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PREFACE.

The Congress of Mathematics held under the auspices of

the World's Fair Auxiliary in Chicago, from the 21st to the

26th of August, 1893, was attended by Professor Felix Klein

of the University of Gottingen, as one of the commissioners of

the German university exhibit at the Columbian Exposition.

After the adjournment of the Congress, Professor Klein kindly

consented to hold a colloquium on mathematics with such mem-

bers of the Congress as might wish to participate. The North-

western University at Evanston, 111., tendered the use of rooms

for this purpose and placed a collection of mathematical books

from its library at the disposal of the members of the collo-

quium. The following is a list of the members attending the

colloquium :

W. W. Beman, A.M., professor of mathematics, University of Michigan.

E. M. Blake, Ph.D., instructor in mathematics, Columbia College.

O. Bolza, Ph.D., associate professor of mathematics, University of Chicago.

H. T. Eddy, Ph.D., president of the Rose Polytechnic Institute.

A. M. Ely, A.B., professor of mathematics, Vassar College.

F. Franklin, Ph.D., professor of mathematics, Johns Hopkins University.

T. F. Holgate, Ph.D., instructor in mathematics, Northwestern University.

L. S. Hulburt, A.M., instructor in mathematics, Johns Hopkins University.

F. H. Loud, A.B., professor of mathematics and astronomy, Colorado College.

J. McMahon, A.M., assistant professor of mathematics, Cornell University.

H. Maschke, Ph.D., assistant professor of mathematics, University of

Chicago.

E. H. Moore, Ph.D., professor of mathematics, University of Chicago.
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J. E. Oliver, A.M., professor of mathematics, Cornell University.

A. M. Sawin, Sc.M., Evanston.

W. E. Story, Ph.D., professor of mathematics, Clark University.

E. Study, Ph.D., professor of mathematics, University of Marburg.

H. Taber, Ph.D., assistant professor of mathematics, Clark University.

H. W. Tyler, Ph.D., professor of mathematics. Massachusetts Institute of

Technology.

J. M. Van Vleck, A.M., LL.D., professor of mathematics and astronomy,

Wesleyan University.

E. B. Van Vleck, Ph.D., instructor in mathematics, University of Wis-

consin.

C. A. Waldo, A.M., professor of mathematics, De Pauw University.

H. S. White, Ph.D., associate professor of mathematics, Northwestern Uni-

versity.

M. F. Winston, A.B., honorary fellow in mathematics, University of Chicago.

A. Ziwet, assistant professor of mathematics, University of Michigan.

The meetings lasted from August 28th till September 9th ;

and in the course of these two weeks Professor Klein gave a

daily lecture, besides devoting a large portion of his time to

personal intercourse and conferences with those attending the

meetings. The lectures were delivered freely, in the English

language, substantially in the form in which they are here

given to the public. The only change made consists in oblit-

erating the conversational form of the frequent questions and

discussions by means of which Professor Klein understands so

well to enliven his discourse. My notes, after being written

out each day, were carefully revised by Professor Klein him-

self, both in manuscript and in the proofs.

As an appendix it has been thought proper to give a transla-

tion of the interesting historical sketch contributed by Professor

Klein to the work Die deutschen Universitdten. The translation

was prepared by Professor H. W. Tyler, of the Massachusetts

Institute of Technology.

It is to be hoped that the proceedings of the Chicago Con-

gress of Mathematics, in which Professor Klein took a leading
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part, will soon be published in full. The papers presented to

this Congress, and the discussions that followed their reading,

form an important complement to the Evanston colloquium.

Indeed, in reading the lectures here published, it should be kept

in mind that they followed immediately upon the adjournment

of the Chicago meeting, and were addressed to members of the

Congress. This circumstance, in addition to the limited time

and the informal character of the colloquium, must account

for the incompleteness with which the various subjects are

treated.

In concluding, the editor wishes to express his thanks to

Professors W. W. Beman and H. S. White for aid in preparing

the manuscript and correcting the proofs.

ALEXANDER ZIWET.

Ann Arbor, Mich., November, 1893.
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LECTURES ON MATHEMATICS.
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Lecture I. : CLEBSCH.

(August 28, 1893.)

It will be the object of our Colloquia to pass in review some

of the principal phases of 'the most recent development of math-

ematical thought in Germany.

A brief sketch of the growth of mathematics in the German

universities in the course of the present century has been con-

tributed by me to the work Die dentschen Universitaten, com-

piled and edited by Professor Lexis (Berlin, Asher, 1893), for

the exhibit of the German universities at the World's Fair.*

The strictly objective point of view that had to be adopted for

this sketch made it necessary to break off the account about

the year 1870. In the present more informal lectures these

restrictions both as to time and point of view are abandoned.

It is just the period since 1870 that I intend to deal with, and

I shall speak of it in a more subjective manner, insisting par-

ticularly on those features of the development of mathematics

in which I have taken part myself either by personal work or

by direct observation.

The first week will be devoted largely to Geometry, taking

this term in its broadest sense
;
and in this first lecture it will

surely be appropriate to select the celebrated geometer Clebsch

* A translation of this sketch will be found in the Appendix, p. 99;
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as the central figure, partly because he was one of my principal

teachers, and also for the reason that his work is so well known

in this country.

Among mathematicians in general, three main categories may
be distinguished ;

and perhaps the names logicians, formalists,

and intuitionists may serve to characterize them, (i) The word

logician is here used, of course, without reference to the mathe-

matical logic of Boole, Peirce, etc.
;

it is only intended to indi-

cate that the main strength of the men belonging to this class

lies in their logical and critical power, in their ability to give

strict definitions, and to derive rigid deductions therefrom.

The great and wholesome influence exerted in Germany by

Weierstrass in this direction is well known. (2) The formalists

among the mathematicians excel mainly in the skilful formal

treatment of a given question, in devising for it an "algorithm."

Gordan, or let us say Cayley and Sylvester, must be ranged in

this group. (3) To the intuitionists, finally, belong those who

lay particular stress on geometrical intuition (AnscJiaunng), not

in pure geometry only, but in all branches of mathematics.

What Benjamin Peirce has called "
geometrizing a mathematical

question
"
seems to express the same idea. Lord Kelvin and

von Staudt may be mentioned as types of this category.

Clebsch must be said to belong both to the second and third

of these categories, while I should class myself with the third,

and also the first. For this reason my account of Clebsch's

work will be incomplete ;
but this will hardly prove a serious

drawback, considering that the part of his work characterized

by the second of the above categories is already so fully appre-

ciated here in America. In general, it is my intention here,

not so much to give a complete account of any subject, as to

supplement the mathematical views that I find prevalent in this

country.
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As the first achievement of Clebsch we must set down the

introduction into Germany of the work done previously by

Cayley and Sylvester in England. But he not only trans-

planted to German soil their theory of invariants and the inter-

pretation of projective geometry by means of this theory ;
he

also brought this theory into live and fruitful correlation with

the fundamental ideas of Riemann's theory of functions. In

the former respect, it may be sufficient to refer to Clebsch's

Vorlesungen ilber Geometrie, edited and continued by Linde-

mann
;

to his Binare algebraische Formen, and in general to

what he did in co-operation with Gordan. . A good historical

account of his work will be found in the biography of Clebsch

published in the Math. Annalen, Vol. 7.

Riemann's celebrated memoir of 1857* presented the new

ideas on the theory of functions in a somewhat startling novel

form that prevented their immediate acceptance and recogni-

tion. He based the theory of the Abelian integrals and their

inverse, the Abelian functions, on the idea of the surface now

so well known by his name, and on the corresponding funda-

mental theorems of existence (Existenztheoreme). Clebsch, by

taking as his starting-point an algebraic curve defined by its

equation, made the theory more accessible to the mathema-

ticians of his time, and added a more concrete interest to it

by the geometrical theorems that he deduced from the theory

of Abelian functions. Clebsch's paper, Ueber die Anwendimg
der AbeVschen Functionen in der Geometries and the work of

Clebsch and Gordan on Abelian functions,^ are well known to

American mathematicians
;
and in accordance with my plan, I

proceed to give merely some critical remarks.

* Theorie der AbeVschen Functionen, Journal fur reine und angewandte Mathe-

matik, Vol. 54 (1857), pp. 1 15-155; reprinted in Riemann's Werke, 1876, pp. 81-135.

t Journal fur reine und angewandte Mathematik, Vol. 63 (1864), pp. 189-243.

% Theorie der AbeVschen Functionen, Leipzig, Teubner, 1866.
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However great the achievement of Clebsch's in making

the work of Riemann more easy of access to his contempo-

raries, it is my opinion that at the present time the book of

Clebsch is no longer to be considered as the standard work

for an introduction to the study of Abelian functions. The

chief objections to Clebsch's presentation are twofold : they

can be briefly characterized as a lack of mathematical rigour

on the one hand, and a loss of intuitiveness, of geometrical

perspicuity, on the other. A few examples will explain my

meaning.

(a) Clebsch bases his whole investigation on the considera-

tion of what he takes to be the most general type of an

algebraic curve, and this general curve he assumes as having

only double points, but no other singularities. To obtain a

sure foundation for the theory, it must be proved that any

algebraic curve can be transformed rationally into a curve

having only double points. This proof was not given by

Clebsch ;
it has since been supplied by his pupils and follow-

ers, but the demonstration is long and involved. See the

papers by Brill and Nother in the Math. Annalen> Vol. 7

(1874),* and by Nother, ib., Vol. 23 (1884). f

Another defect of the same kind occurs in connection with

the determinant of the periods of the Abelian integrals. This

determinant never vanishes as long as the curve is irredu-

cible. But Clebsch and Gordan neglect to prove this ; and

however simple the proof may be, this must be regarded as

an inexactness.

The apparent lack of critical spirit which we find in the work

of Clebsch is characteristic of the geometrical epoch in which

* Ueber die algebraischen Functionen unci ihre Anwendung in der Geometrie,

pp. 269-310.

t Rationale Ausjiihrung der Operationen in der Theorie der algebraischen Func-

/ionen, pp. 311-358.
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he lived, the epoch of Steiner, among others. It detracts in no-

wise from the merit of his work. But the influence of the

theory of functions has taught the present generation to be

more exacting.

(b) The second objection to adopting Clebsch's presentation

lies in the fact that, from Riemann's point of view, many points

of the theory become far more simple and almost self-evident,

whereas in Clebsch's theory they are not brought out in all

their beauty. An example of this is presented by the idea of

the deficiency /. In Riemann's theory, where / represents the

order of connectivity of the surface, the invariability of p under

any rational transformation is self-evident, while from the point

of view of Clebsch this invariability must be proved by means

of a long elimination, without affording the true geometrical

insight into its meaning.

For these reasons it seems to me best to begin the theory

of Abelian functions with Riemann's ideas, without, however,

neglecting to give later the purely algebraical developments.

This method is adopted in my paper on Abelian functions
;

*

it is also followed in the work Die elliptischen Modulfunctionen,

Vols. I. and II., edited by Dr. Fricke. A general account of the

historical development of the theory of algebraic curves in con-

nection with Riemann's ideas will be found in my (lithographed)

lectures on Riemann sche Flachen
y
delivered in 1891-92.!

If this arrangement be adopted, it is interesting to follow

out the true relation that the algebraical developments bear

to Riemann's theory. Thus in Brill and Nother's theory, the

so-called fundamental theorem of Nother is of primary impor-

* Ztir Theorie der AbeVschen Functionen, Math. Annalen, Vol. 36 (1890), pp.

1-83-

t My lithographed lectures frequently give only an outline of the subjef, omit-

ting details and long demonstrations, which are supposed to be supplied by the

student by private reading and a study of the literature of the subject.
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tance. It gives a rule for deciding under what conditions an

algebraic rational integral function / of x and y can be put into

the form

where
<f>
and

-^r
are likewise rational algebraic functions. Each

point of intersection of the curves
<f>
= o and -^

= o must of

course be a point of the curve f=o. But there remains the

question of multiple and singular points ;
and this is disposed

of by Nother's theorem. Now it is of great interest to in-

vestigate how these relations present themselves when the

starting-point is taken from Riemann's ideas.

One of the best illustrations of the utility of adopting

Riemann's principles is presented by the very remarkable

advance made recently by Hurwitz, in the theory of algebraic

curves, in particular his extension of the theory of algebraic

correspondences, an account of which is given in the second

volume of the Elliptische Modulfunctionen. Cayley had found

as a fundamental theorem in this theory a rule for determining

the number of self-corresponding points for algebraic corre-

spondences of a simple kind. A whole series of very valuable

papers by Brill, published in the Math. Annalen* is devoted

to the further investigation and demonstration of this theorem.

Now Hurwitz, attacking the problem from the point of view

of Riemann's ideas, arrives not only at a more simple and

quite general demonstration of Cayley's rule, but proceeds to a

complete study of all possible algebraic correspondences. He
finds that while for general curves the correspondences consid-

* Ueber zwei Beriihrungsprobleme, Vol. 4 (1871), pp. 527-549. Ueber Ent-

sprechen von Punktsystemen auf einer Curve, Vol. 6 (1873), pp. 33-65. Ueber die

Correspondemformel, Vol. 7 (1874), pp. 607-622. Ueber algebraische Correspon-

denzen, Vol. 31 (1888), pp. 374-409. Ueber algebraische Correspondenzen. Zweite

Abhandlung : Specialgruppen von Punkten einer algebraischen Curve, Vol. 36 (1890),

pp. 321-360.
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ered by Cayley and Brill are the only ones that exist, in the

case of singular curves there are other correspondences which

also can be treated completely. These singular curves are

characterized by certain linear relations with integral coeffi-

cients, connecting the periods of their Abelian integrals.

Let us now turn to that side of Clebsch's method which

appears to me to be the most important, and which certainly

must be recognized as being of great and permanent value
;

I mean the generalization, obtained by Clebsch, of the whole

theory of Abelian integrals to a theory of algebraic functions

with several variables. By applying the methods he had

developed for functions of the form f(x, y) = o, or in homo-

geneous co-ordinates, f(xv xv x
3)
= o, to functions with four

homogeneous variables/^, xv x3 ,
x

4)=o, he found in 1868,

that there also exists a number / that remains invariant under

all rational transformations of the surface /=o. Clebsch

arrives at this result by considering double integrals belonging

to the surface.

It is evident that this theory could not have been found from

Riemann's point of view. There is no difficulty in conceiving a

four-dimensional Riemann space corresponding to an equation

f(x, y, z)=o. But the difficulty would lie in proving the

"theorems of existence" for such a space; and it may even be

doubted whether analogous theorems hold in such a space.

While to Clebsch is due the fundamental idea of this

grand generalization, the working out of this theory was

left to his pupils and followers. The work was mainly carried

on by Nother, who showed, in the case of algebraic surfaces,

the existence of more than one invariant number p and of

corresponding moduli, i.e. constants not changed by one-to-one

transformations. Italian and French mathematicians, in partic-

ular Picard and Poincar6, have also contributed largely to the

further development of the theory.
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If the value of a man of science is to be gauged not by his

general activity in all directions, but solely by the fruitful new

ideas that he has first introduced into his science, then the

theory just considered must be regarded as the most valuable

work of Clebsch.

In close connection with the preceding are the general ideas

put forth by Clebsch in his last memoir,* ideas to which he

himself attached great importance. This memoir implies an

application, as it were, of the theory of Abelian functions to

the theory of differential equations. It is well known that the

central problem of the whole of modern mathematics is the

study of the transcendental functions defined by differential

equations. Now Clebsch, led by the analogy of his theory of

Abelian integrals, proceeds somewhat as follows. Let us con-

sider, for example, an ordinary differential equation of the first

order f(x, y, y')=o, where / represents an algebraic function.

Regarding y' as a third variable z, we have the equation of an

algebraic surface. Just as the Abelian integrals can be classi-

fied according to the properties of the fundamental curve that

remain unchanged under a rational transformation, so Clebsch

proposes to classify the transcendental functions defined by

the differential equations according to the invariant properties

of the corresponding surfaces /=o under rational one-to-one

transformations.

The theory of differential equations is just now being culti-

vated very extensively by French mathematicians ;
and some

of them proceed precisely from this point of view first adopted

by Clebsch.

* Ueber ein neues Grundgebilde der analytischen Geometrie der Ebene, Math.

Annalen, Vol. 6 (1873), pp. 203-215.



Lecture II.: SOPHUS LIE.

(August 29, 1893.)

To fully understand the mathematical genius of Sophus Lie,

one must not turn to the books recently published by him in

collaboration with Dr. Engel, but to his earlier memoirs, written

during the first years of his scientific career. There Lie shows

himself the true geometer that he is, while in his later publi-

cations, finding that he was but imperfectly understood by the

mathematicians accustomed to the analytical point of view, he

adopted a very general analytical form of treatment that is not

always easy to follow.

Fortunately, I had the advantage of becoming intimately

acquainted with Lie's ideas at a very early period, when they

were still, as the chemists say, in the "nascent state," and

thus most effective in producing a strong reaction. My lecture

to-day will therefore be devoted chiefly to his paper,
" Ueber

Complexe, insbesondere Linien- und Ktigel-Complexe, ntit Anwen-

dung auf die Theorie partieller Differentialgleichungen."
'*

To define the place of this paper in the historical develop-

ment of geometry, a word must be said of two eminent geome-

ters of an earlier period: Pliicker (1801-68) and Monge (1746-

181 8). Pliicker's name is familiar to every mathematician,

through his formulae relating to algebraic curves. But what is

of importance in the present connection is his generalized idea

* Math. Annalen, Vol. 5 (1872), pp. 145-256.

9
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of the space-element. The ordinary geometry with the point as

element deals with space as three-dimensioned, conformably to

the three constants determining the position of a point. A dual

transformation gives the plane as element
; space in this case

has also three dimensions, as there are three independent con-

stants in the equation of the plane. If, however, the straight

line be selected as space-element, space must be considered as

four-dimensional, since four independent constants determine

a straight line. Again, if a quadric surface F2
be taken as

element, space will have nine dimensions, because every such

element requires nine quantities for its determination, viz. the

nine independent constants of the surface F2 ;
in other words,

space contains oo 9
quadric surfaces. This conception of hyper-

spaces must be clearly distinguished from that of Grassmann

and others. Plucker, indeed, rejected any other idea of a space

of more than. three dimensions as too abstruse. The work

of Monge that is here of importance, is his Application de

Vanalyse a la ge'ome'trie, 1809 (reprinted 1850), in which he

treats of ordinary and partial differential equations of the first

and second order, and applies these to geometrical questions

such as the curvature of surfaces, their lines of curvature,

geodesic lines, etc. The treatment of geometrical problems by

means of the differential and integral calculus is one feature of

this work
;
the other, perhaps even more important, is the con-

verse of this, viz. the application of geometrical intuition to

questions of analysis.

