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Guide to Notation

L[ f ] Laplace transform of f
L[ f ](s) Laplace transform of f evaluated at s
L−1[F] inverse Laplace transform of F
H(t) Heaviside function
f ∗ g often denotes a convolution with respect to an integral transform, such as the Laplace

transform or the Fourier transform
δ(t) delta function
< a,b, c> vector with components a, b, c
ai + bj + ck standard form of a vector in 3-space
‖ V ‖ norm (magnitude, length) of a vector V
F · G dot product of vectors F and G
F × G cross product of F and G
Rn n-space, consisting of n-vectors < x1, x2, · · · , xn >

[ai j ] matrix whose i, j-element is ai j . If the matrix is denoted A, this i, j element may also be
denoted Ai j

Onm n × m zero matrix
In n × n identity matrix
At transpose of A
AR reduced (row echelon) form of A
rank(A) rank of a matrix A
[A
...B] augmented matrix

A−1 inverse of the matrix A
|A| or det(A) determinant of A
pA(λ) characteristic polynomial of A
� often denotes the fundamental matrix of a system X′ = AX
T often denotes a tangent vector
N often denotes a normal vector
n often denotes a unit normal vector
κ curvature
∇ del operator
∇ϕ or grad ϕ gradient of ϕ
Duϕ(P) directional derivative of ϕ in the direction of u at P∫

C
f dx + g dy + h dz line integral∫

C
F · dR another notation for

∫
C

f dx + g dy + h dz with F = f i + gj + hk
C1

⊕
C2

⊕ · · ·⊕Cn join of curves C1,C2, · · · ,Cn∫
C

f (x, y, z)ds line integral of f over C with respect to arc length

1
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2 Guide to Notation

∂( f, g)

∂(u, v)
Jacobian of f and g with respect to u and v

∫ ∫
�

f (x, y, z)dσ surface integral of f over �
f (x0−), f (x0+) left and right limits, respectively, of f (x) at x0

F[ f ] or f̂ Fourier transform of f
F[ f ](ω) or F̂(ω) Fourier transform of f evaluated at ω
F−1 inverse Fourier transform
FC [ f ] or f̂C Fourier cosine transform of f
F−1

C or f̂ −1
C inverse Fourier cosine transform

FS[ f ] or f̂ S Fourier sine transform of f
F−1

S or f̂ −1
S inverse Fourier sine transform

D[u] discrete N - point Fourier transform (DFT) of a sequence u j

f̂win windowed Fourier transform
χI often denotes the characteristic function of an interval I
σN (t) often denotes the N th Cesàro sum of a Fourier series
Z(t) in the context of filtering, denotes a filter function
Pn(x) nth Legendre polynomial
�(x) gamma function
B(x, y) beta function
Jν Bessel function of the first kind of order ν
γ depending on context, may denote Euler’s constant
Yν Bessel function of the second kind of order ν
I0,K0 modified Bessel functions of the first and second kinds, respectively, of order zero
∇2u Laplacian of u
Re(z) real part of a complex number z
Im(z) imaginary part of a complex number z
z complex conjugate of z
|z| magnitude (also norm or modulus) of z
arg(z) argument of z∫

C
f (z)dz integral of a complex function f (z) over a curve C∮

C
f (z)dz integral of f over a closed curve C

Res( f, z0) residue of f (z) at z0

f : D → D∗ f is a mapping from D to D∗
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Preface 

This seventh edition of Advanced Engineering Mathematics differs from the sixth in four ways.
First, based on reviews and user comments, new material has been added, including the

following.

• Orthogonal projections and least squares approximations of vectors and functions. This pro-
vides a unifying theme in recognizing partial sums of eigenfunction expansions as projections
onto subspaces, as well as understanding lines of best fit to data points.

• Orthogonalization and the production of orthogonal bases.
• LU factorization of matrices.
• Linear transformations and matrix representations.
• Application of the Laplace transform to the solution of Bessel’s equation and to problems

involving wave motion and diffusion.
• Expanded treatment of properties and applications of Legendre polynomials and Bessel

functions, including a solution of Kepler’s problem and a model of alternating current flow.
• Heaviside’s formula for the computation of inverse Laplace transforms.
• A complex integral formula for the inverse Laplace transform, including an application to heat

diffusion in a slab.
• Vector operations in orthogonal curvilinear coordinates.
• Application of vector integral theorems to the development of Maxwell’s equations.
• An application of the Laplace transform convolution to a replacement scheduling problem.

The second new feature of this edition is the interaction of the text with MapleTM. An
appendix (called A Maple Primer) is included on the use of MapleTM and references to the use of
MapleTM are made throughout the text.

Third, there is an added emphasis on constructing and analyzing models, using ordinary and
partial differential equations, integral transforms, special functions, eigenfunction expansions,
and matrix and complex function methods.

Finally, the answer section in the back of the book has been expanded to provide more
information to the student.

This edition is also shorter and more convenient to use than preceding editions. The chapters
comprising Part 8 of the Sixth Edition, Counting and Probability, and Statistics, are now available
on the 7e book website for instructors and students.

Supplements for Instructors:

• A detailed and completely revised Instructor’s Solutions Manual and
• PowerPoint Slides

are available through the Instructor’s Resource site at login.cengage.com.

xiii
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xiv Preface

Supplements for Students:
CourseMate from Cengage Learning offers students book-specific interactive learning

tools at an incredible value. Each CourseMate website includes an e-book and interactive
learning tools. To access additional course materials (including CourseMate), please visit
www.cengagebrain.com. At the cengagebrain.com home page, search for the ISBN of your title
(from the back cover of your book) using the search box at the top of the page. This will take you
to the product page where these resources can be found.

In preparing this edition, the author is indebted to many individuals, including:

Charles S. Campbell, University of Southern California
David Y. Gao, Virginia Tech
Donald Hartig, California Polytechnic State University, San Luis Obispo
Konstantin A. Lurie, Worcester Polytechnic Institute
Allen Plotkin, San Diego State University
Mehdi Pourazady, University of Toledo
Carl Prather, Virginia Tech
Scott Short, Northern Illinois University

PETER V. O’NEIL
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CHAPTER 1
First-Order
Differential
Equations

TERMINOLOGY AND SEPARABLE EQUATIONS
LINEAR EQUATIONS EXACT EQUATIONS
HOMOGENEOUS BERNOULLI AND RICCATI
EQUATIONS EXISTENCE AND UNIQUENESS

1.1 Terminology and Separable Equations

Part 1 of this book deals with ordinary differential equations, which are equations that contain
one or more derivatives of a function of a single variable. Such equations can be used to model a
rich variety of phenomena of interest in the sciences, engineering, economics, ecological studies,
and other areas.

We begin in this chapter with first-order differential equations, in which only the first
derivative of the unknown function appears. As an example,

y ′ + xy = 0

is a first-order equation for the unknown function y(x). A solution of a differential equation is
any function satisfying the equation. It is routine to check by substitution that y = ce−x2/2 is a
solution of y ′ + xy = 0 for any constant c.

We will develop techniques for solving several kinds of first-order equations which arise in
important contexts, beginning with separable equations.

A differential equation is separable if it can be written (perhaps after some algebraic
manipulation) as

dy

dx
= F(x)G(y)

in which the derivative equals a product of a function just of x and a function just of y.
This suggests a method of solution.

3
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4 CHAPTER 1 First-Order Differential Equations

Step 1. For y such that G(y) �= 0, write the differential form

1

G(y)
dy = F(x)dx .

In this equation, we say that the variables have been separated.
Step 2. Integrate

∫
1

G(y)
dy =

∫
F(x)dx .

Step 3. Attempt to solve the resulting equation for y in terms of x . If this is possible, we have
an explicit solution (as in Examples 1.1 through 1.3). If this is not possible, the solution
is implicitly defined by an equation involving x and y (as in Example 1.4).

Step 4. Following this, go back and check the differential equation for any values of y such that
G(y)= 0. Such values of y were excluded in writing 1/G(y) in step (1) and may lead
to additional solutions beyond those found in step (3). This happens in Example 1.1.

EXAMPLE 1.1

To solve y ′ = y2e−x , first write

dy

dx
= y2e−x .

If y �= 0, this has the differential form

1

y2
dy = e−xdx .

The variables have been separated. Integrate
∫

1

y2
dy =

∫
e−xdx

or

− 1

y
=−e−x + k

in which k is a constant of integration. Solve for y to get

y(x)= 1

e−x − k
.

This is a solution of the differential equation for any number k.
Now go back and examine the assumption y �= 0 that was needed to separate the variables.

Observe that y = 0 by itself satisfies the differential equation, hence it provides another solution
(called a singular solution).

In summary, we have the general solution

y(x)= 1

e−x − k

for any number k as well as a singular solution y = 0, which is not contained in the general
solution for any choice of k. �

This expression for y(x) is called the general solution of this differential equation because
it contains an arbitrary constant. We obtain particular solutions by making specific choices for
k. In Example 1.1,
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FIGURE 1.1 Some integral curves from Example 1.1.

y(x)= 1

e−x − 3
, y(x)= 1

e−x + 3
,

y(x)= 1

e−x − 6
, and y(x)= 1

e−x
= ex

are particular solutions corresponding to k = ±3,6, and 0. Particular solutions are also called
integral curves of the differential equation. Graphs of these integral curves are shown in
Figure 1.1.

EXAMPLE 1.2

x2 y ′ = 1 + y is separable, since we can write

1

1 + y
dy = 1

x2
dx

if y �=−1 and x �= 0. Integrate to obtain

ln |1 + y| =−1

x
+ k

with k an arbitrary constant. This equation implicitly defines the solution. For a given k, we have
an equation for the solution corresponding to that k, but not yet an explicit expression for this
solution. In this example, we can explicitly solve for y(x). First, take the exponential of both
sides of the equation to get

|1 + y| = eke−1/x = ae−1/x ,

where we have written a = ek . Since k can be any number, a can be any positive number.
Eliminate the absolute value symbol by writing

1 + y =±ae−1/x = be−1/x ,

where the constant b =±a can be any nonzero number. Then

y =−1 + be−1/x

with b �= 0.
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FIGURE 1.2 Some integral curves from Example 1.2.

Now notice that the differential equation also has the singular solution y = −1, which was
disallowed in the separation of variables process when we divided by y + 1. However, unlike
Example 1.1, we can include this singular solution in the solution by separation of variables by
allowing b = 0, which gives y =−1. We therefore have the general solution

y =−1 + be−1/x

in which b can be any real number, including zero. This expression contains all solutions.
Integral curves (graphs of solutions) corresponding to b = 0,4,7,−5, and −8 are shown in
Figure 1.2. �

Each of these examples has infinitely many solutions because of the arbitrary constant in the
general solution. If we specify that the solution is to satisfy a condition y(x0)= y0 with x0 and
y0 given numbers, then we pick out the particular integral curve passing through (x0, y0). The
differential equation, together with a condition y(x0)= x0, is called an initial value problem. The
condition y(x0)= y0 is called an initial condition.

One way to solve an initial value problem is to find the general solution and then solve for
the constant to find the particular solution satisfying the initial condition.

EXAMPLE 1.3

Solve the initial value problem

y ′ = y2e−x; y(1)= 4.

From Example 1.1, we know that the general solution of this differential equation is

y(x)= 1

e−x − k
.
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Choose k so that

y(1)= 1

e−1 − k
= 4.

Solve this equation for k to get

k = e−1 − 1

4
.

The solution of the initial value problem is

y(x)= 1

e−x + 1
4
− e−1

. �

It is not always possible to find an explicit solution of a differential equation, in which y is
isolated on one side of an equation and some expression of x occurs on the other side. In such a
case, we must be satisfied with an equation implicitly defining the general solution or the solution
of an initial value problem.

EXAMPLE 1.4

We will solve the initial value problem

y ′ = y
(x − 1)2

y + 3
; y(3)=−1.

The differential equation itself (not the algebra of separating the variables) requires that y �=−3.
In differential form,

y + 3

y
dy = (x − 1)2 dx

or
(

1 + 3

y

)

dy = (x − 1)2dx .

Integrate to obtain

y + 3 ln |y| = 1

3
(x − 1)3 + k.

This equation implicitly defines the general solution. However, we cannot solve for y as an
explicit expression of x .

This does not prevent us from solving the initial value problem. We need y(3)= −1, so put
x = 3 and y =−1 into the implicitly defined general solution to get

−1 = 1

3

(
23
)+ k.

Then k =−11/3, and the solution of the initial value problem is implicitly defined by

y + 3 ln |y| = 1

3
(x − 1)3 − 11

3
.

Part of this solution is graphed in Figure 1.3. �
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FIGURE 1.3 Graph of the solution of Example 1.4.

Some Applications of Separable Equations

Separable differential equations arise in many contexts. We will discuss three of these.

EXAMPLE 1.5 Estimated Time of Death

A homicide victim is discovered and a lieutenant from the forensics laboratory is summoned to
estimate the time of death.

The strategy is to find an expression T (t) for the body’s temperature at time t , taking into
account the fact that after death the body will cool by radiating heat energy into the room. T (t)
can be used to estimate the last time at which the victim was alive and had a “normal” body
temperature. This last time was the time of death.

To find T (t), some information is needed. First, the lieutenant finds that the body is located
in a room that is kept at a constant 68◦ Fahrenheit. For some time after death, the body will lose
heat into the cooler room. Assume, for want of better information, that the victim’s temperature
was 98.6◦ at the time of death.

By Newton’s law of cooling, heat energy is transferred from the body into the room at a rate
proportional to the temperature difference between the room and the body. If T (t) is the body’s
temperature at time t , then Newton’s law says that, for some constant of proportionality k,

dT

dt
= k[T (t)− 68].

This is a separable differential equation, since

1

T − 68
dT = k dt.

Integrate to obtain

ln |T − 68| = kt + c.
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To solve for T , take the exponential of both sides of this equation to get

|T − 68| = ekt+c = Aekt

where A = ec. Then

T − 68 =±Aekt = Bekt ,

so

T (t)= 68 + Bekt .

Now the constants k and B must be determined. Since there are two constants, we will need two
pieces of information. Suppose the lieutenant arrived at 9:40 p.m. and immediately measured the
body temperature, obtaining 94.4◦. It is convenient to let 9:40 p.m. be time zero in carrying out
measurements. Then

T (0)= 94.4 = 68 + B,

so B = 26.4. So far,

T (t)= 68 + 26.4ekt .

To determine k, we need another measurement. The lieutenant takes the body temperature again
at 11:00 p.m. and finds it to be 89.2◦. Since 11:00 p.m. is 80 minutes after 9:40 p.m., this means
that

T (80)= 89.2 = 68 + 26.4e80k .

Then

e80k = 21.2

26.4
,

so

80k = ln

(
21.2

26.4

)

.

Then

k = 1

80
ln

(
21.2

26.4

)

.

The temperature function is now completely known as

T (t)= 68 + 26.4eln(21.2/26.4)t/80.

The time of death was the last time at which the body temperature was 98.6◦ (just before it began
to cool). Solve for the time t at which

T (t)= 98.6 = 68 + 26.4eln(21.2/26.4)t/80.

This gives us

30.6

26.4
= eln(21.2/26.4)t/80.

Take the logarithm of this equation to obtain

ln

(
30.6

26.4

)

= t

80
ln

(
21.2

26.4

)

.

