n=N an converges. This is because the sum of the first N terms of a series is just a

number. Adding or subtracting a number to a series does not change its convergence.

Absolute Convergence. The series
∑∞

n=0 an converges absolutely if
∑∞

n=0 |an| converges. Absolute convergence
implies convergence. If a series is convergent, but not absolutely convergent, then it is said to be conditionally
convergent.
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The terms of an absolutely convergent series can be rearranged in any order and the series will still converge
to the same sum. This is not true of conditionally convergent series. Rearranging the terms of a conditionally
convergent series may change the sum. In fact, the terms of a conditionally convergent series may be rearranged
to obtain any desired sum.

Example 14.1.3 The alternating harmonic series,

1− 1

2
+

1

3
− 1

4
+ · · · ,

converges, (Exercise 14.2). Since

1 +
1

2
+

1

3
+

1

4
+ · · ·

diverges, (Exercise 14.3), the alternating harmonic series is not absolutely convergent. Thus the terms can be
rearranged to obtain any sum, (Exercise 14.4).

Finite Series and Residuals. Consider the series f(z) =
∑∞

n=0 an(z). We will denote the sum of the first N
terms in the series as

SN(z) =
N−1∑
n=0

an(z).

We will denote the residual after N terms as

RN(z) ≡ f(z)− SN(z) =
∞∑
n=N

an(z).
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14.1.2 Special Series

Geometric Series. One of the most important series in mathematics is the geometric series, 1

∞∑
n=0

zn = 1 + z + z2 + z3 + · · · .

The series clearly diverges for |z| ≥ 1 since the terms do not vanish as n → ∞. Consider the partial sum,
SN(z) ≡

∑N−1
n=0 z

n, for |z| < 1.

(1− z)SN(z) = (1− z)
N−1∑
n=0

zn

=
N−1∑
n=0

zn −
N∑
n=1

zn

= (1 + z + · · ·+ zN−1)− (z + z2 + · · ·+ zN)

= 1− zN

N−1∑
n=0

zn =
1− zN

1− z
→ 1

1− z
as N →∞.

The limit of the partial sums is 1
1−z .

∞∑
n=0

zn =
1

1− z
for |z| < 1

1 The series is so named because the terms grow or decay geometrically. Each term in the series is a constant times the previous
term.
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Harmonic Series. Another important series is the harmonic series,

∞∑
n=1

1

nα
= 1 +

1

2α
+

1

3α
+ · · · .

The series is absolutely convergent for <(α) > 1 and absolutely divergent for <(α) ≤ 1, (see the Exercise 14.6).
The Riemann zeta function ζ(α) is defined as the sum of the harmonic series.

ζ(α) =
∞∑
n=1

1

nα

The alternating harmonic series is

∞∑
n=1

(−1)n+1

nα
= 1− 1

2α
+

1

3α
− 1

4α
+ · · · .

Again, the series is absolutely convergent for <(α) > 1 and absolutely divergent for <(α) ≤ 1.

14.1.3 Convergence Tests

The Comparison Test. The series of positive terms
∑∞

n=0 an converges if there exists a convergent series∑∞
n=0 bn such that an ≤ bn for all n. Similarly,

∑∞
n=0 an diverges if there exists a divergent series

∑∞
n=0 bn such

that an ≥ bn for all n.

Example 14.1.4 Consider the series

∞∑
n=1

1

2n2 .

We can rewrite this as
∞∑
n=1

n a perfect square

1

2n
.
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Then by comparing this series to the geometric series,

∞∑
n=1

1

2n
= 1,

we see that it is convergent.

Integral Test. If the coefficients an of a series
∑∞

n=0 an are monotonically decreasing and can be extended to
a monotonically decreasing function of the continuous variable x,

a(x) = an for x ∈ Z0+,

then the series converges or diverges with the integral∫ ∞
0

a(x) dx.

Example 14.1.5 Consider the series
∑∞

n=1
1
n2 . Define the functions sl(x) and sr(x), (left and right),

sl(x) =
1

(dxe)2
, sr(x) =

1

(bxc)2
.

Recall that bxc is the greatest integer function, the greatest integer which is less than or equal to x. dxe is the
least integer function, the least integer greater than or equal to x. We can express the series as integrals of these
functions.

∞∑
n=1

1

n2
=

∫ ∞
0

sl(x) dx =

∫ ∞
1

sr(x) dx
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In Figure 14.1 these functions are plotted against y = 1/x2. From the graph, it is clear that we can obtain a lower
and upper bound for the series. ∫ ∞

1

1

x2
dx ≤

∞∑
n=1

1

n2
≤ 1 +

∫ ∞
1

1

x2
dx

1 ≤
∞∑
n=1

1

n2
≤ 2

1 2 3 4

1

1 2 3 4

1

Figure 14.1: Upper and Lower bounds to
∑∞

n=1 1/n2.

In general, we have ∫ ∞
m

a(x) dx ≤
∞∑
n=m

an ≤ am +

∫ ∞
m

a(x) dx.

Thus we see that the sum converges or diverges with the integral.

The Ratio Test. The series
∑∞

n=0 an converges absolutely if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1.
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If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.

If the limit is greater than unity, then the terms are eventually increasing with n. Since the terms do not
vanish, the sum is divergent. If the limit is less than unity, then there exists some N such that∣∣∣∣an+1

an

∣∣∣∣ ≤ r < 1 for all n ≥ N.

From this we can show that
∑∞

n=0 an is absolutely convergent by comparing it to the geometric series.

∞∑
n=N

|an| ≤ |aN |
∞∑
n=0

rn

= |aN |
1

1− r

Example 14.1.6 Consider the series,

∞∑
n=1

en

n!
.

We apply the ratio test to test for absolute convergence.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

en+1n!

en(n+ 1)!

= lim
n→∞

e

n+ 1

= 0

The series is absolutely convergent.
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Example 14.1.7 Consider the series,

∞∑
n=1

1

n2
,

which we know to be absolutely convergent. We apply the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1/(n+ 1)2

1/n2

= lim
n→∞

n2

n2 + 2n+ 1

= lim
n→∞

1

1 + 2/n+ 1/n2

= 1

The test fails to predict the absolute convergence of the series.

The Root Test. The series
∑∞

n=0 an converges absolutely if

lim
n→∞

|an|1/n < 1.

If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.

If the limit is greater than unity, then the terms in the series do not vanish as n→∞. This implies that the
sum does not converge. If the limit is less than unity, then there exists some N such that

|an|1/n ≤ r < 1 for all n ≥ N.
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We bound the tail of the series of |an|.

∞∑
n=N

|an| =
∞∑
n=N

(|an|1/n)n

≤
∞∑
n=N

rn

=
rN

1− r∑∞
n=0 an is absolutely convergent.

Example 14.1.8 Consider the series

∞∑
n=0

nabn,

where a and b are real constants. We use the root test to check for absolute convergence.

lim
n→∞

|nabn|1/n < 1

|b| lim
n→∞

na/n < 1

|b| exp

(
lim
n→∞

1 log n

n

)
< 1

|b| e0 < 1

|b| < 1

Thus we see that the series converges absolutely for |b| < 1. Note that the value of a does not affect the absolute
convergence.
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Example 14.1.9 Consider the absolutely convergent series,

∞∑
n=1

1

n2
.

We aply the root test.

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣ 1

n2

∣∣∣∣1/n
= lim

n→∞
n−2/n

= lim
n→∞

e−
2
n

logn

= e0

= 1

It fails to predict the convergence of the series.

14.2 Uniform Convergence

Continuous Functions. A function f(z) is continuous in a closed domain if, given any ε > 0, there exists a
δ > 0 such that |f(z)− f(ζ)| < ε for all |z − ζ| < δ in the domain.

An equivalent definition is that f(z) is continuous in a closed domain if

lim
ζ→z

f(ζ) = f(z)

for all z in the domain.
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Convergence. Consider a series in which the terms are functions of z,
∑∞

n=0 an(z). The series is convergent in a
domain if the series converges for each point z in the domain. We can then define the function f(z) =

∑∞
n=0 an(z).

We can state the convergence criterion as: For any given ε > 0 there exists a function N(z) such that

|f(z)− SN(z)(z)| =

∣∣∣∣∣∣f(z)−
N(z)−1∑
n=0

an(z)

∣∣∣∣∣∣ < ε

for all z in the domain. Note that the rate of convergence, i.e. the number of terms, N(z) required for for the
absolute error to be less than ε, is a function of z.

Uniform Convergence. Consider a series
∑∞

n=0 an(z) that is convergent in some domain. If the rate of
convergence is independent of z then the series is said to be uniformly convergent. Stating this a little more
mathematically, the series is uniformly convergent in the domain if for any given ε > 0 there exists an N ,
independent of z, such that

|f(z)− SN(z)| =

∣∣∣∣∣f(z)−
N∑
n=1

an(z)

∣∣∣∣∣ < ε

for all z in the domain.

14.2.1 Tests for Uniform Convergence

Weierstrass M-test. The Weierstrass M-test is useful in determining if a series is uniformly convergent. The
series

∑∞
n=0 an(z) is uniformly and absolutely convergent in a domain if there exists a convergent series of positive

terms
∑∞

n=0 Mn such that |an(z)| ≤ Mn for all z in the domain. This condition first implies that the series is
absolutely convergent for all z in the domain. The condition |an(z)| ≤Mn also ensures that the rate of convergence
is independent of z, which is the criterion for uniform convergence.

Note that absolute convergence and uniform convergence are independent. A series of functions may be
absolutely convergent without being uniformly convergent or vice versa. The Weierstrass M-test is a sufficient
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but not a necessary condition for uniform convergence. The Weierstrass M-test can succeed only if the series is
uniformly and absolutely convergent.

Example 14.2.1 The series

f(x) =
∞∑
n=1

sinx

n(n+ 1)

is uniformly and absolutely convergent for all real x because | sinx
n(n+1)

| < 1
n2 and

∑∞
n=1

1
n2 converges.

Dirichlet Test. Consider a sequence of monotone decreasing, positive constants cn with limit zero. If all the
partial sums of an(z) are bounded in some closed domain, that is∣∣∣∣∣

N∑
n=1

an(z)

∣∣∣∣∣ < constant

for all N , then
∑∞

n=1 cnan(z) is uniformly convergent in that closed domain. Note that the Dirichlet test does not
imply that the series is absolutely convergent.

Example 14.2.2 Consider the series,

∞∑
n=1

sin(nx)

n
.

We cannot use the Weierstrass M-test to determine if the series is uniformly convergent on an interval. While it
is easy to bound the terms with | sin(nx)/n| ≤ 1/n, the sum

∞∑
n=1

1

n
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does not converge. Thus we will try the Dirichlet test. Consider the sum
∑N−1

n=1 sin(nx). This sum can be
evaluated in closed form. (See Exercise 14.7.)

N−1∑
n=1

sin(nx) =

{
0 for x = 2πk
cos(x/2)−cos((N−1/2)x)

2 sin(x/2)
for x 6= 2πk

The partial sums have infinite discontinuities at x = 2πk, k ∈ Z. The partial sums are bounded on any closed
interval that does not contain an integer multiple of 2π. By the Dirichlet test, the sum

∑∞
n=1

sin(nx)
n

is uniformly
convergent on any such closed interval. The series may not be uniformly convergent in neighborhoods of x = 2kπ.

14.2.2 Uniform Convergence and Continuous Functions.

Consider a series f(z) =
∑∞

n=1 an(z) that is uniformly convergent in some domain and whose terms an(z) are
continuous functions. Since the series is uniformly convergent, for any given ε > 0 there exists an N such that
|RN | < ε for all z in the domain.

Since the finite sum SN is continuous, for that ε there exists a δ > 0 such that |SN(z) − SN(ζ)| < ε for all ζ
in the domain satisfying |z − ζ| < δ.

Combining these two results,

|f(z)− f(ζ)| = |SN(z) +RN(z)− SN(ζ)−RN(ζ)|
≤ |SN(z)− SN(ζ)|+ |RN(z)|+ |RN(ζ)|
< 3ε for |z − ζ| < δ.

Thus f(z) is continuous.

Result 14.2.1 A uniformly convergent series of continuous terms represents a continuous
function.

Example 14.2.3 Again consider
∑∞

n=1
sin(nx)
n

. In Example 14.2.2 we showed that the convergence is uniform in
any closed interval that does not contain an integer multiple of 2π. In Figure 14.2 is a plot of the first 10 and
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then 50 terms in the series and finally the function to which the series converges. We see that the function has
jump discontinuities at x = 2kπ and is continuous on any closed interval not containing one of those points.

Figure 14.2: Ten, Fifty and all the Terms of
∑∞

n=1
sin(nx)

n
.

14.3 Uniformly Convergent Power Series

Power Series. Power series are series of the form

∞∑
n=0

an(z − z0)n.

Domain of Convergence of a Power Series Consider the series
∑∞

n=0 anz
n. Let the series converge at some

point z0. Then |anzn0 | is bounded by some constant A for all n, so

|anzn| = |anzn0 |
∣∣∣∣ zz0

∣∣∣∣n < A

∣∣∣∣ zz0

∣∣∣∣n
This comparison test shows that the series converges absolutely for all z satisfying |z| < |z0|.
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Suppose that the series diverges at some point z1. Then the series could not converge for any |z| > |z1| since
this would imply convergence at z1. Thus there exists some circle in the z plane such that the power series
converges absolutely inside the circle and diverges outside the circle.

Result 14.3.1 The domain of convergence of a power series is a circle in the complex
plane.

Radius of Convergence of Power Series. Consider a power series

f(z) =
∞∑
n=0

anz
n

Applying the ratio test, we see that the series converges if

lim
n→∞

|an+1z
n+1|

|anzn|
< l

lim
n→∞

|an+1|
|an|

|z| < 1

|z| < lim
n→∞

|an|
|an+1|
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Result 14.3.2 The radius of convergence of the power series

f(z) =
∞∑
n=0

anz
n

is

R = lim
n→∞

|an|
|an+1|

when the limit exists.

Result 14.3.3 Cauchy-Hadamard formula. The radius of convergence of the power
series:

∞∑
n=0

anz
n

is

R =
1

lim sup n
√
|an|

.

Absolute Convergence of Power Series. Consider a power series

f(z) =
∞∑
n=0

anz
n
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that converges for z = z0. Let M be the value of the greatest term, anz
n
0 . Consider any point z such that |z| < |z0|.

We can bound the residual of
∑∞

n=0 |anzn|,

RN(z) =
∞∑
n=N

|anzn|

=
∞∑
n=N

∣∣∣∣anznanzn0

∣∣∣∣ |anzn0 |
≤M

∞∑
n=N

∣∣∣∣ zz0

∣∣∣∣n
Since |z/z0| < 1, this is a convergent geometric series.

= M

∣∣∣∣ zz0

∣∣∣∣N 1

1− |z/z0|
→ 0 as N →∞

Thus the power series is absolutely convergent for |z| < |z0|.

Result 14.3.4 If the power series
∑∞

n=0 anz
n converges for z = z0, then the series con-

verges absolutely for |z| < |z0|.

Example 14.3.1 Find the radii of convergence of

1)
∞∑
n=1

nzn, 2)
∞∑
n=1

n!zn, 3)
∞∑
n=1

n!zn!

1. Applying the formula for the radius of convergence,

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = lim
n→∞

n

n+ 1
= 1
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2. Applying the ratio test to the second series,

R = lim
n→∞

∣∣∣∣ n!

(n+ 1)!

∣∣∣∣
= lim

n→∞

1

n+ 1

= 0

Thus we see that the second series has a vanishing radius of convergence.

3. The third series converges when

lim
n→∞

∣∣∣∣(n+ 1)!z(n+1)!

n!zn!

∣∣∣∣ < 1

lim
n→∞

(n+ 1)|z|(n+1)!−n! < 1

lim
n→∞

(n+ 1)|z|(n)n! < 1

lim
n→∞

(log(n+ 1) + (n)n! log |z|) < 0

log |z| < lim
n→∞

− log(n+ 1)

(n)n!

log |z| < 0

|z| < 1

Thus the radius of convergence for the third series is 1.

Alternatively we could determine the radius of convergence of the third series with the comparison test. We
know that

∞∑
n=1

∣∣n!zn!
∣∣ ≤ ∞∑

n=1

|nzn|
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∑∞
n=1 nz

n has a radius of convergence of 1. Thus the third sum must have a radius of convergence of at
least 1. Note that if |z| > 1 then the terms in the third series do not vanish as n → ∞. Thus the series
must diverge for all |z| > 1. We see that the radius of convergence is 1.

Uniform Convergence of Power Series. Consider a power series
∑∞

n=0 anz
n that converges in the disk

|z| < r0. The sum converges absolutely for z in the closed disk, |z| ≤ r < r0. Since |anzn| ≤ |anrn| and∑∞
n=0 |anrn| converges, the power series is uniformly convergent in |z| ≤ r < r0.

Result 14.3.5 If the power series
∑∞

n=0 anz
n converges for |z| < r0 then the series con-

verges uniformly for |z| ≤ r < r0.

Example 14.3.2 Convergence and Uniform Convergence. Consider the series

log(1− z) = −
∞∑
n=1

zn

n
.

This series converges for |z| ≤ 1, z 6= 1. Is the series uniformly convergent in this domain? The residual after N
terms RN is

RN(z) =
∞∑

n=N+1

zn

n
.

We can get a lower bound on the absolute value of the residual for real, positive z.

|RN(x)| =
∞∑

n=N+1

xn

n

≤
∫ ∞
N+1

xα

α
dα

= −Ei ((N + 1) log x)
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The exponential integral function, Ei (z), is defined

Ei (z) = −
∫ ∞
−z

e−t

t
dt.

The exponential integral function is plotted in Figure 14.3. Since Ei (z) diverges as z → 0, by choosing x
sufficiently close to 1 the residual can be made arbitrarily large. Thus this series is not uniformly convergent in
the domain |z| ≤ 1, z 6= 1. The series is uniformly convergent for |z| ≤ r < 1.

-4 -3 -2 -1

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

Figure 14.3: The Exponential Integral Function.

Analyticity. Recall that a sufficient condition for the analyticity of a function f(z) in a domain is that∮
C
f(z) dz = 0 for all simple, closed contours in the domain.
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Consider a power series f(z) =
∑∞

n=0 anz
n that is uniformly convergent in |z| ≤ r. If C is any simple, closed

contour in the domain then
∮
C
f(z) dz exists. Expanding f(z) into a finite series and a residual,∮

C

f(z) dz =

∮
C

[SN(z) +RN(z)] dz.

Since the series is uniformly convergent, for any given ε > 0 there exists an Nε such that |RNε| < ε for all z in
|z| ≤ r. If L is the length of the contour C then∣∣∣∣∮

C

RNε(z) dz

∣∣∣∣ ≤ Lε→ 0 as Nε →∞.

∮
C

f(z) dz = lim
N→∞

∮
C

(
N−1∑
n=0

anz
n +RN(z)

)
dz

=

∮
C

∞∑
n=0

anz
n

=
∞∑
n=0

an

∮
C

zn dz

= 0.

Thus f(z) is analytic for |z| < r.

Result 14.3.6 A power series is analytic in its domain of uniform convergence.

14.4 Integration and Differentiation of Power Series

Consider a power series f(z) =
∑∞

n=0 anz
n that is convergent in the disk |z| < r0. Let C be any contour of finite

length L lying entirely within the closed domain |z| ≤ r < r0. The integral of f(z) along C is∫
C

f(z) dz =

∫
C

[SN(z) +RN(z)] dz.
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Since the series is uniformly convergent in the closed disk, for any given ε > 0, there exists an Nε such that

|RNε(z)| < ε for all |z| ≤ r.

Bounding the absolute value of the integral of RNε(z),∣∣∣∣∫
C

RNε(z) dz

∣∣∣∣ ≤ ∫
C

|RNε(z)| dz

< εL

→ 0 as Nε →∞

Thus ∫
C

f(z) dz = lim
N→∞

∫
C

N∑
n=0

anz
n dz

= lim
N→∞

N∑
n=0

an

∫
C

zn dz

=
∞∑
n=0

an

∫
C

zn dz

Result 14.4.1 If C is a contour lying in the domain of uniform convergence of the power
series

∑∞
n=0 anz

n then ∫
C

∞∑
n=0

anz
n dz =

∞∑
n=0

an

∫
C

zn dz.

In the domain of uniform convergence of a series we can interchange the order of summation and a limit
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process. That is,

lim
z→z0

∞∑
n=0

an(z) =
∞∑
n=0

lim
z→z0

an(z).

We can do this because the rate of convergence does not depend on z. Since differentiation is a limit process,

d

dz
f(z) = lim

h→0

f(z + h)− f(z)

h
,

we would expect that we could differentiate a uniformly convergent series.
Since we showed that a uniformly convergent power series is equal to an analytic function, we can differentiate

a power series in it’s domain of uniform convergence.

Result 14.4.2 In the domain of uniform convergence of a power series

d

dz

∞∑
n=0

anz
n =

∞∑
n=0

(n+ 1)an+1z
n.

Example 14.4.1 Differentiating a Series. Consider the series from Example 14.3.2

log(1− z) = −
∞∑
n=1

zn

n
.

Differentiating this series yields

− 1

1− z
= −

∞∑
n=1

zn−1

1

1− z
=
∞∑
n=0

zn.
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We recognize this as the geometric series, which is convergent for |z| < 1 and uniformly convergent for |z| ≤ r < 1.
Note that the domain of convergence is different than the series for log(1 − z). The geometric series does not
converge for |z| = 1, z 6= 1. However, the domain of uniform convergence has remained the same.

14.5 Taylor Series

Result 14.5.1 Taylor’s Theorem. Let f(z) be a function that is single-valued and
analytic in |z− z0| < R. For all z in this open disk, f(z) has the convergent Taylor series

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n. (14.1)

We can also write this as

f(z) =
∞∑
n=0

an(z − z0)
n, an =

f (n)(z0)

n!
=

1

i2π

∮
C

f(z)

(z − z0)n+1 dz, (14.2)

where C is a simple, positive, closed contour in 0 < |z − z0| < R that goes once around
the point z0.

Proof of Taylor’s Theorem. Let’s see why Result 14.5.1 is true. Consider a function f(z) that is analytic in
|z| < R. (Considering z0 6= 0 is only trivially more general as we can introduce the change of variables ζ = z−z0.)
According to Cauchy’s Integral Formula, (Result ??),

f(z) =
1

i2π

∮
C

f(ζ)

ζ − z
dζ, (14.3)
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where C is a positive, simple, closed contour in 0 < |ζ − z| < R that goes once around z. We take this contour
to be the circle about the origin of radius r where |z| < r < R. (See Figure 14.4.)

Im(z)

Re(z)

r

C

R

z

Figure 14.4: Graph of Domain of Convergence and Contour of Integration.

We expand 1
ζ−z in a geometric series,

1

ζ − z
=

1/ζ

1− z/ζ

=
1

ζ

∞∑
n=0

(
z

ζ

)n
, for |z| < |ζ|

=
∞∑
n=0

zn

ζn+1
, for |z| < |ζ|

We substitute this series into Equation 14.3.

f(z) =
1

i2π

∮
C

(
∞∑
n=0

f(ζ)zn

ζn+1

)
dζ
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The series converges uniformly so we can interchange integration and summation.

=
∞∑
n=0

1

i2π

∮
C

f(ζ)

ζn+1
dζ zn

Now we have derived Equation 14.2. To obtain Equation 14.1, we apply Cauchy’s Integral Formula.

=
∞∑
n=0

f (n)(0)

n!
zn

There is a table of some commonly encountered Taylor series in Appendix H.

Example 14.5.1 Consider the Taylor series expansion of 1/(1− z) about z = 0. Previously, we showed that this
function is the sum of the geometric series

∑∞
n=0 z

n and we used the ratio test to show that the series converged
absolutely for |z| < 1. Now we find the series using Taylor’s theorem. Since the nearest singularity of the function
is at z = 1, the radius of convergence of the series is 1. The coefficients in the series are

an =
1

n!

[
dn

dzn
1

1− z

]
z=0

=
1

n!

[
n!

(1− z)n

]
z=0

= 1

Thus we have

1

1− z
=
∞∑
n=0

zn, for |z| < 1.
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14.5.1 Newton’s Binomial Formula.

Result 14.5.2 For all |z| < 1, a complex:

(1 + z)a = 1 +

(
a

1

)
z +

(
a

2

)
z2 +

(
a

3

)
z3 + · · ·

where (
a

r

)
=
a(a− 1)(a− 2) · · · (a− r + 1)

r!
.

If a is complex, then the expansion is of the principle branch of (1 + z)a. We define(
r

0

)
= 1,

(
0

r

)
= 0, for r 6= 0,

(
0

0

)
= 1.

Example 14.5.2 Evaluate limn→∞(1 + 1/n)n.

First we expand (1 + 1/n)n using Newton’s binomial formula.

lim
n→∞

(
1 +

1

n

)n
= lim

n→∞

(
1 +

(
n

1

)
1/n+

(
n

2

)
1/n2 +

(
n

3

)
1/n3 + · · ·

)
= lim

n→∞

(
1 + 1 +

n(n− 1)

2! n2
+
n(n− 1)(n− 2)

3! n3
+ · · ·

)
=

(
1 + 1 +

1

2!
+

1

3!
+ · · ·

)
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We recognize this as the Taylor series expansion of e1.

= e

We can also evaluate the limit using L’Hospital’s rule.

Log

(
lim
x→∞

(
1 +

1

x

)x)
= lim

x→∞
Log ((1 + 1/x)x)

= lim
x→∞

xLog (1 + 1/x)

= lim
x→∞

Log (1 + 1/x)

1/x

= lim
x→∞

−1/x2

1+1/x

−1/x2

= 1

lim
x→∞

(
1 +

1

x

)x
= e1

Example 14.5.3 Find the Taylor series expansion of 1/(1 + z) about z = 0.

For |z| < 1,

1

1 + z
= 1 +

(
−1

1

)
z +

(
−1

2

)
z2 +

(
−1

3

)
z3 + · · ·

= 1 + (−1)1z + (−1)2z2 + (−1)3z3 + · · ·
= 1− z + z2 − z3 + · · ·
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Example 14.5.4 Find the first few terms in the Taylor series expansion of

1√
z2 + 5z + 6

about the origin.

We factor the denominator and then apply Newton’s binomial formula.

1√
z2 + 5z + 6

=
1√
z + 3

1√
z + 2

=
1√

3
√

1 + z/3

1√
2
√

1 + z/2

=
1√
6

[
1 +

(
−1/2

1

)
z

3
+

(
−1/2

2

)(z
3

)2

+ · · ·
] [

1 +

(
−1/2

1

)
z

2
+

(
−1/2

2

)(z
2

)2

+ · · ·
]

=
1√
6

[
1− z

6
+
z2

24
+ · · ·

] [
1− z

4
+

3z2

32
+ · · ·

]
=

1√
6

[
1− 5

12
z +

17

96
z2 + · · ·

]
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14.6 Laurent Series

Result 14.6.1 Let f(z) be single-valued and analytic in the annulus R1 < |z−z0| < R2.
For points in the annulus, the function has the convergent Laurent series

f(z) =
∞∑

n=−∞
anz

n,

where

an =
1

2πi

∮
C

f(z)

(z − z0)n+1 dz

and C is a positively oriented, closed contour around z0 lying in the annulus.

To derive this result, consider a function f(ζ) that is analytic in the annulus R1 < |ζ| < R2. Consider any
point z in the annulus. Let C1 be a circle of radius r1 with R1 < r1 < |z|. Let C2 be a circle of radius r2 with
|z| < r2 < R2. Let Cz be a circle around z, lying entirely between C1 and C2. (See Figure 14.5 for an illustration.)

Consider the integral of f(ζ)
ζ−z around the C2 contour. Since the the only singularities of f(ζ)

ζ−z occur at ζ = z and
at points outside the annulus,

∮
C2

f(ζ)

ζ − z
dζ =

∮
Cz

f(ζ)

ζ − z
dζ +

∮
C1

f(ζ)

ζ − z
dζ.

By Cauchy’s Integral Formula, the integral around Cz is

∮
Cz

f(ζ)

ζ − z
dζ = i2π f(z).
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This gives us an expression for f(z).

f(z) =
1

2πi

∮
C2

f(ζ)

ζ − z
dζ − 1

2πi

∮
C1

f(ζ)

ζ − z
dζ (14.4)

On the C2 contour, |z| < |ζ|. Thus

1

ζ − z
=

1/ζ

1− z/ζ

=
1

ζ

∞∑
n=0

(
z

ζ

)n
, for |z| < |ζ|

=
∞∑
n=0

zn

ζn+1
, for |z| < |ζ|

On the C1 contour, |ζ| < |z|. Thus

− 1

ζ − z
=

1/z

1− ζ/z

=
1

z

∞∑
n=0

(
ζ

z

)n
, for |ζ| < |z|

=
∞∑
n=0

ζn

zn+1
, for |ζ| < |z|

=
−1∑

n=−∞

zn

ζn+1
, for |ζ| < |z|

We substitute these geometric series into Equation 14.4.

f(z) =
1

i2π

∮
C2

(
∞∑
n=0

f(ζ)zn

ζn+1

)
dζ +

1

i2π

∮
C1

(
−1∑

n=−∞

f(ζ)zn

ζn+1

)
dζ
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Since the sums converge uniformly, we can interchange the order of integration and summation.

f(z) =
1

i2π

∞∑
n=0

∮
C2

f(ζ)zn

ζn+1
dζ +

1

i2π

−1∑
n=−∞

∮
C1

f(ζ)zn

ζn+1
dζ

Since the only singularities of the integrands lie outside of the annulus, the C1 and C2 contours can be deformed
to any positive, closed contour C that lies in the annulus and encloses the origin. (See Figure 14.5.) Finally, we
combine the two integrals to obtain the desired result.

f(z) =
∞∑

n=−∞

1

i2π

(∮
C

f(ζ)

ζn+1
dζ

)
zn

For the case of arbitrary z0, simply make the transformation z → z − z0.

Example 14.6.1 Find the Laurent series expansions of 1/(1 + z).
For |z| < 1,

1

1 + z
= 1 +

(
−1

1

)
z +

(
−1

2

)
z2 +

(
−1

3

)
z3 + · · ·

= 1 + (−1)1z + (−1)2z2 + (−1)3z3 + · · ·
= 1− z + z2 − z3 + · · ·

For |z| > 1,

1

1 + z
=

1/z

1 + 1/z

=
1

z

(
1 +

(
−1

1

)
z−1 +

(
−1

2

)
z−2 + · · ·

)
= z−1 − z−2 + z−3 − · · ·
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Im(z)

Re(z)
R

R2

1

Im(z)

Re(z)
R

R2

1

C

r1

r2

z
C C

C1

2 z

Figure 14.5: Contours for a Laurent Expansion in an Annulus.

14.7 Exercises

Exercise 14.1 (mathematica/fcv/series/constants.nb)
Does the series

∞∑
n=2

1

n log n

converge?
Hint, Solution
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Exercise 14.2 (mathematica/fcv/series/constants.nb)
Show that the alternating harmonic series,

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · ,

is convergent.

Hint, Solution

Exercise 14.3 (mathematica/fcv/series/constants.nb)
Show that the series

∞∑
n=1

1

n

is divergent with the Cauchy convergence criterion.

Hint, Solution

Exercise 14.4
The alternating harmonic series has the sum:

∞∑
n=1

(−1)n

n
= log(2).

Show that the terms in this series can be rearranged to sum to π.

Hint, Solution
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Exercise 14.5 (mathematica/fcv/series/constants.nb)
Is the series,

∞∑
n=1

n!

nn
,

convergent?
Hint, Solution

Exercise 14.6
Show that the harmonic series,

∞∑
n=1

1

nα
= 1 +

1

2α
+

1

3α
+ · · · ,

converges for α > 1 and diverges for α ≤ 1.
Hint, Solution

Exercise 14.7
Evaluate

∑N−1
n=1 sin(nx).

Hint, Solution

Exercise 14.8
Using the geometric series, show that

1

(1− z)2
=
∞∑
n=0

(n+ 1)zn, for |z| < 1,

and

log(1− z) = −
∞∑
n=1

zn

n
, for |z| < 1.
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Hint, Solution

Exercise 14.9
Find the Taylor series of 1

1+z2 about the z = 0. Determine the radius of convergence of the Taylor series from the
singularities of the function. Determine the radius of convergence with the ratio test.

Hint, Solution

Exercise 14.10
Use two methods to find the Taylor series expansion of log(1 + z) about z = 0 and determine the circle of
convergence. First directly apply Taylor’s theorem, then differentiate a geometric series.

Hint, Solution

Exercise 14.11
Find the Laurent series about z = 0 of 1/(z − i) for |z| < 1 and |z| > 1.

Hint, Solution

Exercise 14.12
Evaluate

n∑
k=1

kzk and
n∑
k=1

k2zk

for z 6= 1.

Hint, Solution

Exercise 14.13
Find the circle of convergence of the following series.
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1. z + (α− β)
z2

2!
+ (α− β)(α− 2β)

z3

3!
+ (α− β)(α− 2β)(α− 3β)

z4

4!
+ · · ·

2.
∞∑
n=1

n

2n
(z − i)n

3.
∞∑
n=1

nnzn

4.
∞∑
n=1

n!

nn
zn

5.
∞∑
n=1

[3 + (−1)n]n zn

6.
∞∑
n=1

(n+ αn) zn (|α| > 1)

Hint, Solution

Exercise 14.14
Let f(z) = (1 + z)α be the branch for which f(0) = 1. Find its Taylor series expansion about z = 0. What is the
radius of convergence of the series? (α is an arbitrary complex number.)
Hint, Solution

Exercise 14.15
Obtain the Laurent expansion of

f(z) =
1

(z + 1)(z + 2)
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centered on z = 0 for the three regions:

1. |z| < 1

2. 1 < |z| < 2

3. 2 < |z|

Hint, Solution

Exercise 14.16
By comparing the Laurent expansion of (z + 1/z)m, m ∈ Z+, with the binomial expansion of this quantity, show
that ∫ 2π

0

(cos θ)m cos(nθ) dθ =

{
π

2m−1

(
m

(m−n)/2

)
−m ≤ n ≤ m and m− n even

0 otherwise

Hint, Solution

Exercise 14.17
The function f(z) is analytic in the entire z-plane, including∞, except at the point z = i/2, where it has a simple
pole, and at z = 2, where it has a pole of order 2. In addition∮

|z|=1

f(z) dz = 2πi,

∮
|z|=3

f(z) dz = 0,

∮
|z|=3

(z − 1)f(z) dz = 0.

Find f(z) and its complete Laurent expansion about z = 0.
Hint, Solution

Exercise 14.18
Let f(z) =

∑∞
k=1 k

3
(
z
3

)k
. Compute each of the following, giving justification in each case. The contours are

circles of radius one about the origin.
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1.

∫
|z|=1

eizf(z) dz

2.

∫
|z|=1

f(z)

z4
dz

3.

∫
|z|=1

f(z) ez

z2
dz

Hint, Solution
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14.8 Hints
Hint 14.1
Use the integral test.

Hint 14.2
Group the terms.

1− 1

2
=

1

2
1

3
− 1

4
=

1

12
1

5
− 1

6
=

1

30
· · ·

Hint 14.3
Show that

|S2n − Sn| >
1

2
.

Hint 14.4
The alternating harmonic series is conditionally convergent. Let {an} and {bn} be the positive and negative terms
in the sum, respectively, ordered in decreasing magnitude. Note that both

∑∞
n=1 an and sumoinbn are divergent.

Devise a method for alternately taking terms from {an} and {bn}.

Hint 14.5
Use the ratio test.
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Hint 14.6
Use the integral test.

Hint 14.7
Note that sin(nx) = =( einx). This substitute will yield a finite geometric series.

Hint 14.8
Differentiate the geometric series. Integrate the geometric series.

Hint 14.9
The Taylor series is a geometric series.

Hint 14.10

Hint 14.11

Hint 14.12
Let Sn be the sum. Consider Sn − zSn. Use the finite geometric sum.

Hint 14.13
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Hint 14.14

Hint 14.15

Hint 14.16

Hint 14.17

Hint 14.18
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14.9 Solutions

Solution 14.1
Since

∑∞
n=2 is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral,∫ ∞

2

1

x log x
dx =

∫ ∞
log 2

1

ξ
dξ

Since the integral diverges, the series also diverges.

Solution 14.2

∞∑
n=1

(−1)n+1

n
=
∞∑
n=1

(
1

2n− 1
− 1

2n

)
=
∞∑
n=1

1

(2n− 1)(2n)

<
∞∑
n=1

1

(2n− 1)2

<
1

2

∞∑
n=1

1

n2

=
π2

12

Thus the series is convergent.
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Solution 14.3
Since

|S2n − Sn| =

∣∣∣∣∣
2n−1∑
j=n

1

j

∣∣∣∣∣
≥

2n−1∑
j=n

1

2n− 1

=
n

2n− 1

>
1

2

the series does not satisfy the Cauchy convergence criterion.

Solution 14.4
The alternating harmonic series is conditionally convergent. That is, the sum is convergent but not absolutely
convergent. Let {an} and {bn} be the positive and negative terms in the sum, respectively, ordered in decreasing
magnitude. Note that both

∑∞
n=1 an and

∑∞
n=1 bn are divergent. Otherwise the alternating harmonic series would

be absolutely convergent.
To sum the terms in the series to π we repeat the following two steps indefinitely:

1. Take terms from {an} until the sum is greater than π.

2. Take terms from {bn} until the sum is less than π.

Each of these steps can always be accomplished because the sums,
∑∞

n=1 an and
∑∞

n=1 bn are both divergent.
Hence the tails of the series are divergent. No matter how many terms we take, the remaining terms in each series
are divergent. In each step a finite, nonzero number of terms from the respective series is taken. Thus all the
terms will be used. Since the terms in each series vanish as n→∞, the running sum converges to π.
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Solution 14.5
Applying the ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!nn

n!(n+ 1)(n+1)

= lim
n→∞

nn

(n+ 1)n

= lim
n→∞

(
n

(n+ 1)

)n
=

1

e
< 1,

we see that the series is absolutely convergent.

Solution 14.6
The harmonic series,

∞∑
n=1

1

nα
= 1 +

1

2α
+

1

3α
+ · · · ,

converges or diverges absolutely with the integral,∫ ∞
1

1

|xα|
dx =

∫ ∞
1

1

x<(α)
dx =

{
[log x]∞1 for <(α) = 1,[
x1−<(α)

1−<(α)

]∞
1

for <(α) 6= 1.

The integral converges only for <(α) > 1. Thus the harmonic series converges absolutely for <(α) > 1 and
diverges absolutely for <(α) ≤ 1.
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Solution 14.7

N−1∑
n=1

sin(nx) =
N−1∑
n=0

sin(nx)

=
N−1∑
n=0

=( einx)

= =

(
N−1∑
n=0

( eix)n

)

=

{
=(N) for x = 2πk

=
(

1− eiNx

1− eix

)
for x 6= 2πk

=

{
0 for x = 2πk

=
(

e−ix/2− ei(N−1/2)x

e−ix/2− eix/2

)
for x 6= 2πk

=

{
0 for x = 2πk

=
(

e−ix/2− ei(N−1/2)x

−2i sin(x/2)

)
for x 6= 2πk

=

{
0 for x = 2πk

<
(

e−ix/2− ei(N−1/2)x

2 sin(x/2)

)
for x 6= 2πk

N−1∑
n=1

sin(nx) =

{
0 for x = 2πk
cos(x/2)−cos((N−1/2)x)

2 sin(x/2)
for x 6= 2πk
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Solution 14.8
The geometric series is

1

1− z
=
∞∑
n=0

zn.

This series is uniformly convergent in the domain, |z| ≤ r < 1. Differentiating this equation yields,

1

(1− z)2
=
∞∑
n=1

nzn−1

=
∞∑
n=0

(n+ 1)zn for |z| < 1.

Integrating the geometric series yields

− log(1− z) =
∞∑
n=0

zn+1

n+ 1

log(1− z) = −
∞∑
n=1

zn

n
, for |z| < 1.

Solution 14.9

1

1 + z2
=
∞∑
n=0

(−z2)n =
∞∑
n=0

(−1)nz2n
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The function 1
1+z2 = 1

(1−iz)(1+iz)
has singularities at z = ±i. Thus the radius of convergence is 1. Now we use the

ratio test to corroborate that the radius of convergence is 1.

lim
n→∞

∣∣∣∣an+1(z)

an(z)

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣(−1)n+1z2(n+1)

(−1)nz2n

∣∣∣∣ < 1

lim
n→∞

∣∣z2
∣∣ < 1

|z| < 1

Solution 14.10

Method 1.

log(1 + z) = [log(1 + z)]z=0 +

[
d

dz
log(1 + z)

]
z=0

z

1!
+

[
d2

dz2
log(1 + z)

]
z=0

z2

2!
+ · · ·

= 0 +

[
1

1 + z

]
z=0

z

1!
+

[
−1

(1 + z)2

]
z=0

z2

2!
+

[
2

(1 + z)3

]
z=0

z3

3!
+ · · ·

= z − z2

2
+
z3

3
− z4

4
+ · · ·

=
∞∑
n=1

(−1)n+1 z
n

n

Since the nearest singularity of log(1 + z) is at z = −1, the radius of convergence is 1.
Method 2. We know the geometric series

1

1 + z
=
∞∑
n=0

(−1)nzn
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converges for |z| < 1. Integrating this equation yields

log(1 + z) =
∞∑
n=0

(−1)n
zn+1

n+ 1
=
∞∑
n=1

(−1)n+1 z
n

n

for |z| < 1. We calculate the radius of convergence with the ratio test.

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = lim
n→∞

∣∣∣∣−(n+ 1)

n

∣∣∣∣ = 1

Thus the series converges absolutely for |z| < 1.

Solution 14.11
For |z| < 1:

1

z − i
=

i

1 + iz

= i
∞∑
n=0

(−iz)n

(Note that |z| < 1⇔ | − iz| < 1.)

For |z| > 1:

1

z − i
=

1

z

1

(1− i/z)
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(Note that |z| > 1⇔ | − i/z| < 1.)

=
1

z

∞∑
n=0

(
i

z

)n
=

1

z

0∑
n=−∞

i−nzn

=
0∑

n=−∞

(−i)nzn−1

=
−1∑

n=−∞

(−i)n+1zn

Solution 14.12
Let

Sn =
n∑
k=1

kzk.

Sn − zSn =
n∑
k=1

kzk −
n∑
k=1

kzk+1

=
n∑
k=1

kzk −
n+1∑
k=2

(k − 1)zk

=
n∑
k=1

zk − nzn+1

=
z − zn+1

1− z
− nzn+1
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n∑
k=1

kzk =
z(1− (n+ 1)zn + nzn+1)

(1− z)2

Let

Sn =
n∑
k=1

k2zk.

Sn − zSn =
n∑
k=1

(k2 − (k − 1)2)zk − n2zn+1

= 2
n∑
k=1

kzk −
n∑
k=1

zk − n2zn+1

= 2
z(1− (n+ 1)zn + nzn+1)

(1− z)2
− z − zn+1

1− z
− n2zn+1

n∑
k=1

k2zk =
z(1 + z − zn(1 + z + n(n(z − 1)− 2)(z − 1)))

(1− z)3
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Solution 14.13
1. We assume that β 6= 0. We determine the radius of convergence with the ratio test.

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
= lim

n→∞

∣∣∣∣(α− β) · · · (α− (n− 1)β)/n!

(α− β) · · · (α− nβ)/(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ n+ 1

α− nβ

∣∣∣∣
=

1

|β|

The series converges absolutely for |z| < 1/|β|.

2. By the ratio test formula, the radius of absolute convergence is

R = lim
n→∞

∣∣∣∣ n/2n

(n+ 1)/2n+1

∣∣∣∣
= 2 lim

n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣
= 2

By the root test formula, the radius of absolute convergence is

R =
1

limn→∞
n
√
|n/2n|

=
2

limn→∞
n
√
n

= 2

The series converges absolutely for |z − i| < 2.
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3. We determine the radius of convergence with the Cauchy-Hadamard formula.

R =
1

lim sup n
√
|an|

=
1

lim sup n
√
|nn|

=
1

lim supn

= 0

The series converges only for z = 0.
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4. By the ratio test formula, the radius of absolute convergence is

R = lim
n→∞

∣∣∣∣ n!/nn

(n+ 1)!/(n+ 1)n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)n

nn

∣∣∣∣
= lim

n→∞

(
n+ 1

n

)n
= exp

(
lim
n→∞

log

((
n+ 1

n

)n))
= exp

(
lim
n→∞

n log

(
n+ 1

n

))
= exp

(
lim
n→∞

log(n+ 1)− log(n)

1/n

)
= exp

(
lim
n→∞

1/(n+ 1)− 1/n

−1/n2

)
= exp

(
lim
n→∞

n

n+ 1

)
= e1

The series converges absolutely in the circle, |z| < e.

5. By the Cauchy-Hadamard formula, the radius of absolute convergence is

R =
1

lim sup n
√
| (3 + (−1)n)n |

=
1

lim sup (3 + (−1)n)

=
1

4
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Thus the series converges absolutely for |z| < 1/4.

6. By the Cauchy-Hadamard formula, the radius of absolute convergence is

R =
1

lim sup n
√
|n+ αn|

=
1

lim sup |α| n
√
|1 + n/αn|

=
1

|α|

Thus the sum converges absolutely for |z| < 1/|α|.

Solution 14.14
The Taylor series expansion of f(z) about z = 0 is

f(z) =
∞∑
n=0

f (n)(0)

n!
zn.

The derivatives of f(z) are

f (n)(z) =

(
n−1∏
k=0

(α− k)

)
(1 + z)α−n.

Thus f (n)(0) is

f (n)(0) =
n−1∏
k=0

(α− k).
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If α = m is a non-negative integer, then only the first m+ 1 terms are nonzero. The Taylor series is a polynomial
and the series has an infinite radius of convergence.

(1 + z)m =
m∑
n=0

∏n−1
k=0(α− k)

n!
zn

If α is not a non-negative integer, then all of the terms in the series are non-zero.

(1 + z)α =
∞∑
n=0

∏n−1
k=0(α− k)

n!
zn

The radius of convergence of the series is the distance to the nearest singularity of (1 + z)α. This occurs at z = 1.
Thus the series converges for |z| < 1. We can corroborate this with the ratio test. The radius of convergence is

R = lim
n→∞

∣∣∣∣∣
(∏n−1

k=0(α− k)
)
/n!

(
∏n

k=0(α− k)) /(n+ 1)!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n+ 1

α− n

∣∣∣∣ = | − 1| = 1.

If we define the binomial coefficient, (
α

n

)
≡
∏n−1

k=0(α− k)

n!
,

then we can write the series as

(1 + z)α =
∞∑
n=0

(
α

n

)
zn.

Solution 14.15
We expand the function in partial fractions.

f(z) =
1

(z + 1)(z + 2)
=

1

z + 1
− 1

z + 2
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The Taylor series about z = 0 for 1/(z + 1) is

1

1 + z
=

1

1− (−z)

=
∞∑
n=0

(−z)n, for |z| < 1

=
∞∑
n=0

(−1)nzn, for |z| < 1

The series about z =∞ for 1/(z + 1) is

1

1 + z
=

1/z

1 + 1/z

=
1

z

∞∑
n=0

(−1/z)n, for |1/z| < 1

=
∞∑
n=0

(−1)nz−n−1, for |z| > 1

=
−1∑

n=−∞

(−1)n+1zn, for |z| > 1

The Taylor series about z = 0 for 1/(z + 2) is

1

2 + z
=

1/2

1 + z/2

=
1

2

∞∑
n=0

(−z/2)n, for |z/2| < 1

=
∞∑
n=0

(−1)n

2n+1
zn, for |z| < 2
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The series about z =∞ for 1/(z + 2) is

1

2 + z
=

1/z

1 + 2/z

=
1

z

∞∑
n=0

(−2/z)n, for |2/z| < 1

=
∞∑
n=0

(−1)n2nz−n−1, for |z| > 2

=
−1∑

n=−∞

(−1)n+1

2n+1
zn, for |z| > 2

To find the expansions in the three regions, we just choose the appropriate series.

1.

f(z) =
1

1 + z
− 1

2 + z

=
∞∑
n=0

(−1)nzn −
∞∑
n=0

(−1)n

2n+1
zn, for |z| < 1

=
∞∑
n=0

(−1)n
(

1− 1

2n+1

)
zn, for |z| < 1

f(z) =
∞∑
n=0

(−1)n
2n+1 − 1

2n+1
zn, for |z| < 1
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2.

f(z) =
1

1 + z
− 1

2 + z

f(z) =
−1∑

n=−∞

(−1)n+1zn −
∞∑
n=0

(−1)n

2n+1
zn, for 1 < |z| < 2

3.

f(z) =
1

1 + z
− 1

2 + z

=
−1∑

n=−∞

(−1)n+1zn −
−1∑

n=−∞

(−1)n+1

2n+1
zn, for 2 < |z|

f(z) =
−1∑

n=−∞

(−1)n+1 2n+1 − 1

2n+1
zn, for 2 < |z|

Solution 14.16
Laurent Series. We assume that m is a non-negative integer and that n is an integer. The Laurent series about
the point z = 0 of

f(z) =

(
z +

1

z

)m
is

f(z) =
∞∑

n=−∞

anz
n
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where

an =
1

i2π

∮
C

f(z)

zn+1
dz

and C is a contour going around the origin once in the positive direction. We manipulate the coefficient integral
into the desired form.

an =
1

i2π

∮
C

(z + 1/z)m

zn+1
dz

=
1

i2π

∫ 2π

0

( eiθ + e−iθ)m

ei(n+1)θ
i eiθ dθ

=
1

2π

∫ 2π

0

2m cosm θ e−inθ dθ

=
2m−1

π

∫ 2π

0

cosm θ(cos(nθ)− i sin(nθ)) dθ

Note that cosm θ is even and sin(nθ) is odd about θ = π.

=
2m−1

π

∫ 2π

0

cosm θ cos(nθ) dθ

Binomial Series. Now we find the binomial series expansion of f(z).(
z +

1

z

)m
=

m∑
n=0

(
m

n

)
zm−n

(
1

z

)n
=

m∑
n=0

(
m

n

)
zm−2n

=
m∑

n=−m
m−n even

(
m

(m− n)/2

)
zn
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The coefficients in the series f(z) =
∑∞

n=−∞ anz
n are

an =

{(
m

(m−n)/2

)
−m ≤ n ≤ m and m− n even

0 otherwise

By equating the coefficients found by the two methods, we evaluate the desired integral.∫ 2π

0

(cos θ)m cos(nθ) dθ =

{
π

2m−1

(
m

(m−n)/2

)
−m ≤ n ≤ m and m− n even

0 otherwise

Solution 14.17
First we write f(z) in the form

f(z) =
g(z)

(z − i/2)(z − 2)2
.

g(z) is an entire function which grows no faster that z3 at infinity. By expanding g(z) in a Taylor series about
the origin, we see that it is a polynomial of degree no greater than 3.

f(z) =
αz3 + βz2 + γz + δ

(z − i/2)(z − 2)2
.

Since f(z) is a rational function we expand it in partial fractions to obtain a form that is convenient to integrate.

f(z) =
a

z − i/2
+

b

z − 2
+

c

(z − 2)2
+ d

We use the value of the integrals of f(z) to determine the constants, a, b, c and d.∮
|z|=1

(
a

z − i/2
+

b

z − 2
+

c

(z − 2)2
+ d

)
dz = i2π

i2πa = i2π

a = 1

483



∮
|z|=3

(
1

z − i/2
+

b

z − 2
+

c

(z − 2)2
+ d

)
dz = 0

i2π(1 + b) = 0

b = −1

Note that by applying the second constraint, we can change the third constraint to∮
|z|=3

zf(z) dz = 0.

∮
|z|=3

z

(
1

z − i/2
− 1

z − 2
+

c

(z − 2)2
+ d

)
dz = 0∮

|z|=3

(
(z − i/2) + i/2

z − i/2
− (z − 2) + 2

z − 2
+
c(z − 2) + 2c

(z − 2)2

)
dz = 0

i2π

(
i

2
− 2 + c

)
= 0

c = 2− i

2

Thus we see that the function is

f(z) =
1

z − i/2
− 1

z − 2
+

2− i/2
(z − 2)2

+ d.

where d is an arbitrary constant. We can also write the function in the form:

f(z) =
dz3 + 15− i8

4(z − i/2)(z − 2)2
.
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Complete Laurent Series. We find the complete Laurent series about z = 0 for each of the terms in the
partial fraction expansion of f(z).

1

z − i/2
=

i2

1 + i2z

= i2
∞∑
n=0

(−i2z)n, for | − i2z| < 1

= −
∞∑
n=0

(−i2)n+1zn, for |z| < 1/2

1

z − i/2
=

1/z

1− i/(2z)

=
1

z

∞∑
n=0

(
i

2z

)n
, for |i/(2z)| < 1

=
∞∑
n=0

(
i

2

)n
z−n−1, for |z| < 2

=
−1∑

n=−∞

(
i

2

)−n−1

zn, for |z| < 2

=
−1∑

n=−∞

(−i2)n+1zn, for |z| < 2
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− 1

z − 2
=

1/2

1− z/2

=
1

2

∞∑
n=0

(z
2

)n
, for |z/2| < 1

=
∞∑
n=0

zn

2n+1
, for |z| < 2

− 1

z − 2
= − 1/z

1− 2/z

= −1

z

∞∑
n=0

(
2

z

)n
, for |2/z| < 1

= −
∞∑
n=0

2nz−n−1, for |z| > 2

= −
−1∑

n=−∞

2−n−1zn, for |z| > 2
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2− i/2
(z − 2)2

= (2− i/2)
1

4
(1− z/2)−2

=
4− i

8

∞∑
n=0

(
−2

n

)(
−z

2

)n
, for |z/2| < 1

=
4− i

8

∞∑
n=0

(−1)n(n+ 1)(−1)n2−nzn, for |z| < 2

=
4− i

8

∞∑
n=0

n+ 1

2n
zn, for |z| < 2

2− i/2
(z − 2)2

=
2− i/2
z2

(
1− 2

z

)−2

=
2− i/2
z2

∞∑
n=0

(
−2

n

)(
−2

z

)n
, for |2/z| < 1

= (2− i/2)
∞∑
n=0

(−1)n(n+ 1)(−1)n2nz−n−2, for |z| > 2

= (2− i/2)
−2∑

n=−∞

(−n− 1)2−n−2zn, for |z| > 2

= −(2− i/2)
−2∑

n=−∞

n+ 1

2n+2
zn, for |z| > 2

We take the appropriate combination of these series to find the Laurent series expansions in the regions:
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|z| < 1/2, 1/2 < |z| < 2 and 2 < |z|. For |z| < 1/2, we have

f(z) = −
∞∑
n=0

(−i2)n+1zn +
∞∑
n=0

zn

2n+1
+

4− i
8

∞∑
n=0

n+ 1

2n
zn + d

f(z) =
∞∑
n=0

(
−(−i2)n+1 +

1

2n+1
+

4− i
8

n+ 1

2n

)
zn + d

f(z) =
∞∑
n=0

(
−(−i2)n+1 +

1

2n+1

(
1 +

4− i
4

(n+ 1)

))
zn + d, for |z| < 1/2

For 1/2 < |z| < 2, we have

f(z) =
−1∑

n=−∞

(−i2)n+1zn +
∞∑
n=0

zn

2n+1
+

4− i
8

∞∑
n=0

n+ 1

2n
zn + d

f(z) =
−1∑

n=−∞

(−i2)n+1zn +
∞∑
n=0

(
1

2n+1

(
1 +

4− i
4

(n+ 1)

))
zn + d, for 1/2 < |z| < 2

For 2 < |z|, we have

f(z) =
−1∑

n=−∞

(−i2)n+1zn −
−1∑

n=−∞

2−n−1zn − (2− i/2)
−2∑

n=−∞

n+ 1

2n+2
zn + d

f(z) =
−2∑

n=−∞

(
(−i2)n+1 − 1

2n+1
(1 + (1− i/4)(n+ 1))

)
zn + d, for 2 < |z|
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Solution 14.18
The radius of convergence of the series for f(z) is

R = lim
n→∞

∣∣∣∣ k3/3k

(k + 1)3/3k+1

∣∣∣∣ = 3 lim
n→∞

∣∣∣∣ k3

(k + 1)3

∣∣∣∣ = 3.

Thus f(z) is a function which is analytic inside the circle of radius 3.

1. The integrand is analytic. Thus by Cauchy’s theorem the value of the integral is zero.∮
|z|=1

eizf(z) dz = 0

2. We use Cauchy’s integral formula to evaluate the integral.∮
|z|=1

f(z)

z4
dz =

i2π

3!
f (3)(0) =

i2π

3!

3! 33

33
= i2π∮

|z|=1

f(z)

z4
dz = i2π.

3. We use Cauchy’s integral formula to evaluate the integral.∮
|z|=1

f(z) ez

z2
dz =

i2π

1!

d

dz
(f(z) ez)

∣∣
z=0

= i2π
1! 13

31∮
|z|=1

f(z) ez

z2
dz =

i2π

3
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Chapter 15

The Residue Theorem

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

- Winston Churchill

15.1 The Residue Theorem

We will find that many integrals on closed contours may be evaluated in terms of the residues of a function. We
first define residues and then prove the Residue Theorem.
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Result 15.1.1 Residues. Let f(z) be single-valued an analytic in a deleted neighbor-
hood of z0. Then f(z) has the Laurent series expansion

f(z) =
∞∑

n=−∞
an(z − z0)

n,

The residue of f(z) at z = z0 is the coefficient of the 1
z−z0

term:

Res (f(z), z0) = a−1.

The residue at a branch point or non-isolated singularity is undefined as the Laurent
series does not exist. If f(z) has a pole of order n at z = z0 then we can use the Residue
Formula:

Res (f(z), z0) = lim
z→z0

(
1

(n− 1)!

dn−1

dzn−1

[
(z − z0)

nf(z)
])

.

See Exercise 15.1 for a proof of the Residue Formula.

Example 15.1.1 In Example 10.4.5 we showed that f(z) = z/ sin z has first order poles at z = nπ, n ∈ Z \ {0}.

491



Now we find the residues at these isolated singularities.

Res
( z

sin z
, z = nπ

)
= lim

z→nπ

(
(z − nπ)

z

sin z

)
= nπ lim

z→nπ

z − nπ
sin z

= nπ lim
z→nπ

1

cos z

= nπ
1

(−1)n

= (−1)nnπ

Residue Theorem. We can evaluate many integrals in terms of the residues of a function. Suppose f(z) has
only one singularity, (at z = z0), inside the simple, closed, positively oriented contour C. f(z) has a convergent
Laurent series in some deleted disk about z0. We deform C to lie in the disk. See Figure 15.1. We now evaluate∫
C
f(z) dz by deforming the contour and using the Laurent series expansion of the function.

C B

Figure 15.1: Deform the contour to lie in the deleted disk.
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∫
C

f(z) dz =

∫
B

f(z) dz

=

∫
B

∞∑
n=−∞

an(z − z0)n dz

=
∞∑

n=−∞
n6=−1

an

[
(z − z0)n+1

n+ 1

]r ei(θ+2π)

r eiθ
+ a−1 [log(z − z0)]r ei(θ+2π)

r eiθ

= a−1i2π

∫
C

f(z) dz = i2πRes (f(z), z0)

Now assume that f(z) has n singularities at {z1, . . . , zn}. We deform C to n contours C1, . . . , Cn which enclose
the singularities and lie in deleted disks about the singularities in which f(z) has convergent Laurent series. See
Figure 15.2. We evaluate

∫
C
f(z) dz by deforming the contour.

∫
C

f(z) dz =
n∑
k=1

∫
Ck

f(z) dz = i2π
n∑
k=1

Res (f(z), zk)

Now instead let f(z) be analytic outside and on C except for isolated singularities at {ζn} in the domain outside
C and perhaps an isolated singularity at infinity. Let a be any point in the interior of C. To evaluate

∫
C
f(z) dz

we make the change of variables ζ = 1/(z − a). This maps the contour C to C ′. (Note that C ′ is negatively
oriented.) All the points outside C are mapped to points inside C ′ and vice versa. We can then evaluate the
integral in terms of the singularities inside C ′.

493



C

C

CC1

2

3

Figure 15.2: Deform the contour n contours which enclose the n singularities.

∮
C

f(z) dz =

∮
C′
f

(
1

ζ
+ a

)
−1

ζ2
dζ

=

∮
−C′

1

z2
f

(
1

z
+ a

)
dz

= i2π
∑
n

Res

(
1

z2
f

(
1

z
+ a

)
,

1

ζn − a

)
+ i2πRes

(
1

z2
f

(
1

z
+ a

)
, 0

)
.
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a

C

C’

Figure 15.3: The change of variables ζ = 1/(z − a).

Result 15.1.2 Residue Theorem. If f(z) is analytic in a compact, closed, connected
domain D except for isolated singularities at {zn} in the interior of D then∫

∂D

f(z) dz =
∑
k

∮
Ck

f(z) dz = i2π
∑
n

Res (f(z), zn).

Here the set of contours {Ck}make up the positively oriented boundary ∂D of the domain
D. If the boundary of the domain is a single contour C then the formula simplifies.∮

C

f(z) dz = i2π
∑
n

Res (f(z), zn)

If instead f(z) is analytic outside and on C except for isolated singularities at {ζn} in
the domain outside C and perhaps an isolated singularity at infinity then∮

C

f(z) dz = i2π
∑
n

Res

(
1

z2f

(
1

z
+ a

)
,

1

ζn − a

)
+ i2πRes

(
1

z2f

(
1

z
+ a

)
, 0

)
.

Here a is a any point in the interior of C. 495



Example 15.1.2 Consider

1

2πi

∫
C

sin z

z(z − 1)
dz

where C is the positively oriented circle of radius 2 centered at the origin. Since the integrand is single-valued
with only isolated singularities, the Residue Theorem applies. The value of the integral is the sum of the residues
from singularities inside the contour.

The only places that the integrand could have singularities are z = 0 and z = 1. Since

lim
z→0

sin z

z
= lim

z→0

cos z

1
= 1,

there is a removable singularity at the point z = 0. There is no residue at this point.
Now we consider the point z = 1. Since sin(z)/z is analytic and nonzero at z = 1, that point is a first order

pole of the integrand. The residue there is

Res

(
sin z

z(z − 1)
, z = 1

)
= lim

z→1
(z − 1)

sin z

z(z − 1)
= sin(1).

There is only one singular point with a residue inside the path of integration. The residue at this point is
sin(1). Thus the value of the integral is

1

2πi

∫
C

sin z

z(z − 1)
dz = sin(1)

Example 15.1.3 Evaluate the integral ∫
C

cot z coth z

z3
dz

where C is the unit circle about the origin in the positive direction.
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The integrand is

cot z coth z

z3
=

cos z cosh z

z3 sin z sinh z

sin z has zeros at nπ. sinh z has zeros at inπ. Thus the only pole inside the contour of integration is at z = 0.
Since sin z and sinh z both have simple zeros at z = 0,

sin z = z +O(z3), sinh z = z +O(z3)

the integrand has a pole of order 5 at the origin. The residue at z = 0 is

lim
z→0

1

4!

d4

dz4

(
z5 cot z coth z

z3

)
= lim

z→0

1

4!

d4

dz4

(
z2 cot z coth z

)
=

1

4!
lim
z→0

(
24 cot(z) coth(z) csc(z)2 − 32 z coth(z) csc(z)4

− 16 z cos(2 z) coth(z) csc(z)4 + 22 z2 cot(z) coth(z) csc(z)4

+ 2 z2 cos(3 z) coth(z) csc(z)5 + 24 cot(z) coth(z) csch (z)2

+ 24 csc(z)2 csch (z)2 − 48 z cot(z) csc(z)2 csch (z)2

− 48 z coth(z) csc(z)2 csch (z)2 + 24 z2 cot(z) coth(z) csc(z)2 csch (z)2

+ 16 z2 csc(z)4 csch (z)2 + 8 z2 cos(2 z) csc(z)4 csch (z)2

− 32 z cot(z) csch (z)4 − 16 z cosh(2 z) cot(z) csch (z)4

+ 22 z2 cot(z) coth(z) csch (z)4 + 16 z2 csc(z)2 csch (z)4

+ 8 z2 cosh(2 z) csc(z)2 csch (z)4 + 2 z2 cosh(3 z) cot(z) csch (z)5

)
=

1

4!

(
−56

15

)
= − 7

45
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Since taking the fourth derivative of z2 cot z coth z really sucks, we would like a more elegant way of finding
the residue. We expand the functions in the integrand in Taylor series about the origin.

cos z cosh z

z3 sin z sinh z
=

(
1− z2

2
+ z4

24
− · · ·

)(
1 + z2

2
+ z4

24
+ · · ·

)
z3
(
z − z3

6
+ z5

120
− · · ·

) (
z + z3

6
+ z5

120
+ · · ·

)
=

1− z4

6
+ · · ·

z3
(
z2 + z6

(−1
36

+ 1
90

)
+ · · ·

)
=

1

z5

1− z4

6
+ · · ·

1− z4

90
+ · · ·

=
1

z5

(
1− z4

6
+ · · ·

)(
1 +

z4

90
+ · · ·

)
=

1

z5

(
1− 7

45
z4 + · · ·

)
=

1

z5
− 7

45

1

z
+ · · ·

Thus we see that the residue is − 7
45

. Now we can evaluate the integral.∫
C

cot z coth z

z3
dz = −i14

45
π

15.2 Cauchy Principal Value for Real Integrals

15.2.1 The Cauchy Principal Value

First we recap improper integrals. If f(x) has a singularity at x0 ∈ (a . . . b) then∫ b

a

f(x) dx ≡ lim
ε→0+

∫ x0−ε

a

f(x) dx+ lim
δ→0+

∫ b

x0+δ

f(x) dx.
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For integrals on (−∞ . . .∞), ∫ ∞
−∞

f(x) dx ≡ lim
a→−∞, b→∞

∫ b

a

f(x) dx.

Example 15.2.1
∫ 1

−1
1
x

dx is divergent. We show this with the definition of improper integrals.∫ 1

−1

1

x
dx = lim

ε→0+

∫ −ε
−1

1

x
dx+ lim

δ→0+

∫ 1

δ

1

x
dx

= lim
ε→0+

[ln |x|]−ε−1 + lim
δ→0+

[ln |x|]1δ
= lim

ε→0+
ln ε− lim

δ→0+
ln δ

The integral diverges because ε and δ approach zero independently.
Since 1/x is an odd function, it appears that the area under the curve is zero. Consider what would happen if

ε and δ were not independent. If they approached zero symmetrically, δ = ε, then the value of the integral would
be zero.

lim
ε→0+

(∫ −ε
−1

+

∫ 1

ε

)
1

x
dx = lim

ε→0+
(ln ε− ln ε) = 0

We could make the integral have any value we pleased by choosing δ = cε. 1

lim
ε→0+

(∫ −ε
−1

+

∫ 1

cε

)
1

x
dx = lim

ε→0+
(ln ε− ln(cε)) = − ln c

We have seen it is reasonable that ∫ 1

−1

1

x
dx

1This may remind you of conditionally convergent series. You can rearrange the terms to make the series sum to any number.
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has some meaning, and if we could evaluate the integral, the most reasonable value would be zero. The Cauchy
principal value provides us with a way of evaluating such integrals. If f(x) is continuous on (a, b) except at the
point x0 ∈ (a, b) then the Cauchy principal value of the integral is defined

−
∫ b

a

f(x) dx = lim
ε→0+

(∫ x0−ε

a

f(x) dx+

∫ b

x0+ε

f(x) dx

)
.

The Cauchy principal value is obtained by approaching the singularity symmetrically. The principal value of
the integral may exist when the integral diverges. If the integral exists, it is equal to the principal value of the
integral.

The Cauchy principal value of
∫ 1

−1
1
x

dx is defined

−
∫ 1

−1

1

x
dx ≡ lim

ε→0+

(∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx

)
= lim

ε→0+

(
[log |x|]−ε−1 [log |x|]1ε

)
= lim

ε→0+
(log | − ε| − log |ε|)

= 0.

(Another notation for the principal value of an integral is PV
∫
f(x) dx.) Since the limits of integration approach

zero symmetrically, the two halves of the integral cancel. If the limits of integration approached zero independently,
(the definition of the integral), then the two halves would both diverge.

Example 15.2.2
∫∞
−∞

x
x2+1

dx is divergent. We show this with the definition of improper integrals.∫ ∞
−∞

x

x2 + 1
dx = lim

a→−∞, b→∞

∫ b

a

x

x2 + 1
dx

= lim
a→−∞, b→∞

[
1

2
ln(x2 + 1)

]b
a

=
1

2
lim

a→−∞, b→∞
ln

(
b2 + 1

a2 + 1

)
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The integral diverges because a and b approach infinity independently. Now consider what would happen if a and
b were not independent. If they approached zero symmetrically, a = −b, then the value of the integral would be
zero.

1

2
lim
b→∞

ln

(
b2 + 1

b2 + 1

)
= 0

We could make the integral have any value we pleased by choosing a = −cb.

We can assign a meaning to divergent integrals of the form
∫∞
−∞ f(x) dx with the Cauchy principal value. The

Cauchy principal value of the integral is defined

−
∫ ∞
−∞

f(x) dx = lim
a→∞

∫ a

−a
f(x) dx.

The Cauchy principal value is obtained by approaching infinity symmetrically.

The Cauchy principal value of
∫∞
−∞

x
x2+1

dx is defined

−
∫ ∞
−∞

x

x2 + 1
dx = lim

a→∞

∫ a

−a

x

x2 + 1
dx

= lim
a→∞

[
1

2
ln
(
x2 + 1

)]a
−a

= 0.
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Result 15.2.1 Cauchy Principal Value. If f(x) is continuous on (a, b) except at the
point x0 ∈ (a, b) then the integral of f(x) is defined∫ b

a

f(x) dx = lim
ε→0+

∫ x0−ε

a

f(x) dx+ lim
δ→0+

∫ b

x0+δ
f(x) dx.

The Cauchy principal value of the integral is defined

−
∫ b

a

f(x) dx = lim
ε→0+

(∫ x0−ε

a

f(x) dx+

∫ b

x0+ε
f(x) dx

)
.

If f(x) is continuous on (−∞,∞) then the integral of f(x) is defined∫ ∞
−∞

f(x) dx = lim
a→−∞, b→∞

∫ b

a

f(x) dx.

The Cauchy principal value of the integral is defined

−
∫ ∞
−∞

f(x) dx = lim
a→∞

∫ a

−a
f(x) dx.

The principal value of the integral may exist when the integral diverges. If the integral
exists, it is equal to the principal value of the integral.

Example 15.2.3 Clearly
∫∞
−∞ x dx diverges, however the Cauchy principal value exists.

−
∫ ∞
−∞

x dx = lim
a→∞

[
x2

2

]
−a
a = 0
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In general, if f(x) is an odd function with no singularities on the finite real axis then

−
∫ ∞
−∞

f(x) dx = 0.

15.3 Cauchy Principal Value for Contour Integrals

Example 15.3.1 Consider the integral

∫
Cr

1

z − 1
dz,

where Cr is the positively oriented circle of radius r and center at the origin. From the residue theorem, we know
that the integral is

∫
Cr

1

z − 1
dz =

{
0 for r < 1,

2πi for r > 1.

When r = 1, the integral diverges, as there is a first order pole on the path of integration. However, the principal
value of the integral exists.

−
∫
Cr

1

z − 1
dz = lim

ε→0+

∫ 2π−ε

ε

1

eiθ − 1
ieiθ dθ

= lim
ε→0+

[
log(eiθ − 1)

]2π−ε
ε
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We choose the branch of the logarithm with a branch cut on the positive real axis and arg log z ∈ (0, 2π).

= lim
ε→0+

(
log
(
ei(2π−ε) − 1

)
− log

(
eiε − 1

))
= lim

ε→0+

(
log
((

1− iε+O(ε2)
)
− 1
)
− log

((
1 + iε+O(ε2)

)
− 1
))

= lim
ε→0+

(
log
(
−iε+O(ε2)

)
− log

(
iε+O(ε2)

))
= lim

ε→0+

(
Log

(
ε+O(ε2)

)
+ i arg

(
−iε+O(ε2)

)
− Log

(
ε+O(ε2)

)
− i arg

(
iε+O(ε2)

))
= i

3π

2
− iπ

2
= iπ

Thus we obtain

−
∫
Cr

1

z − 1
dz =


0 for r < 1,

πi for r = 1,

2πi for r > 1.

In the above example we evaluated the contour integral by parameterizing the contour. This approach is
only feasible when the integrand is simple. We would like to use the residue theorem to more easily evaluate the
principal value of the integral. But before we do that, we will need a preliminary result.

Result 15.3.1 Let f(z) have a first order pole at z = z0 and let (z− z0)f(z) be analytic
in some neighborhood of z0. Let the contour Cε be a circular arc from z0+εeiα to z0+εeiβ.
(We assume that β > α and β − α < 2π.)

lim
ε→0+

∫
Cε

f(z) dz = i(β − α) Res (f(z), z0)

The contour is shown in Figure 15.4. (See Exercise 15.6 for a proof of this result.)
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β−α
Cε

z0 ε

Figure 15.4: The Cε Contour

Example 15.3.2 Consider

−
∫
C

1

z − 1
dz

where C is the unit circle. Let Cp be the circular arc of radius 1 that starts and ends a distance of ε from z = 1.
Let Cε be the positive, circular arc of radius ε with center at z = 1 that joins the endpoints of Cp. Let Ci, be the
union of Cp and Cε. (Cp stands for Principal value Contour; Ci stands for Indented Contour.) Ci is an indented
contour that avoids the first order pole at z = 1. Figure 15.5 shows the three contours.

C

C

p

ε

Figure 15.5: The Indented Contour.

505



Note that the principal value of the integral is

−
∫
C

1

z − 1
dz = lim

ε→0+

∫
Cp

1

z − 1
dz.

We can calculate the integral along Ci with the residue theorem.

∫
Ci

1

z − 1
dz = 2πi

We can calculate the integral along Cε using Result 15.3.1. Note that as ε→ 0+, the contour becomes a semi-circle,
a circular arc of π radians.

lim
ε→0+

∫
Cε

1

z − 1
dz = iπRes

(
1

z − 1
, 1

)
= iπ

Now we can write the principal value of the integral along C in terms of the two known integrals.

−
∫
C

1

z − 1
dz =

∫
Ci

1

z − 1
dz −

∫
Cε

1

z − 1
dz

= i2π − iπ
= iπ

In the previous example, we formed an indented contour that included the first order pole. You can show that
if we had indented the contour to exclude the pole, we would obtain the same result. (See Exercise 15.8.)

We can extend the residue theorem to principal values of integrals. (See Exercise 15.7.)
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Result 15.3.2 Residue Theorem for Principal Values. Let f(z) be analytic inside
and on a simple, closed, positive contour C, except for isolated singularities at z1, . . . , zm
inside the contour and first order poles at ζ1, . . . , ζn on the contour. Further, let the
contour be C1 at the locations of these first order poles. (i.e., the contour does not have
a corner at any of the first order poles.) Then the principal value of the integral of f(z)
along C is

−
∫
C

f(z) dz = i2π
m∑
j=1

Res (f(z), zj) + iπ
n∑
j=1

Res (f(z), ζj).

15.4 Integrals on the Real Axis

Example 15.4.1 We wish to evaluate the integral∫ ∞
−∞

1

x2 + 1
dx.

We can evaluate this integral directly using calculus.∫ ∞
−∞

1

x2 + 1
dx = [arctanx]∞−∞

= π

Now we will evaluate the integral using contour integration. Let CR be the semicircular arc from R to −R in the
upper half plane. Let C be the union of CR and the interval [−R,R].

We can evaluate the integral along C with the residue theorem. The integrand has first order poles at z = ±i.
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For R > 1, we have ∫
C

1

z2 + 1
dz = i2πRes

(
1

z2 + 1
, i

)
= i2π

1

2i
= π.

Now we examine the integral along CR. We use the maximum modulus integral bound to show that the value of
the integral vanishes as R→∞. ∣∣∣∣∫

CR

1

z2 + 1
dz

∣∣∣∣ ≤ πRmax
z∈CR

∣∣∣∣ 1

z2 + 1

∣∣∣∣
= πR

1

R2 − 1

→ 0 as R→∞.

Now we are prepared to evaluate the original real integral.∫
C

1

z2 + 1
dz = π∫ R

−R

1

x2 + 1
dx+

∫
CR

1

z2 + 1
dz = π

We take the limit as R→∞. ∫ ∞
−∞

1

x2 + 1
dx = π

We would get the same result by closing the path of integration in the lower half plane. Note that in this case
the closed contour would be in the negative direction.
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If you are really observant, you may have noticed that we did something a little funny in evaluating∫ ∞
−∞

1

x2 + 1
dx.

The definition of this improper integral is∫ ∞
−∞

1

x2 + 1
dx = lim

a→+∞

∫ 0

−a

1

x2 + 1
dx+ = lim

b→+∞

∫ b

0

1

x2 + 1
dx.

In the above example we instead computed

lim
R→+∞

∫ R

−R

1

x2 + 1
dx.

Note that for some integrands, the former and latter are not the same. Consider the integral of x
x2+1

.∫ ∞
−∞

x

x2 + 1
dx = lim

a→+∞

∫ 0

−a

x

x2 + 1
dx+ lim

b→+∞

∫ b

0

x

x2 + 1
dx

= lim
a→+∞

(
1

2
log |a2 + 1|

)
+ lim

b→+∞

(
−1

2
log |b2 + 1|

)
Note that the limits do not exist and hence the integral diverges. We get a different result if the limits of
integration approach infinity symmetrically.

lim
R→+∞

∫ R

−R

x

x2 + 1
dx = lim

R→+∞

(
1

2
(log |R2 + 1| − log |R2 + 1|)

)
= 0

(Note that the integrand is an odd function, so the integral from −R to R is zero.) We call this the principal
value of the integral and denote it by writing “PV” in front of the integral sign or putting a dash through the
integral.

PV

∫ ∞
−∞

f(x) dx ≡ −
∫ ∞
−∞

f(x) dx ≡ lim
R→+∞

∫ R

−R
f(x) dx
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The principal value of an integral may exist when the integral diverges. If the integral does converge, then it
is equal to its principal value.

We can use the method of Example 15.4.1 to evaluate the principal value of integrals of functions that vanish
fast enough at infinity.
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Result 15.4.1 Let f(z) be analytic except for isolated singularities, with only first order
poles on the real axis. Let CR be the semi-circle from R to −R in the upper half plane.
If

lim
R→∞

(
Rmax

z∈CR
|f(z)|

)
= 0

then

−
∫ ∞
−∞

f(x) dx = i2π
m∑
k=1

Res (f(z), zk) + iπ
n∑
k=1

Res (f(z), xk)

where z1, . . . zm are the singularities of f(z) in the upper half plane and x1, . . . , xn are
the first order poles on the real axis.
Now let CR be the semi-circle from R to −R in the lower half plane. If

lim
R→∞

(
Rmax

z∈CR
|f(z)|

)
= 0

then

−
∫ ∞
−∞

f(x) dx = −i2π
m∑
k=1

Res (f(z), zk)− iπ
n∑
k=1

Res (f(z), xk)

where z1, . . . zm are the singularities of f(z) in the lower half plane and x1, . . . , xn are
the first order poles on the real axis.
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This result is proved in Exercise 15.9. Of course we can use this result to evaluate the integrals of the form

∫ ∞
0

f(z) dz,

where f(x) is an even function.

15.5 Fourier Integrals

In order to do Fourier transforms, which are useful in solving differential equations, it is necessary to be able to
calculate Fourier integrals. Fourier integrals have the form

∫ ∞
−∞

eiωxf(x) dx.

We evaluate these integrals by closing the path of integration in the lower or upper half plane and using techniques
of contour integration.

Consider the integral

∫ π/2

0

e−R sin θ dθ.

Since 2θ/π ≤ sin θ for 0 ≤ θ ≤ π/2,

e−R sin θ ≤ e−R2θ/π for 0 ≤ θ ≤ π/2
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∫ π/2

0

e−R sin θ dθ ≤
∫ π/2

0

e−R2θ/π dθ

=
[
− π

2R
e−R2θ/π

]π/2
0

= − π

2R
( e−R − 1)

≤ π

2R
→ 0 as R→∞

We can use this to prove the following Result 15.5.1. (See Exercise 15.13.)

Result 15.5.1 Jordan’s Lemma.∫ π

0
e−R sin θ dθ <

π

R
.

Suppose that f(z) vanishes as |z| → ∞. If ω is a (positive/negative) real number and
CR is a semi-circle of radius R in the (upper/lower) half plane then the integral∫

CR

f(z) eiωz dz

vanishes as R→∞.

We can use Jordan’s Lemma and the Residue Theorem to evaluate many Fourier integrals. Consider
∫∞
−∞ f(x) eiωx dx,

where ω is a positive real number. Let f(z) be analytic except for isolated singularities, with only first order poles
on the real axis. Let C be the contour from −R to R on the real axis and then back to −R along a semi-circle in
the upper half plane. If R is large enough so that C encloses all the singularities of f(z) in the upper half plane
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then ∫
C

f(z) eiωz dz = i2π
m∑
k=1

Res (f(z) eiωz, zk) + iπ
n∑
k=1

Res (f(z) eiωz, xk)

where z1, . . . zm are the singularities of f(z) in the upper half plane and x1, . . . , xn are the first order poles on the
real axis. If f(z) vanishes as |z| → ∞ then the integral on CR vanishes as R→∞ by Jordan’s Lemma.∫ ∞

−∞
f(x) eiωx dx = i2π

m∑
k=1

Res (f(z) eiωz, zk) + iπ
n∑
k=1

Res (f(z) eiωz, xk)

For negative ω we close the path of integration in the lower half plane. Note that the contour is then in the
negative direction.

Result 15.5.2 Fourier Integrals. Let f(z) be analytic except for isolated singularities,
with only first order poles on the real axis. Suppose that f(z) vanishes as |z| → ∞. If ω
is a positive real number then∫ ∞

−∞
f(x) eiωx dx = i2π

m∑
k=1

Res (f(z) eiωz, zk) + iπ
n∑
k=1

Res (f(z) eiωz, xk)

where z1, . . . zm are the singularities of f(z) in the upper half plane and x1, . . . , xn are
the first order poles on the real axis. If ω is a negative real number then∫ ∞

−∞
f(x) eiωx dx = −i2π

m∑
k=1

Res (f(z) eiωz, zk)− iπ
n∑
k=1

Res (f(z) eiωz, xk)

where z1, . . . zm are the singularities of f(z) in the lower half plane and x1, . . . , xn are
the first order poles on the real axis.
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15.6 Fourier Cosine and Sine Integrals

Fourier cosine and sine integrals have the form,∫ ∞
0

f(x) cos(ωx) dx and

∫ ∞
0

f(x) sin(ωx) dx.

If f(x) is even/odd then we can evaluate the cosine/sine integral with the method we developed for Fourier
integrals.

Let f(z) be analytic except for isolated singularities, with only first order poles on the real axis. Suppose that
f(x) is an even function and that f(z) vanishes as |z| → ∞. We consider real ω > 0.

−
∫ ∞

0

f(x) cos(ωx) dx =
1

2
−
∫ ∞
−∞

f(x) cos(ωx) dx

Since f(x) sin(ωx) is an odd function,

1

2
−
∫ ∞
−∞

f(x) sin(ωx) dx = 0.

Thus

−
∫ ∞

0

f(x) cos(ωx) dx =
1

2
−
∫ ∞
−∞

f(x) eiωx dx

Now we apply Result 15.5.2.

−
∫ ∞

0

f(x) cos(ωx) dx = iπ

m∑
k=1

Res (f(z) eiωz, zk) +
iπ

2

n∑
k=1

Res (f(z) eiωz, xk)

where z1, . . . zm are the singularities of f(z) in the upper half plane and x1, . . . , xn are the first order poles on the
real axis.
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If f(x) is an odd function, we note that f(x) cos(ωx) is an odd function to obtain the analogous result for
Fourier sine integrals.

Result 15.6.1 Fourier Cosine and Sine Integrals. Let f(z) be analytic except for
isolated singularities, with only first order poles on the real axis. Suppose that f(x) is
an even function and that f(z) vanishes as |z| → ∞. We consider real ω > 0.

−
∫ ∞

0
f(x) cos(ωx) dx = iπ

m∑
k=1

Res (f(z) eiωz, zk) +
iπ

2

n∑
k=1

Res (f(z) eiωz, xk)

where z1, . . . zm are the singularities of f(z) in the upper half plane and x1, . . . , xn are
the first order poles on the real axis. If f(x) is an odd function then,

−
∫ ∞

0
f(x) sin(ωx) dx = π

µ∑
k=1

Res (f(z) eiωz, ζk) +
π

2

n∑
k=1

Res (f(z) eiωz, xk)

where ζ1, . . . ζµ are the singularities of f(z) in the lower half plane and x1, . . . , xn are the
first order poles on the real axis.

Now suppose that f(x) is neither even nor odd. We can evaluate integrals of the form:

∫ ∞
−∞

f(x) cos(ωx) dx and

∫ ∞
−∞

f(x) sin(ωx) dx
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by writing them in terms of Fourier integrals∫ ∞
−∞

f(x) cos(ωx) dx =
1

2

∫ ∞
−∞

f(x) eiωx dx+
1

2

∫ ∞
−∞

f(x) e−iωx dx∫ ∞
−∞

f(x) sin(ωx) dx = − i
2

∫ ∞
−∞

f(x) eiωx dx+
i

2

∫ ∞
−∞

f(x) e−iωx dx

15.7 Contour Integration and Branch Cuts

Example 15.7.1 Consider ∫ ∞
0

x−a

x+ 1
dx, 0 < a < 1,

where x−a denotes exp(−a ln(x)). We choose the branch of the function

f(z) =
z−a

z + 1
|z| > 0, 0 < arg z < 2π

with a branch cut on the positive real axis.
Let Cε and CR denote the circular arcs of radius ε and R where ε < 1 < R. Cε is negatively oriented; CR

is positively oriented. Consider the closed contour C that is traced by a point moving from Cε to CR above the
branch cut, next around CR, then below the cut to Cε, and finally around Cε. (See Figure 15.10.)

We write f(z) in polar coordinates.

f(z) =
exp(−a log z)

z + 1
=

exp(−a(log r + iθ))

r eiθ + 1

We evaluate the function above, (z = r ei0), and below, (z = r ei2π), the branch cut.

f(r ei0) =
exp[−a(log r + i0)]

r + 1
=

r−a

r + 1

f(r ei2π) =
exp[−a(log r + i2π)]

r + 1
=
r−a e−i2aπ

r + 1
.
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ε

CR

C

Figure 15.6:

We use the residue theorem to evaluate the integral along C.∮
C

f(z) dz = i2πRes (f(z),−1)∫ R

ε

r−a

r + 1
dr +

∫
CR

f(z) dz −
∫ R

ε

r−a e−i2aπ

r + 1
dr +

∫
Cε

f(z) dz = i2πRes (f(z),−1)

The residue is

Res (f(z),−1) = exp(−a log(−1)) = exp(−a(log 1 + iπ)) = e−iaπ.

We bound the integrals along Cε and CR with the maximum modulus integral bound.∣∣∣∣∫
Cε

f(z) dz

∣∣∣∣ ≤ 2πε
ε−a

1− ε
= 2π

ε1−a

1− ε∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ 2πR
R−a

R− 1
= 2π

R1−a

R− 1

Since 0 < a < 1, the values of the integrals tend to zero as ε→ 0 and R→∞. Thus we have∫ ∞
0

r−a

r + 1
dr = i2π

e−iaπ

1− e−i2aπ
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∫ ∞
0

x−a

x+ 1
dx =

π

sin aπ
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Result 15.7.1 Integrals from Zero to Infinity. Let f(z) be a single-valued analytic
function with only isolated singularities and no singularities on the positive, real axis,
[0,∞). Let a 6∈ Z. If the integrals exist then,∫ ∞

0
f(x) dx = −

n∑
k=1

Res (f(z) log z, zk) ,

∫ ∞
0

xaf(x) dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk) ,

∫ ∞
0

f(x) log x dx = −1

2

n∑
k=1

Res
(
f(z) log2 z, zk

)
+ iπ

n∑
k=1

Res (f(z) log z, zk) ,

∫ ∞
0

xaf(x) log x dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z) log z, zk)

+
π2a

sin2(πa)

n∑
k=1

Res (zaf(z), zk) ,

∫ ∞
0

xaf(x) logm x dx =
∂m

∂am

(
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk)

)
,

where z1, . . . , zn are the singularities of f(z) and there is a branch cut on the positive
real axis with 0 < arg(z) < 2π. 520



15.8 Exploiting Symmetry

We have already used symmetry of the integrand to evaluate certain integrals. For f(x) an even function we
were able to evaluate

∫∞
0
f(x) dx by extending the range of integration from −∞ to ∞. For

∫ ∞
0

xαf(x) dx

we put a branch cut on the positive real axis and noted that the value of the integrand below the branch cut
is a constant multiple of the value of the function above the branch cut. This enabled us to evaluate the real
integral with contour integration. In this section we will use other kinds of symmetry to evaluate integrals. We
will discover that periodicity of the integrand will produce this symmetry.

15.8.1 Wedge Contours

We note that zn = rn einθ is periodic in θ with period 2π/n. The real and imaginary parts of zn are odd periodic
in θ with period π/n. This observation suggests that certain integrals on the positive real axis may be evaluated
by closing the path of integration with a wedge contour.

Example 15.8.1 Consider

∫ ∞
0

1

1 + xn
dx
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where n ∈ N, n ≥ 2. We can evaluate this integral using Result 15.7.1.∫ ∞
0

1

1 + xn
dx = −

n−1∑
k=0

Res

(
log z

1 + zn
, eiπ(1+2k)/n

)

= −
n−1∑
k=0

lim
z→ eiπ(1+2k)/n

(
(z − eiπ(1+2k)/n) log z

1 + zn

)

= −
n−1∑
k=0

lim
z→ eiπ(1+2k)/n

(
log z + (z − eiπ(1+2k)/n)/z

nzn−1

)

= −
n−1∑
k=0

(
iπ(1 + 2k)/n

n eiπ(1+2k)(n−1)/n

)

= − iπ

n2 eiπ(n−1)/n

n−1∑
k=0

(1 + 2k) ei2πk/n

=
i2π eiπ/n

n2

n−1∑
k=1

k ei2πk/n

=
i2π eiπ/n

n2

n

ei2π/n − 1

=
π

n sin(π/n)

This is a bit grungy. To find a spiffier way to evaluate the integral we note that if we write the integrand as a
function of r and θ, it is periodic in θ with period 2π/n.

1

1 + zn
=

1

1 + rn einθ

The integrand along the rays θ = 2π/n, 4π/n, 6π/n, . . . has the same value as the integrand on the real axis.
Consider the contour C that is the boundary of the wedge 0 < r < R, 0 < θ < 2π/n. There is one singularity
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inside the contour. We evaluate the residue there.

Res

(
1

1 + zn
, eiπ/n

)
= lim

z→ eiπ/n

z − eiπ/n

1 + zn

= lim
z→ eiπ/n

1

nzn−1

= − eiπ/n

n

We evaluate the integral along C with the residue theorem.∫
C

1

1 + zn
dz =

−i2π eiπ/n

n

Let CR be the circular arc. The integral along CR vanishes as R→∞.∣∣∣∣∫
CR

1

1 + zn
dz

∣∣∣∣ ≤ 2πR

n
max
z∈CR

∣∣∣∣ 1

1 + zn

∣∣∣∣
≤ 2πR

n

1

Rn − 1

→ 0 as R→∞

We parametrize the contour to evaluate the desired integral.∫ ∞
0

1

1 + xn
dx+

∫ 0

∞

1

1 + xn
ei2π/n dx =

−i2π eiπ/n

n∫ ∞
0

1

1 + xn
dx =

−i2π eiπ/n

n(1− ei2π/n)∫ ∞
0

1

1 + xn
dx =

π

n sin(π/n)
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15.8.2 Box Contours

Recall that ez = ex+iy is periodic in y with period 2π. This implies that the hyperbolic trigonometric functions
cosh z, sinh z and tanh z are periodic in y with period 2π and odd periodic in y with period π. We can exploit
this property to evaluate certain integrals on the real axis by closing the path of integration with a box contour.

Example 15.8.2 Consider the integral∫ ∞
−∞

1

cosh x
dx =

[
i log

(
tanh

(
iπ

4
+
x

2

))]∞
−∞

= i log(1)− i log(−1)

= π.

We will evaluate this integral using contour integration. Note that

cosh(x+ iπ) =
ex+iπ + e−x−iπ

2
= − cosh(x).

Consider the box contour C that is the boundary of the region −R < x < R, 0 < y < π. The only singularity
of the integrand inside the contour is a first order pole at z = iπ/2. We evaluate the integral along C with the
residue theorem. ∮

C

1

cosh z
dz = i2πRes

(
1

cosh z
,
iπ

2

)
= i2π lim

z→iπ/2

z − iπ/2
cosh z

= i2π lim
z→iπ/2

1

sinh z

= 2π
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The integrals along the sides of the box vanish as R→∞.∣∣∣∣∫ ±R+iπ

±R

1

cosh z
dz

∣∣∣∣ ≤ π max
z∈[±R...±R+iπ]

∣∣∣∣ 1

cosh z

∣∣∣∣
≤ π max

y∈[0...π]

∣∣∣∣ 2

e±R+iy + e∓R−iy

∣∣∣∣
=

2

eR − e−R

≤ π

sinhR
→ 0 as R→∞

The value of the integrand on the top of the box is the negative of its value on the bottom. We take the limit as
R→∞. ∫ ∞

−∞

1

cosh x
dx+

∫ −∞
∞

1

− cosh x
dx = 2π∫ ∞

−∞

1

cosh x
dx = π

15.9 Definite Integrals Involving Sine and Cosine

Example 15.9.1 For real-valued a, evaluate the integral:

f(a) =

∫ 2π

0

dθ

1 + a sin θ
.

What is the value of the integral for complex-valued a.
Real-Valued a. For −1 < a < 1, the integrand is bounded, hence the integral exists. For |a| = 1, the

integrand has a second order pole on the path of integration. For |a| > 1 the integrand has two first order poles
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on the path of integration. The integral is divergent for these two cases. Thus we see that the integral exists for
−1 < a < 1.

For a = 0, the value of the integral is 2π. Now consider a 6= 0. We make the change of variables z = eiθ. The
real integral from θ = 0 to θ = 2π becomes a contour integral along the unit circle, |z| = 1. We write the sine,
cosine and the differential in terms of z.

sin θ =
z − z−1

2i
, cos θ =

z + z−1

2
, dz = i eiθdθ, dθ =

dz

iz

We write f(a) as an integral along C, the positively oriented unit circle |z| = 1.

f(a) =

∮
C

1/(iz)

1 + a(z − z−1)/(2i)
dz =

∮
C

2/a

z2 + (2i/a)z − 1
dz

We factor the denominator of the integrand.

f(a) =

∮
C

2/a

(z − z1)(z − z2)
dz

z1 = i

(
−1 +

√
1− a2

a

)
, z2 = i

(
−1−

√
1− a2

a

)
Because |a| < 1, the second root is outside the unit circle.

|z2| =
1 +
√

1− a2

|a|
> 1.

Since |z1z2| = 1, |z1| < 1. Thus the pole at z1 is inside the contour and the pole at z2 is outside. We evaluate the
contour integral with the residue theorem.

f(a) =

∮
C

2/a

z2 + (2i/a)z − 1
dz

= i2π
2/a

z1 − z2

= i2π
1

i
√

1− a2
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f(a) =
2π√

1− a2

Complex-Valued a. We note that the integral converges except for real-valued a satisfying |a| ≥ 1. On
any closed subset of C \ {a ∈ R | |a| ≥ 1} the integral is uniformly convergent. Thus except for the values
{a ∈ R | |a| ≥ 1}, we can differentiate the integral with respect to a. f(a) is analytic in the complex plane except
for the set of points on the real axis: a ∈ (−∞ . . .− 1] and a ∈ [1 . . .∞). The value of the analytic function f(a)
on the real axis for the interval (−1 . . . 1) is

f(a) =
2π√

1− a2
.

By analytic continuation we see that the value of f(a) in the complex plane is the branch of the function

f(a) =
2π

(1− a2)1/2

where f(a) is positive, real-valued for a ∈ (−1 . . . 1) and there are branch cuts on the real axis on the intervals:
(−∞ . . .− 1] and [1 . . .∞).

Result 15.9.1 For evaluating integrals of the form∫ a+2π

a

F (sin θ, cos θ) dθ

it may be useful to make the change of variables z = eiθ. This gives us a contour integral
along the unit circle about the origin. We can write the sine, cosine and differential in
terms of z.

sin θ =
z − z−1

2i
, cos θ =

z + z−1

2
, dθ =

dz

iz

527



15.10 Infinite Sums

The function g(z) = π cot(πz) has simple poles at z = n ∈ Z. The residues at these points are all unity.

Res (π cot(πz), n) = lim
z→n

π(z − n) cos(πz)

sin(πz)

= lim
z→n

π cos(πz)− π(z − n) sin(πz)

π cos(πz)

= 1

Let Cn be the square contour with corners at z = (n+ 1/2)(±1± i). Recall that

cos z = cos x cosh y − i sinx sinh y and sin z = sinx cosh y + i cos x sinh y.

First we bound the modulus of cot(z).

| cot(z)| =
∣∣∣∣cos x cosh y − i sinx sinh y

sinx cosh y + i cosx sinh y

∣∣∣∣
=

√
cos2 x cosh2 y + sin2 x sinh2 y

sin2 x cosh2 y + cos2 x sinh2 y

≤

√
cosh2 y

sinh2 y

= | coth(y)|

The hyperbolic cotangent, coth(y), has a simple pole at y = 0 and tends to ±1 as y → ±∞.

Along the top and bottom of Cn, (z = x± i(n+ 1/2)), we bound the modulus of g(z) = π cot(πz).

|π cot(πz)| ≤ π
∣∣ coth(π(n+ 1/2))

∣∣
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Along the left and right sides of Cn, (z = ±(n+ 1/2) + iy), the modulus of the function is bounded by a constant.

|g(±(n+ 1/2) + iy)| =
∣∣∣∣π cos(π(n+ 1/2)) cosh(πy)∓ i sin(π(n+ 1/2)) sinh(πy)

sin(π(n+ 1/2)) cosh(πy) + i cos(π(n+ 1/2)) sinh(πy)

∣∣∣∣
= |∓iπ tanh(πy)|
≤ π

Thus the modulus of π cot(πz) can be bounded by a constant M on Cn.

Let f(z) be analytic except for isolated singularities. Consider the integral,∮
Cn

π cot(πz)f(z) dz.

We use the maximum modulus integral bound.∣∣∣∣∮
Cn

π cot(πz)f(z) dz

∣∣∣∣ ≤ (8n+ 4)M max
z∈Cn
|f(z)|

Note that if

lim
|z|→∞

|zf(z)| = 0,

then

lim
n→∞

∮
Cn

π cot(πz)f(z) dz = 0.

This implies that the sum of all residues of π cot(πz)f(z) is zero. Suppose further that f(z) is analytic at
z = n ∈ Z. The residues of π cot(πz)f(z) at z = n are f(n). This means

∞∑
n=−∞

f(n) = −( sum of the residues of π cot(πz)f(z) at the poles of f(z) ).
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Result 15.10.1 If

lim
|z|→∞

|zf(z)| = 0,

then the sum of all the residues of π cot(πz)f(z) is zero. If in addition f(z) is analytic
at z = n ∈ Z then

∞∑
n=−∞

f(n) = −( sum of the residues of π cot(πz)f(z) at the poles of f(z) ).

Example 15.10.1 Consider the sum

∞∑
n=−∞

1

(n+ a)2
, a 6∈ Z.

By Result 15.10.1 with f(z) = 1/(z + a)2 we have

∞∑
n=−∞

1

(n+ a)2
= −Res

(
π cot(πz)

1

(z + a)2
,−a

)
= −π lim

z→−a

d

dz
cot(πz)

= −π−π sin2(πz)− π cos2(πz)

sin2(πz)
.

∞∑
n=−∞

1

(n+ a)2
=

π2

sin2(πa)
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Example 15.10.2 Derive π/4 = 1− 1/3 + 1/5− 1/7 + 1/9− · · · .
Consider the integral

In =
1

2πi

∫
Cn

dw

w(w − z) sinw

where Cn is the square with corners at w = (n+ 1/2)(±1± i)π, n ∈ Z+. With the substitution w = x+ iy,

| sinw|2 = sin2 x+ sinh2 y,

we see that |1/ sinw| ≤ 1 on Cn. Thus In → 0 as n→∞. We use the residue theorem and take the limit n→∞.

0 =
∞∑
n=1

[
(−1)n

nπ(nπ − z)
+

(−1)n

nπ(nπ + z)

]
+

1

z sin z
− 1

z2

1

sin z
=

1

z
− 2z

∞∑
n=1

(−1)n

n2π2 − z2

=
1

z
−
∞∑
n=1

[
(−1)n

nπ − z
− (−1)n

nπ + z

]
We substitute z = π/2 into the above expression to obtain

π/4 = 1− 1/3 + 1/5− 1/7 + 1/9− · · ·
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15.11 Exercises

The Residue Theorem

Exercise 15.1
Let f(z) have a pole of order n at z = z0. Prove the Residue Formula:

Res (f(z), z0) = lim
z→z0

(
1

(n− 1)!

dn−1

dzn−1
[(z − z0)nf(z)]

)
.

Hint, Solution

Exercise 15.2
Consider the function

f(z) =
z4

z2 + 1
.

Classify the singularities of f(z) in the extended complex plane. Calculate the residue at each pole and at infinity.
Find the Laurent series expansions and their domains of convergence about the points z = 0, z = i and z =∞.
Hint, Solution

Exercise 15.3
Let P (z) be a polynomial none of whose roots lie on the closed contour Γ. Show that

1

i2π

∫
P ′(z)

P (z)
dz = number of roots of P (z) which lie inside Γ.

where the roots are counted according to their multiplicity.
Hint: From the fundamental theorem of algebra, it is always possible to factor P (z) in the form P (z) =

(z− z1)(z− z2) · · · (z− zn). Using this form of P (z) the integrand P ′(z)/P (z) reduces to a very simple expression.
Hint, Solution
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Exercise 15.4
Find the value of ∮

C

ez

(z − π) tan z
dz

where C is the positively-oriented circle

1. |z| = 2

2. |z| = 4

Hint, Solution

Cauchy Principal Value for Real Integrals

Solution 15.1
Show that the integral ∫ 1

−1

1

x
dx.

is divergent. Evaluate the integral ∫ 1

−1

1

x− iα
dx, α ∈ R, α 6= 0.

Evaluate

lim
α→0+

∫ 1

−1

1

x− iα
dx

and

lim
α→0−

∫ 1

−1

1

x− iα
dx.
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The integral exists for α arbitrarily close to zero, but diverges when α = 0. Plot the real and imaginary part of
the integrand. If one were to assign meaning to the integral for α = 0, what would the value of the integral be?

Exercise 15.5
Do the principal values of the following integrals exist?

1.
∫ 1

−1
1
x2 dx,

2.
∫ 1

−1
1
x3 dx,

3.
∫ 1

−1
f(x)
x3 dx.

Assume that f(x) is real analytic on the interval (−1, 1).

Hint, Solution

Cauchy Principal Value for Contour Integrals

Exercise 15.6
Let f(z) have a first order pole at z = z0 and let (z − z0)f(z) be analytic in some neighborhood of z0. Let the
contour Cε be a circular arc from z0 + εeiα to z0 + εeiβ. (Assume that β > α and β − α < 2π.) Show that

lim
ε→0+

∫
Cε

f(z) dz = i(β − α) Res (f(z), z0)

Hint, Solution

Exercise 15.7
Let f(z) be analytic inside and on a simple, closed, positive contour C, except for isolated singularities at
z1, . . . , zm inside the contour and first order poles at ζ1, . . . , ζn on the contour. Further, let the contour be C1 at
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the locations of these first order poles. (i.e., the contour does not have a corner at any of the first order poles.)
Show that the principal value of the integral of f(z) along C is

−
∫
C

f(z) dz = i2π
m∑
j=1

Res (f(z), zj) + iπ

n∑
j=1

Res (f(z), ζj).

Hint, Solution

Exercise 15.8
Let C be the unit circle. Evaluate

−
∫
C

1

z − 1
dz

by indenting the contour to exclude the first order pole at z = 1.
Hint, Solution

Integrals from −∞ to ∞
Exercise 15.9
Prove Result 15.4.1.
Hint, Solution

Exercise 15.10
Evaluate

−
∫ ∞
−∞

2x

x2 + x+ 1
.

Hint, Solution
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Exercise 15.11
Use contour integration to evaluate the integrals

1.

∫ ∞
−∞

dx

1 + x4
,

2.

∫ ∞
−∞

x2 dx

(1 + x2)2
,

3.

∫ ∞
−∞

cos(x)

1 + x2
dx.

Hint, Solution

Exercise 15.12
Evaluate by contour integration ∫ ∞

0

x6

(x4 + 1)2
dx.

Hint, Solution

Fourier Integrals

Exercise 15.13
Suppose that f(z) vanishes as |z| → ∞. If ω is a (positive / negative) real number and CR is a semi-circle of
radius R in the (upper / lower) half plane then show that the integral∫

CR

f(z) eiωz dz

vanishes as R→∞.
Hint, Solution
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Exercise 15.14
Evaluate by contour integration ∫ ∞

−∞

cos 2x

x− iπ
dx.

Hint, Solution

Fourier Cosine and Sine Integrals

Exercise 15.15
Evaluate ∫ ∞

−∞

sinx

x
dx.

Hint, Solution

Exercise 15.16
Evaluate ∫ ∞

−∞

1− cosx

x2
dx.

Hint, Solution

Exercise 15.17
Evaluate ∫ ∞

0

sin(πx)

x(1− x2)
dx.

Hint, Solution
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Contour Integration and Branch Cuts

Exercise 15.18
Show that

1.

∫ ∞
0

(lnx)2

1 + x2
dx =

π3

8
,

2.

∫ ∞
0

lnx

1 + x2
dx = 0.

Hint, Solution

Exercise 15.19
By methods of contour integration find ∫ ∞

0

dx

x2 + 5x+ 6

[ Recall the trick of considering
∫

Γ
f(z) log z dz with a suitably chosen contour Γ and branch for log z. ]

Hint, Solution

Exercise 15.20
Show that ∫ ∞

0

xa

(x+ 1)2
dx =

πa

sin(πa)
for − 1 < <(a) < 1.

From this derive that ∫ ∞
0

log x

(x+ 1)2
dx = 0,

∫ ∞
0

log2 x

(x+ 1)2
dx =

π2

3
.

Hint, Solution
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Exercise 15.21
Consider the integral

I(a) =

∫ ∞
0

xa

1 + x2
dx.

1. For what values of a does the integral exist?

2. Evaluate the integral. Show that

I(a) =
π

2 cos(πa/2)

3. Deduce from your answer in part (b) the results∫ ∞
0

log x

1 + x2
dx = 0,

∫ ∞
0

log2 x

1 + x2
dx =

π3

8
.

You may assume that it is valid to differentiate under the integral sign.

Hint, Solution

Exercise 15.22
Let f(z) be a single-valued analytic function with only isolated singularities and no singularities on the positive
real axis, [0,∞). Give sufficient conditions on f(x) for absolute convergence of the integral∫ ∞

0

xaf(x) dx.

Assume that a is not an integer. Evaluate the integral by considering the integral of zaf(z) on a suitable contour.
(Consider the branch of za on which 1a = 1.)
Hint, Solution
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Exercise 15.23
Using the solution to Exercise 15.22, evaluate ∫ ∞

0

xaf(x) log x dx,

and ∫ ∞
0

xaf(x) logm x dx,

where m is a positive integer.
Hint, Solution

Exercise 15.24
Using the solution to Exercise 15.22, evaluate ∫ ∞

0

f(x) dx,

i.e. examine a = 0. The solution will suggest a way to evaluate the integral with contour integration. Do the
contour integration to corroborate the value of

∫∞
0
f(x) dx.

Hint, Solution

Exercise 15.25
Let f(z) be an analytic function with only isolated singularities and no singularities on the positive real axis,
[0,∞). Give sufficient conditions on f(x) for absolute convergence of the integral∫ ∞

0

f(x) log x dx

Evaluate the integral with contour integration.
Hint, Solution
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Exercise 15.26
For what values of a does the following integral exist?∫ ∞

0

xa

1 + x4
dx.

Evaluate the integral. (Consider the branch of xa on which 1a = 1.)
Hint, Solution

Exercise 15.27
By considering the integral of f(z) = z1/2 log z/(z + 1)2 on a suitable contour, show that∫ ∞

0

x1/2 log x

(x+ 1)2
dx = π,

∫ ∞
0

x1/2

(x+ 1)2
dx =

π

2
.

Hint, Solution

Exploiting Symmetry

Exercise 15.28
Evaluate by contour integration, the principal value integral

I(a) = −
∫ ∞
−∞

eax

ex − e−x
dx

for a real and |a| < 1. [Hint: Consider the contour that is the boundary of the box, −R < x < R, 0 < y < π, but
indented around z = 0 and z = iπ.
Hint, Solution

Exercise 15.29
Evaluate the following integrals.
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1.

∫ ∞
0

dx

(1 + x2)2
,

2.

∫ ∞
0

dx

1 + x3
.

Hint, Solution

Exercise 15.30
Find the value of the integral I

I =

∫ ∞
0

dx

1 + x6

by considering the contour integral ∫
Γ

dz

1 + z6

with an appropriately chosen contour Γ.
Hint, Solution

Exercise 15.31
Let C be the boundary of the sector 0 < r < R, 0 < θ < π/4. By integrating e−z

2
on C and letting R→∞ show

that ∫ ∞
0

cos(x2) dx =

∫ ∞
0

sin(x2) dx =
1√
2

∫ ∞
0

e−x
2

dx.

Hint, Solution

542



Exercise 15.32
Evaluate ∫ ∞

−∞

x

sinhx
dx

using contour integration.
Hint, Solution

Exercise 15.33
Show that ∫ ∞

−∞

eax

ex + 1
dx =

π

sin(πa)
for 0 < a < 1.

Use this to derive that ∫ ∞
−∞

cosh(bx)

cosh x
dx =

π

cos(πb/2)
for − 1 < b < 1.

Hint, Solution

Exercise 15.34
Using techniques of contour integration find for real a and b:

F (a, b) =

∫ π

0

dθ

(a+ b cos θ)2

What are the restrictions on a and b if any? Can the result be applied for complex a, b? How?
Hint, Solution
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Exercise 15.35
Show that ∫ ∞

−∞

cosx

ex + e−x
dx =

π

eπ/2 + e−π/2

[ Hint: Begin by considering the integral of eiz/( ez + e−z) around a rectangle with vertices: ±R, ±R + iπ.]
Hint, Solution

Definite Integrals Involving Sine and Cosine

Exercise 15.36
Use contour integration to evaluate the integrals

1.

∫ 2π

0

dθ

2 + sin(θ)
,

2.

∫ π

−π

cos(nθ)

1− 2a cos(θ) + a2
dθ for |a| < 1, n ∈ Z0+.

Hint, Solution

Exercise 15.37
By integration around the unit circle, suitably indented, show that

−
∫ π

0

cos(nθ)

cos θ − cosα
dθ = π

sin(nα)

sinα
.

Hint, Solution
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Exercise 15.38
Evaluate ∫ 1

0

x2

(1 + x2)
√

1− x2
dx.

Hint, Solution

Infinite Sums

Exercise 15.39
Evaluate

∞∑
n=1

1

n4
.

Hint, Solution

Exercise 15.40
Sum the following series using contour integration:

∞∑
n=−∞

1

n2 − α2

Hint, Solution
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15.12 Hints

The Residue Theorem

Hint 15.1
Substitute the Laurent series into the formula and simplify.

Hint 15.2
Use that the sum of all residues of the function in the extended complex plane is zero in calculating the residue
at infinity. To obtain the Laurent series expansion about z = i, write the function as a proper rational function,
(numerator has a lower degree than the denominator) and expand in partial fractions.

Hint 15.3

Hint 15.4

Cauchy Principal Value for Real Integrals

Hint 15.5

Hint 15.6
For the third part, does the integrand have a term that behaves like 1/x2?

Cauchy Principal Value for Contour Integrals
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Hint 15.7
Expand f(z) in a Laurent series. Only the first term will make a contribution to the integral in the limit as
ε→ 0+.

Hint 15.8
Use the result of Exercise 15.6.

Hint 15.9
Look at Example 15.3.2.

Integrals from −∞ to ∞

Hint 15.10
Close the path of integration in the upper or lower half plane with a semi-circle. Use the maximum modulus
integral bound, (Result 12.1.1), to show that the integral along the semi-circle vanishes.

Hint 15.11
Make the change of variables x = 1/ξ.

Hint 15.12
Use Result 15.4.1.

Hint 15.13

Fourier Integrals
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Hint 15.14
Use ∫ π

0

e−R sin θ dθ <
π

R
.

Hint 15.15

Fourier Cosine and Sine Integrals

Hint 15.16
Consider the integral of eix

ix
.

Hint 15.17
Show that ∫ ∞

−∞

1− cos x

x2
dx = −

∫ ∞
−∞

1− eix

x2
dx.

Hint 15.18
Show that ∫ ∞

0

sin(πx)

x(1− x2)
dx = − i

2
−
∫ ∞
−∞

eix

x(1− x2)
dx.

Contour Integration and Branch Cuts

Hint 15.19
Integrate a branch of (log z)2/(1 + z2) along the boundary of the domain ε < r < R, 0 < θ < π.
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Hint 15.20

Hint 15.21
Note that ∫ 1

0

xa dx

converges for <(a) > −1; and ∫ ∞
1

xa dx

converges for <(a) < 1.

Consider f(z) = za/(z + 1)2 with a branch cut along the positive real axis and the contour in Figure 15.10 in
the limit as ρ→ 0 and R→∞.

To derive the last two integrals, differentiate with respect to a.

Hint 15.22

Hint 15.23
Consider the integral of zaf(z) on the contour in Figure 15.10.

Hint 15.24
Differentiate with respect to a.
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Hint 15.25
Take the limit as a → 0. Use L’Hospital’s rule. To corroborate the result, consider the integral of f(z) log z on
an appropriate contour.

Hint 15.26
Consider the integral of f(z) log2 z on the contour in Figure 15.10.

Hint 15.27
Consider the integral of

f(z) =
za

1 + z4

on the boundary of the region ε < r < R, 0 < θ < π/2. Take the limits as ε→ 0 and R→∞.

Hint 15.28
Consider the branch of f(z) = z1/2 log z/(z + 1)2 with a branch cut on the positive real axis and 0 < arg z < 2π.
Integrate this function on the contour in Figure 15.10.

Exploiting Symmetry

Hint 15.29

Hint 15.30
For the second part, consider the integral along the boundary of the region, 0 < r < R, 0 < θ < 2π/3.

Hint 15.31
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Hint 15.32
To show that the integral on the quarter-circle vanishes as R→∞ establish the inequality,

cos 2θ ≥ 1− 4

π
θ, 0 ≤ θ ≤ π

4
.

Hint 15.33
Consider the box contour C this is the boundary of the rectangle, −R ≤ x ≤ R, 0 ≤ y ≤ π. The value of the
integral is π2/2.

Hint 15.34
Consider the rectangular contour with corners at ±R and ±R + i2π. Let R→∞.

Hint 15.35

Hint 15.36

Definite Integrals Involving Sine and Cosine

Hint 15.37

Hint 15.38
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Hint 15.39
Make the changes of variables x = sin ξ and then z = eiξ.

Infinite Sums

Hint 15.40
Use Result 15.10.1.

Hint 15.41
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15.13 Solutions

The Residue Theorem

Solution 15.2
Since f(z) has an isolated pole of order n at z = z0, it has a Laurent series that is convergent in a deleted
neighborhood about that point. We substitute this Laurent series into the Residue Formula to verify it.

Res (f(z), z0) = lim
z→z0

(
1

(n− 1)!

dn−1

dzn−1
[(z − z0)nf(z)]

)
= lim

z→z0

(
1

(n− 1)!

dn−1

dzn−1

[
(z − z0)n

∞∑
k=−n

ak(z − z0)k

])

= lim
z→z0

(
1

(n− 1)!

dn−1

dzn−1

[
∞∑
k=0

ak−n(z − z0)k

])

= lim
z→z0

(
1

(n− 1)!

∞∑
k=n−1

ak−n
k!

(k − n+ 1)!
(z − z0)k−n+1

)

= lim
z→z0

(
1

(n− 1)!

∞∑
k=0

ak−1
(k + n− 1)!

k!
(z − z0)k

)

=
1

(n− 1)!
a−1

(n− 1)!

0!

= a−1

This proves the Residue Formula.
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Solution 15.3
Classify Singularities.

f(z) =
z4

z2 + 1
=

z4

(z − i)(z + i)
.

There are first order poles at z = ±i. Since the function behaves like z2 at infinity, there is a second order pole
there. To see this more slowly, we can make the substitution z = 1/ζ and examine the point ζ = 0.

f

(
1

ζ

)
=

ζ−4

ζ−2 + 1
=

1

ζ2 + ζ4
=

1

ζ2(1 + ζ2)

f(1/ζ) has a second order pole at ζ = 0, which implies that f(z) has a second order pole at infinity.

Residues. The residues at z = ±i are,

Res

(
z4

z2 + 1
, i

)
= lim

z→i

z4

z + i
= − i

2
,

Res

(
z4

z2 + 1
,−i
)

= lim
z→−i

z4

z − i
=
i

2
.

The residue at infinity is

Res (f(z),∞) = Res

(
−1

ζ2
f

(
1

ζ

)
, ζ = 0

)
= Res

(
−1

ζ2

ζ−4

ζ−2 + 1
, ζ = 0

)
= Res

(
− ζ−4

1 + ζ2
, ζ = 0

)
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Here we could use the residue formula, but it’s easier to find the Laurent expansion.

= Res

(
−ζ−4

∞∑
n=0

(−1)nζ2n, ζ = 0

)
= 0

We could also calculate the residue at infinity by recalling that the sum of all residues of this function in the
extended complex plane is zero.

−i
2

+
i

2
+ Res (f(z),∞) = 0

Res (f(z),∞) = 0

Laurent Series about z = 0. Since the nearest singularities are at z = ±i, the Taylor series will converge
in the disk |z| < 1.

z4

z2 + 1
= z4 1

1− (−z)2

= z4

∞∑
n=0

(−z2)n

= z4

∞∑
n=0

(−1)nz2n

=
∞∑
n=2

(−1)nz2n

This geometric series converges for | − z2| < 1, or |z| < 1. The series expansion of the function is

z4

z2 + 1
=
∞∑
n=2

(−1)nz2n for |z| < 1
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Laurent Series about z = i. We expand f(z) in partial fractions. First we write the function as a proper
rational function, (i.e. the numerator has lower degree than the denominator). By polynomial division, we see
that

f(z) = z2 − 1 +
1

z2 + 1
.

Now we expand the last term in partial fractions.

f(z) = z2 − 1 +
−i/2
z − i

+
i/2

z + i

Since the nearest singularity is at z = −i, the Laurent series will converge in the annulus 0 < |z − i| < 2.

z2 − 1 = ((z − i) + i)2 − 1

= (z − i)2 + i2(z − i)− 2

i/2

z + i
=

i/2

i2 + (z − i)

=
1/4

1− i(z − i)/2

=
1

4

∞∑
n=0

(
i(z − i)

2

)n
=

1

4

∞∑
n=0

in

2n
(z − i)n

This geometric series converges for |i(z − i)/2| < 1, or |z − i| < 2. The series expansion of f(z) is

f(z) =
−i/2
z − i

− 2 + i2(z − i) + (z − i)2 +
1

4

∞∑
n=0

in

2n
(z − i)n.
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z4

z2 + 1
=
−i/2
z − i

− 2 + i2(z − i) + (z − i)2 +
1

4

∞∑
n=0

in

2n
(z − i)n for |z − i| < 2

Laurent Series about z =∞. Since the nearest singularities are at z = ±i, the Laurent series will converge
in the annulus 1 < |z| <∞.

z4

z2 + 1
=

z2

1 + 1/z2

= z2

∞∑
n=0

(
− 1

z2

)n
=

0∑
n=−∞

(−1)nz2(n+1)

=
1∑

n=−∞

(−1)n+1z2n

This geometric series converges for | − 1/z2| < 1, or |z| > 1. The series expansion of f(z) is

z4

z2 + 1
=

1∑
n=−∞

(−1)n+1z2n for 1 < |z| <∞

Solution 15.4
Method 1: Residue Theorem. We factor P (z). Let m be the number of roots, counting multiplicities, that
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lie inside the contour Γ. We find a simple expression for P ′(z)/P (z).

P (z) = c

n∏
k=1

(z − zk)

P ′(z) = c
n∑
k=1

n∏
j=1
j 6=k

(z − zj)

P ′(z)

P (z)
=

c
∑n

k=1

∏n
j=1
j 6=k

(z − zj)

c
∏n

k=1(z − zk)

=
n∑
k=1

∏n
j=1
j 6=k

(z − zj)∏n
j=1(z − zj)

=
n∑
k=1

1

z − zk

Now we do the integration using the residue theorem.

1

i2π

∫
Γ

P ′(z)

P (z)
dz =

1

i2π

∫
Γ

n∑
k=1

1

z − zk
dz

=
n∑
k=1

1

i2π

∫
Γ

1

z − zk
dz

=
∑

zk inside Γ

1

i2π

∫
Γ

1

z − zk
dz

=
∑

zk inside Γ

1

= m
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Method 2: Fundamental Theorem of Calculus. We factor the polynomial, P (z) = c
∏n

k=1(z − zk). Let
m be the number of roots, counting multiplicities, that lie inside the contour Γ.

1

i2π

∫
Γ

P ′(z)

P (z)
dz =

1

i2π
[logP (z)]C

=
1

i2π

[
log

n∏
k=1

(z − zk)

]
C

=
1

i2π

[
n∑
k=1

log(z − zk)

]
C

The value of the logarithm changes by i2π for the terms in which zk is inside the contour. Its value does not
change for the terms in which zk is outside the contour.

=
1

i2π

[ ∑
zk inside Γ

log(z − zk)

]
C

=
1

i2π

∑
zk inside Γ

i2π

= m

Solution 15.5
1. ∮

C

ez

(z − π) tan z
dz =

∮
C

ez cos z

(z − π) sin z
dz

The integrand has first order poles at z = nπ, n ∈ Z, n 6= 1 and a double pole at z = π. The only pole
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inside the contour occurs at z = 0. We evaluate the integral with the residue theorem.∮
C

ez cos z

(z − π) sin z
dz = i2πRes

(
ez cos z

(z − π) sin z
, z = 0

)
= i2π lim

z=0
z

ez cos z

(z − π) sin z

= −i2 lim
z=0

z

sin z

= −i2 lim
z=0

1

cos z
= −i2∮

C

ez

(z − π) tan z
dz = −i2

2. The integrand has a first order poles at z = 0,−π and a second order pole at z = π inside the contour. The
value of the integral is i2π times the sum of the residues at these points. From the previous part we know
that residue at z = 0.

Res

(
ez cos z

(z − π) sin z
, z = 0

)
= − 1

π

We find the residue at z = −π with the residue formula.

Res

(
ez cos z

(z − π) sin z
, z = −π

)
= lim

z→−π
(z + π)

ez cos z

(z − π) sin z

=
e−π(−1)

−2π
lim
z→−π

z + π

sin z

=
e−π

2π
lim
z→−π

1

cos z

= − e−π

2π
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We find the residue at z = π by finding the first few terms in the Laurent series of the integrand.

ez cos z

(z − π) sin z
=

( eπ + eπ(z − π) +O ((z − π)2)) (1 +O ((z − π)2))

(z − π) (−(z − π) +O ((z − π)3))

=
− eπ − eπ(z − π) +O ((z − π)2)

−(z − π)2 +O ((z − π)4)

=

eπ

(z−π)2 + eπ

z−π +O(1)

1 +O ((z − π)2)

=

(
eπ

(z − π)2
+

eπ

z − π
+O(1)

)(
1 +O

(
(z − π)2

))
=

eπ

(z − π)2
+

eπ

z − π
+O(1)

With this we see that

Res

(
ez cos z

(z − π) sin z
, z = π

)
= eπ.

The integral is∮
C

ez cos z

(z − π) sin z
dz = i2π

(
Res

(
ez cos z

(z − π) sin z
, z = −π

)
+ Res

(
ez cos z

(z − π) sin z
, z = 0

)
+ Res

(
ez cos z

(z − π) sin z
, z = π

))
= i2π

(
− 1

π
− e−π

2π
+ eπ

)
∮
C

ez

(z − π) tan z
dz = i

(
2π eπ − 2− e−π

)
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Cauchy Principal Value for Real Integrals

Solution 15.6
Consider the integral

∫ 1

−1

1

x
dx.

By the definition of improper integrals we have

∫ 1

−1

1

x
dx = lim

ε→0+

∫ −ε
−1

1

x
dx+ lim

δ→0+

∫ 1

δ

1

x
dx

= lim
ε→0+

[log |x|]−ε−1 + lim
δ→0+

[log |x|]1δ
= lim

ε→0+
log ε− lim

δ→0+
log δ

This limit diverges. Thus the integral diverges.

Now consider the integral

∫ 1

−1

1

x− iα
dx
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where α ∈ R, α 6= 0. Since the integrand is bounded, the integral exists.∫ 1

−1

1

x− iα
dx =

∫ 1

−1

x+ iα

x2 + α2
dx

=

∫ 1

−1

iα

x2 + α2
dx

= 2i

∫ 1

0

α

x2 + α2
dx

= 2i

∫ 1/α

0

1

ξ2 + 1
dξ

= 2i [arctan ξ]1/α0

= 2i arctan

(
1

α

)
Note that the integral exists for all nonzero real α and that

lim
α→0+

∫ 1

−1

1

x− iα
dx = iπ

and

lim
α→0−

∫ 1

−1

1

x− iα
dx = −iπ.

The integral exists for α arbitrarily close to zero, but diverges when α = 0. The real part of the integrand
is an odd function with two humps that get thinner and taller with decreasing α. The imaginary part of the
integrand is an even function with a hump that gets thinner and taller with decreasing α. (See Figure 15.7.)

<
(

1

x− iα

)
=

x

x2 + α2
, =

(
1

x− iα

)
=

α

x2 + α2
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Figure 15.7: The real and imaginary part of the integrand for several values of α.

Note that

<
∫ 1

0

1

x− iα
dx→ +∞ as α→ 0+

and

<
∫ 0

−1

1

x− iα
dx→ −∞ as α→ 0−.

However,

lim
α→0
<
∫ 1

−1

1

x− iα
dx = 0

because the two integrals above cancel each other.
Now note that when α = 0, the integrand is real. Of course the integral doesn’t converge for this case, but if

we could assign some value to ∫ 1

−1

1

x
dx
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it would be a real number. Since

lim
α→0

∫ 1

−1

<
[

1

x− iα

]
dx = 0,

This number should be zero.

Solution 15.7
1.

−
∫ 1

−1

1

x2
dx = lim

ε→0+

(∫ −ε
−1

1

x2
dx+

∫ 1

ε

1

x2
dx

)
= lim

ε→0+

([
−1

x

]−ε
−1

+

[
−1

x

]1

ε

)

= lim
ε→0+

(
1

ε
− 1− 1 +

1

ε

)
The principal value of the integral does not exist.

2.

−
∫ 1

−1

1

x3
dx = lim

ε→0+

(∫ −ε
−1

1

x3
dx+

∫ 1

ε

1

x3
dx

)
= lim

ε→0+

([
− 1

2x2

]−ε
−1

+

[
− 1

2x2

]1

ε

)

= lim
ε→0+

(
− 1

2(−ε)2
+

1

2(−1)2
− 1

2(1)2
+

1

2ε2

)
= 0
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3. Since f(x) is real analytic,

f(x) =
∞∑
n=1

fnx
n for x ∈ (−1, 1).

We can rewrite the integrand as

f(x)

x3
=
f0

x3
+
f1

x2
+
f2

x
+
f(x)− f0 − f1x− f2x

2

x3
.

Note that the final term is real analytic on (−1, 1). Thus the principal value of the integral exists if and
only if f2 = 0.

Cauchy Principal Value for Contour Integrals

Solution 15.8
We can write f(z) as

f(z) =
f0

z − z0

+
(z − z0)f(z)− f0

z − z0

.

Note that the second term is analytic in a neighborhood of z0. Thus it is bounded on the contour. Let Mε be the
maximum modulus of (z−z0)f(z)−f0

z−z0 on Cε. By using the maximum modulus integral bound, we have∣∣∣∣∫
Cε

(z − z0)f(z)− f0

z − z0

dz

∣∣∣∣ ≤ (β − α)εMε

→ 0 as ε→ 0+.

Thus we see that

lim
ε→0+

∫
Cε

f(z) dz lim
ε→0+

∫
Cε

f0

z − z0

dz.
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We parameterize the path of integration with

z = z0 + εeiθ, θ ∈ (α, β).

Now we evaluate the integral.

lim
ε→0+

∫
Cε

f0

z − z0

dz = lim
ε→0+

∫ β

α

f0

εeiθ
iεeiθ dθ

= lim
ε→0+

∫ β

α

if0 dθ

= i(β − α)f0

≡ i(β − α) Res (f(z), z0)

This proves the result.

Solution 15.9
Let Ci be the contour that is indented with circular arcs or radius ε at each of the first order poles on C so as to
enclose these poles. Let A1, . . . , An be these circular arcs of radius ε centered at the points ζ1, . . . , ζn. Let Cp be
the contour, (not necessarily connected), obtained by subtracting each of the Aj’s from Ci.

Since the curve is C1, (or continuously differentiable), at each of the first order poles on C, the Aj’s becomes
semi-circles as ε→ 0+. Thus

∫
Aj

f(z) dz = iπRes (f(z), ζj) for j = 1, . . . , n.
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The principal value of the integral along C is

−
∫
C

f(z) dz = lim
ε→0+

∫
Cp

f(z) dz

= lim
ε→0+

(∫
Ci

f(z) dz −
n∑
j=1

∫
Aj

f(z) dz

)

= i2π

(
m∑
j=1

Res (f(z), zj) +
n∑
j=1

Res (f(z), ζj)

)
− iπ

n∑
j=1

Res (f(z), ζj)

−
∫
C

f(z) dz = i2π
m∑
j=1

Res (f(z), zj) + iπ

n∑
j=1

Res (f(z), ζj).

Solution 15.10
Consider

−
∫
C

1

z − 1
dz

where C is the unit circle. Let Cp be the circular arc of radius 1 that starts and ends a distance of ε from z = 1.
Let Cε be the negative, circular arc of radius ε with center at z = 1 that joins the endpoints of Cp. Let Ci, be the
union of Cp and Cε. (Cp stands for Principal value Contour; Ci stands for Indented Contour.) Ci is an indented
contour that avoids the first order pole at z = 1. Figure 15.8 shows the three contours.

Figure 15.8: The Indented Contour.
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Note that the principal value of the integral is

−
∫
C

1

z − 1
dz = lim

ε→0+

∫
Cp

1

z − 1
dz.

We can calculate the integral along Ci with Cauchy’s theorem. The integrand is analytic inside the contour.∫
Ci

1

z − 1
dz = 0

We can calculate the integral along Cε using Result 15.3.1. Note that as ε→ 0+, the contour becomes a semi-circle,
a circular arc of π radians in the negative direction.

lim
ε→0+

∫
Cε

1

z − 1
dz = −iπRes

(
1

z − 1
, 1

)
= −iπ

Now we can write the principal value of the integral along C in terms of the two known integrals.

−
∫
C

1

z − 1
dz =

∫
Ci

1

z − 1
dz −

∫
Cε

1

z − 1
dz

= 0− (−iπ)

= iπ

Integrals from −∞ to ∞
Solution 15.11
Let CR be the semicircular arc from R to −R in the upper half plane. Let C be the union of CR and the interval
[−R,R]. We can evaluate the principal value of the integral along C with Result 15.3.2.

−
∫
C

f(x) dx = i2π
m∑
k=1

Res (f(z), zk) + iπ
n∑
k=1

Res (f(z), xk)
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We examine the integral along CR as R→∞.∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ πRmax
z∈CR

|f(z)|

→ 0 as R→∞.

Now we are prepared to evaluate the real integral.

−
∫ ∞
−∞

f(x) dx = lim
R→∞

−
∫ R

−R
f(x) dx

= lim
R→∞

−
∫
C

f(z) dz

= i2π
m∑
k=1

Res (f(z), zk) + iπ

n∑
k=1

Res (f(z), xk)

If we close the path of integration in the lower half plane, the contour will be in the negative direction.

−
∫ ∞
−∞

f(x) dx = −i2π
m∑
k=1

Res (f(z), zk)− iπ
n∑
k=1

Res (f(z), xk)

Solution 15.12
We consider

−
∫ ∞
−∞

2x

x2 + x+ 1
dx.

With the change of variables x = 1/ξ, this becomes

−
∫ −∞
∞

2ξ−1

ξ−2 + ξ−1 + 1

(
−1

ξ2

)
dξ,
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−
∫ ∞
−∞

2ξ−1

ξ2 + ξ + 1
dξ

There are first order poles at ξ = 0 and ξ = −1/2 ± i
√

3/2. We close the path of integration in the upper half
plane with a semi-circle. Since the integrand decays like ξ−3 the integrand along the semi-circle vanishes as the
radius tends to infinity. The value of the integral is thus

iπRes

(
2z−1

z2 + z + 1
, z = 0

)
+ i2πRes

(
2z−1

z2 + z + 1
, z = −1

2
+ i

√
3

2

)

iπ lim
z→0

(
2

z2 + z + 1

)
+ i2π lim

z→(−1+i
√

3)/2

(
2z−1

z + (1 + i
√

3)/2

)

−
∫ ∞
−∞

2x

x2 + x+ 1
dx = − 2π√

3

Solution 15.13
1. Consider ∫ ∞

−∞

1

x4 + 1
dx.

The integrand 1
z4+1

is analytic on the real axis and has isolated singularities at the points z = { eiπ/4, ei3π/4, ei5π/4, ei7π/4}.
Let CR be the semi-circle of radius R in the upper half plane. Since

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ 1

z4 + 1

∣∣∣∣) = lim
R→∞

(
R

1

R4 − 1

)
= 0,
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we can apply Result 15.4.1.∫ ∞
−∞

1

x4 + 1
dx = i2π

(
Res

(
1

z4 + 1
, eiπ/4

)
+ Res

(
1

z4 + 1
, ei3π/4

))
The appropriate residues are,

Res

(
1

z4 + 1
, eiπ/4

)
= lim

z→ eiπ/4

z − eiπ/4

z4 + 1

= lim
z→ eiπ/4

1

4z3

=
1

4
e−i3π/4

=
−1− i
4
√

2
,

Res

(
1

z4 + 1
, ei3π/4

)
=

1

4( ei3π/4)3

=
1

4
e−iπ/4

=
1− i
4
√

2
,

We evaluate the integral with the residue theorem.∫ ∞
−∞

1

x4 + 1
dx = i2π

(
−1− i
4
√

2
+

1− i
4
√

2

)
∫ ∞
−∞

1

x4 + 1
dx =

π√
2
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2. Now consider ∫ ∞
−∞

x2

(x2 + 1)2
dx.

The integrand is analytic on the real axis and has second order poles at z = ±i. Since the integrand decays
sufficiently fast at infinity,

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ z2

(z2 + 1)2

∣∣∣∣) = lim
R→∞

(
R

R2

(R2 − 1)2

)
= 0

we can apply Result 15.4.1. ∫ ∞
−∞

x2

(x2 + 1)2
dx = i2πRes

(
z2

(z2 + 1)2
, z = i

)

Res

(
z2

(z2 + 1)2
, z = i

)
= lim

z→i

d

dz

(
(z − i)2 z2

(z2 + 1)2

)
= lim

z→i

d

dz

(
z2

(z + i)2

)
= lim

z→i

(
(z + i)22z − z22(z + i)

(z + i)4

)
= − i

4

∫ ∞
−∞

x2

(x2 + 1)2
dx =

π

2

3. Since

sin(x)

1 + x2
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is an odd function, ∫ ∞
−∞

cos(x)

1 + x2
dx =

∫ ∞
−∞

eix

1 + x2
dx

Since eiz/(1 + z2) is analytic except for simple poles at z = ±i and the integrand decays sufficiently fast in
the upper half plane,

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ eiz

1 + z2

∣∣∣∣) = lim
R→∞

(
R

1

R2 − 1

)
= 0

we can apply Result 15.4.1. ∫ ∞
−∞

eix

1 + x2
dx = i2πRes

(
eiz

(z − i)(z + i)
, z = i

)
= i2π

e−1

i2

∫ ∞
−∞

cos(x)

1 + x2
dx =

π

e

Solution 15.14
Consider the function

f(z) =
z6

(z4 + 1)2
.

The value of the function on the imaginary axis:

−y6

(y4 + 1)2
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is a constant multiple of the value of the function on the real axis:

x6

(x4 + 1)2
.

Thus to evaluate the real integral we consider the path of integration, C, which starts at the origin, follows the
real axis to R, follows a circular path to iR and then follows the imaginary axis back down to the origin. f(z)
has second order poles at the fourth roots of −1: (±1 ± i)/

√
2. Of these only (1 + i)/

√
2 lies inside the path of

integration. We evaluate the contour integral with the Residue Theorem. For R > 1:∫
C

z6

(z4 + 1)2
dz = i2πRes

(
z6

(z4 + 1)2
, z = eiπ/4

)
= i2π lim

z→ eiπ/4

d

dz

(
(z − eiπ/4)2 z6

(z4 + 1)2

)
= i2π lim

z→ eiπ/4

d

dz

(
z6

(z − ei3π/4)2(z − ei5π/4)2(z − ei7π/4)2

)
= i2π lim

z→ eiπ/4

( z6

(z − ei3π/4)2(z − ei5π/4)2(z − ei7π/4)2(
6

z
− 2

z − ei3π/4
− 2

z − ei5π/4
− 2

z − ei7π/4

))
= i2π

−i
(2)(4i)(−2)

(
6
√

2

1 + i
− 2√

2
− 2
√

2

2 + i2
− 2

i
√

2

)
= i2π

3

32
(1− i)

√
2

=
3π

8
√

2
(1 + i)

The integral along the circular part of the contour, CR, vanishes as R → ∞. We demonstrate this with the

575



maximum modulus integral bound.

∣∣∣∣∫
CR

z6

(z4 + 1)2
dz

∣∣∣∣ ≤ πR

4
max
z∈CR

(
z6

(z4 + 1)2

)
=
πR

4

R6

(R4 − 1)2

→ 0 as R→∞

Taking the limit R→∞, we have:

∫ ∞
0

x6

(x4 + 1)2
dx+

∫ 0

∞

(iy)6

((iy)4 + 1)2
i dy =

3π

8
√

2
(1 + i)∫ ∞

0

x6

(x4 + 1)2
dx+ i

∫ ∞
0

y6

(y4 + 1)2
dy =

3π

8
√

2
(1 + i)

(1 + i)

∫ ∞
0

x6

(x4 + 1)2
dx =

3π

8
√

2
(1 + i)∫ ∞

0

x6

(x4 + 1)2
dx =

3π

8
√

2

Fourier Integrals

Solution 15.15
We know that

∫ π

0

e−R sin θ dθ <
π

R
.
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First take the case that ω is positive and the semi-circle is in the upper half plane.∣∣∣∣∫
CR

f(z) eiωz dz

∣∣∣∣ ≤ ∣∣∣∣∫
CR

eiωz dz

∣∣∣∣max
z∈CR

|f(z)|

≤
∫ π

0

∣∣∣ eiωR eiθR eiθ
∣∣∣ dθmax

z∈CR
|f(z)|

= R

∫ π

0

∣∣ e−ωR sin θ
∣∣ dθmax

z∈CR
|f(z)|

< R
π

ωR
max
z∈CR

|f(z)|

=
π

ω
max
z∈CR

|f(z)|

→ 0 as R→∞

The procedure is almost the same for negative ω.

Solution 15.16
First we write the integral in terms of Fourier integrals.∫ ∞

−∞

cos 2x

x− iπ
dx =

∫ ∞
−∞

ei2x

2(x− iπ)
dx+

∫ ∞
−∞

e−i2x

2(x− iπ)
dx

Note that 1
2(z−iπ)

vanishes as |z| → ∞. We close the former Fourier integral in the upper half plane and the latter
in the lower half plane. There is a first order pole at z = iπ in the upper half plane.∫ ∞

−∞

ei2x

2(x− iπ)
dx = i2πRes

(
ei2z

2(z − iπ)
, z = iπ

)
= i2π

e−2π

2
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There are no singularities in the lower half plane.∫ ∞
−∞

e−i2x

2(x− iπ)
dx = 0

Thus the value of the original real integral is∫ ∞
−∞

cos 2x

x− iπ
dx = iπ e−2π

Fourier Cosine and Sine Integrals

Solution 15.17
We are considering the integral ∫ ∞

−∞

sinx

x
dx.

The integrand is an entire function. So it doesn’t appear that the residue theorem would directly apply. Also the
integrand is unbounded as x → +i∞ and x → −i∞, so closing the integral in the upper or lower half plane is
not directly applicable. In order to proceed, we must write the integrand in a different form. Note that

−
∫ ∞
−∞

cosx

x
dx = 0

since the integrand is odd and has only a first order pole at x = 0. Thus∫ ∞
−∞

sinx

x
dx = −

∫ ∞
−∞

eix

ix
dx.

Let CR be the semicircular arc in the upper half plane from R to −R. Let C be the closed contour that is the
union of CR and the real interval [−R,R]. If we close the path of integration with a semicircular arc in the upper
half plane, we have ∫ ∞

−∞

sinx

x
dx = lim

R→∞

(
−
∫
C

eiz

iz
dz −

∫
CR

eiz

iz
dz

)
,
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provided that all the integrals exist.
The integral along CR vanishes as R → ∞ by Jordan’s lemma. By the residue theorem for principal values

we have

−
∫
eiz

iz
dz = iπRes

(
eiz

iz
, 0

)
= π.

Combining these results, ∫ ∞
−∞

sinx

x
dx = π.

Solution 15.18
Note that (1 − cosx)/x2 has a removable singularity at x = 0. The integral decays like 1

x2 at infinity, so the
integral exists. Since (sinx)/x2 is a odd function with a simple pole at x = 0, the principal value of its integral
vanishes.

−
∫ ∞
−∞

sinx

x2
dx = 0∫ ∞

−∞

1− cosx

x2
dx = −

∫ ∞
−∞

1− cos x− i sinx

x2
dx = −

∫ ∞
−∞

1− eix

x2
dx

Let CR be the semi-circle of radius R in the upper half plane. Since

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣1− eiz

z2

∣∣∣∣) = lim
R→∞

R
2

R2
= 0

the integral along CR vanishes as R→∞.∫
CR

1− eiz

z2
dz → 0 as R→∞
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We can apply Result 15.4.1.

−
∫ ∞
−∞

1− eix

x2
dx = iπRes

(
1− eiz

z2
, z = 0

)
= iπ lim

z→0

1− eiz

z
= iπ lim

z→0

−i eiz

1

∫ ∞
−∞

1− cos x

x2
dx = π

Solution 15.19
Consider ∫ ∞

0

sin(πx)

x(1− x2)
dx.

Note that the integrand has removable singularities at the points x = 0,±1 and is an even function.∫ ∞
0

sin(πx)

x(1− x2)
dx =

1

2

∫ ∞
−∞

sin(πx)

x(1− x2)
dx.

Note that
cos(πx)

x(1− x2)
is an odd function with first order poles at x = 0,±1.

−
∫ ∞
−∞

cos(πx)

x(1− x2)
dx = 0∫ ∞

0

sin(πx)

x(1− x2)
dx = − i

2
−
∫ ∞
−∞

eiπx

x(1− x2)
dx.

Let CR be the semi-circle of radius R in the upper half plane. Since

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ eiπz

z(1− z2)

∣∣∣∣) = lim
R→∞

R
1

R(R2 − 1)
= 0
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the integral along CR vanishes as R→∞.

∫
CR

eiπz

z(1− z2)
dz → 0 as R→∞

We can apply Result 15.4.1.

− i
2
−
∫ ∞
−∞

eiπx

x(1− x2)
dx = iπ

−i
2

(
Res

(
eiz

z(1− z2)
, z = 0

)
+ Res

(
eiz

z(1− z2)
, z = 1

)
+ Res

(
eiz

z(1− z2)
, z = −1

))
=
π

2

(
lim
z→0

eiπz

1− z2
− lim

z→0

eiπz

z(1 + z)
+ lim

z→0

eiπz

z(1− z)

)
=
π

2

(
1− −1

2
+
−1

−2

)

∫ ∞
0

sin(πx)

x(1− x2)
dx = π

Contour Integration and Branch Cuts

Solution 15.20
Let C be the boundary of the region ε < r < R, 0 < θ < π. Choose the branch of the logarithm with a branch cut
on the negative imaginary axis and the angle range −π/2 < θ < 3π/2. We consider the integral of (log z)2/(1+z2)
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on this contour. ∮
C

(log z)2

1 + z2
dz = i2πRes

(
(log z)2

1 + z2
, z = i

)
= i2π lim

z→i

(log z)2

z + i

= i2π
(iπ/2)2

2i

= −π
3

4

Let CR be the semi-circle from R to −R in the upper half plane. We show that the integral along CR vanishes as
R→∞ with the maximum modulus integral bound.∣∣∣∣∫

CR

(log z)2

1 + z2
dz

∣∣∣∣ ≤ πRmax
z∈CR

∣∣∣∣(log z)2

1 + z2

∣∣∣∣
≤ πR

(lnR)2 + 2π lnR + π2

R2 − 1

→ 0 as R→∞

Let Cε be the semi-circle from −ε to ε in the upper half plane. We show that the integral along Cε vanishes as
ε→ 0 with the maximum modulus integral bound.∣∣∣∣∫

Cε

(log z)2

1 + z2
dz

∣∣∣∣ ≤ πεmax
z∈Cε

∣∣∣∣(log z)2

1 + z2

∣∣∣∣
≤ πε

(ln ε)2 − 2π ln ε+ π2

1− ε2
→ 0 as ε→ 0
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Now we take the limit as ε→ 0 and R→∞ for the integral along C.∮
C

(log z)2

1 + z2
dz = −π

3

4∫ ∞
0

(ln r)2

1 + r2
dr +

∫ 0

∞

(ln r + iπ)2

1 + r2
dr = −π

3

4

2

∫ ∞
0

(lnx)2

1 + x2
dx+ i2π

∫ ∞
0

lnx

1 + x2
dx = π2

∫ ∞
0

1

1 + x2
dx− π3

4
(15.1)

We evaluate the integral of 1/(1 + x2) by extending the path of integration to (−∞ . . .∞) and closing the
path of integration in the upper half plane. Since

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ 1

1 + z2

∣∣∣∣) ≤ lim
R→∞

(
R

1

R2 − 1

)
= 0,

the integral of 1/(1 + z2) along CR vanishes as R→∞. We evaluate the integral with the Residue Theorem.

π2

∫ ∞
0

1

1 + x2
dx =

π2

2

∫ ∞
−∞

1

1 + x2
dx

=
π2

2
i2πRes

(
1

1 + z2
, z = i

)
= iπ3 lim

z→i

1

z + i

=
π3

2

Now we return to Equation 15.1.

2

∫ ∞
0

(lnx)2

1 + x2
dx+ i2π

∫ ∞
0

lnx

1 + x2
dx =

π3

4
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We equate the real and imaginary parts to solve for the desired integrals.∫ ∞
0

(lnx)2

1 + x2
dx =

π3

8∫ ∞
0

lnx

1 + x2
dx = 0

Solution 15.21
We consider the branch of the function

f(z) =
log z

z2 + 5z + 6

with a branch cut on the real axis and 0 < arg(z) < 2π.

Let Cε and CR denote the circles of radius ε and R where ε < 1 < R. Cε is negatively oriented; CR is positively
oriented. Consider the closed contour, C, that is traced by a point moving from ε to R above the branch cut,
next around CR back to R, then below the cut to ε, and finally around Cε back to ε. (See Figure 15.10.)

ε

CR

C

Figure 15.9: The path of integration.
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We can evaluate the integral of f(z) along C with the residue theorem. For R > 3, there are first order poles
inside the path of integration at z = −2 and z = −3.∫

C

log z

z2 + 5z + 6
dz = i2π

(
Res

(
log z

z2 + 5z + 6
, z = −2

)
+ Res

(
log z

z2 + 5z + 6
, z = −3

))
= i2π

(
lim
z→−2

log z

z + 3
+ lim

z→−3

log z

z + 2

)
= i2π

(
log(−2)

1
+

log(−3)

−1

)
= i2π (log(2) + iπ − log(3)− iπ)

= i2π log

(
2

3

)
In the limit as ε → 0, the integral along Cε vanishes. We demonstrate this with the maximum modulus

theorem. ∣∣∣∣∫
Cε

log z

z2 + 5z + 6
dz

∣∣∣∣ ≤ 2πεmax
z∈Cε

∣∣∣∣ log z

z2 + 5z + 6

∣∣∣∣
≤ 2πε

2π − log ε

6− 5ε− ε2
→ 0 as ε→ 0

In the limit as R→∞, the integral along CR vanishes. We again demonstrate this with the maximum modulus
theorem. ∣∣∣∣∫

CR

log z

z2 + 5z + 6
dz

∣∣∣∣ ≤ 2πRmax
z∈CR

∣∣∣∣ log z

z2 + 5z + 6

∣∣∣∣
≤ 2πR

logR + 2π

R2 − 5R− 6

→ 0 as R→∞
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Taking the limit as ε→ 0 and R→∞, the integral along C is:∫
C

log z

z2 + 5z + 6
dz =

∫ ∞
0

log x

x2 + 5x+ 6
dx+

∫ 0

∞

log x+ i2π

x2 + 5x+ 6
dx

= −i2π
∫ ∞

0

log x

x2 + 5x+ 6
dx

Now we can evaluate the real integral.

−i2π
∫ ∞

0

log x

x2 + 5x+ 6
dx = i2π log

(
2

3

)
∫ ∞

0

log x

x2 + 5x+ 6
dx = log

(
3

2

)

Solution 15.22
We consider the integral

I(a) =

∫ ∞
0

xa

(x+ 1)2
dx.

To examine convergence, we split the domain of integration.∫ ∞
0

xa

(x+ 1)2
dx =

∫ 1

0

xa

(x+ 1)2
dx+

∫ ∞
1

xa

(x+ 1)2
dx

First we work with the integral on (0 . . . 1).∣∣∣∣∫ 1

0

xa

(x+ 1)2
dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ xa

(x+ 1)2

∣∣∣∣ |dx|
=

∫ 1

0

x<(a)

(x+ 1)2
dx

≤
∫ 1

0

x<(a) dx
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This integral converges for <(a) > −1.
Next we work with the integral on (1 . . .∞).∣∣∣∣∫ ∞

1

xa

(x+ 1)2
dx

∣∣∣∣ ≤ ∫ ∞
1

∣∣∣∣ xa

(x+ 1)2

∣∣∣∣ |dx|
=

∫ ∞
1

x<(a)

(x+ 1)2
dx

≤
∫ ∞

1

x<(a)−2 dx

This integral converges for <(a) < 1.
Thus we see that the integral defining I(a) converges in the strip, −1 < <(a) < 1. The integral converges

uniformly in any closed subset of this domain. Uniform convergence means that we can differentiate the integral
with respect to a and interchange the order of integration and differentiation.

I ′(a) =

∫ ∞
0

xa log x

(x+ 1)2
dx

Thus we see that I(a) is analytic for −1 < <(a) < 1.
For −1 < <(a) < 1 and a 6= 0, za is multi-valued. Consider the branch of the function f(z) = za/(z + 1)2

with a branch cut on the positive real axis and 0 < arg(z) < 2π. We integrate along the contour in Figure 15.10.
The integral on Cε vanishes as ε → 0. We show this with the maximum modulus integral bound. First we

write za in modulus-argument form, z = ε eiθ, where a = α + iβ.

za = ea log z

= e(α+iβ)(ln ε+iθ)

= eα ln ε−βθ+i(β ln ε+αθ)

= εα e−βθ ei(β log ε+αθ)
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Now we bound the integral.

∣∣∣∣∫
Cε

za

(z + 1)2
dz

∣∣∣∣ ≤ 2πεmax
z∈Cε

∣∣∣∣ za

(z + 1)2

∣∣∣∣
≤ 2πε

εα e2π|β|

(1− ε)2

→ 0 as ε→ 0

The integral on CR vanishes as R→∞.

∣∣∣∣∫
CR

za

(z + 1)2
dz

∣∣∣∣ ≤ 2πRmax
z∈CR

∣∣∣∣ za

(z + 1)2

∣∣∣∣
≤ 2πR

Rα e2π|β|

(R− 1)2

→ 0 as R→∞

Above the branch cut, (z = r ei0), the integrand is

f(r ei0) =
ra

(r + 1)2
.

Below the branch cut, (z = r ei2π), we have,

f(r ei2π) =
ei2πara

(r + 1)2
.
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Now we use the residue theorem.∫ ∞
0

ra

(r + 1)2
dr +

∫ 0

∞

ei2πara

(r + 1)2
dr = i2πRes

(
za

(z + 1)2
,−1

)
(
1− ei2πa

) ∫ ∞
0

ra

(r + 1)2
dr = i2π lim

z→−1

d

dz
(za)∫ ∞

0

ra

(r + 1)2
dr = i2π

a eiπ(a−1)

1− ei2πa∫ ∞
0

ra

(r + 1)2
dr =

−i2πa
e−iπa − eiπa∫ ∞

0

xa

(x+ 1)2
dx =

πa

sin(πa)
for − 1 < <(a) < 1, a 6= 0

The right side has a removable singularity at a = 0. We use analytic continuation to extend the answer to a = 0.

I(a) =

∫ ∞
0

xa

(x+ 1)2
dx =

{
πa

sin(πa)
for − 1 < <(a) < 1, a 6= 0

1 for a = 0

We can derive the last two integrals by differentiating this formula with respect to a and taking the limit
a→ 0.

I ′(a) =

∫ ∞
0

xa log x

(x+ 1)2
dx, I ′′(a) =

∫ ∞
0

xa log2 x

(x+ 1)2
dx

I ′(0) =

∫ ∞
0

log x

(x+ 1)2
dx, I ′′(0) =

∫ ∞
0

log2 x

(x+ 1)2
dx

We can find I ′(0) and I ′′(0) either by differentiating the expression for I(a) or by finding the first few terms in
the Taylor series expansion of I(a) about a = 0. The latter approach is a little easier.

I(a) =
∞∑
n=0

I(n)(0)

n!
an
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I(a) =
πa

sin(πa)

=
πa

πa− (πa)3/6 +O(a5)

=
1

1− (πa)2/6 +O(a4)

= 1 +
π2a2

6
+O(a4)

I ′(0) =

∫ ∞
0

log x

(x+ 1)2
dx = 0

I ′′(0) =

∫ ∞
0

log2 x

(x+ 1)2
dx =

π2

3

Solution 15.23
1. We consider the integral

I(a) =

∫ ∞
0

xa

1 + x2
dx.

To examine convergence, we split the domain of integration.

∫ ∞
0

xa

1 + x2
dx =

∫ 1

0

xa

1 + x2
dx+

∫ ∞
1

xa

1 + x2
dx
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First we work with the integral on (0 . . . 1).∣∣∣∣∫ 1

0

xa

1 + x2
dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ xa

1 + x2

∣∣∣∣ |dx|
=

∫ 1

0

x<(a)

1 + x2
dx

≤
∫ 1

0

x<(a) dx

This integral converges for <(a) > −1.

Next we work with the integral on (1 . . .∞).∣∣∣∣∫ ∞
1

xa

1 + x2
dx

∣∣∣∣ ≤ ∫ ∞
1

∣∣∣∣ xa

1 + x2

∣∣∣∣ |dx|
=

∫ ∞
1

x<(a)

1 + x2
dx

≤
∫ ∞

1

x<(a)−2 dx

This integral converges for <(a) < 1.

Thus we see that the integral defining I(a) converges in the strip, −1 < <(a) < 1. The integral converges
uniformly in any closed subset of this domain. Uniform convergence means that we can differentiate the
integral with respect to a and interchange the order of integration and differentiation.

I ′(a) =

∫ ∞
0

xa log x

1 + x2
dx

Thus we see that I(a) is analytic for −1 < <(a) < 1.

2. For −1 < <(a) < 1 and a 6= 0, za is multi-valued. Consider the branch of the function f(z) = za/(1 + z2)
with a branch cut on the positive real axis and 0 < arg(z) < 2π. We integrate along the contour in
Figure 15.10.
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ε

CR

C

Figure 15.10:

The integral on Cρ vanishes are ρ→ 0. We show this with the maximum modulus integral bound. First we
write za in modulus-argument form, where z = ρ eiθ and a = α + iβ.

za = ea log z

= e(α+iβ)(log ρ+iθ)

= eα log ρ−βθ+i(β log ρ+αθ)

= ρa e−βθ ei(β log ρ+αθ)

Now we bound the integral. ∣∣∣∣∣
∫
Cρ

za

1 + z2
dz

∣∣∣∣∣ ≤ 2πρmax
z∈Cρ

∣∣∣∣ za

1 + z2

∣∣∣∣
≤ 2πρ

ρα e2π|β|

1− ρ2

→ 0 as ρ→ 0
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The integral on CR vanishes as R→∞.

∣∣∣∣∫
CR

za

1 + z2
dz

∣∣∣∣ ≤ 2πRmax
z∈CR

∣∣∣∣ za

1 + z2

∣∣∣∣
≤ 2πR

Rα e2π|β|

R2 − 1

→ 0 as R→∞

Above the branch cut, (z = r ei0), the integrand is

f(r ei0) =
ra

1 + r2
.

Below the branch cut, (z = r ei2π), we have,

f(r ei2π) =
ei2πara

1 + r2
.
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Now we use the residue theorem.∫ ∞
0

ra

1 + r2
dr +

∫ 0

∞

ei2πara

1 + r2
dr = i2π

(
Res

(
za

1 + z2
, i

)
+ Res

(
za

1 + z2
,−i
))

(
1− ei2πa

) ∫ ∞
0

xa

1 + x2
dx = i2π

(
lim
z→i

za

z + i
+ lim

z→−i

za

z − i

)
(
1− ei2πa

) ∫ ∞
0

xa

1 + x2
dx = i2π

(
eiaπ/2

2i
+

eia3π/2

−2i

)
∫ ∞

0

xa

1 + x2
dx = π

eiaπ/2 − eia3π/2

1− ei2aπ∫ ∞
0

xa

1 + x2
dx = π

eiaπ/2(1− eiaπ)

(1 + eiaπ)(1− eiaπ)∫ ∞
0

xa

1 + x2
dx =

π

e−iaπ/2 + eiaπ/2∫ ∞
0

xa

1 + x2
dx =

π

2 cos(πa/2)
for − 1 < <(a) < 1, a 6= 0

We use analytic continuation to extend the answer to a = 0.

I(a) =

∫ ∞
0

xa

1 + x2
dx =

π

2 cos(πa/2)
for − 1 < <(a) < 1

3. We can derive the last two integrals by differentiating this formula with respect to a and taking the limit
a→ 0.

I ′(a) =

∫ ∞
0

xa log x

1 + x2
dx, I ′′(a) =

∫ ∞
0

xa log2 x

1 + x2
dx

I ′(0) =

∫ ∞
0

log x

1 + x2
dx, I ′′(0) =

∫ ∞
0

log2 x

1 + x2
dx

594



We can find I ′(0) and I ′′(0) either by differentiating the expression for I(a) or by finding the first few terms
in the Taylor series expansion of I(a) about a = 0. The latter approach is a little easier.

I(a) =
∞∑
n=0

I(n)(0)

n!
an

I(a) =
π

2 cos(πa/2)

=
π

2

1

1− (πa/2)2/2 +O(a4)

=
π

2

(
1 + (πa/2)2/2 +O(a4)

)
=
π

2
+
π3/8

2
a2 +O(a4)

I ′(0) =

∫ ∞
0

log x

1 + x2
dx = 0

I ′′(0) =

∫ ∞
0

log2 x

1 + x2
dx =

π3

8

Solution 15.24
Convergence. If xaf(x)� xα as x→ 0 for some α > −1 then the integral∫ 1

0

xaf(x) dx

will converge absolutely. If xaf(x)� xβ as x→∞ for some β < −1 then the integral∫ ∞
1

xaf(x)
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will converge absolutely. These are sufficient conditions for the absolute convergence of∫ ∞
0

xaf(x) dx.

Contour Integration. We put a branch cut on the positive real axis and choose 0 < arg(z) < 2π. We
consider the integral of zaf(z) on the contour in Figure 15.10. Let the singularities of f(z) occur at z1, . . . , zn.
By the residue theorem, ∫

C

zaf(z) dz = i2π
n∑
k=1

Res (zaf(z), zk) .

On the circle of radius ε, the integrand is o(ε−1). Since the length of Cε is 2πε, the integral on Cε vanishes
as ε → 0. On the circle of radius R, the integrand is o(R−1). Since the length of CR is 2πR, the integral on CR
vanishes as R→∞.

The value of the integrand below the branch cut, z = x ei2π, is

f(x ei2π) = xa ei2πaf(x)

In the limit as ε→ 0 and R→∞ we have∫ ∞
0

xaf(x) dx+

∫ 0

−∞
xa ei2πaf(x) dx = i2π

n∑
k=1

Res (zaf(z), zk) .

∫ ∞
0

xaf(x) dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk) .
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Solution 15.25
In the interval of uniform convergence of th integral, we can differentiate the formula∫ ∞

0

xaf(x) dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk) ,

with respect to a to obtain,∫ ∞
0

xaf(x) log x dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z) log z, zk) ,−
4π2a ei2πa

(1− ei2πa)2

n∑
k=1

Res (zaf(z), zk) .

∫ ∞
0

xaf(x) log x dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z) log z, zk) ,+
π2a

sin2(πa)

n∑
k=1

Res (zaf(z), zk) ,

Differentiating the solution of Exercise 15.22 m times with respect to a yields∫ ∞
0

xaf(x) logm x dx =
∂m

∂am

(
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk)

)
,

Solution 15.26
Taking the limit as a→ 0 ∈ Z in the solution of Exercise 15.22 yields∫ ∞

0

f(x) dx = i2π lim
a→0

(∑n
k=1 Res (zaf(z), zk)

1− ei2πa

)
The numerator vanishes because the sum of all residues of znf(z) is zero. Thus we can use L’Hospital’s rule.∫ ∞

0

f(x) dx = i2π lim
a→0

(∑n
k=1 Res (zaf(z) log z, zk)

−i2π ei2πa

)
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∫ ∞
0

f(x) dx = −
n∑
k=1

Res (f(z) log z, zk)

This suggests that we could have derived the result directly by considering the integral of f(z) log z on the contour
in Figure 15.10. We put a branch cut on the positive real axis and choose the branch arg z = 0. Recall that we
have assumed that f(z) has only isolated singularities and no singularities on the positive real axis, [0,∞). By
the residue theorem, ∫

C

f(z) log z dz = i2π
n∑
k=1

Res (f(z) log z, z = zk) .

By assuming that f(z)� zα as z → 0 where α > −1 the integral on Cε will vanish as ε→ 0. By assuming that
f(z)� zβ as z →∞ where β < −1 the integral on CR will vanish as R→∞. The value of the integrand below
the branch cut, z = x ei2π is f(x)(log x+ i2π). Taking the limit as ε→ 0 and R→∞, we have∫ ∞

0

f(x) log x dx+

∫ 0

∞
f(x)(log x+ i2π) dx = i2π

n∑
k=1

Res (f(z) log z, zk) .

Thus we corroborate the result. ∫ ∞
0

f(x) dx = −
n∑
k=1

Res (f(z) log z, zk)

Solution 15.27
Consider the integral of f(z) log2 z on the contour in Figure 15.10. We put a branch cut on the positive real axis
and choose the branch 0 < arg z < 2π. Let z1, . . . zn be the singularities of f(z). By the residue theorem,∫

C

f(z) log2 z dz = i2π
n∑
k=1

Res
(
f(z) log2 z, zk

)
.
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If f(z)� zα as z → 0 for some α > −1 then the integral on Cε will vanish as ε→ 0. f(z)� zβ as z →∞ for some
β < −1 then the integral on CR will vanish as R→∞. Below the branch cut the integrand is f(x)(log x+ i2π)2.
Thus we have∫ ∞

0

f(x) log2 x dx+

∫ 0

∞
f(x)(log2 x+ i4π log x− 4π2) dx = i2π

n∑
k=1

Res
(
f(z) log2 z, zk

)
.

−i4π
∫ ∞

0

f(x) log x dx+ 4π2

∫ ∞
0

f(x) dx = i2π
n∑
k=1

Res
(
f(z) log2 z, zk

)
.

∫ ∞
0

f(x) log x dx = −1

2

n∑
k=1

Res
(
f(z) log2 z, zk

)
+ iπ

n∑
k=1

Res (f(z) log z, zk)

Solution 15.28
Convergence. We consider ∫ ∞

0

xa

1 + x4
dx.

Since the integrand behaves like xa near x = 0 we must have <(a) > −1. Since the integrand behaves like xa−4

at infinity we must have <(a− 4) < −1. The integral converges for −1 < <(a) < 3.
Contour Integration. The function

f(z) =
za

1 + z4

has first order poles at z = (±1 ± i)/
√

2 and a branch point at z = 0. We could evaluate the real integral by
putting a branch cut on the positive real axis with 0 < arg(z) < 2π and integrating f(z) on the contour in
Figure 15.11.
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CR

Cε

Figure 15.11: Possible Path of Integration for f(z) = za

1+z4

Integrating on this contour would work because the value of the integrand below the branch cut is a constant
times the value of the integrand above the branch cut. After demonstrating that the integrals along Cε and CR
vanish in the limits as ε→ 0 and R→∞ we would see that the value of the integral is a constant times the sum
of the residues at the four poles. However, this is not the only, (and not the best), contour that can be used to
evaluate the real integral. Consider the value of the integral on the line arg(z) = θ.

f(r eiθ) =
ra eiaθ

1 + r4 ei4θ

If θ is a integer multiple of π/2 then the integrand is a constant multiple of

f(x) =
ra

1 + r4
.

Thus any of the contours in Figure 15.12 can be used to evaluate the real integral. The only difference is how
many residues we have to calculate. Thus we choose the first contour in Figure 15.12. We put a branch cut on
the negative real axis and choose the branch −π < arg(z) < π to satisfy f(1) = 1.

We evaluate the integral along C with the Residue Theorem.∫
C

za

1 + z4
dz = i2πRes

(
za

1 + z4
, z =

1 + i√
2

)
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C

R

ε ε

R

ε

R

Figure 15.12: Possible Paths of Integration for f(z) = za

1+z4

Let a = α + iβ and z = r eiθ. Note that

|za| = |(r eiθ)α+iβ| = rα e−βθ.

The integral on Cε vanishes as ε→ 0. We demonstrate this with the maximum modulus integral bound.∣∣∣∣∫
Cε

za

1 + z4
dz

∣∣∣∣ ≤ πε

2
max
z∈Cε

∣∣∣∣ za

1 + z4

∣∣∣∣
≤ πε

2

εα eπ|β|/2

1− ε4
→ 0 as ε→ 0

The integral on CR vanishes as R→∞.∣∣∣∣∫
CR

za

1 + z4
dz

∣∣∣∣ ≤ πR

2
max
z∈CR

∣∣∣∣ za

1 + z4

∣∣∣∣
≤ πR

2

Rα eπ|β|/2

R4 − 1

→ 0 as R→∞
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The value of the integrand on the positive imaginary axis, z = x eiπ/2, is

(x eiπ/2)a

1 + (x eiπ/2)4
=
xa eiπa/2

1 + x4
.

We take the limit as ε→ 0 and R→∞.

∫ ∞
0

xa

1 + x4
dx+

∫ 0

∞

xa eiπa/2

1 + x4
eiπ/2 dx = i2πRes

(
za

1 + z4
, eiπ/4

)
(
1− eiπ(a+1)/2

) ∫ ∞
0

xa

1 + x4
dx = i2π lim

z→ eiπ/4

(
za(z − eiπ/2)

1 + z4

)
∫ ∞

0

xa

1 + x4
dx =

i2π

1− eiπ(a+1)/2
lim

z→ eiπ/4

(
aza(z − eiπ/2) + za

4z3

)
∫ ∞

0

xa

1 + x4
dx =

i2π

1− eiπ(a+1)/2

eiπa/4

4 ei3π/4∫ ∞
0

xa

1 + x4
dx =

−iπ
2( e−iπ(a+1)/4 − eiπ(a+1)/4)∫ ∞

0

xa

1 + x4
dx =

π

4
csc

(
π(a+ 1)

4

)

Solution 15.29
Consider the branch of f(z) = z1/2 log z/(z + 1)2 with a branch cut on the positive real axis and 0 < arg z < 2π.
We integrate this function on the contour in Figure 15.10.
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We use the maximum modulus integral bound to show that the integral on Cρ vanishes as ρ→ 0.∣∣∣∣∣
∫
Cρ

z1/2 log z

(z + 1)2
dz

∣∣∣∣∣ ≤ 2πρmax
Cρ

∣∣∣∣z1/2 log z

(z + 1)2

∣∣∣∣
= 2πρ

ρ1/2(2π − log ρ)

(1− ρ)2

→ 0 as ρ→ 0

The integral on CR vanishes as R→∞.∣∣∣∣∫
CR

z1/2 log z

(z + 1)2
dz

∣∣∣∣ ≤ 2πRmax
CR

∣∣∣∣z1/2 log z

(z + 1)2

∣∣∣∣
= 2πR

R1/2(logR + 2π)

(R− 1)2

→ 0 as R→∞

Above the branch cut, (z = x ei0), the integrand is,

f(x ei0) =
x1/2 log x

(x+ 1)2
.

Below the branch cut, (z = x ei2π ), we have,

f(x ei2π) =
−x1/2(log x+ iπ)

(x+ 1)2
.

Taking the limit as ρ→ 0 and R→∞, the residue theorem gives us∫ ∞
0

x1/2 log x

(x+ 1)2
dx+

∫ 0

∞

−x1/2(log x+ i2π)

(x+ 1)2
dx = i2πRes

(
z1/2 log z

(z + 1)2
,−1

)
.
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2

∫ ∞
0

x1/2 log x

(x+ 1)2
dx+ i2π

∫ ∞
0

x1/2

(x+ 1)2
dx = i2π lim

z→−1

d

dz
(z1/2 log z)

2

∫ ∞
0

x1/2 log x

(x+ 1)2
dx+ i2π

∫ ∞
0

x1/2

(x+ 1)2
dx = i2π lim

z→−1

(
1

2
z−1/2 log z + z1/2 1

z

)

2

∫ ∞
0

x1/2 log x

(x+ 1)2
dx+ i2π

∫ ∞
0

x1/2

(x+ 1)2
dx = i2π

(
1

2
(−i)(iπ)− i

)

2

∫ ∞
0

x1/2 log x

(x+ 1)2
dx+ i2π

∫ ∞
0

x1/2

(x+ 1)2
dx = 2π + iπ2

Equating real and imaginary parts,∫ ∞
0

x1/2 log x

(x+ 1)2
dx = π,

∫ ∞
0

x1/2

(x+ 1)2
dx =

π

2
.

Exploiting Symmetry

Solution 15.30
Convergence. The integrand,

eaz

ez − e−z
=

eaz

2 sinh(z)
,

has first order poles at z = inπ, n ∈ Z. To study convergence, we split the domain of integration.∫ ∞
−∞

=

∫ −1

−∞
+

∫ 1

−1

+

∫ ∞
1
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The principal value integral

−
∫ 1

−1

eax

ex − e−x
dx

exists for any a because the integrand has only a first order pole on the path of integration.
Now consider the integral on (1 . . .∞).∣∣∣∣∫ ∞

1

eax

ex − e−x
dx

∣∣∣∣ =

∫ ∞
1

e(a−1)x

1− e−2x
dx

≤ 1

1− e−2

∫ ∞
1

e(a−1)x dx

This integral converges for a− 1 < 0; a < 1.
Finally consider the integral on (−∞ . . .− 1).∣∣∣∣∫ −1

−∞

eax

ex − e−x
dx

∣∣∣∣ =

∫ −1

−∞

e(a+1)x

1− e2x
dx

≤ 1

1− e−2

∫ −1

−∞
e(a+1)x dx

This integral converges for a+ 1 > 0; a > −1.
Thus we see that the integral for I(a) converges for real a, |a| < 1.
Choice of Contour. Consider the contour C that is the boundary of the region: −R < x < R, 0 < y < π.

The integrand has no singularities inside the contour. There are first order poles on the contour at z = 0 and
z = iπ. The value of the integral along the contour is iπ times the sum of these two residues.

The integrals along the vertical sides of the contour vanish as R→∞.∣∣∣∣∫ R+iπ

R

eaz

ez − e−z
dz

∣∣∣∣ ≤ π max
z∈(R...R+iπ)

∣∣∣∣ eaz

ez − e−z

∣∣∣∣
≤ π

eaR

eR − e−R

→ 0 as R→∞
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∣∣∣∣∫ −R+iπ

−R

eaz

ez − e−z
dz

∣∣∣∣ ≤ π max
z∈(−R...−R+iπ)

∣∣∣∣ eaz

ez − e−z

∣∣∣∣
≤ π

e−aR

e−R − eR

→ 0 as R→∞

Evaluating the Integral. We take the limit as R→∞ and apply the residue theorem.∫ ∞
−∞

eax

ex − e−x
dx+

∫ −∞+iπ

∞+iπ

eaz

ez − e−z
dz

= iπRes

(
eaz

ez − e−z
, z = 0

)
+ iπRes

(
eaz

ez − e−z
, z = iπ

)

∫ ∞
−∞

eax

ex − e−x
dx+

∫ −∞
∞

ea(x+iπ

ex+iπ − e−x−iπ
dz = iπ lim

z→0

z eaz

2 sinh(z)
+ iπ lim

z→iπ

(z − iπ) eaz

2 sinh(z)

(1 + eiaπ)

∫ ∞
−∞

eax

ex − e−x
dx = iπ lim

z→0

eaz + az eaz

2 cosh(z)
+ iπ lim

z→iπ

eaz + a(z − iπ) eaz

2 cosh(z)

(1 + eiaπ)

∫ ∞
−∞

eax

ex − e−x
dx = iπ

1

2
+ iπ

eiaπ

−2∫ ∞
−∞

eax

ex − e−x
dx =

iπ(1− eiaπ)

2(1 + eiaπ)∫ ∞
−∞

eax

ex − e−x
dx =

π

2

i( e−iaπ/2 − eiaπ/2)

eiaπ/2 + eiaπ/2∫ ∞
−∞

eax

ex − e−x
dx =

π

2
tan
(aπ

2

)
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Solution 15.31
1. ∫ ∞

0

dx

(1 + x2)2 =
1

2

∫ ∞
−∞

dx

(1 + x2)2

We apply Result 15.4.1 to the integral on the real axis. First we verify that the integrand vanishes fast
enough in the upper half plane.

lim
R→∞

(
Rmax
z∈CR

∣∣∣∣ 1

(1 + z2)2

∣∣∣∣) = lim
R→∞

(
R

1

(R2 − 1)2

)
= 0

Then we evaluate the integral with the residue theorem.∫ ∞
−∞

dx

(1 + x2)2 = i2πRes

(
1

(1 + z2)2 , z = i

)
= i2πRes

(
1

(z − i)2(z + i)2
, z = i

)
= i2π lim

z→i

d

dz

1

(z + i)2

= i2π lim
z→i

−2

(z + i)3

=
π

2

∫ ∞
0

dx

(1 + x2)2 =
π

4

2. We wish to evaluate ∫ ∞
0

dx

x3 + 1
.
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Let the contour C be the boundary of the region 0 < r < R, 0 < θ < 2π/3. We factor the denominator of
the integrand to see that the contour encloses the simple pole at eiπ/3 for R > 1.

z3 + 1 = (z − eiπ/3)(z + 1)(z − e−iπ/3),

We calculate the residue at that point.

Res

(
1

z3 + 1
, z = eiπ/3

)
= lim

z→ eiπ/3

(
(z − eiπ/3)

1

z3 + 1

)
= lim

z→ eiπ/3

(
1

(z + 1)(z − e−iπ/3)

)
=

1

( eiπ/3 + 1)( eiπ/3 − e−iπ/3)

We use the residue theorem to evaluate the integral.∮
C

dz

z3 + 1
=

i2π

( eiπ/3 + 1)( eiπ/3 − e−iπ/3)

Let CR be the circular arc portion of the contour.∫
C

dz

z3 + 1
=

∫ R

0

dx

x3 + 1
+

∫
CR

dz

z3 + 1
−
∫ R

0

e2iπ/3dx

x3 + 1

= (1 + e−iπ/3)

∫ R

0

dx

x3 + 1
+

∫
CR

dz

z3 + 1

We show that the integral along CR vanishes as R→∞ with the maximum modulus integral bound.∣∣∣∣∫
CR

dz

z3 + 1

∣∣∣∣ ≤ 2πR

3

1

R3 − 1
→ 0 as R→∞
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We take R→∞ and solve for the desired integral.

(1 + e−iπ/3)

∫ ∞
0

dx

x3 + 1
=

i2π

(1 + eiπ/3)( eiπ/3 − e−iπ/3)∫ ∞
0

dx

x3 + 1
=

i2π

(1 + e−iπ/3)(1 + eiπ/3)( eiπ/3 − e−iπ/3)∫ ∞
0

dx

x3 + 1
=

i2π
1
2
(3 + i

√
3)1

2
(3− i

√
3)(i
√

3)∫ ∞
0

dx

x3 + 1
=

2π

3
√

3

Solution 15.32
Method 1: Semi-Circle Contour. We wish to evaluate the integral

I =

∫ ∞
0

dx

1 + x6
.

We note that the integrand is an even function and express I as an integral over the whole real axis.

I =
1

2

∫ ∞
−∞

dx

1 + x6

Now we will evaluate the integral using contour integration. We close the path of integration in the upper half
plane. Let ΓR be the semicircular arc from R to −R in the upper half plane. Let Γ be the union of ΓR and the
interval [−R,R]. (See Figure 15.13.)

We can evaluate the integral along Γ with the residue theorem. The integrand has first order poles at
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Figure 15.13: The semi-circle contour.

z = eiπ(1+2k)/6, k = 0, 1, 2, 3, 4, 5. Three of these poles are in the upper half plane. For R > 1, we have

∫
Γ

1

z6 + 1
dz = i2π

2∑
k=0

Res

(
1

z6 + 1
, eiπ(1+2k)/6

)

= i2π
2∑

k=0

lim
z→ eiπ(1+2k)/6

z − eiπ(1+2k)/6

z6 + 1
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Since the numerator and denominator vanish, we apply L’Hospital’s rule.

= i2π
2∑

k=0

lim
z→ eiπ(1+2k)/6

1

6z5

=
iπ

3

2∑
k=0

e−iπ5(1+2k)/6

=
iπ

3

(
e−iπ5/6 + e−iπ15/6 + e−iπ25/6

)
=
iπ

3

(
e−iπ5/6 + e−iπ/2 + e−iπ/6

)
=
iπ

3

(
−
√

3− i
2

− i+

√
3− i
2

)
=

2π

3

Now we examine the integral along ΓR. We use the maximum modulus integral bound to show that the value of
the integral vanishes as R→∞. ∣∣∣∣∫

ΓR

1

z6 + 1
dz

∣∣∣∣ ≤ πRmax
z∈ΓR

∣∣∣∣ 1

z6 + 1

∣∣∣∣
= πR

1

R6 − 1

→ 0 as R→∞.

Now we are prepared to evaluate the original real integral.∫
Γ

1

z6 + 1
dz =

2π

3∫ R

−R

1

x6 + 1
dx+

∫
ΓR

1

z6 + 1
dz =

2π

3
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We take the limit as R→∞.

∫ ∞
−∞

1

x6 + 1
dx =

2π

3∫ ∞
0

1

x6 + 1
dx =

π

3

We would get the same result by closing the path of integration in the lower half plane. Note that in this case
the closed contour would be in the negative direction.

Method 2: Wedge Contour. Consider the contour Γ, which starts at the origin, goes to the point R along
the real axis, then to the point R eiπ/3 along a circle of radius R and then back to the origin along the ray θ = π/3.
(See Figure 15.14.)

Figure 15.14: The wedge contour.

We can evaluate the integral along Γ with the residue theorem. The integrand has one first order pole inside
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the contour at z = eiπ/6. For R > 1, we have∫
Γ

1

z6 + 1
dz = i2πRes

(
1

z6 + 1
, eiπ/6

)
= i2π lim

z→ eiπ/6

z − eiπ/6

z6 + 1

Since the numerator and denominator vanish, we apply L’Hospital’s rule.

= i2π lim
z→ eiπ/6

1

6z5

=
iπ

3
e−iπ5/6

=
π

3
e−iπ/3

Now we examine the integral along the circular arc, ΓR. We use the maximum modulus integral bound to show
that the value of the integral vanishes as R→∞.∣∣∣∣∫

ΓR

1

z6 + 1
dz

∣∣∣∣ ≤ πR

3
max
z∈ΓR

∣∣∣∣ 1

z6 + 1

∣∣∣∣
=
πR

3

1

R6 − 1

→ 0 as R→∞.

Now we are prepared to evaluate the original real integral.∫
Γ

1

z6 + 1
dz =

π

3
e−iπ/3∫ R

0

1

x6 + 1
dx+

∫
ΓR

1

z6 + 1
dz +

∫ 0

R eiπ/3

1

z6 + 1
dz =

π

3
e−iπ/3∫ R

0

1

x6 + 1
dx+

∫
ΓR

1

z6 + 1
dz +

∫ 0

R

1

x6 + 1
eiπ/3 dx =

π

3
e−iπ/3
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We take the limit as R→∞.

(
1− eiπ/3

) ∫ ∞
0

1

x6 + 1
dx =

π

3
e−iπ/3∫ ∞

0

1

x6 + 1
dx =

π

3

e−iπ/3

1− eiπ/3∫ ∞
0

1

x6 + 1
dx =

π

3

(1− i
√

3)/2

1− (1 + i
√

3)/2∫ ∞
0

1

x6 + 1
dx =

π

3

Solution 15.33
First note that

cos(2θ) ≥ 1− 4

π
θ, 0 ≤ θ ≤ π

4
.

These two functions are plotted in Figure 15.15. To prove this inequality analytically, note that the two functions
are equal at the endpoints of the interval and that cos(2θ) is concave downward on the interval,

d2

dθ2
cos(2θ) = −4 cos(2θ) ≤ 0 for 0 ≤ θ ≤ π

4
,

while 1− 4θ/π is linear.

Let CR be the quarter circle of radius R from θ = 0 to θ = π/4. The integral along this contour vanishes as
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Figure 15.15: cos(2θ) and 1− 4
π
θ

R→∞. ∣∣∣∣∫
CR

e−z
2

dz

∣∣∣∣ ≤ ∫ π/4

0

∣∣∣ e−(R eiθ)2
∣∣∣ ∣∣Ri eiθ

∣∣ dθ

≤
∫ π/4

0

R e−R
2 cos(2θ) dθ

≤
∫ π/4

0

R e−R
2(1−4θ/π) dθ

=
[
R

π

4R2
e−R

2(1−4θ/π)
]π/4

0

=
π

4R

(
1− e−R

2
)

→ 0 as R→∞

Let C be the boundary of the domain 0 < r < R, 0 < θ < π/4. Since the integrand is analytic inside C the
integral along C is zero. Taking the limit as R → ∞, the integral from r = 0 to ∞ along θ = 0 is equal to the
integral from r = 0 to ∞ along θ = π/4.∫ ∞

0

e−x
2

dx =

∫ ∞
0

e
−
(

1+i√
2
x
)2 1 + i√

2
dx
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∫ ∞
0

e−x
2

dx =
1 + i√

2

∫ ∞
0

e−ix
2

dx

∫ ∞
0

e−x
2

dx =
1 + i√

2

∫ ∞
0

(
cos(x2)− i sin(x2)

)
dx

∫ ∞
0

e−x
2

dx =
1√
2

(∫ ∞
0

cos(x2) dx+

∫ ∞
0

sin(x2) dx

)
+

i√
2

(∫ ∞
0

cos(x2) dx−
∫ ∞

0

sin(x2) dx

)
We equate the imaginary part of this equation to see that the integrals of cos(x2) and sin(x2) are equal.∫ ∞

0

cos(x2) dx =

∫ ∞
0

sin(x2) dx

The real part of the equation then gives us the desired identity.∫ ∞
0

cos(x2) dx =

∫ ∞
0

sin(x2) dx =
1√
2

∫ ∞
0

e−x
2

dx

Solution 15.34
Consider the box contour C that is the boundary of the rectangle −R ≤ x ≤ R, 0 ≤ y ≤ π. There is a removable
singularity at z = 0 and a first order pole at z = iπ. By the residue theorem,

−
∫
C

z

sinh z
dz = iπRes

( z

sinh z
, iπ
)

= iπ lim
z→iπ

z(z − iπ)

sinh z

= iπ lim
z→iπ

2z − iπ
cosh z

= π2
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The integrals along the side of the box vanish as R→∞.∣∣∣∣∫ ±R+iπ

±R

z

sinh z
dz

∣∣∣∣ ≤ π max
z∈[±R,±R+iπ]

∣∣∣ z

sinh z

∣∣∣
≤ π

R + π

sinhR
→ 0 as R→∞

The value of the integrand on the top of the box is

x+ iπ

sinh(x+ iπ)
= −x+ iπ

sinhx
.

Taking the limit as R→∞, ∫ ∞
−∞

x

sinhx
dx+−

∫ ∞
−∞
−x+ iπ

sinhx
dx = π2.

Note that

−
∫ ∞
−∞

1

sinhx
dx = 0

as there is a first order pole at x = 0 and the integrand is odd.∫ ∞
−∞

x

sinhx
dx =

π2

2

Solution 15.35
First we evaluate ∫ ∞

−∞

eax

ex + 1
dx.
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Consider the rectangular contour in the positive direction with corners at ±R and ±R+ i2π. With the maximum
modulus integral bound we see that the integrals on the vertical sides of the contour vanish as R→∞.

∣∣∣∣∫ R+i2π

R

eaz

ez + 1
dz

∣∣∣∣ ≤ 2π
eaR

eR − 1
→ 0 as R→∞∣∣∣∣∫ −R

−R+i2π

eaz

ez + 1
dz

∣∣∣∣ ≤ 2π
e−aR

1− e−R
→ 0 as R→∞

In the limit as R tends to infinity, the integral on the rectangular contour is the sum of the integrals along the
top and bottom sides.

∫
C

eaz

ez + 1
dz =

∫ ∞
−∞

eax

ex + 1
dx+

∫ −∞
∞

ea(x+i2π)

ex+i2π + 1
dx∫

C

eaz

ez + 1
dz = (1− e−i2aπ)

∫ ∞
−∞

eax

ex + 1
dx

The only singularity of the integrand inside the contour is a first order pole at z = iπ. We use the residue theorem
to evaluate the integral.

∫
C

eaz

ez + 1
dz = i2πRes

(
eaz

ez + 1
, iπ

)
= i2π lim

z→iπ

(z − iπ) eaz

ez + 1

= i2π lim
z→iπ

a(z − iπ) eaz + eaz

ez

= −i2π eiaπ
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We equate the two results for the value of the contour integral.

(1− e−i2aπ)

∫ ∞
−∞

eax

ex + 1
dx = −i2π eiaπ∫ ∞

−∞

eax

ex + 1
dx =

i2π

eiaπ − e−iaπ∫ ∞
−∞

eax

ex + 1
dx =

π

sin(πa)

Now we derive the value of, ∫ ∞
−∞

cosh(bx)

cosh x
dx.

First make the change of variables x→ 2x in the previous result.∫ ∞
−∞

e2ax

e2x + 1
2 dx =

π

sin(πa)∫ ∞
−∞

e(2a−1)x

ex + e−x
dx =

π

sin(πa)

Now we set b = 2a− 1. ∫ ∞
−∞

ebx

cosh x
dx =

π

sin(π(b+ 1)/2)
=

π

cos(πb/2)
for − 1 < b < 1

Since the cosine is an even function, we also have,∫ ∞
−∞

e−bx

coshx
dx =

π

cos(πb/2)
for − 1 < b < 1

Adding these two equations and dividing by 2 yields the desired result.∫ ∞
−∞

cosh(bx)

coshx
dx =

π

cos(πb/2)
for − 1 < b < 1
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Solution 15.36
Real-Valued Parameters. For b = 0, the integral has the value: π/a2. If b is nonzero, then we can write the
integral as

F (a, b) =
1

b2

∫ π

0

dθ

(a/b+ cos θ)2
.

We define the new parameter c = a/b and the function,

G(c) = b2F (a, b) =

∫ π

0

dθ

(c+ cos θ)2
.

If −1 ≤ c ≤ 1 then the integrand has a double pole on the path of integration. The integral diverges. Otherwise
the integral exists. To evaluate the integral, we extend the range of integration to (0..2π) and make the change
of variables, z = eiθ to integrate along the unit circle in the complex plane.

G(c) =
1

2

∫ 2π

0

dθ

(c+ cos θ)2

For this change of variables, we have,

cos θ =
z + z−1

2
, dθ =

dz

iz
.

G(c) =
1

2

∫
C

dz/(iz)

(c+ (z + z−1)/2)2

= −i2
∫
C

z

(2cz + z2 + 1)2
dz

= −i2
∫
C

z

(z + c+
√
c2 − 1)2(z + c−

√
c2 − 1)2

dz
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If c > 1, then −c−
√
c2 − 1 is outside the unit circle and −c+

√
c2 − 1 is inside the unit circle. The integrand

has a second order pole inside the path of integration. We evaluate the integral with the residue theorem.

G(c) = −i2i2πRes

(
z

(z + c+
√
c2 − 1)2(z + c−

√
c2 − 1)2

, z = −c+
√
c2 − 1

)
= 4π lim

z→−c+
√
c2−1

d

dz

z

(z + c+
√
c2 − 1)2

= 4π lim
z→−c+

√
c2−1

(
1

(z + c+
√
c2 − 1)2

− 2z

(z + c+
√
c2 − 1)3

)
= 4π lim

z→−c+
√
c2−1

c+
√
c2 − 1− z

(z + c+
√
c2 − 1)3

= 4π
2c

(2
√
c2 − 1)3

=
πc√

(c2 − 1)3
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If c < 1, then −c−
√
c2 − 1 is inside the unit circle and −c+

√
c2 − 1 is outside the unit circle.

G(c) = −i2i2πRes

(
z

(z + c+
√
c2 − 1)2(z + c−

√
c2 − 1)2

, z = −c−
√
c2 − 1

)
= 4π lim

z→−c−
√
c2−1

d

dz

z

(z + c−
√
c2 − 1)2

= 4π lim
z→−c−

√
c2−1

(
1

(z + c−
√
c2 − 1)2

− 2z

(z + c−
√
c2 − 1)3

)
= 4π lim

z→−c−
√
c2−1

c−
√
c2 − 1− z

(z + c−
√
c2 − 1)3

= 4π
2c

(−2
√
c2 − 1)3

= − πc√
(c2 − 1)3

Thus we see that

G(c)


= πc√

(c2−1)3
for c > 1,

= − πc√
(c2−1)3

for c < 1,

is divergent for − 1 ≤ c ≤ 1.

In terms of F (a, b), this is

F (a, b)


= aπ√

(a2−b2)3
for a/b > 1,

= − aπ√
(a2−b2)3

for a/b < 1,

is divergent for − 1 ≤ a/b ≤ 1.
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Complex-Valued Parameters. Consider

G(c) =

∫ π

0

dθ

(c+ cos θ)2
,

for complex c. Except for real-valued c between −1 and 1, the integral converges uniformly. We can interchange
differentiation and integration. The derivative of G(c) is

G′(c) =
d

dc

∫ π

0

dθ

(c+ cos θ)2

=

∫ π

0

−2

(c+ cos θ)3
dθ

Thus we see that G(c) is analytic in the complex plane with a cut on the real axis from −1 to 1. The value of
the function on the positive real axis for c > 1 is

G(c) =
πc√

(c2 − 1)3
.

We use analytic continuation to determine G(c) for complex c. By inspection we see that G(c) is the branch of

πc

(c2 − 1)3/2
,

with a branch cut on the real axis from −1 to 1 and which is real-valued and positive for real c > 1. Using
F (a, b) = G(c)/b2 we can determine F for complex-valued a and b.

Solution 15.37
First note that ∫ ∞

−∞

cos x

ex + e−x
dx =

∫ ∞
−∞

eix

ex + e−x
dx

623



since sinx/( ex + e−x) is an odd function. For the function

f(z) =
eiz

ez + e−z

we have

f(x+ iπ) =
eix−π

ex+iπ + e−x−iπ
= − e−π

eix

ex + e−x
= − e−πf(x).

Thus we consider the integral ∫
C

eiz

ez + e−z
dz

where C is the box contour with corners at ±R and ±R + iπ. We can evaluate this integral with the residue
theorem. We can write the integrand as

eiz

2 cosh z
.

We see that the integrand has first order poles at z = iπ(n + 1/2). The only pole inside the path of integration
is at z = iπ/2. ∫

C

eiz

ez + e−z
dz = i2πRes

(
eiz

ez + e−z
, z =

iπ

2

)
= i2π lim

z→iπ/2

(z − iπ/2) eiz

ez + e−z

= i2π lim
z→iπ/2

eiz + i(z − iπ/2) eiz

ez − e−z

= i2π
e−π/2

eiπ/2 − e−iπ/2

= π e−π/2
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The integrals along the vertical sides of the box vanish as R→∞.∣∣∣∣∫ ±R+iπ

±R

eiz

ez + e−z
dz

∣∣∣∣ ≤ π max
z∈[±R...±R+iπ]

∣∣∣∣ eiz

ez + e−z

∣∣∣∣
≤ π max

y∈[0...π]

∣∣∣∣ 1

eR+iy + e−R−iy

∣∣∣∣
≤ π max

y∈[0...π]

∣∣∣∣ 1

eR + e−R−i2y

∣∣∣∣
= π

1

2 sinhR
→ 0 as R→∞

Taking the limit as R→∞, we have∫ ∞
−∞

eix

ex + e−x
dx+

∫ −∞+iπ

∞+iπ

eiz

ez + e−z
dz = π e−π/2

(1 + e−π)

∫ ∞
−∞

eix

ex + e−x
dx = π e−π/2∫ ∞

−∞

eix

ex + e−x
dx =

π

eπ/2 + e−π/2

Finally we have, ∫ ∞
−∞

cos x

ex + e−x
dx =

π

eπ/2 + e−π/2
.

Definite Integrals Involving Sine and Cosine

Solution 15.38
1. Let C be the positively oriented unit circle about the origin. We parametrize this contour.

z = eiθ, dz = i eiθdθ, θ ∈ (0 . . . 2π)
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We write sin θ and the differential dθ in terms of z. Then we evaluate the integral with the Residue theorem.∫ 2π

0

1

2 + sin θ
dθ =

∮
C

1

2 + (z − 1/z)/(2i)

dz

iz

=

∮
C

2

z2 + i4z − 1
dz

=

∮
C

2(
z + i

(
2 +
√

3
)) (

z + i
(
2−
√

3
)) dz

= i2πRes
((
z + i

(
2 +
√

3
))(

z + i
(

2−
√

3
))

, z = i
(
−2 +

√
3
))

= i2π
2

i2
√

3

=
2π√

3

2. First consider the case a = 0. ∫ π

−π
cos(nθ) dθ =

{
0 for n ∈ Z+

2π for n = 0

Now we consider |a| < 1, a 6= 0. Since

sin(nθ)

1− 2a cos θ + a2

is an even function, ∫ π

−π

cos(nθ)

1− 2a cos θ + a2
dθ =

∫ π

−π

einθ

1− 2a cos θ + a2
dθ

Let C be the positively oriented unit circle about the origin. We parametrize this contour.

z = eiθ, dz = i eiθdθ, θ ∈ (−π . . . π)

626



We write the integrand and the differential dθ in terms of z. Then we evaluate the integral with the Residue
theorem. ∫ π

−π

einθ

1− 2a cos θ + a2
dθ =

∮
C

zn

1− a(z + 1/z) + a2

dz

iz

= −i
∮
C

zn

−az2 + (1 + a2)z − a
dz

=
i

a

∮
C

zn

z2 − (a+ 1/a)z + 1
dz

=
i

a

∮
C

zn

(z − a)(z − 1/a)
dz

= i2π
i

a
Res

(
zn

(z − a)(z − 1/a)
, z = a

)
= −2π

a

an

a− 1/a

=
2πan

1− a2

We write the value of the integral for |a| < 1 and n ∈ Z0+.

∫ π

−π

cos(nθ)

1− 2a cos θ + a2
dθ =

{
2π for a = 0, n = 0
2πan

1−a2 otherwise

Solution 15.39
Convergence. We consider the integral

I(α) = −
∫ π

0

cos(nθ)

cos θ − cosα
dθ = π

sin(nα)

sinα
.

627



We assume that α is real-valued. If α is an integer, then the integrand has a second order pole on the path of
integration, the principal value of the integral does not exist. If α is real, but not an integer, then the integrand
has a first order pole on the path of integration. The integral diverges, but its principal value exists.

Contour Integration. We will evaluate the integral for real, non-integer α.

I(α) = −
∫ π

0

cos(nθ)

cos θ − cosα
dθ

=
1

2
−
∫ 2π

0

cos(nθ)

cos θ − cosα
dθ

=
1

2
<−
∫ 2π

0

einθ

cos θ − cosα
dθ

We make the change of variables: z = eiθ.

I(α) =
1

2
<−
∫
C

zn

(z + 1/z)/2− cosα

dz

iz

= <−
∫
C

−izn

(z − eiα)(z − e−iα)
dz
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Now we use the residue theorem.

= <
(
iπ(−i)

(
Res

(
zn

(z − eiα)(z − e−iα)
, z = eiα

)
+ Res

(
zn

(z − eiα)(z − e−iα)
, z = e−iα

)))
= π<

(
lim
z→ eiα

zn

z − e−iα
+ lim

z→ e−iα

zn

z − eiα

)
= π<

(
einα

eiα − e−iα
+

e−inα

e−iα − eiα

)
= π<

(
einα − e−inα

eiα − e−iα

)
= π<

(
sin(nα)

sin(α)

)

I(α) = −
∫ π

0

cos(nθ)

cos θ − cosα
dθ = π

sin(nα)

sinα
.

Solution 15.40
Consider the integral ∫ 1

0

x2

(1 + x2)
√

1− x2
dx.

