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Preface

This fifth edition of ‘Higher Engineering Math-
ematics’ covers essential mathematical material
suitable for students studying Degrees, Founda-
tion Degrees, Higher National Certificate and
Diploma courses in Engineering disciplines.

In this edition the material has been re-ordered
into the following twelve convenient categories:
number and algebra, geometry and trigonometry,
graphs, vector geometry, complex numbers, matri-
ces and determinants, differential calculus, integral
calculus, differential equations, statistics and proba-
bility, Laplace transforms and Fourier series. New
material has been added on inequalities, differ-
entiation of parametric equations, the ¢ =tan 6/2
substitution and homogeneous first order differen-
tial equations. Another new feature is that a free
Internet download is available to lecturers of a sam-
ple of solutions (over 1000) of the further problems
contained in the book.

The primary aim of the material in this text is
to provide the fundamental analytical and underpin-
ning knowledge and techniques needed to success-
fully complete scientific and engineering principles
modules of Degree, Foundation Degree and Higher
National Engineering programmes. The material has
been designed to enable students to use techniques
learned for the analysis, modelling and solution of
realistic engineering problems at Degree and Higher
National level. It also aims to provide some of
the more advanced knowledge required for those
wishing to pursue careers in mechanical engineer-
ing, aeronautical engineering, electronics, commu-
nications engineering, systems engineering and all
variants of control engineering.

In Higher Engineering Mathematics 5th Edi-
tion, theory is introduced in each chapter by a full
outline of essential definitions, formulae, laws, pro-
cedures etc. The theory is kept to a minimum, for
problem solving is extensively used to establish and
exemplify the theory. It is intended that readers will
gain real understanding through seeing problems
solved and then through solving similar problems
themselves.

Access to software packages such as Maple, Math-
ematica and Derive, or a graphics calculator, will
enhance understanding of some of the topics in
this text.

Each topic considered in the text is presented in a
way that assumes in the reader only the knowledge
attained in BTEC National Certificate/Diploma in
an Engineering discipline and Advanced GNVQ in
Engineering/Manufacture.

‘Higher Engineering Mathematics’ provides a
follow-up to ‘Engineering Mathematics’.

This textbook contains some 1000 worked prob-
lems, followed by over 1750 further problems
(with answers), arranged within 250 Exercises.
Some 460 line diagrams further enhance under-
standing.

A sample of worked solutions to over 1000 of
the further problems has been prepared and can be
accessed by lecturers free via the Internet (see
below).

At the end of the text, a list of Essential Formulae
is included for convenience of reference.

At intervals throughout the text are some 19
Assignments to check understanding. For example,
Assignment 1 covers the material in chapters 1 to 5,
Assignment 2 covers the material in chapters 6 to
8, Assignment 3 covers the material in chapters 9 to
11, and so on. An Instructor’s Manual, containing
full solutions to the Assignments, is available free to
lecturers adopting this text (see below).

‘Learning by example’is at the heart of ‘Higher
Engineering Mathematics 5th Edition’.

JOHN BIRD

Royal Naval School of Marine Engineering, HMS
Sultan,

formerly University of Portsmouth

and Highbury College, Portsmouth

Free web downloads
Extra material available on the Internet

It is recognised that the level of understand-
ing of algebra on entry to higher courses is
often inadequate. Since algebra provides the
basis of so much of higher engineering studies,
it is a situation that often needs urgent atten-
tion. Lack of space has prevented the inclusion
of more basic algebra topics in this textbook;
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it is for this reason that some algebra topics —
solution of simple, simultaneous and quadratic
equations and transposition of formulae have
been made available to all via the Internet. Also
included is a Remedial Algebra Assignment to
test understanding.

To access the Algebra material visit: http://
books.elsevier.com/companions/0750681527

Sample of Worked Solutions to Exercises
Within the text are some 1750 further problems
arranged within 250 Exercises. A sample of
over 1000 worked solutions has been prepared
and is available for lecturers only at http://www.
textbooks.elsevier.com

Instructor’s manual
This provides full worked solutions and mark
scheme for all 19 Assignments in this book,

together with solutions to the Remedial Alge-
bra Assignment mentioned above. The material
is available to lecturers only and is available at
http://www.textbooks.elsevier.com

To access the lecturer material on the text-
book website please go to http://www.textbooks.
elsevier.com and search for the book and click on
the ‘manual’ link. If you do not have an account
on textbooks.elsevier.com already, you will need
to register and request access to the book’s sub-
ject area. If you already have an account on
textbooks, but do not have access to the right
subject area, please follow the ‘request access’
link at the top of the subject area homepage.




Syllabus guidance

This textbook is written for undergraduate engineering degree and foundation degree courses;

however, it is also most appropriate for HNC/D studies and three syllabuses are covered.

The appropriate chapters for these three syllabuses are shown in the table below.

Chapter Analytical | Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers | Engineers

1. | Algebra X

2. | Inequalities

3. | Partial fractions X

4. | Logarithms and exponential functions X

5. | Hyperbolic functions X

6. | Arithmetic and geometric progressions X

7. | The binomial series X

8. | Maclaurin’s series X

9. | Solving equations by iterative methods X

10. | Computer numbering systems X

11. | Boolean algebra and logic circuits X

12. | Introduction to trigonometry X

13. | Cartesian and polar co-ordinates X

14. | The circle and its properties X

15. | Trigonometric waveforms X

16. | Trigonometric identities and equations X

17. | The relationship between trigonometric and hyperbolic functions X

18. | Compound angles X

19. | Functions and their curves X

20. | Irregular areas, volumes and mean value of waveforms X

21. | Vectors, phasors and the combination of waveforms X

22. | Scalar and vector products X

23. | Complex numbers X

24. | De Moivre’s theorem X

25. | The theory of matrices and determinants X

26. | The solution of simultaneous equations by matrices X

and determinants

27. | Methods of differentiation X

28. | Some applications of differentiation X

29. | Differentiation of parametric equations

30. | Differentiation of implicit functions X

31. | Logarithmic differentiation X

32. | Differentiation of hyperbolic functions X

33. | Differentiation of inverse trigonometric and hyperbolic functions X

34. | Partial differentiation X

(Continued)
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Chapter Analytical | Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers | Engineers

35. | Total differential, rates of change and small changes X

36. | Maxima, minima and saddle points for functions of two variables X

37. | Standard integration X

38. | Some applications of integration X

39. | Integration using algebraic substitutions X

40. | Integration using trigonometric and hyperbolic substitutions X

41. | Integration using partial fractions X

42. | The ¢t = tan 6/2 substitution

43. | Integration by parts X

44. | Reduction formulae X

45. | Numerical integration X

46. | Solution of first order differential equations by X

separation of variables

47. | Homogeneous first order differential equations

48. | Linear first order differential equations X

49. | Numerical methods for first order differential equations X X

50. | Second order differential equations of the X

forma@ —|—b9 +cy=0
dx? dx

51. | Second order differential equations of the X

form a@ + b9 +cy=f(x)
dx? dx

52. | Power series methods of solving ordinary X

differential equations

53. | Anintroduction to partial differential equations X

54. | Presentation of statistical data X

55. | Measures of central tendency and dispersion X

56. | Probability X

57. | The binomial and Poisson distributions X

58. | The normal distribution X

59. | Linear correlation X

60. | Linear regression X

61. | Sampling and estimation theories X

62. | Significance testing X

63. | Chi-square and distribution-free tests X

64. | Introduction to Laplace transforms X

65. | Properties of Laplace transforms X

66. | Inverse Laplace transforms X

67. | Solution of differential equations using Laplace transforms X

68. | The solution of simultaneous differential equations using X

Laplace transforms

69. | Fourier series for periodic functions of period 27 X

70. | Fourier series for non-periodic functions over range 2w X

71. | Even and odd functions and half-range Fourier series X

72. | Fourier series over any range X

73. | A numerical method of harmonic analysis X

74. | The complex or exponential form of a Fourier series X




NUMBER AND ALGEBRA

A

1
Algebra

X Alternatively,
1.1 Introduction 5 5
Bx +2y)(x —y) = 3x" — 3xy + 2xy — 2y
In this chapter, polynomial division and the fac- = 3x2 — xy — 212
. ; . X" —Xxy — 2y
tor and remainder theorems are explained (in Sec-

tions 1.4 to 1.6). However, before this, some essential
algebra revision on basic laws and equations is . . 3p2c4
included. Problem 3. Simplify — and evaluate
For further Algebra revision, go to website: whena =3.b= L andc :Cz‘
http://books.elsevier.com/companions/0750681527 ' 8
. o . 3b2 4
1.2 Revision of basic laws aOTC 3121 A—(=2) _ 2p,6

abc?

Whena =3,b=gandc =2,
a’bc® = (3)* (3) @° = (9) (3) (64) =72

(a) Basic operations and laws of indices

The laws of indices are:

m
(i) d"xd'=a"t" () —=a""
an
i) (@™ = a™" iv) an = Jam 2.3 2
(i (@) | ) Problem 4. Simplify 2"
V) a'=— (vi) a®=1
al‘l
2.3 2 2,3 2
Problem 1. Evaluate 4a’bc® —2ac when XY ARy _ XY 4 v
a=2,b=Zandc =13 xy Xy Xy
— x2—1y3—1 +x1—1y2—1
4a*bc” — 2ac = 4(2) S5 - 2(2) 3 =xy"+y or yxy+1)
_4x2x2x3x3x3 12
T 2x2x2x2 2 N VD)

— 27— 6=21 Problem 5. Simplify s T

Problem 2. Multiply 3x + 2y by x — y.

(CMWIND) _ xyixtys
* +2y (x5y3)% x%y%
X =y
_ e
Multiply by x —  3x% + 2xy -
Multiply by —y — —3xy — 2y? =x'y 3
1 1 1

22 o2 —y73 l —

Adding gives: w y or y% or G
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Now try the following exercise.

Exercise 1 Revision of basic operations and
laws of indices

1. Evaluate 2ab + 3bc — abc when a = 2,

b= —-2andc =4. [—16]
2. Find the value of 5pg*r® when p = 2,
g=—-2andr = —1. [—8]
3. From 4x — 3y + 2z subtract x 4+ 2y — 3z.
[3x — Sy + 5z]

4. Multiply 2a — 5b + ¢ by 3a + b.
[6a2 — 13ab + 3ac — 5b* + bc]

5. Simplify (x*y3z)(x’yz?) and evaluate when
X = %,y:Zandz:S. [x5y4z3,13%]

6. Evaluate (a%bc_3)(a%b_%c) when a =3,

b=4andc = 2. [+41]
a’b + a’b 1+a
7. Simplify —————
implify o) [ b ]
o i @bicD)ab)s
. Simplify —————
(Va3\/bo)
o113
apict o Y
Vo

(b) Brackets, factorization and precedence

Problem 6.  Simplify
a* — (2a — ab) — a(3b + a).

a*> — (2a — ab) — a(3b + a)
=a* —2a+ab — 3ab — a*

=—=2a —2ab or -=2a(l + b)

Problem 7. Remove the brackets and simplify
the expression:

2a — [3{2(4a — b) — 5(a + 2b)} + 4a].

Removing the innermost brackets gives:

2a — [3{8a — 2b — 5a — 10b} + 4a]

Collecting together similar terms gives:
2a — [3{3a — 12b} + 4a]

Removing the ‘curly’ brackets gives:
2a — [9a — 36b + 4a]

Collecting together similar terms gives:
2a — [13a — 36b]

Removing the square brackets gives:

2a — 13a + 36b = —11a+36b or
360 — 11a

Problem 8. Factorize (a) xy — 3xz
(b) 4a® + 16ab> (c) 3a*b — 6ab® + 15ab.

(@) xy—3xz=x(y — X&)
(b) 4a? + 16ab® = da(a + 4b%)
(¢) 3a*b — 6ab? + 15ab = 3ab(a — 2b + 5)

Problem9. Simplify 3c¢+2¢ x4c+c+5¢—38c.

The order of precedence is division, multiplication,
addition and subtraction (sometimes remembered by
BODMAS). Hence

3c+2c x4c+c+5¢c— 8¢

=3c+2cx4c+(£>—8c
5¢

1
=3c+8c2+§—8c

:8c2—5c+1 or ¢(8¢ —5)+1
5 5

Problem 10. Simplify
(2a —3)=+4a+5 x 6 —3a.

a—-3)+4a+5x6—3a

2a —3
= +5%x6—3a
4a
2a —3
=2 130-3a
4a
2a 3
=———+4+30-3
4a 4a+ “
1 1
:——i—|—30—3a:30— - i — 3a
2 4a 2 4a
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3 4
Now try the following exercise. Problem 13. Solve —— = .
x—2 3x+4+4
Exercise 2 Further problems on brackets,
factorization and precedence By ‘cross-multiplying’: 3Bx+4)=4x—-2)
1. Simplify 2(p +3g — r) — 4(r — g+ 2p) + p. Removing brackets gives: ~ 9x + 12 =4x — 8
[—5p + 10g — 6r] ) .
o Rearranging gives: 9x —4x=-8—-12
2. Expand and simplify (x + y)(x — 2y).
2 — xy — 2y?] i.e. 5x=-20
3. Remove the brackets and simplify: and e —20
24p — [2(3(5p — 9) = 2(p + 29)} + 3q]. >
[11g - 2p] =—4
4. Factorize 21a’b* — 28ab  [Tab(3ab — 4)].
5. Factorize 2xy” + 6x%y + 8x%y. Problem 14. Solve (‘/; + 3) -9
[2xy(y 4 3x + 4x%)] Jt
6. Simplify 2y +4 ~ 6y + 3 x 4 — 5y.
2 Vi+3
— —3y+ 12} —
E (S5 )2
5 .
7. Simplify3 -y +2+y— 1. |:——1:| i.e. Vi+3=21
y
d 3=2t—/t
8. Simplify a® — 3ab x 2a ~ 6b +ab.  [ab] | Vi
i.e. 3=./t
and 9=t

1.3 Revision of equations

a) Simple equations
(a) Simple equati (b) Transposition of formulae

Problem 11. Solve4 — 3x =2x — 11.

Problem 15. Transpose the formula
t
Since 4 —3x =2x — 11 then4 4 11 = 2x + 3x v=1u +% to make f the subject.

15

1.e. 15 = 5x from which, x = 5 =3

t t
u—{—f— :vfromwhich,f—: v—u

Problem 12. Solve m m
42a—3)—2a—4) =3@—-3)— 1. and m(}j):m(v_u)
m
Removing the brackets gives: ie. ft=m( —u)

8a—12—-2a+8=3a—-9—-1
Rearranging gives:

8a—2a—-3a=-9—-1+12-38
ie. 3a=—6 Problem 16. The impedance of an a.c. circuit

6__, is given by Z = +/R? + X2. Make the reactance
3 X the subject.

and f= ?(v —u)

and a=
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VR? + X? = Z and squaring both sides gives
R? + X% = 72, from which,

X2 = 7% — R? and reactance X = vZ2 — R2

D
Problem 17. Given that — = (u),
d f-p

express p in terms of D, d and f.

Rearranging gives:

(ﬂ)ZR
f=r d

Squaring both sides gives: ;t—z = 3—22
‘Cross-multiplying’ gives:

&*(f +p)=D*(f —p)
Removing brackets gives:

d*f +d*p=D?*f — D?*p

Rearranging gives: d2p + sz = sz - dzf

Factorizing gives:  p(d?> + D?)= f(D? — d?)

_fD*-d*

d =1 7
" P= @ +p?)

1
6. Make [ the subject of r = 271\/i
8

2 -
t
=%
472 |
7. Transpose m = ———— for L.
L+ rCR
[ mrCR |
L=
w—m |
8. Make r the subject of the formula
x 1472 xX—y
- = r =
y 1-r2 x+y

(c) Simultaneous equations

Problem 18. Solve the simultaneous
equations:
Tx —2y =26 (D
6x + 5y =29 2)

Now try the following exercise.

Exercise 3 Further problems on simple
equations and transposition of formulae

In problems 1 to 4 solve the equations
L3x—2-5x=2x—4 (3]
2.84+4(x—1)—5(x—-3)=2(5—-2x)

1 1

_ _1
3 3a—2+5a+3_0 [ 8]
3t
4. = -6 4
i (4]
3(F-f)

5. Transpose y = 7 for f.

3F —yL yL
= or
3 3

5 x equation (1) gives:

35x — 10y =130 3)
2 x equation (2) gives:
12x + 10y = 58 4)
equation (3) 4 equation (4) gives:
47x + 0= 188
from which, X = @ =4
47
Substituting x = 4 in equation (1) gives:
28 — 2y =126
from which, 28 — 26 =2y andy =1
Problem 19. Solve
x 5
3ty=> (1)
1142 =3 )
3
8 x equation (1) gives: x + 20 = 8y 3)
3 x equation (2) gives: 33+ y =9x 4
ie. x—8y=-20 &)
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and 9x —y=133 (6)
8 x equation (6) gives: 72x — 8y = 264 @)
Equation (7) — equation (5) gives:
T1x = 284
. 284
from which, x=—=4
71
Substituting x = 4 in equation (5) gives:
4 —8y=-20

from which, 4+20=8yandy =3

(d) Quadratic equations

Problem 20. Solve the following equations by
factorization:

(@ 3x2—1lx—4=0
() 4x2+8x+3=0

(a) The factors of 3x% are 3x and x and these are
placed in brackets thus:
Gx &)
The factors of —4 are +1 and —4 or —1 and +4,
or —2 and +2. Remembering that the product
of the two inner terms added to the product of
the two outer terms must equal —11x, the only
combination to give this is +1 and —4, i.e.,

332 —1lx —4=CBx+ D(x —4)

Thus  (Bx+ 1)(x —4)= 0 hence
either Gx+D=0iex = —3
or x—4)=0ie.x =4

(b) 42 +8x+3=2x+3)2x+ 1)

Thus  (2x 4+ 3)(2x + 1) = 0 hence

either Qx+3)=0iex=-3

or (2x+1)=01.e.x=—%
Problem 21. The roots of a quadratic equation

are % and —2. Determine the equation in x.

If % and —2 are the roots of a quadratic equation
then,

= Hx+2)=0
ie. x*+2 —%x—%:O
ie. x2+§x—%=0
or W2 +5x-2=0

Problem 22. Solve 4x? 4 7x 4 2 = 0 giving
the answer correct to 2 decimal places.

From the quadratic formula if ax? +bx +c = 0 then,

—b + +/b? — 4ac
X =
2a

Hence if 4x*> +7x +2 =0
—7£7* —44)(?2)
2(4)

—7+ /17

8
—7+4.123

8
—7+4.123 -7 —4.123
or
8 8
i.e. x=-036 or -1.39

then

X =

Now try the following exercise.

Exercise 4 Further problems on simultan-
eous and quadratic equations

In problems 1 to 3, solve the simultaneous
equations

1. 8x -3y =51
3x+4y =14 [x=6,y=—1]
2. 5a=1-3b
2b+a+4=0 [a=2,b=-3]
x 2y 49
3. -+ ==—
5 + 3 15
SANP [x=3y=4]
7 2777 rESYE
4. Solve the following quadratic equations by
factorization:

(@x2+4x—32=0
D) 8x2+2x—15=0

[(a)4, =8 (b) 3, —3]
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5. Determine the quadratic equation in x whose
roots are 2 and —3.

[x2 +3x — 10 = 0]

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:

(@)2x>+5x—4=0

(b) 4> — 111 +3=0
(a) 0.637, —3.137
(b) 2.443,0.307

1.4 Polynomial division

Before looking at long division in algebra let us
revise long division with numbers (we may have
forgotten, since calculators do the job for us!)

208
For example, T6 is achieved as follows:

13
16) 208
16

48
48

(1) 16 divided into 2 won’t go

(2) 16 divided into 20 goes 1

(3) Put 1 above the zero

(4) Multiply 16 by 1 giving 16

(5) Subtract 16 from 20 giving 4
(6) Bring down the 8

(7) 16 divided into 48 goes 3 times
(8) Put the 3 above the 8

(9) 3 x 16 =48

(10) 48 —-48 =0

208
Hence 6 = 13 exactly

172
Similarly, 5 is laid out as follows:

11

15 ) 172
15

22

15

7

2 7 7
Hence — = 11 remainder 7or 11 + — = 11—
15 15 15

Below are some examples of division in algebra,
which in some respects, is similar to long division
with numbers.

(Note that a polynomial is an expression of the
form

f) =a+bx+ex® +dd + -

and polynomial division is sometimes required
when resolving into partial fractions—see
Chapter 3)

Problem 23. Divide 2x> +x — 3 by x — 1.

2x% + x — 3 is called the dividend and x — 1 the
divisor. The usual layout is shown below with the
dividend and divisor both arranged in descending
powers of the symbols.

2x+3
x—l)2x2+ x—3
2x% — 2x
3x -3
3x—3

Dividing the first term of the dividend by the first
2

term of the divisor, i.e. zi gives 2x, which is put
above the first term of thg dividend as shown. The
divisor is then multiplied by 2x, i.e. 2x(x — 1) =
2x? —2x, which is placed under the dividend as
shown. Subtracting gives 3x — 3. The process is
then repeated, i.e. the first term of the divisor,
x, is divided into 3x, giving 43, which is placed
above the dividend as shown. Then3(x — 1) =3x —3
which is placed under the 3x —3. The remain-
der, on subtraction, is zero, which completes the
process.

Thus 2x24+x—=3) + (x — 1) =(2x + 3)

[A check can be made on this answer by multiplying
(2x + 3) by (x — 1) which equals 2x* + x — 3]

Problem 24. Divide 3x> 4+ x? + 3x 4+ 5 by
x+ 1.
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I @ D

3x2 —2x +5
x+1)3x3+ x> +3x+5

3x3 4 322

—2x2 4+ 3x 45

—2x% —2x
5x+5
S5x+5

(1) x into 3x? goes 3x2. Put 3x? above 3x°

(2) 3x%(x + 1) = 3x% + 322

(3) Subtract

(4) x into —2x2 goes —2x. Put —2x above the
dividend

(5) —2x(x +1) = —2x% — 2x

(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend

@) 5Sx+1)=5x+5

(9) Subtract

Thus

3 42 +3x45
x+1 B

2 —2x +5

X3 +y3

xX+y

Problem 25. Simplify

O @& @
x> — xy +y?

x+y)x3+ 0+ 0 4y
x3+x2y

_ X2y 4 y3
. x2y _ )Cy2
xy? 43
xy2 + y3

(1) x into x3 goes x2. Put x% above x? of dividend
Q) Px+y)=x3+x2y

(3) Subtract

(4) x into —x%y goes —xy. Put —xy above dividend

(5) =0y +y) = —x%y — 2y

(6) Subtract

(7) x into xy* goes y*. Put y> above dividend
®) Y (x+y) =x7 +)°

(9) Subtract

Thus
3 3
x> 4+
y =x2
xX+y

The zero’s shown in the dividend are not normally
shown, but are included to clarify the subtraction
process and to keep similar terms in their respective
columns.

— xy + y*

Problem 26. Divide (x> + 3x — 2) by (x — 2).

x +5
x—2)x2+3x— 2

x2 —2x
S5x— 2
5x —10
8

Hence
x—2+3x—2=x+5+
x—2 x -2

Problem 27. Divide 4a® — 6a’b + 5b° by
2a — b.

2a* —2ab — b?
2a — b) 4a® — 6a*b
4a3 — 24%b
—4a%b

—4a2b + 2ab?

—2ab?* + 5b°

—2ab* + b3

4p3

+ 53

+ 503

Thus
4a3 — 6a*b + 5b°
2a — b

4b3

=2a%® — 2ab — b?
t 2% — b
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Now try the following exercise.

Exercise 5 Further problems on polynomial
division
1. Divide (2x* 4+ xy — y*) by (x + ).

[2x —y]
2. Divide (3x> 4 5x — 2) by (x + 2).
[3x — 1]
3. Determine (10x% + 11x — 6) = (2x + 3).
[5x — 2]
2
4, Find 12— 19 =3 [7x 4+ 1]
2x —3

5. Divide (x* + 3x%y + 3xy> +y*) by (x + ).
[x% + 2xy + %]
6. Find (5x* —x+4) =~ (x — 1).

|:5x+4+
x_
7. Divide (3x3 4 2x% — 5x +4) by (x + 2).
2 2 ]
3x2 —4x 43 —
x+2]

8. Determine (5x* + 3x> — 2x + 1)/(x — 3).

3 5 481
5x° 4+ 18x“ 4+ 54x + 160 + T3
X —

1.5 The factor theorem

There is a simple relationship between the factors of
a quadratic expression and the roots of the equation
obtained by equating the expression to zero.

For example, consider the quadratic equation

x? +2x —8=0.

To solve this we may factorize the quadratic expres-
sion x2 4 2x — 8 giving (x — 2)(x + 4).

Hence (x — 2)(x +4) = 0.

Then, if the product of two numbers is zero, one or
both of those numbers must equal zero. Therefore,

either (x —2) = 0, from which, x = 2
or (x +4) =0, from which, x = —4
It is clear then that a factor of (x — 2) indicates a
root of +2, while a factor of (x + 4) indicates a root
of —4.

In general, we can therefore say that:

a factor of (x — a) corresponds to a
root of x = a

In practice, we always deduce the roots of a simple
quadratic equation from the factors of the quadratic
expression, as in the above example. However, we
could reverse this process. If, by trial and error, we
could determine that x = 2 is a root of the equation
x4 2x — 8 = 0 we could deduce at once that (x — 2)
is a factor of the expression x> 4 2x — 8. We wouldn’t
normally solve quadratic equations this way — but
suppose we have to factorize a cubic expression (i.e.
one in which the highest power of the variable is
3). A cubic equation might have three simple linear
factors and the difficulty of discovering all these fac-
tors by trial and error would be considerable. It is to
deal with this kind of case that we use the factor
theorem. This is just a generalized version of what
we established above for the quadratic expression.
The factor theorem provides a method of factorizing
any polynomial, f(x), which has simple factors.
A statement of the factor theorem says:

‘if x = ais a root of the equation
f(x) = 0, then (x — a) is a factor of f(x)’

The following worked problems show the use of the
factor theorem.

Problem 28. Factorize x> — 7x — 6 and use it
to solve the cubic equation x> — 7x — 6 = 0.

Let f(x)=x>—T7x—6

If x=1, then f()=13-7(1)—6=—12
If x=2, then f2)=23-72)—6=—12
If x=3, then f3)=33—73)—6=0

If f(3) = 0, then (x —3) is a factor — from the factor
theorem.

We have a choice now. We can divide x> — 7x — 6 by
(x — 3) or we could continue our ‘trial and error’
by substituting further values for x in the given
expression — and hope to arrive at f(x) =0.

Let us do both ways. Firstly, dividing out gives:

x24+3x +2
x=3)x3-0 —-7x-6
x3 = 3x2
3x?—Tx—6
3x% — 9x
-6
2x — 6
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ie. B —Tx—6=x—-3)x*+3x+2)
x% 4 3x + 2 factorizes ‘on sight” as (x + 1)(x + 2).
Therefore

B —-Tx—6=0x =3+ Dx + 2

A second method is to continue to substitute values
of x into f(x).

Our expression for f(3) was 33 —73) — 6. We
can see that if we continue with positive values of x
the first term will predominate such that f (x) will not
be zero.

Therefore let us try some negative values for
x. Therefore f(—1) = (=1 = 7(—=1) — 6 = 0;
hence (x + 1) is a factor (as shown above). Also
f(=2) = (—2)> = 7(=2) — 6 = 0; hence (x + 2) is
a factor (also as shown above).

To solve x3 — 7x — 6 = 0, we substitute the
factors, i.e.,

x=3)x+Dx+2)=0

from which,x = 3,x = —landx = -2.

Note that the values of x, i.e. 3, —1 and —2, are
all factors of the constant term, i.e. the 6. This can
give us a clue as to what values of x we should
consider.

Problem 29. Solve the cubic equation
x*—2x* — 5x + 6=0 by using the factor
theorem.

Let f(x) = x> — 2x% — 5x + 6 and let us substitute
simple values of x like 1, 2, 3, —1, —2, and so on.

f) =1 =21 =5(1) + 6 =0,
hence (x — 1) is a factor
f2)=2> =222 -52)+6#£0
f3)=3"-203*-53)+6=0,
hence (x — 3) is a factor
f(=D) = (=1 =2(=1)* =5(-1)+ 6 £ 0
f(=2)= (=2 = 2(-2)* = 5(-2) + 6 = 0,
hence (x + 2) is a factor
Hence x> —2x2 = 5x+6=(x— D(x —3)(x +2)

Therefore if x> —2x2 —5x+6=0
then x—Dx-3)(x+2)=0

from which,x = 1,x = 3andx = -2

Alternatively, having obtained one factor, i.e.
(x — 1) we could divide this into (x> — 2x% — 5x 4 6)
as follows:

X2— x —6
x—l)x3—2x2—5x+6
= x?

— x> —5x+6
— x2+ X
—6x+6

—6x+6

Hence x> —2x* —5x+6
=x—DE*—x—6)
=x -Dx —-3)x + 2

Summarizing, the factor theorem provides us with
a method of factorizing simple expressions, and an
alternative, in certain circumstances, to polynomial
division.

Now try the following exercise.

Exercise 6 Further problems on the factor
theorem

Use the factor theorem to factorize the expres-
sions given in problems 1 to 4.

I x> 4+2x-3
2. 34 x%—4x—4

[(x — D(x + 3)]

[(x+ D(x 4+ 2)(x —2)]
3. 263 4+ 5x2 —4x — 7
[(x + D2x% 4+ 3x — 7)]
4. 2x3 —x* — 16x + 15
[(x — D(x + 3)(2x — 5)]

5. Use the factor theorem to factorize
x> 4 4x2 4+ x — 6 and hence solve the cubic
equation x> + 4x> +x — 6 = 0.

¥ +4ax>+x-6
=x—Dx+3)x+2)
x=1l,x=-3andx = -2

6. Solve the equation x> — 2x? — x +2 = 0.
[x=1,x=2and x = —1]
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1.6 The remainder theorem

Dividing a general quadratic expression
(ax* + bx + ¢) by (x — p), where p is any whole
number, by long division (see section 1.3) gives:

ax + (b+ap)
xX—p ) ax® + bx
ax?® — apx
b+ ap)x+c
b+ ap)x — (b+ ap)p
c+ b+ ap)p

+c

The remainder, ¢ + (b + ap)p = ¢ + bp + ap* or
ap® + bp + c. This is, in fact, what the remainder
theorem states, i.e.,

“4f (ax? + bx + c) is divided by x — p),
the remainder will be ap? + bp + ¢’

If, in the dividend (ax? + bx + ¢), we substitute p
for x we get the remainder ap® +bp +c.

For example, when (3x% — 4x + 5) is divided by
(x — 2) the remainder is ap® + bp + ¢ (where a = 3,
b=—-4,c=5andp =2),

i.e. the remainder is

322 4+ (—4)(2)+5=12—-8+5=9

We can check this by dividing (3x> — 4x + 5) by
(x — 2) by long division:

3x+2
x—2)3x% —4dx+5
3x2 — 6x
2x+5
2x — 4

9

Similarly, when (4x%> — 7x 4 9) is divided by (x + 3),
the remainder is ap®+bp+c, (wherea = 4,b = —7,
¢ =9 and p = —3) i.e. the remainder is

4(=3)? + (=7)(=3)+9 =36 +21 + 9 = 66.

Also, when (x> + 3x — 2) is divided by (x — 1),
the remainder is 1(1)> +3(1) — 2 = 2.

It is not particularly useful, on its own, to know
the remainder of an algebraic division. However, if
the remainder should be zero then (x — p) is a fac-
tor. This is very useful therefore when factorizing
expressions.

For example, when (2x> + x — 3) is divided by
(x — 1), the remainder is 2(1)> + 1(1) — 3 = 0,
which means that (x — 1) is a factor of (2x2 4+ x — 3).

In this case the other factor is (2x + 3), i.e.,

x> +x—3)=(x— D2x —3)

The remainder theorem may also be stated for a
cubic equation as:

4F (ax3 + bx? + cx + d) is divided by
(x — p), the remainder will be
ap> +bp* +cp + &

As before, the remainder may be obtained by substi-
tuting p for x in the dividend.

For example, when (3x3 +2x2 — x4+ 4) is divided
by (x — 1), the remainder is ap® +bp*> +cp+d
(wherea =3,b=2,c=—-1,d=4andp = 1),
i.e. the remainder is 3(1)° +2(1)?> + (= 1) (1) + 4 =
3+2-1+4=8.

Similarly, when (x3 =7x—6) is divided by (x—3),
the remainder is 1(3)? +0(3)2 — 7(3) — 6 = 0, which
means that (x — 3) is a factor of (x> — 7x — 6).

Here are some more examples on the remainder
theorem.

Problem 30. Without dividing out, find the

remainder when 2x*> —3x + 4 is divided by
(x —2).

By the remainder theorem, the remainder is given
by ap® + bp + ¢, where a = 2, b = —3, ¢ = 4 and
p=2.

Hence the remainder is:

2224+ (-3)2)+4=8—-6+4=6

Problem 31. Use the remainder theorem to
determine the remainder when
(3x3 —2x? 4+ x — 5) is divided by (x + 2).

By the remainder theorem, the remainder is given by
ap® +bp* +cp+d,wherea =3,b=—-2,¢c =1,
d=—-5andp = -2.
Hence the remainder is:
3(=2)° + (=2)(=2)* + (1)(=2) + (=5)
=-24-8-2-5
=-39
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(b) (x+2). Hence factorize the cubic expression.

Problem 32. Determine the remainder when
(x3 = 2x? — 5x 4 6) is divided by (a) (x — 1) and

(a) When (x> — 2x% — 5x + 6) is divided by (x — 1),
the remainder is given by ap® + bp*> + cp + d,
wherea =1,b=—-2,c=—-5,d=6andp =1,

i.e. the remainder = (1)(1)° + (=2)(1)?

+ (=51 +6

=1-2-5+6=0

Hence (x — 1) is a factor of (x> — 2x% — 5x + 6).
(b) When (x® — 2x2 — 5x + 6) is divided by (x +2),

the remainder is given by

(D(=2)° + (=2)(=2)* + (=5)(=2) + 6
=-8—-84+104+6=0

Hence (x+2) is also a factor of (x> —2x% —5x+6).
Therefore (x— )(x+2)(x ) = x> —2x%—5x+6.
To determine the third factor (shown blank) we

could

(i) divide (x> —2x* — 5x +6) by
(x — D(x +2).
or (ii) use the factor theorem where f(x) =

x> — 2x% — 5x 4 6 and hoping to choose

a value of x which makes f(x) = 0.

or (iii) use the remainder theorem, again hoping
to choose a factor (x — p) which makes

the remainder zero.

(i) Dividing (x* — 2x% — 5x 4 6) by
(x2 + x — 2) gives:
x —3
x2+x—2)x3—2x2—5x+6
x4+ X2 -2
—3x2—=3x+6
—3x2 —3x+6

Thus (x} — 2x? — 5x + 6)
=x - D + 2)(x - 3)
(i1) Using the factor theorem, we let

f)=x>—2x2—-5x+6

Then f(3) = 3> —2(3)> = 5(3) + 6
=27—18—154+6=0
Hence (x — 3) is a factor.

(iii) Using the remainder theorem, when

(x3 —2x?—5x+6) is divided by (x—3), the
remainder is given by ap® +bp> +cp+d,
wherea = 1,b = -2,c = -5,d =6
and p = 3.

Hence the remainder is:

13)’ + (=2)B3)* + (=5)3) + 6
=27-18—-154+6=0

Hence (x — 3) is a factor.

Thus (x* — 2x* — 5x + 6)
=x-Dx+ 2)x -3

Now try the following exercise.

Exercise7 Further problems on the remain-
der theorem

1. Find the remainder when 3x? — 4x + 2 is

divided by
@x—=2) ®d+D [(a) 6 (b) 9]

2. Determine the remainder when
x3 — 6x2 4+ x — 5is divided by
@x+2) (b)y(x-3)
[(@) =39 (b) —29]

3. Use the remainder theorem to find the factors
of x3 —6x2 + 11x — 6.
[((x — D(x = 2)(x = 3)]

4. Determine the factors of x> + 7x% + 14x + 8
and hence solve the cubic equation
X34+ 7x%+ 14x 4+ 8 = 0.
[x=—1,x=—2and x = —4]

5. Determine the value of ‘a’if (x+2) is a factor
of (x* — ax? + 7x + 10).
[a = 3]

6. Using the remainder theorem, solve the
equation 2x> —x?> — 7x + 6 = 0.
[x=1,x=—2and x = 1.5]
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2

Inequalities

2.1 Introduction to inequalities

An inequality is any expression involving one of the
symbols <, >, < or >

p < g means p is less than ¢

p > g means p is greater than g

p < q means p is less than or equal to ¢

p > g means p is greater than or equal to g

Some simple rules

(i) When a quantity is added or subtracted to
both sides of an inequality, the inequality still
remains.

For example, if p <3

then p+42<3+2 (adding 2 to both
sides)

and p—2<3—2(subtracting 2
from both sides)

(ii)) When multiplying or dividing both sides of
an inequality by a positive quantity, say 5, the
inequality remains the same. For example,

W &

ifp>4 thenSp>20 and ’g >

(iii)) When multiplying or dividing both sides of an
inequality by a negative quantity, say —3, the
inequality is reversed. For example,

p 1

-3 =3
(Note > has changed to < in each example.)

ifp>1 then —3p<—-3 and

To solve an inequality means finding all the values
of the variable for which the inequality is true.
Knowledge of simple equations and quadratic equa-
tions are needed in this chapter.

2.2 Simple inequalities

The solution of some simple inequalities, using only
the rules given in section 2.1, is demonstrated in the
following worked problems.

Problem 1. Solve the following inequalities:
@34+x>7 (b)3t<6
©z-225  @5=2

(a) Subtracting 3 from both sides of the inequality:
3+x>7 gives:

34x—-3>7-3,1ie.x>4

Hence, all values of x greater than 4 satisfy the
inequality.

(b) Dividing both sides of the inequality: 3t < 6 by
3 gives:
3t 6
—<-—,le.t <2

3 3

Hence, all values of ¢ less than 2 satisfy the
inequality.

(c) Adding 2 to both sides of the inequality z —2 > 5
gives:
7—24+2>54+2,ie.z2>17

Hence, all values of z greater than or equal to
7 satisfy the inequality.

(d) Multiplying both sides of the inequality = <2

WIS

by 3 gives:
B =2 iep=<6

Hence, all values of p less than or equal to 6
satisfy the inequality.

Problem?2. Solvetheinequality:4x+1>x+5

Subtracting 1 from both sides of the inequality:
4x 4+ 1> x+5 gives:

dx > x+4

Subtracting x from both sides of the inequality:
4x > x 44 gives:

3x >4
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Dividing both sides of the inequality: 3x >4 by 3
gives:

4
X > —
3

4
Hence all values of x greater than 3 satisfy the

inequality:
4x+1>x+4+5
Problem 3. Solvetheinequality:3 — 4t <8 41t

Subtracting 3 from both sides of the inequality:
3 — 41 <8+t gives:

—4t <5+t

Subtracting ¢ from both sides of the inequality:
—4t <5+1 gives:

=5t <5

Dividing both sides of the inequality —5¢ <5 by —5
gives:
t > —1 (remembering to reverse the
inequality)

Hence, all values of ¢ greater than or equal to —1
satisfy the inequality.

Now try the following exercise.

Exercise 8 Further problems on simple
inequalities

Solve the following inequalities:
1. (3t>6 (b)2x<10
[@Ar>2 (b)x<5]

2. (a)§>1.5 (b)x+2>5
[@x>3 (b)x>3]

3.(@4—-1<3 (b)5—x>-1
[(@r=<1(b) x<6]

7—2k
4

4. (a) <1 (b)3z+2>z+3

Pwkzg

b 1
( )Z>§:|

5. (@)5-2y<9+y (b)1—6x<5+2x
[(a)yz—g (b)xz—%}

2.3 Inequalities involving a modulus

The modulus of a number is the size of the num-
ber, regardless of sign. Vertical lines enclosing the
number denote a modulus.

For example, |4 | =4 and | —4 | =4 (the modulus of
a number is never negative),

The inequality: |#| <1 means that all numbers
whose actual size, regardless of sign, is less than
1, i.e. any value between —1 and +1.

Thus |#] <1 means —1<¢<1.

Similarly, | x | > 3 means all numbers whose actual
size, regardless of sign, is greater than 3, i.e. any
value greater than 3 and any value less than —3.
Thus | x| >3 means x >3 and x < -3.
Inequalities involving a modulus are demonstrated
in the following worked problems.

Problem 4. Solve the following inequality:
[3x+1|<4

Since |3x + 1| <4then -4 <3x+1<4

Now —4 < 3x+ 1 becomes —5 < 3x,

5
i.e. —§<x and 3x+1<4 becomes 3x<3,

ie. x<1

5
Hence, these two results together become — - <x <1
and mean that the inequality | 3x + 1 | < 4 is satisfied

for any value of x greater than —3 but less than 1.

Problem 5. Solve the inequality: | 1 +2¢| <5

Since | 14+2t|<5then -5<1+2r<5
Now —5 <1+ 2¢ becomes —6 <2t,1.e. =3 <t
and 1 +27 <5becomes 2t <4ie. t <2

Hence, these two results together become: —3 <t <2

Problem 6. Solve the inequality: |3z — 4| > 2
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|3z —4|>2means 3z—4>2and 3z —4 < -2,
i.e.3z>6and 3z <2,
i.e. the inequality: |3z —4|>2 is satisfied when

2 and —
> n z<3

Now try the following exercise.

Exercise9 Further problems oninequalities

involving a modulus

Solve the following inequalities:

1. |[t+1]<4 [-5<t<3]

2. [y+3]=2 [-5<y=-1]
3 5

3. |2x—1| <4 ——<x<=
2 2

1
4. 13t—-5|>4 [t>3andt<§
5.11—k[>3 [k>4and k < 2]

2.4 Inequalities involving quotients

If d > ( then d must be a positive value.
q q

For d to be positive, either p is positive and ¢ is
q

positive or p is negative and ¢ is negative.
.+ -
ie. —=+and — =+

+ —

If b < 0 then d must be a negative value.
q q

For b to be negative, either p is positive and g is
q
negative or p is negative and g is positive.

.+ —
ie.—=—and — =—
+

This reasoning is used when solving inequalities
involving quotients, as demonstrated in the follow-
ing worked problems.

t+1
Problem 7.  Solve the inequality: + >0

3t—6

. 1 t+1 .
Since > (0 then 76 must be positive.
t+1 ..
For to be positive,
3t—6
either (@()r+1>0 and 3r—6>0
or (ii)r+1<0 and 3r—6<0

(i) If t+1>0 then ¢t > —1 and if 3 — 6 > 0 then
3t>6andt>?2
Both of the inequalities # > —1 and 7> 2 are
only true when ¢ > 2,

r+1
i.e. the fraction 3 + G is positive when t > 2
@i1) If t4+1 <0 then t < —1 and if 3r — 6 <0 then
3t<6andr<?2
Both of the inequalities 1 < —1 and 7 <2 are
only true when r < —1,

. N o o
i.e. the fraction T is positive when ¢ < —1

t
Summarizing, 7—¢ >0whent>2ort<-1

2x+3
Solve the inequality: s
X

Problem 8.

3 2x+3
<1 then —-1<0
x+2

Since

2x+3 x+2<
Tx4+2  x427 7

L 2x4+3—-x+2)
L.e. —— <

ie

1
Oorx+ <0

x+2 - x+2

x+1 .
For > to be negative or zero,

x+
either (@()x+1<0 and x+2>0
or (i)x+1>0 and x+2<0
(i) If x4+1<0 then x <—1 and if x+2 > 0 then
x>-=2
(Note that > is used for the denominator, not >;

a zero denominator gives a value for the fraction
which is impossible to evaluate.)

1
Hence, the inequality 2 <0is true when x is
x+2
greater than —2 and less than or equal to —1,
which may be written as —2 < x < —1

(i) If x4+1>0 then x> —1 and if x +2 <0 then
x<-2
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It is not possible to satisfy both x> —1 and
x < —2 thus no values of x satisfies (ii).

2x+3

Summarizing, <1when -2<x<-1

Now try the following exercise.

Exercise 10 Further problems on inequali-

ties involving quotients

Solve the following inequalities:
x+4

1. >0 4 < 3
6—2x [~4=<x<3]
2t+4

2. + > 1 [t>50rt<—9]
r—5
3z—4

3. <2 —5<z=<14
z+5 ~ [ =14]
2—x

4. >4 [-3<x<-2]
x+3

2.5 Inequalities involving square
functions

The following two general rules apply when inequal-
ities involve square functions:

() ifx2>k thenx> vk or x <—vk (D)
(ii) if x> <k then —Vk <x <vk )

These rules are demonstrated in the following
worked problems.

Problem 9. Solve the inequality: > > 9

Since > > 9thent®> —9 > 0,i.e.(t + 3)(t — 3) > Oby

factorizing
For (¢ + 3)(¢ — 3) to be positive,
either (@()(#+3)>0 and (r—3)>0
or (ii)(#+3)<0 and (r—3)<0

(i) If #+3)>0thent> —3 and if (r — 3) > 0 then
>3
Both of these are true only when # > 3

@ii) If (¢ +3) <0Othent < —3 and if (f — 3) <0 then
t<3
Both of these are true only when £ < —3

Summarizing, > > 9 whent > 3 ort < —3

This demonstrates the general rule:

if x2>k then x>ﬁ or x<—\/E (1)

Problem 10.  Solve the inequality: x> > 4

From the general rule stated above in equation (1):

ifx2>4thenx>«/é—lorx<—«/z

i.e. the inequality: x> > 4 is satisfied when x > 2 or
x<-=2

Problem 11.
z+1)?%>9

Solve the inequality:

From equation (1), if (2z+ 1)2 > 9 then

22+1>/9 or 2z+1<—+9
ie. 2z+1>3 or 2z4+1<-3
i.e. 27>2 or 2z7<-—4,
i.e. z>1 or z<-2

Problem 12.  Solve the inequality: 1> <9

Sincer? <9thenr?> —9 <0,i.e. (14 3)(r —3) <0by
factorizing. For (¢ + 3)(z — 3) to be negative,

either () (+3)>0 (t—3)<0
or (i) (#+3)<0 *—-3)>0

(i) If (t+3)>0thent> —3 and if (f — 3) < 0 then
t<3
Hence (i) is satisfied when #> —3 and <3
which may be written as: —3 < <3

(1) If (¢ +3) <Othent < —3 and if (r — 3) > O then
t>3
Itis not possible to satisfy both# < —3 and 7 > 3,
thus no values of ¢ satisfies (ii).

and
and

Summarizing, 2 <9 when —3 <t < 3 which means
that all values of ¢ between —3 and +3 will satisfy

the inequality.
This demonstrates the general rule:
if x2 <k then —vk<x <k 2)

Problem 13.  Solve the inequality: x* < 4
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From the general rule stated above in equation (2):

if x2 <4 then —v4 <x < /4
i.e. the inequality: x> < 4 is satisfied when:

—2<x<2

Problem 14. Solve the inequality:

(y—3?%<16

~V16<(y=3) =16

From equation (2),

ie. —4=(y—-3)<4
from which, 3—4<y<4+43,
ie. -1<y<7

Now try the following exercise.

Exercise 11 Further problems on inequali-
ties involving square functions

Solve the following inequalities:

1. 22>16 [z>4orz<—4]
2. 22<16 [—4<z<4]
3. 2x226 [xz\/gorxf—\/g]
4. 3k> —2<10 [—2<k<2]
5. (t—1)*<36 [-5<1<T7]
6. (t—1)>>36 [t>7ort<—5]
7. 7=3y*<-5 [y>2ory<-2]

1
8. (4k+5)2>9 [k>—E or k<—2}

2.6 Quadratic inequalities

Inequalities involving quadratic expressions are
solved using either factorization or ‘completing the
square’. For example,

x? — 2x — 3 is factorized as (x + 1)(x — 3)
and 6x% 4+ 7x — 5 is factorized as (2x — )(3x +5)

If a quadratic expression does not factorize, then
the technique of ‘completing the square’ is used. In

general, the procedure for x> + bx + c is:

2 2
Pabrte=(x+2) +e— (2
2 2

For example, x2 +4x — 7 does not factorize; com-
pleting the square gives:

K Hdr—T=x4+27>-7-22=x+27>-11
Similarly,
X —bx—5=x—-32-5-3>=@x—-3)>-14

Solving quadratic inequalities is demonstrated in the
following worked problems.

Problem 15. Solve the inequality:
x> 42x—3>0

Since x> +2x—3>0 then (x—1)(x+3)>0 by
factorizing. For the product (x — 1)(x+3) to be
positive,

either (H)(x—1)>0 and (x+3)>0
or ) (x—1)<0 and x+3)<0
(i) Since(x — 1) > Othenx > 1 andsince (x+3) >0
thenx > —3
Both of these inequalities are satisfied only when
x>1

(i) Since(x —1) <Othenx < 1 and since (x +3) <0

then x < —3
Both of these inequalities are satisfied only when
x<-3

Summarizing, x>+2x—3>0 is satisfied when
eitherx >1orx < -3

Problem 16. Solve the inequality:
?—2t—8<0

Since > —2t—8<0 then (t—4)(r+2)<0 by
factorizing.
For the product (r—4)(r+2) to be negative,

)@—4)>0 and (t+2)<0
i) (t—4)<0 and (+2)>0

either
or

(i) Since (t —4) > 0thent >4 andsince (r +2) <0
then t < —2
Itis not possible to satisfy both# > 4 and t < —2,
thus no values of ¢ satisfies the inequality (i)

(i1) Since (t —4) <0Othent <4 and since (t +2) >0
then r > —2
Hence, (ii) is satisfied when —2 <t <4
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Summarizing, > —2t—8<0 is satisfied when
—2<t<4

Problem 17. Solve the inequality:
x>+ 6x+3<0

x> +6x+3 does not factorize; completing the
square gives:
x2—|-6x—|—3s()c—|—3)2—|-3—32
=@x+3)2%-6

The inequality thus becomes: (x+3)> —6 <0 or
(x+3)? <6

From equation (2), V6 <(x+3)<6

from which, (—v/6 —3) <x < (+v/6 —3)

Hence, x2 4+ 6x +3 <0 is satisfied when
—5.45 <x < —0.55 correct to 2 decimal places.

Problem 18. Solve the inequality:
y2—8y—10>0

y> — 8y —10 does not factorize; completing the
square gives:
V2 —8y—10=(y—4)%—10—42
=(y—4)”—26

The inequality thus becomes: (y — 4)> —26>0 or
(y—4?% =26

From equation (1), (y —4) > +/26 or (y —4) < —+/26

y=44++/26 ory<4-—26

Hence, y> — 8y — 10 > 0 is satisfied when y > 9.10
or y < —1.10 correct to 2 decimal places.

from which,

Now try the following exercise.

Exercise 12 Further problems on quadratic
inequalities

Solve the following inequalities:

l.x2—=x—6>0 [x>3o0rx<—-2]

2. 2 42t—8<0 [—4<t<2]

[2<r<g]
—2<x<-=
2

[y=5ory=—4]

3. 2x24+3x—-2<0

4. y2 —y—20>0
5. 7244z+4<4 [—4<z<0]

6. x2+6x+6<0
[(—V/3-3)<x<(/3-3)]

7.2 —4r—7>0
[t> (/1142 ort<(2—V11)]

8. k24+k—-3>0

(e

A
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3

Partial fractions

3.1 Introduction to partial fractions

By algebraic addition,

(e + D +3(x—2)

x+1  x=2x+1D
4x — 5

x2—x=2

1+3
x—2

dx — 5

The reverse process of moving from — 5
X% —x—

1
x—2 + X+
fractions.

In order to resolve an algebraic expression into
partial fractions:

to 7 is called resolving into partial

(i) the denominator must factorize (in the above
example, x2—x—2 factorizes as (x—2)
(x+ 1)), and

(i1) the numerator must be at least one degree less
than the denominator (in the above example
(4x — 5) is of degree 1 since the highest powered

in Table 3.1, where f(x) is assumed to be of less
degree than the relevant denominator and A, B and
C are constants to be determined.

(In the latter type in Table 3.1, ax® +bx +c is
a quadratic expression which does not factorize
without containing surds or imaginary terms.)

Resolving an algebraic expression into partial
fractions is used as a preliminary to integrating cer-
tain functions (see Chapter 41) and in determining
inverse Laplace transforms (see Chapter 66).

3.2 Worked problems on partial
fractions with linear factors

Problem 1. _—
xX24+2x -3

fractions.

Resolve into partial

The denominator factorizes as (x — 1) (x + 3) and
the numerator is of less degree than the denomina-

; . 11 —3x
xtermis x' and (x> —x —2) is of degree 2). tor. Thus —————— may be resolved into partial
. x24+2x—3
When the degree of the numerator is equal to or  fractions.
higher than the degree of the denominator, the
numerator must be divided by the denominator until 11 —3x 11 —3x
the remainder is of less de than the d inat Let — =
gree than the denominator 24+2x—3  (x—Dx+3)
(see Problems 3 and 4). A B
There are basically three types of partial fraction = +
and the form of partial fraction used is summarized x—=1 (+3)
Table 3.1
Type | Denominator containing Expression Form of partial fraction
A B C
1 Linear factors f(x)b + 5 +
(see Problems 1 to 4) (x+a)lx = b)x+0) F+a) x=b) G+
A B
2 Repeated linear factors ( f(x))3 ( ) + ( 72 + ( ¢ 7
(see Problems 5 to 7) xta Xta A X+a
A B
3 Quadratic factors 5 bf *) y 5 ol Z ¢ y
(see Problems 8 and 9) (@’ +bx + o)x +d) @’+bxto)  x+d)
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where A and B are constants to be determined,

11 —3x Ax+3)+Bx—1)
1.€. =
(x—Dx+3) (x—=Dx+3)
by algebraic addition.

Since the denominators are the same on each side
of the identity then the numerators are equal to each
other.

Thus, 11 —3x=A(x +3) + B(x — 1)

To determine constants A and B, values of x are
chosen to make the term in A or B equal to zero.

When x =1, then
11 —3(1) =A(1 +3)+ B(0)
ie. 8 =4A
ie. A=2
When x = — 3, then
11 -3(-3)=A0)+B(-3-1)

1.e. 20 =—4B
1.e. B=-5
Th 11 - 3x 2 n -5
us =
2+2x-3 (-1 &+3)
2 5

k-1 x+3)

[Check: — > :2(x+3)—5(x—1)
x—=1 (x+3) (x = D(x+3)
1l -3 ]
T x242x—3
2x2 —9x — 35

Problem 2. Convert

(x+ Dx—2)x+3)
into the sum of three partial fractions.

2x2 —9x — 35
Let
x4+ Dx—2)x+3)
_ A N B N C
S+ =2 (x+3)

Alx —2)(x 4+ 3) + B(x + 1)(x + 3)
+Clx+ 1D(x—2)

(x+ D = 2)(x +3)

by algebraic addition.

Equating the numerators gives:
2x% — 9x — 35 = A(x — 2)(x + 3)
+Bx+Dx+3)+Clx+ 1)(x —2)

Letx= — 1. Then

2(—=1)? —=9(—1) =35 =A(-3)(2)
+B(0)(2) + C(0)(—3)

i.e. —24 =—6A

. —24

1.€. A=—=4
—6

Let x=2. Then

2(2)? — 9(2) — 35 = A(0)(5) + B(3)(5) + C(3)(0)

ie. —45 =158
—45
ie. B=—"=-3
15

Let x= — 3. Then

2(—3)2 — 9(=3) — 35 = A(=5)(0) + B(—2)(0)
+C(=2)(-5)
ie. 10 =10C
ie. Cc=1

2x2 —9x —35
Thus
x+ Dx—=2)(x+3)

_ 4 3 1
T+ ®=2) x+3

x2

Resolve ———
X2 —3x+2

Problem 3.

fractions.

into partial

The denominator is of the same degree as the
numerator. Thus dividing out gives:

1
X =3x+2) 2 4

x2—3x+2
3x—1

For more on polynomial division, see Section 1.4,
page 6.
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Hencexz——i_lzl—l-L
x2—3x+2 x2—3x+2
3x—1
= T e Dhx-2
3 — 1 A B

«-D -2
Ax—2)+B(x—1)
G- Do -2

Let
(x—Dx—2)

Equating numerators gives:

3x—1=Ax—-2)+Bx—-1)
Letx=1.Then 2 = —A
ie. A= =2

Letx=2.Then 5 =B
3x—1 =2 . 5
x-—1Dx-=2) (=1 x=2)
x2+1 2 5
=1- +
x2-3x+2 x-=1)  (x=2)

Hence

Thus

X —2x% —dx —4

in
X24+x=2

Problem 4. Express

partial fractions.

The numerator is of higher degree than the denom-
inator. Thus dividing out gives:
x —3
x2+x—2)x3—2x2—4x—4
x4+ 2 —2x

—3x2—2x—4
—3x2—3x+6
x—10
Th X —2r—4x—4 n x—10
us =X JE N —
Z4+x-2 x2+x—2
x—10
=x—-34+ ———
(x+2)x—1)
x—10 A B
Let

C1G-D G+ w-D

_Ax=1D+Bx+2)
T (x+2E—-1)

Equating the numerators gives:
x—10 =Ax—1)+B(x+2)

Letx=—-2.Then —12=-3A
Let x=1. Then -9 =3B
i.e. =-3
—10 4 3
Hence o

G+2)x—1) (x+2) -1
x3—2x2—dx—4

x24x-2

4 3
®+2) @-1

Thus

=x-3+

Now try the following exercise.

Exercise 13 Further problems on partial
fractions with linear factors

Resolve the following into partial fractions.

i 12 |: 2 B 2 :|
" x2-9 x-3) «+3)
5 4(x —4) |: 5 B 1 j|
Tx2—2x-3 x+1) x-=3)
3 x> —3x+6
x(x—2)x—1)

3 2 _ 4
[;+(x_2) <x—1>}

32x2 —8x— 1)
x+Hx+DH2x—1)

[ T 3 3 2 :|
x+4 «x+1 @2x-1)
x? +9x+8 . 2 6
24+x—6 [ +(x+3)+(x—2)i|

x> —x—14 2 3
6. L 7 - +
x2—2x—3 x=3) @+

3x3 — 2x% — 16x + 20
(x —=2)(x +2)

[3—2+ L s }
o -2 (t+2)
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3.3 Worked problems on partial
fractions with repeated linear
factors

Problem 5.

fractions.

Resolve into partial

X
(x —2)?

The denominator contains a repeated linear factor,
(x —2)%

2x+3 A B
Let =
x—22 (x—=2) (x-—2)?
_Ax—-2)+B
T ox-22

Equating the numerators gives:

2x+3=Ax—-2)+B
7=A0)+B

ie. B=7

Let x = 2. Then

2x+3=Ax—-2)+B=Ax—-2A+8B

Since an identity is true for all values of the
unknown, the coefficients of similar terms may be
equated.
Hence, equating the coefficients of x gives: 2 = A.
[Also, as a check, equating the constant terms gives:
3=-2A+8B
WhenA=2and B=7,

RHS. =-22)+7=3=L.HS/]

Aa+3 2 7
C-22- -2 " x_2p2

5%x2 —2x — 19

(x +3)(x — 1)?
sum of three partial fractions.

Problem 6. Express as the

The denominator is a combination of a linear factor
and a repeated linear factor.

. 5x2 —2x—19
(x+3)(x —1)2
A B c
TR R Sy
_ Al - D24+ B(x+3)x—1)+ Clx+3)
N (x +3)(x —1)2

Le

by algebraic addition.
Equating the numerators gives:

502 = 2x—19=Ax — 1)’ + Bx +3)(x — 1)
+C(x+3) (1

Let x =—3. Then

5(=3)% = 2(=3) — 19 = A(—4)* + B(0)(—4)

+C(0)
ie. 32 = 164
i.e. A=2
Let x=1. Then
5(1)2 — 2(1) — 19 = A(0)? + B(4)(0) + C(4)
ie. —16 =4C

Without expanding the RHS of equation (1) it can

be seen that equating the coefficients of x> gives:
5=A+B,andsince A=2,B=3.

[Check: Identity (1) may be expressed as:
5x2—2x—19=Ax> —2x+ 1)
+B(x* 4+ 2x —3) + C(x + 3)
i.e. 5x2 —2x — 19 =Ax? — 2Ax + A + Bx* + 2Bx
—3B+Cx+3C
Equating the x term coefficients gives:
—2=-2A+2B+C
When A=2, B=3 and C = —4 then

—2A4+2B+C=-212)4+23)—4
= —2=LHS

Equating the constant term gives:

—-19=A-3B+3C

RHS =2 —-33)+3(—4)=2—-9—12
= —19 = LHS]
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5x2 —2x—19
e—

(x4 3)(x — 1)

_ 2 N 3 4

T x+3) &= x-1)7

Henc

3x2 + 16x + 15

Problem 7. Resolve into

(x+3)3
partial fractions.
3x% 4 16x + 15
Let —— —
(x+3)3
A N B N C
(43 @+3)? (x+3)3
_AG+3?+Bx+3)+C
N (x+3)3

Equating the numerators gives:
35 +16x + 15 =Ax + 3> +Bx+3)+C (1)

Let x =—3. Then
3(=3)% + 16(=3) + 15=A(0)> + B(0) + C
ie. —-6=C
Identity (1) may be expanded as:
3x% 4+ 16x + 15 = A(x> + 6x +9)

+B(x+3)+C

i.e. 3x2 4 16x 4 15 = Ax* + 6Ax + 94
+Bx+3B+C

Equating the coefficients of x> terms gives: 3 = A

Equating the coefficients of x terms gives:

16 =6A+B
SinceA =3,B = -2
[Check: equating the constant terms gives:
15=9A+3B+C
WhenA=3,B=—-2and C = -6,
9A+3B+ C=93)+3(-2)+ (—6)
=27—6—6=15=LHS]
3x? 4+ 16x + 15

(x+3)3
3 2 6

=543 @43? x+3]

Thus

Now try the following exercise.

Exercise 14 Further problems on partial
fractions with repeated linear factors

. 4y —3 [ 4 7 }
T (x+1)? x+1) x+1)2
2 4+Tx+3 1 2 1

2.~ © -+ - -
X2x+3) 2 x ®+3)

3 5x%2 — 30x + 44

’ (x —2)3

5 10 4
[(x—2> Ta-2 ' (x—zp}
18 4 21x — x?
(x —5)(x +2)?

[ 2 B 3 n 4 i|
x=5 @x+2) (x+2)7?

3.4 Worked problems on partial
fractions with quadratic factors

7x% +5x+ 13

Problem 8. —_—
@2 +2)x+1)

Express in partial

fractions.

The denominator is a combination of a quadratic
factor, (x*> 4 2), which does not factorize without
introducing imaginary surd terms, and a linear factor,
(x+1). Let,

Ix*+5x+13 _ Ax+B C
EiDa+D G212 G+
_ Ax+B)x+ 1)+ C(x*+2)
- (2 +2)(x+ 1)

Equating numerators gives:

T2 +5x+13=Ax+B)(x+ 1)+ Cx?+2) (1)

Letx=—1. Then

7(—1)2 +5(-1)+13=Ax+ B)(0)+ C(1 +2)
i.e. 15=3C

i.e. C=5
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Identity (1) may be expanded as:

7x* 4 5x 4 13 = Ax® + Ax + Bx + B+ Cx* 4+ 2C

Equating the coefficients of x> terms gives:
7=A+C,andsince C=5,A=2

Equating the coefficients of x terms gives:
5=A+B,andsinceA=2,B=3

[Check: equating the constant terms gives:
13=B+2C

When B=3 and C =5,

B+2C =3+ 10 =13 = LHS]
7x* 4+ 5x +13 2x+3+ 5
c =

@ +2)x+1)  (24+2) x+1

Henc

34 6x 4+ 4x2 — 243
2213 e

Problem 9. Resolve

partial fractions.

Terms such as x> may be treated as (x 4 0), i.e. they
are repeated linear factors.

346x+4x2—2x> A B Cx+D
Let =—+4+ 5+
x2(x2 + 3) x  x2 (x243)
_ Ax(x* +3) + B(x*> + 3) + (Cx + D)x?
o x2(x2 + 3)

Equating the numerators gives:

3+ 6x + 4x% — 2x° = Ax(x? + 3) + B(x> + 3)
+(Cx + D)x?

= Ax° + 3Ax + Bx? + 3B
+Cx* + Dx?

Letx=0. Then 3=3B

ie. B=1

Equating the coefficients of x> terms gives:
—2=A+C 6]

Equating the coefficients of x> terms gives:

4=B+D
SinceB=1,D=3

Equating the coefficients of x terms gives:

6=3A

ie. A=2
From equation (1), since A =2, C = —4
346 +42—2x 2 1 —4x+3
Hence =-4 =4+ ——
x2(x2+3) x  x2 x243
2 1 + 3—-4x
Tx  x2 x243

Now try the following exercise.

Exercise 15 Further problems on partial
fractions with quadratic factors

1 x2—x—13 [ 2x+3 1
T2+ =2) |2 +7) (x—2)]
6x —5 ! 2—x ]
2 - = +
(x — 4% +3) [ (x—4)  (2+3)
154+5x+5x2—4x°1 3 2 —5x
3. 5 —t+ S5+
x2(x%2 +5) [x  x x=493) ]
44+ 200 —7
4.
(x — 1)2(x2 + 8)
3 N 2 N 1 —2x
x—1 x-=12 @2+98)

5. When solving the differential equation
&0 627 _106=20—¢¥ by Lapl
- _ = — e aplace
dr? dr y AP

transforms, for given boundary conditions,
the following expression for £{6} results:

39
453 — 7s2 + 425 — 40
T S —2)(s2 — 65+ 10)

Show that the expression can be resolved into
partial fractions to give:

2 1
s 2(s—2)

55 —3
2(s2 — 6s + 10)

L£{0) =
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4

Logarithms and exponential functions

4.1 Introduction to logarithms

With the use of calculators firmly established, loga-
rithmic tables are now rarely used for calculation.
However, the theory of logarithms is important, for
there are several scientific and engineering laws that
involve the rules of logarithms.

If a number y can be written in the form a*, then
the index x is called the ‘logarithm of y to the base
ofa’,

ie. ify=a" thenx=log,y

Thus, since 1000 = 103, then 3 = log;, 1000.
Check this using the ‘log’ button on your
calculator.

(a) Logarithms having a base of 10 are called com-
mon logarithms and log, is usually abbrevi-
ated to lg. The following values may be checked
by using a calculator:

1g 17.9=1.2528. .., 1g 462.7=2.6652. .. and
120.0173=— 1.7619 ...

Logarithms having a base of e (where ‘e’ is a
mathematical constant approximately equal to
2.7183) are called hyperbolic, Napierian or
natural logarithms, and log, is usually abbrevi-
ated to In. The following values may be checked
by using a calculator:

In3.15=1.1474 ..., In 362.7=5.8935... and
In0.156 =—1.8578. ...

(b)

4.2 Laws of logarithms

There are three laws of logarithms, which apply to
any base:

(1) To multiply two numbers:

log (A x B)=logA +logB

The following may be checked by using a
calculator:

Ig10 = 1,alsolg5 +1g2
=0.69897...4+0.301029... =1
Hencelg (S x2)=1g10=1g5+ 1g2

To divide two numbers:

(i)

A
log (E) =log A —log B

The following may be checked using a
calculator:

ln<§> =In2.5=0.91629...

Also In5 —1In2 =1.60943... —0.69314...
=0.91629 ...

5
Hence ln(i) =In5—-1In2
(iii)

To raise a number to a power:

IgA" =nlogA

The following may be checked using a
calculator:

lg5°=1g25 = 1.3979%4 . ..
Also 21g5 =2 x 0.69897...
=1.39794 ...
Hence 1g5% =21g5

Problem 1.
(c) logyg 8.

Evaluate (a) logy 9 (b) log;y 10

(a) Let x=1log; 9 then 3* =9 from the definition
of a logarithm, i.e. 3* = 32, from which x =2
Hence logz 9=2



LOGARITHMS AND EXPONENTIAL FUNCTIONS 25

(b) Let x = log;( 10 then 10* =10 from the defin-
ition of a logarithm, i.e. 10* = 10!, from which
x=1
Hence logy9 10 =1 (which may be checked by
a calculator)

Let x = log8 then 16* =8, from the defini-
tion of a logarithm, i.e. (24" =23, i.e. 2% =23
from3 the laws of indices, from which, 4x = 3 and
X = i

()

Hence log16 8 = %

Problem 2. Evaluate (a) lg 0.001 (b) In e

1
log, —.
(c) logs 31

(a) Letx=1g0.001 = log;(0.001 then 10* =0.001,
ie. 10* = 1072, from which x = — 3
Hence Ig 0.001 = —3 (which may be checked
by a calculator)

(b) Let x=1Ine=log.e then e*=e, ie. &* =el
from which x=1. Hence Ine =1 (which may

be checked by a calculator)

1 1 1 4
Letx=logy ——then3" = — = - =377, from
. 81 81 3
whichx=-4

(©

1
H logzs —=—4
ence 0g381

Problem 3. Solve the following equations:
(a) lgx =3 (b) logy x =3 (c) logs x = —2.

(a) If lgx=3 then log;px=3 and x=10°, i.e.
x=1000
(b) Iflog, x=3thenx=23=8
1

1
(c) If loggx=—2 thenx=5’2=5—2 =25

Problem 4. Write (a) log 30 (b) log 450 in
terms of log 2, log 3 and log 5 to any base.

(@) log30=Ilog(2 x 15)=1log(2 x3 x5)
=log 2 +log 3 +log 5,
by the first law of logarithms
(b) 1log450 =log(2 x 225) =log (2 x 3 x 75)

=log (2 x 3 x 3 x 25)

=log(2 x 32 x 52)
=1log2 + log 3% + log 52,
by the first law of logarithms
log450 =log2+2log 3+2log S,
by the third law of logarithms

i.e.

4

Problem 5. Write log in terms of

log 2, log 3 and log 5 to any base.