According to this model, the time of death was

t = 80 ln(30.6/26.4)

ln(21.2/26.4)
,

which is approximately −53.8 minutes. Death occurred approximately 53.8 minutes before
(because of the negative sign) the first measurement at 9:40 p.m., which was chosen as time
zero in the model. This puts the murder at about 8:46 p.m.
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This is an estimate, because an educated guess was made of the body’s temperature before death.
It is also impossible to keep the room at exactly 68◦. However, the model is robust in the sense
that small changes in the body’s normal temperature and in the constant temperature of the room
yield small changes in the estimated time of death. This can be verified by trying a slightly
different normal temperature for the body, say 99.3◦, to see how much this changes the estimated
time of death. �

EXAMPLE 1.6 Radioactive Decay and Carbon Dating

In radioactive decay, mass is lost by its conversion to energy which is radiated away. It has
been observed that at any time t the rate of change of the mass m(t) of a radioactive element
is proportional to the mass itself. This means that, for some constant of proportionality k that is
unique to the element,

dm

dt
= km.

Here k must be negative, because the mass is decreasing with time.
This differential equation for m is separable. Write it as

1

m
dm = k dt.

A routine integration yields

ln |m| = kt + c.

Since mass is positive, |m| = m and

m(t)= ekt+c = Aekt

in which A can be any positive number. Any radioactive element has its mass decrease according
to a rule of this form, and this reveals an important characteristic of radioactive decay. Suppose
at some time τ there are M grams. Look for h so that, at the later time τ + h, exactly half of this
mass has radiated away. This would mean that

m(τ + h)= M

2
= Aek(τ+h) = Aekτekh.

But Aekτ = M , so the last equation becomes

M

2
= Mekh.

Then

ekh = 1

2
.

Take the logarithm of this equation to solve for h, obtaining

h = 1

k
ln

(
1

2

)

=−1

k
ln(2).

This is positive because k< 0.
Notice that h, the time it takes for half of the mass to convert to energy, depends only

on the number k, and not on the mass itself or the time at which we started measuring the
loss. If we measure the mass of a radioactive element at any time (say in years), then h years
later exactly half of this mass will have radiated away. This number h is called the half-life
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of the element. The constants h and k are both uniquely tied to the particular element and
to each other by h = −(1/k) ln(2). Plutonium has one half-life, and radium has a different
half-life.

Now look at the numbers A and k in the expression m(t)= Aekt . k is tied to the element’s
half-life. The meaning of A is made clear by observing that

m(0)= Ae0 = A.

A is the mass that is present at some time designated for convenience as time zero (think of this
as starting the clock when the first measurement is made). A is called the initial mass, usually
denoted m0. Then

m(t)= m0e
kt .

It is sometimes convenient to write this expression in terms of the half-life h. Since
h =−(1/k) ln(2), then k =−(1/h) ln(2), so

m(t)= m0e
kt = m0e

− ln(2)t/h. (1.1)

This expression is the basis for an important technique used to estimate the ages of certain ancient
artifacts. The Earth’s upper atmosphere is bombarded by high-energy cosmic rays, producing
large numbers of neutrons which collide with nitrogen, converting some of it into radioactive
carbon-14, or 14C . This has a half-life h = 5,730 years. Over the geologically short time in
which life has evolved on Earth, the ratio of 14C to regular carbon in the atmosphere has remained
approximately constant. This means that the rate at which a plant or animal ingests 14C is about
the same now as in the past. When a living organism dies, it ceases its intake of 14C , which
then begins to decay. By measuring the ratio of 14C to carbon in an artifact, we can estimate the
amount of this decay and hence the time it took, giving an estimate of the last time the organism
lived. This method of estimating the age of an artifact is called carbon dating. Since an artifact
may have been contaminated by exposure to other living organisms, this is a sensitive process.
However, when applied rigorously and combined with other tests and information, carbon dating
has proved a valuable tool in historical and archeological studies.

If we put h = 5730 into equation (1.1) with m0 = 1, we get

m(t)= e− ln(2)t/5730 ≈ e−0.000120968t .

As a specific example, suppose we have a piece of fossilized wood. Measurements show that the
ratio of 14C to carbon is .37 of the current ratio. To calibrate our clock, say the wood died at time
zero. If T is the time it would take for one gram of the radioactive carbon to decay to .37 of one
gram, then T satisfies the equation

0.37 = e−0.000120968T

from which we obtain

T =− ln(0.37)

0.000120968
≈ 8,219

years. This is approximately the age of the wood. �

EXAMPLE 1.7 Draining a Container

Suppose we have a container or tank that is at least partially filled with a fluid. The container
is drained through an opening. How long will it take the container to empty? This is a simple
enough problem for something like a soda can, but it is not so easy with a large storage tank
(such as the gasoline tank at a service station).
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We will derive a differential equation to model this problem. We need two principles from
physics. The first is that the rate of discharge of a fluid flowing through an opening at the bottom
of a container is given by

dV

dt
=−k Av(t),

in which V (t) is the volume of fluid remaining in the container at time t ; v(t) is the velocity of
the discharge of fluid through the opening; A is the constant cross sectional area of the opening;
and k is a constant determined by the viscosity of the fluid, the shape of the opening, and the
fact that the cross-sectional area of fluid pouring out of the opening is in reality slightly less
than the area of the opening itself. Molasses will flow at a different rate than gasoline, and
the shape of the opening will obviously play some role in how the fluid empties through this
opening.

The second principle we need is Torricelli’s law, which states that v(t) is equal to the
velocity of a free-falling body released from a height equal to the depth of the fluid at time t .
(Free-falling means influenced by gravity only.) In practice, k must be determined for the
particular fluid, container, and opening and is a number between 0 and 1.

The work done by gravity in moving a body downward a distance h(t) from its initial
position is mgh(t), and this must equal the change in the kinetic energy, which is m(v(t)2)/2.
Therefore,

v(t)=√2gh(t).

Put the last two equations together to obtain

dV

dt
=−k A

√
2gh(t). (1.2)

To illustrate these ideas, consider the problem of draining a hemispherical tank of radius 18
feet that is full of water and has a circular drain hole of radius 3 inches at the bottom. How long
will it take for the tank to empty?

Equation (1.2) contains two unknown functions, so we must eliminate one. To do this, let
r(t) be the radius of the surface of the fluid at time t , and consider an interval of time from t0
to t0 +�t . The volume �V of water draining from the tank in this time equals the volume of a
disk of thickness �h (the change in depth) and radius r(t∗) for some t∗ between t0 and t0 +�t .
Therefore,

�V =π(r(t∗))2�h.

Then
�V

�t
=π(r(t∗))2

�h

�t
.

In the limit as �t → 0, we obtain

dV

dt
=πr 2 dh

dt
.

Substitute this into equation (1.2) to obtain

πr 2 dh

dt
=−k A

√
2gh.

Now V (t) has been eliminated, but at the cost of introducing r(t). However, from Figure 1.4,

r 2 = 182 − (18 − h)2 = 36h − h2.

Then

π(36h − h2)
dh

dt
=−k A

√
2gh.
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FIGURE 1.4 Draining a hemi-
spherical tank.

This is a separable differential equation which we write as

π
36h − h2

h1/2
dh =−k A

√
2g dt.

Take g = 32 feet per second per second. The radius of the circular opening is 3 inches (or
1/4 feet), so its area is A = π/16. For water and an opening of this shape and size, experiment
gives k = 0.8. Therefore,

(36h1/2 − h3/2)dh =−(0.8) 1

16

√
64dt,

or

(36h1/2 − h3/2)dh =−0.4dt.

A routine integration gives us

24h3/2 − 2

5
h5/2 =−2

5
t + c

with c as yet an arbitrary constant. Multiply by 5/2 to obtain

60h3/2 − h5/2 =−t + C

with C arbitrary. For the problem under consideration, the radius of the hemisphere is 18 feet, so
h(0)= 18. Therefore,

60(18)3/2 − (18)5/2 = C.

Then C = 2268
√

2, and

60h3/2 − h5/2 = 2268
√

2 − t.

The tank is empty when h = 0, and this occurs when t = 2268
√

2 seconds or about 53 minutes,
28 seconds. This is time it takes for the tank to drain. �

These last three examples illustrate an important point. A differential equation or initial
value problem may be used to model and describe a process of interest. However, the process
usually occurs as something we observe and want to understand, not as a differential equation.
This must be derived, using whatever information and fundamental principles may apply (such
as laws of physics, chemistry, or economics), as well as the measurements we may take. We
saw this in Examples 1.5, 1.6, and 1.7. The solution of the differential equation or initial value
problem gives us a function that quantifies some part of the process and enables us to understand
its behavior in the hope of being able to predict future behavior or perhaps design a process
that better suits our purpose. This approach to the analysis of phenomena is called mathematical
modeling. We see it today in studies of global warming, ecological and financial systems, and
physical and biological processes.
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SECTION 1.1 PROBLEMS

In each of Problems 1 through 6, determine whether
y = ϕ(x) is a solution of the differential equation. C is
constant wherever it appears.

1. 2yy ′ = 1;ϕ(x)= √
x − 1 for x > 1

2. y ′ + y = 0;ϕ(x)= Ce−x

3. y ′ = −2y + ex

2x
for x > 0;ϕ(x)= C − ex

2x

4. y ′ = 2xy

2 − x2
for x �=±√

2;ϕ(x)= C

x2 − 2

5. xy ′ = x − y;ϕ(x)= x2 − 3

2x
for x �= 0

6. y ′ + y = 1;ϕ(x)= 1 + Ce−x

In each of Problems 7 through 16, determine if the dif-
ferential equation is separable. If it is, find the general
solution (perhaps implicitly defined) and also any singu-
lar solutions the equation might have. If it is not separable,
do not attempt a solution.

7. 3y ′ = 4x/y2

8. y + xy ′ = 0

9. cos(y)y ′ = sin(x + y)

10. ex+y y ′ = 3x

11. xy ′ + y = y2

12. y ′ = (x + 1)2 − 2y

2y

13. x sin(y)y ′ = cos(y)

14.
x

y
y ′ = 2y2 + 1

x + 1

15. y + y ′ = ex − sin(y)

16. [cos(x + y)+ sin(x − y)]y ′ = cos(2x)

In each of Problems 17 through 21, solve the initial value
problem.

17. xy2 y ′ = y + 1; y(3e2)= 2

18. y ′ = 3x2(y + 2); y(2)= 8

19. ln(yx)y ′ = 3x2 y; y(2)= e3

20. 2yy ′ = ex−y2 ; y(4)=−2

21. yy ′ = 2x sec(3y); y(2/3)=π/3
22. An object having a temperature of 90◦ Fahrenheit is

placed in an environment kept at 60◦. Ten minutes
later the object has cooled to 88◦. What will be the
temperature of the object after it has been in this envi-
ronment for 20 minutes? How long will it take for the
object to cool to 65◦?

23. A thermometer is carried outside a house whose ambi-
ent temperature is 70◦ Fahrenheit. After five minutes,
the thermometer reads 60◦, and fifteen minutes after
this, it reads 50.4◦. What is the outside temperature
(which is assumed to be constant)?

24. A radioactive element has a half-life of ln(2) weeks.
If e3 tons are present at a given time, how much will
be left three weeks later?

25. The half-life of Uranium-238 is approximately
4.5(109) years. How much of a 10 kilogram block of
U − 238 will be present one billion years from now?

26. Given that 12 grams of a radioactive element decays
to 9.1 grams in 4 minutes, what is the half-life of this
element?

27. Evaluate
∫ ∞

0

e−t2−9/t2 dt.

Hint: Let

I (x)=
∫ ∞

0

e−t2−(x/t)2 dt.

Calculate I ′(x) and find a differential equation for
I (x). Use the standard integral

∫ ∞
0 e−t2 dt = √

π/2 to
determine I (0), and use this initial condition to solve
for I (x). Finally, evaluate I (3).

28. (Draining a Hot Tub) Consider a cylindrical hot tub
with a 5-foot radius and a height of 4 feet placed on
one of its circular ends. Water is draining from the tub
through a circular hole 5/8 inches in diameter in the
base of the tub.

(a) With k = 0.6, determine the rate at which the
depth of the water is changing. Here it is useful
to write

dh

dt
= dh

dV

dV

dt
= dV/dt

dV/dh
.

(b) Calculate the time T required to drain the hot tub
if it is initially full. Hint: One way to do this is
to write

T =
∫ 0

H

dt

dh
dh.

(c) Determine how much longer it takes to drain the
lower half than the upper half of the tub. Hint:
Use the integral of part (b) with different limits
for each half.

29. Calculate the time required to empty the hemispheri-
cal tank of Example 1.7 if the tank is inverted to lie
on a flat cap across the open part of the hemisphere.
The drain hole is in this cap. Take k = 0.8 as in the
example.
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30. Determine the time it takes to drain a spherical tank
with a radius of 18 feet if it is initially full of water,
which drains through a circular hole with a radius of 3
inches in the bottom of the tank. Use k = 0.8.

31. A tank shaped like a right circular cone, vertex down,
is 9 feet high and has a diameter of 8 feet. It is initially
full of water.

(a) Determine the time required to drain the tank
through a circular hole with a diameter of 2 inches
at the vertex. Take k = 0.6.

(b) Determine the time it takes to drain the tank if it is
inverted and the drain hole is of the same size and
shape as in (a), but now located in the new (flat)
base.

32. Determine the rate of change of the depth of water
in the tank of Problem 31 (vertex at the bottom) if
the drain hole is located in the side of the cone 2
feet above the bottom of the tank. What is the rate of
change in the depth of the water when the drain hole
is located in the bottom of the tank? Is it possible to
determine the location of the drain hole if we are told
the rate of change of the depth and the depth of the
water in the tank? Can this be done without knowing
the size of the drain opening?

33. (Logistic Model of Population Growth) In 1837,
the Dutch biologist Verhulst developed a differential
equation to model changes in a population (he was
studying fish populations in the Adriatic Sea). Ver-
hulst reasoned that the rate of change of a population

P(t) with respect to time should be influenced by
growth factors (for example, current population) and
also factors tending to retard the population (such as
limitations on food and space). He formed a model
by assuming that growth factors can be incorporated
into a term aP(t) and retarding factors into a term
−bP(t)2 with a and b as positive constants whose val-
ues depend on the particular population. This led to his
logistic equation

P ′(t)= aP(t)− bP(t)2.

Note that, when b = 0, this is the exponential model.
Solve the logistic model, subject to the initial

condition P(0)= p0, to obtain

P(t)= ap0

a − bp0 + bp0eat
eat .

This is the logistic model of population growth. Show
that, unlike exponential growth, the logistic model
produces a population function P(t) that is bounded
above and increases asymptotically toward a/b as
t → ∞. Thus, a logistic model produces a population
function that never grows beyond a certain value.

34. Continuing Problem 33, a 1920 study by Pearl and
Reed (appearing in the Proceedings of the National
Academy of Sciences) suggested the values

a = 0.03134, b = (1.5887)10−10

for the population of the United States. Table 1.1
gives the census data for the United States in ten year

TA B L E 1.1 Census data for Problems 33 and 34, Section 1.1.

Year Population P(t) Percent error Q(t) Percent error

1790 3,929,214
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,886,020
1840 17,069,453
1850 23,191,876
1860 31,443,321
1870 38,558,371
1880 50,189,209
1890 62,979,766
1900 76,212,168
1910 92,228,496
1920 106,021,537
1930 123,202,624
1940 132,164,569
1950 151,325,798
1960 179,323,175
1970 203,302,031
1980 226,547,042
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increments from 1790 through 1980. Taking 1790 as
year zero to determine p0, show that the logistic model
for the United States population is

P(t)= 123,141.5668

0.03072 + 000062e0.03134t
e0.03134t .

Calculate P(t) in ten year increments from 1790 to
fill in the P(t) column in the table. Remember that
(with 1790 as the base year) 1800 is year t = 10 in the
model, 1810 is t = 20, and so on. Also, calculate the
percentage error in the model and fill in this column.
Plot the census figures and the numbers predicted by
the logistic model on the same set of axes. You should
observe that the model is fairly accurate for a long
period of time, then diverges from the actual census
numbers. Show that the limit of the population in this

model is about 197,300,000, which the United States
actually exceeded in 1970.