We make the change of variables x = sin ξ to obtain,∫ π/2

0

sin2 ξ

(1 + sin2 ξ)
√

1− sin2 ξ
cos ξ dξ
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∫ π/2

0

sin2 ξ

1 + sin2 ξ
dξ

∫ π/2

0

1− cos(2ξ)

3− cos(2ξ)
dξ

1

4

∫ 2π

0

1− cos ξ

3− cos ξ
dξ

Now we make the change of variables z = eiξ to obtain a contour integral on the unit circle.

1

4

∫
C

1− (z + 1/z)/2

3− (z + 1/z)/2

(
−i
z

)
dz

−i
4

∫
C

(z − 1)2

z(z − 3 + 2
√

2)(z − 3− 2
√

2)
dz

There are two first order poles inside the contour. The value of the integral is

i2π
−i
4

(
Res

(
(z − 1)2

z(z − 3 + 2
√

2)(z − 3− 2
√

2)
, 0

)
+ Res

(
(z − 1)2

z(z − 3 + 2
√

2)(z − 3− 2
√

2)
, z = 3− 2

√
2

))

π

2

(
lim
z→0

(
(z − 1)2

(z − 3 + 2
√

2)(z − 3− 2
√

2)

)
+ lim

z→3−2
√

2

(
(z − 1)2

z(z − 3− 2
√

2)

))
.

∫ 1

0

x2

(1 + x2)
√

1− x2
dx =

(2−
√

2)π

4
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Infinite Sums

Solution 15.41
From Result 15.10.1 we see that the sum of the residues of π cot(πz)/z4 is zero. This function has simples poles
at nonzero integers z = n with residue 1/n4. There is a fifth order pole at z = 0. Finding the residue with the
formula

1

4!
lim
z→0

d4

dz4
(πz cot(πz))

would be a real pain. After doing the differentiation, we would have to apply L’Hospital’s rule multiple times. A
better way of finding the residue is with the Laurent series expansion of the function. Note that

1

sin(πz)
=

1

πz − (πz)3/6 + (πz)5/120− · · ·

=
1

πz

1

1− (πz)2/6 + (πz)4/120− · · ·

=
1

πz

(
1 +

(
π2

6
z2 − π4

120
z4 + · · ·

)
+

(
π2

6
z2 − π4

120
z4 + · · ·

)2

+ · · ·

)
.

Now we find the z−1 term in the Laurent series expansion of π cot(πz)/z4.

π cos(πz)

z4 sin(πz)
=

π

z4

(
1− π2

2
z2 +

π4

24
z4 − · · ·

)
1

πz

(
1 +

(
π2

6
z2 − π4

120
z4 + · · ·

)
+

(
π2

6
z2 − π4

120
z4 + · · ·

)2

+ · · ·

)

=
1

z5

(
· · ·+

(
− π4

120
+
π4

36
− π4

12
+
π4

24

)
z4 + · · ·

)
= · · · − π4

45

1

z
+ · · ·

Thus the residue at z = 0 is −π4/45. Summing the residues,

−1∑
n=−∞

1

n4
− π4

45
+
∞∑
n=1

1

n4
= 0.
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∞∑
n=1

1

n4
=
π4

90

Solution 15.42
For this problem we will use the following result: If

lim
|z|→∞

|zf(z)| = 0,

then the sum of all the residues of π cot(πz)f(z) is zero. If in addition, f(z) is analytic at z = n ∈ Z then

∞∑
n=−∞

f(n) = −( sum of the residues of π cot(πz)f(z) at the poles of f(z) ).

We assume that α is not an integer, otherwise the sum is not defined. Consider f(z) = 1/(z2 − α2). Since

lim
|z|→∞

∣∣∣∣z 1

z2 − α2

∣∣∣∣ = 0,

and f(z) is analytic at z = n, n ∈ Z, we have

∞∑
n=−∞

1

n2 − α2
= −( sum of the residues of π cot(πz)f(z) at the poles of f(z) ).

f(z) has first order poles at z = ±α.

∞∑
n=−∞

1

n2 − α2
= −Res

(
π cot(πz)

z2 − α2
, z = α

)
− Res

(
π cot(πz)

z2 − α2
, z = −α

)
= − lim

z→α

π cot(πz)

z + α
− lim

z→−α

π cot(πz)

z − α

= −π cot(πα)

2α
− π cot(−πα)

−2α
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∞∑
n=−∞

1

n2 − α2
= −π cot(πα)

α
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Part IV

Ordinary Differential Equations
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Chapter 16

First Order Differential Equations

Don’t show me your technique. Show me your heart.

-Tetsuyasu Uekuma

16.1 Notation

A differential equation is an equation involving a function, it’s derivatives, and independent variables. If there is
only one independent variable, then it is an ordinary differential equation. Identities such as

d

dx

(
f 2(x)

)
= 2f(x)f ′(x), and

dy

dx

dx

dy
= 1

are not differential equations.
The order of a differential equation is the order of the highest derivative. The following equations are first,

second and third order, respectively.

• y′ = xy2
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• y′′ + 3xy′ + 2y = x2

• y′′′ = y′′y

The degree of a differential equation is the highest power of the highest derivative in the equation. The
following equations are first, second and third degree, respectively.

• y′ − 3y = sinx

• (y′′)2 + 2xy = ex

• (y′)3 + y5 = 0

An equation is said to be linear if it is linear in the dependent variable.

• y′′ cosx+ x2y = 0 is a linear differential equation.

• y′ + xy2 = 0 is a nonlinear differential equation.

A differential equation is homogeneous if it has no terms that are functions of the independent variable alone.
Thus an inhomogeneous equation is one in which there are terms that are functions of the independent variables
alone.

• y′′ + xy + y = 0 is a homogeneous equation.

• y′ + y + x2 = 0 is an inhomogeneous equation.

A first order differential equation may be written in terms of differentials. Recall that for the function y(x)
the differential dy is defined dy = y′(x) dx. Thus the differential equations

y′ = x2y and y′ + xy2 = sin(x)

can be denoted:

dy = x2y dx and dy + xy2 dx = sin(x) dx.
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A solution of a differential equation is a function which when substituted into the equation yields an identity.
For example, y = x log x is a solution of

y′ − y

x
= 1

and y = c ex is a solution of

y′′ − y = 0

for any value of the parameter c.

16.2 One Parameter Families of Functions

Consider the equation

F (x, y(x); c) = 0, (16.1)

which implicitly defines a one-parameter family of functions y(x). (We assume that F has a non-trivial dependence
on y, that is Fy 6= 0.) Differentiating this equation with respect to x yields

Fx + Fyy
′ = 0.

This gives us two equations involving the independent variable x, the dependent variable y(x) and its derivative
and the parameter c. If we algebraically eliminate c between the two equations, the eliminant will be a first order
differential equation for y(x). Thus we see that every equation of the form (16.1) defines a one-parameter family
of functions y(x) which satisfy a first order differential equation. This y(x) is the primitive of the differential
equation. Later we will discuss why y(x) is the general solution of the differential equation.

Example 16.2.1 Consider the family of circles of radius c centered about the origin,

x2 + y2 = c2.
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Differentiating this yields,

2x+ 2yy′ = 0.

It is trivial to eliminate the parameter and obtain a differential equation for the family of circles.

x+ yy′ = 0.

We can see the geometric meaning in this equation by writing it in the form

y′ = −x
y
.

The slope of the tangent to a circle at a point is the negative of the cotangent of the angle.

Example 16.2.2 Consider the one-parameter family of functions,

y(x) = f(x) + cg(x),

where f(x) and g(x) are known functions. The derivative is

y′ = f ′ + cg′.

Eliminating the parameter yields

gy′ − g′y = gf ′ − g′f

y′ − g′

g
y = f ′ − g′f

g
.

Thus we see that y(x) = f(x) + cg(x) satisfies a first order linear differential equation.
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We know that every one-parameter family of functions satisfies a first order differential equation. The converse
is true as well.

Result 16.2.1 Every first order differential equation has a one-parameter family of so-
lutions, y(x), defined by an equation of the form:

F (x, y(x); c) = 0.

This y(x) is called the general solution. If the equation is linear then the general solution
expresses the totality of solutions of the differential equation. If the equation is nonlinear,
there may be other special singular solutions, which do not depend on a parameter.

This is strictly an existence result. It does not say that the general solution of a first order differential equation
can be determined by some method, it just says that it exists. There is no method for solving the general first
order differential equation. However, there are some special forms that are soluble. We will devote the rest of
this chapter to studying these forms.

16.3 Exact Equations

Any first order ordinary differential equation of the first degree can be written as the total differential equation,

P (x, y) dx+Q(x, y) dy = 0.

If this equation can be integrated directly, that is if there is a primitive, u(x, y), such that

du = P dx+Q dy,

then this equation is called exact. The (implicit) solution of the differential equation is

u(x, y) = c,
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where c is an arbitrary constant. Since the differential of a function, u(x, y), is

du ≡ ∂u

∂x
dx+

∂u

∂y
dy,

P and Q are the partial derivatives of u:

P (x, y) =
∂u

∂x
, Q(x, y) =

∂u

∂y
.

In an alternate notation, the differential equation

P (x, y) +Q(x, y)
dy

dx
= 0, (16.2)

is exact if there is a primitive u(x, y) such that

du

dx
≡ ∂u

∂x
+
∂u

∂y

dy

dx
= P (x, y) +Q(x, y)

dy

dx
.

The solution of the differential equation is u(x, y) = c.

Example 16.3.1

x+ y
dy

dx
= 0

is an exact differential equation since

d

dx

(
1

2
(x2 + y2)

)
= x+ y

dy

dx

The solution of the differential equation is

1

2
(x2 + y2) = c.

640



Example 16.3.2 , Let f(x) and g(x) be known functions.

g(x)y′ + g′(x)y = f(x)

is an exact differential equation since

d

dx
(g(x)y(x)) = gy′ + g′y.

The solution of the differential equation is

g(x)y(x) =

∫
f(x) dx+ c

y(x) =
1

g(x)

∫
f(x) dx+

c

g(x)
.

A necessary condition for exactness. The solution of the exact equation P + Qy′ = 0 is u = c where u is
the primitive of the equation, du

dx
= P + Qy′. At present the only method we have for determining the primitive

is guessing. This is fine for simple equations, but for more difficult cases we would like a method more concrete
than divine inspiration. As a first step toward this goal we determine a criterion for determining if an equation
is exact.

Consider the exact equation,

P +Qy′ = 0,

with primitive u, where we assume that the functions P and Q are continuously differentiable. Since the mixed
partial derivatives of u are equal,

∂2u

∂x∂y
=

∂2u

∂y∂x
,

a necessary condition for exactness is

∂P

∂y
=
∂Q

∂x
.

641



A sufficient condition for exactness. This necessary condition for exactness is also a sufficient condition.
We demonstrate this by deriving the general solution of (16.2). Assume that P +Qy′ = 0 is not necessarily exact,
but satisfies the condition Py = Qx. If the equation has a primitive,

du

dx
≡ ∂u

∂x
+
∂u

∂y

dy

dx
= P (x, y) +Q(x, y)

dy

dx
,

then it satisfies

∂u

∂x
= P,

∂u

∂y
= Q. (16.3)

Integrating the first equation of (16.3), we see that the primitive has the form

u(x, y) =

∫ x

x0

P (ξ, y) dξ + f(y),

for some f(y). Now we substitute this form into the second equation of (16.3).

∂u

∂y
= Q(x, y)∫ x

x0

Py(ξ, y) dξ + f ′(y) = Q(x, y)

Now we use the condition Py = Qx. ∫ x

x0

Qx(ξ, y) dξ + f ′(y) = Q(x, y)

Q(x, y)−Q(x0, y) + f ′(y) = Q(x, y)

f ′(y) = Q(x0, y)

f(y) =

∫ y

y0

Q(x0, η) dη
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Thus we see that

u =

∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, η) dη

is a primitive of the derivative; the equation is exact. The solution of the differential equation is∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, η) dη = c.

Even though there are three arbitrary constants: x0, y0 and c, the solution is a one-parameter family. This is
because changing x0 or y0 only changes the left side by an additive constant.

Result 16.3.1 Any first order differential equation of the first degree can be written in
the form

P (x, y) +Q(x, y)
dy

dx
= 0.

This equation is exact if and only if

Py = Qx.

In this case the solution of the differential equation is given by∫ x

x0

P (ξ, y) dξ +

∫ y

y0

Q(x0, η) dη = c.

16.3.1 Separable Equations

Any differential equation that can written in the form

P (x) +Q(y)y′ = 0
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is a separable equation, (because the dependent and independent variables are separated). We can obtain an
implicit solution by integrating with respect to x.∫

P (x) dx+

∫
Q(y)

dy

dx
dx = c∫

P (x) dx+

∫
Q(y) dy = c

Result 16.3.2 The general solution to the separable equation P (x) +Q(y)y′ = 0 is∫
P (x) dx+

∫
Q(y) dy = c

Example 16.3.3 Consider the equation y′ = xy2.

dy

dx
= xy2

y−2 dy = x dx∫
y−2 dy =

∫
x dx+ c

−y−1 =
1

2
x2 + c

y =
−1

1
2
x2 + c

Example 16.3.4 The equation

y′ = y − y2,
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is separable.

y′

y − y2
= 1

We expand in partial fractions and integrate. (
1

y
− 1

y − 1

)
y′ = 1

log(y)− log(y − 1) = x+ c

Then we solve for y(x).

log

(
y

y − 1

)
= x+ c

y

y − 1
= ex+c

y =
ex+c

ex+c − 1

Finally we substitute a = e−c to write the solution in a nice form.

y =
1

1− a e−x

16.3.2 Homogeneous Coefficient Equations

Euler’s Theorem on Homogeneous Functions. The function F (x, y) is homogeneous of degree n if

F (λx, λy) = λnF (x, y).
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From this definition we see that

F (x, y) = xnF
(

1,
y

x

)
.

(Just formally substitute 1/x for λ.) For example,

xy2,
x2y + 2y3

x+ y
, x cos(y/x)

are homogeneous functions of orders 3, 2 and 1, respectively.
Euler’s theorem for a homogeneous function of order n is:

xFx + yFy = nF.

To prove this, we define ξ = λx, η = λy. From the definition of homogeneous functions, we have

F (ξ, η) = λnF (x, y).

We differentiate this equation with respect to λ.

∂F (ξ, η)

∂ξ

∂ξ

∂λ
+
∂F (ξ, η)

∂η

∂η

∂λ
= nλn−1F (x, y)

xFξ + yFη = nλn−1F (x, y)

Setting λ = 1, (and hence ξ = x, η = y), proves Euler’s theorem.

Result 16.3.3 Euler’s Theorem. If F (x, y) is a homogeneous function of degree n,
then

xFx + yFy = nF.
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Homogeneous Coefficient Differential Equations. If the coefficient functions P (x, y) and Q(x, y) are ho-
mogeneous of degree n then the differential equation,

Q(x, y) + P (x, y)
dy

dx
= 0,

is called a homogeneous coefficient equation. They are often referred to as simply homogeneous equations. We can
write the equation in the form,

xnQ
(

1,
y

x

)
+ xnP

(
1,
y

x

) dy

dx
= 0,

Q
(

1,
y

x

)
+ P

(
1,
y

x

) dy

dx
= 0.

This suggests the change of dependent variable u(x) = y(x)
x

.

Q(1, u) + P (1, u)

(
u+ x

du

dx

)
= 0

This equation is separable.

Q(1, u) + uP (1, u) + xP (1, u)
du

dx
= 0

1

x
+

P (1, u)

Q(1, u) + uP (1, u)

du

dx
= 0

log x+

∫
1

u+Q(1, u)/P (1, u)
du = c

By substituting log c for c, we can write this in the form,∫
1

u+Q(1, u)/P (1, u)
du = log

( c
x

)
.
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Example 16.3.5 Consider the homogeneous coefficient equation

x2 − y2 + xy
dy

dx
= 0.

The solution for u(x) = y(x)/x is determined by∫
1

u+ 1−u2

u

du = log
( c
x

)
∫
u du = log

( c
x

)
1

2
u2 = log

( c
x

)
u = ±

√
2 log(c/x)

Thus the solution of the differential equation is

y = ±x
√

2 log(c/x)

Result 16.3.4 Homogeneous Coefficient Differential Equations. If P (x, y) and
Q(x, y) are homogeneous functions of degree n, then the equation

P (x, y) +Q(x, y)
dy

dx
= 0

is made separable by the change of independent variable u(x) = y(x)
x . The solution is

determined by ∫
1

u+Q(1, u)/P (1, u)
du = log

( c
x

)
.

648



16.4 The First Order, Linear Differential Equation

16.4.1 Homogeneous Equations

The first order, linear, homogeneous equation has the form

dy

dx
+ p(x)y = 0.

Note that this equation is separable.

y′

y
= −p(x)

log(y) = −
∫
p(x) dx+ a

y = e−
∫
p(x) dx+a

y = c e−
∫
p(x) dx

Example 16.4.1 Consider the equation

dy

dx
+

1

x
y = 0.

y(x) = c e−
∫

1/x dx

y(x) = c e− log x

y(x) =
c

x
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16.4.2 Inhomogeneous Equations

The first order, linear, inhomogeneous differential equation has the form

dy

dx
+ p(x)y = f(x). (16.4)

This equation is not separable. Note that it is similar to the exact equation we solved in Example 16.3.2,

g(x)y′(x) + g′(x)y(x) = f(x).

To solve Equation 16.4, we multiply by an integrating factor. Multiplying a differential equation by its integrating
factor changes it to an exact equation. Multiplying Equation 16.4 by the function, I(x), yields,

I(x)
dy

dx
+ p(x)I(x)y = f(x)I(x).

In order that I(x) be an integrating factor, it must satisfy

d

dx
I(x) = p(x)I(x).

This is a first order, linear, homogeneous equation with the solution

I(x) = c e
∫
p(x) dx.

This is an integrating factor for any constant c. For simplicity we will choose c = 1.

To solve Equation 16.4 we multiply by the integrating factor and integrate. Let P (x) =
∫
p(x) dx.

eP (x) dy

dx
+ p(x) eP (x)y = eP (x)f(x)

d

dx

(
eP (x)y

)
= eP (x)f(x)

y = e−P (x)

∫
eP (x)f(x) dx+ c e−P (x)

y ≡ yp + c yh
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Note that the general solution is the sum of a particular solution, yp, that satisfies y′ + p(x)y = f(x), and an
arbitrary constant times a homogeneous solution, yh, that satisfies y′ + p(x)y = 0.

Example 16.4.2 Consider the differential equation

y′ +
1

x
y = x2.

The integrating factor is

I(x) = exp

(∫
1

x
dx

)
= elog x = x.

Multiplying by the integrating factor and integrating,

d

dx
(xy) = x3

xy =
1

4
x4 + c

y =
1

4
x3 +

c

x
.

We see that the particular and homogeneous solutions are

yp =
1

4
x3 and yh =

1

x
.

Note that the general solution to the differential equation is a one-parameter family of functions. The general
solution is plotted in Figure 16.1 for various values of c.

16.4.3 Variation of Parameters.

We could also have found the particular solution with the method of variation of parameters. Although we
can solve first order equations without this method, it will become important in the study of higher order
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Figure 16.1: Solutions to y′ + y/x = x2.

inhomogeneous equations. We begin by assuming that the particular solution has the form yp = u(x)yh(x) where
u(x) is an unknown function. We substitute this into the differential equation.

d

dx
yp + p(x)yp = f(x)

d

dx
(uyh) + p(x)uyh = f(x)

u′yh + u(y′h + p(x)yh) = f(x)
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Since yh is a homogeneous solution, y′h + p(x)yh = 0.

u′ =
f(x)

yh

u =

∫
f(x)

yh(x)
dx

Recall that the homogeneous solution is yh = e−P (x).

u =

∫
eP (x)f(x) dx

Thus the particular solution is

yp = e−P (x)

∫
eP (x)f(x) dx.

16.5 Initial Conditions

In physical problems involving first order differential equations, the solution satisfies both the differential
equation and a constraint which we call the initial condition. Consider a first order linear differential equation
subject to the initial condition y(x0) = y0. The general solution is

y = yp + cyh = e−P (x)

∫
eP (x)f(x) dx+ c e−P (x).

For the moment, we will assume that this problem is well-posed. A problem is well-posed if there is a unique
solution to the differential equation that satisfies the constraint(s). Recall that

∫
eP (x)f(x) dx denotes any integral

of eP (x)f(x). For convenience, we choose
∫ x
x0

eP (ξ)f(ξ) dξ. The initial condition requires that

y(x0) = y0 = e−P (x0)

∫ x0

x0

eP (ξ)f(ξ) dξ + c e−P (x0) = c e−P (x0).

653



Thus c = y0 eP (x0). The solution subject to the initial condition is

y = e−P (x)

∫ x

x0

eP (ξ)f(ξ) dξ + y0 eP (x0)−P (x).

Example 16.5.1 Consider the problem

y′ + (cosx)y = x, y(0) = 2.

From Result 16.5.1, the solution subject to the initial condition is

y = e− sinx

∫ x

0

ξ esin ξ dξ + 2 e− sinx.

16.5.1 Piecewise Continuous Coefficients and Inhomogeneities

If the coefficient function p(x) and the inhomogeneous term f(x) in the first order linear differential equation

dy

dx
+ p(x)y = f(x)

are continuous, then the solution is continuous and has a continuous first derivative. To see this, we note that
the solution

y = e−P (x)

∫
eP (x)f(x) dx+ c e−P (x)

is continuous since the integral of a piecewise continuous function is continuous. The first derivative of the solution
can be found directly from the differential equation.

y′ = −p(x)y + f(x)

Since p(x), y, and f(x) are continuous, y′ is continuous.
If p(x) or f(x) is only piecewise continuous, then the solution will be continuous since the integral of a piecewise

continuous function is continuous. The first derivative of the solution will be piecewise continuous.
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Example 16.5.2 Consider the problem

y′ − y = H(x− 1), y(0) = 1,

where H(x) is the Heaviside function.

H(x) =

{
1 for x > 0,

0 for x < 0.

To solve this problem, we divide it into two equations on separate domains.

y′1 − y1 = 0, y1(0) = 1, for x < 1

y′2 − y2 = 1, y2(1) = y1(1), for x > 1

With the condition y2(1) = y1(1) on the second equation, we demand that the solution be continuous. The
solution to the first equation is y = ex. The solution for the second equation is

y = ex
∫ x

1

e−ξ dξ + e1 ex−1 = −1 + ex−1 + ex.

Thus the solution over the whole domain is

y =

{
ex for x < 1,

(1 + e−1) ex − 1 for x > 1.

The solution is graphed in Figure 16.2.

Example 16.5.3 Consider the problem,

y′ + sign (x)y = 0, y(1) = 1.
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Figure 16.2: Solution to y′ − y = H(x− 1).

Recall that

sign x =


−1 for x < 0

0 for x = 0

1 for x > 0.

Since sign x is piecewise defined, we solve the two problems,

y′+ + y+ = 0, y+(1) = 1, for x > 0

y′− − y− = 0, y−(0) = y+(0), for x < 0,
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and define the solution, y, to be

y(x) =

{
y+(x), for x ≥ 0,

y−(x), for x ≤ 0.

The initial condition for y− demands that the solution be continuous.

Solving the two problems for positive and negative x, we obtain

y(x) =

{
e1−x, for x > 0,

e1+x, for x < 0.

This can be simplified to

y(x) = e1−|x|.

This solution is graphed in Figure 16.3.
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Figure 16.3: Solution to y′ + sign (x)y = 0.

Result 16.5.1 Existence, Uniqueness Theorem. Let p(x) and f(x) be piecewise
continuous on the interval [a, b] and let x0 ∈ [a, b]. Consider the problem,

dy

dx
+ p(x)y = f(x), y(x0) = y0.

The general solution of the differential equation is

y = e−P (x)
∫

eP (x)f(x) dx+ c e−P (x).

The unique, continuous solution of the differential equation subject to the initial condition
is

y = e−P (x)
∫ x

x0

eP (ξ)f(ξ) dξ + y0 eP (x0)−P (x),

where P (x) =
∫
p(x) dx.
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16.6 Well-Posed Problems

Example 16.6.1 Consider the problem,

y′ − 1

x
y = 0, y(0) = 1.

The general solution is y = cx. Applying the initial condition demands that 1 = c · 0, which cannot be satisfied.
The general solution for various values of c is plotted in Figure 16.4.
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Figure 16.4: Solutions to y′ − y/x = 0.
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Example 16.6.2 Consider the problem

y′ − 1

x
y = −1

x
, y(0) = 1.

The general solution is

y = 1 + cx.

The initial condition is satisfied for any value of c so there are an infinite number of solutions.

Example 16.6.3 Consider the problem

y′ +
1

x
y = 0, y(0) = 1.

The general solution is y = c
x
. Depending on whether c is nonzero, the solution is either singular or zero at the

origin and cannot satisfy the initial condition.

The above problems in which there were either no solutions or an infinite number of solutions are said to be
ill-posed. If there is a unique solution that satisfies the initial condition, the problem is said to be well-posed. We
should have suspected that we would run into trouble in the above examples as the initial condition was given at
a singularity of the coefficient function, p(x) = 1/x.

Consider the problem,

y′ + p(x)y = f(x), y(x0) = y0.

We assume that f(x) bounded in a neighborhood of x = x0. The differential equation has the general solution,

y = e−P (x)

∫
eP (x)f(x) dx+ c e−P (x).
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If the homogeneous solution, e−P (x), is nonzero and finite at x = x0, then there is a unique value of c for which
the initial condition is satisfied. If the homogeneous solution vanishes at x = x0 then either the initial condition
cannot be satisfied or the initial condition is satisfied for all values of c. The homogeneous solution can vanish or
be infinite only if P (x)→ ±∞ as x → x0. This can occur only if the coefficient function, p(x), is unbounded at
that point.

Result 16.6.1 If the initial condition is given where the homogeneous solution to a first
order, linear differential equation is zero or infinite then the problem may be ill-posed.
This may occur only if the coefficient function, p(x), is unbounded at that point.

16.7 Equations in the Complex Plane

16.7.1 Ordinary Points

Consider the first order homogeneous equation

dw

dz
+ p(z)w = 0,

where p(z), a function of a complex variable, is analytic in some domain D. The integrating factor,

I(z) = exp

(∫
p(z) dz

)
,

is an analytic function in that domain. As with the case of real variables, multiplying by the integrating factor
and integrating yields the solution,

w(z) = c exp

(
−
∫
p(z) dz

)
.

We see that the solution is analytic in D.
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Example 16.7.1 It does not make sense to pose the equation

dw

dz
+ |z|w = 0.

For the solution to exist, w and hence w′(z) must be analytic. Since p(z) = |z| is not analytic anywhere in the
complex plane, the equation has no solution.

Any point at which p(z) is analytic is called an ordinary point of the differential equation. Since the solution
is analytic we can expand it in a Taylor series about an ordinary point. The radius of convergence of the series
will be at least the distance to the nearest singularity of p(z) in the complex plane.

Example 16.7.2 Consider the equation

dw

dz
− 1

1− z
w = 0.

The general solution is w = c
1−z . Expanding this solution about the origin,

w =
c

1− z
= c

∞∑
n=0

zn.

The radius of convergence of the series is,

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = 1,

which is the distance from the origin to the nearest singularity of p(z) = 1
1−z .

We do not need to solve the differential equation to find the Taylor series expansion of the homogeneous
solution. We could substitute a general Taylor series expansion into the differential equation and solve for the
coefficients. Since we can always solve first order equations, this method is of limited usefulness. However, when
we consider higher order equations in which we cannot solve the equations exactly, this will become an important
method.
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Example 16.7.3 Again consider the equation

dw

dz
− 1

1− z
w = 0.

Since we know that the solution has a Taylor series expansion about z = 0, we substitute w =
∑∞

n=0 anz
n into

the differential equation.

(1− z)
d

dz

∞∑
n=0

anz
n −

∞∑
n=0

anz
n = 0

∞∑
n=1

nanz
n−1 −

∞∑
n=1

nanz
n −

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ 1)an+1z
n −

∞∑
n=0

nanz
n −

∞∑
n=0

anz
n = 0

∞∑
n=0

((n+ 1)an+1 − (n+ 1)an) zn = 0.

Now we equate powers of z to zero. For zn, the equation is (n + 1)an+1 − (n + 1)an = 0, or an+1 = an. Thus we
have that an = a0 for all n ≥ 1. The solution is then

w = a0

∞∑
n=0

zn,

which is the result we obtained by expanding the solution in Example 16.7.2.
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Result 16.7.1 Consider the equation

dw

dz
+ p(z)w = 0.

If p(z) is analytic at z = z0 then z0 is called an ordinary point of the differential equation.
The Taylor series expansion of the solution can be found by substituting w =

∑∞
n=0 an(z−

z0)
n into the equation and equating powers of (z − z0). The radius of convergence of the

series is at least the distance to the nearest singularity of p(z) in the complex plane.

16.7.2 Regular Singular Points

If the coefficient function p(z) has a simple pole at z = z0 then z0 is a regular singular point of the first order
differential equation.

Example 16.7.4 Consider the equation

dw

dz
+
α

z
w = 0, α 6= 0.

This equation has a regular singular point at z = 0. The solution is w = cz−α. Depending on the value of α, the
solution can have three different kinds of behavior.

α is a negative integer. The solution is analytic in the finite complex plane.

α is a positive integer The solution has a pole at the origin. w is analytic in the annulus, 0 < |z|.

α is not an integer. w has a branch point at z = 0. The solution is analytic in the cut annulus 0 < |z| <∞,
θ0 < arg z < θ0 + 2π.
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Consider the differential equation

dw

dz
+ p(z)w = 0,

where p(z) has a simple pole at the origin and is analytic in the annulus, 0 < |z| < r, for some positive r. Recall
that the solution is

w = c exp

(
−
∫
p(z) dz

)
= c exp

(
−
∫
b0

z
+ p(z)− b0

z
dz

)
= c exp

(
−b0 log z −

∫
zp(z)− b0

z
dz

)
= cz−b0 exp

(
−
∫
zp(z)− b0

z
dz

)
The exponential factor has a removable singularity at z = 0 and is analytic in |z| < r. We consider the

following cases for the z−b0 factor:

b0 is a negative integer. Since z−b0 is analytic at the origin, the solution to the differential equation is analytic
in the circle |z| < r.

b0 is a positive integer. The solution has a pole of order −b0 at the origin and is analytic in the annulus
0 < |z| < r.

b0 is not an integer. The solution has a branch point at the origin and thus is not single-valued. The solution
is analytic in the cut annulus 0 < |z| < r, θ0 < arg z < θ0 + 2π.

Since the exponential factor has a convergent Taylor series in |z| < r, the solution can be expanded in a series
of the form

w = z−b0
∞∑
n=0

anz
n, where a0 6= 0 and b0 = lim

z→0
z p(z).
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In the case of a regular singular point at z = z0, the series is

w = (z − z0)−b0
∞∑
n=0

an(z − z0)n, where a0 6= 0 and b0 = lim
z→z0

(z − z0) p(z).

Series of this form are known as Frobenius series. Since we can write the solution as

w = c(z − z0)−b0 exp

(
−
∫ (

p(z)− b0

z − z0

)
dz

)
,

we see that the Frobenius expansion of the solution will have a radius of convergence at least the distance to the
nearest singularity of p(z).

Result 16.7.2 Consider the equation,

dw

dz
+ p(z)w = 0,

where p(z) has a simple pole at z = z0, p(z) is analytic in some annulus, 0 < |z− z0| < r,
and limz→z0

(z − z0)p(z) = β. The solution to the differential equation has a Frobenius
series expansion of the form

w = (z − z0)
−β

∞∑
n=0

an(z − z0)
n, a0 6= 0.

The radius of convergence of the expansion will be at least the distance to the nearest
singularity of p(z).

Example 16.7.5 We will find the first two nonzero terms in the series solution about z = 0 of the differential
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equation,

dw

dz
+

1

sin z
w = 0.

First we note that the coefficient function has a simple pole at z = 0 and

lim
z→0

z

sin z
= lim

z→0

1

cos z
= 1.

Thus we look for a series solution of the form

w = z−1

∞∑
n=0

anz
n, a0 6= 0.

The nearest singularities of 1/ sin z in the complex plane are at z = ±π. Thus the radius of convergence of the
series will be at least π.

Substituting the first three terms of the expansion into the differential equation,

d

dz
(a0z

−1 + a1 + a2z) +
1

sin z
(a0z

−1 + a1 + a2z) = O(z).

Recall that the Taylor expansion of sin z is sin z = z − 1
6
z3 +O(z5).(

z − z3

6
+O(z5)

)
(−a0z

−2 + a2) + (a0z
−1 + a1 + a2z) = O(z2)

−a0z
−1 +

(
a2 +

a0

6

)
z + a0z

−1 + a1 + a2z = O(z2)

a1 +
(

2a2 +
a0

6

)
z = O(z2)

a0 is arbitrary. Equating powers of z,

z0 : a1 = 0.

z1 : 2a2 +
a0

6
= 0.
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Thus the solution has the expansion,

w = a0

(
z−1 − z

12

)
+O(z2).

In Figure 16.5 the exact solution is plotted in a solid line and the two term approximation is plotted in a dashed
line. The two term approximation is very good near the point x = 0.

1 2 3 4 5 6

-2

2

4

Figure 16.5: Plot of the Exact Solution and the Two Term Approximation.

Example 16.7.6 Find the first two nonzero terms in the series expansion about z = 0 of the solution to

w′ − icos z

z
w = 0.

668



Since cos z
z

has a simple pole at z = 0 and limz→0−i cos z = −i we see that the Frobenius series will have the form

w = zi
∞∑
n=0

anz
n, a0 6= 0.

Recall that cos z has the Taylor expansion
∑∞

n=0
(−1)nz2n

(2n)!
. Substituting the Frobenius expansion into the differential

equation yields

z

(
izi−1

∞∑
n=0

anz
n + zi

∞∑
n=0

nanz
n−1

)
− i

(
∞∑
n=0

(−1)nz2n

(2n)!

)(
zi
∞∑
n=0

anz
n

)
= 0

∞∑
n=0

(n+ i)anz
n − i

(
∞∑
n=0

(−1)nz2n

(2n)!

)(
∞∑
n=0

anz
n

)
= 0.

Equating powers of z,

z0 : ia0 − ia0 = 0 ⇒ a0 is arbitrary

z1 : (1 + i)a1 − ia1 = 0 ⇒ a1 = 0

z2 : (2 + i)a2 − ia2 +
i

2
a0 = 0 ⇒ a2 = − i

4
a0.

Thus the solution is

w = a0z
i

(
1− i

4
z2 +O(z3)

)
.

16.7.3 Irregular Singular Points

If a point is not an ordinary point or a regular singular point then it is called an irregular singular point. The
following equations have irregular singular points at the origin.

669



• w′ +
√
zw = 0

• w′ − z−2w = 0

• w′ + exp(1/z)w = 0

Example 16.7.7 Consider the differential equation

dw

dz
+ αzβw = 0, α 6= 0, β 6= −1, 0, 1, 2, . . .

This equation has an irregular singular point at the origin. Solving this equation,

d

dz

(
exp

(∫
αzβ dz

)
w

)
= 0

w = c exp

(
− α

β + 1
zβ+1

)
= c

∞∑
n=0

(−1)n

n!

(
α

β + 1

)n
z(β+1)n.

If β is not an integer, then the solution has a branch point at the origin. If β is an integer, β < −1, then
the solution has an essential singularity at the origin. The solution cannot be expanded in a Frobenius series,
w = zλ

∑∞
n=0 anz

n.

Although we will not show it, this result holds for any irregular singular point of the differential equation. We
cannot approximate the solution near an irregular singular point using a Frobenius expansion.

Now would be a good time to summarize what we have discovered about solutions of first order differential
equations in the complex plane.
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Result 16.7.3 Consider the first order differential equation

dw

dz
+ p(z)w = 0.

Ordinary Points If p(z) is analytic at z = z0 then z0 is an ordinary point of
the differential equation. The solution can be expanded in the Taylor series
w =

∑∞
n=0 an(z − z0)

n. The radius of convergence of the series is at least the
distance to the nearest singularity of p(z) in the complex plane.

Regular Singular Points If p(z) has a simple pole at z = z0 and is analytic in some
annulus 0 < |z−z0| < r then z0 is a regular singular point of the differential equation.
The solution at z0 will either be analytic, have a pole, or have a branch point. The
solution can be expanded in the Frobenius series w = (z − z0)

−β∑∞
n=0 an(z − z0)

n

where a0 6= 0 and β = limz→z0
(z−z0)p(z). The radius of convergence of the Frobenius

series will be at least the distance to the nearest singularity of p(z).

Irregular Singular Points If the point z = z0 is not an ordinary point or a regular
singular point, then it is an irregular singular point of the differential equation. The
solution cannot be expanded in a Frobenius series about that point.

16.7.4 The Point at Infinity

Now we consider the behavior of first order linear differential equations at the point at infinity. Recall from
complex variables that the complex plane together with the point at infinity is called the extended complex plane.
To study the behavior of a function f(z) at infinity, we make the transformation z = 1

ζ
and study the behavior of

f(1/ζ) at ζ = 0.
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Example 16.7.8 Let’s examine the behavior of sin z at infinity. We make the substitution z = 1/ζ and find the
Laurent expansion about ζ = 0.

sin(1/ζ) =
∞∑
n=0

(−1)n

(2n+ 1)! ζ(2n+1)

Since sin(1/ζ) has an essential singularity at ζ = 0, sin z has an essential singularity at infinity.

We use the same approach if we want to examine the behavior at infinity of a differential equation. Starting
with the first order differential equation,

dw

dz
+ p(z)w = 0,

we make the substitution

z =
1

ζ
,

d

dz
= −ζ2 d

dζ
, w(z) = u(ζ)

to obtain

−ζ2 du

dζ
+ p(1/ζ)u = 0

du

dζ
− p(1/ζ)

ζ2
u = 0.
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Result 16.7.4 The behavior at infinity of

dw

dz
+ p(z)w = 0

is the same as the behavior at ζ = 0 of

du

dζ
− p(1/ζ)

ζ2 u = 0.

Example 16.7.9 Classify the singular points of the equation

dw

dz
+

1

z2 + 9
w = 0.

Rewriting this equation as

dw

dz
+

1

(z − 3i)(z + 3i)
w = 0,

we see that z = 3i and z = −3i are regular singular points. The transformation z = 1/ζ yields the differential
equation

du

dζ
− 1

ζ2

1

(1/ζ)2 + 9
u = 0

du

dζ
− 1

9ζ2 + 1
u = 0

Since the equation for u has a ordinary point at ζ = 0, z =∞ is a ordinary point of the equation for w.
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16.8 Exercises

Exact Equations

Exercise 16.1 (mathematica/ode/first order/exact.nb)
Find the general solution y = y(x) of the equations

1.
dy

dx
=
x2 + xy + y2

x2
,

2. (4y − 3x) dx+ (y − 2x) dy = 0.

Hint, Solution

Exercise 16.2 (mathematica/ode/first order/exact.nb)
Determine whether or not the following equations can be made exact. If so find the corresponding general solution.

1. (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0

2.
dy

dx
= −ax+ by

bx+ cy

Hint, Solution

Exercise 16.3 (mathematica/ode/first order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial condition. In each case
determine the interval in which the solution is defined.

1.
dy

dx
= (1− 2x)y2, y(0) = −1/6.

2. x dx+ y e−x dy = 0, y(0) = 1.

Hint, Solution
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Exercise 16.4
Show that

µ(x, y) =
1

xM(x, y) + yN(x, y)

is an integrating factor for the homogeneous equation,

M(x, y) +N(x, y)
dy

dx
.

Hint, Solution

Exercise 16.5
Are the following equations exact? If so, solve them.

1. (4y − x)y′ − (9x2 + y − 1) = 0

2. (2x− 2y)y′ + (2x+ 4y) = 0.

Hint, Solution

Exercise 16.6
Solve the following differential equations by inspection. That is, group terms into exact derivatives and then
integrate. f(x) and g(x) are known functions.

1. g(x)y′(x) + g′(x)y(x) = f(x)

2. y′(x)
y(x)

= f(x)

3. yα(x)y′(x) = f(x)

4. y′

cosx
+ y tanx

cosx
= cos x
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Hint, Solution

Exercise 16.7 (mathematica/ode/first order/exact.nb)
Suppose we have a differential equation of the form dy/dt = f(y/t). Differential equations of this form are called
homogeneous equations. Since the right side only depends on the single variable y/t, it suggests itself to make
the substitution y/t = v or y = tv.

1. Show that this substitution replaces the equation dy/dt = f(y/t) by the equivalent equation tdv/dt + v =
f(v), which is separable.

2. Find the general solution of the equation dy/dt = 2(y/t) + (y/t)2.

Hint, Solution

Exercise 16.8 (mathematica/ode/first order/exact.nb)
Find all functions f(t) such that the differential equation

y2 sin t+ yf(t)
dy

dt
= 0 (16.5)

is exact. Solve the differential equation for these f(t).
Hint, Solution

The First Order, Linear Differential Equation

Exercise 16.9 (mathematica/ode/first order/linear.nb)
Solve the differential equation

y′ +
y

sinx
= 0.

Hint, Solution
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Exercise 16.10 (mathematica/ode/first order/linear.nb)
Solve the differential equation

y′ − 1

x
y = xα.

Hint, Solution

Initial Conditions

Exercise 16.11 (mathematica/ode/first order/exact.nb)
Find the solutions of the following differential equations which satisfy the given initial conditions:

1.
dy

dx
+ xy = x2n+1, y(1) = 1, n ∈ Z

2.
dy

dx
− 2xy = 1, y(0) = 1

Hint, Solution

Exercise 16.12 (mathematica/ode/first order/exact.nb)
Show that if α > 0 and λ > 0, then for any real β, every solution of

dy

dx
+ αy(x) = β e−λx

satisfies limx→+∞ y(x) = 0. (The case α = λ requires special treatment.) Find the solution for β = λ = 1 which
satisfies y(0) = 1. Sketch this solution for 0 ≤ x < ∞ for several values of α. In particular, show what happens
when α→ 0 and α→∞.
Hint, Solution

Well-Posed Problems
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Exercise 16.13
Find the solutions of

t
dy

dt
+ Ay = 1 + t2

which are bounded at t = 0. Consider all (real) values of A.
Hint, Solution

Equations in the Complex Plane

Exercise 16.14
Find the Taylor series expansion about the origin of the solution to

dw

dz
+

1

1− z
w = 0

with the substitution w =
∑∞

n=0 anz
n. What is the radius of convergence of the series? What is the distance to

the nearest singularity of 1
1−z?

Hint, Solution

Exercise 16.15
Classify the singular points of the following first order differential equations, (include the point at infinity).

1. w′ + sin z
z
w = 0

2. w′ + 1
z−3

w = 0

3. w′ + z1/2w = 0

Hint, Solution
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Exercise 16.16
Consider the equation

w′ + z−2w = 0.

The point z = 0 is an irregular singular point of the differential equation. Thus we know that we cannot expand
the solution about z = 0 in a Frobenius series. Try substituting the series solution

w = zλ
∞∑
n=0

anz
n, a0 6= 0

into the differential equation anyway. What happens?
Hint, Solution
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16.9 Hints

Exact Equations

Hint 16.1
1.

2.

Hint 16.2
1. The equation is exact. Determine the primitive u by solving the equations ux = P , uy = Q.

2. The equation can be made exact.

Hint 16.3
1. This equation is separable. Integrate to get the general solution. Apply the initial condition to determine

the constant of integration.

2. Ditto. You will have to numerically solve an equation to determine where the solution is defined.

Hint 16.4

Hint 16.5

Hint 16.6
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1. d
dx

[uv] = u′v + uv′

2. d
dx

log u = 1
u

3. d
dx
uc = uc−1u′

Hint 16.7

Hint 16.8

The First Order, Linear Differential Equation

Hint 16.9
Look in the appendix for the integral of csc x.

Hint 16.10
Make sure you consider the case α = 0.

Initial Conditions

Hint 16.11

Hint 16.12

Well-Posed Problems
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Hint 16.13

Equations in the Complex Plane

Hint 16.14
The radius of convergence of the series and the distance to the nearest singularity of 1

1−z are not the same.

Hint 16.15

Hint 16.16
Try to find the value of λ by substituting the series into the differential equation and equating powers of z.
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16.10 Solutions

Exact Equations

Solution 16.1
1.

dy

dx
=
x2 + xy + y2

x2

Since the right side is a homogeneous function of order zero, this is a homogeneous differential equation.
We make the change of variables u = y/x and then solve the differential equation for u.

xu′ + u = 1 + u+ u2

du

1 + u2
=

dx

x

arctan(u) = ln |x|+ c

u = tan(ln(|cx|))

y = x tan(ln(|cx|))

2.

(4y − 3x) dx+ (y − 2x) dy = 0

Since the coefficients are homogeneous functions of order one, this is a homogeneous differential equation.
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We make the change of variables u = y/x and then solve the differential equation for u.(
4
y

x
− 3
)

dx+
(y
x
− 2
)

dy = 0

(4u− 3) dx+ (u− 2)(u dx+ x du) = 0

(u2 + 2u− 3) dx+ x(u− 2) du = 0

dx

x
+

u− 2

(u+ 3)(u− 1)
du = 0

dx

x
+

(
5/4

u+ 3
− 1/4

u− 1

)
du = 0

ln(x) +
5

4
ln(u+ 3)− 1

4
ln(u− 1) = c

x4(u+ 3)5

u− 1
= c

x4(y/x+ 3)5

y/x− 1
= c

(y + 3x)5

y − x
= c

Solution 16.2
1.

(3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0

We check if this form of the equation, P dx+Q dy = 0, is exact.

Py = −2x, Qx = −2x

Since Py = Qx, the equation is exact. Now we find the primitive u(x, y) which satisfies

du = (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy.
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The primitive satisfies the partial differential equations

ux = P, uy = Q. (16.6)

We integrate the first equation of 16.6 to determine u up to a function of integration.

ux = 3x2 − 2xy + 2

u = x3 − x2y + 2x+ f(y)

We substitute this into the second equation of 16.6 to determine the function of integration up to an additive
constant.

−x2 + f ′(y) = 6y2 − x2 + 3

f ′(y) = 6y2 + 3

f(y) = 2y3 + 3y

The solution of the differential equation is determined by the implicit equation u = c.

x3 − x2y + 2x+ 2y3 + 3y = c

2.

dy

dx
= −ax+ by

bx+ cy

(ax+ by) dx+ (bx+ cy) dy = 0

We check if this form of the equation, P dx+Q dy = 0, is exact.

Py = b, Qx = b

Since Py = Qx, the equation is exact. Now we find the primitive u(x, y) which satisfies

du = (ax+ by) dx+ (bx+ cy) dy

685



The primitive satisfies the partial differential equations

ux = P, uy = Q. (16.7)

We integrate the first equation of 16.7 to determine u up to a function of integration.

ux = ax+ by

u =
1

2
ax2 + bxy + f(y)

We substitute this into the second equation of 16.7 to determine the function of integration up to an additive
constant.

bx+ f ′(y) = bx+ cy

f ′(y) = cy

f(y) =
1

2
cy2

The solution of the differential equation is determined by the implicit equation u = d.

ax2 + 2bxy + cy2 = d

Solution 16.3
Note that since these equations are nonlinear, we cannot predict where the solutions will be defined from the
equation alone.
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1. This equation is separable. We integrate to get the general solution.

dy

dx
= (1− 2x)y2

dy

y2
= (1− 2x) dx

−1

y
= x− x2 + c

y =
1

x2 − x− c

Now we apply the initial condition.

y(0) =
1

−c
= −1

6

y =
1

x2 − x− 6

y =
1

(x+ 2)(x− 3)

The solution is defined on the interval (−2 . . . 3).

2. This equation is separable. We integrate to get the general solution.

x dx+ y e−x dy = 0

x ex dx+ y dy = 0

(x− 1) ex +
1

2
y2 = c

y =
√

2(c+ (1− x) ex)
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We apply the initial condition to determine the constant of integration.

y(0) =
√

2(c+ 1) = 1

c = −1

2

y =
√

2(1− x) ex − 1

The function 2(1 − x) ex − 1 is plotted in Figure 16.6. We see that the argument of the square root in
the solution is non-negative only on an interval about the origin. Because 2(1− x) ex − 1 == 0 is a mixed
algebraic / transcendental equation, we cannot solve it analytically. The solution of the differential equation
is defined on the interval (−1.67835 . . . 0.768039).

-5 -4 -3 -2 -1 1

-3

-2

-1

1

Figure 16.6: The function 2(1− x) ex − 1.

Solution 16.4
We consider the homogeneous equation,

M(x, y) +N(x, y)
dy

dx
.
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That is, both M and N are homogeneous of degree n. Multiplying by

µ(x, y) =
1

xM(x, y) + yN(x, y)

will make the equation exact. To prove this we use the result that

P (x, y) +Q(x, y)
dy

dx
= 0

is exact if and only if Py = Qx.

Py =
∂

∂y

[
M

xM + yN

]
=
My(xM + yN)−M(xMy +N + yNy)

(xM + yN)2

Qx =
∂

∂x

[
N

xM + yN

]
=
Nx(xM + yN)−N(M + xMx + yNx)

(xM + yN)2

My(xM + yN)−M(xMy +N + yNy) = Nx(xM + yN)−N(M + xMx + yNx)

yMyN − yMNy = xMNx − xMxN

xMxN + yMyN = xMNx + yMNy

With Euler’s theorem, this reduces to the identity,

nMN = nMN.

Thus the equation is exact. µ(x, y) is an integrating factor for the homogeneous equation.
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Solution 16.5
1. We consider the differential equation,

(4y − x)y′ − (9x2 + y − 1) = 0.

Py =
∂

∂y

(
1− y − 9x2

)
= −1

Qx =
∂

∂x
(4y − x) = −1

This equation is exact. It is simplest to solve the equation by rearranging terms to form exact derivatives.

4yy′ − xy′ − y + 1− 9x2 = 0

d

dx

[
2y2 − xy

]
+ 1− 9x2 = 0

2y2 − xy + x− 3x3 + c = 0

y =
1

4

(
x±

√
x2 − 8(c+ x− 3x3)

)
2. We consider the differential equation,

(2x− 2y)y′ + (2x+ 4y) = 0.

Py =
∂

∂y
(2x+ 4y) = 4

Qx =
∂

∂x
(2x− 2y) = 2

Since Py 6= Qx, this is not an exact equation.
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Solution 16.6

1.

g(x)y′(x) + g′(x)y(x) = f(x)

d

dx
[g(x)y(x)] = f(x)

y(x) =
1

g(x)

∫
f(x) dx+

c

g(x)

2.

y′(x)

y(x)
= f(x)

d

dx
log(y(x)) = f(x)

log(y(x)) =

∫
f(x) dx+ c

y(x) = e
∫
f(x) dx+c

y(x) = a e
∫
f(x) dx

3.

yα(x)y′(x) = f(x)

yα+1(x)

α + 1
=

∫
f(x) dx+ c

y(x) =

(
(α + 1)

∫
f(x) dx+ a

)1/(α+1)
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4.

y′

cos x
+ y

tan x

cos x
= cos x

d

dx

( y

cos x

)
= cos x

y

cos x
= sinx+ c

y(x) = sinx cosx+ c cosx

Solution 16.7
1. We substitute y = tv into the differential equation and simplify.

y′ = f
(y
t

)
tv′ + v = f(v)

tv′ = f(v)− v

v′

f(v)− v
=

1

t
(16.8)

The final equation is separable.

2. We start with the homogeneous differential equation:

dy

dt
= 2

(y
t

)
+
(y
t

)2

.
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We substitute y = tv to obtain Equation 16.8, and solve the separable equation.

v′

v2 + v
=

1

t
v′

v(v + 1)
=

1

t

v′

v
− v′

v + 1
=

1

t

log v − log(v + 1) = log t+ c

log

(
v

v + 1

)
= log(ct)

v

v + 1
= ct

v =
ct

1− ct
v =

t

c− t

y =
t2

c− t

Solution 16.8
Recall that the differential equation

P (x, y) +Q(x, y)y′ = 0

is exact if and only if Py = Qx. For Equation 16.5, this criterion is

2y sin t = yf ′(t)

f ′(t) = 2 sin t

f(t) = 2(a− cos t).
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In this case, the differential equation is

y2 sin t+ 2yy′(a− cos t) = 0.

We can integrate this exact equation by inspection.

d

dt

(
y2(a− cos t)

)
= 0

y2(a− cos t) = c

y = ± c√
a− cos t

The First Order, Linear Differential Equation

Solution 16.9
Consider the differential equation

y′ +
y

sinx
= 0.

The solution is

y = c e
∫
−1/ sinx dx

= c e− log(tan(x/2))

y = c cot
(x

2

)
.

Solution 16.10

y′ − 1

x
y = xα
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The integrating factor is

exp

(∫
−1

x
dx

)
= exp (− log x) =

1

x
.

1

x
y′ − 1

x2
y = xα−1

d

dx

(
1

x
y

)
= xα−1

1

x
y =

∫
xα−1 dx+ c

y = x

∫
xα−1 dx+ cx

y =

{
xα+1

α
+ cx for α 6= 0,

x log x+ cx for α = 0.

Initial Conditions

Solution 16.11
1.

y′ + xy = x2n+1, y(1) = 1, n ∈ Z

The integrating factor is

I(x) = e
∫
x dx = ex

2/2.
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We multiply by the integrating factor and integrate. Since the initial condition is given at x = 1, we will
take the lower bound of integration to be that point.

d

dx

(
ex

2/2y
)

= x2n+1 ex
2/2

y = e−x
2/2

∫ x

1

ξ2n+1 eξ
2/2 dξ + c e−x

2/2

We choose the constant of integration to satisfy the initial condition.

y = e−x
2/2

∫ x

1

ξ2n+1 eξ
2/2 dξ + e(1−x2)/2

If n ≥ 0 then we can use integration by parts to write the integral as a sum of terms. If n < 0 we can write
the integral in terms of the exponential integral function. However, the integral form above is as nice as any
other and we leave the answer in that form.

2.

dy

dx
− 2xy(x) = 1, y(0) = 1.

The integrating factor is

I(x) = e
∫
−2x dx = e−x

2

.

d

dx

(
e−x

2

y
)

= e−x
2

y = ex
2

∫ x

0

e−ξ
2

dξ + c ex
2
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We choose the constant of integration to satisfy the initial condition.

y = ex
2

(
1 +

∫ x

0

e−ξ
2

dξ

)
We can write the answer in terms of the Error function,

erf (x) ≡ 2√
π

∫ x

0

e−ξ
2

dξ.

y = ex
2

(
1 +

√
π

2
erf (x)

)

Solution 16.12
The integrating factor is,

I(x) = e
∫
α dx = eαx.

d

dx
( eαxy) = β e(α−λ)x

y = β e−αx
∫

e(α−λ)x dx+ c e−αx

For α 6= λ, the solution is

y = β e−αx
e(α−λ)x

α− λ
+ c e−αx

y =
β

α− λ
e−λx + c e−αx

Clearly the solution vanishes as x→∞.

697



For α = λ, the solution is

y = β e−αxx+ c e−αx

y = (c+ βx) e−αx

We use L’Hospital’s rule to show that the solution vanishes as x→∞.

lim
x→∞

c+ βx

eαx
= lim

x→∞

β

α eαx
= 0

For β = λ = 1, the solution is

y =

{
1

α−1
e−x + c e−αx for α 6= 1,

(c+ x) e−x for α = 1.

The solution which satisfies the initial condition is

y =

{
1

α−1
( e−x + (α− 2) e−αx) for α 6= 1,

(1 + x) e−x for α = 1.

In Figure 16.7 the solution is plotted for α = 1/16, 1/8, . . . , 16.

Consider the solution in the limit as α→ 0.

lim
α→0

y(x) = lim
α→0

1

α− 1

(
e−x + (α− 2) e−αx

)
= 2− e−x
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4 8 12 16

1

Figure 16.7: The Solution for a Range of α

In the limit as α→∞ we have,

lim
α→∞

y(x) = lim
α→∞

1

α− 1

(
e−x + (α− 2) e−αx

)
= lim

α→∞

α− 2

α− 1
e−αx

=

{
1 for x = 0,

0 for x > 0.

This behavior is shown in Figure 16.8. The first graph plots the solutions for α = 1/128, 1/64, . . . , 1. The second
graph plots the solutions for α = 1, 2, . . . , 128.

Well-Posed Problems
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1

1 2 3 4

1

Figure 16.8: The Solution as α→ 0 and α→∞

Solution 16.13
First we write the differential equation in the standard form.

dy

dt
+
A

t
y =

1

t
+ t

The integrating factor is

I(t) = e
∫
A/t dt = eA log t = tA
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We multiply the differential equation by the integrating factor and integrate.

dy

dt
+
A

t
y =

1

t
+ t

d

dt

(
tAy
)

= tA−1 + tA+1

tAy =


tA

A
+ tA+2

A+2
+ c, A 6= 0,−2

log t+ 1
2
t2 + c, A = 0

−1
2
t−2 + log t+ c, A = −2

y =


1
A

+ t2

A+2
+ ct−A, A 6= −2

log t+ 1
2
t2 + c, A = 0

−1
2

+ t2 log t+ ct2, A = −2

For positive A, the solution is bounded at the origin only for c = 0. For A = 0, there are no bounded solutions.
For negative A, the solution is bounded there for any value of c and thus we have a one-parameter family of
solutions.

In summary, the solutions which are bounded at the origin are:

y =


1
A

+ t2

A+2
, A > 0

1
A

+ t2

A+2
+ ct−A, A < 0, A 6= −2

−1
2

+ t2 log t+ ct2, A = −2

Equations in the Complex Plane
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Solution 16.14
We substitute w =

∑∞
n=0 anz

n into the equation dw
dz

+ 1
1−zw = 0.

d

dz

∞∑
n=0

anz
n +

1

1− z

∞∑
n=0

anz
n = 0

(1− z)
∞∑
n=1

nanz
n−1 +

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ 1)an+1z
n −

∞∑
n=0

nanz
n +

∞∑
n=0

anz
n = 0

∞∑
n=0

((n+ 1)an+1 − (n− 1)an) zn = 0

Equating powers of z to zero, we obtain the relation,

an+1 =
n− 1

n+ 1
an.

a0 is arbitrary. We can compute the rest of the coefficients from the recurrence relation.

a1 =
−1

1
a0 = −a0

a2 =
0

2
a1 = 0

We see that the coefficients are zero for n ≥ 2. Thus the Taylor series expansion, (and the exact solution), is

w = a0(1− z).

The radius of convergence of the series in infinite. The nearest singularity of 1
1−z is at z = 1. Thus we see the

radius of convergence can be greater than the distance to the nearest singularity of the coefficient function, p(z).
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Solution 16.15

1. Consider the equation w′ + sin z
z
w = 0. The point z = 0 is the only point we need to examine in the finite

plane. Since sin z
z

has a removable singularity at z = 0, there are no singular points in the finite plane. The
substitution z = 1

ζ
yields the equation

u′ − sin(1/ζ)

ζ
u = 0.

Since sin(1/ζ)
ζ

has an essential singularity at ζ = 0, the point at infinity is an irregular singular point of the
original differential equation.

2. Consider the equation w′ + 1
z−3

w = 0. Since 1
z−3

has a simple pole at z = 3, the differential equation has a
regular singular point there. Making the substitution z = 1/ζ, w(z) = u(ζ)

u′ − 1

ζ2(1/ζ − 3)
u = 0

u′ − 1

ζ(1− 3ζ)
u = 0.

Since this equation has a simple pole at ζ = 0, the original equation has a regular singular point at infinity.

3. Consider the equation w′ + z1/2w = 0. There is an irregular singular point at z = 0. With the substitution
z = 1/ζ, w(z) = u(ζ),

u′ − ζ−1/2

ζ2
u = 0

u′ − ζ−5/2u = 0.

We see that the point at infinity is also an irregular singular point of the original differential equation.
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Solution 16.16
We start with the equation

w′ + z−2w = 0.

Substituting w = zλ
∑∞

n=0 anz
n, a0 6= 0 yields

d

dz

(
zλ

∞∑
n=0

anz
n

)
+ z−2zλ

∞∑
n=0

anz
n = 0

λzλ−1

∞∑
n=0

anz
n + zλ

∞∑
n=1

nanz
n−1 + zλ

∞∑
n=0

anz
n−2 = 0

The lowest power of z in the expansion is zλ−2. The coefficient of this term is a0. Equating powers of z demands
that a0 = 0 which contradicts our initial assumption that it was nonzero. Thus we cannot find a λ such that the
solution can be expanded in the form,

w = zλ
∞∑
n=0

anz
n, a0 6= 0.
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Chapter 17

First Order Systems of Differential Equations

We all agree that your theory is crazy, but is it crazy enough?

- Niels Bohr

17.1 Matrices and Jordan Canonical Form

Functions of Square Matrices. Consider a function f(x) with a Taylor series.

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

We can define the function to take square matrices as arguments. The function of the square matrix A is defined
in terms of the Taylor series.

f(A) =
∞∑
n=0

f (n)(0)

n!
An

(Note that this definition is usually not the most convenient method for computing a function of a matrix. Use
the Jordan canonical form for that.)
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Eigenvalues and Eigenvectors. Consider a square matrix A. A nonzero vector x is an eigenvector of the
matrix with eigenvalue λ if

Ax = λx.

Note that we can write this equation as

(A− λI)x = 0.

This equation has solutions for nonzero x if and only if A − λI is singular, (det(A − λI) = 0). We define the
characteristic polynomial of the matrix χ(λ) as this determinant.

χ(λ) = det(A− λI)

The roots of the characteristic polynomial are the eigenvalues of the matrix. The eigenvectors of distinct eigen-
values are linearly independent. Thus if a matrix has distinct eigenvalues, the eigenvectors form a basis.

If λ is a root of χ(λ) of multiplicity m then there are up to m linearly independent eigenvectors corresponding
to that eigenvalue. That is, it has from 1 to m eigenvectors.

Diagonalizing Matrices. Consider an n × n matrix A that has a complete set of n linearly independent
eigenvectors. A may or may not have distinct eigenvalues. Consider the matrix S with eigenvectors as columns.

S =
(
x1 x2 · · · xn

)
A is diagonalized by the similarity transformation:

Λ = S−1AS.

Λ is a diagonal matrix with the eigenvalues of A as the diagonal elements. Furthermore, the kth diagonal element
is λk, the eigenvalue corresponding to the the eigenvector, xk.
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Generalized Eigenvectors. A vector xk is a generalized eigenvector of rank k if

(A− λI)kxk = 0 but (A− λI)k−1xk 6= 0.

Eigenvectors are generalized eigenvectors of rank 1. An n × n matrix has n linearly independent generalized
eigenvectors. A chain of generalized eigenvectors generated by the rank m generalized eigenvector xm is the set:
{x1,x2, . . . ,xm}, where

xk = (A− λI)xk+1, for k = m− 1, . . . , 1.

Computing Generalized Eigenvectors. Let λ be an eigenvalue of multiplicity m. Let n be the smallest
integer such that

rank ( nullspace ((A− λI)n)) = m.

Let Nk denote the number of eigenvalues of rank k. These have the value:

Nk = rank
(

nullspace
(
(A− λI)k

))
− rank

(
nullspace

(
(A− λI)k−1

))
.

One can compute the generalized eigenvectors of a matrix by looping through the following three steps until
all the the Nk are zero:

1. Select the largest k for which Nk is positive. Find a generalized eigenvector xk of rank k which is linearly
independent of all the generalized eigenvectors found thus far.

2. From xk generate the chain of eigenvectors {x1,x2, . . . ,xk}. Add this chain to the known generalized
eigenvectors.

3. Decrement each positive Nk by one.
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Example 17.1.1 Consider the matrix

A =

 1 1 1
2 1 −1
−3 2 4

 .

The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−3 2 4− λ

∣∣∣∣∣∣
= (1− λ)2(4− λ) + 3 + 4 + 3(1− λ)− 2(4− λ) + 2(1− λ)

= −(λ− 2)3.

Thus we see that λ = 2 is an eigenvalue of multiplicity 3. A− 2I is

A− 2I =

−1 1 1
2 −1 −1
−3 2 2


The rank of the nullspace space of A− 2I is less than 3.

(A− 2I)2 =

 0 0 0
−1 1 1
1 −1 −1


The rank of nullspace ((A− 2I)2) is less than 3 as well, so we have to take one more step.

(A− 2I)3 =

0 0 0
0 0 0
0 0 0


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The rank of nullspace ((A−2I)3) is 3. Thus there are generalized eigenvectors of ranks 1, 2 and 3. The generalized
eigenvector of rank 3 satisfies:

(A− 2I)3x3 = 00 0 0
0 0 0
0 0 0

x3 = 0

We choose the solution

x3 =

1
0
0

 .

Now to compute the chain generated by x3.

x2 = (A− 2I)x3 =

−1
2
−3


x1 = (A− 2I)x2 =

 0
−1
1


Thus a set of generalized eigenvectors corresponding to the eigenvalue λ = 2 are

x1 =

 0
−1
1

 , x2 =

−1
2
−3

 , x3 =

1
0
0

 .
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Jordan Block. A Jordan block is a square matrix which has the constant, λ, on the diagonal and ones on the
first super-diagonal: 

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . λ 1

0 0 0 · · · 0 λ


Jordan Canonical Form. A matrix J is in Jordan canonical form if all the elements are zero except for Jordan
blocks Jk along the diagonal.

J =


J1 0 · · · 0 0

0 J2
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . Jn−1 0

0 0 · · · 0 Jn


The Jordan canonical form of a matrix is obtained with the similarity transformation:

J = S−1AS,

where S is the matrix of the generalized eigenvectors of A and the generalized eigenvectors are grouped in chains.

Example 17.1.2 Again consider the matrix

A =

 1 1 1
2 1 −1
−3 2 4

 .
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Since λ = 2 is an eigenvalue of multiplicity 3, the Jordan canonical form of the matrix is

J =

2 1 0
0 2 1
0 0 2

 .

In Example 17.1.1 we found the generalized eigenvectors of A. We define the matrix with generalized eigenvectors
as columns:

S =

 0 −1 1
−1 2 0
1 −3 0

 .

We can verify that J = S−1AS.

J = S−1AS

=

0 −3 −2
0 −1 −1
1 −1 −1

 1 1 1
2 1 −1
−3 2 4

 0 −1 1
−1 2 0
1 −3 0


=

2 1 0
0 2 1
0 0 2


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Functions of Matrices in Jordan Canonical Form. The function of an n × n Jordan block is the upper-
triangular matrix:

f(Jk) =



f(λ) f ′(λ)
1!

f ′′(λ)
2!

· · · f (n−2)(λ)
(n−2)!

f (n−1)(λ)
(n−1)!

0 f(λ) f ′(λ)
1!

· · · f (n−3)(λ)
(n−3)!

f (n−2)(λ)
(n−2)!

0 0 f(λ)
. . . f (n−4)(λ)

(n−4)!
f (n−3)(λ)

(n−3)!
...

...
. . . . . . . . .

...

0 0 0
. . . f(λ) f ′(λ)

1!

0 0 0 · · · 0 f(λ)


The function of a matrix in Jordan canonical form is

f(J) =


f(J1) 0 · · · 0 0

0 f(J2)
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . f(Jn−1) 0

0 0 · · · 0 f(Jn)


The Jordan canonical form of a matrix satisfies:

f(J) = S−1f(A)S,

where S is the matrix of the generalized eigenvectors of A. This gives us a convenient method for computing
functions of matrices.

Example 17.1.3 Consider the matrix exponential function eA for our old friend:

A =

 1 1 1
2 1 −1
−3 2 4

 .
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In Example 17.1.2 we showed that the Jordan canonical form of the matrix is

J =

2 1 0
0 2 1
0 0 2

 .

Since all the derivatives of eλ are just eλ, it is especially easy to compute eJ.

eJ =

 e2 e2 e2/2
0 e2 e2

0 0 e2


We find eA with a similarity transformation of eJ. We use the matrix of generalized eigenvectors found in
Example 17.1.2.

eA = S eJS−1

eA =

 0 −1 1
−1 2 0
1 −3 0

 e2 e2 e2/2
0 e2 e2

0 0 e2

0 −3 −2
0 −1 −1
1 −1 −1


eA =

 0 2 2
3 1 −1
−5 3 5

 e2

2

17.2 Systems of Differential Equations

The homogeneous differential equation

x′(t) = Ax(t)
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has the solution

x(t) = eAtc

where c is a vector of constants. The solution subject to the initial condition, x(t0) = x0 is

x(t) = eA(t−t0)x0.

The homogeneous differential equation

x′(t) =
1

t
Ax(t)

has the solution

x(t) = tAc ≡ eA Log tc,

where c is a vector of constants. The solution subject to the initial condition, x(t0) = x0 is

x(t) =

(
t

t0

)A

x0 ≡ eA Log (t/t0)x0.

The inhomogeneous problem

x′(t) = Ax(t) + f(t), x(t0) = x0

has the solution

x(t) = eA(t−t0)x0 + eAt

∫ t

t0

e−Aτ f(τ) dτ.
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Example 17.2.1 Consider the system

dx

dt
=

 1 1 1
2 1 −1
−3 2 4

x.

The general solution of the system of differential equations is

x(t) = eAtc.

In Example 17.1.3 we found eA. At is just a constant times A. The eigenvalues of At are {λkt} where {λk} are
the eigenvalues of A. The generalized eigenvectors of At are the same as those of A.

Consider eJt. The derivatives of f(λ) = eλt are f ′(λ) = t eλt and f ′′(λ) = t2 eλt. Thus we have

eJt =

 e2t t e2t t2 e2t/2
0 e2t t e2t

0 0 e2t


eJt =

1 t t2/2
0 1 t
0 0 1

 e2t

We find eAt with a similarity transformation.

eAt = S eJtS−1

eAt =

 0 −1 1
−1 2 0
1 −3 0

1 t t2/2
0 1 t
0 0 1

 e2t

0 −3 −2
0 −1 −1
1 −1 −1


eAt =

 1− t t t
2t− t2/2 1− t+ t2/2 −t+ t2/2
−3t+ t2/2 2t− t2/2 1 + 2t− t2/2

 e2t

715



The solution of the system of differential equations is

x(t) =

c1

 1− t
2t− t2/2
−3t+ t2/2

+ c2

 t
1− t+ t2/2

2t− t2/2

+ c3

 t
−t+ t2/2

1 + 2t− t2/2

 e2t

Example 17.2.2 Consider the Euler equation system

dx

dt
=

1

t
Ax ≡ 1

t

(
1 0
1 1

)
x.

The solution is x(t) = tAc. Note that A is almost in Jordan canonical form. It has a one on the sub-diagonal
instead of the super-diagonal. It is clear that a function of A is defined

f(A) =

(
f(1) 0
f ′(1) f(1)

)
.

The function f(λ) = tλ has the derivative f ′(λ) = tλ log t. Thus the solution of the system is

x(t) =

(
t 0

t log t t

)(
c1

c2

)
= c1

(
t

t log t

)
+ c2

(
0
t

)

Example 17.2.3 Consider an inhomogeneous system of differential equations.

dx

dt
= Ax + f(t) ≡

(
4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0.

The general solution is

x(t) = eAtc + eAt

∫
e−Atf(t) dt.

716



First we find homogeneous solutions. The characteristic equation for the matrix is

χ(λ) =

∣∣∣∣4− λ −2
8 −4− λ

∣∣∣∣ = λ2 = 0

λ = 0 is an eigenvalue of multiplicity 2. Thus the Jordan canonical form of the matrix is

J =

(
0 1
0 0

)
.

Since rank ( nullspace (A− 0I)) = 1 there is only one eigenvector. A generalized eigenvector of rank 2 satisfies

(A− 0I)2x2 = 0(
0 0
0 0

)
x2 = 0

We choose

x2 =

(
1
0

)
Now we generate the chain from x2.

x1 = (A− 0I)x2 =

(
4
8

)
We define the matrix of generalized eigenvectors S.

S =

(
4 1
8 0

)
The derivative of f(λ) = eλt is f ′(λ) = t eλt. Thus

eJt =

(
1 t
0 1

)
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The homogeneous solution of the differential equation system is xh = eAtc where

eAt = S eJtS−1

eAt =

(
4 1
8 0

)
.

(
1 t
0 1

)(
0 1/8
1 −1/2

)
eAt =

(
1 + 4t −2t

8t 1− 4t

)
The general solution of the inhomogeneous system of equations is

x(t) = eAtc + eAt

∫
e−Atf(t) dt

x(t) =

(
1 + 4t −2t

8t 1− 4t

)
c +

(
1 + 4t −2t

8t 1− 4t

)∫ (
1− 4t 2t
−8t 1 + 4t

)(
t−3

−t−2

)
dt

x(t) = c1

(
1 + 4t

8t

)
+ c2

(
−2t

1− 4t

)
+

(
2− 2 Log t+ 6

t
− 1

2t2

4− 4 Log t+ 13
t

)
We can tidy up the answer a little bit. First we take linear combinations of the homogeneous solutions to obtain
a simpler form.

x(t) = c1

(
1
2

)
+ c2

(
2t

4t− 1

)
+

(
2− 2 Log t+ 6

t
− 1

2t2

4− 4 Log t+ 13
t

)
Then we subtract 2 times the first homogeneous solution from the particular solution.

x(t) = c1

(
1
2

)
+ c2

(
2t

4t− 1

)
+

(
−2 Log t+ 6

t
− 1

2t2

−4 Log t+ 13
t

)
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17.3 Exercises

Exercise 17.1 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(
−2 1
−5 4

)
x, x(0) = x0 ≡

(
1
3

)
Hint, Solution

Exercise 17.2 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

 1 1 2
0 2 2
−1 1 3

x, x(0) = x0 ≡

2
0
1


Hint, Solution

Exercise 17.3 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)
Hint, Solution

Exercise 17.4 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0


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Hint, Solution

Exercise 17.5 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡
(

1 −4
4 −7

)
x, x(0) = x0 ≡

(
3
2

)
Hint, Solution

Exercise 17.6 (mathematica/ode/systems/systems.nb)
Find the solution of the following initial value problem. Describe the behavior of the solution as t→∞.

x′ = Ax ≡

−1 0 0
−4 1 0
3 6 2

x, x(0) = x0 ≡

 −1
2
−30


Hint, Solution

Exercise 17.7
1. Consider the system

x′ = Ax =

 1 1 1
2 1 −1
−3 2 4

x. (17.1)

(a) Show that λ = 2 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there is only
one corresponding eigenvector, namely

ξ(1) =

 0
1
−1

 .
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(b) Using the information in part (i), write down one solution x(1)(t) of the system (17.1). There is no
other solution of a purely exponential form x = ξ eλt.

(c) To find a second solution use the form x = ξt e2t + η e2t, and find appropriate vectors ξ and η. This
gives a solution of the system (17.1) which is independent of the one obtained in part (ii).

(d) To find a third linearly independent solution use the form x = ξ(t2/2) e2t +ηt e2t + ζ e2t. Show that ξ,
η and ζ satisfy the equations

(A− 2I)ξ = 0, (A− 2I)η = ξ, (A− 2I)ζ = η.

The first two equations can be taken to coincide with those obtained in part (iii). Solve the third
equation, and write down a third independent solution of the system (17.1).

2. Consider the system

x′ = Ax =

 5 −3 −2
8 −5 −4
−4 3 3

x. (17.2)

(a) Show that λ = 1 is an eigenvalue of multiplicity 3 of the coefficient matrix A, and that there are only
two linearly independent eigenvectors, which we may take as

ξ(1) =

1
0
2

 , ξ(2) =

 0
2
−3


Find two independent solutions of equation (17.2).

(b) To find a third solution use the form x = ξt et + ηet; then show that ξ and η must satisfy

(A− I)ξ = 0, (A− I)η = ξ.

Show that the most general solution of the first of these equations is ξ = c1ξ1 + c2ξ2, where c1 and
c2 are arbitrary constants. Show that, in order to solve the second of these equations it is necessary
to take c1 = c2. Obtain such a vector η, and use it to obtain a third independent solution of the
system (17.2).
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Hint, Solution

Exercise 17.8 (mathematica/ode/systems/systems.nb)
Consider the system of ODE’s

dx

dt
= Ax, x(0) = x0

where A is the constant 3× 3 matrix

A =

 1 1 1
2 1 −1
−8 −5 −3


1. Find the eigenvalues and associated eigenvectors of A. [HINT: notice that λ = −1 is a root of the charac-

teristic polynomial of A.]

2. Use the results from part (a) to construct eAt and therefore the solution to the initial value problem above.

3. Use the results of part (a) to find the general solution to

dx

dt
=

1

t
Ax.

Hint, Solution

Exercise 17.9 (mathematica/ode/systems/systems.nb)
1. Find the general solution to

dx

dt
= Ax
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where

A =

2 0 1
0 2 0
0 1 3


2. Solve

dx

dt
= Ax + g(t), x(0) = 0

using A from part (a).
Hint, Solution

Exercise 17.10
Let A be an n× n matrix of constants. The system

dx

dt
=

1

t
Ax, (17.3)

is analogous to the Euler equation.

1. Verify that when A is a 2× 2 constant matrix, elimination of (17.3) yields a second order Euler differential
equation.

2. Now assume that A is an n × n matrix of constants. Show that this system, in analogy with the Euler
equation has solutions of the form x = atλ where a is a constant vector provided a and λ satisfy certain
conditions.

3. Based on your experience with the treatment of multiple roots in the solution of constant coefficient systems,
what form will the general solution of (17.3) take if λ is a multiple eigenvalue in the eigenvalue problem
derived in part (b)?
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4. Verify your prediction by deriving the general solution for the system

dx

dt
=

1

t

(
1 0
1 1

)
x.

Hint, Solution

Exercise 17.11
Use the matrix form of the method of variation of parameters to find the general solution of

dx

dt
=

(
4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0.

Hint, Solution
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17.4 Hints

Hint 17.1

Hint 17.2

Hint 17.3

Hint 17.4

Hint 17.5

Hint 17.6

Hint 17.7

Hint 17.8
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Hint 17.9

Hint 17.10

Hint 17.11
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17.5 Solutions
Solution 17.1
We consider an initial value problem.

x′ = Ax ≡
(
−2 1
−5 4

)
x, x(0) = x0 ≡

(
1
3

)
Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = −1, λ2 = 3. The

corresponding eigenvectors are

x1 =

(
1
1

)
, x2 =

(
1
5

)
.

The general solution of the system of differential equations is

x = c1

(
1
1

)
e−t + c2

(
1
5

)
e3t.

We apply the initial condition to determine the constants.(
1 1
1 5

)(
c1

c2

)
=

(
1
3

)
c1 =

1

2
, c2 =

1

2

The solution subject to the initial condition is

x =
1

2

(
1
1

)
e−t +

1

2

(
1
5

)
e3t

For large t, the solution looks like

x ≈ 1

2

(
1
5

)
e3t.
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Figure 17.1: Homogeneous solutions in the phase plane.

Both coordinates tend to infinity.

Figure 17.1 show some homogeneous solutions in the phase plane.

Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

(
−1 0
0 3

)
.
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The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=

(
1 1
1 5

)(
e−t 0
0 e3t

)
1

4

(
5 −1
−1 1

)(
1
3

)
=

1

2

(
e−t + e3t

e−t + 5 e3t

)

x =
1

2

(
1
1

)
e−t +

1

2

(
1
5

)
e3t

Solution 17.2
We consider an initial value problem.

x′ = Ax ≡

 1 1 2
0 2 2
−1 1 3

x, x(0) = x0 ≡

2
0
1


Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = 1, λ2 = 2,

λ3 = 3. The corresponding eigenvectors are

x1 =

 0
−2
1

 , x2 =

1
1
0

 , x3 =

2
2
1

 .

The general solution of the system of differential equations is

x = c1

 0
−2
1

 et + c2

1
1
0

 e2t + c3

2
2
1

 e3t.
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We apply the initial condition to determine the constants. 0 1 2
−2 1 2
1 0 1

c1

c2

c3

 =

2
0
1


c1 = 1, c2 = 2, c3 = 0

The solution subject to the initial condition is

x =

 0
−2
1

 et + 2

1
1
0

 e2t.

As t→∞, all coordinates tend to infinity.
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

1 0 0
0 2 0
0 0 3

 .

The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=

 0 1 2
−2 1 2
1 0 1

 et 0 0
0 e2t 0
0 0 e3t

 1

2

 1 −1 0
4 −2 −4
−1 1 2

2
0
1


=

 2 e2t

−2 et + 2 e2t

et


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x =

 0
−2
1

 et +

2
2
0

 e2t.

Solution 17.3
We consider an initial value problem.

x′ = Ax ≡
(

1 −5
1 −3

)
x, x(0) = x0 ≡

(
1
1

)
Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = −1 − i, λ2 =

−1 + i. The corresponding eigenvectors are

x1 =

(
2− i

1

)
, x2 =

(
2 + i

1

)
.

The general solution of the system of differential equations is

x = c1

(
2− i

1

)
e(−1−i)t + c2

(
2 + i

1

)
e(−1+i)t.

We can take the real and imaginary parts of either of these solution to obtain real-valued solutions.(
2 + i

1

)
e(−1+i)t =

(
2 cos(t)− sin(t)

cos(t)

)
e−t + i

(
cos(t) + 2 sin(t)

sin(t)

)
e−t

x = c1

(
2 cos(t)− sin(t)

cos(t)

)
e−t + c2

(
cos(t) + 2 sin(t)

sin(t)

)
e−t

We apply the initial condition to determine the constants.(
2 1
1 0

)(
c1

c2

)
=

(
1
1

)
c1 = 1, c2 = −1
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The solution subject to the initial condition is

x =

(
cos(t)− 3 sin(t)
cos(t)− sin(t)

)
e−t.

Plotted in the phase plane, the solution spirals in to the origin at t increases. Both coordinates tend to zero as
t→∞.

Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

(
−1− i 0

0 −1 + i

)
.

The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=

(
2− i 2 + i

1 1

)(
e(−1−i)t 0

0 e(−1+i)t

)
1

2

(
i 1− i2
−i 1 + i2

)(
1
1

)
=

(
(cos(t)− 3 sin(t)) e−t

(cos(t)− sin(t)) e−t

)

x =

(
1
1

)
e−t cos(t)−

(
3
1

)
e−t sin(t)

Solution 17.4
We consider an initial value problem.

x′ = Ax ≡

−3 0 2
1 −1 0
−2 −1 0

x, x(0) = x0 ≡

1
0
0


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Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = −2, λ2 =
−1− i

√
2, λ3 = −1 + i

√
2. The corresponding eigenvectors are

x1 =

 2
−2
1

 , x2 =

 2 + i
√

2

−1 + i
√

2
3

 , x3 =

 2− i
√

2

−1− i
√

2
3

 .

The general solution of the system of differential equations is

x = c1

 2
−2
1

 e−2t + c2

 2 + i
√

2

−1 + i
√

2
3

 e(−1−i
√

2)t + c3

 2− i
√

2

−1− i
√

2
3

 e(−1+i
√

2)t.

We can take the real and imaginary parts of the second or third solution to obtain two real-valued solutions. 2 + i
√

2

−1 + i
√

2
3

 e(−1−i
√

2)t =

2 cos(
√

2t) +
√

2 sin(
√

2t)

− cos(
√

2t) +
√

2 sin(
√

2t)

3 cos(
√

2t)

 e−t + i

√2 cos(
√

2t)− 2 sin(
√

2t)√
2 cos(

√
2t) + sin(

√
2t)

−3 sin(
√

2t)

 e−t

x = c1

 2
−2
1

 e−2t + c2

2 cos(
√

2t) +
√

2 sin(
√

2t)

− cos(
√

2t) +
√

2 sin(
√

2t)

3 cos(
√

2t)

 e−t + c3

√2 cos(
√

2t)− 2 sin(
√

2t)√
2 cos(

√
2t) + sin(

√
2t)

−3 sin(
√

2t)

 e−t

We apply the initial condition to determine the constants. 2 2
√

2

−2 −1
√

2
1 3 0

c1

c2

c3

 =

1
0
0


c1 =

1

3
, c2 = −1

9
, c3 =

5

9
√

2
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The solution subject to the initial condition is

x =
1

3

 2
−2
1

 e−2t +
1

6

 2 cos(
√

2t)− 4
√

2 sin(
√

2t)

4 cos(
√

2t) +
√

2 sin(
√

2t)

−2 cos(
√

2t)− 5
√

2 sin(
√

2t)

 e−t.

As t→∞, all coordinates tend to infinity. Plotted in the phase plane, the solution would spiral in to the origin.
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

−2 0 0

0 −1− i
√

2 0

0 0 −1 + i
√

2

 .

The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=
1

3

 6 2 + i
√

2 2− i
√

2

−6 −1 + i
√

2 −1− i
√

2
3 3 3

 e−2t 0 0

0 e(−1−i
√

2)t 0

0 0 e(−1+i
√

2)t


1

6

 2 −2 −2

−1− i5
√

2/2 1− i2
√

2 4 + i
√

2

−1 + i5
√

2/2 1 + i2
√

2 4− i
√

2

1
0
0



x =
1

3

 2
−2
1

 e−2t +
1

6

 2 cos(
√

2t)− 4
√

2 sin(
√

2t)

4 cos(
√

2t) +
√

2 sin(
√

2t)

−2 cos(
√

2t)− 5
√

2 sin(
√

2t)

 e−t.
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Solution 17.5
We consider an initial value problem.

x′ = Ax ≡
(

1 −4
4 −7

)
x, x(0) = x0 ≡

(
3
2

)
Method 1. Find Homogeneous Solutions. The matrix has the double eigenvalue λ1 = λ2 = −3. There

is only one corresponding eigenvector. We compute a chain of generalized eigenvectors.

(A + 3I)2x2 = 0

0x2 = 0

x2 =

(
1
0

)
(A + 3I)x2 = x1

x1 =

(
4
4

)
The general solution of the system of differential equations is

x = c1

(
1
1

)
e−3t + c2

((
4
4

)
t+

(
1
0

))
e−3t.

We apply the initial condition to determine the constants.(
1 1
1 0

)(
c1

c2

)
=

(
3
2

)
c1 = 2, c2 = 1

The solution subject to the initial condition is

x =

(
3 + 4t
2 + 4t

)
e−3t.
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Both coordinates tend to zero as t→∞.
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

(
−3 1
0 −3

)
.

The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=

(
1 1/4
1 0

)(
e−3t t e−3t

0 e−3t

)(
0 1
4 −4

)(
3
2

)

x =

(
3 + 4t
2 + 4t

)
e−3t.

Solution 17.6
We consider an initial value problem.

x′ = Ax ≡

−1 0 0
−4 1 0
3 6 2

x, x(0) = x0 ≡

 −1
2
−30


Method 1. Find Homogeneous Solutions. The matrix has the distinct eigenvalues λ1 = −1, λ2 = 1,

λ3 = 2. The corresponding eigenvectors are

x1 =

−1
−2
5

 , x2 =

 0
−1
6

 , x3 =

0
0
1

 .
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The general solution of the system of differential equations is

x = c1

−1
−2
5

 e−t + c2

 0
−1
6

 et + c3

0
0
1

 e2t.

We apply the initial condition to determine the constants.−1 0 0
−2 −1 0
5 6 1

c1

c2

c3

 =

 −1
2
−30


c1 = 1, c2 = −4, c3 = −11

The solution subject to the initial condition is

x =

−1
−2
5

 e−t − 4

 0
−1
6

 et − 11

0
0
1

 e2t.

As t→∞, the first coordinate vanishes, the second coordinate tends to∞ and the third coordinate tends to −∞
Method 2. Use the Exponential Matrix. The Jordan canonical form of the matrix is

J =

−1 0 0
0 1 0
0 0 2

 .

The solution of the initial value problem is x = eAtx0.

x = eAtx0

= S eJtS−1x0

=

−1 0 0
−2 −1 0
5 6 1

 e−t 0 0
0 et 0
0 0 e2t

 1

2

−1 0 0
2 −1 0
−7 6 1

 −1
2
−30


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x =

−1
−2
5

 e−t − 4

 0
−1
6

 et − 11

0
0
1

 e2t.

Solution 17.7
1. (a) We compute the eigenvalues of the matrix.

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−3 2 4− λ

∣∣∣∣∣∣ = −λ3 + 6λ2 − 12λ+ 8 = −(λ− 2)3

λ = 2 is an eigenvalue of multiplicity 3. The rank of the null space of A− 2I is 1. (The first two rows
are linearly independent, but the third is a linear combination of the first two.)

A− 2I =

−1 1 1
2 −1 −1
−3 2 2


Thus there is only one eigenvector. −1 1 1

2 −1 −1
−3 2 2

ξ1

ξ2

ξ3

 = 0

ξ(1) =

 0
1
−1


(b) One solution of the system of differential equations is

x(1) =

 0
1
−1

 e2t.
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(c) We substitute the form x = ξt e2t + η e2t into the differential equation.

x′ = Ax

ξ e2t + 2ξt e2t + 2η e2t = Aξt e2t + Aη e2t

(A− 2I)ξ = 0, (A− 2I)η = ξ

We already have a solution of the first equation, we need the generalized eigenvector η. Note that η
is only determined up to a constant times ξ. Thus we look for the solution whose second component
vanishes to simplify the algebra.

(A− 2I)η = ξ−1 1 1
2 −1 −1
−3 2 2

η1

0
η3

 =

 0
1
−1


−η1 + η3 = 0, 2η1 − η3 = 1, −3η1 + 2η3 = −1

η =

1
0
1


A second linearly independent solution is

x(2) =

 0
1
−1

 t e2t +

1
0
1

 e2t.

(d) To find a third solution we substutite the form x = ξ(t2/2) e2t + ηt e2t + ζ e2t into the differential
equation.

x′ = Ax

2ξ(t2/2) e2t + (ξ + 2η)t e2t + (η + 2ζ) e2t = Aξ(t2/2) e2t + Aηt e2t + Aζ e2t

(A− 2I)ξ = 0, (A− 2I)η = ξ, (A− 2I)ζ = η
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We have already solved the first two equations, we need the generalized eigenvector ζ. Note that ζ
is only determined up to a constant times ξ. Thus we look for the solution whose second component
vanishes to simplify the algebra.

(A− 2I)ζ = η−1 1 1
2 −1 −1
−3 2 2

ζ1

0
ζ3

 =

1
0
1


−ζ1 + ζ3 = 1, 2ζ1 − ζ3 = 0, −3ζ1 + 2ζ3 = 1

ζ =

1
0
2


A third linearly independent solution is

x(3) =

 0
1
−1

 (t2/2) e2t +

1
0
1

 t e2t +

1
0
2

 e2t

2. (a) We compute the eigenvalues of the matrix.

χ(λ) =

∣∣∣∣∣∣
5− λ −3 −2

8 −5− λ −4
−4 3 3− λ

∣∣∣∣∣∣ = −λ3 + 3λ2 − 3λ+ 1 = −(λ− 1)3

λ = 1 is an eigenvalue of multiplicity 3. The rank of the null space of A − I is 2. (The second and
third rows are multiples of the first.)

A− I =

 4 −3 −2
8 −6 −4
−4 3 2


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Thus there are two eigenvectors.  4 −3 −2
8 −6 −4
−4 3 2

ξ1

ξ2

ξ3

 = 0

ξ(1) =

1
0
2

 , ξ(2) =

 0
2
−3


Two linearly independent solutions of the differential equation are

x(1) =

1
0
2

 et, x(2) =

 0
2
−3

 et.

(b) We substitute the form x = ξt et + η et into the differential equation.

x′ = Ax

ξ et + ξt et + η et = Aξt et + Aη et

(A− I)ξ = 0, (A− I)η = ξ

The general solution of the first equation is a linear combination of the two solutions we found in the
previous part.

ξ = c1ξ1 + c2ξ2

Now we find the generalized eigenvector, η. Note that η is only determined up to a linear combination
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of ξ1 and ξ2. Thus we can take the first two components of η to be zero. 4 −3 −2
8 −6 −4
−4 3 2

 0
0
η3

 = c1

1
0
2

+ c2

 0
2
−3


−2η3 = c1, −4η3 = 2c2, 2η3 = 2c1 − 3c2

c1 = c2, η3 = −c1

2

We see that we must take c1 = c2 in order to obtain a solution. We choose c1 = c2 = 2 A third linearly
independent solution of the differential equation is

x(3) =

 2
4
−2

 t et +

 0
0
−1

 et.

Solution 17.8
1. The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−8 −5 −3− λ

∣∣∣∣∣∣
= (1− λ)2(−3− λ) + 8− 10− 5(1− λ)− 2(−3− λ)− 8(1− λ)

= −λ3 − λ2 + 4λ+ 4

= −(λ+ 2)(λ+ 1)(λ− 2)

Thus we see that the eigenvalues are λ = −2,−1, 2. The eigenvectors ξ satisfy

(A− λI)ξ = 0.
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For λ = −2, we have

(A + 2I)ξ = 0. 3 1 1
2 3 −1
−8 −5 −1

ξ1

ξ2

ξ3

 =

0
0
0


If we take ξ3 = 1 then the first two rows give us the system,(

3 1
2 3

)(
ξ1

ξ2

)
=

(
−1
1

)
which has the solution ξ1 = −4/7, ξ2 = 5/7. For the first eigenvector we choose:

ξ =

−4
5
7


For λ = −1, we have

(A + I)ξ = 0. 2 1 1
2 2 −1
−8 −5 −2

ξ1

ξ2

ξ3

 =

0
0
0


If we take ξ3 = 1 then the first two rows give us the system,(

2 1
2 2

)(
ξ1

ξ2

)
=

(
−1
1

)
which has the solution ξ1 = −3/2, ξ2 = 2. For the second eigenvector we choose:

ξ =

−3
4
2


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For λ = 2, we have

(A + I)ξ = 0.−1 1 1
2 −1 −1
−8 −5 −5

ξ1

ξ2

ξ3

 =

0
0
0


If we take ξ3 = 1 then the first two rows give us the system,(

−1 1
2 −1

)(
ξ1

ξ2

)
=

(
−1
1

)
which has the solution ξ1 = 0, ξ2 = −1. For the third eigenvector we choose:

ξ =

 0
−1
1


In summary, the eigenvalues and eigenvectors are

λ = {−2,−1, 2}, ξ =


−4

5
7

 ,

−3
4
2

 ,

 0
−1
1


2. The matrix is diagonalized with the similarity transformation

J = S−1AS,

where S is the matrix with eigenvectors as columns:

S =

−4 −3 0
5 4 −1
7 2 1


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The matrix exponential, eAt is given by

eA = S eJS−1.

eA =

−4 −3 0
5 4 −1
7 2 1

 e−2t 0 0
0 e−t 0
0 0 e2t

 1

12

 6 3 3
−12 −4 −4
−18 −13 −1

 .

eAt =

−2 e−2t + 3 e−t − e−2t + e−t − e−2t + e−t

5 e−2t−8 e−t+3 et

2
15 e−2t−16 e−t+13 et

12
15 e−2t−16 e−t+ et

12
7 e−2t−4 e−t−3 et

2
21 e−2t−8 e−t−13 et

12
21 e−2t−8 e−t− et

12


The solution of the initial value problem is eAtx0.

3. The general solution of the Euler equation is

c1

−4
5
7

 t−2 + c2

−3
4
2

 t−1 + c3

 0
−1
1

 t2.

We could also write the solution as

x = tAc ≡ eA log tc,

Solution 17.9
1. The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣∣∣
2− λ 0 1

0 2− λ 0
0 1 3− λ

∣∣∣∣∣∣
= (2− λ)2(3− λ)
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Thus we see that the eigenvalues are λ = 2, 2, 3. Consider

A− 2I =

0 0 1
0 0 0
0 1 3

 .

Since rank ( nullspace (A− 2I)) = 1 there is one eigenvector and one generalized eigenvector of rank two for
λ = 2. The generalized eigenvector of rank two satisfies

(A− 2I)2ξ2 = 00 1 1
0 0 0
0 1 1

 ξ2 = 0

We choose the solution

ξ2 =

 0
−1
1

 .

The eigenvector for λ = 2 is

ξ1 = (A− 2I)ξ2 =

1
0
0

 .

The eigenvector for λ = 3 satisfies

(A− 3I)2ξ = 0−1 0 1
0 −1 0
0 1 0

 ξ = 0
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We choose the solution

ξ =

1
0
1

 .

The eigenvalues and generalized eigenvectors are

λ = {2, 2, 3}, ξ =


1

0
0

 ,

 0
−1
1

 ,

1
0
1

 .

The matrix of eigenvectors and its inverse is

S =

1 0 1
0 −1 0
0 1 1

 , S−1 =

1 −1 −1
0 −1 0
0 1 1

 .

The Jordan canonical form of the matrix, which satisfies J = S−1AS is

J =

2 1 0
0 2 0
0 0 3


Recall that the function of a Jordan block is:

f



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 =


f(λ) f ′(λ)

1!
f ′′(λ)

2!
f ′′′(λ)

3!

0 f(λ) f ′(λ)
1!

f ′′(λ)
2!

0 0 f(λ) f ′(λ)
1!

0 0 0 f(λ)

 ,

and that the function of a matrix in Jordan canonical form is

f




J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4


 =


f(J1) 0 0 0

0 f(J2) 0 0
0 0 f(J3) 0
0 0 0 f(J4)

 .
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We want to compute eJt so we consider the function f(λ) = eλt, which has the derivative f ′(λ) = t eλt.
Thus we see that

eJt =

 e2t t e2t 0
0 e2t 0
0 0 e3t


The exponential matrix is

eAt = S eJtS−1,

eAt =

 e2t −(1 + t) e2t + e3t − e2t + e3t

0 e2t 0
0 − e2t + e3t e3t

 .

The general solution of the homogeneous differential equation is

x = eAtC.

2. The solution of the inhomogeneous differential equation subject to the initial condition is

x = eAt0 + eAt

∫ t

0

e−Aτg(τ) dτ

x = eAt

∫ t

0

e−Aτg(τ) dτ

Solution 17.10
1.

dx

dt
=

1

t
Ax

t

(
x′1
x′2

)
=

(
a b
c d

)(
x1

x2

)
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The first component of this equation is

tx′1 = ax1 + bx2.

We differentiate and multiply by t to obtain a second order coupled equation for x1. We use (17.3) to
eliminate the dependence on x2.

t2x′′1 + tx′1 = atx′1 + btx′2
t2x′′1 + (1− a)tx′1 = b(cx1 + dx2)

t2x′′1 + (1− a)tx′1 − bcx1 = d(tx′1 − ax1)

t2x′′1 + (1− a− d)tx′1 + (ad− bc)x1 = 0

Thus we see that x1 satisfies a second order, Euler equation. By symmetry we see that x2 satisfies,

t2x′′2 + (1− b− c)tx′2 + (bc− ad)x2 = 0.

2. We substitute x = atλ into (17.3).

λatλ−1 =
1

t
Aatλ

Aa = λa

Thus we see that x = atλ is a solution if λ is an eigenvalue of A with eigenvector a.

3. Suppose that λ = α is an eigenvalue of multiplicity 2. If λ = α has two linearly independent eigenvectors,
a and b then atα and btα are linearly independent solutions. If λ = α has only one linearly independent
eigenvector, a, then atα is a solution. We look for a second solution of the form

x = ξtα log t+ ηtα.

Substituting this into the differential equation yields

αξtα−1 log t+ ξtα−1 + αηtα−1 = Aξtα−1 log t+ Aηtα−1
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We equate coefficients of tα−1 log t and tα−1 to determine ξ and η.

(A− αI)ξ = 0, (A− αI)η = ξ

These equations have solutions because λ = α has generalized eigenvectors of first and second order.

Note that the change of independent variable τ = log t, y(τ) = x(t), will transform (17.3) into a constant
coefficient system.

dy

dτ
= Ay

Thus all the methods for solving constant coefficient systems carry over directly to solving (17.3). In the
case of eigenvalues with multiplicity greater than one, we will have solutions of the form,

ξtα, ξtα log t+ ηtα, ξtα (log t)2 + ηtα log t+ ζtα, . . . ,

analogous to the form of the solutions for a constant coefficient system,

ξ eατ , ξτ eατ + η eατ , ξτ 2 eατ + ητ eατ + ζ eατ , . . . .

4. Method 1. Now we consider

dx

dt
=

1

t

(
1 0
1 1

)
x.

The characteristic polynomial of the matrix is

χ(λ) =

∣∣∣∣1− λ 0
1 1− λ

∣∣∣∣ = (1− λ)2.

λ = 1 is an eigenvalue of multiplicity 2. The equation for the associated eigenvectors is(
0 0
1 0

)(
ξ1

ξ2

)
=

(
0
0

)
.
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There is only one linearly independent eigenvector, which we choose to be

a =

(
0
1

)
.

One solution of the differential equation is

x1 =

(
0
1

)
t.

We look for a second solution of the form

x2 = at log t+ ηt.

η satisfies the equation

(A− I)η =

(
0 0
1 0

)
η =

(
0
1

)
.

The solution is determined only up to an additive multiple of a. We choose

η =

(
1
0

)
.

Thus a second linearly independent solution is

x2 =

(
0
1

)
t log t+

(
1
0

)
t.

The general solution of the differential equation is

x = c1

(
0
1

)
t+ c2

((
0
1

)
t log t+

(
1
0

)
t

)
.
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Method 2. Note that the matrix is lower triangular.(
x′1
x′2

)
=

1

t

(
1 0
1 1

)(
x1

x2

)
(17.4)

We have an uncoupled equation for x1.

x′1 =
1

t
x1

x1 = c1t

By substituting the solution for x1 into (17.4), we obtain an uncoupled equation for x2.

x′2 =
1

t
(c1t+ x2)

x′2 −
1

t
x2 = c1(

1

t
x2

)′
=
c1

t
1

t
x2 = c1 log t+ c2

x2 = c1t log t+ c2t

Thus the solution of the system is

x =

(
c1t

c1t log t+ c2t

)
,

x = c1

(
t

t log t

)
+ c2

(
0
t

)
,

which is equivalent to the solution we obtained previously.
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Solution 17.11
Homogeneous Solution, Method 1. We designate the inhomogeneous system of differential equations

x′ = Ax + g(t).

First we find homogeneous solutions. The characteristic equation for the matrix is

χ(λ) =

∣∣∣∣4− λ −2
8 −4− λ

∣∣∣∣ = λ2 = 0

λ = 0 is an eigenvalue of multiplicity 2. The eigenvectors satisfy(
4 −2
8 −4

)(
ξ1

ξ2

)
=

(
0
0

)
.

Thus we see that there is only one linearly independent eigenvector. We choose

ξ =

(
1
2

)
.

One homogeneous solution is then

x1 =

(
1
2

)
e0t =

(
1
2

)
.

We look for a second homogeneous solution of the form

x2 = ξt+ η.

We substitute this into the homogeneous equation.

x′2 = Ax2

ξ = A(ξt+ η)

753



We see that ξ and η satisfy

Aξ = 0, Aη = ξ.

We choose ξ to be the eigenvector that we found previously. The equation for η is then(
4 −2
8 −4

)(
η1

η2

)
=

(
1
2

)
.

η is determined up to an additive multiple of ξ. We choose

η =

(
0
−1/2

)
.

Thus a second homogeneous solution is

x2 =

(
1
2

)
t+

(
0
−1/2

)
.

The general homogeneous solution of the system is

xh = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
We can write this in matrix notation using the fundamental matrix Ψ(t).

xh = Ψ(t)c =

(
1 t
2 2t− 1/2

)(
c1

c2

)
Homogeneous Solution, Method 2. The similarity transform C−1AC with

C =

(
1 0
2 −1/2

)
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will convert the matrix

A =

(
4 −2
8 −4

)
to Jordan canonical form. We make the change of variables,

y =

(
1 0
2 −1/2

)
x.

The homogeneous system becomes

dy

dt
=

(
1 0
4 −2

)(
4 −2
8 −4

)(
1 0
2 −1/2

)
y(

y′1
y′2

)
=

(
0 1
0 0

)(
y1

y2

)
The equation for y2 is

y′2 = 0.

y2 = c2

The equation for y1 becomes

y′1 = c2.

y1 = c1 + c2t

The solution for y is then

y = c1

(
1
0

)
+ c2

(
t
1

)
.
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We multiply this by C to obtain the homogeneous solution for x.

xh = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
Inhomogeneous Solution. By the method of variation of parameters, a particular solution is

xp = Ψ(t)

∫
Ψ−1(t)g(t) dt.

xp =

(
1 t
2 2t− 1/2

)∫ (
1− 4t 2t

4 −2

)(
t−3

−t−2

)
dt

xp =

(
1 t
2 2t− 1/2

)∫ (
−2t−1 − 4t−2 + t−3

2t−2 + 4t−3

)
dt

xp =

(
1 t
2 2t− 1/2

)(
−2 log t+ 4t−1 − 1

2
t−2

−2t−1 − 2t−2

)
xp =

(
−2− 2 log t+ 2t−1 − 1

2
t−2

−4− 4 log t+ 5t−1

)
By adding 2 times our first homogeneous solution, we obtain

xp =

(
−2 log t+ 2t−1 − 1

2
t−2

−4 log t+ 5t−1

)
The general solution of the system of differential equations is

x = c1

(
1
2

)
+ c2

(
t

2t− 1/2

)
+

(
−2 log t+ 2t−1 − 1

2
t−2

−4 log t+ 5t−1

)
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Chapter 18

Theory of Linear Ordinary Differential
Equations

A little partyin’ is good for the soul.

-Matt Metz
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18.1 Nature of Solutions

Result 18.1.1 Consider the nth order ordinary differential equation of the form

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = f(x). (18.1)

If the coefficient functions pn−1(x), . . . , p0(x) and the inhomogeneity f(x) are continuous
on some interval a < x < b then the differential equation subject to the conditions,

y(x0) = v0, y′(x0) = v1, . . . y(n−1)(x0) = vn−1, a < x0 < b,

has a unique solution on the interval.

Linearity of the Operator. The differential operator L is linear. To verify this,

L[cy] =
dn

dxn
(cy) + pn−1(x)

dn−1

dxn−1
(cy) + · · ·+ p1(x)

d

dx
(cy) + p0(x)(cy)

= c
dn

dxn
y + cpn−1(x)

dn−1

dxn−1
y + · · ·+ cp1(x)

d

dx
y + cp0(x)y

= cL[y]

L[y1 + y2] =
dn

dxn
(y1 + y2) + pn−1(x)

dn−1

dxn−1
(y1 + y2) + · · ·+ p1(x)

d

dx
(y1 + y2) + p0(x)(y1 + y2)

=
dn

dxn
(y1) + pn−1(x)

dn−1

dxn−1
(y1) + · · ·+ p1(x)

d

dx
(y1) + p0(x)(y1)

+
dn

dxn
(y2) + pn−1(x)

dn−1

dxn−1
(y2) + · · ·+ p1(x)

d

dx
(y2) + p0(x)(y2)

= L[y1] + L[y2].
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Homogeneous Solutions. The general homogeneous equation has the form

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y = 0.

From the linearity of L, we see that if y1 and y2 are solutions to the homogeneous equation then c1y1 + c2y2 is
also a solution, (L[c1y1 + c2y2] = 0).

On any interval where the coefficient functions are continuous, the nth order linear homogeneous equation has
n linearly independent solutions, y1, y2, . . . , yn. (We will study linear independence in Section 18.3.) The general
solution to the homogeneous problem is then

yh = c1y1 + c2y2 + · · ·+ cnyn.

Particular Solutions. Any function, yp, that satisfies the inhomogeneous equation, L[yp] = f(x), is called a
particular solution or particular integral of the equation. Note that for linear differential equations the particular
solution is not unique. If yp is a particular solution then yp + yh is also a particular solution where yh is any
homogeneous solution.

The general solution to the problem L[y] = f(x) is the sum of a particular solution and a linear combination
of the homogeneous solutions

y = yp + c1y1 + · · ·+ cnyn.

Example 18.1.1 Consider the differential equation

y′′ − y′ = 1.

You can verify that two homogeneous solutions are ex and 1. A particular solution is −x. Thus the general
solution is

y = −x+ c1 ex + c2.
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Real-Valued Solutions. If the coefficient function and the inhomogeneity in Equation 18.1 are real-valued,
then the general solution can be written in terms of real-valued functions. Let y be any, homogeneous solution,
(perhaps complex-valued). By taking the complex conjugate of the equation L[y] = 0 we show that ȳ is a
homogeneous solution as well.

L[y] = 0

L[y] = 0

y(n) + pn−1y(n−1) + · · ·+ p0y = 0

ȳ(n) + pn−1ȳ
(n−1) + · · ·+ p0ȳ = 0

L [ȳ] = 0

For the same reason, if yp is a particular solution, then yp is a particular solution as well.

Since the real and imaginary parts of a function y are linear combinations of y and ȳ,

<(y) =
y + ȳ

2
, =(y) =

y − ȳ
i2

,

if y is a homogeneous solution then both <y and =(y) are homogeneous solutions. Likewise, if yp is a particular
solution then <(yp) is a particular solution.

L [<(yp)] = L

[
yp + yp

2

]
=
f

2
+
f

2
= f

Thus we see that the homogeneous solution, the particular solution and the general solution of a linear differential
equation with real-valued coefficients and inhomogeneity can be written in terms of real-valued functions.
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Result 18.1.2 The differential equation

L[y] =
dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = f(x)

with continuous coefficients and inhomogeneity has a general solution of the form

y = yp + c1y1 + · · ·+ cnyn

where yp is a particular solution, L[yp] = f , and the yk are linearly independent homoge-
neous solutions, L[yk] = 0. If the coefficient functions and inhomogeneity are real-valued,
then the general solution can be written in terms of real-valued functions.

18.2 Transformation to a First Order System

Any linear differential equation can be put in the form of a system of first order differential equations. Consider

y(n) + pn−1y
(n−1) + · · ·+ p0y = f(x).

We introduce the functions,

y1 = y, y2 = y′, , . . . , yn = y(n−1).

The differential equation is equivalent to the system

y′1 = y2

y′2 = y3

... =
...

y′n = f(x)− pn−1yn − · · · − p0y1.
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The first order system is more useful when numerically solving the differential equation.

Example 18.2.1 Consider the differential equation

y′′ + x2y′ + cosx y = sinx.

The corresponding system of first order equations is

y′1 = y2

y′2 = sinx− x2y2 − cosx y1.

18.3 The Wronskian

18.3.1 Derivative of a Determinant.

Before investigating the Wronskian, we will need a preliminary result from matrix theory. Consider an n × n
matrix A whose elements aij(x) are functions of x. We will denote the determinant by ∆[A(x)]. We then have
the following theorem.

Result 18.3.1 Let aij(x), the elements of the matrix A, be differentiable functions of x.
Then

d

dx
∆[A(x)] =

n∑
k=1

∆k[A(x)]

where ∆k[A(x)] is the determinant of the matrix A with the kth row replaced by the
derivative of the kth row.
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Example 18.3.1 Consider the the matrix

A(x) =

(
x x2

x2 x4

)
The determinant is x5 − x4 thus the derivative of the determinant is 5x4 − 4x3. To check the theorem,

d

dx
∆[A(x)] =

d

dx

∣∣∣∣ x x2

x2 x4

∣∣∣∣
=

∣∣∣∣ 1 2x
x2 x4

∣∣∣∣+

∣∣∣∣ x x2

2x 4x3

∣∣∣∣
= x4 − 2x3 + 4x4 − 2x3

= 5x4 − 4x3.

18.3.2 The Wronskian of a Set of Functions.

A set of functions {y1, y2, . . . , yn} is linearly dependent on an interval if there are constants c1, . . . , cn not all zero
such that

c1y1 + c2y2 + · · ·+ cnyn = 0 (18.2)

identically on the interval. The set is linearly independent if all of the constants must be zero to satisfy c1y1 +
· · · cnyn = 0 on the interval.

Consider a set of functions {y1, y2, . . . , yn} that are linearly dependent on a given interval and n − 1 times
differentiable. There are a set of constants, not all zero, that satisfy equation 18.2

Differentiating equation 18.2 n− 1 times gives the equations,

c1y
′
1 + c2y

′
2 + · · ·+ cny

′
n = 0

c1y
′′
1 + c2y

′′
2 + · · ·+ cny

′′
n = 0

· · ·
c1y

(n−1)
1 + c2y

(n−1)
2 + · · ·+ cny

(n−1)
n = 0.
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We could write the problem to find the constants as
y1 y2 . . . yn
y′1 y′2 . . . y′n
y′′1 y′′2 . . . y′′n
...

...
. . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n




c1

c2

c3
...
cn

 = 0

From linear algebra, we know that this equation has a solution for a nonzero constant vector only if the determinant
of the matrix is zero. Here we define the Wronskian ,W (x), of a set of functions.

W (x) =

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣
Thus if a set of functions is linearly dependent on an interval, then the Wronskian is identically zero on that
interval. Alternatively, if the Wronskian is identically zero, then the above matrix equation has a solution for a
nonzero constant vector. This implies that the the set of functions is linearly dependent.

Result 18.3.2 The Wronskian of a set of functions vanishes identically over an interval
if and only if the set of functions is linearly dependent on that interval. The Wronskian of
a set of linearly independent functions does not vanish except possibly at isolated points.

Example 18.3.2 Consider the set, {x, x2}. The Wronskian is

W (x) =

∣∣∣∣x x2

1 2x

∣∣∣∣
= 2x2 − x2

= x2.
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Thus the functions are independent.

Example 18.3.3 Consider the set {sinx, cosx, eix}. The Wronskian is

W (x) =

∣∣∣∣∣∣
sinx cos x eix

cos x − sinx i eix

− sinx − cosx − eix

∣∣∣∣∣∣ .
Since the last row is a constant multiple of the first row, the determinant is zero. The functions are dependent.
We could also see this with the identity eix = cos x+ i sinx.

18.3.3 The Wronskian of the Solutions to a Differential Equation

Consider the nth order linear homogeneous differential equation

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0.

Let {y1, y2, . . . , yn} be any set of n linearly independent solutions. Let Y (x) be the matrix such that W (x) =
∆[Y (x)]. Now let’s differentiate W (x).

W ′(x) =
d

dx
∆[Y (x)]

=
n∑
k=1

∆k[Y (x)]

We note that the all but the last term in this sum is zero. To see this, let’s take a look at the first term.

∆1[Y (x)] =

∣∣∣∣∣∣∣∣∣
y′1 y′2 · · · y′n
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
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The first two rows in the matrix are identical. Since the rows are dependent, the determinant is zero.
The last term in the sum is

∆n[Y (x)] =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n)
1 y

(n)
2 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣ .
In the last row of this matrix we make the substitution y

(n)
i = −pn−1(x)y

(n−1)
i − · · · − p0(x)yi. Recalling that

we can add a multiple of a row to another without changing the determinant, we add p0(x) times the first row,
and p1(x) times the second row, etc., to the last row. Thus we have the determinant,

W ′(x) =

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

−pn−1(x)y
(n−1)
1 −pn−1(x)y

(n−1)
2 · · · −pn−1(x)y

(n−1)
n

∣∣∣∣∣∣∣∣∣
= −pn−1(x)

∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
= −pn−1(x)W (x)

Thus the Wronskian satisfies the first order differential equation,

W ′(x) = −pn−1(x)W (x).

Solving this equation we get a result known as Abel’s formula.

W (x) = c exp

(
−
∫
pn−1(x) dx

)
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Thus regardless of the particular set of solutions that we choose, we can compute their Wronskian up to a constant
factor.

Result 18.3.3 The Wronskian of any linearly independent set of solutions to the equa-
tion

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0

is, (up to a multiplicative constant), given by

W (x) = exp

(
−
∫
pn−1(x) dx

)
.

Example 18.3.4 Consider the differential equation

y′′ − 3y′ + 2y = 0.

The Wronskian of the two independent solutions is

W (x) = c exp

(
−
∫
−3 dx

)
= c e3x.

For the choice of solutions { ex, e2x}, the Wronskian is

W (x) =

∣∣∣∣ ex e2x

ex 2 e2x

∣∣∣∣ = 2 e3x − e3x = e3x.
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18.4 Well-Posed Problems

Consider the initial value problem for an nth order linear differential equation.

dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y = f(x)

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn

Since the general solution to the differential equation is a linear combination of the n homogeneous solutions plus
the particular solution

y = yp + c1y1 + c2y2 + · · ·+ cnyn,

the problem to find the constants ci can be written
y1(x0) y2(x0) . . . yn(x0)
y′1(x0) y′2(x0) . . . y′n(x0)

...
...

. . . . . .

y
(n−1)
1 (x0) y

(n−1)
2 (x0) . . . y

(n−1)
n (x0)



c1

c2
...
cn

+


yp(x0)
y′p(x0)

...

y
(n−1)
p (x0)

 =


v1

v2
...
vn

 .

From linear algebra we know that this system of equations has a unique solution only if the determinant of the
matrix is nonzero. Note that the determinant of the matrix is just the Wronskian evaluated at x0. Thus if the
Wronskian vanishes at x0, the initial value problem for the differential equation either has no solutions or infinitely
many solutions. Such problems are said to be ill-posed. From Abel’s formula for the Wronskian

W (x) = exp

(
−
∫
pn−1(x) dx

)
,

we see that the only way the Wronskian can vanish is if the value of the integral goes to ∞.

Example 18.4.1 Consider the initial value problem

y′′ − 2

x
y′ +

2

x2
y = 0, y(0) = y′(0) = 1.
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The Wronskian

W (x) = exp

(
−
∫
−2

x
dx

)
= exp (2 log x) = x2

vanishes at x = 0. Thus this problem is not well-posed.

The general solution of the differential equation is

y = c1x+ c2x
2.

We see that the general solution cannot satisfy the initial conditions. If instead we had the initial conditions
y(0) = 0, y′(0) = 1, then there would be an infinite number of solutions.

Example 18.4.2 Consider the initial value problem

y′′ − 2

x2
y = 0, y(0) = y′(0) = 1.

The Wronskian

W (x) = exp

(
−
∫

0 dx

)
= 1

does not vanish anywhere. However, this problem is not well-posed.

The general solution,

y = c1x
−1 + c2x

2,

cannot satisfy the initial conditions. Thus we see that a non-vanishing Wronskian does not imply that the problem
is well-posed.
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Result 18.4.1 Consider the initial value problem

dny

dxn
+ pn−1(x)

dn−1y

dxn−1 + · · ·+ p1(x)
dy

dx
+ p0(x)y = 0

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn.

If the Wronskian

W (x) = exp

(
−
∫
pn−1(x) dx

)
vanishes at x = x0 then the problem is ill-posed. The problem may be ill-posed even if
the Wronskian does not vanish.

18.5 The Fundamental Set of Solutions

Consider a set of linearly independent solutions {u1, u2, . . . , un} to an nth order linear homogeneous differential
equation. This is called the fundamental set of solutions at x0 if they satisfy the relations

u1(x0) = 1 u2(x0) = 0 . . . un(x0) = 0
u′1(x0) = 0 u′2(x0) = 1 . . . u′n(x0) = 0

...
...

. . .
...

u
(n−1)
1 (x0) = 0 u

(n−1)
2 (x0) = 0 . . . u

(n−1)
n (x0) = 1

Knowing the fundamental set of solutions is handy because it makes the task of solving an initial value problem
trivial. Say we are given the initial conditions,

y(x0) = v1, y′(x0) = v2, . . . , y(n−1)(x0) = vn.
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If the ui’s are a fundamental set then the solution that satisfies these constraints is just

y = v1u1(x) + v2u2(x) + · · ·+ vnun(x).

Of course in general, a set of solutions is not the fundamental set. If the Wronskian of the solutions is
nonzero and finite we can generate a fundamental set of solutions that are linear combinations of our original set.
Consider the case of a second order equation Let {y1, y2} be two linearly independent solutions. We will generate
the fundamental set of solutions, {u1, u2}.

(
u1

u2

)
=

(
c11 c12

c21 c22

)(
y1

y2

)
For {u1, u2} to satisfy the relations that define a fundamental set, it must satisfy the matrix equation(

u1(x0) u′1(x0)
u2(x0) u′2(x0)

)
=

(
c11 c12

c21 c22

)(
y1(x0) y′1(x0)
y2(x0) y′2(x0)

)
=

(
1 0
0 1

)

(
c11 c12

c21 c22

)
=

(
y1(x0) y′1(x0)
y2(x0) y′2(x0)

)−1

If the Wronskian is non-zero and finite, we can solve for the constants, cij, and thus find the fundamental set of
solutions. To generalize this result to an equation of order n, simply replace all the 2 × 2 matrices and vectors
of length 2 with n × n matrices and vectors of length n. I presented the case of n = 2 simply to save having to
write out all the ellipses involved in the general case. (It also makes for easier reading.)

Example 18.5.1 Two linearly independent solutions to the differential equation y′′ + y = 0 are y1 = eix and
y2 = e−ix. (

y1(0) y′1(0)
y2(0) y′2(0)

)
=

(
1 i
1 −i

)
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To find the fundamental set of solutions, {u1, u2}, at x = 0 we solve the equation(
c11 c12

c21 c22

)
=

(
1 i
1 −i

)−1

(
c11 c12

c21 c22

)
=

1

2i

(
i i
1 −1

)
The fundamental set is

u1 =
eix + e−ix

2
, u2 =

eix − e−ix

2i
.

Using trigonometric identities we can rewrite these as

u1 = cos x, u2 = sinx.

Result 18.5.1 The fundamental set of solutions at x = x0, {u1, u2, . . . , un}, to an nth

order linear differential equation, satisfy the relations

u1(x0) = 1 u2(x0) = 0 . . . un(x0) = 0
u′1(x0) = 0 u′2(x0) = 1 . . . u′n(x0) = 0

...
... . . . ...

u
(n−1)
1 (x0) = 0 u

(n−1)
2 (x0) = 0 . . . u

(n−1)
n (x0) = 1.

If the Wronskian of the solutions is nonzero and finite at the point x0 then you can
generate the fundamental set of solutions from any linearly independent set of solutions.
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18.6 Adjoint Equations

For the nth order linear differential operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1
+ · · ·+ p0y

(where the pj are complex-valued functions) we define the adjoint of L

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1
(pn−1y) + · · ·+ p0y.

Here f denotes the complex conjugate of f .

Example 18.6.1

L[y] = xy′′ +
1

x
y′ + y

has the adjoint

L∗[y] =
d2

dx2
[xy]− d

dx

[
1

x
y

]
+ y

= xy′′ + 2y′ − 1

x
y′ +

1

x2
y + y

= xy′′ +

(
2− 1

x

)
y′ +

(
1 +

1

x2

)
y.

Taking the adjoint of L∗ yields

L∗∗[y] =
d2

dx2
[xy]− d

dx

[(
2− 1

x

)
y

]
+

(
1 +

1

x2

)
y

= xy′′ + 2y′ −
(

2− 1

x

)
y′ −

(
1

x2

)
y +

(
1 +

1

x2

)
y

= xy′′ +
1

x
y′ + y.
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Thus by taking the adjoint of L∗, we obtain the original operator.

In general, L∗∗ = L.

Consider L[y] = pny
(n) + · · · + p0y. If each of the pk is k times continuously differentiable and u and v are n

times continuously differentiable on some interval, then on that interval

vL[u]− uL∗[v] =
d

dx
B[u, v]

where B[u, v], the bilinear concomitant, is the bilinear form

B[u, v] =
n∑

m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)(j).

This equation is known as Lagrange’s identity. If L is a second order operator then

vL[u]− uL∗[v] =
d

dx

[
up1v + u′p2v − u(p2v)′

]
= u′′p2v + u′p1v + u

[
− p2v

′′ + (−2p′2 + p1)v′ + (−p′′2 + p′1)v
]
.

Example 18.6.2 Verify Lagrange’s identity for the second order operator, L[y] = p2y
′′ + p1y

′ + p0y.

vL[u]− uL∗[v] = v(p2u
′′ + p1u

′ + p0u)− u
(

d2

dx2
(p2v)− d

dx
(p1v) + p0v

)
= v(p2u

′′ + p1u
′ + p0u)− u(p2v′′ + (2p2

′ − p1)v′ + (p2
′′ − p1

′ + p0)v)

= u′′p2v + u′p1v + u
[
− p2v

′′ + (−2p′2 + p1)v′ + (−p′′2 + p′1)v
]
.

We will not verify Lagrange’s identity for the general case.
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Integrating Lagrange’s identity on its interval of validity gives us Green’s formula.∫ b

a

(
vL[u]− uL∗[v]

)
dx = B[u, v]

∣∣
x=b
−B[u, v]

∣∣
x=a

Result 18.6.1 The adjoint of the operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1 + · · ·+ p0y

is defined

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1 (pn−1y) + · · ·+ p0y.

If each of the pk is k times continuously differentiable and u and v are n times continuously
differentiable, then Lagrange’s identity states

vL[y]− uL∗[v] =
d

dx
B[u, v] =

d

dx

n∑
m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)(j).

Integrating Lagrange’s identity on it’s domain of validity yields Green’s formula,∫ b

a

(
vL[u]− uL∗[v]

)
dx = B[u, v]

∣∣
x=b −B[u, v]

∣∣
x=a.
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18.7 Exercises
Exercise 18.1
Determine a necessary condition for a second order linear differential equation to be exact.

Determine an equation for the integrating factor for a second order linear differential equation.
Hint, Solution

Exercise 18.2
Show that

y′′ + xy′ + y = 0

is exact. Find the solution.
Hint, Solution

Nature of Solutions

Exercise 18.3
On what intervals do the following problems have unique solutions?

1. xy′′ + 3y = x

2. x(x− 1)y′′ + 3xy′ + 4y = 2

3. exy′′ + x2y′ + y = tanx

Hint, Solution

Exercise 18.4
Suppose you are able to find three linearly independent particular solutions u1(x), u2(x) and u3(x) of the second
order linear differential equation L[y] = f(x). What is the general solution?
Hint, Solution
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Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions

Exercise 18.5
Two solutions of y′′ − y = 0 are ex and e−x. Show that the solutions are independent. Find the fundamental set
of solutions at x = 0.
Hint, Solution

Adjoint Equations

Exercise 18.6
Find the adjoint of the Bessel equation of order ν,

x2y′′ + xy′ + (x2 − ν2)y = 0,

and the Legendre equation of order α,

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0.

Hint, Solution

Exercise 18.7
Find the adjoint of

x2y′′ − xy′ + 3y = 0.

Hint, Solution
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18.8 Hints

Hint 18.1

Hint 18.2

Nature of Solutions

Hint 18.3

Hint 18.4
The difference of any two of the ui’s is a homogeneous solution.

Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions

Hint 18.5

Adjoint Equations

Hint 18.6
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Hint 18.7

779



18.9 Solutions
Solution 18.1
The second order, linear, homogeneous differential equation is

P (x)y′′ +Q(x)y′ +R(x)y = 0. (18.3)

The second order, linear, homogeneous, exact differential equation is

d

dx

[
P (x)

dy

dx

]
+

d

dx
[f(x)y] = 0. (18.4)

P (x)y′′ + (P ′(x) + f(x)) y′ + f ′(x)y = 0

Equating the coefficients of Equations 18.3 and 18.4 yields the set of equations,

P ′(x) + f(x) = Q(x), f ′(x) = R(x).

We differentiate the first equation and substitute in the expression for f ′(x) from the second equation to determine
a necessary condition for exactness.

P ′′(x)−Q′(x) +R(x) = 0

We multiply Equation 18.3 by the integrating factor µ(x) to obtain,

µ(x)P (x)y′′ + µ(x)Q(x)y′ + µ(x)R(x)y = 0. (18.5)

The corresponding exact equation is of the form,

d

dx

[
µ(x)P (x)

dy

dx

]
+

d

dx
[f(x)y] = 0. (18.6)
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µ(x)P (x)y′′ + (µ′(x)P (x) + µ(x)P ′(x) + f(x)) y′ + f ′(x)y = 0

Equating the coefficients of Equations 18.5 and 18.6 yields the set of equations,

µ′P + µP ′ + f = µQ, f ′ = µR.

We differentiate the first equation and substitute in the expression for f ′ from the second equation to find a
differential equation for µ(x).

µ′′P + µ′P ′ + µ′P ′ + µP ′′ + µR = µ′Q+ µQ′

Pµ′′ + (2P ′ −Q)µ′ + (P ′′ −Q′ +R)µ = 0

Solution 18.2
We consider the differential equation,

y′′ + xy′ + y = 0.

Since

(1)′′ − (x)′ + 1 = 0

we see that this is an exact equation. We rearrange terms to form exact derivatives and then integrate.

(y′)′ + (xy)′ = 0

y′ + xy = c

d

dx

[
ex

2/2y
]

= c ex
2/2

y = c e−x
2/2

∫
ex

2/2 dx+ d e−x
2/2
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Nature of Solutions

Solution 18.3
Consider the initial value problem,

y′′ + p(x)y′ + q(x)y = f(x),

y(x0) = y0, y′(x0) = y1.

If p(x), q(x) and f(x) are continuous on an interval (a . . . b) with x0 ∈ (a . . . b), then the problem has a unique
solution on that interval.

1.

xy′′ + 3y = x

y′′ +
3

x
y = 1

Unique solutions exist on the intervals (−∞ . . . 0) and (0 . . .∞).

2.

x(x− 1)y′′ + 3xy′ + 4y = 2

y′′ +
3

x− 1
y′ +

4

x(x− 1)
y =

2

x(x− 1)

Unique solutions exist on the intervals (−∞ . . . 0), (0 . . . 1) and (1 . . .∞).

3.

exy′′ + x2y′ + y = tanx

y′′ + x2 e−xy′ + e−xy = e−x tanx

Unique solutions exist on the intervals
(

(2n−1)π
2

. . . (2n+1)π
2

)
for n ∈ Z.
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Solution 18.4
We know that the general solution is

y = yp + c1y1 + c2y2,

where yp is a particular solution and y1 and y2 are linearly independent homogeneous solutions. Since yp can be
any particular solution, we choose yp = u1. Now we need to find two homogeneous solutions. Since L[ui] = f(x),
L[u1 − u2] = L[u2 − u3] = 0. Finally, we note that since the ui’s are linearly independent, y1 = u1 − u2 and
y2 = u2 − u3 are linearly independent. Thus the general solution is

y = u1 + c1(u1 − u2) + c2(u2 − u3).

Transformation to a First Order System
The Wronskian
Well-Posed Problems
The Fundamental Set of Solutions

Solution 18.5
The Wronskian of the solutions is

W (x) =

∣∣∣∣ ex e−x

ex − e−x

∣∣∣∣ = −2.

Since the Wronskian is nonzero, the solutions are independent.

The fundamental set of solutions, {u1, u2}, is a linear combination of ex and e−x.

(
u1

u2

)
=

(
c11 c12

c21 c22

)(
ex

e−x

)
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The coefficients are (
c11 c12

c21 c22

)
=

(
e0 e0

e−0 − e−0

)−1

=

(
1 1
1 −1

)−1

=
1

−2

(
−1 −1
−1 1

)
=

1

2

(
1 1
1 −1

)

u1 =
1

2
( ex + e−x), u2 =

1

2
( ex − e−x).

The fundamental set of solutions at x = 0 is

{cosh x, sinhx}

.

Adjoint Equations

Solution 18.6
1. The Bessel equation of order ν is

x2y′′ + xy′ + (x2 − ν2)y = 0.

The adjoint equation is

x2µ′′ + (4x− x)µ′ + (2− 1 + x2 − ν2)µ = 0

x2µ′′ + 3xµ′ + (1 + x2 − ν2)µ = 0.
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2. The Legendre equation of order α is

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0

The adjoint equation is

(1− x2)µ′′ + (−4x+ 2x)µ′ + (−2 + 2 + α(α + 1))µ = 0

(1− x2)µ′′ − 2xµ′ + α(α + 1)µ = 0

Solution 18.7
The adjoint of

x2y′′ − xy′ + 3y = 0

is

d2

dx2
(x2y) +

d

dx
(xy) + 3y = 0

(x2y′′ + 4xy′ + 2y) + (xy′ + y) + 3y = 0

x2y′′ + 5xy′ + 6y = 0.
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Chapter 19

Techniques for Linear Differential Equations

My new goal in life is to take the meaningless drivel out of human interaction.

-Dave Ozenne

The nth order linear homogeneous differential equation has the form

y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = 0.

In general it is not possible to solve second order and higher linear differential equations. In this chapter we will
examine equations that have special forms which allow us to either reduce the order of the equation or solve it.

19.1 Constant Coefficient Equations

The nth order constant coefficient differential equation has the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0.

We will find that solving a constant coefficient differential equation is no more difficult than finding the roots of
a polynomial.
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19.1.1 Second Order Equations

Factoring the Differential Equation. Consider the second order constant coefficient differential equation

y′′ + 2ay′ + by = 0. (19.1)

Just as we can factor the polynomial,

λ2 + 2aλ+ b = (λ− α)(λ− β), (19.2)

where

α = −a+
√
a2 − b and β = −a−

√
a2 − b,

we can factor the differential equation.(
d2

dx2
+ 2a

d

dx
+ b

)
y =

(
d

dx
− α

)(
d

dx
− β

)
y

Once we have factored the differential equation, we can solve it by solving a series of of two first order differential
equations. We set u =

(
d

dx
− β

)
y to obtain a first order equation,(

d

dx
− α

)
u = 0,

which has the solution

u = c1 eαx.

To find the solution of Equation 19.1, we solve(
d

dx
− β

)
y = u = c1 eαx.
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We multiply by the integrating factor and integrate.

d

dx

(
e−βxy

)
= c1 e(α−β)x

y = c1 eβx
∫

e(α−β)x dx+ c2 eβx

We first consider the case when α and β are distinct.

y = c1 eβx
1

α− β
e(α−β)x + c2 eβx

We choose new constants to write the solution in a better form.

y = c1 eαx + c2 eβx

Now we consider the case α = β.

y = c1 eαx
∫

1 dx+ c2 eαx

y = c1x eαx + c2 eαx.

The solution of Equation 19.1 is

y =

{
c1 eαx + c2 eβx, α 6= β,

c1 eαx + c2x eαx, α = β.

Example 19.1.1 Consider the differential equation: y′′ + y = 0. We factor the equation.(
d

dx
− i

)(
d

dx
+ i

)
y = 0

The general solution of the differential equation is

y = c1 eix + c2 e−ix.
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Example 19.1.2 Consider the differential equation: y′′ = 0. We factor the equation.(
d

dx
− 0

)(
d

dx
− 0

)
y = 0

The general solution of the differential equation is

y = c1 e0x + c2x e0x

y = c1 + c2x.

Substituting the Form of the Solution into the Differential Equation. Note that if we substitute y = eλx

into the differential equation 19.1, we will obtain the quadratic polynomial equation 19.2 for λ.

y′′ + 2ay′ + by = 0

λ2 eλx + 2aλ eλx + b eλx = 0

λ2 + 2aλ+ b = 0.

This gives us a superficially different method for solving constant coefficient equations. We substitute y = eλx

into the differential equation. Let α and β be the roots of the quadratic in λ. If the roots are distinct, then the
linearly independent solutions are y1 = eαx and y2 = eβx. If the quadratic has a double root at λ = α, then the
linearly independent solutions are y1 = eαx and y2 = x eαx.

Example 19.1.3 Consider the equation

y′′ − 3y′ + 2y = 0.

The substitution y = eλx yields

λ2 − 3λ+ 2 = (λ− 1)(λ− 2) = 0.

Thus the solutions are ex and e2x.
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Example 19.1.4 Consider the equation

y′′ − 2y′ + 4y = 0.

The substitution y = eλx yields

λ2 − 2λ+ 4 = (λ− 2)2 = 0.

Thus the solutions are e2x and x e2x.

Shift Invariance. Note that if u(x) is a solution of a constant coefficient equation, then u(x + c) is also a
solution. This is useful in applying initial or boundary conditions.

Example 19.1.5 Consider the problem

y′′ − 3y′ + 2y = 0, y(0) = a, y′(0) = b.

We know that the general solution is

y = c1 ex + c2 e2x.

Applying the initial conditions, we obtain the equations,

c1 + c2 = a, c1 + 2c2 = b.

The solution is

y = (2a− b) ex + (b− a) e2x.

Now suppose we wish to solve the same differential equation with the boundary conditions y(1) = a and y′(1) = b.
All we have to do is shift the solution to the right.

y = (2a− b) ex−1 + (b− a) e2(x−1).

790



Result 19.1.1 . Consider the second order constant coefficient equation

y′′ + 2ay′ + by = 0.

The general solution of this differential equation is

y =


e−ax

(
c1 e

√
a2−b x + c2 e−

√
a2−b x

)
if a2 > b,

e−ax
(
c1 cos(

√
b− a2 x) + c2 sin(

√
b− a2 x)

)
if a2 < b,

e−ax(c1 + c2x) if a2 = b.

The fundamental set of solutions at x = 0 is
{

e−ax
(

cosh(
√
a2 − b x) + a√

a2−b sinh(
√
a2 − b x)

)
, e−ax 1√

a2−b sinh(
√
a2 − b x)

}
if a2 > b,{

e−ax
(

cos(
√
b− a2 x) + a√

b−a2
sin(
√
b− a2 x)

)
, e−ax 1√

b−a2
sin(
√
b− a2 x)

}
if a2 < b,

{(1 + ax) e−ax, x e−ax} if a2 = b.

To obtain the fundamental set of solutions at the point x = ξ, substitute (x − ξ) for x
in the above solutions.

19.1.2 Higher Order Equations

The constant coefficient equation of order n has the form

L[y] = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0. (19.3)
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The substitution y = eλx will transform this differential equation into an algebraic equation.

L[ eλx] = λn eλx + an−1λ
n−1 eλx + · · ·+ a1λ eλx + a0 eλx = 0(

λn + an−1λ
n−1 + · · ·+ a1λ+ a0

)
eλx = 0

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

Assume that the roots of this equation, λ1, . . . , λn, are distinct. Then the n linearly independent solutions of
Equation 19.3 are

eλ1x, . . . , eλnx.

If the roots of the algebraic equation are not distinct then we will not obtain all the solutions of the differential
equation. Suppose that λ1 = α is a double root. We substitute y = eλx into the differential equation.

L[ eλx] = [(λ− α)2(λ− λ3) · · · (λ− λn)] eλx = 0

Setting λ = α will make the left side of the equation zero. Thus y = eαx is a solution. Now we differentiate both
sides of the equation with respect to λ and interchange the order of differentiation.

d

dλ
L[ eλx] = L

[
d

dλ
eλx
]

= L
[
x eλx

]
Let p(λ) = (λ− λ3) · · · (λ− λn). We calculate L

[
x eλx

]
by applying L and then differentiating with respect to λ.

L
[
x eλx

]
=

d

dλ
L[ eλx]

=
d

dλ
[(λ− α)2(λ− λ3) · · · (λ− λn)] eλx

=
d

dλ
[(λ− α)2p(λ)] eλx

=
[
2(λ− α)p(λ) + (λ− α)2p′(λ) + (λ− α)2p(λ)x

]
eλx

= (λ− α) [2p(λ) + (λ− α)p′(λ) + (λ− α)p(λ)x] eλx
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Since setting λ = α will make this expression zero, L[x eαx] = 0, x eαx is a solution of Equation 19.3. You can
verify that eαx and x eαx are linearly independent. Now we have generated all of the solutions for the differential
equation.

If λ = α is a root of multiplicity m then by repeatedly differentiating with respect to λ you can show that the
corresponding solutions are

eαx, x eαx, x2 eαx, . . . , xm−1 eαx.

Example 19.1.6 Consider the equation

y′′′ − 3y′ + 2y = 0.

The substitution y = eλx yields

λ3 − 3λ+ 2 = (λ− 1)2(λ+ 2) = 0.

Thus the general solution is

y = c1 ex + c2x ex + c3 e−2x.

19.1.3 Real-Valued Solutions

If the coefficients of the differential equation are real, then the solution can be written in terms of real-valued
functions (Result 18.1.2). For a real root λ = α of the polynomial in λ, the corresponding solution, y = eαx, is
real-valued.

Now recall that the complex roots of a polynomial with real coefficients occur in complex conjugate pairs.
Assume that α± iβ are roots of

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0.

The corresponding solutions of the differential equation are e(α+iβ)x and e(α−iβ)x. Note that the linear combinations

e(α+iβ)x + e(α−iβ)x

2
= eαx cos(βx),

e(α+iβ)x − e(α−iβ)x

i2
= eαx sin(βx),
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are real-valued solutions of the differential equation. We could also obtain real-valued solution by taking the real
and imaginary parts of either e(α+iβ)x or e(α−iβ)x.

<
(

e(α+iβ)x
)

= eαx cos(βx), =
(

e(α+iβ)x
)

= eαx sin(βx)

Result 19.1.2 Consider the nth order constant coefficient equation

dny

dxn
+ an−1

dn−1y

dxn−1 + · · ·+ a1
dy

dx
+ a0y = 0.

Let the factorization of the algebraic equation obtained with the substitution y = eλx be

(λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λp)mp = 0.

A set of linearly independent solutions is given by

{ eλ1x, x eλ1x, . . . , xm1−1 eλ1x, . . . , eλpx, x eλpx, . . . , xmp−1 eλpx}.

If the coefficients of the differential equation are real, then we can find a real-valued set
of solutions.

Example 19.1.7 Consider the equation

d4y

dx4
+ 2

d2y

dx2
+ y = 0.

The substitution y = eλx yields

λ4 + 2λ2 + 1 = (λ− i)2(λ+ i)2 = 0.
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Thus the linearly independent solutions are

eix, x eix, e−ix and x e−ix.

Noting that

eix = cos(x) + i sin(x),

we can write the general solution in terms of sines and cosines.

y = c1 cos x+ c2 sinx+ c3x cos x+ c4x sinx

Example 19.1.8 Consider the equation

y′′ − 2y′ + 2y = 0.

The substitution y = eλx yields

λ2 − 2λ+ 2 = (λ− 1− i)(λ− 1 + i) = 0.

The linearly independent solutions are

e(1+i)x, and e(1−i)x.

We can write the general solution in terms of real functions.

y = c1 ex cos x+ c2 ex sinx

19.2 Euler Equations

Consider the equation

L[y] = x2 d2y

dx2
+ ax

dy

dx
+ by = 0, x > 0.
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Let’s say, for example, that y has units of distance and x has units of time. Note that each term in the differential
equation has the same dimension.

(time)2 (distance)

(time)2
= (time)

(distance)

(time)
= (distance)

Thus this is a second order Euler, or equidimensional equation. We know that the first order Euler equation,
xy′ + ay = 0, has the solution y = cxa. Thus for the second order equation we will try a solution of the form
y = xλ. The substitution y = xλ will transform the differential equation into an algebraic equation.

L[xλ] = x2 d2

dx2
[xλ] + ax

d

dx
[xλ] + bxλ = 0

λ(λ− 1)xλ + aλxλ + bxλ = 0

λ(λ− 1) + aλ+ b = 0

Factoring yields

(λ− λ1)(λ− λ2) = 0.

If the two roots, λ1 and λ2, are distinct then the general solution is

y = c1x
λ1 + c2x

λ2 .

If the roots are not distinct, λ1 = λ2 = λ, then we only have the one solution, y = xλ. To generate the other
solution we use the same approach as for the constant coefficient equation. We substitute y = xλ into the
differential equation and differentiate with respect to λ.

d

dλ
L[xλ] = L[

d

dλ
xλ]

= L[lnx xλ]
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Note that

d

dλ
xλ =

d

dλ
eλ lnx = lnx eλ lnx = lnx xλ.

Now we apply L and then differentiate with respect to λ.

d

dλ
L[xλ] =

d

dλ
(λ− α)2xλ

= 2(λ− α)xλ + (λ− α)2 lnx xλ

Equating these two results,

L[lnx xλ] = 2(λ− α)xλ + (λ− α)2 lnx xλ.

Setting λ = α will make the right hand side zero. Thus y = lnx xα is a solution.
If you are in the mood for a little algebra you can show by repeatedly differentiating with respect to λ that if

λ = α is a root of multiplicity m in an nth order Euler equation then the associated solutions are

xα, lnx xα, (lnx)2xα, . . . , (lnx)m−1xα.

Example 19.2.1 Consider the Euler equation

xy′′ − y′ + y

x
= 0.

The substitution y = xλ yields the algebraic equation

λ(λ− 1)− λ+ 1 = (λ− 1)2 = 0.

Thus the general solution is

y = c1x+ c2x lnx.
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19.2.1 Real-Valued Solutions

If the coefficients of the Euler equation are real, then the solution can be written in terms of functions that are
real-valued when x is real and positive, (Result 18.1.2). If α± iβ are the roots of

λ(λ− 1) + aλ+ b = 0

then the corresponding solutions of the Euler equation are

xα+iβ and xα−iβ.

We can rewrite these as

xα eiβ lnx and xα e−iβ lnx.

Note that the linear combinations

xα eiβ lnx + xα e−iβ lnx

2
= xα cos(β lnx), and

xα eiβ lnx − xα e−iβ lnx

2i
= xα sin(β lnx),

are real-valued solutions when x is real and positive. Equivalently, we could take the real and imaginary parts of
either xα+iβ or xα−iβ.

<
(
xα eiβ lnx

)
= xα cos(β lnx), =

(
xα eiβ lnx

)
= xα sin(β lnx)
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Result 19.2.1 Consider the second order Euler equation

x2y′′ + (2a+ 1)xy′ + by = 0.

The general solution of this differential equation is

y =


x−a

(
c1x
√
a2−b + c2x

−
√
a2−b
)

if a2 > b,

x−a
(
c1 cos

(√
b− a2 lnx

)
+ c2 sin

(√
b− a2 lnx

))
if a2 < b,

x−a (c1 + c2 lnx) if a2 = b.

The fundamental set of solutions at x = ξ is

y =



{(
x
ξ

)−a (
cosh

(√
a2 − b ln x

ξ

)
+ a√

a2−b sinh
(√

a2 − b ln x
ξ

))
,(

x
ξ

)−a
ξ√
a2−b sinh

(√
a2 − b ln x

ξ

)}
if a2 > b,{(

x
ξ

)−a (
cos
(√

b− a2 ln x
ξ

)
+ a√

b−a2 sin
(√

b− a2 ln x
ξ

))
,(

x
ξ

)−a
ξ√
b−a2 sin

(√
b− a2 ln x

ξ

)}
if a2 < b,{(

x
ξ

)−a (
1 + a ln x

ξ

)
,
(
x
ξ

)−a
ξ ln x

ξ

}
if a2 = b.

Example 19.2.2 Consider the Euler equation

x2y′′ − 3xy′ + 13y = 0.

The substitution y = xλ yields

λ(λ− 1)− 3λ+ 13 = (λ− 2− i3)(λ− 2 + i3) = 0.
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The linearly independent solutions are {
x2+i3, x2−i3

}
.

We can put this in a more understandable form.

x2+i3 = x2 ei3 lnx = x2 cos(3 lnx) + x2 sin(3 lnx)

We can write the general solution in terms of real-valued functions.

y = c1x
2 cos(3 lnx) + c2x

2 sin(3 lnx)

Result 19.2.2 Consider the nth order Euler equation

xn
dny

dxn
+ an−1x

n−1 dn−1y

dxn−1 + · · ·+ a1x
dy

dx
+ a0y = 0.

Let the factorization of the algebraic equation obtained with the substitution y = xλ be

(λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λp)mp = 0.

A set of linearly independent solutions is given by

{xλ1, lnx xλ1, . . . , (lnx)m1−1xλ1, . . . , xλp, lnx xλp, . . . , (lnx)mp−1xλp}.

If the coefficients of the differential equation are real, then we can find a set of solutions
that are real valued when x is real and positive.
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19.3 Exact Equations

Exact equations have the form

d

dx
F (x, y, y′, y′′, . . . ) = f(x).

If you can write an equation in the form of an exact equation, you can integrate to reduce the order by one, (or
solve the equation for first order). We will consider a few examples to illustrate the method.

Example 19.3.1 Consider the equation

y′′ + x2y′ + 2xy = 0.

We can rewrite this as

d

dx

[
y′ + x2y

]
= 0.

Integrating yields a first order inhomogeneous equation.

y′ + x2y = c1

We multiply by the integrating factor I(x) = exp(
∫
x2 dx) to make this an exact equation.

d

dx

(
ex

3/3y
)

= c1 ex
3/3

ex
3/3y = c1

∫
ex

3/3 dx+ c2

y = c1 e−x
3/3

∫
ex

3/3 dx+ c2 e−x
3/3
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Result 19.3.1 If you can write a differential equation in the form

d

dx
F (x, y, y′, y′′, . . . ) = f(x),

then you can integrate to reduce the order of the equation.

F (x, y, y′, y′′, . . . ) =

∫
f(x) dx+ c

19.4 Equations Without Explicit Dependence on y

Example 19.4.1 Consider the equation

y′′ +
√
xy′ = 0.

This is a second order equation for y, but note that it is a first order equation for y′. We can solve directly for y′.

d

dx

(
exp

(
2

3
x3/2

)
y′
)

= 0

y′ = c1 exp

(
−2

3
x3/2

)
Now we just integrate to get the solution for y.

y = c1

∫
exp

(
−2

3
x3/2

)
dx+ c2

Result 19.4.1 If an nth order equation does not explicitly depend on y then you can
consider it as an equation of order n− 1 for y′.
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19.5 Reduction of Order

Consider the second order linear equation

L[y] ≡ y′′ + p(x)y′ + q(x)y = f(x).

Suppose that we know one homogeneous solution y1. We make the substitution y = uy1 and use that L[y1] = 0.

L[uy1] = 0u′′y1 + 2u′y′1 + uy′′1 + p(u′y1 + uy′1) + quy1 = 0

u′′y1 + u′(2y′1 + py1) + u(y′′1 + py′1 + qy1) = 0

u′′y1 + u′(2y′1 + py1) = 0

Thus we have reduced the problem to a first order equation for u′. An analogous result holds for higher order
equations.

Result 19.5.1 Consider the nth order linear differential equation

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = f(x).

Let y1 be a solution of the homogeneous equation. The substitution y = uy1 will trans-
form the problem into an (n− 1)th order equation for u′. For the second order problem

y′′ + p(x)y′ + q(x)y = f(x)

this reduced equation is

u′′y1 + u′(2y′1 + py1) = f(x).

Example 19.5.1 Consider the equation

y′′ + xy′ − y = 0.
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By inspection we see that y1 = x is a solution. We would like to find another linearly independent solution. The
substitution y = xu yields

xu′′ + (2 + x2)u′ = 0

u′′ +

(
2

x
+ x

)
u′ = 0

The integrating factor is I(x) = exp(2 lnx+ x2/2) = x2 exp(x2/2).

d

dx

(
x2 ex

2/2u′
)

= 0

u′ = c1x
−2 e−x

2/2

u = c1

∫
x−2 e−x

2/2 dx+ c2

y = c1x

∫
x−2 e−x

2/2 dx+ c2x

Thus we see that a second solution is

y2 = x

∫
x−2 e−x

2/2 dx.

19.6 *Reduction of Order and the Adjoint Equation

Let L be the linear differential operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1
+ · · ·+ p0y,

where each pj is a j times continuously differentiable complex valued function. Recall that the adjoint of L is

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 dn−1

dxn−1
(pn−1y) + · · ·+ p0y.
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If u and v are n times continuously differentiable, then Lagrange’s identity states

vL[u]− uL∗[v] =
d

dx
B[u, v],

where

B[u, v] =
n∑

m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)(j).

For second order equations,

B[u, v] = up1v + u′p2v − u(p2v)′.

(See Section 18.6.)
If we can find a solution to the homogeneous adjoint equation, L∗[y] = 0, then we can reduce the order of the

equation L[y] = f(x). Let ψ satisfy L∗[ψ] = 0. Substituting u = y, v = ψ into Lagrange’s identity yields

ψL[y]− yL∗[ψ] =
d

dx
B[y, ψ]

ψL[y] =
d

dx
B[y, ψ].

The equation L[y] = f(x) is equivalent to the equation

d

dx
B[y, ψ] = ψf

B[y, ψ] =

∫
ψ(x)f(x) dx,

which is a linear equation in y of order n− 1.

Example 19.6.1 Consider the equation

L[y] = y′′ − x2y′ − 2xy = 0.
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Method 1. Note that this is an exact equation.

d

dx
(y′ − x2y) = 0

y′ − x2y = c1

d

dx

(
e−x

3/3y
)

= c1 e−x
3/3

y = c1 ex
3/3

∫
e−x

3/3 dx+ c2 ex
3/3

Method 2. The adjoint equation is

L∗[y] = y′′ + x2y′ = 0.

By inspection we see that ψ = (constant) is a solution of the adjoint equation. To simplify the algebra we will
choose ψ = 1. Thus the equation L[y] = 0 is equivalent to

B[y, 1] = c1

y(−x2) +
d

dx
[y](1)− y d

dx
[1] = c1

y′ − x2y = c1.

By using the adjoint equation to reduce the order we obtain the same solution as with Method 1.
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19.7 Exercises

Constant Coefficient Equations

Exercise 19.1 (mathematica/ode/techniques linear/constant.nb)
Find the solution of each one of the following initial value problems. Sketch the graph of the solution and describe
its behavior as t increases.

1. 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0

2. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2

3. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

Hint, Solution

Exercise 19.2 (mathematica/ode/techniques linear/constant.nb)
Substitute y = eλx to find two linearly independent solutions to

y′′ − 4y′ + 13y = 0.

that are real-valued when x is real-valued.
Hint, Solution

Exercise 19.3 (mathematica/ode/techniques linear/constant.nb)
Find the general solution to

y′′′ − y′′ + y′ − y = 0.

Write the solution in terms of functions that are real-valued when x is real-valued.
Hint, Solution
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Exercise 19.4
Substitute y = eλx to find the fundamental set of solutions at x = 0 for the equations:

1. y′′ + y = 0,

2. y′′ − y = 0,

3. y′′ = 0.

What are the fundamental sets of solutions at x = 1 for these equations.
Hint, Solution

Exercise 19.5
Find the general solution of

y′′ + 2ay′ + by = 0

for a, b ∈ R. There are three distinct forms of the solution depending on the sign of a2 − b.
Hint, Solution

Exercise 19.6
Find the fundamental set of solutions of

y′′ + 2ay′ + by = 0

at the point x = 0, for a, b ∈ R. Use the general solutions obtained in Exercise 19.5.
Hint, Solution

Exercise 19.7
Consider a ball of mass m hanging by an ideal spring of spring constant k. The ball is suspended in a fluid
which damps the motion. This resistance has a coefficient of friction, µ. Find the differential equation for the

808



displacement of the mass from its equilibrium position by balancing forces. Denote this displacement by y(t). If
the damping force is weak, the mass will have a decaying, oscillatory motion. If the damping force is strong, the
mass will not oscillate. The displacement will decay to zero. The value of the damping which separates these two
behaviors is called critical damping.

Find the solution which satisfies the initial conditions y(0) = 0, y′(0) = 1. Use the solutions obtained in
Exercise 19.6 or refer to Result 19.1.1.

Consider the case m = k = 1. Find the coefficient of friction for which the displacement of the mass decays
most rapidly. Plot the displacement for strong, weak and critical damping.
Hint, Solution

Exercise 19.8
Show that y = c cos(x − φ) is the general solution of y′′ + y = 0 where c and φ are constants of integration. (It
is not sufficient to show that y = c cos(x − φ) satisfies the differential equation. y = 0 satisfies the differential
equation, but is is certainly not the general solution.) Find constants c and φ such that y = sin(x).

Is y = c cosh(x− φ) the general solution of y′′ − y = 0? Are there constants c and φ such that y = sinh(x)?
Hint, Solution

Exercise 19.9 (mathematica/ode/techniques linear/constant.nb)
Let y(t) be the solution of the initial-value problem

y′′ + 5y′ + 6y = 0; y(0) = 1, y′(0) = V.

For what values of V does y(t) remain nonnegative for all t > 0?
Hint, Solution

Exercise 19.10 (mathematica/ode/techniques linear/constant.nb)
Find two linearly independent solutions of

y′′ + sign (x)y = 0, −∞ < x <∞.
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where sign (x) = ±1 according as x is positive or negative. (The solution should be continuous and have a
continuous first derivative.)

Hint, Solution

Euler Equations

Exercise 19.11
Find the general solution of

x2y′′ + xy′ + y = 0, x > 0.

Hint, Solution

Exercise 19.12
Substitute y = xλ to find the general solution of

x2y′′ − 2xy + 2y = 0.

Hint, Solution

Exercise 19.13 (mathematica/ode/techniques linear/constant.nb)
Substitute y = xλ to find the general solution of

xy′′′ + y′′ +
1

x
y′ = 0.

Write the solution in terms of functions that are real-valued when x is real-valued and positive.

Hint, Solution
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Exercise 19.14
Find the general solution of

x2y′′ + (2a+ 1)xy′ + by = 0.

Hint, Solution

Exercise 19.15
Show that

y1 = eax, y2 = lim
α→a

eαx − e−αx

α

are linearly indepedent solutions of

y′′ − a2y = 0

for all values of a. It is common to abuse notation and write the second solution as

y2 =
eax − e−ax

a

where the limit is taken if a = 0. Likewise show that

y1 = xa, y2 =
xa − x−a

a

are linearly indepedent solutions of

x2y′′ + xy′ − a2y = 0

for all values of a.
Hint, Solution
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Exercise 19.16 (mathematica/ode/techniques linear/constant.nb)
Find two linearly independent solutions (i.e., the general solution) of

(a) x2y′′ − 2xy′ + 2y = 0, (b) x2y′′ − 2y = 0, (c) x2y′′ − xy′ + y = 0.

Hint, Solution

Exact Equations

Exercise 19.17
Solve the differential equation

y′′ + y′ sinx+ y cos x = 0.

Hint, Solution

Equations Without Explicit Dependence on y
Reduction of Order

Exercise 19.18
Consider

(1− x2)y′′ − 2xy′ + 2y = 0, −1 < x < 1.

Verify that y = x is a solution. Find the general solution.
Hint, Solution

Exercise 19.19
Consider the differential equation

y′′ − x+ 1

x
y′ +

1

x
y = 0.
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Since the coefficients sum to zero, (1 − x+1
x

+ 1
x

= 0), y = ex is a solution. Find another linearly independent
solution.
Hint, Solution

Exercise 19.20
One solution of

(1− 2x)y′′ + 4xy′ − 4y = 0

is y = x. Find the general solution.
Hint, Solution

Exercise 19.21
Find the general solution of

(x− 1)y′′ − xy′+ y = 0,

given that one solution is y = ex. (you may assume x > 1)
Hint, Solution

*Reduction of Order and the Adjoint Equation
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19.8 Hints

Constant Coefficient Equations

Hint 19.1

Hint 19.2

Hint 19.3
It is a constant coefficient equation.

Hint 19.4
Use the fact that if u(x) is a solution of a constant coefficient equation, then u(x+ c) is also a solution.

Hint 19.5
Substitute y = eλx into the differential equation.

Hint 19.6
The fundamental set of solutions is a linear combination of the homogeneous solutions.

Hint 19.7
The force on the mass due to the spring is −ky(t). The frictional force is −µy′(t).

Note that the initial conditions describe the second fundamental solution at t = 0.

Note that for large t, t eαt is much small than eβt if α < β. (Prove this.)
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Hint 19.8
By definition, the general solution of a second order differential equation is a two parameter family of functions
that satisfies the differential equation. The trigonometric identities in Appendix Q may be useful.

Hint 19.9

Hint 19.10

Euler Equations

Hint 19.11

Hint 19.12

Hint 19.13

Hint 19.14
Substitute y = xλ into the differential equation. Consider the three cases: a2 > b, a2 < b and a2 = b.

Hint 19.15
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Hint 19.16

Exact Equations

Hint 19.17
It is an exact equation.

Equations Without Explicit Dependence on y
Reduction of Order

Hint 19.18

Hint 19.19
Use reduction of order to find the other solution.

Hint 19.20
Use reduction of order to find the other solution.

Hint 19.21

*Reduction of Order and the Adjoint Equation
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19.9 Solutions

Constant Coefficient Equations

Solution 19.1
1. We consider the problem

6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0.

We make the substitution y = eλx in the differential equation.

6λ2 − 5λ+ 1 = 0

(2λ− 1)(3λ− 1) = 0

λ =

{
1

3
,
1

2

}
The general solution of the differential equation is

y = c1 et/3 + c2 et/2.

We apply the initial conditions to determine the constants.

c1 + c2 = 4,
c1

3
+
c2

2
= 0

c1 = 12, c2 = −8

The solution subject to the initial conditions is

y = 12 et/3 − 8 et/2.

The solution is plotted in Figure 19.1. The solution tends to −∞ as t→∞.
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Figure 19.1: The solution of 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0.

2. We consider the problem

y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2.

We make the substitution y = eλx in the differential equation.

λ2 − 2λ+ 5 = 0

λ = 1±
√

1− 5

λ = {1 + i2, 1− i2}

The general solution of the differential equation is

y = c1 et cos(2t) + c2 et sin(2t).

We apply the initial conditions to determine the constants.

y(π/2) = 0 ⇒ −c1 eπ/2 = 0 ⇒ c1 = 0

y′(π/2) = 2 ⇒ −2c2 eπ/2 = 2 ⇒ c2 = − e−π/2
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The solution subject to the initial conditions is

y = − et−π/2 sin(2t).

The solution is plotted in Figure 19.2. The solution oscillates with an amplitude that tends to∞ as t→∞.

3 4 5 6
-10

10

20

30

40

50

Figure 19.2: The solution of y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2.

3. We consider the problem

y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.

We make the substitution y = eλx in the differential equation.

λ2 + 4λ+ 4 = 0

(λ+ 2)2 = 0

λ = −2
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The general solution of the differential equation is

y = c1 e−2t + c2t e−2t.

We apply the initial conditions to determine the constants.

c1 e2 − c2 e2 = 2, −2c1 e2 + 3c2 e2 = 1

c1 = 7 e−2, c2 = 5 e−2

The solution subject to the initial conditions is

y = (7 + 5t) e−2(t+1)

The solution is plotted in Figure 19.3. The solution vanishes as t→∞.

lim
t→∞

(7 + 5t) e−2(t+1) = lim
t→∞

7 + 5t

e2(t+1)
= lim

t→∞

5

2 e2(t+1)
= 0

Solution 19.2

y′′ − 4y′ + 13y = 0.

With the substitution y = eλx we obtain

λ2 eλx − 4λ eλx + 13 eλx = 0

λ2 − 4λ+ 13 = 0

λ = 2± 3i.

Thus two linearly independent solutions are

e(2+3i)x, and e(2−3i)x.
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Figure 19.3: The solution of y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.

Noting that

e(2+3i)x = e2x[cos(3x) + i sin(3x)]

e(2−3i)x = e2x[cos(3x)− i sin(3x)],

we can write the two linearly independent solutions

y1 = e2x cos(3x), y2 = e2x sin(3x).

Solution 19.3
We note that

y′′′ − y′′ + y′ − y = 0

is a constant coefficient equation. The substitution, y = eλx, yields

λ3 − λ2 + λ− 1 = 0

(λ− 1)(λ− i)(λ+ i) = 0.
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The corresponding solutions are ex, eix, and e−ix. We can write the general solution as

y = c1 ex + c2 cos x+ c3 sinx.

Solution 19.4
We start with the equation y′′ + y = 0. We substitute y = eλx into the differential equation to obtain

λ2 + 1 = 0, λ = ±i.

A linearly independent set of solutions is

{ eix, e−ix}.

The fundamental set of solutions has the form

y1 = c1 eix + c2 e−ix,

y2 = c3 eix + c4 e−ix.

By applying the constraints

y1(0) = 1, y′1(0) = 0,

y2(0) = 0, y′2(0) = 1,

we obtain

y1 =
eix + e−ix

2
= cos x,

y2 =
eix + e−ix

2i
= sinx.

Now consider the equation y′′ − y = 0. By substituting y = eλx we find that a set of solutions is

{ ex, e−x}.
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By taking linear combinations of these we see that another set of solutions is

{cosh x, sinhx}.

Note that this is the fundamental set of solutions.
Next consider y′′ = 0. We can find the solutions by substituting y = eλx or by integrating the equation twice.

The fundamental set of solutions as x = 0 is

{1, x}.

Note that if u(x) is a solution of a constant coefficient differential equation, then u(x + c) is also a solution.
Also note that if u(x) satisfies y(0) = a, y′(0) = b, then u(x − x0) satisfies y(x0) = a, y′(x0) = b. Thus the
fundamental sets of solutions at x = 1 are

1. {cos(x− 1), sin(x− 1)},

2. {cosh(x− 1), sinh(x− 1)},

3. {1, x− 1}.

Solution 19.5
We substitute y = eλx into the differential equation.

y′′ + 2ay′ + by = 0

λ2 + 2aλ+ b = 0

λ = −a±
√
a2 − b

If a2 > b then the two roots are distinct and real. The general solution is

y = c1 e(−a+
√
a2−b)x + c2 e(−a−

√
a2−b)x.
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If a2 < b then the two roots are distinct and complex-valued. We can write them as

λ = −a± i
√
b− a2.

The general solution is

y = c1 e(−a+i
√
b−a2)x + c2 e(−a−i

√
b−a2)x.

By taking the sum and difference of the two linearly independent solutions above, we can write the general solution
as

y = c1 e−ax cos
(√

b− a2 x
)

+ c2 e−ax sin
(√

b− a2 x
)
.

If a2 = b then the only root is λ = −a. The general solution in this case is then

y = c1 e−ax + c2x e−ax.

In summary, the general solution is

y =


e−ax

(
c1 e

√
a2−b x + c2 e−

√
a2−b x

)
if a2 > b,

e−ax
(
c1 cos

(√
b− a2 x

)
+ c2 sin

(√
b− a2 x

))
if a2 < b,

e−ax(c1 + c2x) if a2 = b.

Solution 19.6
First we note that the general solution can be written,

y =


e−ax

(
c1 cosh

(√
a2 − b x

)
+ c2 sinh

(√
a2 − b x

))
if a2 > b,

e−ax
(
c1 cos

(√
b− a2 x

)
+ c2 sin

(√
b− a2 x

))
if a2 < b,

e−ax(c1 + c2x) if a2 = b.
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We first consider the case a2 > b. The derivative is

y′ = e−ax
((
−ac1 +

√
a2 − b c2

)
cosh

(√
a2 − b x

)
+
(
−ac2 +

√
a2 − b c1

)
sinh

(√
a2 − b x

))
.

The conditions, y1(0) = 1 and y′1(0) = 0, for the first solution become,

c1 = 1, −ac1 +
√
a2 − b c2 = 0,

c1 = 1, c2 =
a√
a2 − b

.

The conditions, y2(0) = 0 and y′2(0) = 1, for the second solution become,

c1 = 0, −ac1 +
√
a2 − b c2 = 1,

c1 = 0, c2 =
1√
a2 − b

.

The fundamental set of solutions is{
e−ax

(
cosh

(√
a2 − b x

)
+

a√
a2 − b

sinh
(√

a2 − b x
))

, e−ax
1√
a2 − b

sinh
(√

a2 − b x
)}

.

Now consider the case a2 < b. The derivative is

y′ = e−ax
((
−ac1 +

√
b− a2 c2

)
cos
(√

b− a2 x
)

+
(
−ac2 −

√
b− a2 c1

)
sin
(√

b− a2 x
))

.

Clearly, the fundamental set of solutions is{
e−ax

(
cos
(√

b− a2 x
)

+
a√
b− a2

sin
(√

b− a2 x
))

, e−ax
1√
b− a2

sin
(√

b− a2 x
)}

.

Finally we consider the case a2 = b. The derivative is

y′ = e−ax(−ac1 + c2 +−ac2x).
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The conditions, y1(0) = 1 and y′1(0) = 0, for the first solution become,

c1 = 1, −ac1 + c2 = 0,

c1 = 1, c2 = a.

The conditions, y2(0) = 0 and y′2(0) = 1, for the second solution become,

c1 = 0, −ac1 + c2 = 1,

c1 = 0, c2 = 1.

The fundamental set of solutions is {
(1 + ax) e−ax, x e−ax

}
.

In summary, the fundamental set of solutions at x = 0 is
{

e−ax
(

cosh
(√

a2 − b x
)

+ a√
a2−b sinh

(√
a2 − b x

))
, e−ax 1√

a2−b sinh
(√

a2 − b x
)}

if a2 > b,{
e−ax

(
cos
(√

b− a2 x
)

+ a√
b−a2 sin

(√
b− a2 x

))
, e−ax 1√

b−a2 sin
(√

b− a2 x
)}

if a2 < b,

{(1 + ax) e−ax, x e−ax} if a2 = b.

Solution 19.7
Let y(t) denote the displacement of the mass from equilibrium. The forces on the mass are −ky(t) due to the
spring and −µy′(t) due to friction. We equate the external forces to my′′(t) to find the differential equation of
the motion.

my′′ = −ky − µy′

y′′ +
µ

m
y′ +

k

m
y = 0
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The solution which satisfies the initial conditions y(0) = 0, y′(0) = 1 is

y(t) =


e−µt/(2m) 2m√

µ2−4km
sinh

(√
µ2 − 4km t/(2m)

)
if µ2 > km,

e−µt/(2m) 2m√
4km−µ2

sin
(√

4km− µ2 t/(2m)
)

if µ2 < km,

t e−µt/(2m) if µ2 = km.

We respectively call these cases: strongly damped, weakly damped and critically damped. In the case that
m = k = 1 the solution is

y(t) =


e−µt/2 2√

µ2−4
sinh

(√
µ2 − 4 t/2

)
if µ > 2,

e−µt/2 2√
4−µ2

sin
(√

4− µ2 t/2
)

if µ < 2,

t e−t if µ = 2.

Note that when t is large, t e−t is much smaller than e−µt/2 for µ < 2. To prove this we examine the ratio of these
functions as t→∞.

lim
t→∞

t e−t

e−µt/2
= lim

t→∞

t

e(1−µ/2)t

= lim
t→∞

1

(1− µ/2) e(1−µ)t

= 0

Using this result, we see that the critically damped solution decays faster than the weakly damped solution.
We can write the strongly damped solution as

e−µt/2
2√
µ2 − 4

(
e
√
µ2−4 t/2 − e−

√
µ2−4 t/2

)
.

For large t, the dominant factor is e

(√
µ2−4−µ

)
t/2

. Note that for µ > 2,√
µ2 − 4 =

√
(µ+ 2)(µ− 2) > µ− 2.
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Therefore we have the bounds

−2 <
√
µ2 − 4− µ < 0.

This shows that the critically damped solution decays faster than the strongly damped solution. µ = 2 gives the
fastest decaying solution. Figure 19.4 shows the solution for µ = 4, µ = 1 and µ = 2.

2 4 6 8 10

-0.1

0.1

0.2

0.3

0.4

0.5

Critical Damping

Weak Damping

Strong Damping

Figure 19.4: Strongly, weakly and critically damped solutions.

Solution 19.8
Clearly y = c cos(x − φ) satisfies the differential equation y′′ + y = 0. Since it is a two-parameter family of
functions, it must be the general solution.

Using a trigonometric identity we can rewrite the solution as

y = c cosφ cosx+ c sinφ sinx.

Setting this equal to sinx gives us the two equations

c cosφ = 0,

c sinφ = 1,
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which has the solutions c = 1, φ = (2n+ 1/2)π, and c = −1, φ = (2n− 1/2)π, for n ∈ Z.
Clearly y = c cosh(x − φ) satisfies the differential equation y′′ − y = 0. Since it is a two-parameter family of

functions, it must be the general solution.
Using a trigonometric identity we can rewrite the solution as

y = c coshφ coshx+ c sinhφ sinhx.

Setting this equal to sinhx gives us the two equations

c coshφ = 0,

c sinhφ = 1,

which has the solutions c = −i, φ = i(2n+ 1/2)π, and c = i, φ = i(2n− 1/2)π, for n ∈ Z.

Solution 19.9
We substitute y = eλt into the differential equation.

λ2 eλt + 5λ eλt + 6 eλt = 0

λ2 + 5λ+ 6 = 0

(λ+ 2)(λ+ 3) = 0

The general solution of the differential equation is

y = c1 e−2t + c2 e−3t.

The initial conditions give us the constraints:

c1 + c2 = 1,

−2c1 − 3c2 = V.

The solution subject to the initial conditions is

y = (3 + V ) e−2t − (2 + V ) e−3t.

This solution will be non-negative for t > 0 if V ≥ −3.
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Solution 19.10
For negative x, the differential equation is

y′′ − y = 0.

We substitute y = eλx into the differential equation to find the solutions.

λ2 − 1 = 0

λ = ±1

y =
{

ex, e−x
}

We can take linear combinations to write the solutions in terms of the hyperbolic sine and cosine.

y = {cosh(x), sinh(x)}

For positive x, the differential equation is

y′′ + y = 0.

We substitute y = eλx into the differential equation to find the solutions.

λ2 + 1 = 0

λ = ±i
y =

{
eix, e−ix

}
We can take linear combinations to write the solutions in terms of the sine and cosine.

y = {cos(x), sin(x)}

We will find the fundamental set of solutions at x = 0. That is, we will find a set of solutions, {y1, y2} that
satisfy the conditions:

y1(0) = 1 y′1(0) = 0

y2(0) = 0 y′2(0) = 1
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Clearly these solutions are

y1 =

{
cosh(x) x < 0

cos(x) x ≥ 0
y2 =

{
sinh(x) x < 0

sin(x) x ≥ 0

Euler Equations

Solution 19.11
We consider an Euler equation,

x2y′′ + xy′ + y = 0, x > 0.

We make the change of independent variable ξ = lnx, u(ξ) = y(x) to obtain

u′′ + u = 0.

We make the substitution u(ξ) = eλξ.

λ2 + 1 = 0

λ = ±i

A set of linearly independent solutions for u(ξ) is

{ eiξ, e−iξ}.

Since

cos ξ =
eiξ + e−iξ

2
and sin ξ =

eiξ − e−iξ

2i
,

another linearly independent set of solutions is

{cos ξ, sin ξ}.

The general solution for y(x) is

y(x) = c1 cos(lnx) + c2 sin(lnx).
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Solution 19.12
Consider the differential equation

x2y′′ − 2xy + 2y = 0.

With the substitution y = xλ this equation becomes

λ(λ− 1)− 2λ+ 2 = 0

λ2 − 3λ+ 2 = 0

λ = 1, 2.

The general solution is then

y = c1x+ c2x
2.

Solution 19.13
We note that

xy′′′ + y′′ +
1

x
y′ = 0

is an Euler equation. The substitution y = xλ yields

λ3 − 3λ2 + 2λ+ λ2 − λ+ λ = 0

λ3 − 2λ2 + 2λ = 0.

The three roots of this algebraic equation are

λ = 0, λ = 1 + i, λ = 1− i

The corresponding solutions to the differential equation are

y = x0 y = x1+i y = x1−i

y = 1 y = x ei lnx y = x e−i lnx.
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We can write the general solution as

y = c1 + c2x cos(lnx) + c3 sin(lnx).

Solution 19.14
We substitute y = xλ into the differential equation.

x2y′′ + (2a+ 1)xy′ + by = 0

λ(λ− 1) + (2a+ 1)λ+ b = 0

λ2 + 2aλ+ b = 0

λ = −a±
√
a2 − b

For a2 > b then the general solution is

y = c1x
−a+

√
a2−b + c2x

−a−
√
a2−b.

For a2 < b, then the general solution is

y = c1x
−a+i

√
b−a2

+ c2x
−a−i

√
b−a2

.

By taking the sum and difference of these solutions, we can write the general solution as

y = c1x
−a cos

(√
b− a2 lnx

)
+ c2x

−a sin
(√

b− a2 lnx
)
.

For a2 = b, the quadratic in lambda has a double root at λ = a. The general solution of the differential equation
is

y = c1x
−a + c2x

−a lnx.

In summary, the general solution is:

y =


x−a

(
c1x
√
a2−b + c2x

−
√
a2−b

)
if a2 > b,

x−a
(
c1 cos

(√
b− a2 lnx

)
+ c2 sin

(√
b− a2 lnx

))
if a2 < b,

x−a (c1 + c2 lnx) if a2 = b.
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Solution 19.15
For a 6= 0, two linearly independent solutions of

y′′ − a2y = 0

are

y1 = eax, y2 = e−ax.

For a = 0, we have

y1 = e0x = 1, y2 = x e0x = x.

In this case the solution are defined by

y1 = [ eax]a=0 , y2 =

[
d

da
eax
]
a=0

.

By the definition of differentiation, f ′(0) is

f ′(0) = lim
a→0

f(a)− f(−a)

2a
.

Thus the second solution in the case a = 0 is

y2 = lim
a→0

eax − e−ax

a

Consider the solutions

y1 = eax, y2 = lim
α→a

eαx − e−αx

α
.

Clearly y1 is a solution for all a. For a 6= 0, y2 is a linear combination of eax and e−ax and is thus a solution.
Since the coefficient of e−ax in this linear combination is non-zero, it is linearly independent to y1. For a = 0, y2

is one half the derivative of eax evaluated at a = 0. Thus it is a solution.
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For a 6= 0, two linearly independent solutions of

x2y′′ + xy′ − a2y = 0

are

y1 = xa, y2 = x−a.

For a = 0, we have

y1 = [xa]a=0 = 1, y2 =

[
d

da
xa
]
a=0

= lnx.

Consider the solutions

y1 = xa, y2 =
xa − x−a

a

Clearly y1 is a solution for all a. For a 6= 0, y2 is a linear combination of xa and x−a and is thus a solution. For
a = 0, y2 is one half the derivative of xa evaluated at a = 0. Thus it is a solution.

Solution 19.16
1.

x2y′′ − 2xy′ + 2y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− 2λ+ 2 = 0

λ2 − 3λ+ 2 = 0

(λ− 1)(λ− 2) = 0

y = c1x+ c2x
2
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2.

x2y′′ − 2y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− 2 = 0

λ2 − λ− 2 = 0

(λ+ 1)(λ− 2) = 0

y =
c1

x
+ c2x

2

3.

x2y′′ − xy′ + y = 0

We substitute y = xλ into the differential equation.

λ(λ− 1)− λ+ 1 = 0

λ2 − 2λ+ 1 = 0

(λ− 1)2 = 0

Since there is a double root, the solution is:

y = c1x+ c2x lnx.

Exact Equations

Solution 19.17
We note that

y′′ + y′ sinx+ y cosx = 0
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is an exact equation.

d

dx
[y′ + y sinx] = 0

y′ + y sinx = c1

d

dx

[
y e− cosx

]
= c1 e− cosx

y = c1 ecosx

∫
e− cosx dx+ c2 ecosx

Equations Without Explicit Dependence on y

Reduction of Order

Solution 19.18

(1− x2)y′′ − 2xy′ + 2y = 0, −1 < x < 1

We substitute y = x into the differential equation to check that it is a solution.

(1− x2)(0)− 2x(1) + 2x = 0

We look for a second solution of the form y = xu. We substitute this into the differential equation and use the
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fact that x is a solution.

(1− x2)(xu′′ + 2u′)− 2x(xu′ + u) + 2xu = 0

(1− x2)(xu′′ + 2u′)− 2x(xu′) = 0

(1− x2)xu′′ + (2− 4x2)u′ = 0

u′′

u′
=

2− 4x2

x(x2 − 1)

u′′

u′
= −2

x
+

1

1− x
− 1

1 + x

ln(u′) = −2 ln(x)− ln(1− x)− ln(1 + x) + const

ln(u′) = ln

(
c

x2(1− x)(1 + x)

)
u′ =

c

x2(1− x)(1 + x)

u′ = c

(
1

x2
+

1

2(1− x)
+

1

2(1 + x)

)
u = c

(
−1

x
− 1

2
ln(1− x) +

1

2
ln(1 + x)

)
+ const

u = c

(
−1

x
+

1

2
ln

(
1 + x

1− x

))
+ const

A second linearly independent solution is

y = −1 +
x

2
ln

(
1 + x

1− x

)
.
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Solution 19.19
We are given that y = ex is a solution of

y′′ − x+ 1

x
y′ +

1

x
y = 0.

To find another linearly independent solution, we will use reduction of order. Substituting

y = u ex

y′ = (u′ + u) ex

y′′ = (u′′ + 2u′ + u) ex

into the differential equation yields

u′′ + 2u′ + u− x+ 1

x
(u′ + u) +

1

x
u = 0.

u′′ +
x− 1

x
u′ = 0

d

dx

[
u′ exp

(∫ (
1− 1

x

)
dx

)]
= 0

u′ ex−lnx = c1

u′ = c1x e−x

u = c1

∫
x e−x dx+ c2

u = c1(x e−x + e−x) + c2

y = c1(x+ 1) + c2 ex

Thus a second linearly independent solution is

y = x+ 1.
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Solution 19.20
We are given that y = x is a solution of

(1− 2x)y′′ + 4xy′ − 4y = 0.

To find another linearly independent solution, we will use reduction of order. Substituting

y = xu

y′ = xu′ + u

y′′ = xu′′ + 2u′

into the differential equation yields

(1− 2x)(xu′′ + 2u′) + 4x(xu′ + u)− 4xu = 0,

(1− 2x)xu′′ + (4x2 − 4x+ 2)u′ = 0,

u′′

u′
=

4x2 − 4x+ 2

x(2x− 1)
,

u′′

u′
= 2− 2

x
+

2

2x− 1
,

ln(u′) = 2x− 2 lnx+ ln(2x− 1) + const,

u′ = c1

(
2

x
− 1

x2

)
e2x,

u = c1
1

x
e2x + c2,

y = c1 e2x + c2x.

Solution 19.21
One solution of

(x− 1)y′′ − xy′+ y = 0,
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is y1 = ex. We find a second solution with reduction of order. We make the substitution y2 = u ex in the
differential equation. We determine u up to an additive constant.

(x− 1)(u′′ + 2u′ + u) ex − x(u′ + u) ex + u ex = 0

(x− 1)u′′ + (x− 2)u′ = 0

u′′

u′
= −x− 2

x− 1
= −1 +

1

x− 1

ln |u′| = −x+ ln |x− 1|+ c

u′ = c(x− 1) e−x

u = −cx e−x

The second solution of the differential equation is y2 = x.

*Reduction of Order and the Adjoint Equation
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Chapter 20

Techniques for Nonlinear Differential
Equations

In mathematics you don’t understand things. You just get used to them.

- Johann von Neumann

20.1 Bernoulli Equations

Sometimes it is possible to solve a nonlinear equation by making a change of the dependent variable that converts
it into a linear equation. One of the most important such equations is the Bernoulli equation

dy

dt
+ p(t)y = q(t)yα, α 6= 1.

The change of dependent variable u = y1−α will yield a first order linear equation for u which when solved will
give us an implicit solution for y. (See Exercise ??.)
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Result 20.1.1 The Bernoulli equation y′+ p(t)y = q(t)yα, α 6= 1 can be transformed to
the first order linear equation

du

dt
+ (1− α)p(t)u = (1− α)q(t)

with the change of variables u = y1−α.

Example 20.1.1 Consider the Bernoulli equation

y′ =
2

x
y + y2.

First we divide by y2.

y−2y′ =
2

x
y−1 + 1

We make the change of variable u = y−1.

−u′ = 2

x
u+ 1

u′ +
2

x
u = −1
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The integrating factor is I(x) = exp(
∫

2
x
dx) = x2.

d

dx
(x2u) = −x2

x2u = −1

3
x3 + c

u = −1

3
x+

c

x2

y =

(
−1

3
x+

c

x2

)−1

Thus the solution for y is

y =
3x2

c− x2
.

20.2 Riccati Equations

Factoring Second Order Operators. Consider the second order linear equation

L[y] =

[
d2

dx2
+ p(x)

d

dx
+ q(x)

]
y = y′′ + p(x)y′ + q(x)y = f(x).

If we were able to factor the linear operator L into the form

L =

[
d

dx
+ a(x)

] [
d

dx
+ b(x)

]
, (20.1)

then we would be able to solve the differential equation. Factoring reduces the problem to a system of first order
equations. We start with the factored equation[

d

dx
+ a(x)

] [
d

dx
+ b(x)

]
y = f(x).
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We set u =
[

d
dx

+ b(x)
]
y and solve the problem[

d

dx
+ a(x)

]
u = f(x).

Then to obtain the solution we solve [
d

dx
+ b(x)

]
y = u.

Example 20.2.1 Consider the equation

y′′ +

(
x− 1

x

)
y′ +

(
1

x2
− 1

)
y = 0.

Let’s say by some insight or just random luck we are able to see that this equation can be factored into[
d

dx
+ x

] [
d

dx
− 1

x

]
y = 0.

We first solve the equation [
d

dx
+ x

]
u = 0.

u′ + xu = 0

d

dx

(
ex

2/2u
)

= 0

u = c1 e−x
2/2
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Then we solve for y with the equation [
d

dx
− 1

x

]
y = u = c1 e−x

2/2.

y′ − 1

x
y = c1 e−x

2/2

d

dx

(
x−1y

)
= c1x

−1 e−x
2/2

y = c1x

∫
x−1 e−x

2/2 dx+ c2x

If we were able to solve for a and b in Equation 20.1 in terms of p and q then we would be able to solve any
second order differential equation. Equating the two operators,

d2

dx2
+ p

d

dx
+ q =

[
d

dx
+ a

] [
d

dx
+ b

]
=

d2

dx2
+ (a+ b)

d

dx
+ (b′ + ab).

Thus we have the two equations

a+ b = p, and b′ + ab = q.

Eliminating a,

b′ + (p− b)b = q

b′ = b2 − pb+ q

Now we have a nonlinear equation for b that is no easier to solve than the original second order linear equation.
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Riccati Equations. Equations of the form

y′ = a(x)y2 + b(x)y + c(x)

are called Riccati equations. From the above derivation we see that for every second order differential equation
there is a corresponding Riccati equation. Now we will show that the converse is true.

We make the substitution

y = − u
′

au
, y′ = −u

′′

au
+

(u′)2

au2
+
a′u′

a2u
,

in the Riccati equation.

y′ = ay2 + by + c

−u
′′

au
+

(u′)2

au2
+
a′u′

a2u
= a

(u′)2

a2u2
− b u

′

au
+ c

−u
′′

au
+
a′u′

a2u
+ b

u′

au
− c = 0

u′′ −
(
a′

a
+ b

)
u′ + acu = 0

Now we have a second order linear equation for u.

Result 20.2.1 The substitution y = − u′

au transforms the Riccati equation

y′ = a(x)y2 + b(x)y + c(x)

into the second order linear equation

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.
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Example 20.2.2 Consider the Riccati equation

y′ = y2 +
1

x
y +

1

x2
.

With the substitution y = −u′

u
we obtain

u′′ − 1

x
u′ +

1

x2
u = 0.

This is an Euler equation. The substitution u = xλ yields

λ(λ− 1)− λ+ 1 = (λ− 1)2 = 0.

Thus the general solution for u is

u = c1x+ c2x log x.

Since y = −u′

u
,

y = −c1 + c2(1 + log x)

c1x+ c2x log x

y = −1 + c(1 + log x)

x+ cx log x

20.3 Exchanging the Dependent and Independent Variables

Some differential equations can be put in a more elementary form by exchanging the dependent and independent
variables. If the new equation can be solved, you will have an implicit solution for the initial equation. We will
consider a few examples to illustrate the method.
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Example 20.3.1 Consider the equation

y′ =
1

y3 − xy2
.

Instead of considering y to be a function of x, consider x to be a function of y. That is, x = x(y), x′ = dx
dy

.

dy

dx
=

1

y3 − xy2

dx

dy
= y3 − xy2

x′ + y2x = y3

Now we have a first order equation for x.

d

dy

(
ey

3/3x
)

= y3 ey
3/3

x = e−y
3/3

∫
y3 ey

3/3 dy + c e−y
3/3

Example 20.3.2 Consider the equation

y′ =
y

y2 + 2x
.
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Interchanging the dependent and independent variables yields

1

x′
=

y

y2 + 2x

x′ = y + 2
x

y

x′ − 2
x

y
= y

d

dy
(y−2x) = y−1

y−2x = log y + c

x = y2 log y + cy2

Result 20.3.1 Some differential equations can be put in a simpler form by exchanging
the dependent and independent variables. Thus a differential equation for y(x) can be
written as an equation for x(y). Solving the equation for x(y) will give an implicit solution
for y(x).

20.4 Autonomous Equations

Autonomous equations have no explicit dependence on x. The following are examples.

• y′′ + 3y′ − 2y = 0

• y′′ = y + (y′)2

• y′′′ + y′′y = 0
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The change of variables u(y) = y′ reduces an nth order autonomous equation in y to a non-autonomous
equation of order n− 1 in u(y). Writing the derivatives of y in terms of u,

y′ = u(y)

y′′ =
d

dx
u(y)

=
dy

dx

d

dy
u(y)

= y′u′

= u′u

y′′′ = (u′′u+ (u′)2)u.

Thus we see that the equation for u(y) will have an order of one less than the original equation.

Result 20.4.1 Consider an autonomous differential equation for y(x), (autonomous e-
quations have no explicit dependence on x.) The change of variables u(y) = y′ reduces
an nth order autonomous equation in y to a non-autonomous equation of order n− 1 in
u(y).

Example 20.4.1 Consider the equation

y′′ = y + (y′)2.

With the substitution u(y) = y′, the equation becomes

u′u = y + u2

u′ = u+ yu−1.
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We recognize this as a Bernoulli equation. The substitution v = u2 yields

1

2
v′ = v + y

v′ − 2v = 2y

d

dy

(
e−2yv

)
= 2y e−2y

v(y) = c1 e2y + e2y

∫
2y e−2y dy

v(y) = c1 e2y + e2y

(
−y e−2y +

∫
e−2y dy

)
v(y) = c1 e2y + e2y

(
−y e−2y − 1

2
e−2y

)
v(y) = c1 e2y − y − 1

2
.

Now we solve for u.

u(y) =

(
c1 e2y − y − 1

2

)1/2

.

dy

dx
=

(
c1 e2y − y − 1

2

)1/2

This equation is separable.

dx =
dy(

c1 e2y − y − 1
2

)1/2

x+ c2 =

∫
1(

c1 e2y − y − 1
2

)1/2
dy
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Thus we finally have arrived at an implicit solution for y(x).

Example 20.4.2 Consider the equation

y′′ + y3 = 0.

With the change of variables, u(y) = y′, the equation becomes

u′u+ y3 = 0.

This equation is separable.

u du = −y3 dy

1

2
u2 = −1

4
y4 + c1

u =

(
2c1 −

1

2
y4

)1/2

y′ =

(
2c1 −

1

2
y4

)1/2

dy

(2c1 − 1
2
y4)1/2

= dx

Integrating gives us the implicit solution

∫
1

(2c1 − 1
2
y4)1/2

dy = x+ c2.
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20.5 *Equidimensional-in-x Equations

Differential equations that are invariant under the change of variables x = c ξ are said to be equidimensional-in-x.
For a familiar example from linear equations, we note that the Euler equation is equidimensional-in-x. Writing
the new derivatives under the change of variables,

x = c ξ,
d

dx
=

1

c

d

dξ
,

d2

dx2
=

1

c2

d2

dξ2
, . . . .

Example 20.5.1 Consider the Euler equation

y′′ +
2

x
y′ +

3

x2
y = 0.

Under the change of variables, x = c ξ, y(x) = u(ξ), this equation becomes

1

c2
u′′ +

2

c ξ

1

c
u′ +

3

c2 ξ2
u = 0

u′′ +
2

ξ
u′ +

3

ξ2
u = 0.

Thus this equation is invariant under the change of variables x = c ξ.

Example 20.5.2 For a nonlinear example, consider the equation

y′′ y′ +
y′′

x y
+
y′

x2
= 0.

With the change of variables x = c ξ, y(x) = u(ξ) the equation becomes

u′′

c2

u′

c
+

u′′

c3 ξ u
+

u′

c3 ξ2
= 0

u′′ u′ +
u′′

ξ u
+
u′

ξ2
= 0.

We see that this equation is also equidimensional-in-x.

854



You may recall that the change of variables x = et reduces an Euler equation to a constant coefficient
equation. To generalize this result to nonlinear equations we will see that the same change of variables reduces
an equidimensional-in-x equation to an autonomous equation.

Writing the derivatives with respect to x in terms of t,

x = et,
d

dx
=

dt

dx

d

dt
= e−t

d

dt

x
d

dx
=

d

dt

x2 d2

dx2
= x

d

dx

(
x

d

dx

)
− x d

dx
=

d2

dt2
− d

dt
.

Example 20.5.3 Consider the equation in Example 20.5.2

y′′ y′ +
y′′

x y
+
y′

x2
= 0.

Applying the change of variables x = et, y(x) = u(t) yields an autonomous equation for u(t).

x2 y′′ x y′ +
x2 y′′

y
+ x y′ = 0

(u′′ − u′)u′ + u′′ − u′

u
+ u′ = 0

Result 20.5.1 A differential equation that is invariant under the change of variables
x = c ξ is equidimensional-in-x. Such an equation can be reduced to autonomous equation
of the same order with the change of variables, x = et.
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20.6 *Equidimensional-in-y Equations

A differential equation is said to be equidimensional-in-y if it is invariant under the change of variables y(x) =
c v(x). Note that all linear homogeneous equations are equidimensional-in-y.

Example 20.6.1 Consider the linear equation

y′′ + p(x)y′ + q(x)y = 0.

With the change of variables y(x) = cv(x) the equation becomes

cv′′ + p(x)cv′ + q(x)cv = 0

v′′ + p(x)v′ + q(x)v = 0

Thus we see that the equation is invariant under the change of variables.

Example 20.6.2 For a nonlinear example, consider the equation

y′′y + (y′)2 − y2 = 0.

Under the change of variables y(x) = cv(x) the equation becomes.

cv′′cv + (cv′)2 − (cv)2 = 0

v′′v + (v′)2 − v2 = 0.

Thus we see that this equation is also equidimensional-in-y.
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The change of variables y(x) = eu(x) reduces an nth order equidimensional-in-y equation to an equation of
order n− 1 for u′. Writing the derivatives of eu(x),

d

dx
eu = u′ eu

d2

dx2
eu = (u′′ + (u′)2) eu

d3

dx3
eu = (u′′′ + 3u′′u′′ + (u′)3) eu.

Example 20.6.3 Consider the linear equation in Example 20.6.1

y′′ + p(x)y′ + q(x)y = 0.

Under the change of variables y(x) = eu(x) the equation becomes

(u′′ + (u′)2) eu + p(x)u′ eu + q(x) eu = 0

u′′ + (u′)2 + p(x)u′ + q(x) = 0.

Thus we have a Riccati equation for u′. This transformation might seem rather useless since linear equations are
usually easier to work with than nonlinear equations, but it is often useful in determining the asymptotic behavior
of the equation.

Example 20.6.4 From Example 20.6.2 we have the equation

y′′y + (y′)2 − y2 = 0.

The change of variables y(x) = eu(x) yields

(u′′ + (u′)2) eu eu + (u′ eu)2 − ( eu)2 = 0

u′′ + 2(u′)2 − 1 = 0

u′′ = −2(u′)2 + 1
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Now we have a Riccati equation for u′. We make the substitution u′ = v′

2v
.

v′′

2v
− (v′)2

2v2
= −2

(v′)2

4v2
+ 1

v′′ − 2v = 0

v = c1 e
√

2x + c2 e−
√

2x

u′ = 2
√

2
c1 e

√
2x − c2 e−

√
2x

c1 e
√

2x + c2 e−
√

2x

u = 2

∫
c1

√
2 e
√

2x − c2

√
2 e−

√
2x

c1 e
√

2x + c2 e−
√

2x
dx+ c3

u = 2 log
(
c1 e

√
2x + c2 e−

√
2x
)

+ c3

y =
(
c1 e

√
2x + c2 e−

√
2x
)2

ec3

The constants are redundant, the general solution is

y =
(
c1 e

√
2x + c2 e−

√
2x
)2

Result 20.6.1 A differential equation is equidimensional-in-y if it is invariant under the
change of variables y(x) = cv(x). An nth order equidimensional-in-y equation can be
reduced to an equation of order n− 1 in u′ with the change of variables y(x) = eu(x).
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20.7 *Scale-Invariant Equations

Result 20.7.1 An equation is scale invariant if it is invariant under the change of vari-
ables, x = cξ, y(x) = cαv(ξ), for some value of α. A scale-invariant equation can be trans-
formed to an equidimensional-in-x equation with the change of variables, y(x) = xαu(x).

Example 20.7.1 Consider the equation

y′′ + x2y2 = 0.

Under the change of variables x = cξ, y(x) = cαv(ξ) this equation becomes

cα

c2
v′′(ξ) + c2x2c2αv2(ξ) = 0.

Equating powers of c in the two terms yields α = −4.
Introducing the change of variables y(x) = x−4u(x) yields

d2

dx2

[
x−4u(x)

]
+ x2(x−4u(x))2 = 0

x−4u′′ − 8x−5u′ + 20x−6u+ x−6u2 = 0

x2u′′ − 8xu′ + 20u+ u2 = 0.

We see that the equation for u is equidimensional-in-x.
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20.8 Exercises
Exercise 20.1

1. Find the general solution and the singular solution of the Clairaut equation,

y = xp+ p2.

2. Show that the singular solution is the envelope of the general solution.
Hint, Solution

Bernoulli Equations

Exercise 20.2 (mathematica/ode/techniques nonlinear/bernoulli.nb)
Consider the Bernoulli equation

dy

dt
+ p(t)y = q(t)yα.

1. Solve the Bernoulli equation for α = 1.

2. Show that for α 6= 1 the substitution u = y1−α reduces Bernoulli’s equation to a linear equation.

3. Find the general solution to the following equations.

t2
dy

dt
+ 2ty − y3 = 0, t > 0

(a)
dy

dx
+ 2xy + y2 = 0

(b)

Hint, Solution
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Exercise 20.3
Consider a population, y. Let the birth rate of the population be proportional to y with constant of proportionality
1. Let the death rate of the population be proportional to y2 with constant of proportionality 1/1000. Assume
that the population is large enough so that you can consider y to be continuous. What is the population as a
function of time if the initial population is y0?
Hint, Solution

Exercise 20.4
Show that the transformation u = y1−n reduces the equation to a linear first order equation. Solve the equations

1. t2
dy

dt
+ 2ty − y3 = 0 t > 0

2.
dy

dt
= (Γ cos t+ T ) y − y3, Γ and T are real constants. (From a fluid flow stability problem.)

Hint, Solution

Riccati Equations

Exercise 20.5
1. Consider the Ricatti equation,

dy

dx
= a(x)y2 + b(x)y + c(x).

Substitute

y = yp(x) +
1

u(x)

into the Ricatti equation, where yp is some particular solution to obtain a first order linear differential
equation for u.

861



2. Consider a Ricatti equation,

y′ = 1 + x2 − 2xy + y2.

Verify that yp(x) = x is a particular solution. Make the substitution y = yp + 1/u to find the general
solution.

What would happen if you continued this method, taking the general solution for yp? Would you be able
to find a more general solution?

3. The substitution

y = − u
′

au

gives us the second order, linear, homogeneous differential equation,

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.

The general solution for u has two constants of integration. However, the solution for y should only have
one constant of integration as it satisfies a first order equation. Write y in terms of the solution for u and
verify tha y has only one constant of integration.

Hint, Solution

Exchanging the Dependent and Independent Variables

Exercise 20.6
Solve the differential equation

y′ =

√
y

xy + y
.

Hint, Solution
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*Equidimensional-in-y Equations
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20.9 Hints
Hint 20.1

Bernoulli Equations

Hint 20.2

Hint 20.3
The differential equation governing the population is

dy

dt
= y − y2

1000
, y(0) = y0.

