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Introduction 

Master Muth: CuZcuZus is a comprehensive reference 
book for advanced high school and college students that 
explains and clarifies the key principles of calculus. The 
purpose of the book is to provide an  easy-to-access reference 
source for locating specific calculus topics. This book is de- 
signed so that a student can quickly look up a topic and, by 
reading the explanation and the information in its section, 
find the relevant facts and formulas. This book can also be 
used to obtain a general knowledge and understanding of 
calculus and it provides a complete breadth of material so 
that most topics related to calculus are explained. 

Master Math: Calculus reviews functions and ex- 
plains the principles and operations of the derivative, the 
integral, series and approximations, vectors, matrices, 
curves, surfaces, motion, partial derivatives, vector calculus 
and introductory differential equations. The chapters in 
this book are divided into major sections containing 
independent topics housed within the context of where they 
fit into the discipline of calculus. 

This is the fourth book in the Muster Math series. 
The first three books are Basic Math and Pre-Algebra, 
Algebra and Pre-Calculus and Geometry. The Muster Math 
series presents the general principles of mathematics from 
grade school through college including arithmetic, algebra, 
geometry, trigonometry, pre-calculus and calculus. 
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Chapter 1 

Functions 

1.1. Functions: types, properties and 
definitions 

This section includes definitions and explanations of 
functions, domain set, range set, graphing functions, com- 
pound functions, inverse functions, as well a s  adding, 
subtracting, multiplying and dividing functions, linear and 
non-linear functions, and even and odd functions. 

Functions are an  integral part of calculus. Functions 
reflect the fact that one or more properties can depend on 
(are a function of) another property. For example, how fast 
a trolley cart can carry a rock up a hill is a function of how 
much the rock weighs, the slope of the hill and the horse- 
power of the motor. 

Common functions used in calculus include trigonometric 
functions, logarithmic functions and exponential functions. 
(See Master Math: Pre-calculus and Geometry Chapters 2, 3 
and 4 for additional information about functions.) 

A function is a relation, rule, expression or equation that 
associates each element of a domain set with its corres- 
ponding element in the range set. For a relation, rule, 
expression or equation to be a function, there must be only 
one element or number in the range set for each element or 
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Master Math: Calculus 

number in the domain set. The domain set of a function is 
the set of possible values of the independent variable, and 
the range set is the corresponding set of values of the 
dependent variable. 

The domain set is the initial set and the range set is the 
set that  results after a function is applied. 
domain set + function f( ) -+ range set 
For example: 
domain set x = (2, 3, 4) 
through function f(x) = x2, f(2) = Z2, f(3) = 32, f(4) = 42 
to range set f(x) = (4, 9, 16). 

The domain set and range set can be expressed as 
(x,f(x)) pairs. In the previous example, the function is 
f(x) = x2 and the pairs are (2,4), (3,9) and (4,16). 

For each member of the domain set, there must be only 
one corresponding member in the range set. For example: 
F = (2,4), (3,9), (4,16) 
M = (2,5), (2,-5), (4,9) 
M is not a function because the number 2 in the domain set 
corresponds to more than one number in the range set. 

where F is a function. 
where M is not a function. 

Functions can be expressed in the form of a graph, a 
formula or a table. To graph functions, the values in the 
domain set correspond to the X-axis and the related values 
in the range set correspond to the Y-axis. For example: 
domain set x = -2, -1, 0, 2 
through function f(x) = x + 1 
to range set f(x) = -1, 0, 1, 3 
resulting in pairs (x,y) = (-2,-1), (-l,O), (O,l), (2,3). 

When graphed these resulting pairs are depicted as: 
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Functions 

y-axis = Range f(x) 

x-axis Domain +- 
Graphs of functions only have one value of y for each x 

value: 

Graph is a function 

If a vertical line can be drawn that passes through the 
function more than one time, there is more than one y 
value for a given x value and the graph is not a function. 
This is called the vertical line test. 

Graph is not a function 

The following are examples of (a.) addition, 
(b.) subtraction, (c.) multiplication and (d.) division of 
functions. In these examples the functions f(x) and g(x) are 
given by f(x) = 2x and g(x) = x2: 
(a.) f(x) + g(x) = (f + g)(x) = 2x + x2 
(b.) f(x) - g(x) = (f - g)(x) = 2x - x2 
(c.) f(x) x g(x) = (f x g)(x) = 2x x x2 = 2x3 
(d.) f(x) + g(x) = (f + g)(x) = 2x + x2 = (2x)/x2 = 2/x 
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Composite or compound functions are functions that are 
combined, and the operations specified by the functions are 
combined. Compound functions are written f(g(x)) or g(f(x)) 
where there is a function of a function. (See Section 2.19 for 
differentiating compound functions.) 
For example, if f(x) = x + 1 and g(x) = 2x - 2, then the 
compound functions for f(g(x)) and g(f(x)) are: 
f(g(x)) = f(2x - 2) = (2x - 2) + 1 = 2x - 1 and 
g(f(x)) = g(x + 1) = 2(x + 1) - 2 = 2x + 2 - 2 = 2x 

Inverse functions are functions that result in the same 
value of x after the operations of the two functions are 
performed. In inverse functions, the operations of each 
function are the reverse of the other function. Notation for 
inverse functions is fl(x). If f(x) = y, then fib) = x. If f is 
the inverse of g then g is the inverse off. A function has an  
inverse if its graph intersects any horizontal line no more 
than once. (Please see the beginning of Section 2.22 for a 
more complete explanation of inverse functions.) 

Functions can be linear or non-linear. Remember, linear 
equations are equations in which the variables do not have 
any exponents other than 1. These equations, if plotted, 
will produce a straight line. A general form of a linear 
equation is Ax + By = C, where A, B and C are constants, 
and x and y are variables. Another general form of a linear 
equation is y = mx + b, where m is the slope of the line and 
b is where the line intercepts the Y-axis on a coordinate 
system. The equation for the slope of a line passing though 
point (x1,yi) can be written y - yi = m(x - xi). 
A linear function can have the form y = f(x) = b + mx, where 
m is the slope of the line and represents the rate of change 
of y with respect to x, and b is the vertical intercept where 
the line intercepts the Y-axis on a coordinate system that is 
the value of y when x equals zero. 

6 



Functions 

The slope of a linear function can be calculated using the 
following equation and the values of the function at two 
points on the graph of the function a t  (xi,f(xi)) and (xz,f(xz)): 
f(xz) - f(x1) = m(x2 - XI) 

This equation can be equivalently written: 

m =  

The quantity (f(xz) - f(xl))/(xz - X I )  is the quotient of the two 
differences and is referred to as a difference quotient. 

where m is the slope. 

f b z )  - f(xd 
xz -x1 

Non-linear functions have variables with exponents 
greater than 1. Remember that non-linear equations are 
equations containing variables that have exponents greater 
than 1. Graphs on non-linear functions form curved lines 
and surfaces. 

In general, a function is increasing when y = f(x) increases 
as x increases, and a function is decreasing when y = f(x) 
decreases as x increases. 

A function can be a n  even function or a n  odd function. By 
determining whether a function is even or odd, it is some- 
times possible to simplify a n  integral of the function to a 
more manageable form and solve it using symmetry. A 
function is even if f(x) = f(-x) for all x, and a function is odd 
if f(x) = -f(-x) for all x. 
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Master Math: Calculus 

Examples of even functions include: 
f(x) = c, f(x) = x2, f(x) = x4, f(x) = X2n 

f((-x)2) = (-x)(-x) = x2 

f(x) = x, f(x) = x3, f(x) = x5, f(x) = X2n+1 

f((-x)3) = (-x)(-x)(-x) = (-x)3 

cosine is an  even function, cos(-x) = cosx 
Examples of odd functions include: 

sine is an  odd function, sin(-x) = -sinx 

By observing the graph of a function, it is clear whether 
the function is even or odd. If the area between the curve 
and the X-axis on the section of the function to the left of 
the Y-axis is equivalent to the area between the curve and 
the X-axis on the section to the right of the Y-axis, the 
function is even. Therefore, in a n  even function, the area for 
negative values along the X-axis is equal to the area for 
positive values along X-axis. 
Alternatively, if a function is odd, the area between the 
curve and the X-axis on the section of the function to the 
left of the Y-axis is equivalent but opposite to the area 
between the curve and the X-axis on the section to the right 
of the Y-axis. Therefore, in an odd function, the area for 
negative values along the X-axis is equal but opposite to 
the area for positive values along the X-axis, and the two 
areas subtract and cancel each other out (which results in 
the integral being equivalent to zero). 

Y I even function I odd function 

X X 
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Functions 

1.2. Exponents and logarithms 

This section includes exponential functions, logarithms, 
natural logarithms and base changes. 

Exponential functions form curved lines and contain 
variables in their exponents. Examples of exponential 
functions include ex, ax and ZX, where a is a constant. Some 
properties of ex or ax include: 
@eY = eX+Y 
ex/eY = ex7 
(ex)y = e ~ y  

eo = 1 
e=2.718281828459045235360287471353 

The inverse of e~ is lnx or the natural logarithm of x. 
Some properties of lnx include: 
ln(xy) = In x + In y 
ln(x/y) = In x - In y 
1nxY = ylnx  
ln(ex) = x 
elnx = x 
e-lnx = eln(1lx) = l/x 
lnx = logex = (2.3026)logx 

Logarithms can have any base. Base 10 logarithms are 
the most common and are written logiox or just logx. The 
inverse of log x is 10". Some properties of log x include: 
1 O h X  = x 
10-log x = l/x 
log(xy) = logx + logy 
log(x/y) = logx - logy 
log xy = y log x 
log( 10") = x 

It is important to remember that when a number has an  
exponent, the logarithm is the exponent. For example: 
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log( 10") = x 
In(@) = x 
log(103) = 3 
log(10-2) = log(1/102) = -2 
log@") = x where b represents any base. 

These principles can be used to solve exponents and 
logarithms. For example, to solve a base 5 logarithm, 
log~(x + 1) = 2 for x, raise both sides by base 5: 

(x + 1) = 25 
x = 24 

510g5(x + 1) = 52 

To change from one base to another, the following rules 
apply. For changing from base b to base a:  
b = a(logab) 

bx = a(logab)x 

lOgaX = (lOgab)(hgbX) 

The exponential function 
lnx  can be depicted as: 

and the natural  logarithm 

V 

In x 

and 8 for additional information on exponents and 
logarithms. 
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Functions 

1.3, Trigonometric functions 

This section includes trigonometric functions, circles, 
degrees, radians, arc length, Pythagorean formula, distance 
between two points, addition and subtraction formulas, 
double angle formulas, graphs of trigonometric functions 
and inverse trigonometric functions. 

Trigonometric functions can be defined using ratios of 
sides of a right triangle and, more generally, using the 
coordinates of points on a circle of radius one. Trigono- 
metric functions are sometimes called circular functions 
because their domains are lengths of arcs on a circle. Sine, 
cosine, tangent, cotangent, secant and cosecant are trigono- 
metric functions. 

The three sides of a triangle provide six important 
trigonometric functions: 

E 

x = adjacent 
tQO 

sine 0 = sin 0 = y/r 
cosine 0 = cos 0 = x/r 
tangent 0 = t an  0 = y/x = sin 0 /cos 0 
cosecant 0 = csc0  = r/y 
secant 0 = sec 0 = r/x = Ucos 0 
cotangent 0 = cot 0 = x/y = 1/ tan 0 

Trigonometric functions can be defined using a circle 
having a radius of one, which describes their periodic 
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nature. A circle having a radius of one and a point P with 
coordinates defined by the angle of the arc formed from the 
X-axis is: 

P = (cos x, sin x) 

Point P has coordinates (cos x, sin x), and 
the arc distance of the angle has x units of 
length and is measured in radians. 

The distance around the circle is 2 m  and the distance to 
any point on the circle is defined by the length of the arc 
from the X-axis and the point on the circle that  is given by 
the angle x multiplied by the radius r, or xr. Angles are 
measured from the positive X-axis in a counterclockwise 
fashion. Angles measured clockwise are negative. 

In a circle having a radius of one, a radian is equal to the 
angle at the center that  cuts across an  arc of length 1. Re- 
member, a radian is the angle a t  the center of a circle equal 
to 572957795131" which subtends (is opposite to) the arc of 
the circle equal in length to the radius. Note the following: 
1 radian = 3600/2n = 18Oo/n = 572957795131" 
271 radians = 360 degrees 
1" = 0.017453292519943 radian 

An arc is a section of a circle defined by two or more 
points, and can be measured in degrees or radians. The 
following are equivalent to arc length: 
Arc length = (radius)x(central angle measure in radians) 
= (n"/36Oo)(nd) = r$ 
where no and $ represent the central angle. 

When angles are measured in radians, sinx and cosx 
have period 2.n. For each point around a circle the six 
functions, cosx, sinx, tanx, cscx, secx, and cot x, can be 
drawn as  six graphs of the corresponding waveforms. 
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Pythagorean formula x2 + y2 = r2, can be used to provide 
many useful formulas. For example, dividing by r2 gives 
(x/r)2 + (y/r)2 = 1, or equivalently cos24 + sin2$ = 1.  
Dividing Pythagorean formula by x2 gives 1 + (y/r)2 = (r/x)2, 
or equivalently 1 + tan24 + sec2$. 
Dividing Pythagorean formula by y2 gives (x/r)2 + 1 = (r/y)2, 
or equivalently cot2$ + 1 = csc2$. 

Pythagorean formula can also be used to calculate the 
distance between points. These points can be defined by X 
and Y axes of a coordinate system. The distance d between 
the points is represented using: d2 = (XZ -  XI)^ + ( y z  - ~ 1 ) ~  

and depicted by: 

Ix 
Note that the distance d between two points in three- 
dimensional space is represented using: 
d2 = (XZ - XI)' + ( y ~  - ~ 1 ) '  + ( 22 - 21)2 

To measure distance between two points on a circle, define 
each point using P = (cos 4, sin 4) and P = (cos In, sin In), 
where the angle's 4 and C2 represent the length of the arc 
they form from the X-axis. 
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The point on the circle defined by the angle $ is at x = cos 4, 
y = sin$, and the point on the circle defined by R is at 
x = cos R and y = sin R. The angle between the two points on 
the circle is $ - R. If (x1,yl) and (x2,y2) represent the two 
points, the distance d between the points can be 
represented by: 

This can also be written: 
d2 = (cos R - cos $)2 + (sin R - sin $)2 

= (cos f2 - cos $)(cos R - cos +)+ (sin R - sin +)(sin C2 - sin 4) 
= cos2R - 2 cos R cos $ + cos2$+ sin2R - 2 sin R sin $ + sin2$ 
Because, cos2 + sin2 = 1, d2 becomes: 
d2 = 1 + 1 - 2cosQ cos$ - 2sinRsin$ 
d2 = 2 - 2cosR cos$ - 2sinRsin$ 
If the triangle is rotated, the distance between the two 
points remains the same, but can be represented as: 
d2 = (cos(R - $) - 1)2 + (sin(0 - $))2 

d2 = ( ~ 2  - XI)' + ( y 2  - ~ 1 ) '  

d2 = 2 - 2 COS(R - $) 

Important formulas used in calculus include the addition 
and subtraction formulas for cosine and sine. The addition 
and subtraction formulas for cosine can be derived using 
the fact that the distance between two points on a circle is 
the same whether a triangle between the two points is 
rotated or not. Setting the two d2 equations equal gives: 
d2 = 2 - 2cosR cos $ - 2sinCl sin$ = 2 - 2cos(R - $) 
= cos C l  cos $ + sin R sin $ = cos(R - 4) 
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Therefore the subtraction formula for cosine is: 
cos(R - 4) = cos R cos 4 + sin R sin 4 
Similarly, to obtain the addition formula for cosine, 
cos(R + +), replace 4 by (-4). Therefore: 
cos(SZ + 4) = cos SZ cos 4 - sin SZ sin 4 
These two formulas are known as the addition and 
subtraction formulas for cos(R + 4) and cos(R - 4). 

The addition and subtraction formulas for sine can be 
derived using a right triangle. Right triangles have compli- 
mentary angles that can be measured by 90" - 4 or d 2  - 4. 
Therefore: 
cos4 = sin(d2 - 4) 
sin4 = cos(d2 - 4) 
and, 
sin@ + 4) = cos(d2 - R - 4) 
Using the cosine subtraction formula from above: 
cos(R - 4) = cos SZ cos 4 + sin R sin 4 
This can be rewritten as: 
cos(d2 - SZ - 4) = cos(n/2 - n) cos 4 + sin(d2 - SZ) sin 4 
Substituting gives the addition formula for sine: 
sin(S2 + 4) = sin SZ cos 4 + cos SZ sin 4 
Similarly, for the subtraction formula for sine, begin with: 
cos(n + 4) = cos R cos 4 - sin i2 sin 4 
cos(d2 - 
Substituting results in the subtraction formula for sine: 
sin@ - 4) = sin SZ cos + - cos SZ sin 4 

+ 4) = cos(d2 - a) cos 4 - sin(d2 - 0) sin 4 

Another important formula is the double angle formula, 
which represents the case when R = 4, so that cos($ + 4) 
becomes: 
cos($ + 4) = cos 4 cos 4 - sin 4 sin 4 = cos 241 = cos24 - sin24 
Substituting cos2+ + sin2+ = 1 results in the double angle 
formula: 
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cos 2$ = 1 - sin2$ - sin24 = 1 - 2 sin2$ 
or, cos 24 = cos2$ - 1 - cos24 = 2 cos24 - 1 

Similarly, for sine when SZ = 4, the double angle formula is: 
sin($ + $) = sin $ cos $ - cos 4 sin $ = sin 2$ = 2 sin $ cos $ 

Following are important trigonometric functions and 
relations: 
t anx  = sinx/cosx = 1/cotx 
cotx = cosx/sinx = 1 / t a n x  = cosxcscx 
secx = l / cosx  
cscx= l / s i n x  
sin@ - x) = sinx 
cos(7r - x) = -cosx 
sinx = cos(x - n/2) = cos(d2 - x) 
cosx = sin(x + d 2 )  = sin(d2 - x) 
sin2x + C O S ~ X  = 1 
1 + tan2x = sec2x 
1 + COt2X = csc2x 
sin 2x = 2 sin x cos x 
cos 2x = cos2x - sin2x = 2 cos2x - 1 = 1 - 2 sin2x 
sin(x + y) = sin x cosy + cos x sin y 
sin(x - y) = sin x cosy - cos x sin y 
cos(x + y) = cos x cosy - sin x sin y 
cos(x - y) = cos x cosy + sin x sin y 
sin x cos y = (1/2)sin(x - y) + (1/2)sin(x + y) 
cos x cosy = (1/2)cos(x - y) + (1/2)cos(x + y) 
sin x sin y = (l/Z)cos(x - y) - (1/2)cos(x + y) 
tan(x + y) = (tan x + tan y) / (1 - tan x tan y) 

Graphs of trigonometric functions can be sketched by 
selecting values for x, calculating the corresponding y 
values and plotting the curves. If there are coefficients in 
the equations for y = cos x, y = sin x, etc., the graph of the 
function will have the same general shape, but it will have 
a larger or smaller amplitude, or it will be elongated or nar 
rower, or it will be moved to the right or left or up or down. 

16 



Functions 
For example, if there is a coefficient of 2 in front of cosine or 
sine, the graph will go to +2 and -2 (rather than +1 and -1) 
on the Y-axis. Similarly, if there is a coefficient of 112 in 
front of cosine or sine, the graph will go to +1/2 and -1/2 
(rather than +1 and -1) on the Y-axis. 
If, for example, there is a coefficient of 2 in front of x, 
resulting in y = cos2x and y = sinzx, the graph will 
complete each cycle along the X-axis twice a s  fast. Because 
there is one cycle between 0 and 2n: for y = cosx and 
y = sinx, there will be two cycles between 0 and 2n: for 
y = cos 2x and y = sin 2x. Similarly, if there is a coefficient 
of 112 in front of x, giving y = cosx/2 and y = sinx/2, the 
graph will complete each cycle along the X-axis half as fast. 
Because there is one cycle between 0 and 2.n for y = cosx 
and y = sinx, there will be one-half of a cycle between 0 and 
2n: for y = cosx/2 and y = sinx/2. 

Also, if a number is added or subtracted, for example, 
y = cosx + 2 and y = sinx + 2, the function will be moved up 
or down on the Y-axis, in this case up 2. 

Following are graphs of sine, cosine, tangent, secant, 
cosecant and cotangent. 
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y I  Cosine 

X 

Y 

Tangent 

X 

Y 

--x 

-1 

Secant 

X 
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- 
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Inverse trigonometric functions are periodic and their in- 
verses are relations that are multivalued. Because of this, 
trigonometric functions are defined over a specific interval 
in their domain when their inverse is considered. A trigono- 
metric function defined in this specific interval is often writ- 
ten with the first letter capitalized, e.g. Sin, Cos, Tun. For 
example, Sinx has a specific interval for its domain as 
( 4 2  I x I n/2) and for its range a s  (-1 5 y 5 1). (The range 
can be calculated in radians by taking the sine of 4 2 ,  etc.) 
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The inverse of Sin is written Sin-' or Arcsin and the rela- 
tion between Sin and Sin-' can be written: 
y = Sin x for (-x12 I x 5 +d2, -1 I y s 1) and 
Sin-ly = x or Arcsin y = x 
For example, following are graphs for Arctangent and 
Arcsine : 

y I  Arctangent y I  Arcsine 

1 X -q 
The domain and range values of trigonometric functions 

and their inverses are provided below: 
Function 
Sin x 
Sin-'x 
cos  x 
cos-'x 
Tan x 
Tan-'x 
co t  x 
Cot-'x 
Sec x 

Sec-lx 

c s c  x 

csc-'x 

Domain 
-7t12 I x I n12 
- 1 I x I l  
O l X _ < l i  

- 1 I x l l  
- X I 2  I x I X I 2  
-oOIxSoO 

O I X I 7 t  

- X ) I X S o O  

-7t I x I - d 2  
-n/2 s x I 0 
- - o o I X I - l  
1 5 x I m  
4 2  I x I 0 
0 5 x I 7112 
- 0 o I x S - 1  
1 I X I o O  

Range 
- 1 r y s l  
--XI2 I y I 7t12 
- 1 I y I 1  
0 6 y I l r  
--ooIy<oO 
-7t12 s y In12 
- 0 o I y S m  
O I y I 7 t  
- - o o I y I - 1  
1 I y I o O  
-7t I y I - X I 2  
4 2  I y I 0 
- - o o I y S - l  
1 5 y I o O  
- X I 2  5 y I 0 
0 I y I X I 2  
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1.4. Circular motion 

This section includes the principles of circular motion and 
harmonic motion. 

Circular motion and harmonic motion are important 
concepts in calculus and its applications. In circular motion, 
a point or particle moving in a circular path around the 
perimeter of a circle of radius 1 can be mapped using sine 
and cosine. The coordinates of the point or particle are 
given by (x = cost, y = sin t), where t represents time. The 
coordinates for x and y on a unit circle satisfy x2 + y2 = 12. 
The speed of the particle is constant. One complete 
revolution of the particle around the circle corresponds to 
2n radians. 

If it takes one second for the particle to move around the 
circle, then it is moving at a n  angular rate of 1 revolution 
per second. Therefore, the particle moves around the circle 
with a n  angular velocity of 2n: radians per second. The 
position of the particle is given by the angle 4, which is 
measured in radians. The rate of change of 4 is the angular 
velocity of the particle. In other words, the angular velocity 
is the change in 4 divided by the change in t, or o = A+/At. If 
the motion is uniform, then 4 = at. If t = 1, then 4 = a. If 
o = 1, then + = t. 

Because the coordinates of the particle traveling around 
the circle (at constant velocity) are given by (cost, sin t), as 
a particle moves around the circle, a point reflected onto the 
cosine axis that  is following the movement of the particle 
will oscillate from side to side between +1 and -1, and a 
point reflected onto the sine axis that is following the move- 
ment of the particle will oscillate up and down between + I  
and -1. 
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Consider movement of a particle that  begins a t  
t = 0, $ = 0, x = cos$ = 1 and y = sin$ = 0. As the particle 
moves upward and to the left toward the Y-axis, the 
particle reaches the top where t = d 2  = $, the upward 
velocity is cos d 2  = 0 and the height is sin d 2  = 1. 
Then the particle moves in the negative x direction and 
downward to 4 = t = 7c where x=cos.n = -1 and y = sin%= 0. 
The particle then moves down and to the right to 
$ = t = 3d2  where cos 3x12 = 0 and sin 3d2  = -1. Finally, 
the particle moves to the right and upward to 4 = 2.n = t = 0 
where cos 27c = 1 and sin 2.n = 0. 

t =n/2 
cos t = 0 
sin t = 1 

cos 
sin 

t = 3x12 
cos t = 0 
sin t = -1 

I 
As a point moves around a circle, at any given position 

the direction of motion of the particle is tangent to the 
circle. For any particle on the circle the following figure can 
be drawn. The velocity tangent to  the circle at point P has a 
cosine component cost and a sine component sin t, and 
points in the direction that the particle is moving. The 
acceleration this particle experiences is centripetal 
acceleration which points inward along the radius line. 
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- sin t 

In simple harmonic motion, or oscillatory motion, a 
particle or object moves back and forth between two fixed 
positions in a straight line. The connection between simple 
harmonic motion and uniform circular motion can be 
visualized by projecting the image of a particle moving in a 
circular path onto a screen (perpendicular to the plane of 
the circle). By projecting the circular path from its side, the 
projected image looks like a particle moving back and forth 
(or up and down) in a straight line. 

light 

P 

The shadow of the particle depicts the simple harmonic 
motion. 
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Another means to visualize the connection between the 
particle moving around a circle in circular motion and its 
corresponding harmonic motion is to project the image of 
the particle as it moves around the circle onto the Y-axis. 

P 

As the particle moves around the circle, the image oscillates 
up and down. The position of the particle 
a t  the top is (cosd2 = 0, s i n d 2  = I), 
at the bottom is (cos3d2 = 0, s in3d2  = -l), 
in the center on the way up is (cos 0 = 1, sin 0 = O), 
in the center on the way down is (cos IT = -1, sin 7t = 0). 

By comparing the motion of this particle moving around 
the circle with its projection, it is evident that  even though 
the velocity of the circular motion is constant, the velocity 
of the projection slows to a stop at each end (top and 
bottom). To evaluate the velocity of the oscillatory motion, it 
can be related to its sine wauepattern. The velocity is the 
rate of change of distance, and the slope of a curve at a 
given point represents the velocity at that point. By 
rotating a right triangle around a circle, the relationships 
between sine, cosine, distance and velocity can be 
visualized. Also, these relationships can be visualized using 
the graphs of sine and cosine. 
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sin t = horizional velocity component 

tangent = v e l o c A  I cos t = vertical 
. 

ight 

velocity component 

When the distance equals sin t, then the velocity equals 
cost, and when the distance equals cost, then the 
velocity equals -sin t. 

A particle moving around the circle can be compared to a 
particle moving along the sine curve to evaluate velocity. 
For example, the rate of change of position is zero at the 
top and bottom where t = n/2 and t = 3x12 on the circle and 
on the sine curve. The slope of the sine curve at these 
points is zero. At these points the particle in straight line 
motion on the projected image in the circle is changing 
directions and comes to a stop as it turns where v = 0. 

At t = 0, the particle is in the center of its projected strait 
line and is moving upward and has a corresponding slope 
on the sine curve of 1, therefore the velocity at this point is 
equal to 1. At t = n, the particle is in the center of its pro- 
jected image and going strait down. At this position the 
corresponding slope on the sine curue is -1 and v = -1. The 
velocity of the particle at the center is at its greatest. 
The slope at each point on the sine curve is given by the 
corresponding value of the cosine curue at that point. 
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y = sin x 

Cosine, sine and tangent can be described by the 
equations: 
cosx = cos(x + 2nn) 
cosx = sin(d2 + x) 
sinx = sin(x + 2nn) 
t anx  = tan(x + nn) 
where n is any integer and x is any real number. 

1.5. Relationship between trigonometric and 
exponential functions 

Trigonometric functions and exponential functions are 
related to each other. Some important equations that 
define the relationship between these functions are listed in 
this section. 

Following are identities defining the relationships 
between trigonometric functions and exponential functions: 
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eix = cosx + is inx 
This is Euler’s identity and defines the relationship between 
eh, cosx and sinx. 

e-iy = cos x - i sin x 
ei(3) = cos(-x) + isin(-x) 

cos x = (I/Z)(eiX + e-ix) 

sin x = (1/2i)(eix - e-ix) 

cos 8 = (eie + e- @)/Z 

sin 8 = (eie - e-ie)/Zi 

Note tha t  i = f i .  (See Section 1.10, “Complex numbers,” 
later in this chapter.) Also note that x or 8, etc., are  used 
interchangeably for trigonometric and hyperbolic identities. 

The expansions for ex, cos x and sin x are: 
ex =I + x + x2/2! + x3/3! + x4/4! +... = xn/n! +... 
COS x = 1 - x2/2! + x4/4! - xV6! +...+(-1)n-’X2n-2/(2n-Z)! +... 
sin x = x - x3/3! + x5/5! - x7/7! +...+(- 1)n-lx2”-1/(2n-l)! +... 

1.6. Hyperbolic functions 

Included in this section are  equations for the hyperbolic 
functions, cosh, sinh, tanh, csch, sech and coth. 

Hyperbolic functions are  real, do not involve 
i =fi and are  derived from the exponential functions 
and e-x. 

The hyperbolic cosine is called cosh and is given by: 
cosh x = (1/2)ex + (1/2)e-x 
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-1 

I 1 

, I I X 
1 

hyperbolic cosine, cosh 

The hyperbolic sine is called sinh and is given by: 
sinh x = ( 1 1 2 ) ~  - 

Y 

- 
312)e-x 

X / 
1 

hyperbolic sine, sinh 

Note that as x gets large, coshx and sinhx approach ( 1 1 2 ) ~ .  

Like cosine, cosh is a n  even function such that: 
cosh(-x) = cosh x and cosh 0 = 1 
Like sine, sinh is a n  odd function such that: 
sinh(-x) = -sinh x and sinh 0 = 0 

The properties that apply to cosh and sinh are similar to 
properties for cosine and sine, however, coshx and sinhx do 
not involve the i .  Examples of these properties include the 
following : 
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(cosh x ) ~  - (sinh x)2 = 1 
P = cosh x + sinh x 
ex = cosh x - sinh x 
sinh2x = (1/2)(cosh 2x - 1) 
cosh2x = (1/2)(cosh 2x + 1) 
sinh(x f y) = sinh x cosh y f cosh x sinh y 
cosh(x f y) = cosh x cosh y f sinh x sinh y 

Definitions for other hyperbolic functions include: 
The hyperbolic tangent: 
tanh x = (sinh x / cosh x) = (P - ex)/(@ + e-) 
The hyperbolic cosecant: 
cschx = 1 /sinhx = 2/(@ - ex)  
The hyperbolic secant: 
sech x = 1 /cosh x = Z/(@ + ex)  
The hyperbolic cotangent: 
coth x = cosh x / sinh x = (e" + ex)/(@ - ex) 

1.7. Polynomial functions 

Apolynomial function, in general, is a continuous func- 
tion and its graph is a continuous curve. However, a poly- 
nomial function is not continuous if there are ratios of poly- 
nomial functions and the denominator is zero. At  the point 
where a denominator is zero, the function is discontinuous. 

Remember polynomial expressions have the forms: 
3x2 + 2x + 1 
5x4 + 3x3 + 2x2 - 8 
The degree of a polynomial is the highest value of a n  
exponent in one of its terms. 

A polynomial function P(x), can be written in the form 
P(x) = anxn + an-iXn-l + ... + a1x + a0 
where the coefficients 81, 80,  an, an-1, ... are real numbers 
and a n  # 0. 
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1.8. Functions of more than one variable and 
contour diagrams 

This section includes functions that have more than one 
variable, and graphs and contour diagrams of these 
functions. 

Many functions depend on more than one variable. A 
function that depends on two variables can be written as 
z = f(x,y), where z is called the dependent variable, x and y 
are called the independent uariables, and f represents the 
function. 

For example, the volume V of a pyramid depends on the 
height h and the area of its base At,, which are independent 
variables. The function describing this is: V = ( 1 / 3 ) h A b .  

Another example of a function that depends on more than 
one variable is the ideal gas law, PV = nRT, where P is 
pressure, V is volume, n is the number of moles in the 
sample, R is the universal gas constant (8.314 J/mol.k), and 
T is temperature. To study pressure P = nRTN, vary one 
variable a t  a time while holding the others constant, or 
vary two a t  a time, etc. The data for functions that depend 
on more than one variable can be represented in tables or 
graphs in two or three dimensions. Temperature values for 
a system modeled by the ideal gas law can be listed on one 
axis and values for volume listed on another axis, such that 
resulting pressure values that correspond to a given 
temperature and volume will be within the table or on the 
third axis of a coordinated system. 

To graph a function y = f(x) that  depends on one variable, 
x values can be chosen and substituted into the function, 
and the corresponding y values can be calculated. Then the 
resulting points can be plotted on an  XY coordinate system. 
The resulting graph represents the function and all of its 
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points with coordinates (x,y), and is generally comprised of 
curves or lines. 

The graph of a function z = f(x,y) that depends on two 
variables represents the points with coordinates (x,y,z) and 
generally represents a surface in three-dimensional space. 
To graph z = f(x,y), values for x and y can be chosen and z 
calculated. Values of x and y may represent data for a 
model system and be in a table format with x values listed 
down the side, y values listed across the top and calculated 
z values inside the table. 

In general, graphs of one-variable functions form curves 
or straight lines, whereas graphs of two-variable functions 
form planes or surfaces represented in three-dimensional 
space (which comprises a family of level curves in the form 
of f(x,y) = constant). Graphs of three-variable functions form 
solids in four-dimensional space (which comprises a family 
of level surfaces in the form of f(x,y,z) = constant). 

A function having two independent variables f(x,y) can be 
represented by a surface, however this surface can be a 
member of a hnction having three independent variables 
F(x,y,z). Alternatively, one member of the family of surfaces 
in a three-variable function F(x,y,z) can be considered as 
representing the graph of a two-variable function f(x,y). 
Therefore, a two-variable function represents a single 
surface and a three-variable function represents a family of 
level surfaces, where F(x,y,z) = f(x,y) - z for one of the 
surfaces and z = f(x,y) is the surface at F(x,y,z) = 0.) 

Graphs of linear one-variable functions form straight lines 
with constant slopes. Graphs of linear two-variable 
functions form planes with the slopes of the columns being 
equal to each other and the slopes of the rows being equal 
to each other. Therefore, the slopes along lines in the plane 
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parallel to the X-axis are the same and the slopes of lines 
on the plane parallel to the Y-axis are the same. 

" I  

The equation for a plane represented by the linear function 
f(x,y) is: f(x,y) = z = zo + m(x - XO) + n(y - yo) 
where slopes in the x direction are designated by m, slopes 
in the y direction are designated by n, and the plane passes 
through point (xo,yo,zo). 

When a function has three or more independent variables, 
it is more difficult to represent it in a graph, contour 
diagram or table. Typically one or more variables can be 
held constant and the other(s) varied so that a table, graph 
or contour diagram can be constructed. 

An example of a three-variable function is: x2 + y2 + z2 = Q 
Varying x, y and z values will result in different Q values 
on the graphical representation which is a family of spheres 
nested inside of each other, with each one representing a 
different Q value. 

A contour diagram of curved surfaces can be depicted by 
connecting all of the points at the same height on the 
surface. The level curves form loops around the maximum 
point(s). As the height increases the loops get smaller. 
Level curves, or contour lines, are seen by slicing a surface 
with horizontal planes. The contour line a t  each height, 
h = z, is represented by f(x,y) = h. Contour diagrams 
representing planes contain parallel lines. A topographical 
map is a n  example of a contour diagram. 
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Example: The graph of f(x,y) = z =Jx2 + y2 is: 

X /  

This graph has circula 
f(x,y) = z = a constant, 
be drawn from the top 

.r planes at each z value. When 
then a contour map or diagram 
-down perspective for 

can 

f(x,y) = z =Jx2 + y2 : 

XI 

Example: The graph of f(x,y) = z = x2 - y2 is: 
z I  

This graph forms a saddle-shaped surface. In this graph, 
there are two sets of parabolas, one set opening upward 
and the other set opening downward. Each curve corres- 
ponds to f(x,y) when x is held constant and y is varied or 
when y is held constant and x is varied. Values for x, y and 
z can be tabulated and plotted: 
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x values 
-2 -1 0 1 2 

Y 2 0 -3 -4 -3 0 
values 1 3 0 -1 0 3 

0 4 1 0 1 4  
-1 3 0 - 1  0 3 

z values in grid 

A contour diagram perspective of f(x,y) = z = x2 - y2 can also 
be depicted: 

X 

Contour Diagram 

of z = (x2- y3 

1.9. Coordinate systems 

This section includes polar coordinates, cylindrical 
coordinates and spherical coordinates. 

Polar coordinates describe points in a plane or in space, 
similar to rectangular Cartesian coordinates. The difference 
is that in polar coordinates, there is a n  r-coordinate that 
maps the distance of a point from the origin of the coordi- 
nate system, and there is a 0-coordinate that measures the 
angle the r-ray makes from the horizontal positive X-axis. 
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The relationship between polar and rectangular coordinates 
can be visualized in the figure using the Pythagorean 
Theorem for a right triangle r2 = x2 + y2. The r-coordinate is 
the hypotenuse and measures the distance from origin to 
the point of interest. The angle 8 between r and the positive 
part of the X-axis, can be described by t a n 8  = y/x. The 
relationships between these two coordinate systems are: 
r =Jx" + y2 
t an8  = y/x or 8 = tan-lblx) 
x = rcos8 
y = r s in8  

In  three dimensions, polar coordinates become cylindrical 
coordinates and are given in terms of r, 8 and z, where: 
x = rcos8 
y = r s in8  
z = z  
r =Jx2 + y 2  

When comparing the Cartesian and cylindrical coordinate 
systems, the x- and y-components of the Cartesian 
coordinate system are expressed in terms of polar 
coordinates, and the z-component is the same component as 
in the Cartesian system. The r-component is measured 
from the Z-axis, the 8-component measures the distance 
around the Z-axis and the z-component measures along the 
Z-axis. 
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Following are examples using cylindrical coordinates: 
(a.) To find x and y if r and 8 are given, for example: 

r = 5 and 8 = d 2 ,  simply calculate 
x = rcos8 and y = rsin8: 
x = (5) cos(d2) and y = (5) sin(d2). 
Alternatively, to find r and 8 if x and y are given, for 
example, x = 2 and y = 3, calculate 
r = d x 2  + y2 and 0 = tan-l(y/x): 

r =.\1Z2 + 3' and 0 = tan-1(3/2) 

(b.) A circle on a coordinate system can be represented by 
the equations r = cos0 or r = sine, where substituting 
values of 0 around the coordinate system will produce 
points on the circle. 
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(c.) If r = 8, a spiral of Archimedes can be plotted: 

(d.) A triangular wedge section, can be represented in 
cylindrical coordinates by considering that the section 
(AW2.n) is a part of a whole area of the circle nr2 that 
projects along the Z-axis to create a volume. 

Another coordinate system that is related to Cartesian 
coordinates is spherical coordinates. In three dimensions, 
spherical coordinates are expressed in terms of p, 8 and $, 
where p can range from 0 to a, 8 can range from 0 to Zn, 
and $ can range from 0 to n. In  spherical coordinates, the p 
component is measured from the origin, the 8 component 
measures the distance around the Z-axis, and the 4 
component measures down from the Z-axis and is referred 
to as the polar angle. Note that p is measured from the 
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origin rather than the Z-axis a s  is the case with r in 
cylindrical coordinates. Also, 8 and Q, are similar to 
longitude and latitude on a globe. Spherical coordinates can 
be defined in terms of Cartesian coordinates, x, y and z as: 
x = p COS 8 sin Q, 
y = p sin 8 sin 4 
z = p cos Q, 
p =Jx2 + y2 + z2 

z I  

1.10. Complex Numbers 

This section includes complex numbers, imaginary 
numbers, adding, subtracting, multiplying and dividing 
complex numbers, the complex plane and expansions 
involving i. 

Complex numbers are numbers involving J-1. Because 
there is no number that when squared equals -1, the 
symbol i was introduced, such that G = i & ,  where x is a 
positive number and (i)2 = -1. 

Complex numbers involve i and are generally in the form 
(x + iy), where x and y are real numbers. In this expression, 
the x term is referred to  a s  the real part and the iy term is 
referred to as the imaginary part. A real number multiplied 
by i forms an  imaginary number, such that: 
(real number x i = imaginary number). 
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A real number added to a n  imaginary number forms a 
complex number, such that: 
(real number + (real number)(i) = complex number). 

Complex numbers are added or subtracted by adding or 
subtracting the real terms and imaginary terms separately. 
The result is in the form (x + iy). For example: 
(1 + 2;) + (3 + 4i) = 1 + 3 + 2i + 4i = 4 + 6i 

Complex numbers are multiplied as ordinary binomials, 
and (i)2 is replaced by -1. For example: 
(1 + 2i)(3 + 4i) = (1)(3) + (1)(4i) + (2i)(3) + (2i)(4i) 
= 3 + 4i + 6i + 8(i)2 = 3 - 8 + 1Oi = - 5 + 10i 

Complex numbers are divided by first multiplying the 
numerator and denominator by what is called the complex 
conjugate of the denominator, then the numerator and 
denominator is divided and combined as with multipli- 
cation. For example, the complex conjugate of (3 + 2;) 
is (3 - Zi). The product of a complex number and its 
conjugate is a real number. Remember to replace (i)2 by -1 
during calculations. For example, divide the following: 
(1 + 2i) + (3 + 4i) = (1 + 2i)(3 - 4i) + (3 + 4i)(3 - 4i) 
= (3 - 4i + 6i - 89)  + (9 - 12i + 1% - 16i2) 
= (3 - 2i - 8(-1)) + (9 - 16(-1)) = (11 - 2i)/25 
(See Master Math: Basic Math and  Pre-Algebru, Section 
1.17 for examples of the above principles.) 

Complex numbers can correspond to points in a coordi- 
nate system, sometimes called the complex plane. For 
example, 3 + 4i corresponds to x = 3 and y = 4, where the 
X-axis is real and the Y-axis is imaginary. Using polar 
coordinates x = r cos 0 and y = r sin 8, the complex plane is 
described using: 
x + iy = rcos8 + i r s i n 8  = r(cos8 + isin8) 
where cos8 + i s in8  = eie is Euler’s formula. 
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imaginary- axis 

iy p! , x +  iy 

real-axis 

Expansions of e and trigonometric functions involve 
imaginary numbers. For example: 

i sin 8 = i8 - ie3/3! + iW5!  -... 
eie = 1 + ie - @/2! - ie3/3! + 84/4! +...+ 8nh! +... 

case = I - e2/2! + e4/4! - ... 

1.11. Parabolas, circles, ellipses and 
hyperbolas 

This section includes parabolas, circles, ellipses and 
hyperbolas, and their equations and definitions. 

Parabolas, circles, ellipses and hyperbolas are important 
curves in calculus. They are often referred to as conic 
sections, because each of these curves can be represented a s  
the intersection of a plane with right circular cones. 

parabola circle ellipse hyperbola 

U 
n U 0 0 
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Examples of applications where conic sections are used for 
modeling include ellipses for orbits of planets, parabolas for 
the path of a projectile, and hyperbolas for the reflection of 
sound. 

I 

Parabolas 

axisof axisof 
symmetry symmetry 

I 

The equations for a parabola are: 
y = ax2 + bx + c with a vertical axis 
x = ay2 + by + c with a horizontal axis 

In the vertical form of the equation, y = ax2 + bx + c, if a 
is positive, the parabola is open at the top with the vertex a t  
the bottom. Conversely, i f a  is negative, the parabola is 
open at the bottom with the vertex at the top. For 
y = ax2 + bx + c, the graph crosses the X-axis at y = 0, and 
the vertexpoint is a minimum or maximum point (where 
dy/dx = 0.) 

For a vertical-axis parabola, if the parabola lies above its 
vertex, then the y-coordinate (x,y) of its vertex is the 
smallest y value of the parabola that satisfies the equation 
for that  parabola. Conversely, if the parabola lies below its 
vertex, then the y-coordinate (x,y) of its vertex is the 
largest y value of the parabola that satisfies the equation 
for that  parabola. 
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The axis ofsymmetry can be drawn through the center of 
a parabola to divide it in half. The equation for the axis of 
symmetry in a vertical parabola is xv = -b/2a. For example, 
if the solution to this equation is xv = 2, then a vertical line 
through the point 2 on the X-axis can be drawn to represent 
the axis of symmetry. 

The vertex point of a parabola can be found by substi- 
tuting xv into the equation, y = ax2 + bx + c, (if xv is known) 
and solving for the corresponding y or yv value, resulting in 
(xv,yv). The vertex point of a parabola with a vertical axis 
can be found using the equation for the parabola as follows: 
(a.) separating the terms that contain x from the terms not 
containing x, (b.) completing the square on the terms that 
contain x, (c.) setting each side of the equation equal to 
zero, and (d.) solving the resulting equations for x and y 
resulting in (xv,yv). 
For example, if y = x2 - 2x - 3, what is the vertex point? 
Rearrange: 
x2- 2x = y + 3 
Complete the square by finding 1/2 of the coefficient b 
(b = 2). Square 1/2 of the coefficient b, 
result to each side of the equation: 
(b/2)2 = (-2/2)2 = (-1)2 = 1 
x 2 - 2 x + l = y + 3 + 1  

Factor the resulting perfect square, and set each side of the 
equation equal to zero and solve: 
(x - l)(x - 1) = y + 4 

(x - 1 ) 2  = 0 

and add the 

X'-ZX+ 1 = y + 4  

x = l  
y + 4 = 0  
y = -4 
Therefore, the vertex point is (1,-4). 
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To graph aparabola, which is a quadratic equation, one 
method involves finding the x component of the vertex 
point, xv = -b/2a, and substituting xv into the equation, 
y = ax2 + bx + c, and solving for the corresponding y or y. 
value, resulting in (xv,yv). Then, choose other values for x 
on both sides of xv and solve for their corresponding y 
values using the original equation. Finally, the points can 
be plotted and the parabola sketched. 

It is possible to solve a quadratic equation graphically as  
follows: 
(a.) Write the equation in the standard form y = ax2 + bx + c. 
(b.) Graph the parabola by identifying xv = -b/2a, substitute 

xv into the equation y = ax2 + bx + c and solve for yv 
resulting in the vertex point (xv,yv). Then choose other 
values for x on both sides of xv and solve for their 
corresponding y values using the original equation to 
plot the parabola. 

equation because of the x2 term) by estimating the two 
points where the parabola crosses the X-axis (at y = 0). 

(c.) Determine the solutions for x (called the roots of the 

The focus of aparabola is a point on the axis of symmetry 
where any ray (e.g. light, sound, etc.) coming toward the 
bottom of the parabola, parallel with the axis of symmetry 
is reflected to. 
An example of the use of the focus point is a receiver of 
radio waves or TV signals where the rays are concentrated 
a t  the focus. This principle applies in reverse a s  well. When 
light energy is emitted from a focus point and reflected off 
the inner surface of the parabola, it will point out of the 
parabola parallel to the axis of symmetry. 

The directrix is a line that exists perpendicular to the axis 
of symmetry such that every point on the parabola is the 
same distance from the focus point a s  it is from the 
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directrix line. Therefore, the distance from the vertex to the 
focus (d2 on graph) is equal but opposite to the distance 
from the vertex to the directrix (dl on graph). 

The following is a horizontal-axis parabola with its vertex 
at the left: 

I directrix 

X axis of symmetry 

distances d l  = distances d2 

vertex 

Ellipses and circles 

Equations for circles are written in the forms: 
x2 + y2 = r2 
where r is the radius and r > 0, and the circle is located at 
the origin of a coordinate system. 
For a circle located at a point (x = p, y = q) other than the 
origin, the equation becomes: 
(x-P)~ + (y-q)2 = r2 

The equations for ellipses are written in the forms: 
(x2/a2) + (y2/b2) = 1 
where a + b, a > 0, b > 0, origin at (0,O). 

If a = b, the ellipse becomes a circle. The equation for an  
ellipse with a = b = r is the equation for a circle: 
x2 + y2 = r2 

For an  ellipse located at a point (x = p, y = q) other than the 
origin, the equation becomes: 
((x-p)2/a2) + ((y-q)2/b2) = 1 
where a + b, a > 0, b > 0, origin at (p,q). 
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The equations for ellipses and circles having the form 

(xVa2) + (y2/b2) = 1, with origin at (0,O) and a * b for ellipses 
and a = b for circles, can be solved for y as follows: 
y/b = It[l - (x2/a2)]l’2 = *[(a2/a2) - (x2/a2)I1l2 
= *[(a2 - x2)/a2)]1/2 = f (l/a)[a2 - ~ 2 1 1 1 2  

Therefore, y = k (b/a)[a2 - x2]112 
where the (+) values represent the top half of a n  ellipse or 
circle and the (-) values represent the bottom half of an  
ellipse or circle. The curve crosses from (+) to (-) or (-) to (+) 
at y = 0, x = a and y = 0, x = -a, respectively. The maxi- 
mum and minimum of the curves are at y = b and y = -b. 

Y 

A circle has one focus at the center. An ellipse has two 
foci, designated F1 and F2, along the major axis on either 
side of the center. The sum of the distances of the foci to all 
the points on a n  ellipse is 2a. Therefore at any point on the 
ellipse: (the distance to F1) + (the distance to F2) = 2a. 
The ellipse can also be described by: 
[(x - c)2 + ~ 2 1 1 ~ 2  + [(x + c)2 + ~ 2 1 1 1 2  = 2a 
= distance from F1 + F2 to (x,y), 
where +c and -c represent the location of F1 and F2 on the 
major axis. 

Because the distance from F1 to F2 is 2a, a s  sound waves 
etc., are reflected off the ellipse, a sound generated at F1 
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will be concentrated at F2. (Note that there is also a direct 
path between F1 and F2 where sound is not reflected.) 

To plot a n  equation of a n  ellipse, choose values for x and 
solve for the corresponding y values. Alternatively, set x = 0 
and solve for the corresponding y value and set y = 0 and 
solve for the corresponding x value. 

To plot a n  equation of a circle, choose values for x and 
solve for the corresponding y values. Alternatively, set x = 0 
and solve for the corresponding y value ahd set y = 0 and 
solve for the corresponding x value. If a circle has its origin 
a t  (0,O) it is possible to choose x values in one quadrant of 
the coordinate system and use symmetry to complete the 
circle. 

Hyperbolas 
. The equations for hyperbolas can be written in the forms: 
(x2/a2) - (y2h2) = 1 or - (x2/a2) + (y2/b2)  = 1 
where a and b have opposite signs and the origin is a t  (0,O). 
For a hyperbola located at a point (x = p, y = q) other than 
the origin, the equation becomes: 
((x-p)2/a2) - ((y-q)2h2) = 1 

The equation for a hyperbola can be solved for y: 
y/b = _+[1 + (x2/a2)]112 = +[(a2/a2) + (x2/a2)]112 
= +[(a2 + x2)/a2)]1/2 = k (l/a)[a2 + ~ 2 1 1 ’ 2  

Therefore, y = k (b/a)[a2 + x2l1I2 
where the (+) expression represents the side of the 
hyperbola where y 2 b, and the (-) expression represents 
the side of the hyperbola where y < b. 
In the following figure, v l  and v2 are vertexes at (0,b) and 
(0,-b), and F1 and F2 are foci. The ray drawn coming 
toward one focus, F2, and contacting the outside of that 
side of the hyperbola will be reflected to the other focus, F1. 
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"I asymptote 

/ 

asymptote 
ray 

A hyperbola can be drawn along the X-axis or Y-axis and 
is symmetric with respect to its axis. The diagonal lines are 
called asymptotes, and each hyperbola has two asymptotes 
such that the curve of a hyperbola approaches its asymp- 
totes. The equations for the asymptotes have zero replaced 
for the constant terms, and for a hyperbola centered at the 
(0,O) in a coordinate system, the equations for the asymp- 
totes are y = +(b/a)x, and the slopes are +b/a and -b/a. 

The foci of the hyperbola are inside the curve of each side 
such that for the points on the hyperbola, the difference be- 
tween the distances to the foci is 2b (see preceding figure). 

Another equation for a hyperbola is xy = k. If k is posi- 
tive, the hyperbola will graph in the upper right and lower 
left quadrants. Conversely, if k is negative, the hyperbola 
will graph in the upper left and lower right quadrants. 

Y 

CO 
Y 

I 1  k < O  
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To plot an equation of a hyperbola, choose values for x 
and solve for the corresponding y values. Because the graph 
of a hyperbola is symmetric with respect to both axes, the 
points plotted in one quadrant (e.g. x 2 0, y 2 0) will mirror 
the points in the opposite quadrant. 
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The Derivative 

2.1. The limit 

This section includes a summary of the limit, its appli- 
cations, conditions for estimating a n  infinite series and 
convergence. 

The limit is used in the estimation of infinite sums and in 
the definitions of the derivative and the integral. In gener- 
al, the limit is used to describe closeness of a function to a 
value when the exact value cannot be identified. The limit 
is also used to determine if functions are continuous or dis- 
continuous. Whether the graph of a given function is a 
smooth and continuous curve or line, or whether there are 
breaks or holes present can be determined using the limit. 

If the limx+af(x) = L, then it is said that the function f(x) 
gets close to and may equal some number L as x 
approaches and gets close to some number a. 