Sometimes an exponential model Q ′(t)= kQ(t)
is used for population growth. Use the census data
(again with 1790 as year zero) to solve for Q(t).
Compute Q(t) for the years of the census data and
the percentage error in this exponential prediction of
population. Plot the census data and the exponential
model predicted data on the same set of axes. It should
be clear that Q(t) diverges rapidly from the actual
census figures. Exponential models are useful for very
simple populations (such as bacteria in a dish) but
are not sophisticated enough for human or (in gen-
eral) animal populations, despite occasional claims by
experts that the population of the world is increasing
exponentially.

1.2 Linear Equations

A first-order differential equation is linear if it has the form

y ′ + p(x)y = q(x)

for some functions p and q.

There is a general approach to solving a linear equation. Let

g(x)= e
∫

p(x)dx

and notice that

g′(x)= p(x)e
∫

p(x)dx = p(x)g(x). (1.3)

Now multiply y ′ + p(x)y = q(x) by g(x) to obtain

g(x)y ′ + p(x)g(x)y = q(x)g(x).

In view of equation (1.3), this is

g(x)y ′ + g′(x)y = q(x)g(x).

Now we see the point to multiplying the differential equation by g(x). The left side of the new
equation is the derivative of g(x)y. The differential equation has become

d

dx
(g(x)y)= q(x)g(x),

which we can integrate to obtain

g(x)y =
∫

q(x)g(x)dx + c.

If g(x) �= 0, we can solve this equation for y:

y(x)= 1

g(x)

∫
q(x)g(x)dx + c

g(x)
.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:9 THM/NEIL Page-17 27410_01_ch01_p01-42

1.2 Linear Equations 17

This is the general solution with the arbitrary constant c.
We do not recommend memorizing this formula for y(x). Instead, carry out the following

procedure.

Step 1. If the differential equation is linear, y ′ + p(x)y = q(x). First compute

e
∫

p(x)dx .

This is called an integrating factor for the linear equation.
Step 2. Multiply the differential equation by the integrating factor.
Step 3. Write the left side of the resulting equation as the derivative of the product of y and the

integrating factor. The integrating factor is designed to make this possible. The right side
is a function of just x .

Step 4. Integrate both sides of this equation and solve the resulting equation for y, obtain-
ing the general solution. The resulting general solution may involve integrals (such as∫

cos(x2)dx) which cannot be evaluated in elementary form.

EXAMPLE 1.8

The equation y ′ + y = x is linear with p(x)= 1 and q(x)= x . An integrating factor is

e
∫

p(x)dx = e
∫

dx = ex .

Multiply the differential equation by ex to get

ex y ′ + ex y = xex .

This is

(yex)′ = xex

with the left side as a derivative. Integrate this equation to obtain

yex =
∫

xexdx = xex − ex + c.

Finally, solve for y by multiplying this equation by e−x :

y = x − 1 + ce−x .

This is the general solution, containing one arbitrary constant. �

EXAMPLE 1.9

Solve the initial value problem

y ′ = 3x2 − y

x
; y(1)= 5.

This differential equation is not linear. Write it as

y ′ + 1

x
y = 3x2,

which is linear. An integrating factor is

e
∫
(1/x)dx = eln(x) = x

for x > 0. Multiply the differential equation by x to obtain

xy ′ + y = 3x3

or

(xy)′ = 3x3.
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Integrate to obtain

xy = 3

4
x4 + c.

Solve for y to write the general solution

y = 3

4
x3 + c

x

for x > 0. For the initial condition, we need

y(1)= 3

4
+ c = 5.

Then c = 17/4, and the solution of the initial value problem is

y = 3

4
x3 + 17

4x
. �

As suggested previously, solving a linear differential equation may lead to integrals we can-
not evaluate in elementary form. As an example, consider y ′ + xy = 2. Here p(x)= x , and an
integrating factor is

e
∫

x dx = ex2/2.

Multiply the differential equation by the integrating factor:

y ′ex2/2 + xex2/2 y = 2ex2/2.

Write the left side as the derivative of a product:

d

dx

(
ex2/2 y

)
= 2ex2/2.

Integrate

yex2/2 = 2
∫

ex2/2 dx + c.

The general solution is

y = 2e−x2/2

(∫
ex2/2 dx

)

+ ce−x2/2.

We cannot evaluate
∫

ex2/2 dx in elementary terms (as a finite algebraic combination of elemen-
tary functions). We could do some additional computation. For example, if we write ex2/2 as a
power series about 0, we could integrate this series term by term. This would yield an infinite
series expression for the solution.

Here is an application of linear equations to a mixing problem.

EXAMPLE 1.10 A Mixing Problem

We want to determine how much of a given substance is present in a container in which var-
ious substances are being added, mixed, and drained out. This is a mixing problem, and it is
encountered in the chemical industry, manufacturing processes, swimming pools and (on a more
sophisticated level) in ocean currents and atmospheric activity.

As a specific example, suppose a tank contains 200 gallons of brine (salt mixed with water)
in which 100 pounds of salt are dissolved. A mixture consisting of 1/8 pound of salt per gallon
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3 gal/min

 1/8 lb/gal

3 gal/min

FIGURE 1.5 Storage tank in Example 1.10.

is pumped into the tank at a rate of 3 gallons per minute, and the mixture is continuously stirred.
Brine also is allowed to empty out of the tank at the same rate of 3 gallons per minute (see
Figure 1.5). How much salt is in the tank at any time?

Let Q(t) be the amount of salt in the tank at time t . The rate of change of Q(t) with respect
to time must equal the rate at which salt is pumped in minus the rate at which it is pumped out:

d Q

dt
= (rate in) − (rate out)

=
(

1

8

pounds

gallon

)(

3
gallons

minute

)

−
(

Q(t)

200

pounds

gallon

)(

3
gallons

minute

)

= 3

8
− 3

200
Q(t).

This is the linear equation

Q ′(t)+ 3

200
Q = 3

8
.

An integrating factor is e
∫
(3/200)dt = e3t/200. Multiply the differential equation by this to get

(Qe3t/200)′ = 3

8
e3t/200.

Integrate to obtain

Qe3t/200 = 3

8

200

3
e3t/200 + c.

Then

Q(t)= 25 + ce−3t/200.

Now use the initial condition

Q(0)= 100 = 25 + c,

so c = 75 and

Q(t)= 25 + 75e−3t/200.

Notice that Q(t)→ 25 as t → ∞. This is the steady-state value of Q(t). The term 75e−3t/200 is
called the transient part of the solution, and it decays to zero as t increases. Q(t) is the sum of a
steady-state part and a transient part. This type of decomposition of a solution is found in many
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settings. For example, the current in a circuit is often written as a sum of a steady-state term and
a transient term.

The initial ratio of salt to brine in the tank is 100 pounds per 200 gallons or 1/2 pound per
gallon. Since the mixture pumped in has a constant ratio of 1/8 pound per gallon, we expect the
brine mixture to dilute toward the incoming ratio with a terminal amount of salt in the tank of
1/8 pound per gallon times 200 gallons. This leads to the expectation (in the long term) that the
amount of salt in the tank should approach 25, as the model verifies. �

SECTION 1.2 PROBLEMS

In each of Problems 1 through 5, find the general solution.

1. y ′ − 3
x
y = 2x2

2. y ′ + y = 1
2
(ex − e−x)

3. y ′ + 2y = x

4. y ′ + sec(x)y = cos(x)

5. y ′ − 2y =−8x2

In each of Problems 6 through 10, solve the initial value
problem.

6. y ′ + 3y = 5e2x − 6; y(0)= 2

7. y ′ + 1
x−2

y = 3x; y(3)= 4

8. y ′ − y = 2e4x ; y(0)=−3

9. y ′ + 2
x+1

y = 3; y(0)= 5

10. y ′ + 5y
9x

= 3x3 + x; y(−1)= 4

11. Find all functions with the property that the y intercept
of the tangent to the graph at (x, y) is 2x2.

12. A 500 gallon tank initially contains 50 gallons of
brine solution in which 28 pounds of salt have been

dissolved. Beginning at time zero, brine containing 2
pounds of salt per gallon is added at the rate of 3 gal-
lons per minute, and the mixture is poured out of the
tank at the rate of 2 gallons per minute. How much salt
is in the tank when it contains 100 gallons of brine?
Hint: The amount of brine in the tank at time t is
50 + t .

13. Two tanks are connected as in Figure 1.6. Tank 1
initially contains 20 pounds of salt dissolved in 100
gallons of brine. Tank 2 initially contains 150 gallons
of brine in which 90 pounds of salt are dissolved. At
time zero, a brine solution containing 1/2 pound of
salt per gallon is added to tank 1 at the rate of 5 gallons
per minute. Tank 1 has an output that discharges brine
into tank 2 at the rate of 5 gallons per minute, and tank
2 also has an output of 5 gallons per minute. Deter-
mine the amount of salt in each tank at any time. Also,
determine when the concentration of salt in tank 2 is a
minimum and how much salt is in the tank at that time.
Hint: Solve for the amount of salt in tank 1 at time t
and use this solution to help determine the amount in
tank 2.

Tank 2Tank 1

5 gal/min; 1/2 lb/gal 5 gal/min

5 gal/min

FIGURE 1.6 Storage tank in Problem 13, Section 1.2.
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1.3 Exact Equations

A differential equation M(x, y)+ N (x, y)y ′ = 0 can be written in differential form as

M(x, y)dx + N (x, y)dy = 0. (1.4)

Sometimes this differential form is the key to writing a general solution. Recall that the
differential of a function ϕ(x, y) of two variables is

dϕ= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy. (1.5)

If we can find a function ϕ(x, y) such that

∂ϕ

∂x
= M(x, y) and

∂ϕ

∂y
= N (x, y), (1.6)

then the differential equation Mdx + Ndy = 0 is just

M(x, y)dx + N (x, y)dy = dϕ= 0.

But if dϕ= 0, then ϕ(x, y)= constant. The equation

ϕ(x, y)= c,

with c an arbitrary constant, implicitly defines the general solution of Mdx + Ndy = 0.

EXAMPLE 1.11

We will use these ideas to solve
dy

dx
= 2x − ex sin(y)

ex cos(y)+ 1
.

This equation is neither separable nor linear. Write it in the form of equation (1.4) as

M(x, y)dx + N (x, y)dy = (ex sin(y)− 2x)dx + (ex cos(y)+ 1)dy = 0.

Now let ϕ(x, y)= ex sin(y)+ y − x2. Then

∂ϕ

∂x
= ex sin(y)− 2x = M(x, y) and

∂ϕ

∂y
= ex cos(y)+ 1 = N (x, y),

so equations (1.6) are satisfied. The differential equation becomes just dϕ = 0, with general
solution defined implicitly by

ϕ(x, y)= ex sin(y)+ y − x2 = c.

To verify that this equation does indeed implicitly define the solution of the differential equation,
differentiate it implicitly with respect to x , thinking of y as y(x), to get

ex sin(y)+ ex cos(y)y ′ + y ′ − 2x = 0

and solve this for y ′ to get

y ′ = 2x − ex sin(y)

ex cos(y)+ 1
,

which is the original differential equation. �

Example 1.11 suggests a method. The difficult part in applying it is finding the function
ϕ(x, y). One magically appeared in Example 1.11, but usually we have to do some work to find
a function satisfying equations (1.6).
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EXAMPLE 1.12

Consider

dy

dx
=− 2xy3 + 2

3x2 y2 + 8e4y
.

This is neither linear nor separable. Write

(2xy3 + 2)dx + (3x2 y2 + 8e4y)dy = 0

so

M(x, y)= 2xy3 + 2 and N (x, y)= 3x2 y2 + 8e4y.

From equations (1.6), we want ϕ(x, y) such that

∂ϕ

∂x
= 2xy3 + 2 and

∂ϕ

∂y
= 3x2 y2 + 8e4y .

Choose either of these equations and integrate it. If we choose the first equation, then integrate
with respect to x :

ϕ(x, y)=
∫
∂ϕ

∂x
dx

=
∫
(2xy3 + 2)dx = x2 y3 + 2x + g(y).

In this integration, we are reversing a partial derivative with respect to x , so y is treated like a
constant. This means that the constant of integration may also involve y; hence it is called g(y).
Now we know ϕ(x, y) to within this unknown function g(y). To determine g(y), use the fact that
we know what ∂ϕ/∂y must be

∂ϕ

∂y
= 3x2 y2 + 8e4y

= 3x2 y2 + g′(y).

This means that g′(y)= 8e4y , so g(y)= 2e4y . This fills in the missing piece, and

ϕ(x, y)= x2 y3 + 2x + 2e4y.

The general solution of the differential equation is implicitly defined by

x2 y3 + 2x + 2e4y = c,

in which c is an arbitrary constant. In this example, we are not able to solve for y explicitly in
terms of x . �

A function ϕ(x, y) satisfying equations (1.6) is called a potential function for the differen-
tial equation M + N y ′ = 0. If we can find a potential function ϕ(x, y), we have at least the
implicit expression ϕ(x, y)= c for the solution.

The method of Example 1.12 may produce a potential function if the integrations can be
carried out. However, it may also be the case that a potential function does not exist.
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EXAMPLE 1.13

The equation y ′ + y =0 is separable and linear, and the general solution is y(x)= ce−x . However,
to make a point, try to find a potential function. In differential form,

ydx + dy = 0.

Here M(x, y)= y and N (x, y)= 1. A potential function ϕ would have to satisfy

∂ϕ

∂x
= y and

∂ϕ

∂y
= 1.

If we integrate the first of these equations with respect to x , we get

ϕ(x, y)=
∫

y dx = xy + g(y).

Then we need
∂ϕ

∂y
= 1 = x + g′(y).

But then g′(y)= 1 − x , which is impossible if g is a function of y only. There is no potential
function for this differential equation. �

We call a differential equation M + N y ′ = 0 exact if it has a potential function. Otherwise
it is not exact.

There is a simple test to determine whether M + N y ′ = 0 is exact for (x, y) in a rectangle R
of the plane.

THEOREM 1.1 Test for Exactness

Suppose M , N , ∂N/∂x and ∂M/∂y are continuous for all (x, y) in some rectangle R in the
(x, y)− plane. Then M + N y ′ = 0 is exact on R if and only if

∂N

∂x
= ∂M

∂y

for (x,y) in R. �
Proof If M + N y ′ = 0 is exact, then there is a potential function ϕ and

∂ϕ

∂x
= M(x, y) and

∂ϕ

∂y
= N (x, y).

Then, for (x, y) in R,

∂M

∂y
= ∂

∂y

(
∂ϕ

∂x

)

= ∂2ϕ

∂y∂x
= ∂2ϕ

∂x∂y
= ∂

∂x

(
∂ϕ

∂y

)

= ∂N

∂x
.

Conversely, suppose ∂M/∂y and ∂N/∂x are continuous on R, and that

∂N

∂x
= ∂M

∂y
.

Choose any (x0, y0) in R, and define for (x, y) in R

ϕ(x, y)=
∫ x

x0

M(ξ, y0)dξ +
∫ y

y0

N (x, η)dη.
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In these integrals, x and y are thought of as fixed, and the integration variables are ξ and η
respectively. Now, y appears on the right side only in the second integral, so the fundamental
theorem of calculus gives us immediately

∂ϕ

∂y
= N (x, y).

Computing ∂ϕ/∂x is less straightforward, since x occurs in both integrals defining ϕ(x, y). For
∂ϕ/∂x , use the condition that ∂M/∂y = ∂N/∂x to write

∂ϕ

∂x
= ∂

∂x

∫ x

x0

M(ξ, y0)dξ + ∂

∂x

∫ y

y0

N (x, η)dη

= M(x, y0)+
∫ y

y0

∂N

∂x
(x, η)dη

= M(x, y0)+
∫ y

y0

∂M

∂y
(x, η)dη

= M(x, y0)+ M(x, y)− M(x, y0)= M(x, y).