This is a Bernoulli equation.

Hint 20.4

Riccati Equations

Hint 20.5

Exchanging the Dependent and Independent Variables

Hint 20.6
Exchange the dependent and independent variables.

Autonomous Equations
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*Equidimensional-in-x Equations
*Equidimensional-in-y Equations
*Scale-Invariant Equations
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20.10 Solutions
Solution 20.1
We consider the Clairaut equation,

y = xp+ p2. (20.2)

1. We differentiate Equation 20.2 with respect to x to obtain a second order differential equation.

y′ = y′ + xy′′ + 2y′y′′

y′′(2y′ + x) = 0

Equating the first or second factor to zero will lead us to two distinct solutions.

y′′ = 0 or y′ = −x
2

If y′′ = 0 then y′ ≡ p is a constant, (say y′ = c). From Equation 20.2 we see that the general solution is,

y(x) = cx+ c2. (20.3)

Recall that the general solution of a first order differential equation has one constant of integration.

If y′ = −x/2 then y = −x2/4 + const. We determine the constant by substituting the expression into
Equation 20.2.

−x
2

4
+ c = x

(
−x

2

)
+
(
−x

2

)2

Thus we see that a singular solution of the Clairaut equation is

y(x) = −1

4
x2. (20.4)

Recall that a singular solution of a first order nonlinear differential equation has no constant of integration.
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2. Equating the general and singular solutions, y(x), and their derivatives, y′(x), gives us the system of
equations,

cx+ c2 = −1

4
x2, c = −1

2
x.

Since the first equation is satisfied for c = −x/2, we see that the solution y = cx + c2 is tangent to the
solution y = −x2/4 at the point (−2c,−|c|). The solution y = cx+c2 is plotted for c = . . . ,−1/4, 0, 1/4, . . .
in Figure 20.1.

-4 -2 2 4

-4

-3

-2

-1

1

2

Figure 20.1: The Envelope of y = cx+ c2.

The envelope of a one-parameter family F (x, y, c) = 0 is given by the system of equations,

F (x, y, c) = 0, Fc(x, y, c) = 0.

For the family of solutions y = cx+ c2 these equations are

y = cx+ c2, 0 = x+ 2c.

Substituting the solution of the second equation, c = −x/2, into the first equation gives the envelope,

y =

(
−1

2
x

)
x+

(
−1

2
x

)2

= −1

4
x2.

Thus we see that the singular solution is the envelope of the general solution.
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Bernoulli Equations

Solution 20.2
1.

dy

dt
+ p(t)y = q(t)y

dy

y
= (q − p) dt

ln y =

∫
(q − p) dt+ c

y = c e
∫

(q−p) dt

2. We consider the Bernoulli equation,

dy

dt
+ p(t)y = q(t)yα, α 6= 1.

We divide by yα.

y−αy′ + p(t)y1−α = q(t)

This suggests the change of dependent variable u = y1−α, u′ = (1− α)y−αy′.

1

1− α
d

dt
y1−α + p(t)y1−α = q(t)

du

dt
+ (1− α)p(t)u = (1− α)q(t)

Thus we obtain a linear equation for u which when solved will give us an implicit solution for y.
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3. (a)

t2
dy

dt
+ 2ty − y3 = 0, t > 0

t2
y′

y3
+ 2t

1

y2
= 1

We make the change of variables u = y−2.

−1

2
t2u′ + 2tu = 1

u′ − 4

t
u = − 2

t2

The integrating factor is

µ = e
∫

(−4/t) dt = e−4 ln t = t−4.

We multiply by the integrating factor and integrate to obtain the solution.

d

dt

(
t−4u

)
= −2t−6

u =
2

5
t−1 + ct4

y−2 =
2

5
t−1 + ct4

y = ± 1√
2
5
t−1 + ct4

y = ±
√

5t√
2 + ct5

(b)

dy

dx
+ 2xy + y2 = 0

y′

y2
+

2x

y
= −1
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We make the change of variables u = y−1.

u′ − 2xu = 1

The integrating factor is

µ = e
∫

(−2x) dx = e−x
2

.

We multiply by the integrating factor and integrate to obtain the solution.

d

dx

(
e−x

2

u
)

= e−x
2

u = ex
2

∫
e−x

2

dx+ c ex
2

y =
e−x

2∫
e−x2 dx+ c

Solution 20.3
The differential equation governing the population is

dy

dt
= y − y2

1000
, y(0) = y0.

We recognize this as a Bernoulli equation. The substitution u(t) = 1/y(t) yields

−du

dt
= u− 1

1000
, u(0) =

1

y0

.

u′ + u =
1

1000

u =
1

y0

e−t +
e−t

1000

∫ t

0

eτ dτ

u =
1

1000
+

(
1

y0

− 1

1000

)
e−t

870



Solving for y(t),

y(t) =

(
1

1000
+

(
1

y0

− 1

1000

)
e−t
)−1

.

As a check, we see that as t→∞, y(t)→ 1000, which is an equilibrium solution of the differential equation.

dy

dt
= 0 = y − y2

1000
⇒ y = 1000.

Solution 20.4
1.

t2
dy

dt
+ 2ty − y3 = 0

dy

dt
+ 2t−1y = t−2y3

We make the change of variables u(t) = y−2(t).

u′ − 4t−1u = −2t−2

This gives us a first order, linear equation. The integrating factor is

I(t) = e
∫
−4t−1 dt = e−4 log t = t−4.

We multiply by the integrating factor and integrate.

d

dt

(
t−4u

)
= −2t−6

t−4u =
2

5
t−5 + c

u =
2

5
t−1 + ct4
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Finally we write the solution in terms of y(t).

y(t) = ± 1√
2
5
t−1 + ct4

y(t) = ±
√

5t√
2 + ct5

2.

dy

dt
− (Γ cos t+ T ) y = −y3

We make the change of variables u(t) = y−2(t).

u′ + 2 (Γ cos t+ T )u = 2

This gives us a first order, linear equation. The integrating factor is

I(t) = e
∫

2(Γ cos t+T ) dt = e2(Γ sin t+Tt)

We multiply by the integrating factor and integrate.

d

dt

(
e2(Γ sin t+Tt)u

)
= 2 e2(Γ sin t+Tt)

u = 2 e−2(Γ sin t+Tt)

(∫
e2(Γ sin t+Tt) dt+ c

)
Finally we write the solution in terms of y(t).

y = ± eΓ sin t+Tt√
2
(∫

e2(Γ sin t+Tt) dt+ c
)
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Riccati Equations

Solution 20.5
We consider the Ricatti equation,

dy

dx
= a(x)y2 + b(x)y + c(x). (20.5)

1. We substitute

y = yp(x) +
1

u(x)

into the Ricatti equation, where yp is some particular solution.

y′p −
u′

u2
= +a(x)

(
y2
p + 2

yp
u

+
1

u2

)
+ b(x)

(
yp +

1

u

)
+ c(x)

− u
′

u2
= b(x)

1

u
+ a(x)

(
2
yp
u

+
1

u2

)
u′ = − (b+ 2ayp)u− a

We obtain a first order linear differential equation for u whose solution will contain one constant of integra-
tion.

2. We consider a Ricatti equation,

y′ = 1 + x2 − 2xy + y2. (20.6)

We verify that yp(x) = x is a solution.

1 = 1 + x2 − 2xx+ x2
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Substituting y = yp + 1/u into Equation 20.6 yields,

u′ = − (−2x+ 2x)u− 1

u = −x+ c

y = x+
1

c− x

What would happen if we continued this method? Since y = x + 1
c−x is a solution of the Ricatti equation

we can make the substitution,

y = x+
1

c− x
+

1

u(x)
, (20.7)

which will lead to a solution for y which has two constants of integration. Then we could repeat the process,
substituting the sum of that solution and 1/u(x) into the Ricatti equation to find a solution with three
constants of integration. We know that the general solution of a first order, ordinary differential equation
has only one constant of integration. Does this method for Ricatti equations violate this theorem? There’s
only one way to find out. We substitute Equation 20.7 into the Ricatti equation.

u′ = −
(
−2x+ 2

(
x+

1

c− x

))
u− 1

u′ = − 2

c− x
u− 1

u′ +
2

c− x
u = −1

The integrating factor is

I(x) = e2/(c−x) = e−2 log(c−x) =
1

(c− x)2
.
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Upon multiplying by the integrating factor, the equation becomes exact.

d

dx

(
1

(c− x)2
u

)
= − 1

(c− x)2

u = (c− x)2 −1

c− x
+ b(c− x)2

u = x− c+ b(c− x)2

Thus the Ricatti equation has the solution,

y = x+
1

c− x
+

1

x− c+ b(c− x)2
.

It appears that we we have found a solution that has two constants of integration, but appearances can be
deceptive. We do a little algebraic simplification of the solution.

y = x+
1

c− x
+

1

(b(c− x)− 1)(c− x)

y = x+
(b(c− x)− 1) + 1

(b(c− x)− 1)(c− x)

y = x+
b

b(c− x)− 1

y = x+
1

(c− 1/b)− x

This is actually a solution, (namely the solution we had before), with one constant of integration, (namely
c− 1/b). Thus we see that repeated applications of the procedure will not produce more general solutions.

3. The substitution

y = − u
′

au
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gives us the second order, linear, homogeneous differential equation,

u′′ −
(
a′

a
+ b

)
u′ + acu = 0.

The solution to this linear equation is a linear combination of two homogeneous solutions, u1 and u2.

u = c1u1(x) + c2u2(x)

The solution of the Ricatti equation is then

y = − c1u
′
1(x) + c2u

′
2(x)

a(x)(c1u1(x) + c2u2(x))
.

Since we can divide the numerator and denominator by either c1 or c2, this answer has only one constant of
integration, (namely c1/c2 or c2/c1).

Exchanging the Dependent and Independent Variables

Solution 20.6
Exchanging the dependent and independent variables in the differential equation,

y′ =

√
y

xy + y
,

yields

x′(y) = y1/2x+ y1/2.
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This is a first order differential equation for x(y).

x′ − y1/2x = y1/2

d

dy

[
x exp

(
−2y3/2

3

)]
= y1/2 exp

(
−2y3/2

3

)
x exp

(
−2y3/2

3

)
= − exp

(
−2y3/2

3

)
+ c1

x = −1 + c1 exp

(
2y3/2

3

)
x+ 1

c1

= exp

(
2y3/2

3

)
log

(
x+ 1

c1

)
=

2

3
y3/2

y =

(
3

2
log

(
x+ 1

c1

))2/3

y =

(
c+

3

2
log(x+ 1)

)2/3

Autonomous Equations
*Equidimensional-in-x Equations
*Equidimensional-in-y Equations
*Scale-Invariant Equations
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Chapter 21

Transformations and Canonical Forms

Prize intensity more than extent. Excellence resides in quality not in quantity. The best is always few and
rare - abundance lowers value. Even among men, the giants are usually really dwarfs. Some reckon books by
the thickness, as if they were written to exercise the brawn more than the brain. Extent alone never rises above
mediocrity; it is the misfortune of universal geniuses that in attempting to be at home everywhere are so nowhere.
Intensity gives eminence and rises to the heroic in matters sublime.

-Balthasar Gracian

21.1 The Constant Coefficient Equation

The solution of any second order linear homogeneous differential equation can be written in terms of the solutions
to either

y′′ = 0, or y′′ − y = 0

Consider the general equation

y′′ + ay′ + by = 0.
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We can solve this differential equation by making the substitution y = eλx. This yields the algebraic equation

λ2 + aλ+ b = 0.

λ =
1

2

(
−a±

√
a2 − 4b

)
There are two cases to consider. If a2 6= 4b then the solutions are

y1 = e(−a+
√
a2−4b)x/2, y2 = e(−a−

√
a2−4b)x/2

If a2 = 4b then we have

y1 = e−ax/2, y2 = x e−ax/2

Note that regardless of the values of a and b the solutions are of the form

y = e−ax/2u(x)

We would like to write the solutions to the general differential equation in terms of the solutions to simpler
differential equations. We make the substitution

y = eλxu

The derivatives of y are

y′ = eλx(u′ + λu)

y′′ = eλx(u′′ + 2λu′ + λ2u)

Substituting these into the differential equation yields

u′′ + (2λ+ a)u′ + (λ2 + aλ+ b)u = 0
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In order to get rid of the u′ term we choose

λ = −a
2
.

The equation is then

u′′ +

(
b− a2

4

)
u = 0.

There are now two cases to consider.

Case 1. If b = a2/4 then the differential equation is

u′′ = 0

which has solutions 1 and x. The general solution for y is then

y = e−ax/2(c1 + c2x).

Case 2. If b 6= a2/4 then the differential equation is

u′′ −
(
a2

4
− b
)
u = 0.

We make the change variables

u(x) = v(ξ), x = µξ.

The derivatives in terms of ξ are

d

dx
=

dξ

dx

d

dξ
=

1

µ

d

dξ

d2

dx2
=

1

µ

d

dξ

1

µ

d

dξ
=

1

µ2

d2

dξ2
.
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The differential equation for v is

1

µ2
v′′ −

(
a2

4
− b
)
v = 0

v′′ − µ2

(
a2

4
− b
)
v = 0

We choose

µ =

(
a2

4
− b
)−1/2

to obtain

v′′ − v = 0

which has solutions e±ξ. The solution for y is

y = eλx
(
c1 ex/µ + c2 e−x/µ

)
y = e−ax/2

(
c1 e
√
a2/4−b x + c2 e−

√
a2/4−b x

)
21.2 Normal Form

21.2.1 Second Order Equations

Consider the second order equation

y′′ + p(x)y′ + q(x)y = 0. (21.1)
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Through a change of dependent variable, this equation can be transformed to

u′′ + I(x)y = 0.

This is known as the normal form of (21.1). The function I(x) is known as the invariant of the equation.
Now to find the change of variables that will accomplish this transformation. We make the substitution

y(x) = a(x)u(x) in (21.1).

au′′ + 2a′u′ + a′′u+ p(au′ + a′u) + qau = 0

u′′ +

(
2
a′

a
+ p

)
u′ +

(
a′′

a
+
pa′

a
+ q

)
u = 0

To eliminate the u′ term, a(x) must satisfy

2
a′

a
+ p = 0

a′ +
1

2
pa = 0

a = c exp

(
−1

2

∫
p(x) dx

)
.

For this choice of a, our differential equation for u becomes

u′′ +

(
q − p2

4
− p′

2

)
u = 0.

Two differential equations having the same normal form are called equivalent.
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Result 21.2.1 The change of variables

y(x) = exp

(
−1

2

∫
p(x) dx

)
u(x)

transforms the differential equation

y′′ + p(x)y′ + q(x)y = 0

into its normal form

u′′ + I(x)u = 0

where the invariant of the equation, I(x), is

I(x) = q − p2

4
− p′

2
.

21.2.2 Higher Order Differential Equations

Consider the third order differential equation

y′′′ + p(x)y′′ + q(x)y′ + r(x)y = 0.
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We can eliminate the y′′ term. Making the change of dependent variable

y = u exp

(
−1

3

∫
p(x) dx

)
y′ =

[
u′ − 1

3
pu

]
exp

(
−1

3

∫
p(x) dx

)
y′′ =

[
u′′ − 2

3
pu′ +

1

9
(p2 − 3p′)u

]
exp

(
−1

3

∫
p(x) dx

)
y′′ =

[
u′′′ − pu′′ + 1

3
(p2 − 3p′)u′ +

1

27
(9p′ − 9p′′ − p3)u

]
exp

(
−1

3

∫
p(x) dx

)
yields the differential equation

u′′′ +
1

3
(3q − 3p′ − p2)u′ +

1

27
(27r − 9pq − 9p′′ + 2p3)u = 0.

Result 21.2.2 The change of variables

y(x) = exp

(
−1

n

∫
pn−1(x) dx

)
u(x)

transforms the differential equation

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · ·+ p0(x)y = 0

into the form

u(n) + an−2(x)u(n−2) + an−3(x)u(n−3) + · · ·+ a0(x)u = 0.
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21.3 Transformations of the Independent Variable

21.3.1 Transformation to the form u” + a(x) u = 0

Consider the second order linear differential equation

y′′ + p(x)y′ + q(x)y = 0.

We make the change of independent variable

ξ = f(x), u(ξ) = y(x).

The derivatives in terms of ξ are

d

dx
=

dξ

dx

d

dξ
= f ′

d

dξ

d2

dx2
= f ′

d

dξ
f ′

d

dξ
= (f ′)2 d2

dξ2
+ f ′′

d

dξ

The differential equation becomes

(f ′)2u′′ + f ′′u′ + pf ′u′ + qu = 0.

In order to eliminate the u′ term, f must satisfy

f ′′ + pf ′ = 0

f ′ = exp

(
−
∫
p(x) dx

)

f =

∫
exp

(
−
∫
p(x) dx

)
dx.

885



The differential equation for u is then

u′′ +
q

(f ′)2
u = 0

u′′(ξ) + q(x) exp

(
2

∫
p(x) dx

)
u(ξ) = 0.

Result 21.3.1 The change of variables

ξ =

∫
exp

(
−
∫
p(x) dx

)
dx, u(ξ) = y(x)

transforms the differential equation

y′′ + p(x)y′ + q(x)y = 0

into

u′′(ξ) + q(x) exp

(
2

∫
p(x) dx

)
u(ξ) = 0.

21.3.2 Transformation to a Constant Coefficient Equation

Consider the second order linear differential equation

y′′ + p(x)y′ + q(x)y = 0.

With the change of independent variable

ξ = f(x), u(ξ) = y(x),
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the differential equation becomes

(f ′)2u′′ + (f ′′ + pf ′)u′ + qu = 0.

For this to be a constant coefficient equation we must have

(f ′)2 = c1q, and f ′′ + pf ′ = c2q,

for some constants c1 and c2. Solving the first condition,

f ′ = c
√
q,

f = c

∫ √
q(x) dx.

The second constraint becomes

f ′′ + pf ′

q
= const

1
2
cq−1/2q′ + pcq1/2

q
= const

q′ + 2pq

q3/2
= const.
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Result 21.3.2 Consider the differential equation

y′′ + p(x)y′ + q(x)y = 0.

If the expression

q′ + 2pq

q3/2

is a constant then the change of variables

ξ = c

∫ √
q(x) dx, u(ξ) = y(x),

will yield a constant coefficient differential equation. (Here c is an arbitrary constant.)

21.4 Integral Equations

Volterra’s Equations. Volterra’s integral equation of the first kind has the form∫ x

a

N(x, ξ)f(ξ) dξ = f(x).

The Volterra equation of the second kind is

y(x) = f(x) + λ

∫ x

a

N(x, ξ)y(ξ) dξ.

N(x, ξ) is known as the kernel of the equation.
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Fredholm’s Equations. Fredholm’s integral equations of the first and second kinds are∫ b

a

N(x, ξ)f(ξ) dξ = f(x),

y(x) = f(x) + λ

∫ b

a

N(x, ξ)y(ξ) dξ.

21.4.1 Initial Value Problems

Consider the initial value problem

y′′ + p(x)y′ + q(x)y = f(x), y(a) = α, y′(a) = β.

Integrating this equation twice yields∫ x

a

∫ η

a

y′′(ξ) + p(ξ)y′(ξ) + q(ξ)y(ξ) dξ dη =

∫ x

a

∫ η

a

f(ξ) dξ dη

∫ x

a

(x− ξ)[y′′(ξ) + p(ξ)y′(ξ) + q(ξ)y(ξ)] dξ =

∫ x

a

(x− ξ)f(ξ) dξ.

Now we use integration by parts.[
(x− ξ)y′(ξ)

]x
a
−
∫ x

a

−y′(ξ) dξ +
[
(x− ξ)p(ξ)y(ξ)

]x
a
−
∫ x

a

[(x− ξ)p′(ξ)− p(ξ)]y(ξ) dξ

+

∫ x

a

(x− ξ)q(ξ)y(ξ) dξ =

∫ x

a

(x− ξ)f(ξ) dξ.

− (x− a)y′(a) + y(x)− y(a)− (x− a)p(a)y(a)−
∫ x

a

[(x− ξ)p′(ξ)− p(ξ)]y(ξ) dξ

+

∫ x

a

(x− ξ)q(ξ)y(ξ) dξ =

∫ x

a

(x− ξ)f(ξ) dξ.
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We obtain a Volterra integral equation of the second kind for y(x).

y(x) =

∫ x

a

(x− ξ)f(ξ) dξ + (x− a)(αp(a) + β) + α +

∫ x

a

{
(x− ξ)[p′(ξ)− q(ξ)]− p(ξ)

}
y(ξ) dξ.

Note that the initial conditions for the differential equation are “built into” the Volterra equation. Setting
x = a in the Volterra equation yields y(a) = α. Differentiating the Volterra equation,

y′(x) =

∫ x

a

f(ξ) dξ + (αp(a) + β)− p(x)y(x) +

∫ x

a

[p′(ξ)− q(ξ)]− p(ξ)y(ξ) dξ

and setting x = a yields

y′(a) = αp(a) + β − p(a)α = β.

(Recall from calculus that

d

dx

∫ x

g(x, ξ) dξ = g(x, x) +

∫ x ∂

∂x
[g(x, ξ)] dξ.)

Result 21.4.1 The initial value problem

y′′ + p(x)y′ + q(x)y = f(x), y(a) = α, y′(a) = β.

is equivalent to the Volterra equation of the second kind

y(x) = F (x) +

∫ x

a

N(x, ξ)y(ξ) dξ

where

F (x) =

∫ x

a

(x− ξ)f(ξ) dξ + (x− a)(αp(a) + β) + α

N(x, ξ) = (x− ξ)[p′(ξ)− q(ξ)]− p(ξ).
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21.4.2 Boundary Value Problems

Consider the boundary value problem

y′′ = f(x), y(a) = α, y(b) = β. (21.2)

To obtain a problem with homogeneous boundary conditions, we make the change of variable

y(x) = u(x) + α +
β − α
b− a

(x− a)

to obtain the problem

u′′ = f(x), u(a) = u(b) = 0.

Now we will use Green’s functions to write the solution as an integral. First we solve the problem

G′′ = δ(x− ξ), G(a|ξ) = G(b|ξ) = 0.

The homogeneous solutions of the differential equation that satisfy the left and right boundary conditions are

c1(x− a) and c2(x− b).

Thus the Green’s function has the form

G(x|ξ) =

{
c1(x− a), for x ≤ ξ

c2(x− b), for x ≥ ξ

Imposing continuity of G(x|ξ) at x = ξ and a unit jump of G(x|ξ) at x = ξ, we obtain

G(x|ξ) =

{
(x−a)(ξ−b)

b−a , for x ≤ ξ
(x−b)(ξ−a)

b−a , for x ≥ ξ

Thus the solution of the (21.2) is

y(x) = α +
β − α
b− a

(x− a) +

∫ b

a

G(x|ξ)f(ξ) dξ.
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Now consider the boundary value problem

y′′ + p(x)y′ + q(x)y = 0, y(a) = α, y(b) = β.

From the above result we can see that the solution satisfies

y(x) = α +
β − α
b− a

(x− a) +

∫ b

a

G(x|ξ)[f(ξ)− p(ξ)y′(ξ)− q(ξ)y(ξ)] dξ.

Using integration by parts, we can write

−
∫ b

a

G(x|ξ)p(ξ)y′(ξ) dξ = −
[
G(x|ξ)p(ξ)y(ξ)

]b
a

+

∫ b

a

[
∂G(x|ξ)
∂ξ

p(ξ) +G(x|ξ)p′(ξ)
]
y(ξ) dξ

=

∫ b

a

[
∂G(x|ξ)
∂ξ

p(ξ) +G(x|ξ)p′(ξ)
]
y(ξ) dξ.

Substituting this into our expression for y(x),

y(x) = α +
β − α
b− a

(x− a) +

∫ b

a

G(x|ξ)f(ξ) dξ +

∫ b

a

[
∂G(x|ξ)
∂ξ

p(ξ) +G(x|ξ)[p′(ξ)− q(ξ)]
]
y(ξ) dξ,

we obtain a Fredholm integral equation of the second kind.
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Result 21.4.2 The boundary value problem

y′′ + p(x)y′ + q(x)y = f(x), y(a) = α, y(b) = β.

is equivalent to the Fredholm equation of the second kind

y(x) = F (x) +

∫ b

a

N(x, ξ)y(ξ) dξ

where

F (x) = α +
β − α
b− a

(x− a) +

∫ b

a

G(x|ξ)f(ξ) dξ,

N(x, ξ) =

∫ b

a

H(x|ξ)y(ξ) dξ,

G(x|ξ) =

{
(x−a)(ξ−b)

b−a , for x ≤ ξ
(x−b)(ξ−a)

b−a , for x ≥ ξ,

H(x|ξ) =

{
(x−a)
b−a p(ξ) + (x−a)(ξ−b)

b−a [p′(ξ)− q(ξ)] for x ≤ ξ
(x−b)
b−a p(ξ) + (x−b)(ξ−a)

b−a [p′(ξ)− q(ξ)] for x ≥ ξ.
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21.5 Exercises

The Constant Coefficient Equation
Normal Form

Exercise 21.1
Solve the differential equation

y′′ +

(
2 +

4

3
x

)
y′ +

1

9

(
24 + 12x+ 4x2

)
y = 0.

Hint, Solution

Transformations of the Independent Variable
Integral Equations

Exercise 21.2
Show that the solution of the differential equation

y′′ + 2(a+ bx)y′ + (c+ dx+ ex2)y = 0

can be written in terms of one of the following canonical forms:

v′′ + (ξ2 + A)v = 0

v′′ = ξv

v′′ + v = 0

v′′ = 0.

Hint, Solution
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Exercise 21.3
Show that the solution of the differential equation

y′′ + 2

(
a+

b

x

)
y′ +

(
c+

d

x
+

e

x2

)
y = 0

can be written in terms of one of the following canonical forms:

v′′ +

(
1 +

A

ξ
+
B

ξ2

)
v = 0

v′′ +

(
1

ξ
+
A

ξ2

)
v = 0

v′′ +
A

ξ2
v = 0

Hint, Solution

Exercise 21.4
Show that the second order Euler equation

x2 d2y

dx2
+ a1x

dy

dx
+ a0y = 0

can be transformed to a constant coefficient equation.
Hint, Solution

Exercise 21.5
Solve Bessel’s equation of order 1/2,

y′′ +
1

x
y′ +

(
1− 1

4x2

)
y = 0.

Hint, Solution
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21.6 Hints

The Constant Coefficient Equation
Normal Form

Hint 21.1
Transform the equation to normal form.

Transformations of the Independent Variable
Integral Equations

Hint 21.2
Transform the equation to normal form and then apply the scale transformation x = λξ + µ.

Hint 21.3
Transform the equation to normal form and then apply the scale transformation x = λξ.

Hint 21.4
Make the change of variables x = et, y(x) = u(t). Write the derivatives with respect to x in terms of t.

x = et

dx = etdt

d

dx
= e−t

d

dt

x
d

dx
=

d

dt

Hint 21.5
Transform the equation to normal form.
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21.7 Solutions

The Constant Coefficient Equation
Normal Form

Solution 21.1

y′′ +

(
2 +

4

3
x

)
y′ +

1

9

(
24 + 12x+ 4x2

)
y = 0

To transform the equation to normal form we make the substitution

y = exp

(
−1

2

∫ (
2 +

4

3
x

)
dx

)
u

= e−x−x
2/3u

The invariant of the equation is

I(x) =
1

9

(
24 + 12x+ 4x2

)
− 1

4

(
2 +

4

3
x

)2

− 1

2

d

dx

(
2 +

4

3
x

)
= 1.

The normal form of the differential equation is then

u′′ + u = 0

which has the general solution

u = c1 cosx+ c2 sinx

Thus the equation for y has the general solution

y = c1 e−x−x
2/3 cosx+ c2 e−x−x

2/3 sinx.
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Transformations of the Independent Variable
Integral Equations

Solution 21.2
The substitution that will transform the equation to normal form is

y = exp

(
−1

2

∫
2(a+ bx) dx

)
u

= e−ax−bx
2/2u.

The invariant of the equation is

I(x) = c+ dx+ ex2 − 1

4
(2(a+ bx))2 − 1

2

d

dx
(2(a+ bx))

= c− b− a2 + (d− 2ab)x+ (e− b2)x2

≡ α + βx+ γx2

The normal form of the differential equation is

u′′ + (α + βx+ γx2)u = 0

We consider the following cases:

γ = 0.

β = 0.

α = 0. We immediately have the equation

u′′ = 0.

α 6= 0. With the change of variables

v(ξ) = u(x), x = α−1/2ξ,
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we obtain

v′′ + v = 0.

β 6= 0. We have the equation

y′′ + (α + βx)y = 0.

The scale transformation x = λξ + µ yields

v′′ + λ2(α + β(λξ + µ))y = 0

v′′ = [βλ3ξ + λ2(βµ+ α)]v.

Choosing

λ = (−β)−1/3, µ = −α
β

yields the differential equation

v′′ = ξv.

γ 6= 0. The scale transformation x = λξ + µ yields

v′′ + λ2[α + β(λξ + µ) + γ(λξ + µ)2]v = 0

v′′ + λ2[α + βµ+ γµ2 + λ(β + 2γµ)ξ + λ2γξ2]v = 0.

Choosing

λ = γ−1/4, µ = − β

2γ
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yields the differential equation

v′′ + (ξ2 + A)v = 0

where

A = γ−1/2 − 1

4
βγ−3/2.

Solution 21.3
The substitution that will transform the equation to normal form is

y = exp

(
−1

2

∫
2

(
a+

b

x

)
dx

)
u

= x−b e−axu.

The invariant of the equation is

I(x) = c+
d

x
+

e

x2
− 1

4

(
2

(
a+

b

x

))2

− 1

2

d

dx

(
2

(
a+

b

x

))
= c− ax +

d− 2ab

x
+
e+ b− b2

x2

≡ α +
β

x
+

γ

x2
.

The invariant form of the differential equation is

u′′ +

(
α +

β

x
+

γ

x2

)
u = 0.

We consider the following cases:
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α = 0.

β = 0. We immediately have the equation

u′′ +
γ

x2
u = 0.

β 6= 0. We have the equation

u′′ +

(
β

x
+

γ

x2

)
u = 0.

The scale transformation u(x) = v(ξ), x = λξ yields

v′′ +

(
βλ

ξ
+
γ

ξ2

)
u = 0.

Choosing λ = β−1, we obtain

v′′ +

(
1

ξ
+
γ

ξ2

)
u = 0.

α 6= 0. The scale transformation x = λξ yields

v′′ +

(
αλ2 +

βλ

ξ
+
γ

ξ2

)
v = 0.

Choosing λ = α−1/2, we obtain

v′′ +

(
1 +

α−1/2β

ξ
+
γ

ξ2

)
v = 0.
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Solution 21.4
We write the derivatives with respect to x in terms of t.

x = et

dx = etdt

d

dx
= e−t

d

dt

x
d

dx
=

d

dt

Now we express x2 d2

dx2 in terms of t.

x2 d2

dx2
= x

d

dx

(
x

d

dx

)
− x d

dx
=

d2

dt2
− d

dt

Thus under the change of variables, x = et, y(x) = u(t), the Euler equation becomes

u′′ − u′ + a1u
′ + a0u = 0

u′′ + (a1 − 1)u′ + a0u = 0.

Solution 21.5
The transformation

y = exp

(
−1

2

∫
1

x
dx

)
= x−1/2u

will put the equation in normal form. The invariant is

I(x) =

(
1− 1

4x2

)
− 1

4

(
1

x2

)
− 1

2

−1

x2
= 1.
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Thus we have the differential equation

u′′ + u = 0,

with the solution

u = c1 cos x+ c2 sinx.

The solution of Bessel’s equation of order 1/2 is

y = c1x
−1/2 cosx+ c2x

−1/2 sinx.
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Chapter 22

The Dirac Delta Function

I do not know what I appear to the world; but to myself I seem to have been only like a boy playing on a
seashore, and diverting myself now and then by finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.

- Sir Issac Newton

22.1 Derivative of the Heaviside Function

The Heaviside function H(x) is defined

H(x) =

{
0 for x < 0,

1 for x > 0.

The derivative of the Heaviside function is zero for x 6= 0. At x = 0 the derivative is undefined. We will represent
the derivative of the Heaviside function by the Dirac delta function, δ(x). The delta function is zero for x 6= 0 and
infinite at the point x = 0. Since the derivative of H(x) is undefined, δ(x) is not a function in the conventional
sense of the word. One can derive the properties of the delta function rigorously, but the treatment in this text
will be almost entirely heuristic.
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The Dirac delta function is defined by the properties

δ(x) =

{
0 for x 6= 0,

∞ for x = 0,
and

∫ ∞
−∞

δ(x) dx = 1.

The second property comes from the fact that δ(x) represents the derivative of H(x). The Dirac delta function
is conceptually pictured in Figure 22.1.

Figure 22.1: The Dirac Delta Function.

Let f(x) be a continuous function that vanishes at infinity. Consider the integral∫ ∞
−∞

f(x)δ(x) dx.
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Using integration by parts, ∫ ∞
−∞

f(x)δ(x) dx =
[
f(x)H(x)

]∞
−∞ −

∫ ∞
−∞

f ′(x)H(x) dx

= −
∫ ∞

0

f ′(x) dx

= [−f(x)]∞0
= f(0).

We assumed that f(x) vanishes at infinity in order to use integration by parts to evaluate the integral. However,
since the delta function is zero for x 6= 0, the integrand is nonzero only at x = 0. Thus the behavior of the function
at infinity should not affect the value of the integral. Thus it is reasonable that f(0) =

∫∞
−∞ f(x)δ(x) dx holds for

all continuous functions. Changing variables and noting that δ(x) is symmetric we have

f(x) =

∫ ∞
−∞

f(ξ)δ(x− ξ) dξ.

This formula is very important in solving inhomogeneous differential equations.

22.2 The Delta Function as a Limit

Consider a function b(x, ε) defined by

b(x, ε) =

{
0 for |x| > ε/2
1
ε

for |x| < ε/2.

The graph of b(x, 1/10) is shown in Figure 22.2.
The Dirac delta function δ(x) can be thought of as b(x, ε) in the limit as ε→ 0. Note that the delta function

so defined satisfies the properties,

δ(x) =

{
0 for x 6= 0

∞ for x = 0
and

∫ ∞
−∞

δ(x) dx = 1
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5

10

Figure 22.2: Graph of b(x, 1/10).

Delayed Limiting Process. When the Dirac delta function appears inside an integral, we can think of the
delta function as a delayed limiting process. That is,∫ ∞

−∞
f(x)δ(x) dx ≡ lim

ε→0

∫ ∞
−∞

f(x)b(x, ε) dx.

Let f(x) be a continuous function and let F ′(x) = f(x). The integral of f(x)δ(x) is then∫ ∞
−∞

f(x)δ(x) dx = lim
ε→0

1

ε

∫ ε/2

−ε/2
f(x) dx

= lim
ε→0

1

ε
[F (x)]

ε/2
−ε/2

= lim
ε→0

F (ε/2)− F (−ε/2)

ε
= F ′(0)

= f(0).
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22.3 Higher Dimensions

We can define a Dirac delta function in n-dimensional Cartesian space, δn(x), x ∈ Rn. It is defined by the
following two properties.

δn(x) = 0 for x 6= 0∫
Rn

δn(x) dx = 1

It is easy to verify, that the n-dimensional Dirac delta function can be written as a product of 1-dimensional Dirac
delta functions.

δn(x) =
n∏
k=1

δ(xk)

22.4 Non-Rectangular Coordinate Systems

We can derive Dirac delta functions in non-rectangular coordinate systems by making a change of variables in
the relation, ∫

Rn

δn(x) dx = 1

Where the transformation is non-singular, one merely divides the Dirac delta function by the Jacobian of the
transformation to the coordinate system.

Example 22.4.1 Consider the Dirac delta function in cylindrical coordinates, (r, θ, z). The Jacobian is J = r.∫ ∞
−∞

∫ 2π

0

∫ ∞
0

δ3 (x− x0) r dr dθ dz = 1
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For r0 6= 0, the Dirac Delta function is

δ3 (x− x0) =
1

r
δ (r − r0) δ (θ − θ0) δ (z − z0)

since it satisfies the two defining properties.

1

r
δ (r − r0) δ (θ − θ0) δ (z − z0) = 0 for (r, θ, z) 6= (r0, θ0, z0)

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

1

r
δ (r − r0) δ (θ − θ0) δ (z − z0) r dr dθ dz

=

∫ ∞
0

δ (r − r0) dr

∫ 2π

0

δ (θ − θ0) dθ

∫ ∞
−∞

δ (z − z0) dz = 1

For r0 = 0, we have

δ3 (x− x0) =
1

2πr
δ (r) δ (z − z0)

since this again satisfies the two defining properties.

1

2πr
δ (r) δ (z − z0) = 0 for (r, z) 6= (0, z0)∫ ∞

−∞

∫ 2π

0

∫ ∞
0

1

2πr
δ (r) δ (z − z0) r dr dθ dz =

1

2π

∫ ∞
0

δ (r) dr

∫ 2π

0

dθ

∫ ∞
−∞

δ (z − z0) dz = 1
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22.5 Exercises
Exercise 22.1
Let f(x) be a function that is continuous except for a jump discontinuity at x = 0. Using a delayed limiting
process, show that

f(0−) + f(0+)

2
=

∫ ∞
−∞

f(x)δ(x) dx.

Hint, Solution

Exercise 22.2
Let y = y(x) be defined on some interval Assume y(x) is continuously differentiable and that y′(x) 6= 0. Show
that

δ(x− x0) =

(
dy

dx

)−1

δ(y − y0)

where y0 = y(x0).
Hint, Solution

Exercise 22.3
Determine the Dirac delta function in spherical coordinates, (r, θ, φ).

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ

Hint, Solution
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22.6 Hints
Hint 22.1

Hint 22.2
Make a change of variables in the integral ∫

δ(x− x0) dx.

Hint 22.3
Consider the special cases φ0 = 0, π and r0 = 0.
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22.7 Solutions

Solution 22.1
Let F ′(x) = f(x).

∫ ∞
−∞

f(x)δ(x) dx = lim
ε→0

1

ε

∫ ∞
−∞

f(x)b(x, ε) dx

= lim
ε→0

1

ε

(∫ 0

−ε/2
f(x)b(x, ε) dx+

∫ ε/2

0

f(x)b(x, ε) dx

)
= lim

ε→0

1

ε
([F (0)− F (−ε/2)] + [F (ε/2)− F (0)])

= lim
ε→0

1

2

(
F (0)− F (−ε/2)

ε/2
+
F (ε/2)− F (0)

ε/2

)
=
F ′(0−) + F ′(0+)

2

=
f(0−) + f(0+)

2

Solution 22.2
We prove the identity by making a change of variables in the integral of δ(x− x0).

∫ b

a

δ(x− x0) dx =

∫ y(b)

y(a)

δ(y − y0)

(
dy

dx

)−1

dy

δ(x− x0) =

(
dy

dx

)−1

δ(y − y0)
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Solution 22.3
We consider the Dirac delta function in spherical coordinates, (r, θ, φ). The Jacobian is J = r2 sin(φ).∫ π

0

∫ 2π

0

∫ ∞
0

δ3 (x− x0) r2 sin(φ) dr dθ dφ = 1

For r0 6= 0, and φ0 6= 0, π, the Dirac Delta function is

δ3 (x− x0) =
1

r2 sin(φ)
δ (r − r0) δ (θ − θ0) δ (φ− φ0)

since it satisfies the two defining properties.

1

r2 sin(φ)
δ (r − r0) δ (θ − θ0) δ (φ− φ0) = 0 for (r, θ, φ) 6= (r0, θ0, φ0)

∫ π

0

∫ 2π

0

∫ ∞
0

1

r2 sin(φ)
δ (r − r0) δ (θ − θ0) δ (φ− φ0) r2 sin(φ) dr dθ dφ

=

∫ ∞
0

δ (r − r0) dr

∫ 2π

0

δ (θ − θ0) dθ

∫ π

0

δ (φ− φ0) dφ = 1

For φ0 = 0 or φ0 = π, the Dirac delta function is

δ3 (x− x0) =
1

2πr2 sin(φ)
δ (r − r0) δ (φ− φ0) .

We check that the value of the integral is unity.∫ π

0

∫ 2π

0

∫ ∞
0

1

2πr2 sin(φ)
δ (r − r0) δ (φ− φ0) r2 sin(φ) dr dθ dφ

=
1

2π

∫ ∞
0

δ (r − r0) dr

∫ 2π

0

dθ

∫ π

0

δ (φ− φ0) dφ = 1
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For r0 = 0 the Dirac delta function is

δ3 (x) =
1

4πr2
δ (r)

We verify that the value of the integral is unity.∫ π

0

∫ 2π

0

∫ ∞
0

1

4πr2
δ (r − r0) r2 sin(φ) dr dθ dφ =

1

4π

∫ ∞
0

δ (r) dr

∫ 2π

0

dθ

∫ π

0

sin(φ) dφ = 1
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Chapter 23

Inhomogeneous Differential Equations

Feelin’ stupid? I know I am!

-Homer Simpson

23.1 Particular Solutions

Consider the nth order linear homogeneous equation

L[y] ≡ y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = 0.

Let {y1, y2, . . . , yn} be a set of linearly independent homogeneous solutions, L[yk] = 0. We know that the general
solution of the homogeneous equation is a linear combination of the homogeneous solutions.

yh =
n∑
k=1

ckyk(x)

Now consider the nth order linear inhomogeneous equation

L[y] ≡ y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = f(x).
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Any function yp which satisfies this equation is called a particular solution of the differential equation. We want
to know the general solution of the inhomogeneous equation. Later in this chapter we will cover methods of
constructing this solution; now we consider the form of the solution.

Let yp be a particular solution. Note that yp+h is a particular solution if h satisfies the homogeneous equation.

L[yp + h] = L[yp] + L[h] = f + 0 = f

Therefore yp + yh satisfies the homogeneous equation. We show that this is the general solution of the inhomoge-
neous equation. Let yp and ηp both be solutions of the inhomogeneous equation L[y] = f . The difference of yp
and ηp is a homogeneous solution.

L[yp − ηp] = L[yp]− L[ηp] = f − f = 0

yp and ηp differ by a linear combination of the homogeneous solutions {yk}. Therefore the general solution of
L[y] = f is the sum of any particular solution yp and the general homogeneous solution yh.

yp + yh = yp(x) +
n∑
k=1

ckyk(x)

Result 23.1.1 The general solution of the nth order linear inhomogeneous equation
L[y] = f(x) is

y = yp + c1y1 + c2y2 + · · ·+ cnyn,

where yp is a particular solution, {y1, . . . , yn} is a set of linearly independent homogeneous
solutions, and the ck’s are arbitrary constants.

Example 23.1.1 The differential equation

y′′ + y = sin(2x)

916



has the two homogeneous solutions

y1 = cos x, y2 = sinx,

and a particular solution

yp = −1

3
sin(2x).

We can add any combination of the homogeneous solutions to yp and it will still be a particular solution. For
example,

ηp = −1

3
sin(2x)− 1

3
sinx

= −2

3
sin

(
3x

2

)
cos
(x

2

)
is a particular solution.

23.2 Method of Undetermined Coefficients

The first method we present for computing particular solutions is the method of undetermined coefficients. For
some simple differential equations, (primarily constant coefficient equations), and some simple inhomogeneities
we are able to guess the form of a particular solution. This form will contain some unknown parameters. We
substitute this form into the differential equation to determine the parameters and thus determine a particular
solution.

Later in this chapter we will present general methods which work for any linear differential equation and any
inhogeneity. Thus one might wonder why I would present a method that works only for some simple problems.
(And why it is called a “method” if it amounts to no more than guessing.) The answer is that guessing an answer
is less grungy than computing it with the formulas we will develop later. Also, the process of this guessing is not
random, there is rhyme and reason to it.
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Consider an nth order constant coefficient, inhomogeneous equation.

L[y] ≡ y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(x)

If f(x) is one of a few simple forms, then we can guess the form of a particular solution. Below we enumerate
some cases.

f = p(x). If f is an mth order polynomial, f(x) = pmx
m + · · ·+ p1x+ p0, then guess

yp = cmx
m + · · · c1x+ c0.

f = p(x) eax. If f is a polynomial times an exponential then guess

yp = (cmx
m + · · · c1x+ c0) eax.

f = p(x) eax cos (bx). If f is a cosine or sine times a polynomial and perhaps an exponential, f(x) = p(x) eax cos(bx)
or f(x) = p(x) eax sin(bx) then guess

yp = (cmx
m + · · · c1x+ c0) eax cos(bx) + (dmx

m + · · · d1x+ d0) eax sin(bx).

Likewise for hyperbolic sines and hyperbolic cosines.

Example 23.2.1 Consider

y′′ − 2y′ + y = t2.

The homogeneous solutions are y1 = et and y2 = t et. We guess a particular solution of the form

yp = at2 + bt+ c.
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We substitute the expression into the differential equation and equate coefficients of powers of t to determine the
parameters.

y′′p − 2y′p + yp = t2

(2a)− 2(2at+ b) + (at2 + bt+ c) = t2

(a− 1)t2 + (b− 4a)t+ (2a− 2b+ c) = 0

a− 1 = 0, b− 4a = 0, 2a− 2b+ c = 0

a = 1, b = 4, c = 6

A particular solution is

yp = t2 + 4t+ 6.

If the inhomogeneity is a sum of terms, L[y] = f ≡ f1+· · ·+fk, you can solve the problems L[y] = f1, . . . , L[y] =
fk independently and then take the sum of the solutions as a particular solution of L[y] = f .

Example 23.2.2 Consider

L[y] ≡ y′′ − 2y′ + y = t2 + e2t. (23.1)

The homogeneous solutions are y1 = et and y2 = t et. We already know a particular solution to L[y] = t2. We
seek a particular solution to L[y] = e2t. We guess a particular solution of the form

yp = a e2t.

We substitute the expression into the differential equation to determine the parameter.

y′′p − 2y′p + yp = e2t

4ae2t − 4a e2t + a e2t = e2t

a = 1

A particular solution of L[y] = e2t is yp = e2t. Thus a particular solution of Equation 23.1 is

yp = t2 + 4t+ 6 + e2t.
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The above guesses will not work if the inhomogeneity is a homogeneous solution. In this case, multiply the
guess by the lowest power of x such that the guess does not contain homogeneous solutions.

Example 23.2.3 Consider

L[y] ≡ y′′ − 2y′ + y = et.

The homogeneous solutions are y1 = et and y2 = t et. Guessing a particular solution of the form yp = a et would
not work because L[ et] = 0. We guess a particular solution of the form

yp = at2 et

We substitute the expression into the differential equation and equate coefficients of like terms to determine the
parameters.

y′′p − 2y′p + yp = et

(at2 + 4at+ 2a) et − 2(at2 + 2at) et + at2 et = et

2a et = et

a =
1

2

A particular solution is

yp =
t2

2
et.

Example 23.2.4 Consider

y′′ +
1

x
y′ +

1

x2
y = x, x > 0.

The homogeneous solutions are y1 = cos(lnx) and y2 = sin(lnx). We guess a particular solution of the form

yp = ax3
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We substitute the expression into the differential equation and equate coefficients of like terms to determine the
parameter.

y′′p +
1

x
y′p +

1

x2
yp = x

6ax+ 3ax+ ax = x

a =
1

10

A particular solution is

yp =
x3

10
.

23.3 Variation of Parameters

In this section we present a method for computing a particular solution of an inhomogeneous equation given
that we know the homogeneous solutions. We will first consider second order equations and then generalize the
result for nth order equations.

23.3.1 Second Order Differential Equations

Consider the second order inhomogeneous equation,

L[y] ≡ y′′ + p(x)y′ + q(x)y = f(x), on a < x < b.

We assume that the coefficient functions in the differential equation are continuous on [a . . . b]. Let y1(x) and
y2(x) be two linearly independent solutions to the homogeneous equation. Since the Wronskian,

W (x) = exp

(
−
∫
p(x) dx

)
,
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is non-vanishing, we know that these solutions exist. We seek a particular solution of the form,

yp = u1(x)y1 + u2(x)y2.

We compute the derivatives of yp.

y′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2

y′′p = u′′1y1 + 2u′1y
′
1 + u1y

′′
1 + u′′2y2 + 2u′2y

′
2 + u2y

′′
2

We substitute the expression for yp and its derivatives into the inhomogeneous equation and use the fact that y1

and y2 are homogeneous solutions to simplify the equation.

u′′1y1 + 2u′1y
′
1 + u1y

′′
1 + u′′2y2 + 2u′2y

′
2 + u2y

′′
2 + p(u′1y1 + u1y

′
1 + u′2y2 + u2y

′
2) + q(u1y1 + u2y2) = f

u′′1y1 + 2u′1y
′
1 + u′′2y2 + 2u′2y

′
2 + p(u′1y1 + u′2y2) = f

This is an ugly equation for u1 and u2, however, we have an ace up our sleeve. Since u1 and u2 are undetermined
functions of x, we are free to impose a constraint. We choose this constraint to simplify the algebra.

u′1y1 + u′2y2 = 0

This constraint simplifies the derivatives of yp,

y′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2

= u1y
′
1 + u2y

′
2

y′′p = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 .

We substitute the new expressions for yp and its derivatives into the inhomogeneous differential equation to obtain
a much simpler equation than before.

u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 + p(u1y

′
1 + u2y

′
2) + q(u1y1 + u2y2) = f(x)

u′1y
′
1 + u′2y

′
2 + u1L[y1] + u2L[y2] = f(x)

u′1y
′
1 + u′2y

′
2 = f(x).
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With the constraint, we have a system of linear equations for u′1 and u′2.

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = f(x).(

y1 y2

y′1 y′2

)(
u′1
u′2

)
=

(
0
f

)
We solve this system using Kramer’s rule. (See Appendix S.)

u′1 = −f(x)y2

W (x)
u′2 =

f(x)y1

W (x)

Here W (x) is the Wronskian.

W (x) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣
We integrate to get u1 and u2. This gives us a particular solution.

yp = −y1

∫
f(x)y2(x)

W (x)
dx+ y2

∫
f(x)y1(x)

W (x)
dx.

Result 23.3.1 Let y1 and y2 be linearly independent homogeneous solutions of

L[y] = y′′ + p(x)y′ + q(x)y = f(x).

A particular solution is

yp = −y1(x)

∫
f(x)y2(x)

W (x)
dx+ y2(x)

∫
f(x)y1(x)

W (x)
dx,

where W (x) is the Wronskian of y1 and y2.
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Example 23.3.1 Consider the equation,

y′′ + y = cos(2x).

The homogeneous solutions are y1 = cos x and y2 = sinx. We compute the Wronskian.

W (x) =

∣∣∣∣ cosx sinx
− sinx cos x

∣∣∣∣ = cos2 x+ sin2 x = 1

We use variation of parameters to find a particular solution.

yp = − cos(x)

∫
cos(2x) sin(x) dx+ sin(x)

∫
cos(2x) cos(x) dx

= −1

2
cos(x)

∫ (
sin(3x)− sin(x)

)
dx+

1

2
sin(x)

∫ (
cos(3x) + cos(x)

)
dx

= −1

2
cos(x)

(
−1

3
cos(3x) + cos(x)

)
+

1

2
sin(x)

(
1

3
sin(3x) + sin(x)

)
=

1

2

(
sin2(x)− cos2(x)

)
+

1

6

(
cos(3x) cos(x) + sin(3x) sin(x)

)
= −1

2
cos(2x) +

1

6
cos(2x)

= −1

3
cos(2x)

The general solution of the inhomogeneous equation is

y = −1

3
cos(2x) + c1 cos(x) + c2 sin(x).
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23.3.2 Higher Order Differential Equations

Consider the nth order inhomogeneous equation,

L[y] = y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = f(x), on a < x < b.

We assume that the coefficient functions in the differential equation are continuous on [a . . . b]. Let {y1, . . . , yn}
be a set of linearly independent solutions to the homogeneous equation. Since the Wronskian,

W (x) = exp

(
−
∫
pn−1(x) dx

)
,

is non-vanishing, we know that these solutions exist. We seek a particular solution of the form

yp = u1y1 + u2y2 + · · ·+ unyn.

Since {u1, . . . , un} are undetermined functions of x, we are free to impose n − 1 constraints. We choose these
constraints to simplify the algebra.

u′1y1 +u′2y2 + · · ·+u′nyn =0

u′1y
′
1 +u′2y

′
2 + · · ·+u′ny′n =0

... +
... +

... +
... =0

u′1y
(n−2)
1 +u′2y

(n−2)
2 + · · ·+u′ny(n−2)

n =0

We differentiate the expression for yp, utilizing our constraints.

yp =u1y1 +u2y2 + · · ·+unyn
y′p =u1y

′
1 +u2y

′
2 + · · ·+uny′n

y′′p =u1y
′′
1 +u2y

′′
2 + · · ·+uny′′n

... =
... +

... +
... +

...

y(n)
p =u1y

(n)
1 +u2y

(n)
2 + · · ·+uny(n)

n + u′1y
(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n
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We substitute yp and its derivatives into the inhomogeneous differential equation and use the fact that the yk are
homogeneous solutions.

u1y
(n)
1 + · · ·+ uny

(n)
n + u′1y

(n−1)
1 + · · ·+ u′ny

(n−1)
n + pn−1(u1y

(n−1)
1 + · · ·+ uny

(n−1)
n ) + · · ·+ p0(u1y1 + · · ·unyn) = f

u1L[y1] + u2L[y2] + · · ·+ unL[yn] + u′1y
(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n = f

u′1y
(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n = f.

With the constraints, we have a system of linear equations for {u1, . . . , un}.


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



u′1
u′2
...
u′n

 =


0
...
0
f

 .

We solve this system using Kramer’s rule. (See Appendix S.)

u′k = (−1)n+k+1W [y1, . . . , yk−1, yk+1, . . . , yn]

W [y1, y2, . . . , yn]
f, for k = 1, . . . , n,

Here W is the Wronskian.

We integrating to obtain the uk’s.

uk = (−1)n+k+1

∫
W [y1, . . . , yk−1, yk+1, . . . , yn](x)

W [y1, y2, . . . , yn](x)
f(x) dx, for k = 1, . . . , n
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Result 23.3.2 Let {y1, . . . , yn} be linearly independent homogeneous solutions of

L[y] = y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = f(x), on a < x < b.

A particular solution is

yp = u1y1 + u2y2 + · · ·+ unyn.

where

uk = (−1)n+k+1
∫
W [y1, . . . , yk−1, yk+1, . . . , yn](x)

W [y1, y2, . . . , yn](x)
f(x) dx, for k = 1, . . . , n,

and W [y1, y2, . . . , yn](x) is the Wronskian of {y1(x), . . . , yn(x)}.

23.4 Piecewise Continuous Coefficients and Inhomogeneities

Example 23.4.1 Consider the problem

y′′ − y = e−α|x|, y(±∞) = 0, α > 0, α 6= 1.
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The homogeneous solutions of the differential equation are ex and e−x. We use variation of parameters to find a
particular solution for x > 0.

yp = − ex
∫ x e−ξ e−αξ

−2
dξ + e−x

∫ x eξ e−αξ

−2
dξ

=
1

2
ex
∫ x

e−(α+1)ξ dξ − 1

2
e−x

∫ x

e(1−α)ξ dξ

= − 1

2(α + 1)
e−αx +

1

2(α− 1)
e−αx

=
e−αx

α2 − 1
, for x > 0

A particular solution for x < 0 is

yp =
eαx

α2 − 1
, for x < 0.

Thus a particular solution is

yp =
e−α|x|

α2 − 1
.

The general solution is

y =
1

α2 − 1
e−α|x| + c1 ex + c2 e−x.

Applying the boundary conditions, we see that c1 = c2 = 0. Apparently the solution is

y =
e−α|x|

α2 − 1
.

This function is plotted in Figure 23.1. This function satisfies the differential equation for positive and negative
x. It also satisfies the boundary conditions. However, this is NOT a solution to the differential equation. Since
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the differential equation has no singular points and the inhomogeneous term is continuous, the solution must be
twice continuously differentiable. Since the derivative of e−α|x|/(α2 − 1) has a jump discontinuity at x = 0, the
second derivative does not exist. Thus this function could not possibly be a solution to the differential equation.
In the next example we examine the right way to solve this problem.

-4 -2 2 4
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0.1

0.15

0.2

0.25

0.3
-4 -2 2 4

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

Figure 23.1: The Incorrect and Correct Solution to the Differential Equation.

Example 23.4.2 Again consider

y′′ − y = e−α|x|, y(±∞) = 0, α > 0, α 6= 1.

Separating this into two problems for positive and negative x,

y′′− − y− = eαx, y−(−∞) = 0, on −∞ < x ≤ 0,

y′′+ − y+ = e−αx, y+(∞) = 0, on 0 ≤ x <∞.
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In order for the solution over the whole domain to be twice differentiable, the solution and it’s first derivative
must be continuous. Thus we impose the additional boundary conditions

y−(0) = y+(0), y′−(0) = y′+(0).

The solutions that satisfy the two differential equations and the boundary conditions at infinity are

y− =
eαx

α2 − 1
+ c− ex, y+ =

e−αx

α2 − 1
+ c+ e−x.

The two additional boundary conditions give us the equations

y−(0) = y+(0) → c− = c+

y′−(0) = y′+(0) → α

α2 − 1
+ c− = − α

α2 − 1
− c+.

We solve these two equations to determine c− and c+.

c− = c+ = − α

α2 − 1

Thus the solution over the whole domain is

y =

{
eαx−α ex

α2−1
for x < 0,

e−αx−α e−x

α2−1
for x > 0

y =
e−α|x| − α e−|x|

α2 − 1
.

This function is plotted in Figure 23.1. You can verify that this solution is twice continuously differentiable.
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23.5 Inhomogeneous Boundary Conditions

23.5.1 Eliminating Inhomogeneous Boundary Conditions

Consider the nth order equation

L[y] = f(x), for a < x < b,

subject to the linear inhomogeneous boundary conditions

Bj[y] = γj, for j = 1, . . . , n,

where the boundary conditions are of the form

B[y] ≡ α0y(a) + α1y
′(a) + · · ·+ yn−1y

(n−1)(a) + β0y(b) + β1y
′(b) + · · ·+ βn−1y

(n−1)

Let g(x) be an n-times continuously differentiable function that satisfies the boundary conditions. Substituting
y = u+ g into the differential equation and boundary conditions yields

L[u] = f(x)− L[g], Bj[u] = bj −Bj[g] = 0 for j = 1, . . . , n.

Note that the problem for u has homogeneous boundary conditions. Thus a problem with inhomogeneous bound-
ary conditions can be reduced to one with homogeneous boundary conditions. This technique is of limited
usefulness for ordinary differential equations but is important for solving some partial differential equation prob-
lems.

Example 23.5.1 Consider the problem

y′′ + y = cos 2x, y(0) = 1, y(π) = 2.

g(x) = x
π

+ 1 satisfies the boundary conditions. Substituting y = u+ g yields

u′′ + u = cos 2x− x

π
− 1, y(0) = y(π) = 0.
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Example 23.5.2 Consider

y′′ + y = cos 2x, y′(0) = y(π) = 1.

g(x) = sinx− cosx satisfies the inhomogeneous boundary conditions. Substituting y = u+ sinx− cos x yields

u′′ + u = cos 2x, u′(0) = u(π) = 0.

Note that since g(x) satisfies the homogeneous equation, the inhomogeneous term in the equation for u is the
same as that in the equation for y.

Example 23.5.3 Consider

y′′ + y = cos 2x, y(0) =
2

3
, y(π) = −4

3
.

g(x) = cos x− 1
3

satisfies the boundary conditions. Substituting y = u+ cosx− 1
3

yields

u′′ + u = cos 2x+
1

3
, u(0) = u(π) = 0.

Result 23.5.1 The nth order differential equation with boundary conditions

L[y] = f(x), Bj[y] = bj, for j = 1, . . . , n

has the solution y = u+ g where u satisfies

L[u] = f(x)− L[g], Bj[u] = 0, for j = 1, . . . , n

and g is any n-times continuously differentiable function that satisfies the inhomogeneous
boundary conditions.
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23.5.2 Separating Inhomogeneous Equations and Inhomogeneous Boundary Con-
ditions

Now consider a problem with inhomogeneous boundary conditions

L[y] = f(x), B1[y] = γ1, B2[y] = γ2.

In order to solve this problem, we solve the two problems

L[u] = f(x), B1[u] = B2[u] = 0, and

L[v] = 0, B1[v] = γ1, B2[v] = γ2.

The solution for the problem with an inhomogeneous equation and inhomogeneous boundary conditions will be
the sum of u and v. To verify this,

L[u+ v] = L[u] + L[v] = f(x) + 0 = f(x),

Bi[u+ v] = Bi[u] +Bi[v] = 0 + γi = γi.

This will be a useful technique when we develop Green functions.

Result 23.5.2 The solution to

L[y] = f(x), B1[y] = γ1, B2[y] = γ2,

is y = u+ v where

L[u] = f(x), B1[u] = 0, B2[u] = 0, and

L[v] = 0, B1[v] = γ1, B2[v] = γ2.
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23.5.3 Existence of Solutions of Problems with Inhomogeneous Boundary Con-
ditions

Consider the nth order homogeneous differential equation

L[y] = y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = f(x), for a < x < b,

subject to the n inhomogeneous boundary conditions

Bj[y] = γj, for j = 1, . . . , n

where each boundary condition is of the form

B[y] ≡ α0y(a) + α1y
′(a) + · · ·+ αn−1y

(n−1)(a) + β0y(b) + β1y
′(b) + · · ·+ βn−1y

(n−1)(b).

We assume that the coefficients in the differential equation are continuous on [a, b]. Since the Wronskian of the
solutions of the differential equation,

W (x) = exp

(
−
∫
pn−1(x) dx

)
,

is non-vanishing on [a, b], there are n linearly independent solution on that range. Let {y1, . . . , yn} be a set
of linearly independent solutions of the homogeneous equation. From Result 23.3.2 we know that a particular
solution yp exists. The general solution of the differential equation is

y = yp + c1y1 + c2y2 + · · ·+ cnyn.

The n boundary conditions impose the matrix equation,
B1[y1] B1[y2] · · · B1[yn]
B2[y1] B2[y2] · · · B2[yn]

...
...

. . .
...

Bn[y1] Bn[y2] · · · Bn[yn]



c1

c2
...
cn

 =


γ1 −B1[yp]
γ2 −B2[yp]

...
γn −Bn[yp]


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This equation has a unique solution if and only if the equation


B1[y1] B1[y2] · · · B1[yn]
B2[y1] B2[y2] · · · B2[yn]

...
...

. . .
...

Bn[y1] Bn[y2] · · · Bn[yn]



c1

c2
...
cn

 =


0
0
...
0


has only the trivial solution. (This is the case if and only if the determinant of the matrix is nonzero.) Thus the
problem

L[y] = y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = f(x), for a < x < b,

subject to the n inhomogeneous boundary conditions

Bj[y] = γj, for j = 1, . . . , n,

has a unique solution if and only if the problem

L[y] = y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = 0, for a < x < b,

subject to the n homogeneous boundary conditions

Bj[y] = 0, for j = 1, . . . , n,

has only the trivial solution.
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Result 23.5.3 The problem

L[y] = y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = f(x), for a < x < b,

subject to the n inhomogeneous boundary conditions

Bj[y] = γj, for j = 1, . . . , n,

has a unique solution if and only if the problem

L[y] = y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = 0, for a < x < b,

subject to

Bj[y] = 0, for j = 1, . . . , n,

has only the trivial solution.

23.6 Green Functions for First Order Equations

Consider the first order inhomogeneous equation

L[y] ≡ y′ + p(x)y = f(x), for x > a, (23.2)

subject to a homogeneous initial condition, B[y] ≡ y(a) = 0.

The Green function G(x|ξ) is defined as the solution to

L[G(x|ξ)] = δ(x− ξ) subject to G(a|ξ) = 0.
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We can represent the solution to the inhomogeneous problem in Equation 23.2 as an integral involving the Green
function. To show that

y(x) =

∫ ∞
a

G(x|ξ)f(ξ) dξ

is the solution, we apply the linear operator L to the integral. (Assume that the integral is uniformly convergent.)

L

[∫ ∞
a

G(x|ξ)f(ξ) dξ

]
=

∫ ∞
a

L[G(x|ξ)]f(ξ) dξ

=

∫ ∞
a

δ(x− ξ)f(ξ) dξ

= f(x)

The integral also satisfies the initial condition.

B

[∫ ∞
a

G(x|ξ)f(ξ) dξ

]
=

∫ ∞
a

B[G(x|ξ)]f(ξ) dξ

=

∫ ∞
a

(0)f(ξ) dξ

= 0

Now we consider the qualitiative behavior of the Green function. For x 6= ξ, the Green function is simply a
homogeneous solution of the differential equation, however at x = ξ we expect some singular behavior. G′(x|ξ)
will have a Dirac delta function type singularity. This means that G(x|ξ) will have a jump discontinuity at x = ξ.
We integrate the differential equation on the vanishing interval (ξ− . . . ξ+) to determine this jump.

G′ + p(x)G = δ(x− ξ)

G(ξ+|ξ)−G(ξ−|ξ) +

∫ ξ+

ξ−
p(x)G(x|ξ) dx = 1

G(ξ+|ξ)−G(ξ−|ξ) = 1 (23.3)
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The homogeneous solution of the differential equation is

yh = e−
∫
p(x) dx

Since the Green function satisfies the homogeneous equation for x 6= ξ, it will be a constant times this homogeneous
solution for x < ξ and x > ξ.

G(x|ξ) =

{
c1 e−

∫
p(x) dx a < x < ξ

c2 e−
∫
p(x) dx ξ < x

In order to satisfy the homogeneous initial condition G(a|ξ) = 0, the Green function must vanish on the interval
(a . . . ξ).

G(x|ξ) =

{
0 a < x < ξ

c e−
∫
p(x) dx ξ < x

The jump condition, (Equation 23.3), gives us the constraint G(ξ+|ξ) = 1. This determines the constant in the
homogeneous solution for x > ξ.

G(x|ξ) =

{
0 a < x < ξ

e−
∫ x
ξ p(t) dt ξ < x

We can use the Heaviside function to write the Green function without using a case statement.

G(x|ξ) = e−
∫ x
ξ p(t) dtH(x− ξ)

Clearly the Green function is of little value in solving the inhomogeneous differential equation in Equation 23.2,
as we can solve that problem directly. However, we will encounter first order Green function problems in solving
some partial differential equations.
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Result 23.6.1 The first order inhomogeneous differential equation with homogeneous
initial condition

L[y] ≡ y′ + p(x)y = f(x), for a < x, y(a) = 0,

has the solution

y =

∫ ∞
a

G(x|ξ)f(ξ) dξ,

where G(x|ξ) satisfies the equation

L[G(x|ξ)] = δ(x− ξ), for a < x, G(a|ξ) = 0.

The Green function is

G(x|ξ) = e−
∫ x
ξ
p(t) dtH(x− ξ)

23.7 Green Functions for Second Order Equations

Consider the second order inhomogeneous equation

L[y] = y′′ + p(x)y′ + q(x)y = f(x), for a < x < b, (23.4)

subject to the homogeneous boundary conditions

B1[y] = B2[y] = 0.

The Green function G(x|ξ) is defined as the solution to

L[G(x|ξ)] = δ(x− ξ) subject to B1[G] = B2[G] = 0.
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The Green function is useful because you can represent the solution to the inhomogeneous problem in Equation 23.4
as an integral involving the Green function. To show that

y(x) =

∫ b

a

G(x|ξ)f(ξ) dξ

is the solution, we apply the linear operator L to the integral. (Assume that the integral is uniformly convergent.)

L

[∫ b

a

G(x|ξ)f(ξ) dξ

]
=

∫ b

a

L[G(x|ξ)]f(ξ) dξ

=

∫ b

a

δ(x− ξ)f(ξ) dξ

= f(x)

The integral also satisfies the boundary conditions.

Bi

[∫ b

a

G(x|ξ)f(ξ) dξ

]
=

∫ b

a

Bi[G(x|ξ)]f(ξ) dξ

=

∫ b

a

[0]f(ξ) dξ

= 0

One of the advantages of using Green functions is that once you find the Green function for a linear operator
and certain homogeneous boundary conditions,

L[G] = δ(x− ξ), B1[G] = B2[G] = 0,

you can write the solution for any inhomogeneity, f(x).

L[f ] = f(x), B1[y] = B2[y] = 0
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You do not need to do any extra work to obtain the solution for a different inhomogeneous term.
Qualitatively, what kind of behavior will the Green function for a second order differential equation have?

Will it have a delta function singularity; will it be continuous? To answer these questions we will first look at the
behavior of integrals and derivatives of δ(x).

The integral of δ(x) is the Heaviside function, H(x).

H(x) =

∫ x

−∞
δ(t) dt =

{
0 for x < 0

1 for x > 0

The integral of the Heaviside function is the ramp function, r(x).

r(x) =

∫ x

−∞
H(t) dt =

{
0 for x < 0

x for x > 0

The derivative of the delta function is zero for x 6= 0. At x = 0 it goes from 0 up to +∞, down to −∞ and then
back up to 0.

In Figure 23.2 we see conceptually the behavior of the ramp function, the Heaviside function, the delta function,
and the derivative of the delta function.

Figure 23.2: r(x), H(x), δ(x) and d
dx
δ(x)
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We write the differential equation for the Green function.

G′′(x|ξ) + p(x)G′(x|ξ) + q(x)G(x|ξ) = δ(x− ξ)

we see that only the G′′(x|ξ) term can have a delta function type singularity. If one of the other terms had a delta
function type singularity then G′′(x|ξ) would be more singular than a delta function and there would be nothing
in the right hand side of the equation to match this kind of singularity. Analogous to the progression from a
delta function to a Heaviside function to a ramp function, we see that G′(x|ξ) will have a jump discontinuity and
G(x|ξ) will be continuous.

Let y1 and y2 be two linearly independent solutions to the homogeneous equation, L[y] = 0. Since the Green
function satisfies the homogeneous equation for x 6= ξ, it will be a linear combination of the homogeneous solutions.

G(x|ξ) =

{
c1y1 + c2y2 for x < ξ

d1y1 + d2y2 for x > ξ

We require that G(x|ξ) be continuous.

G(x|ξ)
∣∣
x→ξ− = G(x|ξ)

∣∣
x→ξ+

We can write this in terms of the homogeneous solutions.

c1y1(ξ) + c2y2(ξ) = d1y1(ξ) + d2y2(ξ)

We integrate L[G(x|ξ)] = δ(x− ξ) from ξ− to ξ+.

∫ ξ+

ξ−
[G′′(x|ξ) + p(x)G′(x|ξ) + q(x)G(x|ξ)] dx =

∫ ξ+

ξ−
δ(x− ξ) dx.
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Since G(x|ξ) is continuous and G′(x|ξ) has only a jump discontinuity two of the terms vanish.

∫ ξ+

ξ−
p(x)G′(x|ξ) dx = 0 and

∫ ξ+

ξ−
q(x)G(x|ξ) dx = 0∫ ξ+

ξ−
G′′(x|ξ) dx =

∫ ξ+

ξ−
δ(x− ξ) dx[

G′(x|ξ)
]ξ+

ξ−
=
[
H(x− ξ)

]ξ+

ξ−

G′(ξ+|ξ)−G′(ξ−|ξ) = 1

We write this jump condition in terms of the homogeneous solutions.

d1y
′
1(ξ) + d2y

′
2(ξ)− c1y

′
1(ξ)− c2y

′
2(ξ) = 1

Combined with the two boundary conditions, this gives us a total of four equations to determine our four constants,
c1, c2, d1, and d2.
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Result 23.7.1 The second order inhomogeneous differential equation with homogeneous
boundary conditions

L[y] = y′′ + p(x)y′ + q(x)y = f(x), for a < x < b, B1[y] = B2[y] = 0,

has the solution

y =

∫ b

a

G(x|ξ)f(ξ) dξ,

where G(x|ξ) satisfies the equation

L[G(x|ξ)] = δ(x− ξ), for a < x < b, B1[G(x|ξ)] = B2[G(x|ξ)] = 0.

G(x|ξ) is continuous and G′(x|ξ) has a jump discontinuity of height 1 at x = ξ.

Example 23.7.1 Solve the boundary value problem

y′′ = f(x), y(0) = y(1) = 0,

using a Green function.
A pair of solutions to the homogeneous equation are y1 = 1 and y2 = x. First note that only the trivial

solution to the homogeneous equation satisfies the homogeneous boundary conditions. Thus there is a unique
solution to this problem.

The Green function satisfies

G′′(x|ξ) = δ(x− ξ), G(0|ξ) = G(1|ξ) = 0.

The Green function has the form

G(x|ξ) =

{
c1 + c2x for x < ξ

d1 + d2x for x > ξ.
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Applying the two boundary conditions, we see that c1 = 0 and d1 = −d2. The Green function now has the form

G(x|ξ) =

{
cx for x < ξ

d(x− 1) for x > ξ.

Since the Green function must be continuous,

cξ = d(ξ − 1) ⇒ d = c
ξ

ξ − 1
.

From the jump condition,

d

dx
c

ξ

ξ − 1
(x− 1)

∣∣∣
x=ξ
− d

dx
cx
∣∣∣
x=ξ

= 1

c
ξ

ξ − 1
− c = 1

c = ξ − 1.

Thus the Green function is

G(x|ξ) =

{
(ξ − 1)x for x < ξ

ξ(x− 1) for x > ξ.

The Green function is plotted in Figure 23.3 for various values of ξ. The solution to y′′ = f(x) is

y(x) =

∫ 1

0

G(x|ξ)f(ξ) dξ

y(x) = (x− 1)

∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(ξ − 1)f(ξ) dξ.
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Figure 23.3: Plot of G(x|0.05),G(x|0.25),G(x|0.5) and G(x|0.75).

Example 23.7.2 Solve the boundary value problem

y′′ = f(x), y(0) = 1, y(1) = 2.

In Example 23.7.1 we saw that the solution to

u′′ = f(x), u(0) = u(1) = 0

is

u(x) = (x− 1)

∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(ξ − 1)f(ξ) dξ.

Now we have to find the solution to

v′′ = 0, v(0) = 1, u(1) = 2.

The general solution is

v = c1 + c2x.

Applying the boundary conditions yields

v = 1 + x.
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Thus the solution for y is

y = 1 + x+ (x− 1)

∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(ξ − 1)f( xi) dξ.

Example 23.7.3 Consider

y′′ = x, y(0) = y(1) = 0.

Method 1. Integrating the differential equation twice yields

y =
1

6
x3 + c1x+ c2.

Applying the boundary conditions, we find that the solution is

y =
1

6
(x3 − x).

Method 2. Using the Green function to find the solution,

y = (x− 1)

∫ x

0

ξ2 dξ + x

∫ 1

x

(ξ − 1)ξ dξ

= (x− 1)
1

3
x3 + x

(
1

3
− 1

2
− 1

3
x3 +

1

2
x2

)

y =
1

6
(x3 − x).
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Example 23.7.4 Find the solution to the differential equation

y′′ − y = sinx,

that is bounded for all x.
The Green function for this problem satisfies

G′′(x|ξ)−G(x|ξ) = δ(x− ξ).

The homogeneous solutions are y1 = ex, and y2 = e−x. The Green function has the form

G(x|ξ) =

{
c1 ex + c2 e−x for x < ξ

d1 ex + d2 e−x for x > ξ.

Since the solution must be bounded for all x, the Green function must also be bounded. Thus c2 = d1 = 0. The
Green function now has the form

G(x|ξ) =

{
c ex for x < ξ

d e−x for x > ξ.

Requiring that G(x|ξ) be continuous gives us the condition

c eξ = d e−ξ ⇒ d = c e2ξ.

G(x|ξ) has a jump discontinuity of height 1 at x = ξ.

d

dx
c e2ξ e−x

∣∣∣∣
x=ξ

− d

dx
c ex
∣∣∣∣
x=ξ

= 1

−c e2ξ e−ξ − c eξ = 1

c = −1

2
e−ξ
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The Green function is then

G(x|ξ) =

{
−1

2
ex−ξ for x < ξ

−1
2

e−x+ξ for x > ξ

G(x|ξ) = −1

2
e−|x−ξ|.

A plot of G(x|0) is given in Figure 23.4. The solution to y′′ − y = sinx is

y(x) =

∫ ∞
−∞
−1

2
e−|x−ξ| sin ξ dξ

= −1

2

(∫ x

−∞
sin ξ ex−ξ dξ +

∫ ∞
x

sin ξ e−x+ξ dξ

)
= −1

2
(−sinx+ cosx

2
+
− sinx+ cosx

2
)

y =
1

2
sinx.

23.7.1 Green Functions for Sturm-Liouville Problems

Consider the problem

L[y] = (p(x)y′)
′
+ q(x)y = f(x), subject to

B1[y] = α1y(a) + α2y
′(a) = 0, B2[y] = β1y(b) + β2y

′(b) = 0.
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Figure 23.4: Plot of G(x|0).

This is known as a Sturm-Liouville problem. Equations of this type often occur when solving partial differential
equations. The Green function associated with this problem satisfies

L[G(x|ξ)] = δ(x− ξ), B1[G(x|ξ)] = B2[G(x|ξ)] = 0.

Let y1 and y2 be two non-trivial homogeneous solutions that satisfy the left and right boundary conditions,
respectively.

L[y1] = 0, B1[y1] = 0, L[y2] = 0, B2[y2] = 0.

The Green function satisfies the homogeneous equation for x 6= ξ and satisfies the homogeneous boundary condi-
tions. Thus it must have the following form.

G(x|ξ) =

{
c1(ξ)y1(x) for a ≤ x ≤ ξ,

c2(ξ)y2(x) for ξ ≤ x ≤ b,
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Here c1 and c2 are unknown functions of ξ.
The first constraint on c1 and c2 comes from the continuity condition.

G(ξ−|ξ) = G(ξ+|ξ)
c1(ξ)y1(ξ) = c2(ξ)y2(ξ)

We write the inhomogeneous equation in the standard form.

G′′(x|ξ) +
p′

p
G′(x|ξ) +

q

p
G(x|ξ) =

δ(x− ξ)
p

The second constraint on c1 and c2 comes from the jump condition.

G′(ξ+|ξ)−G′(ξ−|ξ) =
1

p(ξ)

c2(ξ)y′2(ξ)− c1(ξ)y′1(ξ) =
1

p(ξ)

Now we have a system of equations to determine c1 and c2.

c1(ξ)y1(ξ)− c2(ξ)y2(ξ) = 0

c1(ξ)y′1(ξ)− c2(ξ)y′2(ξ) = − 1

p(ξ)

We solve this system with Kramer’s rule.

c1(ξ) = − y2(ξ)

p(ξ)(−W (ξ))
, c2(ξ) = − y1(ξ)

p(ξ)(−W (ξ))

Here W (x) is the Wronskian of y1(x) and y2(x). The Green function is

G(x|ξ) =

{
y1(x)y2(ξ)
p(ξ)W (ξ)

for a ≤ x ≤ ξ,
y2(x)y1(ξ)
p(ξ)W (ξ)

for ξ ≤ x ≤ b.
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The solution of the Sturm-Liouville problem is

y =

∫ b

a

G(x|ξ)f(ξ) dξ.

Result 23.7.2 The problem

L[y] = (p(x)y′)
′
+ q(x)y = f(x), subject to

B1[y] = α1y(a) + α2y
′(a) = 0, B2[y] = β1y(b) + β2y

′(b) = 0.

has the Green function

G(x|ξ) =

{
y1(x)y2(ξ)
p(ξ)W (ξ) for a ≤ x ≤ ξ,
y2(x)y1(ξ)
p(ξ)W (ξ) for ξ ≤ x ≤ b,

where y1 and y2 are non-trivial homogeneous solutions that satisfy B1[y1] = B2[y2] = 0,
and W (x) is the Wronskian of y1 and y2.

Example 23.7.5 Consider the equation

y′′ − y = f(x), y(0) = y(1) = 0.

A set of solutions to the homogeneous equation is { ex, e−x}. Equivalently, one could use the set {cosh x, sinhx}.
Note that sinhx satisfies the left boundary condition and sinh(x− 1) satisfies the right boundary condition. The
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Wronskian of these two homogeneous solutions is

W (x) =

∣∣∣∣sinhx sinh(x− 1)
cosh x cosh(x− 1)

∣∣∣∣
= sinhx cosh(x− 1)− cosh x sinh(x− 1)

=
1

2
[sinh(2x− 1) + sinh(1)]− 1

2
[sinh(2x− 1)− sinh(1)]

= sinh(1).

The Green function for the problem is then

G(x|ξ) =

{
sinhx sinh(ξ−1)

sinh(1)
for 0 ≤ x ≤ ξ

sinh(x−1) sinh ξ
sinh(1)

for ξ ≤ x ≤ 1.

The solution to the problem is

y =
sinh(x− 1)

sinh(1)

∫ x

0

sinh(ξ)f(ξ) dξ +
sinh(x)

sinh(1)

∫ 1

x

sinh(ξ − 1)f(ξ) dξ.

23.7.2 Initial Value Problems

Consider

L[y] = y′′ + p(x)y′ + q(x)y = f(x), for a < x < b,

subject the the initial conditions

y(a) = γ1, y′(a) = γ2.

The solution is y = u+ v where

u′′ + p(x)u′ + q(x)u = f(x), u(a) = 0, u′(a) = 0,
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and

v′′ + p(x)v′ + q(x)v = 0, v(a) = γ1, v′(a) = γ2.

Since the Wronskian

W (x) = c exp

(
−
∫
p(x) dx

)
is non-vanishing, the solutions of the differential equation for v are linearly independent. Thus there is a unique
solution for v that satisfies the initial conditions.

The Green function for u satisfies

G′′(x|ξ) + p(x)G′(x|ξ) + q(x)G(x|ξ) = δ(x− ξ), G(a|ξ) = 0, G′(a|ξ) = 0.

The continuity and jump conditions are

G(ξ−|ξ) = G(ξ+|ξ), G′(ξ−|ξ) + 1 = G′(ξ+|ξ).

Let u1 and u2 be two linearly independent solutions of the differential equation. For x < ξ, G(x|ξ) is a linear
combination of these solutions. Since the Wronskian is non-vanishing, only the trivial solution satisfies the
homogeneous initial conditions. The Green function must be

G(x|ξ) =

{
0 for x < ξ

uξ(x) for x > ξ,

where uξ(x) is the linear combination of u1 and u2 that satisfies

uξ(ξ) = 0, u′ξ(ξ) = 1.

Note that the non-vanishing Wronskian ensures a unique solution for uξ. We can write the Green function in the
form

G(x|ξ) = H(x− ξ)uξ(x).
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This is known as the causal solution. The solution for u is

u =

∫ b

a

G(x|ξ)f(ξ) dξ

=

∫ b

a

H(x− ξ)uξ(x)f(ξ) dξ

=

∫ x

a

uξ(x)f(ξ) dξ

Now we have the solution for y,

y = v +

∫ x

a

uξ(x)f(ξ) dξ.

Result 23.7.3 The solution of the problem

y′′ + p(x)y′ + q(x)y = f(x), y(a) = γ1, y′(a) = γ2,

is

y = yh +

∫ x

a

yξ(x)f(ξ) dξ

where yh is the combination of the homogeneous solutions of the equation that satisfy
the initial conditions and yξ(x) is the linear combination of homogeneous solutions that
satisfy yξ(ξ) = 0, y′ξ(ξ) = 1.
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23.7.3 Problems with Unmixed Boundary Conditions

Consider

L[y] = y′′ + p(x)y′ + q(x)y = f(x), for a < x < b,

subject the the unmixed boundary conditions

α1y(a) + α2y
′(a) = γ1, β1y(b) + β2y

′(b) = γ2.

The solution is y = u+ v where

u′′ + p(x)u′ + q(x)u = f(x), α1u(a) + α2u
′(a) = 0, β1u(b) + β2u

′(b) = 0,

and

v′′ + p(x)v′ + q(x)v = 0, α1v(a) + α2v
′(a) = γ1, β1v(b) + β2v

′(b) = γ2.

The problem for v may have no solution, a unique solution or an infinite number of solutions. We consider only
the case that there is a unique solution for v. In this case the homogeneous equation subject to homogeneous
boundary conditions has only the trivial solution.

The Green function for u satisfies

G′′(x|ξ) + p(x)G′(x|ξ) + q(x)G(x|ξ) = δ(x− ξ),

α1G(a|ξ) + α2G
′(a|ξ) = 0, β1G(b|ξ) + β2G

′(b|ξ) = 0.

The continuity and jump conditions are

G(ξ−|ξ) = G(ξ+|ξ), G′(ξ−|ξ) + 1 = G′(ξ+|ξ).
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Let u1 and u2 be two solutions of the homogeneous equation that satisfy the left and right boundary conditions,
respectively. The non-vanishing of the Wronskian ensures that these solutions exist. Let W (x) denote the
Wronskian of u1 and u2. Since the homogeneous equation with homogeneous boundary conditions has only the
trivial solution, W (x) is nonzero on [a, b]. The Green function has the form

G(x|ξ) =

{
c1u1 for x < ξ,

c2u2 for x > ξ.

The continuity and jump conditions for Green function gives us the equations

c1u1(ξ)− c2u2(ξ) = 0

c1u
′
1(ξ)− c2u

′
2(ξ) = −1.

Using Kramer’s rule, the solution is

c1 =
u2(ξ)

W (ξ)
, c2 =

u1(ξ)

W (ξ)
.

Thus the Green function is

G(x|ξ) =

{
u1(x)u2(ξ)
W (ξ)

for x < ξ,
u1(ξ)u2(x)
W (ξ)

for x > ξ.

The solution for u is

u =

∫ b

a

G(x|ξ)f(ξ) dξ.

Thus if there is a unique solution for v, the solution for y is

y = v +

∫ b

a

G(x|ξ)f(ξ) dξ.
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Result 23.7.4 Consider the problem

y′′ + p(x)y′ + q(x)y = f(x),

α1y(a) + α2y
′(a) = γ1, β1y(b) + β2y

′(b) = γ2.

If the homogeneous differential equation subject to the inhomogeneous boundary condi-
tions has the unique solution yh, then the problem has the unique solution

y = yh +

∫ b

a

G(x|ξ)f(ξ) dξ

where

G(x|ξ) =

{
u1(x)u2(ξ)
W (ξ) for x < ξ,

u1(ξ)u2(x)
W (ξ) for x > ξ,

u1 and u2 are solutions of the homogeneous differential equation that satisfy the left and
right boundary conditions, respectively, and W (x) is the Wronskian of u1 and u2.

23.7.4 Problems with Mixed Boundary Conditions

Consider

L[y] = y′′ + p(x)y′ + q(x)y = f(x), for a < x < b,

subject the the mixed boundary conditions

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = γ1,
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B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = γ2.

The solution is y = u+ v where

u′′ + p(x)u′ + q(x)u = f(x), B1[u] = 0, B2[u] = 0,

and

v′′ + p(x)v′ + q(x)v = 0, B1[v] = γ1, B2[v] = γ2.

The problem for v may have no solution, a unique solution or an infinite number of solutions. Again we consider
only the case that there is a unique solution for v. In this case the homogeneous equation subject to homogeneous
boundary conditions has only the trivial solution.

Let y1 and y2 be two solutions of the homogeneous equation that satisfy the boundary conditions B1[y1] = 0
and B2[y2] = 0. Since the completely homogeneous problem has no solutions, we know that B1[y2] and B2[y1] are
nonzero. The solution for v has the form

v = c1y1 + c2y2.

Applying the two boundary conditions yields

v =
γ2

B2[y1]
y1 +

γ1

B1[y2]
y2.

The Green function for u satisfies

G′′(x|ξ) + p(x)G′(x|ξ) + q(x)G(x|ξ) = δ(x− ξ), B1[G] = 0, B2[G] = 0.

The continuity and jump conditions are

G(ξ−|ξ) = G(ξ+|ξ), G′(ξ−|ξ) + 1 = G′(ξ+|ξ).
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We write the Green function as the sum of the causal solution and the two homogeneous solutions

G(x|ξ) = H(x− ξ)yξ(x) + c1y1(x) + c2y2(x)

With this form, the continuity and jump conditions are automatically satisfied. Applying the boundary conditions
yields

B1[G] = B1[H(x− ξ)yξ] + c2B1[y2] = 0,

B2[G] = B2[H(x− ξ)yξ] + c1B2[y1] = 0,

B1[G] = β11yξ(b) + β12y
′
ξ(b) + c2B1[y2] = 0,

B2[G] = β21yξ(b) + β22y
′
ξ(b) + c1B2[y1] = 0,

G(x|ξ) = H(x− ξ)yξ(x)−
β21yξ(b) + β22y

′
ξ(b)

B2[y1]
y1(x)−

β11yξ(b) + β12y
′
ξ(b)

B1[y2]
y2(x).

Note that the Green function is well defined since B2[y1] and B1[y2] are nonzero. The solution for u is

u =

∫ b

a

G(x|ξ)f(ξ) dξ.

Thus if there is a unique solution for v, the solution for y is

y =

∫ b

a

G(x|ξ)f(ξ) dξ +
γ2

B2[y1]
y1 +

γ1

B1[y2]
y2.
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Result 23.7.5 Consider the problem

y′′ + p(x)y′ + q(x)y = f(x),

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = γ1,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = γ2.

If the homogeneous differential equation subject to the homogeneous boundary conditions
has no solution, then the problem has the unique solution

y =

∫ b

a

G(x|ξ)f(ξ) dξ +
γ2

B2[y1]
y1 +

γ1

B1[y2]
y2,

where

G(x|ξ) = H(x− ξ)yξ(x)−
β21yξ(b) + β22y

′
ξ(b)

B2[y1]
y1(x)

−
β11yξ(b) + β12y

′
ξ(b)

B1[y2]
y2(x),

y1 and y2 are solutions of the homogeneous differential equation that satisfy the first and
second boundary conditions, respectively, and yξ(x) is the solution of the homogeneous
equation that satisfies yξ(ξ) = 0, y′ξ(ξ) = 1.
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23.8 Green Functions for Higher Order Problems

Consider the nth order differential equation

L[y] = y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0y = f(x) on a < x < b,

subject to the n independent boundary conditions

Bj[y] = γj

where the boundary conditions are of the form

B[y] ≡
n−1∑
k=0

αky
(k)(a) +

n−1∑
k=0

βky
(k)(b).

We assume that the coefficient functions in the differential equation are continuous on [a, b]. The solution is
y = u+ v where u and v satisfy

L[u] = f(x), with Bj[u] = 0,

and

L[v] = 0, with Bj[v] = γj

From Result 23.5.3, we know that if the completely homogeneous problem

L[w] = 0, with Bj[w] = 0,

has only the trivial solution, then the solution for y exists and is unique. We will construct this solution using
Green functions.
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First we consider the problem for v. Let {y1, . . . , yn} be a set of linearly independent solutions. The solution
for v has the form

v = c1y1 + · · ·+ cnyn

where the constants are determined by the matrix equation
B1[y1] B1[y2] · · · B1[yn]
B2[y1] B2[y2] · · · B2[yn]

...
...

. . .
...

Bn[y1] Bn[y2] · · · Bn[yn]



c1

c2
...
cn

 =


γ1

γ2
...
γn

 .

To solve the problem for u we consider the Green function satisfying

L[G(x|ξ)] = δ(x− ξ), with Bj[G] = 0.

Let yξ(x) be the linear combination of the homogeneous solutions that satisfy the conditions

yξ(ξ) = 0

y′ξ(ξ) = 0

... =
...

y
(n−2)
ξ (ξ) = 0

y
(n−1)
ξ (ξ) = 1.

The causal solution is then

yc(x) = H(x− ξ)yξ(x).

The Green function has the form

G(x|ξ) = H(x− ξ)yξ(x) + d1y1(x) + · · ·+ dnyn(x)
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The constants are determined by the matrix equation


B1[y1] B1[y2] · · · B1[yn]
B2[y1] B2[y2] · · · B2[yn]

...
...

. . .
...

Bn[y1] Bn[y2] · · · Bn[yn]



d1

d2
...
dn

 =


−B1[H(x− ξ)yξ(x)]
−B2[H(x− ξ)yξ(x)]

...
−Bn[H(x− ξ)yξ(x)]

 .

The solution for u then is

u =

∫ b

a

G(x|ξ)f(ξ) dξ.
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Result 23.8.1 Consider the nth order differential equation

L[y] = y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0y = f(x) on a < x < b,

subject to the n independent boundary conditions

Bj[y] = γj

If the homogeneous differential equation subject to the homogeneous boundary conditions
has only the trivial solution, then the problem has the unique solution

y =

∫ b

a

G(x|ξ)f(ξ) dξ + c1y1 + · · · cnyn

where

G(x|ξ) = H(x− ξ)yξ(x) + d1y1(x) + · · ·+ dnyn(x),

{y1, . . . , yn} is a set of solutions of the homogeneous differential equation, and the con-
stants cj and dj can be determined by solving sets of linear equations.

Example 23.8.1 Consider the problem

y′′′ − y′′ + y′ − y = f(x),

y(0) = 1, y′(0) = 2, y(1) = 3.

The completely homogeneous associated problem is

w′′′ − w′′ + w′ − w = 0, w(0) = w′(0) = w(1) = 0.
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The solution of the differential equation is

w = c1 cos x+ c2 sinx+ c2 ex.

The boundary conditions give us the equation 1 0 1
0 1 1

cos 1 sin 1 e

c1

c2

c3

 =

0
0
0

 .

The determinant of the matrix is e−cos 1−sin 1 6= 0. Thus the homogeneous problem has only the trivial solution
and the inhomogeneous problem has a unique solution.

We separate the inhomogeneous problem into the two problems

u′′′ − u′′ + u′ − u = f(x), u(0) = u′(0) = u(1) = 0,

v′′′ − v′′ + v′ − v = 0, v(0) = 1, v′(0) = 2, v(1) = 3,

First we solve the problem for v. The solution of the differential equation is

v = c1 cos x+ c2 sinx+ c2 ex.

The boundary conditions yields the equation 1 0 1
0 1 1

cos 1 sin 1 e

c1

c2

c3

 =

1
2
3

 .

The solution for v is

v =
1

e− cos 1− sin 1

[
(e+ sin 1− 3) cosx+ (2e− cos 1− 3) sinx+ (3− cos 1− 2 sin 1) ex

]
.
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Now we find the Green function for the problem in u. The causal solution is

H(x− ξ)uξ(x) = H(x− ξ)1

2

[
(sin ξ − cos ξ) cos x− (sin ξ + cos ξ) sin ξ + e−ξ ex

]
,

H(x− ξ)uξ(x) =
1

2
H(x− ξ)

[
ex−ξ − cos(x− ξ)− sin(x− ξ)

]
.

The Green function has the form

G(x|ξ) = H(x− ξ)uξ(x) + c1 cos x+ c2 sinx+ c3 ex.

The constants are determined by the three conditions[
c1 cosx+ c2 sinx+ c3 ex

]
x=0

= 0,[
∂

∂x
(c1 cos x+ c2 sinx+ c3 ex)

]
x=0

= 0,[
uξ(x) + c1 cos x+ c2 sinx+ c3 ex

]
x=1

= 0.

The Green function is

G(x|ξ) =
1

2
H(x− ξ)

[
ex−ξ − cos(x− ξ)− sin(x− ξ)

]
+

cos(1− ξ) + sin(1− ξ)− e1−ξ

2(cos 1 + sin 1− e)
[

cos x+ sinx− ex
]

The solution for v is

v =

∫ 1

0

G(x|ξ)f(ξ) dξ.

Thus the solution for y is

y =

∫ 1

0

G(x|ξ)f(ξ) dξ +
1

e− cos 1− sin 1

[
(e+ sin 1− 3) cos x

+ (2e− cos 1− 3) sinx+ (3− cos 1− 2 sin 1) ex
]
.
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23.9 Fredholm Alternative Theorem

Orthogonality. Two real vectors, u and v are orthogonal if u · v = 0. Consider two functions, u(x) and v(x),
defined in [a, b]. The dot product in vector space is analogous to the integral∫ b

a

u(x)v(x) dx

in function space. Thus two real functions are orthogonal if∫ b

a

u(x)v(x) dx = 0.

Consider the nth order linear inhomogeneous differential equation

L[y] = f(x) on [a, b],

subject to the linear inhomogeneous boundary conditions

Bj[y] = 0, for j = 1, 2, . . . n.

The Fredholm alternative theorem tells us if the problem has a unique solution, an infinite number of solutions,
or no solution. Before presenting the theorem, we will consider a few motivating examples.

No Nontrivial Homogeneous Solutions. In the section on Green functions we showed that if the completely
homogeneous problem has only the trivial solution then the inhomogeneous problem has a unique solution.

Nontrivial Homogeneous Solutions Exist. If there are nonzero solutions to the homogeneous problem
L[y] = 0 that satisfy the homogeneous boundary conditions Bj[y] = 0 then the inhomogeneous problem L[y] =
f(x) subject to the same boundary conditions either has no solution or an infinite number of solutions.

Suppose there is a particular solution yp that satisfies the boundary conditions. If there is a solution yh to the
homogeneous equation that satisfies the boundary conditions then there will be an infinite number of solutions
since yp + cyh is also a particular solution.
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The question now remains: Given that there are homogeneous solutions that satisfy the boundary conditions,
how do we know if a particular solution that satisfies the boundary conditions exists? Before we address this
question we will consider a few examples.

Example 23.9.1 Consider the problem

y′′ + y = cos x, y(0) = y(π) = 0.

The two homogeneous solutions of the differential equation are

y1 = cos x, and y2 = sinx.

y2 = sinx satisfies the boundary conditions. Thus we know that there are either no solutions or an infinite number
of solutions. A particular solution is

yp = − cos x

∫
cos x sinx

1
dx+ sin x

∫
cos2 x

1
dx

= − cos x

∫
1

2
sin(2x) dx+ sinx

∫ (
1

2
+

1

2
cos(2x)

)
dx

=
1

4
cosx cos(2x) + sinx

(
1

2
x+

1

4
sin(2x)

)
=

1

2
x sinx+

1

4

[
cos x cos(2x) + sin x sin(2x)

]
=

1

2
x sinx+

1

4
cos x

The general solution is

y =
1

2
x sinx+ c1 cos x+ c2 sinx.

Applying the two boundary conditions yields

y =
1

2
x sinx+ c sinx.
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Thus there are an infinite number of solutions.

Example 23.9.2 Consider the differential equation

y′′ + y = sinx, y(0) = y(π) = 0.

The general solution is

y = −1

2
x cos x+ c1 cos x+ c2 sinx.

Applying the boundary conditions,

y(0) = 0 ⇒ c1 = 0

y(π) = 0 ⇒ − 1

2
π cos(π) + c2 sin(π) = 0

⇒ π

2
= 0.

Since this equation has no solution, there are no solutions to the inhomogeneous problem.

In both of the above examples there is a homogeneous solution y = sinx that satisfies the boundary con-
ditions. In Example 23.9.1, the inhomogeneous term is cosx and there are an infinite number of solutions. In
Example 23.9.2, the inhomogeneity is sinx and there are no solutions. In general, if the inhomogeneous term
is orthogonal to all the homogeneous solutions that satisfy the boundary conditions then there are an infinite
number of solutions. If not, there are no inhomogeneous solutions.
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Result 23.9.1 Fredholm Alternative Theorem. Consider the nth order inhomoge-
neous problem

L[y] = f(x) on [a, b] subject to Bj[y] = 0 for j = 1, 2, . . . , n,

and the associated homogeneous problem

L[y] = 0 on [a, b] subject to Bj[y] = 0 for j = 1, 2, . . . , n.

If the homogeneous problem has only the trivial solution then the inhomogeneous prob-
lem has a unique solution. If the homogeneous problem has m independent solutions,
{y1, y2, . . . , ym}, then there are two possibilities:

• If f(x) is orthogonal to each of the homogeneous solutions then there are an infinite
number of solutions of the form

y = yp +
m∑
j=1

cjyj.

• If f(x) is not orthogonal to each of the homogeneous solutions then there are no
inhomogeneous solutions.

Example 23.9.3 Consider the problem

y′′ + y = cos 2x, y(0) = 1, y(π) = 2.

cos x and sinx are two linearly independent solutions to the homogeneous equation. sinx satisfies the homogeneous
boundary conditions. Thus there are either an infinite number of solutions, or no solution.
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To transform this problem to one with homogeneous boundary conditions, we note that g(x) = x
π

+ 1 and
make the change of variables y = u+ g to obtain

u′′ + u = cos 2x− x

π
− 1, y(0) = 0, y(π) = 0.

Since cos 2x− x
π
− 1 is not orthogonal to sinx, there is no solution to the inhomogeneous problem.

To check this, the general solution is

y = −1

3
cos 2x+ c1 cos x+ c2 sinx.

Applying the boundary conditions,

y(0) = 1 ⇒ c1 =
4

3

y(π) = 2 ⇒ −1

3
− 4

3
= 2.

Thus we see that the right boundary condition cannot be satisfied.

Example 23.9.4 Consider

y′′ + y = cos 2x, y′(0) = y(π) = 1.

There are no solutions to the homogeneous equation that satisfy the homogeneous boundary conditions. To check
this, note that all solutions of the homogeneous equation have the form uh = c1 cosx+ c2 sinx.

u′h(0) = 0 ⇒ c2 = 0

uh(π) = 0 ⇒ c1 = 0.

From the Fredholm Alternative Theorem we see that the inhomogeneous problem has a unique solution.
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To find the solution, start with

y = −1

3
cos 2x+ c1 cos x+ c2 sinx.

y′(0) = 1 ⇒ c2 = 1

y(π) = 1 ⇒ −1

3
− c1 = 1

Thus the solution is

y = −1

3
cos 2x− 4

3
cosx+ sin x.

Example 23.9.5 Consider

y′′ + y = cos 2x, y(0) =
2

3
, y(π) = −4

3
.

cos x and sinx satisfy the homogeneous differential equation. sin x satisfies the homogeneous boundary conditions.
Since g(x) = cosx− 1/3 satisfies the boundary conditions, the substitution y = u+ g yields

u′′ + u = cos 2x+
1

3
, y(0) = 0, y(π) = 0.

Now we check if sinx is orthogonal to cos 2x+ 1
3
.∫ π

0

sinx

(
cos 2x+

1

3

)
dx =

∫ π

0

1

2
sin 3x− 1

2
sinx+

1

3
sinx dx

=

[
−1

6
cos 3x+

1

6
cosx

]π
0

= 0
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Since sin x is orthogonal to the inhomogeneity, there are an infinite number of solutions to the problem for u,
(and hence the problem for y).

As a check, then general solution for y is

y = −1

3
cos 2x+ c1 cos x+ c2 sinx.

Applying the boundary conditions,

y(0) =
2

3
⇒ c1 = 1

y(π) = −4

3
⇒ −4

3
= −4

3
.

Thus we see that c2 is arbitrary. There are an infinite number of solutions of the form

y = −1

3
cos 2x+ cosx+ c sinx.
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23.10 Exercises

Undetermined Coefficients

Exercise 23.1 (mathematica/ode/inhomogeneous/undetermined.nb)
Find the general solution of the following equations.

1. y′′ + 2y′ + 5y = 3 sin(2t)

2. 2y′′ + 3y′ + y = t2 + 3 sin(t)

Hint, Solution

Exercise 23.2 (mathematica/ode/inhomogeneous/undetermined.nb)
Find the solution of each one of the following initial value problems.

1. y′′ − 2y′ + y = t et + 4, y(0) = 1, y′(0) = 1

2. y′′ + 2y′ + 5y = 4 e−t cos(2t), y(0) = 1, y′(0) = 0

Hint, Solution

Variation of Parameters

Exercise 23.3 (mathematica/ode/inhomogeneous/variation.nb)
Use the method of variation of parameters to find a particular solution of the given differential equation.

1. y′′ − 5y′ + 6y = 2 et

2. y′′ + y = tan(t), 0 < t < π/2

3. y′′ − 5y′ + 6y = g(t), for a given function g.

Hint, Solution
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Exercise 23.4 (mathematica/ode/inhomogeneous/variation.nb)
Solve

y′′(x) + y(x) = x, y(0) = 1, y′(0) = 0.

Hint, Solution

Exercise 23.5 (mathematica/ode/inhomogeneous/variation.nb)
Solve

x2y′′(x)− xy′(x) + y(x) = x.

Hint, Solution

Exercise 23.6 (mathematica/ode/inhomogeneous/variation.nb)
1. Find the general solution of y′′ + y = ex.

2. Solve y′′ + λ2y = sinx, y(0) = y′(0) = 0. λ is an arbitrary real constant. Is there anything special about
λ = 1?

Hint, Solution

Exercise 23.7 (mathematica/ode/inhomogeneous/variation.nb)
Consider the problem of solving the initial value problem

y′′ + y = g(t), y(0) = 0, y′(0) = 0.

1. Show that the general solution of y′′ + y = g(t) is

y(t) =

(
c1 −

∫ t

a

g(τ) sin τ dτ

)
cos t+

(
c2 +

∫ t

b

g(τ) cos τ dτ

)
sin t,

where c1 and c2 are arbitrary constants and a and b are any conveniently chosen points.
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2. Using the result of part (a) show that the solution satisfying the initial conditions y(0) = 0 and y′(0) = 0 is
given by

y(t) =

∫ t

0

g(τ) sin(t− τ) dτ.

Notice that this equation gives a formula for computing the solution of the original initial value problem for
any given inhomogeneous term g(t). The integral is referred to as the convolution of g(t) with sin t.

3. Use the result of part (b) to solve the initial value problem,

y′′ + y = sin(λt), y(0) = 0, y′(0) = 0,

where λ is a real constant. How does the solution for λ = 1 differ from that for λ 6= 1? The λ = 1 case
provides an example of resonant forcing. Plot the solution for resonant and non-resonant forcing.

Hint, Solution

Exercise 23.8
Find the variation of parameters solution for the third order differential equation

y′′′ + p2(x)y′′ + p1(x)y′ + p0(x)y = f(x).

Hint, Solution

Green Functions

Exercise 23.9
Use a Green function to solve

y′′ = f(x), y(−∞) = y′(−∞) = 0.

Verify the the solution satisfies the differential equation.
Hint, Solution
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Exercise 23.10
Solve the initial value problem

y′′ +
1

x
y′ − 1

x2
y = x2, y(0) = 0, y′(0) = 1.

First use variation of parameters, and then solve the problem with a Green function.
Hint, Solution

Exercise 23.11
What are the continuity conditions at x = ξ for the Green function for the problem

y′′′ + p2(x)y′′ + p1(x)y′ + p0(x)y = f(x).

Hint, Solution

Exercise 23.12
Use variation of parameters and Green functions to solve

x2y′′ − 2xy′ + 2y = e−x, y(1) = 0, y′(1) = 1.

Hint, Solution

Exercise 23.13
Find the Green function for

y′′ − y = f(x), y′(0) = y(1) = 0.

Hint, Solution
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Exercise 23.14
Find the Green function for

y′′ − y = f(x), y(0) = y(∞) = 0.

Hint, Solution

Exercise 23.15
Find the Green function for each of the following:

a) xu′′ + u′ = f(x), u(0+) bounded, u(1) = 0.

b) u′′ − u = f(x), u(−a) = u(a) = 0.

c) u′′ − u = f(x), u(x) bounded as |x| → ∞.

d) Show that the Green function for (b) approaches that for (c) as a→∞.
Hint, Solution

Exercise 23.16
1. For what values of λ does the problem

y′′ + λy = f(x), y(0) = y(π) = 0, (23.5)

have a unique solution? Find the Green functions for these cases.

2. For what values of α does the problem

y′′ + 9y = 1 + αx, y(0) = y(π) = 0,

have a solution? Find the solution.
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3. For λ = n2, n ∈ Z+ state in general the conditions on f in Equation 23.5 so that a solution will exist. What
is the appropriate modified Green function (in terms of eigenfunctions)?

Hint, Solution

Exercise 23.17
Show that the inhomogeneous boundary value problem:

Lu ≡ (pu′)′ + qu = f(x), a < x < b, u(a) = α, u(b) = β

has the solution:

u(x) =

∫ b

a

g(x; ξ)f(ξ) dξ − αp(a)gξ(x; a) + βp(b)gξ(x; b).

Hint, Solution

Exercise 23.18
The Green function for

u′′ − k2u = f(x), −∞ < x <∞

subject to |u(±∞)| <∞ is

G(x; ξ) = − 1

2k
e−k|x−ξ|.

(We assume that k > 0.) Use the image method to find the Green function for the same equation on the
semi-infinite interval 0 < x <∞ satisfying the boundary conditions,

i) u(0) = 0 |u(∞)| <∞,
ii) u′(0) = 0 |u(∞)| <∞.

Express these results in simplified forms without absolute values.
Hint, Solution
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Exercise 23.19
1. Determine the Green function for solving:

y′′ − a2y = f(x), y(0) = y′(L) = 0.

2. Take the limit as L → ∞ to find the Green function on (0,∞) for the boundary conditions: y(0) = 0,
y′(∞) = 0. We assume here that a > 0. Use the limiting Green function to solve:

y′′ − a2y = e−x, y(0) = 0, y′(∞) = 0.

Check that your solution satisfies all the conditions of the problem.
Hint, Solution
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23.11 Hints

Undetermined Coefficients

Hint 23.1

Hint 23.2

Variation of Parameters

Hint 23.3

Hint 23.4

Hint 23.5

Hint 23.6

Hint 23.7
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Hint 23.8
Look for a particular solution of the form

yp = u1y1 + u2y2 + u3y3,

where the yj’s are homogeneous solutions. Impose the constraints

u′1y1 + u′2y2 + u′3y3 = 0

u′1y
′
1 + u′2y

′
2 + u′3y

′
3 = 0.

To avoid some messy algebra when solving for u′j, use Kramer’s rule.

Green Functions

Hint 23.9

Hint 23.10

Hint 23.11

Hint 23.12

Hint 23.13
cosh(x) and sinh(x−1) are homogeneous solutions that satisfy the left and right boundary conditions, respectively.
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Hint 23.14
sinh(x) and e−x are homogeneous solutions that satisfy the left and right boundary conditions, respectively.

Hint 23.15
The Green function for the differential equation

L[y] ≡ d

dx
(p(x)y′) + q(x)y = f(x),

subject to unmixed, homogeneous boundary conditions is

G(x|ξ) =
y1(x<)y2(x>)

p(ξ)W (ξ)
,

G(x|ξ) =

{
y1(x)y2(ξ)
p(ξ)W (ξ)

for a ≤ x ≤ ξ,
y1(ξ)y2(x)
p(ξ)W (ξ)

for ξ ≤ x ≤ b,

where y1 and y2 are homogeneous solutions that satisfy the left and right boundary conditions, respectively.
Recall that if y(x) is a solution of a homogeneous, constant coefficient differential equation then y(x + c) is

also a solution.

Hint 23.16
The problem has a Green function if and only if the inhomogeneous problem has a unique solution. The inhomo-
geneous problem has a unique solution if and only if the homogeneous problem has only the trivial solution.

Hint 23.17
Show that gξ(x; a) and gξ(x; b) are solutions of the homogeneous differential equation. Determine the value of
these solutions at the boundary.
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Hint 23.18

Hint 23.19
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23.12 Solutions

Undetermined Coefficients

Solution 23.1
1. We consider

y′′ + 2y′ + 5y = 3 sin(2t).

We first find the homogeneous solution with the substitition y = eλt.

λ2 + 2λ+ 5 = 0

λ = −1± 2i

The homogeneous solution is

yh = c1 e−t cos(2t) + c2 e−t sin(2t).

We guess a particular solution of the form

yp = a cos(2t) + b sin(2t).

We substitute this into the differential equation to determine the coefficients.

y′′p + 2y′p + 5yp = 3 sin(2t)

−4a cos(2t)− 4b sin(2t)− 4a sin(2t) + 4b sin(2t) + 5a cos(2t) + 5b sin(2t) = −3 sin(2t)

(a+ 4b) cos(2t) + (−3− 4a+ b) sin(2t) = 0

a+ 4b = 0, −4a+ b = 3

a = −12

17
, b =

3

17

A particular solution is

yp =
3

17
(sin(2t)− 4 cos(2t)).
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The general solution of the differential equation is

y = c1 e−t cos(2t) + c2 e−t sin(2t) +
3

17
(sin(2t)− 4 cos(2t)).

2. We consider

2y′′ + 3y′ + y = t2 + 3 sin(t)

We first find the homogeneous solution with the substitition y = eλt.

2λ2 + 3λ+ 1 = 0

λ = {−1,−1/2}

The homogeneous solution is

yh = c1 e−t + c2 e−t/2.

We guess a particular solution of the form

yp = at2 + bt+ c+ d cos(t) + e sin(t).

We substitute this into the differential equation to determine the coefficients.

2y′′p + 3y′p + yp = t2 + 3 sin(t)

2(2a− d cos(t)− e sin(t)) + 3(2at+ b− d sin(t) + e cos(t))

+ at2 + bt+ c+ d cos(t) + e sin(t) = t2 + 3 sin(t)

(a− 1)t2 + (6a+ b)t+ (4a+ 3b+ c) + (−d+ 3e) cos(t)− (3 + 3d+ e) sin(t) = 0

a− 1 = 0, 6a+ b = 0, 4a+ 3b+ c = 0, −d+ 3e = 0, 3 + 3d+ e = 0

a = 1, b = −6, c = 14, d = − 9

10
, e = − 3

10
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A particular solution is

yp = t2 − 6t+ 14− 3

10
(3 cos(t) + sin(t)).

The general solution of the differential equation is

y = c1 e−t + c2 e−t/2 + t2 − 6t+ 14− 3

10
(3 cos(t) + sin(t)).

Solution 23.2
1. We consider the problem

y′′ − 2y′ + y = t et + 4, y(0) = 1, y′(0) = 1.

First we solve the homogeneous equation with the substitution y = eλt.

λ2 − 2λ+ 1 = 0

(λ− 1)2 = 0

λ = 1

The homogeneous solution is

yh = c1 et + c2t et.

We guess a particular solution of the form

yp = at3 et + bt2 et + 4.
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We substitute this into the inhomogeneous differential equation to determine the coefficients.

y′′p − 2y′p + yp = t et + 4

(a(t3 + 6t2 + 6t) + b(t2 + 4t+ 2)) et − 2(a(t2 + 3t) + b(t+ 2)) etat3 et + bt2 et + 4 = t et + 4

(6a− 1)t+ 2b = 0

6a− 1 = 0, 2b = 0

a =
1

6
, b = 0

A particular solution is

yp =
t3

6
et + 4.

The general solution of the differential equation is

y = c1 et + c2t et +
t3

6
et + 4.

We use the initial conditions to determine the constants of integration.

y(0) = 1, y′(0) = 1

c1 + 4 = 1, c1 + c2 = 1

c1 = −3, c2 = 4

The solution of the initial value problem is

y =

(
t3

6
+ 4t− 3

)
et + 4.

2. We consider the problem

y′′ + 2y′ + 5y = 4 e−t cos(2t), y(0) = 1, y′(0) = 0.
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First we solve the homogeneous equation with the substitution y = eλt.

λ2 + 2λ+ 5 = 0

λ = −1±
√

1− 5

λ = −1± i2

The homogeneous solution is

yh = c1 e−t cos(2t) + c2 e−t sin(2t).

We guess a particular solution of the form

yp = t e−t(a cos(2t) + b sin(2t))

We substitute this into the inhomogeneous differential equation to determine the coefficients.

y′′p + 2y′p + 5yp = 4 e−t cos(2t)

e−t((−(2 + 3t)a+ 4(1− t)b) cos(2t) + (4(t− 1)a− (2 + 3t)b) sin(2t))

+ 2 e−t(((1− t)a+ 2tb) cos(2t) + (−2ta+ (1− t)b) sin(2t))

+ 5( e−t(ta cos(2t) + tb sin(2t))) = 4 e−t cos(2t)

4(b− 1) cos(2t)− 4a sin(2t) = 0

a = 0, b = 1

A particular solution is

yp = t e−t sin(2t).
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The general solution of the differential equation is

y = c1 e−t cos(2t) + c2 e−t sin(2t) + t e−t sin(2t).

We use the initial conditions to determine the constants of integration.

y(0) = 1, y′(0) = 0

c1 = 1, −c1 + 2c2 = 0

c1 = 1, c2 =
1

2

The solution of the initial value problem is

y =
1

2
e−t (2 cos(2t) + (2t+ 1) sin(2t)) .

Variation of Parameters

Solution 23.3
1. We consider the equation

y′′ − 5y′ + 6y = 2 et.

We find homogeneous solutions with the substitution y = eλt.

λ2 − 5λ+ 6 = 0

λ = {2, 3}

The homogeneous solutions are

y1 = e2t, y2 = e3t.
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We compute the Wronskian of these solutions.

W (t) =

∣∣∣∣ e2t e3t

2 e2t 3 e3t

∣∣∣∣ = e5t

We find a particular solution with variation of parameters.

yp = − e2t

∫
2 et e3t

e5t
dt+ e3t

∫
2 et e2t

e5t
dt

= −2 e2t

∫
e−t dt+ 2 e3t

∫
e−2t dt

= 2 et − et

yp = et

2. We consider the equation

y′′ + y = tan(t), 0 < t <
π

2
.

We find homogeneous solutions with the substitution y = eλt.

λ2 + 1 = 0

λ = ±i

The homogeneous solutions are

y1 = cos(t), y2 = sin(t).

We compute the Wronskian of these solutions.

W (t) =

∣∣∣∣ cos(t) sin(t)
− sin(t) cos(t)

∣∣∣∣ = cos2(t) + sin2(t) = 1
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We find a particular solution with variation of parameters.

yp = − cos(t)

∫
tan(t) sin(t) dt+ sin(t)

∫
tan(t) cos(t) dt

= − cos(t)

∫
sin2(t)

cos(t)
dt+ sin(t)

∫
sin(t) dt

= cos(t)

(
ln

(
cos(t/2)− sin(t/2)

cos(t/2) + sin(t/2)
+ sin(t)

))
− sin(t) cos(t)

yp = cos(t) ln

(
cos(t/2)− sin(t/2)

cos(t/2) + sin(t/2)

)

3. We consider the equation

y′′ − 5y′ + 6y = g(t).

The homogeneous solutions are

y1 = e2t, y2 = e3t.

The Wronskian of these solutions is W (t) = e5t. We find a particular solution with variation of parameters.

yp = − e2t

∫
g(t) e3t

e5t
dt+ e3t

∫
g(t) e2t

e5t
dt

yp = − e2t

∫
g(t) e−2t dt+ e3t

∫
g(t) e−3t dt
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Solution 23.4
Solve

y′′(x) + y(x) = x, y(0) = 1, y′(0) = 0.

The solutions of the homogeneous equation are

y1(x) = cos x, y2(x) = sin x.

The Wronskian of these solutions is

W [cos x, sinx] =

∣∣∣∣ cosx sinx
− sinx cos x

∣∣∣∣
= cos2 x+ sin2 x

= 1.

The variation of parameters solution for the particular solution is

yp = − cosx

∫
x sinx dx+ sin x

∫
x cos x dx

= − cosx

(
−x cos x+

∫
cos x dx

)
+ sinx

(
x sinx−

∫
sinx dx

)
= − cosx (−x cos x+ sinx) + sinx (x sinx+ cos x)

= x cos2 x− cos x sinx+ x sin2 x+ cos x sinx

= x

The general solution of the differential equation is thus

y = c1 cos x+ c2 sinx+ x.

Applying the two initial conditions gives us the equations

c1 = 1, c2 + 1 = 0.
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The solution subject to the initial conditions is

y = cos x− sinx+ x.

Solution 23.5
Solve

x2y′′(x)− xy′(x) + y(x) = x.

The homogeneous equation is

x2y′′(x)− xy′(x) + y(x) = 0.

Substituting y = xλ into the homogeneous differential equation yields

x2λ(λ− 1)xλ−2 − xλxλ + xλ = 0

λ2 − 2λ+ 1 = 0

(λ− 1)2 = 0

λ = 1.

The homogeneous solutions are

y1 = x, y2 = x log x.

The Wronskian of the homogeneous solutions is

W [x, x log x] =

∣∣∣∣x x log x
1 1 + log x

∣∣∣∣
= x+ x log x− x log x

= x.
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Writing the inhomogeneous equation in the standard form:

y′′(x)− 1

x
y′(x) +

1

x2
y(x) =

1

x
.

Using variation of parameters to find the particular solution,

yp = −x
∫

log x

x
dx+ x log x

∫
1

x
dx

= −x1

2
log2 x+ x log x log x

=
1

2
x log2 x.

Thus the general solution of the inhomogeneous differential equation is

y = c1x+ c2x log x+
1

2
x log2 x.

Solution 23.6
1. First we find the homogeneous solutions. We substitute y = eλx into the homogeneous differential equation.

y′′ + y = 0

λ2 + 1 = 0

λ = ±i
y =

{
eix, e−ix

}
We can also write the solutions in terms of real-valued functions.

y = {cosx, sinx}
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The Wronskian of the homogeneous solutions is

W [cos x, sinx] =

∣∣∣∣ cosx sinx
− sinx cos x

∣∣∣∣ = cos2 x+ sin2 x = 1.

We obtain a particular solution with the variation of parameters formula.

yp = − cos x

∫
ex sinx dx+ sinx

∫
ex cos x dx

yp = − cos x
1

2
ex(sinx− cos x) + sin x

1

2
ex(sinx+ cos x)

yp =
1

2
ex

The general solution is the particular solution plus a linear combination of the homogeneous solutions.

y =
1

2
ex + cos x+ sinx

2.

y′′ + λ2y = sinx, y(0) = y′(0) = 0

Assume that λ is positive. First we find the homogeneous solutions by substituting y = eαx into the
homogeneous differential equation.

y′′ + λ2y = 0

α2 + λ2 = 0

α = ±iλ
y =

{
eiλx, e−iλx

}
y = {cos(λx), sin(λx)}
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The Wronskian of these homogeneous solution is

W [cos(λx), sin(λx)] =

∣∣∣∣ cos(λx) sin(λx)
−λ sin(λx) λ cos(λx)

∣∣∣∣ = λ cos2(λx) + λ sin2(λx) = λ.

We obtain a particular solution with the variation of parameters formula.

yp = − cos(λx)

∫
sin(λx) sinx

λ
dx+ sin(λx)

∫
cos(λx) sinx

λ
dx

We evaluate the integrals for λ 6= 1.

yp = − cos(λx)
cos(x) sin(λx)− λ sinx cos(λx)

λ(λ2 − 1)
+ sin(λx)

cos(x) cos(λx) + λ sinx sin(λx)

λ(λ2 − 1)

yp =
sinx

λ2 − 1

The general solution for λ 6= 1 is

y =
sinx

λ2 − 1
+ c1 cos(λx) + c2 sin(λx).

The initial conditions give us the constraints:

c1 = 0,

1

λ2 − 1
+ λc2 = 0,

For λ 6= 1, (non-resonant forcing), the solution subject to the initial conditions is

y =
λ sin(x)− sin(λx)

λ(λ2 − 1)
.
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Now consider the case λ = 1. We obtain a particular solution with the variation of parameters formula.

yp = − cos(x)

∫
sin2(x) dx+ sin(x)

∫
cos(x) sinx dx

yp = − cos(x)
1

2
(x− cos(x) sin(x)) + sin(x)

(
−1

2
cos2(x)

)
yp = −1

2
x cos(x)

The general solution for λ = 1 is

y = −1

2
x cos(x) + c1 cos(x) + c2 sin(x).

The initial conditions give us the constraints:

c1 = 0

−1

2
+ c2 = 0

For λ = 1, (resonant forcing), the solution subject to the initial conditions is

y =
1

2
(sin(x)− x cos x).

Solution 23.7
1. A set of linearly independent, homogeneous solutions is {cos t, sin t}. The Wronskian of these solutions is

W (t) =

∣∣∣∣ cos t sin t
− sin t cos t

∣∣∣∣ = cos2 t+ sin2 t = 1.

We use variation of parameters to find a particular solution.

yp = − cos t

∫
g(t) sin t dt+ sin t

∫
g(t) cos t dt
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The general solution can be written in the form,

y(t) =

(
c1 −

∫ t

a

g(τ) sin τ dτ

)
cos t+

(
c2 +

∫ t

b

g(τ) cos τ dτ

)
sin t.

2. Since the initial conditions are given at t = 0 we choose the lower bounds of integration in the general
solution to be that point.

y =

(
c1 −

∫ t

0

g(τ) sin τ dτ

)
cos t+

(
c2 +

∫ t

0

g(τ) cos τ dτ

)
sin t

The initial condition y(0) = 0 gives the constraint, c1 = 0. The derivative of y(t) is then,

y′(t) = −g(t) sin t cos t+

∫ t

0

g(τ) sin τ dτ sin t+ g(t) cos t sin t+

(
c2 +

∫ t

0

g(τ) cos τ dτ

)
cos t,

y′(t) =

∫ t

0

g(τ) sin τ dτ sin t+

(
c2 +

∫ t

0

g(τ) cos τ dτ

)
cos t.

The initial condition y′(0) = 0 gives the constraint c2 = 0. The solution subject to the initial conditions is

y =

∫ t

0

g(τ)(sin t cos τ − cos t sin τ) dτ

y =

∫ t

0

g(τ) sin(t− τ) dτ

3. The solution of the initial value problem

y′′ + y = sin(λt), y(0) = 0, y′(0) = 0,

is

y =

∫ t

0

sin(λτ) sin(t− τ) dτ.
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For λ 6= 1, this is

y =
1

2

∫ t

0

(
cos(t− τ − λτ)− cos(t− τ + λτ)

)
dτ

=
1

2

[
−sin(t− τ − λτ)

1 + λ
+

sin(t− τ + λτ)

1− λ

]t
0

=
1

2

(
sin(t)− sin(−λt)

1 + λ
+
− sin(t) + sin(λt)

1− λ

)

y = − λ sin t

1− λ2
+

sin(λt)

1− λ2
. (23.6)

The solution is the sum of two periodic functions of period 2π and 2π/λ. This solution is plotted in
Figure 23.5 on the interval t ∈ [0, 16π] for the values λ = 1/4, 7/8, 5/2.

Figure 23.5: Non-resonant Forcing
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For λ = 1, we have

y =
1

2

∫ t

0

(
cos(t− 2τ)− cos(tau)

)
dτ

=
1

2

[
−1

2
sin(t− 2τ)− τ cos t

]t
0

y =
1

2
(sin t− t cos t) . (23.7)

The solution has both a periodic and a transient term. This solution is plotted in Figure 23.5 on the interval
t ∈ [0, 16π].

Figure 23.6: Resonant Forcing

Note that we can derive (23.7) from (23.6) by taking the limit as λ→ 0.

lim
λ→1

sin(λt)− λ sin t

1− λ2
= lim

λ→1

t cos(λt)− sin t

−2λ

=
1

2
(sin t− t cos t)
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Solution 23.8
Let y1, y2 and y3 be linearly independent homogeneous solutions to the differential equation

L[y] = y′′′ + p2y
′′ + p1y

′ + p0y = f(x).

We will look for a particular solution of the form

yp = u1y1 + u2y2 + u3y3.

Since the uj’s are undetermined functions, we are free to impose two constraints. We choose the constraints to
simplify the algebra.

u′1y1 + u′2y2 + u′3y3 = 0

u′1y
′
1 + u′2y

′
2 + u′3y

′
3 = 0

Differentiating the expression for yp,

y′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2 + u′3y3 + u3y

′
3

= u1y
′
1 + u2y

′
2 + u3y

′
3

y′′p = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 + u′3y

′
3 + u3y

′′
3

= u1y
′′
1 + u2y

′′
2 + u3y

′′
3

y′′′p = u′1y
′′
1 + u1y

′′′
1 + u′2y

′′
2 + u2y

′′′
2 + u′3y

′′
3 + u3y

′′′
3

Substituting the expressions for yp and its derivatives into the differential equation,

u′1y
′′
1 + u1y

′′′
1 + u′2y

′′
2 + u2y

′′′
2 + u′3y

′′
3 + u3y

′′′
3 + p2(u1y

′′
1 + u2y

′′
2 + u3y

′′
3) + p1(u1y

′
1 + u2y

′
2 + u3y

′
3)

+ p0(u1y1 + u2y2 + u3y3) = f(x)

u′1y
′′
1 + u′2y

′′
2 + u′3y

′′
3 + u1L[y1] + u2L[y2] + u3L[y3] = f(x)

u′1y
′′
1 + u′2y

′′
2 + u′3y

′′
3 = f(x).
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With the two constraints, we have the system of equations,

u′1y1 + u′2y2 + u′3y3 = 0

u′1y
′
1 + u′2y

′
2 + u′3y

′
3 = 0

u′1y
′′
1 + u′2y

′′
2 + u′3y

′′
3 = f(x)

We solve for the u′j using Kramer’s rule.

u′1 =
(y2y

′
3 − y′2y3)f(x)

W (x)
, u′2 = −(y1y

′
3 − y′1y3)f(x)

W (x)
, u′3 =

(y1y
′
2 − y′1y2)f(x)

W (x)

Here W (x) is the Wronskian of {y1, y2, y3}. Integrating the expressions for u′j, the particular solution is

yp = y1

∫
(y2y

′
3 − y′2y3)f(x)

W (x)
dx+ y2

∫
(y3y

′
1 − y′3y1)f(x)

W (x)
dx+ y3

∫
(y1y

′
2 − y′1y2)f(x)

W (x)
dx.

Green Functions

Solution 23.9
We consider the Green function problem

G′′ = f(x), G(−∞|ξ) = G′(−∞|ξ) = 0.

The homogeneous solution is y = c1 + c2x. The homogeneous solution that satisfies the boundary conditions is
y = 0. Thus the Green function has the form

G(x|ξ) =

{
0 x < ξ,

c1 + c2x x > ξ.

The continuity and jump conditions are then

G(ξ+|ξ) = 0, G′(ξ+|ξ) = 1.
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Thus the Green function is

G(x|ξ) =

{
0 x < ξ,

x− ξ x > ξ
= (x− ξ)H(x− ξ).

The solution of the problem

y′′ = f(x), y(−∞) = y′(−∞) = 0.

is

y =

∫ ∞
−∞

f(ξ)G(x|ξ) dξ

y =

∫ ∞
−∞

f(ξ)(x− ξ)H(x− ξ) dξ

y =

∫ x

−∞
f(ξ)(x− ξ) dξ

We differentiate this solution to verify that it satisfies the differential equation.

y′ = [f(ξ)(x− ξ)]ξ=x +

∫ x

−∞

∂

∂x
(f(ξ)(x− ξ)) dξ =

∫ x

−∞
f(ξ) dξ

y′′ = [f(ξ)]ξ=x = f(x)

Solution 23.10
Since we are dealing with an Euler equation, we substitute y = xλ to find the homogeneous solutions.

λ(λ− 1) + λ− 1 = 0

(λ− 1)(λ+ 1) = 0

y1 = x, y2 =
1

x
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Variation of Parameters. The Wronskian of the homogeneous solutions is

W (x) =

∣∣∣∣x 1/x
1 −1/x2

∣∣∣∣ = −1

x
− 1

x
= −2

x
.

A particular solution is

yp = −x
∫
x2(1/x)

−2/x
dx+

1

x

∫
x2x

−2/x
dx

= −x
∫
−x

2

2
dx+

1

x

∫
−x

4

2
dx

=
x4

6
− x4

10

=
x4

15
.

The general solution is

y =
x4

15
+ c1x+ c2

1

x
.

Applying the initial conditions,

y(0) = 0 ⇒ c2 = 0

y′(0) = 0 ⇒ c1 = 1.

Thus we have the solution

y =
x4

15
+ x.
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Green Function. Since this problem has both an inhomogeneous term in the differential equation and inho-
mogeneous boundary conditions, we separate it into the two problems

u′′ +
1

x
u′ − 1

x2
u = x2, u(0) = u′(0) = 0,

v′′ +
1

x
v′ − 1

x2
v = 0, v(0) = 0, v′(0) = 1.

First we solve the inhomogeneous differential equation with the homogeneous boundary conditions. The Green
function for this problem satisfies

L[G(x|ξ)] = δ(x− ξ), G(0|ξ) = G′(0|ξ) = 0.

Since the Green function must satisfy the homogeneous boundary conditions, it has the form

G(x|ξ) =

{
0 for x < ξ

cx+ d/x for x > ξ.

From the continuity condition,

0 = cξ + d/ξ.

The jump condition yields

c− d/ξ2 = 1.

Solving these two equations, we obtain

G(x|ξ) =

{
0 for x < ξ
1
2
x− ξ2

2x
for x > ξ
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Thus the solution is

u(x) =

∫ ∞
0

G(x|ξ)ξ2 dξ

=

∫ x

0

(
1

2
x− ξ2

2x

)
ξ2 dξ

=
1

6
x4 − 1

10
x4

=
x4

15
.

Now to solve the homogeneous differential equation with inhomogeneous boundary conditions. The general
solution for v is

v = cx+ d/x.

Applying the two boundary conditions gives

v = x.

Thus the solution for y is

y = x+
x4

15
.

Solution 23.11
The Green function satisfies

G′′′(x|ξ) + p2(x)G′′(x|ξ) + p1(x)G′(x|ξ) + p0(x)G(x|ξ) = δ(x− ξ).

First note that only the G′′′(x|ξ) term can have a delta function singularity. If a lower derivative had a delta
function type singularity, then G′′′(x|ξ) would be more singular than a delta function and there would be no other
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term in the equation to balance that behavior. Thus we see that G′′′(x|ξ) will have a delta function singularity;
G′′(x|ξ) will have a jump discontinuity; G′(x|ξ) will be continuous at x = ξ. Integrating the differential equation
from ξ− to ξ+ yields ∫ ξ+

ξ−
G′′′(x|ξ) dx =

∫ ξ+

ξ−
δ(x− ξ) dx

G′′(ξ+|ξ)−G′′(ξ−|ξ) = 1.

Thus we have the three continuity conditions:

G′′(ξ+|ξ) = G′′(ξ−|ξ) + 1

G′(ξ+|ξ) = G′(ξ−|ξ)
G(ξ+|ξ) = G(ξ−|ξ)

Solution 23.12
Variation of Parameters. Consider the problem

x2y′′ − 2xy′ + 2y = e−x, y(1) = 0, y′(1) = 1.

Previously we showed that two homogeneous solutions are

y1 = x, y2 = x2.

The Wronskian of these solutions is

W (x) =

∣∣∣∣x x2

1 2x

∣∣∣∣ = 2x2 − x2 = x2.
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In the variation of parameters formula, we will choose 1 as the lower bound of integration. (This will simplify the
algebra in applying the initial conditions.)

yp = −x
∫ x

1

e−ξξ2

ξ4
dξ + x2

∫ x

1

e−ξξ

ξ4
dξ

= −x
∫ x

1

e−ξ

ξ2
dξ + x2

∫ x

1

e−ξ

ξ3
dξ

= −x
(

e−1 − e−x

x
−
∫ x

1

e−ξ

ξ
dξ

)
+ x2

(
e−x

2x
− e−x

2x2
+

1

2

∫ x

1

e−ξ

ξ
dξ

)
= −x e−1 +

1

2
(1 + x) e−x +

(
x+ x2

2

)∫ x

1

e−ξ

ξ
dξ

If you wanted to, you could write the last integral in terms of exponential integral functions.
The general solution is

y = c1x+ c2x
2 − x e−1 +

1

2
(1 + x) e−x +

(
x+

x2

2

)∫ x

1

e−ξ

ξ
dξ

Applying the boundary conditions,

y(1) = 0 ⇒ c1 + c2 = 0

y′(1) = 1 ⇒ c1 + 2c2 = 1,

we find that c1 = −1, c2 = 1.
Thus the solution subject to the initial conditions is

y = −(1 + e−1)x+ x2 +
1

2
(1 + x) e−x +

(
x+

x2

2

)∫ x

1

e−ξ

ξ
dξ

Green Functions. The solution to the problem is y = u+ v where

u′′ − 2

x
u′ +

2

x2
u =

e−x

x2
, u(1) = 0, u′(1) = 0,
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and

v′′ − 2

x
v′ +

2

x2
v = 0, v(1) = 0, v′(1) = 1.

The problem for v has the solution

v = −x+ x2.

The Green function for u is

G(x|ξ) = H(x− ξ)uξ(x)

where

uξ(ξ) = 0, and u′ξ(ξ) = 1.

Thus the Green function is

G(x|ξ) = H(x− ξ)
(
−x+

x2

ξ

)
.

The solution for u is then

u =

∫ ∞
1

G(x|ξ) e−ξ

ξ2
dξ

=

∫ x

1

(
−x+

x2

ξ

)
e−ξ

ξ2
dξ

= −x e−1 +
1

2
(1 + x) e−x +

(
x+

x2

2

)∫ x

1

e−ξ

ξ
dξ.

Thus we find the solution for y is

y = −(1 + e−1)x+ x2 +
1

2
(1 + x) e−x +

(
x+

x2

2

)∫ x

1

e−ξ

ξ
dξ
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Solution 23.13
The differential equation for the Green function is

G′′ −G = δ(x− ξ), Gx(0|ξ) = G(1|ξ) = 0.

Note that cosh(x) and sinh(x− 1) are homogeneous solutions that satisfy the left and right boundary conditions,
respectively. The Wronskian of these two solutions is

W (x) =

∣∣∣∣cosh(x) sinh(x− 1)
sinh(x) cosh(x− 1)

∣∣∣∣
= cosh(x) cosh(x− 1)− sinh(x) sinh(x− 1)

=
1

4

((
ex + e−x

) (
ex−1 + e−x+1

)
−
(

ex − e−x
) (

ex−1 − e−x+1
))

=
1

2

(
e1 + e−1

)
= cosh(1).

The Green function for the problem is then

G(x|ξ) =
cosh(x<) sinh(x> − 1)

cosh(1)
,

G(x|ξ) =

{
cosh(x) sinh(ξ−1)

cosh(1)
for 0 ≤ x ≤ ξ,

cosh(ξ) sinh(x−1)
cosh(1)

for ξ ≤ x ≤ 1.

Solution 23.14
The differential equation for the Green function is

G′′ −G = δ(x− ξ), G(0|ξ) = G(∞|ξ) = 0.
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Note that sinh(x) and e−x are homogeneous solutions that satisfy the left and right boundary conditions, respec-
tively. The Wronskian of these two solutions is

W (x) =

∣∣∣∣sinh(x) e−x

cosh(x) − e−x

∣∣∣∣
= − sinh(x) e−x − cosh(x) e−x

= −1

2

(
ex − e−x

)
e−x − 1

2

(
ex + e−x

)
e−x

= −1

The Green function for the problem is then

G(x|ξ) = − sinh(x<) e−x>

G(x|ξ) =

{
− sinh(x) e−ξ for 0 ≤ x ≤ ξ,

− sinh(ξ) e−x for ξ ≤ x ≤ ∞.

Solution 23.15

a) The Green function problem is

xG′′(x|ξ) +G′(x|ξ) = δ(x− ξ), G(0|ξ) bounded, G(1|ξ) = 0.

First we find the homogeneous solutions of the differential equation.

xy′′ + y′ = 0

This is an exact equation.

d

dx
[xy′] = 0
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y′ =
c1

x

y = c1 log x+ c2

The homogeneous solutions y1 = 1 and y2 = log x satisfy the left and right boundary conditions, respectively.
The Wronskian of these solutions is

W (x) =

∣∣∣∣1 log x
0 1/x

∣∣∣∣ =
1

x
.

The Green function is

G(x|ξ) =
1 · log x>
ξ(1/ξ)

,

G(x|ξ) = log x>.

b) The Green function problem is

G′′(x|ξ)−G(x|ξ) = δ(x− ξ), G(−a|ξ) = G(a|ξ) = 0.

{ ex, e−x} and {cosh x, sinhx} are both linearly independent sets of homogeneous solutions. sinh(x+a) and
sinh(x−a) are homogeneous solutions that satisfy the left and right boundary conditions, respectively. The
Wronskian of these two solutions is,

W (x) =

∣∣∣∣sinh(x+ a) sinh(x− a)
cosh(x+ a) cosh(x− a)

∣∣∣∣
= sinh(x+ a) cosh(x− a)− sinh(x− a) cosh(x+ a)

= sinh(2a)

The Green function is

G(x|ξ) =
sinh(x< + a) sinh(x> − a)

sinh(2a)
.

1014



c) The Green function problem is

G′′(x|ξ)−G(x|ξ) = δ(x− ξ), G(x|ξ) bounded as |x| → ∞.

ex and e−x are homogeneous solutions that satisfy the left and right boundary conditions, respectively. The
Wronskian of these solutions is

W (x) =

∣∣∣∣ ex e−x

ex − e−x

∣∣∣∣ = −2.

The Green function is

G(x|ξ) =
ex< e−x>

−2
,

G(x|ξ) = −1

2
ex<−x> .

d) The Green function from part (b) is,

G(x|ξ) =
sinh(x< + a) sinh(x> − a)

sinh(2a)
.

We take the limit as a→∞.

lim
a→∞

sinh(x< + a) sinh(x> − a)

sinh(2a)
= lim

a→∞

( ex<+a − e−x<−a) ( ex>−a − e−x>+a)

2 ( e2a − e−2a)

= lim
a→∞

− ex<−x> + ex<+x>−2a + e−x<−x>−2a − e−x<+x>−4a

2− 2 e−4a

= − ex<−x>

2

Thus we see that the solution from part (b) approaches the solution from part (c) as a→∞.
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Solution 23.16
1. The problem,

y′′ + λy = f(x), y(0) = y(π) = 0,

has a Green function if and only if it has a unique solution. This inhomogeneous problem has a unique
solution if and only if the homogeneous problem has only the trivial solution.

First consider the case λ = 0. We find the general solution of the homogeneous differential equation.

y = c1 + c2x

Only the trivial solution satisfies the boundary conditions. The problem has a unique solution for λ = 0.

Now consider non-zero λ. We find the general solution of the homogeneous differential equation.

y = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
.

The solution that satisfies the left boundary condition is

y = c sin
(√

λx
)
.

We apply the right boundary condition and find nontrivial solutions.

sin
(√

λπ
)

= 0

λ = n2, n ∈ Z+

Thus the problem has a unique solution for all complex λ except λ = n2, n ∈ Z+.

Consider the case λ = 0. We find solutions of the homogeneous equation that satisfy the left and right
boundary conditions, respectively.

y1 = x, y2 = x− π.
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We compute the Wronskian of these functions.

W (x) =

∣∣∣∣x x− π
1 1

∣∣∣∣ = π.

The Green function for this case is

G(x|ξ) =
x<(x> − π)

π
.

We consider the case λ 6= n2, λ 6= 0. We find the solutions of the homogeneous equation that satisfy the
left and right boundary conditions, respectively.

y1 = sin
(√

λx
)
, y2 = sin

(√
λ(x− π)

)
.

We compute the Wronskian of these functions.

W (x) =

∣∣∣∣∣∣ sin
(√

λx
)

sin
(√

λ(x− π)
)

√
λ cos

(√
λx
) √

λ cos
(√

λ(x− π)
)∣∣∣∣∣∣ =

√
λ sin

(√
λπ
)

The Green function for this case is

G(x|ξ) =
sin
(√

λx<

)
sin
(√

λ(x> − π)
)

√
λ sin

(√
λπ
) .

2. Now we consider the problem

y′′ + 9y = 1 + αx, y(0) = y(π) = 0.

The homogeneous solutions of the problem are constant multiples of sin(3x). Thus for each value of α,
the problem either has no solution or an infinite number of solutions. There will be an infinite number of
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solutions if the inhomogeneity 1 + αx is orthogonal to the homogeneous solution sin(3x) and no solution
otherwise. ∫ π

0

(1 + αx) sin(3x) dx =
πα + 2

3

The problem has a solution only for α = −2/π. For this case the general solution of the inhomogeneous
differential equation is

y =
1

9

(
1− 2x

π

)
+ c1 cos(3x) + c2 sin(3x).

The one-parameter family of solutions that satisfies the boundary conditions is

y =
1

9

(
1− 2x

π
− cos(3x)

)
+ c sin(3x).

3. For λ = n2, n ∈ Z+, y = sin(nx) is a solution of the homogeneous equation that satisfies the boundary
conditions. Equation 23.5 has a (non-unique) solution only if f is orthogonal to sin(nx).∫ π

0

f(x) sin(nx) dx = 0

The modified Green function satisfies

G′′ + n2G = δ(x− ξ)− sin(nx) sin(nξ)

π/2
.

We expand G in a series of the eigenfunctions.

G(x|ξ) =
∞∑
k=1

gk sin(kx)
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We substitute the expansion into the differential equation to determine the coefficients. This will not
determine gn. We choose gn = 0, which is one of the choices that will make the modified Green function
symmetric in x and ξ.

∞∑
k=1

gk
(
n2 − k2

)
sin(kx) =

2

π

∞∑
k=1
k 6=n

sin(kx) sin(kξ)

G(x|ξ) =
2

π

∞∑
k=1
k 6=n

sin(kx) sin(kξ)

n2 − k2

The solution of the inhomogeneous problem is

y(x) =

∫ π

0

f(ξ)G(x|ξ) dξ.

Solution 23.17
We separate the problem for u into the two problems:

Lv ≡ (pv′)′ + qv = f(x), a < x < b, v(a) = 0, v(b) = 0

Lw ≡ (pw′)′ + qw = 0, a < x < b, w(a) = α, w(b) = β

and note that the solution for u is u = v + w.
The problem for v has the solution,

v =

∫ b

a

g(x; ξ)f(ξ) dξ,

with the Green function,

g(x; ξ) =
v1(x<)v2(x>)

p(ξ)W (ξ)
≡

{
v1(x)v2(ξ)
p(ξ)W (ξ)

for a ≤ x ≤ ξ,
v1(ξ)v2(x)
p(ξ)W (ξ)

for ξ ≤ x ≤ b.
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Here v1 and v2 are homogeneous solutions that respectively satisfy the left and right homogeneous boundary
conditions.

Since g(x; ξ) is a solution of the homogeneous equation for x 6= ξ, gξ(x; ξ) is a solution of the homogeneous
equation for x 6= ξ. This is because for x 6= ξ,

L

[
∂

∂ξ
g

]
=

∂

∂ξ
L[g] =

∂

∂ξ
δ(x− ξ) = 0.

If ξ is outside of the domain, (a, b), then g(x; ξ) and gξ(x; ξ) are homogeneous solutions on that domain. In
particular gξ(x; a) and gξ(x; b) are homogeneous solutions,

L [gξ(x; a)] = L [gξ(x; b)] = 0.

Now we use the definition of the Green function and v1(a) = v2(b) = 0 to determine simple expressions for these
homogeneous solutions.

gξ(x; a) =
v′1(a)v2(x)

p(a)W (a)
− (p′(a)W (a) + p(a)W ′(a))v1(a)v2(x)

(p(a)W (a))2

=
v′1(a)v2(x)

p(a)W (a)

=
v′1(a)v2(x)

p(a)(v1(a)v′2(a)− v′1(a)v2(a))

= − v′1(a)v2(x)

p(a)v′1(a)v2(a)

= − v2(x)

p(a)v2(a)

We note that this solution has the boundary values,

gξ(a; a) = − v2(a)

p(a)v2(a)
= − 1

p(a)
, gξ(b; a) = − v2(b)

p(a)v2(a)
= 0.
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We examine the second solution.

gξ(x; b) =
v1(x)v′2(b)

p(b)W (b)
− (p′(b)W (b) + p(b)W ′(b))v1(x)v2(b)

(p(b)W (b))2

=
v1(x)v′2(b)

p(b)W (b)

=
v1(x)v′2(b)

p(b)(v1(b)v′2(b)− v′1(b)v2(b))

=
v1(x)v′2(b)

p(b)v1(b)v′2(b)

=
v1(x)

p(b)v1(b)

This solution has the boundary values,

gξ(a; b) =
v1(a)

p(b)v1(b)
= 0, gξ(b; b) =

v1(b)

p(b)v1(b)
=

1

p(b)
.

Thus we see that the solution of

Lw = (pw′)′ + qw = 0, a < x < b, w(a) = α, w(b) = β,

is

w = −αp(a)gξ(x; a) + βp(b)gξ(x; b).

Therefore the solution of the problem for u is

u =

∫ b

a

g(x; ξ)f(ξ) dξ − αp(a)gξ(x; a) + βp(b)gξ(x; b).
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Figure 23.7: G(x; 1) and G(x;−1)

Solution 23.18
Figure 23.7 shows a plot of G(x; 1) and G(x;−1) for k = 1.

First we consider the boundary condition u(0) = 0. Note that the solution of

G′′ − k2G = δ(x− ξ)− δ(x+ ξ), |G(±∞; ξ)| <∞,

satisfies the condition G(0; ξ) = 0. Thus the Green function which satisfies G(0; ξ) = 0 is

G(x; ξ) = − 1

2k
e−k|x−ξ| +

1

2k
e−k|x+ξ|.

Since x, ξ > 0 we can write this as

G(x; ξ) = − 1

2k
e−k|x−ξ| +

1

2k
e−k(x+ξ)

=

{
− 1

2k
e−k(ξ−x) + 1

2k
e−k(x+ξ), for x < ξ

− 1
2k

e−k(x−ξ) + 1
2k

e−k(x+ξ), for ξ < x

=

{
− 1
k

e−kξ sinh(kx), for x < ξ

− 1
k

e−kx sinh(kξ), for ξ < x
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G(x; ξ) = −1

k
e−kx> sinh(kx<)

Now consider the boundary condition u′(0) = 0. Note that the solution of

G′′ − k2G = δ(x− ξ) + δ(x+ ξ), |G(±∞; ξ)| <∞,

satisfies the boundary condition G′(x; ξ) = 0. Thus the Green function is

G(x; ξ) = − 1

2k
e−k|x−ξ| − 1

2k
e−k|x+ξ|.

Since x, ξ > 0 we can write this as

G(x; ξ) = − 1

2k
e−k|x−ξ| − 1

2k
e−k(x+ξ)

=

{
− 1

2k
e−k(ξ−x) − 1

2k
e−k(x+ξ), for x < ξ

− 1
2k

e−k(x−ξ) − 1
2k

e−k(x+ξ), for ξ < x

=

{
− 1
k

e−kξ cosh(kx), for x < ξ

− 1
k

e−kx cosh(kξ), for ξ < x

G(x; ξ) = −1

k
e−kx> cosh(kx<)

The Green functions which satisfies G(0; ξ) = 0 and G′(0; ξ) = 0 are shown in Figure 23.8.

Solution 23.19
1. The Green function satisfies

g′′ − a2g = δ(x− ξ), g(0; ξ) = g′(L; ξ) = 0.
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Figure 23.8: G(x; 1) and G(x;−1)

We can write the set of homogeneous solutions as{
eax, e−ax

}
or {cosh(ax), sinh(ax)} .

The solutions that respectively satisfy the left and right boundary conditions are

u1 = sinh(ax), u2 = cosh(a(x− L)).

The Wronskian of these solutions is

W (x) =

(
sinh(ax) cosh(a(x− L))
a cosh(ax) a sinh(a(x− L))

)
= −a cosh(aL).

Thus the Green function is

g(x; ξ) =

{
− sinh(ax) cosh(a(ξ−L))

a cosh(aL)
for x ≤ ξ,

− sinh(aξ) cosh(a(x−L))
a cosh(aL)

for ξ ≤ x.
= −sinh(ax<) cosh(a(x> − L))

a cosh(aL)
.
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2. We take the limit as L→∞.

g(x; ξ) = lim
L→∞

−sinh(ax<) cosh(a(x> − L))

a cosh(aL)

= lim
L→∞

−sinh(ax<)

a

cosh(ax>) cosh(aL)− sinh(ax>) sinh(aL)

cosh(aL)

= −sinh(ax<)

a
(cosh(ax>)− sinh(ax>))

g(x; ξ) = −1

a
sinh(ax<) e−ax>

The solution of

y′′ − a2y = e−x, y(0) = y′(∞) = 0

is

y =

∫ ∞
0

g(x; ξ) e−ξ dξ

= −1

a

∫ ∞
0

sinh(ax<) e−ax> e−ξ dξ

= −1

a

(∫ x

0

sinh(aξ) e−ax e−ξ dξ +

∫ ∞
x

sinh(ax) e−aξ e−ξ dξ

)
We first consider the case that a 6= 1.

= −1

a

(
e−ax

a2 − 1

(
−a+ e−x(a cosh(ax) + sinh(ax))

)
+

1

a+ 1
e−(a+1)x sinh(ax)

)
=

e−ax − e−x

a2 − 1
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For a = 1, we have

y = −
(

1

4
e−x

(
−1 + 2x+ e−2x

)
+

1

2
e−2x sinh(x)

)
= −1

2
x e−x.

Thus the solution of the problem is

y =

{
e−ax− e−x

a2−1
for a 6= 1,

−1
2
x e−x for a = 1.

We note that this solution satisfies the differential equation and the boundary conditions.
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Chapter 24

Difference Equations

Televisions should have a dial to turn up the intelligence. There is a brightness knob, but it doesn’t work.

-?

24.1 Introduction

Example 24.1.1 Gambler’s ruin problem. Consider a gambler that initially has n dollars. He plays a game
in which he has a probability p of winning a dollar and q of losing a dollar. (Note that p+q = 1.) The gambler has
decided that if he attains N dollars he will stop playing the game. In this case we will say that he has succeeded.
Of course if he runs out of money before that happens, we will say that he is ruined. What is the probability of
the gambler’s ruin? Let us denote this probability by an. We know that if he has no money left, then his ruin is
certain, so a0 = 1. If he reaches N dollars he will quit the game, so that aN = 0. If he is somewhere in between
ruin and success then the probability of his ruin is equal to p times the probability of his ruin if he had n + 1
dollars plus q times the probability of his ruin if he had n− 1 dollars. Writing this in an equation,

an = pan+1 + qan−1 subject to a0 = 1, aN = 0.
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This is an example of a difference equation. You will learn how to solve this particular problem in the section on
constant coefficient equations.

Consider the sequence a1, a2, a3, . . . Analogous to a derivative of a continuous function, we can define a discrete
derivative on the sequence

Dan = an+1 − an.

The second discrete derivative is then defined as

D2an = D[an+1 − an] = an+2 − 2an+1 + an.

The discrete integral of an is

n∑
i=n0

ai.

Corresponding to ∫ β

α

df

dx
dx = f(β)− f(α),

in the discrete realm we have

β−1∑
n=α

D[an] =

β−1∑
n=α

(an+1 − an) = aβ − aα.

Linear difference equations have the form

Dran + pr−1(n)Dr−1an + · · ·+ p1(n)Dan + p0(n)an = f(n).

From the definition of the discrete derivative an equivalent form is

an+r + qr−1(n)anr−1 + · · ·+ q1(n)an+1 + q0(n)an = f(n).
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Besides being important in their own right, we will need to solve difference equations in order to develop series
solutions of differential equations. Also, some methods of solving differential equations numerically are based on
approximating them with difference equations.

There are many similarities between differential and difference equations. Like differential equations, an rth

order homogeneous difference equation has r linearly independent solutions. The general solution to the rth

order inhomogeneous equation is the sum of the particular solution and an arbitrary linear combination of the
homogeneous solutions.

For an rth order difference equation, the initial condition is given by specifying the values of the first r an’s.

Example 24.1.2 Consider the difference equation an−2−an−1−an = 0 subject to the initial condition a1 = a2 = 1.
Note that although we may not know a closed-form formula for the an we can calculate the an in order by
substituting into the difference equation. The first few an are 1, 1, 2, 3, 5, 8, 13, 21, . . . We recognize this as the
Fibonacci sequence.

24.2 Exact Equations

Consider the sequence a1, a2, . . . . Exact difference equations on this sequence have the form

D[F (an, an+1, . . . , n)] = g(n).

We can reduce the order of, (or solve for first order), this equation by summing from 1 to n− 1.

n−1∑
j=1

D[F (aj, aj+1, . . . , j)] =
n−1∑
j=1

g(j)

F (an, an+1, . . . , n)− F (a1, a2, . . . , 1) =
n−1∑
j=1

g(j)

F (an, an+1, . . . , n) =
n−1∑
j=1

g(j) + F (a1, a2, . . . , 1)
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Result 24.2.1 We can reduce the order of the exact difference equation

D[F (an, an+1, . . . , n)] = g(n), for n ≥ 1

by summing both sides of the equation to obtain

F (an, an+1, . . . , n) =
n−1∑
j=1

g(j) + F (a1, a2, . . . , 1).

Example 24.2.1 Consider the difference equation, D[nan] = 1. Summing both sides of this equation

n−1∑
j=1

D[jaj] =
n−1∑
j=1

1

nan − a1 = n− 1

an =
n+ a1 − 1

n
.

24.3 Homogeneous First Order

Consider the homogeneous first order difference equation

an+1 = p(n)an, for n ≥ 1.
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We can directly solve for an.

an = an
an−1

an−1

an−2

an−2

· · · a1

a1

= a1
an
an−1

an−1

an−2

· · · a2

a1

= a1p(n− 1)p(n− 2) · · · p(1)

= a1

n−1∏
j=1

p(j)

Alternatively, we could solve this equation by making it exact. Analogous to an integrating factor for differ-
ential equations, we multiply the equation by the summing factor

S(n) =

[
n∏
j=1

p(j)

]−1

.

an+1 − p(n)an = 0
an+1∏n
j=1 p(j)

− an∏n−1
j=1 p(j)

= 0

D

[
an∏n−1

j=1 p(j)

]
= 0

Now we sum from 1 to n− 1.

an∏n−1
j=1 p(j)

− a1 = 0

an = a1

n−1∏
j=1

p(j)
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Result 24.3.1 The solution of the homogeneous first order difference equation

an+1 = p(n)an, for n ≥ 1,

is

an = a1

n−1∏
j=1

p(j).

Example 24.3.1 Consider the equation an+1 = nan with the initial condition a1 = 1.

an = a1

n−1∏
j=1

j = (1)(n− 1)! = Γ(n)

Recall that Γ(z) is the generalization of the factorial function. For positive integral values of the argument,
Γ(n) = (n− 1)!.

24.4 Inhomogeneous First Order

Consider the equation

an+1 = p(n)an + q(n) for n ≥ 1.

Multiplying by S(n) =
[∏n

j=1 p(j)
]−1

yields

an+1∏n
j=1 p(j)

− an∏n−1
j=1 p(j)

=
q(n)∏n
j=1 p(j)

.
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The left hand side is a discrete derivative.

D

[
an∏n−1

j=1 p(j)

]
=

q(n)∏n
j=1 p(j)

Summing both sides from 1 to n− 1,

an∏n−1
j=1 p(j)

− a1 =
n−1∑
k=1

[
q(k)∏k
j=1 p(j)

]

an =

[
n−1∏
m=1

p(m)

][
n−1∑
k=1

[
q(k)∏k
j=1 p(j)

]
+ a1

]
.

Result 24.4.1 The solution of the inhomogeneous first order difference equation

an+1 = p(n)an + q(n) for n ≥ 1

is

an =

[
n−1∏
m=1

p(m)

][
n−1∑
k=1

[
q(k)∏k
j=1 p(j)

]
+ a1

]
.

Example 24.4.1 Consider the equation an+1 = nan + 1 for n ≥ 1. The summing factor is

S(n) =

[
n∏
j=1

j

]−1

=
1

n!
.
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Multiplying the difference equation by the summing factor,

an+1

n!
− an

(n− 1)!
=

1

n!

D

[
an

(n− 1)!

]
=

1

n!

an
(n− 1)!

− a1 =
n−1∑
k=1

1

k!

an = (n− 1)!

[
n−1∑
k=1

1

k!
+ a1

]
.

Example 24.4.2 Consider the equation

an+1 = λan + µ, for n ≥ 0.

From the above result, (with the products and sums starting at zero instead of one), the solution is

a0 =

[
n−1∏
m=0

λ

][
n−1∑
k=0

[
µ∏k
j=0 λ

]
+ a0

]

= λn

[
n−1∑
k=0

[ µ

λk+1

]
+ a0

]

= λn
[
µ
λ−n−1 − λ−1

λ−1 − 1
+ a0

]
= λn

[
µ
λ−n − 1

1− λ
+ a0

]
= µ

1− λn

1− λ
+ a0λ

n.
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24.5 Homogeneous Constant Coefficient Equations

Homogeneous constant coefficient equations have the form

an+N + pN−1an+N−1 + · · ·+ p1an+1 + p0an = 0.

The substitution an = rn yields

rN + pN−1r
N−1 + · · ·+ p1r + p0 = 0

(r − r1)m1 · · · (r − rk)mk = 0.

If r1 is a distinct root then the associated linearly independent solution is rn1 . If r1 is a root of multiplicity
m > 1 then the associated solutions are rn1 , nr

n
1 , n

2rn1 , . . . , n
m−1rn1 .

Result 24.5.1 Consider the homogeneous constant coefficient difference equation

an+N + pN−1an+N−1 + · · ·+ p1an+1 + p0an = 0.

The substitution an = rn yields the equation

(r − r1)
m1 · · · (r − rk)mk = 0.

A set of linearly independent solutions is

{rn1 , nrn1 , . . . , nm1−1rn1 , . . . , r
n
k , nr

n
k , . . . , n

mk−1rnk}.

Example 24.5.1 Consider the equation an+2 − 3an+1 + 2an = 0 with the initial conditions a1 = 1 and a2 = 3.
The substitution an = rn yields

r2 − 3r + 2 = (r − 1)(r − 2) = 0.
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Thus the general solution is

an = c11n + c22n.

The initial conditions give the two equations,

a1 = 1 = c1 + 2c2

a2 = 3 = c1 + 4c2

Since c1 = −1 and c2 = 1, the solution to the difference equation subject to the initial conditions is

an = 2n − 1.

Example 24.5.2 Consider the gambler’s ruin problem that was introduced in Example 24.1.1. The equation for
the probability of the gambler’s ruin at n dollars is

an = pan+1 + qan−1 subject to a0 = 1, aN = 0.

We assume that 0 < p < 1. With the substitution an = rn we obtain

r = pr2 + q.

The roots of this equation are

r =
1±
√

1− 4pq

2p

=
1±

√
1− 4p(1− p)

2p

=
1±

√
(1− 2p)2

2p

=
1± |1− 2p|

2p
.

We will consider the two cases p 6= 1/2 and p = 1/2.
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p 6= 1/2. If p < 1/2, the roots are

r =
1± (1− 2p)

2p

r1 =
1− p
p

=
q

p
, r2 = 1.

If p > 1/2 the roots are

r =
1± (2p− 1)

2p

r1 = 1, r2 =
−p+ 1

p
=
q

p
.

Thus the general solution for p 6= 1/2 is

an = c1 + c2

(
q

p

)n
.

The boundary condition a0 = 1 requires that c1 + c2 = 1. From the boundary condition aN = 0 we have

(1− c2) + c2

(
q

p

)N
= 0

c2 =
−1

−1 + (q/p)N

c2 =
pN

pN − qN
.

Solving for c1,

c1 = 1− pN

pN − qN

c1 =
−qN

pN − qN
.
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Thus we have

an =
−qN

pN − qN
+

pN

pN − qN

(
q

p

)n
.

p = 1/2. In this case, the two roots of the polynomial are both 1. The general solution is

an = c1 + c2n.

The left boundary condition demands that c1 = 1. From the right boundary condition we obtain

1 + c2N = 0

c2 = − 1

N
.

Thus the solution for this case is

an = 1− n

N
.

As a check that this formula makes sense, we see that for n = N/2 the probability of ruin is 1− N/2
N

= 1
2
.

24.6 Reduction of Order

Consider the difference equation

(n+ 1)(n+ 2)an+2 − 3(n+ 1)an+1 + 2an = 0 for n ≥ 0 (24.1)

We see that one solution to this equation is an = 1/n!. Analogous to the reduction of order for differential
equations, the substitution an = bn/n! will reduce the order of the difference equation.

(n+ 1)(n+ 2)bn+2

(n+ 2)!
− 3(n+ 1)bn+1

(n+ 1)!
+

2bn
n!

= 0

bn+2 − 3bn+1 + 2bn = 0 (24.2)
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At first glance it appears that we have not reduced the order of the equation, but writing it in terms of discrete
derivatives

D2bn −Dbn = 0

shows that we now have a first order difference equation for Dbn. The substitution bn = rn in equation 24.2 yields
the algebraic equation

r2 − 3r + 2 = (r − 1)(r − 2) = 0.

Thus the solutions are bn = 1 and bn = 2n. Only the bn = 2n solution will give us another linearly independent
solution for an. Thus the second solution for an is an = bn/n! = 2n/n!. The general solution to equation 24.1 is
then

an = c1
1

n!
+ c2

2n

n!
.

Result 24.6.1 Let an = sn be a homogeneous solution of a linear difference equation.
The substitution an = snbn will yield a difference equation for bn that is of order one less
than the equation for an.
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24.7 Exercises
Exercise 24.1
Find a formula for the nth term in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . .
Hint, Solution

Exercise 24.2
Solve the difference equation

an+2 =
2

n
an, a1 = a2 = 1.

Hint, Solution
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24.8 Hints
Hint 24.1
The difference equation corresponding to the Fibonacci sequence is

an+2 − an+1 − an = 0, a1 = a2 = 1.

Hint 24.2
Consider this exercise as two first order difference equations; one for the even terms, one for the odd terms.
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24.9 Solutions

Solution 24.1
We can describe the Fibonacci sequence with the difference equation

an+2 − an+1 − an = 0, a1 = a2 = 1.

With the substitution an = rn we obtain the equation

r2 − r − 1 = 0.

This equation has the two distinct roots

r1 =
1 +
√

5

2
, r2 =

1−
√

5

2
.

Thus the general solution is

an = c1

(
1 +
√

5

2

)n

+ c2

(
1−
√

5

2

)n

.

From the initial conditions we have

c1r1+c2r2 = 1

c1r
2
1+c2r

2
2 = 1.

Solving for c2 in the first equation,

c2 =
1

r2

(1− c1r1).
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We substitute this into the second equation.

c1r
2
1 +

1

r2

(1− c1r1)r2
2 = 1

c1(r2
1 − r1r2) = 1− r2

c1 =
1− r2

r2
1 − r1r2

=
1− 1−

√
5

2

1+
√

5
2

√
5

=
1+
√

5
2

1+
√

5
2

√
5

=
1√
5

Substitute this result into the equation for c2.

c2 =
1

r2

(
1− 1√

5
r1

)
=

2

1−
√

5

(
1− 1√

5

1 +
√

5

2

)

= − 2

1−
√

5

(
1−
√

5

2
√

5

)
= − 1√

5
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Thus the nth term in the Fibonacci sequence has the formula

an =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

It is interesting to note that although the Fibonacci sequence is defined in terms of integers, one cannot express
the formula form the nth element in terms of rational numbers.

Solution 24.2
We can consider

an+2 =
2

n
an, a1 = a2 = 1

to be a first order difference equation. First consider the odd terms.

a1 = 1

a3 =
2

1

a5 =
2

3

2

1

an =
2(n−1)/2

(n− 2)(n− 4) · · · (1)

For the even terms,

a2 = 1

a4 =
2

2

a6 =
2

4

2

2

an =
2(n−2)/2

(n− 2)(n− 4) · · · (2)
.
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Thus

an =

{
2(n−1)/2

(n−2)(n−4)···(1)
for odd n

2(n−2)/2

(n−2)(n−4)···(2)
for even n.
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Chapter 25

Series Solutions of Differential Equations

Skill beats honesty any day.

-?

25.1 Ordinary Points

Big O and Little o Notation. The notationO(zn) means “terms no bigger than zn.” This gives us a convenient
shorthand for manipulating series. For example,

sin z = z − z3

6
+O(z5)

1

1− z
= 1 +O(z)

The notation o(zn) means “terms smaller that zn.” For example,

cos z = 1 + o(1)
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ez = 1 + z + o(z)

Example 25.1.1 Consider the equation

w′′(z)− 3w′(z) + 2w(z) = 0.

The general solution to this constant coefficient equation is

w = c1 ez + c2 e2z.

The functions ez and e2z are analytic in the finite complex plane. Recall that a function is analytic at a point z0

if and only if the function has a Taylor series about z0 with a nonzero radius of convergence. If we substitute the
Taylor series expansions about z = 0 of ez and e2z into the general solution, we obtain

w = c1

∞∑
n=0

zn

n!
+ c2

∞∑
n=0

2nzn

n!
.

Thus we have a series solution of the differential equation.
Alternatively, we could try substituting a Taylor series into the differential equation and solving for the

coefficients. Substituting w =
∑∞

n=0 anz
n into the differential equation yields

d2

dz2

∞∑
n=0

anz
n − 3

d

dz

∞∑
n=0

anz
n + 2

∞∑
n=0

anz
n = 0

∞∑
n=2

n(n− 1)anz
n−2 − 3

∞∑
n=1

nanz
n−1 + 2

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n − 3

∞∑
n=0

(n+ 1)an+1z
n + 2

∞∑
n=0

anz
n = 0

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 − 3(n+ 1)an+1 + 2an

]
zn = 0.
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Equating powers of z, we obtain the difference equation

(n+ 2)(n+ 1)an+2 − 3(n+ 1)an+1 + 2an = 0, n ≥ 0.

We see that an = 1/n! is one solution since

(n+ 2)(n+ 1)

(n+ 2)!
− 3

n+ 1

(n+ 1)!
+ 2

1

n!
=

1− 3 + 2

n!
= 0.

We use reduction of order for difference equations to find the other solution. Substituting an = bn/n! into the
difference equation yields

(n+ 2)(n+ 1)
bn+2

(n+ 2)!
− 3(n+ 1)

bn+1

(n+ 1)!
+ 2

bn
n!

= 0

bn+2 − 3bn+1 + 2bn = 0.

At first glance it appears that we have not reduced the order of the difference equation. However writing this
equation in terms of discrete derivatives,

D2bn −Dbn = 0

we see that this is a first order difference equation for Dbn. Since this is a constant coefficient difference equation
we substitute bn = rn into the equation to obtain an algebraic equation for r.

r2 − 3r + 2 = (r − 1)(r − 2) = 0

Thus the two solutions are bn = 1nb0 and bn = 2nb0. Only bn = 2nb0 will give us a second independent solution
for an. Thus the two solutions for an are

an =
a0

n!
and an =

2na0

n!
.

Thus we can write the general solution to the differential equation as

w = c1

∞∑
n=0

zn

n!
+ c2

∞∑
n=0

2nzn

n!
.
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We recognize these two sums as the Taylor expansions of ez and e2z. Thus we obtain the same result as we did
solving the differential equation directly.

Of course it would be pretty silly to go through all the grunge involved in developing a series expansion of the
solution in a problem like Example 25.1.1 since we can solve the problem exactly. However if we could not solve
a differential equation, then having a Taylor series expansion of the solution about a point z0 would be useful in
determining the behavior of the solutions near that point.

For this method of substituting a Taylor series into the differential equation to be useful we have to know at
what points the solutions are analytic. Let’s say we were considering a second order differential equation whose
solutions were

w1 =
1

z
, and w2 = log z.

Trying to find a Taylor series expansion of the solutions about the point z = 0 would fail because the solutions
are not analytic at z = 0. This brings us to two important questions.

1. Can we tell if the solutions to a linear differential equation are analytic at a point without knowing the
solutions?

2. If there are Taylor series expansions of the solutions to a differential equation, what are the radii of conver-
gence of the series?

In order to answer these questions, we will introduce the concept of an ordinary point. Consider the nth order
linear homogeneous equation

dnw

dzn
+ pn−1(z)

dn−1w

dzn−1
+ · · ·+ p1(z)

dw

dz
+ p0(z)w = 0.

If each of the coefficient functions pi(z) are analytic at z = z0 then z0 is an ordinary point of the differential
equation.

For reasons of typography we will restrict our attention to second order equations and the point z0 = 0 for a
while. The generalization to an nth order equation will be apparent. Considering the point z0 6= 0 is only trivially
more general as we could introduce the transformation z − z0 → z to move the point to the origin.
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In the chapter on first order differential equations we showed that the solution is analytic at ordinary points.
One would guess that this remains true for higher order equations. Consider the second order equation

y′′ + p(z)y′ + q(z)y = 0,

where p and q are analytic at the origin.

p(z) =
∞∑
n=0

pnz
n, and q(z) =

∞∑
n=0

qnz
n

Assume that one of the solutions is not analytic at the origin and behaves like zα at z = 0 where α 6= 0, 1, 2, . . . .
That is, we can approximate the solution with w(z) = zα + o(zα). Let’s substitute w = zα + o(zα) into the
differential equation and look at the lowest power of z in each of the terms.[

α(α− 1)zα−2 + o(zα−2)
]

+
[
αzα−1 + o(zα−1)

] ∞∑
n=0

pnz
n +

[
zα + o(zα)

] ∞∑
n=0

qnz
n = 0.

We see that the solution could not possibly behave like zα, α 6= 0, 1, 2, · · · because there is no term on the left to
cancel out the zα−2 term. The terms on the left side could not add to zero.

You could also check that a solution could not possibly behave like log z at the origin. Though we will not
prove it, if z0 is an ordinary point of a homogeneous differential equation, then all the solutions are analytic at
the point z0. Since the solution is analytic at z0 we can expand it in a Taylor series.

Now we are prepared to answer our second question. From complex variables, we know that the radius of
convergence of the Taylor series expansion of a function is the distance to the nearest singularity of that function.
Since the solutions to a differential equation are analytic at ordinary points of the equation, the series expansion
about an ordinary point will have a radius of convergence at least as large as the distance to the nearest singularity
of the coefficient functions.

Example 25.1.2 Consider the equation

w′′ +
1

cos z
w′ + z2w = 0.
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If we expand the solution to the differential equation in Taylor series about z = 0, the radius of convergence will
be at least π/2. This is because the coefficient functions are analytic at the origin, and the nearest singularities
of 1/ cos z are at z = ±π/2.

25.1.1 Taylor Series Expansion for a Second Order Differential Equation

Consider the differential equation

w′′ + p(z)w′ + q(z)w = 0

where p(z) and q(z) are analytic in some neighborhood of the origin.

p(z) =
∞∑
n=0

pnz
n and q(z) =

∞∑
n=0

qnz
n

We substitute a Taylor series and it’s derivatives

w =
∞∑
n=0

anz
n

w′ =
∞∑
n=1

nznz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

w′′ =
∞∑
n=2

n(n− 1)anz
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n

into the differential equation to obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n +

(
∞∑
n=0

pnz
n

)(
∞∑
n=0

(n+ 1)an+1z
n

)

+

(
∞∑
n=0

qnz
n

)(
∞∑
n=0

anz
n

)
= 0
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∞∑
n=0

(n+ 2)(n+ 1)an+2z
n +

∞∑
n=0

(
n∑

m=0

(m+ 1)am+1pn−m

)
zn +

∞∑
n=0

(
n∑

m=0

amqn−m

)
zn = 0

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 +

n∑
m=0

(
(m+ 1)am+1pn−m + amqn−m

)]
zn = 0.

Equating coefficients of powers of z,

(n+ 2)(n+ 1)an+2 +
n∑

m=0

(
(m+ 1)am+1pn−m + amqn−m

)
= 0 for n ≥ 0.

We see that a0 and a1 are arbitrary and the rest of the coefficients are determined by the recurrence relation

an+2 = − 1

(n+ 1)(n+ 2)

n∑
m=0

((m+ 1)am+1pn−m + amqn−m) for n ≥ 0.

Example 25.1.3 Consider the problem

y′′ +
1

cosx
y′ + exy = 0, y(0) = y′(0) = 1.

Let’s expand the solution in a Taylor series about the origin.

y(x) =
∞∑
n=0

anx
n

Since y(0) = a0 and y′(0) = a1, we see that a0 = a1 = 1. The Taylor expansions of the coefficient functions are

1

cos x
= 1 +O(x), and ex = 1 +O(x).
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Now we can calculate a2 from the recurrence relation.

a2 = − 1

1 · 2

0∑
m=0

((m+ 1)am+1p0−m + amq0−m)

= −1

2
(1 · 1 · 1 + 1 · 1)

= −1

Thus the solution to the problem is

y(x) = 1 + x− x2 +O(x3).

In Figure 25.1 the numerical solution is plotted in a solid line and the sum of the first three terms of the Taylor
series is plotted in a dashed line.

The general recurrence relation for the an’s is useful if you only want to calculate the first few terms in the
Taylor expansion. However, for many problems substituting the Taylor series for the coefficient functions into the
differential equation will enable you to find a simpler form of the solution. We consider the following example to
illustrate this point.

Example 25.1.4 Develop a series expansion of the solution to the initial value problem

w′′ +
1

(z2 + 1)
w = 0, w(0) = 1, w′(0) = 0.

Solution using the General Recurrence Relation. The coefficient function has the Taylor expansion

1

1 + z2
=
∞∑
n=0

(−1)nz2n.

From the initial condition we obtain a0 = 1 and a1 = 0. Thus we see that the solution is

w =
∞∑
n=0

anz
n,
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Figure 25.1: Plot of the Numerical Solution and the First Three Terms in the Taylor Series.

where

an+2 = − 1

(n+ 1)(n+ 2)

n∑
m=0

amqn−m

and

qn =

{
0 for odd n

(−1)(n/2) for even n.

Although this formula is fine if you only want to calculate the first few an’s, it is just a tad unwieldy to work
with. Let’s see if we can get a better expression for the solution.
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Substitute the Taylor Series into the Differential Equation. Substituting a Taylor series for w yields

d2

dz2

∞∑
n=0

anz
n +

1

(z2 + 1)

∞∑
n=0

anz
n = 0.

Note that the algebra will be easier if we multiply by z2 + 1. The polynomial z2 + 1 has only two terms, but the
Taylor series for 1/(z2 + 1) has an infinite number of terms.

(z2 + 1)
d2

dz2

∞∑
n=0

anz
n +

∞∑
n=0

anz
n = 0

∞∑
n=2

n(n− 1)anz
n +

∞∑
n=2

n(n− 1)anz
n−2 +

∞∑
n=0

anz
n = 0

∞∑
n=0

n(n− 1)anz
n +

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n +

∞∑
n=0

anz
n = 0

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 + n(n− 1)an + an

]
zn = 0

Equating powers of z gives us the difference equation

an+2 = − n2 − n+ 1

(n+ 2)(n+ 1)
an, for n ≥ 0.

From the initial conditions we see that a0 = 1 and a1 = 0. All of the odd terms in the series will be zero. For
the even terms, it is easier to reformulate the problem with the change of variables bn = a2n. In terms of bn the
difference equation is

bn+1 = − (2n)2 − 2n+ 1

(2n+ 2)(2n+ 1)
bn, b0 = 1.
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This is a first order difference equation with the solution

bn =
n∏
j=0

(
− 4j2 − 2j + 1

(2j + 2)(2j + 1)

)
.

Thus we have that

an =

{∏n/2
j=0

(
− 4j2−2j+1

(2j+2)(2j+1)

)
for even n,

0 for odd n.

Note that the nearest singularities of 1/(z2 + 1) in the complex plane are at z = ±i. Thus the radius of
convergence must be at least 1. Applying the ratio test, the series converges for values of |z| such that

lim
n→∞

∣∣∣∣an+2z
n+2

anzn

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣− n2 − n+ 1

(n+ 2)(n+ 1)

∣∣∣∣ |z|2 < 1

|z|2 < 1.

The radius of convergence is 1.
The first few terms in the Taylor expansion are

w = 1− 1

2
z2 +

1

8
z4 − 13

240
z6 + · · · .

In Figure 25.2 the plot of the first two nonzero terms is shown in a short dashed line, the plot of the first four
nonzero terms is shown in a long dashed line, and the numerical solution is shown in a solid line.

In general, if the coefficient functions are rational functions, that is they are fractions of polynomials, multi-
plying the equations by the quotient will reduce the algebra involved in finding the series solution.
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Figure 25.2: Plot of the solution and approximations.

Example 25.1.5 If we were going to find the Taylor series expansion about z = 0 of the solution to

w′′ +
z

1 + z
w′ +

1

1− z2
w = 0,

we would first want to multiply the equation by 1− z2 to obtain

(1− z2)w′′ + z(1− z)w′′ + w = 0.

Example 25.1.6 Find the series expansions about z = 0 of the fundamental set of solutions for

w′′ + z2w = 0.
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Recall that the fundamental set of solutions {w1, w2} satisfy

w1(0) = 1 w2(0) = 0

w′1(0) = 0 w′2(0) = 1.

Thus if

w1 =
∞∑
n=0

anz
n and w2 =

∞∑
n=0

bnz
n,

then the coefficients must satisfy

a0 = 1, a1 = 0, and b0 = 0, b1 = 1.

Substituting the Taylor expansion w =
∑∞

n=0 cnz
n into the differential equation,

∞∑
n=2

n(n− 1)cnz
n−2 +

∞∑
n=0

cnz
n+2 = 0

∞∑
n=0

(n+ 2)(n+ 1)cn+2z
n +

∞∑
n=2

cn−2z
n = 0

2c2 + 6c3z +
∞∑
n=2

[
(n+ 2)(n+ 1)cn+2 + cn−2

]
zn = 0

Equating coefficients of powers of z,

z0 : c2 = 0

z1 : c3 = 0

zn : (n+ 2)(n+ 1)cn+2 + cn−2 = 0, for n ≥ 2

cn+4 = − cn
(n+ 4)(n+ 3)
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For our first solution we have the difference equation

a0 = 1, a1 = 0, a2 = 0, a3 = 0, an+4 = − an
(n+ 4)(n+ 3)

.

For our second solution,

b0 = 0, b1 = 1, b2 = 0, b3 = 0, bn+4 = − bn
(n+ 4)(n+ 3)

.

The first few terms in the fundamental set of solutions are

w1 = 1− 1

12
z4 +

1

672
z8 − · · · , w2 = z − 1

20
z5 +

1

1440
z9 − · · · .

In Figure 25.3 the five term approximation is graphed in a coarse dashed line, the ten term approximation is
graphed in a fine dashed line, and the numerical solution of w1 is graphed in a solid line. The same is done for
w2.

Result 25.1.1 Consider the nth order linear homogeneous equation

dnw

dzn
+ pn−1(z)

dn−1w

dzn−1 + · · ·+ p1(z)
dw

dz
+ p0(z)w = 0.

If each of the coefficient functions pi(z) are analytic at z = z0 then z0 is an ordinary
point of the differential equation. The solution is analytic in some region containing z0

and can be expanded in a Taylor series. The radius of convergence of the series will be
at least the distance to the nearest singularity of the coefficient functions in the complex
plane.
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Figure 25.3: The graph of approximations and numerical solution of w1 and w2.

25.2 Regular Singular Points of Second Order Equations

Consider the differential equation

w′′ +
p(z)

z − z0

w′ +
q(z)

(z − z0)2
w = 0.

If z = z0 is not an ordinary point but both p(z) and q(z) are analytic at z = z0 then z0 is a regular singular
point of the differential equation. The following equations have a regular singular point at z = 0.

• w′′ + 1
z
w′ + z2w = 0

• w′′ + 1
sin z

w′ − w = 0
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• w′′ − zw′ + 1
z sin z

w = 0

Concerning regular singular points of second order linear equations there is good news and bad news.

The Good News. We will find that with the use of the Frobenius method we can always find series expansions
of two linearly independent solutions at a regular singular point. We will illustrate this theory with several
examples.

The Bad News. Instead of a tidy little theory like we have for ordinary points, the solutions can be of several
different forms. Also, for some of the problems the algebra can get pretty ugly.

Example 25.2.1 Consider the equation

w′′ +
3(1 + z)

16z2
w = 0.

We wish to find series solutions about the point z = 0. First we try a Taylor series w =
∑∞

n=0 anz
n. Substituting

this into the differential equation,

z2

∞∑
n=2

n(n− 1)anz
n−2 +

3

16
(1 + z)

∞∑
n=0

anz
n = 0

∞∑
n=0

n(n− 1)anz
n +

3

16

∞∑
n=0

anz
n +

3

16

∞∑
n=1

an+1z
n = 0.

Equating powers of z,

z0 : a0 = 0

zn :

[
n(n− 1) +

3

16

]
an +

3

16
an+1 = 0

an+1 =

[
16

3
n(n− 1) + 1

]
an.
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This difference equation has the solution an = 0 for all n. Thus we have obtained only the trivial solution to the
differential equation. We must try an expansion of a more general form. We recall that for regular singular points
of first order equations we can always find a solution in the form of a Frobenius series w = zα

∑∞
n=0 anz

n, a0 6= 0.
We substitute this series into the differential equation.

z2

∞∑
n=0

[
α(α− 1) + 2αn + n(n− 1)

]
anz

n+α−2 +
3

16
(1 + z)zα

∞∑
n=0

anz
n = 0

∞∑
n=0

[
α(α− 1) + 2n+ n(n− 1)

]
anz

n +
3

16

∞∑
n=0

anz
n +

3

16

∞∑
n=1

an−1z
n = 0

Equating the z0 term to zero yields the equation(
α(α− 1) +

3

16

)
a0 = 0.

Since we have assumed that a0 6= 0, the polynomial in α must be zero. The two roots of the polynomial are

α1 =
1 +

√
1− 3/4

2
=

3

4
, α2 =

1−
√

1− 3/4

2
=

1

4
.

Thus our two series solutions will be of the form

w1 = z3/4

∞∑
n=0

anz
n, w2 = z1/4

∞∑
n=0

bnz
n.

Substituting the first series into the differential equation,

∞∑
n=0

[
− 3

16
+ 2n+ n(n− 1) +

3

16

]
anz

n +
3

16

∞∑
n=1

an−1z
n = 0.

Equating powers of z, we see that a0 is arbitrary and

an = − 3

16n(n+ 1)
an−1 for n ≥ 1.
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This difference equation has the solution

an = a0

n∏
j=1

(
− 3

16j(j + 1)

)

= a0

(
− 3

16

)n n∏
j=1

1

j(j + 1)

= a0

(
− 3

16

)n
1

n!(n+ 1)!
for n ≥ 1.

Substituting the second series into the differential equation,

∞∑
n=0

[
− 3

16
+ 2n+ n(n− 1) +

3

16

]
bnz

n +
3

16

∞∑
n=1

bn−1z
n = 0.

We see that the difference equation for bn is the same as the equation for an. Thus we can write the general
solution to the differential equation as

w = c1z
3/4

(
1 +

∞∑
n=1

(
− 3

16

)n
1

n!(n+ 1)!
zn

)
+ c2z

1/4

(
1 +

∞∑
n=1

(
− 3

16

)n
1

n!(n+ 1)!
zn

)

(
c1z

3/4 + c2z
1/4
)(

1 +
∞∑
n=1

(
− 3

16

)n
1

n!(n+ 1)!
zn

)
.

25.2.1 Indicial Equation

Now let’s consider the general equation for a regular singular point at z = 0

w′′ +
p(z)

z
w′ +

q(z)

z2
w = 0.
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Since p(z) and q(z) are analytic at z = 0 we can expand them in Taylor series.

p(z) =
∞∑
n=0

pnz
n, q(z) =

∞∑
n=0

qnz
n

Substituting a Frobenius series w = zα
∑∞

n=0 anz
n, a0 6= 0 and the Taylor series for p(z) and q(z) into the

differential equation yields

∞∑
n=0

[
(α + n)(α + n− 1)

]
anz

n +

(
∞∑
n=0

pnz
n

)(
∞∑
n=0

(α + n)anz
n

)
+

(
∞∑
n=0

qnz
n

)(
∞∑
n=0

anz
n

)
= 0

∞∑
n=0

[
(α + n)2 − (α + n) + p0(α + n) + q0

]
anz

n

+

(
∞∑
n=1

pnz
n

)(
∞∑
n=0

(α + n)anz
n

)
+

(
∞∑
n=1

qnz
n

)(
∞∑
n=0

anz
n

)
= 0

∞∑
n=0

[
(α + n)2 + (p0 − 1)(αn) + q0

]
anz

n +
∞∑
n=1

(
n−1∑
j=0

(α + j)ajpn−j

)
zn +

∞∑
n=1

(
n−1∑
j=0

ajqn−j

)
zn = 0

Equating powers of z,

z0 :
[
α2 + (p0 − 1)α + q0

]
a0 = 0

zn :
[
(α + n)2 + (p0 − 1)(α + n) + q0

]
an = −

n−1∑
j=0

[
(α + j)pn−j + qn−j

]
aj.

Let

I(α) = α2 + (p0 − 1)α + q0 = 0.
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This is known as the indicial equation. The indicial equation gives us the form of the solutions. The equation
for a0 is I(α)a0 = 0. Since we assumed that a0 is nonzero, I(α) = 0. Let the two roots of I(α) be α1 and α2

where <(α1) ≥ <(α2).
Rewriting the difference equation for an(α),

I(α + n)an(α) = −
n−1∑
j=0

[
(α + j)pn−j + qn−j

]
aj(α) for n ≥ 1. (25.1)

If the roots are distinct and do not differ by an integer then we can use Equation 25.1 to solve for an(α1) and
an(α2), which will give us the two solutions

w1 = zα1

∞∑
n=0

an(α1)zn, and w2 = zα2

∞∑
n=0

an(α2)zn.

If the roots are not distinct, α1 = α2, we will only have one solution and will have to generate another. If
the roots differ by an integer, α1 − α2 = N , there is one solution corresponding to α1, but when we try to solve
Equation 25.1 for an(α2), we will encounter the equation

I(α2 +N)aN(α2) = I(α1)aN(α2) = 0 · aN(α2) = −
N−1∑
j=0

[
(α + n)pn−j + qn−j

]
aj(α2).

If the right side of the equation is nonzero, then aN(α2) is undefined. On the other hand, if the right side is zero
then aN(α2) is arbitrary. The rest of this section is devoted to considering the cases α1 = α2 and α1 − α2 = N .

25.2.2 The Case: Double Root

Consider a second order equation L[w] = 0 with a regular singular point at z = 0. Suppose the indicial equation
has a double root.

I(α) = (α− α1)2 = 0
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One solution has the form

w1 = zα1

∞∑
n=0

anz
n.

In order to find the second solution, we will differentiate with respect to the parameter, α. Let an(α) satisfy
Equation 25.1 Substituting the Frobenius expansion into the differential equation,

L

[
zα

∞∑
n=0

an(α)zn

]
= 0.

Setting α = α1 will make the left hand side of the equation zero. Differentiating this equation with respect to α,

∂

∂α
L

[
zα

∞∑
n=0

an(α)zn

]
= 0.

Interchanging the order of differentiation,

L

[
log z zα

∞∑
n=0

an(α)zn + zα
∞∑
n=0

dan(α)

dα
zn

]
= 0.

Since setting α = α1 will make the left hand side of this equation zero, the second linearly independent solution
is

w2 = log z zα1

∞∑
n=0

an(α1)zn + zα1

∞∑
n=0

dan(α)

dα

∣∣∣∣∣
α=α1

zn

w2 = w1 log z + zα1

∞∑
n=0

a′n(α1)zn.
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Example 25.2.2 Consider the differential equation

w′′ +
1 + z

4z2
w = 0.

There is a regular singular point at z = 0. The indicial equation is

α(α− 1) +
1

4
=

(
α− 1

2

)2

= 0.

One solution will have the form

w1 = z1/2

∞∑
n=0

anz
n, a0 6= 0.

Substituting the Frobenius expansion

zα
∞∑
n=0

an(α)zn

into the differential equation yields

z2w′′ +
1

4
(1 + z)w = 0

∞∑
n=0

[
α(α− 1) + 2αn + n(n− 1)

]
an(α)zn+α +

1

4

∞∑
n=0

an(α)zn+α +
1

4

∞∑
n=0

an(α)zn+α+1 = 0.

Divide by zα and adjust the summation indices.

∞∑
n=0

[α(α− 1) + 2αn + n(n− 1)] an(α)zn +
1

4

∞∑
n=0

an(α)zn +
1

4

∞∑
n=1

an−1(α)zn = 0[
α(α− 1)a0 +

1

4

]
a0 +

∞∑
n=1

([
α(α− 1) + 2n+ n(n− 1) +

1

4

]
an(α) +

1

4
an−1(α)

)
zn = 0
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Equating the coefficient of z0 to zero yields I(α)a0 = 0. Equating the coefficients of zn to zero yields the difference
equation [

α(α− 1) + 2n+ n(n− 1) +
1

4

]
an(α) +

1

4
an−1(α) = 0

an(α) = −
(
n(n+ 1)

4
+
α(α− 1)

4
+

1

16

)
an−1(α).

The first few an’s are

a0, −
(
α(α− 1) +

9

16

)
a0,

(
α(α− 1) +

25

16

)(
α(α− 1) +

9

16

)
a0, . . .

Setting α = 1/2, the coefficients for the first solution are

a0, − 5

16
a0,

105

16
a0, . . .

The second solution has the form

w2 = w1 log z + z1/2

∞∑
n=0

a′n(1/2)zn.

Differentiating the an(α),

da0

dα
= 0,

da1(α)

dα
= −(2α− 1)a0,

da2(α)

dα
= (2α− 1)

[(
α(α− 1) +

9

16

)
+

(
α(α− 1) +

25

16

)]
a0, . . .

Setting α = 1/2 in this equation yields

a′0 = 0, a′1(1/2) = 0, a′2(1/2) = 0, . . .
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Thus the second solution is

w2 = w1 log z.

The first few terms in the general solution are

(c1 + c2 log z)

(
1− 5

16
z +

105

16
z2 − · · ·

)
.

25.2.3 The Case: Roots Differ by an Integer

Consider the case in which the roots of the indicial equation α1 and α2 differ by an integer. (α1−α2 = N) Recall
the equation that determines an(α)

I(α + n)an =
[
(α + n)2 + (p0 − 1)(α + n) + q0

]
an = −

n−1∑
j=0

[
(α + j)pn−j + qn−j

]
aj.

When α = α2 the equation for aN is

I(α2 +N)aN(α2) = 0 · aN(α2) = −
N−1∑
j=0

[
(α + j)pN−j + qN−j

]
aj.

If the right hand side of this equation is zero, then aN is arbitrary. There will be two solutions of the Frobenius
form.

w1 = zα1

∞∑
n=0

an(α1)zn and w2 = zα2

∞∑
n=0

an(α2)zn.

If the right hand side of the equation is nonzero then aN(α2) will be undefined. We will have to generate the
second solution. Let

w(z, α) = zα
∞∑
n=0

an(α)zn,
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where an(α) satisfies the recurrence formula. Substituting this series into the differential equation yields

L[w(z, α)] = 0.

We will multiply by (α−α2), differentiate this equation with respect to α and then set α = α2. This will generate
a linearly independent solution.

∂

∂α
L[(α− α2)w(z, α)] = L

[
∂

∂α
(α− α2)w(z, α)

]
= L

[
∂

∂α
(α− α2)zα

∞∑
n=0

an(α)zn

]

= L

[
log z zα

∞∑
n=0

(α− α2)an(α)zn + zα
∞∑
n=0

d

dα
[(α− α2)an(α)]zn

]

Setting α = α2 with make this expression zero, thus

log z zα
∞∑
n=0

lim
α→α2

{(α− α2)an(α)} zn + zα2

∞∑
n=0

lim
α→α2

{
d

dα
[(α− α2)an(α)]

}
zn

is a solution. Now let’s look at the first term in this solution

log z zα
∞∑
n=0

lim
α→α2

{(α− α2)an(α)} zn.

The first N terms in the sum will be zero. That is because a0, . . . , aN−1 are finite, so multiplying by (α−α2) and
taking the limit as α→ α2 will make the coefficients vanish. The equation for aN(α) is

I(α +N)aN(α) = −
N−1∑
j=0

[
(α + j)pN−j + qN−j

]
aj(α).
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Thus the coefficient of the N th term is

lim
α→α2

(α− α2)aN(α) = − lim
α→α2

[
(α− α2)

I(α +N)

N−1∑
j=0

[
(α + j)pN−j + qN−j

]
aj(α)

]

= − lim
α→α2

[
(α− α2)

(α +N − α1)(α +N − α2)

N−1∑
j=0

[
(α + j)pN−j + qN−j

]
aj(α)

]

Since α1 = α2 +N , limα→α2

α−α2

α+N−α1
= 1.

= − 1

(α1 − α2)

N−1∑
j=0

[
(α2 + j)pN−j + qN−j

]
aj(α2).

Using this you can show that the first term in the solution can be written

d−1 log z w1,

where d−1 is a constant. Thus the second linearly independent solution is

w2 = d−1 log z w1 + zα2

∞∑
n=0

dnz
n,

where

d−1 = − 1

a0

1

(α1 − α2)

N−1∑
j=0

[
(α2 + j)pN−j + qN−j

]
aj(α2)

and

dn = lim
α→α2

{
d

dα

[
(α− α2)an(α)

]}
for n ≥ 0.
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Example 25.2.3 Consider the differential equation

w′′ +

(
1− 2

z

)
w′ +

2

z2
w = 0.

The point z = 0 is a regular singular point. In order to find series expansions of the solutions, we first calculate
the indicial equation. We can write the coefficient functions in the form

p(z)

z
=

1

z
(−2 + z), and

q(z)

z2
=

1

z2
(2).

Thus the indicial equation is

α2 + (−2− 1)α + 2 = 0

(α− 1)(α− 2) = 0.

The First Solution. The first solution will have the Frobenius form

w1 = z2

∞∑
n=0

an(α1)zn.

Substituting a Frobenius series into the differential equation,

z2w′′ + (z2 − 2z)w′ + 2w = 0
∞∑
n=0

(n+ α)(n+ α− 1)zn+α + (z2 − 2z)
∞∑
n=0

(n+ α)zn+α−1 + 2
∞∑
n=0

anz
n = 0

[α2 − 3α + 2]a0 +
∞∑
n=1

[
(n+ α)(n+ α− 1)an + (n+ α− 1)an−1 − 2(n+ α)an + 2an

]
zn = 0.

Equating powers of z, [
(n+ α)(n+ α− 1)− 2(n+ α) + 2

]
an = −(n+ α− 1)an−1

an = − an−1

n+ α− 2
.

1072



Setting α = α1 = 2, the recurrence relation becomes

an(α1) = −an−1(α1)

n

= a0
(−1)n

n!
.

The first solution is

w1 = a0

∞∑
n=0

(−1)n

n!
zn = a0 e−z.

The Second Solution. The equation for a1(α2) is

0 · a1(α2) = 2a0.

Since the right hand side of this equation is not zero, the second solution will have the form

w2 = d−1 log z w1 + zα2

∞∑
n=0

lim
α→α2

{
d

dα
[(α− α2)an(α)]

}
zn

First we will calculate d−1 as we defined it previously.

d−1 = − 1

a0

1

2− 1
a0 = −1.

The expression for an(α) is

an(α) =
(−1)na0

(α + n− 2)(α + n− 1) · · · (α− 1)
.
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The first few an(α) are

a1(α) = − a0

α− 1

a2(α) =
a0

α(α− 1)

a3(α) = − a0

(α + 1)α(α− 1)
.