Consider a simple example where the limit as x 
approaches 1 is taken of function f(x) = x2 + 2: 
limx+lf(x) = limx,l(x2 + 2) 
By substituting numbers for x that get closer to the number 
1, it can be shown that as x gets closer to 1, or limx,l, 
then x2 gets closer to 1 and f(x) gets closer to 3. 
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In more complicated examples, simply substituting the 
desired number into the function is not possible. For ex- 
ample, consider the limit: limx,a [(x2 - 4)/(x - 2)]. 
If x = 2 is substituted into this equation, the result is O/O, 
which is undefined. In this equation, factoring can be used 
to determine if the limit exists. (See Section 5.7 in Master 
Math: Algebra for a review of factoring polynomials.) 
The factoring of [(x2 - 4)/ (x - 2)J results in: x + 2. 
Taking the limit results in: limx+z(x + 2) = 4. 
Therefore, a s  x gets close to 2, then x + 2 gets close to 4. 

There are many cases where the limit of a function does 
not exist. For example, consider the limit as y gets close to 
zero for the function f(y) = l/y: limy+o(l/y). 
Because 110 is undefined, it is possible to substitute values 
for y approaching zero: 
If y = 0.1, f(y) = uo.1 = 10 
If y = 0.01, f(y) = 1lO.01 = 100 
If y = 0.001, f(y) = 1/0.001 = 1,000 
If y = -0.01, f(y) = 1/-0.01 = -100 
If y = -0.001, f(y) = 1/-0.001 = -1,000 
As y gets close to 0, l/y does not get closer to any number. 
The magnitude of l/y actually increases. Therefore, 
limy+o(l/y) approaches a, and the limit does not exist. 

If the limits of the functions f(x) and g(x) exist, then the 
rules governing limits of functions that are added, 
subtracted, multiplied, divided and raised to a power are: 
limx-,a(f(x) + g(x)) = limx+af(]o + limx-+ag(x) 
limx+a(f(x) - g(x)) = limx+af(x) - limx+ag(x) 
limx+a(f(x) x g(x)) = limx+af(x) x limx+ag(x) 
limx+a(f(x) + g(x)) = limx+af(X) + limx+ag(x), if limx+ag(x) z 0. 
lim +a (f( x ) ) ~  = (lim +a f(x))Y 

The limit can be used to estimate the sum of an infinite 
series. If the progression or sequence is infinite and there- 
fore there is a n  infinite number of terms, then the sum 
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cannot be calculated. However, under certain conditions the 
sum of a n  infinite series can be estimated. 

Conditions that determine if the sum of an infinite series 
can be estimated include the following. 
(a.) If an  infinite series has a limit, it is said to converge and 

t 

the sum can be estimated. In other words, as the terms 
in a n  infinite series are added, beginning with the first 
term, if with each additional term added the sum 
approaches some number, then the series has a limit 
and converges and the sum can be estimated. 
i condition for convergence for the infinite series: 

f a n  
n=l 
is that a, must approach zero as n approaches infinity. 
Although this condition must occur for a series to 
converge, there are cases where this condition is true 
but the series still diverges. 

(c.) If a n  infinite series has no limit, it is said to diuerge and 
the sum cannot be estimated. In other words, if instead 
as each additional term is added the sum approaches 
infinity, then the series has no limit and diverges and 
the sum cannot be estimated. 

To estimate an infinite series, it must be determined wheth- 
e r  the series has a limit and converges and what happens 
to the sum as the number of terms approach infinity. For a n  
infinite series describing the sum of a, from n = 1 to n = 00: 

n=l  
If this series has a limit and converges to L it becomes: 

lim,,,Can = L 
n =I 

For convergence to zero, the values of a, must become small 
at some small number and remain below that number. The 

51 



Master Math: Calculus 

small number may be on the order of 10-10, etc. The 
generally accepted notation for representing this small 
number that a converging sequence will approach and 
remain below is E (Epsilon). The general rule is, for any 
value of E, there is a number N where I a, I < E if n > N. 
For convergence to numbers other than zero, the general 
rule is, for any E, there is a number N where I a, - L I < E 

if n > N. In this case, limn+man = L. Convergence occurs 
when values for a, approach L and remain in a range of 
L + E and L - E. 

When two sequences, a, and b,, each converge such that 
limn+man = L and limn+wbn = L*, then the following are true: 
limn+m(a, + b,) = L + L* 
limn+m(an - b,) = L - L* 
lirnn&an b,) = L L* 
limn+m(an/bn) = L/L* provided L*# 0 

2.2. Continuity 

This section provides a brief summary of continuity 
including the definition of a continuous function, a 
continuable function, examples of continuous functions, 
discontinuous functions, conditions of discontinuity and 
visualizing continuity. 

A function is considered continuous at x = a, iflimx+ 
exists, such that the limx+af(x) = f(a) and f(a) is defined. If 
f(x) is continuous a t  x = a, then f(x) + f(a) as x + a. For a 
function to be defined as a continuous function, it must be 
continuous at  every point where it is defined. 

A function is called continuable if the definition of 
continuous can be applied to all x values such that the 
function is continuous a t  all x values. For example, 
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f(x) = l/x is not continuable but is continuous by definition 
because it is “not defined at l/x where x = 0. A function is 
continuous at x if as Ax-+O, then [f(x + Ax) - f(x)] -+ 0, 
where Ax represents some small change or increment in x. 

A polynomial function is an  example of a continuous 
function that is continuous everywhere and its graph is a 
continuous curve. (With the exception of ratios of 
polynomial functions with zero denominators.) Other 
continuous functions include exponential functions, sine, 
cosine and rational functions on intervals where their 
denominators are not zero. 

A function that is not continuous may be discontinuous a t  
a single point. For example, the function f(x) = l/x is contin- 
uous except a t  x = 0 where 1/0 is undefined. Therefore, 
limx.+af(x) = limx+l/x = l/a. In general, the graph of a 
continuous function has no holes or breaks. 

The following graphs are of (a.) a function that is 
discontinuous at apoint,  (b.) a function that is 
discontinuous a t  more than one point and has a jump,  
(c.) function f(x) = 1/x2, and (d.) function f(x) = l/x: 

2 f(x) = 1/ x f(x) = 11 x 
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The following are conditions where discontinuity exists: 
(a.) If limx+af(x) exists and is equal to L, but f(x) does not 

exist when x = a so that f(a) # L, then the graph of f(x) 
is discontinuous a t  the point x = a. In this case there is 
only discontinuity at a single point. 

(b.) If limx+af(X) does not exist because a s  x approaches a 
from either x > a or x < a, the value of f(x) approached 
from x > a is different from the value f(x) approached 
from x < a, then the graph of f(x) is discontinuous and 
has a jump at point a = x. 

(c.) If limx+af(X) does not exist because as x approaches a, 
the absolute value I f(x) I gets larger and larger then the 
graph is “infinitely discontinuous” at x = a. 

A means to visualize whether a function is continuous 
involves use of symbols such a s  Epsilon E and Delta 6 to 
define regions in question on the X and Y axes of the graph 
of a function. Consider the limit of the function f(x) where 
limx+af(X) = L, and has the following properties: 
(a.) The limit exists. 
(b.) E represents a n  error tolerance allowed for L. 
(c.) 6 represents the distance that x is from x = a. 

(a-6) a (a+6) VX 
In this graph a value for E can be chosen and ~ ( 6 )  results. 
Conversely, a value for 6 can be chosen and E(&) results. 
As limx+f(x) = f(a) = L, providing the limit exists, where: 
L + E = f(a) + E, or L = f(a), also L - E = f(a) - E, 

then the following is true: 
f(a) + E > f(x) > f(a) - E, or equivalently, I f(x) - L I < E. 

For every chosen number E where E > 0, there is a positive 
number for 6 ( ~ )  that  results. 
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For a chosen f(x), x must be within (a - 6) and (a + 6) such 
that a - 6 < x < a + 6, or equivalently, 0 < I x - a < 6. 
Therefore, as x gets close enough to a, then I f(x) - L I < E, 

and the closeness of x is defined to have a tolerance of 6 
such that when 0 < I x - a I < 6 then I f(x) - L I < E. 

2.3. Diffe rentiabilit y 

This section summarizes the concept of differentiability. 
(See the next section for the definition of the derivative.) 

A function is differentiable a t  any point where it has a 
derivative. A function that has a derivative at every point 
is differentiable everywhere. At any point where f(x) has a 
derivative, the function is continuous. There can be a point 
where f(x) is continuous but no derivative exists, such as 
where the graph turns a corner without a hole or jump. 

A graph of a function has a deriuatiue and is therefore 
differentiable at a point if a tangent line can be drawn at 
that point. 

If for a given point on the graph of a function the 
derivative does not exist, then that point may be (a.) at the 
end of the curve of the function; (b.) at a corner on the 
curve; (c.) at a location where the tangent line is a vertical 
line and therefore has no slope; or (d.) at a location on the 
graph that is discontinuous such as if one point is missing 
or there is a jump in the curve of the function. 

2.4. The definition of the derivative and rate 
of change 

This section includes the definition of the derivative, 
notation, developing the definition of the derivative, 
calculating velocity using the derivative, the average rate 
of change and the instantaneous rate of change. 
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The derivative is used to describe the rate of change of 
something such as velocity, as well as the concept of the 
tangent to a curve. Applications of the derivative include 
tangents, slopes, rates of change, curvilinear and straight- 
line motion, maxima, minima and tests for extrema. 

Notation for the derivative of a function f(x) includes: 
d 

df(x) , x f ( x )  , f'(x) , Df(x) , Dgf(x) 
dx 

If y = f(x) then the derivative f'(x) can be written (dyldx). 
Notation for taking second derivatives includes: 
d2f(x) d Z  
dx2 ' dx2 
- f(x), P(x), f"(X), Dzf(x), Dx2f(x) 

Notation for the nth derivative includes: 

The time rate of change of an object in motion such as a 
car, plane, pitcher's fast ball, etc., is the rate of change of 
distance with respect to time and is called velocity. The 
velocity is the derivative or equivalently the rate of change 
of distance with respect to time. Velocity can be positive or 
negative with respect to a reference point, but speed is the 
magnitude of velocity and is always positive or zero. 

To consider rate of change, remember that distance equals 
rate times time, d = rt, therefore, rate = (distance / time). 
The time rate of change of distance is velocity and 
average velocity = (change in distance /change in time). 
Also, the time rate of change of velocity is acceleration and 
acceleration = (change in velocity /change in time). 
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To develop the definitwn of the derivative, consider the 
velocity of a n  airplane flying from the east coast to the west 
coast. 
The distance the airplane is from its starting point or any 
defined reference point is a function of time (depends on 
time) or f(t). (In this example, f is the distance function.) 
At time = t, the airplane is f(t) units from the starting or 
reference point. (“he units could be hours.) 
At time = t + h, the airplane is f(t+h) units from the 
starting or reference point and h represents an increment of 
time. 
The change in the position of the airplane during the 
increment of time h is f(t+h) - f(t). 
The rate of change of the distance with respect to time 
between time = t and time = t+h is the average velocity of 
the airplane. The average velocity during this time period 
is: 

f(t + h) - f(t) average velocity = 
h 

To find the velocity of the airplane at a particular point 
when time = t, shrink the time increment h surrounding 
time t. The velocity at the point where time = t is called the 
instantaneous velocity, and is determined by taking the 
limit as the increment of time h shrinks to zero: 

f(t + h) - f(t) velocity at time t = v(t) = limh-+o 
h 

As h gets close to zero (but not equal to zero), the time 
increment h and the distance f(t+h) - f(t) will get smaller. 
Because velocity is the derivative of distance, then the 
definition of the derivative with respect to time of the 
distance function f(t) can be written: 

-- df(t) - limh,o f(t + h)- f(t) , provided the limit exists. 
dt h 
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The velocity at time t or v(t) can be determined using the 
definition of the derivative and the following procedure: 
(a.) Determine f(t+h) and f(t). 
(b.) Subtract f(t) from f(t+h). 
(c.) Divide f(t+h) - f(t) by h. 
(d.) Take the limit as h approaches zero. 

Example: Find the velocity at t = 2 hours, if the distance 
in miles is represented by f(t) = 3t2. 
f(t+h) = 3(2 + h)2 = 3(4 + 4h + h2) = 12 + 12h + 3h2 
f(t) = 3(2)2 = 12 
f(t+h) - f(t) = (12 + 12h + 3h2) - 12 = 12h + 3h2 
(f(t+h)-f(t))+ h=(12h+  3h2)+h=(12h)lh+ (3h')Ih= 12+ 3h 
limh,o(l2 + 3h) = 12 = the velocity a t  2 hours, v(2hrs) 
Therefore, the velocity a t  t = 2 hours is 12 miles/hour. 

The definition of the derivative with respect to x, rather 
than with respect to time, can be written: 

f(x + h) - f(x) df'x) = limh+O 
dx h 

It  is possible to use the definition of the derivative to 
determine the average rate of change or the instantaneous 
rate of change of a function. In general, the rate of change 
represents how fast or slow a function changes from one 
end of the interval to the other end, relative to the size of 
the interval (given by h). 

The average rate of change off over a n  interval from some 
value of x to some value of x + h is given by: 
f(x + h) - f(x) 

h 
The average rate of change is equivalent to the slope of a 
line drawn between two points on the graph of a function 
f(x) represented by x values between the value of x = a to 
the value of x = (a + h). 
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.h)- f(a) 

The instantaneous rate of change of f(x) a t  some point x is 
given by the following expression, which represents the 
average rate of change over smaller and smaller intervals. 
This expression defines the derivative off a t  some point x. 

limh-,o 

The instantaneous rate of change is equal to the slope of 

f(x + h) - f(x) 
h 

the graph of the function a t  some point on the curve, or 
equivalently the instantaneous rate of change is equal to 
the slope of a line drawn tangent to the curve at that point. 

2.5. A (delta) notation and the definition of 
the derivative 

This section introduces delta A notation for the definition 
of the derivative. 

An alternative notation for writing the definition of the 
derivative is to use Ax in place of h and Ay (or Af) in place of 
f(x + Ax) - f(x). Using this A (delta) notation the derivative 
with respect to  x can be written: 

AY - dY = lim&+o- - - 
Ax Ax dx 

f(x + Ax) - f(x) f'(x) = limAx-+o 
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In the context of a n  XY coordinate system, AylAx represents 
the average rate of change of y per unit change in x over 
the interval of a curve of a function between x and x + Ax. 
Similarly, dy/dx represents the instantaneous rate of 
change in y per unit change in x at some point (x,f(x)). 
This is also sometimes written: 

Ax Ax dx Ax 
- AY = Y(x+Ax)-Y(x) and dy - limM+o--- AY = y'(x) 

Distance and time are sometimes represented using the 
definition of the derivative as: 

f'(t) = 1' l r n A t - + O  

where At  represents a small increment of time, such that 
the distance at some time (t + At) is represented by f(t + At). 
The distance a t  time t is represented by f(t) and the change 
in distance is Af = f(t + At) - f(t). The average velocity is the 
change in distance Af divided by the change in time At ,  or 
AflAt. The instantaneous velocity at a given time is found by 
shrinking At  by taking the limit as At+O, which is f'(t) or 
dfldt. The average slope of the graph off is AflAt, and the 
slope at some point t on the graph o f f  is dfldt. 

f(t + At) - f(t) 
At 

For example, if a car driving at a constant velocity of 65 
mi/hr, the distance the car travels is given by f = d = vt. 
The distance traveled at any time t is f = vt, and at a later 
time (t + At) is v(t + At). The velocity can be represented by 
AflAt. If Af = vAt is substituted, velocity becomes AflAt = 
vAt/At = v, where limAt,oAflAt = dfldt = v. In 1 hour, the car 
has traveled 65 miles = 65(1), at 2 hours, 130 miles, etc. 
Because the car is traveling a t  a constant velocity, 
AflAt = dfldt = 65 mi/hr, and the limit is not required. 

Various notations are used to represent functions. I t  is 
important to understand what is being described and stay 
consistent with the notation within a given problem. 
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2.6. Slope of a tangent line and the definition 
of the derivative 

This section includes the slope of a tangent line and the 
definition of the derivative, and the equations for a tangent 
line, a secant line and a normal line. 

In the graph of a function, the slope of a line drawn 
tangent to the curve through some point (a,f(a)) on the 
curve is the derivative of the function at point (a,f(a)). In 
other words, the slope of the  tangent a t  point (a,f(a)) equals 
the derivative f’(a) at that point. (If a tangent line is 
vertical, its slope is undefined.) The slope of a tangent a t  a 
point measures the change in the curve at that point. 

tangent line 
at point (a, f(a)l/ 

The definition of the derivative can be used to prove that 
the slope of a line drawn tangent to  a graph of a function at 
some point, is the derivative of the function a t  that  point. 
Consider the two points on the curve (a,f(a)) and 
(a+h,f(a+h)). Tangent 1 is drawn through point (a,f(a)), 
tangent 2 is drawn through point (a+h,f(a+h)), and a 
“center line” is drawn through the two tangent points. 

tangent 1 
-7 

f(a+l 

2 

center line 
tangent 2 

a a+ X 
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The slope of the center line through point (a,f(a)) and 
point ((a+h),f(a+h)) represents the change in y over the 
change in x between the two points and is equal to: 
f(a + h) - f(a) - f(a + h) - f(a) 

If the value of the increment h between the two points is 
reduced, the value of h will approach zero, and the 
tangent 2 line through point (a+h,f(a+h)) will approach 
being equal to the tangent 1 line through point (a,f(a)). 
Therefore, the slope of the tangent a t  point (a,f(a)) equals 
the derivative f'(a): 

f'(a) = limh-,o 

provided the limit exists. 
Therefore, the slope of the tangent at (a,f(a)) is the 
derivative off a t  point a.  

- 
a + h - a  h 

= the slope of tangent 1 
f(a + h) - f(a) 

h 

Note that the deriuatiue at apoint on a curve can be 
represented as either the slope of the tangent line to the 
curve at that point, or the slope of the curve a t  that point. 

The equation for the tangent line a t  y = f(x) and x = a is: 
y - f(a) = f'(a)(x - a). 
This can be derived as follows: 

f(a + h) - f(a) 
h 

f'(a) = 

f'(a)(h) = f(a + h) - f(a) 
f(a + h) = f'(a)(h) + f(a) 
where if x - a = h and x = a + h, 
f(a + h) = f'(a)(x - a) + f(a) 
f(x) = f'(a)(x - a) + f(a) 
using y = f(x), 
y - f(a) = f'(a)(x - a) 
This is used to Zinearize and estimate a region of f(x) close 
to x = a near the point (a,f(a)) on a curved function. 
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The secant line is represented by a line drawn between 
two points on a curve. The equation for the secant line is: 

x2 -x1 
The slope of the secant line, f'(xl), is given by: 

secant line YI 

A secant line becomes a tangent line by letting x = xz 
approach x = XI:  

Another important equation is the equation for a line 
normal or perpendicular to the tangent line on a curve at a 
given point. The slope of the tangent line and slope of a 
perpendicular line multiply to equal -1. If m is the tangent 
line and -l/m is the normal line, then the equation for the 
normal line can be written: 
y - yl = (-l/m)(x - XI) or y - f(a) = [-l/f'(a)J(x - a). 

2.7. Velocity, distance, slope, area and the 
definition of the derivative 

This section includes a summary of the relationship 
between velocity and distance, increasing velocity, constant 
velocity, and velocity, distance and the area under a curve. 

The relationship between distance traveled f and velocity 
v is such that if f is known, v can be obtained, and if v is 
known, f can be obtained. Finding velocity from distance 
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traveled involves differentiation and finding distance 
traveled from velocity involves integration. (Integration is 
discussed at length in Chapter 3.) 

Consider the graphs below of f(t) = 3t2. Values of v(t) can 
be calculated for various t values using the definition of the 
derivative by (a.) determining f(t+h) and f(t); (b.) subtract- 
ing f(t) from f(t+h); (c.) dividing f(t+h) - f(t) by h; and 
(d.) taking the limit a s  h approaches zero, limh-,o. 
Using these four steps for f(t) = 3t2, v(t) for t = 2 was 
calculated in Section 2.4. to be v(2) = 12. Using these same 
four steps for other values oft, t = 0, 1, 3, results in v 
values of v(0) = 0, v(1) = 6, and v(3) = 18. In summary: 
f(0) = 0, v(0) = 0 
f(1) = 3, v(1) = 6 
f(2) = 12, v(2) = 12 
f(3) = 27, v(3) = 18 

f(t) = 3t2 

In this example, the velocity is increasing with distance and 
time. The slope of the curve drawn for f(t) is equal to v(t) at 
each point. Therefore, if a tangent line is drawn at each 
point for t, its slope is the velocity at that point or v(t). Note 
that the slope of v(t) is the acceleration. 

If velocity U remains constant, f will increase at that 
constant rate and f = vt. For example, if v(t) = 6mi/h, then 
f = 6t. Therefore, for: 
t = l ,  f = 6  
t = 2 ,  f = 1 2  
t = 3 ,  f =  18 
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v(t) is constant at 6 since the slope of f(t) is the same and 
equal to 6 a t  every point t. 

The graph for v can be determined by calculating the 
slope of the f graph. When the slope off is a straight line, 
the velocity is constant, and the graph of v(t) is a straight 
horizontal line at the constant slope value for f(t). When f is 
a curve, the slope must be calculated at each point by 
determining the slope of a tangent line drawn a t  each 
point. The slope can be positive or negative depending on 
whether the velocity or rate-of-change is increasing or 
decreasing (accelerating or decelerating.) 

To determine f from v graphically, it turns out that the 
area under the curve (or line) of U gives f. Therefore, the 
area under a graph of velocity represents the value for 
distance. This is discussed in Chapter 3. For a constant v 
the area is the rectangular region under v with height = v, 
width = t and area = vt. This is consistent with f = vt. The 
area under v is a sum of areas at each t value that corres- 
ponds to distances at each time increment. For sloped or 
curved v graphs, the area can also be divided into 
incremental areas at each t value, where the velocity 
within each small increment is nearly constant. 

If a set off values is listed, the differences between f s  are 
v values. For example, iff  = 1, 4, 8, 10, 12, then taking the 
difference between each f value results in a list of differ- 
ences or v values, v = 3, 4, 2,2 .  The sum of the differences 
in f values is 3 + 4 + 2 + 2 = 11, which is equivalent to the 
difference between the first and last f value 12 - 1 = 11. 
Therefore, the v values are the differences in f values a t  
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defined increments, and the area under U is the sum of the 
increments. The difference between the first and last value 
off is: 
area = f(t1ast) - f(tfim), or, 
(fi - fo) + (fz - fl) + (f3 - fz) + (f4 - f3) + ... = fn - fo 
= v1 +vz+v3 + ...+ Vn 

For example, consider a sine wave type of pattern where 
the curve oscillates from positive to negative to positive, 
and so on. Values off follow the pattern: 
f = 0, 1, 1, 0, -1, -1, 0 
where the differences which correspond to v values are: 
v = 1, 0, -1, -1, 0, 1 
The area is: 
f(tlast) - f(tfir,t) = 0 = sum of the differences (v values). 
Suppose more values are added: 
f = 0, 1, 1, 0, -I, -1, 0, 1, 1, the differences are: 
v=l ,O,-1,- l ,O, l , l ,O 
f(tlast) - f(tfiret) = 1 = sum of the differences (v values). 

The area of v is the sum of the incremental positive and 
negative areas over a chosen interval of corresponding f 
and v values. 

For example, consider f = 1, 2, 3, 4, 5, 6. The differences 
are v = I, 1, 1, 1, 1. The sum of the differences of the 
increments is: f(tiast) - f(tfi8t) = 5. 

c/ t t 

Slope off  = 1 = v, and area under v is f(t1ast) - f(tfirst) = 5. 
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2.8. Evaluating derivatives of constants and 
linear functions 

This section includes the derivative of a constant or a 
constant function and the derivative of a linear function. 
(The derivative of a constant multiplied by a variable is 
discussed in Section 2.10.) 

The derivative is the rate of change of something that is 
changing, therefore the derivative of a constant is zero. The 
derivative of constant function f(x) = c is zero everywhere, 
because its graph is a horizontal line with a slope of zero 
everywhere. In the graph below, f(x) = c is a constant 
function with a slope of zero, therefore f'(x) = 0. 

dddx = 0 
f(x) = c 

The rate of change of a linear function is constant 
because for each change in x along the graph of a linear 
function, the corresponding changes in y are the same. The 
graph of a linear function is a straight line and the slope of 
a straight line is constant, therefore the rate of change or 
derivative of a linear function is constant. 

Remember the equation for a line is f(x) = mx + b, 
where the constant slope is m = derivative = f'(x). 
Calculating the derivative, of f(x) = mx + b using the 
derivative formula (derived in the following section) is: 
df(x)/dx = d(mx)/dx + db/dx = m + 0 = m 
where m represents the constant slope of the straight line 
that represents the function. 
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2.9. Evaluating derivatives using the 
derivative formula 

This section introduces the derivative formula including 
its derivation. 

Evaluating derivatives using the definition of the 
derivative is labor-intensive. Instead, there is a shortcut 
formula used to evaluate derivatives. This derivative 
formula is: 
d 
dx 
where x represents any variable and n is any number. 

-xn = nxn-1 

If a constant a is multiplied by the variable xn, the 
derivative formula becomes: 
d 
dx 
- axn = anxn-1 

Note: The derivative formula is important and used 
frequently in calculus. 

The derivative formula can be derived from the definition 
of the derivative as follows: 
Consider a function f(x) = axn where a is some constant, x is 
a variable and n is a number. 
Substitute this function into the definition of the derivative: 
d a(x+ h)” -ax” --a” = limh+o dx h 

Factor out the constant a: 
a((x+ h)” - x ” )  

h 
l i m w  

The (x + h)n term can be expanded using the binomial 
expansion : 
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+ n(n - 1)x n-2 h 
2! 

(x + h)n = xn + nxn-lh + 

+ ... hn n(n - l)(n - 2)x n-3 h3 
3! 

Because there are no h2, h3, etc., terms in the definition of 
the derivative, and the limit a s  h+O will quickly remove 
these, write the binomial expansion excluding the h2, and 
greater terms. This expansion becomes: 
(x + h)" = xn + nxn-lh 

Substitute the expansion for (x + h)n into the definition of 
the derivative: 

a((x+ h)" -x")  a((x" +nx"-'h)-x") limh+o = limh,o 

Cancel the xn terms: 

limh-,o 

Factor and cancel a n  h from each term: 
limh+o a(nxn-l) 
Therefore, as h+O: 
d 
dx 
This is the derivative formula. 

h h 

a(nx "-' h ) 
h 

-ax " anxn-1 

2.10, The derivatives of a variable, a constant 
with a variable, a constant with a function 
and a variable raised to a power 

In this section, the derivative formula is applied to 
f(x) = x, f(x) = cx and f(x) = cxn. 

The derivative of an  independent variable x with respect to 
itself is one. 
-x = 1 )( x1-1= 1x0 = 1 d 
dx 
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The derivative of a constant c times an independent 
variable x with respect to x is equivalent to the constant 
times the derivative of the independent variable. 

d - c x = c - x = c x  l x x 1 - 1 = c x  l x x O = c  d 
dx dx 

The derivative of a constant times a function f(x) is equiv- 
alent to the constant times the derivative of the function. 
d d 
- cf(x) = c- f(x) 
dx dx 

By multiplying a function by a constant, the graph of that 
function will be affected by the constant. The graph will 
have the same general shape as it does without the 
multiple. However, it may have a larger or smaller 
amplitude, it may be elongated or narrower, it may be 
moved to the right or left or up or down, or if multiplied by 
a negative constant it may be flipped over the X-axis. 
The slopes (or derivatives) of the curve of the graph of a 
function multiplied by a constant will be different a t  each 
point along the curve from the slopes of the curve of the 
original function. The change in the slopes will be 
proportional to the value of the constant. 
For example, if a function is multiplied by the constant 2, 
the amplitude of the graph will be two times the amplitude 
of the original graph. Similarly, if a function is multiplied 
by the constant 1/2, the amplitude of the graph will be one- 
half the amplitude of the original graph. 

tangent to 2f(x) 
tangent to f(x) 

2f(x) = upper curve 

, f(x) = lower curve 
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The derivative of a function with the variable raised to a 
power in the form cxn evaluated using the derivative 
formula is: 
d 
dx 
where c represents any constant number that may be 
multiplied with the function and n is a n  integer. 
For example, (d/dx)3x2 = (3)(2)x2-l = 6x. 
If n is negative the formula becomes: 

dx 

- cxn = cnxn-1 

d C X - n  = -pnx-n-l 

2.11. Examples of differentiating using the 
derivative formula 

This section includes using the derivative formula to 
evaluate simple functions and calculating the derivative of 
l/x using the definition of the derivative as a comparison. 

The following are examples of using the derivative 
formula to evaluate derivatives: 
d -x = 1 )( x1-1= 1x0 = 1 
dx 

U 

-x25 = 25 dx 
~ 2 5 - 1  = 2 5 ~ ~ ~  
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= 1/(2x1/2) = 1/(2 A) (Remember xn = l/x-" and x-n = l/xn.) 

d 
- (2x) = 2x1-1 = 2x0 = 2 
dx 
d 
- (2x2) = 2 x 2x2-1 = 2 x 2x1 = 4x 
dx 
d 

- 2 = o  
dx 

Using the derivative formula to evaluate (d/dx)(l/x) 
resulted in -1/x2. Evaluate this derivative using the 
definition of the derivative and compare the results: 

, gives: f(x + Ax) - f(x) Using f'(x) = lim~-,o 
Ax 

limh-+o ([- 1 - :] + Ax) 
X+AX 

- X 

x(x + Ax) x(x + Ax) 
= limAx-+O 

x(x + Ax) 

- AX 
= limm+o [ [ ] -+ A.) = limAx+o [ [ - 1 D 

x2 +xAx) x2  +xAx) 
as Ax-+O, this approaches -1/x2, which is the same answer 
obtained using the derivative formula. 
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2.12. Derivatives of powers of functions 

This section includes evaluating powers of functions using 
the derivative formula, comparing results with the 
definition of the derivative and graphs. 

To evaluate the derivatives of powers of functions, the 
derivative formula can be applied to the whole function, 
which is then multiplied with the derivative of what is 
inside. This is known as the chain rule and is discussed in 
Section 2.19. 
d d 
- (f(x))2 = 2 x f(x) x - f(x) 
dx dx 
d d 
- (f(x))3 = 3 x (f(x))2 x - f(x) dx dX 
d d 
- (f(x))4 = 4 x (f(x))3 x - f(x) dx dx 
d d 
- (f(x))n = n x (f(x))n-l x - f(x) dx dx 

Results obtained using this method can be compared with 
results obtained using the definition of the derivative. For 
example, if (d/dx)(f(x))2: 
- -  Af - (f(x + A x ) ) ~  - (f(x))2 
Ax Ax 
Remember the factored form of (x2 - y2) is (x + y)(x - y). 
Using this for A f  
- -  Af - (f(x + Ax) + f(x))(f(x + Ax) - f(x)) 
Ax Ax 

f(x + Ax) - f(x) 
= (f(x+Ax)+f(x)) 

Ax 

df Af df 
therefore, - = limm,o - = 2f(x) - 

dx Ax dx 
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Following are graphs of functions raised to a power and 
their derivatives. 
Example: If f(x) = x3, using the derivative formula results in 
3x2. The graph of x3 and its derivative is represented as: 

Example: If f(x) = x2, using the derivative formula results in 
2x. The graph of x2 and its derivative is: 

Because the derivative of x2 is 2x, which is a linear 
function, the graph of the derivative is a straight line with 
a constant slope of 2x. 

2.13. Derivatives of ax, ex and 1nx 

This section includes calculating derivatives along a 
curve of ax, demonstrating that the derivative of e~ is e ~ ,  the 
relationship between the derivative of a x  and the natural 
logarithm, and the derivative of the natural logarithm and 
of functions that involve the natural logarithm. 
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Graphs of exponential functions in the form f(x) = e~ and 
f(x) = ax, depict that  for negative values of x, f(x) increases 
slowly and for positive values of x, f(x) increases faster. 

I 
For real values of x, the graph of the derivative of 
f(x) = ax exists above the X-axis. 

Consider f(x) = ax when a = 2. The curve of f(x) = 2" can be 
plotted by selecting Y values and solving for f(x): 
x = -3, f(x) = 2-3 = 1/23 = 1/16 

x = -1, f(x) = 2-1 = 1/21 = 112 
x = 0, f(x) = 2 0  = 1 
x = 1, f(x) = 21 = 2 
x = 2, f(x) = 22 = 4 
x = 3, f(x) = 23 = 8 
x = 4, f(x) = 2 4  = 16 

x = -2, f(x) = 2-2 = 1/Z2 = 114 

16 

14 

12 

10 

€ 

E 

4 

2 

L 

f(x) = 2x I 
X 

-4 -2 I 2 4 

It  is possible to calculate the derivative for f(x) = 2" at points 
along the curve using the definition of the derivative. This 
can be developed by first applying the definition of the 

75 



Master Math: Calculus 

derivative to the general case of ax and developing a general 
formula. Begin with: 

f(a + h) - f(a) 
h 

f'(x) = limh-+o 

- a x  a X a h  - a x  a x + h  
For f(x) = ax, f'(x) = limh,o = limh-+o 

h h 
a h  -1 = ax limh,o- a x ( a h  -1) 

= limh,o 
h h 

a h  -1 therefore, f'(x) = ax limh,o- 
h 

This formula shows that the derivative ofax is equal to ax 
multiplied by the limit of a constant. This expression for 
f'(x) can then be used to calculate values of the slope and, 
thus, the derivative of ax at various points along the curve. 
Using this formula to calculate the derivative for f(x) = ZX, 
where a = 2, first select x values along the curve such as 
x = -I, x = 0 and x = 1, and apply the formula: 

f'(-l) = 2-1 limh+o- = 112 limh,o---- Z h  -1 Z h  -1 
h h 

Z h  -1 Z h  -1 f'(0) = ZOlimh+o---- = 1 limh+o- 
h h 

In general, for f'(x) = 2" limh-,O--- Z h  -1 
h 

Taking the limit a s  h+O, by choosing small h values to see 
what the value of (Zh - 1 / h) approaches: 
h = -0.001, the limit = 0.692907 
h = +0.001, the limit = 0.693387 
h = -0.0002, the limit = 0.693099 
h = +0.0002, the limit = 0.693195 
h = -0.0001, the limit = 0.693123 
h = +0.0001, the limit = 0.693171 
Therefore, as h+O, (Zh - 1 / h) approaches 0.6931. 
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The derivative of f(x) = 2" can be calculated using: 
(d/dx)Zx = Z"(0.693 1) 
It is then possible to use this resulting formula to calculate 
the derivative a t  various points along the curve of 2" for 
different x values such as x = - 1 , O ,  1: 
f'(-1) = 2-'limh,o(2h - I/ h) = 2y0.693 1) = UZ(0.6931) = 0.346 
f'(0) = Zolimh,o(Zh - 1 / h) = ZO(O.6931) = l(0.6931) = 0.693 
f'(1) = Z1limh,o(Zh - 1 /h) = Zl(O.6931) = Z(0.6931) = 1.386 

. Consider f(x) = ax where a = e. The general expression 
f'(x) = ax limh,o(ah - l/h) developed in the preceding para- 
graphs can be used to show that the derivative of P is P.  To 
show that the derivative of ex is equal to the original func- 
tion e ~ ,  first notice that the quantity limh,o(ah- l/h) does 
not depend on the value of x and is therefore a constant for 
each unique value of a. I t  was calculated in the preceding 
paragraphs that this quantity of the limit is 0.6931 when 
a = 2 and therefore f'(x) = Z"(0.693 1). 
Similarly, it can be calculated using the same process that 
the quantity of the limit is 1.0986 when a = 3, and therefore 
f'(x) = 3"(1.0986). Notice that when a = 2, the quantity of 
the limit is less than 1 and the derivative of ax is slightly 
less than the original function ax. Also, when a = 3, the 
quantity of the limit is greater than 1 and the derivative of 
ax is slightly greater than the original function ax. 
Expanding on this and using these observations in 
combination with the fact that e = 2.7818, the quantity of 
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the limit must be equal to 1. This is consistent with the fact 
that the derivative of e~ must be equal to the original 
function e ~ .  

It is possible to find the value of a when a = e, which is the 
number that e represents, using this quantity of the limit 
where it is equal to 1: 
limh,o(ah - l/h) = 1 
First isolate a by considering the quantity of the limit a t  
small h values: 
(ah- l/h) = 1 
a h - 1 x h  
a h = h + l  
a k: (h + l)lIh 
Select small values for h as h-0: 
h = 0.0001, a = 2.7181 
h = -0.0001, a = 2.7184 
h = 0.00001, a = 2.7183 
h = -0.00001, a = 2.7183 
These values of a = e converge to a = e = 2.718. 
By substituting e = 2.718 and choosing small h values, it 
can be shown that: limh,o(eh- l/h) = 1. 
Therefore, (d/dx)@ = e~ 

Note that the slope at x = 0 is one. 
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Note that e can be expressed in the following two forms: 

1 1 1 1 1  

O !  l! 2! 3! 4! 
e =  -+-+-+-+-+... 

The exponential function is related to the natural 
logarithm such that In(@) = x and elnx = x. In the examples 
of the derivatives of ax where a = 2 and a = 3, the quantities 
of the limits are 0.6931 and 1.0986, respectively. These 
values are natural logarithms, such that 0.6931 = In2 and 
1.0986 = ln3. Therefore, using the formula developed in the 
preceding paragraphs: 
d 
- 2" = Z"(0.693 1) = ZX(ln 2) 
dx 
d 
- 3" = 3"(1.0986) = 3"(ln 3) 
dx 
Similarly, the following derivatives can be written: 

dx 
d 
- e~ = @(lne) 
dx 

- a X  = ax(1na) 

The derivative of the natural logarithm of x, or lnx, is llx. 
This can be verified using exponential form and the fact 
that x = dnx when x > 0 as follows. 
Begin by differentiating both sides of x = elnx: 
d d 
dx dx 
Using the chain rule (described in Section 2.19.) where 
f(g(x))' = f'(g(x))(g'(x)), differentiate the right side eln x, or 

eh x - x =  - 

efW: 
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Substitute f(x) = lnx: 
d d d 

dx dx dx 
e l n x  - (In x) = x - (ln x) - e l n  x = 

Set equal to the left side: 
d d -x = x -(lnx) 
dx dx 

d 
1 = x- (lnx) 

dx 
d 
dx l/x = - (lnx), for x > 0 or I x I + 0 

Therefore, l/x = the slope of the graph of lnx. 

Following are examples of derivatives that involve the 
natural logarithm: 
d 1 
- (ln(f(x)) = (- )(f'(x)), for f(x) > 0 and x # 0 
dx f(x) 
d - (ln(x2)) = 2x(l/x2) = 2/x 

dx 
d - (In 2x) = 2(1/2x) = l/x, where 2 does not affect the slope. 
dx 
d 
- (ln(x3 + 3)) = 3x2/(x3 + 3) 
dx 
d 1 cos x 
- (ln(sin x)) = cos x( -) = - 
dx sin x sin x 

2.14. Applications of exponential equation 

This section includes the general equation for growth and 
decay, a n  example of a bacteria population and a n  equation 
for compound interest. 

There are many questions in science, finance, etc., that  
can be answered using growth and decay models. For 
example, the rate of change of growth of a population is 
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often proportional to the size of the population at a given 
point in time. The general equation for exponential growth 
and  decay is given by the derivative: 

dY (t) 
dt 

dy(t)/dt = ky(t), where y(t) = cekt and - = kcekt 

where y(t) represents what is growing or decaying at time t 
(e.g. the size of a population or the amount of a radioactive 
substance); 
t represents time; 
c represents the initial amount (e.g. mass); and 
k is a constant of proportionality representing rate of 
growth or decay, such that when k > 0 the population is 
growing at an  exponential rate, and when k < 0 the 
population is decreasing at an  exponential rate. 
Differentiating y(t) gives: 

d d 
dt dt dt 

-- dy(t) - - (cekt) = (cekt)( - kt) = kcekt = ky(t) 

Therefore, for any function where dy(t)/dt = ky(t), 
then y(t) = ceht, for some number c. 
Note that at t = 0, y(0) = = c 

Example: Suppose a bacterial population (culture) begins 
with 100,000 bacterium and in 20 days has 200,000 
bacterium. If the population will double in 20 days, how big 
will it be in 15 days and what is its rate of change in 20 
days? 
y(t) represents the size of the population in t days 
y(t) = cekt 
First determine c and k: 
At t = 0, y(0) = cek(0) = c = 100,000 
To find k, at t = 20, y(20) = 100,000 ek(20) = 200,000 
Rearranging gives: ek(20) = 2 
Take logarithm of both sides: 
In ek(20) = In 2 
k(20) = In2 
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k = (ln2)/20 
Substitute c and k into the equation for y(t): 
y(t) = ( 100,000)e((1n2)/2*)t 
At t = 15: 

y( 15) = 168,179 bacterial in 15 days 
The rate of change of the population at 20 days is: 

~ ( 1 5 )  = 1O0,OOO e((ln 2)/20)(15) = (1OO,O00)215/20 = 

-- dy(20) - ky(20) = (In 2/20)( 100,OOO)e(t~n 2 ~ 2 0  
dt 

= (5,00O)(ln 2) eln = (5,00O)(ln 2)(2) = (10,000) In 2 
= 693 1 bacteriumlday 

. For examples involving interest on money, the amount of 
interest earned at a continuously compounded fured rate 
will be dependent on the amount of money, and will 
increase with increasing amounts of money. The growth- 
decay equation applies to this a s  well: 
y(t) = cekt 
where y(t) represents the amount of money at time t; 
c represents the starting amount; 
k represents the continuous or instantaneous growth rate 
(interest rate). Note that k is not the same as the annual 
growth rate. 

Continuously applied compounded interest is sometimes 
represented by: 
P(1+ (i/n))t 
where P represents principal; 
t represents number of time periods where amount is 
checked; 
i represents yearly interest rate (decimal form); 
n represents number of time periods per year that  equal 
divisions of the proportional amount of interest is paid; and 
i/n represents annual growth rate. 
At one year the amount is P(1+ (i/n))n. 
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As number of times per year interest is paid increases (such 
that it is "continuously compounded): 
limn+,P(l+ (iln))" = P limn,(l+ (iln))" 
Substitute "in" for n: 
P limn,,(l+ (i/in))in = P limn+,(l+ (l/n))'" 
Because e can be expressed as e = limn+,(l+ (l/n))", then, 
P limn+,( 1+ ( l/n))in becomes: 
Pei = continuously compounded interest. 

2.15. Differentiating sums, differences and 
polynomials 

This section includes differentiating sums and differences 
of functions and differentiating polynomial functions. 

To differentiate functions that are added or subtracted, 
differentiate each function separately, then add or subtract 
the resulting functions. If one of the functions contains a 
polynomial, differentiate the polynomial term by term. 

The sum and difference of the two functions f(x) and g(x) 
can be differentiated as follows: 

Example: If f(x) = 2x2 and g(x) = x3 + 3, find: 
d 
- [f(x) + g(x)l. dx 
d d 

dx dx 
- [f(x) + g(x)] = - [(2x2) + (x2 + 3)] 

d d d d d 
= -(2x2)+ -(x3+3) = -2x2+ -x3+ -3 

dx dx dx dx dx 
= 4x + 3x2 + 0 = 4x + 3x2 
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Example: Find: 
d 
- [sinx + cosx]. 
dx 
d d -sinx + -cosx = cosx - sinx 
dx dx 

Polynomial functions can be differentiated by 
differentiating each term separately. For example, if 
X I ,  x2, -x3 and x4 each represent a term, then: 

Differentiating a polynomial is similar to differentiating a 
sum or difference: 
d d d d 
dx dx dx dx 
- ( f + g + c )  = - f + - g + - c  

where c is any constant number. 

For example, differentiate the following polynomial 
function term by term using the derivative formula: 
d d d d d -(x3+4x2+7x+9)=-x3+ -4x2+ -7x+ -9 
dx dx dx dx dx 
= 3x2 + (4)(2x) + (7)(1) + 0 = 3x2 + 8x + 7 

2.16. Taking second derivatives 

This section includes the definition of the second 
derivative, a n  example and notation. 

In general, the second derivative of a function involves 
taking the derivative of the function that results after the 
first derivative is taken. The second derivative is the rate of 
change of the rate of change. For example, velocity v is the 
rate at which the position of something is changing with 
respect to time, and acceleration a is the rate at which the 
velocity is changing with respect to time. 
v = dxldt and a = dvldt 
therefore, a = dv/dt = d2x/dt2. 
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A positive value of a reflects acceleration, and a negative 
value of a reflects deceleration. 

If y = f(x), the first derivative is f'(x) = dy/dx, then 
d2Y the second derivative is f"(x) = - - - - 

dx (") dx - dX2 

The second derivative provides information about change 
in slope, the rate of change of something that is changing, 
such as the growth rate of a population, and is used in 
minima and maxima problems. (See Section 2.27.) 

To find the second derivative of a function, differentiate 
the original function first, then differentiate the result. For 
example, for the polynomial function in Section 2.15, 
f(x) = (x3 + 4x2 + 7x + 9), the first derivative is 3x2 + 8x + 7. 
To find the second derivative, differentiate this resulting 
function: 
d d d d 
dx dx dx dx 
= 6x + 8 + 0 = 6x + 8 

- (3x2 + 8~ + 7) = -3x2 + - 8 ~  + - 7 

Notation for multiple derivatives is: 

For the second derivative: 
d2f(x) d 2  
dx2 ' dx2 
- f(x), P(x), f"(x), D2f(x), Dx2f(x) 

For the nth derivative: 
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2.17. Derivatives of products: the product rule 

This section includes the definition of the product rule, 
derivation of the product rule and the product rule for 
multiple products. 

The product rule can be used to differentiate the product 
of two functions. The product rule applied to the product of 
the two functions f(x) and g(x) is: 
d d d 
- (f(x))(g(xN = ( - f(x))(g(xN + (f(x))( - g(x)> ' dx dx dx 
Using shorthand notation the product rule is written: 
(fg)' = f'g + fg' 
Note: The formula for theproduct rule is important and 
used frequently in calculus. 

The product rule can be developed using the definition of 
the derivative given by: 

dx h 
f(x + h) - f(x) df'x) = limh-+O 

which can be written for two functions as: 

Using the A notation and the definition of the derivative, a 
small change in f, or Af, is f(x + Ax) - f(x) and a small change 
in g, or Ag is g(x + Ax) - g(x), such that: 

f'(x)g'(x) = limM+o 

Because, Af = f(x + Ax) - f(x) 
rearrange: 
f(x + Ax) = Af + f(x) 
Similarly for g: 

re arrange : 

f(x + Ax)g(x + Ax) - f(x)g(x) 
Ax 

Ag = g(x + Ax) - g(X) 
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Af *Ag + 

= limB+o( - 
Ax 

Af-Ag + = limAx+o- 
Ax 

Multiply the first term by Ax/Ax and remember that: 
AY - dY. limb+o- - - . 
Ax dx 
Af-Ag AX Af Ag df dg . o = o  limb-+o- - = limb+O----C\X = - - Ax Ax AX - AX dx dx 

results in: 
Af Ag 
Ax A2l 

f'(x)g'(x) = O + limm+o-- g(x) + l im~+o- f(x) 

df dg 
= - g(x) + - f(x) = f'(x)g(x) + g'(x)f(x) dx dx 
which is the product rule. 

Example: If f(x) = x2 and g(x) = x3, find: 
d - (f(x))(g(x)) using the product rule. 

dx 
First evaluate f' and g': 

Apply the product rule: 
f'(x) = 2x, g'(x) = 3x2 

d d d 
dx dx dx 
- (x2)(x3) = (- (x2))(x3) + (x2)( - (x3)) 
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The product rule can be applied to find the derivative of a 
function raised to the second power. For example, (x3 + x2)2 
can be treated as the product of (x3 + x2)(x3 + x2). 

An extension of the product rule can be applied to 
derivatives of multiple products. 
For two functions f and g: (fg)' = f'g + fg' 
For three functions f, g and h: (fgh)' = f'gh + fg'h + fgh' 
For four functions f, g, h and p: 
(fghp)' = f'ghp + fg'hp + fgh'p + fghp' 

2.18.Derivatives of quotients: the quotient 
rule 

This section includes the definition of the quotient rule, a 
proof of the quotient rule and an  example. 

The quotient rule can be applied to evaluate derivatives of 
quotients of functions. For the functions f(x) and g(x) the 
quotient rule is: 
--- d f(x) - f'(x)g(x) - f(x)g'(x) 
dx g(x) gW2 

Or equivalently: (3 '= f';;"' 

Note: The formula for the quotient rule is important and 
used frequently in calculus. 

To prove the quotient rule, first let quotient, Q = Vg, then 
by rearranging, f = Qg. 
Apply the product rule to f = Qg: 
f' = Q'g + Qg' 
Substitute Q = Vg: 
f' = Q'g + (f/g)g' 
Solve for Q': 
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Q'g = f ' - (flg)g' 
f' - (f / g)g' &' = 

Multiply both sides by (g/g): 
g 

f'g - fg' 
g2 

Q' = (flg)' = which is the quotient rule. 

Example: Use the quotient rule to find the derivative of 
the quotient of f(x) = x2 and g(x) = x3, or: (d/dx)(x2/x3). 
To find the derivative of the quotient, evaluate f'(x) and 
g' (x): 
f'(x) = Z X ,  g'(x) = 3x2 
Substitute f(x), g(x), f'(x), g'(x) into the quotient rule: 

- - -1/x2 
d x2 - Zx(x3)-(x2)3x2 - 2x4 -3x4 - -x  4 

dx x3 (x3 )2 X 6  X 
- -- --- 

6 

Therefore, (d/dx)(x2/x3) = -1/x2. 

Note that this simple example is used so that the result can 
be verified by first simplifying the expression x2/x3 to l/x, 
then differentiating: 

-11x2 
d d - l/x = -x-1 = -1 * x-1-1 = 5 - 2  = 

dx dx 

2.19. The chain rule for differentiating 
complicated functions 

9 This section includes the definition of the chain rule, 
examples using the chain rule, the chain rule applied to 
reciprocal functions and functions raised to a power. 

The chain rule can be used to differentiate composite 
functions in which variables depend on other variables. 
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Consider the function f that depends on the variable U, but 
U depends on the variable x. In other words, f is a function 
of U, and U is a function of x. The chain rule is written: 
d d d 
- f(u(x)) = - f(u) x - u(x) = (f'(u))(u'(x)) 
dx du dx 
where the derivative exists at u(x) and at f(u(x)). 

Note: The formula for the chain rule is important and used 
frequently in calculus. 

The chain rule is the derivative of the outer function 
times the derivative of the function inside. I t  is important 
to identify the outer and inner functions in a composite 
function that is to be differentiated. In the function f(u(x)), 
f is the outside function and U is the inside function. 
Similarly, in the function f(g(x)), f is the outside function 
and g is the inside function. 

The chain rule can be derived as follows: 
If z = u(x) and y = f(z), then y = f(u(x)). 
In this function, u(x) is determined by x and f(z) is deter- 
mined by z. A small change in x, Ax, will cause a small 
change in z, Az, which will cause a small change in y, Ay. 

Ay Az 
Ax Az Ax 

Therefore, 3 = - -. 

Because, 
dY AY dY ' AY dz Az 
- = limM.+o-, - = 1imA-0- and - = l im~+o-,  
dx Ax dz A2 dx Ax 
taking the limits of each term results in: 

which is the chain rule, 
dY dz where - -+ f'(u) and - -+ u'(x). 
dz dx 
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Example: If f(u) = (u(x))~ and u(x) = x3, apply the chain 
rule: 
d d d 

dx du dx 
Substitute u(x) = x3: 
2x3 x 3x2 = 6x5 

d Therefore, -f(u(x)) = 6x5. 
dx 

- f[u(x)] = - (u(x))2 x - x3 = 2u(x) x 3x2 

This is a simple example and is used so tha t  the result can 
be verified by substituting u(x) = x3 directly into 
f(u) = (u(x))~ first and then evaluating the derivative. 
f(u) = (u(x)) = (x3)2 = x6 
d d 
- f(u(x)) = - x6 = 6x5 
dx dx 

Example: The chain rule can be used to break complex 
functions into two simpler functions. Consider the 
derivative (d/dx)f(x) = (d/dx)[(x2 + x)3]. 
This can be simplified using the chain rule. 
First let f(u) = (u(x))3 and u(x) = (x2 + x). 

d d d 
dx du dx 

Using the chain rule, - f(u(x)) = - f(u) x - u(x), 

substitute for f(u) and u(x): 
d d d 

dx du dx 
Differentiate : 
d --f[u(x)] = 3 x(u(x))2 x (2x + 1) 

dx 
Substitute u(x) = (x2 + x): 
d 
- f[u(x)] = 3 x (x2 + x)2 x (2x + 1) 
dx 
= 3 x (x2 + x) x (x2 + x) x (2x + 1) 
Multiply the first two binomials: 
= 3 x (x4 + x3 + x3 + x2) x (2x + 1) 
Combine like terms: 

- f[u(x)] = - (u(x))3 x - (x2 + x) 
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= 3 x (x4 + 2x3 + x2) x (zx + 1) 

= 3 x [(2x5 + 4x4 + 2x3) + (x4 + 2x3 + x2)1 
Multiply the binomial and  the trinomial: 

Combine like terms, then multiply the 3: 
= 3 x [2x5 + 5x4 + 4x3 + x2] = 6x5 + 15x4 + 12x3 + 3x2 

Therefore, - [(x2 + x ) ~ ]  = 6x5 + 15x4 + 12x3 + 3x2. d 
dx 

Example: If y = (COSX)~, what is dy/dx? 
Using the chain rule: 
d d d 
- y = - (cos x ) ~  x - cos x = (3 cos x)2 x (-sin x) 
dx dx dx 
= -3 cos2 x sin x 

Example: If y = exp(x1/2} what is dy/dx? 
(“exp” rep resents e.) 
d d - y = - (exp(x1’2)) x 

dx dx dx 
x1/2 = (exp(x”2})((1/2)x(112-2/2)) 

exp (x ‘ I 2  1 
2x l I2  

= (exp(x1/2))(( 1/2)x-l/2) = 

The derivative of a reciprocal function l/f(x) can be solved 
using the chain rule as follows: 
d d d 
- (l/f(x)) = - (f(x))-l x - f(x) 
dx dx dx 

= (-l)(f(X))-Z x-f(x) = 
dx (f(x)) 
d - df(x) / dx 

The derivative of a function raised to a power can be 
solved using the chain rule as follows: 
d d d 

dx dx dx 

= n x (f(x))n-l x - f(x) = n(f(x))n-l x f’(x) 

- (f(x))* = - (f(x))“ x - f(x) 

d 
dx 
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2.20. Rate problem examples 

This section includes two examples of rate problems. 