This completes the proof. �

In the case of y dx + dy = 0, M(x, y)= y and N (x, y)= 1, so

∂M

∂y
= 1 and

∂N

∂x
= 0.

Theorem 1.1 tells us that this differential equation is not exact on any rectangle in the plane. We
saw this in Example 1.13.

EXAMPLE 1.14

We will solve the initial value problem

(cos(x)− 2xy)+ (ey − x2)y ′ = 0; y(1)= 4.

In differential form,

(cos(x)− 2xy)dx + (ey − x2)dy = 0 = M dx + N dy

with

M(x, y)= cos(x)− 2xy and N (x, y)= ey − x2.

Compute

∂M

∂y
=−2x = ∂N

∂x

for all (x, y). By Theorem 1.1, the differential equation is exact over every rectangle, hence over
the entire plane. A potential function ϕ(x, y) must satisfy

∂ϕ

∂x
= cos(x)− 2xy and

∂ϕ

∂y
= ey − x2.

Choose one of these to integrate. If we begin with the second, then integrate with respect to y:

ϕ(x, y)=
∫
(ey − x2)dy = ey − x2 y + h(x).
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The “constant of integration” is h(x), because x is held fixed in a partial derivative with respect
to y. Now we know ϕ(x, y) to within h(x). Next we need

∂ϕ

∂x
= cos(x)− 2xy =−2xy + h ′(x).

This requires that

h ′(x)= cos(x),

so h(x)= sin(x). A potential function is

ϕ(x, y)= ey − x2 y + sin(x).

The general solution is implicitly defined by

ey − x2 y + sin(x)= c.

For the initial condition, choose c so that y(1)= 4. We need

e4 − 4 + sin(1)= c.

The solution of the initial value problem is implicitly defined by

ey − x2 y + sin(x)= e4 − 4 + sin(1). �

SECTION 1.3 PROBLEMS

In each of Problems 1 through 5, test the differential equa-
tion for exactness. If it is exact (on some region of the
plane), find a potential function and the general solution
(perhaps implicitly defined). If it is not exact anywhere, do
not attempt a solution.

1. 2y2 + yexy + (4xy + xexy + 2y)y ′ = 0

2. 4xy + 2x + (2x2 + 3y2)y ′ = 0

3. 4xy + 2x2 y + (2x2 + 3y2)y ′ = 0

4. 2 cos(x + y)− 2x sin(x + y)− 2x sin(x + y)y ′ = 0

5. 1/x + y + (3y2 + x)y ′ = 0

In each of Problems 6 and 7, determine α so that the
equation is exact. Obtain the general solution of the exact
equation.

6. 3x2 + xyα − x2 yα−1 y ′ = 0

7. 2xy3 − 3y − (3x +αx2 y2 − 2αy)y ′ = 0

In each of Problems 8 through 11, determine if the differ-
ential equation is exact in some rectangle containing the
point where the initial condition is given. If it is exact,
solve the initial value problem. If not, do not attempt a
solution.

8. 2y − y2 sec2(xy2) + (2x −2xy sec2(xy2))y ′ = 0;
y(1)= 2

9. 3y4 − 1 + 12xy3 y ′ = 0; y(1)= 2

10. 1 + ey/x − y
x
ey/x + ey/x y ′ = 0; y(1)= −5

11. x cos(2y − x)− sin(2y − x)− 2x cos(2y − x)y ′ = 0;
y(π/12)=π/8

12. ey + (xey − 1)y ′ = 0; y(5)= 0

13. Let ϕ be a potential function for M + N y ′ = 0. Show
that ϕ + c is also a potential function for any con-
stant c. How does the general solution obtained using
ϕ differ from that obtained using ϕ+ c?

If M + N y ′ = 0 is not exact, it might be
possible to find a nonzero function μ(x, y) such
that μM + μN y ′ = 0 is exact. The benefit to this
is that M + N y ′ = 0 and μ(M + N y ′) = 0 have
the same solutions if μ(x, y) �= 0 for any x and
y, and the latter equation is exact (hence is solv-
able if we can find a potential function). Such a
function μ(x, y) is called an integrating factor for
M + N y′ = 0.

14. (a) Show that y − xy ′ =0 is not exact on any rectangle
in the plane.

(b) Show that μ(x, y) = x−2 is an integrating fac-
tor on any rectangle over which x �= 0. Use this
to find the general solution of the differential
equation.

(c) Show that ν(x, y)= y−2 is also an integrating fac-
tor on any rectangle where y �= 0, and use this to
solve the differential equation.
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(d) Show that δ(x, y) = xy−3 is also an integrating
factor on any rectangle where x �= 0 and y �= 0.
Use this integrating factor to find the general
solution.

(e) Write the differential equation as

y ′ − 1

x
y = 0

and solve it as a linear differential equation.

(f) How do the solutions found in parts (b) through
(e) differ from each other?

15. Show that

x2 y ′ + xy =−y−3/2

is not exact. Solve this equation by finding an integrat-
ing factor of the form μ(x, y)= xa yb. Hint: Consider
the differential equation

μx2 y ′ +μxy =−μy−3/2

and solve form a and b so that equations (1.6) are
satisfied.

16. Try the strategy of Problem 15 on the differential
equation

2y2 − 9xy + (3xy − 6x2)y ′ = 0.

1.4 Homogeneous, Bernoulli, and Riccati Equations

We will discuss three other types of first-order differential equations for which techniques of
solution are available.

1.4.1 The Homogeneous Differential Equation

A homogeneous differential equation is one of the form

y ′ = f (y/x)

with y ′ isolated on one side and on the other an expression in which x and y always occur
in the combination y/x . Examples are y ′ = sin(y/x)− x/y and y ′ = x2/y2.

In some instances, a differential equation can be manipulated into homogeneous form. For
example, with

y ′ = y

x + y

we can divide numerator and denominator on the right by x to obtain the homogeneous equation

y ′ = y/x

1 + y/x
.

This manipulation requires the assumption that x �= 0.
A homogeneous differential equation can always be transformed to a separable equation by

letting

y = ux .

To see this, compute y ′ = u ′x + u and write u = y/x to transform

y ′ = u ′x + u = f (y/x)= f (u).

In terms of u and x , this is

xu ′ + u = f (u)
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or

x
du

dx
= f (u)− u.

The variables u and x separate as

1

f (u)− u
du = 1

x
dx .

We attempt to solve this separable equation and then substitute u = y/x to obtain the solution of
the original homogeneous equation.

EXAMPLE 1.15

We will solve

xy ′ = y2

x
+ y.

Write this as

y ′ =
( y

x

)2 + y

x
.

With y = ux , this becomes

xu ′ + u = u2 + u

or

xu ′ = u2.

The variables separate as

1

u2
du = 1

x
dx .

Integrate to obtain

−1

u
= ln |x | + c.

Then

u = −1

ln |x | + c
.

Then

y = −x

ln |x | + c
,

and this is the general solution of the original homogeneous equation. �

1.4.2 The Bernoulli Equation

A Bernoulli equation is one of the form

y ′ + P(x)y = R(x)yα

in which α is constant. This equation is linear if α= 0 and separable if α= 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:9 THM/NEIL Page-28 27410_01_ch01_p01-42

28 CHAPTER 1 First-Order Differential Equations

In about 1696, Leibniz showed that, if α �= 1, the Bernoulli equation transforms to a linear
equation with the change of variable

v= y1−α.

This is routine to verify in general. We will see how this works in an example.

EXAMPLE 1.16

We will solve the Bernoulli equation

y ′ + 1

x
y = 3x2 y3.

Here P(x)= 1/x , R(x)= 3x2, and α= 3. Let

v= y1−α = y−2.

Then y = v−1/2, so

y ′(x)=−1

2
v−3/2v′,

and the differential equation becomes

−1

2
v−3/2v′ + 1

x
v−1/2 = 3x2v−3/2.

Upon multiplying by −2v3/2, we obtain the linear equation

v′ − 2

x
v=−6x2.

This has integrating factor

e
∫ −(2/x)dx = eln(x−2) = x−2.

Multiply the differential equation by x−2:

x−2v′ − 2x−3v=−6.

This is

(x−2v)′ =−6,

and an integration yields

x−2v=−6x + c.

Then

v=−6x3 + cx2.

In terms of y, the original Bernoulli equation has the general solution

y(x)= 1√
v(x)

= 1√
cx2 − 6x3

. �

1.4.3 The Riccati Equation

A differential equation of the form

y ′ = P(x)y2 + Q(x)y + R(x)

is called a Riccati equation.
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This is linear when P(x) is identically zero. If we can somehow obtain one particular
solution S(x) of a Riccati equation, then the change of variables

y = S(x)+ 1

z

transforms the Riccati equation to a linear equation in x and z. The strategy is to find the general
solution of this linear equation and use it to write the general solution of the original Riccati
equation.

EXAMPLE 1.17

We will solve the Riccati equation

y ′ = 1

x
y2 + 1

x
y − 2

x
.

By inspection, y = S(x)= 1 is one solution. Define a new variable z by

y = 1 + 1

z
.

Then

y ′ =− 1

z2
z′,

so the Riccati equation transforms to

− 1

z2
z′ = 1

x

(

1 + 1

z

)2

+ 1

x

(

1 + 1

z

)

− 2

x
.

This is the linear equation

z′ + 3

x
z =−1

x
,

which has integrating factor x3. Multiplying by x3 yields

x3z′ + 3x2z = (x3z)′ =−x2.

Integrate to obtain

x3z =−1

3
x3 + c

or

z(x)=−1

3
+ c

x3
.

The general solution of the Riccati equation is

y(x)= 1 + 1

z(x)
= 1 + 1

−1/3 + c/x3
.

This can be written as

y(x)= k + 2x3

k − x3

in which k = 3c is an arbitrary constant. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:9 THM/NEIL Page-30 27410_01_ch01_p01-42

30 CHAPTER 1 First-Order Differential Equations

SECTION 1.4 PROBLEMS

In each of Problems 1 through 14, find the general solu-
tion. These problems include all three types discussed in
this section.

1. y ′ = 1

x2
y2 − 1

x
y + 1

2. y ′ + 1

x
= 2

x3
y−4/3

3. y ′ + xy = xy2

4. y ′ = x

y
+ y

x

5. y ′ = y

x + y

6. y ′ = 1

2x
y2 − 1

x
y − 4

x

7. (x − 2y)y ′ = 2x − y

8. xy ′ = x cos(y/x)+ y

9. y ′ + 1

x
y = 1

x4
y−3/4

10. x2 y ′ = x2 + y2

11. y ′ =− 1

x
y2 + 2

x
y

12. x3 y ′ = x2 y − y3

13. y ′ =−e−x y2 + y + ex

14. y ′ + 2

x
y = 3

x
y2

15. Consider the differential equation

y ′ = F

(
ax + by + c

dx + py + r

)

in which a,b, c,d, p, and r are constants. Show that
this equation is homogeneous if and only if c = r = 0.
Thus, suppose at least one of c and r is not zero.
Then this differential equation is called nearly homo-
geneous. Show that if ap − bd �= 0 it is possible to
choose constants h and k such that the transforma-
tion x = X + h, y = Y + k results in a homogeneous
equation.

In each of Problems 16 through 19, use the idea from
Problem 15 to solve the differential equation.

16. y ′ = y − 3

x + y − 1

17. y ′ = 3x − y − 9

x + y + 1

18. y ′ = x + 2y + 7

−2x + y − 9

19. y ′ = 2x − 5y − 9

−4x + y + 9

1.5 Additional Applications

This section is devoted to some additional applications of first-order differential equations. We
will need Newton’s second law of motion, which states that the sum of the external forces acting
on an object is equal to the derivative (with respect to time) of the product of the mass and
the velocity. When the mass is constant, dm/dt = 0, and Newton’s law reduces to the familiar
F = ma in which a = dv/dt is the acceleration.

Terminal Velocity An object is falling under the influence of gravity in a medium such as water,
air, or oil. We want to analyze the motion.

Let v(t) be the velocity of the object at time t . Gravity pulls the object downward, while
the medium retards the downward motion. Experiment has shown that this retarding force is
proportional in magnitude to the square of the velocity. Let m be the mass of the object, g the
usual constant acceleration due to gravity, and α the constant of proportionality in the retarding
force of the medium. Choose downward as the positive direction (this is arbitrary). Let F be the
magnitude of the total external force acting on the object. By Newton’s law,

F = mg −αv2 = m
dv

dt
.
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Suppose that at time zero the object is dropped (not thrown) downward, so v(0)= 0. We now
have an initial value problem for the velocity:

v′ = g − α

m
v2; v(0)= 0.

This differential equation is separable:

1

g − (α/m)v2
dv= dt.

Integrate to get
√

m

αg
tanh−1

(√
α

mg
v

)

= t + c.

This equation involves the inverse of the hyperbolic tangent function tanh(x), which is given by

tanh(x)= e2x − 1

e2x + 1
.

Solving for v(t), we obtain

v(t)=
√

mg

α
tanh

(√
αg

m
(t + c)

)

.

Now use the initial condition:

v(0)=
√

mg

α
tanh

(

c

√
αg

m

)

= 0.

Since tanh(w)= 0 only for w= 0, this requires that c = 0 and the solution for the velocity is

v(t)=
√

mg

α
tanh

(√
αg

m
t

)

.

This expression yields an interesting and perhaps nonintuitive conclusion. As t → ∞,
tanh(

√
αg/mt)→ 1. This means that

lim
t→∞

v(t)=
√

mg

α
.

An object falling under the influence of gravity through a retarding medium will not increase
in velocity indefinitely, even given enough space. It will instead settle eventually into a nearly
constant velocity fall, approaching the velocity

√
mg/α as t increases. This limiting value is

called the terminal velocity of the object. Skydivers have experienced this phenomenon.

Sliding Motion on an Inclined Plane A block weighing 96 pounds is released from rest at the
top of an inclined plane of slope length 50 feet and making an angle of π/6 radians with the
horizontal. Assume a coefficient of friction of μ= √

3/4. Assume also that air resistance acts to
retard the block’s descent down the ramp with a force of magnitude equal to 1/2 of the block’s
velocity. We want to determine the velocity v(t) of the block.

Figure 1.7 shows the forces acting on the block. Gravity acts downward with magnitude
mg sin(u), which is 96 sin(π/6) or 48 pounds. Here mg = 96 is the weight (as distinguished
from mass) of the block. The drag due to friction acts in the reverse direction and in pounds is
given by

−μN =−μmg cos(u)=−
√

3

4
(96) cos(π/6)=−36.

The drag force due to air resistance is −v/2. The total external force acting on the block has a
magnitude of
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mg cos(u)

N

mg sin(u)

mg

6
π

u

FIGURE 1.7 Forces acting on the sliding block.

F = 48 − 36 − 1

2
v= 12 − 1

2
v.

Since the block weighs 96 pounds, its mass is 96/32 = 3 slugs. From Newton’s second law,

3
dv

dt
= 12 − 1

2
v.

This is the linear equation

v′ + 1

6
v= 4.

Compute the integrating factor e
∫
(1/6)dt = et/6. Multiply the differential equation by et/6 to obtain

v′et/6 + 1

6
vet/6 = 4et/6

or

(vet/6)′ = 4et/6.

Integrate to get

vet/6 = 24et/6 + c

so

v(t)= 24 + ce−t/6.

Assuming that the block starts from rest at time zero, then v(0)= 0 = 24 + c, so c =−24 and

v(t)= 24
(
1 − e−t/6

)
.

This gives the block’s velocity at any time. We can also determine its position. Let x(t) be the
position of the block at time t measured from the top. Since v(t)= x ′(t) and x(0)= 0, then

x(t)=
∫ t

0

v(τ)dτ =
∫ t

0

24
(
1 − e−τ/6)dτ

= 24t + 144
(
e−t/6 − 1

)
.

