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Anti-Copyright @ 1995-2000 by Mauch Publishing Company, un-Incorporated.

No rights reserved. Any part of this publication by be reproduced, stored in a retrieval system, transmitted or
desecrated without permission.

22



Chapter 2

Preface

During the summer before my final undergraduate year at Caltech I set out to write a math text unlike any
other, namely, one written by me. In that respect I have succeeded beautifully. Unfortunately, the text is neither
complete nor polished. I have a “Warnings and Disclaimers” section below that is a little amusing, and an
appendix on probability that I feel concisesly captures the essence of the subject. However, all the material in
between is in some stage of development. I am currently working to improve and expand this text.

This text is freely available from my web set. Currently I'm at http://www.its.caltech.edu/ sean. I post
new versions a couple of times a year.

2.1 Advice to Teachers

If you have something worth saying, write it down.

2.2 Acknowledgments

I would like to thank Professor Saffman for advising me on this project and the Caltech SURF program for
providing the funding for me to write the first edition of this book.
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2.3 Warnings and Disclaimers

This book is a work in progress. It contains quite a few mistakes and typos. I would greatly appreciate
your constructive criticism. You can reach me at ‘sean@its.caltech.edu’.

Reading this book impairs your ability to drive a car or operate machinery.
This book has been found to cause drowsiness in laboratory animals.

This book contains twenty-three times the US RDA of fiber.

Caution: FLAMMABLE - Do not read while smoking or near a fire.

If infection, rash, or irritation develops, discontinue use and consult a physician.

Warning: For external use only. Use only as directed. Intentional misuse by deliberately concentrating
contents can be harmful or fatal. KEEP OUT OF REACH OF CHILDREN.

In the unlikely event of a water landing do not use this book as a flotation device.
The material in this text is fiction; any resemblance to real theorems, living or dead, is purely coincidental.
This is by far the most amusing section of this book.

Finding the typos and mistakes in this book is left as an exercise for the reader. (Eye ewes a spelling
chequer from thyme too thyme, sew their should knot bee two many misspellings. Though I ain’t so sure
the grammar’s too good.)

The theorems and methods in this text are subject to change without notice.

This is a chain book. If you do not make seven copies and distribute them to your friends within ten days
of obtaining this text you will suffer great misfortune and other nastiness.

The surgeon general has determined that excessive studying is detrimental to your social life.
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e This text has been buffered for your protection and ribbed for your pleasure.

e Stop reading this rubbish and get back to work!

2.4 Suggested Use

This text is well suited to the student, professional or lay-person. It makes a superb gift. This text has a boquet
that is light and fruity, with some earthy undertones. It is ideal with dinner or as an apertif. Bon apetit!

2.5 About the Title

The title is only making light of naming conventions in the sciences and is not an insult to engineers. If you want to
find a good math text to learn a subject, look for books with “Introduction” and “Elementary” in the title. If it is
an “Intermediate” text it will be incomprehensible. If it is “Advanced” then not only will it be incomprehensible,
it will have low production qualities, i.e. a crappy typewriter font, no graphics and no examples. There is an
exception to this rule when the title also contains the word “Scientists” or “Engineers”. Then an advanced book
may be quite suitable for actually learning the material.
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Chapter 3

Sets and Functions

3.1 Sets

Definition. A set is a collection of objects. We call the objects, elements. A set is denoted by listing the
elements between braces. For example: {e,i,7,1}. We use ellipses to indicate patterns. The set of positive
integers is {1,2,3,...}. We also denote a sets with the notation {x|conditions on x} for sets that are more easily
described than enumerated. This is read as “the set of elements x such that x satisfies ... 7. x € S is the notation
for “x is an element of the set S.” To express the opposite we have x & S for “x is not an element of the set S.”

Examples. We have notations for denoting some of the commonly encountered sets.
e () ={} is the empty set, the set containing no elements.
o Z={...,-1,0,1...} is the set of integers. (Z is for “Zahlen”, the German word for “number”.)
e Q={p/qlp,q € Z,q # 0} is the set of rational numbers. (Q is for quotient.)

o R={z|z =ajas---a,.biby---} is the set of real numbers, i.e. the set of numbers with decimal expansions.



e C={a+ibla,b € R,i> = —1} is the set of complex numbers. i is the square root of —1. (If you haven’t
seen complex numbers before, don’t dismay. We’ll cover them later.)

e Z*, Q@ and R* are the sets of positive integers, rationals and reals, respectively. For example, ZT =
{1,2,3,...}.

o 7%, Q" and R are the sets of non-negative integers, rationals and reals, respectively. For example,
7t ={0,1,2,...}.

e (a...b) denotes an open interval on the real axis. (a...b) = {z|r € R,a < x < b}

e We use brackets to denote the closed interval. [a...b] = {z|z € R,a <z < b}

The cardinality or order of a set S is denoted |S|. For finite sets, the cardinality is the number of elements
in the set. The Cartesian product of two sets is the set of ordered pairs:

X xY ={(z,y)|lr e X,y Y}
The Cartesian product of n sets is the set of ordered n-tuples:

X; X Xog X -+ X X,y ={(21,22,... ,2,)|71 € X1,20 € Xo,... 2, € X, }

Equality. Two sets S and T are equal if each element of S is an element of 7" and vice versa. This is denoted,
S =T. Inequality is S # T, of course. S is a subset of T, S C T, if every element of S is an element of T'. S is
a proper subset of T, S C T,if S C T and S # T. For example: The empty set is a subset of every set, ) C S.
The rational numbers are a proper subset of the real numbers, Q C R.

Operations. The union of two sets, S UT, is the set whose elements are in either of the two sets. The union
of n sets,

;L:lSjESlUSQU"'USn



is the set whose elements are in any of the sets S;. The intersection of two sets, SN T, is the set whose elements
are in both of the two sets. In other words, the intersection of two sets in the set of elements that the two sets
have in common. The intersection of n sets,

ﬂ?ZIS]EslﬂSQQQSn

is the set whose elements are in all of the sets S;. If two sets have no elements in common, SN 7T = (), then the
sets are disjoint. If T C S, then the difference between S and T, S\ T, is the set of elements in S which are not
inT.

S\T ={z|x € S,z ¢ T}

The difference of sets is also denoted S — T'.

Properties. The following properties are easily verified from the above definitions.
e SUD=S5,5N0=0,S\0=25,5\5=0.
e Commutative. SUT =TUS, SNT=TnN§S.
e Associative. (SUT)UU =SU(TUU)=SUTUU,(SNT)NU=SN(TNU)=SNTNU.
e Distributive. SU(TNU)=(SUT)N(SUU), SN(TUU)=(SNT)u(SNU).

3.2 Single Valued Functions

Single-Valued Functions. A single-valued function or single-valued mapping is a mapping of the elements

x € X into elements y € Y. This is expressed notationally as f : X — Y or X Ly, 1f such a function is
well-defined, then for each x € X there exists a unique element of y such that f(x) =y. The set X is the domain
of the function, Y is the codomain, (not to be confused with the range, which we introduce shortly). To denote
the value of a function on a particular element we can use any of the notations: f(x) =y, f : x — y or simply
x +— y. fis the identity map on X if f(z) =z for all z € X.



Let f: X — Y. The range or image of f is
f(X) =A{yly = f(z) for some z € X}.
The range is a subset of the codomain. For each Z C Y, the wnverse image of Z is defined:

f1(Z) = {x € X|f(x) = z for some z € Z}.

Examples.

e Finite polynomials and the exponential function are examples of single valued functions which map real
numbers to real numbers.

e The greatest integer function, |-|, is a mapping from R to Z. |z| in the greatest integer less than or equal
to x. Likewise, the least integer function, [x], is the least integer greater than or equal to .

The -jectives. A function is injective if for each x; # xo, f(x1) # f(z2). In other words, for each x in the
domain there is a unique y = f(z) in the range. f is surjective if for each y in the codomain, there is an x such
that y = f(z). If a function is both injective and surjective, then it is bijective. A bijective function is also called
a one-to-one mapping.

Examples.

e The exponential function y = €* is a bijective function, (one-to-one mapping), that maps R to R*. (R is
the set of real numbers; R™ is the set of positive real numbers.)

e f(x) = 2? is a bijection from R* to R*. f is not injective from R to R*. For each positive y in the range,

there are two values of = such that y = 2.

e f(x)=sinz is not injective from R to [—1..1]. For each y € [—1, 1] there exists an infinite number of values
of z such that y = sinz.



Injective Surjective Bijective

Figure 3.1: Depictions of Injective, Surjective and Bijective Functions

3.3 Inverses and Multi-Valued Functions

If y = f(x), then we can write z = f~!(y) where f~! is the inverse of f. If y = f(z) is a one-to-one function,
then f~!(y) is also a one-to-one function. In this case, x = f~!(f(z)) = f(f~(z)) for values of x where both
f(x) and f~*(z) are defined. For example logz, which maps R* to R is the inverse of e*. z = €% = log(e®)
for all x € RT. (Note the x € RT ensures that log z is defined.)

If y = f(x) is a many-to-one function, then z = f~!(y) is a one-to-many function. f~!(y) is a multi-valued
function. We have x = f(f~!(x)) for values of x where f~!(z) is defined, however z # f~'(f(x)). There are
diagrams showing one-to-one, many-to-one and one-to-many functions in Figure 3.2.

2 a many-to-one function has the inverse z = y'/2. For each positive y, there are two

12y = 2% and y = 2'/? are graphed in Figure 3.3.

Example 3.3.1 y =z
values of x such that z =y

We say that there are two branches of y = x'/2: the positive and the negative branch. We denote the positive
branch as y = 1/z; the negative branch is y = —/z. We call \/z the principal branch of #'/2. Note that \/z
is a one-to-one function. Finally, z = (2'/2)? since (£/7)? = z, but = # (22)'/? since (22)V/? = +x. y = /7 is



one-to-one many-to-one one-to-many

domain range domain range domain range

Figure 3.2: Diagrams of One-To-One, Many-To-One and One-To-Many Functions

NP
N

Figure 3.3: y = 22 and y = z!/?

graphed in Figure 3.4.

Figure 3.4: y = /x



Now consider the many-to-one function y = sinz. The inverse is x = arcsiny. For each y € [—1,1] there are
an infinite number of values x such that x = arcsiny. In Figure 3.5 is a graph of y = sinz and a graph of a few

branches of y = arcsin z.

Figure 3.5: y = sinx and y = arcsinx

Example 3.3.2 arcsinx has an infinite number of branches. We will denote the principal branch by Arcsinx

which maps [—1,1] to [—%,%]. Note that z = sin(arcsinz), but « # arcsin(sinz). y = Arcsinz in Figure 3.6.

Figure 3.6: y = Arcsinzx

3 3

Example 3.3.3 Consider 1'/3. Since 2° is a one-to-one function, 2'/3 is a single-valued function. (See Figure 3.7.)

173 =1.



s

Figure 3.7: y = 2% and y = 2'/3

Example 3.3.4 Consider arccos(1/2). cosz and a few branches of arccos x are graphed in Figure 3.8. cosx = 1/2

VA=
VIV ==

Figure 3.8: y = cosz and y = arccosx

has the two solutions # = £7/3 in the range = € [—m, w]. Since cos(z 4+ 7) = — cos z,

arccos(1/2) = {xn/3 + nr}.

3.4 Transforming Equations

We must take care in applying functions to equations. It is always safe to apply a one-to-one function to an
equation, (provided it is defined for that domain). For example, we can apply y = x3 or y = ¢ to the equation
x = 1. The equations 2® = 1 and e® = e have the unique solution z = 1.



If we apply a many-to-one function to an equation, we may introduce spurious solutions. Applying y = 22 and

y = sinz to the equation x = % results in z* = %2 and sinx = 1. The former equation has the two solutions

xr = £7; the latter has the infinite number of solutions x = 7 + 2nm, n € Z.

We do not generally apply a one-to-many function to both sides of an equation as this rarely is useful. Consider
the equation

sinx = 1.
Applying the function f(x) = 2'/2 to the equation would not get us anywhere
(sinz)'/% = 11/2,

Since (sin?z)'/? # sinx, we cannot simplify the left side of the equation. Instead we could use the definition of

f(z) = 2'/% as the inverse of the x? function to obtain
sinz = 1'/2 = £1.
Then we could use the definition of arcsin as the inverse of sin to get
x = arcsin(=£1).
x = arcsin(1) has the solutions z = 7/2 + 2n7 and x = arcsin(—1) has the solutions © = —7/2 + 2n7. Thus

x:g+n7r, n € 7.

Note that we cannot just apply arcsin to both sides of the equation as arcsin(sinz) # x.
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Chapter 4

Vectors

4.1 Vectors

4.1.1 Scalars and Vectors

A wvector is a quantity having both a magnitude and a direction. Examples of vector quantities are velocity, force

and position. One can represent a vector in n-dimensional space with an arrow whose initial point is at the origin,

(Figure 4.1). The magnitude is the length of the vector. Typographically, variables representing vectors are often

written in capital letters, bold face or with a vector over-line, A, a,d. The magnitude of a vector is denoted |a|.
A scalar has only a magnitude. Examples of scalar quantities are mass, time and speed.

Vector Algebra. Two vectors are equal if they have the same magnitude and direction. The negative of a
vector, denoted —a, is a vector of the same magnitude as a but in the opposite direction. We add two vectors a
and b by placing the tail of b at the head of a and defining a + b to be the vector with tail at the origin and
head at the head of b. (See Figure 4.2.)

The difference, a — b, is defined as the sum of a and the negative of b, a + (—b). The result of multiplying
a by a scalar « is a vector of magnitude |« |a] with the same/opposite direction if « is positive/negative. (See
Figure 4.2.)

11



Figure 4.1: Graphical Representation of a Vector in Three Dimensions

b 2a

a
a
b ‘

Figure 4.2: Vector Arithmetic

Here are the properties of adding vectors and multiplying them by a scalar. They are evident from geometric
considerations.

a+b=b+a aa = ao commutative laws
(a+b)+c=a+(b+c) a(fa)=(af)a associative laws
ala+b)=ca+ab (a+ f)a=aa+ fa distributive laws

12



Zero and Unit Vectors. The additive identity element for vectors is the zero vector or null vector. This is a
vector of magnitude zero which is denoted as 0. A wunit vector is a vector of magnitude one. If a is nonzero then
a/|a| is a unit vector in the direction of a. Unit vectors are often denoted with a caret over-line, n.

Rectangular Unit Vectors. In n dimensional Cartesian space, R", the unit vectors in the directions of the
coordinates axes are ey, ...e,. These are called the rectangular unit vectors. To cut down on subscripts, the unit
vectors in three dimensional space are often denoted with i, j and k. (Figure 4.3).

Figure 4.3: Rectangular Unit Vectors

Components of a Vector. Consider a vector a with tail at the origin and head having the Cartesian coordinates
(ay,...,a,). We can represent this vector as the sum of n rectangular component vectors, a = aje; + - - - + aye,.
(See Figure 4.4.) Another notation for the vector a is (ay, ... ,a,). By the Pythagorean theorem, the magnitude

of the vector a is |a| = \/a} + - -- + a2.

13
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Figure 4.4: Components of a Vector

4.1.2 The Kronecker Delta and Einstein Summation Convention

The Kronecker Delta tensor is defined

1 ife=7y,
0ij = e )
0 ifi#j.
This notation will be useful in our work with vectors.

Consider writing a vector in terms of its rectangular components. Instead of using ellipses: a = a,e;+- - -+a,e,,
we could write the expression as a sum: a = > a;e;. We can shorten this notation by leaving out the sum:
a = a;e;, where it is understood that whenever an index is repeated in a term we sum over that index from 1 to
n. This is the Finstein summation convention. A repeated index is called a summation index or a dummy indez.
Other indices can take any value from 1 to n and are called free indices.

14



Example 4.1.1 Consider the matrix equation: A -x =b. We can write out the matrix and vectors explicitly.

@11 -+ QAin X by

Ap1 -+ Qpp T bn
This takes much less space when we use the summation convention.
aijmj = bz

Here j is a summation index and i is a free index.

4.1.3 The Dot and Cross Product

Dot Product. The dot product or scalar product of two vectors is defined,
a-b = |a||b|cos¥,
where 6 is the angle from a to b. From this definition one can derive the following properties:
e a-b =b:a, commutative.
e a(a-b) = (wca) b =a- (ab), associativity of scalar multiplication.
e a-(b+c)=a-b+a-c, distributive.
e e;e; = J;;. In three dimension, this is

i-i=j-j=k-k=1, i-j=j-k=k-i=0.

a-b=ab; =ab+---+ ayb,, dot product in terms of rectangular components.

If a-b =0 then either a and b are orthogonal, (perpendicular), or one of a and b are zero.

15



The Angle Between Two Vectors. We can use the dot product to find the angle between two vectors, a and
b. From the definition of the dot product,

a-b = |a||b|cosé.

0 accos(a'b)
= ar .
|al|b|

Example 4.1.2 What is the angle between i and i+ j?

6 = arccos (ﬂ)

Jifli+ j|

If the vectors are nonzero, then

T
1

Parametric Equation of a Line. Consider a line that passes through the point a and is parallel to the vector
t, (tangent). A parametric equation of the line is

x=a+ut, wuecR.

Implicit Equation of a Line. Consider a line that passes through the point a and is normal, (orthogonal,
perpendicular), to the vector n. All the lines that are normal to n have the property that x - n is a constant,
where x is any point on the line. (See Figure 4.5.) x-n = 0 is the line that is normal to n and passes through
the origin. The line that is normal to n and passes through the point a is

X-n=a-n.

16



wn=1 Xen=an

X-n=0

X-n=-1

Figure 4.5: Equation for a Line

The normal to a line determines an orientation of the line. The normal points in the direction that is above
the line. A point b is (above/on/below) the line if (b — a) - n is (positive/zero/negative). The signed distance of
a point b from the line x-n=a-nis

Implicit Equation of a Hyperplane. A hyperplane in R™ is an n — 1 dimensional “sheet” which passes
through a given point and is normal to a given direction. In R?® we call this a plane. Consider a hyperplane that
passes through the point a and is normal to the vector n. All the hyperplanes that are normal to n have the
property that x - n is a constant, where x is any point in the hyperplane. x-n = 0 is the hyperplane that is
normal to n and passes through the origin. The hyperplane that is normal to n and passes through the point a is

X-n=a-n.
The normal determines an orientation of the hyperplane. The normal points in the direction that is above the

hyperplane. A point b is (above/on/below) the hyperplane if (b — a) - n is (positive/zero/negative). The signed
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distance of a point b from the hyperplane x -n =a-n is

(b—a)-%.

Right and Left-Handed Coordinate Systems. Consider a rectangular coordinate system in two dimensions.
Angles are measured from the positive x axis in the direction of the positive y axis. There are two ways of labeling
the axes. (See Figure 4.6.) In one the angle increases in the counterclockwise direction and in the other the angle
increases in the clockwise direction. The former is the familiar Cartesian coordinate system.

Yy X

A A

Figure 4.6: There are Two Ways of Labeling the Axes in Two Dimensions.

There are also two ways of labeling the axes in a three-dimensional rectangular coordinate system. These are
called right-handed and left-handed coordinate systems. See Figure 4.7. Any other labelling of the axes could be
rotated into one of these configurations. The right-handed system is the one that is used by default. If you put
your right thumb in the direction of the z axis in a right-handed coordinate system, then your fingers curl in the
direction from the x axis to the y axis.

Cross Product. The cross product or vector product is defined,
a x b = |a||b|sinf n,

where # is the angle from a to b and n is a unit vector that is orthogonal to a and b and in the direction such
that a, b and n form a right-handed system.
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Figure 4.7: Right and Left Handed Coordinate Systems

You can visualize the direction of a x b by applying the right hand rule. Curl the fingers of your right hand
in the direction from a to b. Your thumb points in the direction of a x b. Warning: Unless you are a lefty, get
in the habit of putting down your pencil before applying the right hand rule.

The dot and cross products behave a little differently. First note that unlike the dot product, the cross product
is not commutative. The magnitudes of a x b and b x a are the same, but their directions are opposite. (See
Figure 4.8.)

Let

ax b =|a|]|b|sinf n and b x a= |b||a|sin¢ m.
The angle from a to b is the same as the angle from b to a. Since {a,b,n} and {b,a, m} are right-handed systems,

m points in the opposite direction as n. Since a x b = —b x a we say that the cross product is anti-commutative.

Next we note that since
la x b| = |a||b]|sin 6,

the magnitude of a x b is the area of the parallelogram defined by the two vectors. (See Figure 4.9.) The area of
the triangle defined by two vectors is then 1|a x bl.
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axb

bxa

Figure 4.8: The Cross Product is Anti-Commutative.

b b
bsing

a a

Figure 4.9: The Parallelogram and the Triangle Defined by Two Vectors

From the definition of the cross product, one can derive the following properties:
e a X b= —b x a, anti-commutative.

e a(axb)=(aa) x b=a x (ab), associativity of scalar multiplication.

ax (b+c)=axb+a xc, distributive.

(axb) xc#ax(bxc). The cross product is not associative.

eixi=jxj=kxk=0.
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eixj=k jxk=1ikxi=j.

[ ]
i j k
axb= (agbg — ngg)i -+ (a361 — &1b3)j + (Glbg — agbl)k = (a1 ag as|,
b1 by b3

cross product in terms of rectangular components.
e If a-b = 0 then either a and b are parallel or one of a or b is zero.
Scalar Triple Product. Consider the volume of the parallelopiped defined by three vectors. (See Figure 4.10.)

The area of the base is ||b||c|sin 8|, where 6 is the angle between b and c. The height is |a| cos ¢, where ¢ is the
angle between b x ¢ and a. Thus the volume of the parallelopiped is |a||b||c| sin 8 cos ¢.

Figure 4.10: The Parallelopiped Defined by Three Vectors

Note that

la- (b xc)|=|a-(|bllc|sinf n)|
= ||a||bl|c| sin @ cos ¢| .
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Thus |a- (b x c¢)| is the volume of the parallelopiped. a - (b X c¢) is the volume or the negative of the volume
depending on whether {a, b, c} is a right or left-handed system.
Note that parentheses are unnecessary in a-b x c. There is only one way to interpret the expression. If you did

the dot product first then you would be left with the cross product of a scalar and a vector which is meaningless.
a-b x cis called the scalar triple product.

Plane Defined by Three Points. Three points which are not collinear define a plane. Consider a plane that
passes through the three points a, b and c. One way of expressing that the point x lies in the plane is that the
vectors x —a, b —a and ¢ — a are coplanar. (See Figure 4.11.) If the vectors are coplanar, then the parallelopiped
defined by these three vectors will have zero volume. We can express this in an equation using the scalar triple
product,

(x—a)-(b—a)x (c—a)=0.

Figure 4.11: Three Points Define a Plane.
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4.2 Sets of Vectors in n Dimensions

Orthogonality. Consider two n-dimensional vectors

X:(Ihx%"' 7xn)7 y:(y17y27"' 7yn)

The inner product of these vectors can be defined
(xly)=x-y= szyz
i=1

The vectors are orthogonal if x-y = 0. The norm of a vector is the length of the vector generalized to n dimensions.
x| = V&%
Consider a set of vectors
{x1,X2,... ,Xn}
If each pair of vectors in the set is orthogonal, then the set is orthogonal.
X, -x;=0 ifi#j

If in addition each vector in the set has norm 1, then the set is orthonormal.

1 ifi=j
XiXj = 0;5 = ey
0 if i # j

Here 0;; is known as the Kronecker delta function.
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Completeness. A set of n, n-dimensional vectors

{XlaX27 C ,Xn}

is complete if any n-dimensional vector can be written as a linear combination of the vectors in the set. That is,
any vector y can be written

n
Yy = E CiX;.
i=1

Taking the inner product of each side of this equation with x,,,

Y Xm = <i6ixi> *Xm

=1

n
= E CiX; * Xm
i=1

= CmXm * Xm
ey = T Xm
o xml?
Thus y has the expansion
Yy X Xz
= AT

If in addition the set is orthonormal, then
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4.3 Exercises

The Dot and Cross Product

Exercise 4.1
Prove the distributive law for the dot product,

a-(b+c)=a-b+a-c.

Exercise 4.2
Prove that

a-b=ab; =a1by +---+ a,b,.

Exercise 4.3
What is the angle between the vectors i + j and i+ 3j7

Exercise 4.4
Prove the distributive law for the cross product,

ax(b+c)=axb+axb.

Exercise 4.5

Show that
i j k
axb=|a; ay as
by by b3
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Exercise 4.6
What is the area of the quadrilateral with vertices at (1,1), (4,2), (3,7) and (2, 3)?

Exercise 4.7
What is the volume of the tetrahedron with vertices at (1,1,0), (3,2,1), (2,4,1) and (1,2,5)?

Exercise 4.8
What is the equation of the plane that passes through the points (1,2,3), (2,3,1) and (3,1,2)? What is the
distance from the point (2,3,5) to the plane?
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4.4 Hints

The Dot and Cross Product

Hint 4.1
First prove the distributive law when the first vector is of unit length,

n-(b+c)=n-b+n-c.

Then all the quantities in the equation are projections onto the unit vector n and you can use geometry.

Hint 4.2
First prove that the dot product of a rectangular unit vector with itself is one and the dot product of two distinct
rectangular unit vectors is zero. Then write a and b in rectangular components and use the distributive law.

Hint 4.3
Use a - b = |a||b]| cos 6.

Hint 4.4
First consider the case that both b and c are orthogonal to a. Prove the distributive law in this case from
geometric considerations.

Next consider two arbitrary vectors a and b. We can write b = b, + b where b, is orthogonal to a and b
is parallel to a. Show that

axb=axb,.

Finally prove the distributive law for arbitrary b and c.

Hint 4.5
Write the vectors in their rectangular components and use,

ixj=k, jxk=i, kxi=j,
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and,

ixi=jxj=kxk=0.

Hint 4.6
The quadrilateral is composed of two triangles. The area of a triangle defined by the two vectors a and b is
1

Hint 4.7

Justify that the area of a tetrahedron determined by three vectors is one sixth the area of the parallelogram
determined by those three vectors. The area of a parallelogram determined by three vectors is the magnitude of
the scalar triple product of the vectors: a-b x c.

Hint 4.8
The equation of a line that is orthogonal to a and passes through the point b is a-x = a - b. The distance of a
point ¢ from the plane is
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4.5 Solutions

The Dot and Cross Product

Solution 4.1
First we prove the distributive law when the first vector is of unit length, i.e.,

n-(b+c)=n-b+n-c. (4.1)

From Figure 4.12 we see that the projection of the vector b 4 ¢ onto n is equal to the sum of the projections b-n
and c - n.

o,
=

n-(b+c)

Figure 4.12: The Distributive Law for the Dot Product

Now we extend the result to the case when the first vector has arbitrary length. We define a = |ajn and
multiply Equation 4.1 by the scalar, |a].

lan-(b+c)=lan-b+|ajn-c

a-(b+c)=a-b+a-c
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Solution 4.2
First note that

e, e = |eZ||eZ| COS(O) = 1.

Then note that that dot product of any two distinct rectangular unit vectors is zero because they are orthogonal.
Now we write a and b in terms of their rectangular components and use the distributive law.

a-b= a;e; - bjej
= aibjei . ej
= aibjéij

= a;b;

Solution 4.3
Since a - b = |a||b| cos 8, we have

when a and b are nonzero.

H—arccos<a.b)
|al|b|
(i) (i+3)

4 2
6 = arccos ( — - ) = arccos (7> = arccos ﬁ ~ (0.463648
li+jl[i+ 3j| V2v/10 5

Solution 4.4

First consider the case that both b and c are orthogonal to a. b + ¢ is the diagonal of the parallelogram defined
by b and c, (see Figure 4.13). Since a is orthogonal to each of these vectors, taking the cross product of a with
these vectors has the effect of rotating the vectors through /2 radians about a and multiplying their length by
lal. Note that a x (b + c) is the diagonal of the parallelogram defined by a x b and a x c¢. Thus we see that the
distributive law holds when a is orthogonal to both b and c,

ax(b+c)=axb+axc.
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ax(b+c)

Figure 4.13: The Distributive Law for the Cross Product

Now consider two arbitrary vectors a and b. We can write b = b, + b; where b, is orthogonal to a and by
is parallel to a, (see Figure 4.14).

a

b\b

]

b

Figure 4.14: The Vector b Written as a Sum of Components Orthogonal and Parallel to a
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By the definition of the cross product,
a x b = |a||b|sinf n.
Note that
[b.| = [b|sinb,
and that a x b, is a vector in the same direction as a x b. Thus we see that

a x b = |a||b|sinf n
= |a|(siné|b|)n
= [a|[bL|n = [a|[b_|sin(7/2)n

axb=axb,.
Now we are prepared to prove the distributive law for arbitrary b and c.

ax(b+c)=ax (b, +bj+c+c)
=ax((b+c).+(b+c))
=ax((b+c)L)
=axb;,+axc,
=axb+4+axc

ax(b+c)=axb+axc

Solution 4.5
We know that

ixj=k, jxk=1i, kxi=j,
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and that
ixi=jxj=kxk=0.

Now we write a and b in terms of their rectangular components and use the distributive law to expand the cross
product.

ax b= (a1i+ asj+ ask) x (bii + baj + b3k)
= ayi X (byi + boj + bsk) + asj x (b1i + boj + bsk) + ask x (b1i + boj + b3k)
= a1bok + a1b3(—j) + azb1(—K) + asbsi + azbij + aszby(—1i)
= (agbs — azby)i — (a1bs — azby)j + (a1bs — azby )k

Next we evaluate the determinant.

al (;J] Cl; _iCL2 as _.CL1 as +ka1 (05}
Lom2 U807 My by by bs by by
b1 by b3

= (CLng — (J,ng)i — (a1b3 — a3b1>j + (Cllbg - ale)k

Thus we see that,

i j k
axb=|a ay as
by by b3

Solution 4.6

The area area of the quadrilateral is the area of two triangles. The first triangle is defined by the vector from
(1,1) to (4,2) and the vector from (1,1) to (2,3). The second triangle is defined by the vector from (3,7) to (4,2)
and the vector from (3,7) to (2,3). (See Figure 4.15.) The area of a triangle defined by the two vectors a and b
is £]a - b|. The area of the quadrilateral is then,

S1(31+3) - G4 20)| 4 51— 50) - (i — 41)] = 5(5) + 5(19) = 12
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y @)

(23)
(4.2)

1, X

Figure 4.15: Quadrilateral

Solution 4.7

The tetrahedron is determined by the three vectors with tail at (1,1,0) and heads at (3,2,1), (2,4,1) and
(1,2,5). These are (2,1,1), (1,3,1) and (0,1,5). The area of the tetrahedron is one sixth the area of the
parallelogram determined by these vectors. (This is because the area of a pyramid is % (base)(height). The base

of the tetrahedron is half the area of the parallelogram and the heights are the same. %% = % ) Thus the area of
a tetrahedron determined by three vectors is %\a b x c|. The area of the tetrahedron is

1 1
Sl 10 (1,3,1) % (12,5 = £ 2,1,1) - (13,4, - 1) =

Solution 4.8
The two vectors with tails at (1,2, 3) and heads at (2,3,1) and (3,1, 2) are parallel to the plane. Taking the cross
product of these two vectors gives us a vector that is orthogonal to the plane.

(1,1,-2) x (2,—1,-1) = (-3, -3, -3)

We see that the plane is orthogonal to the vector (1,1,1) and passes through the point (1,2,3). The equation of
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the plane is

(1,1,1) - (z,y,z) = (1,1,1) - (1,2,3),

r+y+z=0.

Consider the vector with tail at (1,2,3) and head at (2,3,5). The magnitude of the dot product of this vector
with the unit normal vector gives the distance from the plane.

1. LLD |44V

(LLDIT v3 3
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Part 11

Calculus
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Chapter 5

Differential Calculus

5.1 Limits of Functions

Definition of a Limit. If the value of the function y(z) gets arbitrarily close to n as x approaches the point &,
then wee say that the limit of the function as x approaches ¢ is equal to 7. This is written:

limy(z) =n

r—E

To make the notion of “arbitrarily close” precise: for any € > 0 there exists a 6 > 0 such that |y(z) — n| < € for
all 0 < |z —&| < 6. That is, there is an interval surrounding the point x = £ for which the function is within
e of n. See Figure 5.1. Note that the interval surrounding x = ¢ is a deleted neighborhood, that is it does not
contain the point x = £. Thus the value function at = ¢ need not be equal to 7 for the limit to exist. Indeed
the function need not even be defined at = = &.

To prove that a function has a limit at a point £ we first bound |y(z) — 7| in terms of ¢ for values of x satisfying
0 < |z —&| < d. Denote this upper bound by w(d). Then for an arbitrary € > 0, we determine a § > 0 such that
the the upper bound u(d) and hence |y(x) — 7| is less than e.
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n+e

n-e¢
/ - X

= [ &8 &
)

Figure 5.1: The ¢ neighborhood of z = £ such that |y(z) — n| < e.

Example 5.1.1 Show that

lim 22 = 1.
r—1

Consider any € > 0. We need to show that there exists a ¢ > 0 such that |22 — 1] < € for all |z — 1] < J. First we
obtain a bound on |z? — 1.

|2 = 1] =[(z = 1)(z + 1)
= |z — 1||z + 1]
< dlz + 1]
=0|(z — 1)+ 2|
<(6+2)

Now we choose a positive ¢ such that,
5(d+2)=e
We see that

d=vV1+e—1,
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is positive and satisfies the criterion that |z — 1] < € for all 0 < |z — 1| < d. Thus the limit exists.
Note that the value of the function y(£) need not be equal to lim,_.¢ y(z). This is illustrated in Example 5.1.2.

Example 5.1.2 Consider the function

1 forxeZ,
y(x) =
0 forx ¢ Z.

For what values of ¢ does lim,_.¢ y(x) exist?

First consider £ ¢ Z. Then there exists an open neighborhood a < £ < b around ¢ such that y(x) is identically
zero for x € (a,b). Then trivially, lim, . y(z) = 0.

Now consider ¢ € Z. Consider any € > 0. Then if |z — £| < 1 then |y(z) — 0] = 0 < e. Thus we see that
lim, ¢ y(x) = 0.

Thus, regardless of the value of £, lim, .. y(x) = 0.

Left and Right Limits. With the notation lim, ¢+ y(z) we denote the right limit of y(z). This is the limit
as x approaches ¢ from above. Mathematically: lim,_+ exists if for any € > 0 there exists a § > 0 such that
ly(z) —n| < eforall 0 < —x <. The left limit lim, .- y(z) is defined analogously.

Example 5.1.3 Consider the function, SE‘”, defined for = # 0. (See Figure 5.2.) The left and right limits exist
as x approaches zero.

. sinzx . sinz
lim =1, lim =-1
e—0t |z e—0- ||
However the limit,
. sinx
lim ——,
% Tal

does not exist.
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Figure 5.2: Plot of sin(z)/|x|.

Properties of Limits. Let lim, .. u(x) and lim,_. v(z) exist.
o lim, ¢ (au(z) + bv(x)) = alim, ¢ u(z) + blim, ¢ v(z).
o lim, ¢ (u(z)v(x)) = (lim,—¢ u(z)) (lim,—¢ v(x)).

o lim, ., <M> = w if lim,_.¢ v(z) # 0.

v(x) lim, ¢ v(z
Example 5.1.4 Prove that if lim, ¢ u(z) = p and lim,_.¢ v(z) = v exist then

lim (u(z)v(z)) = (limu(x)) (hmv(m)) .

T—E T—E T—¢
Assume that p and v are nonzero. (The cases where one or both are zero are similar and simpler.)
ju(e)o(e) — | = fuw = (u+ g — )y
— Ju(v — )+ (u— p)v]
= [ullv = v+ |u— pllv]
A sufficient condition for |u(z)v(z) — pr| < € is

€ €

lu — | < and |v—v| < ——.
2lv] 2 (11 + 557
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Since the two right sides of the inequalities are positive, there exists 9; > 0 and do > 0 such that the first inequality
is satisfied for all |x — | < §; and the second inequality is satisfied for all |z — &| < 5. By choosing § to be the
smaller of §; and d, we see that

lu(z)v(z) — pr| < e for all |z —&| < 6.

Thus

i (ufe)o() = (o)) (b o)) = v
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Result 5.1.1 Definition of a Limit. The statement:

lim y(z) =7

r—E&

means that y(x) gets arbitrarily close to 1 as x approaches £. For any ¢ > 0 there exists
a § > 0 such that |y(x) —n| < e for all x in the neighborhood 0 < |z — &| < §. The left

and right limits,

lim y(x) =7 and lim y(z) =7

=&~ Tt

denote the limiting value as x approaches £ respectively from below and above. The
neighborhoods are respectively —0 <x — ¢ <0and 0 <z — & <.
Properties of Limits. Let lim, ¢ u(x) and lim, ¢ v(x) exist.

o lim, . (au(z) + bv(x)) = alim, ¢ u(x) + blim, ¢ v(x).
o lim, . (u(x)v(zr)) = (limy_¢ u(z)) (lim,—¢ v(z)).

o lim, (“(x)> = limm_’gu(xg if lim, ¢ v(x) # 0.

v(z) ) T limy_ev(z

5.2 Continuous Functions

Definition of Continuity. A function y(x) is said to be continuous at x = £ if the value of the function is
equal to its limit, that is, lim,_.¢ y(z) = y(£). Note that this one condition is actually the three conditions: y(¢)
is defined, lim, ¢ y(x) exists and lim, .. y(z) = y(£). A function is continuous if it is continuous at each point
in its domain. A function is continuous on the closed interval |a,b] if the function is continuous for each point
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x € (a,b) and lim, ,,+ y(x) = y(a) and lim,_, y(x) = y(b).

Discontinuous Functions. If a function is not continuous at a point it is called discontinuous at that point.
If lim, ¢ y(z) exists but is not equal to y(§), then the function has a removable discontinuity. It is thus named
because we could define a continuous function

@) = {y<x> for x # €,

lim, ¢ y(z) forz=Z¢,

to remove the discontinuity. If both the left and right limit of a function at a point exist, but are not equal, then
the function has a jump discontinuity at that point. If either the left or right limit of a function does not exist,
then the function is said to have an infinite discontinuity at that point.

Example 5.2.1 % has a removable discontinuity at x = 0. The Heaviside function,

0 for x < 0,
H(x)=<1/2 forxz =0,
1 for x > 0,

I;

has a jump discontinuity at x = 0. % has an infinite discontinuity at x = 0. See Figure 5.3

-
+ o

Figure 5.3: A Removable discontinuity, a Jump Discontinuity and an Infinite Discontinuity
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Properties of Continuous Functions.

Arithmetic. If u(x) and v(z) are continuous at x = £ then u(x) + v(x) and u(x)v(x) are continuous at x = &.
@) is continuous at x = £ if v(€) # 0.

Function Composition. If u(x) is continuous at z = £ and v(x) is continuous at x = p = u(§) then u(v(x)) is
continuous at x = &. The composition of continuous functions is a continuous function.

Boundedness. A function which is continuous on a closed interval is bounded in that closed interval.

Nonzero in a Neighborhood. If y(§) # 0 then there exists a neighborhood (£ —€,£ +¢€), € > 0 of the point & such
that y(x) # 0 for x € (£ —€,& + €).

Intermediate Value Theorem. Let u(z) be continuous on [a,b]. If u(a) < p < u(b) then there exists £ € [a, b]
such that w(§) = u. This is known as the intermediate value theorem. A corollary of this is that if u(a) and
u(b) are of opposite sign then u(x) has at least one zero on the interval (a,b).

Maxima and Minima. If u(x) is continuous on [a,b] then u(z) has a maximum and a minimum on [a,b]. That
is, there is at least one point £ € [a, b] such that u(§) > u(z) for all z € [a,b] and there is at least one point
n € [a,b] such that u(n) < u(x) for all z € [a,b].

Piecewise Continuous Functions. A function is piecewise continuous on an interval if the function is bounded
on the interval and the interval can be divided into a finite number of intervals on each of which the function is
continuous. For example, the greatest integer function, |z, is piecewise continuous. (|z] is defined to the the
greatest integer less than or equal to x.) See Figure 5.4 for graphs of two piecewise continuous functions.

Uniform Continuity. Consider a function f(z) that is continuous on an interval. This means that for any
point £ in the interval and any positive e there exists a 6 > 0 such that |f(z) — f(§)| < eforall 0 < |z —¢| <. In
general, this value of § depends on both £ and €. If 6 can be chosen so it is a function of € alone and independent
of £ then the function is said to be wuniformly continuous on the interval. A sufficient condition for uniform
continuity is that the function is continuous on a closed interval.

44



A\ —
N

Figure 5.4: Piecewise Continuous Functions

5.3 The Derivative

Consider a function y(z) on the interval (x...z + Azx) for some Az > 0. We define the increment Ay =
y(z+Az)—y(z). The average rate of change, (average velocity), of the function on the interval is %. The average
rate of change is the slope of the secant line that passes through the points (z,y(x)) and (z + Az, y(x + Ax)).
See Figure 5.5.

Ay
AX

Figure 5.5: The increments Ax and Ay.

If the slope of the secant line has a limit as Ax approaches zero then we call this slope the derivative or
instantaneous rate of change of the function at the point x. We denote the derivative by %, which is a nice
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notation as the derivative is the limit of % as Az — 0.

dy_ oyt A —y()
de Algilo Ax ’

Ax may approach zero from below or above. It is common to denote the derivative g—i by ;7;3/7 y'(z), y or Dy.
A function is said to be differentiable at a point if the derivative exists there. Note that differentiability implies
continuity, but not vice versa.

Example 5.3.1 Consider the derivative of y(z) = 2? at the point = = 1.

y(1+Az) —y(1)

/ — :
)= Algilo Ax
L (I+ Az -1
N Ali:rilo Ax
= lim (2 + Ax)
Az—0
=2

Figure 5.6 shows the secant lines approaching the tangent line as Ax approaches zero from above and below.

Example 5.3.2 We can compute the derivative of y(x) = z? at an arbitrary point z.

d oy . (z+Az)?—2a?
dx [aj } N AI;:IBO Az
= lim (2z + Ax)
Az—0
=2z
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Figure 5.6: Secant lines and the tangent to x? at z = 1.

5 2

Properties. Let u(z) and v(z) be differentiable. Let a and b be constants. Some fundamental properties of

derivatives are:

d du dv

il ) = a— + h—
d:zc(au+ v) ada: + dz
i(uv) = d—uv + u@

dx dzx dzx

d (4) - Vg UG

de \v/ V2

d a\ __ a—1 du

E(u ) =au o

d _dudv ,
@(U(U(ﬂf))) dv dz (v(z))v'(z)

These can be proved by using the definition of differentiation.
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Example 5.3.3 Prove the quotient rule for derivatives.

— lim 2EtA0) "~ v@
o (5) = dm g
lim u(r + Az)v(x) — u(x)v(x + Azx)
A0 Axv(z)v(z + Azx)
lim u(z + Az)v(x) — u(z)v(z) — u(x)v(z + Az) + u(x)v(z)
- Aeo Azxv(z)v(x)
iy (@ A7) —u(@))o(e) — ulz)(v(z + Ax) — o(z))
Axz—0 Ax'l}2<£[})
. limAw_)O %ﬂwv(aﬁ _ U(ZL’) hmAa:—>0 U($+AA32_U<QC)
i v2(z)
02
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Trigonometric Functions. Some derivatives of trigonometric functions are:

d Si cos d arcsi 1

—siny = T —arcsiny = ——

dz dz (1 — 22)1/2
1

acos:c: —sinx aarccos:c: —7<1_x2)1/2

1

1r tanx = P 1 arctanx = 1522

d . . | 1

—e" = ¢ — logx = —

dx dx & T
1

a SiHhZE = COSh.ﬁU a arcsinh:zc = W
1

T coshz = sinhx L arccoshx = 7@2 BN

1 d 1
a tanhx = m a arctanhx = m

Example 5.3.4 We can evaluate the derivative of 2% by using the identity a® = ebl°s2,

d x d zlogx
@I N dxe
= emlogmi(x log z)
dz

1
=2°(1-logz + x—)

T
=2"(1 + log z)
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Inverse Functions. If we have a function y(z), we can consider x as a function of y, z(y). For example, if
y(z) = 8z% then z(y) = 2y/y; if y(z) = £ then z(y) = 32;% The derivative of an inverse function is

r+1
d 1
d—yx(y) = %-

Example 5.3.5 The inverse function of y(x) = e” is z(y) = logy. We can obtain the derivative of the logarithm
from the derivative of the exponential. The derivative of the exponential is

dy .
de
Thus the derivative of the logarithm is
d | d ) 1 1 1

5.4 Implicit Differentiation

An explicitly defined function has the form y = f(z). A implicitly defined function has the form f(z,y) =0. A
few examples of implicit functions are 22 + y?> — 1 = 0 and x + y + sin(zy) = 0. Often it is not possible to write
an implicit equation in explicit form. This is true of the latter example above. One can calculate the derivative
of y(z) in terms of x and y even when y(x) is defined by an implicit equation.

Example 5.4.1 Consider the implicit equation
o —ay—yt =1

This implicit equation can be solved for the dependent variable.

y(z) = % (—x:l: \/m> :
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We can differentiate this expression to obtain

1 Sz
= -1+ —— | .
Y 2( 5902—4)

One can obtain the same result without first solving for y. If we differentiate the implicit equation, we obtain

dy dy
2 —y — - — y—= = 0.
Ty xdx yd:v

We can solve this equation for S—Z.

dy 2z —y

de x4+ 2y

We can differentiate this expression to obtain the second derivative of y.

Py _ (@+29)2—y) - Qr—y)(1+2y)
da? (x 4 2y)?
_ 5y —=y)
(z +2y)?

Substitute in the expression for 7.

10(2? — 2y — y?)
(z + 2y)?

Use the original implicit equation.

10
(z +2y)?

o1



5.5 Maxima and Minima

A differentiable function is increasing where f'(x) > 0, decreasing where f'(x) < 0 and stationary where f'(z) = 0.

A function f(z) has a relative mazima at a point x = £ if there exists a neighborhood around ¢ such that
f(z) < f(&) for x € (x — 0,2+ 0), 6 > 0. The relative minima is defined analogously. Note that this definition
does not require that the function be differentiable, or even continuous. We refer to relative maxima and minima
collectively are relative extrema.

Relative Extrema and Stationary Points. If f(z) is differentiable and f(£) is a relative extrema then x = £
is a stationary point, f’(£) = 0. We can prove this using left and right limits. Assume that f(§) is a relative
maxima. Then there is a neighborhood (z — d,x 4+ 9), § > 0 for which f(x) < f(£). Since f(z) is differentiable
the derivative at x = &,

Az—0 Azx ’

exists. This in turn means that the left and right limits exist and are equal. Since f(z) < f(§) for { —0 <z < ¢
the left limit is non-positive,

f/(g) — lim f(£‘|‘ Al’) — f(f) <0.

Ar—0— AZC

Since f(x) < f(§) for € <z < £ + 0 the right limit is nonnegative,

Az—0t Az

> 0.
Thus we have 0 < f'(£) < 0 which implies that f/(£) = 0.

It is not true that all stationary points are relative extrema. That is, f/(£) = 0 does not imply that z = £ is
an extrema. Consider the function f(z) = z®. x = 0 is a stationary point since f'(z) = z?, f’(0) = 0. However,

2 = ( is neither a relative maxima nor a relative minima.
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It is also not true that all relative extrema are stationary points. Consider the function f(x) = |z|. The point
x = 0 is a relative minima, but the derivative at that point is undefined.

First Derivative Test. Let f(z) be differentiable and f'(£) = 0.
e If f'(x) changes sign from positive to negative as we pass through x = £ then the point is a relative maxima.
e If f/(x) changes sign from negative to positive as we pass through = = £ then the point is a relative minima.

e If f'(x) is not identically zero in a neighborhood of x = £ and it does not change sign as we pass through
the point then x = £ is not a relative extrema.

Example 5.5.1 Consider y = 22 and the point = 0. The function is differentiable. The derivative, i = 2z,
vanishes at x = 0. Since y/(z) is negative for z < 0 and positive for z > 0, the point z = 0 is a relative minima.
See Figure 5.7.

Example 5.5.2 Consider y = cosz and the point = 0. The function is differentiable. The derivative, ¢y =
—sin x is positive for —m < x < 0 and negative for 0 < z < 7. Since the sign of 3’ goes from positive to negative,
x = 0 is a relative maxima. See Figure 5.7.

Example 5.5.3 Consider y = 2® and the point 2 = 0. The function is differentiable. The derivative, 3y’ = 32?2 is
positive for x < 0 and positive for 0 < z. Since 1/ is not identically zero and the sign of 3y’ does not change, x = 0
is not a relative extrema. See Figure 5.7.

Concavity. If the portion of a curve in some neighborhood of a point lies above the tangent line through that
point, the curve is said to be concave upward. If it lies below the tangent it is concave downward. If a function
is twice differentiable then f”(z) > 0 where it is concave upward and f”(z) < 0 where it is concave downward.
Note that f”(z) > 0 is a sufficient, but not a necessary condition for a curve to be concave upward at a point. A
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Figure 5.7: Graphs of x2, cosz and a3.

curve may be concave upward at a point where the second derivative vanishes. A point where the curve changes
concavity is called a point of inflection. At such a point the second derivative vanishes, f”(z) = 0. For twice
continuously differentiable functions, f”(x) = 0 is a necessary but not a sufficient condition for an inflection point.
The second derivative may vanish at places which are not inflection points. See Figure 5.8.

—

Figure 5.8: Concave Upward, Concave Downward and an Inflection Point.

Second Derivative Test. Let f(z) be twice differentiable and let x = £ be a stationary point, f'(§) = 0.
o If f7(¢) < 0 then the point is a relative maxima.

o If f7(£) > 0 then the point is a relative minima.

o If (&) = 0 then the test fails.
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Example 5.5.4 Consider the function f(x) = cosz and the point x = 0. The derivatives of the function are
f'(x) = —sinz, f’(x) = —cosz. The point x = 0 is a stationary point, f’(0) = —sin(0) = 0. Since the second
derivative is negative there, f”(0) = — cos(0) = —1, the point is a relative maxima.

Example 5.5.5 Consider the function f(z) = z! and the point x = 0. The derivatives of the function are
f'(z) = 423, f"(x) = 1222. The point x = 0 is a stationary point. Since the second derivative also vanishes at
that point the second derivative test fails. One must use the first derivative test to determine that x = 0 is a
relative minima.

5.6 Mean Value Theorems

Rolle’s Theorem. If f(z) is continuous in [a,b], differentiable in (a,b) and f(a) = f(b) = 0 then there exists
a point £ € (a,b) such that f'(§) = 0. See Figure 5.9.

N

Figure 5.9: Rolle’s Theorem.

To prove this we consider two cases. First we have the trivial case that f(x) = 0. If f(x) is not identically
zero then continuity implies that it must have a nonzero relative maxima or minima in (a,b). Let z = & be one
of these relative extrema. Since f(x) is differentiable, x = £ must be a stationary point, f'(£) = 0.
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Theorem of the Mean. If f(z) is continuous in [a, b] and differentiable in (a,b) then there exists a point x = £
such that

f(0) — f(a)
b—a

That is, there is a point where the instantaneous velocity is equal to the average velocity on the interval.

f'(€) =

Figure 5.10: Theorem of the Mean.

We prove this theorem by applying Rolle’s theorem. Consider the new function

oa) = 1) — f0) - LU )

Note that g(a) = g(b) = 0, so it satisfies the conditions of Rolle’s theorem. There is a point z = £ such that
g'(§) = 0. We differentiate the expression for g(z) and substitute in x = £ to obtain the result.

f(0) — f(a)

g@) = /@) - 12
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Generalized Theorem of the Mean. If f(z) and g(z) are continuous in [a, b] and differentiable in (a, ), then
there exists a point x = ¢ such that

(&) _ ) - J(a)
g€ 9(b) —g(a)
We have assumed that g(a) # ¢(b) so that the denominator does not vanish and that f’(z) and ¢'(z) are not

simultaneously zero which would produce an indeterminate form. Note that this theorem reduces to the regular
theorem of the mean when g(z) = x. The proof of the theorem is similar to that for the theorem of the mean.