8 x V5
log
81

=1log8 + log v/5 — log 81,
by the first and second

laws of logarithms

1
=log2> + log54 —log3*,
by the laws of indices,
i.e.

log
81

Problem 6. Evaluate

=3log2+ 1log5—4log3,
by the third law of logarithms

log25 — log 125 + 3 log 625
3log5 )

log25 —log 125 + %log 625
3log5

B log5% —log 5% + %logS4
N 3log5

_ 2log5 —3log5 + %logS

3log5
_llog5 1
" 3log5 3

Problem 7. Solve the equation:
log(x — 1)+ log (x +1)=2log (x + 2).
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log(x — 1)+ log(x+ 1) =log(x — D(x + 1),

from the first law of
logarithms

=log (x> — 1)
2log (x + 2) =log (x + 2)?
=log (x*> + 4x + 4)

Hence if log (x? — 1) =log (x> + 4x + 4)
then X2—1=x>+4x+4

ie. —1=4x+4

1.e. —5 =4x

i.e. x=—§ or —1%

Now try the following exercise.

Exercise 16 Further problems on the laws
of logarithms

In Problems
expression:

1. log;, 10000 [4]

1 to 8, evaluate the given

2. log, 16 (4]

3. logs 125 31 4. logys  [-3]
1

5. logg 2 [5} 6. 1g 100 (2]
1 2

7. log, 8 15 8. Ine [2]

In Problems 9 to 14 solve the equations:

9. log g x=4 [10000]
10. logzx=2 [9]
1. logyx=—2- 4
OREE TS 32
12. lgx=—2 [0.01]
13. 1 4 !
. 10 = ——= -—
B81="73 16
14. Inx=3 [e’]

In Problems 15 to 17 write the given expressions
in terms of log 2, log 3 and log 5 to any base:

15. log 60 [2log2 + log 3 + log5]
16 x /5
16. log (L[>
27
[410g2 + }log5—31log3]
125 x V16
17. log | ———
V813
[log2 —3log3+3log3]

Simplify the expressions given in Problems 18
and 19:

18. log27 — log9 + log 81 [5 log 3]

19. log 64 + log32 — log 128 [4 log 2]
llog16—llog8 1

20. Evaluate 2 3 |:—:|
log4 2

Solve the equations given in Problems 21
and 22:

21. logx* — logx® = log 5x — log 2x

]

[r=8]

22. log23 — logt=log 16 + logt

4.3 Indicial equations

The laws of logarithms may be used to solve cer-
tain equations involving powers—called indicial
equations. For example, to solve, say, 3* =27, log-
arithms to a base of 10 are taken of both sides,

ie. log;o 3* =log;y27
xlogo 3 =log;y27,
by the third law of logarithms

and

Rearranging gives
_logyp27 1.43136...
~ logp3  04771...
which may be readily checked

log8Y . 8
Note, [ —— ) is not equal tolg [ =
log2 2
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Problem 8. Solve the equation 2* = 3, correct
to 4 significant figures.

Taking logarithms to base 10 of both sides of 2* =3
gives:

logo 2" =log;3
ie. xlogig2 =log;y 3
Rearranging gives:

log;p3  0.47712125...
X = =
log;p2 030102999 ...

= 1.585, correct to 4 significant figures

Problem 9. Solve the equation 2**! =33
correct to 2 decimal places.

Taking logarithms to base 10 of both sides gives:
logp 2! =logy( 3%
ie. (x+ 1) login2 =(2x — 5)logy3
xlogyg2 +log;y2 =2xlogyy3 — 5logyp3

x(0.3010) 4 (0.3010) =2x(0.4771) — 5(0.4771)
ie. 0.3010x +0.3010 =0.9542x — 2.3855
Hence

2.3855 +0.3010 =0.9542x — 0.3010x
2.6865 =0.6532x

2.6865

0.6532
2 decimal places

from whichx = =4.11, correct to

Problem 10. Solve the equation x>> =41.15,
correct to 4 significant figures.

Taking logarithms to base 10 of both sides gives:

logox>?% =log,(41.15

log(41.15

Hence log;yx = = 0.50449

Thus x = antilog 0.50449 = 1009449 = 3,195 cor-
rect to 4 significant figures.

Now try the following exercise.

Exercise 17 Indicial equations

Solve the following indicial equations for x, each
correct to 4 significant figures:

1. 3*=6.4 [1.690]
2. 2=9 [3.170]
3. 2l =321 [0.2696]
4. x'9=14.91 [6.058]
5. 25.28=4.2" [2.251]
6. 4%~ =52 [3.959]
7. x7025=0.792 [2.542]
8. 0.027*=3.26 [—0.3272]
9. The decibel gain n of an amplifier is given by:

P
n = lOlOglO (}%)
1

where P; is the power input and P, is the
power output. Find the power gain }TZ when

1
n =25 decibels.
[316.2]

4.4 Graphs of logarithmic functions

A graph of y=log;yx is shown in Fig. 4.1 and a
graph of y = log, x is shown in Fig. 4.2. Both are
seen to be of similar shape; in fact, the same general
shape occurs for a logarithm to any base.

y
1.0+
0.5F /
1 1 .
0 1 2 3 X
05k x 3 2 1 05 02 01
' y=log, x [0.:48 0.30 0 -0.30-0.70-1.0
-1.0H

Figure 4.1
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Y
2
1t
0
-1
Xx |6 & 4 3 2 1 05 02 01
y= |Dgex 1.79 1.61 1.39 1.10 069 0 —0.69 —1.61 —2.30
ol
Figure 4.2

In general, with a logarithm to any base a, it is noted
that:

(1) loga1=0
Let log, =x, then a* =1 from the definition of
the logarithm.
If @* =1 then x =0 from the laws of indices.
Hence log,1 =0. In the above graphs it is seen
that log;y1 =0 and log, 1 =0

(ii) logaa=1
Letlog, a = x then a* = a from the definition of
a logarithm.
Ifa*=athenx=1.
Hence log, a = 1. (Check with a calculator that
log;y 10=1 and log, e =1)

(iii) logya0 - —o0
Letlog, 0 =x then a* = 0 from the definition of
a logarithm.
If a*=0, and a is a positive real number,
then x must approach minus infinity. (For
example, check with a calculator, 272 =0.25,
2720=9.54x1077,2729=6.22 x 10%!,and
SO On)
Hence log, 0 — —o0

4.5 The exponential function

An exponential function is one which contains e*, e
being a constant called the exponent and having an
approximate value of 2.7183. The exponent arises
from the natural laws of growth and decay and is
used as a base for natural or Napierian logarithms.
The value of e* may be determined by using:

(a) a calculator, or
(b) the power series for e* (see Section 4.6), or
(c) tables of exponential functions.

The most common method of evaluating an expo-
nential function is by using a scientific notation
calculator, this now having replaced the use of
tables. Most scientific notation calculators contain
an e”* function which enables all practical values of e*
and e™* to be determined, correct to 8 or 9 significant
figures. For example,

el =2.7182818 ¢4 =11.023176

e~ 1018 =0.19829489 correct to 8 significant
figures

In practical situations the degree of accuracy given
by acalculator is often far greater than is appropriate.
The accepted convention is that the final result is
stated to one significant figure greater than the least
significant measured value. Use your calculator to
check the following values:

¢012 =1.1275, correct to 5 significant figures
e 041 =0.6499, correct to 4 decimal places
e32 = 11159, correct to 5 significant figures
Problem 11. Use a calculator to determine the
following, each correct to 4 significant figures:
5
3.72e%18  (b)53.2e714 —e.
(a) e (b) e © 157 ©

(a) 3.72e%18 =(3.72)(1.197217 ...)=4.454,
correct to 4 significant figures

(b) 53.2e14=(53.2)(0.246596 ...)=13.12,
correct to 4 significant figures

5 5
(€) — e’ =-—"-(1096.6331 ...)=44.94,
122 122 o
correct to 4 significant figures

Problem 12. Evaluate the following correct to
4 decimal places, using a calculator:

(a) 0.0256(e>21 — 249

s 025 _ o—0.25
(®) 025 1 o025

(a) 0.0256(e>2! — e249)
= 0.0256(183.094058 ... — 12.0612761 ...)
= 4.3784, correct to 4 decimal places
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@025 _ o—0.25
(b) 5 025 4 ¢—0.25

_ <1.28402541 ...—0.77880078 .. )

1.28402541 ...+ 0.77880078.. ..

_ 0.5052246 . ..
7\ 2.0628261 ...

= 1.2246, correct to 4 decimal places

Problem 13. The instantaneous voltage v in
a capacitive circuit is related to time ¢ by

the equation v = VeC_Ig where V, C and R
are constants. Determine v, correct to 4 sig-
nificant figures, when ¢ =30 x 103 seconds,
C =10 x 107° farads, R =47 x 10° ohms and
V=200V.

—t (=30x1073)
V=V eCR = 200e(10x10-0x47x103)

Using a calculator,

v = 20000638297 — 200(0.9381646 . ..)
— 187.6V

Now try the following exercise.

Exercise 18 Further problems on evaluat-
ing exponential functions

1. Evaluate, correct to 5 significant figures:
6

(2)3.5¢>%  (b) -3 e 1% (0)2.16€%7

(a) 57.556

(b) —0.26776
(c) 645.55

In Problems 2 and 3, evaluate correct to 5
decimal places.

1
2. (a) 7 e3.4629 (b) 8.52 e—1.2651

5 02.6921
©) Form
ol
(a) 4.55848
(b) 2.40444
(c) 8.05124

5.6823 Q21127 _ o-2.1127
3@ ®) >
A(e17295 _ 1)
©) —Ferm
(a) 48.04106
(b) 4.07482
(c) —0.08286

4. The length of a bar, [/, at a temperature 6
is given by I=1ye*’, where Iy and « are
constants. Evaluate [/, correct to 4 signifi-
cant figures, when [y =2.587, 8 =321.7 and
a=1.771 x 1074, [2.739]

4.6 The power series for e*

The value of e* can be calculated to any required
degree of accuracy since it is defined in terms of the
following power series:

2 )C3 x4

=Xt b
STRRNETIRAT

(where 3! =3 x 2 x 1 and is called ‘factorial 3”)
The series is valid for all values of x.

The series is said to converge, i.e. if all the terms
are added, an actual value for e* (where x is a real
number) is obtained. The more terms that are taken,
the closer will be the value of e* to its actual value.
The value of the exponent e, correct to say 4 decimal
places, may be determined by substituting x =1 in
the power series of equation (1). Thus,

2 3 4 5
| OO RO
© 1+1+2_!+?+4_!+?

6 7 8
=14+140.54+0.16667 4+ 0.04167
+ 0.00833 + 0.00139 + 0.00020

+0.00002 + - - -

ie. e=2.71828 =2.7183,
correct to 4 decimal places

The value of €703, correct to say 8 significant figures,

is found by substituting x = 0.05 in the power series
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for e*. Thus
05 _ (0.05)>  (0.05)°
=1+005+ ——+—
0.05)*  (0.05)°
L 0057 (0057

41 5!
— 1+ 0.05 + 0.00125 + 0.000020833
+0.000000260 + 0.000000003

and by adding,

%05 = 1.0512711, correct to 8 significant figures

In this example, successive terms in the series grow
smaller very rapidly and it is relatively easy to deter-
mine the value of €% to a high degree of accuracy.
However, when x is nearer to unity or larger than
unity, a very large number of terms are required for
an accurate result.

If in the series of equation (1), x is replaced by —x,
then,

L (—x)?  (—x)’
*=1
+ (=x) + Tt
2 3
ie e‘x=1—x+x——x—
20 3l

In a similar manner the power series for ¢* may be
used to evaluate any exponential function of the form
aek’c, where a and k are constants. In the series of
equation (1), let x be replaced by kx. Then,

2 3
acd —a |14 oo+ B L B }
21 3
2 3
Thus 5> =511+ (2x) + (2;) +(2;) +}

=5

142 +4x2+8x3+
X4+ — 4 ..
2 6

ie. 5e¥=5

4
1+2x+2x2+§x3+--~}

Problem 14. Determine the value of 5 e%-3, cor-
rect to 5 significant figures by using the power
series for e*.

¥ oy

e—1+x+—+§+ =+ -

(0.5)%
)1)
0.5)*
T@eo0
(0.5)°
(6)(S)(@)(3)(2)(1)
=14 0.5+ 0.125 + 0.020833
+0.0026042 + 0.0002604
+0.0000217

ie. ¥ =1.64872,
correct to 6 significant figures

(0.5)
(3)2)(1)
(0.5)
G)®HB3)2)(1)

Hence ¢e%5=1+0.5+

Hence 5e%5 =5(1.64872) = 8.2436,

correct to 5 significant figures

Problem 15. Expand e*(x2
term in x°.

— 1) as far as the

The power series for e* is,

P S S

e_1+x+ +—+—+—+
Hence e*(x2 — 1)
3! 5!

31 51
)(Xz—l)
PR
=[x2+3 +5+§+

)C2 )C3 x4 XS
Itx+ g+ g+

x2 3 x4 x5
T+xd o+ 5+ g+

3! 5!

Grouping like terms gives:

e(x?—1)

Tmxt a4 24ty D os
=—1—-X x x —X —X
27 "6 247 T 120

when expanded as far as the term in x°.
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Now try the following exercise.

Exercise 19 Further problems on the power
series for e*

1. Evaluate 5.6, correct to 4 decimal places,
using the power series for e*. [2.0601]

2. Use the power series for e* to determine, cor-
rect to 4 significant figures, (a) e2 (b) e 03
and check your result by using a calculator.

[(a) 7.389 (b) 0.7408]

3. Expand (1 —2x) e?* as far as the term in x*.

8x3 ]
|:1—2)c2 - — 2t
3 i
1
4. Expand (2 exz)(xf) to six terms.

1 39 1 137
2x2 +2x2 +x2 + =x2

3
o1 2
F—=x2 +—x2

12 60 .

4.7 Graphs of exponential functions

Values of e and e™ obtained from a calculator,
correct to 2 decimal places, over a range x =—3
to x = 3, are shown in the following table.

x [-3.0 =25 =20 -15 —-1.0 =05 0
e* | 0.05 008 0.14 022 037 0.611.00
e |20.09 12.18 739 448 272 1.651.00

X 05 10 15 20 25 3.0
e | 1.65 272 448 7.39 12.18 20.09
e (10.61 037 022 0.14 0.08 0.05

Figure 4.3 shows graphs of y=e* and y=¢™*

Problem 16. Plot a graph of y=2¢%3* over a

range of x =—2 to x = 3. Hence determine the
value of y when x = 2.2 and the value of x when
y=1.6.

y

Figure 4.3

3.87

[=]
-
rap

e L —

Figure 4.4

A table of values is drawn up as shown below.

X

0.3x
eO.Sx

2 eO.3x

-3 -2 -1 0 1 2 3

-09 -06 -03 0 03 06 09
0.407 0.549 0.741 1.000 1.350 1.822 2.460
0.81 1.10 1.48 2.00 2.70 3.64 4.92

0.3x 3

A graph of y =2e">* is shown plotted in Fig. 4.4.
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From the graph, when x =2.2,y =3.87 and when
y=1.6,x=-0.74.

A table of values is drawn up as shown below.

t 0 1 2 3

2x es 1.00  0.7165 0.5134 0.3679

Problem 17. Plot a graph of y= % e “* over
the range x = —1.5 to x = 1.5. Determine from
the graph the value of y when x = —1.2 and the
value of x when y=1.4.

—t
v=250e3 | 2500 179.1 1284 9197

t 4 5 6
es 0.2636 0.1889 0.1353
—t
v=250e3 | 6590 4722  33.83

A table of values is drawn up as shown below.

—t
X -15 =10 =05 0 05 10 15 The natural decay curve of v=250e3 is shown in

x| 3 2 1 0 -1 -2 -3 | He4b
e > |20.086 7.389 2.718 1.00 0.368 0.135 0.050 -
1
—e 2 6.70 246 091 033 0.12 0.05 0.02
3 __200
2
©
A graph of % e~2* is shown in Fig. 4.5. §150.
@
g
)
y = 100

80}
50

Time t(seconds)

Figure 4.6

From the graph:

(a) when time t =3.4s, voltage v=80V and
(b) when voltage v=150V, time f =1.5s.

L
-1.5 -1.0 -0.5 0.5 1.0 1.5 X
-1.2 =-0.72

Figure 4.5 . )
Now try the following exercise.

From the graph, whenx=-1.2,y=3.67 and Exercise 20 Further problems on exponen-

wheny=14, x=—-0.72. tial graphs

1. Plot a graph of y=3¢e%?* over the range
x=—3 to x=3. Hence determine the value
Problem 18. 'The df.:cay of Vol(tiag.e, v VOIIES’ of y when x =1.4 and the value of x when
across a cil?acuor at time ¢ seconds is given by y=4.5. [3.95, 2.05]

v=250e3 . Draw a graph showing the natural 1 —15
decay curve over the first 6 seconds. From the 2. )I:lOt al gsrii(lff; Ofl y5=an§dehenc); gggﬂihﬁ?ﬁg

h, fi he vol fter 3.4 h - =

graph, find (a) the voltage after 3.4 s, and (b) the value of y when x = —0.8 and the value of x

time when the voltage is 150 V.

when y=3.5. [1.65, —1.30]
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3. In a chemical reaction the amount of start-
ing material Ccm? left after + minutes is
given by C =40e%09 Plot a graph of C
against ¢ and determine (a) the concentration
C after 1 hour, and (b) the time taken for the
concentration to decrease by half.

[(a) 28 cm? (b) 116 min]

4. The rate at which a body cools is given by
6 =250e7905 where the excess of tempera-
ture of a body above its surroundings at time
¢t minutes is 6°C. Plot a graph showing the
natural decay curve for the first hour of cool-
ing. Hence determine (a) the temperature
after 25 minutes, and (b) the time when the
temperature is 195°C.

[(a) 70°C (b) 5 min]

4.8 Napierian logarithms

Logarithms having a base of e are called hyper-
bolic, Napierian or natural logarithms and the
Napierian logarithm of x is written as log, x, or more
commonly, In x.

The value of a Napierian logarithm may be
determined by using:

(a) a calculator, or

(b) a relationship between common and Napierian
logarithms, or

(c) Napierian logarithm tables

The most common method of evaluating a Napierian
logarithm is by a scientific notation calculator, this
now having replaced the use of four-figure tables,
and also the relationship between common and
Napierian logarithms,

log,y = 2.3026log;qy

Most scientific notation calculators contain a ‘Inx’
function which displays the value of the Napierian
logarithm of a number when the appropriate key is
pressed.

Using a calculator,

In4.692 =1.5458589 ...

=1.5459, correct to 4 decimal places

and In35.78 =3.57738907 ...

=3.5774, correct to 4 decimal places

Use your calculator to check the following values:

In 1.732 = 0.54928, correct to 5 significant figures
In1=0
In0.52 = —0.6539, correct to 4 decimal places

lne3:3, Inel =1

From the last two examples we can conclude that
log. e* =x

This is useful when solving equations involving
exponential functions. For example, to solve e’* = 8,
take Napierian logarithms of both sides, which
gives:

Ine* =1n8
ie. 3x =In8

from which X = % In 8 = 0.6931, correct to

4 decimal places

Problem 19. Use a calculator to evaluate the
following, each correct to 5 significant figures:

1 1n7.8693

(a) - In4.7291  (b) 222
4 7.8693
5.291n24.07

¢) o762

1 1
(a) 1 In4.7291 = 1(1.5537349 ces)

=10.38843,
correct to 5 significant figures

In7.8693  2.06296911 ...
7.8693  7.8693
correct to 5 significant figures

(b) = 0.26215,

5.29In24.07  5.29(3.18096625. . .)

e—0.1762 0.83845027...
=20.070,
correct to 5 significant figures

(©

Problem 20. Evaluate the following:

In eZ.S
1g 1005

4e**1g2.23 (correct to 3
In2.23 decimal places)

(a)
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@ Ine?> 2.5 5
d) —m—m—mMm = —— =
1g10%5 0.5
4e*231g2.23
(b) Felgesd
In2.23
_4(9.29986607 ... )(0.34830486 . ..)
N 0.80200158.. ..
= 16.156, correct to 3 decimal places
Problem 21. Solve the equation 7=4¢~>* to

find x, correct to 4 significant figures.

Rearranging 7 = 43 gives:

z — e—3x
4
Taking the reciprocal of both sides gives:
77 e e

Taking Napierian logarithms of both sides gives:

In (;) = In(e¥)

4
Since log, e* =, then In (5> = 3x.
Hence

A
—-tn(Z) = (- 0.559:2
* 3“(7) 3¢ )

= —0.1865, correct to 4 significant figures

—t
Problem 22. Given 20=60(1 —e2 ) deter-
mine the value of #, correct to 3 significant
figures.

—t
Rearranging 20 =60(1 —e 2 ) gives:

20 =t
—=1—-e2
60
and
=t 20 2
c 2 = _——_—= =
60 3
Taking the reciprocal of both sides gives
r 3
e2 = —

Taking Napierian logarithms of both sides gives:
t 3

— =1In-—-

1
Ine2 =ln—- ie.
2 2 2

3
from which, £ =21n 2 =0.811, correct to 3 signifi-

cant figures

Problem 23.
5.14
3.72=In{ — ) to find x.
X

Solve the equation

From the definition of a logarithm, since

5.14 5.14
372 = ln(—) then &3/ = =—
X X
Rearranging gives:

5.14

— — —3.72
= o3 = 5.14e

X

i.e. x =0.1246, correct to 4 significant figures

Now try the following exercise.

Exercise 21 Further problems on evaluat-
ing Napierian logarithms

1. Evaluate, correct to 4 decimal places

(a)In1.73 (b)In541.3 (c)1n0.09412
[(a) 0.5481 (b) 6.2940 (c) —2.3632]

2. Evaluate, correct to 5 significant figures.

2.9461ne!-70 5¢0.1629
(a) )
Ig 10* 21n 0.00165
In4.8629 —In2.4711
(©)
5.173

[(a) 3.6773 (b) —0.33154 (c) 0.13087]

In Problems 3 to 7 solve the given equations,
each correct to 4 significant figures.

3. 1.5=4¢* [—0.4904]
4. 7.83=291e 17 [—0.5822]
—t
5. 16=24(1—¢72) [2.197]
X
6. 5.17=1In(— 816.2
“(4.64) [816.2]
1.59
7.372In[ — ) =2.43 [0.8274]
X
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8. The work done in an isothermal expansion of
a gas from pressure pj to p; is given by:

()
w=woln| —
P2

If the initial pressure p; = 7.0 kPa, calculate
the final pressure p; if w=3wo
[p2 =348.5Pa]

4.9 Laws of growth and decay

The laws of exponential growth and decay are of the
formy=Ae* and y =A(1 —e™**), where A and k
are constants. When plotted, the form of each of these
equations is as shown in Fig. 4.7. The laws occur
frequently in engineering and science and examples
of quantities related by a natural law include:

y=Aekx

(@)

y=A(1-e"k

(b)
Figure 4.7

(i) Linear expansion [=1lye*?
(i) Change in electrical resistance

with temperature Ry =Ry e*?
T] = To 6“0
t

(iii) Tension in belts
(iv) Newton’s law of cooling 6 =6y e~

y=yoel
—t/CR

(v) Biological growth
(vi) Discharge of a capacitor g=Qe

(vii) Atmospheric pressure  p=pge /¢

(viii) Radioactive decay N=Nye M
(ix) Decay of current in an

inductive circuit i=Ie Ri/L

(x) Growth of current in a

capacitive circuit i=1(1 —e t/CRy

Problem 24. The resistance R of an elec-
trical conductor at temperature 9°C is given
by R=Rpe*, where « is a constant and
Rop =35 x 10° ohms. Determine the value of
o, correct to 4 significant figures, when
R =6 x 103 ohms and = 1500°C. Also, find
the temperature, correct to the nearest degree,
when the resistance R is 5.4 x 10> ohms.

R
Transposing R = Ry e®? gives = e?.

0
Taking Napierian logarithms of both sides gives:

R
In— =Ine* = b
Ro

1. R 1 6 x 103
Hence oda=—-In— = In
6 Ry 1500 \5x103
1
= —(0.1823215...
1500( )
=1.215477--- x 1074
Hence a=1.215 x 1074,

correct to 4 significant figures

R
From above, In — =«af
Ro
1 R

0=—In—
o Ry

When R=5.4x 103,00 =1.215477... x 10~* and
Ry=5x 103

1 54 x 103
0= In
1.215477 ... x 10~4 5x 103

10* )
= (7.696104... x 1072)
1.215477 ...

hence

633°C, correct to the nearest degree
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Problem 25. In an experiment involving
Newton’s law of cooling, the temperature 6(°C)
is given by 6=6pe . Find the value of
constant k when 6y =56.6°C, 6§ =16.5°C and
t =83.0 seconds.

Transposing 0 =6pe ¥ gives
6 _
o
0 1

from which 2 = —_ — ¢k
0 e—kt

Taking Napierian logarithms of both sides gives:

0,
ln—ozkt
0

from which,

1 1 .
k=—-1In % =——In 26.6
t 6 830 16.5

1
=—(1.2326486...)
83.0
Hence k = 1.485 x 102

Problem 26. The current i amperes flow-
ing in a capacitor at time ¢ seconds is given

—t
by i=8.0(1 —eCR), where the circuit resist-
ance R is 25 x 103 ohms and capacitance C is
16 x 1076 farads. Determine (a) the current i
after 0.5 seconds and (b) the time, to the near-
est millisecond, for the current to reach 6.0A.
Sketch the graph of current against time.

—t
(a) Current i=38.0(1 —eCR)
—0.5

=8.0[1 —e16x107925x10) ] =8,0(1 —e~!%)
=8.0(1 —0.2865047...) = 8.0(0.7134952. ...

= 5.71 amperes
—t
(b) Transposing i =8.0(1 — eCR)

| —t
gives 8l_0 =1—eCR

=t [ 8.0—1i
from which, eCR =1 — L !
8.0 8.0

Taking the reciprocal of both sides gives:

1 8.0
eCR =
8.0—1i

Taking Napierian logarithms of both sides gives:

t 8.0
— =1In -
CR (8.0— z>

Hence

1 8.0
8.0—i

8.0
= (16 x 107925 x 103 In [ ————
(16> 1077325 > 107 1n <8.0 - 6.0)

when i = 6.0 amperes,

4 .
ie. t= —00 In @ =0.41n4.0
103 2.0

=0.4(1.3862943...) = 0.5545s

= 555 ms, to the nearest millisecond

A graph of current against time is shown in
Fig. 4.8.

i=8.0 (1—e-t/CR)

1
0 0.5 1.0 1.5 t(

Ly

Figure 4.8

Problem 27. The temperature 6, of a winding
which is being heated electrically at time ¢ is

—t
given by: 6, =0;(1 — et ) where 0 is the tem-
perature (in degrees Celsius) at time t =0 and t
is a constant. Calculate,

(a) 01, correct to the nearest degree, when 6, is
50°C, ris 30s and 7 is 60 s

(b) the time ¢, correct to 1 decimal place, for 6,
to be half the value of 6.
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(a) Transposing the formula to make 6, the subject

gives:
) 50
o = -t = =30
(1—eT) 1—¢e60
50 50

T 1—¢05 " 0393469 ..

i.e. 01 =127°C, correct to the nearest degree

(b) Transposing to make ¢ the subject of the formula

gives:
(% =t
2 _ l—erz
01
-t 0
from which, e = =1 — 9—2
1

Hence

t
—— :1n<1 — %)
T 0,
0
ie. t=—1ln (1 — —2)
01

Since 6 = =6

=—601n0.5 =41.59s

Hence the time for the temperature 6, to be one
half of the value of 61 is 41.6 s, correct to 1 decimal
place

Now try the following exercise.

Exercise 22 Further problems on the laws
of growth and decay

1. The pressure p pascals at height & metres
—h

above ground level is given by p=ppeC ,
where po is the pressure at ground level
and C is a constant. Find pressure p when
po = 1.012 x 10° Pa, height & = 1420 m, and

C =171500. [99210]

2. The voltage drop, v volts, across an induc-
tor L henrys at time ¢ seconds is given

—Rt
by v=200e L , where R=150 and
L=12.5x 1073 H. Determine (a) the volt-
age when 1 =160 x 10~%s, and (b) the time
for the voltage to reach 85 V.

[(a) 29.32 volts (b) 71.31 x 1070 5s]

3. The length [ metres of a metal bar at tem-
perature °C is given by [=I[ye*, where
lp and o are constants. Determine (a) the
value of @ when [=1.993m, [p=1.894m
and t =250°C, and (b) the value of [y when
1=2.416,r=310°C and « = 1.682 x 10~4.

[(a) 2.038 x 10~ (b) 2.293 m]

4. A belt is in contact with a pulley for a sec-
tor of 6 =1.12radians and the coefficient
of friction between these two surfaces is
i =0.26. Determine the tension on the taut
side of the belt, T newtons, when tension
on the slack side 7y =22.7 newtons, given
that these quantities are related by the law
T =Tye". Determine also the value of 6
when T = 28.0 newtons.

[30.4 N, 0.807 rad]

5. The instantaneous current i at time f is
given by: i=10eCR when a capacitor
is being charged. The capacitance C is

7 x 1070 farads and the resistance R is
0.3 x 10° ohms. Determine:

(a) the instantaneous current when ¢ is
2.5 seconds, and

(b) the time for the instantaneous current to
fall to 5 amperes

Sketch a curve of current against time from
t=0 to t =6 seconds.
[(a) 3.04A (b) 1.465]

6. The amount of product x (in mol/cm?)
found in a chemical reaction starting
with 2.5mol/cm® of reactant is given by
x=2.5(1 —e~*) where 7 is the time, in min-
utes, to form product x. Plot a graph at
30second intervals up to 2.5 minutes and
determine x after | minute. [2.45 mol/cm?]

7. The current i flowing in a capacitor at time ¢
is given by:

—t
i=12.5(1 —eCR)

where resistance R is 30kilohms and the
capacitance C is 20 micro-farads. Determine:

(a) the current flowing after 0.5 seconds, and

(b) the time for the current to reach
10 amperes [(a) 7.07 A (b) 0.966s]




38 NUMBER AND ALGEBRA

4.10 Reduction of exponential laws to
linear form

Frequently, the relationship between two variables,
say x and y, is not a linear one, i.e. when x is
plotted against y a curve results. In such cases the
non-linear equation may be modified to the linear
form, y = mx + ¢, so that the constants, and thus the
law relating the variables can be determined. This
technique is called ‘determination of law’.

Graph paper is available where the scale markings
along the horizontal and vertical axes are propor-
tional to the logarithms of the numbers. Such graph
paper is called log-log graph paper.

A logarithmic scale is shown in Fig. 4.9 where
the distance between, say 1 and 2, is proportional
tolg 2 —Ig1,i.e. 0.3010 of the total distance from
1 to 10. Similarly, the distance between 7 and 8§ is
proportional to g 8 — Ig 7, i.e. 0.05799 of the total
distance from 1 to 10. Thus the distance between
markings progressively decreases as the numbers
increase from 1 to 10.

L I 1 L L1 1 1.}
1 2 3 4 5 6 7 88910

Figure 4.9

With log-log graph paper the scale markings are
from 1 to 9, and this pattern can be repeated several
times. The number of times the pattern of markings
is repeated on an axis signifies the number of cycles.
When the vertical axis has, say, 3 sets of values from
1t0 9, and the horizontal axis has, say, 2 sets of values
from 1 to 9, then this log-log graph paper is called
‘log 3 cycle x 2 cycle’. Many different arrangements
are available ranging from ‘log 1 cycle x 1 cycle’
through to ‘log 5 cycle x 5 cycle’.

To depict a set of values, say, from 0.4 to 161, on
an axis of log-log graph paper, 4 cycles are required,
from 0.1 to 1, 1 to 10, 10 to 100 and 100 to 1000.

Graphs of the form y =a e

Taking logarithms to a base of e of both sides of
y=ae gives:

Iny=In(ae®)=Ina+1Ine® =Ina+ kxlne

i.e. Iny =kx + Ina(since Ine = 1)

which compares with Y =mX + ¢
Thus, by plotting In y vertically against x hor-
izontally, a straight line results, i.e. the equation

y =a e’ is reduced to linear form. In this case, graph

paper having a linear horizontal scale and a log-
arithmic vertical scale may be used. This type of
graph paper is called log-linear graph paper, and is
specified by the number of cycles on the logarithmic
scale.

Problem 28. The data given below is believed
to be related by a law of the form y = a e**, where
a and b are constants. Verify that the law is true
and determine approximate values of a and b.
Also determine the value of y when x is 3.8 and
the value of x when y is 85.

x —12 038 12 25
y 93 222 348 712

34 42 53
117 181 332

Since y=ae! then Iny=kx+ Ina (from above),
which is of the form Y =mX + ¢, showing that to
produce a straight line graph In y is plotted vertically
against x horizontally. The value of y ranges from
9.3 to 332 hence ‘log 3 cycle x linear’ graph paper is
used. The plotted co-ordinates are shown in Fig. 4.10
and since a straight line passes through the points the
law y =a e is verified.

100

= aekx 4

Figure 4.10
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Gradient of straight line,

L AB _ In100—1n10  2.3026
~ BC 3.12—(—1.08)  4.20

= 0.55, correct to 2 significant figures
Since Iny =kx+ Ina, when x=0, Iny=Inaq, i.e.
y=a
The vertical axis intercept value at x =0 is 18, hence
a=18

The law of the graph is thus y = 18 e?-5*

When x is 3.8, y =18¢0333.8) — 18209
=18(8.0849) = 146
When yis 85, 85 =18¢0-5*
85
Hence, 055 — 8 =4.7222
and 0.55x =1n4.7222 = 1.5523
1.5523
Hence X = = 2.82
0.55

Problem 29. The voltage, v volts, across an
inductor is believed to be related to time, ¢ ms, by

x
the law v=V eT, where V and T are constants.
Experimental results obtained are:

vvolts 883 347 90 555 18.6 5.2
t ms 104 21.6 37.8 43.6 56.7 72.0

Show that the law relating voltage and time is
as stated and determine the approximate values
of V and T. Find also the value of voltage after
25 ms and the time when the voltage is 30.0 V.

t
Sincev=VeT thenlnv= %t + In V which s of the
form Y =mX +c.
Using ‘log 3 cycle x linear’ graph paper, the points
are plotted as shown in Fig. 4.11.
Since the points are joined by a straight line the

s
law v=VeT is verified.
Gradient of straight line,

1 _AB
T  BC

~ In100—1In 10
T 36.5—64.2

1000

qRy=EEce:

6.5, 100)

100

Voltage, v volts

Time, tms
Figure 4.11
_ 2.3026
=277
—27.7
Hence T =
2.3026

= —12.0, correct to 3 significant figures

Since the straight line does not cross the verti-

cal axis at t+ = 0 in Fig. 4.11, the value of V is

determined by selecting any point, say A, having

co-ordinates (36.5,100) and substituting these values
t

intov=VeT.

36.5
Thus 100 =V e—12.0
. _ 100
1e. V=—m
e 12.0
=2090 volts,

correct to 3 significant figures

—t
Hence the law of the graph is v =2090 e12.0

When time ¢ =25ms,

—25
voltage v=2090e120 =260V
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t
When the voltage is 30.0 volts, 30.0 =2090e 12.0,

=t 30.0
hence el20 =——
2090
_t_ 2090

d 20 = —— = 69.67
e 30.0

Taking Napierian logarithms gives:

t
—— =1n69.67 = 4.2438
12.0

from which, time £ = (12.0)(4.2438) = 50.9 ms

Now try the following exercise.

Exercise 23 Further problems on reducing
exponential laws to linear form

1. Atmospheric pressure p is measured at vary-
ing altitudes & and the results are as shown
below:

Altitude, h m  pressure, p cm

500 73.39
1500 68.42
3000 61.60
5000 53.56

8000 43.41

Show that the quantities are related by the

law p = aekh, where a and k are constants.
Determine the values of a and k and state
the law. Find also the atmospheric pressure
at 10000 m.

a=76k=—-7x1072,
p =76 7107 37 74 cm

2. At particular times, t minutes, measurements
are made of the temperature, §°C, of a cooling
liquid and the following results are obtained:

Temperature 6°C  Time ¢ minutes

92.2 10
55.9 20
33.9 30
20.6 40
12.5 50

Prove that the quantities follow a law of the

form 6 = 6 e, where 6y and k are constants,
and determine the approximate value of 6y
and k.

[0 =152, k=—0.05]
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Hyperbolic functions

5.1 Introduction to hyperbolic
functions

Functions which are associated with the geom-
etry of the conic section called a hyperbola are
called hyperbolic functions. Applications of hyper-
bolic functions include transmission line theory and
catenary problems. By definition:

(i) Hyperbolic sine of x,

X _ =X

inhx = (1)
sinnnx=———
2

‘sinh x’ is often abbreviated to ‘shx’ and is
pronounced as ‘shine x’

(i) Hyperbolic cosine of x,

e +e™*
cosh x = +T 2)

‘coshx’ is often abbreviated to ‘chx’ and is
pronounced as ‘kosh x’
(iii)) Hyperbolic tangent of x,
sinhx e‘—e™
= - (3)
coshx e*+4e*

‘tanh x’ is often abbreviated to ‘thx’ and is
pronounced as ‘than x’

(iv) Hyperbolic cosecant of x,

2
cosechx = — = 4)
sinhx e*—e™
‘cosech x’ is pronounced as ‘coshec x’
(v) Hyperbolic secant of x,
h 1 2 5)
sechx = =
coshx e“+e™*
‘sech x’ is pronounced as ‘shec x’
(vi) Hyperbolic cotangent of x,
1 e*+e™*
cothx = + (6)

tanhx e¥—e™*
‘cothx” is pronounced as ‘koth x’

Some properties of hyperbolic functions

Replacing x by 0 in equation (1) gives:
0 -0
— 1-1
sinh0= —° =
2 2

Replacing x by 0 in equation (2) gives:

=0

If a function of x, f(—x)=—f(x), then f(x) is
called an odd function of x. Replacing x by —x in
equation (1) gives:

. e —e (0 e —ef
sinh(—x) = 5 = 5

et —e™*
= — (T) = —sinhx

Replacing x by —x in equation (3) gives:

e —e (=0 e —¢e*

tanh(—x) = o + e*(fx) = ox + o

et —e™*
= — (—x n _x) = —tanhx
e +e

Hence sinh x and tanh x are both odd functions

(see Section 5.2), as also are cosechx | =

1
and coth x (: )
tanh x

If a function of x, f(—x) =f(x), then f(x) is called
an even function of x. Replacing x by —x in
equation (2) gives:

sinh x

e X +e—(—x) _ e ¥ 1 et
2 2

cosh(—x) =
= coshx

Hence cosh x is an even function (see Section 5.2),

1
as also is sechx(: >
coshx
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Hyperbolic functions may be evaluated easiest
using a calculator. Many scientific notation calcul-
ators actually possess sinh and cosh functions; how-
ever, if a calculator does not contain these functions,
then the definitions given above may be used. (Tables
of hyperbolic functions are available, but are now
rarely used)

Problem 1. Evaluate sinh5.4, correct to 4
significant figures.

sinh5.4 = 3™ —e™)
= 1(221.406416 ... —0.00451658 ...)
= £(221.401899 ...)

= 110.7, correct to 4 significant figures

Problem 2. Determine the value of cosh 1.86,
correct to 3 decimal places.

cosh 1.86 = %(61-86 + e—l.86)
= 1(6.42373677 ... +0.1556726 ....)
= 1(6.5794003 ...) = 3.289704 ...

= 3.290, correct to 3 decimal places

Problem 3. Evaluate, correct to 4 significant
figures,

(a) th 0.52 (b) cosech 1.4

(c) sech 0.86 (d) coth 0.38

sh0.52  3(e™? —e 032

ch0.52 %(e°52 + e0.52)

052 _ o—0.52

T @052 4 =052

_(1.6820276... —0.59452054 ...)
(1.6820276 . .. +0.59452054 .. .)

1.0875070. ..

T 227654814 ...
—0.4777

(a) th0.52 =

1 1
sinh 1.4~ Leld —e-14)
2

(b) cosech1.4 =

= (405519996 ... — 0.24659696 ...
2

= ——— =0.5251
3.808603

1
cosh0.86 1(e086 4 ¢=0.86)
2

(c) sech0.86 =

(2.36316069 . ..+0.42316208 . ..
2

2.78632277 ...

1 ¢h038
th0.38  sh0.38
%(60.38 +e_0'38)
%(60.38 —e038)

(d) coth0.38

1.46228458 ...+ 0.68386140 ...

1.46228458 ... —0.68386140 ...

21461459 ...

= ——— =2757
0.7784231 ...

Now try the following exercise.

Exercise 24 Further problems on evaluat-
ing hyperbolic functions

In Problems 1 to 6, evaluate correct to 4 signifi-
cant figures.

1. (a) sh0.64 (b)sh2.182
[(a) 0.6846 (b) 4.376]
. (@)ch0.72 (b) ch2.4625
[(a) 1.271 (b) 5.910]
. (@)th0.65 (b)th1.81
[(a) 0.5717 (b) 0.9478]
. (a) cosech0.543 (b) cosech3.12
[(a) 1.754 (b) 0.08849]
. (a) sech0.39 (b) sech2.367
[(a) 0.9285 (b) 0.1859]
. (a) coth 0.444 (b) coth 1.843
[(a) 2.398 (b) 1.051]
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7. A telegraph wire hangs so that its shape is
described by y =50 chi. Evaluate, correct

to 4 significant figures, the value of y when
x=25. [56.38]

8. The length [/ of a heavy cable hanging under
gravity is given by [ =2c¢ sh (L/2c). Find the
value of / when ¢ =40 and L = 30.

[30.71]

9. V2=0.55Ltanh (6.3d/L) is a formula for
velocity V of waves over the bottom of shal-
low water, where d is the depth and L is the
wavelength. If d=8.0 and L =96, calculate
the value of V. [5.042]

5.2 Graphs of hyperbolic functions

A graph of y = sinh x may be plotted using calculator
values of hyperbolic functions. The curve is shown
in Fig. 5.1. Since the graph is symmetrical about
the origin, sinhx is an odd function (as stated in
Section 5.1).

y=sinh x

_.
M RO ® oS
T

Figure 5.1

A graph of y =coshx may be plotted using cal-
culator values of hyperbolic functions. The curve is
shown in Fig. 5.2. Since the graph is symmetrical
about the y-axis, cosh x is an even function (as stated
in Section 5.1). The shape of y = cosh x is that of a
heavy rope or chain hanging freely under gravity and
is called a catenary. Examples include transmission
lines, a telegraph wire or a fisherman’s line, and is
used in the design of roofs and arches. Graphs of
y= tanhx, y=cosechx, y=sechx and y= cothx
are deduced in Problems 4 and 5.

y = cosh x

Figure 5.2

Problem 4. Sketch graphs of (a) y= tanhx
and (b) y= cothx for values of x between
—3 and 3.

A table of values is drawn up as shown below

X -3 -2 -1
shx -10.02 -3.63 -—1.18
chx 10.07 3.76 1.54
shx

y=thx=— —-0995 -097 -0.77
chx
chx

y=cothx=— —1.005 —-1.04 -1.31
shx

X 0 1 2 3
shx 1.18 3.63 10.02
chx 1.54 3.76 10.07

shx
y=thx=— 0 0.77 097 0.995

chx

h
y=cothx="" | £00 131 104 1.005

shx

(a) A graph of y = tanhx is shown in Fig. 5.3(a)
(b) A graph of y = coth x is shown in Fig. 5.3(b)

Both graphs are symmetrical about the origin thus
tanh x and coth x are odd functions.

Problem 5. Sketch graphs of (a) y =cosechx
and (b) y=sechx from x=—4 to x=4, and,
from the graphs, determine whether they are odd
or even functions.
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Figure 5.3

A table of values is drawn up as shown below

X —4 -3 -2 —1
shx —2729 —10.02 —3.63 —1.18
cosecchx=— | —0.04 —-0.10 —0.28 —0.85
shx
chx 27.31 10.07 3.76 1.54
sechx = — 0.04 0.10 0.27 0.65
chx
X 0 2 3 4
shx 0 1.18 3.63 10.02 27.29
cosechx=— |+o0 0.85 0.28 0.10 0.04
shx
chx 1 154 376 10.07 27.31
sechx:L 1 065 027 0.10 0.04
chx

(a) A graph of y =cosechx is shown in Fig. 5.4(a).
The graph is symmetrical about the origin and is

thus an odd function.

(b) A graph of y=sechx is shown in Fig. 5.4(b).
The graph is symmetrical about the y-axis and
is thus an even function.

y=cosech x

-3
| | | |
=2 -1 101 2 8 X
—1
= cosech x
Y - —2
- -3

Figure 5.4

5.3 Hyperbolic identities

For every trigonometric identity there is a corres-
ponding hyperbolic identity. Hyperbolic identities
may be proved by either

X _ a—X
(i) replacing shx by and chx by
ef4+e
—, or
2

(i) by using Osborne’s rule, which states: ‘the
six trigonometric ratios used in trigonomet-
rical identities relating general angles may be
replaced by their corresponding hyperbolic
functions, but the sign of any direct or implied
product of two sines must be changed’.

For example, since cos’x+ sin?x=1 then, by
Osborne’srule, ch? x — sh? x =1, i.e. the trigonomet-
ric functions have been changed to their correspond-
ing hyperbolic functions and since sin® x is a product
of two sines the sign is changed from + to —.
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Table 5.1 shows some trigonometric identities and
their corresponding hyperbolic identities.

Problem 6. Prove the hyperbolic identities
(@) ch’x—sh’x=1 (b) 1—th®>x=sech’x
(c) coth? x — 1 = cosech? x

(a) chx+shx= ( x+ex) (
chx —shx= (e +e—x) <e —° x>

(chx 4+ shx)(chx —shx) = (e)(e ™) =e’ = 1

—X

S

ie.ch®x —sh’x =1 (1)
(b) Dividing each term in equation (1) by ch? x
gives:
ch’x  sh’x 1
ch?x  ch®x B ch?x’

i.e. 1—th?x =sech?x

(c) Dividing each term in equation (1) by sh2x
gives:
ch®’x  sh’x _ 1
sh2x  sh’x  sh?x

i.e. coth?x — 1 =cosech? x

Problem 7. Prove, using Osborne’s rule
(a) ch2A =ch?A +sh? A
(b) 1 — th? x =sech? x.

(a) From trigonometric ratios,

cos2A = cos? A — sinZ A

)

Osborne’s rule states that trigonometric ratios
may be replaced by their corresponding hyper-
bolic functions but the sign of any product
of two sines has to be changed. In this case,
sin2A=(sinA)( sinA), i.e. a product of two
sines, thus the sign of the corresponding hyper-
bolic function, sh?A, is changed from + to —.
Hence, from (1), ch24 =ch?A + sh?A

(b) From trigonometric ratios,
1 4 tan? x = sec? x 2)
’ sin? x (sinx)(sinx)
and tan“x = 5 = >
COS* X cos* x

i.e. a product of two sines.

Hence, in equation (2), the trigonometric ratios
are changed to their equivalent hyperbolic func-
tion and the sign of th’x changed + to —, i.e.
1—th?x =sech?x

Problem 8. Prove that 1 + 2 sh? x = ch 2x.

Table 5.1

Trigonometric identity

Corresponding hyperbolic identity

cos?x+sinx=1
1+ tan? x = sec?

X
cot? x + 1 =cosec?

X

ch?x—sh?x=1
1 —th®x=sech?x
coth? x — 1 = cosech? x

Compound angle formulae

sin 2x =2 s8in x cos x
2 )

COS2Xx = COS“ x — sin“ x
=2cos?x—1
=1-2sin%x

2tanx
tan2x:72
1 — tan“x

sin(A£B) =sinAcosB+ cosAsinB | sh(A£B) =shAchBxchAshB
cos(AExB)= cosAcosBF sinAsinB | ch(A+B)=chAchB+shAshB
tanA =+ tan B thA+thB
tan(A+B)=—— thA+B)=——
1F tanAtan B 1+thAthB
Double angles

sh2x=2shxchx
ch2x=ch?x+sh?x
=2ch?x—1
=1+2sh%x
2thx

th2x=———5—
1+th°x
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Left hand side (L.H.S.)

X a—x\ 2
:1+2sh2x=1+2<l>

4e* —3e ™ = Pshx+ Qchx

X — e e + e
= P(T) * Q(T)

2
2x X a—X —2x
et —2e'e™ +e
=1+2 P P
+ < 4 ) = Eex — Ee_x + %ex + %e_x
_ 1 e —24e X
=l+—"F =(P+Q)e"+<Q_P)e—x
_1+(62x+e—2x) 2 2 2
B 2 2 Equating coefficients gives:
2x —2x
P —P
e hax—RHS. 4=2%2 a3=-2-"%
2 2 2
ie. P+Q0=8 (1)
Problem 9. Show that th? x + sech? x = 1. _P+O=—6 2)
S x 1 Adding equations (1) and (2) gives: 20 =2, i.e.
L.H.S. = th® x + sech® x = — + —— 0=1
ch“x chx
Substituting in equation (1) gives: P =7.
_sh?x+1
T ch2x Now try the following exercise.

Since ch?x — sh?x =1 then 1 4+ sh? x =ch?x

sh2x+1 ch?x
S =

h2

=1=R.H.S.
ch”x ch?x

Thu

Problem 10. GivenAe*+Be ™ = 4chx — 5shux,
determine the values of A and B.

Ae* + Be ™ =4chx —5shx

(e (et
2 2

5 5
=2e"+2 — ="+ ="
+ 2 + 2

lx 97x
——26 +2e

Equating coefficients gives: A = —% and B = 4%

Problem 11. If 4e*—3e ™ =Pshx+ Qchux,
determine the values of P and Q.

Exercise 25 Further problems on hyper-
bolic identities

In Problems 1 to 4, prove the given identities.

1. @Q)ch(P—Q)=chPchQ—shPshQ
(b) ch2x=ch?x +sh?x

2. (a) cothx =2cosech2x +thx
(b)ch26 —1=2sh?6

thA—thB
1—-thAthB
(b)sh2A=2shAchA

3. (Ath(A—B)=

4. (a)sh(A+B)=shAchB+chAshB
sh?x +ch?x—1

5 = tanh? x
2ch” x coth” x

(b)

5. Given Pe* — Qe *=6¢chx —2shx, find P
and Q [P=2,0=—4]

6. If 5¢* —4e ™ =Ashx+ Bchux, find A and B.
[A=9,B=1]




HYPERBOLIC FUNCTIONS 47

5.4 Solving equations involving
hyperbolic functions

Equations of the form a chx + b shx =¢, where q,
b and c are constants may be solved either by:

(a) plotting graphs of y=achx+bshx and y=c
and noting the points of intersection, or more
accurately,

(b) by adopting the following procedure:

et —e*
(i) Change shx to <T> and chx to

e +e*
2

(i) Rearrange the equation into the form
pe* +qge™* +r=0, where p, g and r are
constants.

(iii) Multiply each term by e*, which produces
an equation of the form p(e¥)? 4 re*+¢g =0
(since (e ) (") =e = 1)

(iv) Solve the quadratic equation
p(e)? +re’ + ¢ =0 for e* by factorising
or by using the quadratic formula.

(v) Given e* =a constant (obtained by solv-
ing the equation in (iv)), take Napierian
logarithms of both sides to give
x = In (constant)

This procedure is demonstrated in Problems 12 to
14 following.

Problem 12. Solve the equation shx =3, cor-
rect to 4 significant figures.

Following the above procedure:

(i) shx= (ex _ze_x) =3

(i) e¥—e™* =6,ie.ef - —-6=0
(i) (%)% — (e ¥)(e*) — 6e* =0,
je. (e —6e*—1=0

_ —(=6) £ /[(—6)> —4(1)(—1)]

1 X

(iv) e* = 0
_ 6440  6+6.3246
2 2

Hence e* =6.1623 or —0.1623

(V) x=1n6.1623 or x = In(—0.1623) which has
no solution since it is not possible in real
terms to find the logarithm of a negative num-
ber. Hence x = In 6.1623 = 1.818, correct to 4
significant figures.

Problem 13. Solve the equation
2.6chx+5.1shx=8.73,

correct to 4 decimal places.

Following the above procedure:

(i) 2.6chx+5.1shx=8.73

X —x X _ =X
e 26( S ) 15" 873
2 2

(i) 1.3e¥+1.3e ™ +2.55e¢* —2.55¢™* =8.73
i.e.3.85e* —1.25¢* —-8.73=0

(iii) 3.85(e*)? —8.73¢* —1.25=0

(iv) e
(=873 % VI(—8.73)2 — 4(3.85)(—1.25)]
o 2(3.85)
_ 8.73+4/95463 8.73+9.7705

7.70 7.70
Hence e =2.4027 or e* = —0.1351

(v) x=1n2.4027 or x = In(—0.1351) which has no
real solution.
Hence x =0.8766, correct to 4 decimal places.

Problem 14. A chain hangs in the form given
by y=40 ch%. Determine, correct to 4 signifi-

cant figures, (a) the value of y when x is 25 and
(b) the value of x when y = 54.30.

(a) y=40ch :—0, and when x = 25,

25
=40ch — =40¢ch0.62
y Oc 20 0ch0.625

w0 ( 0625 +2 e0.625)

= 20(1.8682 + 0.5353) = 48.07
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(b) When y=154.30,54.30=40ch % from which
ch X 54.30

40 40
Following the above procedure:

= 1.3575

—X
0 4ed0
) % —1.3575

X —_x X =X
(i) e40 +e40 =2.715,i.e.e40 +e40 —2.715=0

(iii) (e40 )2 +1-2. 715e40 =

ie. (e40)2 2.715¢40 +1=0
_ _ 2 _
(i) e = ¢ 2.715) + /[(=2.715)2 — 4(1)(1)]
2(1)
2715+ /(33712) _ 2.715+1.8361
- 2 - 2

X
Hence €40 =2.2756 or 0.43945

) :—0 — In2.2756 or % — In(0.43945)

X X

H — =0.8222 or — =—0.8222
ence 10 0.8 or 10 0.8

Hence x =40(0.8222) or x =40(—0.8222);

i.e. x = £32.89, correct to 4 significant figures.

Now try the following exercise.

Exercise 26 Further problems on hyper-
bolic equations

In Problems 1 to 5 solve the given equations
correct to 4 decimal places.

1. shx=1 [0.8814]
2. 2chx=3 [£0.9624]
3. 3.5shx+2.5chx=0 [—0.8959]

. 2shx+4+3chx=5 [0.6389 or —2.2484]

. 4thx—-1=0 [0.2554]

AN A

. A chain hangs so that its shape is of the form
y=56ch (x/56). Determine, correct to 4 sig-
nificant figures, (a) the value of y when x is
35, and (b) the value of x when y is 62.35.

(a) 67.30
|: (b) 26.42 :|

5.5 Series expansions for coshx and

sinh x
By definition,
" _1+x+x2+x—3+x—4+x—5+
3! 5!
from Chapter 4.

Replacing x by —x gives:
_ 1 ¥ X3 x4 x°
=1—-—x+ 5 — 5 + — = ; + -

1
coshx = E(ex +e™)
L P S AR
=2 S TIEE TRV TR
1 .x2 x3 x4 XS
S U R T R

1 2+2x2+2x L
) 2! 4

2 4

x“ x
i.e. coshx = 1+2' +4' +-
all values of x). coshx is an even function and

contains only even powers of x in its expansion

- (which is valid for

1
inhx = —(e¥ —e™*
sinh x 2(6 e )
! 14+ +x2+x3+x4+x5+
2 T T T g T
! 23 X
—x+i—§+——§+

1 5 +2x3+2x L
) 3! 5!

L ¥ xS
1.e. smhx=x+§+—’+...

all values of x). sinh x is an odd function and contains
only odd powers of x in its series expansion

(which is valid for

Problem 15. Using the series expansion for
ch x evaluate ch 1 correct to 4 decimal place.

2 4

x* X
chx—1+§+4'—|-

- from above
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x=1,
2 N 14
2x1 4x3x2x1
16
T exsxdx3x2xl
=140.540.04167 + 0.001389 + - - -

thenchl =1+

ie. ch1=1.5431, correct to 4 decimal places,
which may be checked by using a calculator.

Problem 16. Determine, correct to 3 deci-
mal places, the value of sh 3 using the series
expansion for shx.

3 xS
th=x+§+§+~-- from above
Let x =3, then
33 35 37 39 311
sh3=3+—+—+—+—+—+

=34 4.5 4 2.025 + 0.43393 + 0.05424
+0.00444 + - - -

i.e. sh3=10.018, correct to 3 decimal places.

Problem 17.
6
2ch <5> — sh 20 as far as the term in 6°.

Determine the power series for

. . 0
In the series expansion for chx, let x = 3 then:

0 /2% (0/2)*
2eh(2) =21
¢ (2) [+ n e T
6> 6t
=2 — R

HVELT I

In the series expansion for sh x, let x =26, then:

20 (200
sh26’_20—|—T-|-T

—29+493+ 495+
- 3 15

Hence

h o h26 2+92+ A +
C — — S — JR— R
2 4 192

43 4 5
—(260+26°+ —6°+---

3 15

0 4 6*
—2-20+—— 03+ —
T4 73 1,

4
—EOS + ... as far the

term in 6°

Now try the following exercise.

Exercise 27 Further problems on series
expansions for coshx and sinh x

1. Use the series expansion for chx to evalu-
ate, correct to 4 decimal places: (a) ch1.5
(b) ch0.8 [(a) 2.3524 (b) 1.3374]

2. Use the series expansion for shx to evaluate,
correct to 4 decimal places: (a) sh 0.5 (b) sh2

[(a) 0.5211 (b) 3.6269]

3. Expand the following as a power series as far
as the term in x°: (a) sh 3x (b) ch2x

9 81
(a) 3x+§x3+Ex5

2, 24
(b) 1+ 2x +§x

In Problems 4 and 5, prove the given identities,
the series being taken as far as the term in 6° only.

4. sh26 sh0—9+793+ 31 6>
’ 6 120
0 2] 92 93 94
5.2sh— —ch-= — 14— — 4+ — — —
M2 + § 24 384
95
* 1920
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Assignment 1

This assignment covers the material contained
in Chapters 1 to 5.

The marks for each question are shown in
brackets at the end of each question.

. Factorise x> + 4x? + x — 6 using the factor the-
orem. Hence solve the equation

P44l +x—6=0 (5)

. Use the remainder theorem to find the remainder
when 2x3 4 x? — 7x — 6 is divided by

(@ x=2) (b) (x+1)

Hence factorise the cubic expression (7
6x>+7x—5
T
. Solve the following inequalities:

(@A) 2—-5x<9+2x (b) 3+2t<6

. Simplify by dividing out ~ (4)

-1
>0 (d) Bt+2)>*>16

()
C
3x+5

(e) 2x* —x—3<0 (14)

. Resolve the following into partial fractions

@) x—11 ) 3—x
a
x2—x=2 *2+3)x+3)
3
x> —6x+9
—_— 24
© — — 24)
. Evaluate, correct to 3 decimal places,
5 e—0.982
T — (2)
31n0.0173

7.

10.

11.

12.

Solve the following equations, each correct to 4
significant figures:

(@ Inx=240 (b) 3> ' =572

(©) 5=28(1 —e ?) (10)

The pressure p at height 7 above ground level
is given by: p = poe ¥ where py is the pressure
at ground level and & is a constant. When py is
101 kilopascals and the pressure at a height of
1500 m is 100 kilopascals, determine the value
of k. Sketch a graph of p against & (p the ver-
tical axis and & the horizontal axis) for values

of height from zero to 12 000 m when pq is 101
kilopascals

(10)
Evaluate correct to 4 significant figures:
(a) sinh2.47  (b) tanh 0.6439
(c) sech1.385 (d) cosech0.874 (6)

The increase in resistance of strip conductors due
to eddy currents at power frequencies is given
by:
N at [ sinhat + sinat
2 | coshat —cosat

Calculate A, correct to 5 significant figures, when
a=1.08andt=1 )

If Achx —Bshx=4e*—3e™ determine the
values of A and B. (6)

Solve the following equation:
3.52chx 4 8.42shx =5.32

correct to 4 decimal places (7
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Arithmetic and geometric progressions

6.1 Arithmetic progressions

When a sequence has a constant difference between
successive terms it is called an arithmetic progres-
sion (often abbreviated to AP).

Examples include:

() 1,4, 7,10, 13,...where the common differ-
ence is 3 and

(i) a,a+d,a+2d,a+ 3d, ...where the common
difference is d.

If the first term of an AP is ‘@’ and the common
difference is ‘d’ then

the n’th termis: a + (n — 1)d

In example (i) above, the 7th term is given by 1+
(7 — 1)3 =19, which may be readily checked.

The sum S of an AP can be obtained by multi-
plying the average of all the terms by the number of
terms.

[
The average of all the terms = i, where ‘a’

is the first term and !/ is the last term, i.e. [=a+
(n—1)d, for n terms.
Hence the sum of n terms,

s :n(a+l)
2
n
= E{a +[a+ (n— 1)d]}
. n
ie. S,,=5[2a+(n — 1)d]

For example, the sum of the first 7 terms of the series
1,4,7,10, 13, ... is given by

7
S; = E[2(1) + (7—13], sincea=1andd =3

7 7
52+ 18] = Z[20]

6.2 Worked problems on arithmetic
progressions

Problem 1. Determine (a) the ninth, and (b) the
sixteenth term of the series 2, 7, 12, 17, ...

2,7,12,17, ... is an arithmetic progression with a
common difference, d, of 5.

(a) The n’th term of an AP is given by a + (n — 1)d
Since the first term a=2, d=5 and n=9
then the 9th term is:
2+00-1D5=2+@)(5) =2+40=42

(b) The 16th term is:
2416 —-1)5=24+150)=2+75=T717.

Problem 2. The 6th term of an AP is 17 and
the 13th term is 38. Determine the 19th term.

The n’th term of an AP isa+ (n — 1)d

The 6th term is:
The 13th term is:

a+5d =17 (1)
a+12d =38 2)

Equation (2) —equation (1) gives: 7d =21, from
21
which, d = — = 3.
7
Substituting in equation (1) gives: a + 15 =17, from
which, a =2.

Hence the 19th term is:
a+m—1Dd =2+019—-1)3 =2+ ({1873 =
2+ 54 = 56.

Problem 3. Determine the number of the term
whose value is 22 in the series 2%, 4, 5%, 7,...

is an AP where a=2% and
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Hence if the n’th term is 22 then: a 4+ (n — 1)d =22
fe. 23+(m—1)(1%) =22
(n—1)(13) =22—-25=191.

19

n—l:l—:l3andn:13+1:14

B[ —

N[ —

i.e. the 14th term of the AP is 22.

Problem 4. Find the sum of the first 12 terms
of the series 5,9, 13, 17, ...

5,9, 13, 17,... is an AP where a=5 and d =4.
The sum of n terms of an AP,

n
Sy = E[Za + (n — 1d]
Hence the sum of the first 12 terms,

12
Si2 = =129+ (12— 14]
= 6[10 4 44] = 6(54) = 324

Problem 5. Find the sum of the first 21 terms
of the series 3.5,4.1,4.7,5.3, ...

35,4.1,47,53,...
d=0.6.

The sum of the first 21 terms,

is an AP where a=3.5 and

21
S = ?[2(1 + (n— 1)d]

21 21
= ?[2(3.5) + (21 -1)0.6] = 7[7 + 12]

21 399
= —(19) = — =199.5
2 (19) 2

Now try the following exercise.

Exercise 28 Further problems on arith-
metic progressions

1. Find the 11th term of the series 8, 14, 20,
26, ... [68]
2. Find the 17th term of the series 11, 10.7, 10.4,
10.1, ... [6.2]

3. The seventh term of a series is 29 and the
eleventh term is 54. Determine the sixteenth
term. [85.25]

4. Find the 15th term of an arithmetic progres-
sion of which the first term is 2.5 and the tenth
term is 16. [23.5]

5. Determine the number of the term which is
29 in the series 7, 9.2, 11.4, 13.6, ...
[11]

6. Find the sum of the first 11 terms of the series
4,7,10,13,... [209]

7. Determine the sum of the series 6.5, 8.0, 9.5,
11.0,...,32 [346.5]

6.3 Further worked problems on
arithmetic progressions

Problem 6. The sum of 7 terms of an AP is 35
and the common difference is 1.2. Determine the
first term of the series.

n="7,d=1.2and S7=35
Since the sum of n terms of an AP is given by

S, = g[2a +(n— 1)d], then

7 7
35 = E[Za—l— (7-D1.2]= E[Za +7.2]

35x2
Hence 7 =2a+172
10=2a+7.2
Thus 20=10—-7.2=2.8,
. 2.8
from which a= 7 =14

i.e. the first term,a =1.4

Problem 7. Three numbers are in arithmetic
progression. Their sum is 15 and their product
is 80. Determine the three numbers.

Let the three numbers be (a — d), a and (a + d)

Then (a —d)+a+ (a+d)=15, i.e. 3a=15, from
which, a=>5

Also, a(a — d)(a+d) =80, i.e. a(a®> — d*) =80

Since a = 5,5(5* — d*) = 80
125 — 5d%> = 80
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125 — 80 = 54
45 = 54>

45
from which, d* = ? =9. Hence d = \/§: +3.

The three numbers are thus (5 — 3), 5 and (5 + 3),
i.e.2,5and 8.

Problem 8. Find the sum of all the numbers
between 0 and 207 which are exactly divisible
by 3.

The series 3, 6,9, 12,...,207 is an AP whose first
term a = 3 and common difference d =3

The lasttermis a4+ (n — 1)d = 207

ie. 3+(m—1)3 =207,

. 207 — 3
from which n—1) = 3 =68
Hence n=68+1=69

The sum of all 69 terms is given by

Seo = g[Za +(n—1)d]
- %[2(3) (69 — 1)3]

69 69
= ?[6 +204] = 7(210) = 7245

Problem 9. The first, twelfth and last term of
an arithmetic progression are 4, 311, and 376%
respectively. Determine (a) the number of terms

in the series, (b) the sum of all the terms and
(c) the ‘80’th term.

(a) LettheAPbea,a+d,a+2d,...,a+mn— 1)d,
where a =4

The 12th term is: a + (12 — 1)d =313
ie. 4411d = 313,

from which, 11d = 31% —4= 27%

27} 5

Henced =—=
11

1
2

The last termis a + (n — 1)d
ie. 44 (n—1)(2%) = 3765

3765 — 4
n—1)= q
23
3721
= Z — 149

Hence the number of terms in the series,
n=149+1=150

(b) Sum of all the terms,

Siso = g[Za +(n— 1)d]

150 1
== [2(4) +(150 — 1) (25)]
1
=75 [8 + (149) (25)}

= 85[8 + 372.5]

1
= 75(380.5) = 28537
(c) The 80th term is:
a+(n—1)d=4+80-1)(23)
=4+(79) (2})

=4+197.5=2015

Now try the following exercise.

Exercise 29 Further problems on arith-
metic progressions

1. The sum of 15 terms of an arithmetic progres-
sion is 202.5 and the common difference is 2.
Find the first term of the series. [—0.5]

2. Three numbers are in arithmetic progression.
Their sum is 9 and their product is 20.25.
Determine the three numbers. [1.5, 3, 4.5]

3. Find the sum of all the numbers between 5
and 250 which are exactly divisible by 4.
[7808]

4. Find the number of terms of the series 5, 8,
11, ... of which the sum is 1025. [25]
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5. Insert four terms between 5 and 22.5 to form
an arithmetic progression.
[8.5,12,15.5,19]

6. The first, tenth and last terms of an arithmetic
progression are 9, 40.5, and 425.5 respect-
ively. Find (a) the number of terms, (b) the
sum of all the terms and (c) the 70th term.

[(a) 120 (b) 26070 (c) 250.5]

7. On commencing employment a man is paid
a salary of £7200per annum and receives
annual increments of £350. Determine his
salary in the 9th year and calculate the total
he will have received in the first 12 years.

[£10000, £109 500]

8. An oil company bores a hole 80 m deep. Esti-
mate the cost of boring if the cost is £30
for drilling the first metre with an increase
in cost of £2 per metre for each succeeding
metre. [£8720]

6.4 Geometric progressions

When a sequence has a constant ratio between suc-
cessive terms it is called a geometric progression
(often abbreviated to GP). The constant is called the
common ratio, r.
Examples include

(i) 1,2,4,8,... where the common ratio is 2 and

3

(i) a,ar, arz, ar’, ... where the common ratio is r.

If the first term of a GP is ‘a’ and the common ratio
is r, then

the n’th term is: ar™ ™!

which can be readily checked from the above
examples.

For example, the 8th term of the GP 1, 2,4, 8, ... is
(D(2)" =128, since a=1 and r =2.

Let a GP be a, ar, ar?, ar3, . .., ar"~!
then the sum of n terms,
Sp=a+ar+ar*+ar’ +--+a" . (D)
Multiplying throughout by r gives:
rS, = ar + ar* + ar’ + ar*
+oodar™ a4 2

Subtracting equation (2) from equation (1) gives:

S, —1rS, =a—ar"
ie. S,(1—r)y=a(l—-r"

_ aldl-r"

Sp= T which

Thus the sum of n terms,

is valid when r < 1.
Subtracting equation (1) from equation (2) gives

_ ar™ - 1)

S, = which is valid when r > 1.
(r=1

For example, the sum of the first 8 terms of the GP

a8 16 s wiven by e 1E D
,2,4,8, 16, ... 1s given =—— " since
given by Sy =5

a=landr=2
10256 — 1
ie. 58:¥:255

When the common ratio r of a GP is less than unity,

a(l —r") .
the sum of n terms, S,, = ﬁ which may be
—r
. a ar”
written as S, = —— — .
1-r) (-7

Since r <1, " becomes less as n increases, i.e.
" —0as n-— 0.

Hence

— 0 as n— oo. Thus S, —
—r) (I—=r)
as n— 00.

The quantity

is called the sum to infinity,

So0, and is the limiting value of the sum of an infinite
number of terms,

a

= whichis valid when —1 < r < 1.
1-r

ie. [Seo

For example, the sum to infinity of the GP
I4+5+5+ s

1

1—

l,sinceazlandr:%,i.e.Soo:Z
2
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6.5 Worked problems on geometric
progressions

Problem 10. Determine the tenth term of the
series 3, 6, 12,24, ...

3,6, 12, 24,... is a geometric progression with a
common ratio r of 2. The n’th term of a GP is ar" !,

where «a is the first term. Hence the 10th term is:
3)(2)'0-1 =(3)(2)? =3(512) = 1536.

Problem 11.
of the series

Find the sum of the first 7 terms

1 1 1 1
R I KT

1
11,41,

, 13%, ... 1s a GP with a common ratio
=3

= o=
NI'—‘

a(r*—1)
(r—1
137-1  1(2187-1)
G-1) 2

The sum of n terms, S, =

Hence §7 =

1
=546
2

Problem 12. The first term of a geometric pro-
gression is 12 and the fifth termis 55. Determine
the 8’th term and the 11°th term.