Suppose we want to know when the block reaches the bottom of the ramp. This occurs at a time
T such that x(T )= 50. We must solve for T in

24T + 144
(
e−T/6 − 1

)= 50.

This equation cannot be solved algebraically for T , but a computer approximation yields T ≈5.8
seconds.

Notice that

lim
t→∞

v(t)= 24.
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Of course, this limit is irrelevant in this setting, since the block reaches the bottom in about 5.8
seconds. However, if the ramp is long enough, the block will approach arbitrarily close to 24 feet
per second in velocity. For practical purposes on a sufficiently long ramp, the block will appear
to settle into a constant velocity slide. This is similar to the terminal velocity experienced by an
object falling in a retarding medium.

Electrical Circuits An RLC circuit is one having only constant resistors, capacitors, and induc-
tors (assumed constant here) as elements and an electromotive driving force E(t). The current
i(t) and charge q(t) are related by i(t)= q ′(t). The voltage drop across a resistor having resis-
tance R is i R, the drop across a capacitor having capacitance C is q/C , and the drop across an
inductor having inductance L is Li ′.

We can construct differential equations for circuits by using Kirchhoff’s current and voltage
laws. The current law states that the algebraic sum of the currents at any junction of a circuit is
zero. This means that the total current entering the junction must balance the current leaving it
(conservation of energy). The voltage law states that the algebraic sum of the potential rises and
drops around any closed loop in a circuit is zero.

As an example of a mathematical model of a simple circuit, consider the RL circuit of
Figure 1.8 in which E is constant. Starting at an arbitrary point A, move clockwise around the
circuit. First, cross the battery where there is an increase in potential of E volts. Next, there is a
decrease in potential of i R volts across the resistor. Finally, there is a decrease of Li ′ across the
inductor, after which we return to A. By Kirchhoff’s voltage law,

E − i R − Li ′ = 0,

which is the linear equation

i ′ + E

R
i = E

L
with the general solution

i(t)= E

R
+ ke−Rt/L .

We can determine k if we have an initial condition. Even without knowing k, we have
limt→∞ i(t)= E/R. This is the steady-state value of the current. The solution for the current
has a form we have seen before—a steady-state term added to a transient term that decays to
zero as t increases.

Often, we encounter discontinuous currents and potential functions in working with circuits.
For example, switches may be turned on and off. We will solve more substantial circuit models
when we have the Laplace transform at our disposal.

R

LE

A

FIGURE 1.8 A simple RL circuit.
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FIGURE 1.9 Two families of orthogonal trajectories.

Orthogonal Trajectories Two curves intersecting at a point P are orthogonal if their tan-
gents are perpendicular at P . This occurs when the slopes of these tangents at P are negative
reciprocals of each other.

Suppose we have two sets (or families) of curves, F and G. We say that F is a set of orthogo-
nal trajectories of G if, whenever a curve of F intersects a curve of G, these curves are orthogonal
at the point of intersection. When F is a family of orthogonal trajectories of G, then G is also a
family of orthogonal trajectories of F .

For example, let F consist of all circles about the origin and G of all straight lines through
the origin. Figure 1.9 shows some curves of these families, which are orthogonal trajectories of
each other. Wherever one of the lines intersects one of the circles, the line is orthogonal to the
tangent to the circle there.

Given a family F of curves, suppose we want to find the family G of orthogonal trajectories
of F . Here is a strategy to do this. The curves of F are assumed to be graphs of an equation
F(x, y, k)=0 with different choices of k giving different curves. Think of these curves as integral
curves (graphs of solutions) of some differential equation y ′ = f (x, y). The curves in the set of
orthogonal trajectories are then integral curves of the differential equation y ′ = −1/ f (x, y) with
the negative reciprocal ensuring that curves of one family are orthogonal to curves of the other
family at points of intersection. The idea is to produce the differential equation y ′ = f (x, y) from
F ; then solve the equation y ′ =−1/ f (x, y) for the orthogonal trajectories.

EXAMPLE 1.18

Let F consist of curves that are graphs of

F(x, y, k)= y − kx2 = 0.

These are parabolas through the origin. We want the family of orthogonal trajectories. First obtain
the differential equation of F . From y − kx2 =0 we can write k = y/x2. Differentiate y − kx2 =0
to get y ′ = 2kx . Substitute for k in this derivative to get

y ′ − 2kx = 0 = y ′ − 2
( y

x2

)
x = 0.
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FIGURE 1.10 Families of orthogonal trajectories in
Example 1.18.

This gives us

y ′ = 2
y

x
= f (x, y)

as the differential equation of F . This means that F is the family of integral curves of y ′ =2y/x .
The differential equation of the family of orthogonal trajectories is therefore

y ′ =− 1

f (x, y)
=− x

2y
.

This is a separable equation that can be written

2y dy =−x dx

with the general solution

y2 + 1

2
x2 = c.

These curves are ellipses, and they make up the family G of orthogonal trajectories of F .
Figure 1.10 shows some of the ellipses in G and the parabolas in F . �

A Pursuit Problem

In a pursuit problem, the object is to determine a trajectory so that one object intercepts
another. Examples are missiles fired at airplanes and a rendezvous of a shuttle with a space
station.

We will solve the following pursuit problem. Suppose a person jumps into a canal and
swims toward a fixed point directly opposite the point of entry. The person’s constant swim-
ming speed is v, and the water is moving at a constant speed of s. As the person swims, he
or she always orients to face toward the target point. We want to determine the swimmer’s
trajectory.

Suppose the canal has a width of w. Figure 1.11 has the point of entry at (w,0), and the
target point is at the origin. At time t , the swimmer is at (x(t), y(t)).
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(x,y)

v sin(α)

v cos(α)

(w,0)
x

α

(0,0)

y

FIGURE 1.11 The swimmer’s path in the pursuit problem.

The horizontal and vertical components of the swimmer’s velocity vector are

x ′(t)=−v cos(α) and y ′(t)= s − v sin(α),

where α is the angle between the x− axis and the line from the origin to (x(t), y(t)). From these
equations,

dy

dx
= y ′(t)

x ′(t)
= s − v sin(α)

−v cos(α)
= tan(α)− s

v
sec(α).

From the diagram,

tan(α)= y

x
and sec(α)= 1

x

√
x2 + y2.

Therefore,

dy

dx
= y

x
− s

v

1

x

√
x2 + y2,

which we write as

dy

dx
= y

x
− s

v

√

1 +
( y

x

)2

.

This is a homogeneous equation. Put y = ux to obtain

1√
1 + u2

du =− s

v

1

x
dx .

Integrate to obtain

ln
∣
∣
∣u +√

1 + u2

∣
∣
∣=− s

v
ln |x | + c.

Take the exponential of both sides of this equation to obtain
∣
∣
∣u +√

1 + u2

∣
∣
∣= ece−s(ln |x |/v).

Write this as

u +√
1 + u2 = K x−s/v.
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To solve this for u, first write
√

1 + u2 = K x−s/v − u

and square both sides to obtain

1 + u2 = K 2x−2s/v + u2 − 2Kux−s/v.

Now u2 cancels, and we can solve for u to obtain

u(x)= 1

2
K x−s/v − 1

2

1

K
xs/v.

Finally, u = y/x , so

y(x)= 1

2
K x1−s/v − 1

2

1

K
x1+s/v.

To determine K , notice that y(w)= 0, since we put the origin at the target point. Then

1

2
Kw1−s/v − 1

2

1

K
w1+s/v = 0,

and we obtain K =ws/v . Therefore,

y(x)= w

2

[( x

w

)1−s/v −
( x

w

)1+s/v
]

.

As might be expected, the swimmer’s path depends on the width of the canal, the speed of
the swimmer, and the speed of the current. Figure 1.12 shows trajectories corresponding to s/v
equal to 1/5 (lowest curve), 1/3, 1/2, and 3/4 (highest curve) with w= 1.

Velocity of an Unwinding Chain A 40 foot chain weighing ρ pounds per foot is supported in a
pile several feet above the floor. It begins to unwind when released from rest with 10 feet already
played out. We want to find the velocity with which the chain leaves the support.

0

0.3

0.2

0

0.25

0.15

x
0.8 10.60.2 0.4

0.05

0.1

FIGURE 1.12 Trajectories for x/v= 1/5, 1/3, 1/2, and 3/4.
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The length of chain that is actually in motion varies with time. Let x(t) be the length of that
part of the chain that has left the support by time t and is currently in motion. The equation of
motion is

m
dv

dt
+ v dm

dt
= F,

where F is the magnitude of the total external force acting on the chain. Now F = ρx = mg, so
m = ρx/g = ρx/32. Then

dm

dt
= ρ

32

dx

dt
= ρ

32
v.

Furthermore,

dv

dt
= dv

dx

dx

dt
= v dv

dx
.

Substituting this into the previous equation gives us

ρxv

32

dv

dx
+ ρ

32
v2 = ρx .

Multiply by 32/ρxv to obtain

dv

dx
+ 1

x
v= 32

v
. (1.7)

This is a Bernoulli equation with α = −1. Make the change of variable w = v2−α = v2. Then
v=w1/2, and

dv

dx
= 1

2
w−1/2 dw

dx
.

Substitute this into equation (1.7) to obtain

1

2
w−1/2 dw

dx
+ 1

x
w1/2 = 32w−1/2.

Multiply by 2w1/2 to obtain the linear equation

w′ + 2

x
w= 64.

Solve this to obtain

w(x)= v(x)2 = 64

3
x + c

x2
.

Since v= 0 when x = 10,

64

3
(10)+ c

100
= 0,

so c =−64,000/3. Therefore,

v(x)2 = 64

3

[

x − 1000

x2

]

.

The chain leaves the support when x = 40, so at this time,

v2 = 64

3

[

40 − 1000

1600

]

= 4(210).

The velocity at this time is v= 2
√

210, which is about 29 feet per second.
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SECTION 1.5 PROBLEMS

1. A 10-pound ballast bag is dropped from a hot air bal-
loon which is at an altitude of 342 feet and ascending
at 4 feet per second. Assuming that air resistance is
not a factor, determine the maximum height reached
by the bag, how long it remains aloft, and the speed
with which it eventually strikes the ground.

2. A 48 pound box is given an initial push of 16 feet
per second down an inclined plane that has a gradi-
ent of 7/24. If there is a coefficient of friction of 1/3
between the box and the plane and a force of air resis-
tance equal in magnitude to 3/2 of the velocity of the
box, determine how far the box will travel down the
plane before coming to rest.

3. A skydiver and her equipment together weigh 192
pounds. Before the parachute is opened, there is an air
drag force equal in magnitude to six times her veloc-
ity. Four seconds after stepping from the plane, the
skydiver opens the parachute, producing a drag equal
to three times the square of the velocity. Determine the
velocity and how far the skydiver has fallen at time t .
What is the terminal velocity?

4. Archimedes’ principle of buoyancy states that an
object submerged in a fluid is buoyed up by a force
equal to the weight of the fluid that is displaced by
the object. A rectangular box of 1 × 2 × 3 feet and
weighing 384 pounds is dropped into a 100-foot deep
freshwater lake. The box begins to sink with a drag
due to the water having a magnitude equal to 1/2 the
velocity. Calculate the terminal velocity of the box.
Will the box have achieved a velocity of 10 feet per
second by the time it reaches the bottom? Assume that
the density of water is 62.5 pounds per cubic foot.

5. Suppose the box in Problem 4 cracks open upon hit-
ting the bottom of the lake, and 32 pounds of its con-
tents spill out. Approximate the velocity with which
the box surfaces.

6. The acceleration due to gravity inside the earth is pro-
portional to the distance from the center of the earth.
An object is dropped from the surface of the earth into
a hole extending straight through the planet’s center.
Calculate the speed the object achieves by the time it
reaches the center.

7. A particle starts from rest at the highest point of a
vertical circle and slides under only the influence of
gravity along a chord to another point on the circle.
Show that the time taken is independent of the choice
of the terminal point. What is this common time?

8. Determine the currents in the circuit of Figure 1.13.

9. In the circuit of Figure 1.14, the capacitor is initially
discharged. How long after the switch is closed will

10 V

10 Ω

15 Ω
30 Ω

FIGURE 1.13 Circuit of Problem 8, Section 1.5.

the capacitor voltage be 76 volts? Determine the cur-
rent in the resistor at that time. The resistances are
in thousands of ohms, and the capacitor is in micro-
farads (10−6 farads).

250

2

80 V 

FIGURE 1.14 Circuit of Problem 9, Section 1.5.

10. For the circuit in Figure 1.15, find all currents imme-
diately after the switch is closed, assuming that
all of these currents and the charges on the capaci-
tors are zero just prior to closing the switch. Resis-
tances are in ohms, the capacitor in farads, and the
inductor in henrys.

6 V 

30 Ω 15 Ω10 Ω

4/10 h1/10 h

5 f

FIGURE 1.15 Circuit of Problem 10, Section 1.5.
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11. In a constant electromotive force RL circuit, we find
that the current is given by

i(t)= E

R
(1 − e−Rt/L)+ i(0)e−Rt/L .

Let i(0)= 0.

(a) Show that the current increases with time.

(b) Find a time t0 at which the current is 63 percent
of E/R. This time is called the inductive time
constant of the circuit.

(c) Does the inductive time constant depend on i(0)?
If so, in what way?

12. Recall that the charge q(t) in an RC circuit satisfies
the linear differential equation

q ′ + 1

RC
q = 1

R
E(t).

(a) Solve for the charge in the case that E(t) =
E , which is constant. Evaluate the constant of
integration in this solution process by using the
condition q(0)= 0.

(b) Determine limt→∞ q(t), and show that this limit is
independent of q0.

(c) Determine at what time q(t) is within 1 percent of
its steady-state value (the limiting value requested
in part (b)).

In each of Problems 13 through 17, find the family of
orthogonal trajectories of the given family of curves. If
software is available, graph some curves of both families.

13. 2x2 − 3y = k

14. x + 2y = k

15. y = kx 2 + 1

16. x2 + 2y2 = k

17. y = ekx

18. A man stands at the junction of two perpendicular
roads, and his dog is watching him from one of the
roads at a distance A feet away. At some time, the
man starts to walk with constant speed v along the
other road, and at the same time, the dog begins to
run toward the man with a speed of 2v. Determine the
path the dog will take, assuming that it always moves
so that it is facing the man. Also determine when the
dog will eventually catch the man.

19. A bug is located at each corner of a square table of
side length a. At a given time, the bugs begin moving
at constant speed v with each pursuing the neighbor to
the right.

(a) Determine the curve of pursuit of each bug. Hint:
Use polar coordinates with the origin at the center
of the table and the polar axis containing one of
the corners. When a bug is at ( f (θ), θ), its target
is at ( f (θ, θ +π/2)). Use the chain rule to write

dy

dx
= dy/dθ

dx/dθ

where

y(θ)= f (θ) sin(θ) and x(θ)= f (θ) cos(θ).

(b) Determine the distance traveled by each bug.

(c) Does any bug actually reach its quarry?

20. A bug steps onto the edge of a disk of radius a that
is spinning at a constant angular speed of ω. The
bug moves toward the center of the disk at constant
speed v.

(a) Derive a differential equation for the path of the
bug using polar coordinates.

(b) How many revolutions will the disk make before
the bug reaches the corner? (The solution will be
in terms of the angular speed and radius of the
disk).

(c) Referring to part (b), what is the total distance the
bug will travel, taking into account the motion of
the disk?

21. A 24 foot chain weighing ρ pounds per foot is
stretched out on a very tall, frictionless table with 6
feet hanging off the edge. If the chain is released from
rest, determine the time it takes for the end of the chain
to fall off the table and also the velocity of the chain
at this instant.