Taylor’s Theorem of the Mean. If f(z) is n+ 1 times continuously differentiable in (a,b) then there exists
a point z = £ € (a,b) such that

L (b=

n!

(b _ a)n+1

RS (5.1)

f0) = fla)+ (b—a)f'(a) + F™(a) +

For the case n = 0, the formula is

fb) = f(a) + (b—a)f'(s),
which is just a rearrangement of the terms in the theorem of the mean,

e (U (]

5.6.1 Application: Using Taylor’s Theorem to Approximate Functions.

One can use Taylor’s theorem to approximate functions with polynomials. Consider an infinitely differentiable
function f(x) and a point x = a. Substituting x for b into Equation 5.1 we obtain,

(x —a)™t!

(z —a)"
(n+1)!

n!

Fa) + FrD().




If the last term in the sum is small then we can approximate our function with an n® order polynomial.

—a)? o\
f(ﬂ?) ~ f(a) + (Jj — a)f/<a) + (:ETa)f//<a) 4+ .4 %Jc(n)(a)
The last term in Equation 5.6.1 is called the remainder or the error term,
_ (‘/L‘ — a)n+1 (n+1)
fo= "o 7

Since the function is infinitely differentiable, f+)(¢) exists and is bounded. Therefore we note that the error
must vanish as z — 0 because of the (x — a)"™! factor. We therefore suspect that our approximation would be a
good one if z is close to a. Also note that n! eventually grows faster than (z — a)",
r—a)"

lim u = 0.

n—oo ’n/'
So if the derivative term, f™+1(¢), does not grow to quickly, the error for a certain value of x will get smaller
with increasing n and the polynomial will become a better approximation of the function. (It is also possible that
the derivative factor grows very quickly and the approximation gets worse with increasing n.)

Example 5.6.1 Consider the function f(x) = e*. We want a polynomial approximation of this function near
the point = 0. Since the derivative of e is e”, the value of all the derivatives at z = 0 is f(™(0) = &* = 1.
Taylor’s theorem thus states that

2 x?’ " xn—&-l
em:1+$+§+§+"'+ﬁ+meg,
for some £ € (0,z). The first few polynomial approximations of the exponent about the point z = 0 are
filz) =1
folx) =14z

2
T
fle) =1+a+
2 1,3

X
=1 4=
fa@) =14z + o+ 5
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The four approximations are graphed in Figure 5.11.

2.
1.

~O1N O1

2.
1.

Q = b
U1k 01N Ul

a1 aanNn ol
(0] ain a1

.

-1-0.5 0.5 1 -1-0.5 0.5 1 -1-0.5 0.5 1 -1-0.5 0.5 1

Figure 5.11: Four Finite Taylor Series Approximations of e*

Note that for the range of x we are looking at, the approximations become more accurate as the number of
terms increases.

Example 5.6.2 Consider the function f(z) = cosx. We want a polynomial approximation of this function near
the point x = 0. The first few derivatives of f are

It’s easy to pick out the pattern here,

(=) D2sinx  for odd n.

Since cos(0) = 1 and sin(0) = 0 the n-term approximation of the cosine is,

£0) () = {(—1)”/2 cos T for even n,

2 74 26 xQ(n—l) r2n
— 1T T (=)D
cos TR I S A oY sy T O

cosé.
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Here are graphs of the one, two, three and four term approximations.

4 INIZEE AN VRt AN

Figure 5.12: Taylor Series Approximations of cos x

Note that for the range of x we are looking at, the approximations become more accurate as the number of
terms increases. Consider the ten term approximation of the cosine about x = 0,

1'2 [LA $18 .I'QO
=l—-—=4—=—— — + —cos¢.
cos or Tl 181 + 301 9%¢

Note that for any value of &, |cos&| < 1. Therefore the absolute value of the error term satisfies,

20

|R| =

22°/20! is plotted in Figure 5.13.

Note that the error is very small for z < 6, fairly small but non-negligible for x ~ 7 and large for x > 8. The
ten term approximation of the cosine, plotted below, behaves just we would predict.

The error is very small until it becomes non-negligible at x &~ 7 and large at = ~ 8.

Example 5.6.3 Consider the function f(x) =logz. We want a polynomial approximation of this function near
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Figure 5.13: Plot of 2%°/20!.
10 - 5 10
-1

-1.5

-2

Figure 5.14: Ten Term Taylor Series Approximation of cosz

the point x = 1. The first few derivatives of f are

f(z) =loga

fa) =1
@)=
) = =
)= -



The derivatives evaluated at x = 1 are
f(0) =0, ™) = (=1)"Yn—1)!, forn > 1.

By Taylor’s theorem of the mean we have,

(£-12  (@=1° (z—1) INCE (e = 1™ 1
1 =(r—1)— — e (=) ——— - (—1)" .
ogzr = (z —1) 5 + 3 1 +-- 4 (=1) - +(—1) P
Below are plots of the 2, 4, 10 and 50 term approximations.
1.522.53 1.522. 1.522.5

OUIRLINE | N
DOUIBWNE | N
DOUIRLINF | =N
OUIRLINIE | N

%ﬁ/\l.SZZ\SS ]

Figure 5.15: The 2, 4, 10 and 50 Term Approximations of log =

Note that the approximation gets better on the interval (0,2) and worse outside this interval as the number
of terms increases. The Taylor series converges to log x only on this interval.

5.6.2 Application: Finite Difference Schemes

Example 5.6.4 Suppose you sample a function at the discrete points nAx, n € Z. In Figure 5.16 we sample the
function f(z) = sinz on the interval [—4,4] with Az = 1/4 and plot the data points.

We wish to approximate the derivative of the function on the grid points using only the value of the function
on those discrete points. From the definition of the derivative, one is lead to the formula

Flay~ TET AX; — @) (5.2)
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Figure 5.16: Sampling of sinz
Taylor’s theorem states that
flx+ Ax) = f(x)+ Az f'(x) + —

Substituting this expression into our formula for approximating the derivative we obtain

fla+Az) — f(z)  f@)+Axf'(z) + 22 () — f(x) Az,
A = A = f'(x) + 5-1"(€).

Thus we see that the error in our approximation of the first derivative is % f"(&). Since the error has a linear
factor of Ax, we call this a first order accurate method. Equation 5.2 is called the forward difference scheme for
calculating the first derivative. Figure 5.17 shows a plot of the value of this scheme for the function f(x) = sinx
and Az = 1/4. The first derivative of the function f'(x) = cosz is shown for comparison.

Another scheme for approximating the first derivative is the centered difference scheme,

o) ~ f(x—{—A:v)ng(x— Ax).
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Figure 5.17: The Forward Difference Scheme Approximation of the Derivative

Expanding the numerator using Taylor’s theorem,

flz+ Azx) — f(z — Ax)

2Ax
f@) + Aaf'(x) + 85 (@) + 25 7€) = f(2) + D f'(x) — A5 f"(x) + 55 " (n)
a 2Ax
2
— @)+ 2 ) + £ ().

12
The error in the approximation is quadratic in Ax. Therefore this is a second order accurate scheme. Below is a
plot of the derivative of the function and the value of this scheme for the function f(z) =sinz and Az = 1/4.
Notice how the centered difference scheme gives a better approximation of the derivative than the forward
difference scheme.

5.7 L’Hospital’s Rule

Some singularities are easy to diagnose. Consider the function at the point x = 0. The function evaluates

% and is thus discontinuous at that point. Since the numerator and denominator are continuous functions and

cos T
T

to
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Figure 5.18: Centered Difference Scheme Approximation of the Derivative

the denominator vanishes while the numerator does not, the left and right limits as * — 0 do not exist. Thus
the function has an infinite discontinuity at the point x = 0. More generally, a function which is composed of
continuous functions and evaluates to § at a point where a # 0 must have an infinite discontinuity there.

sinz sinz o, q _sinz
z 7 |z 1—cosz

Other singularities require more analysis to diagnose. Consider the functions at the point

x = 0. All three functions evaluate to 8 at that point, but have different kinds of singularities. The first has
a removable discontinuity, the second has a finite discontinuity and the third has an infinite discontinuity. See

Figure 5.19.

0 oo 0

An expression that evaluates to g, 22, 0- 00, 0o — o0, 1%, 0% or oo is called an indeterminate. A function
f(z) which is indeterminate at the point z = £ is singular at that point. The singularity may be a removable
discontinuity, a finite discontinuity or an infinite discontinuity depending on the behavior of the function around
that point. If lim, ¢ f(z) exists, then the function has a removable discontinuity. If the limit does not exist, but
the left and right limits do exist, then the function has a finite discontinuity. If either the left or right limit does
not exist then the function has an infinite discontinuity.
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sinx
l—cosz”

sinx sinx
z 0 |zl

and

Figure 5.19: The functions

L’Hospital’s Rule. Let f(z) and g(x) be differentiable and f(§) = ¢(§) = 0. Further, let g(z) be nonzero in a
deleted neighborhood of z =&, (g(x) # 0 for z € 0 < |z — £| < J). Then

lim /(@) = lim f'(z)

it g(x) et g(r)

To prove this, we note that f(£) = ¢g(§) = 0 and apply the generalized theorem of the mean. Note that

for some n between ¢ and x. Thus

Iim —= = = lim
=g g(x) e g(n) -t g(2)

@) S S)
g

provided that the limits exist.
L’Hospital’s Rule is also applicable when both functions tend to infinity instead of zero or when the limit
point, &, is at infinity. It is also valid for one-sided limits.

L’Hospital’s rule is directly applicable to the indeterminate forms 2

0 and =.
o0
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sin x
1—coszx

Example 5.7.1 Consider the three functions Si%, sﬁf

and at the point x = 0.

sinx CcCoST

lim = lim =1
z—0 x x—0 1
Thus *2* has a removable discontinuity at x = 0.
sin x . sinzx
lim = lim =1
z—0+ |l’| z—0t T
. sinzx sin x
lim = lim =-1
r—0~ |I‘| r—0- —X

Thus s}gf has a finite discontinuity at x = 0.

sin x CcoS T

1
z—01 —cosx z—0sinx 0

lim — = lim = - =00
Thus % has an infinite discontinuity at x = 0.
Example 5.7.2 Let a and d be nonzero.
. ar’+br+ec . 2ar+0b
lim ———— = lim ———
a—oodr? +er+ f 20 2dr+e
I 2a
= lim —
z—00 2d
_a
- d
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Example 5.7.3 Consider

cosz — 1
m-—————-.
z—0 zxsinzx

This limit is an indeterminate of the form 8. Applying L’Hospital’s rule we see that limit is equal to

. —sinx
llm —mM8M .
z—0 T COSX + SInx

This limit is again an indeterminate of the form %. We apply L’'Hospital’s rule again.

. —CcoST 1
lim - = ——
z—0 —xsinx + 2cosx 2

Thus the value of the original limit is —%. We could also obtain this result by expanding the functions in Taylor
series.

xz Z‘4
cosx — 1 (1 y T 1
lim : = lim -3
x—0 xSsInx x—0 _ L ..
xr (x s T 120 )
.’L‘2 LE4
i
= lim 5 2754 24966
x—0 — I
r 6 T 120
1 z2
i
= lim 12 24304
x—0 = X __
1 ¢ T 120
1
2

We can apply L'Hospital’s Rule to the indeterminate forms 0 - co and oo — co by rewriting the expression in
a different form, (perhaps putting the expression over a common denominator). If at first you don’t succeed, try,
try again. You may have to apply L’Hospital’s rule several times to evaluate a limit.
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Example 5.7.4

1 . xcosx —sinx
lm(cotz —— | =lim ————
T— €T z—0 Trsinx
. COST —xsinx — cosx
= lim -
z—0 SINT + rcosx
. —xrsinx
= lim

z—0 Sinx + x cos T
—rcosx —sinx

= lim -
z—0 cosx + cosx — rsinw
=0
You can apply L’Hospital’s rule to the indeterminate forms 1°°, 0° or co” by taking the logarithm of the
expression.
Example 5.7.5 Consider the limit,
lim 2%,
z—0
which gives us the indeterminate form 0°. The logarithm of the expression is
log(z®) = xlog x.

As x — 0 we now have the indeterminate form 0-oc. By rewriting the expression, we can apply L’Hospital’s rule.

. logz .. 1/x

lim = lim

z—0 1/:L’ z—0 —1/:62
=)
=0

Thus the original limit is

limz® = e = 1.
x—0
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5.8 Exercises

Limits and Continuity

Exercise 5.1
Does

.. (1
hH(l] sin [ —
Tr— X
exist?

Exercise 5.2
Is the function sin(1/x) continuous in the open interval (0,1)? Is there a value of a such that the function defined

by

a forx =0

flz) = {sin(l/x) for z # 0,

is continuous on the closed interval [0, 1]?

Exercise 5.3
Is the function sin(1/z) uniformly continuous in the open interval (0,1)?

Exercise 5.4
Are the functions \/z and 1 uniformly continuous on the interval (0,1)?

Exercise 5.5
Prove that a function which is continuous on a closed interval is uniformly continuous on that interval.
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Definition of Differentiation

Exercise 5.6 (mathematica/calculus/differential/definition.nb)

Use the definition of differentiation to prove the following identities where f(z) and g(z) are differentiable functions
and n is a positive integer.

") =na" ' (I suggest that you use Newton’s binomial formula.)

f(@)g(x)) = f32 + g

(
(
c. L(sinx) = cosz. (You'll need to use some trig identities.)
d. £ (f(g(@)) = f'(g9(2)g (x)

Rules of Differentiation

a.d—

8

b L

8

8

Exercise 5.7 (mathematica/calculus/differential /rules.nb)
Find the first derivatives of the following:

a. xsin(cos )

b. f(cos(g(x)))

1
f(logz)

d. z**

C.

e. |x|sin |z|

Exercise 5.8 (mathematica/calculus/differential /rules.nb)
Using
d d 1

—sinz =cosz and —tanx = —
dx dx cos? x

find the derivatives of arcsin x and arctan x.
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Implicit Differentiation

Exercise 5.9 (mathematica/calculus/differential /implicit.nb)
Find y/(z), given that 2% + y* = 1. What is y/(1/2)?

Exercise 5.10 (mathematica/calculus/differential/implicit.nb)
Find 3/(z) and 3" (z), given that 2 — zy + y* = 3.

Maxima and Minima

Exercise 5.11 (mathematica/calculus/differential /maxima.nb)
Identify any maxima and minima of the following functions.

a. f(x) =x(12 — 2x)%
b. f(z) = (z — 2)%5.

Exercise 5.12 (mathematica/calculus/differential /maxima.nb)
A cylindrical container with a circular base and an open top is to hold 64 ¢m3. Find its dimensions so that the
surface area of the cup is a minimum.

Mean Value Theorems

Exercise 5.13
Prove the generalized theorem of the mean. If f(z) and g(x) are continuous in [a,b] and differentiable in (a,b),
then there exists a point x = & such that

f'(€) _ fb) = f(a)
g g) —gla)

Assume that g(a) # g(b) so that the denominator does not vanish and that f’(x) and ¢'(x) are not simultaneously
zero which would produce an indeterminate form.
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Exercise 5.14 (mathematica/calculus/differential/taylor.nb)
Find a polynomial approximation of sin z on the interval [—1, 1] that has a maximum error of Tloo' Don’t use any
more terms that you need to. Prove the error bound. Use your polynomial to approximate sin 1.

Exercise 5.15 (mathematica/calculus/differential /taylor.nb)

You use the formula £ (HM)_QXS;)H @=22) 4 approximate f” (x). What is the error in this approximation?

Exercise 5.16

The formulas W and L (“Mz)_f (@=22) are first and second order accurate schemes for approximating
the first derivative f’(x). Find a couple other schemes that have successively higher orders of accuracy. Would
these higher order schemes actually give a better approximation of f’'(x)? Remember that Ax is small, but not
infinitesimal.

L’Hospital’s Rule

Exercise 5.17 (mathematica/calculus/differential /lhospitals.nb)
Evaluate the following limits.

r—sinx

a. llmwﬂo 23

b. lim,_ g (cscx — %)

c. lim, 4o (1 + %)x

d. lim, g (C802 x — ;%2) (First evaluate using L’Hospital’s rule then using a Taylor series expansion. You will
find that the latter method is more convenient.)

Exercise 5.18 (mathematica/calculus/differential/lhospitals.nb)
Evaluate the following limits,

bx
lim %7, lim <1 + ﬁ) ,
Tr—00 T—00 €T
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where a and b are constants.
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5.9 Hints

Limits and Continuity

Hint 5.1
Apply the €, § definition of a limit.

Hint 5.2
The composition of continuous functions is continuous. Apply the definition of continuity and look at the point
z = 0.

Hint 5.3

Note that for z; = m and o = m where n € Z we have |sin(1/x1) — sin(1/xz9)| = 2.

Hint 5.4

Note that the function vz + d — \/x is a decreasing function of z and an increasing function of § for positive x

and 0. Bound this function for fixed d.
Consider any positive § and e. For what values of z is

1 1

r xT+0

> €.

Hint 5.5
Let the function f(z) be continuous on a closed interval. Consider the function

e(z,0) = sup [f(§) — f(z)l

|[E—z|<d

Bound e(z, ) with a function of ¢ alone.
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Definition of Differentiation

Hint 5.6
a. Newton’s binomial formula is

(a + b)n = Z (n) anfkbk =a" + anflb + TL(L

k

k=0

Recall that the binomial coeflicient is

b. Note that
d
dx
and
9(@)f'(x) + f(2)d'(z) =

Fill in the blank.

c. First prove that

and

2

1
)a"*2b24—~--+-nab"*14—b".
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d. Let u = g(x). Consider a nonzero increment Az, which induces the increments Au and Af. By definition,
Af = flu+Au) = f(u),  Au=g(z+ Azr) - g(z),

and Af, Au— 0 as Az — 0. If Au # 0 then we have

e=—"————=0 as Au—0.

If Au = 0 for some values of Ax then A f also vanishes and we define € = 0 for theses values. In either case,

d
Ay = —fAu + eAu.
du

Continue from here.

Rules of Differentiation

Hint 5.7
a. Use the product rule and the chain rule.

b. Use the chain rule.

c. Use the quotient rule and the chain rule.

d. Use the identity a® = e’lga,

e. For x > 0, the expression is xsinz; for z < 0, the expression is (—z)sin(—xz) = zsinz. Do both cases.

Hint 5.8

Use that 2/(y) = 1/y/(z) and the identities cos z = (1 — sin?z)'/2 and cos(arctan ) = W

Implicit Differentiation

7



Hint 5.9
Differentiating the equation

v’ +[y(@)]* =1
yields
2z + 2y(x)y'(z) = 0.

Solve this equation for y/(z) and write y(z) in terms of x.

Hint 5.10
Differentiate the equation and solve for ¢/(z) in terms of x and y(z). Differentiate the expression for y'(z) to
obtain y”(x). You'll use that

v —wy(x) + [y(x))* =3
Maxima and Minima

Hint 5.11
a. Use the second derivative test.

b. The function is not differentiable at the point x = 2 so you can’t use a derivative test at that point.

Hint 5.12
Let r be the radius and h the height of the cylinder. The volume of the cup is mr?h = 64. The radius and height

are related by h = %. The surface area of the cup is f(r) = 7r? + 27rh = 7r? + 1—38. Use the second derivative

test to find the minimum of f(r).

Mean Value Theorems

Hint 5.13
The proof is analogous to the proof of the theorem of the mean.
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Hint 5.14
The first few terms in the Taylor series of sin(z) about x = 0 are

x3 2 x’ x?

sin(r) == ==+ 750 " 5040 T 362880 T

When determining the error, use the fact that | coszo| < 1 and |2"| < 1 for x € [—1,1].

Hint 5.15
The terms in the approximation have the Taylor series,
Ax? Ax? Ax?
f(l‘ + Al’) = f(l’) + Al’f’(iﬂ) + Tf”(l') + Tfm(l') + ﬂfﬂﬂ(lj),
Az? Ax3 Azt
flo = A2) = (&) = Aaf(2) + S 1) = S5 (@) + S (),
where z < 21 <z + Az and z — Az < x5 < 7.
Hint 5.16
L’Hospital’s Rule
Hint 5.17
a. Apply L’Hospital’s rule three times.
b. You can write the expression as
r —sinz
rsinz

c. Find the limit of the logarithm of the expression.
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d. It takes four successive applications of LL’Hospital’s rule to evaluate the limit.

For the Taylor series expansion method,

1 22—sin®z 2% — (z—2%/6 +O(2%))?

2
s’ r — — = =
x? 22 sin® © 22(x + O(x?))?

Hint 5.18
To evaluate the limits use the identity a® = €?'°8? and then apply L’Hospital’s rule.
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5.10 Solutions

Limits and Continuity

Solution 5.1

Note that in any open neighborhood of zero, (—d,0), the function sin(1/z) takes on all values in the interval
[—1,1]. Thus if we choose a positive € such that e < 1 then there is no value of 7 for which |sin(1/z) — n| < e for
all © € (—¢,€). Thus the limit does not exist.

Solution 5.2
Since % is continuous in the interval (0,1) and the function sin(z) is continuous everywhere, the composition
sin(1/x) is continuous in the interval (0, 1).

Since lim,_sin(1/x) does not exist, there is no way of defining sin(1/x) at x = 0 to produce a function that

is continuous in [0, 1].

Solution 5.3

Note that for x; = m and xy = m where n € Z we have |sin(1/z;) — sin(1/z2)| = 2. Thus for any
0 < € < 2 there is no value of 6 > 0 such that |sin(1/z;) — sin(1/z5)| < € for all z1, 25 € (0,1) and |z — 25| < 4.
Thus sin(1/z) is not uniformly continuous in the open interval (0, 1).

Solution 5.4
First consider the function v/z. Note that the function v/x + 0 —/x is a decreasing function of x and an increasing
function of ¢ for positive 2 and §. Thus for any fixed §, the maximum value of v/x + 0 — /x is bounded by V0.
Therefore on the interval (0,1), a sufficient condition for |\/z — /| < €is |z — £| < €2. The function /x is
uniformly continuous on the interval (0, 1).

Consider any positive ¢ and €. Note that

1 1
r T+
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for

x<1< 52+4—5—5>.
2 €

Thus there is no value of § such that

for all [z —¢| < . The function + is not uniformly continuous on the interval (0, 1).

Solution 5.5
Let the function f(z) be continuous on a closed interval. Consider the function

e(z,0) = sup [f(§) — f(z)].

|E—z|<o

Since f(x) is continuous, e(x,d) is a continuous function of x on the same closed interval. Since continuous
functions on closed intervals are bounded, there is a continuous, increasing function €(9) satisfying,

e(z,0) < €(0),

for all z in the closed interval. Since €(d) is continuous and increasing, it has an inverse d(e¢). Now note that
|f(z) — f(§)] < € for all x and ¢ in the closed interval satisfying |x — €| < §(e). Thus the function is uniformly
continuous in the closed interval.

Definition of Differentiation
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Solution 5.6

d, . . (r + Az)" — "
' >—A1;f£0{ Ar }
. (a:" +nz" 'Ax + @x””AmQ +--- 4+ Ax”) —a"
g Az
= lim [nx"—l + n(n2_ 1)96"_2Aa: + Ax”—l]
d ny __ n—1
a(a: ) =nx
b.
d [ fl@+ Ar)g(z + Az) = f(2)g()
@t = Jim, | Y |
— i, [[Le et ) - oo+ &)+ et 0 o]
Az—0 Az
= Jim, ot + ) o, [ FEEE0 D g0 g, | 22202
= g(@)f'(z) + f(x)g'(x)
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c. Consider a right triangle with hypotenuse of length 1 in the first quadrant of the plane. Label the vertices
A, B, C, in clockwise order, starting with the vertex at the origin. The angle of A is 6. The length of a
circular arc of radius cos 6 that connects C' to the hypotenuse is 0 cosf. The length of the side BC' is sin 6.
The length of a circular arc of radius 1 that connects B to the x axis is 6. (See Figure 5.20.)

B

0 cosO sin@

Figure 5.20:

Considering the length of these three curves gives us the inequality:
fcosf <sinf < 4.
Dividing by 6,

sin 6

cosf < < 1.
Taking the limit as 8 — 0 gives us
i sinf ]
R R
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One more little tidbit we’ll need to know is

cosf — 1 - [cos® —1cosO+1
— | =lim
6—0 | 0 cosf +1

— lim [ cos?0 — 1 }
6—0 | B(cosf + 1)
[ —sin?d
6—0 | @(cos b + 1)}

- [—sin@] .. sin 6
= lim lim |[——m——
6—0 | 6 ] 6—0|(cosf+1)

lim
6—0

= 0.
Now we're ready to find the derivative of sin z.
d . , sin(x + Azx) —sinz
—(sinz) = 1
da:( ) Agilo [ Ax
. coszsin Ax + sinz cos Az — sinx
= lim
Az—0 Al'
. sin Az L . cosAzx — 1
= im D —
cosT Az—0 | Az S A:IUIEO Az
= CoSZ
L sine)
—(sinz) = cosx
dx

d. Let u = g(z). Consider a nonzero increment Ax, which induces the increments Au and Af. By definition,

Af = flutAu) = f(u),  Au=g(zr+ Ar) = g(z),

85



and Af, Au— 0 as Az — 0. If Au # 0 then we have

If Au = 0 for some values of Az then A f also vanishes and we define € = 0 for theses values. In either case,

df

Ay = Au + eAu.

We divide this equation by Az and take the limit as Az — 0.

ﬂ— limﬂ

dr Az—0 Ax

= lim df Au + e&
- Axz—0 du A.CE Ax

_ df Af . Au
= (55 (m, 52) + (i) (im, 52

_dfdu du
“quar Y (@)

e
 dudx

Thus we see that

Rules of Differentiation
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Solution 5.7
a.

e [zsin(cosx)] = P [z] sin(cos z) + T [sin(cos z)]
d

= sin(cos z) + x cos(cos x) o [cos x]
T

= sin(cosx) — z cos(cos x) sin x

P [z sin(cos x)] = sin(cos x) —  cos(cos z) sin x
T

1 } _ alf(logz)]
[f(log x)]?
_ f'(logz)§;[log ]
[f(log z)]?
___f'(logx)
[ f(log z)]?
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g{ 1 }:_ f'(log )
dz | f(log ) z[f(log x)]?

d. First we write the expression in terms exponentials and logarithms,

1% = poPo8r) — oxp(exp(xlogz) log z).

Then we differentiate using the chain rule and the product rule.

d d
e exp(exp(z log x) log x) = exp(exp(xlog x) log x) o (exp(z log x) log x)
T T

T

d 1
=z (exp(x log z) o (xlogx)logz + exp(zlog x) —)
T T

@ 1
=z (x””(logx +2=)logx + 2" exp(xlog x))
x

=2" (2*(logz + 1) logz 4+ z~'2")

= 2" (27! +log x + log® z)

d x €T
d—x“”” = 2" (27! + log x + log? z)
T

e. For x > 0, the expression is xsinz; for z < 0, the expression is (—z)sin(—x) = xsinz. Thus we see that
|z| sin || = xsinz.
The first derivative of this is

sinx + xrcoszx.

d . :
—(|z|sin|z|) = sinz + x cosx

dx
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Solution 5.8
Let y(x) = sinz. Then ¢/(z) = cosx.

_ 1
— arcsiny =
dy e

1

CcoS T
1

(1 — sin® x)1/2
1
=7

~—

. 1
a arcsinxr = m

Let y(z) = tanz. Then ¢/(z) = 1/ cos® z.

— arctany =
dy y'(x)

0082 T

= cos?(arctany)

()

1
1+ y?

1
— arct =
e arctan x 1522
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Implicit Differentiation

Solution 5.9
Differentiating the equation

yields

We can solve this equation for y'(z).

x
/
y(z)=——
) y(x)
To find y'(1/2) we need to find y(z) in terms of z.
y(x) =+vV1—22
Thus y/(z) is
x
() =+ )
V==
y'(1/2) can have the two values:
1 1
/
i R
’ (2) V3

Solution 5.10
Differentiating the equation



yields

Solving this equation for /()

Now we differentiate y/(z) to get y"(x).




Maxima and Minima

Solution 5.11

a.

f'(z) = (12 — 22)* + 22(12 — 27)(—2)
= 4(z — 6)* + 8z(x — 6)
=12(x — 2)(z — 6)

There are critical points at x = 2 and z = 6.
f(x) =12(x — 2) + 12(z — 6) = 24(z — 4)

Since f"(2) = —48 < 0, x = 2 is a local maximum. Since f”(6) =48 > 0, x = 6 is a local minimum.

fla) =2 (-2

The first derivative exists and is nonzero for x # 2. At x = 2, the derivative does not exist and thus z = 2
is a critical point. For z < 2, f'(z) < 0 and for x > 2, f’(z) > 0. z = 2 is a local minimum.

Solution 5.12
Let r be the radius and h the height of the cylinder. The volume of the cup is 7r?h = 64. The radius and height
are related by h = 5. The surface area of the cup is f(r) = mr® + 2arh = 7r? + 28, The first derivative of the

Tre’

surface area is f'(r) = 2mr — 2%, Finding the zeros of f/(r),

128
2wr — Q5 = O,
T
213 — 128 = 0,
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= S—ﬁ‘
The second derivative of the surface area is f”(r) = 2r 4+ 232, Since f” (siﬁ) = 6m, r = 3%/7? is a local minimum of

f(r). Since this is the only critical point for » > 0, it must be a global minimum.
The cup has a radius of giﬁ cm and a height of giﬁ.

Mean Value Theorems

Solution 5.13
We define the function

W) = f(2) - f(a) - H@m ~ ().

Note that h(z) is differentiable and that h(a) = h(b) = 0. Thus h(z) satisfies the conditions of Rolle’s theorem
and there exists a point £ € (a,b) such that

Solution 5.14
The first few terms in the Taylor series of sin(z) about x = 0 are

a3 x° x’ x?

sin(z) =2 = =+ 155~ 5010 360m80 T

The seventh derivative of sinz is — cosz. Thus we have that

w3 x® coszy

SIn(@) = =5+ 155 ~ Boa0 ©

93



where 0 < xy < z. Since we are considering x € [—1,1] and —1 < cos(zg) < 1, the approximation

3 0

sinr~x — — + —

6 120

has a maximum error of == =~ 0.000198. Using this polynomial to approximate sin(1),

13 5

1—— 4+ — =~ 0.841667.
6+120 0.841667

To see that this has the required accuracy,

sin(1) ~ 0.841471.

Solution 5.15
Expanding the terms in the approximation in Taylor series,

Ax? Az Axt
flo+ Aa) = (o) + Anf'(a) + S (@) 4 S8 () 4 S ),
! ALEQ /i Al‘g " Ax4 "
flx — Ax) = f(r) — Az f'(x) + Tf (z) — Tf (z) + ﬂf (z2),

where z < 77 <z + Az and x — Az < x5 < x. Substituting the expansions into the formula,

flx+ Ax) = 2f(z) + flz = Az) _ Az?

Aa? = f"(x) + S @) + £ (w2)]

Thus the error in the approximation is

Ax?
24

[f””(xl) + fl///(x2)] .
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Solution 5.16

L’Hospital’s Rule

Solution 5.17
a.

. [z —sinzx . [1—=cosx
lim |————— | =1lim | ———
z—0 3 z—0 i 3x?
. [sinz
= lim
a—0 | 6z }
. [cosz
= lim ]
z—0 L 6
B 1
6

. T —sinx 1
lm |[——| ==
z—0 [E3
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. 1 —cosz
= |1 _—
z—0 \ £ COST + Sin

sinx
—xsinx + cosx + cosx
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1 li 1+1x =1 _1 1+1w
08 xigpoo € _xirfw _Og x
= 1i _ 1 1+1
= lim [ wlog { 142
[og (1 + 1
— lim M
T—+00 1/:13
- ) 1 1 _%
R )
T—+00 —1/1’2
- . _1
= lim <1+—) ]
xr—-+00 T
=1

Thus we have




. It takes four successive applications of L’Hospital’s rule to evaluate the limit.

. 9 1 . 22 —sinz
lim | csc” 2 — — | = lim ————
z—0 z—0 g2sin”x
. 2 — 2cosxsinx
= lim 5 : —
z—0 2x4 cosxsinx + 2z sin“ x
’ 2 —2cos?x + 2sin’x
= lim
2—0 222 cos? & + 8x cos rsinz + 2sin® x — 222 sin’ x
8cosxsiny

1m : : :
2—0 122 cos?2 x + 12 cos zsinx — 8x2 cosxsinx — 12z sin® x
5 Scos?x — 8sin’x
= lim
2—0 24 cos? & — 8x2 cos? x — 64x cos xsinx — 24 sin’ & + 8x2sin’ &

It is easier to use a Taylor series expansion.

. 9 1 . x?—sinz

lim (csc”r — — | = lim ————

7—0 x? e—0 r2sin®x

2 — (x — 2%/6 + O(z°))?
a=0 2z + 0(2?))

z? — (2% — 2*/3 + O(29))

p— 1.
220 x* + O(29)
_ 1 1 2
1
-3

98



Solution 5.18

To evaluate the first limit, we use the identity a® = e’lo&¢

and then apply L’Hospital’s rule.

. a/x alogx
lim %" = lim e =

T—00 r—00

( , alogx)
=exp | lim
T—00 x

= exp (lim %)

:eo

lim 2%% =1

T—00

We use the same method to evaluate the second limit.

lim (1 + g>bx = lim exp (bx log (1 + >)

T—00 x T—00

= exp (hm bx log (1 + ))

log(1
= exp hm b—————= og(1 +a/7)
T—00 1/x
—a/x?
1+a/z

= exp :Ulingob_l/xQ

= hm b

x—>oo 1—|—a/x)

bx
lim (1+ 9) — o
T—00 €T
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Chapter 6

Integral Calculus

6.1 The Indefinite Integral

The opposite of a derivative is the anti-derivative or the indefinite integral. The indefinite integral of a function

f(zx) is denoted,
/f(x) dz.

d
o [ f@do = 1ia).

It is defined by the property that

While a function f(z) has a unique derivative if it is differentiable, it has an infinite number of indefinite integrals,
each of which differ by an additive constant.

Zero Slope Implies a Constant Function. If the value of a function’s derivative is identically zero, % =0,

then the function is a constant, f(z) = ¢. To prove this, we assume that there exists a non-constant differentiable
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function whose derivative is zero and obtain a contradiction. Let f(z) be such a function. Since f(x) is non-
constant, there exist points a and b such that f(a) # f(b). By the Mean Value Theorem of differential calculus,
there exists a point £ € (a, b) such that

f(b) = f(a)

116 = F = o,

which contradicts that the derivative is everywhere zero.

Indefinite Integrals Differ by an Additive Constant. Suppose that F'(z) and G(x) are indefinite integrals
of f(z). Then we have

é%m@—amwzﬁuw%ﬂwzﬂ@—ﬂ@ZO

Thus we see that F(z) — G(z) = ¢ and the two indefinite integrals must differ by a constant. For example, we
have [sinazdx = —cosz + ¢. While every function that can be expressed in terms of elementary functions, (the
exponent, logarithm, trigonometric functions, etc.), has a derivative that can be written explicitly in terms of
elementary functions, the same is not true of integrals. For example, [ sin(sinz)dx cannot be written explicitly
in terms of elementary functions.

Properties. Since the derivative is linear, so is the indefinite integral. That is,

/(af(x)+bg(m))dx - a/f(x) dx—l—b/g(x) dz.

For each derivative identity there is a corresponding integral identity. Consider the power law identity, dd—x( flz))* =
a(f(x))* 1 f(z). The corresponding integral identity is

_ (f(z))*
dr = o

/umwﬁm T a#-l,
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where we require that a # —1 to avoid division by zero. From the derivative of a logarithm, <L In(f(z)) =
we obtain,

f'(z) =1In|f(x c
/M do = I |f(2)] + .

Note the absolute value signs. This is because % In|z| = L for z # 0. In Figure 6.1 is a plot of In || and 1 to

reinforce this.

Figure 6.1: Plot of In |z| and 1/z.

Example 6.1.1 Consider

:/ﬁdx.

We evaluate the integral by choosing u = 2% + 1, du = 2z dz.

1 2x

== =
2/(x2+ Ty 4
1 [du

2/ w2
11
2

1
222+ 1)
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Example 6.1.2 Consider

I:/tanxdx:/smxdx.
CcOS T

By choosing f(z) = cosx, f'(xr) = —sinz, we see that the integral is
I= —/ O gy = —In|cosx| + c.
CoS

Change of Variable. The differential of a function g(x) is dg = ¢'(x)dz. Thus one might suspect that for
§=g(z),

/ £(6)de = / F(9(0))g (@) da, (6.1)

since d§¢ = dg = ¢'(x)dx. This turns out to be true. To prove it we will appeal to the the chain rule for
differentiation. Let & be a function of x. The chain rule is

210 = reg)

d _dfd¢
We can also write this as
df _ dedf
d¢  déde’
or in operator notation,
d_drd
d¢  d¢da’

103



Now we're ready to start. The derivative of the left side of Equation 6.1 is

d
% / F(6)de = ().

Next we differentiate the right side,
dr d

T [ 1etang@ s = [ Haa)g@) da

j—‘gﬂg(x))g'(x)

dz dg
= @f(g(x))—

dz
= f(g(x))
= f(¢)

to see that it is in fact an identity for £ = g(z).

Example 6.1.3 Consider

/ rsin(z?) da.

We choose ¢ = 22, d€ = 2xdx to evaluate the integral.

1
/a:sin(xQ)dm = i/sin(xQ)Qx dz

- %/sinfdf

1
= 5(— cos§) +c
1
=-3 cos(z?) + ¢
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Integration by Parts. The product rule for differentiation gives us an identity called integration by parts. We
start with the product rule and then integrate both sides of the equation.

L u@)ele) = u @) + ua)(2)

/(u'(a:)v(x) + u(z)v'(x)) dz = u(z)v(z) + ¢

The theorem is most often written in the form

/udv:uv—/vdu.

So what is the usefulness of this? Well, it may happen for some integrals and a good choice of u and v that the
integral on the right is easier to evaluate than the integral on the left.

Example 6.1.4 Consider [xe®dz. If we choose u = z, dv = e” dz then integration by parts yields

/xexdx:xem—/emdx: (x —1)e".

Now notice what happens when we choose u = €%, dv = x dx.

1 1
/xexd:p: Exzex—/éxQexdx

The integral gets harder instead of easier.

When applying integration by parts, one must choose u and dv wisely. As general rules of thumb:
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e Pick u so that u/ is simpler than w.

e Pick dv so that v is not more complicated, (hopefully simpler), than dv.

Also note that you may have to apply integration by parts several times to evaluate some integrals.

6.2 The Definite Integral

6.2.1 Definition

The area bounded by the x axis, the vertical lines x = @ and = b and the function f(z) is denoted with a

definite integral,
b
/ f(z)dx.

The area is signed, that is, if f(z) is negative, then the area is negative. We measure the area with a divide-and-
conquer strategy. First partition the interval (a,b) with a = xg < 27 < -++ < x,_1 < x, = b. Note that the area
under the curve on the subinterval is approximately the area of a rectangle of base Ax; = x;.; — x; and height
f(&), where & € [x;, x;41]. If we add up the areas of the rectangles, we get an approximation of the area under
the curve. See Figure 6.2

b n—1
[ s~ Y 6
a 1=0

As the Ax;’s get smaller, we expect the approximation of the area to get better. Let Ax = maxo<;<,—1 Az;. We
define the definite integral as the sum of the areas of the rectangles in the limit that Az — 0.

b n—1
JRICLIE IS SEY

The integral is defined when the limit exists. This is known as the Riemann integral of f(x). f(x) is called the
integrand.
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J(El) \

a X; Xy Xz A Xn2 Xn1 b

Figure 6.2: Divide-and-Conquer Strategy for Approximating a Definite Integral.

6.2.2 Properties

Linearity and the Basics. Because summation is a linear operator, that is

—_

n—

n—1 n—1
(cfi+dg)=cY fi+dY g
i=0 i=0

7

I
=)

definite integrals are linear,

/ab(cf(a:) +dg(z)) de = c/abf(x) dz + d/abg(;p) de.

One can also divide the range of integration.

/abf(x)dx:/acf(x)dm+/cbf(a:)dx
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We assume that each of the above integrals exist. If a < b, and we integrate from b to a, then each of the Ax;
will be negative. From this observation, it is clear that

/abf(a:)dx:—/baf(a:)dx

If we integrate any function from a point a to that same point a, then all the Az; are zero and

/aaf(x)dxzo.

Bounding the Integral. Recall that if f; < g;, then

n—1 n—1
Zfz < Zgi-
=0 =0

Let m = mingepqp f(2) and M = max,epy f(z). Then

-1 n—1
(b—a)m ZmA:r;Z < Z (&)Az; < ZMAQ:i =0b—-aM
i=0 i=0

implies that

Since
n—1 n—1
SR < I
i=0 i=0
we have




Mean Value Theorem of Integral Calculus. Let f(z) be continuous. We know from above that

(b—a)m < / f(z)dz < (b—a)M.

Therefore there exists a constant ¢ € [m, M| satisfying

/abf(x) dz = (b—a)c.

Since f(x) is continuous, there is a point £ € [a,b] such that f(§) = ¢. Thus we see that

/ f(x)dz = (b — ) £(€),

for some ¢ € [a, b].

6.3 The Fundamental Theorem of Integral Calculus

Definite Integrals with Variable Limits of Integration. Consider a to be a constant and x variable, then
the function F'(z) defined by

F(z) = / oL (6.2)
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is an anti-derivative of f(z), that is F'(x) = f(x). To show this we apply the definition of differentiation and the
integral mean value theorem.

F(zx + Azx) — F(z)

Fi(z) = Algicrilo Az
r+Ax T
It (UL S GL
Az—0 Az
B N IOL
a Algilo Az
= f(x)

The Fundamental Theorem of Integral Calculus. Let F(z) be any anti-derivative of f(z). Noting that
all anti-derivatives of f(x) differ by a constant and replacing x by b in Equation 6.2, we see that there exists a
constant ¢ such that

b
/ f(z)dz = F(b) 4+ c.

Now to find the constant. By plugging in b = a,

/af(x)dx:F(a)—l—c:O,

we see that ¢ = —F(a). This gives us a result known as the Fundamental Theorem of Integral Calculus.

/ f(z)dz = F(b) — F(a).

We introduce the notation
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Example 6.3.1

/ sinz dz = [— cos x| = — cos(m) + cos(0) = 2
0

6.4 Techniques of Integration

6.4.1 Partial Fractions

A proper rational function

Can be written in the form

p(x) :(( %, & +...+a”1>+(...)

(x — a)"r(z) r—a)  (r—a)n! r—a«

where the a;’s are constants and the last ellipses represents the partial fractions expansion of the roots of r(x).

The coeflicients are
1 d* (p(x)
ap = —— | —=
Eldzk \ r(x)

Example 6.4.1 Consider the partial fraction expansion of

r=«

1+x+42°
(x—1)%
The expansion has the form

Qg a a2
@—19 (w12 o1
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The coeflicients are

1
ap = —(1 4+ +2%)|,=1 = 3,

~ ol
L ) = (14 20)]s = 3
a1 = —— A T r=1 — T)lz=1 = 9,
TR ! '
1 d2 5 1
a9 = 5@(1+1’+$ )|x:1 = 5(2”90:1 =1
Thus we have
1+ + 22 3 3 1

@—1P (@—1P (@=12 z-1

Example 6.4.2 Suppose we want to evaluate

/1+x+ﬁd
—(1'— 1)3 xZ.

If we expand the integrand in a partial fraction expansion, then the integral becomes easy.

/%T—dex.:/mel)gﬂL(35_31)2+xi1) s

3 3
= o1 @op thE-D

Example 6.4.3 Consider the partial fraction expansion of

1+ 2+ 22
r2(x — 1)
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The expansion has the form

The coeflicients are

1 <1+a:+932> .
ap = = = 1,
0! (x —1)2 2—0
1d <1+x+x2 (1—1—231: 2(1+w+x2)) 5
alz—— _—_— = — = s
Hae w17 )|, @12~ @1 )|
1 (142 +2?
b0:6< $2 ) z=1:3’
1 d [(1+z+2? 1+2z 2(1+x+2?)
blz—— _ = — :—37
1!dz x? o1 x? x3 o1
Thus we have
14z +22 1 3 3 3

22(r—1)2 22 1 (r—1)2 xz-1

If the rational function has real coefficients and the denominator has complex roots, then you can reduce the
work in finding the partial fraction expansion with the following trick: Let a and @ be complex conjugate pairs
of roots of the denominator.

e — (o Yt )
(e e e A

Thus we don’t have to calculate the coefficients for the root at @. We just take the complex conjugate of the

coeflicients for «.
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Example 6.4.4 Consider the partial fraction expansion of

1+
24+ 1

The expansion has the form

The coeflicients are

Thus we have

6.5 Improper Integrals

If the range of integration is infinite or f(x) is discontinuous at some points then fab f(z)dz is called an improper
integral.

Discontinuous Functions. If f(z) is continuous on the interval a < x < b except at the point z = ¢ where
a < ¢ < b then

b c—6 b
/a f(z)dz = 6lirél+/a f(z)dx + lim f(z)dz

e—0t cte

provided that both limits exist.
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Example 6.5.1 Consider the integral of In z on the interval [0, 1]. Since the logarithm has a singularity at x = 0,
this is an improper integral. We write the integral in terms of a limit and evaluate the limit with L’Hospital’s
rule.

1 1
/ Inzdz = lim Inxzdz
0

T ot
—(151_1’>I(1)[I'1I1I K

=1In(l)—1- (lsir%(élné —0)
=—1 —gl_r)r(l)((ﬂné)

=—1—1lim <M>
6—0 1/(5

Example 6.5.2 Consider the integral of 2% on the range [0, 1]. If @ < 0 then there is a singularity at z = 0. First

assume that a # —1.
1 a+1 71
/ 2*dz = lim |2
0 s—0+ la+1];

1 5a+1
— lim
a+1 s=0ta+1

This limit exists only for a > —1. Now consider the case that a = —1.
! 1
1 .
dr = lim [l
/0 2 dr = lim [In x];
=In(0) — lim Iné
6—07+
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This limit does not exist. We obtain the result,

! 1
/ xdxr = , fora>—1.
0 a+1

Infinite Limits of Integration. If the range of integration is infinite, say [a, 00) then we define the integral as

| swde =t [ @)

a—0o0

provided that the limit exists. If the range of integration is (—oo, 00) then

/oof(x)dx:al_%moo f(z)dz + hm / f(z

Example 6.5.3
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Example 6.5.4 Consider the integral of * on [1,00). First assume that a # —1.

oo a+1 18
/ 2tdz = lim |2
1 Botoo |a+ 1],

ﬁa+1 1
= lim —
B—4oo a + 1 a—+1

The limit exists for 3 < —1. Now consider the case a = —1.
/ ¢t dz = lim [Inz]?
1 B—rtoo
lim Inpg !
= lim Ing— ——
B—+o0 a+1
This limit does not exist. Thus we have
o 1
/ xde = — , fora< —1.
1 a+1
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6.6 Exercises

Fundamental Integration Formulas
Exercise 6.1 (mathematica/calculus/integral/fundamental.nb)

Evaluate [(2z + 3) dz.

Exercise 6.2 (mathematica/calculus/integral/fundamental.nb)
Evaluate [ 20 dg.

Exercise 6.3 (mathematica/calculus/integral/fundamental.nb)

Evaluate [ xv2?+ 3dx.

Exercise 6.4 (mathematica/calculus/integral /fundamental.nb)

Evaluate [ sy,

Exercise 6.5 (mathematica/calculus/integral /fundamental.nb)
Evaluate [ -2 da.

Integration by Parts

Exercise 6.6 (mathematica/calculus/integral/parts.nb)
Evaluate [z sinzdz.

Exercise 6.7 (mathematica/calculus/integral /parts.nb)
Evaluate [ a®e* dux.
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Partial Fractions

Exercise 6.8 (mathematica/calculus/integral/partial.nb)
Evaluate [ —— d.

Exercise 6.9 (mathematica/calculus/integral/partial.nb)

41
Evaluate | 55— dx.

Definite Integrals

Exercise 6.10 (mathematica/calculus/integral/definite.nb)
Use the result

b N-1
| f@)de = Jim Z f(@n) Az
where Ax = b’Ta and x, = a + nAx, to show that

1
1

/ rzdxr = —.
0 2

Exercise 6.11 (mathematica/calculus/integral/definite.nb)
Evaluate the following integral using integration by parts and the Pythagorean identity. foﬂ sin? z dx

Exercise 6.12 (mathematica/calculus/integral/definite.nb)
Prove that

f(z)
iz [, MO = RIS )~ o) @)

(Don’t use the limit definition of differentiation, use the Fundamental Theorem of Integral Calculus.)
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Improper Integrals

Exercise 6. 13 (mathematica/calculus/integral /improper.nb)
Evaluate fo = 1)2 dz.

Exercise 6.14 (mathematica/calculus/integral /improper.nb)
Evaluate fo lx dz.

Exercise 6.15 (mathematica/ calculus/integral /improper.nb)

Evaluate [;° —'— o da.

Taylor Series

Exercise 6.16 (mathematica/calculus/integral/taylor.nb)

a. Show that
-+ ’ ! — dé

b. From the above identity show that
fa) = 1O +af 0+ [ €'

c. Using induction, show that

a) = £0) + 2£(0) + 5270) + -+ 20 + [ Lo - e
! o nl
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6.7 Hints

Fundamental Integration Formulas

Hint 6.1
Make the change of variables u = 2x + 3.

Hint 6.2
Make the change of variables u = Inz.

Hint 6.3
Make the change of variables v = 22 + 3.

Hint 6.4
Make the change of variables u = sin x.

Hint 6.5
Make the change of variables u = 2% — 5.

Integration by Parts

Hint 6.6
Let u = x, and dv = sinx dx.

Hint 6.7
Perform integration by parts three successive times. For the first one let u = 2° and dv = e** dx.

Partial Fractions
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Hint 6.8
Expanding the integrand in partial fractions,

1 1 a b

21 @-2@+2) @=2 @+2

l=a(z+2)+b(z—2)
Set x = 2 and x = —2 to solve for a and b.
Hint 6.9
Expanding the integral in partial fractions,

r+1 r+1 a b c

B+ 12— 6 x(r—2)(r+3) §+x—2+x+3

r+1=alx—2)(x+3)+bx(z+3)+cx(x —2)
Set x =0, x =2 and x = —3 to solve for a, b and c.

Definite Integrals
Hint 6.10



Hint 6.11
Let v = sinx and dv = sinx dx. Integration by parts will give you an equation for foﬂ sin? z dx.

Hint 6.12
Let H'(z) = h(z) and evaluate the integral in terms of H(x).

Improper Integrals

Hint 6.13

4 1-§ 4

1 1 1
/ —dm—hm —dx—i—hm ——dz

o (x—1)° 50t Jo  (z—1) 0t Jipe (. —1)?

Hint 6.14
1
—dzx =1
[ | e

Hint 6.15

/ 1 1 T
————dx = — arctan <—>
2 + a? a a

Taylor Series

Hint 6.16
a. Evaluate the integral.
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b. Use integration by parts to evaluate the integral.

c. Use integration by parts with u = f("*)(z — ¢) and dv = L¢".

n

124



6.8 Solutions

Fundamental Integration Formulas

Solution 6.1

Let u=2x+3, g(u) =2 = u=3 g (u) =

Solution 6.2

112

(22 + 3)1!