The Sth term is given by ar* =55, where the first
term a =12
4 35 55
Hence r"=—=—
a 12

55
r= =) =1.4631719...
12

and

The 8th term is ar’ = (12)(1.4631719...)" =172.3
The 11th term is ar!® = (12)(1.4631719...)!0
=539.7

Problem 13.
729, 243, .

Wthh term of the series 2187,
.1is
9

2187, 729, 243, ... is a GP with a common ratio
r= % and first term a = 2187
The n’th term of a GP is given by: ar"~!

Hence = 2187 ()"

_ 1\ ! 1 1
from which - = =
3 9)(2187) 3237

11y
39 \3
Thus (n — 1) =9, from which, n=9+4+1=10
i.e. % is the 10th term of the GP

Problem 14. Find the sum of the first 9 terms
of the series 72.0, 57.6, 46.08, . ..

7.
The common ratio, r = a_ ﬂ =0.8
72.0
| ar’  46.08 08
also — = —— =0.
ar 57.6
The sum of 9 terms,
¢ _ad—rH 7200 - 0.8%)
TT0—n T (1-08
72.0(1 —0.1342
= ( ) = 311.7
0.2
Problem 15. Find the sum to infinity of the

series 3, 1, %

3,1, ;, ... 1s a GP of common ratio, r:%
The sum to infinity,
a 3 3 9 1
SOO = = 1 = > = - =4-
1—r 1 — 3 3 2 2

Now try the following exercise.

Exercise 30 Further problems on geometric
progressions

1. Find the 10th term of the series 5, 10, 20,
40, ... [2560]

2. Determme the sum of the first 7 terms of the
series 4, 4, 2 6 [273.25]

3. The first term of a geometric progression is
4 and the 6th term is 128. Determine the 8th
and 11th terms. [512, 4096]
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4. Find the sum of the first 7 terms of the series The net gain forms a series:
2,5, 12%, ... (correct to 4 significant figures)
[812.5] £400 + £400 x 0.9 + £400 x 0.9 + - - -,
5. Determine the sum to infinity of the series 4, o .
2 1. . (8] which is a GP with ¢ =400 and r =0.9.

The sum to infinity,
6. Find the sum to infinity of the series 21, -1 %, Y

2, ... [13] g 9 _ 400
T U-r" (1-09)

= £4000 = total future profits

6.6 Further worked problems on

geometric progressions Problem 18. If £100 is invested at compound
interest of 8% per annum, determine (a) the value
after 10 years, (b) the time, correct to the nearest
year, it takes to reach more than £300.

Problem 16. In a geometric progression the
sixth term is 8 times the third term and the sum
of the seventh and eighth terms is 192. Deter-

mine (a) the common ratio, (b) the first term, 2 n
and (c) the sum of the fifth to eleventh terms, (@) %Etetgfsgzr?;l’fzfgo’ o dr
inclusive. L

The common ratio » = 1.08
Hence the second term is

(a) Letthe GPbe a, ar, ar?, ar3,...,ar" ! — (100)(1.08) = £108
The 3rd term = ar? and the sixth term = ar> ar = (100)(1.08) ’
The 6th term is 8 times the 3rd. ; which is the value after 1 year,
Hence ar’ = 8ar? from which, P =8, r= NG the third term is

i.e. the common ratio r =2. ) )
ar® = (100) (1.08)- = £116.64,
(b) The sum of the 7th and 8th terms is 192. Hence

ar® + ar’ =192. which is the value after 2 years, and so on.
Since r—2. then 6da + 128a = 192 Thus the value after 10 years
192a = 192, = ar'® = (100) (1.08)'° = £215.89
from which, a, the first term, =1. (b) When £300 has been reached, 300 = ar"
(c) The sum of the 5th to 11th terms (inclusive) is Le. 300 = 100(1.08)"
given by: and 3 =(1.08)"
Sip— Sy = a(r't = 1) _ a(r* — 1) Taking logarithms to base 10 of both sides gives:
(r—=1 (r—1) lg3 = 1g(1.08)" = nlg(1.08),
et -no1et-1 by the laws of logarithms
2=  2-1 Ig3

from which, n = 14.3

1g1.08

Hence it will take 15 years to reach more than

='-—n-*-1

=21 2% = 2048 — 16 = 2032 £300.

Problem 17. A hire tool firm finds that their net Problem 19. A drilling machine is to have
return from hiring tools is decreasing by 10% per 6 speeds ranging from SOrev/min to 750 rev/
annum. If their net gain on a certain tool this year min. If the speeds form a geometric progres-
is £400, find the possible total of all future profits sion determine their values, each correct to the
from this tool (assuming the tool lasts for ever). nearest whole number.
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Let the GP of n terms be given by a, ar, ar?, ...,

ar" 1,

The first term a = 50 rev/min

The 6th term is given by ar®~!, which is 750 rev/min,
ie., ar’ =750

750 750
from which 7 = — = — =
a 50

Thus the common ratio, r = J15=1.7188

The first term is a = 50 rev/min

the second term is ar = (50) (1.7188) = 85.94,
the third term is ar® = (50) (1.7188)% = 147.71,
the fourth term is ar’ = (50) (1.7188)% =253.89,
the fifth term is ar* = (50) (1.7188)* = 436.39,
the sixth term is ar® = (50) (1.7188) =750.06

Hence, correct to the nearest whole number, the
6 speeds of the drilling machine are 50, 86, 148,
254, 436 and 750 rev/min.

15

Now try the following exercise.

Exercise 31 Further problems on geometric
progressions

1. In a geometric progression the 5th term is
9 times the 3rd term and the sum of the 6th and
7th terms is 1944. Determine (a) the common
ratio, (b) the first term and (c) the sum of the
4th to 10th terms inclusive.

[(a) 3 (b) 2 (c) 59022]

. Which term of the series 3, 9, 27, ... is

59049? [10th]

. The value of a lathe originally valued at

£3000 depreciates 15% per annum. Calculate
its value after 4 years. The machine is sold
when its value is less than £550. After how
many years is the lathe sold?

[£1566, 11 years]

. Ifthe population of Great Britain is 55 million

and is decreasing at 2.4% per annum, what
will be the population in 5 years time?
[48.71 M]

. 100 g of a radioactive substance disintegrates

at a rate of 3% per annum. How much of the
substance is left after 11 years? [71.53 g]

. If £250 is invested at compound interest of

6% per annum determine (a) the value after
15 years, (b) the time, correct to the nearest
year, it takes to reach £750.

[(a) £599.14 (b) 19 years]

. A drilling machine is to have 8 speeds ran-

ging from 100 rev/min to 1000 rev/min. If the

speeds form a geometric progression deter-

mine their values, each correct to the nearest
whole number.

[100, 139, 193, 268, 373, 518,

720, 1000 rev/min]
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7

The binomial series

7.1 Pascal’s triangle

A binomial expression is one which contains two
terms connected by a plus or minus sign. Thus
(p+9),(a +x)2, 2x+ y)3 are examples of binomial
expressions. Expanding (a + x)" for integer values
of n from O to 6 gives the results as shown at the
bottom of the page.

From these results the following patterns emerge:

(i) ‘a’decreases in power moving from left to right.
(il) ‘x’increases in power moving from left to right.
(iii) The coefficients of each term of the expansions
are symmetrical about the middle coefficient
when 7 is even and symmetrical about the two
middle coefficients when 7 is odd.

(iv) The coefficients are shown separately in
Table 7.1 and this arrangement is known as
Pascal’s triangle. A coefficient of a term may
be obtained by adding the two adjacent coeffi-
cients immediately above in the previous row.
This is shown by the triangles in Table 7.1,
where, for example, | +3 =4, 10+ 5 = 15,
and so on.

(v) Pascal’s triangle method is used for expansions
of the form (a + x)" for integer values of n less
than about 8.

Problem 1. Use the Pascal’s triangle method
to determine the expansion of (a + x).

From Table 7.1, the row of Pascal’s triangle corres-
ponding to (a +x) is as shown in (1) below. Adding
adjacent coefficients gives the coefficients of (a+x)’

Table 7.1

(@a+x° 1

(a+x) 1 1

(a+x)? 1 2 1

@+ x> NV s
(a+x* 1 4 6 4 1
(a+x)y 1 5 10 1
(a+x)° 1 6 15 20 15 6 1

as shown in (2) below.

15 6 1 (1
1'2135’2171 )

The first and last terms of the expansion of (a +x)’
area’ andx” respectively. The powers of ‘a’ decrease
and the powers of ‘x’ increase moving from left to
right.

Hence

(a+ x)7 =a’ + 7ab + 21a°x* + 35a*%3
+35a3x* + 21a%%° + Tax® + 7

Problem 2. Determine, using Pascal’s triangle
method, the expansion of (2p — 3¢)°.

Comparing (2p — 3q)5 with (a + x)° shows that
a =2pand x = —3q.

(a+x)° =

(a+x)) =a+x
(@a+x?=(@+x)Na+x) =
(@a+x)P°=@+x*a+x =
(@a+x)*=@+xPa+x) =
(a+xP =@+x)*a+x) =
(a+x°=@+xP@a+x) =

1
a—+x
a® + 2ax + x*

a’ + 3ax + 3ax? + 3
a* + 4aPx + 6a*x* + dax3 + x*
@ + 5a*x + 10a3x2 + 10a%x3 + 5ax* + xX°
a® 4+ 6a°x + 15a*x% + 20a3x3 + 15a%x* + 6ax> + x°
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Using Pascal’s triangle method:
(a+ x)5 =a + 5a*x + 10a°x* + 10a%%° + - - -
Hence
2p —39)° = (2p)° + 5(2p)*(-3q)

+102p)*(-3¢)
+102p)* (-3¢’
+502p)39)" + (3¢)°

ie. 2p —3q)° = 32p°—240p*q + 720p°¢>
—1080p%¢> + 810pq* — 2434°

Now try the following exercise.

Exercise 32 Further problems on Pascal’s
triangle

1. Use Pascal’s triangle to expand (x — y)’
x7 — Tx0y 4 21x7y% — 35x%y3
+ 35)c3y4 — 21)c2y5 + 7xy6 — y7_
2. Expand (2a + 3b)° using Pascal’s triangle

32a° + 240a*b + 720a°b?
+ 1080a%b* + 810ab* + 2437 |

7.2 The binomial series

The binomial series or binomial theorem is a
formula for raising a binomial expression to any
power without lengthy multiplication. The general
binomial expansion of (a + x)" is given by:

-1
(@ + x)" =da"* + na"x + %a”‘zx2
+ nn—1)(n — Z)a”_3x3

3!

+ ...

where 3! denotes 3x2x 1 and is termed ‘factorial 3°.
With the binomial theorem n may be a fraction, a
decimal fraction or a positive or negative integer.
When 7 is a positive integer, the series is finite, i.e.,
it comes to an end; when 7 is a negative integer, or a
fraction, the series is infinite.

In the general expansion of (a + x)" it is noted that
n(n 13)!(71 2) J1-3y3
3 is very evident in this expression.

the 4th term is: . The number

For any term in a binomial expansion, say the
r’th term, (r — 1) is very evident. It may therefore
be reasoned that the r’th term of the expansion
(@a+x)"is:

nn—1)(n-=2)... to (r—1) terms
r—1)! 4

n—(r—l)xj—l

If a=1 in the binomial expansion of (a + x)" then:

A+x)"=14+nx+ n(n—'_l)x2

-1 -2
G 3)'(,1 )iy,

which is valid for —1 <x < 1.
When x is small compared with 1 then:

A+x)"~1+nx

7.3 Worked problems on the binomial
series

Problem 3. Use the binomial series to deter-
mine the expansion of (2 +x).

The binomial expansion is given by:

nn—1) , ,
TR
n(n — 13)'(,1 —2) 3

x2

(a+x)" =d" +na"'x +

Whena=2and n=7:

(7)(6)

2)(1)

2)4x3 4 w
H(3)2)(1)

(2)2)(5

Q+x)7"=2T4+72)° + (2)°x2

(7)(6)(5) (
(3)2)(1)
(MG)S)DH(3)
S)HB)2) (1)
(M(OG)S)H)(3)(2)
6)(5)H(3)(2)(1)
(7)(6)(5)(4)(3)(2)(1)x7
(MO)S)H(3)(2)(1)
ie.(2+x)=128 + 448x + 672x% + 560x>
+280x* + 84x° + 14x°® + x7

+ (2)3x*

(2)x°
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1\
Problem 4. Expand (c — —) using the bino-
c

mial series.

5
(c—l> =CS—|-56'4 (—l>
C C
G)@ 5[ 1Y
T o0¢ ( c)

GAG) , ( 1 )3

Gam e
RICOON (_ 1 )4
@AM\«
OICIENEIEN) (_ 1 )5
GO \ ¢
. < 1)5 0 5 1
ie.lc—-) =c5-563 +10c——+ =
¢ e

Problem 5.  Without fully expanding (3 + x)’,
determine the fifth term.

The r’th term of the expansion (a + x)" is given by:
nn—1)(mn—2)... to(r —1)terms gD 1
(r—1!
Substituting n=7, a=3 and r—1=5-1=4
gives:
(7)(6)(5)(4) 3yt
@H3)2)(1)
i.e. the fifth term of (3 +x)” =35(3)°x* = 945x*

Problem 6.10 Find the middle term of
1
2y — —
( P 261)

In the expansion of (a + )10 there are 10+ 1, i.e. 11
terms. Hence the middle term is the sixth. Using the
general expression for the r’th term where a =2p,

x=——,n=10and r — 1 =15 gives:
2q

UOODDIO) 05 (_ LY
(5@ 3)2)(1) 2q

1
= 252(32p°) Gﬁ)

5

1\ 10
Hence the middle term of (Zp — 2—) is _252p_5
q q

Problem 7. Evaluate (1.002)° using the bino-
mial theorem correct to (a) 3 decimal places and
(b) 7 significant figures.

1
(1 +x)" —1+nx—|—n(n2 )x2
—DHn—-2
L n(n 3)'(11 )x3 n

(1.002)° = (1 + 0.002)°

Substituting x=0.002 and n=9 in the general
expansion for (1 4 x)" gives:

(1 4+0.002)° =1 + 9(0.002) + Egiigi (0.002)?

QO]
3@ M)
=140.018 4- 0.000144

+0.000000672 + - - -
=1.018144672...

(0.002)3 +

Hence (1.002)° = 1.018, correct to 3 decimal

places

=1.018145, correct to
7 significant figures

Problem 8. Evaluate (0.97)° correct to 4 sig-
nificant figures using the binomial expansion.

(0.97)% is written as (1 —0.03)°
Using the expansion of (1 +x)" where n=6 and
x=—0.03 gives:

. 6)(5)
(1 —0.03)°=1+46(—0.03) + (2)(1)( .03)
6)(5)(4)
320
©)S)H3)
@321
=1-0.18 +0.0135 — 0.00054

+0.00001215 — - - -

(=0.03)3

(—0.03)* + - -

~(.83297215
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ie. (0.97)6 = 0.8330, correct to 4 significant
figures

Problem 9. Determine the value of (3.039)%,
correct to 6 significant figures using the binomial
theorem.

(3.039)* may be written in the form (1 + x)" as:

(3.039)* = (3 4+ 0.039)*

_[5(; . 003 !
B 3
=3%1+40.013)*

(1 4+0.013)* =1+ 4(0.013)

( )(3)
(2)(1)
$HB)2)
3@ D)
=1+0.052 4 0.001014

——"2(0.013)?

2 0.013)° +

+0.000008788 + - - -

=1.0530228
correct to 8 significant figures

Hence (3.039)* = 3%(1.0530228)
= 85.2948, correct to
6 significant figures

Now try the following exercise.

Exercise 33 Further problems on the bino-
mial series

1. Use the binomial theorem to expand
(a+2x)*.

a* + 8a’x + 24a>x*?
+32ax3 + 16x*

2. Use the binomial

(2 —x)°.
[64 — 192x + 240x% — 160x3 |

+60x* — 12x° + x°
3. Expand (2x — 3y)*
|:16x4 —96x3y + 216x%y?

theorem to expand

—216xy° + 81y*

2 5
4. Determine the expansion of (2x + —> .
X

32x7 4+ 160x3 4 320x + 320
CNE

x> X -

5. Expand (p +2¢)'! as far as the fifth term.
pll 4 22p10q 4 220p9q2

L 1320p84> + 5280p"¢* |

13
6. Determine the sixth term of (3p + %) .
[34749 p¥¢°]

7. Determine the middle term of (2a — 5b)8.
[700000 a*b*]

8. Use the binomial theorem to determine,
correct to 4 decimal places:

(a) (1.003)%  (b) (1.042)7
[(a) 1.0243 (b) 1.3337]

9. Use the binomial theorem to determine,
correct to 5 significant figures:

(a) (0.98)7 (b) (2.01)°
[(a) 0.86813 (b) 535.51]
10. Evaluate (4.044)° correct to 3 decimal

places.
[4373.880]

7.4 Further worked problems on the
binomial series

Problem 10.

(a) Expand in ascending powers

1
(1+20)3
of x as far as the term in x>,
binomial series.
(b) State the limits of x for which the expan-
sion is valid.

using the

(a) Using the binomial expansion of (1 + x)", where
n= —3 and x is replaced by 2x gives:

TESTURE
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:1—|—(—3)(2x)—|—( )( )(2 )? Vitx= /[4(1+’ﬁ>]
4

( 3)(—4)( 5)(2 B

1
3! - — Vi ¥\ _ 2
=1—6x+24x2—80x3+--. 4 (1+4) 2(1+4)

o ) ) Using the expansion of (1 + x)",
(b) The expansion is valid provided |2x| < 1,

1
1 1 1 X\ 2
i.e. |x|<50r—§<x<z 2(1—1—1)2
1 1/2)(—1/2 2
[ (5) ()22 )
Problem 11.
Evoand i . (1/2)(—1/2)( 3/2) ( ) 4.
(a) Expan m in ascending powers of x 30 I
as far as the term in x>, using the binomial (1 ¥  x? x3 )
theorem. = +s——+ —
(b) What are the limits of x for which the 8 128 1024
expansion in (a) is true? x x X
=24 - =——F_—— =
4 64 512
(a) ! = ! = ! This is valid when ‘)—C‘<1,
4 —x)? al1-% 2 2(1 x\2 4
[ ( _Z>] ( _Z) ie. |x|]<4or —4<x<4
— (-3 I
Problem 13. Expand ——— in ascending
Using the expansion of (1 + x)" va - 20)
| | ) powers of ¢ as far as the term in £3.
s =T ( — )—C> State the limits of ¢ for which the expression is
@4—-x° 16 4 valid.
1
()
16 |: +2) 4 1
n (=2)(-3) (_3_6)2 Ja =21
2! 4 -1
| EEH B
= 1 1/2)(-3/2
o ( 4) * ] — 1+ (—5) (—2:)+M( 202
1 x 3x* i3
= — (142 4+ 4 ... —1/2)(-3/2)(-5/2
16<+2+16+16+ ) L DD

L. . . X
(b) The expansion in (a) is true provided ‘Z‘ <1, using the expansion for (1 + x)"

ie. |x| <4 or —4<x <4 3, 53
=1+t+-24++-.-

2 2
Problem 12. Use the binomial theorem to The expression is valid when |2¢| < 1,
expand +/4+4x in ascending powers of x to 1 1 1
four terms. Give the limits of x for which the ie. |f|<= or —= <t<~—

expansion is valid. 2 2 2
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JT=30 /T T2

(1+3)’

given that powers of x above the first may be
neglected.

Problem 14. Simplify

V(I =30/ +x)
(1+3)
2
— (1 — 3031 + )2 (1 n 3)73

Qe (oo

when expanded by the binomial theorem as far as
the x term only,

:(1—x)(1+§)<1—3§)

1 +x 3x
= — X _——_— —
2 2

when powers of x higher
than unity are neglected

=(1-2)
(1 +2x)
Problem 15. Express ———— as a power
PSS =3 © 2P

series as far as the term in x2. State the range of
values of x for which the series is convergent.

JAT+20
J(1 =3x)

1+ 2x)% =1+ (%) (2x)

(1/2)(~1/2)
+ 2!

=1+ 2)6)%(1 — 3x)_%

@02 + -

2
:1+x—%+--~whichisvalidfor

1

2x] < 1, 1e. |x]| < =

| 2
(1-3x)"3=1+4(—1/3)(—3x)

n (=1/3)(=4/3)

2
o (=30 +---

=1+ x+ 2x* + - -- which is valid for

1
3x] < 1, 1e. |x] < 3

Hence

V(1 +2x)
J(1 =3x)

2
=(1+x—%+-~->(1+x+2x2+--~)

= +2x)%(1 - 3x)_%

2

:1+x+2x2+x+x2—%,

neglecting terms of higher power than 2,
5
=1 + 2x + Exz

o . 1
The series is convergent if —3 <x< 3

Now try the following exercise.

Exercise 34 Further problems on the bino-
mial series

In problems 1 to 5 expand in ascending powers
of x as far as the term in x>, using the binomial
theorem. State in each case the limits of x for
which the series is valid.

1. !
(1-x)
M+x+x2+x34+, x| <1]
5 b
C(1+x)?
[1—2x4+3x>—4x3+---, x| < 1]
1
S 2+x)?
L 3x 32 52 )
8 2 2 4
|x] <2 1
4 24+ x
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1
5.
14+ 3x
RN PO -
27X T e
x| < =
3

6. Expand (2 + 3x)~° to three terms. For what
values of x is the expansion valid?

1 189
—_— (1 — 9.X + Tx2>

64
2
Xl < 3
3
7. When x is very small show that:
(@) : 42
a ~ —X
(1 —x)2/(1—x) 2
b 272 40
_ X X
(1 —3x)*
14 5x 19
© /——~1+—x
J1—2x 6

8. If xis very small such that x> and higher pow-
ers may be neglected, determine the power

N N
L3
15"

Va +x)
9. Express the following as power series in
ascending powers of x as far as the term in

x2. State in each case the range of x for which
the series is valid.

@ (l—x) ®) (1 4+ x)v/(1 = 3x)2
[ Ja+ )

12
(a)l—x—l—zx, x| <1

series for

7 1
(b)l—x—zxz, ¥l <3

Problem 16. The radius of a cylinder is
reduced by 4% and its height is increased by 2%.
Determine the approximate percentage change
in (a) its volume and (b) its curved surface area,
(neglecting the products of small quantities).

Volume of cylinder = 772h.

Let r and & be the original values of radius and
height.

The new values are 0.96r or (1 — 0.04)r and 1.02h
or (14 0.02)h.

(a) New volume = 7[(1 — 0.04)r]*[(1 + 0.02)A]
=7mr2h(1 — 0.04)%(1 + 0.02)

Now (1 —0.04)2 =1 —2(0.04) + (0.04)?
=(1-0.08),
neglecting powers of small terms.

Hence new volume
~ r2h(1 — 0.08)(1 + 0.02)

~ mr’h(1 — 0.08 4 0.02), neglecting
products of small terms

~ 7r?h(1 — 0.06) or 0.947r2h, i.e. 94%
of the original volume

Hence the volume is reduced by approxi-
mately 6%.
(b) Curved surface area of cylinder = 2xrh.

New surface area
= 27[(1 — 0.04)r][(1 + 0.02)A]

= 2mrh(1 — 0.04)(1 + 0.02)
~ 2nrh(1 — 0.04 4- 0.02), neglecting

products of small terms

~ 2nrh(1 — 0.02) or 0.9827nrh),

i.e. 98% of the original surface area

Hence the curved surface area is reduced by
approximately 2 %.

7.5 Practical problems involving the
binomial theorem

Binomial expansions may be used for numerical
approximations, for calculations with small vari-
ations and in probability theory (see Chapter 57).

Problem 17. The second moment of area (3)f
bl

a rectangle through its centroid is given by TR

Determine the approximate change in the second

moment of area if b is increased by 3.5% and

[ is reduced by 2.5%.
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New values of b and [ are (1+40.035)b and
(1 —0.025)! respectively.

New second moment of area

= é[(l +0.035)b][(1 — 0.025)I]°

bi? 3
= E(l +0.035)(1 — 0.025)

bl .
~ E(l + 0.035)(1 — 0.075), neglecting

powers of small terms
bl ,
R E(l 4+ 0.035 — 0.075), neglecting
products of small terms
bIP bP
~ —(1 —0.040) or (0.96)—, i.e. 96%
12 12

of the original second moment of area

Hence the second moment of area is reduced by
approximately 4%.

Problem 18. The resonant frequency of a

1k
vibrating shaft is given by: f = 2—\/; , where
T

k is the stiffness and I is the inertia of the
shaft. Use the binomial theorem to determine
the approximate percentage error in determin-
ing the frequency using the measured values of
k and I when the measured value of k is 4%
too large and the measured value of I is 2% too
small.

Letf, k and I be the true values of frequency, stiffness
and inertia respectively. Since the measured value of
stiffness, k1, is 4% too large, then

ki = 104k—(l 1 0.04)k
1= 700" ~ ‘

The measured value of inertia, /1, is 2% too small,
hence

98
I =—I=01-0.02)I
'= 100 ( )
The measured value of frequency,
oL 1 I -3
1_271 I, 2«7 1

= L[(1 + 0.04)k]%[(1 - 0.02)1]_%
2

1 11 1 1
=—({140.04)2k2(1 —0.02) 21 2

2

1 1 1 1 _1
=—k21"2(140.04)2(1 —0.02) 2

2

ie. fi=f(+ 0.04)%(1 - 0.02)*%

1 1
~f [1 + (E) (0.04)} [1 + <—§) (—0.02)}
~f(1+0.02)(1 +0.01)

Neglecting the products of small terms,
fi= (1 +0.02+40.01)f ~ 1.03f

Thus the percentage error in f based on the
measured values of k and [ is approximately
[(1.03)(100) — 100], i.e. 3% too large.

Now try the following exercise.

Exercise 35 Further practical problems
involving the binomial theorem

1. Pressure p and volume v are related by
pv® = ¢, where ¢ is a constant. Determine the
approximate percentage change in ¢ when p
is increased by 3% and v decreased by 1.2%.

[0.6% decrease]

2. Kinetic energy is given by 1muv®. Deter-
mine the approximate change in the kinetic
energy when mass m is increased by 2.5%
and the velocity v is reduced by 3%.

[3.5% decrease]

3. An error of +1.5% was made when meas-
uring the radius of a sphere. Ignoring the
products of small quantities determine the
approximate error in calculating (a) the vol-
ume, and (b) the surface area.

(a) 4.5% increase
(b) 3.0% increase

4. The power developed by an engine is given
by I =k PLAN, where k is a constant. Deter-
mine the approximate percentage change in
the power when P and A are each increased
by 2.5% and L and N are each decreased by
1.4%. [2.2% increase]
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5. The radius of a cone is increased by 2.7%

and its height reduced by 0.9%. Determine
the approximate percentage change in its
volume, neglecting the products of small
terms. [4.5% increase]

. The electric field strength H due to a magnet
of length 2/ and moment M at a point on its
axis distance x from the centre is given by

M 1 1
H=— —
20 | x =D (x+1)?
Show that if / is very small compared with

x, then H ~ —-
X

. The shear stress t in a shaft of diameter
D under a torque T is given by: t= I
T
Determine the approximate percentage error
in calculating t if T is measured 3% too
small and D 1.5% too large.
[7.5% decrease]

. The energy W stored in a flywheel is given
by: W = kr N2, where k is a constant, r
is the radius and N the number of revolu-
tions. Determine the approximate percent-
age change in W when r is increased by
1.3% and N is decreased by 2%.

[2.5% increase]

. In a series electrical circuit containing
inductance L and capacitance C the resonant

10.

11.

12.

1
27LC'

values of L and C used in the calculation are
2.6% too large and 0.8% too small respect-
ively, determine the approximate percentage
error in the frequency.

If the

frequency is given by: f, =

[0.9% too small]

The viscosity 1 of a liquid is given by:
4

r ] )
n= R where k is a constant. If there is
v

an error in r of +2%, in v of +4% and [ of
—3%, what is the resultant error in 7?

[+7%]

A magnetic pole, distance x from the plane
of a coil of radius r, and on the axis of the
coil, is subject to a force F when a cur-
rent flows in the coil. The force is given

kx
V(2 +x2)5
Use the binomial theorem to show that when
x is small compared to r, then
kx  Skx?

rd 277

by: F = , where k is a constant.

The flow of water through a pipe is given by:
(3dy’H

G= . If d decreases by 2% and H

by 1%, use the binomial theorem to estimate
the decrease in G. [5.5%]
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Maclaurin’s series

8.1 Introduction

Some mathematical functions may be represented as
power series, containing terms in ascending powers
of the variable. For example,

x2 3

S| X
e = +x+2—!+§+~--
B 305 7
smx_x—a—{—ﬁ—?—k
dooshx = 145 4%
and coshx = +E+I+'-'

(as introduced in Chapter 5)

Using a series, called Maclaurin’s series, mixed
functions containing, say, algebraic, trigonometric
and exponential functions, may be expressed solely
as algebraic functions, and differentiation and inte-
gration can often be more readily performed.

8.2 Derivation of Maclaurin’s theorem

Let the power series for f(x) be

f&x)=ao+a1x+ azx2 + a3x3 + 014x4
+asxd+--- (1)

where ag, aj, az, . . . are constants.

When x =0, f(0) = ay.
Differentiating equation (1) with respect to x gives:

f'(x) = a; + 2axx + 3asx’ + 4dasx’
+5asx* + -+ (2)

When x =0, f'(0) = a;.
Differentiating equation (2) with respect to x gives:

f(x) = 2a2 + 3)2Q)azx + (4)(3)agx*
+ ) dasx> +--- (3)

J"(©0)

When x=0, /(0) =2ar =2lay,i.e.ay = 51

Differentiating equation (3) with respect to x gives:

") = 3)Daz + (H(3)(2)asx

+EHBasx® +--- (@)
"
When x =0, f(0) = (3)(2)az =3!a3, i.e.a3 = S 3('0)
iv 0
Continuing the same procedure gives a4 = %,
IO '
as = TEE and so on.

.. in equation (1) gives:

17(0)

Substituting for ag, a1, az, .

) =f(0) +f'(0)x + sz
f///(o)
+ = P
x2
JF&) =f(0)+xf'(0) + Ef”(())
ie. , = )
X 144
+ 3O+ -

Equation (5) is a mathematical statement called
Maclaurin’s theorem or Maclaurin’s series.

8.3 Conditions of Maclaurin’s series

Maclaurin’s series may be used to represent any
function, say f(x), as a power series provided that
at x = 0 the following three conditions are met:

(@) f(0) # oo
For example, for the function f(x)= cosx,
f(0)= cos 0 =1, thus cos x meets the condition.
However, if f(x)=1Inx, f(0)=1In 0=—o0,
thus In x does not meet this condition.

(b) £(0), £(0), f'(0), ... # oo
For example, for the function f(x)= cosux,
f(0)=—sin0=0,f"(0)=—cos 0= —1, and so
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on; thus cosx meets this condition. However, Replacing x with 26 in the series obtained in Prob-
if f(x) = Inx, f'(0) = § =00, thus Inx does not ~ lem 1 gives:

meet this condition. g — 1 (20 (20 (20)°

(c) The resultant Maclaurin’s series must be cosr=1=75, + 4 6 T
convergent 42 160% 6406
In general, this means that the values of the =1 - — 4+ — — —

terms, or groups of terms, must get progres- 2 24 720

sively smaller and the sum of the terms must

reach a limiting value. ie. cos20=1-260"+ 504 - Eoﬁ +--

For example, the series 1+ % + JT + % 4+ .- is
convergent since the value of the terms is getting Problem 3
smaller and the sum of the terms is approaching )
a limiting value of 2.

Determine the power series for

tan x as far as the term in x°.

f(x) =tanx
f(O)=tan0 =0

f/(x) = sec? x

8.4 Worked problems on Maclaurin’s

series
/ 2 1
f(0)=sec”0= 20—
Problem 1. Determine the first four terms of cos
the power series for cos x. f"(x) = (2secx)( sec x tan x)

— 2sec? xtanx

The values of f(0), f/(0), f”(0),... in the ey 2 _
Maclaurin’s series are obtained as follows: f7(0) =2sec”0tan0 =0

f(x)=cosx f(0)=cos0=1
f(x)=—sinx  f'(0)= —sin0=0
f'(x)=—cosx f"(0)= —cos0=—1

"(x) = sinx "(0)=sin0=0
U 770 £7(0) = 2sec* 0 + 4sec* 0tan? 0 = 2

frx)=cosx  fH(0)=cos0=1 Substituting these values into equation (5) gives:
)= —sinx  fY0)= —sin0=0 23
P = —cosx FH(0) = —c0s 0= —1 f0) = tanx = 0+ (D) + 30+ 5 2)

£ (x) = (2 sec? x)(sec? x)
+ (tan x)(4 sec x sec x tan x),
by the product rule,

— 2sect x + 4sec? x tan® x

14

Substituting these values into equation (5) gives: ie. tanx=x + §x

2 3

X X
) = cosx = 14x(0) + 5;(=1) + 5;(0)
' . Problem 4. Expand In(1 + x) to five terms.

4 x> X0

X
(M4 =0+ —(=1) +---
T 5O+ GEDE f@=In(1+x) fO)=1In(1+0)=0

2 4 6 1 1
X X X / /
i =1-—4+ - 4... X)= 0)=——=1
ie. eosx=1-Z0+ 7 ot () T 1'(0) T30
F0= s 0= =
R TETE O
Problem 2. Determine the power series for » " 2
cos20 o=ty O a1op
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—6
)=~ = =6

o= a7 1+ 0y
V(x)= Y(0)= 24 =24
f (X)—(1+x)5 A )—m—

Substituting these values into equation (5) gives:
2

X
f(x)=ln(1+x)=0+x(1)+§(—1)
ot Y e S
+§()+4—!(—)+§( )
) x2 3 X XS
ielnmd+x)=x——+———+——-..

2 3 4 5

Problem 5. Expand In(1 — x) to five terms.

Replacing x by —x in the series for In(1 +x) in
Problem 4 gives:

_ (—x)?  (—x)}
In(l1 —x) = (—x) — 5 + 3
(=" (=’
" s
x2 X3 x* xS
e Inl —x)=—x———— — — — — — ...

2 3 4 5

Problem 6. Determine the power series for
( 1+ x)
In .
1—x

1+x
—X
logarithms, and from Problems 4 and 5,

! 1+x x2+x3 x4+x5
n Y P T G
1—x 2 3 4 5

P B A
S S G
2 3 4 5

I NI
=2x+ =x —-X
37 s

il IPY (RN S
-x) 35

In = In(1 4+ x) — In(1 — x) by the laws of

) (1
i.e. In
1

Problem 7. Use Maclaurin’s series to find the
expansion of (2 4 x)*.

f(O)y=2*=16
FO)=42)P=32
£7(0)=12(2)> =48
F7(0) = 24(2) =48
f0)=24

fo=2+x*
f10)=14@2+x?
() = 122 + x)?
[0 =242+ 0!
fMx=24
Substituting in equation (5) gives:
Q2 +x)?
x2 x3 x4 :
=fO) +x0) + 5, /"(O) + £ (O0) + 77170
xz x3 x4
= 16+ ()(32) + 7 (48) + T (48) + 77 24)
=16 + 32x + 24x? 4 8x3 4 x*

(This expression could have been obtained by apply-
ing the binomial theorem.)

Problem 8. Expand e? as far as the term in x*.
fy=e? fO)=e"=1
1 & 1 1
/ — _e2 /O = ¢ O:_
f@=7 fO)=3 3
| 1 1
1/ = _¢e2 //O = —¢ 0:_
1) ¢ 170 I yl
1 & 1 1
111 — el ///O__O=_
f7 ) 2 f70) 8 g
1 . 1
V) — e? V) = 0 _
)= F70) 166 T

Substltutmg in equation (5) gives:

X

ez = f(0) +xf'(0) + f”(O)

4
x 11/ X7 v
+ 3O+ O+

1 X2 [1 x3[1
=10 (3) 5 ()5 ()

ie.
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Problem 9. Develop a series for sinh x using
Maclaurin’s series.

0 -0

f()=sinhx  f(0)=sinh0 = % —0
0 -0
()= coshx  f/(0)= cosh0 = % —1

f’(x)=sinhx f”(0)=sinh0 =0
f"(x)=coshx f"”(0)=cosh0=1
fV(x)=sinhx f¥(0)=sinh0 =0
fY(x)=coshx f¥Y(0)=cosh0 =1

Substituting in equation (5) gives:

x2 x3

sinhx =7(0) +'(0) + . f"(0) + 5./"(0)

x4 iv x5 v
+ MO+ SO+

x2 3 x4

=04 () + 70 + 3 (D) + 75(0)

xS
+ 5(1) + -
. . ¥ xS
i.e. sinhx=x+4 3 + 3 +...

(as obtained in Section 5.5)

Problem 10. Produce a power series for

cos? 2x as far as the term in x°.

From double angle formulae, cos 24 =2 cos? A — 1
(see Chapter 18).

1
from which, cos2A = 5(1 + cos24)

and cos? 2x = %(1 + cos 4x)
From Problem 1,
¥ xS
cosx=1 5—#5—54-
hence cosdx=1— (4;!)2 + (4;:!)4 - (4;)6 4.
:1_8x2+2x4_§x6

3 45

1
Thus cos®2x = 5(1 + cos 4x)

1 32 256
=211 1_82 4 6
2( + x+—3x —45x
16 128
. 2 2 4 6
.e. 2x=1—-4 —Xx - —
1.e. €OS x+3x 45x+

Now try the following exercise.

Exercise 36 Further problems on
Maclaurin’s series

1. Determine the first four terms of the power
series for sin 2x using Maclaurin’s series.
4

in2x =2 — 23 4
SIN 2X = 2X 3X 15)6

__x7+...

5

2. Use Maclaurin’s series to produce a power

series for cosh 3x as far as the term in x°.

9 27 81
1422204, 206
[+2x+8x +80xi|

3. Use Maclaurin’s theorem to determine the
first three terms of the power series for

2
In(1 +e"). [an—f— §+%i|

4. Determine the power series for cos 4t as far
as the term in 7°.

32 256 (]
1 -8+ =+ — =——°
3 45
5. Expand e in a power series as far as the
term in x3 1—|—3 +92+9 J
X7, —X —X —X
2 8 16

6. Develop, as far as the term in x4, the power

10
series for sec 2x. |:1 + 222 + ?x4:|

7. Expand ¢’ cos 30 as far as the term in 62

5
using Maclaurin’s series. [1 + 260 — 592}

8. Determine the first three terms of the series
for sin® x by applying Maclaurin’s theorem.

1 2
2 .4 Z 6.
[x 3x —l—45x i|
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9. Use Maclaurin’s series to determine the
expansion of (3 4 21)*.

[81 + 216¢ + 21612 + 961> + 161]

8.5 Numerical integration using
Maclaurin’s series

The value of many integrals cannot be determined
using the various analytical methods. In Chapter
45, the trapezoidal, mid-ordinate and Simpson’s
rules are used to numerically evaluate such inte-
grals. Another method of finding the approximate
value of a definite integral is to express the func-
tion as a power series using Maclaurin’s series, and
then integrating each algebraic term in turn. This is
demonstrated in the following worked problems.

Problem 11. Evaluate f(g '14 2e8n9 49, correct
to 3 significant figures.

A power series for es"?

Maclaurin’s series.

is firstly obtained using
f(e) — esin@ f(O) — eSil’lo — eO — 1
£1(0) = cosfe’"?  F(0)=cos0e "0 =(1)e"=1

F7(6) = (cos 0)(cos 0 e ™) + (e5")(—sin ),
by the product rule,

= e""%(cos? § — sin 6);
£7(0) = e%(cos® 0 — sin0) = 1
£7(0) = € ™9)[(2 cos O(—sin H) — cos )]
+ (cos? 0 — sin H)(cos B e5M?)
="M cos[—2sin @ — 1 + cos” O — sin 6]

") =e%cos0[(0—14+1—-0)]=0

Hence from equation (5):

. 62 63
S = £(0) + 6f(0) + 5}”’(0) + §f MOESE

2

6
=146+ +0

0.4 ) 0.4 62
Thus / ZeS‘n9d9:/ 2(1+0+—>d0
0.1 0.1 2

0.4
— / (2 +260+6%)do
0.1

202 93 ]0.4
2 3 0‘1

|2+ 545

3
_ <0.8 + (0.4)% + (0'34) )

3
- (0.2 +(0.1)> + %)

= 0.98133 — 0.21033
= 0.771, correct to 3 significant figures

1 .
0
Problem 12. Evaluate / %d@ using
0

Maclaurin’s series, correct to 3 significant
figures.

Let f(6)=sin® f(0)=0
f@®=cosd  fO)=1
f'(0)=—sin®  f"(0)=0

f7(0)= —cos® f"(0)=—1
Y@ =sin®  fY0)=0
YO =cosd  f'O)=1

Hence from equation (5):
62 63
sin 6 =1(0) +6f'(0) + = /" (O) + 3, /"(0)

ot . 6>
+4—!f (0)+§f ©)+---
6% 63
=0+9(1)+5(0)+§(—1)

4 5

0 0 0 1
+4—!()+§()+~--
0 &

ie sm9=9—§+§—

Hence
( e o g )
0— —+—— =+

[ 1 3! 5! 7!
0
/&(w:/ d6
o 0 0 0

1 92 94 96
[ -+ 7 4. e
/0 ( 6 T 120 5040 T )
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0 o7 !
=lg- =4 — 4 ...
18 + 600  7(5040) + .

1 n 1 1 L
18 600  7(5040)
= 0.946, correct to 3 significant figures

3. Determine the value of fol VO cos6do, cor-
rect to 2 significant figures, using Maclaurin’s
series. [0.53]

4. Use Maclaurin’s theorem to expand
J/xIn(x+1) as a power series. Hence
evaluate, correct to 3 decimal places,

f97 /% In(x+ 1) dx. [0.061]

Problem 13. Evaluate [ xIn(1 4 x) dx using
Maclaurin’s theorem, correct to 3 decimal
places.

From Problem 4,

x2 3 4 5

In(1 + x) += T4
n X)=x——+———
34

X
2 5

0.4
Hence/ xIn(1 4+ x)dx
0

0.4 2 3 4 5
X X X X
— T 4T o )dx
/0 x<x R )

0.4
3 4 )5 Wy }

_ (04 04 N 04>  (04°
o\ 3 8 15 24

35
= 0.02133 — 0.0032 + 0.0006827 — - - -
= 0.019, correct to 3 decimal places

7
L 04 —...>—(0)

Now try the following exercise.

Exercise 37 Further problems on numerical
integration using Maclaurin’s series

1. Evaluate f(g '26 3e8in? 49, correct to 3 decimal
places, using Maclaurin’s series. [1.784]

2. Use Maclaurin’s theorem to expand cos 26
and hence evaluate, correct to 2 decimal

I cos26
places,/ i de. [0.88]
O ey
63

8.6 Limiting values

It is sometimes necessary to find limits of the form
lim @ , where f(a) =0 and g(a) =0.
x—a g(x)

For example,

{x2+3x—4}_ 1+3-4 0

lim = - _
x2—7x+6 1-7+6 0

x—1

and 8 is generally referred to as indeterminate.

For certain limits a knowledge of series can some-
times help.

For example,

. tanx — x
lim {—}

x—0 x3

= lim 1 3
x—0 X

3
lim —gx o lim ! !
= 11 = 11 — = —

x—=0 x3 x—0 |3 3

Similarly,

. : sinh x }
lim

x—0 X

= lim from Problem 9

x—0 X

2 4
X X

—lm 4+ 4+l =1
S TR TI }

However, a knowledge of series does not help with
{x2 +3x—4 }

examples such as lim 2o T6

x—1
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I’Hopital’s rule will enable us to determine such
limits when the differential coefficients of the numer-
ator and denominator can be found.

I’Hopital’s rule states:

i {f (x) } . {f’(x) }
imy—— = lim
x—a| g(x) x—a| g'(x)

provided g'(a) # 0

/
It can happen that lim )

x—a| g'(x)
numerator and denominator are differentiated again
(and again) until a non-zero value is obtained for the
denominator.

The following worked problems demonstrate how
L’Hopital’s rule is used. Refer to Chapter 27 for
methods of differentiation.

} is still g; if so, the

2
—4
Problem 14. Determine lim i
x—1 x2 —Tx + 6

The first step is to substitute x = 1 into both numer-

ator and denominator. In this case we obtain 2. It is
only when we obtain such a result that we then use
L’Hopital’s rule. Hence applying L’Hopital’s rule,

(2 +3x—4 o [2x+3
Iim{ ——{ = lim
> |x2—=Tx+6 x—=1]2x =7

i.e. both numerator and
denominator have
been differentiated

:—:—1

=5

. . sinx — x
Problem 15. Determine lim {—}

x—0 x2

Substituting x =0 gives

. sinx — x sin0—0 O
lim = = -
x—0 x2 0 0
Applying L’Hopital’s rule gives
. sinx — x . cosx — 1
Iim{———¢ =1lim{ ———
x—0 x2 x—0 2x

Substituting x =0 gives
cosO—1 1—-1 0
o 0 0

Applying L’Hopital’s rule again gives

1 i
hm{gﬂ;—}zhm{ ?”}:0

x—0 2x x—0

. ) X — sinx
Problem 16. Determine lim {—}
x—0 | x —tanx

Substituting x = 0 gives
{x—sinx} _0—sin0 0

lim = = —
0—tanO 0

x—0

X —tanx

Applying L’Hopital’s rule gives

. X —sinx . 1 —cosx
lim { ——— = lim —
x—0 | x —tanx x—=0 |1 —secsx

Substituting x =0 gives

. 1 —cosx 1 —cosO 1—-1 .
lim = = = — again
x—0|1 —sec? x l1—sec20 1—-1 0

Applying L’Hopital’s rule gives

. 1 —cosx . sin x
Iim{———}¢ = lim
x—0 | 1 —secZx x—0 | (=2 sec x)(sec x tan x)
. sin x
= lim — 5
x—0 | —2sec” xtanx
Substituting x = 0 gives

sin 0 .
— = _ again
—2sec20tan0 O &

Applying L’Hopital’s rule gives
. sin x
lim { —————
x—0 { —2sec? x tan x }

Cos X
(-2 sec? x)(sec2 X)
+ (tan x)(—4 sec? x tan X)
using the product rule

= lim
x—0

Substituting x = 0 gives

cos0 _ 1
—2sec*0 —4sec20tan20 —2—0

1

2
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. X —sinx 1
Hence Im{—— ¢ = —=
x—0 | x —tanx 2

Now try the following exercise.

values

. X =2x+1
1. im{———
x—1 2x3 + 3x—5
. sin x
2. lim —}
x—0 X
In(1
3. Jim | 2+ +x)}
x—0 X

Exercise 38 Further problems on limiting

Determine the following limiting values

{
I
{

i

P 03
. Int
lim

—1 |2 =1

sinhx — sinx }
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Assignment 2

This assignment covers the material contained
in Chapters 6 to 8.

The marks for each question are shown in
brackets at the end of each question.

. Determine the 20th term of the series 15.6, 15,
14.4,13.8, ... 3)

2. The sum of 13 terms of an arithmetic progres-
sion is 286 and the common difference is 3.
Determine the first term of the series. @)

3. Anengineer earns £21000 per annum and receives
annual increments of £600. Determine the salary
in the 9th year and calculate the total earnings in
the first 11 years. %)

4. Determine the 11th term of the series 1.5, 3,6,
12, ... (2)

5. Find the sum of the first eight terms of the series
1,2.5,6.25, ..., correct to 1 decimal place. (4)

6. Determine the sum to infinity of the series

1
s L (3)

A machine is to have seven speeds ranging from
25rev/min to 500 rev/min. If the speeds form
a geometric progression, determine their value,
each correct to the nearest whole number. (8)

. Use the binomial series to expand (2a — 3b)°

(7

1 18
9. Determine the middle term of (3x — 3—)
y
(6)

10. Expand the following in ascending powers of ¢
as far as the term in 3

1 1

@ 1 ©
For each case, state the limits for which the
expansion is valid. (12)
11. When x is very small show that:
! ~1— Ex (5)
(1 +x)2/0T—=x) 2
R*

12. The modulus of rigidity G is given by G = T

where R is the radius, 6 the angle of twist and
L the length. Find the approximate percentage
error in G when R is measured 1.5% too large,
6 is measured 3% too small and L is measured
1% too small. @)

13. Use Maclaurin’s series to determine a power

series for e2* cos 3x as far as the term in x2.

(10)

14. Show, using Maclaurin’s series, that the first four
terms of the power series for cosh 2x is given by:

2 4
cosh2x =1+ 22>+ =x* + —x* (1)
3 45

15. Expand the function x?In(1+ sinx) using
Maclaurin’s series and hence evaluate:
1

2
/ x? In(1 4 sin x) dx correct to 2 significant

0
figures. (13)
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9

Solving equations by iterative methods

9.1 Introduction to iterative methods

Many equations can only be solved graphically or
by methods of successive approximations to the
roots, called iterative methods. Three methods of
successive approximations are (i) bisection method,
introduced in Section 9.2, (ii) an algebraic method,
introduction in Section 9.3, and (iii) by using the
Newton-Raphson formula, given in Section 9.4.

Each successive approximation method relies on
a reasonably good first estimate of the value of
a root being made. One way of determining this
is to sketch a graph of the function, say y=f(x),
and determine the approximate values of roots from
the points where the graph cuts the x-axis. Another
way is by using a functional notation method. This
method uses the property that the value of the graph
of f(x) =0 changes sign for values of x just before
and just after the value of a root. For example, one
root of the equation x> —x — 6 =0 is x = 3. Using
functional notation:

f(x):xz—x—6
f@)=22-2-6=-4
fA)=4>—4—-6=+6

T
Eaaus:
i
i
H
H
8
A} 2 T
f(X) = X —x-6
; &)
\
_D ’::::9 s 4 %
H
4
N
—O7

Figure 9.1

It can be seen from these results that the value of f(x)
changes from —4 at f(2) to +6 at f(4), indicating
that a root lies between 2 and 4. This is shown more
clearly in Fig. 9.1.

9.2 The bisection method

As shown above, by using functional notation it is
possible to determine the vicinity of a root of an
equation by the occurrence of a change of sign,
i.e. if x| and x, are such that f(x;) and f(x2) have
opposite signs, there is at least one root of the
equation f(x)=0 in the interval between x; and
X (provided f(x) is a continuous function). In the
method of bisection the mid-point of the inter-
X1+ x

val, i.e. x3= , 1s taken, and from the sign

of f(x3) it can be deduced whether a root lies in the
half interval to the left or right of x3. Whichever half
interval is indicated, its mid-point is then taken and
the procedure repeated. The method often requires
many iterations and is therefore slow, but never fails
to eventually produce the root. The procedure stops
when two successive value of x are equal—to the
required degree of accuracy.

The method of bisection is demonstrated in Prob-
lems 1 to 3 following.

Problem 1. Use the method of bisection to find
the positive root of the equation

5x% 4 11x — 17 =0 correct to 3 significant
figures.

Let f(x) =5x>+ 11x — 17
then, using functional notation:
f(0)=-17
f@ =501)72+11(1)—17= -1
f2)=52)%+112)— 17 = 425
Since there is a change of sign from negative
to positive there must be a root of the equation

between x =1 and x = 2. This is shown graphically
in Fig. 9.2.
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~
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f

|
N
FHH

i

o

Figure 9.2

The method of bisection suggests that the root is

142
at

= 1.5, i.e. the interval between 1 and 2 has

been bisected.
Hence
f@.5) =5(1.52 4+ 11(1.5) — 17
= +10.75

Since f(1) is negative, f(1.5) is positive, and f(2) is
also positive, a root of the equation must lie between
x=1and x = 1.5, since a sign change has occurred
between f(1) and f(1.5).

Bisecting this interval gives

i.e. 1.25 as the

next root.
Hence
f(1.25) = 5(1.25)%> + 11x — 17
= +4.5625

Since f(1) is negative and f(1.25) is positive, a root
lies between x =1 and x = 1.25.

Bisecting this interval gives ie. 1.125
Hence
f(1.125) = 5(1.125)% + 11(1.125) — 17

= +1.703125

Since f(1) is negative and f(1.125) is positive, a root
lies between x =1 and x = 1.125.

141.125

Bisecting this interval gives T i.e. 1.0625.

Hence
f(1.0625) = 5(1.0625)2 + 11(1.0625) — 17
= +0.33203125

Since f(1) is negative and f(1.0625) is positive, a
root lies between x =1 and x = 1.0625.

D L . 1+1.0625
Bisecting this interval gives — i.e.
1.03125.
Hence

£(1.03125) = 5(1.03125)% + 11(1.03125) — 17
= —0.338867. ..

Since f(1.03125) is negative and f(1.0625) is posi-
tive, aroot lies between x = 1.03125 and x = 1.0625.

Bisecting this interval gives

1.03125 + 1.0625
;_ i.e. 1.046875

Hence

£(1.046875) = 5(1.046875)* + 11(1.046875) — 17
= —0.0046386. . .

Since f(1.046875) is negative and f(1.0625) is
positive, a root lies between x=1.046875 and
x=1.0625.

Bisecting this interval gives

1.04 1.062
0 6875;_ 0625 i.e. 1.0546875

The last three values obtained for the root are
1.03125, 1.046875 and 1.0546875. The last two val-
ues are both 1.05, correct to 3 significant figure. We
therefore stop the iterations here.

Thus, correct to 3 significant figures, the positive
root of 5x% + 11x — 17 = 0 is 1.05

Problem 2. Use the bisection method to deter-
mine the positive root of the equation x 4+ 3 =e”,
correct to 3 decimal places.

Letf(x)=x+3—¢"
then, using functional notation:
f0)=0+3—e'=+2
f)=1+3—-e'=+1.2817...
fQ)=2+3—-e>2=-2.3890...



78 NUMBER AND ALGEBRA

Since f(1) is positive and f(2) is negative, a root
lies between x =1 and x =2. A sketch of f(x) =
x+3—¢* ie x+3=e"is shown in Fig. 9.3.

\\\\\\\\\

(A
(X) = x+3
£ (N =e
3 . S

Figure 9.3

Bisecting the interval between x = 1 and x =2 gives

1+2
+ ie. 1.5.

Hence

fas5) =15+3—¢!d
= +0.01831...

Since f(1.5) is positive and f(2) is negative, a root
lies between x = 1.5 and x = 2.

2
ie. 1.75.

Bisecting this interval gives
Hence

f@75) =175+3—¢!'P
= —1.00460. ..

Since f(1.75) is negative and f(1.5) is positive, a root
lies between x =1.75 and x = 1.5.

1.75+1.5 .

Bisecting this interval gives ie. 1.625.

Hence

£(1.625) = 1.625 + 3 — ! %
= —0.45341...

Since f(1.625) is negative and f(1.5) is positive, a
root lies between x = 1.625 and x = 1.5.

1.625+1.5 .

Bisecting this interval gives ie. 1.5625.

Hence

£(1.5625) = 1.5625 + 3 — ! 6%
= —0.20823...

Since f(1.5625) is negative and f(1.5) is positive, a
root lies between x = 1.5625 and x = 1.5.

Bisecting this interval gives

1.5625 + 1.5
10+ 1o 153125
2
Hence
f(1.53125) = 1.53125 + 3 — e!312

= —0.09270...

Since f(1.53125) is negative and f(1.5) is positive,
aroot lies between x = 1.53125 and x = 1.5.

Bisecting this interval gives

1.53125+ 1.5
1915+ 1 1 515625

Hence

f(1.515625) = 1.515625 + 3 — e!9156%
= —0.03664...

Since f(1.515625) is negative and f(1.5) is positive,
aroot lies between x =1.515625 and x =1.5.

Bisecting this interval gives

1.515625 + 1.5
% ie. 1.5078125

Hence

£(1.5078125) = 1.5078125 + 3 — ¢! 907812
= —0.009026. ..

Since f(1.5078125) is negative and f (1.5) is positive,
aroot lies between x = 1.5078125 and x = 1.5.

Bisecting this interval gives

1.5078125 + 1.5
% i.e. 1.50390625

Hence

£(1.50390625) = 1.50390625 + 3 — e!-30390625
= 40.004676. . .

Since f(1.50390625) is positive and f(1.5078125)
is negative, a root lies between x = 1.50390625 and
x=1.5078125.
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Bisecting this interval gives

1. 25+ 1.507812
50390625 2+ SUT8123 | o 1505850375

Hence

£(1.505859375) = 1.505859375 + 3 — e!-303859375
= —0.0021666.. . .

Since f(1.50589375) is negative and f(1.50390625)
is positive, a root lies between x =1.50589375 and
x=1.50390625.

Bisecting this interval gives

1.505859375 4 1.50390625 .
5 1.e. 1.504882813

Hence

£(1.504882813) = 1.504882813 + 3 — ¢! 204882813
= +0.001256. ..

Since f(1.504882813) is positive and
J(1.505859375) is negative,

a root lies between x=1.504882813 and x=
1.505859375.

Bisecting this interval gives

1.504882813 2+ 150589375 . 1505388282

The last two values of x are 1.504882813 and
1.505388282, i.e. both are equal to 1.505, correct
to 3 decimal places.

Hence the root of x + 3 =e¢* is x = 1.505, correct
to 3 decimal places.

The above is a lengthy procedure and it is proba-
bly easier to present the data in a table as shown in
the table.

x x n="02 0 )

0 +2

1 +1.2817...

2 —2.3890. ..
1 2 1.5 +0.0183. ..
1.5 2 1.75 —1.0046. ..
1.5 1.75 1.625 —0.4534. ..
1.5 1.625 1.5625 —0.2082. ..
1.5 1.5625 1.53125 —0.0927...
1.5 1.53125 1.515625 —0.0366. ..
1.5 1.515625 1.5078125 —0.0090. ..
1.5 1.5078125 1.50390625 +0.0046. ..
1.50390625 1.5078125 1.505859375 | —0.0021. ..
1.50390625 1.505859375 | 1.504882813 | +0.0012...
1.504882813 | 1.505859375 | 1.505388282

fM=2hl1+1-2=-1
f2)=2In2+2-2=+1.3862...

A change of sign indicates a root lies between x = 1

and x =2.

Since 2Inx + x =2 then 2Inx = —x + 2; sketches
of 2Inx and —x + 2 are shown in Fig. 9.4.

N

e R e
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Problem 3. Solve, correct to 2 decimal places,
the equation 2 In x + x =2 using the method of
bisection.

Let f(x)=2Inx+x—-2
f(0.1) =2In(0.1) + 0.1 — 2 = —6.5051....

(Note that In O is infinite that
is why x = 0 was not chosen)

Figure 9.4
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As shown in Problem 2, a table of values is
produced to reduce space.

x1 x2 X3 = )% fx3)

0.1 —6.6051...

1 —1

2 +1.3862...
1 2 1.5 +0.3109...
1 1.5 1.25 —0.3037...
1.25 1.5 1.375 +0.0119...
1.25 1.375 | 1.3125 —0.1436...
1.3125 1.375 | 1.34375 —0.0653...
1.34375 1.375 | 1.359375 —0.0265. ..
1.359375 1.375 | 1.3671875 —0.0073...
1.3671875 | 1.375 | 1.37109375 | +0.0023...

The last two values of x3 are both equal to 1.37 when
expressed to 2 decimal places. We therefore stop the
iterations.

Hence, the solution of 2Inx +x=2 is x=1.37,
correct to 2 decimal places.

Now try the following exercise.

Exercise 39 Further problems on the
bisection method

Use the method of bisection to solve the follow-
ing equations to the accuracy stated.

1. Find the positive root of the equation

x2+3x—5=0, correct to 3 significant fig-
ures, using the method of bisection. [1.19]

2. Using the bisection method solve e* —x =2,
correct to 4 significant figures. [1.146]

3. Determine the positive root of x> =4 cosx,
correct to 2 decimal places using the method
of bisection. [1.20]

4. Solve x — 2 — Inx =0 for the root near to 3,
correct to 3 decimal places using the bisection
method. [3.146]

5. Solve, correct to 4 significant figures,

x — 2sin? x = 0 using the bisection method.
[1.849]

9.3 An algebraic method of successive
approximations

This method can be used to solve equations of the
form:

a+bx+cx2+dx3—|—---:0,

where a, b, c,d, . .. are constants.
Procedure:

First approximation

(a) Using a graphical or the functional notation
method (see Section 9.1) determine an approxi-
mate value of the root required, say x;.

Second approximation

(b) Let the true value of the root be (x| + &1).

(c) Determine x; the approximate value of (x| + §1)
by determining the value of f(x; + ;) =0, but
neglecting terms containing products of .

Third approximation

(d) Let the true value of the root be (xp + §2).

(e) Determine x3, the approximate value of (x> + 62)
by determining the value of f(x; + §2) =0, but
neglecting terms containing products of §,.

(f) The fourth and higher approximations are
obtained in a similar way.

Using the techniques given in paragraphs (b) to (f),
it is possible to continue getting values nearer and
nearer to the required root. The procedure is repeated
until the value of the required root does not change
on two consecutive approximations, when expressed
to the required degree of accuracy.

Problem 4. Use an algebraic method of suc-
cessive approximations to determine the value
of the negative root of the quadratic equation:
4x? — 6x — 7 =0 correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

A first estimate of the values of the roots is made by
using the functional notation method

fx) = 4> —6x — 7
£(0) = 4(0)* — 6(0) — 7 = —7
f(=) =412 —6(-1)-7=3
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These results show that the negative root lies between
0 and —1, since the value of f(x) changes sign
between f(0) and f(—1) (see Section 9.1). The pro-
cedure given above for the root lying between 0 and
—1 is followed.

First approximation

(a) Let a first approximation be such that it divides
the interval O to —1 in the ratio of —7 to 3, i.e.
let x; =—0.7.

Second approximation

(b) Let the true value of the root, x,, be (x; + 81).
(c) Letf(x; + &1) = 0, then, since x; = —0.7,
4(—0.7 4 81)> — 6(—0.7+8;) —7=0
Hence, 4[(—0.7)% + (2)(—0.7)(31) + 8]
—(6)(—0.7)— 66, —7=0

Neglecting terms containing products of §;

gives:
1.96 -5.66; +42—-661—-7=0
i.e. —5.661 —661 =—-196—-42+7
. —1.96 -42+7
i.e. o —
—5.6—-6
_ 0.84
TR
~ —0.0724

Thus, x,, a second approximation to the root is
[—0.7 4 (—0.0724)],

i.e. xp =—0.7724, correct to 4 significant fig-
ures. (Since the question asked for 3 significant
figure accuracy, it is usual to work to one figure
greater than this).

The procedure given in (b) and (c) is now
repeated for x, = —0.7724.

Third approximation
(d) Let the true value of the root, x3, be (xo + 7).
(e) Letf(x2+ 62) =0, then, since x, = —0.7724,
4(—0.7724 + 82)* — 6(=0.7724 + 8) =7 =0
4[(—0.7724)% + (2)(—0.7724)(82) + 83]
—(6)(—0.7724) — 65, —7=0

Neglecting terms containing products of &
gives:

2.3864 — 6.17926, +4.6344 — 66, — 7T~ 0
—2.3864 — 4.6344 + 7

ie. S~

Le 2 —6.1792—6
. —0.0208
T 12,1792

~ 40.001708

Thus x3, the third approximation to the root is
(=0.7724 + 0.001708),

i.e.x3 = —0.7707, correct to 4 significant figures
(or —0.771 correct to 3 significant figures).

Fourth approximation

(f) The procedure given for the second and third
approximations is now repeated for

x3 = —0.7707
Let the true value of the root, x4, be (x3 + 63).
Let f(x3 4 83) = 0, then since x3 = —0.7707,
4(—0.7707 + 83)* — 6(—0.7707
+83)—7=0
4[(—0.7707)% + (2)(—0.7707) 83 + &3]
—6(—0.7707) — 683 — 7 =0

Neglecting terms containing products of §3
gives:

2.3759 — 6.1656 83 +4.6242 — 663 — 7T~ 0
—2.3759 — 4.6242 + 17

ie. 85 ~

1€ 93 —6.1656 — 6
—0.0001
~12.156

~ 4-0.00000822

Thus, x4, the fourth approximation to the root is
(—0.7707 + 0.00000822), i.e. x4 = —0.7707,
correct to 4 significant figures, and —0.771,
correct to 3 significant figures.

Since the values of the roots are the same on two
consecutive approximations, when stated to the
required degree of accuracy, then the negative
root of 4x2 — 6x — 7 =01is —0.771, correct to 3
significant figures.
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[Checking, using the quadratic formula:

L —(=O £ V=67 — AT
@)

= —0.771 and 2.27,

_ 6£12.166

8
correct to 3 significant figures]

[Note on accuracy and errors. Depending on the
accuracy of evaluating the f (x + §) terms, one or two
iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than
about 4 significant figures accuracy in this type of
calculation. If a small error is made in calculations,
the only likely effect is to increase the number of
iterations. ]

Problem 5. Determine the value of the
smallest positive root of the equation

3x3 — 10x2 4 4x + 7 =0, correct to 3 significant
figures, using an algebraic method of successive
approximations.

The functional notation method is used to find the
value of the first approximation.

F) =33 —10x> +4x + 7

£(0) =3(0)* — 100> + 4(0) +7 =7
F() =31 —10(1)* +4(1) +7=4
f(2) =327 - 102 +42)+7=—1

Following the above procedure:

First approximation

(a) Letthe first approximation be such that it divides
the interval 1 to 2 in the ratio of 4 to —1, i.e. let
x1 be 1.8.

Second approximation
(b) Let the true value of the root, x,, be (x1 + §1).
(c) Letf(x; + &1) = 0, then since x; = 1.8,

3(1.8 +68;)° — 10(1.8 + 81)°
+4(1.84+8)+7=0

Neglecting terms containing products of §; and
using the binomial series gives:

3[1.8% +3(1.8)% 81] — 10[1.8 + (2)(1.8) 8;]
+4(1.848)+7~0
3(5.832 4+ 9.7208;) — 32.4 — 366,
+724481+7~0
17.496 +29.16 8, — 32.4 — 36 6,
472448 +720

17496 +324 - 7.2 -7

31
29.16 — 36 + 4
704
~ —m ~ —0.2479
2.84

Thus x; &~ 1.8 — 0.2479 =1.5521

Third approximation
(d) Let the true value of the root, x3, be (x2 + 82).
(e) Letf(xp + §2) = 0, then since x, = 1.5521,
3(1.5521 4 82)° — 10(1.5521 + 8,)°
+4(1.5521 +62) +7=0

Neglecting terms containing products of §;
gives:

11.217 4 21.681 6, — 24.090 — 31.042 5,
+6.2084 445, +7~0

_ —11.217+24.090 — 6.2084 — 7

27 21.681 — 31.042 + 4
03354
T 5361
~ 0.06256

Thus x3 ~ 1.5521 + 0.06256 ~ 1.6147

(f) Values of x4 and x5 are found in a similar way.
Fx3 + 83) = 3(1.6147 + 83)° — 10(1.6147
+683)2 +4(1.6147 +683)+7=0

giving §3 &~ 0.003175 and x4 ~ 1.618, i.e. 1.62
correct to 3 significant figures

flxs +84) = 3(1.618 4 84)° — 10(1.618

+84)> +4(1.6184+684)+7=0

giving 84 ~ 0.0000417, and x5 ~ 1.62, correct
to 3 significant figures.
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Since x4 and xs are the same when expressed
to the required degree of accuracy, then the
required root is 1.62, correct to 3 significant
figures.

Now try the following exercise.

Exercise 40 Further problems on solving
equations by an algebraic method of succes-
sive approximations

Use an algebraic method of successive approx-
imation to solve the following equations to the
accuracy stated.

1. 3x24+5x—17= 0, correct to 3 significant

figures. [—3.36, 1.69]

2. x> —2x+ 14 =0, correct to 3 decimal places.
[—2.686]

3. x4 =33 +7x—55= 0, correct to 3 signifi-
cant figures. [—1.53, 1.68]

4. x* 4 12x3 — 13 =0, correct to 4 significant
figures. [—12.01, 1.000]

9.4 The Newton-Raphson method

The Newton-Raphson formula, often just referred to
as Newton’s method, may be stated as follows:

If r1 is the approximate value of a real root of the
equation f(x) = 0, then a closer approximation
to the root ry is given by:

f@ry)
S'(ry)

r=r1—

The advantages of Newton’s method over the alge-
braic method of successive approximations is that it
can be used for any type of mathematical equation
(i.e. ones containing trigonometric, exponential, log-
arithmic, hyperbolic and algebraic functions), and it
is usually easier to apply than the algebraic method.

Problem 6. Use Newton’s method to deter-
mine the positive root of the quadratic equa-
tion 5x% 4 11x — 17 =0, correct to 3 significant
figures.

Check the value of the root by using the quadratic
formula.

The functional notation method is used to determine
the first approximation to the root.
f(x)=5x>4+11x — 17
£(0) =5(0)* +11(0) — 17 = —17
F() =512 +11(1)—17 = —1
f2) =527 +112)— 17 =25
This shows that the value of the root is close to x = 1.

Let the first approximation to the root, rq, be 1.

Newton’s formula states that a closer approximation,
f(r)

Q)

f(x) =5x>+ 11x — 17,

n=r]

thus, f(r1)=5@r1)>+ 11(r) — 17

=5(1)? + 11(1) — 17 = —1
f(x) is the differential coefficient of f(x),
ie. f'(x) =10x+ 11.
Thus f'(r;)=10(r;) + 11

=10(1)+ 11 =21

By Newton’s formula, a better approximation to the
root is:

-1
=1——=1-(-0.048) = 1.05,
r 71 ( )
correct to 3 significant figures.

A still better approximation to the root, r3, is
given by:

[5(1.05)% + 11(1.05) — 17]
[10(1.05) 4 11]
0.0625
21.5
= 1.05 — 0.003 = 1.047,

=1.05 -

=1.05 —

i.e. 1.05, correct to 3 significant figures.

Since the values of r, and r3 are the same when
expressed to the required degree of accuracy, the
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required root is 1.05, correct to 3 significant figures.
Checking, using the quadratic equation formula,

—11 £+ 121 — 4(5)(—17)]

X =
()

_ —11£21.47

B 10
The positive root is 1.047, i.e. 1.05, correct to 3
significant figures (This root was determined in

Problem 1 using the bisection method; Newton’s
method is clearly quicker).

Problem 7. Taking the first approximation
as 2, determine the root of the equation
x% —3sinx 4+ 2In(x 4 1) =3.5, correct to 3 sig-
nificant figures, by using Newton’s method.