22. Suppose the chain in Problem 21 is placed on a table
that is only 4 feet high, so that the chain accumulates
on the floor as it slides off the table. Two feet of chain
are already piled up on the floor at the time that the
rest of the chain is released. Determine the velocity of
the moving end of the chain at the instant it leaves the
table top. Hint: Newton’s law applies to the center of
mass of the moving system.

1.6 Existence and Uniqueness Questions

There are initial value problems having no solution. One example is

y ′ = 2
√

y; y(0)=−1.
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The differential equation has general solution y = (x + c)2, but there is no real number c such
that y(0)=−1.

An initial value problem also may have more than one solution. In particular, the initial value
problem

y ′ = 2
√

y; y(1)= 0

has the zero solution y =ϕ(x)= 0 for all x . But it also has the solution

y =ψ(x)=
{

0 for x ≤ 1

(x − 1)2 for x ≥ 1.

Because existence and/or uniqueness can fail for even apparently simple initial value prob-
lems, we look for conditions that are sufficient to guarantee both existence and uniqueness of a
solution. Here is one such result.

THEOREM 1.2 Existence and Uniqueness

Let f (x, y) and ∂ f/∂y be continuous for all (x, y) in a rectangle R centered at (x0, y0). Then
there is a positive number h such that the initial value problem

y ′ = f (x, y); y(x0)= y0

has a unique solution defined at least for x0 − h< x < x0 + h. �

A proof of Theorem 1.2 is outlined in the remarks preceding Problem 6.
The theorem gives no control over h, hence it may guarantee a unique solution only on a

small interval about x0.

EXAMPLE 1.19

The problem

y ′ = ex2 y − cos(x − y); y(1)= 7

has a unique solution on some interval (1 − h,1 + h), because f (x, y)= ex2 y − cos(x − y) and
∂ f/∂y are continuous for all (x, y), hence, on any rectangle centered at (1,7). Despite this, the
theorem does not give us any control over the size of h. �

EXAMPLE 1.20

The initial value problem

y ′ = y2; y(0)= n

in which n is a positive integer has the solution

y(x)=− 1

x − 1
n

.

This solution is defined only for −1/n< x < 1/n, hence, on smaller intervals about x0 = 0 as n
is chosen larger. �

For this reason, Theorem 1.2 is called a local result, giving a conclusion about a solution
only on a perhaps very small interval about the given point x0.
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SECTION 1.6 PROBLEMS

In each of Problems 1 through 4, use Theorem 1.2 to
show that the initial value problem has a unique solution
in some interval about the value x0 at which the initial con-
dition is specified. Assume routine facts about continuity
of standard functions of two variables.

1. y ′ = sin(xy); y(π/2)= 1

2. y ′ = ln |x − y|; y(3)=π
3. y ′ = x2 − y2 + 8x/y; y(3)=−1

4. y ′ = cos(exy); y(0)=−4

5. Consider the initial value problem

|y ′| = 2y; y(x0)= y0,

in which x0 is any number.

(a) Assuming that y0 > 0, find two solutions.

(b) Explain why the conclusion of part (a) does not
violate Theorem 1.2.

Theorem 1.2 can be proved using Picard iterates. Here is
the idea. Consider the initial value problem

y ′ = f (x, y); y(x0)= y0.

For each positive integer n, define

yn(x)= y0 +
∫ x

x0

f (t, yn−1(t))dt.

This is a recursive definition, giving y1(x) in terms of y0,
then y2(x) in terms of y1(x), and so on. The functions
yn(x) are called Picard iterates for the initial value prob-
lem. Under the assumptions of the theorem, the sequence
of functions yn(x) converges for all x in some interval
about x0, and the limit of this sequence is the solution of
the initial value problem on this interval.

In each of Problems 6 through 9:

(a) Use Theorem 1.2 to show that the problem has a
solution in some interval about x0.

(b) Find this solution.
(c) Compute Picard iterates y1(x) through y6(x), and from

these, guess yn(x) in general.
(d) Find the Taylor series of the solution from part (b)

about x0.

You should find that the iterates computed in part (c)
are exactly the partial sums of the series solution of
part (d). Conclude that in these examples the Picard iter-
ates converge to an infinite series representation of the
solution.

6. y ′ = 2 − y; y(0)= 1

7. y ′ = 4 + y; y(0)= 3

8. y ′ = 2x2; y(1)= 3

9. y ′ = cos(x); y(π)= 1
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CHAPTER 2
Linear
Second-Order
Equations

THE LINEAR SECOND-ORDER EQUATION
THE CONSTANT COEFFICIENT CASE THE
NONHOMOGENEOUS EQUATION SPRING
MOTION EULER’S DIFFERENTIAL EQUATION

A second-order differential equation is one containing a second derivative but no higher deriva-
tive. The theory of second-order differential equations is vast, and we will focus on linear
second-order equations, which have many important uses.

2.1 The Linear Second-Order Equation

This section lays the foundations for writing solutions of the second-order linear differential
equation. Generally, this equation is

P(x)y ′′ + Q(x)y ′(x)+ R(x)y(x)= F(x).

Notice that this equation “loses” its second derivative at any point where P(x) is zero, presenting
technical difficulties in writing solutions. We will therefore begin by restricting the equation to
intervals (perhaps the entire real line) on which P(x) �= 0. On such an interval, we can divide the
differential equation by P(x) and confine our attention to the important case

y ′′ + p(x)y ′ + q(x)y = f (x). (2.1)

We will refer to this as the second-order linear differential equation.
Often, we assume that p and q are continuous (at least on the interval where we seek solu-

tions). The function f is called a forcing function for the differential equation, and in some
applications, it can have finitely many jump discontinuities.

To get some feeling for what we are dealing with, consider a simple example

y ′′ − 12x = 0.

Since y ′′ = 12x , we can integrate once to obtain

y ′(x)=
∫

12x dx = 6x2 + c

43
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and then once again to get

y(x)= 2x3 + cx + k

with c and k as arbitrary constants. It seems natural that the solution of a second-order differ-
ential equation, which involves two integrations, should contain two arbitrary constants. For any
choices of c and k, we can graph the corresponding solution, obtaining integral curves. Figure 2.1
shows integral curves for several choices of c and k.

Unlike the first-order case, there may be many integral curves through a given point in the
plane. In this example, if we specify that y(0)= 3, then we must choose k = 3, leaving c still
arbitrary. These solutions through (0,3) are

y(x)= 2x3 + cx + 3.

Some of these curves are shown in Figure 2.2.

x
1.51–0.5 0.5–1.5 –1

10

0

5

–5

–15

–10

FIGURE 2.1 Graphs of some functions y = 2x3 +
cx + k.

x
1.510–1 0.5–0.5–1.5

15

5

10

–10

–5

FIGURE 2.2 Graphs of some functions y = 2x3 +
cx + 3.
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We single out exactly one of these curves if we specify its slope at (0,3). For example, if we
specify that y ′(0)=−1, then

y ′(0)= c =−1,

so y(x)= 2x3 − x + 3. This is the only solution passing through (0,3) with slope −1.
To sum up, in this example, we obtain a unique solution by specifying a point that the graph

must pass through, together with the slope this solution must have at this point.
This leads us to define the initial value problem for the linear second-order differential

equation as the problem

y ′′ + p(x)y ′ + q(x)y = f (x); y(x0)= A, y ′(x0)= B

in which x0, A, and B are given. We will state, without proof, an existence theorem for this initial
value problem.

THEOREM 2.1 Existence of Solutions

Let p,q , and f be continuous on an open interval I . Then the initial value problem

y ′′ + p(x)y ′ + q(x)y = f (x); y(x0)= A, y ′(x0)= B,

has a unique solution on I . �

We now have an idea of the kind of problem we will be solving and of some conditions
under which we are guaranteed a solution. Now we want to develop a strategy to follow to solve
linear equations and initial value problems. This strategy will be in two steps, beginning with the
case that f (x) is identically zero.

The Structure of Solutions

The second-order linear homogeneous equation has the form

y ′′ + p(x)y ′ + q(x)y = 0. (2.2)

If y1 and y2 are solutions and c1 and c2 are numbers, we call c1 y1 + c2 y2 a linear combination
of y1 and y2. It is an important property of the homogeneous linear equation (2.2) that a linear
combination of solutions is again a solution.

THEOREM 2.2

Every linear combination of solutions of the homogeneous linear equation (2.2) is also a
solution. �
Proof Let y1 and y2 be solutions, and let c1 and c2 be numbers. Substitute c1 y1 + c2 y2 into the
differential equation:

(c1 y1 + c2 y2)
′′ + p(x)(c1 y1 + c2 y2)

′ + q(x)(c1 y1 + c2 y2)

= c1 y ′′
1 + c2 y ′′

2 + c1 p(x)y ′
1 + c2 p(x)y ′

2 + c1q(x)y1 + c2q(x)y2

= c1

[
y ′′

1 + p(x)y ′
1 + q(x)y1

]+ c2

[
y ′′

2 + p(x)y ′
2 + q(x)y2

]

= c1(0)+ c2(0)= 0

because of the assumption that y1 and y2 are both solutions. �
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The point to taking linear combinations c1 y1 + c2 y2 is to generate new solutions from y1 and
y2. However, if y2 is itself a constant multiple of y1, say y2 = ky2, then the linear combination

c1 y1 + c2 y2 = c1 y1 + c2ky1 = (c1 + c2k)y1

is just a constant multiple of y1, so y2 does not contribute any new information. This leads to the
following definition.

Two functions are linearly independent on an open interval I (which can be the entire real
line) if neither function is a constant multiple of the other for all x in the interval. If one
function is a constant multiple of the other on the entire interval, then these functions are
called linearly dependent.

EXAMPLE 2.1

cos(x) and sin(x) are solutions of y ′′ + y =0 over the entire real line. These solutions are linearly
independent, because there is no number k such that cos(x)= k sin(x) or sin(x)= k cos(x) for
all x . Because these solutions are linearly independent, linear combinations c1 cos(x)+ c2 sin(x)
give us new solutions, not just constant multiples of one of the known solutions. �

There is a simple test to determine whether two solutions of equation (2.2) are linearly
independent or dependent on an open interval I . Define the Wronskian W (y1, y2) of two solutions
y1 and y2 to be the 2 × 2 determinant

W (y1, y2)=
∣
∣
∣
∣
y1 y2

y ′
1 y ′

2

∣
∣
∣
∣= y1 y ′

2 − y2 y ′
1.

Often we denote this Wronskian as just W (x).

THEOREM 2.3 Properties of the Wronskian

Suppose y1 and y2 are solutions of equation (2.2) on an open interval I .

1. Either W (x)= 0 for all x in I , or W (x) �= 0 for all x in I .

2. y1 and y2 are linearly independent on I if and only if W (x) �= 0 on I . �

Conclusion (2) is called the Wronskian test for linear independence. Two solutions are lin-
early independent on I exactly when their Wronskian is nonzero on I . In view of conclusion (1),
we need only check the Wronskian at a single point of I , since the Wronskian must be either
identically zero on the entire interval or nonzero on all of I . It cannot vanish for some x and be
nonzero for others in I .

EXAMPLE 2.2

Check by substitution that y1(x)= e2x and y2(x)= xe2x are solutions of y ′′ − 4y ′ + 4y = 0 for all
x . The Wronskian is

W (x)=
∣
∣
∣
∣

e2x xe2x

2e2x e2x + 2xe2x

∣
∣
∣
∣= e4x + 2xe4x − 2xe4x = e4x ,

and this is never zero, so y1 and y2 are linearly independent solutions. �
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In many cases, it is obvious whether two functions are linearly independent or dependent.
However, the Wronskian test is important, as we will see shortly (for example, in Section 2.3.1
and in the proof of Theorem 2.4).

We are now ready to determine what is needed to find all solutions of the homo-
geneous linear equation y ′′ + p(x)y ′ + q(x)y = 0. We claim that, if we can find two
linearly independent solutions, then every solution must be a linear combination of these two
solutions.

THEOREM 2.4

Let y1 and y2 be linearly independent solutions of y ′′ + py ′ + qy = 0 on an open interval I . Then
every solution on I is a linear combination of y1 and y2. �

This provides a strategy for finding all solutions of the homogeneous linear equation on an
open interval.

1. Find two linearly independent solutions y1 and y2.

2. The linear combination

y = c1 y1 + c2 y2

contains all possible solutions.

For this reason, we call two linearly independent solutions y1 and y2 a fundamen-
tal set of solutions on I , and we call c1 y1 + c2 y2 the general solution of the differential
equation on I .

Once we have the general solution c1 y1 + c2 y2 of the differential equation, we can
find the unique solution of an initial value problem by using the initial conditions to
determine c1 and c2.

Proof Let ϕ be any solution of y ′′ + py ′ +qy =0 on I . We want to show that there are numbers
c1 and c2 such that ϕ= c1 y1 + c2 y2.

Choose any x0 in I . Let ϕ(x0)= A and ϕ′(x0)= B. Then ϕ is the unique solution of the initial
value problem

y ′′ + py ′ + qy = 0; y(x0)= A, y ′(x0)= B.

Now consider the two algebraic equations in the two unknowns c1 and c2:

y1(x0)c1 + y2(x0)c2 = A

y ′
1(x0)c1 + y ′(x0)c2 = B.

Because y1 and y2 are linearly independent, their Wronskian W (x) is nonzero. These two
algebraic equations therefore yield

c1 = Ay ′
2(x0)− By2(x0)

W (x0)
and c2 = By1(x0)− Ay ′

1(x0)

W (x0)
.

With these choices of c1 and c2, c1 y1 + c2 y2 is also a solution of the initial value problem.
Since this problem has the unique solution ϕ, then ϕ = c1 y1 + c2 y2, as we wanted to
show. �
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EXAMPLE 2.3

ex and e2x are solutions of y ′′ − 3y ′ + 2y = 0. Therefore, every solution has the form

y(x)= c1e
x + c2e

2x .

This is the general solution of y ′′ − 3y ′ + 2y = 0.
If we want to satisfy the initial conditions y(0)=−2, y ′(0)= 3, choose the constants c1 and

c2 so that

y(0)= c1 + c2 =−2

y ′(0)= c1 + 2c2 = 3.

Then c1 =−7 and c2 = 5, so the unique solution of the initial value problem is

y(x)=−7ex + 5e2x . �

The Nonhomogeneous Case

We now want to know what the general solution of equation (2.1) looks like when f (x) is nonzero
at least for some x . In this case, the differential equation is nonhomogeneous.

The main difference between the homogeneous and nonhomogeneous cases is that, for the
nonhomogeneous equation, sums and constant multiples of solutions need not be solutions.

EXAMPLE 2.4

We can check by substitution that sin(2x) + 2x and cos(2x) + 2x are solutions of the non-
homogeneous equation y ′′ + 4y = 8x . However, if we substitute the sum of these solutions,
sin(2x)+ cos(2x)+ 4x , into the differential equation, we find that this sum is not a solution.
Furthermore, if we multiply one of these solutions by 2, taking, say, 2 sin(2x)+ 4x , we find that
this is not a solution either. �

However, given any two solutions Y1 and Y2 of equation (2.1), we find that their difference
Y1 − Y2 is a solution, not of the nonhomogeneous equation, but of the associated homogeneous
equation (2.2). To see this, substitute Y1 − Y2 into equation (2.2):

(Y1 − Y2)
′′ + p(x)(Y1 − Y2)

′ + q(x)(Y1 − Y2)

=[Y ′′
1 + p(x)Y ′

1 + q(x)Y1]− [Y ′′
2 + p(x)Y ′

2 + q(x)Y2]
= f (x)− f (x)= 0.

But the general solution of the associated homogeneous equation (2.2) has the form c1 y1 +
c2 y2, where y1 and y2 are linearly independent solutions of the homogeneous equation (2.2).
Since Y1 − Y2 is a solution of this homogeneous equation, then for some numbers c1 and c2:

Y1 − Y2 = c1 y1 + c2 y2,

which means that

Y1 = c1 y1 + c2 y2 + Y2.