Now this last feature is one of the most prominent character-

istics of Lie's work
;
he increases its power by adopting Pliicker's

idea of a generalized space-element and extending this funda-

mental conception. A few examples will best serve to give an

idea of the character of his work
;
as such an example I select

(as I have done elsewhere before) Lie's sphere-geometry {Kuget-

gcomctrie).
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Taking the equation of a sphere in the form

x2 +y + z
2 -2Bx-2Cy-2Dz + E = o,

the coefficients, B, C, D> E, can be regarded as the co-ordinates

of the sphere, and ordinary space appears accordingly as a

manifoldness of four dimensions. For the radius, R, of the

sphere we have
j?2 =&+C2 + Z>2 -

as a relation connecting the fifth quantity, R, with the four co-

ordinates, B, C, D, E.

To introduce homogeneous co-ordinates, put

B = -, C = -> >=-, E = ~, R = -;
a a a a a

then a\b\c\d\e are the five homogeneous co-ordinates of the

sphere, and the sixth quantity r is related to them by means of

the homogeneous equation of the second degree,

r2 = P + e
2 + d2 -ae. (i)

Sphere-geometry has been treated in two ways that must be

carefully distinguished. In one method, which we may call the

elementary sphere-geometry, only the five co-ordinates a\b\c\d\e

are used, while in the other, the higher, or Lie 's, sphere-geometry,

the quantity r is introduced. In this latter system, a sphere

has six homogeneous co-ordinates, a, b, c, d, e, r, connected by

the equation (i).

From a higher point of view the distinction between these

two sphere-geometries, as well as their individual character, is

best brought out by considering the group belonging to each.

Indeed, every system of geometry is characterized by its group,

in the meaning explained in my Erlangen Programm ;
*

i.e.

*
Vergleichende Betrachtungen uber neuere geometrische Forschungen. Programm

zum Eintritt in die philosophised Facult'dt und den Senat der K. Friedrich-Alexan-
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every system of geometry deals only with such relations of

space as remain unchanged by the transformations of its group.

In the elementary sphere-geometry the group is formed by

all the linear substitutions of the five quantities a, b, c, d, e,

that leave unchanged the homogeneous equation of the second

degree
#i + c

2 + d2 -ae = o. (2)

This gives oo 25_15 = oo 10 substitutions. By adopting this defi-

nition we obtain point-transformations of a simple character.

The geometrical meaning of equation (2) is that the radius is

zero. Every sphere of vanishing radius, i.e. every point, is

therefore transformed into a point. Moreover, as the polar

2bb* + 2cc' -\- 2dd' ae'a'e = o

remains likewise unchanged in the transformation, it follows

that orthogonal spheres are transformed into orthogonal spheres.

Thus the group of the elementary sphere-geometry is character-

ized as the conformal group, well known as that of the trans-

formation by inversion (or reciprocal radii) and through its

applications in mathematical physics.

Darboux has further developed this elementary sphere-

geometry. Any equation of the second degree

F{a, b, c, d, e) = o,

taken in connection with fhe relation (2) represents a point-

surface which Darboux has called cyclide. From the point of

view of ordinary projective geometry, the cyclide is a surface of

the fourth order containing the imaginary circle common to all

spheres of space as a double curve. A careful investigation

ders-Universitdt ?it Erlangen. Erlangen, Deichert, 1872. For an English transla-

tion, by Haskell, see the Bulletin of the New York Mathematical Society, Vol. 2

(i893) PP- 215-249.
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of these cyclides will be found in Darboux's Lecons sur la

thiorie ge'ne'rale des surfaces et les applications gtometriqnes du

calcul infinitesimal, and elsewhere. As the ordinary surfaces of

the second degree can be regarded as special cases of cyclides,

we have here a method for generalizing the known properties

of quadric surfaces by extending them to cyclides. Thus Mr.

M. B6cher, of Harvard University, in his dissertation,* has

treated the extension of a problem in the theory of the poten-

tial from the known case of a body bounded by surfaces of

the second degree to a body bounded by cyclides. A more

extended publication on this subject by Mr. B6cher will appear

in a few months (Leipzig, Teubner).

In the higher sphere-geometry of Lie, the six homogeneous

co-ordinates a :b :c :d:e :r are connected, as mentioned above,

by the homogeneous equation of the second degree,

b2 + <? + d2 -?2 -ae = o.

The corresponding group is selected as the group of the

linear substitutions transforming this equation into itself. We
have thus a group of oo 36_21 =oo 15 substitutions. But this is

not a group of point-transformations ;
for a sphere of radius

zero becomes a sphere whose radius is in general different from

zero. Thus, putting for instance

B' = B, C'= C, D' = D,E'=E,R' = R + const.,

it appears that the transformation consists in a mere dilatation

or expansion of each sphere, a point becoming a sphere of

given radius.

The meaning of the polar equation

2 bb% + 2 cc' + 2 dd' 2 rr1 ae' a!e o

* Ueber die Reihenentwickelungen der Potentialtheorie, gekronte Preisschrift,

Gdttingen, Dieterich, 1891.
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remaining invariant for any transformation of the group, is evi-

dently that the spheres originally in contact remain in contact.

The group belongs therefore to the important class of contact-

transformations, which will soon be considered more in detail.

In studying any particular geometry, such as Lie's sphere-

geometry, two methods present themselves.

(i) We may consider equations of various degrees and inquire

what they represent. In devising names for the different con-

figurations so obtained, Lie used the names introduced by

Pliicker in his line-geometry. Thus a single equation,

F(a, b, c, d, e, r) o,

is said to represent a complex of the first, second, etc., degree,

according to the degree of the equation ;
a complex contains,

therefore, oo 3 spheres. Two such equations,

Fx
= o, F2

= o,

represent a congruency containing oo 2
spheres. Three equations,

Fx
= o, F2

= o, F3
= o,

may be said to represent a set of spheres, the number being oo 1
.

It is to be noticed that in each case the equation of the second

degree,
b2 + c- + d- - r

2 - ae = o,

is understood to be combined with the equation F= o.

It may be well to mention expressly that the same names are

used by other authors in the elementary sphere-geometry, where

their meaning is, of course, different.

(2) The other method of studying a new geometry consists

in inquiring how the ordinary configurations of point-geometry

can be treated by means of the new system. This line of

inquiry has led Lie to highly interesting results.
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In ordinary geometry a surface is' conceived as a locus of

points ;
in Lie's geometry it appears as the totality of all the

spheres having contact with the surface. This gives a threefold

infinity of spheres, or a complex of spheres,

F(a, b, c, d, e, r) = o.

But this, of course, is not a general complex ;
for not every com-

plex will be such as to touch a surface. It has been shown

that the condition that must be fulfilled by a complex of

spheres, if all its spheres are to touch a surface, is the following :

\db) \dc) \dd) \dr) da de

To give at least one illustration of the further development of

this interesting theory, I will mention that among the infinite

number of spheres touching the surface at any point there are

two having stationary contact with the surface; they are called

the principal spheres. The lines of curvature of the surface

can then be defined as curves along which the principal spheres

touch the surface in two successive points.

Pliicker's line-geometry can be studied by the same two

methods just mentioned. In this geometry let p12 , pls , pu , psp

/42 , p23 be the usual six homogeneous co-ordinates, where

pik
= pu . Then we have the identity

P\2p2A +Pl3p42 +Pl4p23 = >

and we take as group the oo 15 linear substitutions transforming

this equation into itself. This group corresponds to the totality

of collineations and reciprocations, i.e. to the projective group.

The reason for this lies in the fact that the polar equation

expresses the intersection of the two lines /, /'.
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Now Lie has instituted a comparison of the highest interest

between the line-geometry of Pliicker and his own sphere-

geometry. In each of these geometries there occur six homo-

geneous co-ordinates connected by a homogeneous equation of

the second degree. The discriminant of each equation is differ-

ent from zero. It follows that we can pass from either of these

geometries to the other by linear substitutions. Thus, to trans-

form

Pl2pM + Pl3p42 + Pl4p23 =
into

b2 +c2 +d2 -r2 -ae = o,

it is sufficient to assume, say,

pn = b + ic, pn = d+r, pu =-a,

Pu b ic, p^ dr, pn = e.

It follows from the linear character of the substitutions that

the polar equations are likewise transformed into each other.

Thus we have the remarkable result that two spheres that touch

correspond to two lines that intersect.

It is worthy of notice that the equations of transformation

involve the imaginary unit i\ and the law of inertia of quadratic

forms shows at once that this introduction of the imaginary

cannot be avoided, but is essential.

To illustrate the value of this transformation of line-geometry

into sphere-geometry, and vice versa, let us consider three

linear equations,

F
x
= o, F2

= o, F3
= o,

the variables being either line co-ordinates or sphere co-ordi-

nates. In the former case the three equations represent a set

cf lines ; i.e. one of the two sets of straight lines of a hyper-

boloid of one sheet. It is well known that each line of either

set intersects all the lines of the other. Transforming to sphere-
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geometry, we obtain a set of spheres corresponding to each

set of lines
;
and every sphere of either set must touch every

sphere of the other set. This gives a configuration well

known in geometry from other investigations ;
viz. all these

spheres envelop a surface known as Dupin's cyclide. We
have thus found a noteworthy correlation between the hyper-

boloid of one sheet and Dupin's cyclide.

Perhaps the most striking example of the fruitfulness of this

work of Lie's is his discovery that by means of this transfor-

mation the lines of curvature of a surface are transformed into

asymptotic lines of the transformed surface, and vice versa.

This appears by taking the definition given above for the lines

of curvature and translating it word for word into the language

of line-geometry. Two problems in the infinitesimal geome-

try of surfaces, that had long been regarded as entirely distinct,

are thus shown to be really identical. This must certainly be

regarded as one of the most elegant contributions to differential

geometry made in recent times.



Lecture III.: SOPHUS LIE.

(August 30, 1893.)

The distinction between analytic and algebraic functions,

so important in pure analysis, enters also into the treatment

of geometry.

Analytic functions are those that can be represented by a

power series, convergent within a certain region bounded by

the so-called circle of convergence. Outside of this region

the analytic function is not regarded as given a priori ; its

continuation into wider regions remains a matter of special

investigation and may give very different results, according to

the particular case considered.

On the other hand, an algebraic function, w = Alg. (z), is

supposed to be known for the whole complex plane, having a

finite number of values for every value of z.

Similarly, in geometry, we may confine our attention to a

limited portion of an analytic curve or surface, as, for instance,

in constructing the tangent, investigating the curvature, etc.
;

or we may have to consider the whole extent of algebraic curves

and surfaces in space.

Almost the whole of the applications of the differential and

integral calculus to geometry belongs to the former branch of

geometry ;
and as this is what we are mainly concerned with in

the present lecture, we need not restrict ourselves to algebraic

functions, but may use the more general analytic functions

confining ourselves always to limited portions of space. I

18
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thought it advisable to state this here once for all, since here in

America the consideration of algebraic curves has perhaps been

too predominant.

The possibility of introducing new elements of space has been

pointed out in the preceding lecture. To-day we shall use again

a new space-element, consisting of an infinitesimal portion of a

surface (or rather of its tangent plane) with a definite point in

it. This is called, though not very properly, a surface-element

(Flachenelement), and may perhaps be likened to an infinitesi-

mal fish-scale. From a more abstract point of view it may be

defined as simply the combination of a plane with a point in it.

As the equation of a plane passing through a point (x, y, z)

can be written in the form

x',y', z f

being the current co-ordinates, we have x, y, z, p, q as the

co-ordinates of our surface-element, so that space becomes a

fivefold manifoldness. If homogeneous co-ordinates be used,

the point (xv xv x
3 , x) and the plane (uv uv z/3 , u) passing

through it are connected by the condition

x\ux -f x2u2 + xsu3 + x4u4
= o,

expressing their united position ;
and the number of indepen-

dent constants is 3 + 3 1=5, as before.

Let us now see how ordinary geometry appears in this

representation. A point, being the locus of all surface-elements

passing through it, is represented as a manifoldness of two

dimensions, let us say for shortness, an M2
. A curve is repre-

sented by the totality of all those surface-elements that have

their point on the curve and their plane passing through the

tangent ;
these elements form again an M2

. Finally, a surface

is given by those surface-elements that have their point on the
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surface and their plane coincident with the tangent plane of the

surface
; they, too, form an M2 .

Moreover, all these M2
s have an important property in

common : any two consecutive surface-elements belonging to

the same point, curve, or surface always satisfy the condition

dz pdx qdy = o,

which is a simple case of a Pfaffian relation
;
and conversely, if

two surface-elements satisfy this condition, they belong to the

same point, curve, or surface, as the case may be.

Thus we have the highly interesting result that in the geome-

try of surface-elements points as well as curves and surfaces are

brought under one head, being all represented by twofold mani-

foldnesses having the property just explained. This definition

is the more important as there are no other M2 s having the

same property.

We now proceed to consider the very general kind of trans-

formations called by Lie contact-transformations. They are

transformations that change our element (x, y, z, p, q) into

(,f',y, z\ p
r

, q') by such substitutions

x' = <t>(x,y,z,p,q), y' = ^(x} y,z,p,q), z'=---, /=, </=,

as will transform into itself the linear differential equation

dz pdx qdy = o.

The geometrical meaning of the transformation is evidently that

anyM2 having the given property is changed into an M2 having

the same property. Thus, for instance, a surface is transformed

generally into a surface, or in special cases into a point or a

curve. Moreover, let us consider two manifoldnesses M
2 having

a contact, i.e. having a surface-element in common
;
these M2

s

are changed by the transformation into two other M2
's having
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also a contact. From this characteristic the name given by
Lie to the transformation will be understood.

Contact-transformations are so important, and occur so fre-

quently, that particular cases attracted the attention of geome-

ters long ago, though not under this name and from this point

of view, i.e. not as contact-transformations, so that the true

insight into their nature could not be obtained.

Numerous examples of contact-transformations are given

in my (lithographed) lectures on H'ohere Geometrie, delivered

during the winter-semester of 1892-93. Thus, an example

in two dimensions is found in the problem of wheel-gearing.

The outline of the tooth of one wheel being given, it is here

required to find the outline of the tooth of the other wheel,

as I explained to you in my lecture at the Chicago Exhibition,

with the aid of the models in the German university exhibit.

Another example is found in the theory of perturbations in

astronomy ; Lagrange's method of variation of parameters as

applied to the problem of three bodies is equivalent to a

contact-transformation in a higher space.

The group of 00 15 substitutions considered yesterday in

line-geometry is also a group of contact-transformations, both

the collineations and reciprocations having this character.

The reciprocations give the first well-known instance of the

transformation of a point into a plane {i.e. a surface), and a

curve into a developable (i.e. also a surface). These trans-

formations of curves will here be considered as transforming

the elements of the points or curves into the elements of the

surface.

Finally, we have examples of contact-transformations, not

only in the transformations of spheres discussed in the last

lecture, but even in the general transition from the line-

geometry of Pliicker to the sphere-geometry of Lie. Let us

consider this last case somewhat more in detail.
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First of all, two lines that intersect have, of course, a

surface-element in common
;

and as the two corresponding

spheres must also have a surface-element in common, they

will be in contact, as is actually the case for our transformation.

It will be of interest to consider more closely the correlation

between the surface-elements of a line and those of a sphere,

although it is given by imaginary formulae. Take, for instance,

the totality of the surface-elements belonging to a circle on

one of the spheres ;
we may call this a circular set of elements.

In line-geometry there corresponds the set of surface-elements

along a generating line of a skew surface
;
and so on. The

theorem regarding the transformation of the curves of curva-

ture into asymptotic lines becomes now self-evident. Instead

of the curve of curvature of a surface we have here to con-

sider the corresponding elements of the surface which we may
call a curvature set. Similarly, an asymptotic line is replaced

by the elements of the surface along this line
;
to this the name

osculating set may be given. The correspondence between the

two sets is brought out immediately by considering that two

consecutive elements of a curvature set belong to the same

sphere, while two consecutive elements of an osculating set

belong to the same straight line.

One of the most important applications of contact-transforma-

tions is found in the theory of partial differential equations ;

I shall here confine myself to partial differential equations of

the first order. From our new point of view, this theory

assumes a much higher degree of perspicuity, and the true

meaning of the terms "solution," "general solution," "com-

plete solution," "singular solution," introduced by Lagrange

and Monge, is brought out with much greater clearness.

Let us consider the partial differential equation of the first

order

f(x,y,z,/>, q) = o.
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In the older theory, a distinction is made according to the way
in which p and q enter into the equation. Thus, when p 'and

q enter only in the first degree, the equation is called linear.

Ifp and q should happen to be both absent, the equation would

'not be regarded as a differential equation at all. From the

higher point of view of Lie's new geometry, this distinction

disappears entirely, as will be seen in what follows.

The number of all surface elements in the whole of space is

of course oo 5 . By writing down our equation we single out

from these a manifoldness of four dimensions, Mp of oo 4 ele-

ments. Now, to find a " solution
"

of the equation in Lie's

sense means to single out from this M a twofold manifoldness,

M2 ,
of the characteristic property ;

whether this M2
be a point,

a curve, or a surface, is here regarded as indifferent. What

Lagrange calls finding a "complete solution" consists in

dividing the M into oo 2 M
2

s. This can of course be done

in an infinite number of ways. Finally, if any singly infinite

set be taken out of the oo 2 M
2 s, we have in the envelope of

this set what Lagrange calls a "
general solution." These

formulations hold quite generally for all partial differential

equations of the first order, even for the most specialized forms.

To illustrate, by an example, in what sense an equation of

the form f(x, y> z)=o may be regarded as a partial differ-

ential equation and what is the meaning of its solutions, let

us consider the very special case z= o. While in ordinary

co-ordinates this equation represents all the points of the xy-

plane, in Lie's system it represents of course all the stirface-

elements whose points lie in the plane. Nothing is so simple

as to assign a "complete solution" in this case; we have only

to take the oo 2 points of the plane themselves, each point being

an M2 of the equation. To derive from this the "
general solu-

tion," we must take all possible singly infinite sets of points

in the plane, i.e. any curve whatever, and form the envelope
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of the surface-elements belonging to the points ;
in other words,

we must take the elements touching the curve. Finally, the

plane itself represents of course a "
singular solution."

Now, the very high interest and importance of this simple

illustration lies in the fact that by a contact-transformation

every partial differential equation of the first order can be

changed into this particular form z= o. Hence the whole dis-

position of the solutions outlined above holds quite generally.

A new and deeper insight is thus gained through Lie's,

theory into the meaning of problems that have long been

regarded as classical, while at the same time a full array of

new problems is brought to light and finds here its answer.

It can here only be briefly mentioned that Lie has done much

in applying similar principles to the theory of partial differential

equations of the second order.

At the present time Lie is best known through his theory of

continuous groups of transformations, and at first glance it

might appear as if there were but little connection between this

theory and the geometrical considerations that engaged our

attention in the last two lectures. I think it therefore desira-

ble to point out here this connection. It has been the final

aim of Lie from the beginning to make progress in the theory

of differential equations ; and as subsidiary to this end may be

regarded both the geometrical developments considered in these

lectures and the theory of continuous groups.