AGY)

. . NG
r1 is a first approximation to the root and r; is a better
approximation to the root.

Newton’s formula states that ry =r; — where

Since f(x) =x* —3sinx+2In(x + 1) — 3.5
f(r1) =f(2)=2>—3sin2+2In3 — 3.5,
where sin2 means the sine of 2 radians
=4-27279+2.1972 - 3.5
= —0.0307

') =2x—-3
f(x) X cosx—i-x_i_1

2
f(r) =f'(2) =2(2) — 3cos2 + 3
— 4 4 1.2484 + 0.6667

= 59151
Hence, rn =r — &
S'(r1)
—0.0307
5.9151

= 2.005 or 2.01, correct to
3 significant figures.

A still better approximation to the root, r3, is
given by:
_ )

1'(r2)

r3 =rnr

[(2.005)? — 3'5in 2.005 + 21n 3.005 — 3.5]

= 2.005 — -
2(2.005) — 3¢0s2.005 + ————
[( )~ 3cos +2.005+1}
—0.00104
= 2.005 — 20099 5 005 +0.000175
5.9376

i.e. r3 = 2.01, correct to 3 significant figures.

Since the values of r, and r3 are the same when
expressed to the required degree of accuracy, then the
required root is 2.01, correct to 3 significant figures.

Problem 8. Use Newton’s method to find the
positive root of:

(x+4)7° —el9% 4 5005)3—C =9,

correct to 3 significant figures.

The functional notational method is used to deter-
mine the approximate value of the root.

F0) = (x +4)3 — ! 92 —f—SCos;—C —9
£(0) =044 —e®+5c0s0—9 =59

1
f(l):53—el'92+500s§—9%114

f2)=6 —e% 4+ 5cos§ -9~ 164

fBR) =7 —e>"4+5¢c0s1 -9~ 19

fd) =83 —el 08 4 5cos%L — 9~ —1660
Fron:) these gesults, let a first approximation to the
root be r; =3.

Newton’s formula states that a better approximation
to the root,

ry = ri — f(rn)
VEGY.
Fr) =f3) =7 —e>7° 4+ 5c0s1 —9
=19.35
F(x) =3(x +4)> —1.92¢!9% — = sin;—c

fr1) =£'(3) = 3(7)* — 1.92>76 — g

= —463.7



SOLVING EQUATIONS BY ITERATIVE METHODS 85

Th 3 19.35 340.042
s, m=3— = .
wen —463.7
= 3.042 = 3.04,
correct to 3 significant figure
3.042
Similarly, r3 =3.042 — M
f'(3.042)
—1.14
_ 3042 21140
(—513.1)

= 3.042 — 0.0022 = 3.0398 = 3.04,
correct to 3 significant figure.

Since rp and r3 are the same when expressed to the
required degree of accuracy, then the required root
is 3.04, correct to 3 significant figures.

Now try the following exercise.

Exercise 41 Further problems on Newton’s
method

In Problems 1 to 7, use Newton’s method to
solve the equations given to the accuracy stated.

1. x2—=2x — 13=0, correct to 3 decimal
places. [—2.742, 4.742]

2. 3x3 — 10x = 14, correct to 4 significant
figures. [2.313]

3. x* = 3x3 +7x =12, correct to 3 decimal
places. [—1.721, 2.648]

4. 3x* =43 +7x—12= 0, correct to 3 deci-
mal places. [—1.386, 1.491]

10.

11.

. 3Inx +4x =5, correct to 3 decimal places.

. x> =5cos2x, correct to 3 significant fig-
—26 0 ..
. 300e " + 3 =6, correct to 3 significant

. Solve the equations in Problems 1 to 5,

. A Fourier analysis of the instantaneous

[1.147]

[—1.693, —0.846, 0.744]

ures.

figures. [2.05]

Exercise 39, page 80 and Problems 1 to
4, Exercise 40, page 83 using Newton’s
method.

value of a waveform can be represented by:
—(t—i—n)—i— i t+1 in 3¢
y= 2 sin g sin

Use Newton’s method to determine the

value of ¢ near to 0.04, correct to 4 decimal

places, when the amplitude, y, is 0.880.
[0.0399]

A damped oscillation of a system is given
by the equation:

y=—7.4¢"" sin 31.

Determine the value of ¢ near to 4.2, correct
to 3 significant figures, when the magnitude
y of the oscillation is zero. [4.19]

The critical speeds of oscillation, A, of a
loaded beam are given by the equation:

A3 —3.2500% + A —0.063 =0

Determine the value of A which is approx-
imately equal to 3.0 by Newton’s method,
correct to 4 decimal places. [2.9143]
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10
Computer numbering systems

10.1 Binary numbers 0.1011 = 1x27 4+ 0x272 F1x273 1 x27*
1

The system of numbers in everyday use is the denary =1x 3 +0x 32 +1x > +1x >

or decimal system of numbers, using the digits

0 to 9. It has ten different digits (0, 1, 2, 3, 4, 1 n 1 n 1

5, 6, 7, 8 and 9) and is said to have a radix or T2 8 16

base of 10. _

The binary system of numbers has a radix of 2 = 0:5+0.12540.0625
and uses only the digits 0 and 1. = 0.687510

Problem 3. Convert 101.0101, to a denary
10.2 Conversion of binary to denary number.

The denary number 234.5 is equivalent to 1010101y = 1 x 22+ 0x 2! +1x2° +0x 2!

2x 102 +3 x 10" +4 x10° +5 x 107! T Ix2240x2 341 x2*

i.e. is the sum of terms comprising: (a digit) multi- =44+04+1+4+040.25+ 0+ 0.0625
plied by (the base raised to some power). — 53125

In the binary system of numbers, the base is 2, so - 10
1101.1 is equivalent to:

Now try the following exercise.
Ix2+1x2240x2"+1x2°4+1x27!

Exercise 42 Further problems on conver-

Thus the denary number equivalent to the binary sion of binary to denary numbers

number 1101.1is 8 +4 +0+ 1+ 4, thatis 13.5i.e.
1101.1; =13.5;9, the suffixes 2 and 10 denoting In Problems 1 to 4, convert the binary numbers

binary and denary systems of numbers respectively. given to denary numbers.
1. (a) 110 (b) 1011 (c) 1110 (d) 1001
Problem 1. Convert 11011, to a denary [(a) 6109 (b) 111¢ (c) 1410 (d) 910]
number. 2. (a) 10101 (b) 11001 (c) 101101 (d) 110011
[(@) 2119 (b) 2510 (c) 4510 (d) 5110]
From above: 11011, =1 x 24 +1x 23 +0 x 22 3. (a) 0.1101 (b) 0.11001 (c) 0.00111
| . (d) 0.01011
t1Ix2+1x2 (2)0.81250  (b)0.781250
=164+84+0+2+1 () 0.2187519 (d) 0.3437519
=271 4. (2) 11010.11 (b) 10111.011 (c) 110101.0111

(d) 11010101.10111
(a) 26.75190  (b) 23.37519
(c) 53.437519 (d)213.7187519

Problem 2. Convert 0.1011, to a denary
fraction.




COMPUTER NUMBERING SYSTEMS 87

10.3 Conversion of denary to binary

An integer denary number can be converted to a cor-
responding binary number by repeatedly dividing by
2 and noting the remainder at each stage, as shown
below for 391.

2)39 Remainder
2119
219
214
212

211
0

—_—_0 O = = =

S

1 0 01 1 1

(most significant bit) (least significant bit)
The result is obtained by writing the top digit of
the remainder as the least significant bit, (a bit is a
binary digit and the least significant bit is the one
on the right). The bottom bit of the remainder is the
most significant bit, i.e. the bit on the left.

Thus 3919 = 100111,

The fractional part of a denary number can be con-
verted to a binary number by repeatedly multiplying
by 2, as shown below for the fraction 0.625.

0.625x2 =

.............

.............

(most significant bit) .1 0 1 (least significant bit)

For fractions, the most significant bit of the result is
the top bit obtained from the integer part of multi-
plication by 2. The least significant bit of the result
is the bottom bit obtained from the integer part of
multiplication by 2.

Thus 0.625{p = 0.101,

Problem 4. Convert 471 to a binary number.

From above, repeatedly dividing by 2 and noting the
remainder gives:

2 )47 Remainder
2123 1
2 )11 1
215
212
211

0

Thus 4719 =101111,
Problem 5. Convert 0.406251p to a binary
number.

From above, repeatedly multiplying by 2 gives:

0.40625 x 2 =

.....

1
ire. 0.4062519 =0.01101,

Problem 6. Convert 58.31251p to a binary
number.

The integer part is repeatedly divided by 2, giving:
2158 Remainder
2)29 0
2)14 1
2)7 0
2)3 1
2) 1 1
0 1

111010

The fractional part is repeatedly multiplied by 2
giving:

03125x2= 0.625
0.625 x2= 1.25
025 x2= 0.5
05 x2= 17 1.0

.0 1 0 1

Thus 58.3125;9 =111010.0101,
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Now try the following exercise.

Exercise 43 Further problems on conver-
sion of denary to binary numbers

In Problems 1 to 4, convert the denary numbers
given to binary numbers.

1. (@) 5 (b) 15 (c) 19 (d) 29
(@) 101, (b) 1111, 7
|:(c) 100115 (d) 11101, |

2. (a) 31 (b) 42 (c) 57 (d) 63
(@) 11111,  (b) 101010,
[(c) 111001, (d) 111111,

3. (a) 0.25 (b) 0.21875 (c) 0.28125
(d) 0.59375

|:(a) 0.01,

(b) 0.00111,
(c) 0.01001,

(d) 0.10011,

4. (a) 47.40625 (b) 30.8125 (c) 53.90625
(d) 61.65625

() 101111.01101,
(b) 11110.1101,

(c) 110101.11101,
(d) 111101.10101,

10.4 Conversion of denary to binary
via octal

For denary integers containing several digits, repeat-
edly dividing by 2 can be a lengthy process. In this
case, it is usually easier to convert a denary number
to a binary number via the octal system of numbers.
This system has a radix of 8, using the digits 0, 1, 2,
3,4,5,6 and 7. The denary number equivalent to the
octal number 43173 is:

4x8+3x8 +1x8 +7x8°
ie. 4x5124+3x64+1x8+7x1o0r22551)
An integer denary number can be converted to a cor-
responding octal number by repeatedly dividing by

8 and noting the remainder at each stage, as shown
below for 493.

8)493 Remainder
8) 61 5
8) 7 5
0 7 —¢
7 5 5
Thus 49319 =755g

The fractional part of a denary number can be con-
verted to an octal number by repeatedly multiplying
by 8, as shown below for the fraction 0.43751¢

0.4375x8 = 3.

[
-

For fractions, the most significant bit is the top inte-
ger obtained by multiplication of the denary fraction
by 8, thus,

0.437510 = 0.34g

The natural binary code for digits O to 7 is shown
in Table 10.1, and an octal number can be converted
to a binary number by writing down the three bits
corresponding to the octal digit.

Table 10.1
Octal digit Natural
binary number
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Thus 4373 = 100011 111,

and 26.353 =010 110.011 101,

The ‘0’ on the extreme left does not signify anything,
thus 26.355 =10 110.011 101,

Conversion of denary to binary via octal is demon-
strated in the following worked problems.

Problem 7. Convert 3714¢ to a binary num-
ber, via octal.
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Dividing repeatedly by 8, and noting the remainder
gives:

813714 Remainder

8) 464 2
8) 58

0
8) 7 2
0 7—$

7 2 0 2

From Table 10.1, 7202g = 111 010 000 0102
ie. 371410 =111 010 000 010,

Problem 8. Convert 0.593751p to a binary
number, via octal.

Multiplying repeatedly by 8, and noting the integer
values, gives:

0.59375 x 8 = 4.75
0.75 X 8= r 6.00
.4 6

Thus 0.59375190 = 0.463
From Table 10.1, 0.46g = 0.100 110,
ie. 0.5937510 =0.100 112

Problem 9. Convert 5613.90625¢ to a binary
number, via octal.

The integer part is repeatedly divided by 8, noting
the remainder, giving:

815613 Remainder
8) 701 5
8) 87
8) 10
8) 1

0

— N3 W

—

1 2 7 5 5

This octal number is converted to a binary number,
(see Table 10.1).

127555 = 001 010 111 101 101,
ie. 561310 =1010111101 101,

The fractional part is repeatedly multiplied by 8, and
noting the integer part, giving:

0.90625 x 8 = 7.25

0.25 X 8= 2.00
[ v

a2

This octal fraction is converted to a binary number,
(see Table 10.1).

0.72¢ = 0.111 010,
ie. 0.9062519 = 0.111 01,
Thus, 5613.90625;90 =1010111101101.11101;

Problem 10. Convert 11 110011.100 01, to a
denary number via octal.

Grouping the binary number in three’s from the
binary point gives: 011 110 011.100 010,

Using Table 10.1 to convert this binary number to
an octal number gives 363.42g and 363.42g

=3x8 +6x8 +3x8 +4x814+2x872
=192 + 48+ 3+ 0.5+ 0.03125
= 243.5312519

Now try the following exercise.

Exercise 44 Further problems on conver-
sion between denary and binary numbers via
octal

In Problems 1 to 3, convert the denary numbers
given to binary numbers, via octal.
1. (a) 343 (b) 572 (c) 1265

(a) 101010111, (b) 1000111100, |
(c) 10011110001,

2. (a) 0.46875 (b) 0.6875 (c) 0.71875

(a) 0.011115 (b) 0.10115 |
(c) 0.10111,

3. (a) 247.09375 (b) 514.4375 (c) 1716.78125

(a) 11110111.00011,
(b) 1000000010.0111,

(c) 11010110100.11001,
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4. Convert the binary numbers given to denary
numbers via octal.

(2) 111.011 1 (b) 101 001.01
(¢)1110011 011 010.001 1

(a) 7.437519 (b)41.2519
(c) 7386.187519

10.5 Hexadecimal numbers

The complexity of computers requires higher order
numbering systems such as octal (base 8) and hexa-
decimal (base 16) which are merely extensions of the
binary system. A hexadecimal numbering system
has a radix of 16 and uses the following 16 distinct
digits:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,Eand F

‘A’ corresponds to 10 in the denary system, B to 11,
Cto 12, and so on.

To convert from hexadecimal to decimal:

For example

1A16=1x 16" + A x 16°
=1x16"+10x 1
=16+10 =126
ie. 1A16 = 2619
Similarly, 2E6 =2 x 16' +E x 16°
=2x16'+ 14 x 16°
=32+ 14 = 4619
1BFi6=1x 162 +B x 16! + F x 16"
=1x16>+11 x 16" +15 x 16°
=256 4 176 4 15 = 44719

and

Table 10.2 compares decimal, binary, octal
and hexadecimal numbers and shows, for example,
that 2310 =10111, =273 =176

Table 10.2
Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3
4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

(@) TAlc=7x16' + Ax16°=7x 16+ 10 x 1
=1124+10=122

Thus 7A16 =12219

(b) 3F16=3x 16" +Fx 16" =3 x 16 +15 x 1
=48+ 15 =63

Thus 3F16 =631

Problem 12. Convert the following hexadec-
imal numbers into their decimal equivalents:
(@) C916 (b) BD16

Problem 11. Convert the following hexadec-
imal numbers into their decimal equivalents:
(@) 7As6 (b) 3F16

(@) C956=Cx16' +9x16°=12x 16 +9 x 1
=192 49 =201

Thus C916 =20119
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(b) BDjg =B x 16! +D x 16°
= 11x16+13x1=176+13 = 189
Thus BDyg = 18919

Problem 13.
number.

Convert 1A4E ;¢ into a denary

1A4E;s = 1 x 16+ A x 162 +4 x 16' + E x 16°
=1x16>+10 x 16> +4 x 16!
+ 14 x 16°
=1x4096+ 10 x 256 +4 x 16 + 14 x 1
= 4096 4 2560 + 64 4 14 = 6734

Thus 1A4E14 = 673419

To convert from decimal to hexadecimal

This is achieved by repeatedly dividing by 16 and
noting the remainder at each stage, as shown below
for 2610.

16 )26 Remainder

16! 1
0 15116—l

most significant bit»1 A< least significant bit

10=A

Hence 2610 = 1A16

Similarly, for 4479

16 Y447 Remainder

16 ) 27 15 = Fy

16) 1 11 = By,
0 1

.

Thus 44710 = 1BF16

Problem 14. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 3710 (b) 10819

(@ 16 )37

16) 2 5=5,

Remainder

2 5
most significant bit A L least significant bit

Hence 37190 =2516

(b) 16)108 Remainder
16) 6 12=Cyg

0 6:616—i

6 C

Hence 10819 =6Cyg

Problem 15. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 16210 (b) 23910

(a) 16 )162 Remainder
16 ) 10 2=24
0 10=A6 —¢
A 2
Hence 16210 =A216
(b) 16)239 Remainder
16 ) 14 15 =Fyq
0 14=E¢ _i
E F

Hence 23919 =EFi¢

To convert from binary to hexadecimal:

The binary bits are arranged in groups of four, start-
ing from right to left, and a hexadecimal symbol
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is assigned to each group. For example, the binary
number 1110011110101001 is initially grouped in

1110 0111 1010 1001 )
fours as: —— —— T ~—— and a hexadeci-

7
mal symbol assigned to each group as above from
Table 10.2.

Hence 1110011110101001; =E7A9¢¢

To convert from hexadecimal to binary:

The above procedure is reversed, thus, for example,

6CF316 =01101100 1111 0011
from Table 10.2

ie. 6CF316=110110011110011,

Problem 16. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 11010110, (b) 1100111,

(a) Grouping bits in fours from the right gives:

1101 0110 L .
F 7 and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 110101102 =D616

(b) Grouping bits in fours from the right gives:

0110 0111 Lo .
? ——and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 1100111 =676

Problem 17. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 11001111, (b) 110011110,

(a) Grouping bits in fours from the right gives:
1100 1111
———

C
to each group gives as above from Table 10.2.

Thus, 11001111, = CF 5

(b) Grouping bits in fours from the right gives:
0001 1001 1110
———— N —

and assigning hexadecimal symbols

and assigning hexadecimal

symbols to each group gives as above from
Table 10.2.

Thus, 110011110, = 19E4¢

Problem 18. Convert the following hexadec-
imal numbers into their binary equivalents:
(a) 3F16 (b) AG16

(a) Spacing out hexadecimal digits gives:
3 F

&)TT T]TT and converting each into binary
gives as above from Table 10.2.

Thus, 3F16 = 111111,

(b) Spacing out hexadecimal digits gives:
A 6

’1'0 10 /01*\1 0 and converting each into binary
gives as above from Table 10.2.

Thus, A616 = 10100110,

Problem 19. Convert the following hexadec-
imal numbers into their binary equivalents:
(a) TBi6 (b) 17D16

(a) Spacing out hexadecimal digits gives:
7 B

—~— = : . .
0111 ToI1 and converting each into binary

gives as above from Table 10.2.

Thus, 7B1¢ = 1111011,

(b) Spacing out hexadecimal

1 7 D
I - A
0001 0111 1101

digits  gives:

and converting each into
binary gives as above from Table 10.2.

Thus, 17D16 =101111101;,

Now try the following exercise.

Exercise 45 Further problems on hexadec-
imal numbers

In Problems 1 to 4, convert the given hexa-
decimal numbers into their decimal equivalents.

1. E7i6 [23110] [4410]
3. 9846 [15210] [75310]

In Problems 5 to 8, convert the given decimal
numbers into their hexadecimal equivalents.

2. 2Ci6
4. 2Fly6
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5. 5410 [3616] 6. 20010 [C8i6l
7. 9119 [5Big] 8. 23819 [EEis]

In Problems 9 to 12, convert the given binary
numbers into their hexadecimal equivalents.

9. 11010111, [D716]
10. 11101010, [EAj6]
11. 10001011, [8Bi6]

12. 10100101, [ASi6]

In Problems 13 to 16, convert the given hexa-
decimal numbers into their binary equivalents.

13. 3716 [1101115]
14. EDyg [111011015]
15. 9F}¢ [100111115]
16. A21 56 [1010001000015]
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11

Boolean algebra and logic circuits

11.1 Boolean algebra and switching
circuits

A two-state device is one whose basic elements can
only have one of two conditions. Thus, two-way
switches, which can either be on or off, and the binary
numbering system, having the digits O and 1 only,
are two-state devices. In Boolean algebra, if A rep-
resents one state, then A, called ‘not-A’, represents
the second state.

The or-function

In Boolean algebra, the or-function for two elements
A and B is written as A + B, and is defined as ‘A, or
B, or both A and B’. The equivalent electrical circuit
for a two-input or-function is given by two switches
connected in parallel. With reference to Fig. 11.1(a),
the lamp will be on when A is on, when B is on,
or when both A and B are on. In the table shown in
Fig. 11.1(b), all the possible switch combinations are
shown in columns 1 and 2, in which a O represents a
switch being off and a 1 represents the switch being
on, these columns being called the inputs. Column 3
is called the output and a O represents the lamp being
off and a 1 represents the lamp being on. Such a table
is called a truth table.

1 0 2 3
Input Output
{switches) ({lamp)

A B Z=A+E

0 V] V]

0 1 1

1 V] 1

1 1 1

(a) Switching circuit for or - function (b) Truth table for or - function

Figure 11.1

The and-function

In Boolean algebra, the and-function for two ele-
ments A and B is written as A - B and is defined as

‘both A and B’. The equivalent electrical circuit for
a two-input and-function is given by two switches
connected in series. With reference to Fig. 11.2(a)
the lamp will be on only when both A and B are
on. The truth table for a two-input and-function is
shown in Fig. 11.2(b).

Input Output
(switches) (lamp)

0 0 A B Z=A.B
A B 0 0 0
0 1 0
1 (1] 1]
N
II

1 1 1

(a) Switching circuit for and - function (b) Truth table for and - function

Figure 11.2

The not-function

In Boolean algebra, the not-function for element A
is written as A, and is defined as ‘the opposite to A’.
Thus if A means switch A is on, A means that switch

A is off. The truth table for the not-function is shown
in Table 11.1

Table 11.1
Input | Output
A Z=A
0 1
1 0

In the above, the Boolean expressions, equiv-
alent switching circuits and truth tables for the
three functions used in Boolean algebra are given
for a two-input system. A system may have more
than two inputs and the Boolean expression for a
three-input or-function having elements A, B and C
is A+ B+ C. Similarly, a three-input and-function
is written as A-B-C. The equivalent electrical
circuits and truth tables for three-input or and
and-functions are shown in Figs 11.3(a) and (b)
respectively.
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Output
Input Output Input
b e e oo
c
Input Qutput Input Qutput
B C |z=A+B+( A B C Z=A.B.C
0 0 0 0 0 0 0 0
0 ¢ 1 1 0 0 1 0
01 0 1 0 1 0 0
0 1 1 1 0 1 1 0
1.0 o 1 1.0 0 0
1 0 1 1 1.0 1 0
110 1 110 0
11 1 1 111 1

(@) The or - function
electrical circuit and

(b) The and - function
electrical circuit and

truth table truth table
Figure 11.3
1 2] 3 4 5
A B | AB AB Z=AB + A.B
0 0 1 1
0o 1 0 o0 0
1 0 0 0 0
1 1 1 0 1
(a) Truth table for Z=A.B+A.B
—e A 0—e B @
|nput Output Z
o —>0
A e—e B @
(b) Switching circuit for Z=A.B+A.B
Figure 11.4

To achieve a given output, it is often neces-
sary to use combinations of switches connected
both in series and in parallel. If the output from a
switching circuit is given by the Boolean expression

Z=A-B+A-B, the truth table is as shown in

Fig. 11.4(a). In this table, columns 1 and 2 give all
the possible combinations of A and B. Column 3 cor-
responds to A - B and column 4 toA-B,i.e.al output
is obtained when A =0 and when B =0. Column 5
is the or-function applied to columns 3 and 4 giv-
ing an outputof Z=A - B+ A - B. The corresponding
switching circuit is shown in Fig. 11.4(b) in which
A and B are connected in series to give A - B,A and
B are connected in series to give A - B, and A - B and
A - B are connected in parallel to give A-B+A - B.
The circuit symbols used are such that A means the
switch is on when A is 1, A means the switch is on
when A is 0, and so on.

Problem 1. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.5.

1 B e———e A 2
5 e 6 7 e
o—e 4 B 0—03
Input Qutput
3 B 4

Figure 11.5

The switches between 1 and 2 in Fig. 11.5 are in
series and have a Boolean expression of B - A. The
parallel circuit 1 to 2 and 3 to 4 have a Boolean
expression of (B - A 4+ B). The parallel circuit can be
treated as a single switching unit, giving the equiv-
alent of switches 5 to 6, 6 to 7 and 7 to 8 in series.
Thus the output is given by:

Z=A-(B-A+B)-B

The truth table is as shown in Table 11.2. Columns 1
and 2 give all the possible combinations of switches
A and B. Column 3 is the and-function applied to
columns 1 and 2, giving B - A. Column 4 is B, i.e., the
opposite to column 2. Column 5 is the or-function
applied to columns 3 and 4. Column 6 is A, i.e. the
opposite to column 1. The output is column 7 and is
obtained by applying the and-function to columns
4,5 and 6.

Table 11.2

112] 3 |4 5 6 7

A|B |B-A|B|B-A+B |A |Z=A-(B-A+B)-B
olof| o |1 1 1 1

ol|1] o0 |0 0 1 0

11o0] 0 |1 1 0 0

1 (1|1 |0 1 0 0
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Problem 2. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.6.

9 8
Input o—e B &——9 1

Figure 11.6

The parallel circuit 1 to 2 and 3 to 4 gives (A + B) and
this is equivalent to a single switching unit between
7 and 2. The parallel circuit 5 to 6 and 7 to 2 gives
C+ (A + B) and this is equivalent to a single switch-
ing unit between 8 and 2. The series circuit 9 to 8
and 8 to 2 gives the output

Z=B-[C+(A+B)]

The truth table is shown in Table 11.3. Columns 1,
2 and 3 give all the possible combinations of A, B
and C. Column 4 is B and is the opposite to column
2. Column 5 is the or-function applied to columns 1
and 4, giving (A + B). Column 6 is the or-function
applied to columns 3 and 5 giving C + (A + B). The
output is given in column 7 and is obtained by apply-
ing the and-function to columns 2 and 6, giving
Z=B-[C+(A+B)].

Table 11.3

12134 5 6 7
A|B|C|B|A+B|C+(A+B)|Z=B-[C+(A+B)]
ololo|1 1 1 0
olof1]1 1 1 0
ol1]lo|o]| 0O 0 0
ol1|1]o0]| O 1 1
1loflo|1 1 1 0
1lof1]1 1 1 0
1l1]0]0 1 1 1
1l1|1]0 1 1 1

Problem 3. Construct a switching circuit to
meet the requirements of the Boolean expres-
sion: Z=A-C+A-B+A-B-C Construct the
truth table for this circuit.

The three terms joined by or-functions, (+4), indicate

three parallel branches,
having: branch 1 A and C in series

branch2 A and B in series

and branch3 A and B and C in series
—a | ——8 [

Iant DuIApuI
————0 A 0—e 5 +V—9
—=8 4 &—ae 5 0—m ¢ »—

Figure 11.7

Hence the required switching circuit is as shown in
Fig. 11.7. The corresponding truth table is shown in
Table 11.4.

Table 11.4
213 5 |ef 7 8 9
A|B|C|C|A-C|A|A-B|A-B-C|Z=A-C+A-B
+A-B-C
ojlojo]1 o |[1] 0 0 0
ojlo|1]o0o| O [1] O 0 0
o[1]0]1 0 |1 1 1 1
of1]1]0| 0 |1 1 0 1
1{0]0]1 1 o] o 0 1
1{o|j1|0| 0o |O]| O 0 0
1{1]0]1 1 o] o 0 1
1|{1|1]l0| 0 |O]| O 0 0

Column 4 is C, i.e. the opposite to column 3

Column 5 is A - C, obtained by applying the and-
function to columns 1 and 4

Column 6 is A, the opposite to column 1

Column 7 is A - B, obtained by applying the and-
function to columns 2 and 6

Column 8 is A - B - C, obtained by applying the
and-function to columns 4 and 7

Column 9 is the output, obtained by applying the
or-function to columns 5, 7 and 8
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Problem4. Derive the Boolean expression and
construct the switching circuit for the truth table
given in Table 11.5.
Table 11.5
A| B| C| Z
1 0 0 0 1
21 0 0 1 0
31 0 1 0 1
41 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0

Examination of the truth table shown in Table 11.5
shows that there is a 1 output in the Z-column in
rows 1, 3,4 and 6. Thus, the Boolean expression and
switching circuit should be such that a 1 output is
obtained for row 1 or row 3 or row 4 or row 6. In row
1,Ais O and B is 0 and C is 0 and this corresponds
to the Boolean expression A-B - C. Inrow 3, A is 0
and Bis 1 and C is 0, i.e. the Boolean expression
in A-B-C. Similarly in rows 4 and 6, the Boolean
expressions are A-B-C and A -B- C respectively.
Hence the Boolean expression is:

Z=Z-§-6+Z-B-€
+A-B-C+A-B-C

The corresponding switching circuit is shown in
Fig. 11.8. The four terms are joined by or-functions,
(+), and are represented by four parallel circuits.
Each term has three elements joined by an and-
function, and is represented by three elements
connected in series.

Input Qutput

L— e A 0—0 5 0—e ¢ o—

Figure 11.8

Now try the following exercise.

Exercise 46 Further problems on Boolean
algebra and switching circuits

In Problems 1 to 4, determine the Boolean
expressions and construct truth tables for the
switching circuits given.

1. The circuit shown in Fig. 11.9
C-(A-B+A-B),
see Table 11.6, col. 4
—eo A o—e¢ B o—

Output
—o

Input
o—=o C o—¢

—9 A &—e B o—

Figure 11.9
Table 11.6
1213 4 5
A|B|C|C-(A-B+A-B)|C-(A-B+A)
0|00 0 0
0/0]1 0 1
0o|1]0 0 0
011 1 1
1|/o]o 0 0
1101 0 1
110 0 0
1|11 1 0

6 _ T
A-B(B-C+B-C C-[B-C-A_

+A-B) +A-(B+0)]

0 0

0 0

0 0

0 1

0 0

0 0

1 0

0 1

2. The circuit shown in Fig. 11.10

C-(A-B+A);
see Table 11.6, col. 5
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—e A 0—8 5 o—

Input Output
o—=o C o—9¢ —o

]
b
p

Figure 11.10
3. The circuit shown in Fig. 11.11

A-B-(B-C+B-C+A-B),
see Table 11.6, col. 6

Be—e C

Input Output
o—=o A = B e—o

Figure 11.11

4. The circuit shown in Fig. 11.12

C-[B-C-A+A-(B+C),
see Table 11.6, col. 7

BEe—e Co—e A
lnput ‘ Output

Figure 11.12

In Problems 5 to 7, construct switching cir-
cuits to meet the requirements of the Boolean
expressions given.

5.A-C+A-B-C+A-B
[See Fig. 11.13]

——a i — [ ————

Input Output
—0
—e A &—e 5 e C o9

—e A *¥—8 5 +V——

Figure 11.13

6. A-B-C-(A+B+0C)

[See Fig. 11.14]

A

Input Output
o—=e 4 o—e Bo—ae B
C

Figure 11.14

7.A-(A-B-C+B-(A+C))
[See Fig. 11.15]
Ae—e B e—s C

Input Output

Figure 11.15

In Problems 8 to 10, derive the Boolean expres-
sions and construct the switching circuits for the
truth table stated.

8. Table 11.7, column 4
[A-B-C+A-B-C;See Fig. 11.16]

Table 11.7
1 2 3 4 5 6
A B C
0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 1 1 0 0 0
Ae—e 5 o—a 0 +—
Inpulc——E —o Output
A o—e B ¢—e C o—

Figure 11.16

9. Table 11.7, column 5

A-B-C+A-B-C+A-B-C;
see Fig. 11.17
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Ae—e Be—e C

Input Output

A e—es B o—a C

Figure 11.17

10. Table 11.7, column 6

A-B-C+A-B-C+A-B-C
+A-B-C;seeFig. 11.18

—o Ao—a B o—s Co—y
Input o——4 #——o Qutput

b—a A o—=e 5 o—e C o—4

lL.—e A o—e B +—o C o—

Figure 11.18

11.2 Simplifying Boolean expressions

A Boolean expression may be used to describe a
complex switching circuit or logic system. If the
Boolean expression can be simplified, then the num-
ber of switches or logic elements can be reduced
resulting in a saving in cost. Three principal ways of
simplifying Boolean expressions are:

(a) by using the laws and rules of Boolean algebra
(see Section 11.3),

(b) by applying de Morgan’s laws (see Section 11.4),
and

(c) by using Karnaugh maps (see Section 11.5).

11.3 Laws and rules of Boolean
algebra

A summary of the principal laws and rules of
Boolean algebra are given in Table 11.8. The way in
which these laws and rules may be used to simplify
Boolean expressions is shown in Problems 5 to 10.

Table 11.8
Ref.| Name Rule or law
1 | Commutative laws |A+B=B+A
2 A-B=B-A
3 | Associative laws A+B)+C=A+B+0)
4 (A-B)-C=A-(B-C)
5 | Distributive laws |A-(B4+C)=A-B+A-C
6 A+B-0C)
=(A+B)-(A+0)
7 | Sum rules A+0=A
8 A+1=1
9 A+A=A
10 A+A=1
11 | Product A-0=0
12 | rules A-1=A
14 A-A=0
15 | Absorption A+A-B=A
16 | rules A-(A+B)=A
17 A+A-B=A+B
Problem 5. Simplify the Boolean expression:
P-OQ+P-Q+P-Q

With reference to Table 11.8: Reference
P.-Q+P-Q+P-0 _
—P-@+Q+P-0 5
=P-1+P-Q 10
=P+P-Q 12
Problem 6.  Simplify
(P+P-0)-(Q+0Q-P)
With reference to Table 11.8: Reference
(P+P-0)-(Q+0-P)
=P (Q+0Q-P)_
+P-0-(Q+0-P) 5
=P-Q+P-Q-P+P-Q0-0
+P-Q0-Q-P 5
=P-Q+P-0+P-Q
+P-Q-Q-P 13
=P.-Q+P-Q+P-Q+0 14
=P-0Q+P-Q+P-Q 7
=P-(Q+D)+P -0 5
=P-1+P-Q 10
=P+P.Q 12
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Problem 7.
F-GH+F-G-H+F-G-H

Simplify

With reference to Table 11.8:

F-G-H+F-G-H+F-G-H
=F-G-(H+H)+F-G-H
=F-G-1+F-G-H 10
=F.G+F-G-H 12
=G-(F+F-H)

Reference

Problem &.
F-G-H+F-G-H+F-G-H+F-G-H

Simplify

With reference to Table 11.8: Reference

F-G-H+F-G-H+F G-H+F-G-H
=G-H-F+F)+G-H-(F+F) 5
=G-H-1+G-H-1 10
=G-H+G-H 12
=H-(G+0G) 5
=H - 1=H 10 and 12

Problem 9. Simplify
A-C+A-(B+C)+A-B-(C+B)

using the rules of Boolean algebra.

With reference to Table 11.8: Reference
A-C+A-(B+C)+A-B-(C+B)
=A-C+A-B+A-C+A-B-C
+A-B-B 5
=A-C+A-B+A-C+A-B-C
+A-0 14
=A-C+A-B+A-C+A-B-C 11
=A-(C+B-C)+A-B+A-C 5
=A-(C+B)+A-B+A-C 17
=A-C+A-B+A-B+A-C 5
=A-C+B-(A+A)+A-C 5
=A-C+B-1+A-C 10
=A-C+B+A-C 12

Problem 10. Simplify the expression
P-Q-R+P-Q-(P+R)+Q-R-(Q+P),

using the rules of Boolean algebra.

With reference to Table 11.8: Reference

P-Q-R+P-Q-(P+R)+Q-R-(Q+P)
=P-Q-R+P-Q-P+P-Q-R
+Q-R-Q+Q-R-P 5
=P-Q-R+0-Q+P-Q-R+0-R

(Q

+P-Q-R 14
=P-Q-R+P-Q-R+P-Q-R 7 and 11
=P-Q-R+P-Q0-R 9
=P-R-(0+0) 5
=P-R-1 10
=P-R 12

Now try the following exercise.

Exercise 47 Further problems on the laws
and the rules of Boolean algebra

Use the laws and rules of Boolean algebra
given in Table 11.8 to simplify the following
expressions:

1. P-0+P-Q [P]
2.P-Q+P-Q+P-0Q [P+P-Q]
3. F-G+F-G+G-(F+F) [G]
4. F-G+F-(G+G) +F-G [F]
5. (P+P-0)-(Q+0-P) [P- Q]
6. F-G-H+F-G-H+F-G-H

[H-(F+FG]

7. F-G-H+F-G-H+F-G-H
[F-G-H+G-H]
‘R

[O-R+P-Q-R

o
il
QI
=

+P-Q-R+P-Q

—

+F-G-H+F-G-H+F-

\O
]
Ql
|
@
B

10. F-G-H+F-G-H+F-G-H+F-G-H
[F-H+G-H]

(P-Q+P-Q)+R-(P-Q+P-Q)
[P-R+P-R]

(P-Q+P-0+P-Q)+P-(Q-R+0Q-R)
[P+0Q-R]

11. R-

=|

12.
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11.4 De Morgan’s laws

De Morgan’s laws may be used to simplify not-
functions having two or more elements. The laws
state that:

A+B=A-B | and | A-B=A+B

and may be verified by using a truth table (see
Problem 11). The application of de Morgan’s laws
in simplifying Boolean expressions is shown in
Problems 12 and 13.

Problem 11. Verify that A+ B=A-B

A Boolean expression may be verified by using a
truth table. In Table 11.9, columns 1 and 2 give all
the possible arrangements of the inputs A and B. Col-
umn 3 is the or-function applied to columns 1 and 2
and column 4 is the not-function applied to column
3. Columns 5 and 6 are the not-function applied to
columns 1 and 2 respectively and column 7 is the
and-function applied to columns 5 and 6.

Table 11.9
1 2 3 4 5 6 7
A B A+B A+B A B | A-B
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

But, by rule 1_5, Table 11.8,A+A - B=A. It follows
that: A+A-B=A
Thus: (A-B)+(A+B)=A+B

Problem 13. Simplify the Boolean expression

(A-B4+C)-(A+B-C) by using de Morgan’s
laws and the rules of Boolean algebra.

Applying de Morgan’s laws to the first term gives:

AB+C=AB-C=@A+B)C
=@A+B).-C=A-C+B-C
Applying de Morgan’s law to the second term gives:
A+B C=A+B+0O) =A+B+0
Thus (A-B+C)-(A+B - C)
=A-C+B-C)-A+B+0)
=A-A-C+A-B-C+A-C-C
+A-B-C+B-B-C+B-C-C
But from Table 11.8,A-A=Aand C-C=B-B=0
Hence the Boolean expression becomes:
A-C+A-B-C+A-B-C
=A-C(1+B+B)
=A-C(1+B)
=A-C
Thus: A4-B+C)-A+B-C)=A-C

Since columns 4 and 7 have the same pattern of 0’s
and 1’s this verifies that A+ B=A - B.

Problem 12. Simplify the Boolean expression

(A - B) + (A + B) by using de Morgan’s laws and
the rules of Boolean algebra.

Applying de Morgan’s law to the first term gives:
Z-B:Z—l—E:A +B since A = A

Applying de Morgan’s law to the second term gives:

Z+B=A-_=A-§

Thus, A-B)+(@A+B) = (A+B)+A-B

Removing the bracket and reordering gives:
A+A-B+B

Now try the following exercise.

Exercise 48 Further problems on simpli-
fying Boolean expressions using de Morgan’s
laws

Use de Morgan’s laws and the rules of Boolean
algebra given in Table 11.8 to simplify the
following expressions.

1. A-B)-A-B) [A-B]
2. A+B-C)+ @ B+C) [A+B+C]
3. A-B+B-C)-A-B [A-B+A-B-C]
4. (A-B+B-C)+(A-B) (1]
5.(P-Q+P-R)-(P-OR  [P-(Q+R)
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11.5 Karnaugh maps

(i) Two-variable Karnaugh maps

A truth table for a two-variable expression is shown
in Table 11.10(a), the ‘1’ in the third row output
showing that Z=A - B. Each of the four possible
Boolean expressions associated with a two-variable
function can be depicted as shown in Table 11.10(b)
in which one cell is allocated to each row of
the truth table. A matrix similar to that shown in
Table 11.10(b) can be used to depict Z=A - B, by
putting a 1 in the cell corresponding to A -B and
0’s in the remaining cells. This method of depict-
ing a Boolean expression is called a two-variable
Karnaugh map, and is shown in Table 11.10(c).

Table 11.10
Inputs
Output Boolean
A B zZ expression
0 0 0 IE ‘B
0 1 0 A-B

1 0 1 A-B

1 1 0 A-B
(@)

A 0 1 A
BN\_A) | () B
0(B)|A.B|AB 0 011
1(B)| AB|AB 1 oo

(b) (©

To simplify a two-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map, as outlined above. Any cells on the map having
either a common vertical side or a common horizon-
tal side are grouped together to form a couple. (This
is a coupling together of cells, not just combining
two together). The simplified Boolean expression for
a couple is given by those variables common to all
cells in the couple. See Problem 14.

(ii) Three-variable Karnaugh maps

A truth table for a three-variable expression is shown
in Table 11.11(a), the 1’s in the output column
showing that:

Z=A-B-C+A-B-C+A-B-C

Each of the eight possible Boolean expressions asso-
ciated with a three-variable function can be depicted
as shown in Table 11.11(b) in which one cell is
allocated to each row of the truth table. A matrix
similar to that shown in Table 11.11(b) can be used
to depict: Z=A-B-C+A -B-C +A-B-C, by
putting 1’s in the cells corresponding to the Boolean
terms on the right of the Boolean equation and
0’s in the remaining cells. This method of depict-
ing a three-variable Boolean expression is called
a three-variable Karnaugh map, and is shown in
Table 11.11(c).

Table 11.11
Inputs

Output | Boolean
A|B|C Z expression
01010 0 A-B.-C
01011 1 A-B-C
0|11]0 0 A-B-C
0Of1]1 1 A-B-C
1100 0 A-B-C
11011 0 A-B-C
110 1 A-B-C
1111 0 A-B-C

—
o
N

AB 00 01 11 10
(AB) | (AB) | (AB)

AB.C |AB.C|ABC

AB.C|AB.C|ABC

(b)

00| 01| 11| 10

0 00 110

1 1 11 0]O0

(©

To simplify a three-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map as outlined above. Any cells on the map having
common edges either vertically or horizontally are
grouped together to form couples of four cells or
two cells. During coupling the horizontal lines at the
top and bottom of the cells are taken as a common
edge, as are the vertical lines on the left and right
of the cells. The simplified Boolean expression for
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a couple is given by those variables common to all
cells in the couple. See Problems 15 to 17.

(iii) Four-variable Karnaugh maps

A truth table for a four-variable expression is shown
in Table 11.12(a), the 1’s in the output column
showing that:

+A-B-C-D+A-B-C-D

Each of the sixteen possible Boolean expressions
associated with a four-variable function can be
depicted as shown in Table 11.12(b), in which one
cell is allocated to each row of the truth table. A
matrix similar to that shown in Table 11.12(b) can
be used to depict

Z=A-B-C-D+A-B-C-D
+A-B-C-D+A-B-C-D

by putting 1’s in the cells corresponding to the
Boolean terms on the right of the Boolean equa-
tion and 0’s in the remaining cells. This method
of depicting a four-variable expression is called
a four-variable Karnaugh map, and is shown in
Table 11.12(¢c).

To simplify a four-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map as outlined above. Any cells on the map hav-
ing common edges either vertically or horizontally
are grouped together to form couples of eight cells,
four cells or two cells. During coupling, the hori-
zontal lines at the top and bottom of the cells may
be considered to be common edges, as are the ver-
tical lines on the left and the right of the cells. The
simplified Boolean expression for a couple is given
by those variables common to all cells in the couple.
See Problems 18 and 19.

Summary of procedure when simplifying a Boolean
expression using a Karnaugh map

(a) Draw a four, eight or sixteen-cell matrix,
depending on whether there are two, three or
four variables.

(b) Mark in the Boolean expression by putting 1’s
in the appropriate cells.

(c) Form couples of 8, 4 or 2 cells having common
edges, forming the largest groups of cells possi-
ble. (Note that a cell containing a 1 may be used
more than once when forming a couple. Also
note that each cell containing a 1 must be used
at least once).

Table 11.12
Inputs
Output Boolean
A|B|C|D Zz expression
olo|lolo 0 A-B-C-D
olo|ol|1 0 A-B-C-D
olo|1]o0 1 A-B-C-D
0jo0| 1|1 0 A-B-C-D
ol1|lo0]o0 0 A-B-C-D
ol1|0]1 0 A-B-C-D
ol1|1]o0 1 A-B-C-D
o1 |11]1 0 A-B-C-D
1{olo]o 0 A-B-C-D
1]olo]1 0 A-B-C-D
110(1]0 1 A-B-C-D
t{of1]1 0 A-B-C-D
1l1/o0lo 0 A-B-C-D
1]1]lo]1 0 A-B-C-D
1]1]1]o 1 A.-B-C.D
1111 0 A-B-C-D
(@
AB 00 01 11 10
C.D (K._B) (A.B) (A.B) (A._B)
& b)ABTD[ABCD|ABTDABTD
((—;.}3) AB.CD|ABCD|ABCD[ABTD
(Cl.]l)) AB.C.D|A.B.C.D|A.B.C.D|AB.C.D
5|AB.CD[AB.CD[ABCDABCD
(b)
A.B
cD 0.0/0.1{1.1(1.0
00[{0]O0]O0]|O
010|000
1.1/0 [0 [0 |0
1.0] 1 1 1 1

(©)

(d) The Boolean expression for the couple is given
by the variables which are common to all cells
in the couple.

Problem 14. Use the Karnaugh map tech-
niques to simplify the expression P- Q+ P - Q

Using the above procedure:

(a) The two-variable matrix is drawn and is shown
in Table 11.13.
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Table 11.13

Q 0 1
0

1

(b) The term P - Q is marked with a 1 in the top left-
hand cell, corresponding to P=0 and 0 =0;
P - Q is marked with a 1 in the bottom left-hand
cell corresponding to P=0and Q=1.

(c) The two cells containing 1’s have acommon hor-
izontal edge and thus a vertical couple, can be
formed.

(d) The variable common to both cells in the couple
is P=0, i.e. P thus

T’-Q+F~Q=ﬁ

Problem 15. Simplify the expression
XY Z+X-Y-Z+X-Y-Z+X-Y-Z
by using Karnaugh map techniques.

Using the above procedure:

(a) A three-variable matrix is drawn and is shown
in Table 11.14.

Table 11.14
XY
zZ 00 (0.1]1.1]1.0

olo|f1[1]]o0
[

1 11 0] 0 [l

p— E— — ] —

(b) The 1’s on the matrix correspond to the expres-
sion given, i.e. for X-Y-Z, X=0,Y=1 and
Z =0 and hence corresponds to the cell in the
two row and second column, and so on.

(c) Two couples can be formed as shown. The cou-
ple in the bottom row may be formed since the
vertical lines on the left and right of the cells are
taken as a common edge.

(d) The variables common to the couple in the top
row are Y =1 and Z =0, that is, Y - Z and the

variables common to the cougle in the bottom
row are Y =0, Z =1, that is, Y - Z. Hence:
X-Y-Z+X-Y-Z+X-Y-Z
+X.Y-Z=Y-Z+Y -Z

Problem 16. Use a Karnaugh map technique
to simplify the expression (A - B) - (A + B).

Using the procedure, a two-variable matrix is drawn
and is shown in Table 11.15.

Table 11.15
A

B 0 1
0 1|12

1 1

A - B corresponds to the bottom left-hand cell and

(A - B) must therefore be all cells except this one,
marked with a 1 in Table 11.15. (A + B) corresponds
to all the cells except the top right-hand cell marked
with a 2 in Table 11.15. Hence (A + B) must corre-
spond to the cell marked with a 2. The expression

(A-B)-(A+B) corresponds to the cell having both
land2init,ie.,

A-B)-A+B)=A-B

Problem 17. Simplify (P 4+ Q- R)+(P-Q+R)
using a Karnaugh map technique.

The term (P+Q-R) corresponds to the cells
marked 1 on the matrix in Table 11.16(a), hence
(P+0-R) corrEsponds to the cells marked 2. Sim-
ilarly, (P - Q + R) corresponds to the cells marked

3 in Table 11.16(a), hence (P - Q + R) corresponds
to the cells marked 4. The expression (P + Q- R) +

(P - Q +R) corresponds to cells marked with either
a 2 or with a 4 and is shown in Table 11.16(b) by
X’s. These cells may be coupled as shown. The vari-
ables common to the group of four cells is P =0,
i.e., P, and those common to the group of two cells
are =0,R=1,1e.Q-R
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Thus: P+Q-R)+(P-Q+R)=P+0Q-R

Table 11.16
P.Q P.Q
RN00 (01|11t NT00|o1]1L1|10
3 3 3 3 1o
0 2l 2f 1| 1 O !X X!
a4 3 4 T el ! |
1 I I O L (S S BN

(a) (b)

Problem 18. Use Karnaugh map techniques
to simplify the expression: A-B-C-D+A-B-
C-D+A-B-C-D+A-B-C-D+A-B-C-D.

Using the procedure, a four-variable matrix is drawn
and is shown in Table 11.17. The 1’s marked on the
matrix correspond to the expression given. Two cou-
ples can be formed as shown. The four-cell couple
has B=1,C=1,i.e. B - C as the common variables
to all four cells and the two-cell couple has A - B - D
as the common variables to both cells. Hence, the
expression simplifies to:

B-C+A-B-D ie. B-(C+A-D)

Table 11.17

A.B
C.D [
0.0 R

00]01(1.1]1.0

0.1

1.1

—_

1

P
—

1.0

=== =
|n—

Problem 19. Simplify the expression
AB-C-D+A-B-C-D+A-B-C-D
+A-B-C-D+A-B-C-D by using Karnaugh
map techniques.

The Karnaugh map for the expression is shown in
Table 11.18. Since the top and bottom horizontal
lines are common edges and the vertical lines on
the left and right of the cells are common, then the

four corner cells form a couple, B - D (the cells can

be considered as if they are stretched to completely
cover a sphere, as far as common edges are con-
cerned). The cell A - B - C - D cannot be coupled with
any other. Hence the expression simplifies to

B-D+A-B-C-D

Table 11.18
A~1§o.o 01| 1.1]1.0
CDN\ ‘
0.0V 1 <1 7

N 7 N

0.1

1.1 1

104" 1 AN

Now try the following exercise.

Exercise 49 Further problems on simpli-
fying Boolean expressions using Karnaugh
maps

In Problems 1 to 12 use Karnaugh map tech-
niques to simplify the expressions given.

. X-Y+X-Y (Y]

2. X Y+X-Y+X-Y X +7Y]

3.P-0)P-0
4. A-

[P- Q]

C+A-(B+C)+A-B-(C+B)
[A-C+B+A-C]

|9
~l
ol
|
_|_
!
S
~
_|_
~
S
~

SIS

[D-(A+B-0)]
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10. A-B-C-D+A-B-C-D+A-B-C-D+
A-B-C-D+A-B-C-D _

[A-D+A-B-C-D]

1. A-B-C-D+A-B-C-D+A-B-C-D+

é.B.C.Q+A.B.C.D+A.B.C.D+

A-B-C-D S

[A-C+A-C-D+B-D-(A+C)]

11.6 Logic circuits

In practice, logic gates are used to perform the and,
or and not-functions introduced in Section 11.1.
Logic gates can be made from switches, magnetic
devices or fluidic devices, but most logic gates in use
are electronic devices. Various logic gates are avail-
able. For example, the Boolean expression (A - B - C)
can be produced using a three-input, and-gate and
(C + D) by using a two-input or-gate. The principal
gates in common use are introduced below. The term
‘gate’ is used in the same sense as a normal gate, the
open state being indicated by a binary ‘1’ and the
closed state by a binary ‘0’. A gate will only open
when the requirements of the gate are met and, for
example, there will only be a ‘1’ output on a two-
input and-gate when both the inputs to the gate are
at a ‘1’ state.

The and-gate

The different symbols used for a three-input, and-
gate are shown in Fig. 11.19(a) and the truth table
is shown in Fig. 11.19(b). This shows that there will
only be a ‘1’ output when A is 1 and Bis 1 and C is
1, written as:

Z=A-B-C

The or-gate

The different symbols used for a three-input or-gate
are shown in Fig. 11.20(a) and the truth table is
shown in Fig. 11.20(b). This shows that there will
be a ‘1’ output when Ais 1, or Bis 1, or C is 1, or
any combination of A, B or C is 1, written as:

Z=A+B+C

The invert-gate or not-gate

The different symbols used for an invert-gate are
shown in Fig. 11.21(a) and the truth table is shown
in Fig. 11.21(b). This shows that a ‘0’ input gives a

55 —oz e z
gD—c COo—
BRITISH AMERICAN
(a)
INPUTS OUTPUT
A B C |Z=ABC
0 0 0 0
0 0o 1 0
0 1 0 0
0 1 1 0
1 0 o0 0
1 0o 1 0
1 1 0 0
1 1 1 1
(b)
Figure 11.19
Ao A
Bo— 1 |—oZ B zZ
co c
BRITISH AMERICAN
(a)
INPUTS OUTPUT
A B C |Z=A+B+C
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
(b)
Figure 11.20
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‘1’ output and vice versa, i.e. it is an ‘opposite to’
function. The invert of A is written A and is called

‘not-A’.
Ao— D—o02Z A°—DO—°Z
BRITISH AMERICAN
(a)
INPUT | OUTPUT
A Z=A
0 1
1 0
(b)
Figure 11.21

The nand-gate

The different symbols used for a nand-gate are
shown in Fig. 11.22(a) and the truth table is shown in
Fig. 11.22(b). This gate is equivalent to an and-gate
and an invert-gate in series (not-and = nand) and the
output is written as:

Z=A-B-C

The nor-gate

The different symbols used for a nor-gate are shown
in Fig. 11.23(a) and the truth table is shown in
Fig. 11.23(b). This gate is equivalent to an or-gate
and an invert-gate in series, (not-or = nor), and the
output is written as:

Z=A+B+C

Combinational logic networks

In most logic circuits, more than one gate is needed
to give the required output. Except for the invert-
gate, logic gates generally have two, three or four
inputs and are confined to one function only. Thus,
for example, a two-input, or-gate or a four-input
and-gate can be used when designing a logic circuit.
The way in which logic gates are used to generate a
given output is shown in Problems 20 to 23.

Problem 20.  Devise a logic system to meet the
requirements of: Z=A-B+C

s i bor B8 ooz
Cco ¢
BRITISH AMERICAN
(a)
INPUTS OUTPUT
A B C | ABC |Z=-ABC.
0 0 o0 0 1
0 0 1 0 1
0 1 o0 0 1
0 1 1 0 1
1 0 0 0 1
10 1 0 1
11 0 0 1
11 1 1 0
(b)
Figure 11.22
Ao—] A
gg_—_ 1 p—oz g@o—oz
BRITISH AMERICAN
(a)
INPUTS QUTPUT
A B C | A+B+C |Z=A+B+C
0 0 0 0 1
o o 1 1 0
0 1 0 1 0
o 1 1 1 0
1 0 0 1 0
10 1 1 0
1 1 0 1 0
1011 1 0

(b)
Figure 11.23
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With reference to Fig. 11.24 an invert-gate, shown as
(1), gives B. The and-gate, shown as (2), has inputs
of A and B, giving A - B. The or-gate, shown as (3),
has inputs of A - B and C, giving:

Z=A -§+ C
A — AB
Bl & g
B 0— D-r._ 2 1 .._.°Z=A,§.+C
g gmmcitl] 5

Figure 11.24

Problem 21.  Devise a logic system to meet the
requirements of (P + Q) - (R+S).

The logic system is shown in Fig. 11.25. The
given expression shows that two invert-functions
are needed to give Q and R and these are shown
as gates (1) and (2). Two or-gates, shown as (3) and
(4), give (P + Q) and (R + S) respectively. Finally,
an and-gate, shown as (5), gives the required output,

Z=P+0Q)-R+S)

RO — |e+@
9 D-é— (3)
M & F—oZ=(P+Q).(R+S)
e Il (=
so @ ' JFs
(4)
Figure 11.25

Problem 22. Devise a logic circuit to meet the
requirements of the output given in Table 11.19,
using as few gates as possible.

Table 11.19

fnputs Output
A B Cc V4
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The ‘1’ outputs in rows 6, 7 and 8 of Table 11.19
show that the Boolean expression is:

Z=A-B-C+A-B-C+A-B-C

The logic circuit for this expression can be built
using three, 3-input and-gates and one, 3-input or-
gate, together with two invert-gates. However, the
number of gates required can be reduced by using
the techniques introduced in Sections 11.3 to 11.5,
resulting in the cost of the circuit being reduced. Any
of the techniques can be used, and in this case, the
rules of Boolean algebra (see Table 11.8) are used.

Z=A-B-C+A-B-C+A-B-C
=A-[B-C+B-C+B-C]
=A-[B-C+B(C+C)]=A-[B-C+B]
=A-[B+B-Cl=A-[B+C(]

The logic circuit to give this simplified expression is
shown in Fig. 11.26.

Ao
. & —0Z=A.(B+C)
B e
co———__JB+C
Figure 11.26
Problem 23. Simplify the expression:

Z=P-Q-R-S+P-Q-R-S+P-Q-R-S
+P-Q-R-S+P-Q-R-S

and devise a logic circuit to give this output.

The given expression is simplified using the
Karnaugh map techniques introduced in Sec-
tion 11.5. Two couples are formed as shown in
Fig. 11.27(a) and the simplified expression becomes:

R-5+P-R

I
Ql

Z
ieZ=R-P+Q-95)

The logic circuit to produce this expression is shown
in Fig. 11.27(b).
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T

PQOO0 |04 |1.1]1.0

Ao
H-S —
0.0

= B
1, 11 E Bo 0Z=A.8.C+A.B.C
I |
1
o1 fit f1] 2
1.1
(c)
1.0
(a) A

o Z= (A+B).(C+D)

Figure 11.28 Continued

g
3
) In Problems 5 to 7, simplify the expression given
Fi in the truth table and devise a logic circuit to meet
igure 11.27 .
the requirements stated.
. . 5. Column 4 of Table 11.20
Now try the following exercise. [Z1=A-B+ C, see Fig. 11.29(a)]
Exercise 50 Further problems on logic 6. Column 5 of Table 11.20
circuits [Zy=A-B+B-C, see Fig. 11.29(b)]
In Problems 1 to 4, devise logic systems to meet Table 11.20
the requirements of the Boolean expressions
given. 1121314 ]5]|6
_ A|\B|C|Zi |2 | Z
1. Z=A+B-C ——
[See Fig. 11.28(a)] 010101010710
_ B 0jo|1}]110]0
2. Z=A-B+B-C 0O(1(0]0] 0|1
[See Fig. 11.28(b)] o111 |1]|1
— 1100|010
[See Fig. 11.28(C)] 1 1 0 1 0 1
4. Z=A+B)-(C+D) Lyt 11

[See Fig. 11.28(d)]

(¢ co

Figure 11.28 Figure 11.29
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7. Column 6 of Table 11.20
[Z3=A-C+ B, see Fig. 11.29(c)]
In Problems 8 to 12, simplify the Boolean
expressions given and devise logic circuits
to give the requirements of the simplified
expressions.
8. P-Q+P-Q+P-Q
[P + Q, see Fig. 11.30(a)]
9.P-Q-R+P-Q-R+P-Q-R
[R- (P + 0), see Fig. 11.30(b)]
10. P-Q-R+P-Q-R+P-QO-R
[Q - (P +R), see Fig. 11.30(c)]

Qo

(a)

oZ=R.(P+D)

(b}

P
& Z=0.P+R)
Qo i i:l

A
()

Figure 11.30

0 z=P(@+R)

Figure 11.31

11. A- +A-B-C-D+

+

+A.
[D-(A-C+ B), see Fig. 11.31(a)]

12. P-Q-R)-(P+0Q-R)

[P-(Q+R) see Fig. 11.31(b)]

[

B.C.
.B-C-

SISl
Seies

C.
.C-

SIS

11.7 Universal logic gates

The function of any of the five logic gates in common
use can be obtained by using either nand-gates or
nor-gates and when used in this manner, the gate
selected in called a universal gate. The way in which
a universal nand-gate is used to produce the invert,
and, or and nor-functions is shown in Problem 24.
The way in which a universal nor-gate is used to
produce the invert, or, and and nand-functions is
shown in Problem 25.

Problem 24. Show how invert, and, or and
nor-functions can be produced using nand-
gates only.

A single input to a nand-gate gives the invert-
function, as shown in Fig. 11.32(a). When two
nand-gates are connected, as shown in Fig. 11.32(b),
the output from the first gate is A- B - C and this is
inverted by the second gate, giving

Z=A-B-C=A-B-Ci.e. the and-function is pro-
duced. When A, B and C are the inputs to a
nand-gate, the outputis A-B - C. o
By de Morgan’s law, A-B-C=A+B+C=
A+ B+ C,i.e.anand-gate is used to produce the or-
function. The logic circuit is shown in Fig. 11.32(c).
If the output from the logic circuit in Fig. 11.32(c)
is inverted by adding an additional nand-gate, the

output becomes the invert of an or-function, i.e. the
nor-function, as shown in Fig. 11.32(d).

Problem 25. Show how invert, or, and and
nand-functions can be produced by using nor-
gates only.

A single input to a nor-gate gives the invert-
function, as shown in Fig. 11.33(a). When two
nor-gates are connected, as shown in Fig. 11.33(b),
the output from the first gate is A+B+C
and this is inverted by the second gate, giving

Z=A+B+C=A+B+C, i.e. the or-function is



BOOLEAN ALGEBRA AND LOGIC CIRCUITS 111

A & Z=A
(a)

AB.C AB.C.
Ao—
Bo— & & pb—oz=ABC.
Co—

(b)
Ao & b2,

_ ABC
Bo— & pB—- & Z-A+B+C
c & p<d

(c)

Ao— & o—’ﬂ-—

B ABLC. ABC.
B & p8 & b—— & b—oz=A+B+C
Co— & C}c—

(d)

Figure 11.32

produced. Inputs of A, B, and C to a nor-gate give
an output of A+ B+ C. L
By de Morgan’s law, A+B+C=A-B-C=
A-B-C, ie. the nor-gate can be used to produce
the and-function. The logic circuit is shown in
Fig. 11.33(c). When the output of the logic circuit,
shownin Fig. 11.33(c), is inverted by adding an addi-
tional nor-gate, the output then becomes the invert

of an or-function, i.e. the nor-function as shown in
Fig. 11.33(d).

Problem 26. Design a logic circuit, using
nand-gates having not more than three inputs, to
meet the requirements of the Boolean expression

Z=A+B+C+D

When designing logic circuits, it is often easier
to start at the output of the circuit. The given
expression shows there are four variables joined

O—o0 7=A4

(a)

O—0 Z=A+B+C

On>

(b)

h—o07=A.B.C.

()

co— 1

(d)

Figure 11.33

by or-functions. From the principles introduced in
Problem 24, if a four-input nand-gate is used to

give the expression given, the inputs are A, B, C and

Dthatis A, B, C and D. However, the problem states
that three-inputs are not to be exceeded so two of the
variables are joined, i.e. the inputs to the three-input
nand-gate, shown as gate (1) in Fig. 11.34,is A, B, C
and D. From Problem 24, the and-function is gener-
ated by using two nand-gates connected in series, as
shown by gates (2) and (3) in Fig. 11.34. The logic
circuit required to produce the given expression is as
shown in Fig. 11.34.

ABie A+B,ie.,

AC—_| (A+B) (A.B)
& fo— &

o | ) = ABCD,ie.,

- @ & [o—o z=(A+B+C+D)
co— & ™
Do
Figure 11.34
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Problem 27. Use nor-gates only to design a
logic circuit to meet the requirements of the

expression: Z=D - (A+B+C)

It is usual in logic circuit design to start the design
at the output. From Problem 25, the and-function

between D and the terms in the bracket can be
produced by using inputs of D and A+ B+ C to
a nor-gate, i.e. by de Morgan’s law, inputs of D
and A- B - C. Again, with reference to Problem 25,
inputs of A-B and C to a nor-gate give an output
of A+ B + C, which by de Morgan’s law is A - B - C.
The logic circuit to produce the required expression
is as shown in Fig. 11.35.

A+B+Cie D+AB.C e
s i S 1 Hz:?f}?scvlga
CO—I F_IE [
Do
Figure 11.35

Problem 28. An alarm indicator in a grinding
mill complex should be activated if (a) the power
supply to all mills is off and (b) the hopper feed-
ing the mills is less than 10% full, and (c) if
less than two of the three grinding mills are
in action. Devise a logic system to meet these
requirements.

Let variable A represent the power supply on to all
the mills, then A represents the power supply off.
Let B represent the hopper feeding the mills being
more than 10% full, then B represents the hopper
being less than 10% full. Let C, D and E repre-
sent the three mills respectively being in action, then
C, D and E represent the three mills respectively not
being in action. The required expression to activate
the alarm is:

Z=A-B-(C+D+E)
There are three variables joined by and-functions
in the output, indicating that a three-input and-gate
is required, having inputs of A, B and (C + D + E).

The term (C+D+E) is produce by a three-
input nand-gate. When variables C, D and E

are the inputs to a nand-gate, the output is
C - D - E which, by de Morgan’s law is C+ D + E.
Hence the required logic circuit is as shown in
Fig. 11.36.

o A

L. B 2 .
BO L) 0Z=A.B.(C+D+E)
CO—|_
po— & p—

C.D.E.
E ie,.C+D+E

Figure 11.36

Now try the following exercise.

Exercise 51 Further problems on universal
logic gates

InProblems 1 to 3, use nand-gates only to devise
the logic systems stated.
1. Z=A+B-C [See Fig. 11.37(a)]
2. Z=A-B+B-C [See Fig. 11.37(b)]

3.Z=A-B-C+A-B-C
[See Fig. 11.37(c)]

0Z=A.B.T+A.B.C

Figure 11.37
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In Problems 4 to 6, use nor-gates only to devise
the logic systems stated.

4. Z=A+B)-(C+D)
[see Fig. 11.38(a)]

5.Z=A-B+B-C+C-D
[see Fig. 11.38(b)]

[see Fig. 11.38(c)]

o 0O W >

o0 m >

0oZ=P.Q+P.(Q+R)

Figure 11.38

7. In a chemical process, three of the
transducers used are P, Q and R, giving out-
put signals of either O or 1. Devise a logic
system to give a 1 output when:

(a) PandQ and R all have 0 outputs, or when:

(b) PisOand (Qis1orRis0)
[P-(Q +R), see Fig. 11.39(a)]

8. Lift doors should close, (Z), if:
(a) the master switch, (A), is on and either

(b) a call, (B), is received from any other
floor, or

(c) the doors, (C), have been open for more
than 10 seconds, or

(d) the selector push within the lift (D), is
pressed for another floor.

10.

. A water tank feeds three separate processes.

Figure 11.39

Devise a logic circuit to meet these
requirements.

Z=A-(B+C+D),
see Fig. 11.39(b)

When any two of the processes are in opera-
tion at the same time, a signal is required
to start a pump to maintain the head of
water in the tank. Devise a logic circuit using
nor-gates only to give the required signal.

Z=A-B+C)+B-C,
see Fig. 11.39(c)

A logic signal is required to give an indica-
tion when:

(a) the supply to an oven is on, and

(b) the temperature of the oven exceeds
210°C, or

(c) the temperature of the oven is less than
190°C

Devise a logic circuit using nand-gates only
to meet these requirements.

[Z=A(B+C), see Fig. 11.39(d)]
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Assignment 3

This assignment covers the material contained
in Chapters 9 and 11.

The marks for each question are shown in
brackets at the end of each question.

1. Use the method of bisection to evaluate the root

of the equation: x> 4 5x =11 in the range x = 1
to x = 2, correct to 3 significant figures. (12)

. Repeat question 1 using an algebraic method of
successive approximations. (16)

. The solution to a differential equation associated
with the path taken by a projectile for which the
resistance to motion is proportional to the velocity
is given by:

y=25e"—e ) +x—-25

Use Newton’s method to determine the value of
x, correct to 2 decimal places, for which the value
of y is zero. (11)

. Convert the following binary numbers to decimal
form:

(a) 1101 (b) 101101.0101 (5)

. Convert the following decimal number to binary
form:

(a)27 (b)44.1875 )

. Convert the following denary numbers to binary,
via octal:

(a) 479 (b) 185.2890625 )

10.

11.

Convert
(a) SF16 into its decimal equivalent
(b) 1329 into its hexadecimal equivalent

(c) 1101010115 into its hexadecimal equivalent
3)

Use the laws and rules of Boolean algebra to
simplify the following expressions:

(@B-(A+B) +A-B
(b)A-B-C+A-B-C+A-B-C+A-B-C (9)

Simplify the Boolean expression

A-B+A-B-C using de Morgan’s laws. (5)
Use a Karnaugh map to simplify the Boolean
expression:

A-B-C+A-B-C+A-B-C+A-B-C (8)
A clean room has two entrances, each having
two doors, as shown in Fig. A3.1. A warning bell
must sound if both doors A and B or doors C and
D are open at the same time. Write down the
Boolean expression depicting this occurrence,
and devise a logic network to operate the bell
using NAND-gates only. 8)

)
o

Dust-free
area

AC\
I_|

Figure A3.1
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GEOMETRY AND TRIGONOMETRY

Introduction to trigonometry

12.1 Trigonometry

Trigonometry is the branch of mathematics which
deals with the measurement of sides and angles
of triangles, and their relationship with each other.
There are many applications in engineering where a
knowledge of trigonometry is needed.

12.2 The theorem of Pythagoras

With reference to Fig. 12.1, the side opposite the
right angle (i.e. side b) is called the hypotenuse.
The theorem of Pythagoras states:

‘In any right-angled triangle, the square on the
hypotenuse is equal to the sum of the squares on
the other two sides.’