Rateproblems are common in calculus and are used to 
determine rates of movement or change in some parameter 
with respect to time. 

For example, consider circular waves caused from a n  
object tossed into a pool of water where the circular ripples 
increase in diameter a t  a rate of 10 cmkecond, a t  a 
diameter of 10 cm. How fast are the circumference and area 
of the circular ripples increasing at radius = 5 cm? 
Given c = circumference = 2x1, a = area = nr2, 
and the rate of change is 10 cm/second, which is (dr(t)/dt), 
then at radius r = 5 cm the change in circumference is: 
d d d 
- c(t) = - 2nr(t) = 2.n- r(t) = Z.n(l0)  = 2O.n cm/s 
dt dt dt 
At r = 5 cm the change in area is: 
d d d d 
- a(t) = - 7r(r(t))2 = IT - (r(t))2 = Z.nr(t) - r(t) 
dt dt dt dt 

d 
dt 

= 2.n(5)- r(t) = lO.n(l0) = 10011 cm/s 

Another example of the “rate” problem involves the 
stretching of a right triangle: 

If side A is fued at 5 cm and side B is stretching at a 
constant rate of 2 cm/s so that (dB/dt) = 2 cm/s, then what 
is the rate of change of C, (dC/dt), when B is at 5 cm? 
Using the Pythagorean Theorem A2 + B2 = C2: 
d d d - C2 = - [A2 + B2] = - [ 5 2  + B2] 
dt dt dt 
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d d 
dt dt 

Taking derivatives: 2C - C = 0 + 2B - B 

d 2B d 
dt 2C dt 

Rearranging gives: - C = - - B 

When B is 5 and (dB/dt) is 2, then C can be found at 
B = 5 using A2 + B2 = C2. Therefore: c = (52 + 52)1/2 = 25 + 25)1/2 = (50)1/2 = 5(2)1/2 
D iffe re n t ia t ing : 

Therefore, when B is a t  5 cm, dC/dt = h cm/s. 

2.21. Differentiating trigonometric functions 

This section includes the relationship between sine and 
cosine with respect to their first and second derivatives, the 
derivatives of tangent, cotangent, secant and cosecant. 

Sine and cosine 
The derivative of sine is cosine and the derivative of cosine 

is -sine. This can be visualized by comparing the slopes of 
sine and cosine curves at various points along their graphs. 

yI 
y = sin x 

-7t 

y1 y=cosx 

- '  I f ' = O  
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The derivative of the sine curve is zero at the top and 
bottom points on the curve where it is horizontal, 4 2 ,  7d2, 
(3/2)7c, (5/2)11, etc. The maximum rates of change of sine in 
the positive direction occur at points on the curve at 0, Zx, 
4x, etc. The maximum rates of change of the sine curve in 
the negative direction occur a t  points -E ,  11, 3n, etc. 
The points where the derivative of sine is zero correspond 
to points where the cosine curve crosses zero. The points 
where the derivative of sine is maximum-positive 
correspond to maximum points on the cosine curve. 
Similarly, the points where the derivative on the sine curve 
is maximum-negative correspond to the most negative 
points on the cosine curve. 

The cosine curve is the sine curve shifted to the left by 
(1/2)x, which is consistent with the trigonometric identity, 
cosx = sin(x + 7d2) 

The derivatives of sine and cosine can be verified using 
the definition of the derivative and the addition formulas 
for sine and cosine: 
sin(x+h) = sin x cosh + cos x sin h 
cos(x+h) = cos x cosh - sin x sin h 
For f(x) = sin x, find f'(x): 

f'(x) = limh,o sin(x + h) - sinx 
h 

sin x cos h + cosx sin h - sin x 
h 

= limh,o 

sinxcosh-sinx cosxsinh + 
= limh+O ( h  h 

sin x (cos h - 1) 
h 

cosx sin h 
h 

+ limh,o 

cosh-1 sin h + cos x limh+o- 

= limh-,o 

= sin x limh+o 
h h 
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COS h - 1 As h+O, + - = O  

sin h sin0.000001- 0.000001 AS h+O, - - 
h 0.000001 0.00000 1 

Therefore, f'(x) = 0 + cos x = cos x. 

COS 0.00000 1 - I - 1-1 
h 0.00000 1 0.00000 1 

= 1  

Similarly, if f(x) = cosx, find f'(x): 

f'(x) = limh+O COS(X + h) - cosx 
h 

cosxcosh-sinx sinh-cosx = limh+o 
h 

cosx cosh - cosx -sinx sin h 
= limh+o 

h 
COS x (COS h - 1) 

= limh-+o - limh,o 

= cosx limh,o 

Therefore, f'(x) = 0 - sin x = -sin x. 

sin x sin h 
h h 

cosh-1 sin h 
- sin x limh,o- 

h h 

In general, the second derivative of a function indicates 
whether the curve is concave up (positive derivative) or 
concave down (negative derivative) at the point on the curve 
where the derivative is taken. This can be observed on the 
following graphs of sine and cosine. 
For example at x = 0, sine begins moving up and its 
derivative (cosine) is positive. However, the curve is moving 
into a concave-down shape, which is consistent with the 
second derivative becoming negative. 
Similarly at x = 0, cosine begins and slopes downward, its 
first derivative (sine) becomes negative. However, the 
second derivative is also negative, which is consistent with 
the curve moving along a concave-down shape. 
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concave down: f ' = 0, f I' < 0 yI A 

X 
--71 

v n c a v e  up: f ' = 0, f 'I > 0 

concave down: f ' = 0, f " < II 
- [  1 \ concave up: f ' 

0 

= 0, f "  > 0 

The slope at each point on the sine curve is given by the 
value of the cosine curve at that point. 

Second derivatives of sine and cosine are: 
d d 2  

dx dx 
sin x = - cos x = -sin x 

sinx = -cosx d d 2  
dx dx 

cosx = -- 

Tangent, cotangent, secant and cosecant 
The derivative oftangent can be easily determined using 

the fact that t an  x = (sin x / cos x) and the rule for 
differentiating quotients (described in Section 2.18). 

The quotient rule is -- - 

in this case, f(x) = sinx and g(x) = cosx: 

d f(x) - f'(x)g(x) - f(x)g'(x) 
dx g w  gW2 

d d sin x - ((d / dx)sin x)(cos x) - (sin x)(d / dx)cos x) -tanx = -- - 
dX dx cosx (cos x)2 
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1 - -- cos x cos x - sin x (-sin x) - C O S ~ ~  + sin2x - - - 
2 cos2x (cos x)2 cos x 

(Remember, coszx + sin2x = 1.) 

The derivatives of cotangent, secant and cosecant are: 
(d/dx)cot x = --csczx 
(d/dx)sec x = sec x tan x 
(d/dx)cscx = -CSCX cot x 

2.22. Inverse functions and inverse 
trigonometric functions and their derivatives 

This section includes a brief summary of inverse 
functions, the derivative of inverse functions, inverse 
trigonometric functions and their derivatives. 

Inverse functions are functions that result in the same 
value of x after the operations of the two functions are 
performed. In inverse functions, the operations of each 
function are the reverse of the other function. If f is the 
inverse of g then g is the inverse off. Notation for the 
inverse of function f is f? 

An inverse of a function has its domain and range equal 
to the range and domain, respectively, of the original 
function. If f(x) = y, then f '(y) = x. For a function f(x,y) that  
has only one y value for each x value, then there exists a n  
inverse function represented by f l(y,x). A function has an  
inverse if its graph intersects any horizontal line no more 
than once. 

If function f is represented by f(x) = U, then its inverse 
f 1 can be found by solving f(x) = U for x in terms of U: 

f Iu = fl(f(x)) = x. Therefore, if f(x) = U then f l(u) = x, 
or if f l (u)  = x then f(x) = U. For more complicated or 
composite functions, if y = f[u(x)], then the inverse can be 
written in the opposite order: x = u-l(fl(y)) 
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Not all functions have inverses. If a function has more 
than one solution, it does not have a n  inverse. If u(x) = z, 
only one x can result, x = U-~(Z). If there is more than one 
solution for u-l(z), it will not be the inverse of u(x) = z. 

. When functions f and U are inverse functions, then they 
will return to the first value. For example, if 
y = f(x) = 2x - 1 and x = fl(y) = (y + 1)/2 are inverses, 
and if x = 3, then by substituting for x: 

By substituting 5 into inverse function: 

which results in the starting point. 

f(3) = 2(3) - 1 = 5 

f'(5) = (5 + 1)/2 = 3 

Graphs of inverse functions are mirror images. For 
example, if z = u(x) = 2x, then x = (1/2)z. The slopes are 
(dzldx) = 2 and (dx/dz) = 112. 

z X 
z = 2x 

x = (1/2)z 
4 4 

3 3 
2 
1 

X Z 

1 2 3 4  1 2 3 4  

Following are examples of functions and their inverses: 
z = x2 is the inverse of x =& or x = 21'2 

z = e~ is the inverse of: x = lnz 
z = ax is the inverse of: x = logaz 

The derivatives of inverse functions y = f(x) and 
x = f '(y), have the property: (dy/dx)(dx/dy) = 1. 
For example, using inverse functions: 
y = f(x) = 2x - 1 and x = fl(y) = (y + 1)/2 
dy/dx = 2 and dx/dy = 1/2 
Therefore, (dy/dx)(dx/dy) = (2)( 1/2) = 1. 
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If f[u(x)] = x is a n  inverse function, then applying the 
chain rule gives: f'[u(x)] x u'(x) = 1. 
If y = u(x) and x = f(y), then the rule is written: 
(dx/dy)(dy/dx) = 1, where the slope of y = u(x) multiplied by 
the slope of x = u-l(y) is equal to 1. 

Inverses of trigonometric functions introduced in Chapter 1 
exist in defined intervals. For example, the inverse of sine is 
sin-1y = x for 1 2 y 2 -1, which pertains to sinx = y 
for n/2 2 x 2 -n/2. The inverse brings y back to x. 
The graph of y = sinx is a mirror image of sin-ly = x. 

near the origin 

Only certain intervals of the sine function have inverses: 
In the interval 7c/2 2 x 2 4 2 ,  sin-l(sinx) = x. 
In the interval 1 2 y 2 -1, sin(sin-ly) = y. 
There are many points on the sine function where sin x = 0. 

9 The derivative of inverse sine, where x = sin-ly, exists in 
the interval 1 2 y 2 -1 and n/2 2 x 2 4 2 .  The derivative of 
the inverse function equals one over the derivative of the 
original function. The derivative of the inverse function 
x = sin-ly can be found using the derivative of the original 
function y = sinx, where: 
(dy/dx) = cosx 
then by rearranging, 
(dx/dy) = l/cosx 
Going further and using the trigonometric identity 
cos2x + sin2x = 1, or equivalently, cosx = (1 - sin2x)1/2, 
combined with sinx = y and squaring sin2x = y2: 
(dx/dy) = (d/dy)sin-ly = l/cos x = 1/( 1 - y2)'/2 
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The derivative of inverse cosine, where x = cos-ly, exists in 

the interval 1 2 y 2 -1 and 7t > x > 0. The derivative of the 
inverse function x = cos-ly can be found using the 
derivative of the original function y = cos x, where: 
(dy/dx) = -sinx 
then by rearranging, 
(dx/dy) = -l/sinx 
Going further and using the trigonometric identity 
cos2x + sin2x = 1, or equivalently, sin x = (1 - C O S ~ X ) ~ ’ ~ ,  
combined with cosx = y and squaring cos2x = y2: 
(dx/dy) = (d/dy)cos-ly = -l/sinx = -1/(1 - y2)1’2 

For the tangent function tanx  = y, the inverse, 
tan-ly = x exists for x / 2  2 x 2 4 2 .  The derivative of inverse 
tangent, where x = tan-ly, exists for 00 2 y 2 -00 and 
7t/2 2 x 2 -7d2. The derivative of the inverse function 
x = tan-ly can be found using the derivative of the original 
function y = t an  x, where: 
(dy/dx) = -sec2x 
then by rearranging, 
(dx/dy) = -l/sec2x 
Going further and using the trigonometric identity 
sec2x = 1+ tan2x, combined with tanx  = y and squaring 
tan2x = y2: 
(dx/dy) = (d/dy)tan-ly = -l/sec2x = l /( l+ tan2x) = 1/(1 + y2) 

The following are derivatives of inverse cotangent, secant 
and cosecant: 
Derivative of cot-1y is -l/(l + y2), 
for 00 2 y  2 --oo and 7t > x > 0 
Derivative of sec-ly is 1/ I y I (y2 - 1)1’2, 
for 1 2 y > - l a n d n > x > O  
Derivative of csc-ly is -11 I y I (y2 - 1)lI2,  

for 1 2 y 2 -1 and 7t/2 2 x 2 4 2  
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2.23. Differentiating hyperbolic functions 

This section includes differentiating hyperbolic functions 
and their inverse s. 

Hyperbolic functions include sinh, cosh, tanh, coth, sech 
and csch, and are introduced in Chapter 1. The properties 
of sine and cosine are reflected in the hyperbolic sine and 
cosine, sinh and cosh, respectively, such as: 
(cosh x ) ~  - (sinh x ) ~  = 1 
which is similar to: 
( C O S X ) ~  + (sinx)2 = 1 

Derivatives of sinh and cosh are similar to the derivatives 
of sine and cosine. 
(d/dx)sinhx = coshx 
which is similar to: 
(d/dx)sinx = cosx 
(d/dx)coshx = sinhx 
which is similar to: 
(d/dx)cos x = -sin x (without the "-" sign) 

The derivatives of tanh, coth, sech and csch are: 
(d/dx)tanh x = sech2 x 
(d/dx)coth x = -csch2 x 
(d/dx)sech x = -sech x tanh x 
(d/dx)csch x = -csch x coth x 

Derivatives of inverse hyperbolic functions sinh-Ix, 
tanh-lx and sech-1x are: 
The inverse of x = sinhy is y = sinh-lx 
(d/dx)sinh-lx = 1/(1 + x2)112 
which is similar to: 
(d/dx)sin-lx = 1/(1 - x2)112 
The inverse of x = tanhy is y = tanh-lx 
(d/dx)tanh-lx = 1/(1 - x2) 
which is similar to: 
(d/dx)tan-lx = 1/(1 + x2) 
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The inverse of x = sechy is y = sech-lx 
(d/dx)sech-’x = k l/[x( 1 - x2)112] 
which is similar to: 
(d/dx)sec-lx = l/[x(l - x2)112] 

The derivatives of inverse hyperbolic functions cosh%, 
csch-1x and coth-1x are: 

(d/dx)csch-lx = _+l/[x(l + x2)1/2] 
(d/dx)cosh-’x = 1/ (~2  - 1)1l2 

(d/dx)coth-’x = I/( 1 - x2) 

2.24. Differentiating multivariable functions 

This section introduces differentiating simple 
multivariable functions. See Chapter 6 for a complete 
discussion on differentiating multivariable functions. 

When a function that contains more than one variable is 
differentiated, the derivative formula can be applied the 
variable that is being differentiated “with respect to”, while 
the other variable@ is held constant. The variable being 
differentiated “with respect to”, is designated using d/dx, 
d/dy, d/dz, etc., for x, y, z, respectively. 

For example, differentiate the following simple functions 
with respect to x, y and z: 

d 
dx 

Differentiated with respect to x. - (x2y2) = 2xy2 

Differentiated with respect to y. d 
- (x2y2) = 2x2y 
dY 
d 
- (x2y2z2) = 2x2y2z 
dz 

Differentiated with respect to z. 
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2.25. Differentiation of implicit vs. explicit 
functions 

This section provides a brief explanation of implicit 
differentiation including two examples. 

If y is given explicitly a s  a function of x, it is not d f i cu l t  
to obtain (dy/dx) because if y = f(x), then (dy/dx) = f’(x). 
This is explicit differentiation. In explicit differentiation, y 
can be isolated and the equation can be solved for y, then 
differentiated. However, if y is given implicitly as a function 
of x, F(x,y) = 0, then the function can be differentiated as it 
is and then solved for dy/dx rather than attempting to 
isolated y first, which may not always be possible. 

For a function that cannot be solved for y first or is left in 
implicit form by choice, the equation can be differentiated 
implicitly as it is “term by term,” then solved for (dy/dx) in 
terms of x and y. This is called implicit differentiation. 

Example: Evaluate (dy/dx) for x4 + x2y3 - y6 + 4 = 0, which 
implicitly gives y as a function of x. 
Taking the derivative of each term gives: 

Solving for (dy/dx): 
3x2y2- dY - ~ ~ 5 -  dY = -4x3 - zXy3 

dx dx 
dY 
dx 
- = [-4x3 - 2xy3] / [3x2y2 - 6y5] 

Example: Evaluate (dy/dx) for y = eyx + sinx, which 
implicitly gives y as a function of x. 
Taking the derivative of each term gives: 

dx dx 
Solving for (dy/dx): 

- dY = yeYX + XeYX- dy +cosx 
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- dY = [Ye'" + cos x] / [ 1 - xeyX] 
dx 

2.26. Selected rules of differentiation 

This section provides a summary of selected rules of 
differentiation. Note that in the following functions n is a 
positive integer and U and v are functions of x. 

Function Derivative 
- dY = nun-'- du 
dx dx 

* y = U", 

du 
dx dx 

y = au, -- dy - auloga- 

- dY = vuv-1- du + uv log U - dv 
dx dx dx 

y = uv, 

du 
dx dx 
-- dy - eu- y = eu, 

dY - = (l/u) * providing U z 0. 
dx dx 

y = log u, 

dy - -sin U - du 
dx dx 

du 
dx dx 

y=cosu ,  -- 

y = s i n u ,  -- dy - cosu- 

2.27. Minimum, maximum and the first and 
second derivatives 

This section includes local and global minimum and 
maximum points and the first and second derivatives. 
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Evaluating first and second derivatives of functions to 
find minimum and maximum points is a common appli- 
cation of the derivative. When experiments or evaluations 
are conducted in science, business, engineering, etc., data is 
gathered, relationships are developed and graphs are 
constructed in order to assist in the understanding of the 
data and to predict future patterns and events. Information 
depicted in graphs, such a s  where the graph is rising or 
falling, convex or concave, or where the high and low points 
are located, correspond to maximum and minimum values 
and is crucial to the evaluation of the data. 

Consider the graph of a continuous function f: 
y I  

If the highest point on f is the point (m,f(m)), then f(m) is 
the maximum value off and f(m) 2 f(x) for all x. In this 
graph there are two extrema points in between a and b, a 
minimum and a maximum where the derivative is zero. 
To find the global or local extrema of a function, the graph 
can be inspected or the derivative can be evaluated. At the 
extrema points, the derivative of a function f is equal to 
zero. In this graph if f(n) is a minimum point and f(m) is a 
maximum point and if f'(n) and f'(m) exist, then f'(n) = 0 
and f'(m) = 0. 

The graph of a function has a minimum or maximum 
point where the slope is zero and therefore the derivative is 
also zero, f'(x) = 0.  In a region of a graph of a function 
where the graph is horizontal the first derivative of the 
function is equal to zero. A point where the graph of a 
function is horizontal may represent a minimum or 
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maximum point. A minimum or maximum on the graph 
may be the minimum or maximum of the function, or there 
may be many “local” minimum or maximum points called 
local extrema. There can only be one global minimum and 
one global maximum but there may be many local extrema 
points. 

The sign of the derivative of a function describes the shape 
of the graph of the function at the point where the 
derivative is taken. 
If f(x) is decreasing as x is increasing, the sign of the 
derivative is negative. Therefore, f’(x) < 0 where the graph 
off is decreasing. 
If f(x) is increasing as x is increasing, the sign of the 
derivative is positive. Therefore, f’(x) > 0 where the graph 
off is increasing. 
If the graph of the function is horizontal, the derivative off 
is zero. Therefore, f’(x) = 0 where the graph off is horizontal. 
The sign of f’(x) changes from positive to negative or nega- 
tive to positive as a maximum or minimum point is crossed. 

There are examples where the graph of a function will 
not have a minimum or maximum, such a s  if the graph 
forms a straight horizontal or vertical line. For example: 
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As a general rule, for a given function f, all values of x 
where f'(x) = 0 or where f'(x) is undefined, represent all 
possible extrema. There may, however, be cases where 
f'(x) = 0 but an  extrema does not exist. 

By taking the second derivative of a function where the 
first derivative is zero, it can be determined whether the 
graph of that function is at a minimum and, therefore, 
concave up or at a maximum and, therefore, concave down. 
The second derivative provides information about change in 
slope, or the rate of change of what is changing, such as the 
growth rate of a population. 

If some point P is in the domain set of function f and if 
f'(P) exists, then the second derivative can be used to 
evaluate the shape of the graph as follows: 
If f'(P) = 0 and if f"(P) > 0, the graph of function f is 
concave up at P and f has a minimum at P. Also, the slope 
of the curve or tangent lines drawn to the curve will begin 
to increase. 
If f'(P) = 0 and if f"(P) < 0, the graph of function f is 
concave down at P and f has a maximum at P. Also, the 
slope of the curve or tangent lines drawn to the curve will 
begin to decrease. 
In other words, if f'(P) exists, and if f'(P) = 0: 
If f"(P) > 0 then f has a minimum at P, or 
if f"(P) < 0 then f has a maximum at P. 
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Note that in the above graph an  inflection point occurs 
where the tangent line crosses the curve. Also, a n  inflection 
point occurs where f"(x) changes from positive to negative 
or negative to positive, and where the curve is concave up 
on one side and concave down on the other side. 

If the second derivative of a function is zero, then it does 
not provide information regarding whether the function is 
a t  a maximum or minimum. In this situation, information 
can be obtained in the region where f'(x) = 0 such that 
if f'(x) changes from positive to negative at f'(x) = 0, then 
there is a maximum a t  that  point. Conversely, if f'(x) 
changes from negative to positive at f'(x) = 0, then there is 
a minimum at that point. 

To solve problems where minimum or maximum values 
need to be found, first describe the problem in terms of a 
function or equation, then determine f'(x) and solve for 
f'(x) = 0. To locate all possible extrema (minimum or 
maximum values off) within some interval between x = a 
and x = b or between points (a,f(a)) and (b,f(b)): 
(a.) Find all x values that satisfy f'(x) = 0 or 

f'(x) = undefined. 
(b.) Evaluate each x value found in the first step by 

substituting it into the function f. 
(c.) Evaluate values of x at the ends of the interval (at a 

and b) to find f(a) and f(b). 
(d.) The largest value in the second step is the maximum of 

f(x) and the smallest value is the minimum of f(x) 
within the interval a-b. 

(e.) Identify whether the extrema represent a minimum or 
maximum by determining f"(x). 

For example, find the minimum and maximum of the 
function f(x) = x2 + 2x between the interval of x = 0 and 
x=-2 where-2sxSO.  
First find all x values that satisfy f'(x) = 0 or 
f'(x) = undefined. Differentiate: 
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f'(x) = (d/dx)x2 + (d/dx)2x = 2x + 2 
Where does f'(x) = O? 
Because f'(x) = 2x + 2, set 2x + 2 = 0: 
2 x + 2 = 0  
Solve for x: 
2x = -2 
x = -212 = -1 
Evaluate each x value found by substituting it into the 
function f. Evaluate f(x) at x = -1. 

Evaluate the values of x at the ends of the interval (at a 
and b) to find f(a) and f(b). 
Evaluate f(x) = x2 + 2x at the end points -2 and 0. 
f(-2) = (-2)2 + 2(-2) = 4 + -4 = 0 
f(0) = (0)2 + 2(0) = 0 + 0 = 0 
Therefore, the number for the critical points off over this 
interval (-2 I x 5 0) are: f(-1) = -1, f(0) = 0 and f(-2) = 0. 
The largest and smallest values from the second step are 
the maximum of f(x) and the minimum of f(x) within the 
interval a-b. In this example, only f(-1) = -1 was  derived 
from the second step. The largest and smallest numbers 
computed overall are 0 and -1, which represent the 
minimum and maximum points. 
Plot the function f(x) = x2 + 2x between the interval of 
x = 0 and x = -2. Select x values at and near the minimum 
and maximum points, and solve for f(x). 
Values for x are -3, -2, -1, 0, 1, 
resulting in f(x) values 3, 0, -1, 0, 3. 
Resulting pairs are (-3,3), (-2,0), (-1,-1), (O,O), (1,3). 
Graphing the pairs is depicted as: 

f(-1) = x2 + 2x = (-1)2 + 2(-1) = 1 + -2 = -1 
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Therefore, f'(-1) = 0 within the interval a-b from x = -2 
to x = 0, the graph of the function f(x) = x2 + 2x depicts a 
minimum a t  f(-1), and crosses zero a t  x = -2 and x = 0. 
Evaluating the second derivative of this function, 
f(x) = x2 + 2x, will determine whether there is a minimum 
or a maximum at the point where f'(x) = 0 (and therefore 
verify the result of the graph). 
f'(x) = 2x + 2 
Taking the second derivative: 
f"(x) = (d/dx)2x + (d/dx)2 = 2 + 0 = 2 
Using the second derivative rule, because 2 is a positive 
number, the graph of f(x) a t  x = -1 is concave up and is a t  a 
minimum. This was depicted in the graph. 

2.28. Notes on local linearity, approximating 
slope of curve and numerical methods 

This section includes a brief introduction of local linearity 
and the tangent line approximation and a brief explanation 
of Newton's method for equations in the form f(x) = 0. 

When calculating approximate values for complicated 
functions, it is sometimes possible to focus in on a small 
region of the graph of a function, and look at that region as 
if it were linear. This is sometimes referred to a s  a point of 
local linearity. In the region of a point on the graph of a 
function, a tangent line can be drawn and the slope of the 
tangent line is the derivative of the function at that point. 
The equation for a tangent line passing through point (a,f(a)) 
is: y - f(a) = f'(a)(x - a). 

The equation for the tangent line y - f(a) = f'(a)(x - a), 
at y = f(x) and x = a can be derived using: 
f'(a) = [f(a + h) - f(a)]/h 
By rearranging: 
f'(a)(h) = f(a + h) - f(a) 
f(a + h) = f'(a)(h) + f(a) 
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Substituting x - a = h and x = a + h: 
f(a + h) k: f'(a)(x - a) + f(a) 
f(x) 
Substituting y = f(x): 
y - f(a) = f'(a)(x - a). 
This equation can be used to Zinearize a region off near 
x = a for the tangent through (a, f(a)) for curved functions. 

f'(a)(x - a) + f(a) 

For example, the tangent line approximation for 
f(x) = cos x, where x is near a = 0 can be calculated using: 
f(x) = f'(O)(x - 0) + f(0) 
Substitute in for each term: 
Left side term: 
f(x) = cosx 
The first term: 
f'(0) = -sin 0 = 0 
and x - 0 = x 
The second term: 
f(0) = cos0 = 1 
Then the equation f(x) k: f'(O)(x - 0) + f(0) becomes: 
cosx = (O)(x) + 1 = 1 
cosx = 1 
Therefore, the tangent line approximation for 
f(x) near x = 0 is y = f(x) = 1. 

y = cos x 
1 I Y = l  

-' I 
Similarly for f(x) = sin x near x = 0, the tangent line 

approximation can be calculated using: 
f(x) k: f'(O)(x - 0) + f(0) 
Substitute in for each term: 
Left side term: 
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f(x) = sinx 
The first term: 
f'(0) = cos 0 = 1 
and x - 0 = x 
The second term: 
f(0) = sin0 = 0 
Then the equation f(x) = f'(O)(x - 0) + f(0) becomes: 
sinx = (l)(x) + 0 = x 
sinx = x 
Therefore, the tangent line approximation for 
f(x) near x = O is y = f(x) = x. 

The tangent line drawn on selected points of the graph of 
a function can be used in numerical differentiation methods, 
such as Newton's method. Numerical methods are some- 
times required to estimate and solve equations, such as 
finding the roots of a high-degree polynomial. In general, 
numerical methods can be applied to programming when a 
function is translated into a n  algorithm, solving systems of 
linear equations, and numerical solutions to ordinary and 
partial differential equations. 

The Newton method can be applied to solve equations in 
the form f(x) = 0 where f'(x) exists and is continuous. 
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In this method, the graph off is approximated using 
tangent lines, thereby determining the roots (x values) of 
f(x). First, a value for xo is selected from the graph off, then 
a tangent is drawn at XO, where X I  is the intersection of the 
X-axis by the tangent to the curve at XO. This process can be 
repeated beginning with the value of X I  and drawing the 
tangent that  intercepts the X-axis a t  x2. Then, repeat for x2 
to get x3 and so on until the x’s converge. 
Alternatively, after the first step the equation for a tangent 
line at f(x) = y, x = xo can be used: 
y - f(x0) = f’(xo)(x - xo) 
where the tangent crosses the X-axis at y = 0, x = XI ,  

there fore: 
0 - f(x0) = f’(xo)(x1 - xo) 
Rearranging: 

This formula can be used repeatedly for x2, x3, ..., xn+i: 

Using this formula, Xn should converge to a solution (root) 
of x if a solution exists. In cases where f(x) = 0 has no root 
or multiple roots, this formula will not converge to a single 
x value. Such cases include f(x) = 1 + x2. 
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The Integral 

3.1. Introduction 

Integration can be thought of as a sum of an  infinite 
number of objects or sections that are infinitesimally small. 
The integral can be used to calculate area under a curve, 
area of a region or surface, volume of a n  object, average 
value of a function, work done, pressure, a s  well a s  the 
change in a function when its rate of change is known. The 
last example uses the Fundamental Theorem of Calculus. 

Jus t  a s  the derivative can be thought of as the limit of 
differences, the integral can be thought of a s  the limit of 
sums. On the graph of a function, the derivative can be 
represented by slope of the curve and the integral can be 
represented by area under the curve. The derivative of 
distance x is velocity v, and the area under the curve of v is 
x. The integral of velocity is distance and the integral of 
acceleration is velocity. The integral can be found by 
constructing sums or by calculating the antiderivative or 
definite integral using formulas, techniques and tables. 

3.2. Sums and sigma notation 

This section includes a brief review of sums, sigma 
notation, calculating sums, properties of sums and 
changing limits. 
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Sums are used in the estimation of integrals pertaining to  
area and volume. Because sums are used to represent 
integrals, the following brief review of sums and sigma 
notation is included. 

The Greek letter sigma c is used to describe a sequence 
of numbers that are combined in a sum. The following are 
examples of sums: 

I +  2 + 3 + 4  = C i  4 

i=l 

I +  2 + 3 +  ...+ n = f j  
j= 1 

3 
111 + 112 + 113 = c l l  k 

1 3  + 23 + 33 = C i3 

a1 + a2 + a3 + ...+ a25 = C a n  

k=l  
3 

i=l 
25 

n=l 

n=15 

Sums do not have to begin at 1. 

k j 2 = 3 2 + 4 2 + 5 2 = 9 +  16+25=5O 
j=3 

The limits of the sum indicate the first and last numbers 
in the sum. For example: 

The limits for C i3 are i = 1 to i = 3. 

The letters i, j and k are called dummy variables and 
represent the numbers in the sequence. 

3 

i=l 
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Following are two examples of calculating sums: 

(a.) C 3 k - 3  
5 

k = 2  

where the first and last numbers to be substituted are 
2 and 5 respectively. 
3(2) - 3 = 6 - 3 = 3 
3(3) - 3 = 9 - 3 = 6 
3(4) - 3 = 12 - 3 = 9 
3(5) - 3 = 15 - 3 = 12 

Therefore, z 3 k - 3  = 3 + 6 + 9 + 12 = 30. 
5 

k=2 

4 
(b.) c 2 i =  Z(1) + 2(2) + Z(3) + Z(4) = 2 + 4 + 6 + 8 = 20 

k = l  

Properties of sums include: 
(a.) If An and Bn each represent a sequence of numbers, 

then their sum can be written as: 
N N N 

C ( A j + B j )  = C A j  + C B j  
j= 1 j=1 j= 1 

This property can be demonstrated a s  follows: 
N 

C ( A j  +Bj)  
j=l 

= (A1 + B1) + (A2 + B2) + (A3 + B3) + ...+ (AN + BN) 
= (A1 + A2 + A3 + ...+ AN) + (Bi + B2 + B3 + -..+ BN) 

= C A j  + C B ,  
N N 

F1 j= 1 

(b.) If A, represents a sequence and c represents a mmber  
that is multiplied with the sequence, then: 
N N 

j=1 j=1 
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This property can be demonstrated as follows: 

j= 1 

N 

j= 1 
=c(Al+A2+A3+ ...+ A N ) = c  C A j  

(c.) The sum of the first n terms in a sequence k can be 
calculated using the formula (n/Z)(n + 1): 

x k  = 1 + 2 + 3 +  ... + ( n - l ) + n = ( n / 2 ) ( n +  1) 

This formula can be demonstrated using the following 
two sums: 

n 

k = l  

4 

k = l  
4 

k = l  
C k = (n/Z)(n + 1) = (4/2)(4 + 1) = Z(5) = 10  

To find a solution that does not begin with 1 consider 
the sum: 

g k  = 6 + 7 + 8 + 9 + 1 0 = 4 0  

where c k is equivalent to 

To calculate, subtract the formula for each sum: 

k=6  
10 10 5 

k=6 k=l k = l  
k -ck 

[(10/2)(10 + 1)J - [(5/2)(5 + 1)J = 55 - 15 = 40 

Sometimes it is advantageous to change the variables and 
limits o f a  sum. This is possible as long as the changed sum 
is identical to the original sum. For example, the following 
notation represents the same sum: 

3 4 

z 3 i  = c 3 ( j  - 1) ,  where i = j - 1 or j = i + 1. 
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This can be demonstrated as follows: 

c3i = 3(0) + 3(1) + 3(2) + 3(3) = 3 + 6 + 9 = 18 
3 

i = O  
4 
C 36 - 1) = 3( 1 - 1) + 3(2 - 1) + 3(3 - 1) + 3(4 - 1) 
F l  

= 3 + 6 + 9 = 18 
Because i and j are dummy variables, it is okay to use 
either i or j after substitution. However, it is important to 
perform a change of limits appropriately. Therefore: 

4 3 

c3(i-1) = c3i 
i=l i = O  

Products are represented by the capital Greek letter Pi or 
Il and are similar to sums except that  once all the terms 
have been established by substituting the integers con- 
secutively (from the lower integer to the upper integer), the 
terms are multiplied with each other rather than added. 

3.3. The antiderivative or indefinite integral 
and the integral formula 

This section includes the definition and notation for the 
antiderivative or indefinite integral, the integral formula, 
the constant of integration, families of antiderivatives, the 
indefinite integral of acceleration and velocity, and the 
indefinite integral of a constant alone. 

The antiderivative or indefinite integral is approximately 
equal to the reverse of the derivative. The antiderivative or 
indefinite integral of a function f(x) is written: 
k x )  dx 
where is the integral symbol and f(x) is the integrand. 
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If the derivative of the function f(x) is the function F(x) so 
that df(x)/dx = F(x), then the antiderivative of F(x) is f(x) 
plus a constant. 
IF(x) dx = f(x) + c 
where c represents a n  arbitrary constant of integration and 
dx indicates that  integration occurs with respect to x. 

Remember the derivative formula: 
dxn/dx = nxn-l 
Similarly, there a n  integral formula for calculating 
antiderivatives or indefinite integrals: 
J xn dx = (l/(n+ l))xnn+l+ c 
where c represents a constant value and is called the 
constant of integration. 

Note: The integral formula is an important formula and is 
used frequently in calculus. 

The derivative of the antiderivative formula or integral 
formula can be evaluated using the derivative formula: 

dc 
dx 

= (n  + 1)- 1 n+l-l + O = -  n+lxn+O + 0 = x n  
n + l  n + l  

A constant is added to the indefinite integral because the 
derivative of a constant is zero. Also, because the derivative 
is the rate of change of some function, it seems likely that 
several different functions could have the same rate of 
change. For example, calculating the derivatives using the 
derivative formula of the following three functions results 
in the same rate of change: 
(d/dx)(2x2 + 3) = 4x 
(d/dx)(51'2 + 2x2 + 2) = 4x 
(d/dx)(2x2 + n) = 4x 

120 



The Integral 

Then, take the indefinite integral of 4x using the integral 
formula to illustrate that  each function is different even 
though they all have the same rate of change (derivative): 
14x dx = (1/(l+1))4x1+l + c = (1/2)4x2 + c = 2x2 + c 
Therefore, in the three functions c represents 
3, (51/2 + 2) and 'II. 

This example demonstrates that a n  indefinite integral 
represents a famiZy of functions, each with a different value 
for c. A function and its family of antiderivatives can be 
represented graphically by raising or lowering the curve by 
the constant values. 
The graph of df(x)/dx can be used to plot the graph of its 
antiderivatives f(x) because df(x)/dx is the slope of the curve 
represented by f(x) at any point along the curve. When 
df(x)/dx is positive (above the X-axis), f(x) is increasing, and 
when df(x)/dx is negative (below the X-axis), f(x) is decreas- 
ing. Also, when df(x)/dx is increasing along the X-axis, f(x) 
is concave up, and when df(x)/dx is decreasing along the 
X-axis, f(x) is concave down. Finally, when df(x)/dx crosses 
zero, f(x) has a local minimum or maximum. 
For the graph below represented by dEldx, there is a family 
of curves represented by the graph of f(x): 

The slope of the antiderivative f(x) at any point, should be 
the value dudx at that point. A slope field of f(x) can be 
constructed by drawing short lines at multiple points on its 
graph that represent the slope of the curve a t  each point. 
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Remember that the derivative can represent the rate of 
change of distance x(t) as velocity v(t) and the rate of 
change of velocity v(t) a s  acceleration a(t), such that 
dx(t)/dt = v(t) and dv(t)/dt = a(t). 
Conversely, the integral of acceleration is velocity and the 
integral of velocity is distance: 
ja(t) dt = v(t) + c 
jv(t) dt = x(t) + c 
For example, using the integral formula, 
jxn dx = (l/(n+l))xnn+' + c, 
acceleration, velocity and distance can be represented as: 
v = J a d t = a t + v o  
where vo represents a constant of integration. 
Integrating again: 
x = I [at + VO] dt = (1/2)at2 + vot + xo 
where xo represents a constant of integration. 

The integral of a constant c1 alone is equal to  the constant 
c1 multiplied by the variable the integral is being 
integrated with respect to (which is indicated by dx), plus 
another constant c2: 
ICI dx = cix + cz 

3.4. The definite integral and the 
Fundamental Theorem of Calculus 

This section includes the definite integral, limits of 
integration, evaluating a definite integral using the 
Fundamental Theorem of Calculus, velocity and distance 
traveled and calculating definite integrals using the inte- 
gral formula and the Fundamental Theorem of Calculus. 

The indefinite integral represents a family of functions for 
different values of the constant of integration. Similarly, 
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the definite integral represents a number pertaining to one 
of the functions of the indefinite integral such a s  the area 
under one of the curves. When the definite integral is eval- 
uated, it is not necessary to add a constant of integration. 

If the endpoints of a function f(x) are set at specific values 
such as x = a and x = b, where they may be depicted on the 
graph of f(x), then the function is integrated as a definite 
integral. The endpoint values for a definite integral are 
called the limits of integration and are shown at the ends of 
the integral symbol a b .  

If the integral of the function f(x) between x = a and x = b is 
the function F(x), then F(x) must be evaluated at x = a and 
x = b. The symbol for "eualuated at a and b" is " 1:" and it 
describes subtraction of the function a t  the top value b 
minus the function at the bottom value a: 

F(x)l,b = F(b) - F(a) 

The Fundamental Theorem of Calculus of a definite inte- 
gral states that if f(x) is a continuous function between 
points x = a and x = b and f'(x) is the derivative of f(x), then: 
a b  f'(x) dx = f(b) - f(a) 
Note: The Fundamental Theorem of Calculus is an 
important theorem and used frequently in calculus. 

If F(x) is the antiderivative of f(x), so that: 
ff(x) = F(x) + c,  or F '(x) = f(x), then, the definite integral of 
f(x) between x = a and x = b is: 
a b  f(x) dx = F(b) - F(a) 

The constant of integration that results from an  indefinite 
integral can be accounted for with respect to  the definite 
integral as follows: 
a5) f(x) dx = [F(b) + C] - [F(a) + c] = F(b) - F(a). 
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When the Fundamental Theorem is applied to a function 
defining velocity it provides a means to represent distance 
traveled in a designated time period by a definite integral. 
To analyze velocity and distance, the distance traveled can 
be represented by the definite integral of a velocity func- 
tion. Because f’(t) = v(t), where f represents position, v 
represents velocity and t represents time. The change in 
position or distance traveled from point a to point b can be 
written: 
f(b) - f(a) = a k  f’(t) dt 

The Fundamental Theorem is used when calculating 
many definite integrals. Applying the Fundamental 
Theorem is a shortcut to calculating the sums when the 
antiderivative can be found. 

The integral formula for the definite integral bounded by 
limits of integration x = a and x = b is used in conjunction 
with the Fundamental Theorem to calculate integrals: 
ak xn dx = (l/(n+ l))(xn+I) 1; = (l/(n+ l))(bn+’ - an+’) 

For simple integrals the integral formula is used to 
integrate the function and the Fundamental Theorem is 
used to evaluate the result. For more complex integrals, the 
integral formula must be combined with techniques such as 
integration by parts, substitution and integral tables. 
These are discussed in the last four sections of this chapter. 

Example: Find the area of the function f(x) = x2 between 
x = 0 and x = 1 by integrating (using the integral formula) 
and evaluating at the two x boundaries (or limits of 
integration). 
0j1 x2 dx = (113) x3 1: = (113)(1)3 - (1/3)(0)3 = 113 

(See Section 3.6 “The integral and the area under a curve”.) 
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3.5. Improper integrals 

This section includes the definition of an  improper inte- 
gral, convergence of a n  improper integral, and applying the 
comparison test for convergence of a n  improper integral. 

A definite integral is called an  improper integral if the 
integrand is infinite or becomes infinite between its limits, 
or if one or both of the Zimits of integration are infinite. An 
improper integral is discontinuous or diverges a t  one or 
more points in a function between its limits of integration. 

Even though some part or region of a n  improper integral 
is infinite, the integral may converge and area under the 
curve may be finite. Consider the following integral with an  
infinite boundary that still converges to an  area of 1: 
1.k x-2 dx = -x-lI; = [ - l b  - -101 = 0 + 1 = 1 
This can also be represented by: 
1 h x-2 dx = limb,,l .k x - ~  dx = limb,,l [-x-l I:] 
= limb,,l[-l/b + 1/11 = 0 + 1 = 1 
As b approaches infinity, l/b approaches zero and the 
integral converges to 1. 
In general, a n  integral in the form: 
1h x - ~  dx = 1k l/xp dx where P > 1 
defines a finite area and therefore converges. 

An improper integral may not converge. For example: 
area under ih x-1 dx = In x 1; = 00 

When an  integral does not converge, it is said to diverge. 

An integral that approaches positive or negative infinity 
at either boundary or has a n  integrand that is infinite 
somewhere between the limits may still converge. This can 
be shown by splitting the integral into a sum of two 
integrals within the original limits. For example, if the 
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corresponding term in a known divergent infinite series, 
then the unknown series is also divergent. 
An example of a known convergent series that  is used in 
the Comparison Test is the P Series: 
1 + 1/2p + 1/3p + ... + l/nP + ... 
This series converges when P > 1 and diverges when P I 1. 
An example of a n  integral that is used as a comparison is: 
IF  1/xP dx 
which converges when P > 1 and diverges when P 5 1. 

3.6. The integral and the area under a curve 

This section includes a theoretical explanation of the 
relationship between the area under a curve, distance, 
sums and the definite integral. 

Integration provides a means to obtain distance 
information from uelocity information. For example, if a 
bicyclist travels from the east side of town to the west side 
of town and if the velocity at each point in time is known, 
the distance traveled at each point can be determined. If 
information about time and velocity are known: 
time (hr): t o  = 0, tl = 1, t 2  = 2, t 3  = 3 
velocity (mdhr): vo = 1, v1= 3, v2 = 5, v3 = 6 
Then the distance traveled f(t) can be estimated using two 
slightly different approaches that give a lower and upper 
estimate for the actual value. The first calculates the 
velocity at the lower end of the time period and the second 
calculates the velocity at the end of each time period. This 
results in a lower and a n  upper estimate: 
distance f(t) = v(t0)At + v(t1)At + v(t2)At 
distance f(t) = v(t1)At + v(t2)At + v(t3)At 
In this example the lower and upper estimates for distance 
f(t) are: 
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f(t) = (1 mi/h)(l hr) + (3 mi/hr)(l hr) + (5 mi/hr)( 1 hr) = 9 mi 
f(t)= (3mi/h)(l hr)+ (5mi/hr)(l hr)+ (6mi/hr)(l hr)= 14mi 
The difference in the high and low estimates is (14-9=5). 
If smaller time periods are chosen, such as 30 min., 5 min., 
1 min., 1 sec., etc., then the difference between the upper 
and lower estimates becomes smaller and the overall 
estimate is better. The upper and lower estimates can be 
represented on a graph of velocity vs. time: 

v(t) 
6 

4 

2 

- 
' Ihr 2hr 3hr 

a represents upper estimate 

represents lower estimate 

I 1  represents difference between estimates 

curve is drawn between upper and lower estimates 

The area of each rectangle represents the distance traveled 
during each time period. The upper and lower rectangles of 
each period depicted represent the upper and lower esti- 
mates. The sum of the areas of the rectangles for all the 
time periods represents the total distance traveled (with the 
sum of the upper and lower rectangles representing the 
high and low estimates.) 
The difference between the estimates, a s  depicted on the 
graph, is the area of the rectangles that are between the 
upper and lower velocity values. The sum of the unshaded 
areas represents the total area of the differences. If the 
time period is reduced, the difference between the upper 
and lower estimates is proportionally reduced. 

The emct value of distance traveled in a given interval 
can be represented by taking the limit of the sum of the 
areas as the number of increments (rectangles) approaches 
infinity and, therefore, the rectangles become infinitesimally 
small. The estimates will converge to the accurate value of 
distance traveled a s  the number of increments measured 
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approaches infinity. The limit of the sum as the number of 
increments in a defined region approaches infinity is the 
integral of the function defining the curve in that region. 
In general, lower and upper sums (called Riemann sums) 
can be used to estimate a n  area. They both converge to the 
same integral and can be written in general terms as: 

limn+mCf(Xi)AX = a.b f(x) dx 

limn+oo 2 f(x i ) AX = a I, f(x) dx 

where a and b are the boundaries of a region that 
represents the area. 

n -1 

i=O 

i=l 

Note that the limit as n+w is used with sums representing 
a n  integral so that infinite sums are not used. The 
Riemann sum defines the definite integral a s  the limit of 
the number of terms approaches infinity. There are 
examples, however, where the function is not continuous or 
forms a n  asymptote and the integral (and sum) will blow 
up and the integral cannot be used to define the area under 
some region of a curve between designated points. 

In general, the integral is used to define the area under a 
curve on a graph of a function. To use the integral to define 
the area under some region of a curve between points x = a 
and x = b, the curve in this region must be continuous and 
not extend into a vertical asymptote. Consider the following 
graph of function f(x): 
Y l  

X 
a Ax b 

a = x l  b=xn 
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The striped pattern represents the area under the curve of 
function y = f(x). The area under the curve between x = a 
and x = b is given by: 
ab  f(x) dx 
This is the definite integral of f(x) between x = a and x = b. 
In the interval between x = a and x = b on the graph of f(x), 
the X-axis is divided into n equal parts of width Ax such 
that the Ax segments extend from the X-axis to the f(x) 
curve so that the area is divided into vertical rectangular 
strips. (A represents a small change in x.) 
Between x = a and x = b, for the n rectangular strips, each 
strip is called the ith strip. The width of each strip is Ax and 
the height of each strip is yi. The area of each strip is width 
times height, given by: (yi)(Ax) or (f(xi))(Ax) 
An approximation for the total area of f(x) between x = a  and 
x = b is the sum of the areas of the n strips and is given by: 

Area =C yiAx= yiAx + y2Ax -+ Y ~ A X  +,..+ ynAx 

Or equivalently: 

n 

i=l 

n 

f(x i )A = f(x 1)Ax + f(Xz)Ax + f(x3)Ax +. . .+ f(xn)Ax 
i=l 

If the width of Ax shrinks and the number of strips in- 
crease, the sum of the strips will represent a better approx- 
imation of the actual area under the curve. By taking the 
limit as the number of increments approach infinity: 

Area = lirnn+w f y Ax = a.k’ f(x) dx 
i=l 

Note that Ax can be equivalently written (b-a)/n. 
Therefore, the area approximation can be written: 

Area = limn,,[(b-a)/n] y i  
n 

i=l  
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In the graph of a function, as the number of increments 
increase in a specified interval and the rectangular area 
increments approach the area under the curve, then the 
sum approaches the integral given by: If($ dx. 

3.7. Estimating integrals using sums and the 
associated error 

This section is a n  extension of the previous section and 
discusses the error associated with sums. It includes the 
midpoint rule, the trapezoid rule and Simpson’s rule. 

When integrals are estimated using upper and lower sums 
of rectangles, there is a n  error region above or below the 
curve. The total error for a curve bounded by two points is 
the sum of the error regions that lie between the upper and 
lower estimates. Lower and upper Riemann Sums 
(introduced in the previous section) used to estimate 
ah f(x) dx are: 
f(X0)Ax + f(X1)Ax + f(x2)A~ + ...+ f(xn-l)Ax 
f(x1)Ax + f(x2)Ax + f(x3)Ax + ...+ f(xn)Ax 
The error associated with the sums can be depicted as: 
Y 

upper sum- 

X A x  
blowup of y = f(x) depicting onebx 

interval and error 

The error resulting from summation can be reduced by 
increasing the number of increments (rectangles) and thus 
reducing their width. 

131 



Master Math: Calculus 

If integrals are estimated using sums of rectangles and 
the curve falls in the center (or midpoint) of each rectangle 
rather than the top or bottom, the error is reduced. Using 
this midpoint rule, the area estimated by the sum of 
rectangles (or increments) will be closer to the actual area 
under the curve. The Riemunn sum using the midpoint rule 
is given by: 

The error for the midpoint rule can be depicted as: 
f(~112)Ax + ~(xs/x)Ax + ~(x~/z)Ax + ...+ f(Xn-1/2)AX 

Integrals estimated using upper and lower sums of 
rectangles can have the error reduced by using an  average 
of the two sums. This is referred to as  the trapezoid rule. 
Also note that trapezoids fit under sloping lines. Using this 
trapezoid rule, the area is estimated by the sum of 
rectangles (or increments) where the average values of the 
measurements a t  the top and bottom of each rectangle is 
combined in the sum. The area for the rectangle from f(xo) 
to f(x1) is (1/2)[f(x0) + f(xl)]Ax. The Riemann sum using the 
trapezoid rule is given by: 
(1/2)[f(xo)Ax + f(xi)Ax + f(x2)Ax + ... + f(xn)Ax] 
+ (1/2)[f(xl)Ax + f(x2)Ax + f(x3)Ax + ... + f(xn-l)Ax] 

or Ax[(l/2)f(xo) + f(xi) + f(xz) + ... + f(xn-1) + (1/2)f(xn>l 
If the rectangles have different widths, the sum becomes: 
(1/2)[f(xo) + f(Xl)]AXl + (1/2)[f(Xl) + f(xa)lAx2 
+... + (1/2)[f(xn-l) + f(xn)]Axn 

where Axi = (Xi - Xi-1) 
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The error for the trapezoid rule is depicted as: 

Example: Estimate o h  x2 dx using the trapezoid rule with 
4 subdivisions. 
Ax is equivalent to (b-a)/n or (2-0)/4 = 112. Therefore, 

becomes: 
(1/2)[(1/2)(0)2 + (1/2)2 + l2 + (3/2)2 + (1/2)(2)2] = 

(1/2)( 1/2)(0)2 + (1/2)( 1/2)2 + ( 1/2)12 + ( 1/2)(3/2)2 + (1/2)( 1/2)(2)2 
= 0 + 1/8 + 1/2 + 9/8 + 1= 1/8 + 4/8 + 9/8 + 818 = 22/8 = 11/4 
Therefore, o h  x2 dx is approximately equal to 1114. 
Comparing this result with calculating the definite integral 
directly: 
o h  x2 dx = (1/3)x3 I f  = (1/3)23 - 0 = 813 
Therefore, the error from using the trapezoid rule with 
n = 4 is 8/3 - 11/4 = 1/12 or approximately 0.8. 