For further particulars concerning the subjects of the present

as well as the two preceding lectures, I may refer to my (litho-

graphed) lectures on Hohere Geometrie, delivered at Gottingen,

in 1892-93. The theory of surface-elements is also fully devel-

oped in the second volume of the Theorie der Transformations-

gruppen, by Lie and Engel (Leipzig, Teubner, 1890).



Lecture IV. : ON THE REAL SHAPE OF ALGE-
BRAIC CURVES AND SURFACES.

(August 31, 1893.)

We turn now to algebraic functions, and in particular to the

question of the actual geometric forms corresponding to such

functions. The question as to the reality of geometric forms

and the actual shape of algebraic curves and surfaces was some-

what neglected for a long time. Otherwise it would be difficult

to explain, for instance, why the connection between Cayley's

theory of projective measurement and the non-Euclidean geom-

etry should not have been perceived at once. As these ques-

tions are even now less well known than they deserve to be, I

proceed to give here an historical sketch of the subject, without,

however, attempting completeness.

It must be counted among the lasting merits of Sir Isaac

Newton that he first investigated the shape of the plane curves

of the third order. His Enumeratio linearum tertii ordinis*

shows that he had a very clear conception of projective

geometry ;
for he says that all curves of the third order can

be derived by central projection from five fundamental types

(Fig. 1). But I wish to direct your particular attention to the

paper by Mobius, Ueber die Grundfonnen der Linien der drittefi

Ordnung^ where the forms of the cubic curves are derived by

* First published as an appendix to Newton's Opticks, 1 704.

t Abhandlungen der Konigl. Sachsischen Gesellschaft der Wissenschaften, math.-

phys. Klasse, Vol. I (1852), pp. 1-82; reprinted in Mobius' Gesammelte Werke,

Vol. Ill (1886), pp. 89-176.

25
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purely geometric considerations. Owing to its remarkable

elegance of treatment, this paper has given the impulse to

all the subsequent researches in this line that I shall have

to mention.

In 1872 we considered, in Gottingen, the question as to the

shape of surfaces of the third order. As a particular case,

Clebsch at this time constructed his beautiful model of the

Fig.

diagonal surface, with 27 real lines, which I showed to you at

the Exhibition. The equation of this surface may be written

in the simple form

2* = o, X*3 = o,

which shows that the surface can be transformed into itself by

the 120 permutations of the xs.

It may here be mentioned as a general rule, that in select-

ing a particular case for constructing a model the first pre-

requisite is regularity. By selecting a symmetrical form for

the model, not only is the execution simplified, but what is of

more importance, the model will be of such a character as to

impress itself readily on the mind.

Instigated by this investigation of Clebsch, I turned to the

general problem of determining all possible forms of cubic sur-
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faces.* I established the fact that by the principle of continu-

ity all forms of real surfaces of the third order can be derived

from the particular surface having four real conical points.

This surface, also, I exhibited to you at the World's Fair, and

pointed out how the diagonal surface can be derived from it.

But what is of primary importance is the completeness of

enumeration resulting from my point of view
;

it would be of

comparatively little value to derive any number of special forms

if it cannot be proved that the method used exhausts the

subject. Models of the typical cases of all the principal forms

of cubic surfaces have since been constructed by Rodenberg for

Brill's collection.

In the 7th volume of the Math. Annalen (1874) Zeuthenf has

discussed the various forms of plane curves of the fourth order

(C4). He considers in particular the reality

of the double tangents on these curves. The C- -o

number of such tangents is 28, and they are

all real when the curve consists of four sepa-

rate closed portions (Fig. 2). What is of par-

ticular interest is the relation of Zeuthen's (

vT~"^?
researches on quartic curves to my own re- _. _

searches on cubic surfaces, as explained by

Zeuthen himself.} It had been observed before, by Geiser, that

if a cubic surface be projected on a plane from a point on the

surface, the contour of the projection is a quartic curve, and

that every quartic curve can be generated in this way. If a

surface with four conical points be chosen, the resulting quartic

has four double points ;
that is, it breaks up into two conies

* See my paper Ueber Fl'dchen dritter Ordnung, Math. Annalen, Vol. 6 (1873),

pp- ss 1-^ 81 -

t Sur les differentes formes des courbes planes du quatrieme ordre, pp. 410-432.

\ Atudes des proprietes de situation des surfaces cubiques, Math. Annalen, Vol. 8

(1875), pp. 1-30.

a d
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(Fig. 3). By considering the shaded portions in the figure it

will readily be seen how, by the principle of continuity, the four

ovals of the quartic (Fig. 2) are obtained. This corresponds

exactly to the derivation of the diagonal

surface from the cubic surface having four

conical points.

The attempts to extend this application

of the principle of continuity so as to gain

an insight into the shape of curves of the

nth order have hitherto proved futile, as

far as a general classification and an enu-

meration of all fundamental forms is concerned. Still, some

important results have been obtained. A paper by Harnack*

and a more recent one by Hilbertf are here to be mentioned.

Harnack finds that, if p be the deficiency of the curve, the

maximum number of separate branches the curve can have is

p+i\ and a curve with p+i branches actually exists. Hil-

bert's paper contains a large number of interesting special

results which from their nature cannot be included in the

present brief summary.

I myself have found a curious relation between the numbers

of real singularities.^ Denoting the order of the curve by ;/,

the class by k, and considering only simple singularities, we

may have three kinds of double points, say d' ordinary and d"

isolated real double points, besides imaginary double points ;

then there may be r* real cusps, besides imaginary cusps ;
and

similarly, by the principle of duality, /' ordinary, t" isolated

* Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Annalen, Vol.

10 (1876), pp. 189-198. v

f Ueber die reellen Zitge algebraischer Curven, Math. Annalen, Vol. 38 (1891),

pp. 1 15-138.
*

l-'.ine neue Relation zwischen den Singularit'dten einer algebraischen Curve,

Math. Annalen, Vol. 10 (1876), pp. 199-209.
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real double tangents, besides imaginary double tangents ; also

w' real inflexions, besides imaginary inflexions. Then it can

be proved by means of the principle of continuity, that the

following relation must hold :

n + w1 + 2 /" = k + r* + 2 d".

This general law contains everything that is known as to

curves of the third or fourth orders. It has been somewhat

extended in a more algebraic sense by several writers. More-

over, Brill, in Vol. 16 of the Math. Annalen (1880),* has shown

how the formula must be modified when higher singularities are

involved.

As regards quartic surfaces, Rohn has investigated an enor-

mous number of special cases
;
but a complete enumeration he

has not reached. Among the special

surfaces of the fourth order the Rum-

mer surface with 16 conical points is

one of the most important. The

models constructed by Plucker in

connection with his theory of com-

plexes of lines all represent special

cases of the Kummer surface. Some

types of this surface are also included

in the Brill collection. But all these

models are now of less importance,

since Rohn found the following in-

teresting and comprehensive result.

Imagine a quadric surface with four generating lines of each set

(Fig. 4). According to the character of the surface and the

reality, non-reality, or coincidence of these lines, a large number

of special cases is possible ;
all these cases, however, must be

* Ueber Singularit'dten ebener algebraischer Curven und eine neue Curvenspecies,

pp. 348-408.

Fig. 4.



30 LECTURE IV.

treated alike. We may here confine ourselves to the case of

an hyperboloid of one sheet with four distinct lines of each

set. These lines divide the surface into 16 regions. Shading

the alternate regions as in the figure, and regarding the shaded

regions as double, the unshaded regions being disregarded, we

have a surface consisting of eight separate closed portions hang-

ing together only at the points of intersection of the lines
;
and

this is a Kummer surface with 16 real double points. Rohn's

researches on the Kummer surface will be found in the Matm

Annalcn, Vol. iS (1881);* his more general investigations on

quartic surfaces, ib., Vol. 29 (1887). f

There is still another mode of dealing with the shape of

curves (not of surfaces), viz. by means of the theory of Rie-

mann. The first problem that here presents itself is to estab-

lish the connection between a plane curve and a Riemann sur-

face, as I have done in Vol. 7 of the Math. Annalen (1874)4

Let us consider a cubic curve
;

its deficiency is p=i. Now it

is well known that in Riemann's theory this deficiency is a

measure of the connectivity of the corresponding Riemann sur-

face, which, therefore, in the present case, must be that of a

tore, or anchor-ring. The question then arises : what has the

anchor-ring to do with the cubic curve ? The connection will

best be understood by considering the curve of the third class

whose shape is represented in Fig. 5. It is easy to see that of

the three tangents that can be drawn to this curve from any

point in its plane, all three will be real if the point be selected

outside the oval branch, or inside the triangular branch
;
but that

only one of the three tangents will be real for any point in the

shaded region, while the other two tangents are imaginary. As

* Die verschiedenen Gestallen der Kummer'schen F/ache, pp. 99-159.

t Die Flachen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Ge-

stallung, pp. 81-96.

X Ueber eine neue Art der Riemann'1schen Flachen, pp. 558-566.
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there are thus two imaginary tangents corresponding to each

point of this region, let us imagine it covered with a double

leaf ; along the curve the two leaves must, of course, be

regarded as joined. Thus we obtain a surface which can be

considered as a Riemann surface belonging to the curve, each

point of the surface corresponding to a single tangent of the

curve. Here, then, we have our anchor-ring. If on such a sur-

face we study integrals, they will be of double periodicity, and

the true reason is thus disclosed for the connection of elliptic

Fig. 5.

integrals with the curves of the third class, and hence, owing

to the relation of duality, with the curves of the third order.

To make a further advance, I passed to the general theory

of Riemann surfaces. To real curves will of course correspond

symmetrical Riemann surfaces, i.e. surfaces that reproduce

themselves by a conformal transformation of the second kind

(i.e. a transformation that inverts the sense of the angles).

Now it is easy to enumerate the different symmetrical types

belonging to a given /. The result is that there are altogether

p+i "
diasymmetric

"
and "

orthosymmetric
"

cases.

If we denote as a line of symmetry any line whose points
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remain unchanged by the conformal transformation, the dia-

symmetric cases contain respectively p, p 1, 2, I, o lines

of symmetry, and the orthosymmetric cases contain p+i, p I

p ^... such lines. A surface is called diasymmetric or ortho-

symmetric according as it does not or does break up into two

parts by cuts carried along all the lines of symmetry. This

enumeration, then, will contain a general classification of real

curves, as indicated first in my pamphlet on Riemann's theory.*

In the summer of 1892 I resumed the theory and developed

a large number of propositions concerning the reality of the

roots of those equations connected with our curves that can be

treated by means of the Abelian integrals. Compare the last

volume of the Math. Annalen\ and my (lithographed) lectures

on Riemanrische Fidehen
f
Part II.

In the same manner in which we have to-day considered

ordinary algebraic curves and surfaces, it would be interesting

to investigate all algebraic configurations so as to arrive at a

truly geometrical intuition of these objects.

In concluding, I wish to insist in particular on what I regard

as the principal characteristic of the geometrical methods that I

have discussed to-day : these methods give us an actual mental

image of the configuration under discussion, and this I consider

as most essential in all true geometry. For this reason the

so-called synthetic methods, as usually developed, do not appear

to me very satisfactory. While giving elaborate constructions

for special cases and details they fail entirely to afford a general

view of the configurations as a whole.

* Ueber Riemanris Theorie der algebraischen Functionen und Hirer Integrate,

Leipzig, Teubner, 1882. An English translation by Frances Hardcastle (London,

Macmillan) has just appeared.

t Ueber Realitatsverhaltnisse bet der einem beliebigen Geschlechte zugehorigen

Normalcurve der <p, Vol. 42 (1893), pp. 1-29.



Lecture V. : THEORY OF FUNCTIONS AND
GEOMETRY.

(September I, 1893.)

A geometrical representation of a function of a complex

variable w=f(z), where w= u+ iv and z=x+ iy, can be ob-

tained by constructing models of the two surfaces u=
cf>(x, y),

v=yjr(x, y). This idea is realized in the models constructed

by Dyck, which I have shown to you at the Exhibition.

Another well-known method, proposed by Riemann, consists

in representing each of the two complex variables in the usual

way in a plane. To every point in the .s'-plane will correspond

one or more points in the 7^-plane ;
as z moves in its plane, w

describes a corresponding curve in the other plane. I may
refer to the work of Holzmiiller* as a good elementary intro-

duction to this subject, especially on account of the large

number of special cases there worked out and illustrated by

drawings.

In higher investigations, what is of interest is not so much

the corresponding curves as corresponding areas or regions

of the two planes. According to Riemann's fundamental

theorem concerning conformal representation, two simply con-

nected regions can always be made to correspond to each other

conformally, so that either is the conformal representation

*
Einfuhrung in die Theorie der isogonalen Verwandtschafte'n und der con/ormen

Abbildungen, verbunden mit Anwendungen anf mathematische Physik, Leipzig,

Teubner, 1882.
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{Abbildung) of the other. The three constants at our disposal

in this correspondence allow us to select three arbitrary points

on the boundary of one region as corresponding to three arbi-

trary points on the boundary of the other region. Thus

Riemann's theory affords a geometrical definition for any func-

tion whatever by means of its conformal representation.

This suggests the inquiry as to what conclusions can be

drawn from this method concerning the nature of transcen-

dental functions. Next to the elementary transcendental func-

tions the elliptic functions are usually regarded as the most

important. There is, however, another class for which at

least equal importance must be claimed on account of their

numerous applications in astronomy and mathematical physics ;

these are the hypergeometric functions, so called owing to their

connection with Gauss's hypergeometric series.

The hypergeometric functions can be defined as the integrals

of the following linear differential equation of the second order:

d-w .

z a z a

f
!--,, igto +

rvv(s-/,)(g -,)

J dz z az c

|

^n"{b-c) (b-a)
|

vV'(c-a) (c-b)l w
^_ Q

z b zc \{zd){zb){zc)

where z=a, b, c are the three singular points and \\ \"
; ^', n" ;

v', v" are the so-called exponents belonging respectively to

<7, b
y

c.

If w
1
be a particular solution, w2 another, the general solution

can be put in the form u.w
x+$wv where

, ft are arbitrary con-

stants
;
so that

aw
x -h fl7v2 and yw x + Sw2

represent a pair of general solutions
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If we now introduce the quotient =
r)(z) as a new variable,

10.,

its most general value is aWl +
^;

2 = ct7? + /
~
and contains there-

yw-L+ bw2 yrj-\-6

fore three arbitrary constants. Hence 77 satisfies a differential

equation of the third order which is readily found to be

B-iKY
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three circular arcs ;
let us call such an area a circular triangle

(Kreisbogendreieck). The angles at the vertices of this triangle

are \ir, fur, vir.

This, then, is the geometrical representation we have to

take as our basis. In order to derive from it conclusions as

to the nature of the transcendental functions denned by the

differential equation, it will evidently be necessary to inquire

what are the forms of such circular triangles in the most

general case. For it is to be noticed that there is no restric-

tion laid upon the values of the constants X, //,, v, so that the

angles of our triangle are not necessarily acute, nor even

convex; in other words, in the general case the vertices will

be branch-points. The triangle itself is here to be regarded

as something like an extensible and flexible membrane spread

out between the circles forming the boundary.

I have investigated this question in a paper published in

the MatJi. Annalen, Vol. 37.* It will be convenient to project

the plane containing the circular triangle stereographically on

a sphere. The question then is as to the most general form

of spherical triangles, taking this term in a generalized meaning

as denoting any triangle on the sphere bounded by the inter-

sections of three planes with the sphere, whether the planes

intersect at the centre or not.

This is really a question of elementary geometry ;
and it is

interesting to notice how often in recent times higher re-

search has led back to elementary problems not previously

settled.

The result in the present case is that there are two, and

only two, species of such generalized triangles. They are

obtained from the so-called elementary triangle by two distinct

operations : (a) lateral, (b) polar attachment of a circle.

* Ueber die Nullstellen dtr hypergeometrischen Reihc, pp. 573-590.
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Let abc (Fig. 7) be the elementary spherical triangle. Then

the operation of lateral attachment consists in attaching to

the area abc the area enclosed by one of the sides, say be,

this side being produced so as to form a complete circle.

The process can, of course, be repeated any number of times

and applied to each side. If one circular area be attached at

be, the angles at b and c are increased each by it ;
if the

whole sphere be attached, by 2tt, etc. The vertices in this

way become branch-points. A triangle so obtained I call a

triangle of the first species.

Fig. 7. Fig. 8.

A triangle of the second species is produced by the process

of polar attachment of a circle, say at be; the whole area

bounded by the circle be is, in this case, connected with the

original triangle along a branch-cut reaching from the vertex

a to some point on be. The point a becomes a branch-point,

its angle being increased by 277-. Moreover, lateral attach-

ments can be made at ab and ac.

The two species of triangles are now characterized as follows :

the first species may have any number of lateral attachments

at any or all of the three sides, while the second has a polar

attachment to one vertex and the opposite side, and may have

lateral attachments to the other two sides.
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Analytically the two species are distinguished by inequali-

ties between the absolute values of the constants \, fi, v. For

the first species, none of the three constants is greater than

the sum of the other two, i.e.

WSM+M IHSM+IH M$W+Ws

for the second species,

where X refers to the pole.

For the application to the theory of functions, it is impor-

tant to determine, in the case of the second species, the

number of times the circle formed by the side opposite the

vertex is passed around. I have found this number to be

E I-
'

' '

),
where E denotes the greatest positive

integer contained in the argument, and is therefore always zero

when this argument happens to be negative or fractional.

Let us now apply these geometrical ideas to the theory of

hypergeometric functions. I can here only point out one of

the results obtained. Considering only the real values that

t)
= zv

1/zv2 can assume between a and b> the question presents

itself as to the shape of the 77-curve between these limits.

Let us consider for a moment the curves w
x
and w2. It is

well known that, if w
x

oscillates between a and b from one

side of the axis to the other, w2 will also oscillate
;

their

quotient
t

n=wl/zv2 is represented by a curve that consists of

separate branches extending from 00 to +00, somewhat like

the curve j/=tanx Now it appears as the result of the

investigation that the number of these branches, and therefore

the number of the oscillations of w
1
and wv is given precisely

by the number of circuits of the point c
;

that is to say, it is

-[
J.

This is a result of importance for all
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applications of hypergeometric functions which was derived

only later (by Hurwitz) by means of Sturm's methods.

I wish to call your particular attention not so much to the

result itself, however interesting it may be, as to the geometrical

method adopted in deriving it. More advanced researches on a

similar line of thought are now being carried on at Gottingen

by myself and others.

When a differential equation with a larger number of singular

points than three is the object of investigation, the triangles

must be replaced by quadrangles and other polygons. In my
lithographed lectures on Linear Differential Equations; delivered

in 1890-91, I have thrown out some suggestions regarding

the treatment of such cases. The difficulty arising in these

generalizations is, strange to say, merely of a geometrical

nature, viz. the difficulty of obtaining a general view of the

possible forms of the polygons.