22
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Solution 6.3

2
/x\/a:2+3dx:/\/$2+3%%dx

(2?4 3)32
T2 3/2
(2% + 3)3/2
3

Solution 6.4

/Césxdx:/ ‘1 d(sinz) e
sin x sinx dx

= In | sin x|

Solution 6.5

x? 1 1d(z?)
dz = ———d
/x3—5 v /x3—53 dx o

= %m |2° — 5|
Integration by Parts
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Solution 6.6
Let w =z, and dv = sinx dz. Then du = dz and v = — cos z.

/xsinxdx:—xcosx+/cosxdz

= —gcosx +sinx + C

Solution 6.7

Let u = 23 and dv = €**dz. Then du = 3z2dz and v = L e2*.

1
26

1
/x?’e% dr = —23e** — §/a72 e dx
2 2

Let u = 22 and dv = e**dz. Then du = 2z dz and v =

1
/x?’e%ﬁ der = —22e® — Z2%e
2 4

w
[N}
[}
8

+
O | o
8
(¢}
N
8
o
8

2x

Let w = 2 and dv = e**dz. Then du =dz and v = 1 e

1
2
1 3 3 /1 1
¥ dr=—pte® — 2 4 2 [ Zxe®® — = [ 2dx
2 4 2\ 2 2
1 3 3 3
/ac?’ e dxr = ix?’ e* — Za?e®  Txe* — 3 e+ C
Partial Fractions
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Solution 6.8
Expanding the integrand in partial fractions,
I 1 B A N B
24 (z-2(x+2) (x-2) (z+2)

1=A(x+2)+ Bz —2)
Setting x = 2 yields A = i. Setting x = —2 yields B = —%. Now we can do the integral.

/x21—4dx:/(4(3§1—2) _4(331—1—2)) de

1n|x—2|——1n|x+2|+0

r—2
T+ 2

T4
1
4

‘+0

Solution 6.9
Expanding the integral in partial fractions,

z+1 z+1 A B C

x3+x2—6x_x(x—2)(x+3)_;+x—2+x+3

r+1=Ax—2)(x+3)+ Bx(z+3) + Czx(x — 2)
Setting x = 0 yields A = —%. Setting x = 2 yields B = %. Setting z = —3 yields C = — 2.

15
r+1 1 3 2
/x3+x2—6:c v /< 6r  10(z —2) 15(:c+3)> v

3
:——ln|x|+ ln|x—2|——ln|x+3|+0

o |z — |3/10 .
‘$|1/6|x + 3|2/15 +
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Definite Integrals

Solution 6.10
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Solution 6.11
Let w =sinz and dv = sinxz dz. Then du = cosz dx and v = — cos z.

i T
. . s
/stxdx:[—sm:Ucosx] —|—/ cos® x dzx
0 0

0
™

cos? z dx

(1 —sin®z)dz

™
:7T—/ sin® x dz
0
s
2/ sinfxdr =7
0

iy
. 92 T
sin“xdr = —
0 2

S—

Solution 6.12
Let H'(x) = h(z).

Improper Integrals
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Solution 6.13

4 1 1-6 1 4 1
——dz =1 —d li —d
/0 i S | e 13 S )

‘ 1 1-6 . 1 4
= lim |— + lim |—
5—0+ r—1 0 e—0+ r—1

1+4e
li ! 1)+ 1 L + L
= lim (= — im | —=+ -
50+ \ O e—0t 3 €

=00+ 00

The integral diverges.

Solution 6.14

| |
/—dx—lim —dz
0 \/E e—0t ¢ T

= lim [2V/7],

e—0t

= lim 2(1 — Ve)

e—0t
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Solution 6.15

Taylor Series

Solution 6.16
a.

= f(0) = f(0) + f(x)

b.
£(0) + 2f(0) + /0 CEf @ — €)de = F(0) + f(0) + [—Ef(a — O)F — /0 e e
= F0) + 2f'(0) — 2 f'(0) — [fla — O
— £(0) = J(0) + f(a)
_ f()



c. Above we showed that the hypothesis holds for n = 0 and n = 1. Assume that it holds for some n = m > 0.

Fa) = FO) +2£0) 4 522 £0) 4+ aFOO) + [ S e - ) e

T

£n+1f(n+1) (SU . 5)

(n+1)! 0

= f(0) +zf'(0) + %ﬁf”(@) SRR %x”f(")(O) + {

v 1

= F(0)+2f(0) + 5 F"(0) + -+ 1" FO0) +

5 xn+1f(n+1) (O)

(n+1)!
’ 1 n+1 p(n+2) i
e AR G

This shows that the hypothesis holds for n = m + 1. By induction, the hypothesis hold for all n > 0.
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Chapter 7

Vector Calculus

7.1 Vector Functions

Vector-valued Functions. A vector-valued function, r(¢), is a mapping r : R — R” that assigns a vector to
each value of t.

r(t) =ri(t)er + - -+ ru(t)en.

An example of a vector-valued function is the position of an object in space as a function of time. The function
is continous at a point t = 7 if

limr(t) =r(7).

t—1

This occurs if and only if the component functions are continuous. The function is differentiable if

dt — A}tr—r}o At

dr i r(t + At) —r(t)
exists. This occurs if and only if the component functions are differentiable.

134



If r(t) represents the position of a particle at time ¢, then the velocity and acceleration of the particle are

2
dr and E

dt de?”’
respectively. The speed of the particle is [r/(¢)].

Differentiation Formulas. Let f(¢) and g(¢) be vector functions and a(t) be a scalar function. By writing out
components you can verify the differentiation formulas:

d
g fe=fgtf-g
%(fxg):f’xg—l—fxg’

%(af) = a'f + af’

7.2 Gradient, Divergence and Curl

Scalar and Vector Fields. A scalar field is a function of position u(x) that assigns a scalar to each point in
space. A function that gives the temperature of a material is an example of a scalar field. In two dimensions, you
can graph a scalar field as a surface plot, (Figure 7.1), with the vertical axis for the value of the function.

A wector field is a function of position u(x) that assigns a vector to each point in space. Examples of vectors
fields are functions that give the acceleration due to gravity or the velocity of a fluid. You can graph a vector
field in two or three dimension by drawing vectors at regularly spaced points. (See Figure 7.1 for a vector field in
two dimensions.)

Partial Derivatives of Scalar Fields. Consider a scalar field u(x). The partial derivative of u with respect

to xy is the derivative of v in which x is considered to be a variable and the remaining arguments are considered

to be parameters. The partial derivative is denoted -2-u(x), 2% or u,, and is defined
oxy, oxy, k

du _ lim w(zy, . o+ Any ) — (T, Ty X))
0x  Az—0 Az
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Figure 7.1: A Scalar Field and a Vector Field

Partial derivatives have the same differentiation formulas as ordinary derivatives.
Consider a scalar field in R?, u(z,y, 2). Higher derivatives of u are denoted:

_0Pu_ 0 0u
Yoo =502 = Bz oz’
Pu 9 Ou

Uay = 0xdy — Oz Oy’
a7 0o
0x20y0z ~— 0x20y 0z’

Uggyz =
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If u,y, and u,, are continuous, then

Pu  Pu
oxdy  Oyox’

This is referred to as the equality of mized partial derivatives.

Partial Derivatives of Vector Fields. Consider a vector field u(x). The partial derivative of u with respect

: 0 du :
to zy, is denoted z-u(x), g2+ or u,, and is defined
ou . ou(xyg,.. g+ Ax o xy) —u(T, . Ty, Ty)
— = lim
0x)  Az—0 Ax

Partial derivatives of vector fields have the same differentiation formulas as ordinary derivatives.

Gradient. We introduce the vector differential operator,

0 )
V=oe+ +-—e

0x; ox,
which is known as del or nabla. In R? it is
0 0 0
v=2iv 254 Yk
(91:1 * 8y'] + 0z
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Directional Derivative. Suppose you are standing on some terrain. The slope of the ground in a particular
direction is the directional derivative of the elevation in that direction. Consider a differentiable scalar field, u(x).
The derivative of the function in the direction of the unit vector a is the rate of change of the function in that
direction. Thus the directional derivative, D,u, is defined:

Dyu(x) = lim ux + ea) — u(x)
€— €
 lim w(zy +€eay, ..., T, +€ay) —ul(xy,. .., x,)
e—0 €
iy () €artie (%) + - - + €antty, (%) + O(€7)) — u(x)
e—0 €

= A Uy, (X) + -+ + Ay, (X)

Dyu(x) = Vu(x) - a.

Tangent to a Surface. The gradient, Vf, is orthogonal to the surface f(x) = 0. Consider a point £ on the
surface. Let the differential dr = dxie; + - - - dx, e, lie in the tangent plane at £&. Then

_9of of 4. _
df = o, dry + -+ oz, dr, =0
since f(x) = 0 on the surface. Then
0 0
Vf ~dr = <a—a{181 + -+ a—xj;en) . (dx161 + -+ dxnen)
_of of
= o dei + -+ Bz, dx,,

=0

Thus V f is orthogonal to the tangent plane and hence to the surface.
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Example 7.2.1 Consider the paraboloid, 2% + y?> — 2z = 0. We want to find the tangent plane to the surface at
the point (1,1,2). The gradient is

Vf=2xi+2yj—k.
At the point (1,1, 2) this is
Vf(1,1,2) =2i+2j— k.
We know a point on the tangent plane, (1,1,2), and the normal, V f(1,1,2). The equation of the plane is

Vi1,1,2) (z,y,2) =Vf(1,1,2)-(1,1,2)
‘2x+2y—z:2‘

The gradient of the function f(x) =0, V f(x), is in the direction of the maximum directional derivative. The
magnitude of the gradient, |V f(x)[, is the value of the directional derivative in that direction. To derive this,
note that

D.f=Vf-a=|Vf|cosb,

where 6 is the angle between Vf and a. D, f is maximum when ¢ = 0, i.e. when a is the same direction as Vf.
In this direction, D,f = |V f|. To use the elevation example, V f points in the uphill direction and |V f| is the
uphill slope.

Example 7.2.2 Suppose that the two surfaces f(x) = 0 and g(x) = 0 intersect at the point x = £&. What is the
angle between their tangent planes at that point? First we note that the angle between the tangent planes is by
definition the angle between their normals. These normals are in the direction of V f(&) and Vg(&). (We assume
these are nonzero.) The angle, 6, between the tangent planes to the surfaces is

— arccos Vf(E) ‘ Vg(g)
0= (IVf(£)| |v9<s>|> |
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Example 7.2.3 Let u be the distance from the origin:

u(x) = VX - x = /7,7

In three dimensions, this is

u(z,y, z) = /22 + y? + 22

The gradient of u, V(x), is a unit vector in the direction of x. The gradient is:

v<x>:<mm>:ﬁ

In three dimensions, we have

( ) x Yy z

U x? y7 )= 9 ) *
Va2 +y? + 22 a2ty 422 a4 y? 2

This is a unit vector because the sum of the squared components sums to unity.

x;€; Trper X;T;
VEIjTj A/ T1X T4

Figure 7.2 shows a plot of the vector field of Vu in two dimensions.

Vu-Vu=

Example 7.2.4 Consider an ellipse. An implicit equation of an ellipse is

22
po) + o 1.

We can also express an ellipse as u(z,y) + v(z,y) = ¢ where u and v are the distance from the two foci. That is,

an ellipse is the set of points such that the sum of the distances from the two foci is a constant. Let n = V(u+wv).
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Figure 7.2: The gradient of the distance from the origin.

This is a vector which is orthogonal to the ellipse when evaluated on the surface. Let t be a unit tangent to the
surface. Since n and t are orthogonal,

n-t=0
(Vu+Vov) -t =0
Vu-t=Vuv-(-t).

Since these are unit vectors, the angle between Vu and t is equal to the angle between Vv and —t. In other
words: If we draw rays from the foci to a point on the ellipse, the rays make equal angles with the ellipse. If the
ellipse were a reflective surface, a wave starting at one focus would be reflected from the ellipse and travel to the
other focus. See Figure 8.3. This result also holds for ellipsoids, u(x,y, z) + v(z,y, z) = c.

We see that an ellipsoidal dish could be used to collect spherical waves, (waves emanating from a point). If
the dish is shaped so that the source of the waves is located at one foci and a collector is placed at the second,
then any wave starting at the source and reflecting off the dish will travel to the collector. See Figure 7.4.
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Figure 7.3: An ellipse and rays from the foci.

Figure 7.4: An elliptical dish.

7.3 Exercises
Vector Functions
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Exercise 7.1
Consider the parametric curve

t s t .
I = COS — 1 S11 — .
2 2/

&t Plot the position and some velocity and acceleration vectors.

a2

Calculate % and

Exercise 7.2
Let r(t) be the position of an object moving with constant speed. Show that the acceleration of the object is
orthogonal to the velocity of the object.

Vector Fields

Exercise 7.3
Consider the paraboloid x? +y? — 2z = 0. What is the angle between the two tangent planes that touch the surface
at (1,1,2) and (1, —1,2)? What are the equations of the tangent planes at these points?

Exercise 7.4
Consider the paraboloid x2 4+ y* — 2 = 0. What is the point on the paraboloid that is closest to (1,0, 0)?
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7.4 Hints

Vector Functions

Hint 7.1
Plot the velocity and acceleration vectors at regular intervals along the path of motion.

Hint 7.2

If r(¢) has constant speed, then |r/(t)| = ¢. The condition that the acceleration is orthogonal to the velocity can
be stated mathematically in terms of the dot product, r”(¢) - r'(t) = 0. Write the condition of constant speed in
terms of a dot product and go from there.

Vector Fields

Hint 7.3
The angle between two planes is the angle between the vectors orthogonal to the planes. The angle between the

two vectors is
(2,2,—1)-(2,-2,—1) )
6 = arccos (
(2,2, =1)[[{2, =2, -1)|

The equation of a line orthogonal to a and passing through the point bisa-x =a-b.

Hint 7.4

Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to
the vector from the closest point to (1,0,0). We can express this using the gradient and the cross product. If
(x,y, z) is the closest point on the paraboloid, then a vector orthogonal to the surface there is Vf = (2z, 2y, —1).
The vector from the surface to the point (1,0,0) is (1 — 2, —y, —z). These two vectors are parallel if their cross
product is zero.
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7.5 Solutions

Vector Functions

Solution 7.1
The velocity is

~

B 1 . t - 1 t\.
r = 28111 5 1 2COS 5 J-
r = 1cos t i 1sin LY
-\ )Y

See Figure 7.5 for plots of position, velocity and acceleration.

The acceleration is

o

Figure 7.5: A Graph of Position and Velocity and of Position and Acceleration
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Solution 7.2

If r(¢) has constant speed, then |r/(t)| = ¢. The condition that the acceleration is orthogonal to the velocity can
be stated mathematically in terms of the dot product, r”(¢) - r'(t) = 0. Note that we can write the condition of
constant speed in terms of a dot product,

r'(t)-r'(t) =c,

r'(t)-1r'(t) =
Differentiating this equation yields,

() -’ () +1'(t) " (t) =0

r’(t) - r'(t) = 0.
This shows that the acceleration is orthogonal to the velocity.

Vector Fields

Solution 7.3

The gradient, which is orthogonal to the surface when evaluated there is Vf = 2xi + 2yj — k. 2i + 2j — k and
2i — 2j — k are orthogonal to the paraboloid, (and hence the tangent planes), at the points (1, 1,2) and (1, —1,2),
respectively. The angle between the tangent planes is the angle between the vectors orthogonal to the planes.

The angle between the two vectors is
2,2,—1)-(2,-2,—-1
9_—8chcos(<77 )< (2,2, >>

|<2= 27 _1>||<27 _27 _1>’

6 = arccos (%) ~ 1.45946.
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Recall that the equation of a line orthogonal to a and passing through the point b is a-x = a-b. The equations
of the tangent planes are

(2,£2,—1) - (z,y,2) = (2,£2,-1) - (1, £1, 2),

20+2y—z=2]

The paraboloid and the tangent planes are shown in Figure 7.6.

Figure 7.6: Paraboloid and Two Tangent Planes

Solution 7.4
Since the paraboloid is a differentiable surface, the normal to the surface at the closest point will be parallel to

the vector from the closest point to (1,0,0). We can express this using the gradient and the cross product. If
(x,y, z) is the closest point on the paraboloid, then a vector orthogonal to the surface there is Vf = (2z, 2y, —1).
The vector from the surface to the point (1,0,0) is (1 — z, —y, —z). These two vectors are parallel if their cross
product is zero,

(2x,2y, —1) x (1 —x,—y,—2) = (—y — 2yz, —1 + = + 2xz, —2y) = 0.
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This gives us the three equations,

-y —2yz =0,
—14+x+222=0,
—2y = 0.

The third equation requires that y = 0. The first equation then becomes trivial and we are left with the second
equation,

—1+z+2x2=0.
Substituting z = 22 + y? into this equation yields,
22° + 2 —1=0.
The only real valued solution of this polynomial is

- 6-2/3 (9 + \/g) 23 _ 6173
0+ v4§7)1/3

Thus the closest point to (1,0,0) on the paraboloid is

~ 0.589755.

T

6-2/3 (94 v/3T)** — 1/ . (6—2/3 9+ V&) =6
(9+v&T)"? (9+V&T)"?

The closest point is shown graphically in Figure 7.7.

2
~1/3
) ~ (0.589755,0,0.34781).
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Figure 7.7: Paraboloid, Tangent Plane and Line Connecting (1,0,0) to Closest Point
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Part 111

Functions of a Complex Variable
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Chapter 8

Complex Numbers

For every complex problem, there is a solution that is simple, neat, and wrong.

- H. L. Mencken

8.1 Complex Numbers

When you started algebra, you learned that the quadratic equation: z2 + 2ax + b = 0 has either two, one or no
solutions. For example:

e 72 — 31+ 2 =0 has the two solutions x = 1 and = = 2.
e 2 — 2x + 1 = 0 has the one solution = = 1.

e 22+ 1 =0 has no solutions.
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This is a little unsatisfactory. We can formally solve the general quadratic equation.

22 +2ax+b=0
(x+a)?=a*—b

r=—-a+xva2—-0>

However, the solutions are defined only when a? > b. The square root function, /z, is a bijection from R%* to
R%*. We cannot solve 22 = —1 because v/—1 is not defined. To overcome this apparent shortcoming of the real
number system, we create a new symbolic constant, i = v/—1. Now we can express the solutions of 22 = —1 as
x =i and x = —i. These satisfy the equation since i? = (\/—_1)2 = —1 and (—i)? = (—\/—_1)2 = —1. Note that
we can express the square root of any negative real number in terms of i: /—r = v/—1/7 = i\/r. We call any
number of the form ib, b € R, a pure imaginary number. ' We call numbers of the form a + ib, where a,b € R,
complex numbers >

The quadratic with real coefficients, 22 + 2ax + b = 0, has solutions * = —a £ v/a? —b. The solutions are
real-valued only if a®> — b > 0. If not, then we can define solutions as complex numbers. If the discriminant is
negative, then we write x = —a +iv/b — a2. Thus every quadratic polynomial has exactly two solutions, counting
multiplicities. The fundamental theorem of algebra states that an n** degree polynomial with complex coefficients
has n, not necessarily distinct, complex roots. We will prove this result later using the theory of functions of a
complex variable.

Consider the complex number z = = + 1y, (z,y € R). The real part of z is R(z) = z; the imaginary part of z is

3(z) = y. Two complex numbers, z; = x1 + iy; and zo = 5 + iye, are equal if and only if x; = 25 and y; = ys.

The complex conjugate * of z = x + iy is Z = x — iy. The notation z* = x — 4y is also used.

L “Imaginary” is an unfortunate term. Real numbers are artificial; constructs of the mind. Real numbers are no more real than
imaginary numbers.

2Here complex means “composed of two or more parts”, not “hard to separate, analyze, or solve”. Those who disagree have a
complex number complex.

3Conjugate: having features in common but opposite or inverse in some particular.
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The set of complex numbers, C, form a field. That essentially means that we can do arithmetic with complex
numbers. We treat i as a symbolic constant with the property that i> = —1. The field of complex numbers satisfy
the following properties: (Let z, 21, 29, 23 € C.)

1. Closure under addition and multiplication.

21+ 20 = (21 4+ iy1) + (T2 + 1y0)
= (21 +m2) +i(y1 +y2) €C
2129 = (1 + iy1) (22 + 1y2)
= (

1179 — Y1y2) + (@12 + 22y1) € C

2. Commutativity of addition and multiplication. z; + 2o = 29 4+ 21. 2120 = 2927.

3. Associativity of addition and multiplication. (z1 + 22) + 25 = 21 + (22 + 23). (2122)25 = 21(2223).
4. Distributive law. 21(za + 23) = 2122 + 21 23.

5. Identity with respect to addition and multiplication. z +0 = z. z(1) = z.

6. Inverse with respect to addition. z + (—z) = (z +iy) + (—x —iy) = 0.

7. Inverse with respect to multiplication for nonzero numbers. zz~! = 1, where

1 1 T — 1y T oy
z = — = = = — 1
z  xrHiy x4y 2?4y a4y

Complex Conjugate. Using the field properties of complex numbers, we can derive the following properties
of the complex conjugate, Z = x — 1y.

1. (?):z,

2. 2+ (=2+¢,
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()2
8.2 The Complex Plane

We can denote a complex number z = z + iy as an ordered pair of real numbers (z,y). Thus we can represent
a complex number as a point in R? where the  component is the real part and the y component is the imaginary
part of z. This is called the complex plane or the Argand diagram. (See Figure 8.1.)
Im(z)

(x,y)

Re(2)

Figure 8.1: The Complex Plane

There are two ways of describing a point in the complex plane: an ordered pair of coordinates (z,y) that give
the horizontal and vertical offset from the origin or the distance r from the origin and the angle # from the positive
horizontal axis. The angle # is not unique. It is only determined up to an additive integer multiple of 2.

Modulus. The magnitude or modulus of a complex number is the distance of the point from the origin. It is

defined as |z| = |z + iy| = /22 + y2. Note that 2z = (v + iy)(z — iy) = 2* + y* = |z|>. The modulus has the
following properties.
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L [z122] = |21 [ 22]

= @ for 25 # 0.
|22

2. |2

)
3. |21 + 2| < |z1] + |22
4. |21 + 20| > [|21| — |2

We could prove the first two properties by expanding in x + iy form, but it would be fairly messy. The proofs
will become simple after polar form has been introduced. The second two properties follow from the triangle
inequalities in geometry. This will become apparent after the relationship between complex numbers and vectors
is introduced. One can show that

2122+ - - 2| = |21] [22] - - | 2]
and
|21+ 20+ -+ 20| <]+ 22| + -+ |24

with proof by induction.

Argument. The argument of a complex number is the angle that the vector with tail at the origin and head
at z = = + iy makes with the positive z-axis. The argument is denoted arg(z). Note that the argument is defined
for all nonzero numbers and is only determined up to an additive integer multiple of 2. That is, the argument
of a complex number is the set of values: {0+ 27n |n € Z}. The principal argument of a complex number is that

angle in the set arg(z) which lies in the range (—m, 7]. The principal argument is denoted Arg(z). We prove the
following identities in Exercise 8.7.

arg(z() = arg(z) + arg(()
Arg (2() # Arg(z) + Arg(()
arg(2?) = arg(2) + arg(z) # 2arg(z)
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Example 8.2.1 Consider the equation |z — 1 —i| = 2. The set of points satisfying this equation is a circle of
radius 2 and center at 1+ in the complex plane. You can see this by noting that |z — 1 — | is the distance from
the point (1,1). (See Figure 8.2.)

-1

Figure 8.2: Solution of [z — 1 —i| =2
Another way to derive this is to substitute z = x + iy into the equation.

|z +iy—1—i| =2

VACERVENURSVES:
(-1 +(y—1)2=4

This is the analytic geometry equation for a circle of radius 2 centered about (1,1).

Example 8.2.2 Consider the curve described by

|z| + |z — 2| = 4.
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Note that |z| is the distance from the origin in the complex plane and |z — 2| is the distance from z = 2. The
equation is

(distance from (0,0)) + (distance from (2,0)) = 4.

From geometry, we know that this is an ellipse with foci at (0,0) and (2,0), major axis 2, and minor axis v/3.
(See Figure 8.3.)

Figure 8.3: Solution of |z| 4+ |z — 2| =4
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We can use the substitution z = x + 1y to get the equation an algebraic form.
|z| + ]z —2| =4
x4+ 1y| + o +iy — 2| =4
Va2 (@ -2 4y = 4
224y =16 -8/ (v —2)2 + 92 + 2% — 4o + 4 + 3
r—5==2(x—2)2+y?
2? — 102 + 25 = 42 — 162 + 16 + 49/

1 1
S — 12 4 =1
4(95 )+3y

Thus we have the standard form for an equation describing an ellipse.

8.3 Polar Form

Polar Form. A complex number written as z = x + iy is said to be in Cartesian form, or a + ib form.
We can convert this representation to polar form, z = r(cos@ + isin@), using trigonometry. Here r = |z| is
the modulus and 6 = arctan(z,y) is the argument of z. The argument is the angle between the x axis and
the vector with its head at (z,y). (See Figure 8.4.) Note that 6 is not unique. If z = r(cos@ + isinf) then
z =r(cos(0 + 2n7) + isin(f 4 2nm)) for any n € Z.

The Arctangent. Note that arctan(x,y) is not the same thing as the old arctangent that you learned about
in trigonometry, arctan (y) For example,

xT

-3
arctan(1,1) = % +2nm  and arctan(—1,—1) = Tﬂ + 2nm,

—1 1
arctan - = arctan i = arctan(1).
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rsin@

Re(2)

Figure 8.4: Polar Form

Euler’s Formula. FEuler’s formula, ¢ = cos® + isinf, allows us to write the polar form more compactly.

Expressing the polar form in terms of the exponential function of imaginary argument makes arithmetic with
complex numbers much more convenient. (See Exercise 8.14 for a proof of Euler’s formula.)

z = r(cos§ + isinf) = re”

Arithmetic With Complex Numbers. Note that it is convenient to add complex numbers in Cartesian form.
(l’l + 2y1> + (.1'2 + Zyg) = (.’L‘l + 1'2) + z(yl + yz)
However, it is difficult to multiply or divide them in Cartesian form.

(21 +iy1) (za + iy2) = (X122 — Y1Y2) + i(T1Y2 + T2y1)

vy +iyr (v i) (v2 —iye)  wiTo + iy T2y — L1y

To + Zy2 (%2 + Zyg)(aig — Zyg) LU% -+ yg LC% + y%
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On the other hand, it is difficult to add complex numbers in polar form.

01 rye® = ri(cos by +isinfy) + ry(cos by + isin )
=1y cos b + rycosby + i(rysinfy + rosinby)
= \/(Tl cos 0y + 19 cos 09)? + (11 sin 6y + 7o sin )2

i arctan(ry cos 01+rg cos 02,71 sin 61 +72 sin f2)

r e

X €

— \/7,,% + 7“% + 2 COS((91 . 92) eiarctan(rl cos 01472 cos 02,11 sin 1 +rg sin 62)

However, it is convenient to multiply and divide them in polar form.

r ei91 i(61+92)

re €2 = rirye

g et

_n ei(01—62)
79 02 T9

Keeping this in mind will make working with complex numbers a shade or two less grungy.

Result 8.3.1 To change between Cartesian and polar form, use the identities

re =rcosf+irsiné,

T+ Zy _ /xz + yg ei arctan(ac,y).

Cartesian form is convenient for addition. Polar form is convenient for multiplication
and division.

Example 8.3.1 The polar form of 5 + 7i is

5+ 7i = /74 eiarctan(B,?)‘
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2¢/6 in Cartesian form is
2¢"/6 = 2 cos (%) + 2isin (%)
=V3+i.
Example 8.3.2 We will show that
1 1 3
costh = 3 cos 46 + — cos 20 + —.

2 8
Recall that

i0 —if i0 —if
e e e — e
cosf = ete” and sinf = ——
2 21
i0 o\ 4
cost = e te )
2
1 . . . .
_ 1_6<e419 + 462z9 + 6 + 467229 + 67419)

1 e4i6 + e—4i9 1 eQi@ + e—QiG 3
:g(T)W(T)w

1 1 3
= gcos49+ 500829—1— 3

By the definition of exponentiation, we have e’ = ()" We apply Euler’s formula to obtain a result which is
useful in deriving trigonometric identities.

cos(nf) + isin(nf) = (cos() + isin(h))"
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Result 8.3.2 DeMoivre’s Theorem. “

cos(nf) + isin(nf) = (cos(6) + i sin(6))"

°It’s amazing what passes for a theorem these days. I would think that this would be a corollary at most.

Example 8.3.3 We will express cos 50 in terms of cos# and sin 56 in terms of sin 6.
We start with DeMoivre’s theorem.

cos 56 + i sin 50 = (cos ) + i sin §)°

= o cos® O + i 0 cos* Osinf — 0 cos®@sin?6 — i 0 cos? 0sin® 0
0 1 2 3
+ (i) cos@sin® 0 + z(g) sin® @

= (COS5 0 — 10 cos® 6 sin? 0 + 5 cos O sin* 9) +1 (5 cos? 0sin 6 — 10 cos® A sin® 6 + sin® 9)
Equating the real and imaginary parts we obtain

cos 5l = cos® § — 10 cos® Osin? 6 + 5 cos O sin* #

sin50 = 5 cos* Osin @ — 10 cos? A sin® § + sin® 6
Now we use the Pythagorean identity, cos?§ + sin® = 1.

cos 50 = cos® ) — 10 cos® (1 — cos? #) + 5 cos O(1 — cos? #)?

‘00550 = 16 cos’ f — 20COS3¢9+5COSQ‘
sin 50 = 5(1 — sin®#)?sin @ — 10(1 — sin® #) sin® § + sin® f
sin5f = 16sin® @ — 20sin® @ + 5siné
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8.4 Arithmetic and Vectors

Addition. We can represent the complex number z = z + iy = 7 ¢’ as a vector in Cartesian space with tail at

the origin and head at (z,y), or equivalently, the vector of length r and angle §. With the vector representation,
we can add complex numbers by connecting the tail of one vector to the head of the other. The vector z + ( is
the diagonal of the parallelogram defined by z and (. (See Figure 8.5.)

Negation. The negative of 2 = 4+ iy is —z = —x — 4y. In polar form we have z = re? and —z = re!?+7),
(more generally, z = re®*2*+1m™ 1 ¢ 7 In terms of vectors, —z has the same magnitude but opposite direction
as z. (See Figure 8.5.)

Multiplication. The product of z = re? and ¢ = pe™® is 2{ = rpe’® . The length of the vector z( is the
product of the lengths of z and (. The angle of z( is the sum of the angles of z and (. (See Figure 8.5.)

Note that arg(z() = arg(z) + arg(¢). Each of these arguments has an infinite number of values. If we write
out the multi-valuedness explicitly, we have

{0+o+2mm:neZy={0+2m:neZ}+{p+2mn:nec’}

The same is not true of the principal argument. In general, Arg(z() # Arg(z) + Arg({). Consider the case
z=(=e3"* Then Arg(z) = Arg(() = 37/4, however, Arg (2() = —7/2.

Multiplicative Inverse. Assume that z is nonzero. The multiplicative inverse of z = re® is % = %e_ie. The
length of % is the multiplicative inverse of the length of z. The angle of % is the negative of the angle of 2. (See
Figure 8.6.)

Division. Assume that ¢ is nonzero. The quotient of z = r¢* and ¢ = pe'® is := %ei(9_¢). The length of the
vector % is the quotient of the lengths of z and (. The angle of % is the difference of the angles of z and (. (See
Figure 8.6.)
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Im(2) Im(2) z{=(x¢-yn)+i(xn+yg)
z+ (= (x+&)+i(y+N)

{=E+in Z=x+iy

Re(2) Re(2) Re(2)

Im(2)
7=+ iy =rpee+9 (=E+i n:pei‘P
=re® Z=x+iy=re®

-Z=-X-i
=rab+m

Figure 8.5: Addition, Negation and Multiplication

Complex Conjugate. The complex conjugate of z = x +iy = re? is Z = x —iy = re . Z is the mirror image
of z, reflected across the x axis. In other words, Z has the same magnitude as z and the angle of Z is the negative

of the angle of z. (See Figure 8.6.)

8.5 Integer Exponents

Consider the product (a + b)", n € Z. If we know arctan(a,b) then it will be most convenient to expand the
product working in polar form. If not, we can write n in base 2 to efficiently do the multiplications.

Example 8.5.1 Suppose that we want to write (v/3 + )% in Cartesian form. * We can do the multiplication
directly. Note that 20 is 10100 in base 2. That is, 20 = 2*4-22. We first calculate the powers of the form (v/3+1)%"

4No, I have no idea why we would want to do that. Just humor me. If you pretend that you're interested, I'll do the same. Believe
me, expressing your real feelings here isn’t going to do anyone any good.
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Im(2) Im(2) (=pe® Im(z)

z=re® Z=x+iy=re®
z=re®
Re(z Re(z Re(z
o) S NPT «2)
1=leio ¢ p
Z=x-iy=re"®

Figure 8.6: Multiplicative Inverse, Division and Complex Conjugate

by successive squaring.

(V3+i)?=2+i2V3
(V3+i)'=-8+1i8V3

(V3 +i)® = —128 — i128V/3
(V3 +14)'0 = —32768 + i32768+/3

Next we multiply (v/3 +i)* and (/3 +4)'¢ to obtain the answer.

(V3 +10)% = (—32768 +i32768V/3) (—8 + i8V/3) = —524288 — i524288V/3

Since we know that arctan(v/3,1) = 7/6, it is easiest to do this problem by first changing to modulus-argument
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form.

<\/§+@'>20 _ < /<\/§>2 412 eiarctan(\/gl))Qo

= (2 em/6)20
— 920 idn/3

1 V3
= 1048576 | —— — 11—

— 524288 — i524288V/3

Example 8.5.2 Consider (5+7i)". We will do the exponentiation in polar form and write the result in Cartesian
form.

. 11
(5 + 7Z~)11 _ (mezarctan(&?))
— 74°V/74(cos(11 arctan(5, 7)) + i sin(11 arctan(5, 7)))
= 2219006624V/74 cos(11 arctan(5, 7)) + 12219006624/ 74 sin(11 arctan(5, 7))

The result is correct, but not very satisfying. This expression could be simplified. You could evaluate the
trigonometric functions with some fairly messy trigonometric identities. This would take much more work than
directly multiplying (5 + 7).

8.6 Rational Exponents

In this section we consider complex numbers with rational exponents, 2?/?, where p/q is a rational number.
First we consider unity raised to the 1/n power. We define 1%/™ as the set of numbers {z} such that 2" = 1.

1= {z|2" =1}
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We can find these values by writing z in modulus-argument form.
2" =1

rn em9 -1

r" =1 nfd =0 mod 27
r=1 0 =2rk forkcZ

There are only n distinct solutions as a result of the 27 periodicity of €. Thus
1= {2 | =0,... ,n—1}.

These values are equally spaced points on the unit circle in the complex plane.

Example 8.6.1 1'/6 has the 6 values,
{60, oin/3 oitn3 oin oin3 oiom/3)

In Cartesian form this is

{1 1+iv8 —1+ivV8  —1-iV3 1—1’%3}
) 2 ) 2 y T 4y 2 ) 2 .

The sixth roots of unity are plotted in Figure 8.7.

The n'" roots of the complex number ¢ = a e’ are the set of numbers z = r e such that

M =c=ae?

rn ezn@ — aezﬁ

r=<a nf=p3 mod?2r

r=3a 0= (8+2nk)/nfork=0,... ,n—1.

Thus

= [Ya G f =0, =1} = {{/|e] M@ 2o
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Figure 8.7: The Sixth Roots of Unity.

Principal Roots. The principal n' root is denoted
V2= {YzetAsR)/n
Thus the principal root has the property

—7m/n < Arg ({/z) < w/n.

This is consistent with the notation you learned back in algebra where /= denoted the positive n'" root of a

positive real number. We adopt the convention that z'/" denotes the n'* roots of z, which is a set of n numbers
and {/z is the principal n*" root of z, which is a single number. With the principal root we can write,

S/ _ {l/;ei(Arg(z)+27rk)/n ’ k=0,...,n— 1}

=z g =0,... ,n—1}

Zl/n _ {L/Ell/n

That is, the n'" roots of z are the principal n'" root of z times the n'" roots of unity.
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Rational Exponents. We interpret zP/? to mean z®/9. That is, we first simplify the exponent, i.e. reduce
the fraction, before carrying out the exponentiation. Therefore 22/4 = 2%/2 and 2'%° = 22. If p/q is a reduced
fraction, (p and ¢ are relatively prime, in other words, they have no common factors), then

SPla = (Zp)l/q.
Thus 2P/9 is a set of ¢ values. Note that for an un-reduced fraction r/s,
(Zr>1/s 7§ (Zl/s)r )

The former expression is a set of s values while the latter is a set of no more that s values. For instance,
(1)Y/2 =142 = £1 and (1/2)? = (£1)? = 1.

Example 8.6.2 Consider 2/°, (1 +i)/3 and (2 +1)%/°.
21/5 _ \5/§ei27rk/5’ for k = O, 1, 27 3’ 4

N1/3
(1403 = <\/§ez7r/4>

= V2612273 for k= 0,1,2

(2 —+ i)5/6 — <\/geiArctan (2,1)>5/6

_ <\/§ eiBArctan (2,1))1/6

/55 ei6 Arctan (21) ™R3 for k=0,1,2,3,4,5

Example 8.6.3 The roots of the polynomial 2° 4 4 are
(_4)1/5 — <4ei7r>
= V/4em 25 for | =0,1,2,3, 4.

1/5
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8.7 Exercises

Complex Numbers

Exercise 8.1
Verify that:

. 1+2¢+2—z_ 2
T34 5 5

2. (1—i)'=—4

Exercise 8.2
Write the following complex numbers in the form a + b.

1. (1 +i\/§>_10
2. (11 + 4i)?

Exercise 8.3
Write the following complex numbers in the form a + ib

2. (1—14)T

Exercise 8.4
If z = o + iy, write the following in the form u(x,y) + iv(z,y).
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1. (5)
y4
0
9 212
2 —1z

Exercise 8.5
Quaternions are sometimes used as a generalization of complex numbers. A quaternion u may be defined as

U = Up —i—iul +jU2 +k'U3
where ug, u1, up and us are real numbers and 7, 7 and k are objects which satisfy
P==kK=-1, ij=k ji=—k

and the usual associative and distributive laws. Show that for any quaternions u, w there exists a quaternion v
such that

UV = W
except for the case ug = uy = uy = us.
Exercise 8.6

Let o # 0, 8 # 0 be two complex numbers. Show that o = ¢/ for some real number ¢ (i.e. the vectors defined by
« and 3 are parallel) if and only if S(a3) = 0.

The Complex Plane

Exercise 8.7
Prove the following identities.

1. arg(z() = arg(z) + arg(()

171



2. Arg(2¢) # Arg(z) + Arg(¢)

3. arg(z?) = arg(z) + arg(z) # 2arg(z)

Exercise 8.8
Show, both by geometric and algebraic arguments, that for complex numbers z; and z, the inequalities

21| = |22|] < |21+ 22| < 21| + |22]

hold.

Exercise 8.9
Find all the values of

L (—=1)=3/4

2. g1/6

and show them graphically.

Exercise 8.10
Find all values of

1. (—1)~4
2. 16Y/8

and show them graphically.
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Exercise 8.11
Sketch the regions or curves described by

L1<|z—2i <2
2. [R(2)|+5|S(2)| =1
Exercise 8.12
Sketch the regions or curves described by
L |z—1+4+14 <1
2. |z—1|=|z+1|
3. R(2) —(z) =5
4. |z —il+|z+1 =1

Exercise 8.13
Solve the equation

e — 1| =2
for 6 (0 < 6 < ) and verify the solution geometrically.

Polar Form

Exercise 8.14
Prove Euler’s formula, ¢ = cosf 4+ isin . Consider the Taylor series of e* to be the definition of the exponential
function.
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Exercise 8.15
Use de Moivre’s formula to derive the trigonometric identity

cos(30) = cos®(6) — 3 cos(f) sin?(8).

Exercise 8.16
Establish the formula

1— ZnJrl

T4z+2"+ 42" : (z #1),

1—2z
for the sum of a finite geometric series; then derive the formulas

1 i 1/2
1‘1+COSQ+C0820+"'+COSTL@:§ %
Q_ cos((n+1/2))
2 2sin(6/2)

1
2. sinf 4+sin20 + --- +sinnf = §C0t

where 0 < 0 < 2.

Arithmetic and Vectors

Exercise 8.17

Prove |2125| = | 21|22 and al = B

B using polar form.

Exercise 8.18
Prove that

2+ P+ 2= ¢ =2 (2P +1¢P) .

Interpret this geometrically.
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Integer Exponents

Exercise 8.19
Write (1 +4)' in Cartesian form with the following two methods:

1. Just do the multiplication. If it takes you more than four multiplications, you suck.
2. Do the multiplication in polar form.
Rational Exponents

Exercise 8.20
Show that each of the numbers z = —a + (a? — b)'/? satisfies the equation 2% + 2az + b = 0.
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8.8 Hints

Complex Numbers

Hint 8.1

Hint 8.2

Hint 8.3

Hint 8.4

Hint 8.5

Hint 8.6

The Complex Plane

Hint 8.7

Write the multivaluedness explicitly.

176



Hint 8.8
Consider a triangle with vertices at 0, z; and z; + 2z».

Hint 8.9

Hint 8.10

Hint 8.11

Hint 8.12

Hint 8.13

Polar Form

Hint 8.14
Find the Taylor series of €, cosf and sin#. Note that i?" = (—1)".

Hint 8.15
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Hint 8.16

Arithmetic and Vectors

Hint 8.17
|e] = 1.

Hint 8.18
Consider the parallelogram defined by z and (.

Integer Exponents

Hint 8.19
For the first part,

a+i) = ((a Fi?)7) (@i
Rational Exponents

Hint 8.20
Substitite the numbers into the equation.
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8.9 Solutions

Complex Numbers

Solution 8.1

1.
142 2-i 1+2i3+4i 2-i—i
3—4i 5 @ 3—4i34+4i 5 —i
_ 54100 120
25 5
2
5
2.

(1—4)*=(~2i)?=—4
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Solution 8.2
1. First we do the multiplication in Cartesian form.

(1 + @\/§>

= (1+av3)'(
_ (<_2+z2J§)< 2+22\/_) )
- ((—2 + ¢2\/§) <—8 . z’8\/§>2) B
- ((—2+i2\/§> ( 128+z128\f)>

( 512 — 2512\/_)
1 -1
C512140v/3
1 -1 1-iV3
C51214i0V31—iV3

IRVA]

~ 2048 " '2088
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Now we do the multiplication in modulus-argument, (polar), form.

(1 4 Z\/g) 10 _ (2 em/:s)flo

_ 9—10 ,—ilOm/3

1 107
—— (cos | ———
1024 3

s 107
isin (| ———
3

))

1 47 o 47
=——|cos| — ) —isin| —
1024 3 3

1 V3
= —— —|— VA
2048 2048

(11 + 4i)* = 105 + i88

Solution 8.3
1.

2+i  \° [ 2+i\?
i6—(1—i2))  \—-1+18
3+i4
—63 — 416
3+i4 —634+1il6
—63 — 16 —63 + 716
253 204

1225 4225
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(1 —4)*)*(L—0)*(1 i)

Solution 8.4
1.

- (50

T 41y

T — 1y

r+iy x4y

T —1y T+

22 —y? | 2y
+1

x2+y2 x2+y2
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z+21  wtaiy+2
2 —iz  2—i(x —iy)
_z+i(y+2)

2—y—ix

r+i(ly+2) 2—y+ix

2—y—ir 2—y+ix
22—y - y+2r | 2+ (y+2)(2-y)
= +1

(2—-y)* +2? (2 -y)* +2?
—2xy +.4+x2—y2
7

C-yr+a oy

Solution 8.5
Method 1. We expand the equation uv = w in its components.

uv = w

(uo + Z"LLl -+ jUQ + ku;g)(?)o + i?)l + jUQ + ]{1)3) = Wy + iw1 + j"LUQ + kwg

(upvg — urvy — UgVe — uzv3) + (U1 + UV — U3V + UgV3) + J(U2vg + U3VT + UGV — UL V3)
+ k(usvo — ugvy + v + upvs) = wo + iwy + jws + kws

We can write this as a matrix equation.

Uy —Up —U2 —U3 Vo Wo
Uy Uy U3 U2 v W
Uz U3 Up —w vy | | we
Uz —Uz U Ug U3 w3

183



This linear system of equations has a unique solution for v if and only if the determinant of the matrix is nonzero.
The determinant of the matrix is (u2 + u2 4 u2 + u2)*. This is zero if and only if ug = uy = uy = us = 0. Thus
there exists a unique v such that wv = w if u is nonzero. This v is

v = ((uowo + wywy + ugws + ugws) + i(—uwo + Uow + uzws — usws) + j(—ugwy — uzwy + Uows + urws3)

+ k(—uzwo + upwi — uyws + ugws)) /(ug + uj + uj + u3)
Method 2. Note that wu is a real number.

wu = (ug — iuy — jus — kug)(ug + tuy + jug + kus)
= (ug +uf +u3 +u3) +i(upus — urty — uguz + uzuy)
-+ j(uouz -+ UiuUz — UgUgy — U3U1) —+ k(U()Ug — U1U2 + UgU1 — 'LL3U0)

= (ug + uj + uj + u3)
uu = 0 only if u = 0. We solve for v by multiplying by the conjugate of u and divide by wu.

Uv = w
UuY = uw
uw
V= —
uu
(ug — iuy — jus — kus)(wo + iwy + jws + kws)
ud + u? 4 uj +uj

v =

V= (<UQw0 + uiwy + Ugwso + U31U3> + i(—u1w0 + ugwy + Uzwo — lLng) + j(—UQ’LUO — U3Wiy + UgWs + ulwg)

+ k(—uzwo + upwy — wyws + ugws)) /(ug + uj + uj + u3)

Solution 8.6 _
If @ = t3, then af = t|3]?, which is a real number. Hence S(a/3) = 0.
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Now assume that $(a/3) = 0. This implies that oF = r for some r € R. We multiply by 3 and simplify.
alf* =rp

r

T

'~ We see that a = t( for some real number ¢.

By taking t = e
The Complex Plane

Solution 8.7
Let z =re? and ¢ = pe®.

1.
arg(z() = arg(z) + arg(()
arg(rpe’ @y = {0 + 2rm} + {0 + 270}
{0+ 0+ 27k} = {0+ +2mm}
2.

Arg (2¢) # Arg(z) + Arg(()

Consider z = ( = —1. Arg(z) = Arg(¢) = m, however Arg(z() = Arg(1) = 0. The identity becomes
0 # 2m.

arg(z?) = arg(z) + arg(z) # 2arg(2)
arg(r? €)= {0 + 27k} + {0 + 2mm} # 2{0 + 27n}
{20 + 27k} = {20 + 2mm} # {20 + 47n}
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Zl+22
|z5|

|21| |21+22|

Figure 8.8: Triangle Inequality

Solution 8.8
Consider a triangle in the complex plane with vertices at 0, z; and 21 + 2z5. (See Figure 8.8.)

The lengths of the sides of the triangle are |z;|, |22] and |21 4 22| The second inequality shows that one side of
the triangle must be less than or equal to the sum of the other two sides.

|21 + 22| < |z1| + | 22|

The first inequality shows that the length of one side of the triangle must be greater than or equal to the difference
in the length of the other two sides.

|21+ 22| > [|21] — |22]|
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Now we prove the inequalities algebraically. We will reduce the inequality to an identity. Let z; = 7y e’

2o = 19002,

z1] = |22]] < |21 + 22 < [z1] + |22
Iry—ra| < frie®™ e <ty
(r1 —19)? < (r1 e 4 19e) (ry e £ rye™2) < (r) + 1ry)?
rf + r% —2riry < r% + r§ + riry ¢i01=02) 179 gi(—01+02) < r% + rg + 21179
—2r17r9 < 21179 cOS(01 — 02) < 2119
—1<cos(th —0) <1

Solution 8.9
1.

(_1)—3/4 _ ((_1)—3)1/4
= (1)1

_ (eiﬂ')l/4

_ oim/4q1/4

= @™/ eT2 | =0,1,2,3

_ {e”/‘l, ei37r/4, ei57r/47 ei77r/4}

—~

_{1+i 140 —1—i 1—¢}
Clve2T V2T V2 T V2
See Figure 8.9.
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Figure 8.9: (—1)~%/4

81/6 — \6/§11/6
=V2e* 3 £ =0,1,2,3,4,5
_ {\/5’ V263 262713\ el \/D 6T I3. \/§ei57r/3}

:{\/5 1+iv3 —14+iV3 _\/5—1—2'\/5 1—¢\/§}

V2 V2 V2 V2

See Figure 8.10.
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{ 1 ([ ]
-2 ®1 1% 2
-1
{ [ ]
-2

Solution 8.10
1.

( i )1/4
em/411/4

e/t et | =0,1,2,3
_ {e”/‘l, ei37r/4’ ei57r/47 ei77r/4}

_{1+Z 147 —1—1 1—2}
ClVv2T V2T V2 T2
See Figure 8.11.

189



Figure 8.11: (—1)"1/4

161/8 — %11/8
=V2e*/t | =0,1,2,3,4,5,6,7

— {\/5,\/5(3”/4, V2e? V28T 26 V2P, \/éei?’”ﬂ,\@em“}
- {\/571+Z7\/§7’7_1+Z7_\/§7_1 _27_\/52’1_2}

See Figure 8.12.

Solution 8.11
1. |z — 24| is the distance from the point 2¢ in the complex plane. Thus 1 < |z — 2i| < 2 is an annulus. See
Figure 8.13.
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[ ]
=
[ ]

Figure 8.12: 1671/8

Figure 8.13: 1 < |z — 2i| < 2
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[R(2)| +5[3(2) =1
| + 5yl =1

In the first quadrant this is the line y = (1 — x)/5. We reflect this line segment across the coordinate axes
to obtain line segments in the other quadrants. Explicitly, we have the set of points: {z =z + iy : —1 <
r<1Ay==x(1—]z|)/5}. See Figure 8.14.

0.4;

/\
\ i

-0. 4

Figure 8.14: |R(2)| +5|S(2)| =1

Solution 8.12
1. |z — 1 44| is the distance from the point (1 —¢). Thus |z — 1 4 ¢| <1 is the disk of unit radius centered at
(1 —1). See Figure 8.15.

2. The set of points equidistant from ¢ and —i is the real axis. See Figure 8.16.
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Figure 8.15: |z — 141 < 1

Figure 8.16: |z — i| = |z + 1|
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R(z) —(z) =5
r—y=

=T -9

See Figure 8.17.

5’ /

-10 -5 5 10
-10
_15

Figure 8.17: R(z) — S(2) =5

4. Since |z —i| 4+ |z + i| > 2, there are no solutions of |z — | + |z + 1| = 1.
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Solution 8.13

e — 1| =2
(e —1)(e™™—1)=4
1—e¥—e™r1=4
—2cos(f) =2
=T

{e?|0 < 6 < 7} is a unit semi-circle in the upper half of the complex plane from 1 to -1. The only point on
this semi-circle that is a distance 2 from the point 1 is the point -1, which corresponds to 6 = 7.

Polar Form

Solution 8.14
The Taylor series expansion of e” is

I
]2

=3
23

O:OO " 2n . o0 " 92n+1
:;(_1) (m)l“nz:%(_l) @nt 1)



The sine and cosine have the Taylor series

00 92n 0 92n+1

cosf = Z(—l)”<2n)!, sinf = Z(—l)"m,

Thus e and cos + isin @ have the same Taylor series expansions about # = 0. Since the radius of convergence
of the series is infinite we conclude that,

ei@

= cosf +isinf.