Ax[(I/Z)f(Xo) + f(X1) + ~(xz )  +...+ f(xn-1) + (I/Z)f(xn)] 

Integrals can also be estimated using a method called 
Simpson’s ruZe, which gives a better approximation than 
the trapezoid and midpoint rules. Simpson’s rule combines 
the trapezoid and midpoint rules as a weighted average: 
(1/3)[2x(midpoint values) + (trapezoid values)] 
The sum for Simpson’s rule can be written: 
(2/3)A~[f(~1/2) + f(X3/2) + f(X5/2) +. . . + f(xn-1/2)] 
+ (1/3)Ax[(l/Z)f(x0) + f(x1) + ~(xz)  +...+ f(Xn-1) + (1/2)f(xn)] 
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For example, use Simpson’s rule to estimate 
O! x2 dx, and compare it with the trapezoid rule above. 
Again, use 4 subdivisions. 
Ax is equivalent to (b-a)/n or (2-0)/4 = 1/2 
Therefore, Simpson’s rule is written: 
(2/3)(1/2)[(1/4)2 + (3/4)2 + (5/4)2 + (7/4)2] 
+ (1/3)(1/2)[(1/2)(0)2 + (1/2)2 + l2 + (3/2)2 + (1/2)(2)2] 

= (2/3)(1/2)[(1/4)2 + (3/4)2 + (5/4)2 + (7/4)2] + (1/3)(11/4) 
= (1/3)[1/16 + 9/16 + 25/16 + 49/16] + 11/12 
= 21/12 + 11/12 = 32/12 = 8/3 

Therefore, O! x2 dx is approximately equal to 813. 

This value of 8/3 is the exact value of the integral and 
therefore shows Simpson’s rule to be a n  excellent estimate. 

3.8. The integral and the average value 

This section briefly discusses the relationship between 
the integral, the area under the curve and the average 
value of a function in a defined interval. 

The integral not only represents the area under the curve 
on the graph of a function, but the integral also represents 
average value of a function in a n  interval. 

The average value of f(x) in an  interval a-b is the integral 
ajf(x)dx divided by the length of the a-b interval, given by 
(b - a): 
average value = [ l/(b - a)] ah f(x) dx 

The following figure depicts the average value where the 
integral represents the area under the curve, the average 
value off is the height of the rectangle and the width of the 
rectangle is (b -a). 
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3.9. Area below the X-axis, even and odd 
functions and their integrals 

This section includes a brief review of integrals and the 
areas above and below the X-axis, as well as even functions 
and odd functions and their integrals. 

In functions where the curve falls below the X-axis the 
area between the X-axis and the curve is negative in value 
and subtracts from the area above the X-axis. 

The graph of y = f(x) between x = -a and x = a is given by: 
-aB f(x) dx = (area A) + (area C )  + (-area B) + (-area D) 
where area B and area D are negative in value and 
subtracted from area A and area C. 

If the area below the X-axis is equal to  the area above the 
X-axis, the resulting integral is equal to zero. The graph on 
the next page off between x = a and x = b is given by: 

where the positive region is equal to the negative region. 
f(x) dx = positive region + negative region = 0 
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X 

By determining whether a function is even or odd, it is 
often possible to simplify the integral of the function to a 
more manageable form and solve using symmetry. 

A function is euen if f(x) = f(-x) between x =-a and x = a. 
An example of a graph of a n  even function is: 

From the graph, it is clear by symmetry that the section on 
the left of the Y-axis between x = -a and x = 0 is equivalent 
to the section on the right of the Y-axis between x = 0 and 
x = a. The integral for this even function can be written: 
- a b  f(x) dx = 2 - a p  f(x) dx = 2 OB f(x) dx 

In a n  even function, the area for negative values of x is 
equal to the area for positive values of x. 

Examples of even functions include: 

and f((-x)2) = (-x)(-x) = x2. 
f(x) = c, f(x) = x2, f(x) = x4, f(x) = x2n 

A function is odd if f(x) = -f(-x) between x = -a 
and x = a. An example of a graph of a n  odd function is: 
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X 

From the graph it is clear by symmetry that the section on 
the left of the Y-axis between x = -a and x = 0 is equivalent 
but opposite to the section on the right of the Y-axis 
between x = 0 and x = a. The integral for this odd function 
can be written: 
-a.k f(x) dx = -ap f(x) dx + 0) f(x) dx = area P + area N = 0 

Note that -ap f(x) dx = - 0) f(x) dx. 
In a n  odd function, the area for negative values of x is 
equal but opposite to the area for positive values of x and 
the two areas subtract and cancel each other out resulting 
in a n  integral equivalent to zero. 

Examples of odd functions include: 
f(x) = x, f(x) = x3, f(x) = x5, f(x) = x2n+l 
and f((-x)3) = (-x)(-x)(-x) = (-x)~ 

3.10. Integrating a function and a constant, 
the sum of functions, a polynomial, and 
properties of integrals 

This section includes the integral of a function multiplied 
by a constant, the integral of the sum of functions, the 
integral of a polynomial function, switching limits of 
integration, equal limits, the integral over two 
subintervals, and comparing two integrals. 

The integral of a function multiplied by a constant is 
equal to the constant multiplied by the integral of the 
function. Therefore, if a function is multiplied by a constant 
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or number, the constant can be brought out of the integral 
and multiplied with the resulting function. 
a! C f(x) dx = C a k  f(x) dx, where C is any real number. 

The graph of the area represented by a.bf(x) dx will be 
elongated or narrowed along the X-axis when it is multi- 
plied by a constant. For example: 
I2 f(x) dx = 2 If(x) dx 

The integral of a sum of functions is equal to the sum of 
the integrals. If a n  integral is of a sum of functions, the 
functions can be integrated together or as separate terms. 
a k  [f(x) + g(x)] dx a h  f(x) dx + a k  g(x) dx 

n n 

= lim n+a, f(x )Ax + lim n+oo g(x )Ax 
i=l i=l 

Similarly for the indefinite integral: 

I [f(x) + g(x)l dx = I f(x) dx + Ig(x) dx 
When constants c1 and c2 are present, the sum of two 
functions is: 
I [ci f(x) + ~2 g(x)] dx = ci If(x) dx + ~2 Ig(x) dx 

The integral of apolynomial function can be evaluated 
term-by-term. Therefore, to integrate a polynomial 
function, apply the integral formula term-by-term (as with 
differentiating). For example: 
{(x3 + x2 + x) dx = Ix3 dx + Ix2 dx + [x dx 
= [(1/4)x4 + c] + [(1/3)x3 + c] + [(1/2)x2 + c] 
Combining the constants of integration results in: 
(1/4)x4 + (1/3)x3 + (1/2)x2 + C where C = c + c + c. 
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Switching the limits of integration on a definite integral 
reverses the sign of the integral: 
a.I’ f(X) dx = - b )  f(X) dx 
This occurs because integration is moving across the area 
in the opposite direction which reverses the sign and can be 
demonstrated using sums. The area is given by: 

i=l 

where Ax = (b-a)/n. 
In the negative direction, the integral is: 

i=l 

i=l 

where -Ax = -(a-b)/n = +(b-a)/n. 
i=l 

An integral that has both of its limits the same is equal to 
zero and represents a n  area over a point: 

This integral is evaluated as: 
F(a) - F(a) = 0 

a18 f(x) dx = 0 

An integral over a n  interval is equal to the sum of two 
integrals that represent two subintervals that when 
combined exactly equal the total original interval: 

providing a < b < c. 
This is true because the entire area spans from x = a to 
x=c ,where the twoareas fromx=atox=bandx=b 
to x = c sum to the entire area. 

f(x) dx = a.I’ f(x) dx + t,b f(x) dx 

Y 
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When comparing integrals, the integral of function f(x) is 
greater or equal to the integral of function g(x), if f(x) is 
greater than or equal to g(x): 
aI ,  f(x) dx 2 a j  g(x) dx Providing f(x) 2 g(x) and a I x I b. 
The integrals can be compared when the area under f(x) 
and g(x) each lie on or above the X-axis and the area 
represented by f(x) is larger or smaller than the area 
represented by g(x). 

3.11. Multiple integrals 

This section includes integrating double and triple 
definite and indefinite integrals, integral of a constant, and 
distance, velocity and acceleration. 

Integration may be repeated multiple times. To take 
multiple definite integrals of a function, begin with the 
innermost integral and evaluate it at the limits of 
integration for the inside integral, then take the integral of 
the result and evaluate it a t  the next innermost limits of 
integration. Repeat this for the number of integrals 
specified by the number of [symbols. 

To evaluate a double integral: a k  c.b f(x) dx dx 
First take the integral of f(x) and evaluate it at its limits of 
integration c and d, then take the integral of the result and 
evaluate it at the limits of a and b. 

The integral of a constant alone is equal to the constant c1 
multiplied by the variable the integral is being integrated 
with respect to (indicated by dx), plus another constant CZ. 
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For example: 
Ici dx = cix + c2 

In examples where distance = x(t), velocity = v(t) and 
acceleration = a(t), the double integral of acceleration is: 
IIa(t) dt dt = Iv(t) + c1 dt = x(t) + cix + c2 

To evaluate a triple integral of a function containing three 
variables: 
a h  c h  e.F f(x,y,z) dz dy dx 
First evaluate the function f(x,y,z) by taking the integral of 
f(x,y,z) and evaluating it at the limits of e and f, next take 
the integral of the result and evaluate it at the limits of c 
and d, then take the integral of the result and evaluate it 
a t  the limits of a and b. In problems where an  integral is 
describing volume in a coordinate system, the limits a and 
b, c and d, and e and f, may correspond to the X-axis, the 
Y-axis, and the Z-axis respectively. In this example: 

The first integral performed is e j  f(x) dz, 
the second integral is & (result of first integral) dy, 
the third integral is a k  (result of second integral) dx. 
Notice that the innermost limits on the lsymbol correspond 
with the innermost dx, dy or dz, and progress outward so 
that each !symbol corresponds with its respective dx, dy or 
dz. Also note that multiple integrals may be in the forms: 
I I jf(x) dx dx dx 

a.b c h  e.F f(x) dz dy dx 

I I If(X,Y,Z) dx dY dz 

In an  example of a triple integral where the integral of 
f(x) is F(x), the integral of F(x) is g(x) and the integral of 
g(x) is G(x), then the triple integral of f(x) is: 
111 f(x) dx dx dx = JJF(x) + CI dx dx 
= I g(x) + cix + cz dx = G(x) + (~1~2/2)  + czx + ~3 
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3.12. Examples of common integrals 

This section includes examples of selected simple 
indefinite integrals commonly used in calculus: 
j O d x = c  
12 dx = 2x + c 

jxn dx = xn+l/(n+l) + c, when n + -1. 
I l / x d x = l n I x l  + c  
I 1/(2x+3) dx = (112) In I 2x+3 I + c 
j @ d x = e " + c  
Ie2x dx = (112)s" + c 
lax dx = [ax/lna] + c, when a > 0 and a f 1. 

J e u  (du/dx) dx = eu(x) + c 
j l nx  dx = xlnx  - x + c, when x > 0. 
Icosx dx = sinx + c 
Jsinx dx = -cosx + c 

Ie2(~+6) dx = (1/2)e2(~+6) + c 

tanx  dx = In I secx I + c 
I sec x dx = ln(sec x + t an  x) + c = log tan(u/2 + d4) + c 
Icscx dx = ln(cscx - cot x) + c = log tan(d2) + c 
Isec2x dx = t anx  + c 
I csc2x dx = -cot x + c 
Icotx dx = {(cosxhinx) dx = I sinx I + c 
lsinh x dx = cosh x + c 

jcosh x dx = I (sinh x / cosh x) dx = ln(cosh x) + c 
j t anhx  dx = sinhx + c 
I [u(x) + v(x)] dx = I U(X) dx + I W  dx 
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3.13. Integrals describing length 

This section develops the integral that  represents the 
length of a curve. 

The integral can be applied to determine the length of  a 
curue. Using a rectangular coordinate system, a segment of 
a curve or a n  arc can be determined by dividing the 
segment or arc into sections such that each one is nearly a 
straight line. From geometry, it is known that the distance 
between twopoints (x1,yl) and (x2,y2) is a line given by: 

~~ 

ds = J(X2 - X d 2  + 0 7 2  - Y d 2  
Similarly, the length ds of a section of a curve can be 
represented as: 
(As) = ~ ( A x ) ~  + (Ay)2 

ds = d m -  = J(dx / dx)2 (dx)2 + (dy / dx)2 (dx)2 

ds = &dx)2 + (dy I dx)2 (dx)2 = d(dx)'(l+ (dy / dx)' 

ds = d1+ (dy/dx)2 dx 

A s =  Jl+(dy/dx)2dx 

Therefore, the length of an interval of a curue can be 
represented as the limit of the sum of the sections ds. If the 
length of a curve is given by y = f(x) between points x = a 
and x = b, then the sum of the sections is: 

limAx+o 

= j d s  = 

J1+ (dy f dx)2 Ax 

dx = a ) l d a  dx 
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3.14. Integrals describing area 

This section includes using single and double integrals to 
describe areas of circles, rectangular regions, regions 
bounded by and regions between two curves, triangular 
wedge regions and surfaces of revolution. 

The integral applies to areas of circles as well as areas 
under curves. The area of a circle is nr2 and the derivative 
of the area of a circle is circumference 2nr. Conversely, the 
integral of the circumference of a circle 2nr is the area m2. 
Therefore, the area of a circle = I (circumference) dr. 

When applying the integral to a circle rather than a curve, 
the circle can be subdivided into rings of thickness Ar  
rather than rectangles, as depicted in the figure: 

The sum of the rings can be represented by: 
A = 0) 2nr dr = nr2 
where the area of each ring is n(r + Ar)2 - nr? 

Area can be represented using integrals of a two-uariable 
function f(x,y) as well as a one-variable function f(x). Areas 
represented using two variables include rectangles in 
planes, areas in XY-planes that are bounded by closed 
curues, or areas that are two-dimensional slices of three- 
dimensional objects. 
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For example, a rectangular region can be measured within 
an  XY-coordinate system where the area is defined between 
x = a and x = b and between y = c  and y = d: 

t '  a b X  
The area is divided into subintervals a lmg  eacll axis so 
that each interval has a rectangular shape and has x- and 
y-coordinates. The total area can be represented by the sum 
of this two-dimensional grid of rectangles. Each rectangle 
defining a subinterval of the total area has an  area of 
AA = AxAy, with Ax = (b-a)/n and Ay = (d-c)/m, where n is 
the number of subdivisions along the X-axis and m is the 
number of subdivisions along the Y-axis. If h i  = I xi+l- xi I 
and Ayj = I yj+l -yj I ,  then the area of a subinterval can also 
be written AAij = AxiAyj. The sum of all the subinterval 
areas as i goes from 1 to n and as j goes from 1 to m 
approximates the total area. As the limits of n and m 
approach infinity and therefore Ax and Ay approach zero, 
the area can be written: 

n m  

lim n+ao, m +a f(x i Y j WAY = limhx+O,m+O C f(x i 9 Y j WAY 
i = l  j=1 i,j 

= L f(xi,yj) dx dy = L f dA 
where R is the region bounded by the closed curve. 
If the urea of this region has part of the curve represented 
by y = fi(x) and the other part of the curve represented by 
y = fi(x), so that all of the curve is accounted for, the 
integral can be split: 

f dA = n(x).kX) n(x)b(X) dy dx 
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For example, find the area bounded by two curves, 
between y = x2 and y = 1 using a double integral: 

Y I  

4 2 I y = x  
+,Y = 1 

X 

The area bounded by y = x2, y = 1 is closed by the two inter- 
section points (-1,l) and (1 , l )  where x = -1 and x = 1. The 
double integral describing these two curves is defined by 
where the two intersection points cross each other, which is 
where the two values of x and the two functions y = f(x) meet: 

-& xJ1 dy dx = -h [l - x2] dx = [x - x3/3] 

Therefore, the area is 413 square units. 

1 

= [l - 1/31 - [(-1) - (-1)3/3] = [2/3] - [-1 - (-1/3)] = 4/3 

If two curves represented by two functions don’t intersect, 
the area between the two curves can be described by the 
integral of the absolute value of the difference between the 
two functions in a defined interval. For example, if one 
curve is given by f(x), the second curve is given by g(x) and 
the interval is a-b, the integral is: B I )  I f(x) - g(x) I dx 

y I  
I 4  

a b X  

The area of a triangular wedge section of a circle can be 
described by considering that the wedge section (AW27t) is a 
part of the whole area of the circle m2 and can therefore be 
represented as: (A8/2n)(m2) = ( 1/2)r2A0 
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If a region contains numerous triangular wedge sections, 
then the total area can be represented by a sum of all the 
sections: 
A = l im,,o~ (1 / 2) r2A8 = (1/2) jr2 d8 

To represent area in polar c0ordinates.a grid can be 
constructed in a similar manner to sectioning a n  area in 
rectangular coordinates and summing the subsections. (See 
Section 1.9 on coordinate systems.) In polar coordinates the 
sections are defined by r rays at various 8 values where 
a 5 r 5 b and a < 8 < p, and there are n subsections in each 
of these directions: 

B o = a  

X 

The sum of the subsections is given by: 

where AA = rA8 Ar  and each subsection has a n  area defined 
by Ar  along the r ray multiplied by rA8 along the 8 direction 
(which is a n  arc.) 

f(ri ,0 j)AA 
i j  
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The total area is: 

The integral can be applied to determine surface area 
using a surface of revolution. If the curve of a function 
y = f(x) is revolved around the X-axis, the surface area of 
the resulting surface can be determined. (Note that 
revolution can also occur around the Y-axis.) 

A surface that was revolved about the axis can be divided 
into sections similar in shape to a cylinder, where the area 
of a n  arced cylindrical surface S can be given by: 
A S  = 27cy A s  or dS = 2ny ds 
The surface area of each section is the width of the 
cylindrical section (not the radius) multiplied by the 
circumference at the center of the section. Therefore, the 
surface area resulting from revolving curve y = f(x) around 
the X-axis between x = a and x = b is: 

S =  2n / y d ~ = 2 x ~ ~ y J l + ( d y / d x ) ~  dx 
Or approximately, 

2nydl+ (dy I dx)2 Ax 

where ds = d m  dx (described in Section 3.13.) 

Y l  ds 
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If the curve is revolved around the Y-axis instead, the 
surface area is: 
S =  2~ I x d s = 2 ~ a h x J = d x  

Or approximately, c 2 n x J ; m ~ x  

3.15. Integrals describing volume 

This section presents different techniques that may be 
applied to problems involving the volume of a n  object and 
includes: volume of revolution, volume by cylindrical shells, 
volume of spheres, volume by projecting a closed curve 
along the Z-axis and sectioning into columns or cubes, and 
volume in terms of cylindrical and spherical coordinates. 

When modeling a problem where volume must be 
determined, there are a variety of techniques to consider 
depending on the geometry of the object. The integral can 
also be used to define the volume of an object. Volume can 
be defined using single integral equations, double integral 
equations and triple integral equations. Sums can be 
constructed by slicing or sectioning a three-dimensional 
object and adding up the sections. 

In the graph of a non-negative continuous function, the 
area under the curve of function y = f(x) is given by: 
a h  f(x) dx. If the function is revolved about the X-axis 
between x = a and x = b, a volume is generated. This 
volume is called the volume of revolution. Each circular 
cross-section has an  area of ny2 and a thickness of dx. 
Therefore, the volume of a section is ny2dx. The volume of 
the “volume of revolution” between two vertical planes 
at x = a and x = b (see figure below) is given by: 
V z C V’AX = x a h  f(x)2 dx = x a b  y2 dx 
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y I  

X 

I x = a  x = b  

In the graph of a non-negative continuous function be- 
tween x = a and x = b, the volume can be described using the 
method of volume by cylindrical shells. If the area bounded 
by x = a and x = b is revolved about the Y-axis generating a 
volume, this volume can be divided along the X-axis into n 
parts, each having a thickness of Ax and n vertical cylinders 
will result. The volume of each cylindrical shell is obtained 
by subtracting the volume of a smaller cylinder from the 
next larger cylinder nR2h - nr2h = nh(R2 - r2), where R is the 
radius of the larger cylinder and r of the smaller and h is 
the length along the Y-axis. 
More generally, if R = (x + dx) and r = x, then subtracting 
the cylinders gives: 
X(X + dx)'h - nX2h = nh(X + dx)(x + dx) - nX2h 
= nh[X2 + 2x(dx) + ( d ~ ) ~ ]  - XX2h 
= nhX2 + 2xnh(dx) + nh(dX)2 - nx2h = 2xnh(dx) + nh(dx)2 
If the sum of the n shells is taken as n approaches infinity 
and the thickness of each shell approaches zero, the nh(dx)2 
term will quickly approach zero because of (dx)2 or Ax2. The 
volume depicted below can be described by: V 2 

As the number of shells approaches infinity, then the 
volume becomes: 
V = ab  2nhx dx 

2nxhAx 
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X 

The integral can also be applied to the volume of spheres. 
The volume of a sphere can be divided up into nested 
spheres or shells, each having a thickness of Ar, where each 
shell can be measured from radius r to radius r + Ar. The 
measurement of each shell can be estimated by its surface 
area multiplied by Ar, or 4m2Ar. Therefore, the volume is 
the sum of the volumes of the incremental shells: 
V = olr 4nr2 dr = (4/3)nr3 
which is the volume of a sphere. 

Volume of a n  object can be described by projecting a 
closed curve vertically along the Z-axis in a n  XYZ coor- 
dinate system into a three-dimensional solid. See figures 
below. This volume can be determined in terms of double or 
triple integration and summation. If the volume of this 
object is divided into columns in the direction of the Z-axis, 
where a n  area subdivision dydx in the XY plane is projected 
vertically along the Z-axis to the surface z = F(x,y), the 
volume of each column is F(x,y) dydx. The sum of all the 
columns as the number of columns approach infinity, gives 
the total volume for the function F(x,y) and is described by: 

v = lim~x+o,~+o c ~ ( x  i 9 y j )&Ay = IL F(xi,yj) dxdy = IJK F 
i,j 

where the “ R  ” defines a region of area. 
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Y c 
An alternative method of describing this same volume is to 
divide it into cubes in the XYZ coordinate system so that 
the volume of each cube is dxdydz. Then the sum of all the 
cubes gives the total volume and can be described by: 
V = a.k fl(x).hx) F I ( X . ~ ) . ~ ( ~ J )  dz dy dx 
where Fl(x,y) = z and FP(x,Y) = z describe the surfaces along 
z and fi(x) = y and f4x) = y describe the closed curve. The 
interval along the X-axis is from x = a to x = b. 

Y w 2 

X 

9 In general, a volume in a n  XYZ coordinate system can be 
divided into cubes, such that each cube has a volume 
AxAyAz = AV and Ax = (b - a)/m, Ay = (c - d)/n, Az = (e - f)/p 
and m, n and p correspond to the number of subdivisions 
along the three axes. The sum of all the cubes gives the 
total volume and is described along the three axes by: 
V = ,.b e h  dz dy dx 

152 



The Integral 

The volume of a rectangular solid can be determined by 
dividing it into many cubic or rectangular sections. 
Consider a rectangular solid positioned with its lower left 
corner at the vertex of a n  XYZ coordinate system: 

/ 5  
Y 

The rectangular solid spans from x = 0 to x = 3, y = 0 to 
y = 5, and z = 0 to z = 2. The integral describing volume is: 

= 0.b 10 dx = 10x1; = 30 cubic units 

In this example, the volume can also be obtained by simple 
geometry as length x width x height, or 
3 x 5 x 2 = 30 cubic units. 

In cylindrical coordinates, the volume of an  object can be 
sectioned in a grid of subsections where the volume of each 
subsection is defined according to the coordinates. Then the 
subsections can be summed or integrated to find the total 
volume. (See Section 1.9 on coordinate systems.) 
In cylindrical coordinates the sections are defined by r rays 
a t  various 0 values and projected along the Z-axis with 
a r < b, a < 0 < p and c < z < d. The r component is 
measured from the Z-axis, the 0 component measures the 
distance around the Z-axis and the z component measures 
along the Z-axis. 

The following figure depicts a point P(r,B,z) in a cylindrical 
coordinate system: 
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For example, the volume of a triangular wedge section 
that is projected vertically along the Z-axis can be 
represented in cylindrical coordinates. 

The area of each subsection is AA k: r A 8 A r  and is defined by 
A r  along the r-ray multiplied by r Ae along the 8 direction. 
Therefore, the volume of a subsection is AV k: r Ar  A8 Az. For 
the total volume containing numerous triangular wedge 
sections where r = 2 , 8  = 'TI and z = 3, the volume can be 
represented by: 
V = $ ,fah r dr d8 dz = 0.b 

= o b  opI Z2/2 d8 dz = 0.b opI 2 de dz = 0.b Z'TI dz = 61t 

o p  r dr de dz 
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To verify this answer, consider that  both the top and 
bottom are level, therefore the volume should be equivalent 
to the area of one end multiplied by the z-dimension: 
(A012n:)n:r2(z) = (1/2)r2A0(z) = (1/2)(4)7t(3) = 67t 

where (A8/27t)m2 defines a wedge of a circle. 

To represent volume in spherical coordinates, where 
x=pcos8  sin@, y = p s i n 0  sin@, z=pcos@, p =  ( X ~ + Y ~ + Z ~ ) ~ ’ ~ ,  
a grid can be constructed in a similar manner to sectioning 
a volume in rectangular coordinates and summing the 
subsections. (See Section 1.9 on coordinate systems.) In  
spherical coordinates, the sections are expressed in terms of 
p, 8 and @, where p can range from 0 to 00 and originates 
from the origin, 0 can range from 0 to 2n: and measures the 
distance around the Z-axis, and @ can range from 0 to n: 
measures down from the Z-axis. Note that p is measured 
from the origin rather than the Z-axis as is the case with r 
in cylindrical coordinates. This figure depicts a point 
P(p,8,@) in a spherical coordinate system: 

To find volume in spherical coordinates, divide the object 
into n subsections in each of the p, 0 and @ directions and 
integrate the volume of each subsection over 0 < p 5 00, 

0 5 8 2 2z, and 0 5 @ I n. Each subsection is a semi- 
rectangular volume element and is defined in terms of its 
(p,B,@) coordinates as depicted on the next page. One edge of 
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the element has a length of Ap, one edge is defined by 
rotating p the length A$ resulting in length p A+, and one 
edge is defined by rotating in the 8 direction measure out 
from the Z-axis at the length (p sin $) resulting in a length 
of (psin 4 A@. Therefore, the volume of a subsection is: 
AV = (Ap)(pA$)(p sin $ AO) = p2(sin $) Ap AO A4  

The total volume is the sum of the subsections as the size of 
each subsection approaches zero, which is the integral: 
V = OF op'ok p2sin$ dpded4 

For example, the volume of a sphere located at the origin 
of a spherical coordinate system, having a radius = R is 
given by: 

V = 0 F o j " o . b  p2sin$ dpded4 
= of  o h "  ( 1/3)R3 sin $ de d$ = of (Zn)( 1/3)R3 sin $ d$ 

= (4/3)nR3 
which is the known volume of a sphere. 

= (27t)( 1/3)R3 [-COS 7t - - COS O)] = (2/3)7tR3[+ 1 + l)] 
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3.16. Changing coordinates and variables 

This section provides a brief summary of changing 
coordinates and variables including the volume of a sphere 
in rectangular, cylindrical and spherical coordinates, and 
changing between coordinates using the Jacobian factor. 

When describing areas and volumes of circles, spheres, 
cylinders and other non-rectangular shapes, it may be 
advantageous to evaluate integrals in polar or spherical 
coordinates rather than rectangular coordinates. 

For example, the volume of a sphere located at the origin 
given in Cartesian, cylindrical and spherical coordinates 
can be represented as follows: 
(a.) In rectangular coordinates, the equation for a sphere is, 

x2 + y2 + z2 = R? The sphere can be divided into sections 
such a s  octants with the volume of each octant further 
divided into small rectangular or cubic subsections. In 
a n  XYZ coordinate system, the volume of each cube is 
dxdydz. Then the sum of all the cubes in the octant mul- 
tiplied by 8 gives the total volume of the sphere. Using 
this strategy, the volume of a sphere located at the 
origin of the coordinate system can be represented by: 

The interval along the X-axis is from x = a = 0 to x = b. 

7 

V = (8) o i  oJ:R2-x2 oJJR2-x2-y2  dz dy dx = (4/3)7~R3 

(b.) In cylindrical coordinates, the equation for a sphere is, 
r2 + z2 = R? Again, the sphere can be divided into 
sections such as octants with the volume of each octant 
further divided into small subsections. If the sphere is 
located at the origin, the equation for volume is: 

V = (8) ojVR /22 -r O ~ / ~ O !  r dr de dz = (4/3)7cR3 

(c.) In spherical coordinates, the equation for a sphere is, 
p = R. If the sphere is divided into octants with the 
volume of each octant further divided into small 
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subsections, and the sphere is located a t  the origin, then 
volume can be represented as: 

V = (8) o ) / ~ o ~ / ~  oh p2 sin $ dp d0 d+ = (4/3)nR3 

To change between coordinate systems when evaluating 
a n  integral, the expressions for x, y and z can be 
substituted from the original coordinates to the new 
coordinates. For example, to make a simple change from 
rectangular to polar coordinates for area, first substitute 
x = r cos 8 and y = r sin 0 in the integrund, then change the 
Limits of integration to describe the dimensions within the 
new coordinate system. Finally, replace dA with r drd0. 

A general method used to change variables uses the 
Jucobian J determinant for two or three variables. In this 
method, x, y and z are related to new coordinates U, v and 
w, such that x = x(u,v,w), y = y(u,v,w) and z = z(u,v,w). The 
Jacobian represents a factor that relates the original 
coordinate system to the new coordinate system. 
For a single integral, changing from: 
If(x)dx to If(u)du, 
the factor relating dx and du is simply the ratio dx/du. 
Therefore, the dx can be replaced with (dx/du)du. Similarly, 
(du/dx)dx is equivalent to du. 

For a double integral, changing from: 

the factor given by J re la tes  the area dxdy with area dudv 
such that dxdy becomes I JI dudv. The variables x and y 
are related in that x = x(u,v) and y = y(u,v), and each point 
in the x-y coordinate system is related to each point in the 
U-v coordinate system. Therefore, the integral in the x-y 
system corresponds to the integral in the U-v system as: 

Ilf(x,y) dx dy to JJf(u,v) du dv, 

Ilf(X,Y) dx dy = Ilf(X(U,V),Y(U,V)) I J I  du dv. 
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In a triple integral, when changing from: 
Ijlf(x,y,z) dx dy dz to JJJf(u,v,w) du dv dw, 
the factor relates the volume dxdydz with volume dudvdw 
such that dxdydz becomes I JI dudvdz. Therefore, the 
integral in the x-y-z system corresponds to the integral in 
the U-v-w system as: 
Illf(x,y,z)dxdydz = I j l f ~ x ~ u , v , w ~ , Y ~ u , v , w ~ , z ~ u , v , w ~  I JI dudvdw 

The J factor in two and three variable integrals, 
represents the Jacobian determinant and corresponds to 
the (dxldy) factor in the one-variable integral. There are 
both two- and three-dimensional Jacobian determinants 
that  correspond to two- and three-variable integrals. The 
Jacobian determinant for two variables is: 

The Jacobian determinant for three variables is: 

These determinants for two and three variables are 
sometimes represented by: 

Also note that the d represents a partial derivative. See 
Chapter 6 for a discussion of partial derivatives. 

The J factor represented by the Jacobian determinant 
can be derived by translating a n  element of the area or 
volume represented by a two- or three-variable integral 
from a n  XY (or XYZ) coordinate system to a UV (or UVW) 
coordinate system. Consider the relationship of a volume 
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element in a n  XYZ coordinate system vs. a UVW coordinate 
system that represents a cylindrical or spherical system. 
Because a curved region in a rectangular coordinate system 
can correspond to a rectangular region in cylindrical or 
spherical coordinates, the volume element has curved sides 
in the rectangular coordinates and straight sides in a 
cylindrical and spherical coordinates. 
Y V 

x(u,v +AV), y(u,v + AV)) a 
x((u’v)’ y(‘’v)(x(u +Au, v), y(u +Au, v) 

X 

I 
This figure represents only the x-y and U-v planes for 
simplicity. If the curved element in the XYZ coordinate 
system is represented in vector form such that the vector 
representing each curved line has a n  i component in the x- 
direction, a j component in the y-direction and a k 
component in the z-direction (see Section 5.1 for 
explanation of i, j ,  k,), then: 
The change in x is given by: 
(x(u+Au, v, w) - x(u, v, w))i + b(u+Au, v, w) - y(u, v, w))j 

= [ (&/h)Au] i + [ (*/h)Au]j [ (az/au)Au] k 
The change in y is given by: 
( ~ ( u ,  v+Av, w) - x(u, v, w))i + b(u, v+Av, w) - y(u, v, w))j 

= [(&/aV)Av]i + [(+/h)AvU + [(az/aV)Av]k 
The change in z is given by: 
(x(u, v, w+Aw) - x(u, v, w))i + b(u ,  v, w+Aw) - y(u, v, w))j 

x [(&/h)Aw]i + [(i3y/h)Aw]j + [(dz/h)Aw]k 

+ (z(u+Au, V, W) - Z(U, V, w))k 

+ (z(u, v+Av, W) - Z(U, V, w))k 

+ (z(u, V, w+Aw) - Z(U, V, w))k 
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The vector product (cross product) of the x, y and z 
components is: 
AuAvAw x 

where the quantity within the absolute value symbol 
represents the determinant: 

In general, to change coordinate systems in a n  integral, 
express x, y and z in terms of the new variables U, v and w, 
convert the x-y-z element into a U-v-w element, and include 
the Jacobian determinant to factor in the change in the 
shape of the element. 

The Jacobian determinants can derive the conversion 
factors for polar, cylindrical and spherical coordinate 
systems. 
In polar coordinates: 
x = r COS 8 = U COS v 
y = r sin 8 = U sin v 
The Jacobian in polar coordinates is: 

J =  

= r cos2e + r sin2e = r 

In spherical coordinates: 
x = p cos 8 sin + = U cos v sin w 
y = p sin 8 sin + = U sin v sin w 
z = p cos 4 = U cos w 
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The Jacobian in spherical coordinates is: 
& l a p  &/a$ &/a 

J = * l a p  %/a$ */a 
a z l d p  a z / q  &/a 

Calculating this determinant results in J =  p2 sin 4. 

3.17. Applications of the integral 

9 This section includes some applications of the integral 
including work, pressure, center of mass and distributions. 

Work and pressure 

Work performed = force x distance. For example, if a 
particle or object is moved by a constant force F some 
distance x, then the work done is W = (F)(x). For a variable 
force F pushing or pulling a particle or object in the 
direction of motion along a straight line from xi to x2, work 
can be represented by: 
x i , k 2  F(x) dx 

The motion is often described along a n  axis of a coordinate 
system. If the motion is along a curue ds from s1 to 52 ,  then 
the total work done can be represented by: 
siB2 F(s) ds 

Example: What is the work required to liR a n  object 
weighing 1,000 pounds six feet off the ground? 
~b (1,000) dx = (1,000)(6) - (l,OOO)(O) = 6,000 foot-pounds 
(Note that pounds is the weight. If mass were given it 
would need to be multiplied with the acceleration of gravity 
in the proper units.) 
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Because this is a simple problem that does not require 
sectioning into subsections or elements and then summing 
as the size of each subsection approaches zero, this result of 
integration can be compared with simply multiplying. 
W = (force) (dist a nce) : 
W = (1,000 pounds)(6 feet) = 6,000 foot-pounds 

In more complicated work integrals, the geometry of what 
is being described is written into the integral. For example, 
to calculate the work required to  pump fluid out of a 
cylindrical tank of height h, the integral could be designed 
to calculate the sum of disc-shaped sections of water that 
each need to be lifted out of the tank. The volume of each 
disc is m2dz and the weight of a disc is the density p of the 
fluid multiplied by the volume of the disc, or pnr2dz. (This is 
not the same p as described in polar coordinate systems.) If 
the distance each disc needs to be lifted is given by z (which 
will be slightly different for each disc because they are 
starting from different heights), the integral giving weight 
multiplied with distance is: 
0.k pm2z dz 

Pressure is force per unit area, P = F/A, and therefore 
force is pressure multiplied with area, F = PA. The pressure 
exerted by a liquid at a given point in the liquid or on a n  
object that  is submersed in the liquid, is the same in all 
directions at a given point. The pressure increases the 
deeper it is measured in a body of liquid and is given by: 
P = pgh = wh 
where p is the density of the liquid (mass/volume); 
g is the gravitational constant; 
h is the height, or more specifically depth from the surface 
of the liquid; and 
w is the weight per volume of the liquid, or pg. 
The total pressure on a n  object or on a specified region of 
liquid can be represented a s  the sum of all the subdivisions 
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of area a t  various depths. If a section of area is defined by 
the length of a horizontal section 1 a t  a given height h with 
a thickness dh, then the force on the section is: 
AF = whl Ah 
Therefore, the total force F on the object or region is the 
sum of the force all sections: 
F = jwhl dh 

b 

Ah hB a 

Consider the work required to pump water up and out of a 
tank that has a height of h and a width of 1. If the tank is 
divided into sections having area A, thickness Ah, and each 
at a slightly different height, then this can be thought of as 
pumping each section out individually and summing: 
W = ahAwh dh 

Center of mass 

Integrals can be used to describe the center of mass. The 
center of mass is defined as the moment divided by the 
mass, where the moment is defined a s  the distance of the 
mass from a line or axis multiplied by the mass itself. For 
example, for a point mass ml located a certain distance xi 
from an  axis, the moment of that point mass is xlml. If 
there are many point masses located a t  specific distances 
from the axis the sum of those moments is: &imi 
If there is a continuous distribution of these masses at 
various lengths from the axis, the sum of the moments 
becomes: I x  dm 
The center of mass is: j x  dm -+ jdm 
where dm represents an  element of mass. 
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The center of mass can be measured from a n  axis or a 
plane in terms of one, two or three dimensions. In  one 
dimension, masses can behave as a single mass along a line 
or curve, such tha t  the density p of each element of mass is 
described in terms of p = mass/volume, and the volume is 
represented in this one-dimensional situation as the length 
of the element of mass, so tha t  the density at a point is 
dm/ds. Therefore, the mass is density multiplied by length, 
p ds. The total center of mass is: 
moment/mass = Ipx ds + j d s  

In  an XY coordinate system, the center of mass described 
according to x-and y-coordinates is: 
jpx  ds  + I d s  and jpy ds + Ids  

For two-dimensions, center of mass is described in terms 
of density multiplied by area such that dm = p dA, and the 
masses are  distributed in a plane rather than along a line 
or curve. The center of mass occurs where all the masses 
balance. There is a moment around the X-axis, &imi, and 
the Y-axis, Cximi. Each element has  x and y coordinates 
within the  plane. Therefore: 
dm = p dA = p(y1- y2) dx = p (XI - x2) dy 
In  a n  X-Y coordinate system, the center of mass described 
according to x- and y-coordinates is: 
Jp(y1- y2) x dx + Jp(y~ - y2) dx and 
Jp(xi - x2) y dy + Ip(xi - ~ 2 )  dy 

For three-dimensions, center of mass is described in terms 
of density multiplied by volume such tha t  dm = p dV, and 
the masses are  distributed in three-dimensional space. If 
the volume is described in terms of a volume of revolution: 
V = Irahf(x)2dx or V = nahy2dx, 
and sections are made perpendicular to the Y-axis, then: 
dm = pxx2 dy. 
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Each section is the same distance from the bottom plane, so 
that a first moment is given by: 

The center of mass is described a s  the moment divided by 
the mass: 
jpx2y dy + px2 dy 

Ipxx2 y dy 

Note that moment of inertia is used in the description of 
physical systems such as rotating bodies. The moment of 
inertia is calculated similar to the first moment in the 
center of mass description above, except that the distance 
from the mass to the axis or plane is squared. For example, 
in the one-dimensional situation the first moment is: 
I px ds and j p y  ds 
Using the square of distance, the moment of inertia is: 
1 ~ x 2  ds and jpy2 ds 

Distributions, probabilities and integration 

Integrals are often used to describe various statistical 
quantities. One example is the probability that some value 
of x will fall between two points, a and b, and is described 
in terms of a density function p(x) and the integral: 
a k  p(x) dx 
Providing -,$ p(x) dx = 1 and p(x) 2 0 for all x values. 
This can be represented as an  urea between points a and b. 

An example using two variables occurs where the two 
variables are distributed throughout a population. The 
density function can be given in terms of two variables 
p(x,y) and a volume is described on a graph such that x is 
between x = a and x = b and y is between y = c and y = d: 
a k  c t i  p(x,y) dydx 
Providing -,r-r p(x,y) dy dx = 1 and p(x) 2 0 for all x and y. 
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3.18. Evaluating integrals using integration 
by parts 

This section provides a summary of the method of 
integration by parts, which is a practical method used often 
to evaluate integrals. Included in this section is the formula 
for integration by parts for indefinite and definite integrals 
and its derivation. 

To evaluate complicated integrals, methods that go 
beyond simply applying the integral formula are often 
required. Some of the most common methods are 
integration by parts, substitution, partial fractions and 
looking up integrals in integral tables. 

To evaluate certain complicated integrals, the method of 
integration by parts can be applied. Applying this method is 
often compared to applying the product rule for evaluating 
derivatives. To use this method, the integral must exist in 
the form or be arranged to fit the following formula: 

Or equivalently : 
I f  g' dx = f g - j f ' g  dx 

I f(x) g'(x) dx = f(x) g(x) - I f'(x) g(x) dx 

Note: The integration by parts formula is an important 
formula used frequently in calculus. 

Using other notation, where U = f(x) and v = g(x), the 
integration by parts formula is written: 
I u  dv = uv - I v  du 

The integration by parts formula can be derived by 
integrating the product rule. The product rule is: 
d d d 

dx dx 
or (fg)' = f'g + fg' 
Integrate each term: 

- f(x)g(x) = g(x) dx f(x) + f(x) - g(x> 
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{(fg)' dx = f'g dx + 
Rearrange: 

Because J(fg)' dx = fg, this becomes: 
Jfg'dx = fg - Jf 'g dx 
which is the integration by parts formula. 

fg' dx 

fg' dx = J (fg)' dx - J f 'g dx 

When the integral is a definite integral, the f(x)g(x) term 
is also evaluated at the limits, and the integration by parts 
formula for a definite integral becomes: 
a h  f(X) g'(x) dx = ffi)gfi) - f(a)g(a) - sb f'(x) g(x> dx 

To use integration by parts, the appropriate parts of the 
integral must be substituted for f'(x) and g(x), (or equiva- 
lently U and dv). The choice should be dependent on how 
easy it will be to get f(x) from f'(x). 

Example: Integrate jx cos x dx. 
First arrange in a form that will fit the integration by parts 
formula and make the following substitutions: 

du = dx 
dv = cos x dx 
From the substitution for dv, integrate v: 
v =  f c o s x d x = s i n x  

u = x  

Substituting into the integration by parts formula: 
J u  dv = uv - J v  du 
The integral becomes: 
Jx cos x dx = x sin x - {sin x dx 
Because Isin x dx = - cos x, the integral becomes: 
Jx cos x dx = x sin x + cos x + c 

The integration by parts formula may need to be repeated 
during the evaluation of a n  integral. 
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For example, integrate: jx2en dx: 

Using the integration by parts formula: ju dv = uv - [v du 
The substitutions are: 
U = x2, dv = ex dx, therefore, v = ex and du = 2x dx. 
Substitute into the formula: 
jx2ex dx = x2ex - l ex  2x dx 
Repeat integration by parts on j e x  2x dx 
The substitutions are: 
U = ZX, dv = ex dx, therefore, v = ex and du = 2 dx. 
Substitute into the formula: 
!ex 2x dx = 2xex - 2 j ex  dx = 2xex - 2ex + c 
Therefore, substituting back into the original integral: 
Jx2ex dx = x2ex - (2xex - 2ex) + c = ex(x2 - 2x + 2) + c 

(See the end of Section 3.19 for simplifications that can be 
used to simplify integrals before applying integration by 
parts. These include using trigonometric identities, 
factoring and some common derivatives.) 

3.19. Evaluating integrals using substitution 

This section provides a summary of the method of 
substitution, which is a practical method used often to 
evaluate integrals. Included in this section is a description 
of substitution, its relationship to the chain rule, using 
substitution for indefinite and definite integrals, and 
simplifying integrals before applying substitution using 
trigonometric ide n t it ie s , fact oring and com mon derivative s. 

Substitution of variables is used to translate a compli- 
cated integral into a more manageable form so that the 
integral can be solved using the integral formula or integral 
tables. Then the integral is translated back to its original 
variables. When using substitution or other methods, there 
are certain types of simplifications that may be particularly 
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helpful to perform on the original integral before the more 
formal technique is employed. Such simplifications may 
involve using trigonometric identities, the Pythagorean 
theorem and factoring. 

The method of substitution is sometimes referred to a s  
change of variables. The substitution method is a general 
strategy involving substituting placeholder variables into a 
complicated integral, solving the integral in its simplified 
form, then substituting the original variables back into the 
resulting expression. 

Using substitution to solve integrals is often compared 
with using the chain rule to evaluate derivatives. In fact 
the substitution method is generally based on the chain 
rule from differentiation. To understand substitution it is 
helpful to review the chain rule. The chain rule is used 
often to determine the derivative of composite functions. To 
use the chain rule for differentiation, it is important to 
identify the outer function and the inner function in the 
equation or expression to be differentiated. The chain rule 
formula is: 
[f(g(x))l' = f'(g(x))(g'(x)) 
Or equivalently, for more complex functions: 
d d 
- (f(x))n = n x (f(x)).-l x - f(x) 
dx dx 
The chain rule essentially states that the derivative of 
f(g(x)) equals the derivative of the outside function 
multiplied by the derivative of the inside function. For 
example, use the chain rule to differentiate: 
(d/dx)(x2 + 7)3 = 3(x2 + 7)2(2x) 
The chain rule results in the product of two factors, the 
derivative of the outside function and the derivative of the 
inside function. If the integral in question has a form 
similar to f'(g(x))(g'(x)), then its integral or antiderivative 
has the form f(g(x)). 
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Substitution can generally be applied to integrals that 

have their integrand in a form similar to f'(g(x))(g'(x)). The 
key to using the substitution method is identifying the 
"inside function" by looking at which factor is the derivative 
of the inside function. This generally involves guessing 
what the antiderivative could be by using the reverse of the 
chain rule and trying to identify the inside function and the 
outside function from the factors, then differentiating that 
result to check whether it was, in fact, the antiderivative. 
The substitution method may produce a result that is off by 
a constant factor which can be corrected, then checked by 
differentiation. 

A general form of a n  integral that  lends itself to substi- 
tution is f (g(x))(g'(x)) = f (u)(g'(x)). If f(u) is a continuous 
function and g(x) i s  a function such that dg(x)/dx exists and 
g(x) = U = u(x) = the inside function, then: 
h(u> du = h(g(x))g'(x) dx 
Equivalently: 
lf(u) du = If(u(x))- d'(x) dx 

dx 
where du = (du/dx)dx 

To use the substitution method to calculate a n  integral, 
first identify the inside function by looking at which factor 
is the derivative of the inside function, choose U and 
compute du/dx, identify and integrate f(u) du, then 
substitute U back into the antiderivative. 

Example: Find the integral jf(x) dx = I( '+' )dx. 
x2 +2x+10 

First, identify the inside function by looking a t  which factor 
is the derivative of the inside function. 
Notice that the numerator (x + 1) is the derivative of the 
denominator (x2 + 2x + lO), except for a factor of 2. 
Therefore, choose U = (x2 + 2x + 10). 
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The derivative of U is: du/dx = (2x + 2) = 2(x + 1) 
Rearranging gives: dx = du / 2(x + 1) 
Next, substitute U and du into the integral so that 
(x2 + 2x + 10) = U and dx = du / 2(x + l), then evaluate the 
integral: 

(Remember, 
Finally, substitute the original expressions back into the 
evaluated integral, where U = (x2 + 2x + 10): 
(112) In I (x2 + 2x + 10) I + c 
Therefore: 
kx + 1)/(x2 + 2x + 10) dx = (112) In I (x2 + 2x + 10) I + c 

l/x dx = In I x I + c.) 

Example: Find the integral If(x)dx = Ix(exp(x2)) dx. 
First, identify the inside function by looking at which factor 
is the derivative of the inside function. 
Notice that the factor x is the derivative of x2, except for a 
factor of 2. Therefore choose U = x? 
The derivative of U is: du/dx = 2x, or du = 2x dx 
Rearranging gives: dx = du/2x 
Next, substitute U and du into the integral so that 
x2 = U and dx = du/2x, then evaluate the integral: 
jx (exp(u)) du/2x = (1/2).fexp(u) du = (112) exp(u) + c 
Finally, substitute the original expressions back into the 
evaluated integral, where U = x2: 
(1/2) exp(x2) + c 
Therefore, I x (exp(x2)) dx = (1/2) exp{x2) + c. 

If the integral is a definite integral, the limits can be eval- 
uated after the resulting antiderivative has been converted 
back to its original variables, or the original limits can be 
converted into new limits in terms of the new variables and 
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the antiderivative can be evaluated in the new limits and 
does not need to be converted back to the original variables. 

Example: Find: 0j1 f(x) = 0 j 1  2x(x2 + 1)1/2dx. 
First, identify the inside function by looking a t  which factor 
is the derivative of the inside function. 
Notice that the factor 2x is the derivative of (x2 + 1). 
Therefore, choose U = (x2 + 1). 
The derivative of U is: du/dx = 2x, or du = 2x dx 
Rearranging gives: dx = du/2x 
Also, transforming the limits: u(1) = 2 and u(0) = 1 
Next, substitute U and du into the integral: 

o p  2x(x2 + 1)ll2 dx = i h  u ~ ' ~  du = ( 2 1 3 ) ~ ~ ' ~  If 
= (2/3)(2)312 - (2/3)(1)3'2 = (2/3)[2(2)'/2 - 11 

This is the final answer because the limits were trans- 
formed and the integral was evaluated in the new limits. 

Alternatively, the antiderivative in this example can be 
solved using the substituted integrand, then the result 
transformed back into the original variables, and evaluated 
at the original limits: 

ojl  2x(x2 + 1)1'2dx = ojl u1I2du = (2/3)u3I2 
Substitute the original expressions back into the evaluated 
integral, where U = (x2 + 1): 
(2/3)u3I2 = (2/3)(x2 + 1)3/2 
Then evaluate at original limits: 
(2/3)(x2 + 1)3/2 1; = (2/3)(12 + 1)3/2 - (2/3)(02 + 1)3/2 

= (2/3)(2)3/2 - (2/3)(1)3/2 = (2/3)[2(2)lI2 - 11 

Therefore, ojl  2x(x2 + 1)1/2dx = (2/3)[2(2)1/2 - 11. 
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Simplifying integrals before using formal techniques 

It may be helpful to simplify an integral before a more 
formal technique is employed. Simplifications may include 
factoring, substituting trigonometric identities or using the 
Pythagorean theorem. 

Factoring can also be used to simplify a n  integral. 
Examples of factoring include: 
x2 + (m + n)x + mn -+ factors to + (x + m)(x + n) 
x2 + 2x + 1 + factors to + (x + l)(x + 1) 
pqx2 + (pn + qm)x + mn + factors to -+ (px + m)(qx + n) 
x2 - y2 + factors to -+ (x + y)(x - y) 
x2 + 2xy + y2 + factors to -+ (x + Y ) ~  
x2 - 2xy + y2 + factors to -+ (x - 
x2 - 2x + 2 -+ factors to -+ (x - 1 ) 2  + 1 
Check this last example by working backward: 
(x - l)(x - 1) + 1 = (x2 - 2x + 1) + 1 = x2 - 2x + 2 

Examples of trigonometric functions and relations tha t  
can be used when making substitutions include: 
sin2x + cos2x = 1 
sin2x = 1 - cos2x 
C O S ~ X  = 1 - sin2x 
1 + tan2x = sec2x 
sec2x - 1 = tan2x 
1 + cot2x = csc2x 
CSCZX - 1 = cot2x 
t a n x  = s i n x h o s x  = 1/cotx  
cotx = c o s x h i n x  = l / t a n x  = cosxcscx 
secx = l / c o s x  
cscx = l / s i n x  
sin 2x = 2 sin x cos x 
cos 2x = C O S ~ X  - sin2x = 2 C O S ~ X  - 1 = 1 - 2 sin2x 
sin(x - x) = sinx 
cos(7t - x) = -cosx 
s inx = cos(x - d 2 )  = cos(d2 - x) 
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cosx = sin(x + x / 2 )  = sin(d2 - x) 
sin(x - y) = sin x cosy - cos x sin y 
cos(x + y) = cos x cosy - sin x sin y 
cos(x - y) = cos x cosy + sin x sin y 
sin x cosy = (1/2)sin(x - y) + (1/2)sin(x + y) 
cos x sin y = (lIZ)sin(x + y) - (1/2)sin(x - y) 

sin x siny = (1/2)cos(x - y) - (1/2)cos(x + y) 
tan(x + y) = (tan x + t an  y) /(1 - tan x tan y) 
eix = cosx + isinx 
e-ix = cosx - isinx 
ei(7) = cos(-x) + isin(-x) 
cos x = (1/2)(eix + e-ix) 
sin x = (1/2i)(eix - e-ix) 
coshx = (1/2)e~ + (1/2)e-x 
sinh x = (1/2)@ - (1/2)e-x 
e~ = coshx + sinhx 
ex = cosh x - sinh x 
sinh2x = (1/2)(cosh 2x - 1) 
cosh2x = (1/2)(cosh 2x + 1) 
sinh(x k y) = sinh x cosh y f cosh x sinh y 
cosh(x f y) = cosh x cosh y It sinh x sinh y 

cos x cosy = (1/2)cos(x - y) + (1/2)cos(x + y) 

The following substitutions provide examples of 
simplifying integrals based on trigonometric identities for 
the particular selection of U and calculation of du used in 
the substitution method: 
(a.) If an  integral contains [u2 - a2]1/2, substitute for U, 

U = a csc 8, then [u2 - a2]1/2 becomes: 
[a2csc28 - a21112 = [a2(csc28 - 1)]1/2 = [a2~0t28]1/2 = a cot 8 
Note that (du/dO)(a csc 8) = - a csc 8 cot 8. 

substitute for U, U = a sec8, then [u2 - a2]1I2 becomes: 
[a2sec28 - a21112 = [a2(sec28 - 1)]1/2 = [a2tan28]1/2 = a tan0  
Note that (du/dO)(a sec 8) = a sec 0 tan 8. 