We would like to calculate

dn = lim
α→1

{
d

dα

[
(α− 1)an(α)

]}
.
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The first few dn are

d0 = lim
α→1

{
d

dα

[
(α− 1)a0

]}
= a0

d1 = lim
α→1

{
d

dα

[
(α− 1)

(
− a0

α− 1

)]}
= lim

α→1

{
d

dα

[
− a0

]}
= 0

d2 = lim
α→1

{
d

dα

[
(α− 1)

(
a0

α(α− 1)

)]}
= lim

α→1

{
d

dα

[a0

α

]}
= −a0

d3 = lim
α→1

{
d

dα

[
(α− 1)

(
− a0

(α + 1)α(α− 1)

)]}
= lim

α→1

{
d

dα

[
− a0

(α + 1)α

]}
=

3

4
a0.

It will take a little work to find the general expression for dn. We will need the following relations.

Γ(n) = (n− 1)!, Γ′(z) = Γ(z)ψ(z), ψ(n) = −γ +
n−1∑
k=1

1

k
.
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See the chapter on the Gamma function for explanations of these equations.

dn = lim
α→1

{
d

dα

[
(α− 1)

(−1)na0

(α + n− 2)(α + n− 1) · · · (α− 1)

]}
= lim

α→1

{
d

dα

[
(−1)na0

(α + n− 2)(α + n− 1) · · · (α)

]}
= lim

α→1

{
d

dα

[
(−1)na0Γ(α)

Γ(α + n− 1)

]}
= (−1)na0 lim

α→1

{
Γ(α)ψ(α)

Γ(α + n− 1)
− Γ(α)ψ(α + n− 1)

Γ(α + n− 1)

}
= (−1)na0 lim

α→1

{
Γ(α)[ψ(α)− ψ(α + n− 1)]

Γ(α + n− 1)

}
= (−1)na0

ψ(1)− ψ(n)

(n− 1)!

=
(−1)n+1a0

(n− 1)!

n−1∑
k=0

1

k

Thus the second solution is

w2 = − log z w1 + z
∞∑
n=0

(
(−1)n+1a0

(n− 1)!

n−1∑
k=0

1

k

)
zn.

The general solution is

w = c1 e−z − c2 log z e−z + c2z
∞∑
n=0

(
(−1)n+1

(n− 1)!

n−1∑
k=0

1

k

)
zn.

We see that even in problems that are chosen for their simplicity, the algebra involved in the Frobenius method
can be pretty involved.
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Example 25.2.4 Consider a series expansion about the origin of the equation

w′′ +
1− z
z

w′ − 1

z2
w = 0.

The indicial equation is

α2 − 1 = 0

α = ±1.

Substituting a Frobenius series into the differential equation,

z2

∞∑
n=0

(n+ α)(n+ α− 1)anz
n−2 + (z − z2)

∞∑
n=0

(n+ α)anz
n−1 −

∞∑
n=0

anz
n = 0

∞∑
n=0

(n+ α)(n+ α− 1)anz
n +

∞∑
n=0

(n+ α)anz
n −

∞∑
n=1

(n+ α− 1)an−1z
n −

∞∑
n=0

anz
n = 0

[
α(α− 1) + α− 1

]
a0 +

∞∑
n=1

[
n+ α)(n+ α− 1)an + (n+ α− 1)an − (n+ α− 1)an−1

]
zn = 0.

Equating powers of z to zero,

an(α) =
an−1(α)

n+ α + 1
.

We know that the first solution has the form

w1 = z
∞∑
n=0

anz
n.

Setting α = 1 in the reccurence formula,

an =
an−1

n+ 2
=

2a0

(n+ 2)!
.
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Thus the first solution is

w1 = z

∞∑
n=0

2a0

(n+ 2)!
zn

= 2a0
1

z

∞∑
n=0

zn+2

(n+ 2)!

=
2a0

z

(
∞∑
n=0

zn

n!
− 1− z

)
=

2a0

z
( ez − 1− z).

Now to find the second solution. Setting α = −1 in the reccurence formula,

an =
an−1

n
=
a0

n!
.

We see that in this case there is no trouble in defining a2(α2). The second solution is

w2 =
a0

z

∞∑
n=0

zn

n!
=
a0

z
ez.

Thus we see that the general solution is

w =
c1

z
( ez − 1− z) +

c2

z
ez

w =
d1

z
ez + d2

(
1 +

1

z

)
.
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25.3 Irregular Singular Points

If a point z0 of a differential equation is not ordinary or regular singular, then it is an irregular singular point.
At least one of the solutions at an irregular singular point will not be of the Frobenius form. We will examine
how to obtain series expansions about an irregular singular point in the chapter on asymptotic expansions.

25.4 The Point at Infinity

If we want to determine the behavior of a function f(z) at infinity, we can make the transformation t = 1/z and
examine the point t = 0.

Example 25.4.1 Consider the behavior of f(z) = sin z at infinity. This is the same as considering the point
t = 0 of sin(1/t), which has the series expansion

sin

(
1

t

)
=
∞∑
n=0

(−1)n

(2n+ 1)!t2n+1
.

Thus we see that the point t = 0 is an essential singularity of sin(1/t). Hence sin z has an essential singularity at
z =∞.

Example 25.4.2 Consider the behavior at infinity of z e1/z. With the transformation t = 1/z the function is

1

t
et =

1

t

∞∑
n=0

tn

n!
.

Thus z e1/z has a pole of order 1 at infinity.
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In order to classify the point at infinity of a differential equation in w(z), we apply the transformation t = 1/z,
u(t) = w(z). Writing the derivatives with respect to z in terms if t yields

z =
1

t

dz = − 1

t2
dt

d

dz
= −t2 d

dt

d2

dz2
= −t2 d

dt

(
−t2 d

dt

)
= t4

d2

dt2
+ 2t3

d

dt
.

Applying the transformation to the differential equation

w′′ + p(z)w′ + q(z)w = 0

yields

t4u′′ + 2t3u′ + p(1/t)(−t2)u′ + q(1/t)u = 0

u′′ +

(
2

t
− p(1/t)

t2

)
u′ +

q(1/t)

t4
u = 0.

Example 25.4.3 Classify the singular points of the differential equation

w′′ +
1

z
w′ + 2w = 0.

There is a regular singular point at z = 0. To examine the point at infinity we make the transformation
t = 1/z, u(t) = w(z). The equation in u is

u′′ +

(
2

t
− 1

t

)
u′ +

2

t4
u = 0
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u′′ +
1

t
u′ +

2

t4
u = 0.

Thus we see that the differential equation for w(z) has an irregular singular point at infinity.
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25.5 Exercises

Exercise 25.1 (mathematica/ode/series/series.nb)
f(x) satisfies the Hermite equation

d2f

dx2
− 2x

df

dx
+ 2λf = 0.

Construct two linearly independent solutions of the equation as Taylor series about x = 0. For what values of x
do the series converge?

Show that for certain values of λ, called eigenvalues, one of the solutions is a polynomial, called an eigenfunc-
tion. Calculate the first four eigenfunctions H0(x), H1(x), H2(x), H3(x), ordered by degree.

Hint, Solution

Exercise 25.2
Consider the Legendre equation

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0.

1. Find two linearly independent solutions in the form of power series about x = 0.

2. Compute the radius of convergence of the series. Explain why it is possible to predict the radius of conver-
gence without actually deriving the series.

3. Show that if α = 2n, with n an integer and n ≥ 0, the series for one of the solutions reduces to an even
polynomial of degree 2n.

4. Show that if α = 2n+ 1, with n an integer and n ≥ 0, the series for one of the solutions reduces to an odd
polynomial of degree 2n+ 1.
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5. Show that the first 4 polynomial solutions Pn(x) (known as Legendre polynomials) ordered by their degree
and normalized so that Pn(1) = 1 are

P0 = 1 P1 = x

P2 =
1

2
(3x2 − 1) P4 =

1

2
(5x3 − 3x)

6. Show that the Legendre equation can also be written as

((1− x2)y′)′ = −α(α + 1)y.

Note that two Legendre polynomials Pn(x) and Pm(x) must satisfy this relation for α = n and α = m
respectively. By multiplying the first relation by Pm(x) and the second by Pn(x) and integrating by parts
show that Legendre polynomials satisfy the orthogonality relation∫ 1

−1

Pn(x)Pm(x) dx = 0 if n 6= m.

If n = m, it can be shown that the value of the integral is 2/(2n + 1). Verify this for the first three
polynomials (but you needn’t prove it in general).

Hint, Solution

Exercise 25.3
Find the forms of two linearly independent series expansions about the point z = 0 for the differential equation

w′′ +
1

sin z
w′ +

1− z
z2

w = 0,

such that the series are real-valued on the positive real axis. Do not calculate the coefficients in the expansions.
Hint, Solution
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Exercise 25.4
Classify the singular points of the equation

w′′ +
w′

z − 1
+ 2w = 0.

Hint, Solution

Exercise 25.5
Find the series expansions about z = 0 for

w′′ +
5

4z
w′ +

z − 1

8z2
w = 0.

Hint, Solution

Exercise 25.6
Find the series expansions about z = 0 of the fundamental solutions of

w′′ + zw′ + w = 0.

Hint, Solution

Exercise 25.7
Find the series expansions about z = 0 of the two linearly independent solutions of

w′′ +
1

2z
w′ +

1

z
w = 0.

Hint, Solution
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Exercise 25.8
Classify the singularity at infinity of the differential equation

w′′ +

(
2

z
+

3

z2

)
w′ +

1

z2
w = 0.

Find the forms of the series solutions of the differential equation about infinity that are real-valued when z is
real-valued and positive. Do not calculate the coefficients in the expansions.
Hint, Solution

Exercise 25.9
Consider the second order differential equation

x
d2y

dx2
+ (b− x)

dy

dx
− ay = 0,

where a, b are real constants.

1. Show that x = 0 is a regular singular point. Determine the location of any additional singular points and
classify them. Include the point at infinity.

2. Compute the indicial equation for the point x = 0.

3. By solving an appropriate recursion relation, show that one solution has the form

y1(x) = 1 +
ax

b
+

(a)2x
2

(b)22!
+ · · ·+ (a)nx

n

(b)nn!
+ · · ·

where the notation (a)n is defined by

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), (a)0 = 1.

Assume throughout this problem that b 6= n where n is a non-negative integer.
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4. Show that when a = −m, where m is a non-negative integer, that there are polynomial solutions to this
equation. Compute the radius of convergence of the series above when a 6= −m. Verify that the result you
get is in accord with the Frobenius theory.

5. Show that if b = n+1 where n = 0, 1, 2, . . . , then the second solution of this equation has logarithmic terms.
Indicate the form of the second solution in this case. You need not compute any coefficients.

Hint, Solution

Exercise 25.10
Consider the equation

xy′′ + 2xy′ + 6 exy = 0.

Find the first three non-zero terms in each of two linearly independent series solutions about x = 0.
Hint, Solution
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25.6 Hints

Hint 25.1

Hint 25.2

Hint 25.3

Hint 25.4

Hint 25.5

Hint 25.6

Hint 25.7

Hint 25.8
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Hint 25.9

Hint 25.10
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25.7 Solutions

Solution 25.1
f(x) is a Taylor series about x = 0.

f(x) =
∞∑
n=0

anx
n

f ′(x) =
∞∑
n=1

nanx
n−1

=
∞∑
n=0

nanx
n−1

f ′′(x) =
∞∑
n=2

n(n− 1)anx
n−2

=
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

We substitute the Taylor series into the differential equation.

f ′′(x)− 2xf ′(x) + 2λf = 0
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n − 2

∞∑
n=0

nanx
n + 2λ

∞∑
n=0

anx
n

Equating coefficients gives us a difference equation for an:

(n+ 2)(n+ 1)an+2 − 2nan + 2λan = 0

an+2 = 2
n− λ

(n+ 1)(n+ 2)
an.
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The first two coefficients, a0 and a1 are arbitrary. The remaining coefficients are determined by the recurrence
relation. We will find the fundamental set of solutions at x = 0. That is, for the first solution we choose a0 = 1
and a1 = 0; for the second solution we choose a0 = 0, a1 = 1. The difference equation for y1 is

an+2 = 2
n− λ

(n+ 1)(n+ 2)
an, a0 = 1, a1 = 0,

which has the solution

a2n =
2n
∏n

k=0(2(n− k)− λ)

(2n)!
, a2n+1 = 0.

The difference equation for y2 is

an+2 = 2
n− λ

(n+ 1)(n+ 2)
an, a0 = 0, a1 = 1,

which has the solution

a2n = 0, a2n+1 =
2n
∏n−1

k=0(2(n− k)− 1− λ)

(2n+ 1)!
.

A set of linearly independent solutions, (in fact the fundamental set of solutions at x = 0), is

y1(x) =
∞∑
n=0

2n
∏n

k=0(2(n− k)− λ)

(2n)!
x2n, y2(x) =

∞∑
n=0

2n
∏n−1

k=0(2(n− k)− 1− λ)

(2n+ 1)!
x2n+1.

Since the coefficient functions in the differential equation do not have any singularities in the finite complex plane,
the radius of convergence of the series is infinite.

If λ = n is a positive even integer, then the first solution, y1, is a polynomial of order n. If λ = n is a positive
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odd integer, then the second solution, y2, is a polynomial of order n. For λ = 0, 1, 2, 3, we have

H0(x) = 1

H1(x) = x

H2(x) = 1− 2x2

H3(x) = x− 2

3
x3

Solution 25.2
1. First we write the differential equation in the standard form.

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0 (25.2)

y′′ − 2x

1− x2
+
α(α + 1)

1− x2
y = 0. (25.3)

Since the coefficients of y′ and y are analytic in a neighborhood of x = 0, We can find two Taylor series
solutions about that point. We find the Taylor series for y and its derivatives.

y =
∞∑
n=0

anx
n

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

(n− 1)nanx
n−2

=
∞∑
n=0

(n+ 1)(n+ 2)an+2x
n

1091



Here we used index shifting to explicitly write the two forms that we will need for y′′. Note that we can
take the lower bound of summation to be n = 0 for all above sums. The terms added by this operation are
zero. We substitute the Taylor series into Equation 25.2.

∞∑
n=0

(n+ 1)(n+ 2)an+2x
n −

∞∑
n=0

(n− 1)nanx
n − 2

∞∑
n=0

nanx
n + α(α + 1)

∞∑
n=0

anx
n = 0

∞∑
n=0

(
(n+ 1)(n+ 2)an+2 −

(
(n− 1)n+ 2n− α(α + 1)

)
an

)
xn = 0

We equate coefficients of xn to obtain a recurrence relation.

(n+ 1)(n+ 2)an+2 = (n(n+ 1)− α(α + 1))an

an+2 =
n(n+ 1)− α(α + 1)

(n+ 1)(n+ 2)
an, n ≥ 0.

We can solve this difference equation to determine the an’s. (a0 and a1 are arbitrary.)

an =



a0

n!

n−2∏
k=0

even k

(
k(k + 1)− α(α + 1)

)
, even n,

a1

n!

n−2∏
k=1

odd k

(
k(k + 1)− α(α + 1)

)
, odd n

We will find the fundamental set of solutions at x = 0, that is the set {y1, y2} that satisfies

y1(0) = 1 y′1(0) = 0

y2(0) = 0 y′2(0) = 1.
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For y1 we take a0 = 1 and a1 = 0; for y2 we take a0 = 0 and a1 = 1. The rest of the coefficients are
determined from the recurrence relation.

y1 =
∞∑
n=0

even n

 1

n!

n−2∏
k=0

even k

(
k(k + 1)− α(α + 1)

)xn

y2 =
∞∑
n=1

odd n

 1

n!

n−2∏
k=1

odd k

(
k(k + 1)− α(α + 1)

)xn

2. We determine the radius of convergence of the series solutions with the ratio test.

lim
n→∞

∣∣∣∣an+2x
n+2

anxn

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣
n(n+1)−α(α+1)

(n+1)(n+2)
anx

n+2

anxn

∣∣∣∣∣ < 1

lim
n→∞

∣∣∣∣n(n+ 1)− α(α + 1)

(n+ 1)(n+ 2)

∣∣∣∣ ∣∣x2
∣∣ < 1∣∣x2

∣∣ < 1

Thus we see that the radius of convergence of the series is 1. We knew that the radius of convergence would
be at least one, because the nearest singularities of the coefficients of (25.3) occur at x = ±1, a distance
of 1 from the origin. This implies that the solutions of the equation are analytic in the unit circle about
x = 0. The radius of convergence of the Taylor series expansion of an analytic function is the distance to
the nearest singularity.

3. If α = 2n then a2n+2 = 0 in our first solution. From the recurrence relation, we see that all subsequent
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coefficients are also zero. The solution becomes an even polynomial.

y1 =
2n∑
m=0

even m

 1

m!

m−2∏
k=0

even k

(
k(k + 1)− α(α + 1)

) xm

4. If α = 2n+1 then a2n+3 = 0 in our second solution. From the recurrence relation, we see that all subsequent
coefficients are also zero. The solution becomes an odd polynomial.

y2 =
2n+1∑
m=1

odd m

 1

m!

m−2∏
k=1

odd k

(
k(k + 1)− α(α + 1)

)xm

5. From our solutions above, the first four polynomials are

1

x

1− 3x2

x− 5

3
x3

To obtain the Legendre polynomials we normalize these to have value unity at x = 1

P0 = 1

P1 = x

P2 =
1

2

(
3x2 − 1

)
P3 =

1

2

(
5x3 − 3x

)
These four Legendre polynomials are plotted in Figure 25.4.
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Figure 25.4: The First Four Legendre Polynomials

6. We note that the first two terms in the Legendre equation form an exact derivative. Thus the Legendre
equation can also be written as (

(1− x2)y′
)′

= −α(α + 1)y.

Pn and Pm are solutions of the Legendre equation.(
(1− x2)P ′n

)′
= −n(n+ 1)Pn,

(
(1− x2)P ′m

)′
= −m(m+ 1)Pm (25.4)

We multiply the first relation of Equation 25.4 by Pm and integrate by parts.(
(1− x2)P ′n

)′
Pm = −n(n+ 1)PnPm∫ 1

−1

(
(1− x2)P ′n

)′
Pm dx = −n(n+ 1)

∫ 1

−1

PnPm dx

[(
(1− x2)P ′n

)
Pm
]1
−1
−
∫ 1

−1

(1− x2)P ′nP
′
m dx = −n(n+ 1)

∫ 1

−1

PnPm dx∫ 1

−1

(1− x2)P ′nP
′
m dx = n(n+ 1)

∫ 1

−1

PnPm dx
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We multiply the secord relation of Equation 25.4 by Pn and integrate by parts. To obtain a different
expression for

∫ 1

−1
(1− x2)P ′mP

′
n dx.∫ 1

−1

(1− x2)P ′mP
′
n dx = m(m+ 1)

∫ 1

−1

PmPn dx

We equate the two expressions for
∫ 1

−1
(1− x2)P ′mP

′
n dx. to obtain an orthogonality relation.

(n(n+ 1)−m(m+ 1))

∫ 1

−1

PnPm dx = 0∫ 1

−1

Pn(x)Pm(x) dx = 0 if n 6= m.

We verify that for the first four polynomials the value of the integral is 2/(2n+ 1) for n = m.∫ 1

−1

P0(x)P0(x) dx =

∫ 1

−1

1 dx = 2∫ 1

−1

P1(x)P1(x) dx =

∫ 1

−1

x2 dx =

[
x3

3

]1

−1

=
2

3∫ 1

−1

P2(x)P2(x) dx =

∫ 1

−1

1

4

(
9x4 − 6x2 + 1

)
dx =

[
1

4

(
9x5

5
− 2x3 + x

)]1

−1

=
2

5∫ 1

−1

P3(x)P3(x) dx =

∫ 1

−1

1

4

(
25x6 − 30x4 + 9x2

)
dx =

[
1

4

(
25x7

7
− 6x5 + 3x3

)]1

−1

=
2

7

Solution 25.3
The indicial equation for this problem is

α2 + 1 = 0.
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Since the two roots α1 = i and α2 = −i are distinct and do not differ by an integer, there are two solutions in the
Frobenius form.

w1 = zi
∞∑
n=0

anz
n, w1 = z−i

∞∑
n=0

bnz
n

However, these series are not real-valued on the positive real axis. Recalling that

zi = ei log z = cos(log z) + i sin(log z), and z−i = e−i log z = cos(log z)− i sin(log z),

we can write a new set of solutions that are real-valued on the positive real axis as linear combinations of w1 and
w2.

u1 =
1

2
(w1 + w2), u2 =

1

2i
(w1 − w2)

u1 = cos(log z)
∞∑
n=0

cnz
n, u1 = sin(log z)

∞∑
n=0

dnz
n

Solution 25.4
Consider the equation w′′ + w′/(z − 1) + 2w = 0.

We see that there is a regular singular point at z = 1. All other finite values of z are ordinary points of the
equation. To examine the point at infinity we introduce the transformation z = 1/t, w(z) = u(t). Writing the
derivatives with respect to z in terms of t yields

d

dz
= −t2 d

dt
,

d2

dz2
= t4

d2

dt2
+ 2t3

d

dt
.

Substituting into the differential equation gives us

t4u′′ + 2t3u′ − t2u′

1/t− 1
+ 2u = 0

u′′ +

(
2

t
− 1

t(1− t)

)
u′ +

2

t4
u = 0.
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Since t = 0 is an irregular singular point in the equation for u(t), z = ∞ is an irregular singular point in the
equation for w(z).

Solution 25.5
Find the series expansions about z = 0 for

w′′ +
5

4z
w′ +

z − 1

8z2
w = 0.

We see that z = 0 is a regular singular point of the equation. The indicial equation is

α2 +
1

4
α− 1

8
= 0(

α +
1

2

)(
α− 1

4

)
= 0.

Since the roots are distinct and do not differ by an integer, there will be two solutions in the Frobenius form.

w1 = z1/4

∞∑
n=0

an(α1)zn, w2 = z−1/2

∞∑
n=0

an(α2)zn

We multiply the differential equation by 8z2 to put it in a better form. Substituting a Frobenius series into
the differential equation,

8z2

∞∑
n=0

(n+ α)(n+ α− 1)anz
n+α−2 + 10z

∞∑
n=0

(n+ α)anz
n+α−1 + (z − 1)

∞∑
n=0

anz
n+α

8
∞∑
n=0

(n+ α)(n+ α− 1)anz
n + 10

∞∑
n=0

(n+ α)anz
n +

∞∑
n=1

an−1z
n −

∞∑
n=0

anz
n.

Equating coefficients of powers of z,

[8(n+ α)(n+ α− 1) + 10(n+ α)− 1] an = −an−1

an = − an−1

8(n+ α)2 + 2(n+ α)− 1
.
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The First Solution. Setting α = 1/4 in the recurrence formula,

an(α1) = − an−1

8(n+ 1/4)2 + 2(n+ 1/4)− 1

an(α1) = − an−1

2n(4n+ 3)
.

Thus the first solution is

w1 = z1/4

∞∑
n=0

an(α1)zn = a0z
1/4

(
1− 1

14
z +

1

616
z2 + · · ·

)
.

The Second Solution. Setting α = −1/2 in the recurrence formula,

an = − an−1

8(n− 1/2)2 + 2(n− 1/2)− 1

an = − an−1

2n(4n− 3)

Thus the second linearly independent solution is

w2 = z−1/2

∞∑
n=0

an(α2)zn = a0z
−1/2

(
1− 1

2
z +

1

40
z2 + · · ·

)
.

Solution 25.6
We consider the series solutions of,

w′′ + zw′ + w = 0.

We would like to find the expansions of the fundamental set of solutions about z = 0. Since z = 0 is a regular
point, (the coefficient functions are analytic there), we expand the solutions in Taylor series. Differentiating the
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series expansions for w(z),

w =
∞∑
n=0

anz
n

w′ =
∞∑
n=1

nanz
n−1

w′′ =
∞∑
n=2

n(n− 1)anz
n−2

=
∞∑
n=0

(n+ 2)(n+ 1)an+2z
n

We may take the lower limit of summation to be zero without changing the sums. Substituting these expressions
into the differential equation,

∞∑
n=0

(n+ 2)(n+ 1)an+2z
n +

∞∑
n=0

nanz
n +

∞∑
n=0

anz
n = 0

∞∑
n=0

(
(n+ 2)(n+ 1)an+2 + (n+ 1)an

)
zn = 0.

Equating the coefficient of the zn term gives us

(n+ 2)(n+ 1)an+2 + (n+ 1)an = 0, n ≥ 0

an+2 = − an
n+ 2

, n ≥ 0.

a0 and a1 are arbitrary. We determine the rest of the coefficients from the recurrence relation. We consider the
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cases for even and odd n separately.

a2n = −a2n−2

2n

=
a2n−4

(2n)(2n− 2)

= (−1)n
a0

(2n)(2n− 2) · · · 4 · 2
= (−1)n

a0∏n
m=1 2m

, n ≥ 0

a2n+1 = − a2n−1

2n+ 1

=
a2n−3

(2n+ 1)(2n− 1)

= (−1)n
a1

(2n+ 1)(2n− 1) · · · 5 · 3
= (−1)n

a1∏n
m=1(2m+ 1)

, n ≥ 0

If {w1, w2} is the fundamental set of solutions, then the initial conditions demand that w1 = 1 + 0 · z + · · · and
w2 = 0 + z + · · · . We see that w1 will have only even powers of z and w2 will have only odd powers of z.

w1 =
∞∑
n=0

(−1)n∏n
m=1 2m

z2n, w2 =
∞∑
n=0

(−1)n∏n
m=1(2m+ 1)

z2n+1

Since the coefficient functions in the differential equation are entire, (analytic in the finite complex plane), the
radius of convergence of these series solutions is infinite.
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Solution 25.7

w′′ +
1

2z
w′ +

1

z
w = 0.

We can find the indicial equation by substituting w = zα +O(zα+1) into the differential equation.

α(α− 1)zα−2 +
1

2
αzα−2 + zα−1 = O(zα−1)

Equating the coefficient of the zα−2 term,

α(α− 1) +
1

2
α = 0

α = 0,
1

2
.

Since the roots are distinct and do not differ by an integer, the solutions are of the form

w1 =
∞∑
n=0

anz
n, w2 = z1/2

∞∑
n=0

bnz
n.

Differentiating the series for the first solution,

w1 =
∞∑
n=0

anz
n

w′1 =
∞∑
n=1

nanz
n−1

=
∞∑
n=0

(n+ 1)an+1z
n

w′′1 =
∞∑
n=1

n(n+ 1)an+1z
n−1.
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Substituting this series into the differential equation,

∞∑
n=1

n(n+ 1)an+1z
n−1 +

1

2z

∞∑
n=0

(n+ 1)an+1z
n +

1

z

∞∑
n=0

anz
n = 0

∞∑
n=1

[
n(n+ 1)an+1 +

1

2
(n+ 1)an+1 + an

]
zn−1 +

1

2z
a1 +

1

z
a0 = 0.

Equating powers of z,

z−1 :
a1

2
+ a0 = 0 ⇒ a1 = −2a0

zn−1 :

(
n+

1

2

)
(n+ 1)an+1 + an = 0 ⇒ an+1 = − an

(n+ 1/2)(n+ 1)
.

We can combine the above two equations for an.

an+1 = − an
(n+ 1/2)(n+ 1)

, for n ≥ 0

Solving this difference equation for an,

an = a0

n−1∏
j=0

−1

(j + 1/2)(j + 1)

an = a0
(−1)n

n!

n−1∏
j=0

1

j + 1/2
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Now let’s find the second solution. Differentiating w2,

w′2 =
∞∑
n=0

(n+ 1/2)bnz
n−1/2

w′′2 =
∞∑
n=0

(n+ 1/2)(n− 1/2)bnz
n−3/2.

Substituting these expansions into the differential equation,

∞∑
n=0

(n+ 1/2)(n− 1/2)bnz
n−3/2 +

1

2

∞∑
n=0

(n+ 1/2)bnz
n−3/2 +

∞∑
n=1

bn−1z
n−3/2 = 0.

Equating the coefficient of the z−3/2 term,

1

2

(
−1

2

)
b0 +

1

2

1

2
b0 = 0,

we see that b0 is arbitrary. Equating the other coefficients of powers of z,

(n+ 1/2)(n− 1/2)bn +
1

2
(n+ 1/2)bn + bn−1 = 0

bn = − bn−1

n(n+ 1/2)

Calculating the bn’s,

b1 = − b0

1 · 3
2

b2 =
b0

1 · 2 · 3
2
· 5

2

bn =
(−1)n2nb0

n! · 3 · 5 · · · (2n+ 1)
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Thus the second solution is

w2 = b0z
1/2

∞∑
n=0

(−1)n2nzn

n! 3 · 5 · · · (2n+ 1)
.

Solution 25.8

w′′ +

(
2

z
+

3

z2

)
w′ +

1

z2
w = 0.

In order to analyze the behavior at infinity we make the change of variables t = 1/z, u(t) = w(z) and examine
the point t = 0. Writing the derivatives with respect to z in terms if t yields

z =
1

t

dz = − 1

t2
dt

d

dz
= −t2 d

dt

d2

dz2
= −t2 d

dt

(
−t2 d

dt

)
= t4

d2

dt2
+ 2t3

d

dt
.

The equation for u is then

t4u′′ + 2t3u′ + (2t+ 3t2)(−t2)u′ + t2u = 0

u′′ +−3u′ +
1

t2
u = 0

1105



We see that t = 0 is a regular singular point. To find the indicial equation, we substitute u = tα +O(tα+1) into
the differential equation.

α(α− 1)tα−2 − 3αtα−1 + tα−2 = O(tα−1)

Equating the coefficients of the tα−2 terms,

α(α− 1) + 1 = 0

α =
1± i

√
3

2

Since the roots of the indicial equation are distinct and do not differ by an integer, a set of solutions has the form{
t(1+i

√
3)/2

∞∑
n=0

ant
n, t(1−i

√
3)/2

∞∑
n=0

bnt
n

}
.

Noting that

t(1+i
√

3)/2 = t1/2 exp

(
i
√

3

2
log t

)
, and t(1−i

√
3)/2 = t1/2 exp

(
− i
√

3

2
log t

)
.

We can take the sum and difference of the above solutions to obtain the form

u1 = t1/2 cos

(√
3

2
log t

)
∞∑
n=0

ant
n, u1 = t1/2 sin

(√
3

2
log t

)
∞∑
n=0

bnt
n.

Putting the answer in terms of z, we have the form of the two Frobenius expansions about infinity.

w1 = z−1/2 cos

(√
3

2
log z

)
∞∑
n=0

an
zn
, w1 = z−1/2 sin

(√
3

2
log z

)
∞∑
n=0

bn
zn
.
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Solution 25.9
1. We write the equation in the standard form.

y′′ +
b− x
x

y′ − a

x
y = 0

Since b−x
x

has no worse than a first order pole and a
x

has no worse than a second order pole at x = 0, that
is a regular singular point. Since the coefficient functions have no other singularities in the finite complex
plane, all the other points in the finite complex plane are regular points.

Now to examine the point at infinity. We make the change of variables u(ξ) = y(x), ξ = 1/x.

y′ =
dξ

dx

d

dξ
u = − 1

x2
u′ = −ξ2u′

y′′ = −ξ2 d

dξ

(
−ξ2 d

dξ

)
u = ξ4u′′ + 2ξ3u′

The differential equation becomes

xy′′ + (b− x)y′ − ay
1

ξ

(
ξ4u′′ + 2ξ3u′

)
+

(
b− 1

ξ

)(
−ξ2u′

)
− au = 0

ξ3u′′ +
(
(2− b)ξ2 + ξ

)
u′ − au = 0

u′′ +

(
2− b
ξ

+
1

ξ2

)
− a

ξ3
u = 0

Since this equation has an irregular singular point at ξ = 0, the equation for y(x) has an irregular singular
point at infinity.
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2. The coefficient functions are

p(x) ≡ 1

x

∞∑
n=1

pnx
n =

1

x
(b− x),

q(x) ≡ 1

x2

∞∑
n=1

qnx
n =

1

x2
(0− ax).

The indicial equation is

α2 + (p0 − 1)α + q0 = 0

α2 + (b− 1)α + 0 = 0

α(α + b− 1) = 0.

3. Since one of the roots of the indicial equation is zero, and the other root is not a negative integer, one of
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the solutions of the differential equation is a Taylor series.

y1 =
∞∑
k=0

ckx
k

y′1 =
∞∑
k=1

kckx
k−1

=
∞∑
k=0

(k + 1)ck+1x
k

=
∞∑
k=0

kckx
k−1

y′′1 =
∑
k=2

k(k − 1)ckx
k−2

=
∞∑
k=1

(k + 1)kck+1x
k−1

=
∞∑
k=0

(k + 1)kck+1x
k−1

We substitute the Taylor series into the differential equation.

xy′′ + (b− x)y′ − ay = 0
∞∑
k=0

(k + 1)kck+1x
k + b

∞∑
k=0

(k + 1)ck+1x
k −

∞∑
k=0

kckx
k − a

∞∑
k=0

ckx
k = 0

We equate coefficients to determine a recurrence relation for the coefficients.

(k + 1)kck+1 + b(k + 1)ck+1 − kck − ack = 0

ck+1 =
k + a

(k + 1)(k + b)
ck
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For c0 = 1, the recurrence relation has the solution

ck =
(a)kx

k

(b)kk!
.

Thus one solution is

y1(x) =
∞∑
k=0

(a)k
(b)kk!

xk.

4. If a = −m, where m is a non-negative integer, then (a)k = 0 for k > m. This makes y1 a polynomial:

y1(x) =
m∑
k=0

(a)k
(b)kk!

xk.

5. If b = n+ 1, where n is a non-negative integer, the indicial equation is

α(α + n) = 0.

For the case n = 0, the indicial equation has a double root at zero. Thus the solutions have the form:

y1(x) =
m∑
k=0

(a)k
(b)kk!

xk, y2(x) = y1(x) log x+
∞∑
k=0

dkx
k

For the case n > 0 the roots of the indicial equation differ by an integer. The solutions have the form:

y1(x) =
m∑
k=0

(a)k
(b)kk!

xk, y2(x) = d−1y1(x) log x+ x−n
∞∑
k=0

dkx
k

The form of the solution for y2 can be substituted into the equation to determine the coefficients dk.
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Solution 25.10
We write the equation in the standard form.

xy′′ + 2xy′ + 6 exy = 0

y′′ + 2y′ + 6
ex

x
y = 0

We see that x = 0 is a regular singular point. The indicial equation is

α2 − α = 0

α = 0, 1.

The first solution has the Frobenius form.

y1 = x+ a2x
2 + a3x

3 +O(x4)

We substitute y1 into the differential equation and equate coefficients of powers of x.

xy′′ + 2xy′ + 6 exy = 0

x(2a2 + 6a3x+O(x2)) + 2x(1 + 2a2x+ 3a3x
2 +O(x3))

+ 6(1 + x+ x2/2 +O(x3))(x+ a2x
2 + a3x

3 +O(x4)) = 0

(2a2x+ 6a3x
2) + (2x+ 4a2x

2) + (6x+ 6(1 + a2)x2) = O(x3) = 0

a2 = −4, a3 =
17

3

y1 = x− 4x2 +
17

3
x3 +O(x4)
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Now we see if the second solution has the Frobenius form. There is no a1x term because y2 is only determined
up to an additive constant times y1.

y2 = 1 +O(x2)

We substitute y2 into the differential equation and equate coefficients of powers of x.

xy′′ + 2xy′ + 6 exy = 0

O(x) +O(x) + 6(1 +O(x))(1 +O(x2)) = 0

6 = O(x)

The substitution y2 = 1 + O(x) has yielded a contradiction. Since the second solution is not of the Frobenius
form, it has the following form:

y2 = y1 ln(x) + a0 + a2x
2 +O(x3)

The first three terms in the solution are

y2 = a0 + x lnx− 4x2 lnx+O(x2).

We calculate the derivatives of y2.

y′2 = ln(x) +O(1)

y′′2 =
1

x
+O(ln(x))

We substitute y2 into the differential equation and equate coefficients.

xy′′ + 2xy′ + 6 exy = 0

(1 +O(x lnx)) + 2 (O(x lnx)) + 6 (a0 +O(x lnx)) = 0

1 + 6a0 = 0

y2 = −1

6
+ x lnx− 4x2 lnx+O(x2)
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Chapter 26

Asymptotic Expansions

The more you sweat in practice, the less you bleed in battle.

-Navy Seal Saying

26.1 Asymptotic Relations

The � and ∼ symbols. First we will introduce two new symbols used in asymptotic relations.

f(x)� g(x) as x→ x0,

is read, “f(x) is much smaller than g(x) as x tends to x0”. This means

lim
x→x0

f(x)

g(x)
= 0.

The notation

f(x) ∼ g(x) as x→ x0,
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is read “f(x) is asymptotic to g(x) as x tends to x0”; which means

lim
x→x0

f(x)

g(x)
= 1.

A few simple examples are

• − ex � x as x→ +∞

• sinx ∼ x as x→ 0

• 1/x� 1 as x→ +∞

• e−1/x � x−n as x→ 0+ for all n

An equivalent definition of f(x) ∼ g(x) as x→ x0 is

f(x)− g(x)� g(x) as x→ x0.

Note that it does not make sense to say that a function f(x) is asymptotic to zero. Using the above definition
this would imply

f(x)� 0 as x→ x0.

If you encounter an expression like f(x) + g(x) ∼ 0, take this to mean f(x) ∼ −g(x).

The Big O and Little o Notation. If |f(x)| ≤ m|g(x)| for some constant m in some neighborhood of the
point x = x0, then we say that

f(x) = O(g(x)) as x→ x0.

We read this as “f is big O of g as x goes to x0”. If g(x) does not vanish, an equivalent definition is that f(x)/g(x)
is bounded as x→ x0.
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If for any given positive δ there exists a neighborhood of x = x0 in which |f(x)| ≤ δ|g(x)| then

f(x) = o(g(x)) as x→ x0.

This is read, “f is little o of g as x goes to x0.”
For a few examples of the use of this notation,

• e−x = o(x−n) as x→∞ for any n.

• sinx = O(x) as x→ 0.

• cos x− 1 = o(1) as x→ 0.

• log x = o(xα) as x→ +∞ for any positive α.

Operations on Asymptotic Relations. You can perform the ordinary arithmetic operations on asymptotic
relations. Addition, multiplication, and division are valid.

You can always integrate an asymptotic relation. Integration is a smoothing operation. However, it is necessary
to exercise some care.

Example 26.1.1 Consider

f ′(x) ∼ 1

x2
as x→∞.

This does not imply that

f(x) ∼ −1

x
as x→∞.

We have forgotten the constant of integration. Integrating the asymptotic relation for f ′(x) yields

f(x) ∼ −1

x
+ c as x→∞.

If c is nonzero then

f(x) ∼ c as x→∞.
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It is not always valid to differentiate an asymptotic relation.

Example 26.1.2 Consider f(x) = 1
x

+ 1
x2 sin(x3).

f(x) ∼ 1

x
as x→∞.

Differentiating this relation yields

f ′(x) ∼ − 1

x2
as x→∞.

However, this is not true since

f ′(x) = − 1

x2
− 2

x3
sin(x3) + 2 cos(x3)

6∼ − 1

x2
as x→∞.

The Controlling Factor. The controlling factor is the most rapidly varying factor in an asymptotic relation.
Consider a function f(x) that is asymptotic to x2 ex as x goes to infinity. The controlling factor is ex. For a few
examples of this,

• x log x has the controlling factor x as x→∞.

• x−2 e1/x has the controlling factor e1/x as x→ 0.

• x−1 sinx has the controlling factor sinx as x→∞.

The Leading Behavior. Consider a function that is asymptotic to a sum of terms.

f(x) ∼ a0(x) + a1(x) + a2(x) + · · · , as x→ x0.
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where

a0(x)� a1(x)� a2(x)� · · · , as x→ x0.

The first term in the sum is the leading order behavior. For a few examples,

• For sinx ∼ x− x3/6 + x5/120− · · · as x→ 0, the leading order behavior is x.

• For f(x) ∼ ex(1− 1/x+ 1/x2 − · · · ) as x→∞, the leading order behavior is ex.

26.2 Leading Order Behavior of Differential Equations

It is often useful to know the leading order behavior of the solutions to a differential equation. If we are considering
a regular point or a regular singular point, the approach is straight forward. We simply use a Taylor expansion or
the Frobenius method. However, if we are considering an irregular singular point, we will have to be a little more
creative. Instead of an all encompassing theory like the Frobenius method which always gives us the solution, we
will use a heuristic approach that usually gives us the solution.

Example 26.2.1 Consider the Airy equation

y′′ = xy.

We 1 would like to know how the solutions of this equation behave as x → +∞. First we need to classify the
point at infinity. The change of variables

x =
1

t
, y(x) = u(t),

d

dx
= −t2 d

dt
,

d2

dx2
= t4

d2

dt2
+ 2t3

d

dt
1Using ”We” may be a bit presumptuous on my part. Even if you don’t particularly want to know how the solutions behave, I

urge you to just play along. This is an interesting section, I promise.
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yields

t4u′′ + 2t3u′ =
1

t
u

u′′ +
2

t
u′ − 1

t5
u = 0.

Since the equation for u has an irregular singular point at zero, the equation for y has an irregular singular point
at infinity.

The Controlling Factor. Since the solutions at irregular singular points often have exponential behavior, we
make the substitution y = es(x) into the differential equation for y.

d2

dx2

[
es
]

= x es[
s′′ + (s′)2

]
es = x es

s′′ + (s′)2 = x

The Dominant Balance. Now we have a differential equation for s that appears harder to solve than our
equation for y. However, we did not introduce the substitution in order to obtain an equation that we could solve
exactly. We are looking for an equation that we can solve approximately in the limit as x → ∞. If one of the
terms in the equation for s is much smaller that the other two as x→∞, then dropping that term and solving the
simpler equation may give us an approximate solution. If one of the terms in the equation for s is much smaller
than the others then we say that the remaining terms form a dominant balance in the limit as x→∞.

Assume that the s′′ term is much smaller that the others, s′′ � (s′)2, x as x→∞. This gives us

(s′)2 ∼ x

s′ ∼ ±
√
x

s ∼ ±2

3
x3/2 as x→∞.
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Now let’s check our assumption that the s′′ term is small. Assuming that we can differentiate the asymptotic
relation s′ ∼ ±

√
x, we obtain s′′ ∼ ±1

2
x−1/2 as x→∞.

s′′ � (s′)2, x ⇒ x−1/2 � x as x→∞

Thus we see that the behavior we found for s is consistent with our assumption. The controlling factors for
solutions to the Airy equation are exp(±2

3
x3/2) as x→∞.

The Leading Order Behavior of the Decaying Solution. Let’s find the leading order behavior as x goes
to infinity of the solution with the controlling factor exp(−2

3
x3/2). We substitute

s(x) = −2

3
x3/2 + t(x), where t(x)� x3/2 as x→∞

into the differential equation for s.

s′′ + (s′)2 = x

−1

2
x−1/2 + t′′ + (−x1/2 + t′)2 = x

t′′ + (t′)2 − 2x1/2t′ − 1

2
x−1/2 = 0

Assume that we can differentiate t� x3/2 to obtain

t′ � x1/2, t′′ � x−1/2 as x→∞.
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Since t′′ � −1
2
x−1/2 we drop the t′′ term. Also, t′ � x1/2 implies that (t′)2 � −2x1/2t′, so we drop the (t′)2 term.

This gives us

−2x1/2t′ − 1

2
x−1/2 ∼ 0

t′ ∼ −1

4
x−1

t ∼ −1

4
log x+ c

t ∼ −1

4
log x as x→∞.

Checking our assumptions about t,

t′ � x1/2 ⇒ x−1 � x1/2

t′′ � x−1/2 ⇒ x−2 � x−1/2

we see that the behavior of t is consistent with our assumptions.
So far we have

y(x) ∼ exp

(
−2

3
x3/2 − 1

4
log x+ u(x)

)
as x→∞,

where u(x) � log x as x → ∞. To continue, we substitute t(x) = −1
4

log x + u(x) into the differential equation
for t(x).

t′′ + (t′)2 − 2x1/2t′ − 1

2
x−1/2 = 0

1

4
x−2 + u′′ +

(
−1

4
x−1 + u′

)2

− 2x1/2

(
−1

4
x−1 + u′

)
− 1

2
x−1/2 = 0

u′′ + (u′)2 +

(
−1

2
x−1 − 2x1/2

)
u′ +

5

16
x−2 = 0
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Assume that we can differentiate the asymptotic relation for u to obtain

u′ � x−1, u′′ � x−2 as x→∞.

We know that −1
2
x−1u′ � −2x1/2u′. Using our assumptions,

u′′ � x−2 ⇒ u′′ � 5

16
x−2

u′ � x−1 ⇒ (u′)2 � 5

16
x−2.

Thus we obtain

−2x1/2u′ +
5

16
x−2 ∼ 0

u′ ∼ 5

32
x−5/2

u ∼ − 5

48
x−3/2 + c

u ∼ c as x→∞.

Since u = c+ o(1), eu = ec + o(1). The behavior of y is

y ∼ x−1/4 exp

(
−2

3
x3/2

)
( ec + o(1)) as x→∞.

Thus the full leading order behavior of the decaying solution is

y ∼ (const)x−1/4 exp

(
−2

3
x3/2

)
as x→∞.

You can show that the leading behavior of the exponentially growing solution is

y ∼ (const)x−1/4 exp

(
2

3
x3/2

)
as x→∞.
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Example 26.2.2 The Modified Bessel Equation. Consider the modified Bessel equation

x2y′′ + xy′ − (x2 + ν2)y = 0.

We would like to know how the solutions of this equation behave as x→ +∞. First we need to classify the point
at infinity. The change of variables x = 1

t
, y(x) = u(t) yields

1

t2
(t4u′′ + 2t3u′) +

1

t
(−t2u′)−

(
1

t2
+ ν2

)
u = 0

u′′ +
1

t
u′ −

(
1

t4
+
ν2

t2

)
u = 0

Since u(t) has an irregular singular point at t = 0, y(x) has an irregular singular point at infinity.

The Controlling Factor. Since the solutions at irregular singular points often have exponential behavior, we
make the substitution y = es(x) into the differential equation for y.

x2(s′′ + (s′)2) es + xs′ es − (x2 + ν2) es = 0

s′′ + (s′)2 +
1

x
s′ − (1 +

ν2

x2
) = 0

We make the assumption that s′′ � (s′)2 as x→∞ and we know that ν2/x2 � 1 as x→∞. Thus we drop these
two terms from the equation to obtain an approximate equation for s.

(s′)2 +
1

x
s′ − 1 ∼ 0

This is a quadratic equation for s′, so we can solve it exactly. However, let us try to simplify the equation even
further. Assume that as x goes to infinity one of the three terms is much smaller that the other two. If this is
the case, there will be a balance between the two dominant terms and we can neglect the third. Let’s check the
three possibilities.
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1.

1 is small. ⇒ (s′)2 +
1

x
s′ ∼ 0 ⇒ s′ ∼ −1

x
, 0

1 6� 1
x2 , 0 as x→∞ so this balance is inconsistent.

2.

1

x
s′ is small. ⇒ (s′)2 − 1 ∼ 0 ⇒ s′ ∼ ±1

This balance is consistent as 1
x
� 1 as x→∞.

3.

(s′)2 is small. ⇒ 1

x
s′ − 1 ∼ 0 ⇒ s′ ∼ x

This balance is not consistent as x2 6� 1 as x→∞.

The only dominant balance that makes sense leads to s′ ∼ ±1 as x→∞. Integrating this relationship,

s ∼ ±x+ c

∼ ±x as x→∞.

Now let’s see if our assumption that we made to get the simplified equation for s is valid. Assuming that we can
differentiate s′ ∼ ±1, s′′ � (s′)2 becomes

d

dx

[
± 1 + o(1)

]
�
[
± 1 + o(1)

]2
0 + o(1/x)� 1

Thus we see that the behavior we obtained for s is consistent with our initial assumption.
We have found two controlling factors, ex and e−x. This is a good sign as we know that there must be two

linearly independent solutions to the equation.
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Leading Order Behavior. Now let’s find the full leading behavior of the solution with the controlling factor
e−x. In order to find a better approximation for s, we substitute s(x) = −x + t(x), where t(x) � x as x → ∞,
into the differential equation for s.

s′′ + (s′)2 +
1

x
s′ −

(
1 +

ν2

x2

)
= 0

t′′ + (−1 + t′)2 +
1

x
(−1 + t′)−

(
1 +

ν2

x2

)
= 0

t′′ + (t′)2 +

(
1

x
− 2

)
t′ −

(
1

x
+
ν2

x2

)
= 0

We know that 1
x
� 2 and ν2

x2 � 1
x

as x→∞. Dropping these terms from the equation yields

t′′ + (t′)2 − 2t′ − 1

x
∼ 0.

Assuming that we can differentiate the asymptotic relation for t, we obtain t′ � 1 and t′′ � 1
x

as x → ∞. We
can drop t′′. Since t′ vanishes as x goes to infinity, (t′)2 � t′. Thus we are left with

−2t′ − 1

x
∼ 0, as x→∞.

Integrating this relationship,

t ∼ −1

2
log x+ c

∼ −1

2
log x as x→∞.

Checking our assumptions about the behavior of t,

t′ � 1 ⇒ − 1

2x
� 1

t′′ � 1

x
⇒ 1

2x2
� 1

x
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we see that the solution is consistent with our assumptions.
The leading order behavior to the solution with controlling factor e−x is

y(x) ∼ exp

(
−x− 1

2
log x+ u(x)

)
= x−1/2 e−x+u(x) as x→∞,

where u(x) � log x. We substitute t = −1
2

log x + u(x) into the differential equation for t in order to find the
asymptotic behavior of u.

t′′ + (t′)2 +

(
1

x
− 2

)
t′ −

(
1

x
+
ν2

x2

)
= 0

1

2x2
+ u′′ +

(
− 1

2x
+ u′

)2

+

(
1

x
− 2

)(
− 1

2x
+ u′

)
−
(

1

x
+
ν2

x2

)
= 0

u′′ + (u′)2 − 2u′ +
1

4x2
− ν2

x2
= 0

Assuming that we can differentiate the asymptotic relation for u, u′ � 1
x

and u′′ � 1
x2 as x → ∞. Thus we see

that we can neglect the u′′ and (u′)2 terms.

−2u′ +

(
1

4
− ν2

)
1

x2
∼ 0

u′ ∼ 1

2

(
1

4
− ν2

)
1

x2

u ∼ 1

2

(
ν2 − 1

4

)
1

x
+ c

u ∼ c as x→∞

Since u = c+ o(1), we can expand eu as ec + o(1). Thus we can write the leading order behavior as

y ∼ x−1/2 e−x( ec + o(1)).
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Thus the full leading order behavior is

y ∼ (const)x−1/2 e−x as x→∞.

You can verify that the solution with the controlling factor ex has the leading order behavior

y ∼ (const)x−1/2 ex as x→∞.

Two linearly independent solutions to the modified Bessel equation are the modified Bessel functions, Iν(x)
and Kν(x). These functions have the asymptotic behavior

Iν(x) ∼ 1√
2πx

ex, Kν(x) ∼
√
π√
2x

e−x as x→∞.

In Figure 26.1 K0(x) is plotted in a solid line and
√
π√
2x

e−x is plotted in a dashed line. We see that the leading
order behavior of the solution as x goes to infinity gives a good approximation to the behavior even for fairly
small values of x.

26.3 Integration by Parts

Example 26.3.1 The complementary error function

erfc (x) =
2√
π

∫ ∞
x

e−t
2

dt
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Figure 26.1: Plot of K0(x) and it’s leading order behavior.

is used in statistics for its relation to the normal probability distribution. We would like to find an approximation
to erfc (x) for large x. Using integration by parts,

erfc (x) =
2√
π

∫ ∞
x

(
−1

2t

)(
−2t e−t

2
)
dt

=
2√
π

[
−1

2t
e−t

2

]∞
x

− 2√
π

∫ ∞
x

1

2
t−2 e−t

2

dt

=
1√
π
x−1 e−x

2 − 1√
π

∫ ∞
x

t−2 e−t
2

dt.
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We examine the residual integral in this expression.

1√
π

∫ ∞
x

t−2 e−t
2

dt ≤ −1

2
√
π
x−3

∫ ∞
x

−2t e−t
2

dt

=
1

2
√
π
x−3 e−x

2

.

Thus we see that

1√
π
x−1 e−x

2 � 1√
π

∫ ∞
x

t−2 e−t
2

dt as x→∞.

Therefore,

erfc (x) ∼ 1√
π
x−1 e−x

2

as x→∞,

and we expect that 1√
π
x−1 e−x

2
would be a good approximation to erfc (x) for large x. In Figure 26.2 log( erfc (x))

is graphed in a solid line and log
(

1√
π
x−1 e−x

2
)

is graphed in a dashed line. We see that this first approximation

to the error function gives very good results even for moderate values of x. Table 26.1 gives the error in this first
approximation for various values of x.

If we continue integrating by parts, we might get a better approximation to the complementary error function.

erfc (x) =
1√
π
x−1 e−x

2 − 1√
π

∫ ∞
x

t−2 e−t
2

dt

=
1√
π
x−1 e−x

2 − 1√
π

[
−1

2
t−3 e−t

2

]∞
x

+
1√
π

∫ ∞
x

3

2
t−4 e−t

2

dt

=
1√
π

e−x
2

(
x−1 − 1

2
x−3

)
+

1√
π

∫ ∞
x

3

2
t−4 e−t

2

dt

=
1√
π

e−x
2

(
x−1 − 1

2
x−3

)
+

1√
π

[
−3

4
t−5 e−t

2

]∞
x

− 1√
π

∫ ∞
x

15

4
t−6 e−t

2

dt

=
1√
π

e−x
2

(
x−1 − 1

2
x−3 +

3

4
x−5

)
− 1√

π

∫ ∞
x

15

4
t−6 e−t

2

dt
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Figure 26.2: Logarithm of the Approximation to the Complementary Error Function.

The error in approximating erfc (x) with the first three terms is given in Table 26.1. We see that for x ≥ 2 the
three terms give a much better approximation to erfc (x) than just the first term.

At this point you might guess that you could continue this process indefinitely. By repeated application of
integration by parts, you can obtain the series expansion

erfc (x) =
2√
π

e−x
2
∞∑
n=0

(−1)n(2n)!

n!(2x)2n+1
.

1129



x erfc (x) One Term Relative Error Three Term Relative Error
1 0.157 0.3203 0.6497
2 0.00468 0.1044 0.0182
3 2.21× 10−5 0.0507 0.0020
4 1.54× 10−8 0.0296 3.9 · 10−4

5 1.54× 10−12 0.0192 1.1 · 10−4

6 2.15× 10−17 0.0135 3.7 · 10−5

7 4.18× 10−23 0.0100 1.5 · 10−5

8 1.12× 10−29 0.0077 6.9 · 10−6

9 4.14× 10−37 0.0061 3.4 · 10−6

10 2.09× 10−45 0.0049 1.8 · 10−6

Table 26.1:

This is a Taylor expansion about infinity. Let’s find the radius of convergence.

lim
n→∞

∣∣∣∣an+1(x)

an(x)

∣∣∣∣ < 1⇒ lim
n→∞

∣∣∣∣ (−1)n+1(2(n+ 1))!

(n+ 1)!(2x)2(n+1)+1

n!(2x)2n+1

(−1)n(2n)!

∣∣∣∣ < 1

⇒ lim
n→∞

∣∣∣∣(2n+ 2)(2n+ 1)

(n+ 1)(2x)2

∣∣∣∣ < 1

⇒ lim
n→∞

∣∣∣∣2(2n+ 1)

(2x)2

∣∣∣∣ < 1

⇒
∣∣∣∣1x
∣∣∣∣ = 0

Thus we see that our series diverges for all x. Our conventional mathematical sense would tell us that this series
is useless, however we will see that this series is very useful as an asymptotic expansion of erfc (x).
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Say we are working with a convergent series expansion of some function f(x).

f(x) =
∞∑
n=0

an(x)

For fixed x = x0,

f(x0)−
N∑
n=0

an(x0)→ 0 as N →∞.

For an asymptotic series we have a quite different behavior. If g(x) is asymptotic to
∑∞

n=0 bn(x) as x→ x0 then
for fixed N ,

g(x)−
N∑
0

bn(x)� bN(x) as x→ x0.

For the complementary error function,

For fixed N , erfc (x)− 2√
π

e−x
2

N∑
n=0

(−1)n(2n)!

n!(2x)2n+1
� x−2N−1 as x→∞.

We say that the error function is asymptotic to the series as x goes to infinity.

erfc (x) ∼ 2√
π

e−x
2
∞∑
n=0

(−1)n(2n)!

n!(2x)2n+1
as x→∞

In Figure 26.3 the logarithm of the difference between the one term, ten term and twenty term approximations
and the complementary error function are graphed in coarse, medium, and fine dashed lines, respectively.
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Figure 26.3: log(error in approximation)

*Optimal Asymptotic Series. Of the three approximations, the one term is best for x . 2, the ten term
is best for 2 . x . 4, and the twenty term is best for 4 . x. This leads us to the concept of an optimal
asymptotic approximation. An optimal asymptotic approximation contains the number of terms in the series that
best approximates the true behavior.

In Figure 26.4 we see a plot of the number of terms in the approximation versus the logarithm of the error for
x = 3. Thus we see that the optimal asymptotic approximation is the first nine terms. After nine terms the error
gets larger. It was inevitable that the error would start to grow after some point as the series diverges for all x.

A good rule of thumb for finding the optimal series is to find the smallest term in the series and take all of the
terms up to but not including the smallest term as the optimal approximation. This makes sense, because the
nth term is an approximation of the error incurred by using the first n − 1 terms. In Figure 26.5 there is a plot
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Figure 26.4: The logarithm of the error in using n terms.

of n versus the logarithm of the nth term in the asymptotic expansion of erfc (3). We see that the tenth term is
the smallest. Thus, in this case, our rule of thumb predicts the actual optimal series.

26.4 Asymptotic Series

A function f(x) has an asymptotic series expansion about x = x0,
∑∞

n=0 an(x), if

f(x)−
N∑
n=0

an(x)� aN(x) as x→ x0 for all N.
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Figure 26.5: The logarithm of the nth term in the expansion for x = 3.

An asymptotic series may be convergent or divergent. Most of the asymptotic series you encounter will be
divergent. If the series is convergent, then we have that

f(x)−
N∑
n=0

an(x)→ 0 as N →∞ for fixed x.

Let εn(x) be some set of gauge functions. The example that we are most familiar with is εn(x) = xn. If we
say that

∞∑
n=0

anεn(x) ∼
∞∑
n=0

bnεn(x),
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then this means that an = bn.

26.5 Asymptotic Expansions of Differential Equations

26.5.1 The Parabolic Cylinder Equation.

Controlling Factor. Let us examine the behavior of the bounded solution of the parabolic cylinder equation
as x→ +∞.

y′′ +

(
ν +

1

2
− 1

4
x2

)
y = 0

This equation has an irregular singular point at infinity. With the substitution y = es, the equation becomes

s′′ + (s′)2 + ν +
1

2
− 1

4
x2 = 0.

We know that

ν +
1

2
� 1

4
x2 as x→ +∞

so we drop this term from the equation. Let us make the assumption that

s′′ � (s′)2 as x→ +∞.

Thus we are left with the equation

(s′)2 ∼ 1

4
x2

s′ ∼ ±1

2
x

s ∼ ±1

4
x2 + c

s ∼ ±1

4
x2 as x→ +∞
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Now let’s check if our assumption is consistent. Substituting into s′′ � (s′)2 yields 1/2 � x2/4 as x → +∞
which is true. Since the equation for y is second order, we would expect that there are two different behaviors
as x → +∞. This is confirmed by the fact that we found two behaviors for s. s ∼ −x2/4 corresponds to the
solution that is bounded at +∞. Thus the controlling factor of the leading behavior is e−x

2/4.

Leading Order Behavior. Now we attempt to get a better approximation to s. We make the substitution
s = −1

4
x2 + t(x) into the equation for s where t� x2 as x→ +∞.

−1

2
+ t′′ +

1

4
x2 − xt′ + (t′)2 + ν +

1

2
− 1

4
x2 = 0

t′′ − xt′ + (t′)2 + ν = 0

Since t� x2, we assume that t′ � x and t′′ � 1 as x→ +∞. Note that this in only an assumption since it is not
always valid to differentiate an asymptotic relation. Thus (t′)2 � xt′ and t′′ � xt′ as x → +∞; we drop these
terms from the equation.

t′ ∼ ν

x
t ∼ ν log x+ c

t ∼ ν log x as x→ +∞

Checking our assumptions for the derivatives of t,

t′ � x ⇒ 1

x
� x t′′ � 1 ⇒ 1

x2
� 1,

we see that they were consistent. Now we wish to refine our approximation for t with the substitution t(x) =
ν log x+ u(x). So far we have that

y ∼ exp

[
−x

2

4
+ ν log x+ u(x)

]
= xν exp

[
−x

2

4
+ u(x)

]
as x→ +∞.
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We can try and determine u(x) by substituting the expression t(x) = ν log x+ u(x) into the equation for t.

− ν

x2
+ u′′ − (ν + xu′) +

ν2

x2
+

2ν

x
u′ + (u′)2 + ν = 0

After suitable simplification, this equation becomes

u′ ∼ ν2 − ν
x3

as x→ +∞

Integrating this asymptotic relation,

u ∼ ν − ν2

2x2
+ c as x→ +∞.

Notice that ν−ν2

2x2 � c as x→ +∞; thus this procedure fails to give us the behavior of u(x). Further refinements
to our approximation for s go to a constant value as x→ +∞. Thus we have that the leading behavior is

y ∼ cxν exp

[
−x

2

4

]
as x→ +∞

Asymptotic Expansion Since we have factored off the singular behavior of y, we might expect that what is
left over is well behaved enough to be expanded in a Taylor series about infinity. Let us assume that we can
expand the solution for y in the form

y(x) ∼ xν exp

(
−x

2

4

)
σ(x) = xν exp

(
−x

2

4

) ∞∑
n=0

anx
−nas x→ +∞

where a0 = 1. Differentiating y = xν exp
(
−x2

4

)
σ(x),

y′ =

[
νxν−1 − 1

2
xν+1

]
e−x

2/4σ(x) + xν e−x
2/4σ′(x)

1137



y′′ =

[
ν(ν − 1)xν−2 − 1

2
νxν − 1

2
(ν + 1)xν +

1

4
xν+2

]
e−x

2/4σ(x) + 2

[
νxν−1 − 1

2
xν+1

]
e−x

2/4σ′(x)

+ xν e−x
2/4σ′′(x).

Substituting this into the differential equation for y,[
ν(ν − 1)x−2 − (ν +

1

2
) +

1

4
x2

]
σ(x) + 2

[
νx−1 − 1

2
x

]
σ′(x) + σ′′(x) +

[
ν +

1

2
− 1

4
x2

]
σ(x) = 0

σ′′(x) + (2νx−1 − x)σ′(x) + ν(ν − 1)x−2σ = 0

x2σ′′(x) + (2νx− x3)σ′(x) + ν(ν − 1)σ(x) = 0.

Differentiating the expression for σ(x),

σ(x) =
∞∑
n=0

anx
−n

σ′(x) =
∞∑
n=1

−nanx−n−1 =
∞∑

n=−1

−(n+ 2)an+2x
−n−3

σ′′(x) =
∞∑
n=1

n(n+ 1)anx
−n−2.

Substituting this into the differential equation for σ(x),

∞∑
n=1

n(n+ 1)anx
−n + 2ν

∞∑
n=1

−nanx−n −
∞∑

n=−1

−(n+ 2)an+2x
−n + ν(ν − 1)

∞∑
n=0

anx
−n = 0.

Equating the coefficient of x1 to zero yields

a1x = 0 ⇒ a1 = 0.
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Equating the coefficient of x0,

2a2 + ν(ν − 1)a0 = 0 ⇒ a2 = −1

2
ν(ν − 1).

From the coefficient of x−n for n > 0,

n(n+ 1)an − 2νnan + (n+ 2)an+2 + ν(ν − 1)an = 0

(n+ 2)an+2 = −[n(n+ 1)− 2νn+ ν(ν − 1)]an

(n+ 2)an+2 = −[n2 + n− 2νn+ ν(ν − 1)]an

(n+ 2)an+2 = −(n− ν)(n− ν + 1)an.

Thus the recursion formula for the an’s is

an+2 = −(n− ν)(n− ν + 1)

n+ 2
an, a0 = 1, a1 = 0.

The first few terms in σ(x) are

σ(x) ∼ 1− ν(ν − 1)

211!
x−2 +

ν(ν − 1)(ν − 2)(ν − 3)

222!
x−4 − · · · as x→ +∞

If we check the radius of convergence of this series

lim
n→∞

∣∣∣∣an+2x
−n−2

anx−n

∣∣∣∣ < 1 ⇒ lim
n→∞

∣∣∣∣−(n− ν)(n− ν + 1)

n+ 2
x−2

∣∣∣∣ < 1

⇒ 1

x
= 0

we see that the radius of convergence is zero. Thus if ν 6= 0, 1, 2, . . . our asymptotic expansion for y

y ∼ xν e−x
2/4

[
1− ν(ν − 1)

211!
x−2 +

ν(ν − 1)(ν − 2)(ν − 3)

222!
x−4 − · · ·

]
diverges for all x. However this solution is still very useful. If we only use a finite number of terms, we will get a
very good numerical approximation for large x.

In Figure 26.6 the one term, two term, and three term asymptotic approximations are shown in rough, medium,
and fine dashing, respectively. The numerical solution is plotted in a solid line.
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Figure 26.6: Asymptotic Approximations to the Parabolic Cylinder Function.
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Chapter 27

Hilbert Spaces

An expert is a man who has made all the mistakes which can be made, in a narrow field.

- Niels Bohr

WARNING: UNDER HEAVY CONSTRUCTION.

In this chapter we will introduce Hilbert spaces. We develop the two important examples: l2, the space of
square summable infinite vectors and L2, the space of square integrable functions.

27.1 Linear Spaces

A linear space is a set of elements {x, y, z, . . . } that is closed under addition and scalar multiplication. By closed
under addition we mean: if x and y are elements, then z = x+ y is an element. The addition is commutative and
associative.

x+ y = y + x

(x+ y) + z = x+ (y + z)
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Scalar multiplication is associative and distributive. Let a and b be scalars, a, b ∈ C.

(ab)x = a(bx)

(a+ b)x = ax+ bx

a(x+ y) = ax+ ay

All the linear spaces that we will work with have additional properties: The zero element 0 is the additive
identity.

x+ 0 = x

Multiplication by the scalar 1 is the multiplicative identity.

1x = x

Each element x and the additive inverse, −x.

x+ (−x) = 0

Consider a set of elements {x1, x2, . . . }. Let the ci be scalars. If

y = c1x1 + c2x2 + · · ·

then y is a linear combination of the xi. A set of elements {x1, x2, . . . } is linearly independent if the equation

c1x1 + c2x2 + · · · = 0

has only the trivial solution c1 = c2 = · · · = 0. Otherwise the set is linearly dependent.
Let {e1, e2, · · · } be a linearly independent set of elements. If every element x can be written as a linear

combination of the ei then the set {ei} is a basis for the space. The ei are called base elements.

x =
∑
i

ciei

The set {ei} is also called a coordinate system. The scalars ci are the coordinates or components of x. If the set
{ei} is a basis, then we say that the set is complete.
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27.2 Inner Products

〈x|y〉 is an inner product of two elements x and y if it satisfies the properties:

1. Conjugate-commutative.

〈x|y〉 = 〈x|y〉

2. Linearity in the second argument.

〈x|ay + bz〉 = a〈x|y〉+ b〈x|y〉

3. Positive definite.

〈x|x〉 ≥ 0

〈x|x〉 = 0 if and only if x = 0

From these properties one can derive the properties:

1. Conjugate linearity in the first argument.

〈ax+ by|z〉 = a〈x|z〉+ b〈x|z〉

2. Schwarz Inequality.

|〈x|y〉|2 ≤ 〈x|x〉〈y|y〉

One inner product of vectors is the Euclidean inner product.

〈x|y〉 ≡ x · y =
n∑
i=0

xiyi.
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One inner product of functions defined on (a . . . b) is

〈u|v〉 =

∫ b

a

u(x)v(x) dx.

If σ(x) is a positive-valued function, then we can define the inner product:

〈u|σ|v〉 =

∫ b

a

u(x)σ(x)v(x) dx.

This is called the inner product with respect to the weighting function σ(x). It is also denoted 〈u|v〉σ.

27.3 Norms

A norm is a real-valued function on a space which satisfies the following properties.

1. Positive.

‖x‖ ≥ 0

2. Definite.

‖x‖ = 0 if and only if x = 0

3. Multiplication my a scalar, c ∈ C.

‖cx‖ = |c|‖x‖

4. Triangle inequality.

‖x+ y‖ ≤ ‖x‖+ ‖y‖
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Example 27.3.1 Consider a vector space, (finite or infinite dimension), with elements x = (x1, x2, x3, . . . ). Here
are some common norms.

• Norm generated by the inner product.

‖x‖ =
√
〈x|x〉

• The lp norm.

‖x‖p =

(
∞∑
k=1

|xk|p
)1/p

There are three common cases of the lp norm.

– Euclidian norm, or l2 norm.

‖x‖2 =

√√√√ ∞∑
k=1

|xk|2

– l1 norm.

‖x‖1 =
∞∑
k=1

|xk|

– l∞ norm.

‖x‖∞ = max
k
|xk|

Example 27.3.2 Consider a space of functions defined on the interval (a . . . b). Here are some common norms.
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• Norm generated by the inner product.

‖u‖ =
√
〈u|u〉

• The Lp norm.

‖u‖p =

(∫ b

a

|u(x)|p dx

)1/p

There are three common cases of the Lp norm.

– Euclidian norm, or L2 norm.

‖u‖2 =

√∫ b

a

|u(x)|2 dx

– L1 norm.

‖u‖1 =

∫ b

a

|u(x)| dx

– L∞ norm.

‖u‖∞ = lim sup
x∈(a...b)

|u(x)|

Distance. Using the norm, we can define the distance between elements u and v.

d(u, v) ≡ ‖u− v‖

Note that d(u, v) = 0 does not necessarily imply that u = v. CONTINUE.
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27.4 Linear Independence.

27.5 Orthogonality

Orthogonality.

〈φj|φk〉 = 0 if j 6= k

Orthonormality.

〈φj|φk〉 = δjk

Example 27.5.1 Infinite vectors. ej has all zeros except for a 1 in the jth position.

ej = (0, 0, . . . 0, 1, 0, . . . )

Example 27.5.2 L2 functions on (0 . . . 2π).

φj =
1√
2π

eijx, j ∈ Z

φ0 =
1√
2π
, φ

(1)
j =

1√
π

cos(jx), φ
(1)
j =

1√
π

sin(jx), j ∈ Z+

27.6 Gramm-Schmidt Orthogonalization

Let {ψ1(x), . . . , ψn(x)} be a set of linearly independent functions. Using the Gramm-Schmidt orthogonalization
process we can construct a set of orthogonal functions {φ1(x), . . . , φn(x)} that has the same span as the set of
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ψn’s with the formulas

φ1 = ψ1

φ2 = ψ2 −
〈φ1|ψ2〉
‖φ1‖2

φ1

φ3 = ψ3 −
〈φ1|ψ3〉
‖φ1‖2

φ1 −
〈φ2|ψ3〉
‖φ2‖2

φ2

· · ·

φn = ψn −
n−1∑
j=1

〈φj|ψn〉
‖φj‖2

φj.

You could verify that the φm are orthogonal with a proof by induction.

Example 27.6.1 Suppose we would like a polynomial approximation to cos(πx) in the domain [−1, 1]. One way
to do this is to find the Taylor expansion of the function about x = 0. Up to terms of order x4, this is

cos(πx) = 1− (πx)2

2
+

(πx)4

24
+O(x6).

In the first graph of Figure 27.1 cos(πx) and this fourth degree polynomial are plotted. We see that the approx-
imation is very good near x = 0, but deteriorates as we move away from that point. This makes sense because
the Taylor expansion only makes use of information about the function’s behavior at the point x = 0.

As a second approach, we could find the least squares fit of a fourth degree polynomial to cos(πx). The set
of functions {1, x, x2, x3, x4} is independent, but not orthogonal in the interval [−1, 1]. Using Gramm-Schmidt
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orthogonalization,

φ0 = 1

φ1 = x− 〈1|x〉
〈1|1〉

= x

φ2 = x2 − 〈1|x
2〉

〈1|1〉
− 〈x|x

2〉
〈x|x〉

x = x2 − 1

3

φ3 = x3 − 3

5
x

φ4 = x4 − 6

7
x2 − 3

35

A widely used set of functions in mathematics is the set of Legendre polynomials {P0(x), P1(x), . . . }. They
differ from the φn’s that we generated only by constant factors. The first few are

P0(x) = 1

P1(x) = x

P2(x) =
3x2 − 1

2

P3(x) =
5x3 − 3x

2

P4(x) =
35x4 − 30x2 + 3

8
.

Expanding cos(πx) in Legendre polynomials

cos(πx) ≈
4∑

n=0

cnPn(x),

and calculating the generalized Fourier coefficients with the formula

cn =
〈Pn| cos(πx)〉
〈Pn|Pn〉

,
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yields

cos(πx) ≈ −15

π2
P2(x) +

45(2π2 − 21)

π4
P4(x)

=
105

8π4
[(315− 30π2)x4 + (24π2 − 270)x2 + (27− 2π2)]

The cosine and this polynomial are plotted in the second graph in Figure 27.1. The least squares fit method uses
information about the function on the entire interval. We see that the least squares fit does not give as good
an approximation close to the point x = 0 as the Taylor expansion. However, the least squares fit gives a good
approximation on the entire interval.

In order to expand a function in a Taylor series, the function must be analytic in some domain. One advantage
of using the method of least squares is that the function being approximated does not even have to be continuous.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 27.1: Polynomial Approximations to cos(πx).
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27.7 Orthonormal Function Expansion

Let {φj} be an orthonormal set of functions on the interval (a, b). We expand a function f(x) in the φj.

f(x) =
∑
j

cjφj

We choose the coefficients to minimize the norm of the error.∥∥∥∥∥f −∑
j

cjφj

∥∥∥∥∥
2

=

〈
f −

∑
j

cjφj

∣∣∣∣f −∑
j

cjφj

〉

= ‖f‖2 −

〈
f

∣∣∣∣∑
j

cjφj

〉
−

〈∑
j

cjφj

∣∣∣∣f
〉

+

〈∑
j

cjφj

∣∣∣∣∑
j

cjφj

〉
= ‖f‖2 +

∑
j

|cj|2 −
∑
j

cj〈f |φj〉 −
∑
j

cj〈φj|f〉

∥∥∥∥∥f −∑
j

cjφj

∥∥∥∥∥
2

= ‖f‖2 +
∑
j

|cj|2 −
∑
j

cj〈φj|f〉 −
∑
j

cj〈φj|f〉 (27.1)

To complete the square, we add the constant
∑

j〈φj|f〉〈φj|f〉. We see the values of cj which minimize

‖f‖2 +
∑
j

|cj − 〈φj|f〉|2 .

Clearly the unique minimum occurs for

cj = 〈φj|f〉.
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We substitute this value for cj into the right side of Equation 27.1 and note that this quantity, the squared norm
of the error, is non-negative.

‖f‖2 +
∑
j

|cj|2 −
∑
j

|cj|2 −
∑
j

|cj|2 ≥ 0

‖f‖2 ≥
∑
j

|cj|2

This is known as Bessel’s Inequality. If the set of {φj} is complete then the norm of the error is zero and we
obtain Bessel’s Equality.

‖f‖2 =
∑
j

|cj|2

27.8 Sets Of Functions

Orthogonality. Consider two complex valued functions of a real variable φ1(x) and φ2(x) defined on the interval
a ≤ x ≤ b. The inner product of the two functions is defined

〈φ1|φ2〉 =

∫ b

a

φ1(x)φ2(x) dx.

The two functions are orthogonal if 〈φ1|φ2〉 = 0. The L2 norm of a function is defined ‖φ‖ =
√
〈φ|φ〉.

Let {φ1, φ2, φ3, . . . } be a set of complex valued functions. The set of functions is orthogonal if each pair of
functions is orthogonal. That is,

〈φn|φm〉 = 0 if n 6= m.

If in addition the norm of each function is 1, then the set is orthonormal. That is,

〈φn|φm〉 = δnm =

{
1 if n = m

0 if n 6= m.

1152



Example 27.8.1 The set of functions{√
2

π
sin(x),

√
2

π
sin(2x),

√
2

π
sin(3x), . . .

}
is orthonormal on the interval [0, π]. To verify this,〈√

2

π
sin(nx)

∣∣∣∣∣
√

2

π
sin(nx)

〉
=

2

π

∫ π

0

sin2(nx) dx

= 1

If n 6= m then 〈√
2

π
sin(nx)

∣∣∣∣∣
√

2

π
sin(mx)

〉
=

2

π

∫ π

0

sin(nx) sin(mx) dx

=
1

π

∫ π

0

(cos[(n−m)x]− cos[(n+m)x]) dx

= 0.

Example 27.8.2 The set of functions

{. . . , 1√
2π

e−ix,
1√
2π
,

1√
2π

eix,
1√
2π

e2ix, . . . },

is orthonormal on the interval [−π, π]. To verify this,〈
1√
2π

einx

∣∣∣∣∣ 1√
2π

einx

〉
=

1

2π

∫ π

−π
e−inx einx dx

=
1

2π

∫ π

−π
dx

= 1.
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If n 6= m then 〈
1√
2π

einx

∣∣∣∣∣ 1√
2π

eimx

〉
=

1

2π

∫ π

−π
e−inx eimx dx

=
1

2π

∫ π

−π
ei(m−n)x dx

= 0.

Orthogonal with Respect to a Weighting Function. Let σ(x) be a real-valued, positive function on the
interval [a, b]. We introduce the notation

〈φn|σ|φm〉 ≡
∫ b

a

φnσφm dx.

If the set of functions {φ1, φ2, φ3, . . . } satisfy

〈φn|σ|φm〉 = 0 if n 6= m

then the functions are orthogonal with respect to the weighting function σ(x).
If the functions satisfy

〈φn|σ|φm〉 = δnm

then the set is orthonormal with respect to σ(x).

Example 27.8.3 We know that the set of functions{√
2

π
sin(x),

√
2

π
sin(2x),

√
2

π
sin(3x), . . .

}
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is orthonormal on the interval [0, π]. That is,∫ π

0

√
2

π
sin(nx)

√
2

π
sin(mx) dx = δnm.

If we make the change of variables x =
√
t in this integral, we obtain∫ π2

0

1

2
√
t

√
2

π
sin(n

√
t)

√
2

π
sin(m

√
t) dt = δnm.

Thus the set of functions {√
1

π
sin(
√
t),

√
1

π
sin(2

√
t),

√
1

π
sin(3

√
t), . . .

}
is orthonormal with respect to σ(t) = 1

2
√
t

on the interval [0, π2].

Orthogonal Series. Suppose that a function f(x) defined on [a, b] can be written as a uniformly convergent
sum of functions that are orthogonal with respect to σ(x).

f(x) =
∞∑
n=1

cnφn(x)

We can solve for the cn by taking the inner product of φm(x) and each side of the equation with respect to σ(x).

〈φm|σ|f〉 =

〈
φm

∣∣∣∣∣σ
∣∣∣∣∣
∞∑
n=1

cnφn

〉

〈φm|σ|f〉 =
∞∑
n=1

cn〈φm|σ|φn〉

〈φm|σ|f〉 = cm〈φm|σ|φm〉

cm =
〈φm|σ|f〉
〈φm|σ|φm〉
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The cm are known as Generalized Fourier coefficients. If the functions in the expansion are orthonormal, the
formula simplifies to

cm = 〈φm|σ|f〉.

Example 27.8.4 The function f(x) = x(π− x) has a uniformly convergent series expansion in the domain [0, π]
of the form

x(π − x) =
∞∑
n=1

cn

√
2

π
sin(nx).

The Fourier coefficients are

cn =

〈√
2

π
sin(nx)

∣∣∣∣∣x(π − x)

〉

=

√
2

π

∫ π

0

x(π − x) sin(nx) dx

=

√
2

π

2

n3
(1− (−1)n)

=

{√
2
π

4
n3 for odd n

0 for even n

Thus the expansion is

x(π − x) =
∞∑
n=1
oddn

8

πn3
sin(nx) for x ∈ [0, π].

In the first graph of Figure 27.2 the first term in the expansion is plotted in a dashed line and x(π − x) is
plotted in a solid line. The second graph shows the two term approximation.
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Figure 27.2: Series Expansions of x(π − x).

Example 27.8.5 The set {. . . , 1/
√

2π e−ix, 1/
√

2π, 1/
√

2π eix, 1/
√

2π e2ix, . . . } is orthonormal on the interval
[−π, π]. f(x) = sign (x) has the expansion

sign (x) ∼
∞∑

n=−∞

〈
1√
2π

einξ

∣∣∣∣∣ sign (ξ)

〉
1√
2π

einx

=
1

2π

∞∑
n=−∞

∫ π

−π
e−inξ sign (ξ) dξ einx

=
1

2π

∞∑
n=−∞

(∫ 0

−π
− e−inξ dξ +

∫ π

0

e−inξ dξ

)
einx

=
1

π

∞∑
n=−∞

1− (−1)n

in
einx.
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In terms of real functions, this is

=
1

π

∞∑
n=−∞

1− (−1)n

in
(cos(nx) + i sin(nx))

=
2

π

∞∑
n=1

1− (−1)n

in
sin(nx)

sign (x) ∼ 4

π

∞∑
n=1
oddn

1

n
sin(nx).

27.9 Least Squares Fit to a Function and Completeness

Let {φ1, φ2, φ3, . . . } be a set of real, square integrable functions that are orthonormal with respect to the weighting
function σ(x) on the interval [a, b]. That is,

〈φn|σ|φm〉 = δnm.

Let f(x) be some square integrable function defined on the same interval. We would like to approximate the
function f(x) with a finite orthonormal series.

f(x) ≈
N∑
n=1

αnφn(x)

f(x) may or may not have a uniformly convergent expansion in the orthonormal functions.
We would like to choose the αn so that we get the best possible approximation to f(x). The most common

measure of how well a series approximates a function is the least squares measure. The error is defined as the
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integral of the weighting function times the square of the deviation.

E =

∫ b

a

σ(x)

(
f(x)−

N∑
n=1

αnφn(x)

)2

dx

The “best” fit is found by choosing the αn that minimize E. Let cn be the Fourier coefficients of f(x).

cn = 〈φn|σ|f〉
we expand the integral for E.

E(α) =

∫ b

a

σ(x)

(
f(x)−

N∑
n=1

αnφn(x)

)2

dx

=

〈
f −

N∑
n=1

αnφn

∣∣∣∣ σ ∣∣∣∣ f − N∑
n=1

αnφn

〉

= 〈f |σ|f〉 − 2

〈 N∑
n=1

αnφn

∣∣∣∣σ∣∣∣∣f〉+

〈 N∑
n=1

αnφn

∣∣∣∣σ∣∣∣∣ N∑
n=1

αnφn

〉

= 〈f |σ|f〉 − 2
N∑
n=1

αn〈φn|σ|f〉+
N∑
n=1

N∑
m=1

αnαm〈φn|σ|φm〉

= 〈f |σ|f〉 − 2
N∑
n=1

αncn +
N∑
n=1

α2
n

= 〈f |σ|f〉+
N∑
n=1

(αn − cn)2 −
N∑
n=1

c2
n

Each term involving αn in non-negative and is minimized for αn = cn. The Fourier coefficients give the least
squares approximation to a function. The least squares fit to f(x) is thus

f(x) ≈
N∑
n=1

〈φn|σ|f〉φn(x).
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Result 27.9.1 If {φ1, φ2, φ3, . . . } is a set of real, square integrable functions that are
orthogonal with respect to σ(x) then the least squares fit of the first N orthogonal
functions to the square integrable function f(x) is

f(x) ≈
N∑
n=1

〈φn|σ|f〉
〈φn|σ|φn〉

φn(x).

If the set is orthonormal, this formula reduces to

f(x) ≈
N∑
n=1

〈φn|σ|f〉φn(x).

Since the error in the approximation E is a nonnegative number we can obtain on inequality on the sum of
the squared coefficients.

E = 〈f |σ|f〉 −
N∑
n=1

c2
n

N∑
n=1

c2
n ≤ 〈f |σ|f〉

This equation is known as Bessel’s Inequality. Since 〈f |σ|f〉 is just a nonnegative number, independent of N ,
the sum

∑∞
n=1 c

2
n is convergent and cn → 0 as n→∞

Convergence in the Mean. If the error E goes to zero as N tends to infinity

lim
N→∞

∫ b

a

σ(x)

(
f(x)−

N∑
n=1

cnφn(x)

)2

dx = 0,
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then the sum converges in the mean to f(x) relative to the weighting function σ(x). This implies that

lim
N→∞

(
〈f |σ|f〉 −

N∑
n=1

c2
n

)
= 0

∞∑
n=1

c2
n = 〈f |σ|f〉.

This is known as Parseval’s identity.

Completeness. Consider a set of functions {φ1, φ2, φ3, . . . } that is orthogonal with respect to the weighting
function σ(x). If every function f(x) that is square integrable with respect to σ(x) has an orthogonal series
expansion

f(x) ∼
∞∑
n=1

cnφn(x)

that converges in the mean to f(x), then the set is complete.

27.10 Closure Relation

Let {φ1, φ2, . . . } be an orthonormal, complete set on the domain [a, b]. For any square integrable function f(x)
we can write

f(x) ∼
∞∑
n=1

cnφn(x).
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Here the cn are the generalized Fourier coefficients and the sum converges in the mean to f(x). Substituting the
expression for the Fourier coefficients into the sum yields

f(x) ∼
∞∑
n=1

〈φn|f〉φn(x)

=
∞∑
n=1

(∫ b

a

φn(ξ)f(ξ) dξ

)
φn(x).

Since the sum is not necessarily uniformly convergent, we are not justified in exchanging the order of summation
and integration . . . but what the heck, let’s do it anyway.

=

∫ b

a

(
∞∑
n=1

φn(ξ)f(ξ)φn(x)

)
dξ

=

∫ b

a

(
∞∑
n=1

φn(ξ)φn(x)

)
f(ξ) dξ

The sum behaves like a Dirac delta function. Recall that δ(x− ξ) satisfies the equation

f(x) =

∫ b

a

δ(x− ξ)f(ξ) dξ for x ∈ (a, b).

Thus we could say that the sum is a representation of δ(x − ξ). Note that a series representation of the delta
function could not be convergent, hence the necessity of throwing caution to the wind when we interchanged the
summation and integration in deriving the series. The closure relation for an orthonormal, complete set states

∞∑
n=1

φn(x)φn(ξ) ∼ δ(x− ξ).
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Alternatively, you can derive the closure relation by computing the generalized Fourier coefficients of the delta
function.

δ(x− ξ) ∼
∞∑
n=1

cnφn(x)

cn = 〈φn|δ(x− ξ)〉

=

∫ b

a

φn(x)δ(x− ξ) dx

= φn(ξ)

δ(x− ξ) ∼
∞∑
n=1

φn(x)φn(ξ)

Result 27.10.1 If {φ1, φ2, . . . } is an orthogonal, complete set on the domain [a, b], then

∞∑
n=1

φn(x)φn(ξ)

‖φn‖2 ∼ δ(x− ξ).

If the set is orthonormal, then

∞∑
n=1

φn(x)φn(ξ) ∼ δ(x− ξ).

Example 27.10.1 The integral of the Dirac delta function is the Heaviside function. On the interval x ∈ (−π, π)∫ x

−π
δ(t) dt = H(x) =

{
1 for 0 < x < π

0 for − π < x < 0.
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Consider the orthonormal, complete set {. . . , 1√
2π

e−ix, 1√
2π
, 1√

2π
eix, . . . } on the domain [−π, π]. The delta

function has the series

δ(t) ∼
∞∑

n=−∞

1√
2π

eint
1√
2π

e−in0 =
1

2π

∞∑
n=−∞

eint.

We will find the series expansion of the Heaviside function first by expanding directly and then by integrating
the expansion for the delta function.

Finding the series expansion of H(x) directly. The generalized Fourier coefficients of H(x) are

c0 =

∫ π

−π

1√
2π
H(x) dx

=
1√
2π

∫ π

0

dx

=

√
π

2

cn =

∫ π

−π

1√
2π

e−inxH(x) dx

=
1√
2π

∫ π

0

e−inx dx

=
1− (−1)n

in
√

2π
.
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Thus the Heaviside function has the expansion

H(x) ∼
√
π

2

1√
2π

+
∞∑

n=−∞
n6=0

1− (−1)n

in
√

2π

1√
2π

einx

=
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nx)

H(x) ∼ 1

2
+

2

π

∞∑
n=1
oddn

1

n
sin(nx).

Integrating the series for δ(t).∫ x

−π
δ(t) dt ∼ 1

2π

∫ x

−π

∞∑
n=−∞

eint dt

=
1

2π

(x+ π) +
∞∑

n=−∞
n6=0

[
1

in
eint
]x
−π


=

1

2π

(x+ π) +
∞∑

n=−∞
n6=0

1

in

(
einx − (−1)n

)
=

x

2π
+

1

2
+

1

2π

∞∑
n=1

1

in

(
einx − e−inx − (−1)n + (−1)n

)
=

x

2π
+

1

2
+

1

π

∞∑
n=1

1

n
sin(nx)
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Expanding x
2π

in the orthonormal set,

x

2π
∼

∞∑
n=−∞

cn
1√
2π

einx.

c0 =

∫ π

−π

1√
2π

x

2π
dx = 0

cn =

∫ π

−π

1√
2π

e−inx
x

2π
dx =

i(−1)n

n
√

2π

x

2π
∼

∞∑
n=−∞
n6=0

i(−1)n

n
√

2π

1√
2π

einx = − 1

π

∞∑
n=1

(−1)n sin(nx)

Substituting the series for x
2π

into the expression for the integral of the delta function,∫ x

−π
δ(t) dt ∼ 1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nx)

∫ x

−π
δ(t) dt ∼ 1

2
+

2

π

∞∑
n=1
oddn

1

n
sin(nx).

Thus we see that the series expansions of the Heaviside function and the integral of the delta function are the
same.

27.11 Linear Operators
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27.12 Exercises
Exercise 27.1

1. Suppose {φk(x)}∞k=0 is an orthogonal system on [a, b]. Show that any finite set of the φj(x) is a linearly
independent set on [a, b]. That is, if {φj1(x), φj2(x), . . . , φjn(x)} is the set and all the jν are distinct, then

a1φj1(x) + a2φj2(x) + · · ·+ anφjn(x) = 0 on a ≤ x ≤ b

is true iff: a1 = a2 = · · · = an = 0.

2. Show that the complex functions φk(x) ≡ eikπx/L, k = 0, 1, 2, . . . are orthogonal in the sense that
∫ L
−L φk(x)φ∗n(x) dx =

0, for n 6= k. Here φ∗n(x) is the complex conjugate of φn(x).
Hint, Solution
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27.13 Hints
Hint 27.1
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27.14 Solutions

Solution 27.1
1.

a1φj1(x) + a2φj2(x) + · · ·+ anφjn(x) = 0
n∑
k=1

akφjk(x) = 0

We take the inner product with φjν for any ν = 1, . . . , n. (〈φ, ψ〉 ≡
∫ b
a
φ(x)ψ∗(x) dx.)〈

n∑
k=1

akφjk , φjν

〉
= 0

We interchange the order of summation and integration.

n∑
k=1

ak 〈φjk , φjν 〉 = 0

〈φjkφjν 〉 = 0 for j 6= ν.

aν 〈φjνφjν 〉 = 0

〈φjνφjν 〉 6= 0.

aν = 0

Thus we see that a1 = a2 = · · · = an = 0.
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2. For k 6= n, 〈φk, φn〉 = 0.

〈φk, φn〉 ≡
∫ L

−L
φk(x)φ∗n(x) dx

=

∫ L

−L
eikπx/L e−inπx/L dx

=

∫ L

−L
ei(k−n)πx/L dx

=

[
ei(k−n)πx/L

i(k − n)π/L

]L
−L

=
ei(k−n)π − e−i(k−n)π

i(k − n)π/L

=
2L sin((k − n)π)

(k − n)π

= 0
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Chapter 28

Self Adjoint Linear Operators

28.1 Adjoint Operators

The adjoint of an operator, L∗, satisfies

〈v|Lu〉 − 〈L∗v|u〉 = 0

for all elements u an v. This is known as Green’s Identity.

The adjoint of a matrix. For vectors, one can represent linear operators L with matrix multiplication.

Lx ≡ Ax
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Let B = A∗ be the adjoint of the matrix A. We determine the adjoint of A from Green’s Identity.

〈x|Ay〉 − 〈Bx|y〉 = 0

x ·Ay = Bx · y

xTAy = Bx
T
y

xTAy = xTB
T
y

yTA
T
x = yTBxB = A

T

Thus we see that the adjoint of a matrix is the conjugate transpose of the matrix, A∗ = A
T

. The conjugate
transpose is also called the Hermitian transpose and is denoted AH .

The adjoint of a differential operator. Consider a second order linear differential operator acting on C2

functions defined on (a . . . b) which satisfy certain boundary conditions.

Lu ≡ p2(x)u′′ + p1(x)u′ + p0(x)u

28.2 Self-Adjoint Operators

Matrices. A matrix is self-adjoint if it is equal to its conjugate transpose A = AH ≡ A
T

. Such matrices are
called Hermitian. For a Hermitian matrix H, Green’s identity is

〈y|Hx〉 = 〈Hy|x〉
y ·Hx = Hy · x
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The eigenvalues of a Hermitian matrix are real. Let x be an eigenvector with eigenvalue λ.

〈x|Hx〉 = 〈Hx|x〉
〈x|λx〉 − 〈λx|x〉 = 0

(λ− λ)〈x|x〉 = 0

λ = λ

The eigenvectors corresponding to distinct eigenvalues are distinct. Let x and y be eigenvectors with distinct
eigenvalues λ and µ.

〈y|Hx〉 = 〈Hy|x〉
〈y|λx〉 − 〈µy|x〉 = 0

(λ− µ)〈y|λx〉 = 0

(λ− µ)〈y|x〉 = 0

〈y|x〉 = 0

Furthermore, all Hermitian matrices are similar to a diagonal matrix and have a complete set of orthogonal
eigenvectors.

Trigonometric Series. Consider the problem

−y′′ = λy, y(0) = y(2π), y′(0) = y′(2π).
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We verify that the differential operator L = − d2

dx2 with periodic boundary conditions is self-adjoint.

〈v|Lu〉 = 〈v| − u′′〉
= [−vu′]2π0 − 〈v

′| − u′〉
= 〈v′|u′〉

=
[
v′u
]2π

0
− 〈v′′|u〉

= 〈−v′′|u〉
= 〈Lv|u〉

The eigenvalues and eigenfunctions of this problem are

λ0 = 0, φ0 = 1

λn = n2, φ(1)
n = cos(nx), φ(2)

n = sin(nx), n ∈ Z+
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28.3 Exercises
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28.4 Hints
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28.5 Solutions
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Chapter 29

Self-Adjoint Boundary Value Problems

Seize the day and throttle it.

-Calvin

29.1 Summary of Adjoint Operators

The adjoint of the operator

L[y] = pn
dny

dxn
+ pn−1

dn−1y

dxn−1
+ · · ·+ p0y,

is defined

L∗[y] = (−1)n
dn

dxn
(pny) + (−1)n−1 d

n−1

dxn−1
(pn−1y) + · · ·+ p0y

If each of the pk is k times continuously differentiable and u and v are n times continuously differentiable on
some interval, then on that interval Lagrange’s identity states

vL[u]− uL∗[v] =
d

dx
B[u, v]
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where B[u, v] is the bilinear form

B[u, v] =
n∑

m=1

∑
j+k=m−1
j≥0,k≥0

(−1)ju(k)(pmv)(j).

If L is a second order operator then

vL[u]− uL∗[v] = u′′p2v + u′p1v + u
[
− p2v

′′ + (−2p′2 + p1)v′ + (−p′′2 + p′1)v
]
.

Integrating Lagrange’s identity on its interval of validity gives us Green’s formula.∫ b

a

(
vL[u]− uL∗[v]

)
dx = 〈v|L[u]〉 − 〈L∗[v]|u〉 = B[u, v]

∣∣
x=b
−B[u, v]

∣∣
x=a

29.2 Formally Self-Adjoint Operators

Example 29.2.1 The linear operator

L[y] = x2y′′ + 2xy′ + 3y

has the adjoint operator

L∗[y] =
d2

dx2
(x2y)− d

dx
(2xy) + 3y

= x2y′′ + 4xy′ + 2y − 2xy′ − 2y + 3y

= x2y′′ + 2xy′ + 3y.

In Example 29.2.1, the adjoint operator is the same as the operator. If L = L∗, the operator is said to be
formally self-adjoint.
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Most of the differential equations that we study in this book are second order, formally self-adjoint, with
real-valued coefficient functions. Thus we wish to find the general form of this operator. Consider the operator

L[y] = p2y
′′ + p1y

′ + p0y,

where the pj’s are real-valued functions. The adjoint operator then is

L∗[y] =
d2

dx2
(p2y)− d

dx
(p1y) + p0y

= p2y
′′ + 2p′2y

′ + p′′2y − p1y
′ − p′1y + p0y

= p2y
′′ + (2p′2 − p1)y′ + (p′′2 − p′1 + p0)y.

Equating L and L∗ yields the two equations,

2p′2 − p1 = p1, p′′2 − p′1 + p0 = p0

p′2 = p1, p′′2 = p′1.

Thus second order, formally self-adjoint operators with real-valued coefficient functions have the form

L[y] = p2y
′′ + p′2y

′ + p0y,

which is equivalent to the form

L[y] =
d

dx
(py′) + qy.

Any linear differential equation of the form

L[y] = y′′ + p1y
′ + p0y = f(x),

where each pj is j times continuously differentiable and real-valued, can be written as a formally self adjoint
equation. We just multiply by the factor,

eP (x) = exp(

∫ x

p1(ξ) dξ)
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to obtain

exp [P (x)] (y′′ + p1y
′ + p0y) = exp [P (x)] f(x)

d

dx
(exp [P (x)] y′) + exp [P (x)] p0y = exp [P (x)] f(x).

Example 29.2.2 Consider the equation

y′′ +
1

x
y′ + y = 0.

Multiplying by the factor

exp

(∫ x 1

ξ
dξ

)
= elog x = x

will make the equation formally self-adjoint.

xy′′ + y′ + xy = 0

d

dx
(xy′) + xy = 0
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Result 29.2.1 If L = L∗ then the linear operator L is formally self-adjoint. Second
order formally self-adjoint operators have the form

L[y] =
d

dx
(py′) + qy.

Any differential equation of the form

L[y] = y′′ + p1y
′ + p0y = f(x),

where each pj is j times continuously differentiable and real-valued, can be written as a
formally self adjoint equation by multiplying the equation by the factor exp(

∫ x
p1(ξ) dξ).

29.3 Self-Adjoint Problems

Consider the nth order formally self-adjoint equation L[y] = 0, on the domain a ≤ x ≤ b subject to the boundary
conditions, Bj[y] = 0 for j = 1, . . . , n. where the boundary conditions can be written

Bj[y] =
n∑
k=1

αjky
(k−1)(a) + βjky

(k−1)(b) = 0.

If the boundary conditions are such that Green’s formula reduces to

〈v|L[u]〉 − 〈L[v]|u〉 = 0

then the problem is self-adjoint

Example 29.3.1 Consider the formally self-adjoint equation −y′′ = 0, subject to the boundary conditions y(0) =
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y(π) = 0. Green’s formula is

〈v| − u′′〉 − 〈−v′′|u〉 = [u′(−v)− u(−v)′]π0
= [uv′ − u′v]π0
= 0.

Thus this problem is self-adjoint.

29.4 Self-Adjoint Eigenvalue Problems

Associated with the self-adjoint problem

L[y] = 0, subject to Bj[y] = 0,

is the eigenvalue problem

L[y] = λy, subject to Bj[y] = 0.

This is called a self-adjoint eigenvalue problem. The values of λ for which there exist nontrivial solutions to
this problem are called eigenvalues. The functions that satisfy the equation when λ is an eigenvalue are called
eigenfunctions.

Example 29.4.1 Consider the self-adjoint eigenvalue problem

−y′′ = λy, subject to y(0) = y(π) = 0.

First consider the case λ = 0. The general solution is

y = c1 + c2x.
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Only the trivial solution satisfies the boundary conditions. λ = 0 is not an eigenvalue. Now consider λ 6= 0. The
general solution is

y = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
.

The solution that satisfies the left boundary condition is

y = c sin
(√

λx
)
.

For non-trivial solutions, we must have

sin
(√

λπ
)

= 0,

λ = n2, n ∈ N.

Thus the eigenvalues λn and eigenfunctions φn are

λn = n2, φn = sin(nx), for n = 1, 2, 3, . . .

Self-adjoint eigenvalue problems have a number a interesting properties. We will devote the rest of this section
to developing some of these properties.

Real Eigenvalues. The eigenvalues of a self-adjoint problem are real. Let λ be an eigenvalue with the eigen-
function φ. Green’s formula states

〈φ|L[φ]〉 − 〈L[φ]|φ〉 = 0

〈φ|λφ〉 − 〈λφ|φ〉 = 0

(λ− λ)〈φ|φ〉 = 0

Since φ 6≡ 0, 〈φ|φ〉 > 0. Thus λ = λ and λ is real.
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Orthogonal Eigenfunctions. The eigenfunctions corresponding to distinct eigenvalues are orthogonal. Let λn
and λm be distinct eigenvalues with the eigenfunctions φn and φm. Using Green’s formula,

〈φn|L[φm]〉 − 〈L[φn]|φm〉 = 0

〈φn|λmφm〉 − 〈λnφn|φm〉 = 0

(λm − λn)〈φn|φm〉 = 0.

Since the eigenvalues are real,

(λm − λn)〈φn|φm〉 = 0.

Since the two eigenvalues are distinct, 〈φn|φm〉 = 0 and thus φn and φm are orthogonal.

*Enumerable Set of Eigenvalues. The eigenvalues of a self-adjoint eigenvalue problem form an enumerable
set with no finite cluster point. Consider the problem

L[y] = λy on a ≤ x ≤ b, subject to Bj[y] = 0.

Let {ψ1, ψ2, . . . , ψn} be a fundamental set of solutions at x = x0 for some a ≤ x0 ≤ b. That is,

ψ
(k−1)
j (x0) = δjk.

The key to showing that the eigenvalues are enumerable, is that the ψj are entire functions of λ. That is, they
are analytic functions of λ for all finite λ. We will not prove this.

The boundary conditions are

Bj[y] =
n∑
k=1

[
αjky

(k−1)(a) + βjky
(k−1)(b)

]
= 0.

The eigenvalue problem has a solution for a given value of λ if y =
∑n

k=1 ckψk satisfies the boundary conditions.
That is,

Bj

[
n∑
k=1

ckψk

]
=

n∑
k=1

ckBj[ψk] = 0 for j = 1, . . . , n.
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Define an n× n matrix M such that Mjk = Bk[ψj]. Then if ~c = (c1, c2, . . . , cn), the boundary conditions can
be written in terms of the matrix equation M~c = 0. This equation has a solution if and only if the determinant of
the matrix is zero. Since the ψj are entire functions of λ, ∆[M ] is an entire function of λ. The eigenvalues are real,
so ∆[M ] has only real roots. Since ∆[M ] is an entire function, (that is not identically zero), with only real roots,
the roots of ∆[M ] can only cluster at infinity. Thus the eigenvalues of a self-adjoint problem are enumerable and
can only cluster at infinity.

An example of a function whose roots have a finite cluster point is sin(1/x). This function, (graphed in
Figure 29.1), is clearly not analytic at the cluster point x = 0.

-1 1

Figure 29.1: Graph of sin(1/x).
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Infinite Number of Eigenvalues. Though we will not show it, self-adjoint problems have an infinite number
of eigenvalues. Thus the eigenfunctions form an infinite orthogonal set.

Eigenvalues of Second Order Problems. Consider the second order, self-adjoint eigenvalue problem

L[y] = (py′)′ + qy = λy, on a ≤ x ≤ b, subject to Bj[y] = 0.

Let λn be an eigenvalue with the eigenfunction φn.

〈φn|L[φn]〉 = 〈φn|λnφn〉
〈φn|(pφ′n)′ + qφn〉 = λn〈φn|φn〉∫ b

a

φn(pφ′n)′ dx+ 〈φn|q|φn〉 = λn〈φn|φn〉[
φnpφ

′
n

]b
a
−
∫ b

a

φn
′
pφ′n dx+ 〈φn|q|φn〉 = λn〈φn|φn〉

λn =
[pφnφ

′
n]ba − 〈φ′n|p|φ′n〉+ 〈φn|q|φn〉

〈φn|φn〉

Thus we can express each eigenvalue in terms of its eigenfunction. You might think that this formula is just
a shade less than worthless. When solving an eigenvalue problem you have to find the eigenvalues before you
determine the eigenfunctions. Thus this formula could not be used to compute the eigenvalues. However, we can
often use the formula to obtain information about the eigenvalues before we solve a problem.

Example 29.4.2 Consider the self-adjoint eigenvalue problem

−y′′ = λy, y(0) = y(π) = 0.
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The eigenvalues are given by the formula

λn =

[
(−1)φφ′

]b
a
− 〈φ′n|(−1)|φ′n〉+ 〈φn|0|φn〉
〈φn|φn〉

=
0 + 〈φ′n|φ′n〉+ 0

〈φn|φn〉
.

We see that λn ≥ 0. If λn = 0 then 〈φ′n|φ′n〉 = 0,which implies that φn = const. The only constant that satisfies the
boundary conditions is φn = 0 which is not an eigenfunction since it is the trivial solution. Thus the eigenvalues
are positive.

29.5 Inhomogeneous Equations

Let the problem,

L[y] = 0, Bk[y] = 0,

be self-adjoint. If the inhomogeneous problem,

L[y] = f, Bk[y] = 0,

has a solution, then we we can write this solution in terms of the eigenfunction of the associated eigenvalue
problem,

L[y] = λy, Bk[y] = 0.

We denote the eigenvalues as λn and the eigenfunctions as φn for n ∈ Z+. For the moment we assume that
λ = 0 is not an eigenvalue and that the eigenfunctions are real-valued. We expand the function f(x) in a series
of the eigenfunctions.

f(x) =
∑

fnφn(x), fn =
〈φn|f〉
‖φn‖
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We expand the inhomogeneous solution in a series of eigenfunctions and substitute it into the differential equation.

L[y] = f

L
[∑

ynφn(x)
]

=
∑

fnφn(x)∑
λnynφn(x) =

∑
fnφn(x)

yn =
fn
λn

The inhomogeneous solution is

y(x) =
∑ 〈φn|f〉

λn‖φn‖
φn(x). (29.1)

As a special case we consider the Green function problem,

L[G] = δ(x− ξ), Bk[G] = 0,

We expand the Dirac delta function in an eigenfunction series.

δ(x− ξ) =
∑ 〈φn|δ〉
‖φn‖

φn(x) =
∑ φn(ξ)φn(x)

‖φn‖

The Green function is

G(x|ξ) =
∑ φn(ξ)φn(x)

λn‖φn‖
.
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We corroborate Equation 29.1 by solving the inhomogeneous equation in terms of the Green function.

y =

∫ b

a

G(x|ξ)f(ξ) dξ

y =

∫ b

a

∑ φn(ξ)φn(x)

λn‖φn‖
f(ξ) dξ

y =
∑∫ b

a
φn(ξ)f(ξ) dξ

λn‖φn‖
φn(x)

y =
∑ 〈φn|f〉

λn‖φn‖
φn(x)

Example 29.5.1 Consider the Green function problem

G′′ +G = δ(x− ξ), G(0|ξ) = G(1|ξ) = 0.

First we examine the associated eigenvalue problem.

φ′′ + φ = λφ, φ(0) = φ(1) = 0

φ′′ + (1− λ)φ = 0, φ(0) = φ(1) = 0

λn = 1− (nπ)2, φn = sin(nπx), n ∈ Z+

We write the Green function as a series of the eigenfunctions.

G(x|ξ) = 2
∞∑
n=1

sin(nπξ) sin(nπx)

1− (nπ)2
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29.6 Exercises
Exercise 29.1
Show that the operator adjoint to

Ly = y(n) + p1(z)y(n−1) + p2(z)y(n−2) + · · ·+ pn(z)y

is given by

My = (−1)nu(n) + (−1)n−1(p1(z)u)(n−1) + (−1)n−2(p2(z)u)(n−2) + · · ·+ pn(z)u.

Hint, Solution
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29.7 Hints
Hint 29.1
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29.8 Solutions

Solution 29.1
Consider u(x), v(x) ∈ Cn. (Cn is the set of n times continuously differentiable functions). First we prove the
preliminary result

uv(n) − (−1)nu(n)v =
d

dx

n−1∑
k=0

(−1)ku(k)v(n−k−1) (29.2)

by simplifying the right side.

d

dx

n−1∑
k=0

(−1)ku(k)v(n−k−1) =
n−1∑
k=0

(−1)k
(
u(k)v(n−k) + u(k+1)v(n−k−1)

)
=

n−1∑
k=0

(−1)ku(k)v(n−k) −
n−1∑
k=0

(−1)k+1u(k+1)v(n−k−1)

=
n−1∑
k=0

(−1)ku(k)v(n−k) −
n∑
k=1

(−1)ku(k)v(n−k)

= (−1)0u(0)vn−0 − (−1)nu(n)v(n−n)

= uv(n) − (−1)nu(n)v

We define p0(x) = 1 so that we can write the operators in a nice form.

Ly =
n∑

m=0

pm(z)y(n−m), Mu =
n∑

m=0

(−1)m(pm(z)u)(n−m)
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Now we show that M is the adjoint to L.

uLy − yMu = u
n∑

m=0

pm(z)y(n−m) − y
n∑

m=0

(−1)m(pm(z)u)(n−m)

=
n∑

m=0

(
upm(z)y(n−m) − (pm(z)u)(n−m)y

)
We use Equation 29.2.

=
n∑

m=0

d

dz

n−m−1∑
k=0

(−1)k(upm(z))(k)y(n−m−k−1)

uLy − yMu =
d

dz

n∑
m=0

n−m−1∑
k=0

(−1)k(upm(z))(k)y(n−m−k−1)
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Chapter 30

Fourier Series

Every time I close my eyes
The noise inside me amplifies
I can’t escape
I relive every moment of the day
Every misstep I have made
Finds a way it can invade
My every thought
And this is why I find myself awake

-Failure
-Tom Shear (Assemblage 23)

30.1 An Eigenvalue Problem.

A self adjoint eigenvalue problem. Consider the eigenvalue problem

y′′ + λy = 0, y(−π) = y(π), y′(−π) = y′(π).
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We rewrite the equation so the eigenvalue is on the right side.

L[y] ≡ −y′′ = λy

We demonstrate that this eigenvalue problem is self adjoint.

〈v|L[u]〉 − 〈L[v]|u〉 = 〈v| − u′′〉 − 〈−v′′|u〉
= [−v̄u′]π−π + 〈v′|u′〉 − [−v̄′u]−ππ − 〈v′|u′〉
= −v(π)u′(π) + v(−π)u′(−π) + v′(π)u(π)− v′(−π)u(−π)

= −v(π)u′(π) + v(π)u′(π) + v′(π)u(π)− v′(π)u(π)

= 0

Since Green’s Identity reduces to 〈v|L[u]〉 − 〈L[v]|u〉 = 0, the problem is self adjoint. This means that the
eigenvalues are real and that eigenfunctions corresponding to distinct eigenvalues are orthogonal. We compute
the Rayleigh quotient for an eigenvalue λ with eigenfunction φ.

λ =
−[φ̄φ′]π−π + 〈φ′|φ′〉

〈φ|φ〉

=
−φ(π)φ′(π) + φ(−π)φ′(−π) + 〈φ′|φ′〉

〈φ|φ〉

=
−φ(π)φ′(π) + φ(π)φ′(π) + 〈φ′|φ′〉

〈φ|φ〉

=
〈φ′|φ′〉
〈φ|φ〉

We see that the eigenvalues are non-negative.

Computing the eigenvalues and eigenfunctions. Now we find the eigenvalues and eigenfunctions. First we
consider the case λ = 0. The general solution of the differential equation is

y = c1 + c2x.
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The solution that satisfies the boundary conditions is y = const.
Now consider λ > 0. The general solution of the differential equation is

y = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
.

We apply the first boundary condition.

y(−π) = y(π)

c1 cos
(
−
√
λπ
)

+ c2 sin
(
−
√
λπ
)

= c1 cos
(√

λπ
)

+ c2 sin
(√

λπ
)

c1 cos
(√

λπ
)
− c2 sin

(√
λπ
)

= c1 cos
(√

λπ
)

+ c2 sin
(√

λπ
)

c2 sin
(√

λπ
)

= 0

Then we apply the second boundary condition.

y′(−π) = y′(π)

−c1

√
λ sin

(
−
√
λπ
)

+ c2

√
λ cos

(
−
√
λπ
)

= −c1

√
λ sin

(√
λπ
)

+ c2

√
λ cos

(√
λπ
)

c1 sin
(√

λπ
)

+ c2 cos
(√

λπ
)

= −c1 sin
(√

λπ
)

+ c2 cos
(√

λπ
)

c1 sin
(√

λπ
)

= 0

To satisify the two boundary conditions either c1 = c2 = 0 or sin
(√

λπ
)

= 0. The former yields the trivial

solution. The latter gives us the eigenvalues λn = n2, n ∈ Z+. The corresponding solution is

yn = c1 cos(nx) + c2 sin(nx).

There are two eigenfunctions for each of the positive eigenvalues.
We choose the eigenvalues and eigenfunctions.

λ0 = 0, φ0 =
1

2
λn = n2, φ2n−1 = cos(nx), φ2n = sin(nx), for n = 1, 2, 3, . . .
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Orthogonality of Eigenfunctions. We know that the eigenfunctions of distinct eigenvalues are orthogonal.
In addition, the two eigenfunctions of each positive eigenvalue are orthogonal.∫ π

−π
cos(nx) sin(nx) dx =

[
1

2n
sin2(nx)

]π
−π

= 0

Thus the eigenfunctions {1
2
, cos(x), sin(x), cos(2x), sin(2x)} are an orthogonal set.

30.2 Fourier Series.

A series of the eigenfunctions

φ0 =
1

2
, φ(1)

n = cos(nx), φ(2)
n = sin(nx), for n ≥ 1

is

1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
.

This is known as a Fourier series. (We choose φ0 = 1
2

so all of the eigenfunctions have the same norm.) A fairly
general class of functions can be expanded in Fourier series. Let f(x) be a function defined on −π < x < π.
Assume that f(x) can be expanded in a Fourier series

f(x) ∼ 1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
. (30.1)

Here the “∼” means “has the Fourier series”. We have not said if the series converges yet. For now let’s assume
that the series converges uniformly so we can replace the ∼ with an =.
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We integrate Equation 30.1 from −π to π to determine a0.∫ π

−π
f(x) dx =

1

2
a0

∫ π

−π
dx+

∫ π

−π

∞∑
n=1

an cos(nx) + bn sin(nx) dx∫ π

−π
f(x) dx = πa0 +

∞∑
n=1

(
an

∫ π

−π
cos(nx) dx+ bn

∫ π

−π
sin(nx) dx

)
∫ π

−π
f(x) dx = πa0

a0 =
1

π

∫ π

−π
f(x) dx

Multiplying by cos(mx) and integrating will enable us to solve for am.∫ π

−π
f(x) cos(mx) dx =

1

2
a0

∫ π

−π
cos(mx) dx

+
∞∑
n=1

(
an

∫ π

−π
cos(nx) cos(mx) dx+ bn

∫ π

−π
sin(nx) cos(mx) dx

)
All but one of the terms on the right side vanishes due to the orthogonality of the eigenfunctions.∫ π

−π
f(x) cos(mx) dx = am

∫ π

−π
cos(mx) cos(mx) dx∫ π

−π
f(x) cos(mx) dx = am

∫ π

−π

(
1

2
+ cos(2mx)

)
dx∫ π

−π
f(x) cos(mx) dx = πam

am =
1

π

∫ π

−π
f(x) cos(mx) dx.
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Note that this formula is valid for m = 0, 1, 2, . . . .

Similarly, we can multiply by sin(mx) and integrate to solve for bm. The result is

bm =
1

π

∫ π

−π
f(x) sin(mx) dx.

an and bn are called Fourier coefficients.

Although we will not show it, Fourier series converge for a fairly general class of functions. Let f(x−) denote
the left limit of f(x) and f(x+) denote the right limit.

Example 30.2.1 For the function defined

f(x) =

{
0 for x < 0,

x+ 1 for x ≥ 0,

the left and right limits at x = 0 are

f(0−) = 0, f(0+) = 1.
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Result 30.2.1 Let f(x) be a 2π-periodic function for which
∫ π
−π |f(x)| dx exists. Define

the Fourier coefficients

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

If x is an interior point of an interval on which f(x) has limited total fluctuation, then
the Fourier series of f(x)

a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
,

converges to 1
2(f(x−) + f(x+)). If f is continuous at x, then the series converges to f(x).

Periodic Extension of a Function. Let g(x) be a function that is arbitrarily defined on −π ≤ x < π. The
Fourier series of g(x) will represent the periodic extension of g(x). The periodic extension, f(x), is defined by the
two conditions:

f(x) = g(x) for − π ≤ x < π,

f(x+ 2π) = f(x).

The periodic extension of g(x) = x2 is shown in Figure 30.1.

Limited Fluctuation. A function that has limited total fluctuation can be written f(x) = ψ+(x) − ψ−(x),
where ψ+ and ψ− are bounded, nondecreasing functions. An example of a function that does not have limited
total fluctuation is sin(1/x), whose fluctuation is unlimited at the point x = 0.

1201



-5 5 10

-2

2

4

6

8

10

Figure 30.1: The Periodic Extension of g(x) = x2.

Functions with Jump Discontinuities. Let f(x) be a discontinuous function that has a convergent Fourier
series. Note that the series does not necessarily converge to f(x). Instead it converges to f̂(x) = 1

2
(f(x−)+f(x+)).

Example 30.2.2 Consider the function defined by

f(x) =

{
−x for − π ≤ x < 0

π − 2x for 0 ≤ x < π.
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The Fourier series converges to the function defined by

f̂(x) =


0 for x = −π
−x for − π < x < 0

π/2 for x = 0

π − 2x for 0 < x < π.

The function f̂(x) is plotted in Figure 30.2.
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-1

1

2

3

Figure 30.2: Graph of f̂(x).
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30.3 Least Squares Fit

Approximating a function with a Fourier series. Suppose we want to approximate a 2π-periodic function
f(x) with a finite Fourier series.

f(x) ≈ a0

2
+

N∑
n=1

(an cos(nx) + bn sin(nx))

Here the coefficients are computed with the familiar formulas. Is this the best approximation to the function?
That is, is it possible to choose coefficients αn and βn such that

f(x) ≈ α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx))

would give a better approximation?

Least squared error fit. The most common criterion for finding the best fit to a function is the least squares
fit. The best approximation to a function is defined as the one that minimizes the integral of the square of the
deviation. Thus if f(x) is to be approximated on the interval a ≤ x ≤ b by a series

f(x) ≈
N∑
n=1

cnφn(x), (30.2)

the best approximation is found by choosing values of cn that minimize the error E.

E ≡
∫ b

a

∣∣∣∣∣f(x)−
N∑
n=1

cnφn(x)

∣∣∣∣∣
2

dx
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Generalized Fourier coefficients. We consider the case that the φn are orthogonal. For simplicity, we also
assume that the φn are real-valued. Then most of the terms will vanish when we interchange the order of
integration and summation.

E =

∫ b

a

(
f 2 − 2f

N∑
n=1

cnφn +
N∑
n=1

cnφn

N∑
m=1

cmφm

)
dx

E =

∫ b

a

f 2 dx− 2
N∑
n=1

cn

∫ b

a

fφn dx+
N∑
n=1

N∑
m=1

cncm

∫ b

a

φnφm dx

E =

∫ b

a

f 2 dx− 2
N∑
n=1

cn

∫ b

a

fφn dx+
N∑
n=1

c2
n

∫ b

a

φ2
n dx

E =

∫ b

a

f 2 dx+
N∑
n=1

(
c2
n

∫ b

a

φ2
n dx− 2cn

∫ b

a

fφn dx

)
We complete the square for each term.

E =

∫ b

a

f 2 dx+
N∑
n=1

∫ b

a

φ2
n dx

(
cn −

∫ b
a
fφn dx∫ b
a
φ2
n dx

)2

−

(∫ b
a
fφn dx∫ b
a
φ2
n dx

)2


Each term involving cn is non-negative, and is minimized for

cn =

∫ b
a
fφn dx∫ b
a
φ2
n dx

. (30.3)

We call these the generalized Fourier coefficients.
For such a choice of the cn, the error is

E =

∫ b

a

f 2 dx−
N∑
n=1

c2
n

∫ b

a

φ2
n dx.
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Since the error is non-negative, we have ∫ b

a

f 2 dx ≥
N∑
n=1

c2
n

∫ b

a

φ2
n dx.

This is known as Bessel’s Inequality. If the series in Equation 30.2 converges in the mean to f(x), limN →∞E =
0, then we have equality as N →∞. ∫ b

a

f 2 dx =
∞∑
n=1

c2
n

∫ b

a

φ2
n dx.

This is Parseval’s equality.

Fourier coefficients. Previously we showed that if the series,

f(x) =
a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx),

converges uniformly then the coefficients in the series are the Fourier coefficients,

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

Now we show that by choosing the coefficients to minimize the squared error, we obtain the same result. We
apply Equation 30.3 to the Fourier eigenfunctions.

a0 =

∫ π
−π f

1
2

dx∫ π
−π

1
4

dx
=

1

π

∫ π

−π
f(x) dx

an =

∫ π
−π f cos(nx) dx∫ π
−π cos2(nx) dx

=
1

π

∫ π

−π
f(x) cos(nx) dx

bn =

∫ π
−π f sin(nx) dx∫ π
−π sin2(nx) dx

=
1

π

∫ π

−π
f(x) sin(nx) dx
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30.4 Fourier Series for Functions Defined on Arbitrary Ranges

If f(x) is defined on c− d ≤ x < c+ d and f(x+ 2d) = f(x), then f(x) has a Fourier series of the form

f(x) ∼ a0

2
+
∞∑
n=1

an cos

(
nπ(x+ c)

d

)
+ bn sin

(
nπ(x+ c)

d

)
.

Since ∫ c+d

c−d
cos2

(
nπ(x+ c)

d

)
dx =

∫ c+d

c−d
sin2

(
nπ(x+ c)

d

)
dx = d,

the Fourier coefficients are given by the formulas

an =
1

d

∫ c+d

c−d
f(x) cos

(
nπ(x+ c)

d

)
dx

bn =
1

d

∫ c+d

c−d
f(x) sin

(
nπ(x+ c)

d

)
dx.

Example 30.4.1 Consider the function defined by

f(x) =


x+ 1 for − 1 ≤ x < 0

x for 0 ≤ x < 1

3− 2x for 1 ≤ x < 2.

This function is graphed in Figure 30.3.
The Fourier series converges to f̂(x) = (f(x−) + f(x+))/2,

f̂(x) =



−1
2

for x = −1

x+ 1 for − 1 < x < 0
1
2

for x = 0

x for 0 < x < 1

3− 2x for 1 ≤ x < 2.
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f̂(x) is also graphed in Figure 30.3.
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Figure 30.3: A Function Defined on the range −1 ≤ x < 2 and the Function to which the Fourier Series Converges.
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The Fourier coefficients are

an =
1

3/2

∫ 2

−1

f(x) cos

(
2nπ(x+ 1/2)

3

)
dx

=
2

3

∫ 5/2

−1/2

f(x− 1/2) cos

(
2nπx

3

)
dx

=
2

3

∫ 1/2

−1/2

(x+ 1/2) cos

(
2nπx

3

)
dx+

2

3

∫ 3/2

1/2

(x− 1/2) cos

(
2nπx

3

)
dx

+
2

3

∫ 5/2

3/2

(4− 2x) cos

(
2nπx

3

)
dx

= − 1

(nπ)2
sin

(
2nπ

3

)[
2(−1)nnπ + 9 sin

(nπ
3

)]

bn =
1

3/2

∫ 2

−1

f(x) sin

(
2nπ(x+ 1/2)

3

)
dx

=
2

3

∫ 5/2

−1/2

f(x− 1/2) sin

(
2nπx

3

)
dx

=
2

3

∫ 1/2

−1/2

(x+ 1/2) sin

(
2nπx

3

)
dx+

2

3

∫ 3/2

1/2

(x− 1/2) sin

(
2nπx

3

)
dx

+
2

3

∫ 5/2

3/2

(4− 2x) sin

(
2nπx

3

)
dx

= − 2

(nπ)2
sin2

(nπ
3

) [
2(−1)nnπ + 4nπ cos

(nπ
3

)
− 3 sin

(nπ
3

)]
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30.5 Fourier Cosine Series

If f(x) is an even function, (f(−x) = f(x)), then there will not be any sine terms in the Fourier series for f(x).
The Fourier sine coefficient is

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

Since f(x) is an even function and sin(nx) is odd, f(x) sin(nx) is odd. bn is the integral of an odd function from
−π to π and is thus zero. We can rewrite the cosine coefficients,

an =
1

π

∫ π

−π
f(x) cos(nx) dx

=
2

π

∫ π

0

f(x) cos(nx) dx.

Example 30.5.1 Consider the function defined on [0, π) by

f(x) =

{
x for 0 ≤ x < π/2

π − x for π/2 ≤ x < π.

The Fourier cosine coefficients for this function are

an =
2

π

∫ π/2

0

x cos(nx) dx+
2

π

∫ π

π/2

(π − x) cos(nx) dx

=

{
π
4

for n = 0,
8
πn2 cos

(
nπ
2

)
sin2

(
nπ
4

)
for n ≥ 1.

In Figure 30.4 the even periodic extension of f(x) is plotted in a dashed line and the sum of the first five nonzero
terms in the Fourier cosine series are plotted in a solid line.
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Figure 30.4: Fourier Cosine Series.

30.6 Fourier Sine Series

If f(x) is an odd function, (f(−x) = −f(x)), then there will not be any cosine terms in the Fourier series. Since
f(x) cos(nx) is an odd function, the cosine coefficients will be zero. Since f(x) sin(nx) is an even function,we can
rewrite the sine coefficients

bn =
2

π

∫ π

0

f(x) sin(nx) dx.
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Example 30.6.1 Consider the function defined on [0, π) by

f(x) =

{
x for 0 ≤ x < π/2

π − x for π/2 ≤ x < π.

The Fourier sine coefficients for this function are

bn =
2

π

∫ π/2

0

x sin(nx) dx+
2

π

∫ π

π/2

(π − x) sin(nx) dx

=
16

πn2
cos
(nπ

4

)
sin3

(nπ
4

)
In Figure 30.5 the odd periodic extension of f(x) is plotted in a dashed line and the sum of the first five nonzero
terms in the Fourier sine series are plotted in a solid line.

30.7 Complex Fourier Series and Parseval’s Theorem

By writing sin(nx) and cos(nx) in terms of einx and e−inx we can obtain the complex form for a Fourier series.

a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
=
a0

2
+
∞∑
n=1

(
an

1

2
( einx + e−inx) + bn

1

2i
( einx − e−inx)

)
=
a0

2
+
∞∑
n=1

(
1

2
(an − ibn) einx +

1

2
(an + ibn) e−inx

)
=

∞∑
n=−∞

cn einx

where

cn =


1
2
(an − ibn) for n ≥ 1
a0

2
for n = 0

1
2
(a−n + ib−n) for n ≤ −1.
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Figure 30.5: Fourier Sine Series.

The functions {. . . , e−ix, 1, eix, e2ix, . . . }, satisfy the relation∫ π

−π
einx e−imx dx =

∫ π

−π
ei(n−m)x dx

=

{
2π for n = m

0 for n 6= m.

Starting with the complex form of the Fourier series of a function f(x),

f(x) ∼
∞∑
−∞

cn einx,
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we multiply by e−imx and integrate from −π to π to obtain

∫ π

−π
f(x) e−imx dx =

∫ π

−π

∞∑
−∞

cn einx e−imx dx

cm =
1

2π

∫ π

−π
f(x) e−imx dx

If f(x) is real-valued then

c−m =
1

2π

∫ π

−π
f(x) eimx dx =

1

2π

∫ π

−π
f(x)( e−imx) dx = cm

where z̄ denotes the complex conjugate of z.

Assume that f(x) has a uniformly convergent Fourier series.

∫ π

−π
f 2(x) dx =

∫ π

−π

(
∞∑

m=−∞

cm eimx

)(
∞∑

n=−∞

cn einx

)
dx

= 2π
∞∑

n=−∞

cnc−n

= 2π

(
−1∑

n=−∞

[
1

4
(a−n + ib−n)(a−n − ib−n)

]
+
a0

2

a0

2
+
∞∑
n=1

[
1

4
(an − ibn)(an + ibn)

])

= 2π

(
a2

0

4
+

1

2

∞∑
n=1

(a2
n + b2

n)

)

This yields a result known as Parseval’s theorem which holds even when the Fourier series of f(x) is not uniformly
convergent.

1214



Result 30.7.1 Parseval’s Theorem. If f(x) has the Fourier series

f(x) ∼ a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx)),

then ∫ π

−π
f 2(x) dx =

π

2
a2

0 + π
∞∑
n=1

(a2
n + b2

n).

30.8 Behavior of Fourier Coefficients

Before we jump hip-deep into the grunge involved in determining the behavior of the Fourier coefficients, let’s
take a step back and get some perspective on what we should be looking for.

One of the important questions is whether the Fourier series converges uniformly. From Result 14.2.1 we know
that a uniformly convergent series represents a continuous function. Thus we know that the Fourier series of a
discontinuous function cannot be uniformly convergent. From Section 14.2 we know that a series is uniformly
convergent if it can be bounded by a series of positive terms. If the Fourier coefficients, an and bn, are O(1/nα)
where α > 1 then the series can be bounded by (const)

∑∞
n=1 1/nα and will thus be uniformly convergent.

Let f(x) be a function that meets the conditions for having a Fourier series and in addition is bounded. Let
(−π, p1), (p1, p2), (p2, p3), . . . , (pm, π) be a partition into a finite number of intervals of the domain, (−π, π) such
that on each interval f(x) and all it’s derivatives are continuous. Let f(p−) denote the left limit of f(p) and f(p+)
denote the right limit.

f(p−) = lim
ε→0+

f(p− ε), f(p+) = lim
ε→0+

f(p+ ε)
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Example 30.8.1 The function shown in Figure 30.6 would be partitioned into the intervals

(−2,−1), (−1, 0), (0, 1), (1, 2).

-2 -1 1 2

-1

-0.5

0.5

1

Figure 30.6: A Function that can be Partitioned.

Suppose f(x) has the Fourier series

f(x) ∼ a0

2
+
∞∑
n=1

an cos(nx) + bn sin(nx).
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We can use the integral formula to find the an’s.

an =
1

π

∫ π

−π
f(x) cos(nx) dx

=
1

π

(∫ p1

−π
f(x) cos(nx) dx+

∫ p2

p1

f(x) cos(nx) dx+ · · ·+
∫ π

pm

f(x) cos(nx) dx

)
Using integration by parts,

=
1

nπ

([
f(x) sin(nx)

]p1

−π
+
[
f(x) sin(nx)

]p2

p1

+ · · ·+
[
f(x) sin(nx)

]π
pm

)
− 1

nπ

(∫ p1

−π
f ′(x) sin(nx) dx+

∫ p2

p1

f ′(x) sin(nx) dx+

∫ π

pm

f ′(x) sin(nx) dx

)
=

1

nπ

{[
f(p−1 )− f(p+

1 )
]

sin(np1) + · · ·+
[
f(p−m)− f(p+

m)
]

sin(npm)
}

− 1

n

1

π

∫ π

−π
f ′(x) sin(nx) dx

=
1

n
An −

1

n
b′n

where

An =
1

π

m∑
j=1

sin(npj)
[
f(p−j )− f(p+

j )
]

and the b′n are the sine coefficients of f ′(x).
Since f(x) is bounded, An = O(1). Since f ′(x) is bounded,

b′n =
1

π

∫ π

−π
f ′(x) sin(nx) dx = O(1).
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Thus an = O(1/n) as n→∞. (Actually, from the Riemann-Lebesgue Lemma, b′n = O(1/n).)
Now we repeat this analysis for the sine coefficients.

bn =
1

π

∫ π

−π
f(x) sin(nx) dx

=
1

π

(∫ p1

−π
f(x) sin(nx) dx+

∫ p2

p1

f(x) sin(nx) dx+ · · ·+
∫ π

pm

f(x) sin(nx) dx

)
=
−1

nπ

{[
f(x) cos(nx)

]p1

−π +
[
f(x) cos(nx)

]p2

p1
+ · · ·+

[
f(x) cos(nx)

]π
pm

}
+

1

nπ

(∫ p1

−π
f ′(x) cos(nx) dx+

∫ p2

p1

f ′(x) cos(nx) dx+

∫ π

pm

f ′(x) cos(nx) dx

)
= − 1

n
Bn +

1

n
a′n

where

Bn =
(−1)n

π

[
f(−π)− f(π)

]
− 1

π

m∑
j=1

cos(npj)
[
f(p−j )− f(p+

j )
]

and the a′n are the cosine coefficients of f ′(x).
Since f(x) and f ′(x) are bounded, Bn, a

′
n = O(1) and thus bn = O(1/n) as n→∞.

With integration by parts on the Fourier coefficients of f ′(x) we could find that

a′n =
1

n
A′n −

1

n
b′′n

where A′n = 1
π

∑m
j=1 sin(npj)[f

′(p−j )− f ′(p+
j )] and the b′′n are the sine coefficients of f ′′(x), and

b′n = − 1

n
B′n +

1

n
a′′n

where B′n = (−1)n

π
[f ′(−π)−f ′(π)]− 1

π

∑m
j=1 cos(npj)[f

′(p−j )−f ′(p+
j )] and the a′′n are the cosine coefficients of f ′′(x).
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Now we can rewrite an and bn as

an =
1

n
An +

1

n2
B′n −

1

n2
a′′n

bn = − 1

n
Bn +

1

n2
A′n −

1

n2
b′′n.

Continuing this process we could define A
(j)
n and B

(j)
n so that

an =
1

n
An +

1

n2
B′n −

1

n3
A′′n −

1

n4
B′′′n + · · ·

bn = − 1

n
Bn +

1

n2
A′n +

1

n3
B′′n −

1

n4
A′′′n − · · · .

For any bounded function, the Fourier coefficients satisfy an, bn = O(1/n) as n → ∞. If An and Bn are zero
then the Fourier coefficients will be O(1/n2). A sufficient condition for this is that the periodic extension of f(x)
is continuous. We see that if the periodic extension of f ′(x) is continuous then A′n and B′n will be zero and the
Fourier coefficients will be O(1/n3).

Result 30.8.1 Let f(x) be a bounded function for which there is a partition of the
range (−π, π) into a finite number of intervals such that f(x) and all it’s derivatives are
continuous on each of the intervals. If f(x) is not continuous then the Fourier coefficients
are O(1/n). If f(x), f ′(x), . . . , f (k−2)(x) are continuous then the Fourier coefficients are
O(1/nk).

If the periodic extension of f(x) is continuous, then the Fourier coefficients will be O(1/n2). The series∑∞
n=1 |an cos(nx)bn sin(nx)| can be bounded by M

∑∞
n=1 1/n2 where M = max

n
(|an| + |bn|). Thus the Fourier

series converges to f(x) uniformly.

Result 30.8.2 If the periodic extension of f(x) is continuous then the Fourier series of
f(x) will converge uniformly for all x.
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If the periodic extension of f(x) is not continuous, we have the following result.

Result 30.8.3 If f(x) is continuous in the interval c < x < d, then the Fourier series is
uniformly convergent in the interval c+ δ ≤ x ≤ d− δ for any δ > 0.

Example 30.8.2 Different Rates of Convergence.

A Discontinuous Function. Consider the function defined by

f1(x) =

{
−1 for − 1 < x < 0

1, for 0 < x < 1.

This function has jump discontinuities, so we know that the Fourier coefficients are O(1/n).
Since this function is odd, there will only be sine terms in it’s Fourier expansion. Furthermore, since the

function is symmetric about x = 1/2, there will be only odd sine terms. Computing these terms,

bn = 2

∫ 1

0

sin(nπx) dx

= 2

[
−1

nπ
cos(nπx)

]1

0

= 2

(
−(−1)n

nπ
− −1

nπ

)
=

{
4
nπ

for odd n

0 for even n.

The function and the sum of the first three terms in the expansion are plotted, in dashed and solid lines
respectively, in Figure 30.7. Although the three term sum follows the general shape of the function, it is clearly
not a good approximation.
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Figure 30.7: Three Term Approximation for a Function with Jump Discontinuities and a Continuous Function.

A Continuous Function. Consider the function defined by

f2(x) =


−x− 1 for − 1 < x < −1/2

x for − 1/2 < x < 1/2

−x+ 1 for 1/2 < x < 1.
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Figure 30.8: Three Term Approximation for a Function with Continuous First Derivative and Comparison of the
Rates of Convergence.

Since this function is continuous, the Fourier coefficients will be O(1/n2). Also we see that there will only be odd
sine terms in the expansion.

bn =

∫ −1/2

−1

(−x− 1) sin(nπx) dx+

∫ 1/2

−1/2

x sin(nπx) dx+

∫ 1

1/2

(−x+ 1) sin(nπx) dx

= 2

∫ 1/2

0

x sin(nπx) dx+ 2

∫ 1

1/2

(1− x) sin(nπx) dx

=
4

(nπ)2
sin(nπ/2)

=

{
4

(nπ)2 (−1)(n−1)/2 for odd n

0 for even n.
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The function and the sum of the first three terms in the expansion are plotted, in dashed and solid lines respec-
tively, in Figure 30.7. We see that the convergence is much better than for the function with jump discontinuities.

A Function with a Continuous First Derivative. Consider the function defined by

f3(x) =

{
x(1 + x) for − 1 < x < 0

x(1− x) for 0 < x < 1.

Since the periodic extension of this function is continuous and has a continuous first derivative, the Fourier
coefficients will be O(1/n3). We see that the Fourier expansion will contain only odd sine terms.

bn =

∫ 0

−1

x(1 + x) sin(nπx) dx+

∫ 1

0

x(1− x) sin(nπx) dx

= 2

∫ 1

0

x(1− x) sin(nπx) dx

=
4(1− (−1)n)

(nπ)3

=

{
4

(nπ)3 for odd n

0 for even n.

The function and the sum of the first three terms in the expansion are plotted in Figure 30.8. We see that the
first three terms give a very good approximation to the function. The plots of the function, (in a dashed line),
and the three term approximation, (in a solid line), are almost indistinguishable.

In Figure 30.8 the convergence of the of the first three terms to f1(x), f2(x), and f3(x) are compared. In the
last graph we see a closeup of f3(x) and it’s Fourier expansion to show the error.
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30.9 Gibb’s Phenomenon

The Fourier expansion of

f(x) =

{
1 for 0 ≤ x < 1

−1 for − 1 ≤ x < 0

is

f(x) ∼ 4

π

∞∑
n=1

1

n
sin(nπx).

For any fixed x, the series converges to 1
2
(f(x−) + f(x+)). For any δ > 0, the convergence is uniform in the

intervals −1 + δ ≤ x ≤ −δ and δ ≤ x ≤ 1 − δ. How will the nonuniform convergence at integral values of x
affect the Fourier series? Finite Fourier series are plotted in Figure 30.9 for 5, 10, 50 and 100 terms. (The plot
for 100 terms is closeup of the behavior near x = 0.) Note that at each discontinuous point there is a series of
overshoots and undershoots that are pushed closer to the discontinuity by increasing the number of terms, but
do not seem to decrease in height. In fact, as the number of terms goes to infinity, the height of the overshoots
and undershoots does not vanish. This is known as Gibb’s phenomenon.

30.10 Integrating and Differentiating Fourier Series

Integrating Fourier Series. Since integration is a smoothing operation, any convergent Fourier series can be
integrated term by term to yield another convergent Fourier series.

Example 30.10.1 Consider the step function

f(x) =

{
π for 0 ≤ x < π

−π for − π ≤ x < 0.
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Figure 30.9:

Since this is an odd function, there are no cosine terms in the Fourier series.

bn =
2

π

∫ π

0

π sin(nx) dx

= 2

[
− 1

n
cos(nx)

]π
0

=
2

n
(1− (−1)n)

=

{
4
n

for odd n

0 for even n.
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f(x) ∼
∞∑
n=1
oddn

4

n
sinnx

Integrating this relation, ∫ x

−π
f(t) dt ∼

∫ x

−π

∞∑
n=1
oddn

4

n
sin(nt) dt

F (x) ∼
∞∑
n=1
oddn

4

n

∫ x

−π
sin(nt) dt

=
∞∑
n=1
oddn

4

n

[
− 1

n
cos(nt)

]x
−π

=
∞∑
n=1
oddn

4

n2
(− cos(nx) + (−1)n)

= 4
∞∑
n=1
oddn

−1

n2
− 4

∞∑
n=1
oddn

cos(nx)

n2

Since this series converges uniformly,

4
∞∑
n=1
oddn

−1

n2
− 4

∞∑
n=1
oddn

cos(nx)

n2
= F (x) =

{
−x− π for − π ≤ x < 0

x− π for 0 ≤ x < π.

The value of the constant term is

4
∞∑
n=1
oddn

−1

n2
=

2

π

∫ π

0

F (x) dx = − 1

π
.

1226



Thus

− 1

π
− 4

∞∑
n=1
oddn

cos(nx)

n2
=

{
−x− π for − π ≤ x < 0

x− π for 0 ≤ x < π.

Differentiating Fourier Series. Recall that in general, a series can only be differentiated if it is uniformly
convergent. The necessary and sufficient condition that a Fourier series be uniformly convergent is that the
periodic extension of the function is continuous.

Result 30.10.1 The Fourier series of a function f(x) can be differentiated only if the
periodic extension of f(x) is continuous.

Example 30.10.2 Consider the function defined by

f(x) =

{
π for 0 ≤ x < π

−π for − π ≤ x < 0.

f(x) has the Fourier series

f(x) ∼
∞∑
n=1
oddn

4

n
sinnx.

The function has a derivative except at the points x = nπ. Differentiating the Fourier series yields

f ′(x) ∼ 4
∞∑
n=1
oddn

cos(nx).
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For x 6= nπ, this implies

0 = 4
∞∑
n=1
oddn

cos(nx),

which is false. The series does not converge. This is as we expected since the Fourier series for f(x) is not
uniformly convergent.
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30.11 Exercises

Exercise 30.1
1. Consider a 2π periodic function f(x) expressed as a Fourier series with partial sums

SN(x) =
a0

2
+

N∑
n=1

an cos(nx) + bn sin(nt).

Assuming that the Fourier series converges in the mean, i.e.

lim
N→∞

∫ π

−π
(f(x)− SN(x))2 dx = 0,

show

a2
0

2
+
∞∑
n=1

a2
n + b2

n =
1

π

∫ π

−π
f(x)2 dx.

This is called Parseval’s equation.

2. Find the Fourier series for f(x) = x on −π ≤ x < π (and repeating periodically). Use this to show

∞∑
n=1

1

n2
=
π2

6
.

3. Similarly, by choosing appropriate functions f(x), use Parseval’s equation to determine

∞∑
n=1

1

n4
and

∞∑
n=1

1

n6
.
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Exercise 30.2
Consider the Fourier series of f(x) = x on −π ≤ x < π as found above. Investigate the convergence at the points
of discontinuity.

1. Let SN be the sum of the first N terms in the Fourier series. Show that

dSN
dx

= 1− (−1)N
cos
((
N + 1

2

)
x
)

cos
(
x
2

) .

2. Now use this to show that

x− SN =

∫ x

0

sin
((
N + 1

2

)
(ξ − π)

)
sin
(
ξ−π

2

) dξ.

3. Finally investigate the maxima of this difference around x = π and provide an estimate (good to two decimal
places) of the overshoot in the limit N →∞.

Exercise 30.3
Consider the boundary value problem on the interval 0 < x < 1

y′′ + 2y = 1 y(0) = y(1) = 0.

1. Choose an appropriate periodic extension and find a Fourier series solution.

2. Solve directly and find the Fourier series of the solution (using the same extension). Compare the result to
the previous step and verify the series agree.

Exercise 30.4
Consider the boundary value problem on 0 < x < π

y′′ + 2y = sinx y′(0) = y′(π) = 0.
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1. Find a Fourier series solution.

2. Suppose the ODE is slightly modified: y′′+ 4y = sinx with the same boundary conditions. Attempt to find
a Fourier series solution and discuss in as much detail as possible what goes wrong.

Exercise 30.5
Find the Fourier cosine and sine series for f(x) = x2 on 0 ≤ x < π. Are the series differentiable?

Exercise 30.6
Find the Fourier series of cosn(x).

Exercise 30.7
For what values of x does the Fourier series

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx = x2

converge? What is the value of the above Fourier series for all x? From this relation show that

∞∑
n=1

1

n2
=
π2

6

∞∑
n=1

(−1)n+1

n2
=
π2

12

Exercise 30.8
1. Compute the Fourier sine series for the function

f(x) = cos x− 1 +
2x

π
, 0 ≤ x ≤ π.
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2. How fast do the Fourier coefficients an where

f(x) =
∞∑
n=1

an sinnx

decrease with increasing n? Explain this rate of decrease.

Exercise 30.9
Determine the cosine and sine series of

f(x) = x sinx, (0 < x < π).

Estimate before doing the calculation the rate of decrease of Fourier coefficients, an, bn, for large n.

Exercise 30.10
Determine the Fourier cosine series of the function

f(x) = cos νx, 0 ≤ x ≤ π,

where ν is an arbitrary real number. From this series deduce that for ν 6= n

π

sinπν
=

1

ν
+
∞∑
n=1

(−1)n
(

1

ν − n
+

1

ν + n

)
π cot πν =

1

ν
+
∞∑
n=1

(
1

ν − n
+

1

ν + n

)
Integrate the last formula with respect to ν from ν = 0 to ν = θ, (0 < θ < 1), to show that

sin πθ

πθ
=
∞∏
n=1

(
1− θ2

n2

)
The symbol

∏∞
1 un denotes the infinite product u1u2u3 · · · .
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Exercise 30.11
1. Show that

log cos
(x

2

)
= − log 2−

∞∑
n=1

(−1)n

n
cosnx, −π < x < π

Hint: use the identity

log(1− z) = −
∞∑
n=1

zn

n
for |z| ≤ 1, z 6= 1.

2. From this series deduce that ∫ π

0

log
(

cos
x

2

)
dx = −π log 2.

3. Show that

1

2
log

∣∣∣∣sin((x+ ξ)/2)

sin((x− ξ)/2)

∣∣∣∣ =
∞∑
n=1

sinnx sinnξ

n
, x 6= ±ξ + 2kπ.

Exercise 30.12
Solve the problem

y′′ + αy = f(x), y(a) = y(b) = 0,

with an eigenfunction expansion. Assume that α 6= nπ/(b− a), n ∈ N.

Exercise 30.13
Solve the problem

y′′ + αy = f(x), y(a) = A, y(b) = B,

with an eigenfunction expansion. Assume that α 6= nπ/(b− a), n ∈ N.
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Exercise 30.14
Find the trigonometric series and the simple closed form expressions for A(r, x) and B(r, x) where z = r eix and
|r| < 1.

a) A+ iB ≡ 1

1− z2
= 1 + z2 + z4 + · · ·

b) A+ iB ≡ log(1 + z) = z − 1

2
z2 +

1

3
z3 − · · ·

Find An and Bn, and the trigonometric sum for them where:

c) An + iBn = 1 + z + z2 + · · ·+ zn.

Exercise 30.15
1. Is the trigonometric system

{1, sinx, cosx, sin 2x, cos 2x, . . . }

orthogonal on the interval [0, π]? Is the system orthogonal on any interval of length π? Why, in each case?

2. Show that each of the systems

{1, cosx, cos 2x, . . . }, and {sinx, sin 2x, . . . }

are orthogonal on [0, π]. Make them orthonormal too.

Exercise 30.16
Let SN(x) be the N th partial sum of the Fourier series for f(x) ≡ |x| on −π < x < π. Find N such that
|f(x)− SN(x)| < 10−1 on |x| < π.

Exercise 30.17
The set {sin(nx)}∞n=1 is orthogonal and complete on [0, π].
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1. Find the Fourier sine series for f(x) ≡ 1 on 0 ≤ x ≤ π.

2. Find a convergent series for g(x) = x on 0 ≤ x ≤ π by integrating the series for part (a).

3. Apply Parseval’s relation to the series in (a) to find:

∞∑
n=1

1

(2n− 1)2

Check this result by evaluating the series in (b) at x = π.

Exercise 30.18
1. Show that the Fourier cosine series expansion on [0, π] of:

f(x) ≡


1, 0 ≤ x < π

2
,

1
2
, x = π

2
,

0, π
2
< x ≤ π,

is

S(x) =
1

2
+

2

π

∞∑
n=0

(−1)n

2n+ 1
cos((2n+ 1)x).

2. Show that the N th partial sum of the series in (a) is

SN(x) =
1

2
− 1

π

∫ x−π/2

0

sin((2(N + 1)t)

sin t
dt.

( Hint: Consider the difference of
∑2N+1

n=1 ( eiy)n and
∑N

n=1( ei2y)n, where y = x− π/2.)

3. Show that dSN(x)/dx = 0 at x = xn = nπ
2(N+1)

for n = 0, 1, . . . , N,N + 2, . . . , 2N + 2.
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4. Show that at x = xN , the maximum of SN(x) nearest to π/2 in (0, π/2) is

SN(xN) =
1

2
+

1

π

∫ πN
2(N+1)

0

sin(2(N + 1)t)

sin t
dt.

Clearly xN ↑ π/2 as N →∞.

5. Show that also in this limit,

SN(xN)→ 1

2
+

1

π

∫ π

0

sin t

t
dt ≈ 1.0895.

How does this compare with f(π/2 − 0)? This overshoot is the Gibbs phenomenon that occurs at each
discontinuity. It is a manifestation of the non-uniform convergence of the Fourier series for f(x) on [0, π].

Exercise 30.19
Prove the Isoperimetric Inequality: L2 ≥ 4πA where L is the length of the perimeter and A the area of any
piecewise smooth plane figure. Show that equality is attained only for the circle. (Hints: The closed curve is
represented parametrically as

x = x(s), y = y(s), 0 ≤ s ≤ L

where s is the arclength. In terms of t = 2πs/L we have(
dx

dt

)2

+

(
dy

dt

)2

=

(
L

2π

)2

.

Integrate this relation over [0, 2π]. The area is given by

A =

∫ 2π

0

x
dy

dt
dt.

Express x(t) and y(t) as Fourier series and use the completeness and orthogonality relations to show that L2 −
4πA ≥ 0.)
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Exercise 30.20
1. Find the Fourier sine series expansion and the Fourier cosine series expansion of

g(x) = x(1− x), on 0 ≤ x ≤ 1.

Which is better and why over the indicated interval?

2. Use these expansions to show that:

i)
∞∑
k=1

1

k2
=
π2

6
, ii)

∞∑
k=1

(−1)k

k2
= −π

2

12
, iii)

∞∑
k=1

(−1)k

(2k − 1)2
= −π

3

32
.

Note: Some useful integration by parts formulas are:∫
x sin(nx) =

1

n2
sin(nx)− x

n
cos(nx);

∫
x cos(nx) =

1

n2
cos(nx) +

x

n
sin(nx)∫

x2 sin(nx) =
2x

n2
sin(nx)− n2x2 − 2

n3
cos(nx)∫

x2 cos(nx) =
2x

n2
cos(nx) +

n2x2 − 2

n3
sin(nx)
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30.12 Hints

Hint 30.1

Hint 30.2

Hint 30.3

Hint 30.4

Hint 30.5

Hint 30.6
Expand

cosn(x) =

[
1

2
( eix + e−ix)

]n
Using Newton’s binomial formula.

Hint 30.7
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Hint 30.8

Hint 30.9

Hint 30.10

Hint 30.11

Hint 30.12

Hint 30.13

Hint 30.14

Hint 30.15
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Hint 30.16

Hint 30.17

Hint 30.18

Hint 30.19

Hint 30.20
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30.13 Solutions

Solution 30.1
1. We start by assuming that the Fourier series converges in the mean.

∫ π

−π

(
f(x)− a0

2
−
∞∑
n=1

(an cos(nx) + bn sin(nx))

)2

= 0

We interchange the order of integration and summation.

∫ π

−π
(f(x))2 dx− a0

∫ π

−π
f(x) dx− 2

∞∑
n=1

(
an

∫ π

−π
f(x) cos(nx) dx+ bn

∫ π

−π
f(x) sin(nx)

)
+
πa2

0

2
+ a0

∞∑
n=1

∫ π

−π
(an cos(nx) + bn sin(nx)) dx

+
∞∑
n=1

∞∑
m=1

∫ π

−π
(an cos(nx) + bn sin(nx))(am cos(mx) + bm sin(mx)) dx = 0

Most of the terms vanish because the eigenfunctions are orthogonal.

∫ π

−π
(f(x))2 dx− a0

∫ π

−π
f(x) dx− 2

∞∑
n=1

(
an

∫ π

−π
f(x) cos(nx) dx+ bn

∫ π

−π
f(x) sin(nx)

)
+
πa2

0

2
+
∞∑
n=1

∫ π

−π
(a2
n cos2(nx) + b2

n sin2(nx)) dx = 0

1241



We use the definition of the Fourier coefficients to evaluate the integrals in the last sum.∫ π

−π
(f(x))2 dx− πa2

0 − 2π
∞∑
n=1

(
a2
n + b2

n

)
+
πa2

0

2
+ π

∞∑
n=1

(
a2
n + b2

n

)
= 0

a2
0

2
+
∞∑
n=1

(
a2
n + b2

n

)
=

1

π

∫ π

−π
f(x)2 dx

2. We determine the Fourier coefficients for f(x) = x. Since f(x) is odd, all of the an are zero.

b0 =
1

π

∫ π

−π
x sin(nx) dx

=
1

π

[
− 1

n
x cos(nx)

]π
−π

+

∫ π

−π

1

n
cos(nx) dx

=
2(−1)n+1

n

The Fourier series is

x =
∞∑
n=1

2(−1)n+1

n
sin(nx) for x ∈ (−π . . . π).

We apply Parseval’s theorem for this series to find the value of
∑∞

n=1
1
n2 .

∞∑
n=1

4

n2
=

1

π

∫ π

−π
x2 dx

∞∑
n=1

4

n2
=

2π2

3

∞∑
n=1

1

n2
=
π2

6
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3. Consider f(x) = x2. Since the function is even, there are no sine terms in the Fourier series. The coefficients
in the cosine series are

a0 =
2

π

∫ π

0

x2 dx

=
2π2

3

an =
2

π

∫ π

0

x2 cos(nx) dx

=
4(−1)n

n2
.

Thus the Fourier series is

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx) for x ∈ (−π . . . π).

We apply Parseval’s theorem for this series to find the value of
∑∞

n=1
1
n4 .

2π4

9
+ 16

∞∑
n=1

1

n4
=

1

π

∫ π

−π
x4 dx

2π4

9
+ 16

∞∑
n=1

1

n4
=

2π4

5

∞∑
n=1

1

n4
=
π4

90
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Now we integrate the series for f(x) = x2.

∫ x

0

(
ξ2 − π2

3

)
dξ = 4

∞∑
n=1

(−1)n

n2

∫ x

0

cos(nξ) dξ

x3

3
− π2

3
x = 4

∞∑
n=1

(−1)n

n3
sin(nx)

We apply Parseval’s theorem for this series to find the value of
∑∞

n=1
1
n6 .

16
∞∑
n=1

1

n6
=

1

π

∫ π

−π

(
x3

3
− π2

3
x

)2

dx

16
∞∑
n=1

1

n6
=

16π6

945

∞∑
n=1

1

n6
=

π6

945
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Solution 30.2
1. We differentiate the partial sum of the Fourier series and evaluate the sum.

SN =
N∑
n=1

2(−1)n+1

n
sin(nx)

S ′N = 2
N∑
n=1

(−1)n+1 cos(nx)

S ′N = 2<

(
N∑
n=1

(−1)n+1 einx

)

S ′N = 2<
(

1− (−1)N+2 ei(N+1)x

1 + eix

)
S ′N = <

(
1 + e−ix − (−1)N ei(N+1)x − (−1)N eiNx

1 + cos(x)

)
S ′N = 1− (−1)N

cos((N + 1)x) + cos(Nx)

1 + cos(x)

S ′N = 1− (−1)N
cos
((
N + 1

2

)
x
)

cos
(
x
2

)
cos2

(
x
2

)
dSN
dx

= 1− (−1)N
cos
((
N + 1

2

)
x
)

cos
(
x
2

)
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2. We integrate S ′N .

SN(x)− SN(0) = x−
∫ x

0

(−1)N cos
((
N + 1

2

)
ξ
)

cos
(
ξ
2

) dξ

x− SN =

∫ x

0

sin
((
N + 1

2

)
(ξ − π)

)
sin
(
ξ−π

2

) dξ

3. We find the extrema of the overshoot E = x− SN with the first derivative test.

E ′ =
sin
((
N + 1

2

)
(x− π)

)
sin
(
x−π

2

) = 0

We look for extrema in the range (−π . . . π).(
N +

1

2

)
(x− π) = −nπ

x = π

(
1− n

N + 1/2

)
, n ∈ [1 . . . 2N ]

The closest of these extrema to x = π is

x = π

(
1− 1

N + 1/2

)
Let E0 be the overshoot at this point. We approximate E0 for large N .

E0 =

∫ π(1−1/(N+1/2))

0

sin
((
N + 1

2

)
(ξ − π)

)
sin
(
ξ−π

2

) dξ

We shift the limits of integration.

E0 =

∫ π

π/(N+1/2)

sin
((
N + 1

2

)
ξ
)

sin
(
ξ
2

) dξ
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We add and subtract an integral over [0 . . . π/(N + 1/2)].

E0 =

∫ π

0

sin
((
N + 1

2

)
ξ
)

sin
(
ξ
2

) dξ −
∫ π/(N+1/2)

0

sin
((
N + 1

2

)
ξ
)

sin
(
ξ
2

) dξ

We can evaluate the first integral with contour integration on the unit circle C.

∫ π

0

sin
((
N + 1

2

)
ξ
)

sin
(
ξ
2

) dξ =

∫ π

0

sin ((2N + 1) ξ)

sin (ξ)
dξ

=
1

2

∫ π

−π

sin ((2N + 1) ξ)

sin (ξ)
dξ

=
1

2
−
∫
C

=
(
z2N+1

)
(z − 1/z)/(i2)

dz

iz

= =
(
−
∫
C

z2N+1

(z2 − 1)
dz

)
= =

(
iπRes

(
z2N+1

(z + 1)(z − 1)
, 1

)
+ iπRes

(
z2N+1

(z + 1)(z − 1)
,−1

))
= π<

(
12N+1

2
+

(−1)2N+1

−2

)
= π
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We approximate the second integral.∫ π/(N+1/2)

0

sin
((
N + 1

2

)
ξ
)

sin
(
ξ
2

) dξ =
2

2N + 1

∫ π

0

sin(x)

sin
(

x
2N+1

) dx

≈ 2

∫ π

0

sin(x)

x
dx

= 2

∫ π

0

1

x

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
dx

= 2
∞∑
n=0

∫ π

0

(−1)nx2n

(2n+ 1)!
dx

= 2
∞∑
n=0

(−1)nπ2n+1

(2n+ 1)(2n+ 1)!
dx

≈ 3.70387

In the limit as N →∞, the overshoot is

|π − 3.70387| ≈ 0.56.

Solution 30.3
1. The eigenfunctions of the self-adjoint problem

−y′′ = λy, y(0) = y(1) = 0,

are

φn = sin(nπx), n ∈ Z+
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We find the series expansion of the inhomogeneity f(x) = 1.

1 =
∞∑
n=1

fn sin(nπx)

fn = 2

∫ 1

0

sin(nπx) dx

fn = 2

[
−cos(nπx)

nπ

]1

0

fn =
2

nπ
(1− (−1)n)

fn =

{
4
nπ

for odd n

0 for even n

We expand the solution in a series of the eigenfunctions.

y =
∞∑
n=1

an sin(nπx)

We substitute the series into the differential equation.

y′′ + 2y = 1

−
∞∑
n=1

anπ
2n2 sin(nπx) + 2

∞∑
n=1

an sin(nπx) =
∞∑
n=1

odd n

4

nπ
sin(nπx)

an =

{
4

nπ(2−π2n2)
for odd n

0 for even n

y =
∞∑
n=1

odd n

4

nπ(2− π2n2)
sin(nπx)
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2. Now we solve the boundary value problem directly.

y′′ + 2y = 1 y(0) = y(1) = 0

The general solution of the differential equation is

y = c1 cos
(√

2x
)

+ c2 sin
(√

2x
)

+
1

2
.

We apply the boundary conditions to find the solution.

c1 +
1

2
= 0, c1 cos

(√
2
)

+ c2 sin
(√

2
)

+
1

2
= 0

c1 = −1

2
, c2 =

cos
(√

2
)
− 1

2 sin
(√

2
)

y =
1

2

(
1− cos

(√
2x
)

+
cos
(√

2
)
− 1

sin
(√

2
) sin

(√
2x
))

We find the Fourier sine series of the solution.

y =
∞∑
n=1

an sin(nπx)

an = 2

∫ 1

0

y(x) sin(nπx) dx

an =

∫ 1

0

(
1− cos

(√
2x
)

+
cos
(√

2
)
− 1

sin
(√

2
) sin

(√
2x
))

sin(nπx) dx

an =
2(1− (−1)2

nπ(2− π2n2)

an =

{
4

nπ(2−π2n2)
for odd n

0 for even n
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We obtain the same series as in the first part.

Solution 30.4
1. The eigenfunctions of the self-adjoint problem

−y′′ = λy, y′(0) = y′(π) = 0,

are

φ0 =
1

2
, φn = cos(nx), n ∈ Z+

We find the series expansion of the inhomogeneity f(x) = sin(x).

f(x) =
f0

2
+
∞∑
n=1

fn cos(nx)

f0 =
2

π

∫ π

0

sin(x) dx

f0 =
4

π

fn =
2

π

∫ π

0

sin(x) cos(nx) dx

fn =
2(1 + (−1)n)

π(1− n2)

fn =

{
4

π(1−n2)
for even n

0 for odd n

We expand the solution in a series of the eigenfunctions.

y =
a0

2
+
∞∑
n=1

an cos(nx)
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We substitute the series into the differential equation.

y′′ + 2y = sin(x)

−
∞∑
n=1

ann
2 cos(nx) + a0 + 2

∞∑
n=1

an cos(nx) =
2

π
+

∞∑
n=2

even n

4

π(1− n2)
cos(nx)

y =
1

π
+

∞∑
n=2

even n

4

π(1− n2)(2− n2)
cos(nx)

2. We expand the solution in a series of the eigenfunctions.

y =
a0

2
+
∞∑
n=1

an cos(nx)

We substitute the series into the differential equation.

y′′ + 4y = sin(x)

−
∞∑
n=1

ann
2 cos(nx) + 2a0 + 4

∞∑
n=1

an cos(nx) =
2

π
+

∞∑
n=2

even n

4

π(1− n2)
cos(nx)

It is not possible to solve for the a2 coefficient. That equation is

(0)a2 = − 4

3π
.

This problem is to be expected, as this boundary value problem does not have a solution. The solution of
the differential equation is

y = c1 cos(2x) + c2 sin(2x) +
1

3
sin(x)
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The boundary conditions give us an inconsistent set of constraints.

y′(0) = 0, y′(π) = 0

c2 +
1

3
= 0, c2 −

1

3
= 0

Thus the problem has no solution.

Solution 30.5
Cosine Series. The coefficients in the cosine series are

a0 =
2

π

∫ π

0

x2 dx

=
2π2

3

an =
2

π

∫ π

0

x2 cos(nx) dx

=
4(−1)n

n2
.

Thus the Fourier cosine series is

f(x) =
π2

3
+
∞∑
n=1

4(−1)n

n2
cos(nx).

In Figure 30.10 the even periodic extension of f(x) is plotted in a dashed line and the sum of the first five terms
in the Fourier series is plotted in a solid line. Since the even periodic extension is continuous, the cosine series is
differentiable.

1253



-3 -2 -1 1 2 3

2

4

6

8

10

-3 -2 -1 1 2 3

-10

-5

5

10

Figure 30.10: The Fourier Cosine and Sine Series of f(x) = x2.

Sine Series. The coefficients in the sine series are

bn =
2

π

∫ π

0

x2 sin(nx) dx

= −2(−1)nπ

n
− 4(1− (−1)n)

πn3

=

{
−2(−1)nπ

n
for even n

−2(−1)nπ
n
− 8

πn3 for odd n.
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Thus the Fourier sine series is

f(x) ∼ −
∞∑
n=1

(
2(−1)nπ

n
+

4(1− (−1)n)

πn3

)
sin(nx).

In Figure 30.10 the odd periodic extension of f(x) and the sum of the first five terms in the sine series are plotted.
Since the odd periodic extension of f(x) is not continuous, the series is not differentiable.

Solution 30.6
We could find the expansion by integrating to find the Fourier coefficients, but it is easier to expand cosn(x)
directly.

cosn(x) =

[
1

2
( eix + e−ix)

]n
=

1

2n

[(
n

0

)
einx +

(
n

1

)
ei(n−2)x + · · ·+

(
n

n− 1

)
e−i(n−2)x +

(
n

n

)
e−inx

]
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If n is odd,

cosn(x) =
1

2n

[(
n

0

)
( einx + e−inx) +

(
n

1

)
( ei(n−2)x + e−i(n−2)x) + · · ·

+

(
n

(n− 1)/2

)
( eix + e−ix)

]

=
1

2n

[(
n

0

)
2 cos(nx) +

(
n

1

)
2 cos((n− 2)x) + · · ·+

(
n

(n− 1)/2

)
2 cos(x)

]
=

1

2n−1

(n−1)/2∑
m=0

(
n

m

)
cos((n− 2m)x)

=
1

2n−1

n∑
k=1

odd k

(
n

(n− k)/2

)
cos(kx).

1256



If n is even,

cosn(x) =
1

2n

[(
n

0

)
( einx + e−inx) +

(
n

1

)
( ei(n−2)x + e−i(n−2)x) + · · ·

+

(
n

n/2− 1

)
( ei2x + e−i2x) +

(
n

n/2

)]

=
1

2n

[(
n

0

)
2 cos(nx) +

(
n

1

)
2 cos((n− 2)x) + · · ·+

(
n

n/2− 1

)
2 cos(2x) +

(
n

n/2

)]
=

1

2n

(
n

n/2

)
+

1

2n−1

(n−2)/2∑
m=0

(
n

m

)
cos((n− 2m)x)

=
1

2n

(
n

n/2

)
+

1

2n−1

n∑
k=2

even k

(
n

(n− k)/2

)
cos(kx).

We may denote,

cosn(x) =
a0

2

n∑
k=1

ak cos(kx),

where

ak =
1 + (−1)n−k

2

1

2n−1

(
n

(n− k)/2

)
.
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Solution 30.7
We expand f(x) in a cosine series. The coefficients in the cosine series are

a0 =
2

π

∫ π

0

x2 dx

=
2π2

3

an =
2

π

∫ π

0

x2 cos(nx) dx

=
4(−1)n

n2
.

Thus the Fourier cosine series is

f(x) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx).

The Fourier series converges to the even periodic extension of

f(x) = x2 for 0 < x < π,

which is

f̂(x) =

(
x− 2π

(⌊
x+ π

2π

⌋))2

.

(b·c denotes the floor or greatest integer function.) This periodic extension is a continuous function. Since x2 is
an even function, we have

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx = x2 for − π ≤ x ≤ π.
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We substitute x = π into the Fourier series.

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nπ) = π2

∞∑
n=1

1

n2
=
π2

6

We substitute x = 0 into the Fourier series.

π2

3
+ 4

∞∑
n=1

(−1)n

n2
= 0

∞∑
n=1

(−1)n+1

n2
=
π2

12

Solution 30.8
1. The Fourier sine coefficients are

an =
2

π

∫ π

0

f(x) sin(nx) dx

=
2

π

∫ π

0

(
cos x− 1 +

2x

π

)
sin(nx) dx

an =
2(1 + (−1)n)

π(n3 − n)

2. From our work in the previous part, we see that the Fourier coefficients decay as 1/n3. The Fourier sine
series converges to the odd periodic extension of f(x). We can determine the rate of decay of the Fourier

1259



coefficients from the smoothness of f̂(x). For −π < x < π, the odd periodic extension of f(x) is defined

f̂(x) =

{
f+(x) = cos(x)− 1 + 2x

π
0 < x < π,

f−(x) = −f+(−x) = − cos(x) + 1 + 2x
π
−π < x < 0.

Since

f+(0) = f−(0) = 0 and f+(π) = f−(−π) = 0

f̂(x) is continuous, C0. Since

f ′+(0) = f ′−(0) =
2

π
and f ′+(π) = f ′−(−π) =

2

π

f̂(x) is continuously differentiable, C1. However, since

f ′′+(0) = −1, f ′′−(0) = 1

f̂(x) is not C2. Since f̂(x) is C1 we know that the Fourier coefficients decay as 1/n3.

Solution 30.9
Cosine Series. The even periodic extension of f(x) is a C0, continuous, function (See Figure 30.11. Thus the
coefficients in the cosine series will decay as 1/n2. The Fourier cosine coefficients are

a0 =
2

π

∫ π

0

x sinx dx

= 2

a1 =
2

π

∫ π

0

x sinx cosx dx

= −1

2
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an =
2

π

∫ π

0

x sinx cos(nx) dx

=
2(−1)n+1

n2 − 1
, for n ≥ 2

The Fourier cosine series is

f̂(x) = 1− 1

2
cosx− 2

∞∑
n=2

2(−1)n

n2 − 1
cos(nx).

-5 5

1

Figure 30.11: The even periodic extension of x sinx.

Sine Series. The odd periodic extension of f(x) is a C1, continuously differentiable, function (See Fig-
ure 30.12. Thus the coefficients in the cosine series will decay as 1/n3. The Fourier sine coefficients are

a1 =
1

π

∫ π

0

x sinx sinx dx

=
π

2
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an =
2

π

∫ π

0

x sinx sin(nx) dx

= −4(1 + (−1)n)n

π(n2 − 1)2
, for n ≥ 2

The Fourier sine series is

f̂(x) =
π

2
sinx− 4

π

∞∑
n=2

(1 + (−1)n)n

(n2 − 1)2
cos(nx).

-5 5

1

Figure 30.12: The odd periodic extension of x sinx.

Solution 30.10
If ν = n is an integer, then the Fourier cosine series is cos(|n|x).

We note that for ν 6= n, the even periodic extension of cos(νx) is C0 so that the series converges to cos(νx)
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for −π ≤ x ≤ π and the coefficients decay as 1/n2. If ν is not an integer, then then Fourier cosine coefficients are

a0 =
2

π

∫ π

0

cos(νx) dx

=
2

πν
sin(πν)

an =
2

π

∫ π

0

cos(νx) cos(nx) dx

= (−1)n
(

1

ν − n
+

1

ν + n

)
sin(πν)

The Fourier cosine series is

cos(νx) =
1

πν
sin(πν) +

∞∑
n=1

(−1)n
(

1

ν − n
+

1

ν + n

)
sin(πν) cos(nx).

For ν 6= n we substitute x = 0 into the Fourier cosine series.

1 =
1

πν
sin(πν) +

∞∑
n=1

(−1)n
(

1

ν − n
+

1

ν + n

)
sin(πν)

π

sinπν
=

1

ν
+
∞∑
n=1

(−1)n
(

1

ν − n
+

1

ν + n

)
For ν 6= n we substitute x = π into the Fourier cosine series.

cos(νπ) =
1

πν
sin(πν) +

∞∑
n=1

(−1)n
(

1

ν − n
+

1

ν + n

)
sin(πν)(−1)n

π cot πν =
1

ν
+
∞∑
n=1

(
1

ν − n
+

1

ν + n

)
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We write the last formula as

π cot πν − 1

ν
=
∞∑
n=1

(
1

ν − n
+

1

ν + n

)
We integrate from ν = 0 to ν = θ < 1.[

log

(
sin(πν)

ν

)]θ
0

=
∞∑
n=1

(
[log(n− ν)]θ0 + [log(n+ ν)]θ0

)
log

(
sin(πθ)

θ

)
− log(π) =

∞∑
n=1

(
log

(
n− θ
n

)
+ log

(
n+ θ

n

))
log

(
sin(πθ)

πθ

)
=
∞∑
n=1

log

(
1− θ2

n2

)

log

(
sin(πθ)

πθ

)
= log

(
∞∏
n=1

(
1− θ2

n2

))
sin(πθ)

πθ
=
∞∏
n=1

(
1− θ2

n2

)

Solution 30.11
1. We will consider the principal branch of the logarithm, −π < arg(log z) ≤ π. For −π < x < π, cos(x/2) is

positive so that log(cos(x/2)) is real-valued. At x = ±π, log(cos(x/2)) is singular. However, the function is
integrable so it has a Fourier series which converges except at x = (2k + 1)π, k ∈ Z.

log
(

cos
x

2

)
= log

(
eix/2 + e−ix/2

2

)
= − log 2 + log

(
e−ix/2

(
1 + eix

))
= − log 2− ix

2
+ log

(
1 + eix

)
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Since | eix| ≤ 1 and eix 6= −1 for =(x) ≥ 0, x 6= (2k + 1)π, we can expand the last term in a Taylor series
in that domain.

= − log 2− ix
2
−
∞∑
n=1

(−1)n

n

(
eix
)n

= − log 2−
∞∑
n=1

(−1)n

n
cosnx− i

(
x

2
+
∞∑
n=1

(−1)n

n
sinnx

)
For −π < x < π, log(cos(x/2)) is real-valued. We equate the real parts of the equation on this domain to
obtain the Fourier series of log(cos(x/2)).

log
(

cos
x

2

)
= − log 2−

∞∑
n=1

(−1)n

n
cos(nx), −π < x < π.

The domain of convergence for this series is =(x) = 0, x 6= (2k + 1)π. The Fourier series converges to the
periodic extension of the function.

log
∣∣∣cos

x

2

∣∣∣ = − log 2−
∞∑
n=1

(−1)n

n
cos(nx), x 6= (2k + 1)π, k ∈ Z

2. Now we integrate the function from 0 to π.∫ π

0

log
(

cos
x

2

)
dx =

∫ π

0

(
− log 2−

∞∑
n=1

(−1)n

n
cos(nx)

)
dx

= −π log 2−
∞∑
n=1

(−1)n

n

∫ π

0

cos(nx) dx

= −π log 2−
∞∑
n=1

(−1)n

n

[
sin(nx)

n

]π
0

dx
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∫ π

0

log
(

cos
x

2

)
dx = −π log 2

3.

1

2
log

∣∣∣∣sin((x+ ξ)/2)

sin((x− ξ)/2)

∣∣∣∣ =
1

2
log |sin((x+ ξ)/2)| − 1

2
log |sin((x− ξ)/2)|

Consider the function log | sin(y/2)|. Since sin(x) = cos(x−π/2), we can use the result of part (a) to obtain,

log
∣∣∣sin y

2

∣∣∣ = log

∣∣∣∣cos
y − π

2

∣∣∣∣
= − log 2−

∞∑
n=1

(−1)n

n
cos(n(y − π))

= − log 2−
∞∑
n=1

1

n
cos(ny), for y 6= 2πk, k ∈ Z.

We return to the original function:

1

2
log

∣∣∣∣sin((x+ ξ)/2)

sin((x− ξ)/2)

∣∣∣∣ =
1

2

(
− log 2−

∞∑
n=1

1

n
cos(n(x+ ξ)) + log 2 +

∞∑
n=1

1

n
cos(n(x− ξ))

)
,

for x± ξ 6= 2πk, k ∈ Z.

1

2
log

∣∣∣∣sin((x+ ξ)/2)

sin((x− ξ)/2)

∣∣∣∣ =
∞∑
n=1

sinnx sinnξ

n
, x 6= ±ξ + 2kπ.
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Solution 30.12
The eigenfunction problem associated with this problem is

φ′′ + λ2φ = 0, φ(a) = φ(b) = 0,

which has the solutions,

λn =
nπ

b− a
, φn = sin

(
nπ(x− a)

b− a

)
, n ∈ N.

We expand the solution and the inhomogeneity in the eigenfunctions.

y(x) =
∞∑
n=1

yn sin

(
nπ(x− a)

b− a

)

f(x) =
∞∑
n=1

fn sin

(
nπ(x− a)

b− a

)
, fn =

2

b− a

∫ b

a

f(x) sin

(
nπ(x− a)

b− a

)
dx

Since the solution y(x) satisfies the same homogeneous boundary conditions as the eigenfunctions, we can differ-
entiate the series. We substitute the series expansions into the differential equation.

y′′ + αy = f(x)
∞∑
n=1

yn
(
−λ2

n + α
)

sin (λnx) =
∞∑
n=1

fn sin (λnx)

yn =
fn

α− λ2
n

Thus the solution of the problem has the series representation,

y(x) =
∞∑
n=1

(
α− λ2

n

)
sin

(
nπ(x− a)

b− a

)
.
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Solution 30.13
The eigenfunction problem associated with this problem is

φ′′ + λ2φ = 0, φ(a) = φ(b) = 0,

which has the solutions,

λn =
nπ

b− a
, φn = sin

(
nπ(x− a)

b− a

)
, n ∈ N.

We expand the solution and the inhomogeneity in the eigenfunctions.

y(x) =
∞∑
n=1

yn sin

(
nπ(x− a)

b− a

)

f(x) =
∞∑
n=1

fn sin

(
nπ(x− a)

b− a

)
, fn =

2

b− a

∫ b

a

f(x) sin

(
nπ(x− a)

b− a

)
dx

Since the solution y(x) does not satisfy the same homogeneous boundary conditions as the eigenfunctions, we can
differentiate the series. We multiply the differential equation by an eigenfunction and integrate from a to b. We
use integration by parts to move derivatives from y to the eigenfunction.

y′′ + αy = f(x)∫ b

a

y′′(x) sin(λmx) dx+ α

∫ b

a

y(x) sin(λmx) dx =

∫ b

a

f(x) sin(λmx) dx

[y′ sin(λmx)]
b
a −

∫ b

a

y′λm cos(λmx) dx+ α
b− a

2
ym =

b− a
2

fm

− [yλm cos(λmx)]ba −
∫ b

a

yλ2
m sin(λmx) dx+ α

b− a
2

ym =
b− a

2
fm

−Bλm(−1)m + Aλm(−1)m+1 − λ2
mym + α

b− a
2

ym =
b− a

2
fm

ym =
fm + (−1)mλm(A+B)

α− λ2
m
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Thus the solution of the problem has the series representation,

y(x) =
∞∑
n=1

fm + (−1)mλm(A+B)

α− λ2
m

sin

(
nπ(x− a)

b− a

)
.

Solution 30.14
1.

A+ iB =
1

1− z2

=
∞∑
n=0

z2n

=
∞∑
n=0

r2n ei2nx

=
∞∑
n=0

r2n cos(2nx) + i
∞∑
n=1

r2n sin(2nx)

A =
∞∑
n=0

r2n cos(2nx), B =
∞∑
n=1

r2n sin(2nx)
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A+ iB =
1

1− z2

=
1

1− r2 e2ix

=
1

1− r2 cos(2x)− ir2 sin(2x)

=
1− r2 cos(2x) + ir2 sin(2x)

(1− r2 cos(2x))2 + (r2 sin(2x))2

A =
1− r2 cos(2x)

1− 2r2 cos(2x) + r4
, B =

r2 sin(2x)

1− 2r2 cos(2x) + r4

2. We consider the principal branch of the logarithm.

A+ iB = log(1 + z)

=
∞∑
n=1

(−1)n+1

n
zn

=
∞∑
n=1

(−1)n+1

n
rn einx

=
∞∑
n=1

(−1)n+1

n
rn
(

cos(nx) + i sin(nx)
)

A =
∞∑
n=1

(−1)n+1

n
rn cos(nx), B =

∞∑
n=1

(−1)n+1

n
rn sin(nx)
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A+ iB = log(1 + z)

= log
(
1 + r eix

)
= log (1 + r cos x+ ir sinx)

= log |1 + r cos x+ ir sinx|+ i arg (1 + r cos x+ ir sinx)

= log
√

(1 + r cosx)2 + (r sinx)2 + i arctan (1 + r cos x, r sinx)

A =
1

2
log
(
1 + 2r cos x+ r2

)
, B = arctan (1 + r cos x, r sinx)

3.

An + iBn =
n∑
k=1

zk

=
1− zn+1

1− z

=
1− rn+1 ei(n+1)x

1− r eix

=
1− r e−ix − rn+1 ei(n+1)x + rn+2 einx

1− 2r cos x+ r2

An =
1− r cos x− rn+1 cos((n+ 1)x) + rn+2 cos(nx)

1− 2r cos x+ r2

Bn =
r sinx− rn+1 sin((n+ 1)x) + rn+2 sin(nx)

1− 2r cos x+ r2
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An + iBn =
n∑
k=1

zk

=
n∑
k=1

rk eikx

An =
n∑
k=1

rk cos(kx), Bn =
n∑
k=1

rk sin(kx)

Solution 30.15
1. ∫ π

0

1 · sinx dx = [− cos x]π0 = 2

Thus the system is not orthogonal on the interval [0, π]. Consider the interval [a, a+ π].∫ a+π

a

1 · sinx dx = [− cosx]a+π
a = 2 cos a∫ a+π

a

1 · cos x dx = [sinx]a+π
a = −2 sin a

Since there is no value of a for which both cos a and sin a vanish, the system is not orthogonal for any
interval of length π.

2. First note that ∫ π

0

cosnx dx = 0 for n ∈ N.
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If n 6= m, n ≥ 1 and m ≥ 0 then∫ π

0

cosnx cosmx dx =
1

2

∫ π

0

(
cos((n−m)x) + cos((n+m)x)

)
dx = 0

Thus the set {1, cosx, cos 2x, . . . } is orthogonal on [0, π]. Since∫ π

0

dx = π∫ π

0

cos2(nx) dx =
π

2
,

the set {√
1

π
,

√
2

π
cosx,

√
2

π
cos 2x, . . .

}

is orthonormal on [0, π].

If n 6= m, n ≥ 1 and m ≥ 1 then∫ π

0

sinnx sinmx dx =
1

2

∫ π

0

(
cos((n−m)x)− cos((n+m)x)

)
dx = 0

Thus the set {sinx, sin 2x, . . . } is orthogonal on [0, π]. Since∫ π

0

sin2(nx) dx =
π

2
,

the set {√
2

π
sinx,

√
2

π
sin 2x, . . .

}

is orthonormal on [0, π].
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Solution 30.16
Since the periodic extension of |x| in [−π, π] is an even function its Fourier series is a cosine series. Because of the
anti-symmetry about x = π/2 we see that except for the constant term, there will only be odd cosine terms. Since
the periodic extension is a continuous function, but has a discontinuous first derivative, the Fourier coefficients
will decay as 1/n2.

|x| =
∞∑
n=0

an cos(nx), for x ∈ [−π, π]

a0 =
1

π

∫ π

0

x dx =
1

π

[
x2

2

]π
0

=
π

2

an =
2

π

∫ π

0

x cos(nx) dx

=
2

π

[
x

sin(nx)

n

]π
0

− 2

π

∫ π

0

sin(nx)

n
dx

= − 2

π

[
cos(nx)

n2

]π
0

= − 2

πn2
(cos(nπ)− 1)

=
2(1− (−1)n)

πn2

|x| = π

2
+

4

π

∞∑
n=1

odd n

1

n2
cos(nx) for x ∈ [−π, π]
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Define RN(x) = f(x)− SN(x). We seek an upper bound on |RN(x)|.

|RN(x)| =

∣∣∣∣∣∣∣
4

π

∞∑
n=N+1
odd n

1

n2
cos(nx)

∣∣∣∣∣∣∣
≤ 4

π

∞∑
n=N+1
odd n

1

n2

=
4

π

∞∑
n=1

odd n

1

n2
− 4

π

N∑
n=1

odd n

1

n2

Since
∞∑
n=1

odd n

1

n2
=
π2

8

We can bound the error with,

|RN(x)| ≤ π

2
− 4

π

N∑
n=1

odd n

1

n2
.

N = 7 is the smallest number for which our error bound is less than 10−1. N ≥ 7 is sufficient to make the error
less that 0.1.

|R7(x)| ≤ π

2
− 4

π

(
1 +

1

9
+

1

25
+

1

49

)
≈ 0.079

N ≥ 7 is also necessary because.

|RN(0)| = 4

π

∞∑
n=N+1
odd n

1

n2
.
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Solution 30.17
1.

1 ∼
∞∑
n=1

an sin(nx), 0 ≤ x ≤ π

Since the odd periodic extension of the function is discontinuous, the Fourier coefficients will decay as 1/n.
Because of the symmetry about x = π/2, there will be only odd sine terms.

an =
2

π

∫ π

0

1 · sin(nx) dx

=
2

nπ
(− cos(nπ) + cos(0))

=
2

nπ
(1− (−1)n)

1 ∼ 4

π

∞∑
n=1

odd n

sin(nx)

n

2. It’s always OK to integrate a Fourier series term by term. We integrate the series in part (a).∫ x

a

1 dx ∼ 4

π

∞∑
n=1

odd n

∫ x

a

sin(nξ)

n
dx

x− a ∼ 4

π

∞∑
n=1

odd n

cos(na)− cos(nx)

n2
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Since the series converges uniformly, we can replace the ∼ with =.

x− a =
4

π

∞∑
n=1

odd n

cos(na)

n2
− 4

π

∞∑
n=1

odd n

cos(nx)

n2

Now we have a Fourier cosine series. The first sum on the right is the constant term. If we choose a = π/2
this sum vanishes since cos(nπ/2) = 0 for odd integer n.

x =
π

2
− 4

π

∞∑
n=1

odd n

cos(nx)

n2

3. If f(x) has the Fourier series

f(x) ∼ a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx)),

then Parseval’s theorem states that

∫ π

−π
f 2(x) dx =

π

2
a2

0 + π
∞∑
n=1

(a2
n + b2

n).
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We apply this to the Fourier sine series from part (a).∫ π

−π
f 2(x) dx = π

∞∑
n=1

odd n

(
4

πn

)2

∫ 0

−π
(−1)2 dx+

∫ π

0

(1)2 dx =
16

π

∞∑
n=1

1

(2n− 1)2

∞∑
n=1

1

(2n− 1)2
=
π2

8

We substitute x = π in the series from part (b) to corroborate the result.

x =
π

2
− 4

π

∞∑
n=1

cos((2n− 1)x)

(2n− 1)2

π =
π

2
− 4

π

∞∑
n=1

cos((2n− 1)π)

(2n− 1)2

∞∑
n=1

1

(2n− 1)2
=
π2

8

Solution 30.18
1.

f(x) ∼ a0 +
∞∑
n=1

an cos(nx)

Since the periodic extension of the function is discontinuous, the Fourier coefficients will decay like 1/n.
Because of the anti-symmetry about x = π/2, there will be only odd cosine terms.

a0 =
1

π

∫ π

0

f(x) dx =
1

2
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an =
2

π

∫ π

0

f(x) cos(nx) dx

=
2

π

∫ π/2

0

cos(nx) dx

=
2

πn
sin(nπ/2)

=

{
2
πn

(−1)(n−1)/2, for odd n

0 for even n

The Fourier cosine series of f(x) is

f(x) ∼ 1

2
+

2

π

∞∑
n=0

(−1)n

2n+ 1
cos((2n+ 1)x).

2. The N th partial sum is

SN(x) =
1

2
+

2

π

N∑
n=0

(−1)n

2n+ 1
cos((2n+ 1)x).

We wish to evaluate the sum from part (a). First we make the change of variables y = x − π/2 to get rid
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of the (−1)n factor.

∞∑
n=0

(−1)n

2n+ 1
cos((2n+ 1)x)

=
N∑
n=0

(−1)n

2n+ 1
cos((2n+ 1)(y + π/2))

=
N∑
n=0

(−1)n

2n+ 1
(−1)n+1 sin((2n+ 1)y)

= −
N∑
n=0

1

2n+ 1
sin((2n+ 1)y)
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We write the summand as an integral and interchange the order of summation and integration to get rid of
the 1/(2n+ 1) factor.

= −
N∑
n=0

∫ y

0

cos((2n+ 1)t) dt

= −
∫ y

0

N∑
n=0

cos((2n+ 1)t) dt

= −
∫ y

0

(
2N+1∑
n=1

cos(nt)−
N∑
n=1

cos(2nt)

)
dt

= −
∫ y

0

<

(
2N+1∑
n=1

eint −
N∑
n=1

ei2nt

)
dt

= −
∫ y

0

<
(

eit − ei(2N+2)t

1− eit
− ei2t − ei2(N+1)t

1− ei2t

)
dt

= −
∫ y

0

<
(

( eit − ei2(N+1)t)(1− ei2t)− ( ei2t − ei2(N+1)t)(1− eit)

(1− eit)(1− ei2t)

)
dt

= −
∫ y

0

<
(

eit − ei2t + ei(2N+4)t − ei(2N+3)t

(1− eit)(1− ei2t)

)
dt

= −
∫ y

0

<
(

eit − ei(2N+3)t

1− ei2t

)
dt

= −
∫ y

0

<
(

ei(2N+2)t − 1

eit − e−it

)
dt

= −
∫ y

0

<
(
−i ei2(N+1)t + i

2 sin t

)
dt

= −1

2

∫ y

0

sin(2(N + 1)t)

sin t
dt

= −1

2

∫ x−π/2

0

sin(2(N + 1)t)

sin t
dt
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Now we have a tidy representation of the partial sum.

SN(x) =
1

2
− 1

π

∫ x−π/2

0

sin(2(N + 1)t)

sin t
dt

3. We solve dSN (x)
dx

= 0 to find the relative extrema of SN(x).

S ′N(x) = 0

− 1

π

sin(2(N + 1)(x− π/2))

sin(x− π/2)
= 0

(−1)N+1 sin(2(N + 1)x)

− cos(x)
= 0

sin(2(N + 1)x)

cos(x)
= 0

x = xn =
nπ

2(N + 1)
, n = 0, 1, . . . , N,N + 2, . . . , 2N + 2

Note that xN+1 = π/2 is not a solution as the denominator vanishes there. The function has a removable
singularity at x = π/2 with limiting value (−1)N .

4.

SN(xN) =
1

2
− 1

π

∫ πN
2(N+1)

−π/2

0

sin(2(N + 1)t)

sin t
dt

We note that the integrand is even.∫ πN
2(N+1)

−π/2

0

=

∫ − π
2(N+1)

0

= −
∫ π

2(N+1)

0
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SN(xN) =
1

2
+

1

π

∫ π
2(N+1)

0

sin(2(N + 1)t)

sin t
dt

5. We make the change of variables 2(N + 1)t→ t.

SN(xN) =
1

2
+

1

π

∫ π

0

sin(t)

2(N + 1) sin(t/(2(N + 1)))
dt

Note that

lim
ε→0

sin(εt)

ε
= lim

ε→0

t cos(εt)

1
= t

SN(xN)→ 1

2
+

1

π

∫ π

0

sin(t)

t
dt ≈ 1.0895 as N →∞

This is not equal to the limiting value of f(x), f(π/2− 0) = 1.

Solution 30.19
With the parametrization in t, x(t) and y(t) are continuous functions on the range [0, 2π]. Since the curve is
closed, we have x(0) = x(2π) and y(0) = y(2π). This means that the periodic extensions of x(t) and y(t) are
continuous functions. Thus we can differentiate their Fourier series. First we define formal Fourier series for x(t)
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and y(t).

x(t) =
a0

2
+
∞∑
n=1

(
an cos(nt) + bn sin(nt)

)
y(t) =

c0

2
+
∞∑
n=1

(
cn cos(nt) + dn sin(nt)

)
x′(t) =

∞∑
n=1

(
nbn cos(nt)− nan sin(nt)

)
y′(t) =

∞∑
n=1

(
ndn cos(nt)− ncn sin(nt)

)
In this problem we will be dealing with integrals on [0, 2π] of products of Fourier series. We derive a general
formula for later use.∫ 2π

0

xy dt =

∫ 2π

0

(
a0

2
+
∞∑
n=1

(
an cos(nt) + bn sin(nt)

))(c0

2
+
∞∑
n=1

(
cn cos(nt) + dn sin(nt)

))
dt

=

∫ 2π

0

(
a0c0

4
+
∞∑
n=1

(
ancn cos2(nt) + bndn sin2(nt)

))
dt

= π

(
1

2
a0c0 +

∞∑
n=1

(ancn + bndn)

)

In the arclength parametrization we have (
dx

ds

)2

+

(
dy

ds

)2

= 1.

1284



In terms of t = 2πs/L this is (
dx

dt

)2

+

(
dy

dt

)2

=

(
L

2π

)2

.

We integrate this identity on [0, 2π].

L2

2π
=

∫ 2π

0

((
dx

dt

)2

+

(
dy

dt

)2
)
dt

= π

(
∞∑
n=1

(
(nbn)2 + (−nan)2

)
+
∞∑
n=1

(
(ndn)2 + (−ncn)2

))

= π
∞∑
n=1

n2(a2
n + b2

n + c2
n + d2

n)

L2 = 2π2

∞∑
n=1

n2(a2
n + b2

n + c2
n + d2

n)

We assume that the curve is parametrized so that the area is positive. (Reversing the orientation changes the
sign of the area as defined above.) The area is

A =

∫ 2π

0

x
dy

dt
dt

=

∫ 2π

0

(
a0

2
+
∞∑
n=1

(
an cos(nt) + bn sin(nt)

))( ∞∑
n=1

(
ndn cos(nt)− ncn sin(nt)

))
dt

= π
∞∑
n=1

n(andn − bncn)
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Now we find an upper bound on the area. We will use the inequality |ab| ≤ 1
2
|a2 + b2|, which follows from

expanding (a− b)2 ≥ 0.

A ≤ π

2

∞∑
n=1

n
(
a2
n + b2

n + c2
n + d2

n

)
≤ π

2

∞∑
n=1

n2
(
a2
n + b2

n + c2
n + d2

n

)
We can express this in terms of the perimeter.

=
L2

4π

L2 ≥ 4πA

Now we determine the curves for which L2 = 4πA. To do this we find conditions for which A is equal to the
upper bound we obtained for it above. First note that

∞∑
n=1

n
(
a2
n + b2

n + c2
n + d2

n

)
=
∞∑
n=1

n2
(
a2
n + b2

n + c2
n + d2

n

)
implies that all the coefficients except a0, c0, a1, b1, c1 and d1 are zero. The constraint,

π

∞∑
n=1

n(andn − bncn) =
π

2

∞∑
n=1

n
(
a2
n + b2

n + c2
n + d2

n

)
then becomes

a1d1 − b1c1 = a2
1 + b2

1 + c2
1 + d2

1.
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This implies that d1 = a1 and c1 = −b1. a0 and c0 are arbitrary. Thus curves for which L2 = 4πA have the
parametrization

x(t) =
a0

2
+ a1 cos t+ b1 sin t, y(t) =

c0

2
− b1 cos t+ a1 sin t.

Note that (
x(t)− a0

2

)2

+
(
y(t)− c0

2

)2

= a2
1 + b2

1.

The curve is a circle of radius
√
a2

1 + b2
1 and center (a0/2, c0/2).

Solution 30.20
1. The Fourier sine series has the form

x(1− x) =
∞∑
n=1

an sin(nπx).

The norm of the eigenfunctions is ∫ 1

0

sin2(nπx) dx =
1

2
.

The coefficients in the expansion are

an = 2

∫ 1

0

x(1− x) sin(nπx) dx

=
2

π3n3
(2− 2 cos(nπ)− nπ sin(nπ))

=
4

π3n3
(1− (−1)n).

1287



Thus the Fourier sine series is

x(1− x) =
8

π3

∞∑
n=1

odd n

sin(nπx)

n3
=

8

π3

∞∑
n=1

sin((2n− 1)πx)

(2n− 1)3
.

The Fourier cosine series has the form

x(1− x) =
∞∑
n=0

an cos(nπx).

The norm of the eigenfunctions is ∫ 1

0

12 dx = 1,

∫ 1

0

cos2(nπx) dx =
1

2
.

The coefficients in the expansion are

a0 =

∫ 1

0

x(1− x) dx =
1

6
,

an = 2

∫ 1

0

x(1− x) cos(nπx) dx

= − 2

π2n2
+

4 sin(nπ)− nπ cos(nπ)

π3n3

= − 2

π2n2
(1 + (−1)n)

Thus the Fourier cosine series is

x(1− x) =
1

6
− 4

π2

∞∑
n=1

even n

cos(nπx)

n2
=

1

6
− 1

π2

∞∑
n=1

cos(2nπx)

n2
.
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Figure 30.13: The odd and even periodic extension of x(1− x), 0 ≤ x ≤ 1.

The Fourier sine series converges to the odd periodic extension of the function. Since this function is C1,
continuously differentiable, we know that the Fourier coefficients must decay as 1/n3. The Fourier cosine
series converges to the even periodic extension of the function. Since this function is only C0, continuous,
the Fourier coefficients must decay as 1/n2. The odd and even periodic extensions are shown in Figure 30.13.
The sine series is better because of the faster convergence of the series.

2. (a) We substitute x = 0 into the cosine series.

0 =
1

6
− 1

π2

∞∑
n=1

1

n2

∞∑
n=1

1

n2
=
π2

6
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(b) We substitute x = 1/2 into the cosine series.

1

4
=

1

6
− 1

π2

∞∑
n=1

cos(nπ)

n2

∞∑
n=1

(−1)n

n2
= −π

2

12

(c) We substitute x = 1/2 into the sine series.

1

4
=

8

π3

∞∑
n=1

sin((2n− 1)π/2)

(2n− 1)3

∞∑
n=1

(−1)n

(2n− 1)3
= −π

3

32
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Chapter 31

Regular Sturm-Liouville Problems

I learned there are troubles
Of more than one kind.
Some come from ahead
And some come from behind.

But I’ve bought a big bat.
I’m all ready, you see.
Now my troubles are going
To have troubles with me!

-I Had Trouble in Getting to Solla Sollew
-Theodor S. Geisel, (Dr. Suess)

31.1 Derivation of the Sturm-Liouville Form

Consider the eigenvalue problem on the finite interval [a, b]

p2(x)y′′ + p1(x)y′ + p0(x)y = µy,
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subject to the homogeneous unmixed boundary conditions

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0.

Here the pj’s are real and continuous and p2 > 0 on the interval [a, b]. The αj’s and βj’s are real. (Note that if
p2 were negative we could multiply the equation by (−1) and replace µ by −µ.)

We would like to write this problem in a form that can be used to obtain qualitative information about the
problem. First we will write the operator in self-adjoint form. Since p2 is positive on the interval,

y′′ +
p1

p2

y′ +
p0

p2

y =
µ

p2

y.