Solution 8.15

cos(36) + isin(30) = (cos(#) + isin(h))?
cos(36) + isin(30) = cos®(#) + i3 cos*(#) sin(f) — 3 cos(#) sin*(#) — i sin®(0)

We equate the real parts of the equation.

cos(36) = cos®(f) — 3 cos(#) sin*()

Solution 8.16
Define the partial sum,
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Now consider (1 — 2)S,(2).

3

1_Zn+l
Sa(z) =
(2)=——
m 9 n_l_ZnJrl
Z+z 4+ 2=
1—2z

Now consider z = e where 0 < § < 27 so that z is not unity.

n i0 n+1
i k_1_<e)
(e) = 0
1— ¢
k=0
n _ Ai(n+1)0
ko L el
e = —
1— e?
k=0

197

(= #1)



In order to get sin(f/2) in the denominator, we multiply top and bottom by e~%/2,

n o e~ 10/2 _ qi(n+1/2)0
kz_%(cos kO + isin k0) = =R
zn:cos ko 4 i zn:sin 19 — cos(0/2) —isin(6/2) — cos((n + 1/2)0) — isin((n + 1/2)0)
—2isin(60/2)
k=0 k=0
& S~ 1 sin((n+1/2)0) (1 cos((n+1/2)6)
gcoskﬁ—kz;smkﬁ— 5 + §in(0/2) +1 200t(0/2) Sn(072)

1. We take the real and imaginary part of this to obtain the identities.

= 1 sin((n+1/2)0)
kz%cos W= T o sm(8)2)

; sin k6 = %cot(9/2) - Cosé(;iln—i(-el//;)ﬁ)

Arithmetic and Vectors

Solution 8.17
122| = D1y e
|2120] |7“1e91r 6192|
= |ry7g /01702
= |17
= |r1]|ra|

= |21|] 2]
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21 ry e

29 o €102

1 (0, —
1 gi(01-62)
T2

1
T2
_ Il
o
_ lal

B |Z2|

Solution 8.18

2+ P+ 1= =G+ E+)+ (-0 (E-0)
=22+ 20+ (Z+((+ 22— 20— (Z+(C
=2(]21* + I¢I)

Consider the parallelogram defined by the vectors z and (. The lengths of the sides are z and { and the lengths of
the diagonals are z + ¢ and z — (. We know from geometry that the sum of the squared lengths of the diagonals
of a parallelogram is equal to the sum of the squared lengths of the four sides. (See Figure 8.18.)

Integer Exponents
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z+(

Figure 8.18: The parallelogram defined by 2z and (.

Solution 8.19

1.
a4 = (7)) @y
= (2°)" (2
= (—4)" (i2)
— 16(12)
=132
2.



Rational Exponents

Solution 8.20
We substitite the numbers into the equation to obtain an identity.

2 +2az+b=0
(—a+ (a®> = b)) +2a(—a+ (a®> = b)?) +b=0

a? —2a(a* — b)Y? + a® — b —2a* 4 2a(a®> — )2+ b =0
0=0
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Chapter 9

Functions of a Complex Variable

If brute force isn’t working, youfe not using enough of it.

-Tim Mauch

In this chapter we introduce the algebra of functions of a complex variable. We will cover the trigonometric and
inverse trigonometric functions. The properties of trigonometric function carry over directly from real-variable
theory. However, because of multi-valuedness, the inverse trigonometric functions are significantly trickier than
their real-variable counterparts.

9.1 Curves and Regions

In this section we introduce curves and regions in the complex plane. This material is necessary for the study
of branch points in this chapter and later for contour integration.
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Curves. Consider two continuous functions, x(¢) and y(¢), defined on the interval t € [ty...¢;1]. The set of
points in the complex plane

{2(t) = 2(t) + iy () | L € [to. .. 1]}

defines a continuous curve or simply a curve. If the endpoints coincide, z(tg) = z(t1), it is a closed curve. (We
assume that ty # t;.) If the curve does not intersect itself, then it is said to be a simple curve.

If 2(t) and y(t) have continuous derivatives and the derivatives do not both vanish at any point ! , then it is
a smooth curve. This essentially means that the curve does not have any corners or other nastiness.

A continuous curve which is composed of a finite number of smooth curves is called a piecewise smooth curve.
We will use the word contour as a synonym for a piecewise smooth curve.

See Figure 9.1 for a smooth curve, a piecewise smooth curve, a simple closed curve and a non-simple closed

curve.

(a (b) () (d)

Figure 9.1: (a) Smooth Curve, (b) Piecewise Smooth Curve, (¢) Simple Closed Curve, (d) Non-Simple Closed
Curve

Regions. A region R is connected if any two points in R can be connected by a curve which lies entirely in
R. A region is simply-connected if every closed curve in R can be continuously shrunk to a point without leaving
R. A region which is not simply-connected is said to be multiply-connected region. Another way of defining

"Why is it necessary that the derivatives do not both vanish?
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simply-connected is that a path connecting two points in R can be continuously deformed into any other path
that connects those points. Figure 9.2 shows a simply-connected region with two paths which can be continuously
deformed into one another and a multiply-connected region with paths which cannot be deformed into one another.

Figure 9.2: Simply-connected and multiply-connected regions.

Jordan Curve Theorem. A continuous, simple, closed curve is known as a Jordan curve. The Jordan Curve
Theorem, which seems intuitively obvious but is difficult to prove, states that a Jordan curve divides the plane
into a simply-connected, bounded region and an unbounded region. These two regions are called the interior and
exterior regions, respectively. The two regions share the curve as a boundary. Points in the interior are said to
be inside the curve; points in the exterior are said to be outside the curve.

Traversal of a Contour. Consider a Jordan curve. If you traverse the curve in the positive direction, then the
inside is to your left. If you traverse the curve in the opposite direction, then the outside will be to your left and
you will go around the curve in the negative direction. For circles, the positive direction is the counter-clockwise
direction. The positive direction is consistent with the way angles are measured in a right-handed coordinate
system, i.e. for a circle centered on the origin, the positive direction is the direction of increasing angle. For an
oriented contour C', we denote the contour with opposite orientation as —C'.
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Boundary of a Region. Consider a simply-connected region. The boundary of the region is traversed in the
positive direction if the region is to the left as you walk along the contour. For multiply-connected regions, the
boundary may be a set of contours. In this case the boundary is traversed in the positive direction if each of the
contours is traversed in the positive direction. When we refer to the boundary of a region we will assume it is
given the positive orientation. In Figure 9.3 the boundaries of three regions are traversed in the positive direction.

Figure 9.3: Traversing the boundary in the positive direction.

Two Interpretations of a Curve. Consider a simple closed curve as depicted in Figure 9.4a. By giving it
an orientation, we can make a contour that either encloses the bounded domain Figure 9.4b or the unbounded
domain Figure 9.4c. Thus a curve has two interpretations. It can be thought of as enclosing either the points
which are “inside” or the points which are “outside”. ?

2A farmer wanted to know the most efficient way to build a pen to enclose his sheep, so he consulted an engineer, a physicist
and a mathematician. The engineer suggested that he build a circular pen to get the maximum area for any given perimeter. The
physicist suggested that he build a fence at infinity and then shrink it to fit the sheep. The mathematician constructed a little fence
around himself and then defined himself to be outside.
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(a (b) (o)
Figure 9.4: Two interpretations of a curve.

9.2 Cartesian and Modulus-Argument Form

We can write a function of a complex variable z as a function of x and y or as a function of » and 6 with the
substitutions z = x + iy and z = r e?, respectively. Then we can separate the real and imaginary components or
write the function in modulus-argument form,

f(z) = u(:v,y) + iv(x,y), or f(Z) = U(T‘, 0) + iv<r7 9)?

f(2) = pla,y) eV, o f(z) = p(r,0) 0.

Example 9.2.1 Consider the functions f(z) = z, f(z) = 2* and f(z) = 2. We write the functions in terms of
x and y and separate them into their real and imaginary components.

flz) ==
=x+1y
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flz) =2
= (z+iy)”
=23 +iz?y — xy? —iy?
= (2% — ay®) +i(z’y — )

1
1) = 1—
B 1
S l-—z—iy

1 1—z+4y
l—x—wyl—a+1y
1l—x

BEEE O (e e

Example 9.2.2 Consider the functions f(z) = z, f(z) = 2® and f(z) = =. We write the functions in terms of
r and € and write them in modulus-argument form.

f(z) ==
— reiG
flz) =2
= (rei®)’
_ 3 i30



) = 7
B 1
1 —rei?
o 1
1 —re?® 1 —preit
1—re

1—re? —rei 42
1—rcos +irsiné
1—2rcosf + 1?2

Note that the denominator is real and non-negative.

1 ' |
B 1—-2 0+ r2 |1 — rcosf + irsin 9| ot arctan(1—r cos 6,r sin 6)
— 27 cos T
1 | |
= 1 5 0 n 3 \/(1 — r CcOoSs 8)2 + 7,2 SiIlZ g et arctan(1—r cos 0,r sin 0)
— 4T COS r
1 | |
= -9 012 \/1 — 9rcosf + r2cos? 0 + r2 sin2 g et arctan(1—r cos 6,7 sin 6)
— 2r cos r
1

iarctan(1—r cos 6,7 sin 6)

V1 —2rcosf + r2

9.3 Graphing Functions of a Complex Variable

We cannot directly graph a function of a complex variable as they are mappings from R? to R2. To do so would
require four dimensions. However, we can can use a surface plot to graph the real part, the imaginary part, the

modulus or the argument of a function of a complex variable. Each of these are scalar fields, mappings from R?
to R.

208



Example 9.3.1 Consider the identity function, f(z) = z. In Cartesian coordinates and Cartesian form, the
function is f(z) = x + dy. The real and imaginary components are u(z,y) = = and v(x,y) = y. (See Figure 9.5.)
In modulus argument form the function is

-

=

I s

[FFFZI T 777
Z7 Z 77

Figure 9.5: The real and imaginary parts of f(z2) =z = x + 1y

f(Z) — = Tei@ _ /5(72 + yg eiarctan(z,y)‘

The modulus of f(z) is a single-valued function which is the distance from the origin. The argument of f(z) is a
multi-valued function. Recall that arctan(z,y) has an infinite number of values each of which differ by an integer
multiple of 27. A few branches of arg(f(z)) are plotted in Figure 9.6. The modulus and principal argument of
f(2) = z are plotted in Figure 9.7.

Example 9.3.2 Consider the function f(z) = z?. In Cartesian coordinates and separated into its real and
imaginary components the function is

f(2) = 2% = (z +iy)? = (2 — y?) +i2xy.
Figure 9.8 shows surface plots of the real and imaginary parts of z2. The magnitude of z? is

122 = V2222 = 22 = (x4 iy) (z — iy) = 2 + >
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Figure 9.7: Plots of |z| and Arg(z)

Note that

22 — (7‘ ei6)2 — 7“2 ei20.
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Figure 9.8: Plots of R(2?) and J(2?)

In Figure 9.9 are plots of |2?| and a branch of arg(z?).

2?)

(

Figure 9.9: Plots of |2%| and a branch of arg
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9.4 Trigonometric Functions

The Exponential Function. Consider the exponential function e*. We can use Euler’s formula to write
e’ = e in terms of its real and imaginary parts.

eF = W = % = e cosy +ie"siny
From this we see that the exponential function is i27 periodic: e*t?™ = e*  and im odd periodic: e*t™ = —¢?,
Figure 9.10 has surface plots of the real and imaginary parts of e* which show this periodicity.

Figure 9.10: Plots of R(e*) and (e?)

The modulus of e* is a function of x alone.
o] = | et = &7
The argument of e* is a function of y alone.
arg (€*) = arg (") = {y + 2mn|n € Z}

In Figure 9.11 are plots of | e?| and a branch of arg( e*).
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Figure 9.11: Plots of | e*| and a branch of arg( e?)

Example 9.4.1 Show that the transformation w = e* maps the infinite strip, —oo < x < 00, 0 < y < m, onto
the upper half-plane.

Method 1. Consider the line z = x + ic, —00 < x < oo. Under the transformation, this is mapped to

w= e = "  —00< < 00.

This is a ray from the origin to infinity in the direction of e®. Thus we see that z = x is mapped to the positive,
real w axis, z = x + o7 is mapped to the negative, real axis, and z = z + ic, 0 < ¢ < 7 is mapped to a ray with
angle ¢ in the upper half-plane. Thus the strip is mapped to the upper half-plane. See Figure 9.12.

Method 2. Consider the line z = ¢+ 1y, 0 < y < w. Under the transformation, this is mapped to

w=eTY e 0<y<m.

This is a semi-circle in the upper half-plane of radius e®. As ¢ — —oo, the radius goes to zero. As ¢ — oo, the
radius goes to infinity. Thus the strip is mapped to the upper half-plane. See Figure 9.13.
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Figure 9.12: e* maps horizontal lines to rays.

(O8]
_—

=N

Figure 9.13: e* maps vertical lines to circular arcs.

The Sine and Cosine. We can write the sine and cosine in terms of the exponential function.

e” + e cos(z) +isin(z) + cos(—z) + isin(—2)
2 2
cos(z) + isin(z) 4 cos(z) — i sin(z)
2

—= COS 2
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iz —iz

e — e  cos(z)+isin(z) — cos(—z) —isin(—z)
2 2
_cos(z) +isin(z) — cos(z) + isin(z)
B 2
=sinz

We separate the sine and cosine into their real and imaginary parts.
cos z = cos x coshy — ¢sin z sinh y sin z = sin x cosh y + 7 cos x sinh y

For fixed y, the sine and cosine are oscillatory in . The amplitude of the oscillations grows with increasing |y|.
See Figure 9.14 and Figure 9.15 for plots of the real and imaginary parts of the cosine and sine, respectively.
Figure 9.16 shows the modulus of the cosine and the sine.

Figure 9.14: Plots of R(cos(z)) and J(cos(2))

The Hyperbolic Sine and Cosine. The hyperbolic sine and cosine have the familiar definitions in terms of
the exponential function. Thus not surprisingly, we can write the sine in terms of the hyperbolic sine and write
the cosine in terms of the hyperbolic cosine. Below is a collection of trigonometric identities.
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Figure 9.16: Plots of | cos(z)| and |sin(z)]

Result 9.4.1
e = e“(cosy +isiny)
eiz + e—iz eiz . e—iz
cosz = —— 21ping = —————
2 21
cos z = cos x cosh y — ¢sin x sinh y sin z = sin x cosh y 4 ¢ cos x sinh y
z —Zz z —z
e”+ e . e”— e
coshz = —— sinhz = ——
2 2
cosh z = coshz cosy + isinh zsiny sinh 2 = sinh x cos y + 7 cosh z sin y
siniz = ¢sinh 2 sinhiz = ¢sin 2
cosiz = cosh z coshiz = cos z

log z = Log|z| + i arg(z) = Log|z| + i Arg(z) + 2imn




9.5 Inverse Trigonometric Functions

The Logarithm. The logarithm, log(z), is defined as the inverse of the exponential function e*. The exponential
function is many-to-one and thus has a multi-valued inverse. From what we know of many-to-one functions, we
conclude that

log 2z

e =2z but log(e®)# z.

This is because e'°8* is single-valued but log(e?) is not. Because e* is i27 periodic, the logarithm of a number is
a set of numbers which differ by integer multiples of i27. For instance, ™ = 1 so that log(1) = {i27n : n € Z}.
The logarithmic function has an infinite number of branches. The value of the function on the branches differs
by integer multiples of i27. It has singularities at zero and infinity. |log(z)| — oo as either z — 0 or z — o0.
We will derive the formula for the complex variable logarithm. For now, let Log (z) denote the real variable
logarithm that is defined for positive real numbers. Consider w = logz. This means that e¥ = 2. We write

w = u + v in Cartesian form and z = 7€ in polar form.

eu+iv —r ei@
We equate the modulus and argument of this expression.

e =r v=~0-+2mn

u = Logr v=~0+2mn

With log z = u + v, we have a formula form the logarithm.

log z = Log |z| 4+ i arg(z)

If we write out the multi-valuedness of the argument function we note that this has the form that we expected.

log z = Log|z| +i( Arg (z) + 2mn), n€Z

logz _

We check that our formula is correct by showing that e z

0

logz _ eLog\z|+zarg(z) — eLogr+7,9+127rn —ref = »

(¢
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Note again that log(e*) # z.
log(e”) = Log|e®| +iarg(e”) = Log (e”) +iarg(e™™) =z +i(y + 2mn) = 2 + i2nw # 2

The real part of the logarithm is the single-valued Logr; the imaginary part is the multi-valued arg(z). We
define the principal branch of the logarithm Logz to be the branch that satisfies —m < S(Logz) < w. For
positive, real numbers the principal branch, Logx is real-valued. We can write Log z in terms of the principal
argument, Argz.

Logz = Log|z| + i Arg(z)

See Figure 9.17 for plots of the real and imaginary part of Log z.

W
I\
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=
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Figure 9.17: Plots of R( Log z) and ( Log z).

The Form: aP. Consider a® where @ and b are complex and a is nonzero. We define this expression in terms of

the exponential and the logarithm as

CLb — ebloga‘
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Note that the multi-valuedness of the logarithm may make a® multi-valued. First consider the case that the
exponent is an integer.

a™ = ™ loga _ em(LogaJr'LQnﬂ) — emLogaez2mn7r — emLoga
Thus we see that a™ has a single value where m is an integer.
Now consider the case that the exponent is a rational number. Let p/q be a rational number in reduced form.

ap/q _ e%loga e%(LogaJriQnﬂ) _ e% Logaeianw/q.

This expression has ¢ distinct values as

e2mPm/a — 2mpm/a i and only if n=m mod g.

Finally consider the case that the exponent b is an irrational number.

b _ ,bloga _ eb( Log a+i2nm)

al = e bLoga ez?bnw

=e
Note that €™ and ™™ are equal if and only if i2bn7 and i2bmm differ by an integer multiple of 27, which
means that bn and bm differ by an integer. This occurs only when n = m. Thus "™ has a distinct value for
each different integer n. We conclude that a” has an infinite number of values.

You may have noticed something a little fishy. If b is not an integer and a is any non-zero complex number,
then a® is multi-valued. Then why have we been treating e’ as single-valued, when it is merely the case a = e?
The answer is that in the realm of functions of a complex variable, e* is an abuse of notation. We write e* when
we mean exp(z), the single-valued exponential function. Thus when we write e* we do not mean “the number e
raised to the z power”, we mean “the exponential function of z”. We denote the former scenario as (e)?, which
is multi-valued.

Logarithmic Identities. Back in high school trigonometry when you thought that the logarithm was only
defined for positive real numbers you learned the identity logz* = alogx. This identity doesn’t hold when the
logarithm is defined for nonzero complex numbers. Consider the logarithm of 2.

log 2 = Log z* + i27n
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alogz = a(Log z + i2mn) = a Log z + i2amn
Note that
log 2% # alog z
Furthermore, since
Log z* = Log|z?| +iArg (z?), aLogz = aLog|z|+ iaArg(z)
and Arg (z%) is not necessarily the same as a Arg (z) we see that

Log 2* # aLog z.

Consider the logarithm of a product.

log(ab) = Log |ab| + i arg(ab)
= Log |a| + Log |b| + i arg(a) + i arg(b)
= loga + logb

There is not an analogous identity for the principal branch of the logarithm since Arg (ab) is not in general the
same as Arg(a) + Arg(b).

Using log(ab) = log(a) + log(b) we can deduce that log(a™) = > ;_,loga = nloga, where n is a positive
integer. This result is simple, straightforward and wrong. I have led you down the merry path to damnation. *
In fact, log(a?) # 2loga. Just write the multi-valuedness explicitly,

log(a®) = Log (a?) + i2nm, 2loga = 2(Loga + i2nmw) = 2 Loga + idnm.

3Don’t feel bad if you fell for it. The logarithm is a tricky bastard.
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You can verify that

1
log <—> = —loga.
a

We can use this and the product identity to expand the logarithm of a quotient.

log (%) =loga —logb

For general values of a, logz® # alogz. However, for some values of a, equality holds. We already know
that ¢ = 1 and a = —1 work. To determine if equality holds for other values of a, we explicitly write the
multi-valuedness.

log z% = log (e“logz) =alogz+i21k, keZ
alogz = alog|z| +ia Argz + ia2rm, m e Z

We see that log 2* = alog z if and only if
{am|m € Z} = {am + k| k,m € Z}.

The sets are equal if and only if a = 1/n, n € Z*. Thus we have the identity:

log (zl/”) = %log 2z, neZ*
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Result 9.5.1 Logarithmic Identities.

CLb _ eblog a

Jlogz _ Logz _
log(ab) =loga + logb
log(1/a) = —loga
log(a/b) = loga — logb

1

log (z”") = —logz, nezZ*
n

Logarithmic Inequalities.

Log (uv) # Log (u) + Log (v)

log 2% # alog z

Log z“ # a Log z

log e* # 2

Example 9.5.1 Consider 17. We apply the definition a® = e?l8,

17 — e7rlog(1)
_ ew(Log(l)—‘rian)

— ei2n7r2

Thus we see that 1™ has an infinite number of values, all of which lie on the unit circle |z| = 1 in the complex
plane. However, the set 17 is not equal to the set |z| = 1. There are points in the latter which are not in the
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former. This is analogous to the fact that the rational numbers are dense in the real numbers, but are a subset
of the real numbers.

Example 9.5.2 We find the zeros of sin z.

eiz . e—iz
sin z = —_— = 0
21

6122 -1

2z mod 27 =0

z=nm, NneEL

Equivalently, we could use the identity
sin z = sin z coshy 4+ ¢ cos x sinhy = 0.
This becomes the two equations (for the real and imaginary parts)
sinz coshy =0 and coszsinhy = 0.
Since cosh is real-valued and positive for real argument, the first equation dictates that x = nmw, n € Z. Since

cos(nm) = (—1)" for n € Z, the second equation implies that sinhy = 0. For real argument, sinh y is only zero at
y = 0. Thus the zeros are

z=nmw, newL

Example 9.5.3 Since we can express sin z in terms of the exponential function, one would expect that we could
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1

express the sin™" z in terms of the logarithm.

w=sn  z
z = sinw
_ e—iw
21
Q2 _ 2jze™ — 1 =0

e =izt V1 - 22
w = —ilog (izi\/l—zQ)

Thus we see how the multi-valued sin™! is related to the logarithm.

sin~!z = —ilog (iz +VI= z2>

e’L’Ll)
z =

Example 9.5.4 Consider the equation sin® z = 1.
sin®z =1
sinz = 1Y/3
ot _ iz s
21

eiz . 2i(1)1/3 . e—iz =0
¥ —2i(1)Pe* —1=0
ot 2i(1)"* £ /—4(1)%3 +4
2
e =i(1)Y3 £ /1 — (1)2/3

2= —ilog (¢(1)1/3 +/1- 12/3>
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Note that there are three sources of multi-valuedness in the expression for z. The two values of the square root are
shown explicitly. There are three cube roots of unity. Finally, the logarithm has an infinite number of branches.
To show this multi-valuedness explicitly, we could write

2= —iLog (z’eiQm”/3:|: 1—ei4m”/3)+27m, m=012 n=..,—1,01,. ..

Example 9.5.5 Consider the harmless looking equation, i* = 1.

Before we start with the algebra, note that the right side of the equation is a single number. ¢* is single-valued
only when z is an integer. Thus we know that if there are solutions for z, they are integers. We now proceed to
solve the equation.

Use the fact that z is an integer.
eiTrz/Q -1

irz/2 = 2inm, for some n € Z

‘z:4n, nez

Here is a different approach. We write down the multi-valued form of i*. We solve the equation by requiring
that all the values of ¢* are 1.

¥ =1

ezlogi =1
zlogi = 2min, for somen € Z

z (zg + 27r7lm) =2min, Vm € Z, for some n € 7Z

zgz + 2mimz = 2win, VYm € Z, for somen € Z
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The only solutions that satisfy the above equation are

z=4k, k€.

Now let’s consider a slightly different problem: 1 € ¢*. For what values of z does i* have 1 as one of its values.

1eqd®
= ezlogi
1¢e {ez(iﬂ/2+i27rn) |TL c Z}
2(im/2 4+ i2mn) = i27m, m,n € Z

4dm
Z:
1+ 4n’

m,n € 7

There are an infinite set of rational numbers for which 7* has 1 as one of its values. For example,

B 15 {17 ei27‘r/5’ ei47r/57 ez’ﬁw/s7 ei87r/5}

9.6 Branch Points

Example 9.6.1 Consider the function z!/2. For each value of z, there are two values of z'/2. We write z'/2 in
modulus-argument and Cartesian form.

21/2 _ \/Meiarg(z)/2
2% = \/|z| cos(arg(2)/2) + i/|z| sin(arg(z)/2)
Figures 9.18 and 9.19 show the real and imaginary parts of 2'/2 from three different viewpoints. The second

and third views are looking down the z axis and y axis, respectively. Consider ®(z'/2). This is a double layered
sheet which intersects itself on the negative real axis. (3(z'/?) has a similar structure, but intersects itself on the
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positive real axis.) Let’s start at a point on the positive real axis on the lower sheet. If we walk around the origin
once and return to the positive real axis, we will be on the upper sheet. If we do this again, we will return to the
lower sheet.

Suppose we are at a point in the complex plane. We pick one of the two values of z!/2. If the function varies
continuously as we walk around the origin and back to our starting point, the value of z'/? will have changed.
We will be on the other branch. Because walking around the point z = 0 takes us to a different branch of the
function, we refer to z = 0 as a branch point.

A
=
1
[

1
r\\
1
[
o
(=
NS
h\
[
X O
1
o=
1
N

Figure 9.18: Plots of %(2'/2) from three viewpoints.

Now consider the modulus-argument form of z'/2:

1/2 iarg(z)/Z.

275 =4/|z|e

Figure 9.20 shows the modulus and the principal argument of z'/2. We see that each time we walk around the
origin, the argument of z'/? changes by . This means that the value of the function changes by the factor
e’™ = —1, i.e. the function changes sign. If we walk around the origin twice, the argument changes by 27, so that
the value of the function does not change, €™ = 1.

22 is a continuous function except at z = 0. Suppose we start at 2 = 1 = e© and the function value
(e)1/2 = 1. If we follow the first path in Figure 9.21, the argument of z varies from up to about 7, down to
about —Z and back to 0. The value of the function is still (e™*)!/2.
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Figure 9.20: Plots of |21/2| and Arg (2'/2).

Now suppose we follow a circular path around the origin in the positive, counter-clockwise, direction. (See the
second path in Figure 9.21.) The argument of z increases by 27. The value of the function at half turns on the
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Figure 9.21: A path that does not encircle the origin and a path around the origin

path is
(eiO)l/2 — 1’
(eiﬂ)1/2 — eiﬂ/2 _ i,
(ez’27r)1/2 — ei7r -1

As we return to the point z = 1, the argument of the function has changed by 7 and the value of the function
has changed from 1 to —1. If we were to walk along the circular path again, the argument of z would increase
by another 2w. The argument of the function would increase by another 7 and the value of the function would
return to 1.

(e4ﬂi)1/2 — eZﬂ'i -1

In general, any time we walk around the origin, the value of z'/? changes by the factor —1. We call z = 0 a
branch point. If we want a single-valued square root, we need something to prevent us from walking around the
origin. We achieve this by introducing a branch cut. Suppose we have the complex plane drawn on an infinite

sheet of paper. With a scissors we cut the paper from the origin to —oo along the real axis. Then if we start
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at z = e, and draw a continuous line without leaving the paper, the argument of z will always be in the range
—m < argz < 7. This means that —7 < arg(z1/?) < 5. No matter what path we follow in this cut plane, 2 =1
has argument zero and (1)1/ 2 = 1. By never crossing the negative real axis, we have constructed a single valued
branch of the square root function. We call the cut along the negative real axis a branch cut.

Example 9.6.2 Consider the logarithmic function log z. For each value of z, there are an infinite number of
values of log z. We write log z in Cartesian form.

log z = Log |z| +iarg z

Figure 9.22 shows the real and imaginary parts of the logarithm. The real part is single-valued. The imaginary
part is multi-valued and has an infinite number of branches. The values of the logarithm form an infinite-layered
sheet. If we start on one of the sheets and walk around the origin once in the positive direction, then the value
of the logarithm increases by i27 and we move to the next branch. z = 0 is a branch point of the logarithm.

Figure 9.22: Plots of R(log z) and a portion of J(log z).

The logarithm is a continuous function except at z = 0. Suppose we start at z = 1 = ¢ and the function
value log(e) = Log (1) +i0 = 0. If we follow the first path in Figure 9.21, the argument of z and thus the
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=

7, down to about —7 and back to 0. The value of the

imaginary part of the logarithm varies from up to about T
logarithm is still 0.
Now suppose we follow a circular path around the origin in the positive direction. (See the second path in

Figure 9.21.) The argument of z increases by 27. The value of the logarithm at half turns on the path is
log(e”) =0,
log(e'™) = im,

2T = 42

log(e
As we return to the point z = 1, the value of the logarithm has changed by i27. If we were to walk along the
circular path again, the argument of z would increase by another 27 and the value of the logarithm would increase
by another 2.

Result 9.6.1 A point 2 is a branch point of a function f(z) if the function changes
value when you walk around the point on any path that encloses no singularities other
than the one at z = z.

Branch Points at Infinity : Mapping Infinity to the Origin. Up to this point we have considered only
branch points in the finite plane. Now we consider the possibility of a branch point at infinity. As a first method
of approaching this problem we map the point at infinity to the origin with the transformation ( = 1/z and
examine the point ¢ = 0.

Example 9.6.3 Again consider the function z'/2. Mapping the point at infinity to the origin, we have f({) =
(1/¢)Y? = ¢~'/2. For each value of (, there are two values of ("2, We write (/2 in modulus-argument form.

BRIV

q

Like z'/2, (712 has a double-layered sheet of values. Figure 9.23 shows the modulus and the principal argument
of (~'/2. We see that each time we walk around the origin, the argument of (/2 changes by —x. This means

<—1/2 _
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that the value of the function changes by the factor e = —1, i.e. the function changes sign. If we walk around

the origin twice, the argument changes by —27, so that the value of the function does not change, e ™ = 1.

Figure 9.23: Plots of [(~/2| and Arg (¢1/2).

1/2

Since (=2 has a branch point at zero, we conclude that z!/2 has a branch point at infinity.

Example 9.6.4 Again consider the logarithmic function log z. Mapping the point at infinity to the origin, we
have f(¢) = log(1/¢) = —log(¢). From Example 9.6.2 we known that —log(¢) has a branch point at ( = 0. Thus
log z has a branch point at infinity.

Branch Points at Infinity : Paths Around Infinity. We can also check for a branch point at infinity by
following a path that encloses the point at infinity and no other singularities. Just draw a simple closed curve
that separates the complex plane into a bounded component that contains all the singularities of the function in
the finite plane. Then, depending on orientation, the curve is a contour enclosing all the finite singularities, or
the point at infinity and no other singularities.
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Example 9.6.5 Once again consider the function z'/2. We know that the function changes value on a curve that

goes once around the origin. Such a curve can be considered to be either a path around the origin or a path
around infinity. In either case the path encloses one singularity. There are branch points at the origin and at
infinity. Now consider a curve that does not go around the origin. Such a curve can be considered to be either a
path around neither of the branch points or both of them. Thus we see that z'/? does not change value when we
follow a path that encloses neither or both of its branch points.

Example 9.6.6 Consider f(z) = (22 — 1)'/2. We factor the function.
f2)=(z =)z + 1)1
There are branch points at z = +1. Now consider the point at infinity.

f(C_l) = (€_2 — 1)1/2 — :|:C_1(1 . C2)1/2

Since f(¢™') does not have a branch point at ¢ = 0, f(z) does not have a branch point at infinity. We could
reach the same conclusion by considering a path around infinity. Consider a path that circles the branch points
at z = £1 once in the positive direction. Such a path circles the point at infinity once in the negative direction.
In traversing this path, the value of f(z) is multiplied by the factor (e7)'/2(e??™)!/2 = ¢ = 1. Thus the value
of the function does not change. There is no branch point at infinity.

Diagnosing Branch Points. We have the definition of a branch point, but we do not have a convenient
criterion for determining if a particular function has a branch point. We have seen that log z and 2z for non-
integer o have branch points at zero and infinity. The inverse trigonometric functions like the arcsine also have
branch points, but they can be written in terms of the logarithm and the square root. In fact all the elementary
functions with branch points can be written in terms of the functions log z and 2. Furthermore, note that the
multi-valuedness of z® comes from the logarithm, z® = e*!°6%. This gives us a way of quickly determining if and
where a function may have branch points.
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Result 9.6.2 Let f(z) be a single-valued function. Then log(f(z)) and (f(2))* may
have branch points only where f(z) is zero or singular.

Example 9.6.7 Consider the functions,
1. (22)12
2. (21/2)?
3. (21/2)3
Are they multi-valued? Do they have branch points?
1.
()2 = +V22 = 42

Because of the (-)'/2, the function is multi-valued. The only possible branch points are at zero and infinity.
If (€))% =1, then ((e*™)?)1/2 = (e*™)1/2 = ¢>™ = 1. Thus we see that the function does not change
value when we walk around the origin. We can also consider this to be a path around infinity. This function

is multi-valued, but has no branch points.

(=) = (&2 =2

This function is single-valued.

(2'2)* = (£V2)* = £(V2)°

This function is multi-valued. We consider the possible branch point at z = 0. If ((e°)/2)? = 1, then
((e¥)1/2)3 = (e™)3 = 3™ = —1. Since the function changes value when we walk around the origin, it has

a branch point at z = 0. Since this is also a path around infinity, there is a branch point there.
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Example 9.6.8 Consider the function f(z) = log (Z—il) Since —L- is only zero at infinity and its only singularity

z—1
is at z = 1, the only possibilities for branch points are at z = 1 and z = co. Since

log (;J ~ log(z — 1)

and log w has branch points at zero and infinity, we see that f(z) has branch points at z = 1 and z = oc.

Example 9.6.9 Consider the functions,
1. elogz
2. log e”.

Are they multi-valued? Do they have branch points?

Logz 2min

g2 — exp(Log z + 2min) = e e =z

e

This function is single-valued.

log € = Log €* + 2min = z + 2mim

This function is multi-valued. It may have branch points only where e* is zero or infinite. This only
occurs at z = co. Thus there are no branch points in the finite plane. The function does not change when
traversing a simple closed path. Since this path can be considered to enclose infinity, there is no branch
point at infinity.
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Consider (f(z))* where f(z) is single-valued and f(z) has either a zero or a singularity at z = zy. (f(2))”
may have a branch point at z = zy. If f(2) is not a power of z, then it may be difficult to tell if (f(2))® changes
value when we walk around zg. Factor f(z) into f(z) = g(z)h(z) where h(z) is nonzero and finite at zy. Then
g(z) captures the important behavior of f(z) at the zy. g(z) tells us how fast f(z) vanishes or blows up. Since
(f(2)* = (9(2)*(h(2))* and (h(z))* does not have a branch point at zg, (f(2))* has a branch point at z, if and
only if (g(z))* has a branch point there.

Similarly, we can decompose

log(f(2)) = log(g(2)h(2)) = log(g(2)) + log(h(2))

to see that log(f(z)) has a branch point at zy if and only if log(g(z)) has a branch point there.

Result 9.6.3 Consider a single-valued function f(z) that has either a zero or a singu-
larity at z = zy. Let f(z) = g(2)h(z) where h(z) is nonzero and finite. (f(z))* has a
branch point at z = zy if and only if (g(2))® has a branch point there. log(f(z)) has a
branch point at z = zy if and only if log(g(z)) has a branch point there.

Example 9.6.10 Consider the functions,

1. sin 21/2

2. (sin z)!/2
3. z'/2sin 21/?
4. (sin z2)1/2
Find the branch points and the number of branches.

1.

sin 2'/% = sin(4v/z) = £sin/z
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sin 22 is multi-valued. It has two branches. There may be branch points at zero and infinity. Consider

the unit circle which is a path around the origin or infinity. If sin((e?)"/2) = sin(1), then sin(( e??7)¥/2) =
sin(e™) = sin(—1) = —sin(1). There are branch points at the origin and infinity.

(sin 2)/% = £V/sin 2

The function is multi-valued with two branches. The sine vanishes at z = n7 and is singular at infinity.
There could be branch points at these locations. Consider the point z = nwt. We can write

sin z

sinz = (z — nm
( )z—mr

Note that = is nonzero and has a removable singularity at z = n.

. sin z . Ccosz
lim = lim =(=1)"
z—nm 2 — NTT zZ—nm

Since (z — nm)'/? has a branch point at z = nr, (sin 2)'/? has branch points at z = nn.

Since the branch points at z = nx go all the way out to infinity. It is not possible to make a path that
encloses infinity and no other singularities. The point at infinity is a non-isolated singularity. A point can
be a branch point only if it is an isolated singularity.

22 sin 2% = +/Z sin(£+/2)
= +/z(Esin /2)
= /zsinv/z

The function is single-valued. Thus there could be no branch points.
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(sin 2%)Y/2 = £V/sin 22

This function is multi-valued. Since sinz? = 0 at z = (n7)'/2, there may be branch points there. First
consider the point z = 0. We can write

.5 osinz?
sinz? = z

2
where sin(2%)/z? is nonzero and has a removable singularity at z = 0.

_ sinz? . 2zcos 22
lim =lim — =
z—0 Zz z—0 2z

Since (22)'/2 does not have a branch point at z = 0, (sin 22)'/? does not have a branch point there either.

Now consider the point z = y/nm.

sin 22
2 —/nm

sin(2?)/(z — y/n) in nonzero and has a removable singularity at z = y/n.

sin 22 = (z — v/nm)

; 2 2 2
i S =l S v

Since (z — \/nm)"/? has a branch point at z = \/nm, (sin 22)'/2 also has a branch point there.

Thus we see that (sin z2)'/2 has branch points at z = (n7)"/2 for n € Z\ {0}. This is the set of numbers:
{£/m, £V 2m, ..., Liy/7,+iv2m, ... }. The point at infinity is a non-isolated singularity.
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Example 9.6.11 Find the branch points of
f2) = (2= 2)

Introduce branch cuts. If f(2) = /6 then what is f(—2)?
We expand f(z).

f(z) =23z — )Y3(z 4+ 1)V3.
There are branch points at z = —1,0,1. We consider the point at infinity.

ORONCON )

- =00

Since f(1/¢) does not have a branch point at ( = 0, f(z) does not have a branch point at infinity. Consider the
three possible branch cuts in Figure 9.24.

S A

Figure 9.24: Three Possible Branch Cuts for f(z) = (2 — 2)'/3

The first and the third branch cuts will make the function single valued, the second will not. It is clear that
the first set makes the function single valued since it is not possible to walk around any of the branch points.
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The second set of branch cuts would allow you to walk around the branch points at z = £1. If you walked
around these two once in the positive direction, the value of the function would change by the factor e*™/3.

The third set of branch cuts would allow you to walk around all three branch points together. You can verify
that if you walk around the three branch points, the value of the function will not change (e5™/3 = ™ = 1).

Suppose we introduce the third set of branch cuts and are on the branch with f(2) = /6.

£(2) = (2)Y3(1e0)13(3e0)13 = V/6.
The value of f(—2) is
F(=2) = (267) (3 (1 o)V
_ /3633 /3T i3
= V6e™

__¥

Example 9.6.12 Find the branch points and number of branches for

2

f(z) =2*".
2" = exp(2?log 2)

There may be branch points at the origin and infinity due to the logarithm. Consider walking around a circle of
radius r centered at the origin in the positive direction. Since the logarithm changes by 27, the value of f(z)
changes by the factor e2™”. There are branch points at the origin and infinity. The function has an infinite
number of branches.

Example 9.6.13 Construct a branch of
f(z) = (2 +1)"°
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such that
f(0) = %(—1 +V/3i),
First we factor f(2).
f(z)=(z= )3z +4)3

There are branch points at z = 4. Figure 9.25 shows one way to introduce branch cuts.

Figure 9.25: Branch Cuts for f(z) = (22 4+ 1)¥/3

Since it is not possible to walk around any branch point, these cuts make the function single valued. We
introduce the coordinates:
z—i=pe?, z4+i=re".

f(z) = (pe®) B (re)V/?
= ¥pr ei6+0)/3
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The condition
f(0) = %(—1 +V/3i) = ¢l2n/3+2mn)
can be stated
Y1 i6+0)/3 — gi(2m/3+2mn)
¢+ 0 =27 + 6mn

The angles must be defined to satisfy this relation. One choice is

T 5% T 3
§<¢<7, —§<0<7.

Principal Branches. We construct the principal branch of the logarithm by putting a branch cut on the
negative real axis choose z = re, § € (—m, 7). Thus the principal branch of the logarithm is

Log z = Logr + 0, —T <0 <.
Note that the if = is a negative real number, (and thus lies on the branch cut), then Logz is undefined.

The principal branch of z% is

SO — eaLogz.

Note that there is a branch cut on the negative real axis.

aLogz)

—am < arg(e < am

The principal branch of the z'/2 is denoted /z. The principal branch of 2!/ is denoted {/z.
Example 9.6.14 Construct v/1 — 22, the principal branch of (1 — 22)'/2.
First note that since (1 — 22)'/2 = (1 — 2)/2(1 + 2)/2 there are branch points at z = 1 and z = —1. The

principal branch of the square root has a branch cut on the negative real axis. 1 — z? is a negative real number
for z € (—oo, —1) U (1, 00). Thus we put branch cuts on (—oo, —1] and [1, c0).
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9.7 Exercises

Cartesian and Modulus-Argument Form

Exercise 9.1

For a given real number ¢, 0 < ¢ < 27, find the image of the sector 0 < arg(z) < ¢ under the transformation
w = z*. How large should ¢ be so that the w plane is covered exactly once?

Hint, Solution

Trigonometric Functions

Exercise 9.2
In Cartesian coordinates, z = x + 1y, write sin(z) in Cartesian and modulus-argument form.
Hint, Solution

Exercise 9.3
Show that e* in nonzero for all finite z.
Hint, Solution

Exercise 9.4
Show that

|2

2
e” | < el

When does equality hold?
Hint, Solution

Exercise 9.5
Solve coth(z) = 1.
Hint, Solution
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Exercise 9.6

Solve 2 € 2. That is, for what values of z is 2 one of the values of 2?7 Derive this result then verify your answer
by evaluating 2% for the solutions that your find.

Hint, Solution

Exercise 9.7

Solve 1 € 1*. That is, for what values of z is 1 one of the values of 1?7 Derive this result then verify your answer
by evaluating 17 for the solutions that your find.

Hint, Solution

Logarithmic Identities

Exercise 9.8
Find the fallacy in the following arguments:

1. log(—1) =log (<) = log(1) — log(—1) = —log(—1), therefore, log(—1) = 0.
2. 1=172=((-1)(=1)¥/2 = (=1)?(=1)"/2 = ii = —1, therefore, 1 = —1.
Hint, Solution

Exercise 9.9
Write the following expressions in modulus-argument or Cartesian form. Denote any multi-valuedness explicitly.

22/57 31+i’ (\/g_i)l/4, 11/4

Hint, Solution

Exercise 9.10
Solve cos z = 69.
Hint, Solution

244



Exercise 9.11
Solve cot z = 47.
Hint, Solution

Exercise 9.12
Determine all values of

1. log(—i)
2. (i)~

3. 3"

4. log(log(i))

and plot them in the complex plane.
Hint, Solution

Exercise 9.13
Determine all values of i* and log((1 + 7)) and plot them in the complex plane.
Hint, Solution

Exercise 9.14
Find all z for which
1. ¥ =1
2. cosz =sinz
3. tan?z = —1

Hint, Solution
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Exercise 9.15
Show that

and

Hint, Solution

Branch Points and Branch Cuts

Exercise 9.16
Determine the branch points of the function

HORICESR

Construct cuts and define a branch so that z = 0 and z = —1 do not lie on a cut, and such that f(0) = —i. What
is f(—1) for this branch?
Hint, Solution

Exercise 9.17
Determine the branch points of the function

w(z) = ((z = 1)(z = 6)(= +2))""*

Construct cuts and define a branch so that z = 4 does not lie on a cut, and such that w = 6: when z = 4.
Hint, Solution

246



Exercise 9.18
Give the number of branches and locations of the branch points for the functions

1. cos 2/?

2. (z41)~
Hint, Solution

Exercise 9.19
Find the branch points of the following functions in the extended complex plane, (the complex plane including

the point at infinity).
1. (22 +1)2
2. (2% — 2)1/2

3. log(z* — 1)

1
4. log (z+1)
Z_

Introduce branch cuts to make the functions single valued.
Hint, Solution

Exercise 9.20
Find all branch points and introduce cuts to make the following functions single-valued: For the first function,

choose cuts so that there is no cut within the disk |z| < 2.

L. f(z) = (2" +38)

2. f(z) =log <5+ (jfi)m)

1/2
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3. f(z) = (2 +13)"/?

Hint, Solution

Exercise 9.21

Let f(z) have branch points at z = 0 and z = +i, but nowhere else in the extended complex plane. How does
the value and argument of f(z) change while traversing the contour in Figure 9.267 Does the branch cut in
Figure 9.26 make the function single-valued?

Figure 9.26: Contour Around the Branch Points and Branch Cut.

Hint, Solution

Exercise 9.22

Let f(z) be analytic except for no more than a countably infinite number of singularities. Suppose that f(z) has
only one branch point in the finite complex plane. Does f(z) have a branch point at infinity? Now suppose that
f(2) has two or more branch points in the finite complex plane. Does f(z) have a branch point at infinity?
Hint, Solution
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Exercise 9.23
Find all branch points of (z* 4+ 1)/* in the extended complex plane. Which of the branch cuts in Figure 9.27
make the function single-valued.

NS .
VERERN N

Figure 9.27: Four Candidate Sets of Branch Cuts for (z* 4 1)'/4

Hint, Solution

Exercise 9.24
Find the branch points of

/() = (%il)l/g

in the extended complex plane. Introduce branch cuts that make the function single-valued and such that the
function is defined on the positive real axis. Define a branch such that f(1) = 1/3/2. Write down an explicit
formula for the value of the branch. What is f(1 +4)? What is the value of f(z) on either side of the branch
cuts?

Hint, Solution

Exercise 9.25
Find all branch points of

f(2)=((z—=1)(z —2)(z — 3))"/2

249



in the extended complex plane. Which of the branch cuts in Figure 9.28 will make the function single-valued.
Using the first set of branch cuts in this figure define a branch on which £(0) = iv/6. Write out an explicit formula
for the value of the function on this branch.

1[

Figure 9.28: Four Candidate Sets of Branch Cuts for ((z — 1)(z — 2)(z — 3))'/?

Hint, Solution

Exercise 9.26
Determine the branch points of the function

w=((z*-2)(z+ 2))1/3 :

Construct and define a branch so that the resulting cut is one line of finite extent and w(2) = 2. What is w(—3)
for this branch? What are the limiting values of w on either side of the branch cut?

Hint, Solution

Exercise 9.27
Construct the principal branch of arccos(z). (Arccos (z) has the property that if x € [—1,1] then Arccos(x) €

[0, 7]. In particular, Arccos(0) = 7).
Hint, Solution
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Exercise 9.28

Find the branch points of (2'/2 — 1)'/2 in the finite complex plane. Introduce branch cuts to make the function
single-valued.

Hint, Solution

Exercise 9.29
For the linkage illustrated in Figure 9.29, use complex variables to outline a scheme for expressing the angular
position, velocity and acceleration of arm ¢ in terms of those of arm a. (You needn’t work out the equations.)

Figure 9.29: A linkage

Hint, Solution

Exercise 9.30
Find the image of the strip |R(2)| < 1 and of the strip 1 < §(z) < 2 under the transformations:

1. w=222

z+1

2. w=1=H

Hint, Solution
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Exercise 9.31
Locate and classify all the singularities of the following functions:

. (z 4+ 1)1/2
Tz 42
5 1
. COS
1+ 2
5 1
S (1 - e?)?

In each case discuss the possibility of a singularity at the point co.
Hint, Solution

Exercise 9.32

Describe how the mapping w = sinh(z) transforms the infinite strip —oco < x < 00, 0 < y < 7 into the w-plane.
Find cuts in the w-plane which make the mapping continuous both ways. What are the images of the lines (a)
y=m/4; (b) x =17

Hint, Solution
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9.8 Hints

Cartesian and Modulus-Argument Form

Hint 9.1

Trigonometric Functions

Hint 9.2

Recall that sin(z) = o-(e”* — e *). Use Result 8.3.1 to convert between Cartesian and modulus-argument form.

Hint 9.3
Write e* in polar form.

Hint 9.4
The exponential is an increasing function for real variables.

Hint 9.5
Write the hyperbolic cotangent in terms of exponentials.

Hint 9.6
Write out the multi-valuedness of 2*. There is a doubly-infinite set of solutions to this problem.

Hint 9.7
Write out the multi-valuedness of 17.

Logarithmic Identities
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Hint 9.8
Write out the multi-valuedness of the expressions.

Hint 9.9
Do the exponentiations in polar form.

Hint 9.10
Write the cosine in terms of exponentials. Multiply by ¢ to get a quadratic equation for €.

Hint 9.11
Write the cotangent in terms of exponentials. Get a quadratic equation for e®.

Hint 9.12

Hint 9.13
i has an infinite number of real, positive values. i’ = ¢'°¢%. log((1 + 7)) has a doubly infinite set of values.
log((1 +7)'™) = log(exp(imlog(1 4 7))).

Hint 9.14

Hint 9.15

Branch Points and Branch Cuts
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Hint 9.16

Hint 9.17

Hint 9.18

Hint 9.19
L (224 DY2 = (2 =)V (2 +14)'/?

2. (28— 2)V2 = 212(z — D)V2 (2 + 1)1/2
3. log(2? — 1) =log(z — 1) + log(z + 1)

4. log (22) =log(z + 1) — log(z — 1)

Hint 9.20

Hint 9.21
Reverse the orientation of the contour so that it encircles infinity and does not contain any branch points.

Hint 9.22
Consider a contour that encircles all the branch points in the finite complex plane. Reverse the orientation of
the contour so that it contains the point at infinity and does not contain any branch points in the finite complex
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plane.

Hint 9.23
Factor the polynomial. The argument of z
the positive direction.

1/4

changes by 7/2 on a contour that goes around the origin once in

Hint 9.24

Hint 9.25

To define the branch, define angles from each of the branch points in the finite complex plane.

Hint 9.26

Hint 9.27

Hint 9.28

Hint 9.29
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Hint 9.30

Hint 9.31

Hint 9.32
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9.9 Solutions

Cartesian and Modulus-Argument Form

Solution 9.1

We write the mapping w = z*

in polar coordinates.

Thus we see that
w: {re?|r>00<0<ot— {rte®|r>0,0<0< ¢} ={re?|r>0,0<0<4¢}.

We can state this in terms of the argument.

w: {z]0 <arg(z) < ¢} — {2]0 < arg(z) < 4¢}

If ¢ = /2, the sector will be mapped exactly to the whole complex plane.

Trigonometric Functions

Solution 9.2

sinz = (eiz — e’iz)

1
21
1 —y+iz —iT
_2_i<ey+ — oY )
_ 1

(e ¥(cosz + isinz) — e¥(cosz — isinz))

(e ¥(sinz —icosz) + e¥(sinz + icosx))

21
1
2
= sin z cosh y 4 7 cos x sinh y
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sin z = \/ sin? x cosh® 3y + cos? x sinh® y exp (i arctan(sin z cosh y, cos x sinh 7))

= \/ cosh?® y — cos? x exp(i arctan(sin z cosh y, cos x sinh y))

1
= \/5 (cosh(2y) — cos(2x)) exp(i arctan(sin z cosh y, cos x sinh y))

Solution 9.3
In order that e* be zero, the modulus, e® must be zero. Since e* has no finite solutions, e¢* = 0 has no finite

solutions.

Solution 9.4

I
)

oo et ey

The exponential function is an increasing function for real variables. Since 22 — y? < 2% + ¢,

|2

2
e” | < el

Equality holds when y = 0.
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Solution 9.5

e =0
There are no solutions.
Solution 9.6
We write out the multi-valuedness of 2%.