Meanwhile, Dr. Schoenflies has published a paper on recti-

linear polygons of any number of sides* while Dr. Van Vleck

has considered such rectilinear polygons together with the

functions they define, the polygons being defined in so general

a way as to admit branch-points even in the interior. Dr.

Schoenflies has also treated the case of circular quadrangles,

the result being somewhat complicated.

In all these investigations the singular points of the ,2-plane

corresponding to the vertices of the polygons are of course

assumed to be real, as are also their exponents. There remains

the still more general question how to represent by conformal

correspondence the functions in the case when some of these

elements are complex. In this direction I have to mention the

name of Dr. Schilling who has treated the case of the ordinary

hypergeometric function on the assumption of complex exponents.

* Ueber Kreisbogenpolygone, Math. Annalen, Vol. 42, pp. 377-408.
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This treatment of the functions defined by linear differential

equations of the second order is of course only an example

of the general discussion of complex functions by means of

geometry. I hope that many more interesting results will be

obtained in the future by such geometrical methods.



Lecture VI.: ON THE MATHEMATICAL CHAR-
ACTER OF SPACE-INTUITION AND THE
RELATION OF PURE MATHEMATICS TO
THE APPLIED SCIENCES.

(September 2, 1893.)

In the preceding lectures I have laid so much stress on

geometrical methods that the inquiry naturally presents itself

as to the real nature and limitations of geometrical intuition.

In my address before the Congress of Mathematics at Chi-

cago I referred to the distinction between what I called the

naive and the refilled intuition. It is the latter that we find in

Euclid
;
he carefully develops his system on the basis of well-

formulated axioms, is fully conscious of the necessity of exact

proofs, clearly distinguishes between the commensurable and

incommensurable, and so forth.

The narve intuition, on the other hand, was especially active

during the period of the genesis of the differential and integral

calculus. Thus we see that Newton assumes without hesitation

the existence, in every case, of a velocity in a moving point,

without troubling himself with the inquiry whether there might

not be continuous functions having no derivative.

At the present time we are wont to build up the infinitesi-

mal calculus on a purely analytical basis, and this shows that

we are living in a critical period similar to that of Euclid.

It is my private conviction, although I may perhaps not be

able to fully substantiate it with complete proofs, that Euclid's

41
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period also must have been preceded by a "nai've" stage of

development. Several facts that have become known only

quite recently point in this direction. Thus it is now known

that the books that have come down to us from the time of

Euclid constitute only a very small part of what was then

in existence ; moreover, much of the teaching was done by

oral tradition. Not many of the books had that artistic finish

that we admire in Euclid's " Elements
"

;
the majority were

in the form of improvised lectures, written out for the use

of the students. The investigations of Zeuthen* and Allman f

have done much to clear up these historical conditions.

If we now ask how we can account for this distinction

between the naTve and refined intuition, I must say that, in

my opinion, the root of the matter lies in the fact that the

naive intuition is not exact, while the refined intuition is not

properly intuition at all, but arises through the logical develop-

mcnt front axioms considered as perfectly exact.

To explain the meaning of the first half of this statement it

is my opinion that, in our naYve intuition, when thinking of

a point we do not picture to our mind an abstract mathemati-

cal point, but substitute something concrete for it. In imagin-

ing a line, we do not picture to ourselves "length without

breadth," but a strip of a certain width.

Now such a strip has of course always

a tangent (Fig. 9) ;
i.e. we can always

imagine a straight strip having a small

portion (element) in common with the curved strip ; similarly

with respect to the osculating circle. The definitions in this

case are regarded as holding only approximately, or as far as

may be necessary.

* Die Lehre von den Kegelschnitten im Altertum, ubersetzt von R. v. Fischer-

Benzon, Kopenhagen, Host, 1886.

t Greek geometryfrom Thales to Euclid, Dublin, Hodges, 1889.
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The " exact
"

mathematicians will of course say that such

definitions are not definitions at all. But I maintain that in

ordinary life we actually operate with such inexact definitions.

Thus we speak without hesitancy of the direction and curvature

of a river or a road, although the " line" in this case has certainly

considerable width.

As regards the second half of my proposition, there actually

are many cases where the conclusions derived by purely logical

reasoning from exact definitions can no more be verified by

intuition. To show this, I select examples from the theory of

automorphic functions, because in more common geometrical

illustrations our judgment is warped by the familiarity of the

ideas.

Let any number of non-intersecting circles I, 2, 3, 4, ,
be

given (Fig. 10), and let every circle be reflected {i.e. transformed

Fig. 10.

by inversion, or reciprocal radii vectores) upon every other circle
;

then repeat this operation again and again, ad infinitum. The

question is, what will be the configuration formed by the totality
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of all the circles, and in particular what will be the position of

the limiting points. There is no difficulty in answering these

questions by purely logical reasoning ;
but the imagination

seems to fail utterly when we try to form a mental image of]

the result.

Again, let a series of circles be given, each circle touching the

following, while the last touches the first (Fig. 1 1). Every circle

is now reflected upon every other just as in the preceding exam-

ple, and the process is repeated indefinitely. The special case

when the original points of contact happen to lie on a circle

Fig. 11.

being excluded, it can be shown analytically that the continuous

curve which is the locus of all the points of contact is not an

analytic curve. The points of contact form a manifoldness that

is everywhere dense on the curve (in the sense of G. Cantor),

although there are intermediate points between them. At

each of the former points there is a determinate tangent,

while there is none at the intermediate points. Second deriv-

atives do not exist at all. It is easy enough to imagine a strip

covering all these points ;
but when the width of the strip is

reduced beyond a certain limit, we find undulations, and it seems

impossible to clearly picture to the mind the final outcome.

It is to be noticed that we have here an example of a curve
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with indeterminate derivatives arising out of purely geometrical

considerations, while it might be supposed from the usual

treatment of such curves that they can only be defined by
artificial analytical series.

Unfortunately, I am not in a position to give a full account

of the opinions of philosophers on this subject. As regards

the more recent mathematical literature, I have presented my
views as developed above in a paper published in 1873, and

since reprinted in the Math. Annalen.* Ideas agreeing in

general with mine have been expressed by Pasch, of Giessen,

in two works, one on the foundations of geometry,! the other

on the principles of the infinitesimal calculus.^ Another

author, Kopcke, of Hamburg, has advanced the idea that our

space-intuition is exact as far as it goes, but so limited as to

make it impossible for us to picture to ourselves curves with-

out tangents.

On one point Pasch does not agree with me, and that is as to

the exact value of the axioms. He believes and this is the

traditional view that it is possible finally to discard intuition

entirely, basing the whole science on the axioms alone. I am

of the opinion that, certainly, for the purposes of research it is

always necessary to combine the intuition with the axioms. I

do not believe, for instance, that it would have been possible to

derive the results discussed in my former lectures, the splendid

researches of Lie, the continuity of the shape of algebraic curves

and surfaces, or the most general forms of triangles, without

the constant use of geometrical intuition.

* Ueber den allgemeinen Functionsbegriff und dessen Darstellung durch eine

willkiirliche Curve, Math. Annalen, Vol. 22 (1883), pp. 249-259.

t Vorlesungen iiber neuere Geometrie, Leipzig, Teubner, 1882.

% Einleitung in die Differential- und Iniegralrechnung, Leipzig, Teubner, 1882.

Ueber Differentiirbarkeit und Anschaulichkeit der stetigen Functionen, Math.

Annalen, Vol. 29 (1887), pp. 1 23-140.
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Pasch's idea of building up the science purely on the basis of

the axioms has since been carried still farther by Peano, in his

logical calculus.

Finally, it must be said that the degree of exactness of the

intuition of space may be different in different individuals, per-

haps even in different races. It would seem as if a strong

naive space-intuition were an attribute pre-eminently of the

Teutonic race, while the critical, purely logical sense is more

fully developed in the Latin and Hebrew races. A full investi-

gation of this subject, somewhat on the lines suggested by
Francis Galton in his researches on heredity, might be inter-

esting.

What has been said above with regard to geometry ranges

this science among the applied sciences. A few general

remarks on these sciences and their relation to pure mathe-

matics will here not be out of place. From the point of view

of pure mathematical science I should lay particular stress on

the heuristic value of the applied sciences as an aid to discov-

ering new truths in mathematics. Thus I have shown (in my
little book on Riemann's theories) that the Abelian integrals

can best be understood and illustrated by considering electric

currents on closed surfaces. In an analogous way, theorems

concerning differential equations can be derived from the con-

sideration of sound-vibrations
;
and so on.

But just at present I desire to speak of more practical mat-

ters, corresponding as it were to what I have said before about

the inexactness of geometrical intuition. I believe that the

more or less close relation of any applied science to mathematics

might be characterized by the degree of exactness attained,

or attainable, in its numerical results. Indeed, a rough classifi-

cation of these sciences could be based simply on the number

of significant figures averaged in each. Astronomy (and some

branches of physics) would here take the first rank
;
the num-
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ber of significant figures attained may here be placed as high as

seven, and functions higher than the elementary transcendental

functions can be used to advantage. Chemistry would probably

be found at the other end of the scale, since in this science

rarely more than two or three significant figures can be relied

upon. Geometrical drawing, with perhaps 3 to 4 figures, would

rank between these extremes
;
and so we might go on.

The ordinary mathematical treatment of any applied science

substitutes exact axioms for the approximate results of experi-

ence, and deduces from these axioms the rigid mathematical

conclusions. In applying this method it must not be forgotten

that mathematical developments transcending the limit of exact-

ness of the science are of no practical value. It follows that a

large portion of abstract mathematics remains without finding

any practical application, the amount of mathematics that can

be usefully employed in any science being in proportion to the

degree of accuracy attained in the science. Thus, while the

astronomer can put to good use a wide range of mathemati-

cal theory, the chemist is only just beginning to apply the first

derivative, i.e. the rate of change at which certain processes are

going on
;

for second derivatives he does not seem to have

found any use as yet.

As examples of extensive mathematical theories that do not

exist for applied science, I may mention the distinction between

the commensurable and incommensurable, the investigations on

the convergency of Fourier's series, the theory of non-analytical

functions, etc. It seems to me, therefore, that Kirchhoff makes

a mistake when he says in his Spectral-Analyse that absorption

takes place only when there is exact coincidence between the

wave-lengths. I side with Stokes, who says that absorption
1 takes place in the vicinity of such coincidence. Similarly, when

the astronomer says that the periods of two planets must be

I exactly commensurable to admit the possibility of a collision,
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this holds only abstractly, for their mathematical centres
;
and it

must be remembered that such things as the period, the mass,

etc.,. of a planet cannot be exactly defined, and are changing all

the time. Indeed, we have no way of ascertaining whether

two astronomical magnitudes are incommensurable or not
;
we

can only inquire whether their ratio can be expressed approxi-

mately by two small integers. The statement sometimes made

that there exist only analytic functions in nature is in my

opinion absurd. All we can say is that we restrict ourselves

to analytic, and even only to simple analytic, functions because

they afford a sufficient degree of approximation. Indeed, we

have the theorem (of Weierstrass) that any continuous function

can be approximated to, with any required degree of accuracy,

by an analytic function. Thus if
(f>(x)

be our continuous funcl

tion, and 8 a small quantity representing the given limit of

exactness (the width of the strip that we substitute for the

curve), it is always possible to determine an analytic function

f{x) such that

*(*)=/(*)+, where
|

e
|

<
|

8
|,

within the given limits.

All this suggests the question whether it would not be poi

sible to create a, let us say, abridged system of mathematic

adapted to the needs of the applied sciences, without passing

through the whole realm of abstract mathematics. Such a

system would have to include, for example, the researches of

Gauss on the accuracy of astronomical calculations, or the more

recent and highly interesting investigations of Tchebycheff on

interpolation. The problem, while perhaps not impossible, seems

difficult of solution, mainly on account of the somewhat vague

and indefinite character of the questions arising.

I hope that what I have here said concerning the use of

mathematics in the applied sciences will not be interpreted
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as in any way prejudicial to the cultivation of abstract mathe-

matics as a pure science. Apart from the fact that pure

mathematics cannot be supplanted by anything else as a means

for developing the purely logical powers of the mind, there

must be considered here as elsewhere the necessity of the

presence of a few individuals in each country developed in a

far higher degree than the rest, for the purpose of keeping

up and gradually raising the general standard. Even a slight

raising of the general level can be accomplished only when

some few minds have progressed far ahead of the average.

Moreover, the "abridged" system of mathematics referred

to above is not yet in existence, and we must for the present

deal with the material at hand and try to make the best of it.

Now, just here a practical difficulty presents itself in the

teaching of mathematics, let us say of the elements of the

differential and integral calculus. The teacher is confronted

with the problem of harmonizing two opposite and almost con-

tradictory requirements. On the one hand, he has to consider

the limited and as yet undeveloped intellectual grasp of his

students and the fact that most of them study mathematics

mainly with a view to the practical applications ;
on the other,

his conscientiousness as a teacher and man of science would

seem to compel him to detract in nowise from perfect mathe-

matical rigour and therefore to introduce from the beginning-

all the refinements and niceties of modern abstract mathe-

matics. In recent years the university instruction, at least in

Europe, has been tending more and more in the latter direc-

tion
;
and the same tendencies will necessarily manifest them-

selves in this country in the course of time. The second

edition of the Cours d J

analyse of Camille Jordan may be

regarded as an example of this extreme refinement in laying

the foundations of the infinitesimal calculus. To place a work

of this character in the hands of a beginner must necessarily
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have the effect that at the beginning a large part of the sub-

ject will remain unintelligible, and that, at a later stage, the

student will not have gained the power of making use of

the principles in the simple cases occurring in the applied

sciences.

It is my opinion that in teaching it is not only admissible,

but absolutely necessary, to be less abstract at the start, to

have constant regard to the applications, and to refer to the

refinements only gradually as the student becomes able to

understand them. This is, of course, nothing but a universal

pedagogical principle to be observed in all mathematical

instruction.

Among recent German works I may recommend for the use

of beginners, for instance, Kiepert's new and revised edition of

Stegemann's text-book ;

* this work seems to combine sim-

plicity and clearness with sufficient mathematical rigour. On

the other hand, it is a matter of course that for more advanced

students, especially for professional mathematicians, the study

of works like that of Jordan is quite indispensable.

I am led to these remarks by the consciousness of a growing

danger in the higher educational system of Germany, the

danger of a separation between abstract mathematical science

and its scientific and technical applications. Such separation

could only be deplored ;
for it would necessarily be followed by

shallowness on the side of the applied sciences, and by isolation

on the part of pure mathematics.

* Grundriss der Differential- und Integral-Rechnung, 6te Auflage, herausgegcbcn

von Kiepert, Hannover, Helwing, 1892.



Lecture VII. : THE TRANSCENDENCY OF THE
NUMBERS e AND w.

(September 4, 1893.)

Last Saturday we discussed inexact mathematics
; to-day we

shall speak of the most exact branch of mathematical science.

It has been shown by G. Cantor that there are two kinds

of infinite manifoldnesses : (a) countable (abzaJilbare) manifold-

nesses, whose quantities can be numbered or enumerated so that

to each quantity a definite place can be assigned in the system ;

and (b) non-countable manifoldnesses, for which this is not possi-

ble. To the former group belong not only the rational numbers,

but also the so-called algebraic numbers, i.e. all numbers defined

by an algebraic equation,

a + aYx + a^ + + anx
n =

with integral coefficients (n being of course a positive integer).

As an example of a non-countable manifoldness I may mention

the totality of all numbers contained in a continuum, such as

that formed by the points of the segment of a straight line.

! Such a continuum contains not only the rational and algebraic

; numbers, but also the so-called transcendental numbers. The

I

actual existence of transcendental numbers which thus naturally

I

follows from Cantor's theory of manifoldnesses had been proved

before, from considerations of a different order, by Liouville.

With this, however, is not yet given any means for deciding

\

whether any particular number is transcendental or not. But

5 1
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during the last twenty years it has been established that the

two fundamental numbers e and ir are really transcendental.

It is my object to-day to give you a clear idea of the very

simple proof recently given by Hilbert for the transcendency of

these two numbers.

The history of this problem is short. Twenty years ago,

Hermite * first established the transcendency of e
;

i.e. he

showed, by somewhat complicated methods, that the number e

cannot be the root of an algebraic equation with integral

coefficients. Nine years later, Lindemann,f taking the develop-

ments of Hermite as his point of departure, succeeded in

proving the transcendency of it. Lindemann's work was

verified soon after by Weierstrass.

The proof that it is a transcendental number will forever

mark an epoch in mathematical science. It gives the final

answer to the problem of squaring the circle and settles this

vexed question once for all. This problem requires to derive

the number it by a finite number of elementary geometrical

processes, i.e. with the use of the ruler and compasses alone.

As a straight line and a circle, or two circles, have only two

intersections, these processes, or any finite combination of

them, can be expressed algebraically in a comparatively simple

form, so that a solution of the problem of squaring the circle

would mean that it can be expressed as the root of an algebraic

equation of a comparatively simple kind, viz. one that is solvable

by square roots. Lindemann's proof shows that it is not the

root of any algebraic equation.

The proof of the transcendency of it will hardly diminish the

number of circle-squarers, however
;
for this class of people has

always shown an absolute distrust of mathematicians and a

*
Comptes rendus, Vol. 77 (1873), p. 18, etc.

t Math. Annalen, Vol. 20 (1882), p. 213.
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contempt for mathematics that cannot be overcome by any

amount of demonstration. But Hilbert's simple proof will

surely be appreciated by all those who take interest in the

establishment of mathematical truths of fundamental impor-

tance. This demonstration, which includes the case of the

number e as well as that of 7r, was published quite recently

in the Gottinger Nachrichten* Immediately after f Hurwitz

published a proof for the transcendency of e based on still

more elementary principles ;
and finally, Gordan \ gave a fur-

ther simplification. All three of these papers will be reprinted

in the next Heft of the Math. Annalen.% The problem has

thus been reduced to such simple terms that the proofs for

the transcendency of e and ir should henceforth be introduced

into university teaching everywhere.

Hilbert's demonstration is based on two propositions. One

of these simply asserts the transcendency of e
y

i.e. the impos-

sibility of an equation of theform

a + axe + a2e
2
-\ + ane

n = 0, (1)

where a, av av ... an are integral numbers. This is the original

proposition of Hermite. To prove the transcendency of 7r,

another proposition (originally due to Lindemann) is required,

which asserts the impossibility of an equation of theform

a -}- A -f e?i -f + <?'
3 = o, (2)

where a is an integer, and the exponents are algebraic numbers,

viz. the roots of an algebraic equation

b(3
m + b^- 1 + bSm

~~ + +bm= o,

b, bv bv ... bm being integers.