Multiplying by the factor

exp

(∫ x p1

p2

dξ

)
= eP (x)

yields

eP (x)

(
y′′ +

p1

p2

y′ +
p0

p2

y

)
= eP (x) µ

p2

y(
eP (x)y′

)′
+ eP (x)p0

p2

y = eP (x) µ

p2

y.

We define the following functions

p = eP (x), q = eP (x)p0

p2

, σ = eP (x) 1

p2

, λ = −µ.

Since the pj’s are continuous and p2 is positive, p, q, and σ are continuous. p and σ are positive functions. The
problem now has the form

(py′)′ + qy + λσy = 0,
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subject to the boundary conditions

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0.

This is known as a Regular Sturm-Liouville problem. We will devote much of this chapter to studying the
properties of this problem. We will encounter many results that are analogous to the properties of self-adjoint
eigenvalue problems.

Example 31.1.1

d

dx

(
log x

dy

dx

)
+ λxy = 0, y(1) = y(2) = 0

is not a regular Sturm-Liouville problem since log x vanishes at x = 1.

Result 31.1.1 Any eigenvalue problem of the form

p2y
′′ + p1y

′ + p0y = µy, for a ≤ x ≤ b,

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0,

where the pj’s are real and continuous, p2 > 0 on [a, b], and the αj’s and βj’s are real can
be written in the form of a regular Sturm-Liouville problem

(py′)′ + qy + λσy = 0, on a ≤ x ≤ b,

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0.
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31.2 Properties of Regular Sturm-Liouville Problems

Self-Adjoint. Writing the problem in the form

L[y] = (py′)′ + qy = −λσy,

we see that the operator is formally self-adjoint. Now to see if the problem is self-adjoint.

〈v|L[u]〉 − 〈L[v]|u〉 = 〈v|(pu′)′ + qu〉 − 〈(pv′)′ + qv|u〉
= [vpu′]ba − 〈v′|pu′〉+ 〈v|qu〉 − [pv′u]ba + 〈pv′|u′〉 − 〈qv|u〉
= [vpu′]ba − [pv′u]ba

= p(b)
(
v(b)u′(b)− v′(b)u(b)

)
+ p(a)

(
v(a)u′(a)− v′(a)u(a)

)
= p(b)

(
v(b)

(
−β1

β2

)
u(b)−

(
−β1

β2

)
v(b)u(b)

)
+ p(a)

(
v(a)

(
−α1

α2

)
u(a)−

(
−α1

α2

)
v(a)u(a)

)
= 0

Note that αi and βi are real so (
α1

α2

)
=

(
α1

α2

)
,

(
β1

β2

)
=

(
β1

β2

)
Thus L[y] subject to the boundary conditions is self-adjoint.

Real Eigenvalues. Let λ be an eigenvalue with the eigenfunction φ. Starting with Green’s formula,

〈φ|L[φ]〉 − 〈L[φ]|φ〉 = 0

〈φ| − λσφ〉 − 〈−λσφ|φ〉 = 0

−λ〈φ|σ|φ〉+ λ〈φ|σ|φ〉 = 0

(λ− λ)〈φ|σ|φ〉 = 0.

1294



Since 〈φ|σ|φ〉 > 0, λ− λ = 0. Thus the eigenvalues are real.

Infinite Number of Eigenvalues. There are an infinite of eigenvalues which have no finite cluster point. This
result is analogous to the result that we derived for self-adjoint eigenvalue problems. When we cover the Rayleigh
quotient, we will find that there is a least eigenvalue. Since the eigenvalues are distinct and have no finite cluster
point, λn →∞ as n→∞. Thus the eigenvalues form an ordered sequence,

λ1 < λ2 < λ3 < · · · .

Orthogonal Eigenfunctions. Let λ and µ be two distinct eigenvalues with the eigenfunctions φ and ψ. Green’s
formula states

〈ψ|L[φ]〉 − 〈L[ψ]|φ〉 = 0.

〈ψ| − λσφ〉 − 〈−µσψ|φ〉 = 0

−λ〈ψ|σ|φ〉+ µ〈ψ|σ|φ〉 = 0

(µ− λ)〈ψ|σ|φ〉 = 0

Since the eigenvalues are distinct, 〈ψ|σ|φ〉 = 0. Thus eigenfunctions corresponding to distinct eigenvalues are
orthogonal with respect to σ.

Unique Eigenfunctions. Let λ be an eigenvalue. Suppose φ and ψ are two independent eigenfunctions corre-
sponding to λ. The eigenfunctions satisfy the equations

L[φ] + λσφ = 0

L[ψ] + λσψ = 0.
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Taking the difference of ψ times the first equation and φ times the second equation gives us

ψL[φ]− φL[ψ] = 0

ψ(pφ′)′ − φ(pψ′)′ = 0

(p(ψφ′ − ψ′φ))′ = 0

p(ψφ′ − ψ′φ) = const.

In order to satisfy the boundary conditions, the constant must be zero.

p(ψφ′ − ψ′φ) = 0

Since p > 0,

ψφ′ − ψ′φ = 0

φ′

ψ
− ψ′φ

ψ2
= 0

d

dx

(
φ

ψ

)
= 0

φ

ψ
= const.

φ and ψ are not independent. Thus each eigenvalue has a unique, (to within a multiplicative constant),
eigenfunction.

Real Eigenfunctions. If λ is an eigenvalue with eigenfunction φ, then

(pφ′)′ + qφ+ λσφ = 0.

Taking the complex conjugate of this equation,(
pφ
′
)′

+ qφ+ λσφ = 0.
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Thus φ is also an eigenfunction corresponding to λ. Are φ and φ independent functions, or do they just differ by
a multiplicative constant? (For example, eix and e−ix are independent functions, but ix and −ix are dependent.)
From our argument on unique eigenfunctions, we see that

φ = (const)φ.

Since φ and φ only differ by a multiplicative constant, the eigenfunctions can be chosen so that they are real-valued
functions.

Rayleigh’s Quotient. Let λ be an eigenvalue with the eigenfunction φ.

〈φ|L[φ]〉 = 〈φ| − λσφ〉
〈φ|(pφ′)′ + qφ〉 = −λ〈φ|σ|φ〉[

φpφ′
]b
a
− 〈φ′|p|φ′〉+ 〈φ|q|φ〉 = −λ〈φ|σ|φ〉

λ =
−
[
pφφ′

]b
a

+ 〈φ′|p|φ′〉 − 〈φ|q|φ〉
〈φ|σ|φ〉

This is known as Rayleigh’s quotient. It is useful for obtaining qualitative information about the eigenvalues.

Minimum Property of Rayleigh’s Quotient. Note that since p, q, σ and φ are bounded functions, the
Rayleigh quotient is bounded below. Thus there is a least eigenvalue. If we restrict u to be a real continuous
function that satisfies the boundary conditions, then

λ1 = min
u

−[puu′]ba + 〈u′|p|u′〉 − 〈u|q|u〉
〈u|σ|u〉

,

where λ1 is the least eigenvalue. This form allows us to get upper and lower bounds on λ1.
To derive this formula, we first write it in terms of the operator L.

λ1 = min
u

−〈u|L[u]〉
〈u|σ|u〉
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Since u is continuous and satisfies the boundary conditions, we can expand u in a series of the eigenfunctions.

−〈u|L[u]〉
〈u|σ|u〉

= −
〈∑∞

n=1 cnφn
∣∣L [
∑∞

m=1 cmφm]
〉〈∑∞

n=1 cnφn
∣∣σ∣∣∑∞m=1 cmφm

〉
= −

〈∑∞
n=1 cnφn

∣∣−∑∞m=1 cmλmσφm
〉〈∑∞

n=1 cnφn
∣∣σ∣∣∑∞m=1 cmφm

〉
Assuming that we can interchange summation and integration,

=

∑∞
n=1

∑∞
m=1 cncmλn〈φm|σ|φn〉∑∞

n=1

∑∞
m=1 cncm〈φm|σ|φn〉

=

∑∞
n=1 |cn|2λn〈φn|σ|φn〉∑∞
n=1 |cn|2〈φn|σ|φn〉

≤ λ1

∑∞
n=1 |cn|2〈φn|σ|φn〉∑∞
n=1 |cn|2〈φn|σ|φn〉

= λ1.

We see that the minimum value of Rayleigh’s quotient is λ1. The minimum is attained when cn = 0 for all n ≥ 2,
that is, when u = c1φ1.

Completeness. The set of the eigenfunctions of a regular Sturm-Liouville problem is complete. That is, any
piecewise continuous function defined on [a, b] can be expanded in a series of the eigenfunctions

f(x) ∼
∞∑
n=1

cnφn(x),

where the cn are the generalized Fourier coefficients

cn =
〈φn|σ|f〉
〈φn|σ|φn〉

.
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Here the sum is convergent in the mean. For any fixed x, the sum converges to 1
2
(f(x−) + f(x+)). If f(x) is

continuous and satisfies the boundary conditions, then the convergence is uniform.
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Result 31.2.1 Properties of regular Sturm-Liouville problems.

• The eigenvalues λ are real.

• There are an infinite number of eigenvalues

λ1 < λ2 < λ3 < · · · .

There is a least eigenvalue λ1 but there is no greatest eigenvalue, (λn → ∞ as
n→∞).

• For each eigenvalue, there is one unique, (to within a multiplicative constant), eigen-
function φn. The eigenfunctions can be chosen to be real-valued. (Assume the φn
following are real-valued.) The eigenfunction φn has exactly n− 1 zeros in the open
interval a < x < b.

• The eigenfunctions are orthogonal with respect to the weighting function σ(x).∫ b

a

φn(x)φm(x)σ(x) dx = 0 if n 6= m.

• The eigenfunctions are complete. Any piecewise continuous function f(x) defined
on a ≤ x ≤ b can be expanded in a series of eigenfunctions

f(x) ∼
∞∑
n=1

cnφn(x),

where

cn =

∫ b
a f(x)φn(x)σ(x) dx∫ b

a φ
2
n(x)σ(x) dx

.

The sum converges to 1
2(f(x−) + f(x+)).

• The eigenvalues can be related to the eigenfunctions with a formula known as the
Rayleigh quotient.

λn =

−pφn dφn
dx

∣∣∣b
a

+

∫ b

a

(
p
(

dφn
dx

)2
− qφ2

n

)
dx∫ b

a φ
2
nσ dx
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Example 31.2.1 A simple example of a Sturm-Liouville problem is

d

dx

(
dy

dx

)
+ λy = 0, y(0) = y(π) = 0.

Bounding The Least Eigenvalue. The Rayleigh quotient for the first eigenvalue is

λ1 =

∫ π
0

(φ′1)2 dx∫ π
0
φ2

1 dx
.

Immediately we see that the eigenvalues are non-negative. If
∫ π

0
(φ′1)2 dx = 0 then φ = (const). The only constant

that satisfies the boundary conditions is φ = 0. Since the trivial solution is not an eigenfunction, λ = 0 is not an
eigenvalue. Thus all the eigenvalues are positive.

Now we get an upper bound for the first eigenvalue.

λ1 = min
u

∫ π
0

(u′)2 dx∫ π
0
u2 dx

where u is continuous and satisfies the boundary conditions. We choose u = x(x− π) as a trial function.

λ1 ≤
∫ π

0
(u′)2 dx∫ π

0
u2 dx

=

∫ π
0

(2x− π)2 dx∫ π
0

(x2 − πx)2 dx

=
π3/3

π5/30

=
10

π2

≈ 1.013
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Finding the Eigenvalues and Eigenfunctions. We consider the cases of negative, zero, and positive eigen-
values to check our results above.

λ < 0. The general solution is

y = c e
√
−λx + d e−

√
−λx.

The only solution that satisfies the boundary conditions is the trivial solution, y = 0. Thus there are no
negative eigenvalues.

λ = 0. The general solution is

y = c+ dx.

Again only the trivial solution satisfies the boundary conditions, so λ = 0 is not an eigenvalue.

λ > 0. The general solution is

y = c cos(
√
λx) + d sin(

√
λx).

Applying the boundary conditions,

y(0) = 0 ⇒ c = 0

y(π) = 0 ⇒ d sin(
√
λπ) = 0

The nontrivial solutions are

√
λ = n = 1, 2, 3, . . . y = d sin(nπ).

Thus the eigenvalues and eigenfunctions are

λn = n2, φn = sin(nx), for n = 1, 2, 3, . . .
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We can verify that this example satisfies all the properties listed in Result 31.2.1. Note that there are an
infinite number of eigenvalues. There is a least eigenvalue λ1 = 1 but there is no greatest eigenvalue. For each
eigenvalue, there is one eigenfunction. The nth eigenfunction sin(nx) has n− 1 zeroes in the interval 0 < x < π.

Since a series of the eigenfunctions is the familiar Fourier sine series, we know that the eigenfunctions are
orthogonal and complete. Checking Rayleigh’s quotient,

λn =

−pφn dφn
dx

∣∣∣π
0

+

∫ π

0

(
p
(

dφn
dx

)2 − qφ2
n

)
dx∫ π

0
φ2
nσ dx

=

− sin(nx)d sin(nx)
dx

∣∣∣π
0

+

∫ π

0

((
d sin(nx)

dx

)2
)
dx∫ π

0
sin2(nx)dx

=

∫ π
0
n2 cos2(nx) dx

π/2

= n2.

Example 31.2.2 Consider the eigenvalue problem

x2y′′ + xy′ + y = µy, y(1) = y(2) = 0.

Since x2 > 0 on [1, 2], we can write this problem in terms of a regular Sturm-Liouville eigenvalue problem.
Dividing by x2,

y′′ +
1

x
y′ +

1

x2
(1− µ)y = 0.

We multiply by the factor exp(
∫ x 1

ξ
dξ) = exp(log x) = x and make the substitution, λ = 1 − µ to obtain the

Sturm-Liouville form

xy′′ + y′ + λ
1

x
y = 0

(xy′)′ + λ
1

x
y = 0.
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We see that the eigenfunctions will be orthogonal with respect to the weighting function σ = 1/x.
From the Rayleigh quotient,

λ =
−
[
pφφ′

]b
a

+ 〈φ′|x|φ′〉
〈φ| 1

x
|φ〉

=
〈φ′|x|φ′〉
〈φ| 1

x
|φ〉

.

If φ′ = 0, then only the trivial solution, φ = 0, satisfies the boundary conditions. Thus the eigenvalues λ are
positive.

Returning to the original problem We see that the eigenvalues, µ, satisfy µ < 1. Since this is an Euler equation,
the substitution y = xα yields

α(α− 1) + α + 1− µ = 0

α2 + 1− µ = 0.

Since µ < 1,

α = ±i
√

1− µ.

The general solution is

y = c1x
i
√

1−µ + c2x
−i
√

1−µ.

We know that the eigenfunctions can be written as real functions. We can rewrite the solution as

y = c1 ei
√

1−µ log x + c2 e−i
√

1−µ log x.

An equivalent form is

y = c1 cos(
√

1− µ log x) + c2 sin(
√

1− µ log x).

1304



Applying the boundary conditions,

y(1) = 0 ⇒ c1 = 0

y(2) = 0 ⇒ sin(
√

1− µ log 2) = 0

⇒
√

1− µ log 2 = nπ, for n = 1, 2, . . .

Thus the eigenvalues and eigenfunctions are

µn = 1−
(
nπ

log 2

)2

, φn = sin

(
nπ

log x

log 2

)
for n = 1, 2, . . .

31.3 Solving Differential Equations With Eigenfunction Expansions

Linear Algebra. Consider the eigenvalue problem,

Ax = λx.

If the matrix A has a complete, orthonormal set of eigenvectors {ξk} with eigenvalues {λk} then we can represent
any vector as a linear combination of the eigenvectors.

y =
n∑
k=1

akξk, ak = ξk · y

y =
n∑
k=1

(ξk · y) ξk

This property allows us to solve the inhomogeneous equation

Ax− µx = b. (31.1)

1305



Before we try to solve this equation, we should consider the existence/uniqueness of the solution. If µ is not an
eigenvalue, then the range of L ≡ A−µ is Rn. The problem has a unique solution. If µ is an eigenvalue, then the
null space of L is the span of the eigenvectors of µ. That is, if µ = λi, then nullspace (L) = span (ξi1 , ξi2 , . . . , ξim).
({ξi1 , ξi2 , . . . , ξim} are the eigenvalues of λi.) If b is orthogonal to nullspace (L) then Equation 31.1 has a solution,
but it is not unique. If y is a solution then we can add any linear combination of {ξij} to obtain another solution.
Thus the solutions have the form

x = y +
m∑
j=1

cjξij .

If b is not orthogonal to nullspace (L) then Equation 31.1 has no solution.
Now we solve Equation 31.1. We assume that µ is not an eigenvalue. We expand the solution x and the

inhomogeneity in the orthonormal eigenvectors.

x =
n∑
k=1

akξk, b =
n∑
k=1

bkξk

We substitute the expansions into Equation 31.1.

A
n∑
k=1

akξk − µ
n∑
k=1

akξk =
n∑
k=1

bkξk

n∑
k=1

akλkξk − µ
n∑
k=1

akξk =
n∑
k=1

bkξk

ak =
bk

λk − µ

The solution is

x =
n∑
k=1

bk
λk − µ

ξk.
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Inhomogeneous Boundary Value Problems. Consider the self-adjoint eigenvalue problem,

Ly = λy, a < x < b,

B1[y] = B2[y] = 0.

If the problem has a complete, orthonormal set of eigenfunctions {φk} with eigenvalues {λk} then we can represent
any square-integrable function as a linear combination of the eigenfunctions.

f =
∑
k

fkφk, fk = 〈φk|f〉 =

∫ b

a

φk(x)f(x) dx

f =
∑
k

〈φk|f〉φk

This property allows us to solve the inhomogeneous differential equation

Ly − µy = f, a < x < b, (31.2)

B1[y] = B2[y] = 0.

Before we try to solve this equation, we should consider the existence/uniqueness of the solution. If µ is not
an eigenvalue, then the range of L − µ is the space of square-integrable functions. The problem has a unique
solution. If µ is an eigenvalue, then the null space of L is the span of the eigenfunctions of µ. That is, if µ = λi,
then nullspace (L) = span (φi1 , φi2 , . . . , φim). ({φi1 , φi2 , . . . , φim} are the eigenvalues of λi.) If f is orthogonal to
nullspace (L− µ) then Equation 31.2 has a solution, but it is not unique. If u is a solution then we can add any
linear combination of {φij} to obtain another solution. Thus the solutions have the form

y = u+
m∑
j=1

cjφij .

If f is not orthogonal to nullspace (L− µ) then Equation 31.2 has no solution.
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Now we solve Equation 31.2. We assume that µ is not an eigenvalue. We expand the solution y and the
inhomogeneity in the orthonormal eigenfunctions.

y =
∑
k

ykφk, f =
∑
k

fkφk

It would be handy if we could substitute the expansions into Equation 31.2. However, the expansion of a function
is not necessarily differentiable. Thus we demonstrate that since y is C2(a . . . b) and satisfies the boundary
conditions B1[y] = B2[y] = 0, we are justified in substituting it into the differential equation. In particular, we
will show that

L[y] = L

[∑
k

ykφk

]
=
∑
k

ykL [φk] =
∑
k

ykλkφk.

To do this we will use Green’s identity. If u and v are C2(a . . . b) and satisfy the boundary conditions B1[y] =
B2[y] = 0 then

〈u|L[v]〉 = 〈L[u]|v〉.

First we assume that we can differentiate y term-by-term.

L[y] =
∑
k

ykλkφk

Now we directly expand L[y] and show that we get the same result.

L[y] =
∑
k

ckφk

ck = 〈φk|L[y]〉
= 〈L[φk]|y〉
= 〈λkφk|y〉
= λk〈φk|y〉
= λkyk
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L[y] =
∑
k

ykλφk

The series representation of y may not be differentiable, but we are justified in applying L term-by-term.
Now we substitute the expansions into Equation 31.2.

L

[∑
k

ykφk

]
− µ

∑
k

ykφk =
∑
k

fkφk∑
k

λkykφk − µ
∑
k

ykφk =
∑
k

fkφk

yk =
fk

λk − µ

The solution is

y =
∑
k

fk
λk − µ

φk

Consider a second order, inhomogeneous problem.

L[y] = f(x), B1[y] = b1, B2[y] = b2

We will expand the solution in an orthogonal basis.

y =
∑
n

anφn

We would like to substitute the series into the differential equation, but in general we are not allowed to differentiate
such series. To get around this, we use integration by parts to move derivatives from the solution y, to the φn.

Example 31.3.1 Consider the problem,

y′′ + αy = f(x), y(0) = a, y(π) = b,
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where α 6= n2, n ∈ Z+. We expand the solution in a cosine series.

y(x) =
y0√
π

+
∞∑
n=1

yn

√
2

π
cos(nx)

We also expand the inhomogeneous term.

f(x) =
f0√
π

+
∞∑
n=1

fn

√
2

π
cos(nx)

We multiply the differential equation by the orthonormal functions and integrate over the interval. We neglect
the special case φ0 = 1/

√
π for now.∫ π

0

√
2

π
cos(nx)y′′ dx+ α

∫ π

0

√
2

π
cos(nx)y dx =

∫ π

0

√
2

π
f(x) dx[√

2

π
cos(nx)y′(x)

]π
0

+

∫ π

0

√
2

π
n sin(nx)y′(x) dx+ αyn = fn√

2

π
((−1)ny′(π)− y′(0)) +

[√
2

π
n sin(nx)y(x)

]π
0

−
∫ π

0

√
2

π
n2 cos(nx)y(x) dx+ αyn = fn√

2

π
((−1)ny′(π)− y′(0))− n2yn + αyn = fn

Unfortunately we don’t know the values of y′(0) and y′(π).
CONTINUE HERE
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31.4 Exercises
Exercise 31.1
Find the eigenvalues and eigenfunctions of

y′′ + 2αy′ + λy = 0, y(a) = y(b) = 0,

where a < b.
Write the problem in Sturm Liouville form. Verify that the eigenvalues and eigenfunctions satisfy the properties

of regular Sturm-Liouville problems. Find the coefficients in the expansion of an arbitrary function f(x) in a series
of the eigenfunctions.
Hint, Solution

Exercise 31.2
Find the eigenvalues and eigenfunctions of the boundary value problem

y′′ +
λ

(z + 1)2
y = 0

on the interval 1 ≤ z ≤ 2 with boundary conditions y(1) = y(2) = 0. Discuss how the results confirm the concepts
presented in class relating to boundary value problems of this type.
Hint, Solution

Exercise 31.3
Find the eigenvalues and eigenfunctions of

y′′ +
2α + 1

x
y′ +

λ

x2
y = 0, y(a) = y(b) = 0,

where 0 < a < b. Write the problem in Sturm Liouville form. Verify that the eigenvalues and eigenfunctions
satisfy the properties of regular Sturm-Liouville problems. Find the coefficients in the expansion of an arbitrary
function f(x) in a series of the eigenfunctions.
Hint, Solution
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Exercise 31.4
Find the eigenvalues and eigenfunctions of

y′′ − y′ + λy = 0, y(0) = y(1) = 0.

Find the coefficients in the expansion of an arbitrary, f(x), in a series of the eigenfunctions.
Hint, Solution

Exercise 31.5
Find the eigenvalues and eigenfunctions for,

y′′ + λy = 0, y(0) = 0, y(1) + y′(1) = 0.

Show that the transcendental equation for λ has infinitely many roots λ1 < λ2 < λ3 < · · · . Find the limit of λn
as n→∞. How is this approached?
Hint, Solution

Exercise 31.6
Consider

y′′ + y = f(x) y(0) = 0 y(1) + y′(1) = 0.

Find the eigenfunctions for this problem and the equation which the eigenvalues satisfy. Give the general solution
in terms of these eigenfunctions.
Hint, Solution

Exercise 31.7
Show that the eigenvalue problem,

y′′ + λy = 0, y(0) = 0, y′(0)− y(1) = 0,
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(note the mixed boundary condition), has only one real eigenvalue. Find it and the corresponding eigenfunction.
Show that this problem is not self-adjoint. Thus the proof, valid for unmixed, homogeneous boundary conditions,
that all eigenvalues are real fails in this case.
Hint, Solution

Exercise 31.8
Determine the Rayleigh quotient, R[φ] for,

y′′ +
1

x
y′ + λy = 0, |y(0)| <∞, y(1) = 0.

Use the trial function φ = 1− x in R[φ] to deduce that the smallest zero of J0(x), the Bessel function of the first
kind and order zero, is less than

√
6.

Hint, Solution

Exercise 31.9
Discuss the eigenvalues of the equation

y′′ + λq(z)y = 0, y(0) = y(π) = 0

where

q(z) =

{
a > 0, 0 ≤ z ≤ l

b > 0, l < z ≤ π.

This is an example that indicates that the results we obtained in class for eigenfunctions and eigenvalues with
q(z) continuous and bounded also hold if q(z) is simply integrable; that is∫ π

0

|q(z)| dz

is finite.
Hint, Solution
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Exercise 31.10
1. Find conditions on the smooth real functions p(x), q(x), r(x) and s(x) so that the eigenvalues, λ, of:

Lv ≡ (p(x)v′′(x))′′ − (q(x)v′(x))′ + r(x)v(x) = λs(x)v(x), a < x < b

v(a) = v′′(a) = 0

v′′(b) = 0, p(b)v′′′(b)− q(b)v′(b) = 0

are positive. Prove the assertion.

2. Show that for any smooth p(x), q(x), r(x) and s(x) the eigenfunctions belonging to distinct eigenvalues are
orthogonal relative to the weight s(x). That is:∫ b

a

vm(x)vk(x)s(x) dx = 0 if λk 6= λm.

3. Find the eigenvalues and eigenfunctions for:

d4φ

dx4
= λφ,

{φ(0) = φ′′(0) = 0,
φ(1) = φ′′(1) = 0.

Hint, Solution
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31.5 Hints

Hint 31.1

Hint 31.2

Hint 31.3

Hint 31.4
Write the problem in Sturm-Liouville form to show that the eigenfunctions are orthogonal with respect to the
weighting function σ = e−x.

Hint 31.5
Note that the solution is a regular Sturm-Liouville problem and thus the eigenvalues are real. Use the Rayleigh
quotient to show that there are only positive eigenvalues. Informally show that there are an infinite number of
eigenvalues with a graph.

Hint 31.6

Hint 31.7
Find the solution for λ = 0, λ < 0 and λ > 0. A problem is self-adjoint if it satisfies Green’s identity.
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Hint 31.8
Write the equation in self-adjoint form. The Bessel equation of the first kind and order zero satisfies the problem,

y′′ +
1

x
y′ + y = 0, |y(0)| <∞, y(r) = 0,

where r is a positive root of J0(x). Make the change of variables ξ = x/r, u(ξ) = y(x).

Hint 31.9

Hint 31.10
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31.6 Solutions
Solution 31.1
Recall that constant coefficient equations are shift invariant. If u(x) is a solution, then so is u(x− c).

We substitute y = eγx into the constant coefficient equation.

y′′ + 2αy′ + λy = 0

γ2 + 2αγ + λ = 0

γ = −α±
√
α2 − λ

First we consider the case λ = α2. A set of solutions of the differential equation is{
e−αx, x e−αx

}
The homogeneous solution that satisfies the left boundary condition y(a) = 0 is

y = c(x− a) e−αx.

Since only the trivial solution with c = 0 satisfies the right boundary condition, λ = α2 is not an eigenvalue.
Next we consider the case λ 6= α2. We write

γ = −α± i
√
λ− α2.

Note that <(
√
λ− α2) ≥ 0. A set of solutions of the differential equation is{

e(−α±i
√
λ−α2)x

}
By taking the sum and difference of these solutions we obtain a new set of linearly independent solutions.{

e−αx cos
(√

λ− α2x
)
, e−αx sin

(√
λ− α2x

)}
The solution which satisfies the left boundary condition is

y = c e−αx sin
(√

λ− α2(x− a)
)
.
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For nontrivial solutions, the right boundary condition y(b) = 0 imposes the constraint

e−αb sin
(√

λ− α2(b− a)
)

= 0
√
λ− α2(b− a) = nπ, n ∈ Z

We have the eigenvalues

λn = α2 +

(
nπ

b− a

)2

, n ∈ Z

with the eigenfunctions

φn = e−αx sin

(
nπ

x− a
b− a

)
.

To write the problem in Sturm-Liouville form, we multiply by the integrating factor

e
∫

2αdx = e2αx.

(
e2αxy′

)′
+ λ e2αxy = 0, y(a) = y(b) = 0

Now we verify that the Sturm-Liouville properties are satisfied.

• The eigenvalues

λn = α2 +

(
nπ

b− a

)2

, n ∈ Z

are real.
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• There are an infinite number of eigenvalues

λ1 < λ2 < λ3 < · · · ,

α2 +

(
π

b− a

)2

< α2 +

(
2π

b− a

)2

< α2 +

(
3π

b− a

)2

< · · · .

There is a least eigenvalue

λ1 = α2 +

(
π

b− a

)2

,

but there is no greatest eigenvalue, (λn →∞ as n→∞).

• For each eigenvalue, we found one unique, (to within a multiplicative constant), eigenfunction φn. We were
able to choose the eigenfunctions to be real-valued. The eigenfunction

φn = e−αx sin

(
nπ

x− a
b− a

)
.

has exactly n− 1 zeros in the open interval a < x < b.

• The eigenfunctions are orthogonal with respect to the weighting function σ(x) = e2ax.∫ b

a

φn(x)φm(x)σ(x) dx =

∫ b

a

e−αx sin

(
nπ

x− a
b− a

)
e−αx sin

(
mπ

x− a
b− a

)
e2ax dx

=

∫ b

a

sin

(
nπ

x− a
b− a

)
sin

(
mπ

x− a
b− a

)
dx

=
b− a
π

∫ π

0

sin(nx) sin(mx) dx

=
b− a
2π

∫ π

0

(cos((n−m)x)− cos((n+m)x)) dx

= 0 if n 6= m
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• The eigenfunctions are complete. Any piecewise continuous function f(x) defined on a ≤ x ≤ b can be
expanded in a series of eigenfunctions

f(x) ∼
∞∑
n=1

cnφn(x),

where

cn =

∫ b
a
f(x)φn(x)σ(x) dx∫ b
a
φ2
n(x)σ(x) dx

.

The sum converges to 1
2
(f(x−) + f(x+)). (We do not prove this property.)

• The eigenvalues can be related to the eigenfunctions with the Rayleigh quotient.

λn =

[
−pφn dφn

dx

]b
a

+
∫ b
a

(
p
(

dφn
dx

)2 − qφ2
n

)
dx∫ b

a
φ2
nσ dx

=

∫ b
a

(
e2αx

(
e−αx

(
nπ
b−a cos

(
nπ x−a

b−a

)
− α sin

(
nπ x−a

b−a

)))2
)
dx∫ b

a

(
e−αx sin

(
nπ x−a

b−a

))2
e2αx dx

=

∫ b
a

((
nπ
b−a

)2
cos2

(
nπ x−a

b−a

)
− 2α nπ

b−a cos
(
nπ x−a

b−a

)
sin
(
nπ x−a

b−a

)
+ α2 sin2

(
nπ x−a

b−a

))
dx∫ b

a
sin2

(
nπ x−a

b−a

)
dx

=

∫ π
0

((
nπ
b−a

)2
cos2(x)− 2α nπ

b−a cos(x) sin(x) + α2 sin2(x)
)
dx∫ π

0
sin2(x) dx

= α2 +

(
nπ

b− a

)2
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Now we expand a function f(x) in a series of the eigenfunctions.

f(x) ∼
∞∑
n=1

cn e−αx sin

(
nπ

x− a
b− a

)
,

where

cn =

∫ b
a
f(x)φn(x)σ(x) dx∫ b
a
φ2
n(x)σ(x) dx

=
2n

b− a

∫ b

a

f(x) eαx sin

(
nπ

x− a
b− a

)
dx

Solution 31.2
This is an Euler equation. We substitute y = (z + 1)α into the equation.

y′′ +
λ

(z + 1)2
y = 0

α(α− 1) + λ = 0

α =
1±
√

1− 4λ

2

First consider the case λ = 1/4. A set of solutions is{√
z + 1,

√
z + 1 log(z + 1)

}
.

Another set of solutions is {√
z + 1,

√
z + 1 log

(
z + 1

2

)}
.
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The solution which satisfies the boundary condition y(1) = 0 is

y = c
√
z + 1 log

(
z + 1

2

)
.

Since only the trivial solution satisfies the y(2) = 0, λ = 1/4 is not an eigenvalue.

Now consider the case λ 6= 1/4. A set of solutions is{
(z + 1)(1+

√
1−4λ)/2, (z + 1)(1−

√
1−4λ)/2

}
.

We can write this in terms of the exponential and the logarithm.{√
z + 1 exp

(
i

√
4λ− 1

2
log(z + 1)

)
,
√
z + 1 exp

(
−i
√

4λ− 1

2
log(z + 1)

)}
.

Note that {√
z + 1 exp

(
i

√
4λ− 1

2
log

(
z + 1

2

))
,
√
z + 1 exp

(
−i
√

4λ− 1

2
log

(
z + 1

2

))}
.

is also a set of solutions. The new factor of 2 in the logarithm just multiplies the solutions by a constant. We
write the solution in terms of the cosine and sine.{√

z + 1 cos

(√
4λ− 1

2
log

(
z + 1

2

))
,
√
z + 1 sin

(√
4λ− 1

2
log

(
z + 1

2

))}
.

The solution of the differential equation which satisfies the boundary condition y(1) = 0 is

y = c
√
z + 1 sin

(√
1− 4λ

2
log

(
z + 1

2

))
.
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Now we use the second boundary condition to find the eigenvalues.

y(2) = 0

sin

(√
4λ− 1

2
log

(
3

2

))
= 0

√
4λ− 1

2
log

(
3

2

)
= nπ, n ∈ Z

λ =
1

4

(
1 +

(
2nπ

log(3/2)

)2
)
, n ∈ Z

n = 0 gives us a trivial solution, so we discard it. Discarding duplicate solutions, The eigenvalues and eigenfunc-
tions are

λn =
1

4
+

(
nπ

log(3/2)

)2

, yn =
√
z + 1 sin

(
nπ

log((z + 1)/2)

log(3/2)

)
, n ∈ Z+.

Now we verify that the eigenvalues and eigenfunctions satisfy the properties of regular Sturm-Liouville prob-
lems.

• The eigenvalues are real.

• There are an infinite number of eigenvalues

λ1 < λ2 < λ3 < · · ·
1

4
+

(
π

log(3/2)

)2

<
1

4
+

(
2π

log(3/2)

)2

<
1

4
+

(
3π

log(3/2)

)2

< · · ·

There is a least least eigenvalue

λ1 =
1

4
+

(
π

log(3/2)

)2

,

but there is no greatest eigenvalue.
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• The eigenfunctions are orthogonal with respect to the weighting function σ(z) = 1/(z + 1)2. Let n 6= m.∫ 2

1

yn(z)ym(z)σ(z) dz

=

∫ 2

1

√
z + 1 sin

(
nπ

log((z + 1)/2)

log(3/2)

)√
z + 1 sin

(
mπ

log((z + 1)/2)

log(3/2)

)
1

(z + 1)2
dz

=

∫ π

0

sin(nx) sin(mx)
log(3/2)

π
dx

=
log(3/2)

2π

∫ π

0

(cos((n−m)x)− cos((n+m)x)) dx

= 0

• The eigenfunctions are complete. A function f(x) defined on (1 . . . 2) has the series representation

f(x) ∼
∞∑
n=1

cnyn(x) =
∞∑
n=1

cn
√
z + 1 sin

(
nπ

log((z + 1)/2)

log(3/2)

)
,

where

cn =
〈yn|1/(z + 1)2|f〉
〈yn|1/(z + 1)2|yn〉

=
2

log(3/2)

∫ 2

1

sin

(
nπ

log((z + 1)/2)

log(3/2)

)
1

(z + 1)3/2
f(x) dz

Solution 31.3
Recall that Euler equations are scale invariant. If u(x) is a solution, then so is u(cx) for any nonzero constant c.

We substitute y = xγ into the Euler equation.

y′′ +
2α + 1

x
y′ +

λ

x2
y = 0

γ(γ − 1) + (2α + 1)γ + λ = 0

γ2 + 2αγ + λ = 0

γ = −α±
√
α2 − λ
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First we consider the case λ = α2. A set of solutions of the differential equation is{
x−α, x−α log x

}
The homogeneous solution that satisfies the left boundary condition y(a) = 0 is

y = cx−α(log x− log a) = cx−α log
(x
a

)
.

Since only the trivial solution with c = 0 satisfies the right boundary condition, λ = α2 is not an eigenvalue.
Next we consider the case λ 6= α2. We write

γ = −α± i
√
λ− α2.

Note that <(
√
λ− α2) ≥ 0. A set of solutions of the differential equation is{

x−α±i
√
λ−α2

}
{
x−α e±i

√
λ−α2 log x

}
.

By taking the sum and difference of these solutions we obtain a new set of linearly independent solutions.{
x−α cos

(√
λ− α2 log x

)
, x−α sin

(√
λ− α2 log x

)
,
}

The solution which satisfies the left boundary condition is

y = cx−α sin
(√

λ− α2 log
(x
a

))
.

For nontrivial solutions, the right boundary condition y(b) = 0 imposes the constraint

b−α sin

(√
λ− α2 log

(
b

a

))
√
λ− α2 log

(
b

a

)
= nπ, n ∈ Z
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We have the eigenvalues

λn = α2 +

(
nπ

log(b/a)

)2

, n ∈ Z

with the eigenfunctions

φn = x−α sin

(
nπ

log(x/a)

log(b/a)

)
.

To write the problem in Sturm-Liouville form, we multiply by the integrating factor

e
∫

(2α+1)/x dx = e(2α+1) log x = x2α+1.

(
x2α+1y′

)′
+ λx2α−1y = 0, y(a) = y(b) = 0

Now we verify that the Sturm-Liouville properties are satisfied.

• The eigenvalues

λn = α2 +

(
nπ

log(b/a)

)2

, n ∈ Z

are real.

• There are an infinite number of eigenvalues

λ1 < λ2 < λ3 < · · · ,

α2 +

(
π

log(b/a)

)2

< α2 +

(
2π

log(b/a)

)2

< α2 +

(
3π

log(b/a)

)2

< · · ·
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There is a least eigenvalue

λ1 = α2 +

(
π

log(b/a)

)2

,

but there is no greatest eigenvalue, (λn →∞ as n→∞).

• For each eigenvalue, we found one unique, (to within a multiplicative constant), eigenfunction φn. We were
able to choose the eigenfunctions to be real-valued. The eigenfunction

φn = x−α sin

(
nπ

log(x/a)

log(b/a)

)
.

has exactly n− 1 zeros in the open interval a < x < b.

• The eigenfunctions are orthogonal with respect to the weighting function σ(x) = x2α−1.∫ b

a

φn(x)φm(x)σ(x) dx =

∫ b

a

x−α sin

(
nπ

log(x/a)

log(b/a)

)
x−α sin

(
mπ

log(x/a)

log(b/a)

)
x2α−1 dx

=

∫ b

a

sin

(
nπ

log(x/a)

log(b/a)

)
sin

(
mπ

log(x/a)

log(b/a)

)
1

x
dx

=
log(b/a)

π

∫ π

0

sin(nx) sin(mx) dx

=
log(b/a)

2π

∫ π

0

(cos((n−m)x)− cos((n+m)x)) dx

= 0 if n 6= m

• The eigenfunctions are complete. Any piecewise continuous function f(x) defined on a ≤ x ≤ b can be
expanded in a series of eigenfunctions

f(x) ∼
∞∑
n=1

cnφn(x),
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where

cn =

∫ b
a
f(x)φn(x)σ(x) dx∫ b
a
φ2
n(x)σ(x) dx

.

The sum converges to 1
2
(f(x−) + f(x+)). (We do not prove this property.)

• The eigenvalues can be related to the eigenfunctions with the Rayleigh quotient.

λn =

[
−pφn dφn

dx

]b
a

+
∫ b
a

(
p
(

dφn
dx

)2 − qφ2
n

)
dx∫ b

a
φ2
nσ dx

=

∫ b
a

(
x2α+1

(
x−α−1

(
nπ

log(b/a)
cos
(
nπ log(x/a)

log(b/a)

)
− α sin

(
nπ log(x/a)

log(b/a)

)))2
)
dx∫ b

a

(
x−α sin

(
nπ log(x/a)

log(b/a)

))2

x2α−1 dx

=

∫ b
a

((
nπ

log(b/a)

)2

cos2 (·)− 2α nπ
log(b/a)

cos (·) sin (·) + α2 sin2 (·)
)
x−1 dx∫ b

a
sin2

(
nπ log(x/a)

log(b/a)

)
x−1 dx

=

∫ π
0

((
nπ

log(b/a)

)2

cos2(x)− 2α nπ
log(b/a)

cos(x) sin(x) + α2 sin2(x)

)
dx∫ π

0
sin2(x) dx

= α2 +

(
nπ

log(b/a)

)2

Now we expand a function f(x) in a series of the eigenfunctions.

f(x) ∼
∞∑
n=1

cnx
−α sin

(
nπ

log(x/a)

log(b/a)

)
,
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where

cn =

∫ b
a
f(x)φn(x)σ(x) dx∫ b
a
φ2
n(x)σ(x) dx

=
2n

log(b/a)

∫ b

a

f(x)xα−1 sin

(
nπ

log(x/a)

log(b/a)

)
dx

Solution 31.4

y′′ − y′ + λy = 0, y(0) = y(1) = 0.

The factor that will put this equation in Sturm-Liouville form is

F (x) = exp

(∫ x

−1 dx

)
= e−x.

The differential equation becomes

d

dx

(
e−xy′

)
+ λ e−xy = 0.

Thus we see that the eigenfunctions will be orthogonal with respect to the weighting function σ = e−x.
Substituting y = eαx into the differential equation yields

α2 − α + λ = 0

α =
1±
√

1− 4λ

2

α =
1

2
±
√

1/4− λ.
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If λ < 1/4 then the solutions to the differential equation are exponential and only the trivial solution satisfies
the boundary conditions.

If λ = 1/4 then the solution is y = c1 ex/2 + c2x ex/2 and again only the trivial solution satisfies the boundary
conditions.

Now consider the case that λ > 1/4.

α =
1

2
± i
√
λ− 1/4

The solutions are

ex/2 cos(
√
λ− 1/4 x), ex/2 sin(

√
λ− 1/4 x).

The left boundary condition gives us

y = c ex/2 sin(
√
λ− 1/4 x).

The right boundary condition demands that√
λ− 1/4 = nπ, n = 1, 2, . . .

Thus we see that the eigenvalues and eigenfunctions are

λn =
1

4
+ (nπ)2, yn = ex/2 sin(nπx).

If f(x) is a piecewise continuous function then we can expand it in a series of the eigenfunctions.

f(x) =
∞∑
n=1

an ex/2 sin(nπx)
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The coefficients are

an =

∫ 1

0
f(x) e−x ex/2 sin(nπx) dx∫ 1

0
e−x( ex/2 sin(nπx))2 dx

=

∫ 1

0
f(x) e−x/2 sin(nπx) dx∫ 1

0
sin2(nπx) dx

= 2

∫ 1

0

f(x) e−x/2 sin(nπx) dx.

Solution 31.5
Since this is a Sturm-Liouville problem, there are only real eigenvalues. By the Rayleigh quotient, the eigenvalues
are

λ =
−φdφ

dx

∣∣∣1
0

+
∫ 1

0

((
dφ
dx

)2
)
dx∫ 1

0
φ2 dx

,

λ =
φ2(1) +

∫ 1

0

((
dφ
dx

)2
)
dx∫ 1

0
φ2 dx

.

This demonstrates that there are only positive eigenvalues. The general solution of the differential equation for
positive, real λ is

y = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
.

The solution that satisfies the left boundary condition is

y = c sin
(√

λx
)
.
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For nontrivial solutions we must have

sin
(√

λ
)

+
√
λ cos

(√
λ
)

= 0

√
λ = − tan

(√
λ
)
.

The positive solutions of this equation are eigenvalues with corresponding eigenfunctions sin
(√

λx
)

. In Fig-

ure 31.1 we plot the functions x and − tan(x) and draw vertical lines at x = (n− 1/2)π, n ∈ N.

Figure 31.1: x and − tan(x).

From this we see that there are an infinite number of eigenvalues, λ1 < λ2 < λ3 < · · · . In the limit as n→∞,
λn → (n− 1/2)π. The limit is approached from above.

Solution 31.6
Consider the eigenvalue problem

y′′ + y = µy y(0) = 0 y(1) + y′(1) = 0.
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From Exercise 31.5 we see that the eigenvalues satisfy√
1− µ = − tan

(√
1− µ

)
and that there are an infinite number of eigenvalues. For large n, µn ≈ 1− (n− 1/2)π. The eigenfunctions are

φn = sin
(√

1− µnx
)
.

To solve the inhomogeneous problem, we expand the solution and the inhomogeneity in a series of the eigen-
functions.

f =
∞∑
n=1

fnφn, fn =

∫ 1

0
f(x)φn(x) dx∫ 1

0
φ2
n(x) dx

y =
∞∑
n=1

ynφn

We substitite the expansions into the differential equation to determine the coefficients.

y′′ + y = f
∞∑
n=1

µnynφn =
∞∑
n=1

fnφn

y =
∞∑
n=1

fn
µn

sin
(√

1− µnx
)

Solution 31.7
First consider λ = 0. The general solution is

y = c1 + c2x.
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y = cx satisfies the boundary conditions. Thus λ = 0 is an eigenvalue.
Now consider negative real λ. The general solution is

y = c1 cosh
(√
−λx

)
+ c2 sinh

(√
−λx

)
.

The solution that satisfies the left boundary condition is

y = c sinh
(√
−λx

)
.

For nontrivial solutions of the boundary value problem, there must be negative real solutions of

√
−λ− sinh

(√
−λ
)

= 0.

Since x = sinhx has no nonzero real solutions, this equation has no solutions for negative real λ. There are no
negative real eigenvalues.

Finally consider positive real λ. The general solution is

y = c1 cos
(√

λx
)

+ c2 sin
(√

λx
)
.

The solution that satisfies the left boundary condition is

y = c sin
(√

λx
)
.

For nontrivial solutions of the boundary value problem, there must be positive real solutions of

√
λ− sin

(√
λ
)

= 0.

Since x = sin x has no nonzero real solutions, this equation has no solutions for positive real λ. There are no
positive real eigenvalues.

There is only one real eigenvalue, λ = 0, with corresponding eigenfunction φ = x.
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The difficulty with the boundary conditions, y(0) = 0, y′(0)− y(1) = 0 is that the problem is not self-adjoint.
We demonstrate this by showing that the problem does not satisfy Green’s identity. Let u and v be two functions
that satisfy the boundary conditions, but not necessarily the differential equation.

〈u, L[v]〉 − 〈L[u], v〉 = 〈u, v′′〉 − 〈u′′, v〉
= [uv′]

1
0 − 〈u

′, v′〉 − 〈u′, v′〉 − [u′v]
1
0 + 〈u′, v′〉 − 〈u′, v′〉

= u(1)v′(1)− u′(1)v(1)

Green’s identity is not satisfied,

〈u, L[v]〉 − 〈L[u], v〉 6= 0;

The problem is not self-adjoint.

Solution 31.8
First we write the equation in formally self-adjoint form,

L[y] ≡ (xy′)′ = −λxy, |y(0)| <∞, y(1) = 0.

Let λ be an eigenvalue with corresponding eigenfunction φ. We derive the Rayleigh quotient for λ.

〈φ, L[φ]〉 = 〈φ,−λxφ〉
〈φ, (xφ′)′〉 = −λ〈φ, xφ〉

[φxφ′]
1
0 − 〈φ

′, xφ′〉 = −λ〈φ, xφ〉

We apply the boundary conditions and solve for λ.

λ =
〈φ′, xφ′〉
〈φ, xφ〉
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The Bessel equation of the first kind and order zero satisfies the problem,

y′′ +
1

x
y′ + y = 0, |y(0)| <∞, y(r) = 0,

where r is a positive root of J0(x). We make the change of variables ξ = x/r, u(ξ) = y(x) to obtain the problem

1

r2
u′′ +

1

rξ

1

r
u′ + u = 0, |u(0)| <∞, u(1) = 0,

u′′ +
1

ξ
u′ + r2u = 0, |u(0)| <∞, u(1) = 0.

Now r2 is the eigenvalue of the problem for u(ξ). From the Rayleigh quotient, the minimum eigenvalue obeys the
inequality

r2 ≤ 〈φ
′, xφ′〉
〈φ, xφ〉

,

where φ is any test function that satisfies the boundary conditions. Taking φ = 1− x we obtain,

r2 ≤
∫ 1

0
(−1)x(−1) dx∫ 1

0
(1− x)x(1− x) dx

= 6,

r ≤
√

6

Thus the smallest zero of J0(x) is less than or equal to
√

6 ≈ 2.4494. (The smallest zero of J0(x) is approximately
2.40483.)
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Solution 31.9
We assume that 0 < l < π.

Recall that the solution of a second order differential equation with piecewise continuous coefficient functions
is piecewise C2. This means that the solution is C2 except for a finite number of points where it is C1.

First consider the case λ = 0. A set of linearly independent solutions of the differential equation is {1, z}. The
solution which satisfies y(0) = 0 is y1 = c1z. The solution which satisfies y(π) = 0 is y2 = c2(π − z). There is a
solution for the problem if there are there are values of c1 and c2 such that y1 and y2 have the same position and
slope at z = l.

y1(l) = y2(l), y′1(l) = y′2(l)

c1l = c2(π − l), c1 = −c2

Since there is only the trivial solution, c1 = c2 = 0, λ = 0 is not an eigenvalue.
Now consider λ 6= 0. For 0 ≤ z ≤ l a set of linearly independent solutions is{

cos(
√
aλz), sin(

√
aλz)

}
.

The solution which satisfies y(0) = 0 is

y1 = c1 sin(
√
aλz).

For l < z ≤ π a set of linearly independent solutions is{
cos(
√
bλz), sin(

√
bλz)

}
.

The solution which satisfies y(π) = 0 is

y2 = c2 sin(
√
bλ(π − z)).

λ 6= 0 is an eigenvalue if there are nontrivial solutions of

y1(l) = y2(l), y′1(l) = y′2(l)

c1 sin(
√
aλl) = c2 sin(

√
bλ(π − l)), c1

√
aλ cos(

√
aλl) = −c2

√
bλ cos(

√
bλ(π − l))
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We divide the second equation by
√

(λ) since λ 6= 0 and write this as a linear algebra problem.(
sin(
√
aλl) − sin(

√
bλ(π − l))√

a cos(
√
aλl)

√
b sin(

√
bλ(π − l))

)(
c1

c2

)
=

(
0
0

)
This system of equations has nontrivial solutions if and only if the determinant of the matrix is zero.

√
b sin(

√
aλl) sin(

√
bλ(π − l)) +

√
a cos(

√
aλl) sin(

√
bλ(π − l)) = 0

We can use trigonometric identities to write this equation as

(
√
b−
√
a) sin

(√
λ(l
√
a− (π − l)

√
b)
)

+ (
√
b+
√
a) sin

(√
λ(l
√
a+ (π − l)

√
b)
)

= 0

Clearly this equation has an infinite number of solutions for real, positive λ. However, it is not clear that this
equation does not have non-real solutions. In order to prove that, we will show that the problem is self-adjoint.
Before going on to that we note that the eigenfunctions have the form

φn(z) =

{
sin
(√

aλnz
)

0 ≤ z ≤ l

sin
(√

bλn(π − z)
)

l < z ≤ π.

Now we prove that the problem is self-adjoint. We consider the class of functions which are C2 in (0 . . . π)
except at the interior point x = l where they are C1 and which satisfy the boundary conditions y(0) = y(π) = 0.
Note that the differential operator is not defined at the point x = l. Thus Green’s identity,

〈u|q|Lv〉 = 〈Lu|q|v〉

is not well-defined. To remedy this we must define a new inner product. We choose

〈u|v〉 ≡
∫ l

0

uv dx+

∫ π

l

uv dx.
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This new inner product does not require differentiability at the point x = l.

The problem is self-adjoint if Green’s indentity is satisfied. Let u and v be elements of our class of functions.
In addition to the boundary conditions, we will use the fact that u and v satisfy y(l−) = y(l+) and y′(l−) = y′(l+).

〈v|Lu〉 =

∫ l

0

vu′′ dx+

∫ π

l

vu′′ dx

= [vu′]
l
0 −

∫ l

0

v′u′ dx+ [vu′]
π
l −

∫ π

l

v′u′ dx

= v(l)u′(l)−
∫ l

0

v′u′ dx− v(l)u′(l)−
∫ π

l

v′u′ dx

= −
∫ l

0

v′u′ dx−
∫ π

l

v′u′ dx

= − [v′u]
l
0 +

∫ l

0

v′′u dx− [v′u]
π
l +

∫ π

l

v′′u dx

= −v′(l)u(l) +

∫ l

0

v′′u dx+ v′(l)u(l) +

∫ π

l

v′′u dx

=

∫ l

0

v′′u dx+

∫ π

l

v′′u dx

= 〈Lv|Lu〉

The problem is self-adjoint. Hence the eigenvalues are real. There are an infinite number of positive, real
eigenvalues λn.

Solution 31.10
1. Let v be an eigenfunction with the eigenvalue λ. We start with the differential equation and then take the
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inner product with v.

(pv′′)′′ − (qv′)′ + rv = λsv

〈v, (pv′′)′′ − (qv′)′ + rv〉 = 〈v, λsv〉

We use integration by parts and utilize the homogeneous boundary conditions.

[v(pv′′)′]
b
a − 〈v

′, (pv′′)′〉 − [vqv′]
b
a + 〈v′, qv′〉+ 〈v, rv〉 = λ〈v, sv〉

− [v′pv′′]
b
a + 〈v′′, pv′′〉+ 〈v′, qv′〉+ 〈v, rv〉 = λ〈v, sv〉

λ =
〈v′′, pv′′〉+ 〈v′, qv′〉+ 〈v, rv〉

〈v, sv〉

We see that if p, q, r, s ≥ 0 then the eigenvalues will be positive. (Of course we assume that p and s are not
identically zero.)

2. First we prove that this problem is self-adjoint. Let u and v be functions that satisfy the boundary conditions,
but do not necessarily satsify the differential equation.

〈v, L[u]〉 − 〈L[v], u〉 = 〈v, (pu′′)′′ − (qu′)′ + ru〉 − 〈(pv′′)′′ − (qv′)′ + rv, u〉

Following our work in part (a) we use integration by parts to move the derivatives.

= (〈v′′, pu′′〉+ 〈v′, qu′〉+ 〈v, ru〉)− (〈pv′′, u′′〉+ 〈qv′, u′〉+ 〈rv, u〉)
= 0

This problem satisfies Green’s identity,

〈v, L[u]〉 − 〈L[v], u〉 = 0,

and is thus self-adjoint.

1340



Let vk and vm be eigenfunctions corresponding to the distinct eigenvalues λk and λm. We start with Green’s
identity.

〈vk, L[vm]〉 − 〈L[vk], vm〉 = 0

〈vk, λmsvm〉 − 〈λksvk, vm〉 = 0

(λm − λk)〈vk, svm〉 = 0

〈vk, svm〉 = 0

The eigenfunctions are orthogonal with respect to the weighting function s.

3. From part (a) we know that there are only positive eigenvalues. The general solution of the differential
equation is

φ = c1 cos(λ1/4x) + c2 cosh(λ1/4x) + c3 sin(λ1/4x) + c4 sinh(λ1/4x).

Applying the condition φ(0) = 0 we obtain

φ = c1(cos(λ1/4x)− cosh(λ1/4x)) + c2 sin(λ1/4x) + c3 sinh(λ1/4x).

The condition φ′′(0) = 0 reduces this to

φ = c1 sin(λ1/4x) + c2 sinh(λ1/4x).

We substitute the solution into the two right boundary conditions.

c1 sin(λ1/4) + c2 sinh(λ1/4) = 0

−c1λ
1/2 sin(λ1/4) + c2λ

1/2 sinh(λ1/4) = 0

We see that sin(λ1/4) = 0. The eigenvalues and eigenfunctions are

λn = (nπ)4, φn = sin(nπx), n ∈ N.
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Chapter 32

Integrals and Convergence

Never try to teach a pig to sing. It wastes your time and annoys the pig.

-?

32.1 Uniform Convergence of Integrals

Consider the improper integral ∫ ∞
c

f(x, t) dt.

The integral is convergent to S(x) if, given any ε > 0, there exists T (x, ε) such that∣∣∣∣∫ τ

c

f(x, t) dt− S(x)

∣∣∣∣ < ε for all τ > T (x, ε).

The sum is uniformly convergent if T is independent of x.
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Similar to the Weierstrass M-test for infinite sums we have a uniform convergence test for integrals. If there
exists a continuous function M(t) such that |f(x, t)| ≤ M(t) and

∫∞
c
M(t) dt is convergent, then

∫∞
c
f(x, t) dt is

uniformly convergent.

If
∫∞
c
f(x, t) dt is uniformly convergent, we have the following properties:

• If f(x, t) is continuous for x ∈ [a, b] and t ∈ [c,∞) then for a < x0 < b,

lim
x→x0

∫ ∞
c

f(x, t) dt =

∫ ∞
c

(
lim
x→x0

f(x, t)

)
dt.

• If a ≤ x1 < x2 ≤ b then we can interchange the order of integration.∫ x2

x1

(∫ ∞
c

f(x, t) dt

)
dx =

∫ ∞
c

(∫ x2

x1

f(x, t) dx

)
dt

• If ∂f
∂x

is continuous, then

d

dx

∫ ∞
c

f(x, t) dt =

∫ ∞
c

∂

∂x
f(x, t) dt.

32.2 The Riemann-Lebesgue Lemma

Result 32.2.1 If
∫ b
a |f(x)| dx exists, then∫ b

a

f(x) sin(λx) dx→ 0 as λ→∞.
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Before we try to justify the Riemann-Lebesgue lemma, we will need a preliminary result. Let λ be a positive
constant. ∣∣∣∣∫ b

a

sin(λx) dx

∣∣∣∣ =

∣∣∣∣∣
[
−1

λ
cos(λx)

]b
a

∣∣∣∣∣
≤ 2

λ
.

We will prove the Riemann-Lebesgue lemma for the case when f(x) has limited total fluctuation on the interval
(a, b). We can express f(x) as the difference of two functions

f(x) = ψ+(x)− ψ−(x),

where ψ+ and ψ− are positive, increasing, bounded functions.
From the mean value theorem for positive, increasing functions, there exists an x0, a ≤ x0 ≤ b, such that∣∣∣∣∫ b

a

ψ+(x) sin(λx) dx

∣∣∣∣ =

∣∣∣∣ψ+(b)

∫ b

x0

sin(λx) dx

∣∣∣∣
≤ |ψ+(b)|2

λ
.

Similarly, ∣∣∣∣∫ b

a

ψ−(x) sin(λx) dx

∣∣∣∣ ≤ |ψ−(b)|2
λ
.

Thus ∣∣∣∣∫ b

a

f(x) sin(λx) dx

∣∣∣∣ ≤ 2

λ
(|ψ+(b)|+ |ψ−(b)|)

→ 0 as λ→∞.
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32.3 Cauchy Principal Value

32.3.1 Integrals on an Infinite Domain

The improper integral
∫∞
−∞ f(x) dx is defined∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ 0

a

f(x) dx+ lim
b→∞

∫ b

0

f(x) dx,

when these limits exist. The Cauchy principal value of the integral is defined

PV

∫ ∞
−∞

f(x) dx = lim
a→∞

∫ a

−a
f(x) dx.

The principal value may exist when the integral diverges.

Example 32.3.1
∫∞
−∞ x dx diverges, but

PV

∫ ∞
−∞

x dx = lim
a→∞

∫ a

−a
x dx = lim

a→∞
(0) = 0.

If the improper integral converges, then the Cauchy principal value exists and is equal to the value of the
integral. The principal value of the integral of an odd function is zero. If the principal value of the integral of an
even function exists, then the integral converges.

32.3.2 Singular Functions

Let f(x) have a singularity at x = 0. Let a and b satisfy a < 0 < b. The integral of f(x) is defined∫ b

a

f(x) dx = lim
ε1→0−

∫ ε1

a

f(x) dx+ lim
ε2→0+

∫ b

ε2

f(x) dx,
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when the limits exist. The Cauchy principal value of the integral is defined

PV

∫ b

a

f(x) dx = lim
ε→0+

(∫ −ε
a

f(x) dx+

∫ b

ε

f(x) dx

)
,

when the limit exists.

Example 32.3.2 The integral ∫ 2

−1

1

x
dx

diverges, but the principal value exists.

PV

∫ 2

−1

1

x
dx = lim

ε→0+

(∫ −ε
−1

1

x
dx+

∫ 2

ε

1

x
dx

)
= lim

ε→0+

(
−
∫ 1

ε

1

x
dx+

∫ 2

ε

1

x
dx

)
=

∫ 2

1

1

x
dx

= log 2
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Chapter 33

The Laplace Transform

33.1 The Laplace Transform

The Laplace transform of the function f(t) is defined

L[f(t)] =

∫ ∞
0

e−stf(t) dt,

for all values of s for which the integral exists. The Laplace transform of f(t) is a function of s which we will
denote f̂(s). 1

A function f(t) is of exponential order α if there exist constants t0 and M such that

|f(t)| < M eαt, for all t > t0.

If
∫ t0

0
f(t) dt exists and f(t) is of exponential order α then the Laplace transform F (s) exists for <(s) > α.

Here are a few examples of these concepts.

• sin t is of exponential order 0.

1Denoting the Laplace transform of f(t) as F (s) is also common.
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• t e2t is of exponential order α for any α > 2.

• et
2

is not of exponential order α for any α.

• tn is of exponential order α for any α > 0.

• t−2 does not have a Laplace transform as the integral diverges.

Example 33.1.1 Consider the Laplace transform of f(t) = 1. Since f(t) = 1 is of exponential order α for any
α > 0, the Laplace transform integral converges for <(s) > 0.

f̂(s) =

∫ ∞
0

e−st dt

=

[
−1

s
e−st

]∞
0

=
1

s

Example 33.1.2 The function f(t) = t et is of exponential order α for any α > 1. We compute the Laplace
transform of this function.

f̂(s) =

∫ ∞
0

e−stt et dt

=

∫ ∞
0

t e(1−s)t dt

=

[
1

1− s
t e(1−s)t

]∞
0

−
∫ ∞

0

1

1− s
e(1−s)t dt

= −
[

1

(1− s)2
e(1−s)t

]∞
0

=
1

(1− s)2
for <(s) > 1.
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Example 33.1.3 Consider the Laplace transform of the Heaviside function,

H(t− c) =

{
0 for t < c

1 for t > c,

where c > 0.

L[H(t− c)] =

∫ ∞
0

e−stH(t− c) dt

=

∫ ∞
c

e−st dt

=

[
e−st

−s

]∞
c

=
e−cs

s
for <(s) > 0

Example 33.1.4 Next consider H(t− c)f(t− c).

L[H(t− c)f(t− c)] =

∫ ∞
0

e−stH(t− c)f(t− c) dt

=

∫ ∞
c

e−stf(t− c) dt

=

∫ ∞
0

e−s(t+c)f(t) dt

= e−csf̂(s)

33.2 The Inverse Laplace Transform

The inverse Laplace transform in denoted

f(t) = L−1[f̂(s)].
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We compute the inverse Laplace transform with the Mellin inversion formula.

f(t) =
1

i2π

∫ α+i∞

α−i∞
estf̂(s) ds

Here α is a real constant that is to the right of the singularities of f̂(s).
To see why the Mellin inversion formula is correct, we take the Laplace transform of it. Assume that f(t) is

of exponential order α. Then α will be to the right of the singularities of f̂(s).

L[L−1[f̂(s)]] = L
[

1

i2π

∫ α+i∞

α−i∞
eztf̂(z) dz

]
=

∫ ∞
0

e−st
1

i2π

∫ α+i∞

α−i∞
eztf̂(z) dz dt

We interchange the order of integration.

=
1

i2π

∫ α+i∞

α−i∞
f̂(z)

∫ ∞
0

e(z−s)t dt dz

Since <(z) = α, the integral in t exists for <(s) > α.

=
1

i2π

∫ α+i∞

α−i∞

f̂(z)

s− z
dz

We would like to evaluate this integral by closing the path of integration with a semi-circle of radius R in the right
half plane and applying the residue theorem. However, in order for the integral along the semi-circle to vanish as
R → ∞, f̂(z) must vanish as |z| → ∞. If f̂(z) vanishes we can use the maximum modulus bound to show that
the integral along the semi-circle vanishes. This we assume that f̂(z) vanishes at infinity.

Consider the integral,

1

i2π

∮
C

f̂(z)

s− z
dz,
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Im(z)
α

Re(z)

+iR

α-iR

s

Figure 33.1: The Laplace Transform Pair Contour.

where C is the contour that starts at α− iR, goes straight up to α+ iR, and then follows a semi-circle back down
to α− iR. This contour is shown in Figure 33.1.

If s is inside the contour then

1

i2π

∮
C

f̂(z)

s− z
dz = f̂(s).

Note that the contour is traversed in the negative direction. Since f̂(z) decays as |z| → ∞, the semicircular
contribution to the integral will vanish as R→∞. Thus

1

i2π

∫ α+i∞

α−i∞

f̂(z)

s− z
dz = f̂(s).

Therefore, we have shown than

L[L−1[f̂(s)]] = F (s).
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f(t) and f̂(s) are known as Laplace transform pairs.

33.2.1 F(s) with Poles

Example 33.2.1 Consider the inverse Laplace transform of 1/s2. s = 1 is to the right of the singularity of 1/s2.

L−1

[
1

s2

]
=

1

i2π

∫ 1+i∞

1−i∞
est

1

s2
ds

Let BR be the contour starting at 1− iR and following a straight line to 1 + iR; let CR be the contour starting at
1 + iR and following a semicircular path down to 1− iR. Let C be the combination of BR and CR. This contour
is shown in Figure 33.2.

Im(s)
α

Re(s)

+iR

α-iR

BR

CR

Figure 33.2: The Path of Integration for the Inverse Laplace Transform.
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Consider the line integral on C for R > 1.

1

i2π

∮
C

est
1

s2
ds = Res

(
est

1

s2
, 0

)
=

d

ds
est
∣∣∣
s=0

= t

If t ≥ 0, the integral along CR vanishes as R→∞. We parameterize s.

s = 1 +R eiθ,
π

2
≤ θ ≤ 3π

2∣∣ est∣∣ =
∣∣∣ et(1+R eiθ)

∣∣∣ = et etR cos θ ≤ et

∣∣∣∣∫
CR

est
1

s2
ds

∣∣∣∣ ≤ ∫
CR

∣∣∣∣ est 1

s2

∣∣∣∣ ds

≤ πR et
1

(R− 1)2

→ 0 as R→∞

Thus the inverse Laplace transform of 1/s2 is

L−1

[
1

s2

]
= t, for t ≥ 0.

Let f̂(s) be analytic except for isolated poles at s1, s2, . . . , sN and let α be to the right of these poles. Also,
let f̂(s)→ 0 as |s| → ∞. Define BR to be the straight line from α− iR to α+ iR and CR to be the semicircular
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path from α + iR to α− iR. If R is large enough to enclose all the poles, then

1

i2π

∮
BR+CR

estF (s) ds =
N∑
n=1

Res ( estF (s), sn)

1

i2π

∫
BR

estF (s) ds =
N∑
n=1

Res ( estF (s), sn)− 1

i2π

∫
CR

estF (s) ds.

Now let’s examine the integral along CR. Let the maximum of |f̂(s)| on CR be MR. We can parameterize the
contour with s = α +R eiθ, π/2 < θ < 3π/2.

∣∣∣∣∫
CR

estF (s) ds

∣∣∣∣ =

∣∣∣∣∣
∫ 3π/2

π/2

et(α+R eiθ)f̂(α +R eiθ)Ri eiθ dθ

∣∣∣∣∣
≤
∫ 3π/2

π/2

eαt etR cos θRMR dθ

= RMR eαt
∫ π

0

e−tR sin θ dθ

If t ≥ 0 we can use Jordan’s Lemma to obtain,

< RMR eαt
π

tR
.

= MR eαt
π

t

We use that MR → 0 as R→∞.

→ 0 as R→∞
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Thus we have an expression for the inverse Laplace transform of f̂(s).

1

i2π

∫ α+i∞

α−i∞
estf̂(s) ds =

N∑
n=1

Res ( estf̂(s), sn)

L−1[f̂(s)] =
N∑
n=1

Res ( estf̂(s), sn)

Result 33.2.1 If f̂(s) is analytic except for poles at s1, s2, . . . , sN and f̂(s) → 0 as
|s| → ∞ then the inverse Laplace transform of f̂(s) is

f(t) = L−1[f̂(s)] =
N∑
n=1

Res ( estf̂(s), sn), for t > 0.

Example 33.2.2 Consider the inverse Laplace transform of 1
s3−s2 .

First we factor the denominator.

1

s3 − s2
=

1

s2

1

s− 1
.

Taking the inverse Laplace transform,

L−1

[
1

s3 − s3

]
= Res

(
est

1

s2

1

s− 1
, 0

)
+ Res

(
est

1

s2

1

s− 1
, 1

)
=

d

ds

est

s− 1

∣∣∣∣
s=0

+ et

=
−1

(−1)2
+

t

−1
+ et
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Thus we have that

L−1

[
1

s3 − s2

]
= et − t− 1, for t > 0.

Example 33.2.3 Consider the inverse Laplace transform of

s2 + s− 1

s3 − 2s2 + s− 2
.

We factor the denominator.

s2 + s− 1

(s− 2)(s− i)(s+ i)
.

Then we take the inverse Laplace transform.

L−1

[
s2 + s− 1

s3 − 2s2 + s− 2

]
= Res

(
est

s2 + s− 1

(s− 2)(s− i)(s+ i)
, 2

)
+ Res

(
est

s2 + s− 1

(s− 2)(s− i)(s+ i)
, i

)
+ Res

(
est

s2 + s− 1

(s− 2)(s− i)(s+ i)
,−i

)
= e2t + eit 1

i2
+ e−it−1

i2

Thus we have

L−1

[
s2 + s− 1

s3 − 2s2 + s− 2

]
= sin t+ e2t, for t > 0.
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33.2.2 f̂(s) with Branch Points

Example 33.2.4 Consider the inverse Laplace transform of 1√
s
.
√
s denotes the principal branch of s1/2. There

is a branch cut from s = 0 to s = −∞ and

1√
s

=
e−iθ/2

√
r
, for − π < θ < π.

Let α be any positive number. The inverse Laplace transform of 1√
s

is

f(t) =
1

i2π

∫ α+i∞

α−i∞
est

1√
s

ds.

We will evaluate the integral by deforming it to wrap around the branch cut. Consider the integral on the contour
shown in Figure 33.3. C+

R and C−R are circular arcs of radius R. B is the vertical line at <(s) = α joining the two
arcs. Cε is a semi-circle in the right half plane joining iε and −iε. L+ and L− are lines joining the circular arcs
at =(s) = ±ε.

Since there are no residues inside the contour, we have

1

i2π

(∫
B

+

∫
C+
R

+

∫
L+

+

∫
Cε

+

∫
L−

+

∫
C−R

)
est

1√
s

ds = 0.

We will evaluate the inverse Laplace transform for t > 0.

First we will show that the integral along C+
R vanishes as R→∞. As ε→ 0, we have∫

C+
R

· · · ds =

∫ π/2

π/2−δ
· · · dθ +

∫ π

π/2

· · · dθ.

The first integral vanishes by the maximum modulus bound. Note that the length of the path of integration is
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π/2−δ
CεL+

L-

-CR

RC+
B

−π/2+δ

Figure 33.3: Path of Integration for 1/
√
s

less than 2α.

∣∣∣∣∣
∫ π/2

π/2−δ
· · · dθ

∣∣∣∣∣ ≤
(

max
s∈C+

R

∣∣∣∣ est 1√
s

∣∣∣∣
)

(2α)

= eαt
1√
R

(2α)

→ 0 as R→∞

1358



The second integral vanishes by Jordan’s Lemma. A parameterization of C+
R is s = R eiθ.∣∣∣∣∫ π

π/2

eR eiθt 1√
R eiθ

dθ

∣∣∣∣ ≤ ∫ π

π/2

∣∣∣∣ eR eiθt 1√
R eiθ

∣∣∣∣ dθ

≤ 1√
R

∫ π

π/2

eR cos(θ)t dθ

≤ 1√
R

∫ π/2

0

e−Rt sin(φ) dφ

<
1√
R

π

2Rt

→ 0 as R→∞

We could show that the integral along C−R vanishes by the same method. Now we have

1

i2π

(∫
B

+

∫
L+

+

∫
Cε

+

∫
L−

)
est

1√
s

ds = 0.

We can show that the integral along Cε vanishes as ε→ 0 with the maximum modulus bound.∣∣∣∣∫
Cε

est
1√
s

ds

∣∣∣∣ ≤ (max
s∈Cε

∣∣∣∣ est 1√
s

∣∣∣∣) (πε)

< eεt
1√
ε
πε

→ 0 as ε→ 0

Now we can express the inverse Laplace transform in terms of the integrals along L+ and L−.

f(t) ≡ 1

i2π

∫ α+i∞

α−i∞
est

1√
s

ds = − 1

i2π

∫
L+

est
1√
s

ds− 1

i2π

∫
L−

est
1√
s

ds
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On L+, s = r eiπ, ds = eiπdr = −dr; on L−, s = r e−iπ, ds = e−iπdr = −dr. We can combine the integrals along
the top and bottom of the branch cut.

f(t) = − 1

i2π

∫ 0

∞
e−rt
−i√
r

(−1) dr − 1

i2π

∫ ∞
0

e−rt
i√
r

(−1) dr

=
1

i2π

∫ ∞
0

e−rt
i2√
r

dr

We make the change of variables x = rt.

=
1

π
√
t

∫ ∞
0

e−x
1√
x

dx

We recognize this integral as Γ(1/2).

=
1

π
√
t
Γ(1/2)

=
1√
πt

Thus the inverse Laplace transform of 1√
s

is

f(t) =
1√
πt
, for t > 0.

33.2.3 Asymptotic Behavior of F(s)

Consider the behavior of

f̂(s) =

∫ ∞
0

e−stf(t) dt
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as s → +∞. Assume that f(t) is analytic in a neighborhood of t = 0. Only the behavior of the integrand near
t = 0 will make a significant contribution to the value of the integral. As you move away from t = 0, the e−st

term dominates. Thus we could approximate the value of f̂(s) by replacing f(t) with the first few terms in its
Taylor series expansion about the origin.

f̂(s) ∼
∫ ∞

0

e−st
[
f(0) + tf ′(0) +

t2

2
f ′′(0) + · · ·

]
dt as s→ +∞

Using

L [tn] =
n!

sn+1

we obtain

f̂(s) ∼ f(0)

s
+
f ′(0)

s2
+
f ′′(0)

s3
+ · · · as s→ +∞.

Example 33.2.5 The Taylor series expansion of sin t about the origin is

sin t = t− t3

6
+O(t5).

Thus the Laplace transform of sin t has the behavior

L[sin t] ∼ 1

s2
− 1

s4
+O(s−6) as s→ +∞.
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We corroborate this by expanding L[sin t].

L[sin t] =
1

s2 + 1

=
s−2

1 + s−2

= s−2

∞∑
n=0

(−1)ns−2n

=
1

s2
− 1

s4
+O(s−6)

33.3 Properties of the Laplace Transform

In this section we will list several useful properties of the Laplace transform. If a result is not derived, it is shown
in the Problems section. Unless otherwise stated, assume that f(t) and g(t) are piecewise continuous and of
exponential order α.

• L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)]

• L[ ectf(t)] = F (s− c) for s > c+ α

• L[tnf(t)] = (−1)n dn

dsn
[f̂(s)] for n = 1, 2, . . .

• If
∫ β

0
f(t)
t

dt exists for positive β then

L
[
f(t)

t

]
=

∫ ∞
s

F (σ) dσ.

• L
[∫ t

0
f(τ) dτ

]
= f̂(s)

s
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• L
[

d
dt
f(t)

]
= sf̂(s)− f(0)

L
[

d2

dt2
f(t)

]
= s2f̂(s)− sf(0)− f ′(0)

To derive these formulas,

L
[

d

dt
f(t)

]
=

∫ ∞
0

e−stf ′(t) dt

=
[

e−stf(t)
]∞

0
−
∫ ∞

0

−s e−stf(t) dt

= −f(0) + sf̂(s)

L
[

d2

dt2
f(t)

]
= sL[f ′(t)]− f ′(0)

= s2f̂(s)− sf(0)− f ′(0)

• Let f(t) and g(t) be continuous. The convolution of f(t) and g(t) is defined

h(t) = (f ∗ g) =

∫ t

0

f(τ)g(t− τ) dτ =

∫ t

0

f(t− τ)g(τ) dτ

The convolution theorem states

ĥ(s) = f̂(s)ĝ(s).
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To show this,

ĥ(s) =

∫ ∞
0

e−st
∫ t

0

f(τ)g(t− τ) dτ dt

=

∫ ∞
0

∫ ∞
τ

e−stf(τ)g(t− τ) dt dτ

=

∫ ∞
0

e−sτf(τ)

∫ ∞
τ

e−s(t−τ)g(t− τ) dt dτ

=

∫ ∞
0

e−sτf(τ) dτ

∫ ∞
0

e−sηg(η) dη

= f̂(s)ĝ(s)

• If f(t) is periodic with period T then

L[f(t)] =

∫ T
0

e−stf(t) dt

1− e−sT
.

Example 33.3.1 Consider the inverse Laplace transform of 1
s3−s2 . First we factor the denominator.

1

s3 − s2
=

1

s2

1

s− 1

We know the inverse Laplace transforms of each term.

L−1

[
1

s2

]
= t, L−1

[
1

s− 1

]
= et
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We apply the convolution theorem.

L−1

[
1

s2

1

s− 1

]
=

∫ t

0

τ et−τ dτ

= et
[
−τ e−τ

]t
0
− et

∫ t

0

− e−τ dτ

= −t− 1 + et

L−1

[
1

s2

1

s− 1

]
= et − t− 1.

Example 33.3.2 We can find the inverse Laplace transform of

s2 + s− 1

s3 − 2s2 + s− 2

with the aid of a table of Laplace transform pairs. We factor the denominator.

s2 + s− 1

(s− 2)(s− i)(s+ i)

We expand the function in partial fractions and then invert each term.

s2 + s− 1

(s− 2)(s− i)(s+ i)
=

1

s− 2
− i/2

s− i
+

i/2

s+ i

s2 + s− 1

(s− 2)(s− i)(s+ i)
=

1

s− 2
+

1

s2 + 1

L−1

[
1

s− 2
+

1

s2 + 1

]
= e2t + sin t
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33.4 Constant Coefficient Differential Equations

Example 33.4.1 Consider the differential equation

y′ + y = cos t, for t > 0, y(0) = 1.

We take the Laplace transform of this equation.

sŷ(s)− y(0) + ŷ(s) =
s

s2 + 1

ŷ(s) =
s

(s+ 1)(s2 + 1)
+

1

s+ 1

ŷ(s) =
1/2

s+ 1
+

1

2

s+ 1

s2 + 1

Now we invert ŷ(s).

y(t) =
1

2
e−t +

1

2
cos t+

1

2
sin t, for t > 0

Notice that the initial condition was included when we took the Laplace transform.

One can see from this example that taking the Laplace transform of a constant coefficient differential equation
reduces the differential equation for y(t) to an algebraic equation for ŷ(s).

Example 33.4.2 Consider the differential equation

y′′ + y = cos(2t), for t > 0, y(0) = 1, y′(0) = 0.

We take the Laplace transform of this equation.

s2ŷ(s)− sy(0)− y′(0) + ŷ(s) =
s

s2 + 4

ŷ(s) =
s

(s2 + 1)(s2 + 4)
+

s

s2 + 1
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From the table of Laplace transform pairs we know

L−1

[
s

s2 + 1

]
= cos t, L−1

[
1

s2 + 4

]
=

1

2
sin(2t).

We use the convolution theorem to find the inverse Laplace transform of ŷ(s).

y(t) =

∫ t

0

1

2
sin(2τ) cos(t− τ) dτ + cos t

=
1

4

∫ t

0

sin(t+ τ) + sin(3τ − t) dτ + cos t

=
1

4

[
− cos(t+ τ)− 1

3
cos(3τ − t)

]t
0

+ cos t

=
1

4

(
− cos(2t) + cos t− 1

3
cos(2t) +

1

3
cos(t)

)
+ cos t

= −1

3
cos(2t) +

4

3
cos(t)

Alternatively, we can find the inverse Laplace transform of ŷ(s) by first finding its partial fraction expansion.

ŷ(s) =
s/3

s2 + 1
− s/3

s2 + 4
+

s

s2 + 1

= − s/3

s2 + 4
+

4s/3

s2 + 1

y(t) = −1

3
cos(2t) +

4

3
cos(t)

Example 33.4.3 Consider the initial value problem

y′′ + 5y′ + 2y = 0, y(0) = 1, y′(0) = 2.
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Without taking a Laplace transform, we know that since

y(t) = 1 + 2t+O(t2)

the Laplace transform has the behavior

ŷ(s) ∼ 1

s
+

2

s2
+O(s−3), as s→ +∞.

33.5 Systems of Constant Coefficient Differential Equations

The Laplace transform can be used to transform a system of constant coefficient differential equations into a
system of algebraic equations. This should not be surprising, as a system of differential equations can be written
as a single differential equation, and vice versa.

Example 33.5.1 Consider the set of differential equations

y′1 = y2

y′2 = y3

y′3 = −y3 − y2 − y1 + t3

with the initial conditions

y1(0) = y2(0) = y3(0) = 0.

We take the Laplace transform of this system.

sŷ1 − y1(0) = ŷ2

sŷ2 − y2(0) = ŷ3

sŷ3 − y3(0) = −ŷ3 − ŷ2 − ŷ1 +
6

s4
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The first two equations can be written as

ŷ1 =
ŷ3

s2

ŷ2 =
ŷ3

s
.

We substitute this into the third equation.

sŷ3 = −ŷ3 −
ŷ3

s
− ŷ3

s2
+

6

s4

(s3 + s2 + s+ 1)ŷ3 =
6

s2

ŷ3 =
6

s2(s3 + s2 + s+ 1)
.

We solve for ŷ1.

ŷ1 =
6

s4(s3 + s2 + s+ 1)

ŷ1 =
1

s4
− 1

s3
+

1

2(s+ 1)
+

1− s
2(s2 + 1)

We then take the inverse Laplace transform of ŷ1.

y1 =
t3

6
− t2

2
+

1

2
e−t +

1

2
sin t− 1

2
cos t.

We can find y2 and y3 by differentiating the expression for y1.

y2 =
t2

2
− t− 1

2
e−t +

1

2
cos t+

1

2
sin t

y3 = t− 1 +
1

2
e−t − 1

2
sin t+

1

2
cos t
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33.6 Exercises

Exercise 33.1
Find the Laplace transform of the following functions:

1. f(t) = eat

2. f(t) = sin(at)

3. f(t) = cos(at)

4. f(t) = sinh(at)

5. f(t) = cosh(at)

6. f(t) =
sin(at)

t

7. f(t) =

∫ t

0

sin(au)

u
du

8. f(t) =

{
1, 0 ≤ t < π

0, π ≤ t < 2π

and f(t+ 2π) = f(t) for t > 0. That is, f(t) is periodic for t > 0.

Hint, Solution

Exercise 33.2
Show that L[af(t) + bg(t)] = aL[f(t)] + bL[g(t)].
Hint, Solution
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Exercise 33.3
Show that if f(t) is of exponential order α,

L[ ectf(t)] = F (s− c) for s > c+ α.

Hint, Solution

Exercise 33.4
Show that

L[tnf(t)] = (−1)n
dn

dsn
[f̂(s)] for n = 1, 2, . . .

Hint, Solution

Exercise 33.5
Show that if

∫ β
0

f(t)
t

dt exists for positive β then

L
[
f(t)

t

]
=

∫ ∞
s

F (σ) dσ.

Hint, Solution

Exercise 33.6
Show that

L
[∫ t

0

f(τ) dτ

]
=
f̂(s)

s
.

Hint, Solution
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Exercise 33.7
Show that if f(t) is periodic with period T then

L[f(t)] =

∫ T
0

e−stf(t) dt

1− e−sT
.

Hint, Solution

Exercise 33.8
The function f(t) t ≥ 0, is periodic with period 2T ; i.e. f(t + 2T ) ≡ f(t), and is also odd with period T ; i.e.
f(t+ T ) = −f(t). Further, ∫ T

0

f(t) e−st dt = ĝ(s).

Show that the Laplace transform of f(t) is f̂(s) = ĝ(s)/(1 + e−sT ). Find f(t) such that f̂(s) = s−1 tanh(sT/2).
Hint, Solution

Exercise 33.9
Find the Laplace transform of tν , ν > −1 by two methods.

1. Assume that s is complex-valued. Make the change of variables z = st and use integration in the complex
plane.

2. Show that the Laplace transform of tν is an analytic function for <(s) > 0. Assume that s is real-valued.
Make the change of variables x = st and evaluate the integral. Then use analytic continuation to extend
the result to complex-valued s.

Hint, Solution
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Exercise 33.10 (mathematica/ode/laplace/laplace.nb)
Show that the Laplace transform of f(t) = ln t is

f̂(s) = − Log s

s
− γ

s
, where γ = −

∫ ∞
0

e−t ln t dt.

[ γ = 0.5772 . . . is known as Euler’s constant.]

Hint, Solution

Exercise 33.11
Find the Laplace transform of tν ln t. Write the answer in terms of the digamma function, ψ(ν) = Γ′(ν)/Γ(ν).
What is the answer for ν = 0?

Hint, Solution

Exercise 33.12
Find the inverse Laplace transform of

f̂(s) =
1

s3 − 2s2 + s− 2

with the following methods.

1. Expand f̂(s) using partial fractions and then use the table of Laplace transforms.

2. Factor the denominator into (s− 2)(s2 + 1) and then use the convolution theorem.

3. Use Result 33.2.1.

Hint, Solution
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Exercise 33.13
Solve the differential equation

y′′ + εy′ + y = sin t, y(0) = y′(0) = 0, 0 < ε� 1

using the Laplace transform. This equation represents a weakly damped, driven, linear oscillator.
Hint, Solution

Exercise 33.14
Solve the problem,

y′′ − ty′ + y = 0, y(0) = 0, y′(0) = 1,

with the Laplace transform.
Hint, Solution

Exercise 33.15
Prove the following relation between the inverse Laplace transform and the inverse Fourier transform,

L−1[f̂(s)] =
1

2π
ectF−1[f̂(c+ iω)],

where c is to the right of the singularities of f̂(s).
Hint, Solution

Exercise 33.16 (mathematica/ode/laplace/laplace.nb)
Show by evaluating the Laplace inversion integral that if

f̂(s) =
(π
s

)1/2

e−2(as)1/2

, s1/2 =
√
s for s > 0,
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then f(t) = e−a/t/
√
t. Hint: cut the s-plane along the negative real axis and deform the contour onto the cut.

Remember that
∫∞

0
e−ax

2
cos(bx) dx =

√
π/4a e−b

2/4a.
Hint, Solution

Exercise 33.17 (mathematica/ode/laplace/laplace.nb)
Use Laplace transforms to solve the initial value problem

d4y

dt4
− y = t, y(0) = y′(0) = y′′(0) = y′′′(0) = 0.

Hint, Solution

Exercise 33.18 (mathematica/ode/laplace/laplace.nb)
Solve, by Laplace transforms,

dy

dt
= sin t+

∫ t

0

y(τ) cos(t− τ) dτ, y(0) = 0.

Hint, Solution

Exercise 33.19 (mathematica/ode/laplace/laplace.nb)
Suppose u(t) satisfies the difference-differential equation

du

dt
+ u(t)− u(t− 1) = 0, t ≥ 0,

and the ‘initial condition’ u(t) = u0(t), −1 ≤ t ≤ 0, where u0(t) is given. Show that the Laplace transform û(s)
of u(t) satisfies

û(s) =
u0(0)

1 + s− e−s
+

e−s

1 + s− e−s

∫ 0

−1

e−stu0(t) dt.
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Find u(t), t ≥ 0, when u0(t) = 1. Check the result.

Hint, Solution

Exercise 33.20
Let the function f(t) be defined by

f(t) =

{
1 0 ≤ t < π

0 π ≤ t < 2π,

and for all positive values of t so that f(t+ 2π) = f(t). That is, f(t) is periodic with period 2π. Find the solution
of the intial value problem

d2y

dt2
− y = f(t); y(0) = 1, y′(0) = 0.

Examine the continuity of the solution at t = nπ, where n is a positive integer, and verify that the solution is
continuous and has a continuous derivative at these points.

Hint, Solution

Exercise 33.21
Use Laplace transforms to solve

dy

dt
+

∫ t

0

y(τ) dτ = e−t, y(0) = 1.

Hint, Solution
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Exercise 33.22
An electric circuit gives rise to the system

L
di1
dt

+Ri1 + q/C = E0

L
di2
dt

+Ri2 − q/C = 0

dq

dt
= i1 − i2

with initial conditions

i1(0) = i2(0) =
E0

2R
, q(0) = 0.

Solve the system by Laplace transform methods and show that

i1 =
E0

2R
+

E0

2ωL
e−αt sin(ωt)

where

α =
R

2L
and ω2 =

2

LC
− α2.

Hint, Solution
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33.7 Hints

Hint 33.1
Use the differentiation and integration properties of the Laplace transform where appropriate.

Hint 33.2

Hint 33.3

Hint 33.4
If the integral is uniformly convergent and ∂g

∂s
is continuous then

d

ds

∫ b

a

g(s, t) dt =

∫ b

a

∂

∂s
g(s, t) dt

Hint 33.5

∫ ∞
s

e−tx dt =
1

x
e−sx

Hint 33.6
Use integration by parts.
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Hint 33.7

∫ ∞
0

e−stf(t) dt =

∫ ∞
n=0

(n+1)T∑
nT

e−stf(t) dt

The sum can be put in the form of a geometric series.

∞∑
n=0

αn =
1

1− α
, for |α| < 1

Hint 33.8

Hint 33.9
Write the answer in terms of the Gamma function.

Hint 33.10

Hint 33.11

Hint 33.12
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Hint 33.13

Hint 33.14

Hint 33.15

Hint 33.16

Hint 33.17

Hint 33.18

Hint 33.19

Hint 33.20
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Hint 33.21

Hint 33.22
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33.8 Solutions
Solution 33.1

1.

L
[

eat
]

=

∫ ∞
0

e−st eat dt

=

∫ ∞
0

e−(s−a)t dt

=

[
− e−(s−a)t

s− a

]∞
0

, for <(s) > <(a)

L
[

eat
]

=
1

s− a

2.

L[sin(at)] =

∫ ∞
0

e−st sin(at) dt

=
1

2i

∫ ∞
0

(
e(−s+ia)t − e(−s−ia)t

)
dt

=
1

2i

[
− e(−s+ia)t

s− ia
+

e(−s−ia)t

s+ ia

]∞
0

=
1

2i

(
1

s− ia
− 1

s+ ia

)

L[sin(at)] =
a

s2 + a2
.
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3.

L[cos(at)] = L
[

d

dt

sin(at)

a

]
= sL

[
sin(at)

a

]
− sin(0)

L[cos(at)] =
s

s2 + a2

4.

L[sinh(at)] =

∫ ∞
0

e−st sinh(at) dt

=
1

2

∫ ∞
0

(
e(−s+a)t − e(−s−a)t

)
dt

=
1

2

[
− e(−s+a)t

s− a
+

e(−s−a)t

s+ a

]∞
0

, for <(s) > |<(a)|

=
1

2

(
1

s− a
− 1

s+ a

)

L[sinh(at)] =
a

s2 − a2
, for <(s) > |<(a)|

5.

L[cosh(at)] = L
[

d

dt

sinh(at)

a

]
= sL

[
sinh(at)

a

]
− sinh(0)
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L[cosh(at)] =
s

s2 − a2

6. First note that

L
[

sin(at)

t

]
(s) =

∫ ∞
s

L[sin(at)](σ) dσ.

Now we use the Laplace transform of sin(at) to compute the Laplace transform of sin(at)/t.

L
[

sin(at)

t

]
=

∫ ∞
s

a

σ2 + a2
dσ

=

∫ ∞
s

1

(σ/a)2 + 1

dσ

a

=
[
arctan

(σ
a

)]∞
s

=
π

2
− arctan

(s
a

)

L
[

sin(at)

t

]
= arctan

(a
s

)
7.

L
[∫ t

0

sin(aτ)

τ
dτ

]
=

1

s
L
[

sin(at)

t

]

L
[∫ t

0

sin(aτ)

τ
dτ

]
=

1

s
arctan

(a
s

)
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8.

L[f(t)] =

∫ 2π

0
e−stf(t) dt

1− e−2πs

=

∫ π
0

e−st dt

1− e−2πs

=
1− e−πs

s(1− e−2πs)

L[f(t)] =
1

s(1 + e−πs)

Solution 33.2

L[af(t) + bg(t)] =

∫ ∞
0

e−st
(
af(t) + bg(t)

)
dt

= a

∫ ∞
0

e−stf(t) dt+ b

∫ ∞
0

e−stg(t) dt

= aL[f(t)] + bL[g(t)]

Solution 33.3
If f(t) is of exponential order α, then ectf(t) is of exponential order c+ α.

L[ ectf(t)] =

∫ ∞
0

e−st ectf(t) dt

=

∫ ∞
0

e−(s−c)tf(t) dt

= f̂(s− c) for s > c+ α
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Solution 33.4
First consider the Laplace transform of t0f(t).

L[t0f(t)] = f̂(s)

Now consider the Laplace transform of tnf(t) for n ≥ 1.

L[tnf(t)] =

∫ ∞
0

e−sttnf(t) dt

= − d

ds

∫ ∞
0

e−sttn−1f(t) dt

= − d

ds
L[tn−1f(t)]

Thus we have a difference equation for the Laplace transform of tnf(t) with the solution

L[tnf(t)] = (−1)n
dn

dsn
L[t0f(t)] for n ∈ Z0+,

L[tnf(t)] = (−1)n
dn

dsn
f̂(s) for n ∈ Z0+.

Solution 33.5
If
∫ β

0
f(t)
t

dt exists for positive β and f(t) is of exponential order α then the Laplace transform of f(t)/t is defined
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for s > α.

L
[
f(t)

t

]
=

∫ ∞
0

e−st
1

t
f(t) dt

=

∫ ∞
0

∫ ∞
s

e−σt dσ f(t) dt

=

∫ ∞
s

∫ ∞
0

e−σtf(t) dt dσ

=

∫ ∞
s

f̂(σ) dσ

Solution 33.6

L
[∫ t

0

f(τ) dτ

]
=

∫ ∞
0

e−st
∫ t

0

f(τ) dτ dx

=

[
− e−st

s

∫ t

0

f(τ) dτ

]∞
0

−
∫ ∞

0

− e−st

s

d

dt

[∫ t

0

f(τ) dτ

]
dt

=
1

s

∫ ∞
0

e−stf(t) dt

=
1

s
f̂(s)
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Solution 33.7
f(t) is periodic with period T .

L[f(t)] =

∫ ∞
0

e−stf(t) dt

=

∫ T

0

e−stf(t) dt+

∫ 2T

T

e−stf(t) dt+ · · ·

=
∞∑
n=0

∫ (n+1)T

nT

e−stf(t) dt

=
∞∑
n=0

∫ T

0

e−s(t+nT )f(t+ nT ) dt

=
∞∑
n=0

e−snT
∫ T

0

e−stf(t) dt

=

∫ T

0

e−stf(t) dt
∞∑
n=0

e−snT

=

∫ T
0

e−stf(t) dt

1− e−sT
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Solution 33.8

f̂(s) =

∫ ∞
0

e−stf(t) dt

=
n∑
0

∫ (n+1)T

nT

e−stf(t) dt

=
n∑
0

∫ T

0

e−s(t+nT )f(t+ nT ) dt

=
n∑
0

e−snT
∫ T

0

e−st(−1)nf(t) dt

=

∫ T

0

e−stf(t) dt
n∑
0

(−1)n
(

e−sT
)n

f̂(s) =
ĝ(s)

1 + e−sT
, for <(s) > 0

Consider f̂(s) = s−1 tanh(sT/2).

s−1 tanh(sT/2) = s−1 esT/2 − e−sT/2

esT/2 + e−sT/2

= s−1 1− e−sT

1 + e−sT

We have

ĝ(s) ≡
∫ T

0

f(t) e−st dt =
1− e−st

s
.

1389



By inspection we see that this is satisfied for f(t) = 1 for 0 < t < T . We conclude:

f(t) =

{
1 for t ∈ [2nT . . . (2n+ 1)T ),

−1 for t ∈ [(2n+ 1)T . . . (2n+ 2)T ),

where n ∈ Z.

Solution 33.9
The Laplace transform of tν , ν > −1 is

f̂(s) =

∫ ∞
0

e−sttν dt.

Assume s is complex-valued. The integral converges for <(s) > 0 and ν > −1.

Method 1. We make the change of variables z = st.

f̂(s) =

∫
C

e−z
(z
s

)ν 1

s
dz

= s−(ν+1)

∫
C

e−zzν dz

C is the path from 0 to ∞ along arg(z) = arg(s). (Shown in Figure 33.4).

Since the integrand is analytic in the domain ε < r < R, 0 < θ < arg(s), the integral along the boundary of
this domain vanishes. (∫ R

ε

+

∫ R ei arg(s)

R

+

∫ ε ei arg(s)

R ei arg(s)

+

∫ ε

ε ei arg(s)

)
e−zzν dz = 0
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Im(z)

Re(z)
arg(s)

Figure 33.4: The Path of Integration.

We show that the integral along CR, the circular arc of radius R, vanishes as R→∞ with the maximum modulus
integral bound. ∣∣∣∣∫

CR

e−zzν dz

∣∣∣∣ ≤ R| arg(s)|max
z∈CR

∣∣ e−zzν∣∣
= R| arg(s)| e−R cos(arg(s))Rν

→ 0 as R→∞.

The integral along Cε, the circular arc of radius ε, vanishes as ε → 0. We demonstrate this with the maximum
modulus integral bound. ∣∣∣∣∫

Cε

e−zzν dz

∣∣∣∣ ≤ ε| arg(s)|max
z∈Cε

∣∣ e−zzν∣∣
= ε| arg(s)| e−ε cos(arg(s))εν

→ 0 as ε→ 0.
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Taking the limit as ε→ 0 and R→∞, we see that the integral along C is equal to the integral along the real
axis. ∫

C

e−zzν dz =

∫ ∞
0

e−zzν dz

We can evaluate the Laplace transform of tν in terms of this integral.

L [tν ] = s−(ν+1)

∫ ∞
0

e−ttν dt

L [tν ] =
Γ(ν + 1)

s−(ν+1)

In the case that ν is a non-negative integer ν = n > −1 we can write this in terms of the factorial.

L [tn] =
n!

s−(n+1)

Method 2. First note that the integral

f̂(s) =

∫ ∞
0

e−sttν dt

exists for <(s) > 0. It converges uniformly for <(s) ≥ c > 0. On this domain of uniform convergence we can
interchange differentiation and integration.

df̂

ds
=

d

ds

∫ ∞
0

e−sttν dt

=

∫ ∞
0

∂

∂s

(
e−sttν

)
dt

=

∫ ∞
0

−t e−sttν dt

= −
∫ ∞

0

e−sttν+1 dt
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Since f̂ ′(s) is defined for <(s) > 0, f̂(s) is analytic for <(s) > 0.

Let σ be real and positive. We make the change of variables x = σt.

f̂(σ) =

∫ ∞
0

e−x
(x
σ

)ν 1

σ
dx

= σ−(ν+1)

∫ ∞
0

e−xxν dx

=
Γ(ν + 1)

σν+1

Note that the function

f̂(s) =
Γ(ν + 1)

sν+1

is the analytic continuation of f̂(σ). Thus we can define the Laplace transform for all complex s in the right half
plane.

f̂(s) =
Γ(ν + 1)

sν+1

Solution 33.10
Note that f̂(s) is an analytic function for <(s) > 0. Consider real-valued s > 0. By definition, f̂(s) is

f̂(s) =

∫ ∞
0

e−st ln t dt.
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We make the change of variables x = st.

f̂(s) =

∫ ∞
0

e−x ln
(x
s

) dx

s

=
1

s

∫ ∞
0

e−x (lnx− ln s) dx

= − ln |s|
s

∫ ∞
0

e−x dx+
1

s

∫ ∞
0

e−x lnx dx

= − ln s

s
− γ

s
, for real s > 0

The analytic continuation of f̂(s) into the right half-plane is

f̂(s) = − Log s

s
− γ

s
.

Solution 33.11
Define

f̂(s) = L[tν ln t] =

∫ ∞
0

e−sttν ln t dt.

This integral defines f̂(s) for <(s) > 0. Note that the integral converges uniformly for <(s) ≥ c > 0. On this
domain we can interchange differentiation and integration.

f̂ ′(s) =

∫ ∞
0

∂

∂s

(
e−sttν ln t

)
dt = −

∫ ∞
0

t e−sttν Log t dt

Since f̂ ′(s) also exists for <(s) > 0, f̂(s) is analytic in that domain.

1394



Let σ be real and positive. We make the change of variables x = σt.

f̂(σ) = L [tν ln t]

=

∫ ∞
0

e−σttν ln t dt

=

∫ ∞
0

e−x
(x
σ

)ν
ln
x

σ

1

σ
dx

=
1

σν+1

∫ ∞
0

e−xxν(lnx− lnσ) dx

=
1

σν+1

(∫ ∞
0

e−xxν lnx dx− lnσ

∫ ∞
0

e−xxν dx

)
=

1

σν+1

(∫ ∞
0

∂

∂ν

(
e−xxν

)
dx− lnσΓ(ν + 1)

)
=

1

σν+1

(
d

dν

∫ ∞
0

e−xxν dx− lnσΓ(ν + 1)

)
=

1

σν+1

(
d

dν
Γ(ν + 1)− lnσΓ(ν + 1)

)
=

1

σν+1
Γ(ν + 1)

(
Γ′(ν + 1)

Γ(ν + 1)
− lnσ

)
=

1

σν+1
Γ(ν + 1) (ψ(ν + 1)− lnσ)

Note that the function

f̂(s) =
1

sν+1
Γ(ν + 1) (ψ(ν + 1)− ln s)

is an analytic continuation of f̂(σ). Thus we can define the Laplace transform for all s in the right half plane.

L[tν ln t] =
1

sν+1
Γ(ν + 1) (ψ(ν + 1)− ln s) for <(s) > 0.
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For the case ν = 0, we have

L[ln t] =
1

s1
Γ(1) (ψ(1)− ln s)

L[ln t] =
−γ − ln s

s
,

where γ is Euler’s constant

γ =

∫ ∞
0

e−x lnx dx = 0.5772156629 . . .

Solution 33.12
Method 1. We factor the denominator.

f̂(s) =
1

(s− 2)(s2 + 1)
=

1

(s− 2)(s− i)(s+ i)

We expand the function in partial fractions and simplify the result.

1

(s− 2)(s− i)(s+ i)
=

1/5

s− 2
− (1− i2)/10

s− i
− (1 + i2)/10

s+ i

f̂(s) =
1

5

1

s− 2
− 1

5

s+ 2

s2 + 1

We use a table of Laplace transforms to do the inversion.

L[ e2t] =
1

s− 2
, L[cos t] =

s

s2 + 1
, L[sin t] =

1

s2 + 1

f(t) =
1

5

(
e2t − cos t− 2 sin t

)
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Method 2. We factor the denominator.

f̂(s) =
1

s− 2

1

s2 + 1

From a table of Laplace transforms we note

L[ e2t] =
1

s− 2
, L[sin t] =

1

s2 + 1
.

We apply the convolution theorem.

f(t) =

∫ t

0

sin τ e2(t−τ) dτ

f(t) =
1

5

(
e2t − cos t− 2 sin t

)
Method 3. We factor the denominator.

f̂(s) =
1

(s− 2)(s− i)(s+ i)

f̂(s) is analytic except for poles and vanishes at infinity.

f(t) =
∑

sn=2,i,−i

Res

(
est

(s− 2)(s− i)(s+ i)
, sn

)
=

e2t

(2− i)(2 + i)
+

eit

(i− 2)(i2)
+

e−it

(−i− 2)(−i2)

=
e2t

5
+

(−1 + i2) eit

10
+

(−1− i2) e−it

10

=
e2t

5
+− eit + e−it

10
+ i

eit − e−it

5
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f(t) =
1

5

(
e2t − cos t− 2 sin t

)

Solution 33.13

y′′ + εy′ + y = sin t, y(0) = y′(0) = 0, 0 < ε� 1

We take the Laplace transform of this equation.

(s2ŷ(s)− sy(0)− y′(0)) + ε(sŷ(s)− y(0)) + ŷ(s) = L[sin(t)]

(s2 + εs+ 1)ŷ(s) = L[sin(t)]

ŷ(s) =
1

s2 + εs+ 1
L[sin(t)]

ŷ(s) =
1

(s+ ε
2
)2 + 1− ε2

4

L[sin(t)]

We use a table of Laplace transforms to find the inverse Laplace transform of the first term.

L−1

[
1

(s+ ε
2
)2 + 1− ε2

4

]
=

1√
1− ε2

4

e−εt/2 sin

(√
1− ε2

4
t

)

We define

α =

√
1− ε2

4
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to get rid of some clutter. Now we apply the convolution theorem to invert 2 ŷs.

y(t) =

∫ t

0

1

α
e−ετ/2 sin (ατ ) sin(t− τ) dτ

y(t) = e−εt/2
(

1

ε
cos (αt) +

1

2α
sin (αt)

)
− 1

ε
cos t

The solution is plotted in Figure 33.5 for ε = 0.05.

20 40 60 80 100

-15

-10

-5

5

10

15

Figure 33.5: The Weakly Damped, Driven Oscillator

2Evaluate the convolution integral by inspection.
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Solution 33.14
We consider the solutions of

y′′ − ty′ + y = 0, y(0) = 0, y′(0) = 1

which are of exponential order α for any α > 0. We take the Laplace transform of the differential equation.

s2ŷ − 1 +
d

ds
(sŷ) + ŷ = 0

ŷ′ +

(
s+

2

s

)
ŷ =

1

s

ŷ(s) =
1

s2
+ c

e−s
2/2

s2

We use that

ŷ(s) ∼ y(0)

s
+
y′(0)

s2
+ · · ·

to conclude that c = 0.

ŷ(s) =
1

s2

y(t) = t

Solution 33.15

L−1[f̂(s)] =
1

i2π

∫ c+i∞

c−i∞
estf̂(s) ds

First we make the change of variable s = c+ σ.

L−1[f̂(s)] =
1

i2π
ect
∫ i∞

−i∞
eσtF (c+ σ) dσ
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Then we make the change of variable σ = iω.

L−1[f̂(s)] =
1

2π
ect
∫ ∞
−∞

eiωtF (c+ iω) dω

L−1[f̂(s)] =
1

2π
ectF−1[F (c+ iω)]

Solution 33.16
We assume that <(a) ≥ 0. We are considering the principal branch of the square root: s1/2 =

√
s. There is a

branch cut on the negative real axis. f̂(s) is singular at s = 0 and along the negative real axis. Let α be any

positive number. The inverse Laplace transform of
(
π
s

)1/2
e−2(as)1/2

is

f(t) =
1

i2π

∫ α+i∞

α−i∞
est
(π
s

)1/2

e−2(as)1/2

ds.

We will evaluate the integral by deforming it to wrap around the branch cut. Consider the integral on the
contour shown in Figure 33.6. C+

R and C−R are circular arcs of radius R. B is the vertical line at <(s) = α joining
the two arcs. Cε is a semi-circle in the right half plane joining iε and −iε. L+ and L− are lines joining the circular
arcs at =(s) = ±ε.

Since there are no residues inside the contour, we have

1

i2π

(∫
B

+

∫
C+
R

+

∫
L+

+

∫
Cε

+

∫
L−

+

∫
C−R

)
est
(π
s

)1/2

e−2(as)1/2

ds = 0.

We will evaluate the inverse Laplace transform for t > 0.
First we will show that the integral along C+

R vanishes as R → ∞. We parametrize the path of integration
with s = R eiθ and write the integral along C+

R as the sum of two integrals.∫
C+
R

· · · ds =

∫ π/2

π/2−δ
· · · dθ +

∫ π

π/2

· · · dθ
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π/2−δ
CεL+

L-

-CR

RC+
B

−π/2+δ

Figure 33.6: Path of Integration

The first integral vanishes by the maximum modulus bound. Note that the length of the path of integration is
less than 2α.

∣∣∣∣∣
∫ π/2

π/2−δ
· · · dθ

∣∣∣∣∣ ≤
(

max
θ∈[π/2−δ...π/2]

∣∣∣∣ est (πs)1/2

e−2(as)1/2

∣∣∣∣) (2α)

= eαt
√
π√
R

(2α)

→ 0 as R→∞
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The second integral vanishes by Jordan’s Lemma.∣∣∣∣∫ π

π/2

eR eiθt

√
π√

R eiθ
e−2
√
aR eiθ

dθ

∣∣∣∣ ≤ ∫ π

π/2

∣∣∣∣ eR eiθt

√
π√

R eiθ
e−2
√
a
√
R eiθ/2

∣∣∣∣ dθ

≤
√
π√
R

∫ π

π/2

eR cos(θ)t dθ

≤
√
π√
R

∫ π/2

0

e−Rt sin(φ) dφ

<

√
π√
R

π

2Rt

→ 0 as R→∞

We could show that the integral along C−R vanishes by the same method.
Now we have

1

i2π

(∫
B

+

∫
L+

+

∫
Cε

+

∫
L−

)
est
(π
s

)1/2

e−2(as)1/2

ds = 0.

We show that the integral along Cε vanishes as ε→ 0 with the maximum modulus bound.∣∣∣∣∫
Cε

est
(π
s

)1/2

e−2(as)1/2

ds

∣∣∣∣ ≤ (max
s∈Cε

∣∣∣∣ est (πs)1/2

e−2(as)1/2

∣∣∣∣) (πε)

≤ eεt
√
π√
ε
πε

→ 0 as ε→ 0.

Now we can express the inverse Laplace transform in terms of the integrals along L+ and L−

f(t) ≡ 1

i2π

∫ α+i∞

α−i∞
est
(π
s

)1/2

e−2(as)1/2

ds

= − 1

i2π

∫
L+

est
(π
s

)1/2

e−2(as)1/2

ds− 1

i2π

∫
L−

est
(π
s

)1/2

e−2(as)1/2

ds.
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On L+, s = r eiπ, ds = eiπdr = −dr; on L−, s = r e−iπ, ds = e−iπdr = −dr. We can combine the integrals along
the top and bottom of the branch cut.

f(t) = − 1

i2π

∫ 0

∞
e−rt
√
π

i
√
r

e−i2
√
a
√
r(− dr)− 1

i2π

∫ ∞
0

e−rt
√
π

−i
√
r

ei2
√
a
√
r(− dr)

=
1

2
√
π

∫ ∞
0

e−rt
1√
r

(
e−i2

√
a
√
r + ei2

√
a
√
r
)

dr

=
1

2
√
π

∫ ∞
0

1√
r

e−rt2 cos
(
2
√
a
√
r
)

dr

We make the change of variables x =
√
r.

=
1√
π

∫ ∞
0

1

x
e−tx

2

cos
(
2
√
ax
)

2x dx

=
2√
π

∫ ∞
0

e−tx
2

cos
(
2
√
ax
)

dx

=
2√
π

√
π

4t
e−4a/(4t)

=
e−a/t√
t

Thus the inverse Laplace transform is

f(t) =
e−a/t√
t

Solution 33.17
We consider the problem

d4y

dt4
− y = t, y(0) = y′(0) = y′′(0) = y′′′(0) = 0.
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We take the Laplace transform of the differential equation.

s4ŷ(s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)− ŷ(s) =
1

s2

s4ŷ(s)− ŷ(s) =
1

s2

ŷ(s) =
1

s2(s4 − 1)

There are several ways in which we could carry out the inverse Laplace transform to find y(t). We could expand
the right side in partial fractions and then use a table of Laplace transforms. Since the function is analytic except
for isolated singularities and vanishes as s→∞ we could use the result,

L−1[f̂(s)] =
N∑
n=1

Res
(

estf̂(s), sn

)
,

where {sk}nk=1 are the singularities of f̂(s). Since we can write the function as a product of simpler terms we
could also apply the convolution theorem.

We will first do the inverse Laplace transform by expanding the function in partial fractions to obtain simpler
rational functions.

1

s2(s4 − 1)
=

1

s2(s− 1)(s+ 1)(s− i)(s+ i)

=
a

s2
+
b

s
+

c

s− 1
+

d

s+ 1
+

e

s− i
+

f

s+ i
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a =

[
1

s4 − 1

]
s=0

= −1

b =

[
d

ds

1

s4 − 1

]
s=0

= 0

c =

[
1

s2(s+ 1)(s− i)(s+ i)

]
s=1

=
1

4

d =

[
1

s2(s− 1)(s− i)(s+ i)

]
s=−1

= −1

4

e =

[
1

s2(s− 1)(s+ 1)(s+ i)

]
s=i

= −i
1

4

f =

[
1

s2(s− 1)(s+ 1)(s− i)

]
s=−i

= i
1

4

Now we have simple functions that we can look up in a table.

ŷ(s) = − 1

s2
+

1/4

s− 1
− 1/4

s+ 1
+

1/2

s2 + 1

y(t) =

(
−t+

1

4
et − 1

4
e−t +

1

2
sin t

)
H(t)

y(t) =

(
−t+

1

2
(sinh t+ sin t)

)
H(t)

We can also do the inversion with the convolution theorem.

1

s2(s4 − 1)
=

1

s2

1

s2 + 1

1

s2 − 1
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From a table of Laplace transforms we know,

L−1

[
1

s2

]
= t,

L−1

[
1

s2 + 1

]
= sin t,

L−1

[
1

s2 − 1

]
= sinh t.

Now we use the convolution theorem to find the solution for t > 0.

L−1

[
1

s4 − 1

]
=

∫ t

0

sinh(τ) sin(t− τ) dτ

=
1

2
(sinh t− sin t)

L−1

[
1

s2(s4 − 1)

]
=

∫ t

0

1

2
(sinh τ − sin τ) (t− τ) dτ

= −t+
1

2
(sinh t+ sin t)
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Solution 33.18

dy

dt
= sin t+

∫ t

0

y(τ) cos(t− τ) dτ

sŷ(s)− y(0) =
1

s2 + 1
+ ŷ(s)

s

s2 + 1

(s3 + s)ŷ(s)− sŷ(s) = 1

ŷ(s) =
1

s3

y(t) =
t2

2

Solution 33.19
The Laplace transform of u(t− 1) is

L[u(t− 1)] =

∫ ∞
0

e−stu(t− 1) dt

=

∫ ∞
−1

e−s(t+1)u(t) dt

= e−s
∫ 0

−1

e−stu(t) dt+ e−s
∫ ∞

0

e−stu(t) dt

= e−s
∫ 0

−1

e−stu0(t) dt+ e−sû(s).
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We take the Laplace transform of the difference-differential equation.

sû(s)− u(0) + û(s)− e−s
∫ 0

−1

e−stu0(t) dt+ e−sû(s) = 0

(1 + s− e−s)û(s) = u0(0) + e−s
∫ 0

−1

e−stu0(t) dt

û(s) =
u0(0)

1 + s− e−s
+

e−s

1 + s− e−s

∫ 0

−1

e−stu0(t) dt

Consider the case u0(t) = 1.

û(s) =
1

1 + s− e−s
+

e−s

1 + s− e−s

∫ 0

−1

e−st dt

û(s) =
1

1 + s− e−s
+

e−s

1 + s− e−s

(
−1

s
+

1

s
es
)

û(s) =
1/s+ 1− e−s/s

1 + s− e−s

û(s) =
1

s

u(t) = 1

Clearly this solution satisfies the difference-differential equation.

Solution 33.20
We consider the problem,

d2y

dt2
− y = f(t), y(0) = 1, y′(0) = 0,
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where f(t) is periodic with period 2π and is defined by,

f(t) =

{
1 0 ≤ t < π,

0 π ≤ t < 2π.

We take the Laplace transform of the differential equation.

s2ŷ(s)− sy(0)− y′(0)− ŷ(s) = f̂(s)

s2ŷ(s)− s− ŷ(s) = f̂(s)

ŷ(s) =
s

s2 − 1
+

f̂(s)

s2 − 1

By inspection, (of a table of Laplace transforms), we see that

L−1

[
s

s2 − 1

]
= cosh(t)H(t),

L−1

[
1

s2 − 1

]
= sinh(t)H(t).

Now we use the convolution theorem.

L−1

[
f̂(s)

s2 − 1

]
=

∫ t

0

f(τ) sinh(t− τ) dτ

The solution for positive t is

y(t) = cosh(t) +

∫ t

0

f(τ) sinh(t− τ) dτ.
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Clearly the solution is continuous because the integral of a bounded function is continuous. The first derivative
of the solution is

y′(t) = sinh t+ f(t) sinh(0) +

∫ t

0

f(τ) cosh(t− τ) dτ

y′(t) = sinh t+

∫ t

0

f(τ) cosh(t− τ) dτ

We see that the first derivative is also continuous.

Solution 33.21
We consider the problem

dy

dt
+

∫ t

0

y(τ) dτ = e−t, y(0) = 1.

We take the Laplace transform of the equation and solve for ŷ.

sŷ − y(0) +
ŷ

s
=

1

s+ 1

ŷ =
s(s+ 2)

(s+ 1)(s2 + 1)

We expand the right side in partial fractions.

ŷ = − 1

2(s+ 1)
+

1 + 3s

2(s2 + 1)

We use a table of Laplace transforms to do the inversion.

y = −1

2
e−t +

1

2
(sin(t) + 3 cos(t))

1411



Solution 33.22
We consider the problem

L
di1
dt

+Ri1 + q/C = E0

L
di2
dt

+Ri2 − q/C = 0

dq

dt
= i1 − i2

i1(0) = i2(0) =
E0

2R
, q(0) = 0.

We take the Laplace transform of the system of differential equations.

L

(
ŝi1 −

E0

2R

)
+Rî1 +

q̂

C
=
E0

s

L

(
ŝi2 −

E0

2R

)
+Rî2 −

q̂

C
= 0

sq̂ = î1 − î2

We solve for î1, î2 and q̂.

î1 =
E0

2

(
1

Rs
+

1/L

s2 +Rs/L + 2/(CL)

)
î2 =

E0

2

(
1

Rs
− 1/L

s2 +Rs/L + 2/(CL)

)
q̂ =

CE0

2

(
1

s
− s+R/L

s2 +Rs/L + 2/(CL)

)
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We factor the polynomials in the denominators.

î1 =
E0

2

(
1

Rs
+

1/L

(s+ α− iω)(s+ α + iω)

)
î2 =

E0

2

(
1

Rs
− 1/L

(s+ α− iω)(s+ α + iω)

)
q̂ =

CE0

2

(
1

s
− s+ 2α

(s+ α− iω)(s+ α + iω)

)
Here we have defined

α =
R

2L
and ω2 =

2

LC
− α2.

We expand the functions in partial fractions.

î1 =
E0

2

(
1

Rs
+

i

2ωL

(
1

s+ α + iω
− 1

s+ α− iω

))
î2 =

E0

2

(
1

Rs
− i

2ωL

(
1

s+ α + iω
− 1

s+ α− iω

))
q̂ =

CE0

2

(
1

s
+

i

2ω

(
α + iω

s+ α− iω
− α− iω

s+ α + iω

))
Now we can do the inversion with a table of Laplace transforms.

i1 =
E0

2

(
1

R
+

i

2ωL

(
e(−α−iω)t − e(−α+iω)t

))
i2 =

E0

2

(
1

R
− i

2ωL

(
e(−α−iω)t − e(−α+iω)t

))
q =

CE0

2

(
1 +

i

2ω

(
(α + iω) e(−α+iω)t − (α− iω) e(−α−iω)t

))
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We simplify the expressions to obtain the solutions.

i1 =
E0

2

(
1

R
+

1

ωL
e−αt sin(ωt)

)
i2 =

E0

2

(
1

R
− 1

ωL
e−αt sin(ωt)

)
q =

CE0

2

(
1− e−αt

(
cos(ωt) +

α

ω
sin(ωt)

))
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Chapter 34

The Fourier Transform

34.1 Derivation from a Fourier Series

Consider the eigenvalue problem

y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L).

The eigenvalues and eigenfunctions are

λn =
(nπ
L

)2

for n ∈ Z0+

φn =
π

L
einπx/L, for n ∈ Z

The eigenfunctions form an orthogonal set. A piecewise continuous function defined on [−L . . . L] can be expanded
in a series of the eigenfunctions.

f(x) ∼
∞∑

n=−∞

cn
π

L
einπx/L
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The Fourier coefficients are

cn =

〈
π
L

einπx/L
∣∣∣f(x)

〉
〈
π
L

einπx/L

∣∣∣ πL einπx/L
〉

=
1

2π

∫ L

−L
e−inπx/Lf(x) dx.

We substitute the expression for cn into the series for f(x).

f(x) ∼
∞∑

n=−∞

[
1

2L

∫ L

−L
e−inπξ/Lf(ξ) dξ

]
einπx/L.

We let ωn = nπ/L and ∆ω = π/L.

f(x) ∼
∞∑

ωn=−∞

[
1

2π

∫ L

−L
e−iωnξf(ξ) dξ

]
eiωnx∆ω.

In the limit as L→∞, (and thus ∆ω → 0), the sum becomes an integral.

f(x) ∼
∫ ∞
−∞

[
1

2π

∫ ∞
−∞

e−iωξf(ξ) dξ

]
eiωx dω.

Thus the expansion of f(x) for finite L

f(x) ∼
∞∑

n=−∞

cn
π

L
einπx/L

cn =
1

2π

∫ L

−L
e−inπx/Lf(x) dx

1416



in the limit as L→∞ becomes

f(x) ∼
∫ ∞
−∞

f̂(ω) eiωx dω

f̂(ω) =
1

2π

∫ ∞
−∞

f(x) e−iωx dx.

Of course this derivation is only heuristic. In the next section we will explore these formulas more carefully.

34.2 The Fourier Transform

Let f(x) be piecewise continuous and let
∫∞
−∞ |f(x)| dx exist. We define the function I(x, L).

I(x, L) =
1

2π

∫ L

−L

(∫ ∞
−∞

f(ξ) eiωξ dξ

)
e−iωx dω.

Since the integral in parentheses is uniformly convergent, we can interchange the order of integration.

=
1

2π

∫ ∞
−∞

(∫ L

−L
f(ξ) eiω(ξ−x) dω

)
dξ

=
1

2π

∫ ∞
−∞

[
f(ξ)

eiω(ξ−x)

i(ξ − x)

]L
−L

dξ

=
1

2π

∫ ∞
−∞

f(ξ)
1

i(ξ − x)

(
eiL(ξ−x) − e−iL(ξ−x)

)
dξ

=
1

π

∫ ∞
−∞

f(ξ)
sin(L(ξ − x))

ξ − x
dξ

=
1

π

∫ ∞
−∞

f(ξ + x)
sin(Lξ)

ξ
dξ.
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In Example 34.3.3 we will show that ∫ ∞
0

sin(Lξ)

ξ
dξ =

π

2
.

Continuous Functions. Suppose that f(x) is continuous.

f(x) =
1

π

∫ ∞
−∞

f(x)
sin(Lξ)

ξ
dξ

I(x, L)− f(x) =
1

π

∫ ∞
−∞

f(x+ ξ)− f(x)

ξ
sin(Lξ) dξ.

If f(x) has a left and right derivative at x then f(x+ξ)−f(x)
ξ

is bounded and
∫∞
−∞

∣∣∣f(x+ξ)−f(x)
ξ

∣∣∣ dξ <∞. We use the

Riemann-Lebesgue lemma to show that the integral vanishes as L→∞.

1

π

∫ ∞
−∞

f(x+ ξ)− f(x)

ξ
sin(Lξ) dξ → 0 as L→∞.

Now we have an identity for f(x).

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(ξ) eiωξ dξ

)
e−iωx dω.

Piecewise Continuous Functions. Now consider the case that f(x) is only piecewise continuous.

f(x+)

2
=

1

π

∫ ∞
0

f(x+)
sin(Lξ)

ξ
dξ

f(x−)

2
=

1

π

∫ 0

−∞
f(x−)

sin(Lξ)

ξ
dξ
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I(x, L)− f(x+) + f(x−)

2
=

∫ 0

−∞

(
f(x+ ξ)− f(x−)

ξ

)
sin(Lξ) dξ

−
∫ ∞

0

(
f(x+ ξ)− f(x+)

ξ

)
sin(Lξ) dξ

If f(x) has a left and right derivative at x, then

f(x+ ξ)− f(x−)

ξ
is bounded for ξ ≤ 0, and

f(x+ ξ)− f(x+)

ξ
is bounded for ξ ≥ 0.

Again using the Riemann-Lebesgue lemma we see that

f(x+) + f(x−)

2
=

1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(ξ) eiωξ dξ

)
e−iωx dω.
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Result 34.2.1 Let f(x) be piecewise continuous with
∫∞
−∞ |f(x)| dx < ∞. The Fourier

transform of f(x) is defined

f̂(ω) = F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx.

We see that the integral is uniformly convergent. The inverse Fourier transform is defined

f(x+) + f(x−)

2
= F−1[f̂(ω)] =

∫ ∞
−∞

f̂(ω) eiωx dω.

If f(x) is continuous then this reduces to

f(x) = F−1[f̂(ω)] =

∫ ∞
−∞

f̂(ω) eiωx dω.

34.2.1 A Word of Caution

Other texts may define the Fourier transform differently. The important relation is

f(x) =

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

f(ξ) e∓iωξ dξ

)
e±iωx dω.

Multiplying the right side of this equation by 1 = 1
α
α yields

f(x) =
1

α

∫ ∞
−∞

(
α

2π

∫ ∞
−∞

f(ξ) e∓iωξ dξ

)
e±iωx dω.
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Setting α =
√

2π and choosing sign in the exponentials gives us the Fourier transform pair

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x) e−iωx dx

f(x) =
1√
2π

∫ ∞
−∞

f̂(ω) eiωx dω.

Other equally valid pairs are

f̂(ω) =

∫ ∞
−∞

f(x) e−iωx dx

f(x) =
1

2π

∫ ∞
−∞

f̂(ω) eiωx dω,

and

f̂(ω) =

∫ ∞
−∞

f(x) eiωx dx

f(x) =
1

2π

∫ ∞
−∞

f̂(ω) e−iωx dω.

Be aware of the different definitions when reading other texts or consulting tables of Fourier transforms.

34.3 Evaluating Fourier Integrals

34.3.1 Integrals that Converge

If the Fourier integral

F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx,
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converges for real ω, then finding the transform of a function is just a matter of direct integration. We will
consider several examples of such garden variety functions in this subsection. Later on we will consider the more
interesting cases when the integral does not converge for real ω.

Example 34.3.1 Consider the Fourier transform of e−α|x|, where α > 0. Since the integral of e−α|x| is absolutely
convergent, we know that the Fourier transform integral converges for real ω. We write out the integral.

F
[

e−α|x|
]

=
1

2π

∫ ∞
−∞

e−α|x| e−iωx dx

=
1

2π

∫ 0

−∞
eαx−iωx dx+

1

2π

∫ ∞
0

e−αx−iωx dx

=
1

2π

∫ 0

−∞
e(α−i<(ω)+=(ω))x dx+

1

2π

∫ ∞
0

e(−α−i<(ω)+=(ω))x dx

The integral converges for |=(ω)| < α. This domain is shown in Figure 34.1.

Re(z)

Im(z)

Figure 34.1: The Domain of Convergence
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Now We do the integration.

F
[

e−α|x|
]

=
1

2π

∫ 0

−∞
e(α−iω)x dx+

1

2π

∫ ∞
0

e−(α+iω)x dx

=
1

2π

[
e(α−iω)x

α− iω

]0

−∞
+

1

2π

[
− e−(α+iω)x

α + iω

]∞
0

=
1

2π

(
1

α− iω
+

1

α + iω

)
=

1

π

α

π(ω2 + α2)
, for |=(ω)| < α

We can extend the domain of the Fourier transform with analytic continuation.

F
[

e−α|x|
]

=
α

π(ω2 + α2)
, for ω 6= ±iα

Example 34.3.2 Consider the Fourier transform of f(x) = 1
x−iα

, α > 0.

F
[

1

x− iα

]
=

1

2π

∫ ∞
−∞

1

x− iα
e−iωx dx

The integral converges for =(ω) = 0. We will evaluate the integral for positive and negative real values of ω.

For ω > 0, we will close the path of integration in the lower half-plane. Let CR be the contour from x = R
to x = −R following a semicircular path in the lower half-plane. The integral along CR vanishes as R → ∞ by
Jordan’s Lemma. ∫

CR

1

x− iα
e−iωx dx→ 0 as R→∞.

Since the integrand is analytic in the lower half-plane the integral vanishes.

F
[

1

x− iα

]
= 0
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For ω < 0, we will close the path of integration in the upper half-plane. Let CR denote the semicircular contour
from x = R to x = −R in the upper half-plane. The integral along CR vanishes as R goes to infinity by Jordan’s
Lemma. We evaluate the Fourier transform integral with the Residue Theorem.

F
[

1

x− iα

]
=

1

2π
2πi Res

(
e−iωx

x− iα
, iα

)
= i eαω

We combine the results for positive and negative values of ω.

F
[

1

x− iα

]
=

{
0 for ω > 0,

i eαω for ω < 0

34.3.2 Cauchy Principal Value and Integrals that are Not Absolutely Convergent.

That the integral of f(x) is absolutely convergent is a sufficient but not a necessary condition that the Fourier
transform of f(x) exists. The integral

∫∞
−∞ f(x) e−iωx dx may converge even if

∫∞
−∞ |f(x)| dx does not. Furthermore,

if the Fourier transform integral diverges, its principal value may exist. We will say that the Fourier transform of
f(x) exists if the principal value of the integral exists.

F [f(x)] = −
∫ ∞
−∞

f(x) e−iωx dx

Example 34.3.3 Consider the Fourier transform of f(x) = 1/x.

f̂(ω) =
1

2π
−
∫ ∞
−∞

1

x
e−iωx dx

If ω > 0, we can close the contour in the lower half-plane. The integral along the semi-circle vanishes due to
Jordan’s Lemma.

lim
R→∞

∫
CR

1

x
e−iωx dx = 0
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We can evaluate the Fourier transform with the Residue Theorem.

f̂(ω) =
1

2π

(
−1

2

)
(2πi) Res

(
1

x
e−iωx, 0

)
f̂(ω) = − i

2
, for ω > 0.

The factor of −1/2 in the above derivation arises because the path of integration is in the negative, (clockwise),
direction and the path of integration crosses through the first order pole at x = 0. The path of integration is
shown in Figure 34.2.

Re(z)

Im(z)

Figure 34.2: The Path of Integration

If ω < 0, we can close the contour in the upper half plane to obtain

f̂(ω) =
i

2
, for ω < 0.

For ω = 0 the integral vanishes because 1
x

is an odd function.

f̂(0) =
1

2π
= −
∫ ∞
−∞

1

x
dx = 0
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We collect the results in one formula.

f̂(ω) = − i

2
sign (ω)

We write the integrand for ω > 0 as the sum of an odd and and even function.

1

2π
−
∫ ∞
−∞

1

x
e−iωx dx = − i

2

−
∫ ∞
−∞

1

x
cos(ωx) dx+−

∫ ∞
−∞

−i

x
sin(ωx) dx = −iπ

The principal value of the integral of any odd function is zero.

−
∫ ∞
−∞

1

x
sin(ωx) dx = π

If the principal value of the integral of an even function exists, then the integral converges.∫ ∞
−∞

1

x
sin(ωx) dx = π∫ ∞

0

1

x
sin(ωx) dx =

π

2

Thus we have evaluated an integral that we used in deriving the Fourier transform.

34.3.3 Analytic Continuation

Consider the Fourier transform of f(x) = 1. The Fourier integral is not convergent, and its principal value
does not exist. Thus we will have to be a little creative in order to define the Fourier transform. Define the two
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functions

f+(x) =


1 for x > 0

1/2 for x = 0

0 for x < 0

, f−(x) =


0 for x > 0

1/2 for x = 0

1 for x < 0

.

Note that 1 = f−(x) + f+(x).

The Fourier transform of f+(x) converges for =(ω) < 0.

F [f+(x)] =
1

2π

∫ ∞
0

e−iωx dx

=
1

2π

∫ ∞
0

e(−i<(ω)+=(ω))x dx.

=
1

2π

[
e−iωx

−iω

]∞
0

= − i

2πω
for =(ω) < 0

Using analytic continuation, we can define the Fourier transform of f+(x) for all ω except the point ω = 0.

F [f+(x)] = − i

2πω
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We follow the same procedure for f−(x). The integral converges for =(ω) > 0.

F [f−(x)] =
1

2π

∫ 0

−∞
e−iωx dx

=
1

2π

∫ 0

−∞
e(−i<(ω)+=(ω))x dx

=
1

2π

[
e−iωx

−iω

]0

−∞

=
i

2πω
.

Using analytic continuation we can define the transform for all nonzero ω.

F [f−(x)] =
i

2πω

Now we are prepared to define the Fourier transform of f(x) = 1.

F [1] = F [f−(x)] + F [f+(x)]

= − i

2πω
+

i

2πω
= 0, for ω 6= 0

When ω = 0 the integral diverges. When we consider the closure relation for the Fourier transform we will see
that

F [1] = δ(ω).

34.4 Properties of the Fourier Transform

In this section we will explore various properties of the Fourier Transform. I would like to avoid stating assumptions
on various functions at the beginning of each subsection. Unless otherwise indicated, assume that the integrals
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converge.

34.4.1 Closure Relation.

Recall the closure relation for an orthonormal set of functions {φ1, φ2, . . . },

∞∑
n=1

φn(x)φn(ξ) ∼ δ(x− ξ).

There is a similar closure relation for Fourier integrals. We compute the Fourier transform of δ(x− ξ).

F [δ(x− ξ)] =
1

2π

∫ ∞
−∞

δ(x− ξ) e−iωx dx

=
1

2π
e−iωξ

Next we take the inverse Fourier transform.

δ(x− ξ) ∼
∫ ∞
−∞

1

2π
e−iωξ eiωx dω

δ(x− ξ) ∼ 1

2π

∫ ∞
−∞

eiω(x−ξ) dω.

Note that the integral is divergent, but it would be impossible to represent δ(x− ξ) with a convergent integral.
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34.4.2 Fourier Transform of a Derivative.

Consider the Fourier transform of y′(x).

F [y′(x)] =
1

2π

∫ ∞
−∞

y′(x) e−iωx dx

=

[
1

2π
y(x) e−iωx

]∞
−∞
− 1

2π

∫ ∞
−∞

(−iω)y(x) e−iωx dx

= iω
1

2π

∫ ∞
−∞

y(x) e−iωx dx

= iωF [y(x)]

Next consider y′′(x).

F [y′′(x)] = F
[

d

dx
(y′(x))

]
= iωF [y′(x)]

= (iω)2F [y(x)]

= −ω2F [y(x)]

In general,

F
[
y(n)(x)

]
= (iω)nF [y(x)].

Example 34.4.1 The Dirac delta function can be expressed as the derivative of the Heaviside function.

H(x− c) =

{
0 for x < c,

1 for x > c
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Thus we can express the Fourier transform of H(x− c) in terms of the Fourier transform of the delta function.

F [δ(x− c)] = iωF [H(x− c)]
1

2π

∫ ∞
−∞

δ(x− c) e−iωx dx = iωF [H(x− c)]

1

2π
e−icω = iωF [H(x− c)]

F [H(x− c)] =
1

2πiω
e−icω

34.4.3 Fourier Convolution Theorem.

Consider the Fourier transform of a product of two functions.

F [f(x)g(x)] =
1

2π

∫ ∞
−∞

f(x)g(x) e−iωx dx

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f̂(η) eiηx dη

)
g(x) e−iωx dx

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f̂(η)g(x) ei(η−ω)x dx

)
dη

=

∫ ∞
−∞

f̂(η)

(
1

2π

∫ ∞
−∞

g(x) e−i(ω−η)x dx

)
dη

=

∫ ∞
−∞

f̂(η)G(ω − η) dη

The convolution of two functions is defined

f ∗ g(x) =

∫ ∞
−∞

f(ξ)g(x− ξ) dξ.
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Thus

F [f(x)g(x)] = f̂ ∗ ĝ(ω) =

∫ ∞
−∞

f̂(η)ĝ(ω − η) dη.

Now consider the inverse Fourier Transform of a product of two functions.

F−1[f̂(ω)ĝ(ω)] =

∫ ∞
−∞

f̂(ω)ĝ(ω) eiωx dω

=

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

f(ξ) e−iωξ dξ

)
ĝ(ω) eiωx dω

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(ξ)ĝ(ω) eiω(x−ξ) dω

)
dξ

=
1

2π

∫ ∞
−∞

f(ξ)

(∫ ∞
−∞

ĝ(ω) eiω(x−ξ) dω

)
dξ

=
1

2π

∫ ∞
−∞

f(ξ)g(x− ξ) dξ

Thus

F−1[f̂(ω)ĝ(ω)] =
1

2π
f ∗ g(x) =

1

2π

∫ ∞
−∞

f(ξ)g(x− ξ) dξ,

F [f ∗ g(x)] = 2πf̂(ω)ĝ(ω).

These relations are known as the Fourier convolution theorem.

Example 34.4.2 Using the convolution theorem and the table of Fourier transform pairs in the appendix, we
can find the Fourier transform of

f(x) =
1

x4 + 5x2 + 4
.
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We factor the fraction.

f(x) =
1

(x2 + 1)(x2 + 4)

From the table, we know that

F
[

2c

x2 + c2

]
= e−c|ω| for c > 0.

We apply the convolution theorem.

F [f(x)] = F
[

1

8

2

x2 + 1

4

x2 + 4

]
=

1

8

(∫ ∞
−∞

e−|η| e−2|ω−η| dη

)
=

1

8

(∫ 0

−∞
eη e−2|ω−η| dη +

∫ ∞
0

e−η e−2|ω−η| dη

)

First consider the case ω > 0.

F [f(x)] =
1

8

(∫ 0

−∞
e−2ω+3η dη +

∫ ω

0

e−2ω+η dη +

∫ ∞
ω

e2ω−3η dη

)
=

1

8

(
1

3
e−2ω + e−ω − e−2ω +

1

3
e−ω
)

=
1

6
e−ω − 1

12
e−2ω
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Now consider the case ω < 0.

F [f(x)] =
1

8

(∫ ω

−∞
e−2ω+3η dη +

∫ 0

ω

e2ω−η dη +

∫ ∞
0

e2ω−3η dη

)
=

1

8

(
1

3
eω − e2ω + eω +

1

3
e2ω

)
=

1

6
eω − 1

12
e2ω

We collect the result for positive and negative ω.

F [f(x)] =
1

6
e−|ω| − 1

12
e−2|ω|

A better way to find the Fourier transform of

f(x) =
1

x4 + 5x2 + 4

is to first expand the function in partial fractions.

f(x) =
1/3

x2 + 1
− 1/3

x2 + 4

F [f(x)] =
1

6
F
[

2

x2 + 1

]
− 1

12
F
[

4

x2 + 4

]
=

1

6
e−|ω| − 1

12
e−2|ω|
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34.4.4 Parseval’s Theorem.

Recall Parseval’s theorem for Fourier series. If f(x) is a complex valued function with the Fourier series∑∞
n=−∞ cn einx then

2π
∞∑

n=−∞

|cn|2 =

∫ π

−π
|f(x)|2 dx.

Analogous to this result is Parseval’s theorem for Fourier transforms.

Let f(x) be a complex valued function that is both absolutely integrable and square integrable.∫ ∞
−∞
|f(x)| dx <∞ and

∫ ∞
−∞
|f(x)|2 dx <∞

The Fourier transform of f(−x) is f̂(ω).

F
[
f(−x)

]
=

1

2π

∫ ∞
−∞

f(−x) e−iωx dx

= − 1

2π

∫ −∞
∞

f(x) eiωx dx

=
1

2π

∫ ∞
−∞

f(x) e−iωx dx

= f̂(ω)

We apply the convolution theorem.

F−1[2πf̂(ω)f̂(ω)] =

∫ ∞
−∞

f(ξ)f(−(x− ξ)) dξ∫ ∞
−∞

2πf̂(ω)f̂(ω) eiωx dω =

∫ ∞
−∞

f(ξ)f(ξ − x) dξ
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We set x = 0.

2π

∫ ∞
−∞

f̂(ω)f̂(ω) dω =

∫ ∞
−∞

f(ξ)f(ξ) dξ

2π

∫ ∞
−∞
|f̂(ω)|2 dω =

∫ ∞
−∞
|f(x)|2 dx

This is known as Parseval’s theorem.

34.4.5 Shift Property.

The Fourier transform of f(x+ c) is

F [f(x+ c)] =
1

2π

∫ ∞
−∞

f(x+ c) e−iωx dx

=
1

2π

∫ ∞
−∞

f(x) e−iω(x−c) dx

F [f(x+ c)] = eiωcf̂(ω)

The inverse Fourier transform of f̂(ω + c) is

F−1[f̂(ω + c)] =

∫ ∞
−∞

f̂(ω + c) eiωx dω

=

∫ ∞
−∞

f̂(ω) ei(ω−c)x dω

F−1[f̂(ω + c)] = e−icxf(x)
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34.4.6 Fourier Transform of x f(x).

The Fourier transform of xf(x) is

F [xf(x)] =
1

2π

∫ ∞
−∞

xf(x) e−iωx dx

=
1

2π

∫ ∞
−∞

if(x)
∂

∂ω
( e−iωx) dx

= i
∂

∂ω

(
1

2π

∫ ∞
−∞

f(x) e−iωx dx

)

F [xf(x)] = i
∂f̂

∂ω
.

Similarly, you can show that

F [xnf(x)] = (i)n
∂nf̂

∂ωn
.

34.5 Solving Differential Equations with the Fourier Transform

The Fourier transform is useful in solving some differential equations on the domain (−∞ . . .∞) with homogeneous
boundary conditions at infinity. We take the Fourier transform of the differential equation L[y] = f and solve
for ŷ. We take the inverse transform to determine the solution y. Note that this process is only applicable if the
Fourier transform of y exists. Hence the requirement for homogeneous boundary conditions at infinity.

We will use the table of Fourier transforms in the appendix in solving the examples in this section.

Example 34.5.1 Consider the problem

y′′ − y = e−α|x|, y(±∞) = 0, α > 0, α 6= 1.
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We take the Fourier transform of this equation.

−ω2ŷ(ω)− ŷ(ω) =
α/π

ω2 + α2

We take the inverse Fourier transform to determine the solution.

ŷ(ω) =
−α/π

(ω2 + α2)(ω2 + 1)

=
−α
π

1

α2 − 1

(
1

ω2 + 1
− 1

ω2 + α2

)
=

1

α2 − 1

(
α/π

ω2 + α2
− α 1/π

ω2 + 1

)

y(x) =
e−α|x| − α e−|x|

α2 − 1

Example 34.5.2 Consider the Green function problem

G′′ −G = δ(x− ξ), y(±∞) = 0.

We take the Fourier transform of this equation.

−ω2Ĝ− Ĝ = F [δ(x− ξ)]

Ĝ = − 1

ω2 + 1
F [δ(x− ξ)]

We use the Table of Fourier transforms.

Ĝ = −πF
[

e−|x|
]
F [δ(x− ξ)]
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We use the convolution theorem to do the inversion.

G = −π 1

2π

∫ ∞
−∞

e−|x−η|δ(η − ξ) dη

G(x|ξ) = −1

2
e|x−ξ|

The inhomogeneous differential equation

y′′ − y = f(x), y(±∞) = 0,

has the solution

y = −1

2

∫ ∞
−∞

f(ξ) e−|x−ξ| dξ.

When solving the differential equation L[y] = f with the Fourier transform, it is quite common to use the
convolution theorem. With this approach we have no need to compute the Fourier transform of the right side.
We merely denote it as F [f ] until we use f in the convolution integral.
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34.6 The Fourier Cosine and Sine Transform

34.6.1 The Fourier Cosine Transform

Suppose f(x) is an even function. In this case the Fourier transform of f(x) coincides with the Fourier cosine
transform of f(x).

F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx

=
1

2π

∫ ∞
−∞

f(x)(cos(ωx)− i sin(ωx)) dx

=
1

2π

∫ ∞
−∞

f(x) cos(ωx) dx

=
1

π

∫ ∞
0

f(x) cos(ωx) dx

The Fourier cosine transform is defined:

Fc[f(x)] = f̂c(ω) =
1

π

∫ ∞
0

f(x) cos(ωx) dx.

Note that f̂c(ω) is an even function. The inverse Fourier cosine transform is

F−1
c [f̂c(ω)] =

∫ ∞
−∞

f̂c(ω) eiωx dω

=

∫ ∞
−∞

f̂c(ω)(cos(ωx) + i sin(ωx)) dω

=

∫ ∞
−∞

f̂c(ω) cos(ωx) dω

= 2

∫ ∞
0

f̂c(ω) cos(ωx) dω.
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Thus we have the Fourier cosine transform pair

f(x) = F−1
c [f̂c(ω)] = 2

∫ ∞
0

f̂c(ω) cos(ωx) dω, f̂c(ω) = Fc[f(x)] =
1

π

∫ ∞
0

f(x) cos(ωx) dx.

34.6.2 The Fourier Sine Transform

Suppose f(x) is an odd function. In this case the Fourier transform of f(x) coincides with the Fourier sine
transform of f(x).

F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx

=
1

2π

∫ ∞
−∞

f(x)(cos(ωx)− i sin(ωx)) dx

= − i

π

∫ ∞
0

f(x) sin(ωx) dx

Note that f̂(ω) = F [f(x)] is an odd function of ω. The inverse Fourier transform of f̂(ω) is

F−1[f̂(ω)] =

∫ ∞
−∞

f̂(ω) eiωx dω

= 2i

∫ ∞
0

f̂(ω) sin(ωx) dω.

Thus we have that

f(x) = 2i

∫ ∞
0

(
− i

π

∫ ∞
0

f(x) sin(ωx) dx

)
sin(ωx) dω

= 2

∫ ∞
0

(
1

π

∫ ∞
0

f(x) sin(ωx) dx

)
sin(ωx) dω.
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This gives us the Fourier sine transform pair

f(x) = F−1
s [f̂s(ω)] = 2

∫ ∞
0

f̂s(ω) sin(ωx) dω, f̂s(ω) = Fs[f(x)] =
1

π

∫ ∞
0

f(x) sin(ωx) dx.

Result 34.6.1 The Fourier cosine transform pair is defined:

f(x) = F−1
c [f̂c(ω)] = 2

∫ ∞
0

f̂c(ω) cos(ωx) dω

f̂c(ω) = Fc[f(x)] =
1

π

∫ ∞
0

f(x) cos(ωx) dx

The Fourier sine transform pair is defined:

f(x) = F−1
s [f̂s(ω)] = 2

∫ ∞
0

f̂s(ω) sin(ωx) dω

f̂s(ω) = Fs[f(x)] =
1

π

∫ ∞
0

f(x) sin(ωx) dx

34.7 Properties of the Fourier Cosine and Sine Transform

34.7.1 Transforms of Derivatives

Cosine Transform. Using integration by parts we can find the Fourier cosine transform of derivatives. Let
y be a function for which the Fourier cosine transform of y and its first and second derivatives exists. Further
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assume that y and y′ vanish at infinity. We calculate the transforms of the first and second derivatives.

Fc[y′] =
1

π

∫ ∞
0

y′ cos(ωx) dx

=
1

π

[
y cos(ωx)

]∞
0

+
ω

π

∫ ∞
0

y sin(ωx) dx

= ωŷc(ω)− 1

π
y(0)

Fc[y′′] =
1

π

∫ ∞
0

y′′ cos(ωx) dx

=
1

π

[
y′ cos(ωx)

]∞
0

+
ω

π

∫ ∞
0

y′ sin(ωx) dx

= − 1

π
y′(0) +

ω

π

[
y sin(ωx)

]∞
0
− ω2

π

∫ ∞
0

y cos(ωx) dx

= −ω2f̂c(ω)− 1

π
y′(0)

Sine Transform. You can show, (see Exercise 34.3), that the Fourier sine transform of the first and second
derivatives are

Fs[y′] = −ωf̂c(ω)

Fs[y′′] = −ω2ŷc(ω) +
ω

π
y(0).
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34.7.2 Convolution Theorems

Cosine Transform of a Product. Consider the Fourier cosine transform of a product of functions. Let f(x)
and g(x) be two functions defined for x ≥ 0. Let Fc[f(x)] = f̂c(ω), and Fc[g(x)] = ĝc(ω).

Fc[f(x)g(x)] =
1

π

∫ ∞
0

f(x)g(x) cos(ωx) dx

=
1

π

∫ ∞
0

(
2

∫ ∞
0

f̂c(η) cos(ηx) dη

)
g(x) cos(ωx) dx

=
2

π

∫ ∞
0

∫ ∞
0

f̂c(η)g(x) cos(ηx) cos(ωx) dx dη

We use the identity cos a cos b = 1
2
(cos(a− b) + cos(a+ b)).

=
1

π

∫ ∞
0

∫ ∞
0

f̂c(η)g(x)
(

cos((ω − η)x) + cos((ω + η)x)
)

dx dη

=

∫ ∞
0

f̂c(η)

[
1

π

∫ ∞
0

g(x) cos((ω − η)x) dx+
1

π

∫ ∞
0

g(x) cos((ω + η)x) dx

]
dη

=

∫ ∞
0

f̂c(η)
(
ĝc(ω − η) + ĝc(ω + η)

)
dη

ĝc(ω) is an even function. If we have only defined ĝc(ω) for positive argument, then ĝc(ω) = ĝc(|ω|).

=

∫ ∞
0

f̂c(η)
(
ĝc(|ω − η|) + ĝc(ω + η)

)
dη
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Inverse Cosine Transform of a Product. Now consider the inverse Fourier cosine transform of a product of
functions. Let Fc[f(x)] = f̂c(ω), and Fc[g(x)] = ĝc(ω).

F−1
c [f̂c(ω)ĝc(ω)] = 2

∫ ∞
0

f̂c(ω)ĝc(ω) cos(ωx) dω

= 2

∫ ∞
0

(
1

π

∫ ∞
0

f(ξ) cos(ωξ) dξ

)
ĝc(ω) cos(ωx) dω

=
2

π

∫ ∞
0

∫ ∞
0

f(ξ)ĝc(ω) cos(ωξ) cos(ωx) dω dξ

=
1

π

∫ ∞
0

∫ ∞
0

f(ξ)ĝc(ω)
(

cos(ω(x− ξ)) + cos(ω(x+ ξ))
)

dω dξ

=
1

2π

∫ ∞
0

f(ξ)

(
2

∫ ∞
0

ĝc(ω) cos(ω(x− ξ)) dω + 2

∫ ∞
0

ĝc(ω) cos(ω(x+ ξ)) dω

)
dξ

=
1

2π

∫ ∞
0

f(ξ)
(
g(|x− ξ|) + g(x+ ξ)

)
dξ

Sine Transform of a Product. You can show, (see Exercise 34.5), that the Fourier sine transform of a product
of functions is

Fs[f(x)g(x)] =

∫ ∞
0

f̂s(η)
(
ĝc(|ω − η|)− ĝc(ω + η)

)
dη.

Inverse Sine Transform of a Product. You can also show, (see Exercise 34.6), that the inverse Fourier sine
transform of a product of functions is

F−1
s [f̂s(ω)ĝc(ω)] =

1

2π

∫ ∞
0

f(ξ)
(
g(|x− ξ|)− g(x+ ξ)

)
dξ.
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Result 34.7.1 The Fourier cosine and sine transform convolution theorems are

Fc[f(x)g(x)] =

∫ ∞
0

f̂c(η)
[
ĝc(|ω − η|) + ĝc(ω + η)

]
dη

F−1
c [f̂c(ω)ĝc(ω)] =

1

2π

∫ ∞
0

f(ξ)
(
g(|x− ξ|) + g(x+ ξ)

)
dξ

Fs[f(x)g(x)] =

∫ ∞
0

f̂s(η)
(
ĝc(|ω − η|)− ĝc(ω + η)

)
dη

F−1
s [f̂s(ω)ĝc(ω)] =

1

2π

∫ ∞
0

f(ξ)
(
g(|x− ξ|)− g(x+ ξ)

)
dξ

34.7.3 Cosine and Sine Transform in Terms of the Fourier Transform

We can express the Fourier cosine and sine transform in terms of the Fourier transform. First consider the Fourier
cosine transform. Let f(x) be an even function.

Fc[f(x)] =
1

π

∫ ∞
0

f(x) cos(ωx) dx

We extend the domain integration because the integrand is even.

=
1

2π

∫ ∞
−∞

f(x) cos(ωx) dx

Note that
∫∞
−∞ f(x) sin(ωx) dx = 0 because the integrand is odd.

=
1

2π

∫ ∞
−∞

f(x) e−iωx dx

= F [f(x)]
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Fc[f(x)] = F [f(x)], for even f(x).

For general f(x), use the even extension, f(|x|) to write the result.

Fc[f(x)] = F [f(|x|)]

There is an analogous result for the inverse Fourier cosine transform.

F−1
c

[
f̂(ω)

]
= F−1

[
f̂(|ω|)

]
For the sine series, we have

Fs[f(x)] = iF [ sign (x)f(|x|)] F−1
s

[
f̂(ω)

]
= −iF−1

[
sign (ω)f̂(|ω|)

]
Result 34.7.2 The results:

Fc[f(x)] = F [f(|x|)] F−1
c

[
f̂(ω)

]
= F−1

[
f̂(|ω|)

]
Fs[f(x)] = iF [ sign (x)f(|x|)] F−1

s

[
f̂(ω)

]
= −iF−1

[
sign (ω)f̂(|ω|)

]
allow us to evaluate Fourier cosine and sine transforms in terms of the Fourier transform.
This enables us to use contour integration methods to do the integrals.

34.8 Solving Differential Equations with the Fourier Cosine and

Sine Transforms

Example 34.8.1 Consider the problem

y′′ − y = 0, y(0) = 1, y(∞) = 0.
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Since the initial condition is y(0) = 1 and the sine transform of y′′ is −ω2ŷc(ω) + ω
π
y(0) we take the Fourier sine

transform of both sides of the differential equation.

−ω2ŷc(ω) +
ω

π
y(0)− ŷc(ω) = 0

−(ω2 + 1)ŷc(ω) = −ω
π

ŷc(ω) =
ω

π(ω2 + 1)

We use the table of Fourier Sine transforms.

y = e−x

Example 34.8.2 Consider the problem

y′′ − y = e−2x, y′(0) = 0, y(∞) = 0.

Since the initial condition is y′(0) = 0, we take the Fourier cosine transform of the differential equation. From
the table of cosine transforms, Fc[ e−2x] = 2/(π(ω2 + 4)).

−ω2ŷc(ω)− 1

π
y′(0)− ŷc(ω) =

2

π(ω2 + 4)

ŷc(ω) = − 2

π(ω2 + 4)(ω2 + 1)

=
−2

π

(
1/3

ω2 + 1
− 1/3

ω2 + 4

)
=

1

3

2/π

ω2 + 4
− 2

3

1/π

ω2 + 1

y =
1

3
e−2x − 2

3
e−x
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34.9 Exercises
Exercise 34.1
Show that

H(x+ c)−H(x− c) =
sin(cω)

πω
.

Exercise 34.2
Using contour integration, find the Fourier transform of

f(x) =
1

x2 + c2
,

where <(c) 6= 0

Exercise 34.3
Find the Fourier sine transforms of y′(x) and y′′(x).

Exercise 34.4
Prove the following identities.

1. F [f(x− a)] = e−iωaf̂(ω)

2. F [f(ax)] =
1

|a|
f̂
(ω
a

)

Exercise 34.5
Show that

Fs[f(x)g(x)] =

∫ ∞
0

f̂s(η)
(
ĝc(|ω − η|)− ĝc(ω + η)

)
dη.
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Exercise 34.6
Show that

F−1
s [f̂s(ω)ĝc(ω)] =

1

2π

∫ ∞
0

f(ξ)
(
g(|x− ξ|)− g(x+ ξ)

)
dξ.

Exercise 34.7
Let f̂c(ω) = Fc[f(x)], f̂c(ω) = Fs[f(x)], and assume the cosine and sine transforms of xf(x) exist. Express

Fc[xf(x)] and Fs[xf(x)] in terms of f̂c(ω) and f̂c(ω).

Exercise 34.8
Solve the problem

y′′ − y = e−2x, y(0) = 1, y(∞) = 0,

using the Fourier sine transform.

Exercise 34.9
Show that

Fs[f(x)] = iF [ sign (x)f(|x|)] F−1
s

[
f̂(ω)

]
= −iF−1

[
sign (ω)f̂(|ω|)

]
Exercise 34.10
Let f̂c(ω) = Fc[f(x)] and f̂c(ω) = Fs[f(x)]. Show that

1. Fc[xf(x)] = ∂
∂ω
f̂c(ω)

2. Fs[xf(x)] = − ∂
∂ω
f̂c(ω)
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3. Fc[f(cx)] = 1
c
f̂c
(
ω
c

)
for c > 0

4. Fs[f(cx)] = 1
c
f̂c
(
ω
c

)
for c > 0.

Exercise 34.11
Solve the integral equation, ∫ ∞

−∞
u(ξ) e−a(x−ξ)2

dξ = e−bx
2

,

where a, b > 0, a 6= b, with the Fourier transform.

Exercise 34.12
Evaluate

1

π

∫ ∞
0

1

x
e−cx sin(ωx) dx,

where ω is a positive, real number and <(c) > 0.

Exercise 34.13
Use the Fourier transform to solve the equation

y′′ − a2y = e−a|x|

on the domain −∞ < x <∞ with boundary conditions y(±∞) = 0.

Exercise 34.14
1. Use the cosine transform to solve

y′′ − a2y = 0 on x ≥ 0 with y′(0) = b, y(∞) = 0.
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2. Use the cosine transform to show that the Green function for the above with b = 0 is

G(x, ξ) = − 1

2a
e−a|x−ξ| − 1

2a
e−a(x−ξ).

Exercise 34.15
1. Use the sine transform to solve

y′′ − a2y = 0 on x ≥ 0 with y(0) = b, y(∞) = 0.

2. Try using the Laplace transform on this problem. Why isn’t it as convenient as the Fourier transform?

3. Use the sine transform to show that the Green function for the above with b = 0 is

g(x; ξ) =
1

2a

(
e−a(x−ξ) − e−a|x+ξ|)

Exercise 34.16
1. Find the Green function which solves the equation

y′′ + 2µy′ + (β2 + µ2)y = δ(x− ξ), µ > 0, β > 0,

in the range −∞ < x <∞ with boundary conditions y(−∞) = y(∞) = 0.

2. Use this Green’s function to show that the solution of

y′′ + 2µy′ + (β2 + µ2)y = g(x), µ > 0, β > 0, y(−∞) = y(∞) = 0,

with g(±∞) = 0 in the limit as µ→ 0 is

y =
1

β

∫ x

−∞
g(ξ) sin[β(x− ξ)]dξ.

You may assume that the interchange of limits is permitted.
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Exercise 34.17
Using Fourier transforms, find the solution u(x) to the integral equation∫ ∞

−∞

u(ξ)

[(x− ξ)2 + a2]
dξ =

1

x2 + b2
0 < a < b.

Exercise 34.18
The Fourer cosine transform is defined by

Fc(ω) =
1

π

∫ ∞
0

f(x) cos(ωx) dx.

1. From the Fourier theorem show that the inverse cosine transform is given by

f(x) = 2

∫ ∞
0

Fc(ω) cos(ωx) dω.

2. Show that the cosine transform of f ′′(x) is

−ω2Fc(ω)− f ′(0)

π
.

3. Use the cosine transform to solve

y′′ − a2y = 0 on x > 0 with y′(0) = b, y(∞) = 0.

Exercise 34.19
The Fourier sine transform is defined by

Fs(ω) =
1

π

∫ ∞
0

f(x) sin(ωx) dx.
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1. Show that the inverse sine transform is given by

f(x) = 2

∫ ∞
0

Fs(ω) sin(ωx) dω.

2. Show that the sine transform of f ′′(x) is

ω

π
f(0)− ω2Fs(ω).

3. Use this property to solve the equation

y′′ − a2y = 0 on x > 0 with y(0) = b, y(∞) = 0.

4. Try using the Laplace transform on this problem. Why isn’t it as convenient as the Fourier transform?

Exercise 34.20
Show that

F [f(x)] =
1

2
(Fc[f(x) + f(−x)]− iFs[f(x)− f(−x)])

where F , Fc and Fs are respectively the Fourier transform, Fourier cosine transform and Fourier sine transform.

Exercise 34.21
Find u(x) as the solution to the integral equation:∫ ∞

−∞

u(ξ)

(x− ξ)2 + a2
dξ =

1

x2 + b2
, 0 < a < b.

Use Fourier transforms and the inverse transform. Justify the choice of any contours used in the complex plane.
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34.10 Hints
Hint 34.1

H(x+ c)−H(x− c) =

{
1 for |x| < c,

0 for |x| > c

Hint 34.2
Consider the two cases <(ω) < 0 and <(ω) > 0, closing the path of integration with a semi-circle in the lower or
upper half plane.

Hint 34.3

Hint 34.4

Hint 34.5

Hint 34.6

Hint 34.7
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Hint 34.8

Hint 34.9

Hint 34.10

Hint 34.11
The left side is the convolution of u(x) and e−ax

2
.

Hint 34.12

Hint 34.13

Hint 34.14

Hint 34.15
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Hint 34.16

Hint 34.17

Hint 34.18

Hint 34.19

Hint 34.20

Hint 34.21
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34.11 Solutions
Solution 34.1

F [H(x+ c)−H(x− c)] =
1

2π

∫ ∞
−∞

(H(x+ c)−H(x− c)) e−iωx dx

=
1

2π

∫ c

−c
e−iωx dx

=
1

2π

[
e−iωx

−iω

]c
−c

=
1

2π

(
e−iωc

−iω
− eiωc

−iω

)

F [H(x+ c)−H(x− c)] =
sin(cω)

πω

Solution 34.2

F
[

1

x2 + c2

]
=

1

2π

∫ ∞
−∞

1

x2 + c2
e−iωx dx

=
1

2π

∫ ∞
−∞

e−iωx

(x− ic)(x+ ic)
dx

If <(ω) < 0 then we close the path of integration with a semi-circle in the upper half plane.

F
[

1

x2 + c2

]
=

1

2π
2πi Res

(
e−iωx

(x− ic)(x+ ic)
, x = ic

)
=

1

2c
ecω
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If ω > 0 then we close the path of integration in the lower half plane.

F
[

1

x2 + c2

]
= − 1

2π
2πi Res

(
e−iωx

(x− ic)(x+ ic)
,−ic

)
=

1

2c
e−cω

Thus we have that

F
[

1

x2 + c2

]
=

1

2c
e−c|ω|, for <(c) 6= 0.

Solution 34.3

Fs[y′] =
1

π

∫ ∞
0

y′ sin(ωx) dx

=
1

π

[
y sin(ωx)

]∞
0
− ω

π

∫ ∞
0

y cos(ωx) dx

= −ωŷc(ω)

Fs[y′′] =
1

π

∫ ∞
0

y′′ sin(ωx) dx

=
1

π

[
y′ sin(ωx)

]∞
0
− ω

π

∫ ∞
0

y′ cos(ωx) dx

= −ω
π

[
y cos(ωx)

]∞
0
− ω2

π

∫ ∞
0

y sin(ωx) dx

= −ω2ŷs(ω) +
ω

π
y(0).
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Solution 34.4
1.

F [f(x− a)] =
1

2π

∫ ∞
−∞

f(x− a) e−iωx dx

=
1

2π

∫ ∞
−∞

f(x) e−iω(x+a) dx

= e−iωa 1

2π

∫ ∞
−∞

f(x) e−iωx dx

F [f(x− a)] = e−iωaf̂(ω)

2. If a > 0, then

F [f(ax)] =
1

2π

∫ ∞
−∞

f(ax) e−iωx dx

=
1

2π

∫ ∞
−∞

f(ξ) e−iωξ/a 1

a
dξ

=
1

a
f̂
(ω
a

)
.

If a < 0, then

F [f(ax)] =
1

2π

∫ ∞
−∞

f(ax) e−iωx dx

=
1

2π

∫ −∞
∞

e−iωξ/a 1

a
dξ

= −1

a
f̂
(ω
a

)
.
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Thus

F [f(ax)] =
1

|a|
f̂
(ω
a

)
.

Solution 34.5

Fs[f(x)g(x)] =
1

π

∫ ∞
0

f(x)g(x) sin(ωx) dx

=
1

π

∫ ∞
0

(
2

∫ ∞
0

f̂s(η) sin(ηx) dη

)
g(x) sin(ωx) dx

=
2

π

∫ ∞
0

∫ ∞
0

f̂s(η)g(x) sin(ηx) sin(ωx) dx dη

Use the identity, sin a sin b = 1
2
[cos(a− b)− cos(a+ b)].

=
1

π

∫ ∞
0

∫ ∞
0

f̂s(η)g(x)
[

cos((ω − η)x)− cos((ω + η)x)
]

dx dη

=

∫ ∞
0

f̂s(η)

[
1

π

∫ ∞
0

g(x) cos((ω − η)x) dx− 1

π

∫ ∞
0

g(x) cos((ω + η)x) dx

]
dη

Fs[f(x)g(x)] =

∫ ∞
0

f̂s(η)
[
Gc(|ω − η|)−Gc(ω + η)

]
dη
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Solution 34.6

F−1
s [f̂s(ω)Gc(ω)] = 2

∫ ∞
0

f̂s(ω)Gc(ω) sin(ωx) dω

= 2

∫ ∞
0

(
1

π

∫ ∞
0

f(ξ) sin(ωξ) dξ

)
Gc(ω) sin(ωx) dω

=
2

π

∫ ∞
0

∫ ∞
0

f(ξ)Gc(ω) sin(ωξ) sin(ωx) dω dξ

=
1

π

∫ ∞
0

∫ ∞
0

f(ξ)Gc(ω)
[

cos(ω(x− ξ))− cos(ω(x+ ξ))
]

dω dξ

=
1

2π

∫ ∞
0

f(ξ)

[
2

∫ ∞
0

Gc(ω) cos(ω(x− ξ)) dω − 2

∫ ∞
0

Gc(ω) cos(ω(x+ ξ)) dω)

]
dξ

=
1

2π

∫ ∞
0

f(ξ)[g(x− ξ)− g(x+ ξ)] dξ

F−1
s [f̂s(ω)Gc(ω)] =

1

2π

∫ ∞
0

f(ξ)
[
g(|x− ξ|)− g(x+ ξ)

]
dξ
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Solution 34.7

Fc[xf(x)] =
1

π

∫ ∞
0

xf(x) cos(ωx) dx

=
1

π

∫ ∞
0

f(x)
∂

∂ω
(sin(ωx)) dx

=
∂

∂ω

1

π

∫ ∞
0

f(x) sin(ωx) dx

=
∂

∂ω
f̂s(ω)

Fs[xf(x)] =
1

π

∫ ∞
0

xf(x) sin(ωx) dx

=
1

π

∫ ∞
0

f(x)
∂

∂ω
(− cos(ωx)) dx

= − ∂

∂ω

1

π

∫ ∞
0

f(x) cos(ωx) dx

= − ∂

∂ω
f̂c(ω)

Solution 34.8

y′′ − y = e−2x, y(0) = 1, y(∞) = 0

We take the Fourier sine transform of the differential equation.

−ω2ŷs(ω) +
ω

π
y(0)− ŷs(ω) =

2ω/π

ω2 + 4
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ŷs(ω) = − ω/π

(ω2 + 4)(ω2 + 1)
+

ω/π

(ω2 + 1)

=
ω/(3π)

ω2 + 4
− ω/(3π)

ω2 + 1
+

ω/π

ω2 + 1

=
2

3

ω/π

ω2 + 1
+

1

3

ω/π

ω2 + 4

y =
2

3
e−x +

1

3
e−2x

Solution 34.9
Consider the Fourier sine transform. Let f(x) be an odd function.

Fs[f(x)] =
1

π

∫ ∞
0

f(x) sin(ωx) dx

Extend the integration because the integrand is even.

=
1

2π

∫ ∞
−∞

f(x) sin(ωx) dx

Note that
∫∞
−∞ f(x) cos(ωx) dx = 0 as the integrand is odd.

=
1

2π

∫ ∞
−∞

f(x)i e−iωx dx

= iF [f(x)]

Fs[f(x)] = iF [f(x)], for odd f(x).
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For general f(x), use the odd extension, sign (x)f(|x|) to write the result.

Fs[f(x)] = iF [ sign (x)f(|x|)]

Now consider the inverse Fourier sine transform. Let f̂(ω) be an odd function.

F−1
s

[
f̂(ω)

]
= 2

∫ ∞
0

f̂(ω) sin(ωx) dω

Extend the integration because the integrand is even.

=

∫ ∞
−∞

f̂(ω) sin(ωx) dω

Note that
∫∞
−∞ f̂(ω) cos(ωx) dω = 0 as the integrand is odd.

=

∫ ∞
−∞

f̂(ω)(−i) eiωx dω

= −iF−1
[
f̂(ω)

]

F−1
s

[
f̂(ω)

]
= −iF−1

[
f̂(ω)

]
, for odd f̂(ω).

For general f̂(ω), use the odd extension, sign (ω)f̂(|ω|) to write the result.

F−1
s

[
f̂(ω)

]
= −iF−1

[
sign (ω)f̂(|ω|)

]
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Solution 34.10

Fc[xf(x)] =
1

π

∫ ∞
0

xf(x) cos(ωx) dx

=
1

π

∫ ∞
0

f(x)
∂

∂ω
sin(ωx) dx

=
∂

∂ω

1

π

∫ ∞
0

f(x) sin(ωx) dx

=
∂

∂ω
f̂s(ω)

Fs[xf(x)] =
1

π

∫ ∞
0

xf(x) sin(ωx) dx

=
1

π

∫ ∞
0

f(x)
∂

∂ω
(− cos(ωx)) dx

= − ∂

∂ω

1

π

∫ ∞
0

f(x) cos(ωx) dx

= − ∂

∂ω
f̂c(ω)

Fc[f(cx)] =
1

π

∫ ∞
0

f(cx) cos(ωx) dx

=
1

π

∫ ∞
0

f(ξ) cos
(ω
c
ξ
) dξ

c

=
1

c
f̂c

(ω
c

)
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Fs[f(cx)] =
1

π

∫ ∞
0

f(cx) sin(ωx) dx

=
1

π

∫ ∞
0

f(ξ) sin
(ω
c
ξ
) dξ

c

=
1

c
f̂s

(ω
c

)
Solution 34.11

∫ ∞
−∞

u(ξ) e−a(x−ξ)2

dξ = e−bx
2

We take the Fourier transform and solve for U(ω).

2πU(ω)F
[

e−ax
2
]

= F
[

e−bx
2
]

2πU(ω)
1√
4πa

e−ω
2/(4a) =

1√
4πb

e−ω
2/(4b)

U(ω) =
1

2π

√
a

b
e−ω

2(a−b)/(4ab)

Now we take the inverse Fourier transform.

U(ω) =
1

2π

√
a

b

√
4πab/(a− b)√
4πab/(a− b)

e−ω
2(a−b)/(4ab)

u(x) =
a√

π(a− b)
e−abx

2/(a−b)
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Solution 34.12

I =
1

π

∫ ∞
0

1

x
e−cx sin(ωx) dx

=
1

π

∫ ∞
0

(∫ ∞
c

e−zx dz

)
sin(ωx) dx

=
1

π

∫ ∞
c

∫ ∞
0

e−zx sin(ωx) dx dz

=
1

π

∫ ∞
c

ω

z2 + ω2
dz

=
1

π

[
arctan

( z
ω

)]∞
c

=
1

π

(π
2
− arctan

( c
ω

))
=

1

π
arctan

(ω
c

)
Solution 34.13
We consider the differential equation

y′′ − a2y = e−a|x|

on the domain −∞ < x < ∞ with boundary conditions y(±∞) = 0. We take the Fourier transform of the
differential equation.

−ω2ŷ − a2ŷ =
a

π(ω2 + a2)

We solve for ŷ(ω).

ŷ(ω) = − a

π(ω2 + a2)2
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We take the inverse Fourier transform to find the solution of the differential equation.

y(x) =

∫ ∞
−∞
− a

π(ω2 + a2)2
eixω dω

Note that since ŷ(ω) is a real-valued, even function, y(x) is a real-valued, even function. Thus we only need to
evaluate the integral for positive x. If we replace x by |x| in this expression we will have the solution that is valid
for all x.

For x > 0, we evaluate the integral by closing the path of integration in the upper half plane and using the
Residue Theorem and Jordan’s Lemma.

y(x) = −a
π

∫ ∞
−∞

1

(ω − ia)2(ω + ia)2
eixω dω

= −i2π
a

π
Res

(
1

(ω − ia)2(ω + ia)2
eixω, ω = ia

)
= −i2a lim

ω→ia

d

dω

(
eixω

(ω + ia)2

)
= −i2a lim

ω→ia

(
ix eixω

(ω + ia)2
− 2 eixω

(ω + ia)3

)
= −i2a

(
ix e−ax

−4a2
− 2 e−ax

−i8a3

)
= −(1 + ax) e−ax

2a2
, for x ≥ 0

The solution of the differential equation is

y(x) = − 1

2a2
(1 + a|x|) e−a|x|.
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Solution 34.14
1. We take the Fourier cosine transform of the differential equation.

−ω2ŷ(ω)− b

π
− a2ŷ(ω) = 0

ŷ(ω) = − b

π(ω2 + a2)

Now we take the inverse Fourier cosine transform. We use the fact that ŷ(ω) is an even function.

y(x) = F−1
c

[
− b

π(ω2 + a2)

]
= F−1

[
− b

π(ω2 + a2)

]
= − b

π
i2πRes

(
1

ω2 + a2
eiωx, ω = ia

)
= −i2b lim

ω→ia

(
eiωx

ω + ia

)
, for x ≥ 0

y(x) = − b
a

e−ax

2. The Green function problem is

g′′ − a2g = δ(x− ξ) on x, ξ > 0, g′(0; ξ) = 0, g(∞; ξ) = 0.

We take the Fourier cosine transform and solve for ĝ(ω; ξ).

−ω2ĝ − a2ĝ = Fc[δ(x− ξ)]

ĝ(ω; ξ) = − 1

ω2 + a2
Fc[δ(x− ξ)]
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We express the right side as a product of Fourier cosine transforms.

ĝ(ω; ξ) = −π
a
Fc[ e−ax]Fc[δ(x− ξ)]

Now we can apply the Fourier cosine convolution theorem,

F−1
c [Fc[f(x)]Fc[g(x)]] =

1

2π

∫ ∞
0

f(t)
(
g(|x− t|) + g(x+ t)

)
dt,

to obtain

g(x; ξ) = −π
a

1

2π

∫ ∞
0

δ(t− ξ)
(

e−a|x−t| + e−a(x+t)
)

dt

g(x; ξ) = − 1

2a

(
e−a|x−ξ| + e−a(x+ξ)

)

Solution 34.15
1. We take the Fourier sine transform of the differential equation.

−ω2ŷ(ω) +
bω

π
− a2ŷ(ω) = 0

ŷ(ω) =
bω

π(ω2 + a2)
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Now we take the inverse Fourier sine transform. We use the fact that ŷ(ω) is an odd function.

y(x) = F−1
s

[
bω

π(ω2 + a2)

]
= −iF−1

[
bω

π(ω2 + a2)

]
= −i

b

π
i2πRes

(
ω

ω2 + a2
eiωx, ω = ia

)
= 2b lim

ω→ia

(
ω eiωx

ω + ia

)
= b e−ax for x ≥ 0

y(x) = b e−ax

2. Now we solve the differential equation with the Laplace transform.

y′′ − a2y = 0

s2ŷ(s)− sy(0)− y′(0)− a2ŷ(s) = 0

We don’t know the value of y′(0), so we treat it as an unknown constant.

ŷ(s) =
bs+ y′(0)

s2 − a2

y(x) = b cosh(ax) +
y′(0)

a
sinh(ax)

In order to satisfy the boundary condition at infinity we must choose y′(0) = −ab.

y(x) = b e−ax
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We see that solving the differential equation with the Laplace transform is not as convenient, because
the boundary condition at infinity is not automatically satisfied. We had to find a value of y′(0) so that
y(∞) = 0.

3. The Green function problem is

g′′ − a2g = δ(x− ξ) on x, ξ > 0, g(0; ξ) = 0, g(∞; ξ) = 0.

We take the Fourier sine transform and solve for ĝ(ω; ξ).

−ω2ĝ − a2ĝ = Fs[δ(x− ξ)]

ĝ(ω; ξ) = − 1

ω2 + a2
Fs[δ(x− ξ)]

We write the right side as a product of Fourier cosine transforms and sine transforms.

ĝ(ω; ξ) = −π
a
Fc[ e−ax]Fs[δ(x− ξ)]

Now we can apply the Fourier sine convolution theorem,

F−1
s [Fs[f(x)]Fc[g(x)]] =

1

2π

∫ ∞
0

f(t)
(
g(|x− t|)− g(x+ t)

)
dt,

to obtain

g(x; ξ) = −π
a

1

2π

∫ ∞
0

δ(t− ξ)
(

e−a|x−t| − e−a(x+t)
)

dt

g(x; ξ) =
1

2a

(
e−a(x−ξ) − e−a|x+ξ|)
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Solution 34.16
1. We take the Fourier transform of the differential equation, solve for Ĝ and then invert.

G′′ + 2µG′ + (β2 + µ2)G = δ(x− ξ)

−ω2Ĝ+ i2µωĜ+ (β2 + µ2)Ĝ =
e−iωξ

2π

Ĝ = − e−iωξ

2π(ω2 − i2µω − β2 − µ2)

G =

∫ ∞
−∞
− e−iωξ eiωx

2π(ω2 − i2µω − β2 − µ2)
dω

G = − 1

2π

∫ ∞
−∞

eiω(x−ξ)

(ω + β − iµ)(ω − β − iµ)
dω

For x > ξ we close the path of integration in the upper half plane and use the Residue theorem. There are
two simple poles in the upper half plane. For x < ξ we close the path of integration in the lower half plane.
Since the integrand is analytic there, the integral is zero. G(x; ξ) = 0 for x < ξ. For x > ξ we have

G(x; ξ) = − 1

2π
i2π

(
Res

(
eiω(x−ξ)

(ω + β − iµ)(ω − β − iµ)
, ω = −β + iµ

)

+ Res

(
eiω(x−ξ)

(ω + β − iµ)(ω − β − iµ)
, ω = −β − iµ

))

G(x; ξ) = −i

(
ei(−β+iµ)(x−ξ)

−2β

ei(β+iµ)(x−ξ)

2β

)
G(x; ξ) =

1

β
e−µ(x−ξ) sin(β(x− ξ)).

Thus the Green function is

G(x; ξ) =
1

β
e−µ(x−ξ) sin(β(x− ξ))H(x− ξ).
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2. The solution of the inhomogeneous equation

y′′ + 2µy′ + (β2 + µ2)y = g(x), y(−∞) = y(∞) = 0,

is

y(x) =

∫ ∞
−∞

g(ξ)G(x; ξ) dξ

y(x) =

∫ ∞
−∞

g(ξ)
1

β
e−µ(x−ξ) sin(β(x− ξ)) dξ

y(x) =
1

β

∫ x

−∞
g(ξ) e−µ(x−ξ) sin(β(x− ξ)) dξ.

Taking the limit µ→ 0 we have

y =
1

β

∫ x

−∞
g(ξ) sin(β(x− ξ))dξ.

Solution 34.17
First we consider the Fourier transform of f(x) = 1/(x2 + c2) where <(c) > 0.

f̂(ω) = F
[

1

x2 + c2

]
=

1

2π

∫ ∞
−∞

1

x2 + c2
e−iωx dx

=
1

2π

∫ ∞
−∞

e−iωx

(x− ic)(x+ ic)
dx

If ω < 0 then we close the path of integration with a semi-circle in the upper half plane.

f̂(ω) =
1

2π
2πi Res

(
e−iωx

(x− ic)(x+ ic)
, x = ic

)
=

ecω

2c
, for ω < 0
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Note that f(x) = 1/(x2 + c2) is an even function of x so that f̂(ω) is an even function of ω. If f̂(ω) = g(ω) for
ω < 0 then f(ω) = g(−|ω|) for all ω. Thus

F
[

1

x2 + c2

]
=

1

2c
e−c|ω|.

Now we consider the integral equation

∫ ∞
−∞

u(ξ)

[(x− ξ)2 + a2]
dξ =

1

x2 + b2
0 < a < b.

We take the Fourier transform, utilizing the convolution theorem.

2πû(ω)
e−a|ω|

2a
=

e−b|ω|

2b

û(ω) =
a e−(b−a)|ω|

2πb

u(x) =
a

2πb
2(b− a)

1

x2 + (b− a)2

u(x) =
a(b− a)

πb(x2 + (b− a)2)
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Solution 34.18
1. Note that Fc(ω) is an even function. The inverse Fourier cosine transform is

f(x) = F−1
c [Fc(ω)]

=

∫ ∞
−∞

Fc(ω) eiωx dω

=

∫ ∞
−∞

Fc(ω)(cos(ωx) + i sin(ωx)) dω

=

∫ ∞
−∞

Fc(ω) cos(ωx) dω

= 2

∫ ∞
0

Fc(ω) cos(ωx) dω.

2.

Fc[y′′] =
1

π

∫ ∞
0

y′′ cos(ωx) dx

=
1

π

[
y′ cos(ωx)

]∞
0

+
ω

π

∫ ∞
0

y′ sin(ωx) dx

= − 1

π
y′(0) +

ω

π

[
y sin(ωx)

]∞
0
− ω2

π

∫ ∞
0

y cos(ωx) dx

Fc[y′′] = −ω2Fc(ω)− y′(0)

π

3. We take the Fourier cosine transform of the differential equation.

−ω2ŷ(ω)− b

π
− a2ŷ(ω) = 0

ŷ(ω) = − b

π(ω2 + a2)
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Now we take the inverse Fourier cosine transform. We use the fact that ŷ(ω) is an even function.

y(x) = F−1
c

[
− b

π(ω2 + a2)

]
= F−1

[
− b

π(ω2 + a2)

]
= − b

π
i2πRes

(
1

ω2 + a2
eiωx, ω = ia

)
= −i2b lim

ω→ia

(
eiωx

ω + ia

)
, for x ≥ 0

y(x) = − b
a

e−ax

Solution 34.19
1. Suppose f(x) is an odd function. The Fourier transform of f(x) is

F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx

=
1

2π

∫ ∞
−∞

f(x)(cos(ωx)− i sin(ωx)) dx

= − i

π

∫ ∞
0

f(x) sin(ωx) dx.

Note that F (ω) = F [f(x)] is an odd function of ω. The inverse Fourier transform of F (ω) is

F−1[F (ω)] =

∫ ∞
−∞

F (ω) eiωx dω

= 2i

∫ ∞
0

F (ω) sin(ωx) dω.
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Thus we have that

f(x) = 2i

∫ ∞
0

(
− i

π

∫ ∞
0

f(x) sin(ωx) dx

)
sin(ωx) dω

= 2

∫ ∞
0

(
1

π

∫ ∞
0

f(x) sin(ωx) dx

)
sin(ωx) dω.

This gives us the Fourier sine transform pair

f(x) = 2

∫ ∞
0

Fs(ω) sin(ωx) dω, Fs(ω) =
1

π

∫ ∞
0

f(x) sin(ωx) dx.

2.

Fs[y′′] =
1

π

∫ ∞
0

y′′ sin(ωx) dx

=
1

π

[
y′ sin(ωx)

]∞
0
− ω

π

∫ ∞
0

y′ cos(ωx) dx

= −ω
π

[
y cos(ωx)

]∞
0
− ω2

π

∫ ∞
0

y sin(ωx) dx

Fs[y′′] = −ω2Fs(ω) +
ω

π
y(0)

3. We take the Fourier sine transform of the differential equation.

−ω2ŷ(ω) +
bω

π
− a2ŷ(ω) = 0

ŷ(ω) =
bω

π(ω2 + a2)
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Now we take the inverse Fourier sine transform. We use the fact that ŷ(ω) is an odd function.

y(x) = F−1
s

[
bω

π(ω2 + a2)

]
= −iF−1

[
bω

π(ω2 + a2)

]
= −i

b

π
i2πRes

(
ω

ω2 + a2
eiωx, ω = ia

)
= 2b lim

ω→ia

(
ω eiωx

ω + ia

)
= b e−ax for x ≥ 0

y(x) = b e−ax

4. Now we solve the differential equation with the Laplace transform.

y′′ − a2y = 0

s2ŷ(s)− sy(0)− y′(0)− a2ŷ(s) = 0

We don’t know the value of y′(0), so we treat it as an unknown constant.

ŷ(s) =
bs+ y′(0)

s2 − a2

y(x) = b cosh(ax) +
y′(0)

a
sinh(ax)

In order to satisfy the boundary condition at infinity we must choose y′(0) = −ab.

y(x) = b e−ax
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We see that solving the differential equation with the Laplace transform is not as convenient, because
the boundary condition at infinity is not automatically satisfied. We had to find a value of y′(0) so that
y(∞) = 0.

Solution 34.20
The Fourier, Fourier cosine and Fourier sine transforms are defined:

F [f(x)] =
1

2π

∫ ∞
−∞

f(x) e−iωx dx,

F [f(x)]c =
1

π

∫ ∞
0

f(x) cos(ωx) dx,

F [f(x)]s =
1

π

∫ ∞
0

f(x) sin(ωx) dx.

We start with the right side of the identity and apply the usual tricks of integral calculus to reduce the expression
to the left side.

1

2
(Fc[f(x) + f(−x)]− iFs[f(x)− f(−x)])

1
2π

(∫ ∞
0

f(x) cos(ωx) dx+
∫ ∞

0
f(−x) cos(ωx) dx− i

∫ ∞
0

f(x) sin(ωx) dx+ i
∫ ∞

0
f(−x) sin(ωx) dx

)
1

2π

(∫ ∞
0

f(x) cos(ωx) dx−
∫ −∞

0
f(x) cos(−ωx) dx− i

∫ ∞
0

f(x) sin(ωx) dx− i
∫ −∞

0
f(x) sin(−ωx) dx

)
1

2π

(∫ ∞
0

f(x) cos(ωx) dx+
∫ 0

−∞
f(x) cos(ωx) dx− i

∫ ∞
0

f(x) sin(ωx) dx− i
∫ 0

−∞
f(x) sin(ωx) dx

)
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1

2π

(∫ ∞
−∞

f(x) cos(ωx) dx− i

∫ ∞
−∞

f(x) sin(ωx) dx

)
1

2π

∫ ∞
−∞

f(x) e−iωx dx

F [f(x)]

Solution 34.21
We take the Fourier transform of the integral equation, noting that the left side is the convolution of u(x) and

1
x2+a2 .

2πû(ω)F
[

1

x2 + a2

]
= F

[
1

x2 + b2

]
We find the Fourier transform of f(x) = 1

x2+c2
. Note that since f(x) is an even, real-valued function, f̂(ω) is

an even, real-valued function.

F
[

1

x2 + c2

]
=

1

2π

∫ ∞
−∞

1

x2 + c2
e−iωx dx

For x > 0 we close the path of integration in the upper half plane and apply Jordan’s Lemma to evaluate the
integral in terms of the residues.

=
1

2π
i2πRes

(
e−iωx

(x− ic)(x+ ic)
, x = ic

)
= i

e−iωic

2ic

=
1

2c
e−cω
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Since f̂(ω) is an even function, we have

F
[

1

x2 + c2

]
=

1

2c
e−c|ω|.

Our equation for û(ω) becomes,

2πû(ω)
1

2a
e−a|ω| =

1

2b
e−b|ω|

û(ω) =
a

2πb
e−(b−a)|omega|.

We take the inverse Fourier transform using the transform pair we derived above.

u(x) =
a

2πb

2(b− a)

x2 + (b− a)2

u(x) =
a(b− a)

πb(x2 + (b− a)2)
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Chapter 35

The Gamma Function

35.1 Euler’s Formula

For non-negative, integral n the factorial function is

n! = n(n− 1) · · · (1), with 0! = 1.

We would like to extend the factorial function so it is defined for all complex numbers.

Consider the function Γ(z) defined by Euler’s formula

Γ(z) =

∫ ∞
0

e−ttz−1 dt.

(Here we take the principal value of tz−1.) The integral converges for <(z) > 0. If <(z) ≤ 0 then the integrand
will be at least as singular as 1/t at t = 0 and thus the integral will diverge.
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Difference Equation. Using integration by parts,

Γ(z + 1) =

∫ ∞
0

e−ttz dt

=
[
− e−ttz

]∞
0
−
∫ ∞

0

− e−tztz−1 dt.

Since <(z) > 0 the first term vanishes.

= z

∫ ∞
0

e−ttz−1 dt

= zΓ(z)

Thus Γ(z) satisfies the difference equation

Γ(z + 1) = zΓ(z).

For general z it is not possible to express the integral in terms of elementary functions. However, we can
evaluate the integral for some z. The value z = 1 looks particularly simple to do.

Γ(1) =

∫ ∞
0

e−t dt =
[
− e−t

]∞
0

= 1.

Using the difference equation we can find the value of Γ(n) for any positive, integral n.

Γ(1) = 1

Γ(2) = 1

Γ(3) = (2)(1) = 2

Γ(4) = (3)(2)(1) = 6

· · · = · · ·
Γ(n+ 1) = n!.
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Thus the Gamma function, Γ(z), extends the factorial function to all complex z in the right half-plane. For
non-negative, integral n we have

Γ(n+ 1) = n!.

Analyticity. The derivative of Γ(z) is

Γ′(z) =

∫ ∞
0

e−ttz−1 log t dt.

Since this integral converges for <(z) > 0, Γ(z) is analytic in that domain.

35.2 Hankel’s Formula

We would like to find the analytic continuation of the Gamma function into the left half-plane. We accomplish
this with Hankel’s formula

Γ(z) =
1

2i sin(πz)

∫
C

ettz−1 dt.

Here C is the contour starting at −∞ below the real axis, enclosing the origin and returning to −∞ above the
real axis. A graph of this contour is shown in Figure 35.1. Again we use the principle value of tz−1 so there is a
branch cut on the negative real axis.

The integral in Hankel’s formula converges for all complex z. For non-positive, integral z the integral does
not vanish. Thus because of the sine term the Gamma function has simple poles at z = 0,−1,−2, . . . . For
positive, integral z, the integrand is entire and thus the integral vanishes. Using L’Hospital’s rule you can show
that the points, z = 1, 2, 3, . . . are removable singularities and the Gamma function is analytic at these points.
Since the only zeroes of sin(πz) occur for integral z, Γ(z) is analytic in the entire plane except for the points,
z = 0,−1,−2, . . . .
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Figure 35.1: The Hankel Contour.

Difference Equation. Using integration by parts we can derive the difference equation from Hankel’s formula.

Γ(z + 1) =
1

2i sin(π(z + 1))

∫
C

ettz dt

=
1

−2i sin(πz)

([
ettz
]−∞+0i

−∞−0i
−
∫
C

etztz−1 dt

)
=

1

2i sin(πz)
z

∫
C

ettz−1 dt

= zΓ(z).

Evaluating Γ(1),

Γ(1) = lim
z→1

∫
C

ettz−1 dt

2i sin(πz)
.
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Both the numerator and denominator vanish. Using L’Hospital’s rule,

= lim
z→1

∫
C

ettz−1 log t dt

2πi cos(πz)

=

∫
C

et log t dt

2πi

Let Cr be the circle of radius r starting at −π radians and going to π radians.

=
1

2πi

(∫ −r
−∞

et[log(−t)− πi] dt+

∫
Cr

et log t dt+

∫ −∞
−r

et[log(−t) + πi] dt

)
=

1

2πi

(∫ −∞
−r

et[− log(−t) + πi] dt+

∫ −∞
−r

et[log(−t) + πi] dt+

∫
Cr

et log t dt

)
=

1

2πi

(∫ −∞
−r

et2πi dt+

∫
Cr

et log t dt

)
The integral on Cr vanishes as r → 0.

=
1

2πi
2πi

∫ −∞
0

et dt

= 1.

Thus we obtain the same value as with Euler’s formula. It can be shown that Hankel’s formula is the analytic
continuation of the Gamma function into the left half-plane.

35.3 Gauss’ Formula

Gauss defined the Gamma function as an infinite product. This form is useful in deriving some of its properties.
We can obtain the product form from Euler’s formula. First recall that

e−t = lim
n→∞

(
1− t

n

)n
.
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Substituting this into Euler’s formula,

Γ(z) =

∫ ∞
0

e−ttz−1 dt

= lim
n→∞

∫ n

0

(
1− t

n

)n
tz−1 dt.

With the substitution τ = t/n,

= lim
n→∞

∫ 1

0

(1− τ)nnz−1τ z−1n dτ

= lim
n→∞

nz
∫ 1

0

(1− τ)nτ z−1 dτ.

Let n be an integer. Using integration by parts we can evaluate the integral.∫ 1

0

(1− τ)nτ z−1 dτ =

[
(1− τ)nτ z

z

]1

0

−
∫ 1

0

−n(1− τ)n−1 τ
z

z
dτ

=
n

z

∫ 1

0

(1− τ)n−1τ z dτ

=
n(n− 1)

z(z + 1)

∫ 1

0

(1− τ)n−2τ z+1 dτ

=
n(n− 1) · · · (1)

z(z + 1) · · · (z + n− 1)

∫ 1

0

τ z+n−1 dτ

=
n(n− 1) · · · (1)

z(z + 1) · · · (z + n− 1)

[
τ z+n

z + n

]1

0

=
n!

z(z + 1) · · · (z + n)
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Thus we have that

Γ(z) = lim
n→∞

nz
n!

z(z + 1) · · · (z + n)

=
1

z
lim
n→∞

(1)(2) · · · (n)

(z + 1)(z + 2) · · · (z + n)
nz

=
1

z
lim
n→∞

1

(1 + z)(1 + z/2) · · · (1 + z/n)
nz

=
1

z
lim
n→∞

1

(1 + z)(1 + z/2) · · · (1 + z/n)

2z3z · · ·nz

1z2z · · · (n− 1)z

Since limn→∞
(n+1)z

nz
= 1 we can multiply by that factor.

=
1

z
lim
n→∞

1

(1 + z)(1 + z/2) · · · (1 + z/n)

2z3z · · · (n+ 1)z

1z2z · · ·nz

=
1

z

∞∏
n=1

[
1

1 + z/n

(n+ 1)z

nz

]
Thus we have Gauss’ formula for the Gamma function

Γ(z) =
1

z

∞∏
n=1

[(
1 +

1

n

)z (
1 +

z

n

)−1
]
.

We derived this formula from Euler’s formula which is valid only in the left half-plane. However, the product
formula is valid for all z except z = 0,−1,−2, . . . .

35.4 Weierstrass’ Formula
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The Euler-Mascheroni Constant. Before deriving Weierstrass’ product formula for the Gamma function we
will need to define the Euler-Mascheroni constant

γ = lim
n→∞

[(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
− log n

]
= 0.5772 · · · .

In deriving the Euler product formula, we had the equation

Γ(z) = lim
n→∞

[
nz

n!

z(z + 1) · · · (z + n)

]
.

= lim
n→∞

[
z−1

(
1 +

z

1

)−1 (
1 +

z

2

)−1

· · ·
(

1 +
z

n

)−1

nz
]

1

Γ(z)
= lim

n→∞

[
z
(

1 +
z

1

)(
1 +

z

2

)
· · ·
(

1 +
z

n

)
e−z logn

]
= lim

n→∞

[
z
(

1 +
z

1

)
e−z
(

1 +
z

2

)
e−z/2 · · ·

(
1 +

z

n

)
e−z/n exp

([
1 +

1

2
+ · · ·+ 1

n
− log n

]
z

)]

Weierstrass’ formula for the Gamma function is then

1

Γ(z)
= z eγz

∞∏
n=1

[(
1 +

z

n

)
e−z/n

]
.

Since the product is uniformly convergent, 1/Γ(z) is an entire function. Since 1/Γ(z) has no singularities, we
see that Γ(z) has no zeros.
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Result 35.4.1 Euler’s formula for the Gamma function is valid for <(z) > 0.

Γ(z) =

∫ ∞
0

e−ttz−1 dt

Hankel’s formula defines the Γ(z) for the entire complex plane except for the points
z = 0,−1,−2, . . . .

Γ(z) =
1

2i sin(πz)

∫
C

ettz−1 dt

Gauss’ and Weierstrass’ product formulas are, respectively

Γ(z) =
1

z

∞∏
n=1

[(
1 +

1

n

)z (
1 +

z

n

)−1
]

and

1

Γ(z)
= z eγz

∞∏
n=1

[(
1 +

z

n

)
e−z/n

]
.

35.5 Stirling’s Approximation

In this section we will try to get an approximation to the Gamma function for large positive argument. Euler’s
formula is

Γ(x) =

∫ ∞
0

e−ttx−1 dt.
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We could first try to approximate the integral by only looking at the domain where the integrand is large. In
Figure 35.2 the integrand in the formula for Γ(10), e−tt9, is plotted.

5 10 15 20 25 30

10000

20000

30000

40000

Figure 35.2: Plot of the integrand for Γ(10)

We see that the ”important” part of the integrand is the hump centered around x = 9. If we find where the
integrand of Γ(x) has its maximum

d

dx

(
e−ttx−1

)
= 0

− e−ttx−1 + (x− 1) e−ttx−2 = 0

(x− 1)− t = 0

t = x− 1,

we see that the maximum varies with x. This could complicate our analysis. To take care of this problem we
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introduce the change of variables t = xs.

Γ(x) =

∫ ∞
0

e−xs(xs)x−1x ds

= xx
∫ ∞

0

e−xssxs−1 ds

= xx
∫ ∞

0

e−x(s−log s)s−1 ds

The integrands, ( e−x(s−log s)s−1), for Γ(5) and Γ(20) are plotted in Figure 35.3.

1 2 3 4
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1 2 3 4

5·10-10
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1.5·10-9

2·10-9

Figure 35.3: Plot of the integrand for Γ(5) and Γ(20).