Hence b*=a?+ 2

Figure 12.1
Problem 1. In Fig. 12.2, find the length of EF'.
b =13
= cmgm
E d 3
Figure 12.2

By Pythagoras’ theorem:

ez=a’2-i-f2
Hence 13% = 4 + 52
169 = d* + 25

d*> =169 — 25 = 144

Thus d=+144 =12cm
1.e. EF =12cm

Problem 2. Two aircraft leave an airfield at the
same time. One travels due north at an aver-
age speed of 300 km/h and the other due west
at an average speed of 220 km/h. Calculate their
distance apart after 4 hours.

After 4hours, the first aircraft has travelled
4 x 300 = 1200 km, due north, and the second air-
craft has travelled 4 x 220 =880km due west, as
shownin Fig. 12.3. Distance apart after 4 hours = BC.

y B
W«‘—E
S 1200 km

A
880 km
Figure 12.3
From Pythagoras’ theorem:

BC? = 1200% + 880% = 1440000 + 774 400

and BC = /(2214400)

Hence distance apart after 4 hours = 1488 km.

Now try the following exercise.

Exercise 52 Further problems on the the-
orem of Pythagoras

1. Inatriangle CDE, D =90°, CD = 14.83 mm
and CE = 28.31 mm. Determine the length of
DE. [24.11 mm]

2. Triangle POR is isosceles, Q being a right
angle. If the hypotenuse is 38.47cm find
(a) the lengths of sides PQ and QR, and
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(b) the value of ZQOPR.
[(a) 27.20 cm each (b) 45°]

. A man cycles 24 km due south and then 20 km

due east. Another man, starting at the same
time as the first man, cycles 32 km due east
and then 7km due south. Find the distance
between the two men. [20.81 km]

. A ladder 3.5m long is placed against a per-

pendicular wall with its foot 1.0 m from the
wall. How far up the wall (to the nearest centi-
metre) does the ladder reach? If the foot of the
ladder is now moved 30 cm further away from
the wall, how far does the top of the ladder
fall? [3.35m, 10cm]

. Two ships leave a port at the same time. One

travels due west at 18.4km/h and the other
due south at 27.6 km/h. Calculate how far
apart the two ships are after 4 hours.

[132.7 km]

12.3 Trigonometric ratios of acute

(a) With reference to the right-angled triangle

angles

shown in Fig. 12.4:
opposite side

i sine 6 =
® hypotenuse
i.e. sinf = -
c
. . adjacent side
(>i1) cosinef=——
hypotenuse
a
ie. cosf=-—
c
opposite side
(i)  tangentd= —PPOSTC SCE
adjacent side
ie. tanf = -
a
. hypotenuse
@iv) secant = ————
adjacent side
c
i.e. secl = —
a
hypotenuse

) cosecantd = —
opposite side

. c
i.e. cosech= 5

adjacent side

(vi)  cotangentf = —
opposite side
a
i.e. cotf=—
b
c
b
0
a
Figure 12.4
(b) From above,
b
0 sinf . b (an 0
i =~ =—=tané,
cosfd 4 g4
C
in 0
ie. tanf= on
cos 0
a
N cosf .
== =-—=coth,
(it sing b
C
0
ie. cotf= ">
sin 6
1
(iii) secl=——
cos 6
. 1
@iv) cosec) = ——
sin 6
(Note ‘s’ and ‘c’ go together)
1
v) cotd=——

tan 6

Secants, cosecants and cotangents are called the

reciprocal ratios.

Problem 3.

of the other five trigonometry ratios.

9
If cosX = a1 determine the value

Fig. 12.5 shows a right-angled triangle XYZ.

Since cos X = —, then XY =9 units and
XZ = 41 units.

Using Pythagoras’ theorem: 412 =92 + ¥YZ? from

which YZ = /(412 — 92) = 40 units.
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Z
41
X o Y
Figure 12.5
Thus
sin X 40 tan X 4 44
1 = — = — =4
41° 9 9’
X = 41 _1 1
cosec X = 20 = a0

X—41—45 d tX—9
sec —9—9anc0 =210

Problem 4. If sin9®=0.625 and cos 8 =0.500
determine, without using trigonometric tables
or calculators, the values of cosec 6, sec 6, tan 6
and cot 6.

1

cosech = — = —— =1.60
sinf  0.625
1 1
secl= ——=——=2.00
cos®  0.500
i .62
tng = 00 _ 0625 _ s
cos6  0.500
cos6  0.500
t0 = =——=0.
cot0=Gne = 065 ~ 080
Problem 5. Point A lies at co-ordinate (2, 3)

and point B at (8, 7). Determine (a) the dis-
tance AB, (b) the gradient of the straight line AB,
and (c) the angle AB makes with the horizontal.

(a) Points A and B are shown in Fig. 12.6(a).

In Fig. 12.6(b), the horizontal and vertical lines
AC and BC are constructed.

Since ABC is a right-angled triangle, and
AC=(8—-2)=6and BC =(7 —3)=4, then by
Pythagoras’ theorem

AB? = AC? + BC* = 6 + 4

and AB = /(6> +4%) =+/52="17.211,

correct to 3 decimal places

f(x)

f(x)

O

o k-————=
wl-—————

(b)
Figure 12.6

(b) The gradient of AB is given by tan A,
BC 4 2

i.e. gradient = tan A =

AC 6 3
(c) The angle AB makes with the horizontal is
given by tan~! % =33.69°.

Now try the following exercise.

Exercise 53 Further problems on trigono-
metric ratios of acute

1. In triangle ABC shown in Fig. 12.7, find
sinA, cos A, tan A, sin B, cos B and tan B.

SsinA = %,COSA = %, tanA =
3
15 . . .
2. If cosA= — find sin A and tan A, in fraction

sin B = %,COSB: 5,tan B

Wl AW

form. sinA = i, tanA = i
17 15
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Figure 12.7

3. For the right-angled triangle shown in
Fig. 12.8, find:

(a)sina  (b)cosfd (c)tanf
E b) E (©) i
@ ®n @53

Figure 12.8

4. Point P lies at co-ordinate (—3, 1) and point
QO at (5, —4). Determine

(a) the distance PQ

(b) the gradient of the straight line PQ and

(c) the angle PQ makes with the horizontal
[(a) 9.434 (b) —0.625 (c) 32°]

12.4 Solution of right-angled triangles

To ‘solve a right-angled triangle’ means ‘to find the
unknown sides and angles’. This is achieved by using
(i) the theorem of Pythagoras, and/or (ii) trigono-
metric ratios. This is demonstrated in the following
problems.

Problem 6. Intriangle POR showninFig. 12.9,
find the lengths of PQ and PR.

P

38°
7.5cm

Figure 12.9

PO P
tan 38° = —Q = —Q
OR 75
hence PO =17.5tan38° = 7.5(0.7813)
= 5.860 cm
R .
cos 38° = Q— = E
PR PR
hence PR = 75 75 = 9.518cm

cos38°  0.7880
[Check: Using Pythagoras’ theorem

(7.5)% + (5.860)> = 90.59 = (9.518)?]

Problem 7. Solve the triangle ABC shown in
Fig. 12.10.

A 35 mm

37 mm

Figure 12.10

To ‘solve triangle ABC’ means ‘to find the length
AC and angles B and C’

35
sinC = — = 0.94595
37
hence /C = sin~! 0.94595 =71.08° =71°5’.

/B =180°—90°—71°5' =18°55’ (since angles in
a triangle add up to 180°)

sinB = —
37
hence AC = 37sin 18°55 = 37(0.3242)
= 12.0mm

or, using Pythagoras’ theorem, 37° =35 +AC?,
from which, AC = /(37% — 352) =12.0 mm.

Problem 8. Solve triangle XYZ given
/X =90°,/Y =23°17" and YZ =20.0 mm.
Determine also its area.

It is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown
in Fig. 12.11.

/7 = 180° — 90° — 23°17" = 66°43'

XZ
sin23°17 = —
20.0
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20.0 mm

23°17’
X Y

Figure 12.11

hence XZ =20.0sin23°17
= 20.0(0.3953) = 7.906 mm
XY
20.0
hence XY =20.0co0s23°17
= 20.0(0.9186) = 18.37 mm

co0s23°17 =

[Check: Using Pythagoras’ theorem
(18.37)2+ (7.906)* = 400.0 = (20.0)*]
Area of triangle XYZ
= % (base) (perpendicular height)
= J(XY)(XZ) = 1(18.37)(7.906)
= 72.62mm*

Now try the following exercise.

Exercise 54 Further problems on the solu-
tion of right-angled triangles
1. Solve triangle ABC in Fig. 12.12(i).

|:BC =3.50cm, AB=6.10 cm,]

/B =55°
B D
3cm
Vo Pl v
A_Ocm d- K /150 mm
0] (ii) I (i)
Figure 12.12

2. Solve triangle DEF in Fig. 12.12(ii)
[FE=5cm, /E=53°%, /F =36°52']

3. Solve triangle GHI in Fig. 12.12(iii)
GH =9.841 mm, GI =11.32 mm,
/H =49°
4. Solve the triangle JKL in Fig. 12.13(i) and

find it KL=5.43cm, JL=28.62cm,
ndits area /J =39°, area = 18.19 cm?

5. Solve the triangle MNO in Fig. 12.13(ii) and
find its area
|:MN =28.86mm, NO = 13.82 mm,i|

/0 =64°25, area = 199.4 mm?

m g
25°35' 3 69

6.7cm 32.0 mm 8.75m
(ii)

|||
Figure 12.13

6. Solve the triangle POR in Fig. 12.13(iii) and
find its area
PR =17.934m, /Q = 65°3,
/R = 24°57', area = 14.64m?

7. A ladder rests against the top of the perpen-
dicular wall of a building and makes an angle
of 73° with the ground. If the foot of the lad-
der is 2 m from the wall, calculate the height
of the building. [6.54m]

12.5 Angles of elevation and depression

(a) If, in Fig. 12.14, BC represents horizontal
ground and AB a vertical flagpole, then the
angle of elevation of the top of the flagpole,
A, from the point C is the angle that the imagi-
nary straight line AC must be raised (or elevated)
from the horizontal CB, i.e. angle 6.

-
///

(b) If, in Fig. 12.15, PQ represents a vertical cliff
and R a ship at sea, then the angle of depression
of the ship from point P is the angle through
which the imaginary straight line PR must be
lowered (or depressed) from the horizontal to
the ship, i.e. angle ¢.

A

B
Figure 12.14

Figure 12.15
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(Note, ZPRQ is also ¢—alternate angles
between parallel lines.)

Problem9. Anelectricity pylon stands on hori-
zontal ground. At a point 80 m from the base of
the pylon, the angle of elevation of the top of the
pylon is 23°. Calculate the height of the pylon
to the nearest metre.

Figure 12.16 shows the pylon AB and the angle of
elevation of A from point C is 23°

. AB AB

tan23° = — = —

BC 80

Hence height of pylon AB

= 80tan 23° = 80(0.4245) = 33.96 m
= 34 m to the nearest metre

Figure 12.16

Problem 10. A surveyor measures the angle of
elevation of the top of a perpendicular build-
ing as 19°. He moves 120 m nearer the building
and finds the angle of elevation is now 47°.
Determine the height of the building.

The building PQ and the angles of elevation are
shown in Fig. 12.17.

In triangle PQS,
tan 19° = h
x+ 120
hence & = tan 19°(x + 120),
ie. h = 0.3443(x + 120) (1)
P
h‘[\\
47° >
5 ul :!' 19 -

Figure 12.17

h
In triangle PQOR, tan47°= —
X

hence h = tan47°(x), i.e. h = 1.0724x 2)
Equating equations (1) and (2) gives:

0.3443(x + 120) = 1.0724x
0.3443x + (0.3443)(120) = 1.0724x

(0.3443)(120) = (1.0724 — 0.3443)x

41.316 = 0.7281x
41316

X =
0.7281
From equation (2), height of building,

h = 1.0724x = 1.0724(56.74) = 60.85 m.

=56.74m

Problem 11. The angle of depression of a ship
viewed at a particular instant from the top of a
75 m vertical cliff is 30°. Find the distance of the
ship from the base of the cliff at this instant. The
ship is sailing away from the cliff at constant
speed and 1 minute later its angle of depression
from the top of the cliff is 20°. Determine the
speed of the ship in km/h.

Figure 12.18 shows the cliff AB, the initial position
of the ship at C and the final position at D. Since the
angle of depression is initially 30° then ZACB = 30°
(alternate angles between parallel lines).

AB 75
tan30° = — = —
BC BC
75 75
hence BC = =129.9m

@n30°  0.5774
= initial position of ship from
base of cliff

Figure 12.18

In triangle ABD,
. AB 75
tan20° = — = ————
BD BC+H+CD
B 75
~1299+x
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75 75
ence 1299+ x = % = 03640
— 206.0m
from which x=206.0—-1299 =76.1m

Thus the ship sails 76.1 min 1 minute, i.e. 60 s, hence
speed of ship

distance  76.1
e = — m/
time 60 i

_76.1 x 60 x 60
60 x 1000

km/h = 4.57km/h

Now try the following exercise.

Exercise 55 Further problems on angles of
elevation and depression

1. Ifthe angle of elevation of the top of a vertical
30m high aerial is 32°, how far is it to the
aerial? [48 m]

2. From the top of a vertical cliff 80.0 m high
the angles of depression of two buoys lying
due west of the cliff are 23° and 15°, respec-
tively. How far are the buoys apart?

[110.1 m]

3. From a point on horizontal ground a surveyor
measures the angle of elevation of the top of
a flagpole as 18°40’. He moves 50 m nearer
to the flagpole and measures the angle of ele-
vation as 26°22’. Determine the height of the
flagpole. [53.0m]

4. A flagpole stands on the edge of the top of a
building. At a point 200 m from the building
the angles of elevation of the top and bot-
tom of the pole are 32° and 30° respectively.
Calculate the height of the flagpole.

[9.50m]

5. From a ship at sea, the angles of elevation of
the top and bottom of a vertical lighthouse
standing on the edge of a vertical cliff are
31° and 26°, respectively. If the lighthouse is
25.0 m high, calculate the height of the cliff.

[107.8 m]

6. From a window 4.2m above horizontal
ground the angle of depression of the foot
of a building across the road is 24° and the
angle of elevation of the top of the building is
34°. Determine, correct to the nearest centi-
metre, the width of the road and the height of

the building. [9.43m, 10.56 m]

7. The elevation of a tower from two points, one
due east of the tower and the other due west of
it are 20° and 24°, respectively, and the two
points of observation are 300 m apart. Find
the height of the tower to the nearest metre.

[60m]

12.6 Evaluating trigonometric ratios

Four-figure tables are available which gives sines,
cosines, and tangents, for angles between 0° and
90°. However, the easiest method of evaluating
trigonometric functions of any angle is by using a
calculator.

The following values, correct to 4 decimal places,
may be checked:

sine 18°=0.3090, cosine 56°=0.5592
sine 172°=0.1392 cosine 115°= —0.4226,
sine 241.63°= —0.8799, cosine 331.78°=0.8811

tangent 29°=0.5543,
tangent 178°= —0.0349
tangent 296.42°= —2.0127

To evaluate, say, sine 42°23’ using a calculator means
o]

since there are 60 minutes in

) ) 23
finding sine 42
60
1 degree.

23 . .
i 0.3833 thus 42°23" = 42.383°

Thus sine 42°23' = sine 42.383° = 0.6741, correct
to 4 decimal places.

]

38
=0.2985,
0

Similarly, cosine 72°38" = cosine 72

correct to 4 decimal places.

Most calculators contain only sine, cosine and tan-
gent functions. Thus to evaluate secants, cosecants
and cotangents, reciprocals need to be used. The fol-
lowing values, correct to 4 decimal places, may be
checked:

1
secant 32° = =1.1792
cos 32°
1
cosecant 75° = — = 1.0353
sin 75°
1
t t41° = = 1.1504
cotangen TE
1
secant215.12° = ————— = —1.2226
cos215.12°
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1
cosecant321.62° = ————— = —1.6106
sin 321.62°
cotangent263.59° = —— = 0.1123
tan 263.59°

Problem 16. Evaluate, correct to 4 significant
figures:

(a) sin 1.481 (b) cos(37/5) (c)tan2.93

Problem 12. Evaluate correct to 4 decimal
places:

(a) sine 168°14/
(c) tangent 98°4’

(b) cosine271.41°

o

14
(a) sine 168°14’ = sine 168 —=0.2039
(b) cosine271.41°=0.0246

4
(¢) tangent98°4’ = tan 98@ = —7.0558

(a) sin 1.481 means the sine of 1.481 radians. Hence
a calculator needs to be on the radian function.
Hence sin 1.481 =0.9960.

(b) cos (3m/5)= cos 1.884955 - - - = —0.3090.

(c) tan2.93 =—0.2148.

Problem 13.
places: (a) secant 161°

Evaluate, correct to 4 decimal
(b) secant 302°29’

Problem 17. Evaluate, correct to 4 decimal
places:

(a) secant5.37 (b) cosecant /4

(c) cotangent /24

(a) sec161°= =—1.0576
cos 161° 1
(b) sec302°29" = - =
o 29°
cos 302°29 08 302
=1.8620

Problem 14. Evaluate, correct to 4 significant
figures:

(a) cosecant 279.16° (b) cosecant 49°7’

(a) Again, with no degrees sign, it is assumed that
5.37 means 5.37 radians.

Hence sec 5.37 = =1.6361

os 5.37
1 1
sin (;r/4)  sin0.785398 ...
=1.4142

(b) cosec (/4) =

1
tan (577/24)  tan 0.654498 . ..
=1.3032

(c) cot(5m/24)=

Problem 18. Determine the acute angles:

(a) sec=12.3164 (b) cosec ~11.1784
(c) cot=12.1273

279.16° = ——— =—-1.013
(a) cosec 5in279.16°
1 1
b 49°7 = =
(b) cosec sind9e7 ~ _7°
sin 49—
60
=1.323
Problem 15. Evaluate, correct to 4 decimal
places:

(a) cotangent 17.49° (b) cotangent 163°52’

(a) cot17.49° = —— =3.1735
tan 17.49°
(b) cot 163°52' = ! = !
"~ tan 163052 52°
tan 163
60
==3.4570

1
123164 = cos™!
(a) sec cos 23164

—cos~ ! 0.4317...
— 64.42° or 64°25'

or 1.124 radians

1
(b) cosec11.1784 = sin~!
1.1784

—sin"10.8486. ..
= 58.06° or 58°4

or 1.013 radians
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1
(c) cot™12.1273 = tan~!
2.1273

=tan~' 0.4700...
= 25.18° or 25°11’
or 0.439 radians

Problem 19. Evaluate the following expres-
sion, correct to 4 significant figures:

4sec32°10' — 2cot 15°19

3 cosec 63°8' tan 14°57’

By calculator:
sec32°10" = 1.1813,cot 15°19" = 3.6512
cosec 63°8" = 1.1210, tan 14°57" = 0.2670

4sec32°10/ — 2cot 15°19
3 cosec 63°8' tan 14°57’
_ 4(1.1813) — 2(3.6512)
~3(1.1210)(0.2670)

47252 —77.3024
N 0.8979
—2.5772

= ———— = -2.870,
0.8979

correct to 4 significant figures

Hence

Problem 20. Evaluate correct to 4 decimal
places:

(a) sec(—115°) (b) cosec (—95°47")

(a) Positive angles are considered by convention
to be anticlockwise and negative angles as
clockwise.

Hence —115° is actually the same as 245° (i.e.
360°—115°)

1
Hence sec(—115°) =sec245° = ———
cos 245°
= —2.3662
(b) cosec(—95°47") = =—-1.0051

1
. 95 47°
sin | —
60

Now try the following exercise.

Exercise 56 Further problems on evaluat-
ing trigonometric ratios

In Problems 1 to 8, evaluate correct to 4 decimal
places:

1. (a) sine 27° (b) sine 172.41°
(c) sine 302°52/
(a) 0.4540 (b) 0.1321
(c) —0.8399

2. (a) cosine 124° (b) cosine 21.46°
(c) cosine 284°10’
(a) —0.5592 (b) 0.9307
(c) 0.2447

3. (a) tangent 145°
(c) tangent49°16/
|:(a) —0.7002 (b) —1.1671 i|

(c) 1.1612

(b) tangent 310.59°

4. (a) secant73° (b) secant286.45°
(c) secant 155°41’
[ (a) 3.4203 (b) 3.5313:|

(c) —1.0974

5. (a) cosecant213° (b) cosecant 15.62°
(c) cosecant311°50/
(a) —1.8361 (b)3.7139
(c) —1.3421
6. (a) cotangent71° (b) cotangent 151.62°
(c) cotangent321°23/
[(a) 0.3443 (b) —1.8510}
(c) —1.2519

2
7. (a) sine ?ﬂ (b) cos 1.681 (c) tan3.672

|:(a) 0.8660 (b) —0.1010}
(c) 0.5865

8. (a) sec% (b) cosec2.961 (c)cot2.612

(a) 1.0824 (b) 5.5675
(c) —1.7083

In Problems 9 to 14, determine the acute angle
in degrees (correct to 2 decimal places), degrees
and minutes, and in radians (correct to 3 decimal
places).
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- 13.54°,13°32, ]
9. sin” " 0.2341 |:0,236rad

O 34.20°,34°12',
10. cos™" 0.8271 |:0.597rad

» 39.03°,39°2", ]
11. tan=" 0.8106 |:0.681rad |

12. sec”11.6214

51.92°,51°55', ]
0.906 rad

13. cosec—12.4891

23.69°,23°41", ]
0.413 rad

-1
14. cot™" 1.9614 0.471 rad

[27.010,2701’,'

In Problems 15 to 18, evaluate correct to 4
significant figures.

15. 4c0s56°19' —3sin21°57’ [1.097]
11.5tan49°11" — sin 90°
16. [5.805]
3 cos45°
5sin 86°3’
17. —5.325
3tan 14°29’ — 2 cos 31°9’ [ I
6.4 29°5" — 81°
1§, Teosee ¢ [0.7199]

2cot 12°

19. Determine the acute angle, in degrees and
minutes, correct to the nearest minute, given
. (432 sin42°16
by sin _—
7.86
[21°42]
20. If tanx =1.5276, determine sec x, COSeC X,

and cotx. (Assume x is an acute angle)
[1.8258, 1.1952, 0.6546]

In Problems 21 to 23 evaluate correct to 4
significant figures

(sin 34°27")(cos 69°2")

21. [0.07448]
(2tan 53°39")

22. 3cot 14°15 sec 23°9’ [12.85]

cosec27°19 + sec 45°29 (~1.710]

" 1 — cosec27°19 sec 45°29’

24. Evaluate correct to 4 decimal places:
(a) sine (—125°) (b) tan (—241°)
(c) cos (—49°15")

(a) —0.8192 (b) —1.8040
(c) 0.6528

25. Evaluate correct to 5 significant figures:
(a) cosec (—143°) (b) cot (—252°)
(c) sec (—67°22")

(c) 2.5985

|:(a) —1.6616 (b) —0.32492}

12.7 Sine and cosine rules

To ‘solve a triangle’ means ‘to find the values of
unknown sides and angles’. If a triangle is right
angled, trigonometric ratios and the theorem of
Pythagoras may be used for its solution, as shown
in Section 12.4. However, for a non-right-angled
triangle, trigonometric ratios and Pythagoras’ the-
orem cannot be used. Instead, two rules, called the
sine rule and the cosine rule, are used.

Sine rule

With reference to triangle ABC of Fig. 12.19, the
sine rule states:

a b ¢
sinA  sinB  sinC

Figure 12.19

The rule may be used only when:

(i) 1 side and any 2 angles are initially given, or

(i1) 2 sides and an angle (not the included angle) are
initially given.

Cosine rule

With reference to triangle ABC of Fig. 12.19, the
cosine rule states:
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a?>=b*+ % —2bccos A
or b*=a?*+ c¢* —2accosB
or ¢Z=da%+ b*—2abcosC

The rule may be used only when:

(i) 2sides and the included angle are initially given,
or
(i1) 3 sides are initially given.

12.8 Area of any triangle

The area of any triangle such as ABC of Fig. 12.19
is given by:

(1) % x base x perpendicular height, or
(i1) %ab sin C or %ac sin B or %bc sin A, or

(iii) /[s(s —a)(s — b)(s — ¢)], where
s_a+b+c

2

12.9 Worked problems on the solution
of triangles and finding their

areas

Problem 21. In a triangle XYZ, /X =51°,
ZY=167° and YZ = 15.2 cm. Solve the triangle
and find its area.

The triangle XYZ is shown in Fig. 12.20. Since
the angles in a triangle add up to 180°, then
Z =180°—51°— 67° = 62°. Applying the sine rule:

152y z

sin51°  sin67°  sin62°
Usi 15.2 y i o
1n = n ran, 1n 1 .
Sine sin51°  sin67° a ANSposIng gives
15.2 sin 67°
_ 22 SO 18.00em=XZ
sin51°
U 152 2 i o
smg Sin 510 = Sin 620 an ransposmg glVCS.
15.2 sin 62°
= 220 1727 em=XY
sin51°

()

Figure 12.20

Area of triangle XYZ = %xy sinZ

= %(15.2)(18.00) sin 62° = 120.8 cm? (or area

= fxzsin ¥ = $(15.2)(17.27) sin 67° = 120.8 cm?).
Itis always worth checking with triangle problems

that the longest side is opposite the largest angle, and

vice-versa. In this problem, Y is the largest angle and
XZ is the longest of the three sides.

Problem 22. Solve the triangle PQR and
find its area given that QR =36.5mm, PR =
29.6 mm and £Q = 36°.

Triangle POR is shown in Fig. 12.21.

P
! g=29.6 mm
36°
Q=% smm
Figure 12.21
Applying the sine rule:
29.6 _ 36.5
sin36°  sinP
from which,
. 36.5 sin 36°
sinP = —— =0.7248
29.6

Hence P = sin~! 0.7248 = 46°27’ or 133°33'.
When P =46°27" and Q = 36° then
R=180°—46°27—36° =97°33.
When P =133°33" and Q = 36° then
R=180° —133°33/—36° =10°27".

Thus, in this problem, there are two separate sets
of results and both are feasible solutions. Such a
situation is called the ambiguous case.
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Case 1. P =46°27, 0 =36°, R=97°33,
p=36.5mm and ¢ =29.6 mm.
From the sine rule:

ro 296
sin97°33  sin 36°
from which,
29.65in 97°33/
_ 2968097733 _ 49,92 mm
sin 36°
Area = Jpgsin R = 3(36.5)(29.6) sin 97°33'
= 535.5mm?

Case 2. P =133°33/, 0 =36°, R=10°27,
p=36.5mm and g =29.6 mm.
From the sine rule:

ro 296
sin 10°27'  sin 36°
from which,

B 29.6sin 10°27’
o sin 36°

= 9.134 mm

Area = 1pgsin R = 1(36.5)(29.6) sin 10°27'
= 97.98 mm’.

Triangle POR for case 2 is shown in Fig. 12.22.

133°33’
P/ 29.6 mm

9.134 mrm
R

& N\ 36.5mm
36 10°27

Figure 12.22

In Problems 3 and 4, use the sine rule to solve
the triangles DEF and find their areas.

3. d=17cm, f=22cm, F =26°.
D =19°48' ) E =134°12/,
e =36.0cm, area = 134 cm?

4. d=32.6mm, e=25.4mm, D=104°22.
E=49°0,F =26°3%/,
f =15.09 mm, area = 185.6 mm?

In Problems 5 and 6, use the sine rule to solve
the triangles JKL and find their areas.

5. j=3.85cm, k=3.23cm, K =36°.
J=44°29' L = 99°31/, 7]
| =5.420cm, area = 6.132 cm? or
J=135°31,L = 8°29,

[ =0.811cm, area = 0.916 cm?

6. k=46 mm, /=36 mm, L =35°.

K =47°8',J] =97°52, 7]
j =62.2mm, area = 820.2 mm? or
K =132°52",J = 12°%/,

j =13.19 mm, area = 174.0mm? |

Now try the following exercise.

Exercise 57 Further problems on solving
triangles and finding their areas

In Problems 1 and 2, use the sine rule to solve
the triangles ABC and find their areas.
1. A=29°, B=68°, b=27 mm.

C =83°a=14.1 mm,

¢ =28.9 mm, area = 189 mm?

2. B=71°26/, C=56°32, b=8.60 cm.

A=52°2" ¢ =7.568cm,
a =7.152 cm, area = 25.65 cm?

12.10 Further worked problems on
solving triangles and finding
their areas

Problem 23. Solve triangle DEF and find its
area given that EF =35.0mm, DE =25.0 mm
and ZE = 64°.

Triangle DEF is shown in Fig. 12.23.
D

f=25.0 mm e

d=35.0mm

Figure 12.23
Applying the cosine rule:

¢ =d*+ f> —2dfcosE
ie. € =(35.00 + (25.0)°
—[2(35.0)(25.0) cos 64°]
= 1225 4+ 625 — 767.1 = 1083

from which, e = +/1083 = 32.91 mm
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Applying the sine rule:
32.91 _ 25.0
sin64°  sinF
. . 25.0 sin 64°
from which, sinF = — = 0.6828
32.91
Thus /F = sin"10.6828

= 43°4 or 136°56’
F =136°56' is not possible in this case since
136°56' + 64° is greater than 180°. Thus only
F =43°4’ is valid
/D = 180° — 64° — 43°4' = 72°56’

Area of triangle DEF = % df sinE
= % (35.0)(25.0) sin 64° =393.2 mm?.

Problem 24. A triangle ABC has sides a=
9.0cm, b=7.5cm and c=6.5cm. Determine
its three angles and its area.

Triangle ABC is shown in Fig. 12.24. It is usual first
to calculate the largest angle to determine whether
the triangle is acute or obtuse. In this case the largest
angle is A (i.e. opposite the longest side).

Applying the cosine rule:
a® = b* +c* — 2bccosA
from which, 2bc cos A = b* + ¢ — >

b*+c*—d® 7574652 —-9.0°

and CcosA =
2bc 2(7.5)(6.5)
=0.1795
A
b=7.5cm
c=6.5cm
B a=9.0cm ¢

Figure 12.24

Hence A= cos™10.1795=79°40' (or 280°20/,
which is obviously impossible). The triangle is thus
acute angled since cosA is positive. (If cosA had
been negative, angle A would be obtuse, i.e. lie
between 90° and 180°).

Applying the sine rule:
9.0 15
sin79°40/  sinB
from which,
7.5 sin 79°40
sinB= 27T _ 8198

9.0

Hence B = sin~' 0.8198 = 55°4'
and C = 180° — 79°40' — 55°4’ = 45°1¢’
Area = \/[s(s —a)(s — b)(s — ¢o)],
at+b+c 90475465
where s = =
2 2
=11.5cm
Hence area

= /[11.511.5 - 9.0)(11.5 — 7.5)(11.5 — 6.5)]

= /[11.5(2.5)(4.0)(5.0)] = 23.98 cm?

Alternatively, area = %ab sin C

= 1(9.0)(7.5)5in 45°16' = 23.98 cm?.

Now try the following exercise.

Exercise 58 Further problems on solving
triangles and finding their areas

In Problems 1 and 2, use the cosine and sine
rules to solve the triangles POR and find their
areas.

. g=12cm,r=16cm, P =54°
p=132cm,Q = 47°21’,
R=178°39 area=77.7 cmz_

2. ¢q=3.25m,r=4.42m,P =105°
p =6.127m, Q = 30°50,
R =44°10/, area = 6.938 m? i

In problems 3 and 4, use the cosine and sine
rules to solve the triangles XYZ and find their
areas.

3. x=10.0cm,y=8.0cm,z=7.0cm
X =83°20/,Y = 52°37,
7 =44°3 area = 27.8 cm?
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4, x=21mm, y=34mm, z=42 mm
Z =29°46',Y = 53°30’,
7Z =96°44’, area = 355 mm?>

12.11 Practical situations involving
trigonometry

There are a number of practical situations where
the use of trigonometry is needed to find unknown
sides and angles of triangles. This is demonstrated
in Problems 25 to 30.

Problem 25. A room 8.0 m wide has a span
roof which slopes at 33° on one side and 40°
on the other. Find the length of the roof slopes,
correct to the nearest centimetre.

A section of the roof is shown in Fig. 12.25.

B

33’ 40’
8.0m

(o]

A
Figure 12.25

Angle at ridge, B = 180°— 33°—40° = 107°
From the sine rule:
8.0 _a
sin 107°

~ sin33°
from which,

_ 8.0sin33°

- =4.556m
sin 107°

Also from the sine rule:

8.0 . c
sin 107°  sin 40°
from which,
8.0sin 40°
_ 80sind0”
sin 107°

Hence the roof slopes are 4.56m and 5.38 m,
correct to the nearest centimetre.

Problem 26. Two voltage phasors are shown in
Fig. 12.26. If Vi =40V and V, =100V deter-
mine the value of their resultant (i.e. length OA)
and the angle the resultant makes with V.

0 e
V,=40V B

Figure 12.26

Angle OBA =180° —45° =135°
Applying the cosine rule:

OA? = VI + V3 — 2V V, cos OBA
= 40 4 100? — {2(40)(100) cos 135°)}
= 1600 + 10000 — {5657}
= 1600 + 10000 + 5657 = 17257

The resultant

OA = /(17257) = 131.4V

Applying the sine rule:
131.4 _ 100
sin 135° ~ sinAOB
. . 100 sin 135°
from which, sinAOB = ————
131.4
= 0.5381

Hence angle AOB= sin~!0.5381=32°33" (or
147°27', which is impossible in this case).

Hence the resultant voltage is 131.4 volts at 32°33’
to Vi.

Problem 27. 1In Fig. 12.27, PR represents the
inclined jib of a crane and is 10.0 long. PQ is
4.0m long. Determine the inclination of the jib
to the vertical and the length of tie OR
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the plot is 620 m? find (a) the length of fen-
cing required to enclose the plot and (b) the
angles of the triangular plot.

[(a) 122.6 m (b) 94°49’, 40°39’, 44°32']

3. A jib crane is shown in Fig. 12.28. If the tie
rod PR is 8.0 long and PQ is 4.5 m long deter-
mine (a) the length of jib RQ and (b) the angle
between the jib and the tie rod.

[(a) 11.4m (b) 17°33]

z R
Figure 12.27
Applying the sine rule: |~
PR PO &
= . P
sin 120°  sinR 180 7
from which, ;
. PQsin120°  (4.0) sin 120° L
sinR = = /
PR 10.0 o
= Q
0.3464 P
Hence /R = sin~!0.3464 =20°16" (or 159°44’, ;
which is impossible in this case).
/P =180° — 120° — 20°16’ = 39°44’, which is the Fi 12.28
inclination of the jib to the vertical. tgure 12
Applying the sine rule: 4. A building site is in the form of a quadri-
10.0 OR lateral as shown in Fig. 12.29, and its area
: S = T adonn is 1510m?. Determine the length of the
sin 120 sin 39°44 perimeter of the site. [163.4 m]

from which, length of tie,

28.5m

_10.0sin 39044/

R — =17.38
e sin 120° m

Now try the following exercise.

Exercise 59 Further problems on practical
situations involving trigonometry

1. A ship P sails at a steady speed of 45 km/h in
adirection of W 32° N (i.e. a bearing of 302°)
from a port. At the same time another ship O
leaves the port at a steady speed of 35 km/h
in adirection N 15° E (i.e. a bearing of 015°). Figure 12.29
Determine their distance apart after 4 hours.

[193 km] 5. Determine the length of members BF and EB
2. Two sides of a triangular plot of land are in the roof truss shown in Fig. 12.30.
52.0 m and 34.0 m, respectively. If the area of [BF =3.9m, EB=4.0m]
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5m B 5m

Figure 12.30

6. Alaboratory 9.0 m wide has a spanroof which
slopes at 36° on one side and 44° on the other.
Determine the lengths of the roof slopes.

[6.35m, 5.37 m]

12.12 Further practical situations
involving trigonometry

Problem 28. A vertical aerial stands on hori-
zontal ground. A surveyor positioned due east
of the aerial measures the elevation of the top as
48°. He moves due south 30.0 m and measures
the elevation as 44°. Determine the height of the
aerial.

InFig. 12.31, DC represents the aerial, A is the initial

position of the surveyor and B his final position.

. DC
From triangle ACD, tan 48° = —,
AC
DC
from which AC =
tan 48°
Similarly, from triangle BCD,
C— DC
 tan44°

For triangle ABC, using Pythagoras’ theorem:

BC? = AB* + AC?

DC \? DC \?
= (30.0)2
(tan44°) (30.0"+ (tan48°>

DC? 1 = 30.0%
tan?44°  tan248°

DC?(1.072323 — 0.810727) = 30.0%

» 30,0
~0.261596

= 34404

D
48°
C A
30.0m
44°
B
Figure 12.31

Hence, height of aerial,

DC = +/3440.4 = 58.65m

Problem 29. A crank mechanism of a petrol
engineis shownin Fig. 12.32. Arm OAis 10.0 cm
long and rotates clockwise about O. The con-
necting rod AB is 30.0cm long and end B is
constrained to move horizontally.

Figure 12.32

(a) For the position shown in Fig. 12.32 deter-
mine the angle between the connecting rod
AB and the horizontal and the length of OB.
(b) How far does B move when angle AOB

changes from 50° to 120°?

(a) Applying the sine rule:
AB AO

sin50°  sinB




INTRODUCTION TO TRIGONOMETRY 131

from which,
. AO sin 50° 10.0 sin 50°
sinB = =
AB 30.0
= 0.2553

Hence B = sin~!0.2553 = 14°47’ (or 165°13/,
which is impossible in this case).

Hence the connecting rod AB makes an angle
of 14°47’ with the horizontal.

Angle OAB =180° — 50° — 14°47' =115°13'.
Applying the sine rule:
30.0 OB
sin50°  sin 115°13/
from which,
30.0sin 115°13’
sin 50°
(b) Figure 12.33 shows the initial and final pos-

itions of the crank mechanism. In triangle OA’B’,
applying the sine rule:

OB = = 35.43 cm

300  10.0
sin 120° ~ sinA’B'O
from which,
., 10.0sin120°
sSinA’ B0 = —— =0.2887
30.0
30.0 cm o j L
_ X, 120°
" 50° 2<%/ 10.0 &m
B B O
Figure 12.33

Hence A’B'O = sin~! 0.2887 = 16°47’ (or 163°13’
which is impossible in this case).
Angle OA'B’ = 180° — 120° — 16°47' = 43°13'.

Applying the sine rule:

300 OB
sin 120° ~ sin43°13/
from which,
30.0sin43°13
o = 20 0 a3 70em
sin 120°

Since OB = 35.43cm and OB’ = 23.72cm then
BB =3543 —-23.72 =11.71cm.

Hence B moves 11.71cm when angle AOB
changes from 50° to 120°.

Problem 30. The area of a field is in the form
of a quadrilateral ABCD as shown in Fig. 12.34.
Determine its area.

Figure 12.34

A diagonal drawn from B to D divides the quadrilat-
eral into two triangles.

Area of quadrilateral ABCD

= area of triangle ABD + area of triangle BCD
= 5(39.8)(21.4) sin 114° + $(42.5)(62.3) sin 56°
= 389.04 + 1097.5 = 1487 m?

Now try the following exercise.

Exercise 60 Further problems on practical
situations involving trigonometry

1. PQ and QR are the phasors representing the
alternating currents in two branches of a cir-
cuit. Phasor PQ is 20.0 A and is horizontal.
Phasor QR (which is joined to the end of PQ
to form triangle POR) is 14.0A and is at an
angle of 35° to the horizontal. Determine the
resultant phasor PR and the angle it makes
with phasor PQ. [32.48 A, 14°19']

2. Three forces acting on a fixed point are repre-
sented by the sides of a triangle of dimensions
7.2cm, 9.6cm and 11.0cm. Determine the
angles between the lines of action and the
three forces. [80°25',59°23" 40°12']
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3. Calculate, correct to 3 significant figures, the 5. A reciprocating engine mechanism is shown
co-ordinates x and y to locate the hole centre in Fig. 12.37. The crank AB is 12.0cm long
at P shown in Fig. 12.35. and the connecting rod BC is 32.0 cm long.

[x =693 mm, y =142 mm] For the position shown determine the length
of AC and the angle between the crank and
P the connecting rod. [40.25 cm, 126°3]

y
Y1 16° :40° Figure 12.37
x  100mm '
Figure 12.35 6. From Fig. 12.37, determine how far C moves,
) o correct to the nearest millimetre when angle
4. An idler gear, 30 mm in diameter, has to be CAB changes from 40° to 160°, B moving in
fitted between a 70 mm diameter driving gear an anticlockwise direction. [19.8 cm]

and a 90 mm diameter driven gear as shown

in Fig. 12.36. Determine the value of angle 0 . R
between the center lines. [130°] 7. Asurveyor, standing W 25° S of a tower mea-

sures the angle of elevation of the top of the
tower as 46°30’. From a position E 23° S from
the tower the elevation of the top is 37°15'.
Determine the height of the tower if the dis-
tance between the two observations is 75 m.

[36.2m)]

90 mm dia

8. An aeroplane is sighted due east from a radar
station at an elevation of 40° and a height

& ) of 8000 m and later at an elevation of 35°
/A +«— 70 mm dia

99.78 mm 0 C 30 mm dia

and height 5500 m in a direction E 70° S.
If it is descending uniformly, find the angle
of descent. Determine also the speed of the
aeroplane in km/h if the time between the
two observations is 45 s.

[13°57’, 829.9 km/h]

Figure 12.36
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Cartesian and polar co-ordinates

13.1 Introduction

There are two ways in which the position of a point
in a plane can be represented. These are

(a) by Cartesian co-ordinates, i.e. (x, y), and

(b) by polar co-ordinates, i.e. (r, ), where r is a
‘radius’ from a fixed point and 0 is an angle from
a fixed point.

13.2 Changing from Cartesian into
polar co-ordinates

In Fig. 13.1, if lengths x and y are known, then the
length of r can be obtained from Pythagoras’ theo-
rem (see Chapter 12) since OPQ is a right-angled
triangle. Hence 72 = (x> 4+ y?)

from which, | r=,/x2+y?
YA
P
I
I t y
1
0 n i
0 le Q@  x
X
Figure 13.1

From trigonometric ratios (see Chapter 12),

tan 6 = Y

X
from which | 6=tan™! u
X

r=vx2+y? and 6= tan~! Y

mulae we need to change frorr)f Cartesian to polar
co-ordinates. The angle 6, which may be expressed
in degrees or radians, must always be measured from
the positive x-axis, i.e. measured from the line OQ
in Fig. 13.1. It is suggested that when changing from
Cartesian to polar co-ordinates a diagram should
always be sketched.

are the two for-

Problem 1. Change the Cartesian co-ordinates
(3, 4) into polar co-ordinates.

A diagram representing the point (3, 4) is shown in
Fig. 13.2.

P
i )
1
1
I
r
: 4
1
|
1
0 o .
Oq—pl X
3

Figure 13.2

From Pythagoras’ theorem, r = +/3% +42 =5 (note
that —5 has no meaning in this context). By trigono-
metric ratios, 6 = tan~! ‘31 =53.13° or 0.927 rad.

[note that 53.13° =53.13 x (;r/180) rad = 0.927 rad]

Hence (3, 4) in Cartesian co-ordinates corres-
ponds to (5, 53.13°) or (5, 0.927rad) in polar
co-ordinates.

Problem 2. Express in polar co-ordinates the
position (—4, 3).

A diagram representing the point using the Cartesian
co-ordinates (—4, 3) is shown in Fig. 13.3.
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P ¥ 3
I
1
] r

31
' 0
! PN
le >0 x
[ 4

Figure 13.3

From Pythagoras’ theorem, r =+/42 + 32 =35,

By trigonometric ratios, o= tan™! %: 36.87° or
0.644 rad.

Hence 6 = 180° — 36.87° = 143.13° or

0=m —0.644 =2.498 rad.

Hence the position of point P in polar co-ordinate
form is (5, 143.13°) or (5, 2.498 rad).

Problem 3.
co-ordinates.

Express (—5, —12) in polar

A sketch showing the position (—5, —12) is shown
in Fig. 13.4.

r=+/524122=13

and o =tan  —
5
=67.38°0r 1.176 rad
Hence 6 = 180° + 67.38° =247.38°or
0 =m+1.176 = 4.318rad
Y1l
5 :
e—pN
A o @
| o
I
]
12] 1|
1 r
I
i
1
.
P
Figure 13.4

Thus (-5, —12) in Cartesian co-ordinates corres-
ponds to (13, 247.38°) or (13, 4.318 rad) in polar
co-ordinates.

Problem 4. Express (2, —5) in polar
co-ordinates.

A sketch showing the position (2, —5) is shown in
Fig. 13.5.

r =224 52 =+/29 = 5.385 correct to

3 decimal places
o = tan™! ; = 68.20° or 1.190rad

Hence 6 = 360° — 68.20° = 291.80° or
0 =2m —1.190 = 5.093rad

v A

A
i

C% r

x ¥

=]

-

[ |

Figure 13.5

Thus (2, —5) in Cartesian co-ordinates corres-
ponds to (5.385, 291.80°) or (5.385, 5.093 rad) in
polar co-ordinates.

Now try the following exercise.

Exercise 61 Further problems on changing
from Cartesian into polar co-ordinates

In Problems 1 to 8, express the given Carte-
sian co-ordinates as polar co-ordinates, correct
to 2 decimal places, in both degrees and in
radians.

1. 3,5  [(5.83,59.04°) or (5.83, 1.03 rad)]
(6.61,20.82°) or

2. (6.18,2.35) [(6,61,0.36rad) }
(4.47,116.57°) or

3. (=2,4) [(4.47,2.03rad) }
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4. (=5.4,3.7) §2§§54554§§d§ Or:
s [qamme
6. (—2.4,-3.6) :Ei:%i?iill;; Or:
7. (5, -3) 833?2794?35 Or:
so6-ne [U38 o]

13.3 Changing from polar into
Cartesian co-ordinates

From the right-angled triangle OPQ in Fig. 13.6.

X . y
cosf = —andsin @ = =, from
r r

trigonometric ratios

Hence

and y = rsinf

<

©
b Ay

Figure 13.6

If lengths » and angle 6 are known then x =r cos 6
and y=rsinf are the two formulae we need to
change from polar to Cartesian co-ordinates.

Problem 5.
co-ordinates.

Change (4, 32°) into Cartesian

A sketch showing the position (4, 32°) is shown in
Fig. 13.7.

x=rcosf =4cos32° =3.39
y=rsinf =4sin32° =2.12

Now
and

Yy A

Figure 13.7

Hence (4, 32°) in polar co-ordinates corresponds
to (3.39, 2.12) in Cartesian co-ordinates.

Problem 6. Express (6, 137°) in Cartesian
co-ordinates.

A sketch showing the position (6, 137°) is shown in
Fig. 13.8.

x =rcosf = 6cos 137° = —4.388
which corresponds to length OA in Fig. 13.8.
y=rsinf = 6sin 137° = 4.092

which corresponds to length AB in Fig. 13.8.

m
b

:b-:————-—
y

Figure 13.8

Thus (6, 137°) in polar co-ordinates corresponds
to (—4.388, 4.092) in Cartesian co-ordinates.

(Note that when changing from polar to Cartesian
co-ordinates it is not quite so essential to draw
a sketch. Use of x=rcosf and y=rsin0 auto-
matically produces the correct signs.)

Problem 7. Express(4.5,5.16rad)in Cartesian
co-ordinates.

A sketch showing the position (4.5, 5.16rad) is
shown in Fig. 13.9.

x=rcosf =45c0s5.16 =1.948
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¥ A
0=25.16 rad
4 A "
T =
N | x
r=45
1
[}
[}
B

Figure 13.9

which corresponds to length OA in Fig. 13.9.
y=rsinf =4.5sin5.16 = —4.057

which corresponds to length AB in Fig. 13.9.

Thus (1.948, —4.057) in Cartesian co-ordinates
corresponds to (4.5, 5.16rad) in polar
co-ordinates.

13.4 Useof R > Pand P — R
functions on calculators

Another name for Cartesian co-ordinates is rect-
angular co-ordinates. Many scientific notation cal-
culators possess R — P and P — R functions. The
R is the first letter of the word rectangular and the P is
the first letter of the word polar. Check the operation
manual for your particular calculator to determine
how to use these two functions. They make changing
from Cartesian to polar co-ordinates, and vice-versa,
so much quicker and easier.

Now try the following exercise.

Exercise 62 Further problems on changing
polar into Cartesian co-ordinates

In Problems 1 to 8, express the given polar co-
ordinates as Cartesian co-ordinates, correct to
3 decimal places.

1. (5,75°) [(1.294, 4.830)]
2. (4.4,1.12rad) [(1.917, 3.960)]

3. (7, 140°) [(—5.362, 4.500)]
4. (3.6,2.5rad) [(—2.884, 2.154)]
5. (10.8, 210°) [(=9.353, —5.400)]
6. (4, 4rad) [(—2.615, —3.207)]
7. (1.5, 300°) [(0.750, —1.299)]
8. (6, 5.5rad) [(4.252, —4.233)]
9. Figure 13.10 shows 5 equally spaced holes

on an 80 mm pitch circle diameter. Calculate
their co-ordinates relative to axes Ox and Oy
in (a) polar form, (b) Cartesian form.

Calculate also the shortest distance between
the centres of two adjacent holes.

Figure 13.10

[(@) 40£18°, 40£90°, 40/162°,
40/234°, 40/306°,
(b) (38.04 +j12.36), (0 + j40),
(—38.04 +j12.36),
(—23.51 — j32.36),(23.51 —j32.36)
47.02 mm)]
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The circle and 1ts properties

14.1 Introduction

A circle is a plain figure enclosed by a curved line,
every point on which is equidistant from a point
within, called the centre.

14.2 Properties of circles

®

The distance from the centre to the curve is
called the radius, r, of the circle (see OP in
Fig. 14.1).

Figure 14.1

(ii)

The boundary of a circle is called the circum-
ference, c.

(iii) Any straight line passing through the centre

(iv)

and touching the circumference at each end is
called the diameter, d (see OR in Fig. 14.1).

Thus d =2r.
. circumference
The ratio ——— = a constant for any
) diameter
circle.

This constant is denoted by the Greek let-
ter r (pronounced ‘pie’), where m = 3.14159,
correct to 5 decimal places.

Hence ¢c/d =m or¢ = nd or c =2mr.

(v) A semicircle is one half of the whole circle.
(vi) A quadrant is one quarter of a whole circle.
(vii) A tangent to a circle is a straight line which

meets the circle in one point only and does not
cut the circle when produced. AC in Fig. 14.1
is a tangent to the circle since it touches the
curve at point B only. If radius OB is drawn,
then angle ABO is a right angle.

(viii)

A sector of a circle is the part of a circle
between radii (for example, the portion OXY
of Fig. 14.2 is a sector). If asector is less than a
semicircleitis called aminor sector, if greater
than a semicircle it is called a major sector.

e

DN\

R

Figure 14.2

(ix)

x)

(xi)

(xii)

(xiii)

A chord of a circle is any straight line which
divides the circle into two parts and is termin-
ated at each end by the circumference. ST, in
Fig. 14.2 is a chord.

A segment is the name given to the parts into
which a circle is divided by a chord. If the
segment is less than a semicircle it is called a
minor segment (see shaded area in Fig. 14.2).
If the segment is greater than a semicircle it
is called a major segment (see the unshaded
area in Fig. 14.2).

An arc is a portion of the circumference of a
circle. The distance SRT in Fig. 14.2 is called
a minor arc and the distance SX Y7 is called
a major arc.

The angle at the centre of a circle, sub-
tended by an arc, is double the angle at the
circumference subtended by the same arc.
With reference to Fig. 14.3, Angle AOC =
2 x angle ABC.

The angle in a semicircle is a right angle (see
angle BOP in Fig. 14.3).

Figure 14.3
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Problem 1. Ifthe diameter of a circle is 75 mm,
find its circumference.

Circumference, ¢ = 7 x diameter = td
=m(75) =235.6 mm.

Problem 2. In Fig. 14.4, AB is a tangent to
the circle at B. If the circle radius is 40 mm and
AB = 150 mm, calculate the length AO.

,q

Figure 14.4

A tangent to a circle is at right angles to a radius
drawn from the point of contact, i.e. ABO =90°.
Hence, using Pythagoras’ theorem:

AO* = AB? + OB?
A0 = (AB2 1 0B2) = V[(150)% + (40)2]
= 155.2 mm

Now try the following exercise.

Exercise 63 Further problems on properties
of circles

1. If the radius of a circle is 41.3 mm, calculate
the circumference of the circle.

[259.5 mm]
2. Find the diameter of a circle whose perimeter
is 149.8 cm. [47.68 cm]

3. A crank mechanism is shown in Fig. 14.5,
where XY is a tangent to the circle at point X.
If the circle radius OX is 10cm and length
OY is 40cm, determine the length of the
connecting rod XY.

X

O 40 cm Y

Figure 14.5 [38.73 cm]

14.3 Arc length and area of a sector

One radian is defined as the angle subtended at the
centre of a circle by an arc equal in length to the
radius. With reference to Fig. 14.6, for arc length s,

0 radians =s/r or arc length,| s = rf | (1)

where 6 is in radians.

s

A

Figure 14.6

When s = whole circumference (= 27r) then
O=s/r=2nr/r=2m.

i.e. 27 rad =360° or| 7w rad =180°

Thus 1 rad = 180° /7 = 57.30°, correct to 2 decimal
places.
Since & rad =180°, then 7/2 =90°, /3 =60°,
/4 =45°, and so on. 0
2
Area of a sector = 360 (mre)
when 6 is in degrees

_ 0 51
—g(nr)_erG )

when 6 is in radians

Problem 3.
(b) 69°47'.

Convert to radians: (a) 125°

(a) Since 180°=m rad then 1°=m/180 rad,
therefore

125° = 125 (l)c — 2.182 rad
130

(Note that © means ‘circular measure’ and indi-
cates radian measure.)
o

47
(b) 69°47" =69 0 =69.783°

69.783° = 69.783 (1%0) — 1.218rad

Problem 4. Convert to degrees and minutes:
(a) 0.749 rad (b) 37/4 rad.
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(a) Since m rad=180° then 1 rad=180°/mx,
therefore

1 o
0.749=0.749 (ﬁ) =42915°
b4

0.915° =(0.915x60) = 55’, correct to the near-
est minute, hence

0.749 rad = 42°55’

180\°
(b) Since 1 rad = <—> then
T

4 4

3 37 (180\° 3
2 jad =2 (—) = 2(180)° = 135°.
T 4

Problem 5. Express in radians, in terms of 7,
(a) 150° (b) 270° (c) 37.5°.

Since 180° = 7 rad then 1° =180/, hence

5
(a) 150° =150 (%) rad = ?” rad

3
(b) 270° =270 (i) rad = >F rad

180 2
o b/ 757 Sn
(c) 37.5°=37.5 (@) rad = T rad = rad

Now try the following exercise.

Exercise 64 Further problems on radians
and degrees

1. Convert to radians in terms of m: (a) 30°
b4 Sm Sm

b) 75° (c) 225°. —(b) — —
(b) 75° (¢) [(a) 6() 12(0) 4]
2. Convert to radians: (a) 48° (b) 84°51

(c) 232°15'.
[(a) 0.838 (b) 1.481 (c) 4.054]

5w 47
3. Convert to degrees: (a) Frad (b) ?rad

() 71—72[ rad. [(a) 150° (b) 80° (¢) 105°]

4. Convert to degrees and minutes:
(a) 0.0125rad (b) 2.69rad (c) 7.241 rad.
[(a) 0°43’ (b) 154°8' (c) 414°53']

14.4 Worked problems on arc length
and sector of a circle

Problem 6. Find the length of arc of a circle of
radius 5.5 cm when the angle subtended at the
centre is 1.20rad.

From equation (1), length of arc, s = r6, where 0 is
in radians, hence

5§ =1(5.5)(1.20) = 6.60 cm

Problem 7. Determine the diameter and cir-
cumference of a circle if an arc of length 4.75 cm
subtends an angle of 0.91 rad.

. s 4.75
Since s=rfthenr=-=——=5.22cm
6 091
Diameter=2 x radius =2 x 5.22 =10.44 cm
Circumference, c = nd = 7(10.44) = 32.80 cm

Problem 8. If an angle of 125° is subtended
by an arc of a circle of radius 8.4 cm, find the
length of (a) the minor arc, and (b) the major
arc, correct to 3 significant figures.

(a) Since 180° =mrad then 1°= (%) rad and
125° =125 () rad.
180
Length of minor arc,
T
=r0=(8.4)(125) () =18.3cm,
s=rt=(8.4)(125) 180 cm
correct to 3 significant figures.
(b) Length of major arc
= (circumference — minor arc)
=2m(8.4) — 18.3=34.5cm,
correct to 3 significant figures.

(Alternatively, major arc = r6
=8.4(360 — 125)(7r/180) = 34.5cm.)

Problem 9. Determine the angle, in degrees
and minutes, subtended at the centre of a cir-
cle of diameter 42mm by an arc of length
36 mm. Calculate also the area of the minor
sector formed.
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Since length of arc, s=r6 then 0 =s/r

diameter . 42

Radius, r = =—=21mm
2 2
hence = > = >0 — 17143 rad
r 21

1.7143rad = 1.7143 x (180/7)° = 98.22° = 98°13’
= angle subtended at centre of circle.
From equation (2), area of sector

_ %},20 — %(21)2(1.7143) =378 mm?.

Problem 10. A football stadium floodlight can
spread its illumination over an angle of 45° to a
distance of 55 m. Determine the maximum area
that is floodlit.

Floodlit area = area of sector

1 1
— %0 = —(55) (45 x 1)
2 2 180
from equation (2)

— 1188 m?

Problem 11. An automatic garden spray pro-
duces a spray to a distance of 1.8 m and revolves
through an angle o« which may be varied. If the
desired spray catchment area is to be 2.5 m?, to
what should angle « be set, correct to the nearest
degree.

Area of sector = %rze, hence 2.5 = %(1.8)204

25x%x2

=1.5432rad
1.82

from which, o =

180°
1.5432rad = | 1.5432 x — | =88.42°
b4

Hence angle o = 88°, correct to the nearest degree.

Now try the following exercise.

Exercise 65 Further problems on arc
length and sector of a circle

1. Find the length of an arc of a circle of radius
8.32 cm when the angle subtended at the cen-
tre is 2.14 rad. Calculate also the area of the
minor sector formed.

[17.80 cm, 74.07 cm?]

2. If the angle subtended at the centre of
a circle of diameter 82mm is 1.46rad,

find the lengths of the (a) minor arc
(b) major arc.
[(a) 59.86 mm (b) 197.8 mm)]

3. A pendulum of length 1.5m swings
through an angle of 10° in a single swing.
Find, in centimetres, the length of the arc
traced by the pendulum bob. [26.2 cm]

4. Determine the length of the radius and cir-
cumference of a circle if an arc length of
32.6 cm subtends an angle of 3.76 rad.

[8.67 cm, 54.48 cm]

5. Determine the angle of lap, in degrees and
minutes, if 180 mm of a belt drive are in
contact with a pulley of diameter 250 mm.

[82°30']

6. Determine the number of complete revo-
Iutions a motorcycle wheel will make in
travelling 2km, if the wheel’s diameter is
85.1cm. [748]

7. The floodlights at a sports ground spread its
illumination over an angle of 40° to a distance
of 48 m. Determine (a) the angle in radians,
and (b) the maximum area that is floodlit.

[(a) 0.698 rad (b) 804.1 m?]

8. Determine (a) the shaded area in Fig. 14.7
(b) the percentage of the whole sector that
the area of the shaded portion represents.

[(a) 396 mm? (b) 42.24%]

Figure 14.7

14.5 The equation of a circle

The simplest equation of a circle, centre at the origin,
radius r, is given by:
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For example, Fig. 14.8 shows a circle x* 4 y? =9.
More generally, the equation of a circle, centre (a, b),
radius r, is given by:

x—a)+(y—bF=r (1)

Figure 14.9 shows a circle (x —2)%> + (y — 3)*> =4.
The general equation of a circle is:

x2+y2—|—2ex+2fy+c=0 2)

\‘_ye_g
L
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]
3
Figure 14.8
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Figure 14.9

Multiplying out the bracketed terms in equation (1)
gives:

x? = 2ax 4+ a* 4+ y* — 2by + b* = r?

Comparing this with equation (2) gives:

. 2e

2¢e = —2a, ie.a = ——

2

2

and 2f = —2b, ie. b = —?f

and ¢ =a?+b* -2,
ie., r=+@ +b —oc

Thus, for example, the equation

X4y —4x—6y+9=0

represents a circle with centre a= —(%4),
b= —(_76), i.e., at (2, 3) and radius

r=+2%2+32-9)=2.

Hence x>+y> —4x—6y+9=0 is the circle
shown in Fig. 14.9 (which may be checked by
multiplying out the brackets in the equation

(x—27+(y—3)7’=4

Problem 12. Determine (a) the radius, and
(b) the co-ordinates of the centre of the circle
given by the equation: x> +y>+8x — 2y + 8 =0.

x> 432 +8x —2y+8=0 is of the form shown in
equation (2),

wherea = —(3) = -4b=—(F) =1
and r=[(-4)2+ (12 -8]=+9=3

Hence x*+y>+8x—2y+8=0 represents a
circle centre (—4, 1) and radius 3, as shown in
Fig. 14.10.

Alternatively, x> 4y 4 8x — 2y +8 =0 may be
rearranged as:

G424+ -1D2=-9=0
ie. G+ +(y-1)72=3

which represents a circle, centre (—4, 1) and
radius 3, as stated above.
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Problem 13. Sketch the circle given by the
equation: x* 4+ y> —4x + 6y —3=0.

The equation of a circle, centre (a, b), radius r is
given by:

x—af +(y—b>=r
The general equation of a circle is
x2+y2+2ex+2fy+c=0.

2e 2f

From above a = ——, b= —— and
2 2

r=+/(a?>+b%—o).
Hence if x> +y? —4x+ 6y —3=0
then a=—(*2—4) =2, b:_(é) = _3

2
and = /[2)2 + (—3)2 — (-3)]

Thus the circle has centre (2, —3) and radius 4, as
shown in Fig. 14.11.

Alternatively, x> 4+ y*> —4x +6y — 3 =0 may be
rearranged as:

(x—22+(y+3?*-3-13=0
ie. x=224(y+3)?%=42

which represents a circle, centre (2, —3) and
radius 4, as stated above.
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Figure 14.11

Now try the following exercise.

Exercise 66 Further problems on the equa-
tion of a circle

1. Determine the radius and the co-ordinates of
the centre of the circle given by the equation

x4 y? +6x —2y —26=0.
[69 (_3’ 1)]
2. Sketch the circle given by the equation
x> 4y —6x+4y—3=0.
[Centre at (3, —2), radius 4]
3. Sketch the curve x? + (y— 1)2—25=0.
[Circle, centre (0, 1), radius 5]

4. Sketch the curve x=6,/[1 — (y/6)*].
[Circle, centre (0, 0), radius 6]

14.6 Linear and angular velocity
Linear velocity

Linear velocity v is defined as the rate of change
of linear displacement s with respect to time ¢. For
motion in a straight line:

. . change of displacement
linear velocity =

change of time

i 2 )
1.€. V= -
t

The unit of linear velocity is metres per second (m/s).

Angular velocity

The speed of revolution of a wheel or a shaft is
usually measured in revolutions per minute or revo-
lutions per second but these units do not form part
of a coherent system of units. The basis in SI units
is the angle turned through in one second.

Angular velocity is defined as the rate of change of
angular displacement 6, with respect to time ¢. For an
object rotating about a fixed axis at a constant speed:

. angle turned through
angular velocity =

time taken

} 0
ie. 0= -
t

(2)
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The unit of angular velocity is radians per second  (a) Linear velocity v = 64.8 km/h
(rad/s). An object rotating at a constant speed of

n revolutions per second subtends an angle of 27n — 64.8 km % 1000 2L « h — 18m/s
radians in one second, i.e., its angular velocity o is "~ h km 3600 s '
given by:
Th i f heel = 600 =
® = 2nnrad/s 3) e radius of a wheel = - = 300 mm

=0.3m.
From equation (1) on page 138, s=rf and from From equation (5), v = wr, from which,
equation (2) on page 142, 0 = wt y 13
hence s = r(wf) angular velocity @ = =03
from which ; = wr = 60rad/s

s From equation (4), angular velocity, ® = 2nn,
However, from equation (1) v = P where n is in rev/s. €0
1)
Hence angular speed n = — = —rev/s
2n 27w

hence vV = or 4)

60
= 60 x — rev/min
Equation (4) gives the relationship between linear 2 .
velocity v and angular velocity . = 573 rev/min

(b) From equation (1), since v = s/t then the time
taken to travel 1.44 km, i.e., 1440 m at a constant

Problem 14. A wheel of diameter 540 mm is

speed of 18 m/s is given by:
rotating at rev/min. Calculate the angular s 1440m
T .
velocity of the wheel and the linear velocity of time 1 = > - 18m /s = 80s

a point on the rim of the wheel.

Since a wheel is rotating at 573 rev/min, then in
80/60 minutes it makes

From equation (3), angular velocity w = 2wn where 30

n is the speed of revolution in rev/s. Since in this case 573 rev/min X — min = 764 revolutions
60

1500 : 500
n= rev/min = o rev/s, then ' .
O Now try the following exercise.
) 1500
angular velocity @ = 27 ( 607 ) = 50rad/s Exercise 67 Further problems on linear and

. . . . angular velocity
The linear velocity of a point on the rim, v= wr,

where r is the radius of the wheel, i.e. 1. A pulley driving a belt has a diameter of

540 0.54 300mm and is turning at 2700/ revolu-
- mm=——m= 0.27 m. tions per minute. Find the angular velocity
. . of the pulley and the linear velocity of the

Thus linear velocity v = wr = (50)(0.27) belt assuming that no slip occurs.
=13.5m/s [w=90rad/s, v=13.5m/s]
2. A bicycle is travelling at 36 km/h and the
Problem 15. A car is travelling at 64.8 km/h diameter of the wheels of the bicycle is
and has wheels of diameter 600 mm. 500 mm. Determine the linear velocity of a

. . . point on the rim of one of the wheels of
(a) Find the angular V61901ty of the wheels in the bicycle, and the angular velocity of the
both rad/s and rev/min. wheels.

(b) If the speed remains constant for 1.44 km, [v=10m/s, w = 40 rad/s]

determine the number of revolutions made o .
by the wheel, assuming no slipping occurs. 3. A train is travelling at 108 km/h and has
wheels of diameter 800 mm.
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(a) Determine the angular velocity of the
wheels in both rad/s and rev/min.

(b) Ifthe speed remains constant for 2.70 km,
determine the number of revolutions
made by a wheel, assuming no slipping
occurs.

(a) 75rad/s,716.2 rev/min
(b) 1074 revs

14.7 Centripetal force

When an object moves in a circular path at constant
speed, its direction of motion is continually changing
and hence its velocity (which depends on both mag-
nitude and direction) is also continually changing.
Since acceleration is the (change in velocity)/(time
taken), the object has an acceleration. Let the object
be moving with a constant angular velocity of w and a
tangential velocity of magnitude v and let the change
of velocity for a small change of angle of 6 (=wt)
be V in Fig. 14.12. Then vy — vy = V. The vector
diagram is shown in Fig. 14.12(b) and since the mag-
nitudes of v and v, are the same, i.e. v, the vector
diagram is an isosceles triangle.

rojo

Vo

(a)

Figure 14.12

Bisecting the angle between v, and v; gives:

.6 Vvi2 Vv
sin- = — = —
2 v 2v

0
i.e. V =2wvsin 3 (D)

Since 6 = wt then

t=—= )
w

Dividing equation (1) by equation (2) gives:

K _ 2vusin(6/2)  wvwsin(6/2)
o 6/2)

t (B/w)

sin (6/2) _

For small angles ——— ~ 1,
(0/2)

V' change of velocity
hence 7=

change of time
= acceleration a = vw

However, w = Y (from Section 14.6)
r

U2

v
w=v--—=—
r r

thus

. . .
1.e. the acceleration a is — and is towards the cen-

r
tre of the circle of motion (along V). It is called the
centripetal acceleration. If the mass of the rotating

object is m, then by Newton’s second law, the cen-
2

my . . ..
tripetal force is —— and its direction is towards the

r
centre of the circle of motion.

Problem 16. A vehicle of mass 750 kg travels
around a bend of radius 150m, at 50.4 km/h.
Determine the centripetal force acting on the
vehicle.

2
. .. mv .
The centripetal force is given by —— and its

r
direction is towards the centre of the circle.

Mass m = 750kg, v = 50.4km/h

50.4 x 1000
=—m/s
60 x 60
= 14m/s
and radius r = 150 m,
750(14)°
thus centripetal force = % =980 N.
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Problem 17. An object is suspended by a
thread 250 mm long and both object and thread
move in a horizontal circle with a constant angu-
lar velocity of 2.0rad/s. If the tension in the
thread is 12.5N, determine the mass of the
object.

Centripetal force (i.e. tension in thread),

I’f’Lv2

F=—=125N
r

Angular velocity w =2.0rad/s and
radius r = 250 mm = 0.25 m.

Since linear velocity v = wr, v =(2.0)(0.25)

= 0.5m/s.
. mv> Fr
Since F = ——, then mass m = =
r v
12.5)(0.25
i.e. mass of object, m = % =12.5kg

Problem 18. An aircraft is turning at constant
altitude, the turn following the arc of a circle of
radius 1.5 km. If the maximum allowable accel-
eration of the aircraft is 2.5 g, determine the
maximum speed of the turn in km/h. Take g as
9.8 m/s?.

The acceleration of an object turning in a circle is
2

v . .
—. Thus, to determine the maximum speed of turn,
’

V2

— =2.5g, from which,
’

velocity, v = /(2.5gr) = 1/(2.5)(9.8)(1500)
= /36750 = 191.7m/s

60 x 60
1000

and 191.7m/s =191.7x

km/h = 690 km/h

Now try the following exercise.

Exercise 68 Further problems on cen-
tripetal force

1. Calculate the tension in a string when it is
used to whirl a stone of mass 200 g round
in a horizontal circle of radius 90 cm with a
constant speed of 3 m/s. [2N]

2. Calculate the centripetal force acting on a
vehicle of mass 1 tonne when travelling
around a bend of radius 125 m at 40 km/h.
If this force should not exceed 750 N, deter-
mine the reduction in speed of the vehicle to
meet this requirement.

[988 N, 5.14 km/h]

3. A speed-boat negotiates an S-bend consist-
ing of two circular arcs of radii 100 m and
150 m. If the speed of the boat is constant
at 34 km/h, determine the change in acceler-
ation when leaving one arc and entering the

other. [1.49 m/s?]
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Assignment 4

This assignment covers the material contained
in Chapters 12 to 14.