*
1893, No. 2, p. 113. % Comptes rendus, 1893, p. 1040.

t lb., No. 4. Vol. 43 (1894), pp. 216-224.
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It will be noticed that the latter proposition really includes

the former as a special case
;
for it is of course possible that

the /9's are rational integral numbers, and whenever some of the

roots of the equation for ft are equal, the corresponding terms

in the equation (2) will combine into a single term of the form

a^k
. The former proposition is therefore introduced only for

the sake of simplicity.

The central idea of the proof of the impossibility of equation

(1) consists in introducing for the quantities 1 :e :e2 : ... :e
n

,
in

which the equation is homogeneous, proportional quantities

h + e : /] + i : h + 2 : : In + c,

selected so that each consists of an integer / and a very small

fraction e. The equation then assumes the form

(af + ajx + + aJn) + Oo + a&\ H h#nO = o, (3)

and it can be shown that the /'s and e's can always be so

selected as to make the quantity in the first parenthesis, which

is of course integral, different from zero, while the quantity

the second parenthesis becomes a proper fraction. Now,

the sum of an integer and a proper fraction cannot be eqi

to zero, the equation (1) is proved to be impossible.

So much for the general idea of Hilbert's proof. It will

seen that the main difficulty lies in the proper determinati

of the integers / and the fractions e. For this purpose Hilbc

makes use of a definite integral suggested by the investigations

of Hermite, viz. the integral

where p is an integer to be determined afterwards. Multiply-

ing equation (1) term for term by this integral and dividing

by p\, this equation can evidently be put into the form
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r r r r\
a^\ + ,<- + a^-Ji- + - + a^vL

\ P- P- P- p! /

I ( r f n+ axeJ\ + a^A. + ... +^M- = o,

\ p ! p ! p-v

or designating for shortness the quantities in the two paren-

theses by P1
and P2 , respectively,

/>+/>, = o.

Now it can be proved that the coefficients of a, av a2 ,
-~an

in P
1
are all integers, that p can be so selected as to make

P
1

different from zero, and that at the same time p can be

taken so large as to make P2 as small as we please. Thus,

equation (i) will be reduced to the impossible form (3).

We proceed to prove these properties of P
x
and P

2 . The

integral J is readily seen to be an integer divisible by p\,

owing to the well-known relation
J
zpe~

z

dz=p\. Similarly,

by substituting z=z
r

+i, zz' + 2,-~z=z' +n, it can be shown

,e
2

\
,...ej are integers divisible by (p+i)!. It

follows that P
x
is an integer, viz.

P1 = a(n\y+
1

[mod(p+i)].

If, therefore, p be selected so as to make the right-hand mem-

ber of this congruence not divisible by p+i, the whole expres-

sion P
1

is different from zero.

As regards the condition that P2 should be made as small

as we please, it can evidently be fulfilled by selecting a suffi-

ciently large value for p ;
this is of course consistent with

the condition of making J not divisible by p+i. For by the

theorem of mean values (Mittehvertsatz) the integrals can be

replaced by powers of constant quantities with p in the expo-
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nent
;
and the rate of increase of a power is, for sufficiently

large values of p, always smaller than that of the factorial which

occurs in the denominator.

The proof of the impossibility of equation (2) proceeds on

precisely analogous lines. Instead of the integral J we have

now to use the integral

/' = ^(p+1)

jTV[(s
- A) (z

-
ft)

-.
(z
-

(3m)Y^e-*dz9

the /S's being the roots of the algebraic equation

bp* + hp*-
1 + ... + bm = o.

This integral is decomposed as follows :

*/o Ja

where of course the path of integration must be properly

determined for complex values of /3. For the details I must

refer you to Hilbert's paper.

Assuming the impossibility of equation (2), the transcendency

of 7r follows easily from the following considerations, originally

given by Lindemann. We notice

first, as a consequence of our the-

orem, that, with the exception of

the point x0,y=\, the exponen-

tial ciwve y= e* has no algebraic

point, i.e. no point both of whose

co-ordinates are algebraic num-

bers. In other words, however

densely the plane may be coverJ
with algebraic points, the exponential curve (Fig. 12) manages

to pass along the plane without meeting them, the single poin|

(o, 1) excepted. This curious result can be deduced as follows

from the impossibility of equation (2). Let y be any algebraic

Fig. 12.
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Iquantity, i.e. a. root of any algebraic equation, and let yv y2,
...

be the other roots of the same equation ;
let a similar notation

be used for x. Then, if the exponential curve have any alge-

Ibraic point (x, y), (besides x=o, y= i), the equation

O'-^0O'i-^)O'2-^)"- I

o
(^-^)0'i-^)0'2-^)-

i

J

Bust evidently be fulfilled. But this equation, when multiplied

put, has the form of equation (2), which has been shown to be

impossible.

As second step we have only to apply the well-known identity

which is a special case of y= e
x

. Since in this identity y 1 is

algebraic, x=iir must be transcendental.



Lecture VIII. : IDEAL NUMBERS.

(September 5, 1893.)

The theory of numbers is commonly regarded as something

exceedingly difficult and abstruse, and as having hardly any

connection with the other branches of mathematical science.

This view is no doubt due largely to the method of treatment

adopted in such works as those of Kummer, Kronecker, Dede-

kind, and others who have, in the past, most contributed to the

advancement of this science. Thus Kummer is reported as

having spoken of the theory of numbers as the only pure

branch of mathematics not yet sullied by contact with the

applications.

Recent investigations, however, have made it clear that there

exists a very intimate correlation between the theory of num-

bers and other departments of mathematics, not excluding

geometry.

As an example I may mention the theory of the reduction

of binary quadratic forms as treated in the Elliptische Modul-

functionen. An extension of this method to higher dimensions

is possible without serious difficulties. Another example you

will remember from the paper by Minkowski, Ucber EigeM

schaften von ganzen Zahlen> die durch raumliche AnscJiauung

erschlossen sindy which I had the pleasure of presenting to

you in abstract at the Congress of Mathematics. Here geom-

etry is used directly for the development of new arithmetical

ideas.

58
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To-day I wish to speak on the composition of binary algebraic

forms, a subject first discussed by Gauss in his Disquisitiones

arithmeticce* and of Kummer's corresponding theory of ideal

numbers. Both these subjects have always been considered as

very abstruse, although Dirichlet has somewhat simplified the

treatment of Gauss. I trust you will find that the geometrical

considerations by means of which I shall treat these questions

introduce so high a degree of simplicity and clearness that for

those not familiar with the older treatment it must be difficult

to realize why the subject should ever have been regarded as

so very intricate. These considerations were indicated by

myself in the Gottinger Nachrichten for January, 1893; and

at the beginning of the summer semester of the present year

I treated them in more extended form in a course of lectures. I

have since learned that similar ideas were proposed by Poincare

in 1 88 1
;
but I have not yet had sufficient leisure to make a

comparison of his work with my own.

I write a binary quadratic form as follows :

/= ax2
-f- bxy 4- cy

2
,

i.e. without the* factor 2 in the second term
;
some advantages

of this notation were recently pointed out by H. Weber, in

the Gottinger Nachrichten, 1892-93. The quantities a, b, c, x,

y are here of course all assumed to be integers.

It is to be noticed that in the theory of numbers a common

factor of the coefficients a, b, c cannot be introduced or omitted

arbitrarily, as in projective geometry; in other words, we are

concerned with the form, not with an equation. Hence we

make the supposition that the coefficients a, b, c have no

common factor
;
a form of this character is called a primitive

form.

* In the 5th section ; see Gauss's Werke, Vol. I, p. 239.
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As regards the discriminant

D = b2
^ac,

we shall assume that it has no quadratic divisor (and hence

cannot be itself a square), and that it is different from zero.

Thus D is either = o or = i (mod. 4). Of the two cases,

D < o and >>o,

which have to be considered separately, I select the former as

being more simple. Both cases were treated in my lectures

referred to before.

The following elementary geometrical interpretation of the

binary quadratic form was given by Gauss, who was much

inclined to using geometrical considerations in all branches of

mathematics. Construct a parallelogram (Fig. 13) with two

Fig. 13.

adjacent sides equal to Va, Vc, respectively, and the includ<

angle <j>
such that cos

</>
=
2V,

As b2 4 ac < o, a and c ha>

ac

necessarily the same sign ;
we here assume that a and c
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both positive ;
the case when they are both negative can

readily be treated by changing the signs throughout. Next

produce the sides of the parallelogram indefinitely, and draw-

parallels so as to cover the whole plane by a network of

equal parallelograms. I shall call this a line-lattice (Parallel-

gitter).

We now select any one of the intersections, or vertices, as

origin O, and denote every other vertex by the symbol (x, y),

x being the number of sides V#, y that of sides Vr, which

must be traversed in passing from O to (x, y). Then every

valu that the form /takes for integral values of x, y evidently

represents the square of the distance of the point (x, y) from

O. Thus the lattice gives a complete geometrical representa-

tion of the binary quadratic form. The discriminant D has

also a simple geometrical interpretation, the area of each paral-

lelogram being =| V Z>.

Now, in the theory of numbers, two forms

/= ax2 + bxy + cf and /' = a'x'
2 + fr'x'y' -f- c'y'

2

are regarded as equivalent if one can be derived from the other

by a linear substitution whose determinant is i, say

x' = ax + fiy, y = yx + tyt

where aS /3y=i, , ft 7, 8 being integers. All forms equiva-

lent to a given one are said to compose a class of quadratic

forms
;
these forms have all the same discriminant. What

corresponds to this equivalence in our geometrical representa-

tion will readily appear if we fix our attention on the vertices

only (Fig. 14) ;
we then obtain what I propose to call a point-

:

lattice (Pnnktgitter). Such a network of points can be con-

nected in various ways by two sets of parallel lines
;

i.e. the

point-lattice represents an infinite number of line-lattices. Now
it results from an elementary investigation that the point-
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lattice is the geometrical image of the class of binary quad-

ratic forms, the infinite number of line-lattices contained in

the point-lattice corresponding exactly to the infinite number

of binary forms contained in the class.

Fig. 14.

It is further known from the theory of numbers that to

every value of D belongs only a finite number of classes;

hence to every D will correspond a finite number of point-

lattices, which we shall afterwards consider together.

Among the different classes belonging to the same value of

D, there is one class of particular importance, which I call the

principal class. It is defined as containing the form

when D = o (mod. 4), and the form

x> + xy+\(i-D)f,

when D = 1 (mod. 4). It is easy to see that the correspond-

ing lattices are very simple. When Z> = o(mod. 4), the principal

lattice is rectangular, the sides of the elementary parallelo-
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gram being 1 and V \D. ForD= 1 (mod. 4), the parallelogram

becomes a rhombus. For the sake of simplicity, I shall here

consider only the former case.

Let us now define complex numbers in connection with the

principal lattice of .the rectangular type (Fig. 15). The point

(yh
. .

o# .

Fig. 15.

(x, y) of the lattice will represent simply the complex number

such numbers we shall call principal numbers.

In any system of numbers the laws of multiplication are of

prime importance. For our principal numbers it is easy to

prove that the product of any two of them always gives a

principal number; i.e. the system of principal numbers is, for

multiplication, complete in itself.

We proceed next to the consideration of lattices of discrimi-

nant D that do not belong to the principal class
;

let us call

them secondary lattices (Nebengitter). Before investigating the

laws of multiplication of the corresponding numbers, I must

call attention to the fact that there is one feature of arbitrari-

ness in our representation that has not yet been taken into

account
;

this is the orientation of the lattice, which may be

regarded as given by the angles, $ and ^, made by the sides
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Vtf, -y/cy respectively, with some fixed initial line (Fig. 16).

For the angle </>
of the parallelogram we have evidently cj>

= ^ yfr.

The point (x, y) of the lattice will thus give the complex number

e*A V# x
2V ]-

t** V# X + Jx Vc-y,

which we call a secondary number. The definition of a secondai

number is therefore indeterminate as long as -^ or ^ is n<

fixed.

Now, by determining yjr properly for every secondary poii

lattice, it is always possible to bring about the important resi

Fig. 16.

that the product of any two complex numbers of all our lattice

taken together will again be a complex number of the syste

so that the totality of these complex numbers forms, likewise,

for multiplication, a complete system.

Moreover, the multiplication combines the lattices in a

definite way ; thus, if any number belonging to the lattice L
t

be multiplied into any number of the lattice Z 2 ,
we always obtain

a number belonging to a definite lattice Z 3
.

These properties will be <seen to correspond exactly to the

characteristic properties of Gauss's composition of algebraic

fotms. For Gauss's law merely asserts that the product of
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two ordinary numbers that can be represented by two primitive

forms fv f2
of discriminant D is always representable by a

definite primitive form f8
of discriminant D. This law is

included in the theorem just stated, inasmuch as the values of

"^fv ^fv
~

v^5 represent the distances of the points in the

lattices from the origin. At the same time we notice that

Gauss's law is not exactly equivalent to our theorem, since

in the multiplication of our complex numbers, not only the

distances are multiplied, but the angles < are added.

It is not impossible that Gauss himself made use of similar

considerations in deducing his law, which, taken apart from this

geometrical illustration, bears such an abstruse character.

It now remains to explain what relation these investigations

have to the ideal numbers of Kummer. This involves the

question as to the division of our complex numbers and their

resolution into primes.

In the ordinary theory of real numbers, every number can

be resolved into primes in only one way. Does this fundamental

law hold for our complex numbers ? In answering this question

we must distinguish between the system formed by the totality

of all our complex numbers and the system of principal numbers

alone. For the former system the answer is : yes, every com-

plex number can be decomposed into complex primes in only

one way. We shall not stop to consider the proof which is

directly contained in the ordinary theory of binary quadratic

forms. But if we proceed to the consideration of the system

of principal numbers alone, the matter is different. There

are cases when a principal number can be decomposed in

more than one way into prime factors, i.e. principal numbers

not decomposable into principal factors. Thus it may happen

that we have m
l
m

sl

= n
l
n

2i ;
mv mv nv ?/

2 being principal primes.

The reason is, that these principal numbers are no longer primes
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if we adjoin the secondary numbers, but are decomposable, as

follows :

mx
= a /?, m.2 = y 8,

j
= .

y, ;/2
=

/J 8,

, /?, 7, 8 being primes in the enlarged system. In investigating

the laws of division it is therefore not convenient to consider the

principal system by itself; it is best to introduce the secondary

systems. Kummer, in studying these questions, had originally

at his disposal only the principal system ;
and noticing the

imperfection of the resulting laws of division, he introduced

by definition his ideal numbers so as to re-establish the ordinary ;

laws of division. These ideal numbers of Kummer are thus

seen to be nothing but abstract representatives of our secondary

numbers. The whole difficulty encountered by every one when

first attacking the study of Kummer's ideal numbers is there-

fore merely a result of his mode of presentation. By introduc-

ing from the beginning the secondary numbers by the side of

the principal numbers, no difficulty arises at all.

It is true that we have here spoken only of complex numbers

containing square roots, while the researches of Kummer him-

self and of his followers, Kronecker and Dedekind, embrace all

possible algebraic numbers. But our methods are of universal

application ;
it is only necessary to construct lattices in spaces

of higher dimensions. It would carry us too far to enter into

details.



Lecture IX.: THE SOLUTION OF HIGHER ALGE-
BRAIC EQUATIONS.

(September 6, 1893.)

Formerly the "solution of an algebraic equation" used to

mean its solution by radicals. All equations whose solutions

cannot be expressed by radicals were classed simply as insoluble,

although it is well known that the Galois groups belonging to

such equations may be very different in character. Even at

the present time such ideas are still sometimes found prevail-

ing ;
and yet, ever since the year 1858, a very different point of

view should have been adopted. This is the year in which

Hermite and Kronecker, together with Brioschi, found the

solution of the equation of the fifth degree, at least in its

fundamental ideas.

This solution of the quintic equation is often referred to as

a "solution by elliptic functions"; but this expression is not

accurate, at least not as a counterpart to the "solution by

radicals." Indeed, the elliptic functions enter into the solution

of the equation of the fifth degree, as logarithms might be said

to enter into the solution of an equation by radicals, because

the radicals can be computed by means of logarithms. The

solution of an equation will, in the present lecture, be regarded

as consisting in its reduction to certain algebraic normal equa-

tions. That the irrationalities involved in the latter can, in

the case of the quintic equation, be computed by means of

tables of elliptic functions (provided that the proper tables of

67
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the corresponding class of elliptic functions were available)

is an additional point interesting enough in itself, but not to

be considered by us to-day.

I have simplified the solution of the quintic, and think that

I have reduced it to the simplest form, by introducing the

icosahedron equation as the proper normal equation.* In other

words, the icosahedron equation determines the typical irra-

tionality to which the solution of the equation of the fifth

degree can be reduced. This method is capable of being so

generalized as to embrace a whole theory of the solution of

higher algebraic equations ;
and to this I wish to devote the

present lecture.

It may be well to state that I speak here of equations with

coefficients that are not fixed numerically ;
the equations are

considered from the point of view of the theory of functions,

the coefficients corresponding to the independent variables.

In saying that an equation is solvable by radicals we mean

that it is reducible by algebraic processes to so-called pure

equations,

where z is a known quantity ;
then only the new question

arises, how 7)
= JVz can be computed. Let us compare from

this point of view the icosahedron equation with the pure

equation.

The icosahedron equation is the following equation of the

6oth degree :

i 728/
6W '

where H is a numerical expression of the 20th, / one of the

1 2th degree, while z is a known quantity. For the actual

* See my work Vorlesungen iiber das Ikosaeder und die Aujlosung der Gleichum

gen vom fiinflen Grade, Leipzig, Teubner, 1884.
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forms of H and / as well as other details I refer you to the

Vorlesungen iiber das Ikosaeder ; I wish here only to point

out the characteristic properties of this equation.

(1) Let 7) be any one of the roots
;
then the 60 roots can

all be expressed as linear functions of
rj, with known coeffi-

cients, such as for instance,

%' ? rW),+(W)'
etc.

where e= e$. These 60 quantities, then, form a group of 60

linear substitutions.

Fig. 17.

(2) Let us next illustrate geometrically the dependence of rj

on z by establishing the conformal representation of the ^-plane

on the 77-plane, or rather (by stereographic projection) on a

sphere (Fig. 17). The triangles corre-

sponding to the upper (shaded) half of

the ^-plane are the alternate (shaded)

triangles on the sphere determined by

inscribing a regular icosahedron and

dividing each of the 20 triangles so

obtained into six equal and symmetrical

triangles by drawing the altitudes (Fig.

18). This conformal representation on the sphere assigns to

every root a definite region, and is therefore equivalent to a

Fig. 18.
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perfect separation of the 60 roots. On the other hand, it cor-

responds in its regular shape to the 60 linear substitutions

indicated above.