We see that the important part of the integrand is the hump that seems to be centered about s = 1. Also
note that the the hump becomes narrower with increasing x. This makes sense as the e−x(s−log s) term is the
most rapidly varying term. Instead of integrating from zero to infinity, we could get a good approximation to the
integral by just integrating over some small neighborhood centered at s = 1. Since s − log s has a minimum at
s = 1, e−x(s−log s) has a maximum there. Because the important part of the integrand is the small area around
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s = 1, it makes sense to approximate s− log s with its Taylor series about that point.

s− log s = 1 +
1

2
(s− 1)2 +O

[
(s− 1)3

]
Since the hump becomes increasingly narrow with increasing x, we will approximate the 1/s term in the integrand
with its value at s = 1. Substituting these approximations into the integral, we obtain

Γ(x) ∼ xx
∫ 1+ε

1−ε
e−x(1+(s−1)2/2) ds

= xx e−x
∫ 1+ε

1−ε
e−x(s−1)2/2 ds

As x→∞ both of the integrals∫ 1−ε

−∞
e−x(s−1)2/2 ds and

∫ ∞
1+ε

e−x(s−1)2/2 ds

are exponentially small. Thus instead of integrating from 1− ε to 1 + ε we can integrate from −∞ to ∞.

Γ(x) ∼ xx e−x
∫ ∞
−∞

e−x(s−1)2/2 ds

= xx e−x
∫ ∞
−∞

e−xs
2/2 ds

= xx e−x
√

2π

x

Γ(x) ∼
√

2πxx−1/2 e−x as x →∞.

This is known as Stirling’s approximation to the Gamma function. In the table below, we see that the
approximation is pretty good even for relatively small argument.
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n Γ(n)
√

2πxx−1/2 e−x relative error
5 24 23.6038 0.0165
15 8.71783 · 1010 8.66954 · 1010 0.0055
25 6.20448 · 1023 6.18384 · 1023 0.0033
35 2.95233 · 1038 2.94531 · 1038 0.0024
45 2.65827 · 1054 2.65335 · 1054 0.0019

In deriving Stirling’s approximation to the Gamma function we did a lot of hand waving. However, all of
the steps can be justified and better approximations can be obtained by using Laplace’s method for finding the
asymptotic behavior of integrals.
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35.6 Exercises
Exercise 35.1
Given that ∫ ∞

−∞
e−x

2

dx =
√
π,

deduce the value of Γ(1/2). Now find the value of Γ(n+ 1/2).

Exercise 35.2
Evaluate

∫∞
0

e−x
3
dx in terms of the gamma function.

Exercise 35.3
Show that ∫ ∞

0

e−x sin(log x) dx =
Γ(i) + Γ(−i)

2
.
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35.7 Hints
Hint 35.1
Use the change of variables, ξ = x2 in the integral. To find the value of Γ(n+ 1/2) use the difference relation.

Hint 35.2
Make the change of variable ξ = x3.
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35.8 Solutions
Solution 35.1

∫ ∞
−∞

e−x
2

dx =
√
π∫ ∞

0

e−x
2

dx =

√
π

2

Make the change of variables ξ = x2. ∫ ∞
0

e−ξ
1

2
ξ−1/2 dξ =

√
π

2

Γ(1/2) =
√
π

Recall the difference relation for the Gamma function Γ(z + 1) = zΓ(z).

Γ(n+ 1/2) = (n− 1/2)Γ(n− 1/2)

=
2n− 1

2
Γ(n− 1/2)

=
(2n− 3)(2n− 1)

22
Γ(n− 3/2)

=
(1)(3)(5) · · · (2n− 1)

2n
Γ(1/2)

Γ(n+ 1/2) =
(1)(3)(5) · · · (2n− 1)

2n
√
π
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Solution 35.2
We make the change of variable ξ = x3, x = ξ1/3, dx = 1

3
ξ−2/3 dξ.∫ ∞

0

e−x
3

dx =

∫ ∞
0

e−ξ
1

3
ξ−2/3 dξ

=
1

3
Γ

(
1

3

)

Solution 35.3

∫ ∞
0

e−x sin(log x) dx =

∫ ∞
0

e−x
1

2i

(
ei log x − e−i log x

)
dx

=
1

2i

∫ ∞
0

e−x
(
xi − x−i

)
dx

=
1

2i
(Γ(1 + i)− Γ(1− i))

=
1

2i
(iΓ(i)− (−i)Γ(−i))

=
Γ(i) + Γ(−i)

2

1500



Chapter 36

Bessel Functions

Ideas are angels. Implementations are a bitch.

36.1 Bessel’s Equation

A commonly encountered differential equation in applied mathematics is Bessel’s equation

y′′ +
1

z
y′ +

(
1− ν2

z2

)
y = 0.

For our purposes, we will consider ν ∈ R0+. This equation arises when solving certain partial differential equations
with the method of separation of variables in cylindrical coordinates. For this reason, the solutions of this equation
are sometimes called cylindrical functions.

This equation cannot be solved directly. However, we can find series representations of the solutions. There is
a regular singular point at z = 0, so the Frobenius method is applicable there. The point at infinity is an irregular
singularity, so we will look for asymptotic series about that point. Additionally, we will use Laplace’s method to
find definite integral representations of the solutions.
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Note that Bessel’s equation depends only on ν2 and not ν alone. Thus if we find a solution, (which of course
depends on this parameter), yν(z) we know that y−ν(z) is also a solution. For this reason, we will consider
ν ∈ R0+. Whether or not yν(z) and y−ν(z) are linearly independent, (distinct solutions), remains to be seen.

Example 36.1.1 Consider the differential equation

y′′ +
1

z
y′ +

ν2

z2
y = 0

One solution is yν(z) = zν . Since the equation depends only on ν2, another solution is y−ν(z) = z−ν . For ν 6= 0,
these two solutions are linearly independent.

Now consider the differential equation

y′′ + ν2y = 0

One solution is yν(z) = cos(νz). Therefore, another solution is y−ν(z) = cos(−νz) = cos(νz). However, these two
solutions are not linearly independent.

36.2 Frobeneius Series Solution about z = 0

We note that z = 0 is a regular singular point, (the only singular point of Bessel’s equation in the finite complex
plane.) We will use the Frobenius method at that point to analyze the solutions. We assume that ν ≥ 0.

The indicial equation is

α(α− 1) + α− ν2 = 0

α = ±ν.

If ±ν do not differ by an integer, (that is if ν is not a half-integer), then there will be two series solutions of the
Frobenius form.

y1(z) = zν
∞∑
k=0

akz
k, y2(z) = z−ν

∞∑
k=0

bkz
k
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If ν is a half-integer, the second solution may or may not be in the Frobenius form. In any case, then will always
be at least one solution in the Frobenius form. We will determine that series solution. y(z) and it derivatives are

y =
∞∑
k=0

akz
k+ν , y′ =

∞∑
k=0

(k + ν)akz
k+ν−1, y′′ =

∞∑
k=0

(k + ν)(k + ν − 1)akz
k+ν−2.

We substitute the Frobenius series into the differential equation.

z2y′′ + zy′ +
(
z2 − ν2

)
y = 0

∞∑
k=0

(k + ν)(k + ν − 1)akz
k+ν +

∞∑
k=0

(k + ν)akz
k+ν +

∞∑
k=0

akz
k+ν+2 −

∞∑
k=0

ν2akz
k+ν = 0

∞∑
k=0

(
k2 + 2kν

)
akz

k +
∞∑
k=2

ak−2z
k = 0

We equate powers of z to obtain equations that determine the coefficients. The coefficient of z0 is the equation
0 · a0 = 0. This corroborates that a0 is arbitrary, (but non-zero). The coefficient of z1 is the equation

(1 + 2ν)a1 = 0

a1 = 0

The coefficient of zk for k ≥ 2 gives us (
k2 + 2kν

)
ak + ak−2 = 0.

ak = − ak−2

k2 + 2kν
= − ak−2

k(k + 2ν)

From the recurrence relation we see that all the odd coefficients are zero, a2k+1 = 0. The even coefficients are

a2k = − a2k−2

4k(k + ν)
=

(−1)ka0

22kk!Γ(k + ν + 1)
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Thus we have the series solution

y(z) = a0

∞∑
k=0

(−1)k

22kk!Γ(k + ν + 1)
z2k.

a0 is arbitrary. We choose a0 = 2−ν . We call this solution the Bessel function of the first kind and order ν and
denote it with Jν(z).

Jν(z) =
∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k+ν

Recall that the Gamma function is non-zero and finite for all real arguments except non-positive integers.
Γ(x) has singularities at x = 0,−1,−2, . . . . Therefore, J−ν(z) is well-defined when ν is not a positive integer.
Since J−ν(z) ∼ z−ν at z = 0, J−ν(z) is clear linearly independent to Jν(z) for non-integer ν. In particular we note
that there are two solutions of the Frobenius form when ν is a half odd integer.

J−ν(z) =
∞∑
k=0

(−1)k

k!Γ(k − ν + 1)

(z
2

)2k−ν
, for ν 6∈ Z+

Of course for ν = 0, Jν(z) and J−ν(z) are identical. Consider the case that ν = n is a positive integer. Since
Γ(x)→ +∞ as x→ 0,−1,−2, . . . we see the the coefficients in the series for J−nu(z) vanish for k = 0, . . . , n− 1.

J−n(z) =
∞∑
k=n

(−1)k

k!Γ(k − n+ 1)

(z
2

)2k−n

J−n(z) =
∞∑
k=0

(−1)k+n

(k + n)!Γ(k + 1)

(z
2

)2k+n

J−n(z) = (−1)n
∞∑
k=0

(−1)k

k!(k + n)!

(z
2

)2k+n

J−n(z) = (−1)nJn(z)

Thus we see that J−n(z) and Jn(z) are not linearly independent for integer n.
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36.2.1 Behavior at Infinity

With the change of variables z = 1/t, w(z) = u(t) Bessel’s equation becomes

t4u′′ + 2t3u′ + t(−t2)u′ + (1− ν2t2)u = 0

u′′ +
1

t
u′ +

(
1

t4
− ν2

t2

)
u = 0.

The point t = 0 and hence the point z = ∞ is an irregular singular point. We will find the leading order
asymptotic behavior of the solutions as z → +∞.

Controlling Factor. Starting with Bessel’s equation for real argument

y′′ +
1

x
y′ +

(
1− ν2

x2

)
y = 0,

we make the substitution y = es(x) to obtain

s′′ + (s′)2 +
1

x
s′ + 1− ν2

x2
= 0.

We know that ν2

x2 � 1 as x→∞; we will assume that s′′ � (s′)2 as x→∞. This gives us

(s′)2 +
1

x
s′ + 1 ∼ 0 as x→∞.

To simplify the equation further, we will try the possible two-term balances.

1. (s′)2 + 1
x
s′ ∼ 0 ⇒ s′ ∼ − 1

x
This balance is not consistent as it violates the assumption that 1 is

smaller than the other terms.

2. (s′)2 + 1 ∼ 0 ⇒ s′ ∼ ±i This balance is consistent.

3. 1
x
s′ + 1 ∼ 0 ⇒ s′ ∼ −x This balance is inconsistent as (s′)2 isn’t smaller than the other terms.

Thus the only dominant balance is s′ ∼ ±i. This balance is consistent with our initial assumption that
s′′ � (s′)2. Thus s ∼ ±ix and the controlling factor is e±ix.
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Leading Order Behavior. In order to find the leading order behavior, we substitute s = ±ix + t(x) where
t(x)� x as x→∞ into the differential equation for s. We first consider the case s = ix+ t(x). We assume that
t′ � 1 and t′′ � 1/x.

t′′ + (i+ t′)2 +
1

x
(i+ t′) + 1− ν2

x2
= 0

t′′ + 2it′ + (t′)2 +
i

x
+

1

x
t′ − ν2

x2
= 0

Using our assumptions about the behavior of t′ and t′′,

2it′ +
i

x
∼ 0

t′ ∼ − 1

2x

t ∼ −1

2
log x as x→∞.

This asymptotic behavior is consistent with our assumptions.
Substituting s = −ix+ t(x) will also yield t ∼ −1

2
log x. Thus the leading order behavior of the solutions is

y ∼ c e±ix−
1
2

log x+u(x) = cx−1/2 e±ix+u(x) as x→∞,

where u(x)� log x as x→∞.
By substituting t = −1

2
log x + u(x) into the differential equation for t, you could show that u(x)→ const as

x→∞. Thus the full leading order behavior of the solutions is

y ∼ cx−1/2 e±ix+u(x) as x→∞

where u(x)→ 0 as x→∞. Writing this in terms of sines and cosines yields

y1 ∼ x−1/2 cos(x+ u1(x)), y2 ∼ x−1/2 sin(x+ u2(x)), as x→∞,

1506



where u1, u2 → 0 as x→∞.

Result 36.2.1 Bessel’s equation for real argument is

y′′ +
1

x
y′ +

(
1− ν2

x2

)
y = 0.

If ν is not an integer then the solutions behave as linear combinations of

y1 = xν, and y2 = x−ν

at x = 0. If ν is an integer, then the solutions behave as linear combinations of

y1 = xν, and y2 = x−ν + cxν log x

at x = 0. The solutions are asymptotic to a linear combination of

y1 = x−1/2 sin(x+ u1(x)), and y2 = x−1/2 cos(x+ u2(x))

as x→ +∞, where u1, u2 → 0 as x→∞.

36.3 Bessel Functions of the First Kind

Consider the function exp(1
2
z(t− 1/t)). We can expand this function in a Laurent series in powers of t,

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn,
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where the coefficient functions Jn(z) are

Jn(z) =
1

2πi

∮
τ−n−1 e

1
2
z(τ−1/τ) dτ.

Here the path of integration is any positive closed path around the origin. exp(1
2
z(t − 1/t)) is the generating

function for Bessel function of the first kind.

36.3.1 The Bessel Function Satisfies Bessel’s Equation

We would like to expand Jn(z) in powers of z. The first step in doing this is to make the substitution τ = 2t/z.

Jn(z) =
1

2πi

∮ (
2t

z

)−n−1

exp

(
1

2
z

(
2t

z
− z

2t

))
2

z
dt

=
1

2πi

(z
2

)n ∮
t−n−1 et−z

2/4t dt

Differentiating the expression for Jn(z),

J ′n(z) =
1

2πi

nzn−1

2n

∮
t−n−1 et−z

2/4t dt+
1

2πi

(z
2

)n ∮
t−n−1

(
−2z

4t

)
et−z

2/4t dt

=
1

2πi

(z
2

)n ∮ (n
z
− z

2t

)
t−n−1 et−z

2/4t dt

J ′′n(z) =
1

2πi

(z
2

)n ∮ [n
z

(n
z
− z

2t

)
+

(
− n
z2
− 1

2t

)
− z

2t

(n
z
− z

2t

)]
t−n−1 et−z

2/4t dt

=
1

2πi

(z
2

)n ∮ [n2

z2
− nz

2zt
− n

z2
− 1

2t
− nz

2zt
+
z2

4t2

]
t−n−1 et−z

2/4t dt

=
1

2πi

(z
2

)n ∮ [n(n− 1)

z2
− 2n+ 1

2t
+
z2

4t2

]
t−n−1 et−z

2/4t dt.
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Substituting Jn(z) into Bessel’s equation,

J ′′n +
1

z
J ′n +

(
1− n2

z2

)
Jn

=
1

2πi

(z
2

)n ∮ [(n(n− 1)

z2
− 2n+ 1

2t
+
z2

4t2

)
+

(
n

z2
− 1

2t

)
+

(
1− n2

z2

)]
t−n−1 et−z

2/4t dt

=
1

2πi

(z
2

)n ∮ [
1− n+ 1

t
+
z2

4t2

]
t−n−1 et−z

2/4t dt

=
1

2πi

(z
2

)n ∮ d

dt

(
t−n−1 et−z

2/4t
)
dt

Since t−n−1 et−z
2/4t is analytic in 0 < |t| <∞ when n is an integer, the integral vanishes.

= 0.

Thus for integral n, Jn(z) satisfies Bessel’s equation.

Jn(z) is called the Bessel function of the first kind. The subscript is the order. Thus J1(z) is a Bessel function
of order 1. J0(x) and J1(x) are plotted in the first graph in Figure 36.1. J5(x) is plotted in the second graph in
Figure 36.1. Note that for non-negative, integral n, Jn(z) behaves as zn at z = 0.

36.3.2 Series Expansion of the Bessel Function

Expanding exp(−z2/4t) in the integral expression for Jn,

Jn(z) =
1

2πi

(z
2

)n ∮
t−n−1 et−z

2/4t dt

=
1

2πi

(z
2

)n ∮
t−n−1 et

(
∞∑
m=0

(
−z2

4t

)m
1

m!

)
dt
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Figure 36.1: Plot of J0(x), J1(x) and J5(x).

For the path of integration, we are free to choose any contour that encloses the origin. Consider the circular path
on |t| = 1. Since the integral is uniformly convergent, we can interchange the order of integration and summation.

Jn(z) =
1

2πi

(z
2

)n ∞∑
m=0

(−1)mz2m

22mm!

∮
t−n−m−1 et dt
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If n is a non-negative integer,

1

2πi

∮
t−n−m−1 et dt = lim

z→0

(
1

(n+m)!

dn+m

dzn+m
( ez)

)
=

1

(n+m)!
.

Thus we have the series expansion

Jn(z) =
∞∑
m=0

(−1)m

m!(n+m)!

(z
2

)n+2m

for n ≥ 0.

Now consider J−n(z), (n positive).

J−n(z) =
1

2πi

(z
2

)−n ∞∑
m=1

(−1)mz2m

22mm!

∮
tn−m−1 et dt

For m ≥ n, the integrand has a pole of order m− n+ 1 at the origin.

1

2πi

∮
tn−m−1 et dt =

{
1

(m−n)!
for m ≥ n

0 for m < n

The expression for J−n is then

J−n(z) =
∞∑
m=n

(−1)m

m!(m− n)!

(z
2

)−n+2m

=
∞∑
m=0

(−1)m+n

(m+ n)!m!

(z
2

)n+2m

= (−1)nJn(z).

Thus we have that

J−n(z) = (−1)nJn(z) for integral n.
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36.3.3 Bessel Functions of Non-Integral Order

The generalization of the factorial function is the Gamma function. For integral values of n, n! = Γ(n+ 1). The
Gamma function is defined for all complex-valued arguments. Thus one would guess that if the Bessel function
of the first kind were defined for non-integral order, it would have the definition,

Jν(z) =
∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m

.

The Integrand for Non-Integral ν. Recall the definition of the Bessel function

Jν(z) =
1

2πi

(z
2

)ν ∮
t−ν−1 et−z

2/4t dt.

When ν is an integer, the integrand is single valued. Thus if you start at any point and follow any path around
the origin, the integrand will return to its original value. This property was the key to Jn satisfying Bessel’s
equation. If ν is not an integer, then this property does not hold for arbitrary paths around the origin.

A New Contour. First, since the integrand is multiple-valued, we need to define what branch of the function
we are talking about. We will take the principal value of the integrand and introduce a branch cut on the negative
real axis. Let C be a contour that starts at z = −∞ below the branch cut, circles the origin, and returns to the
point z = −∞ above the branch cut. This contour is shown in Figure 36.2.

Thus we define

Jν(z) =
1

2πi

(z
2

)ν ∮
C

t−ν−1 et−z
2/4t dt.

Bessel’s Equation. Substituting Jν(z) into Bessel’s equation yields

J ′′ν +
1

z
J ′ν +

(
1− ν2

z2

)
Jν =

1

2πi

(z
2

)ν ∮
C

d

dt

(
t−ν−1 et−z

2/4t
)
dt.

Since t−ν−1 et−z
2/4t is analytic in 0 < |z| < ∞ and | arg(z)| < π, and it vanishes at z = −∞, the integral is zero.

Thus the Bessel function of the first kind satisfies Bessel’s equation for all complex orders.
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Figure 36.2: The Contour of Integration.

Series Expansion. Because of the et factor in the integrand, the integral defining Jν converges uniformly.
Expanding e−z

2/4t in a Taylor series yields

Jν(z) =
1

2πi

(z
2

)ν ∞∑
m=0

(−1)mz2m

22mm!

∮
C

t−ν−m−1 et dt

Since

1

Γ(α)
=

1

2πi

∮
C

t−α−1 et dt,

we have the series expansion of the Bessel function

Jν(z) =
∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m

.
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Linear Independence. The Wronskian of Bessel’s equation is

W (z) = exp

(
−
∫ z 1

ζ
dζ

)
= e− log z =

1

z
.

Thus to within a function of ν, the Wronskian is 1/z. For any given ν, there are two linearly independent
solutions. Note that Bessel’s equation is unchanged under the transformation ν → −ν. Thus both Jν and J−ν
satisfy Bessel’s equation. Now we must determine if they are linearly independent. We have already shown that
for integral values of ν they are not independent. (J−n = (−1)nJn.) Assume that ν is not an integer. The
Wronskian of Jν and J−ν is

W [Jν , J−ν ] =

∣∣∣∣Jν J−ν
J ′ν J ′−ν

∣∣∣∣
= JνJ

′
−ν − J−νJ ′ν

Substituting in the expansion for Jν ,

=

(
∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m
)(

∞∑
n=0

(−1)n(−ν + 2n)

n!Γ(−ν + n+ 1)2

(z
2

)−ν+2n−1
)

−

(
∞∑
m=0

(−1)m

m!Γ(−ν +m+ 1)

(z
2

)−ν+2m
)(

∞∑
n=0

(−1)n(ν + 2n)

n!Γ(ν + n+ 1)2

(z
2

)ν+2n−1
)
.

Since the Wronskian is a function of ν times 1/z the coefficients of all of the powers of z except 1/z must vanish.

=
−ν

zΓ(ν + 1)Γ(−ν + 1)
− ν

zΓ(−ν + 1)Γ(ν + 1)

= − 2

zΓ(ν)Γ(1− ν)
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Using an identity for the Gamma function simplifies this expression.

= − 2

πz
sin(πν)

Since the Wronskian is nonzero for non-integral ν, Jν and J−ν are independent functions when ν is not an integer.
The general solution to the equation is then aJν + bJ−ν .

36.3.4 Recursion Formulas

In showing that Jν satisfies Bessel’s equation for arbitrary complex ν, we obtained∮
C

d

dt

(
t−ν et−z

2/4t
)
dt = 0.

Expanding the integral, ∮
C

(
t−ν +

z2

4
t−ν−2 − νt−ν−1

)
et−z

2/4t dt = 0.

1

2πi

(z
2

)ν ∮
C

(
t−ν +

z2

4
t−ν−2 − νt−ν−1

)
et−z

2/4t dt = 0.

Since Jν(z) = 1
2πi

(z/2)ν
∮
C
t−ν−1 et−z

2/4t dt,

[(
2

z

)−1

Jν−1 +

(
2

z

)
z2

4
Jν+1 − νJν

]
= 0.

Jν−1 + Jν+1 =
2ν

z
Jν
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Differentiating the integral expression for Jν ,

J ′ν(z) =
1

2πi

νzν−1

2ν

∮
C

t−ν−1 et−z
2/4t dt+

1

2πi

(z
2

)ν ∮
C

t−ν−1
(
− z

2t

)
et−z

2/4t dt

J ′ν(z) =
ν

z

1

2πi

(z
2

)ν ∮
C

t−ν−1 et−z
2/4t dt− 1

2πi

(z
2

)ν+1
∮
C

t−ν−2 et−z
2/4t dt

J ′ν =
ν

z
Jν − Jν+1

From the two relations we have derived you can show that

J ′ν =
1

2
(Jν−1 + Jν+1) and J ′ν = Jν−1 −

ν

z
Jν .
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Result 36.3.1 The Bessel function of the first kind, Jν(z), is defined,

Jν(z) =
1

2πi

(z
2

)ν ∮
C

t−ν−1 et−z
2/4t dt.

The Bessel function has the expansion,

Jν(z) =
∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m
.

The Wronskian of Jν(z) and J−ν(z) is

W (z) = − 2

πz
sin(πν).

Thus Jν(z) and J−ν(z) are independent when ν is not an integer. The Bessel functions
satisfy the recursion relations,

Jν−1 + Jν+1 =
2ν

z
Jν J ′ν =

ν

z
Jν − Jν+1

J ′ν =
1

2
(Jν−1 − Jν+1) J ′ν = Jν−1 −

ν

z
Jν.
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36.3.5 Bessel Functions of Half-Integral Order

Consider J1/2(z). Start with the series expansion

J1/2(z) =
∞∑
m=0

(−1)m

m!Γ(1/2 +m+ 1)

(z
2

)1/2+2m

.

Use the identity Γ(n+ 1/2) = (1)(3)···(2n−1)
2n

√
π.

=
∞∑
m=0

(−1)m2m+1

m!(1)(3) · · · (2m+ 1)
√
π

(z
2

)1/2+2m

=
∞∑
m=0

(−1)m2m+1

(2)(4) · · · (2m) · (1)(3) · · · (2m+ 1)
√
π

(
1

2

)1/2+m

z1/2+2m

=

(
2

πz

)1/2 ∞∑
m=0

(−1)m

(2m+ 1)!
z2m+1

We recognize the sum as the Taylor series expansion of sin z.

=

(
2

πz

)1/2

sin z

Using the recurrence relations,

Jν+1 =
ν

z
Jν − J ′ν and Jν−1 =

ν

z
Jν + J ′ν ,

we can find Jn+1/2 for any integral n.
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Example 36.3.1 To find J3/2(z),

J3/2(z) =
1/2

z
J1/2(z)− J ′1/2(z)

=
1/2

z

(
2

π

)1/2

z−1/2 sin z −
(
−1

2

)(
2

π

)1/2

z−3/2 sin z −
(

2

π

)1/2

z−1/2 cos z

= 2−1/2π−1/2z−3/2 sin z + 2−1/2π−1/2z−3/2 sin z − 2−1/2π−1/2 cos z

=

(
2

π

)1/2

z−3/2 sin z −
(

2

π

)1/2

z−1/2 cos z

=

(
2

π

)1/2 (
z−3/2 sin z − z−1/2 cos z

)
.

You can show that

J−1/2(z) =

(
2

πz

)1/2

cos z.

Note that at a first glance it appears that J3/2 ∼ z−1/2 as z → 0. However, if you expand the sine and cosine
you will see that the z−1/2 and z1/2 terms vanish and thus J3/2(z) ∼ z3/2 as z → 0 as we showed previously.

Recall that we showed the asymptotic behavior as x→ +∞ of Bessel functions to be linear combinations of

x−1/2 sin(x+ U1(x)) and x−1/2 cos(x+ U2(x))

where U1, U2 → 0 as x→ +∞.

36.4 Neumann Expansions

Consider expanding an analytic function in a series of Bessel functions of the form

f(z) =
∞∑
n=0

anJn(z).
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If f(z) is analytic in the disk |z| ≤ r then we can write

f(z) =
1

2πi

∮
f(ζ)

ζ − z
dζ,

where the path of integration is |ζ| = r and |z| < r. If we were able to expand the function 1
ζ−z in a series of Bessel

functions, then we could interchange the order of summation and integration to get a Bessel series expansion of
f(z).

The Expansion of 1/(ζ − z). Assume that 1
ζ−z has the uniformly convergent expansion

1

ζ − z
= c0(ζ)J0(z) + 2

∞∑
n=1

cn(ζ)Jn(z),

where each cn(ζ) is analytic. Note that(
∂

∂ζ
+

∂

∂z

)
1

ζ − z
=

−1

(ζ − z)2
+

1

(ζ − z)2
= 0.

Thus we have (
∂

∂ζ
+

∂

∂z

)[
c0(ζ)J0(z) + 2

∞∑
n=1

cn(ζ)Jn(z)

]
= 0[

c′0J0 + 2
∞∑
n=1

c′nJn

]
+

[
c0J

′
0 + 2

∞∑
n=1

cnJ
′
n

]
= 0.

Using the identity 2J ′n = Jn−1 − Jn+1,[
c′0J0 + 2

∞∑
n=1

c′nJn

]
+

[
c0(−J1) +

∞∑
n=1

cn(Jn−1 − Jn+1)

]
= 0.
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Collecting coefficients of Jn,

(c′0 + c1)J0 +
∞∑
n=1

(2c′n + cn+1 − cn−1)Jn = 0.

Equating the coefficients of Jn, we see that the cn are given by the relations,

c1 = −c′0, and cn+1 = cn−1 − 2c′n.

We can evaluate c0(ζ). Setting z = 0,

1

ζ
= c0(ζ)J0(0) + 2

∞∑
n=1

cn(ζ)Jn(0)

1

ζ
= c0(ζ).

Using the recurrence relations we can calculate the cn’s. The first few are:

c1 = −−1

ζ2
=

1

ζ2

c2 =
1

ζ
− 2
−2

ζ3
=

1

ζ
+

4

ζ3

c3 =
1

ζ2
− 2

(
−1

ζ2
− 12

ζ4

)
=

3

ζ2
+

24

ζ4
.

We see that cn is a polynomial of degree n+ 1 in 1/ζ. One can show that

cn(ζ) =


2n−1n!
ζn+1

(
1 + ζ2

2(2n−2)
+ ζ4

2·4·(2n−2)(2n−4)
+ · · ·+ ζn

2·4···n·(2n−2)···(2n−n)

)
for even n

2n−1n!
ζn+1

(
1 + ζ2

2(2n−2)
+ ζ4

2·4·(2n−2)(2n−4)
+ · · ·+ ζn−1

2·4···(n−1)·(2n−2)···(2n−(n−1))

)
for odd n
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Uniform Convergence of the Series. We assumed before that the series expansion of 1
ζ−z is uniformly

convergent. The behavior of cn and Jn are

cn(ζ) =
2n−1n!

ζn+1
+O(ζ−n), Jn(z) =

zn

2nn!
+O(zn+1).

This gives us

cn(ζ)Jn(z) =
1

2ζ

(
z

ζ

)n
+O

(
1

ζ

(
z

ζ

)n+1
)
.

If
∣∣∣ zζ ∣∣∣ = ρ < 1 we can bound the series with the geometric series

∑
ρn. Thus the series is uniformly convergent.

Neumann Expansion of an Analytic Function. Let f(z) be a function that is analytic in the disk |z| ≤ r.
Consider |z| < r and the path of integration along |ζ| = r. Cauchy’s integral formula tells us that

f(z) =
1

2πi

∮
f(ζ)

ζ − z
dζ.

Substituting the expansion for 1
ζ−z ,

=
1

2πi

∮
f(ζ)

(
co(ζ)J0(z) + 2

∞∑
n=1

cn(ζ)Jn(z)

)
dζ

= J0(z)
1

2πi

∮
f(ζ)

ζ
dζ +

∞∑
n=1

Jn(z)

πi

∮
cn(ζ)f(ζ) dζ

= J0(z)f(0) +
∞∑
n=1

Jn(z)

πi

∮
cn(ζ)f(ζ) dζ.
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Result 36.4.1 let f(z) be analytic in the disk, |z| ≤ r. Consider |z| < r and the path
of integration along |ζ| = r. f(z) has the Bessel function series expansion

f(z) = J0(z)f(0) +
∞∑
n=1

Jn(z)

πi

∮
cn(ζ)f(ζ) dζ,

where the cn satisfy

1

ζ − z
= c0(ζ)J0(z) + 2

∞∑
n=1

cn(ζ)Jn(z).

36.5 Bessel Functions of the Second Kind

When ν is an integer, Jν and J−ν are not linearly independent. In order to find an second linearly independent
solution, we define the Bessel function of the second kind, (also called Weber’s function),

Yν =

{
Jν(z) cos(νπ)−J−ν(z)

sin(νπ)
when ν is not an integer

limµ→ν
Jµ(z) cos(µπ)−J−µ(z)

sin(µπ)
when ν is an integer.

Jν and Yν are linearly independent for all ν.

In Figure 36.3 Y0 and Y1 are plotted in solid and dashed lines, respectively.
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Figure 36.3: Bessel Functions of the Second Kind

Result 36.5.1 The Bessel function of the second kind, Yν(z), is defined,

Yν =

{
Jν(z) cos(νπ)−J−ν(z)

sin(νπ) when ν is not an integer

limµ→ν
Jµ(z) cos(µπ)−J−µ(z)

sin(µπ) when ν is an integer.

The Wronskian of Jν(z) and Yν(z) is

W [Jν, Yν] =
2

πz
.

Thus Jν(z) and Yν(z) are independent for all ν. The Bessel functions of the second kind
satisfy the recursion relations,

Yν−1 + Yν+1 =
2ν

z
Yν Y ′ν =

ν

z
Yν − Yν+1

Y ′ν =
1

2
(Yν−1 − Yν+1) Y ′ν = Yν−1 −

ν

z
Yν.
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36.6 Hankel Functions

Another set of solutions to Bessel’s equation is the Hankel functions,

H(1)
ν (z) = Jν(z) + iYν(z),

H(2)
ν (z) = Jν(z)− iYν(z)

Result 36.6.1 The Hankel functions are defined

H(1)
ν (z) = Jν(z) + iYν(z),

H(2)
ν (z) = Jν(z)− iYν(z)

The Wronskian of H
(1)
ν (z) and H

(2)
ν (z) is

W [H(1)
ν , H(2)

ν ] = − 4i

πz
.

The Hankel functions are independent for all ν. The Hankel functions satisfy the same
recurrence relations as the other Bessel functions.

36.7 The Modified Bessel Equation

The modified Bessel equation is

w′′ +
1

z
w′ −

(
1 +

ν2

z2

)
w = 0.

1525



This equation is identical to the Bessel equation except for a sign change in the last term. If we make the change
of variables ξ = iz, u(ξ) = w(z) we obtain the equation

−u′′ − 1

ξ
u′ −

(
1− ν2

ξ2

)
u = 0

u′′ +
1

ξ
u′ +

(
1− ν2

ξ2

)
u = 0.

This is the Bessel equation. Thus Jν(iz) is a solution to the modified Bessel equation. This motivates us to define
the modified Bessel function of the first kind

Iν(z) = i−νJν(iz).

Since Jν and J−ν are linearly independent solutions when ν is not an integer, Iν and I−ν are linearly independent
solutions to the modified Bessel equation when ν is not an integer.

The Taylor series expansion of Iν(z) about z = 0 is

Iν(z) = i−νJν(iz)

= i−ν
∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(
iz

2

)ν+2m

= i−ν
∞∑
m=0

(−1)miνi2m

m!Γ(ν +m+ 1)

(z
2

)ν+2m

=
∞∑
m=0

1

m!Γ(ν +m+ 1)

(z
2

)ν+2m

Modified Bessel Functions of the Second Kind. In order to have a second linearly independent solution
when ν is an integer, we define the modified Bessel function of the second kind

Kν(z) =

{
π
2
I−ν−Iν
sin(νπ)

when ν is not an integer,

limµ→ν
π
2

I−µ−Iµ
sin(µπ)

when ν is an integer.
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Iν and Kν are linearly independent for all ν. In Figure 36.4 I0 and K0 are plotted in solid and dashed lines,
respectively.

1 2 3 4

2

4

6

8

10

Figure 36.4: Modified Bessel Functions
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Result 36.7.1 The modified Bessel functions of the first and second kind, Iν(z) and
Kν(z), are defined,

Iν(z) = i−νJν(iz).

Kν(z) =

{
π
2
I−ν−Iν
sin(νπ) when ν is not an integer,

limµ→ν
π
2
I−µ−Iµ
sin(µπ) when ν is an integer.

The modified Bessel function of the first kind has the expansion,

Iν(z) =
∞∑
m=0

1

m!Γ(ν +m+ 1)

(z
2

)ν+2m

The Wronskian of Iν(z) and I−ν(z) is

W [Iν, I−ν] = − 2

πz
sin(πν).

Iν(z) and I−ν(z) are linearly independent when ν is not an integer. The Wronskian of
Iν(z) and Kν(z) is

W [Iν, Kν] = −1

z
.

Iν(z) and Kν(z) are independent for all ν. The modified Bessel functions satisfy the
recursion relations,

Aν−1 − Aν+1 =
2ν

z
Aν A′ν = Aν+1 +

ν

z
Aν

A′ν =
1

2
(Aν−1 + Aν+1) A′ν = Aν−1 −

ν

z
Aν.

where A stands for either I or K.
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36.8 Exercises
Exercise 36.1
Consider Bessel’s equation

z2y′′(z) + zy′(z) +
(
z2 − ν2

)
y = 0

where ν ≥ 0. Find the Frobenius series solution that is asymptotic to tν as t → 0. By multiplying this solution
by a constant, define the solution

Jν(z) =
∞∑
k=1

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k+ν

.

This is called the Bessel function of the first kind and order ν. Clearly J−ν(z) is defined and is linearly independent
to Jν(z) if ν is not an integer. What happens when ν is an integer?

Exercise 36.2
Consider Bessel’s equation for integer n,

z2y′′ + zy′ + (z2 − n2)y = 0.

Using the kernel

K(z, t) = e
1
2
z(t− 1

t ),

find two solutions of Bessel’s equation. (For n = 0 you will find only one solution.) Are the two solutions linearly
independent? Define the Bessel function of the first kind and order n,

Jn(z) =
1

i2π

∮
C

t−n−1 e
1
2
z(t−1/t) dt,

where C is a simple, closed contour about the origin. Verify that

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn.

1529



This is the generating function for the Bessel functions.

Exercise 36.3
Use the generating function

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn

to show that Jn satisfies Bessel’s equation

z2y′′ + zy′ + (z2 − n2)y = 0.

Exercise 36.4
Using

Jn−1 + Jn+1 =
2n

z
Jn and J ′n =

n

z
Jn − Jn+1,

show that

J ′n =
1

2
(Jn−1 − Jn+1) and J ′n = Jn−1 −

n

z
Jn.

Exercise 36.5
Find the general solution of

w′′ +
1

z
w′ +

(
1− 1

4z2

)
w = z.

Exercise 36.6
Show that Jν(z) and Yν(z) are linearly independent for all ν.
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Exercise 36.7
Compute W [Iν , I−ν ] and W [Iν , Kν ].

Exercise 36.8
Using the generating function,

exp

[
z

2

(
t− 1

t

)]
=

+∞∑
n=−∞

Jn(z)tn,

verify the following identities:

1.

2n

z
Jn(z) = Jn−1(z) + Jn+1(z).

This relation is useful for recursively computing the values of the higher order Bessel functions.

2.

J ′n(z) =
1

2
(Jn−1 − Jn+1) .

This relation is useful for computing the derivatives of the Bessel functions once you have the values of the
Bessel functions of adjacent order.

3.

d

dz

(
z−nJn(z)

)
= −z−nJn+1(z).
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Exercise 36.9
Use the Wronskian of Jν(z) and J−ν(z),

W [Jν(z), J−ν(z)] = −2 sin νπ

πz
,

to derive the identity

J−ν+1(z)Jν(z) + J−ν(z)Jν−1(z) =
2

πz
sin νπ.

Exercise 36.10
Show that, using the generating function or otherwise,

J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + · · · = 1

J0(z)− 2J2(z) + 2J4(z)− 2J6(z) + · · · = cos z

2J1(z)− 2J3(z) + 2J5(z)− · · · = sin z

J2
0 (z) + 2J2

1 (z) + 2J2
2 (z) + 2J2

3 (z) + · · · = 1

Exercise 36.11
It is often possible to “solve” certain ordinary differential equations by converting them into the Bessel equation
by means of various transformations. For example, show that the solution of

y′′ + xp−2y = 0,

can be written in terms of Bessel functions.

y(x) = c1x
1/2J1/p

(
2

p
xp/2

)
+ c2x

1/2Y1/p

(
2

p
xp/2

)
Here c1 and c2 are arbitrary constants. Thus show that the Airy equation,

y′′ + xy = 0,

can be solved in terms of Bessel functions.

1532



Exercise 36.12
The spherical Bessel functions are defined by

jn(z) =

√
π

2z
Jn+1/2(z),

yn(z) =

√
π

2z
Yn+1/2(z),

kn(z) =

√
π

2z
Kn+1/2(z),

in(z) =

√
π

2z
In+1/2(z).

Show that

j1(z) =
sin z

z2
− cos z

z
,

i0(z) =
sinh z

z
,

k0(z) =
π

2z
exp(−z).

Exercise 36.13
Show that as x→∞,

Kn(x) ∝ e−x√
x

(
1 +

4n2 − 1

8x
+

(4n2 − 1)(4n2 − 9)

128x2
+ · · ·

)
.
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36.9 Hints
Hint 36.2

Hint 36.3

Hint 36.4
Use the generating function

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn

to show that Jn satisfies Bessel’s equation

z2y′′ + zy′ + (z2 − n2)y = 0.

Hint 36.6
Use variation of parameters and the Wronskian that was derived in the text.

Hint 36.7
Compute the Wronskian of Jν(z) and Yν(z). Use the relation

W [Jν , J−ν ] = − 2

πz
sin(πν)

Hint 36.8
Derive W [Iν , I−ν ] from the value of W [Jν , J−ν ]. Derive W [Iν , Kν ] from the value of W [Iν , I−ν ].
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Hint 36.9

Hint 36.10

Hint 36.11

Hint 36.12

Hint 36.13

Hint 36.14
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36.10 Solutions
Solution 36.1
Bessel’s equation is

L[y] ≡ z2y′′ + zy′ + (z2 − n2)y = 0.

We consider a solution of the form

y(z) =

∫
C

e
1
2
z(t−1/t)v(t) dt.

We substitute the form of the solution into Bessel’s equation.∫
C

L
[

e
1
2
z(t−1/t)

]
v(t) dt = 0∫

C

(
z2 1

4

(
t+

1

t

)2

+ z
1

2

(
t− 1

t

)2

+
(
z2 − n2

))
e

1
2
z(t−1/t)v(t) dt = 0 (36.1)

By considering

d

dt
t e

1
2
z(t−1/t) =

(
1

2
x

(
t+

1

t

)
+ 1

)
e

1
2
z(t−1/t)

d2

dt2
t2 e

1
2
z(t−1/t) =

(
1

4
x2

(
t+

1

t

)2

+ x

(
2t+

1

t

)
+ 2

)
e

1
2
z(t−1/t)

we see that

L
[

e
1
2
z(t−1/t)

]
=

(
d2

dt2
t2 − 3

d

dt
t+ (1− n2)

)
e

1
2
z(t−1/t).

Thus Equation 36.1 becomes∫
C

(
d2

dt2
t2 e

1
2
z(t−1/t) − 3

d

dt
t e

1
2
z(t−1/t) + (1− n2) e

1
2
z(t−1/t)

)
v(t) dt = 0
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We apply integration by parts to move derivatives from the kernel to v(t).[
t2 e

1
2
z(t−1/t)v(t)

]
C
−
[
t e

1
2
z(t−1/t)v′(t)

]
C

+
[
−3t e

1
2
z(t−1/t)v(t)

]
C

+

∫
C

e
1
2
z(t−1/t)

(
t2v′′(t) + 3tv(t) + (1− n2)v(t)

)
dt = 0

[
e

1
2
z(t−1/t)

(
(t2 − 3t)v(t)− tv′(t)

)]
C

+

∫
C

e
1
2
z(t−1/t)

(
t2v′′(t) + 3tv(t) + (1− n2)v(t)

)
dt = 0

In order that the integral vanish, v(t) must be a solution of the differential equation

t2v′′ + 3tv + (1− n2)v = 0.

This is an Euler equation with the solutions {tn−1, t−n−1} for non-zero n and {t−1, t−1 log t} for n = 0.
Consider the case of non-zero n. Since

e
1
2
z(t−1/t)

(
(t2 − 3t)v(t)− tv′(t)

)
is single-valued and analytic for t 6= 0 for the functions v(t) = tn−1 and v(t) = t−n−1, the boundary term will
vanish if C is any closed contour that that does not pass through the origin. Note that the integrand in our
solution,

e
1
2
z(t−1/t)v(t),

is analytic and single-valued except at the origin and infinity where it has essential singularities. Consider a
simple closed contour that does not enclose the origin. The integral along such a path would vanish and give us
y(z) = 0. This is not an interesting solution. Since

e
1
2
z(t−1/t)v(t),

has non-zero residues for v(t) = tn−1 and v(t) = t−n−1, choosing any simple, positive, closed contour about the
origin will give us a non-trivial solution of Bessel’s equation. These solutions are

y1(t) =

∫
C

tn−1 e
1
2
z(t−1/t) dt, y2(t) =

∫
C

t−n−1 e
1
2
z(t−1/t) dt.

Now consider the case n = 0. The two solutions above concide and we have the solution

y(t) =

∫
C

t−1 e
1
2
z(t−1/t) dt.
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Choosing v(t) = t−1 log t would make both the boundary terms and the integrand multi-valued. We do not pursue
the possibility of a solution of this form.

The solution y1(t) and y2(t) are not linearly independent. To demonstrate this we make the change of variables
t→ −1/t in the integral representation of y1(t).

y1(t) =

∫
C

tn−1 e
1
2
z(t−1/t) dt

=

∫
C

(−1/t)n−1 e
1
2
z(−1/t+t)−1

t2
dt

=

∫
C

(−1)nt−n−1 e
1
2
z(t−1/t) dt

= (−1)ny2(t)

Thus we see that a solution of Bessel’s equation for integer n is

y(t) =

∫
C

t−n−1 e
1
2
z(t−1/t) dt

where C is any simple, closed contour about the origin.
Therefore, the Bessel function of the first kind and order n,

Jn(z) =
1

i2π

∮
C

t−n−1 e
1
2
z(t−1/t) dt

is a solution of Bessel’s equation for integer n. Note that Jn(z) is the coefficient of tn in the Laurent series of

e
1
2
z(t−1/t). This establishes the generating function for the Bessel functions.

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn
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Solution 36.2
The generating function is

e
z
2

(t−1/t) =
∞∑

n=−∞

Jn(z)tn.

In order to show that Jn satisfies Bessel’s equation we seek to show that

∞∑
n=−∞

(
z2J ′′n(z) + zJn(z) + (z2 − n2)Jn(z)

)
tn = 0.

To get the appropriate terms in the sum we will differentiate the generating function with respect to z and t.
First we differentiate it with respect to z.

1

2

(
t− 1

t

)
e
z
2

(t−1/t) =
∞∑

n=−∞

J ′n(z)tn

1

4

(
t− 1

t

)2

e
z
2

(t−1/t) =
∞∑

n=−∞

J ′′n(z)tn

Now we differentiate with respect to t and multiply by t get the n2Jn term.

z

2

(
1 +

1

t2

)
e
z
2

(t−1/t) =
∞∑

n=−∞

nJn(z)tn−1

z

2

(
t+

1

t

)
e
z
2

(t−1/t) =
∞∑

n=−∞

nJn(z)tn

z

2

(
1− 1

t2

)
e
z
2

(t−1/t) +
z2

4

(
t+

1

t

)2

e
z
2

(t−1/t) =
∞∑

n=−∞

n2Jn(z)tn−1

z

2

(
t− 1

t

)
e
z
2

(t−1/t) +
z2

4

(
t+

1

t

)2

e
z
2

(t−1/t) =
∞∑

n=−∞

n2Jn(z)tn
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Now we can evaluate the desired sum.

∞∑
n=−∞

(
z2J ′′n(z) + zJn(z) + (z2 − n2)Jn(z)

)
tn

=

(
z2

4

(
t− 1

t

)2

+
z

2

(
t− 1

t

)
+ z2 − z

2

(
t− 1

t

)
− z2

4

(
t+

1

t

)2
)

e
z
2

(t−1/t)

∞∑
n=−∞

(
z2J ′′n(z) + zJn(z) + (z2 − n2)Jn(z)

)
tn = 0

z2J ′′n(z) + zJn(z) + (z2 − n2)Jn(z) = 0

Thus Jn satisfies Bessel’s equation.

Solution 36.3

J ′n =
n

z
Jn − Jn+1

=
1

2
(Jn−1 + Jn+1)− Jn+1

=
1

2
(Jn−1 − Jn+1)

J ′n =
n

z
Jn − Jn+1

=
n

z
Jn −

(
2n

z
Jn − Jn−1

)
= Jn−1 −

n

z
Jn
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Solution 36.4
The linearly independent homogeneous solutions are J1/2 and J−1/2. The Wronskian is

W [J1/2, J−1/2] = − 2

πz
sin(π/2) = − 2

πz
.

Using variation of parameters, a particular solution is

yp = −J1/2(z)

∫ z ζJ−1/2(ζ)

−2/πζ
dζ + J−1/2(z)

∫ z ζJ1/2(ζ)

−2/πζ
dζ

=
π

2
J1/2(z)

∫ z

ζ2J−1/2(ζ) dζ − π

2
J−1/2(z)

∫ z

ζ2J1/2(ζ) dζ.

Thus the general solution is

y = c1J1/2(z) + c2J−1/2(z) +
π

2
J1/2(z)

∫ z

ζ2J−1/2(ζ) dζ − π

2
J−1/2(z)

∫ z

ζ2J1/2(ζ) dζ.

We could substitute

J1/2(z) =

(
2

πz

)1/2

sin z and J−1/2 =

(
2

πz

)1/2

cos z

into the solution, but we cannot evaluate the integrals in terms of elementary functions. (You can write the
solution in terms of Fresnel integrals.)
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Solution 36.5

W [Jν , Yν ] =

∣∣∣∣Jν Jν cot(νπ)− J−ν csc(νπ)
J ′ν J ′ν cot(νπ)− J ′−ν csc(νπ)

∣∣∣∣
= cot(νπ)

∣∣∣∣Jν Jν
J ′ν J ′ν

∣∣∣∣− csc(νπ)

∣∣∣∣Jν J−ν
J ′ν J ′−ν

∣∣∣∣
= − csc(νπ)

−2

πz
sin(πν)

=
2

πz

Since the Wronskian does not vanish identically, the functions are independent for all values of ν.

Solution 36.6

Iν(z) = i−νJν(iz)

W [Iν , I−ν ] =

∣∣∣∣Iν I−ν
I ′ν I ′−ν

∣∣∣∣
=

∣∣∣∣ i−νJν(iz) iνJ−ν(iz)
i−νiJ ′ν(iz) iνiJ ′−ν(iz)

∣∣∣∣
= i

∣∣∣∣Jν(iz) J−ν(iz)
J ′ν(iz) J ′−ν(iz)

∣∣∣∣
= i
−2

πiz
sin(πν)

= − 2

πz
sin(πν)
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W [Iν , Kν ] =

∣∣∣∣Iν π
2

csc(πν)(I−ν − Iν)
I ′ν

π
2

csc(πν)(I ′−ν − I ′ν)

∣∣∣∣
=
π

2
csc(πν)

(∣∣∣∣Iν I−ν
I ′ν I ′−ν

∣∣∣∣− ∣∣∣∣Iν Iν
I ′ν I ′ν

∣∣∣∣)
=
π

2
csc(πν)

−2

πz
sin(πν)

= −1

z

Solution 36.7
1. We diferentiate the generating function with respect to t.

e
z
2

(t−1/t) =
∞∑

n=−∞

Jn(z)tn

z

2

(
1 +

1

t2

)
e
z
2

(t−1/t) =
∞∑

n=−∞

Jn(z)ntn−1

(
1 +

1

t2

) ∞∑
n=−∞

Jn(z)tn =
2

z

∞∑
n=−∞

Jn(z)ntn−1

∞∑
n=−∞

Jn(z)tn +
∞∑

n=−∞

Jn(z)tn−2 =
2

z

∞∑
n=−∞

Jn(z)ntn−1

∞∑
n=−∞

Jn−1(z)tn−1 +
∞∑

n=−∞

Jn+1(z)tn−1 =
2

z

∞∑
n=−∞

Jn(z)ntn−1

Jn−1(z) + Jn+1(z) =
2

z
Jn(z)n

2n

z
Jn(z) = Jn−1(z) + Jn+1(z)
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2. We diferentiate the generating function with respect to z.

e
z
2

(t−1/t) =
∞∑

n=−∞

Jn(z)tn

1

2

(
t− 1

t

)
e
z
2

(t−1/t) =
∞∑

n=−∞

J ′n(z)tn

1

2

(
t− 1

t

) ∞∑
n=−∞

Jn(z)tn =
∞∑

n=−∞

J ′n(z)tn

1

2

(
∞∑

n=−∞

Jn(z)tn+1 −
∞∑

n=−∞

Jn(z)tn−1

)
=

∞∑
n=−∞

J ′n(z)tn

1

2

(
∞∑

n=−∞

Jn−1(z)tn −
∞∑

n=−∞

Jn+1(z)tn

)
=

∞∑
n=−∞

J ′n(z)tn

1

2
(Jn−1(z)− Jn+1(z)) = J ′n(z)

J ′n(z) =
1

2
(Jn−1 − Jn+1)

3.

d

dz

(
z−nJn(z)

)
= −nz−n−1Jn(z) + z−nJ ′n(z)

= −1

2
z−n

2n

z
Jn(z) + z−n

1

2
(Jn−1(z)− Jn+1(z))

= −1

2
z−n (Jn+1(z) + Jn−1(z)) +

1

2
z−n (Jn−1(z)− Jn+1(z))

d

dz

(
z−nJn(z)

)
= −z−nJn+1(z)
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Solution 36.8
For this part we will use the identities

J ′ν(z) =
ν

z
Jν(z)− Jν+1(z), J ′ν(z) = Jν−1(z)− ν

z
Jν(z).

∣∣∣∣Jν(z) J−ν(z)
J ′ν(z) J ′−ν(z)

∣∣∣∣ = −2 sin(νπ)

πz∣∣∣∣ Jν(z) J−ν(z)
Jν−1(z)− ν

z
Jν −ν

z
J−ν(z)− J−ν+1(z)

∣∣∣∣ = −2 sin(νπ)

πz∣∣∣∣ Jν(z) J−ν(z)
Jν−1(z) −J−ν+1(z)

∣∣∣∣− ν

z

∣∣∣∣Jν(z) J−ν(z)
Jν(z) J−ν(z)

∣∣∣∣ = −2 sin(νπ)

πz

−Jν+1(z)Jν(z)− Jν(z)Jν−1(z) = −2 sin(νπ)

πz

J−ν+1(z)Jν(z) + J−ν(z)Jν−1(z) =
2

πz
sin νπ

Solution 36.9
The generating function for the Bessel functions is

e
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)tn. (36.2)

1. We substitute t = 1 into (36.2).

∞∑
n=−∞

Jn(z) = 1

J0(z) +
∞∑
n=1

Jn(z) +
∞∑
n=1

J−n(z) = 1
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We use the identity J−n = (−1)nJn.

J0(z) +
∞∑
n=1

(1 + (−1)n)Jn(z) = 1

J0(z) + 2
∞∑
n=2

even n

Jn(z) = 1

J0(z) + 2
∞∑
n=1

J2n(z) = 1

2. We substitute t = i into (36.2).

∞∑
n=−∞

Jn(z)in = eiz

J0(z) +
∞∑
n=1

Jn(z)in +
∞∑
n=1

J−n(z)i−n = eiz

J0(z) +
∞∑
n=1

Jn(z)in +
∞∑
n=1

(−1)nJn(z)(−i)n = eiz

J0(z) + 2
∞∑
n=1

Jn(z)in = eiz (36.3)

Substituting t = −i into (36.2) yields

J0(z) + 2
∞∑
n=1

(−1)nJn(z)in = e−iz (36.4)
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Dividing the sum of (36.3) and (36.4) by 2 gives us the desired identity.

J0(z) +
∞∑
n=1

(1 + (−1)n)Jn(z)in = cos z

J0(z) + 2
∞∑
n=2

even n

Jn(z)in = cos z

J0(z) + 2
∞∑
n=2

even n

(−1)n/2Jn(z) = cos z

J0(z) + 2
∞∑
n=1

(−1)nJ2n(z) = cos z

3. Dividing the difference of (36.3) and (36.4) by 2i gives us the other identity.

−i
∞∑
n=1

(1− (−1)n)Jn(z)in = sin z

2
∞∑
n=1

odd n

Jn(z)in−1 = sin z

2
∞∑
n=1

odd n

(−1)(n−1)/2Jn(z) = sin z

2
∞∑
n=0

(−1)nJ2n+1(z) = sin z
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4. Substituting −t for t in (36.2) yields

e−
1
2
z(t−1/t) =

∞∑
n=−∞

Jn(z)(−t)n. (36.5)

We take the product of (36.2) and (36.5) to obtain the final identity.(
∞∑

n=−∞

Jn(z)tn

)(
∞∑

m=−∞

Jm(z)(−t)m
)

= e
1
2
z(t−1/t) e−

1
2
z(t−1/t) = 1

Note that the coefficients of all powers of t except t0 in the product of sums must vanish.

∞∑
n=−∞

Jn(z)tnJ−n(z)(−t)−n = 1

∞∑
n=−∞

J2
n(z) = 1

J2
0 (z) + 2

∞∑
n=1

J2
n(z) = 1

Solution 36.10
First we make the change of variables y(x) = x1/2v(x). We compute the derivatives of y(x).

y′ = x1/2v′ +
1

2
x−1/2v,

y′′ = x1/2v′′ + x−1/2v′ − 1

4
x−3/2v.
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We substitute these into the differential equation for y.

y′′ + xp−2y = 0

x1/2v′′ + x−1/2v′ − 1

4
x−3/2v + xp−3/2v = 0

x2v′′ + xv′ +

(
xp − 1

4

)
v = 0

Then we make the change of variables v(x) = u(ξ), ξ = 2
p
xp/2. We write the derivatives in terms of ξ.

x
d

dx
= x

dξ

dx

d

dξ
= xxp/2−1 d

dξ
=
p

2
ξ

d

dξ

x2 d2

dx2
+ x

d

dx
= x

d

dx
x

d

dx
=
p

2
ξ

d

dξ

p

2
ξ

d

dξ
=
p2

4
ξ2 d2

dξ2
+
p2

4
ξ

d

dξ

We write the differential equation for u(ξ).

p2

4
ξ2u′′ +

p2

4
ξu′ +

(
p2

4
ξ2 − 1

4

)
u = 0

u′′ +
1

ξ
u′ +

(
1− 1

p2ξ2

)
u = 0

This is the Bessel equation of order 1/p. We can write the general solution for u in terms of Bessel functions of
the first kind if p 6= ±1. Otherwise, we use a Bessel function of the second kind.

u(ξ) = c1J1/p(ξ) + c2J−1/p(ξ) for p 6= 0,±1

u(ξ) = c1J1/p(ξ) + c2Y1/p(ξ) for p 6= 0
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We write the solution in terms of y(x).

y(x) = c1

√
xJ1/p

(
2

p
xp/2

)
+ c2

√
xJ−1/p

(
2

p
xp/2

)
for p 6= 0,±1

y(x) = c1

√
xJ1/p

(
2

p
xp/2

)
+ c2

√
xY1/p

(
2

p
xp/2

)
for p 6= 0

The Airy equation y′′ + xy = 0 is the case p = 3. The general solution of the Airy equation is

y(x) = c1

√
xJ1/3

(
2

3
x3/2

)
+ c2

√
xJ−1/3

(
2

3
x3/2

)
.

Solution 36.11
Consider J1/2(z). We start with the series expansion.

J1/2(z) =
∞∑
m=0

(−1)m

m!Γ(1/2 +m+ 1)

(z
2

)1/2+2m

.

Use the identity Γ(n+ 1/2) = (1)(3)···(2n−1)
2n

√
π.

=
∞∑
m=0

(−1)m2m+1

m!(1)(3) · · · (2m+ 1)
√
π

(z
2

)1/2+2m

=
∞∑
m=0

(−1)m2m+1

(2)(4) · · · (2m) · (1)(3) · · · (2m+ 1)
√
π

(
1

2

)1/2+m

z1/2+2m

=

(
2

πz

)1/2 ∞∑
m=0

(−1)m

(2m+ 1)!
z2m+1
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We recognize the sum as the Taylor series expansion of sin z.

=

(
2

πz

)1/2

sin z

Using the recurrence relations,

Jν+1 =
ν

z
Jν − J ′ν and Jν−1 =

ν

z
Jν + J ′ν ,

we can find Jn+1/2 for any integral n.
We need J3/2(z) to determine j1(z). To find J3/2(z),

J3/2(z) =
1/2

z
J1/2(z)− J ′1/2(z)

=
1/2

z

(
2

π

)1/2

z−1/2 sin z −
(
−1

2

)(
2

π

)1/2

z−3/2 sin z −
(

2

π

)1/2

z−1/2 cos z

= 2−1/2π−1/2z−3/2 sin z + 2−1/2π−1/2z−3/2 sin z − 2−1/2π−1/2 cos z

=

(
2

π

)1/2

z−3/2 sin z −
(

2

π

)1/2

z−1/2 cos z

=

(
2

π

)1/2 (
z−3/2 sin z − z−1/2 cos z

)
.

The spherical Bessel function j1(z) is

j1(z) =
sin z

z2
− cos z

z
.

The modified Bessel function of the first kind is

Iν(z) = i−νJν(iz).
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We can determine I1/2(z) from J1/2(z).

I1/2(z) = i−1/2

√
2

πiz
sin(iz)

= −i
√

2

πz
i sinh(z)

=

√
2

πz
sinh(z)

The spherical Bessel function i0(z) is

i0(z) =
sinh z

z
.

The modified Bessel function of the second kind is

Kν(z) = lim
µ→ν

π

2

I−µ − Iµ
sin(µπ)

Thus K1/2(z) can be determined in terms of I−1/2(z) and I1/2(z).

K1/2(z) =
π

2

(
I−1/2 − I1/2

)
We determine I−1/2 with the recursion relation

Iν−1(z) = I ′ν(z) +
ν

z
Iν(z).

I−1/2(z) = I ′1/2(z) +
1

2z
I1/2(z)

=

√
2

π
z−1/2 cosh(z)− 1

2

√
2

π
z−3/2 sinh(z) +

1

2z

√
2

π
z−1/2 sinh(z)

=

√
2

πz
cosh(z)
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Now we can determine K1/2(z).

K1/2(z) =
π

2

(√
2

πz
cosh(z)−

√
2

πz
sinh(z)

)

=

√
π

2z
e−z

The spherical Bessel function k0(z) is

k0(z) =
π

2z
e−z.

Solution 36.12
The Point at Infinity. With the change of variables z = 1/t, w(z) = u(t) the modified Bessel equation becomes

w′′ +
1

z
w′ −

(
1 +

n2

z2

)
w = 0

t4u′′ + 2t3u′ + t(−t2)u′ − (1 + n2t2)u = 0

u′′ +
1

t
u′ −

(
1

t4
− n2

t2

)
u = 0.

The point t = 0 and hence the point z = ∞ is an irregular singular point. We will find the leading order
asymptotic behavior of the solutions as z → +∞.

Controlling Factor. Starting with the modified Bessel equation for real argument

y′′ +
1

x
y′ −

(
1 +

n2

x2

)
y = 0,

we make the substitution y = es(x) to obtain

s′′ + (s′)2 +
1

x
s′ − 1− n2

x2
= 0.
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We know that n2

x2 � 1 as x→∞; we will assume that s′′ � (s′)2 as x→∞. This gives us

(s′)2 +
1

x
s′ − 1 ∼ 0 as x→∞.

To simplify the equation further, we will try the possible two-term balances.

1. (s′)2 + 1
x
s′ ∼ 0 ⇒ s′ ∼ − 1

x
This balance is not consistent as it violates the assumption that 1 is

smaller than the other terms.

2. (s′)2 − 1 ∼ 0 ⇒ s′ ∼ ±1 This balance is consistent.

3. 1
x
s′ − 1 ∼ 0 ⇒ s′ ∼ x This balance is inconsistent as (s′)2 isn’t smaller than the other terms.

Thus the only dominant balance is s′ ∼ ±1. This balance is consistent with our initial assumption that
s′′ � (s′)2. Thus s ∼ ±x and the controlling factor is e±x. We are interested in the decaying solution, so we will
work with the controlling factor e−x.

Leading Order Behavior. In order to find the leading order behavior, we substitute s = −x + t(x) where
t(x)� x as x→∞ into the differential equation for s. We assume that t′ � 1 and t′′ � 1/x.

t′′ + (−1 + t′)2 +
1

x
(−1 + t′)− 1− n2

x2
= 0

t′′ − 2t′ + (t′)2 − 1

x
+

1

x
t′ − n2

x2
= 0

Using our assumptions about the behavior of t′ and t′′,

−2t′ − 1

x
∼ 0

t′ ∼ − 1

2x

t ∼ −1

2
log x as x→∞.
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This asymptotic behavior is consistent with our assumptions.

Thus the leading order behavior of the decaying solution is

y ∼ c e−x−
1
2

log x+u(x) = cx−1/2 e−x+u(x) as x→∞,

where u(x)� log x as x→∞.

By substituting t = −1
2

log x + u(x) into the differential equation for t, you could show that u(x)→ const as
x→∞. Thus the full leading order behavior of the decaying solution is

y ∼ cx−1/2 e−x as x→∞

where u(x)→ 0 as x→∞.

Asymptotic Series. Now we find the full asymptotic series for Kn(x) as x→∞. We substitute

Kn(x) ∝ e−x√
x
w(x)

into the modified Bessel equation, where w(x) is a Taylor series about x =∞, i.e.,

Kn(x) ∝ e−x√
x

∞∑
k=0

akx
−k.

First we differentiate the expression for Kn(x).

K ′n(x) ∝ e−x√
x

(
w′ −

(
1 +

1

2x

)
w

)
K ′′n(x) ∝ e−x√

x

(
w′′ −

(
2 +

1

x

)
w′ +

(
1 +

1

x
+

3

4x2

)
w

)
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We substitute these expressions into the modified Bessel equation.

x2y′′ + xy′ − (x2 + n2)y = 0

x2w′′ −
(
2x2 + x

)
w′ +

(
x2 + x+

3

4

)
w + xw′ −

(
x+

1

2

)
w − (x2 + n2)w = 0

x2w′′ − 2x2w′ +

(
1

4
− n2

)
w = 0

The derivatives of the Taylor series are

w′ =
∞∑
k=1

(−k)akx
−k−1,

=
∞∑
k=0

(−k − 1)ak+1x
−k−2,

w′′ =
∞∑
k=1

(−k)(−k − 1)akx
−k−2,

=
∞∑
k=0

(−k)(−k − 1)akx
−k−2.

We substitute these expression into the differential equation.

x2

∞∑
k=0

k(k + 1)akx
−k−2 + 2x2

∞∑
k=0

(k + 1)ak+1x
−k−2 +

(
1

4
− n2

) ∞∑
k=0

akx
−k = 0

∞∑
k=0

k(k + 1)akx
−k + 2

∞∑
k=0

(k + 1)ak+1x
−k +

(
1

4
− n2

) ∞∑
k=0

akx
−k = 0
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We equation coefficients of x to obtain a recurrence relation for the coefficients.

k(k + 1)ak + 2(k + 1)ak+1 +

(
1

4
− n2

)
ak = 0

ak+1 =
n2 − 1/4− k(k + 1)

2(k + 1)
ak

ak+1 =
n2 − (k + 1/2)2

2(k + 1)
ak

ak+1 =
4n2 − (2k + 1)2

8(k + 1)
ak

We choose a0 = 1 and use the recurrence relation to determine the rest of the coefficients.

ak = (8(n+ 1))−k
k∏
j=1

(4n2 − (2j − 1)2).

The asymptotic expansion of the modified Bessel function of the second kind is

Kn(x) ∝ e−x√
x

∞∑
k=0

(8(n+ 1))−k

(
k∏
j=1

(4n2 − (2j − 1)2)

)
z−k, as x→∞.

Convergence. We determine the domain of convergence of the series with the ratio test. The Taylor series
about infinity will converge outside of some circle.

lim
k→∞

∣∣∣∣an+1(x)

an(x)

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣an+1x
−k−1

anx−k

∣∣∣∣ < 1

lim
k→∞

∣∣∣∣4n2 − (2k + 1)2

8(k + 1)

∣∣∣∣ |x|−1 < 1

∞ < |x|
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The series does not converge for any x in the finite complex plane. However, if we take only a finite number of
terms in the series, it gives a good approximation of Kn(x) for large, positive x. At x = 10, the one, two and
three term approximations give relative errors of 0.01, 0.0006 and 0.00006, respectively.
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Part V

Partial Differential Equations
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Chapter 37

Transforming Equations

Let {xi} denote rectangular coordinates. Let {ai} be unit basis vectors in the orthogonal coordinate system {ξi}.
The distance metric coefficients hi can be defined

hi =

√(
∂x1

∂ξi

)2

+

(
∂x2

∂ξi

)2

+

(
∂x3

∂ξi

)2

.

The gradient, divergence, etc., follow.

∇u =
a1

h1

∂u

∂ξ1

+
a2

h2

∂u

∂ξ2

+
a3

h3

∂u

∂ξ3

∇ · v =
1

h1h2h3

(
∂

∂ξ1

(h2h3v1) +
∂

∂ξ2

(h3h1v2) +
∂

∂ξ3

(h1h2v3)

)
∇2u =

1

h1h2h3

(
∂

∂ξ1

(
h2h3

h1

∂u

∂ξ1

)
+

∂

∂ξ2

(
h3h1

h2

∂u

∂ξ2

)
+

∂

∂ξ3

(
h1h2

h3

∂u

∂ξ3

))
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37.1 Exercises
Exercise 37.1
Find the Laplacian in cylindrical coordinates (r, θ, z).

x = r cos θ, y = r sin θ, z

Exercise 37.2
Find the Laplacian in spherical coordinates (r, φ, θ).

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ
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37.2 Hints
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37.3 Solutions
Solution 37.1

h1 =
√

(cos θ)2 + (sin θ)2 + 0 = 1

h2 =
√

(−r sin θ)2 + (r cos θ)2 + 0 = r

h3 =
√

0 + 0 + 12 = 1

∇2u =
1

r

(
∂

∂r

(
r
∂u

∂r

)
+

∂

∂θ

(
1

r

∂u

∂θ

)
+

∂

∂z

(
r
∂u

∂z

))
∇2u =

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2

Solution 37.2

h1 =
√

(sinφ cos θ)2 + (sinφ sin θ)2 + (cosφ)2 = 1

h2 =
√

(r cosφ cos θ)2 + (r cosφ sin θ)2 + (−r sinφ)2 = r

h3 =
√

(−r sinφ sin θ)2 + (r sinφ cos θ)2 + 0 = r sinφ

∇2u =
1

r2 sinφ

(
∂

∂r

(
r2 sinφ

∂u

∂r

)
+

∂

∂φ

(
sinφ

∂u

∂φ

)
+

∂

∂θ

(
1

sinφ

∂u

∂θ

))
∇2u =

1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

r2 sinφ

∂2u

∂θ2

1563



Chapter 38

Classification of Partial Differential Equations

38.1 Classification of Second Order Quasi-Linear Equations

Consider the general second order quasi-linear partial differential equation in two variables.

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = F (x, y, u, ux, uy) (38.1)

We classify the equation by the sign of the discriminant. At a given point x0, y0, the equation is classified as one
of the following types:

b2 − ac > 0 : hyperbolic
b2 − ac = 0 : parabolic
b2 − ac < 0 : elliptic

If an equation has a particular type for all points x, y in a domain then the equation is said to be of that type
in the domain. Each of these types has a canonical form that can be obtained through a change of independent
variables. The type of an equation indicates much about the nature of its solution.

We seek a change of independent variables, (a different coordinate system), such that Equation 38.1 has a
simpler form. We will find that a second order quasi-linear partial differential equation in two variables can be
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transformed to one of the canonical forms:

uξη = G(ξ, η, u, uξ, uη), hyperbolic

uξξ = G(ξ, η, u, uξ, uη), parabolic

uξξ + uηη = G(ξ, η, u, uξ, uη), elliptic

Consider the change of independent variables

ξ = ξ(x, y), η = η(x, y).

The partial derivatives of u are

ux = ξxuξ + ηxuη

uy = ξyuξ + ηyuη

uxx = ξ2
xuξξ + 2ξxηxuξη + η2

xuηη + ξxxuξ + ηxxuη

uxy = ξxξyuξξ + (ξxηy + ξyηx)uξη + ηxηyuηη + ξxyuξ + ηxyuη

uyy = ξ2
yuξξ + 2ξyηyuξη + η2

yuηη + ξyyuξ + ηyyuη.

Substituting these into (??) yields an equation in ξ and η.(
aξ2

x + 2bξxξy + cξ2
y

)
uξξ + 2 (aξxηx + b(ξxηy + ξyηx) + cξyηy)uξη

+
(
aη2

x + 2bηxηy + cη2
y

)
uηη = H(ξ, η, u, uξ, uη)

α(ξ, η)uξξ + β(ξ, η)uξη + γ(ξ, η)uηη = H(ξ, η, u, uξ, uη) (38.2)

38.1.1 Hyperbolic Equations

We start with a hyperbolic equation, (b2 − ac > 0). We seek a change of independent variables that will put
Equation 38.1 in the form

uξη = G(ξ, η, u, uξ, uη) (38.3)
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We require that the uξξ and uηη terms vanish. That is α = γ = 0 in Equation 38.2. This gives us two constraints
on ξ and η.

aξ2
x + 2bξxξy + cξ2

y = 0, aη2
x + 2bηxηy + cη2

y = 0 (38.4)

ξx
ξy

=
−b+

√
b2 − ac
a

,
ηx
ηy

=
−b−

√
b2 − ac
a

.

Here we chose the signs in the quadratic formulas to get different solutions for ξ and η.
Consider ξ(x, y) = const as an implicit equation for y in terms of x. We differentiate ξ with respect to x.

dξ

dx
= ξx + ξy

dy

dx
= 0

The derivative of y(x) is

dy

dx
= −ξx

ξy
=
b−
√
b2 − ac
a

.

Solving this ordinary differential equation for y(x) determines ξ(x, y). We just write the solution for y(x) in the
form F (x, y(x)) = const. We then have ξ = F (x, y). Upon solving for ξ and η we divide Equation 38.2 by β(ξ, η)
to obtain the canonical form.

Note that we could have solved for ξy/ξx in Equation 38.4.

dx

dy
= −ξy

ξx
=
b−
√
b2 − ac
c

This form is useful if a vanishes.

Another canonical form for hyperbolic equations is

uσσ − uττ = K(σ, τ, u, uσ, uτ ). (38.5)
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We can transform Equation 38.3 to this form with the change of variables

σ = ξ + η, τ = ξ − η.

Equation 38.3 becomes

uσσ − uττ = G

(
σ + τ

2
,
σ − τ

2
, u, uσ + uτ , uσ − uτ

)
.

Example 38.1.1 Consider the wave equation with a source.

utt − c2uxx = s(x, t)

Since 0− (1)(−c2) > 0, the equation is hyperbolic. We find the new variables.

dx

dt
= −c, x = −ct+ const, ξ = x+ ct

dx

dt
= c, x = ct+ const, η = x− ct

Then we determine t and x in terms of ξ and η.

t =
ξ − η

2c
, x =

ξ + η

2

We calculate the derivatives of ξ and η.

ξt = c ξx = 1

ηt = −c ηx = 1

Then we calculate the derivatives of u.

utt = c2uξξ − 2c2uξη + c2uηη

uxx = uξξ + uηη
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Finally we transform the equation to canonical form.

−2c2uξη = s

(
ξ + η

2
,
ξ − η

2c

)
uξη = − 1

2c2
s

(
ξ + η

2
,
ξ − η

2c

)
If s(x, t) = 0, then the equation is uξη = 0 we can integrate with respect to ξ and η to obtain the solution,

u = f(ξ) + g(η). Here f and g are arbitrary C2 functions. In terms of t and x, we have

u(x, t) = f(x+ ct) + g(x− ct).

To put the wave equation in the form of Equation 38.5 we make the change of variables

σ = ξ + η = 2x, τ = ξ − η = 2ct.

utt − c2uxx = s(x, t)

4c2uττ − 4c2uσσ = s
(σ

2
,
τ

2c

)
uσσ − uττ = − 1

4c2
s
(σ

2
,
τ

2c

)
Example 38.1.2 Consider

y2uxx − x2uyy = 0.

For x 6= 0 and y 6= 0 this equation is hyperbolic. We find the new variables.

dy

dx
= −

√
y2x2

y2
= −x

y
, y dy = −x dx, y2

2
= −x

2

2
+ const, ξ = y2 + x2

dy

dx
=

√
y2x2

y2
=
x

y
, y dy = x dx,

y2

2
=
x2

2
+ const, η = y2 − x2

1568



We calculate the derivatives of ξ and η.

ξx = 2x ξy = 2y

ηx = −2x ηy = 2y

Then we calculate the derivatives of u.

ux = 2x(uξ − uη)
uy = 2y(uξ + uη)

uxx = 4x2(uξξ − 2uξη + uηη) + 2(uξ − uη)
uyy = 4y2(uξξ + 2uξη + uηη) + 2(uξ + uη)

Finally we transform the equation to canonical form.

y2uxx − x2uyy = 0

−8x2y2uξη − 8x2y2uξη + 2y2(uξ − uη) + 2x2(uξ + uη) = 0

16
1

2
(ξ − η)

1

2
(ξ + η)uξη = 2ξuξ − 2ηuη

uξη =
ξuξ − ηuη
2(ξ2 − η2)

Example 38.1.3 Consider Laplace’s equation.

uxx + uyy = 0

Since 0− (1)(1) < 0, the equation is elliptic. We will transform this equation to the canical form of Equation 38.3.
We find the new variables.

dy

dx
= −i, y = −ix+ const, ξ = x+ iy

dy

dx
= i, y = ix+ const, η = x− iy
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We calculate the derivatives of ξ and η.

ξx = 1 ξy = i

ηx = 1 ηy = −i

Then we calculate the derivatives of u.

uxx = uξξ + 2uξη + uηη

uyy = −uξξ + 2uξη − uηη

Finally we transform the equation to canonical form.

4uξη = 0

uξη = 0

We integrate with respect to ξ and η to obtain the solution, u = f(ξ) + g(η). Here f and g are arbitrary C2

functions. In terms of x and y, we have

u(x, y) = f(x+ iy) + g(x− iy).

This solution makes a lot of sense, because the real and imaginary parts of an analytic function are harmonic.

38.1.2 Parabolic equations

38.1.3 Elliptic Equations

We start with an elliptic equation, (b2 − ac < 0). We seek a change of independent variables that will put
Equation 38.1 in the form

uσσ + uττ = G(σ, τ, u, uσ, uτ ) (38.6)
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If we make the change of variables determined by

ξx
ξy

=
−b+ i

√
ac− b2

a
,

ηx
ηy

=
−b− i

√
ac− b2

a

The equation will have the form

uξη = G(ξ, η, u, uξ, uη).

ξ and η are complex-valued. If we then make the change of variables

σ =
ξ + η

2
, τ =

ξ − η
2i

we will obtain the canonical form of Equation 38.6. Note that since ξ and η are complex conjugate, σ and τ are
real-valued.

Example 38.1.4 Consider

y2uxx + x2uyy = 0. (38.7)

For x 6= 0 and y 6= 0 this equation is elliptic. We find new variables that will put this equation in the form
uξη = G(·). From Example 38.1.2 we see that they are

dy

dx
= −i

√
y2x2

y2
= −ix

y
, y dy = −ix dx, y2

2
= −ix

2

2
+ const, ξ = y2 + ix2

dy

dx
= i

√
y2x2

y2
= i

x

y
, y dy = ix dx,

y2

2
= i

x2

2
+ const, η = y2 − ix2

The variables that will put Equation 38.7 in canonical form are

σ =
ξ + η

2
= y2, τ =

ξ − η
2i

= x2
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We calculate the derivatives of σ and τ .

σx = 0 σy = 2y

τx = 2x τy = 0

Then we calculate the derivatives of u.

ux = 2xuτ

uy = 2yuσ

uxx = 4x2uττ + 2uτ

uyy = 4y2uσσ + 2uσ

Finally we transform the equation to canonical form.

y2uxx + x2uyy = 0

σ(4τuττ + 2uτ ) + τ(4σuσσ + 2uσ) = 0

uσσ + uττ = − 1

2σ
uσ −

1

2τ
uτ

38.2 Equilibrium Solutions

Example 38.2.1 Consider the equilibrium solution for the following problem.

ut = uxx, u(x, 0) = x, ux(0, t) = ux(1, t) = 0.

Setting ut = 0 we have the ordinary differential equation

d2u

dx2
= 0.
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This equation has the solution

u = ax+ b.

Applying the boundary conditions we see that

u = b.

To determine the constant, we note that the heat energy in the rod is constant in time.∫ 1

0

u(x, t) dx =

∫ 1

0

u(x, 0) dx∫ 1

0

b dx =

∫ 1

0

x dx

Thus the equilibrium solution is

u(x) =
1

2
.

1573



38.3 Exercises
Exercise 38.1
Classify as hyperbolic, parabolic, or elliptic in a region R each of the equations:

(a) ut = (pux)x

(b) utt = c2uxx − γu

(c) (qux)x + (qut)t = 0

where p(x), c(x, t), q(x, t), and γ(x) are given functions that take on only positive values in a region R of the
(x, t) plane.

Exercise 38.2
Transform each of the following equations for φ(x, y) into canonical form in appropriate regions

(a) φxx − y2φyy + φx − φ+ x2 = 0

(b) φxx + xφyy = 0

The equation in part (b) is known as Tricomi’s equation and is a model for transonic fluid flow in which the flow
speed changes from supersonic to subsonic.
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38.4 Hints
Hint 38.1

Hint 38.2
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38.5 Solutions
Exercise 38.3

1.

ut = (pux)x

puxx + 0uxt + 0utt + pxux − ut = 0

Since 02 − p0 = 0, the equation is parabolic.

2.

utt = c2uxx − γu
utt + 0utx − c2uxx + γu = 0

Since 02 − (1)(−c2) > 0, the equation is hyperbolic.

3.

(qux)x + (qut)t = 0

quxx + 0uxt + qutt + qxux + qtut = 0

Since 02 − qq < 0, the equation is elliptic.

Exercise 38.4
1. For y 6= 0, the equation is hyperbolic. We find the new independent variables.

dy

dx
=

√
y2

1
= y, y = c ex, e−xy = c, ξ = e−xy

dy

dx
=
−
√
y2

1
= −y, y = c e−x, exy = c, η = exy
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Next we determine x and y in terms of ξ and η.

ξη = y2, y =
√
ξη

η = ex
√
ξη, ex =

√
η/ξ, x =

1

2
log

(
η

ξ

)
We calculate the derivatives of ξ and η.

ξx = − e−xy = −ξ
ξy = e−x =

√
ξ/η

ηx = exy = η

ηy = ex =
√
η/ξ

Then we calculate the derivatives of φ.

∂

∂x
= −ξ ∂

∂ξ
+ η

∂

∂η
,

∂

∂y
=

√
ξ

η

∂

∂ξ
+

√
η

ξ

∂

∂η

φx = −ξφξ + ηφη, φy =

√
ξ

η
φξ +

√
η

ξ
φη

φxx = ξ2φξξ − 2ξηφξη + η2φηη + ξφξ + ηφη, φyy =
ξ

η
φξξ + 2φξη +

η

ξ
φηη

Finally we transform the equation to canonical form.

φxx − y2φyy + φx − φ+ x2 = 0

−4ξηφξη + ξφξ + ηφη − ξφξ + ηφη − φ+ log

(
η

ξ

)
= 0

φξη =
1

2ξ
φη + φ− log

(
η

ξ

)
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For y = 0 we have the ordinary differential equation

φxx + φx − φ+ x2 = 0.

2. For x < 0, the equation is hyperbolic. We find the new independent variables.

dy

dx
=
√
−x, y =

2

3
x
√
−x+ c, ξ =

2

3
x
√
−x− y

dy

dx
= −
√
−x, y = −2

3
x
√
−x+ c, η =

2

3
x
√
−x+ y

Next we determine x and y in terms of ξ and η.

x = −
(

3

4
(ξ + η)

)1/3

, y =
η − ξ

2

We calculate the derivatives of ξ and η.

ξx =
√
−x =

(
3

4
(ξ + η)

)1/6

, ξy = −1

ηx =

(
3

4
(ξ + η)

)1/6

, ηy = 1

Then we calculate the derivatives of φ.

φx =

(
3

4
(ξ + η)

)1/6

(φξ + φη)

φy = −φξ + φη

φxx =

(
3

4
(ξ + η)

)1/3

(φξξ + φηη) + (6(ξ + η))1/3φξη + (6(ξ + η))−2/3 (φξ + φη)

φyy = φξξ − 2φξη + φηη
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Finally we transform the equation to canonical form.

φxx + xφyy = 0

(6(ξ + η))1/3φξη + (6(ξ + η))1/3φξη + (6(ξ + η))−2/3 (φξ + φη) = 0

φξη = − φξ + φη
12(ξ + η)

For x > 0, the equation is elliptic. The variables we defined before are complex-valued.

ξ = i
2

3
x3/2 − y, η = i

2

3
x3/2 + y.

We choose the new real-valued variables.

α = ξ − η, β = −i(ξ + η)

We write the derivatives in terms of α and β.

φξ = φα − iφβ
φη = −φα − iφβ
φξη = −φαα − φββ

We transform the equation to canonical form.

φξη = − φξ + φη
12(ξ + η)

−φαα − φββ = −−2iφβ
12iβ

φαα + φββ = −φβ
6β
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Chapter 39

Separation of Variables

39.1 Eigensolutions of Homogeneous Equations

39.2 Homogeneous Equations with Homogeneous Boundary Condi-

tions

The method of separation of variables is a useful technique for finding special solutions of partial differential
equations. We can combine these special solutions to solve certain problems. Consider the temperature of a
one-dimensional rod of length h 1. The left end is held at zero temperature, the right end is insulated and the
initial temperature distribution is known at time t = 0. To find the temperature we solve the problem:

∂u

∂t
= κ

∂2u

∂x2
, 0 < x < h, t > 0

u(0, t) = ux(h, t) = 0

u(x, 0) = f(x)

1Why h? Because l looks like 1 and we use L to denote linear operators
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We look for special solutions of the form, u(x, t) = X(x)T (t). Substituting this into the partial differential equation
yields

X(x)T ′(t) = κX ′′(x)T (t)

T ′(t)

κT (t)
=
X ′′(x)

X(x)

Since the left side is only dependent on t, the right side in only dependent on x, and the relation is valid for all t
and x, both sides of the equation must be constant.

T ′

κT
=
X ′′

X
= −λ

Here −λ is an arbitrary constant. (You’ll see later that this form is convenient.) u(x, t) = X(x)T (t) will satisfy
the partial differential equation if X(x) and T (t) satisfy the ordinary differential equations,

T ′ = −κλT and X ′′ = −λX.

Now we see how lucky we are that this problem happens to have homogeneous boundary conditions 2. If the left
boundary condition had been u(0, t) = 1, this would imply X(0)T (t) = 1 which tells us nothing very useful about
either X or T . However the boundary condition u(0, t) = X(0)T (t) = 0, tells us that either X(0) = 0 or T (t) = 0.
Since the latter case would give us the trivial solution, we must have X(0) = 0. Likewise by looking at the right
boundary condition we obtain X ′(h) = 0.

We have a regular Sturm-Liouville problem for X(x).

X ′′ + λX = 0, X(0) = X ′(h) = 0

The eigenvalues and orthonormal eigenfunctions are

λn =

(
(2n− 1)π

2h

)2

, Xn =

√
2

h
sin

(
(2n− 1)π

2h
x

)
, n ∈ Z+.

2Actually luck has nothing to do with it. I planned it that way.
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Now we solve the equation for T (t).

T ′ = −κλnT
T = c e−κλnt

The eigen-solutions of the partial differential equation that satisfy the homogeneous boundary conditions are

un(x, t) =

√
2

h
sin
(√

λnx
)

e−κλnt.

We seek a solution of the problem that is a linear combination of these eigen-solutions.

u(x, t) =
∞∑
n=1

an

√
2

h
sin
(√

λnx
)

e−κλnt

We apply the initial condition to find the coefficients in the expansion.

u(x, 0) =
∞∑
n=1

an

√
2

h
sin
(√

λnx
)

= f(x)

an =

√
2

h

∫ h

0

sin
(√

λnx
)
f(x) dx

39.3 Time-Independent Sources and Boundary Conditions

Consider the temperature in a one-dimensional rod of length h. The ends are held at temperatures α and β,
respectively, and the initial temperature is known at time t = 0. Additionally, there is a heat source, s(x), that
is independent of time. We find the temperature by solving the problem,

ut = κuxx + s(x), u(0, t) = α, u(h, t) = β, u(x, 0) = f(x). (39.1)
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Because of the source term, the equation is not separable, so we cannot directly apply separation of variables.
Furthermore, we have the added complication of inhomogeneous boundary conditions. Instead of attacking this
problem directly, we seek a transformation that will yield a homogeneous equation and homogeneous boundary
conditions.

Consider the equilibrium temperature, µ(x). It satisfies the problem,

µ′′(x) = −s(x)

κ
= 0, µ(0) = α, µ(h) = β.

The Green function for this problem is,

G(x; ξ) =
x<(x> − h)

h
.

The equilibrium temperature distribution is

µ(x) = α
x− h
h

+ β
x

h
− 1

κh

∫ h

0

x<(x> − h)s(ξ) dξ,

µ(x) = α + (β − α)
x

h
− 1

κh

(
(x− h)

∫ x

0

ξs(ξ) dξ + x

∫ h

x

(ξ − h)s(ξ) dξ

)
.

Now we substitute u(x, t) = v(x, t) + µ(x) into Equation 39.1.

∂

∂t
(v + µ(x)) = κ

∂2

∂x2
(v + µ(x)) + s(x)

vt = κvxx + κµ′′(x) + s(x)

vt = κvxx (39.2)

Since the equilibrium solution satisfies the inhomogeneous boundary conditions, v(x, t) satisfies homogeneous
boundary conditions.

v(0, t) = v(h, t) = 0.
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The initial value of v is

v(x, 0) = f(x)− µ(x).

We seek a solution for v(x, t) that is a linear combination of eigen-solutions of the heat equation. We substitute
the separation of variables, v(x, t) = X(x)T (t) into Equation 39.2

T ′

κT
=
X ′′

X
= −λ

This gives us two ordinary differential equations.

X ′′ + λX = 0, X(0) = X(h) = 0

T ′ = −κλT.

The Sturm-Liouville problem for X(x) has the eigenvalues and orthonormal eigenfunctions,

λn =
(nπ
h

)2

, Xn =

√
2

h
sin
(nπx

h

)
, n ∈ Z+.

We solve for T (t).

Tn = c e−κ(nπ/h)2t.

The eigen-solutions of the partial differential equation are

vn(x, t) =

√
2

h
sin
(nπx

h

)
e−κ(nπ/h)2t.

The solution for v(x, t) is a linear combination of these.

v(x, t) =
∞∑
n=1

an

√
2

h
sin
(nπx

h

)
e−κ(nπ/h)2t
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We determine the coefficients in the series with the initial condition.

v(x, 0) =
∞∑
n=1

an

√
2

h
sin
(nπx

h

)
= f(x)− µ(x)

an =

√
2

h

∫ h

0

sin
(nπx

h

)
(f(x)− µ(x)) dx

The temperature of the rod is

u(x, t) = µ(x) +
∞∑
n=1

an

√
2

h
sin
(nπx

h

)
e−κ(nπ/h)2t

39.4 Inhomogeneous Equations with Homogeneous Boundary Con-

ditions

Now consider the heat equation with a time dependent source, s(x, t).

ut = κuxx + s(x, t), u(0, t) = u(h, t) = 0, u(x, 0) = f(x). (39.3)

In general we cannot transform the problem to one with a homogeneous differential equation. Thus we cannot
represent the solution in a series of the eigen-solutions of the partial differential equation. Instead, we will do the
next best thing and expand the solution in a series of eigenfunctions in Xn(x) where the coefficients depend on
time.

u(x, t) =
∞∑
n=1

un(t)Xn(x)

We will find these eigenfunctions with the separation of variables, u(x, t) = X(x)T (t) applied to the homogeneous
equation, ut = κuxx, which yields,

Xn(x) =

√
2

h
sin
(nπx

h

)
, n ∈ Z+.
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We expand the heat source in the eigenfunctions.

s(x, t) =
∞∑
n=1

sn(t)

√
2

h
sin
(nπx

h

)
sn(t) =

√
2

h

∫ h

0

sin
(nπx

h

)
s(x, t) dx,

We substitute the series solution into Equation 39.3.

∞∑
n=1

u′n(t)

√
2

h
sin
(nπx

h

)
= −κ

∞∑
n=1

un(t)
(nπ
h

)2
√

2

h
sin
(nπx

h

)
+
∞∑
n=1

sn(t)

√
2

h
sin
(nπx

h

)
u′n(t) + κ

(nπ
h

)2

un(t) = sn(t)

Now we have a first order, ordinary differential equation for each of the un(t). We obtain initial conditions from
the initial condition for u(x, t).

u(x, 0) =
∞∑
n=1

un(0)

√
2

h
sin
(nπx

h

)
= f(x)

un(0) =

√
2

h

∫ h

0

sin
(nπx

h

)
f(x) dx ≡ fn

The temperature is given by

u(x, t) =
∞∑
n=1

un(t)

√
2

h
sin
(nπx

h

)
,

un(t) = fn e−κ(nπ/h)2t +

∫ t

0

e−κ(nπ/h)2(t−τ)sn(τ) dτ.
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39.5 Inhomogeneous Boundary Conditions

Consider the temperature of a one-dimensional rod of length h. The left end is held at the temperature α(t),
the heat flow at right end is specified, there is a time-dependent source and the initial temperature distribution
is known at time t = 0. To find the temperature we solve the problem:

ut = κuxx + s(x, t), 0 < x < h, t > 0 (39.4)

u(0, t) = α(t), ux(h, t) = β(t) u(x, 0) = f(x)

Transformation to a homogeneous equation. Because of the inhomogeneous boundary conditions, we
cannot directly apply the method of separation of variables. However we can transform the problem to an
inhomogeneous equation with homogeneous boundary conditions. To do this, we first find a function, µ(x, t)
which satisfies the boundary conditions. We note that

µ(x, t) = α(t) + xβ(t)

does the trick. We make the change of variables

u(x, t) = v(x, t) + µ(x, t)

in Equation 39.4.

vt + µt = κ (vxx + µxx) + s(x, t)

vt = κvxx + s(x, t)− µt
The boundary and initial conditions become

v(0, t) = 0, vx(h, t) = 0, v(x, 0) = f(x)− µ(x, 0).

Thus we have a heat equation with the source s(x, t)− µt(x, t). We could apply separation of variables to find a
solution of the form

u(x, t) = µ(x, t) +
∞∑
n=1

un(t)

√
2

h
sin

(
(2n− 1)πx

2h

)
.
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Direct eigenfunction expansion. Alternatively we could seek a direct eigenfunction expansion of u(x, t).

u(x, t) =
∞∑
n=1

un(t)

√
2

h
sin

(
(2n− 1)πx

2h

)
.

Note that the eigenfunctions satisfy the homogeneous boundary conditions while u(x, t) does not. If we choose
any fixed time t = t0 and form the periodic extension of the function u(x, t0) to define it for x outside the range
(0, h), then this function will have jump discontinuities. This means that our eigenfunction expansion will not
converge uniformly. We are not allowed to differentiate the series with respect to x. We can’t just plug the series
into the partial differential equation to determine the coefficients. Instead, we will multiply Equation 39.4, by an
eigenfunction and integrate from x = 0 to x = h. To avoid differentiating the series with respect to x, we will use

integration by parts to move derivatives from u(x, t) to the eigenfunction. (We will denote λn =
(

(2n−1)π
2h

)2

.)

√
2

h

∫ h

0

sin(
√
λnx)(ut − κuxx) dx =

√
2

h

∫ h

0

sin(
√
λnx)s(x, t) dx

u′n(t)−
√

2

h
κ
[
ux sin(

√
λnx)

]h
0

+

√
2

h
κ
√
λn

∫ h

0

ux cos(
√
λnx) dx = sn(t)

u′n(t)−
√

2

h
κ(−1)nux(h, t) +

√
2

h
κ
√
λn

[
u cos(

√
λnx)

]h
0

+

√
2

h
κλn

∫ h

0

u sin(
√
λnx) dx = sn(t)

u′n(t)−
√

2

h
κ(−1)nβ(t)−

√
2

h
κ
√
λnu(0, t) + κλnun(t) = sn(t)

u′n(t) + κλnun(t) =

√
2

h
κ
(√

λnα(t) + (−1)nβ(t)
)

+ sn(t)
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Now we have an ordinary differential equation for each of the un(t). We obtain initial conditions for them using
the initial condition for u(x, t).

u(x, 0) =
∞∑
n=1

un(0)

√
2

h
sin(
√
λnx) = f(x)

un(0) =

√
2

h

∫ h

0

sin(
√
λnx)f(x) dx ≡ fn

Thus the temperature is given by

u(x, t) =

√
2

h

∞∑
n=1

un(t) sin(
√
λnx),

un(t) = fn e−κλnt +

√
2

h
κ

∫ t

0

e−κλn(t−τ)
(√

λnα(τ) + (−1)nβ(τ)
)

dτ.

39.6 The Wave Equation

Consider an elastic string with a free end at x = 0 and attached to a massless spring at x = 1. The partial
differential equation that models this problem is

utt = uxx

ux(0, t) = 0, ux(1, t) = −u(1, t), u(x, 0) = f(x), ut(x, 0) = g(x).

We make the substitution u(x, t) = ψ(x)φ(t) to obtain

φ′′

φ
=
ψ′′

ψ
= −λ.
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First we consider the problem for ψ.

ψ′′ + λψ = 0, ψ′(0) = ψ(1) + ψ′(1) = 0.

To find the eigenvalues we consider the following three cases:

λ < 0. The general solution is

ψ = a cosh(
√
−λx) + b sinh(

√
−λx).

ψ′(0) = 0 ⇒ b = 0.

ψ(1) + ψ′(1) = 0 ⇒ a cosh(
√
−λ) + a

√
−λ sinh(

√
−λ) = 0

⇒ a = 0.

Since there is only the trivial solution, there are no negative eigenvalues.

λ = 0. The general solution is

ψ = ax+ b.

ψ′(0) = 0 ⇒ a = 0.

ψ(1) + ψ′(1) = 0 ⇒ b+ 0 = 0.

Thus λ = 0 is not an eigenvalue.

λ > 0. The general solution is

ψ = a cos(
√
λx) + b sin(

√
λx).
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ψ′(0) ⇒ b = 0.

ψ(1) + ψ′(1) = 0 ⇒ a cos(
√
λ)− a

√
λ sin(

√
λ) = 0

⇒ cos(
√
λ) =

√
λ sin(

√
λ)

⇒
√
λ = cot(

√
λ)

By looking at Figure 39.1, (the plot shows the functions f(x) = x, f(x) = cot x and has lines at x = nπ),
we see that there are an infinite number of positive eigenvalues and that

λn → (nπ)2 as n→∞.

The eigenfunctions are

ψn = cos(
√
λnx).

The solution for φ is

φn = an cos(
√
λnt) + bn sin(

√
λnt).

Thus the solution to the differential equation is

u(x, t) =
∞∑
n=1

cos(
√
λnx)[an cos(

√
λnt) + bn sin(

√
λnt)].

Let

f(x) =
∞∑
n=1

fn cos(
√
λnx)

g(x) =
∞∑
n=1

gn cos(
√
λnx).
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Figure 39.1: Plot of x and cotx.

From the initial value we have

∞∑
n=1

cos(
√
λnx)an =

∞∑
n=1

fn cos(
√
λnx)

an = fn.

The initial velocity condition gives us

∞∑
n=1

cos(
√
λnx)

√
λnbn =

∞∑
n=1

gn cos(
√
λnx)

bn =
gn√
λn
.
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Thus the solution is

u(x, t) =
∞∑
n=1

cos(
√
λnx)

[
fn cos(

√
λnt) +

gn√
λn

sin(
√
λnt)

]
.

39.7 General Method

Here is an outline detailing the method of separation of variables for a linear partial differential equation for
u(x, y, z, . . . ).

1. Substitute u(x, y, z, . . . ) = X(x)Y (y)Z(z) · · · into the partial differential equation. Separate the equation
into ordinary differential equations.

2. Translate the boundary conditions for u into boundary conditions for X, Y , Z, . . . . The continuity of u
may give additional boundary conditions and boundedness conditions.

3. Solve the differential equation(s) that determine the eigenvalues. Make sure to consider all cases. The
eigenfunctions will be determined up to a multiplicative constant.

4. Solve the rest of the differential equations subject to the homogeneous boundary conditions. The eigenvalues
will be a parameter in the solution. The solutions will be determined up to a multiplicative constant.

5. The eigen-solutions are the product of the solutions of the ordinary differential equations. φn = XnYnZn · · · .
The solution of the partial differential equation is a linear combination of the eigen-solutions.

u(x, y, z, . . . ) =
∑

anφn

6. Solve for the coefficients, an using the inhomogeneous boundary conditions.
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39.8 Exercises
Exercise 39.1
Obtain Poisson’s formula to solve the Dirichlet problem for the circular region 0 ≤ r < R, 0 ≤ θ < 2π. That is,
determine a solution φ(r, θ) to Laplace’s equation

∇2φ = 0

in polar coordinates given φ(R, θ). Show that

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α)
R2 − r2

R2 + r2 − 2Rr cos(θ − α)
dα

Exercise 39.2
Consider the temperature of a ring of unit radius. Solve the problem

ut = κuθθ, u(θ, 0) = f(θ)

with separation of variables.

Exercise 39.3
Solve the Laplace’s equation by separation of variables.

∆u ≡ uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = f(x), u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0

Here f(x) is an arbitrary function which is known.

Exercise 39.4
Solve the following problem by separation of variables:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0, 0 < r < 1,
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u(1, θ) = f(θ).

Thus, you must find the function u = u(r, θ) which satisfies the partial differential equation inside the unit circle
and which takes on the values of f(θ) on the circumference.

Exercise 39.5
Find the normal modes of oscillation of a drum head of unit radius. The drum head obeys the wave equation
with zero displacement on the boundary.

∆v ≡ 1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2

∂2v

∂θ2
=

1

c2

∂2v

∂t2
, v(1, θ, t) = 0

Exercise 39.6
Solve the equation

φt = a2φxx, 0 < x < l, t > 0

with boundary conditions φ(0, t) = φ(l, t) = 0, and initial conditions

φ(x, 0) =

{
x, 0 ≤ x ≤ l/2,

l − x, l/2 < x ≤ l.

Comment on the differentiability ( that is the number of finite derivatives with respect to x ) at time t = 0 and
at time t = ε, where ε > 0 and ε� 1.

Exercise 39.7
Consider a one-dimensional rod of length L with initial temperature distribution f(x). The temperatures at the
left and right ends of the rod are held at T0 and T1, respectively. To find the temperature of the rod for t > 0,
solve

ut = κuxx, 0 < x < L, t > 0

u(0, t) = T0, u(L, t) = T1, u(x, 0) = f(x),
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with separation of variables.

Exercise 39.8
For 0 < x < l solve the problem

φt = a2φxx + w(x, t) (39.5)

φ(0, t) = 0, φx(l, t) = 0, φ(x, 0) = f(x)

by means of a series expansion involving the eigenfunctions of

d2β(x)

dx2
+ λβ(x) = 0,

β(0) = β′(l) = 0.

Here w(x, t) and f(x) are prescribed functions.

Exercise 39.9
Solve the heat equation of Exercise 39.8 with the same initial conditions but with the boundary conditions

φ(0, t) = 0, cφ(l, t) + φx(l, t) = 0.

Here c > 0 is a constant. Although it is not possible to solve for the eigenvalues λ in closed form, show that the
eigenvalues assume a simple form for large values of λ.

Exercise 39.10
Use a series expansion technique to solve the problem

φt = a2φxx + 1, t > 0, 0 < x < l

with boundary and initial conditions given by

φ(x, 0) = 0, φ(0, t) = t, φx(l, t) = −cφ(l, t)

where c > 0 is a constant.
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Exercise 39.11
Let φ(x, t) satisfy the equation

φt = a2φxx

for 0 < x < l, t > 0 with initial conditions φ(x, 0) = 0 for 0 < x < l, with boundary conditions φ(0, t) = 0 for
t > 0, and φ(l, t) + φx(l, t) = 1 for t > 0. Obtain two series solutions for this problem, one which is useful for
large t and the other useful for small t.

Exercise 39.12
A rod occupies the portion 1 < x < 2 of the x-axis. The thermal conductivity depends on x in such a manner
that the temperature φ(x, t) satisfies the equation

φt = A2(x2φx)x (39.6)

where A is a constant. For φ(1, t) = φ(2, t) = 0 for t > 0, with φ(x, 0) = f(x) for 1 < x < 2, show that the
appropriate series expansion involves the eigenfunctions

βn(x) =
1√
x

sin

(
πn log x

log 2

)
.

Work out the series expansion for the given boundary and initial conditions.

Exercise 39.13
Consider a string of length L with a fixed left end a free right end. Initially the string is at rest with displacement
f(x). Find the motion of the string by solving,

utt = c2uxx, 0 < x < L, t > 0,

u(0, t) = 0, ux(L, t) = 0,

u(x, 0) = f(x), ut(x, 0) = 0,

with separation of variables.
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Exercise 39.14
Consider the equilibrium temperature distribution in a two-dimensional block of width a and height b. There
is a heat source given by the function f(x, y). The vertical sides of the block are held at zero temperature; the
horizontal sides are insulated. To find this equilibrium temperature distribution, solve the potential equation,

uxx + uyy = f(x, y), 0 < x < a, 0 < y < b,

u(0, y) = u(a, y) = 0, uy(x, 0) = uy(x, b) = 0,

with separation of variables.

Exercise 39.15
Consider the vibrations of a stiff beam of length L. More precisely, consider the transverse vibrations of an
unloaded beam, whose weight can be neglected compared to its stiffness. The beam is simply supported at
x = 0, L. (That is, it is resting on fulcrums there. u(0, t) = 0 means that the beam is resting on the fulcrum;
uxx(0, t) = 0 indicates that there is no bending force at that point.) The beam has initial displacement f(x) and
velocity g(x). To determine the motion of the beam, solve

utt + a2uxxxx = 0, 0 < x < L, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x),

u(0, t) = uxx(0, t) = 0, u(L, t) = uxx(L, t) = 0,

with separation of variables.

Exercise 39.16
The temperature along a magnet winding of length L carrying a current I satisfies, (for some α > 0):

ut = κuxx + I2αu.

The ends of the winding are kept at zero, i.e.,

u(0, t) = u(L, t) = 0;

1598



and the initial temperature distribution is

u(x, 0) = g(x).

Find u(x, t) and determine the critical current ICR which is defined as the least current at which the winding
begins to heat up exponentially. Suppose that α < 0, so that the winding has a negative coefficient of resistance
with respect to temperature. What can you say about the critical current in this case?

Exercise 39.17
The ”e-folding” time of a decaying function of time is the time interval, ∆e, in which the magnitude of the function
is reduced by at least 1

e
. Thus if u(x, t) = e−αtf(x) + e−βtg(x) with α > β > 0 then ∆e = 1

β
. A body with heat

conductivity κ has its exterior surface maintained at temperature zero. Initially the interior of the body is at the
uniform temperature T > 0. Find the e-folding time of the body if it is:

a) An infinite slab of thickness a.

b) An infinite cylinder of radius a.

c) A sphere of radius a.

Note that in (a) the temperature varies only in the z direction and in time; in (b) and (c) the temperature varies
only in the radial direction and in time.

d) What are the e-folding times if the surfaces are perfectly insulated, (i.e., ∂u
∂n

= 0, where n is the exterior
normal at the surface)?

Exercise 39.18
Solve the heat equation with a time-dependent diffusivity in the rectangle 0 < x < a, 0 < y < b. The top and
bottom sides are held at temperature zero; the lateral sides are insulated. We have the initial-boundary value
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problem:

ut = κ(t) (uxx + uyy) , 0 < x < a, 0 < y < b, t > 0,

u(x, 0, t) = u(x, b, t) = 0,

ux(0, y, t) = ux(a, y, t) = 0,

u(x, y, 0) = f(x, y).

The diffusivity, κ(t), is a known, positive function.

Exercise 39.19
A semi-circular rod of infinite extent is maintained at temperature T = 0 on the flat side and at T = 1 on the
curved surface:

x2 + y2 = 1, y > 0.

Find the steady state temperature in a cross section of the rod using separation of variables.

Exercise 39.20
Use separation of variables to find the steady state temperature u(x, y) in a slab: x ≥ 0, 0 ≤ y ≤ 1, which has
zero temperature on the faces y = 0 and y = 1 and has a given distribution: u(y, 0) = f(y) on the edge x = 0,
0 ≤ y ≤ 1.

Exercise 39.21
Find u(r, θ) which satisfies:

∆u = 0, 0 < θ < α, a < r < b,

subject to the boundary conditions:

u(r, 0) = u(r, α) = 0, u(a, θ) = 0, u(b, θ) = f(θ).
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Exercise 39.22

a) A piano string of length L is struck, at time t = 0, by a flat hammer of width 2d centered at a point ξ,
having velocity v. Find the ensuing motion, u(x, t), of the string for which the wave speed is c.

b) Suppose the hammer is curved, rather than flat as above, so that the initial velocity distribution is

ut(x, 0) =

{
v cos

(
π(x−ξ)

2d

)
, |x− ξ| < d

0 |x− ξ| > d.

Find the ensuing motion.

c) Compare the kinetic energies of each harmonic in the two solutions. Where should the string be struck in
order to maximize the energy in the nth harmonic in each case?

Exercise 39.23
If the striking hammer is not perfectly rigid, then its effect must be included as a time dependent forcing term of
the form:

s(x, t) =

{
v cos

(
π(x−ξ)

2d

)
sin
(
πt
δ

)
, for |x− ξ| < d, 0 < t < δ,

0 otherwise.

Find the motion of the string for t > δ. Discuss the effects of the width of the hammer and duration of the blow
with regard to the energy in overtones.

Exercise 39.24
Find the propagating modes in a square waveguide of side L for harmonic signals of frequency ω when the
propagation speed of the medium is c. That is, we seek those solutions of

utt − c2∆u = 0,
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where u = u(x, y, z, t) has the form u(x, y, z, t) = v(x, y, z) eiωt, which satisfy the conditions:

u(x, y, z, t) = 0 for x = 0, L, y = 0, L, z > 0,

lim
z→∞
|u| 6=∞ and 6= 0.

Indicate in terms of inequalities involving k = ω/c and appropriate eigenvalues, λn,m say, for which n and m the
solutions un,m satisfy the conditions.

Exercise 39.25
Find the modes of oscillation and their frequencies for a rectangular drum head of width a and height b. The
modes of oscillation are eigensolutions of

utt = c2∆u, 0 < x < a, 0 < y < b,

u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0.

Exercise 39.26
Using separation of variables solve the heat equation

φt = a2 (φxx + φyy)

in the rectangle 0 < x < lx, 0 < y < ly with initial conditions

φ(x, y, 0) = 1,

and boundary conditions

φ(0, y, t) = φ(lx, y, t) = 0, φy(x, 0, t) = φy(x, ly, t) = 0.
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Exercise 39.27
Using polar coordinates and separation of variables solve the heat equation

φt = a2∇2φ

in the circle 0 < r < R0 with initial conditions

φ(r, θ, 0) = V

where V is a constant, and boundary conditions

φ(R0, θ, t) = 0.

(a) Show that for t > 0,

φ(r, θ, t) = 2V
∞∑
n=1

exp

(
−
a2j2

0,n

R2
0

t

)
J0 (j0,nr/R0)

j0,nJ1(j0,n)
,

where j0,n are the roots of J0(x):

J0(j0,n) = 0, n = 1, 2, . . .

Hint: The following identities may be of some help:∫ R0

0

rJ0 (j0,nr/R0) J0 (j0,mr/R0) dr = 0, m 6= n,∫ R0

0

rJ2
0 (j0,nr/R0) dr =

R2
0

2
J2

1 (j0,n),∫ r

0

rJ0(βr)dr =
r

β
J1(βr) for any β.

(b) For any fixed r, 0 < r < R0, use the asymptotic approximation for the Jn Bessel functions for large argument
(this can be found in the notes for second quarter, AMa95b or in any standard math tables) to determine
the rate of decay of the terms of the series solution for φ at time t = 0.
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Exercise 39.28
Consider the solution of the diffusion equation in spherical coordinates given by

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

where r is the radius, θ is the polar angle, and φ is the azimuthal angle. We wish to solve the equation on the
surface of the sphere given by r = R, 0 < θ < π, and 0 < φ < 2π. The diffusion equation for the solution
Ψ(θ, φ, t) in these coordinates on the surface of the sphere becomes

∂Ψ

∂t
=
a2

R2

(
1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

sin2 θ

∂2Ψ

∂φ2

)
. (39.7)

where a is a positive constant.

(a) Using separation of variables show that a solution Ψ can be found in the form

Ψ(θ, φ, t) = T (t)Θ(θ)Φ(φ),

where T ,Θ,Φ obey ordinary differential equations in t,θ, and φ respectively. Derive the ordinary differential
equations for T and Θ, and show that the differential equation obeyed by Φ is given by

d2Φ

dφ2
− cΦ = 0,

where c is a constant.

(b) Assuming that Ψ(θ, φ, t) is determined over the full range of the azimuthal angle, 0 < φ < 2π, determine
the allowable values of the separation constant c and the corresponding allowable functions Φ. Using these
values of c and letting x = cos θ rewrite in terms of the variable x the differential equation satisfied by Θ.
What are appropriate boundary conditions for Θ? The resulting equation is known as the generalized or
associated Legendre equation.
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(c) Assume next that the initial conditions for Ψ are chosen such that

Ψ(θ, φ, t = 0) = f(θ),

where f(θ) is a specified function which is regular at the north and south poles (that is θ = 0 and θ = π).
Note that the initial condition is independent of the azimuthal angle φ. Show that in this case the method
of separation of variables gives a series solution for Ψ of the form

Ψ(θ, t) =
∞∑
l=0

Al exp(−λ2
l t)Pl(cos θ),

where Pl(x) is the l’th Legendre polynomial, and determine the constants λl as a function of the index l.

(d) Solve for Ψ(θ, t), t > 0 given that f(θ) = 2 cos2 θ − 1.

Useful facts:

d

dx

[
(1− x2)

dPl(x)

dx

]
+ l(l + 1)Pl(x) = 0

P0(x) = 1

P1(x) = x

P2(x) =
3

2
x2 − 1

2

∫ 1

−1

dxPl(x)Pm(x) =

{
0 if l 6= m

2

2l + 1
if l = m
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Exercise 39.29
Let φ(x, y) satisfy Laplace’s equation

φxx + φyy = 0

in the rectangle 0 < x < 1, 0 < y < 2, with φ(x, 2) = x(1 − x), and with φ = 0 on the other three sides. Use a
series solution to determine φ inside the rectangle. How many terms are required to give φ(1

2
, 1) with about 1%

(also 0.1%) accuracy; how about φx(
1
2
, 1)?

Exercise 39.30
Let ψ(r, θ, φ) satisfy Laplace’s equation in spherical coordinates in each of the two regions r < a, r > a, with
ψ → 0 as r →∞. Let

lim
r→a+

ψ(r, θ, φ)− lim
r→a−

ψ(r, θ, φ) = 0,

lim
r→a+

ψr(r, θ, φ)− lim
r→a−

ψr(r, θ, φ) = Pm
n (cos θ) sin(mφ),

where m and n ≥ m are integers. Find ψ in r < a and r > a. In electrostatics, this problem corresponds to that of
determining the potential of a spherical harmonic type charge distribution over the surface of the sphere. In this
way one can determine the potential due to an arbitrary surface charge distribution since any charge distribution
can be expressed as a series of spherical harmonics.

Exercise 39.31
Obtain a formula analogous to the Poisson formula to solve the Neumann problem for the circular region 0 ≤ r <
R, 0 ≤ θ < 2π. That is, determine a solution φ(r, θ) to Laplace’s equation

∇2φ = 0

in polar coordinates given φr(R, θ). Show that

φ(r, θ) = − R
2π

∫ 2π

0

φr(R, α) ln

[
1− 2r

R
cos(θ − α) +

r2

R2

]
dα

within an arbitrary additive constant.
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Exercise 39.32
Investigate solutions of

φt = a2φxx

obtained by setting the separation constant C = (α+ iβ)2 in the equations obtained by assuming φ = X(x)T (t):

T ′

T
= C,

X ′′

X
=
C

a2
.
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39.9 Hints
Hint 39.1

Hint 39.2
Impose the boundary conditions

u(0, t) = u(2π, t), uθ(0, t) = uθ(2π, t).

Hint 39.3
Apply the separation of variables u(x, y) = X(x)Y (y). Solve an eigenvalue problem for X(x).

Hint 39.4

Hint 39.5

Hint 39.6

Hint 39.7
There are two ways to solve the problem. For the first method, expand the solution in a series of the form

u(x, t) =
∞∑
n=1

an(t) sin
(nπx
L

)
.
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Because of the inhomogeneous boundary conditions, the convergence of the series will not be uniform. You can
differentiate the series with respect to t, but not with respect to x. Multiply the partial differential equation by
the eigenfunction sin(nπx/L) and integrate from x = 0 to x = L. Use integration by parts to move derivatives in
x from u to the eigenfunctions. This process will yield a first order, ordinary differential equation for each of the
an’s.

For the second method: Make the change of variables v(x, t) = u(x, t) − µ(x), where µ(x) is the equilibrium
temperature distribution to obtain a problem with homogeneous boundary conditions.

Hint 39.8

Hint 39.9

Hint 39.10

Hint 39.11

Hint 39.12

Hint 39.13
Use separation of variables to find eigen-solutions of the partial differential equation that satisfy the homogeneous
boundary conditions. There will be two eigen-solutions for each eigenvalue. Expand u(x, t) in a series of the
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eigen-solutions. Use the two initial conditions to determine the constants.

Hint 39.14
Expand the solution in a series of eigenfunctions in x. Determine these eigenfunctions by using separation of
variables on the homogeneous partial differential equation. You will find that the answer has the form,

u(x, y) =
∞∑
n=1

un(y) sin
(nπx

a

)
.

Substitute this series into the partial differential equation to determine ordinary differential equations for each of
the un’s. The boundary conditions on u(x, y) will give you boundary conditions for the un’s. Solve these ordinary
differential equations with Green functions.

Hint 39.15
Solve this problem by expanding the solution in a series of eigen-solutions that satisfy the partial differential
equation and the homogeneous boundary conditions. Use the initial conditions to determine the coefficients in
the expansion.

Hint 39.16
Use separation of variables to find eigen-solutions that satisfy the partial differential equation and the homogeneous
boundary conditions. The solution is a linear combination of the eigen-solutions. The whole solution will be
exponentially decaying if each of the eigen-solutions is exponentially decaying.

Hint 39.17
For parts (a), (b) and (c) use separation of variables. For part (b) the eigen-solutions will involve Bessel functions.
For part (c) the eigen-solutions will involve spherical Bessel functions. Part (d) is trivial.
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Hint 39.18
The solution is a linear combination of eigen-solutions of the partial differential equation that satisfy the homo-
geneous boundary conditions. Determine the coefficients in the expansion with the initial condition.

Hint 39.19
The problem is

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < 1, 0 < θ < π

u(r, 0) = u(r, π) = 0, u(0, θ) = 0, u(1, θ) = 1

The solution is a linear combination of eigen-solutions that satisfy the partial differential equation and the three
homogeneous boundary conditions.

Hint 39.20

Hint 39.21

Hint 39.22

Hint 39.23

Hint 39.24
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Hint 39.25

Hint 39.26

Hint 39.27

Hint 39.28

Hint 39.29

Hint 39.30

Hint 39.31

Hint 39.32
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39.10 Solutions
Solution 39.1
We expand the solution in a Fourier series.

φ =
1

2
a0(r) +

∞∑
n=1

an(r) cos(nθ) +
∞∑
n=1

bn(r) sin(nθ)

We substitute the series into the Laplace’s equation to determine ordinary differential equations for the coefficients.

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
= 0

a′′0 +
1

r
a′0 = 0, a′′n +

1

r
a′n − n2an = 0, b′′n +

1

r
b′n − n2bn = 0

The solutions that are bounded at r = 0 are, (to within multiplicative constants),

a0(r) = 1, an(r) = rn, bn(r) = rn.

Thus φ(r, θ) has the form

φ(r, θ) =
1

2
c0 +

∞∑
n=1

cnr
n cos(nθ) +

∞∑
n=1

dnr
n sin(nθ)

We apply the boundary condition at r = R.

φ(R, θ) =
1

2
c0 +

∞∑
n=1

cnR
n cos(nθ) +

∞∑
n=1

dnR
n sin(nθ)

The coefficients are

c0 =
1

π

∫ 2π

0

φ(R, α) dα, cn =
1

πRn

∫ 2π

0

φ(R, α) cos(nα) dα, dn =
1

πRn

∫ 2π

0

φ(R, α) sin(nα) dα.
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We substitute the coefficients into our series solution.

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α) dα +
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

φ(R, α) cos(n(θ − α)) dα

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α) dα +
1

π

∫ 2π

0

φ(R, α)<

(
∞∑
n=1

( r
R

)n
ein(θ−α)

)
dα

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α) dα +
1

π

∫ 2π

0

φ(R, α)<

(
r
R

ei(θ−α)

1− r
R

ei(θ−α)

)
dα

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α) dα +
1

π

∫ 2π

0

φ(R, α)<

(
r
R

ei(θ−α) −
(
r
R

)2

1− 2 r
R

cos(θ − α) +
(
r
R

)2

)
dα

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α) dα +
1

π

∫ 2π

0

φ(R, α)
Rr cos(θ − α)− r2

R2 + r2 − 2Rr cos(θ − α)
dα

φ(r, θ) =
1

2π

∫ 2π

0

φ(R, α)
R2 − r2

R2 + r2 − 2Rr cos(θ − α)
dα

Solution 39.2
In order that the solution is continuously differentiable, (which it must be in order to satisfy the differential
equation), we impose the boundary conditions

u(0, t) = u(2π, t), uθ(0, t) = uθ(2π, t).

We apply the separation of variables u(θ, t) = Θ(θ)T (t).

ut = κuθθ

ΘT ′ = κΘ′′T

T ′

κT
=

Θ′′

Θ
= −λ
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We have the self-adjoint eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

which has the eigenvalues and orthonormal eigenfunctions

λn = n2, Θn =
1√
2π

einθ, n ∈ Z.

Now we solve the problems for Tn(t) to obtain eigen-solutions of the heat equation.

T ′n = −n2κTn

Tn = e−n
2κt

The solution is a linear combination of the eigen-solutions.

u(θ, t) =
∞∑

n=−∞

un
1√
2π

einθ e−n
2κt

We use the initial conditions to determine the coefficients.

u(θ, 0) =
∞∑

n=−∞

un
1√
2π

einθ = f(θ)

un =
1√
2π

∫ 2π

0

e−inθf(θ) dθ

Solution 39.3
Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields

X ′′

X
= −Y

′′

Y
= −λ.
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With the homogeneous boundary conditions, we have the two problems

X ′′ + λX = 0, X(0) = X(1) = 0,

Y ′′ − λY = 0, Y (1) = 0.

The eigenvalues and orthonormal eigenfunctions for X(x) are

λn = (nπ)2, Xn =
√

2 sin(nπx).

The general solution for Y is

Yn = a cosh(nπy) + b sinh(nπy).

The solution for that satisfies the right homogeneous boundary condition, (up to a multiplicative constant), is

Yn = sinh(nπ(1− y))

u(x, y) is a linear combination of the eigen-solutions.

u(x, y) =
∞∑
n=1

un
√

2 sin(nπx) sinh(nπ(1− y))

We use the inhomogeneous boundary condition to determine coefficients.

u(x, 0) =
∞∑
n=1

un
√

2 sin(nπx) sinh(nπ) = f(x)

un =
√

2

∫ 1

0

sin(nπξ)f(ξ) dξ
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Solution 39.4
Substituting u(r, θ) = R(r)Θ(θ) yields

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0

r2R
′′

R
+ r

R′

R
= −Θ′′

Θ
= λ

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0

We assume that u is a strong solution of the partial differential equation and is thus twice continuously differ-
entiable, (u ∈ C2). In particular, this implies that R and Θ are bounded and that Θ is continuous and has a
continuous first derivative along θ = 0. This gives us the problems

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π),

r2R′′ + rR′ − λR = 0, R is bounded

We consider negative, zero and positive values of λ in solving the equation for Θ.

λ < 0. The general solution for Θ is

Θ = a cosh(
√
−λθ) + b sinh(

√
−λθ).

Θ(0) = Θ(2π) ⇒ a = 0, Θ′(0) = Θ′(2π) ⇒ b = 0.

There are no negative eigenvalues.
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λ = 0. The general solution for Θ is

Θ = a+ bθ.

Θ(0) = Θ(2π) ⇒ b = 0, Θ′(0) = Θ′(2π) ⇒ a is arbitrary.

We have the eigenvalue and eigenfunction

λ0 = 0, Θ0 =
1

2
.

λ > 0. The general solution is

Θ = a cos(
√
λθ) + b sin(

√
λθ).

Applying the boundary conditions to find the eigenvalues and eigenfunctions,

Θ(0) = Θ(2π) ⇒ a = a cos(
√
λ2π) + b sin(

√
λ2π)

⇒ cos(
√
λ2π) = 1, sin(

√
λ2π) = 0

⇒
√
λ = n, for n = 1, 2, 3, . . .

⇒ λ = n2, for n = 1, 2, 3, . . .

The boundary condition, Θ′(0) = Θ′(2π) is satisfied for these values of λ. This gives us the eigenvalues and
eigenfunctions

λn = n2, Θ(1)
n = cos(nθ), Θ(2)

n = sin(nθ), forn = 1, 2, 3, . . .

Now to find the bounded solutions of the equation for R. Substituting R = rα yields

α(α− 1) + α− λ = 0

α = ±
√
λ.

There are two cases to consider.
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λ0 = 0.

R = a+ b log r

Boundedness demands that b = 0. Thus we have the solution

R = 1

λn = n2 > 0

R = arn + br−n

Boundedness demands that b = 0. Thus we have the solution

R = rn.

The general solution for u is

u(r, θ) =
a0

2
+
∞∑
n=1

[an cos(nθ) + bn sin(nθ)] rn.

The inhomogeneous boundary condition will determine the coefficients.

u(1, θ) =
a0

2
+
∞∑
n=1

[an cos(nθ) + bn sin(nθ)] = f(θ)

The coefficients are the Fourier coefficients of f(θ).

an = 1
π

∫ 2π

0
f(θ) cos(nθ) dθ

bn = 1
π

∫ 2π

0
f(θ) sin(nθ) dθ
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Solution 39.5
A normal mode of frequency ω satisfies

v(r, θ, t) = u(r, θ) eiωt.

Substituting this into the partial differential equation and the boundary condition yields

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= −ω

2

c2
u, u(1, θ) = 0,

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+ k2u = 0, u(1, θ) = 0,

where k = ω
c
. Applying separation of variables to the partial differential equation for u, with u = R(r)Θ(θ),

r2R′′Θ + rR′Θ +RΘ′′ + k2r2RΘ = 0,

r2R
′′

R
+ r

R′

R
+ k2r2 = −Θ′′

Θ
= λ2.

Now we have the two ordinary differential equations,

R′′ +
1

r
R′ +

(
k2 − λ2

r2

)
R = 0, R(0) is bounded, R(1) = 0,

Θ′′ + λ2Θ = 0, Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

The eigenvalues and eigenfunctions for Θ are

λn = n, n = 0, 1, 2, . . . ,

Θ0 =
1

2
, Θ(1)

n = cos(nθ), Θ(2)
n = sin(nθ), n = 1, 2, 3, . . .

The differential equation for R is then

R′′ +
1

r
R′ +

(
k2 − n2

r2

)
R = 0, R(0) is bounded, R(1) = 0.
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The general solution of the differential equation is a linear combination of Bessel functions of order n.

R(r) = c1Jn(kr) + c2Yn(kr)

Since Yn(kr) is unbounded at r = 0, the solution has the form

R(r) = cJn(kr).

Applying the second boundary condition yields

Jn(k) = 0.

Thus the eigenvalues and eigenfunctions for R are

knm = jnm, Rnm = Jn(jnmr),

where jnm is the mth positive root of Jn. Combining the above results, the normal modes of oscillation are

v0m =
1

2
J0(j0mr) eiωt, m = 1, 2, 3, . . . ,

vnm = cos(nθ + α)Jnm(jnmr) eiωt, n,m = 1, 2, 3, . . . .

u22 and u33 are plotted in Figure 39.2.

Solution 39.6
We will expand the solution in a complete, orthogonal set of functions {Xn(x)}, where the coefficients are functions
of t.

φ =
∑
n

Tn(t)Xn(x)
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Figure 39.2: The Normal Modes u22 and u33

We will use separation of variables to determine a convenient set {Xn}. We substitite φ = T (t)X(x) into the
diffusion equation.

φt = a2φxx

XT ′ = a2X ′′T

T ′

a2T
=
X ′′

X
= −λ

T ′ = −a2λT, X ′′ + λX = 0

Note that in order to satisfy φ(0, t) = φ(l, t) = 0, the Xn must satisfy the same homogeneous boundary conditions,
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Xn(0) = Xn(l) = 0. This gives us a Sturm-Liouville problem for X(x).

X ′′ + λX = 0, X(0) = X(l) = 0

λn =
(nπ
l

)2

, Xn = sin
(nπx

l

)
, n ∈ Z+

Thus we seek a solution of the form

φ =
∞∑
n=1

Tn(t) sin
(nπx

l

)
. (39.8)

This solution automatically satisfies the boundary conditions. We will assume that we can differentiate it. We
will substitite this form into the diffusion equation and the initial condition to determine the coefficients in the
series, Tn(t). First we substitute Equation 39.8 into the partial differential equation for φ to determine ordinary
differential equations for the Tn.

φt = a2φxx
∞∑
n=1

T ′n(t) sin
(nπx

l

)
= −a2

∞∑
n=1

(nπ
l

)2

Tn(t) sin
(nπx

l

)
T ′n = −

(anπ
l

)2

Tn
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Now we substitute Equation 39.8 into the initial condition for φ to determine initial conditions for the Tn.

∞∑
n=1

Tn(0) sin
(nπx

l

)
= φ(x, 0)

Tn(0) =

∫ l
0

sin
(
nπx
l

)
φ(x, 0) dx∫ l

0
sin2

(
nπx
l

)
dx

Tn(0) =
2

l

∫ l

0

sin
(nπx

l

)
φ(x, 0) dx

Tn(0) =
2

l

∫ l/2

0

sin
(nπx

l

)
x dx+

2

l

∫ l/2

0

sin
(nπx

l

)
(l − x) dx

Tn(0) =
4l

n2π2
sin
(nπ

2

)
T2n−1(0) = (−1)n

4l

(2n− 1)2π2
, T2n(0) = 0, n ∈ Z+

We solve the ordinary differential equations for Tn subject to the initial conditions.

T2n−1(t) = (−1)n
4l

(2n− 1)2π2
exp

(
−
(
a(2n− 1)π

l

)2

t

)
, T2n(t) = 0, n ∈ Z+

This determines the series representation of the solution.

φ =
4

l

∞∑
n=1

(−1)n
(

l

(2n− 1)π

)2

exp

(
−
(
a(2n− 1)π

l

)2

t

)
sin

(
(2n− 1)πx

l

)
From the initial condition, we know that the the solution at t = 0 is C0. That is, it is continuous, but not

differentiable. The series representation of the solution at t = 0 is

φ =
4

l

∞∑
n=1

(−1)n
(

l

(2n− 1)π

)2

sin

(
(2n− 1)πx

l

)
.
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That the coefficients decay as 1/n2 corroborates that φ(x, 0) is C0.
The derivatives of φ with respect to x are

∂2m−1

∂x2m−1
φ =

4(−1)m+1

l

∞∑
n=1

(−1)n
(

(2n− 1)π

l

)2m−3

exp

(
−
(
a(2n− 1)π

l

)2

t

)
cos

(
(2n− 1)πx

l

)
∂2m

∂x2m
φ =

4(−1)m

l

∞∑
n=1

(−1)n
(

(2n− 1)π

l

)2m−2

exp

(
−
(
a(2n− 1)π

l

)2

t

)
sin

(
(2n− 1)πx

l

)
For any fixed t > 0, the coefficients in the series for ∂n

∂x
φ decay exponentially. These series are uniformly convergent

in x. Thus for any fixed t > 0, φ is C∞ in x.

Solution 39.7

ut = κuxx, 0 < x < L, t > 0

u(0, t) = T0, u(L, t) = T1, u(x, 0) = f(x),

Method 1. We solve this problem with an eigenfunction expansion in x. To find an appropriate set of eigen-
functions, we apply the separation of variables, u(x, t) = X(x)T (t) to the partial differential equation with the
homogeneous boundary conditions, u(0, t) = u(L, t) = 0.

(XT )t = (XT )xx

XT ′ = X ′′T

T ′

T
=
X ′′

X
= −λ2

We have the eigenvalue problem,

X ′′ + λ2X = 0, X(0) = X(L) = 0,
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which has the solutions,

λn =
nπx

L
, Xn = sin

(nπx
L

)
, n ∈ N.

We expand the solution of the partial differential equation in terms of these eigenfunctions.

u(x, t) =
∞∑
n=1

an(t) sin
(nπx
L

)
Because of the inhomogeneous boundary conditions, the convergence of the series will not be uniform. We can
differentiate the series with respect to t, but not with respect to x. We multiply the partial differential equation
by an eigenfunction and integrate from x = 0 to x = L. We use integration by parts to move derivatives from u
to the eigenfunction.

ut − κuxx = 0∫ L

0

(ut − κuxx) sin
(mπx

L

)
dx = 0∫ L

0

(
∞∑
n=1

a′n(t) sin
(nπx
L

))
sin
(mπx

L

)
dx− κ

[
ux sin

(mπx
L

)]L
0

+ κ
mπ

L

∫ L

0

ux cos
(mπx

L

)
dx = 0

L

2
a′m(t) + κ

mπ

L

[
u cos

(mπx
L

)]L
0

+ κ
(mπ
L

)2
∫ L

0

u sin
(mπx

L

)
dx = 0

L

2
a′m(t) + κ

mπ

L
((−1)mu(L, t)− u(0, t)) + κ

(mπ
L

)2
∫ L

0

(
∞∑
n=1

an(t) sin
(nπx
L

))
sin
(mπx

L

)
dx = 0

L

2
a′m(t) + κ

mπ

L
((−1)mT1 − T0) + κ

L

2

(mπ
L

)2

am(t) = 0

a′m(t) + κ
(mπ
L

)2

am(t) = κ
2mπ

L2
(T0 − (−1)mT1)
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Now we have a first order differential equation for each of the an’s. We obtain initial conditions for each of the
an’s from the initial condition for u(x, t).

u(x, 0) = f(x)
∞∑
n=1

an(0) sin
(nπx
L

)
= f(x)

an(0) =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx ≡ fn

By solving the first order differential equation for an(t), we obtain

an(t) =
2(T0 − (−1)nT1)

nπ
+ e−κ(nπ/L)2t

(
fn −

2(T0 − (−1)nT1)

nπ

)
.

Note that the series does not converge uniformly due to the 1/n term.
Method 2. For our second method we transform the problem to one with homogeneous boundary conditions

so that we can use the partial differential equation to determine the time dependence of the eigen-solutions. We
make the change of variables v(x, t) = u(x, t)−µ(x) where µ(x) is some function that satisfies the inhomogeneous
boundary conditions. If possible, we want µ(x) to satisfy the partial differential equation as well. For this problem
we can choose µ(x) to be the equilibrium solution which satisfies

µ′′(x) = 0, µ(0)T0, µ(L) = T1.

This has the solution

µ(x) = T0 +
T1 − T0

L
x.

With the change of variables,

v(x, t) = u(x, t)−
(
T0 +

T1 − T0

L
x

)
,
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we obtain the problem

vt = κvxx, 0 < x < L, t > 0

v(0, t) = 0, v(L, t) = 0, v(x, 0) = f(x)−
(
T0 +

T1 − T0

L
x

)
.

Now we substitute the separation of variables v(x, t) = X(x)T (t) into the partial differential equation.

(XT )t = κ(XT )xx

T ′

κT
=
X ′′

X
= −λ2

Utilizing the boundary conditions at x = 0, L we obtain the two ordinary differential equations,

T ′ = −κλ2T,

X ′′ = −λ2X, X(0) = X(L) = 0.

The problem for X is a regular Sturm-Liouville problem and has the solutions

λn =
nπ

L
, Xn = sin

(nπx
L

)
, n ∈ N.

The ordinary differential equation for T becomes,

T ′n = −κ
(nπ
L

)2

Tn,

which, (up to a multiplicative constant), has the solution,

Tn = e−κ(npi/L)2t.

Thus the eigenvalues and eigen-solutions of the partial differential equation are,

λn =
nπ

L
, vn = sin

(nπx
L

)
e−κ(nπ/L)2t, n ∈ N.
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Let v(x, t) have the series expansion,

v(x, t) =
∞∑
n=1

an sin
(nπx
L

)
e−κ(nπ/L)2t.

We determine the coefficients in the expansion from the initial condition,

v(x, 0) =
∞∑
n=1

an sin
(nπx
L

)
= f(x)−

(
T0 +

T1 − T0

L
x

)
.

The coefficients in the expansion are the Fourier sine coefficients of f(x)−
(
T0 + T1−T0

L
x
)
.

an =
2

L

∫ L

0

(
f(x)−

(
T0 +

T1 − T0

L
x

))
sin
(nπx
L

)
dx

an = fn −
2(T0 − (−1)nT1)

nπ

With the coefficients defined above, the solution for u(x, t) is

u(x, t) = T0 +
T1 − T0

L
x+

∞∑
n=1

(
fn −

2(T0 − (−1)nT1)

nπ

)
sin
(nπx
L

)
e−κ(nπ/L)2t.

Since the coefficients in the sum decay exponentially for t > 0, we see that the series is uniformly convergent for
positive t. It is clear that the two solutions we have obtained are equivalent.

Solution 39.8
First we solve the eigenvalue problem for β(x), which is the problem we would obtain if we applied separation of
variables to the partial differential equation, φt = φxx. We have the eigenvalues and orthonormal eigenfunctions

λn =

(
(2n− 1)π

2l

)2

, βn(x) =

√
2

l
sin

(
(2n− 1)πx

2l

)
, n ∈ Z+.
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We expand the solution and inhomogeneity in Equation 39.5 in a series of the eigenvalues.

φ(x, t) =
∞∑
n=1

Tn(t)βn(x)

w(x, t) =
∞∑
n=1

wn(t)βn(x), wn(t) =

∫ l

0

βn(x)w(x, t) dx

Since φ satisfies the same homgeneous boundary conditions as β, we substitute the series into Equation 39.5 to
determine differential equations for the Tn(t).

∞∑
n=1

T ′n(t)βn(x) = a2

∞∑
n=1

Tn(t)(−λn)βn(x) +
∞∑
n=1

wn(t)βn(x)

T ′n(t) = −a2

(
(2n− 1)π

2l

)2

Tn(t) + wn(t)

Now we substitute the series for φ into its initial condition to determine initial conditions for the Tn.

φ(x, 0) =
∞∑
n=1

Tn(0)βn(x) = f(x)

Tn(0) =

∫ l

0

βn(x)f(x) dx

We solve for Tn(t) to determine the solution, φ(x, t).

Tn(t) = exp

(
−
(

(2n− 1)aπ

2l

)2

t

)(
Tn(0) +

∫ t

0

wn(τ) exp

((
(2n− 1)aπ

2l

)2

τ

)
dτ

)
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Solution 39.9
Separation of variables leads to the eigenvalue problem

β′′ + λβ = 0, β(0) = 0, β(l) + cβ′(l) = 0.

First we consider the case λ = 0. A set of solutions of the differential equation is {1, x}. The solution that satisfies
the left boundary condition is β(x) = x. The right boundary condition imposes the constraint l + c = 0. Since c
is positive, this has no solutions. λ = 0 is not an eigenvalue.

Now we consider λ 6= 0. A set of solutions of the differential equation is {cos(
√
λx), sin(

√
λx)}. The solution

that satisfies the left boundary condition is β = sin(
√
λx). The right boundary condition imposes the constraint

c sin
(√

λl
)

+
√
λ cos

(√
λl
)

= 0

tan
(√

λl
)

= −
√
λ

c

For large λ, the we can determine approximate solutions.√
λnl ≈

(2n− 1)π

2
, n ∈ Z+

λn ≈
(

(2n− 1)π

2l

)2

, n ∈ Z+

The eigenfunctions are

βn(x) =
sin
(√

λnx
)√∫ l

0
sin2

(√
λnx

)
dx
, n ∈ Z+.

We expand φ(x, t) and w(x, t) in series of the eigenfunctions.

φ(x, t) =
∞∑
n=1

Tn(t)βn(x)

w(x, t) =
∞∑
n=1

wn(t)βn(x), wn(t) =

∫ l

0

βn(x)w(x, t) dx
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Since φ satisfies the same homgeneous boundary conditions as β, we substitute the series into Equation 39.5 to
determine differential equations for the Tn(t).

∞∑
n=1

T ′n(t)βn(x) = a2

∞∑
n=1

Tn(t)(−λn)βn(x) +
∞∑
n=1

wn(t)βn(x)

T ′n(t) = −a2λnTn(t) + wn(t)

Now we substitute the series for φ into its initial condition to determine initial conditions for the Tn.

φ(x, 0) =
∞∑
n=1

Tn(0)βn(x) = f(x)

Tn(0) =

∫ l

0

βn(x)f(x) dx

We solve for Tn(t) to determine the solution, φ(x, t).

Tn(t) = exp
(
−a2λnt

)(
Tn(0) +

∫ t

0

wn(τ) exp
(
a2λnτ

)
dτ

)

Solution 39.10
First we seek a function u(x, t) that satisfies the boundary conditions u(0, t) = t, ux(l, t) = −cu(l, t). We try a
function of the form u = (ax+ b)t. The left boundary condition imposes the constraint b = 1. We then apply the
right boundary condition no determine u.

at = −c(al + 1)t

a = − c

1 + cl

u(x, t) =

(
1− cx

1 + cl

)
t
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Now we define ψ to be the difference of φ and u.

ψ(x, t) = φ(x, t)− u(x, t)

ψ satisfies an inhomogeneous diffusion equation with homogeneous boundary conditions.

(ψ + u)t = a2(ψ + u)xx + 1

ψt = a2ψxx + 1 + a2uxx − ut
ψt = a2ψxx +

cx

1 + cl

The initial and boundary conditions for ψ are

ψ(x, 0) = 0, ψ(0, t) = 0, ψx(l, t) = −cψ(l, t).

We solved this system in problem 2. Just take

w(x, t) =
cx

1 + cl
, f(x) = 0.

The solution is

ψ(x, t) =
∞∑
n=1

Tn(t)βn(x),

Tn(t) =

∫ t

0

wn exp
(
−a2λn(t− τ)

)
dτ,

wn(t) =

∫ l

0

βn(x)
cx

1 + cl
dx.

This determines the solution for φ.
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Solution 39.11
First we solve this problem with a series expansion. We transform the problem to one with homogeneous boundary
conditions. Note that

u(x) =
x

l + 1

satisfies the boundary conditions. (It is the equilibrium solution.) We make the change of variables ψ = φ − u.
The problem for ψ is

ψt = a2ψxx,

ψ(0, t) = ψ(l, t) + ψx(l, t) = 0, ψ(x, 0) =
x

l + 1
.

This is a particular case of what we solved in Exercise 39.9. We apply the result of that problem. The solution
for φ(x, t) is

φ(x, t) =
x

l + 1
+
∞∑
n=1

Tn(t)βn(x)

βn(x) =
sin
(√

λnx
)√∫ l

0
sin2

(√
λnx

)
dx
, n ∈ Z+

tan
(√

λl
)

= −
√
λ

Tn(t) = Tn(0) exp
(
−a2λnt

)
Tn(0) =

∫ l

0

βn(x)
x

l + 1
dx

This expansion is useful for large t because the coefficients decay exponentially with increasing t.
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Now we solve this problem with the Laplace transform.

φt = a2φxx, φ(0, t) = 0, φ(l, t) + φx(l, t) = 1, φ(x, 0) = 0

sφ̂ = a2φ̂xx, φ̂(0, s) = 0, φ̂(l, s) + φ̂x(l, s) =
1

s

φ̂xx −
s

a2
φ̂ = 0, φ̂(0, s) = 0, φ̂(l, s) + φ̂x(l, s) =

1

s

The solution that satisfies the left boundary condition is

φ̂ = c sinh

(√
sx

a

)
.

We apply the right boundary condition to determine the constant.

φ̂ =
sinh

(√
sx
a

)
s
(

sinh
(√

sl
a

)
+
√
s
a

cosh
(√

sl
a

))
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We expand this in a series of simpler functions of s.

φ̂ =
2 sinh

(√
sx
a

)
s
(

exp
(√

sl
a

)
− exp

(
−
√
sl
a

)
+
√
s
a

(
exp

(√
sl
a

)
+ exp

(
−
√
sl
a

)))
φ̂ =

2 sinh
(√

sx
a

)
s exp

(√
sl
a

) 1

1 +
√
s
a
−
(

1−
√
s
a

)
exp

(
−2
√
sl
a

)
φ̂ =

exp
(√

sx
a

)
− exp

(
−
√
sx
a

)
s
(

1 +
√
s
a

)
exp

(√
sl
a

) 1

1−
(

1−
√
s/a

1+
√
s/a

)
exp

(
−2
√
sl
a

)
φ̂ =

exp
(√

s(x−l)
a

)
− exp

(√
s(−x−l)
a

)
s
(

1 +
√
s
a

) ∞∑
n=0

(
1−
√
s/a

1 +
√
s/a

)n
exp

(
−2
√
sln

a

)

φ̂ =
1

s

(
∞∑
n=0

(1−
√
s/a)n

(1 +
√
s/a)n+1

exp

(
−
√
s((2n+ 1)l − x)

a

)

−
∞∑
n=0

(1−
√
s/a)n

(1 +
√
s/a)n+1

exp

(
−
√
s((2n+ 1)l + x)

a

))
By expanding

(1−
√
s/a)n

(1 +
√
s/a)n+1

in binomial series all the terms would be of the form

s−m/2−3/2 exp

(
−
√
s((2n± 1)l ∓ x)

a

)
.
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Taking the first term in each series yields

φ̂ ∼ a

s3/2

(
exp

(
−
√
s(l − x)

a

)
− exp

(
−
√
s(l + x)

a

))
, as s→∞.

We take the inverse Laplace transform to obtain an appoximation of the solution for t� 1.

φ(x, t) ∼ 2a2
√
πt

exp
(
− (l−x)2

4a2t

)
l − x

−
exp

(
− (l+x)2

4a2t

)
l + x


− π

(
erfc

(
l − x
2a
√
t

)
− erfc

(
l + x

2a
√
t

))
, for t� 1

Solution 39.12
We apply the separation of variables φ(x, t) = X(x)T (t).

φt = A2
(
x2φx

)
x

XT ′ = TA2
(
x2X ′

)′
T ′

A2T
=

(x2X ′)′

X
= −λ

This gives us a regular Sturm-Liouville problem.(
x2X ′

)′
+ λX = 0, X(1) = X(2) = 0

This is an Euler equation. We make the substitution X = xα to find the solutions.

x2X ′′ + 2xX ′ + λX = 0 (39.9)

α(α− 1) + 2α + λ = 0

α =
−1±

√
1− 4λ

2

α = −1

2
± i
√
λ− 1/4
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First we consider the case of a double root when λ = 1/4. The solutions of Equation 39.9 are {x−1/2, x−1/2 lnx}.
The solution that satisfies the left boundary condition is X = x−1/2 lnx. Since this does not satisfy the right
boundary condition, λ = 1/4 is not an eigenvalue.

Now we consider λ 6= 1/4. The solutions of Equation 39.9 are{
1√
x

cos
(√

λ− 1/4 lnx
)
,

1√
x

sin
(√

λ− 1/4 lnx
)}

.

The solution that satisfies the left boundary condition is

1√
x

sin
(√

λ− 1/4 lnx
)
.

The right boundary condition imposes the constraint√
λ− 1/4 ln 2 = nπ, n ∈ Z+.

This gives us the eigenvalues and eigenfunctions.

λn =
1

4
+
( nπ

ln 2

)2

, Xn(x) =
1√
x

sin

(
nπ lnx

ln 2

)
, n ∈ Z+.

We normalize the eigenfunctions.∫ 2

1

1

x
sin2

(
nπ lnx

ln 2

)
dx = ln 2

∫ 1

0

sin2(nπξ) dξ =
ln 2

2

Xn(x) =

√
2

ln 2

1√
x

sin

(
nπ lnx

ln 2

)
, n ∈ Z+.

From separation of variables, we have differential equations for the Tn.

T ′n = −A2

(
1

4
+
( nπ

ln 2

)2
)
Tn

Tn(t) = exp

(
−A2

(
1

4
+
( nπ

ln 2

)2
)
t

)
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We expand φ in a series of the eigensolutions.

φ(x, t) =
∞∑
n=1

φnXn(x)Tn(t)

We substitute the expansion for φ into the initial condition to determine the coefficients.

φ(x, 0) =
∞∑
n=1

φnXn(x) = f(x)

φn =

∫ 2

1

Xn(x)f(x) dx

Solution 39.13

utt = c2uxx, 0 < x < L, t > 0,

u(0, t) = 0, ux(L, t) = 0,

u(x, 0) = f(x), ut(x, 0) = 0,

We substitute the separation of variables u(x, t) = X(x)T (t) into the partial differential equation.

(XT )tt = c2(XT )xx

T ′′

c2T
=
X ′′

X
= −λ2

With the boundary conditions at x = 0, L, we have the ordinary differential equations,

T ′′ = −c2λ2T,

X ′′ = −λ2X, X(0) = X ′(L) = 0.
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The problem for X is a regular Sturm-Liouville eigenvalue problem. From the Rayleigh quotient,

λ2 =
− [φφ′]L0 +

∫ L
0

(φ′)2 dx∫ L
0
φ2 dx

=

∫ L
0

(φ′)2 dx∫ L
0
φ2 dx

we see that there are only positive eigenvalues. For λ2 > 0 the general solution of the ordinary differential equation
is

X = a1 cos(λx) + a2 sin(λx).

The solution that satisfies the left boundary condition is

X = a sin(λx).

For non-trivial solutions, the right boundary condition imposes the constraint,

cos (λL) = 0,

λ =
π

L

(
n− 1

2

)
, n ∈ N.

The eigenvalues and eigenfunctions are

λn =
(2n− 1)π

2L
, Xn = sin

(
(2n− 1)πx

2L

)
, n ∈ N.

The differential equation for T becomes

T ′′ = −c2

(
(2n− 1)π

2L

)2

T,

which has the two linearly independent solutions,

T (1)
n = cos

(
(2n− 1)cπt

2L

)
, T (2)

n = sin

(
(2n− 1)cπt

2L

)
.
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The eigenvalues and eigen-solutions of the partial differential equation are,

λn =
(2n− 1)π

2L
, n ∈ N,

u(1)
n = sin

(
(2n− 1)πx

2L

)
cos

(
(2n− 1)cπt

2L

)
, u(2)

n = sin

(
(2n− 1)πx

2L

)
sin

(
(2n− 1)cπt

2L

)
.

We expand u(x, t) in a series of the eigen-solutions.

u(x, t) =
∞∑
n=1

sin

(
(2n− 1)πx

2L

)(
an cos

(
(2n− 1)cπt

2L

)
+ bn sin

(
(2n− 1)cπt

2L

))
.

We impose the initial condition ut(x, 0) = 0,

ut(x, 0) =
∞∑
n=1

bn
(2n− 1)cπ

2L
sin

(
(2n− 1)πx

2L

)
= 0,

bn = 0.

The initial condition u(x, 0) = f(x) allows us to determine the remaining coefficients,

u(x, 0) =
∞∑
n=1

an sin

(
(2n− 1)πx

2L

)
= f(x),

an =
2

L

∫ L

0

f(x) sin

(
(2n− 1)πx

2L

)
dx.

The series solution for u(x, t) is,

u(x, t) =
∞∑
n=1

an sin

(
(2n− 1)πx

2L

)
cos

(
(2n− 1)cπt

2L

)
.
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Solution 39.14

uxx + uyy = f(x, y), 0 < x < a, 0 < y < b,

u(0, y) = u(a, y) = 0, uy(x, 0) = uy(x, b) = 0,

We will solve this problem with an eigenfunction expansion in x. To determine a suitable set of eigenfunctions,
we substitute the separation of variables u(x, y) = X(x)Y (y) into the homogeneous partial differential equation.

uxx + uyy = 0

(XY )xx + (XY )yy = 0

X ′′

X
= −Y

′′

Y
= −λ2

With the boundary conditions at x = 0, a, we have the regular Sturm-Liouville problem,

X ′′ = −λ2X, X(0) = X(a) = 0,

which has the solutions,

λn =
nπ

a
, Xn = sin

(nπx
a

)
, n ∈ N.

We expand u(x, y) in a series of the eigenfunctions,

u(x, y) =
∞∑
n=1

un(y) sin
(nπx

a

)
.

Substituting this series into the partial differential equation and boundary conditions at y = 0, b, we obtain,

∞∑
n=1

(
−
(nπ
a

)2

un(y) sin
(nπx

a

)
+ u′′n(y) sin

(nπx
a

))
= f(x),

∞∑
n=1

u′n(0) sin
(nπx

a

)
=
∞∑
n=1

u′n(b) sin
(nπx

a

)
= 0.
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Expanding f(x, y) in the Fourier sine series,

f(x, y) =
∞∑
n=1

fn(y) sin
(nπx

a

)
,

fn(y) =
2

a

∫ a

0

f(x, y) sin
(nπx

a

)
dx,

we obtain the ordinary differential equations,

u′′n(y)−
(nπ
a

)2

un(y) = fn(y), u′n(0) = u′n(b) = 0, n ∈ N.

We will solve these ordinary differential equations with Green functions. Consider the Green function problem,

g′′n(y; η)−
(nπ
a

)2

gn(y; η) = δ(y − η), g′n(0; η) = g′n(b; η) = 0.

The homogeneous solutions

cosh
(nπy

a

)
and cosh

(
nπ(y − b)

a

)
satisfy the left and right boundary conditions, respectively. The Wronskian of these two solutions is

W (y) =

∣∣∣∣ cosh(nπy/a) cosh(nπ(y − b)/a)
nπ
a

sinh(nπy/a) nπ
a

sinh(nπ(y − b)/a)

∣∣∣∣
=
nπ

a

(
cosh

(nπy
a

)
sinh

(
nπ(y − b)

a

)
− sinh

(nπy
a

)
cosh

(
nπ(y − b)

a

))
= −nπ

a
sinh

(
nπb

a

)
.
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Thus the Green function is

gn(y; η) = −a cosh(nπy</a) cosh(nπ(y> − b)/a)

nπ sinh(nπb/a)
.

The solutions for the coefficients in the expansion are

un(y) =

∫ b

0

gn(y; η)fn(η) dη.

Solution 39.15

utt + a2uxxxx = 0, 0 < x < L, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x),

u(0, t) = uxx(0, t) = 0, u(L, t) = uxx(L, t) = 0,

We will solve this problem by expanding the solution in a series of eigen-solutions that satisfy the partial differential
equation and the homogeneous boundary conditions. We will use the initial conditions to determine the coefficients
in the expansion. We substitute the separation of variables, u(x, t) = X(x)T (t) into the partial differential
equation.

(XT )tt + a2(XT )xxxx = 0

T ′′

a2T
= −X

′′′′

X
= −λ4

Here we make the assumption that 0 ≤ arg(λ) < π/2, i.e., λ lies in the first quadrant of the complex plane. Note
that λ4 covers the entire complex plane. We have the ordinary differential equation,

T ′′ = −a2λ4T,
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and with the boundary conditions at x = 0, L, the eigenvalue problem,

X ′′′′ = λ4X, X(0) = X ′′(0) = X(L) = X ′′(L) = 0.

For λ = 0, the general solution of the differential equation is

X = c1 + c2x+ c3x
2 + c4x

3.

Only the trivial solution satisfies the boundary conditions. λ = 0 is not an eigenvalue. For λ 6= 0, a set of linearly
independent solutions is

{ eλx, eiλx, e−λx, e−iλx}.

Another linearly independent set, (which will be more useful for this problem), is

{cos(λx), sin(λx), cosh(λx), sinh(λx)}.

Both sin(λx) and sinh(λx) satisfy the left boundary conditions. Consider the linear combination c1 cos(λx) +
c2 cosh(λx). The left boundary conditions impose the two constraints c1 + c2 = 0, c1 − c2 = 0. Only the trivial
linear combination of cos(λx) and cosh(λx) can satisfy the left boundary condition. Thus the solution has the
form,

X = c1 sin(λx) + c2 sinh(λx).

The right boundary conditions impose the constraints,{
c1 sin(λL) + c2 sinh(λL) = 0,

−c1λ
2 sin(λL) + c2λ

2 sinh(λL) = 0

{
c1 sin(λL) + c2 sinh(λL) = 0,
−c1 sin(λL) + c2 sinh(λL) = 0
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This set of equations has a nontrivial solution if and only if the determinant is zero,∣∣∣∣ sin(λL) sinh(λL)
− sin(λL) sinh(λL)

∣∣∣∣ = 2 sin(λL) sinh(λL) = 0.

Since sinh(z) is nonzero in 0 ≤ arg(z) < π/2, z 6= 0, and sin(z) has the zeros z = nπ, n ∈ N in this domain, the
eigenvalues and eigenfunctions are,

λn =
nπ

L
, Xn = sin

(nπx
L

)
, n ∈ N.

The differential equation for T becomes,

T ′′ = −a2
(nπ
L

)4

T,

which has the solutions, {
cos

(
a
(nπ
L

)2

t

)
, sin

(
a
(nπ
L

)2

t

)}
.

The eigen-solutions of the partial differential equation are,

u(1)
n = sin

(nπx
L

)
cos

(
a
(nπ
L

)2

t

)
, u(2)

n = sin
(nπx
L

)
sin

(
a
(nπ
L

)2

t

)
, n ∈ N.

We expand the solution of the partial differential equation in a series of the eigen-solutions.

u(x, t) =
∞∑
n=1

sin
(nπx
L

)(
cn cos

(
a
(nπ
L

)2

t

)
+ dn sin

(
a
(nπ
L

)2

t

))
The initial condition for u(x, t) and ut(x, t) allow us to determine the coefficients in the expansion.

u(x, 0) =
∞∑
n=1

cn sin
(nπx
L

)
= f(x)

ut(x, 0) =
∞∑
n=1

dna
(nπ
L

)2

sin
(nπx
L

)
= g(x)
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cn and dn are coefficients in Fourier sine series.

cn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

dn =
2L

aπ2n2

∫ L

0

g(x) sin
(nπx
L

)
dx

Solution 39.16

ut = κuxx + I2αu, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, u(x, 0) = g(x).

We will solve this problem with an expansion in eigen-solutions of the partial differential equation. We substitute
the separation of variables u(x, t) = X(x)T (t) into the partial differential equation.

(XT )t = κ(XT )xx + I2αXT

T ′

κT
− I2α

κ
=
X ′′

X
= −λ2

Now we have an ordinary differential equation for T and a Sturm-Liouville eigenvalue problem for X. (Note
that we have followed the rule of thumb that the problem will be easier if we move all the parameters out of the
eigenvalue problem.)

T ′ = −
(
κλ2 − I2α

)
T

X ′′ = −λ2X, X(0) = X(L) = 0

The eigenvalues and eigenfunctions for X are

λn =
nπ

L
, Xn = sin

(nπx
L

)
, n ∈ N.
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The differential equation for T becomes,

T ′n = −
(
κ
(nπ
L

)2

− I2α

)
Tn,

which has the solution,

Tn = c exp

(
−
(
κ
(nπ
L

)2

− I2α

)
t

)
.

From this solution, we see that the critical current is

ICR =

√
κ

α

π

L
.

If I is greater that this, then the eigen-solution for n = 1 will be exponentially growing. This would make the
whole solution exponentially growing. For I < ICR, each of the Tn is exponentially decaying. The eigen-solutions
of the partial differential equation are,

un = exp

(
−
(
κ
(nπ
L

)2

− I2α

)
t

)
sin
(nπx
L

)
, n ∈ N.

We expand u(x, t) in its eigen-solutions, un.

u(x, t) =
∞∑
n=1

an exp

(
−
(
κ
(nπ
L

)2

− I2α

)
t

)
sin
(nπx
L

)
We determine the coefficients an from the initial condition.

u(x, 0) =
∞∑
n=1

an sin
(nπx
L

)
= g(x)

an =
2

L

∫ L

0

g(x) sin
(nπx
L

)
dx.

If α < 0, then the solution is exponentially decaying regardless of current. Thus there is no critical current.

1648



Solution 39.17

a) The problem is

ut(x, y, z, t) = κ∆u(x, y, z, t), −∞ < x <∞, −∞ < y <∞, 0 < z < a, t > 0,

u(x, y, z, 0) = T, u(x, y, 0, t) = u(x, y, a, t) = 0.

Because of symmetry, the partial differential equation in four variables is reduced to a problem in two
variables,

ut(z, t) = κuzz(z, t), 0 < z < a, t > 0,

u(z, 0) = T, u(0, t) = u(a, t) = 0.

We will solve this problem with an expansion in eigen-solutions of the partial differential equation that
satisfy the homogeneous boundary conditions. We substitute the separation of variables u(z, t) = Z(z)T (t)
into the partial differential equation.

ZT ′ = κZ ′′T

T ′

κT
=
Z ′′

Z
= −λ2

With the boundary conditions at z = 0, a we have the Sturm-Liouville eigenvalue problem,

Z ′′ = −λ2Z, Z(0) = Z(a) = 0,

which has the solutions,

λn =
nπ

a
, Zn = sin

(nπz
a

)
, n ∈ N.

The problem for T becomes,

T ′n = −κ
(nπ
a

)2

Tn,
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with the solution,

Tn = exp

(
−κ
(nπ
a

)2

t

)
.

The eigen-solutions are

un(z, t) = sin
(nπz

a

)
exp

(
−κ
(nπ
a

)2

t

)
.

The solution for u is a linear combination of the eigen-solutions. The slowest decaying eigen-solution is

u1(z, t) = sin
(πz
a

)
exp

(
−κ
(π
a

)2

t

)
.

Thus the e-folding time is

∆e =
a2

κπ2
.

b) The problem is

ut(r, θ, z, t) = κ∆u(r, θ, z, t), 0 < r < a, 0 < θ < 2π, −∞ < z <∞, t > 0,

u(r, θ, z, 0) = T, u(0, θ, z, t) is bounded, u(a, θ, z, t) = 0.

The Laplacian in cylindrical coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ + uzz.

Because of symmetry, the solution does not depend on θ or z.

ut(r, t) = κ

(
urr(r, t) +

1

r
ur(r, t)

)
, 0 < r < a, t > 0,

u(r, 0) = T, u(0, t) is bounded, u(a, t) = 0.
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We will solve this problem with an expansion in eigen-solutions of the partial differential equation that
satisfy the homogeneous boundary conditions at r = 0 and r = a. We substitute the separation of variables
u(r, t) = R(r)T (t) into the partial differential equation.

RT ′ = κ

(
R′′T +

1

r
R′T

)
T ′

κT
=
R′′

R
+
R′

rR
= −λ2

We have the eigenvalue problem,

R′′ +
1

r
R′ + λ2R = 0, R(0) is bounded, R(a) = 0.

Recall that the Bessel equation,

y′′ +
1

x
y′ +

(
λ2 − ν2

x2

)
y = 0,

has the general solution y = c1Jν(λx) + c2Yν(λx). We discard the Bessel function of the second kind, Yν , as
it is unbounded at the origin. The solution for R(r) is

R(r) = J0(λr).

Applying the boundary condition at r = a, we see that the eigenvalues and eigenfunctions are

λn =
βn
a
, Rn = J0

(
βnr

a

)
, n ∈ N,

where {βn} are the positive roots of the Bessel function J0.

The differential equation for T becomes,

T ′n = −κ
(
βn
a

)2

Tn,
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which has the solutions,

Tn = exp

(
−κ
(
βn
a

)2

t

)
.

The eigen-solutions of the partial differential equation for u(r, t) are,

un(r, t) = J0

(
βnr

a

)
exp

(
−κ
(
βn
a

)2

t

)
.

The solution u(r, t) is a linear combination of the eigen-solutions, un. The slowest decaying eigenfunction
is,

u1(r, t) = J0

(
β1r

a

)
exp

(
−κ
(
β1

a

)2

t

)
.

Thus the e-folding time is

∆e =
a2

κβ2
1

.

c) The problem is

ut(r, θ, φ, t) = κ∆u(r, θ, φ, t), 0 < r < a, 0 < θ < 2π, 0 < φ < π, t > 0,

u(r, θ, φ, 0) = T, u(0, θ, φ, t) is bounded, u(a, θ, φ, t) = 0.

The Laplacian in spherical coordinates is,

∆u = urr +
2

r
ur +

1

r2
uθθ +

cos θ

r2 sin θ
uθ +

1

r2 sin2 θ
uφφ.
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Because of symmetry, the solution does not depend on θ or φ.

ut(r, t) = κ

(
urr(r, t) +

2

r
ur(r, t)

)
, 0 < r < a, t > 0,

u(r, 0) = T, u(0, t) is bounded, u(a, t) = 0

We will solve this problem with an expansion in eigen-solutions of the partial differential equation that
satisfy the homogeneous boundary conditions at r = 0 and r = a. We substitute the separation of variables
u(r, t) = R(r)T (t) into the partial differential equation.

RT ′ = κ

(
R′′T +

2

r
R′T

)
T ′

κT
=
R′′

R
+

2

r

R′

R
= −λ2

We have the eigenvalue problem,

R′′ +
2

r
R′ + λ2R = 0, R(0) is bounded, R(a) = 0.

Recall that the equation,

y′′ +
2

x
y′ +

(
λ2 − ν(ν + 1)

x2

)
y = 0,

has the general solution y = c1jν(λx) + c2yν(λx), where jν and yν are the spherical Bessel functions of the
first and second kind. We discard yν as it is unbounded at the origin. (The spherical Bessel functions are
related to the Bessel functions by

jν(x) =

√
π

2x
Jν+1/2(x).)

The solution for R(r) is

Rn = j0(λr).
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Applying the boundary condition at r = a, we see that the eigenvalues and eigenfunctions are

λn =
γn
a
, Rn = j0

(γnr
a

)
, n ∈ N.

The problem for T becomes

T ′n = −κ
(γn
a

)2

Tn,

which has the solutions,

Tn = exp

(
−κ
(γn
a

)2

t

)
.

The eigen-solutions of the partial differential equation are,

un(r, t) = j0

(γnr
a

)
exp

(
−κ
(γn
a

)2

t

)
.

The slowest decaying eigen-solution is,

u1(r, t) = j0

(γ1r

a

)
exp

(
−κ
(γ1

a

)2

t

)
.

Thus the e-folding time is

∆e =
a2

κγ2
1

.

d) If the edges are perfectly insulated, then no heat escapes through the boundary. The temperature is constant
for all time. There is no e-folding time.

1654



Solution 39.18
We will solve this problem with an eigenfunction expansion. Since the partial differential equation is homogeneous,
we will find eigenfunctions in both x and y. We substitute the separation of variables u(x, y, t) = X(x)Y (y)T (t)
into the partial differential equation.

XY T ′ = κ(t) (X ′′Y T +XY ′′T )

T ′

κ(t)T
=
X ′′

X
+
Y ′′

Y
= −λ2

X ′′

X
= −Y

′′

Y
− λ2 = −µ2

First we have a Sturm-Liouville eigenvalue problem for X,

X ′′ = µ2X, X ′(0) = X ′(a) = 0,

which has the solutions,

µm =
mπ

a
, Xm = cos

(mπx
a

)
, m = 0, 1, 2, . . . .

Now we have a Sturm-Liouville eigenvalue problem for Y ,

Y ′′ = −
(
λ2 −

(mπ
a

)2
)
Y, Y (0) = Y (b) = 0,

which has the solutions,

λmn =

√(mπ
a

)2

+
(nπ
b

)2

, Yn = sin
(nπy

b

)
, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . .

A few of the eigenfunctions, cos
(
mπx
a

)
sin
(
nπy
b

)
, are shown in Figure 39.3.

The differential equation for T becomes,

T ′mn = −
((mπ

a

)2

+
(nπ
b

)2
)
κ(t)Tmn,
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m=2, n=1 m=2, n=2 m=2, n=3

m=1, n=1 m=1, n=2 m=1, n=3

m=0, n=1 m=0, n=2 m=0, n=3

Figure 39.3: The eigenfunctions cos
(
mπx
a

)
sin
(
nπy
b

)
which has the solutions,

Tmn = exp

(
−
((mπ

a

)2

+
(nπ
b

)2
)∫ t

0

κ(τ) dτ

)
.

The eigen-solutions of the partial differential equation are,

umn = cos
(mπx

a

)
sin
(nπy

b

)
exp

(
−
((mπ

a

)2

+
(nπ
b

)2
)∫ t

0

κ(τ) dτ

)
.
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The solution of the partial differential equation is,

u(x, y, t) =
∞∑
m=0

∞∑
n=1

cmn cos
(mπx

a

)
sin
(nπy

b

)
exp

(
−
((mπ

a

)2

+
(nπ
b

)2
)∫ t

0

κ(τ) dτ

)
.

We determine the coefficients from the initial condition.

u(x, y, 0) =
∞∑
m=0

∞∑
n=1

cmn cos
(mπx

a

)
sin
(nπy

b

)
= f(x, y)

c0n =
2

ab

∫ a

0

∫ b

0

f(x, y) sin
(nπ
b

)
dy dx

cmn =
4

ab

∫ a

0

∫ b

0

f(x, y) cos
(mπ
a

)
sin
(nπ
b

)
dy dx

Solution 39.19
The steady state temperature satisfies Laplace’s equation, ∆u = 0. The Laplacian in cylindrical coordinates is,

∆u(r, θ, z) = urr +
1

r
ur +

1

r2
uθθ + uzz.

Because of the homogeneity in the z direction, we reduce the partial differential equation to,

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < 1, 0 < θ < π.

The boundary conditions are,

u(r, 0) = u(r, π) = 0, u(0, θ) = 0, u(1, θ) = 1.
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We will solve this problem with an eigenfunction expansion. We substitute the separation of variables u(r, θ) =
R(r)T (θ) into the partial differential equation.

R′′T +
1

r
R′T +

1

r2
RT ′′ = 0

r2R
′′

R
+ r

R′

R
= −T

′′

T
= λ2

We have the regular Sturm-Liouville eigenvalue problem,

T ′′ = −λ2T, T (0) = T (π) = 0,

which has the solutions,

λn = n, Tn = sin(nθ), n ∈ N.

The problem for R becomes,

r2R′′ + rR′ − n2R = 0, R(0) = 0.

This is an Euler equation. We substitute R = rα into the differential equation to obtain,

α(α− 1) + α− n2 = 0,

α = ±n.

The general solution of the differential equation for R is

Rn = c1r
n + c2r

−n.

The solution that vanishes at r = 0 is

Rn = crn.
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The eigen-solutions of the differential equation are,

un = rn sin(nθ).

The solution of the partial differential equation is

u(r, θ) =
∞∑
n=1

anr
n sin(nθ).

We determine the coefficients from the boundary condition at r = 1.

u(1, θ) =
∞∑
n=1

an sin(nθ) = 1

an =
2

π

∫ π

0

sin(nθ) dθ =
2

πn
(1− (−1)n)

The solution of the partial differential equation is

u(r, θ) =
4

π

∞∑
n=1

odd n

rn sin(nθ).

Solution 39.20
The problem is

uxx + uyy = 0, 0 < x, 0 < y < 1,

u(x, 0) = u(x, 1) = 0, u(0, y) = f(y).

We substitute the separation of variables u(x, y) = X(x)Y (y) into the partial differential equation.

X ′′Y +XY ′′ = 0

X ′′

X
= −Y

′′

Y
= λ2
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We have the regular Sturm-Liouville problem,

Y ′′ = −λ2Y, Y (0) = Y (1) = 0,

which has the solutions,

λn = nπ, Yn = sin(nπy), n ∈ N.

The problem for X becomes,

X ′′n = (nπ)2X,

which has the general solution,

Xn = c1 enπx + c2 e−nπx.

The solution that is bounded as x→∞ is,

Xn = c e−nπx.

The eigen-solutions of the partial differential equation are,

un = e−nπx sin(nπy), n ∈ N.

The solution of the partial differential equation is,

u(x, y) =
∞∑
n=1

an e−nπx sin(nπy).

We find the coefficients from the boundary condition at x = 0.

u(0, y) =
∞∑
n=1

an sin(nπy) = f(y)

an = 2

∫ 1

0

f(y) sin(nπy) dy
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Solution 39.21
The Laplacian in circular coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ.

Since we have homogeneous boundary conditions at θ = 0 and θ = α, we will solve this problem with an
eigenfunction expansion. We substitute the separation of variables u(r, θ) = R(r)T (θ) into the partial differential
equation.

R′′T +
1

r
R′T +

1

r2
RT ′′ = 0

r2R
′′

R
+ r

R′

R
= −T

′′

T
= λ2.

We have the regular Sturm-Liouville eigenvalue problem,

T ′′ = −λ2T, T (0) = T (α) = 0,

which has the solutions,

λn =
nπ

α
, Tn = sin

(nπx
α

)
, n ∈ N.

The differential equation for R becomes,

r2R′′ + rR′ −
(nπ
α

)2

R = 0, R(a) = 0.

This is an Euler equation. We make the substitution, R = rβ.

β(β − 1) + β −
(nπ
α

)2

= 0

β = ±nπ
α
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The general solution of the equation for R is

R = c1r
nπ/α + c2r

−nπ/α.

The solution, (up to a multiplicative constant), that vanishes at r = a is

R = rnπ/α − a2nπ/αr−nπ/α.

Thus the series expansion of our solution is,

u(r, θ) =
∞∑
n=1

cn
(
rnπ/α − a2nπ/αr−nπ/α

)
sin

(
nπθ

α

)
.

We determine the coefficients from the boundary condition at r = b.

u(b, θ) =
∞∑
n=1

cn
(
bnπ/α − a2nπ/αb−nπ/α

)
sin

(
nπθ

α

)
= f(θ)

cn =
2

α (bnπ/α − a2nπ/αb−nπ/α)

∫ α

0

f(θ) sin

(
nπθ

α

)
dθ

Solution 39.22

a) The mathematical statement of the problem is

utt = c2uxx, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0,

u(x, 0) = 0, ut(x, 0) =

{
v for |x− ξ| < d

0 for |x− ξ| > d.
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Because we are interest in the harmonics of the motion, we will solve this problem with an eigenfunction expansion
in x. We substitute the separation of variables u(x, t) = X(x)T (t) into the wave equation.

XT ′′ = c2X ′′T

T ′′

c2T
=
X ′′

X
= −λ2

The eigenvalue problem for X is,

X ′′ = −λ2X, X(0) = X(L) = 0,

which has the solutions,

λn =
nπ

L
, Xn = sin

(nπx
L

)
, n ∈ N.

The ordinary differential equation for the Tn are,

T ′′n = −
(nπc
L

)2

Tn,

which have the linearly independent solutions,

cos

(
nπct

L

)
, sin

(
nπct

L

)
.

The solution for u(x, t) is a linear combination of the eigen-solutions.

u(x, t) =
∞∑
n=1

sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
Since the string initially has zero displacement, each of the an are zero.

u(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
sin

(
nπct

L

)
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Now we use the initial velocity to determine the coefficients in the expansion. Because the position is a continuous
function of x, and there is a jump discontinuity in the velocity as a function of x, the coefficients in the expansion
will decay as 1/n2.

ut(x, 0) =
∞∑
n=1

nπc

L
bn sin

(nπx
L

)
=

{
v for |x− ξ| < d

0 for |x− ξ| > d.

nπc

L
bn =

2

L

∫ L

0

ut(x, 0) sin
(nπx
L

)
dx

bn =
2

nπc

∫ ξ+d

ξ−d
v sin

(nπx
L

)
dx

=
4Lv

n2π2c
sin

(
nπd

L

)
sin

(
nπξ

L

)
The solution for u(x, t) is,

u(x, t) =
4Lv

π2c

∞∑
n=1

1

n2
sin

(
nπd

L

)
sin

(
nπξ

L

)
sin
(nπx
L

)
sin

(
nπct

L

)
.

b) The form of the solution is again,

u(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
sin

(
nπct

L

)
We determine the coefficients in the expansion from the initial velocity.

ut(x, 0) =
∞∑
n=1

nπc

L
bn sin

(nπx
L

)
=

{
v cos

(
π(x−ξ)

2d

)
for |x− ξ| < d

0 for |x− ξ| > d.

nπc

L
bn =

2

L

∫ L

0

ut(x, 0) sin
(nπx
L

)
dx
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bn =
2

nπc

∫ ξ+d

ξ−d
v cos

(
π(x− ξ)

2d

)
sin
(nπx
L

)
dx

bn =

{
8dL2v

nπ2c(L2−4d2n2)
cos
(
nπd
L

)
sin
(
nπξ
L

)
for d 6= L

2n
,

v
n2π2c

(
2nπd+ L sin

(
2nπd
L

))
sin
(
nπξ
L

)
for d = L

2n

The solution for u(x, t) is,

u(x, t) =
8dL2v

π2c

∞∑
n=1

1

n(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin
(nπx
L

)
sin

(
nπct

L

)
for d 6= L

2n
,

u(x, t) =
v

π2c

∞∑
n=1

1

n2

(
2nπd+ L sin

(
2nπd

L

))
sin

(
nπξ

L

)
sin
(nπx
L

)
sin

(
nπct

L

)
for d =

L

2n
.

c) The kinetic energy of the string is

E =
1

2

∫ L

0

ρ (ut(x, t))
2 dx,

where ρ is the density of the string per unit length.

Flat Hammer. The nth harmonic is

un =
4Lv

n2π2c
sin

(
nπd

L

)
sin

(
nπξ

L

)
sin
(nπx
L

)
sin

(
nπct

L

)
.

The kinetic energy of the nth harmonic is

En =
ρ

2

∫ L

0

(
∂un
∂t

)2

dx =
4Lv2

n2π2
sin2

(
nπd

L

)
sin2

(
nπξ

L

)
cos2

(
nπct

L

)
.
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This will be maximized if

sin2

(
nπξ

L

)
= 1,

nπξ

L
=
π(2m− 1)

2
, m = 1, . . . , n,

ξ =
(2m− 1)L

2n
, m = 1, . . . , n

We note that the kinetic energies of the nth harmonic decay as 1/n2.

Curved Hammer. We assume that d 6= L
2n

. The nth harmonic is

un =
8dL2v

nπ2c(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin
(nπx
L

)
sin

(
nπct

L

)
.

The kinetic energy of the nth harmonic is

En =
ρ

2

∫ L

0

(
∂un
∂t

)2

dx =
16d2L3v2

π2(L2 − 4d2n2)2
cos2

(
nπd

L

)
sin2

(
nπξ

L

)
cos2

(
nπct

L

)
.

This will be maximized if

sin2

(
nπξ

L

)
= 1,

ξ =
(2m− 1)L

2n
, m = 1, . . . , n

We note that the kinetic energies of the nth harmonic decay as 1/n4.

1666



Solution 39.23
In mathematical notation, the problem is

utt − c2uxx = s(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0,

u(x, 0) = ut(x, 0) = 0.

Since this is an inhomogeneous partial differential equation, we will expand the solution in a series of eigenfunctions
in x for which the coefficients are functions of t. The solution for u has the form,

u(x, t) =
∞∑
n=1

un(t) sin
(nπx
L

)
.

Substituting this expression into the inhomogeneous partial differential equation will give us ordinary differential
equations for each of the un.

∞∑
n=1

(
u′′n + c2

(nπ
L

)2

un

)
sin
(nπx
L

)
= s(x, t).

We expand the right side in a series of the eigenfunctions.

s(x, t) =
∞∑
n=1

sn(t) sin
(nπx
L

)
.

For 0 < t < δ we have

sn(t) =
2

L

∫ L

0

s(x, t) sin
(nπx
L

)
dx

=
2

L

∫ L

0

v cos

(
π(x− ξ)

2d

)
sin

(
πt

δ

)
sin
(nπx
L

)
dx

=
8dLv

π(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin

(
πt

δ

)
.
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For t > δ, sn(t) = 0. Substituting this into the partial differential equation yields,

u′′n +
(nπc
L

)2

un =

{
8dLv

π(L2−4d2n2)
cos
(
nπd
L

)
sin
(
nπξ
L

)
sin
(
πt
δ

)
, for t < δ,

0 for t > δ.

Since the initial position and velocity of the string is zero, we have

un(0) = u′n(0) = 0.

First we solve the differential equation on the range 0 < t < δ. The homogeneous solutions are

cos

(
nπct

L

)
, sin

(
nπct

L

)
.

Since the right side of the ordinary differential equation is a constant times sin(πt/δ), which is an eigenfunction
of the differential operator, we can guess the form of a particular solution, pn(t).

pn(t) = d sin

(
πt

δ

)
We substitute this into the ordinary differential equation to determine the multiplicative constant d.

pn(t) = − 8dδ2L3v

π3(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin

(
πt

δ

)
The general solution for un(t) is

un(t) = a cos

(
nπct

L

)
+ b sin

(
nπct

L

)
− 8dδ2L3v

π3(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin

(
πt

δ

)
.

We use the initial conditions to determine the constants a and b. The solution for 0 < t < δ is

un(t) =
8dδ2L3v

π3(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)(
L

δcn
sin

(
nπct

L

)
− sin

(
πt

δ

))
.
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The solution for t > δ, the solution is a linear combination of the homogeneous solutions. This linear combination
is determined by the position and velocity at t = δ. We use the above solution to determine these quantities.

un(δ) =
8dδ2L4v

π3δcn(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
sin

(
nπcδ

L

)
u′n(δ) =

8dδ2L3v

π2δ(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)(
1 + cos

(
nπcδ

L

))
The fundamental set of solutions at t = δ is{

cos

(
nπc(t− δ)

L

)
,
L

nπc
sin

(
nπc(t− δ)

L

)}
From the initial conditions at t = δ, we see that the solution for t > δ is

un(t) =
8dδ2L3v

π3(L2 − c2δ2n2)(L2 − 4d2n2)
cos

(
nπd

L

)
sin

(
nπξ

L

)
(
L

δcn
sin

(
nπcδ

L

)
cos

(
nπc(t− δ)

L

)
+
π

δ

(
1 + cos

(
nπcδ

L

))
sin

(
nπc(t− δ)

L

))
.

Width of the Hammer. The nth harmonic has the width dependent factor,

d

L2 − 4d2n2
cos

(
nπd

L

)
.

Differentiating this expression and trying to find zeros to determine extrema would give us an equation with both
algebraic and transcendental terms. Thus we don’t attempt to find the maxima exactly. We know that d < L.
The cosine factor is large when

nπd

L
≈ mπ, m = 1, 2, . . . , n− 1,

d ≈ mL

n
, m = 1, 2, . . . , n− 1.
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Substituting d = mL/n into the width dependent factor gives us

d

L2(1− 4m2)
(−1)m.

Thus we see that the amplitude of the nth harmonic and hence its kinetic energy will be maximized for

d ≈ L

n

The cosine term in the width dependent factor vanishes when

d =
(2m− 1)L

2n
, m = 1, 2, . . . , n.

The kinetic energy of the nth harmonic is minimized for these widths.
For the lower harmonics, n � L

2d
, the kinetic energy is proportional to d2; for the higher harmonics, n � L

2d
,

the kinetic energy is proportional to 1/d2.
Duration of the Blow. The nth harmonic has the duration dependent factor,

δ2

L2 − n2c2δ2

(
L

ncδ
sin

(
nπcδ

L

)
cos

(
nπc(t− δ)

L

)
+
π

δ

(
1 + cos

(
nπcδ

L

))
sin

(
nπc(t− δ)

L

))
.

If we assume that δ is small, then

L

ncδ
sin

(
nπcδ

L

)
≈ π.

and

π

δ

(
1 + cos

(
nπcδ

L

))
≈ 2π

δ
.
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Thus the duration dependent factor is about,

δ

L2 − n2c2δ2
sin

(
nπc(t− δ)

L

)
.

Thus for the lower harmonics, (those satisfying n� L
cδ

), the amplitude is proportional to δ, which means that the
kinetic energy is proportional to δ2. For the higher harmonics, (those with n� L

cδ
), the amplitude is proportional

to 1/δ, which means that the kinetic energy is proportional to 1/δ2.

Solution 39.24
Substituting u(x, y, z, t) = v(x, y, z) eiωt into the wave equation will give us a Helmholtz equation.

−ω2v eiωt − c2(vxx + vyy + vzz) eiωt = 0

vxx + vyy + vzz + k2v = 0.

We find the propagating modes with separation of variables. We substitute v = X(x)Y (y)Z(z) into the Helmholtz
equation.

X ′′Y Z +XY ′′Z +XY Z ′′ + k2XY Z = 0

−X
′′

X
=
Y ′′

Y
+
Z ′′

Z
+ k2 = ν2

The eigenvalue problem in x is

X ′′ = −ν2X, X(0) = X(L) = 0,

which has the solutions,

νn =
nπ

L
, Xn = sin

(nπx
L

)
.

We continue with the separation of variables.

−Y
′′

Y
=
Z ′′

Z
+ k2 −

(nπ
L

)2

= µ2
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The eigenvalue problem in y is

Y ′′ = −µ2Y, Y (0) = Y (L) = 0,

which has the solutions,

µn =
mπ

L
, Ym = sin

(mπy
L

)
.

Now we have an ordinary differential equation for Z,

Z ′′ +

(
k2 −

(π
L

)2 (
n2 +m2

))
Z = 0.

We define the eigenvalues,

λ2
n,m = k2 −

(π
L

)2 (
n2 +m2

)
.

If k2 −
(
π
L

)2
(n2 +m2) < 0, then the solutions for Z are,

exp

(
±

√((π
L

)2

(n2 +m2)− k2

)
z

)
.

We discard this case, as the solutions are not bounded as z →∞.

If k2 −
(
π
L

)2
(n2 +m2) = 0, then the solutions for Z are,

{1, z}

The solution Z = 1 satisfies the boundedness and nonzero condition at infinity. This corresponds to a standing
wave.

If k2 −
(
π
L

)2
(n2 +m2) > 0, then the solutions for Z are,

e±iλn,mz.
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These satisfy the boundedness and nonzero conditions at infinity. For values of n,m satisfying k2−
(
π
L

)2
(n2 +m2) ≥

0, there are the propagating modes,

un,m = sin
(nπx
L

)
sin
(mπy

L

)
ei(ωt±λn,mz).

Solution 39.25

utt = c2∆u, 0 < x < a, 0 < y < b, (39.10)

u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0.

We substitute the separation of variables u(x, y, t) = X(x)Y (y)T (t) into Equation 39.10.

T ′′

c2T
=
X ′′

X
+
Y ′′

Y
= −ν

X ′′

X
= −Y

′′

Y
− ν = −µ

This gives us differential equations for X(x), Y (y) and T (t).

X ′′ = −µX, X(0) = X(a) = 0

Y ′′ = −(ν − µ)Y, Y (0) = Y (b) = 0

T ′′ = −c2νT

First we solve the problem for X.

µm =
(mπ
a

)2

, Xm = sin
(mπx

a

)
Then we solve the problem for Y .

νm,n =
(mπ
a

)2

+
(nπ
b

)2

, Ym,n = sin
(nπy

b

)
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Finally we determine T .

Tm,n =
cos
sin

(
cπ

√(m
a

)2

+
(n
b

)2

t

)
The modes of oscillation are

um,n = sin
(mπx

a

)
sin
(nπy

b

) cos
sin

(
cπ

√(m
a

)2

+
(n
b

)2

t

)
.

The frequencies are

ωm,n = cπ

√(m
a

)2

+
(n
b

)2

.

Figure 39.4 shows a few of the modes of oscillation in surface and density plots.

Solution 39.26
We substitute the separation of variables φ = X(x)Y (y)T (t) into the differential equation.

φt = a2 (φxx + φyy) (39.11)

XY T ′ = a2 (X ′′Y T +XY ′′T )

T ′

a2T
=
X ′′

X
+
Y ′′

Y
= −ν

T ′

a2T
= −ν, X ′′

X
= −ν − Y ′′

Y
= −µ

First we solve the eigenvalue problem for X.

X ′′ + µX = 0, X(0) = X(lx) = 0

µm =

(
mπ

lx

)2

, Xm(x) = sin

(
mπx

lx

)
, m ∈ Z+
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m=3, n=1 m=3, n=2 m=3, n=3

m=2, n=1 m=2, n=2 m=2, n=3

m=1, n=1 m=1, n=2 m=1, n=3

m=3, n=1 m=3, n=2 m=3, n=3

m=2, n=1 m=2, n=2 m=2, n=3

m=1, n=1 m=1, n=2 m=1, n=3

Figure 39.4: The modes of oscillation of a rectangular drum head.

Then we solve the eigenvalue problem for Y .

Y ′′ + (ν − µm)Y = 0, Y ′(0) = Y ′(ly) = 0

νmn = µm +

(
nπ

ly

)2

, Ymn(y) = cos

(
nπy

ly

)
, n ∈ Z0+

Next we solve the differential equation for T , (up to a multiplicative constant).

T ′ = −a2νmnT

T (t) = exp
(
−a2νmnt

)
The eigensolutions of Equation 39.11 are

sin(µmx) cos(νmny) exp
(
−a2νmnt

)
, m ∈ Z+, n ∈ Z0+.
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We choose the eigensolutions φmn to be orthonormal on the xy domain at t = 0.

φm0(x, y, t) =

√
2

lxly
sin(µmx) exp

(
−a2νmnt

)
, m ∈ Z+

φmn(x, y, t) =
2√
lxly

sin(µmx) cos(νmny) exp
(
−a2νmnt

)
, m ∈ Z+, n ∈ Z+

The solution of Equation 39.11 is a linear combination of the eigensolutions.

φ(x, y, t) =
∞∑
m=1
n=0

cmnφmn(x, y, t)
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We determine the coefficients from the initial condition.

φ(x, y, 0) = 1
∞∑
m=1
n=0

cmnφmn(x, y, 0) = 1

cmn =

∫ lx

0

∫ ly

0

φmn(x, y, 0) dy dx

cm0 =

√
2

lxly

∫ lx

0

∫ ly

0

sin(µmx) dy dx

cm0 =
√

2lxly
1− (−1)m

mπ
, m ∈ Z+

cmn =
2√
lxly

∫ lx

0

∫ ly

0

sin(µmx) cos(νmny) dy dx

cmn = 0, m ∈ Z+, n ∈ Z+

φ(x, y, t) =
∞∑
m=1

cm0φm0(x, y, t)

φ(x, y, t) =
∞∑
m=1

odd m

2
√

2lxly

mπ
sin(µmx) exp

(
−a2νmnt

)
Addendum. Note that an equivalent problem to the one specified is

φt = a2 (φxx + φyy) , 0 < x < lx, −∞ < y <∞,
φ(x, y, 0) = 1, φ(0, y, t) = φ(ly, y, t) = 0.

Here we have done an even periodic continuation of the problem in the y variable. Thus the boundary conditions

φy(x, 0, t) = φy(x, ly, t) = 0
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are automatically satisfied. Note that this problem does not depend on y. Thus we only had to solve

φt = a2φxx, 0 < x < lx

φ(x, 0) = 1, φ(0, t) = φ(ly, t) = 0.

Solution 39.27
1. Since the initial and boundary conditions do not depend on θ, neither does φ. We apply the separation of

variables φ = u(r)T (t).

φt = a2∆φ (39.12)

φt = a2 1

r
(rφr)r (39.13)

T ′

a2T
=

1

r
(ru′)′ = −λ (39.14)

We solve the eigenvalue problem for u(r).

(ru′)′ + λu = 0, u(0) bounded, u(R) = 0

First we write the general solution.

u(r) = c1J0

(√
λr
)

+ c2Y0

(√
λr
)

The Bessel function of the second kind, Y0, is not bounded at r = 0, so c2 = 0. We use the boundary
condition at r = R to determine the eigenvalues.

λn =

(
j0,n
R

)2

, un(r) = cJ0

(
j0,nr

R

)
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We choose the constant c so that the eigenfunctions are orthonormal with respect to the weighting function
r.

un(r) =
J0

(
j0,nr

R

)
√∫ R

0
rJ2

0

(
j0,nr

R

)
=

√
2

RJ1(j0,n)
J0

(
j0,nr

R

)

Now we solve the differential equation for T .

T ′ = −a2λnT

Tn = exp

(
−
(
aj0,n

R2

)2

t

)

The eigensolutions of Equation 39.12 are

φn(r, t) =

√
2

RJ1(j0,n)
J0

(
j0,nr

R

)
exp

(
−
(
aj0,n

R2

)2

t

)

The solution is a linear combination of the eigensolutions.

φ =
∞∑
n=1

cn

√
2

RJ1(j0,n)
J0

(
j0,nr

R

)
exp

(
−
(
aj0,n

R2

)2

t

)
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We determine the coefficients from the initial condition.

φ(r, θ, 0) = V
∞∑
n=1

cn

√
2

RJ1(j0,n)
J0

(
j0,nr

R

)
= V

cn =

∫ R

0

V r

√
2

RJ1(j0,n)
J0

(
j0,nr

R

)
dr

cn = V

√
2

RJ1(j0,n)

R

j0,n/R
J1 (j0,n)

cn =

√
2 V R

j0,n

φ(r, θ, t) = 2V
∞∑
n=1

J0

(
j0,nr

R

)
j0,nJ1(j0,n)

exp

(
−
(
aj0,n

R2

)2

t

)

2.

Jν(r) ∼
√

2

πr
cos
(
r − πν

2
− π

4

)
, r → +∞

jν,n ∼
(
n+

ν

2
− 1

4

)
π

For large n, the terms in the series solution at t = 0 are

J0

(
j0,nr

R

)
j0,nJ1(j0,n)

∼

√
2R

πj0,nr
cos
(
j0,nr

R
− π

4

)
j0,n
√

2
πj0,n

cos
(
j0,n − 3π

4

)
∼ R

r(n− 1/4)π

cos
(

(n−1/4)πr
R

− π
4

)
cos ((n− 1)π)

.
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The coefficients decay as 1/n.

Solution 39.28
1. We substitute the separation of variables Ψ = T (t)Θ(θ)Φ(φ) into Equation 39.7

T ′ΘΦ =
a2

R2

(
1

sin θ

∂

∂θ
(sin θ TΘ′Φ) +

1

sin2 θ
TΘΦ′′

)
R2T ′

a2T
=

(
1

sin θΘ
(sin θΘ′)′ +

1

sin2 θ

Φ′′

Φ

)
= −µ

sin θ

Θ
(sin θΘ′)′ + µ sin2 θ = −Φ′′

Φ
= ν

We have differential equations for each of T , Θ and Φ.

T ′ = −µ a
2

R2
T,

1

sin θ
(sin θΘ′)′ +

(
µ− ν

sin2 θ

)
Θ = 0, Φ′′ + νΦ = 0

2. In order that the solution be continuously differentiable, we need the periodic boundary conditions

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).

The eigenvalues and eigenfunctions for Φ are

νn = n2, Φn =
1√
2π

einφ, n ∈ Z.

Now we deal with the equation for Θ.

x = cos θ, Θ(θ) = P (x), sin2 θ = 1− x2,
d

dx
=

1

sin θ

d

dθ
1

sin θ
(sin2 θ

1

sin θ
Θ′)′ +

(
µ− ν

sin2 θ

)
Θ = 0((

1− x2
)
P ′
)′

+

(
µ− n2

1− x2

)
P = 0
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P (x) should be bounded at the endpoints, x = −1 and x = 1.

3. If the solution does not depend on θ, then the only one of the Φn that will appear in the solution is
Φ0 = 1/

√
2π. The equations for T and P become((

1− x2
)
P ′
)′

+ µP = 0, P (±1) bounded,

T ′ = −µ a
2

R2
T.

The solutions for P are the Legendre polynomials.

µl = l(l + 1), Pl(cos θ), l ∈ Z0+

We solve the differential equation for T .

T ′ = −l(l + 1)
a2

R2
T

Tl = exp

(
−a

2l(l + 1)

R2
t

)
The eigensolutions of the partial differential equation are

Ψl = Pl(cos θ) exp

(
−a

2l(l + 1)

R2
t

)
.

The solution is a linear combination of the eigensolutions.

Ψ =
∞∑
l=0

AlPl(cos θ) exp

(
−a

2l(l + 1)

R2
t

)
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4. We determine the coefficients in the expansion from the initial condition.

Ψ(θ, 0) = 2 cos2 θ − 1
∞∑
l=0

AlPl(cos θ) = 2 cos2 θ − 1

A0 + A1 cos θ + A2

(
3

2
cos2 θ − 1

2

)
+ · · · = 2 cos2 θ − 1

A0 = −1

3
, A1 = 0, A2 =

4

3
, A3 = A4 = · · · = 0

Ψ(θ, t) = −1

3
P0(cos θ) +

4

3
P2(cos θ) exp

(
−6a2

R2
t

)
Ψ(θ, t) = −1

3
+

(
2 cos2 θ − 2

3

)
exp

(
−6a2

R2
t

)

Solution 39.29
Since we have homogeneous boundary conditions at x = 0 and x = 1, we will expand the solution in a series of
eigenfunctions in x. We determine a suitable set of eigenfunctions with the separation of variables, φ = X(x)Y (y).

φxx + φyy = 0 (39.15)

X ′′

X
= −Y

′′

Y
= −λ

We have differential equations for X and Y .

X ′′ + λX = 0, X(0) = X(1) = 0

Y ′′ − λY = 0, Y (0) = 0

The eigenvalues and orthonormal eigenfunctions for X are

λn = (nπ)2, Xn(x) =
√

2 sin(nπx), n ∈ Z+.
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The solutions for Y are, (up to a multiplicative constant),

Yn(y) = sinh(nπy).

The solution of Equation 39.15 is a linear combination of the eigensolutions.

φ(x, y) =
∞∑
n=1

an
√

2 sin(nπx) sinh(nπy)

We determine the coefficients from the boundary condition at y = 2.

x(1− x) =
∞∑
n=1

an
√

2 sin(nπx) sinh(nπ2)

an sinh(2nπ) =
√

2

∫ 1

0

x(1− x) sin(nπx) dx

an =
2
√

2(1− (−1)n)

n3π3 sinh(2nπ)

φ(x, y) =
8

π3

∞∑
n=1

odd n

1

n3
sin(nπx)

sinh(nπy)

sinh(2nπ)

The solution at x = 1/2, y = 1 is

φ(1/2, 1) = − 8

π3

∞∑
n=1

odd n

1

n3

sinh(nπ)

sinh(2nπ)
.

1684



Let Rk be the relative error at that point incurred by taking k terms.

Rk =

∣∣∣∣∣∣
− 8
π3

∑∞
n=k+2
odd n

1
n3

sinh(nπ)
sinh(2nπ)

− 8
π3

∑∞
n=1

odd n

1
n3

sinh(nπ)
sinh(2nπ)

∣∣∣∣∣∣
Rk =

∑∞
n=k+2
odd n

1
n3

sinh(nπ)
sinh(2nπ)∑∞

n=1
odd n

1
n3

sinh(nπ)
sinh(2nπ)

Since R1 ≈ 0.0000693169 we see that one term is sufficient for 1% or 0.1% accuracy.
Now consider φx(1/2, 1).