(b.) Alternatively, if the integral contains [u2 - a2]112, 
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(c.) If a n  integral contains [u2 + a2I1j2, substitute for U, 

U = a t an& then [u2 + a2I1I2 becomes: 
[a2tan28 + a2I1l2 = [a2(tan28 + l)J1/2 = [a%ec%)]1/2 
= a sec 8 = a(l/(cos2x)) 
Note that (du/de)(a tan  8) = a sec28. 

U = a sin 0, then [a2 - u2]112 becomes: 
[(a2-a2sin28)]1/2 = [a2(1 - ~ i n ~ O ) ] l / ~  = [a2cos28]1/2 = acos8 
Note that (du/de)(a sin 8) = a cos 8. 

(d.) If the integral contains [a2 - u2I1/2, substitute for U, 

Examples of deriuatiues to remember when using the 
substitution method and integration-by-parts: 
(d/dx)sin x = cos x 
(d/dx)cos x = -sin x 
(d/dx)tanx = l/(cos2x) = sec2x 
(d/dx)cot x = -csczx 
(d/dx)cscx = -cscx cotx 
(d/dx)sec x = sec x tan  x 
(d/dx)sin-lx = U( 1 - x2)112 

(d/dx)tan-lx = 1/(1 + x2) 

(d/dx)sec-ly = I/ I y I (y2 - 1)"' 

y = U", (dy/dx) = nun-l(du/dx), for positive n. 
y = au, (dy/dx) = au(loga)(du/dx) 
y = uv, (dy/dx) = vuV-l(du/dx) + uv(logu)(dv/dx) 
y = e', (dy/dx) = eu(du/dx) 
y = logau, (dy/dx) = (l/u)logae(du/dx) 
y = log U, (dy/dx) = (l/u)(du/dx), U * 0. 
y = cos U, (dy/dx) = -sin u(du/dx) 
y = sin U, (dy/dx) = cos u(du/dx) 
(d/dx)lnx = l/x 

(d/dx)cos-'x = -1/(I - ~2)"' 

(d/dx)cot-'x = -l/( 1 + y2) 

(d/dx)csc-'y = -1/ I y I 0 7 2  - 1)"' 
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Example: Integrate [sin3x dx using substitutions for sine 
and cosine. 
Rearrange: 
I sin3x dx = [sin2x sin x dx = I (1 - cos2x)sin x dx 
= /(sin x - cos2x sin x) dx = Isin x dx - Icos2x sin x dx 
Integrate : 
[sin x dx = cos x 
Then solve I C O S ~ X  sin x dx 
by substituting cosx = U and sinx dx = du: 
Icos2x sin x dx = j u 2  du = u313 + c = (cos x)3/3 + c 
There fore: 
/sin3x dx = /sin x dx - /cos2x sin x dx = cos x - (1/3)cos3x + c 

Note, the identity sin2x + C O S ~ X  = 1, is equivalent to 
sin2x = 1 - cos2x and cos2x = 1 - sin2x. These are partic- 
ularly helpful because they can be applied to sine and 
cosine raised to other powers. For I sin2x cosx dx and 

U = sin x, du = cos x dx and U = cos x, du = -sin x dx. These 
substitutions result in integrals in the form u2 du. Note 
that other powers of both cosine and sine can be treated 
similarly and integrated using the substitution method. 

cos2x sinx dx, substitutions can be made such as 

3.20. Evaluating integrals using partial 
fractions 

This section includes a brief explanation of the method of 
partial fractions. For a more comprehensive explanation, 
see a calculus textbook. 

The method ofpartial fractions is applicable when the 
integrand is a rational fraction such as a quotient of 
polynomials. In this method, the fraction is separated into a 
sum of simple fractions that can be easily integrated. The 
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integral of simple fractions often involves the natural 
logarithm (except when the denominator is raised to a 
power.) When using partial fractions for certain integrals, it 
may be helpful to remember that I l/x dx = In I x I +c, or for 
a more complicated function, 12/(x + 1) dx = 2 In I x + 1 I + c. 

Following is a brief explanation of the method of partial 
fractions and how to use it to solve a n  integral: 
(a.) First verify that the degree of the numerator is smaller 

than the degree of the denominator. If the degree of the 
numerator is equal or larger, divide the leading term of 
the denominator into the leading term of the numerator. 

(b.) Next, factor the denominator. 
(c.) Then separate the fractions into simpler fractions and 

insert unknown constants A, B, C, etc., into each 
numerator. Each factor will generally become a 
separate fraction. The new numerators will each 
contain the part of the original denominator (common 
denominator) that is absent from its new denominator. 
The constants make the original integral equal to the 
simpler fractions. 

(d.) Then solve for the unknown constants A, B, C, etc., by 
setting the sum of the new numerators equal to the 
original numerator. 

(e.) Finally, integrate each new fraction resulting in a sum 
of logarithms. 

A general relation that can be followed for a fraction with 
a simple binomial in the denominator and a numerator 
with its degree less than that of the denominator is: 

A(x-n)+B(x-m) A B ax+  b 
(x - m)(x - n) (x - m)(x - n) 
where, (ax + b) = A(x - n) + B(x - m). 
Using the constants A and B, solve as two integrals: 
[[(ax - b)/(x - m)(x - n)] dx = jA/(x - m) dx + IB/(x - n) dx 
= A l n l x - m l  + B l n l x - n l  + c  

+ +-+- 
(x - m) (x - n) 
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The partial fractions method can be demonstrated in this 

simple example of the integral: I 1/(x2 + 3x + 2) dx 
First factor the denominator: 
jl/[(x + l)(x + 2)] dx 
Translate this integral into two simple integrals: 
fN(x  + 1) dx + fB/(x + 2) dx 
where A and B represent constants that make 
l/[(x + l)(x + 2)] equivalent to [A/(x + 1) + B/(x + Z)]. 
Determine the value of A and B by first combining 
[A/(x + 1) + B/(x + 2)] back into one fraction with a common 
denominator (the original denominator) with the proper 
multiplication steps in the numerators: 
A(x + 2) + B(x + 1) - Ax + 2A + Bx + B - x(A + B) + 2A + 1B 

(x + l)(x + 2) 

Then solve for A and B by setting the original numerator 
“1” equal to the new numerator: 
l = x ( A + B ) + 2 A +  1B 
In order for the expression on the right to equal 1, A + B 
must equal zero. If this is true, the resulting equation 
becomes, 1 = 2A + 1B. This leaves two equations and two 
unknowns: 
A + B = 0 and 1 = 2A + B 
A and B can be solved using substitution of the two 
unknown variables into the two equations. Rearrange 
(A + B = 0) to isolate A, then substitute the expression for A 
into (1 = 2A + B): 

- - 
(x + l)(x + 2) (x + l)(x + 2) 

A = -B 
1 = 2(-B) + B =  - 2B + B = -  B 
I = -  B 
Therefore, B = -1. 
Substituting B into the A = - B: 
A = -  (-1) 
Therefore, A = 1. 
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Check results by substituting into a n  original equation: 
A = -B 
1 = - (-1) = 1 
Finally solve the simplified (split) integral using the A and 
B values: 
IA/(x + 1) dx + IB/(x + 2) dx = l/(x + 1) dx - I l/(x + 2) dx 
= l n I x +  11 - l n 1 x + 2 (  + c  
Check this final answer by differentiating: 
(d/dx)ln I x + 1 I - (d/dx)ln I x + 2 I = l/(x + 1) - l/(x + 2) 
(x+Z)- (x+l )  - x + 2 -  x -1  - 1 - - 
(x + l)(x + 2) (x + l)(x + 2) 

which is the original integral. 
(x + l)(x + 2) 

A more complicated example using the partial fractions 
method is to solve the integral: (x + 2)/(x2 + 2x - 3) dx 
First factor the denominator: 
I(x + 2)/[(x - l)(x + 3)] dx 
Translate this integral into two simple integrals: 
IN(x  - 1) dx + IB/(x + 3) dx 
where A and B represent constants that make 
(x + Z)/[(x - l)(x + 3)J equivalent to [A/(x - 1) + B/(x + 3)]. 
Determine the value of A and B by first combining 
[A/(x - 1) + B/(x + 3)] back into one &action with a common 
denominator (the original denominator) with the proper 
multiplication steps in the numerators: 
A(x + 3) + B(x - 1) 

(x - l)(x + 3) 
To solve for A and B, set the original numerator “(x + 2)” 
equal to the new numerator: 

Rearranging: 
(X + 2) = A x  + 3A + BX - B 

2 = AX + BX - x + 3A - B 
Z = x ( A + B - 1 ) + 3 A - B  
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Set A + B equal to 1 so the x term equals zero. If this is 
true, the resulting equation becomes (2 = 3A - B). 
This leaves two equations and two unknowns: 
A + B = 1 and 2 = 3A - B 
A and B can be solved using substitution of the two 
unknown variables into the two equations. Rearrange 
(A + B = 1) to isolate A, then substitute the expression for A 
into (2 = 3A - B): 
A = l - B  
2 = 3(1 - B) - B 
2 = 3 - 3B - 1B = 3 - 4B 
-4B = -1 
Therefore, B = 1/4. 
Substituting B into the A = 1 - B: 

Therefore, A = 314. 
Check results by substituting into a n  original equation: 

A = 1 - 114 = 314 

A = 1 - B  
3/4 = 4/4 - 1/4 = 314 
Finally, solve the simplified (split) integral using the A and 
B values: 
IN(x  - 1) dx + IB/(x + 3) dx 
= 1(3/4)/(x - 1) dx + /(1/4)/(x + 3) dx 
= (3/4) In I x - 1 I + (1/4) In I x + 3 I + c 
Check this final answer by differentiating: 
(d/dx)(3/4) In I x - 1 I + (d/dx)(l/4)ln I x + 3 I + c 
= (3/4)(1/(~ - 1)) + (1/4)(1/(~ + 3)) 
- (3 / 4 ) ( ~  + 3) + (1 / 4 ) ( ~  - 1) - 

(x - l)(x + 3) 
(3x / 4) + (9 14) + (x / 4) - 1 / 4 - 

(x - l)(x + 3) 
x + 2  - - - 

(x - l)(x + 3) 
which is the original integral. 
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3.21. Evaluating integrals using tables 

Integral tables are used to solve integrals in forms that 
do not allow easy application of integration techniques. 
Integral tables are found in mathematical handbooks, 
calculus books and the CRC Handbook of Chemistry and 
Physics. 

Integral tables contain solved integrals in various forms 
so that a n  unknown integral can be matched to or trans- 
lated into the form in the integral table that is identical or 
most similar to it. If the unknown integral is not identical 
to a form in the table, a transformation of the integral must 
be made using substitution. For example, substitute y for 
ax. Specific substitutions are suggested within integral 
tables for certain integrals. In general, when making 
substitutions, a few points that may apply are to make a 
substitution of the dx terms, to express the limits of the 
definite integrals in the new dependent variable, and to 
perform reverse substitution to obtain the answer in terms 
of the original independent variable. 

In general when using integral tables, identifj.. which type 
of integral best fits the integral in question. I t  may be 
helpful to peruse some integral tables to become familiar 
with the integrals and substitution suggestions and to read 
the introductory discussions a t  the beginning of the tables. 
Anyone using calculus will often need to look up integrals 
in the tables. It is worthwhile to become familiar with 
them. Remember to use laws of logarithms, trigonometric 
identities, factoring, etc., if necessary to transform a n  
integral into a form that matches a solved integral in the 
tables. Also, note that sometimes a resulting integral in the 
tables will have another integral in its result. In these 
situations, repeat the formula on the resulting integral 
until there is a constant that results or no further 
integration is required. 
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4.1. Sequences, progressions and series 

This section includes sequences, arithmetic and geometric 
progressions, and arithmetic and geometric series. 

A sequence is a set of numbers called terms, which are 
arranged in a succession in which there is a relationship or 
rule between each successive number. A sequence can be 
finite or infinite. A finite sequence has a last term and a n  
infinite sequence has no last term. 

The following is a n  example of a finite sequence: 
(3, 6, 9, 12, 15, 18) 
In this sequence each number has a value of 3 more than 
the preceding number. 

The following is a n  example of a n  infinite sequence 
describing the function f(x) = l/x: 
{l/l, 1/2, 1/3, 1/4, 115, 116 ,... ] 
where the domain set is x = (1, 2, 3, 4, 5, 6 ,... } and 
the range set is f(x) = {l/l, 1/2, 113, 114, 115, 1/6 ,... }. 

An arithmetic progression is a sequence in which the 
difference between successive terms is a fixed number and 
each term is obtained by adding a fixed amount to the term 
before it. This fixed amount is called the common difference. 
Arithmetic progressions can be represented by first-degree 
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polynomial expressions. For example, the expression (n + 1) 
can rep resent a n  arithmetic progression. 

The sequence (3, 6, 9, 12, 15, 18) is a n  arithmetic 
progression represented by (n + 3). 

A finite arithmetic progression can be expressed as: 
a , a + d , a + Z d , a + 3 d , a + 4 d , a + 5 d  ,..., a + ( n -  l)d 
where a is the first term, d is the fured difference between 
each term, and (a + (n - 1)d) is the last or “nth” term. Each 
term in this progression can be written as: 
n = l ,  a , = a + ( l - l ) d = a  
n = 2 ,  a 2 = a + ( 2 -  l ) d = a + d  
n = 3, a3 = a + (3 - 1)d = a + 2d 
n = 4 ,  a 4 = a + ( 4 - - l ) d = a + 3 d  
n = 5 ,  a , = a + ( 5 -  l ) d = a + 4 d  
and so on. 

For example, in the arithmetic progression 
(3, 6, 9, 12, 15, 181, a = 3 and d = 3. Therefore, 
for n = 1, a, = 3, 
for n = 2, a2 = 6, 
for n = 3, a3 = 9, 
and so on. 

A geometric progression is a sequence in which the ratio of 
successive terms is a fixed number, and each term is 
obtained by multiplying a fixed amount to the term before 
it. This fixed amount is called the common ratio. 

Terms in a geometric progression can be represented as: 
a, ar, ar2, air3, ar4, ar5, ..., arn-l 
where a is the first term, arn-1 is the last term and 
the ratio of successive terms is given by r such that: 
ar/a = r, ar2lar = r, arVar2 = r, etc. 
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For example, in the geometric progression 
(2, 4, 8, 16, 32 ,... 1, if a = 2 and r = 2, the geometric 
progression can be expressed as: 
2, 2(2), 2(2)2, 2(2)3, 2(2)4, ..., 2(2p-1 

A series is the sum of the terms in a progression or 
sequence. An arithmetic series is the sum of the terms in a n  
arithmetic progression. A geometric series is the sum of the 
terms in a geometric progression. 

The notation used to express a series is sigma notation. 
The sigma notation that represents an  arithmetic series is: 

T a n  
n=l  
where a n  is the sequence function, m is the last term that is 
added and n is the nth term. 
The sum of the 
to n = 3 ,  can be 

i a n  = a1 + a2 
n=l 

For example, 

first three terms in sequence an from n =  1 
represented using sigma notation: 

+ a3 

in the arithmetic progression (3, 6, 9, 12, ...I 
the sum of the first three terms is the arithmetic series: 

C a n  = 3 + 6 + 9 = 1 8  
3 

n=l  

An arithmetic series can be calculated by determining the 
sum of the terms in a n  arithmetic progression using the for- 
mula (m/Z)(al+ am) where m represents the last term added. 

For example, applying this formula to the arithmetic 
progression (3, 6, 9) results in: (3/2)(3 + 9) = (3/2)(12) = 18 

A geometric series can also be represented using sigma 
notation as follows: 
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n=l 

where a is the first term and a f 0, r is the ratio between 
successive terms, m is the last term added, n is the nth 
term and arn-l is the last term. 

For example, in the geometric progression 
(2, 4, 8, 16, 32, ...I the sum of the first three terms is the 
geometric series: 

Car"-' = 2 + 4 + 8 = 14 
3 

n=l  

A geometric series can be calculated by determining the 
sum of the terms in the geometric progression using the 
formula [(a)(l - rm)/(l - r)] where m represents the last 
term added and r is the ratio. 

For example, applying this formula to the geometric 
progression (2, 4, 8) results in: 2(1 - Z3)/(l - 2) = 14 

In a n  infinite geometric series, m approaches infinity. As 
m approaches infinity, the formula for the series becomes: 
limm+,[a(l - rm)/(l - r)] 
If I r I < 1 and m+m, then r m  approaches zero and the sum 
of the infinite geometric series becomes a/(l - r). 

Because a series can be differentiated, multiplied, added 
to, etc., it is sometimes written in terms of the variable x 
rather than r: 
a + ax + ax2 + ax3 + ax4 +...+ axn-'= a ( l  - xn)/(l - x) 

4.2. Infinite series and tests for convergence 

This section includes infinite series and convergence, 
convergence of a geometric series, tests for convergence 
including the Comparison Test, the Ratio Test, tests for 
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series with positive and negative terms, the Integral Test 
and the Root Test. 

A series is infinite if there are a n  infinite number of terms 
in the progression or sequence that define the series. If the 
progression or sequence has an  infinite number of terms, 
then the sum cannot be calculated exactly. However, under 
certain conditions the sum can be estimated. 

Conditions that determine whether the sum of an  infinite 
series can be estimated include the following: 
(a.) If a n  infinite series has a limit it will converge and its 

sum can be estimated. If as  the terms in a n  infinite 
series are added where with each additional term added 
the sum approaches a number, then the series has a 
limit and converges and the sum can be estimated. 

(b.) If a n  infinite series has no limit it will diverge and the 
sum cannot be estimated. If as each additional term is 
added the sum approaches infinity, then the series has 
no limit and diverges and the sum cannot be estimated. 

(c.) A condition for convergence for infinite series: 

n=l 
is that an must approach zero a s  n approaches infinity. 
Although this condition must occur for a series to 
converge, there are cases where this condition is true 
but the series still diverges. 

To estimate an infinite series it must be determined 
whether the series has a limit and converges and what 
happens to the sum as the number of terms approach 
infinity. For example, consider the infinite series describing 
the sum of an  from n =  1 to n = w  

n=l  
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If this series has a limit and converges to L, it becomes: 

n=l 

The geometric series: a + ar + ar2 + ar3 + ar4 +...+ arn-1  

converges when I r I < 1 and diverges when I r 12 1. 
This geometric series can be expressed as: 

Carne1 = a + ar + ar2 + a13 + ar4 +...+ arn-1 

where the sum of the first m terms is represented by the 
formula: a(1 - rm)/(l - r) = a/(l - r) - (arm)/(I - r) 

As m approaches infinity the formula becomes: 
lim,,,[ a/(l - r) - (arm)/(l - r)] 
If 1 r I < 1 and m+a, then r m + O  and the formula becomes: 
a/(l - r) 
Therefore, as m+a,  if I r I < 1, the series converges and if 

I r 12 1, the series diverges. 

m 

n=l  

To determine whether a n  infinite series will converge, 
there are a variety of tests for convergence that  may be 
used. These tests include the Comparison Test, the Ratio 
Test, tests for series with positive and negative terms, the 
Integral Test and the Root Test. 

The Comparison Test for convergence 

The Comparison Test can be applied to infinite series 
with positive terms. A series is Convergent if each term is 
less than or equal to each corresponding term in a series 
that  is known to be convergent. Conversely, if each term in 
a n  unknown series is greater than or equal to each corres- 
ponding term in a known divergent series, then the 
unknown series is also divergent. 
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An example of a known convergent series that  is used in a 
Comparison Test is the P Series: 
1 + 1/2p + 1/3p + ... + l/nP + ... 
This series converges when P > 1 and diverges when P 5 1. 

A divergent series that  is used in the Comparison Test is: 
1 + 1 + 1 + 1 + ... 
As the number of terms approaches infinity, the sum of the 
terms approaches infinity and the series diverges. 

Example: Will series U converge? 
U = 1 + 1/2 + 1/3 + ... + l /n +... 
(This is called the Harmonic Series.) 
Compare with the known series K, which diverges as more 
terms are added: 
K = 1 + 1/2 + 112 + 1/2 +... 
To compare series K to series U, rewrite series K a s  follows 
and compare the two series term by term: 
K = 1 + (1/2) + (114 + 114) + (1/8 + 1/8 + 1/8 + 1/8) + ... 
U = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + ... 
Many of the terms in U are greater than the corresponding 
terms in K. For example, the third terms (U3 > 1/4) and the 
fifth terms (1/5 > 1/8). Therefore, because K diverges U 
must also diverge. 
This example is interesting because in the Harmonic Series 
the value of the terms do approach zero, which is a neces- 
sary criterion for convergence but does not guarantee it. By 
applying the Comparison Test with a series that  is known 
to diverge, it is clear that  the Harmonic Series diverges. 

The Ratio Test for convergence 

The Ratio Test for convergence can be applied to a series 
of positive terms and to a series containing positive and 
negative terms. 

To apply the Ratio Test for the series of positive terms 
a1 + a2 + a3 + ... a n  + ..., 
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find the ratio r of successive terms: r = ( a n + i / a n )  

To determine r, take the limit a s  n-w: r = limn-rao(an+i/an) 
If r < 1, the series will converge. 
If r > 1, the series will diverge. 
If r = 1, test does not indicate convergence or divergence. 

Ageneralized Ratio Test can be applied to the power series: 
CO 

n=O 

If I x I < limn-+ao- 'an+1 ' , the series converges. 

If I x I > limn-+ao- 'an+1 I , the series diverges 

If I x I = limn-+ao- ' a n + 1 ' ,  the series may or may not converge. 

Note that the set of values of x for which the series is 
convergent is called the interval of convergence. 

lanl 

lanl 

l a n l  

The Ratio Test can be applied to evaluate convergence of 
series containing positive and negative terms. To apply the 
Ratio Test to an  alternating series, take the limit a s  n-+a 
for the ratio of the absolute value of successive terms: 

If r < 1, the series will converge. 
If r > 1, the series will diverge. 
If r = 1, test does not indicate convergence or divergence. 

Tests for series with positive and negative terms 

A series with positive and negative terms converges if the 
corresponding series of absolute values of the terms con- 
verges. If series I S 1 converges, then series S will converge. 
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Series I S I is given by: 
Is1 = lall + lazl + lasl + lad1 + . . . I a n I  +... 
Corresponding series S is given by: 
S = a1 + a2 + a3 + a4 +... an + ... 
where a n  can be positive or negative. 

A series with positive and negative terms may converge 
and is called conditionally convergent even though its cor- 
responding series of absolute values diverges. For example: 
1 - 112 + 1/3 - 1/4 + 1/5 - ... converges conditionally. 
1 + 1/2 + 1/3 + 114 + 1/5 ... diverges. 

In a n  alternating series the signs of the terms alternate 
positive and negative: 
a1 + a2 - a3 + a4 - a5 + a6 - a7 +... an + ... 
The alternating series will converge if the following condi- 
tions are true from some point in the series: an 2 a n + i  for all 
values of n, each a is positive and limn+,[an] = 0. 

Integral Test for convergence 

The Integral Test can be applied to a decreasing series of 
positive terms in which a n + i  < a n  for all successive terms. To 
apply the Integral Test to a series, integrate the function 
representing the series. If the integral of the series exists 
and therefore converges, then the series also converges. 

Consider the decreasing series: 
00 

n=l  
where a n  represents f(x). If f(x) is a positive continuous 
function and I h f(x) dx exists and converges, then the series 
also converges. 

For example, to apply the Integral Test to the series 
represented by f(x) = l/x, integrate between 1 and 00: 

1f' (l/x)dx = In x I = In 00 - In 1 = CO 

191 



Master Math: Calculus 

The integral of l/x is In x, (In is the natural logarithm.) 
Because the integral from 1 to 
does not exist, it diverges. Therefore, the series diverges. 

of f(x) = l/x is infinity and 

Root Test for convergence 

The Root Test can be applied to series 
a1 + a2 + a3 + a4 +... a n  + ..., such that: l i m n + m d G i  = r 
If r < 1, the series will converge. 
If r > 1, the series will diverge. 
If r = 1, test does not indicate convergence or divergence. 

4.3. Expanding functions into series, the 
power series, Taylor series, Maclaurin series 
and the binomial expansion 

This section includes expanding functions into series, the 
power series, the Maclaurin and Taylor series and the 
binomial expansion. 

When a function is written in the form of a n  infinite 
series, it is said to be ‘kxpanded”in an infinite series. 

In general, a function f(x) expanded in a n  infinite power 
series is written: 

n=O 

a0 + al(x-a) + a2(x-a)2 + a3(x-a)3 + a4(x-a)4 +... an(2c-a) ”... 
Or when a = 0: 

f(x) = C a n x n  = a0 + alx + a2x2 + a3x3 + a4x4 + a5x5+ ...+ anxn ... 

Where ao, al, ... an represent constant coefficients, x is a 
variable and a is a constant called the center of the series. 

00 

n=O 
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The power series in x converges if x = 0 or it converges for 
all x at a radius of convergence r such that if I x I < r it 
converges and if I x I > r it diverges. 
The power series in (x -a) converges if x = a. If a = 0, the 
power series in x results. 
The function f(x) has the following properties of a 
polynomial: (a.) I t  is continuous within the interval of 
convergence (there is no break in its graph); (b.) in series 
form, the function can be added, subtracted, multiplied or 
divided term by term; and (c.) if f(x) is differentiable, then 
the series can be differentiated term by term. 

There is a positive number r called the radius ofconuer- 
gence where the power series converges if I x - a I < r and 
diverges if I x - a I > r. The number r can represent a circle 
of convergence where the series may or may not converge 
for all points on the circle of convergence. The inequality 
1 x - a 1 < r is sometimes called the interval of conuergence. 

The circle of convergence The interval of convergence 
Y 

” A 
a - r  a a + r  

Two common series representing expansions of functions 
are the Maclaurin series and the Taylor series. Expanding 
functions into these series can be applied to approximating 
functions including linear and quadratic approximations, 
approximating solutions to differential equations and 
estimating numerical values such as constructing tables of 
exponential, logarithmic and trigonometric functions. 
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Representing a function in a Taylor series or a Maclaurin 
series involves determining the coefficients ao, al, ... an  of the 
series. The coefficients can be found by differentiation pro- 
viding the function has all its derivatives. Obtaining all the 
derivatives of a function can be tedious, so other methods 
including substitution and integration are employed. 

If function f(x) is expanded in a power series, the result is: 

f(x)= C a n ( x  -a>" = 

ao + al(x-a) + a ~ ( x - a ) ~  + a3(x-a)3 + ... an(x-a)" + ... 
In the special case of a = 0, the result is: 
f(x) = a0 + a1x + a2x2 + 83x3 + a4x4 +... anxn + ... 
where, f(a) = ao. 
Determine the coefficients a t  x = a = 0. 
First take the first derivative of each term: 
f'(x) = a1 + 2a2x1 + 3a3x2 + 4a4x3 +... nanxn-l + ... 
where, f'(a) = al. 
Take the second derivative of each term: 
f"(x) = 2a2 + (2)3a3x + ...n(n-l)anxn-2 + ... 
where, f"(a) = 2a2. 
Take the third derivative of each term: 
f"'(x) = 2(3)a3 + (2)(3)4a4x + ...n(n--l)(n--2)an~~-~ + ... 
where f"'(a) = 6a3. 
Take the nth derivative of each term: 
fln)(x) = n!an + (n+l)!an+ix +... 
(Remember "!" represents factorial.) 
If the coefficients are determined at x = a = 0: 
ao= f(0) 
a1 = f'(0) 
a2 = f"(O)/Z 
a3 = f'"(0)/6 
a n  = fn)(0)/n! 

00 

n=O 
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Therefore, the expansion of f(x) about x = a = 0 is: 
f(x) = [f(O)] + [f'(O)]x + [f"(O)/2!]x + [fV"(O)/3!]x2+ ...[fin)( O)/n!]x n... 

= a0 + alx + a2x2 + 83x3 + a4x4 +... anxn ...= E- 
This is known as the Macluurin series or the Taylor series 
for f(x) expanded about the point x = 0. 

* f'n)(o)x" 
n ! n=O 

In the Tuylor series, the function is generally expanded 
about some point a rather than zero. For the function f(x): 
f(x) = a0 + al(x-a) + a2(x-a)2 + a3(x-a)3 +... an(x-a)n +... 
The coefficients an are computed by repeated differentiation 
a s  with the Maclaurin series. The resulting Taylor series 
for f(x) is: 
f(x) = [f(a)] + [f'(a)](x-a) + [f"(a)/2!](x-a) + [fV"(a)/3!](x-a)2 

+...+ [fm)(a>/n!l(x-ajn ...= C * - f(*)(a> (x -a)" 
n ! n=O 

This is the Tuylor series, which is expanded about point x = a. 
If a = 0, the Taylor Series becomes the Maclaurin Series. 

Example: To write the Taylor series expansion of lnx 
near 1, determine the coefficients and substitute a = 1 into 
the above expression. 
f(x) = In x +B f(a=l) = 0 
f'(x) = l/x + f'(a=l) = 1 
f"(x) = 4 x 2  + f"(a=l) = -1 
f"'(x) = 2/x3 + f"'(a=l) = 2 
P4)(x) = -6/x4 -+ f4)(a=l) = -6 
and so on. 
The expansion of f(x) = In x about the point a = 1 is: 
lnx  = 0 + (x-1) - (~-1)~/2! + 2(~-1)~/3! - 6(~-1)~/4! +... 
= (x-1) - ( ~ - 1 ) ~ / 2  + ( ~ - 1 ) ~ / 3  - ( ~ - 1 ) ~ / 4  +...+ (- l)"-l(x-l)"/n 

Taylor series are generally good approximations when x 
is near a. A series will often converge at different locations 
depending upon the value of x. For example, in the Taylor 
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series expansion of In x, the values of x where the series 
converges are between x = 0 and x = 2. Therefore, the inter- 
val of convergence for In x is 0 < x < 2. The In x series will 
converge faster near x = 1 than at the extremes 0 and 2. 

Example: The exponential function ex can be computed 
using the Taylor or Maclaurin expansions: 
The Maclaurin expansion of @ is: 
ex = 1 + x + x2/2! + x3/3! + x4/4! +...+ xVn! +... 
For x = 1, this becomes: 
e~ = 1 + 1 + 1/2! + 1/3! + 1/4! +...+ l/n! +... 
= 1 + 1 + 0.5 + 0.166667 + 0.041667 + 0.008333 

Therefore, 
For the Taylor expansion of e~ near a = x = 1, all the 
derivatives are e: 
e~ = e + e(x-1) + e(x-1)2/2! + e(~-1)~/3! +... 

+ 0.001389 + 0.000198 +... = 2.718254 
is approximately equal to 2.718254. 

Example: The Taylor series of exp(-x2} about zero can be 
found by substituting U = -x2 rather than differentiating 
exp(-x2) directly. 
eu = 1 + U + u2/2! + u3/3! + u4/4! +... 
Substituting back: 

Therefore, exp(-x2) = 1 - x2 + x4/2! - x6/3! + x8/4! +.... 
= 1 + (-x2} + (-x2}2/2! + {-x2}3/3! + (-x2}4/4! +... 

Example: Trigonometric functions can be expanded and 
computed for selected values. The expansions of sine and 
cosine are: 
sinx = x - x3/3! + x5/5! - x7/7! +...+(-l)*-lx2n-V(2n-l)! +... 
cosx = 1 - x2/2! + x4/4! - x6/6! +...+(-1)n-1x2n-2/(2n-2)! +... 

The series for @, sinx and cosx all have xn/n! terms 
where the factorials lead to convergence for all x. Also, term 
by term differentiation of series ex yields @, and term by 
term differentiation of series sin x yields series cos x. 
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Example: The geometric series is also a Taylor series 
obtained by taking derivatives. The geometric series is a n  
expansion of f(x) = 1/(1 - x) near zero and is given by: 
1 + x + x2 + x3 + x4 +... = 1/(1 - x) 
This series converges for [ x I -c 1, and at x = 1 the point lies 
on the circle of convergence. 

Example: The series for ez': 
eie = 1 + i8 + (i8)2/2! + (i8)3/3! +... 
can be shown to equal (cos 8 + i sin 8) as follows: 
COS 8 + i sin 8 = [ 1 - 82/2! + 84/4! - 86/6! ...I + i[8 - 83/3! + 05/5! -...I 
= 1 + ie - e w  - ie3/3! + e4/4! + ie5/5! - 861 a.. 
Substitute i2 for -1, i3 for -i, i4 for 1, i5 for i, etc: 
cos8 + isin8 = 1+ i8+ (i8)2/2! + (i8)3/3! + 84/4! + 05/5! -e6/6!... 
= ei' = [ 1 - 8 w !  + 84/4! - 86/6! ...I + i[8 - 83/3! + 85/5! -...I = 
ei'= cos 8 + i sin 8 

which is Eulerk formula, where the real part is x = cos 8 and 
the imaginary part is y = sine, and the x and y coordinates 
designate ei'on the complex plane with a radius of 1 
(because cos28 + sin28 = 1). 
y = r s i n 8  

I 

1 

where rei' = r cos 8 + ir sin 8 = x + iy . 

A binomial expression (a + b) can be expanded into 
polynomial form called a binomial expansion. To expand 
(a + b) into (a + b)n, first consider the expansions for 
(a + b)2, (a + b)3 and (a + b)4: 
(a + b)2 = (a + b)(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2 
(a + b)3 = (a + b)(a + b)(a + b) = a3 + 3a2b + 3ab2 + b3 
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(a + b)4 = (a + b)(a + b)(a + b)(a + b) 
= a4 + 4a3b + 6a2b2 + 4ab3 + b4 

These expansions are obtained by multiplying the first two 
binomials, then multiplying each successive binomial with 
the preceding polynomial. 

For the expansion of (a + b)" where n is a positive integer, 
the Binomial Theorem is applied as follows: 
(a + b)n = an + nan-lb + [n(n-l)/(Z)(l)] an-2b2 
+ [n(n-l)(n-2)/(3)(2)(1)] an-3b3 +... 
+ [n(n-l)(n-Z). . .(n-r+Z)/(r-l)!] (an-r+lbrl) +.. . .+ bn 

The rth term is given by: 
[n(n-l)(n-Z) ...( n-r+Z)/(r-l)!] (an-r+lbrl) 
where r represents some integer between 1 and n. 

The Taylor series for (1 + x)p around x = x is called a 
binomial series given by: 
(1 + x)p = 1 + px + lp@-1)/2!]x2 + lp(p-l)@-2)/3!]X3 +... 
where p is a positive integer. 
This series converges for I x I < 1. 
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Vectors, Matrices, Curves, 
Surfaces and Motion 

5.1. Introduction to vectors 

This section includes definitions, notation, types of 
vectors including displacement, velocity, zero, unit, equiv- 
alent, position, and addition and subtraction of vectors. 

Scalars are quantities that  represent magnitude and can 
be described by one number, either positive, negative or 
zero. Scalars can be compared with each other when they 
have the same physical dimensions or units. Examples of 
scalars include temperature, work, density and mass. 

A vector represents a quantity that is described by both a 
numerical value for magnitude (or length) and a direction. 
A vector is depicted as a line segment with a n  initial point 
and a terminal point that  has a n  arrow pointing in the 
direction of the terminal point. Examples of vectors include 
displacement, velocity, acceleration, electric field strength, 
force and moment of force. 

A displacement vector represents the change or 
displacement between two points in a coordinate system. 
The length of a displacement vector is the distance between 
the two points and the direction of a displacement vector is 
the direction it is pointing. 
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A velocity vector describes an  object in motion and has a 
magnitude representing the speed of the object and a 
direction representing the direction of motion. 

Notation for a vector includes boldface letters A, a, B, b, 
etc., or one or two letters with a n  arrow A ,  B , ii, a, etc. 
Vectors can be written in terms of their components on a 
coordinate system. For example: 
A = ali + a2j + ask = [al, a2, a31 
where al, a2, a3 are the components. 
Vectors can also be written in the form of column vectors 
and row vectors: 

A=[::], B = [ b l  bz],  v =  [::I, r =  [rl r21 

where a1 and a2 are components of A, bl and b2 are com- 
ponents of B, v1 and v2 are components of v and rl and r2 
are components of r. Unit vectors i , j  and k have directions 
pointing parallel to the axes of a coordinate system. 
YI 

The magnitude (or length) of a vector is denoted with 
vertical bars as used with absolute value. For example, the 
following represent magnitudes: I A I ,  I €3 I ,  I AB I . 
Sometimes double bars are used to represent magnitude: 
I IAl I ,  I IBI I .  

--b 

If vector A =  ab and points from a to b and vector 
B = ba and points from b to a, then A =  -B. + 
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When a vector is changed from its column format to a row 
format or vice versa, it is called a transposition and 
indicated by “r’. 

Therefore, if v = [ , then vT = [vl v2 1. 
r 7  

W. Similarly, if v = [VI 1721,  then VT = 

The zero vector 0 has a length (or magnitude) of zero and 
no direction. Its initial and terminal points coincide. 

A unit vector U has a length (or magnitude) of one. If unit 
vector U is pointing in the direction of vector A and A is not 
a zero vector, then U = A / I A I . 

Vectors that point in the same direction and have the 
same length are equivalent vectors even if they are not in 
the same location. A vector can be relocated and still be 
considered the same vector as long as its length and 
direction remain the same. 

A vector with its initial point at the origin of a coordinate 
system is called a position vector. A position vector is 
defined according to the location or coordinates of its 
terminal point. For example, if its terminal point is a t  B 

__+ 

then vector AB is a position vector of point B. A position 
vector represents the position of a point with respect to the 
origin and a displacement vector represents the change or 
displacement between two points in a coordinate system. 

A vector is often written in terms of its components, which 
are defined by its directions along the XYZ axes of a coor- 
dinate system. Generally, i , j  and h are unit vectors with 
magnitudes of one and directions pointing parallel to the 
XYZ axes respectively in a rectangular coordinate system. 
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X '  

Vector A can be written using the i , j ,  h unit vectors as: 
A =  ali  + a2j + ask where al, a2 and a3 are scalar quantities 
and ali, azj and ask are the components of A. The 
magnitude (or length) of A is given by: 

I f  a position vector has its starting point a t  the origin and 
its terminal point at point P = (5,6), then in two-dimensions 
vector A is written: 
A = 5 i + 6 j  
It has length IAl = ,/-= J25+36= Jsl 
and is depicted as: 

y I  (576) 

X 

H G j  

5i 5 

Any vector A can be multiplied by a constant c such that: 
CA = cali + ca2j + cask 

The zero vector having zero length can be written in 
terms of i , j ,  h: 
0 = O i  + O j  + Ok 

Unit vectors i , j ,  k can be represented a s  column vectors: 
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Vector A can be written in column vector format: 

Vectors can be characterized and expressed in more than 
three dimensions or components. For example: 
A + B = (al, a2, a3, a4) + (bl, b2, b3, b4) 

The direction of a vector in a coordinate system is repre- 
sented by the angle it makes with the positive X-axis. For 
example, the direction of vector A can be written in terms 
of the angle 8 that it makes with the positive X-axis. Vector 
A = ali + a4 makes an  angle 8 = tan-l(ada1) with the X-axis 
and can be written as: 
A = i I A I cos 8 + j I A I sin 8 
where a1 = A = I AI cos8 and a2 = I AI sine. 

A unit vector U for vector A can be written as: 

[ :;: eel = i cos8 + j sin8 = A U =  - 
I AI 

Also, I U I = cos28 + sin28 = 1. 

A vector v divided by its length I v I results in a unit 
vector pointing in the direction of the vector. The direction of 
v is U = v / I  v I and its length is I v I . Therefore, length 
multiplied by direction gives v as U I v I = v. 
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In three dimensions the components of a unit vector U 
are called “direction cosines” and have angles a, p and y 
with the X-, Y-, Z-axes respectively. In three dimensions: 
U = i c o s a + j c o s p +  kcosy 
and cos2a + cos2p + cos2y = 1 

Addition and subtraction 

Two vectors can be added or subtracted if they have the 
same dimensions by adding or subtracting the corres- 
ponding components (or elements). For example, a two- 
dimensional vector can be added to another two- 
dimensional vector, however a two-dimensional vector 
cannot be added to a three-dimensional vector. 

The sum of two vectors can be depicted by positioning the 
vector such that the initial point of the second vector is at 
the terminal point of the first vector. The sum of the two 
vectors is a third vector with its initial point at the initial 
point of the first vector and its final point at the final point 
of the second vector. In other words, the sum of two vectors 
a and b is the combined displacement from applying vector 
a then applying vector b. Consider the figure below depict- 
ing the following two examples of adding vectors a and b: 
For example, to add vectors a and b in the first illustration, 
place the initial point of b at the final point of a. The sum 
is the vector joining the initial point of a to the final point 
of b, or vector C. 
In the second illustration, the initial point of b is already at 
the final point of a. The sum is the vector joining the initial 
point of a to the final point of b, which results in vector C. 
Remember that the starting point of a vector can be moved 
as long as its length and direction stay the same. Also note 
that the sum is also the diagonal of a parallelogram that 
can be constructed on a and b. 
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Illustration 1 Illustration 2 
Both figures represent a + b = c. 

Subtraction of two vectors is equivalent to addition of the 
first vector with the negative of the second vector. The 
negative o f a  vector is a vector with the same length but 
pointing in the opposite direction. 

To subtract two vectors, reverse the direction of the 
second vector, then add the first vector with the negative 
of the second vector by positioning the vectors so that the 
initial point of the (negative) second vector is at the final 
point of the first vector. The sum of two vectors will be a 
third vector with its initial point at the initial point of the 
first vector and its final point at the final point of the 
second (negative) vector. This figure represents a - b = C: 

In a second example of vector subtraction, subtract two 
vectors a - b = C, where a - b can be represented using the 
negative of b, then slide -b up to place initial point of 
-b at terminal point of a. The sum is the vector joining the 
initial point of a to the final point of -b, which results in C. 
This figure represents a - b = C: 
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The sum of two vectors and a is written: a+C-D-=a 
The sum of two vectors A and B is written: 

A + B =  [a":]+ = [  a1 + b l  ] 
a2 +b2 

I f A =  [t] a n d B =  [3 t h e n A + B =  ["7] 
Two vectors can be added or subtracted and expressed 

using unit vectors. If vector A = a 6  + a2j and vector 
B = bli + b2j, then: 
A + B = ali + azj + b d  + bzj = (a1 + b1)i + (a2 + b2)j 
A - B = ali + a2j - (bli + b2j) = (a1 - b1)i + (a2 - b2)j 

If A = 2i + 3j and B = 3i + 4j, then A + B = 5i + 7j. 

Example: Consider a ship moving along the ocean at a 
velocity v = 15 km/hr relative to the water, which has a 
current c = 2 km/hr. An angle 8 = 45" exists between the 
direction of the ship and the direction of the ocean current. 

The true velocity of the ship with respect to land is equal to 
the sum of the two vectors v + C. 
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To calculate the actual speed of the ship relative to land, 
set the velocity of the ship along the X-axis so that v = (15)i 
and the ocean current I c I = 2. Therefore: 
c = (2 cos 45")i + (2 sin 45")j = 1.4i + 1.4j 
The actual velocity s of the ship relative to land is: 
s = v + c = 15i + 1.4i + 1.4j = 16.4i + 1.4j 
Therefore, the speed of the ship relative to land is: 
I s I = d w =  16.46 km/hr. 

The angle the ship is deviating from v along the X-axis due 
to the current is: 0 = tan-l(1.4/16.4) = 4.9" = 0.0085 radians. 

v + c = s  w V 

5.2. Introduction to matrices 

This section includes definitions, notation, types of 
matrices including square, transpose, symmetric and skew, 
and addition of matrices. 

A matrix is a rectangular array of numbers or functions. 
If a matrix has a single row or column, it is a vector. The 
components in a vector are called elements in a matrix. The 
array defining a matrix is enclosed in brackets and each 
number or function is called an  element or entry. 

If a matrix has a n  equal number of rows and columns, it 
is a square matrix: 

[: db] 
Matrices are often used to represent and solve a set of 

equations. The coefficients of the equations are the 
elements of a coefficient matrix. For the set of equations: 
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2x - 3y + z = 0 
3x + y + 22 = 0 
x + 2y + 22 = 0 
The coefficient matrix is: 

2 -3  1 
3 1 2  
1 2 2  

Notation for matrices includes boldface capital letters, 
writing a n  array of numbers or functions in brackets or 
using double-subscript notation as shown below. When 
matrices and vectors are used together, the vectors are 
often represented using lower-case boldface letters and the 
matrices in upper-case boldface letters. In a matrix the rows 
and columns are often denoted as m number of rows and n 
number of columns resulting in a n  m by n matrix. An 
m by n matrix A is can be represented as: 

Using the a j k  double-subscript notation, the first subscript 
represents the row and the second subscript represents the 
column. For example, a32 represents the element located in 
the third row and the second column. If matrix A has 
m = n, then it is a square matrix. The elements in the main 
diagonal of a matrix are represented by: ail, a 2 2 ,  a33, ... am. 
A submatrix of matrix A has rows and/or columns absent. 

When a matrix is transposed (indicated by “F’), its rows 
and columns are changed so that the first row becomes the 
first column and the second row becomes the second 
column, and so on. The transpose of matrix A: 
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For example, i f A =  [i :],thenAT= [: :]. 
If AT = A, then A is called a symmetric matrix. 

If AT = -A, then A is called a skew-symmetric matrix. 

Properties of transpose matrices include: 
(A+B)T=AT+BT 
( d ) T  = C A T ,  where c is a scalar. 

Two matrices A = [akj] and B = [bkj] are equal if they havl 
the same size and the corresponding elements are equal. 
Therefore in equal matrices, 811 = bii, a22 = b22, a33 = b33, etc 

Matrices can be added or subtracted if they are the same 
size by adding or subtracting the corresponding elements. 
For example, add C + D. 
C + D = [  1 2  I+[' -'I=[ 3 1  ] 

3 4  3 5  6 9  

Properties of addition of vectors and matrices where A 
and B are the same size include: 
(A + B) + C = A + (B + C) (associative) 
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A + B = B + A 
A + A = Z A  
A + O = A  

(commutative) 

A + (-A) = O 

Note: The following properties are true for differentiating: 
d dA df 
dt dt dt 

dA dB d 
dt dt dt 

-(a) = f - + A- 

+- -(A+B) = - 

5.3. Multiplication of vectors and matrices 

This section includes multiplication of vectors and matri- 
ces with scalars, multiplication of two matrices, multipli- 
cation of a vector with a matrix and multiplication of row 
and column vectors. 

The following are properties of multiplication of matrices 
A, B, C and scalar c: 
(A + B)C = AC + BC 
C(A + B)  = CA + CB 
(cA)B = CAB = A(cB) 
A(BC) = (AB)C 
(ci + c2)A = ciA + c ~ A  
c(A + B) = CA + c B  
c~(cP)A = (cic2)A 

Multiplying vector A with scalar c results in a vector 
having a magnitude of I c I I A I and a direction of A, where 
I c I represents the absolute value of the scalar c and I A I 
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represents the magnitude of vector A. When c > 0, the 
displacement vector cA is parallel to A and pointing in the 
same direction a s  A. When c < 0, the vector cA is parallel to 
A but pointing in the opposite direction as A. 

When multiplying matrices and scalars, each element in 
the matrix is multiplied with the scalar. If matrix A =  [ajk] 
is multiplied with scalar c, where j goes from 1 to 4 and k 
goes from 1 to 4, it can be written: 

To multiply two matrices, the number of columns in the 
first matrix must be equal to the number of rows in the 
second matrix. For matrix A =  [ajk], which is a n  m by n 
matrix having m rows and n columns and matrix B = [bjk], 
which is a p by q matrix having p rows and q columns, the 
product exists if n = p. 

The process for multiplying two matrices A and B, is to 
multiply each element in the first row with the corres- 
ponding element in the first column, then multiply each 
element in the second row with the corresponding element 
in the second column, and so on. Thereby multiplying each 
element in the jth row with the corresponding element in 
the kth column. If C is the product of matrices A and B, it 
can be written: 
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n 
Cjk = a j1 bl, = ajibik + aj2b2k + ... i- ajnbnk 

1=1 

where j = 1, ..., m and k = 1, ..., q. 

c can also be given by AB = c in matrix arrays: 

a12 a13 a14 bll b12 b13 1::; a22 a23 a24-j 1::: ::: :?2: - 

a32 a33 a34 

a 4 1  a42  a 4 3  a 4 4  b41 b42 b43 b44 

m rows, n columns 

cii c i 2  ci3 C i 4 1  

p rows, q columns 

c21 c22 c23 c24 

c31 c32 c33 c 3 4 ]  

c41 c42 c43  c44  

m rows, q columns 

The highlighted row and column depicts the order that  
multiplication is carried out. 

The following represents the process of multiplying two 
matrices: 

[ :][column 1 column 21 

1 row 1 column 1 row 1 column 2 
row 2 column 1 row 2 column 2 

Note that the result is a matrix of dot products (see Section 
5.4 for the dot product.) 
For example, multiply the following two matrices: 

8 3 1 4 8 * 1 + 3 * 2  8 * 4 + 3 * 5  14 47 

[Z J[z 5 ]=[2 .1+0 .2  2 - 4 + 0 - 5 ] = [  2 8 1  
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In general AB # BA, however they can be equal. Also, 
AB can equal zero even if neither A nor B is zero. 

* When multiplying a matrix and a vector, the rule for two 
matrices applies, where the number of columns in the first 
matrix must be equal to the number of rows in the second 
matrix. Therefore, the number of columns in the matrix 
must be equal to the number of elements in the vector. For 
e xa m p le : 

[; :I[:: 
1 8 3  

2 2 0  
Note that [ ][ ] is undefined. 

Following are some examples of multiplying row and 
column vectors: 

[3 411 :: 1 = [3 + 81 = [ l l ]  

5.4. Dot or scalar products 

This section includes equations that define the dot 
product, the dot product of parallel and perpendicular 
vectors and properties of the dot product. 

The dot product (also called the scalar product or inner 
product) of two vectors is defined as: 
A . B =  IAl (BIcos0  
where I A I and I B I represent the magnitudes of vectors A 
and B and 0 is the angle between vectors A and B. 
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Vectors A and B are perpendicular if A B = 0, providing 
A or B does not equal zero. This is true because 
cos90° = cos(x/2) = 0. For example, the dot product of 
i = (1, 0, 0) and j = (0, 1, 0) is i . j  = 0, because i and j are 
perpendicular to each other. 

Vectors A and B are parallel if A B = I A I I B I , providing 
A or B does not equal zero. This is true because cos 0 = 1. 
The dot product of i = (1, 0, 0) and i = (1, 0, 0) is i j = 1. 

The dot product of a vector with itself A A, has 8 = 0 and 
because cos 0 = 1, then A A = I A I = length-squared. 

The dot product can also be used to compute cos& 

The dot product written in the form of I A I I B I cos0 
represents A B without coordinates. The dot product can 
also be written in the form [aibi + aabn] that does involve 
coordinates. 

The dot or scalar product of vector A = ali  + a2j and 
vector B = bli + bzj can be written as: 

A B = [I:] [ = aibi + azb2 

0 r equivalently : 
A B = (aii + a2j) (bd + b2j) 
= albii i + albzi j + a2bij i + a2b2j j 
= aibi(1) + aibs(0) + azbi(0) + azb2(1) 
= aibi + azba 
The terms with i j and j i equal zero and i i 
and j j equal one. Therefore: 
A B = (ad + a2j) (bli + bzj) = aibi + asb2 
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In three-dimensions the dot product of A and B is: 
A B = albl + a2b2 + asbs 

In summary, unit vectors combine as follows: 
i o i = j o j = j o j = l  
i o j = i o k = j o i = j o k = k o i = k o j = o  

An application of the dot product is describing the area of 
a paraZZe2ogram. A parallelogram formed by two vectors A 
and B can be represented using the dot product: 
A B sin8 
The dot product can be depicted as: 

Another application of the dot product is the dot product 
of force F and distance d equals work done W 
F * d = W  
where F is acting on a n  object to displace it. 
Using cos8, the dot product of force F and distance d, 
which is work done W, can be written: 
W = F . d =  IF( IdIcos8 
where F is acting on a n  object to displace it by distance d. 
The work done by F in displacement is the magnitude I F I 
of the force multiplied by length I d I of the displacement 
multiplied with cosine of the angle 8 between F and d. The 
work is zero if F and d are perpendicular to each other. 

IF1 sin 8 

IF1 cos 8 
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If 8 = 45" then, 
W = F * d =  IF1 IdIcos45"= IF1 IdI 
If 8 = 90" then, 
W = F o d =  IF1 IdIcosgO"= IF1 IdI(O)=O 

Some properties of the dot product of vectors A, B, C and 
scalar c are: 
c(A 0 B) = (CA) B = A 0 (cB) 
A (B + C) = (A B) + (A 0 C) 
A * B = B o A  

The following property applies for differentiating: 
d dB dA 
dt dt dt 
-A B = A O- + - 0  B 

5.5. Vector or cross product 

This section includes equations that define the cross 
product, the cross product of two vectors, minimum and 
maximum values and applications of the cross product. 