2¢€2°

eLog2 c ezlog(2)
eLogQ e {ez(Log (2)+i2mn) ‘ ne Z}
Log2 € z{Log2 + i2mn + i27rm |m,n € Z}

[ Log (2) +i2mm
~ | Log(2) +i2mn

\m,nEZ}

We verify this solution. Consider m and n to be fixed integers. We express the multi-valuedness in terms of k.
2(Log (2)+i2wm)/(Log (2)+i2mn) _ e( Log (2)+i27m)/( Log (2)+i27n) log(2)

_ e( Log (2)+i2mm)/( Log (2)+i27n)( Log (2)+i2wk)

For k = n, this has the value, elegs@+i2mm — log(2) — 9
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Solution 9.7
We write out the multi-valuedness of 17.

lel”
1e ezlog(l)

1e{e™™|neZ}
The element corresponding to n = 0 is e = 1. Thus 1 € 1* has the solutions,

That is, 2 may be any complex number. We verify this solution.
17 = ezlog(l) _ ezz‘27rn
For n = 0, this has the value 1.

Logarithmic Identities

Solution 9.8
1. The algebraic manipulations are fine. We write out the multi-valuedness of the logarithms.

1
log(—1) = log (—1> = log(1) —log(—1) = —log(—1)
{in+i2mn:neZ}={irn+i2mn:ne€Z}={i2mm:n €} —{ir+i2rn:n € Z} ={—ir —i2mtn:n € Z}

Thus log(—1) = —log(—1). However this does not imply that log(—1) = 0. This is because the logarithm
is a set-valued function log(—1) = —log(—1) is really saying:

{ir+i2mn:n €2} ={—ir —i2mn:n € Z}
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2. We consider
L= 112 = (-1)(-1)"2 = (~)V2(-)2 =i = 1.
There are three multi-valued expressions above.
12 =41
(=1)(=1)"? = +1
(—D)V2(=D)Y? = (£i)(£i) = £1
Thus we see that the first and fourth equalities are incorrect.

LA, ()12 £
Solution 9.9

22/5 _ 41/5

— A1/
= V4?5 =0,1,2,3,4

31+z 1+4) log 3

_ e(1+i)(L0g3+7L2ﬂ'n)

_ eL0g3727rn ez(L0g3+27rn)’ nez

(\/§ . i)1/4 — (2 e*’iﬂ/ﬁ)l/‘l
— /2 emin/24q1/4

_ \4/561'(7rn/2—7r/24)7 n=0,1,23
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Solution 9.10

12’/4 _ e(i/4) log 1
e(i/4)(i27rn)

—mn/2
Y

=e n € 7

cosz =69
eiz + e—iz
e —138e* +1=0

1
o= (138 + /1382 = 4)
2= —ilog (69 + 2\/1190)

7= —i (Log <69 + 2\/1190) + i27m>

= 69

2= 2 —iLog (69 + 2«1190) . nez
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Solution 9.11

cot z = 147
(eiz + e—iz)/2
(e = )/ (20

eiz + e—iz — 47( eiz o e—iz)

=47

46 — 48 = 0
122 zlog%
23
z = —zlog%
2 23
z:—% (Log%+i27m) , nNeEZ

23

24
z:ﬂn—lLog n ez

9 ° 93

Solution 9.12
1.

log(—i) = Log (] —i|) +iarg(—1)
o
= Log(1)+z<—§+27m> , NeEZ

log(—i) = —ig +i2mn, neZ

These are equally spaced points in the imaginary axis. See Figure 9.30.
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Figure 9.30: log(—1)

(_2)71 — efi log(—1)

i(—im /2402
:ez( z7r/+z71'n)7 nez

(_Z)—z _ e—7r/2+27rn’ newz

These are points on the positive real axis with an accumulation point at the origin. See Figure 9.31.

3T — " log(3)

_ e7r( Log (3)+iarg(3))

37 — e7r(Log; (3)+i27rn)’ nez

These points all lie on the circle of radius |e™| centered about the origin in the complex plane. See Figure 9.32.
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Figure 9.31: (—i)™"

Figure 9.32: 37

log(log(i)) = log (2 <g + 27Tm>> , MmEeZ

Log ‘g —1—27rm‘ + i Arg (2 <g +27TM>> +i2mn, m,n € L

= Log ‘g+27rm‘ +isign(1+4m)g+i27m, m,n € Z
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These points all lie in the right half-plane. See Figure 9.33.

20
10

-10
-20

Figure 9.33: log(log(i))

Solution 9.13

Z'i _ ezlog(z)
_ ez(Log\z\JrzArg (z)+127rn)’ nez
— el(lﬂ/2+’l,2ﬂ'n)’ nez

_ efﬂ(1/2+2n) nez

Y

These are points on the positive real axis. There is an accumulation point at z = 0. See Figure 9.34.
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—o

25 50 75 100°

Figure 9.34: i’

log ((1 + Z)wr) — log (emlog(l-i—i))
=imlog(l+1i)+2mn, neZ
=im(Log |1 +i| +iArg (1 +4) +i2rm) + i27n, m,n €Z

1
— im (5 Log 2 + i% +i27rm) ri2mn, mncl

1 1
= —n? (Z—i-Zm) +am (5L0g2+2n>, m,n € Z

See Figure 9.35 for a plot.
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Solution 9.14
1.

10
5
-40 -20 20
) L[] = 5 L4 °
. . ) 19 ° ®

Figure 9.35: log((1 + 7))

e’ =1
z =log1i
2 = Log (|i|) + iarg(i)

z = Log(1)+i<g+27m>; n e

z:ig+i27rn, nez
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2. We can solve the equation by writing the cosine and sine in terms of the exponential.

Ccosz = sin 2

eZZ _|__ e*’LZ B e’LZ _ e*ZZ
2 a2
(I+i)e” =(-14+4d)e ™

. B

6222 — +.Z

I+1

ezZz —
i2z = log(1)

122 = zg +12mn, ne€Z

T
z2=—47mn, nez
4
3.
tan?z = —1
sin? 2z = —cos? 2

Cos z = +isin z
eiz + e—iz ‘eiz _ e—iz
LT S -
21
e =—c¢ or e¥=—e
e ¥ =0 or ¥ =0
7 =0 or e YT® =
e/ =0 or e?=0

z2=10

There are no solutions for finite z.
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Solution 9.15

First we consider tan~!(z).

w = tan”'(z)
z = tan(w)
L sin(w)
cos(w)
(e — e™™)/(2i)
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Now we consider tanh™"(z).

w = tanh™'(2)

z = tanh(w)
sinh(w)
2= —"
cosh(w)
(e"—e)/2
C(ew 4 emw)/2
ze+ze " =¢e¥ — e

(z—1De*™=—2-1
L1\ /2
= (25
z+1 1/2
wzlog( )
1—=2
1 z+1
tanh™'(z) = =1
anh™" (z) 2og(1 )

Branch Points and Branch Cuts

Solution 9.16
The cube roots of 1 are

{1, eizw/?,7 ei47r/3} _ {17 —1 ﬁ;Z\/g7 —1 —2Z\/§}

Thus we can write

1/2 1/2
1—1v3 1+1v3
(23—1)1/2:(2—1)1/2 <Z+ 22\/_> <Z+ +22\/_> |
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There are three branch points on the circle of radius 1.

22{1 “1+iV3 —1—N§}

2 2

We examine the point at infinity.

f(1/¢) = (1/¢ - 1)1/2 _ C73/2(1 _ §3)1/2

Since f(1/¢) has a branch point at ( = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts to separate the branches of the function. The easiest
approach is to put a branch cut from each of the three branch points in the finite complex plane out to the
branch point at infinity. See Figure 9.36a. Clearly this makes the function single valued as it is impossible to
walk around any of the branch points. Another approach is to have a branch cut from one of the branch points
in the finite plane to the branch point at infinity and a branch cut connecting the remaining two branch points.
See Figure 9.36bcd. Note that in walking around any one of the finite branch points, (in the positive direction),
the argument of the function changes by m. This means that the value of the function changes by e, which is
to say the value of the function changes sign. In walking around any two of the finite branch points, (again in
the positive direction), the argument of the function changes by 2. This means that the value of the function
changes by e??", which is to say that the value of the function does not change. This demonstrates that the latter
branch cut approach makes the function single-valued.

Now we construct a branch. We will use the branch cuts in Figure 9.36a. We introduce variables to measure
radii and angles from the three finite branch points.

z—lzrlewl, 0<6; <27
1—1iV3 0 2w T
—_— = ! —— <y < =
Z+ 5 r9e?, 3 5 3
1+1iv3 o, 0T 2
——— =3¢’ —— <03 < —
z+ 5 rge 3 3 3
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./ : ./ :

Figure 9.36: (2* — 1)1/2

We compute f(0) to see if it has the desired value.

f(z) = /17973 i (01+02405)/2

F(0) = e BEmZ — g

Since it does not have the desired value, we change the range of 6.

01
)

z—1=r¢é 2 < 0y < 4w

f(0) now has the desired value.
F(0) = fCr=m/34m/32
We compute f(—1).
F(=1) = V2eiGr=2n/3+20/3)/2 — i/

Solution 9.17
First we factor the function.

wz)=((z4+2)(z = D(z—6)"2 = (2 4+ 2)V2(z — 1)Y2(2 — 6)1/2
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There are branch points at z = —2,1,6. Now we examine the point at infinity.

() )T - (-9

Since (732 has a branch point at ¢ = 0 and the rest of the terms are analytic there, w(z) has a branch point at
infinity.

Consider the set of branch cuts in Figure 9.37. These cuts let us walk around the branch points at z = —2
and z = 1 together or if we change our perspective, we would be walking around the branch points at z = 6 and
z = oo together. Consider a contour in this cut plane that encircles the branch points at z = —2 and z = 1. Since
the argument of (z — z9)'/? changes by 7 when we walk around z, the argument of w(z) changes by 27 when we
traverse the contour. Thus the value of the function does not change and it is a valid set of branch cuts.

Figure 9.37: Branch Cuts for ((z + 2)(z — 1)(z — 6))*/?

Now to define the branch. We make a choice of angles.

Z4+2=r1e% 0, =0 for z € (1..6),
Z—1:T26i92, 92:01 for z € (16),

03
b

2 —6=r;¢ 0 <63 <2m
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The function is
w(z) = (7“1 e1py 602y, ei03)1/2 _ mei(eﬁeﬁeg)/g
We evaluate the function at z = 4.
w(1) = VOE)@) e — g

We see that our choice of angles gives us the desired branch.

Solution 9.18
1.

cos 21/ = cos(£+/z) = cos(v/2)

This is a single-valued function. There are no branch points.

2.
(Z +2~)—z _ e—zlog(z+i)
B A L
— e z( Log |z+i|+i Arg (z+z)+127rn)’ nez
There is a branch point at z = —i. There are an infinite number of branches.

Solution 9.19
1.

f(z) = (22 4 1)1/2 = (2 +z')1/2(z _ Z.)l/g

We see that there are branch points at z = +i. To examine the point at infinity, we substitute z = 1/¢ and

examine the point ¢ = 0.
1\? 2 1
((Z) " 1) = @mn o




Since there is no branch point at ( = 0, f(z) has no branch point at infinity.

A branch cut connecting z = 44 would make the function single-valued. We could also accomplish this with
two branch cuts starting z = +¢ and going to infinity.

f(z) = (Z3 - 2)1/2 _ 21/2(2 _ 1)1/2(2 + 1)1/2

There are branch points at z = —1,0,1. Now we consider the point at infinity.

(Q-(( ) -ee-er

There is a branch point at infinity.

One can make the function single-valued with three branch cuts that start at z = —1,0,1 and each go to
infinity. We can also make the function single-valued with a branch cut that connects two of the points
z = —1,0,1 and another branch cut that starts at the remaining point and goes to infinity.

F(2) = log(22 — 1) = log(z — 1) + log(z + 1)
There are branch points at z = +1.
/ (%) ~ log (Ci - 1) — log(¢™2) + log(1 — ¢?)
log(¢~2) has a branch point at ¢ = 0.
log(¢™*) = Log|¢™?| +iarg(¢™*) = Log|¢7?| —i2arg(¢)

Every time we walk around the point ( = 0 in the positive direction, the value of the function changes by
—i4m. f(z) has a branch point at infinity.

We can make the function single-valued by introducing two branch cuts that start at z = £1 and each go
to infinity.
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z+1
z—1

£(2) = log ( ) = log(z + 1) — log(z — 1)

There are branch points at z = +1.

(CRACS BN

There is no branch point at ( = 0. f(z) has no branch point at infinity.

We can make the function single-valued by introducing two branch cuts that start at z = 1 and each go
to infinity. We can also make the function single-valued with a branch cut that connects the points z = +1.
This is because log(z + 1) and —log(z — 1) change by 27 and —i27, respectively, when you walk around
their branch points once in the positive direction.

Solution 9.20
1. The cube roots of —8 are

{2, —26™/3 _9¢Hm/3) = {—2, 1+iV3,1— z\/§} .
Thus we can write
(2 +8) = (2 4+ 2)2(z = 1 —iV3) (2 — 1 +iV/3) /2.
There are three branch points on the circle of radius 2.
c={-21+iV31-iv3}.
We examine the point at infinity.

FOL/C) = (165 +8)2 = 2(1 4+ 8¢/
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Since f(1/¢) has a branch point at ( = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts outside of the disk |z| < 2 to separate the branches of
the function. The easiest approach is to put a branch cut from each of the three branch points in the finite
complex plane out to the branch point at infinity. See Figure 9.38a. Clearly this makes the function single
valued as it is impossible to walk around any of the branch points. Another approach is to have a branch cut
from one of the branch points in the finite plane to the branch point at infinity and a branch cut connecting
the remaining two branch points. See Figure 9.38bcd. Note that in walking around any one of the finite
branch points, (in the positive direction), the argument of the function changes by 7. This means that the
value of the function changes by e, which is to say the value of the function changes sign. In walking
around any two of the finite branch points, (again in the positive direction), the argument of the function
changes by 27. This means that the value of the function changes by ", which is to say that the value of
the function does not change. This demonstrates that the latter branch cut approach makes the function

/ ) \/ —
a \ b C - d \

Figure 9.38: (2° + 8)1/2

£(z) = log (5 4 (z + 1)1/2)
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First we deal with the function

9(z) = Ci)m

Note that it has branch points at z = £1. Consider the point at infinity.

9(1/) = (%i)/ _ (%)/

Since ¢(1/¢) has no branch point at ( = 0, ¢g(z) has no branch point at infinity. This means that if we
walk around both of the branch points at z = +1, the function does not change value. We can verify this
with another method: When we walk around the point 2 = —1 once in the positive direction, the argument
of z + 1 changes by 2, the argument of (z + 1)*/? changes by 7 and thus the value of (z + 1)/? changes
by €™ = —1. When we walk around the point z = 1 once in the positive direction, the argument of z — 1
changes by 27, the argument of (z — 1)~'/2 changes by —m and thus the value of (z — 1)~!/2 changes by
e~ = —1. f(z) has branch points at z = +1. When we walk around both points z = +1 once in the
positive direction, the value of (j—ﬂ)l/ ? does not change. Thus we can make the function single-valued with
a branch cut which enables us to walk around either none or both of these branch points. We put a branch
cut from —1 to 1 on the real axis.

f(2) has branch points where

1\ 12
. (z—|— >
z—1

is either zero or infinite. The only place in the extended complex plane where the expression becomes infinite
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is at z = 1. Now we look for the zeros.

1\ 12
5+(ZJr ) — 0.
z—1

1/2

<z+1>/ .
z—1

z+1

Z_1:25.
24+1=252—-25
13
12

z

Note that

13/12+ 1\ /2
(12%721) =952 — 45,

On one branch, (which we call the positive branch), of the function g(z) the quantity

1\ /2
. (z+ >
z—1

is always nonzero. On the other (negative) branch of the function, this quantity has a zero at z = 13/12.

The logarithm introduces branch points at z = 1 on both the positive and negative branch of g(z). It
introduces a branch point at z = 13/12 on the negative branch of g(z). To determine if additional branch
cuts are needed to separate the branches, we consider

Z—|—1 1/2
w—5+( )
z—1
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and see where the branch cut between 1 gets mapped to in the w plane. We rewrite the mapping.

9 1/2
w:5—|—<1+ )
z—1

The mapping is the following sequence of simple transformations:

We show these transformations graphically below.

-1 1 -1
O (@)
zr—z—1 Z 2z z—z+1
0 1 I
O
2= 2l r '

For the positive branch of g(z), the branch cut is mapped to the line x = 5 and the z plane is mapped to
the half-plane = > 5. log(w) has branch points at w = 0 and w = oco. It is possible to walk around only one

Zr—z+5
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of these points in the half-plane > 5. Thus no additional branch cuts are needed in the positive sheet of
9(2).

For the negative branch of g(z), the branch cut is mapped to the line z = 5 and the z plane is mapped to
the half-plane x < 5. It is possible to walk around either w = 0 or w = oo alone in this half-plane. Thus
we need an additional branch cut. On the negative sheet of g(z), we put a branch cut beteen z = 1 and
z = 13/12. This puts a branch cut between w = oo and w = 0 and thus separates the branches of the
logarithm.

Figure 9.39 shows the branch cuts in the positive and negative sheets of g(z).

Im(2) Im(2)

0(13/12)=5 0(13/12)=-5
® Re(2) ® oo Re(2)

Figure 9.39: The branch cuts for f(z) = log (5 + (%)I/Q)

3. The function f(z) = (z + i3)"/2 has a branch point at z = —i3. The function is made single-valued by
connecting this point and the point at infinity with a branch cut.

Solution 9.21

Note that the curve with opposite orientation goes around infinity in the positive direction and does not enclose
any branch points. Thus the value of the function does not change when traversing the curve, (with either
orientation, of course). This means that the argument of the function must change my an integer multiple of 2.
Since the branch cut only allows us to encircle all three or none of the branch points, it makes the function single
valued.
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Solution 9.22
We suppose that f(z) has only one branch point in the finite complex plane. Consider any contour that encircles
this branch point in the positive direction. f(z) changes value if we traverse the contour. If we reverse the
orientation of the contour, then it encircles infinity in the positive direction, but contains no branch points in the
finite complex plane. Since the function changes value when we traverse the contour, we conclude that the point
at infinity must be a branch point. If f(z) has only a single branch point in the finite complex plane then it must
have a branch point at infinity.

If f(z) has two or more branch points in the finite complex plane then it may or may not have a branch point
at infinity. This is because the value of the function may or may not change on a contour that encircles all the
branch points in the finite complex plane.

Solution 9.23
First we factor the function,

There are branch points at z = i\%i. We make the substitution z = 1/ to examine the point at infinity.

1 1 1/4
(e)=(+)
= ey

(¢

(¢'/*)* has a removable singularity at the point ¢ = 0, but no branch point there. Thus (2* + 1)'/* has no branch
point at infinity.

Note that the argument of (z* — zy)'/* changes by 7/2 on a contour that goes around the point z once in the
positive direction. The argument of (z* 4 1)'/4 changes by n7/2 on a contour that goes around n of its branch
points. Thus any set of branch cuts that permit you to walk around only one, two or three of the branch points
will not make the function single valued. A set of branch cuts that permit us to walk around only zero or all four
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of the branch points will make the function single-valued. Thus we see that the first two sets of branch cuts in
Figure 9.27 will make the function single-valued, while the remaining two will not.

Consider the contour in Figure ??7. There are two ways to see that the function does not change value while
traversing the contour. The first is to note that each of the branch points makes the argument of the function
increase by 7/2. Thus the argument of (z* + 1)!/# changes by 4(7/2) = 27 on the contour. This means that the
value of the function changes by the factor e?™ = 1. If we change the orientation of the contour, then it is a
contour that encircles infinity once in the positive direction. There are no branch points inside the this contour
with opposite orientation. (Recall that the inside of a contour lies to your left as you walk around it.) Since there
are no branch points inside this contour, the function cannot change value as we traverse it.

Solution 9.24

f(z) = ( - )1/3 =23z =) Bz +40)Y3

There are branch points at z = 0, £i.

1(0)-(was1) - wiem

There is a branch point at ¢ = 0. f(z) has a branch point at infinity.

We introduce branch cuts from z = 0 to infinity on the negative real axis, from z = ¢ to infinity on the positive
imaginary axis and from z = —i to infinity on the negative imaginary axis. As we cannot walk around any of the
branch points, this makes the function single-valued.

We define a branch by defining angles from the branch points. Let

z=re —mT<f<m,
se  —3r/2<¢<T/2,
=te —m/2 << 37/2.
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With

f2) =2z =) Pz +0) 7
_ s Tew/:«si e‘i¢/3i oit/3

_ 3T io-o-u)3
st

we have an explicit formula for computing the value of the function for this branch. Now we compute f(1) to see
if we chose the correct ranges for the angles. (If not, we’ll just change one of them.)

1 io-mja(-mmys _ 1

NeNG 7

We made the right choice for the angles. Now to compute f(1 + ).

f) =y

[\

15 5

Consider the value of the function above and below the branch cut on the negative real axis. Above the branch
cut the function is

f(1+Z) _ 3 \/5 ei(ﬂ'/4—0—Arctan(2))/3 _ 6 2ei(7r/4—Arctan(2))/3

T .
—r+i0) =2 el(ﬂ—¢—1/))/3
i ) \/\/x2+ Va2 +1

T : r 14iV3
_ 0) = 3 i(m)/3 _ 3 )
Jmo+i0) = §/aTe 241 2

Below the branch cut § = —7 and

T . T 1—i\/§
o —i0) = 1(777)/3:3 )
flmw=i0) =/ 77 e 21 2

286

Note that ¢ = — so that




For the branch cut along the positive imaginary axis,

: _ Y i(m/2—m)2—7/2)/3
fliy+0) = i/—e( /
K PSPy

For the branch cut along the negative imaginary axis,

: _ Yy i(—m/2—(~7/2)—(~7/2))/3
f(—iy+0) = i”/—e
(y+1)(y—1)

o Y oim/6
Bl \/(y+1)(y—1)

-, y V3 i
_\/(?/+1)(Z/—1) 2
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. . Yy i(—m/2—(—7/2)—(37/2))/3
f(—iy —0) = Q/—e
(y+1Dy—1)

_ i/ Y o—im/2
(y+1(y—1)
_ \/#
(y+Dy—1)

Solution 9.25
First we factor the function.

F2) = (= 1)(z = 2)(2 = 3))/ = (2 = 1)"(z = 2)/*( - 3)"/?

There are branch points at z = 1,2,3. Now we examine the point at infinity.

(- ()2 E2) = (-0 (-9 0-9)

Since (~%/2 has a branch point at ¢ = 0 and the rest of the terms are analytic there, f(z) has a branch point at
infinity.

The first two sets of branch cuts in Figure 9.28 do not permit us to walk around any of the branch points,
including the point at infinity, and thus make the function single-valued. The third set of branch cuts lets us
walk around the branch points at z = 1 and z = 2 together or if we change our perspective, we would be walking
around the branch points at z = 3 and z = oo together. Consider a contour in this cut plane that encircles the
branch points at z = 1 and z = 2. Since the argument of (z — z)'/? changes by 7 when we walk around z,, the
argument of f(z) changes by 2 when we traverse the contour. Thus the value of the function does not change
and it is a valid set of branch cuts. Clearly the fourth set of branch cuts does not make the function single-valued
as there are contours that encircle the branch point at infinity and no other branch points. The other way to see
this is to note that the argument of f(z) changes by 37 as we traverse a contour that goes around the branch
points at z = 1,2, 3 once in the positive direction.
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Now to define the branch. We make the preliminary choice of angles,

z—1=re%, 0<6, <2r,
z2—2=re"  0<6,<2m,
z—3=rye®  0<0y <2

The function is
f(z) = (7”1 1y, eif2y, ei03)1/2 _ mei(91+92+93)/2_
The value of the function at the origin is
F(0) = V62 = —iv/G,

which is not what we wanted. We will change range of one of the angles to get the desired result.

z—1=mre?% 0<6, <2r,
2—2:7“2(3"‘92, 0 <0y <2m,
z—3=rye® 27 <0y < 4n.

£(0) = V6ei0™/2 = /6,
Solution 9.26

w=((z*=2)(z+2)"* (z + V2)/3(z = V2)/3(z +- 2)'/3

There are branch points at z = +£v/2 and z = —2. If we walk around any one of the branch points once in the
positive direction, the argument of w changes by 27/3 and thus the value of the function changes by ¢?™/3. If we
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walk around all three branch points then the argument of w changes by 3 x 27/3 = 2r. The value of the function
is unchanged as €™ = 1. Thus the branch cut on the real axis from —2 to v/2 makes the function single-valued.
Now we define a branch. Let

z—V2=ae® z+V2=0be? 4+2=ce".
We constrain the angles as follows: On the positive real axis, « = 3 = ~. See Figure 9.40.

Im(z)

0 Re(z)

Figure 9.40: A branch of ((2? — 2)(z + 2))1/3.

Now we determine w(2).
w(2) = (2-V2)"P2+V2) 2+ 2)"

— Q/Q_ﬁei0</2+\/§ei034ei0
= V2V4
= 2.

Note that we didn’t have to choose the angle from each of the branch points as zero. Choosing any integer multiple
of 2w would give us the same result.
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w(—3) = (=3 — V2)3(=3+ V2)'/3(-3 + 2)!/3

_ ,3/3 + \/ﬁem/3 ‘3/3 i Qez‘n/?,\s‘/Iem/:s
_ \S/?Giﬂ-
- V7

The value of the function is
w = Vabce@tB/3,

Consider the interval (—v/2...v/2). As we approach the branch cut from above, the function has the value,

w = Vabce™3 = {’/(\/5 —z)(z + V2) (2 +2) /3

As we approach the branch cut from below, the function has the value,

w = Vabce /3 = f/(\/i —z)(x +V2)(x +2) e,

Consider the interval (—2...— 1/2). As we approach the branch cut from above, the function has the value,

w = Vabc /3 = {’/(\/5 —z)(—x — V2)(z + 2) /3,

As we approach the branch cut from below, the function has the value,

w = Vabce /3 = {’/(\/5 —z)(—x — \/5)(1: +2) e 2m/3,
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N
N O W

-1 -0.5 0.5 1

Figure 9.41: The Principal Branch of the arc cosine, Arccos(x).

Solution 9.27
Arccos (x) is shown in Figure 9.41 for real variables in the range [—1, 1].
First we write arccos(z) in terms of log(z). If cos(w) = z, then w = arccos(z).

cos(w) = z
eiw_|_ efiw
2
(e™)? —2ze™ +1=0
eiw — 24 (2’2 . 1)1/2
w = —ilog(z + (2% — 1)1/?)

=2z

Thus we have

arccos(z) = —ilog(z + (2% — 1)'/?).

Since Arccos (0) = 7, we must find the branch such that

—ilog(0+ (0> = 1)"?) =0
—ilog((—=1)"?) =0.
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Since
—ilog(i) = —i (zg n i27rn> - g + 21
and
—ilog(—i) = —i (—zg + i27m> — —g +2mn
we must choose the branch of the square root such that (—1)/? =i and the branch of the logarithm such that
log (i) = i%.
First we construct the branch of the square root.

(22 _ 1>1/2 = (z+ 1)1/2(2 . 1>1/2

We see that there are branch points at z = —1 and z = 1. In particular we want the Arccos to be defined for
z =z, x € [—1,1]. Hence we introduce branch cuts on the lines —oco < z < —1 and 1 < x < oo. Define the local
coordinates

241 =re?, z2—1=pe”.
With the given branch cuts, the angles have the possible ranges

{0y ={... ,(—m..7),(7..37),...}, {6} ={...,(0.27),(2m.47),... }.

Now we choose ranges for # and ¢ and see if we get the desired branch. If not, we choose a different range for one
of the angles. First we choose the ranges

0 e (—m.m), ¢ € (0..2m).
If we substitute in z = 0 we get

(02 o 1)1/2 — (1 eiO)l/Q(l eiw)1/2 _ eiO ez‘7r/2 =3

293



0=—Tt =211

Figure 9.42: Branch Cuts and Angles for (2% — 1)%/2

Thus we see that this choice of angles gives us the desired branch.
Now we go back to the expression

arccos(z) = —ilog(z + (22 — 1)1/?).

We have already seen that there are branch points at z = —1 and z = 1 because of (22 — 1)/2. Now we must
determine if the logarithm introduces additional branch points. The only possibilities for branch points are where
the argument of the logarithm is zero.

2+ (Z2-1DY2 =0
P2=2-1
0=-1

We see that the argument of the logarithm is nonzero and thus there are no additional branch points. Introduce
the variable, w = z + (22 — 1)"/2. What is the image of the branch cuts in the w plane? We parameterize the
branch cut connecting z =1 and z = +oo with z =7+ 1, r € [0, 00).

w=r+1+((r+1)7°-1"
:r+1i\/m
—r(1xry/1+2/r)+1
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r(14+/1+2/r)+1is the interval [1,00); 7(1 — /1 + 2/r) + 1 is the interval (0, 1]. Thus we see that this branch
cut is mapped to the interval (0, 00) in the w plane. Similarly, we could show that the branch cut (—oo, —1] in
the z plane is mapped to (—o0,0) in the w plane. In the w plane there is a branch cut along the real w axis from
—o0 to co. Thus cut makes the logarithm single-valued. For the branch of the square root that we chose, all the
points in the z plane get mapped to the upper half of the w plane.

With the branch cuts we have introduced so far and the chosen branch of the square root we have

arccos(0) = —ilog(0 + (02 — 1)¥/2)
= —ilogi
= —i (i5 +i2m)
_ + 27N

2

Choosing the n = 0 branch of the logarithm will give us Arccos (z). We see that we can write

Arccos (z) = —iLog (z + (22 — 1)/?).

Solution 9.28

We consider the function f(z) = (/2 —1)"/2. First note that z'/2 has a branch point at z = 0. We place a branch
cut on the negative real axis to make it single valued. f(z) will have a branch point where z'/2 — 1 = 0. This
occurs at z = 1 on the branch of z'/2 on which 1/2 = 1. (1'/2 has the value 1 on one branch of z'/2 and —1 on
the other branch.) For this branch we introduce a branch cut connecting z = 1 with the point at infinity. (See
Figure 9.43.)

Solution 9.29
The distance between the end of rod a and the end of rod ¢ is b. In the complex plane, these points are ae® and
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Figure 9.43: Branch Cuts for (z1/2 —1)%/2

[ + ce™, respectively. We write this out mathematically.

I+ ce® —ae”|=b
(l +cel® — aew) (l +ce i — ae’w) =?

Picle™ —ale ™ +cle 4+ c® —ace®? —qgle? — ace’@ 9 1+ ¢ = b2

(1 —a?—— I2)

clcos ¢ — accos(¢p — 0) — al cos =

DO | —

This equation relates the two angular positions. One could differentiate the equation to relate the velocities and
accelerations.

Solution 9.30
1. Let w = u+dv. First we do the strip: |R(z)| < 1. Consider the vertical line: z = ¢+ iy, y € R. This line is

mapped to
w = 2(c+iy)?
w = 2c — 2y + idey
w=2c*—2y% wv=dAdecy

This is a parabola that opens to the left. For the case ¢ = 0 it is the negative u axis. We can parametrize
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the curve in terms of v.

1
u:2c2—@02, velR

The boundaries of the region are both mapped to the parabolas:

1
=2— 0%, veER
u 8U v

The image of the mapping is

1
{w:u+iv:v€Randu<2—§02}.

Note that the mapping is two-to-one.
Now we do the strip 1 < §(z) < 2. Consider the horizontal line: z = x + ic, x € R. This line is mapped to
w = 2(x +ic)?
w = 2x® — 2¢% + idcx

w=2z2—2¢ wv=dcx

This is a parabola that opens upward. We can parametrize the curve in terms of v.

1
u:@v2—202, veR
The boundary J(z) = 1 is mapped to
L2 o eR
u=-v°— v
8 )
The boundary (z) = 2 is mapped to
L _g eR
u=—v"— v
32 ’



The image of the mapping is

1 1
{w:u—l—z’v:veRand3—2@2—8<u<§v2—2}.

. We write the transformation as

z+1_1+ 2
2—1 z—1

Thus we see that the transformation is the sequence:
(a) translation by -1
(b

)

) inversion

(¢) magnification by 2
)

(d) translation by 1

Consider the strip |R(z)| < 1. The translation by —1 maps this to —2 < R(z) < 0. Now we do the
inversion. The left edge, R(z) = 0, is mapped to itself. The right edge, $(z) = —2, is mapped to the circle
|z +1/4| = 1/4. Thus the current image is the left half plane minus a circle:

1 1
R(z) <0 and Z+Z‘ > 7
The magnification by 2 yields
R(z) <0 and z—i-l’ > 1
2 2
The final step is a translation by 1.
1 1
R(z) <1 and i=5l >y
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Now consider the strip 1 < (z) < 2. The translation by —1 does not change the domain. Now we do the
inversion. The bottom edge, 3(z) = 1, is mapped to the circle |z +i/2| = 1/2. The top edge, I(z) = 2, is
mapped to the circle |z + /4] = 1/4. Thus the current image is the region between two circles:

+ ! < L d + ! > L
P — an A —.
2 2 4 4
The magnification by 2 yields
lz+1i <1 and + ! > !
z 41 an A —.
2 2
The final step is a translation by 1.
. ) 1
|z—1+i] <1 and z—1+§ >§.

Solution 9.31
1. There is a simple pole at z = —2. The function has a branch point at z = —1. Since this is the only
branch point in the finite complex plane there is also a branch point at infinity. We can verify this with the

substitution z = 1/(.
s (}) _@/¢+n'?
¢) 1/¢+2
§1/2(1 +<)1/2
1+

Since f(1/¢) has a branch point at ( = 0, f(z) has a branch point at infinity.
2. cos z is an entire function with an essential singularity at infinity. Thus f(z) has singularities only where

1/(1 + z) has singularities. 1/(1 + z) has a first order pole at z = —1. It is analytic everywhere else,
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including the point at infinity. Thus we conclude that f(z) has an essential singularity at z = —1 and is
analytic elsewhere. To explicitly show that z = —1 is an essential singularity, we can find the Laurent series
expansion of f(z) about z = —1.

o (32) = S e+

3. 1 — e* has simple zeros at z = i2nm, n € Z. Thus f(z) has second order poles at those points.

The point at infinity is a non-isolated singularity. To justify this: Note that

1

f(Z)Zm

has second order poles at z = i2nm, n € Z. This means that f(1/¢) has second order poles at ¢ = ﬁ,

n € Z. These second order poles get arbitrarily close to ¢ = 0. There is no deleted neighborhood around
¢ = 01in which f(1/¢) is analytic. Thus the point ( = 0, (z = o), is a non-isolated singularity. There is no
Laurent series expansion about the point ¢ =0, (z = 00).

The point at infinity is neither a branch point nor a removable singularity. It is not a pole either. If it were,
there would be an n such that lim,_,., 27" f(z) = const # 0. Since z~" f(z) has second order poles in every
deleted neighborhood of infinity, the above limit does not exist. Thus we conclude that the point at infinity
is an essential singularity.

Solution 9.32
We write sinh z in Cartesian form.

w = sinh z = sinhx cosy + tcoshxrsiny = u + iv
Consider the line segment x = ¢, y € (0...7). Its image is

{sinhccosy +icoshesiny |y € (0...m)}.
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This is the parametric equation for the upper half of an ellipse. Also note that u and v satisfy the equation for
an ellipse.

u? v2

1

+ =
sinh’c  cosh?c
The ellipse starts at the point (sinh(c), 0), passes through the point (0, cosh(c)) and ends at (—sinh(c),0). As ¢
varies from zero to oo or from zero to —oo, the semi-ellipses cover the upper half w plane. Thus the mapping is
2-to-1.
Consider the infinite line y = ¢, x € (—00...00).Its image is

{sinhzcosc+icoshzsinc|z € (—o0...00)}.

This is the parametric equation for the upper half of a hyperbola. Also note that v and v satisfy the equation for
a hyperbola.

u? v?

=1

Ccos?c | sin?e

As ¢ varies from 0 to 7/2 or from 7/2 to m, the semi-hyperbola cover the upper half w plane. Thus the mapping
is 2-to-1.

We look for branch points of sinh™* w.

w = sinh z

ef— e ”

2
e —2we*—1=0
" =w+ (w + 1)1/2

2 = log (w + (w— )2 (w + Z-)l/Z)

w =

There are branch points at w = =£i. Since w + (w? 4 1)'/2 is nonzero and finite in the finite complex plane, the
logarithm does not introduce any branch points in the finite plane. Thus the only branch point in the upper

301



half w plane is at w = 4. Any branch cut that connects w = i with the boundary of J(w) > 0 will separate the
branches under the inverse mapping.
Consider the line y = /4. The image under the mapping is the upper half of the hyperbola

2%+ 2% = 1.

Consider the segment z = 1.The image under the mapping is the upper half of the ellipse

u? v?

+
sinh’1  cosh?1
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Chapter 10

Analytic Functions

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way,
they develop a good, lucky feeling. *

-Jack Handey

10.1 Complex Derivatives

Functions of a Real Variable. The derivative of a function of a real variable is

oy — i LA )

dx Az—0 Ax

If the limit exists then the function is differentiable at the point x. Note that Az can approach zero from above
or below. The limit cannot depend on the direction in which Ax vanishes.
Consider f(z) = |z|. The function is not differentiable at x = 0 since

|0+ Az — 0]
hm —_— =

1
Az—0t Az

LQuote slightly modified.
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and

) |0+ Az| — |0]

l —_—— = 1.
Amli%_ Al’

Analyticity. The complex derivative, (or simply derivative if the context is clear), is defined,

4y LEHAD =1

dz Az—0 Az

The complex derivative exists if this limit exists. This means that the value of the limit is independent of the
manner in which Az — 0. If the complex derivative exists at a point, then we say that the function is complex
differentiable there.

A function of a complex variable is analytic at a point zy if the complex derivative exists in a neighborhood
about that point. The function is analytic in an open set if it has a complex derivative at each point in that set.
Note that complex differentiable has a different meaning than analytic. Analyticity refers to the behavior of a
function on an open set. A function can be complex differentiable at isolated points, but the function would not
be analytic at those points. Analytic functions are also called regular or holomorphic. If a function is analytic

everywhere in the finite complex plane, it is called entire.

Example 10.1.1 Consider 2", n € Z*, Is the function differentiable? Is it analytic? What is the value of the
derivative?

We determine differentiability by trying to differentiate the function. We use the limit definition of differenti-
ation. We will use Newton’s binomial formula to expand (z + Az)".

d , .. (z+Ax)"—2"
- Algllo Az
‘ <z” +nz" 1Az + @z”_QAzQ +- 4 Az") — 2"
- AILIEO Az
= AlinEO (nz"_l + @z”qu + 4 Az”_1>
=nz"!
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The derivative exists everywhere. The function is analytic in the whole complex plane so it is entire

of the derivative is % =nz" 1.

Example 10.1.2 We will show that f(z) = Z is not differentiable. The derivative is,

If we take Az = Ax, the limit is

If we take Az = iAy, the limit is

A - ()

B Az—0 AZ
B r z+ Az —Z
—Z = lim
dZ Az—0 AZ
Y Az
= lim —
Az—0 AZ
Az
A ne !
—iA
lim — =4 — _q,
Ay—0 Ay

. The value

Since the limit depends on the way that Az — 0, the function is nowhere differentiable. Thus the function is not

analytic.

Complex Derivatives in Terms of Plane Coordinates.

Let z = ((§,n) be a system of coordinates in the

complex plane. (For example, we could have Cartesian coordinates z = ((x,y) = z + iy or polar coordinates
2z =((r,0) = re?). Let f(z) = ¥(&,n) be a complex-valued function. (For example we might have a function
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in the form ¥(z,y) = u(x,y) + iv(z,y) or ¥(r,0) = R(r,0)e®"9) If f(z) = (&, n) is analytic, its complex
derivative is equal to the derivative in any direction. In particular, it is equal to the derivatives in the coordinate
directions.

af _ ﬂz+Aw—f@L:mnw@+A¢m—w@m>:<g>*aw

dz Agﬁor,gnzo Az AE—0 g—gAﬁ o3 o’
df L FEHA) —f() . wEn+An) —e(En) _ (00T 9¢
— = im = lim =\ 5 a0
dz  A&=0,An—0 Az An—0 g—f]An on on

Example 10.1.3 Consider the Cartesian coordinates z = x + iy. We write the complex derivative as derivatives
in the coordinate directions for f(z) = ¥ (z,vy).

df <a(x+@'y)>_18_w o

dz Ox or oz’
df Az +iy)\ " O O
?5267@_)?E:ﬂ@'
We write this in operator notation.
d 0 0

—_——= —— = ——

dz  0r oy

Example 10.1.4 In Example 10.1.1 we showed that 2", n € Z", is an entire function and that %z" = nz" L
Now we corroborate this by calculating the complex derivative in the Cartesian coordinate directions.

d , 0 o

oo = a(x + iy)
= n(x +iy)"'
=nz"t
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oo = —za—y(a: + iy)
— —i(i)n(z + iy
=nz""!

Complex Derivatives are Not the Same as Partial Derivatives Recall from calculus that

(3f_(9g@ 89@

Do not make the mistake of using a similar formula for functions of a complex variable. If f(z) = ¢ (z,y) then

df , obor oy

dz 8m82+3_y62'

This is because the di operator means “The derivative in any direction in the complex plane.” Since f(z) is
z

analytic, f’(z) is the same no matter in which direction we take the derivative.

Rules of Differentiation. For an analytic function defined in terms of z we can calculate the complex derivative
using all the usual rules of differentiation that we know from calculus like the product rule,

L I)0() = () + 129 (2),

or the chain rule,

102 = Flo)g @)

This is because the complex derivative derives its properties from properties of limits, just like its real variable
counterpart.
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Result 10.1.1 The complex derivative is,

d L fleH+Az) = f(2)
/(&) = fim A -

The complex derivative is defined if the limit exists and is independent of the manner
in which Az — 0. A function is analytic at a point if the complex derivative exists in a
neighborhood of that point.

Let z = ((&,n) be coordinates in the complex plane. The complex derivative in the

coordinate directions is
d_(ey e (o
dz  \o¢ o0& \0n an’

In Cartesian coordinates, this is

d 0 0

- _— = ——

dz Oz oy’
In polar coordinates, this is
d_ w0 i 0
dz or r 00
Since the complex derivative is defined with the same limit formula as real derivatives,

all the rules from the calculus of functions of a real variable may be used to differentiate
functions of a complex variable.
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Example 10.1.5 We have shown that 2", n € Z*, is an entire function. Now we corroborate that %z” =nz" !
by calculating the complex derivative in the polar coordinate directions.
izn — e—i@grn ein@
dz or
— einnrnfl ein9

dzz re 00

Analytic Functions can be Written in Terms of z. Consider an analytic function expressed in terms of x
and y, ¥(z,y). We can write ¢ as a function of z = x + iy and z = z — dy.

_ z24+7zZ z2—Z
fen=v (555 557)

We treat z and Z as independent variables. We find the partial derivatives with respect to these variables.
9 w0 o 1
0z 0z0x 0z0y 2
0 _0wo o 1
0z  0z0x 0z0y 2
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Since v is analytic, the complex derivatives in the x and y directions are equal.

o _ _
or Oy
The partial derivative of f(z,z) with respect to Z is zero.
of 1[0y o\
0z 2 (6’1’ +28y) =0

Thus f(z,%) has no functional dependence on Z, it can be written as a function of z alone.
If we were considering an analytic function expressed in polar coordinates ¢(r,6), then we could write it in
Cartesian coordinates with the substitutions:

r=+/z?+y? 0= arctan(z,y).

Thus we could write ¢(r, 6) as a function of z alone.

Result 10.1.2 Any analytic function ¢(z,y) or ¢(r,#) can be written as a function of z
alone.

10.2 Cauchy-Riemann Equations

If we know that a function is analytic, then we have a convenient way of determining its complex derivative.
We just express the complex derivative in terms of the derivative in a coordinate direction. However, we don’t
have a nice way of determining if a function is analytic. The definition of complex derivative in terms of a limit
is cumbersome to work with. In this section we remedy this problem.

Consider a function f(z) = ¥(z,y). If f(z) is analytic, the complex derivative is equal to the derivatives in
the coordinate directions. We equate the derivatives in the z and y directions to obtain the Cauchy-Riemann
equations in Cartesian coordinates.
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This equation is a necessary condition for the analyticity of f(z).
Let ¥(z,y) = u(x,y) + iv(x,y) where v and v are real-valued functions. We equate the real and imaginary
parts of Equation 10.1 to obtain another form for the Cauchy-Riemann equations in Cartesian coordinates.

Uy = Uy, Uy = —Uy.

Note that this is a necessary and not a sufficient condition for analyticity of f(z). That is, u and v may satisfy
the Cauchy-Riemann equations but f(z) may not be analytic. The Cauchy-Riemann equations give us an easy
test for determining if a function is not analytic.

Example 10.2.1 In Example 10.1.2 we showed that Z is not analytic using the definition of complex differenti-
ation. Now we obtain the same result using the Cauchy-Riemann equations.
Z=x—1y
u, =1, v, =-1
We see that the first Cauchy-Riemann equation is not satisfied; the function is not analytic at any point.
A sufficient condition for f(z) = ¥ (z,y) to be analytic at a point zy = (z,yo) is that the partial derivatives

of ¥(z,y) exist and are continuous in some neighborhood of z; and satisfy the Cauchy-Riemann equations there.
If the partial derivatives of 1 exist and are continuous then

Y(x+ Az, y + Ay) = (2, y) + Axpe (2, y) + Ay (z,y) + o(Az) + o(Ay).
Here the notation o(Az) means “terms smaller than Az”. We calculate the derivative of f(z).

flz+Az) - f(2)

N
Flz) = Algllo Az
_ oy Yt Azy+ Ay) —Y(z.y)
= lim :
Az,Ay—0 Az + 1Ay
= Yey) + Axye(z,y) + Ayyy (2, y) + o(Az) + o(Ay) — Pz, y)
Ax,Ay—0 Ax + ZAy
_ i Arve(ry) + Ayyy(2,y) + o(Ax) + o(Ay)
Az, Ay—0 Ax + 1Ay
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Here we use the Cauchy-Riemann equations.

_ g Brtibyi(ey) o o(A7) +o(Ay)
Az, Ay—0 Azx 4+ 1Ay Az Ay—0 Az + iAy

- %(% y)

Thus we see that the derivative is well defined.

Cauchy-Riemann Equations in General Coordinates Let z = ((£,n) be a system of coordinates in the
complex plane. Let ¢(£,n) be a function which we write in terms of these coordinates, A necessary condition for
analyticity of ¢(&,n) is that the complex derivatives in the coordinate directions exist and are equal. Equating
the derivatives in the ¢ and 7 directions gives us the Cauchy-Riemann equations.

¢\ toy  [(a¢\ oy
() 5-() %

We could separate this into two equations by equating the real and imaginary parts or the modulus and argument.
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Result 10.2.1 A necessary condition for analyticity of (£, n), where z = ((§,n), at
2z = zg is that the Cauchy-Riemann equations are satisfied in a neighborhood of z = z.

(%)_15_1? _ (%>_15_¢
¢ o0& \0n on’

(We could equate the real and imaginary parts or the modulus and argument of this to
obtain two equations.) A sufficient condition for analyticity of f(z) is that the Cauchy-
Riemann equations hold and the first partial derivatives of ¢ exist and are continuous in
a neighborhood of z = z.

Below are the Cauchy-Riemann equations for various forms of f(z).

f(z) =(z,y), Ve = —i1,

1) = ulwy) + (e y),  w—vy uy = —v,

f(2) = v(r,0), =~y

£(2) = u(r 0) + iv(r, 0),  uy = %vg, "y = —ro,

f(z) = R(r,0) ¥ R, = g@g, %Rg — —RO,

Example 10.2.2 Consider the Cauchy-Riemann equations for f(z) = u(r,8) + iv(r,0). From Exercise 10.2 we
know that the complex derivative in the polar coordinate directions is
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From Result 10.2.1 we have the equation,

e’ieg[u +iv] = L e’ieg[u + iv].

or r 00
We multiply by e and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

1
Uyr = —Vp, Ug = — TV,
r

Example 10.2.3 Consider the exponential function.

e =y(x,y) = e"(cosy + isin(y))
We use the Cauchy-Riemann equations to show that the function is entire.
Py = _i¢y

e”(cosy +isin(y)) = —ie®(—siny + icos(y))
e”(cosy +isin(y)) = e*(cosy + isin(y))
Since the function satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous every-

where in the finite complex plane, the exponential function is entire.
Now we find the value of the complex derivative.

d 2_8¢_ . .. _
Pl e (cosy +isin(y)) = e

z

The differentiability of the exponential function implies the differentiability of the trigonometric functions, as they
can be written in terms of the exponential.

In Exercise 10.11 you can show that the logarithm log z is differentiable for z # 0. This implies the differen-
tiability of 2* and the inverse trigonometric functions as they can be written in terms of the logarithm.
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Example 10.2.4 We compute the derivative of 2*.

d d

RS
= (14 logz) e*'8”
= (1 +1logz)z*
=2+ 2"logz

zlog z

10.3 Harmonic Functions

A function u is harmonic if its second partial derivatives exist, are continuous and satisfy Laplace’s equation
Au = 0. ? (In Cartesian coordinates the Laplacian is Au = uy, + uy,.) If f(2) = v+ iv is an analytic function
then u and v are harmonic functions. To see why this is so, we start with the Cauchy-Riemann equations.

Uy = Uy, Uy = —Vy

We differentiate the first equation with respect to x and the second with respect to y. (We assume that u and v
are twice continuously differentiable. We will see later that they are infinitely differentiable.)

Ugy = VUgy, Uyy = —Uyg
Thus we see that u is harmonic.
AU = Uy + Uyy = Vgy — Vyy = 0

One can use the same method to show that Av = 0.

2 The capital Greek letter A is used to denote the Laplacian, like Au(x,y), and differentials, like Ax.
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If w is harmonic on some simply-connected domain, then there exists a harmonic function v such that f(z) =
u + v is analytic in the domain. v is called the harmonic conjugate of u. The harmonic conjugate is unique up
to an additive constant. To demonstrate this, let w be another harmonic conjugate of u. Both the pair v and v
and the pair v and w satisfy the Cauchy-Riemann equations.

Uy = Vy, Uy = —Uy, Uy = Wy, Uy = —W,
We take the difference of these equations.

Vg —w, =0, vy, —w, =0
On a simply connected domain, the difference between v and w is thus a constant.

To prove the existence of the harmonic conjugate, we first write v as an integral.

()
v(z,y) = v(wo, 40) +/ vy da + vy dy
(z0,y0)
On a simply connected domain, the integral is path independent and defines a unique v in terms of v, and v,
We use the Cauchy-Riemann equations to write v in terms of u, and u,.

()
v(z,y) = v(xo, Yo) +/ —uy dz + u, dy

(x()?yo)

Changing the starting point (zo,yo) changes v by an additive constant. The harmonic conjugate of u to within
an additive constant is

v(z,y) = /—uy dz + u, dy.

This proves the existence * of the harmonic conjugate. This is not the formula one would use to construct the

harmonic conjugate of a u. One accomplishes this by solving the Cauchy-Riemann equations.

3 A mathematician returns to his office to find that a cigarette tossed in the trash has started a small fire. Being calm and a
quick thinker he notes that there is a fire extinguisher by the window. He then closes the door and walks away because “the solution
exists.”
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Result 10.3.1 If f(z) = u + iv is an analytic function then w and v are harmonic
functions. That is, the Laplacians of v and v vanish Au = Av = 0. The Laplacian in
Cartesian and polar coordinates is

9 0 A_l(?(@) 1 9°

A= e AT e \ar) Trae

Given a harmonic function u in a simply connected domain, there exists a harmonic
function v, (unique up to an additive constant), such that f(z) = u + iv is analytic in
the domain. One can construct v by solving the Cauchy-Riemann equations.