The marks for each question are shown in
brackets at the end of each question.

1. A 2.0m long ladder is placed against a perpen-  Figure A4.1
dicular pylon with its foot 52 cm from the pylon.
(a) Find how far up the pylon (correct to the near-

est mm) the ladder reaches. (b) If the foot of the (a) If ZPOR is initially zero, how far does end
ladder is moved 10 cm towards the pylon how O travel in Al{ revolution

ise?
far does the top of the ladder rise? - (b) If ZPOR is initially 40° find the angle
between the connecting rod and the horizon-
2. Evaluate correct to 4 significant figures: tal and the length OQ

(¢c) Find the distance Q moves (correct to the
nearest cm) when ZPOR changes from 40°
to 140° (16)

(a) cos 124°13’  (b) cot 72.68° @)

3. From a point on horizontal ground a surveyor
measures the angle of elevation of a church spire 8
as 15°. He moves 30 m nearer to the church and
measures the angle of elevation as 20°. Calculate
the height of the spire. )

. Change the following Cartesian co-ordinates
into polar co-ordinates, correct to 2 decimal
places, in both degrees and in radians:

(a) (—2.3,5.4) (b)(7.6,—-9.2) (10)

4. If secant §=2.4613 determine the acute ) ) )
angle 6 4) 9. Change the following polar co-ordinates into
Cartesian co-ordinates, correct to 3 decimal
5. Evaluate, correct to 3 significant figures: places: (a) (6.5, 132°) (b) (3, 3rad) (6)

o177/ __ _ 100
3.5 cosec 31717 — cot (-12°) (5) 10. (a) Convert 2.154 radians into degrees and
3sec79°41’ minutes.

6. A man leaves a point walking at 6.5km/h in (b) Change 71°17’ into radians @)
a direction E 20°N (i.e. a bearing of 70°). A
cyclist leaves the same point at the same time  11. 140 mm of a belt drive is in contact with a pul-

in a direction E 40° S (i.e. a bearing of 130°) ley of diameter 180 mm which is turning at 300
travelling at a constant speed. Find the average revolutions per minute. Determine (a) the angle
speed of the cyclist if the walker and cyclist are of lap, (b) the angular velocity of the pulley, and
80 km apart after 5 hours. (8) (c) the linear velocity of the belt assuming that

no slipping occurs. )

7. A crank mechanism shown in Fig. A4.1 com-
prises arm OP, of length 0.90 m, which rotates o
antl—.clockw1se about the fixed point O, and con- circular water container where the shaded area
necting rod PQ of length 4.20 m. End 0 moves represents the water in the container. Determine:
horizontally in a straight line OR. (a) the depth, &, (b) the area of the shaded

. Figure A4.2 shows a cross-section through a
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Figure A4.2

portion, and (c) the area of the unshaded
area. (1)

13. Determine, (a) the co-ordinates of the centre of
the circle, and (b) the radius, given the equation

X4y —2x4+6y+6=0 (7)
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15

Trigonometric waveforms

15.1 Graphs of trigonometric functions

By drawing up tables of values from 0° to 360°,
graphs of y=sin A, y =cos A and y =tan A may be
plotted. Values obtained with a calculator (correct
to 3 decimal places—which is more than sufficient
for plotting graphs), using 30° intervals, are shown
below, with the respective graphs shown in Fig. 15.1.

(a)y=sinA

A 0 30° 60° 90° 120° 150° 180°
sinA | 0 0.500 0.866 1.000 0.866 0.500 0
A 210°  240° 270° 300° 330° 360°
sinA | —0.500 —0.866 —1.000 —0.866 —0.500 0
(b)y=cos A

A 0 30° 60° 90° 120° 150° 180°
cosA [ 1.0000.8660.500 0 —0.500 —0.866 —1.000

A 210° 240° 270° 300° 330° 360°
cosA| —0.866 —0.500 0 0.500 0.866 1.000
(c)y=tan A

A 0 30° 60° 90° 120° 150°  180°

tanA |0 0.577 1.732 oo —-1.732 —-0.577 O

A 210°  240° 270°
tanA| 0.577 1.732 oo

300°
—1.732

330°  360°
—-0.577 0

From Figure 15.1 it is seen that:

(i) Sine and cosine graphs oscillate between peak
values of +1.

(i) The cosine curve is the same shape as the sine
curve but displaced by 90°.

|
(a) | i I
¥ ZsinA :
| ! |

| L 1 1
0 30 60 %0 120 1501
|

L ] 1 L
210 240 2?[0 300 330

80
|
—10f
|
|
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(b)

y;ousA

I
|
|
I I
I
|
| I

L L | 1 L 1 1
120 150 180 210 240,270 800 330 360  A°
1
|
|

ar y=tan A

|
| I
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I I

330
Lo 8

i
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! |

I

I

150
1
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0 30 60 80 120
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Figure 15.1

(iii) The sine and cosine curves are continuous and
they repeat at intervals of 360°; the tangent
curve appears to be discontinuous and repeats
at intervals of 180°.

15.2 Angles of any magnitude

(i) Figure 15.2 shows rectangular axes XX’ and YY’
intersecting at origin 0. As with graphical work,
measurements made to the right and above 0 are
positive while those to the left and downwards
are negative. Let OA be free to rotate about 0.
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90°
Y
Quadrant 2 Quadrant 1
+ +
- + 0°
180°
0 A X 360°
Quadrant 3 Quadrant 4
v
270°
Figure 15.2

(i)

By convention, when OA moves anticlockwise
angular measurement is considered positive,
and vice-versa.

Let OA be rotated anticlockwise so that 01 is any
angle in the first quadrant and let perpendicular
AB be constructed to form the right-angled tri-
angle OAB (see Fig. 15.3). Since all three sides
of the triangle are positive, all six trigonometric
ratios are positive in the first quadrant. (Note:
OA is always positive since it is the radius of a
circle.)

90°
Quadrant 2

Quadrant 1

=] OG
180 360¢
Quadrant 3 Quadrant 4
270°
Figure 15.3
(iii)) Let OA be further rotated so that 6, is any

angle in the second quadrant and let AC be
constructed to form the right-angled triangle

OAC. Then:
+ _

sinf = — =+ coshh = — = —
+ +

tan92=i:— cosec@zzi:+
- +
+ _

sect) = — = — coth = — = —
- +

(iv) Let OA be further rotated so that 65 is any angle

in the third quadrant and let AD be constructed
to form the right-angled triangle OAD. Then:

sinf3 = i = — (and hence cosec 63 is —)
cosf3 = i = — (and hence sec 63 is +)
tan 63 = — =+ (and hence cot 63 is —)

(v) Let OA be further rotated so that 64 is any angle

in the fourth quadrant and let AE be constructed
to form the right-angled triangle OAE. Then:

sinfy = i = — (and hence cosec 04 is —)
+ .

cosby = T = + (and hence sec 6y is +)

tan 64 = i = — (and hence cot 8y is —)

(vi) The results obtained in (ii) to (v) are sum-

marized in Fig. 15.4. The letters underlined
spell the word CAST when starting in the
fourth quadrant and moving in an anticlockwise
direction.

90°
Sine (and cosecant) All positive
positive -
180° 2
360°
Tangent Cosine
(and cotangent) (and secant)
positive positive
270°
Figure 15.4
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(vii) In the first quadrant of Fig. 15.1 all the curves
have positive values; in the second only sine is
positive; in the third only tangent is positive;
in the fourth only cosine is positive (exactly as
summarized in Fig. 15.4).

A knowledge of angles of any magnitude is needed
when finding, for example, all the angles between
0° and 360° whose sine is, say, 0.3261. If 0.3261
is entered into a calculator and then the inverse
sine key pressed (or sin~! key) the answer 19.03°
appears. However there is a second angle between
0° and 360° which the calculator does not give.
Sine is also positive in the second quadrant
(either from CAST or from Fig. 15.1(a)). The
other angle is shown in Fig. 15.5 as angle 6
where 6=180° —19.03°=160.97°. Thus 19.03°
and 160.97° are the angles between 0° and 360°
whose sine is 0.3261 (check that sin 160.97° =
0.3261 on your calculator).

90°
8 A
\;-( 2
. 19.03° 19.03° e
180 360°
T c
270°
Figure 15.5

Be careful! Your calculator only gives you one
of these answers. The second answer needs to
be deduced from a knowledge of angles of any
magnitude, as shown in the following problems.

Problem 1. Determine all the angles between
0° and 360° whose sine is —0.4638.

The angles whose sine is —0.4638 occurs in the
third and fourth quadrants since sine is negative in
these quadrants (see Fig. 15.6(a)). From Fig. 15.6(b),
6 =sin"10.4638=27°38'.

Measured from 0°, the two angles between 0° and
360° whose sine is —0.4638 are 180° +27°38/, i.e.
207°38' and 360°—27°38, i.e. 332°22’. (Note that
a calculator generally only gives one answer, i.e.
—27.632588°).

y y =sinx
1.0}
207°38'  332°42'
0 90° 180°\ | 270° ; 360° x
-0.4638f — — — — — e
-1.0F
(@
90°
s A
o Oo
1) > v T
T c
270°
(b)
Figure 15.6

Problem 2. Determine all the angles between
0° and 360° whose tangent is 1.7629.

A tangent is positive in the first and third
quadrants (see Fig. 15.7(a)). From Fig. 15.7(b),

y=tanx
y | [
| l |
17620F —f—4— =+ A |
I /1

/ 90° 180°/ 270°

I 1 !
60°26' 1 240°26'

b — —

360° x

(=]

90°

180°

Figure 15.7
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6 =tan"! 1.7629 = 60°26'. Measured from 0°, the
two angles between 0° and 360° whose tangent is
1.7629 are 60°26’ and 180° + 60°26/, i.e. 240°26’.

Problem 3. Solve sec™!(—2.1499)=« for
angles of o between 0° and 360°.

Secant is negative in the second and third quad-
rants (i.e. the same as for cosine). From Fig. 15.8,

1
0 =sec™12.1499 = cos ™! =62°17.
2.1499

Measured from 0°, the two angles between 0° and
360° whose secant is —2.1499 are

a = 180° — 62°17 = 117°43' and
o = 180° + 62°17 = 242°17
90°
S A
0 0°
180° 0 360°
T c
270°

Figure 15.8

Problem 4. Solve cot™! 1.3111 =« for angles
of o between 0° and 360°.

Cotangent is positive in the first and third quad-
rants (i.e. same as for tangent). From Fig. 15.9,

1
g=cot 113111 =tan"! [ ——— ) =37°20.
1.3111
90°
S A
(=] H 00
180 3] 360°
T C
270°

Figure 15.9

Hence a = 37°20/

and o = 180° + 37°20" = 217°20/

Now try the following exercise.

Exercise 69 Further problems on evaluat-
ing trigonometric ratios of any magnitude

1. Find all the angles between 0° and 360°
whose sine is —0.7321.
[227°4 and 312°56']

2. Determine the angles between 0° and 360°
whose cosecant is 2.5317.
[23°16" and 156°44']

3. If cotangent x = —0.6312, determine the val-
ues of x in the range 0°< x< 360°.
[122°16' and 302°16']

In Problems 4 to 6 solve the given equations.

4. cos~1(—0.5316)=1¢
[r=122°7 and 237°53]

5. sec 123162=x
[x = 64°25" and 295°35]

6. tan~'0.8314=0
[0 =39°44" and 219°44/]

15.3 The production of a sine and
cosine wave

In Figure 15.10, let OR be a vector 1 unit long
and free to rotate anticlockwise about O. In one
revolution a circle is produced and is shown with
15° sectors. Each radius arm has a vertical and
a horizontal component. For example, at 30°, the
vertical component is 7S and the horizontal compo-
nent is OS.
From trigonometric ratios,

. TS TS . .
sin30° = — = —,i.e. TS = sin 30°
T0O 1
and cos 30° = % = @,i.e. OS = cos 30°
TO 1

The vertical component 7S may be projected across
to T'S’, which is the corresponding value of 30°
on the graph of y against angle x°. If all such
vertical components as 7S are projected on to the
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90°

Angle x°
] | Lol i 1

Figure 15.10

60°

90°

120°

180°

Figure 15.11

graph, then a sine wave is produced as shown in
Fig. 15.10.

If all horizontal components such as OS are pro-
jected on to a graph of y against angle x°, then a
cosine wave is produced. It is easier to visualize
these projections by redrawing the circle with the
radius arm OR initially in a vertical position as shown
in Fig. 15.11.

From Figures 15.10 and 15.11 it is seen that a
cosine curve is of the same form as the sine curve
but is displaced by 90° (or 7/2 radians).

15.4 Sine and cosine curves

Graphs of sine and cosine waveforms

(i) A graphofy=sinA is shown by the broken line
in Fig. 15.12 and is obtained by drawing up a
table of values asin Section 15.1. A similar table
may be produced for y = sin 2A.

120° 210° 270° 330°
y =C0Ss X
Angle x°
] | | i l 1 | )
30° 60° 120° 180° 240° 300° 360°

A° 2A sin 2A
0 0 0
30 60 0.866
45 90 1.0
60 120 0.866
90 180 0
120 240 —0.866
135 270 -1.0
150 300 —0.866
180 360 0
210 420 0.866
225 450 1.0
240 480 0.866
270 540 0
300 600 —0.866
315 630 -1.0
330 660 —0.866
360 720 0
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y
Y=sinA
1.0} J< Y =sin2A
AN
y N
fy \
\ i
0 90° 180° 270° 360° A°
A\ /'
\
\ /
N /
-1.0F N -

Figure 15.12

A graph of y =sin 2A is shown in Fig. 15.12.

(i) A graph of y=sin %A is shown in Fig. 15.13
using the following table of values.

A° 1A sin 1A
0 0 0
30 15 0.259
60 30 0.500
90 45 0.707
120 60 0.866
150 75 0.966
180 90 1.00
210 105 0.966
240 120 0.866
270 135 0.707
300 150 0.500
330 165 0.259
360 180 0
y e
ol /‘\/,V sinA y=sin%A
7 AN
N
/
i 1 /
0 90° 180\" 270°  360°, A
\ /
4.0 \\//

Figure 15.13

(iii) A graphofy = cos A is shown by the broken line
in Fig. 15.14 and is obtained by drawing up a

y
1.0 y=cosA y=Cc0s2A P
< )
\ /
\ /
\ ) 'd 1
0 90° 180° 270° 360° A
\ /
AN //

—-1.0r N -

Figure 15.14

table of values. A similar table may be produced
for y = cos 2A with the result as shown.

(iv) A graph of y=cos %A is shown in Fig. 15.15
which may be produced by drawing up a table
of values, similar to above.

Figure 15.15

Periodic functions and period

(i) Each of the graphs shown in Figs. 15.12
to 15.15 will repeat themselves as angle
A increases and are thus called periodic
functions.

(i) y =sinA and y = cos A repeat themselves every
360° (or 2w radians); thus 360° is called the
period of these waveforms. y=sin2A and
y=cos2A repeat themselves every 180° (or
7 radians); thus 180° is the period of these
waveforms.

(iii) In general, if y =sin pA or y = cos pA (where p
is a constant) then the period of the waveform is
360°/p (or 2r/prad). Hence if y =sin 3A then
the period is 360/3, i.e. 120°, and if y = cos 4A
then the period is 360/4, i.e. 90°.
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Ampli
mplitude Problem 7. Sketch y =4 cos 2x from x =0° to

Amplitude is the name given to the maximum or x=360°.
peak value of a sine wave. Each of the graphs
shown in Figs. 15.12 to 15.15 has an amplitude of : A arind o/ _ °

+1 (i.e. they oscillate between +1 and —1). How- Amplitude =4; period = 3607/2 = 180°,

ever, if y=4sinA, each of the values in the table A sketch of y =4 cos 2x is shown in Fig. 15.18.
is multiplied by 4 and the maximum value, and

thus amplitude, is 4. Similarly, if y =5 cos 24, the

amplitude is 5 and the period is 360°/2, i.e. 180°. y
4 ¥ =4 cos 2x
Problem 5. Sketch y =sin 3A between A =0°
and A =360°.
0 90° 180" 2?0° 360° x©
Amplitude = 1; period =360° /3 = 120°.
A sketch of y =sin 3A is shown in Fig. 15.16. -4}
y . Figure 15.18
10k y =sin3A

3
Problem 8. Sketch y =2sin §A over one

0 90° 180° 270° 36O A cycle.
N 360° 360° x5
10 Amplitude = 2; period = —— = 3X — 600°.
5

Figure 15.16 3
A sketch of y =2 sin gA is shown in Fig. 15.19.

Problem 6. Sketch y=3sin2A from A=0 to

A =2mradians. “ o|
y=2sinZA
Amplitude = 3, period = 27/2 = s rads (or 180°).
A sketch of y =3 sin 2A is shown in Fig. 15.17.
0 180° 360° 540° f600° A°
y3 ., y=3sin 2A
ol
] .
0 90° T80 210 %0 A4 Lgurelsdd

_al- \/ \_/ Lagging and leading angles

(i) A sine or cosine curve may not always start
at 0°. To show this a periodic function is rep-
Figure 15.17 resented by y=sin(A o) or y=cos(A L)
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where « is a phase displacement compared with
y=sinA or y=cosA.

(i) By drawing up a table of values, a graph of
y=sin(A — 60°) may be plotted as shown in
Fig. 15.20. If y =sin A is assumed to start at 0°
then y = sin(A — 60°) starts 60° later (i.e. has a
zero value 60° later). Thus y =sin(A — 60°) is
said to lag y =sin A by 60°.

]

60
Y y:sinA|
1.0 -

RVA o4

y = sin(A - 60°)

%

60°

Figure 15.20

(ili) By drawing up a table of values, a graph of
y=cos(A +45°) may be plotted as shown in
Fig. 15.21. If y=cos A is assumed to start at 0°
then y = cos(A + 45°) starts 45° earlier (i.e. has
a zero value 45° earlier). Thus y = cos(A +45°)
is said to lead y = cos A by 45°.

45°

-\\y: cos Ay:coS(A+45o)
y \</
\
\ L
- g T80° 270°
\ /
\ /

—

AN

|
360° A

45

Figure 15.21

(iv) Generally, a graph of y =sin(A — «) lags
y= sin A by angle «, and a graph of
y=sin(A 4+ «) leads y =sin A by angle «.

(v) A cosine curve is the same shape as a sine curve
but starts 90° earlier, i.e. leads by 90°. Hence
cos A =sin(A + 90°).

Problem 9. Sketch y=35 sin(A +30°) from
A=0°to A=360°.

Amplitude = 5; period =360°/1 =360°.

5 sin(A +30°) leads 5sinA by 30° (i.e. starts 30°
earlier).

A sketch of y = 5 sin(A 4 30°) is shown in Fig. 15.22.

i

\Y/y: 5sin A

V=5 sin(A +3oy
i i i 1
5 967
30°f—

Figure 15.22

Problem 10. Sketch y =7 sin(2A — 7/3) in the
range 0 <A <2m.

Amplitude = 7; period = 27/2 = m radians.

In general, y=sin(pt — «)lagsy = sinpt by «/p,
hence 7 sin(2A —/3) lags 7sin2A by (7w/3)/2,
i.e. w/6rad or 30°.

A sketch of y=7 sin(2A —m/3) is shown in
Fig. 15.23.

y y =7sin 2A

Wy 7sin(2A-n/3)
270° 360° A
37:/2\ 127
/
\
N

\l

\°

Figure 15.23
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Problem 11.
over one cycle.

Sketch y=2 cos(wt —37/10)

Amplitude = 2; period = 27/w rad.
2 cos(wt — 3m/10) lags 2 cos wt by 37/ 10w seconds.

A sketch of y=2 cos(wt —37/10) is shown in
Fig. 15.24.

3n/10wrads
4 21
& y=2cos wt /,
/ y=Ecos(ml—3nf}0) /
l / .
0 /o 2n/w t
\
\
N
._2_

Figure 15.24

Graphs of sin? A and cos? A

(i) A graph of y=sin?A is shown in Fig. 15.25
using the following table of values.

A° sin A (sin A)> =sinZ A
0 0 0

30 0.50 0.25

60 0.866 0.75

90 1.0 1.0
120 0.866 0.75
150 0.50 0.25
180 0 0
210 —0.50 0.25
240 —0.866 0.75
270 —-1.0 1.0
300 —0.866 0.75
330 —0.50 0.25
360 0 0

(ii) A graph of y= cos?A is shown in Fig. 15.26
obtained by drawing up a table of values, similar
to above.

(iii) y=sin?A and y=cos>A are both periodic
functions of period 180° (or mrad) and both

1.0 y=c0s?A

1
180°

!
0 90° 270° 360" A

Figure 15.26

contain only positive values. Thus a graph of
y = sin® 24 has a period 180°/2, i.e., 90°. Simi-
larly, a graph of y =4 cos® 3A has a maximum
value of 4 and a period of 180°/3, i.e. 60°.

Problem 12. Sketch y =3 sin® %A in the range
0 <A <360°.

Maximum value = 3; period = 180°/(1/2) =360°.
A sketch of 3sin? JA is shown in Fig. 15.27.

— 3sin2 1
y=3sin“z A

L 1
180° 270° 360° A

0 90"
Figure 15.27
Problem 13. Sketch y=7cos?2A between

A =0°and A =360°.

Maximum value = 7; period = 180° /2 = 90°.
A sketch of y =7 cos? 24 is shown in Fig. 15.28.
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y
=7c0s22A
7 y
1 | L il
0 90° 180° 270° 360° A°
Figure 15.28

Now try the following exercise.

15.5 Sinusoidal form A sin (of + o)

In Figure 15.29, let OR represent a vector that is
free to rotate anticlockwise about O at a velocity of
wrad/s. A rotating vector is called a phasor. After
a time tseconds OR will have turned through an
angle wt radians (shown as angle TOR in Fig. 15.29).
If ST is constructed perpendicular to OR, then
sinwt =ST/TO, i.e. ST =TO sin wt.

If all such vertical components are projected on
to a graph of y against wt, a sine wave results of
amplitude OR (as shown in Section 15.3).

If phasor OR makes one revolution (i.e. 27
Exercise 70 Further problems on sine and radians) in T seconds, then the angular velocity,
cosine curves )
w =2m/T rad/s, from which, | T =2/ seconds.
In Problems 1 to 9 state the amplitude and period
o£ the waveo:form and sketch the curve between T is known as the periodic time.
0° and 360°. The number of complete cycles occurring per
l. y=cos3A [1, 120°] second is called the frequency, f
5% E number of cycles 1
= — ° requency = = —
2. y=2sin > [2, 144°] q y second T
3. y=3sin4s [3, 90°] ®
4. y=3cos 2 [3, 720°] i i
7 3x 7 Hence angular velocity,| o =2xf rad/s
5. y=—sin — —,960°
2 8 2
. . . Amplitude is the name given to the maximum
6. y=06sin(r —45°) (6, 360°] or peak value of a sine wave, as explained in
_ o o Section 15.4. The amplitude of the sine wave shown
7. y="4c0s(20+30% [4, 180°] in Fig. 15.29 has an amplitude of 1.
8. y=2sin?2s [2,90°] A sine or cosine wave may not always start at
3 0°. To show this a periodic function is represented
_ 29 o by y =sin (wt £ &) or y =cos (wt £ «), where « is
9. y=3cos 29 [5, 120°] a phase displacement compared with y=sinA or
y=cos A. A graph of y =sin (wt — ) lags y = sin wt
y
o rads/s 1.0k y =sin ot
T o — e e
ot I_} 9‘O 180 27|0 360;/
0 S |R 0] ot gx/2 T 3n/2 2N @t
-1.0F

Figure 15.29
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by angle «, and a graph of y=sin(wt + «) leads
y=sin wt by angle «.
The angle wt is measured in radians (i.e.
a)g (ts) = wt radians) hence angle « should
S

also be in radians.
The relationship between degrees and radians is:

360° = 2mradians or| 180° = & radians

Hence 1 rad=—=57.30° and, for example,

71° =71 x —— =1.239 ad.
180

Given a general sinusoidal function
y=Asin(wt + «), then

(i) A =amplitude
(i) w = angular velocity =2nf rad/s

2
(iii) — = periodic time T seconds
w
L. w
(iv) — =frequency, f hertz
2

(v) a=angle of lead or lag (compared with
y=Asin wt)

Problem 14. An alternating current is given
by i =30 sin(100z¢ + 0.27) amperes. Find the
amplitude, periodic time, frequency and phase
angle (in degrees and minutes).

i=30sin(1007¢ 4+ 0.27) A, hence amplitude = 30 A

Angular velocity w = 1007, hence

Lo 2 27 1
periodic time, 7 = — = —— = —
w 1007 50
= 0.02s or 20 ms
1 1
Frequency, f = — = —— = 50Hz
T 0.02 1807\ °
Phase angle, « = 0.27rad = <0.27 X —)
T

= 15.47° or 15°28' leading
i = 30sin(1005¢)

Problem 15. An oscillating mechanism has
a maximum displacement of 2.5m and a
frequency of 60 Hz. At time ¢ = 0 the displace-
ment is 90 cm. Express the displacement in the
general form A sin(wt £ «).

Amplitude = maximum displacement =2.5 m.
Angular velocity, w =2nf =2mx(60) = 1207 rad/s.
Hence displacement = 2.5 sin(12077 4+ ) m.
When ¢ =0, displacement =90 cm = 0.90 m.

Hence 0.90 = 2.55sin (0 + @)

0.90

ie. sina=—— =0.36
ie. sina 5

Hence o = arcsin(.36 = 21.10° = 21°6¢
= 0.368rad

Thus displacement = 2.5 sin(1207x¢ + 0.368) m

Problem 16. The instantaneous value of volt-
ageinan a.c. circuit at any time # seconds is given
by v =340 sin(507¢ — 0.541) volts. Determine:

(a) the amplitude, periodic time, frequency and
phase angle (in degrees)

(b) the value of the voltage when ¢t =0

(c) the value of the voltage when r = 10 ms

(d) the time when the voltage first reaches
200V, and

(e) the time when the voltage is a maximum.

Sketch one cycle of the waveform.

(a) Amplitude =340V

Angular velocity, w = 50

TN 2 27 1
Hence periodic time, 7 = — = — = —
w 50r 25
= 0.04 s or 40 ms
1 1
F =—=——=25H
requency, f T =004 z

180
Phase angle = 0.541rad = (0.541 X —)
T

= 31° lagging v = 340 sin (5077)

(b) Whent =0,
v = 340sin(0 — 0.541) = 340sin (—31°)
= -175.1V
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(¢) When ¢t =10ms

10
then v = 340 sin{ 50r— — 0.541
103

= 340sin(1.0298) = 340 sin 59°
=2914V

(d) When v=200 volts
then 200 = 340 sin(507r¢t — 0.541)

200 )
—— = sin(50xrt — 0.541)
340

. 200
Hence (50t — 0.541) = arcsin ——
340

= 36.03° or 0.6288 rad
507t = 0.6288 + 0.541

= 1.1698
Hence when v=200V,
1.1
time, 7 = 698 = 7.447 ms
50

(e) When the voltage is a maximum, v =340V.

340 = 340sin (507t — 0.541)
1 = sin (507t — 0.541)
50t — 0.541 = arcsin 1
= 90°0r 1.5708 rad
507t = 1.5708 4+ 0.541 = 2.1118

2.1118
Hence time, t = —— = 13.44ms
50

Hence

A sketch of v =340 sin(507¢ — 0.541) volts is shown
in Fig. 15.30.

Voltage V

340
291.4—

200

v =340 sin(50 it —0.541)

v =340 sin 50nt

-175.1

—-340

Figure 15.30

Now try the following exercise.

Exercise 71 Further problems on the
sinusoidal form A sin(wf £ o)

In Problems 1 to 3 find the amplitude, peri-
odic time, frequency and phase angle (stating
whether it is leading or lagging A sin wt) of the
alternating quantities given.

1. i=40sin (50t +0.29) mA

40,0.04 s,25Hz,0.29 rad i
(or 16°37") leading 40 sin 50 7t ]

2. y="75sin (40t — 0.54) cm

75¢m,0.157s,6.37 Hz, 0.54rad |
(or 30°56") lagging 75 sin 40¢ ]

3. v=300sin (2007t — 0.412) V

300V,0.01s,100Hz,0.412rad
(or 23°36') lagging 300 sin 2007t ]

4. A sinusoidal voltage has a maximum value
of 120V and a frequency of 50 Hz. At time
t =0, the voltage is (a) zero, and (b) 50 V.
Express the instantaneous voltage v in the
form v =A sin(wf £ «)

(a) v = 120 sin 1007t volts
(b) v = 120sin(1007ct 4 0.43) volts

5. An alternating current has a periodic time of
25 ms and a maximum value of 20 A. When
time ¢ =0, current i = —10 amperes. Express
the current i in the form i = A sin(w? & «)

[i = 20sin (80m - %) amperes]

6. An oscillating mechanism has a maximum
displacement of 3.2m and a frequency of
50Hz. At time t=0 the displacement is
150 cm. Express the displacement in the gen-
eral form A sin(wt £ o).

[3.2 sin(1007¢ 4 0.488) m]
7. The current in an a.c. circuit at any time
t seconds is given by:
i = 5sin(100mrt — 0.432) amperes

Determine (a) the amplitude, periodic time,
frequency and phase angle (in degrees) (b) the

value of current at t=0 (c) the value of
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current at = 8 ms (d) the time when the cur-
rent is first a maximum (e) the time when the
current first reaches 3A. Sketch one cycle of
the waveform showing relevant points.

(a) 5A,20ms,50Hz,
24°45' lagging

(b) —2.093 A

(c) 4.363A

(d) 6.375ms

(e) 3.423 ms

15.6 Harmonic synthesis with complex
waveforms

A waveform that is not sinusoidal is called a complex
wave. Harmonic analysis is the process of resolv-
ing a complex periodic waveform into a series of
sinusoidal components of ascending order of fre-
quency. Many of the waveforms met in practice
can be represented by the following mathematical
expression.

v = Vipsin(wt + o) + VousinQowt 4+ a2)
+ -+ Vypsin(not + ay,)

and the magnitude of their harmonic components
together with their phase may be calculated using
Fourier series (see Chapters 69 to 72). Numer-
ical methods are used to analyse waveforms for
which simple mathematical expressions cannot be
obtained. A numerical method of harmonic analysis
is explained in the Chapter 73 on page 683. In a labo-
ratory, waveform analysis may be performed using a
waveform analyser which produces a direct readout
of the component waves present in a complex wave.

By adding the instantaneous values of the fun-
damental and progressive harmonics of a complex
wave for given instants in time, the shape of a
complex waveform can be gradually built up. This
graphical procedure is known as harmonic synthe-
sis (synthesis meaning ‘the putting together of parts
or elements so as to make up a complex whole”).

Some examples of harmonic synthesis are con-
sidered in the following worked problems.

Problem 17. Use harmonic synthesis to con-
struct the complex voltage given by:

v1 = 100 sin wt + 30 sin 3w? volts.

The waveform is made up of a fundamental wave
of maximum value 100V and frequency, f = w/2x
hertz and a third harmonic component of maximum
value 30V and frequency = 3w/2m(=3f), the funda-
mental and third harmonics being initially in phase
with each other.

In Figure 15.31, the fundamental waveform is
shown by the broken line plotted over one cycle, the
periodic time T being 27m/w seconds. On the same
axis is plotted 30 sin 3wz, shown by the dotted line,
having a maximum value of 30 V and for which three
cycles are completed in time 7 seconds. At zero time,
30 sin 3wt is in phase with 100 sin wt.

The fundamental and third harmonic are com-
bined by adding ordinates at intervals to produce
the waveform for vy, as shown. For example, at time
T /12 seconds, the fundamental has a value of 50V
and the third harmonic a value of 30 V. Adding gives a
value of 80V for waveform vy at time 7'/12 seconds.
Similarly, at time 7' /4 seconds, the fundamental has
a value of 100V and the third harmonic a value of
—30V. After addition, the resultant waveform vy is
70V at T /4. The procedure is continued between
t =0andt =T to produce the complex waveform for
v1. The negative half-cycle of waveform v is seen
to be identical in shape to the positive half-cycle.

If further odd harmonics of the appropriate ampli-
tude and phase were added to v; a good approxima-
tion to a square wave would result.

Problem 18.
given by:

Construct the complex voltage

vy = 100 sin wt + 30 sin(3wt + %) volts.

The peak value of the fundamental is 100 volts
and the peak value of the third harmonic is 30V.
However the third harmonic has a phase displace-

ment of %radian leading (i.e. leading 30 sin 3wt

T . . TR
by —radian). Note that, since the periodic time

of the fundamental is 7 seconds, the periodic time
of the third harmonic is 7/3 seconds, and a phase

1
displacement of g radian or — cycle of the third har-

monic represents a time interval of (7'/3) = 4, i.e.
T /12 seconds.
Figure 15.32 shows graphs of 100sinwt and

30sin <3wt + 5 ) over the time for one cycle of the

fundamental. When ordinates of the two graphs are
added at intervals, the resultant waveform v, is as
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shown. If the negative half-cycle in Fig. 15.32 is
reversed it can be seen that the shape of the positive

and negative half-cycles are identical.

Problems 17 and 18 demonstrate that when-
ever odd harmonics are added to a fundamental

waveform, whether initially in phase with each other
or not, the positive and negative half-cycles of the
resultant complex wave are identical in shape. This
is a feature of waveforms containing a fundamental
and odd harmonics.
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Problem 19. Use harmonic synthesis to con-
struct the complex current given by:

i1 = 10sin wt 4 4 sin 2wt amperes.

Current i; consists of a fundamental compon-
ent, 10sin wt, and a second harmonic component,
4 sin 2wt, the components being initially in phase
with each other. The fundamental and second har-
monic are shown plotted separately in Fig. 15.33.
By adding ordinates at intervals, the complex wave-
form representing i is produced as shown. Itis noted
that if all the values in the negative half-cycle were
reversed then this half-cycle would appear as a mir-
ror image of the positive half-cycle about a vertical
line drawn through time, t =T /2.

Problem 20. Construct the complex current
given by:

T
ip = 10 sin wt + 4 sin (Za)t + 5) amperes.

The fundamental component, 10 sin wt, and the sec-
ond harmonic component, having an amplitude of

4 A and a phase displacement of gradian leading

(i.e. leading 4 sin 2wt by g radian or 7 /8 seconds),

are shown plotted separately in Fig. 15.34. By adding
ordinates at intervals, the complex waveform for i, is
produced as shown. The positive and negative half-
cycles of the resultant waveform are seen to be quite
dissimilar.

From Problems 18 and 19 it is seen that when-
ever even harmonics are added to a fundamental
component:

(a) if the harmonics are initially in phase, the nega-
tive half-cycle, when reversed, is a mirror image
of the positive half-cycle about a vertical line
drawn through time, t =T/2.

(b) if the harmonics are initially out of phase with
each other, the positive and negative half-cycles
are dissimilar.

These are features of waveforms containing the
fundamental and even harmonics.

Problem 21. Use harmonic synthesis to con-
struct the complex current expression given by:

i = 32 + 50 sin wf + 20 sin <2a)t _ g) mA.

FTNLHAH i = 10 sin of + 4 sin 2ot
10 HIKT T
-+ in of
Current N 10 5|Inl ()I
i (A) / [1]]
1 Tt
J \ .
7 4 |n\2cot
4H Tdu3 5
e I JETTHL
£ T \ r K _?i‘»
bl g P4
L N I
0 K N 4 4 Time ¢ (s)
- L b
o 14 2 Pd L
_4 bt 3 CIENS
\ /
I\ 7 I
! Y
N\ b A
A
-10 B
] J
[RRRE! | NN.‘J,

Figure 15.33
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The current i comprises three components—a 32 mA
d.c. component, a fundamental of amplitude 50 mA
and a second harmonic of amplitude 20 mA, lag-

ging by gradian. The fundamental and second

harmonic are shown separately in Fig. 15.35. Adding
ordinates at intervals gives the complex waveform

50 sin wf 4 20 sin (Zwt _ Z)_

This waveform is then added to the 32mA
d.c. component to produce the waveform i as
shown. The effect of the d.c. component is to
shift the whole wave 32 mA upward. The wave-
form approaches that expected from a half-wave
rectifier.

Problem 22. A complex waveform v com-
prises a fundamental voltage of 240V rms and
frequency 50Hz, together with a 20% third
harmonic which has a phase angle lagging
by 3m/4rad at time ¢t =0. (a) Write down an
expression to represent voltage v. (b) Use har-
monic synthesis to sketch the complex wave-
form representing voltage v over one cycle of
the fundamental component.

(a)

(b)

A fundamental voltage having an rms value of
240V has a maximum value, or amplitude of

V2 (240) i.e. 339.4 V.

If the fundamental frequency is 5S0Hz then
angular velocity, w =2xf = 2w(50) = 1007 rad/s.
Hence the fundamental voltage is represented
by 339.4sin 1007t volts. Since the fundamen-
tal frequency is 50 Hz, the time for one cycle
of the fundamental is givenby T =1/f =1/50s
or 20 ms.

The third harmonic has an amplitude equal to
20% of 339.4V, i.e. 67.9 V. The frequency of the
third harmonic component is 3 x 50 =150 Hz,
thus the angular velocity is 2m(150), i.e.
300 rad/s. Hence the third harmonic voltage
is represented by 67.9 sin (300t — 37/4) volts.
Thus

voltage,v = 339.4 sin 1007t
+ 67.9 sin (3005t —37 /4) volts

One cycle of the fundamental, 339.4 sin 1007,
is shown sketched in Fig. 15.36, together with
three cycles of the third harmonic compon-
ent, 67.9sin(300mt —3m/4) initially lagging
by 3m/4rad. By adding ordinates at intervals,
the complex waveform representing voltage is
produced as shown.
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Now try the following exercise.

Exercise 72 Further problems on harmonic
synthesis with complex waveforms

1. A complex current waveform i comprises
a fundamental current of S0Arms and fre-
quency 100 Hz, together with a 24% third
harmonic, both being in phase with each other
at zero time. (a) Write down an expression
to represent current i. (b) Sketch the com-
plex waveform of current using harmonic
synthesis over one cycle of the fundamental.

(a) i = (70.71 sin 628.3¢
+ 16.97 sin 1885¢) A

2. A complex voltage waveform v is com-
prised of a 212.1 V rms fundamental voltage
at a frequency of 50Hz, a 30% second har-
monic component lagging by m/2rad, and
a 10% fourth harmonic component leading
by m/3rad. (a) Write down an expression to
represent voltage v. (b) Sketch the complex
voltage waveform using harmonic synthesis
over one cycle of the fundamental waveform.

(a) v =300sin314.2¢
+ 90 sin (628.3t — r/2)
+ 30sin(1256.6¢ + 7/3) V

3. A voltage waveform is represented by:

v = 20 + 50 sin wt
+ 20sin2Qwt — m/2) volts.

Draw the complex waveform over one
cycle of the fundamental by using harmonic
synthesis.

4. Write down an expression representing a
current i having a fundamental component
of amplitude 16A and frequency 1kHz,
together with its third and fifth harmonics
being respectively one-fifth and one-tenth the
amplitude of the fundamental, all compo-
nents being in phase at zero time. Sketch the
complex current waveform for one cycle of
the fundamental using harmonic synthesis.

i = 16sin 271037 + 3.2 sin 671031
+1.6sin710% A

5. A voltage waveform is described by
. . 4
v = 2005in 377+ 80sin (11311 + 7 )

+20sin (1885t — %) volts

Determine (a) the fundamental and harmonic
frequencies of the waveform (b) the percent-
age third harmonic and (c) the percentage
fifth harmonic. Sketch the voltage waveform
using harmonic synthesis over one cycle of
the fundamental.

(a) 60Hz, 180 Hz, 300 Hz
(b) 40%
(©)10%
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16

Trigonometric 1dentities and equations

16.1 Trigonometric identities

A trigonometric identity is a relationship that is true
for all values of the unknown variable.

sin 6 cosf 1
tanf = ——,cotd = ——,secH =
cosf sin 6 cosf
1 1
cosecl = ——and cotfd = ——
sin 6 tan 6

are examples of trigonometric identities from
Chapter 12.

Applying Pythagoras’ theorem to the right-angled
triangle shown in Fig. 16.1 gives:

a4+ b =c (1)

Figure 16.1

Dividing each term of equation (1) by ¢ gives:

at  b? c?

22 2

e (44 (§)2 1

(cos0)? + (sin6)? = 1

Hence cos?0 +sin’6 = 1 2)

Dividing each term of equation (1) by a® gives:
a> v 2

a? a2 &2

h\? c\2
ie. 1+ (—) = (—)

a a
Hence 1+ tan?6 = sec? 3)

Dividing each term of equation (1) by b* gives:
2 2 2

a C
ETETr
. a\? c\2
Hence cot? @ + 1 = cosec? 0 )

Equations (2), (3) and (4) are three further examples
of trigonometric identities. For the proof of further
trigonometric identities, see Section 16.2.

16.2 Worked problems on
trigonometric identities

Problem 1. Prove the identity
sin? 0 cot @ sec § = sin 6.

With trigonometric identities it is necessary to start
with the left-hand side (LHS) and attempt to make
it equal to the right-hand side (RHS) or vice-versa.
It is often useful to change all of the trigonometric
ratios into sines and cosines where possible. Thus,

LHS = sin® 6 cot 6 sec 6

.2 cos @ 1
=sin“ 0| — —_—
sin 6 cosf

= sin 6 (by cancelling) = RHS

Problem 2. Prove that

tanx + secx

tan x
secx (1 + >
secx
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tanx + secx

tan x
secx |1+
secx

sin x 1

LHS =

CoSx COS x

sin x

1 | 4 Cosx
COS X 1

CcoS X
sinx + 1

COS x

(o) [ () ()]

sinx+1

COS X

) [1+ sinx]
cosXx

sinx + 1 cosx
COS X 1+ sinx
=1

(by cancelling) = RHS

Problem 3. Prove that

14 coth
1+ tan@
cosf

LHS =

sin 6 + cos 6

sinf _ sin 6
sinf =~ cosO -+ sinf

cosf cosf

_ sin 8 4 cos 6 cosf
o sin 0 cosf + sinf

cosf
= —— =cotf = RHS
sin 6

Problem 5. Prove that

1 —sinx
— ) =secx — tanx.
1+ sinx

LHS — \/<l—smx) \/{ (l—s%nx)(l—s%nx)}
1+ sinx (1 4+ sinx)(1 — sinx)
(1— smx)2
(1 — sin x)
2 2

Since cos? x + sin?x =1 then 1 — sin x = cos?x

LHS — {(l—sinx)2} _ {(l—sinx)z}
(1 — sin’x) cos? x
1 —sinx 1

CcoS X CcoS X
= secx — tanx = RHS

sin x

COS x

Now try the following exercise.

Exercise 73 Further problems on trigono-
metric identities

In Problems 1 to 6 prove the trigonometric
identities.

1. sinxcotx= cosx

1
2. ——————— = cosecf

(1 — cos26)
2¢c0s2A—1=cos?A — sin?A

COS X — COS3 X

e

- = sinx cosx
sin x

(1+ cot0)? + (1 — cotH)> =2 cosec? O
6 sin® x( sec x + cosecx)

b

=1+ tanx

cosx tanx

Problem 4. Show that
cos?f — sin?9=1—2sin% 6.

From equation (2), cos? 0+ sin? 6 = 1, from which,

cos26=1— sinZ6.
Hence, LHS
= cos> 0 —sin® 0 = (1 — sin” 6) — sin®

—1—sin?0 —sin?6 = 1 — 2sin®6 = RHS

16.3 Trigonometric equations

Equations which contain trigonometric ratios are
called trigonometric equations. There are usually
an infinite number of solutions to such equations;
however, solutions are often restricted to those
between 0° and 360°.

A knowledge of angles of any magnitude is essen-
tial in the solution of trigonometric equations and
calculators cannot be relied upon to give all the
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solutions (as shown in Chapter 15). Fig. 16.2 shows  (iv) Often the trigonometric identities

a summary for angles of any magnitude. cos?A+sin?A=1, 1+tan?A=sec?A and
cot? A + 1 = cosec *A need to be used to reduce
equations to one of the above forms (see

90° Problems 13 to 15).

Sine N
(and cosecant) Al pactive 16.4 Worked problems (i) on
positive . N .

trigonometric equations

180° g
360 Problem 6. Solve the trigonometric equation
Tangent Cosine 5sin 6 + 3 =0 for values of 6 from 0° to 360°.
(and cotangent) (and secant)
positive positive
5sin6+3 =0, from which sin6 = —2 = —0.6000

270°
Hence 6 = sin~! (=0.6000). Sine is negative in the

Figure 16.2 third and fourth quadrants (see Fig. 16.3). The
acute angle sin~! (0.6000) = 36°52’ (shown as « in
Fig. 16.3(b)). Hence,
Equations of the type a sin’A + b sinA +c¢ =0
6 = 180° +36°52', i.e.216°52" or

(i) When a =0, bsinA + ¢ =0, hence
0 = 360° — 36°52/, i.e.323°§

sinA = —g and A = sin~! (—£

There are two values of A between 0° and

360° which satisfy such an equation, provided y
—1< g <1 (see Problems 6 to 8). 1.0k y=sin0
(ii) When b =0, asin> A + ¢ =0, hence o16°50 3288
in2A = —S gind = _E> 1 PR
sin“A = pe SinA = ( p o 50 T80° i 5707 i 360" o

and A = sin—1 (—E) | S —— \__/
@ -1.0}

If either a or ¢ is a negative number, then
the value within the square root sign is posi- ()
tive. Since when a square root is taken there is
a positive and negative answer there are four
values of A between 0° and 360° which sat-

isfy such an equation, provided —1 < Z <1 S A

(see Problems 9 and 10).
(iii) When a, b and c are all non-zero: 180° //: _\\ g

asin? A+bsinA +c=0 is a quadratic equa- % ¢ 360
tion in which the unknown is sin A. The solution
of a quadratic equation is obtained either by fac-
torising (if possible) or by using the quadratic T
formula: 270°

—b = \/(b? — 4ac)
2a (b)

(see Problems 11 and 12). Figure 16.3

sinA =
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Problem 7. Solve 1.5tanx—1.8=0 for

0° < x <360°.

1.5tanx — 1.8 =0, from which

1.8
tan x = — = 1.2000.
1.5

Hence x = tan~! 1.2000.

Tangent is positive in the first and third quadrants
(see Fig. 16.4) The acute angle tan~! 1.2000 =
50°12’. Hence,

x =50°12 or 180° + 50°12" = 230°12’

y y=tart1x [ |
i
1.2l _|.._._ I [ |
- || 1l
0 f 9" 180" £ 270" ,360
50°12’ i | 23012 ix
| I |
(a)
90°
s A
50°12° o
180" ¢
50°12° 360°
T &
270°
(b)
Figure 16.4

Problem 8. Solve 4sect=35 for values of ¢
between 0° and 360°.

4sect=2>5, from which sect = % =1.2500.

Hence 7 = sec™! 1.2500.

Secant=(1/cosine) is positive in the first and
fourth quadrants (see Fig. 16.5) The acute angle
sec™! 1.2500 = 36°52'. Hence,

t=36°52' or 360° — 36°52" = 323°§'

90°
s A
36'52° ("
180° - g
36°52" 360"
T c
270°
Figure 16.5

Now try the following exercise.

Exercise 74 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.
1. 4—7sinf=0 [0 =34°51" or 145°9']
2. 3cosecA+5.5=0

[A=213°3 or 326°57']

3. 4232 —-5.4cott)=0
[r=66°45" or 246°45']

16.5 Worked problems (ii) on
trigonometric equations

Problem 9. Solve 2 — 4 cos? A =0 for values
of A in the range 0° < A < 360°.

2 —4cos? A =0, from which cos? A = Z =0.5000
Hence cos A = 4/(0.5000) = 4-0.7071 and
A= cos™(£0.7071).

Cosine is positive in quadrants one and four and
negative in quadrants two and three. Thus in this
case there are four solutions, one in each quadrant

(see Fig. 16.6). The acute angle cos~!' 0.7071 = 45°.
Hence,

A = 45°,135°,225° or 315°

Problem 10. Solve % cot?> y = 1.3 for
0° <y < 360°.
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y 1.0 y=Cos A

~

\ 135° , 226° ;
? \ 180° 315° 360° A°
-0.7071p———

-1.0

0.7071

o
B
(43]

(a)
90"

180°

Figure 16.6

% cot? y = 1.3, from which, cot? y =2(1.3) =2.6.

Hence coty= V2.6 =+1.6125, and y= cot™!
(£1.6125). There are four solutions, one in each
quadrant. The acute angle cot™! 1.6125 =31°48’.

Hence y =31°48',148°12’,211°48' or 328°12’.

Now try the following exercise.

Exercise 75 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.

1. 5sin®y=3

y=50°46",129°14/,
230°46’ or 309°14/
2. 5+3cosec?D=8

[D =90° or 270°]
3. 2cot?0=5
6=32°19',147°41/,
212°19' or 327°41’

16.6 Worked problems (iii) on
trigonometric equations

Problem 11.
8sin 60+ 2sinf — 1 =0,
for all values of 6 between 0° and 360°.

Solve the equation

Factorising 8 sin® 6 4+ 2sin 6 — 1 =0 gives
(4sinf—1) (2sin6+1)=0.
Hence 4sin®—1=0, from which, sinf=
0.2500, or 2 sin 6 + 1 =0, from which, sin 0 = —
—0.5000. (Instead of factorising, the quadratic
mula can, of course, be used).

6= sin—10.2500 = 14°29’ or 165°31, since sine
is positive in the first and second quadrants, or
6 = sin~! (—0.5000) = 210° or 330°, since sine is
negative in the third and fourth quadrants. Hence

6 = 14°29’,165°31’, 210° or 330°

D= =

-

or-

Problem 12. Solve 6cos20+5cosf —6=0
for values of 6 from 0° to 360°.

Factorising 6 cos? # + 5cos 8 — 6 =0 gives
(3cosf®—2)(2cosH+3)=0.

Hence 3cosf —2=0, from which, cosf=
0.6667, or 2cosf+3 =0, from which, cos
—3 = —1.5000.

The minimum value of a cosine is —1, hence the lat-
ter expression has no solution and is thus neglected.
Hence,

0 = cos™ ! 0.6667 = 48°11’ or 311°4Y’

since cosine is positive in the first and fourth
quadrants.

SSSNY

Now try the following exercise.

Exercise 76 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0° and 360°.

1. 15sin?A + sinA —2=0
A = 19°28,160°32’,
203°35' or 336°25

2. 8tan?0+2tanH=15
6 = 51°20/,123°41,
231°20" or 303°41’
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3. 2cosec?t—5cosecr=12
t=14°29',165°31,
221°49 or 318°11’

16.7 Worked problems (iv) on
trigonometric equations

Problem 13. Solve 5cos?f+3sint—3=0
for values of ¢ from 0° to 360°.

Since cos? t + sin®t = 1, cos?t=1— sin? . Substi-
tuting for cos® ¢ in 5 cos” ¢ 43 sint — 3 =0 gives:

5(1 —sin®r)+3sinr —3=0
5—5sin®t+3sint—3 =0
—5sin%t+3sint+2=0
5sin¢ —3sinr —2 =0

Factorising gives (5sinf +2) (sint — 1) =0. Hence
Ssint+2=0, from which, sint=—2 = —0.4000,
or sint — 1 =0, from which, sint=1.

t= sin~ ! (—0.4000) =203°35" or 336°25', since
sine is negative in the third and fourth quadrants,
or t=sin"! 1=90°. Hence #=90°203°35" or
336°25' as shown in Fig. 16.7.

1.0p— /y =sint
¥
203°35° 336725
PR A
0 90° t
s i e
-1.0F
Figure 16.7

Problem 14. Solve 18sec’A —3tanA =21
for values of A between 0° and 360°.

1+ tan®? A= sec?A. Substituting for sec>A in
18sec? A —3tan A =21 gives
18(1 + tan? A) — 3tanA =21,
ie. 18+ 18tan’A —3tanA —21 =0
18tan”A — 3tanA — 3 =0

Factorising gives (6tanA — 3)(3tanA + 1) =0.
Hence 6tanA —3 =0, from which, tanA = % =
0.5000 or 3tanA +1=0, from which, tanA =
—% = —0.3333. Thus A = tan~! (0.5000) = 26°34’
or 206°34/, since tangent is positive in the first and
third quadrants, or A = tan~1 (—0.3333) = 161°34’
or 341°34’, since tangent is negative in the second
and fourth quadrants. Hence,

A =26°34',161°34',206°34’ or 341°34’

Problem 15. Solve 3 cosec?6 — 5 =4 cot 6
in the range 0 < 6 < 360°.

cot? @ 4+ 1 = cosec? 6. Substituting for cosec? 6 in
3cosec? @ —5=4cot 6 gives:

3(cot’6+ 1) — 5 =4coth
3cot?0+3—5=4coth
3cot’ —4dcotd —2 =0

Since the left-hand side does not factorise the
quadratic formula is used. Thus,

—(—4) £ V(42 — 43)(-2)]

cotld =
2(3)
44+ JA6+24)  4+40
B 6 6
10.3246 2.3246
= or —
6 6

Hence cot&=1.7208 or —0.3874, 6= cot™!
1.7208 =30°10" or 210°10’, since cotangent is
positive in the first and third quadrants, or
6= cot™! (—0.3874)=111°11" or 291°11’, since
cotangent is negative in the second and fourth
quadrants. Hence,

6 =30°10",111°11’,210°10" or 291°11’

Now try the following exercise.

Exercise 77 Further problems on trigono-
metric equations

In Problems 1 to 6 solve the equations for angles
between 0° and 360°.

1. 12sin260 — 6= cos®

6 =48°11",138°35’,
221°25 or 311°49
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2. 16secx —2=14tan%x
[x = 52°56 or 307°4']
3. 4cot? A—6cosecA+6=0 [A =90°]

4. 5sect+2tan®r=3
[r=107°50" or 252°10']

5. 2.9cos?a—Tsina+1=0
[a=27°50" or 152°10/]
6. 3cosec? f=8 — T cot 8
B=060°10,161°1’,
240°10' or 341°1’
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The relationship between trigonometric
and hyperbolic functions

17.1 The relationship between
trigonometric and hyperbolic
functions

In Chapter 24, it is shown that

cos 6 —I—jsin@:eje (D)
and cosf —jsinf = e /f 2)

Adding equations (1) and (2) gives:
1 i
cosf = E(eJ +e7Y) 3)
Subtracting equation (2) from equation (1) gives:
. 1 50 g
sinf = —(e/’ —e™Y) “4)
%
Substituting jO for 0 in equations (3) and (4) gives:
C08j8 = (eI 4 ¢TI
2
0 = A (edUO) _ amiO)
and sin jO = —(e/Y" — e YY)
2j
Since j2=—1,cos j0 = 1(e™? + %)=L’ +e79)

Hence from Chapter 5, cosj0 = cosh 6 5)

1 1
Similarly, sinjd = —( % —e’) = —=(’ —e7?)
2j 2

UL,
_j[z( e)]

1
= —-sinhf8 (see Chapter 5)

~

But —_—0 = —

hence sinj# = j sinh 0 (6)
Equations (5) and (6) may be used to verify that in all
standard trigonometric identities, j6 may be written
for 0 and the identity still remains true.

Problem 1. Verify that cos? j@ + sin”jO = 1.

From equation (5), cosj@ = cosh 0, and from equa-
tion (6), sin j6 =j sinh 6.

Thus, cos?j0 + sin?j0 = cosh? 6+ 2 sinh? 6, and
since j2 =-—1,

costG + sin2j9 = cosh? 6 — sinh? 6
But from Chapter 5, Problem 6,

cosh? 6 — sinh? 6 = 1,

hence cos®jf + sin’jf =1

Problem?2. Verify thatsinj2A =2 sinjA cos jA.

From equation (6), writing 2A for 0,
sin j2A =j sinh 2A, and from Chapter 5, Table 5.1,
page 45, sinh 2A =2 sinh A cosh A.

Hence, sinj2A = j(2sinhAcoshA)

But,sinh A = %(eA —e“)andcoshA = %(eA +e4)

_eA ed f oA
2 2
ed —e 4 ed 4 e 4
2 2

oA
Hence, sinj2A =2 (
2
J

-
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J

2 (sinjo .
- (cos jO)
J

= 25sin jA cos jA since j2 =—1

i.e. sinj2A = 2 sin jA cos jA

Now try the following exercise.

Exercise 78 Further problems on the rela-
tionship between trigonometric and hyper-
bolic functions

Verify the following identities by expressing in
exponential form.

1. sinj(A 4 B) = sinjA cosjB + cosjA sinjB

2. cosj(A — B) = cosjA cos jB + sinjA sinjB

3. cosj2A=1—2sin?jA

4. sinjA cosjB = %[sinj(A + B) + sinj(A — B)]
5. sinjA — sinjB

(A+B\ . (A—B
=2cosj 5 sin j 5

17.2 Hyperbolic identities

From Chapter 5, cosh 6 = %(ee + e_e)
Substituting jO for 0 gives:

cosh jO = %(eje—l— e /%) = cos 6, from equation (3),
ie. coshjf = coséd (7)
Similarly, from Chapter 5,

sinh 6 = %(eg — 679)

Substituting j6 for 6 gives:

sinh jO = %(eﬂ’—e iy = j sin 0, from equation (4).

Hence sinhjf = jsin6@ ®)
. sin j6
tan jO = -
cosh jo

From equations (5) and (6),

sinj0  jsinh®

— = =jtanh6
cosjd  coshé

Hence tanj# =jtanh 9)
. . sinh jO
Similarly, tanhj6 = -
cosh jo

From equations (7) and (8),
sinhjO  jsin®

coshj®  cosf

Hence tanhj# =;jtan6 (10)

Two methods are commonly used to verify hyper-
bolic identities. These are (a) by substituting jO (and
Jj¢) in the corresponding trigonometric identity and
using the relationships given in equations (5) to (10)
(see Problems 3 to 5) and (b) by applying Osborne’s
rule given in Chapter 5, page 44.

Problem 3. By writing jA for 0 in
cot? @+ 1 = cosec 2 6, determine the
corresponding hyperbolic identity.

Substituting jA for 6 gives:

cot? JA+1= cosecsz,

cos? jA 1
Le. ——+1=
sin” jA

sin? jA
But from equation (5), cos jA = cosh A
and from equation (6), sin jA =j sinh A.

0 cosh? A L 1
ence ———— -
J?sinh A j2 sinh? A
cosh’? A 1
and since j2:—1,—T =——
sinh” A sinh” A
Multiplying throughout by —1, gives:
cosh” A 1
sinh? A ~ sinh?A

ie. coth?A — 1 = cosech?A

Problem 4. By substituting jA and jB for 6
and ¢ respectively in the trigonometric identity
for cos 6 — cos ¢, show that

coshA — cosh B
)sim(%57)
sinh| ——
2

A
= 2sinh< +




THE RELATIONSHIP BETWEEN TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 175

cosf —cosgp = —2 sin<

9+¢) . (9—¢)
sm| ——
2 2

(see Chapter 18, page 184)
thus cos jA — cosjB

. .(A+B>. .(A—B)
= —2sinj sin j —

But from equation (5), cos jA = cosh A

and from equation (6), sin jA =jsinh A
Hence, cosh A — cosh B

... (A+B\.. (A-B
= —2jsinh — Jj sinh

A+ B A—B
=-2j2 sinh( + ) sinh<—>
2
coshA — coshB =2 sinh(

A + B\ . A—B
sinh|{ ——
2 2

N ‘

But j> = —1, hence

Problem 5. Develop the hyperbolic identity
corresponding to sin30=3sinf —4sin’ @ by

writing jA for 6.

Substituting jA for 6 gives:

sin3jA = 3sinjA — 4 sin’ jJA
and since from equation (6),

sinjA = jsinh A,

jsinh3A = 3jsinh A — 43 sinh® A
Dividing throughout by j gives:

sinh 3A = 3sinh A — j?4sinh’ A
But j2 = —1, hence

sinh 34 = 3sinh A + 4sinh’A

[An examination of Problems 3 to 5 shows that
whenever the trigonometric identity contains a term
which is the product of two sines, or the implied
product of two sine (e.g. tan” @ = sin” 6/cos> 6, thus
tan? 6 is the implied product of two sines), the sign
of the corresponding term in the hyperbolic function
changes. This relationship between trigonometric
and hyperbolic functions is known as Osborne’s rule,
as discussed in Chapter 5, page 44].

Now try the following exercise.

Exercise 79 Further problems on hyper-
bolic identities

In Problems 1 to 9, use the substitution A =0
(and B =j¢) to obtain the hyperbolic identities
corresponding to the trigonometric identities
given.

1. 1+tan?A = sec?A
[1 — tanh? 0 = sech? 6]

2. cos(A+ B)= cosAcosB — sinAsinB

cosh (8 + ¢) i
= cosh 6 cosh ¢ + sinh f sinh ¢

3. sin(A—B)=sinAcosB— cosAsinB
[sinh (6 + ¢) =sinh 6 cosh ¢

— cosh @ sinh ¢
2tan A
4. tan2d = ———
1— tan?A
2tanh 6
tanh 20 = —_—
1 + tanh~ 6 |

5. cosAsinB = %[sin(A + B) —sin (A — B)]
coshfcosh¢= % [sinh(6 + ¢)
—sinh(8 — ¢)]

. 3 3 1
6. sin"A=-sinA — —sin3A
4 4

.3 1 3.
sinh® § = — sinh 360 — — sinh @
4 4

7. cot? A(sec:A—1)=1
[coth? O(1 — sech?0) = 1]
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18

Compound angles

18.1 Compound angle formulae

An electric current i may be expressed as

i = 5sin(wt —0.33) amperes. Similarly, the dis-
placement x of a body from a fixed point can
be expressed as x = 10sin(2f 4 0.67) metres. The
angles (wt —0.33) and (27 + 0.67) are called com-
pound angles because they are the sum or difference
of two angles. The compound angle formulae for
sines and cosines of the sum and difference of two
angles A and B are:

sin(A + B) = sinA cos B + cosA sin B

sin(A — B) = sinA cos B — cosAsin B

cos(A + B) = cosAcosB —sinAsin B

cos(A — B) = cosAcosB + sinAsin B
(Note, sin(A + B) is not equal to (sin A + sin B), and
SO on.)

The formulae stated above may be used to derive two
further compound angle formulae:

tanA + tan B
tanA+B) = ——

1 —tanAtanB

tanA — tan B
tan(A — B) =

1 +tanAtan B

The compound-angle formulae are true for all values
of A and B, and by substituting values of A and B into
the formulae they may be shown to be true.

Problem 1.
expressions:
(a) sin(r + ) (b) —cos(90° + B)
(c) sin(A — B) — sin(A + B)

Expand and simplify the following

(a) sin(w 4+ «) = sin cos o + cos 7 sin « (from
the formula for sin (A + B))
= (0)(cosa) + (—1)sinx = —sin«
(b) —cos(90° + B)
= —[c0s90° cos B — sin 90° sin f]
= —[(0)(cos B) — (1) sin B] = sin B

(c) sin(A —B) — sin(A+B)
= [sinA cos B — cos A sin B]
— [sinA cos B + cos A sin B]
= —2cos AsinB

Problem 2. Prove that

cos(y — m) + sin(y + g) =0.

cos (y — ) = cosycos T + sinysin
= (cosy)(—1) + (siny)(0)
= —Cosy

) b4
sin (y + =

) . T n . T
= S1INnyCoS — coSySin —
2 yeoss Y

2
(sin y)(0) 4 (cos y)(1) = cosy

Hence cos(y — ) + sin (y + g)

= (—cosy) + (cosy) =0

Problem 3.

tan(x + %) tan(x — %) =—1.

tan x + tan J

Show that

T
tan(x+ —) =
4 l—tanxtan%

from the formula fortan(A + B)

tanx + 1 _ 1 +tanx
1 — (tanx)(1)

1 —tanx

. b4
since tan— =1
4

T
tanx—tanz B tanx — 1
~ \ I +tanx

4
(e~ 7) =
4

| + tan x tan —
an x tan —
4
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Hence

T T
tan(x + Z) tan( — Z)
_ 1 +tanx tanx — 1

N <1 —tanx) <1 —Hanx)

tanx — 1 . —(1 —tanx) _

l—tanx 1 —tanx

Problem 4. If sinP=0.8142 and cosQ=
0.4432 evaluate, correct to 3 decimal places:
(a) sin(P — Q), (b)cos(P+ Q) and
(c)tan(P+ Q), wusing the compound-angle
formulae.

Since sin P =0.8142 then

P=sin"! 0.8142 =54.51°.

Thus cos P = cos 54.51° =0.5806 and
tan P = tan 54.51° = 1.4025.

Since cos Q =0.4432, Q = cos~! 0.4432 = 63.69°.

Thus sin Q = sin 63.69° = 0.8964 and

tan Q = tan 63.69° = 2.0225.

(@) sin(P—Q)
= sin P cos Q — cos P sin Q
= (0.8142)(0.4432) — (0.5806)(0.8964)
= 0.3609 — 0.5204 = —0.160

(b) cos(P+ Q)
= cosPcosQ — sinPsinQ
= (0.5806)(0.4432) — (0.8142)(0.8964)
= 0.2573 — 0.7298 = —0.473

(¢) tan(P+ Q)

_tanP+tanQ  (1.4025)+ (2.0225)

 l—tanPtanQ 1 — (1.4025)(2.0225)

42
= —3 50 = —1.865
—1.8366

Problem 5. Solve the equation
4 sin(x — 20°) = 5cosx

for values of x between 0° and 90°.

4 sin(x — 20°) = 4[sin x cos 20° — cos x sin 20°],

from the formula for sin(A — B)

= 4[sin x(0.9397) — cos x(0.3420)]
= 3.7588 sinx — 1.3680 cos x

Since 4 sin (x — 20°) = 5 cos x then
3.7588 sinx — 1.3680 cosx = 5cosx
Rearranging gives:

3.7588 sinx = 5cosx + 1.3680 cos x

= 6.3680 cos x
and sin x _ 6.3680 16042
COS X 3.7588

j.e. tanx=1.6942, and x = tan~! 1.6942 = 59.449°
or 59°27
[Check: LHS = 4 sin (59.449° — 20°)
= 45sin 39.449° = 2.542
RHS = 5cosx = 5¢0s59.449° = 2.542]

Now try the following exercise.

Exercise 80 Further problems on com-
pound angle formulae

1. Reduce the following to the sine of one
angle:

(a) sin 37° cos 21° 4 cos 37° sin 21°
(b) sin 7t cos 3t — cos 7t sin 3¢

[(a) sin 58° (b) sin 4¢]

2. Reduce the following to the cosine of one
angle:

(a) cos 71° cos 33° — sin 71° sin 33°

g b4 1
(b) cos — cos — + sin — sin —

3 4 3 4
(a) cos 104° = —cos 76°
coS —
12
3. Show that:
. b/ . 2
(a) sm(x + §> + sm<x + ?) = /3 cosx

and
. (37
(b) —sm(T — ¢) =cos¢
4. Prove that:
(a) sin(@ + z) —sin| 0 — 3_71
4 4
= /2(sin O + cos )

cos (270°+60)

= tanf
cos (360° — 0)

(b)



178 GEOMETRY AND TRIGONOMETRY

5. GivencosA =0.42 and sin B =0.73 evaluate
(a)sin(A — B), (b) cos(A — B), (c)tan (A + B),
correct to 4 decimal places.

[(a) 0.3136 (b) 0.9495 (c) —2.4687]

In Problems 6 and 7, solve the equations for
values of 8 between 0° and 360°.
6. 3sin(@+30°)=7cos6
[64°43 or 244°43']
7. 4sin(@ —40°)=2sin 6
[67°31' or 247°31']

18.2 Conversion of a sin wt + b cos wt
into R sin(wt + o)

(i) Rsin(wt + «) represents a sine wave of maxi-
mum value R, periodic time 27/w, frequency
w/2m and leading Rsinwt by angle «. (See
Chapter 15).

(i1) Rsin(wt+«) may be expanded using the
compound-angle formula for sin(A 4 B), where
A = ot and B=«. Hence,

R sin (wt + @)
= R[sin wt cos & + cos wt sin «]
= Rsin wf cos & + R cos wt sin o
= (Rcos ) sin wt + (R sin &) cos wt

(iii) If a=Rcosa and b =Rsin«, where a and b
are constants, then R sin(w? + o) =asin wt +
bcoswt, i.e. a sine and cosine function of the
same frequency when added produce a sine
wave of the same frequency (which is further
demonstrated in Section 21.6).

(iv) Since a =R cos«, then cos ¢ =a/R, and since
b=Rsina, then sina =b/R.

Figure 18.1

If the values of a and b are known then the values of R
and o may be calculated. The relationship between
constants a, b, R and « are shown in Fig. 18.1.

From Fig. 18.1, by Pythagoras’ theorem:

R =+a?+b?
and from trigonometric ratios:

a=tan"1b/a

Problem 6. Find an expression for
3sinwt+4coswt in the form R sin(wt+ «)
and sketch graphs of 3sinwt, 4coswt and
R sin(wt + ) on the same axes.

Let 3 sin wt + 4 cos wt = R sin (wt + «)
then 3 sin wt + 4 cos wt

= R[sin wt cos a + cos wt sin «]
= (R cos ) sin wt + (R sin &) cos wt

Equating coefficients of sin wt gives:

3
3 = Rcosa, from which ,cosa = R

Equating coefficients of cos wt gives:
. L 4
4 = Rsin «, from which, sino = R

There is only one quadrant where both sin« and
cos ¢ are positive, and this is the first, as shown in
Fig. 18.2. From Fig. 18.2, by Pythagoras’ theorem:

R=V(3 +42)=5

Figure 18.2

From trigonometric ratios: o = tan~! %: 53°8 or
0.927 radians.
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y 0.927 rad
5 y =4 cos ot
4
3 ¥=23sin ot
2t ¥=5sin (ot +0.927) /
it/
0 2n ot (rad)
0.927 rad &
ok
_3 -
_4}
-5
Figure 18.3
Hence 3sin wt + 4 cos ¢ = Ssin(wt 4+ 0.927). Equating coefficients of cos wt gives:
A sketch of 3 sin wt, 4 cos wt and 5 sin(wt + 0.927) -7.3

is shown in Fig. 18.3.

Two periodic functions of the same frequency may
be combined by,

(a) plotting the functions graphically and combin-
ing ordinates at intervals, or

(b) by resolution of phasors by drawing or
calculation.

Problem 6, together with Problems 7 and 8 fol-
lowing, demonstrate a third method of combining
waveforms.