The vector product or cross product of two vectors is 
defined as: 
A x B =  IAl IBIs in8  
where I A I and I B I represent the rnugnitudes (or lengths) 
of vectors A and B and 8 is the angle between vectors A 
and B. The product exists in three dimensions with A and 
B in a plane and A x B normal to the plane. The cross 
product of two vectors produces a third vector with a length 
of 1 A I I B I sin 8 and a direction perpendicular to A and B. 
The length of A x B depends on sin0 and is greatest when 
8 = 90" or sin8 = 1. 

The cross product of two vectors occurs geometrically 
according to what is referred to as the right-hund screw 
rule. This rule denotes that when taking the cross product 
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A x B = (ad + a2j + ask) x (bli + bzj + b3k) = 

A x B and moving from vector A to vector B through angle 
8 results in vector A x B, which is perpendicular to both A 
and B. The right-hand rule can be visualized by curling the 
fingers of the right hand from A to B, where A x B points 
in the direction of the right thumb. Conversely, for the 
cross product B x A, moving from vector B to vector A 
through angle 8 results in a vector perpendicular to both A 
and B but pointing in the opposite direction of A x B. 
Therefore, by the right-hand rule, A x B and B x A point 
in opposite directions but have the same magnitude. 

A x B  

B x A  

i j k  

a, a 2  a3  
bl b2 b3 
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Considering the nature of how the unit vectors combine, 
A x B can be written out as: 
(ali + a4 + ask) x (bli + b2j + bsk) 
= albli x i + albai x j + alb3i x k 
+ a2blj x i + aab2.j x j + a2b3j x k 
+ a3blk x i + asb2k x j + asbsk x k 
= 0 + alb2k + albs(-j) + aab~(-k) + 0 + a2bd 
+ a3b3 + a3ba(-i) + 0 

= (anbs - asb2)i + (asbl - alb3)j + (alb2 - a2bl)k 

The unit vectors i, j and k are perpendicular to each 
other. Therefore, the angle between i and j is d 2  and by 
the right-hand rule the cross product of i and j is: 
i x j = lil Ijlsin(n/2)= k 
The cross product of i with itself is: 
i x  i =  lil IiIsinO=O. 

The maximum value of the cross product of two vectors 
occurs when the angle 0 is 7112 and s i n d 2  = 1. Therefore the 
two vectors are perpendicular to each other. Conversely, the 
minimum value of the cross product of two vectors occurs 
when the angle 8 is 0 or 'TI and sin 0 = sin n: = 0, and, there- 
fore the two vectors are parallel. 

The cross product can represent the area of a parallelo- 
gram with sides A and B, where the value resulting from 
A x B is both the length of vector A x B and the area of the 
parallelogram. The length of the cross product is the area 
and the area of the parallelogram is I A x B I ,  which is the 
magnitude of the area. A parallelogram with sides A and €3 
has area I alb2 - a2b1 I . In a n  XY plane A x B = (alb2 - a2bl)k. 

I A x B I= area of parallelogram b 
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a1 a2 a3 

b, b2 b3 
c1 c2 c3 

One important application of the cross product is torque, 
which is a force acting on a n  object to cause rotation. A 
force F can be applied to a lever a rm or a radius vector r, 
which has  its initial point located at the origin of rotation 
and causes the object to rotate. The torque is a vector 
having a magnitude tha t  measures the rotation of the force 
and has  a direction of the axis of rotation. The cross product 

= al(b2c3 - b3C2) + az(bac1 - blC3) + a3(blc2 - b2c1) 

F x r = T is the torque of the 
force F acting at a point with 

force F 

force about the origin for a 
position vector r. 

r 

force F 

v 
motion 
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1 0 0  
0 1 0 = 1  
0 0 1  

Properties of the cross product involving vectors A, B, C 
and scalar c include: 

c(A x B) = (CA) x B = A x (cB) 
A x (B + C) = (A x B) + (A x C) 
A . B x C = A x B . C = B . C x A = C . A x B  
I A B 1 2  + IA x B I 2 =  IAl21 B 1 2  cos28 + I AI 2 1  B I %in28 
= IA121BI2 

A x B = -(B x A) 

The following property applies to differentiating: 
d dB dA 
dt dt dt 
- A x B = A x - + - x B  

5.6. Summary of determinants 

This section provides a brief review of determinants 
including definitions and using the method of determinants 
and Cramer’s rule to solve systems of equations. 

A two-by-two determinant is written as follows: 

A three-by-three determinant is written as follows: 
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D =  

Two equations with two unknown variables can be solved 
using the method of determinants and Cramer's Rule. The 
two equations can be represented by: 
alx + bly = c1 
a2x + b2y = c2 
where a, b and c represent known coefficients or constants 
and x and y are unknown variables. 
First create three matrices of coefficients D, D, and DY and 
calculate the determinants: 

a1 bl c1 

a3 b3 c3 
a2 b, c2 

The solutions for x and y are: 
x = DJD and y = DJD, providing D f 0. 
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Note that the values of the determinant are not affected 
if the determinant is transposed. 

d, bl c1 

d3 b3 c3 
d, b2 C, 

5.7. Matrices and linear algebra 

D y =  

This section includes information about representing and 
solving systems of linear equations. 

a1 dl c1 

a3 d3 c3 
a, d, c, 

Systems of linear equations can be solved using matrices. 
Solutions for two equations with two unknown variables 
exist where two lines intersect. Similarly, solutions for 
three equations with three unknown variables exist where 
three planes intersect. To solve a system o f n  linear 
equations with n unknown variables, matrices can be 
formed and the method of determinants as described in the 
previous paragraphs can be employed. 
Other methods can be employed to solve systems of 
equations that go beyond the scope of this book. (See 
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Muster Math: Algebra Chapter 8 for a discussion of solving 
simple systems of two and three linear equations using 
various methods. Also, mathematics books dedicated to 
solving both linear and non-linear systems of equations 
should be consulted for a comprehensive discussion.) 

A system of m linear equations with n unknowns can be 
represented by ib = d, where A =  [ajk] is the coefficient 
matrix containing given coefficients (or constants), 
x = X I ,  ... xn is the solution set and d = dl, ..., dn are given 
numbers. If di are all zero, the system of equations is called 
a homogeneous system. If a t  least one di is not zero, the 
system of equations is called a non-homogeneous system. 

For two equations and two unknowns: 
allxl+ a12x2 = dl 
a21x1 + 822x2 = d2 
ib can be written: 

] = x l  
allxl  +a12x2 

a21 a22 a21x1 +a22x2 

The solution set for Ax = d is given by x = A-ld. 

To find the solution set x = A-ld, the inverse of a matrix 
A-' can be expressed using the determinant of A. For 
example for two equations: 
alxl + blx2 = dl 
a2x1 + b2x2 = d2 
The solution set x = A-ld is: 
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= A-id = L[ b2 -b1 a l  dl  = A[ b2dl 4 1 d 2  
D -a2  D -a2d1 a ,d2  

where D is the determinant of A and is given by: 

Remember, a matrix can be transposed and the 
determinant is unaffected. 

Note that the inverse matrix A-’ multiplied by the 
original matrix A is the identity matrix I. The identity 
matrix has 1’s on the diagonal and 0’s elsewhere and 
behaves as the number 1. A two-by-two identity matrix is: 

In three-by-three matrices the inverse also uses the de- 
terminant D. The determinate of a three-by-three matrix is: 
Determinant of A = a b x c 
= (ali + a2j + ask) (bli + bzj + b3k) x (cli + c2j + c3k) 
= al(bnc3 - b3C2) + aa(bsc1 - blC3) + as(bic2 - b m )  
which represents volume of a box-shaped object. 

Then for matrix A = [ii b2 c2] 

where the column vectors a, b, c represent the edges of the 
box extending from the origin, the inverse of A is given by: 

bl c1 

b3 c3 

Note that the first row ofA-1 does not use the first column 
of A except in the calculation of 1/D. 
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Therefore, the solution to x = A-ld is: 
b x c  d . (bxc)  

x = L [ c  x a]k] = ;[do@ x a)] 

a x b  d.(a x b) 
D 

The solutions for x, y and z (or XI ,  x2, x3) in three equations 
are ratios of determinants. Using Cramer's Rule: 
X =  Id.(bxc)I/ Ia.(bxc)I 
y =  Id.(cx a)l/ la . (bx c)l 
Z =  Id.(axb)I/ la.(bxc)I 
where D = I a (b x c) I 

The inverse of a matrix can also be found using Gauss- 
Jordan elimination, which combines Gauss elimination 
with a n  identity matrix. See a text on linear algebra for a 
discussion of this method. 

Another standard method for solving a system of linear 
equations is called Gauss elimination. To use this 
elimination method, transform the equations into a matrix, 
perform operations on the matrix until a n  upper triangular 
matrix is formed, transform the triangular matrix back into 
equation form and solve for the unknown variables using 
substitution. Operations used in forming the upper 
triangular matrix include multiplying a row by a non-zero 
constant, interchanging two rows and adding a multiple of 
one row to another. 

The general procedure for Gauss elimination is: 
(a.) Transform the equations into a matrix by writing the 

coefficients of the equations into a matrix format: 
alx + bly + clz = dl 
a2x + b2y + c2z = d2 
a3x + b3y + c3z = d3 
Then convert to a coefficient matrix: 

225 



Master Math: Calculus 

a1 bl c1 dl 

a3 b3 c3 d3 

a 2  b2 c2 d, 

(b.) Create a n  upper triangular matrix by adding multiples 
of the coefficient rows to each other until an  upper 
triangular matrix is formed. This involves, multiplying 
a row through by a non-zero constant, interchanging 
two rows and adding the multiple of one row to another 
row to yield a zero coefficient in the lower left of the 
upper triangular matrix. In a three-by-three upper 
triangular matrix, a2, a3 and b3 must be converted to 
zeros and al, b2 and c3 must be converted to ones. 
11 bl c1 dll 
0 1 c2 d, 
0 0  I d 3  

(c.) Once the upper triangular matrix is formed, transform 
the coefficient matrix back into the form of the equa- 
tions. The known variable (from the third equation in 
the three-by-three matrix) can be substituted back into 
the reduced equation to solve for the next variable, and 
then both known variables can be substituted into a n  
original equation to find the third variable. 

(d.) The results can be checked by substituting the 
variables into the original equations. 

Example: Solve the three equations for x, y and z: 
x + y + z = - 1  
2x - y  + z = 0 
-x + y - z = -2 

In matrix form: 
1 1  1 - 1  
2 - 1  1 0  

-1 1 -1 - 2  
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Multiply row 1 by -2, then add it to row 2 to make the a2 
position zero: 
row 1 x -2 is: 
-2 -2 -2 2 
Add this new row 1 to row 2 to get new row 2: 
0 -3 -1 2 
Add row 1 and row 3 to make a3 zero resulting in new row 3: 
0 2 0 - 3  
The new matrix is: 
1 1  1 - 1  
0 - 3  -1 2 
0 2 0 - 3  

Switch the second and  third rows: 
1 1  1 - 1  
0 2 0 - 3  
0 - 3  -1 2 

Add row 2 and row 3 to get new row 2 and make b2 to be 1: 
0 -1 -1 -1 
Multiply new row 2 by -1: 
1 1  1 - 1  
0 1 1 1  
0 - 3  -1 2 

Add three times 
0 0 2 5  
The new matrix 
1 1  1 - 1  
0 1 1  1 
0 0 2  5 

Divide row 3 by 

row 2 to row 3 to make b3 to be 0: 

becomes: 

2 to make c3 to be 1. The upper triangular 
matrix becomes: 
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1 1 1 - 1  

0 1 1  1 

0 0 1 5 1 2  

The three equations take the form: 
l x  + l y  + l z  = -1 
l y  + l z  = 1 
l z  = 5/2 
Therefore, z = 512. 

Substitute z into equation 2: 
l y  + 5/2 = 1 
Therefore, y = -312. 

Substitute y and z into equation 1: 
IX + (-3/2) + (512) = -1 
l x  + 1 = -1 
Therefore, x = -2. 

Therefore, x = -2, y = -312 and z = 512. 

Check the results by substituting x, y and z into original 
equations 1 and 2: 
x + y + z = - 1  
1(-2) + (-3/2) + (512) = -1 
- 2 + 1 = - 1  
-1 = -1 

2x - y + z = 0 
2(-2) - -3/2 + 5/2 = 0 
-4 + 8/2 = 0 
- 4 + 4 = 0  
o = o  

5.8. The position vector, parametric 
equations, curves and surfaces 

This section provides general information about the 
position vector and parameterization of a line, a plane, a 
cylinder, a cone, a sphere, circle and a curve. 
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A vector with its initial point at the origin of a 
rectangular coordinate system is called a position vector. A 
position vector is defined according to the location of its 
terminal point. A position vector can be used to locate the 
position of a moving object and can be written: 
R(t) = x(t)i + y(t)j + z(t)k 

The position vector given by R = xi  + yj  + z k  existing 
between points (xo,yo,zo) and (xl,yl,zl) can be written: 
R = xoi + yoj + zok + t(x1 - x,)i + t(y1 - y0)j + t(z1 - z0)k 
where t is a scalar often representing time. From this 
equation results the parametric equations for a line: 
x = xo + t(x1 - xo) 
y = yo + t(y1 - yo) 
z = zo + t(z1 - zo) 
These equations can also be written in the form: 

x -xo  - Y - Y o  - z--0 
x1 -xo Y 1 - Y o  z1-zo 

-- - 

Each point along this line R = Ro + tv where 
RO = xoi + yoj + zok can be evaluated by adding multiples of 
v to Ro: 
"I 

t=O t = l  t = 2  j~ x 

A point in a plane having coordinates (x,y) (depicted 
below) can be represented using the position vector 
R = xi  + yj  with its terminal point on the point (x,y) and 
the parametric equations x = f(t), y = g(t). After substituting 
for x and y the vector equation becomes: 
R = F(t) = f(t)i + g(t)j 
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To parameterize a plane that passes through a point 
Ro = ( X O , ~ O , Z O )  and has two non-parallel vectors v1 and v2 
where all points on the plane can be identified by beginning 
a t  point PO and moving parallel by adding multiples of vi 
and v2 to Ro. A plane has two parameters. The parameters 
can be expressed as: 
x = tl, y = t 2 ,  z = f(t1,tz) 
where tl and t 2  represent the parameters. 
The parametric equation can be represented by: 
R(ti,t+ Ro + tivi + t 2 ~ 2  

The equations for the plane can be written: 
x = xo + tlal + tzbl 
y = xo + tlaz + t2b2 
z = xo + tla3 + t2b3 
where v1 = ad  + a2j + ask and v2 = b d  + b2j + b3k. 

To parumeterize a surface in three dimensions such as a 
cylinder, first remember that a circle in two dimensions is 
described using x = cost, y = sin t. If the circle is on a n  XY 
plane, then the z-dimension is zero and the equations 
become x = cost, y = sin t, z = 0. If z and t are allowed to 
vary, then many circles along the Z-axis can exist. 
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Therefore, x = cost, y = sin t and z = z can be describe many 
circles along z. Using position vectors: 
R = (x)i + (y)j + (z)k 
R = (cos t)i + (sin t)j + (z)k 

Y 

X 

A cylinder described by: x2 + y2 = r2, -1 I z I 1, where r is 
the radius and the height in the z-direction is 2 with the 
cylinder a t  origin, can be parameterized using parameters 
U and v, where x = rcosu, y = r s inu  and z = v. 
Parameters U and v vary in the uv plane as: 
O S u < 2 x a n d - l < v < l  
The parametric representation is: 
R(u,v) = r cosu i  + r s inu  j + vk 

I 
Z 

I 

v = l  

V 2  

v = -  
X 

where there is a point P on the cylinder that corresponds to 
a (u,v) value. 

A cone given by: dx2  + y2 = z, 0 I z 5 h can be 
parameterized using parameters U and v, where: 
x = U cos v, y = U sin v and z = U. 
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Parameters U and v vary in the uv plane as: 
0 5 U 5 h and 0 < v  s 2n: 
The parametric representation is: 
R(u,v) = U cosv i + U sinv j + u k  

A sphere can be parameterized using spherical coor- 
dinates. In three dimensions, spherical coordinates are 
expressed in terms of p, 8 and $, where p can range from 
0 to q 8  can range from 0 to 2n: and $ can range from 0 to 
n:. In sphericd coordinates, the p component is measured 
from the origin, the 8 component measures the distance 
around the Z-axis and the $ component measures down 
from the Z-axis and is referred to as the polar angle. The 
coordinates can be defined in terms of Cartesian 
coordinates, x, y and z: 
x = p cos0 sin$ 
y = p sin8 sin$ 
z = p cos$ 

p =  Jx2+y2+z2 
The parameters of a sphere centered at origin are: 
x = cos0 sin4 
y = sin8 sin$ 
z = cos$ 

The equations can be written: 
R(8,$) = (cos0 sin$)i + (sin8 sin$)j + (cos$)k 
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For example, if point P is centered at (2,2,2) and the sphere 
has a radius of 2, then Ro = 2i + Z j  + Zk and R(8,$) is multi- 
plied by 2 to expand the radius to 2. The equation becomes: 
R(e,$) = 2i + 2j + Zk + (2 cos 8 sin 4)i + (2 sin 8 sin $)j + (2 cos $)k 
= (2 + 2 cos 8 sin 4)i + (2 + 2 sin8 sin 4)j + (2 + 2 cos4)k 
Or 
x = 2 + 2cos8 sin4 
y = 2 + 2sin8 sin4 
z = 2 + 2cos$ 

The circumference of a circle can be written in terms of 
parametric equations: x =cost, y = sin t, 0 
The length ofthe curue or distance around the circle is: 

t I 27t 

2//($)2 + ( s ) l d t  = ' / J M d t =  27t 
0 0 

Note (-sin t ) 2  = (sin t ) 2  

The length of a quarter-circle can be written in terms of 
parametric equations: x = cost, y = sin t, 0 2 t I n/2 
The length of the curve or distance along the arc is: 'i'Jc$)2 + ( z ) 2 d t  = 'ijd-dt = 'rdt = 7t/2 
0 0 0 

The length of aparametric curve can also be written by a 
sum of incremental lines As, where: 
  AS)^ = (Ax)2 + (Ay)2 and x = x(t), y = y(t) 
Therefore: 
A s =  d w -  
In integral form: 

fds = I(ds / dt) dt = fd(dx / dt)2 + (dy / dt)'dt 
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A unit circle can be represented implicitly, explicitly or 
parametrically as follows: 
implicitly: x2 + y2 = 1 

explicitly: y = d z  and y = - d s  
parametrically: x = cost, y = sin t, 0 I t I 2n 

A curve can be represented implicitly, explicitly or 
parametrically in a n  XY plane as: (a.) implicitly by a n  
equation in x and y, or f(x,y); (b.) explicitly by equations for 
y in terms of x or x in terms of y, y = f(x) or x = g(y); or 
(c.) parametrically by a pair of equations for x and y in 
terms of a third variable or parameter, x = f(t) and y = g(t). 

5.9. Motion, velocity and acceleration 

This section includes motion of a particle in a line, in a 
plane, on a circle, along a curve, along a cycloid path and at 
a constant velocity. Also included in this section is 
representing velocity and acceleration using the position 
vector and parametric form, and general expressions for 
velocity and acceleration. 

The motion of an object i n  a straight line can be described 
using a single variable function f(t). The motion of a n  object 
along a curve or surface in two or three dimensions can be 
described using all the coordinates of the curve or surface, 
for example x(t), y(t) and z(t). Parametric equations can be 
used to describe this motion. 

For uniform motion in a straight line, the speed, direction 
and velocity remain constant and the equation of the line 
can be written: 
R(t) = Ro + tv 
where RO = xoi + yoj + zok, is the starting point. 
The velocity is V = vli + V Z ~  + v3k. 

2 2  
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The direction of the line is the unit vector v/ I v I . 
Separating the x, y and z components gives the equation of 
the line in terms of parameter t: 
x = xo + t(x1 - xo) = xo + tv1 
y = yo + t(y1- yo) = yo + tV2 

z = zo + t(z1 - zo) = zo + t V 3  

By rearranging: 
t = (x - XO)/Vl = (y - yoyv2 = (z - zo)/v2 
which gives the equation ofthe line without parameter t: 
x-xo - Y - Y o  - z - -o  

V1 v2 v3 
----- 

Motion of a particle in a plane can be described using two 
parametric equations, x = f(t) for horizontal motion along 
the x-coordinate and y = g(t) for vertical motion along the 
y-coordinate. The parameter is t for time such that at 
time t the particle is at point (f(t),g(t)). 

For example, the motion of aparticle on a circle in a plane 
can be described using the parametric equations x = cost 
and y = sin t, where t represent time. 
A circle with radius 1 can be expressed generally as: 
x2 + y2 = 1 
which can be written using the parameters: 
x =cos t  a n d y  = s in t  as: 
cos% + sin2t = 1 
If a particle is moving at a uniform speed, it will travel 
around the circle in 2 x  units of time. As the particle travels 
around the circle, its motion can be reflected onto the X and 
Y axes such that it goes from -1 through zero to +1 in both 
x and y directions (for a unit circle). 
If this particle is moving in a clockwise direction uniformly, 
at different t values x and y are: 
at t=O: x = l , y = O  
a t  t = d 2 :  x = 0, y = 1 
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a t t = n :  x = - l , y = O  
a t  t = 31112: x = 0, y = -1 
a t t = Z x :  x = l , y = O  

x = cos t 
t =xl2 y =sin t 

Y 

2 

X 1,395 

4 

- - - - 
t =2x 

t = 3 d 2  

3 2 1  
4 5  

t = X I 2  

t = 0 = 71 = 271 

t = 3x12 

Y-axis reflection moving 
through t values 

oft=Otot=271 
X-axis reflection 

moving through points 1 to 5 

Parametric equations can be used to describe the motion 
of a particle moving on a curue as  well as to describe the 
curve itself. A curve is generally parameterized from one 
end to the other without retracing. To parameterize 
function y = f(x), substitute the parameter t for x, x = t, 
y = f(t), where parameter t may or may not represent time. 

Example: The parameterization of a half-circle from 0 to 
x is: x = cost, y = sint ,  0 5 t 2 x .  

t = XI2 

Example: A projectile, which is defined to experience the 
force of gravity and no frictional forces, can be described 
using the x (horizontal) component, the y (vertical) 
component and time t. 
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Y I  projectile 

The initial position is x(t) = 0 and y(t) = 0,  or in some cases 
a starting height y = h is specified. The initial velocity in 
the x direction is (VO cos 8) and in the y direction is (VO sin e), 
where vo is the speed and 8 is the angle the projectile 
makes with the horizontal axis. The force (or acceleration) 
of gravity is in the y-direction and is given by: d2y/dt2 = -g, 
where gravity affects the upward component of velocity so 
that it decreases by (-gt). The horizontal component of 
velocity remains constant. Therefore, the x and y 
components of velocity are: 
vX = dx/dt = vo COS 8 
vy = dy/dt = v0sin8 - gt 
The distance along the X-axis x(t) increases with time and 
the height along the Y-axis y(t) increases, then decreases. 
The distance traueled or path of the projectile is obtained by 
integrating the velocity components with respect to time 
resulting in: 

y(t) = (VO sin 8)t - gtV2 
The maximum height occurs where dy/dt = 0. When 
dy/dt = 0, then vo sin8 = gt. 
Solve vo sin 8 = gt for t: 
t = (vosine)/g 
Substitute t into y(t) to obtain ymax: 
y(t) at ymax = (vo sin 8)(vo sin 8)/g - g((vo sin 8)/g)2/2 
= (VO sin 8)2/g - (VO sin 8)Wg 
= (VO sin 8)Vg (1 - 1/2) = 
ymax  = (VO sin 8)2/2g 
where ymax occurs at one-half of the time the projectile is in 
the air. 

x(t) = (vocose)t 
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The horizontal distance x(T) the projectile travels occurs 
when y = 0 and time = T, where T is the total time in the 
air. Therefore, at time = T: 
(VO sin 8)T = gTV2 
The total time T is: 
T = (2v0 sin 8)/g 
The total distance x(t) at t = T is: 
x(T) = (VO COS 8)T = (VO COS 8)(2 vo sin e)/g = ( V O ~  sin 2B)lg 
Remember, 2 sin x cos x = sin 2x. 

Example: A cycloid is described by the path of a point on 
the perimeter of a circle as it is rolled along a line or 
surface. If the circle has radius r, and point P begins at the 
bottom at x = 0, then if it is rolled along the X-axis it makes 
a complete revolution at x = 2n;r. 

The parameter 8 represents the angle through which the 
circle revolves. The circle rolls a distance of 11.8 along the 
X-axis and its center is at y = r and x = r0. At 8 = 0 the point 
is at x = 0, y = 0 and at 8 = 27r, the point is at x = 2nr, y = 0. 
The segment between the center and the point is taken into 
account in measurements by subtracting (r sin 0) from x 
and (r cos 8) from y. Therefore: 
x = 1-0 - r sin 8 = r(8 - sin 8) 
y = r - r cose = r(1 - cos8) 
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The slope of the cycloid (dy/dx) is derived using the chain 
rule: 
dy - dy/de  - 
dx dx /de  r(1-cos@ 

At 0 = 0, the slope is infinite where the point moves 
straight up. 
The arc length of a cycloid can be found by integrating ds 
from 0 to 2n: on the X-axis: 

r sin0 ---- 

0 
2x 

jrJ(1- + (sin0)2de 
0 

The area of a cycloid can be found by integrating ydx from 
0 to 2n: on the X-axis: 

27t 
jydx = jr(1- cos0)r(l- cos0) d0 

0 

where y = r(l  - c o d )  and dx = r(1 - cos8)de. 

A particle moving at a constant velocity can be repre- 
sented using the position vector of the particle at time t, 
which is R(t). Then the displacement vector between posi- 
tions at time t and time t + At can be written generally as: 

Therefore, V(t) = AR/At. 
The velocity of a movingparticle in terms of the position 
vector R(t) at time t can be represented using: 

d R  = R(t + At) - R(t) 
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v( t )  = limAt+o[R(t + At) - R(t)/At] 

In  a n  XY plane the vectors R, AR and V = dR/dt can be 
depicted as: 

where AR is the change between two points on the curve. 

In three dimensions the velocity vector can be represented 
using the components of the position vector R in parametric 
form, where x = f(t), y = g(t), z = h(t) and: 
R = f(t)i + g(t)j + h(t)k, as: 
V(t) = limdt.+o[R(t + At) - R(t)/At] = 

limAt--+o [ kl 
f(t + At) - f(t) + g(t + At) - g(t) + h(t + At) - h(t) 

At  A t  At  

- - -  df(t) i+-j+- d d t )  dh(t)k 
dt dt dt 

Because x = f(t), y = g(t) and z = h(t), the components of the 
velocity vector V in parametric form for a moving in three- 
dimensional space can be written: 

d x .  dy . dz 
dt dt 

V(t) =;I+ - J + - k 
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. The acceleration vector A of a particle moving with a 
velocity V(t) at time t can be represented in general as: 
A(t) = lim~t,o[Av/At] = limAt,o[V(t + At) - V(t)/At] 

V(t % +At) V(t + At) - v(t> 

For a particle moving in three-dimensional space a t  time t 
the acceleration is given by: 

dx2 dy2 dz2 

dt2 dt2 dt2 
A(t) = dV/dt = d2R/dt2 =- i + -  j+-k 

If a particle is moving around a circle with radius R a t  a 
constant speed of I V I , then its acceleration vector is 
pointing toward the center. In this case of uniform motion 
the velocity vector changes in direction but not magnitude. 

Consider a position vector R at some point P on a curve 
in two dimensions represented with parametric equations 
x = f(t) and y = g(t) where t is a scalar and R is given by: 
R = f(t)i + g(t)j 

dR /dt Y 

X 

In three dimensions, the position vector R for point 
P = (x,y,z) on the curve can be written using parametric 
equations x = f(t), y = g(t) and z = h(t): 
R = f(t)i + g(t)j + h(t)k 

Because R(t) is the position vector for point P and 
dR/dt = V(t) the velocity vector at point P, then the 
acceleration vector at P is d2R/dt2 = dV/dt = A(t). 
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The derivative of vector R is the vector tangent to the curve 
in two dimensions a t  point P pointing in the direction of 
motion and represents velocity v of a moving particle at 
point P, providing dR/dt # 0. For a moving particle, the 
direction of V is the direction of motion and the magnitude 
of V is the speed of the particle. The velocity in two 
dimensions is given by: 

d R -  d f .  dg V(t) =x - - I+- j  
dt dt 

The magnitude (or length) of vector dR/dt in two dimensions 
is: 

Similarly, in three dimensions, the derivative of the 
vector R tangent to the curve a t  point P written is V(t): 

d R - d f .  dg dh 
dt 

--I+-j+-k V(t) = dt - dt dt 

The magnitude (or length) of vector dR/dt in three 
dimensions is: 

IV(t)l = lpl=/(g)2 +(s)2 +($)2 

The magnitude of the velocity vector also represents the 
speed of a particle traveling along the curve, where 
x = f(t), y = g(t) and z = h(t): 

Remember that velocity is a vector with magnitude and 
direction, while speed has only magnitude. 
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The unit tangent vector in three dimensions can be written: 
d f .  dg dh 
- I +  - j+-k 

T=-- v -  dt dt dt 

I v l  Jq 
Note that by integrating I VI , the distance truveled of a 

particle along the curve and the length of the curve can be 
obtained: 

Distance Traveled = flV(t) Idt 

Length of Curve= IlVldt 

where the curve is in a plane and a 5 t 5 b. 

b 

a 

b 

a 

The unit tangent vector T points in the direction of motion 
and depends on the shape of the curve. The curvature is 
sometimes referred to as K and is equal to the change in 
direction divided by the change in position, or the rate of 
turning: 
K = I dT/ds I = I (dT/dt)/(ds/dt) I = I d2R/ds2 I 
where T and dT/dt are perpendicular to each other. 

The unit normal vector N describes the direction of turning 
and is perpendicular to T. Therefore, the unit normal 
vector N coincides with dT/dt and is perpendicular to T: 

N =  d T / d s  - d T / d s  - 
I dT / dsl K 

(dT / ds) 
IdT / dtl /(ds / dt) 

--- 

(dT / ds)(ds / dt) - dT / dt 
(dT/dtl IdT / dtl 

- - - 
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The acceleration along a curve has a straight line 
component and a curvature component, and can be 
represented in several forms: 
A = (d2s/dt2)T + K(ds/dt)W 
= (d2s/dt2)T + K I V I 2N 
= (d2s/dt2)T + I (dT/ds) I (ds/dt)2(dT/ds) / I dT/ds I 
= (dWdt2)T + (ds/dt)Z(dT/ds) 
= (dWdt2)T + (ds/dt)(dT/dt) 

Note, for example, that  the vector l i  + 2j + 3k is 
constant, and the vector t z i  + t 2 j  + t2k is moving, where t is 
the parameter time. 

Motion in a plane in polar coordinates can be summarized 
using the position vector R, which points out from the 
origin. For circular motion such a s  a planet moving in a 
plane, the unit vector along R is: 
Ur = R/r = (xi + yj)/r = cosei + sin8 j 
where r is the radius. 
The unit vector Ue is perpendicular to Ur and is around the 
center: 
ue = -sin8 i + cos8 j 
If r varies, Ur and Ue are unaffected. However, if 8 varies 
Ur and Ue are: 
dur/d8 = -sin 8 i + COS 8 j  = Ue 

due/d8 = -cos 8 i - sin 8 j = -Ur 

The velocity V = dR/dt can be determined using: 
Ur = R/r, or R = rur. Using the chain rule for 
dUr/dt = (dur/dO)(d9/dt) = (de/dt)u,, then velocity becomes: 
V = dR/dt = d(ru,)/dt = ur(dr/dt) + rue(d9ldt) 
where the outward speed is dr/dt and the circular speed is 
de/dt. 
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Using the chain rule and the equation for V, the 
acceleration for motion in polar coordinates is: 

dr du, dr d0 d20 d0 due 
U, +--+-- Ue + r-Ue + r-- dV - d 2 r  

dt dt2 dt dt dt dt dt2 dt dt 
A = - - -  

Using: 
(dur/de)(de/dt) = (dWdt)ue = (dur/dt) and 
(dUdd@)(de/dt) = -(d0/dt)ur = -(due/dt) 

d 2 r  dr d0 dr d0 d20 d0 d0 
U0 + r-ue - r-- 

dt dt ue +-- dt2 dt dt 
A =  - 

dt dt dt2 Ur  +-- 

In general, expressions for velocity and acceleration of a 
particle moving along a curve (curvilinear motion) are more 
complicated than for a particle moving in a straight line. 
The equation of the curve can be given in parametric form 
as x = f(t) and y = g(t), where t represents time. Velocity V 
is a vector tangent to the curve and has a n  x and a y 
component and is expressed in terms of magnitude (speed) 
and direction. 

Velocity V can be defined in terms of x and y components 
in two dimensions and written as follows: 
The x component of velocity is vx = dx/dt. 
The y component of velocity is vy = dy/dt. 

The magnitude (speed) of V is I v I = J.x" + vf . 

The direction of V is tan 0 = vy/vx = dy/dx. 

Acceleration is given for the x and y components in two 
dimensions and can be written as follows: 
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The x component of acceleration is ax = dv,/dt = d2x/dt2. 
The y component of acceleration is ay = dvy/dt = d2y/dt2. 

The magnitude of A is I AI = ,/a: +a; . 

The direction of A is tan 0 = ay/ax. 

The acceleration vector can be expressed in a tangent 
component and a normal component to the curve, which are 
perpendicular to each other. 

vxax +vyay 
IVl 

The tangent component of acceleration aT = 

vxay -yax 
I Vl 

The normal component of acceleration aN = 
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Partial Derivatives 

6.1. Partial derivatives: representation and 
evaluation 

This section provides the definition and notation for 
partial derivatives and evaluating first, second and third 
partial derivatives. 

Derivatives of functions containing one variable generally 
represent aspects of curves, tangent lines and rates of 
change. Partial derivatives involve functions of more than 
one variable and typically represent aspects of surfaces, 
tangent planes and rates of change. In these functions each 
variable can change independently of the other variable(s), 
thus affecting change in the function a s  a whole. 

In a graph of y = f(x), x is the independent variable, y is 
the dependent variable and points that  satisfy y = f(x) fall 
on the curve described by y = f(x). Similarly, in a graph of 
z = f(x,y), x and y are the independent variables, z is the 
dependent variable and points that satisfy z = f(x,y) fall on 
the surface described by z = f(x,y). 

Partial derivatives are represented using d rather than d. 
Notation for single partial derivatives includes: (W&), E, 
(W?y), fy. Notation for second and third partial derivatives 
includes: (d2Ek2), Ex, (a3D&3), (8fl&xy), LXy. 

247 



Master Math: Calculus 

To differentiate or solve a partial derivative of function 
z = f(x,y), hold variable y constant while differentiating 
variable x, then hold x constant while differentiating y. The 
variable that is being held constant is treated as a constant 
during each differentiation. For each small change in 
variable x or variable y, the function z will change. 

For a change in x or Ax, z changes and the definition of 
the partial deriuatiue for z = f(x,y) becomes: 

d x &  
For a change in y or Ay, z changes and the definition of the 
partial derivative for z = f(x,y) becomes: 

%3- f(x + Ax, Y) - f(x, Y) 
Ax l i ~  ,+O 

---- 

The total partial derivative of z = f(x,y), when both x and y 
change, is: 

For example, if z = f(x,y) = x2 + y2 + x2y2, then 
(mdx) = 2x + 2xy2 and (May) = 2y + 2yx2. 

If z = f(x,y) and x and y each depend on time t, then the 
total partial derivative can be written: 
dz - 8 dx + df dy 
dt & dt ay dt 
---- -- 

If z = f(x,y) and x and y each depend on two variables U 

and v, such that x = x(u,v) and y = y(u,v), then the total 
partial derivative is written as two derivatives: 

al & &  a y &  

av a X &  a y &  

a f - X d x + d f a y  

---- a f - a f h + a f a y  -- 

---- -- 
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It is possible to evaluate thepartial derivatives, or slopes, 
(dzldx) and (dzldy) of function z = f(x,y) a t  a point. If 
z = x2/y2, then evaluate (dzldx) and (dzldy) at point (3,2). 
To evaluate (dz1aX) hold y constant a t  2, differentiate with 
respect to x, then substitute 3 into the resulting expression: 
x21y2 = x2122 
(azlax) = 2x14 
a t  x = 3, 6/4 = 312 
To evaluate (dzldy), hold x constant a t  3, differentiate with 
respect to y, then substitute 2 into the resulting expression: 
x21y2 = 321y2 
(dzldy) = (9)(-2~-~-~) = - 1 Sly3 
at y = 2, -18123 = -1818 = -914 
Alternatively, (dzldx) and (dzldy) can be determined first, 
then the point (3,2) substituted into the two resulting 
equations: 
(dz1aX) = 2 x 1 ~ ~  = 614 = 312 
(dzldy) = - 2 ~ ~ 1 ~ 3  = -1818 = -914 

To evaluate partial derivatives with more than two 
variables, differentiate with respect to one variable at a 
time while treating the other variables as constants. For 
example, given a partial derivative with three variables, 
w = f(x,y,z) = x2y2/z, find (&I&), (dwldy) and (dwldz): 
(dwIaX) = 2xy2lz 
(dwlay) = 2x2yIz 
(awlay) = -x2y2/z2 

Second partial derivatives of a function are represented 
using the following notation: (d2fldX2), (d2fli3y2), (d2flaXy), 
(d2fldyX), (dW(WaX>, (dW(WdY), (m)(WaY>, or 
equivalently, fxx, fyy, fxy, fyx, (f&, (f&, (f&, 
where fxx and (fx)x are equivalent and fxy and fyx are 
generally equivalent because the order of differentiation for 
most functions doesn’t matter. More specifically, if Ey(xl,yl) 
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and fyx(xl,yl) are both continuous a t  point (xl,yl), then 
fxy(xl,yl) and fyx(xl,yl) are equivalent. 

For example, if z = ex cos y, find (d2z/dX2), (d2z/i3y2) and 
(d2zIaxy) : 
(d2z/&2) = (dlax) ex cos y = ex cos y 
(d2zli3y2) = -(a/dy) ex sin y = -ex cos y 
(d2zIdxy) = (dli7y) cos y = -ex sin y 

Notation for third derivatives includes: (d3f7&3), (d3f7+3), 
(d3fldxxy), (d3fli3yyx), or equivalently, fxxx, fyyy, fxxy, fyyx. 

6.2. The chain rule 

This section presents the chain rule for partial 
derivatives and applying it to f(g(x,y)), f(x(t),y(t)) and 
f(x(u,v),g(u,v)). 

The chain rule applies to partial derivatives of more com- 
plicated functions just a s  it does with ordinary derivatives. 
The chain rule provides a means to differentiate composite 
functions and, therefore, is used for differentiating 
functions of functions. In a n  ordinary derivative, a 
composite function has one function in another function 
such as y = f(g(x)). Similarly, in a function with more than 
one variable, a composite function can have more than one 
function substituted within a function such as, f(g(x,y)), 
f W ) , Y ( t ) ) ,  f(X(U,V),Y(U,V)) and z = f(g(t),h(t)). 

Following is a summary of differentiating common forms 
of functions using the chain rule, (it is assumed that all the 
derivatives are continuous): 
(a.) To differentiate y = f(g(x)), calculate the ordinary 

(b.) To differentiate z = f(g(x,y)), calculate (iWdx) and (Way): 
derivatives, (df7dx) = (dUdg)(dg/dx). 

(Wdx) = (dfldg)(dg/&) 

where f depends on g, and g depends on x and y. 
(WW = (dfldg)(dg/W 
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(c.) To differentiate f(x(t),y(t)), calculate (dfldt): 
dfldt = (Wdx)(dx/dt) + (Wdy)(dy/dt) 
where a change in t influences a change in x and y and 
they influence a change in f. 

(Wav): 
(Wh) = (aflax)(ax/al) + (df /dy)(dy/du)  
( d f l a v )  = (aflax)(&/&) + (Wdy)(dy/av) 

(d.) To differentiate f(x(u,v),y(u,v)), calculate (dfldu) and 

where changes in U and v influences changes in x and y 
and they influence a change in f. 

For example, differentiate z = (x + xy)3. 
Use case (b.) above, where z = f(g(x,y)) to calculate (W&) 
and (Way), or equivalently (az/dx) and (dzldy): 
(dz/dx) = (dfldg)@g/&). 
( d Z / d x )  = 3(x + xy)2(a/ax)(x + xy) = 3(x + xy)2(1 + y) 
W d y )  = (dfldg)(dg/W 
(dZ/dy) = 3(x + Xy)ya/dy)(x + xy) = 3x(x + xy)2 

6.3. Representation on a graph 

This section includes examples of functions having more 
than one variable in the form f(x,y) and their graphs and 
contour diagrams. 

In a graph of a one-variable function, y = f(x), (dy/dx) rep- 
resents the slope of a line drawn tangent to a curve. In a 
graph of a two-variable function z = f(x,y), (figure below), 
(dz/&) represents the slope of a curve sliced from the 
surface of f(x,y) by a plane a t  y = constant. Similarly, (dz/dy) 
represents the slope of a curve sliced from the surface of 
f(x,y) by a plane a t  x =constant. In the derivative (dz/dx), x 
is varied and y is held constant, and in the derivative 
(dzldy), y is varied and x is held constant. 
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For example, consider the graph of the two-variable 
function f(x,y) = z = x2 - y2: 

X 

Y 
This graph forms a saddle-shaped surface. In this graph, 
there are two sets of parabolas, one set opening upward 
and the other set opening downward corresponding to x2 
values and -y2 values. Each curve corresponds to f(x,y) 
when x is held constant and y is varied or when y is held 
constant and x is varied. The partial derivatives of f(x,y) 
are (dzldx) = 2x and (dz/8y) = -2y. The point where the two 
sets of upward and downward parabolas meet is called the 
saddle point. The derivatives at the saddle point are zero. 
A contour diagram perspective of f(x,y) = z = x2 - y can 
also be depicted: 

Y 
diagonal lines = 0 

X 
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A contour diagram of curved surfaces can be depicted by 
connecting all of the points a t  the same height on the sur- 
face, such that all points satisfying f(x,y) = c at a given c lie 
on each contour line. The level curues form loops around the 
maximum point(s). As the height increases the loops get 
smaller. In other words, level curves, or contour lines, can 
be seen by slicing a surface with horizontal planes. The con- 
tour line at each height h = z is represented by f(x,y) = h. By 
moving in a direction parallel to a n  axis and crossing over 
the contour lines, the partial derivative equals the rate of 
change of the value of the function on the contour lines. 

Another example of a two-variable function is a graph of 
f(x,y) = z = (x2 + y y 2 :  

Y 

This graph has circular planes a t  each z value. When 
f(x,y) = z = (a constant), a contour map or diagram from the 
top-down perspective of z = (x2 + y2)lI2 can be drawn: 
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For example, if x and y equal to 2, 3 and 4, then: 
f(x,y) = (x2 + y2)1/2 is equal to 2&,  3& and 4 &  
respectively. The partial derivatives of z = (x2 + y2)1/2 are 
obtained by varying each variable while holding the other 
constant: 
(azlax) = (1/2)2x(x2 + y2)-"2 = x/Jx2 + y2 

( d Z / a y )  = (1/2)2y(x2 + y2)-"2 = y/Jx2 + y2 
The partial derivatives or slopes where x and y equal to 2, 3 
and 4 are equal to: 
2 / 2 &  = l / &  
3 / 3 &  = l / &  
4 / 4 &  = 1 / &  
which would be expected. 

6.4. Local linearity, linear approximations, 
quadratic approximations and differentials 

This section includes linear approximations, quadratic 
approximations, local linearity, tangent lines and planes, 
the normal line equation, quadratic approximations, Taylor 
polynomials and differentials. 

When calculating approximate values for complicated 
functions it is sometimes possible to focus in on a small 
region of the graph of a function, and look at that region as 
if it were linear. This is sometimes referred to a point of 
local linearity. A tangent line can be drawn through a point 
in a locally linear region and the slope of the tangent line is 
the derivative of the function a t  that point. Local linearity 
is used in one-variable functions y = f(x) to focus in on a 
curve until it appears to be a straight line (which is tangent 
to the curve) and can be described by a linear function or 
linear approximation a t  that  point. 
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Similarly, in two-variable functions, local linearity can be 
used to focus in on a curved surface until it appears to be a 
flat plane (which is a tangent plane to the surface) and can 
be described by a linear function a t  that point. A function is 
differentiable at a point if it is locally linear and continuous 
a t  that  point. The slope of a tangent plane a t  a point 
measures the change in the curve at that point. Tangents 
are used in representing linear approximations of functions 
and small changes in a function. 

When approximating values of one-variable functions, 
remembering the following two facts can be useful: 
(a.) The slope of a line drawn tangent to a graph of a 

function at a point is the derivative of the function a t  
that  point. In other words, the slope of the tangent at 
point (a,f(a)) equals the derivative f'(a). 

(b.) The equation for a tangent line passing through some 
point (a,f(a)) is y - f(a) = f'(a)(x - a). Equivalently, the 
equation for the slope of a line passing through point 
(x1,yl) is m = (y - yl) / (x - XI), where m is the slope of 
the tangent line and derivative a t  point (x1,yl). 

In the graph of function z = f(x,y), the slope of a plane 
drawn tangent to the curved surface through some point 
(a,b, f(a,b)) on the surface is the derivative of the function 
a t  point (a,b, f(a,b)). In other words, the slope of the tangent 
plane at point (a,b, f(a,b)) equals the partial derivative of 
the function in the x-direction at that point and the partial 
derivative of the function in the y-direction at that point. 
The slope of a tangent at a point measures the change in 
the surface at that point and is described by the equation 
for the plane drawn tangent to the surface. 

For a point on the surface of z = f(x,y) at x = XI ,  y = yl, 
z = z1, the equation for the tangent plane (where z is the 
dependent variable) in that seemingly linear region is the 
following linear equation: 
z - z1 = (rnax)l(X - x1) + (rnay)l(y - y1) 
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where (dEldx)i and (dEli3y)l represent the slopes of the 
tangent plane and are evaluated at point (x~,yi,zi). 

Similarly for F(x,y,z) = 0 with three variables, at point 
(xl,yl,z~), the equation for the tangent plane is: 
(dF/&)i(x - xi) + (dF/*)lty - yl) + (dF/dz)l(z - ZI) = 0 

Note that a two-variable function z = f(x,y) represents a 
single surface and a three-variable function F(x,y,z) repre- 
sents a family of level surfaces. F(x,y,z) = f(x,y) - z for one of 
the surfaces and z = f(x,y) is the surface at F(x,y,z) = 0. 

For example, if a surface is given by F(x,y,z) = x2 + y2 + z2, 
at point (X~,YI,ZI) = (1,2,3) the equation for a tangent plane 
(dF/dx)i(x - XI)  + (dF/*)l(y - yl) + (dF/dz)i(z - zi) = 0, is: 
(2X)l(X - x1) + (2Y)lty - y1) + (2Z)l(Z - z1) = 0 
At point (1,2,3) the equation becomes: 
(Z)(X - 1) + (4)b - 2) + ( 6 ) ( ~  - 3) = 0 

A useful relationship to the equation of a line is the 
equation for a line normal (or perpendicular) to a tangent 
line on the curve y = f(x) a t  a given point (x1,yi) or (a,f(a)). 
Because the slope is m and slopes of perpendicular lines 
multiply to equal -1, then the normal is -l/m. The equation 
for the normal line can be written: 
y - yl = (-1/m)(x - xi) or y - f(a) = (-l/f'(a))(x - a). 
Similarly for function F(x,y,z) = 0, an  equation for a 2ine or 
vector normal to the tangent plane on the surface a t  point 
(xl,yi,zi) is: 
(dF/dx)li + (dF/*)lj + (dF/az)lk 

Quadratic approximations are similar to linear 
approximations but are generally more accurate. Because 
the equation for a tangent line passing through some point 
(a,f(a)), is y - f(a) = f'(a)(x - a), the linear approximation for 
the single variable function at that point is: 
y = f(x) = f(a) + f'(a)(x - a) 
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By using the second-order Taylor polynomiul this equation 
form becomes a quadratic approximation for f near a: 
f(x) = f(a) + f’(a)(x - a) + (lIZ)f”(a)(x - a)2 

Consider a point on the surface of z = f(x,y) at x = xi, 
y = yl, z = z1, the equation for the tangent plane is: 

where (WaX)l and (Wi3y)l represent the slopes of the 
tangent plane evaluated at point (xi,yl,zl). 
The linear approximation for the function at that point is: 

If point (x1,yl) is at (0,O) the  approximation becomes: 

Using the second-order Taylor polynomial to approximate 
f(x,y) near (x1,yl) gives a quadratic approximation for f(x,y): 

z - z1 = (aflaX)l(x - x1) + (Way)l(y - y1) 

f(x,y) = f(X1,Yl) + (af/aX)l(X - Xi) + (~flay)l(y - Yl)  

f(X,Y) = f(0,O) + (aflWO(X) + @ f l a Y ) O ( Y )  

f(x,y) = f(X1,Yl) + (af/aX)l(X - x1) + Way)l(y - Yl) 
+ (1/2)(a2flaX2)1(x - x1)2 + (d2flaXay)l(X - Xl)(y - y1) 
+ (1/2)(d2flay2)1(y - y1)2 

If point (x1,yl) is at (0,O) the  approximation becomes: 
f(x,y) = f(0,O) + (WaX)o(x) + ( a f / a y ) o ( y )  + ( 112)(a2flaX2)0(x)2 
+ (a2aaxay)o(x)(y) + (112)(a2f/ay2)o(y)2 

To solve a problem using a n  approximation, such as the 
second order Taylor series, first calculate the derivatives of 
the function and evaluate them at the chosen point by 
substituting x and y into the differentiated function, then 
substitute back into the series. For example, use the  
second-order Taylor series to evaluate the function 
f(x,y) = x2y2 at point (x1,yl) = (1,Z).  
f(x,y) = x2y2 = (12)(22) = 4 
The derivatives are: 
( a f / a X )  = 2xy2 = 8 
(Way) = 2x2y = 4 
(d2flaX2) = (alax)2xy2 = 2y2 = 8 
(a2aay2) = (alay)2x2y = 2x2 = 2 
(aZflaXy) = (a/&)2xy2 = 4xy = 8 
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Substitute into the series: 
f(x,y) f(X1,Yl) + (af/ax)l(X - Xl) + (dfl?y)l(y - y1) 
+ (1/2)(a'fl&2)l(x - Xl)' + (a'fiaxay)l(x - Xl)(y - y1) 
+ (1/2)(d2flay2)1(y - y1y 

f(x,y) 4 + 8(x - 1) + 401 - 2) + (1/2)8(~ - 1)2 
+ 8(x - 1)b - 2) + (1/2)2b - 2)' 

= 4 + 8(x - 1)+ 4(y - 2)+ 4(x - 1)'+ 8(x - 1 ) b  - 2)+(y - 2)' 

Differentials are sometimes used to assess the change in 
the value of a function between two points or quantities. 
When moving along a curve y = f(x), small movements or 
increments along the curve are represented by Ax and Ay, 
and small movements along a tangent line to the curve are 
represented dx and dy . The respective differentials are: 
Ay = (dy/dx)Ax and dy = (dy/dx)dx. 
Similarly, moving along a curved surface z = f(x,y), where z 
is the dependent variable, small movements or increments 
along the surface are represented by Ax, Ay and Az, and 
small movements along a tangent plane to the surface are 
represented dx, dy and dz. The total differential reflected on 
the tangent plane is given using the tangent plane equation: 

which becomes: 
dz = (az/&)idx + (az/%)idy 

z - z1 = (af/&>l(X - x1) + (aflay)l(y - y1) 

For example, the differential of z = x2y2 is given by: 
dz = 2xy2 dx + 2 x 2 ~  dy 

If the increments dx, dy and dz are small enough and, 
therefore, the distances between (x -xi), (y -yi) and (z - zi) 
are small, then the linear approximation to the function 
z = f(x,y) has a small error and is therefore a valid approx- 
imation a t  some point. For a curved surface described by 
z = f(x,y), the linear approximation to the surface near point 
(x1,yl) is given by: 
z = f(x,y) = f(X1,Yl) + (W&)l(X - x1) + (df/dy)l(y - y1) 
Therefore, Az = (af/&)Ax + @@)Ay. 
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6.5. Directional derivative and gradient 

This section includes the directional derivative and the 
gradient and their relationship to each other, definitions 
and notation for the directional derivative and the gradient, 
magnitude of a gradient vector and the dot product rela- 
tionship between the gradient and the directional derivative. 

A surface can have slopes in all directions, not just along 
the axes. The directional derivative represents the slope of 
a tangent line to a surface at a point in any chosen 
direction. As discussed in the previous paragraphs, (dz/dx) 
and (dz/%) represent the rate of change of surface z = f(x,y) 
in the directions of the X-axis and Y-axis respectively. 

A small change ds along a surface in a specified direction 
can be represented using a unit vector a, that is pointed in 
the designated direction and has components a1 and a2 that 
are each pointed in x and y directions. 
Therefore, a = ali + a2j and dz/ds can be written: 
dz/ds = (df/dx)al + (Wdy)a2 
which is the directional derivative of duds in the direction of 
the unit vector a. 