Example 10.3.1 Is 22 the real part of an analytic function?
The Laplacian of x? is

Alz?] =2+0

22 is not harmonic and thus is not the real part of an analytic function.

Example 10.3.2 Show that u = e *(zsiny — ycosy) is harmonic.

@
ox

= e “siny — e*(zsiny — ycosy)

= e “siny —xe “siny+ye “cosy

0%u

Frohe —e Psiny — e “siny+xre “siny —ye “cosy
x

= —2e 'siny+xe Tsiny —ye “cosy
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ou

— = ¢ ¥(xcosy — cosy + ysin
a5 (zcosy Y+ ysiny)

J*u

92 = e ¥(—xsiny + siny + ycosy + siny)

=—xe “siny+2e “siny+ye “cosy

2 2 . .
Thus we see that % + 373 = (0 and w is harmonic.

Example 10.3.3 Consider u = cos x cosh y. This function is harmonic.
Ugy + Uyy = — cos T coshy + cosx coshy =0

Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy = Uy = —sinxz coshy

v = —sinzsinhy + a(z)

Here a(z) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine

a(x).

Uy = —Uy
—cosxsinhy + a'(z) = — cosxsinhy
a(x)=0
a(x) =c¢

Here c is a real constant. Thus the harmonic conjugate is

v = —sinzsinhy + c.
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The analytic function is
f(z) = coszcoshy — isinxsinhy + ic
We recognize this as

f(z) = cos z +ic.

Example 10.3.4 Here we consider an example that demonstrates the need for a simply connected domain.
Consider v = Logr in the multiply connected domain, r > 0. u is harmonic.

10 1 92
ALogr =—-— (7"— Logr) + — = Logr =0
ror r

We solve the Cauchy-Riemann equations to try to find the harmonic conjugate.

1

Up = —Vp, Uy = —TUp
T

v, =0, vg=1
v=~0+c
We are able to solve for v, but it is multi-valued. Any single-valued branch of € that we choose will not be
continuous on the domain. Thus there is no harmonic conjugate of u = Logr for the domain r > 0.

If we had instead considered the simply-connected domain r > 0, |arg(z)| < 7 then the harmonic conjugate
would be v = Arg(z) + ¢. The corresponding analytic function is f(z) = Log z + ic.

Example 10.3.5 Consider u = 2% — 3zy? + z. This function is harmonic.

Ugg + Uyy = 62 — 62 =0
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Thus it is the real part of an analytic function, f(z). We find the harmonic conjugate, v, with the Cauchy-Riemann
equations. We integrate the first Cauchy-Riemann equation.

vy =u, =32 = 3y* + 1
v =32y — > +y+az)

Here a(z) is a constant of integration. We substitute this into the second Cauchy-Riemann equation to determine

a(x).

Uy = —uy,
6zy + o' (x) = 6y
a(z) =0
a(x) =c¢

Here c is a real constant. The harmonic conjugate is
v=32"y -y +y+ec
The analytic function is
f(z) = 2% = 3oy + 2 +i(32%y — v* +y) +ic
f(z) = 2* +i32%y — 32y —iy® + o + iy +ic
f(z) =2°+ 2 +ic

10.4 Singularities

Any point at which a function is not analytic is called a singularity. In this section we will classify the different
flavors of singularities.

Result 10.4.1 Singularities. If a function is not analytic at a point, then that point
is a stngular point or a singularity of the function.

320



10.4.1 Categorization of Singularities

Branch Points. If f(z) has a branch point at zy, then we cannot define a branch of f(z) that is continuous
in a neighborhood of zy. Continuity is necessary for analyticity. Thus all branch points are singularities. Since
function are discontinuous across branch cuts, all points on a branch cut are singularities.

Example 10.4.1 Consider f(z) = z%2. The origin and infinity are branch points and are thus singularities of

f(2). We choose the branch g(z) = v/23. All the points on the negative real axis, including the origin, are
singularities of g(z).

Removable Singularities.

Example 10.4.2 Consider

This function is undefined at z = 0 because f(0) is the indeterminate form 0/0. f(z) is analytic everywhere in
the finite complex plane except z = 0. Note that the limit as z — 0 of f(z) exists.

If we were to fill in the hole in the definition of f(z), we could make it differentiable at z = 0. Consider the
function

Si% z#0,
g(z)_{1 2=0.
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We calculate the derivative at z = 0 to verify that g(z) is analytic there.

0 = iy O =12
_ BL% 1-— 312(2)/2
_ EL% z— 21211(2)
1 —cos(z
- EE(I) 2z .
~ liny sm2(z)

We call the point at z = 0 a removable singularity of sin(z)/z because we can remove the singularity by defining
the value of the function to be its limiting value there.

Consider a function f(z) that is analytic in a deleted neighborhood of z = zy. If f(z) is not analytic at zo,
but lim,_.,, f(2) exists, then the function has a removable singularity at zy. The function

f(z z# z

o) = 110 :
lim, .., f(z) z=2

is analytic in a neighborhood of z = z;. We show this by calculating ¢'(2o).

§(z) = lim 9(%0) — 9(2)
2—20 20 — %

_ !
= lim —9%) (2)
Z—20 —1
= lim f'(2)
2—20

This limit exists because f(z) is analytic in a deleted neighborhood of z = z.
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Poles. If a function f(z) behaves like ¢/(z — 2)" near z = 2z, then the function has an n'® order pole at that
point. More mathematically we say

lim (z — 20)" f(z) = ¢ #0.

Z2—20
We require the constant ¢ to be nonzero so we know that it is not a pole of lower order. We can denote a removable
singularity as a pole of order zero.

Another way to say that a function has an n'" order pole is that f(z) is not analytic at z = z, but (2 —20)" f(2)
is either analytic or has a removable singularity at that point.

Example 10.4.3 1/sin(z?) has a second order pole at z = 0 and first order poles at z = (n7)"/?, n € Z*.

lim 722 = lim =
2—08in(22)  2—0 2z cos(z?)
Ly 2
T 02 cos(z?) — 422 sin(2?)
=1
lim — (nm)'” = lim ———
2(nm)t/2 sin(z2) 2 (nm)1/2 22 cos(22)
1

= 2(nm) 2 (—1)n

Example 10.4.4 e'/7 is singular at z = 0. The function is not analytic as lim,_, '/ does not exist. We check
if the function has a pole of order n at z = 0.

¢
e
lim 2" e/ = lim —
z—0 ¢—o0 (M
¢

e

= lim —

(=00 1!
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Since the limit does not exist for any value of n, the singularity is not a pole. We could say that e'/* is more
singular than any power of 1/z.

Essential Singularities. If a function f(z) is singular at z = zy, but the singularity is not a branch point, or
a pole, the the point is an essential singularity of the function.

The point at infinity. We can consider the point at infinity z — oo by making the change of variables z = 1/¢
and considering ¢ — 0. If f(1/() is analytic at ( = 0 then f(z) is analytic at infinity. We have encountered
branch points at infinity before (Section 9.6). Assume that f(z) is not analytic at infinity. If lim, ., f(2) exists
then f(z) has a removable singularity at infinity. If lim, .., f(2)/2" = ¢ # 0 then f(2) has an n'® order pole at
infinity.

Result 10.4.2 Categorization of Singularities. Consider a function f(z) that has a
singularity at the point z = 2y. Singularities come in four flavors:

Branch Points. Branch points of multi-valued functions are singularities.

Removable Singularities. If lim, .., f(z) exists, then z is a removable singularity. It
is thus named because the singularity could be removed and thus the function made
analytic at zy by redefining the value of f(z).

Poles. If lim, .. (2 — )" f(z) = const # 0 then f(2) has an n'® order pole at 2.

Essential Singularities. Instead of defining what an essential singularity is, we say
what it is not. If 2y neither a branch point, a removable singularity nor a pole, it is
an essential singularity:.
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A pole may be called a non-essential singularity. This is because multiplying the function by an integral power
of z — zp will make the function analytic. Then an essential singularity is a point zy such that there does not exist
an n such that (z — z0)" f(2) is analytic there.

10.4.2 Isolated and Non-Isolated Singularities

Result 10.4.3 Isolated and Non-Isolated Singularities. Suppose f(z) has a singu-
larity at zg. If there exists a deleted neighborhood of zy containing no singularities then
the point is an isolated singularity. Otherwise it is a non-isolated singularity.

If you don’t like the abstract notion of a deleted neighborhood, you can work with a deleted circular neighbor-
hood. However, this will require the introduction of more math symbols and a Greek letter. z = 2, is an isolated
singularity if there exists a 0 > 0 such that there are no singularities in 0 < |z — zo| < .

Example 10.4.5 We classify the singularities of f(z) = z/sin z.
z has a simple zero at z = 0. sin z has simple zeros at z = nw. Thus f(z) has a removable singularity at z =0
and has first order poles at z = nm for n € Z*. We can corroborate this by taking limits.

1
li =1 =i =1
zlg(l) 1(2) zlg(l) sin z zlgtl) Cos 2
(z —nm)z
lim (z — nm) f(z) = lim ,
z—nm Z—nm Sin 2z
. 2z—nm
= lim
z—nm  COS 2
_onm
(=1)"
#0



Now to examine the behavior at infinity. There is no neighborhood of infinity that does not contain first order
poles of f(z). (Another way of saying this is that there does not exist an R such that there are no singularities
in R < |z| < 00.) Thus z = oo is a non-isolated singularity.

We could also determine this by setting ( = 1/z and examining the point ( = 0. f(1/¢) has first order poles
at ¢ = 1/(nm) for n € Z\ {0}. These first order poles come arbitrarily close to the point ¢ = 0 There is no deleted
neighborhood of ( = 0 which does not contain singularities. Thus ( = 0, and hence z = oo is a non-isolated
singularity.

The point at infinity is an essential singularity. It is certainly not a branch point or a removable singularity.
It is not a pole, because there is no n such that lim, ., 27" f(z) = const # 0. 27" f(z) has first order poles in any
neighborhood of infinity, so this limit does not exist.
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10.5 Exercises

Complex Derivatives

Exercise 10.1
Show that if f(z) is analytic and ¢ (x,y) = f(z) is twice continuously differentiable then f’(z) is analytic.

Exercise 10.2
Find the complex derivative in the coordinate directions for f(z) = v (r,@).
Hint, Solution

Exercise 10.3
Show that the following functions are nowhere analytic by checking where the derivative with respect to z exists.

1. sinx coshy — i cos x sinh y
2. 22—y  +x+1(2xy — y)
Hint, Solution

Exercise 10.4

f(z) is analytic for all z, (|z| < 00). f(21 + 22) = f(21)f(22) for all z; and 2. (This is known as a functional
equation). Prove that f(z) = exp(f'(0)z).

Hint, Solution

Cauchy-Riemann Equations

Exercise 10.5
Find the Cauchy-Riemann equations for

f(2) = R(r,0) "9,
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Hint, Solution

Exercise 10.6
Let

x2+y2

24/3y5/3 4 i75/3,4/3 for » 7& 0
2) = ’
/) {0 for z = 0.
Show that the Cauchy-Riemann equations hold at z = 0, but that f is not differentiable at this point.

Hint, Solution

Exercise 10.7
Consider the complex function

x3(144)—y3 (1—14)
f(2) =u+iv= {T for z 70,
0

for z = 0.
Show that the partial derivatives of u and v with respect to x and y exist at 2 = 0 and that u, = v, and u, = —v,
there: the Cauchy-Riemann equations are satisfied at z = 0. On the other hand, show that
z
lim —f( )
z—0 2z

does not exist, that is, f is not complex-differentiable at z = 0.
Hint, Solution

Exercise 10.8
Show that the function

e " for 2z 40,
J(z) = {0 for z = 0.
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satisfies the Cauchy-Riemann equations everywhere, including at z = 0, but f(z) is not analytic at the origin.
Hint, Solution

Exercise 10.9
1. Show that e* is not analytic.

2. f(2) is an analytic function of z. Show that f(z) = f(%) is also an analytic function of z.
Hint, Solution

Exercise 10.10
1. Determine all points z = x + iy where the following functions are differentiable with respect to z:

r—1 _ Y
—1
(z—12+y*  (z—-1)2+y°

(i) =*+y> (i)

2. Determine all points z where the functions in part (a) are analytic.

3. Determine which of the following functions v(z,y) are the imaginary part of an analytic function u(zx,y) +
iv(z,y). For those that are, compute the real part u(x,y) and re-express the answer as an explicit function
of z =x+1y:

(i) 2*—y* (i) 32%

Hint, Solution

Exercise 10.11
Show that the logarithm log z is differentiable for z # 0. Find the derivative of the logarithm.
Hint, Solution
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Exercise 10.12
Show that the Cauchy-Riemann equations for the analytic function f(z) = u(r,0) + iv(r, 0) are

U = Vg/T,  Up = —TU,.
Hint, Solution
Exercise 10.13

w = u + v is an analytic function of z. ¢(x,y) is an arbitrary smooth function of x and y. When expressed in
terms of u and v, ¢(x,y) = ®(u,v). Show that (w' # 0)

go 0w _(aw\ (00 oo
u  ov  \dz ox Zé?y '

—2
o2 2
ro P\
ox?  Oy?

Deduce

Po #o_|dw
ouz = o | dz

Hint, Solution

Exercise 10.14

Show that the functions defined by f(z) = log|z| + iarg(z) and f(z) = /|| e?®##/2 are analytic in the sector
|z| >0, |arg(z)| < m. What are the corresponding derivatives df/dz?

Hint, Solution

Exercise 10.15
Show that the following functions are harmonic. For each one of them find its harmonic conjugate and form the
corresponding holomorphic function.

1. u(x,y) = x Log (r) — yarctan(z,y) (r # 0)
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2. u(x,y) = arg(z) (|arg(z)| <m, 1 #0)

3. u(z,y) = r"cos(nb)

4. u(x,y) =y/r? (r #0)

Hint, Solution
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10.6 Hints

Complex Derivatives

Hint 10.1
Start with the Cauchy-Riemann equation and then differentiate with respect to x.

Hint 10.2
Read Example 10.1.3 and use Result 10.1.1.

Hint 10.3
Use Result 10.1.1.

Hint 10.4
Take the logarithm of the equation to get a linear equation.

Cauchy-Riemann Equations

Hint 10.5
Use the result of Exercise 10.2.

Hint 10.6
To evaluate u,(0,0), etc. use the definition of differentiation. Try to find f’(z) with the definition of complex
differentiation. Consider Az = Are®.

Hint 10.7
To evaluate u,(0,0), etc. use the definition of differentiation. Try to find f’(z) with the definition of complex
differentiation. Consider Az = Are®.
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Hint 10.8

Hint 10.9

Use the Cauchy-Riemann equations.

Hint 10.10

Hint 10.11

Hint 10.12

Hint 10.13

Hint 10.14

Hint 10.15
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10.7 Solutions

Complex Derivatives

Solution 10.1
We start with the Cauchy-Riemann equation and then differentiate with respect to x.

wz = —i%
,lva:c = _“/}yx

We interchange the order of differentiation.

(¢x>x = _i(¢r)y
(f)e = —i(f")y

Since f’(z) satisfies the Cauchy-Riemann equation and its partial derivatives exist and are continuous, it is
analytic.

Solution 10.2
The complex derivative in the coordinate directions is

df (arew)l oY 00

dz  \ or ar ¢ ar
df _(Ore™NTOU i 00
dz  \ 00 o0 7 00"
We write this in operator notation.
d — efieg L _ip a
dz or r 00
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Solution 10.3
1. Consider f(x,y) = sinz coshy — icosxsinhy. The derivatives in the x and y directions are

0
of = cosx coshy + ¢sinxsinhy

ox
Of

—i—— = —cosxcoshy —isinxsinhy

Ay
These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two
equations.

cos x coshy = — cos x cosh y, sinx sinhy = —sinx sinh y

cosx coshy = 0, sinxsinhy =0
(x:g+n7r> and (z =mm or y = 0)

The function may be differentiable only at the points

x:g—i—mr, y=0.

Thus the function is nowhere analytic.

2. Consider f(z,y) = 2?> —y?> + 2 + i(2xy — y). The derivatives in the z and y directions are

0
—f =2r+ 1412y
ox
0
—i—f =12y +2z—1
Ay
These derivatives exist and are everywhere continuous. We equate the expressions to get a set of two

equations.
20+ 1 =2z -1, 2y = 2y.

Since this set of equations has no solutions, there are no points at which the function is differentiable. The
function is nowhere analytic.
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Solution 10.4

flz1 4+ 22) = f(21) f(22)
log(f(21 + 22)) = log(f(21)) + log(f(22))

We define g(z) = log(f(z)).

9(z1 + 22) = g(z1) + g(22)

This is a linear equation which has exactly the solutions:

g9(z) = cz.
Thus f(z) has the solutions:

where ¢ is any complex constant. We can write this constant in terms of f'(0). We differentiate the original
equation with respect to z; and then substitute z; = 0.

(214 20) = f’(h)f( 2)
( ) f

We substitute in the form of the solution.

Thus we see that



Cauchy-Riemann Equations

Solution 10.5
We find the Cauchy-Riemann equations for

f(2) = R(r,0)e®r9,

From Exercise 10.2 we know that the complex derivative in the polar coordinate directions is

d _ 00 _ i 0

—=ce e .
dz or r ol
We equate the derivatives in the two directions.

—i 9, i i —1 0 7
e 95 [Reg]:—;e 9% [Reg]

) 1 )
(R, +iRO,)e® = ——(Ry + iROy) e©
r
We divide by e© and equate the real and imaginary components to obtain the Cauchy-Riemann equations.

R 1
Rr = _@97 _R9 = _R@r
T r

Solution 10.6

24/3,5/3 . 25/3,4/3 .
- ﬁ 1fz7£0,’ . w2fy2 if 2 #£0,
0 if z=0. 0 if z=0.

The Cauchy-Riemann equations are



The partial derivatives of v and v at the point x = y = 0 are,

_ g 0-0
_A:}:IEO Az

u,(0,0) = lim

vy(0,0) = lim

Since u,(0,0) = u,(0,0) = v,(0,0) = v,(0,0) = 0 the Cauchy-Riemann equations are satisfied.
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f(2) is not analytic at the point z = 0. We show this by calculating the derivative.
- fAz) - f(0) . f(A2)
! — =
FO =t =5 =k

Let Az = Are', that is, we approach the origin at an angle of §. Then z = Arcosf and y = Arsin6.
f(Are®)

! .
0) = lim :
F10) = lim ===z
Ar4/3 cost/3 0 Ar5/3 sin5/3 0+iAr5/3 cosB/3 O Ar4/3 sint/3
T Ar2
= lim -
Ar—0 Are
~ cost30sin®/3 0 + i cos®3 O sin?/? 0
= lim :
Ar—0 e’g

The value of the limit depends on 6 and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0.

Solution 10.7

u:{fj—;zz forz;«éO,’ U:{fj—Izz for z # 0,
0 for z = 0. 0 for z = 0.
The Cauchy-Riemann equations are

Uy = Uy, Uy = —Vy.
The partial derivatives of v and v at the point x =y = 0 are,
u(Ax,0) — u(0,0)

u(0,0) = Algicrilo Ax
— lim Ax —0
Az—0 Az
— 1’
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v(Az,0) — v(0,0)

v:(0,0) = Algicrilo Ax
_ 1 Az —0
= Aro Ax
— 1’
0, Ay) — (0,0
u,(0,0) = A1imo u(0, y)Ay u(0,0)
’y—)
. —Ay—0
= lim
Ay—0 Ay
=1,
U(Ov Ay) B U(O, 0)
vy (0,0) = Algl,rllo Ay
. y—20
= lim
Ay—0 Yy

We see that the Cauchy-Riemann equations are satisfied at x =y =0
f(2) is not analytic at the point z = 0. We show this by calculating the derivative.

. f(Az) - f(0) _ . f(Az)
/ f— pu—
F10) = Algilo Az Al,lzrilo Az
Let Az = Are® that is, we approach the origin at an angle of §. Then = Arcosf and y = Arsiné.
f(Are?)
/
F0) = Allglo Ar et
A7r3 cos? 0(141)—Ar3 sin® 0(1—1)
o . Ar2
n Alylglo Ar et
— lim cos® O(1 + 1) _<9Sin3 6(1 — 1)
Ar—0 et
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The value of the limit depends on 6 and is not a constant. Thus this limit does not exist. The function is not
differentiable at z = 0. Recall that satisfying the Cauchy-Riemann equations is a necessary, but not a sufficient
condition for differentiability.

Solution 10.8
First we verify that the Cauchy-Riemann equations are satisfied for z # 0. Note that the form

fo=—ify
will be far more convenient than the form
Uy = Uy, Uy = —Ug
for this problem.
fo = 4(x +iy)™° o (@tiy)™
—if, = —id(x + @'y)—SZ-e—(:cHy)*“ = Az + iy)_g, o (@tiy)

The Cauchy-Riemann equations are satisfied for z # 0.
Now we consider the point z = 0.

f(A:L’,O) B f(0,0)

00 = gm0
) eanr*‘l
- Algcrilo Az
=0

f(0,Ay) — f(0,0)

—if,(0,0) = —i lim

Ay—0 Ay
e
- Algilo Ay
=0
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The Cauchy-Riemann equations are satisfied for z = 0.
f(2) is not analytic at the point z = 0. We show this by calculating the derivative.

(82 = §0) | f(B2)

rey s
110y = Algilo Az Az—0 Az
Let Az = Are®, that is, we approach the origin at an angle of 6.
. f(Are?)
! —
110 = Alyilo Ar eif
4 g—id0
. e
= lim

Ar—0  Arei?
For most values of # the limit does not exist. Consider § = 7 /4.

4

e
! = li ~ 1 —
10) Armo A ein/t — >0
Because the limit does not exist, the function is not differentiable at z = 0. Recall that satisfying the Cauchy-

Riemann equations is a necessary, but not a sufficient condition for differentiability.

Solution 10.9
1. A necessary condition for analyticity in an open set is that the Cauchy-Riemann equations are satisfied in
that set. We write e® in Cartesian form.

ef=e"" =¢e"cosy —1e’siny.
Now we determine where u = €* cosy and v = — e” siny satisfy the Cauchy-Riemann equations.
Uy = Uy, Uy = —Uy
e’ cosy = —e” cosy, —e’siny = e*siny

cosy =0, siny =0
T
Y= 5 + mm, Yy=1n
Thus we see that the Cauchy-Riemann equations are not satisfied anywhere. e is nowhere analytic.
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2. Since f(z) = w + v is analytic, v and v satisfy the Cauchy-Riemann equations and their first partial
derivatives are continuous.

We define f(2) = p(x,y) +iv(z,y) = u(z, —y) —iv(x,y). Now we see if y and v satisfy the Cauchy-Riemann

equations.
Mz = Vy, Hy = —Vg
(w(@, =y))e = (=v(z, =y))y,  (ulz, =y))y = —(v(z,=Y))a
Ux(fb, _y) = Uy(‘% _y)7 —uy(x, _y) = Ux(ilj, _y)

Thus we see that the Cauchy-Riemann equations for u and v are satisfied if and only if the Cauchy-Riemann
equations for u and v are satisfied. The continuity of the first partial derivatives of u and v implies the same
of p and v. Thus f(z) is analytic.

Solution 10.10
1. The necessary condition for a function f(z) = u + iv to be differentiable at a point is that the Cauchy-
Riemann equations hold and the first partial derivatives of u and v are continuous at that point.

(a)
f(z) =2 +y° +10
The Cauchy-Riemann equations are

Uy = vy, and u, = —v,
322 =0 and 3y*=0
r=0 and y=0

The first partial derivatives are continuous. Thus we see that the function is differentiable only at the
point z = 0.
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rz—1 . Y

1) =Gy e

The Cauchy-Riemann equations are

Uy = vy and u, = —v,
—(z = 1)+ —(z —1)? + o2 20 —1)y  2@—1)y

@G-+ 2F (@12t ™ G-+ (a1t 9P

The Cauchy-Riemann equations are each identities. The first partial derivatives are continuous every-
where except the point x = 1, y = 0. Thus the function is differentiable everywhere except z = 1.

The function is not differentiable in any open set. Thus the function is nowhere analytic.

The function is differentiable everywhere except z = 1. Thus the function is analytic everywhere except
z =1

First we determine if the function is harmonic.
o= 22— y2
Vgg + Vyy = 0
2—-2=0

The function is harmonic in the complex plane and this is the imaginary part of some analytic function.
By inspection, we see that this function is

i2> +c= —2zy +c+i(2® —y?),
where c¢ is a real constant. We can also find the function by solving the Cauchy-Riemann equations.

Uy = vy, and u, = —v,

Uy =—2y and wu, = —2z
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We integrate the first equation.

u=—2zy+ g(y)

Here g(y) is a function of integration. We substitute this into the second Cauchy-Riemann equation
to determine g(y).

Uy = —2x
—2x+4'(y) = -2z
g'(y) =0
gly) =c
u=—2zy+c
—2zy + c+i(z® — y°)

f(z) =iz +c¢
(b) First we determine if the function is harmonic.

f(2)

v =3z%y
Vg + Uyy = 6y
The function is not harmonic. It is not the imaginary part of some analytic function.

Solution 10.11

We show that the logarithm log z = ¢ (r,8) = Logr + i0 satisfies the Cauchy-Riemann equations.

1
¢r ——%

r

1 v,

- = ——

r r

1 1
r r



Since the logarithm satisfies the Cauchy-Riemann equations and the first partial derivatives are continuous for
z # 0, the logarithm is analytic for z # 0.
Now we compute the derivative.

Solution 10.12
The complex derivative in the coordinate directions is

d_ e _ w0
dz or r 00
We substitute f = u + v into this identity to obtain the Cauchy-Riemann equation in polar coordinates.

e—waf _ —wa_f

— = e
or r ol
of  iof
or  ro

Uy + 10, = —— (ug + 1vp)

r
We equate the real and imaginary parts.

1 1

Uy —Vp, Upr = ——Up
r
1

Uyp = —Vg, Ug = — TV,
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Solution 10.13
Since w is analytic, v and v satisfy the Cauchy-Riemann equations,

uy =v, and u, = —v,.

Using the chain rule we can write the derivatives with respect to z and y in terms of u and v.

900
ox uzﬁu Umé’v
0 2 0

Now we examine ¢, — i¢,,.

Oy — 1Oy = up Py + v,P, — i(uy Py, + v, Py)
G — 19y = (U — ity )Py + (V2 — ivy) P,
bp — iy = (ug — iuy) Py, — i(vy, + iv,)P,

We use the Cauchy-Riemann equations to write u, and v, in terms of u, and v,.
Gy — iy = (Uy + 10,) Dy — i(uy + iv,) D,

Recall that w' = u, + iv, = v, — iu,.

Thus we see that,
00 00 (dw\ (30 00
du v \dz Ox Z@y '
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We write this in operator notation.

The complex conjugate of this relation is

0 0 (W (o 0
ou 'ov \dz ox Z@y

Now we apply both these operators to & = ¢.
9 9N (2,9
ou Z(% ou Z@v
0? o 02 .02 0?
(8u2 * "oudv " 9vdu * @) ¢

) (o) () ) i) () (o) 5]

aw\ /o o\ [dw\'/a 8
(&) (ria) (&) (5ia)e

ox Za_y ox Z@y

(w')~! is an analytic function. Recall that for analytic functions f, f’

fz = —ify. So that f, +if, = 0.
Po  9*® dw\ [ fdw\ 7t [ 02 0?

s = o — et || 0

ou?  Ov? dz dz ox?  Oy?

Po 0 _|aw[* (0 0%
ou?  0v? dz or?  0y?

348



Solution 10.14
1. We consider

f(z) =log|z| +iarg(z) = logr + 6.

The Cauchy-Riemann equations in polar coordinates are

1
Ur = —Vg, U = —TUp.
T
We calculate the derivatives.

1 1 1
Up ==, —Up=-—
r T
ug =0, —rv.=0

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic
in |z| > 0, |arg(z)| < m. The complex derivative in terms of polar coordinates is

d e, e,
_ e—ZG __E —1i0

- o r ae
We use this to differentiate f(z).
df o, . ol 1
—_— = w__ l 6 = w_ — _
dz ¢ 87‘[ ogr +if] = ¢ ro oz
2. Next we consider
f(Z) — |Z’ eiarg(z)/Z — \/Fei9/2.

The Cauchy-Riemann equations for polar coordinates and the polar form f(z) = R(r,0) e®®"9 are

R 1
R, = —0y, -Ry=—RO,.
r r
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We calculate the derivatives for R = /r, © = /2.

L Ry 1
o0/r T 2
1

“Ry=0, —RO,=0

R, =

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous, f(z) is analytic
in |z| > 0, |arg(z)| < m. The complex derivative in terms of polar coordinates is

d _ 00 _ i 0

= o r 00
We use this to differentiate f(z).

df 0 i0/2] _ 1 _ 1
dz ° 87“[\/Fe I= 2e/2\/r 2./

Solution 10.15
1. We consider the function
u =z Logr — yarctan(z,y) = rcos Logr — rf sin 0

We compute the Laplacian.

A —12 @ +i@
u_rﬁr Tar 72 00?

1 1

=% (cosO(r +rLogr) — sin6) + — (r(0sin — 2cosd) —rcosf Logr)
ror r
1 1

= —(2cosf + cosf Logr — fsinf) + ;(981119— 2cosf — cos @ Logr)

;
0
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The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1
Ur = —— Uy, Vg = T'Uy
r
v, =sinf(1 + Logr) +60cosf, wvy=r(cosf(1+ Logr)— 0sind)
We integrate the first equation with respect to r to determine v to within the constant of integration g(6).
v = r(sinf Logr + 6 cos ) + g(0)
We differentiate this expression with respect to 6.

vg = r(cos (1 + Logr) —Osinf) + ¢'(6)

We compare this to the second Cauchy-Riemann equation to see that ¢’(#) = 0. Thus g(f) = ¢. We have
determined the harmonic conjugate.

v =r(sinf Logr + 0 cosf) + c

The corresponding analytic function is
f(z) =rcosfLogr —rfsinf + i(rsinf Logr + rf cos 0 + ¢).
On the positive real axis, (0 = 0), the function has the value
f(z=7r)=rLogr+ic.

We use analytic continuation to determine the function in the complex plane.

f(z) = zlog z + ic
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2. We consider the function
u= Arg(z) =40.

We compute the Laplacian.

10 ou 1 O%u
A“ﬁ&(ﬁ)*ﬁw—o

The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1
VUp = ——Ug, Vp = TUyr
T
1
v, =——, v9=20
T

We integrate the first equation with respect to r to determine v to within the constant of integration g().
v = —Logr+ g(0)
We differentiate this expression with respect to 6.
vy = g'(0)

We compare this to the second Cauchy-Riemann equation to see that ¢’(#) = 0. Thus ¢g(f) = ¢. We have
determined the harmonic conjugate.

‘v:—Logr—i—c

The corresponding analytic function is

f(z) =0 —iLogr +ic
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On the positive real axis, (0 = 0), the function has the value
f(z=r)=—iLogr+ic

We use analytic continuation to determine the function in the complex plane.

f(z) = —ilog z +ic

3. We consider the function
u = 1" cos(nh)

We compute the Laplacian.
Au = 12 @ + iaQ_u
o \Uor) T o
1 8 n 2, n—2
= —— (nr" cos(nf)) — n“r" =< cos(nd)

ror

= n*r""? cos(nh) — n*r"2 cos(nd)
=0
The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1

Up = —up, Vg =T
v, = nr" tsin(nd), vy = nr" cos(nd)
We integrate the first equation with respect to r to determine v to within the constant of integration g().
v =r"sin(nd) + g(0)
We differentiate this expression with respect to 6.

vg = nr' cos(nb) + ¢'(0)
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We compare this to the second Cauchy-Riemann equation to see that ¢’(#) = 0. Thus ¢g(f) = ¢. We have
determined the harmonic conjugate.

v =r"sin(nd) + ¢

The corresponding analytic function is
f(z) = 1" cos(nb) + ir" sin(nd) + ic
On the positive real axis, (0 = 0), the function has the value
flz=r)=r"+ic

We use analytic continuation to determine the function in the complex plane.

f(z) =2"
4. We consider the function
y  sinf
U= — =
72 r
We compute the Laplacian.
Ay — 10 [ Ou N 1 0%u
U_rar T@T r2 002
10

1 _sin@ _sin9
ror r r3

sinf sin@

r3 r3
=0
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The function u is harmonic. We find the harmonic conjugate v by solving the Cauchy-Riemann equations.

1
VU = ——Ug, Vp = TUyr
T
cos 6 sin
Up = T2 Vg = — .

We integrate the first equation with respect to r to determine v to within the constant of integration g(6).

cos 0

+9(0)

v =

We differentiate this expression with respect to 6.

sin @

+4'(0)

We compare this to the second Cauchy-Riemann equation to see that ¢'(f) = 0. Thus g(f) = ¢. We have
determined the harmonic conjugate.

Vg — —

cos 6
v = c
r
The corresponding analytic function is
sinff  cosf .
f(z) = +1 +ic

r T

On the positive real axis, (0 = 0), the function has the value

f(z:r):%—I—ic.

We use analytic continuation to determine the function in the complex plane.

fle) =L tic
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Chapter 11

Analytic Continuation

I'm about two beers away from fine.

11.1 Analytic Continuation

Suppose there is a function, fi(z) that is analytic in the domain D; and another analytic function, fy(z) that
is analytic in the domain Dy. (See Figure 11.1.)

If the two domains overlap and f;(z) = fa(z) in the overlap region Dy N Dy, then fy(z) is called an analytic
continuation of fi(z). This is an appropriate name since f(z) continues the definition of f;(z) outside of its
original domain of definition D;. We can define a function f(z) that is analytic in the union of the domains
Dy U Dy. On the domain D; we have f(z) = fi(z) and f(2) = fo(2) on Ds. fi1(z) and f5(2) are called function
elements. There is an analytic continuation even if the two domains only share an arc and not a two dimensional
region.

With more overlapping domains D3, Dy, ... we could perhaps extend fi(z) to more of the complex plane.
Sometimes it is impossible to extend a function beyond the boundary of a domain. This is known as a natural
boundary. If a function fi(z) is analytically continued to a domain D,, along two different paths, (See Figure 11.2.),
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Im(2)

= o

Figure 11.1: Overlapping Domains

Re(2)

then the two analytic continuations are identical as long as the paths do not enclose a branch point of the function.
This is the uniqueness theorem of analytic continuation.

Figure 11.2: Two Paths of Analytic Continuation

Consider an analytic function f(z) defined in the domain D. Suppose that f(z) = 0 on the arc AB, (see
Figure 11.3.) Then f(z) = 0 in all of D.
Consider a point ¢ on AB. The Taylor series expansion of f(z) about the point z = ¢ converges in a circle C'
at least up to the boundary of D. The derivative of f(z) at the point z = ( is

f/(C) — lim f(C + AZ) _ f(C)

Az—0 Az
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Figure 11.3: Domain Containing Arc Along Which f(z) Vanishes

If Az is in the direction of the arc, then f/({) vanishes as well as all higher derivatives, f'({) = f"(¢) = f"(¢) =
-+»=0. Thus we see that f(z) = 0 inside C. By taking Taylor series expansions about points on AB or inside of

C we see that f(z) =0in D.

Result 11.1.1 Let fi(2) and f2(z) be analytic functions defined in D. If f1(z) = fo(2)
for the points in a region or on an arc in D, then fi(z) = f2(2) for all points in D.

To prove Result 11.1.1, we define the analytic function g(z) = fi1(2) — f2(2). Since g(z) vanishes in the region
or on the arc, then g(z) = 0 and hence fi(z) = fo(2) for all points in D.

Result 11.1.2 Consider analytic functions fi(z) and fy(z) defined on the domains D,
and Dy, respectively. Suppose that Dy N Dy is a region or an arc and that fi(z) = f5(2)

for all z € Dy N Dy. (See Figure 11.4.) Then the function

) filz) for z € Dy,
fz) = {fg(z) for z € Do,

is analytic in Dy U Ds.

Result 11.1.2 follows directly from Result 11.1.1.
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Y

Figure 11.4: Domains that Intersect in a Region or an Arc

11.2 Analytic Continuation of Sums

Example 11.2.1 Consider the function
filz) = Z 2"
n=0

The sum converges uniformly for D; = |z| < r < 1. Since the derivative also converges in this domain, the

function is analytic there.
Re(2) Re(2)

D,

fm Im(2) ® Im(z)
N

Figure 11.5: Domain of Convergence for » ° , 2".
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Now consider the function

This function is analytic everywhere except the point z = 1. On the domain Dy,

Pl = =3 = (2)

Analytic continuation tells us that there is a function that is analytic on the union of the two domains. Here,
the domain is the entire z plane except the point z = 1 and the function is

1 . . . . . o0 n
T is said to be an analytic continuation of >, 2".

11.3 Analytic Functions Defined in Terms of Real Variables

Result 11.3.1 An analytic function, u(z,y) + ‘v(z,y) can be written in terms of a
function of a complex variable, f(z) = u(x,y) + iv(x,y).

Result 11.3.1 is proved in Exercise 11.1.

Example 11.3.1

f(2) = coshysinz(ze®cosy — ye®siny) — coszsinh y(y e” cosy + e’ siny)

+1i [ coshysinz(ye® cosy + x e siny) + cos xsinh y(x e” cosy — y e” sin y)}
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is an analytic function. Express f(z) in terms of z.

On the real line, y =0, f(z) is
f(z=2x)=xe"sinx

(Recall that cos(0) = cosh(0) = 1 and sin(0) = sinh(0) = 0.)
The analytic continuation of f(z) into the complex plane is

f(z) = ze"sinz.

Alternatively, for = 0 we have
f(z =1iy) = ysinhy(cosy — isiny).
The analytic continuation from the imaginary axis to the complex plane is

f(2) = —izsinh(—iz)(cos(—iz) — isin(—iz))
= iz sinh(iz)(cos(iz) + isin(iz))

= zsin ze”.

Example 11.3.2 Consider u = e *(xsiny — y cosy). Find v such that f(z) = u + iv is analytic.
From the Cauchy-Riemann equations,

ov  Ou . . _gc

— = =€ "slny—xe "slny+ye “cosy
oy O

ov ou Y Y .

S~ =—45—=2¢€ "Cosy—xre "cosy—ye "siny
ox oy
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Integrate the first equation with respect to y.

v=—e "cosy+xe “cosy+ e “(ysiny + cosy) + F(x)
=ye “siny+ze “cosy+ F(x)

F(x) is an arbitrary function of x. Substitute this expression for v into the equation for dv/0x.
—ye Fsiny —xe “cosy+ e Fcosy+ F'(x) = —ye Tsiny —xe Fcosy+ e T cosy
Thus F'(z) =0 and F(z) = c.

v=-e “(ysiny + xcosy) + ¢

Example 11.3.3 Find f(z) in the previous example. (Up to the additive constant.)

Method 1

f(z) =u+iv
= e “(zsiny —ycosy)+ie “(ysiny + zcosy)

R ezy _ e—iy ely _|_ e—iy + . ely _ e_iy + eZy + e_iy
I 2% Y 2 A 2% . 2

= i(z 4 iy) e~ @)

=j4ze ?

Method 2 f(z) = f(x + iy) = u(z,y) + iv(x,y) is an analytic function.
On the real axis, y = 0, f(2) is

f(z =z) =u(x,0) + w(z,0)
= ¢ “(xsin0—0cos0)+ie “(0sin 0+ z cos0)

=qre "
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Suppose there is an analytic continuation of f(z) into the complex plane. If such a continuation, f(z), exists,
then it must be equal to f(z = x) on the real axis An obvious choice for the analytic continuation is

f(z) = u(z,0) +iv(z,0)
since this is clearly equal to u(x,0) + iv(z,0) when z is real. Thus we obtain

f(z) =ize™™

Example 11.3.4 Consider f(z) = u(x,y) + iv(x,y). Show that f'(z) = u,(z,0) — iu,(z,0).

() = up +iv,

= Uy — Uy
f'(2) is an analytic function. On the real axis, z = z, f'(z) is
f'(z = ) = uy(x,0) — tuy(z,0)

Now f'(z = x) is defined on the real line. An analytic continuation of f'(z = z) into the complex plane is

f'(2) = uz(2,0) — iuy(z,0).

Example 11.3.5 Again consider the problem of finding f(z) given that u(z,y) = e *(zsiny — y cosy). Now we
can use the result of the previous example to do this problem.

ou

uz(x,y) = Fr e ’siny —xe “siny +ye T cosy
ou

uy(z,y) = By =xe “cosy+ye Tsiny — e Fcosy
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f'(2) = ug(2,0) — iuy(z,0)
=0—i(ze?—e?)

=i(—ze "+ e77)

Integration yields the result

f(z)=tize " +¢

Example 11.3.6 Find f(z) given that
u(z,y) = cosx cosh® y sin x + cos x sin  sinh? y
v(x,y) = cos® z cosh y sinhy — coshy sin® x sinh y
f(z) = u(x,y) +v(z,y) is an analytic function. On the real line, f(z) is

f(z =1z) =u(x,0) + iw(z,0)
= cos  cosh? 0sin x + cos o sin x sinh? 0 4 4(cos?  cosh 0 sinh 0 — cosh 0 sin? z sinh 0)

=coszsinx

Now we know the definition of f(z) on the real line. We would like to find an analytic continuation of f(z) into
the complex plane. An obvious choice for f(z) is

f(2) = cos zsin z

Using trig identities we can write this as
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Example 11.3.7 Find f(z) given only that
u(z,y) = cosx cosh? y sin x + cos x sin  sinh? y.
Recall that

() = ug + iv,

= Uy — LUy
Differentiating u(x,y),

uy = cos® x cosh? y — cosh? y sin® x + cos® x sinh? y — sin® z sinh? y

u, = 4 cos z cosh ysinz sinh y
f'(2) is an analytic function. On the real axis, f'(z) is
f'(z =x) = cos*z — sin’z
Using trig identities we can write this as
f'(z = z) = cos(2x)
Now we find an analytic continuation of f’(z = x) into the complex plane.
f'(z) = cos(22)

Integration yields the result
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11.3.1 Polar Coordinates
Example 11.3.8 Is
u(r,0) = r(logrcosf — fsinb)

the real part of an analytic function?
The Laplacian in polar coordinates is

10 ([ 0¢ 1 0%
Ap=-2 (#22) 4 2202
¢ ror (Tar) * r2 062
Calculating the partial derivatives of w,
% = cosf + logrcos@ — fsin 6
r% =rcosf + rlogrcosf — rfsinf
% (r%) = 2cosf + logrcosf — Osinf
10 ou 1 .
o (TE) = ;(20039+10grcos€—981n9)
ou . )
50 —r(@cos@—i—sm@—i—logrsm&)
0%u .
20 :r(—2cosz9—logrcos€+951n9)
10%u 1 .
S ;(—2cos¢9—logrcos€+95m6)
From the above we see that
10 ( Ou 1 0%u
Au=—-——|r— —— =0.
YT or (r8r>+r2802 0

Therefore v is harmonic and is the real part of some analytic function.
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Example 11.3.9 Find an analytic function f(z) whose real part is
u(r,0) =r(logrcosd — Osinb).

Let f(z) = u(r,0) +iv(r,0). The Cauchy-Riemann equations are

U, = —, Ug = — TV,
r

Using the partial derivatives in the above example, we obtain two partial differential equations for v(r,#).

v = —% =6 cosf + sinf + log r sin 6
Vo = TU, = r(cos@ + logrcosf — Gsinﬁ)
Integrating the equation for vy yields
v =r(fcosf +logrsinb) + F(r)

where F'(r) is a constant of integration.
Substituting our expression for v into the equation for v, yields

6 cosf + logrsin® + sinf + F'(r) = 0 cosf + sin + log r sin 6
F'(ry=0
F(r) = const
Thus we see that

f(z)=u+iv
= r(logrcos& — QSinﬁ) —|—ir(90089 —i—logrsiHH) + const

f(z) is an analytic function. On the line # = 0, f(z) is
f(z=7)=r(logr) +ir(0) + const

= rlogr + const
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The analytic continuation into the complex plane is

f(z) = zlog z + const

Example 11.3.10 Find the formula in polar coordinates that is analogous to

f'(2) = uz(2,0) — iuy(z,0).
We know that
df _ 09/
dz or
If f(2) =u(r,0) +iv(r,0) then

df

_ b :
il (ur + ivy)

From the Cauchy-Riemann equations, we have v, = —uy/r.
y = e ¥ (u — i@>
dz N
f'(2) is an analytic function. On the line § = 0, f(z) is

ug(r, 0)

f/(zzr) :ur(’l“,O)—i ’

The analytic continuation of f/(z) into the complex plane is

f'(z) = u.(2,0) — 3Au@(z, 0).

r
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Example 11.3.11 Find an analytic function f(z) whose real part is

u(r,0) = r(logrcosf — fsinb).

ur(r,0) = (logrcost — Osin ) + cos
ug(r,0) = r(—logrsinf — sinf — 6 cos

F/(2) = e(2,0) — Luolz,0)
=logz+1

Integrating f'(z) yields

f(z) = zlog z + ic.

11.3.2 Analytic Functions Defined in Terms of Their Real or Imaginary Parts

Consider an analytic function: f(z) = u(x,y) + iv(z,y). We differentiate this expression.

f1(2) = ua(z, y) + iva (2, y)
We apply the Cauchy-Riemann equation v, = —u,,.

f'(2) = ua(2, y) — iuy (2, y). (11.1)
Now consider the function of a complex variable, g({):

9(Q) = ua (2, Q) = tuy (7, C) = ua(,§ +in) — duy(z,§ +in).
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This function is analytic where f(() is analytic. To show this we first verify that the derivatives in the ¢ and 7
directions are equal.

0 . . .
8_59(0 = Uyy (2, § + i) — iuyy(z, § + i)
—Za—ng(C) = —i(iUay (7, £ + 1) + uyy (2, § + 1)) = gy (2, + 1) — duyy(z,{ + i)
Since these partial derivatives are equal and continuous, g(¢) is analytic. We evaluate the function g(¢) at { = —ix.

(Substitute y = —iz into Equation 11.1.)
f'(2x) = uy(z, —ix) — iu,(z, —iz)

We make a change of variables to solve for f'(z).

pior = (5-15) - (553).

If the expression is nonsingular, then this defines the analytic function, f’(z), on the real axis. The analytic
continuation to the complex plane is

f'(z) = ug (% —z%) — iu,, (% —z%) .

Note that L2u(z/2, —iz/2) = u,(2/2, —iz/2) — iu,(z/2, —iz/2). We integrate the equation to obtain:

z .z
z) =2u (—, —i—) + c.
We know that the real part of an analytic function determines that function to within an additive constant.
Assuming that the above expression is non-singular, we have found a formula for writing an analytic function
in terms of its real part. With the same method, we can find how to write an analytic function in terms of its

imaginary part, v.
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We can also derive formulas if u and v are expressed in polar coordinates:

f(z) =u(r,0) + iv(r,0).

Result 11.3.2 If f(z) = u(z,y) + iv(z,y) is analytic and the expressions are non-
singular, then

f(z) =2u <§, —z%) + const (11.2)
f(z) =120 (g, —zg) + const. (11.3)

If f(z) =wu(r,0)+iv(r,0) is analytic and the expressions are non-singular, then
f(z) =2u (21/2, —% log z) + const (11.4)

f(z) =i2v (21/2, —% log z) + const. (11.5)

Example 11.3.12 Consider the problem of finding f(z) given that u(z,y) = e *(xsiny — y cosy).

z z
= Qe /2 <§ sin <—z§> + zg cos (—z%)) +c

= jze #/? <z sin <zi> + cos (—z’z>> +ec
N 2 2
—ize (e t ¢

=ize “+c¢
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Example 11.3.13 Consider
1 9 . 9 .
Log z = 3 Log (w +y ) + i Arctan (z,y).
We try to construct the analytic function from it’s real part using Equation 11.2.

f(z) =2u (%, —1%) +c

s (5 (3))
= Log (0) + ¢

We obtain a singular expression, so the method fails.

Example 11.3.14 Again consider the logarithm, this time written in terms of polar coordinates,
Log z = Logr + 6.
We try to construct the analytic function from it’s real part using Equation 11.4.
f(z) =2u (21/2, —i% log z) +c

= 2Log (21/2) +c
= Logz+c

With this method we recover the analytic function.
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11.4 Exercises

Exercise 11.1
Consider two functions, f(z,y) and g(x,y). They are said to be functionally dependent if there is a an h(g) such
that

f(x,y) = hig(z,y)).

f and ¢ will be functionally dependent if and only if their Jacobian vanishes.
If f and g are functionally dependent, then the derivatives of f are

fl’ = hl(Q)gsL’
fy = h/(g)gy-
Thus we have
0
88:: i; - Z]cz gz = fmgy - fygx = h/(g)gocgy - h/(g)gygx =0.

If the Jacobian of f and g vanishes, then

fa:gy - fygas =0.
This is a first order partial differential equation for f that has the general solution
Prove that an analytic function u(z,y) + iv(x,y) can be written in terms of a function of a complex variable,

f(2) = ulz,y) +iv(z,y).

Exercise 11.2
Which of the following functions are the real part of an analytic function? For those that are, find the harmonic
conjugate, v(z,y), and find the analytic function f(z) = u(x,y) + iv(z,y) as a function of z.
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1. 2% — 3ay? — 22y +y
2. e”sinhy

3. e*(sinz cosycoshy — cosx sinysinh y)

Exercise 11.3
For an analytic function, f(z) = u(r,6) + iv(r,d) prove that under suitable restrictions:

f(z) =2u (21/2, —% log z) + const.
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11.5 Hints

Hint 11.1
Show that w(z,y) + ‘w(z,y) is functionally dependent on x + iy so that you can write f(2)

u(z,y) +iv(x,y).

Hint 11.2

Hint 11.3
Check out the derivation of Equation 11.2.
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11.6 Solutions

Solution 11.1
u(z,y) +iv(x,y) is functionally dependent on z = x + iy if and only if

I(u + v,z + iy)

oy

Ou+iv, v +1y)  |uy +iv, uy, + iv,
d(,y) 1 U

= —Vy — Uy + i(uy — vy)

Since u and v satisfy the Cauchy-Riemann equations, this vanishes
=0
Thus we see that u(z,y) + iv(x,y) is functionally dependent on x + iy so we can write
[(z) = [z +iy) = u(z,y) +iv(z,y).
Solution 11.2
1. Consider u(z,y) = 2® — 3zy* — 2xy + y. The Laplacian of this function is

AU = Uy + Uy
= 6x — 6
=0

Since the function is harmonic, it is the real part of an analytic function. Clearly the analytic function is of
the form,

az® +bz* + cz +id,
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with a, b and ¢ complex-valued constants and d a real constant. Substituting z = x + iy and expanding
products yields,

a(x® +i3x%y — 3zy® — iy®) + b(z® + 22y — ) + c(z + iy) + id.

By inspection, we see that the analytic function is

f(z) = 2% +i2® —iz +id.

The harmonic conjugate of u is the imaginary part of f(z),

v(z,y) =3y — ¢y’ +a? -y’ —x 4 d

We can also do this problem with analytic continuation. The derivatives of u are

uy = 32 — 3y* — 2y,
uy = —6xy — 2z + 1.

The derivative of f(z) is
f'(2) = u, —iu, = 32* — 2y* — 2y + i(6zy — 27 + 1).
On the real axis we have
f'(z =x) = 32" —i2z +1.
Using analytic continuation, we see that
f'(z) = 32* —i2z + 1.
Integration yields

f(2) = 2 —i2® + iz + const
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2. Consider u(z,y) = e*sinhy. The Laplacian of this function is

Au = e*sinhy 4+ e”sinhy
= 2¢e"sinh y.