But Y1 and Y2 are any solutions of equation (2.1). This means that, given any one solution
Y2 of the nonhomogeneous equation, any other solution has the form c1 y1 + c2 y2 + Y2 for some
constants c1 and c2.

We will summarize this discussion as a general conclusion, in which we will use Yp (for
particular solution) instead of Y2 of the discussion.
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THEOREM 2.5

Let Yp be any solution of the homogeneous equation (2.1). Let y1 and y2 be linearly independent
solutions of equation (2.2). Then the expression

c1 y1 + c2 y2 + Yp

contains every solution of equation (2.1). �

For this reason, we call c1 y1 + c2 y2 + Yp the general solution of equation (2.1).
Theorem 2.5 suggests a strategy for finding all solutions of the nonhomogeneous

equation (2.1).

1. Find two linearly independent solutions y1 and y2 of the associated homogeneous
equation y ′′ + p(x)y ′ + q(x)y = 0.

2. Find any particular solution Yp of the nonhomogeneous equation y ′′ + p(x)y ′ + q(x)y =
f (x).

3. The general solution of y ′′ + p(x)y ′ + q(x)y = f (x) is

y(x)= c1 y1(x)+ c2 y2(x)+ Yp(x)

in which c1 and c2 can be any real numbers.

If there are initial conditions, use these to find the constants c1 and c2 to solve the initial
value problem.

EXAMPLE 2.5

We will find the general solution of

y ′′ + 4y = 8x .

It is routine to verify that sin(2x) and cos(2x) are linearly independent solutions of y ′′ + 4y = 0.
Observe also that Yp(x)=2x is a particular solution of the nonhomogeneous equation. Therefore,
the general solution of y ′′ + 4y = 8x is

y = c1 sin(2x)+ c2 cos(2x)+ 2x .

This expression contains every solution of the given nonhomogeneous equation by choosing
different values of the constants c1 and c2.

Suppose we want to solve the initial value problem

y ′′ + 4y = 8x; y(π)= 1, y ′(π)=−6.

First we need

y(π)= c2 cos(2π)+ 2π = c2 + 2π = 1,

so c2 = 1 − 2π . Next, we need

y ′(π)= 2c1 cos(2π)− 2c2 sin(2π)+ 2 = 2c1 + 2 =−6,

so c1 =−4. The unique solution of the initial value problem is

y(x)=−4 sin(2x)+ (1 − 2π) cos(2x)+ 2x . �

We now have strategies for solving equations (2.1) and (2.2) and the initial value problem.
We must be able to find two linearly independent solutions of the homogeneous equation and any
one particular solution of the nonhomogeneous equation. We now will develop important cases
in which we can carry out these steps.
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SECTION 2.1 PROBLEMS

In each of Problems 1 through 5, verify that y1 and y2 are
solutions of the homogeneous differential equation, calcu-
late the Wronskian of these solutions, write the general
solution, and solve the initial value problem.

1. y ′′ + 36y = 0; y(0)=−5, y ′(0)= 2
y1(x)= sin(6x), y2(x)= cos(6x)

2. y ′′ − 16y = 0; y(0)= 12, y ′(0)= 3
y1(x)= e4x , y2(x)= e−4x

3. y ′′ + 3y ′ + 2y = 0; y(0)=−3, y ′(0)=−1
y1(x)= e−2x , y2(x)= e−x

4. y ′′ − 6y ′ + 13y = 0; y(0)=−1, y ′(0)= 1
y1(x)= e3x cos(2x), y2(x)= e3x sin(2x)

5. y ′′ − 2y ′ + 2y = 0; y(0)= 6, y ′(0)= 1
y1(x)= ex cos(x), y2(x)= ex sin(x)

In Problems 6 through 10, use the results of Problems 1
through 5, respectively, and the given particular solution
Yp to write the general solution of the nonhomogeneous
equation.

6. y ′′ + 36y = x − 1,Yp(x)= (x − 1)/36

7. y ′′ − 16y = 4x2;Yp(x)=−x2/4 + 1/2

8. y ′′ + 3y ′ + 2y = 15;Yp(x)= 15/2

9. y ′′ − 6y ′ + 13y =−ex ;Yp(x)=−8ex

10. y ′′ − 2y ′ + 2y =−5x2;Yp(x)=−5x2/2 − 5x − 4

11. Here is a sketch of a proof of Theorem 2.2. Fill in the
details. Denote W (y1, y2)= W for convenience.

For conclusion (1), use the fact that y1 and y2 are
solutions of equation (2.2) to write

y ′′
1 + py ′

1 + qy1 = 0

y ′′
2 + py ′

2 + qy2 = 0.

Multiply the first equation by y2 and the second
by −y1 and add. Use the resulting equation to show
that

W ′ + pW = 0.

Solve this linear equation to verify the conclusion of
part (1).

To prove conclusion (2), show first that, if
y2(x)= ky1(x) for all x in I , then W (x)= 0. A sim-
ilar conclusion holds if y1(x)= ky2(x). Thus, linear
dependence implies vanishing of the Wronskian.

Conversely, suppose W (x) = 0 on I . Suppose
first that y2(x) does not vanish on I . Differentiate
y1/y2 to show that

y2
2

d

dx

(
y1

y2

)

=−W (x)= 0

on I . This means that y1/y2 has a zero derivative on
I , hence y1/y2 = c, so y1 = cy2 and these solutions are
linearly dependent. A technical argument, which we
omit, covers the case that y2(x) can vanish at points
of I .

12. Let y1(x)= x2 and y2(x)= x3. Show that W (x)= x4.
Now W (0)= 0, but W (x) �= 0 if x �= 0. Why does this
not violate Theorem 2.3 conclusion (1)?

13. Show that y1(x)= x and y2(x)= x2 are linearly inde-
pendent solutions of x2 y ′′ − 2xy ′ + 2y = 0 on (−1,1)
but that W (0) = 0. Why does this not contradict
Theorem 2.3 conclusion (1)?

14. Suppose y1 and y2 are solutions of equation (2.2) on
(a,b) and that p and q are continuous. Suppose y1

and y2 both have a relative extremum at some point
between a and b. Show that y1 and y2 are linearly
dependent.

15. Let ϕ be a solution of y ′′ + py ′ + qy = 0 on an open
interval I . Suppose ϕ(x0)=0 for some x0 in this inter-
val. Suppose ϕ(x) is not identically zero. Prove that
ϕ′(x0) �= 0.

16. Let y1 and y2 be distinct solutions of equation (2.2)
on an open interval I . Let x0 be in I , and suppose
y1(x0)= y2(x0)= 0. Prove that y1 and y2 are linearly
dependent on I . Thus, linearly independent solutions
cannot share a common zero.

2.2 The Constant Coefficient Case

We have outlined strategies for solving second-order linear homogeneous and nonhomogeneous
differential equations. In both cases, we must begin with two linearly independent solutions of
a homogeneous equation. This can be a difficult problem. However, when the coefficients are
constants, we can write solutions fairly easily.
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Consider the constant-coefficient linear homogeneous equation

y ′′ + ay ′ + by = 0 (2.3)

in which a and b are constants (numbers). A method suggests itself if we read the differential
equation like a sentence. We want a function y such that the second derivative, plus a constant
multiple of the first derivative, plus a constant multiple of the function itself is equal to zero for
all x . This behavior suggests an exponential function eλx , because derivatives of eλx are constant
multiples of eλx . We therefore try to find λ so that eλx is a solution.

Substitute eλx into equation (2.3) to get

λ2eλx + aλeλx + beλx = 0.

Since eλx is never zero, the exponential factor cancels, and we are left with a quadratic
equation for λ:

λ2 + aλ+ b = 0. (2.4)

The quadratic equation (2.4) is the characteristic equation of the differential equation (2.3).
Notice that the characteristic equation can be read directly from the coefficients of the differential
equation, and we need not substitute eλx each time. The characteristic equation has roots

1

2
(−a ±√

a2 − 4b),

leading to the following three cases.

Case 1: Real, Distinct Roots

This occurs when a2 − 4b> 0. The distinct roots are

λ1 = 1

2
(−a +√

a2 − 4b) and λ2 = 1

2
(−a −√

a2 − 4b).

eλ1x and eλ2x are linearly independent solutions, and in this case, the general solution of
equation (2.3) is

y = c1e
λ1x + c2e

λ2x .

EXAMPLE 2.6

From the differential equation

y ′′ − y ′ − 6y = 0,

we immediately read the characteristic equation

λ2 − λ− 6 = 0

as having real, distinct roots 3 and −2. The general solution is

y = c1e
3x + c2e

−2x . �

Case 2: Repeated Roots

This occurs when a2 − 4b = 0 and the root of the characteristic equation is λ = −a/2. One
solution of the differential equation is e−ax/2.

We need a second, linearly independent solution. We will invoke a method called reduction
of order, which will produce a second solution if we already have one solution. Attempt a second
solution y(x)= u(x)e−ax/2. Compute

y ′ = u ′e−ax/2 − a

2
ue−ax/2
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and

y ′′ = u ′′e−ax/2 − au ′e−ax/2 + a2

4
ue−ax/2.

Substitute these into equation (2.3) to get

u ′′e−ax/2 − au ′e−ax/2 + a2

4
ue−ax/2

+ au ′e−ax/2 − a
a

2
ue−ax/2 + bue−ax/2

= e−ax/2

[

u ′′ −
(

b − a2

4

)]

= 0.

Since b − a2/4 = 0 in this case and e−ax/2 never vanishes, this equation reduces to

u ′′ = 0.

This has solutions u(x)= cx + d with c and d as arbitrary constants. Therefore, any function
y = (cx +d)e−ax/2 is also a solution of equation (2.3) in this case. Since we need only one solution
that is linearly independent from e−ax/2, choose c =1 and d =0 to get the second solution xe−ax/2.
The general solution in this repeated roots case is

y = c1e
−ax/2 + c2xe−ax/2.

This is often written as y = e−ax/2(c1 + c2x).
It is not necessary to repeat this derivation every time we encounter the repeated root case.

Simply write one solution e−ax/2, and a second, linearly independent solution is xe−ax/2.

EXAMPLE 2.7

We will solve y ′′ + 8y ′ + 16y = 0. The characteristic equation is

λ2 + 8λ+ 16 = 0

with repeated root λ=−4. The general solution is

y = c1e
−4x + c2xe−4x . �

Case 3: Complex Roots

The characteristic equation has complex roots when a2 −4b<0. Because the characteristic equa-
tion has real coefficients, the roots appear as complex conjugates α+ iβ and α− iβ in which α
can be zero but β is nonzero. Now the general solution is

y = c1e
(α+iβ)x + c2e

(α−iβ)x

or

y = eαx
(
c1e

iβx + c2e
−iβx

)
. (2.5)

This is correct, but it is sometimes convenient to have a solution that does not involve complex
numbers. We can find such a solution using an observation made by the eighteenth century Swiss
mathematician Leonhard Euler, who showed that, for any real number β,

eiβx = cos(βx)+ i sin(βx).

Problem 24 suggests a derivation of Euler’s formula. By replacing x with −x , we also have

e−iβx = cos(βx)− i sin(βx).
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Then

y(x)= eαx
(
c1e

iβx + c2e
−iβx

)

= c1e
αx(cos(βx)+ i sin(βx))+ c2e

αx(cos(βx)− i sin(βx))

= (c1 + c2)e
αx cos(βx)+ i(c1 − c2)e

αx sin(βx).

Here c1 and c2 are arbitrary real or complex numbers. If we choose c1 = c2 = 1/2, we obtain
the particular solution eαx cos(βx). And if we choose c1 = 1/2i = −c2, we obtain the particular
solution eαx sin(βx). Since these solutions are linearly independent, we can write the general
solution in this complex root case as

y(x)= c1e
αx cos(βx)+ c2e

αx sin(βx) (2.6)

in which c1 and c2 are arbitrary constants. We may also write this general solution as

y(x)= eαx(c1 cos(βx)+ c2 sin(βx)). (2.7)

Either of equations (2.6) or (2.7) is the preferred way of writing the general solution in Case 3,
although equation (2.5) also is correct.

We do not repeat this derivation each time we encounter Case 3. Simply write the general
solution (2.6) or (2.7), with α± iβ the roots of the characteristic equation.

EXAMPLE 2.8

Solve y ′′ + 2y ′ + 3y = 0. The characteristic equation is

λ2 + 2λ+ 3 = 0

with complex conjugate roots −1 ± i
√

2. With α=−1 and β =√
2, the general solution is

y = c1e
−x cos(

√
2x)+ c2e

−x sin(
√

2x). �

EXAMPLE 2.9

Solve y ′′ + 36y = 0. The characteristic equation is

λ2 + 36 = 0

with complex roots λ=±6i . Now α= 0 and β = 6, so the general solution is

y(x)= c1 cos(6x)+ c2 sin(6x). �

We are now able to solve the constant coefficient homogeneous equation

y ′′ + ay ′ + by = 0

in all cases. Here is a summary.
Let λ1 and λ2 be the roots of the characteristic equation

λ2 + aλ+ b = 0.

Then:

1. If λ1 and λ2 are real and distinct,

y(x)= c1e
λ1x + c2e

λ2x .
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2. If λ1 = λ2,

y(x)= c1e
λ1x + c2xeλ1x .

3. If the roots are complex α± iβ,

y(x)= c1e
αx cos(βx)+ c2e

αx sin(βx).

SECTION 2.2 PROBLEMS

In each of Problems 1 through 10, write the general
solution.

1. y ′′ − y ′ − 6y = 0

2. y ′′ − 2y ′ + 10y = 0

3. y ′′ + 6y ′ + 9y = 0

4. y ′′ − 3y ′ = 0

5. y ′′ + 10y ′ + 26y = 0

6. y ′′ + 6y ′ − 40y = 0

7. y ′′ + 3y ′ + 18y = 0

8. y ′′ + 16y ′ + 64y = 0

9. y ′′ − 14y ′ + 49y = 0

10. y ′′ − 6y ′ + 7y = 0

In each of Problems 11 through 20, solve the initial value
problem.

11. y ′′ + 3y ′ = 0; y(0)= 3, y ′(0)= 6

12. y ′′ + 2y ′ − 3y = 0; y(0)= 6, y ′(0)=−2

13. y ′′ − 2y ′ + y = 0; y(1)= y ′(1)= 0

14. y ′′ − 4y ′ + 4y = 0; y(0)= 3, y ′(0)= 5

15. y ′′ + y ′ − 12y = 0; y(2)= 2, y ′(2)=−1

16. y ′′ − 2y ′ − 5y = 0; y(0)= 0, y ′(0)= 3

17. y ′′ − 2y ′ + y = 0; y(1)= 12, y ′(1)=−5

18. y ′′ − 5y ′ + 12y = 0; y(2)= 0, y ′(2)=−4

19. y ′′ − y ′ + 4y = 0; y(−2)= 1, y ′(−2)= 3

20. y ′′ + y ′ − y = 0; y(−4)= 7, y ′(−4)= 1

21. This problem illustrates how small changes in the
coefficients of a differential equation may cause dra-
matic changes in the solution.
(a) Find the general solution ϕ(x) of

y ′′ − 2αy ′ +α2 y = 0

with α �= 0.
(b) Find the general solution ϕε(x) of

y ′′ − 2αy ′ + (α2 − ε2)y = 0

with ε a positive constant.

(c) Show that, as ε→ 0, the solution in part (b) does
not approach the solution in part (a), even though the
differential equation in part (b) would appear to more
closely resemble that of part (a) as ε is chosen smaller.