. Notation for the directional derivative of the unit vectors 
a, b and U, include duds, dz/ds, Daf, fa(xl,yl), Dbf, fb(Xi,yi), 
DUf and fU(x1,yl). 

For example, using the notation fa(xl,yl), the directional 
derivative for a is written: 
fa(x1,yl) = fx(xl,yl)al + fy(xi,yl)a2 

The directional derivative can be expressed using the 
difference quotient in a direction of vector a at point (x1,yl): 
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This equation describes a small change represented by h in 
f(x,y) between points (x1,yl) and (xl+hal, yl+haa) in the 
direction of a. Remember from Chapter 2 that  the average 
rate of change is represented by the quotient and the 
instantaneous rate of change is represented by the limit of 
the quotient a s  h approaches zero. 

The equation for the directional derivative can be thought 
of in terms of a linear approximation to a surface near a 
point. An incremental change in z = f(x,y) is: 
Az = (dfldx)Ax + (af/dy)Ay 
where Ax is the change in the a1 direction given by hal, or 
equivalently Asa1, and Ay is the change in the a2 direction 
given by ha2, or equivalently Asaz. Therefore, the linearized 
curve in the direction of a can be written: 
Az = (df7dx)alAs + (Wdy)azAs 
Rearranging: 
AzlAs (dfldx)al + (Wdy)a2 
Taking the limit as A s  approaches zero results in: 
dzlds = (%'&)a1 + (dfli3y)az 
which is the directional derivative of dzlds. 
Note: The equation for the directional derivative is an 
important equation to remember. 

The gradient is a vector quantity and describes the 
change in a function near a point. The gradient 
characterizes maximum increase and indicates the direction 
of maximum increase o f f  at a selected point. The gradient of 
f(x,y) is written: 
gradf = (dfl&)i + (Wi3y)j 
For f(x,y,z) the gradient becomes: 
gradf = (Wdx)i + (Wdy)j + (af/az)k 
Note: The equation for the gradient is an important equation 
to remember. 
The components of the vector (gradf) are: 
(dfl&)i, (Wdy)j and (dfldz)k 
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The gradient of a scalar function f(x,y,z), is a vector 
function. The gradient of f(x,y,z) at point P, where f is 
differentiable, indicates the direction of maximum increase 
providing (grad f z 0). 

The gradient vector of z = f(x,y) at (x1,yl) is pointed in the 
direction of where the greatest change in f(x,y) occurs, 
(providing f is differentiable a t  (x1,yl)). The gradient vector 
lies on the surface of f(x,y) in the x-yplane and points in the 
direction that the surface is rising or increasing the 
greatest amount. In a contour diagram, the gradient vector 
points perpendicular to the contour lines in the direction of 
greatest increase in height, which is where the contour 
lines are closest together. 

The magnitude or length of the gradient vector given by 
I gradf I is equal to the rate of change in the direction that 
it is pointing (providing f is differentiable). On a contour 
diagram the gradient vector has a magnitude correspond- 
ing to the degree (or grade) of the slope. Because the slope 
is greater when the contour lines are closer together, the 
magnitude of the gradient vector is greater for contours 
that are closer together. Conversely, because the slope is 
less when the contour lines are more separated, the 
magnitude of the gradient vector is smaller far contours 
that are farther apart. 

Notation for grad is V, which also called “der’ and is a 
vector that  is a n  operator because its components are 
operations rather than numbers. 
v = (a/aX)i + (a/%)j + (a/az)k 
Therefore, grad f = Vf = (af/aX)i + (af/%)j + (af/az)k. 
Notation, for the gradient o f f  includes: 
gradf(x,y,z) = ( a f / a X ) i  + (af/@)j + (af/az)k 
grad f(xl,yl,zl) = fx(xl,yl,zl)i + fy(xl,yl,zl)j + f~(xi,yi,zi)k 
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Example: If f = 3x + 2yz - 6y2, what is grad f? 
grad f = Vf = (3)i + (2z - 12y)j + (2y)k 

If the directional derivative of f(x,y) a t  (x1,yl) is zero in all 
directions, then the gradient vector is a zero vector. 

The gradient can be evaluated outside the context of a 
coordinate system by remembering that the direction of 
(grad f) is where the directional derivative dflds is greatest 
and the length I grad f I is the greatest slope. 

The dot product of a gradient vector at point (x1,yl) with 
the unit vector a is equal to the directional derivative 
fa(X1,yl) pointing in the direction of a at point (x1,yl). 
Therefore : 
gradf(x1,yi) a = fa(X1,yl) = ((WaX)i + (W@)j) (ali + a2j) 
= (W&)al + (W@)a2 
= I gradf(x1,yl) I cos8 = I ((WaX)i + (af/i?y)j) I COS 8 

where a = ali + a2j. 

Remember the dot product of two vectors is: 
A.B= IAl IBIcos8 
where I A I and I B I represent the magnitudes of vectors A 
and B and 8 is the angle between vectors A and B. 

The directional derivative fa(X1,yl) will have its greatest 
value when its unit vector a is pointing in the same 
direction as the gradient of f(xi,yi). Therefore, the 
directional derivative will be greatest when the angle 8 
between it and the gradient is zero. 
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In other words, the slope of the directional derivative 
fa(X1,yl) is greatest when a is parallel to (grad f). Therefore, 
writing the directional derivative in terms of the dot 
product gives: 
fa(X1,yl) = ((W&)i + (W@)j) a 

= I ((WaX)i + (W@)j) I I a I cos 8 = I ((8flaX)i + (W@)j) I COS 8 

8 will be zero when fa(X1,yl) has its greatest value: 
fa(xl,yl) = I ((W&)i + (W@)j) I cos 0 = I ((WaX)i + (afl%)j> I 

Therefore, fa(X1,yl) = I grad f(x1,yl) I when they both have 
the same magnitude (at the maximum value) and a is 
pointing in the same direction as grad f(x1,yl). 

The greatest slope is equivalent to the magnitude 

I grad f I = ,/f: + f; and occurs when (grad f).a = I grad f I . 

The directional derivative will have a zero rate of change 
when the angle 8 between it and the gradient is 90 degrees, 
where 8 = n/2 and a is pointing perpendicular to (gradf). 
Therefore, when 8 = d 2 :  
grad f(x1,yl) a = I grad f(x1,yl) 1 cos d 2  

= I ((W&)i + (W@)j) I cosn/2 = 0 

The directional derivative will have its most negative rate 
when the angle 8 between it and the gradient is 180 
degrees, where 8 = n: and a is pointing in the opposite 
direction of (gradf). Therefore, when 8 = n:: 
gradf(x1,yl) a = I gradf(x1,yl) I cosn: 
= I ((W&)i + (W@)j) I cos 7t = - I grad f(x1,yl) I 

When f(x,y) is a linear function, the gradient is a constant 
vector because the terms a/& and a/@ will yield constants. 
Conversely, when f(x,y) is a non-linear function, the 
gradient is a non-constant or varying vector. 
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6.6. Minima, maxima and optimization 

This section introduces minima and maxima problems for 
functions having more than one variable and is a n  exten- 
sion of Section 2.27 for one-variable functions. This section 
includes the first and second derivatives for surfaces, 
finding minima and maxima points and the concept of 
constrained optimization. 

Evaluating whether a function has minimum and 
muximum points is common when experiments or evalua- 
tions are conducted in science, business, engineering, etc. 
Data is gathered, relationships are developed and graphs 
are constructed in order to assist in the understanding of 
the data and to predict future patterns and events. Infor- 
mation depicted in the graphs such as where the graph is 
rising or falling, convex or concave, and where the high and 
low points are (which correspond to the maximum and min- 
imum values) are all crucial to the evaluation of the data. 

The graph of a function has a minimum or maximum 
point where the slope is zero and, therefore, the derivative is 
zero. In the region of a graph of a function where the graph 
is horizontal, the first derivative of the function is equal to 
zero. A point where the graph of a function is horizontal 
may represent a minimum or maximum point. A minimum 
or maximum on a graph may be the minimum or maximum 
of the function, global extrema, or there may be many 
“local” minimum or maximum points called local extrerna. 
There are also examples where a graph will not have a 
minimum or maximum, such as if the graph is a straight 
horizontal or vertical line or plane. 

For a function with a single variable y = f(x), a minimum 
or maximum point occurs where dfldx = 0. For a function 
with more than one variable z = f(x,y), a minimum or 
maximum point occurs where (Wdx) = 0, (W*) = 0, or the 
appropriate partial derivatives of the independent 
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variables. Where the graph of a multivariable function is 
level, the partial derivatives are all zero. 

In a one-variable function (discussed in Section 2.27), the 
sign of the derivative of the function indicates the slope of 
the graph of the function at the point where the derivative 
is taken. For y = f(x), f'(x) < 0 where the graph off is 
decreasing, f'(x) > 0 where the graph off is increasing, and 
f'(x) = 0 where the graph off is horizontal. The sign of f'(x) 
changes from positive to negative or negative to positive as 
the maximum or minimum is crossed. There are functions 
that don't possess minimum or maximum points, such as 
where a n  inflection point exists. 

In the one-variable case, taking the second derivative of a 
function is used to determined whether the graph of that  
function is at a minimum and, therefore, concave up, or at a 
maximum and, therefore, concaue down. For f(x) at point P, 
where f'(P) exists and f'(P) = 0, then if f"(P) > 0, the graph 
of the function is concave up a t  P and has a minimum at P. 
Conversely, if f'(P) = 0 and if f"(P) < 0, the graph of the 
function is concave down at P and has a maximum at P. 
See Section 2.27 for a complete discussion of minima and 
maxima for single variable functions. 

For a function z =  f(x,y) with two independent variables, a 
maximum on the graph of that function exists at a point 
(x1,yl) if f(x,y) 2 f(x1,yl) for all values of x and y near (x1,yl). 
Conversely, a minimum exists where f(x,y) 2 f(xi,yi) for all 
values of x and y near (x1,yi). To summarize, global and 
local extrema occur for f(x,y) according to the following: 
Global maximum exists at (x1,yl) if f(x,y) f(xi,yi) for all (x,y); 
Global minimum exists at (x1,yi) if f(x,y) >f(xi,yi) for all (x,y); 
Local maximum exists at (xi,yi) if f(x,y) I f(xi,yi) for (x,y) 
near (x1,yi); and 
Local minimum exists at (xi,yi) if f(x,y) 2 f(xi,yi) for (x,y) 
near (x1,yl). 
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The following properties of f(x,y) can be compared with f(x): 
(a.) The extrema points occur at (WaX) = 0 and ( W e )  = 0 

rather tha t  df7dx = 0. 
(b.) A tangent plane exists where derivatives are  zero rather 

than a tangent line. 
(c.) A boundary curve encompasses the region of interest 

rather than  two endpoints. 
(d.) Partial derivatives (d2f7/dX2), (d2f7dxy) and (d2f7aY2) are  

used to determine whether the extrema is a minimum 
or maximum or a saddle point, rather than  using 
ordinary derivatives dWdx2, d2Ddxy and d2Ddy? 

In  a closed and bounded region, a continuous function 
f(x,y) will generally have a global minimum and a global 
maximum. A dosed region contains a boundary and if a 
region is bounded, then it does not go to infinity in any 
direction. If a region is not closed and bounded or f(x,y) is 
not a continuous function, there may or may not be a global 
minimum or global maximum present. 

Local extrema generally occur at critical points where the 
derivative is zero or undefined. For a minimum or 
maximum to exist for z = f(x,y) at (xl,yl), it is necessary 
tha t  (dDi3y) = 0 and (df@) = 0 (for three variables, include 
(Wdz) = 0). Note tha t  this condition is not sufficient to 
assure that a minimum or maximum exists. 

If f(x1,yl) is a minimum or maximum point, then the 
gradient vector at that point will be zero. The slope in every 
direction will be zero. Therefore, (grad f(xi,yi)) equals zero 
or is undefined at a minimum or maximum point. Critical 
points occur where the gradient is either zero or undefined. 

To determine i f  maxima or minima exist for z = f(x,y) the 
following steps can be taken: 
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(a.) Calculate (W&), (Wdy), (aW&2), (a2f7dy2) and (dzfl&y). 
(b.) Solve (Wax) = 0 and (W%) = 0 simultaneously for the 

critical values of x and y that satisfy these equations. 
(In this case there are two equations and two 
unknowns.) 

(c.) Determine the value given by: 
D = (22f7&2)(a2f7%2) - (d2f/&~)~ at point (x1,yl). 

(d.) Evaluate the following criteria at point (x1,yl) for 
z = f(x,y): 
Minimum if D > 0 and (d2f7dX2) > 0 or (a2f7ay2) > 0; 
Maximum if D > 0 and (d2f7&c2) < 0 or (i?2fY%2) < 0; 
No minimum or maximum if D < 0 (saddle point); 
This test fails if D = 0. 

Example: Does a minimum or maximum exist for 
z = x2 + y2? 
Calculate: 
(Wax) = 2x 
(aflW = 2Y 
(aWax2) = 2 
(a2f7ay2) = 2 
(d2flaXy) = 0 
Solve: 
2x = 0 + x = 0 
2y = 0 - B y  = 0 
Determine: 
D = ( ~ 2 f 7 & c 2 ) ( a 2 f 7 8 ~ 2 )  - (d2f7aX~)~ = (2)(2) - 0 = 4 
Because 4 = D > 0 and (d2f7&2) = 2 > 0, then a minimum 
exists at (x = 0, y = 0, z = 0). 

Example: Does a minimum or maximum exist for 
z = x2 - y2? 
Calculate : 
(Wax) = 2x 
(Way) = -2Y 
(d2ElaX2) = 2 
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( a 2 f l a y 2 )  = -2 
(d2flaXy) = 0 
Solve: 
2 x =  0 + x = o  
2y = 0 + y = 0 
Determine: 
D = (d2flaX2)(d2fl~2) - (a2flaXy)' = -4 < 0 
Because -4 = D < 0, then no minimum or maximum exists 
and this is a saddlepoint that corresponds to a n  inflection 
point for a single variable function. At a saddle point there 
are values of x and y such that f(x1,yl) > f(x,y) and also 
f(X1,Yl) < f(X,Y). 

X 

Y 

The graph of a quadratic function f(x,y) = ax2 + bxy + cy2 
can be analyzed for minima, maxima and saddle points by 
using a technique that involves completing the square of 
ax2 + bxy + cy2and results in the following being true at 
point (0,O): 
Minimum exists at (0,O) when a > 0 and (4ac - b2) > 0; 
Maximum exists at (0,O) when a < 0 and (4ac - b2) > 0; 
A saddle point exists at (0,O) when (4ac - b2) < 0. 

Note that for a point at (x1,yl) rather than (O,O), the 
quadratic function will have the form: 
f(x,y) = a(x -  XI)^ + b(x - x # y  - yl) + c(y - ~ 1 ) ~  + d 
and the graph will have the same shape as it would at 
point (0,O) except it will be located at point (x1,yl) and 
shifted the value of d in the vertical direction. 
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Constrained optimization 

The following paragraphs provide a brief introduction to 
constrained optimization. For a complete discussion of 
constrained optimization, a more advanced mathematical 
analysis book should be consulted. 

When a system or graph is evaluated using optimization 
techniques (minimization and maximization), there is often 
more than one function involved in describing the system or 
graph. When minimizing or maximizing, it can be beneficial 
to hold one function constant or constrained while consid- 
ering the other function. Finding local minima or maxima 
for the two functions f(x,y) and g(x,y) involves finding the 
partial derivatives (XQx), (a+), (dg/dx) and (dgldy). When 
g(x,y) is constrained or held constant such that g(x,y) = C, 
the extrema of f(x,y) has the following properties: 
(a.) f(x,y) has a global minimum at point some (x1,yl) when 

f(x,y) 2 f(x1,yl) for all values of x and y. 
(b.) f(x,y) has a global maximum at some point (x1,yl) when 

f(x,y) I f(x1,yl) for all values of x and y. 
(c.) f(x,y) has a local minimum at some point (x1,yl) when 

f(x,y) 2 f(x1,yl) for values of x and y near (x1,yl). 
(d.) f(x,y) has a local maximum at some point (x1,yl) when 

f(x,y) s f(x1,yl) for values of x and y near (x1,yl). 

To evaluate a constrained Optimization problem, the local 
extrema of one function f(x,y) can be found while the other 
function g(x,y) is constrained such that g(x,y) = C. The ex- 
trema found using such a constraint may not be the same 
extrema present if no constraint was present. Also, deter- 
mining whether the extrema is a minimum or maximum 
can be observed by graphing the functions. 

Consider the graph of two functions f(x,y) and g(x,y) that 
are related to each other by a scalar quantity called h 
(lambda), which is known as the Lagrange multiplier. 
When f(x,y) is at a minimum or maximum at point with 
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the constraint g(x,y) = C, the gradient off is parallel to the 
gradient of g. At a minimum or maximum at point, (gradf) 
and (gradg) are related to each other by the multiplier h, 
such that for g = C, the following is true: 
grad f = h grad g 
(Wax) = h(dg/dx) 
(Way) = Wglay) 

To find extrema for f, the three equations g = C, 
(a&) = h(dg/dx) and (Way) = h(dg/&) can be solved for the 
three unknown values, x, y and h. 

For a hnction f(x,y,z) with two constraints, 
g(x,y,z) = C1 and h(x,y,z) = C2, there are two multipliers hl 
and 12. To minimize or maximize f, the following equations 
can be solved for x, y, z, hl and hl: 
(Wax) = h@g/dx) +- hz(dh/&) 
(May) = hi(dg/@) + h2(dh/%) 
( W ~ Z )  = hi(dg/dz) + ha(dh1d~) 
g = C1 and h = C2 

Optimization problems are sometimes written in terms of 
a Lagrangian function L: L(x,y,h) = f(x,y) - h(g(x,y) - C). 
The solution for a constrained optimization problem 
involving L is found using: 
(dLldx) = (Wax) -h(dg/&) = 0 
(dL/ay) = (Way) - h(dg/ay) = 0 
(dL/dh) = c - g = 0 
At a critical point (xl,yi,hl) of f(x,y) where g(x,y) = C and hi is 
the corresponding Lagrange multiplier: grad L(xi,yi,hl) = 0. 

There are constraints involving inequalities such as g 5 C 
or gZC, where the multiplier h must satisfy the same 
inequalities, such that h 5 C or h 2 C. For example, if the 
constraint is g 5 C, then the extrema can be inside or on the 
constraint curve. 
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Vector Calculus 

This chapter is designed to provide definitions, 
formulas and brief explanations that are important in 
vector calculus, and also provide a context for how the 
topics described fit into the subject of calculus. 

7.1. Summary of scalars, vectors, the 
directional derivative and the gradient 

This section provides a brief summary of scalars, vectors, 
the directional derivative and the gradient. See Chapter 5 
for more information on vectors and Chapter 6 for more 
information on the directional derivative and the gradient. 

Scalars and vectors 

Scalar functions are functions whose values are scalars. 
Similarly, vector functions are hnctions whose values are 
vectors. A scalar function in three dimensions f = f(x,y,z) is 
defined at some point (x,y,z) by a value, whereas a vector 
function in three dimensions v = v(x,y,z) has three com- 
ponents such that v = [vl(x,y,z), va(x,y,z), vs(x,y,z)]. A vector 
function has a n  input point (x,y,z) and an  output that  has a 
three-dimensional vector function that represents a field of 
vectors with one a t  each point in the field. 

Both scalar and vector functions are used in applications 
where the domain of a function is a curve in space, a sur- 
face in space or some region in space on a curve or surface. 
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A scalar function defines a scalar field or a region on a 
curve or surface. Examples include temperature fields and 
pressure fields. A vector function defines a vector field and 
has a vector at each point in two- or three-dimensional 
space in a region, curve, surface or volume. Examples 
include velocity fields, force fields and gravitational fields. 

Vector and scalar functions sometimes depend on time t 
or other parameters. An example of a scalar function 
f(x,y,z) is the distance of a point PO = (xo,yo,zo) to another 
point P = (x,y,z). The domain is all the space and f(x,y,z) 
defines the scalar field in space: 
distance = f(x,y,z) = d(x - xo)2  + (y - yo)2 + (y - yo)2 
This formula is given in Cartesian coordinates. However, 
the distance would be the same if represented in another 
coordinate system. 
See Section 7.2 for a discussion of vectors fields. 

Directional derivative and gradient 

A surface can have slopes in all directions not just along 
the axes. The directional derivative represents the slope of 
a tangent line to a surface a t  a point in any specified 
direction. As discussed in the Chapter 6, (dz/&) and (dz/%) 
represent the rate of change of a surface z = f(x,y) in the 
directions of the X-axis and Y-axis respectively. 

A small change ds along a surface z = f(x,y) in a given 
direction can be represented using a unit vector a that  is 
pointed in a designated direction and has components a1 

and a2. Components a1 and a2 can correspond to i and j unit 
vectors and a can be represented by: a = ad  + a2j 
The directional derivative dflds in the direction of vector a 
can be written: 
dz/ds = (M&)al+ (M%)a2 
Remember that i, j and k are unit vectors that  point paral- 
lel to the axes of a coordinate system. (See Section 5.1.) 
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Notation for the directional derivative includes duds, 
dz/ds, Daf and fa(xi,yi). For example, using the notation 
fa(xl,yl), the directional derivative in the direction of vector 
a is written: 
fa(X1,yl) = fx(xl,yl)al + f,(xl,yl)aa 

The gradient is a vector quantity and describes the 
change in a function near a point. The gradient charac- 
terizes maximum increase and points in the direction of 
maximum increase o f f  at a selected point. The gradient of 
f(x,y) is written: 
gradf = ( a f / a X ) i  + (a f /@) j  
For f(x,y,z), the gradient becomes: 
gradf = (af/aX)i + (af/%)j + (Waz)k 
The components of the vector (grad f) are: 
(af/aX)i, (af/@)j and (Waz)k 

The gradient of a scalar function f(x,y,z) is a vector 
function. The gradient of f(x,y,z) at point P denotes the 
direction of  maximum increase, providing grad f z 0 and f is 
differentiable . 

The gradient vector of z = f(x,y) at point (x1,yl) points in 
the direction of where the greatest change in f(x,y) occurs 
(providing f is differentiable a t  (x1,yl)). The gradient lies on 
the surface of f(x,y) in the x-y plane and points in the direc- 
tion that the surface is rising or increasing the most. In a 
contour diagram, the gradient vector points perpendicular 
to the contour lines in the direction of greatest increase in 
height, which is where the contour lines are closest together. 

The magnitude or length of the gradient vector given b y  
I grad f I is equal to the rate of change in the direction that 
it is pointing. On a contour diagram, the gradient vector has 
a magnitude corresponding to the degree (or grade) of the 
slope. Because the slope is greater when the contour lines 
are closer together, the magnitude of the gradient vector is 

273 



Master Math: Calculus 

greater for contours that are closer together. Conversely, 
because the slope is less when the contour lines are more 
separated, the magnitude of the gradient vector is smaller 
for contours that are farther apart. 

Notation for grad is V, which is also called “del” and is a 
vector that  is a n  operator because its components are 
operations rather than numbers. 
v = (a/&)i + (a/%)j + (a/az)k 
Therefore, grad f = Vf = (W&)i + (Wi3y)j + (af/az)k. 
Notation, for the gradient off includes: 
gradf(x,y,z) = (af/&)i + (af/@)j + (Waz)k 
grad f(xl,yl,zl) = fx(xl,yl,zl)i + fy(xl,yl,zl)j + fi(xl,yl,zl)k 

Example: If f = 3x + 2yz - 6y2, what is gradf? 
grad f = Vf = (3)i + (22 - 12y)j + (2y)k 

The dot product of the gradient vector at point (x1,yl) with 
the unit vector a is equal to the directional derivative 
fa(X1,yl) pointing in the direction of a a t  point (xi,yi): 
grad f(x1,yl) a = fa(xi,yi) 
= ((W&)i + (W&)j) (ad  + a2j) = (af/&)al + @&)a2 
= I grad f(x1,yl) I COS 8 = I ((af/&)i + ( a f / @ ) j )  I cos 8 
where a = a l i  + a2j. 
Remember that the dot product of two vectors is: 
A * B =  IAl IBIcos8  
where I A I and I B I represent the magnitudes of vectors A 
and B and 8 is the angle between vectors A and B. 

The directional derivative fa(X1,yl) will have its greatest 
value when its unit vector a is pointing in the same 
direction as the gradient of f(xi,yi). Therefore, the 
directional derivative will be greatest when the angle 8 
between it and the gradient is zero. 
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7.2. Vector fields and field lines 

This section includes definitions of vector fields and 
examples of vector fields including horizontal, radial, 
rotational, gradient, force, velocity and flow, and also the 
definition of field lines. 

Vector functions or fields have a n  input a s  point (x,y) or 
point (x,y,z) and an  output as a two- or three-dimensional 
vector function F(x,y) or F(x,y,z) that  represents a field of 
vectors with one at each point in the field. A vector function 
defines a vector field, which has a vector at each point in 
two- or three-dimensional space in a region, curve, surface 
or volume. Examples include velocity fields, force fields, and 
gravitational fields. The following are examples of 
geometric configurations of vector fields: 

A tangent on curve vector field vector + field of rotating body 

normal vector field 
on surface 

J/ 
radial vector field 

A vector field is a hnction that possesses a vector a t  each 
point in a two-dimensional plane or three-dimensional 
space. In a vector function or vector field, the value of the 
field a t  any point is the vector denoting magnitude and 
direction. In two-dimensions, a vector field is a vector 
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function F(x,y) whose value at any point (x,y) is a two 
dimensional vector. Similarly, in three dimensions a vector 
field is a vector hnction F(x,y,z) whose value at any point 
(x,y,z) is a three-dimensional vector. The values of F(x,y) 
and F(x,y,z) are two- and three-dimensional vectors. 

A point in a vector field can be represented by its position 
vector R. Therefore, a vector field is sometimes represented 
by F(R). Also, a vector field can be represented by the 
function F describing the field. (See Section 5.1 for a 
definition of the position vector.) 

In two dimensions F(x,y) has two components and in 
three dimensions F(x,y,z) has three components: 
F(X,Y) = Fl(x,y)i + FP(X,Y)j 
F(x,y,z) = Fl(x,y,z)i + F~(x,y,z)j + F ~ ( x , Y , z ) ~  

The components of a vector do not vary. However, the 
components in a vector field are variable. 

The following are examples of vector fields. 
(a.) Horizontal field: F(x,y) = xi 

X 

Vector xi is parallel to the X-axis and points in the positive 
x-direction when x is positive and points in the negative 
x-direction when x is negative. Because F does not depend 
on y, the vectors along the Y-axis direction are the same 
length. In general, longer vectors have a larger magnitude. 
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(b.) Radial field: R(x,y) = xi + yj 

4 

The position vector R at point (x,y) describes a radial field 
with components RI = x and R2 = y. The length of the 
vectors are longer further from the origin and are given by: 

I R I = (x2 + y2)1/2 

(c.) Rotation fteld: S(x,y) = -yi + xj 

'I 

This is a rotation or spin field with components S1= -y and 
S2 = x. The length, I S I = ((-y)2 + x2)l/2, is the distance from 
(x,y) to the origin. Vectors at each fured distance from the 
origin have the same magnitude, and the magnitude 
increases further from the origin. At each point (x,y) vector 
s is perpendicular to the position vector R = xi + yj. 
Because S is perpendicular to R, S R = -yx + xy = 0. 
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(d.) Gradient field: F = gradf = (af/aX)i + (af/%)j 

Y 

X 

This represents the gradient field of scalar function f with 
components F1= a f / &  and F2 = 
diagram. This vector field is the gradient of function f(x,y) 
where a t  each point (x,y) the vector (gradf) points in the 
direction of maximum rate of increase of f(x,y). By 
definition of a gradient, the vectors in a gradient field are 
perpendicular to the level curves (contours) f(x,y) = c and 
pointing in the direction of increasing f. The length (or 
magnitude) I grad f I represents the rate of change off in 
the direction of increasing f. The rate of change is larger 
when the contours are closer together. 
In a gradient vector field (gradf) the scalar function f is 
called a potential function of the vector field. Gradient fields 
are also called conservative because in a gradient field, 
energy is conserved and, therefore, no energy is gained or 
lost when displacement of a n  object or charge occurs from 
an  initial point P to another point in the field and back to 
the initial point P. 
Note that a radial vector field R is also a gradient field. 
Gradient fields also include vector fields in the form R/rn. 
The vector fields s and S/r are rotation or spin fields and 
not gradient fields. 

and its contour 
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(e.) Force fields: 
Force fields include gravitational fields such as Earth’s 
gravitational force on all other masses. The direction of the 
Earth’s gravitational field is toward its center, and the 
magnitude decreases further from Earth. Note that a 
gravitational force field is conservative. 

(f.) Velocity field and flow field: 
In a velocity vector field each vector represents the velocity 
of the flow a t  that point. The flow is fastest where the 
velocity vectors are longest, which generally occurs in the 
center of a flow stream. For example, in a fluid moving 
steadily inside a pipe, the velocity can be different at 
different points. A velocity field can be horizontal, 
rotational, radial, etc. 
The velocity vector V provides the speed and direction of 
flow at each point in the field. In three-dimensional flow 
the vector field V(x,y,z) has three components V1, V2, V3. 

The velocity field is Vli + V2j + Vsk and speed or length is: 

A flow field has density p multiplied by the velocity v, or 
pv. In  a flow field pv, v represents the rate of movement 
and p V  is the rate of movement of mass. A greater density 
yields a greater I p V I  of mass transport. 

Field lines 

Field lines are the curves or lines that are tangent to the 
vectors in a vector field. For example, in a rotation field the 
field lines are circles and in a gravity field or a radial field 
the field lines are rays extending from the origin. Field 
lines are also referred to as integral curves, streamlines and 
flow lines. Note that the lengths of the vectors in a vector 
field are not represented by the field lines. 
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In a gradient field F = (af/&)i + (af/*)j, the vector field is 
tangent to the field lines and the level curves (contour lines), 
also called equipotentiuls, are perpendicular to the field 
lines. A gradient field F(x,y) has apotentiul f(x,y) and it has 
Ievel curves that connect points that  have equal potential 
and are called equalpotentials. 

,flowline 

a1 

In a velocity vector field, each fluid particle moves along a 
field line (or stream line.) The flow in a velocity field is 
represented by the family of all of its flow field lines. If a 
particle is moving in a velocity field along the surface of 
water, the velocity of the particle at time t is equal to the 
velocity of the fluid at the particle’s position at time t. The 
flow line can be found using the position vector R(t) of the 
particle at time t, where dR/dt is the velocity of a fluid 
particle at time t: 
dR(t)/dt = F(R(t)) 
where F = Fli + Fzj, R(t) = x(t)i + y(t)j, and dx/dt = F1 and 
dy/dt = F2. 

Note that x(t) and y(t) (or equivalently R(t)) describe the 
path of motion. Solving dx/dt = F1 and dy/dt = F2 for x(t) and 
y(t) provides a parurneterization of the flow line or path of 
motion of a particle and the flow line a t  a specified point. 
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Flow lines in a velocity field can be approximated using 
Euler’s method of solving differential equations. Using flow 
lines R(t) = x(t)i + y(t)j of vector field F(x,y), where 
dR(t)/dt = F(R(t)) is the differential equation, then: 
R(t + At) = R(t) + (At)dR/dt = R(t) + (At)F(R(t)) for A t  near 0 
To approximate the flow line, begin a t  point Ro = R(0) and 
estimate the next position RI of a particle at t = At: 
RI = R(At) k: R(O) + (At)F(R(O)) = Ro + (At)F(Ro) 
At Rn+l for subsequent positions Ro, RI, R2, etc., that  
represent the path use: 

where Rn = xni + yni and dR/dt = F. 
The vectors Rn establish the path or flow line. 

Rn+l= Rn + (At)F(Rn) = Rn + (At)F(Xn,yn) 

7.3. Line integrals and conservative vector 
fields 

This section includes the definition of a line integral, the 
line integral of a vector field along a curve, independence of 
the path of a line integral and conservative gradient fields 
and the line integral. 

A line integral is a n  integral along a curve and is a 
generalization of a definite integral. Remember the definite 
integral ,pf(x) dx, where integration occurs along the X-axis 
from point a to point b of the integrand f, which is a 
function existing at each point between a and b. 

Similarly, for a line integral 
along a curve C in a plane or in three-dimensional space 
where the integrand is a function existing at each point 
along the curve. The curve is called the path of integration. 
The orientation of a curve is the direction of motion or 
travel along the curve. 

F dR, integration occurs 
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The line integral represents the work along a curve and is 
used in Green’s Theorem (Section 7.4) and Stoke’s Theorem 
(Section 7.8), which connect line integrals to surface 
integrals. Applications of the line integral include the work 
between two points, the work during a change in kinetic 
energy and work done by gravity on a n  object in motion. 
The line integral around a closed curve also represents 
circulation, which is a measure of the extent to which the 
vector field points around the closed curve. 

To develop the line integral, consider a curve that is 
smooth and continuous and is oriented so that it begins at 
point a and ends at point b. This curve can be represented 
using the position vector: 
R(t) = x(t)i + y(t)j + z(t)k 
where R(t) is smooth and continuous and dR/dt f 0. If 
points a and b coincide, then the curve is a closed curve. 

(a I t I b) 

a 

Similar to a definite integral, a line integral can be thought 
of as consisting of a sum of infinitely many tiny smooth 
curves between points a and b on curve C. For a vector field 
F and curve C, C can be segmented in small sections that 
are approximately straight and where F is approximately 
constant, such that each section can be represented by 
displacement vector ARi = Ri+l- Ri. At each point Ri, the 
dot product (F(Ri) ARi) compares ARi with the value of 
vector field F(Ri). The sum of all sections of C is: 
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The limit as I ARi I + 0 results in the line integral: 
lim,hRil+oCF(Ri).ARi = & F d R  
which is the line integral. 

Therefore, the line integral of vector function F(R) over 
curve C, is defined as: 
L F(R) dR  = L (Fidx + Fzdy + Fsdz) 
= a,/’F(R(t)) (dR/dt)dt 

Notation for the line integral over curve C is: 
If curve C is a closed curve, the integral symbol is often 
written: & . 

. 

The definition of the line integral depends on F being a 
continuous open set containing curve C, which is a smooth 
continuous curve that can be parameterized. Parumeteri- 
zation of a curve proceeds from the beginning point to the 
ending point without retracing. 

The line integral of vector field F along curve C indicates 
the extent that C is going with or against F. The line 
integral, therefore, depends on the values of the vector field 
along curve C ,  Because the line integral of F sums dot 
products with d R  (or ARi) along a curve, then the following 
are true: (a.) If F is generally pointing in the same direction 
as C at all points along C, then the result is positive; 
(b.) if F is generally pointing in the opposite direction, the 
result is negative; and (c.) if F is perpendicular to C at all 
points, then the result is zero. 
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Properties of line integrals include the following: 
k F  d R  = k k F d R  , where k is a constant. 

k ( F  + G) * d R  = F d R  + 
I c  F . d R =  - . L F * d R  
where integrating F along C in the opposite direction is the 
negative of the line integral along C. 

k F . d R = L l F . d R + E 2 F . d R  
where C1 and C2 combine to C. 

G d R  

0 B  

An example of a n  important line integral is work along a 
curve. The line integral is: 
k F d R  = .PF(R(t)) (dR/dt)dt 
where t is the arc length of C and the tangential com- 
ponent of F. The work is done by force F in a displacement 
along C. Work is done in the direction of movement. 
If displacement occurs along a straight line, the work done 
by a constant force F is: Work = F d = I F I I d I cos 8 

Fcos 0 

If displacement occurs along a curue, the work done by a 
variable force F is the sum of work done in displacement 
along small curves (or segments of curve C). If a force at a 
point with position vector R given by F(R) is acting on a n  
object moving along curve C, then work done by force F(R) 
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over a small distance AR is F(R) AR and the total work 
done along curve C is: c F(R) AR 
Taking the limit gives the work done by F(R) along curve C: 
l imim+ocF(R)*AR= 
where: 
Fldx is (force in x-direction)(movement in x-direction) 
F2dy is (force in y-direction)(movement in y-direction) 
Fsdz is (force in z-direction)(movement in z-direction) 

F d R  = & (Fldx + F2dy + Fsdz) 

Consider the work around a closed curve described by C1 
and C2, where C1 is a half circle from 0 to 7c of radius 1 and 
C2 is a straight line from -1 to 1. The motion occurs counter- 
clockwise. What is F d R  for C1 and C2? 

F is given by: F = -yi + xj, where x = cost, y = sin t and 
(x(t), y(t)) = (cost, y sin t) are parameters. 
R = xi + yj = (cos t)i + (sin t)j 
Therefore, d R  = (-sin t)i + (cos t)j. 
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For C1, 
= o j  (sin2t + cos2t)dt = n 

F d R  = o b  (-sin t i + cost j )  (-sin t i + cos t j)dt 

For C2, F = -yi + xj = F = 0 + xj. Therefore: 
F d R  = o j  (cost j) (-sin t i + cos t j)dt  

Because F does not have a n  i component on the X-axis 
where y = 0 and F is perpendicular to C2 along the length 
of C2, then F d R  = 0 

Therefore, Ci and C2 combine to: 
Ic F * d R  = El F d R  + J& F d R  = n + 0 = n 

In general, a line integral over curve C from point a to 
point b depends on points a and b as well as the path of the 
curve. There are, however, vector fields such a s  gradient 
fields where the line integral does not depend on the path of 
the curve but only on the beginning and ending points. A 
line integral is independent of path when the value of the 
integral is the difference of the values off a t  the beginning 
and ending points of C, where C is the path from point a to 
point b. The position vector is: 
R(t) = x(t)i + y(t)j + z(t)k, a 5 t I b, 
and the integral is: 

In conservative vector fields, which are gradient fields, all 
paths of integration result in the same value of work done. 
(Remember that every gradient field is conservative.) If F 
is a conservative vector field, energy is conserved and no 
work is done in the displacement of an  object from point P 
back to point P. In a conservative vector field, if a body 
moves from a starting point back to the starting point, 
when it returns to its starting point it will have the same 
kinetic energy it had originally. 
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Line integrals around closed curves or closed paths are 
not always zero. However, the line integral for a closed path 
is independent of path if its value is zero. In the figure: 

c1 

F d R  can be independent of path if, when integrating 
from A to B along C1 then from B to A along C2 (in the -1 
direction), the sum of these two integrals must be zero. 

In general, in a conservative gradient vector field where 
F = gradf 
(a.) (grad f) d R  = f(P2) - f(P1) for curve C between points 

PI and P2, where the work depends on the beginning 
and ending points rather than the path. 

PI to point P2. 
(b.) 

(c.) The work 
(d.) The components satisfy (dF2ldx) = (dFi/%). 

F dR has the same value along any path from point 

F d R  around every closed path is zero. 

7.4. Green’s Theorem: tangent and normal 
(flux) forms 

This section includes Green’s Theorem in its tangent 
form, applying it in a vector field, the development of an  
expression for area, Green’s Theorem in its normal (or flux) 
form, a comparison of the two forms and Green’s Theorem 
in vector fields that are conservative and source-free. 

Green’s Theorem connects line integrals with surface 
integrals. In  its tangent form, Green’s Theorem relates 
work to curl (see Section 7.7 for curl) and in its normal form 
Green’s Theorem relates flux to divergence. (See Section 7.6 
for divergence .) 
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For circulation or movement around a curve C enclosing a 
region, Greens Theorem (in tangent form) connects a double 
integral over region R to a line integral along its boundary 
C. If R is a closed region in an  XY plane bound by curve C 
(which consists of many smooth curves and does not cross 
itself) then the integral around C equals the integral over 
R. Therefore, Green’s Theorem in its tangential form along 
C enclosing region R is: 
$ [Fidx + Fzdy] = jk [(dFzh) - (@’i/&)]dxdy, 

or equivalently : 

(work = curl) 
where Fi(x,y) and Fz(x,y) are functions that are continuous 
and have continuous partial derivatives (dF2/dx) and 
(dFl/@) everywhere in the domain containing region R. 

If F = Fd + F2j is a gradient field, it has a potential 
function f and the property (dF2/&) = (aFl/*). Therefore: 

Therefore, if F is a conservative field, (dFz/dx) = (aFl/+) 
and work is zero. 

& [ F dR] = j j ~  [(dFa/&) - (dFl/&)]dxdy = 0 

Consider the domain containing a region where vector 
field F = Fli + Fzj is located and is assumed to have no 
holes and every point is enclosed by curve C. 
If C is a circle of radius 1 centered a t  the origin and: 

- y i + x j  , where F1= -’ ,F2= X 

x2 + y 2  
F =  

x2  + y 2  x2 + y 2  
then along C, F is tangent to the circle of radius 1, 

I F I = 1, and d R  is the length of the curve, which is 2n, 
(the circumference with r = 1). Therefore: 
$ [ F a d R I  = 1 * 2 n = 2 n  
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If F is a gradient field, demonstrate that  (dF2/&) = (dFddy). 
Using the product rule: (flg)t = (P g - fgt)/g2: 
dF1- d - y  = -1(x2+y2)+y(2y) = - x  2 -y2+2y2 

@ dy(x2+y2) (x2 +y2)2 (x2 +y2)2 
- - y2-x2 

(x2 + y2)2 

-- 

- -  aF-2 - - d 
aJc & ( x 2 + y 2 )  (x2 + y2)2 (x2 + y2)2 

x - - l(x2 + y2) - x(2x) = x2 + y2 - 2x2 

- y2-x  2 

(x2 + y2)2 
- 

Therefore, (dF2/&) = (dFl/@). 
Also note that at x = 0, y = 0, (dF2/&) and (dF1ldy) do not 
exist and, therefore, Green’s Theorem does not hold true for 
any region containing the origin. 

Green’s Theorem can be used to develop a n  expression for 
the calculation of area of a region. 
Q: [Fidx + F2dyl = IL [(aF2/&) - (aFi/@)]dxdy 

When F1= 0, F2 = x, Green’s Theorem reduces to: 

When F1= -y, F2 = 0, Green’s Theorem reduces to: 
- C& y dx = jk dxdy 

where jh dxdy = area A. Adding the two expressions above 
gives: 
2 j.6i dxdy = $ (x dy - y dx) 

or 
Area = A = JL dxdy = (1/2) $, (x dy - y dx) 
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x2 y2 
The equation of a n  ellipse is given by - + - = 1  

a2 b2 
or equivalently, x = a cost, y = b sin t. Find area using 

If the points on the ellipse are (x,y) as t goes from 0 to 2.11, 
and dx = -a sin t and dy = b cost, Then area is: 
A = (1/2) O b n  (x dy - y dx) 
= (1/2) 012" (ab cos% - (-ab sin2t)dt = nab 

(1/2) $ (X dy - y dx). 

9 Green's Theorem across a curve (flux) gives Green's 
Theorem in its normal form. Consider a flow field 
F = Fl(x,y)i + FZ(X,y)j, with steady flow across boundary C, 
where (flow out - flow in) is balanced by a replacement of 
fluid in the side of region R. The normal form of Green's 
Theorem for flux across C enclosing region R is: 
& [Fidy - Fzdx] = j ,  [(dFilh) + (dFz/%)]dxdy 

(flux = divergence) 

8 The following is a comparison of the flux form of Green's 
Theorem with th.e tangent form: 
$ in tangent form is: $ [FIdx + Fzdy], which is work. 

$ in normal form is: $ [Fldy - Fzdx], which is flux. 

Also: 
jk in tangent form is: jk [(dFz/&) - (dFdi3y)ldxdy 
which is curl. 

jL in normal form is: [(dFddx) + (dFz/&)]dxdy 
which is divergence. 

Note that the divergence of a flow field is ( d F ~ / h )  + (aF2/%). 
See Sections 7.5 for flux, 7.6 for divergence and 7.7 for curl. 

The total flow across a defined region, such as a rectangle 
in a coordinate system, can be depicted as: 

290 



Vector Calculus 

F2 +dF2 

I F2 

I I I 

I & '  
X 

Flow from left to right through the rectangle is given by 
(change in Fl)(dy). Flow from bottom to top through the 
rectangle is given by (change in F~)(dx). Total flow out of 
rectangle is: dFldy + dFadx = [(aFddx) + (dFz/%)]dxdy 
Therefore, the divergence multiplied by area dydx is the 
total flow out. 

In general, a flow field in region R balances flow through 
curve C (flow out - flow in) with a replacement in region R 
(source - sink). In a flow field without a source, the flux is 
zero through C and the divergence is also zero. 
(dFl/dx) + (aFz/dy) = 0. In the source-free field: 
F = Fl(x,y)i + FP(x,Y)~, the flux is: 
$ [ F nds] through every closed curve is zero, and also 

& [ F nds] between any two points is the same. 

Also, in a source-free field, a stream function g exists and is 
described in terms of F1 = (dg/%) and F2 = -(dg/&). 

In summary, if a vector flow field F is conservative and 
source-free, then curZF = @Fa/&) - (dFi/dy) is zero and 
divergence F = (dFl/dx) + (dFz/%) is zero. 
Because the field is conservatiue, there exists a potential f 
where F1= (Wax) and F2 = (%ay). 
Because the field is source-free, there is a stream function g 
where F1= (ag/i3y) and F2 = -(ag/&). 
Therefore, when field F is both conservative and 
source-free, (aFl/@) = (dFa/&), (dFl/dx) = -(dFz/dy) and 
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F1 = (maX) = (ag/%) and F2 = (XI%) = -(agI&). 
(These are called the Cauchy-Riemann equations.) 
Also, there exists a potential function f and a stream 
function g and the Laplace's equations are satisfied: 
(82flh2) + (a2flay2) = (dFi/&) + (aFo/%) = 0 
(d2gIh2) + (Pg/%') = -(dFzI&) + (dFl/%) = 0 

7.5. Surface integrals and flux 

This section includes flux through a surface and the 
surface integral, examples of flux in various vector fields 
and examples of calculating flux. 

Flux represents the rate of flow or movement through a 
surface. For example, in a velocity vector field, flux repre- 
sents the rate of fluid flow through a surface, or the volume 
of fluid that crosses a surface per unit time. To evaluate 
flux across a surface, such as mass or fluid crossing a 
surface in a given time period, a flux integral can be used. 

A flux integral over surface S is a surface integral of a 
vector function F and can be written as: 
jk F n dS 

where I b S  is area, F n is the normal component of F. The 
expression F n dS is also written F d s ,  where 
ndS = d S  is a vector with direction n and magnitude dS. 
Similarly, the expression F n dA is also written F dA, 
where ndA = dA. 

The flux integral over a surface using parameters U and v 
can be written: 
/A F n dS = /L F(R(u,v)) n(u,v) dudv 
where R is the region in the uv-plane that corresponds to 
surface S (where the surface is projected), N dudv = n I N I 
and I N I = I R u  x R v  I is the area of the parallelogram with 
sides R u  and Rv. The direction of flow is n = N I I N I . 
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The flux through a surface can be positive or negative 
depending on the direction of flow or the choice of direction 
or orientation of the surface. Because flux through a 
surface is dependent on the direction the surface faces a s  
well as the area of surface, it is advantageous to represent 
the area as a vector quantity. 

Consider the simple case of constant flow through a pipe 
where the flux through a defined circular region is: 
(flow rate)(area of region) 
If the flow is variable, the surface can be sectioned into 
small areas where flow is approximately constant in each 
section and represented as the limit of the sum: 
l i r n l ~ ~ + o C V . ~  = 1 j k . d ~  
where V is the velocity vector. 
Flux through a surface can be applied to any vector field F 
not only a velocity field. 

In general, flux through a curved surface can be thought 
of as the sum of the fluxes through many small almost flat 
sections that the surface is divided into. The small, almost 
flat sections are called parameter rectangles Ax and Ay, 
which align with X and Y axes. 
Flux = l i m I ~ l + o ~ F .  &l = JJ F dA 
Where the limit exists, F is continuous in the region con- 
taining the surface and the subsections that the surface is 
divided into are smooth. 
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Following are examples of flux in vector f d d s :  
(a.) Radial field: 

This is a radial field in the XY plane containing a cylinder 
with the Z-axis pointing out of the page in the direction of 
the cylinder. The radial field points outward everywhere 
along the Z-axis. The area across the ends of the cylinder 
has no flux because the flow is parallel. The flux is flF.dS 
and the flow is normal to the surface of the cylinder. 

(b.) Rotation field: 

This example is similar to (a.) except the flow is not parallel 
to the normal vector of the cylinder and is rotating or spin- 
ning in a slightly inward direction. The flux integral is 
negative. 
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(c.) Horizontal field: 

cube 

- 
X 

This vector field is parallel to the X-axis through a cube. 
The faces of the cube that are parallel to the flow and to the 
X-axis have a flux of zero. The flux through the two faces 
perpendicular to flow are equal in magnitude and opposite 
in sign therefore the net flux is zero. 

(d.) Field through a sphere: 

A@ A 

I) I) 

This is a closed spherical surface in flow field F oriented 
with the positive direction of flow from inside to outside. 
Area vectors d S  of the sphere all point outward. The flux 
through the surface is jj F d s ,  which is the flux out of the 
region enclosed by the surface. 
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(e.) Radial field out of a sphere: 

'4 
_f 

A S  

X 

This radial vector field V points in the same direction as 
the surface normal vector A s .  The sphere has a radius r 
where r = I V I on the surface. Therefore: 
V.AS= IvI I A S I  =rlASI 
Summing over all sections on the surface and taking the 
limit: 
lim 1 A s 1  +o 

which is the surface area of the sphere multiplied by the 
radius. The flux out of this radial field is: 
Flux = 11 V dS = r[lim I A s 1  +o 

V A S  = lim 1 b s ~  -,o c rl AS1 = r[lim I ASI +O c I ASl ] 

I A q  ] = r(4zr2) = 4zr3 

To develop a n  expression for flux, consider a surface that 
is sectioned into small parameter rectangles. It is useful to 
remember the area of a parallelogram (discussed in Section 
5.5.) Remember that two vectors A and B form a parallel- 
ogram and the length of the vector c resulting from their 
cross product is the area of the parallelogram. Vector c is 
the vector normal N to the surface. 

I A x B I= area of parallelogram cb 
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In a surface z = f(x,y), the area of each parameter rectangle 
is the cross product of its sides. Therefore, the area vector 
for a parameter rectangle on the surface z = f(x,y) can be 
represented by the cross product of its sides using position 
vectors. If the parameter rectangle is located at point P, it 
can be represented with position uector: 
R = xi  + y j  + z k  = xi  + y j  + f(x,y)k 

At point P, two parameter curves xo and yo cross (see figure 
below). Vectors tangent to curves xo and yo at point P are: 
@RI&) = i + (df(xo,yo)/dx)k = i + (&/ax)k 
which is the change at y = yo. 
@RI+) = j + (af(xo,yo)/+)k = j + (az/%)k 
which is the change at x = XO. 

The position vector R along curve yo changes in the 
x -direct ion : 
AR = Axi + (df(xo,yo)/&)Axk = (aRl&)Ax 

The position vector R along curve xo changes in the 
y -direction: 
AR = Ayj + (df(xo,yo)/@)Ayk = (aR/%)Ay 

Therefore, the area of the parameter rectangle A S  on a 
surface at point P can be represented a s  the cross product 
of the sides: 

(aR/&)Ax x (aR/@)Ay = 1 0 af/ & AxAy :: : 
= A S  = ((-af(xo,yo)/&)i - (af(xo,yo)/@)j + k)AxAy 

The flux through a surface z = f(x,y) in the positive 
z-direction can be written a s  this general expression: 

!L F d S  = !kF(x,y,f(x,y)) ((-W&)i - (Wi3y)j + k)dxdy 
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Example: What is the flux through a cone where 
z = J.” + y2 and F = xi + yj + zk is a radial field? 

The height of the cone is z and: 
(azlax) = x /Jx2 + y2 

(azlay) = y /Jx2 + y2 

Using the expression for A s  or: 
dS = (-MaX)i - (8fKjy)j + k 
= (-x / , / w ) i  - (ST l d w ) j  + k = ndS 
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The flux is: 
JL F d S  = 

The flux is zero because F is parallel to the sides of the 
cone, and the normal vector to the surface is perpendicular 
to F. Therefore, there is no flow through the sides of the 
cone because F n = 0. 

Flux through a surface using parameters U and v in field 
F = Fli + F2j + F3k is given by: 
JJF ndS = [JF N dudv = J's F (A x B) dudv 
where a small section of the surface has area: 
d S =  I A x B I d u d v =  1Nldudv. 
A and B are the vectors along the side of dS where: 
A = (ax/au)i + (%/au)j + (az/au)k 
B = (dx/&)i + (%/&)j + (az/&)k 
A x B = N, and the unit normal vector is n = N / I N I . 

Example: Find flux through a surface in velocity field 
F = yi + 2j + xzk where the surface is given by y = x2 from 
0 I x  I 2 , O  < z  51. 
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Parameters x = U, y = x2 = u2, z = v, can be used to represent S: 
R = ui + u2j + v k  
@RI&) = i + 2uj 
@RI&) = k 
N = (aR/au) x @RI&) = (2u - 0)i + (0 - 1)j + (0 - 0)k = 2ui - j 
Sub s t it u t in g for F: 
F(u,v) = u2i + 2j + uvk 
There fore: 
F N = (u2i + 2j + uvk) (2ui - j)  = 2u3 - 2 
Integrate using parameters, 0 2 U 5 2, 0 5 v 5 1: 
& F ndS = 0) o h  (2u3 - 2) du dv = 0.b (4) dv = 4 unitsVtime 

7.6. Divergence 

This section includes the definition and notation for 
divergence, the Divergence Theorem and examples of 
divergence in vector fields. 