(3) If, by putting rj=yl/yv we make the 60 expressions

of the roots homogeneous, the different values of the quan-

tities y will all be of the form

yi + Aj>2, yy1 + 8y2,

and therefore satisfy a linear differential equation of the

second order

/'+//+?= o,

p and q being definite rational functions of z. It is, of course,

always possible to express every root of an equation by means

of a power series. In our case we reduce the calculation of

rj to that of yx
and yv and try to find series for these quanti-

ties. Since these series must satisfy our differential equation

of the second order, the law of the series is comparatively

simple, any term being expressible by means of the t^

preceding terms.

(4) Finally, as mentioned before, the calculation of

roots may be abbreviated by the use of elliptic functioi

provided tables of such elliptic functions be computed befoi

hand.

Let us now see what corresponds to each of these fc

points in the case of the pure equation i)

n
z. The results are I

well known :

(1) All the n roots can be expressed as linear functions

of any one of them, rj :

e being a primitive ;/th root of unity.
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(2) The conformal representation (Fig. 19) gives the division

of the sphere into 211 equal limes whose great circles all pass

through the same two points.

Fig. 19.

(3) There is a differential equation of the first order in 77,

viz.,

nz
7)' rj

= o,

from which simple series can be derived for the purposes of

actual calculation of the roots.

(4) If these series should be inconvenient, logarithms can be

used for computation.

The analogy, you will perceive, is complete. The principal

difference between the two cases lies in the fact that, for the

pure equation, the linear substitutions involve but one quantity,

while for the quintic equation we have a group of binary linear

substitutions. The same distinction finds expression in the

differential equations, the one for the pure equation being of

the first order, while that for the quintic is of the second order.

Some remarks may be added concerning the reduction of the

general equation of the fifth degree,

f5 {x) = o,

to the icosahedron equation. This reduction is possible because

the Galois group of our quintic equation (the square root of the

discriminant having been adjoined) is isomorphic with the group
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of the 60 linear substitutions of the icosahedron equation. This

possibility of the reduction does not, of course, imply an answer

to the question, what operations are needed to effect the reduc-

tion. The second part of my Vorlesungcn iiber das Ikosaeder is

devoted to the latter question. It is found that the reduction

cannot be performed rationally, but requires the introduction of

a square root. The irrationality thus introduced is, however, an

irrationality of a particular kind (a so-called accessory irration-

ality) ;
for it must be such as not to reduce the Galois group of

the equation.

I proceed now to consider the general problem of an analo-

gous treatment of higher equations as first given by me in the

Math. Annalen, Vol. 15 (1879).* I must remark, first of all,

that for an accurate exposition it would be necessary to dis-

tinguish throughout between the homogeneous and projective

formulations (in the latter case, only the ratios of the homoge-

neous variables are considered). Here it may be allowed to

disregard this distinction.

Let us consider the very general problem : a finite grotq

Jiomogeneous linear substitutions of n variables being given,

calculate the values of the n variables from the invariants of

group.

This problem evidently contains the problem of solving

algebraic equation of any Galois group. For in this case

rational functions of the roots are known that remain unchanged

by certain permutations of the roots, and permutation is, of

course, a simple case of homogeneous linear transformation.

Now I propose a general formulation for the treatment of

these different problems as follows : among the problems having

isomorphic groups we co?isider as the simplest the one that has the

* Ueber die Aufiosung geivisser Gleichungen vom siebenten und achten C

pp. 251-282.
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least number of variables, and call this the normalproblem. This

problem must be considered as solvable by series of any kind.

The question is to redtice the other isomorphic problems to the

normalproblem.

This formulation, then, contains what I propose as a gen-

eral solution of algebraic equations, i.e. a reduction of the equa-

tions to the isomorphic problem with a minimum number of

variables.

The reduction of the equation of the fifth degree to the

icosahedron problem is evidently contained in this as a special

case, the minimum number of variables being two.

In conclusion I add a brief account showing how far the gen-

eral problem has been treated for equations of higher degrees.

In the first place, I must here refer to the discussion by

myself* and Gordan f of those equations of the seventh degree

that have a Galois group of 168 substitutions. The minimum

number of variables is here equal to three, the ternary group

being the same group of 168 linear substitutions that has since

been discussed with full details in Vol. I. of the Elliptische

Modulfunctionen. While I have confined myself to an expo-

sition of the general idea, Gordan has actually performed the

reduction of the equation of the seventh degree to the ternary

problem. This is no doubt a splendid piece of work
;

it is

only to be deplored that Gordan here, as elsewhere, has dis-

dained to give his leading ideas apart from the complicated

array of formulae.

Next, I must mention a paper published in Vol. 28 (1887) of

the Math. Annalen,% where I have shown that for the general

* Math. Annalen, Vol. 15 (1879), pp. 251-282.

t Ueber Gleichungen siebenten Grades mit einer Gruppe von 1 68 Substitutionen,

Math. Annalen, Vol. 20 (1882), pp. 515-530, and Vol. 25 (1885), pp. 459-521.

X Zur Theorie der allgemeinen Gleichungen sechsten und siebenten Grades, pp.

499-532.
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equations of the sixth and seventh degrees the minimum num-

ber of the normal problem is four, and how the reduction can

be effected.

Finally, in a letter addressed to Camille Jordan* I pointed

out the possibility of reducing the equation of the 27th degree,

which occurs in the theory of cubic surfaces, to a normal prob-

lem containing likewise four variables. This reduction has

ultimately been performed in a very simple way by Burkhardt f

while all quaternary groups here mentioned have been con-

sidered more closely by Maschke.J

This is the whole account of what has been accomplished;

but it is clear that further progress can be made on the same

lines without serious difficulty.

A first problem I wish to propose is as follows. In recent

years many groups of permutations of 6, 7, 8, 9, . . . letters have

been made known. The problem would be to determine in

each case the minimum number of variables with which isomor-

phic groups of linear substitutions can be formed.

Secondly, I want to call your particular attention to the case

of the general equation of the eighth degree. I have not beei

able in this case to find a material simplification, so that

would seem as if the equation of the eighth degree were it

own normal problem. It would no doubt be interesting

obtain certainty on this point.

*
Journal de mathematiques, annee 1888, p. 169.

t Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen. Drit

Theil, Math. Annalen, Vol. 41 (1893), PP 3 I 3~343-

X Ueber die quaterndre, endliche, lineare Substitutionsgruppe der Borchardfscl

Moduln, Math. Annalen, Vol. 30 (1887), pp. 496-515; Aufstellung des vollcn I'or-

mensystems einer quaternaren Gruppe von 5 1840 linearen Substitutional, ib., Vol.

33 (1889), pp. 317-344; Ueber eine merkwiirdige Configuration gerader Linicn im

Kaume, ib., Vol. 36 (1890), pp. 190-215.



Lecture X.: ON SOME RECENT ADVANCES IN

HYPERELLIPTIC AND ABELIAN FUNCTIONS.

(September 7, 1893.)

The subject of hyperelliptic and Abelian functions is of such

vast dimensions that it would be impossible to embrace it in

>its whole extent in one lecture. I wish to speak only of the

mutual correlation that has been established between this

subject on the one hand, and the theory of invariants, projective

geometry, and the theory of groups, on the other. Thus in

particular I must omit all mention of the recent attempts to

bring arithmetic to bear on these questions. As regards the

theory of invariants and projective geometry, their introduction

in this domain must be considered as a realization and farther

extension of the programme of Clebsch. But the additional

idea of groups was necessary for achieving this extension.

What I mean by establishing a mutual correlation between

these various branches will be best understood if I explain it

on the more familiar example of the elliptic functions.

To begin with the older method, we have the fundamental

elliptic functions in the Jacobian form

sinamfp,
J,

cos am f^,
J,

Aam I v,

as depending on two arguments. These are treated in many

works, sometimes more from the geometrical point of view of

Riemann, sometimes more from the analytical standpoint of

75



76 LECTURE X.

Weierstrass. I may here mention the first edition of the work

of Briot and Bouquet, and of German works those by Konigs-

berger and by Thomae.

The impulse for a new treatment is due to Weierstrass. He

introduced, as is well known, three homogeneous arguments,

u, cov o)2,
instead of the two Jacobian arguments. This was

a necessary preliminary to establishing the connection with

the theory of linear substitutions. Let us consider the dis-

continuous ternary group of linear substitutions,

u' = u -f- m 1o)1 + m2(ii.2 ,

<i)2
' = ywi + Sio2 ,

where a, ft, y, 8 are integers whose determinant a8 /3y=i,

while mv ;;/2 are any integers whatever. The fundamental

functions of Weierstrass's theory,

are nothing but the complete system of invariants of that group.

It appears, moreover, that gv gz are also the ordinary (G

leyan) invariants of the binary biquadratic form f{xv x
2),

which depends the integral of the first kind

/
)

X\(lX2 X2(IX\

V/4 (^i, X2)

This significant feature that the transcendental invariants tin

out to be at the same time invariants of the algebraic irratu

ality corresponding to the transcendental theory will hold

all higher cases.

As a next step in the theory of elliptic functions we have

mention the introduction by Clebsch of the systematic con-

sideration of algebraic curves of deficiency 1. He considered

in particular the plane curve of the third order (C3) and the
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first species of quartic curves (C^) in space, and showed how

convenient it is for the derivation of numerous geometrical

propositions to regard the elliptic integrals as taken along these

curves. The theory of elliptic functions is thus broadened by

bringing to bear upon it the ideas of modern projective geometry.

By combining and generalizing these considerations, I was

led to the formulation of a very general programme which may
be stated as follows (see Vorlesungen iiber die Theorie der ellip-

tischen Modulftmctio?ieit} Vol. II.).

Beginning with the discontinuous group mentioned before

u' = U -\- fflifQi + #Z2a>2,

Oil
= W(01 ~f" /3<>2>

<i>2
=

yoi\ -\- 8to2,

our first task is to construct all its sub-groups. Among these

the simplest and most useful are those that I have called

congruence sub-groups ; they are obtained by putting

m x = o, m2 = 0,^1

a=i, /8 = o, ^ (mod. n).

7
=

0, 8= 1, J

The second problem is to construct the invariants of all

these groups and the relations between them. Leaving out

of consideration all sub-groups except these congruence sub-

groups, we have still attained a very considerable enlargement

of the theory of elliptic functions. According to the value

assigned to the number 71, I distinguish different stages (Stufen)

of the problem. It will be noticed that Weierstrass's theory

corresponds to the first stage (n=i), while Jacobi's answers,

generally speaking, to the second (n= 2) ;
the higher stages

have not been considered before in a systematic way.

Thirdly, for the purpose of geometrical illustration, I apply

Clebsch's idea of the algebraic curve. I begin by introducing
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the ordinary square root of the binary form which requires the

axis of x to be covered twice
;

i.e. we have to use a C2 in an !

Sv I next proceed to the general cubic curve of the piano

(C3 in an S2),
to the quartic curve in space of three dimensions

(~4 in an S3),
and generally to the elliptic curve Cn+1 in an Sn .

These are what I call the normal elliptic curves ; they serve best

to illustrate any algebraic relations between elliptic functions.

I may notice, by the way, that the treatment here proposed

is strictly followed in the Elliptische Modnlfunctioncn, except

that there the quantity u is of course assumed to be zero, since

this is precisely what characterizes the modular functions. I

hope some time to be able to treat the whole theory of elliptic ]

functions (i.e. with u different from zero) according to this

programme.

The successful extension of this programme to the theory of

hyperelliptic and Abelian functions is the best proof of its

being a real step in advance. I have therefore devoted my
efforts for many years to this extension

;
and in laying before

you an account of what has been accomplished in this rather

special field, I hope to attract your attention to various lines of

research along which new work can be spent to advantage.

As regards the hyperelliptic functions, we may premise as

general definition that they are functions of two variables uv

with four periods (while the elliptic functions have one \\

able U, and two periods). Without attempting to give

historical account of the development of the theory of hy]

elliptic functions, I turn at once to the researches that m;

a progress along the lines specified above, beginning with tl

geometric application of these functions to surfaces in a space

of any number of dimensions.

Here we have first the investigation by Rohn of Kummer's

surface, the well-known surface of the fourth order, with 16
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conical points. I have myself given a report on this work in

the Math. Annalen, Vol. 27 (1886).* If every mathematician is

struck by the beauty and simplicity of the relations developed

in the corresponding cases of the elliptic functions (the Cz
in

the plane, etc.), the remarkable configurations inscribed and

circumscribed to the Kummer surface that have here been

developed by Rohn and myself, should not fail to elicit interest.

Further, I have to mention an extensive memoir by Reichardt,

published in 1886, in the Acta Leopoldina, where the connec-

tion between hyperelliptic functions and Kummer's surface is

summarized in a convenient and comprehensive form, as an

introduction to this branch. The starting-point of the investi-

gation is taken in the theory of line-complexes of the second

degree.

Quite recently the French mathematicians have turned their

attention to the general question of the representation of sur-

faces by means of hyperelliptic functions, and a long memoir by

Humbert on this subject will be found in the last volume of the

Journal de Mathematiqnes.\

I turn now to the abstract theory of hyperelliptic functions.

It is well known that Gopel and Rosenhain established that

theory in 1847 m a manner closely corresponding to the Jaco-

bian theory of elliptic functions, the integrals

xdx

V/6 <

J V/6 (*)

taking the place of the single elliptic integral u. Here, then,

the question arises : what is the relation of the hyperelliptic

functions to the invariants of the binary form of the sixth order

fskxv x
2)

-
? In tne investigation of this question by myself and

* Ueber Configurationen, welche der Kummer'scAen Fldche zugleich eingeschrieben

und umgeschrieben sind, pp. 106-142.

f Theorie generate des surfaces hyperellipliques, annee 1893, PP- 29-170.
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Burkhardt, published in Vol. 27 (1886)* and Vol. 32 (1888) f

of the- Matk. Awialcn, we found that the decompositions of

the form /6
into two factors of lower order, /6

= ^iVr
5
= ^3^3

had to be considered. These being, of course, irrational decom-

positions, the corresponding invariants are irrational
;
and a

study of the theory of such invariants became necessary.

But another new step had to be taken. The hyperelliptic

integrals involve the form f6 under the square root, ~VfQ(xv xM

The corresponding Riemann surface has, therefore, two leaves

connected at six points ;
and the problem arises of considering

binary forms of xv x2
on such a Riemann surface, just as ordi-

narily functions of x alone are considered thereon. It can be

shown that there exists a particular kind of forms called prime-

forms, strictly analogous to the determinant x
xy2 x

2y1
in the

ordinary complex plane. The primeform on the two-leaved

Riemann surface, like this determinant in the ordinary theory,

has the property of vanishing only when the points (xv x2)
and

(j/v y2)
co-incide (on the same leaf). Moreover, the primeform

does not become infinite anywhere. The analogy to the det

minant x^ x
<lyx

fails only in so far as the primeform i

longer an algebraic but a transcendental form. Still, all

braic forms on the surface can be decomposed into prime

factors. Moreover, these primeforms give the natural means

for the construction of the #-functions. As an intermediate

step we have here functions called by me ^--functions in analogy

to the <r-functions of Weierstrass's elliptic theory. In the

papers referred to {Math. Annalen, Vols. 27, 32) all these

siderations are, of course, given for the general case of hyper-

elliptic functions, the irrationality being Vf2p+2(xv x^> where

fip+i is a binary form of the order 2p+ 2.

* Ueber hyperelliptische Sigmafunctionen, pp. 431-464.

t PP- 35^So and 381-442.

r:
alge-
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Having thus established the connection between the ordinary

theory of hyperelliptic functions of p= 2 and the invariants of

the binary sextic, I undertook the systematic development of

what I have called, in the case of elliptic functions, the Stufen-

thcorie. The lectures I gave on this subject in 1887-88

have been developed very fully by Burkhardt in the Math.

Annalen, Vol. 35 (1890).*

As regards the first stage, which, owing to the connection

with the theory of rational invariants and covariants, requires

very complicated calculations, the Italian mathematician, Pascal,

has made much progress (Annali di matematicd). In this

connection I must refer to the paper by Bolzaf in Math.

Annalen, Vol. 30 (1887), where the question is discussed in

how far it is possible to represent the rational invariants of

the sextic by means of the zero values of the ^-functions.

For higher stages, in particular stage three, Burkhardt has

given very valuable developments in the Math. Annalen, Vol.

36 (1890), p. 371 ;
Vol. 38 (1891), p. 161

;
Vol. 41 (1893), p. 313.

He considers, however, only the hyperelliptic modular functions

(ux
and ?/2 being assumed to be zero). The final aim, which

Burkhardt seems to have attained, although a large amount

of numerical calculation remains to be filled in, consists here

in establishing the so-called multiplier-equation for transforma-

tions of the third order. The equation is of the 40th degree ;

and Burkhardt has given the general law for the formation

of the coefficients.

I invite you to compare his treatment with that of Krause

in his book Die Transformation der hyperelliptischen Fnnc-

tionen erster Ordnung, Leipzig, Teubner, 1886. His investiga-

*
Grundziige einer allgemeinen Systematik der hyperelliptischen Functionen I.

Ordnung, pp. 198-296.

t Darstellung der rationalen ganzen Invarianten der Binarform sechsten Grades

durch die Nullwerthe der zngehorigen 9-Functionen, pp. 478-495.
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tions, based on the general relations between ^-functions, may

go farther
;
but they are carried out from the purely formal

point of view, without reference to the theories of invariants,

of groups, or other allied topics.

So much as regards hyperelliptic functions. I now proceed

to report briefly on the corresponding advances made in the

theory of Abelian functions. I give merely a list of papers ;

they may be classed under three heads :

(i) A preliminary question relates to the invariant represen-

tation of the integral of the third kind on algebraic curves of

higher deficiency. Pick * has considered this problem for plane

curves having no singular points. On the other hand, White,

in his dissertation,! briefly reported in Math. Annalen, Vol. 36

(1890), p. 597, and printed in full in the Acta Leopoldina, has

treated such curves in space as are the complete intersection

of two surfaces and have no singular point. We may here

also notice the researches of Pick and Osgood % on the so-called

binomial integrals.

(2) An exposition of the general theory of forms on

mann surfaces of any kind, in particular a definition of the

primeform belonging to each surface, was given by myself

in Vol. 36 (1890) of the Math. Annalen.% I may add that

during the last year this subject was taken up anew and

farther developed by Dr. Ritter
;

see Gottinger NacJwicJitcn

for 1893, and Math. Annalen, Vol. 43. Dr. Ritter considers

the algebraic forms as special cases of more general forms, the

multiplicative forms, and thus takes a real step in advance.

* Zur Theorie der AbeVschen Functioned Math. Annalen, Vol. 29 (1887), pp,

259-271. .

t AbePsche Integrate auf singularstdtenfreien, einfach iiberdeckten, vollstlin

Schnittcurven eines beliebig ausgedeMtUn Raumes, Halle, 1891, pp. 43-128.