Since the function is not harmonic, it is not the real part of an analytic function.

3. Consider u(z,y) = e*(sinz cosy coshy — cos z siny sinhy). The Laplacian of the function is

Au = — (€*(sinz cosy cosh y — cos x siny sinh y + cos x cos y cosh y + sin z sin y sinh y))

ox

+ — (e*(—sinzsiny coshy — cosx cos y sinh y + sin x cos y sinh y — cos z sin y cosh y))

dy
= 2¢e"(cosx cosy coshy + sin x siny sinh y) — 2 e®(cos x cos y cosh y + sin z sin y sinh y)
=0.

Thus w is the real part of an analytic function. The derivative of the analytic function is
1'(2) = ug + v, = uy — tuy
From the derivatives of © we computed before, we have

f(2) = (e*(sinx cosy coshy — cos x sin y sinh y + cos x cos y cosh y + sin z sin y sinh y))

— i (e*(—sinzsinycoshy — cosx cos y sinh y + sin x cosy sinh y — cos z siny cosh y))
Along the real axis, f’(z) has the value,
f'(z=2) = ¢"(sinx + cos x).
By analytic continuation, f’(z) is

f'(z) = €*(sinz + cos z)
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We obtain f(z) by integrating.
f(z) = €"sin z + const.

u is the real part of the analytic function

f(2) = e"sinz + ic,

where c is a real constant. We find the harmonic conjugate of u by taking the imaginary part of f.

f(2) = e*(cosy + isiny)(sinx coshy + i cos z sinh y) + ic

v(z,y) = esinxsiny coshy + cosx cosysinhy + ¢

Solution 11.3
We consider the analytic function: f(z) = u(r,0) + iv(r, ). Recall that the complex derivative in terms of polar
coordinates is

The Cauchy-Riemann equations are

Ur = —Vg, Vyp = ——Uyp.
r r

We differentiate f(z) and use the partial derivative in r for the right side.
f(z) = e (u, +iv,)
We use the Cauchy-Riemann equations to right f/(z) in terms of the derivatives of w.

fl(z)=e" <u — Z%UQ) (11.6)



Now consider the function of a complex variable, ¢({):

(0) = & (0,0 = 7, 0)) = @ (unlr €4 i) = (i i) )

This function is analytic where f(({) is analytic. It is a simple calculus exercise to show that the complex derivative
in the ¢ direction, a%, and the complex derivative in the n direction, —ia%, are equal. Since these partial derivatives

are equal and continuous, g(¢) is analytic. We evaluate the function g(¢) at ( = —ilogr. (Substitute § = —ilogr
into Equation 11.6.)

I (r e’(’“og’”)) = g i(—ilogr) (ur(r, —ilogr) —i—ug(r,—ilog 7"))
r
1
rf’ (rg) = u,(r, —ilogr) — i—ug(r, —ilogr)
r

If the expression is nonsingular, then it defines the analytic function, f’(z), on a curve. The analytic continuation
to the complex plane is

1
2f' (2%) = u,(z, —ilog z) — i—uy(z, —ilog 2).
z
We integrate to obtain an expression for f(2?%).
1
§f (22) = u(z, —ilog z) + const

We make a change of variables and solve for f(z).

f(z) =2u (zl/Q, —% log z) + const.

Assuming that the above expression is non-singular, we have found a formula for writing the analytic function in
terms of its real part, u(r, ). With the same method, we can find how to write an analytic function in terms of
its imaginary part, v(r, 6).
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Chapter 12

Contour Integration and Cauchy’s Theorem

Between two evils, I always pick the one I never tried before.

- Mae West

12.1 Line Integrals

In this section we will recall the definition of a line integral of real-valued functions in the Cartesian plane. We
will use this to define the contour integral of complex-valued functions in the complex plane.

Definition. Consider a curve C' in the Cartesian plane joining the points (ag,bg) and (ai, b;). Partition the
curve into n+ 1 segments with the points (xg, yo), - . . , (Zn, yn) Where the first and last points are at the endpoints
of the curve. Define Axy = x411 — x and Ayx, = ypy1 — Y- Let (&, mk) be points on the curve between (zy, yx)
and (41, Yk+1). (See Figure 12.1.)

Consider the sum

i
L

(P (&, M) Az + Q (ks M) AYie)
0

£
Il
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(%)) Ot V)

Figure 12.1: A curve in the Cartesian plane.

where P and () are continuous functions on the curve. In the limit as each of the Az, and Ay, approach zero
the value of the sum, (if the limit exists), is denoted by

/CP(x, y)dz + Q(x,y) dy.

This is a line integral along the curve C'. The value of the line integral depends on the functions P(z,y) and
Q(x,y), the endpoints of the curve and the curve C. One can also write a line integral in vector notation,

[ 1) ax.

Evaluation. Let the curve C' be parametrized by = z(t), y = y(t) for t¢ < ¢t < t;. The differentials on the
curve are dx = 2/(t) dt and dy = /(t) dt. Thus the line integral is

where x = (z,y) and f(x) = (P(x,y), Q(x,y)).

| (Pa.9) 0 + @t u®)w o)

to
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which is a definite integral.
Example 12.1.1 Consider the line integral

/xde—i-(x—l—y)dy,
c

where C' is the semi-circle from (1,0) to (—1,0) in the upper half plane. We parameterize the curve with = = cost,
y =sint for 0 <t <.

/ r*dz+ (z+y)dy = / (cos® t(—sint) + (cost + sint) cost) dt
c 0

Complex Line Integrals. Consider a curve C' in the complex plane joining the points ¢y and ¢;. Partition the
curve into n + 1 segments with the points zg, ... , 2, where the first and last points are at the endpoints of the
curve. Define Az, = zp11 — 2. Let (x be points on the curve between z; and z,,,. Consider the sum

n—1
> F(G) A,
k=0

where f is a continuous, complex-valued function on the curve. In the limit as each of the Az, approach zero the
value of the sum, (if the limit exists), is denoted by

/ f(z)dz.
c
This is a complex line integral along the curve C.
We can write a complex line integral in terms of real line integrals. Let f(z) = u(z,y) + iv(x,y).

/ f(z)dz = / (u(z, ) + iv(x, y))(dz + i dy)

C C

/ f(2)de = / (u(z,y) de — vz, y) dy) + i / (v(z,y) do + ulx, ) dy). (12.1)
C C

C
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Evaluation. Let the curve C' be parametrized by z = 2(t) for ty <t < t;. Then the complex line integral is

[ R (1) dt,

which is a definite integral of a complex-valued function.

Example 12.1.2 Let C be the positively oriented unit circle about the origin in the complex plane. Evaluate:
1. [, zdz
2. [ c % dz
3. [, 1|dz|
1. We parameterize the curve and then do the integral.

z=2¢e"Y dz=1ie?do

1 2 1 ] 27
/—dz:/ —.eiewdﬁzi/ df = i27
cZ o € 0
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|dz| = |ie” df] = |ie®||d] = |db)

Since df is positive in this case, |df| = d6.

2 1 ) -
/1/z|dz]:/ —df = [ie’w]i =0
c o €

Maximum Modulus Integral Bound. The absolute value of a real integral obeys the inequality

/abf(x) dz

Now we prove the analogous result for the modulus of a complex line integral.

/Cf(z) dz

< [ 1#@]1del < (0~ a) max |7(2)]

n—1
Jim, ) (G)Az

n—1
< T
< Jim 217G |3

= [ e
< [ (maxlse) la:
= (maxls(a1) [ 1o

_ (max| f(z)|) « (length of C)

zeC
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Result 12.1.1 Maximum Modulus Integral Bound.
/ F(2) dz
C

12.2 Under Construction

< [ 17110l < (maxls )] ) Genga of €

Cauchy’s Theorem. Let f(z) be analytic in a compact, closed, connected domain D. Consider the integral of
f(2) on the boundary of the domain.

f(z)dz = Y(x,y) (de +idy) = Ydx 4P dy
oD oD oD

Recall Green’s Theorem.
/ Pd:L‘—i-Qdy:/(Qx—Py)dxy
oD D

We apply Green’s Theorem to the integral of f(z) on dD.

f(z)dz = wdx+iwdy:/(z’¢x—¢y)dxy
oD D

oD

Since f(z) is analytic, ¢, = —itp,. The integrand i1, — 1, is zero. Thus we have

f(z)dz =0.

oD

This is known as Cauchy’s Theorem.
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Fundamental Theorem of Calculus. First note that R(-) and () commute with derivatives and integrals.
Let P(z,y) and Q(z,y) be defined on a simply connected domain. A necessary and sufficient condition for the
existence of a primitive ¢ is that P, = (),. The primitive satisfies

dp = Pdr + Qdy.

Definite integral can be evaluated in terms of the primitive.

(c,d)
/ Pde +Qdy = d(c,d) — é(a,b)
(

a,b)

Now consider integral along the contour C' of the complex-valued function ¢ (z,y).

/ Ydz = / Ydx 4+ dy
c c
If ¥(z,y) is analytic then there exists a function ¥ such that

AU = ¢ dz + iy dy.

Then 1) satisfies the Cauchy-Riemann equations. How do we find the primitive ¥ that satisfies ¥, = 1) and
U, = 1?7 Note that choosing V(x,y) = F(z) where F(z) is an anti-derivative of f(z), F'(z) = f(z), does the
trick.

F'(2)=¥, = -V, =f=9
The differential of ¥ is
dV =V, dz + ¥, dy = ¢ dz + ¢ dy.

We can evaluate a definite integral of f in terms of F.

b
/ f(z)dz = F(b) — F(a).

This is the Fundamental Theorem of Calculus for functions of a complex variable.
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12.3 Cauchy’s Theorem

Result 12.3.1 Cauchy’s Theorem. If f(z) is analytic in a compact, closed, connected
domain D then the integral of f(z) on the boundary of the domain vanishes.

Df(z)dz:zk: Ckf(Z)dZ:O

Here the set of contours {C},} make up the positively oriented boundary 0D of the domain
D.

This result follows from Green’s Theorem. Since Green’s theorem holds for both simply and multiply connected
domains, so does Cauchy’s theorem.

Proof of Cauchy’s Theorem. We will assume that f’(z) is continuous. This assumption is not necessary,
but it allows us to use Green’s Theorem, which makes for a simpler proof. We consider the integral of f(z) =
u(z,y) +iv(x,y) along the boundary of the domain. From Equation 12.1 we have,

f(z)dz = / (udzx —vdy) +i/ (vdz + udy)
oD oD oD
We use Green’s theorem to write this as an area integral.
f(z)dz = / (—vy —uy) dzdy —1—2'/ (uy — vy) dz dy
oD D D

Since u and v satisfy the Cauchy-Riemann Equations, u, = v, and u, = —v,, the two integrands on the right
side are identically zero. Thus the two area integrals vanish and Cauchy’s theorem is proved.

As a special case of Cauchy’s theorem we can consider a simply-connected region. For this the boundary is a
Jordan curve. We can state the theorem in terms of this curve instead of referring to the boundary.
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Result 12.3.2 Cauchy’s Theorem for Jordan Curves. If f(z) is analytic inside and
on a simple, closed contour C', then

ﬁf(z)dzzo

Example 12.3.1 In Example 12.1.2 we calculated that

/zdz:O
c

where C' is the unit circle about the origin. Now we can evaluate the integral without parameterizing the curve.
We simply note that the integrand is analytic inside and on the circle, which is simple and closed. By Cauchy’s
Theorem, the integral vanishes.

We cannot apply Cauchy’s theorem to evaluate

1
/—dZ:iQW
CZ

as the integrand is not analytic at z = 0.

Morera’s Theorem. The converse of Cauchy’s theorem, is Morera’s Theorem. If the integrals of a continuous
function f(z) vanish along all possible simple, closed contours in a domain, then f(z) is analytic on that domain.
To prove Morera’s Theorem we will assume that first partial derivatives of f(z) = u(z, y)+iv(x, y) are continuous,
although the result can be derived without this restriction. Let the simple, closed contour C' be the boundary of
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D which is contained in the domain €.
f{ F(2)ds = ]{(u +iv)(de + i dy)
c c

:j{udx—vdy+zj{vdx+udy
c c

:/(—vx—uy)dxdy—i-z'/(uz—vy)dxdy
D

D
=0

Since the two integrands are continuous and vanish for all C' in €2, we conclude that the integrands are identically
zero. This implies that the Cauchy-Riemann equations,

Uy = Uy, Uy = —Vg,

are satisfied. f(z) is analytic in €.

Result 12.3.3 Morera’s Theorem. If f(z) is continuous in a simply connected domain

(2 and
% f(2)dz=0
c

for all possible simple, closed contours C' in the domain, the f(z) is analytic in €.

12.4 Indefinite Integrals

Consider a function f(z) which is analytic in a domain D. An anti-derivative or indefinite integral (or simply
integral) is a function F'(z) which satisfies F’(z) = f(z). This integral exists and is unique up to an additive
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constant. Note that if the domain is not connected, then the additive constants in each connected component are
independent. The indefinite integrals are denoted:

/f(z)d,z: F(z)+c.

We will prove existence in the next section by writing an indefinite integral as a contour integral. We consider
uniqueness here. Let F(z) and G(z) be integrals of f(z). Then F'(z) — G'(z) = f(z) — f(z) = 0. One can use
this to show that F(z) — G(z) is a constant on each connected component of the domain. This demonstrates
uniqueness.

Integrals of analytic functions have all the nice properties of integrals of functions of a real variables. All the
formulas from integral tables, including things like integration by parts, carry over directly.

12.5 Contour Integrals

Result 12.5.1 Path Independence. Let f(z) be analytic on a simply connected do-
main. For points a and b in the domain, the contour integral,

/abf(z)dz

is independent of the path connecting the points.

(Here we assume that the paths lie entirely in the domain.) This result is a direct consequence of Cauchy’s
Theorem. Let €} and C5 be two different paths connecting the points. Let —C'y denote the second curve with the
opposite orientation. Let C' be the contour which is the union of C} and —C5. By Cauchy’s theorem, the integral
along this contour vanishes.

f(z)dz+ f(z)dz=0
C1 —C2
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This implies that
f(z)dz= [ f(2)d=.
C1 CQ

Thus contour integrals on simply connected domains are independent of path. This result does not hold for
multiply connected domains.

Result 12.5.2 Constructing an Indefinite Integral. If f(z) is analytic in a simply
connected domain D and a is a point in the domain, then

P = [ HO) ¢

is analytic in D and is an indefinite integral of f(z), (F'(z) = f(2)).

To prove this, we use the limit definition of differentiation.

, . F(z4+Az)—F(z
F(z) :Algilo ( A; =

z+Az
— lim — / £(0)d¢

The integral is independent of path. We choose a straight line connecting z and z + Az. We add and subtract
Azf(z) = f;+AZ f(2)d¢ from the expression for F'(z).

F(2) = lim — (Azf(z) f o - f(2>)d<)

Az—0 Az

z+Az
— f(z) + lim / (F(O) = F(2)d¢

Az—0 Az
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Since f(z) is analytic, it is certainly continuous. This means that
lim f(¢) =
(—z

The limit term vanishes as a result of this continuity.

L/z z(f(()—f(z))dg lim ——|Az] max  |f(C) - f(2)

Az Az—0 |AZ| CElz...2+AZ]

= lim  max |f(¢) — f(2)]

Az—0 (€[z...24+AZ]
=0

lim
Az—0

Thus F'(2) = f(z).
This results demonstrates the existence of the indefinite integral. We will use this to prove the Fundamental
Theorem of Calculus for functions of a complex variable.

Result 12.5.3 Fundamental Theorem of Calculus. If f(z) is analytic in a simply
connected domain D then

b
| 12 =Fo) - Fa

where F'(z) is any indefinite integral of f(z).

/f F(b) +c.

(Here we are considering b to be a variable.) The case b = a determines the constant.

/f Fla)+c=0

From Result 12.5.2 we know that



This proves the Fundamental Theorem of Calculus for functions of a complex variable.

1
/ dz
CZ—CL

where C' is any closed contour that goes around the point z = a once in the positive direction. We use the
Fundamental Theorem of Calculus to evaluate the integral. We start at a point on the contour z — a = re®.

When we traverse the contour once in the positive direction we end at the point z — a = 7 e(+27).

Example 12.5.1 Consider the integral

1 gy ei(6+2m)
/ dz = [log(z — a)] =2
C

zZ—a
= Logr +i(0 4 2m) — (Logr + i)

=27
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12.6 Exercises

Exercise 12.1
C' is the arc corresponding to the unit semi-circle, |z| = 1, J(z) > 0, directed from z = —1 to z = 1. Evaluate

1. /ZQdZ
c

2. /’zﬂdz
c

3. /22 |dz|
c

4. /‘22‘ |dz|
c

Exercise 12.2
Evaluate

where a,b € C and R(a) > 0. Use the fact that

Exercise 12.3
Evaluate

2/ ¢~ cos(wr)dz, and 2/ z e~ sin(wz) dz,
0 0
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where R(a) > 0 and w € R.
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12.7 Hints
Hint 12.1

Hint 12.2
Let C' be the parallelogram in the complex plane with corners at +R and £R + b/(2a). Consider the integral of

e~%** on this contour. Take the limit as R — oo.

Hint 12.3
Extend the range of integration to (—oc...00). Use e“* = cos(wz) + isin(wx) and the result of Exercise 12.2.
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12.8 Solutions

Solution 12.1
We parameterize the path with z = €, with 6 ranging from 7 to 0.

dz =ie? do

|dz| = |ie® df| = |df] = —db

S
N
[\
Q.
N
I

ﬁ:N

I
Ll

—~
—_
|
—~
|
—_
~—
~—

WINW W= r—
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0
/\z2|dz:/ |2 e dg
C T
0 .
:/ ie de

=[],
—1-(-1)
=2

0
/22\d2| :/ )i " dg)|
C ™
0 .
:/ — e do
-
_ [_ em}
2 T

=s(1-1)

=0

0
/|22|\dz|:/ 62017 6 ]
C g
0
:/ Y

],

™

™
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Solution 12.2

I= / " elantin) g

o0

First we complete the square in the argument of the exponential.
[ = /) / o—alatb/(2a)? g

—a22

Consider the parallelogram in the complex plane with corners at R and +£R + b/(2a). The integral of e
this contour vanishes as it is an entire function. We can write this as

R+b/(2a) , R R R+b/(2a) ,
/ e ¥ dz = / +/ —1—/ e ¥ dz.
—R+b/(2a) —R+b/(2a) R R

The first and third integrals on the right side vanish as R — oo because the integrand vanishes and the lengths
of the paths of integration are finite. Taking the limit as R — oo we have,

o0o+b/(2a) ) 00 ) () )
/ e ¥ dz E/ e a(@tb/(20))% 44 :/ e " dua.
—o0+b/(2a) —00 —00

I = ¢b*/¢a) /OO e g

on

Now we have

We make the change of variables £ = \/ax.

[ — Pa) L / T € dy
a — 00

/OO ef(a:p2+bx) dr = \/EebQ/Ma)
oo a
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Solution 12.3
Consider

& 2
I = 2/ e " cos(wx) dx.
0
Since the integrand is an even function,

I :/ e~ cos(wz) dz.

[e.e]

ax

. —ar2 . . .
Since e”*" sin(wz) is an odd function,

o 5 .
I:/ e M e du.
—00

We evaluate this integral with the result of Exercise 12.2.

2/ e~ cos(wz) dz = \/Ee_WQ/(A‘“)
0 a

Consider
e 2
I= 2/ re " sin(wz) dz.
0
Since the integrand is an even function,

I:/ z e sin(wr) dz.

[e.9]

. —ar2 . .
Since x e~ cos(wz) is an odd function,

& 2
I = —z'/ re e dr.
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We add a dash of integration by parts to get rid of the x factor.

1 .
(—— e~ ewm) dzx.
2a

[ =— e ¥ " dux.

1 P b
[ =—f|—— —ax® W :
o] i

w o0

2a

—00

[e.9]

2

2/ ze” sin(wz) dz.
0

w

2a

\/ﬁ o/ (4a)
a
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Chapter 13

Cauchy’s Integral Formula

If I were founding a university I would begin with a smoking room; next a dormitory; and then a decent reading
room and a library. After that, if I still had more money that I couldn’t use, I would hire a professor and get

some text books.

- Stephen Leacock
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13.1 Cauchy’s Integral Formula

Result 13.1.1 Cauchy’s Integral Formula. If f(() is analytic in a compact, closed,
connected domain D and z is a point in the interior of D then

fe) - ¢ L& Z%Zﬂ 5 (13.1)

127 3DC—Z

Here the set of contours {C}} make up the positively oriented boundary 0D of the domain
D. More generally, we have

n ! J(C
£0(2) = ZZ_W ) _( )n+1 - Z 7{) | n+1 _ (13.2)

Cauchy’s Formula shows that the value of f(z) and all its derivatives in a domain are determined by the value
of f(z) on the boundary of the domain. Consider the first formula of the result, Equation 13.1. We deform the
contour to a circle of radius ¢ about the point { = 2.

C Z
)

C—Z 05C
(2 f(Q) = f(z)
_%cac ZdC+ Cs ¢—=z 4

We use the result of Example 12.5.1 to evaluate the first integral.

§ 29 i izagioy s f 1O

¢ — Cs ¢—=2
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The remaining integral along Cs vanishes as § — 0 because f(() is continuous. We demonstrate this with the
maximum modulus integral bound. The length of the path of integration is 274.

7{% w 4 ' < hm (W)1 max |f(¢) - f<z>|)

lim
z 0 |¢—z|=5

§—0

T 60 |¢—2|=8

< Jim (27r max_|£(C) - f<z>|)
=0

This gives us the desired result.

L[ f(Q)
2) = — d
We derive the second formula, Equation 13.2, from the first by differentiating with respect to z. Note that the
integral converges uniformly for z in any closed subset of the interior of C'. Thus we can differentiate with respect
to z and interchange the order of differentiation and integration.

f(n)(z) — Lﬁ f©)

C2rdzt Jo (-2
1A f(Q)
“ar b= %
ol £(0)

d¢

d¢

Example 13.1.1 Consider the following integrals where C' is the positive contour on the unit circle. For the
third integral, the point z = —1 is removed from the contour.

L ]{C sin(cos(2”)) dz
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R

. Since sin(cos(2”)) is an analytic function inside the unit circle,

fc sin(cos(2%)) dz = 0

m has singularities at z = 3 and z = 1/3. Since z = 3 is outside the contour, only the singularity at
z = 1/3 will contribute to the value of the integral. We will evaluate this integral using the Cauchy integral

formula.

)

1
(1/3— 3)3) 4

$ e dzzm(

Since the curve is not closed, we cannot apply the Cauchy integral formula. Note that /2 is single-valued
and analytic in the complex plane with a branch cut on the negative real axis. Thus we use the Fundamental
Theorem of Calculus.

(s

9 e
/\/Zdz = {—\/;}
C 3 e—im
2 ) )
_ g (ez37r/2 . e—137r/2)
2
3

(=i —19)
— s

3
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Cauchy’s Inequality. Suppose the f(({) is analytic in the closed disk | — z| < r. By Cauchy’s integral formula,

) =5 § L

i

where C' is the circle of radius r centered about the point z. We use this to obtain an upper bound on the modulus

of f™(z).

< —27r max
™ [¢—z|=r

Result 13.1.2 Cauchy’s Inequality. If f(¢) is analytic in | — z| < 7 then

n!M
z)‘ <
,,an

‘ f(n)

where |f({)] < M for all | — z| =7,

Liouville’s Theorem. Consider a function f(z) that is analytic and bounded, (f(z) < M), in the complex

plane. From Cauchy’s inequality,

re<d

r

for any positive r. By taking r — oo, we see that f’(z) is identically zero for all z. Thus f(z) is a constant.
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Result 13.1.3 Liouville’s Theorem. If f(z) is analytic and bounded in the complex
plane then f(z) is a constant.

The Fundamental Theorem of Algebra. We will prove that every polynomial of degree n > 1 has exactly
n roots, counting multiplicities. First we demonstrate that each such polynomial has at least one root. Suppose
that an n'® degree polynomial p(z) has no roots. Let the lower bound on the modulus of p(z) be 0 < m < |p(2)|.
The function f(z) = 1/p(z) is analytic, (f'(z) = p/(2)/p*(z)), and bounded, (|f(z)] < 1/m), in the extended
complex plane. Using Liouville’s theorem we conclude that f(z) and hence p(z) are constants, which yields a
contradiction. Therefore every such polynomial p(z) must have at least one root.

Now we show that we can factor the root out of the polynomial. Let

p(z) =Y ma".
k=0

We note that



Suppose that the n'" degree polynomial p(z) has a root at z = c.

p(2) = p(z) — p(c)

n n

k k

= E Pz — E PrC
k=0 k=0

n
SRR
k=0

n
= Zpk(z —0) et P
k=0 j

= (2 = c)q(2)

Here ¢(z) is a polynomial of degree n — 1. By induction, we see that p(z) has exactly n roots.

E
[u

Il
o

Result 13.1.4 Fundamental Theorem of Algebra. Every polynomial of degree n >
1 has exactly n roots, counting multiplicities.

Gauss’ Mean Value Theorem. Let f({) be analytic in | — z| < r. By Cauchy’s integral formula,
1 f(¢)
= — d
where C is the circle |( — z| = r. We parameterize the contour with ¢ = z + re®.

f(z) = L " LZ + re“’)ir e’ dp

271 J, r et

Writing this in the form,

fe) =5 /0 e ey do,
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we see that f(z) is the average value of f({) on the circle of radius r about the point z.

Result 13.1.5 Gauss’ Average Value Theorem. If f(() is analytic in |( — z| < r
then

1 2w

f(2) f(z+re?)dd.

That is, f(z) is equal to its average value on a circle of radius r about the point z.

Extremum Modulus Theorem. Let f(z) be analytic in closed, connected domain, D. The extreme values
of the modulus of the function must occur on the boundary. If | f(z)| has an interior extrema, then the function
is a constant. We will show this with proof by contradiction. Assume that |f(z)| has an interior maxima at the
point z = ¢. This means that there exists an neighborhood of the point z = ¢ for which |f(2)| < |f(c)|. Choose
an € so that the set |z — ¢| < e lies inside this neighborhood. First we use Gauss’ mean value theorem.

2m
f(c)—%/o flc+ee?) do

We get an upper bound on |f(c)| with the maximum modulus integral bound.

1 2T ]
|f(c) S%/o ‘f(c—i—eeze)‘ 49

Since z = ¢ is a maxima of | f(z)| we can get a lower bound on |f(c)].

1 2m ]
|f(c)] > %/0 |f(c+ee)| do

If |f(2)] < |f(c)] for any point on |z — ¢| = €, then the continuity of f(z) implies that |f(z)] < |f(c)] in a
neighborhood of that point which would make the value of the integral of | f(z)| strictly less than |f(c)|. Thus we
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conclude that |f(z)] = |f(c)| for all |z — ¢| = €. Since we can repeat the above procedure for any circle of radius
smaller than €, |f(2)| = |f(c)| for all |z — ¢| < ¢, i.e. all the points in the disk of radius € about z = ¢ are also
maxima. By recursively repeating this procedure points in this disk, we see that |f(z)| = |f(c)| for all z € D.
This implies that f(z) is a constant in the domain. By reversing the inequalities in the above method we see that
the minimum modulus of f(z) must also occur on the boundary.

Result 13.1.6 Extremum Modulus Theorem. Let f(z) be analytic in a closed,
connected domain, D. The extreme values of the modulus of the function must occur on
the boundary. If | f(2)| has an interior extrema, then the function is a constant.

13.2 The Argument Theorem

Result 13.2.1 The Argument Theorem. Let f(z) be analytic inside and on C' except
for isolated poles inside the contour. Let f(z) be nonzero on C'.

1 !/
, / T NP
27 Jo f(2)
Here N is the number of zeros and P the number of poles, counting multiplicities, of

f(z) inside C.

First we will simplify the problem and consider a function f(z) that has one zero or one pole. Let f(z) be
analytic and nonzero inside and on A except for a zero of order n at z = a. Then we can write f(z) = (z —a)"g(2)
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where g(z) is analytic and nonzero inside and on A. The integral of % along A is

L fFE AN ds

57 [ iz = [ 4 Gea(se) d

_ 2% [ di (log((= — a)") + log(g(2))) dz
1 d n

= 55 | gz (oal(z —a))) dz

:L n dz

12T J4 2 —a

=n

Now let f(z) be analytic and nonzero inside and on B except for a pole of order p at z = b. Then we can write

f(z) =1 ng'z))p where g(z) is analytic and nonzero inside and on B. The integral of % along B is

o | 5 = o [ ot 0
-5/ < (los((= ~ b)) +los(g(=)) dz
_ % [ % (log((= — b)) +) d=
- % B z_—pb dz

=P

Now consider a function f(z) that is analytic inside an on the contour C' except for isolated poles at the points
bi,...,b,. Let f(z) be nonzero except at the isolated points as,...,a,. Let the contours Ay, k = 1,... ,n,
be simple, positive contours which contain the zero at a; but no other poles or zeros of f(z). Likewise, let the
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contours By, k =1,...,p be simple, positive contours which contain the pole at b, but no other poles of zeros of
f(2). (See Figure 13.1.) By deforming the contour we obtain

RIS AR WA e

(
From this we obtain Result 13.2.1.

f/
f

Figure 13.1: Deforming the contour C'.

13.3 Rouche’s Theorem

Result 13.3.1 Rouche’s Theorem. Let f(z) and (g) be analytic inside and on a
simple, closed contour C. If |f(z)| > |g(2)| on C then f(z) and f(z) 4+ g(z) have the
same number of zeros inside C' and no zeros on C.

First note that since |f(2)| > |g(2)| on C, f(2) is nonzero on C. The inequality implies that | f(z) 4+ g(z)] > 0
on C so f(z) + g(z) has no zeros on C. We well count the number of zeros of f(z) and g(z) using the Argument
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Theorem, (Result 13.2.1). The number of zeros N of f(z) inside the contour is

17 f(z)
~2n e f(2) dz

(Note that since |h(z)] < 1 on C, R(1 + h(z)) > 0 on C and the value of log(1 + h(z)) does not not change in
traversing the contour.) This demonstrates that f(z) and f(z) 4+ g(z) have the same number of zeros inside C
and proves the result.
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13.4 Exercises
Exercise 13.1
What is
(arg(sin z)) ‘C

where C' is the unit circle?

Exercise 13.2
Let C' be the circle of radius 2 centered about the origin and oriented in the positive direction. Evaluate the
following integrals:

sin z
1. fc P dz

2. §, e de

3. fc zQTHdZ

Exercise 13.3
Let f(z) be analytic and bounded (i.e. |f(2)| < M) for |z| > R, but not necessarily analytic for |z| < R. Let the
points « and f lie inside the circle |z] = R. Evaluate

/(2)
?i CErCE

where C is any closed contour outside |z| = R, containing the circle |z| = R. [Hint: consider the circle at infinity]
Now suppose that in addition f(z) is analytic everywhere. Deduce that f(«a) = f(3).

Exercise 13.4
Using Rouche’s theorem show that all the roots of the equation p(z) = 2% — 522 + 10 = 0 lie in the annulus
1< |zl <2.
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Exercise 13.5
Evaluate as a function of ¢

1 7{ et d
w=-— ¢ ——dz,
i2r Jo 22(2% + a?)

where C' is any positively oriented contour surrounding the circle |z| = a.

416



13.5 Hints

Hint 13.1
Use the argument theorem.

Hint 13.2
Hint 13.3
To evaluate the integral, consider the circle at infinity.

Hint 13.4

Hint 13.5
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13.6 Solutions

Solution 13.1
Let f(z) be analytic inside and on the contour C. Let f(z) be nonzero on the contour. The argument theorem

states that

L (=),
i2m o f(z) de= =L

where N is the number of zeros and P is the number of poles, (counting multiplicities), of f(z) inside C. The
theorem is aptly named, as

L1,
57 | T iz = = Boar )l
— - llog |(2)] + dang(£(2))
1

= o larg(f ()

Thus we could write the argument theorem as

L (e, 1 _
2 | 700 dZ—%[arg(f(z))]C—N—P.

Since sin z has a single zero and no poles inside the unit circle, we have

1
gy arg(sin(z))‘c =1-0

arg(sin(z))|, = 2w

Solution 13.2
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sin z

1. Since the integrand 7% is analytic inside and on the contour, (the only singularities are at z = +iy/5 and
at infinity), the integral is zero by Cauchy’s Theorem.

2. First we expand the integrand in partial fractions.

z a . b
241 z2—1i 241

z
zZ+1

a =

z=1

Now we can do the integral with Cauchy’s formula.

1/2 1/2
/sz_ldz: ziidz—i_/z—/i—z’dz
c c c

1 1
= 5@'27? + §i27r
=27
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Solution 13.3
Let C be the circle of radius r, (r > R), centered at the origin. We get an upper bound on the integral with the

Maximum Modulus Integral Bound, (Result 12.1.1).
f(2) M

R,
¢ —a)=p) G=aG=m| =" =Tl - 1)

By taking the limit as r — oo we see that the modulus of the integral is bounded above by zero. Thus the integral
vanishes.
Now we assume that f(z) is analytic and evaluate the integral with Cauchy’s Integral Formula. (We assume

that o # f3.)

< 27r max
|z|=r

‘§27rr

f(2) f(2) _
fc(z—a)(a—md”?{c CE R

o fl) ., f(B)
2m———— + 2r———— =
{ 7ra_6+2 Wﬂ_a 0
fle) = f(B)
Solution 13.4
Consider the circle |z| = 2. On this circle:
|25 = 64

| — 522410 < | —52% 4+ (10| = 30

Since |2°| < | =522+ 10| on |z| = 2, p(z) has the same number of roots as 2% in |z| < 2. p(z) has 6 roots in |2| < 2.
Consider the circle |z| = 1. On this circle:

110] = 10
126 — 522 < 2% + | — 52%| =6
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Since |2% — 522 < 10| on |z| = 1, p(2) has the same number of roots as 10 in |z| < 1. p(z) has no roots in |2| < 1.
On the unit circle,

p(2)] = [10] — [2°] - |52%] = 4.

Thus p(z) has no roots on the unit circle.
We conclude that p(z) has exactly 6 roots in 1 < |z] < 2.

Solution 13.5
We evaluate the integral with Cauchy’s Integral Formula.

1 j{ et
= — 5 54z
27m c 22(22 + a?)

1 et ie
= : dz
27i a222 2a3 (z — za) " 2d3(z + ia)

B N jelat  jetat
dz a2 0 2a3 2a3

t sin(at)
YT @
at — sin(at)
=T 3
a
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Chapter 14

Series and Convergence

You are not thinking. You are merely being logical.

- Neils Bohr

14.1 Series of Constants

14.1.1 Definitions

Convergence of Sequences. The infinite sequence {a,}32, = ag, a1, as, ... is said to converge if
lim a, = a
n—oo

for some constant a. If the limit does not exist, then the sequence diverges. Recall the definition of the limit in
the above formula: For any € > 0 there exists an N € Z such that |a — a,| < € for all n > N.

Example 14.1.1 The sequence {sin(n)} is divergent. The sequence is bounded above and below, but bounded-
ness does not imply convergence.
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Cauchy Convergence Criterion. Note that there is something a little fishy about the above definition. We
should be able to say if a sequence converges without first finding the constant to which it converges. We fix this
problem with the Cauchy convergence criterion. A sequence {a,} converges if and only if for any ¢ > 0 there
exists an N such that |a, — a,,| < € for all n,m > N. The Cauchy convergence criterion is equivalent to the
definition we had before. For some problems it is handier to use. Now we don’t need to know the limit of a
sequence to show that it converges.

Convergence of Series. The series )~ a, converges if the sequence of partial sums, Sy = ZT]::Ol Gy, CON-
verges. That is,

N-1
lim Sy = lim g a, = constant.
N—oo N—o00 0

n=

If the limit does not exist, then the series diverges. A necessary condition for the convergence of a series is that

lim a,, = 0.

n—oo

Otherwise the sequence of partial sums would not converge.

Example 14.1.2 The series Y - (—=1)"=1—1+1—1+--- is divergent because the sequence of partial sums,
{Sy}=1,0,1,0,1,0,... is divergent.

Tail of a Series. An infinite series, Y - a,, converges or diverges with its tail. That is, for fixed N, > a,
converges if and only if Y ° \ a, converges. This is because the sum of the first N terms of a series is just a
number. Adding or subtracting a number to a series does not change its convergence.

Absolute Convergence. Theseries )~ a, converges absolutely if Y~ |a,| converges. Absolute convergence
implies convergence. If a series is convergent, but not absolutely convergent, then it is said to be conditionally
convergent.
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The terms of an absolutely convergent series can be rearranged in any order and the series will still converge
to the same sum. This is not true of conditionally convergent series. Rearranging the terms of a conditionally
convergent series may change the sum. In fact, the terms of a conditionally convergent series may be rearranged
to obtain any desired sum.

Example 14.1.3 The alternating harmonic series,

11_1_1 1+
2 3 4 ’

converges, (Exercise 14.2). Since
LT S
2 3 4

diverges, (Exercise 14.3), the alternating harmonic series is not absolutely convergent. Thus the terms can be
rearranged to obtain any sum, (Exercise 14.4).

Finite Series and Residuals. Consider the series f(z) = Y 2 a,(z). We will denote the sum of the first N
terms in the series as

We will denote the residual after N terms as

Ry(z) = f(2) = Sn(2) = ) an(2).
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14.1.2 Special Series

Geometric Series. One of the most important series in mathematics is the geometric series, !

Zz”:1+z+z2+z3+~-.

n=0

The series clearly diverges for |z| > 1 since the terms do not vanish as n — oo. Consider the partial sum,
_N-1_p
Sn(z) =, 2" for |z| < 1.

N-1
(1—=2)Sy(2)=(1—2) 2"
n=0
N-1 N
n=0 n=1
=(l4+z+- 42" - (z+224---+2")
=12
N-1
1— 2N 1
2" = . as N — oo
1—-=2 1—=2

The limit of the partial sums is ﬁ

o0 1
"= —— f <1
ngoz T or |z

I The series is so named because the terms grow or decay geometrically. Each term in the series is a constant times the previous
term.
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Harmonic Series. Another important series is the harmonic series,

o0

Loy by
nzln“— 20 3o ’

The series is absolutely convergent for R(«) > 1 and absolutely divergent for R(«) < 1, (see the Exercise 14.6).
The Riemann zeta function ((«) is defined as the sum of the harmonic series.

The alternating harmonic series is

Again, the series is absolutely convergent for () > 1 and absolutely divergent for (a) < 1.

14.1.3 Convergence Tests

The Comparison Test. The series of positive terms Y~ a, converges if there exists a convergent series
Y oo bn such that a, < b, for all n. Similarly, > 7 a, diverges if there exists a divergent series ) /b, such
that a,, > b,, for all n.

f!nQ
n=1

We can rewrite this as

n=1
n a perfect square

426



Then by comparing this series to the geometric series,

we see that it is convergent.

Integral Test. If the coefficients a,, of a series >~ a, are monotonically decreasing and can be extended to
a monotonically decreasing function of the continuous variable z,

a(x) = a, forz e Z°F,

then the series converges or diverges with the integral

/0 " o) d.

Example 14.1.5 Consider the series ) 2, 5. Define the functions s;(z) and s,(z), (left and right),

Recall that |z is the greatest integer function, the greatest integer which is less than or equal to z. [z] is the
least integer function, the least integer greater than or equal to z. We can express the series as integrals of these
functions.

g%:/ooosl(@dx:/lmsr(x)dx
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In Figure 14.1 these functions are plotted against y = 1/2%. From the graph, it is clear that we can obtain a lower
and upper bound for the series.

A<y =<1 —
/ledx_;n2_ +/1 xQdm
1<OO 1<2
I
1 1 <
Qc
1 2 3 4 1 2 3 4

Figure 14.1: Upper and Lower bounds to Y °- . 1/n?

n=1

In general, we have
oo

/ooa(x)dwg ian Sam—i-/ a(x) d.

m n—m m

Thus we see that the sum converges or diverges with the integral.
The Ratio Test. The series ) a, converges absolutely if

Ap41
<1,

lim

n—oo

Qn
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If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.
If the limit is greater than unity, then the terms are eventually increasing with n. Since the terms do not
vanish, the sum is divergent. If the limit is less than unity, then there exists some N such that

Ap+1
an

<r<l1l foralln>N.

From this we can show that > °  a, is absolutely convergent by comparing it to the geometric series.

[eS) oS
> lanl < lan D"
n=N n=0

Jax|
=l|a
M=y
Example 14.1.6 Consider the series,
_'.
“—~ nl
We apply the ratio test to test for absolute convergence.
i | @] e"tin!
n—oo | QA n—oo e”(n -+ 1)'
) e
= lim
n—oon + 1

The series is absolutely convergent.
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Example 14.1.7 Consider the series,

=1
>

n=1

which we know to be absolutely convergent. We apply the ratio test.

Ap+1
Qnp,

1 1)2
= lim 7/(71—{— )
n—o0 1/n2
. n?
= ].lm U
n—oon? 4+ 2n + 1
I 1
= 11m
n—>001+2/n+1/n2

=1

lim

n—oo

The test fails to predict the absolute convergence of the series.

The Root Test. The series > - a, converges absolutely if

1/n

lim |a,|"/" < 1.

n—oo

If the limit is greater than unity, then the series diverges. If the limit is unity, the test fails.
If the limit is greater than unity, then the terms in the series do not vanish as n — oco. This implies that the
sum does not converge. If the limit is less than unity, then there exists some N such that

lay|Y" <r <1 foralln> N.
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We bound the tail of the series of |a,|.

o0 o0
D laal = (laa| ™)
n=N n=N
3
n=N
Sl
> o o an is absolutely convergent.
Example 14.1.8 Consider the series
S,
n=0

where a and b are real constants. We use the root test to check for absolute convergence.

lim [n2b"|"" < 1

n—oo

b| lim %™ < 1

11
|b| exp (hm ogn) <1
n—oo n
b]e® <1
b <1

Thus we see that the series converges absolutely for [b] < 1. Note that the value of a does not affect the absolute
convergence.
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Example 14.1.9 Consider the absolutely convergent series,

o0

1

n?’
n=1

We aply the root test.

1 1/n

n2
—2/n

lim |a,|”" = lim

n—oo n—oo

= lim n

n—oo

2
= lim e n "

n—oo

It fails to predict the convergence of the series.

14.2 Uniform Convergence

Continuous Functions. A function f(z) is continuous in a closed domain if, given any ¢ > 0, there exists a
d > 0 such that |f(2) — f(¢)| < e for all |z — (| < J in the domain.
An equivalent definition is that f(z) is continuous in a closed domain if

lim f(¢) = f(2)

(—z

for all z in the domain.
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Convergence. Consider a series in which the terms are functions of z, Y ° ; a,,(z). The series is convergent in a
domain if the series converges for each point z in the domain. We can then define the function f(z) = > 7 a,(z).
We can state the convergence criterion as: For any given € > 0 there exists a function N(z) such that

N(z)—-1

[f(z) = S (2) = |f(2) = Y anl2)| <

n=0

for all z in the domain. Note that the rate of convergence, i.e. the number of terms, N(z) required for for the
absolute error to be less than €, is a function of z.

Uniform Convergence. Consider a series > - a,(z) that is convergent in some domain. If the rate of
convergence is independent of z then the series is said to be uniformly convergent. Stating this a little more
mathematically, the series is uniformly convergent in the domain if for any given € > 0 there exists an N,
independent of z, such that

|f(2) = Sn(2)| = |f(z) = a(?)

for all z in the domain.

14.2.1 Tests for Uniform Convergence

Weierstrass M-test. The Weierstrass M-test is useful in determining if a series is uniformly convergent. The
series ) >~ an(2) is uniformly and absolutely convergent in a domain if there exists a convergent series of positive
terms )~ M, such that |a,(z)| < M, for all z in the domain. This condition first implies that the series is
absolutely convergent for all z in the domain. The condition |a,(z)| < M, also ensures that the rate of convergence
is independent of z, which is the criterion for uniform convergence.

Note that absolute convergence and uniform convergence are independent. A series of functions may be
absolutely convergent without being uniformly convergent or vice versa. The Weierstrass M-test is a sufficient
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but not a necessary condition for uniform convergence. The Weierstrass M-test can succeed only if the series is
uniformly and absolutely convergent.

Example 14.2.1 The series

o) = Z sinx

— n(n+ 1)

3

sin x

n(n+1)

is uniformly and absolutely convergent for all real = because | | < &5 and ) 7| -5 converges.

Dirichlet Test. Consider a sequence of monotone decreasing, positive constants ¢, with limit zero. If all the
partial sums of a,(z) are bounded in some closed domain, that is

N

Zan<z)

n=1

< constant

for all N, then > >° | ¢,a,(2) is uniformly convergent in that closed domain. Note that the Dirichlet test does not
imply that the series is absolutely convergent.

Example 14.2.2 Consider the series,

Z s1n§1na:) ‘

n=1

We cannot use the Weierstrass M-test to determine if the series is uniformly convergent on an interval. While it
is easy to bound the terms with |sin(nx)/n| < 1/n, the sum

o0

1
2
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does not converge. Thus we will try the Dirichlet test. Consider the sum Zi::l sin(nz). This sum can be

evaluated in closed form. (See Exercise 14.7.)

N1 0 for x = 27k
Z SIN(12) = § cos(a/2)—cos((V-1/2)z) for z # 27k
n=1

2sin(z/2)

The partial sums have infinite discontinuities at x = 27k, k € Z. The partial sums are bounded on any closed
interval that does not contain an integer multiple of 2. By the Dirichlet test, the sum >~ sin(ne) s yniformly
convergent on any such closed interval. The series may not be uniformly convergent in neighborhoods of x = 2kx.

14.2.2 Uniform Convergence and Continuous Functions.

Consider a series f(z) = > a,(z) that is uniformly convergent in some domain and whose terms a,(z) are
continuous functions. Since the series is uniformly convergent, for any given € > 0 there exists an N such that
|Rx| < € for all z in the domain.

Since the finite sum Sy is continuous, for that e there exists a § > 0 such that |Sy(z) — Sn(¢)| < € for all ¢
in the domain satisfying |z — (| < 4.

Combining these two results,

1f(2) = f(O) = |Sn(2) + Rn(2) = Sn(C) — Rn(C)]
< [Sn(z) = Sn (O] + [Bn(2)] + [ R ()]
< 3e for|z—(| <.

Thus f(z) is continuous.

Result 14.2.1 A uniformly convergent series of continuous terms represents a continuous

function.

Example 14.2.3 Again consider )~ Singbm). In Example 14.2.2 we showed that the convergence is uniform in

any closed interval that does not contain an integer multiple of 2. In Figure 14.2 is a plot of the first 10 and
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then 50 terms in the series and finally the function to which the series converges. We see that the function has
jump discontinuities at = 2k7 and is continuous on any closed interval not containing one of those points.

(

Figure 14.2: Ten, Fifty and all the Terms of )~ , sin(nz)

14.3 Uniformly Convergent Power Series

Power Series. Power series are series of the form

Z an(z — 2)".

n=0

Domain of Convergence of a Power Series Consider the series Y~ a,2". Let the series converge at some
point zp. Then |a,z{| is bounded by some constant A for all n, so

n

z

20

< A

VA
|anzn| = |anzg| Z_O

This comparison test shows that the series converges absolutely for all z satisfying |z| < |zo].
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Suppose that the series diverges at some point z;. Then the series could not converge for any |z| > |z since
this would imply convergence at z;. Thus there exists some circle in the z plane such that the power series
converges absolutely inside the circle and diverges outside the circle.

Result 14.3.1 The domain of convergence of a power series is a circle in the complex

plane.

Radius of Convergence of Power Series. Consider a power series

f(z) = Z anz"

n=0
Applying the ratio test, we see that the series converges if

lim 7’ ane1 2"

n—00 |anzn|

<

li |a’n+1|

|z| < 1

|an|

|z| < lim
n=o0 |ap ]
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Result 14.3.2 The radius of convergence of the power series

f(z) = Z anz"

n=0

18

R = lim 0|
n—0oo |an+1’

when the limit exists.

Result 14.3.3 Cauchy-Hadamard formula. The radius of convergence of the power
series:

o0
E 2"
n=0
1S
1

R = :
lim sup {/|ay|

Absolute Convergence of Power Series. Consider a power series

f(z) = Z anz"

n=0
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that converges for z = zy. Let M be the value of the greatest term, a,,z{. Consider any point z such that |z| < |zo].
We can bound the residual of Y~  |a,2"|,

n=N
oo
anz" n
= E P | nZO|
n=N nZo
(0.9] P n
<M E —
2
n=N 0
Since |z/zp| < 1, this is a convergent geometric series.
N
z 1
—M|Z
20| 1—z/z|

Thus the power series is absolutely convergent for |z| < |z|.

Result 14.3.4 If the power series Y~ a,z" converges for z = z, then the series con-
verges absolutely for |z| < |z

Example 14.3.1 Find the radii of convergence of

1) inz", 2) in!z", 3) in!z”!
n=1 n=1 n=1

1. Applying the formula for the radius of convergence,

Qn

R = lim

n—oo

An1



2. Applying the ratio test to the second series,

Thus we see that the second series has a vanishing radius of convergence.
3. The third series converges when

(n + 1)lz(+D!
n!lzm

lim (n 4 1)[z|"D <1

lim

n—oo

<1

lim (n 4 1)|2]™™ <1

lim (log(n+ 1) + (n)n!log|z|) <0

—1 1
n—oo (n)n!
log |z] <0
2] <1

Thus the radius of convergence for the third series is 1.

Alternatively we could determine the radius of convergence of the third series with the comparison test. We
know that

o o
Z |n!z”!‘ < Z |nz"|
n=1 n=1
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> o, nz" has a radius of convergence of 1. Thus the third sum must have a radius of convergence of at
least 1. Note that if |z| > 1 then the terms in the third series do not vanish as n — oco. Thus the series
must diverge for all |z| > 1. We see that the radius of convergence is 1.

Uniform Convergence of Power Series. Consider a power series ) a,2" that converges in the disk
|z| < ro. The sum converges absolutely for z in the closed disk, |z|] < r < 7. Since |a,z"| < |a,r™| and
Yoo o lanr™| converges, the power series is uniformly convergent in |z| < r < 7.

Result 14.3.5 If the power series >~ a,2" converges for |z| < ry then the series con-

verges uniformly for |z| < r < .

Example 14.3.2 Convergence and Uniform Convergence. Consider the series

o0 n

log(l—2) = =
n

This series converges for |z| < 1,z # 1. Is the series uniformly convergent in this domain? The residual after N
terms Ry is

n=N-+1

We can get a lower bound on the absolute value of the residual for real, positive z.

By(@)] = Y =

n=N+1
g/ T da
N+1 @
=—FEi((V+1)logz)
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The exponential integral function, Ei(z), is defined

Ei(z):—/_ooe—tdt.

. U

The exponential integral function is plotted in Figure 14.3. Since Ei(z) diverges as z — 0, by choosing =
sufficiently close to 1 the residual can be made arbitrarily large. Thus this series is not uniformly convergent in
the domain |z| < 1,z # 1. The series is uniformly convergent for |z| <r < 1.

Figure 14.3: The Exponential Integral Function.

Analyticity. Recall that a sufficient condition for the analyticity of a function f(z) in a domain is that
$ f(2) dz = 0 for all simple, closed contours in the domain.
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Consider a power series f(z) = >~ a,2" that is uniformly convergent in |z| < r. If C' is any simple, closed
contour in the domain then ¢, f(z) dz exists. Expanding f(z) into a finite series and a residual,

jif(z) dz = j{c [Sn(2) + Rn(2)] d=.

Since the series is uniformly convergent, for any given ¢ > 0 there exists an N, such that |Ry | < € for all z in
|z| <r. If L is the length of the contour C' then

%RNE(Z) dz
c
N-1

f(z)dz = lim a,z2" + Rn(2) | dz
$ 1@z = jim 4 > v(2)
= % Zanz"

an(]
= Zan]é 2" dz

n=0 c

=0.