Divergence represents the strength of outflow from a 
point in a vector field. In a velocity field, the divergence 
gives the outflow per unit volume at a point. In fluid flow, 
divergence is the rate at which mass leaves a n  enclosed 
region in F, or fluxper unit volume. The Divergence 
Theorem relates divergence to flux. 

Remember that flux represents the net outflow of, for 
example, fluid through a surface surrounding a region in a 
vector field (e.g. a velocity field of incompressible fluid). 
Whereas the divergence o f a  vector field represents the 
outflow per unit volume at a point. 

The divergence of vector field F is given by: 
div F = (dFl/&) + (dF2/%) + (dF3/&) 
where F(x,y,z) is a differentiable vector function, F1, F2 and 
F3 are the components of F and x, y and z are Cartesian 
coordinates. Note that the value of (div F) does not depend 
on the coordinate system used but on the points in space. 
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Divergence is commonly written in the forms: 
div F =  V F 
= [(a/&)i + (a/%)j + (a/az)k] [Fli + F2j + F3k] 
= (dFi/&) + (dF2/%) + (dFddz) 
where V is the del operator and is given by: 
(a/&) + (a/*) + (alaz) 

The divergence of a vector field, div F (or V F), is a 
scalar valued function, whereas (grad r) or Vf results in a 
vector. 

Example: If F = x2zi + xyj + yz2k, then the divergence is: 
div F = 2xz + x + 2yz 

To visualize divergence, consider a small rectangular 
region at point P in a velocity vector field F(x,y,z). In this 
velocity field, the motion of fluid in the region has no 
sources or sinks; therefore, no fluid is generated or 
consumed. The dimensions of this region are Ax, Ay, Az, 
with the edges parallel to the coordinate axes and the 
volume of the region is AxAyAz = AV. 

Fi 

The rectangular region is small enough so that its sides are 
approximately flat and F is approximately constant on each 
face. 
The flux in the direction along the X-axis perpendicular to 
the left face and is approximately equal to the x-component 
of F multiplied by the area of that  face: Fl(x,y,z)AyAz. 

30 1 



Master Math: Calculus 

The flux along the X-axis leaving the region is perpen- 
dicular to the right face and is approximately equal to the 
(x + Ax) component of F multiplied by the area of the face: 

Therefore, the net flux out of this region along the X-axis is: 
F 1 (x+Ax,y, z)AyAz. 

F 1 ( x + AX , y , z)AyAz - F 1 (X , y , z)AyAz 
= [Fl(X+AX,Y,Z) - F~(X,~,Z)]A~AZAX/AX = (3Flldx)AXAyAz 
Similarly, the net flux in the y-direction perpendicular. to 
the top and bottom faces is: 

Similarly, the net flux in the z-direction perpendicular to 
the front and back faces is: 

Therefore, the net flux out of the region is: 

The net outflow per volume of the region where volume 
AV = AxAyAz is: 
div F = (dFi/dx) + (dFa/@) + (dF3/3z) 

F2(Y+ AY,x, Z)AXAZ - F~(x,Y, Z)AXAZ = (3Fd?y)AxAyAz 

F~(z+Az, X,Y)AXAY - F ~ ( x ,  y , Z)AXAY = ( ~ F ~ / ~ z ) A x A ~ A z  

(dFi/&)AxAyAz + (dFz/&)AxAyAz + (~F~I~z)AxAYAz 

If a vector field represents flow away from a point, the 
divergence is 2 0. Conversely, if a vector field represents 
flow toward a point, the divergence is 5 0. Therefore, 
divergence of F essentially measures the source, because 
(flow out of a region) - (flow into a region) = source. 
If a vector field F has zero divergence at every point, it is 
called divergence-free. 

If divergence is not a constant value, the flux out of the 
total volume is represented using the sum of sections that 
make up the total volume. The divergence in each section is 
nearly constant and the flux out of each section is 
approximately: div F(x,y,z)AV. 
If all the sections within the total volume are summed, the 
flux out of the total volume is: 
x(flux out of each section) = [div F(x,y,z)AV]. 
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As the size of each section approaches zero, the sum 
becomes: 
flux out of total volume = JJLdiv F dV 

Therefore, the flux of a vector field F through a closed 
surface can be represented by using flux integral 
k F dA, or using the integral of divergence 
ffb div F dV 

Gauss’s Divergence Theorem relates surface integrals to 
triple integrals. For region R in space closed and bounded 
by a piece-wise smooth surface S, if F(x,y,z) is a vector 
function that is continuous and has continuous first partial 
derivatives in the domain containing R, then: 
JJh div F dV = j& F n dS 
where R represents the volume enclosed by the surface S 
and n is the outer normal vector of S. 

Divergence can be written without reference to coordi- 
nates by dividing the Divergence Theorem in the form: 
j,/b div F dV = J& F n dA 
by the volume of region R that is enclosed by surface S: 
(lN(R)) jjL div F dV = (lN(R)) jk F n dA 
where n is the outer unit normal vector of S. 
In general, the divergence of vector field F at a point P can 
be defined by: 
div F(P) = limv,o[(l/volume enclosed by S)JLF dA] 
where S is the surface that encloses point P such that the 
volume V inside S approaches zero. 

Consider steady flow of incompressible fluid in a velocity 
field V where the density is constant and equal to 1. Region 
R is bounded by surface S where n is the unit normal 
vector pointing out of the surface. The total mass of fluid 
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moving outward across S from region R per unit time is the 
total flow out of R: 1.h n dA 
where dA is the area of each small section of the surface. 
The average flow out of R is: (1N) JLV n dA 
where V is the volume of R. 
For steady flow of a n  incompressible fluid, the flow out of 
the region must be replaced continuously if the above 
integral is not zero. In this case, there must exist sources or 
sinks within R where fluid is produced or consumed. 
If R gets smaller until it is on some point P in R, then the 
source intensity at point P is: 
limdR+o( 1N(R)) ,f.$(~) v n dA 
Therefore, the divergence of the velocity vector v for a 
steady, incompressible flow is the source intensity of the 
flow at that corresponding point. 
If there are no sources in R, then: 
div V = 0 and ~.&R)V n dA = 0. 

Example: In radial vector field V (discussed in vector field 
example (e.) in the Section 7 3 ,  the flux across a sphere of 
radius r centered at the origin of the radial field is 4x19. The 
average outflow or flux per unit volume at a point in the 
sphere is: flux/volume of sphere = 4xr3/(4/3)nr3 = 3 cubic 
units of flow per unit time per unit space. 
The flux or outflow per unit volume at the origin is the 
limit as radius r approaches zero of the (flux/volume). This 
limit also results in the value 3, which is the divergence of 
V at the origin: 
divV = div(xi + yj + zk) = (dx/dx) + (dy/dy) + (dz/dz) 
= 1 + 1 + 1 = 3  
Therefore, if V is a velocity field consisting of a n  incompres- 
sible fluid, then fluid is created a t  3 units fluidlunit volume 
a t  all points and the total fluid production in the sphere is: 
3(4/3)7tr3 = 4xr3, which is the flux. 
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7.7. Curl 

This section includes the definition of curl and curl in 
various vector fields. 

Curl of a vector fLeld measures the strength of rotation or 
spin around a point. Remember that divergence measures 
the flow away from or toward a point. The curl of a vector 
field a t  a point is the vector pointing in the direction of 
maximum circulation strength and the magnitude of curl is 
the strength of the circulation. For example, for a rigid 
body, curl measures rotation or spin, the direction of curl 
points in the axis of rotation and the magnitude of curl is 
two-times the speed of rotation. The curl of a vector field is 
itself a vector field. 

Remember that the gradient gives the direction of greatest 
increase, such that the maximum increase off is I grad f I in 
the direction of (gradf). Similarly, curl gives the direction of 
maximum rotation, such that maximum rotation rate of F 
is (112) I curl F I in the direction of curl F. 

The curl of a vector field F(x,y,z) = Fli + Fzj + F3k is the 
vector field given by: 

c u r l F = V x F =  d / &  a / @  a /  
i j 

Fl F2 F3 

This is referred to as the curl of vector function F or 
equivalently the curl of the vector field defined by F. 

In a two-dimensional planar vector field, where: 

F(x,y) = Fl(x,y)i + Fz(x,Y)~, curl F reduces to: (2 - - - 7)k 
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j k 

-%Y 0 3 x  0 

cur lV=  a / &  81% d l d z  

Example: Consider a rotating rigid body about a fixed 
axis in space tha t  is represented by vector W pointing in 
the direction of the axis of rotation, having magnitude tha t  
represents the angular speed of rotation. 

=203k=2W 

point P 4" 
V 

rotati 

Y 

.ng body 

The velocity field of rotation can be represented by 
V = W x R, which is the velocity at point P and where R is 
the position vector of a point P moving with respect to a 
Cartesian coordinate system. If the axis of rotation is the 
Z-axis of the coordinate system, then: 
W = oli + wj + m3k = wsk 
V(x,y,z> = W x R = m k  x (xi + yj + zk) 
where W points in the positive z-direction. Therefore: 

V =  = w+yi + xj) 
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Therefore, curl V = 2W, and occurs in a pure rotation field. 
This example demonstrates that, for a rotating rigid body, 
the curl of the velocity field V has the direction of the axis 
of rotation 2 and a mugnitude equal to twice the angular 
speed o of rotation. This result does not depend on the 
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coordinate system chosen because the direction and length 
of curl V are not dependent on the choice of coordinate 
systems in space. 
In summary, curl measures spin, the direction of curl is the 
axis of rotation and the magnitude of curl is two times the 
speed of rotation. 

If F is a gradient field: F = (afldx)i + (af/ay)j + (aflaz)k, 
then curl F = curl(grad f) = V x Vf = 

where (d2fldydz) = (a2flaz3y), (d2fldxaz) = (d2f7dz&) and 
(a2flay&) = (d2fldx3y). Because these terms cancel each 
other, the curl of a gradient field is zero: curl(grad f) = 0. 
Because the curl characterizes the rotation in a field and 
the curl of a gradient field is zero, then gradient fields are 
irrotat ional. 

The divergence of curl F f o r  every F is zero, because 
divergence represents flow away from a point and curl 
represents flow around a point. If: 
F(x,y,z) = Fli + Fzj + F3k 
div curl F = V V x F = 

where (d2Flldydz) = (d2F i /dz~) ,  (8F2/&az) = (d2F2/dzdx) and 
(dzFs/*dx) = (iYFd&dy), and these terms cancel each other. 

In general, a rotation or spin field has zero divergence and 
a radial field or position vector field R has zero curl. Note 
that a field with all parallel vectors may still possess 
rotation and, therefore, non-zero curl if the parallel vectors 
have different lengths that produce spin. 
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Consider the following three figures representing curl in 
a vector field. The XY-plane is depicted only with the Z-axis 
coming out of the page. 

(a.) Horizontal field: 

All vectors are parallel to the X-axis and point in the 
x-direction. However, they are of differing lengths or 
magnitudes and, therefore, the curl is non-zero. The sides 
that are perpendicular to the X-axis don't contribute to the 
curl or the circulation. The top vectors that are parallel to 
the X-axis are smaller than the bottom vectors. Therefore, 
the curl is non-zero and the circulation is net positive and 
has an upward pointing z-component by the right-hand 
screw rule. (See Section 5.5 for the right-hand screw rule.) 

(b.) Rotational field: 
YI 

X 
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This is a rotation field and, therefore, should have a 
non-zero curl. Using the right-hand screw rule, the 
z-component of curl points upward. 

(c.) Radial field: 

This radial field does not indicate any rotation. Therefore, 
the curl should be zero. 

7.8. Stokes’ Theorem 

This section includes the definition of Stokes’ Theorem 
and reducing it to Green’s Theorem. 

Stokes’ Theorem transforms line integrals into surface 
integrals and vice versa, and also involves curl. Stokes’ 
Theorem is a generalization of Green’s Theorem, which 
relates line integrals to surface integrals in two dimensions. 

Stokes’ Theorem states that if S is a piece-wise smooth 
oriented surface in space with a piece-wise smooth bound- 
ary that is a closed curve C, and F(x,y,z) is a continuous 
vector firnction with continuous first partial derivatives in a 
domain of space containing S, then the following is true: 
$ F dR = j$ (curl F‘) ndS 

where n is a unit normal vector of S and integration around 
C has an orientation (or specified direction). 
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Also, R = xi + yj + zk and ndS is often written ndA. 
n 

surface S ae R‘ 

C 

The line integral: 
4. F O d R  

represents work around a curve. In Green’s Theorem, the 
surface integral: 
JJ ((dFz/&) - (aFi/*)) dxdy 
represents a surface in a n  XY-plane with the z-direction for 
k as normal to the surface. Stokes’ Theorem involves all 
three components of three-dimensional space for curl F 
including the k component of curl. 

In Stokes’ Theorem, the integral: 
J$ (curl F) ndS 
represents a sum of the spins or rotations in the surface 
and the integral: 

represents total circulation (or work) around curve C. 

Stokes’ Theorem is reduced to Green’s Theorem for a 
plane, where F = Fli + Fd is a vector function that is 
continuously differentiable in the domain of the XY-plane 
containing a smooth closed region S with a boundary C that 
is a piece-wise smooth curve. By Stokes’ Theorem: 
(curl F) n = (curl F) k = ((dF2/&) - (dFl/*)) 
where n is normal to the plane. 
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Then Stokes’ Theorem becomes Green’s Theorem: 

j.L((dFz/&) - (dFi/*)) dxdy = & (Fidx + Fady) 

In a gradient field, the curl is zero, therefore using 
Stokes’ Theorem : 
& F dR = & (curl F) ndS 

Then: 
curlF=Oand $ F * d R = O  

Because a gradient field has zero-curl, it does no work. 
Remember that gradient fields are conservative fields. 
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Chapter 8 

Introduction to 
Differential Equations 

This chapter is designed to provide a brief 
classification of common or standard forms of elementary 
differential equations for the purpose of introducing the 
subject. In general, differential equations can be classified 
according to a few major categories. These include linear 
differential equations, non-linear differential equations and 
systems of both linear and non-linear equations. Linear 
differential equations are usually easier to solve using 
general methods. Non-linear differential equations are 
more difficult to solve and often involve approximations and 
numerical methods. Differential equations are also 
classified according to the highest order of the derivative in 
the equation, such as fust-order or second-order for 
equations containing a first derivative or second derivative. 

8.1. First-order differential equations 

This section includes a list of first-order differential equa- 
tions and their general solution forms. These include simple 
differential equations that depend only on x, differential 
equations that have a real constant coeEcient, initial value 
problems, separable equations, exact equations, linear first- 
order differential equations and non-linear equations. 

First-order differential equations are equations represent- 
ing a function that involves the first derivative of the func- 
tion. Applications of first-order differential equations include 
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modeling, electric circuits, radioactive decay, compound 
interest, mixing, epidemics and elementary mechanics. 

First-order differential equations are written in the 
following forms: 
W , Y , Y ' )  = 0 
Y' = f(X,Y) 
Y' + PWY = r(x) 
where p and r are given continuous functions. The solution 
and unknown function is y, and with its derivative y' 
satisfies this differential equation. 

First-order differential equations can have a general solu- 
tion that  can involve a constant c and represent a family of 
solutions. Similar to indefinite integrals, the general 
solution of a differential equation can represent a family of 
curves. Similar to definite integrals, a particular solution of 
a dflerential equation can represent one of the curves. A 
particular solution of a differential equation satisfies a 
specified condition, which may be a n  initial condition. 

Following is a list of standard differential equations and 
their solution forms. 
(a.) Equations in the form: y' = f(x) are simple differential 
equations that depend only on x. 
A solution to this type of equation has the form: 
y = jf(t)dt + c 
(b.) Equations in the form: y' + ay = 0 are differential 
equations that have a real constant coefficient a. 
A solution to this type of equation can be found by 
inspection. A function y must be found whose derivative y' 
is equal to (-a)(y). The solution has the form: 
y = ce-ax where c is a n  arbitrary constant. 
This solution represents a family of infinitely many 
solutions to the differential equation, which forms a family 
of integral curves. 
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(c.) Equations in the form: y' = f(x,y) and ~ ( x o )  = yo 
or y' = f(x,y) and y = yo at x = xo are called initial value 
problems. 
In these equations, xo and yo represent values of the initial 
condition. The initial condition ~ ( x o )  = yo is used to solve for 
what is called a particular solution of the differential 
equation. A particular solution is the general solution with c 
specified by the initial condition. 
In many applications, differential equations describe or 
represent a physical system or represent a mathematical 
model of a system where a specified condition must be 
satisfied by the solution that is inherent in the system. If 
this condition is a n  initial condition, such as at time = 0 or 
position = point (xo,yo), this becomes a problem called a n  
initial value problem. 

Initial value problems are more specifically represented in 
the form: 
y' + p(x)y = r(x) and ~ ( x o )  = yo 
where p(x) and r(x) are continuous functions on a n  open 
interval containing x = XO. A unique function y exists that  
satisfies this equation and its initial condition ~ ( x o )  = yo. 

(d.) Equations in the forms: M(x)dx = -N(y)dy, 
g(y)dy = f(x)dx and (dy/dx) = f(x)g(y) are called separable 
equations. 
Separable equations can be solved by integrating each side 
separately. For example, a separable equation in the form: 
(dy/dx) = f(x)g(y) can be rearranged as: 
(dy/gOT)) = fWdx 
and solved by integrating: 
f (dy/g(y)) = f f(x)dx + c 
Substitutions can sometimes be used to modify differential 
equations into a separable form. 
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(e.) Equations in the form: M(x,y)dx + N(x,y)dy = 0 are 
called exact equations. 
In these equations, M = u/x and N = u/y 
and therefore, U = Mx = Ny. 
Integration can occur as: 
u = IM & + for) and u = I N  
where f(y) and g(x) represent constants of integration. 
In general, a n  exact equation M(x,y)dx + N(x,y)dy = 0 is 
one where (M dx + N dy) is an  exact differential such that: 
du = (W&)dx + (au/%)dy 
which yields a n  implicit solution u(x,y) = c. 
Equations that are not inherently exact can be modified to 
a n  emct form by multiplying the non-exact equation with a 
function called a n  integrating factor. An integrating factor 
is a function that is multiplied to a differential equation to 
put it into a solvable form. 

+ g(x) 

(f.) Equations in the form: dyldx + p(x)y = r(x) 
are called linear first-order differential equations. 
A general solution for linear first-order differential 
equations can be developed a s  follows: 
Integrate dy/dx + p(x)y = r(x) by transforming it using 
y = u(x)z(x) so that: 
dy/dx = u(dz/dx) + z(du/dx) 
Substitute into the differential equation: 
u(dz/dx) + z(du/dx) + p(x)u(x)z(x) = r(x) 
u(dz/dx) + z[(du/dx) + p(x)u(x)] = r(x) 
First consider the term z[(du/dx) + p(x)u(x)] to find U: 

(du/dx) + p(x)u(x) = 0 
Rearrange: 

Integrate : 
logu = --Jp dx 
U = exp(-lp dx) 

du/u = -p dx 
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Substitute back into differential equation 
u(dz/dx) + z[(du/dx) + p(x)u(x)] = r(x): 
exp(-lp dx)(dz/dx) + z[(-pe-’pdx) + pe-’pdx] = r(x) 
exp(-I p dx)(dz/dx) = r(x) 
Rearrange: 
dz = r(x) e-’pdxdx 
z = I r(x) e-’pdx dx + c 
Therefore: 
y = uz = 
This is the general solution of a linear first-order differential 
equation. 

][I r(x) e-’pdx dx + c] 

(g.) Equations in the form: y’ = f(x,y) and ~ ( x o )  = yo 
with a non-linear term(s) are called non-linear differential 
equations. 
A general formula does not exist to solve this type of 
equation. However, approximate solutions and numerical 
solutions can be applied. For first-order linear equations, a 
family of solutions can exist that depends on the specifi- 
cation of the arbitrary constant. Whereas for non-linear 
equations even though a solution containing a n  arbitrary 
constant may exist, there may be other solutions that 
cannot be obtained by specifying values for the constant. 

Approximating solutions for daerential  equations includes 
using direction fields, which involve drawing or sketching 
families of solution curves using the slope y’. Also, approxi- 
mations are made using iteration methods, such as Picard’s 
iteration method, which is applied to initial value problems. 

Non-linear differential equations can sometimes be changed 
into linear form by substitution of the dependent variable 
and solved a s  linear equations. The Bernoulli equation 
y’ + p(x)y = g(x)yn is a n  example of such an  equation. 
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(h.) Equations in the form: dy/dx = f(x,y) are sometimes 
called homogeneous when the function f does not depend on 
x and y separately, but only on their ratio ylx or x/y. A 
so-called homogeneous equation can be written in the form: 
dyldx = F(y/x) 

8.2. Second-order linear differential 
equations 

This section includes second-order linear differential 
equations, homogeneous second-order linear equations with 
general and particular solutions, homogeneous equations 
with constant coefficients and non-homogeneous linear 
differential equations. 

Applications of second-order linear differential equations 
occur in mechanics and electrical engineering, including 
vibrations and resonance, mechanical vibrations, free 
vibrations, forced vibrations and electrical networks. 

A second-order differential equation has the general form: 
F(X,Y,Y',Y'') = 0 
Within this general form are equations that can be solved 
for y": 
Y" = f(X,Y,Y') 

More speclfically, second-order equations can be written in 
the following forms: 
G(x)(d2y/dx2) + P(x)(dyldx) + Q(x)y = R(x) 
(d2y/dx2) + p(x)(dy/dx) + q(x)y = r(x) 
where G, P, Q, R, p, q, r are given functions. 

. 

A solution to a second-order linear differential equation 
on a n  open interval a < x < b is a function y = h(x) that has 
derivatives y' = h'(x) and y" = h"(x), and satisfies the 
differential equation for all values of x in the interval. 
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A second-order linear equation written in the form: 
Y" + PWY' + 
is called a homogeneous second-order linear equation. 
This type of equation has a linear combination of solutions 
referred to a s  the superposition or linearity principle. Two 
linear independent solutions for this equation are: 
y = yl(x) and y = y2(x) 
And they form the solutions where: 
y = clyl + c2y2 
This linear combination (ay1 + c2y2) with c1 and c2 as 
arbitrary constants provide the form of a general solution. 
When values for c1 and c2 are specified as initial conditions, 
then a particular solution results. For example, given 
initial conditions ~ ( x o )  and ~ ' (xo)  where xo is a point within 
a defined interval, then c1 and c2 are specified so that: 
y(x0) = ClYl(X0) + c2y2(xo) 
y'(x0) = ClYl'(X0) + c2y2'(xo) 
where this system has a unique solution for c1 and cz if: 

= 0 

Therefore, when p(x) and q(x) are continuous on a n  open 
interval and xo is in the interval, then a general solution 
exists in the interval. More specifically, when a n  initial 
condition is specified, a particular or unique solution exists. 

Equations in the form: ay" + by' + cy = 0 
are called homogeneous equations with constant coefficients. 
To solve this type of equation substitute: y = em 
a (p ) "  + b(e")' + C(P) = 0 
D 8 e  re n t ia t e : 
p(ar2  + br + c) = 0 
where r is a root of the quadratic equation: 

rl = 
- - b - d Z  , r2 = 

2a 2a 
- b + d G  
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When b2 - 4ac > 0, the general solution of the equation is: 
y = ClerlX + 
When b2 - 4ac = 0, rl = r2 = (-b/2a), the general solution of 
the equation is: 

When the roots are complex, r1 = h + io and r2 = h - io, the 
general solution of the equation is: 
y = cle('+io)x + c2e('-io)x = cle'x cos ci)x + c2e'x sin ox 

y = clerlx + c2erix = cle-bx/2a + c2e-bx/2a 

Equations in the form: y" + p(x)y' + q(x)y = r(x) 
are called a non-homogeneous linear differential equations. 
In these equations, r(x) * 0 and p, q and r are continuous on 
a specified interval. 
A general solution to this type of equation has the form: 
Y = Yh + Y P  

where yh is a general solution of the homogeneous equation: 
Y" + P(X)Y' + dX)Y = 0 
and yp is a particular solution of the non-homogeneous 
equation: 
Y" + PWY' + dX)Y = r(x) 
Therefore, the general solution of a non-homogeneous 
equation combines the solution of the homogeneous 
equation with the particular solution yp: 
y = yh + yp = Clyl -k C2y2 + yp 

Methods used to find yp include the method of variation of 
parameters and the method of undetermined coefficients. 

Numerical methods and series methods are commonly used 
to solve second-order differential equations that have 
variable coefficients. 
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8.3, Higher-order linear differential 
equations 

This section includes nth-order linear differential 
equations, nth-order homogeneous h e a r  differential 
equations, nth-order homogeneous equations with constant 
coefficients, nth-order non-homogeneous h e a r  differential 
equations and nth-order non-homogeneous differential 
equations with constant coefficients . 

Higher-order linear differential equations are a n  
extension of second-order linear differential equations a s  
far as form and solution methods. 

An nth-order linear differential equation has the general 
form: 
Po(x)(d(n)/dx(n)) + P l(x)(d(n-')/dx(n-'))+ . . .+ Pn-l(x)(dy/dx) 
+ Pn(x)y = r(x) 

Or equivalently : 

where r and Pn are continuous in a specified interval. 
If the equation is divided by Po(x) it becomes: 
~ ( ~ 1  + pi(x)y(n-l) + ... + pn-i(x)y' + pn(x)y = r(x) 

Po(x)Y(~) + Pi(x)y(n-l) + ... + Pn-l(x)y' + Pn(x)y = r(x) 

The standard form of a n  nth-order homogeneous 
differential equation is: 

where y(n) = dny/dxn is the first term. 
y(n) + pl(x)y(n-') + ... + pn-l(x)y' + pn(x)y = O 

For nth-order homogeneous h e a r  differential equations in 
the form: y(n) + pi(x)y(n-l) + ... + pn-l(x)y' + pn(x)y = 0, 
linear combinations of solutions form a solution, (similar to 
second-order equations.) This is called a basis of solutions 
and is comprised of n ZinearZy independent solutions. 
The general solution to nth-order homogeneous linear 
differential equation is the linear combination: 
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When values are specified for C1, ... Cn, a 
results. To obtain a unique solution, it 
specify n initial conditions: 

particular solution 
is necessary to 

y(x0) = yo, y'(x0) = yo', ..., y(n-')(xo) = yo("-1) 

In general, when PO, ...pc n-1) are continuous on a n  open 
interval and xo is in that interval, then a general solution 
can be obtained. If initial conditions are given, then a 
particular solution can be obtained. 

Equations in the form: aoyn + aly("-l) + ...+ an-iy' + any = 0 
are called nth-order homogeneous equations with constant 
coeffLcients. 
Solving this type of equation is similar to solving second- 
order homogeneous equations with constant coefficients. 
A solution involving y = em can be found. 
Substituting y = P into the equation gives: 
P(aoy* + aly(n-l) + ... + an-ly' + any) = 0 
When roots r are real and unequal, the general solutwn is: 

When the roots are complex, rl = h + io and 1'2 = h - i0, 
the general solution is: 
y = cle'x cos ox + ae'x sin ox + ... 

y = clerlx + c2e'Zx + ... C n P x  

Equations in the form: 

with r(x) continuous on the open interval, are called non- 
homogeneous nth-order linear differential equatwns. 

y(n) + pl(x)y(n-l) + ... + pn-l(x)y' + pn(x)y = r(x) 

322 



Introduction to Different iul Equut ions 
A general solution exists in the form: 

where yh is a general solution of the homogeneous equation 
and yp is added as the particular solution of the non- 
homogeneous equation. 

y = yb -k yp = Clyl -k C2y2 + ... + CnYn -k yp 

Equations in the form: 
y(n) + a1ycn-1) + ...+ an-iy' + any = r(x) 
are called non-homogeneous nth-order equatwn with 
cons tan t coe ffi ien t s. 
To solve this type of equation, the method of undetermined 
coefficients and the method of variation of parameters can 
be used. Methods used for constant coefficients often 
involve sine, cosine and exponential functions. 

If the coefficients are not constants, solutions often involve 
numerical methods Or series methods. In general, methods 
used for solving second-order differential equations can 
often be expanded to higher order differential equations. 

8.4. Series solutions to differential equations 

This section briefly describes series solutions for 
differential equations with variable coefficients, the power 
series method and the Frobenius method. 

Series solutions can be applied to solve linear differential 
equations that have variable coefficients. 

Differential equations with variable coefbients can arise 
in modeling applications and can be in the general form: 
P(x)y" + Q(x)y' + G(x)y = 0 
or y" + p(x)y' + q(x)y = 0 
where the coefficients P, Q, G, p and q are polynomials. 

Series solution methods for a differential equation with 
variable coefficients involve solving the equation near a 
point XO. Using a series solution method generally involves 
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expressing y as a n  infinite series in powers of (x - xo), where 
xo is a specified point. 

The power series method is a general method for solving 
linear differential equations in the form: 
Y" + P(X>Y' + q(x)Y = r(x) 
(including higher orders) where p(x), q(x) and r(x) are 
variable. 
The power series method provides solutions in the form of 
the power series: 
y(x) = ao + al(x - XO) + a2(x - X O ) ~  + ... 
In this method, the power series is substituted along with 
its derivatives into the differential equation: 
Y" + PWY' + dX)Y = r(x) 
The coefficient a n  can therefore be determined, providing p, 
q and r are analytic at x = XO. 

Note: A function f(x) is said to be analytic if it is differen- 
tiable at all points in its domain. A hnction f(xo) is analytic 
if it is differentiable at and near point xo. Also, a function 
that is real and analytic at point x = xo can be represented 
in a power series in powers of (x -xo) with a positive radius 
of convergence. 

The Frobenius method allows the power series to be 
extended to differential equations in the form: 
y" + [b(x)/(x - xo)]y' + [c(x)/(x - xo)2]y = 0 
where the coefficients are singular (cannot be obtained from 
a general solution) at (x = XO) rather than analytic, however 
b(x) and c(x) are analytic at (x = XO). 
These equations can have a solution in the form: 
y(x) = xr[ao + al(x - XO) + a2(x - X O ) ~  + ...I 
where r is a real or complex number that is determined by 
substituting y(x) into the differential equation. 
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85. Systems of differential equations 

This section provides a brief introduction to systems 
of linear differential equations, including systems of 
first-order differential equations, system of linear 
differential equations with constant coefficients aij and 
systems of homogeneous linear differential equations with 
constant coefficients aij . 

Systems of differential equations include linear systems 
and non-linear systems. Systems of linear differential 
equations can also be homogeneous or non-homogeneous, 
and can be solved using methods that include vectors and 
matrices and phase-plane methods. Systems of higher-order 
differential equations can sometimes be reduced to first- 
order equations so that simpler methods can be applied to 
solve them. 

Applications of systems of differential equations include 
mechanical systems containing springs or masses, com- 
bined networks of circuits and many other systems in 
various disciplines of engineering. 

In general, a system of first-order differential equations 
has the form: 
Yl '  = fdt, Yl ,  Y2, Y3) 
Y2' = f2(t, Yl ,  Y2, Y3) 
Y3' = f3(t, Yl ,  Y2, Y3) 

yl' = fi(t, yl, ..., yn) 
y2' = f2(t, yl, .-., yn) 

or in more general form: 

. 
yn' = fn(t, yl, ..., yn) 
In such a system of differential equations, the unknown 
functions in the equations are solved. 
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A system of differential equations in the form: 
yl' = ally1 + a12y2 + gl 
y2' = a21y1 + a22y2 + g2 
is a linear system of differential equations with constant 
coefbients aij. 
This system can also be written in vector form as: 

If this system of linear differential equations with 
constant coefficients aij has g = 0, then it becomes a 
homogeneous linear system of differential equations with 
constant coefficients aij and can be written: 
yl' = ally1 + a12y2 
y2' = a21y1 + a22y2 
In vector form, these equations become: 
y' = Ay 

Solutions to a system of homogeneous linear equations 
have the form: 
y = xe't 
where h is a n  eigenvalue of A and x is the eigenvector. The 
solution to the quadratic equations represented below is h: 

where eigenvector x * 0, and together with its components 
XI  and x2 form: 
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Note that a system of differential equations can be solved 
using a phase-plane method where solutions to: 
y' = Ay 
or equivalently, for two dimensions: 
yi' = aiiyi + a12y2 
yz' = azlyl + a22y2 
are found such that y~ = yi(t) and y2 = y2(t) exist as a path 
or curve of a solution in a yiyz-phase plane. A point P(y1,yz) 
is a critical point of the system and occurs where the right 
sides of the system equal zero. Point P can be a node, 
saddle point, center, or spiral point and can be stable or 
unstable. (Please see a textbook on differential equations 
for a complete explanation of this and other solutions in 
this chapter.) Phase-plane methods can be applied to non- 
linear systems using linearization. 

8.6. Laplace transform method 

This section provides a brief introduction to the Laplace 
transform method for solving differential equations. 

The LapZace transform method is used to solve differential 
equations and systems of differential equations and their 
corresponding initial and boundary value problems. The 
method involves transforming a complicated problem into a 
simple equation called a subsidiary equation, solving this 
equation using algebraic techniques, then transforming the 
solution of the subsidiary equation back to find the solution 
of the original problem. 

The Laplace transform of a function f(t) is written: 
F(s) = d(f) = oh eat f(t) dt 
where differentiation off with respect to t corresponds to 
the multiplication of the transform F with s: 
d(f'(t)) = sr?(f(t)) - f(0) 
d(f"(t)) = SQ(f(t)) - sf(0) - f'(0) 
d(Pn)(t)) = snd(f(t)) - s(n-')f(O) - ... - sf@-2)(0) - fn-')(O) 
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To solve a given differential equation in the form: 
y" + ay' + by = r(x) 
First take the transform and set d(y) = Y(s) 
to determine a subsidiary equation that has the form: 
(s2 + as  + b)Y = L(r) + sf(0) + f'(0) + af(0) 
Tables of functions and their Laplace transforms d(f) can be 
used to obtain the transform L(r). 
The subsidiary equation is solved for Y(s) algebraically and 
the inverse transform y(t) = Li(Y) is determined to find the 
solution. This last step often involves using Laplace 
transform tables. 

8.7. Numerical methods for solving 
differential equations 

This section provides a brief introduction to the use of 
numerical methods for solving differential equations 
including the Euler method, the Improved Euler method, 
the Runge-Kutta method and the Adams-Moultan method. 

Numerical methods are used to solve various types of 
differential equations. Numerical procedures involve 
constructing approximate values of yo, yi, ~ 2 ,  ...Y n at points 
XO, xi, x2, ... xn. Problems to consider when using numerical 
methods include convergence and error. 

To demonstrate the concept of numerical methods, 
consider a first-order initial value problem: 

To find the solution, begin with the Taylor series: 
y(x+h) = y(x) + hy'(x) + (h2/2)y"(x) +... 
Then truncate the series after the y' term. This results in 
a n  expression used repeatedly in the Euler method: 

Y' = f(X,Y), Y(X0) = Yo 
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yn+l = yn + hf(xn,yn) = yn + hyn’ 
where n = 0, 1, 2, ..., and h is the step size between points 

If the series is truncated to include the y” term, then the 
resulting expression is used in the Improved Euler method 
(also called the Improved Euler-Cauchy method or Heun’s 
method): 

XO, XI ,  X2 ,... Xn. 

yn+l = yn + h[f(xn,yn) + f(xn+h, yn+hf(xn,yn))]l2 
= yn + hkn’ + f(xn+h, yn+h yn’)]/Z 
If the series is truncated to include the h4 term, a more 
accurate method results called the Runge-Kutta method of 
fourth-order. This method involves calculating the following: 
knl = f(xn, yn), 
kn2 = f(xn + h/2, yn + hknd2) 
kn3 = f(Xn + h/2, yn + hknd2) 
kn4 = f(xn + h, yn + hkn3) 
Then substituting them into the expression: 
yn+l = yn + (h/6)[knl + 2kn2 + 2kn3 + kn4] 

Another numerical method called the Adams-Moultan 
method involves calculating a “predictor” given by: 

Then calculating a “corrector” given by: 

where yl, y2, y3 are first calculated using the Runge-Kutta 
method. 

yn+l = yn + (h/24)[55yn’ - 59yn-1’ + 37yn-2’ - 9yn-3’1 

yn+l = yn + (h/24)[9yn+l’ + 19yn’ - 5yn-1’ + yn-2’1 

Second-order ordinary differential equations can be 
solved using a n  extension of the Runge-Kutta method 
called the Runge-Kutta-Nystrom method. 

Note that numerical methods are commonly used to solve 
partial differential equations. 
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8.8. Partial differential equations 

This section provides a brief introduction to partial 
differential equations. 

Partial differential equations are used to model physical 
and geometrical systems where there are functions that 
depend on two or more independent variables. Partial 
differential equations arise in fluid mechanics, dynamics, 
elasticity, heat transfer, quantum mechanics, electro- 
magnetic theory and many engineering problems. In partial 
differential equations, the independent variables include 
time and space coordinates. 

Examples of second-order partial differential equations 
include: 
0 ne -dime n s io n a 1 wave equation : 
dWat2 = C2(d2U/i3x2) 
Two-dimensional wave equation: 
d2U/at2 = c2[(a2u/&2) + (azU/ay2)] 
One-dimensional heat equation: 
&/at = c2(a2u/dx2) 
Two-dimensional Laplace equation: 
v2u = (d2U/dX2) + (a2U/ay2) = 0 
Three-dimensional Laplace equation: 
v2u = (a2Uldx2) + (a2Ulay2) + (d2u/dz2) = 0 
Two-dimensional Poisson equation: 
(dWdx2) + (azUlay2) = f(x,y) 

Solutions to partial differential equations are often ob- 
tained in a specified region that satisfies initial conditions 
or boundary conditions where values of the solution U or its 
derivatives on the boundary curve or surface of the region 
are set. For example, in wave equations initial conditions 
may be displacement or velocity at time t = 0. Or in heat 
equations a n  initial temperature may be specified. 
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Partial differential equations can be solved using a 

sepratwn of variables method or the product method in 
which the solutions form products of functions that each 
depend on one of the variables. For example, the solution 
form u(x,t) = F(x)G(x) can be used to solve the one-dimen- 
sional wave equation or the one-dimensional heat equation, 
where substituting into the partial differential equation 
gives an ordinary differential equation for F and G. 

Numerical methods are commonly used to solve partial 
differential equations. Such methods can include replacing 
the partial derivatives with difference quotients. The 
following solution forms can also be used to solve these 
equations: 
For the Laplace equation: 

For the heat equation: 

For the .wave equation: 

where h and k represent the size of the sections in a grid in 
x- and y-directions. 

ui+l,j + ui,j+l + ui-1,j + ui,j-i - 4uij = 0 

(l/k)[ui,j+l - ui,j] =(l/h2)[ui+l,j - 2ui,j + ui-l,j] 

(l/k')[ui,j+l - h i , j  + uij-11 =(l/h2)[ui+l,j - 2ui,j + ~ i - ~ j ]  
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directrix 43 
discontinuity 54 
discontinuous functions 53 
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between points 13,272, 143 
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traveled 63, 124, 127-128 
traveled along curve 243 

diverge, integral 125 
divergence 

curl 307 
div 300-305 
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free 291 
free 302 
Green’s Theorem 287, 290 
infinite series 51 
Theorem 300,303 
vector field 300 
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trigonometric functions and 
inverses 20 
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dot product, definitions 213-216 
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differentiating 216 
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force 215 
matrix 212 
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work 215 

double angle formula 15 
double integral 140 

area 146 
line integral, Green’s Theorem 288 
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E 
e 78 
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equation 
equations 44 

line 235 
plane 32 

sphere, rectangular, cylindrical, 
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tangent 255 
tangent plane 255-256 
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integrals 131 
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even function 7 
even functions, integrals 136 
Euler’s formula 197 
Euler’s identity 26 
Euler’s method 281 

differential equations 328 
exact equations, differential 

equations, first-order 316 
expanding functions into series 192 
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127, 128-129 

ex, cos x and sin x 27 
e and trigonometric functions 40 
sine and cosine 196 

explicit differentiation 104 
exponential function computed 196 
exponential functions 9, 10, 26, 53, 

exponential growth and decay 

extrema, local, global 264 
extrema, minimum, maximum 264- 

extrema points 106 

75 

equation 81 

270 

F 
factor, changing coordinates or 

factorial 194 
factoring 174 
family of 

variables 158 

antiderivatives 121 
functions 121 
level surfaces, three-variable 

solutions, differential equations 
function 256 

314 
field lines 279 
first-order differential equations 

flow 293 
flow acrosa boundary 290 
flow field 279, 290-291 

flow line8 279 

313-318 

conservative, source free 291 

velocity field 281 
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flux 292 
area of parallelogram 296 
cone, radial field 298 
divergence 300-305 
Green's Theorem 287,290 
integrals 292-300 
per unit volume, divergence 300 
through closed surface 303 
through curved surface 293 
through surface 299 
vector fields, radial, rotation, 

horizontal, sphere 294-296 
foci, ellipse 45 
foci, hyperbolas 46 
focus, circle 45 
focus, parabola 43 
force, dot product 215 
force field 279 
force, integral 164 
Frobenius method series solution, 

function(s) 3 
differential equations 324 

addition, subtraction, 

depends on more than one 

depends on two variables 30 
more than one variable, graphs, 

contour diagrams 251 
multiplied by a constant 70 
three or more independent 

multiplication, division 5 

variable 30 

variables 32 
Fundamental Theorem of Calculus 

123-124 

G 
Gauss elimination 225 
general solution, differential 

equations 314-318 

differential equation, linear 
combination 321 

second-order differential equations 
319,320 

nth-order homogeneous linear 

geometric progression 184 
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Theorem 288 

curl 305 
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extrema 266 
linear, non-linear function 263 
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curl 307 
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equipotentiah 280 
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path of integration 286 
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functions of more than one 
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three-variable functions, solids 3 1 
trigonometric functions 16 
two-variable function 252 
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graph (8) 
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derivatives 74 

lines 31 

surfaces 31 
gravitational field 279 
Green's Theorem 309 

flux or normal form 290-291 
Stokes' Theorem 310 
tangent form 287-291 
tangent form, work-curl 288 
tangent v s  flux forms 291 

H 
harmonic motion 23 
Harmonic Series 189 
heat equation 330 
Heun's method, differential 

equations 329 
homogeneous differential equations 

317 
second-order linear with general 

and particular sulutions 319 
second-order with constant 

coefficients 319 

223 
homogeneous system of equations 

horizontal-axis parabola 44 
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horizontal vector field 276 
curl 308 
flux 295 

hyperbolas 40 
equations 46 
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cosecant, cech 29 
cosine, cosh 27, 102 
cotangent coth x 29 
functions 27, 102 
secant, sech 29 
sine, einh 28, 102 
tangent, tanh 29 

hypotenuse 35 

I 
i 38 
i, j, k unit vectors 201,215, 272 

combine 215,217 
identity matrix 224 
imaginary number, i 38 
implicit differentiation 104 
implicitly, explicitly, parametrically, 

circle, curve 234 
improper integral 125 
Improved Euler method, differential 

equations 329 
indefinite integral 119 
independent of path, line integral 

independent variables 30,247 
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integration 125 
infinite power series 192 
infinite eeries 192 

inflection point 109 
initial condition(e) 

287 

and limit 51 

differential equations 314-315 
nth-order differential equations 

partial differential equations 331 
second-order differential equations 

322 

319 
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equations, fkst-order 316 
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instantaneous rate of change 69 
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average value 134 
curves 279,315 
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formula 120 
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odd functions 136 
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theorem 174 
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symbol 119, 123 
tables 182 
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integration 115 
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matrix 223, 226 
eine 100 
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Jacobian 

determinant 159 
factor, integrals 158-162 
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spherical coordinates 161 
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L 
Lagrange multiplier 269 
Lagranian function 270 
Laplace transform method, 

Laplace’s equations 292 
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level surfaces 31 
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Green’s Theorem 287 
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linear first-order differential 

equations, first-order 316 
linear function 6 
linear one-variable function, line 31 
linear two-variable function, plane 

linearize 62, 112 
31 

In x 9 
local extrema 106 
local linearity 11 1 

one-variable function 254 
two-variable function 255 

local maximum, minimum 265 
logarithms 9 

M 
Maclaurin series 193-197 
magnitude, length, vector 199, 242 
major axis, ellipse 45 
mat rice s 

228 
systems of linear equations 222- 

vectors, multiplication 210 
vectors, multiplication with 

scalars 210-211 

added, subtracted 209 
coefficient 20 7 
definitions 207-213 
elements 207 
equal 209 
main diagonal 208 
notation 208 
akew-symmetric 209 
square 207 
submatrix 208 
symmetric 209 
transpose 208 

matrix 

maximum, minimum 264-270 
method of deterrninanta for systems 

midpoint rule, error 132 
minimum and maximum points 106 
minimum, maximum, extrema 264- 

270 
moment 164 
moment of inertia 166 
motion 

along sine curve 25 
around circle 25 
in plane 244 
of particle along curve, parametric 

of particle along cycloid path 238 
of particle, constant velocity 239 
of particle in line, position vector, 

parameters 234 
of particle in plane 235 
of particle on circle, parametric 

of equations 221 

equations 236 

equations 235 
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multiplication of 
row and column vectors 213 
two matrices 21 1-212 
vector with matrix 213 

N 
natural logarithm 9, 10, 79 
negative derivative 96 
Newton’s method 113 
non-homogeneous linear second- 

order differential equations 320 
non-homogeneous system of 

equations 223 
non-linear equations 7 
non-linear differential equations, 

non-linear functions 7 
normal component of acceleration 

246 
normal line 63  
normal line equation 256 
normal vector 243 
notation, multiple derivatives 85 
nth-order differential equations 321- 

homogeneous 321 

first-order 317 

323 

homogeneous linear 321 
homogeneous with constant 

linear 321 
non-homogeneous linear 322 
non-homogeneous with constant 

numerical differentiation methods 

numerical methods for solving 

coefficients 322 

coefficients 323 

113 

differential equations, Euler 
method, Improved Euler 
method, Runge-Kutta method, 
Adams-Moultan method 328- 
329 

0 
odd function 7 
odd functions, integrals 136 
operator, del 261 
orientation of curve 281 
oscillatory motion 23  

P 
parabolas 40, 41 
parameter rectangle, flux 296 

parameterization of 
line, plane, cylinder, cone, sphere, 

cone 231 
plane 230 
sphere 232 
surface, cylinder, 230 

circle, curve 228-234 

parametric equations, line 229 
parametric equations, plane 230 
parametrically, circle, curve 234 
partial derivatives 247-270 

chain rule 250 
definitions 248 
notation 247 
two and three variables 249 
zero 264 

33 1 

18 1 

equations 314-315 

320 

partial differential equations 330- 

partial fractions, integration 177- 

particular solution, differential 

non-homogeneous second-order 

nth-order 322 
second-order 319 

path independence, line integral 286 
path of integration, line integral 

281,286 
path of motion 280 
period 12 
periodic 11, 19 
phase plane method 327 
Picard’s iteration method, 

plane 230 
point in a plane 229 
Poisson equation 330 
polar angle 37 
polar coordinates 34 
polynomial function 29 
population 81 
position of moving object 229 
position vector 201-202, 228-233, 

differential equations 317 

297,306 
at point on curve 241 
radial field 277 
vector field 276 

positive derivative 96 
potential function 278, 280 
power series 190, 194 
power series method solution, 

differential equations 324 
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predictor, Adams-Moultan method, 
differential equations 329 

pressure, integral 163 
probability 166 
product method, partial differential 

product rule 86, 167 

products 119 
projectile 236-238 
properties of sums 117 
Pythagorean formula 13 
Pythagorean Theorem 35,93 

equations 331 

multiple products 88 

Q 
quadratic approximations 256 
quadratic equation, sec0 nd-o rde r 

differential equations 319 
quadratic equation, solve 

graphically 43 
quadratic function, maximum, 

minimum 267 
quarter-circle 233 
quotient rule 88,97 

R 
radial vector field 

curl 309 
flux 294 
flux, sphere 296, 304 
position vector 277 
position vector field, curl 307 

radian 12 
radius 12 
radius of convergence 193 
range set 3, 183 
rate of change 56 
rate problems 93 
Ratio Test 189 
rational functions 53 
Riemann sums 129 

right-handed screw rule, cross 

root, second-order differential 

Root Test for convergence 192 
roots 114 
roots, nth-order differential 

rotating ridged body, curl 306 
rotation, curl 305 

error 131 

product 216,218 

equations 319 

equations 322 

rotation vector field 277 
curl 308 
divergence 307 
flux 294 

Runge-Kutta method, differential 
equations 329 

S 
saddle point 266-267 
saddle-shaped surface 33 

scalar field 272 
scalar functions 271 
scalar product 213 
scalars 199 
secant 1 1 
secant line 63 
sech x 29 
second derivative 84, 108 

concave up or down 265 
of function 96 
of sine and cosine 97 

equations 318-320 

249 

graph, contour diagram 252 

second-order linear differential 

second partial derivatives, notation 

second, third partial derivatives 247 
separable equations, differential 

equations, first-order 3 15 
separation of variables, partial 

differential equations 331 
sequence 116 

series 185 
infinite, finite 183 

estimated 187 
infinite 187 
infinite, converge, diverge 187-188 
positive and negative terms 190 

series solutions for differential 
equations with variable 
coefficients 323-224 

set or system of equations, matrix 
207 

sigma notation 115- 116, 185 
simp Mica tio ns for integrals, 

factoring, substituting 
trigonometric identities, 
Pythagorean theorem 174 

Simpson’s rule, error 133 
sign of derivative 265 
sine 11, 21, 53 
sine and cosine curves 26 
sine curve 94 
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s h e  wave pattern 24 
sinh 28 
slope 58 

average 60 
field 121 
instantaneous 60 
of linear function 7 
of tangent line 61 
tangent line, derivative 255 
tangent plane, partial derivative 

zero 106, 264 
solution set 223 
source-free field 291 
speed 56 
speed of rotation, curl 306 
sphere 

255-256 

flux 295-296 
parameterize 232 

spherical coordinates 37, 232 
spiral of Archimedes 37 
Stokes’ Theorem 309-31 1 

curl 309-310 
curl, gradient field 31 1 
Green’s Theorem 310 
line integrals, surface integrals 

309-310 
stream function 291 

streamlines, field lines 279, 280 
subsidiary equation, Laplace 

transform method 327 
substitution of variables, integration 

source free field 291 

169- 173 
definite integral 173 

subtraction formulas, cosine, sine 15 
sum of terms 185 
sums 115 
superposition or linearity principle, 

second-order differential 
equations 319 

surface area, integral 148 
surface integrals 292-300 

Green’s Theorem 287 
line integrals, Stokes’ Theorem 

surface of revolution, integral 148 
surface, two-variable function 256 
systems of equations, determinants 

systems of linear equations 222 

309-310 

22 1 

systems of differential equations 
first-order 325 
homogeneous linear with constant 

linear 325-327 
linear, constant coefficients 326 

coefficients 326 

T 
tangent 11 
tangent component of acceleration 

tangent line 55, 114 
approximation 112 
equation 62, 11 1 
local linearity 254 

tangent plane 255 
local linearity 255 

tangent vector 242 
unit 243 

tanh x 29 
Taylor polynomials, quadratic 

approximation 257 
Taylor series 193- 197 

approximation 257 
differential equations, numerical 

methods 328 
terminal point, poeition vector 229 
terme, sequence 183 
tests for convergence of series 188 
third partial derivatives, notation 

250 
three-variable function, family of 

level surfaces 3 1 
torque, cross product 219 
transpose matrix 208 

determinant 224 
transposition, vector 201 
trapezoid rule, error 132 
triangle 11 
triangular matrix 225 
triangular wedge section 37 
trigonometric functions 11, 26 

246 

and relation8 16, 174 
expanded196 

triple integrals 141 
two-variable function, surface 31 

U 
undetermined coefficients method, 

differential equation 320,323 
unit vector, directional derivative 

259 
unit vectors i, j, k combine 215, 217 
upper triangular matrix 225 
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V 
variation of parameters, differential 

vector 
equation 320,323 

added, subtracted 204-206 
column 200,202 
compone n ts 200- 20 1 
cross product of two vectors 217 
definitions 199-207 
direction 203 
displacement 199, 20 1 
equivalent 20 1 
functions 271 
magnitude, length 200, 202 
negative 205 
notation 200 
position 201-202 
row 200 
transposition 201 
unit 201, 203 
unit, i, j, k 200-201 
velocity 200 
zero 201,202 

vector calculus 271-31 1 
vector field 272 

functions 275-281 
horizontal, radial, rotation, 

gradient, conservative, force, 
gravitational, velocity, flow, 
276-281 

vector product, definitions 216-220 
velocity 56, 58,63,84, 124, 127, 244- 

246 
average 57,60 
instantaneous 57,60 
integral 122 
oscillatory motion 24 
position vector 239 
position vector, parametric form 

240 
tangent 22 

velocity field 279 
field line, stream line 280 

velocity vector 
a t  point 241 
motion 242 

vertex 41 
point of parabola 42 

vertexes, hyperbolas 46 
vertical-axis parabolas 41 
vertical line test 5 
volume 

box-shaped object 224 
cube, unit vectors 220 
cylindrical coordinates 153 
integrals 149 
parallelepiped, cross product, dot 

product 21 9 
rectangular solid 153 
sphere 151, 156 
sphere in rectangular, cylindrical, 

spherical coordinates 155 
triangular wedge 154 

spherical coordinates 157 

volume by cylindrical shells 150 
volume by projecting a closed curve 

along axis and sectioning into 
columns or cubes 151 

volume of revolution 149 

W 
wave equation, one-, two- 

dimensional330 
waveforms 13 
work 

along curve, line integral 282, 284 
dot product 215 
Green’s Theorem 287 
integral 162, 164 
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