J Osgood, Zur Theorie der zum algebraischen Gebilde y
m = R(x) geh'drig

AbeVnhen Functionen, Gottingen, 1890, 8vo, 61 pp.
Zur Theorie der AbePschen Functionen, pp. 1-83.
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(3) Finally, the particular case /= 3 has been studied on the

basis of our programme in various directions. The normal

curve for this case is well known to be the plane quartic C
whose geometric properties have been investigated by Hesse

and others. I found (Math. Annalen, Vol. 36) that these

geometrical results, though obtained from an entirely different

point of view, corresponded exactly to the needs of the Abelian

problem, and actually enabled me to define clearly the 64
^-functions with the aid of the C4 . Here, as elsewhere, there

seems to reign a certain pre-established harmony in the develop-

ment of mathematics, what is required in one line of research

being supplied by another line, so that there appears to be

a logical necessity in this, independent of our individual

disposition.

In this case, also, I have introduced cr-functions in the place

the ^-functions. The coefficients are irrational covariants

just as in the case /= 2. These cr-series have been studied at

great length by Pascal in the Annali di Matematica. These

investigations bear, of course, a close relation to those of

Frobenius and Schottky, which only the lack of time prevents

me from quoting in detail.

Finally, the recent investigations of an Austrian mathemati-

cian, Wirtinger, must here be mentioned. First, Wirtinger has

established for /=3 the analogue to the Kummer surface
;

this

is a manifoldness of three dimensions and the 24th order in an

S
7 ;

see Gdttinger Nachrichten for 1889, and Wiener Monatshefte,

1890. Though apparently rather complicated, this manifoldness

has some very elegant properties ;
thus it is transformed into

itself by 64 collineations and 64 reciprocations. Next, in

Vol. 40 (1892), of the Math. Annalen* Wirtinger has dis-

cussed the Abelian functions on the assumption that only

*
Untersuchungen iiber AbeVsche Functionen vom Geschlechte 3, pp. 261-3 1 2.



g4 LECTURE X.

rational invariants and covariants of the curve of the fourth

order are to be considered
;

this corresponds to the "first

stage" with / = 3. The investigation is full of new and

fruitful ideas.

In concluding, I wish to say that, for the cases p= 2 and

p = 3, while much still remains to be done, the fundamental

difficulties have been overcome. The great problem to be

attacked next is that of /= 4, where the normal curve is of the

sixth order in space. It is to be hoped that renewed efforts

will result in overcoming all remaining difficulties. Another

promising problem presents itself in the field of ^-functions,

when the general 0-series are taken as starting-point, and not

the algebraic curve. An enormous number of formulae have

there been developed by analysts, and the problem would be

to connect these formulae with clear geometrical conceptions

of the various algebraic configurations. I emphasize these

special problems because the Abelian functions have always

been regarded as one of the most interesting achievemei

of modern mathematics, so that every advance we make

this theory gives a standard by which we can measure

own efficiency.



Lecture XL: THE MOST RECENT RESEARCHES
IN NON-EUCLIDEAN GEOMETRY.

(September 8, 1893.)

My remarks to-day will be confined to the progress of non-

Euclidean geometry during the last few years. Before report-

ing on these latest developments, however, I must briefly

summarize what may be regarded as the general state of

opinion among mathematicians in this field. There are three

points of view from which non-Euclidean geometry has been

considered.

(1) First we have the point of view of elementary geometry, of

which Lobachevsky and Bolyai themselves are representatives.

Both begin with simple geometrical constructions, proceeding

just like Euclid, except that they substitute another axiom for

the axiom of parallels. Thus they build up a system of non-

Euclidean geometry in which the length of the line is infinite,

and the "measure of curvature" (to anticipate a term not used

by them) is negative. It is, of course, possible by a similar

process to obtain the geometry with a positive measure of

curvature, first suggested by Riemann ;
it is only necessary

to formulate the axioms so as to make the length of a line

finite, whereby the existence of parallels is made impossible.

(2) From the point of view of projective geometry, we begin

by establishing the system of projective geometry in the sense

of von Staudt, introducing projective co-ordinates, so that

straight lines and planes are given by linear equations. Cay-

85
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ley's theory of projective measurement leads then directly to

the three possible cases of non-Euclidean geometry : hyper-

bolic, parabolic, and elliptic, according as the measure of

curvature k is <o, =o, or >o. It is here, of course, essen-

tial to adopt the system of von Staudt and not that of

Steiner, since the latter defines the anharmonic ratio by

means of distances of points, and not by pure projective

constructions.

(3) Finally, we have the point of view of Riemann and Helm-

holtz. Riemann starts with the idea of the element of distance

ds, which he assumes to be expressible in the form

ds = ^/^aikdXidxk .

Helmholtz, in trying to find a reason for this assumption, con-

siders the motions of a rigid body in space, and derives from

these the necessity of giving to ds the form indicated. On the

other hand, Riemann introduces the fundamental notion of the

measure of curvature of space.

The idea of a measure of curvature for the case of t>

variables, i.e. for a surface in a three-dimensional space, is di

to Gauss, who showed that this is an intrinsic characteristic

the surface quite independent of the higher space in which tl

surface happens to be situated. This point has given rise to

misunderstanding on the part of many non-Euclidean writer

When Riemann attributes to his space of three dimensions

measure of curvature ky he only wants to say that there ex

an invariant of the "form" ^a^dXidx^ he does not mean

imply that the three-dimensional space necessarily exists as a

curved space in a space of four dimensions. Similarly, the

illustration of a space of constant positive measure of curvature

by the familiar example of the sphere is somewhat
misleading]

Owing to the fact that on the sphere the geodesic lines
(greaj

circles) issuing from any point all meet again in another definit
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point, antipodal, so to speak, to the original point, the existence

of such an antipodal point has sometimes been regarded as a

necessary consequence of the assumption of a constant positive

curvature. The projective theory of non-Euclidean space shows

immediately that the existence of an antipodal point, though

compatible with the nature of an elliptic space, is not necessary,
*

but that two geodesic lines in such a space may intersect in

one point if at all.*

I call attention to these details in order to show that there

is some advantage in adopting the second of the three points of

view characterized above, although the third is at least equally

important. Indeed, our ideas of space come to us through the

senses of vision and motion, the "optical properties" of space

forming one source, while the "mechanical properties" form

another
;
the former corresponds in a general way to the pro-

jective properties, the latter to those discussed by Helmholtz.

As mentioned before, from the point of view of projective

geometry, von Staudt's system should be adopted as the basis.

It might be argued that von Staudt practically assumes the

axiom of parallels (in postulating a one-to-one correspondence

between a pencil of lines and a row of points). But I have

shown in the Math. Annalen\ how this apparent difficulty can

be overcome by restricting all constructions of von Staudt to a

limited portion of space.

I now proceed to give an account of the most recent re-

searches in non-Euclidean geometry made by Lie and myself.

Lie published a brief paper on the subject in the Berichte of

the Saxon Academy (1886), and a more extensive exposition

of his views in the same Berichte for 1890 and 1891. These

* This theory has also been developed by Newcomb, in the Journal fiir reine

und angewandte Mathematik, Vol. 83 (1877), pp. 293-299.

f Ueber die sogenannte Nicht-Euklidische Geometrie, Math. Annalen, Vol. 6

(1873), PP. 1 12-145.
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papers contain an application of Lie's theory of continuous

groups to the problem formulated by Helmholtz. I have the

more pleasure in placing before you the results of Lie's investi-

gations as they are not taken into due account in my paper

on the foundations of projective geometry in Vol. 37 of the

Math. Annalen (1890),* nor in my (lithographed) lectures on

non-Euclidean geometry delivered at Gottingen in 1889-90; the

last two papers of Lie appeared too late to be considered, while

the first had somehow escaped my memory.

I must begin by stating the problem of Helmholtz in modern

terminology. The motions of three-dimensional space are oo6
,

and form a group, say G6
. This group is known to have an

invariant for any two points /, p\ viz. the distance Vt (/>, />')

of these points. But the form of this invariant (and generally

the form of the group) in terms of the co-ordinates xv .v.,, m
yv yv jj>3

of the points is not known a priori. The question

arises whether the group of motions is fully characterized by

these two properties so that none but the Euclidean and the

two non-Euclidean systems of geometry are possible.

For illustration Helmholtz made use of the analogous case

in two dimensions. Here we have a group of oo3 motions
;

the distance is again an invariant
;
and yet it is possible

construct a group not belonging to any one of our th

systems, as follows.

Let z be a complex variable
;
the substitution characterizing

the group of Euclidean geometry can be written in the well-

known form

z' = elH -\-m + in= (cos <f> + i sin <j>)z + m + in.

Now modifying this expression by introducing a complex

number in the exponent,

z' = e(a+i)*z + m + in=. **(cos <j> + / sin <j>)z+m + in,

* Zur Nicht-Euklidischen Geometric, pp. 544-572.

11&
,

:
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we obtain a group of transformations by which a point (in

the simple case m = o, n= o) would not move about the origin

in a circle, but in a logarithmic spiral ;
and yet this is a group

G3
with three variable parameters m, n, <f>, having an invariant

for every two points, just like the original group. Helmholtz

concludes, therefore, that a new condition, that of monodromy,
must be added to determine our group completely.

I now proceed to the work of Lie. First as to the results :

Lie has confirmed those of Helmholtz with the single exception

that in space of three dimensions the axiom of monodromy is

not needed, but that the groups to be considered are fully

determined by the other axioms. As regards the proofs, how-

ever, Lie has shown that the considerations of Helmholtz must

be supplemented. The matter is this. In keeping one point of

space fixed, our G
6
will be reduced to a G

z
. Now Helmholtz

inquires how the differentials of the lines issuing from the fixed

point are transformed by this Gs . For this purpose he writes

down the formulae

dxi = andx1 + audx2 -f- a13dxs,

dx2
' = a2ldxl + a^dx2 + <*"&dxZi

dx3
= asldXi -f" #32^2 4" ^33^3)

I

and considers the coefficients alv a12 ,
aS3 as depending on

I

three variable parameters. But Lie remarks that this is not

j
sufficiently general. The linear equations given above repre-

: sent only the first terms of power series, and the possibility

j

must be considered that the three parameters of the group may

;

not all be involved in the linear terms. In order to treat all

i possible cases, the general developments of Lie's theory of

groups must be applied, and this is just what Lie does.

Let me now say a few words on my own recent researches in

I non-Euclidean geometry which will be found in a paper pub-

lished in the Math. Annalen, Vol. 37 (1890), p. 544- Their
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result is that our ideas as to non-Euclidean space are still very

incomplete. Indeed, all the researches of Riemann, Helmholtz,

Lie, consider only a portion of space surrounding the origin ;

they establish the existence of analytic laws in the vicinity of

that point. Now this space can of course be continued, and

the question is to see what kind of connection of space may
result from this continuation. It is found that there are dif-

ferent possibilities, each of the three geometries giving rise

to a series of subdivisions.

To understand better what is meant by these varieties of

connection, let us compare the geometry on a sphere with that

in the sheaf of lines formed by the diameters of the sphere.

Considering each diameter as an infinite line or ray passing

through the centre (not a half-ray issuing from the centre), to

each line of the sheaf there will correspond two points on the

sphere, viz. the two points of intersection of the line with the

sphere. We have, therefore, a one-to-two correspondence

between the lines of the sheaf and the points of the sphere.

Let us now take a small area on the sphere ;
it is clear that

the distance of two points contained in this area is equal to

the angle of the corresponding lines of the sheaf. Thus the

geometry of points on the sphere and the geometry of lines in

the sheaf are identical as far as small regions are concerned, both

corresponding to the assumption of a constant positive measure

of curvature. A difference appears, however, as soon as we

consider the whole closed sphere on the one hand and the com-
j

plete sheaf on the other. Let us take, for instance, two geodesic

lines of the sphere, i.e. two great circles, which evidently inter-

sect in two (diametral) points. The corresponding pencils of

the sheaf have only one straight line in common.

A second example for this distinction occurs in comparing

the geometry of the Euclidean plane with the geometry on a

closed cylindrical surface. The latter can be developed in
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usual way into a strip of the plane bounded by two parallel

lines, as will appear from Fig. 20, the arrows indicating that

the opposite points of the edges are coincident on the cylin-

drical surface. We notice at once the difference : while in the

plane all geodesic lines are infinite, on the cylinder there is

Fig. 20.

one geodesic line that is of finite length, and while in the plane

two geodesic lines always intersect in one point, if at all, on

the cylinder there may be 00 points of intersection.

This second example was generalized by Clifford in an

address before the Bradford meeting of the British Associa-

Fig. 21.

i tion (1873). In accordance with Clifford's general idea, we

1 may define a closed surface by taking a parallelogram out of

an ordinary plane and making the opposite edges correspond

point to point as indicated in Fig. 21. It is not to be

I

understood that the opposite edges should be brought to
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coincidence by bending the parallelogram (which evidently

would be impossible without stretching) ;
but only the logical

convention is made that the opposite points should be con-

sidered as identical. Here, then, we have a closed mani-

foldness of the connectivity of an anchor-ring, and every one

will see the great differences that exist here in comparison

with the Euclidean plane in everything concerning the lengths

and the intersections of geodesic lines, etc.

It is interesting to consider the Gz of Euclidean motions on

this surface. There is no longer any possibility of moving the

surface on itself in oo 3
ways, the closed surface being consid-

ered in its totality. But there is no difficulty in moving any

small area over the closed surface in oo3 ways.

We have thus found, in addition to the Euclidean plane,

two other forms of surfaces : the strip between parallels and

Clifford's parallelogram. Similarly we have by the side of

ordinary Euclidean space three other types with the Euclid-

ean element of arc
;
one of these results from considering a

parallelepiped.

Here I introduce the axiomatic element. There is no way

of proving that the whole of space can be moved in itself in

oo6 ways ;
all we know is that small portions of space can be

moved in space in oo6 ways. Hence there exists the possibility

that our actual space, the measure of curvature being taken as

zero, may correspond to any one of the four cases.

Carrying out the same considerations for the spaces of con-

stant positive measure of curvature, we are led back to the two

cases of elliptic and spherical geometry mentioned before. If,

however, the measure of curvature be assumed as a negative

constant, we obtain an infinite number of cases, corresponding

exactly to the configurations considered by Poincare" and myself

in the theory of automorphic functions. This I shall not stop

to develop here.
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I may add that Killing has verified this whole theory.* It

is evident that from this point of view many assertions con-

cerning space made by previous writers are no longer correct

1 (e.g.
that infinity of space is a consequence of zero curvature),

|o that we are forced to the opinion that our geometrical

demonstrations have no absolute objective truth, but are true

only for the present state of our knowledge. These demon-

I

strations are always confined within the range of the space-

! conceptions that are familiar to us
;
and we can never tell

, whether an enlarged conception may not lead to further

j possibilities that would have to be taken into account.

From this point of view we are led in geometry to a certain

modesty, such as is always in place in the physical sciences.

* Ueber die Clifford-Klein'schen Raumformen, Math. Annalen, Vol. 39 (1891),

pp. 257-278.



Lecture XII.: THE STUDY OF MATHEMATICS
AT GOTTINGEN.

(September 9, 1893.)

In this last lecture I should like to make some general

remarks on the way in which the study of mathematics is

organized at the university of Gottingen, with particular refer-

ence to what may be of interest to American students. At the

same time I desire to give you an opportunity to ask any ques-

tions that may occur to you as to the broader subject of mathe-

matical study at German universities in general. I shall be

glad to answer such inquiries to the extent of my ability.

It is perhaps inexact to speak of an organizatioii of

mathematical teaching at Gottingen ; you know that Lern- ft

LcJir-FreiJieit prevail at a German university, so that the organ-

ization I have in mind consists merely in a voluntary agreement

among the mathematical professors and instructors. We dis-

tinguish at Gottingen between a general and a higher course

in mathematics. The general course is intended for that large

majority of our students whose intention it is to devote them-

selves to the teaching of mathematics and physics in the higher

schools (Gymnasien, Realgymuasicn, RcalscJuricn), while the

higher course is designed specially for those whose final aim

is original investigation.

As regards the former class of students, it is my opinion that

in Germany (here in America, I presume, the conditions are

very different) the abstractly theoretical instruction given to

94

:



THE STUDY OF MATHEMATICS AT GOTTINGEN. 95

them has been carried too far. It is no doubt true that what

the university should give the student above all other things

is the scientific ideal. For this reason even these students

should push their mathematical studies far beyond the elemen-

tary branches they may have to teach in the future. But the

ideal set before them should not be chosen so far distant, and

so out of connection with their more immediate wants, as to

make it difficult or impossible for them to perceive the bear-

ding that this ideal has on their future work in practical life.

In other words, the ideal should be such as to fill the future

teacher with enthusiasm for his life-work, not such as to make

him look upon this work with contempt as an unworthy

drudgery.

For this reason we insist that our students of this class, in

addition to their lectures on pure mathematics, should pursue

a thorough course in physics, this subject forming an integral

part of the curriculum of the higher schools. Astronomy is

also recommended as showing an important application of

mathematics
;
and I believe that the technical branches, such

as applied mechanics, resistance of materials, etc., would form

a valuable aid in showing the practical bearing of mathematical

science. Geometrical drawing and descriptive geometry form

also a portion of the course. Special exercises in the solution

of problems, in lecturing, etc., are arranged in connection with

the mathematical lectures, so as to bring the students into

personal contact with the instructors.

I wish, however, to speak here more particularly on the

higher courses, as these are of more special interest to Ameri-

can students. Here specialization is of course necessary.

Each professor and docent delivers certain lectures specially

designed for advanced students, in particular for those studying

for the doctor's degree. Owing to the wide extent of modern

mathematics, it would be out of the question to cover the whole



96 LECTURE XII.

field. These lectures are therefore not regularly repeated every

year ; they depend largely on the special line of research that

happens at the time to engage the attention of the professor.

In addition to the lectures we have the higher seminaries, whose

principal object is to guide the student in original investigation

and give him an opportunity for individual work.

As regards my own higher lectures, I have pursued a certain

plan in selecting the subjects for different years, my general

aim being to gain, in the course of time, a complete view of the

whole field of modern mathematics, with particular regard to the

intuitional or (in the highest sense of the term) geometrical

standpoint. This general tendency you will, I trust, also find

expressed in this colloquium, in which I have tried to present,

within certain limits, a general programme of my individual

work. To carry out this plan in Gbttingen, and to bring it to

the notice of my students, I have, for many years, adopted the

method of having my higher lectures carefully written out, and,

in recent years, of having them lithographed, so as to make

them more readily accessible. These former lectures are at tl

disposal of my hearers for consultation at the mathemati

reading-room of the university ;
those that are lithographed

be acquired by anybody, and I am much pleased to find tl

so well known here in America.

As another important point, I wish to say that I have al 1

regarded my students not merely as hearers or pupils, but as

collaborators. I want them to take an active part in my own

researches
;
and they are therefore particularly welcome if they

bring with them special knowledge and new ideas, whether

these be original with them, or derived from some other source,

from the teachings of other mathematicians. Such men will

spend their time at Gottingen most profitably to themselves.