§L€—>0 aSNE—>oo,

Thus f(z) is analytic for |z| < 7.

Result 14.3.6 A power series is analytic in its domain of uniform convergence.

14.4 Integration and Differentiation of Power Series

Consider a power series f(z) =Y~ a,2z" that is convergent in the disk |z| < ry. Let C' be any contour of finite
length L lying entirely within the closed domain |z| < r < 1. The integral of f(z) along C' is

/C f(2)dz = /C [Sn(2) + Ry(2)] dz.
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Since the series is uniformly convergent in the closed disk, for any given € > 0, there exists an N, such that
|Rn.(z)| <€ forall |z] <.

Bounding the absolute value of the integral of Ry, (2),

/C Ry, (2) dz

< /C (R, (2)| dz

< el

—0 as N, —

Thus
N
f(z)dz = lim / a,z" dz
N
_ ]3@%;@” /C e
= Zan/ 2" dz
n=0 c

Result 14.4.1 If C'is a contour lying in the domain of uniform convergence of the power
series Y, a,z" then

o0 (0.]
/ E anz" dz = g an/z”dz.
¢ n=0 n=0 ¢

In the domain of uniform convergence of a series we can interchange the order of summation and a limit
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process. That is,

o0 o0
li = li
Jim D an(2) = 3 Jim an(2)
We can do this because the rate of convergence does not depend on z. Since differentiation is a limit process,

o fETh) — f()

h—>0 h ’

—f( ) =

we would expect that we could differentiate a uniformly convergent series.
Since we showed that a uniformly convergent power series is equal to an analytic function, we can differentiate
a power series in it’s domain of uniform convergence.

Result 14.4.2 In the domain of uniform convergence of a power series

d o oo
e Z apz" = Z(n + Dap12".
n=0 n=0

Example 14.4.1 Differentiating a Series. Consider the series from Example 14.3.2

00
2"

log(l—2) = —.

Differentiating this series yields




We recognize this as the geometric series, which is convergent for |z| < 1 and uniformly convergent for |z| < r < 1.
Note that the domain of convergence is different than the series for log(1 — z). The geometric series does not
converge for |z| = 1,z # 1. However, the domain of uniform convergence has remained the same.

14.5 Taylor Series

Result 14.5.1 Taylor’s Theorem. Let f(z) be a function that is single-valued and
analytic in |z — 29| < R. For all z in this open disk, f(z) has the convergent Taylor series

- f(n)(zo) n
flz) =) — (- a)" (14.1)
n=0
We can also write this as

Z_Ooa 5 — 2\ a_f(n)(z())_ 1 f(Z) 5
f()_nzzg n( O)> n fg( d (14.2)

n! 2w z— zo)ntl

where C' is a simple, positive, closed contour in 0 < |z — 29| < R that goes once around
the point zj.

Proof of Taylor’s Theorem. Let’s see why Result 14.5.1 is true. Consider a function f(z) that is analytic in
|z| < R. (Considering zy # 0 is only trivially more general as we can introduce the change of variables ( = z — zy.)
According to Cauchy’s Integral Formula, (Result ?7),

f(z) = i]{ &dc, (14.3)
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where C' is a positive, simple, closed contour in 0 < |( — z| < R that goes once around z. We take this contour
to be the circle about the origin of radius r where |z| < r < R. (See Figure 14.4.)

Im(z)

A .
LY

Figure 14.4: Graph of Domain of Convergence and Contour of Integration.

We expand —— in a geometric series,
(—=




The series converges uniformly so we can interchange integration and summation.

BRSNS Y (Sl
_;%%j{ccwrld{z

Now we have derived Equation 14.2. To obtain Equation 14.1, we apply Cauchy’s Integral Formula.

— /™),
:Zo n! z

There is a table of some commonly encountered Taylor series in Appendix H.

Example 14.5.1 Consider the Taylor series expansion of 1/(1 — z) about z = 0. Previously, we showed that this
function is the sum of the geometric series >~ /2™ and we used the ratio test to show that the series converged
absolutely for |z| < 1. Now we find the series using Taylor’s theorem. Since the nearest singularity of the function
is at z = 1, the radius of convergence of the series is 1. The coefficients in the series are

1 [d 1

ap = — |—
n!|dz"1—2z],_,
1

le=0m

=1

Thus we have

1 oo
= E 2", for |z| < 1.
1—-=2 ~
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14.5.1 Newton’s Binomial Formula.

Result 14.5.2 For all 2| < 1, a complex:
(I+2)"=1+ (Cll)z+ <g>z2+ (g)z?’wL---

<>:a(a—1)(a—2)~--(a—r—|—1)

where

Q

r!

If a is complex, then the expansion is of the principle branch of (1 + z)®. We define

(g) =1, (S) =0, forr#0, (8) = 1.

Example 14.5.2 Evaluate lim,, (1 + 1/n)".

First we expand (1 + 1/n)" using Newton’s binomial formula.

Jgg)(1+-%>n::33§3<1+-(?)1/n+—(2)1/n2+-(§)1/n3+~..)

L nn—1) nn-—1)(n-—2)

(e L
=1+l gyt
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We recognize this as the Taylor series expansion of el.
=e

We can also evaluate the limit using L’Hospital’s rule.

Log <lim (1 + i)x) = lim Log ((1+1/2)")

r—00

= lim zLog (1 +1/x)

~ lim Log (1 + 1/xz)
—1/x?
— 1+1/z
xl—{go —1/x2
=1

1 X
lim (1 + —) = ¢!
T—00 x

Example 14.5.3 Find the Taylor series expansion of 1/(1 + z) about z = 0.

For |z] < 1,
Lo (e (2 ()
= Z z 254
1+ 2 1 2 3
=1+ (=1)'z+ (=122 + (=132 + - --
=l—z+22 =2+
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Example 14.5.4 Find the first few terms in the Taylor series expansion of

VZ24+52+6

about the origin.

We factor the denominator and then apply Newton’s binomial formula.

\/22+15z+6\/21+?\/zl+2 1
\/_\/1+z/3\/_\/1—|—z/2
e (5 ()6 ] (7
B P H _Z+33_Z;+ }
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14.6 Laurent Series

Result 14.6.1 Let f(z) be single-valued and analytic in the annulus Ry < |z — 2| < Rs.
For points in the annulus, the function has the convergent Laurent series

where

1 f(2)
n = 27 j{c (z — zo)" ! dz

and C' is a positively oriented, closed contour around z; lying in the annulus.

To derive this result, consider a function f({) that is analytic in the annulus R; < |(| < Ry. Consider any
point z in the annulus. Let C) be a circle of radius m with Ry < r; < |z|. Let Cy be a circle of radius ry with
|z| < ro < Ry. Let C, be a circle around z, lying entirely between Cy and Cy. (See Figure 14.5 for an illustration.)

Consider the integral of % around the Cy contour. Since the the only singularities of IO hecur at ( =z and

(—z
at points outside the annulus,

IO i) S
%cc—zdc_ CZC—ZdC+7€,* 2%

By Cauchy’s Integral Formula, the integral around C, is

j{ &dg =27 f(z2).
c.C— %
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This gives us an expression for f(z).

_ f(©) [ OS]
f(z)_Q—mjinC—de 2mi o, C— 2 46

On the Cy contour, |z| < [(]. Thus

1 B 1/¢
(—z 1-2/C
o=/ 2\"
= — -, for|z| <
42@ 4 <]
oo Zn
:Z@m’ for [z] <|¢]
n=0
On the C4 contour, (] < |z|. Thus
1 1)z
=z 1=/
1 & "
—13(8) k<l
24 \z
o Cn
-3 i<
n=0
1 n
= 2. am forld<ld

We substitute these geometric series into Equation 14.4.

-, (SA8) wr e £ (2 45

o0
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Since the sums converge uniformly, we can interchange the order of integration and summation.

L& O 1 <« [ [
f(z)—%;%@ ¢t d<+%n;mj€1 n+1 d¢

Since the only singularities of the integrands lie outside of the annulus, the C; and C5 contours can be deformed
to any positive, closed contour C' that lies in the annulus and encloses the origin. (See Figure 14.5.) Finally, we
combine the two integrals to obtain the desired result.

() = i% (f L) =

For the case of arbitrary zy, simply make the transformation z — z — zj.

Example 14.6.1 Find the Laurent series expansions of 1/(1 + z).

For |z] < 1,
Lo (e (2 ()
= Z z 254
1+ 2 1 2 3
=1+ (=D)'z+ (=122 + (=132 + - --
=l—z+22 -2+
For |z] > 1,
1 1)z
1+z 1+1/2

! (1 ; (‘11)31 +(21> ;. )

T
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I rr)(z) Im(2)

G
C 0 c

Figure 14.5: Contours for a Laurent Expansion in an Annulus.

14.7 Exercises

Exercise 14.1 (mathematica/fcv/series/constants.nb)
Does the series

=1
;nlogn

converge?
Hint, Solution
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Exercise 14.2 (mathematica/fcv/series/constants.nb)
Show that the alternating harmonic series,

f: n+1 1_1_’_1_1—1—
B 2 3 4

n=1

is convergent.
Hint, Solution

Exercise 14.3 (mathematica/fcv/series/constants.nb)
Show that the series

o

1
n=1 n
is divergent with the Cauchy convergence criterion.
Hint, Solution
Exercise 14.4
The alternating harmonic series has the sum:
o0 n
Z = log(2).

n=1

Show that the terms in this series can be rearranged to sum to 7.
Hint, Solution
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Exercise 14.5 (mathematica/fcv/series/constants.nb)
Is the series,

= nl

)
nm
n=1

convergent?
Hint, Solution

Exercise 14.6
Show that the harmonic series,

converges for a > 1 and diverges for a < 1.
Hint, Solution

Exercise 14.7
Evaluate S~ sin(nz).
Hint, Solution

Exercise 14.8
Using the geometric series, show that

[e.e]

ﬁ = Z(n—i— 1)2”, fOI' |Z’ < 1,
(1—2) —
and

log(1—2)=—Y_ % for |2| < 1.

n=1

457



Hint, Solution

Exercise 14.9

Find the Taylor series of ﬁ about the z = 0. Determine the radius of convergence of the Taylor series from the

singularities of the function. Determine the radius of convergence with the ratio test.
Hint, Solution

Exercise 14.10

Use two methods to find the Taylor series expansion of log(1l + z) about z = 0 and determine the circle of
convergence. First directly apply Taylor’s theorem, then differentiate a geometric series.

Hint, Solution

Exercise 14.11
Find the Laurent series about z = 0 of 1/(z — i) for |z| < 1 and |z| > 1.
Hint, Solution

Exercise 14.12
Evaluate

ikzk and ik%k
k=1 k=1

for z # 1.
Hint, Solution

Exercise 14.13
Find the circle of convergence of the following series.
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6. Z(n—I—a") 2" (la] > 1)

n=1

Hint, Solution

Exercise 14.14

Let f(z) = (14 2)® be the branch for which f(0) = 1. Find its Taylor series expansion about z = 0. What is the
radius of convergence of the series? (« is an arbitrary complex number.)

Hint, Solution

Exercise 14.15
Obtain the Laurent expansion of



centered on z = 0 for the three regions:
L. |zl <1
2. 1< z] <2
3. 2< |7

Hint, Solution

Exercise 14.16
By comparing the Laurent expansion of (z+ 1/2)™, m € Z*, with the binomial expansion of this quantity, show
that

/%(cos )™ cos(nd) df — W%((m_";w) —m <n <m and m —n even
0 0 otherwise

Hint, Solution

Exercise 14.17
The function f(z) is analytic in the entire z-plane, including co, except at the point z = i/2, where it has a simple
pole, and at z = 2, where it has a pole of order 2. In addition

f(2)dz = 2mi, f(z)dz =0, j{ (z—1)f(2)dz=0.
|z|=1 |z|=3 |z|=3

Find f(z) and its complete Laurent expansion about z = 0.
Hint, Solution

Exercise 14.18 i
Let f(z) = > o K (g) . Compute each of the following, giving justification in each case. The contours are
circles of radius one about the origin.
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. iz d
1 /Z|:16 f(z)dz

2. Lj) dz
lz]=1 #

3. f(zge dz
lz]=1

Hint, Solution
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14.8 Hints

Hint 14.1
Use the integral test.

Hint 14.2
Group the terms.

1 1
1— ===
2 2
1 1 1
3 4 12
1 1 1
5 6 30
Hint 14.3
Show that
1
’Sgn — Sn| > 5
Hint 14.4

The alternating harmonic series is conditionally convergent. Let {a,} and {b,} be the positive and negative terms
in the sum, respectively, ordered in decreasing magnitude. Note that both >~ | a, and sumoinb,, are divergent.
Devise a method for alternately taking terms from {a,} and {b,}.

Hint 14.5
Use the ratio test.
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Hint 14.6
Use the integral test.

Hint 14.7
Note that sin(nx) = I(e™*). This substitute will yield a finite geometric series.

Hint 14.8
Differentiate the geometric series. Integrate the geometric series.

Hint 14.9
The Taylor series is a geometric series.

Hint 14.10

Hint 14.11

Hint 14.12

Let S,, be the sum. Consider S,, — zS5,,. Use the finite geometric sum.

Hint 14.13

463



Hint 14.14

Hint 14.15

Hint 14.16

Hint 14.17

Hint 14.18
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14.9 Solutions

Solution 14.1
Since Y7, is a series of positive, monotone decreasing terms, the sum converges or diverges with the integral,

<1 1
/ dx:/ —d&
o zlogw 1og2§

Since the integral diverges, the series also diverges.

Solution 14.2

Thus the series is convergent.
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Solution 14.3
Since

the series does not satisfy the Cauchy convergence criterion.

Solution 14.4
The alternating harmonic series is conditionally convergent. That is, the sum is convergent but not absolutely
convergent. Let {a,} and {b,} be the positive and negative terms in the sum, respectively, ordered in decreasing

magnitude. Note that both > > a, and Y b, are divergent. Otherwise the alternating harmonic series would
be absolutely convergent.

To sum the terms in the series to m we repeat the following two steps indefinitely:
1. Take terms from {a,} until the sum is greater than .
2. Take terms from {b,} until the sum is less than 7.

Each of these steps can always be accomplished because the sums, >~ a, and >~ b, are both divergent.
Hence the tails of the series are divergent. No matter how many terms we take, the remaining terms in each series
are divergent. In each step a finite, nonzero number of terms from the respective series is taken. Thus all the
terms will be used. Since the terms in each series vanish as n — oo, the running sum converges to 7.
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Solution 14.5
Applying the ratio test,

| ng . (n+1)n"
nILOO ay, nlggo n!(n 1)(n+1)
— lim —~
w1
= lim < n )
n—oo \ (n+ 1)
1
e
<1,
we see that the series is absolutely convergent.
Solution 14.6
The harmonic series,
ne 20 3« ’

n=1
converges or diverges absolutely with the integral,
> 1 > 1 [log z]5° for R(ar) =1,
| omte= [ e = fae
1|2 e [7?4%@] for R(a) # 1.
1

The integral converges only for $(a) > 1. Thus the harmonic series converges absolutely for #(a) > 1 and
diverges absolutely for R(«) < 1.
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Solution 14.7

0
) for x = 27k
—e!’ > for x # 27k

0 for x = 2nk

TS () fora £ 2k

0 for v = 27k

T (=) o

0 for x = 27k
o) oo

NZ_l | 0 for x = 27k

sin(nx) =
2 cos(z/2)—cos((N—1/2)x) for x 7’é 2k

2sin(x/2)
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Solution 14.8
The geometric series is

o
=2

n=0

This series is uniformly convergent in the domain, |z| < r < 1. Differentiating this equation yields,

ZTLZ

1 — 2)?
= (n+1) " for |z] < 1.
n=0
Integrating the geometric series yields
—log(1 — 2) Z
n:0
o0 Zn
log(l —2) = — —, fi < 1.
oB1=2) == T forls
Solution 14.9
1 G n - n n
S = Y
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. 1 o 1
The function - = =iz (1432)

ratio test to corroborate that the radius of convergence is 1.

lim |21y
e |, (2)
—1)nt1 2(n+1)
lim | D <1
n— 00 ( 1)n22n
lim |z2| <1
2] <1
Solution 14.10
Method 1.
log(1 4 2) = flog(1 + oo + | Llog1+2)| 2+ [ Log+2)] Z+
0 z) = [lo 2)].= —lo 2z = 0 2 Z 4.
g g AN P ISTRN PR 2
=0+ S . g
N L+z], 1! (L+2)%] - 2! (L+2)*],_ 3!
22 22 2
R
i n+lz
Since the nearest singularity of log(1 + z) is at z = —1, the radius of convergence is 1.

Method 2. We know the geometric series

S

n=0

470
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converges for |z| < 1. Integrating this equation yields

o Zn—l—l & n
log(1+2) =) (-1)" = ()=
n=0 n+ 1 n=1 n

for |z| < 1. We calculate the radius of convergence with the ratio test.

- 1
R = lim zlim’w‘zl
n—00 | (p41 n—oo n
Thus the series converges absolutely for |z| < 1.
Solution 14.11
For |z| < 1:

(Note that |z] <1< | —iz| < 1.)
For |z| > 1:




(Note that |z| > 1< | —i/z| < 1.)

n=—oo
-1
— Z (_Z')n-l—lzn
Solution 14.12
Let
S, = k2*
k=1
S, — 28, = Z kzk — Z kRt
k=1 k=1
n n+1
= Z kz® — Z(k —1)2"
k=1 k=2
_ Z L
k=1
_ 2= _
1—2
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Let

Zk . 2(1=(n+1)2" +n2")
yA—
— (1—2)2

Sp — 28, = Z(k2 — (k—1)%)2" — 2"t

k=1
—ZZI{'Z ZZ n2zntl
k=1
- z(1 — (n+ l)z +n") oz = 2t

(1 —2)2 1—2z

o x  2(l+z—2"1+z+n(n(z—-1)—-2)(z—-1)))
;kz = 1= 2)
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Solution 14.13

1. We assume that § # 0. We determine the radius of convergence with the ratio test.

R = lim

n—~oo

= lim

n—oo

= lim

n—oo

1
|6

an

Qp+1

(0= 8)-(a = (n—1)g)/n!

(@ =p5)--(a=nB)/(n+1)
n+1
a—nf

The series converges absolutely for |z| < 1/|4].

2. By the ratio test formula, the radius of absolute convergence is

R = lim

n/2"
(n Z 1) ‘/znﬂ

n—oo

=2 lim

n—o0

n—+1

=2

By the root test formula, the radius of absolute convergence is

1

R—
lim,, .o {/|n/2"|

2

- lim,, .o /0
=2

The series converges absolutely for |z —i| < 2.
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3. We determine the radius of convergence with the Cauchy-Hadamard formula.

1
R=—
lim sup {/|a,|

B 1
lim sup {/|n|

B 1
~ limsupn

=0

The series converges only for z = 0.
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4. By the ratio test formula, the radius of absolute convergence is
n!/n™

(n+ 1)!/(n+ 1)+t

(41"

R = lim

n—oo

n—00 1/n

1/(n+1)—1/n)

n—oo —]_/TL2

(

( log(n + 1) — log(n)
— exp Ehm )

(

The series converges absolutely in the circle, |z| < e.

5. By the Cauchy-Hadamard formula, the radius of absolute convergence is
1

R—
limsup {/| (3 + (=1))" |
1

~ limsup (3 + (—1)7)
1

4
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Thus the series converges absolutely for |z| < 1/4.

6. By the Cauchy-Hadamard formula, the radius of absolute convergence is

1
R =
lim sup {/|n + an|
1
 limsup |o| /|1 + n/a"]

1

ol

Thus the sum converges absolutely for |z| < 1/|al.

Solution 14.14
The Taylor series expansion of f(z) about z = 0 is

The derivatives of f(z) are

Thus f™(0) is



If & = m is a non-negative integer, then only the first m 4 1 terms are nonzero. The Taylor series is a polynomial
and the series has an infinite radius of convergence.

I+2)" =) —Hk;ofj L

If « is not a non-negative integer, then all of the terms in the series are non-zero.

(I+2)* =) —Hk:oy(j =P

The radius of convergence of the series is the distance to the nearest singularity of (14 2)®. This occurs at z = 1.
Thus the series converges for |z| < 1. We can corroborate this with the ratio test. The radius of convergence is

R tm |l =R ful | intd -1 =1
n=oo | ([[ioo(l@ = k) /(n+ DI n=cofa—n '
If we define the binomial coefficient,
) _ Z:(l](oz — k)
n) n! '
then we can write the series as
a - « n
(1+2)*= Z <n> z
n=0
Solution 14.15
We expand the function in partial fractions.
1 1 1

f(z):(z+1)(z+2):z+1_z+2
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The Taylor series about z =0 for 1/(z 4+ 1) is
1 1
1+2z 1—(=2)

[
NE

(—2)", for|z| <1

3
Il
=)

(—1)"z", for |z] <1

I
NE

3
Il
=)

The series about z = oo for 1/(z + 1) is
1 1/z
1+2z 14+1/2

1 oo
= D (=1/z)", for [1/2] <1
n=0

= Z(—l)"z_”_l, for |z| > 1
n=0
1

= Z (=)™t for |2] > 1

The Taylor series about z = 0 for 1/(z + 2) is
112
242 14+2/2

1 [e.e]
=3 > (=z/2)", for |z/2| <1
n=0

n

— (—1
:Z( )z”, for |z| < 2

2n+1

n=0
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The series about z = oo for 1/(z + 2) is

1 1/z
24z 142/z

1 o0
= — E (—=2/2)", for|2/z] <1
z
n=0

= Z(—l)"2”z’”’1, for |z] > 2
n=0

—1
-1 n+1
= Z (2n—)+12”, for |z| > 2

n=—oo

To find the expansions in the three regions, we just choose the appropriate series.

1.
1 1
IG) =17 942
o oo _1 n
= Z(—l)”z" - Z (2n+)1 2", for |z| <1
n=0 n=0
- 1
= Z(—l)" (1 - 2n+1) 2", for |z] <1
n=0
- 2ntl — 1
f(z) = Z(—l)”wz”, for || < 1
n=0
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1 1
3 ()
f(z) = Z (—1)"Hn — Z T 2", for 1< |z <2
n=-—00 n=0
3.
1 1
fz) = 1+2z 242
—1 -1 (_1)n+1
= Z (—1)" e Z St 2", for 2 < |z
—1 12n+1 -1
f(z) = Z (—1)"* St 2", for 2 < |z]

Solution 14.16
Laurent Series. We assume that m is a non-negative integer and that n is an integer. The Laurent series about
the point z = 0 of

18



where
1
= — f(2) dz

n - .
21 Jo 2t

and C' is a contour going around the origin once in the positive direction. We manipulate the coefficient integral
into the desired form.

! (z4+1/2)"
Un = 9 o on+1

1 21 (ei0 + e—i@)m

dz

T
— % ; WZ e de
1 27 )
= — 2™ cos™ @ e dp
2m J,
2m—1

2m
= / cos™ O(cos(nb) — isin(nd)) do
0

™

Note that cos™ 6 is even and sin(nf) is odd about 6 = .

2m—1

27
= / cos™ 6 cos(nf) db
0

™

Binomial Series. Now we find the binomial series expansion of f(z).

(1) =2 () ()

n=0
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The coefficients in the series f(z) = > - a,z" are

n=-—o00
a — ((mf;)/z) —m <n <m and m —n even
n
0 otherwise

By equating the coefficients found by the two methods, we evaluate the desired integral.

/ " (cos 0)" cos(n) df — {W%(m%/z) “MmSn<meandm - even
0 0

otherwise

Solution 14.17
First we write f(z) in the form

B 9(z)
1= o

g(z) is an entire function which grows no faster that 2® at infinity. By expanding g(z) in a Taylor series about
the origin, we see that it is a polynomial of degree no greater than 3.

_ozz3+622+7z+5
1) = me e

Since f(z) is a rational function we expand it in partial fractions to obtain a form that is convenient to integrate.

f(z) =

a L b n c d
z2—1i/2  z—2 (2—2)?

We use the value of the integrals of f(z) to determine the constants, a, b, ¢ and d.

a b c
d) dz =12
ﬁl(z—i/2+z—2+(2—2)2+ ) =T en

127 = 127

a=1
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1 b c
d) dz=0
7{23(z—i/2+z—2+(z—2)2+ ) :

2m(1+0) =0
b=—1

Note that by applying the second constraint, we can change the third constraint to

7{232]”(2) dz =0.

1 1 c
_ d) dz =
f{zzgz(z—i/Q z—2+(z—2)2+) z=0

(z—i/2)+i/2 (2-2)+2  c(z—-2)+2¢ L
7{2:3( z—1/2 z—2 + (z —2)2 )d 0

o (%—2+c> —0

Thus we see that the function is

1 1 2—i/2

f(z):z—i/2_2—2+(z—2)2

+d.

where d is an arbitrary constant. We can also write the function in the form:

=% + 15 — 48
f(z) = 4z —i/2)(z —2)2
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Complete Laurent Series. We find the complete Laurent series about z = 0 for each of the terms in the
partial fraction expansion of f(z).

12
z—i/2 1412z

=i2) (—i22)", for | —i2z] <1
n=0

= —Z(—i?)”“z”, for |z] < 1/2
n=0

Z—i/2 1—;’/(22)
_1 (L)n for [i/(22)] < 1

z = 2z
= f: (i)nz_”_l for |z] < 2
2 Y
n=0
-1 i —n—1
= = AR ¢ <2
nzz_oo (2> z or |z]

= > (=i2)"e", for |2 < 2

n=—oo
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112
z—2 1-—2/2

= %Z (g)n, for |2/2] < 1

oo
n=0

n

2z
222n+1, for |z] < 2
n=0

I 1/z
z2—2 1-2/z

1= /2\"
= ——Z (—) , for|2/z] <1
Zn:O z

[e.9]

= —22”2_"_1, for |z| > 2
n=0

-1
= — Z 27" for |z] > 2

n=—oo
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_ 4;2503 (:f) <_§>" for /2] < 1

4_100 n no—m n

=— Y (=1 (n+1)(-1)"27"2", for |2] <2
n=0

4 —i & 1

- 82;7124; 2" for |z| < 2

2—i/2  2—i/2 (1_2)‘2

(z—2)2 22
_2 ;;/2 i (‘f) <—§>n for [2/2] < 1
=(2-i/2)) (—D)"(n+1)(=1)"2"z"2, for |z] > 2

-2
=(2-i/2) Y (-n—1)27"72%2", for |2| > 2
_7_2 n-+1

n=—oo

We take the appropriate combination of these series to find the Laurent series expansions in the regions:
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|z <1/2,1/2 < |z| < 2 and 2 < |z|. For |z| < 1/2, we have

f(z):_z n+1 n+22n+1 Zn;lzn_l_d
n=0

n=0
on 1 4—in+1 n
f(z) = <_(_22) +1+2n+1+ ] on >Z +d
n=0

N 1 4
:Z< (—i2)" ! + rT (1+T(n+1)>) "+d, for|z] <1/2

For 1/2 < |z| < 2, we have

-1

[ =Y (i

d—ie=n+1 ,
+ 3 Z2nz—l—d

(]2
[\
_i_ll\z

n=-—o00 n=0 n=0
— 4—i
f(z) = Z 2)"tt ”+Z(2n+l (l—l— 1 (n+1)))z”+d, for 1/2 < |z| < 2
For 2 < |z|, we have
! _! = n+1
flz)= D (=)= > 2 = (2-/2) Y 2+ d

-2

f(z) = Z ((—i2)"+1 2n1+1 (1+(1—i/4)(n+ 1))) 2" +d, for 2 <|z|

n=—oo
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Solution 14.18
The radius of convergence of the series for f(z) is

3
R = lim =3 lim

k3 )3k B
n—oo | (k+1)3 N

Thus f(z) is a function which is analytic inside the circle of radius 3.

1. The integrand is analytic. Thus by Cauchy’s theorem the value of the integral is zero.

j{ ¢“f(2)dz =0
|z|=1

2. We use Cauchy’s integral formula to evaluate the integral.

(z) 27 L3 2 3133
o O = g =
(f) dz =12T.
|z]=1 #
3. We use Cauchy’s integral formula to evaluate the integral.
f(z)e* 2w d ; PN
et 22 dz = T&(f( )e )’2—0 = 227T—31
f(z)e? i2m
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Chapter 15

The Residue Theorem

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

- Winston Churchill

15.1 The Residue Theorem

We will find that many integrals on closed contours may be evaluated in terms of the residues of a function. We
first define residues and then prove the Residue Theorem.
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Result 15.1.1 Residues. Let f(z) be single-valued an analytic in a deleted neighbor-
hood of z5. Then f(z) has the Laurent series expansion

oo

) = 3 an(z— 20",

n=—0oo

The residue of f(z) at z = 2 is the coefficient of the z—_le term:

Res (f(2),20) = a_1.

The residue at a branch point or non-isolated singularity is undefined as the Laurent
series does not exist. If f(z) has a pole of order n at z = z; then we can use the Residue
Formula:

Res (£(2), 20) = lim | ———0[(z— z)"f(2)] ).
( )dz

220 n — 1

See Exercise 15.1 for a proof of the Residue Formula.

Example 15.1.1 In Example 10.4.5 we showed that f(z) = z/sin z has first order poles at z = nm, n € Z\ {0}.
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Now we find the residues at these isolated singularities.

Res( ,Z:n7r>: lim ((z—mr) il >

z—nT sin z
zZ — N

sin z

=nr lim —
z—nm  SIN 2

=nm lim
z—nm COS 2

b
(="

= (=1)"nm

= nm

Residue Theorem. We can evaluate many integrals in terms of the residues of a function. Suppose f(z) has
only one singularity, (at z = z;), inside the simple, closed, positively oriented contour C. f(z) has a convergent
Laurent series in some deleted disk about z;. We deform C' to lie in the disk. See Figure 15.1. We now evaluate
Jo f(2) dz by deforming the contour and using the Laurent series expansion of the function.

Figure 15.1: Deform the contour to lie in the deleted disk.
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/Cf(z)dz:/Bf(z)dz

:/B i an(z — 20)" dz

n=-—00
i1(60+27)
G (Z - ZO)n+1 e ret(0+27)
= 3 | + s [log(= — z0)]]
n=—oo n + rew
n#—1
= a,1i27r

/C () dz = 27 Res (£(2), 20)

Now assume that f(z) has n singularities at {z1,... ,2,}. We deform C to n contours C1, ... , C, which enclose
the singularities and lie in deleted disks about the singularities in which f(z) has convergent Laurent series. See
Figure 15.2. We evaluate fC f(2)dz by deforming the contour.

/Cf(z)dz:z ; f(z)dz:iQWZ Res (f(z), zk)

Now instead let f(z) be analytic outside and on C' except for isolated singularities at {(,} in the domain outside
C and perhaps an isolated singularity at infinity. Let a be any point in the interior of C. To evaluate | o f(z)dz
we make the change of variables ( = 1/(z — a). This maps the contour C' to C’. (Note that C’ is negatively
oriented.) All the points outside C' are mapped to points inside C” and vice versa. We can then evaluate the
integral in terms of the singularities inside C”.

493



Figure 15.2: Deform the contour n contours which enclose the n singularities.




C
Q > C,

Figure 15.3: The change of variables ( = 1/(z — a).

Result 15.1.2 Residue Theorem. If f(z) is analytic in a compact, closed, connected
domain D except for isolated singularities at {z,} in the interior of D then

- f(z)dz = zk:jé(}kf(Z) dz = iQWzn: Res (f(2), zn).

Here the set of contours {C}} make up the positively oriented boundary 0D of the domain
D. If the boundary of the domain is a single contour C' then the formula simplifies.

ﬁf(z) dz = 227'('2 Res (f(2), zn)

If instead f(z) is analytic outside and on C except for isolated singularities at {(,} in
the domain outside C' and perhaps an isolated singularity at infinity then

ﬁf(z)dz:ﬂwzn: Res (%f <%+a) ’Cnl_a> + 127 Res (;f (%Jra) ,O).

Here a is a any point in the interior of C. 495




Example 15.1.2 Consider

1 sin z 4
— | ——dz
210 Jo z(z — 1)

where C' is the positively oriented circle of radius 2 centered at the origin. Since the integrand is single-valued
with only isolated singularities, the Residue Theorem applies. The value of the integral is the sum of the residues
from singularities inside the contour.

The only places that the integrand could have singularities are z = 0 and z = 1. Since

. sinz . Cosz
lim = lim =1,
z—0 z z—0 1

there is a removable singularity at the point z = 0. There is no residue at this point.
Now we consider the point z = 1. Since sin(z)/z is analytic and nonzero at z = 1, that point is a first order
pole of the integrand. The residue there is

sin 2

Res (% 2= 1) = lim(z — 1)

R sin(1).
z—1 z—1 z(z—1) sin(1)

There is only one singular point with a residue inside the path of integration. The residue at this point is
sin(1). Thus the value of the integral is

1 :
S S sin(1)
210 Jooz(z — 1)

Example 15.1.3 Evaluate the integral

/ cot z coth z
— dz
C 4

where C' is the unit circle about the origin in the positive direction.
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The integrand is

cot z coth z cos z cosh z

23 "~ 23sinz sinh 2
sin z has zeros at nw. sinh z has zeros at inm. Thus the only pole inside the contour of integration is at z = 0.
Since sin z and sinh z both have simple zeros at z = 0,

sinz = 2+ O(2%), sinhz = z + O(2%)

the integrand has a pole of order 5 at the origin. The residue at z = 0 is

. 1.d* [ scotz cothz 1d*
ll—>0 Al d24 (Z T) = 1Lﬂ ZF (Z cot z COch)

1
=1 hII[l) (24 cot(z) coth(z) ese(z)? — 32 z coth(z) csc(z)?

— 16 2 cos(2 z) coth(z) esc(2)* + 22 2% cot(z) coth(z) esc(z)*

+22% cos(3 2) coth(z) cse(2)” 4 24 cot(z) coth(z) csch (z)?

+ 24 csc(z)? esch (2)* — 48 z cot(2) esc(z)? esch (2)?

— 48 2 coth(z) csc(z)? esch (2)7 + 24 22 cot(z) coth(z) cse(z)? esch (2)?
+ 16 22 csc(2)* esch () 4 822 cos(2 2) cse(z)* esch (2)?

— 322 cot(z) esch (2)* — 16 2z cosh(2 z) cot(z) csch (z)*

+ 22 2% cot(z) coth(z) esch (2)* + 16 22 esc(z)® esch (2)*

+ 822 cosh(2 2) ese(z)? esch (2)* + 2 2% cosh(3 2) cot(z) csch (2)5)
_ L (.56
A\ 15

__ T
15
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Since taking the fourth derivative of 22 cot z coth z really sucks, we would like a more elegant way of finding
the residue. We expand the functions in the integrand in Taylor series about the origin.

22 Z4 22 Z4
cosz coshz (1_7+ﬂ_"')<1+7+ﬁ+”’>
z38in 2z sinh z 23(z_%+12_;)_...)(2+§+12_25’()+...)
B 1_%4_...
B (2420 (50 +55)+ )
IR
=G

1 71
25 452
Thus we see that the residue is —%. Now we can evaluate the integral.
/ cot z coth z 14
——dz = —i—7
C Z3 45

15.2 Cauchy Principal Value for Real Integrals

15.2.1 The Cauchy Principal Value

First we recap improper integrals. If f(x) has a singularity at o € (a...b) then

/b f(z)dz = lim o f(z)dz + lim ’ f(x)dz.

=0t J, 6—0+ To+6
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For integrals on (—o0...00),

/_Zf(x)dxz lim /abf(:r;)da:.

a——00, b—oo

Example 15.2.1 f_ll %dx is divergent. We show this with the definition of improper integrals.
1 —€ 1
1 1 1
/ —dxr = lim —dx + lim —dx
1z e—0t 1 X 6—0t s X
= lim [In|2|]~{ + lim [In|z|];
lim {In fz{]Z; + lim {In |z]];

= lim Ine — lim Iné
e—0T 6—0Tt

The integral diverges because € and d approach zero independently.
Since 1/x is an odd function, it appears that the area under the curve is zero. Consider what would happen if
e and 0 were not independent. If they approached zero symmetrically, 6 = €, then the value of the integral would

be zero.
—€ 1 1
lim (/ +/)—dx=lim(lne—lne)20
e—0t 1 ¢ T e—0t

We could make the integral have any value we pleased by choosing 6§ = ce. !

—€ 1 1
lim </ —|—/)—dx: lim (Ine — In(ce)) = —Inc
e—0t 1 ce X e—0t

We have seen it is reasonable that
1
1
/ —dx
-1 xr

IThis may remind you of conditionally convergent series. You can rearrange the terms to make the series sum to any number.
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has some meaning, and if we could evaluate the integral, the most reasonable value would be zero. The Cauchy
principal value provides us with a way of evaluating such integrals. If f(z) is continuous on (a,b) except at the
point zg € (a,b) then the Cauchy principal value of the integral is defined

b To—€ b
]{ flz)dx = elirél+ (/a f(z)dx + . f(x) dx) :

The Cauchy principal value is obtained by approaching the singularity symmetrically. The principal value of
the integral may exist when the integral diverges. If the integral exists, it is equal to the principal value of the

integral.
The Cauchy principal value of f_ll % dx is defined

1 1 €1 ! 1
][ —dz = lim (/ —d37+/ —dx)
1z =07 -1 X e L
= lim (flog |[)5 [loga]})
— 51—1>I(I)1+ (log| — €| —log )
= 0.

(Another notation for the principal value of an integral is PV [ f(x)dz.) Since the limits of integration approach
zero symmetrically, the two halves of the integral cancel. If the limits of integration approached zero independently,
(the definition of the integral), then the two halves would both diverge.

o

Example 15.2.2 f_oo o7 d is divergent. We show this with the definition of improper integrals.

e’ b
T T
dx = lim dx
/_ 2+ 1 a——00, baoo/a 2 +1

o0

1 b
= lim {5 In(x? + 1)}

1 . b+ 1
= — lim In
2 a——o0, b—0oo a?+1

a




The integral diverges because a and b approach infinity independently. Now consider what would happen if a and
b were not independent. If they approached zero symmetrically, a = —b, then the value of the integral would be
Z€ero.

We could make the integral have any value we pleased by choosing a = —cb.

We can assign a meaning to divergent integrals of the form ffooo f(z) dz with the Cauchy principal value. The
Cauchy principal value of the integral is defined

h f(z)dz = lim ' f(z)dz.

—0o0 —a

The Cauchy principal value is obtained by approaching infinity symmetrically.

The Cauchy principal value of ffooo o7 do is defined

][ * dx = lim w dx
o T2+ 1 a—oo |, x?+1

. 1 ¢
= lim {5 In (:L‘2 + 1)] y

a—00
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Result 15.2.1 Cauchy Principal Value. If f(x) is continuous on (a, b) except at the
point xy € (a,b) then the integral of f(z) is defined

b xo—e
=1l x)d li
[ 0= [ s s s

a

The Cauchy principal value of the integral is defined

b To—E€ b
][ f(z)dzx = lim </ f(z)dx + f(x) dx) .
@ -0t a ZTote

If f(x) is continuous on (—o0, 00) then the integral of f(z) is defined

f lim b f(z)dz
a——o0, b—oo J,

The Cauchy principal value of the integral is defined

a—00

" f(e) de = lim f()
f. 1@

The principal value of the integral may exist when the integral diverges. If the integral
exists, it is equal to the principal value of the integral.

Example 15.2.3 Clearly ffooo x dz diverges, however the Cauchy principal value exists.

[e’s) 2
][ rdz = lim {%] a=20
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In general, if f(z) is an odd function with no singularities on the finite real axis then

][_Zf(:v)d:v: 0.

15.3 Cauchy Principal Value for Contour Integrals

Example 15.3.1 Consider the integral

1
/ dz,
CTZ'— 1

where (.. is the positively oriented circle of radius r and center at the origin. From the residue theorem, we know

that the integral is
/ 1 0 for r < 1,
dz =
o, z—1 27 for r > 1.

When r = 1, the integral diverges, as there is a first order pole on the path of integration. However, the principal
value of the integral exists.

1 2m—e 1 )
][ dz = lim i 46
o 1 0 _ 1

zZ — e—=0t J, e —
T

= lim [log(e” — 1)]3777E

e—0F
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We choose the branch of the logarithm with a branch cut on the positive real axis and arglog z € (0, 2).

= lim (1og( 2m—e) _ 1) — log (eiE — 1))

= lim (log (1 —ic + O(*) = 1) ~log (1 +ic +O(c")) — 1))
= lim (log (—ie + O(¢*)) ~ log (ie + O(¢)))
= hm (Lo (e + O(e )) +iarg (—ie + 0(62)) — Log (e + 0(62)) —jarg (ie + 0(62)))
,37r K
- Z.? )
Thus we obtain
0 forr <1,

1

][ 1dz: g for r =1,
Z_

cr 27 for r > 1.

In the above example we evaluated the contour integral by parameterizing the contour. This approach is
only feasible when the integrand is simple. We would like to use the residue theorem to more easily evaluate the
principal value of the integral. But before we do that, we will need a preliminary result.

Result 15.3.1 Let f(z) have a first order pole at z = 2y and let (2 — 2¢) f(2) be analytic
in some neighborhood of 2. Let the contour C. be a circular arc from zo+ee'® to zy+ee’”
(We assume that § > « and f — a < 27.)

lim [ f(z)dz=1i(8 — a)Res(f(2), 20)

The contour is shown in Figure 15.4. (See Exercise 15.6 for a proof of this result.)
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Figure 15.4: The C. Contour

Example 15.3.2 Consider

1
][ dz
CZ—l

where C' is the unit circle. Let C, be the circular arc of radius 1 that starts and ends a distance of € from z = 1.
Let C. be the positive, circular arc of radius € with center at z = 1 that joins the endpoints of C,,. Let Cj, be the
union of C), and C.. (C, stands for Principal value Contour; C; stands for Indented Contour.) C; is an indented
contour that avoids the first order pole at z = 1. Figure 15.5 shows the three contours.

dR"
S

Figure 15.5: The Indented Contour.
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Note that the principal value of the integral is

1 1
][ dz = lim dz.
cz—1 =0t Jo, 2 — 1

We can calculate the integral along C; with the residue theorem.

1
/ dz = 2mi
C.Z—l

3

We can calculate the integral along C, using Result 15.3.1. Note that as € — 0T, the contour becomes a semi-circle,
a circular arc of 7 radians.

1 1
lim dz=1irRes | ——,1 | =7
1 z—1

e—0t c. Z—

Now we can write the principal value of the integral along C' in terms of the two known integrals.

1 1 1
][ dz:/ dz—/ dz
CZ—]_ C,L'Z_l 062—1

In the previous example, we formed an indented contour that included the first order pole. You can show that
if we had indented the contour to exclude the pole, we would obtain the same result. (See Exercise 15.8.)

We can extend the residue theorem to principal values of integrals. (See Exercise 15.7.)
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Result 15.3.2 Residue Theorem for Principal Values. Let f(z) be analytic inside
and on a simple, closed, positive contour C, except for isolated singularities at z1,... , 2,
inside the contour and first order poles at (i,...,(, on the contour. Further, let the
contour be C* at the locations of these first order poles. (i.e., the contour does not have
a corner at any of the first order poles.) Then the principal value of the integral of f(z)
along C' is

][Cf(z) dz = iQWZ Res (f(2),2) +im Y _ Res(f(2), ().

J=1

15.4 Integrals on the Real Axis

Example 15.4.1 We wish to evaluate the integral

< 1
/_m7x2+1dx.

We can evaluate this integral directly using calculus.

< 1
/ o) dz = [arctan z]™_
o T

(e 9]

=7
Now we will evaluate the integral using contour integration. Let C'r be the semicircular arc from R to —R in the

upper half plane. Let C be the union of Cg and the interval [—R, R].
We can evaluate the integral along C' with the residue theorem. The integrand has first order poles at z = =+.
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For R > 1, we have

1 1
/ dz = 127 Res .1
CZQ+1 Z2+1

1
= 12T —
21

= Tr.

Now we examine the integral along C'r. We use the maximum modulus integral bound to show that the value of
the integral vanishes as R — oo.
1
/ 5 dz
Cr 2241

< mRmax
zeCR

1
Rz -1
—0 as R— oo.

1
2241
=7R

Now we are prepared to evaluate the original real integral.

1
/ 2+1dz=7r
CZ

| 1
/ 5 dx—i—/ 5 dz=m
_px+1 cp 20+ 1

< 1
/_Oox2+1dx:7r

We would get the same result by closing the path of integration in the lower half plane. Note that in this case
the closed contour would be in the negative direction.

We take the limit as B — oo.
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If you are really observant, you may have noticed that we did something a little funny in evaluating

& 1
/ dz.
Lo 241

- d li Tl do+ = li 1 d
= |lim = 11im .
Lo T2 H1 T e a2+ 1 ‘ b—+oo Jy 2+ 1 *

The definition of this improper integral is

In the above example we instead computed
B

dzx.

lim 5
R—+oo J_pa®+1

Note that for some integrands, the former and latter are not the same. Consider the integral of

0o 0 b
* dr = lim L dz + lim *
Lo 241 a—+too | x?+1 b—too Jo 12+ 1

1 1
= lim (-logla®+1 lim | —=log|b®+1
a_lgloo<2 og |a* + ’>+b—1>£—noo( 20g\b+ \)

Note that the limits do not exist and hence the integral diverges. We get a different result if the limits of
integration approach infinity symmetrically.

_r
241"

By

. . 1 2 2
RETOO » x2+1dx—RErfm <§(log]R + 1] —log |R +1])>

=0

(Note that the integrand is an odd function, so the integral from —R to R is zero.) We call this the principal
value of the integral and denote it by writing “PV” in front of the integral sign or putting a dash through the
integral.

PV/_Zf(x)de][_Zf(:c)de lim /_];f(x)d:c

R—+o0c0
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The principal value of an integral may exist when the integral diverges. If the integral does converge, then it
is equal to its principal value.

We can use the method of Example 15.4.1 to evaluate the principal value of integrals of functions that vanish
fast enough at infinity.
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Result 15.4.1 Let f(z) be analytic except for isolated singularities, with only first order
poles on the real axis. Let C'r be the semi-circle from R to —R in the upper half plane.

If
fin (Rl 7)) =0
then
][ f(z)dx =27 Z Res (f(z), z) +im Z Res (f(2), k)
k=1
where 21, ...z, are the singularities of f(z) in the upper half plane and x, ...

the first order poles on the real axis.
Now let C'r be the semi-circle from R to —R in the lower half plane. If

lim <Rmax\f( )|> ~0

R—oo z2eCr
then
][ f(z)dz = —2271'2 Res (f(z2),z1) — MTZ Res (f
where z1, ...z, are the singularities of f(z) in the lower half plane and 1, ...

the first order poles on the real axis.

, T, are

, T, are
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This result is proved in Exercise 15.9. Of course we can use this result to evaluate the integrals of the form

/ ") ds,

where f(x) is an even function.

15.5 Fourier Integrals

In order to do Fourier transforms, which are useful in solving differential equations, it is necessary to be able to
calculate Fourier integrals. Fourier integrals have the form

/OO e f(x) da.

o0

We evaluate these integrals by closing the path of integration in the lower or upper half plane and using techniques
of contour integration.

Consider the integral

/2 )
/ e—Rsm0 de.
0

Since 20 /7 < sinf for 0 < 0 < 7/2,
e—Rsin9 < e—R29/7r for 0 < 0 < 7T/2
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w/2 _ w/2
/ e—Rsm9 do < / e—RQG/w do
0 0

_ [_ m e_me/ﬂ] 2
2R 0
T . _R

= —1
AN )

T
< —
— 2R
—0 asR— >

We can use this to prove the following Result 15.5.1. (See Exercise 15.13.)

Result 15.5.1 Jordan’s Lemma.

" —Rsin6 T
df < —.
/o ) R

Suppose that f(z) vanishes as |z| — oco. If w is a (positive/negative) real number and
Cg is a semi-circle of radius R in the (upper/lower) half plane then the integral

f(2)e™*dz
Cr

vanishes as R — oo.

We can use Jordan’s Lemma and the Residue Theorem to evaluate many Fourier integrals. Consider [ fooo f(x) e da
where w is a positive real number. Let f(z) be analytic except for isolated singularities, with only first order poles
on the real axis. Let C' be the contour from —R to R on the real axis and then back to —R along a semi-circle in
the upper half plane. If R is large enough so that C' encloses all the singularities of f(z) in the upper half plane
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then

/ f(z)e™*dz = i2n Zm: Res (f(z)e™?, z,) + im Z Res (f(2) €%, zy)
¢ k=1

where 21, ... z,, are the singularities of f(z) in the upper half plane and z1, ... ,z, are the first order poles on the

real axis. If f(z) vanishes as |z| — oo then the integral on Cg vanishes as R — oo by Jordan’s Lemma.

/ f(z)e™*dz =27 Z Res (f(z)e™?, z,) +im Z Res (f(z) €7, zy)
- k=1

For negative w we close the path of integration in the lower half plane. Note that the contour is then in the

negative direction.

Result 15.5.2 Fourier Integrals. Let f(z) be analytic except for isolated singularities,
with only first order poles on the real axis. Suppose that f(z) vanishes as |z| — oco. If w
is a positive real number then

/ f(z)e™"do =27 Z Res (f(2) €%, 2) +im Z Res (f(z) ™%, xp)
> k=1

where z1, ...z, are the singularities of f(z) in the upper half plane and xy,... ,z, are
the first order poles on the real axis. If w is a negative real number then

/OO f(z)e™* dx = —i27 Z Res (f(2) ™%, z;,) — im Z Res (f(2) e, z;)
- k=1

where z1, ...z, are the singularities of f(z) in the lower half plane and zy,... ,x, are
the first order poles on the real axis.
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15.6 Fourier Cosine and Sine Integrals
Fourier cosine and sine integrals have the form,
/ f(z) cos(wx)dx and / f(z)sin(wx) dz.
0 0

If f(x) is even/odd then we can evaluate the cosine/sine integral with the method we developed for Fourier
integrals.

Let f(z) be analytic except for isolated singularities, with only first order poles on the real axis. Suppose that
f(z) is an even function and that f(z) vanishes as |z| — co. We consider real w > 0.

]{OO f(z) cos(wr)dr = % ][_Z f(z) cos(wzx) dx

Since f(x)sin(wx) is an odd function,

1 oo
57[ f(z)sin(wz) dx = 0.
Thus
][ f(z) cos(wx) do = 5][ f(z)e™*dx
0 —00
Now we apply Result 15.5.2.

][OO f(z) cos(wzx) da = ’iﬂi Res (f(2) ™%, ) + % i Res (f(2)€™“*, )
0 k=1 k=1

where z1, ... z,, are the singularities of f(z) in the upper half plane and z1, ... , x, are the first order poles on the
real axis.
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If f(x) is an odd function, we note that f(x)cos(wz) is an odd function to obtain the analogous result for
Fourier sine integrals.

Result 15.6.1 Fourier Cosine and Sine Integrals. Let f(z) be analytic except for
isolated singularities, with only first order poles on the real axis. Suppose that f(z) is
an even function and that f(z) vanishes as |z| — co. We consider real w > 0.

][OO f(z) cos(wx)dx = iwzm: Res (f(2) ™%, z) + %2”: Res (f(z) ™, zy)
0 k=1 k=1

where z1, ...z, are the singularities of f(z) in the upper half plane and xy,... ,z, are
the first order poles on the real axis. If f(x) is an odd function then,

o0 1% n
]€ f(z)sin(wz)dr =7 Z Res (f(2) "%, ¢) + gz Res (f(z) ™7, zy)
k=1 k=1

where (3, ... (, are the singularities of f(z) in the lower half plane and xz;, ... , z, are the
first order p