Problem 7. Express 4.6 sin wt — 7.3 cos wt in
the form R sin(w? + o).

Let 4.6 sin wt — 7.3 cos wt = R sin(wt + ).
then 4.6 sin wt — 7.3 cos wt

= R [sin wt cos o + cos wt sin o]
= (R cos &) sin wt + (R sin &) cos wt

Equating coefficients of sin wt gives:

4.6
4.6 = R cos «, from which, cosa = z

—7.3 = Rsin«, from which, sina = S

There is only one quadrant where cosine is posi-
tive and sine is negative, i.e., the fourth quadrant, as
shown in Fig. 18.4. By Pythagoras’ theorem:

R = V[(4.6)2 + (=7.3)2] = 8.628

4.6

Figure 18.4

By trigonometric ratios:
-7.3

o = tan~ !
(%)

= —57.78° or —1.008 radians.
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Hence

4.6 sin wt — 7.3 cos wt =8.628 sin(wt — 1.008).

Problem 8. Express —2.7sinwt — 4.1 cos wt
in the form R sin(w? + o).

Let —2.7 sin wt — 4.1 cos wt = R sin(wt + «)

= R[sin wf cos & + cos wt sin «]
= (R cos o)sin wt + (R sin @)cos wt

Equating coefficients gives:

=2.7

—2.7 = Rcos «, from which, cosa = =

. . . —4.1

and —4.1 = Rsina, from which, sina = =

There is only one quadrant in which both cosine and
sine are negative, i.e. the third quadrant, as shown in
Fig. 18.5. From Fig. 18.5,

R=I(=2.7)72 + (—4.1)2] = 4.909
4.1 .
and 6 =tan" — = 56.63
2.7

90°
o
180° =27 €I\ 0°
P, 360"
-4.1 A
270°
Figure 18.5

Hence o =180° 4 56.63° =236.63° or 4.130 radi-
ans. Thus,

—2.7sinwt — 4.1 cos wt = 4.909 sin(wt + 4.130).

An angle of 236.63° is the same as —123.37° or
—2.153 radians.

Hence —2.7sinwt —4.1coswt may be expressed
also as 4.909 sin(wt — 2.153), which is preferred
since it is the principal value (i.e. —7 < o < 7).

Problem 9. Express 3sinf+5cos6f in the
form R sin(6 + «), and hence solve the equation
3sin 6+ 5cos 8 = 4, for values of 6 between 0°
and 360°.

Let 3sinf 4 5cosfd = Rsin(0 + «)
= R[sin 0 cos o + cos 6 sin ]
= (Rcos a)sin 6
+ (R sin o)cos 6

Equating coefficients gives:

3 = Rcos«, from which, cosa =

and 5 = Rsinw, from which, sina =

x|l x| w

Since both sin « and cos « are positive, R lies in the
first quadrant, as shown in Fig. 18.6.

Figure 18.6

From Fig. 18.6, R = /(3% +5%) =5.831 and

oa=tan"! % =59°2'.

Hence 3sin @ + 5 cos @ = 5.831 sin(6 + 59°2')

However 3sinf + 5cosf =4

Thus 5.831sin(0 + 59°2") = 4, from which
(6 + 59°2) = sin~! (i>

5.831

ie. 0 + 59°2' =43°19 or 136°41’

Hence 6 = 43°19' — 59°2' = —15°43’

or 0 = 136°41' — 59°2' = 77°39
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Since —15°43" is the same as —15°43’ 4 360°,
i.e. 344°17, then the solutions are §=77°39 or
344°17’, which may be checked by substituting into
the original equation.

Problem 10. Solve the equation
3.5c0sA—5.8sinA=06.5for0° <A < 360°.

Let 3.5cosA —5.8sinA =R sin(A + «)

= R[sin A cos @ 4+ cos A sin «]
= (Rcosw)sinA + (Rsin ) cos A

Equating coefficients gives:

3.5
3.5 = Rsin «, from which, sino = 3
. —-5.8
and —5.8 = Rcosa, from which, cosa = =z

There is only one quadrant in which both sine is
positive and cosine is negative, i.e. the second, as
shown in Fig. 18.7.

90°

3.6

180 360°

270°

Figure 18.7

From Fig. 18.7, R= \/[(3.5)2 +(—5.8)2]1=6.774
3.5
and 0 = tan~! == =31°7.
5.8
Hence o =180° — 31°7' = 148°53'.
Thus
3.5cos A — 5.8sinA = 6.774 sin(A + 148°53') = 6.5
5 .
———, from which,
6.774
6.5
A + 148°53') = sin™! ——
@+ )= s 7
= 73°39 or 106°21’

Hence sin(A + 148°53') =

A =73°39" — 148°53' = —75°14
= (—75°14' + 360°) = 284°46
or A =106°21" — 148°53" = —42°32'
= (—42°32" +360°) = 317°28’

The solutions are thus A = 284°46’ or 317°28’,
which may be checked in the original equation.

Thus

Now try the following exercise.

Exercise 81 Further problems on the
conversion of a sin wf + b cos wt into
Rsin(ot + a)

In Problems 1 to 4, change the functions into the
form R sin(wt & @).

1. S5sinwt+8coswt [9.434 sin(wt + 1.012)]

2. 4sinwt — 3 cos wt [5sin(wt — 0.644)]

3. —7sinwt + 4 cos wt
[8.062 sin(wt + 2.622)]

4. —3sin wt — 6 cos wt
[6.708 sin(wt — 2.034)]

5. Solve the following equations for values of 6
between 0° and 360°: (a) 2sinf + 4 cos0 =3
(b) 12sinf —9cosH=17.

(a) 74°26’ or 338°42’
(b) 64°41’ or 189°3’

6. Solve the following equations for
0° <A <360° (a) 3cosA+2sinA=2.8
(b) 12 cosA —4sinA=11
(a) 72°44’ or 354°3%’
(b) 11°9 or 311°59’

7. The third harmonic of a wave motion is given
by 4.3 cos 30 — 6.9 sin 36. Express this in the
form Rsin(360 + «). [8.13sin(360 + 2.584)]

8. The displacement x metres of a mass from
a fixed point about which it is oscillating is
given by x = 2.4 sin wt + 3.2 cos wt, where ¢
is the time in seconds. Express x in the form
Rsin(wt+a). [x=4.0sin(wt 4+ 0.927)m]

9. Two voltages, v| =5 cos wt and
vy = —8sin wt are inputs to an analogue cir-
cuit. Determine an expression for the output
voltage if this is given by (v + v2).

[9.434 sin(wt 4-2.583)]
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18.3 Double angles

(i) If, in the compound-angle formula for
sin(A + B), we let B=A then
sin24 = 2sinA cos A
Also, for example,
sin4A = 2sin 2A cos 2A
and sin 84 = 2sin4A cos4A, and so on.
(i) If, in the compound-angle formula for

cos(A + B), we let B=A then

c0s 24 = cos’ A — sin’ A
Since cos? A + sin? A = 1, then
cos?A=1— sin?A, and sinfA=1— cos?A,
and two further formula for cos2A can be
produced.
c0s2A = cos? A — sin% A

= (1 —sin® A) — sin’A

i.e. c0s2A4 = 1 — 2sin?A

Thus

and cos2A = cos? A — sinZ A
= cos’A — (1 — cos? A)
1.€. cos2A = 2cos? A — 1

Also, for example,
cos4A = cos?2A — sin®2A or
1 —2sin%24 or
2c0s?24 — 1

and cos6A = cos?3A — sin?3A or
1 —2sin?34 or
2cos%3A — 1,
and so on.
(iii) If, in the compound-angle formula for
tan(A + B), we let B=A then
2tanA
tan2A = L
1—tan2A
Also, for example,
2 tan 2A
tan4Ad = ——
1 —tan224
2 tan %A
and tan5A = and so on.

25
1 —tan 5A

Problem 11. I3 sin 36 is the third harmonic of a
waveform. Express the third harmonic in terms
of the first harmonic sin §, when I3 = 1.

When Iz =1,
I3 sin 30 = sin 36 = sin (260 + 6)
= sin 20 cos O + cos 20 sin O,

from the sin (A + B) formula
= (2sin@cos ) cos§ + (I — 2sin’6)sin 6,
from the double angle expansions
= 2sinfcos’ 6 + sinh — 2sin’ 6
= 25sin (1 — sin* @) + sin @ — 2sin’ 4,
(since cos? 6 = 1 — sin® 0)
=25sin6 — 25sin®  + sin@ — 2sin’ 6

i.e. sin 30 = 3sind — 4sin30

1 — cos 26
Problem 12. Prove that ———— = tan@.
sin 26
1 —cos26 1—(1—2sin%6)
LHS = - = -
sin 260 2sin6 cos o
B 2sin% 0 B sin
"~ 2sinfcos®  cosf
= tan § = RHS
Problem 13. Prove that
cot 2x + cosec 2x = cot x.
2 1
LHS = cot 2x + cosec 2x = C?S a -
sin2x  sin2x
__cos 2x +1
sin 2x
_ (2cos?x — 1)+ 1
o sin 2x
_ 2 cos? x . 2 cos? x
" sin2x  2sinxcosx
CcoS X
= —— =cotx = RHS
sin x
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Now try the following exercise.

Exercise 82
angles

Further problems on double

1. The power p in an electrical circuit is given
2

v
by p = —. Determine the power in terms of
V, R and cos 2t when v="V cost.

V2
[ﬁ(l + cos 2t)]

2. Prove the following identities:

cos 2¢

1 - — " = tan?
(a) cos2 ¢ n- ¢

1 2t
(b) +_°§S —2cot?t

sin“ ¢

(tan 2x)(1 + tanx) 2

(©) =
tan x 1— tanx

(d) 2cosec20cos26 = cotf — tan6

3. If the third harmonic of a waveform is given
by V3cos36, express the third harmonic
in terms of the first harmonic cos#, when
Via=1.

[cos 30 =4 cos® 6 — 3 cos 6]

18.4 Changing products of sines and
cosines into sums or differences

(i) sin(A+B)+sin(A —B)=2sinAcosB (from
the formulae in Section 18.1)
i.e. sinAcosB
=1[sin(4 + B) +sind —B)] (1)
(i1) sin(A + B) —sin(A — B)=2cosA sin B
ie. cosAsinB
= 1[sin(4 + B) —sind —B)]  (2)
(iii) cos(A + B) +cos(A —B)=2cosAcosB
i.e. cosAcosB
= 1[cos(A + B) + cosA —B)]  (3)
(iv) cos(A+ B) —cos(A — B)=—2sinAsinB
ie. sinAsinB
=—1[cos(A + B) — cos(A — B)] (4)

Problem 14. Express sin 4x cos 3x as a sum or
difference of sines and cosines.

From equation (1),
sin4x cos 3x = %[sin(4x + 3x) + sin(4x — 3x)]

= %(sin 7x + sinx)

Problem 15. Express 2 cos 50 sin 26 as a sum
or difference of sines or cosines.

From equation (2),

1
2cos56sin 20 = 2{§[Sin(59 + 26) — sin(560 —20)]

= sin 76 — sin 30

Problem 16. Express 3 cos4fcost as a sum or
difference of sines or cosines.

From equation (3),

1
3cosdtcost =3 {E[COS(4t + 1) + cos(4t — t)]}

3
= 5(cos 5t + cos 3¢)

Thus, if the integral [ 3 cos4t cosdt was required
(for integration see Chapter 37), then

3
f3cos4tcostdt=/5(0055t+cos3t)dt

+ sin 3¢ +
c
5 3

_ 3 [ sin5¢
2

Problem 17. In an alternating current circuit,
voltage v =5 sin wt and current { = 10 sin(wt —
7r/6). Find an expression for the instantaneous
power p at time ¢ given that p = vi, expressing
the answer as a sum or difference of sines and
cosines.

p =vi = (5sinwt) [10sin (wt — 7/6)]
= 50 sin wt sin(wt — 1/6)
From equation (4),
50 sin wt sin(wt — 1/6)
= (50) [ 1 {cos (wt + wt — 7/6)
— cos[wt — (wt — 7r/6)] }]
= —25{cos(Rwt — /6) — cos 7r/6}
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i.e. instantaneous power,
p = 25[cos /6 — cos Qwt — 1/6)]

Now try the following exercise.

Exercise 83 Further problems on changing
products of sines and cosines into sums or
differences

In Problems 1 to 5, express as sums or differ-
ences:

1. sin7tcos2t [%(Sin 9t + sin 51)]

2. cos 8xsin 2x [%(Sin 10x — sin 6x)]

3. 2sin 7t sin 3¢ [cos 4t — cos 10¢]

4. 4cos36cosb [2(cos 46 + cos 26)]
5 3 T T 3 ( 4 e n)'
. 3sin — cos — —(sin = + sin —

3 6 2 2 6/ |
6. Determine | 2 sin 3¢ cosdt
cos4t  cos2t n

4 2 ¢
s -

2 20

7. Evaluate / 4 cos 5x cos2x dx |:— 21
0 _

8. Solve the equation: 2 sin 2¢ sin ¢ = cos ¢ in
the range ¢ = 0 to ¢ = 180°.
[30°, 90° or 150°]

Similarly,

sinX —sinY

(X + Y) . <X - Y)
= 2cos sin (6)
2 2

cosX +cosY

(X + Y) (X - Y)
= 2cos cosS (7)
2 2

cosX —cosY

. <X+Y) . (X—Y)
= —2sin sin (8)
2 2

Problem 18. Express sin50+sin30 as a

product.

From equation (5),

56 + 36 56 — 360
sin59—|—sin39=2sin( —; )cos( > )

= 2sin46 cos 0

Problem
product.

19. Express sin7x— sinx as a

From equation (6),

. . Tx+x\ . [(Tx—x
sin 7x — sinx = 2 cos 3 sin 2

= 2 cos 4x sin 3x

18.5 Changing sums or differences of
sines and cosines into products

In the compound-angle formula let,

A+B) =X
and

(A-B) =Y

Solving the simultaneous equations gives:
X+Y X-Y
A= + and B= ——
2
Thus sin(A + B) + sin(A — B) =2sinA cos B
becomes,
sinX +sinY

=25in(X+Y) cos<X;Y) )

Problem 20. Express cos2t— cos5t as a
product.

From equation (8),

2t + 5t 2t — 5t
cos2t—cos5t=—2sin< —; )sin( 5 )

1 3 .7 .3
= —2sin—tsin|{ ——=¢ | = 2sin —¢sin —¢
2 2 2 2

. . 3 .3
since sin{ —=¢ ) = —sin =¢
2 2

Show that

Problem 21.

cos 6x + cos 2x
———— = cot4x.
sin 6x + sin 2x
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From equation (7),

c0s 6x + cos 2x = 2 cos 4x cos 2x
From equation (5),

sin 6x + sin 2x = 2 sin 4x cos 2x

Hence

cos 6x + cos 2x 2 cos 4x cos 2x

sin 6x + sin 2x - 2 sin 4x cos 2x

Now try the following exercise.

Exercise 84 Further problems on changing
sums or differences of sines and cosines into
products

In Problems 1 to 5, express as products:

1. sin3x 4+ sinx [2 sin 2x cos x]

2. %(sin 96 — sin 76) [cos 86 sin O]
3. cos5t—+cos 3t [2 cos 4t cost]
4 %(cos 5t —cost) [—% sin 37 sin 2¢]
5. % (cos r + cos z) [cos 7_7r cos i]

3 4 24 24
6. Show that:

sin 4x — sin 2x
—  —tanx
cos4x + cos2x

(b) ${sin(5x — @) — sin(x + &)}
= cos 3x sin(2x — &)

18.6 Power waveforms in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v="V,, sinwt be applied to a circuit
comprising resistance only. The resulting current is
i=1I,sinwt, and the corresponding instantaneous
power, p, is given by:

p = vi = (Vy, sin wt)(I, sin wt)
ie., p=Vul, sin? wt
From double angle formulae of Section 18.3,

cos2A = 1 — 25sin? A, from which,

sin?A = %(1 — cos 2A) thus

2

sin“ wt = %(1 — cos 2wt)

Then power p = lem[%(l — cos2wt)]
ie. P = 3l — cos2wt)

The waveforms of v, i and p are shown in Fig. 18.8.
The waveform of power repeats itself after m/w
seconds and hence the power has a frequency twice
that of voltage and current. The power is always pos-
itive, having a maximum value of V,,I,;,. The average

or mean value of the power is %lem.

Maximum

Average
power

t (seconds)

Figure 18.8

V,
The rms value of voltage V =0.707V,,,1.e. V = —m,
V2

from which, V,, = J2V.

Similarly, the rms value of current, [ = from

m
V2
which, I, = ﬁ I. Hence the average power, P,
developed in a purely resistive a.c. circuit is given
by P =3 Vil = S(¥2V)(V/2I) = VI watts.

Also, power P =1 2Ror V2 /R as for a d.c. circuit,
since V =1IR.

Summarizing, the average power P in a purely
resistive a.c. circuit given by

2
P=VI=12R=V—
R

where V and [ are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v="V,, sin wt be applied to a circuit
containing pure inductance (theoretical case). The
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. .. . TN .
resulting current is i = I, sin (a)t — 5) since current

T
lags voltage by — radians or 90° in a purely inductive

circuit, and the corresponding instantaneous power,
p, is given by:

g

p = vi = (Vysinwt)l, sin(wt — 5)
. . ) b4
i.e. p = Vul,sinowt sm(a)t — E)
However,

. g
sm(cz)t — §> = — cos wt thus
p = — Viuly, sin wt cos wt.

Rearranging gives:

p=— % Vil (2 sin wt cos wt).
However, from double-angle formulae,

2 sin wt cos wt = sin 2wt.

Thus power, p= —%lem sin 2wt.

The waveforms of v, i and p are shown in Fig. 18.9.
The frequency of power is twice that of voltage and
current. For the power curve shown in Fig. 18.9, the
area above the horizontal axis is equal to the area

below, thus over a complete cycle the average power
P is zero. It is noted that when v and i are both posi-
tive, power p is positive and energy is delivered from
the source to the inductance; when v and i have oppo-
site signs, power p is negative and energy is returned
from the inductance to the source.

In general, when the current through an induc-
tance is increasing, energy is transferred from the
circuit to the magnetic field, but this energy is
returned when the current is decreasing.

Summarizing, the average power P in a purely
inductive a.c. circuit is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v=V,, sin wt be applied to a circuit
containing pure capacitance. The resulting current
is i = I, sin(wt 4 %), since current leads voltage by
90° in a purely capacitive circuit, and the correspond-
ing instantaneous power, p, is given by:

b4
p = vi = (V, sinwt)l,, sin(a)t + E)
. ) . b4
i.e. p=Vyul,sinowt s1n<a)t + 5)

. T
However, s1n<a)t + 5) = cos wt

thus p = Vil sin wt cos wt

&

Figure 18.9
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12

i
T
15

Figure 18.10

Rearranging gives p = %lem(Z sin wt cos wt).

Thus power, p = %lem sin 2wt.

The waveforms of v, i and p are shown in
Fig. 18.10. Over a complete cycle the average power
P is zero. When the voltage across a capacitor is
increasing, energy is transferred from the circuit to
the electric field, but this energy is returned when the
voltage is decreasing.

Summarizing, the average power P in a purely
capacitive a.c. circuit is zero.

(d) R-L or R-C a.c. circuits

Let a voltage v=1V,, sinwt be applied to a cir-
cuit containing resistance and inductance or resis-
tance and capacitance. Let the resulting current be
i =1, sin(wt + ¢), where phase angle ¢ will be posi-
tive for an R—C circuit and negative for an R-L
circuit. The corresponding instantaneous power, p,
is given by:

p = vi = (Vy, sin wt)l,, sin(wt + ¢)
ie. p = Vul,sinwtsin(wt + ¢)

Products of sine functions may be changed into
differences of cosine functions as shown in Sec-
tion 18.4,

i.e. sinAsinB=—21[cos(A+B)— cos(A—B)].

Substituting wt = A and (wt + ¢) = B gives:

power, p = lem{—%[cos(a)t + wt + ¢)

— cos(wt — (wt + ¢))]}
ie. = 1 Vinlnlcos(—¢) — cosQut + ¢)]
However, cos(—¢) = cos ¢
Thus p = %lem [cos ¢ — cosRwt + ¢)]

The instantaneous power p thus consists of

(i) asinusoidal term, — 3 V1, cos (2wt + ¢) which
has a mean value over a cycle of zero, and

(i) a constant term, %‘ lem cos ¢ (since ¢ is constant
for a particular circuit).

Thus the average value of power, P = %lem cos ¢.
Since V,, =2V and I,, =+/21, average power,

P=1(2V)¥2Dcos¢

ie. P=VIcos¢

The waveforms of v, i and p, are shown in Fig. 18.11
for an R—L circuit. The waveform of power is seen to
pulsate at twice the supply frequency. The areas of
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the power curve (shown shaded) above the horizontal
time axis represent power supplied to the load; the
small areas below the axis represent power being
returned to the supply from the inductance as the
magnetic field collapses.

A similar shape of power curve is obtained for an
R—C circuit, the small areas below the horizontal axis
representing power being returned to the supply from
the charged capacitor. The difference between the
areas above and below the horizontal axis represents

the heatloss due to the circuit resistance. Since power
is dissipated only in a pure resistance, the alterna-
tive equations for power, P=II%R, may be used,
where Ig is the rms current flowing through the
resistance.

Summarizing, the average power P in a cir-
cuit containing resistance and inductance and/or
capacitance, whether in series or in parallel, is
givenbyP=VIcos¢porP = Ilzi.R (V, I and Ig being
rms values).
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Assignment S

This assighment covers the material contained
in Chapters 15 to 18.

The marks for each question are shown in
brackets at the end of each question.

1. Solve the following equations in the range 0°
to 360°
(a) sin~!1(—=0.4161)=x

(b) cot~1(2.4198) =6 (8)
. Sketch the following curves labelling relevant

points:

(a) y=4cos(6 + 45°)

(b) y=5sin(2t — 60°) (3)

. The current in an alternating current circuit at
any time ¢ seconds is given by:

i = 120sin(1007rt + 0.274) amperes.
Determine

(a) the amplitude, periodic time, frequency and
phase angle (with reference to 120 sin 1007¢)

(b) the value of current when r =0

(c) the value of current when t = 6 ms

(d) the time when the current first reaches 80 A

Sketch one cycle of the oscillation. (19)

4. A complex voltage waveform v is comprised
of a 141.1 Vrms fundamental voltage at a fre-
quency of 100Hz, a 35% third harmonic com-
ponent leading the fundamental voltage at zero
time by /3 radians, and a 20% fifth harmonic
component lagging the fundamental at zero time
by 7/4 radians.

(a) Write down an expression to represent
voltage v

(b) Draw the complex voltage waveform using
harmonic synthesis over one cycle of the
fundamental waveform using scales of 12 cm
for the time for one cycle horizontally and
1ecm =20V vertically (15)

. Prove the following identities:

1 — cos?6
——— | = tané
(@) [ cos2 6 :| a

37 .
(b) cos (7 +¢> = sin¢

sin? x )
(c) tan” x 9)

C —_—
1+ cos2x

=

. Solve the following trigonometric equations in

the range 0° < x < 360°:

(@)4cosx+1=0

(b) 3.25 cosecx =5.25

(c) 5sin>x+ 3sinx =4
(d)2sec’6+5tan6 =3 (18)

. Solve the equation 5 sin(6 — 7/6) =8 cos b for

values 0 < 0 < 27 8)

. Express 5.3 cost — 7.2 sint in the form

R sin(z + o). Hence solve the equation
5.3 cost — 7.2sint =4.5 in the range
0<t<2m (12)

9. Determine [ 2cos37sinzdz 3)
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Cc

Functions and their curves

19.1 Standard curves

When a mathematical equation is known, co-
ordinates may be calculated for a limited range of
values, and the equation may be represented pictori-
ally as a graph, within this range of calculated values.
Sometimes it is useful to show all the characteristic
features of an equation, and in this case a sketch
depicting the equation can be drawn, in which all
the important features are shown, but the accurate
plotting of points is less important. This technique is
called ‘curve sketching’ and can involve the use of
differential calculus, with, for example, calculations
involving turning points.

If, say, y depends on, say, x, then y is said to be
a function of x and the relationship is expressed as
y=f(x); x is called the independent variable and y
is the dependent variable.

In engineering and science, corresponding values
are obtained as a result of tests or experiments.

Here is a brief resumé of standard curves, some
of which have been met earlier in this text.

(i) Straight Line
The general equation of a straight line is y =mx + ¢,

d
where m is the gradient i.e.ay> and c is the y-axis

intercept.
Two examples are shown in Fig. 19.1

(ii) Quadratic Graphs

The general equation of a quadratic graph is
y =ax? + bx + ¢, and its shape is that of a parabola.
The simplest example of a quadratic graph, y = x2,
is shown in Fig. 19.2.
(iii) Cubic Equations
The general equation of a cubic graph is
y=ax> 4+ bx*> +cx+d.
The simplest example of a cubic graph, y =x, is
shown in Fig. 19.3.
(iv) Trigonometric Functions (see Chapter 15,
page 148)

Graphs of y =sin 0,y = cos § and y = tan 6 are shown
in Fig. 19.4.

Figure 19.1

Figure 19.2
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Figure 19.3
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Figure 19.4

(v) Circle (see Chapter 14, page 137)

The simplest equation of a circle is x>+ y*> =r?,

with centre at the origin and radius r, as shown in
Fig. 19.5.

More generally, the equation of a circle, centre
(a, b), radius r, is given by:

x—af+G—bF=r

X2+ y2=r2

<Y

Figure 19.5
Figure 19.6 shows a circle
=2+ -3 =4

A
y

(x—2)2+(y-3)%=4

Figure 19.6

(vi) Ellipse
The equation of an ellipse is
2 2
X
S+
a b

and the general shape is as shown in Fig. 19.7.

=1

yA
Cc X2, Y2 _ 4

A a2 b2
b \
A \4 B >

D

Figure 19.7
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The length AB is called the major axis and CD the
minor axis.

In the above equation, ‘a’ is the semi-major axis
and ‘b’ is the semi-minor axis.
(Note that if b=a, the equation becomes

22
. + —= 1, i.e. x2 —}—y2 =a2, which is a circle of
a a
radius a).
(vii) Hyperbola
The equation of a hyperbola is
2P
2 !

and the general shape is shown in Fig. 19.8. The
curve is seen to be symmetrical about both the x-
and y-axes. The distance AB in Fig. 19.8 is given
by 2a.

y
xX2_y?_y
a2 b2

A B

o] X

Figure 19.8

(viii) Rectangular Hyperbola

The equation of a rectangular hyperbola is xy = ¢ or

y= ¢ and the general shape is shown in Fig. 19.9.
X

(ix) Logarithmic Function (see Chapter 4, page 27)

y= Inx and y = lgx are both of the general shape
shown in Fig. 19.10.

(x) Exponential Functions (see Chapter 4, page 31)

y=e¢" is of the general shape shown in Fig. 19.11.

3 2 9 o 1 2 3 >~
1k
oL
3L
Figure 19.9
yA
y=log x
0 1 x;
Figure 19.10
y \
y=ex
1
0 X
Figure 19.11
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(xi) Polar Curves

The equation of a polar curve is of the form r = f(0).
An example of a polar curve, r = a sin 6, is shown in
Fig. 19.12.

r=asinp

Figure 19.12

19.2 Simple transformations

From the graph of y = f(x) it is possible to deduce
the graphs of other functions which are transfor-
mations of y= f(x). For example, knowing the
graph of y= f(x), can help us draw the graphs of
y=af(x), y=f(x)+a, y=f(x+a), y=flax),
y=—f()and y= f(—x).

Dy=af(x)

For each point (x1, y1) on the graph of y = f(x) there
exists apoint (x1, ay) onthe graph of y = af (x). Thus
the graph of y = af (x) can be obtained by stretching
y= f(x) parallel to the y-axis by a scale factor ‘a’.

Graphs of y=x+ 1 and y = 3(x 4 1) are shown in
Fig. 19.13(a) and graphs of y= sinf and y =2sin 6
are shown in Fig. 19.13(b).

(i) y=f(x)+a

The graph of y = f(x) is translated by ‘a’ units par-
allel to the y-axis to obtain y = f(x) + a. For exam-
ple, if f(x)=x, y= f(x) + 3 becomes y =x+ 3, as
shown in Fig. 19.14(a). Similarly, if f(6)= cos9,
then y = f(6) + 2 becomes y = cos 0 + 2, as shown
in Fig. 19.14(b). Also, if f (x) = x?, then y = f(x) + 3
becomes y = x2 + 3, as shown in Fig. 19.14(c).

(i) y =f (x +a)

The graph of y =f(x) is translated by ‘a’ units par-
allel to the x-axis to obtain y=f(x+a). If ‘a’>0

y2“* 2 sin6
/y— sin
y= sin®

1 -

| | »
0 T b4 3n 2n ¢

2 2

(b)

Figure 19.13

it moves y = f(x) in the negative direction on the
x-axis (i.e. to the left), and if ‘a’ < Oitmoves y = f(x)
in the positive direction on the x-axis (i.e. to the

right). For example, if f(x)= sinx, y=f (x — g)

becomes y = sin (x — %) as shown in Fig. 19.15(a)
and y= sin (x n %) is shown in Fig. 19.15(b).

Similarly graphs of y=x?, y=(x—1)> and
y=x+ 2)? are shown in Fig. 19.16.

(iv) y =f(ax)

For each point (x1, y1) on the graph of y = f(x), there

exists a point (ﬂ, y1> on the graph of y= f(ax).
a

Thus the graph of y= f(ax) can be obtained by
stretching y = f(x) parallel to the x-axis by a scale
1

factor —
a
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vt y

y=sinx

H T
6l 1t P [ = y:sm(x—é)
Y=x+3 S \
// 1 \\\I 1 ]

4 0 T N 3r B x

2 o\
ol y=x 48

(a)
; " ’ y
0 4 6 x
(a)

3

™\

\y:cose+2

y=cos 0

LA
2

Ty

1 1
b 3n 2r
2

(b)

Figure 19.14

Figure 19.15

(b)

Figure 19.16

1
For example, if f(x)=(x— 12, and a= > then

o= (31

2

Both of these curves are shown in Fig. 19.17(a).

Similarly, y=cosx and y=cos2x are shown in

Fig. 19.17(b).
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1.0

o

-1.0

Figure 19.17

Wy=—-fx)
The graph of y=—f(x) is obtained by reflect-
ing y= f(x) in the x-axis. For example, graphs of
y=¢e"* and y = —e* are shown in Fig. 19.18(a) and
graphs of y =x? 4+ 2 and y = —(x* 4 2) are shown in
Fig. 19.18(b).

(vi)y=f(—x)
The graph of y= f(—x) is obtained by reflecting
y = f(x) in the y-axis. For example, graphs of y = x*

ya

y=-e

(a)
Figure 19.18

(b)
Figure 19.18 (Continued)

and y:(—x)3 = —x3 are shown in Fig. 19.19(a)
and graphs of y=Inx and y= —Inx are shown in
Fig. 19.19(b).

y=X3
""'--.\ 2 3 X
\x\
\\\
‘\
A}
‘\
%
A}
(a)
yd
HHHHHH y=-Inx
Tl y=Inx
-\, 0 1 X
\\
A}
‘\
1
]
i
(b)

Figure 19.19
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Problem 1. Sketch the following graphs, Problem 2. Sketch the following graphs,
showing relevant points: showing relevant points:
@y=0-4> ®y=x-38

(@) y=5—(x+2)° (b) y=1+43sin2x

(a) In Fig. 19.20 a graph of y=x? is shown by (a) Figure 19.22(a) shows a graph of y=x.
the broken line. The graph of y=(x —4)? is Figure 19.22(b) shows a graph of y=(x+2)?
of the form y=f(x+a). Since a=—4, then

(see f(x + a), Section (iii) above).
y=(x —4)? is translated 4 units to the right of
y= x2, parallel to the x-axis.

y
(See Section (iii) above).
20+ y=x3
Y y
"n.y = x2 10k
N4 5 X
4 I
Figure 19.20
(b) In Fig. 19.21 a graph of y=x3 is shown by the
broken line. The graph of y=x> —8 is of the y
formy = f(x) 4 a. Since a = —8, then y = x> — 8
is translated 8 units down from y = x>, parallel
to the y-axis. 20
(See Section (ii) above).
y=(x+2)°
10}
=z = 0 2 X
10}
20|

Figure 19.21 Figure 19.22
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20+

10+

y=5-(x+2)3

20+

10+

10}

20}

(d)
Figure 19.22 (Continued)

Figure 19.22(c) shows a graph of y = — (x +2)3
(see —f(x), Section (v) above). Figure 19.22(d)
shows the graph of y=5—(x+2)° (see
f(x) 4+ a, Section (ii) above).

(b) Figure 19.23(a) shows a graph of y= sinx.

Figure 19.23(b) shows a graph of y= sin2x
(see f(ax), Section (iv) above).
Figure 19.23(c) shows a graph of y=3sin2x
(see a f(x), Section (i) above). Figure 19.23(d)
shows a graph of y =1+ 3sin2x (see f(x) + a,
Section (ii) above).

noja

y=sin 2x

y=3sin2x

-1

-2

()

y=1+3sin 2x

.
2n x

rale

-2

Figure 19.23

(d)
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Now try the following exercise.

Exercise 85 Further problems on simple
transformations with curve sketching
Sketch the following graphs, showing relevant
points:
(Answers on page 213, Fig. 19.39)

1. y=3x-5

2. y=—-3x+4

3. y=x>+3

4, y=(x—13)?

5. y=(x—4)2%+42

6. y=x—x°

7. y=x3+2

8. y=14+2cos3x

9. y:3—2sin<x—|— %)
10. y=2Inx

19.3 Periodic functions

A function f(x) is said to be periodic if f(x+T) =
f(x) for all values of x, where T is some positive
number. T is the interval between two successive rep-
etitions and is called the period of the function f(x).
For example, y = sinx is periodic in x with period
27 since sinx = sin (x 4+ 27) = sin (x + 4), and so
on. Similarly, y= cosx is a periodic function with
period 27 since cos x = cos (x + 27) = cos (x + 4m),
and so on. In general, if y = sin wf or y = cos wt then
the period of the waveform is 27/w. The function
shown in Fig. 19.24 is also periodic of period 27
and is defined by:

) = —1, when —7m <x<0
S = 1, when0<x<m
(%)
1
-2n - 0 T 2n X
-1
Figure 19.24

19.4 Continuous and discontinuous
functions

If a graph of a function has no sudden jumps or
breaks it is called a continuous function, examples
being the graphs of sine and cosine functions. How-
ever, other graphs make finite jumps at a point or
points in the interval. The square wave shown in
Fig. 19.24 has finite discontinuities as x = 7, 27,
37, and so on, and is therefore a discontinuous func-
tion. y = tan x is another example of a discontinuous
function.

19.5 Even and odd functions

Even functions

A function y =f(x) is said to be even if f(—x) =f(x)
for all values of x. Graphs of even functions are
always symmetrical about the y-axis (i.e. is a mirror
image). Two examples of even functions are y =x?
and y = cosx as shown in Fig. 19.25.

y
/\< y=cos X
| |
—\n/—n/Z 0 /2 T X
(b)
Figure 19.25
Odd functions

A function y =f(x) is said to be odd if f (—x) = —f (x)
for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two examples



200 GRAPHS

y=x8
27+
| |
-3 0 3 x
27
(a)
y y=sinx

Figure 19.26
y
20+ y=ex
10
| 1 1 1
-1 0 12 3 x
@
y
O‘ X
(b)
Figure 19.27

of odd functions are y=x> and y = sinx as shown
in Fig. 19.26.

Many functions are neither even nor odd, two such
examples being shown in Fig. 19.27.

Problem 3. Sketch the following functions and
state whether they are even or odd functions:

(a) y=tanx

2, when0<x <
T
(b) f(x)= {—2, when ) <x<—,

3
2, when§§x§2n

and is periodic of period 27

(a) A graphofy= tanxisshowninFig. 19.28(a) and
is symmetrical about the origin and is thus an odd
function (i.e. tan (—x) = —tan x).

(b) A graph of f(x) is shown in Fig. 19.28(b) and
is symmetrical about the f(x) axis hence the
function is an even one, (f(—x) = f(x)).

y y=tan x
—T 0 b4 2n X

(a)

f(x)
2

| | | |
-2n -7 0 b 2t X
-2+

(b)

Figure 19.28

Problem 4. Sketch the following graphs and

state whether the functions are even, odd or

neither even nor odd:

(a) y=Inx

(b) f(x)=x in the range —m to 7w and is
periodic of period 2.
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(a) A graph of y= Inx is shown in Fig. 19.29(a)
and the curve is neither symmetrical about the
y-axis nor symmetrical about the origin and is
thus neither even nor odd.

(b) A graph of y =x in the range —m to & is shown
in Fig. 19.29(b) and is symmetrical about the
origin and is thus an odd function.

y
10k A/y=lnx
0.5
1 1 1
0 12 3 4 X
-0.5f
(a)
y _
y=x
Ty
I /
-2 T 0 n 2n X
nk

Figure 19.29

Now try the following exercise.

Exercise 86 Further problems on even and
odd functions

In Problems 1 and 2 determine whether the given
functions are even, odd or neither even nor odd.

1. (a) x* (b) tan3x (c) 2¢* (d) sin’x
(a) even (b) odd
(c) neither (d) even

2. (@) 53 (b) e'4e* sl 4y e

© =5

(a) odd (b)even
(c) odd (d) neither

3. State whether the following functions, which
are periodic of period 27, are even or odd:

9 — 6, when —m<6<0

@ f6) = —6, when0<0<m
X, when—%<x§g

(b) f(x) = T 37
0, when — <x < —

2 2

[(a) even (b) odd]

19.6 Inverse functions

If y is a function of x, the graph of y against x can be
used to find x when any value of y is given. Thus the
graph also expresses that x is a function of y. Two
such functions are called inverse functions.

In general, given a function y =f(x), its inverse
may be obtained by interchanging the roles of x and
v and then transposing for y. The inverse function is
denoted by y =f"1(x).

For example, if y = 2x + 1, the inverse is obtained
by

(i) transposing for x, i.e. x = y;l Y and
2 2 2
(i1) interchanging x and y, giving the inverse as
x 1
=272

1
Thus if f(x) = 2x + 1, then f ~(x) = f -3

A graph of f(x)=2x+ 1 and its inverse f lx) =

%C — — is shown in Fig. 19.30 and f~ I(x) is seen to

be a reflection of f(x) in the line y = x.
Similarly, if y = x?, the inverse is obtained by

(i) transposing for x, i.e. x = 4,/y and

(i1) interchanging x and y, giving the inverse
y==+/x.
Hence the inverse has two values for every value
of x. Thus f(x) = x> does not have a single inverse. In
such a case the domain of the original function may
be restricted to y =x? for x > 0. Thus the inverse is
then y=+4./x. A graph of f(x) =x? and its inverse
F~'(x)=/x for x>0 is shown in Fig. 19.31 and,
again, f ~I(x) is seen to be a reflection of f(x) in
the line y = x.
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¥4

Figure 19.30

Y
y=x?
4 i
LTy =x
JJ
P
J”
1”
2 ,f’
L y=x
/-
=
/”
f” X
’,'0 1 2 3 X

Figure 19.31

It is noted from the latter example, that not all func-
tions have an inverse. An inverse, however, can be
determined if the range is restricted.

Problem 5. Determine the inverse for each of
the following functions:
@ f=x—1 Of@)=x>-4 (x>0

©) fx)=x2+1

(@) fy=f(x),theny=x—1
Transposing for x gives x =y + 1
Interchanging x and y gives y=x + 1
Hence if f(x)=x — 1, then f~l(x)=x+1

(b) If y= f(x), theny=x>—4 (x>0)
Transposing for x gives x = /y +4
Interchanging x and y gives y = +/x + 4
Hence if f(x)=x?> —4 (x> 0) then
o =vx+4ifx>—4

(c) If y=f(x), theny=x2+1
Transposing for x gives x = /y — 1
Interchanging x and y gives y =+/x — 1, which
has two values.
Hence there is no inverse of f(x)=x%+1,
since the domain of f(x) is not restricted.

Inverse trigonometric functions

If y=sinx, then x is the angle whose sine is y.
Inverse trigonometrical functions are denoted by
prefixing the function with ‘arc’ or, more com-
monly,~!. Hence transposing y = sinx for x gives
x= sin~!y. Interchanging x and y gives the inverse
y=sin"!x.

Similarly, y= cos! X, y= tan~—! X, y= sec 1 x,
y=cosec” lx and y = cot ! x are all inverse trigono-
metric functions. The angle is always expressed in
radians.

Inverse trigonometric functions are periodic so
it is necessary to specify the smallest or principal
value of the angle. For sin~!x, tan! x, cosec™! x
and cot~!x, the principal value is in the range
7z <y< % For cos™!

2
value is in the range 0 <y < 7.

Graphs of the six inverse trigonometric functions
are shown in Fig. 33.1, page 333.

x and sec™ ! x the principal

Problem 6. Determine the principal values of

(a) arcsin 0.5 (b) arctan(—1)

(©) arccos(—?) (d) arccosec(ﬁ)

Using a calculator,
(a) arcsin0.5 = sin~1 0.5 = 30°

= % rad or 0.5236 rad
(b) arctan(—1) = tan~ ' (—1) = —45°

— _g rad or —0.7854 rad
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(c) arccos(—?) = cos™! (—?) = 150°

5
= ?7[ rad or 2.6180 rad

(d) arccosec(+/2) = arcsin(%)

1
- —1 o
sin — ] =45

- % rad or 0.7854 rad

Problem 7. Evaluate (in radians), correct to
3 decimal places: sin~! 0.30 + cos~! 0.65

sin~10.30 = 17.4576° = 0.3047 rad
cos 1 0.65 = 49.4584° = 0.8632 rad

Hence sin~! 0.30 + cos™! 0.65
=0.3047 +0.8632 =1.168, correct to 3 decimal
places.

Now try the following exercise.

Exercise 87
functions

Further problems on inverse

Determine the inverse of the functions given in
Problems 1 to 4.

1. fr)=x+1 [ lx)=x—1]
2. f(x)=5x—1 [l =1x+D]
3. fo=x'+1 [l =vx—1]
4 f@=142 [f‘l(x)=L]

X x—2

Determine the principal value of the inverse
functions in Problems 5 to 11.

5. sin~'(=1) [—% or —1.5708 rad]
6. cos™1 0.5 [g or 1.0472 rad]
7. tan~'1 [% or 0.7854rad]
8. cot™12 [0.4636 rad]
9. cosec™!2.5 [0.4115 rad]

10. sec 1.5

11. sin_l(%)

12. Evaluate x, correct to 3 decimal places:

-1 1 +cos~! ‘—1 —tan~! §
3 5 9

[0.257]

[0.8411rad]

[% or 0.7854 rad]

X = sin

13. Evaluate y, correct to 4 significant figures:
y=3sec”! v/2 —4cosec™! V2

-1
+5cot” "2 [1.533]

19.7 Asymptotes

x+2 .
is

If a table of values for the function y=

X
drawn up for various values of x and then y plotted
against x, the graph would be as shown in Fig. 19.32.
The straight lines AB,i.e.x=—1,and CD,ie.y=1,
are known as asymptotes.

An asymptote to a curve is defined as a straight
line to which the curve approaches as the distance
from the origin increases. Alternatively, an asymp-
tote can be considered as a tangent to the curve at
infinity.

Asymptotes parallel to the x- and y-axes

There is a simple rule which enables asymptotes par-
allel to the x- and y-axis to be determined. For a curve

y=fx):

(i) the asymptotes parallel to the x-axis are found
by equating the coefficient of the highest power
of x to zero

(i1) the asymptotes parallel to the y-axis are found
by equating the coefficient of the highest power
of y to zero

. +2 .
With the above example y=%, rearranging
X

gives:

yx+1)=x+2
i.e. w+y—x—-2=0 (1)
and x¢—1)+y—2=0
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I 7
X+
2 Y = S
C I e e Dr
>
o X+2 7
Y = 53
o
Figure 19.32
The coefficient of the highest power of x (in this . x—3
R = y2x+1)=x-3
case x!) is (y — 1). Equating to zero gives: y — 1 =0 carranging y 2x+1 gives: y(2x 4 1) =x
From which, y=1, which is an asymptote of ie. 2y 4y =x—3

x+2
x+1

y= as shown in Fig. 19.32.

Returning to equation (1) : yx+y—x—2=0

from which, yx+1)—x—2=0.

The coefficient of the highest power of y (in this
case y') is (x + 1). Equating to zero gives: x + 1 =0
from which, x =—1, which is another asymptote

ofy=x+

2
as shown in Fig. 19.32.
x+1

Problem 8. Determine the asymptotes for the

2x+1

functiony = and hence sketch the curve.

or 2xy+y—x+3=0
and x2y—1)4+y+3=0

Equating the coefficient of the highest power of x to
zero gives: 2y — 1 =0 from which, y = % which is
an asymptote.

Since y(2x + 1) = x — 3 then equating the coefficient
of the highest power of y to zero gives: 2x+1=0

from which, x = —% which is also an asymptote.
-3 -3

When x=0, y= 2xx—l- =71 = —3 and when

y=0,0=-—"_ from which, x —3=0 and x = 3.

2x+1 3
A sketch of y = T
2x+1

is shown in Fig. 19.33.
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2x+1

—2

2x+1

x-3

Figure 19.33
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Problem 9. Determine the asymptotes par-
allel to the x- and y-axes for the function

x%y? =9(x? +y?).

Asymptotes parallel to the x-axis:

Rearranging x2y2 =9+ y2) gives
x2y? —9x? —9y? =0

hence x*(y> —9)—97” =0

Equating the coefficient of the highest power of
x to zero gives y> —9 =0 from which, y>=9 and
y==%3.

Asymptotes parallel to the y-axis:
Since x2y? —9x? —9y? =0

then  y?(x*> —9) —9%x? =0

Equating the coefficient of the highest power of y

to zero gives x> —9=0 from which, x>=9 and
x==3.
Hence asymptotes occur at y ==+3 and x = 3.

Other asymptotes

To determine asymptotes other than those parallel to
x- and y-axes a simple procedure is:

(1) substitute y =mx + ¢ in the given equation
(i1) simplify the expression

(iii) equate the coefficients of the two highest pow-
ers of x to zero and determine the values of m
and c. y =mx + c gives the asymptote.

Problem 10. Determine the asymptotes for the
function: y(x+1)=(x —3)(x+2) and sketch
the curve.

Following the above procedure:

(i) Substituting y =mx + ¢ into
yx+1)=(x—3) (x+2) gives:

mx+co)x+1)=x—-3)(x+2)
(i) Simplifying gives

ma+mx+cx+c=x>—x—6
and (m—Dx>+@m+c+Dx+c+6=0

(iii) Equating the coefficient of the highest power
of x to zero gives m—1=0 from which,
m=1.

Equating the coefficient of the next highest
power of x to zero gives m+c+ 1=0.

and since m=1, 1+c¢+1=0 from which,
c=-2.

Hence y=mx+c=1x—2.

i.e. y=x — 2 is an asymptote.

To determine any asymptotes parallel to the x-axis:

Rearranging y(x+1) = (x — 3)(x +2)

gives wHy=x>—x—6

The coefficient of the highest power of x (i.e. x?)
is 1. Equating this to zero gives 1 =0 which is not
an equation of a line. Hence there is no asymptote
parallel to the x-axis.
To determine any asymptotes parallel to the y-axis:
Since y(x+1)=(x —3)(x +2) the coefficient of
the highest power of y is x+ 1. Equating this to
zero gives x + 1 =0, from which, x =—1. Hence
x = —1 is an asymptote.
Whenx =0, y(1) =(—3)(2), i.e. y=—6.
Wheny=0, 0=(x —3)(x+2),i.e.x=3andx = -2.
A sketch of the function y(x + 1) = (x — 3)(x 4+ 2)
is shown in Fig. 19.34.

Problem 11. Determine the asymptotes for the
function x> — xy? +2x —9=0.

Following the procedure:

(i) Substituting y = mx + ¢ gives
X3 —x(mx+¢)* +2x—9=0.
(i1) Simplifying gives
23 = x[m®x% 4+ 2mex + 2] +2x—9=0
ie.  x3—m?xd —2mex? —Px+2x—9=0
and 31 —=m?) —2mex® —c*x+2x—9=0
(iii) Equating the coefficient of the highest power

of x (ie. x* in this case) to zero gives
1 —m? =0, from which, m=+£1.

Equating the coefficient of the next highest

power of x (i.e. x* in this case) to zero gives
—2mc =0, from which, ¢ =0.
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N\

2

Figure 19.34



208 GRAPHS

Hence y=mx+c==%1x+0, i.e.
y = —Xx are asymptotes.

y=x and

To determine any asymptotes parallel to the x-
and y-axes for the function x> — xy? +2x — 9 =0:

Equating the coefficient of the highest power of x
term to zero gives 1 =0 which is not an equation of
a line. Hence there is no asymptote parallel with the
X-axis.

Equating the coefficient of the highest power of y
term to zero gives —x =0 from which, x =0.

Hencex =0,y =xandy = — x are asymptotes for
the function x3 — xy?> +2x —9=0.

Problem 12. Find the asymptotes for the func-

. 41
tion y=

and sketch a graph of the

function.

x2

Rearranging y = gives yx =x% 4 1.

Equating the coefficient of the highest power x term
to zero gives 1 =0, hence there is no asymptote
parallel to the x-axis.

Equating the coefficient of the highest power y term
to zero gives x =0.

Hence there is an asymptote at x =0 (i.e. the
y-axis)

To determine any other asymptotes we substitute
y=mx + ¢ into yx =x% + 1 which gives

(mx 4+ c)x = x2 + 1
i.e. mx? +cx = x>+ 1
and m— x> +cx—1=0
Equating the coefficient of the highest power x term
to zero gives m — 1 =0, from which m = 1.
Equating the coefficient of the next highest power x
term to zero gives c = 0. Hencey =mx 4+ c = 1x + 0,
i.e. y =x is an asymptote.

2

A sketch of y= a

X
It is possible to determine maximum/minimum
points on the graph (see Chapter 28).

1
is shown in Fig. 19.35.

. 24+l x? 1
Since y = =—4+-=x4x
x X X
D) 1
then —=1-—-x""= ——2=O
X

for a turning point.

1
Hence 1 = — and x? = 1, from which, x = +1.

)
When x =1,
241 141
y: =—=2
X 1
and when x =—1,
—1)2+1

re. (1, 2) and (—1, —2) are the co-ordinates of the

d?y 2 d?y
: : 93 _ . —

turning points. ol 2x 0 = 3 when x =1, 02
is positive, which indicates a minimum point and

2

when x=—1, is negative, which indicates a

dx?
maximum point, as shown in Fig. 19.35.

Now try the following exercise.

Exercise 88 Further

asymptotes

problems  on

In Problems 1 to 3, determine the asymptotes
parallel to the x- and y-axes

Ly=""2 y=1,x=—I]
'y_x—i—l = A=
) X
2.y = [x=3,y=1land y=—1]
x—3
x(x +3)

Y G rDa D
[x=—1,x=—2and y=1]

In Problems 4 and 5, determine all the asymp-
totes

4. 8x—10+x> —xy*=0
[x=0,y=xand y=—x]
5. X2(y*—16)=y
[y=4,y=—4 and x =0]
In Problems 6 and 7, determine the asymptotes
and sketch the curves
2
x*—x—4
6. y=—7—
Y x+1
x=—-1l,y=x-2,
see Fig. 19.40, page 215
7. x> —x2y+2x—y=5

x=0,y=0,y=ux,
see Fig. 19.41, page 215




FUNCTIONS AND THEIR CURVES 209

T
HHH
Vi
1T
HH
H
6
o+
y = x>+
p) X
4
Al
2
—4 -2 0 2 4 X
2
1
_ x°+1
y = x 4

Figure 19.35

19.8 Brief guide to curve sketching

The following steps will give information from
which the graphs of many types of functions y = f(x)
can be sketched.

(i) Use calculus to determine the location and
nature of maximum and minimum points (see
Chapter 28)

(i) Determine where the curve cuts the x- and y-
axes

(iii) Inspect the equation for symmetry.

(a) If the equation is unchanged when —x is
substituted for x, the graph will be sym-
metrical about the y-axis (i.e. it is an even
function).

(b) If the equation is unchanged when —y is
substituted for y, the graph will be symmet-
rical about the x-axis.

(c) If f(—x)=—f(x), the graph is symmet-
rical about the origin (i.e. it is an odd
function).

(iv) Check for any asymptotes.
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19.9 Worked problems on curve
sketching

Problem 13. Sketch the graphs of
(a) y= 2x2 +12x+20
(b) y=-3x>+12x—15

(a) y=2x%4 12x + 20 is a parabola since the equa-
tion is a quadratic. To determine the turning
point:

. dy .
Gradient = Pl 4x4+12=0 for a turning
point.

Hence 4x=—12 and x = —3.
When x = —3, y=2(—3)> 4+ 12(=3) +20 =2.

Hence (—3, 2) are the co-ordinates of the turning
point

d2

E)zj =4, which is positive, hence (-3, 2) is a
minimum point.

When x =0, y =20, hence the curve cuts the
y-axis at y = 20.

Thus knowing the curve passes through (—3, 2)
and (0, 20) and appreciating the general shape
of a parabola results in the sketch given in
Fig. 19.36.

(b) y=—3x2+12x—15 is also a parabola (but
‘upside down’ due to the minus sign in front of
the x? term).

d
Gradient = ay =—6x+12=0 for a turning

point.
Hence 6x =12 and x =2.
When x =2, y=—3(2)*> + 12(2) — 15= 3.

Hence (2, —3) are the co-ordinates of the turning
point

d2

5)2) = —6, which is negative, hence (2, —3) is a
maximum point.

When x =0, y=—15, hence the curve cuts the
axis at y=—15.

The curve is shown sketched in Fig. 19.36.

y=2x2+12x+20

y=-3x2+12x-15

|
\S]
o
T

Figure 19.36

Problem 14. Sketch the curves depicting the
following equations:

(@) x=49—y2 (b) y>=16x

(¢) xy=5

(a) Squaring both sides of the equation and trans-
posing gives x> +y? =9. Comparing this with
the standard equation of a circle, centre ori-
gin and radius a, i.e. x2 —i—y2 =a2, shows that

x% 4 y? =9 represents a circle, centre origin and
radius 3. A sketch of this circle is shown in
Fig. 19.37(a).

(b) The equation y?>=16x is symmetrical about
the x-axis and having its vertex at the origin
(0, 0). Also, when x=1, y=+4. A sketch of
this parabola is shown in Fig. 19.37(b).

(c) The equation y= 4 represents a rectangular
X
hyperbola lying entirely within the first and third
5
quadrants. Transposing xy =5 gives y = —, and

X
therefore represents the rectangular hyperbola
shown in Fig. 19.37(c).
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(@) x=v{9-y2)

y-l
+4

=y

—4
(b) y*=16x

Y
>

(c) xy=5

Figure 19.37

Problem 15. Sketch the curves depicting the

x2 2

2ty
axes coinciding with the x- and y-axes of a rect-
angular co-ordinate system, the major axis being
2(3), i.e. 6 units long and the minor axis 2(2), i.e.
4 units long, as shown in Fig. 19.38(a).

=1 represents an ellipse, having its

(a) 4x2 = 36-9y2

A
A

(b) 3y2+15 =5x2

Figure 19.38
(b) Dividing 3y? 4+ 15 = 5x? throughout by 15 and
22
transposing gives 375" 1. The equation
2 2
X

T =1 represents a hyperbola which is
a

symmetrical about both the x- and y-axes, the
distance between the vertices being given by 2a.

Thus a sketch of 3 ——=1 is as shown

5
in Fig. 19.38(b), having a distance of 2+/3
between its vertices.

following equations:

(a) 4x2=36—9y% (b) 3y2+ 15=5x2

(a) By dividing throughout by 36 and transposing,
the equation 4x” =36 — 9y” can be written as

22

9 + i 1. The equation of an ellipse is of
x2 y2

the form o + ok 1, where 2a and 2b repre-

sent the length of the axes of the ellipse. Thus

Problem 16. Describe the shape of the curves
represented by the following equations:

2

(a) x=2 [1—(%)2] (b) %=2x

2\ 1/2
(©) y=6(1 —x—>
16
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2
(a) Squaring the equation gives x> =4 |:1 — (%) j|

and transposing gives x> =4 —y?, i.e.

x% 4 y?> =4. Comparing this equation with

x% 4+ y? =a® shows that x> + y> =4 is the equa-
tion of a circle having centre at the origin (0, 0)
and of radius 2 lzmits.

(b) Transposing % =2x gives y=4./x. Thus
2
% =2x is the equation of a parabola having

its axis of symmetry coinciding with the x-axis
and its vertex at the origin of a rectangular
co-ordinate system.

2\ 1/2
(c) y=6 (1 — %) can be transposed to

w2\ 72
% = (1 — E) and squaring both sides gives
2 2 2 2
A RS TR A |
36 16 16 36

This is the equation of an ellipse, centre at the
origin of a rectangular co-ordinate system, the
major axis coinciding with the y-axis and being
2\/%, i.e. 12 units long. The minor axis coin-
cides with the x-axis and is 2+/16, ie. 8
units long.

Problem 17. Describe the shape of the curves
represented by the following equations:

X _ r\? y_ 15
@35= [”(5)] ®7=%

2 2
X y
-+ G)
25 + 2
o2 2
1. — — — =

25 4

This is a hyperbola which is symmetrical about
both the x- and y-axes, the vertices being 2+/25,
i.e. 10 units apart.

(With reference to Section 19.1 (vii), a is equal
to £5)

(b) The equation % =
_ 60

a =

2

15
— 1is of the form y = g,
2x X

= 30.

This represents a rectangular hyperbola, sym-
metrical about both the x- and y-axis, and lying
entirely in the first and third quadrants, similar
in shape to the curves shown in Fig. 19.9.

Now try the following exercise.

Exercise 89 Further problems on curve
sketching

7
1. Sketch the graphs of (a) y= 3x% 4+ 9x + 1
(b) y = —5x% 4 20x + 50.

(a) Parabola with minimum
value at (—% —5) and
passing through (0,13) .

(b) Parabola with maximum

value at (2,70) and passing
through (0, 50).

In Problems 2 to 8, sketch the curves depicting
the equations given.

2 x=4 [1 - (;)2}

[circle, centre (0, 0), radius 4 units]

3. Jx= g
parabola, symmetrical about
x-axis, vertex at (0, 0)
2
x-—16
4. y* =
Y 4
hyperbola, symmetrical about
x- and y-axes, distance
between vertices 8 units along
X-axis
2 2
5. L =52
5 2

ellipse, centre (0,0), major axis
10 units along y-axis, minor axis
24/10 units along x-axis

6. x =31 +y?

hyperbola, symmetrical about
x- and y-axes, distance
between vertices 6 units along
x-axis
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rectangular hyperbola, lying in |
first and third quadrants only

8. x=1(36 — 18y?)
ellipse, centre (0, 0),
major axis 4 units along x-axis,

minor axis 2+/2 units
along y-axis

9. Sketch the circle given by the equation
x? +y? —4x + 10y +25=0.
[Centre at (2, —5), radius 2]

In Problems 10 to 15 describe the shape of the
curves represented by the equations given.

10. y=+/[3(1 — x?)]

ellipse, centre (0,0), major axis
2\/5 units along y-axis, minor
axis 2 units along x-axis

11. y=+/[3(x2 - 1)]

12. y=+/9 —x2

13. y="7x""

14. y=(3x)'/?

15. y*? —8=—2x2

and y-axes, vertices 2 units

hyperbola, symmetrical about x-
apart along x-axis

[circle, centre (0, 0), radius 3 units]

rectangular hyperbola, lying’]
in first and third quadrants,
symmetrical about x- and
y-axes

parabola, vertex at (0, 0), sym—_
metrical about the x-axis

ellipse, centre (0,0), major]
axis 2\/§ units along the
y-axis, minor axis 4 units
along the x-axis

Graphical solutions to Exercise 85, page 199

7 =8x-5

Figure 19.39

-2 y=-3x+4

y=(x-3f
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5 6
y
Y
0.501
15+
0.25¢ y=x-x2
10 = (x—4)%+2
0 1 X
5 L
0 2 4 6 8 x
7. 8.
y r
=1+2cos3x

3 4

2 8

1}
-2 -1 0 1 2 X

0 n n 3n 2n

-5} 2 2
-1
-10

10.

Xy
|

2n

o
o=
A
51

-2

Figure 19.39 (Continued)

>
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Graphical solutions to Problems 6 and 7, Exercise 88, page 208

Figure 19.40
1
°_X°y+2x—y=5
A
ij‘
i
A
T e
X
Xy —xy+2x—-y=5

Figure 19.41
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20

Irregular areas, volumes and mean
values of waveforms

. In general, the trapezoidal rule states:
20.1 Areas of irregular figures £ P

Areas of irregular plane surfaces may be approxi- Area =

mately determined by using (a) a planimeter, (b) the width of\ | 1 first + sum Qf .
trapezoidal rule, (c) the mid-ordinate rule, and (d) (interval) 5 last. + remaining
Simpson’s rule. Such methods may be used, for ordinate ordinates
example, by engineers estimating areas of indicator

diagrams of steam engines, surveyors estimating . .

areas of plots of land or naval architects estimating (¢) Mid-ordinate rule

areas of water planes or transverse sections of ships. To determine the area ABCD of Fig. 20.2:

(a) A planimeter is an instrument for directly mea-
suring small areas bounded by an irregular
curve.

(b) Trapezoidal rule
To determine the areas PORS in Fig. 20.1:

Figure 20.2
3’1 yg y3 y4 y5 ys y?

(i) Divide base AD into any number of equal

P._+_.|._+_+_.|.._.|8 intervals, each of width d (the greater
d d d d d d

the number of intervals, the greater the
accuracy).

Figure 20.1
(i1) Erect ordinates in the middle of each interval
(shown by broken lines in Fig. 20.2).

(i) Divide base PS into any number of equal )
intervals, each of width d (the greater (iii) Accurately measure ordinates yy, y, y3, etc.

the number of intervals, the greater the V) Area ABCD — d
accuracy). (iv) Area O1+y2+y3+ya+ys+ye)-

(ii) Accurately measure ordinates y;, y, y3, etc. In general, the mid-ordinate rule states:

(ii1) Areas PORS

N Area = (width of) (sum of )
—d |:YI . V7 Fyr Y34 yatys 4y 6] interval mid-ordinates
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(d) Simpson’s rule
To determine the area PORS of Fig. 20.1:

(i) Divide base PS into an even number of
intervals, each of width d (the greater
the number of intervals, the greater the
accuracy).

(i1) Accurately measure ordinates yi, yz, y3,
etc.

(iii) Area PORS = g[()n +y7) +4(y2 +y4+
¥6) +2(y3 +y5)]

In general, Simpson’s rule states:

Area — 1 (width of first + last
rea= 3 \interval ordinate

44 (sum of even)

ordinates

5 (Sum of remaining
* 21 odd ordinates

Problem 1. A car starts from rest and its speed
is measured every second for 6s:

Time

t(s) o1 2 3 4 5 6
Speed v

(m/s) 0 2.5 55 875 125 175 240

Determine the distance travelled in 6 seconds
(i.e. the area under the v/t graph), by (a) the
trapezoidal rule, (b) the mid-ordinate rule, and
(c) Simpson’s rule.

A graph of speed/time is shown in Fig. 20.3.

(a) Trapezoidal rule (see para. (b) above)

The time base is divided into 6 strips each of
width 1s, and the length of the ordinates mea-
sured. Thus

04 24.0
area = (1) [(%) +25455

+8.754+12.5+ 17.5:|

=58.75m

30
Graph of speed/itime
25

]
(=]
T

Speed (m/s)
o
T

b EYN

Time (seconds)

Figure 20.3

(b) Mid-ordinate rule (see para. (c) above)

The time base is divided into 6 strips each of
width 1 second.

Mid-ordinates are erected as shown in Fig. 20.3
by the broken lines. The length of each mid-
ordinate is measured. Thus

area = (1)[1.25+4.04+ 7.0+ 10.75
+15.0 + 20.25]
= 58.25m
(c) Simpson’s rule (see para. (d) above)

The time base is divided into 6 strips each of
width 1's, and the length of the ordinates mea-
sured. Thus

area = %(1)[(0 +24.0)+4(2.548.75
+17.5) +2(5.5 + 12.5)]
= 58.33m

Problem 2. A river is 15m wide. Soundings
of the depth are made at equal intervals of 3 m
across the river and are as shown below.

Depth(m) 0 2.2 33 45 42 24 0

Calculate the cross-sectional area of the flow of
water at this point using Simpson’s rule.
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From para. (d) above,
Area = $(3)[(0+0) + 422 +4.5+2.4)

+2(3.3+4.2)]
= ([0 + 36.4 + 15] = 51.4m>

Now try the following exercise.

Exercise 90 Further problems on areas of
irregular figures

1. Plot a graph of y = 3x — x? by completing
a table of values of y from x = 0 to x = 3.
Determine the area enclosed by the curve, the
x-axis and ordinate x = 0 and x = 3 by (a) the
trapezoidal rule, (b) the mid-ordinate rule and
(c) by Simpson’s rule. [4.5 square units]

2. Plot the graph of y = 2x? + 3 between x = 0
and x = 4. Estimate the area enclosed by the
curve, the ordinates x = 0 and x = 4, and the
x-axis by an approximate method.

[54.7 square units]

3. The velocity of a car at one second intervals
is given in the following table:

time

t(s) 01 2 3 4 5 6
velocity

v(m/s) 0 2.0 45 8.0 14.0 21.0 29.0

Determine the distance travelled in 6 seconds
(i.e. the area under the v/t graph) using
Simpson’s rule. [63.33m]

4. The shape of a piece of land is shown in
Fig. 20.4. To estimate the area of the land,
a surveyor takes measurements at intervals
of 50 m, perpendicular to the straight portion
with the results shown (the dimensions being
in metres). Estimate the area of the land in

hectares (1 ha = 10* m?). [4.70 ha]
/
] \
1401 160| 200| 190| 180 130
|
50|50 | 50| 50150/ 50|

Figure 20.4

5. The deck of a ship is 35m long. At equal
intervals of Sm the width is given by the
following table:

Width (m) 0 2.8 52 6.5 5.8 4.1 3.0 23

Estimate the area of the deck. [143 m?]

20.2 Volumes of irregular solids

If the cross-sectional areas Aj, Aj, A3, ... of an
irregular solid bounded by two parallel planes are
known at equal intervals of width d (as shown in
Fig. 20.5), then by Simpson’s rule:

d
volume, V = 3[(A1 +A7) + 4Az + Ay
+A6) +2(A3 + As)]

Figure 20.5

Problem 3. A tree trunk is 12 m in length and
has a varying cross-section. The cross-sectional
areas at intervals of 2 m measured from one end
are:

0.52, 0.55, 0.59, 0.63, 0.72, 0.84, 0.97 m?

Estimate the volume of the tree trunk.

A sketch of the tree trunk is similar to that shown
in Fig. 20.5 above, where d =2m, A} =0.52 m2,

A> =0.55m?, and so on.
Using Simpson’s rule for volumes gives:

Volume = $[(0.52 + 0.97) + 4(0.55 + 0.63
+0.84) +2(0.59 4 0.72)]
= 2[1.49 + 8.08 + 2.62] = 8.13m’
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Problem 4. The areas of seven horizontal
cross-sections of a water reservoir at intervals of
10 m are:

210, 250, 320, 350, 290, 230, 170 m?

Calculate the capacity of the reservoir in litres.

Using Simpson’s rule for volumes gives:

10
Volume = ?[(210 + 170) 4+ 4(250 4 350
+230) + 2(320 + 290)]
10
= ?[380 + 3320 + 1220]

= 16400 m>

16400 m3 = 16400 x 10° cm? and since
1 litre = 1000 cm?,

16400 x 10°
1000
= 16400000

= 1.64 x 10’ litres

capacity of reservoir litres

Now try the following exercise.

Exercise 91 Further problems on volumes
of irregular solids

1. The areas of equidistantly spaced sections of
the underwater form of a small boat are as
follows:

1.76, 2.78, 3.10, 3.12, 2.61, 1.24, 0.85m?

Determine the underwater volume if the sec-
tions are 3 m apart. [42.59 m3]

2. To estimate the amount of earth to be removed
when constructing a cutting the cross-
sectional area at intervals of 8 m were esti-
mated as follows:

0, 28, 37, 45, 41, 26, 0m’

Estimate the volume of earth to be excavated.
[147 m3]

3. The circumference of a 12m long log of
timber of varying circular cross-section is

measured at intervals of 2 m along its length
and the results are:

Distance from Circumference

one end (m) (m)
0 2.80
2 3.25
4 3.94
6 4.32
8 5.16
10 5.82
12 6.36

Estimate the volume of the timber in cubic
metres. [20.42 m?]

20.3 The mean or average value of a
waveform

The mean or average value, y, of the waveform
shown in Fig. 20.6 is given by:

area under curve

r= length of base, b

Figure 20.6

If the mid-ordinate rule is used to find the area under
the curve, then:

sum of mid-ordinates

y= number of mid-ordinates

(_ Vi+y2+y3+ya+ys+y6+y7

7

for Fig. 20.6)
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For a sine wave, the mean or average value:

(i) overonecomplete cycleis zero (see Fig. 20.7(a)),

(b)

Figure 20.7

(ii) overhalfacycleis 0.637 x maximum value, or
(2/7) x maximum value,

(iii) of a full-wave rectified waveform (see Fig.
20.7(b)) is 0.637 x maximum value,

(iv) of a half-wave rectified waveform (see Fig.
20.7(c)) is 0.318 x maximum value, or (1/x)
maximum value.

Problem 5. Determine the average values over
half a cycle of the periodic waveforms shown in
Fig. 20.8.

=
5 20

[=)]
8
=]
- 1 1 /

o 1 2\3/4 t (ms)
—20F
(a)

Current (A)
TR

Figure 20.8

Voltage (V)

1 L Il L

of 2 4 v 8 t(ms)
10

(c)
Figure 20.8 (Continued)

(a) Area under triangular waveform (a) for a half
cycle is given by:

Area= % (base) (perpendicular height)
= (2 x 107%)(20)
=20 x 1073 Vs

Average value of waveform

area under curve

length of base
20 x 1077Vs
T 2x 1073
=10V

(b) Area under waveform (b) for a half
cycle= (1 x 1)+ (3 x2)=7As.
Average value of waveform

area under curve
~ length of base
_ 7As
T 3s
=2.33A

(c) A half cycle of the voltage waveform (c) is
completed in 4 ms.