I have had the pleasure of seeing many Americans among

my students, and gladly bear testimony to their great enthusi-
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asm and energy. Indeed, I do not hesitate to say that, for

some years, my higher lectures were mainly sustained by stu-

dents whose home is in this country. But I deem it my duty

to refer here to some difficulties that have occasionally arisen

in connection with the coming of American students to Gottin-

gen. Perhaps a frank statement on my part, at this opportunity,

will contribute to remove these difficulties in part. What I wish

to speak of is this. It frequently happens at Gottingen, and

probably at other German universities as well, that American

students desire to take the higher courses when their prepara-

tion is entirely inadequate for such work. A student having

nothing but an elementary knowledge of the differential and

integral calculus, usually coupled with hardly a moderate famil-

iarity with the German language, makes a decided mistake in

attempting to attend my advanced lectures. If he comes to Got-

tingen with such a preparation (or, rather, the lack of it), he

may, of course, enter the more elementary courses offered at our

university; but this is generally not the object of his coming.

Would he not do better to spend first a year or two in one of

.the larger American universities? Here he would find more

readily the transition to specialized studies, and might, at the

same time, arrive at a clearer judgment of his own mathematical

ability; this would save him from the severe disappointment

that might result from his going to Germany.

I trust that these remarks will not be misunderstood. My

presence here among you is proof enough of the value I attach

to the coming of American students to Gottingen. It is in

the interest of those wishing to go there that I speak; and

for this reason I should be glad to have the widest publicity

given to what I have said on this point.

Another difficulty lies in the fact that my higher lectures

have frequently an encyclopedic character, conformably to the

general tendency of my programme. This is not always just
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what is most needful to the American student, whose work

is naturally directed to gaining the doctor's degree. He will

need, in addition to what he may derive from my lectures, the

concentration on a particular subject ;
and this he will often

find best with other instructors, at Gottingen or elsewhere.

I wish to state distinctly that I do not regard it as at all desira-

ble that all students should confine their mathematical studies

to my courses or even to Gottingen. On the contrary, it

seems to me far preferable that the majority of the students

should attach themselves to other mathematicians for certain

special lines of work. My lectures may then serve to form

the wider background on which these special studies are pro-

jected. It is in this way, I believe, that my lectures will

prove of the greatest benefit.

In concluding I wish to thank you for your kind attention,

and to give expression to the pleasure I have found in meeting

here at Evanston, so near to Chicago, the great metropolis of

this commonwealth, a number of enthusiastic devotees of m]

chosen science.



THE DEVELOPMENT OF MATHEMATICS AT THE
GERMAN UNIVERSITIES.*

By F. Klein.

The eighteenth century laid the firm foundation for the

development of mathematics in all directions. The universi-

ties as such, however, did not take a prominent part in this

work
;
the academies must here be considered of prime impor-

tance. Nor can any fixed limits of nationality be recognized.

At the beginning of the period there appears in Germany no

less a man than Leibniz; then follow, among the kindred

Swiss, the dynasty of the Bernoullis and the incomparable ,

Eider. But the activity of these men, even in its outward

manifestation, was not confined within narrow geographical

bounds
;

to encompass it we must include the Netherlands,

and in particular Russia, with Germany and Switzerland. On

the other hand, under Frederick the Great, the most eminent

French mathematicians, Lagrange, d'Alembert, Maupertuis,

formed side by side with Euler and Lambert the glory of

the Berlin Academy. The impulse toward a complete change

in these conditions came from the French Revolution.

The influence of this great historical event on the devel-

opment of science has manifested itself in two directions.

On the one hand it has effected a wider separation of nations

*
Translation, with a few slight modifications by the author, of the section Mathc-

matik in the work Die deutschen Universifdten, Berlin, A. Asher & Co., 1893,

prepared by Professor Lexis for the World's Columbian Exposition at Chicago.
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with a distinct development of characteristic national quali-

ties. Scientific ideas preserve, of course, their universality;

indeed, international intercourse between scientific men has

become particularly important for the progress of science
;

but the cultivation and development of scientific thought now

progress on national bases. The other effect of the French

Revolution is in the direction of educational methods. The

decisive event is the foundation of the Ecole polytechnique at

Paris in 1794. That scientific research and active instruction

can be directly combined, that lectures alone are not suffi-

cient, and must be supplemented by direct personal intercourse

between the lecturer and his students, that above all it is of

prime importance to arouse the student's own activity, these

are the great principles that owe to this source their recogni-

tion and acceptance. The example of Paris has been the more

effective in this direction as it became customary to publish in

systematic form the lectures delivered at this institution
;
thus

arose a series of admirable text-books which remain even now

the foundation of mathematical study everywhere in Germai

Nevertheless, the principal idea kept in view by the found*

of the Polytechnic School has never taken proper root in tl

German universities. This is the combination of the techni(

with the higher mathematical training. It is true that, prii

rily, this has been a distinct advantage for the unrestricte

development of theoretical investigation. Our professors, fii

ing themselves limited to a small number of students who, a*

future teachers and investigators, would naturally take great

interest in matters of pure theory, were able to follow the bent

of their individual predilections with much greater freedom

than would have been possible otherwise.

But we anticipate our historical account. First of all we

must characterize the position that Gauss holds in the science

of this age. Gauss stands in the very front of the new develoj
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ment : first, by the time of his activity, his publications reach-

ing back to the year 1799, and extending throughout the entire

first half of the nineteenth century ;
then again, by the wealth of

new ideas and discoveries that he has brought forward in almost

every branch of pure and applied mathematics, and which still

preserve their fruitfulness
; finally, by his methods, for Gauss

was the first to restore that rigour of demonstration which we

admire in the ancients, and which had been forced unduly into

the background by the exclusive interest of the preceding period

in new developments. And yet I prefer to rank Gauss with

the great investigators of the eighteenth century, with Euler,

Lagrange, etc. He belongs to them by the universality of his

work, in which no trace as yet appears of that specialization

which has become the characteristic of our times. He belongs

to them by his exclusively academic interest, by the absence of

the modern teaching activity just characterized. We shall have

a picture of the development of mathematics if we imagine a

chain of lofty mountains as representative of the men of the

eighteenth century, terminating in a mighty outlying summit,

Gauss, and then a broader, hilly country of lower elevation
;

but teeming with new elements of life. More immediately con-

nected with Gauss we find in the following period only the

astronomers and geodesists under the dominating influence of

Bessel ; while in theoretical mathematics, as it begins hence-

forth to be independently cultivated in our universities, a new

epoch begins with the second quarter of the present century,

marked by the illustrious names oijacobi and Dirichlet.

Jacobi came originally from Berlin and returned there for

the closing years of his life (died 1851). But it is the period

from 1826 to 1843, when he worked at Konigsberg with Bessel

and Franz Neumann, that must be regarded as the culmination

of his activity. There he published in 1829 his Fundamenta

nova theories functionnm ellipticarnm, in which he gave, in
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analytic form, a systematic exposition of his own discoveries

and those of Abel in this field. Then followed a prolonged resi-

dence in Paris, and finally that remarkable activity as a teacher,

which still remains without a parallel in stimulating power as

well as in direct results in the field of pure mathematics. An
idea of this work can be derived from the lectures on dynamics,

edited by Clebsch in 1866, and from the complete list of his

Konigsberg lectures as compiled by Kronecker in the seventh

volume of the Gesammelte Werke. The new feature is that

Jacobi lectured exclusively on those problems on which he was

working himself, and made it his sole object to introduce his

students into his own circle of ideas. With this end in view

he founded, for instance, the first mathematical seminary. And

so great was his enthusiasm that often he not only gave the

most important new results of his researches in these lectures,

but did not even take the time to publish them elsewhere.

Dirichlet worked first in Breslau, then for a long period

(1831-1855) in Berlin, and finally for four years in Gottingen.

Following Gauss, but at the same time in close connects

with the contemporary French scholars, he chose mathemat

cal physics and the theory of numbers as the central poinl

of his scientific activity. It is to be noticed that his interest

directed less towards comprehensive developments than towan

simplicity of conception and questions of principle ;
these

also the considerations on which he insists particularly in

lectures. These lectures are characterized by perfect lucidil

and a certain refined objectivity ; they are at the same tii

particularly accessible to the beginner and suggestive in a hij

degree to the more advanced reader. It may be sufficient

refer here to his lectures on the theory of numbers, edited

Dedekind
; they still form the standard text-book on this subjec

With Gauss, Jacobi, Dirichlet, we have named the men wl

have determined the direction of the subsequent development
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We shall now continue our account in a different manner,

arranging it according to the universities that have been most

prominent from a mathematical standpoint. For henceforth,

besides the special achievements of individual workers, the

principle of co-operation, with its dependence on local condi-

tions, comes to have more and more influence on the advance-

ment of our science. Setting the upper limit of our account

about the year 1870, we may name the universities of Konigs-

berg, Berlin, Gbttingen, and Heidelberg.

Of Jacobi's activity at Konigsberg enough has already been

said. It may now be added that even after his departure the

university remained a centre of mathematical instruction.

Richelot and Hesse knew how to maintain the high tradition of

Jacobi, the former on the analytical, the latter on the geomet-

rical side. At the same time Franz Neumanns lectures on

mathematical physics began to attract more and more atten-

tion. A stately procession of mathematicians has come from

Konigsberg ;
there is scarcely a university in Germany to

which Konigsberg has not sent a professor.

Of Berlin, too, we have already anticipated something in our

Account. The years from 1845 t0 185 1, during which Jacobi

and Dirichlet worked together, form the culminating period of

fche first Berlin school. Besides these men the most promi-

nent figure is that of Steiner (connected with the university

from 1835 t0 l864), the founder of the German synthetic

geometry. An altogether original character, he was a highly

effective teacher, owing to the one-sidedness with which he

developed his geometrical conceptions. As an event of no

mean importance, we must here record the foundation (in 1826)

of Cre'lie'sJournalfur reine und angewandte Matheniatik. This,

|or decades the only German mathematical periodical, contained

in its pages the fundamental memoirs of nearly all the emi-

nent representatives of the rapidly growing science in Germany.
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Among foreign contributions the very first volumes presented

Abel's pioneer researches. Crelle himself conducted this peri-

odical for thirty years; then followed Borchardt, 1856-1880;

now the Journal has reached its 110th volume. We must

also mention the formation (in 1844) of the Berliner pJiysi-

kalische Gesellschaft. Men like Helmholtz, KirchJwff, and

Clausius have grown up here
;
and while these men cannot

be assigned to mathematics in the narrower sense, their work

has been productive of important results for our science in

various ways. During the same period, Encke exercised, as

director of the Berlin astronomical observatory (1 825-1 862),

a far-reaching influence by elaborating the methods of astro-

nomical calculation on the lines first laid down by Gauss.

We leave Berlin at this point, reserving for the present the

account of the more recent development of mathematics at

this university.

The discussion of the Gottingen school will here find its

appropriate place. The permanent foundation on which the

mathematical importance of Gottingen rests is necessarily

Gauss tradition. This found, indeed, its direct continuat

on the physical side when Wilhelm Weber returned fro

Leipsic to Gottingen (1849) an^ f r tne first time established

systematic exercises in those methods of exact electro-magneti

measurement that owed their origin to Gauss and hims

On the mathematical side several eminent names follow in

rapid succession. After Gauss's death, Dirichlet was called

as his successor and transferred his great activity as a teacher

to Gottingen, for only too brief a period (1855-59). By his

side grew up Riemann (1854-66), to be followed later by

Clebsch (1868-72).

Riemann takes root in Gauss and Dirichlet
;
on the other

hand he fully assimilated Cauchy's ideas as to the use of

complex variables. Thus arose his profound creations in

the

om
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theory of functions which ever since have proved a rich and

permanent source of the most suggestive material. Clebsch

sustains, so to speak, a complementary relation to Riemann.

Coming originally from Konigsberg, and occupied with mathe-

matical physics, he had found during the period of his work

at Giessen (1863-68) the particular direction which he after-

I
wards followed so successfully at Gottingen. Well acquainted

with the work of Jacobi and with modern geometry, he intro-

duced into these fields the results of the algebraic researches of

the English mathematicians Cayley and Sylvester, and on the

double foundation thus constructed, proceeded to build up new

approaches to the problems of the entire theory of functions,

and in particular to Riemann's own developments. But with

this the significance of Clebsch for the development of our

science is not completely characterized. A man of vivid imagi-

nation who readily entered into the ideas of others, he influ-

enced his students far beyond the limits of direct instruction
;

of an active and enterprising character, he founded, together

with C. Neumann in Leipsic, a new periodical, the Mathe-

matiscJie Amialen, which has since been regularly continued,

and is just concluding its 41st volume.

We recall further those memorable years of Heidelberg, from

1855 to perhaps 1870. Here were delivered Hesse's elegant

and widely read lectures on analytic geometry. Here Kirch-

hoff produced his lectures on mathematical physics. Here,

above all, Helmholtz completed his great papers on mathe-

matical physics, which in their turn served as basis for Kirch-

hoff's elegant later researches.

It remains now to speak of the second Berlin school, beginning

also about the middle of the century, but still operating upon

the present age. Kummer, Kronecker, Weierstrass, have been

its leaders, the first two, as students of Dirichlet, pre-eminently

engaged in developing the theory of numbers, while the last,
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leaning more on Jacobi and Cauchy, became, together with

Riemann, the creator of the modern theory of functions.

Kummer's lectures can here merely be named in passing ;

with their clear arrangement and exposition they have always

proved especially useful to the majority of students, without

being particularly notable for their specific contents. Quite

different is the case of Kronecker and Weierstrass, whose

lectures became in the course of time more and more the

expression of their scientific individuality. To a certain ex-

tent both have thrust intuitional methods into the back-

ground and, on the other hand, have in a measure avoided

the long formal developments of our science, applying them-

selves with so much the keener criticism to the fundamental

analytical ideas. In this direction Kronecker has gone even

farther than Weierstrass in trying to banish altogether the

idea of the irrational number, and to reduce all developments

to relations between integers alone. The tendencies thus

characterized have exerted a wide-felt influence, and give

distinctive character to a large part of our present matl

matical investigations.

We have thus sketched in general outlines the state read

by our science about the year 1870. It is impossible to cat

our account beyond this date in a similar form. For the dev(

opments that now arise are not yet finished
;
the persons whom

we should have to name are still in the midst of their creative

activity. All we can do is to add a few remarks of a more

general nature on the present aspect of mathematical science

in Germany. Before doing this, however, we must supple-

ment the preceding account in two directions.

Let it above all be emphasized that even within the limits

here chosen, we have by no means exhausted the subject. It

is, indeed, characteristic of the German universities that the

life is not wholly centralized, that wherever a leader appe;
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he will find a sphere of activity. We may name here, from an

earlier period, the acute analyst % Fr. Pfaff, who worked in

Helmstadt and Halle from 1788 to 1825, and, at one time, had

Gauss among his students. PfafI was the first representative

of the combinatory school, which, for a time, played a great role

in different German universities, but was finally pushed aside in

the manifold development of the advancing science. We must

further mention the three great geometers, Mdbins in Leipsic,

Pliicker in Bonn, von Standt in Erlangen. Mobius was, at the

same time, an astronomer, and conducted the Leipsic observa-

tory from 1 8 16 till 1868. Pliicker, again, devoted only the first

half of his productive period (1826-46) to mathematics, turning

his attention later to experimental physics (where his researches

are well known), and only returning to geometrical investigation

towards the close of his life (1864-68). The accidental circum-

stance that each of these three men worked as teacher only in

a narrow circle has kept the development of modern geometry

unduly in the background in our sketch. Passing beyond

university circles, we may be allowed to add the name of

Grassmann, of Stettin, who, in his Ausdehmmgslehre (1844 anc*

1862), conceived a system embracing the results of modern

geometrical speculation, and, from a very different field, that of

Hansen, of Gotha, the celebrated representative of theoretical

astronomy. .

We must also mention, in a few words, the development of

technical education. About the middle of the century, it became

the custom to call mathematicians of scientific eminence to the

polytechnic schools. Foremost in this respect stands Zurich,

which, in spite of the political boundaries, may here be counted

as our own
; indeed, quite a number of professors have taught

in the Ziirich polytechnic school who are to-day ornaments of

the German universities. Thus the ideal of the Paris school,

the combination of mathematical with technical education,
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became again more prominent. A considerable influence in

this direction was exercised by RedtenbacJier s lectures on the

theory of machines which attracted to Carlsruhe an ever-increas-

ing number of enthusiastic students. Descriptive geometry and

kinematics were scientifically elaborated. Culmann of Zurich,

in creating graphical statics, introduced the principles of modern

geometry, in the happiest manner, into mechanics. In connec-

tion with the scientific advance thus outlined, numerous new

polytechnic schools were founded in Germany about 1870 and

during the following years, and some of the older schools were

reorganized. At Munich and Dresden, in particular, in accord-

ance with the example of Zurich, special departments for the

training of teachers and professors were established. The

polytechnic schools have thus attained great /importance for

mathematical education as well as for the advancement of the

science. We must forbear to pursue more closely the many

interesting questions that present themselves in this connection.

If we survey the entire field of development described above

this, at any rate, appears as the obvious conclusion, in Germar

as elsewhere, that the number of those who have an earn<

interest in mathematics has increased very rapidly and that, as

consequence, the amount of mathematical production has gro
to enormous proportions. In this respect an imperative ne(

was supplied when Ohrtmann and Miiller established in Berli

(1869) an annual bibliographical review, Die FortscJirittc

Matkematik, of which the 21st volume has just appeared.

In conclusion a few words should here be said concerning the

modern development of university instruction. The principal

effort has been to reduce the difficulty of mathematical study

by improving the seminary arrangements and equipments.

Not only have special seminary libraries been formed, bi

study rooms have been set aside in which these librari<

are immediately accessible to the students. Collections
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mathematical models and courses in drawing are calculated

to disarm, in part at least, the hostility directed against the

excessive abstractness of the university instruction. And
while the students find everywhere inducements to specialized

study, as is indeed necessary if our science is to flourish, yet

the tendency has at the same time gained ground to emphasize

more and more the mutual interdependence of the different

special branches. Here the individual can accomplish but

little
;

it seems necessary that many co-operate for the same

purpose. Such considerations have led in recent years to the

formation of a German mathematical association {Deutsche

Matkematiker-Vereinigtmg). The first annual report just issued

(which contains a detailed report on the development of the

theory of invariants) and a comprehensive catalogue of mathe-

matical models and apparatus published at the same time indi-

cate the direction that is here to be followed. With the

present means of publication and the continually increasing

number of new memoirs, it has become almost impossible to

survey comprehensively the different branches of mathematics.

Hence it is the object of the association to collect, systema-

tize, maintain communication, in order that the work and

progress of the science may not be hampered by material

difficulties. Progress itself, however, remains in mathe-

matics even more than in other sciences always the right

and the achievement of the individual.

Gottingen, January, 1893.
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