φx(x, y) =
8

π2

∞∑
n=1

odd n

1

n2
cos(nπx)

sinh(nπy)

sinh(2nπ)

φx(1/2, 1) = 0

Since all the terms in the series are zero, accuracy is not an issue.

Solution 39.30
The solution has the form

ψ =

{
αr−n−1Pm

n (cos θ) sin(mφ), r > a

βrnPm
n (cos θ) sin(mφ), r < a.

The boundary condition on ψ at r = a gives us the constraint

αa−n−1 − βan = 0

β = αa−2n−1.
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Then we apply the boundary condition on ψr at r = a.

−(n+ 1)αa−n−2 − nαa−2n−1an−1 = 1

α = − an+2

2n+ 1

ψ =

{
− an+2

2n+1
r−n−1Pm

n (cos θ) sin(mφ), r > a

−a−n+1

2n+1
rnPm

n (cos θ) sin(mφ), r < a

Solution 39.31
We expand the solution in a Fourier series.

φ =
1

2
a0(r) +

∞∑
n=1

an(r) cos(nθ) +
∞∑
n=1

bn(r) sin(nθ)

We substitute the series into the Laplace’s equation to determine ordinary differential equations for the coefficients.

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
= 0

a′′0 +
1

r
a′0 = 0, a′′n +

1

r
a′n − n2an = 0, b′′n +

1

r
b′n − n2bn = 0

The solutions that are bounded at r = 0 are, (to within multiplicative constants),

a0(r) = 1, an(r) = rn, bn(r) = rn.

Thus φ(r, θ) has the form

φ(r, θ) =
1

2
c0 +

∞∑
n=1

cnr
n cos(nθ) +

∞∑
n=1

dnr
n sin(nθ)
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We apply the boundary condition at r = R.

φr(R, θ) =
∞∑
n=1

ncnR
n−1 cos(nθ) +

∞∑
n=1

ndnR
n−1 sin(nθ)

In order that φr(R, θ) have a Fourier series of this form, it is necessary that

∫ 2π

0

φr(R, θ) dθ = 0.

In that case c0 is arbitrary in our solution. The coefficients are

cn =
1

πnRn−1

∫ 2π

0

φr(R, α) cos(nα) dα, dn =
1

πnRn−1

∫ 2π

0

φr(R, α) sin(nα) dα.
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We substitute the coefficients into our series solution to determine it up to the additive constant.

φ(r, θ) =
R

π

∞∑
n=1

1

n

( r
R

)n ∫ 2π

0

φr(R, α) cos(n(θ − α)) dα

φ(r, θ) =
R

π

∫ 2π

0

φr(R, α)
∞∑
n=1

1

n

( r
R

)n
cos(n(θ − α)) dα

φ(r, θ) =
R

π

∫ 2π

0

φr(R, α)
∞∑
n=1

∫ r

0

ρn−1

Rn
dρ<

(
ein(θ−α)

)
dα

φ(r, θ) =
R

π

∫ 2π

0

φr(R, α)<

(∫ r

0

1

ρ

∞∑
n=1

ρn

Rn
ein(θ−α) dρ

)
dα

φ(r, θ) =
R

π

∫ 2π

0

φr(R, α)<

(∫ r

0

1

ρ

ρ
R

ei(θ−α)

1− ρ
R

ei(θ−α)
dρ

)
dα

φ(r, θ) = −R
π

∫ 2π

0

φr(R, α)<
(

log
(

1− r

R
ei(θ−α)

))
dα

φ(r, θ) = −R
π

∫ 2π

0

φr(R, α) log
∣∣∣1− r

R
ei(θ−α)

∣∣∣ dα

φ(r, θ) = − R
2π

∫ 2π

0

φr(R, α) log

(
1− 2

r

R
cos(θ − α) +

r2

R2

)
dα

Solution 39.32
We will assume that both α and β are nonzero. The cases of real and pure imaginary have already been covered.
We solve the ordinary differential equations, (up to a multiplicative constant), to find special solutions of the
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diffusion equation.

T ′

T
= (α + iβ)2,

X ′′

X
=

(α + iβ)2

a2

T = exp
(
(α + iβ)2t

)
, X = exp

(
±α + iβ

a
x

)
T = exp

((
α2 − β2

)
t+ i2αβt

)
, X = exp

(
±α
a
x± iβ

a
x

)
φ = exp

((
α2 − β2

)
t± α

a
x+ i

(
2αβt± β

a
x

))
We take the sum and difference of these solutions to obtain

φ = exp
((
α2 − β2

)
t± α

a
x
) cos

sin

(
2αβt± β

a
x

)
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Chapter 40

Finite Transforms

Example 40.0.1 Consider the problem

∆u− 1

c2

∂2u

∂t2
= δ(x− ξ)δ(y − η) e−iωt on −∞ < x <∞, 0 < y < b,

with

uy(x, 0, t) = uy(x, b, t) = 0.

Substituting u(x, y, t) = v(x, y) e−iωt into the partial differential equation yields the problem

∆v + k2v = δ(x− ξ)δ(y − η) on −∞ < x <∞, 0 < y < b,

with

vy(x, 0) = vy(x, b) = 0.

We assume that the solution has the form

v(x, y) =
1

2
c0(x) +

∞∑
n=1

cn(x) cos
(nπy

b

)
, (40.1)
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and apply a finite cosine transform in the y direction. Integrating from 0 to b yields∫ b

0

vxx + vyy + k2v dy =

∫ b

0

δ(x− ξ)δ(y − η) dy,

[
vy
]b

0
+

∫ b

0

vxx + k2v dy = δ(x− ξ),

∫ b

0

vxx + k2v dy = δ(x− ξ).

Substituting in Equation 40.1 and using the orthogonality of the cosines gives us

c′′0(x) + k2c0(x) =
2

b
δ(x− ξ).

Multiplying by cos(nπy/b) and integrating form 0 to b yields∫ b

0

(
vxx + vyy + k2v

)
cos
(nπy

b

)
dy =

∫ b

0

δ(x− ξ)δ(y − η) cos
(nπy

b

)
dy.

The vyy term becomes∫ b

0

vyy cos
(nπy

b

)
dy =

[
vy cos

(nπy
b

)]b
0
−
∫ b

0

−nπ
b
vy sin

(nπy
b

)
dy

=
[nπ
b
v sin

(nπy
b

)]b
0
−
∫ b

0

(nπ
b

)2

v cos
(nπy

b

)
dy.

The right-hand-side becomes∫ b

0

δ(x− ξ)δ(y − η) cos
(nπy

b

)
dy = δ(x− ξ) cos

(nπη
b

)
.
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Thus the partial differential equation becomes∫ b

0

(
vxx −

(nπ
b

)2

v + k2v

)
cos
(nπy

b

)
dy = δ(x− ξ) cos

(nπη
b

)
.

Substituting in Equation 40.1 and using the orthogonality of the cosines gives us

c′′n(x) +

[
k2 −

(nπ
b

)2
]
cn(x) =

2

b
δ(x− ξ) cos

(nπη
b

)
.

Now we need to solve for the coefficients in the expansion of v(x, y). The homogeneous solutions for c0(x) are
e±ikx. The solution for u(x, y, t) must satisfy the radiation condition. The waves at x = −∞ travel to the left and
the waves at x = +∞ travel to the right. The two solutions of that will satisfy these conditions are, respectively,

y1 = e−ikx, y2 = eikx.

The Wronskian of these two solutions is 2ik. Thus the solution for c0(x) is

c0(x) =
e−ikx< eikx>

ibk

We need to consider three cases for the equation for cn.

k > nπ/b Let α =
√
k2 − (nπ/b)2. The homogeneous solutions that satisfy the radiation condition are

y1 = e−iαx, y2 = eiαx.

The Wronskian of the two solutions is 2iα. Thus the solution is

cn(x) =
e−iαx< eiαx>

ibα
cos
(nπη

b

)
.

In the case that cos
(
nπη
b

)
= 0 this reduces to the trivial solution.
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k = nπ/b The homogeneous solutions that are bounded at infinity are

y1 = 1, y2 = 1.

If the right-hand-side is nonzero there is no way to combine these solutions to satisfy both the continuity
and the derivative jump conditions. Thus if cos

(
nπη
b

)
6= 0 there is no bounded solution. If cos

(
nπη
b

)
= 0

then the solution is not unique.

cn(x) = const.

k < nπ/b Let β =
√

(nπ/b)2 − k2. The homogeneous solutions that are bounded at infinity are

y1 = eβx, y2 = e−βx.

The Wronskian of these solutions is −2β. Thus the solution is

cn(x) = − eβx< e−βx>

bβ
cos
(nπη

b

)
In the case that cos

(
nπη
b

)
= 0 this reduces to the trivial solution.
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40.1 Exercises
Exercise 40.1
A slab is perfectly insulated at the surface x = 0 and has a specified time varying temperature f(t) at the surface
x = L. Initially the temperature is zero. Find the temperature u(x, t) if the heat conductivity in the slab is κ = 1.

Exercise 40.2
Solve

uxx + uyy = 0, 0 < x < L, y > 0,

u(x, 0) = f(x), u(0, y) = g(y), u(L, y) = h(y),

with an eigenfunction expansion.
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40.2 Hints
Hint 40.1

Hint 40.2
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40.3 Solutions
Solution 40.1
The problem is

ut = uxx, 0 < x < L, t > 0,

ux(0, t) = 0, u(L, t) = f(t), u(x, 0) = 0.

We will solve this problem with an eigenfunction expansion. We find these eigenfunction by replacing the inho-
mogeneous boundary condition with the homogeneous one, u(L, t) = 0. We substitute the separation of variables
v(x, t) = X(x)T (t) into the homogeneous partial differential equation.

XT ′ = X ′′T

T ′

T
=
X ′′

X
= −λ2.

This gives us the regular Sturm-Liouville eigenvalue problem,

X ′′ = −λ2X, X ′(0) = X(L) = 0,

which has the solutions,

λn =
π(2n− 1)

2L
, Xn = cos

(
π(2n− 1)x

2L

)
, n ∈ N.

Our solution for u(x, t) will be an eigenfunction expansion in these eigenfunctions. Since the inhomogeneous
boundary condition is a function of t, the coefficients will be functions of t.

u(x, t) =
∞∑
n=1

an(t) cos(λnx)

Since u(x, t) does not satisfy the homogeneous boundary conditions of the eigenfunctions, the series is not u-
niformly convergent and we are not allowed to differentiate it with respect to x. We substitute the expansion
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into the partial differential equation, multiply by the eigenfunction and integrate from x = 0 to x = L. We use
integration by parts to move derivatives from u to the eigenfunctions.

ut = uxx∫ L

0

ut cos(λmx) dx =

∫ L

0

uxx cos(λmx) dx∫ L

0

(
∞∑
n=1

a′n(t) cos(λnx)

)
cos(λmx) dx = [ux cos(λmx)]L0 +

∫ L

0

uxλm sin(λmx) dx

L

2
a′m(t) = [uλm sin(λmx)]L0 −

∫ L

0

uλ2
m cos(λmx) dx

L

2
a′m(t) = λmu(L, t) sin(λmL)− λ2

m

∫ L

0

(
∞∑
n=1

an(t) cos(λnx)

)
cos(λmx) dx

L

2
a′m(t) = λm(−1)nf(t)− λ2

m

L

2
am(t)

a′m(t) + λ2
mam(t) = (−1)nλmf(t)

From the initial condition u(x, 0) = 0 we see that am(0) = 0. Thus we have a first order differential equation and
an initial condition for each of the am(t).

a′m(t) + λ2
mam(t) = (−1)nλmf(t), am(0) = 0

This equation has the solution,

am(t) = (−1)nλm

∫ t

0

e−λ
2
m(t−τ)f(τ) dτ.
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Solution 40.2

uxx + uyy = 0, 0 < x < L, y > 0,

u(x, 0) = f(x), u(0, y) = g(y), u(L, y) = h(y),

We seek a solution of the form,

u(x, y) =
∞∑
n=1

un(y) sin
(nπx
L

)
.

Since we have inhomogeneous boundary conditions at x = 0, L, we cannot differentiate the series representation
with respect to x. We multiply Laplace’s equation by the eigenfunction and integrate from x = 0 to x = L.∫ L

0

(uxx + uyy) sin
(mπx

L

)
dx = 0

We use integration by parts to move derivatives from u to the eigenfunctions.

[
ux sin

(mπx
L

)]L
0
− mπ

L

∫ L

0

ux cos
(mπx

L

)
dx+

L

2
u′′m(y) = 0[

−mπ
L
u cos

(mπx
L

)]L
0
−
(mπ
L

)2
∫ L

0

u sin
(mπx

L

)
dx+

L

2
u′′m(y) = 0

−mπ
L
h(y)(−1)m +

mπ

L
g(y)− L

2

(mπ
L

)2

um(y) +
L

2
u′′m(y) = 0

u′′m(y)−
(mπ
L

)2

um(y) = 2mπ ((−1)mh(y)− g(y))

Now we have an ordinary differential equation for the un(y). In order that the solution is bounded, we require
that each un(y) is bounded as y → ∞. We use the boundary condition u(x, 0) = f(x) to determine boundary
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conditions for the um(y) at y = 0.

u(x, 0) =
∞∑
n=1

un(0) sin
(nπx
L

)
= f(x)

un(0) = fn ≡
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

Thus we have the problems,

u′′n(y)−
(nπ
L

)2

un(y) = 2nπ ((−1)nh(y)− g(y)) , un(0) = fn, un(+∞) bounded,

for the coefficients in the expansion. We will solve these with Green functions. Consider the associated Green
function problem

G′′n(y; η)−
(nπ
L

)2

Gn(y; η) = δ(y − η), Gn(0; η) = 0, Gn(+∞; η) bounded.

The homogeneous solutions that satisfy the boundary conditions are

sinh
(nπy
L

)
and e−nπy/L,

respectively. The Wronskian of these solutions is∣∣∣∣ sinh
(
nπy
L

)
e−nπy/L

nπ
L

sinh
(
nπy
L

)
−nπ

L
e−nπy/L

∣∣∣∣ = −nπ
L

e−2nπy/L.

Thus the Green function is

Gn(y; η) = −
L sinh

(
nπy<
L

)
e−nπy>/L

nπ e−2nπη/L
.
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Using the Green function we determine the un(y) and thus the solution of Laplace’s equation.

un(y) = fn e−nπy/L + 2nπ

∫ ∞
0

Gn(y; η) ((−1)nh(η)− g(η)) dη

u(x, y) =
∞∑
n=1

un(y) sin
(nπx
L

)
.
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Chapter 41

Waves
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41.1 Exercises
Exercise 41.1
Sketch the solution to the wave equation:

u(x, t) =
1

2
(u(x+ ct, 0) + u(x− ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(τ, 0) dτ,

for various values of t corresponding to the initial conditions:

1. u(x, 0) = 0, ut(x, 0) = sinωx where ω is a constant,

2. u(x, 0) = 0, ut(x, 0) =


1 for 0 < x < 1

−1 for − 1 < x < 0

0 for |x| > 1.

Exercise 41.2
1. Consider the solution of the wave equation for u(x, t):

utt = c2uxx

on the infinite interval −∞ < x <∞ with initial displacement of the form

u(x, 0) =

{
h(x) for x > 0,

−h(−x) for x < 0,

and with initial velocity

ut(x, 0) = 0.

Show that the solution of the wave equation satisfying these initial conditions also solves the following semi-
infinite problem: Find u(x, t) satisfying the wave equation utt = c2uxx in 0 < x < ∞, t > 0, with initial
conditions u(x, 0) = h(x), ut(x, 0) = 0, and with the fixed end condition u(0, t) = 0. Here h(x) is any given
function with h(0) = 0.
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2. Use a similar idea to explain how you could use the general solution of the wave equation to solve the finite
interval problem (0 < x < l) in which u(0, t) = u(l, t) = 0 for all t, with u(x, 0) = h(x) and ut(x, 0) = 0.
Take h(0) = h(l) = 0.

Exercise 41.3
The deflection u(x, T ) = φ(x) and velocity ut(x, T ) = ψ(x) for an infinite string (governed by utt = c2uxx) are
measured at time T , and we are asked to determine what the initial displacement and velocity profiles u(x, 0) and
ut(x, 0) must have been. An alert AMa95c student suggests that this problem is equivalent to that of determining
the solution of the wave equation at time T when initial conditions u(x, 0) = φ(x), ut(x, 0) = −ψ(x) are prescribed.
Is she correct? If not, can you rescue her idea?

Exercise 41.4
In obtaining the general solution of the wave equation the interval was chosen to be infinite in order to simplify
the evaluation of the functions α(ξ) and β(ξ) in the general solution

u(x, t) = α(x+ ct) + β(x− ct).

But this general solution is in fact valid for any interval be it infinite or finite. We need only choose appropriate
functions α(ξ), β(ξ) to satisfy the appropriate initial and boundary conditions. This is not always convenient but
there are other situations besides the solution for u(x, t) in an infinite domain in which the general solution is of
use. Consider the “whip-cracking” problem (this is not meant to be a metaphor for AMa95c):

utt = c2uxx,

(with c a constant) in the domain x > 0, t > 0 with initial conditions

u(x, 0) = ut(x, 0) = 0 x > 0,

and boundary conditions

u(0, t) = γ(t)
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prescribed for all t > 0. Here γ(0) = 0. Find α and β so as to determine u for x > 0, t > 0.

Hint: (From physical considerations conclude that you can take α(ξ) = 0. Your solution will corroborate
this.) Use the initial conditions to determine α(ξ) and β(ξ) for ξ > 0. Then use the initial condition to determine
β(ξ) for ξ < 0.

Exercise 41.5
Let u(x, t) satisfy the equation

utt = c2uxx;

(with c a constant) in some region of the (x, t) plane.

1. Show that the quantity (ut − cux) is constant along each straight line defined by x − ct = constant, and
that (ut + cux) is constant along each straight line of the form x + ct = constant. These straight lines are
called characteristics; we will refer to typical members of the two families as C+ and C− characteristics,
respectively. Thus the line x− ct = constant is a C+ characteristic.

2. Let u(x, 0) and ut(x, 0) be prescribed for all values of x in −∞ < x <∞, and let (x0, t0) be some point in
the (x, t) plane, with t0 > 0. Draw the C+ and C− characteristics through (x0, t0) and let them intersect
the x-axis at the points A,B. Use the properties of these curves derived in part (a) to determine ut(x0, t0)
in terms of initial data at points A and B. Using a similar technique to obtain ut(x0, τ) with 0 < τ < t,
determine u(x0, t0) by integration with respect to τ , and compare this with the solution derived in class:

u(x, t) =
1

2
(u(x+ ct, 0) + u(x− ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(τ, 0)dτ.

Observe that this “method of characteristics” again shows that u(x0, t0) depends only on that part of the
initial data between points A and B.
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Exercise 41.6
The temperature u(x, t) at a depth x below the Earth’s surface at time t satisfies

ut = κuxx.

The surface x = 0 is heated by the sun according to the periodic rule:

u(0, t) = T cos(ωt).

Seek a solution of the form

u(x, t) = <
(
A eiωt−αx

)
.

a) Find u(x, t) satisfying u→ 0 as x→ +∞, (i.e. deep into the Earth).

b) Find the temperature variation at a fixed depth, h, below the surface.

c) Find the phase lag δ(x) such that when the maximum temperature occurs at t0 on the surface, the maximum
at depth x occurs at t0 + δ(x).

d) Show that the seasonal, (i.e. yearly), temperature changes and daily temperature changes penetrate to
depths in the ratio:

xyear

xday

=
√

365,

where xyear and xday are the depths of same temperature variation caused by the different periods of the
source.

Exercise 41.7
An infinite cylinder of radius a produces an external acoustic pressure field u satisfying:

utt = c2δu,
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by a pure harmonic oscillation of its surface at r = a. That is, it moves so that

u(a, θ, t) = f(θ) eiωt

where f(θ) is a known function. Note that the waves must be outgoing at infinity, (radiation condition at infinity).
Find the solution, u(r, θ, t). We seek a periodic solution of the form,

u(r, θ, t) = v(r, θ) eiωt.

Exercise 41.8
Plane waves are incident on a “soft” cylinder of radius a whose axis is parallel to the plane of the waves. Find the
field scattered by the cylinder. In particular, examine the leading term of the solution when a is much smaller
than the wavelength of the incident waves. If v(x, y, t) is the scattered field it must satisfy:

Wave Equation: vtt = c2∆v, x2 + y2 > a2;

Soft Cylinder: v(x, y, t) = − ei(ka cos θ−ωt, on r = a, 0 ≤ θ < 2π;

Scattered: v is outgoing as r →∞.

Here k = ω/c. Use polar coordinates in the (x, y) plane.

Exercise 41.9
Consider the flow of electricity in a transmission line. The current, I(x, t), and the voltage, V (x, t), obey the
telegrapher’s system of equations:

−Ix = CVt +GV,

−Vx = LIt +RI,

where C is the capacitance, G is the conductance, L is the inductance and R is the resistance.
a) Show that both I and V satisfy a damped wave equation.
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b) Find the relationship between the physical constants, C, G, L and R such that there exist damped traveling
wave solutions of the form:

V (x, t) = e−γt(f(x− at) + g(x+ at)).

What is the wave speed?

1707



41.2 Hints

Hint 41.1

Hint 41.2

Hint 41.3

Hint 41.4
From physical considerations conclude that you can take α(ξ) = 0. Your solution will corroborate this. Use the
initial conditions to determine α(ξ) and β(ξ) for ξ > 0. Then use the initial condition to determine β(ξ) for ξ < 0.

Hint 41.5

Hint 41.6

a) Substitute u(x, t) = <(A eiωt−αx) into the partial differential equation and solve for α. Assume that α has
positive real part so that the solution vanishes as x→ +∞.
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Hint 41.7
Seek a periodic solution of the form,

u(r, θ, t) = v(r, θ) eiωt.

Solve the Helmholtz equation for v with a Fourier series expansion,

v(r, θ) =
∞∑

n=−∞

vn(r) einθ.

You will find that the vn satisfy Bessel’s equation. Choose the vn so that u satisfies the boundary condition at
r = a and the radiation condition at infinity.

The Bessel functions have the asymptotic behavior,

Jn(ρ) ∼
√

2

πρ
cos(ρ− nπ/2− π/4), as ρ→∞,

Yn(ρ) ∼
√

2

πρ
sin(ρ− nπ/2− π/4), as ρ→∞,

H(1)
n (ρ) ∼

√
2

πρ
ei(ρ−nπ/2−π/4), as ρ→∞,

H(2)
n (ρ) ∼

√
2

πρ
e−i(ρ−nπ/2−π/4), as ρ→∞.

Hint 41.8

Hint 41.9
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41.3 Solutions
Solution 41.1

1.

u(x, t) =
1

2
(u(x+ ct, 0) + u(x− ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(τ, 0) dτ

u(x, t) =
1

2c

∫ x+ct

x−ct
sin(ωτ) dτ

u(x, t) =
sin(ωx) sin(ωct)

ωc

Figure 41.1 shows the solution for c = 1 and ω = 1/10.

2. We can write the initial velocity in terms of the Heaviside function.

ut(x, 0) =


1 for 0 < x < 1

−1 for − 1 < x < 0

0 for |x| > 1.

ut(x, 0) = −H(x+ 1) + 2H(x)−H(x− 1)

We integrate the Heaviside function.

∫ b

a

H(x− c) dx =


0 for b < c

b− a for a > c

b− c otherwise

If a < b, we can express this as ∫ b

a

H(x− c) dx = min(b− a,max(b− c, 0)).
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Figure 41.1: Solution of the wave equation.

Now we find an expression for the solution.

u(x, t) =
1

2
(u(x+ ct, 0) + u(x− ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(τ, 0) dτ

u(x, t) =
1

2c

∫ x+ct

x−ct
(−H(τ + 1) + 2H(τ)−H(τ − 1)) dτ

u(x, t) = −min(2ct,max(x+ ct+ 1, 0)) + 2 min(2ct,max(x+ ct, 0))−min(2ct,max(x+ ct− 1, 0))

Figure 41.2 shows the solution for c = 1.
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Figure 41.2: Solution of the wave equation.

Solution 41.2
1. The solution on the interval (−∞ . . .∞) is

u(x, t) =
1

2
(h(x+ ct) + h(x− ct)).

Now we solve the problem on (0 . . .∞). We define the odd extension of h(x).

ĥ(x) =

{
h(x) for x > 0,

−h(−x) for x < 0,
= sign (x)h(|x|)

Note that

ĥ′(0−) =
d

dx
(−h(−x))

∣∣
x→0+ = h′(0+) = ĥ′(0+).
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Thus ĥ(x) is piecewise C2. Clearly

u(x, t) =
1

2
(ĥ(x+ ct) + ĥ(x− ct))

satisfies the differential equation on (0 . . .∞). We verify that it satisfies the initial condition and boundary
condition.

u(x, 0) =
1

2
(ĥ(x) + ĥ(x)) = h(x)

u(0, t) =
1

2
(ĥ(ct) + ĥ(−ct)) =

1

2
(h(ct)− h(ct)) = 0

2. First we define the odd extension of h(x) on the interval (−l . . . l).

ĥ(x) = sign (x)h(|x|), x ∈ (−l . . . l)

Then we form the odd periodic extension of h(x) defined on (−∞ . . .∞).

ĥ(x) = sign

(
x− 2l

⌊
x+ l

2l

⌋)
h

(∣∣∣∣x− 2l

⌊
x+ l

2l

⌋∣∣∣∣) , x ∈ (−∞ . . .∞)

We note that ĥ(x) is piecewise C2. Also note that ĥ(x) is odd about the points x = nl, n ∈ Z. That is,
ĥ(nl − x) = −ĥ(nl + x). Clearly

u(x, t) =
1

2
(ĥ(x+ ct) + ĥ(x− ct))

satisfies the differential equation on (0 . . . l). We verify that it satisfies the initial condition and boundary
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conditions.

u(x, 0) =
1

2
(ĥ(x) + ĥ(x))

u(x, 0) = ĥ(x)

u(x, 0) = sign

(
x− 2l

⌊
x+ l

2l

⌋)
h

(∣∣∣∣x− 2l

⌊
x+ l

2l

⌋∣∣∣∣)
u(x, 0) = h(x)

u(0, t) =
1

2
(ĥ(ct) + ĥ(−ct)) =

1

2
(ĥ(ct)− ĥ(ct)) = 0

u(l, t) =
1

2
(ĥ(l + ct) + ĥ(l − ct)) =

1

2
(ĥ(l + ct)− ĥ(l + ct)) = 0

Solution 41.3
Change of Variables. Let u(x, t) be the solution of the problem with deflection u(x, T ) = φ(x) and velocity
ut(x, T ) = ψ(x). Define

v(x, τ) = u(x, T − τ).

We note that u(x, 0) = v(x, T ). v(τ) satisfies the wave equation.

vττ = c2vxx

The initial conditions for v are

v(x, 0) = u(x, T ) = φ(x), vτ (x, 0) = −ut(x, T ) = −ψ(x).

Thus we see that the student was correct.
Direct Solution. D’Alembert’s solution is valid for all x and t. We formally substitute t − T for t in this

solution to solve the problem with deflection u(x, T ) = φ(x) and velocity ut(x, T ) = ψ(x).

u(x, t) =
1

2
(φ(x+ c(t− T )) + φ(x− c(t− T ))) +

1

2c

∫ x+c(t−T )

x−c(t−T )

ψ(τ) dτ
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This satisfies the wave equation, because the equation is shift-invariant. It also satisfies the initial conditions.

u(x, T ) =
1

2
(φ(x) + φ(x)) +

1

2c

∫ x

x

ψ(τ) dτ = φ(x)

ut(x, t) =
1

2
(cφ′(x+ c(t− T ))− cφ′(x− c(t− T ))) +

1

2
(ψ(x+ c(t− T )) + ψ(x− c(t− T )))

ut(x, T ) =
1

2
(cφ′(x)− cφ′(x)) +

1

2
(ψ(x) + ψ(x)) = ψ(x)

Solution 41.4
Since the solution is a wave moving to the right, we conclude that we could take α(ξ) = 0. Our solution will
corroborate this.

The form of the solution is

u(x, t) = α(x+ ct) + β(x− ct).
We substitute the solution into the initial conditions.

u(x, 0) = α(ξ) + β(ξ) = 0, ξ > 0

ut(x, 0) = cα′(ξ)− cβ′(ξ) = 0, ξ > 0

We integrate the second equation to obtain the system

α(ξ) + β(ξ) = 0, ξ > 0,

α(ξ)− β(ξ) = 2k, ξ > 0,

which has the solution

α(ξ) = k, β(ξ) = −k, ξ > 0.

Now we substitute the solution into the initial condition.

u(0, t) = α(ct) + β(−ct) = γ(t), t > 0

α(ξ) + β(−ξ) = γ(ξ/c), ξ > 0

β(ξ) = γ(−ξ/c)− k, ξ < 0
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This determines u(x, t) for x > 0 as it depends on α(ξ) only for ξ > 0. The constant k is arbitrary. Changing k
does not change u(x, t). For simplicity, we take k = 0.

u(x, t) = β(x− ct)

u(x, t) =

{
0 for x− ct < 0

γ(t− x/c) for x− ct > 0

u(x, t) = γ(t− x/c)H(ct− x)

Solution 41.5
1. We write the value of u along the line x− ct = k as a function of t: u(k + ct, t). We differentiate ut − cux

with respect to t to see how the quantity varies.

d

dt
(ut(k + ct, t)− cux(k + ct, t)) = cuxt + utt − c2uxx − cuxt

= utt − c2uxx

= 0

Thus ut − cux is constant along the line x− ct = k. Now we examine ut + cux along the line x+ ct = k.

d

dt
(ut(k − ct, t) + cux(k − ct, t)) = −cuxt + utt − c2uxx + cuxt

= utt − c2uxx

= 0

ut + cux is constant along the line x+ ct = k.

2. From part (a) we know

ut(x0, t0)− cux(x0, t0) = ut(x0 − ct0, 0)− cux(x0 − ct0, 0)

ut(x0, t0) + cux(x0, t0) = ut(x0 + ct0, 0) + cux(x0 + ct0, 0).
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We add these equations to find ut(x0, t0).

ut(x0, t0) =
1

2
(ut(x0 − ct0, 0)− cux(x0 − ct0, 0)ut(x0 + ct0, 0) + cux(x0 + ct0, 0))

Since t0 was arbitrary, we have

ut(x0, τ) =
1

2
(ut(x0 − cτ, 0)− cux(x0 − cτ, 0)ut(x0 + cτ, 0) + cux(x0 + cτ, 0))

for 0 < τ < t0. We integrate with respect to τ to determine u(x0, t0).

u(x0, t0) = u(x0, 0) +

∫ t0

0

1

2
(ut(x0 − cτ, 0)− cux(x0 − cτ, 0)ut(x0 + cτ, 0) + cux(x0 + cτ, 0)) dτ

= u(x0, 0) +
1

2

∫ t0

0

(−cux(x0 − cτ, 0) + cux(x0 + cτ, 0)) dτ

+
1

2

∫ t0

0

(ut(x0 − cτ, 0) + ut(x0 + cτ, 0)) dτ

= u(x0, 0) +
1

2
(u(x0 − ct0, 0)− u(x0, 0) + u(x0 + ct0, 0)− u(x0, 0))

+
1

2c

∫ x0−ct0

x0

−ut(τ, 0) dτ +
1

2c

∫ x0+ct0

x0

ut(τ, 0) dτ

=
1

2
(u(x0 − ct0, 0) + u(x0 + ct0, 0)) +

1

2c

∫ x0+ct0

x0−ct0
ut(τ, 0) dτ

We have D’Alembert’s solution.

u(x, t) =
1

2
(u(x− ct, 0) + u(x+ ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(τ, 0) dτ
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Solution 41.6

a) We substitute u(x, t) = A eiωt−αx into the partial differential equation and take the real part as the solution.
We assume that α has positive real part so the solution vanishes as x→ +∞.

iωA eiωt−αx = κα2A eiωt−αx

iω = κα2

α = (1 + i)

√
ω

2κ

A solution of the partial differential equation is,

u(x, t) = <
(
A exp

(
iωt− (1 + i)

√
ω

2κ
x

))
,

u(x, t) = A exp

(
−
√

ω

2κ
x

)
cos

(
ωt−

√
ω

2κ
x

)
.

Applying the initial condition, u(0, t) = T cos(ωt), we obtain,

u(x, t) = T exp

(
−
√

ω

2κ
x

)
cos

(
ωt−

√
ω

2κ
x

)
.

b) At a fixed depth x = h, the temperature is

u(h, t) = T exp

(
−
√

ω

2κ
h

)
cos

(
ωt−

√
ω

2κ
h

)
.

Thus the temperature variation is

−T exp

(
−
√

ω

2κ
h

)
≤ u(h, t) ≤ T exp

(
−
√

ω

2κ
h

)
.
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c) The solution is an exponentially decaying, traveling wave that propagates into the Earth with speed
ω/
√
ω/(2κ) =

√
2κω. More generally, the wave

e−bt cos(ωt− ax)

travels in the positive direction with speed ω/a. Figure 41.3 shows such a wave for a sequence of times.

Figure 41.3: An Exponentially Decaying, Traveling Wave

The phase lag, δ(x) is the time that it takes for the wave to reach a depth of x. It satisfies,

ωδ(x)−
√

ω

2κ
x = 0,

δ(x) =
x√
2κω

.

d) Let ωyear be the frequency for annual temperature variation, then ωday = 365ωyear. If xyear is the depth that
a particular yearly temperature variation reaches and xday is the depth that this same variation in daily
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temperature reaches, then

exp

(
−
√
ωyear

2κ
xyear

)
= exp

(
−
√
ωday

2κ
xday

)
,

√
ωyear

2κ
xyear =

√
ωday

2κ
xday,

xyear

xday

=
√

365.

Solution 41.7
We seek a periodic solution of the form,

u(r, θ, t) = v(r, θ) eiωt.

Substituting this into the wave equation will give us a Helmholtz equation for v.

−ω2v = c2∆v

vrr +
1

r
vr +

1

r2
vθθ +

ω2

c2
v = 0

We have the boundary condition v(a, θ) = f(θ) and the radiation condition at infinity. We expand v in a Fourier
series in θ in which the coefficients are functions of r. You can check that einθ are the eigenfunctions obtained
with separation of variables.

v(r, θ) =
∞∑

n=−∞

vn(r) einθ
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We substitute this expression into the Helmholtz equation to obtain ordinary differential equations for the coeffi-
cients vn.

∞∑
n=−∞

(
v′′n +

1

r
v′n +

(
ω2

c2
− n2

r2

)
vn

)
einθ = 0

The differential equations for the vn are

v′′n +
1

r
v′n +

(
ω2

c2
− n2

r2

)
vn = 0.

which has as linearly independent solutions the Bessel and Neumann functions,

Jn

(ωr
c

)
, Yn

(ωr
c

)
,

or the Hankel functions,

H(1)
n

(ωr
c

)
, H(2)

n

(ωr
c

)
.

The functions have the asymptotic behavior,

Jn(ρ) ∼
√

2

πρ
cos(ρ− nπ/2− π/4), as ρ→∞,

Yn(ρ) ∼
√

2

πρ
sin(ρ− nπ/2− π/4), as ρ→∞,

H(1)
n (ρ) ∼

√
2

πρ
ei(ρ−nπ/2−π/4), as ρ→∞,

H(2)
n (ρ) ∼

√
2

πρ
e−i(ρ−nπ/2−π/4), as ρ→∞.
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u(r, θ, t) will be an outgoing wave at infinity if it is the sum of terms of the form ei(ωt−constr). Thus the vn must
have the form

vn(r) = bnH
(2)
n

(ωr
c

)
for some constants, bn. The solution for v(r, θ) is

v(r, θ) =
∞∑

n=−∞

bnH
(2)
n

(ωr
c

)
einθ.

We determine the constants bn from the boundary condition at r = a.

v(a, θ) =
∞∑

n=−∞

bnH
(2)
n

(ωa
c

)
einθ = f(θ)

bn =
1

2πH
(2)
n (ωa/c)

∫ 2π

0

f(θ) e−inθ dθ

u(r, θ, t) = eiωt
∞∑

n=−∞

bnH
(2)
n

(ωr
c

)
einθ

Solution 41.8
We substitute the form v(x, y, t) = u(r, θ) e−iωt into the wave equation to obtain a Helmholtz equation.

c2∆u+ ω2u = 0

urr +
1

r
ur +

1

r2
uθθ + k2u = 0

We solve the Helmholtz equation with separation of variables. We expand u in a Fourier series.

u(r, θ) =
∞∑

n=−∞

un(r) einθ
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We substitute the sum into the Helmholtz equation to determine ordinary differential equations for the coefficients.

u′′n +
1

r
u′n +

(
k2 − n2

r2

)
un = 0

This is Bessel’s equation, which has as solutions the Bessel and Neumann functions, {Jn(kr), Yn(kr)} or the

Hankel functions, {H(1)
n (kr), H

(2)
n (kr)}.

Recall that the solutions of the Bessel equation have the asymptotic behavior,

Jn(ρ) ∼
√

2

πρ
cos(ρ− nπ/2− π/4), as ρ→∞,

Yn(ρ) ∼
√

2

πρ
sin(ρ− nπ/2− π/4), as ρ→∞,

H(1)
n (ρ) ∼

√
2

πρ
ei(ρ−nπ/2−π/4), as ρ→∞,

H(2)
n (ρ) ∼

√
2

πρ
e−i(ρ−nπ/2−π/4), as ρ→∞.

From this we see that only the Hankel function of the first kink will give us outgoing waves as ρ → ∞. Our
solution for u becomes,

u(r, θ) =
∞∑

n=−∞

bnH
(1)
n (kr) einθ.

We determine the coefficients in the expansion from the boundary condition at r = a.

u(a, θ) =
∞∑

n=−∞

bnH
(1)
n (ka) einθ = − eika cos θ

bn = − 1

2πH
(1)
n (ka)

∫ 2π

0

eika cos θ e−inθ dθ
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We evaluate the integral with the identities,

Jn(x) =
1

2πin

∫ 2π

0

eix cos θ einθ dθ,

J−n(x) = (−1)nJn(x).

Thus we obtain,

u(r, θ) = −
∞∑

n=−∞

(−i)nJn(ka)

H
(1)
n (ka)

H(1)
n (kr) einθ.

When a� 1/k, i.e. ka� 1, the Bessel function has the behavior,

Jn(ka) ∼ (ka/2)n

n!
.

In this case, the n 6= 0 terms in the sum are much smaller than the n = 0 term. The approximate solution is,

u(r, θ) ∼ −H
(1)
0 (kr)

H
(1)
0 (ka)

,

v(r, θ, t) ∼ −H
(1)
0 (kr)

H
(1)
0 (ka)

e−iωt.

Solution 41.9

a) {
−Ix = CVt +GV,
−Vx = LIt +RI
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First we derive a single partial differential equation for I. We differentiate the two partial differential equations
with respect to x and t, respectively and then eliminate the Vxt terms.{

−Ixx = CVtx +GVx,
−Vxt = LItt +RIt

−Ixx + LCItt +RCIt = GVx

We use the initial set of equations to write Vx in terms of I.

−Ixx + LCItt +RCIt +G(LIt +RI) = 0

Itt +
RC +GL

LC
It +

GR

LC
I − 1

LC
Ixx = 0

Now we derive a single partial differential equation for V . We differentiate the two partial differential equations
with respect to t and x, respectively and then eliminate the Ixt terms.{

−Ixt = CVtt +GVt,
−Vxx = LItx +RIx

−Vxx = RIx − LCVtt − LGVt

We use the initial set of equations to write Ix in terms of V .

LCVtt + LGVt − Vxx +R(CVt +GV ) = 0

Vtt +
RC + LG

LC
Vt +

RG

LC
V − 1

LC
Vxx = 0.

Thus we see that I and V both satisfy the same damped wave equation.
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b) We substitute V (x, t) = e−γt(f(x− at) + g(x+ at)) into the damped wave equation for V .(
γ2 − RC + LG

LC
γ +

RG

LC

)
e−γt(f + g) +

(
−2γ +

RC + LG

LC

)
a e−γt(−f ′ + g′)

+ a2 e−γt(f ′′ + g′′)− 1

LC
e−γt(f ′′ + g′′) = 0

Since f and g are arbitrary functions, the coefficients of e−γt(f+g), e−γt(−f ′+g′) and e−γt(f ′′+g′′) must vanish.
This gives us three constraints.

a2 − 1

LC
= 0, −2γ +

RC + LG

LC
= 0, γ2 − RC + LG

LC
γ +

RG

LC
= 0

The first equation determines the wave speed to be a = 1/
√
LC. We substitute the value of γ from the second

equation into the third equation.

γ =
RC + LG

2LC
, −γ2 +

RG

LC
= 0

In order for damped waves to propagate, the physical constants must satisfy,

RG

LC
−
(
RC + LG

2LC

)2

= 0,

4RGLC − (RC + LG)2 = 0,

(RC − LG)2 = 0,

RC = LG.

1726



Chapter 42

The Diffusion Equation
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42.1 Exercises

Exercise 42.1
Derive the heat equation for a general 3 dimensional body, with non-uniform density ρ(x), specific heat c(x), and
conductivity k(x). Show that

∂u(x, t)

∂t
=

1

cρ
∇ · (k∇u(x, t))

where u is the temperature, and you may assume there are no internal sources or sinks.

Exercise 42.2
Verify Duhamel’s Principal: If u(x, t, τ) is the solution of the initial value problem:

ut = κuxx, u(x, 0, τ) = f(x, τ),

then the solution of

wt = κwxx + f(x, t), w(x, 0) = 0

is

w(x, t) =

∫ t

0

u(x, t− τ, τ) dτ.

Exercise 42.3
Modify the derivation of the diffusion equation

φt = a2φxx, a2 =
k

cρ
, (42.1)
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so that it is valid for diffusion in a non-homogeneous medium for which c and k are functions of x and φ and
so that it is valid for a geometry in which A is a function of x. Show that Equation (42.1) above is in this case
replaced by

cρAφt = (kAφx)x .

Recall that c is the specific heat, k is the thermal conductivity, ρ is the density, φ is the temperature and A is the
cross-sectional area.
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42.2 Hints
Hint 42.1

Hint 42.2
Check that the expression for w(x, t) satisfies the partial differential equation and initial condition. Recall that

∂

∂x

∫ x

a

h(x, ξ) dξ =

∫ x

a

hx(x, ξ) dξ + h(x, x).

Hint 42.3
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42.3 Solutions

Exercise 42.4
Consider a Region of material, R. Let u be the temperature and φ be the heat flux. The amount of heat energy
in the region is ∫

R

cρu dx.

We equate the rate of change of heat energy in the region with the heat flux across the boundary of the region.

d

dt

∫
R

cρu dx = −
∫
∂R

φ · n ds

We apply the divergence theorem to change the surface integral to a volume integral.

d

dt

∫
R

cρu dx = −
∫
R

∇ · φ dx∫
R

(
cρ
∂u

∂t
+∇ · φ

)
dx = 0

Since the region is arbitrary, the integral must vanish identically.

cρ
∂u

∂t
= −∇ · φ

We apply Fourier’s law of heat conduction, φ = −k∇u, to obtain the heat equation.

∂u

∂t
=

1

cρ
∇ · (k∇u)
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Solution 42.1
We verify Duhamel’s principal by showing that the integral expression for w(x, t) satisfies the partial differential
equation and the initial condition. Clearly the initial condition is satisfied.

w(x, 0) =

∫ 0

0

u(x, 0− τ, τ) dτ = 0

Now we substitute the expression for w(x, t) into the partial differential equation.

∂

∂t

∫ t

0

u(x, t− τ, τ) dτ = κ
∂2

∂x2

∫ t

0

u(x, t− τ, τ) dτ + f(x, t)

u(x, t− t, t) +

∫ t

0

ut(x, t− τ, τ) dτ = κ

∫ t

0

uxx(x, t− τ, τ) dτ + f(x, t)

f(x, t) +

∫ t

0

ut(x, t− τ, τ) dτ = κ

∫ t

0

uxx(x, t− τ, τ) dτ + f(x, t)∫ t

0

(ut(x, t− τ, τ) dτ − κuxx(x, t− τ, τ)) dτ

Since ut(x, t− τ, τ) dτ − κuxx(x, t− τ, τ) = 0, this equation is an identity.

Solution 42.2
We equate the rate of change of thermal energy in the segment (α . . . β) with the heat entering the segment
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through the endpoints. ∫ β

α

φtcρAdx = k(β, φ(β))A(β)φx(β, t)− k(α, φ(α))A(α)φx(α, t)∫ β

α

φtcρAdx = [kAφx]
β
α∫ β

α

φtcρAdx =

∫ β

α

(kAφx)x dx∫ β

α

cρAφt − (kAφx)x dx = 0

Since the domain is arbitrary, we conclude that

cρAφt = (kAφx)x .
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Chapter 43

Similarity Methods

Introduction. Consider the partial differential equation (not necessarily linear)

F

(
∂u

∂t
,
∂u

∂x
, u, t, x

)
= 0.

Say the solution is

u(x, t) =
x

t
sin

(
t1/2

x1/2

)
.

Making the change of variables ξ = x/t, f(ξ) = u(x, t), we could rewrite this equation as

f(ξ) = ξ sin
(
ξ−1/2

)
.

We see now that if we had guessed that the solution of this partial differential equation was only dependent on
powers of x/t we could have changed variables to ξ and f and instead solved the ordinary differential equation

G

(
df

dξ
, f, ξ

)
= 0.

By using similarity methods one can reduce the number of independent variables in some PDE’s.
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Example 43.0.1 Consider the partial differential equation

x
∂u

∂t
+ t

∂u

∂x
− u = 0.

One way to find a similarity variable is to introduce a transformation to the temporary variables u′, t′, x′, and
the parameter λ.

u = u′λ

t = t′λm

x = x′λn

where n and m are unknown. Rewriting the partial differential equation in terms of the temporary variables,

x′λn
∂u′

∂t′
λ1−m + t′λm

∂u′

∂x′
λ1−n − u′λ = 0

x′
∂u′

∂t′
λ−m+n + t′

∂u′

∂x′
λm−n − u′ = 0

There is a similarity variable if λ can be eliminated from the equation. Equating the coefficients of the powers of
λ in each term,

−m+ n = m− n = 0.

This has the solution m = n. The similarity variable, ξ, will be unchanged under the transformation to the
temporary variables. One choice is

ξ =
t

x
=

t′λn

x′λm
=
t′

x′
.

Writing the two partial derivative in terms of ξ,

∂

∂t
=
∂ξ

∂t

d

dξ
=

1

x

d

dξ
∂

∂x
=
∂ξ

∂x

d

dξ
= − t

x2

d

dξ
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The partial differential equation becomes

du

dξ
− ξ2 du

dξ
− u = 0

du

dξ
=

u

1− ξ2

Thus we have reduced the partial differential equation to an ordinary differential equation that is much easier to
solve.

u(ξ) = exp

(∫ ξ dξ

1− ξ2

)
u(ξ) = exp

(∫ ξ 1/2

1− ξ
+

1/2

1 + ξ
dξ

)
u(ξ) = exp

(
−1

2
log(1− ξ) +

1

2
log(1 + ξ)

)
u(ξ) = (1− ξ)−1/2(1 + ξ)1/2

u(x, t) =

(
1 + t/x

1− t/x

)1/2

Thus we have found a similarity solution to the partial differential equation. Note that the existence of a similarity
solution does not mean that all solutions of the differential equation are similarity solutions.

Another Method. Another method is to substitute ξ = xαt and determine if there is an α that makes ξ a
similarity variable. The partial derivatives become

∂

∂t
=
∂ξ

∂t

d

dξ
= xα

d

dξ
∂

∂x
=
∂ξ

∂x

d

dξ
= αxα−1t

d

dξ
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The partial differential equation becomes

xα+1 du

dξ
+ αxα−1t2

du

dξ
− u = 0.

If there is a value of α such that we can write this equation in terms of ξ, then ξ = xαt is a similarity variable.
If α = −1 then the coefficient of the first term is trivially in terms of ξ. The coefficient of the second term then
becomes −x−2t2. Thus we see ξ = x−1t is a similarity variable.

Example 43.0.2 To see another application of similarity variables, any partial differential equation of the form

F
(
tx, u,

ut
x
,
ux
t

)
= 0

is equivalent to the ODE

F

(
ξ, u,

du

dξ
,
du

dξ

)
= 0

where ξ = tx. Performing the change of variables,

1

x

∂u

∂t
=

1

x

∂ξ

∂t

du

dξ
=

1

x
x

du

dξ
=

du

dξ
1

t

∂u

∂x
=

1

t

∂ξ

∂x

du

dξ
=

1

t
t
du

dξ
=

du

dξ
.

For example the partial differential equation

u
∂u

∂t
+
x

t

∂u

∂x
+ tx2u = 0

which can be rewritten

u
1

x

∂u

∂t
+

1

t

∂u

∂x
+ txu = 0,
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is equivalent to

u
du

dξ
+

du

dξ
+ ξu = 0

where ξ = tx.
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43.1 Exercises
Exercise 43.1
With ξ = xαt, find α such that for some function f , φ = f(ξ) is a solution of

φt = a2φxx.

Find f(ξ) as well.
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43.2 Hints
Hint 43.1
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43.3 Solutions

Solution 43.1
We write the derivatives of φ in terms of f .

φt =
∂ξ

∂t

∂

∂ξ
f = xαf ′ = t−1ξf ′

φx =
∂ξ

∂x

∂

∂ξ
f = αxα−1tf ′

φxx = f ′
∂

∂x

(
αxα−1t

)
+ αxα−1tαxα−1t

∂

∂ξ
f ′

φxx = α2x2α−2t2f ′′ + α(α− 1)xα−2tf ′

φxx = x−2
(
α2ξ2f ′′ + α(α− 1)ξf ′

)

We substitute these expressions into the diffusion equation.

ξf ′ = x−2t
(
α2ξ2f ′′ + α(α− 1)ξf ′

)
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In order for this equation to depend only on the variable ξ, we must have α = −2. For this choice we obtain an
ordinary differential equation for f(ξ).

f ′ = 4ξ2f ′′ + 6ξf ′

f ′′

f ′
=

1

4ξ2
− 3

2ξ

log(f ′) = − 1

4ξ
− 3

2
log ξ + c

f ′ = c1ξ
−3/2 e−1/(4ξ)

f(ξ) = c1

∫ ξ

t−3/2 e−1/(4t) dt+ c2

f(ξ) = c1

∫ 1/(2
√
ξ)

e−t
2

dt+ c2

f(ξ) = c1 erf

(
1

2
√
ξ

)
+ c2
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Chapter 44

Method of Characteristics

44.1 The Method of Characteristics and the Wave Equation

Consider the one dimensional wave equation

utt = c2uxx.

With the change of variables, v = ux, w = ut, we have the system of equations,

vt − wx = 0,

wt − c2vx = 0.

We can write this as the matrix equation,(
v
w

)
t

+

(
0 −1
−c2 0

)(
v
w

)
x

= 0.

The eigenvalues and eigenvectors of the matrix are

λ1 = −c, λ2 = c, φ1 =

(
1
c

)
, φ2 =

(
1
−c

)
.
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The matrix is diagonalized by the similarity transformation,(
−c 0
0 c

)
=

(
1 1
c −c

)−1(
0 −1
−c2 0

)(
1 1
c −c

)
.

We make the change of variables (
v
w

)
=

(
1 1
c −c

)(
ν
ω

)
.

The partial differential equation becomes(
1 1
c −c

)(
ν
ω

)
t

+

(
0 −1
−c2 0

)(
1 1
c −c

)(
ν
ω

)
x

= 0.

Now we left multiply by the inverse of the matrix of eigenvectors to obtain(
ν
ω

)
t

+

(
−c 0
0 c

)(
ν
ω

)
x

= 0.

This is two un-coupled partial differential equations of first order with solutions

ν(x, t) = p(x+ ct), ω(x, t) = q(x− ct),

where p, q ∈ C2 are arbitrary functions. Changing variables back to v and w,

v(x, t) = p(x+ ct) + q(x− ct), w(x, t) = cp(x+ ct)− cq(x− ct).

Since v = ux, w = ut, we have

u = f(x+ ct) + g(x− ct).

where f, g ∈ C2 are arbitrary functions. This is the general solution of the one-dimensional wave equation. Note
that for any given problem, f and g are only determined to whithin an additive constant. For any constant k,
adding k to f and subtracting it from g does not change the solution.

u = (f(x+ ct) + k) + (g(x− ct)− k) .
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44.2 The Method of Characteristics for an Infinite Domain

Consider the problem

utt = c2uxx, −∞ < x <∞, t > 0

u(x, 0) = p(x), ut(x, 0) = q(x).

We know that the solution has the form

u(x, t) = f(x+ ct) + g(x− ct). (44.1)

The initial conditions give us the two equations

f(x) + g(x) = p(x), cf ′(x)− cg′(x) = q(x).

We integrate the second equation.

f(x)− g(x) =
1

c
Q(x) + 2k

Here Q(x) =
∫
q(x) dx and k is an arbitrary constant. We solve the system of equations for f and g.

f(x) =
1

2
p(x) +

1

2c
Q(x) + k, g(x) =

1

2
p(x)− 1

2c
Q(x)− k

Note that the value of k does not affect the solution, u(x, t). For simplicity we take k = 0. We substitute f and
g into Equation 44.1 to determine the solution.

u(x, t) =
1

2
(p(x+ ct) + p(x− ct)) +

1

2c
(Q(x+ ct)−Q(x− ct))

u(x, t) =
1

2
(p(x+ ct) + p(x− ct)) +

1

2c

∫ x+ct

x−ct
q(ξ) dξ

u(x, t) =
1

2
(u(x+ ct, 0) + u(x− ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(ξ, 0) dξ

1745



44.3 The Method of Characteristics for a Semi-Infinite Domain

Consider the problem

∂2u

∂t2
= c2∂

2u

∂x2
, 0 ≤ x <∞, t > 0

u(x, 0) = f(x),
∂u(x, 0)

∂t
= 0, u(0, t) = h(t).

We assume that f(0) = h(0) = u0. Following the previous example we see that

G(ξ) =
1

2
f(ξ) + k, for ξ > 0

F (ξ) =
1

2
f(ξ)− k, for ξ > 0

The boundary condition yields

F (−ct) +G(ct) = h(t), for t > 0

F (ξ) +G(−ξ) = h(−ξ/c), for ξ < 0

F (ξ) = h(−ξ/c)− 1

2
f(−ξ)− k, for ξ < 0.

Since u(0, 0) = F (0) +G(0) = f(0) = h(0) = u0,

F (ξ) = h(−ξ/c)− 1

2
f(−ξ) +

1

2
u0, for ξ < 0.

Now F and G are

F (ξ) =

{
1
2
f(ξ) + 1

2
u0, for ξ > 0

h(−ξ/c)− 1
2
f(−ξ) + 1

2
u0, for ξ < 0

G(ξ) =
1

2
f(ξ)− 1

2
u0, for ξ > 0.
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Thus the solution is

u(x, t) =

{
1
2

[f(x− ct) + f(x+ ct)] , for x− ct > 0

h(t− x/c)− 1
2
f(ct− x) + 1

2
u0, for x− ct < 0.

.

44.4 Envelopes of Curves

Consider the tangent lines to the parabola y = x2. The slope of the tangent at the point (x, x2) is 2x. The set of
tangents form a one parameter family of lines,

f(x, t) = t2 + (x− t)2t = 2tx− t2.

The parabola and some of its tangents are plotted in Figure 44.1.

-1 1

-1

1

Figure 44.1: A parabola and its tangents.
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The parabola is the envelope of the family of tangent lines. Each point on the parabola is tangent to one of
the lines. Given a curve, we can generate a family of lines that envelope the curve. We can also do the opposite,
given a family of lines, we can determine the curve that they envelope. More generally, given a family of curves,
we can determine the curve that they envelope. Let the one parameter family of curves be given by the equation
F (x, y, t) = 0. For the example of the tangents to the parabola this equation would be y − 2tx+ t2 = 0.

Let y(x) be the envelope of F (x, y, t) = 0. Then the points on y(x) must lie on the family of curves. Thus
y(x) must satisfy the equation F (x, y, t) = 0. The points that lie on the envelope have the property,

∂

∂t
F (x, y, t) = 0.

We can solve this equation for t in terms of x and y, t = t(x, y). The equation for the envelope is then

F (x, y, t(x, y)) = 0.

Consider the example of the tangents to the parabola. The equation of the one-parameter family of curves is

F (x, y, t) ≡ y − 2tx+ t2 = 0.

The condition Ft(x, y, t) = 0 gives us the constraint,

−2x+ 2t = 0.

Solving this for t gives us t(x, y) = x. The equation for the envelope is then,

y − 2xx+ x2 = 0,

y = x2.

Example 44.4.1 Consider the one parameter family of curves,

(x− t)2 + (y − t)2 − 1 = 0.
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These are circles of unit radius and center (t, t). To determine the envelope of the family, we first use the constraint
Ft(x, y, t) to solve for t(x, y).

Ft(x, y, t) = −2(x− t)− 2(y − t) = 0

t(x, y) =
x+ y

2

Now we substitute this into the equation F (x, y, t) = 0 to determine the envelope.

F

(
x, y,

x+ y

2

)
=

(
x− x+ y

2

)2

+

(
y − x+ y

2

)2

− 1 = 0

(
x− y

2

)2

+

(
y − x

2

)2

− 1 = 0

(x− y)2 = 2

y = x±
√

2

The one parameter family of curves and its envelope is shown in Figure 44.2.
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Figure 44.2: The envelope of (x− t)2 + (y − t)2 − 1 = 0.

44.5 Exercises

Exercise 44.1
Consider a semi-infinite string, x > 0. For all time the end of the string is displaced according to u(0, t) = f(t).
Find the motion of the string, u(x, t) with the method of characteristics and then with a Fourier transform in
time. The wave speed is c.

Exercise 44.2
Solve using characteristics:

uux + uy = 1, u
∣∣
x=y

=
x

2
.
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Exercise 44.3
Solve using characteristics:

(y + u)ux + yuy = x− y, u
∣∣
y=1

= 1 + x.
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44.6 Hints
Hint 44.1

Hint 44.2

Hint 44.3
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44.7 Solutions
Solution 44.1

Method of characteristics. The problem is

utt − c2uxx = 0, x > 0, −∞ < t <∞,
u(0, t) = f(t).

By the method of characteristics, we know that the solution has the form,

u(x, t) = F (x− ct).

That is, it is a wave moving to the right with speed c. Substituting this into the boundary condition yields,

F (−ct) = f(t)

F (ξ) = f

(
−ξ
c

)
Now we can write the solution.

u(x, t) = f(t− x/c)

Fourier transform. We take the Fourier transform in time of the wave equation and the boundary condition.

utt = c2uxx, u(0, t) = f(t)

−ω2û = c2ûxx, û(0, ω) = f̂(ω)

ûxx +
ω2

c2
û = 0, û(0, ω) = f̂(ω)

The general solution of this ordinary differential equation is

û(x, ω) = a(ω) eiωx/c + b(ω) e−iωx/c.
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The radiation condition, (u(x, t) must be a wave traveling in the positive direction), and the boundary condition
at x = 0 will determine the constants a and b. u is the inverse Fourier transform of û.

u(x, t) =

∫ ∞
−∞

(
a(ω) eiωx/c + b(ω) e−iωx/c

)
eiωt dω

u(x, t) =

∫ ∞
−∞

(
a(ω) eiω(t+x/c) + b(ω) eiω(t−x/c)) dω

The first and second terms in the integrand are left and right traveling waves, respectively. In order that u is a
right traveling wave, it must be a superposition of right traveling waves. We conclude that a(ω) = 0. Applying
the boundary condition at x = 0, we solve for û.

û(x, ω) = f̂(ω) e−iωx/c

Finally we take the inverse Fourier transform.

u(x, t) =

∫ ∞
−∞

f̂(ω) eiω(t−x/c) dω

u(x, t) = f(t− x/c)

Solution 44.2

uux + uy = 1, u
∣∣
x=y

=
x

2
(44.2)

We form du
dy

.

du

dy
= ux

dx

dy
+ uy
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We compare this with Equation 44.2 to obtain differential equations for x and u.

dx

dy
= u,

du

dy
= 1. (44.3)

The initial data is

x(y = α) = α, u(y = α) =
α

2
. (44.4)

We solve the differenial equation for u (44.3) subject to the initial condition (44.4).

u(x(y), y) = y − α

2

The differential equation for x becomes

dx

dy
= y − α

2
.

We solve this subject to the initial condition (44.4).

x(y) =
1

2
(y2 + α(2− y))

This defines the characteristic starting at the point (α, α). We solve for α.

α =
y2 − 2x

y − 2

We substitute this value for α into the solution for u.

u(x, y) =
y(y − 4) + 2x

2(y − 2)

This solution is defined for y 6= 2. This is because at (x, y) = (2, 2), the characteristic is parallel to the line x = y.
Figure 44.3 has a plot of the solution that shows the singularity at y = 2.
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Figure 44.3: The solution u(x, y).

Solution 44.3

(y + u)ux + yuy = x− y, u
∣∣
y=1

= 1 + x (44.5)

We differentiate u with respect to s.

du

ds
= ux

dx

ds
+ uy

dy

ds

We compare this with Equation 44.5 to obtain differential equations for x, y and u.

dx

ds
= y + u,

dy

ds
= y,

du

ds
= x− y

We parametrize the initial data in terms of s.

x(s = 0) = α, y(s = 0) = 1, u(s = 0) = 1 + α
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We solve the equation for y subject to the inital condition.

y(s) = es

This gives us a coupled set of differential equations for x and u.

dx

ds
= es + u,

du

ds
= x− es

The solutions subject to the initial conditions are

x(s) = (α + 1) es − e−s, u(s) = α es + e−s.

We substitute y(s) = es into these solutions.

x(s) = (α + 1)y − 1

y
, u(s) = αy +

1

y

We solve the first equation for α and substitute it into the second equation to obtain the solution.

u(x, y) =
2 + xy − y2

y

This solution is valid for y > 0. The characteristic passing through (α, 1) is

x(s) = (α + 1) es − e−s, y(s) = es.

Hence we see that the characteristics satisfy y(s) ≥ 0 for all real s. Figure 44.4 shows some characteristics in the
(x, y) plane with starting points from (−5, 1) to (5, 1) and a plot of the solution.
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Figure 44.4: Some characteristics and the solution u(x, y).
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Chapter 45

Transform Methods

45.1 Fourier Transform for Partial Differential Equations

Solve Laplace’s equation in the upper half plane

∇2u = 0 −∞ < x <∞, y > 0

u(x, 0) = f(x) −∞ < x <∞

Taking the Fourier transform in the x variable of the equation and the boundary condition,

F
[
∂2u

∂x2
+
∂2u

∂y2

]
= 0, F [u(x, 0)] = F [f(x)]

−ω2U(ω, y) +
∂2

∂y2
U(ω, y) = 0, U(ω, 0) = F (ω).

The general solution to the equation is

U(ω, y) = a eωy + b e−ωy.
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Remember that in solving the differential equation here we consider ω to be a parameter. Requiring that the
solution be bounded for y ∈ [0,∞) yields

U(ω, y) = a e−|ω|y.

Applying the boundary condition,

U(ω, y) = F (ω) e−|ω|y.

The inverse Fourier transform of e−|ω|y is

F−1
[

e−|ω|y
]

=
2y

x2 + y2
.

Thus

U(ω, y) = F (ω) F
[

2y

x2 + y2

]
F [u(x, y)] = F [f(x)] F

[
2y

x2 + y2

]
.

Recall that the convolution theorem is

F
[

1

2π

∫ ∞
−∞

f(x− ξ)g(ξ) dξ

]
= F (ω)G(ω).

Applying the convolution theorem to the equation for U ,

u(x, y) =
1

2π

∫ ∞
−∞

f(x− ξ)2y
ξ2 + y2

dξ

u(x, y) =
y

π

∫ ∞
−∞

f(x− ξ)
ξ2 + y2

dξ.
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45.2 The Fourier Sine Transform

Consider the problem

ut = κuxx, x > 0, t > 0

u(0, t) = 0, u(x, 0) = f(x)

Since we are given the position at x = 0 we apply the Fourier sine transform.

ût = κ

(
−ω2û+

2

π
ωu(0, t)

)
ût = −κω2û

û(ω, t) = c(ω) e−κω
2t

The initial condition is

û(ω, 0) = f̂(ω).

We solve the first order differential equation to determine û.

û(ω, t) = f̂(ω) e−κω
2t

û(ω, t) = f̂(ω)Fc
[

1√
4πκt

e−x
2/(4κt)

]
We take the inverse sine transform with the convolution theorem.

u(x, t) =
1

4π3/2
√
κt

∫ ∞
0

f(ξ)
(

e−|x−ξ|
2/(4κt) − e−(x+ξ)2/(4κt)

)
dξ
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45.3 Fourier Transform

Consider the problem

∂u

∂t
− ∂u

∂x
+ u = 0, −∞ < x <∞, t > 0,

u(x, 0) = f(x).

Taking the Fourier Transform of the partial differential equation and the initial condition yields

∂U

∂t
− iωU + U = 0,

U(ω, 0) = F (ω) =
1

2π

∫ ∞
−∞

f(x) e−iωx dx.

Now we have a first order differential equation for U(ω, t) with the solution

U(ω, t) = F (ω) e(−1+iω)t.

Now we apply the inverse Fourier transform.

u(x, t) =

∫ ∞
−∞

F (ω) e(−1+iω)t eiωx dω

u(x, t) = e−t
∫ ∞
−∞

F (ω) eiω(x+t) dω

u(x, t) = e−tf(x+ t)
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45.4 Exercises
Exercise 45.1
Find an integral representation of the solution u(x, y), of

uxx + uyy = 0 in −∞ < x <∞, 0 < y <∞,

subject to the boundary conditions:

u(x, 0) = f(x), −∞ < x <∞;

u(x, y)→ 0 as x2 + y2 →∞.

Exercise 45.2
Solve the Cauchy problem for the one-dimensional heat equation in the domain −∞ < x <∞, t > 0,

ut = κuxx, u(x, 0) = f(x),

with the Fourier transform.

Exercise 45.3
Let φ(x, t) satisfy the equation

φt = a2φxx, (45.1)

for −∞ < x < ∞, t > 0 with initial conditions φ(x, 0) = f(x) in −∞ < x < ∞. Boundary conditions cannot
be given here because both endpoints are infinite. In this case all we can ask is that the solution be regular as
x→ ±∞. Show that the Laplace transform of φ(x, t) is given by

Φ(x, s) =
1

2a
√
s

∫ ∞
−∞

f(ξ) exp

(
−
√
s

a
|x− ξ|

)
dξ,

and hence deduce that

φ(x, t) =
1

2a
√
πt

∫ ∞
−∞

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ.
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Exercise 45.4
1. In Exercise 45.3 above, let f(−x) = −f(x) for all x and verify that φ(x, t) so obtained is the solution, for
x > 0, of the following problem: find φ(x, t) satisfying

φt = a2φxx

in 0 < x < ∞, t > 0, with boundary condition φ(0, t) = 0 and initial condition φ(x, 0) = f(x). This
technique, in which the solution for a semi-infinite interval is obtained from that for an infinite interval, is
an example of what is called the method of images.

2. How would you modify the result of part (a) if the boundary condition φ(0, t) = 0 was replaced by φx(0, t) =
0?

Exercise 45.5
Solve the Cauchy problem for the one-dimensional wave equation in the domain −∞ < x <∞, t > 0,

utt = c2uxx, u(x, 0) = f(x), ut(x, 0) = g(x),

with the Fourier transform.

Exercise 45.6
Solve the Cauchy problem for the one-dimensional wave equation in the domain −∞ < x <∞, t > 0,

utt = c2uxx, u(x, 0) = f(x), ut(x, 0) = g(x),

with the Laplace transform.

Exercise 45.7
Consider the problem of determining φ(x, t) in the region 0 < x <∞, 0 < t <∞, such that

φt = a2φxx, (45.2)
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with initial and boundary conditions

φ(x, 0) = 0 for all x > 0,

φ(0, t) = f(t) for all t > 0,

where f(t) is a given function.

1. Obtain the formula for the Laplace transform of φ(x, t), Φ(x, s) and use the convolution theorem for Laplace
transforms to show that

φ(x, t) =
x

2a
√
π

∫ t

0

f(t− τ)
1

τ 3/2
exp

(
− x2

4a2τ

)
dτ.

2. Discuss the special case obtained by setting f(t) = 1 and also that in which f(t) = 1 for 0 < t < T , with
f(t) = 0 for t > T . Here T is some positive constant.

Exercise 45.8
Solve the radiating half space problem:

ut = κuxx, x > 0, t > 0,

ux(0, t)− αu(0, t) = 0, u(x, 0) = f(x).

To do this, define

v(x, t) = ux(x, t)− αu(x, t)

and find the half space problem that v satisfies. Solve this problem and then show that

u(x, t) = −
∫ ∞
x

e−α(ξ−x)v(ξ, t) dξ.
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Exercise 45.9
Show that ∫ ∞

0

ω e−cω
2

sin(ωx) dω =
x
√
π

4c3/2
e−x

2/(4c).

Use the sine transform to solve:

ut = uxx, x > 0, t > 0,

u(0, t) = g(t), u(x, 0) = 0.

Exercise 45.10
Use the Fourier sine transform to find the steady state temperature u(x, y) in a slab: x ≥ 0, 0 ≤ y ≤ 1, which has
zero temperature on the faces y = 0 and y = 1 and has a given distribution: u(y, 0) = f(y) on the edge x = 0,
0 ≤ y ≤ 1.

Exercise 45.11
Find a harmonic function u(x, y) in the upper half plane which takes on the value g(x) on the x-axis. Assume
that u and ux vanish as |x| → ∞. Use the Fourier transform with respect to x. Express the solution as a single
integral by using the convolution formula.

Exercise 45.12
Find the bounded solution of

ut = κuxx − a2u, 0 < x <∞, t > 0,

−ux(0, t) = f(t), u(x, 0) = 0.

Exercise 45.13
The left end of a taut string of length L is displaced according to u(0, t) = f(t). The right end is fixed, u(L, t) = 0.
Initially the string is at rest with no displacement. If c is the wave speed for the string, find it’s motion for all
t > 0.

1766



Exercise 45.14
Let ∇2φ = 0 in the (x, y)-plane region defined by 0 < y < l, −∞ < x <∞, with φ(x, 0) = δ(x− ξ), φ(x, l) = 0,
and φ → 0 as |x| → ∞. Solve for φ using Fourier transforms. You may leave your answer in the form of an
integral but in fact it is possible to use techniques of contour integration to show that

φ(x, y|ξ) =
1

2l

[
sin(πy/l)

cosh[π(x− ξ)/l]− cos(πy/l)

]
.

Note that as l→∞ we recover the result derived in class:

φ→ 1

π

y

(x− ξ)2 + y2
,

which clearly approaches δ(x− ξ) as y → 0.
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45.5 Hints

Hint 45.1
The desired solution form is: u(x, y) =

∫∞
−∞K(x − ξ, y)f(ξ) dξ. You must find the correct K. Take the Fourier

transform with respect to x and solve for û(ω, y) recalling that ûxx = −ω2û. By ûxx we denote the Fourier
transform with respect to x of uxx(x, y).

Hint 45.2
Use the Fourier convolution theorem and the table of Fourier transforms in the appendix.

Hint 45.3

Hint 45.4

Hint 45.5
Use the Fourier convolution theorem. The transform pairs,

F [π(δ(x+ τ) + δ(x− τ))] = cos(ωτ),

F [π(H(x+ τ)−H(x− τ))] =
sin(ωτ)

ω
,

will be useful.

Hint 45.6
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Hint 45.7

Hint 45.8
v(x, t) satisfies the same partial differential equation. You can solve the problem for v(x, t) with the Fourier sine
transform. Use the convolution theorem to invert the transform.

To show that

u(x, t) = −
∫ ∞
x

e−α(ξ−x)v(ξ, t) dξ,

find the solution of

ux − αu = v

that is bounded as x→∞.

Hint 45.9
Note that ∫ ∞

0

ω e−cω
2

sin(ωx) dω = − ∂

∂x

∫ ∞
0

e−cω
2

cos(ωx) dω.

Write the integral as a Fourier transform.
Take the Fourier sine transform of the heat equation to obtain a first order, ordinary differential equation for

û(ω, t). Solve the differential equation and do the inversion with the convolution theorem.

Hint 45.10
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Hint 45.11

Hint 45.12

Hint 45.13

Hint 45.14
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45.6 Solutions

Solution 45.1
1. We take the Fourier transform of the integral equation, noting that the left side is the convolution of u(x)

and 1
x2+a2 .

2πû(ω)F
[

1

x2 + a2

]
= F

[
1

x2 + b2

]

We find the Fourier transform of f(x) = 1
x2+c2

. Note that since f(x) is an even, real-valued function, f̂(ω)
is an even, real-valued function.

F
[

1

x2 + c2

]
=

1

2π

∫ ∞
−∞

1

x2 + c2
e−iωx dx

For x > 0 we close the path of integration in the upper half plane and apply Jordan’s Lemma to evaluate
the integral in terms of the residues.

=
1

2π
i2πRes

(
e−iωx

(x− ic)(x+ ic)
, x = ic

)
= i

e−iωic

2ic

=
1

2c
e−cω

Since f̂(ω) is an even function, we have

F
[

1

x2 + c2

]
=

1

2c
e−c|ω|.
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Our equation for û(ω) becomes,

2πû(ω)
1

2a
e−a|ω| =

1

2b
e−b|ω|

û(ω) =
a

2πb
e−(b−a)|omega|.

We take the inverse Fourier transform using the transform pair we derived above.

u(x) =
a

2πb

2(b− a)

x2 + (b− a)2

u(x) =
a(b− a)

πb(x2 + (b− a)2)

2. We take the Fourier transform of the partial differential equation and the boundary condtion.

uxx + uyy = 0, u(x, 0) = f(x)

−ω2û(ω, y) + ûyy(ω, y) = 0, û(ω, 0) = f̂(ω)

This is an ordinary differential equation for û in which ω is a parameter. The general solution is

û = c1 eωy + c2 e−ωy.

We apply the boundary conditions that û(ω, 0) = f̂(ω) and û→ 0 and y →∞.

û(ω, y) = f̂(ω) e−ωy

We take the inverse transform using the convolution theorem.

u(x, y) =
1

2π

∫ ∞
−∞

e−(x−ξ)yf(ξ) dξ
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Solution 45.2

ut = κuxx, u(x, 0) = f(x),

We take the Fourier transform of the heat equation and the initial condition.

ût = −κω2û, û(ω, 0) = f̂(ω)

This is a first order ordinary differential equation which has the solution,

û(ω, t) = f̂(ω) e−κω
2t.

Using a table of Fourier transforms we can write this in a form that is conducive to applying the convolution
theorem.

û(ω, t) = f̂(ω)F
[√

π

κt
e−x

2/(4κt)

]
u(x, t) =

√
π

κt

∫ ∞
−∞

e−(x−ξ)2/(4κt)f(ξ) dξ

Solution 45.3
We take the Laplace transform of Equation 45.1.

sφ̂− φ(x, 0) = a2φ̂xx

φ̂xx −
s

a2
φ̂ = −f(x)

a2
(45.3)

The Green function problem for Equation 45.3 is

G′′ − s

a2
G = δ(x− ξ), G(±∞; ξ) is bounded.
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The homogeneous solutions that satisfy the left and right boundary conditions are, respectively,

exp

(√
sa

x

)
, exp

(
−
√
sa

x

)
.

We compute the Wronskian of these solutions.

W =

∣∣∣∣∣∣ exp
(√

s
a
x
)

exp
(
−
√
s
a
x
)

√
s
a

exp
(√

sa
x

)
−
√
s
a

exp
(
−
√
sa
x

)∣∣∣∣∣∣ = −2
√
s

a

The Green function is

G(x; ξ) =
exp

(√
s
a
x<

)
exp

(
−
√
s
a
x>

)
−2
√
s

a

G(x; ξ) = − a

2
√
s

exp

(
−
√
s

a
|x− ξ|

)
.

Now we solve Equation 45.3 using the Green function.

φ̂(x, s) =

∫ ∞
−∞
−f(ξ)

a2
G(x; ξ) dξ

φ̂(x, s) =
1

2a
√
s

∫ ∞
−∞

f(ξ) exp

(
−
√
s

a
|x− ξ|

)
dξ

Finally we take the inverse Laplace transform to obtain the solution of Equation 45.1.

φ(x, t) =
1

2a
√
πt

∫ ∞
−∞

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ
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Solution 45.4
1. Clearly the solution satisfies the differential equation. We must verify that it satisfies the boundary condition,
φ(0, t) = 0.

φ(x, t) =
1

2a
√
πt

∫ ∞
−∞

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ

φ(x, t) =
1

2a
√
πt

∫ 0

−∞
f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ +

1

2a
√
πt

∫ ∞
0

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ

φ(x, t) =
1

2a
√
πt

∫ ∞
0

f(−ξ) exp

(
−(x+ ξ)2

4a2t

)
dξ +

1

2a
√
πt

∫ ∞
0

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ

φ(x, t) = − 1

2a
√
πt

∫ ∞
0

f(ξ) exp

(
−(x+ ξ)2

4a2t

)
dξ +

1

2a
√
πt

∫ ∞
0

f(ξ) exp

(
−(x− ξ)2

4a2t

)
dξ

φ(x, t) =
1

2a
√
πt

∫ ∞
0

f(ξ)

(
exp

(
−(x− ξ)2

4a2t

)
exp

(
−(x+ ξ)2

4a2t

))
dξ

φ(x, t) =
1

2a
√
πt

∫ ∞
0

f(ξ) exp

(
−x

2 + ξ2

4a2t

)(
exp

(
xξ

2a2t

)
− exp

(
− xξ

2a2t

))
dξ

φ(x, t) =
1

a
√
πt

∫ ∞
0

f(ξ) exp

(
−x

2 + ξ2

4a2t

)
sinh

(
xξ

2a2t

)
dξ

Since the integrand is zero for x = 0, the solution satisfies the boundary condition there.

2. For the boundary condition φx(0, t) = 0 we would choose f(x) to be even. f(−x) = f(x). The solution is

φ(x, t) =
1

a
√
πt

∫ ∞
0

f(ξ) exp

(
−x

2 + ξ2

4a2t

)
cosh

(
xξ

2a2t

)
dξ

The derivative with respect to x is

φx(x, t) =
1

2a3
√
πt3/2

∫ ∞
0

f(ξ) exp

(
−x

2 + ξ2

4a2t

)(
ξ sinh

(
xξ

2a2t

)
− x cosh

(
xξ

2a2t

))
dξ.
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Since the integrand is zero for x = 0, the solution satisfies the boundary condition there.

Solution 45.5
With the change of variables

τ = ct,
∂

∂τ
=
∂t

∂τ

∂

∂t
=

1

c

∂

∂t
, v(x, τ) = u(x, t),

the problem becomes

vττ = vxx, v(x, 0) = f(x), vτ (x, 0) =
1

c
g(x).

(This change of variables isn’t necessary, it just gives us fewer constants to carry around.) We take the Fourier
transform in x of the equation and the initial conditions, (we consider τ to be a parameter),

v̂ττ (ω, τ) = −ω2v̂(ω, τ), v̂(ω, τ) = f̂(ω), v̂τ (ω, τ) =
1

c
ĝ(ω).

Now we have an ordinary differential equation for v̂(ω, τ), (now we consider ω to be a parameter). The general
solution of this constant coefficient differential equation is,

v̂(ω, τ) = a(ω) cos(ωτ) + b(ω) sin(ωτ),

where a and b are constants that depend on the parameter ω. Applying the initial conditions, we see that

v̂(ω, τ) = f̂(ω) cos(ωτ) +
1

cω
ĝ(ω) sin(ωτ),

With the Fourier transform pairs

F [π(δ(x+ τ) + δ(x− τ))] = cos(ωτ),

F [π(H(x+ τ)−H(x− τ))] =
sin(ωτ)

ω
,
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we can write v̂(ω, τ) in a form that is conducive to applying the Fourier convolution theorem.

v̂(ω, τ) = F [f(x)]F [π(δ(x+ τ) + δ(x− τ))] +
1

c
F [g(x)]F [π(H(x+ τ)−H(x− τ))]

v(x, τ) =
1

2π

∫ ∞
−∞

f(ξ)π(δ(x− ξ + τ) + δ(x− ξ − τ)) dξ

+
1

c

1

2π

∫ ∞
−∞

g(ξ)π(H(x− ξ + τ)−H(x− ξ − τ)) dξ

v(x, τ) =
1

2
(f(x+ τ) + f(x− τ)) +

1

2c

∫ x+τ

x−τ
g(ξ) dξ

Finally we make the change of variables t = τ/c, u(x, t) = v(x, τ) to obtain D’Alembert’s solution of the wave
equation,

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ.

Solution 45.6
With the change of variables

τ = ct,
∂

∂τ
=
∂t

∂τ

∂

∂t
=

1

c

∂

∂t
, v(x, τ) = u(x, t),

the problem becomes

vττ = vxx, v(x, 0) = f(x), vτ (x, 0) =
1

c
g(x).
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We take the Laplace transform in τ of the equation, (we consider x to be a parameter),

s2V (x, s)− sv(x, 0)− vτ (x, 0) = Vxx(x, s),

Vxx(x, s)− s2V (x, s) = −sf(x)− 1

c
g(x),

Now we have an ordinary differential equation for V (x, s), (now we consider s to be a parameter). We impose the
boundary conditions that the solution is bounded at x = ±∞. Consider the Green’s function problem

gxx(x; ξ)− s2g(x; ξ) = δ(x− ξ), g(±∞; ξ) bounded.

esx is a homogeneous solution that is bounded at x = −∞. e−sx is a homogeneous solution that is bounded at
x = +∞. The Wronskian of these solutions is

W (x) =

∣∣∣∣ esx e−sx

s esx −s e−sx

∣∣∣∣ = −2s.

Thus the Green’s function is

g(x; ξ) =

{
− 1

2s
esx e−sξ for x < ξ,

− 1
2s

esξ e−sx for x > ξ,
= − 1

2s
e−s|x−ξ|.

The solution for V (x, s) is

V (x, s) = − 1

2s

∫ ∞
−∞

e−s|x−ξ|(−sf(ξ)− 1

c
g(ξ)) dξ,

V (x, s) =
1

2

∫ ∞
−∞

e−s|x−ξ|f(ξ) dξ +
1

2cs

∫ ∞
−∞

e−s|x−ξ|g(ξ)) dξ,
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V (x, s) =
1

2

∫ ∞
−∞

e−s|ξ|f(x− ξ) dξ +
1

2c

∫ ∞
−∞

e−s|ξ|

s
g(x− ξ)) dξ.

Now we take the inverse Laplace transform and interchange the order of integration.

v(x, τ) =
1

2
L−1

[∫ ∞
−∞

e−s|ξ|f(x− ξ) dξ
]

+
1

2c
L−1

[∫ ∞
−∞

e−s|ξ|

s
g(x− ξ)) dξ

]

v(x, τ) =
1

2

∫ ∞
−∞
L−1

[
e−s|ξ|

]
f(x− ξ) dξ +

1

2c

∫ ∞
−∞
L−1

[
e−s|ξ|

s

]
g(x− ξ)) dξ

v(x, τ) =
1

2

∫ ∞
−∞

δ(τ − |ξ|)f(x− ξ) dξ +
1

2c

∫ ∞
−∞

H(τ − |ξ|)g(x− ξ)) dξ

v(x, τ) =
1

2
(f(x− τ) + f(x+ τ)) +

1

2c

∫ τ

−τ
g(x− ξ) dξ

v(x, τ) =
1

2
(f(x− τ) + f(x+ τ)) +

1

2c

∫ −x+τ

−x−τ
g(−ξ) dξ

v(x, τ) =
1

2
(f(x− τ) + f(x+ τ)) +

1

2c

∫ x+τ

x−τ
g(ξ) dξ

Now we write make the change of variables t = τ/c, u(x, t) = v(x, τ) to obtain D’Alembert’s solution of the wave
equation,

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ.
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Solution 45.7
1. We take the Laplace transform of Equation 45.2.

sφ̂− φ(x, 0) = a2φ̂xx

φ̂xx −
s

a2
φ̂ = 0 (45.4)

We take the Laplace transform of the initial condition, φ(0, t) = f(t), and use that φ̂(x, s) vanishes as
x→∞ to obtain boundary conditions for φ̂(x, s).

φ̂(0, s) = f̂(s), φ̂(∞, s) = 0

The solutions of Equation 45.4 are

exp

(
±
√
s

a
x

)
.

The solution that satisfies the boundary conditions is

φ̂(x, s) = f̂(s) exp

(
−
√
s

a
x

)
.

We write this as the product of two Laplace transforms.

φ̂(x, s) = f̂(s)L
[

x

2a
√
πt3/2

exp

(
− x2

4a2t

)]
We invert using the convolution theorem.

φ(x, t) =
x

2a
√
π

∫ t

0

f(t− τ)
1

τ 3/2
exp

(
− x2

4a2τ

)
dτ.
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2. Consider the case f(t) = 1.

φ(x, t) =
x

2a
√
π

∫ t

0

1

τ 3/2
exp

(
− x2

4a2τ

)
dτ

ξ =
x

2a
√
τ
, dξ = − x

4aτ 3/2

φ(x, t) = − 2√
π

∫ x/(2a
√
t)

∞
e−ξ

2

dξ

φ(x, t) = erfc

(
x

2a
√
t

)
Now consider the case in which f(t) = 1 for 0 < t < T , with f(t) = 0 for t > T . For t < T , φ is the same
as before.

φ(x, t) = erfc

(
x

2a
√
t

)
, for 0 < t < T

Consider t > T .

φ(x, t) =
x

2a
√
π

∫ t

t−T

1

τ 3/2
exp

(
− x2

4a2τ

)
dτ

φ(x, t) = − 2√
π

∫ x/(2a
√
t)

x/(2a
√
t−T )

e−ξ
2

dξ

φ(x, t) = erf

(
x

2a
√
t− T

)
− erf

(
x

2a
√
t

)

Solution 45.8

ut = κuxx, x > 0, t > 0,

ux(0, t)− αu(0, t) = 0, u(x, 0) = f(x).
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First we find the partial differential equation that v satisfies. We start with the partial differential equation for u,

ut = κuxx.

Differentiating this equation with respect to x yields,

utx = κuxxx.

Subtracting α times the former equation from the latter yields,

utx − αut = κuxxx − ακuxx,
∂

∂t
(ux − αu) = κ

∂2

∂x2
(ux − αu) ,

vt = κvxx.

Thus v satisfies the same partial differential equation as u. This is because the equation for u is linear and
homogeneous and v is a linear combination of u and its derivatives. The problem for v is,

vt = κvxx, x > 0, t > 0,

v(0, t) = 0, v(x, 0) = f ′(x)− αf(x).

With this new boundary condition, we can solve the problem with the Fourier sine transform. We take the sine
transform of the partial differential equation and the initial condition.

v̂t(ω, t) = κ

(
−ω2v̂(ω, t) +

1

π
ωv(0, t)

)
,

v̂(ω, 0) = Fs [f ′(x)− αf(x)]

v̂t(ω, t) = −κω2v̂(ω, t)

v̂(ω, 0) = Fs [f ′(x)− αf(x)]
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Now we have a first order, ordinary differential equation for v̂. The general solution is,

v̂(ω, t) = c e−κω
2t.

The solution subject to the initial condition is,

v̂(ω, t) = Fs [f ′(x)− αf(x)] e−κω
2t.

Now we take the inverse sine transform to find v. We utilize the Fourier cosine transform pair,

F−1
c

[
e−κω

2t
]

=

√
π

κt
e−x

2/(4κt),

to write v̂ in a form that is suitable for the convolution theorem.

v̂(ω, t) = Fs [f ′(x)− αf(x)]Fc
[√

π

κt
e−x

2/(4κt)

]
Recall that the Fourier sine convolution theorem is,

Fs
[

1

2π

∫ ∞
0

f(ξ) (g(|x− ξ|)− g(x+ ξ)) dξ

]
= Fs[f(x)]Fc[g(x)].

Thus v(x, t) is

v(x, t) =
1

2
√
πκt

∫ ∞
0

(f ′(ξ)− αf(ξ))
(

e−|x−ξ|
2/(4κt) − e−(x+ξ)2/(4κt)

)
dξ.

With v determined, we have a first order, ordinary differential equation for u,

ux − αu = v.
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We solve this equation by multiplying by the integrating factor and integrating.

∂

∂x

(
e−αxu

)
= e−αxv

e−αxu =

∫ x

e−αξv(x, t) dξ + c(t)

u =

∫ x

e−α(ξ−x)v(x, t) dξ + eαxc(t)

The solution that vanishes as x→∞ is

u(x, t) = −
∫ ∞
x

e−α(ξ−x)v(ξ, t) dξ.

Solution 45.9

∫ ∞
0

ω e−cω
2

sin(ωx) dω = − ∂

∂x

∫ ∞
0

e−cω
2

cos(ωx) dω

= −1

2

∂

∂x

∫ ∞
−∞

e−cω
2

cos(ωx) dω

= −1

2

∂

∂x

∫ ∞
−∞

e−cω
2+iωx dω

= −1

2

∂

∂x

∫ ∞
−∞

e−c(ω+ix/(2c))2

e−x
2/(4c) dω

= −1

2

∂

∂x
e−x

2/(4c)

∫ ∞
−∞

e−cω
2

dω

= −1

2

√
π

c

∂

∂x
e−x

2/(4c)

=
x
√
π

4c3/2
e−x

2/(4c)
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ut = uxx, x > 0, t > 0,

u(0, t) = g(t), u(x, 0) = 0.

We take the Fourier sine transform of the partial differential equation and the initial condition.

ût(ω, t) = −ω2û(ω, t) +
ω

π
g(t), û(ω, 0) = 0

Now we have a first order, ordinary differential equation for û(ω, t).

∂

∂t

(
eω

2tût(ω, t)
)

=
ω

π
g(t) eω

2t

û(ω, t) =
ω

π
e−ω

2t

∫ t

0

g(τ) eω
2τ dτ + c(ω) e−ω

2t

The initial condition is satisfied for c(ω) = 0.

û(ω, t) =
ω

π

∫ t

0

g(τ) e−ω
2(t−τ) dτ

We take the inverse sine transform to find u.

u(x, t) = F−1
s

[
ω

π

∫ t

0

g(τ) e−ω
2(t−τ) dτ

]

u(x, t) =

∫ t

0

g(τ)F−1
s

[ω
π

e−ω
2(t−τ)

]
dτ

u(x, t) =

∫ t

0

g(τ)
x

2
√
π(t− τ)3/2

e−x
2/(4(t−τ)) dτ

u(x, t) =
x

2
√
π

∫ t

0

g(τ)
e−x

2/(4(t−τ))

(t− τ)3/2
dτ
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Solution 45.10
The problem is

uxx + uyy = 0, 0 < x, 0 < y < 1,

u(x, 0) = u(x, 1) = 0, u(0, y) = f(y).

We take the Fourier sine transform of the partial differential equation and the boundary conditions.

−ω2û(ω, y) +
k

π
u(0, y) + ûyy(ω, y) = 0

ûyy(ω, y)− ω2û(ω, y) = −k
π
f(y), û(ω, 0) = û(ω, 1) = 0

This is an inhomogeneous, ordinary differential equation that we can solve with Green functions. The homogeneous
solutions are

{cosh(ωy), sinh(ωy)}.

The homogeneous solutions that satisfy the left and right boundary conditions are

y1 = sinh(ωy), y2 = sinh(ω(y − 1)).

The Wronskian of these two solutions is,

W (x) =

∣∣∣∣ sinh(ωy) sinh(ω(y − 1))
ω cosh(ωy) ω cosh(ω(y − 1))

∣∣∣∣
= ω (sinh(ωy) cosh(ω(y − 1))− cosh(ωy) sinh(ω(y − 1)))

= ω sinh(ω).

The Green function is

G(y|η) =
sinh(ωy<) sinh(ω(y> − 1))

ω sinh(ω)
.
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The solution of the ordinary differential equation for û(ω, y) is

û(ω, y) = −ω
π

∫ 1

0

f(η)G(y|η) dη

= − 1

π

∫ y

0

f(η)
sinh(ωη) sinh(ω(y − 1))

sinh(ω)
dη − 1

π

∫ 1

y

f(η)
sinh(ωy) sinh(ω(η − 1))

sinh(ω)
dη.

With some uninteresting grunge, you can show that,

2

∫ ∞
0

sinh(ωη) sinh(ω(y − 1))

sinh(ω)
sin(ωx) dω = −2

sin(πη) sin(πy)

(cosh(πx)− cos(π(y − η)))(cosh(πx)− cos(π(y + η)))
.

Taking the inverse Fourier sine transform of û(ω, y) and interchanging the order of integration yields,

u(x, y) =
2

π

∫ y

0

f(η)
sin(πη) sin(πy)

(cosh(πx)− cos(π(y − η)))(cosh(πx)− cos(π(y + η)))
dη

+
2

π

∫ 1

y

f(η)
sin(πy) sin(πη)

(cosh(πx)− cos(π(η − y)))(cosh(πx)− cos(π(η + y)))
dη.

u(x, y) =
2

π

∫ 1

0

f(η)
sin(πη) sin(πy)

(cosh(πx)− cos(π(y − η)))(cosh(πx)− cos(π(y + η)))
dη

Solution 45.11
The problem for u(x, y) is,

uxx + uyy = 0, −∞ < x <∞, y > 0,

u(x, 0) = g(x).

We take the Fourier transform of the partial differential equation and the boundary condition.

−ω2û(ω, y) + ûyy(ω, y) = 0, û(ω, 0) = ĝ(ω).
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This is an ordinary differential equation for û(ω, y). So far we only have one boundary condition. In order that u
is bounded we impose the second boundary condition û(ω, y) is bounded as y →∞. The general solution of the
differential equation is

û(ω, y) =

{
c1(ω) eωy + c2(ω) e−ωy, for ω 6= 0,

c1(ω) + c2(ω)y, for ω = 0.

Note that eωy is the bounded solution for ω < 0, 1 is the bounded solution for ω = 0 and e−ωy is the bounded
solution for ω > 0. Thus the bounded solution is

û(ω, y) = c(ω) e−|ω|y.

The boundary condition at y = 0 determines the constant of integration.

û(ω, y) = ĝ(ω) e−|ω|y

Now we take the inverse Fourier transform to obtain the solution for u(x, y). To do this we use the Fourier
transform pair,

F
[

2c

x2 + c2

]
= e−c|ω|,

and the convolution theorem,

F
[

1

2π

∫ ∞
−∞

f(ξ)g(x− ξ) dξ
]

= f̂(ω)ĝ(ω).

u(x, y) =
1

2π

∫ ∞
−∞

g(ξ)
2y

(x− ξ)2 + y2
dξ.
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Solution 45.12
Since the derivative of u is specified at x = 0, we take the cosine transform of the partial differential equation and
the initial condition.

ût(ω, t) = κ

(
−ω2û(ω, t)− 1

π
ux(0, t)

)
− a2û(ω, t), û(ω, 0) = 0

ût +
(
κω2 + a2

)
û =

κ

π
f(t), û(ω, 0) = 0

This first order, ordinary differential equation for û(ω, t) has the solution,

û(ω, t) =
κ

π

∫ t

0

e−(κω2+a2)(t−τ)f(τ) dτ.

We take the inverse Fourier cosine transform to find the solution u(x, t).

u(x, t) =
κ

π
F−1
c

[∫ t

0

e−(κω2+a2)(t−τ)f(τ) dτ

]
u(x, t) =

κ

π

∫ t

0

F−1
c

[
e−κω

2(t−τ)
]

e−a
2(t−τ)f(τ) dτ

u(x, t) =
κ

π

∫ t

0

√
π

κ(t− τ)
e−x

2/(4κ(t−τ)) e−a
2(t−τ)f(τ) dτ

u(x, t) =

√
κ

π

∫ t

0

e−x
2/(4κ(t−τ))−a2(t−τ)

√
t− τ

f(τ) dτ

Solution 45.13
Mathematically stated we have

utt = c2uxx, 0 < x < L, t > 0,

u(x, 0) = ut(x, 0) = 0,

u(0, t) = f(t), u(L, t) = 0.
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We take the Laplace transform of the partial differential equation and the boundary conditions.

s2û(x, s)− su(x, 0)− ut(x, 0) = c2ûxx(x, s)

ûxx =
s2

c2
û, û(0, s) = f̂(s), û(L, s) = 0

Now we have an ordinary differential equation. A set of solutions is

{
cosh

(sx
c

)
, sinh

(sx
c

)}
.

The solution that satisfies the right boundary condition is

û = a sinh

(
s(L− x)

c

)
.

The left boundary condition determines the multiplicative constant.

û(x, s) = f̂(s)
sinh(s(L− x)/c)

sinh(sL/c)

If we can find the inverse Laplace transform of

û(x, s) =
sinh(s(L− x)/c)

sinh(sL/c)

then we can use the convolution theorem to write u in terms of a single integral. We proceed by expanding this
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function in a sum.

sinh(s(L− x)/c)

sinh(sL/c)
=

es(L−x)/c − e−s(L−x)/c

esL/c − e−sL/c

=
e−sx/c − e−s(2L−x)/c

1− e−2sL/c

=
(

e−sx/c − e−s(2L−x)/c
) ∞∑
n=0

e−2nsL/c

=
∞∑
n=0

e−s(2nL+x)/c −
∞∑
n=0

e−s(2(n+1)L−x)/c

=
∞∑
n=0

e−s(2nL+x)/c −
∞∑
n=1

e−s(2nL−x)/c

Now we use the Laplace transform pair:

L[δ(x− a)] = e−sa.

L−1

[
sinh(s(L− x)/c)

sinh(sL/c)

]
=
∞∑
n=0

δ(t− (2nL+ x)/c)−
∞∑
n=1

δ(t− (2nL− x)/c)

We write û in the form,

û(x, s) = L[f(t)]L

[
∞∑
n=0

δ(t− (2nL+ x)/c)−
∞∑
n=1

δ(t− (2nL− x)/c)

]
.

By the convolution theorem we have

u(x, t) =

∫ t

0

f(τ)

(
∞∑
n=0

δ(t− τ − (2nL+ x)/c)−
∞∑
n=1

δ(t− τ − (2nL− x)/c)

)
dτ.
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We can simplify this a bit. First we determine which Dirac delta functions have their singularities in the range
τ ∈ (0..t). For the first sum, this condition is

0 < t− (2nL+ x)/c < t.

The right inequality is always satisfied. The left inequality becomes

(2nL+ x)/c < t,

n <
ct− x

2L
.

For the second sum, the condition is

0 < t− (2nL− x)/c < t.

Again the right inequality is always satisfied. The left inequality becomes

n <
ct+ x

2L
.

We change the index range to reflect the nonzero contributions and do the integration.

u(x, t) =

∫ t

0

f(τ)

b ct−x2L
c∑

n=0

δ(t− τ − (2nL+ x)/c)

b ct+x
2L
c∑

n=1

δ(t− τ − (2nL− x)/c)

 dτ.

u(x, t) =

b ct−x
2L
c∑

n=0

f(t− (2nL+ x)/c)

b ct+x
2L
c∑

n=1

f(t− (2nL− x)/c)
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Solution 45.14
We take the Fourier transform of the partial differential equation and the boundary conditions.

−ω2φ̂+ φ̂yy = 0, φ̂(ω, 0) =
1

2π
e−iωξ, φ̂(ω, l) = 0

We solve this boundary value problem.

φ̂(ω, y) = c1 cosh(ω(l − y)) + c2 sinh(ω(l − y))

φ̂(ω, y) =
1

2π
e−iωξ

sinh(ω(l − y))

sinh(ωl)

We take the inverse Fourier transform to obtain an expression for the solution.

φ(x, y) =
1

2π

∫ ∞
−∞

eiω(x−ξ) sinh(ω(l − y))

sinh(ωl)
dω
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Chapter 46

Green Functions

46.1 Inhomogeneous Equations and Homogeneous Boundary Con-

ditions

Consider a linear differential equation on the domain Ω subject to homogeneous boundary conditions.

L[u(x)] = f(x) for x ∈ Ω, B[u(x)] = 0 for x ∈ ∂Ω (46.1)

For example, L[u] might be

L[u] = ut − κ∆u, or L[u] = ut − c2∆u.

and B[u] might be u = 0, or ∇u · n̂ = 0.

If we find a Green function G(x; ξ) that satisfies

L[G(x; ξ)] = δ(x− ξ), B[G(x; ξ)] = 0
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then the solution to Equation 46.1 is

u(x) =

∫
Ω

G(x; ξ)f(ξ) dξ.

We verify that this solution satisfies the equation and boundary condition.

L[u(x)] =

∫
Ω

L[G(x; ξ)]f(ξ) dξ

=

∫
Ω

δ(x− ξ)f(ξ) dξ

= f(x)

B[u(x)] =

∫
Ω

B[G(x; ξ)]f(ξ) dξ

=

∫
Ω

0 f(ξ) dξ

= 0

46.2 Homogeneous Equations and Inhomogeneous Boundary Con-

ditions

Consider a homogeneous linear differential equation on the domain Ω subject to inhomogeneous boundary
conditions,

L[u(x)] = 0 for x ∈ Ω, B[u(x)] = h(x) for x ∈ ∂Ω. (46.2)

If we find a Green function g(x; ξ) that satisfies

L[g(x; ξ)] = 0, B[g(x; ξ)] = δ(x− ξ)
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then the solution to Equation 46.2 is

u(x) =

∫
∂Ω

g(x; ξ)h(ξ) dξ.

We verify that this solution satisfies the equation and boundary condition.

L[u(x)] =

∫
∂Ω

L[g(x; ξ)]h(ξ) dξ

=

∫
∂Ω

0h(ξ) dξ

= 0

B[u(x)] =

∫
∂Ω

B[g(x; ξ)]h(ξ) dξ

=

∫
∂Ω

δ(x− ξ)h(ξ) dξ

= h(x)

Example 46.2.1 Consider the Cauchy problem for the homogeneous heat equation.

ut = κuxx, −∞ < x <∞, t > 0

u(x, 0) = h(x), u(±∞, t) = 0

We find a Green function that satisfies

gt = κgxx, −∞ < x <∞, t > 0

g(x, 0; ξ) = δ(x− ξ), g(±∞, t; ξ) = 0.

Then we write the solution

u(x, t) =

∫ ∞
−∞

g(x, t; ξ)h(ξ) dξ.
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To find the Green function for this problem, we apply a Fourier transform to the equation and boundary
condition for g.

ĝt = −κω2ĝ, ĝ(ω, 0; ξ) = F [δ(x− ξ)]
ĝ(ω, t; ξ) = F [δ(x− ξ)] e−κω

2t

ĝ(ω, t; ξ) = F [δ(x− ξ)]F
[√

π

κt
exp

(
− x2

4κt

)]
We invert using the convolution theorem.

g(x, t; ξ) =
1

2π

∫ ∞
−∞

δ(η − ξ)
√
π

κt
exp

(
−(x− η)2

4κt

)
dη

=
1√

4πκt
exp

(
−(x− ξ)2

4κt

)
The solution of the heat equation is

u(x, t) =
1√

4πκt

∫ ∞
−∞

exp

(
−(x− ξ)2

4κt

)
h(ξ) dξ.

46.3 Eigenfunction Expansions for Elliptic Equations

Consider a Green function problem for an elliptic equation on a finite domain.

L[G] = δ(x− ξ), x ∈ Ω (46.3)

B[G] = 0, x ∈ ∂Ω

Let the set of functions {φn} be orthonormal and complete on Ω. (Here n is the multi-index n = n1, . . . , nd.)∫
Ω

φn(x)φm(x) dx = δnm
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In addition, let the φn be eigenfunctions of L subject to the homogeneous boundary conditions.

L [φn] = λnφn, B [φn] = 0

We expand the Green function in the eigenfunctions.

G =
∑

n

gnφn(x)

Then we expand the Dirac Delta function.

δ(x− ξ) =
∑

n

dnφn(x)

dn =

∫
Ω

φn(x)δ(x− ξ) dx

dn = φn(ξ)

We substitute the series expansions for the Green function and the Dirac Delta function into Equation 46.3.∑
n

gnλnφn(x) =
∑

n

φn(ξ)φn(x)

We equate coefficients to solve for the gn and hence determine the Green function.

gn =
φn(ξ)

λn

G(x; ξ) =
∑

n

φn(ξ)φn(x)

λn

Example 46.3.1 Consider the Green function for the reduced wave equation, ∆u − k2u in the rectangle, 0 ≤
x ≤ a, 0 ≤ y ≤ b, and vanishing on the sides.
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First we find the eigenfunctions of the operator L = ∆− k2 = 0. Note that φ = X(x)Y (y) is an eigenfunction
of L if X is an eigenfunction of ∂2

∂x2 and Y is an eigenfunction of ∂2

∂y2 . Thus we consider the two regular Sturm-
Liouville eigenvalue problems:

X ′′ = λX, X(0) = X(a) = 0

Y ′′ = λY, Y (0) = Y (b) = 0

This leads us to the eigenfunctions

φmn = sin
(mπx

a

)
sin
(nπy

b

)
.

We use the orthogonality relation ∫ 2π

0

sin
(mπx

a

)
sin
(nπx

a

)
dx =

a

2
δmn

to make the eigenfunctions orthonormal.

φmn =
2√
ab

sin
(mπx

a

)
sin
(nπy

b

)
, m, n ∈ Z+

The φmn are eigenfunctions of L.

L [φmn] = −
((mπ

a

)2

+
(nπ
b

)2

+ k2

)
φmn

By expanding the Green function and the Dirac Delta function in the φmn and substituting into the differential
equation we obtain the solution.

G =
∞∑

m,n=1

2√
ab

sin
(
mπξ
a

)
sin
(
nπη
b

)
2√
ab

sin
(
mπx
a

)
sin
(
nπy
b

)
−
((

mπ
a

)2
+
(
nπ
b

)2
+ k2

)
G(x, y; ξ, η) = −4ab

∞∑
m,n=1

sin
(
mπx
a

)
sin
(
mπξ
a

)
sin
(
nπy
b

)
sin
(
nπη
b

)
(mπb)2 + (nπa)2 + (kab)2
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Example 46.3.2 Consider the Green function for Laplace’s equation, ∆u = 0 in the disk, |r| < a, and vanishing
at r = a.

First we find the eigenfunctions of the operator

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

We will look for eigenfunctions of the form φ = Θ(θ)R(r). We choose the Θ to be eigenfunctions of d2

dθ2 subject
to the periodic boundary conditions in θ.

Θ′′ = λΘ, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

Θn = einθ, n ∈ Z

We determine R(r) by requiring that φ be an eigenfunction of ∆.

∆φ = λφ

(ΘnR)rr +
1

r
(ΘnR)r +

1

r2
(ΘnR)θθ = λΘnR

ΘnR
′′ +

1

r
ΘnR

′ +
1

r2
(−n2)ΘnR = λΘR

For notational convenience, we denote λ = −µ2.

R′′ +
1

r
R′ +

(
µ2 − n2

r2

)
R = 0, R(0) bounded, R(a) = 0

The general solution for R is

R = c1Jn(µr) + c2Yn(µr).

The left boundary condition demands that c2 = 0. The right boundary condition determines the eigenvalues.

Rnm = Jn

(
jn,mr

a

)
, µnm =

jn,m
a
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Here jn,m is the mth positive root of Jn. This leads us to the eigenfunctions

φnm = einθJn

(
jn,mr

a

)
We use the orthogonality relations ∫ 2π

0

e−imθ einθ dθ = 2πδmn,∫ 1

0

rJν(jν,mr)Jν(jν,nr) dr =
1

2
(J ′ν(jν,n))

2
δmn

to make the eigenfunctions orthonormal.

φnm =
1√

πa|J ′n(jn,m)|
einθJn

(
jn,mr

a

)
, n ∈ Z, m ∈ Z+

The φnm are eigenfunctions of L.

∆φnm = −
(
jn,m
a

)2

φnm

By expanding the Green function and the Dirac Delta function in the φnm and substituting into the differential
equation we obtain the solution.

G =
∞∑

n=−∞

∞∑
m=1

1√
πa|J ′n(jn,m)| e

−inϑJn

(
jn,mρ

a

)
1√

πa|J ′n(jn,m)| e
inθJn

(
jn,mr

a

)
−
(
jn,m
a

)2

G(r, θ; ρ, ϑ) = −
∞∑

n=−∞

∞∑
m=1

1

π(jn,mJ ′n(jn,m))2
ein(θ−ϑ)Jn

(
jn,mρ

a

)
Jn

(
jn,mr

a

)
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46.4 The Method of Images

Consider the problem

∇2u = f(x, y), −∞ < x <∞, y > 0

u(x, 0) = 0, u(x, y)→ 0 as (x2 + y2)→∞.

The equations for the Green function are

∇2g = δ(x− ξ)δ(y − η), −∞ < x <∞, y > 0

g(x, 0; ξ, η) = 0, g(x, y; ξ, η)→ 0 as (x2 + y2)→∞.

To solve this problem we will use the method of images. We expand the domain to include the lower half
plane and solve the problem

∇2g = δ(x− ξ)δ(y − η)− δ(x− ξ)δ(y + η), −∞ < x, ξ, y <∞, η > 0

g(x, y; ξ, η)→ 0 as (x2 + y2)→∞.

Because of symmetry, g is zero for y = 0.
We solve the differential equation using the infinite space Green functions.

g =
1

4π
log
[
(x− ξ)2 + (y − η)2

]
− 1

4π
log
[
(x− ξ)2 + (y + η)2

]
=

1

4π
log

[
(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2

]
Thus we can write the solution

u(x, y) =

∫ ∞
0

∫ ∞
−∞

1

4π
log

[
(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2

]
f(ξ, η) dξdη.
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46.5 Exercises

Exercise 46.1
Derive the causal Green function for the one dimensional wave equation on (−∞..∞). That is, solve

Gtt − c2Gxx = δ(x− ξ)δ(t− τ),

G(x, t; ξ, τ) = 0 for t < τ.

Exercise 46.2
By reducing the problem to a series of one dimensional Green function problems, determine G(x, ξ) if

∇2G = δ(x− ξ)

(a) on the rectangle 0 < x < L, 0 < y < H and

G(0, y; ξ, η) = Gx(L, y; ξ, η) = Gy(x, 0; ξ, η) = Gy(x,H; ξ, η) = 0

(b) on the box 0 < x < L, 0 < y < H, 0 < z < W with G = 0 on the boundary.

(c) on the semi-circle 0 < r < a, 0 < θ < π with G = 0 on the boundary.

(d) on the quarter-circle 0 < r < a, 0 < θ < π/2 with G = 0 on the straight sides and Gr = 0 at r = a.

Exercise 46.3
Using the method of multi-dimensional eigenfunction expansions, determine G(x,x0) if

∇2G = δ(x− x0)

and
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(a) on the rectangle (0 < x < L, 0 < y < H)

at x = 0, G = 0 at y = 0,
∂G

∂y
= 0

at x = L,
∂G

∂x
= 0 at y = H,

∂G

∂y
= 0

(b) on the rectangular shaped box (0 < x < L, 0 < y < H, 0 < z < W ) with G = 0 on the six sides.

(c) on the semi-circle (0 < r < a, 0 < θ < π) with G = 0 on the entire boundary.

(d) on the quarter-circle (0 < r < a, 0 < θ < π/2) with G = 0 on the straight sides and ∂G/∂r = 0 at r = a.

Exercise 46.4
Using the method of images solve

∇2G = δ(x− x0)

in the first quadrant (x ≥ 0 and y ≥ 0) with G = 0 at x = 0 and ∂G/∂y = 0 at y = 0. Use the Green function to
solve in the first quadrant

∇2u = 0

u(0, y) = g(y)

∂u

∂y
(x, 0) = h(x).
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Exercise 46.5
Consider the wave equation defined on the half-line x > 0:

∂2u

∂t2
= c2∂

2u

∂x2
+Q(x, t),

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

u(0, t) = h(t)

(a) Determine the appropriate Green’s function using the method of images.

(b) Solve for u(x, t) if Q(x, t) = 0, f(x) = 0, and g(x) = 0.

(c) For what values of t does h(t) influence u(x1, t1). Interpret this result physically.

Exercise 46.6
Derive the Green functions for the one dimensional wave equation on (−∞..∞) for non-homogeneous initial
conditions. Solve the two problems

gtt − c2gxx = 0, g(x, 0; ξ, τ) = δ(x− ξ), gt(x, 0; ξ, τ) = 0,

γtt − c2γxx = 0, γ(x, 0; ξ, τ) = 0, γt(x, 0; ξ, τ) = δ(x− ξ),

using the Fourier transform.

Exercise 46.7
Use the Green functions from Problem 46.1 and Problem 46.6 to solve

utt − c2uxx = f(x, t), x > 0, −∞ < t <∞
u(x, 0) = p(x), ut(x, 0) = q(x).

Use the solution to determine the domain of dependence of the solution.
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Exercise 46.8
Show that the Green function for the reduced wave equation, ∆u−k2u = 0 in the rectangle, 0 ≤ x ≤ a, 0 ≤ y ≤ b,
and vanishing on the sides is:

G(x, y; ξ, η) =
2

a

∞∑
n=1

sinh(σny<) sinh(σn(y> − b))
σn sinh(σnb)

sin
(nπx

a

)
sin

(
nπξ

a

)
,

where

σn =

√
k2 +

n2π2

a2
.

Exercise 46.9
Find the Green function for the reduced wave equation ∆u−k2u = 0, in the quarter plane: 0 < x <∞, 0 < y <∞
subject to the mixed boundary conditions:

u(x, 0) = 0, ux(0, y) = 0.

Find two distinct integral representations for G(x, y; ξ, η).

Exercise 46.10
Show that in polar coordinates the Green function for ∆u = 0 in the infinite sector, 0 < θ < α, 0 < r <∞, and
vanishing on the sides is given by,

G(r, θ, ρ, ϑ) =
1

4π
log

cosh
(
π
α

log r
ρ

)
− cos

(
π
α

(θ − ϑ)
)

cosh
(
π
α

log r
ρ

)
− cos

(
π
α

(θ + ϑ)
)
 .

Use this to find the harmonic function u(r, θ) in the given sector which takes on the boundary values:

u(r, θ) = u(r, α) =

{
0 for r < c

1 for r > c.
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Exercise 46.11
The Green function for the initial value problem,

ut − κuxx = 0, u(x, 0) = f(x),

on −∞ < x <∞ is

G(x, t; ξ) =
1√

4πκt
e−(x−ξ)2/(4κt).

Use the method of images to find the corresponding Green function for the mixed initial-boundary problems:

i) ut = κuxx, u(x, 0) = f(x) for x > 0, u(0, t) = 0,

i) ut = κuxx, u(x, 0) = f(x) for x > 0, ux(0, t) = 0.

Exercise 46.12
Find the Green function (expansion) for the one dimensional wave equation utt − c2uxx = 0 on the interval
0 < x < L, subject to the boundary conditions:

a) u(0, t) = ux(L, t) = 0,

b) ux(0, t) = ux(L, t) = 0.

Write the final forms in terms showing the propagation properties of the wave equation, i.e., with arguments
((x± ξ)± (t− τ)).

Exercise 46.13
Solve, using the above determined Green function,

utt − c2uxx = 0, 0 < x < 1, t > 0,

ux(0, t) = ux(1, t) = 0,

u(x, 0) = x2(1− x)2, ut(x, 0) = 1.

For c = 1, find u(x, t) at x = 3/4, t = 7/2.
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46.6 Hints

Hint 46.1

Hint 46.2
Take a Fourier transform in x. This will give you an ordinary differential equation Green function problem for Ĝ.

Find the continuity and jump conditions at t = τ . After solving for Ĝ, do the inverse transform with the aid of a
table.

Hint 46.3

Hint 46.4

Hint 46.5

Hint 46.6

Hint 46.7
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Hint 46.8
Use Fourier sine and cosine transforms.

Hint 46.9
The the conformal mapping z = wπ/α to map the sector to the upper half plane. The new problem will be

Gxx +Gyy = δ(x− ξ)δ(y − η), −∞ < x <∞, 0 < y <∞,
G(x, 0, ξ, η) = 0,

G(x, y, ξ, η)→ 0 as x, y →∞.

Solve this problem with the image method.

Hint 46.10

Hint 46.11

Hint 46.12
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46.7 Solutions
Solution 46.1

Gtt − c2Gxx = δ(x− ξ)δ(t− τ),

G(x, t; ξ, τ) = 0 for t < τ.

We take the Fourier transform in x.

Ĝtt + c2ω2G = F [δ(x− ξ)]δ(t− τ), Ĝ(ω, 0; ξ, τ) = Ĝt(ω, 0; ξ, τ) = 0

Now we have an ordinary differential equation Green function problem for Ĝ. We have written the causality
condition, the Green function is zero for t < τ , in terms of initial conditions. The homogeneous solutions of the
ordinary differential equation are

{cos(cωt), sin(cωt)}.

It will be handy to use the fundamental set of solutions at t = τ :{
cos(cω(t− τ)),

1

cω
sin(cω(t− τ))

}
.

We write the solution for Ĝ and invert using the convolution theorem.

Ĝ = F [δ(x− ξ)]H(t− τ)
1

cω
sin(cω(t− τ))

Ĝ = H(t− τ)F [δ(x− ξ)]F
[π
c
H(c(t− τ)− |x|)

]
G = H(t− τ)

π

c

1

2π

∫ ∞
−∞

δ(y − ξ)H(c(t− τ)− |x− y|) dy

G =
1

2c
H(t− τ)H(c(t− τ)− |x− ξ|)

G =
1

2c
H(c(t− τ)− |x− ξ|)
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The Green function for ξ = τ = 0 and c = 1 is plotted in Figure 46.1 on the domain x ∈ (−1..1), t ∈ (0..1).
The Green function is a displacement of height 1

2c
that propagates out from the point x = ξ in both directions

with speed c. The Green function shows the range of influence of a disturbance at the point x = ξ and time
t = τ . The disturbance influences the solution for all ξ − ct < x < ξ + ct and t > τ .
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Figure 46.1: Green function for the wave equation.

Solution 46.2
1. We expand the Green function in eigenfunctions in x.

G(x; ξ) =
∞∑
n=1

an(y) sin

(
(2n− 1)πx

2L

)
We substitute the expansion into the differential equation.

∇2

∞∑
n=1

an(y)

√
2

L
sin

(
(2n− 1)πx

2L

)
= δ(x− ξ)δ(y − η)
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∞∑
n=1

(
a′′n(y)−

(
(2n− 1)π

2L

)2

an(y)

)√
2

L
sin

(
(2n− 1)πx

2L

)
= δ(y − η)

∞∑
n=1

√
2

L
sin

(
(2n− 1)πξ

2L

)√
2

L
sin

(
(2n− 1)πx

2L

)

a′′n(y)−
(

(2n− 1)π

2L

)2

an(y) =

√
2

L
sin

(
(2n− 1)πξ

2L

)
δ(y − η)

From the boundary conditions at y = 0 and y = H, we obtain boundary conditions for the an(y).

a′n(0) = a′n(H) = 0.

The solutions that satisfy the left and right boundary conditions are

an1 = cosh

(
(2n− 1)πy

2L

)
, an2 = cosh

(
(2n− 1)π(H − y)

2L

)
.

The Wronskian of these solutions is

W = −(2n− 1)π

2L
sinh

(
(2n− 1)π

2

)
.

Thus the solution for an(y) is

an(y) =

√
2

L
sin

(
(2n− 1)πξ

2L

) cosh
(

(2n−1)πy<
2L

)
cosh

(
(2n−1)π(H−y>)

2L

)
− (2n−1)π

2L
sinh

(
(2n−1)π

2

)

an(y) = − 2
√

2L

(2n− 1)π
csch

(
(2n− 1)π

2

)
cosh

(
(2n− 1)πy<

2L

)
cosh

(
(2n− 1)π(H − y>)

2L

)
sin

(
(2n− 1)πξ

2L

)
.
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This determines the Green function.

G(x; ξ) = −2
√

2L

π

∞∑
n=1

1

2n− 1
csch

(
(2n− 1)π

2

)
cosh

(
(2n− 1)πy<

2L

)
cosh

(
(2n− 1)π(H − y>)

2L

)
sin

(
(2n− 1)πξ

2L

)
sin

(
(2n− 1)πx

2L

)
2. We seek a solution of the form

G(x; ξ) =
∞∑
m=1
n=1

amn(z)
2√
LH

sin
(mπx

L

)
sin
(nπy
H

)
.

We substitute this into the differential equation.

∇2

∞∑
m=1
n=1

amn(z)
2√
LH

sin
(mπx

L

)
sin
(nπy
H

)
= δ(x− ξ)δ(y − η)δ(z − ζ)

∞∑
m=1
n=1

(
a′′mn(z)−

((mπ
L

)2

+
(nπ
H

)2
)
amn(z)

)
2√
LH

sin
(mπx

L

)
sin
(nπy
H

)

= δ(z − ζ)
∞∑
m=1
n=1

2√
LH

sin

(
mπξ

L

)
sin
(nπη
H

) 2√
LH

sin
(mπx

L

)
sin
(nπy
H

)

a′′mn(z)− π
((m

L

)2

+
( n
H

)2
)
amn(z) =

2√
LH

sin

(
mπξ

L

)
sin
(nπη
H

)
δ(z − ζ)

From the boundary conditions on G, we obtain boundary conditions for the amn.

amn(0) = amn(W ) = 0
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The solutions that satisfy the left and right boundary conditions are

amn1 = sinh

(√(m
L

)2

+
( n
H

)2

πz

)
, amn2 = sinh

(√(m
L

)2

+
( n
H

)2

π(W − z)

)
.

The Wronskian of these solutions is

W = −
√(m

L

)2

+
( n
H

)2

π sinh

(√(m
L

)2

+
( n
H

)2

πW

)
.

Thus the solution for amn(z) is

amn(z) =
2√
LH

sin

(
mπξ

L

)
sin
(nπη
H

)
sinh

(√(
m
L

)2
+
(
n
H

)2
πz<

)
sinh

(√(
m
L

)2
+
(
n
H

)2
π(W − z>)

)
−
√(

m
L

)2
+
(
n
H

)2
π sinh

(√(
m
L

)2
+
(
n
H

)2
πW

)

amn(z) = − 2

πλmn
√
LH

csch (λmnπW ) sin

(
mπξ

L

)
sin
(nπη
H

)
sinh (λmnπz<) sinh (λmnπ(W − z>)) ,

where

λmn =

√(m
L

)2

+
( n
H

)2

.
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This determines the Green function.

G(x; ξ) = − 4

πLH

∞∑
m=1
n=1

1

λmn
csch (λmnπW ) sin

(
mπξ

L

)
sin
(mπx

L

)
sin
(nπη
H

)
sin
(nπy
H

)
sinh (λmnπz<) sinh (λmnπ(W − z>))

3. First we write the problem in circular coordinates.

∇2G = δ(x− ξ)

Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ),

G(r, 0; ρ, ϑ) = G(r, π; ρ, ϑ) = G(0, θ; ρ, ϑ) = G(a, θ; ρ, ϑ) = 0

Because the Green function vanishes at θ = 0 and θ = π we expand it in a series of the form

G =
∞∑
n=1

gn(r) sin(nθ).

We substitute the series into the differential equation.

∞∑
n=1

(
g′′n(r) +

1

r
g′n(r)− n2

r2
gn(r)

)
sin(nθ) =

1

r
δ(r − ρ)

∞∑
n=1

2

π
sin(nϑ) sin(nθ)

g′′n(r) +
1

r
g′n(r)− n2

r2
gn(r) =

2

πr
sin(nϑ)δ(r − ρ)

From the boundary conditions on G, we obtain boundary conditions for the gn.

gn(0) = gn(a) = 0
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The solutions that satisfy the left and right boundary conditions are

gn1 = rn, gn2 =
(r
a

)n
−
(a
r

)n
.

The Wronskian of these solutions is

W =
2nan

r
.

Thus the solution for gn(r) is

gn(r) =
2

πρ
sin(nϑ)

rn<

((
r>
a

)n − ( a
r>

)n)
2nan

ρ

gn(r) =
1

nπ
sin(nϑ)

(r<
a

)n((r>
a

)n
−
(
a

r>

)n)
.

This determines the solution.

G =
∞∑
n=1

1

nπ

(r<
a

)n((r>
a

)n
−
(
a

r>

)n)
sin(nϑ) sin(nθ)

4. First we write the problem in circular coordinates.

Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ),

G(r, 0; ρ, ϑ) = G(r, π/2; ρ, ϑ) = G(0, θ; ρ, ϑ) = Gr(a, θ; ρ, ϑ) = 0

Because the Green function vanishes at θ = 0 and θ = π/2 we expand it in a series of the form

G =
∞∑
n=1

gn(r) sin(2nθ).
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We substitute the series into the differential equation.

∞∑
n=1

(
g′′n(r) +

1

r
g′n(r)− 4n2

r2
gn(r)

)
sin(2nθ) =

1

r
δ(r − ρ)

∞∑
n=1

4

π
sin(2nϑ) sin(2nθ)

g′′n(r) +
1

r
g′n(r)− 4n2

r2
gn(r) =

4

πr
sin(2nϑ)δ(r − ρ)

From the boundary conditions on G, we obtain boundary conditions for the gn.

gn(0) = g′n(a) = 0

The solutions that satisfy the left and right boundary conditions are

gn1 = r2n, gn2 =
(r
a

)2n

+
(a
r

)2n

.

The Wronskian of these solutions is

W = −4na2n

r
.

Thus the solution for gn(r) is

gn(r) =
4

πρ
sin(2nϑ)

r2n
<

((
r>
a

)2n
+
(

a
r>

)2n
)

−4na2n

ρ

gn(r) = − 1

πn
sin(2nϑ)

(r<
a

)2n
((r>

a

)2n

+

(
a

r>

)2n
)

This determines the solution.

G = −
∞∑
n=1

1

πn

(r<
a

)2n
((r>

a

)2n

+

(
a

r>

)2n
)

sin(2nϑ) sin(2nθ)
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Solution 46.3
1. The set

{Xn} =

{
sin

(
(2m− 1)πx

2L

)}∞
m=1

are eigenfunctions of ∇2 and satisfy the boundary conditions Xn(0) = X ′n(L) = 0. The set

{Yn} =
{

cos
(nπy
H

)}∞
n=0

are eigenfunctions of ∇2 and satisfy the boundary conditions Y ′n(0) = Y ′n(H) = 0. The set

{
sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)}∞
m=1,n=0

are eigenfunctions of ∇2 and satisfy the boundary conditions of this problem. We expand the Green function
in a series of these eigenfunctions.

G =
∞∑
m=1

gm0

√
2

LH
sin

(
(2m− 1)πx

2L

)
+
∞∑
m=1
n=1

gmn
2√
LH

sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)

We substitute the series into the Green function differential equation.

∆G = δ(x− ξ)δ(y − η)
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−
∞∑
m=1

gm0

(
(2m− 1)π

2L

)2
√

2

LH
sin

(
(2m− 1)πx

2L

)

−
∞∑
m=1
n=1

gmn

((
(2m− 1)π

2L

)2

+
(nπy
H

)2
)

2√
LH

sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)

=
∞∑
m=1

√
2

LH
sin

(
(2m− 1)πξ

2L

)√
2

LH
sin

(
(2m− 1)πx

2L

)
+
∞∑
m=1
n=1

2√
LH

sin

(
(2m− 1)πξ

2L

)
cos
(nπη
H

) 2√
LH

sin

(
(2m− 1)πx

2L

)
cos
(nπy
H

)
We equate terms and solve for the coefficients gmn.

gm0 = −
√

2

LH

(
2L

(2m− 1)π

)2

sin

(
(2m− 1)πξ

2L

)
gmn = − 2√

LH

1

π2
((

2m−1
2L

)2
+
(
n
H

)2
) sin

(
(2m− 1)πξ

2L

)
cos
(nπη
H

)
This determines the Green function.

2. Note that {√
8

LHW
sin

(
kπx

L

)
, sin

(mπy
H

)
, sin

(nπz
W

)
: k,m, n ∈ Z+

}
is orthonormal and complete on (0 . . . L) × (0 . . . H) × (0 . . .W ). The functions are eigenfunctions of ∇2.
We expand the Green function in a series of these eigenfunctions.

G =
∞∑

k,m,n=1

gkmn

√
8

LHW
sin

(
kπx

L

)
sin
(mπy
H

)
sin
(nπz
W

)
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We substitute the series into the Green function differential equation.

∆G = δ(x− ξ)δ(y − η)δ(z − ζ)

−
∞∑

k,m,n=1

gkmn

((
kπ

L

)2

+
(mπ
H

)2

+
(nπ
W

)2
)√

8

LHW
sin

(
kπx

L

)
sin
(mπy
H

)
sin
(nπz
W

)
=

∞∑
k,m,n=1

√
8

LHW
sin

(
kπξ

L

)
sin
(mπη
H

)
sin

(
nπζ

W

)
√

8

LHW
sin

(
kπx

L

)
sin
(mπy
H

)
sin
(nπz
W

)
We equate terms and solve for the coefficients gkmn.

gkmn = −

√
8

LHW
sin
(
kπξ
L

)
sin
(
mπη
H

)
sin
(
nπζ
W

)
π2
((

k
L

)2
+
(
m
H

)2
+
(
n
W

)2
)

This determines the Green function.

3. The Green function problem is

∆G ≡ Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ).

We seek a set of functions {Θn(θ)Rnm(r)} which are orthogonal and complete on (0 . . . a) × (0 . . . π) and
which are eigenfunctions of the laplacian. For the Θn we choose eigenfunctions of ∂2

∂θ2 .

Θ′′ = −ν2Θ, Θ(0) = Θ(π) = 0

νn = n, Θn = sin(nθ), n ∈ Z+
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Now we look for eigenfunctions of the laplacian.

(RΘn)rr +
1

r
(RΘn)r +

1

r2
(RΘn)θθ = −µ2RΘn

R′′Θn +
1

r
R′Θn −

n2

r2
RΘn = −µ2RΘn

R′′ +
1

r
R′ +

(
µ2 − n2

r2

)
R = 0, R(0) = R(a) = 0

The general solution for R is

R = c1Jn(µr) + c2Yn(µr).

the solution that satisfies the left boundary condition is R = cJn(µr). We use the right boundary condition
to determine the eigenvalues.

µm =
jn,m
a
, Rnm = Jn

(
jn,mr

a

)
, m, n ∈ Z+

here jn,m is the mth root of Jn.

Note that {
sin(nθ)Jn

(
jn,mr

a

)
: m,n ∈ Z+

}
is orthogonal and complete on (r, θ) ∈ (0 . . . a)× (0 . . . π). We use the identities∫ π

0

sin2(nθ) dθ =
π

2
,

∫ 1

0

rJ2
n(jn,mr) dr =

1

2
J2
n+1(jn,m)

to make the functions orthonormal.{
2√

π a|Jn+1(jn,m)|
sin(nθ)Jn

(
jn,mr

a

)
: m,n ∈ Z+

}
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We expand the Green function in a series of these eigenfunctions.

G =
∞∑

n,m=1

gnm
2√

π a|Jn+1(jn,m)|
Jn

(
jn,mr

a

)
sin(nθ)

We substitute the series into the Green function differential equation.

Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ)

−
∞∑

n,m=1

(
jn,m
a

)2

gnm
2√

π a|Jn+1(jn,m)|
Jn

(
jn,mr

a

)
sin(nθ)

=
∞∑

n,m=1

2√
π a|Jn+1(jn,m)|

Jn

(
jn,mρ

a

)
sin(nϑ)

2√
π a|Jn+1(jn,m)|

Jn

(
jn,mr

a

)
sin(nθ)

We equate terms and solve for the coefficients gmn.

gnm = −
(

a

jn,m

)2
2√

π a|Jn+1(jn,m)|
Jn

(
jn,mρ

a

)
sin(nϑ)

This determines the green function.

4. The Green function problem is

∆G ≡ Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ).

We seek a set of functions {Θn(θ)Rnm(r)} which are orthogonal and complete on (0 . . . a)× (0 . . . π/2) and
which are eigenfunctions of the laplacian. For the Θn we choose eigenfunctions of ∂2

∂θ2 .

Θ′′ = −ν2Θ, Θ(0) = Θ(π/2) = 0

νn = 2n, Θn = sin(2nθ), n ∈ Z+
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Now we look for eigenfunctions of the laplacian.

(RΘn)rr +
1

r
(RΘn)r +

1

r2
(RΘn)θθ = −µ2RΘn

R′′Θn +
1

r
R′Θn −

(2n)2

r2
RΘn = −µ2RΘn

R′′ +
1

r
R′ +

(
µ2 − (2n)2

r2

)
R = 0, R(0) = R(a) = 0

The general solution for R is

R = c1J2n(µr) + c2Y2n(µr).

the solution that satisfies the left boundary condition is R = cJ2n(µr). We use the right boundary condition
to determine the eigenvalues.

µm =
j′2n,m
a

, Rnm = J2n

(
j′2n,mr

a

)
, m, n ∈ Z+

here j′n,m is the mth root of J ′n.

Note that {
sin(2nθ)J ′2n

(
j′2n,mr

a

)
: m,n ∈ Z+

}
is orthogonal and complete on (r, θ) ∈ (0 . . . a)× (0 . . . π/2). We use the identities∫ π

0

sin(mθ) sin(nθ) dθ =
π

2
δmn,∫ 1

0

rJν(j
′
ν,mr)Jν(j

′
ν,nr) dr =

j′2ν,n − ν2

2j′2ν,n

(
Jν(j

′
ν,n)
)2
δmn

1823



to make the functions orthonormal. 2j′2n,m
√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

sin(2nθ)J2n

(
j′2n,mr

a

)
: m,n ∈ Z+


We expand the Green function in a series of these eigenfunctions.

G =
∞∑

n,m=1

gnm
2j′2n,m

√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

J2n

(
j′2n,mr

a

)
sin(2nθ)

We substitute the series into the Green function differential equation.

Grr +
1

r
Gr +

1

r2
Gθθ =

1

r
δ(r − ρ)δ(θ − ϑ)

−
∞∑

n,m=1

(
j′2n,m
a

)2

gnm
2j′2n,m

√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

J2n

(
j′2n,mr

a

)
sin(2nθ)

=
∞∑

n,m=1

2j′2n,m
√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

J2n

(
j′2n,mρ

a

)
sin(2nϑ)

2j′2n,m
√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

J2n

(
j′2n,mr

a

)
sin(2nθ)

We equate terms and solve for the coefficients gmn.

gnm = −
(

a

j′2n,m

)2 2j′2n,m
√
π a
√
j′22n,m − 4n2|J2n(j′2n,m)|

J2n

(
j′2n,mρ

a

)
sin(2nϑ)

This determines the green function.
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Solution 46.4
We start with the equation

∇2G = δ(x− ξ)δ(y − η).

We do an odd reflection across the y axis so that G(0, y; ξ, η) = 0.

∇2G = δ(x− ξ)δ(y − η)− δ(x+ ξ)δ(y − η)

Then we do an even reflection across the x axis so that Gy(x, 0; ξ, η) = 0.

∇2G = δ(x− ξ)δ(y − η)− δ(x+ ξ)δ(y − η) + δ(x− ξ)δ(y + η)− δ(x+ ξ)δ(y + η)

We solve this problem using the infinite space Green function.

G =
1

4π
log
(
(x− ξ)2 + (y − η)2

)
− 1

4π
log
(
(x+ ξ)2 + (y − η)2

)
+

1

4π
log
(
(x− ξ)2 + (y + η)2

)
− 1

4π
log
(
(x+ ξ)2 + (y + η)2

)
G =

1

4π
log

(
((x− ξ)2 + (y − η)2) ((x− ξ)2 + (y + η)2)

((x+ ξ)2 + (y − η)2) ((x+ ξ)2 + (y + η)2)

)
Now we solve the boundary value problem.

u(ξ, η) =

∫
S

(
u(x, y)

∂G

∂n
−G∂u(x, y)

∂n

)
dS +

∫
V

G∆u dV

u(ξ, η) =

∫ 0

∞
u(0, y)(−Gx(0, y; ξ, η)) dy +

∫ ∞
0

−G(x, 0; ξ, η)(−uy(x, 0)) dx

u(ξ, η) =

∫ ∞
0

g(y)Gx(0, y; ξ, η) dy +

∫ ∞
0

G(x, 0; ξ, η)h(x) dx

u(ξ, η) = − ξ
π

∫ ∞
0

(
1

ξ2 + (y − η)2
+

1

ξ2 + (y + η)2

)
g(y) dy +

1

2π

∫ ∞
0

log

(
(x− ξ)2 + η2

(x+ ξ)2 + η2

)
h(x) dx

u(x, y) = −x
π

∫ ∞
0

(
1

x2 + (y − η)2
+

1

x2 + (y + η)2

)
g(η) dη +

1

2π

∫ ∞
0

log

(
(x− ξ)2 + y2

(x+ ξ)2 + y2

)
h(ξ) dξ
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Solution 46.5
First we find the infinite space Green function.

Gtt − c2Gxx = δ(x− ξ)δ(t− τ), G = Gt = 0 for t < τ

We solve this problem with the Fourier transform.

Ĝtt + c2ω2Ĝ = F [δ(x− ξ)]δ(t− τ)

Ĝ = F [δ(x− ξ)]H(t− τ)
1

cω
sin(cω(t− τ))

Ĝ = H(t− τ)F [δ(x− ξ)]F
[π
c
H(c(t− τ)− |x|)

]
G = H(t− τ)

π

c

1

2π

∫ ∞
−∞

δ(y − ξ)H(c(t− τ)− |x− y|) dy

G =
1

2c
H(t− τ)H(c(t− τ)− |x− ξ|)

G =
1

2c
H(c(t− τ)− |x− ξ|)

1. So that the Green function vanishes at x = 0 we do an odd reflection about that point.

Gtt − c2Gxx = δ(x− ξ)δ(t− τ)− δ(x+ ξ)δ(t− τ)

G =
1

2c
H(c(t− τ)− |x− ξ|)− 1

2c
H(c(t− τ)− |x+ ξ|)

2. Note that the Green function satisfies the symmetry relation

G(x, t; ξ, τ) = G(ξ,−τ ;x,−t).

This implies that

Gxx = Gξξ, Gtt = Gττ .
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We write the Green function problem and the inhomogeneous differential equation for u in terms of ξ and
τ .

Gττ − c2Gξξ = δ(x− ξ)δ(t− τ) (46.4)

uττ − c2uξξ = Q(ξ, τ) (46.5)

We take the difference of u times Equation 46.4 and G times Equation 46.5 and integrate this over the
domain (0,∞)× (0, t+).∫ t+

0

∫ ∞
0

(uδ(x− ξ)δ(t− τ)−GQ) dξ dτ =

∫ t+

0

∫ ∞
0

(
uGττ − uττG− c2 (uGξξ − uξξG)

)
dξ dτ

u(x, t) =

∫ t+

0

∫ ∞
0

GQdξ dτ +

∫ t+

0

∫ ∞
0

(
∂

∂τ
(uGτ − uτG)− c2 ∂

∂ξ
(uGξ − uξG)

)
dξ dτ

u(x, t) =

∫ t+

0

∫ ∞
0

GQdξ dτ +

∫ ∞
0

[uGτ − uτG]t+0 dξ − c2

∫ t+

0

[uGξ − uξG]∞0 dτ

u(x, t) =

∫ t+

0

∫ ∞
0

GQdξ dτ −
∫ ∞

0

[uGτ − uτG]τ=0 dξ + c2

∫ t+

0

[uGξ]ξ=0 dτ

We consider the case Q(x, t) = f(x) = g(x) = 0.

u(x, t) = c2

∫ t+

0

h(τ)Gξ(x, t; 0, τ) dτ

We calculate Gξ.

G =
1

2c
(H(c(t− τ)− |x− ξ|)−H(c(t− τ)− |x+ ξ|))

Gξ =
1

2c
(δ(c(t− τ)− |x− ξ|)(−1) sign (x− ξ)(−1)− δ(c(t− τ)− |x+ ξ|)(−1) sign (x+ ξ))

Gξ(x, t; 0, η) =
1

c
δ(c(t− τ)− |x|) sign (x)
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We are interested in x > 0.

Gξ(x, t; 0, η) =
1

c
δ(c(t− τ)− x)

Now we can calculate the solution u.

u(x, t) = c2

∫ t+

0

h(τ)
1

c
δ(c(t− τ)− x) dτ

u(x, t) =

∫ t+

0

h(τ)δ
(

(t− τ)− x

c

)
dτ

u(x, t) = h
(
t− x

c

)
3. The boundary condition influences the solution u(x1, t1) only at the point t = t1 − x1/c. The contribution

from the boundary condition u(0, t) = h(t) is a wave moving to the right with speed c.

Solution 46.6

gtt − c2gxx = 0, g(x, 0; ξ, τ) = δ(x− ξ), gt(x, 0; ξ, τ) = 0

ĝtt + c2ω2ĝxx = 0, ĝ(x, 0; ξ, τ) = F [δ(x− ξ)], ĝt(x, 0; ξ, τ) = 0

ĝ = F [δ(x− ξ)] cos(cωt)

ĝ = F [δ(x− ξ)]F [π(δ(x+ ct) + δ(x− ct))]

g =
1

2π

∫ ∞
−∞

δ(η − ξ)π(δ(x− η + ct) + δ(x− η − ct)) dη

g(x, t; ξ) =
1

2
(δ(x− ξ + ct) + δ(x− ξ − ct))
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γtt − c2γxx = 0, γ(x, 0; ξ, τ) = 0, γt(x, 0; ξ, τ) = δ(x− ξ)
γ̂tt + c2ω2γ̂xx = 0, γ̂(x, 0; ξ, τ) = 0, γ̂t(x, 0; ξ, τ) = F [δ(x− ξ)]

γ̂ = F [δ(x− ξ)] 1

cω
sin(cωt)

γ̂ = F [δ(x− ξ)]F
[π
c

(H(x+ ct) +H(x− ct))
]

γ =
1

2π

∫ ∞
−∞

δ(η − ξ)π
c

(H(x− η + ct) +H(x− η − ct)) dη

γ(x, t; ξ) =
1

2c
(H(x− ξ + ct) +H(x− ξ − ct))

Solution 46.7

u(x, t) =

∫ ∞
0

∫ ∞
−∞

G(x, t; ξ, τ)f(ξ, τ) dξ dτ +

∫ ∞
−∞

g(x, t; ξ)p(ξ) dξ +

∫ ∞
−∞

γ(x, t; ξ)q(ξ) dξ

u(x, t) =
1

2c

∫ ∞
0

∫ ∞
−∞

H(t− τ)(H(x− ξ + c(t− τ))−H(x− ξ − c(t− τ)))f(ξ, τ) dξ dτ

+
1

2

∫ ∞
−∞

(δ(x− ξ + ct) + δ(x− ξ − ct))p(ξ) dξ +
1

2c

∫ ∞
−∞

(H(x− ξ + ct) +H(x− ξ − ct))q(ξ) dξ

u(x, t) =
1

2c

∫ t

0

∫ ∞
−∞

(H(x− ξ + c(t− τ))−H(x− ξ − c(t− τ)))f(ξ, τ) dξ dτ

+
1

2
(p(x+ ct) + p(x− ct)) +

1

2c

∫ x+ct

x−ct
q(ξ) dξ
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u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

f(ξ, τ) dξ dτ +
1

2
(p(x+ ct) + p(x− ct)) +

1

2c

∫ x+ct

x−ct
q(ξ) dξ

This solution demonstrates the domain of dependence of the solution. The first term is an integral over the
triangle domain {(ξ, τ) : 0 < τ < t, x − cτ < ξ < x + cτ}. The second term involves only the points (x ± ct, 0).
The third term is an integral on the line segment {(ξ, 0) : x− ct < ξ < x+ ct}. In totallity, this is just the triangle
domain. This is shown graphically in Figure 46.2.

x-ct x+ct

Domain of
Dependence

x,t

Figure 46.2: Domain of dependence for the wave equation.

Solution 46.8
Single Sum Representation. First we find the eigenfunctions of the homogeneous problem ∆u− k2u = 0. We
substitute the separation of variables, u(x, y) = X(x)Y (y) into the partial differential equation.

X ′′Y +XY ′′ − k2XY = 0

X ′′

X
= k2 − Y ′′

Y
= −λ2
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We have the regular Sturm-Liouville eigenvalue problem,

X ′′ = −λ2X, X(0) = X(a) = 0,

which has the solutions,

λn =
nπ

a
, Xn = sin

(nπx
a

)
, n ∈ N.

We expand the solution u in a series of these eigenfunctions.

G(x, y; ξ, η) =
∞∑
n=1

cn(y) sin
(nπx

a

)
We substitute this series into the partial differential equation to find equations for the cn(y).

∞∑
n=1

(
−
(nπ
a

)2

cn(y) + c′′n(y)− k2cn(y)

)
sin
(nπx

a

)
= δ(x− ξ)δ(y − η)

The series expansion of the right side is,

δ(x− ξ)δ(y − η) =
∞∑
n=1

dn(y) sin
(nπx

a

)
dn(y) =

2

a

∫ a

0

δ(x− ξ)δ(y − η) sin
(nπx

a

)
dx

dn(y) =
2

a
sin

(
nπξ

a

)
δ(y − η).

The the equations for the cn(y) are

c′′n(y)−
(
k2 +

(nπ
a

)2
)
cn(y) =

2

a
sin

(
nπξ

a

)
δ(y − η), cn(0) = cn(b) = 0.
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The homogeneous solutions are {cosh(σny), sinh(σny)}, where σn =
√
k2(nπ/a)2. The solutions that satisfy the

boundary conditions at y = 0 and y = b are, sinh(σny) and sinh(σn(y− b)), respectively. The Wronskian of these
solutions is,

W (y) =

∣∣∣∣ sinh(σny) sinh(σn(y − b))
σn cosh(σny) σn cosh(σn(y − b))

∣∣∣∣
= σn (sinh(σny) cosh(σn(y − b))− sinh(σn(y − b)) cosh(σny))

= σn sinh(σnb).

The solution for cn(y) is

cn(y) =
2

a
sin

(
nπξ

a

)
sinh(σny<) sinh(σn(y> − b))

σn sinh(σnb)
.

The Green function for the partial differential equation is

G(x, y; ξ, η) =
2

a

∞∑
n=1

sinh(σny<) sinh(σn(y> − b))
σn sinh(σnb)

sin
(nπx

a

)
sin

(
nπξ

a

)
.

Solution 46.9
We take the Fourier cosine transform in x of the partial differential equation and the boundary condition along
y = 0.

Gxx +Gyy − k2G = δ(x− ξ)δ(y − η)

−α2Ĝ(α, y)− 1

π
Ĝx(0, y) + Ĝyy(α, y)− k2Ĝ(α, y) =

1

π
cos(αξ)δ(y − η)

Ĝyy(α, y)− (k2 + α2)Ĝ(α, y) ==
1

π
cos(αξ)δ(y − η), Ĝ(α, 0) = 0
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Then we take the Fourier sine transform in y.

−β2 ˆ̂
G(α, β) +

β

π
ˆ̂
G(α, 0)− (k2 + α2)

ˆ̂
G(α, β) =

1

π2
cos(αξ) sin(βη)

ˆ̂
G = − cos(αξ) sin(βη)

π2(k2 + α2 + β2)

We take two inverse transforms to find the solution. For one integral representation of the Green function we take
the inverse sine transform followed by the inverse cosine transform.

ˆ̂
G = − cos(αξ)

sin(βη)

π

1

π(k2 + α2 + β2)

ˆ̂
G = − cos(αξ)Fs[δ(y − η)]Fc

[
1√

k2 + α2
e−
√
k2+α2y

]
Ĝ(α, y) = − cos(αξ)

1

2π

∫ ∞
0

δ(z − η)
1√

k2 + α2

(
exp

(
−
√
k2 + α2|y − z|

)
− exp

(
−
√
k2 + α2(y + z)

))
dz

Ĝ(α, y) = − cos(αξ)

2π
√
k2 + α2

(
exp

(
−
√
k2 + α2|y − η|

)
− exp

(
−
√
k2 + α2(y + η)

))
G(x, y; ξ, η) = − 1

π

∫ ∞
0

cos(αξ)√
k2 + α2

(
exp

(
−
√
k2 + α2|y − η|

)
− exp

(
−
√
k2 + α2(y + η)

))
dα

For another integral representation of the Green function, we take the inverse cosine transform followed by the
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inverse sine transform.

ˆ̂
G(α, β) = − sin(βη)

cos(αξ)

π

1

π(k2 + α2 + β2)

ˆ̂
G(α, β) = − sin(βη)Fc[δ(x− ξ)]Fc

[
1√

k2 + β2
e−
√
k2+β2x

]

Ĝ(x, β) = − sin(βη)
1

2π

∫ ∞
0

δ(z − ξ) 1√
k2 + β2

(
e−
√
k2+β2|x−z| + e−

√
k2+β2(x+z)

)
dz

Ĝ(x, β) = − sin(βη)
1

2π

1√
k2 + β2

(
e−
√
k2+β2|x−ξ| + e−

√
k2+β2(x+ξ)

)
G(x, y; ξ, η) = − 1

π

∫ ∞
0

sin(βy) sin(βη)√
k2 + β2

(
e−
√
k2+β2|x−ξ| + e−

√
k2+β2(x+ξ)

)
dβ

Solution 46.10
The problem is:

Grr +
1

r
Gr +

1

r2
Gθθ =

δ(r − ρ)δ(θ − ϑ)

r
, 0 < r <∞, 0 < θ < α,

G(r, 0, ρ, ϑ) = G(r, α, ρ, ϑ) = 0,

G(0, θ, ρ, ϑ) = 0

G(r, θ, ρ, ϑ)→ 0 as r →∞.

Let w = r eiθ and z = x + iy. We use the conformal mapping, z = wπ/α to map the sector to the upper half z
plane. The problem is (x, y) space is

Gxx +Gyy = δ(x− ξ)δ(y − η), −∞ < x <∞, 0 < y <∞,
G(x, 0, ξ, η) = 0,

G(x, y, ξ, η)→ 0 as x, y →∞.
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We will solve this problem with the method of images. Note that the solution of,

Gxx +Gyy = δ(x− ξ)δ(y − η)− δ(x− ξ)δ(y + η), −∞ < x <∞, −∞ < y <∞,
G(x, y, ξ, η)→ 0 as x, y →∞,

satisfies the condition, G(x, 0, ξ, η) = 0. Since the infinite space Green function for the Laplacian in two dimensions
is

1

4π
log
(
(x− ξ)2 + (y − η)2

)
,

the solution of this problem is,

G(x, y, ξ, η) =
1

4π
log
(
(x− ξ)2 + (y − η)2

)
− 1

4π
log
(
(x− ξ)2 + (y + η)2

)
=

1

4π
log

(
(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2

)
.

Now we solve for x and y in the conformal mapping.

z = wπ/α = (r eiθ)π/α

x+ iy = rπ/α(cos(θπ/α) + i sin(θπ/α))

x = rπ/α cos(θπ/α), y = rπ/α sin(θπ/α)

We substitute these expressions into G(x, y, ξ, η) to obtain G(r, θ, ρ, ϑ).

G(r, θ, ρ, ϑ) =
1

4π
log

(
(rπ/α cos(θπ/α)− ρπ/α cos(ϑπ/α))2 + (rπ/α sin(θπ/α)− ρπ/α sin(ϑπ/α))2

(rπ/α cos(θπ/α)− ρπ/α cos(ϑπ/α))2 + (rπ/α sin(θπ/α) + ρπ/α sin(ϑπ/α))2

)
=

1

4π
log

(
r2π/α + ρ2π/α − 2rπ/αρπ/α cos(π(θ − ϑ)/α)

r2π/α + ρ2π/α − 2rπ/αρπ/α cos(π(θ + ϑ)/α)

)
=

1

4π
log

(
(r/ρ)π/α/2 + (ρ/r)π/α/2− cos(π(θ − ϑ)/α)

(r/ρ)π/α/2 + (ρ/r)π/α/2− cos(π(θ + ϑ)/α)

)
=

1

4π
log

(
eπ log(r/ρ)/α/2 + eπ log(ρ/r)/α/2− cos(π(θ − ϑ)/α)

eπ log(r/ρ)/α/2 + eπ log(ρ/r)/α/2− cos(π(θ + ϑ)/α)

)
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G(r, θ, ρ, ϑ) =
1

4π
log

cosh
(
π/α
log

r
ρ

)
− cos(π(θ − ϑ)/α)

cosh
(
π/α
log

r
ρ

)
− cos(π(θ + ϑ)/α)


Now recall that the solution of

∆u = f(x),

subject to the boundary condition,

u(x) = g(x),

is

u(x) =

∫ ∫
f(ξ)G(x; ξ) dAξ +

∮
g(ξ)∇ξG(x; ξ) · n̂ dsξ.

The normal directions along the lower and upper edges of the sector are −θ̂ and θ̂, respectively. The gradient in
polar coordinates is

∇ξ = ρ̂
∂

∂ρ
+
ϑ̂

ρ

∂

∂ϑ
.

We only need to compute the ϑ̂ component of the gradient of G. This is

1

ρ

∂

∂ρ
G =

sin(π(θ − ϑ)/α)

4αρ
(

cosh
(
π
α

log r
ρ

)
− cos(π(θ − ϑ)/α)

) +
sin(π(θ − ϑ)/α)

4αρ
(

cosh
(
π
α

log r
ρ

)
− cos(π(θ + ϑ)/α)

)
Along ϑ = 0, this is

1

ρ
Gϑ(r, θ, ρ, 0) =

sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
− cos(πθ/α)

) .
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Along ϑ = α, this is

1

ρ
Gϑ(r, θ, ρ, α) = − sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
+ cos(πθ/α)

) .
The solution of our problem is

u(r, θ) =

∫ c

∞
− sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
+ cos(πθ/α)

) dρ+

∫ ∞
c

− sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
− cos(πθ/α)

) dρ
u(r, θ) =

∫ ∞
c

− sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
− cos(πθ/α)

) +
sin(πθ/α)

2αρ
(

cosh
(
π
α

log r
ρ

)
+ cos(πθ/α)

) dρ
u(r, θ) = − 1

α
sin

(
πθ

α

)
cos

(
πθ

α

)∫ ∞
c

1

ρ
(

cosh2
(
π
α

log r
ρ

)
− cos2

(
πθ
α

)) dρ
u(r, θ) = − 1

α
sin

(
πθ

α

)
cos

(
πθ

α

)∫ ∞
log(c/r)

1

cosh2
(
πx
α

)
− cos2

(
πθ
α

) dx
u(r, θ) = − 2

α
sin

(
πθ

α

)
cos

(
πθ

α

)∫ ∞
log(c/r)

1

cosh
(

2πx
α

)
− cos

(
2πθ
α

) dx
Solution 46.11
First consider the Green function for

ut − κuxx = 0, u(x, 0) = f(x).

The differential equation and initial condition is

Gt = κGxx, G(x, 0; ξ) = δ(x− ξ).
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The Green function is a solution of the homogeneous heat equation for the initial condition of a unit amount of
heat concentrated at the point x = ξ. You can verify that the Green function is a solution of the heat equation
for t > 0 and that it has the property: ∫ ∞

−∞
G(x, t; ξ) dx = 1, for t > 0.

This property demonstrates that the total amount of heat is the constant 1. At time t = 0 the heat is concentrated
at the point x = ξ. As time increases, the heat diffuses out from this point.

The solution for u(x, t) is the linear combination of the Green functions that satisfies the initial condition
u(x, 0) = f(x). This linear combination is

u(x, t) =

∫ ∞
−∞

G(x, t; ξ)f(ξ) dξ.

G(x, t; 1) and G(x, t;−1) are plotted in Figure 46.3 for the domain t ∈ [1/100..1/4], x ∈ [−2..2] and κ = 1.
Now we consider the problem

ut = κuxx, u(x, 0) = f(x) for x > 0, u(0, t) = 0.

Note that the solution of

Gt = κGxx, x > 0, t > 0,

G(x, 0; ξ) = δ(x− ξ)− δ(x+ ξ),

satisfies the boundary condition G(0, t; ξ) = 0. We write the solution as the difference of infinite space Green
functions.

G(x, t; ξ) =
1√

4πκt
e−(x−ξ)2/(4κt) − 1√

4πκt
e−(x+ξ)2/(4κt)

=
1√

4πκt

(
e−(x−ξ)2/(4κt) − e−(x+ξ)2/(4κt)

)
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Figure 46.3: G(x, t; 1) and G(x, t;−1)

G(x, t; ξ) =
1√

4πκt
e−(x2+ξ2)/(4κt) sinh

(
xξ

2κt

)
Next we consider the problem

ut = κuxx, u(x, 0) = f(x) for x > 0, ux(0, t) = 0.

Note that the solution of

Gt = κGxx, x > 0, t > 0,

G(x, 0; ξ) = δ(x− ξ) + δ(x+ ξ),
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satisfies the boundary condition Gx(0, t; ξ) = 0. We write the solution as the sum of infinite space Green functions.

G(x, t; ξ) =
1√

4πκt
e−(x−ξ)2/(4κt) +

1√
4πκt

e−(x+ξ)2/(4κt)

G(x, t; ξ) =
1√

4πκt
e−(x2+ξ2)/(4κt) cosh

(
xξ

2κt

)
The Green functions for the two boundary conditions are shown in Figure 46.4.
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Figure 46.4: Green functions for the boundary conditions u(0, t) = 0 and ux(0, t) = 0.

Solution 46.12
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a) The Green function problem is

Gtt − c2Gxx = δ(t− τ)δ(x− ξ), 0 < x < L, t > 0,

G(0, t; ξ, τ) = Gx(L, t; ξ, τ) = 0,

G(x, t; ξ, τ) = 0 for t < τ.

The condition that G is zero for t < τ makes this a causal Green function. We solve this problem by expanding
G in a series of eigenfunctions of the x variable. The coefficients in the expansion will be functions of t. First we
find the eigenfunctions of x in the homogeneous problem. We substitute the separation of variables u = X(x)T (t)
into the homogeneous partial differential equation.

XT ′′ = c2X ′′T

T ′′

c2T
=
X ′′

X
= −λ2

The eigenvalue problem is

X ′′ = −λ2X, X(0) = X ′(L) = 0,

which has the solutions,

λn =
(2n− 1)π

2L
, Xn = sin

(
(2n− 1)πx

2L

)
, n ∈ N.

The series expansion of the Green function has the form,

G(x, t; ξ, τ) =
∞∑
n=1

gn(t) sin

(
(2n− 1)πx

2L

)
.

We determine the coefficients by substituting the expansion into the Green function differential equation.

Gtt − c2Gxx = δ(x− ξ)δ(t− τ)
∞∑
n=1

(
g′′n(t) +

(
(2n− 1)πc

2L

)2

gn(t)

)
sin

(
(2n− 1)πx

2L

)
= δ(x− ξ)δ(t− τ)
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We need to expand the right side of the equation in the sine series

δ(x− ξ)δ(t− τ) =
∞∑
n=1

dn(t) sin

(
(2n− 1)πx

2L

)
dn(t) =

2

L

∫ L

0

δ(x− ξ)δ(t− τ) sin

(
(2n− 1)πx

2L

)
dx

dn(t) =
2

L
sin

(
(2n− 1)πξ

2L

)
δ(t− τ)

By equating coefficients in the sine series, we obtain ordinary differential equation Green function problems for
the gn’s.

g′′n(t; τ) +

(
(2n− 1)πc

2L

)2

gn(t; τ) =
2

L
sin

(
(2n− 1)πξ

2L

)
δ(t− τ)

From the causality condition for G, we have the causality conditions for the gn’s,

gn(t; τ) = g′n(t; τ) = 0 for t < τ.

The continuity and jump conditions for the gn are

gn(τ+; τ) = 0, g′n(τ+; τ) =
2

L
sin

(
(2n− 1)πξ

2L

)
.

A set of homogeneous solutions of the ordinary differential equation are{
cos

(
(2n− 1)πct

2L

)
, sin

(
(2n− 1)πct

2L

)}
Since the continuity and jump conditions are given at the point t = τ , a handy set of solutions to use for this
problem is the fundamental set of solutions at that point:{

cos

(
(2n− 1)πc(t− τ)

2L

)
,

2L

(2n− 1)πc
sin

(
(2n− 1)πc(t− τ)

2L

)}
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The solution that satisfies the causality condition and the continuity and jump conditions is,

gn(t; τ) =
4

(2n− 1)πc
sin

(
(2n− 1)πξ

2L

)
sin

(
(2n− 1)πc(t− τ)

2L

)
H(t− τ).

Substituting this into the sum yields,

G(x, t; ξ, τ) =
4

πc
H(t− τ)

∞∑
n=1

1

2n− 1
sin

(
(2n− 1)πξ

2L

)
sin

(
(2n− 1)πc(t− τ)

2L

)
sin

(
(2n− 1)πx

2L

)
.

We use trigonometric identities to write this in terms of traveling waves.

G(x, t; ξ, τ) =
1

πc
H(t− τ)

∞∑
n=1

1

2n− 1

(
sin

(
(2n− 1)π((x− ξ)− c(t− τ))

2L

)
+sin

(
(2n− 1)π((x− ξ) + c(t− τ))

2L

)
− sin

(
(2n− 1)π((x+ ξ)− c(t− τ))

2L

)
− sin

(
(2n− 1)π((x+ ξ) + c(t− τ))

2L

))

b) Now we consider the Green function with the boundary conditions,

ux(0, t) = ux(L, t) = 0.

First we find the eigenfunctions in x of the homogeneous problem. The eigenvalue problem is

X ′′ = −λ2X, X ′(0) = X ′(L) = 0,
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which has the solutions,

λ0 = 0, X0 = 1,

λn =
nπ

L
, Xn = cos

(nπx
L

)
, n = 1, 2, . . . .

The series expansion of the Green function for t > τ has the form,

G(x, t; ξ, τ) =
1

2
g0(t) +

∞∑
n=1

gn(t) cos
(nπx
L

)
.

(Note the factor of 1/2 in front of g0(t). With this, the integral formulas for all the coefficients are the same.) We
determine the coefficients by substituting the expansion into the partial differential equation.

Gtt − c2Gxx = δ(x− ξ)δ(t− τ)

1

2
g′′0(t) +

∞∑
n=1

(
g′′n(t) +

(nπc
L

)2

gn(t)

)
cos
(nπx
L

)
= δ(x− ξ)δ(t− τ)

We expand the right side of the equation in the cosine series.

δ(x− ξ)δ(t− τ) =
1

2
d0(t) +

∞∑
n=1

dn(t) cos
(nπx
L

)
dn(t) =

2

L

∫ L

0

δ(x− ξ)δ(t− τ) cos
(nπx
L

)
dx

dn(t) =
2

L
cos

(
nπξ

L

)
δ(t− τ)

By equating coefficients in the cosine series, we obtain ordinary differential equations for the gn.

g′′n(t; τ) +
(nπc
L

)2

gn(t; τ) =
2

L
cos

(
nπξ

L

)
δ(t− τ), n = 0, 1, 2, . . .

1844



From the causality condition for G, we have the causality condiions for the gn,

gn(t; τ) = g′n(t; τ) = 0 for t < τ.

The continuity and jump conditions for the gn are

gn(τ+; τ) = 0, g′n(τ+; τ) =
2

L
cos

(
nπξ

L

)
.

The homogeneous solutions of the ordinary differential equation for n = 0 and n > 0 are respectively,

{1, t},
{

cos

(
nπct

L

)
, sin

(
nπct

L

)}
.

Since the continuity and jump conditions are given at the point t = τ , a handy set of solutions to use for this
problem is the fundamental set of solutions at that point:

{1, t− τ},
{

cos

(
nπc(t− τ)

L

)
,
L

nπc
sin

(
nπc(t− τ)

L

)}
.

The solutions that satisfy the causality condition and the continuity and jump conditions are,

g0(t) =
2

L
(t− τ)H(t− τ),

gn(t) =
2

nπc
cos

(
nπξ

L

)
sin

(
nπc(t− τ)

L

)
H(t− τ).

Substituting this into the sum yields,

G(x, t; ξ, τ) = H(t− τ)

(
t− τ
L

+
2

πc

∞∑
n=1

1

n
cos

(
nπξ

L

)
sin

(
nπc(t− τ)

L

)
cos
(nπx
L

))
.

We can write this as the sum of traveling waves.
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G(x, t; ξ, τ) =
t− τ
L

H(t−τ)+
1

2πc
H(t−τ)

∞∑
n=1

1

n

(
− sin

(
nπ((x− ξ)− c(t− τ))

2L

)
+ sin

(
nπ((x− ξ) + c(t− τ))

2L

)
− sin

(
nπ((x+ ξ)− c(t− τ))

2L

)
+ sin

(
nπ((x+ ξ) + c(t− τ))

2L

))

Solution 46.13
First we derive Green’s identity for this problem. We consider the integral of uL[v] − L[u]v on the domain
0 < x < 1, 0 < t < T . ∫ T

0

∫ 1

0

(uL[v]− L[u]v) dx dt∫ T

0

∫ 1

0

(
u(vtt − c2vxx − (utt − c2uxx)v

)
dx dt∫ T

0

∫ 1

0

((
∂

∂x
,
∂

∂t

)
·
(
−c2(uvx − uxv), uvt − utv

))
dx dt

Now we can use the divergence theorem to write this as an integral along the boundary of the domain.∮
∂Ω

(
−c2(uvx − uxv), uvt − utv

)
· n ds

The domain and the outward normal vectors are shown in Figure 46.5.
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Figure 46.5: Outward normal vectors of the domain.

Writing out the boundary integrals, Green’s identity for this problem is,

∫ T

0

∫ 1

0

(
u(vtt − c2vxx)− (utt − c2uxx)v

)
dx dt = −

∫ 1

0

(uvt − utv)t=0 dx

+

∫ 0

1

(uvt − utv)t=T dx− c2

∫ T

0

(uvx − uxv)x=1 dt+ c2

∫ 1

T

(uvx − uxv)x=0 dt

The Green function problem is

Gtt − c2Gxx = δ(x− ξ)δ(t− τ), 0 < x, ξ < 1, t, τ > 0,

Gx(0, t; ξ, τ) = Gx(1, t; ξ, τ) = 0, t > 0, G(x, t; ξ, τ) = 0 for t < τ.
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If we consider G as a function of (ξ, τ) with (x, t) as parameters, then it satisfies:

Gττ − c2Gξξ = δ(x− ξ)δ(t− τ),

Gξ(x, t; 0, τ) = Gξ(x, t; 1, τ) = 0, τ > 0, G(x, t; ξ, τ) = 0 for τ > t.

Now we apply Green’s identity for u = u(ξ, τ), (the solution of the wave equation), and v = G(x, t; ξ, τ), (the
Green function), and integrate in the (ξ, τ) variables. The left side of Green’s identity becomes:∫ T

0

∫ 1

0

(
u(Gττ − c2Gξξ)− (uττ − c2uξξ)G

)
dξ dτ∫ T

0

∫ 1

0

(u(δ(x− ξ)δ(t− τ))− (0)G) dξ dτ

u(x, t).

Since the normal derivative of u and G vanish on the sides of the domain, the integrals along ξ = 0 and ξ = 1 in
Green’s identity vanish. If we take T > t, then G is zero for τ = T and the integral along τ = T vanishes. The
one remaining integral is

−
∫ 1

0

(u(ξ, 0)Gτ (x, t; ξ, 0)− uτ (ξ, 0)G(x, t; ξ, 0) dξ.

Thus Green’s identity allows us to write the solution of the inhomogeneous problem.

u(x, t) =

∫ 1

0

(uτ (ξ, 0)G(x, t; ξ, 0)− u(ξ, 0)Gτ (x, t; ξ, 0)) dξ.

With the specified initial conditions this becomes

u(x, t) =

∫ 1

0

(G(x, t; ξ, 0)− ξ2(1− ξ)2Gτ (x, t; ξ, 0)) dξ.
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Now we substitute in the Green function that we found in the previous exercise. The Green function and its
derivative are,

G(x, t; ξ, 0) = t+
∞∑
n=1

2

nπc
cos(nπξ) sin(nπct) cos(nπx),

Gτ (x, t; ξ, 0) = −1− 2
∞∑
n=1

cos(nπξ) cos(nπct) cos(nπx).

The integral of the first term is,

∫ 1

0

(
t+

∞∑
n=1

2

nπc
cos(nπξ) sin(nπct) cos(nπx)

)
dξ = t.

The integral of the second term is

∫ 1

0

ξ2(1− ξ)2

(
1 + 2

∞∑
n=1

cos(nπξ) cos(nπct) cos(nπx)

)
dξ =

1

30
− 3

∞∑
n=1

1

n4π4
cos(2nπx) cos(2nπct).

Thus the solution is

u(x, t) =
1

30
+ t− 3

∞∑
n=1

1

n4π4
cos(2nπx) cos(2nπct).

For c = 1, the solution at x = 3/4, t = 7/2 is,

u(3/4, 7/2) =
1

30
+

7

2
− 3

∞∑
n=1

1

n4π4
cos(3nπ/2) cos(7nπ).
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Note that the summand is nonzero only for even terms.

u(3/4, 7/2) =
53

15
− 3

16pi4

∞∑
n=1

1

n4
cos(3nπ) cos(14nπ)

=
53

15
− 3

16pi4

∞∑
n=1

(−1)n

n4

=
53

15
− 3

16pi4
−7π4

720

u(3/4, 7/2) =
12727

3840

1850



Chapter 47

Conformal Mapping

1851



47.1 Exercises
Exercise 47.1
ζ = ξ + iη is an analytic function of z, ζ = ζ(z). We assume that ζ ′(z) is nonzero on the domain of interest.
u(x, y) is an arbitrary smooth function of x and y. When expressed in terms of ξ and η, u(x, y) = υ(ξ, η). In
Exercise 10.13 we showed that

∂2υ

∂ξ2
+
∂2υ

∂η2
=

∣∣∣∣dζdz

∣∣∣∣−2(
∂2u

∂x2
+
∂2u

∂y2

)
.

1. Show that if u satisfies Laplace’s equation in the z-plane,

uxx + uyy = 0,

then υ satisfies Laplace’s equation in the ζ-plane,

υξξ + υηη = 0,

2. Show that if u satisfies Helmholtz’s equation in the z-plane,

uxx + uyy = λu,

then in the ζ-plane υ satisfies

υξξ + υηη = λ

∣∣∣∣dzdζ

∣∣∣∣2 υ.
3. Show that if u satisfies Poisson’s equation in the z-plane,

uxx + uyy = f(x, y),

then υ satisfies Poisson’s equation in the ζ-plane,

υξξ + υηη =

∣∣∣∣dzdζ

∣∣∣∣2 φ(ξ, η),

where φ(ξ, η) = f(x, y).
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4. Show that if in the z-plane, u satisfies the Green function problem,

uxx + uyy = δ(x− x0)δ(y − y0),

then in the ζ-plane, υ satisfies the Green function problem,

υξξ + υηη = δ(ξ − ξ0)δ(η − η0).

Exercise 47.2
A semi-circular rod of infinite extent is maintained at temperature T = 0 on the flat side and at T = 1 on the
curved surface:

x2 + y2 = 1, y > 0.

Use the conformal mapping

w = ξ + iη =
1 + z

1− z
, z = x+ iy,

to formulate the problem in terms of ξ and η. Solve the problem in terms of these variables. This problem is
solved with an eigenfunction expansion in Exercise ??. Verify that the two solutions agree.

Exercise 47.3
Consider Laplace’s equation on the domain −∞ < x <∞, 0 < y < π, subject to the mixed boundary conditions,

u = 1 on y = 0, x > 0,

u = 0 on y = π, x > 0,

uy = 0 on y = 0, y = π, x < 0.

Because of the mixed boundary conditions, (u and uy are given on separate parts of the same boundary), this
problem cannot be solved with separation of variables. Verify that the conformal map,

ζ = cosh−1( ez),
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with z = x + iy, ζ = ξ + iη maps the infinite interval into the semi-infinite interval, ξ > 0, 0 < η < π. Solve
Laplace’s equation with the appropriate boundary conditions in the ζ plane by inspection. Write the solution u
in terms of x and y.
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47.2 Hints
Hint 47.1

Hint 47.2
Show that w = (1 + z)/(1 − z) maps the semi-disc, 0 < r < 1, 0 < θ < π to the first quadrant of the w plane.
Solve the problem for v(ξ, η) by taking Fourier sine transforms in ξ and η.

To show that the solution for v(ξ, η) is equivalent to the series expression for u(r, θ), first find an analytic
function g(w) of which v(ξ, η) is the imaginary part. Change variables to z to obtain the analytic function
f(z) = g(w). Expand f(z) in a Taylor series and take the imaginary part to show the equivalence of the solutions.

Hint 47.3
To see how the boundary is mapped, consider the map,

z = log(cosh ζ).

The problem in the ζ plane is,

vξξ + vηη = 0, ξ > 0, 0 < η < π,

vξ(0, η) = 0, v(ξ, 0) = 1, v(ξ, π) = 0.

To solve this, find a plane that satisfies the boundary conditions.
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47.3 Solutions
Solution 47.1

∂2υ

∂ξ2
+
∂2υ

∂η2
=

∣∣∣∣dζdz

∣∣∣∣−2(
∂2u

∂x2
+
∂2u

∂y2

)
.

1.

uxx + uyy = 0∣∣∣∣dζdz

∣∣∣∣2 (υξξ + υηη) = 0

υξξ + υηη = 0

2.

uxx + uyy = λu∣∣∣∣dζdz

∣∣∣∣2 (υξξ + υηη) = λυ

υξξ + υηη = λ

∣∣∣∣dzdζ

∣∣∣∣2 υ
3.

uxx + uyy = f(x, y)∣∣∣∣dζdz

∣∣∣∣2 (υξξ + υηη) = φ(ξ, η)

υξξ + υηη =

∣∣∣∣dzdζ

∣∣∣∣2 φ(ξ, η)
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4. The Jacobian of the mapping is

J =

∣∣∣∣xξ yξ
xη yη

∣∣∣∣ = xξyη − xηyξ = x2
ξ + y2

ξ .

Thus the Dirac delta function on the right side gets mapped to

1

x2
ξ + y2

ξ

δ(ξ − ξ0)δ(η − η0).

Next we show that |dz/dζ|2 has the same value as the Jacobian.∣∣∣∣dzdζ

∣∣∣∣2 = (xξ + iyξ)(xξ − iyξ) = x2
ξ + y2

ξ

Now we transform the Green function problem.

uxx + uyy = δ(x− x0)δ(y − y0)∣∣∣∣dζdz

∣∣∣∣2 (υξξ + υηη) =
1

x2
ξ + y2

ξ

δ(ξ − ξ0)δ(η − η0)

υξξ + υηη = δ(ξ − ξ0)δ(η − η0)

Solution 47.2
The mapping,

w =
1 + z

1− z
,

maps the unit semi-disc to the first quadrant of the complex plane.
We write the mapping in terms of r and θ.

ξ + iη =
1 + r eiθ

1− r eiθ
=

1− r2 + i2r sin θ

1 + r2 − 2r cos θ
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ξ =
1− r2

1 + r2 − 2r cos θ

η =
2r sin θ

1 + r2 − 2r cos θ

Consider a semi-circle of radius r. The image of this under the conformal mapping is a semi-circle of radius 2r
1−r2

and center 1+r2

1−r2 in the first quadrant of the w plane. This semi-circle intersects the ξ axis at 1−r
1+r

and 1+r
1−r . As r

ranges from zero to one, these semi-circles cover the first quadrant of the w plane. (See Figure 47.1.)

-1 1

1

1 2 3 4 5

1

2

3

4

5

Figure 47.1: The conformal map, w = 1+z
1−z .

We also note how the boundary of the semi-disc is mapped to the boundary of the first quadrant of the w
plane. The line segment θ = 0 is mapped to the real axis ξ > 1. The line segment θ = π is mapped to the real
axis 0 < ξ < 1. Finally, the semi-circle r = 1 is mapped to the positive imaginary axis.

The problem for v(ξ, η) is,

vξξ + vηη = 0, ξ > 0, η > 0,

v(ξ, 0) = 0, v(0, η) = 1.

We will solve this problem with the Fourier sine transform. We take the Fourier sine transform of the partial
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differential equation, first in ξ and then in η.

−α2v̂(α, η) +
α

π
v(0, η) + v̂(α, η) = 0, v̂(α, 0) = 0

−α2v̂(α, η) +
α

π
+ v̂(α, η) = 0, v̂(α, 0) = 0

−α2ˆ̂v(α, β) +
α

π2β
− β2ˆ̂v(α, β) +

β

π
v̂(α, 0) = 0

ˆ̂v(α, β) =
α

π2β(α2 + β2)

Now we utilize the Fourier sine transform pair,

Fs
[

e−cx
]

=
ω/π

ω2 + c2
,

to take the inverse sine transform in α.

v̂(ξ, β) =
1

πβ
e−βξ

With the Fourier sine transform pair,

Fs
[
2 arctan

(x
c

)]
=

1

ω
e−cω,

we take the inverse sine transform in β to obtain the solution.

v(ξ, η) =
2

π
arctan

(
η

ξ

)
Since v is harmonic, it is the imaginary part of an analytic function g(w). By inspection, we see that this function
is

g(w) =
2

π
log(w).

1859



We change variables to z, f(z) = g(w).

f(z) =
2

π
log

(
1 + z

1− z

)
We expand f(z) in a Taylor series about z = 0,

f(z) =
4

π

∞∑
n=1
oddn

zn

n
,

and write the result in terms of r and θ, z = r eiθ.

f(z) =
4

π

∞∑
n=1
oddn

rn eiθ

n

u(r, θ) is the imaginary part of f(z).

u(r, θ) =
4

π

∞∑
n=1
oddn

1

n
rn sin(nθ)

This demonstrates that the solutions obtained with conformal mapping and with an eigenfunction expansion in
Exercise ?? agree.

Solution 47.3
Instead of working with the conformal map from the z plane to the ζ plane,

ζ = cosh−1( ez),

it will be more convenient to work with the inverse map,

z = log(cosh ζ),
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which maps the semi-infinite strip to the infinite one. We determine how the boundary of the domain is mapped
so that we know the appropriate boundary conditions for the semi-infinite strip domain.

A {ζ : ξ > 0, η = 0} 7→ {log(cosh(ξ)) : ξ > 0} = {z : x > 0, y = 0}
B {ζ : ξ > 0, η = π} 7→ {log(− cosh(ξ)) : ξ > 0} = {z : x > 0, y = π}
C {ζ : ξ = 0, 0 < η < π/2} 7→ {log(cos(η)) : 0 < η < π/2} = {z : x < 0, y = 0}
D {ζ : ξ = 0, π/2 < η < π} 7→ {log(cos(η)) : π/2 < η < π} = {z : x < 0, y = π}

From the mapping of the boundary, we see that the solution v(ξ, η) = u(x, y), is 1 on the bottom of the semi-infinite
strip, 0 on the top. The normal derivative of v vanishes on the vertical boundary. See Figure 47.2.

z=log(cosh(  ))
D

A

B

C

D

AC

B

x

y

ξ

η

ζz=log(cosh(  ))
D

A

B

C

D

AC

B

x

y

ξ

η

ζ

u =0y

u =0y

x

y

ξ

η

u=1

u=0

v=1

v=0

v =0ξ

Figure 47.2: The mapping of the boundary conditions.
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In the ζ plane, the problem is,

vξξ + vηη = 0, ξ > 0, 0 < η < π,

vξ(0, η) = 0, v(ξ, 0) = 1, v(ξ, π) = 0.

By inspection, we see that the solution of this problem is,

v(ξ, η) = 1− η

π
.

The solution in the z plane is

u(x, y) = 1− 1

π
=
(
cosh−1( ez)

)
,

where z = x+ iy. We will find the imaginary part of cosh−1( ez) in order to write this explicitly in terms of x and
y. Recall that we can write the cosh−1 in terms of the logarithm.

cosh−1(w) = log
(
w +
√
w2 − 1

)
cosh−1( ez) = log

(
ez +

√
e2z − 1

)
= log

(
ez
(

1 +
√

1− e−2z
))

= z + log
(

1 +
√

1− e−2z
)

Now we need to find the imaginary part. We’ll work from the inside out. First recall,

√
x+ iy =

√√
x2 + y2 exp

(
i tan−1

(y
x

))
= 4
√
x2 + y2 exp

(
i

2
tan−1

(y
x

))
,
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so that we can write the innermost factor as,

√
1− e−2z =

√
1− e−2x cos(2y) + i e−2x sin(2y)

= 4
√

(1− e−2x cos(2y))2 + ( e−2x sin(2y))2 exp

(
i

2
tan−1

(
e−2x sin(2y)

1− e−2x cos(2y)

))
= 4
√

1− 2 e−2x cos(2y) + e−4x exp

(
i

2
tan−1

(
sin(2y)

e2x − cos(2y)

))
We substitute this into the logarithm.

log
(

1 +
√

1− e−2z
)

= log

(
1 + 4

√
1− 2 e−2x cos(2y) + e−4x exp

(
i

2
tan−1

(
sin(2y)

e2x − cos(2y)

)))
Now we can write η.

η = =
(
z + log

(
1 +
√

1− e−2z
))

η = y + tan−1

 4
√

1− 2 e−2x cos(2y) + e−4x sin
(

1
2

tan−1
(

sin(2y)
e2x−cos(2y)

))
1 + 4

√
1− 2 e−2x cos(2y) + e−4x cos

(
1
2

tan−1
(

sin(2y)
e2x−cos(2y)

))


Finally we have the solution, u(x, y).

u(x, y) = 1− y

π
− 1

π
tan−1

 4
√

1− 2 e−2x cos(2y) + e−4x sin
(

1
2

tan−1
(

sin(2y)
e2x−cos(2y)

))
1 + 4

√
1− 2 e−2x cos(2y) + e−4x cos

(
1
2

tan−1
(

sin(2y)
e2x−cos(2y)

))

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Chapter 48

Non-Cartesian Coordinates

48.1 Spherical Coordinates

Writing rectangular coordinates in terms of spherical coordinates,

x = r cos θ sinφ

y = r sin θ sinφ

z = r cosφ.
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The Jacobian is ∣∣∣∣∣∣
cos θ sinφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cosφ 0 −r sinφ

∣∣∣∣∣∣
= r2 sinφ

∣∣∣∣∣∣
cos θ sinφ − sin θ cos θ cosφ
sin θ sinφ cos θ sin θ cosφ

cosφ 0 − sinφ

∣∣∣∣∣∣
=
∣∣r2 sinφ(− cos2 θ sin2 φ− sin2 θ cos2 φ− cos2 θ cos2 φ− sin2 θ sin2 φ)

∣∣
= r2 sinφ(sin2 φ+ cos2 φ)

= r2 sinφ.

Thus we have that ∫∫∫
V

f(x, y, z) dx dy dz =

∫∫∫
V

f(r, θ, φ)r2 sinφ dr dθ dφ.

48.2 Laplace’s Equation in a Disk

Consider Laplace’s equation in polar coordinates

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ r ≤ 1

subject to the the boundary conditions

1. u(1, θ) = f(θ)

2. ur(1, θ) = g(θ).
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We separate variables with u(r, θ) = R(r)T (θ).

1

r
(R′T + rR′′T ) +

1

r2
RT ′′ = 0

r2R
′′

R
+ r

R′

R
= −T

′′

T
= λ

Thus we have the two ordinary differential equations

T ′′ + λT = 0, T (0) = T (2π), T ′(0) = T ′(2π)

r2R′′ + rR′ − λR = 0, R(0) <∞.

The eigenvalues and eigenfunctions for the equation in T are

λ0 = 0, T0 =
1

2
λn = n2, T (1)

n = cos(nθ), T (2)
n = sin(nθ)

(I chose T0 = 1/2 so that all the eigenfunctions have the same norm.)

For λ = 0 the general solution for R is

R = c1 + c2 log r.

Requiring that the solution be bounded gives us

R0 = 1.

For λ = n2 > 0 the general solution for R is

R = c1r
n + c2r−n.
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Requiring that the solution be bounded gives us

Rn = rn.

Thus the general solution for u is

u(r, θ) =
a0

2
+
∞∑
n=1

rn [an cos(nθ) + bn sin(nθ)] .

For the boundary condition u(1, θ) = f(θ) we have the equation

f(θ) =
a0

2
+
∞∑
n=1

[an cos(nθ) + bn sin(nθ)] .

If f(θ) has a Fourier series then the coefficients are

a0 =
1

π

∫ 2π

0

f(θ) dθ

an =
1

π

∫ 2π

0

f(θ) cos(nθ) dθ

bn =
1

π

∫ 2π

0

f(θ) sin(nθ) dθ.

For the boundary condition ur(1, θ) = g(θ) we have the equation

g(θ) =
∞∑
n=1

n [an cos(nθ) + bn sin(nθ)] .

g(θ) has a series of this form only if ∫ 2π

0

g(θ) dθ = 0.
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The coefficients are

an =
1

nπ

∫ 2π

0

g(θ) cos(nθ) dθ

bn =
1

nπ

∫ 2π

0

g(θ) sin(nθ) dθ.

48.3 Laplace’s Equation in an Annulus

Consider the problem

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ r < a, −π < θ ≤ π,

with the boundary condition

u(a, θ) = θ2.

So far this problem only has one boundary condition. By requiring that the solution be finite, we get the
boundary condition

|u(0, θ)| <∞.

By specifying that the solution be C1, (continuous and continuous first derivative) we obtain

u(r,−π) = u(r, π) and
∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π).

We will use the method of separation of variables. We seek solutions of the form

u(r, θ) = R(r)Θ(θ).
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Substituting into the partial differential equation,

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0

R′′Θ +
1

r
R′Θ = − 1

r2
RΘ′′

r2R′′

R
+
rR′

R
= −Θ′′

Θ
= λ

Now we have the boundary value problem for Θ,

Θ′′(θ) + λΘ(θ) = 0, −π < θ ≤ π,

subject to

Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π)

We consider the following three cases for the eigenvalue, λ,

λ < 0. No linear combination of the solutions, Θ = exp(
√
−λθ), exp(−

√
−λθ), can satisfy the boundary

conditions. Thus there are no negative eigenvalues.

λ = 0. The general solution solution is Θ = a+ bθ. By applying the boundary conditions, we get Θ = a. Thus
we have the eigenvalue and eigenfunction,

λ0 = 0, A0 = 1.

λ > 0. The general solution is Θ = a cos(
√
λθ) + b sin(

√
λθ). Applying the boundary conditions yields the

eigenvalues

λn = n2, n = 1, 2, 3, . . .

with the associated eigenfunctions

An = cos(nθ) and Bn = sin(nθ).
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The equation for R is

r2R′′ + rR′ − λnR = 0.

In the case λ0 = 0, this becomes

R′′ = −1

r
R′

R′ =
a

r
R = a log r + b

Requiring that the solution be bounded at r = 0 yields (to within a constant multiple)

R0 = 1.

For λn = n2, n ≥ 1, we have

r2R′′ + rR′ − n2R = 0

Recognizing that this is an Euler equation and making the substitution R = rα,

α(α− 1) + α− n2 = 0

α = ±n
R = arn + br−n.

requiring that the solution be bounded at r = 0 we obtain (to within a constant multiple)

Rn = rn

The general solution to the partial differential equation is a linear combination of the eigenfunctions

u(r, θ) = c0 +
∞∑
n=1

[cnr
n cosnθ + dnr

n sinnθ] .
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We determine the coefficients of the expansion with the boundary condition

u(a, θ) = θ2 = c0 +
∞∑
n=1

[cna
n cosnθ + dna

n sinnθ] .

We note that the eigenfunctions 1, cosnθ, and sinnθ are orthogonal on −π ≤ θ ≤ π. Integrating the boundary
condition from −π to π yields ∫ π

−π
θ2 dθ =

∫ π

−π
c0 dθ

c0 =
π2

3
.

Multiplying the boundary condition by cosmθ and integrating gives∫ π

−π
θ2 cosmθ dθ = cma

m

∫ π

−π
cos2mθ dθ

cm =
(−1)m8π

m2am
.

We multiply by sinmθ and integrate to get∫ π

−π
θ2 sinmθ dθ = dma

m

∫ π

−π
sin2mθ dθ

dm = 0

Thus the solution is

u(r, θ) =
π2

3
+
∞∑
n=1

(−1)n8π

n2an
rn cosnθ.
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Part VI

Calculus of Variations
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Chapter 49

Calculus of Variations
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49.1 Exercises

Exercise 49.1
Discuss the problem of minimizing

∫ α
0

((y′)4− 6(y′)2) dx, y(0) = 0, y(α) = β. Consider both C1[0, α] and C1
p [0, α],

and comment (with reasons) on whether your answers are weak or strong minima.

Exercise 49.2
Consider

1.
∫ x1

x0
(a(y′)2 + byy′ + cy2) dx, y(x0) = y0, y(x1) = y1, a 6= 0,

2.
∫ x1

x0
(y′)3 dx, y(x0) = y0, y(x1) = y1.

Can these functionals have broken extremals, and if so, find them.

Exercise 49.3
Discuss finding a weak extremum for the following:

1.
∫ 1

0
((y′′)2 − 2xy) dx, y(0) = y′(0) = 0, y(1) = 1

120

2.
∫ 1

0

(
1
2
(y′)2 + yy′ + y′ + y

)
dx

3.
∫ b
a
(y2 + 2xyy′) dx, y(a) = A, y(b) = B

4.
∫ 1

0
(xy + y2 − 2y2y′) dx, y(0) = 1, y(1) = 2

Exercise 49.4
Find the natural boundary conditions associated with the following functionals:

1.
∫∫

D
F (x, y, u, ux, uy) dx dy
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2.
∫∫

D

(
p(x, y)(u2

x + u2
y)− q(x, y)u2

)
dx dy +

∫
Γ
σ(x, y)u2 ds

Here D represents a closed boundary domain with boundary Γ, and ds is the arc-length differential. p and q are
known in D, and σ is known on Γ.

Exercise 49.5
The equations for water waves with free surface y = h(x, t) and bottom y = 0 are

φxx + φyy = 0 0 < y < h(x, t),

φt +
1

2
φ2
x +

1

2
φ2
y + gy = 0 on y = h(x, t),

ht + φxhx − φy = 0, on y = h(x, t),

φy = 0 on y = 0,

where the fluid motion is described by φ(x, y, t) and g is the acceleration of gravity. Show that all these equations
may be obtained by varying the functions φ(x, y, t) and h(x, t) in the variational principle

δ

∫∫
R

(∫ h(x,t)

0

(
φt +

1

2
φ2
x +

1

2
φ2
y + gy

)
dy

)
dx dt = 0,

where R is an arbitrary region in the (x, t) plane.

Exercise 49.6
Extremize the functional

∫ b
a
F (x, y, y′) dx, y(a) = A, y(b) = B given that the admissible curves can not penetrate

the interior of a given region R in the (x, y) plane. Apply your results to find the curves which extremize∫ 10

0
(y′)3 dx, y(0) = 0, y(10) = 0 given that the admissible curves can not penetrate the interior of the circle

(x− 5)2 + y2 = 9.
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Exercise 49.7
Consider the functional

∫ √
y ds where ds is the arc-length differential (ds =

√
(dx)2 + (dy)2). Find the curve

or curves from a given vertical line to a given fixed point B = (x1, y1) which minimize this functional. Consider
both the classes C1 and C1

p .

Exercise 49.8
A perfectly flexible uniform rope of length L hangs in equilibrium with one end fixed at (x1, y1) so that it passes
over a frictionless pin at (x2, y2). What is the position of the free end of the rope?

Exercise 49.9
The drag on a supersonic airfoil of chord c and shape y = y(x) is proportional to

D =

∫ c

0

(
dy

dx

)2

dx.

Find the shape for minimum drag if the moment of inertia of the contour with respect to the x-axis is specified;
that is, find the shape for minimum drag if∫ c

0

y2 dx = A, y(0) = y(c) = 0, (c, A given).

Exercise 49.10
The deflection y of a beam executing free (small) vibrations of frequency ω satisfies the differential equation

d2

dx2

(
EI

d2y

dx2

)
− ρω2y = 0,

where EI is the flexural rigidity and ρ is the linear mass density. Show that the deflection modes are extremals
of the problem

δω2 ≡ δ

(∫ L
0
EI(y′′)2 dx∫ L
0
ρy2 dx

)
= 0, (L = length of beam)
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when appropriate homogeneous end conditions are prescribed. Show that stationary values of the ratio are the
squares of the natural frequencies.

Exercise 49.11
A boatman wishes to steer his boat so as to minimize the transit time required to cross a river of width l. The
path of the boat is given parametrically by

x = X(t), y = Y (t),

for 0 ≤ t ≤ T . The river has no cross currents, so the current velocity is directed downstream in the y-direction.
v0 is the constant boat speed relative to the surrounding water, and w = w(x, y, t) denotes the downstream river
current at point (x, y) at time t. Then,

Ẋ(t) = v0 cosα(t), Ẏ (t) = v0 sinα(t) + w,

where α(t) is the steering angle of the boat at time t. Find the steering control function α(t) and the final time
T that will transfer the boat from the initial state (X(0), Y (0)) = (0, 0) to the final state at X(t) = l in such a
way as to minimize T .

Exercise 49.12
Two particles of equal mass m are connected by an inextensible string which passes through a hole in a smooth

horizontal table. The first particle is on the table moving with angular velocity ω =
√
g/α in a circular path, of

radius α, around the hole. The second particle is suspended vertically and is in equilibrium. At time t = 0, the
suspended mass is pulled downward a short distance and released while the first mass continues to rotate.

1. If x represents the distance of the second mass below its equilibrium at time t and θ represents the angular
position of the first particle at time t, show that the Lagrangian is given by

L = m

(
ẋ2 +

1

2
(α− x)2θ̇2 + gx

)
and obtain the equations of motion.
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2. In the case where the displacement of the suspended mass from equilibrium is small, show that the suspended
mass performs small vertical oscillations and find the period of these oscillations.

Exercise 49.13
A rocket is propelled vertically upward so as to reach a prescribed height h in minimum time while using a given
fixed quantity of fuel. The vertical distance x(t) above the surface satisfies,

mẍ = −mg +mU(t), x(0) = 0, (̇x)(0) = 0,

where U(t) is the acceleration provided by engine thrust. We impose the terminal constraint x(T ) = h, and we
wish to find the particular thrust function U(t) which will minimize T assuming that the total thrust of the rocket
engine over the entire thrust time is limited by the condition,∫ T

0

U2(t) dt = k2.

Here k is a given positive constant which measures the total amount of fuel available.

Exercise 49.14
A space vehicle moves along a straight path in free space. x(t) is the distance to its docking pad, and a, b are its
position and speed at time t = 0. The equation of motion is

ẍ = M sinV, x(0) = a, ẋ(0) = b,

where the control function V (t) is related to the rocket acceleration U(t) by U = M sinV , M = const. We wish
to dock the vehicle in minimum time; that is, we seek a thrust function U(t) which will minimize the final time T
while bringing the vehicle to rest at the origin with x(T ) = 0, ẋ(T ) = 0. Find U(t), and in the (x, ẋ)-plane plot
the corresponding trajectory which transfers the state of the system from (a, b) to (0, 0). Account for all values
of a and b.
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Exercise 49.15
Find a minimum for the functional I(y) =

∫ m
0

√
y + h

√
1 + (y′)2 dx in which h > 0, y(0) = 0, y(m) = M > −h.

Discuss the nature of the minimum, (i.e., weak, strong, . . . ).

Exercise 49.16
Show that for the functional

∫
n(x, y)

√
1 + (y′)2 dx, where n(x, y) ≥ 0 in some domain D, the Weierstrass E

function E(x, y, q, y′) is non-negative for arbitrary finite p and y′ at any point of D. What is the implication of
this for Fermat’s Principle?

Exercise 49.17
Consider the integral

∫
1+y2

(y′)2 dx between fixed limits. Find the extremals, (hyperbolic sines), and discuss the
Jacobi, Legendre, and Weierstrass conditions and their implications regarding weak and strong extrema. Also
consider the value of the integral on any extremal compared with its value on the illustrated strong variation.
Comment!

PiQi are vertical segments, and the lines QiPi+1 are tangent to the extremal at Pi+1.

Exercise 49.18
Consider I =

∫ x1

x0
y′(1 + x2y′) dx, y(x0) = y0, y(x1) = y1. Can you find continuous curves which will minimize I if

(i) x0 = −1, y0 = 1, x1 = 2, y1 = 4,

(ii) x0 = 1, y0 = 3, x1 = 2, y1 = 5,

(iii) x0 = −1, y0 = 1, x1 = 2, y1 = 1.

Exercise 49.19
Starting from ∫∫

D

(Qx − Py) dx dy =

∫
Γ

(P dx+Qdy)
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prove that

(a)

∫∫
D

φψxx dx dy =

∫∫
D

ψφxx dx dy +

∫
Γ

(φψx − ψφx) dy,

(b)

∫∫
D

φψyy dx dy =

∫∫
D

ψφyy dx dy −
∫

Γ

(φψy − ψφy) dx,

(c)

∫∫
D

φψxy dx dy =

∫∫
D

ψφxy dx dy −
1

2

∫
Γ

(φψx − ψφx) dx+
1

2

∫
Γ

(φψy − ψφy) dy.

Then, consider

I(u) =

∫ t1

t0

∫∫
D

(
−(uxx + uyy)

2 + 2(1− µ)(uxxuyy − u2
xy)
)
dx dy dt.

Show that

δI =

∫ t1

t0

∫∫
D

(−∇4u)δu dx dy dt+

∫ t1

t0

∫
Γ

(
P (u)δu+M(u)

∂δu

∂n

)
ds dt,

where P and M are the expressions we derived in class for the problem of the vibrating plate.

Exercise 49.20
For the following functionals use the Rayleigh-Ritz method to find an approximate solution of the problem of
minimizing the functionals and compare your answers with the exact solutions.

• ∫ 1

0

(
(y′)2 − y2 − 2xy

)
dx, y(0) = 0 = y(1).

For this problem take an approximate solution of the form

y = x(1− x) (a0 + a1x+ · · ·+ anx
n) ,

and carry out the solutions for n = 0 and n = 1.
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• ∫ 2

0

(
(y′)2 + y2 + 2xy

)
dx, y(0) = 0 = y(2).

• ∫ 2

1

(
x(y′)2 − x2 − 1

x
y2 − 2x2y

)
dx, y(1) = 0 = y(2)

Exercise 49.21
Let K(x) belong to L1(−∞,∞) and define the operator T on L2(−∞,∞) by

Tf(x) =

∫ ∞
−∞

K(x− y)f(y) dy.

1. Show that the spectrum of T consists of the range of the Fourier transform K̂ of K, (that is, the set of all
values K̂(y) with −∞ < y <∞), plus 0 if this is not already in the range. (Note: From the assumption on
K it follows that K̂ is continuous and approaches zero at ±∞.)

2. For λ in the spectrum of T , show that λ is an eigenvalue if and only if K̂ takes on the value λ on at least
some interval of positive length and that every other λ in the spectrum belongs to the continuous spectrum.