Area under curve = %{(3 — 1D1073}(10)
=10x 1073 Vs

Average value of waveform

area under curve

length of base
10 x 1073 Vs

4 %107 3s
=25V
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Problem 6. Determine the mean value of cur-
rent over one complete cycle of the periodic
waveforms shown in Fig. 20.9.

<
E
= 5
c
e
5
11 1 1 L1 1 1 1
0 4 8 12 16 20 24 28 t(ms)
(a)
<
E
5 T /‘
5
o
1 i 1 1
0 2 4 6 8 10 12 t (ms)
(b)
Figure 20.9

(a) One cycle of the trapezoidal waveform (a) is
completed in 10ms (i.e. the periodic time is
10 ms).

Area under curve = area of trapezium
= % (sum of parallel sides) (perpendicular
distance between parallel sides)
= 2{(4 +8) x 1073}(5 x 1073)
=30 x 1070 As
Mean value over one cycle

area under curve _ 30 x 107% As
T 10x 1073

length of base
=3mA

(b) One cycle of the sawtooth waveform (b) is
completed in 5 ms.

Area under curve = %(3 X 10_3)(2)
=3 x 1077 As
Mean value over one cycle

__area under curve _ 3 x 1073 As
N 5% 107 3s

length of base
=0.6A

Problem 7. The power used in a manufactur-
ing process during a 6 hour period is recorded at
intervals of 1 hour as shown below.

Time (h) 0o 1 2 3 4 5 6
Power(kW) 0 14 29 51 45 23 O

Plot a graph of power against time and, by using
the mid-ordinate rule, determine (a) the area
under the curve and (b) the average value of the
power.

The graph of power/time is shown in Fig. 20.10.

Graph of power/time
50 '—\
|
I
40 |
3 ||
‘;g 30 | |
z BE
+ A1
|
[ | |
o NEEE
|
7.0 215 420 | 495
1 1
0 1 2 3 4
Time (hours)
Figure 20.10

(a) The time base is divided into 6 equal intervals,
each of width 1 hour. Mid-ordinates are erected
(shown by broken lines in Fig. 20.10) and
measured. The values are shown in Fig. 20.10.

Area under curve = (width of interval)
X (sum of mid-ordinates)
=(D[7.04+21.54+42.0
+49.5 4+ 37.0 4+ 10.0]
=167 kWh (i.e. a measure
of electrical energy)

(b) Average value of waveform

area under curve

length of base

167kWh
= —— =27.83kW
6h
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Alternatively, average value

sum of mid-ordinates

number of mid-ordinates

Problem 8. Fig. 20.11 shows a sinusoidal out-
put voltage of a full-wave rectifier. Determine,
using the mid-ordinate rule with 6 intervals, the
mean output voltage.

1o
=
[+1]
(=]
=
|
0] 30°60°90° 180° 270° 360° ]
.3 T 3n 2n
2 2
Figure 20.11

mean value is 0.637 x maximum value, which in this
problem gives 6.37 V.

Problem 9. An indicator diagram for a steam
engine is shown in Fig. 20.12. The base line has
been divided into 6 equally spaced intervals and
the lengths of the 7 ordinates measured with the
results shown in centimetres. Determine (a) the
area of the indicator diagram using Simpson’s
rule, and (b) the mean pressure in the cylinder
given that 1 cm represents 100 kPa.

| 12.0 cm |

Figure 20.12

One cycle of the output voltage is completed in
radians or 180°. The base is divided into 6 intervals,
each of width 30°. The mid-ordinate of each interval
will lie at 15°, 45°, 75°, etc.

At 15° the height of the mid-ordinate is
10sin 15°=2.588 V.

At 45° the height of the mid-ordinate is
10sin45° =7.071V, and so on.

The results are tabulated below:

12.0
(a) The width of each interval is Tcm. Using
Simpson’s rule,

area = £(2.0)[(3.6 + 1.6) + 4(4.0
+2.9+1.7)+2(3.5+2.2)]

= 3[5.2 43444+ 11.4]

Mid-ordinate | Height of mid-ordinate

= 34 cm?
zléo 18 :ig Lléo ; %ngz (b) Mean height of ordinates
75° 10sin 75° =9.659V area of diagram 34
105° 10sin 105° =9.659V = TJenoth of base 12
135° 10sin 135°=7.071V &
165° 10sin 165° =2.588V

=2.83cm

sum of mid-ordinates =38.636 V

Since 1 cm represents 100 kPa, the mean pressure
in the cylinder
=2.83cm x 100 kPa/cm = 283 kPa.

Mean or average value of output voltage

sum of mid-ordinates

- number of mid-ordinates
_ 38.636

6 Exercise 92
= 6439V

Now try the following exercise.

Further problems on mean or
average values of waveforms

1. Determine the mean value of the periodic
waveforms shown in Fig. 20.13 over a half
cycle. [(a)2A (b) S0V (c) 2.5A]

(With a larger number of intervals a more accurate
answer may be obtained.) For a sine wave the actual



IRREGULAR AREAS, VOLUMES AND MEAN VALUES OF WAVEFORMS 223

<
‘g’ 2
5
(&}
0 10 20 f(ms)
_2 -
. (a)
2
2 100~
g
3
>
]
0 5\/10 t (ms)
-100f
(b)
<
5
“ ]
0 15I/30 t (ms)
_5 —
(c)

Figure 20.13

2. Find the average value of the periodic wave-
forms shown in Fig. 20.14 over one complete
cycle. [(a) 2.5V (b) 3A]

3. An alternating current has the following val-
ues at equal intervals of 5 ms

Time(ms) 0 5 10 15 20 25 30
Current(A) 0 09 2.6 49 58 35 0

0 2 4 6 8 10 ¢(ms)

Current (A) Vollagﬁ (mV)
=] o

: o S—-

j e

Figure 20.14

Plot a graph of current against time and esti-
mate the area under the curve over the 30 ms
period using the mid-ordinate rule and deter-
mine its mean value.

[0.093 As, 3.1A]

4. Determine, using an approximate method,
the average value of a sine wave of maxi-
mum value 50V for (a) a half cycle and (b) a
complete cycle. [(a) 31.83V (b) 0]

5. An indicator diagram of a steam engine is
12 cm long. Seven evenly spaced ordinates,
including the end ordinates, are measured as
follows:

5.90, 5.52, 4.22, 3.63, 3.32, 3.24, 3.16cm

Determine the area of the diagram and the
mean pressure in the cylinder if 1 cm repre-

sents 90 kPa. [49.13 cm?, 368.5 kPa]
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VECTOR GEOMETRY

Vectors, phasors and the combination

of waveforms

21.1 Introduction

Some physical quantities are entirely defined by
a numerical value and are called scalar quanti-
ties or scalars. Examples of scalars include time,
mass, temperature, energy and volume. Other phys-
ical quantities are defined by both a numerical value
and a direction in space and these are called vector
quantities or vectors. Examples of vectors include
force, velocity, moment and displacement.

21.2 Vector addition

A vector may be represented by a straight line, the
length of line being directly proportional to the mag-
nitude of the quantity and the direction of the line
being in the same direction as the line of action of
the quantity. An arrow is used to denote the sense
of the vector, that is, for a horizontal vector, say,
whether it acts from left to right or vice-versa. The
arrow is positioned at the end of the vector and this
position is called the ‘nose’ of the vector. Figure 21.1
shows a velocity of 20 m/s at an angle of 45° to the
horizontal and may be depicted by oa =20 m/s at
45° to the horizontal.

20 m/s

45°

o

Figure 21.1
To distinguish between vector and scalar quantities,
various ways are used. These include:
(i) bold print,
(i1) two capital letters with an arrow above them to
denote the sense of direction, e.g. A_é where A

is the starting point and B the end point of the
vector,

(ii1) a line over the top of letters, e.g. ABora

(iv) letters with an arrow above, e.g. a, A
(v) underlined letters, e.g. a

(vi) xi+jy, where i and j are axes at right-angles to
each other; for example, 3i + 4j means 3 units
in the i direction and 4 units in the j direction,
as shown in Fig. 21.2.

J

4

4

Figure 21.2

(vii) a column matrix <Z> ; for example, the vector

OA shown in Fig. 21.2 could be represented
b 3
Y\4
Thus, in Fig. 21.2,
OAEaEmE3i+4jE <i>

The one adopted in this text is to denote vector
quantities in bold print.

D
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Thus, oa represents a vector quantity, but oa is
the magnitude of the vector oa. Also, positive angles
are measured in an anticlockwise direction from a
horizontal, right facing line and negative angles in a
clockwise direction from this line—as with graph-
ical work. Thus 90° is a line vertically upwards
and —90° is a line vertically downwards.

The resultant of adding two vectors together, say
V1 atan angle 6 and V3 at angle (—6>), as shown in
Fig. 21.3(a), can be obtained by drawing oa to rep-
resent V1 and then drawing ar to represent V3. The
resultant of V1 4+ V3 is given by or. This is shown in
Fig. 21.3(b), the vector equation being oa + ar = or.
This is called the ‘nose-to-tail’ method of vector
addition.

(a) (b)

Figure 21.3

Alternatively, by drawing lines parallel to V1 and V>
from the noses of V; and V7, respectively, and letting
the point of intersection of these parallel lines be R,
gives OR as the magnitude and direction of the resul-
tant of adding V1 and V3, as shown in Fig. 21.3(c).
This is called the ‘parallelogram’ method of vector
addition.

Problem 1. A force of 4N is inclined at an
angle of 45° to a second force of 7 N, both forces
acting at a point. Find the magnitude of the resul-
tant of these two forces and the direction of the
resultant with respect to the 7N force by both
the ‘triangle’ and the ‘parallelogram’ methods.

The forces are shown in Fig. 21.4(a). Although the
7 N force is shown as a horizontal line, it could have
been drawn in any direction.

Scale in Newtons
0 2 4 6
N T T ——

4N 04N
45° 5 » 45
o 7N 7N a
(@) (b)
_______ R
4N o
45° L
o 7N
(c)
Figure 21.4

Using the ‘nose-to-tail’ method, a line 7 units
long is drawn horizontally to give vector oa in
Fig. 21.4(b). To the nose of this vector ar is drawn
4 units long at an angle of 45° to oa. The resul-
tant of vector addition is or and by measurement
is 10.2 units long and at an angle of 16° to the
7 N force.

Figure 21.4(c) uses the ‘parallelogram’ method
in which lines are drawn parallel to the 7N and 4 N
forces from the noses of the 4N and 7N forces,
respectively. These intersect at R. Vector OR gives
the magnitude and direction of the resultant of vector
addition and as obtained by the ‘nose-to-tail’ method
is 10.2 units long at an angle of 16° to the 7N
force.

Problem 2. Use a graphical method to deter-
mine the magnitude and direction of the resultant
of the three velocities shown in Fig. 21.5.

15 m/s

10 m/s V4
20°

10°

Vs 7m/s

Figure 21.5
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Often it is easier to use the ‘nose-to-tail’ method
when more than two vectors are being added. The
order in which the vectors are added is immaterial.
In this case the order taken is v, then v, then vz but
just the same result would have been obtained if the
order had been, say, vy, v3 and finally v;. vy is drawn
10 units long at an angle of 20° to the horizontal,
shown by oainFig.21.6. v, is added to v by drawing
aline 15 units long vertically upwards from a, shown
as ab. Finally, vz is added to v; 4+ v> by drawing a
line 7 units long at an angle at 190° from b, shown
as br. The resultant of vector addition is or and by
measurement is 17.5 units long at an angle of 82° to
the horizontal.

10° irb
r
Q2 46 8101
Scale in m/s
a
82°
20°
o
Figure 21.6
Thus

v1 + vz + v3=17.5m/s at 82° to the horizontal

21.3 Resolution of vectors

A vector can be resolved into two component parts
such that the vector addition of the component parts
is equal to the original vector. The two compo-
nents usually taken are a horizontal component and
a vertical component. For the vector shown as F in
Fig. 21.7, the horizontal component is F cos 6 and
the vertical component is F sin 6.

Fsin®

Fcos

Figure 21.7

For the vectors F; and F, shown in Fig. 21.8, the
horizontal component of vector addition is:

H = F|cos6; + Frcos6;
and the vertical component of vector addition is:

V = Fsinf + F>sin6;

VA
+—
&
.g od
0| D
<5
[Ty
F1c0s b H

|

Facos 62 I
Figure 21.8

Having obtained H and V, the magnitude of the

resultant vector R is given by /(H?2 + V2) and its
angle to the horizontal is given by tan~!(V/H).

Problem 3. Resolve the acceleration vector of
17 m/s? at an angle of 120° to the horizontal into
a horizontal and a vertical component.

For a vector A at angle 6 to the horizontal, the hori-
zontal component is given by A cos 6 and the vertical
component by A sin 6. Any convention of signs may
be adopted, in this case horizontally from left to right
is taken as positive and vertically upwards is taken
as positive.

Horizontal component H =17 cos 120° = —8.5
m/s?, acting from left to right Vertical compo-
nent V = 17 sin 120° = 14.72 m/s?, acting vertically
upwards. These component vectors are shown in
Fig. 21.9.

Problem 4. Calculate the resultant force of the
two forces given in Problem 1.

With reference to Fig. 21.4(a):
Horizontal component of force,
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17 m/s?

14.72 m/s?

120°
- \ +H

8.50 m/s?

i)
X

Figure 21.9

H = 7cos0°+4cos45° = 7+2.828 = 9.828 N
Vertical component of force,
V =7sin0°+45sin45° = 042.828 = 2.828N
The magnitude of the resultant of vector addition
= V(H2 + V2) = /(9.8282 + 2.8282)

=+/(104.59) = 10.23N

The direction of the resultant of vector addition

\% 2.828
= tan_l (E) = tan_l (m) = 16.050

Thus, the resultant of the two forces is a single
vector of 10.23 N at 16.05° to the 7 N vector.

Problem 5. Calculate the resultant velocity of
the three velocities given in Problem 2.

With reference to Fig. 21.5:
Horizontal component of the velocity,

H = 10c0s20° 4 15¢0s 90° + 7 cos 190°
=9.3974+ 0+ (—6.894) = 2.503 m/s
Vertical component of the velocity,
V = 10sin20° 4 15 sin 90° + 7 sin 190°
=3.420 4+ 15+ (—1.216) = 17.204 m/s

Magnitude of the resultant of vector addition
= V(H? +V2) = /(2.5032 4 17.2042)
=4/302.24 = 17.39m/s

Direction of the resultant of vector addition

[V [ 17.204
= tan — = tan
H 2.503

= tan"! 6.8734 = 81.72°

Thus, the resultant of the three velocities is a sin-
gle vector of 17.39 m/s at 81.72° to the horizontal.

Now try the following exercise.

Exercise 93 Further problems on vector
addition and resolution

1. Forces of 23N and 41N act at a point and
are inclined at 90° to each other. Find, by
drawing, the resultant force and its direction
relative to the 41 N force. [47 N at 29°]

2. Forces A, B and C are coplanar and act at
a point. Force A is 12kN at 90°, B is SkN
at 180° and C is 13kN at 293°. Determine
graphically the resultant force. [Zero]

3. Calculate the magnitude and direction of
velocities of 3m/s at 18° and 7m/s at 115°
when acting simultaneously on a point.

[7.27 m/s at 90.8°]

4. Three forces of 2N, 3 N and 4 N act as shown
in Fig. 21.10. Calculate the magnitude of the
resultant force and its direction relative to the
2 N force. [6.24 N at 76.10°]

4 N

Figure 21.10
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5. Aload of 5.89 N is lifted by two strings, mak-
ing angles of 20° and 35° with the vertical.
Calculate the tensions in the strings. [For a
system such as this, the vectors representing
the forces form a closed triangle when the
system is in equilibrium]. [2.46N, 4.12N]

6. The acceleration of a body is due to four
component, coplanar accelerations. These are
2 m/s? due north, 3 m/s? due east, 4m/s? to
the south-west and 5 m/s? to the south-east.
Calculate the resultant acceleration and its
direction. [5.7m/s? at 310°]

7. A current phasor i1 is SA and horizontal. A
second phasor iy is 8 A and is at 50° to the
horizontal. Determine the resultant of the two
phasors, i| +ip, and the angle the resultant
makes with current i;. [11.85A at 31.14°]

8. A ship heads in a direction of E 20° S at a
speed of 20 knots while the current is 4 knots
in adirection of N 30° E. Determine the speed
and actual direction of the ship.

[21.07 knots, E 9.22° S]

21.4 Vector subtraction

In Fig. 21.11, a force vector F is represented by oa.
The vector (—oa) can be obtained by drawing a vec-
tor from o in the opposite sense to oa but having
the same magnitude, shown as ob in Fig. 21.11, i.e.
ob =(—oa).

b

Figure 21.11

For two vectors acting at a point, as shown in
Fig. 21.12(a), the resultant of vector addition
is os=o0a+o0b. Figure 21.12(b) shows vectors
ob + (—oa), that is, 0b — oa and the vector equation
isob — oa = od. Comparing od in Fig. 21.12(b) with
the broken line ab in Fig. 21.12(a) shows that the sec-
ond diagonal of the ‘parallelogram’ method of vector
addition gives the magnitude and direction of vector
subtraction of oa from ob.

Figure 21.12

Problem 6. Accelerations of a; = 1.5 m/s? at
90° and ap = 2.6 m/s? at 145° act at a point. Find
ay + a3 and ay — a3 by (i) drawing a scale vector
diagram and (ii) by calculation.

(i) The scale vector diagram is shown in Fig. 21.13.
By measurement,

ay + a; = 3.7m/s* at 126°
a;—ay =2.1 m/s2 at0°

e 0 1 2 3
1 |

4

R Scale in m/s?

Figure 21.13

(i) Resolving horizontally and vertically gives:
Horizontal component of a; + a3,
H =1.5c0890°4+2.6cos 145°=—-2.13
Vertical component of ay + a3,
V =1.5sin90° 4 2.6 sin 145° =2.99
Magnitude of aj + a3 = v/(—2.132 + 2.992)
= 3.67 m/s>

2.99
Directi f =tan [ =——
irection of a1 + a3 = tan (_2‘13)

and must lie in the second quadrant since H is
negative and V is positive.
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2.99
Tan~! (2—13) = —54.53°, and for this to be

in the second quadrant, the true angle is 180°
displaced, i.e. 180° — 54.53° or 125.47°.

Thus ay + a3 =3.67 m/s? at 125.47°.
Horizontal component of a; — a3, that is,
ai + (—az)
= 1.5¢0s90° + 2.6 cos (145° — 180°)
= 2.6¢cos(—35°) = 2.13
Vertical component of a; — a3, that is,

ay + (—az)=1.5sin90° 4 2.6 sin (—35°) =0

Magnitude of a3 —a; = v/(2.132 + 02)

= 2.13 m/s?

0
Direction of @ —az = tan~ ' [ — | = 0°
2.13

Thus @) —az =2.13m/s? at 0°.

Problem 7. Calculate the resultant of
(i) vi—v2+v3 and (i) vy — vy —v3 when
v1 =22 units at 140°, vy =40 units at 190° and
v3 = 15 units at 290°.

(i) The vectors are shown in Fig. 21.14.

+V
22
140°
190° s
-H +H
40 290°
15
-V

Figure 21.14

The horizontal component of vy — v2 + v3

= (22 cos 140°) — (40 cos 190°)
+ (15 c0s 290°)

(i)

= (—16.85) — (—39.39) + (5.13)
= 27.67 units
The vertical component of vy — v2 + v3
= (22 sin 140°) — (40 sin 190°)
+ (155in290°)
= (14.14) — (—6.95) + (—14.10)
= 6.99 units

The magnitude of the resultant, R, which can
be represented by the mathematical symbol for
‘the modulus of” as |v] — v + v3] is given by:

IR| = v/ (27.67% + 6.992) = 28.54 units

The direction of the resultant, R, which can
be represented by the mathematical symbol
for ‘the argument of” as arg (vi — vy +v3) is
given by:

6.
arg R = tan™! 69 = 14.18°
27.67

Thus vy — v2 + v3 =28.54 units at 14.18°.

The horizontal component of vy — vy — v3
= (40cos 190°) — (22 cos 140°)
— (15 ¢0s290°)

= (—39.39) — (—16.85) — (5.13)
= —27.67 units

The vertical component of vy — v — v3

= (40sin 190°) — (22 sin 140°)
— (155in290°)

= (—6.95) — (14.14) — (—14.10)
= —6.99 units

LetR=vy — v —v3

then |R| = V/[(=27.67)2 + (—6.99)2]
= 28.54 units

—6.99
and arg R = tan™!
—27.67

and must lie in the third quadrant since both H
and V are negative quantities.
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[ 699

—27.67
angle is 180° + 14.18° =194.18°.

Thus vy — v — v3 =28.54 units at 194.18°.

Tan

=14.18°, hence the required

This result is as expected, since
v — v —v3= —(v1 — V2 +v3)

and the vector 28.54 units at 194.18° is minus
times the vector 28.54 units at 14.18°.

Now try the following exercise.

and that for the system shown in Fig. 21.15(b) is:
ad=ab+bc+cd

Thus in vector equations of this form, only the first
and last letters, a and d, respectively, fix the mag-
nitude and direction of the resultant vector. This
principle is used in relative velocity problems.

Problem 8. Two cars, P and Q, are travelling
towards the junction of two roads which are at
right angles to one another. Car P has a veloc-
ity of 45 km/h due east and car Q a velocity of
55 km/h due south.

Exercise 94 Further problems on vector
subtraction

1. Forces of F1 =40N at 45° and F =30N at
125° act at a point. Determine by drawing and
by calculation (a) F1 + F3 (b) F1 — F»
(a) 54.0N at78.16°
(b) 45.64N at 4.66°
2. Calculate the resultant of (a) vq + vy —v3

(b) v3—v2+ vy when vy =15m/s at 85°,
v =25m/s at 175° and v3 =12 m/s at 235°.

Calculate (i) the velocity of car P relative to car
0, and (ii) the velocity of car Q relative to car P.

®

The directions of the cars are shown in
Fig. 21.16(a), called a space diagram. The
velocity diagram is shown in Fig. 21.16(b), in
which pe is taken as the velocity of car P relative
to point e on the earth’s surface. The velocity
of P relative to Q is vector pq and the vec-
tor equation is pq = pe + eq. Hence the vector

site direction to ge. From the geometry of the
(b) 19.55m/s at 8.63° vector triangle,

Ipq| = v/ (452 + 552) = 71.06 km/h

55
and arg pg = tan™! (E) =50.71°

directions are as shown, eq being in the oppo-
|:(a) 31.71m/s at 121.81°]

21.5 Relative velocity

For relative velocity problems, some fixed datum
point needs to be selected. This is often a fixed point N
on the earth’s surface. In any vector equation, only
the start and finish points affect the resultant vec- w E q q
tor of a system. Two different systems are shown in S
Fig. 21.15, but in each of the systems, the resultant
vector is ad. adss5kmim
P
p
45 km/h e P e
(@ (b) {c)

b
b
/\c\
a d a
(a) (b) d

Figure 21.15

Figure 21.16

i.e., the velocity of car P relative to car Q is
71.06 km/h at 50.71°.

The velocity of car Q relative to car P is given by
the vector equation gp = qe + ep and the vector
diagram is as shown in Fig. 21.16(c), having ep

The vector equation of the system shown in
Fig. 21.15(a) is:

ad =ab + bd

(i)
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opposite in direction to pe. From the geometry
of this vector triangle:

lgp| = /(452 + 55%) = 71.06 m/s

55
d =tan" ! = ) =50.71°
and arg qp an (45>

but must lie in the third quadrant, i.e., the
required angle is 180°+ 50.71°=230.71°.

Thus the velocity of car Q relative to car P is
71.06 m/s at 230.71°.

Now try the following exercise.

Exercise 95 Further problems on relative
velocity

1. A car is moving along a straight horizontal
road at 79.2 km/h and rain is falling vertically
downwards at 26.4 km/h. Find the velocity of
the rain relative to the driver of the car.

[83.5km/h at 71.6° to the vertical]

2. Calculate the time needed to swim across
a river 142 m wide when the swimmer can
swim at 2 km/h in still water and the river is
flowing at 1 km/h. At what angle to the bank
should the swimmer swim?

[4 min 55 s, 60°]

3. A ship is heading in a direction N 60° E at a

speed which in still water would be 20 km/h.

It is carried off course by a current of 8 km/h

in a direction of E 50° S. Calculate the ship’s
actual speed and direction.

[22.79 km/h, E 9.78° N]

21.6 Combination of two periodic
functions

There are a number of instances in engineering and
science where waveforms combine and where it is
required to determine the single phasor (called the
resultant) which could replace two or more sepa-
rate phasors. (A phasor is a rotating vector). Uses
are found in electrical alternating current theory,
in mechanical vibrations, in the addition of forces
and with sound waves. There are several methods of
determining the resultant and two such methods are
shown below.

()

(ii)

Plotting the periodic functions graphically

This may be achieved by sketching the sepa-
rate functions on the same axes and then adding
(or subtracting) ordinates at regular intervals.
(see Problems 9 to 11).

Resolution of phasors by drawing or
calculation

The resultant of two periodic functions may be
found from their relative positions when the
time is zero. For example, if y; =4 sin wt and
y2 =3sin (wt — m/3) then each may be repre-
sented as phasors as shown in Fig. 21.17, y;
being 4 units long and drawn horizontally and
v being 3 units long, lagging y; by 7/3 radians
or 60°. To determine the resultant of y; + y2, y;
is drawn horizontally as shown in Fig. 21.18 and
y7 is joined to the end of y; at 60° to the hori-
zontal. The resultant is given by yg. This is the
same as the diagonal of a parallelogram which is
shown completed in Fig. 21.19. Resultant yg, in
Figs. 21.18 and 21.19, is determined either by:

(a) scaled drawing and measurement, or

(b) by use of the cosine rule (and then sine rule
to calculate angle ¢), or

Yi=4
60°or n/3 rads

yg_'s

Figure 21.17

Figure 21.18

Figure 21.19
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(c) by determining horizontal and vertical
components of lengths oa and ab in
Fig. 21.18, and then using Pythagoras’
theorem to calculate 0b.

In the above example, by calculation, yg =6.083
and angle ¢ =25.28° or 0.441 rad. Thus the resul-
tant may be expressed in sinusoidal form as
ygr = 6.083 sin (wt — 0.441). If the resultant phasor,
YR =Yy1 — y2 is required, then y; is still 3 units long
but is drawn in the opposite direction, as shown in
Fig. 21.20, and yg, is determined by measurement or
calculation. (See Problems 12 to 14).

Ya 2= 8

Figure 21.20

Problem 9. Plot the graph of y; =3sinA
from A=0° to A=360°. On the same axes
plot yo =2cosA. By adding ordinates plot
yr=3sinA+2cosA and obtain a sinusoidal
expression for this resultant waveform.

=3sinA and y» =2cosA are shown plotted in
Fig. 21.21. Ordinates may be added at, say, 15°
intervals. For example,

at 0% yi+y=0+2=2
at 15°, y1 +y2,=0.78+1.93 = 2.71
at120°, y;1 +y2=2.60+ (—-1) = 1.6
at210°, y; +y, =—1.50 — 1.73

= —3.23,and so on

The resultant waveform, shown by the broken line,
has the same period, i.e. 360°, and thus the same fre-
quency as the single phasors. The maximum value,
or amplitude, of the resultant is 3.6. The resultant

yw__*|3“’—

=3sin A

2 yﬂ 3.6 sin(A+34)
= 2C0S A

1+ Yo= /

\ /

\780°

0 90°

Figure 21.21

waveform leads y; =3sinA by 34° or 0.593rad.
The sinusoidal expression for the resultant wave-
form is:

YR = 3.6sin(A + 34°) or
Yr = 3.6sin(4A + 0.593)

Problem 10. Plot the graphs of y; =4 sin wt
and y» = 3 sin (wt — 7r/3) on the same axes, over
one cycle. By adding ordinates at intervals plot
YR =V1 + y2 and obtain a sinusoidal expression
for the resultant waveform.

y1=4sinwt and y; =3sin(wt —m/3) are shown
plotted in Fig. 21.22.

6.1
y \_ == 7&25
6 ¥,= 4 sin ot
41
\ ¥,=3 sin(wt-n/3)
2F / Y=Vt )
, 1 1 L
0 90° 1807\ “N270°  360° ot
/2 T 3n/2 2n
-2
—— 25 /
4 F /
\ e
6 ~
Figure 21.22
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Ordinates are added at 15° intervals and the resultant
is shown by the broken line. The amplitude of the
resultant is 6.1 and it lags y; by 25° or 0.436rad.
Hence the sinusoidal expression for the resultant
waveform is

yR = 6.1 sin (wt — 0.436)

Problem 11.
sion for y;—y»
o =3 sin (wt — 7/3).

Determine a sinusoidal expres-
when y;=4sinwt and

y1 and y, are shown plotted in Fig. 21.23. At 15°
intervals y; is subtracted from y;. For example:

at 0% y; —y2=0—(-2.6) =+2.6

at 30°, y1 —y=2—(—1.5) =435

at150°, y;y —yp =2 —3 = —1, and so on.

y I.f_s_l Y Y,
4r Y,
V- ?
36 L[ s
1 \ 1 / ¥
0 90° \_180° N270°/  360° ot
ok w2\« 3n/2¢  Jf2n
\“___ s
_4 -
Figure 21.23

The amplitude, or peak value of the resultant (shown
by the broken line), is 3.6 and it leads y; by 45° or
0.79 rad. Hence

y1 —y2 = 3.6 sin (ot + 0.79)

Problem 12. Given y;=2sinwt and
y2 =3sin (wt + w/4), obtain an expression
for the resultant yr =y; +y2, (a) by drawing
and (b) by calculation.

(a) When time ¢ = 0 the position of phasors y; and
v, are as shown in Fig. 21.24(a). To obtain the
resultant, y; is drawn horizontally, 2 units long,
y2 is drawn 3 units long at an angle of /4 rads

or 45° and joined to the end of y; as shown in
Fig. 21.24(b). yg is measured as 4.6 units long
and angle ¢ is measured as 27° or 0.47 rad. Alter-
natively, yg is the diagonal of the parallelogram
formed as shown in Fig. 21.24(c).

Yo= 3
n/4 or 45°
n=2
(a)
Yo
¥,=3
185° .
[ 45
¥=2

(b)

(c)

Figure 21.24
Hence, by drawing,
YR = 4.655in (ot + 0.47)
(b) From Fig. 21.24(b), and using the cosine rule:
y3 =22+ 3% —[2(2)(3) cos 135°]
=449 —[-8.485] =21.49

Hence yg = +/(21.49) =4.64
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Using the sine rule: Hence  vg(=oc) =+/[(36.65)2 4+ (—12.50)2]
3 4.64 ’
- _ from which by Pythagoras’ theorem
sin¢  sin 135° —38.72V
3sin 135°
Sing = > = 0.4572 ang= (=2
4.64 H ob
Hence ¢ = sin~! 0.4572 =27°12' or 0.475 rad. —12.50
= = —0.3411
By calculation, . 36.65
from  which, ¢=tan"'(—0.3411)=—18°50'
yRr = 4.64 sin (ot + 0.475) or —0.329 radians.

Hence vg = vy + v =38.72 sin(wt — 0.329) V.

Problem 13. Two alternating voltages are
given by vy = 15 sin wt volts and

vy = 25sin (wt — 7/6) volts. Determine a sinu-
soidal expression for the resultant vg = v] + v
by finding horizontal and vertical components.

Problem 14. For the voltages in Problem 13,
determine the resultant vg = v — va.

To find the resultant vg = v; — vy, the phasor v, of
Fig. 21.25(b) is reversed in direction as shown in

The relative positions of v and v, at time t =0 are Fig. 21.26. Using the cosine rule:

shown in Fig. 21.25(a) and the phasor diagram is

shown in Fig. 21.25(b). vg = 152 4 25% — 2(15)(25) cos 30°
= 225 + 625 — 649.5 = 200.5
vy =15V
T vg = +/(200.5) = 14.16 V
Vine —¥o=25V

(a)

~
W
Sy
V=25V
Figure 21.26
Using the sine rule:
Fi 21.25 25 14.16
gure - = — from which
sing  sin30°
The horizontal component of vg, . ~ 25 sin 30° s
H = 15cos 0° + 25 cos (—30°) A VR T
= o0a + ab =36.65V Hence ¢ = sin~! 0.8828 = 61.98° or 118.02°. From

Fig. 21.26, ¢ is obtuse,
hence ¢ = 118.02° or 2.06 radians.
Hence vg =v1 — v =14.16 sin (wf +2.06) V.

The vertical component of vg,
V = 15sin 0° + 25 sin (—30°)
=bc =—-12.50V
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Now try the following exercise.

Exercise 96 Further problems on the
combination of periodic functions

1. Plot the graph of y=2sinA from A=0°
to A=360°. On the same axis plot
y=4cosA. By adding ordinates at inter-
vals plot y=2sinA+4cosA and obtain a
sinusoidal expression for the waveform.

[4.5 sin (A + 63°26")]

2. Two alternating voltages are given by v; = 10
sin wt volts and v, = 14 sin (wt + 7/3) volts.
By plotting vy and v, on the same axes over
one cycle obtain a sinusoidal expression for
(@) v +v2 (b) vi — V2.

(a) 20.9sin (wt + 0.63) volts
|:(b) 12.5 sin (wt — 1.36) Volts]

In Problems 3 to 8, express the combi-
nation of periodic functions in the form
A sin (ot £ @) using phasors, either by draw-
ing or by calculation.

. 12sinwt + 5 cos wt

[13 sin (wt + 0.395)]

. 7sina)t+5sin(a)t+ %)

[11.11 sin (wt + 0.324)]

. 6sina)t+3sin<a)t - %)

[8.73 sin (wt — 0.173)]

i=25sinwr— 15 sin(a)t—f— g)

[ =21.79 sin (wt — 0.639)]

. . T
. v=8s1na)t—5s1n(a)t—z)

[v=5.695 sin (wt +0.670)]

9sin(or-+ ) ~7sin (a1 — 27
L Xx=781mn | w —)—/sm|wl — —
3 8

[x = 14.38 sin (wr + 1.444)]
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Scalar and vector products

22.1 The unit triad

When a vector x of magnitude x units and direction 6°
is divided by the magnitude of the vector, the result
is a vector of unit length at angle 6°. The unit vector
10m/sat50° |

10m/s =~
1 at 50°. In general, the unit vector for oa is %,
the oa being a vector and having both magnitude
and direction and |oa| being the magnitude of the
vector only.

One method of completely specifying the direc-
tion of a vector in space relative to some reference
point is to use three unit vectors, mutually at right
angles to each other, as shown in Fig. 22.1. Such a
system is called a unit triad.

for a velocity of 10 m/s at 50° is

-
.
x ¥

Figure 22.1

In Fig. 22.2, one way to get from o to r is to move x
units along i to point a, then y units in direction j to
get to b and finally z units in direction k to get to r.
The vector or is specified as

or=xi+yj+zk

Problem 1. With reference to three axes drawn
mutually at right angles, depict the vectors
(i) op = 4i + 3j — 2k and (ii) or = 5i — 2j + 2k.

The required vectors are depicted in Fig. 22.3, op
being shown in Fig. 22.3(a) and or in Fig. 22.3(b).

Figure 22.2

Figure 22.3

(b)

~ vy
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22.2 The scalar product of two vectors

When vector oa is multiplied by a scalar quantity,
say k, the magnitude of the resultant vector will be
k times the magnitude of oa and its direction will
remain the same. Thus 2 x (5N at 20°) results in a
vector of magnitude 10 N at 20°.

One of the products of two vector quantities is
called the scalar or dot product of two vectors
and is defined as the product of their magnitudes
multiplied by the cosine of the angle between them.
The scalar product of oa and ob is shown as oa « 0b.
For vectors oa = oa at 01, and ob = ob at 6, where
6, > 01, the scalar product is:

0a+0b = oa ob cos(0y — 6))

For vectors vy and v, shown in Fig. 22.4, the scalar
product is:

V1eV2 = V|V COSO

Vi
<
Vo

The commutative law of algebra, a xb=>bxa
applies to scalar products. This is demonstrated in
Fig. 22.5. Letoa represent vector vy and ob represent
vector v3. Then:

Figure 22.4

oa-0b = viv; cos 0 (by definition of
a scalar product)

Similarly, 0b « 0a = vyv] cosd =vivy cosé by the
commutative law of algebra. Thus oa « 0b = 0b - oa.

Figure 22.5

The projection of 0b on oa is shown in Fig. 22.6(a)

and by the geometry of triangle obc, it can be seen

that the projection is v, cos 8. Since, by definition
oa+0b = vi(vy cosb),

it follows that

oa-0b = v (the projection of v, on vy)

(a)

H - A%

Figure 22.6

Similarly the projection of ea on ob is shown in
Fig. 22.6(b) and is v cos 8. Since by definition

ob.oa = vr(v| cosb),
it follows that
ob+0a = v (the projection of v; on vy)

This shows that the scalar product of two vectors
is the product of the magnitude of one vector and
the magnitude of the projection of the other vector
on it.

The angle between two vectors can be expressed in
terms of the vector constants as follows:

Because asb=abcos0,
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then | cosf = (D

Let a=aii+ arj+ azk
and b = bii + byj + bsk
asb = (a1i + arj + azk) « (b1i + baj + b3k)

Multiplying out the brackets gives:

a+-b = a1biisi 4+ a\byi«j + arbzik
L aybijei + asbjej + arbyjk
+ azbik«i + azbykj + azbsk -k

However, the unit vectors i, j and k all have a
magnitude of 1 and i«i =(1)(1) cos 0°=1, i+j =
(D(1)cos90° =0,i+k = (1)(1) cos 90° = 0 and sim-
ilarlyjoj =1,j<k =0 and k+k = 1. Thus, only terms
containing i+i, jej or kk in the expansion above
will not be zero.

Thus, the scalar product

ab = a\by + axbr + azbs ()

Both a and b in equation (1) can be expressed in
terms of a1, by, az, by, az and bs.

Figure 22.7

From the geometry of Fig. 22.7, the length of diag-
onal OP in terms of side lengths a, b and ¢ can be
obtained from Pythagoras’ theorem as follows:

OP? = OB? + BP? and
OB? = 0A? + AB?

OP* = 0A” + AB> + BP
>+ b+ cz,

in terms of side lengths

Thus,

Thus, the length or modulus or magnitude or norm
of vector OP is given by:

OP = \/(a*> + b* + ¢?) 3)

Relating this result to the two vectors aji +axj +
azk and b1i + by j + b3k, gives:

a= ,/(a%—i—a%-i—a%)
and b =,/(b? + b3+ b3).

That is, from equation (1),

b b b
cosf — ayby + axby + azbs @)

\/(a% +d}+ a%)\/(b% + b3 +b3)

Problem 2. Find vector a joining points P and
QO where point P has co-ordinates (4, —1, 3) and
point Q has co-ordinates (2, 5, 0). Also, find |a],
the magnitude or norm of a.

Let O be the origin, i.e. its co-ordinates are (0, 0, 0).
The position vector of P and Q are given by:

OP = 4i —j+ 3k and OQ = 2i + 5f
By the addition law of vectors OP + PQ = 0Q.
Hence a=PQ = 0Q - 0P
ie. a=PQ = (2i + 5) — (4i —j + 3k)
=-2i4+6G —3k

From equation (3), the magnitude or norm of a,

la = V(a® + b + ¢?)

=VI22 + 62+ (321 = V49 =7

Problem 3. Ifp=2i+j—kand
q =i — 3j 4 2k determine:

(@) p-q (i) p+q
(i) [p+ql @) |pl+lql
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(i) From equation (2),

if p = aii+ay +azk
and q = bii+ byj + b3k
then peq = a1b; + axby + azb3

When p = 2i+j—k,
ap = 2,ay=1andaz=-1
and when q = i — 3j + 2k,
by =1,by=-3and b3 =2
Hence peq = (2)(1) + (1)(=3) + (=1D(2)
i.e. pq =-3
() p+qg=Qi+j—k)+G—-3j+2k)
=3i-2+k
(i) [p+ql=13i—=2j + k|

From equation (3),

p+ql=VI3?+ (=22 + 12 =14
(iv) From equation (3),
Pl =120 +j — k|
=VI2Z2+ 12+ (-1)21=6
Similarly,
gl = |i — 3j + 2k
=VI2+ (=32 +22] =14

Hence |p|+|q|= V6 + /14 =6.191, correct
to 3 decimal places.

Problem 4. Determine the angle between vec-
tors oa and ob when

oa=i+2 -3k
and ob =2 —j+ 4k.

An equation for cos 8 is given in equation (4)
ai1by + axby + azbs
J@ + @+ )} + 83+ )
oa =i+ 72j — 3k,

ar=1l,ap =2and a3 = -3

cosf =

Since

Since ob = 2i —j + 4k,

b] =2,b2= —landb3 =4

Thus,
(I x2)+@Q2x —D+(=3x4)
cosf =
V12 +22 + (=322 + (- 1)* +42)
~12
= ——— = —0.6999
V1421

i.e. 0 = 134.4° or 225.6°.

By sketching the position of the two vectors as
shown in Problem 1, it will be seen that 225.6° is
not an acceptable answer.

Thus the angle between the vectors oa and o0b,
0=134.4°.

Direction cosines

From Fig. 22.2, or =xi + yj + zk and from equa-

tion (3), |or| = /x2 + y2 + 2.
If or makes angles of o, § and y with the co-ordinate
axes I, j and k respectively, then:

The direction cosines are:
X

N

oy

N
y

VX2 —I—y2 + 72

such that cos? a 4 cos? B+ cos? y = 1.
The values of cos «, cos 8 and cos y are called the
direction cosines of or.

cosa =

cos f§ =

and cosy =

Problem 5. Find the direction cosines of
3i+2+k.

VY +2=V324+22+12 =14

The direction cosines are:

X 3
coso = = = 0.802
x4+ y? 472 V14
y 2
cos 3 = = = 0.535
X2 + y2 + Z2 \/ﬁ
y 1
and cosy = = = 0.267
Zry242 V14

(and hence o= cos~10.802 = 36.7°, B= cos™!
0.535=57.7° and y = cos ! 0.267 = 74.59).
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Note that cos®a+ cos? 8+ cos? y=0.8022 +
0.5352+0.267> = 1.

Practical application of scalar product

Problem 6. A constant force of

F =10i +2j — k newtons displaces an object
from A=i+j+k to B=2i—j+3k (in
metres). Find the work done in newton metres.

One of the applications of scalar products is to the
work done by a constant force when moving a body.
The work done is the product of the applied force
and the distance moved in the direction of the force.

ie. workdone=F .d
The principles developed in Problem 8, Chapter 21,
apply equally to this problem when determining the
displacement. From the sketch shown in Fig. 22.8,

AB =A0+0OB=0B—-0A

thatis AB=Qi—j+3k)—({+j+k)
=i—2+2k
B(2,-1,3)
A(1,1,1)
010, 0, 0)
Figure 22.8

The work done is F « d, that is F « AB in this case
i.e. work done = (10i +2j — k) « (i — 2j + 2k)

But from equation (2),
a*b = a1b) + arby + azb3

Hence work done =

(10x D+ 2 x(=2))+((—1) x 2) =4 Nm.
(Theoretically, it is quite possible to get a negative

answer to a ‘work done’ problem. This indicates that

the force must be in the opposite sense to that given,

in order to give the displacement stated).

Now try the following exercise.

Exercise 97
products

Further problems on scalar

1. Find the scalar product a-b when
() a=i+2j—kandb=2i+3j+k
(i) a=i—3j+kandb=2i+j+k
[() 7 (ii) O]

Givenp =2i —3j,q=4j — k and
r=i+ 2j — 3k, determine the quantities
stated in problems 2 to 8

2. (ap-q (b)per
3. (a)ger (b)req [(a) 11 (b) 11]
4. @ lpl ®)|r] [(a) v/13 (b) +/14]
5. (@)p-(q@+r) (b)2r«(q—2p)
[(2) —16 (b) 38]
®) |pl+Ir]
[(a) v/19 (b) 7.347]

7. Find the angle between (a) p and ¢ (b) ¢
andr [(a) 143.82° (b) 44.52°]

8. Determine the direction cosines of (a) p
b)g©r

[(a) =12 (b) —4]

6. (a) |p+r]

(b) 0,0.970, —0.243
(c) 0.267,0.535, —0.802

9. Determine the angle between the forces:
F1 =3i+4j + 5k and
F=i+j+k [11.54°]

10. Find the angle between the velocity vectors
vi=5i+2+Tkand vo =4i+j—k
[66.40°]
11. Calculate the work done by a force
F = (—5i +j + 7k) N when its point of appli-
cation moves from point (—2i — §j +k)m
to the point (i —j 4+ 10k) m. [53 Nm]

|:(a) 0.555,—-0.832,0 j|

22.3 Vector products

A second product of two vectors is called the vec-
tor or cross product and is defined in terms of its
modulus and the magnitudes of the two vectors and
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the sine of the angle between them. The vector prod-
uct of vectors oa and ob is written as oa x ob and is
defined by:

|oa x ob| = oa ob sin 6

where 6 is the angle between the two vectors.
The direction of oa x 0b is perpendicular to both oa
and ob, as shown in Fig. 22.9.

S b
o 0
oaxob b

a

o) [°] obx oa

. )
(a) (b)
Figure 22.9

The direction is obtained by considering that a
right-handed screw is screwed along oa x ob with
its head at the origin and if the direction of oa x ob
is correct, the head should rotate from oa to ob,
as shown in Fig. 22.9(a). It follows that the direc-
tion of 0b x oa is as shown in Fig. 22.9(b). Thus
oa x ob is not equal to 0b x oa. The magnitudes of
oa ob sin 0 are the same but their directions are 180°
displaced, i.e.

oa x ob = —ob x oa

The vector product of two vectors may be expressed
in terms of the unit vectors. Let two vectors, a and
b, be such that:

a = aji + ayj + azk and
b = byi + byj + b3k
Then,
axb = (a1i + arj + azk) x (b1i + byj + bs3k)
=a1bii X i+ aib xj

+a1b3i x k + axbj X i+ axbrj xj
+axbyj x k + azbik x i+ azbk xj
+aszbsk x k

But by the definition of a vector product,
ixj=k,jxk=iandk xi=j
Alsoi xi=jxj=k xk=(1)(1)sin0°=0.
Remembering thata x b = —b x a gives:
a xb=abk —absj— aybik + aybsi
+azb1j — azbsi
Grouping the i, j and k terms together, gives:
axb = (axb3 — azbr)i + (a3by — a1bz)j
+(a1by — azb1)k

The vector product can be written in determinant
form as:

i j ok
axb=\|a a a3 5)
by by b3
i j ok
The 3 x 3 determinant (a1 a» a3|is evaluated as:
by by b3
.| ar a3 .|l ar a3 a az
’b2b3_1b1bJ+kb1b2
where
Zi Z; = axb3z — azby,
Zi Z; = a1b3 — a3b1 and
Z} Zi =a1by — arb;

The magnitude of the vector product of two vectors
can be found by expressing it in scalar product form
and then using the relationship

a+-b =a1b) + arbr + azbs

Squaring both sides of a vector product equation
gives:

(Ja x b))? = a®b?sin> 6 = a*b*(1 — cos* )

= a*b* — a*b* cos* 6 (6)

It is stated in Section 22.2 thata«b = ab cos 0, hence

2

asa = a“ cosb.

But 6 = 0°, thus a-a = a*
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a+b

ab

Multiplying both sides of this equation by a?5* and
squaring gives:

Also, cos 0=

a*b*(a+b)?

a2 (a-b)”

a*b* cos? 6 =

Substituting in equation (6) above for a®> =a-a,
b* =b«b and a*b* cos? 6 = (a+b)? gives:

(la x b|)* = (@-a)(b+b) — (a+b)*
That is,

la x b| = v/ [(a-a)(b+b) — (a+b)?] (7

Problem 7. For the vectorsa =i + 4j — 2k and
b=2i —j+ 3k find (i) @ x b and (ii) |a x b|.

(i) From equation (5),

ik
axb=|a a a3
by by b3
_.la a3| .lar a3 a; a
=1 by b3 Jb] b3 tk by by
Hence
i j ok
axb=|1 4 =2
2 -1 3
4 2] 1 -2
-1 3|2 3
1 4
+k‘2 _1‘

=i(12—2) —j(3+4) +k(—1—8)
—10i -7 — %

(i1) From equation (7)

la x b| = V/[(@-a)(b+b) — (a+b)*]
asa = (1)(1)+ (4 x 4) + (=2)(=2)
=21

Now

beb=(2)2)+ (D=1 +(3)3)

=14
and ab=1)2)+ @1+ (-2)3)
=-8
Thus |axb| =+/(21 x 14 — 64)
= /230 =15.17
Problem 8. Ifp=4i+j—2k,q=3i—-2 +k

andr=i—2k find (a) (p —2q) x r
(b)p x (2r x 3¢q).

(@) (p—2q) xr=1[4i+j—2k
—23i —2j + k)] x (i — 2k)
(—2i + 57 — 4k) x (i — 2k)

i j k
=|-2 5 -4
1 0 =2
from equation (5)
|5 —4 =2 -4
~'o —2 _J‘ 1 —2'
-2 5
+k‘ ; 0\

=i(—10-0)—j4+4)
+ k(0 —5), ie.
(p—2q) xr=-10i — 8 — 5k

(b) 2r x3q) = (2i — 4k) x (9 — ¢ + 3k)
ik
=2 0 —4
9 -6 3
=1i(0 —24) —j(6 + 36)
+ k(=12 -0)
= —24i —42% — 12k
Hence
p x (2r x 3q) = (4i +j — 2k)
x (—24i — 42j — 12k)
ik
= 4 1 =2
—24 —42 —12
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=i(—12 — 84) — j(—48 — 48)
+ k(—168 + 24)
= —96i + 96/ — 144k
or —48(2i — 2j + 3k)

Practical applications of vector products

Problem 9. Find the moment and the magni-
tude of the moment of a force of (i +2j — 3k)
newtons about point B having co-ordinates
(0, 1, 1), when the force acts on a line through A
whose co-ordinates are (1, 3, 4).

The moment M about point B of a force vector F
which has a position vector of r from A is given by:

M=rxF

r is the vector from B to A, i.e. r =BA.
But BA=BO + 0OA =0A — OB (see Problem 8§,
Chapter 21), that is:

r=G+3+4k) — (j+k)

=i+2j+3k
Moment,
M=rxF =(i+2+3k) x (i+2 — 3k
i j  k
=1 2 3
1 2 -3
=i(—6—-6)—j(-3-3)
+k(2—-2)
= —12i + 6/ Nm
The magnitude of M,
M| = |r x F|

= V[(r+r)(F+F) — (r-F)?]
rer = (D) +2)2) +3)3) = 14
FoF = ()(1) + (2)(2) + (-3)(=3) = 14
reF = (1)) + 2)Q2) + (3)(—3) = —4
M| = /[14 x 14 — (—4)?]
= +/180Nm = 13.42Nm

Problem 10. The axis of a circular cylinder
coincides with the z-axis and it rotates with an
angular velocity of (2i — 5j + 7k) rad/s. Deter-
mine the tangential velocity at a point P on
the cylinder, whose co-ordinates are (j + 3k)
metres, and also determine the magnitude of the
tangential velocity.

The velocity v of point P on a body rotating with
angular velocity w about a fixed axis is given by:

V=wXT,

where r is the point on vector P.
Thus v = (2i — 5 + Tk) x (j + 3k)

J k
=5 7

1 3
=i(—15-7)—j6—-0)+k2—-0)
= (—22i— 6/ +2k)m/s

i
=12
0

The magnitude of v,

V] = V(@ @)(rer) — (re)?]
we® = (2)(2) + (=5)(=5) + (I)(T) =78
rer = (0)(0) + (H(1) + (3)(3) = 10
wr = (2)(0) + (=5)(1) + (D(3) = 16

Hence,

[v] = V(78 x 10 — 162)
= /524 m/s = 22.89 m/s

Now try the following exercise.

Exercise 98 Further problems on vector
products

In problems 1 to 4, determine the quantities
stated when

p=3i+2k,gq=i—2j+ 3k and
r=—4i+3—k

I.(@pxq (b)gxp
[(a) 4i — 7j — 6k (b) —4i + Tj + 6k]

2. @ pxrl (b)|rxq|
[(a) 11.92 (b) 13.96]
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10.

.(@2px3r(b)(p+r)xgq

(a) —36i — 30j — 54k
(b) 11i +4j —k

- @px(rxq)(b)(3p x2r)xq

(a) —22i —j + 33k
(b) 18i + 162j + 102k

. For vectors p =4i —j + 2k and

q = —2i + 3j — 2k determine: (i) p-q
(i1) p x g (ii1) |p x q| (iv) g x p and (v) the
angle between the vectors.

(i) —15 (i) —4i +4j + 10k
(iif) 11.49 (iv) 4i — 4j — 10k
(v) 142.55°

. For vectors a=—T7i +4j + %k and b=06i —

5 —k find (i) a+b (i) a x b (iii)) |a x b|
(iv) b xa and (v) the angle between the
vectors.

(i) =627 (i) —13i —4j + 11k
(iii) 11.80 (iv) 13i +4j — 11k
(v) 169.31°

Forces of (i + 3j), (—2i —j), (i — 2j) newtons
act at three points having position vectors of
(2i + 5j), 47 and (—i +j) metres respectively.
Calculate the magnitude of the moment.

[I0Nm]

A force of (2i —j + k) newtons acts on a line
through point P having co-ordinates (0, 3, 1)
metres. Determine the moment vector and its
magnitude about point Q having co-ordinates
(4, 0, —1) metres.

M = (5i + 8 — 2k) Nm,
IM| =9.64Nm

A sphere is rotating with angular velocity w
about the z-axis of a system, the axis coincid-
ing with the axis of the sphere. Determine the
velocity vector and its magnitude at position
(—5i 4 2j — 7k) m, when the angular velocity
is (I 4+ 2j) rad/s.

v =19.72m/s

Calculate the velocity vector and its magni-
tude for a particle rotating about the z-axis
at an angular velocity of (3i —j + 2k) rad/s
when the position vector of the particle is at
(i—5Y +4k)m.

[6i — 10j — 14k, 18.22 m/s]

[ v=—14i+7 + 12k, ]

22.4 Vector equation of a line

The equation of a straight line may be determined,
given that it passes through the point A with position
vector a relative to O, and is parallel to vector b. Let
r be the position vector of a point P on the line, as
shown in Fig. 22.10.

Figure 22.10

By vector addition, OP = 0A + AP,

ie.r=a+ AP.

However, as the straight line through A is parallel
to the free vector b (free vector means one that
has the same magnitude, direction and sense), then
AP = \b, where A is a scalar quantity. Hence, from
above,

r=a+ib (8)

If, say, r = xi 4+ yj + zk, a = a1i + ayj + a3k and
b = b1i + byj + b3k, then from equation (8),

xi + yj + zk = (a1i + ayj + azk)
+ A(b1i + byj + b3k)

Hence x =a; + Ab1, y=ay + Aby and z = a3 + Ab3.
Solving for A gives:

X —ai y—ay Z—as

=A 9
b1 by b3 ©)

Equation (9) is the standard Cartesian form for the
vector equation of a straight line.

Problem 11. (a) Determine the vector equa-
tion of the line through the point with position
vector 2i + 3j — k which is parallel to the vector
i—2j+3k.



246 VECTOR GEOMETRY

(b) Find the point on the line corresponding to
A =3 in the resulting equation of part (a).

(c) Express the vector equation of the line in
standard Cartesian form.

(a) From equation (8),
r=a-+ b
ie. r=QRi+3—-k)+ri—-2+3k)
or r=0Q2+0i+@-20)+Cr—-1Dk
which is the vector equation of the line.
(b) When A =3, r=>5i—3j+ 8k.

(c) From equation (9),

x—al_y—az_z—a3_k

by by by

Since a =2i+3j —k, thena; =2,
a» =3 and a3 = —1 and

b =i— 2 + 3k, then
by =1,bp=—-2and b3 =3

Hence, the Cartesian equations are:
x—2 y=3 z—(=1)
1 -2 3

A

3_
e, x—2=>22
2 3

Problem 12. The equation

2x—1 _ y+4 —z45
3 3 2

represents a straight line. Express this in vec-
tor form.

Comparing the given equation with equation (9),

shows that the coefficients of x, y and z need to be

equal to unity.

2x—1 y+4 —z+5
3 3 2

Thus becomes:

x—%_y+4_z—5
I3 2

Again, comparing with equation (9), shows that

a; = —,ap = —4and a3 = 5 and

N W —

by =<,bp =3and b3 = -2

In vector form the equation is:

r=(a; + Ab1)i + (az + Ab2)j + (a3 + Ab3)k,
from equation (8)

1 3
ie.r= (5 + Ek)i+(—4+3k)j+(5 — 20k

1
or r= 5(1 +30)i+Cr—4y+ (5 -20k

Now try the following exercise.

Exercise 99 Further problems on the vector
equation of a line

1. Find the vector equation of the line through
the point with position vector 5i —2j + 3k
which is parallel to the vector 2i 4 7j — 4k.
Determine the point on the line corresponding
to A =2 in the resulting equation

r=(5420)i+ (7r—2)
+ (3 — 4M)k;
r=9i+12 — 5k

2. Express the vector equation of the line in
problem 1 in standard Cartesian form.

x—=5 y+2 3-—z i
2 17 4

In problems 3 and 4, express the given straight

line equations in vector form.

-1 Sy+1 4—¢

3.
4 2 3
[r=§(1+4x)i+§(2x—1)j }
+(4 -3k
1—4y 3z-—1
4. 2x+1=—"=
X+ 5 1

r=30.—Di+ (1 —50)
+ 31+ 40k




GRAPHS AND VECTOR GEOMETRY

Assignment 6

This assighment covers the material contained
in Chapters 19 to 22.

The marks for each question are shown in
brackets at the end of each question.

1. Sketch the following graphs, showing the rele-
vant points:

@ y=x—2?% (©x*+y>—2x+4y—4=0
(b) y=3—cos2x (d) 9x* —4y> =36

—1 —7r<x<—z
- - 2
T T
= ——<x<—=
(e) f(x) X )
T
1 —<x<m
2

(15)

2. Determine the inverse of f(x) =3x+ 1 3)

3. Evaluate, correct to 3 decimal places:

2tan"! 1.64 + sec™! 2.43 — 3 cosec!3.85
(3)

4. Determine the asymptotes for the following
function and hence sketch the curve:
x—1Dx+4
CERICER) )
x—=2)(x—=5)

5. Plot a graph of y=3x%>+5 from x=1to x =4.
Estimate, correct to 2 decimal places, using 6
intervals, the area enclosed by the curve, the
ordinates x=1 and x =4, and the x-axis by
(a) the trapezoidal rule, (b) the mid-ordinate rule,
and (c) Simpson’s rule. (12)

6. A circular cooling tower is 20 m high. The inside
diameter of the tower at different heights is given
in the following table:

Height (m) 0 50 10.0 15.0 20.0
Diameter (m) 16.0 13.3 10.7 86 8.0

Determine the area corresponding to each diam-
eter and hence estimate the capacity of the tower
in cubic metres. (6)

7. A vehicle starts from rest and its velocity is

10.

measured every second for 6 seconds, with the
following results:

Timet(s) 0 1 2 3 4 5 6

Velocity 0 1.2 24 37 52 6.0 92
v (m/s)

Using Simpson’s rule, calculate (a) the distance

travelled in 6 s (i.e. the area under the v /¢ graph)

and (b) the average speed over this period. (6)

. Four coplanar forces act at a point A as shown

in Fig. A6.1 Determine the value and direc-
tion of the resultant force by (a) drawing (b) by
calculation. (10)

’J4N
A

5N 45° 45°

7N
8N

Figure A6.1

. The instantaneous values of two alternating

voltages are given by:

v] = 150 sin (wt 4 7/3) volts and

vy = 90 sin (wt — 1/6) volts
Plot the two voltages on the same axes to scales
of Icm=>50 volts and 1 cm = il rad.

Obtain a sinusoidal expression for the resultant

v1 4 v7 in the form R sin (wf + «): (a) by adding

ordinates at intervals and (b) by calculation
(13)

If a=2i+4j — 5k and b =3i — 2j + 6k deter-
mine: (i) a - b (ii) |a + b| (iii) @ x b (iv) the angle
between a and b (14)
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11. Determine the work done by aforce of Fnewtons 12. A force of F = 3i — 4j + k newtons acts on a line

acting at a point A on a body, when A is displaced passing through a point P. Determine moment
to point B, the co-ordinates of A and B being M and its magnitude of the force F about a point
(2,5,—3)and (1, —3, 0) metres respectively, and QO when P has co-ordinates (4, —1, 5) metres and

when F = 2i — 5j + 4k newtons. (@) O has co-ordinates (4, 0, —3) metres. (6)
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COMPLEX NUMBERS

E

Complex numbers

23.1 Cartesian complex numbers

(i) If the quadratic equation x> +2x+5=0 is
solved using the quadratic formula then,

L 2V - @6

2(1)

_ 2+ J/[F16] _ —2+ V6= D]
2 2

2+ ViI6/-T - 2441

— —1+£2J-1

It is not possible to evaluate 4/—1 in real
terms. However, if an operator j is defined as
Jj =+/—1 then the solution may be expressed as
x=—1=4j2.
(i) —1+j2 and —1 — j2 are known as complex
numbers. Both solutions are of the form a + jb,
‘a’ being termed the real part and jb the imag-
inary part. A complex number of the form
a—+ jb is called cartesian complex number.
(iii) In pure mathematics the symbol i is used to
indicate 4/ —1 (i being the first letter of the word
imaginary). However i is the symbol of electric
current in engineering, and to avoid possible
confusion the next letter in the alphabet, j, is

used to represent «/—1.

Problem 1.
X2 4+4=0.

Solve the quadratic equation

Since x2 +4 =0 then x> = —4 and x = /—4.

e, x=+I(=D®H] = /(=1)V4=j(=+2)
== j2, (since j = /—1)

(Note that £ j2 may also be written £2j).

Problem 2. Solve the quadratic equation
2x2 4 3x+5=0.

Using the quadratic formula,

_ 3£ VIBY - 40

2(2)
_ =3x4v-31 3£ /(-1DV31
- 4 - 4
=3+ jv3l
B 4
3 V31
Hence x = ~1 + jT or —0.750 £ ;1.392,

correct to 3 decimal places.

(Note, a graph of y=2x?+3x+5 does not cross
the x-axis and hence 2x> +3x+5=0 has no real
roots.)

Problem 3. Evaluate

—4
@ 2 ®j* © 2 @ i

@ j3= j2x j=(=1)x j=—j, since > =—1
(b) j*= j2x F=(-)x(=1)=1

(© jP=jx=jx (O =jx =D

= jx(=1)=—j
@ 2= jxB=jix(P*=jx (D
= jx1=j
— —4 -4 - 4
HenceT=—_:—_X—J.=—J.2
J J J —J —J
4
= J =4jor j4
—(=1)
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Now try the following exercise.

Exercise 100 Further problems on the
introduction to cartesian complex numbers

InProblems 1 to 3, solve the quadratic equations.
1. x2+25=0 [+/5]
2. 2% 4+3x+4=0

e |

~ :I:jT or—0.750 + j1.199

3. 42 —5t4+7=0

8

5 /8T i

1
4. Evaluate (a) 8 (b) —= (c) —=
]7 2]13

[@ 1 (b) =/ (c) —j2]

23.2 The Argand diagram

A complex number may be represented pictorially
on rectangular or cartesian axes. The horizontal
(or x) axis is used to represent the real axis and the

Imaginary
axis

— ——jal
3r

2t —————5 A

N
W — — —

Real axis

Figure 23.1

vertical (or y) axis is used to represent the imaginary
axis. Such a diagram is called an Argand diagram.
In Fig. 23.1, the point A represents the complex
number (34 j2) and is obtained by plotting the
co-ordinates (3, j2) as in graphical work. Fig-
ure 23.1 also shows the Argand points B, C and
D representing the complex numbers (—2+ j4),
(=3 — j5) and (1 — j3) respectively.

23.3 Addition and subtraction of
complex numbers

Two complex numbers are added/subtracted by
adding/subtracting separately the two real parts and
the two imaginary parts.

For example, if Z; =a+ jband Z, =c+ jd,

then Zy+2Zy=(a+ jb)+(c+ jd)

=(a+o)+ jlb+d)
and Zy—Zy=(a+ jb) — (c+ jd)
=(a—0o)+jlb—-d)

Thus, for example,
24+jj3)+@3—j4)=2+,3+3—-j4
=5-j1
and 2+4j3)—-G3—j4)=24+,3-34+j4
=—=1+j7

The addition and subtraction of complex numbers
may be achieved graphically as shown in the Argand
diagram of Fig. 23.2. (2 4 j3) is represented by vec-
tor OP and (3 — j4) by vector OQ. In Fig. 23.2(a)
by vector addition (i.e. the diagonal of the parallel-
ogram) OP 4+ OQ = OR. R is the point (5, —j1).
Hence 2+ j3)+ (3 — j4)=5—j1.

InFig. 23.2(b), vector OQ is reversed (shown as 0OQ")
since it is being subtracted. (Note OQ =3 — j4

and 0Q' = —(3 — j4) = -3+ j4).

OP —0Q=0P+0Q' =0S is found to be the
Argand point (—1, j7).

Hence 2+ j3)—3— j4d)=—1+4+j7

Problem 4. Given Z; =2+ j4and Z, =3 —
determine (a) Z1 + 7, (b) Z1 — Z», (¢) Zr — Z4
and show the results on an Argand diagram.
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Imaginary
axis
P (2+/3
3k (2+/3)
) \
2 \
N\
ir \
N\
| | | I |
0 1—2__ 3 4 \ 5Realaxis
- >R (5)
ol /
) /
_/3 - /
/
o Q@-4)
(a)
Imaginary
axis
SE147) gl
AN
j6\_
j5 =\
N\
Q /\'4 = \\
N BE P (2+/3)
N
N2
N
N\ Jjr

! ! | | | |
-3 2 -1 0 1 2 3 Real axis

Q (3-4)

Figure 23.2

@ Zi+Z=Q+jH+CB—))
=Q2+3)+j@4—1)=5+,3

(b) Z1 =2 =2+j4H)—-0C—=))
=2=3)+j@-(=1)=-1+j5

© L=Z1=C-)—-2+j4
=GB-2)+j—1-4=1-j5

Each result is shown in the Argand diagram of
Fig.23.3.

Imaginary
axis

(_1+j5)_15 |

jaf

Real axis

- - Y(15)

Figure 23.3

23.4 Multiplication and division of

complex numbers

(i) Multiplication of complex numbers is

achieved by assuming all quantities involved
are real and then using j2 = —1 to simplify.

Hence (a + jb)(c + jd)
=ac+a(jd)+ (jb)c + (jb)(jd)
=ac+ jad + jbc+ j*bd
= (ac — bd) + j(ad + bc),

since j>=—1
Thus (3 4 j2)(4 — j5)

=12 - j15+ j8 — j210
=(12-(-10)+ j(—=15+8)
=22—-j7
The complex conjugate of a complex num-
ber is obtained by changing the sign of the

imaginary part. Hence the complex conjugate
of a+ jb is a — jb. The product of a complex
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number and its complex conjugate is always a © 212, _ (A =j3)(=24)5)
real number. Zi+2Z (1—j3)+(=2+j95)
For example, 1341
= ———, from part (a),
B +jH3 —jd =9 —j12 412 — j216 —1+j2
=9+16=25 _13+j11x—1—j2
[(a + jb)(a — jb) may be evaluated ‘on sight’ as —-1+j2 —1-,2
a* +b?]. . . )
—13 —j26 —j11 — j°22
(iii) Division of complex numbers is achieved by = 12 422
multiplying both numerator and denominator )
by the complex conjugate of the denominator. _ 9—j37 _ 2 —j ﬂ or 1.8 — j7.4
5 5
For example,
2—j5 2—j5 (3—j4) (d) 212273 =(13 +j11)(—3 — j4), since
344 3+4 G—jb Z1Zy =13 + j11, from part (a)
_ 6—j8—j15+°20 — 39— j52 — j33 — j44
32442 ,
=(—39 4 44) — j(52 + 33)
_ —14—;23  -14 23 )
T 25 25 s =5-J85

or —0.56 — j0.92

Problem 6. Evaluate:

Problem 5. If Zj=1—j3,Z=—-2+j5 and 2 1+ 3)2
Z3 = —3 — j4, determine in a + jb form: (a) m (b) j <1__]2>
Z
(a) 212, (b) Z
an @ (4 2=+ O+ D=1+ j+j+ /2
(© o d) 212,73 J J J J+i+J
e =1+j+j-1=72

I+ =10+ )PP =22 = 24=—4
@) Z1Z =1 —j3)(—=2+j5) ) 1

2
— 24 j54j6— 215 Hence (i =4~ 73

_ . . 2 __
=(—2+4 15) +j(5 + 6), since j* = —1, 1+73 1473 142

. (b) = = X -
=13+ ;11 1—j2 1—j2 14,2
®) Z_1-j3 _1-j3 3474 14243426 =545
Zz —-3—j4 -3—-j4 -34j4 - 12 422 - 5
=—3+j4+j9—J'212 =—1+4jl=—1+j
32_|_42
94+j13 9 .13 143V 2
L A <—) = (=14 )?=(=1+ N1+
25 25 725 1—j2

or 0.36 + j0.52 =1—j—j+j=-j2



COMPLEX NUMBERS

253

1+ 3
Hence ](11_—2) =j(—j2)=—j*2=2,
2

since j© = —

Now try the following exercise.

23.5 Complex equations

If two complex numbers are equal, then their real
parts are equal and their imaginary parts are equal.

Henceifa+ jb=c+ jd,thena=cand b=d.

Exercise 101 Further problems on opera-
tions involving Cartesian complex numbers

1. Evaluate (a) (B4+j2)4+(5—j) and
®) (—2+j6)—(3—j2) and show the
results on an Argand diagram.

[(@) 84, (b) =5+ 8]

2. Write down the complex conjugates of
(@)3+j4,(b)2—.

[(@3—j4 (b)2+/]

In Problems 3 to 7 evaluate in a+ jb form
given Z; _1+J2 Zr=4—j3, Z3=—-24j3
and Zy,=-5—].

3. WZi+Z—Z3(0) o —Z1+ 24
[(@)7—j4 (b)—=2—j6]