3. Find an explicit representation for (T −λI)−1f for λ not in the spectrum, and verify directly that this result
agrees with that givenby the Neumann series if λ is large enough.

Exercise 49.22
Let U be the space of twice continuously differentiable functions f on [−1, 1] satisfying f(−1) = f(1) = 0, and

W = C[−1, 1]. Let L : U 7→ W be the operator d2

dx2 . Call λ in the spectrum of L if the following does not occur:
There is a bounded linear transformation T : W 7→ U such that (L−λI)Tf = f for all f ∈ W and T (L−λI)f = f
for all f ∈ U . Determine the spectrum of L.
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Exercise 49.23
Solve the integral equations

1. φ(x) = x+ λ

∫ 1

0

(
x2y − y2

)
φ(y) dy

2. φ(x) = x+ λ

∫ x

0

K(x, y)φ(y) dy

where

K(x, y) =

{
sin(xy) for x ≥ 1 and y ≤ 1,

0 otherwise

In both cases state for which values of λ the solution obtained is valid.

Exercise 49.24
1. Suppose that K = L1L2, where L1L2 − L2L1 = I. Show that if x is an eigenvector of K corresponding

to the eigenvalue λ, then L1x is an eigenvector of K corresponding to the eigenvalue λ − 1, and L2x is an
eigenvector corresponding to the eigenvalue λ+ 1.

2. Find the eigenvalues and eigenfunctions of the operator K ≡ − d2

dt2
+ t2

4
in the space of functions u ∈

L2(−∞,∞). (Hint: L1 = t
2

+ d
dt

, L2 = t
2
− d

dt
. e−t

2/4 is the eigenfunction corresponding to the eigenvalue
1/2.)

Exercise 49.25
Prove that if the value of λ = λ1 is in the residual spectrum of T , then λ1 is in the discrete spectrum of T ∗.

Exercise 49.26
Solve
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1.

u′′(t) +

∫ 1

0

sin(k(s− t))u(s) ds = f(t), u(0) = u′(0) = 0.

2.

u(x) = λ

∫ π

0

K(x, s)u(s) ds

where

K(x, s) =
1

2
log

∣∣∣∣∣sin
(
x+s

2

)
sin
(
x−s

2

)∣∣∣∣∣ =
∞∑
n=1

sinnx sinns

n

3.

φ(s) = λ

∫ 2π

0

1

2π

1− h2

1− 2h cos(s− t) + h2
φ(t) dt, |h| < 1

4.

φ(x) = λ

∫ π

−π
cosn(x− ξ)φ(ξ) dξ

Exercise 49.27
Let K(x, s) = 2π2 − 6π|x− s|+ 3(x− s)2.

1. Find the eigenvalues and eigenfunctions of

φ(x) = λ

∫ 2π

0

K(x, s)φ(s) ds.
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(Hint: Try to find an expansion of the form

K(x, s) =
∞∑

n=−∞

cn ein(x−s).)

2. Do the eigenfunctions form a complete set? If not, show that a complete set may be obtained by adding a
suitable set of solutions of ∫ 2π

0

K(x, s)φ(s) ds = 0.

3. Find the resolvent kernel Γ(x, s, λ).

Exercise 49.28
Let K(x, s) be a bounded self-adjoint kernel on the finite interval (a, b), and let T be the integral operator on
L2(a, b) with kernel K(x, s). For a polynomial p(t) = a0 + a1t + · · · + ant

n we define the operator p(T ) =
a0I + a1T + · · ·+ anT

n. Prove that the eigenvalues of p(T ) are exactly the numbers p(λ) with λ an eigenvalue of
T .

Exercise 49.29
Show that if f(x) is continuous, the solution of

φ(x) = f(x) + λ

∫ ∞
0

cos(2xs)φ(s) ds

is

φ(x) =
f(x) + λ

∫∞
0
f(s) cos(2xs) ds

1− πλ2/4
.
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Exercise 49.30
Consider

Lu = 0 in D, u = f on C,

where

Lu ≡ uxx + uyy + aux + buy + cu.

Here a, b and c are continuous functions of (x, y) on D + C. Show that the adjoint L∗ is given by

L∗v = vxx + vyy − avx − bvy + (c− ax − by)v

and that ∫
D

(vLu− uL∗v) =

∫
C

H(u, v), (49.1)

where

H(u, v) ≡ (vux − uvx + auv) dy − (vuy − uvy + buv) dx

=

(
v
∂u

∂n
− u∂v

∂n
+ auv

∂x

∂n
+ buv

∂y

∂n

)
ds.

Take v in (49.1) to be the harmonic Green function G given by

G(x, y; ξ, η) =
1

2π
log

(
1√

(x− ξ)2 + (y − η)2

)
+ · · · ,

and show formally, (use Delta functions), that (49.1) becomes

−u(ξ, η)−
∫
D

u(L∗ −∆)Gdxdy =

∫
C

H(u,G) (49.2)
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where u satisfies Lu = 0, (∆G = δ in D, G = 0 on C). Show that (49.2) can be put into the forms

u+

∫
D

(
(c− ax − by)G− aGx − bGy

)
u dx dy = U (49.3)

and

u+

∫
D

(aux + buy + cu)Gdxdy = U, (49.4)

where U is the known harmonic function in D with assumes the boundary values prescribed for u. Finally,
rigorously show that the integrodifferential equation (49.4) can be solved by successive approximations when the
domain D is small enough.

Exercise 49.31
Find the eigenvalues and eigenfunctions of the following kernels on the interval [0, 1].

1.

K(x, s) = min(x, s)

2.

K(x, s) = emin(x,s)

(Hint: φ′′ + φ′ + λ exφ = 0 can be solved in terms of Bessel functions.)

Exercise 49.32
Use Hilbert transforms to evaluate

1. −
∫ ∞
−∞

sin(kx) sin(lx)

x2 − z2
dx
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2. −
∫ ∞
−∞

cos(px)− cos(qx)

x2
dx

3. −
∫ ∞
−∞

−(x2 − ab) sinx+ (a+ b)x cosx

x(x2 + a2)(x2 + b2)
dx

Exercise 49.33
Show that

−
∫ ∞
−∞

(1− t2)1/2 log(1 + t)

t− x
dt = π

(
x log 2− 1 + (1− x2)1/2

(π
2
− arcsin(x)

))
.

Exercise 49.34
Let C be a simple closed contour. Let g(t) be a given function and consider

1

iπ
−
∫
C

f(t) dt

t− t0
= g(t0) (49.5)

Note that the left side can be written as F+(t0) + F−(t0). Define a function W (z) such that W (z) = F (z) for z
inside C and W (z) = −F (z) for z outside C. Proceeding in this way, show that the solution of (49.5) is given by

f(t0) =
1

iπ
−
∫
C

g(t) dt

t− t0
.

Exercise 49.35
If C is an arc with endpoints α and β, evaluate

(i)
1

iπ
−
∫
C

1

(τ − β)1−γ(τ − α)γ(τ − ζ)
dτ, where 0 < γ < 1

(ii)
1

iπ
−
∫
C

(
τ − β
τ − α

)γ
τn

τ − ζ
dτ, where 0 < γ < 1, integer n ≥ 0.
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Exercise 49.36
Solve

−
∫ 1

−1

φ(y)

y2 − x2
dy = f(x).

Exercise 49.37
Solve

1

iπ
−
∫ 1

0

f(t)

t− x
dt = λf(x), where − 1 < λ < 1.

Are there any solutions for λ > 1? (The operator on the left is self-adjoint. Its spectrum is −1 ≤ λ ≤ 1.)

Exercise 49.38
Show that the general solution of

tan(x)

π
−
∫ 1

0

f(t)

t− x
dt = f(x)

is

f(x) =
k sin(x)

(1− x)1−x/πxx/π
.

Exercise 49.39
Show that the general solution of

f ′(x) + λ−
∫
C

f(t)

t− x
dt = 1
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is given by

f(x) =
1

iπλ
+ k e−iπλx,

(k is a constant). Here C is a simple closed contour, λ a constant and f(x) a differentiable function on C.
Generalize the result to the case of an arbitrary function g(x) on the right side, where g(x) is analytic inside C.

Exercise 49.40
Show that the solution of

−
∫
C

(
1

t− x
+ P (t− x)

)
f(t) dt = g(x)

is given by

f(t) = − 1

π2
−
∫
C

g(τ)

τ − t
dτ − 1

π2

∫
C

g(τ)P (τ − t) dτ.

Here C is a simple closed curve, and P (t) is a given entire function of t.

Exercise 49.41
Solve

−
∫ 1

0

f(t)

t− x
dt+−

∫ 3

2

f(t)

t− x
dt = x

where this equation is to hold for x in either (0, 1) or (2, 3).

Exercise 49.42
Solve ∫ x

0

f(t)√
x− t

dt+ A

∫ 1

x

f(t)√
t− x

dt = 1
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where A is a real positive constant. Outline briefly the appropriate method of A is a function of x.
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49.2 Hints

Hint 49.1

Hint 49.2

Hint 49.3

Hint 49.4

Hint 49.5

Hint 49.6

Hint 49.7

Hint 49.8
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Hint 49.9

Hint 49.10

Hint 49.11

Hint 49.12

Hint 49.13

Hint 49.14

Hint 49.15

Hint 49.16
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Hint 49.17

Hint 49.18

Hint 49.19

Hint 49.20

Hint 49.21

Hint 49.22

Hint 49.23

Hint 49.24
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Hint 49.25

Hint 49.26

Hint 49.27

Hint 49.28

Hint 49.29

Hint 49.30

Hint 49.31

Hint 49.32
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Hint 49.33

Hint 49.34

Hint 49.35

Hint 49.36

Hint 49.37

Hint 49.38

Hint 49.39

Hint 49.40

1895



Hint 49.41

Hint 49.42
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49.3 Solutions
Solution 49.1
C1[0, α] Extremals

Admissible Extremal. First we consider continuously differentiable extremals. Because the Lagrangian
is a function of y′ alone, we know that the extremals are straight lines. Thus the admissible extremal is

ŷ =
β

α
x.

Legendre Condition.

F̂y′y′ = 12(ŷ′)2 − 12

= 12

((
β

α

)2

− 1

)

< 0 for |β/α| < 1

= 0 for |β/α| = 1

> 0 for |β/α| > 1

Thus we see that β
α
x may be a minimum for |β/α| ≥ 1 and may be a maximum for |β/α| ≤ 1.

Jacobi Condition. Jacobi’s accessory equation for this problem is

(F̂,y′y′h
′)′ = 0(

12

((
β

α

)2

− 1

)
h′

)′
= 0

h′′ = 0

The problem h′′ = 0, h(0) = 0, h(c) = 0 has only the trivial solution for c > 0. Thus we see that there are
no conjugate points and the admissible extremal satisfies the strengthened Legendre condition.
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A Weak Minimum. For |β/α| > 1 the admissible extremal β
α
x is a solution

of the Euler equation, and satisfies the strengthened Jacobi and Legendre
conditions. Thus it is a weak minima. (For |β/α| < 1 it is a weak maxima for
the same reasons.)

Weierstrass Excess Function. The Weierstrass excess function is

E(x, ŷ, ŷ′, w) = F (w)− F (ŷ′)− (w − ŷ′)F,y′(ŷ′)
= w4 − 6w2 − (ŷ′)4 + 6(ŷ′)2 − (w − ŷ′)(4(ŷ′)3 − 12ŷ′)

= w4 − 6w2 −
(
β

α

)4

+ 6

(
β

α

)2

− (w − β

α
)(4

(
β

α

)3

− 12
β

α
)

= w4 − 6w2 − w

(
4
β

α

(
β

α

)2

− 3

)
+ 3

(
β

α

)4

− 6

(
β

α

)2

We can find the stationary points of the excess function by examining its derivative. (Let λ = β/α.)

E ′(w) = 4w3 − 12w + 4λ
(
(λ)2 − 3

)
= 0

w1 = λ, w2 =
1

2

(
−λ−

√
4− λ2

)
w3 =

1

2

(
−λ+

√
4− λ2

)
The excess function evaluated at these points is

E(w1) = 0,

E(w2) =
3

2

(
3λ4 − 6λ2 − 6−

√
3λ(4− λ2)3/2

)
,

E(w3) =
3

2

(
3λ4 − 6λ2 − 6 +

√
3λ(4− λ2)3/2

)
.

E(w2) is negative for −1 < λ <
√

3 and E(w3) is negative for −
√

3 < λ < 1. This implies that the weak
minimum ŷ = βx/α is not a strong local minimum for |λ| <

√
3|. Since E(w1) = 0, we cannot use the

Weierstrass excess function to determine if ŷ = βx/α is a strong local minima for |β/α| >
√

3.
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C1
p [0, α] Extremals

Erdmann’s Corner Conditions. Erdmann’s corner conditions require that

F̂,y′ = 4(ŷ′)3 − 12ŷ′

and

F̂ − ŷ′F̂,y′ = (ŷ′)4 − 6(ŷ′)2 − ŷ′(4(ŷ′)3 − 12ŷ′)

are continuous at corners. Thus the quantities

(ŷ′)3 − 3ŷ′ and (ŷ′)4 − 2(ŷ′)2

are continuous. Denoting p = ŷ′− and q = ŷ′+, the first condition has the solutions

p = q, p =
1

2

(
−q ±

√
3
√

4− q2
)
.

The second condition has the solutions,

p = ±q, p = ±
√

2− q2

Combining these, we have

p = q, p =
√

3, q = −
√

3, p = −
√

3, q =
√

3.

Thus we see that there can be a corner only when ŷ′− = ±
√

3 and ŷ′+ = ∓
√

3.
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Case 1, β = ±
√

3α. Notice the the Lagrangian is minimized point-wise if
y′ = ±

√
3. For this case the unique, strong global minimum is

ŷ =
√

3 sign (β)x.

Case 2, |β| <
√

3|α|. For this case there are an infinite number of strong
minima. Any piecewise linear curve satisfying y′−(x) = ±

√
3 and y′+(x) = ±

√
3

and y(0) = 0, y(α) = β is a strong minima.
Case 3, |β| >

√
3|α|. First note that the extremal cannot have corners. Thus

the unique extremal is ŷ = β
α
x. We know that this extremal is a weak local

minima.

Solution 49.2
1. ∫ x1

x0

(a(y′)2 + byy′ + cy2) dx, y(x0) = y0, y(x1) = y1, a 6= 0

Erdmann’s First Corner Condition. F̂y′ = 2aŷ′+ bŷ must be continuous at a corner. This implies that
ŷ must be continuous, i.e., there are no corners.

The functional cannot have broken extremals.

2. ∫ x1

x0

(y′)3 dx, y(x0) = y0, y(x1) = y1

Erdmann’s First Corner Condition. F̂y′ = 3(y′)2 must be continuous at a corner. This implies that
ŷ′− = ŷ′+.
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Erdmann’s Second Corner Condition. F̂ − ŷ′F̂y′ = (ŷ′)3 − ŷ′3(ŷ′)2 = −2(ŷ′)3 must be continuous at a
corner. This implies that ŷ is continuous at a corner, i.e. there are no corners.

The functional cannot have broken extremals.

Solution 49.3
1. ∫ 1

0

(
(y′′)2 − 2xy

)
dx, y(0) = y′(0) = 0, y(1) =

1

120

Euler’s Differential Equation. We will consider C4 extremals which satisfy Euler’s DE,

(F̂,y′′)
′′ − (F̂,y′)

′ + F̂,y = 0.

For the given Lagrangian, this is,

(2ŷ′′)′′ − 2x = 0.

Natural Boundary Condition. The first variation of the performance index is

δJ =

∫ 1

0

(F̂,yδy + F̂,y′δy
′ + F̂y′′δy

′′) dx.

From the given boundary conditions we have δy(0) = δy′(0) = δy(1) = 0. Using Euler’s DE, we have,

δJ =

∫ 1

0

((F̂y′ − (F̂,y′′)
′)′δy + F̂,y′δy

′ + F̂y′′δy
′′) dx.
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Now we apply integration by parts.

δJ =
[
(F̂y′ − (F̂,y′′)

′)δy
]1

0
+

∫ 1

0

(−(F̂y′ − (F̂,y′′)
′)δy′ + F̂,y′δy

′ + F̂y′′δy
′′) dx

=

∫ 1

0

((F̂,y′′)
′δy′ + F̂y′′δy

′′) dx

=
[
F̂,y′′δy

′
]1

0

= F̂,y′′(1)δy′(1)

In order that the first variation vanish, we need the natural boundary condition F̂,y′′(1) = 0. For the given
Lagrangian, this condition is

ŷ′′(1) = 0.

The Extremal BVP. The extremal boundary value problem is

y′′′′ = x, y(0) = y′(0) = y′′(1) = 0, y(1) =
1

120
.

The general solution of the differential equation is

y = c0 + c1x+ c2x
2 + c3x

3 +
1

120
x5.

Applying the boundary conditions, we see that the unique admissible extremal is

ŷ =
x2

120
(x3 − 5x+ 5).

This may be a weak extremum for the problem.

Legendre’s Condition. Since

F̂,y′′y′′ = 2 > 0,
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the strengthened Legendre condition is satisfied.

Jacobi’s Condition. The second variation for F (x, y, y′′) is

d2J

dε2

∣∣∣∣
ε=0

=

∫ b

a

(
F̂,y′′y′′(h

′′)2 + 2F̂,yy′′hh
′′ + F̂,yyh

2
)
dx

Jacobi’s accessory equation is,

(2F̂,y′′y′′h
′′ + 2F̂,yy′′h)′′ + 2F̂,yy′′h

′′ + 2F̂,yyh = 0,

(h′′)′′ = 0

Since the boundary value problem,

h′′′′ = 0, h(0) = h′(0) = h(c) = h′′(c) = 0,

has only the trivial solution for all c > 0 the strengthened Jacobi condition is satisfied.

A Weak Minimum. Since the admissible extremal,

ŷ =
x2

120
(x3 − 5x+ 5),

satisfies the strengthened Legendre and Jacobi conditions, we conclude that it
is a weak minimum.

2. ∫ 1

0

(
1

2
(y′)2 + yy′ + y′ + y

)
dx
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Boundary Conditions. Since no boundary conditions are specified, we have the Euler boundary condi-
tions,

F̂,y′(0) = 0, F̂,y′(1) = 0.

The derivatives of the integrand are,

F,y = y′ + 1, F,y′ = y′ + y + 1.

The Euler boundary conditions are then

ŷ′(0) + ŷ(0) + 1 = 0, ŷ′(1) + ŷ(1) + 1 = 0.

Erdmann’s Corner Conditions. Erdmann’s first corner condition specifies that

F̂y′(x) = ŷ′(x) + ŷ(x) + 1

must be continuous at a corner. This implies that ŷ′(x) is continuous at corners, which means that there
are no corners.

Euler’s Differential Equation. Euler’s DE is

(F,y′)
′ = Fy,

y′′ + y′ = y′ + 1,

y′′ = 1.

The general solution is

y = c0 + c1x+
1

2
x2.
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The boundary conditions give us the constraints,

c0 + c1 + 1 = 0,

c0 + 2c1 +
5

2
= 0.

The extremal that satisfies the Euler DE and the Euler BC’s is

ŷ =
1

2

(
x2 − 3x+ 1

)
.

Legendre’s Condition. Since the strengthened Legendre condition is satisfied,

F̂,y′y′(x) = 1 > 0,

we conclude that the extremal is a weak local minimum of the problem.

Jacobi’s Condition. Jacobi’s accessory equation for this problem is,(
F̂,y′y′h

′
)′
−
(
F̂,yy − (F̂,yy′)

′
)
h = 0, h(0) = h(c) = 0,

(h′)
′ − (−(1)′)h = 0, h(0) = h(c) = 0,

h′′ = 0, h(0) = h(c) = 0,

Since this has only trivial solutions for c > 0 we conclude that there are no conjugate points. The extremal
satisfies the strengthened Jacobi condition.

The only admissible extremal,

ŷ =
1

2

(
x2 − 3x+ 1

)
,

satisfies the strengthened Legendre and Jacobi conditions and is thus a weak
extremum.
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3. ∫ b

a

(y2 + 2xyy′) dx, y(a) = A, y(b) = B

Euler’s Differential Equation. Euler’s differential equation,

(F,y′)
′ = Fy,

(2xy)′ = 2y + 2xy′,

2y + 2xy′ = 2y + 2xy′,

is trivial. Every C1 function satisfies the Euler DE.

Erdmann’s Corner Conditions. The expressions,

F̂,y′ = 2xy, F̂ − ŷ′F̂,y′ = ŷ2 + 2xŷŷ′ − ŷ′(2xĥ) = ŷ2

are continuous at a corner. The conditions are trivial and do not restrict corners in the extremal.

Extremal. Any piecewise smooth function that satisfies the boundary conditions ŷ(a) = A, ŷ(b) = B is an
admissible extremal.

An Exact Derivative. At this point we note that∫ b

a

(y2 + 2xyy′) dx =

∫ b

a

d

dx
(xy2) dx

=
[
xy2
]b
a

= bB2 − aA2.

The integral has the same value for all piecewise smooth functions y that satisfy the boundary conditions.
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Since the integral has the same value for all piecewise smooth functions that
satisfy the boundary conditions, all such functions are weak extrema.

4. ∫ 1

0

(xy + y2 − 2y2y′) dx, y(0) = 1, y(1) = 2

Erdmann’s Corner Conditions. Erdmann’s first corner condition requires F̂,y′ = −2ŷ2 to be continuous,
which is trivial. Erdmann’s second corner condition requires that

F̂ − ŷ′F̂,y′ = xŷ + ŷ2 − 2ŷ2ŷ′ − ŷ′(−2ŷ2) = xŷ + ŷ2

is continuous. This condition is also trivial. Thus the extremal may have corners at any point.

Euler’s Differential Equation. Euler’s DE is

(F,y′)
′ = F,y,

(−2y2)′ = x+ 2y − 4yy′

y = −x
2

Extremal. There is no piecewise smooth function that satisfies Euler’s differ-
ential equation on its smooth segments and satisfies the boundary conditions
y(0) = 1, y(1) = 2. We conclude that there is no weak extremum.
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Solution 49.4
1. We require that the first variation vanishes∫∫

D

(
Fuh+ Fuxhx + Fuyhy

)
dx dy = 0.

We rewrite the integrand as∫∫
D

(
Fuh+ (Fuxh)x + (Fuyh)y − (Fux)xh− (Fuy)yh

)
dx dy = 0,

∫∫
D

(
Fu − (Fux)x − (Fuy)y

)
h dx dy +

∫∫
D

(
(Fuxh)x + (Fuyh)y

)
dx dy = 0.

Using the Divergence theorem, we obtain,∫∫
D

(
Fu − (Fux)x − (Fuy)y

)
h dx dy +

∫
Γ

(Fux , Fuy) · nh ds = 0.

In order that the line integral vanish we have the natural boundary condition,

(Fux , Fuy) · n = 0 for (x, y) ∈ Γ.

We can also write this as

Fux
dy

ds
− Fuy

dx

ds
= 0 for (x, y) ∈ Γ.

The Euler differential equation for this problem is

Fu − (Fux)x − (Fuy)y = 0.
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2. We consider the natural boundary conditions for∫∫
D

F (x, y, u, ux, uy) dx dy +

∫
Γ

G(x, y, u) ds.

We require that the first variation vanishes.∫∫
D

(
Fu − (Fux)x − (Fuy)y

)
h dx dy +

∫
Γ

(Fux , Fuy) · nh ds+

∫
Γ

Guh ds = 0,

∫∫
D

(
Fu − (Fux)x − (Fuy)y

)
h dx dy +

∫
Γ

(
(Fux , Fuy) · n +Gu

)
h ds = 0,

In order that the line integral vanishes, we have the natural boundary conditions,

(Fux , Fuy) · n +Gu = 0 for (x, y) ∈ Γ.

For the given integrand this is,

(2pux, 2puy) · n + 2σu = 0 for (x, y) ∈ Γ,

p∇u · n + σu = 0 for (x, y) ∈ Γ.

We can also denote this as

p
∂u

∂n
+ σu = 0 for (x, y) ∈ Γ.

Solution 49.5
First we vary φ.

ψ(ε) =

∫∫
R

(∫ h(x,t)

0

(
φt + εηt +

1

2
(φx + εηx)

2 +
1

2
(φy + εηy)

2 + gy

)
dy

)
dx dt
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ψ′(0) =

∫∫
R

(∫ h(x,t)

0

(ηt + φxηx + φyηy) dy

)
dx dt = 0

ψ′(0) =

∫∫
R

(
∂

∂t

∫ h(x,t)

0

η dy − [ηht]y=h(x,t) +
∂

∂x

∫ h(x,t)

0

φxη dy − [φxηhx]y=h(x,t) −
∫ h(x,t)

0

φxxη dy

+ [φyη]h(x,t)
0 −

∫ h(x,t)

0

φyyη dy

)
dx dt = 0

Since η vanishes on the boundary of R, we have

ψ′(0) =

∫∫
R

(
− [(htφxhx − φy)η]y=h(x,t) − [φyη]y=0 −

∫ h(x,t)

0

(φxx + φyy)η dy

)
dx dt = 0.

From the variations η which vanish on y = 0, h(x, t) we have

∇2φ = 0.

This leaves us with

ψ′(0) =

∫∫
R

(
− [(htφxhx − φy)η]y=h(x,t) − [φyη]y=0

)
dx dt = 0.

By considering variations η which vanish on y = 0 we obtain,

htφxhx − φy = 0 on y = h(x, t).

Finally we have

φy = 0 on y = 0.
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Next we vary h(x, t).

ψ(ε) =

∫∫
R

∫ h(x,t)+εη(x,t)

0

(
φt +

1

2
φ2
x +

1

2
φ2
y + gy

)
dx dt

ψ′(ε) =

∫∫
R

[
φt +

1

2
φ2
x +

1

2
φ2
y + gy

]
y=h(x,t)

η dx dt = 0

This gives us the boundary condition,

φt +
1

2
φ2
x +

1

2
φ2
y + gy = 0 on y = h(x, t).

Solution 49.6
The parts of the extremizing curve which lie outside the boundary of the region R must be extremals, (i.e.,
solutions of Euler’s equation) since if we restrict our variations to admissible curves outside of R and its boundary,
we immediately obtain Euler’s equation. Therefore an extremum can be reached only on curves consisting of arcs
of extremals and parts of the boundary of region R.

Thus, our problem is to find the points of transition of the extremal to the boundary of R. Let the boundary
of R be given by φ(x). Consider an extremum that starts at the point (a,A), follows an extremal to the point
(x0, φ(x0)), follows the ∂R to (x1, φ(x1)) then follows an extremal to the point (b, B). We seek transversality
conditions for the points x0 and x1. We will extremize the expression,

I(y) =

∫ x0

a

F (x, y, y′) dx+

∫ x1

x0

F (x, φ, φ′) dx+

∫ b

x1

F (x, y, y′) dx.

Let c be any point between x0 and x1. Then extremizing I(y) is equivalent to extremizing the two functionals,

I1(y) =

∫ x0

a

F (x, y, y′) dx+

∫ c

x0

F (x, φ, φ′) dx,
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I2(y) =

∫ x1

c

F (x, φ, φ′) dx+

∫ b

x1

F (x, y, y′) dx,

δI = 0 ⇒ δI1 = δI2 = 0.

We will extremize I1(y) and then use the derived transversality condition on all points where the extremals meet
∂R. The general variation of I1 is,

δI1(y) =

∫ x0

a

(
Fy −

d

dx
Fy′

)
dx+ [Fy′δy]x0

a + [(F − y′Fy′)δx]
x0

a

+ [Fφ′δφ(x)]cx0
+ [(F − φ′Fφ′)δx]

c

x0
= 0

Note that δx = δy = 0 at x = a, c. That is, x = x0 is the only point that varies. Also note that δφ(x) is not
independent of δx. δφ(x)→ φ′(x)δx. At the point x0 we have δy → φ′(x)δx.

δI1(y) =

∫ x0

a

(
Fy −

d

dx
Fy′

)
dx+ (Fy′φ

′δx)

∣∣∣∣
x0

+ ((F − y′Fy′)δx)

∣∣∣∣
x0

− (Fφ′φ
′δx)

∣∣∣∣
x0

− ((F − φ′Fφ′)δx)

∣∣∣∣
x0

= 0

δI1(y) =

∫ x0

a

(
Fy −

d

dx
Fy′

)
dx+ ((F (x, y, y′)− F (x, φ, φ′) + (φ′ − y′)Fy′)δx)

∣∣∣∣
x0

= 0

Since δI1 vanishes for those variations satisfying δx0 = 0 we obtain the Euler differential equation,

Fy −
d

dx
Fy′ = 0.

Then we have

((F (x, y, y′)− F (x, φ, φ′) + (φ′ − y′)Fy′)δx)

∣∣∣∣
x0

= 0
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for all variations δx0. This implies that

(F (x, y, y′)− F (x, φ, φ′) + (φ′ − y′)Fy′)
∣∣∣∣
x0

= 0.

Two solutions of this equation are

y′(x0) = φ′(x0) and Fy′ = 0.

Transversality condition. If Fy′ is not identically zero, the extremal must
be tangent to ∂R at the points of contact.

Now we apply this result to to find the curves which extremize
∫ 10

0
(y′)3 dx, y(0) = 0, y(10) = 0 given that the

admissible curves can not penetrate the interior of the circle (x− 5)2 + y2 = 9. Since the Lagrangian is a function
of y′ alone, the extremals are straight lines.

The Erdmann corner conditions require that

Fy′ = 3(y′)2 and F − y′Fy′ = (y′)3 − y′3(y′)2 = −2(y′)3

are continuous at corners. This implies that y′ is continuous. There are no corners.

We see that the extrema are

y(x) =


±3

4
x, for 0 ≤ x ≤ 16

5
,

±
√

9− (x− 5)2, for 16
5
≤ x ≤ 34

5
,

∓3
4
x, for 34

5
≤ x ≤ 10.

Note that the extremizing curves neither minimize nor maximize the integral.
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Solution 49.7
C1 Extremals. Without loss of generality, we take the vertical line to be the y axis. We will consider x1, y1 > 1.

With ds =
√

1 + (y′)2 dx we extremize the integral,∫ x1

0

√
y
√

1 + (y′)2 dx.

Since the Lagrangian is independent of x, we know that the Euler differential equation has a first integral.

d

dx
Fy′ − Fy = 0

y′Fy′y + y′′Fy′y′ − Fy = 0

d

dx
(y′Fy′ − F ) = 0

y′Fy′ − F = const

For the given Lagrangian, this is

y′
√
y

y′√
1 + (y′)2

−√y
√

1 + (y′)2 = const,

(y′)2√y −√y(1 + (y′)2) = const
√

1 + (y′)2,

√
y = const

√
1 + (y′)2

y = const is one solution. To find the others we solve for y′ and then solve the differential equation.

y = a(1 + (y′)2)
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y′ = ±
√
y − a
a

dx =

√
a

y − a
dy

±x+ b = 2
√
a(y − a)

y =
x2

4a
± bx

2a
+
b2

4a
+ a

The natural boundary condition is

Fy′
∣∣
x=0

=

√
yy′√

1 + (y′)2

∣∣∣∣
x=0

= 0,

y′(0) = 0

The extremal that satisfies this boundary condition is

y =
x2

4a
+ a.

Now we apply y(x1) = y1 to obtain

a =
1

2

(
y1 ±

√
y2

1 − x2
1

)
for y1 ≥ x1. The value of the integral is∫ x1

0

√(
x2

4a
+ a

)(
1 +

( x
2a

)2
)
dx =

x1(x2
1 + 12a2)

12a3/2
.

1915



By denoting y1 = cx1, c ≥ 1 we have

a =
1

2

(
cx1 ± x1

√
c2 − 1

)
The values of the integral for these two values of a are

√
2(x1)3/2−1 + 3c2 ± 3c

√
c2 − 1

3(c±
√
c2 − 1)3/2

.

The values are equal only when c = 1. These values, (divided by
√
x1), are plotted in Figure 49.1 as a function

of c. The former and latter are fine and coarse dashed lines, respectively. The extremal with

a =
1

2

(
y1 +

√
y2

1 − x2
1

)
has the smaller performance index. The value of the integral is

x1(x2
1 + 3(y1 +

√
y2

1 − x2
1)2

3
√

2(y1 +
√
y2

1 − x2
1)3

.

The function y = y1 is an admissible extremal for all x1. The value of the integral for this extremal is x1
√
y1

which is larger than the integral of the quadratic we analyzed before for y1 > x1.
Thus we see that

ŷ =
x2

4a
+ a, a =

1

2

(
y1 +

√
y2

1 − x2
1

)
is the extremal with the smaller integral and is the minimizing curve in C1 for y1 ≥ x1. For y1 < x1 the C1

extremum is,

ŷ = y1.
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Figure 49.1:

C1
p Extremals. Consider the parametric form of the Lagrangian.∫ t1

t0

√
y(t)

√
(x′(t))2 + (y′(t))2 dt

The Euler differential equations are

d

dt
fx′ − fx = 0 and

d

dt
fy′ − fy = 0.

If one of the equations is satisfied, then the other is automatically satisfied, (or the extremal is straight). With
either of these equations we could derive the quadratic extremal and the y = const extremal that we found
previously. We will find one more extremal by considering the first parametric Euler differential equation.

d

dt
fx′ − fx = 0

d

dt

( √
y(t)x′(t)√

(x′(t))2 + (y′(t))2

)
= 0
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√
y(t)x′(t)√

(x′(t))2 + (y′(t))2
= const

Note that x(t) = const is a solution. Thus the extremals are of the three forms,

x = const,

y = const,

y =
x2

4a
+
bx

2a
+
b2

4a
+ a.

The Erdmann corner conditions require that

Fy′ =

√
yy′√

1 + (y′)2
,

F − y′Fy′ =
√
y
√

1 + (y′)2 −
√
y(y′)2√

1 + (y′)2
=

√
y√

1 + (y′)2

are continuous at corners. There can be corners only if y = 0.
Now we piece the three forms together to obtain C1

p extremals that satisfy the Erdmann corner conditions.
The only possibility that is not C1 is the extremal that is a horizontal line from (0, 0) to (x1, 0) and then a vertical
line from (x1, y1). The value of the integral for this extremal is∫ y1

0

√
t dt =

2

3
(y1)3/2.

Equating the performance indices of the quadratic extremum and the piecewise smooth extremum,

x1(x2
1 + 3(y1 +

√
y2

1 − x2
1)2

3
√

2(y1 +
√
y2

1 − x2
1)3

=
2

3
(y1)3/2,

y1 = ±x1

√
3± 2

√
3√

3
.
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The only real positive solution is

y1 = x1

√
3 + 2

√
3√

3
≈ 1.46789 x1.

The piecewise smooth extremal has the smaller performance index for y1 smaller than this value and the quadratic
extremal has the smaller performance index for y1 greater than this value.

The C1
p extremum is the piecewise smooth extremal for y1 ≤ x1

√
3 + 2

√
3/
√

3

and is the quadratic extremal for y1 ≥ x1

√
3 + 2

√
3/
√

3.

Solution 49.8
The shape of the rope will be a catenary between x1 and x2 and be a vertically hanging segment after that. Let
the length of the vertical segment be z. Without loss of generality we take x1 = y2 = 0. The potential energy,
(relative to y = 0), of a length of rope ds in 0 ≤ x ≤ x2 is mgy = ρgy ds. The total potential energy of the
vertically hanging rope is m(center of mass)g = ρz(−z/2)g. Thus we seek to minimize,

ρg

∫ x2

0

y ds− 1

2
ρgz2, y(0) = y1, y(x2) = 0,

subject to the isoperimetric constraint, ∫ x2

0

ds− z = L.

Writing the arc-length differential as ds =
√

1 + (y′)2 dx we minimize

ρg

∫ x2

0

y
√

1 + (y′)2 ds− 1

2
ρgz2, y(0) = y1, y(x2) = 0,
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subject to, ∫ x2

0

√
1 + (y′)2 dx− z = L.

Consider the more general problem of finding functions y(x) and numbers z which extremize I ≡
∫ b
a
F (x, y, y′) dx+

f(z) subject to J ≡
∫ b
a
G(x, y, y′) dx+ g(z) = L.

Suppose y(x) and z are the desired solutions and form the comparison families, y(x) + ε1η1(x) + ε2η2(x),
z + ε1ζ1 + ε2ζ2. Then, there exists a constant such that

∂

∂ε1
(I + λJ)

∣∣
ε1,ε2=0

= 0

∂

∂ε2
(I + λJ)

∣∣
ε1,ε2=0

= 0.

These equations are ∫ b

a

(
d

dx
H,y′ −Hy

)
η1 dx+ h′(z)ζ1 = 0,

and ∫ b

a

(
d

dx
H,y′ −Hy

)
η2 dx+ h′(z)ζ2 = 0,

where H = F + λG and h = f + λg. From this we conclude that

d

dx
H,y′ −Hy = 0, h′(z) = 0

with λ determined by

J =

∫ b

a

G(x, y, y′) dx+ g(z) = L.
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Now we apply these results to our problem. Since f(z) = −1
2
ρgz2 and g(z) = −z we have

−ρgz − λ = 0,

z = − λ

ρg
.

It was shown in class that the solution of the Euler differential equation is a family of catenaries,

y = − λ

ρg
+ c1 cosh

(
x− c2

c1

)
.

One can find c1 and c2 in terms of λ by applying the end conditions y(0) = y1 and y(x2) = 0. Then the expression
for y(x) and z = −λ/ρg are substituted into the isoperimetric constraint to determine λ.

Consider the special case that (x1, y1) = (0, 0) and (x2, y2) = (1, 0). In this case we can use the fact that
y(0) = y(1) to solve for c2 and write y in the form

y = − λ

ρg
+ c1 cosh

(
x− 1/2

c1

)
.

Applying the condition y(0) = 0 would give us the algebraic-transcendental equation,

y(0) = − λ

ρg
+ c1 cosh

(
1

2c1

)
= 0,

which we can’t solve in closed form. Since we ran into a dead end in applying the boundary condition, we turn
to the isoperimetric constraint. ∫ 1

0

√
1 + (y′)2 dx− z = L

∫ 1

0

cosh

(
x− 1/2

c1

)
dx− z = L
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2c1 sinh

(
1

2c1

)
− z = L

With the isoperimetric constraint, the algebraic-transcendental equation and z = −λ/ρg we now have

z = −c1 cosh

(
1

2c1

)
,

z = 2c1 sinh

(
1

2c1

)
− L.

For any fixed L, we can numerically solve for c1 and thus obtain z. You can derive that there are no solutions
unless L is greater than about 1.9366. If L is smaller than this, the rope would slip off the pin. For L = 2, c1 has
the values 0.4265 and 0.7524. The larger value of c1 gives the smaller potential energy. The position of the end
of the rope is z = −0.9248.

Solution 49.9
Using the method of Lagrange multipliers, we look for stationary values of

∫ c
0
((y′)2 + λy2) dx,

δ

∫ c

0

((y′)2 + λy2) dx = 0.

The Euler differential equation is

d

dx
F(, y

′)− F,y = 0,

d

dx
(2y′)− 2λy = 0.

Together with the homogeneous boundary conditions, we have the problem

y′′ − λy = 0, y(0) = y(c) = 0,

1922



which has the solutions,

λn = −
(nπ
c

)2

, yn = an sin
(nπx

c

)
, n ∈ Z+.

Now we determine the constants an with the moment of inertia constraint.∫ c

0

a2
n sin2

(nπx
c

)
dx =

ca2
n

2
= A

Thus we have the extremals,

yn =

√
2A

c
sin
(nπx

c

)
, n ∈ Z+.

The drag for these extremals is

D =
2A

c

∫ c

0

(nπ
c

)2

cos2
(nπx

c

)
dx =

An2π2

c2
.

We see that the drag is minimum for n = 1. The shape for minimum drag is

ŷ =

√
2A

c
sin
(nπx

c

)
.

Solution 49.10
Consider the general problem of determining the stationary values of the quantity ω2 given by

ω2 =

∫ b
a
F (x, y, y′, y′′) dx∫ b

a
G(x, y, y′, y′′) dx

≡ I

J
.
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The variation of ω2 is

δω2 =
JδI − IδJ

J2

=
1

J

(
δI − I

J
δJ

)
=

1

J

(
δI − ω2δJ

)
.

The the values of y and y′ are specified on the boundary, then the variations of I and J are

δI =

∫ b

a

(
d2

dx2
F,y′′ −

d

dx
F,y′ + F,y

)
δy dx, δJ =

∫ b

a

(
d2

dx2
G,y′′ −

d

dx
G,y′ +G,y

)
δy dx

Thus δω2 = 0 becomes ∫ b
a

(
d2

dx2H,y′′ − d
dx
H,y′ +H,y

)
δy dx∫ b

a
Gdx

= 0,

where H = F − ω2G. A necessary condition for an extremum is

d2

dx2
H,y′′ −

d

dx
H,y′ +H,y = 0 where H ≡ F − ω2G.

For our problem we have F = EI(y′′)2 and G = ρy so that the extremals are solutions of

d2

dx2

(
EI

d2y

dx2

)
− ρω2y = 0,

With homogeneous boundary conditions we have an eigenvalue problem with deflections modes yn(x) and corre-
sponding natural frequencies ωn.
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Solution 49.11
We assume that v0 > w(x, y, t) so that the problem has a solution for any end point. The crossing time is

T =

∫ l

0

(
Ẋ(t)

)−1

dx =
1

v0

∫ l

0

secα(t) dx.

Note that

dy

dx
=
w + v0 sinα

v0 cosα

=
w

v0

secα + tanα

=
w

v0

secα +
√

sec2 α− 1.

We solve this relation for secα. (
y′ − w

v0

secα

)2

= sec2 α− 1

(y′)2 − 2
w

v0

y′ secα +
w2

v2
0

sec2 α = sec2 α− 1

(v2
0 − w2) sec2 α + 2v0wy

′ secα− v2
0((y′)2 + 1) = 0

secα =
−2v0wy

′ ±
√

4v2
0w

2(y′)2 + 4(v2
0 − w2)v2

0((y′)2 + 1)

2(v2
0 − w2)

secα = v0
−wy′ ±

√
v2

0((y′)2 + 1)− w2

(v2
0 − w2)
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Since the steering angle satisfies −π/2 ≤ α ≤ π/2 only the positive solution is relevant.

secα = v0
−wy′ +

√
v2

0((y′)2 + 1)− w2

(v2
0 − w2)

Time Independent Current. If we make the assumption that w = w(x, y) then we can write the crossing
time as an integral of a function of x and y.

T (y) =

∫ l

0

−wy′ +
√
v2

0((y′)2 + 1)− w2

(v2
0 − w2)

dx

A necessary condition for a minimum is δT = 0. The Euler differential equation for this problem is

d

dx
F,y′ − F,y = 0

d

dx

(
1

v2
0 − w2

(
−w +

v2
0y
′√

v2
0((y′)2 + 1)− w2

))
− wy

(v2
0 − w2)2

(
w(v2(1 + 2(y′)2)− w2)√

v2
0((y′)2 + 1)− w2

− y′(v2
0 + w2)

)

By solving this second order differential equation subject to the boundary conditions y(0) = 0, y(l) = y1 we
obtain the path of minimum crossing time.

Current w = w(x). If the current is only a function of x, then the Euler differential equation can be integrated
to obtain,

1

v2
0 − w2

(
−w +

v2
0y
′√

v2
0((y′)2 + 1)− w2

)
= c0.

Solving for y′,

y′ = ± w + c0(v2
0 − w2)

v0

√
1− 2c0w − c2

0(v2
0 − w2)

.
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Since y(0) = 0, we have

y(x) = ±
∫ x

0

w(ξ) + c0(v2
0 − (w(ξ))2)

v0

√
1− 2c0w(ξ)− c2

0(v2
0 − (w(ξ))2)

.

For any given w(x) we can use the condition y(l) = y1 to solve for the constant c0.
Constant Current. If the current is constant then the Lagrangian is a function of y′ alone. The admissible

extremals are straight lines. The solution is then

y(x) =
y1x

l
.

Solution 49.12
1. The kinetic energy of the first particle is 1

2
m((α − x)θ̂)2. Its potential energy, relative to the table top, is

zero. The kinetic energy of the second particle is 1
2
mx̂2. Its potential energy, relative to its equilibrium

position is −mgx. The Lagrangian is the difference of kinetic and potential energy.

L = m

(
ẋ2 +

1

2
(α− x)2θ̇2 + gx

)
The Euler differential equations are the equations of motion.

d

dt
L,ẋ − Lx = 0,

d

dt
L,θ̇ − Lθ = 0

d

dt
(2mẋ) +m(α− x)θ̇2 −mg = 0,

d

dt

(
m(α− x)2θ̇2

)
= 0

2ẍ+ (α− x)θ̇2 − g = 0, (α− x)2θ̇2 = const
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When x = 0, θ̇ = ω =
√
g/α. This determines the constant in the equation of motion for θ.

θ̇ =
α
√
αg

(α− x)2

Now we substitute the expression for θ̇ into the equation of motion for x.

2ẍ+ (α− x)
α3g

(α− x)4
− g = 0

2ẍ+

(
α3

(α− x)3
− 1

)
g = 0

2ẍ+

(
1

(1− x/α)3
− 1

)
g = 0

2. For small oscillations,
∣∣ x
α

∣∣� 1. Recall the binomial expansion,

(1 + z)a =
∞∑
n=0

(
a

n

)
zn, for |z| < 1,

(1 + z)a ≈ 1 + az, for |z| � 1.

We make the approximation,

1

(1− x/α)3
≈ 1 + 3

x

α
,
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to obtain the linearized equation of motion,

2ẍ+
3g

α
x = 0.

This is the equation of a harmonic oscillator with solution

x = a sin
(√

3g2α(t− b)
)
.

The period of oscillation is,

T = 2π
√

2α3g.

Solution 49.13
We write the equation of motion and boundary conditions,

ẍ = U(t)− g, x(0) = ẋ(0) = 0, x(T ) = h,

as the first order system,

ẋ = 0, x(0) = 0, x(T ) = h,

ẏ = U(t)− g, y(0) = 0.

We seek to minimize,

T =

∫ T

0

dt,

subject to the constraints,

ẋ− y = 0,

ẏ − U(t) + g = 0,∫ T

0

U2(t) dt = k2.
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Thus we seek extrema of∫ T

0

H dt ≡
∫ T

0

(
1 + λ(t)(ẋ− y) + µ(t)(ẏ − U(t) + g) + νU2(t)

)
dt.

Since y is not specified at t = T , we have the natural boundary condition,

H,ẏ

∣∣
t=T

= 0,

µ(T ) = 0.

The first Euler differential equation is

d

dt
H,ẋ −H,x = 0,

d

dt
λ(t) = 0.

We see that λ(t) = λ is constant. The next Euler DE is

d

dt
H,ẏ −H,y = 0,

d

dt
µ(t) + λ = 0.

µ(t) = −λt+ const

With the natural boundary condition, µ(T ) = 0, we have

µ(t) = λ(T − t).
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The final Euler DE is,

d

dt
H,U̇ −H,U = 0,

µ(t)− 2νU(t) = 0.

Thus we have

U(t) =
λ(T − t)

2ν
.

This is the required thrust function. We use the constraints to find λ, ν and T .
Substituting U(t) = λ(T − t)/(2ν) into the isoperimetric constraint,

∫ T
0
U2(t) dt = k2 yields

λ2T 3

12ν2
= k2,

U(t) =

√
3k

T 3/2
(T − t).

The equation of motion for x is

ẍ = U(t)− g =

√
3k

T 3/2
(T − t).

Integrating and applying the initial conditions x(0) = ẋ(0) = 0 yields,

x(t) =
kt2(3T − t)

2
√

3T 3/2
− 1

2
gt2.

Applying the condition x(T ) = h gives us,

k√
3
T 3/2 − 1

2
gT 2 = h,
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1

4
g2T 4 − k

3
T 3 + ghT 2 + h2 = 0.

If k ≥ 4
√

2/3g3/2
√
h then this fourth degree polynomial has positive, real solutions for T . With strict inequality,

the minimum time is the smaller of the two positive, real solutions. If k < 4
√

2/3g3/2
√
h then there is not enough

fuel to reach the target height.

Solution 49.14
We have ẍ = U(t) where U(t) is the acceleration furnished by the thrust of the vehicles engine. In practice, the
engine will be designed to operate within certain bounds, say −M ≤ U(t) ≤ M , where ±M is the maximum
forward/backward acceleration. To account for the inequality constraint we write U = M sinV (t) for some
suitable V (t). More generally, if we had φ(t) ≤ U(t) ≤ ψ(t), we could write this as U(t) = ψ+φ

2
+ ψ−φ

2
sinV (t).

We write the equation of motion as a first order system,

ẋ = y, x(0) = a, x(T ) = 0,

ẏ = M sinV, y(0) = b, y(T ) = 0.

Thus we minimize

T =

∫ T

0

dt

subject to the constraints,

ẋ− y = 0

ẏ −M sinV = 0.

Consider

H = 1 + λ(t)(ẋ− y) + µ(t)(ẏ −M sinV ).
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The Euler differential equations are

d

dt
H,ẋ −H,x = 0 ⇒ d

dt
λ(t) = 0 ⇒ λ(t) = const

d

dt
H,ẏ −H,y = 0 ⇒ d

dt
µ(t) + λ = 0 ⇒ µ(t) = −λt+ const

d

dt
H,V̇ −H,V = 0 ⇒ µ(t)M cosV (t) = 0 ⇒ V (t) =

π

2
+ nπ.

Thus we see that

U(t) = M sin
(π

2
+ nπ

)
= ±M.

Therefore, if the rocket is to be transferred from its initial state to is specified final state in minimum time with
a limited source of thrust, (|U | ≤ M), then the engine should operate at full power at all times except possibly
for a finite number of switching times. (Indeed, if some power were not being used, we would expect the transfer
would be speeded up by using the additional power suitably.)

To see how this ”bang-bang” process works, we’ll look at the phase plane. The problem

ẋ = y, x(0) = c,

ẏ = ±M, y(0) = d,

has the solution

x(t) = c+ dt±M t2

2
, y(t) = d±Mt.

We can eliminate t to get

x = ± y2

2M
+ c∓ d2

2M
.

These curves are plotted in Figure 49.2.
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Figure 49.2:

There is only curve in each case which transfers the initial state to the origin. We will denote these curves
γ and Γ, respectively. Only if the initial point (a, b) lies on one of these two curves can we transfer the state of
the system to the origin along an extremal without switching. If a = b2

2M
and b < 0 then this is possible using

U(t) = M . If a = − b2

2M
and b > 0 then this is possible using U(t) = −M . Otherwise we follow an extremal that

intersects the initial position until this curve intersects γ or Γ. We then follow γ or Γ to the origin.

Solution 49.15
Since the integrand does not explicitly depend on x, the Euler differential equation has the first integral,

F − y′Fy′ = const.

√
y + h

√
1 + (y′)2 − y′ y

′√y + h√
1 + (y′)2

= const

√
y + h√

1 + (y′)2
= const
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y + h = c2
1(1 + (y′)2)

√
y + h− c2

1 = c1y
′

c1 dy√
y + h− c2

1

= dx

2c1

√
y + h− c2

1 = x− c2

4c2
1(y + h− c2

1) = (x− c2)2

Since the extremal passes through the origin, we have

4c2
1(h− c2

1) = c2
2.

4c2
1y = x2 − 2c2x (49.6)

Introduce as a parameter the slope of the extremal at the origin; that is, y′(0) = α. Then differentiating (49.6)
at x = 0 yields 4c2

1α = −2c2. Together with c2
2 = 4c2

1(h − c2
1) we obtain c2

1 = h
1+α2 and c2 = − 2αh

1+α2 . Thus the
equation of the pencil (49.6) will have the form

y = αx +
1 + α2

4h
x2. (49.7)

To find the envelope of this family we differentiate ( 49.7) with respect to α to obtain 0 = x+ α
2h
x2 and eliminate

α between this and ( 49.7) to obtain

y = −h+
x2

4h
.
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Figure 49.3: Some Extremals and the Envelope.

See Figure 49.3 for a plot of some extremals and the envelope.

All extremals (49.7) lie above the envelope which in ballistics is called the parabola of safety. If (m,M) lies
outside the parabola, M < −h + m2

4h
, then it cannot be joined to (0, 0) by an extremal. If (m,M) is above the

envelope then there are two candidates. Clearly we rule out the one that touches the envelope because of the
occurrence of conjugate points. For the other extremal, problem 2 shows that E ≥ 0 for all y′. Clearly we can
embed this extremal in an extremal pencil, so Jacobi’s test is satisfied. Therefore the parabola that does not
touch the envelope is a strong minimum.
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Solution 49.16

E = F (x, y, y′)− F (x, y, p)− (y′ − p)Fy′(x, y, p)

= n
√

1 + (y′)2 − n
√

1 + p2 − (y′ − p) np√
1 + p2

=
n√

1 + p2

(√
1 + (y′)2

√
1 + p2 − (1 + p2)− (y′ − p)p

)
=

n√
1 + p2

(√
1 + (y′)2 + p2 + (y′)2p2 − 2y′p+ 2y′p− (1 + py′)

)
=

n√
1 + p2

(√
(1 + py′)2 + (y′ − p)2 − (1 + py′)

)
≥ 0

The speed of light in an inhomogeneous medium is ds
dt

= 1
n(x,y

. The time of transit is then

T =

∫ (b,B)

(a,A)

dt

ds
ds =

∫ b

a

n(x, y)
√

1 + (y′)2 dx.

Since E ≥ 0, light traveling on extremals follow the time optimal path as long as the extremals do not intersect.

Solution 49.17
Extremals. Since the integrand does not depend explicitly on x, the Euler differential equation has the first
integral,

F − y′F,y′ = const.

1 + y2

(y′)2
− y′−2(1 + y2)

(y′)3
= const
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dy√
1 + (y′)2

= const dx

arcsinh (y) = c1x+ c2

y = sinh(c1x+ c2)

Jacobi Test. We can see by inspection that no conjugate points exist. Consider the central field through
(0, 0), sinh(cx), (See Figure 49.4).

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 49.4: sinh(cx)

We can also easily arrive at this conclusion analytically as follows: Solutions u1 and u2 of the Jacobi equation
are given by

u1 =
∂y

∂c2

= cosh(c1x+ c2),

u2 =
∂y

∂c1

= x cosh(c1x+ c2).
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Since u2/u1 = x is monotone for all x there are no conjugate points.
Weierstrass Test.

E = F (x, y, y′)− F (x, y, p)− (y′ − p)F,y′(x, y, p)

=
1 + y2

(y′)2
− 1 + y2

p2
− (y′ − p)−2(1 + y2)

p3

=
1 + y2

(y′)2p2

(
p3 − p(y′)2 + 2(y′)3 − 2p(y′)2

p

)
=

1 + y2

(y′)2p2

(
(p− y′)2(p+ 2y′)

p

)
For p = p(x, y) bounded away from zero, E is one-signed for values of y′ close to p. However, since the factor
(p+ 2y′) can have any sign for arbitrary values of y′, the conditions for a strong minimum are not satisfied.

Furthermore, since the extremals are y = sinh(c1x + c2), the slope function p(x, y) will be of one sign only if
the range of integration is such that we are on a monotonic piece of the sinh. If we span both an increasing and
decreasing section, E changes sign even for weak variations.

Legendre Condition.

F,y′y′ =
6(1 + y2)

(y′)4
> 0

Note that F cannot be represented in a Taylor series for arbitrary values of y′ due to the presence of a discontinuity
in F when y′ = 0. However, F,y′y′ > 0 on an extremal implies a weak minimum is provided by the extremal.

Strong Variations. Consider
∫

1+y2

(y′)2 dx on both an extremal and on the special piecewise continuous variation

in the figure. On PQ we have y′ =∞ with implies that 1+y2

(y′)2 = 0 so that there is no contribution to the integral
from PQ.

On QR the value of y′ is greater than its value along the extremal PR while the value of y on QR is less than
the value of y along PR. Thus on QR the quantity 1+y2

(y′)2 is less than it is on the extremal PR.∫
QR

1 + y2

(y′)2
dx <

∫
PR

1 + y2

(y′)2
dx
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Thus the weak minimum along the extremal can be weakened by a strong variation.

Solution 49.18
The Euler differential equation is

d

dx
F,y′ − F,y = 0.

d

dx
(1 + 2x2y′) = 0

1 + 2x2y′ = const

y′ = const
1

x2

y =
c1

x
+ c2

(i) No continuous extremal exists in −1 ≤ x ≤ 2 that satisfies y(−1) = 1 and y(2) = 4.

(ii) The continuous extremal that satisfies the boundary conditions is y = 7 − 4
x
. Since F,y′y′ = 2x2 ≥ 0 has a

Taylor series representation for all y′, this extremal provides a strong minimum.

(iii) The continuous extremal that satisfies the boundary conditions is y = 1. This is a strong minimum.

Solution 49.19
For identity (a) we take P = 0 and Q = φψx − ψφx. For identity (b) we take P = φψy − ψφy and Q = 0. For
identity (c) we take P = −1

2
(φψx − ψφx) and Q = 1

2
(φψy − ψφy).∫∫

D

(
1

2
(φψy − ψφy)x −

(
−1

2

)
(φψx − ψφx)y

)
dx dy =

∫
Γ

(
−1

2
(φψx − ψφx) dx+

1

2
(φψy − ψφy) dy

)
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∫∫
D

(
1

2
(φxψy + φψxy − ψxφy − ψφxy) +

1

2
(φyψxφψxy − ψyφx − ψφxy)

)
dx dy

= −1

2

∫
Γ

(φψx − ψφx) dx+
1

2

∫
Γ

(φψy − ψφy) dy∫∫
D

φψxy dx dy =

∫∫
D

ψφxy dx dy −
1

2

∫
Γ

(φψx − ψφx) dx+
1

2

∫
Γ

(φψy − ψφy) dy

The variation of I is

δI =

∫ t1

t0

∫∫
D

(−2(uxx + uyy)(δuxx + δuyy) + 2(1− µ)(uxxδuyy + uyyδuxx − 2uxyδuxy)) dx dy dt.

From (a) we have∫∫
D

−2(uxx + uyy)δuxx dx dy =

∫∫
D

−2(uxx + uyy)xxδu dx dy

+

∫
Γ

−2((uxx + uyy)δux − (uxx + uyy)xδu) dy.

From (b) we have∫∫
D

−2(uxx + uyy)δuyy dx dy =

∫∫
D

−2(uxx + uyy)yyδu dx dy

−
∫

Γ

−2((uxx + uyy)δuy − (uxx + uyy)yδu) dy.

From (a) and (b) we get∫∫
D

2(1− µ)(uxxδuyy + uyyδuxx) dx dy

=

∫∫
D

2(1− µ)(uxxyy + uyyxx)δu dx dy

+

∫
Γ

2(1− µ)(−(uxxδuy − uxxyδu) dx+ (uyyδux − uyyxδu) dy).
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Using c gives us ∫∫
D

2(1− µ)(−2uxyδuxy) dx dy =

∫∫
D

2(1− µ)(−2uxyxyδu) dx dy

+

∫
Γ

2(1− µ)(uxyδux − uxyxδu) dx

−
∫

Γ

2(1− µ)(uxyδuy − uxyyδu) dy.

Note that

∂u

∂n
ds = ux dy − uy dx.

Using the above results, we obtain

δI = 2

∫ t1

t0

∫∫
D

(−∇4u)δu dx dy dt+ 2

∫ t1

t0

∫
Γ

(
∂(∇2u)

∂n
δu+ (∇2u)

∂(δu)

∂n

)
ds dt

+ 2(1− µ)

∫ t1

t0

(∫
Γ

(uyyδux − uxyδuy) dy + (uxyδux − uxxδuy) dx
)
dt.

Solution 49.20
1. Exact Solution. The Euler differential equation is

d

dx
F,y′ = F,y

d

dx
[2y′] = −2y − 2x

y′′ + y = −x.

The general solution is

y = c1 cosx+ c2 sinx− x.
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Applying the boundary conditions we obtain,

y =
sinx

sin 1
− x.

The value of the integral for this extremal is

J

[
sinx

sin 1
− x
]

= cot(1)− 2

3
≈ −0.0245741.

n = 0. We consider an approximate solution of the form y(x) = ax(1 − x). We substitute this into the
functional.

J(a) =

∫ 1

0

(
(y′)2 − y2 − 2xy

)
dx =

3

10
a2 − 1

6
a

The only stationary point is

J ′(a) =
3

5
a− 1

6
= 0

a =
5

18
.

Since

J ′′
(

5

18

)
=

3

5
> 0,

we see that this point is a minimum. The approximate solution is

y(x) =
5

18
x(1− x).
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Figure 49.5: One Term Approximation and Exact Solution.

This one term approximation and the exact solution are plotted in Figure 49.5. The value of the functional
is

J = − 5

216
≈ −0.0231481.

n = 1. We consider an approximate solution of the form y(x) = x(1− x)(a + bx). We substitute this into
the functional.

J(a, b) =

∫ 1

0

(
(y′)2 − y2 − 2xy

)
dx =

1

210

(
63a2 + 63ab+ 26b2 − 35a− 21b

)
We find the stationary points.

Ja =
1

30
(18a+ 9b− 5) = 0

Jb =
1

210
(63a+ 52b− 21) = 0
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a =
71

369
, b =

7

41

Since the Hessian matrix

H =

(
Jaa Jab
Jba Jbb

)
=

(
3
5

3
10

3
10

26
105

)
,

is positive definite,

3

5
> 0, det(H) =

41

700
,

we see that this point is a minimum. The approximate solution is

y(x) = x(1− x)

(
71

369
+

7

41
x

)
.

This two term approximation and the exact solution are plotted in Figure 49.6. The value of the functional
is

J = − 136

5535
≈ −0.0245709.

2. Exact Solution. The Euler differential equation is

d

dx
F,y′ = F,y

d

dx
[2y′] = 2y + 2x

y′′ − y = x.
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Figure 49.6: Two Term Approximation and Exact Solution.

The general solution is

y = c1 coshx+ c2 sinhx− x.

Applying the boundary conditions, we obtain,

y =
2 sinhx

sinh 2
− x.

The value of the integral for this extremal is

J = −2( e4 − 13)

3( e4 − 1)
≈ −0.517408.

Polynomial Approximation. Consider an approximate solution of the form

y(x) = x(2− x)(a0 + a1x+ · · · anxn).
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The one term approximate solution is

y(x) = − 5

14
x(2− x).

This one term approximation and the exact solution are plotted in Figure 49.7. The value of the functional
is

J = −10

21
≈ −0.47619.
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Figure 49.7: One Term Approximation and Exact Solution.

The two term approximate solution is

y(x) = x(2− x)

(
− 33

161
− 7

46
x

)
.

This two term approximation and the exact solution are plotted in Figure 49.8. The value of the functional
is

J = −416

805
≈ −0.51677.
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Figure 49.8: Two Term Approximation and Exact Solution.

Sine Series Approximation. Consider an approximate solution of the form

y(x) = a1 sin
(πx

2

)
+ a2 sin (πx) + · · ·+ an sin

(
n
πx

2

)
.

The one term approximate solution is

y(x) = − 16

π(π2 + 4)
sin
(πx

2

)
.

This one term approximation and the exact solution are plotted in Figure 49.9. The value of the functional
is

J = − 64

π2(π2 + 4)
≈ −0.467537.

The two term approximate solution is

y(x) = − 16

π(π2 + 4)
sin
(πx

2

)
+

2

π(π2 + 1)
sin(πx).
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Figure 49.9: One Term Sine Series Approximation and Exact Solution.

This two term approximation and the exact solution are plotted in Figure 49.10. The value of the functional
is

J = − 4(17π2 + 20)

π2(π4 + 5π2 + 4)
≈ −0.504823.

3. Exact Solution. The Euler differential equation is

d

dx
F,y′ = F,y

d

dx
[2xy′] = −2

x2 − 1

x
y − 2x2

y′′ +
1

x
y′ +

(
1− 1

x2

)
y = −x

The general solution is

y = c1J1(x) + c2Y1(x)− x
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Figure 49.10: Two Term Sine Series Approximation and Exact Solution.

Applying the boundary conditions we obtain,

y =
(Y1(2)− 2Y1(1))J1(x) + (2J1(1)− J1(2))Y1(x)

J1(1)Y1(2)− Y1(1)J1(2)
− x

The value of the integral for this extremal is

J ≈ −0.310947

Polynomial Approximation. Consider an approximate solution of the form

y(x) = (x− 1)(2− x)(a0 + a1x+ · · · anxn).

The one term approximate solution is

y(x) = (x− 1)(2− x)
23

6(40 log 2− 23)
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This one term approximation and the exact solution are plotted in Figure 49.11. The one term approximation
is a surprisingly close to the exact solution. The value of the functional is

J = − 529

360(40 log 2− 23)
≈ −0.310935.
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Figure 49.11: One Term Polynomial Approximation and Exact Solution.

Solution 49.21
1. The spectrum of T is the set,

{λ : (T − λI) is not invertible.}
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(T − λI)f = g∫ ∞
−∞

K(x− y)f(y) dy − λf(x) = g

K̂(ω)f̂(ω)− λf̂(ω) = ĝ(ω)(
K̂(ω)− λ

)
f̂(ω) = ĝ(ω)

We may not be able to solve for f̂(ω), (and hence invert T − λI), if λ = K̂(ω). Thus all values of K̂(ω) are
in the spectrum. If K̂(ω) is everywhere nonzero we consider the case λ = 0. We have the equation,∫ ∞

−∞
K(x− y)f(y) dy = 0

Since there are an infinite number of L2(−∞,∞) functions which satisfy this, (those which are nonzero on
a set of measure zero), we cannot invert the equation. Thus λ = 0 is in the spectrum. The spectrum of T
is the range of K̂(ω) plus zero.

2. Let λ be a nonzero eigenvalue with eigenfunction φ.

(T − λI)φ = 0, ∀x∫ ∞
−∞

K(x− y)φ(y) dy − λφ(x) = 0, ∀x

Since K is continuous, Tφ is continuous. This implies that the eigenfunction φ is continuous. We take the
Fourier transform of the above equation.

K̂(ω)φ̂(ω)− λφ̂(ω) = 0, ∀ω(
K̂(ω)− λ

)
φ̂(ω) = 0, ∀ω
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If φ(x) is absolutely integrable, then φ̂(ω) is continous. Since φ(x) is not identically zero, ˆφ(ω) is not

identically zero. Continuity implies that ˆφ(ω) is nonzero on some interval of positive length, (a, b). From
the above equation we see that K̂(ω) = λ for ω ∈ (a, b).

Now assume that K̂(ω) = λ in some interval (a, b). Any function φ̂(ω) that is nonzero only for ω ∈ (a, b)
satisfies (

K̂(ω)− λ
)
φ̂(ω) = 0, ∀ω.

By taking the inverse Fourier transform we obtain an eigenfunction φ(x) of the eigenvalue λ.

3. First we use the Fourier transform to find an explicit representation of u = (T − λI)−1f .

u = (T − λI)−1f(T − λI)u = f∫ ∞
−∞

K(x− y)u(y) dy − λu = f

2πK̂û− λû = f̂

û =
f̂

2πK̂ − λ

û = −1

λ

f̂

1− 2πK̂/λ

For |λ| > |2πK̂| we can expand the denominator in a geometric series.

û = −1

λ
f̂
∞∑
n=0

(
2πK̂

λ

)n

u = −1

λ

∞∑
n=0

1

λn

∫ ∞
−∞

Kn(x− y)f(y) dy

1953



Here Kn is the nth iterated kernel. Now we form the Neumann series expansion.

u = (T − λI)−1 f

= −1

λ

(
I − 1

λ
T

)−1

f

= −1

λ

∞∑
n=0

1

λn
T nf

= −1

λ

∞∑
n=0

1

λn
T nf

= −1

λ

∞∑
n=0

1

λn

∫ ∞
−∞

Kn(x− y)f(y) dy

The Neumann series is the same as the series we derived with the Fourier transform.

Solution 49.22
We seek a transformation T such that

(L− λI)Tf = f.

We denote u = Tf to obtain a boundary value problem,

u′′ − λu = f, u(−1) = u(1) = 0.

This problem has a unique solution if and only if the homogeneous adjoint problem has only the trivial solution.

u′′ − λu = 0, u(−1) = u(1) = 0.

This homogeneous problem has the eigenvalues and eigenfunctions,

λn = −
(nπ

2

)2

, un = sin
(nπ

2
(x+ 1)

)
, n ∈ N.
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The inhomogeneous problem has the unique solution

u(x) =

∫ 1

−1

G(x, ξ;λ)f(ξ) dξ

where

G(x, ξ;λ) =


− sin(

√
−λ(x<+1)) sin(

√
−λ(1−x>))

√
−λ sin(2

√
−λ)

, λ < 0,

−1
2
(x< + 1)(1− x>), λ = 0,

− sinh(
√
λ(x<+1)) sinh(

√
λ(1−x>))

√
λ sinh(2

√
λ)

, λ > 0,

for λ 6= −(nπ/2)2, n ∈ N. We set

Tf =

∫ 1

−1

G(x, ξ;λ)f(ξ) dξ

and note that since the kernel is continuous this is a bounded linear transformation. If f ∈ W , then

(L− λI)Tf = (L− λI)

∫ 1

−1

G(x, ξ;λ)f(ξ) dξ

=

∫ 1

−1

(L− λI)[G(x, ξ;λ)]f(ξ) dξ

=

∫ 1

−1

δ(x− ξ)f(ξ) dξ

= f(x).
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If f ∈ U then

T (L− λI)f =

∫ 1

−1

G(x, ξ;λ)
(
f ′′(ξ)− λf(ξ)

)
dξ

= [G(x, ξ;λ)f ′(ξ)]
1
−1 −

∫ 1

−1

G′(x, ξ;λ)f ′(ξ) dξ − λ
∫ 1

−1

G(x, ξ;λ)f(ξ) dξ

= [−G′(x, ξ;λ)f(ξ)]
1
−1 +

∫ 1

−1

G′′(x, ξ;λ)f(ξ) dξ − λ
∫ 1

−1

G(x, ξ;λ)f(ξ) dξ

=

∫ 1

−1

(
G′′(x, ξ;λ)− λG(x, ξ;λ)

)
f(ξ) dξ

=

∫ 1

−1

δ(x− ξ)f(ξ) dξ

= f(x).

L has the point spectrum λn = −(nπ/2)2, n ∈ N.

Solution 49.23
1. We see that the solution is of the form φ(x) = a + x + bx2 for some constants a and b. We substitute this

into the integral equation.

φ(x) = x+ λ

∫ 1

0

(
x2y − y2

)
φ(y) dy

a+ x+ bx2 = x+ λ

∫ 1

0

(
x2y − y2

)
(a+ x+ bx2) dy

a+ bx2 =
λ

60

(
−(15 + 20a+ 12b) + (20 + 30a+ 15b)x2

)
By equating the coefficients of x0 and x2 we solve for a and b.

a = − λ(λ+ 60)

4(λ2 + 5λ+ 60)
, b = − 5λ(λ− 60)

6(λ2 + 5λ+ 60)
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Thus the solution of the integral equation is

φ(x) = x− λ

λ2 + 5λ+ 60

(
5(λ− 24)

6
x2 +

λ+ 60

4

)
.

2. For x < 1 the integral equation reduces to

φ(x) = x.

For x ≥ 1 the integral equation becomes,

φ(x) = x+ λ

∫ 1

0

sin(xy)φ(y) dy.

We could solve this problem by writing down the Neumann series. Instead we will use an eigenfunction
expansion. Let {λn} and {φn} be the eigenvalues and orthonormal eigenfunctions of

φ(x) = λ

∫ 1

0

sin(xy)φ(y) dy.

We expand φ(x) and x in terms of the eigenfunctions.

φ(x) =
∞∑
n=1

anφn(x)

x =
∞∑
n=1

bnφn(x), bn = 〈x, φn(x)〉
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We determine the coefficients an by substituting the series expansions into the Fredholm equation and
equating coefficients of the eigenfunctions.

φ(x) = x+ λ

∫ 1

0

sin(xy)φ(y) dy

∞∑
n=1

anφn(x) =
∞∑
n=1

bnφn(x) + λ

∫ 1

0

sin(xy)
∞∑
n=1

anφn(y) dy

∞∑
n=1

anφn(x) =
∞∑
n=1

bnφn(x) + λ

∞∑
n=1

an
1

λn
φn(x)

an

(
1− λ

λn

)
= bn

If λ is not an eigenvalue then we can solve for the an to obtain the unique solution.

an =
bn

1− λ/λn
=

λnbn
λn − λ

= bn +
λbn

λn − λ

φ(x) = x+
∞∑
n=1

λbn
λn − λ

φn(x), for x ≥ 1.

If λ = λm, and 〈x, φm〉 = 0 then there is the one parameter family of solutions,

φ(x) = x+ cφm(x) +
∞∑
n=1
n6=m

λbn
λn − λ

φn(x), for x ≥ 1.

If λ = λm, and 〈x, φm〉 6= 0 then there is no solution.
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Solution 49.24
1.

Kx = L1L2x = λx

L1L2(L1x) = L1(L1l2 − I)x

= L1(λx− x)

= (λ− 1)(L1x)

L1L2(L2x) = (L2L1 + I)L2x

= L2λx+ L2x

= (λ+ 1)(L2x)

2.

L1L2 − L2L1 =

(
d

dt
+
t

2

)(
− d

dt
+
t

2

)
−
(
− d

dt
+
t

2

)(
d

dt
+
t

2

)
= − d2

dt2
+
t

2

d

dt
+

1

2
I − t

2

d

dt
+
t2

4
I −

(
− d2

dt2
− t

2

d

dt
− 1

2
I +

t

2

d

dt
+
t2

4
I

)
= I

L1L2 = − d2

dt2
+

1

2
I +

t2

4
I = K +

1

2
I

We note that e−t
2/4 is an eigenfunction corresponding to the eigenvalue λ = 1/2. Since L1 e−t

2/4 = 0 the
result of this problem does not produce any negative eigenvalues. However, Ln2 e−t

2/4 is the product of e−t
2/4

and a polynomial of degree n in t. Since this function is square integrable it is and eigenfunction. Thus we
have the eigenvalues and eigenfunctions,

λn = n− 1

2
, φn =

(
t

2
− d

dt

)n−1

e−t
2/4, for n ∈ N.
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Solution 49.25
Since λ1 is in the residual spectrum of T , there exists a nonzero y such that

〈(T − λ1I)x, y〉 = 0

for all x. Now we apply the definition of the adjoint.

〈x, (T − λ1I)∗y〉 = 0, ∀x
〈x, (T ∗ − λ1I)y〉 = 0, ∀x

(T ∗ − λ1I)y = 0

y is an eigenfunction of T ∗ corresponding to the eigenvalue λ1.

Solution 49.26
1.

u′′(t) +

∫ 1

0

sin(k(s− t))u(s) ds = f(t), u(0) = u′(0) = 0

u′′(t) + cos(kt)

∫ 1

0

sin(ks)u(s) ds− sin(kt)

∫ 1

0

cos(ks)u(s) ds = f(t)

u′′(t) + c1 cos(kt)− c2 sin(kt) = f(t)

u′′(t) = f(t)− c1 cos(kt) + c2 sin(kt)

The solution of

u′′(t) = g(t), u(0) = u′(0) = 0

using Green functions is

u(t) =

∫ t

0

(t− τ)g(τ) dτ.
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Thus the solution of our problem has the form,

u(t) =

∫ t

0

(t− τ)f(τ) dτ − c1

∫ t

0

(t− τ) cos(kτ) dτ + c2

∫ t

0

(t− τ) sin(kτ) dτ

u(t) =

∫ t

0

(t− τ)f(τ) dτ − c1
1− cos(kt)

k2
+ c2

kt− sin(kt)

k2

We could determine the constants by multiplying in turn by cos(kt) and sin(kt) and integrating from 0 to
1. This would yields a set of two linear equations for c1 and c2.

2.

u(x) = λ

∫ π

0

∞∑
n=1

sinnx sinns

n
u(s) ds

We expand u(x) in a sine series.

∞∑
n=1

an sinnx = λ

∫ π

0

(
∞∑
n=1

sinnx sinns

n

)(
∞∑
m=1

am sinms

)
ds

∞∑
n=1

an sinnx = λ
∞∑
n=1

sinnx

n

∞∑
m=1

∫ π

0

am sinns sinmsds

∞∑
n=1

an sinnx = λ
∞∑
n=1

sinnx

n

∞∑
m=1

π

2
amδmn

∞∑
n=1

an sinnx =
π

2
λ
∞∑
n=1

an
sinnx

n

The eigenvalues and eigenfunctions are

λn =
2n

π
, un = sinnx, n ∈ N.
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3.

φ(θ) = λ

∫ 2π

0

1

2π

1− r2

1− 2r cos(θ − t) + r2
φ(t) dt, |r| < 1

We use Poisson’s formula.

φ(θ) = λu(r, θ),

where u(r, θ) is harmonic in the unit disk and satisfies, u(1, θ) = φ(θ). For a solution we need λ = 1 and
that u(r, θ) is independent of r. In this case u(θ) satisfies

u′′(θ) = 0, u(θ) = φ(θ).

The solution is φ(θ) = c1 + c2θ. There is only one eigenvalue and corresponding eigenfunction,

λ = 1, φ = c1 + c2θ.

4.

φ(x) = λ

∫ π

−π
cosn(x− ξ)φ(ξ) dξ

We expand the kernel in a Fourier series. We could find the expansion by integrating to find the Fourier
coefficients, but it is easier to expand cosn(x) directly.

cosn(x) =

[
1

2
( eix + e−ix)

]n
=

1

2n

[(
n

0

)
einx +

(
n

1

)
ei(n−2)x + · · ·+

(
n

n− 1

)
e−i(n−2)x +

(
n

n

)
e−inx

]
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If n is odd,

cosn(x) =
1

2n

[(
n

0

)
( einx + e−inx) +

(
n

1

)
( ei(n−2)x + e−i(n−2)x) + · · ·

+

(
n

(n− 1)/2

)
( eix + e−ix)

]

=
1

2n

[(
n

0

)
2 cos(nx) +

(
n

1

)
2 cos((n− 2)x) + · · ·+

(
n

(n− 1)/2

)
2 cos(x)

]
=

1

2n−1

(n−1)/2∑
m=0

(
n

m

)
cos((n− 2m)x)

=
1

2n−1

n∑
k=1

odd k

(
n

(n− k)/2

)
cos(kx).
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If n is even,

cosn(x) =
1

2n

[(
n

0

)
( einx + e−inx) +

(
n

1

)
( ei(n−2)x + e−i(n−2)x) + · · ·

+

(
n

n/2− 1

)
( ei2x + e−i2x) +

(
n

n/2

)]

=
1

2n

[(
n

0

)
2 cos(nx) +

(
n

1

)
2 cos((n− 2)x) + · · ·+

(
n

n/2− 1

)
2 cos(2x) +

(
n

n/2

)]
=

1

2n

(
n

n/2

)
+

1

2n−1

(n−2)/2∑
m=0

(
n

m

)
cos((n− 2m)x)

=
1

2n

(
n

n/2

)
+

1

2n−1

n∑
k=2

even k

(
n

(n− k)/2

)
cos(kx).

We will denote,

cosn(x− ξ) =
a0

2

n∑
k=1

ak cos(k(x− ξ)),

where

ak =
1 + (−1)n−k

2

1

2n−1

(
n

(n− k)/2

)
.

We substitute this into the integral equation.

φ(x) = λ

∫ π

−π

(
a0

2

n∑
k=1

ak cos(k(x− ξ))

)
φ(ξ) dξ

φ(x) = λ
a0

2

∫ π

−π
φ(ξ) dξ + λ

n∑
k=1

ak

(
cos(kx)

∫ π

−π
cos(kξ)φ(ξ) dξ + sin(kx)

∫ π

−π
sin(kξ)φ(ξ) dξ

)
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For even n, substituting φ(x) = 1 yields λ = 1
πa0

. For n and m both even or odd, substituting φ(x) = cos(mx)

or φ(x) = sin(mx) yields λ = 1
πam

. For even n we have the eigenvalues and eigenvectors,

λ0 =
1

πa0

, φ0 = 1,

λm =
1

πa2m

, φ(1)
m = cos(2mx), φ(2)

m = sin(2mx), m = 1, 2, . . . , n/2.

For odd n we have the eigenvalues and eigenvectors,

λm =
1

πa2m−1

, φ(1)
m = cos((2m− 1)x), φ(2)

m = sin((2m− 1)x), m = 1, 2, . . . , (n+ 1)/2.

Solution 49.27
1. First we shift the range of integration to rewrite the kernel.

φ(x) = λ

∫ 2π

0

(
2π2 − 6π|x− s|+ 3(x− s)2

)
φ(s) ds

φ(x) = λ

∫ −x+2π

−x

(
2π2 − 6π|y|+ 3y2

)
φ(x+ y) dy

We expand the kernel in a Fourier series.

K(y) = 2π2 − 6π|y|+ 3y2 =
∞∑

n=−∞

cn einy

cn =
1

2π

∫ −x+2π

−x
K(y) e−iny dy =

{
6
n2 , n 6= 0,

0, n = 0
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K(y) =
∞∑

n=−∞
n6=0

6

n2
einy =

∞∑
n=1

12

n2
cos(ny)

K(x, s) =
∞∑
n=1

12

n2
cos(n(x− s)) =

∞∑
n=1

12

n2

(
cos(nx) cos(nx) + sin(nx) sin(ns)

)
Now we substitute the Fourier series expression for the kernel into the eigenvalue problem.

φ(x) = 12λ

∫ 2π

0

(
∞∑
n=1

1

n2

(
cos(nx) cos(ns) + sin(nx) sin(ns)

))
φ(s) ds

From this we obtain the eigenvalues and eigenfunctions,

λn =
n2

12π
, φ(1)

n =
1√
π

cos(nx), φ(2)
n =

1√
π

sin(nx), n ∈ N.

2. The set of eigenfunctions do not form a complete set. Only those functions with a vanishing integral on
[0, 2π] can be represented. We consider the equation∫ 2π

0

K(x, s)φ(s) ds = 0∫ 2π

0

(
∞∑
n=1

12

n2

(
cos(nx) cos(ns) + sin(nx) sin(ns)

))
φ(s) ds = 0

This has the solutions φ = const. The set of eigenfunctions

φ0 =
1√
2π
, φ(1)

n =
1√
π

cos(nx), φ(2)
n =

1√
π

sin(nx), n ∈ N,
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is a complete set. We can also write the eigenfunctions as

φn =
1√
2π

einx, n ∈ Z.

3. We consider the problem

u− λTu = f.

For λ 6= λ, (λ not an eigenvalue), we can obtain a unique solution for u.

u(x) = f(x) +

∫ 2π

0

Γ(x, s, λ)f(s) ds

Since K(x, s) is self-adjoint and L2(0, 2π), we have

Γ(x, s, λ) = λ
∞∑

n=−∞
n6=0

φn(x)φn(s)

λn − λ

= λ
∞∑

n=−∞
n6=0

1
2π

einx e−ins

n2

12π
− λ

= 6λ
∞∑

n=−∞
n6=0

ein(x−s)

n2 − 12πλ

Γ(x, s, λ) = 12λ
∞∑
n=1

cos(n(x− s))
n2 − 12πλ
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Solution 49.28
First assume that λ is an eigenvalue of T , Tφ = λφ.

p(T )φ =
n∑
k=0

anT
nφ

=
n∑
k=0

anλ
nφ

= p(λ)φ

p(λ) is an eigenvalue of p(T ).
Now assume that µ is an eigenvalues of p(T ), p(T )φ = µφ. We assume that T has a complete, orthonormal

set of eigenfunctions, {φn} corresponding to the set of eigenvalues {λn}. We expand φ in these eigenfunctions.

p(T )φ = µφ

p(T )
∑

cnφn = µ
∑

cnφn∑
cnp(λn)φn =

∑
cnµφn

p(λn) = µ, ∀n such that cn 6= 0

Thus all eigenvalues of p(T ) are of the form p(λ) with λ an eigenvalue of T .

Solution 49.29
The Fourier cosine transform is defined,

f̂(ω) =
1

π

∫ ∞
0

f(x) cos(ωx) dx,

f(x) = 2

∫ ∞
0

f̂(ω) cos(ωx) dω.
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We can write the integral equation in terms of the Fourier cosine transform.

φ(x) = f(x) + λ

∫ ∞
0

cos(2xs)φ(s) ds

φ(x) = f(x) + λπφ̂(2x) (49.8)

We multiply the integral equation by 1
π

cos(2xs) and integrate.

1

π

∫ ∞
0

cos(2xs)φ(x) dx =
1

π

∫ ∞
0

cos(2xs)f(x) dx+ λ

∫ ∞
0

cos(2xs)φ̂(2x) dx

φ̂(2s) = f̂(2s) +
λ

2

∫ ∞
0

cos(xs)φ̂(x) dx

φ̂(2s) = f̂(2s) +
λ

4
φ(s)

φ(x) = −4

λ
f̂(2x) +

4

λ
φ̂(2x) (49.9)

We eliminate φ̂ between (49.8) and (49.9).(
1− πλ2

4

)
φ(x) = f(x) + λπf̂(2x)

φ(x) =
f(x) + λ

∫∞
0
f(s) cos(2xs) ds

1− πλ2/4
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Solution 49.30

∫
D

vLu dx dy =

∫
D

v(uxx + uyy + aux + buy + cu) dx dy

=

∫
D

(v∇2u+ avux + bvuy + cuv) dx dy

=

∫
D

(u∇2v + avux + bvuy + cuv) dx dy +

∫
C

(v∇u− u∇v) · n ds

=

∫
D

(u∇2v − auvx − buvy − uvax − uvby + cuv) dx dy +

∫
C

(
auv

∂x

∂n
+ buv

∂y

∂n

)
ds+

∫
C

(
v
∂u

∂n
− u∂v

∂n

)
ds

Thus we see that ∫
D

(vLu− uL∗v) dx dy =

∫
C

H(u, v) ds,

where

L∗v = vxx + vyy − avx − bvy + (c− ax − by)v

and

H(u, v) =

(
v
∂u

∂n
− u∂v

∂n
+ auv

∂x

∂n
+ buv

∂y

∂n

)
.

Let G be the harmonic Green function, which satisfies,

∆G = δ in D, G = 0 on C.

1970



Let u satisfy Lu = 0.

∫
D

(GLu− uL∗G) dx dy =

∫
C

H(u,G) ds

−
∫
D

uL∗Gdx dy =

∫
C

H(u,G) ds

−
∫
D

u∆Gdxdy −
∫
D

u(L∗ −∆)Gdxdy =

∫
C

H(u,G) ds

−
∫
D

uδ(x− ξ)δ(y − η) dx dy −
∫
D

u(L∗ −∆)Gdxdy =

∫
C

H(u,G) ds

−u(ξ, η)−
∫
D

u(L∗ −∆)Gdx dy =

∫
C

H(u,G) ds

We expand the operators to obtain the first form.

u+

∫
D

u(−aGx − bGy + (c− ax − by)G) dx dy = −
∫
C

(
G
∂u

∂n
− u∂G

∂n
+ auG

∂x

∂n
+ buG

∂y

∂n

)
ds

u+

∫
D

((c− ax − by)G− aGx − bGy)u dx dy =

∫
C

u
∂G

∂n
ds

u+

∫
D

((c− ax − by)G− aGx − bGy)u dx dy = U

Here U is the harmonic function that satisfies U = f on C.
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We use integration by parts to obtain the second form.

u+

∫
D

(cuG− axuG− byuG− auGx − buGy) dx dy = U

u+

∫
D

(cuG− axuG− byuG+ (au)xG+ (bu)yG) dx dy −
∫
C

(
auG

∂y

∂n
+ buG

∂x

∂n

)
ds = U

u+

∫
D

(cuG− axuG− byuG+ axuG+ auxG+ byuG+ buyG) dx dy = U

u+

∫
D

(aux + buy + cu)Gdxdy = U

Solution 49.31
1. First we differentiate to obtain a differential equation.

φ(x) = λ

∫ 1

0

min(x, s)φ(s) ds = λ

(∫ x

0

esφ(s) ds+

∫ 1

x

exφ(s) ds

)
φ′(x) = λ

(
xφ(x) +

∫ 1

x

φ(s) ds− xφ(x)

)
= λ

∫ 1

x

φ(s) ds

φ′′(x) = −λφ(x)

We note that that φ(x) satisfies the constraints,

φ(0) = λ

∫ 1

0

0 · φ(s) ds = 0,

φ′(1) = λ

∫ 1

1

φ(s) ds = 0.

Thus we have the problem,

φ′′ + λφ = 0, φ(0) = φ′(1) = 0.
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The general solution of the differential equation is

φ(x) =


a+ bx for λ = 0

a cos
(√

λx
)

+ b sin
(√

λx
)

for λ > 0

a cosh
(√
−λx

)
+ b sinh

(√
−λx

)
for λ < 0

We see that for λ = 0 and λ < 0 only the trivial solution satisfies the homogeneous boundary conditions.
For positive λ the left boundary condition demands that a = 0. The right boundary condition is then

b
√
λ cos

(√
λ
)

= 0

The eigenvalues and eigenfunctions are

λn =

(
(2n− 1)π

2

)2

, φn(x) = sin

(
(2n− 1)π

2
x

)
, n ∈ N

2. First we differentiate the integral equation.

φ(x) = λ

(∫ x

0

esφ(s) ds+

∫ 1

x

exφ(s) ds

)
φ′(x) = λ

(
exφ(x) + ex

∫ 1

x

φ(s) ds− exφ(x)

)
= λ ex

∫ 1

x

φ(s) ds

φ′′(x) = λ

(
ex
∫ 1

x

φ(s) ds− exφ(x)

)
φ(x) satisfies the differential equation

φ′′ − φ′ + λ exφ = 0.
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We note the boundary conditions,

φ(0)− φ′(0) = 0, φ′(1) = 0.

In self-adjoint form, the problem is(
e−xφ′

)′
+ λφ = 0, φ(0)− φ′(0) = 0, φ′(1) = 0.

The Rayleigh quotient is

λ =
[− e−xφφ′]

1
0 +

∫ 1

0
e−x(φ′)2 dx∫ 1

0
φ2 dx

=
φ(0)φ′(0) +

∫ 1

0
e−x(φ′)2 dx∫ 1

0
φ2 dx

=
(φ(0))2 +

∫ 1

0
e−x(φ′)2 dx∫ 1

0
φ2 dx

Thus we see that there are only positive eigenvalues. The differential equation has the general solution

φ(x) = ex/2
(
aJ1

(
2
√
λ ex/2

)
+ bY1

(
2
√
λ ex/2

))
We define the functions,

u(x;λ) = ex/2J1

(
2
√
λ ex/2

)
, v(x;λ) = ex/2Y1

(
2
√
λ ex/2

)
.

We write the solution to automatically satisfy the right boundary condition, φ′(1) = 0,

φ(x) = v′(1;λ)u(x;λ)− u′(1;λ)v(x;λ).
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We determine the eigenvalues from the left boundary condition, φ(0)− φ′(0) = 0. The first few are

λ1 ≈ 0.678298

λ2 ≈ 7.27931

λ3 ≈ 24.9302

λ4 ≈ 54.2593

λ5 ≈ 95.3057

The eigenfunctions are,

φn(x) = v′(1;λn)u(x;λn)− u′(1;λn)v(x;λn).

Solution 49.32
1. First note that

sin(kx) sin(lx) = sign (kl) sin(ax) sin(bx)

where

a = max(|k|, |l|), b = min(|k|, |l|).

Consider the analytic function,

ei(a−b)x − ei(a+b)

2
= sin(ax) sin(bx)− i cos(ax) sin(bx).

−
∫ ∞
−∞

sin(kx) sin(lx)

x2 − z2
dx = sign (kl)−

∫ ∞
−∞

sin(ax) sin(bx)

x2 − z2
dx

= sign (kl)
1

2z
−
∫ ∞
−∞

(
sin(ax) sin(bx)

x− z
− sin(ax) sin(bx)

x+ z

)
dx

= −π sign (kl)
1

2z
(− cos(az) sin(bz) + cos(−az) sin(−bz))
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−
∫ ∞
−∞

sin(kx) sin(lx)

x2 − z2
dx = sign (kl)

π

z
cos(az) sin(bz)

2. Consider the analytic function,

ei|p|x − ei|q|x

x
=

cos(|p|x)− cos(|q|x) + i(sin(|p|x)− sin(|q|x))

x
.

−
∫ ∞
−∞

cos(px)− cos(qx)

x2
dx = −

∫ ∞
−∞

cos(|p|x)− cos(|q|x)

x2
dx

= −π lim
x→0

sin(|p|x)− sin(|q|x)

x

−
∫ ∞
−∞

cos(px)− cos(qx)

x2
dx = π(|q| − |p|)

3. We use the analytic function,

i(x− ia)(x− ib) eix

(x2 + a2)(x2 + b2)
=
−(x2 − ab) sinx+ (a+ b)x cos x+ i((x2 − ab) cos x+ (a+ b)x sinx)

(x2 + a2)(x2 + b2)

−
∫ ∞
−∞

−(x2 − ab) sinx+ (a+ b)x cos x

x(x2 + a2)(x2 + b2)
= −π lim

x→0

(x2 − ab) cos x+ (a+ b)x sinx

(x2 + a2)(x2 + b2)

= −π−ab
a2b2

−
∫ ∞
−∞

−(x2 − ab) sinx+ (a+ b)x cos x

(x2 + a2)(x2 + b2)
=

π

ab
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Solution 49.33
We consider the function

G(z) =
(
(1− z2)1/2 + iz

)
log(1 + z).

For (1− z2)1/2 = (1− z)1/2(1 + z)1/2 we choose the angles,

−π < arg(1− z) < π, 0 < arg(1 + z) < 2π,

so that there is a branch cut on the interval (−1, 1). With this choice of branch, G(z) vanishes at infinity. For
the logarithm we choose the principal branch,

−π < arg(1 + z) < π.

For t ∈ (−1, 1),

G+(t) =
(√

1− t2 + it
)

log(1 + t),

G−(t) =
(
−
√

1− t2 + it
)

log(1 + t),

G+(t)−G−(t) = 2
√

1− t2 log(1 + t),

1

2

(
G+(t) +G−(t)

)
= it log(1 + t).

For t ∈ (−∞,−1),

G+(t) = i
(√

1− t2 + t
)

(log(−t− 1) + iπ) ,

G−(t) = i
(
−
√

1− t2 + t
)

(log(−t− 1)− iπ) ,

G+(t)−G−(t) = −2π
(√

t2 − 1 + t
)
.
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For x ∈ (−1, 1) we have

G(x) =
1

2

(
G+(x) +G−(x)

)
= ix log(1 + x)

=
1

i2π

∫
−
∞−1−2π(

√
t2 − 1 + t)

t− x
dt+

1

i2π

∫ 1

−1

2
√

1− t2 log(1 + t)

t− x
dt

From this we have∫ 1

−1

√
1− t2 log(1 + t)

t− x
dt

= −πx log(1 + x) + π

∫ ∞
1

t−
√
t2 − 1

t+ x
dt

= π
(
x log(1 + x)− 1 +

π

2

√
1− x2 −

√
1− x2 arcsin(x) + x log(2) + x log(1 + x)

)
∫ 1

−1

√
1− t2 log(1 + t)

t− x
dt = π

(
x log x− 1 +

√
1− x2

(π
2
− arcsin(x)

))

Solution 49.34
Let F (z) denote the value of the integral.

F (z) =
1

iπ
−
∫
C

f(t) dt

t− z
From the Plemelj formula we have,

F+(t0) + F−(t0) =
1

iπ
−
∫
C

f(t)

t− t0
dt,

f(t0) = F+(t0)− F−(t0).
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With W (z) defined as above, we have

W+(t0) +W−(t0) = F+(t0)− F−(t0) = f(t0),

and also

W+(t0) +W−(t0) =
1

iπ
−
∫
C

W+(t)−W−(t)

t− t0
dt

=
1

iπ
−
∫
C

F+(t) + F−(t)

t− t0
dt

=
1

iπ
−
∫
C

g(t)

t− t0
dt.

Thus the solution of the integral equation is

f(t0) =
1

iπ
−
∫
C

g(t)

t− t0
dt.
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Solution 49.35
(i)

G(τ) = (τ − β)−1

(
τ − β
τ − α

)γ
G+(ζ) = (ζ − β)−1

(
ζ − β
ζ − α

)γ
G−(ζ) = e−i2πγG+(ζ)

G+(ζ)−G−(ζ) = (1− e−i2πγ)(ζ − β)−1

(
ζ − β
ζ − α

)γ
G+(ζ) +G−(ζ) = (1 + e−i2πγ)(ζ − β)−1

(
ζ − β
ζ − α

)γ
G+(ζ) +G−(ζ) =

1

iπ
−
∫
C

(1− e−i2πγ) dτ

(τ − β)1−γ(τ − α)γ(τ − ζ)

1

iπ
−
∫
C

dτ

(τ − β)1−γ(τ − α)γ(τ − ζ)
= −i cot(πγ)

(ζ − β)γ−1

(ζ − α)γ

(ii) Consider the branch of

(
z − β
z − α

)γ
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that tends to unity as z →∞. We find a series expansion of this function about infinity.

(
z − β
z − α

)γ
=

(
1− β

z

)γ (
1− α

z

)−γ
=

(
∞∑
j=0

(−1)j
(
γ

j

)(
β

z

)j)( ∞∑
k=0

(−1)k
(
−γ
k

)(α
z

)k)

=
∞∑
j=0

(
j∑

k=0

(−1)j
(

γ

j − k

)(
−γ
k

)
βj−kαk

)
z−j

Define the polynomial

Q(z) =
n∑
j=0

(
j∑

k=0

(−1)j
(

γ

j − k

)(
−γ
k

)
βj−kαk

)
zn−j.

Then the function

G(z) =

(
z − β
z − α

)γ
zn −Q(z)
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vanishes at infinity.

G+(ζ) =

(
ζ − β
ζ − α

)γ
ζn −Q(ζ)

G−(ζ) = e−i2πγ
(
ζ − β
ζ − α

)γ
ζn −Q(ζ)

G+(ζ)−G−(ζ) =

(
ζ − β
ζ − α

)γ
ζn
(
1− e−i2πγ

)
G+(ζ) +G−(ζ) =

(
ζ − β
ζ − α

)γ
ζn
(
1 + e−i2πγ

)
− 2Q(ζ)

1

iπ
−
∫
C

(
τ − β
τ − α

)γ
τn
(
1− e−i2πγ

) 1

τ − ζ
dτ =

(
ζ − β
ζ − α

)γ
ζn
(
1 + e−i2πγ

)
− 2Q(ζ)

1

iπ
−
∫
C

(
τ − β
τ − α

)γ
τn

τ − ζ
dτ = −i cot(πγ)

(
ζ − β
ζ − α

)γ
ζn − (1− i cot(πγ))Q(ζ)

1

iπ
−
∫
C

(
τ − β
τ − α

)γ
τn

τ − ζ
dτ = −i cot(πγ)

((
ζ − β
ζ − α

)γ
ζn −Q(ζ)

)
−Q(ζ)

Solution 49.36

−
∫ 1

−1

φ(y)

y2 − x2
dy =

1

2x
−
∫ 1

−1

φ(y)

y − x
dy − 1

2x
−
∫ 1

−1

φ(y)

y + x
dy

=
1

2x
−
∫ 1

−1

φ(y)

y − x
dy +

1

2x
−
∫ 1

−1

φ(−y)

y − x
dy

=
1

2x
−
∫ 1

−1

φ(y) + φ(−y)

y − x
dy
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1

2x
−
∫ 1

−1

φ(y) + φ(−y)

y − x
dy = f(x)

1

iπ
−
∫ 1

−1

φ(y) + φ(−y)

y − x
dy =

2x

iπ
f(x)

φ(x) + φ(−x) =
1

iπ
√

1− x2
−
∫ 1

−1

2y

iπ
f(y)

√
1− y2

1

y − x
dy +

k√
1− x2

φ(x) + φ(−x) = − 1

π2
√

1− x2
−
∫ 1

−1

2yf(y)
√

1− y2

y − x
dy +

k√
1− x2

φ(x) = − 1

π2
√

1− x2
−
∫ 1

−1

yf(y)
√

1− y2

y − x
dy +

k√
1− x2

+ g(x)

Here k is an arbitrary constant and g(x) is an arbitrary odd function.

Solution 49.37
We define

F (z) =
1

i2π
−
∫ 1

0

f(t)

t− z
dt.

The Plemelj formulas and the integral equation give us,

F+(x)− F−(x) = f(x)

F+(x) + F−(x) = λf(x).

We solve for F+ and F−.

F+(x) = (λ+ 1)f(x)

F−(x) = (λ− 1)f(x)
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By writing

F+(x)

F−(x)
=
λ+ 1

λ− 1

we seek to determine F to within a multiplicative constant.

logF+(x)− logF−(x) = log

(
λ+ 1

λ− 1

)
logF+(x)− logF−(x) = log

(
1 + λ

1− λ

)
+ iπ

logF+(x)− logF−(x) = γ + iπ

We have left off the additive term of i2πn in the above equation, which will introduce factors of zk and (z − 1)m

in F (z). We will choose these factors so that F (z) has integrable algebraic singularites and vanishes at infinity.
Note that we have defined γ to be the real parameter,

γ = log

(
1 + λ

1− λ

)
.

By the discontinuity theorem,

logF (z) =
1

i2π

∫ 1

0

γ + iπ

t− z
dz

=

(
1

2
− i γ

2π

)
log

(
1− z
−z

)
= log

((
z − 1

z

)1/2−iγ/(2π)
)
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F (z) =

(
z − 1

z

)1/2−iγ/(2π)

zk(z − 1)m

F (z) =
1√

z(z − 1)

(
z − 1

z

)−iγ/(2π)

F±(x) =
e±iπ(−iγ/(2π))√
x(1− x)

(
1− x
x

)−iγ/(2π)

F±(x) =
e±γ/2√
x(1− x)

(
1− x
x

)−iγ/(2π)

Define

f(x) =
1√

x(1− x)

(
1− x
x

)−iγ/(2π)

.

We apply the Plemelj formulas.

1

iπ
−
∫ 1

0

(
eγ/2 − e−γ/2

) f(t)

t− x
dt =

(
eγ/2 + e−γ/2

)
f(x)

1

iπ
−
∫ 1

0

f(t)

t− x
dt = tanh

(γ
2

)
f(x)

Thus we see that the eigenfunctions are

φ(x) =
1√

x(1− x)

(
1− x
x

)−i tanh−1(λ)/π

for −1 < λ < 1.
The method used in this problem cannot be used to construct eigenfunctions for λ > 1. For this case we

cannot find an F (z) that has integrable algebraic singularities and vanishes at infinity.
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Solution 49.38

1

iπ
−
∫ 1

0

f(t)

t− x
dt = − i

tan(x)
f(x)

We define the function,

F (z) =
1

i2π
−
∫ 1

0

f(t)

t− z
dt.

The Plemelj formula are,

F+(x)− F−(x) = f(x)

F+(x) + F−(x) = − i

tan(x)
f(x).

We solve for F+ and F−.

F±(x) =
1

2

(
±1− i

tan(x)

)
f(x)

From this we see

F+(x)

F−(x)
=

1− i/ tan(x)

−1− i/ tan(x)
= ei2x.

We seek to determine F (z) up to a multiplicative constant. Taking the logarithm of this equation yields

logF+(x)− logF−(x) = i2x+ i2πn.

The i2πn term will give us the factors (z− 1)k and zm in the solution for F (z). We will choose the integers k and
m so that F (z) has only algebraic singularities and vanishes at infinity. We drop the i2πn term for now.

logF (z) =
1

i2π

∫ 1

0

i2t

t− z
dt

logF (z) =
1

π
+
z

π
log

(
1− z
−z

)
F (z) = e1/π

(
z − 1

z

)z/π
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We replace e1/π by a multiplicative constant and multiply by (z − 1)1 to give F (z) the desired properties.

F (z) =
c

(z − 1)1−z/πzz/π

We evaluate F (z) above and below the branch cut.

F±(x) =
c

e±(iπ−ix)(1− x)1−x/πxx/π
=

c e±ix

(1− x)1−x/πxx/π

Finally we use the Plemelj formulas to determine f(x).

f(x) = F+(x)− F−(x) =
k sin(x)

(1− x)1−x/πxx/π

Solution 49.39
Consider the equation,

f ′(z) + λ

∫
C

f(t)

t− z
dt = 1.

Since the integral is an analytic function of z off C we know that f(z) is analytic off C. We use Cauchy’s theorem
to evaluate the integral and obtain a differential equation for f(x).

f ′(x) + λ−
∫
C

f(t)

t− x
dt = 1

f ′(x) + iλπf(x) = 1

f(x) =
1

iλπ
+ c e−iλπx
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Consider the equation,

f ′(z) + λ

∫
C

f(t)

t− z
dt = g(z).

Since the integral and g(z) are analytic functions inside C we know that f(z) is analytic inside C. We use Cauchy’s
theorem to evaluate the integral and obtain a differential equation for f(x).

f ′(x) + λ−
∫
C

f(t)

t− x
dt = g(x)

f ′(x) + iλπf(x) = g(x)

f(x) =

∫ x

z0

e−iλπ(x−ξ)g(ξ) dξ + c e−iλπx

Here z0 is any point inside C.

Solution 49.40

−
∫
C

(
1

t− x
+ P (t− x)

)
f(t) dt = g(x)

1

iπ
−
∫
C

f(t)

t− x
dt =

1

iπ
g(x)− 1

iπ

∫
C

P (t− x)f(t) dt

We know that if

1

iπ
−
∫
C

f(τ)

τ − ζ
dτ = g(ζ)

then

f(ζ) =
1

iπ
−
∫
C

g(τ)

τ − ζ
dτ.
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We apply this theorem to the integral equation.

f(x) = − 1

π2
−
∫
C

g(t)

t− x
dt+

1

π2
−
∫
C

(∫
C

P (τ − t)f(τ) dτ

)
1

t− x
dt

= − 1

π2
−
∫
C

g(t)

t− x
dt+

1

π2

∫
C

(
−
∫
C

P (τ − t)
t− x

dt

)
f(τ) dτ

= − 1

π2
−
∫
C

g(t)

t− x
dt− 1

iπ

∫
C

P (t− x)f(t) dt

Now we substitute the non-analytic part of f(t) into the integral. (The analytic part integrates to zero.)

= − 1

π2
−
∫
C

g(t)

t− x
dt− 1

iπ

∫
C

P (t− x)

(
− 1

π2
−
∫
C

g(τ)

τ − t
dτ

)
dt

= − 1

π2
−
∫
C

g(t)

t− x
dt− 1

π2

∫
C

(
− 1

iπ
−
∫
C

P (t− x)

τ − t
dt

)
g(τ) dτ

= − 1

π2
−
∫
C

g(t)

t− x
dt− 1

π2

∫
C

P (τ − x)g(τ) dτ

f(x) = − 1

π2
−
∫
C

g(t)

t− x
dt− 1

π2

∫
C

P (t− x)g(t) dt

Solution 49.41

Solution 49.42
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50.1 Exercises
Exercise 50.1
A model set of equations to describe an epidemic, in which x(t) is the number infected, y(t) is the number
susceptible, is

dx

dt
= rxy − γx, dy

dt
= −rxy + β,

where r > 0, β ≥ 0, γ ≥ 0. Initially x = x0, y = y0 at t = 0. Directly from the equations, without using the
phase plane:

1. Find the solution, x(t), y(t), in the case β = γ = 0.

2. Show for the case β = 0, γ 6= 0 that x(t) first decreases or increases according as ry0 < γ or ry0 > γ. Show
that x(t)→ 0 as t→∞ in both cases. Find x as a function of y.

3. In the phase plane: Find the position of the singular point and its type when β > 0, γ > 0.

Exercise 50.2
Find the singular points and their types for the system

du

dx
= ru+ v(1− v)(p− v), r > 0, 0 < p < 1,

dv

dx
= u,

which comes from one of our nonlinear diffusion problems. Note that there is a solution with

u = α(1− v)

for special values of α and r. Find v(x) for this special case.
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Exercise 50.3
Check that r = 1 is a limit cycle for

dx

dt
= −y + x(1− r2)

dy

dt
= x+ y(1− r2)

(r = x2 + y2), and that all solution curves spiral into it.

Exercise 50.4
Consider

εẏ = f(y)− x
ẋ = y

Introduce new coordinates, R, θ given by

x = R cos θ

y =
1√
ε
R sin θ

and obtain the exact differential equations for R(t), θ(t). Show that R(t) continually increases with t when R 6= 0.
Show that θ(t) continually decreases when R > 1.

Exercise 50.5
One choice of the Lorenz equations is

ẋ = −10x+ 10y

ẏ = Rx− y − xz

ż = −8

3
z + xy
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Where R is a positive parameter.

1. Invistigate the nature of the sigular point at (0, 0, 0) by finding the eigenvalues and their behavior for all
0 < R <∞.

2. Find the other singular points when R > 1.

3. Show that the appropriate eigenvalues for these other singular points satisfy the cubic

3λ3 + 41λ2 + 8(10 +R)λ+ 160(R− 1) = 0.

4. There is a special value of R, call it Rc, for which the cubic has two pure imaginary roots, ±iµ say. Find
Rc and µ; then find the third root.

Exercise 50.6
In polar coordinates (r, φ), Einstein’s equations lead to the equation

d2v

dφ2
+ v = 1 + εv2, v =

1

r
,

for planetary orbits. For Mercury, ε = 8× 10−8. When ε = 0 (Newtonian theory) the orbit is given by

v = 1 + A cosφ, period 2π.

Introduce θ = ωφ and use perturbation expansions for v(θ) and ω in powers of ε to find the corrections proportional
to ε.

[A is not small; ε is the small parameter].

Exercise 50.7
Consider the problem

ẍ+ ω2
0x+ αx2 = 0, x = a, ẋ = 0 at t = 0
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Use expansions

x = a cos θ + a2x2(θ) + a3x3(θ) + · · · , θ = ωt

ω = ω0 + a2ω2 + · · · ,

to find a periodic solution and its natural frequency ω.
Note that, with the expansions given, there are no “secular term” troubles in the determination of x2(θ), but

x2(θ) is needed in the subsequent determination of x3(θ) and ω.
Show that a term aω1 in the expansion for ω would have caused trouble, so ω1 would have to be taken equal

to zero.

Exercise 50.8
Consider the linearized traffic problem

dpn(t)

dt
= α [pn−1(t)− pn(t)] , n ≥ 1,

pn(0) = 0, n ≥ 1,

p0(t) = aeiωt, t > 0.

(We take the imaginary part of pn(t) in the final answers.)

1. Find p1(t) directly from the equation for n = 1 and note the behavior as t→∞.

2. Find the generating function

G(s, t) =
∞∑
n=1

pn(t)sn.

3. Deduce that

pn(t) ∼ Ane
iωt, as t→∞,

and find the expression for An. Find the imaginary part of this pn(t).
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Exercise 50.9
1. For the equation modified with a reaction time, namely

d

dt
pn(t+ τ) = α[pn−1(t)− pn(t)] n ≥ 1,

find a solution of the form in 1(c) by direct substitution in the equation. Again take its imaginary part.

2. Find a condition that the disturbance is stable, i.e. pn(t) remains bounded as n→∞.

3. In the stable case show that the disturbance is wave-like and find the wave velocity.
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50.2 Hints

Hint 50.1

Hint 50.2

Hint 50.3

Hint 50.4

Hint 50.5

Hint 50.6

Hint 50.7

Hint 50.8
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Hint 50.9
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50.3 Solutions

Solution 50.1
1. When β = γ = 0 the equations are

dx

dt
= rxy,

dy

dt
= −rxy.

Adding these two equations we see that

dx

dt
= −dy

dt
.

Integrating and applying the initial conditions x(0) = x0 and y(0) = y0 we obtain

x = x0 + y0 − y

Substituting this into the differential equation for y,

dy

dt
= −r(x0 + y0 − y)y

dy

dt
= −r(x0 + y0)y + ry2.
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We recognize this as a Bernoulli equation and make the substitution u = y−1.

−y−2 dy

dt
= r(x0 + y0)y−1 − r

du

dt
= r(x0 + y0)u− r

d

dt

(
e−r(x0+y0)tu

)
= −re−r(x0+y0)t

u = er(x0+y0)t

∫ t

−re−r(x0+y0)t dt+ cer(x0+y0)t

u =
1

x0 + y0

+ cer(x0+y0)t

y =

(
1

x0 + y0

+ cer(x0+y0)t

)−1

Applying the initial condition for y, (
1

x0 + y0

+ c

)−1

= y0

c =
1

y0

− 1

x0 + y0

.

The solution for y is then

y =

[
1

x0 + y0

+

(
1

y0

− 1

x0 + y0

)
er(x0+y0)t

]−1

Since x = x0 + y0 − y, the solution to the system of differential equations is

x = x0 + y0 −
[

1

y0

+
1

x0 + y0

(
1− er(x0+y0)t

)]−1

, y =

[
1

y0

+
1

x0 + y0

(
1− er(x0+y0)t

)]−1

.
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2. For β = 0, γ 6= 0, the equation for x is

ẋ = rxy − γx.

At t = 0,

ẋ(0) = x0(ry0 − γ).

Thus we see that if ry0 < γ, x is initially decreasing. If ry0 > γ, x is initially increasing.

Now to show that x(t) → 0 as t → ∞. First note that if the initial conditions satisfy x0, y0 > 0 then
x(t), y(t) > 0 for all t ≥ 0 because the axes are a seqaratrix. y(t) is is a strictly decreasing function of time.
Thus we see that at some time the quantity x(ry − γ) will become negative. Since y is decreasing, this
quantity will remain negative. Thus after some time, x will become a strictly decreasing quantity. Finally
we see that regardless of the initial conditions, (as long as they are positive), x(t)→ 0 as t→∞.

Taking the ratio of the two differential equations,

dx

dy
= −1 +

γ

ry
.

x = −y +
γ

r
ln y + c

Applying the intial condition,

x0 = −y0 +
γ

r
ln y0 + c

c = x0 + y0 −
γ

r
ln y0.

Thus the solution for x is

x = x0 + (y0 − y) +
γ

r
ln

(
y

y0

)
.
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3. When β > 0 and γ > 0 the system of equations is

ẋ = rxy − γx
ẏ = −rxy + β.

The equilibrium solutions occur when

x(ry − γ) = 0

β − rxy = 0.

Thus the singular point is

x =
β

γ
, y =

γ

r
.

Now to classify the point. We make the substitution u = (x− β
γ
), v = (y − γ

r
).

u̇ = r

(
u+

β

γ

)(
v +

γ

r

)
− γ

(
u+

β

γ

)
v̇ = −r

(
u+

β

γ

)(
v +

γ

r

)
+ β

u̇ =
rβ

γ
v + ruv

v̇ = −γu− rβ

γ
v − ruv

The linearized system is

u̇ =
rβ

γ
v

v̇ = −γu− rβ

γ
v
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Finding the eigenvalues of the linearized system,∣∣∣∣∣λ − rβ
γ

γ λ+ rβ
γ

∣∣∣∣∣ = λ2 +
rβ

γ
λ+ rβ = 0

λ =
− rβ

γ
±
√

( rβ
γ

)2 − 4rβ

2

Since both eigenvalues have negative real part, we see that the singular point is asymptotically stable. A
plot of the vector field for r = γ = β = 1 is attached. We note that there appears to be a stable singular
point at x = y = 1 which corroborates the previous results.

Solution 50.2
The singular points are

u = 0, v = 0, u = 0, v = 1, u = 0, v = p.

The point u = 0,v = 0. The linearized system about u = 0, v = 0 is

du

dx
= ru

dv

dx
= u.

The eigenvalues are ∣∣∣∣λ− r 0
−1 λ

∣∣∣∣ = λ2 − rλ = 0.

λ = 0, r.
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Since there are positive eigenvalues, this point is a source. The critical point is unstable.
The point u = 0,v = 1. Linearizing the system about u = 0, v = 1, we make the substitution w = v − 1.

du

dx
= ru+ (w + 1)(−w)(p− 1− w)

dw

dx
= u

du

dx
= ru+ (1− p)w

dw

dx
= u

∣∣∣∣λ− r (p− 1)
−1 λ

∣∣∣∣ = λ2 − rλ+ p− 1 = 0

λ =
r ±

√
r2 − 4(p− 1)

2

Thus we see that this point is a saddle point. The critical point is unstable.
The point u = 0,v = p. Linearizing the system about u = 0, v = p, we make the substitution w = v − p.

du

dx
= ru+ (w + p)(1− p− w)(−w)

dw

dx
= u

du

dx
= ru+ p(p− 1)w

dw

dx
= u
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∣∣∣∣λ− r p(1− p)
−1 λ

∣∣∣∣ = λ2 − rλ+ p(1− p) = 0

λ =
r ±

√
r2 − 4p(1− p)

2
Thus we see that this point is a source. The critical point is unstable.

The solution of for special values of α and r. Differentiating u = αv(1− v),

du

dv
= α− 2αv.

Taking the ratio of the two differential equations,

du

dv
= r +

v(1− v)(p− v)

u

= r +
v(1− v)(p− v)

αv(1− v)

= r +
(p− v)

α
Equating these two expressions,

α− 2αv = r +
p

α
− v

α
.

Equating coefficients of v, we see that α = 1√
2
.

1√
2

= r +
√

2p

Thus we have the solution u = 1√
2
v(1− v) when r = 1√

2
−
√

2p. In this case, the differential equation for v is

dv

dx
=

1√
2
v(1− v)

−v−2 dv

dx
= − 1√

2
v−1 +

1√
2
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We make the change of variablles y = v−1.

dy

dx
= − 1√

2
y +

1√
2

d

dx

(
ex/
√

2y
)

=
ex/
√

2

√
2

y = e−x/
√

2

∫ x ex/
√

2

√
2
dx+ ce−x/

√
2

y = 1 + ce−x/
√

2

The solution for v is

v(x) =
1

1 + ce−x/
√

2
.

Solution 50.3
We make the change of variables

x = r cos θ

y = r sin θ.

Differentiating these expressions with respect to time,

ẋ = ṙ cos θ − rθ̇ sin θ

ẏ = ṙ sin θ + rθ̇ cos θ.

Substituting the new variables into the pair of differential equations,

ṙ cos θ − rθ̇ sin θ = −r sin θ + r cos θ(1− r2)

ṙ sin θ + rθ̇ cos θ = r cos θ + r sin θ(1− r2).
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Multiplying the equations by cos θ and sin θ and taking their sum and difference yields

ṙ = r(1− r2)

rθ̇ = r.

We can integrate the second equation.

ṙ = r(1− r2)

θ = t+ θ0

At this point we could note that ṙ > 0 in (0, 1) and ṙ < 0 in (1,∞). Thus if r is not initially zero, then the
solution tends to r = 1.

Alternatively, we can solve the equation for r exactly.

ṙ = r − r3

ṙ

r3
=

1

r2
− 1

We make the change of variables u = 1/r2.

−1

2
u̇ = u− 1

u̇+ 2u = 2

u = e−2t

∫ t

2e2t dt+ ce−2t

u = 1 + ce−2t

r =
1√

1 + ce−2t

Thus we see that if r is initiall nonzero, the solution tends to 1 as t→∞.
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Solution 50.4
The set of differential equations is

εẏ = f(y)− x
ẋ = y.

We make the change of variables

x = R cos θ

y =
1√
ε
R sin θ

Differentiating x and y,

ẋ = Ṙ cos θ −Rθ̇ sin θ

ẏ =
1√
ε
Ṙ sin θ +

1√
ε
Rθ̇ cos θ.

The pair of differential equations become

√
εṘ sin θ +

√
εRθ̇ cos θ = f

(
1√
ε
R sin θ

)
−R cos θ

Ṙ cos θ −Rθ̇ sin θ =
1√
ε
R sin θ.

Ṙ sin θ +Rθ̇ cos θ = − 1√
ε
R cos θ

1√
ε
f

(
1√
ε
R sin θ

)
Ṙ cos θ −Rθ̇ sin θ =

1√
ε
R sin θ.
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Multiplying by cos θ and sin θ and taking the sum and difference of these differential equations yields

Ṙ =
1√
ε

sin θf

(
1√
ε
R sin θ

)
Rθ̇ = − 1√

ε
R +

1√
ε

cos θf

(
1√
ε
R sin θ

)
.

Dividing by R in the second equation,

Ṙ =
1√
ε

sin θf

(
1√
ε
R sin θ

)
θ̇ = − 1√

ε
+

1√
ε

cos θ

R
f

(
1√
ε
R sin θ

)
.

We make the assumptions that 0 < ε < 1 and that f(y) is an odd function that is nonnegative for positive y
and satisfies |f(y)| ≤ 1 for all y.

Since sin θ is odd,

sin θf

(
1√
ε
R sin θ

)
is nonnegative. Thus R(t) continually increases with t when R 6= 0.

If R > 1 then ∣∣∣∣cos θ

R
f

(
1√
ε
R sin θ

)∣∣∣∣ ≤ ∣∣∣∣f ( 1√
ε
R sin θ

)∣∣∣∣
≤ 1.

Thus the value of θ̇,

− 1√
ε

+
1√
ε

cos θ

R
f

(
1√
ε
R sin θ

)
,

is always nonpositive. Thus θ(t) continually decreases with t.
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Solution 50.5
1. Linearizing the Lorentz equations about (0, 0, 0) yieldsẋẏ

ż

 =

−10 10 0
R −1 0
0 0 −8/3

xy
z


The eigenvalues of the matrix are

λ1 = −8

3
,

λ2 =
−11−

√
81 + 40R

2

λ3 =
−11 +

√
81 + 40R

2
.

There are three cases for the eigenvalues of the linearized system.

R < 1. There are three negative, real eigenvalues. In the linearized and also the nonlinear system, the
origin is a stable, sink.

R = 1. There are two negative, real eigenvalues and one zero eigenvalue. In the linearized system the
origin is stable and has a center manifold plane. The linearized system does not tell us if the nonlinear
system is stable or unstable.

R > 1. There are two negative, real eigenvalues, and one positive, real eigenvalue. The origin is a saddle
point.

2. The other singular points when R > 1 are(
±
√

8

3
(R− 1), ±

√
8

3
(R− 1), R− 1

)
.
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3. Linearizing about the point (√
8

3
(R− 1),

√
8

3
(R− 1), R− 1

)

yields

ẊẎ
Ż

 =


−10 10 0

1 −1 −
√

8
3
(R− 1)√

8
3
(R− 1)

√
8
3
(R− 1) −8

3


XY
Z


The characteristic polynomial of the matrix is

λ3 +
41

3
λ2 +

8(10 +R)

3
λ+

160

3
(R− 1).

Thus the eigenvalues of the matrix satisfy the polynomial,

3λ3 + 41λ2 + 8(10 +R)λ+ 160(R− 1) = 0.

Linearizing about the point (
−
√

8

3
(R− 1), −

√
8

3
(R− 1), R− 1

)

yields

ẊẎ
Ż

 =


−10 10 0

1 −1
√

8
3
(R− 1)

−
√

8
3
(R− 1) −

√
8
3
(R− 1) −8

3


XY
Z


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The characteristic polynomial of the matrix is

λ3 +
41

3
λ2 +

8(10 +R)

3
λ+

160

3
(R− 1).

Thus the eigenvalues of the matrix satisfy the polynomial,

3λ3 + 41λ2 + 8(10 +R)λ+ 160(R− 1) = 0.

4. If the characteristic polynomial has two pure imaginary roots ±iµ and one real root, then it has the form

(λ− r)(λ2 + µ2) = λ3 − rλ2 + µ2λ− rµ2.

Equating the λ2 and the λ term with the characteristic polynomial yields

r = −41

3
, µ =

√
8

3
(10 +R).

Equating the constant term gives us the equation

41

3

8

3
(10 +Rc) =

160

3
(Rc − 1)

which has the solution

Rc =
470

19
.

For this critical value of R the characteristic polynomial has the roots

λ1 = −41

3

λ2 =
4

19

√
2090

λ3 = − 4

19

√
2090.
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Solution 50.6
The form of the perturbation expansion is

v(θ) = 1 + A cos θ + εu(θ) +O(ε2)

θ = (1 + εω1 +O(ε2))φ.

Writing the derivatives in terms of θ,

d

dφ
= (1 + εω1 + · · · ) d

dθ

d2

dφ2
= (1 + 2εω1 + · · · ) d2

dθ2
.

Substituting these expressions into the differential equation for v(φ),[
1 + 2εω1 +O(ε2)

] [
−A cos θ + εu′′ +O(ε2)

]
+ 1 + A cos θ + εu(θ) +O(ε2)

= 1 + ε
[
1 + 2A cos θ + A2 cos2 θ +O(ε)

]
εu′′ + εu− 2εω1A cos θ = ε+ 2εA cos θ + εA2 cos2 θ +O(ε2).

Equating the coefficient of ε,

u′′ + u = 1 + 2ε(1 + ω1)A cos θ +
1

2
A2(cos 2θ + 1)

u′′ + u = (1 +
1

2
A2) + 2ε(1 + ω1)A cos θ +

1

2
A2 cos 2θ.

To avoid secular terms, we must have ω1 = −1. A particular solution for u is

u = 1 +
1

2
A2 − 1

6
A2 cos 2θ.

The the solution for v is

v(φ) = 1 + A cos((1− ε)φ) + ε

[
1 +

1

2
A2 − 1

6
A2 cos(2(1− ε)φ)

]
+O(ε2).
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Solution 50.7
Substituting the expressions for x and ω into the differential equations yields

a2

[
ω2

0

(
d2x2

dθ2
+ x2

)
+ α cos2 θ

]
+ a3

[
ω2

0

(
d2x3

dθ2
+ x3

)
− 2ω0ω2 cos θ + 2αx2 cos θ

]
+O(a4) = 0

Equating the coefficient of a2 gives us the differential equation

d2x2

dθ2
+ x2 = − α

2ω2
0

(1 + cos 2θ).

The solution subject to the initial conditions x2(0) = x′2(0) = 0 is

x2 =
α

6ω2
0

(−3 + 2 cos θ + cos 2θ).

Equating the coefficent of a3 gives us the differential equation

ω2
0

(
d2x3

dθ2
+ x3

)
+

α2

3ω2
0

−
(

2ω0ω2 +
5α2

6ω2
0

)
cos θ +

α2

3ω2
0

cos 2θ +
α2

6ω2
0

cos 3θ = 0.

To avoid secular terms we must have

ω2 = − 5α2

12ω0

.

Solving the differential equation for x3 subject to the intial conditions x3(0) = x′3(0) = 0,

x3 =
α2

144ω4
0

(−48 + 29 cos θ + 16 cos 2θ + 3 cos 3θ).

Thus our solution for x(t) is

x(t) = a cos θ + a2

[
α

6ω2
0

(−3 + 2 cos θ + cos 2θ)

]
+ a3

[
α2

144ω4
0

(−48 + 29 cos θ + 16 cos 2θ + 3 cos 3θ)

]
+O(a4)
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where θ =
(
ω0 − a2 5α2

12ω0

)
t.

Now to see why we didn’t need an aω1 term. Assume that

x = a cos θ + a2x2(θ) +O(a3); θ = ωt

ω = ω0 + aω1 +O(a2).

Substituting these expressions into the differential equation for x yields

a2
[
ω2

0(x′′2 + x2)− 2ω0ω1 cos θ + α cos2 θ
]

= O(a3)

x′′2 + x2 = 2
ω1

ω0

cos θ − α

2ω2
0

(1 + cos 2θ).

In order to eliminate secular terms, we need ω1 = 0.

Solution 50.8
1. The equation for p1(t) is

dp1(t)

dt
= α[p0(t)− p1(t)].

dp1(t)

dt
= α[aeiωt − p1(t)]

d

dt

(
eαtp1(t)

)
= αaeαteiωt

p1(t) =
αa

α + iω
eiωt + ce−αt

Applying the initial condition, p1(0) = 0,

p1(t) =
αa

α + iω

(
eiωt − e−αt

)
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2. We start with the differential equation for pn(t).

dpn(t)

dt
= α[pn−1(t)− pn(t)]

Multiply by sn and sum from n = 1 to ∞.

∞∑
n=1

p′n(t)sn =
∞∑
n=1

α[pn−1(t)− pn(t)]sn

∂G(s, t)

∂t
= α

∞∑
n=0

pns
n+1 − αG(s, t)

∂G(s, t)

∂t
= αsp0 + α

∞∑
n=1

pns
n+1 − αG(s, t)

∂G(s, t)

∂t
= αaseiωt + αsG(s, t)− αG(s, t)

∂G(s, t)

∂t
= αaseiωt + α(s− 1)G(s, t)

∂

∂t

(
eα(1−s)tG(s, t)

)
= αaseα(1−s)teiωt

G(s, t) =
αas

α(1− s) + iω
eiωt + C(s)eα(s−1)t

The initial condition is

G(s, 0) =
∞∑
n=1

pn(0)sn = 0.

The generating function is then

G(s, t) =
αas

α(1− s) + iω

(
αeiωt − eα(s−1)t

)
.
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3. Assume that |s| < 1. In the limit t→∞ we have

G(s, t) ∼ αas

α(1− s) + iω
eiωt

G(s, t) ∼ as

1 + iω/α− s
eiωt

G(s, t) ∼ as/(1 + iω/α)

1− s/(1 + iω/α)
eiωt

G(s, t) ∼ aseiωt

1 + iω/α

∞∑
n=0

(
s

1 + iω/α

)n
G(s, t) ∼ aeiωt

∞∑
n=1

sn

(1 + iω/α)n

Thus we have

pn(t) ∼ a

(1 + iω/α)n
eiωt as t→∞.

=(pn(t)) ∼ =
[

a

(1 + iω/α)n
eiωt
]

= a

(
1− iω/α

1 + (ω/α)2

)n
[cos(ωt) + i sin(ωt)]

=
a

(1 + (ω/α)2)n
[cos(ωt)=[(1− iω/α)n] + sin(ωt)<[(1− iω/α)n]]

=
a

(1 + (ω/α)2)n

cos(ωt)
n∑
j=1

odd j

(−1)(j+1)/2
(ω
α

)j
+ sin(ωt)

n∑
j=0

even j

(−1)j/2
(ω
α

)j
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Solution 50.9
1. Substituting pn = Ane

iωt into the differential equation yields

Aniωe
iω(t+τ) = α[An−1e

iωt − Aneiωt]
An(α + iωeiωτ ) = αAn−1

We make the substitution An = rn.

rn(α + iωeiωτ ) = αrn−1

r =
α

α + iωeiωτ

Thus we have

pn(t) =

(
1

1 + iωeiωτ/α

)n
eiωt.
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Taking the imaginary part,

=(pn(t)) = =
[(

1

1 + iω
α
eiωτ

)n
eiωt
]

= =
[(

1− iω
α
e−iωτ

1 + iω
α

(eiωτ − e−iωτ ) + (ω
α

)2

)n (
cos(ωt) + i sin(ωt)

)]
= =

[(
1− ω

α
sin(ωτ)− iω

α
cos(ωτ)

1− 2ω
α

sin(ωτ) + (ω
α

)2

)n (
cos(ωt) + i sin(ωt)

)]
=

(
1

1− 2ω
α

sin(ωτ) + (ω
α

)2

)n [
cos(ωt)=

[(
1− ω

α
sin(ωτ)− iω

α
cos(ωτ)

)n]
+ sin(ωt)<

[(
1− ω

α
sin(ωτ)− iω

α
cos(ωτ)

)n] ]
=

(
1

1− 2ω
α

sin(ωτ) + (ω
α

)2

)n
[

cos(ωt)
n∑
j=1

odd j

(−1)(j+1)/2
[ω
α

cos(ωτ)
]j [

1− ω

α
sin(ωτ)

]n−j

+ sin(ωt)
n∑
j=0

even j

(−1)j/2
[ω
α

cos(ωτ)
]j [

1− ω

α
sin(ωτ)

]n−j ]
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2. pn(t) will remain bounded in time as n→∞ if∣∣∣∣ 1

1 + iω
α
eiωτ

∣∣∣∣ ≤ 1∣∣∣1 + i
ω

α
eiωτ

∣∣∣2 ≥ 1

1− 2
ω

α
sin(ωτ) +

(ω
α

)2

≥ 1

ω

α
≥ 2 sin(ωτ)

3.
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Nonlinear Partial Differential Equations
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51.1 Exercises

Exercise 51.1
Solve the equation

φt + (1 + x)φx + φ = 0 in −∞ < x <∞, t > 0,

with initial condition φ(x, 0) = f(x).

Exercise 51.2
Solve the equation

φt + φx +
αφ

1 + x
= 0

in the region 0 < x <∞, t > 0 with initial condition φ(x, 0) = 0, and boundary condition φ(0, t) = g(t). [Here α
is a positive constant.]

Exercise 51.3
Solve the equation

φt + φx + φ2 = 0

in −∞ < x < ∞, t > 0 with initial condition φ(x, 0) = f(x). Note that the solution could become infinite in
finite time.

Exercise 51.4
Consider

ct + ccx + µc = 0, −∞ < x <∞, t > 0.

2022



1. Use the method of characteristics to solve the problem with

c = F (x) at t = 0.

(µ is a positive constant.)

2. Find equations for the envelope of characteristics in the case F ′(x) < 0.

3. Deduce an inequality relating max |F ′(x)| and µ which decides whether breaking does or does not occur.

Exercise 51.5
For water waves in a channel the so-called shallow water equations are

ht + (hv)x = 0 (51.1)

(hv)t +

(
hv2 +

1

2
gh2

)
x

= 0, g = constant. (51.2)

Investigate whether there are solutions with v = V (h), where V (h) is not posed in advance but is obtained from
requiring consistency between the h equation obtained from (1) and the h equation obtained from (2).

There will be two possible choices for V (h) depending on a choice of sign. Consider each case separately. In
each case fix the arbitrary constant that arises in V (h) by stipulating that before the waves arrive, h is equal to
the undisturbed depth h0 and V (h0) = 0.

Find the h equation and the wave speed c(h) in each case.

Exercise 51.6
After a change of variables, the chemical exchange equations can be put in the form

∂ρ

∂t
+
∂σ

∂x
= 0 (51.3)

∂ρ

∂t
= ασ − βρ− γρσ; α, β, γ = positive constants. (51.4)
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1. Investigate wave solutions in which ρ = ρ(X), σ = σ(X), X = x− Ut, U = constant, and show that ρ(X)
must satisfy an ordinary differential equation of the form

dρ

dX
= quadratic in ρ.

2. Discuss ths “smooth shock” solution as we did for a different example in class. In particular find the
expression for U in terms of the values of ρ as X → ±∞, and find the sign of dρ/dX. Check that

U =
σ2 − σ1

ρ2 − ρ1

in agreement with the “discontinuous theory.”

Exercise 51.7
Find solitary wave solutions for the following equations:

1. ηt + ηx + 6ηηx − ηxxt = 0. (Regularized long wave or B.B.M. equation)

2. utt − uxx −
(

3
2
u2
)
xx
− uxxxx = 0. (“Boussinesq”)

3. φtt − φxx + 2φxφxt + φxxφt − φxxxx = 0. (The solitary wave form is for u = φx)

4. ut + 30u2u1 + 20u1u2 + 10uu3 + u5 = 0. (Here the subscripts denote x derivatives.)
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51.2 Hints
Hint 51.1

Hint 51.2

Hint 51.3

Hint 51.4

Hint 51.5

Hint 51.6

Hint 51.7
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51.3 Solutions
Solution 51.1
The method of characteristics gives us the differential equations

x′(t) = (1 + x) x(0) = ξ

dφ

dt
= −φ φ(ξ, 0) = f(ξ)

Solving the first differential equation,

x(t) = cet − 1, x(0) = ξ

x(t) = (ξ + 1)et − 1

The second differential equation then becomes

φ(x(t), t) = ce−t, φ(ξ, 0) = f(ξ), ξ = (x+ 1)e−t − 1

φ(x, t) = f((x+ 1)e−t − 1)e−t

Thus the solution to the partial differential equation is

φ(x, t) = f((x+ 1)e−t − 1)e−t.

Solution 51.2

dφ

dt
= φt + x′(t)φx = − αφ

1 + x

The characteristic curves x(t) satisfy x′(t) = 1, so x(t) = t+ c. The characteristic curve that separates the region
with domain of dependence on the x axis and domain of dependence on the t axis is x(t) = t. Thus we consider
the two cases x > t and x < t.
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• x > t. x(t) = t+ ξ.

• x < t. x(t) = t− τ .

Now we solve the differential equation for φ in the two domains.

• x > t.

dφ

dt
= − αφ

1 + x
, φ(ξ, 0) = 0, ξ = x− t

dφ

dt
= − αφ

1 + t+ ξ

φ = c exp

(
−α
∫ t 1

t+ ξ + 1
dt

)
φ = cexp (−α log(t+ ξ + 1))

φ = c(t+ ξ + 1)−α

applying the initial condition, we see that

φ = 0

• x < t.

dφ

dt
= − αφ

1 + x
, φ(0, τ) = g(τ), τ = t− x

dφ

dt
= − αφ

1 + t− τ
φ = c(t+ 1− τ)−α

φ = g(τ)(t+ 1− τ)−α

φ = g(t− x)(x+ 1)−α
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Thus the solution to the partial differential equation is

φ(x, t) =

{
0 for x > t

g(t− x)(x+ 1)−α for x < t.

Solution 51.3
The method of characteristics gives us the differential equations

x′(t) = 1 x(0) = ξ

dφ

dt
= −φ2 φ(ξ, 0) = f(ξ)

Solving the first differential equation,

x(t) = t+ ξ.

The second differential equation is then

dφ

dt
= −φ2, φ(ξ, 0) = f(ξ), ξ = x− t

φ−2dφ = −dt
−φ−1 = −t+ c

φ =
1

t− c

φ =
1

t+ 1/f(ξ)

φ =
1

t+ 1/f(x− t)
.
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Solution 51.4
1. Taking the total derivative of c with respect to t,

dc

dt
= ct +

dx

dt
cx.

Equating terms with the partial differential equation, we have the system of differential equations

dx

dt
= c

dc

dt
= −µc.

subject to the initial conditions

x(0) = ξ, c(ξ, 0) = F (ξ).

We can solve the second ODE directly.

c(ξ, t) = c1e
−µt

c(ξ, t) = F (ξ)e−µt

Substituting this result and solving the first ODE,

dx

dt
= F (ξ)e−µt

x(t) = −F (ξ)

µ
e−µt + c2

x(t) =
F (ξ)

µ
(1− e−µt) + ξ.

The solution to the problem at the point (x, t) is found by first solving

x =
F (ξ)

µ
(1− e−µt) + ξ
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for ξ and then using this value to compute

c(x, t) = F (ξ)e−µt.

2. The characteristic lines are given by the equation

x(t) =
F (ξ)

µ
(1− e−µt) + ξ.

The points on the envelope of characteristics also satisfy

∂x(t)

∂ξ
= 0.

Thus the points on the envelope satisfy the system of equations

x =
F (ξ)

µ
(1− e−µt) + ξ

0 =
F ′(ξ)

µ
(1− e−µt) + 1.

By substituting

1− e−µt = − µ

F ′(ξ)

into the first equation we can eliminate its t dependence.

x = − F (ξ)

F ′(ξ)
+ ξ

Now we can solve the second equation in the system for t.

e−µt = 1 +
µ

F ′(ξ)

t = − 1

µ
log

(
1 +

µ

F ′(ξ)

)
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Thus the equations that describe the envelope are

x = − F (ξ)

F ′(ξ)
+ ξ

t = − 1

µ
log

(
1 +

µ

F ′(ξ)

)
.

3. The second equation for the envelope has a solution for positive t if there is some x that satisfies

−1 <
µ

F ′(x)
< 0.

This is equivalent to

−∞ < F ′(x) < −µ.

So in the case that F ′(x) < 0, there will be breaking iff

max |F ′(x)| > µ.

Solution 51.5
With the substitution v = V (h), the two equations become

ht + (V + hV ′)hx = 0

(V + hV ′)ht + (V 2 + 2hV V ′ + gh)hx = 0.

We can rewrite the second equation as

ht +
V 2 + 2hV V ′ + gh

V + hV ′
hx = 0.
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Requiring that the two equations be consistent gives us a differential equation for V .

V + hV ′ =
V 2 + 2hV V ′ + gh

V + hV ′

V 2 + 2hV V ′ + h2(V ′)2 = V 2 + 2hV V ′ + gh

(V ′)2 =
g

h
.

There are two choices depending on which sign we choose when taking the square root of the above equation.
Positive V′.

V ′ =

√
g

h

V = 2
√
gh+ const

We apply the initial condition V (h0) = 0.

V = 2
√
g(
√
h−

√
h0)

The partial differential equation for h is then

ht + (2
√
g(
√
h−

√
h0)h)x = 0

ht +
√
g(3
√
h− 2

√
h0)hx = 0

The wave speed is

c(h) =
√
g(3
√
h− 2

√
h0).

Negative V′.

V ′ = −
√
g

h

V = −2
√
gh+ const
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We apply the initial condition V (h0) = 0.

V = 2
√
g(
√
h0 −

√
h)

The partial differential equation for h is then

ht +
√
g(2
√
h0 − 3

√
h)hx = 0.

The wave speed is

c(h) =
√
g(2
√
h0 − 3

√
h).

Solution 51.6
1. Making the substitutions, ρ = ρ(X), σ = σ(X), X = x − Ut, the system of partial differential equations

becomes

−Uρ′ + σ′ = 0

−Uρ′ = ασ − βρ− γρσ.

Integrating the first equation yields

−Uρ+ σ = c

σ = c+ Uρ.

Now we substitute the expression for σ into the second partial differential equation.

−Uρ′ = α(c+ Uρ)− βρ− γρ(c+ Uρ)

ρ′ = −α
(
ρ+

c

U

)
+
β

U
ρ+ γρ

(
ρ+

c

U

)
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Thus ρ(X) satisfies the ordinary differential equation

ρ′ = γρ2 +

(
γc

U
+
β

U
− α

)
ρ− αc

U
.

2. Assume that

ρ(X)→ ρ1 as X → +∞
ρ(X)→ ρ2 as X → −∞
ρ′(X)→ 0 as X → ±∞.

Integrating the ordinary differential equation for ρ,

X =

∫ ρ dρ

γρ2 +
(
γc
U

+ β
U
− α

)
ρ− αc

U

.

We see that the roots of the denominator of the integrand must be ρ1 and ρ2. Thus we can write the
ordinary differential equation for ρ(X) as

ρ′(X) = γ(ρ− ρ1)(ρ− ρ2) = γρ2 − γ(ρ1 + ρ2)ρ+ γρ1ρ2.

Equating coefficients in the polynomial with the differential equation for part 1, we obtain the two equations

−αc
U

= γρ1ρ2,
γc

U
+
β

U
− α = −γ(ρ1 + ρ2).

Solving the first equation for c,

c = −Uγρ1ρ2

α
.
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Now we substitute the expression for c into the second equation.

−γUγρ1ρ2

αU
+
β

U
− α = −γ(ρ1 + ρ2)

β

U
= α +

γ2ρ1ρ2

α
− γ(ρ1 + ρ2)

Thus we see that U is

U =
αβ

α2 + γ2ρ1ρ2 −−αγ(ρ1 + ρ2)
.

Since the quadratic polynomial in the ordinary differential equation for ρ(X) is convex, it is negative valued
between its two roots. Thus we see that

dρ

dX
< 0.

Using the expression for σ that we obtained in part 1,

σ2 − σ1

ρ2 − ρ1

=
c+ Uρ2 − (c+ Uρ1)

ρ2 − ρ1

= U
ρ2 − ρ1

ρ2 − ρ1

= U.

2035



Now let’s return to the ordinary differential equation for ρ(X)

ρ′(X) = γ(ρ− ρ1)(ρ− ρ2)

X =

∫ ρ dρ

γ(ρ− ρ1)(ρ− ρ2)

X = − 1

γ(ρ2 − ρ1)

∫ ρ( 1

ρ− ρ1

+
1

ρ2 − ρ

)
dρ

X −X0 = − 1

γ(ρ2 − ρ1)
ln

(
ρ− ρ1

ρ2 − ρ

)
−γ(ρ2 − ρ1)(X −X0) = ln

(
ρ− ρ1

ρ2 − ρ

)
ρ− ρ1

ρ2 − ρ
= exp (−γ(ρ2 − ρ1)(X −X0))

ρ− ρ1 = (ρ2 − ρ) exp (−γ(ρ2 − ρ1)(X −X0))

ρ [1 + exp (−γ(ρ2 − ρ1)(X −X0))] = ρ1 + ρ2 exp (−γ(ρ2 − ρ1)(X −X0))

Thus we obtain a closed form solution for ρ

ρ =
ρ1 + ρ2 exp (−γ(ρ2 − ρ1)(X −X0))

1 + exp (−γ(ρ2 − ρ1)(X −X0))

Solution 51.7
1.

ηt + ηx + 6ηηx − ηxxt = 0

We make the substitution

η(x, t) = z(X), X = x− Ut.
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(1− U)z′ + 6zz′ + Uz′′′ = 0

(1− U)z + 3z2 + Uz′′ = 0

1

2
(1− U)z2 + z3 +

1

2
U(z′)2 = 0

(z′)2 =
U − 1

U
z2 − 2

U
z3

z(X) =
U − 1

2
sech 2

(
1

2

√
U − 1

U
X

)

η(x, t) =
U − 1

2
sech 2

(
1

2

(√
U − 1

U
x−

√
(U − 1)Ut

))

The linearized equation is

ηt + ηx − ηxxt = 0.

Substituting η = e−αx+βt into this equation yields

β − α− α2β = 0

β =
α

1− α2
.

We set

α2 =
U − 1

U
.
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β is then

β =
α

1− α2

=

√
(U − 1)/U

1− (U − 1)/U)

=

√
(U − 1)U

U − (U − 1)

=
√

(U − 1)U.

The solution for η becomes

αβ

2
sech 2

(
αx− βt

2

)
where

β =
α

1− α2
.

2.

utt − uxx −
(

3

2
u2

)
xx

− uxxxx = 0

We make the substitution

u(x, t) = z(X), X = x− Ut.

(U2 − 1)z′′ −
(

3

2
z2

)′′
− z′′′′ = 0

(U2 − 1)z′ −
(

3

2
z2

)′
− z′′′ = 0

(U2 − 1)z − 3

2
z2 − z′′ = 0
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We multiply by z′ and integrate.

1

2
(U2 − 1)z2 − 1

2
z3 − 1

2
(z′)2 = 0

(z′)2 = (U2 − 1)z2 − z3

z = (U2 − 1) sech 2

(
1

2

√
U2 − 1X

)
u(x, t) = (U2 − 1) sech 2

(
1

2

(√
U2 − 1x− U

√
U2 − 1t

))
The linearized equation is

utt − uxx − uxxxx = 0.

Substituting u = e−αx+βt into this equation yields

β2 − α2 − α4 = 0

β2 = α2(α2 + 1).

We set

α =
√
U2 − 1.

β is then

β2 = α2(α2 + 1)

= (U2 − 1)U2

β = U
√
U2 − 1.

The solution for u becomes

u(x, t) = α2 sech 2

(
αx− βt

2

)
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where

β2 = α2(α2 + 1).

3.

φtt − φxx + 2φxφxt + φxxφt − φxxxx

We make the substitution

φ(x, t) = z(X), X = x− Ut.

(U2 − 1)z′′ − 2Uz′z′′ − Uz′′z′ − z′′′′ = 0

(U2 − 1)z′′ − 3Uz′z′′ − z′′′′ = 0

(U2 − 1)z′ − 3

2
(z′)2 − z′′′ = 0

Multiply by z′′ and integrate.

1

2
(U2 − 1)(z′)2 − 1

2
(z′)3 − 1

2
(z′′)2 = 0

(z′′)2 = (U2 − 1)(z′)2 − (z′)3

z′ = (U2 − 1) sech 2

(
1

2

√
U2 − 1X

)
φx(x, t) = (U2 − 1) sech 2

(
1

2

(√
U2 − 1x− U

√
U2 − 1t

))
.

The linearized equation is

φtt − φxx − φxxxx
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Substituting φ = e−αx+βt into this equation yields

β2 = α2(α2 + 1).

The solution for φx becomes

φx = α2 sech 2

(
αx− βt

2

)
where

β2 = α2(α2 + 1).

4.

ut + 30u2u1 + 20u1u2 + 10uu3 + u5 = 0

We make the substitution

u(x, t) = z(X), X = x− Ut.

−Uz′ + 30z2z′ + 20z′z′′ + 10zz′′′ + z(5) = 0

Note that (zz′′)′ = z′z′′ + zz′′′.

−Uz′ + 30z2z′ + 10z′z′′ + 10(zz′′)′ + z(5) = 0

−Uz + 10z3 + 5(z′)2 + 10zz′′ + z(4) = 0

Multiply by z′ and integrate.

−1

2
Uz2 +

5

2
z4 + 5z(z′)2 − 1

2
(z′′)2 + z′z′′′ = 0

2041



Assume that

(z′)2 = P (z).

Differentiating this relation,

2z′z′′ = P ′(z)z′

z′′ =
1

2
P ′(z)

z′′′ =
1

2
P ′′(z)z′

z′′′z′ =
1

2
P ′′(z)P (z).

Substituting this expressions into the differential equation for z,

−1

2
Uz2 +

5

2
z4 + 5zP (z)− 1

2

1

4
(P ′(z))2 +

1

2
P ′′(z)P (z) = 0

4Uz2 + 20z4 + 40zP (z)− (P ′(z))2 + 4P ′′(z)P (z) = 0

Substituting P (z) = az3 + bz2 yields

(20 + 40a+ 15a2)z4 + (40b+ 20ab)z3 + (4b2 + 4U)z2 = 0

This equation is satisfied by b2 = U , a = −2. Thus we have

(z′)2 =
√
Uz2 − 2z3

z =

√
U

2
sech 2

(
1

2
U1/4X

)
u(x, t) =

√
U

2
sech 2

(
1

2
(U1/4x− U5/4t)

)
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The linearized equation is

ut + u5 = 0.

Substituting u = e−αx+βt into this equation yields

β − α5 = 0.

We set

α = U1/4.

The solution for u(x, t) becomes

α2

2
sech 2

(
αx− βt

2

)
where

β = α5.
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Part VIII

Appendices
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Appendix A

Greek Letters

Name Lower Upper
alpha α
beta β
gamma γ Γ
delta δ ∆
epsilon ε
iota ι
kappa κ
lambda λ Λ
mu µ
nu ν
omicron o
pi π Π
rho ρ
sigma σ Σ
tau τ
theta θ Θ
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phi φ Φ
psi ψ Ψ
chi χ
omega ω Ω
upsilon υ Υ
xi ξ Ξ
eta η
zeta ζ

2046



Appendix B

Notation

C class of continuous functions
Cn class of n-times continuously differentiable functions
C set of complex numbers
δ(x) Dirac delta function
F [·] Fourier transform
Fc[·] Fourier cosine transform
Fs[·] Fourier sine transform
γ Euler’s constant, γ =

∫∞
0
e−x Log x dx

Γ(ν) Gamma function
H(x) Heaviside function

H
(1)
ν (x) Hankel function of the first kind and order ν

H
(2)
ν (x) Hankel function of the second kind and order ν

Jν(x) Bessel function of the first kind and order ν
Kν(x) Modified Bessel function of the first kind and order ν
L[·] Laplace transform
N set of natural numbers, (positive integers)
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Nν(x) Modified Bessel function of the second kind and order ν
R set of real numbers
R

+ set of positive real numbers
R
− set of negative real numbers

o(z) terms smaller than z
O(z) terms no bigger than z
−
∫

principal value of the integral
ψ(ν) digamma function, ψ(ν) = d

dν
log Γ(ν)

ψ(n)(ν) polygamma function, ψ(n)(ν) = dn

dνn
ψ(ν)

u(n)(x) ∂nu
∂xn

u(n,m)(x, y) ∂n+mu
∂xn∂ym

Yν(x) Bessel function of the second kind and order ν, Neumann function
Z set of integers
Z

+ set of positive integers
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Appendix C

Formulas from Complex Variables

Analytic Functions. A function f(z) is analytic in a domain if the derivative f ′(z) exists in that domain.

If f(z) = u(x, y) + iv(x, y) is defined in some neighborhood of z0 = x0 + iy0 and the partial derivatives of u
and v are continuous and satisfy the Cauchy-Riemann equations

ux = vy, uy = −vx,

then f ′(z0) exists.

Residues. If f(z) has the Laurent expansion

f(z) =
∞∑

n=−∞

anz
n,

then the residue of f(z) at z = z0 is

Res (f(z), z0) = a−1.
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Residue Theorem. Let C be a positively oriented, simple, closed contour. If f(z) is analytic in and on C
except for isolated singularities at z1, z2, . . . , zN inside C then∮

C

f(z) dz = 2πi
N∑
n=1

Res (f(z), zn).

If in addition f(z) is analytic outside C in the finite complex plane then∮
C

f(z) dz = 2πi Res

(
1

z2
f

(
1

z

)
, 0

)
.

Residues of a pole of order n. If f(z) has a pole of order n at z = z0 then

Res (f(z), z0) = lim
z→z0

(
1

(n− 1)!

dn−1

dzn−1

[
(z − z0)nf(z)

])
.

Jordan’s Lemma. ∫ π

0

e−R sin θ dθ <
π

R
.

Let a be a positive constant. If f(z) vanishes as |z| → ∞ then the integral∫
C

f(z) eiaz dz

along the semi-circle of radius R in the upper half plane vanishes as R→∞.

Taylor Series. Let f(z) be a function that is analytic and single valued in the disk |z − z0| < R.

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

The series converges for |z − z0| < R.
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Laurent Series. Let f(z) be a function that is analytic and single valued in the annulus r < |z − z0| < R. In
this annulus f(z) has the convergent series,

f(z) =
∞∑

n=−∞

cn(z − z0)n,

where

cn =
1

2πi

∮
f(z)

(z − z0)n+1
dz

and the path of integration is any simple, closed, positive contour around z0 and lying in the annulus. The path
of integration is shown in Figure C.1.

C

Im(z)

Re(z)

R

r

Figure C.1: The Path of Integration.
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Appendix D

Table of Derivatives

Note: c denotes a constant and ′ denotes differentiation.

d

dx
(fg) =

df

dx
g + f

dg

dx

d

dx

(
f

g

)
=
f ′g − fg′

g2

d

dx
(f c) = cf c−1f ′

d

dx
[f(g)] = f ′(g)g′

d2

dx2
[f(g)] = f ′′(g)(g′)2 + f ′g′′

dn

dxn
(fg) =

(
n

0

)
dnf

dxn
g +

(
n

1

)
dn−1f

dxn−1

dg

dx
+

(
n

2

)
dn−2f

dxn−2

d2g

dx2
+ · · ·+

(
n

n

)
f
dng

dxn
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d

dx
(log x) =

1

f

d

dx
(cx) = cx log c

d

dx
(f g) = gf g−1 df

dx
+ f g log f

dg

dx

d

dx
(sinx) = cos x

d

dx
(cos x) = − sinx

d

dx
(tanx) = sec2 x

d

dx
(cscx) = − csc x cotx

d

dx
(secx) = sec x tanx

d

dx
(cot x) = − csc2 x

d

dx
(arcsinx) =

1√
1− x2

, −π
2
≤ arcsinx ≤ π

2
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d

dx
(arccos x) = − 1√

1− x2
, 0 ≤ arccosx ≤ π

d

dx
(arctanx) =

1

1 + x2
, −π

2
≤ arctanx ≤ π

2

d

dx
(sinhx) = coshx

d

dx
(coshx) = sinhx

d

dx
(tanhx) = sech 2x

d

dx
( cschx) = − cschx cothx

d

dx
( sechx) = − sechx tanhx

d

dx
(cothx) = − csch 2x

d

dx
( arcsinhx) =

1√
x2 + 1

d

dx
( arccosh x) =

1√
x2 − 1

, x > 1, arccosh x > 0

d

dx
( arctanhx) =

1

1− x2
, x2 < 1
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d

dx

∫ x

c

f(ξ) dξ = f(x)

d

dx

∫ c

x

f(ξ) dξ = −f(x)

d

dx

∫ h

g

f(ξ, x) dξ =

∫ h

g

∂f(ξ, x)

∂x
dξ + f(h, x)h′ − f(g, x)g′
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Appendix E

Table of Integrals

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

∫
f ′(x)

f(x)
dx = log f(x)

∫
f ′(x)

2
√
f(x)

dx =
√
f(x)

∫
xα dx =

xα+1

α + 1
for α 6== −1

∫
1

x
dx = log x

∫
eax dx =

eax

a
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∫
abx dx =

abx

b log a
for a > 0

∫
log x dx = x log x− x

∫
1

x2 + a2
dx =

1

a
arctan

x

a∫
1

x2 − a2
dx =

{
1
2a

log a−x
a+x

for x2 < a2

1
2a

log x−a
x+a

for x2 > a2

∫
1√

a2 − x2
dx = arcsin

x

|a|
= − arccos

x

|a|
for x2 < a2

∫
1√

x2 ± a2
dx = log(x+

√
x2 ± a2)

∫
1

x
√
x2 − a2

dx =
1

|a|
sec−1 x

a∫
1

x
√
a2 ± x2

dx = −1

a
log

(
a+
√
a2 ± x2

x

)
∫

sin(ax) dx = −1

a
cos(ax)

∫
cos(ax) dx =

1

a
sin(ax)
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∫
tan(ax) dx = −1

a
log cos(ax)

∫
csc(ax) dx =

1

a
log tan

ax

2∫
sec(ax) dx =

1

a
log tan

(π
4

+
ax

2

)
∫

cot(ax) dx =
1

a
log sin(ax)

∫
sinh(ax) dx =

1

a
cosh(ax)

∫
cosh(ax) dx =

1

a
sinh(ax)

∫
tanh(ax) dx =

1

a
log cosh(ax)

∫
csch (ax) dx =

1

a
log tanh

ax

2∫
sech (ax) dx =

i

a
log tanh

(
iπ

4
+
ax

2

)
∫

coth(ax) dx =
1

a
log sinh(ax)
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∫
x sin ax dx =

1

a2
sin ax− x

a
cos ax

∫
x2 sin ax dx =

2x

a2
sin ax− a2x2 − 2

a3
cos ax

∫
x cos ax dx =

1

a2
cos ax+

x

a
sin ax

∫
x2 cos ax dx =

2x cos ax

a2
+
a2x2 − 2

a3
sin ax
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Appendix F

Definite Integrals

Integrals from −∞ to ∞. Let f(z) be analytic except for isolated singularities, none of which lie on the real
axis. Let a1, . . . , am be the singularities of f(z) in the upper half plane; and CR be the semi-circle from R to −R
in the upper half plane. If

lim
R→∞

(
Rmax
z∈CR

|f(z)|
)

= 0

then ∫ ∞
−∞

f(x) dx = i2π
m∑
j=1

Res (f(z), aj) .

Let b1, . . . , bn be the singularities of f(z) in the lower half plane. Let CR be the semi-circle from R to −R in the
lower half plane. If

lim
R→∞

(
Rmax
z∈CR

|f(z)|
)

= 0
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then ∫ ∞
−∞

f(x) dx = −i2π
n∑
j=1

Res (f(z), bj) .

Integrals from 0 to∞. Let f(z) be analytic except for isolated singularities, none of which lie on the positive
real axis, [0,∞). Let z1, . . . , zn be the singularities of f(z). If f(z)� zα as z → 0 for some α > −1 and f(z)� zβ

as z →∞ for some β < −1 then ∫ ∞
0

f(x) dx = −
n∑
k=1

Res (f(z) log z, zk) .

∫ ∞
0

f(x) log dx = −1

2

n∑
k=1

Res
(
f(z) log2 z, zk

)
+ iπ

n∑
k=1

Res (f(z) log z, zk)

Assume that a is not an integer. If zaf(z)� zα as z → 0 for some α > −1 and zaf(z)� zβ as z →∞ for some
β < −1 then ∫ ∞

0

xaf(x) dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z), zk) .

∫ ∞
0

xaf(x) log x dx =
i2π

1− ei2πa

n∑
k=1

Res (zaf(z) log z, zk) ,+
π2a

sin2(πa)

n∑
k=1

Res (zaf(z), zk)

Fourier Integrals. Let f(z) be analytic except for isolated singularities, none of which lie on the real axis.
Suppose that f(z) vanishes as |z| → ∞. If ω is a positive real number then∫ ∞

−∞
f(x) eiωx dx = i2π

n∑
k=1

Res (f(z) eiωz, zk),
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where z1, . . . , zn are the singularities of f(z) in the upper half plane. If ω is a negative real number then∫ ∞
−∞

f(x) eiωx dx = −i2π
n∑
k=1

Res (f(z) eiωz, zk),

where z1, . . . , zn are the singularities of f(z) in the lower half plane.
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Appendix G

Table of Sums

∞∑
n=1

rn =
r

1− r
, for |r| < 1

N∑
n=1

rn =
r − rN+1

1− r

b∑
n=a

n =
(a+ b)(b+ 1− a)

2

N∑
n=1

n =
N(N + 1)

2

b∑
n=a

n2 =
b(b+ 1)(2b+ 1)− a(a− 1)(2a− 1)

6
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N∑
n=1

n2 =
N(N + 1)(2N + 1)

6

∞∑
n=1

(−1)n+1

n
= log(2)

∞∑
n=1

1

n2
=
π2

6

∞∑
n=1

(−1)n+1

n2
=
π2

12

∞∑
n=1

1

n3
= ζ(3)

∞∑
n=1

(−1)n+1

n3
=

3ζ(3)

4

∞∑
n=1

1

n4
=
π4

90

∞∑
n=1

(−1)n+1

n4
=

7π4

720
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∞∑
n=1

1

n5
= ζ(5)

∞∑
n=1

(−1)n+1

n5
=

15ζ(5)

16

∞∑
n=1

1

n6
=

π6

945

∞∑
n=1

(−1)n+1

n6
=

31π6

30240
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Appendix H

Table of Taylor Series

(1− z)−1 =
∞∑
n=0

zn |z| < 1

(1− z)−2 =
∞∑
n=0

(n+ 1)zn |z| < 1

(1 + z)α =
∞∑
n=0

(
α

n

)
zn |z| < 1

ez =
∞∑
n=0

zn

n!
|z| <∞

log(1− z) = −
∞∑
n=1

zn

n
|z| < 1
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log

(
1 + z

1− z

)
= 2

∞∑
n=1

z2n−1

2n− 1
|z| < 1

cos z =
∞∑
n=0

(−1)nz2n

(2n)!
|z| <∞

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
|z| <∞

tan z = z +
z3

3
+

2z5

15
+

17z7

315
+ · · · |z| < π

2

cos−1 z =
π

2
−
(
z +

z3

2 · 3
+

1 · 3z5

2 · 4 · 5
+

1 · 3 · 5z7

2 · 4 · 6 · 7
+ · · ·

)
|z| < 1

sin−1 z = z +
z3

2 · 3
+

1 · 3z5

2 · 4 · 5
+

1 · 3 · 5z7

2 · 4 · 6 · 7
+ · · · |z| < 1

tan−1 z =
∞∑
n=1

(−1)n+1z2n−1

2n− 1
|z| < 1

cosh z =
∞∑
n=0

z2n

(2n)!
|z| <∞

sinh z =
∞∑
n=0

z2n+1

(2n+ 1)!
|z| <∞
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tanh z = z − z3

3
+

2z5

15
− 17z7

315
+ · · · |z| < π

2

Jν(z) =
∞∑
n=0

(−1)n

n!Γ(ν + n+ 1)

(z
2

)ν+2n

|z| <∞

Iν(z) =
∞∑
n=0

1

n!Γ(ν + n+ 1)

(z
2

)ν+2n

|z| <∞
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Appendix I

Table of Laplace Transforms

Let f(t) be piecewise continuous and of exponential order α. Unless otherwise noted, the transform is defined for
s > 0.

f(t)

∫ ∞
0

e−stf(t) dt

1

2πi

∫ c+i∞

c−i∞
etsF (s) ds F (s)

af(t) + bg(t) aF (s) + bG(s)

ectf(t) F (s− c) s > c+ α

f(t+ c) F (s− c) s > c+ α

tf(t) − d

ds
[F (s)]
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tnf(t) (−1)n
dn

dsn
[F (s)]

f(t)

t
,

∫ 1

0

f(t)

t
dt exists

∫ ∞
s

F (t) dt

∫ t

0

f(τ) dτ
F (s)

s∫ t

0

∫ τ

0

f(s) ds dτ
F (s)

s2

d

dt
f(t) sF (s)− f(0)

d2

dt2
f(t) s2F (s)− sf(0)− f ′(0)

dn

dtn
f(t) snF (s)− sn−1f(0)

−sn−2f ′(0)− · · · − f (n−1)(0)∫ t

0

f(τ)g(t− τ) dτ, f, g ∈ C0 F (s)G(s)

1

c
f(t/c), c > 0 F (cs)

f(t), f(t+ T ) = f(t)

∫ T
0

e−stf(t) dt

1− e−sT
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f(t), f(t+ T ) = −f(t)

∫ T
0

e−stf(t) dt

1 + e−sT

H(t)
1

s

tH(t)
1

s2

tnH(t), for n = 0, 1, 2, . . .
n!

sn+1

t1/2H(t)

√
π

2
s−3/2

t−1/2H(t)
√
πs−1/2

tn−1/2H(t), n ∈ Z+ (1)(3)(5) · · · (2n− 1)
√
π

2n
s−n−1/2

tνH(t), <(ν) > −1
Γ(ν + 1)

sn+1

Log tH(t)
−γ − Log s

s

tν Log tH(t), <(ν) > −1
Γ(ν + 1)

sn+1
(ψ(ν + 1)− Log s)

δ(t) 1 s > 0

δ(n)(t), n ∈ Z0+ sn s > 0
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ectH(t)
1

s− c
s > c

t ectH(t)
1

(s− c)2
s > c

tn−1 ect

(n− 1)!
H(t), n ∈ Z+ 1

(s− c)n
s > c

sin(ct)H(t)
c

s2 + c2

cos(ct)H(t)
s

s2 + c2

sinh(ct)H(t)
c

s2 − c2
s > |c|

cosh(ct)H(t)
s

s2 − c2
s > |c|

t sin(ct)H(t)
2cs

(s2 + c2)2

t cos(ct)H(t)
s2 − c2

(s2 + c2)2

tn ectH(t), n ∈ Z+ n!

(s− c)n+1

edt sin(ct)H(t)
c

(s− d)2 + c2
s > d
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edt cos(ct)H(t)
s− d

(s− d)2 + c2
s > d

δ(t− c)

{
0 for c < 0

e−sc for c > 0

H(t− c) =

{
0 for t < c

1 for t > c

1

s
e−cs

Jν(ct)H(t)
cn√

s2 + c2
(
s+
√
s2 + c2

)ν ν > −1

Iν(ct)H(t)
cn√

s2 − c2
(
s−
√
s2 + c2

)ν <(s) > c, ν > −1

2073



Appendix J

Table of Fourier Transforms

f(x)
1

2π

∫ ∞
−∞

f(x) e−iωx dx

∫ ∞
−∞

F(ω) eiωx dω F(ω)

af(x) + bg(x) aF (ω) + bG(ω)

f (n)(x) (iω)nF (ω)

xnf(x) inF (n)(ω)

f(x+ c) eiωcF (ω)

e−icxf(x) F (ω + c)

f(cx) |c|−1F (ω/c)
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f(x)g(x) F ∗G(ω) =

∫ ∞
−∞

F (η)G(ω − η) dη

1

2π
f ∗ g(x) =

1

2π

∫ ∞
−∞

f(ξ)g(x− ξ) dξ F (ω)G(ω)

e−cx
2

, c > 0
1√
4πc

e−ω
2/4c

e−c|x|, c > 0
c/π

ω2 + c2

2c

x2 + c2
, c > 0 e−c|ω|

1

x− iα
, α > 0

{
0 for ω > 0

i eαω for ω < 0

1

x− iα
, α < 0

{
i eαω for ω > 0

0 for ω < 0

1

x
− i

2
sign (ω)

H(x− c) =

{
0 for x < c

1 for x > c

1

2πiω
e−icω
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e−cxH(x), <(c) > 0
1

2π(c+ iω)

ecxH(−x), <(c) > 0
1

2π(c− iω)

1 δ(ω)

δ(x− ξ) 1

2π
e−iωξ

π(δ(x+ ξ) + δ(x− ξ)) cos(ωξ)

−iπ(δ(x+ ξ)− δ(x− ξ)) sin(ωξ)

H(c− |x|) =

{
1 for |x| < c

0 for |x| > c
, c > 0

sin(cω)

πω
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Appendix K

Table of Fourier Transforms in n Dimensions

f(x)
1

(2π)n

∫
Rn

f(x) e−iωx dx

∫
Rn

F(ω) eiωx dω F(ω)

af(x) + bg(x) aF (ω) + bG(ω)(π
c

)n/2
e−nx

2/4c e−cω
2
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Appendix L

Table of Fourier Cosine Transforms

f(x)
1

π

∫ ∞
0

f(x) cos (ωx) dx

2

∫ ∞
0

C(ω) cos (ωx) dω C(ω)

f ′(x) ωS(ω)− 1

π
f(0)

f ′′(x) −ω2C(ω)− 1

π
f ′(0)

xf(x)
∂

∂ω
Fs[f(x)]

f(cx), c > 0
1

c
C
(ω
c

)
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2c

x2 + c2
e−cω

e−cx
c/π

ω2 + c2

e−cx
2 1√

4πc
e−ω

2/(4c)

√
π

c
e−x

2/(4c) e−cω
2
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Appendix M

Table of Fourier Sine Transforms

f(x)
1

π

∫ ∞
0

f(x) sin (ωx) dx

2

∫ ∞
0

S(ω) sin (ωx) dω S(ω)

f ′(x) −ωC(ω)

f ′′(x) −ω2S(ω) +
1

π
ωf(0)

xf(x) − ∂

∂ω
Fc[f(x)]

f(cx), c > 0
1

c
S
(ω
c

)
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2x

x2 + c2
e−cω

e−cx
ω/π

ω2 + c2

2 arctan
(x
c

) 1

ω
e−cω

1

x
e−cx

1

π
arctan

(ω
c

)
1

1

πω

2

x
1

x e−cx
2 ω

4c3/2
√
π

e−ω
2/(4c)

√
πx

2c3/2
e−x

2/(4c) ω e−cω
2
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Appendix N

Table of Wronskians

W [x− a, x− b] b− a

W
[

eax, ebx
]

(b− a) e(a+b)x

W [cos(ax), sin(ax)] a

W [cosh(ax), sinh(ax)] a

W [ eax cos(bx), eax sin(bx)] b e2ax

W [ eax cosh(bx), eax sinh(bx)] b e2ax

W [sin(c(x− a)), sin(c(x− b))] c sin(c(b− a))

W [cos(c(x− a)), cos(c(x− b))] c sin(c(b− a))

W [sin(c(x− a)), cos(c(x− b))] −c cos(c(b− a))
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W [sinh(c(x− a)), sinh(c(x− b))] c sinh(c(b− a))

W [cosh(c(x− a)), cosh(c(x− b))] c cosh(c(b− a))

W [sinh(c(x− a)), cosh(c(x− b))] −c cosh(c(b− a))

W
[

edx sin(c(x− a)), edx sin(c(x− b))
]

c e2dx sin(c(b− a))

W
[

edx cos(c(x− a)), edx cos(c(x− b))
]

c e2dx sin(c(b− a))

W
[

edx sin(c(x− a)), edx cos(c(x− b))
]

−c e2dx cos(c(b− a))

W
[

edx sinh(c(x− a)), edx sinh(c(x− b))
]

c e2dx sinh(c(b− a))

W
[

edx cosh(c(x− a)), edx cosh(c(x− b))
]
−c e2dx sinh(c(b− a))

W
[

edx sinh(c(x− a)), edx cosh(c(x− b))
]
−c e2dx cosh(c(b− a))

W [(x− a) ecx, (x− b) ecx] (b− a) e2cx
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Appendix O

Sturm-Liouville Eigenvalue Problems

• y′′ + λ2y = 0, y(a) = y(b) = 0

λn =
nπ

b− a
, yn = sin

(
nπ(x− a)

b− a

)
, n ∈ N

〈yn, yn〉 =
b− a

2

• y′′ + λ2y = 0, y(a) = y′(b) = 0

λn =
(2n− 1)π

2(b− a)
, yn = sin

(
(2n− 1)π(x− a)

2(b− a)

)
, n ∈ N

〈yn, yn〉 =
b− a

2
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• y′′ + λ2y = 0, y′(a) = y(b) = 0

λn =
(2n− 1)π

2(b− a)
, yn = cos

(
(2n− 1)π(x− a)

2(b− a)

)
, n ∈ N

〈yn, yn〉 =
b− a

2

• y′′ + λ2y = 0, y′(a) = y′(b) = 0

λn =
nπ

b− a
, yn = cos

(
nπ(x− a)

b− a

)
, n = 0, 1, 2, . . .

〈y0, y0〉 = b− a, 〈yn, yn〉 =
b− a

2
for n ∈ N
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Appendix P

Green Functions for Ordinary Differential
Equations

• G′ + p(x)G = δ(x− ξ), G(ξ− : ξ) = 0

G(x|ξ) = exp

(
−
∫ x

ξ

p(t) dt

)
H(x− ξ)

• y′′ = 0, y(a) = y(b) = 0

G(x|ξ) =
(x< − a)(x> − b)

b− a

• y′′ = 0, y(a) = y′(b) = 0

G(x|ξ) = a− x<

• y′′ = 0, y′(a) = y(b) = 0

G(x|ξ) = x> − b
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• y′′ − c2y = 0, y(a) = y(b) = 0

G(x|ξ) =
sinh(c(x< − a)) sinh(c(x> − b))

c sinh(c(b− a))

• y′′ − c2y = 0, y(a) = y′(b) = 0

G(x|ξ) = −sinh(c(x< − a)) cosh(c(x> − b))
c cosh(c(b− a))

• y′′ − c2y = 0, y′(a) = y(b) = 0

G(x|ξ) =
cosh(c(x< − a)) sinh(c(x> − b))

c cosh(c(b− a))

• y′′ + c2y = 0, y(a) = y(b) = 0, c 6= npi
b−a , n ∈ N

G(x|ξ) =
sin(c(x< − a)) sin(c(x> − b))

c sin(c(b− a))

• y′′ + c2y = 0, y(a) = y′(b) = 0, c 6= (2n−1)pi
2(b−a)

, n ∈ N

G(x|ξ) = −sin(c(x< − a)) cos(c(x> − b))
c cos(c(b− a))

• y′′ + c2y = 0, y′(a) = y(b) = 0, c 6= (2n−1)pi
2(b−a)

, n ∈ N

G(x|ξ) =
cos(c(x< − a)) sin(c(x> − b))

c cos(c(b− a))
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• y′′ + 2cy′ + dy = 0, y(a) = y(b) = 0, c2 > d

G(x|ξ) =
e−cx< sinh(

√
c2 − d(x< − a)) e−cx< sinh(

√
c2 − d(x> − b))√

c2 − d e−2cξ sinh(
√
c2 − d(b− a))

• y′′ + 2cy′ + dy = 0, y(a) = y(b) = 0, c2 < d,
√
d− c2 6= nπ

b−a , n ∈ N

G(x|ξ) =
e−cx< sin(

√
d− c2(x< − a)) e−cx< sin(

√
d− c2(x> − b))√

d− c2 e−2cξ sin(
√
d− c2(b− a))

• y′′ + 2cy′ + dy = 0, y(a) = y(b) = 0, c2 = d

G(x|ξ) =
(x< − a) e−cx<(x> − b) e−cx<

(b− a) e−2cξ
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Appendix Q

Trigonometric Identities

Q.1 Circular Functions

Pythagorean Identities

sin2 x+ cos2 x = 1, 1 + tan2 x = sec2 x, 1 + cot2 x = csc2 x

Angle Sum and Difference Identities

sin(x+ y) = sinx cos y + cos x sin y

sin(x− y) = sinx cos y − cosx sin y

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cos x cos y + sinx sin y
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Function Sum and Difference Identities

sinx+ sin y = 2 sin
1

2
(x+ y) cos

1

2
(x− y)

sinx− sin y = 2 cos
1

2
(x+ y) sin

1

2
(x− y)

cos x+ cos y = 2 cos
1

2
(x+ y) cos

1

2
(x− y)

cos x− cos y = −2 sin
1

2
(x+ y) sin

1

2
(x− y)

Double Angle Identities

sin 2x = 2 sinx cos x, cos 2x = cos2 x− sin2 x

Half Angle Identities

sin2 x

2
=

1− cos x

2
, cos2 x

2
=

1 + cosx

2

Function Product Identities

sinx sin y =
1

2
cos(x− y)− 1

2
cos(x+ y)

cosx cos y =
1

2
cos(x− y) +

1

2
cos(x+ y)

sinx cos y =
1

2
sin(x+ y) +

1

2
sin(x− y)

cosx sin y =
1

2
sin(x+ y)− 1

2
sin(x− y)
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Exponential Identities

eix = cos x+ i sinx, sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2

Q.2 Hyperbolic Functions

Exponential Identities

sinhx =
ex − e−x

2
, cosh x =

ex + e−x

2

tanhx =
sinhx

cosh x
=

ex − e−x

ex + e−x

Reciprocal Identities

csch x =
1

sinhx
, sechx =

1

cosh x
, cothx =

1

tanhx

Pythagorean Identities

cosh2 x− sinh2 x = 1, tanh2 x+ sech 2x = 1

Relation to Circular Functions

sinh ix = i sinx sinhx = −i sin ix

cosh ix = cos x cosh x = cos ix

tanh ix = i tanx tanhx = −i tan ix
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Angle Sum and Difference Identities

sinh(x± y) = sinhx cosh y ± cosh x sinh y

cosh(x± y) = cosh x cosh y ± sinhx sinh y

tanh(x± y) =
tanhx± tanh y

1± tanhx tanh y
=

sinh 2x± sinh 2y

cosh 2x± cosh 2y

coth(x± y) =
1± coth x coth y

cothx± coth y
=

sinh 2x∓ sinh 2y

cosh 2x− cosh 2y

Function Sum and Difference Identities

sinhx± sinh y = 2 sinh
1

2
(x± y) cosh

1

2
(x∓ y)

cosh x+ cosh y = 2 cosh
1

2
(x+ y) cosh

1

2
(x− y)

cosh x− cosh y = 2 sinh
1

2
(x+ y) sinh

1

2
(x− y)

tanhx± tanh y =
sinh(x± y)

cosh x cosh y

cothx± coth y =
sinh(x± y)

sinhx sinh y

Double Angle Identities

sinh 2x = 2 sinhx cosh x, cosh 2x = cosh2 x+ sinh2 x

Half Angle Identities

sinh2 x

2
=

cosh x− 1

2
, cosh2 x

2
=

cosh x+ 1

2
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Function Product Identities

sinhx sinh y =
1

2
cosh(x+ y)− 1

2
cosh(x− y)

cosh x cosh y =
1

2
cosh(x+ y) +

1

2
cosh(x− y)

sinhx cosh y =
1

2
sinh(x+ y) +

1

2
sinh(x− y)

See Figure Q.1 for plots of the hyperbolic circular functions.

-2 -1 1 2

-3
-2
-1

1
2
3

-2 -1 1 2

-1

-0.5

0.5

1

Figure Q.1: coshx, sinhx and then tanhx
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Appendix R

Bessel Functions

R.1 Definite Integrals

Let ν > −1. ∫ 1

0

rJν(jν,mr)Jν(jν,nr) dr =
1

2
(J ′ν(jν,n))

2
δmn∫ 1

0

rJν(j
′
ν,mr)Jν(j

′
ν,nr) dr =

j′2ν,n − ν2

2j′2ν,n

(
Jν(j

′
ν,n)
)2
δmn∫ 1

0

rJν(αmr)Jν(αnr) dr =
1

2α2
n

(
a2

b2
+ α2

n − ν2

)
(Jν(αn))2 δmn

Here αn is the nth positive root of aJν(r) + brJ ′ν(r), where a, b ∈ R.
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Appendix S

Formulas from Linear Algebra

Kramer’s Rule. Consider the matrix equation

A~x = ~b.

This equation has a unique solution if and only if det(A) 6= 0. If the determinant vanishes then there are either
no solutions or an infinite number of solutions. If the determinant is nonzero, the solution for each xj can be
written

xj =
detAj
detA

where Aj is the matrix formed by replacing the jth column of A with b.

Example S.0.1 The matrix equation (
1 2
3 4

)(
x1

x2

)
=

(
5
6

)
,
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has the solution

x1 =

∣∣∣∣5 2
6 4

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
8

−2
= −4, x2 =

∣∣∣∣1 5
3 6

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
−9

−2
=

9

2
.
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Appendix T

Vector Analysis

Rectangular Coordinates

f = f(x, y, z), ~g = gxi + gyj + gzk

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

∇ · ~g =
∂gx
∂x

+
∂gy
∂y

+
∂gz
∂z

∇× ~g =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

gx gy gz

∣∣∣∣∣∣
∆f = ∇2f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
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Spherical Coordinates

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ

f = f(r, θ, φ), ~g = grr + gθθ + gφφ

Divergence Theorem. ∫∫
∇ · u dx dy =

∮
u · n ds

Stoke’s Theorem. ∫∫
(∇× u) · ds =

∮
u · dr
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Appendix U

Partial Fractions

A proper rational function

p(x)

q(x)
=

p(x)

(x− a)nr(x)

Can be written in the form

p(x)

(x− α)nr(x)
=

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+ (· · · )

where the ak’s are constants and the last ellipses represents the partial fractions expansion of the roots of r(x).
The coefficients are

ak =
1

k!

dk

dxk

(
p(x)

r(x)

) ∣∣∣∣
x=α

.

Example U.0.2 Consider the partial fraction expansion of

1 + x+ x2

(x− 1)3
.
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The expansion has the form

a0

(x− 1)3
+

a1

(x− 1)2
+

a2

x− 1
.

The coefficients are

a0 =
1

0!
(1 + x+ x2)|x=1 = 3,

a1 =
1

1!

d

dx
(1 + x+ x2)|x=1 = (1 + 2x)|x=1 = 3,

a2 =
1

2!

d2

dx2
(1 + x+ x2)|x=1 =

1

2
(2)|x=1 = 1.

Thus we have

1 + x+ x2

(x− 1)3
=

3

(x− 1)3
+

3

(x− 1)2
+

1

x− 1
.

Example U.0.3 Consider the partial fraction expansion of

1 + x+ x2

x2(x− 1)2
.

The expansion has the form

a0

x2
+
a1

x
+

b0

(x− 1)2
+

b1

x− 1
.
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The coefficients are

a0 =
1

0!

(
1 + x+ x2

(x− 1)2

) ∣∣∣∣
x=0

= 1,

a1 =
1

1!

d

dx

(
1 + x+ x2

(x− 1)2

) ∣∣∣∣
x=0

=

(
1 + 2x

(x− 1)2
− 2(1 + x+ x2)

(x− 1)3

) ∣∣∣∣
x=0

= 3,

b0 =
1

0!

(
1 + x+ x2

x2

) ∣∣∣∣
x=1

= 3,

b1 =
1

1!

d

dx

(
1 + x+ x2

x2

) ∣∣∣∣
x=1

=

(
1 + 2x

x2
− 2(1 + x+ x2)

x3

) ∣∣∣∣
x=1

= −3,

Thus we have

1 + x+ x2

x2(x− 1)2
=

1

x2
+

3

x
+

3

(x− 1)2
− 3

x− 1
.

If the rational function has real coefficients and the denominator has complex roots, then you can reduce the
work in finding the partial fraction expansion with the following trick: Let α and α be complex conjugate pairs
of roots of the denominator.

p(x)

(x− α)n(x− α)nr(x)
=

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+

(
a0

(x− α)n
+

a1

(x− α)n−1
+ · · ·+ an−1

x− α

)
+ (· · · )

Thus we don’t have to calculate the coefficients for the root at α. We just take the complex conjugate of the
coefficients for α.

Example U.0.4 Consider the partial fraction expansion of

1 + x

x2 + 1
.
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The expansion has the form

a0

x− i
+

a0

x+ i

The coefficients are

a0 =
1

0!

(
1 + x

x+ i

) ∣∣∣∣
x=i

=
1

2
(1− i),

a0 =
1

2
(1− i) =

1

2
(1 + i)

Thus we have

1 + x

x2 + 1
=

1− i
2(x− i)

+
1 + i

2(x+ i)
.
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Appendix V

Finite Math

Newton’s Binomial Formula.

(a+ b)n =
n∑
k=0

(
k

n

)
an−kbk

= an + nan−1b+
n(n− 1)

2
an−2b2 + · · ·+ nabn−1 + bn,

The binomial coefficients are, (
k

n

)
=

n!

k!(n− k)!
.
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Appendix W

Probability

W.1 Independent Events

Once upon a time I was talking with the father of one of my colleagues at Caltech. He was an educated man.
I think that he had studied Russian literature and language back when he was in college. We were discussing
gambling. He told me that he had a scheme for winning money at the game of 21. I was familiar with counting
cards. Being a mathematician, I was not interested in hearing about conditional probability from a literature
major, but I said nothing and prepared to hear about his particular technique. I was quite surprised with his
“method”: He said that when he was on a winning streak he would bet more and when he was on a losing streak
he would bet less. He conceded that he lost more hands than he won, but since he bet more when he was winning,
he made money in the end.

I respectfully and thoroughly explained to him the concept of an independent event. Also, if one is not counting
cards then each hand in 21 is essentially an independent event. The outcome of the previous hand has no bearing
on the current. Throughout the explanation he nodded his head and agreed with my reasoning. When I was
finished he replied, “Yes, that’s true. But you see, I have a method. When I’m on my winning streak I bet more
and when I’m on my losing streak I bet less.”

I pretended that I understood. I didn’t want to be rude. After all, he had taken the time to explain the
concept of a winning streak to me. And everyone knows that mathematicians often do not easily understand
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practical matters, particularly games of chance.
Never explain mathematics to the layperson.

W.2 Playing the Odds

Years ago in a classroom not so far away, your author was being subjected to a presentation of a lengthy proof.
About five minutes into the lecture, the entire class was hopelessly lost. At the forty-five minute mark the professor
had a combinatorial expression that covered most of a chalk board. From his previous queries the professor knew
that none of the students had a clue what was going on. This pleased him and he had became more animated
as the lecture had progressed. He gestured to the board with a smirk and asked for the value of the expression.
Without a moment’s hesitation, I nonchalantly replied, “zero”. The professor was taken aback. He was clearly
impressed that I was able to evaluate the expression, especially because I had done it in my head and so quickly.
He enquired as to my method. “Probability”, I replied. “Professors often present difficult problems that have
simple, elegant solutions. Zero is the most elegant of numerical answers and thus most likely to be the correct
answer. My second guess would have been one.” The professor was not amused.

Whenever a professor asks the class a question which has a numeric answer, immediately respond, “zero”. If
you are asked about your method, casually say something vague about symmetry. Speak with confidence and give
non-verbal cues that you consider the problem to be elementary. This tactic will usually suffice. It’s quite likely
that some kind of symmetry is involved. And if it isn’t your response will puzzle the professor. They may continue
with the next topic, not wanting to admit that they don’t see the “symmetry” in such an elementary problem. If
they press further, start mumbling to yourself. Pretend that you are lost in thought, perhaps considering some
generalization of the result. They may be a little irked that you are ignoring them, but it’s better than divulging
your true method.
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Appendix X

Economics

There are two important concepts in economics. The first is “Buy low, sell high”, which is self-explanitory. The
second is opportunity cost, the highest valued alternative that must be sacrificed to attain something or otherwise
satisfy a want. I discovered this concept as an undergraduate at Caltech. I was never very in to computer games,
but I found myself randomly playing tetris. Out of the blue I was struck by a revelation: “I could be having sex
right now.” I haven’t played a computer game since.
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Appendix Y

Glossary

Phrases often have different meanings in mathematics than in everyday usage. Here I have collected definitions
of some mathematical terms which might confuse the novice.

beyond the scope of this text Beyond the comprehension of the author.

difficult Essentially impossible. Note that mathematicians never refer to problems they have solved as being
difficult. This would either be boastful, (claiming that you can solve difficult problems), or self-deprecating,
(admitting that you found the problem to be difficult).

interesting This word is grossly overused in math and science. It is often used to describe any work that the
author has done, regardless of the work’s significance or novelty. It may also be used as a synonym for
difficult. It has a completely different meaning when used by the non-mathematician. When I tell people
that I am a mathematician they typically respond with, “That must be interesting.”, which means, “I don’t
know anything about math or what mathematicians do.” I typically answer, “No. Not really.”

non-obvious or non-trivial Real fuckin’ hard.

one can prove that . . . The “one” that proved it was a genius like Gauss. The phrase literally means “you
haven’t got a chance in hell of proving that . . . ”
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simple Mathematicians communicate their prowess to colleagues and students by referring to all problems as
simple or trivial. If you ever become a math professor, introduce every example as being “really quite
trivial.” 1

1For even more fun say it in your best Elmer Fudd accent. “This next pwobwem is weawy quite twiviaw”.
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Index

a + i b form, 158
Abel’s formula, 766
absolute convergence, 423
adjoint

of a differential operator, 773
of operators, 1178

analytic, 304
Analytic continuation

Fourier integrals, 1426
analytic continuation, 356
analytic functions, 2049
anti-derivative, 390
Argand diagram, 154
argument

of a complex number, 155
argument theorem, 411
asymptotic expansions, 1113

integration by parts, 1126
asymptotic relations, 1113
autonomous D.E., 850
average value theorem, 410

Bernoulli equations, 842

Bessel functions, 1501
generating function, 1508
of the first kind, 1507
second kind, 1523

Bessel’s equation, 1501
Bessel’s Inequality, 1160
Bessel’s inequality, 1206
bilinear concomitant, 774
binomial coefficients, 2103
binomial formula, 2103
boundary value problems, 968
branch

principal, 6
branch point, 226
branches, 6

calculus of variations, 1873
canonical forms

constant coefficient equation, 878
of differential equations, 878

cardinality
of a set, 3

Cartesian form, 158
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Cartesian product
of sets, 3

Cauchy convergence, 423
Cauchy principal value, 498, 1424
Cauchy’s inequality, 407
Cauchy-Riemann equations, 310, 2049
clockwise, 204
closed interval, 3
closure relation

and Fourier transform, 1429
discrete sets of functions, 1161

codomain, 4
comparison test, 426
completeness

of sets of functions, 1161
sets of vectors, 24

complex conjugate, 152, 153
complex derivative, 303, 304
complex line integral, 383
complex number, 152

magnitude, 154
modulus, 154

complex numbers, 151
arithmetic, 163
set of, 3
vectors, 163

complex plane, 154
first order differential equations, 661

computer games, 2106
connected region, 203

constant coefficient differential equations, 786
continuity, 42

uniform, 44
continuous

piecewise, 44
continuous functions, 42, 432, 435
contour, 203

traversal of, 204
convergence

absolute, 423
Cauchy, 423
comparison test, 426
in the mean, 1160
integral test, 427
of integrals, 1342
ratio test, 428
root test, 430
sequences, 422
series, 423
uniform, 432

convolution theorem
and Fourier transform, 1431
for Laplace transforms, 1363

convolutions, 1363
counter-clockwise, 204
curve, 203

closed, 203
continuous, 203
Jordan, 204
piecewise smooth, 203
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simple, 203
smooth, 203

definite integral, 106
degree

of a differential equation, 636
del, 137
delta function

Kronecker, 23
derivative

complex, 304
determinant

derivative of, 762
difference

of sets, 4
difference equations

constant coefficient equations, 1035
exact equations, 1029
first order homogeneous, 1030
first order inhomogeneous, 1032

differential calculus, 37
differential equations

autonomous, 850
constant coefficient, 786
degree, 636
equidimensional-in-x, 854
equidimensional-in-y, 856
Euler, 795
exact, 639, 801
first order, 635, 649

homogeneous, 636
homogeneous coefficient, 645
inhomogeneous, 636
linear, 636
order, 635
ordinary, 635
scale-invariant, 859
separable, 643
without explicit dep. on y, 802

differential operator
linear, 758

Dirac delta function, 904, 1162
direction

negative, 204
positive, 204

directional derivative, 138
discontinuous functions, 43, 1202
discrete derivative, 1028
discrete integral, 1028
disjoint sets, 4
domain, 4

economics, 2106
eigenfunctions, 1195
eigenvalue problems, 1195
eigenvalues, 1195
elements

of a set, 2
empty set, 2
entire, 304
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equidimensional differential equations, 795
equidimensional-in-x D.E., 854
equidimensional-in-y D.E., 856
Euler differential equations, 795
Euler’s formula, 159
Euler’s theorem, 645
Euler-Mascheroni constant, 1490
exact differential equations, 801
exact equations, 639
exchanging dep. and indep. var., 848
extremum modulus theorem, 411

Fibonacci sequence, 1040
formally self-adjoint operators, 1179
Fourier coefficients, 1156, 1200

behavior of, 1215
Fourier convolution theorem, 1431
Fourier cosine series, 1210
Fourier cosine transform, 1440

of derivatives, 1442
table of, 2078

Fourier series, 1195
and Fourier transform, 1415
uniform convergence, 1219

Fourier Sine series, 1211
Fourier sine series, 1301
Fourier sine transform, 1441

of derivatives, 1442
table of, 2080

Fourier transform

alternate definitions, 1420
closure relation, 1429
convolution theorem, 1431
of a derivative, 1430
Parseval’s theorem, 1435
shift property, 1436
table of, 2074, 2077

Fredholm alternative theorem, 968
Fredholm equations, 888
Frobenius series

first order differential equation, 666
function

bijective, 5
injective, 5
inverse of, 6
multi-valued, 6
single-valued, 4
surjective, 5

function elements, 356
functional equation, 327
fundamental set of solutions

of a differential equation, 770
fundamental theorem of algebra, 409
fundamental theorem of calculus, 109

gambler’s ruin problem, 1027, 1036
Gamma function, 1484

difference equation, 1484
Euler’s formula, 1484
Gauss’ formula, 1488
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Hankel’s formula, 1486
Weierstrass’ formula, 1490

generating function
for Bessel functions, 1507

geometric series, 425
Gibb’s phenomenon, 1224
gradient, 137
Gramm-Schmidt orthogonalization, 1147
greatest integer function, 5
Green’s formula, 775, 1179

harmonic conjugate, 316
harmonic series, 426, 457
Heaviside function, 655, 904
holomorphic, 304
homogeneous coefficient equations, 645
homogeneous differential equations, 636
homogeneous functions, 645
homogeneous solution, 651
homogeneous solutions

of differential equations, 759

identity map, 4
ill-posed problems, 659

linear differential equations, 768
image

of a mapping, 5
imaginary part, 152
improper integrals, 114
indefinite integral, 100, 390

indicial equation, 1063
infinity

first order differential equation, 671
inhomogeneous differential equations, 636
initial conditions, 653
inner product

of functions, 1152
integers

set of, 2
integral bound

maximum modulus, 386
integral calculus, 100
integral equations, 888

boundary value problems, 888
initial value problems, 888

integrals
improper, 114

integrating factor, 650
integration

techniques of, 111
intermediate value theorem, 44
intersection

of sets, 4
interval

closed, 3
open, 3

inverse function, 6
inverse image, 5
irregular singular points, 1079

first order differential equations, 669
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Jordan curve, 204
Jordan’s lemma, 2050

Kramer’s rule, 2095
Kronecker delta function, 23

L’Hospital’s rule, 64
Lagrange’s identity, 774, 805, 1178
Laplace transform

inverse, 1349
Laplace transform pairs, 1352
Laplace transforms, 1347

convolution theorem, 1363
of derivatives, 1363

Laurent expansions, 491, 2049
Laurent series, 452, 2051

first order differential equation, 665
leading order behavior

for differential equations, 1117
least integer function, 5
least squares fit

Fourier series, 1204
Legendre polynomials, 1149
limit

left and right, 39
limits of functions, 37
line integral, 382

complex, 383
linear differential equations, 636
linear differential operator, 758

linear space, 1141
Liouville’s theorem, 408

magnitude, 154
maximum modulus integral bound, 386
maximum modulus theorem, 411
Mellin inversion formula, 1350
minimum modulus theorem, 411
modulus, 154
multi-valued function, 6

nabla, 137
natural boundary, 356
Newton’s binomial formula, 2103
norm

of functions, 1152
normal form

of differential equations, 881
null vector, 12

one-to-one mapping, 5
open interval, 3
opportunity cost, 2106
optimal asymptotic approximations, 1132
order

of a differential equation, 635
of a set, 3

ordinary points
first order differential equations, 661
of linear differential equations, 1046

orthogonal series, 1155
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orthogonality
weighting functions, 1154

orthonormal, 1152

Parseval’s equality, 1206
Parseval’s theorem

for Fourier transform, 1435
partial derivative, 135
particular solution, 651

of an ODE, 915
particular solutions

of differential equations, 759
periodic extension, 1201
piecewise continuous, 44
point at infinity

differential equations, 1079
polar form, 158
power series

definition of, 436
differentiation of, 443
integration of, 443
radius of convergence, 438
uniformly convergent, 436

principal argument, 155
principal branch, 6
principal root, 168
principal value, 498, 1424
pure imaginary number, 152

range

of a mapping, 5
ratio test, 428
rational numbers

set of, 2
Rayleigh’s quotient, 1297

minimum property, 1297
real numbers

set of, 2
real part, 152
rectangular unit vectors, 13
reduction of order, 803

and the adjoint equation, 804
difference equations, 1038

region
connected, 203
multiply-connected, 203
simply-connected, 203

regular, 304
regular singular points

first order differential equations, 664
regular Sturm-Liouville problems, 1291

properties of, 1300
residuals

of series, 424
residue theorem, 495, 2050

principal values, 507
residues, 491, 2049

of a pole of order n, 491, 2050
Riccati equations, 844
Riemann zeta function, 426
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Riemann-Lebesgue lemma, 1343
root test, 430
Rouche’s theorem, 413

scalar field, 135
scale-invariant D.E., 859
separable equations, 643
sequences

convergence of, 422
series, 422

comparison test, 426
convergence of, 422, 423
geometric, 425
integral test, 427
ratio test, 428
residuals, 424
root test, 430
tail of, 423

set, 2
similarity transformation, 1734
single-valued function, 4
singularity, 320

branch point, 321
Stirling’s approximation, 1492
subset, 3

proper, 3

Taylor series, 446, 2050
first order differential equations, 662
table of, 2066

transformations
of differential equations, 878
of independent variable, 885
to constant coefficient equation, 886
to integral equations, 888

trigonometric identities, 2089

uniform continuity, 44
uniform convergence, 432

of Fourier series, 1219
of integrals, 1342

union
of sets, 3

variation of parameters
first order equation, 651

vector
components of, 13
rectangular unit, 13

vector calculus, 134
vector field, 135
vector-valued functions, 134
Volterra equations, 888

wave equation
D’Alembert’s solution, 1776
Fourier transform solution, 1776
Laplace transform solution, 1777

Weber’s function, 1523
Weierstrass M-test, 433
well-posed problems, 659
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linear differential equations, 768
Wronskian, 763, 764

zero vector, 12
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