22. (a) Find the solution ψ of the initial value problem

y ′′ − 2αy ′ +α2 y = 0; y(0)= c, y ′(0)= d

with α �= 0.
(b) Find the solution ψε of

y ′′ − 2αy ′ + (α2 − ε2)y = 0; y(0)= c, y ′(0)= d.

(c) Is it true that ψε(x)→ψ(x) as ε→ 0?

23. Suppose ϕ is a solution of

y ′′ + ay ′ + by = 0; y(x0)= A, y ′(x0)= B

with a,b, A, and B as given numbers and a and b
positive. Show that

lim
x→∞

ϕ(x)= 0.

24. Use power series expansions to derive Euler’s for-
mula. Hint: Write

ex =
∞∑

n=0

1

n! xn,

sin(x)=
∞∑

n=0

(−1)n

(2n + 1)! x2n+1,

and

cos(x)=
∞∑

n=0

(−1)n

(2n)! x2n .

Let x = iβ with β real, and use the fact that

i 2n = (−1)n and i 2n+1 = (−1)ni.

for every positive integer n.
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2.3 The Nonhomogeneous Equation

From Theorem 2.4, the keys to solving the nonhomogeneous linear equation (2.1) are to find two
linearly independent solutions of the associated homogeneous equation and a particular solution
Yp for the nonhomogeneous equation. We can perform the first task at least when the coefficients
are constant. We will now focus on finding Yp, considering two methods for doing this.

2.3.1 Variation of Parameters

Suppose we know two linearly independent solutions y1 and y2 of the associated homogeneous
equation. One strategy for finding Yp is called the method of variation of parameters. Look for
functions u1 and u2 so that

Yp(x)= u1(x)y1(x)+ u2(x)y2(x).

To see how to choose u1 and u2, substitute Yp into the differential equation. We must compute
two derivatives. First,

Y ′
p = u1 y ′

1 + u2 y ′
2 + u ′

1 y1 + u ′
2 y2.

Simplify this derivative by imposing the condition that

u ′
1 y1 + u ′

2 y2 = 0. (2.8)

Now

Y ′
p = u1 y ′

1 + u2 y ′
2,

so

Y ′′
p = u ′

1 y ′
1 + u ′

2 y ′
2 + u1 y ′′

1 + u2 y ′′
2 .

Substitute Yp into the differential equation to get

u ′
1 y ′

1 + u ′
2 y ′

2 + u1 y ′′
1 + u2 y ′′

2

+ p(x)(u1 y ′
1 + u2 y ′

2)+ q(x)(u1 y1 + u2 y2)= f (x).

Rearrange terms to write

u1[y ′′
1 + p(x)y ′

1 + q(x)y1]
+ u2[y ′′

2 + p(x)y ′
2 + q(x)y2]

+ u ′
1 y ′

1 + u ′
2 y ′

2 = f (x).

The two terms in square brackets are zero, because y1 and y2 are solutions of y ′′ + p(x)y ′ +
q(x)y = 0. The last equation therefore reduces to

u ′
1 y ′

1 + u ′
2 y ′

2 = f (x). (2.9)

Equations (2.8) and (2.9) can be solved for u ′
1 and u ′

2 to get

u ′
1(x)=− y2(x) f (x)

W (x)
and u ′

2(x)=
y1(x) f (x)

W (x)
(2.10)

where W (x) is the Wronskian of y1(x) and y2(x).
We know that W (x) �=0, because y1 and y2 are assumed to be linearly independent solutions

of the associated homogeneous equation. Integrate equations (2.10) to obtain

u1(x)=−
∫

y2(x) f (x)

W (x)
dx and u2(x)=

∫
y1(x) f (x)

W (x)
dx . (2.11)
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Once we have u1 and u2, we have a particular solution Yp = u1 y1 + u2 y2, and the general
solution of y ′′ + p(x)y ′ + q(x)y = f (x) is

y = c1 y1 + c2 y2 + Yp.

EXAMPLE 2.10

Find the general solution of

y ′′ + 4y = sec(x)

for −π/4< x <π/4.
The characteristic equation of y ′′ + 4y = 0 is λ2 + 4 = 0 with complex roots λ= ±2i . Two

linearly independent solutions of the associated homogeneous equation y ′′ + 4y = 0 are

y1(x)= cos(2x) and y2(x)= sin(2x).

Now look for a particular solution of the nonhomogeneous equation. First compute the
Wronskian

W (x)=
∣
∣
∣
∣

cos(2x) sin(2x)
−2 sin(2x) 2cos(2x)

∣
∣
∣
∣= 2(cos2(x)+ sin2(x))= 2.

Use equations (2.11) with f (x)= sec(x) to obtain

u1(x)=−
∫

sin(2x) sec(x)

2
dx

=−
∫

2 sin(x) cos(x) sec(x)

2
dx

=−
∫

sin(x) cos(x)

cos(x)
dx

=−
∫

sin(x)dx = cos(x)

and

u2(x)=
∫

cos(2x) sec(x)

2
dx

=
∫
(2cos2(x)− 1)

2cos(x)
dx

=
∫ (

cos(x)− 1

2
sec(x)

)

dx

= sin(x)− 1

2
ln | sec(x)+ tan(x)|.

This gives us the particular solution

Yp(x)= u1(x)y1(x)+ u2(x)y2(x)

= cos(x) cos(2x)+
(

sin(x)− 1

2
ln | sec(x)+ tan(x)|

)

sin(2x).

The general solution of y ′′ + 4y ′ = sec(x) is

y(x)= c1 cos(2x)+ c2 sin(2x)

+ cos(x) cos(2x)+
(

sin(x)− 1

2
ln | sec(x)+ tan(x)|

)

sin(2x). �
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2.3.2 Undetermined Coefficients

We will discuss a second method for finding a particular solution of the nonhomogeneous
equation, which, however, applies only to the constant coefficient case y ′′ + ay ′ + by = f (x).

The idea behind the method of undetermined coefficients is that sometimes we can guess a
general form for Yp(x) from the appearance of f (x).

EXAMPLE 2.11

We will find the general solution of y ′′ − 4y = 8x2 − 2x .
It is routine to find the general solution c1e2x + c2e−2x of the associated homogeneous

equation. We need a particular solution Yp(x) of the nonhomogeneous equation.
Because f (x)= 8x2 − 2x is a polynomial and derivatives of polynomials are polynomials,

it is reasonable to think that there might be a polynomial solution. Furthermore, no such solution
can include a power of x higher than 2. If Yp(x) had an x3 term, this term would be retained by
the −4y term of y ′′ − 4y, and 8x2 − 2x has no such term.

This reasoning suggests that we try a particular solution Yp(x)= Ax2 + Bx + C . Compute
y ′(x)= 2Ax + B and y ′′(x)= 2A. Substitute these into the differential equation to get

2A − 4(Ax2 + Bx + C)= 8x2 − 2x .

Write this as

(−4A − 8)x2 + (−4B + 2)x + (2A − 4C)= 0.

This second-degree polynomial must be zero for all x if Yp is to be a solution. But a second-
degree polynomial has only two roots, unless all of its coefficients are zero. Therefore,

−4A − 8 = 0,

−4B + 2 = 0,

and

2A − 4C = 0.

Solve these to get A =−2, B = 1/2, and C =−1. This gives us the particular solution

Yp(x)=−2x2 + 1

2
x − 1.

The general solution is

y(x)= c1e
2x + c2e

−2x − 2x2 + 1

2
x − 1. �

EXAMPLE 2.12

Find the general solution of y ′′ + 2y ′ − 3y = 4e2x .
The general solution of y ′′ + 2y ′ − 3y = 0 is c1e−3x + c2ex .
Now look for a particular solution. Because derivatives of e2x are constant multiples of e2x ,

we suspect that a constant multiple of e2x might serve. Try Yp(x)= Ae2x . Substitute this into the
differential equation to get

4Ae2x + 4Ae2x − 3Ae2x = 5Ae2x = 4e2x .

This works if 5A = 4, so A = 4/5. A particular solution is Yp(x)= 4e2x/5.
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The general solution is

y(x)= c1e
−3x + c2e

x + 4

5
e2x . �

EXAMPLE 2.13

Find the general solution of y ′′ − 5y ′ + 6y =−3 sin(2x).
The general solution of y ′′ − 5y ′ + 6y = 0 is c1e3x + c2e2x .
We need a particular solution Yp of the nonhomogeneous equation. Derivatives of sin(2x)

are constant multiples of sin(2x) or cos(2x). Derivatives of cos(2x) are also constant multiples of
sin(2x) or cos(2x). This suggests that we try a particular solution Yp(x)= A cos(2x)+ B sin(2x).
Notice that we include both sin(2x) and cos(2x) in this first attempt, even though f (x) just has
a sin(2x) term. Compute

Y ′
p(x)=−2A sin(2x)+ 2B cos(2x) and Y ′′

p (x)=−4A cos(2x)− 4B sin(2x).

Substitute these into the differential equation to get

− 4A cos(2x)− 4B sin(2x)− 5[−2A sin(2x)+ 2B cos(2x)]
+ 6[A cos(2x)+ B sin(2x)]=−3 sin(2x).

Rearrange terms to write

[2B + 10A + 3] sin(2x)=[−2A + 10B] cos(2x).

But sin(2x) and cos(2x) are not constant multiples of each other unless these constants are zero.
Therefore,

2B + 10A + 3 = 0 =−2A + 10B.

Solve these to get A =−15/52 and B =−3/52. A particular solution is

Yp(x)=−15

52
cos(2x)− 3

52
sin(2x).

The general solution is

y(x)= c1e
3x + c2e

2x − 15

52
cos(2x)− 3

52
sin(2x). �

The method of undetermined coefficients has a trap built into it. Consider the
following.

EXAMPLE 2.14

Find a particular solution of y ′′ + 2y ′ − 3y = 8ex .
Reasoning as before, try Yp(x)= Aex . Substitute this into the differential equation to obtain

Aex + 2Aex − 3Aex = 8ex .

But then 8ex = 0, which is a contradiction. �

The problem here is that ex is also a solution of the associated homogeneous equation, so
the left side will vanish when Aex is substituted into y ′′ + 2y ′ − 3y = 8ex .

Whenever a term of a proposed Yp(x) is a solution of the associated homogeneous equa-
tion, multiply this proposed solution by x . If this results in another solution of the associated
homogeneous equation, multiply it by x again.
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EXAMPLE 2.15

Revisit Example 2.14. Since f (x)= 8ex , our first impulse was to try Yp(x)= Aex . But this is a
solution of the associated homogeneous equation, so multiply by x and try Yp(x)= Axex . Now

Y ′
p = Aex + Axex and Y ′′

p = 2Aex + Axex .

Substitute these into the differential equation to get

2Aex + Axex + 2(Aex + Axex)− 3Axex = 8ex .

This reduces to 4Aex = 8ex , so A = 2, yielding the particular solution Yp(x)= 2xex . The general
solution is

y(x)= c1e
−3x + c2e

x + 2xex . �

EXAMPLE 2.16

Solve y ′′ − 6y ′ + 9y = 5e3x .

The associated homogeneous equation has the characteristic equation (λ − 3)2 = 0 with
repeated roots λ = 3. The general solution of this associated homogeneous equation is
c1e3x + c2xe3x .

For a particular solution, we might first try Yp(x)= Ae3x , but this is a solution of the homoge-
neous equation. Multiply by x and try Yp(x)= Axe3x . This is also a solution of the homogeneous
equation, so multiply by x again and try Yp(x)= Ax2e3x . If this is substituted into the differential
equation, we obtain A =5/2, so a particular solution is Yp(x)=5x2e3x/2. The general solution is

y = c1e
3x + c2xe3x + 5

2
x2e3x . �

The method of undetermined coefficients is limited by our ability to “guess” a particular
solution from the form of f (x), and unlike variation of parameters, requires that the coefficients
of y ′ and y be constant.

Here is a summary of the method. Suppose we want to find the general solution of

y ′′ + ay ′ + by = f (x).

Step 1. Write the general solution

yh(x)= c1 y1(x)+ c2 y2(x)

of the associated homogeneous equation

y ′′ + ay ′ + by = 0

with y1 and y2 linearly independent. We can always do this in the constant coefficient
case.

Step 2. We need a particular solution Yp of the nonhomogeneous equation. This may require
several steps. Make an initial attempt of a general form of a particular solution using
f (x) and perhaps Table 2.1 as a guide. If this is not possible, this method cannot be
used. If we can solve for the constants so that this first guess works, then we have Yp.

Step 3. If any term of the first attempt is a solution of the associated homogeneous equation,
multiply by x . If any term of this revised attempt is a solution of the homogeneous
equation, multiply by x again. Substitute this final general form of a particular solution
into the differential equation and solve for the constants to obtain Yp.

Step 4. The general solution is

y = y1 + y2 + Yp.
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TA B L E 2.1 Functions to Try for Yp(x) in the Method of Undetermined
Coefficients

f (x) Yp(x)
P(x) Q(x)
Aecx Recx

A cos(βx) C cos(βx)+ D sin(βx)
A sin(βx) C cos(βx)+ D sin(βx)
P(x)ecx Q(x)ecx

P(x) cos(βx) Q(x) cos(βx)+ R(x) sin(βx)
P(x) sin(βx) Q(x) cos(βx)+ R(x) sin(βx)
P(x)ecx cos(βx) Q(x)ecx cos(βx)+ R(x)ecx sin(βx)
P(x)ecx sin(βx) Q(x)ecx cos(βx)+ R(x)ecx sin(βx)

Table 2.1 provides a list of functions for a first try at Yp(x) for various functions f (x) that
might appear in the differential equation. In this list, P(x) is a given polynomial of degree n,
Q(x) and R(x) are polynomials of degree n with undetermined coefficients for which we must
solve, and c and β are constants.

2.3.3 The Principle of Superposition

Suppose we want to find a particular solution of

y ′′ + p(x)y ′ + q(x)y = f1(x)+ f2(x)+ · · · + fN (x).

It is routine to check that, if Yj is a solution of

y ′′ + p(x)y ′ + q(x)y = f j(x),

then Y1 + Y2 + · · ·+ YN is a particular solution of the original differential equation.

EXAMPLE 2.17

Find a particular solution of

y ′′ + 4y = x + 2e−2x .

To find a particular solution, consider two problems:
Problem 1: y ′′ + 4y = x
Problem 2: y ′′ + 4y = 2e−2x

Using undetermined coefficients, we find a particular solution Yp1(x)= x/4 of Problem 1 and
a particular solution Yp2(x)= e−2x/4 of Problem 2. A particular solution of the given differential
equation is

Yp(x)= 1

4
x + 1

4
e−2x .

Using this, the general solution is

y(x)= c1 cos(2x)+ c2 sin(2x)+ 1

4

(
x + e−2x

)
. �
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SECTION 2.3 PROBLEMS

In each of Problems 1 through 6, find the general solution,
using the method of variation of parameters for a particular
solution.

1. y ′′ + y = tan(x)

2. y ′′ − 4y ′ + 3y = 2cos(x + 3)

3. y ′′ + 9y = 12 sec(3x)

4. y ′′ − 2y ′ − 3y = 2 sin2(x)

5. y ′′ − 3y ′ + 2y = cos(e−x)

6. y ′′ − 5y ′ + 6y = 8 sin2(4x)

In each of Problems 7 through 16, find the general solu-
tion, using the method of undetermined coefficients for a
particular solution.

7. y ′′ − y ′ − 2y = 2x2 + 5

8. y ′′ − y ′ − 6y = 8e2x

9. y ′′ − 2y ′ + 10y = 20x2 + 2x − 8

10. y ′′ − 4y ′ + 5y = 21e2x

11. y ′′ − 6y ′ + 8y = 3ex

12. y ′′ + 6y ′ + 9y = 9cos(3x)

13. y ′′ − 3y ′ + 2y = 10 sin(x)

14. y ′′ − 4y ′ = 8x2 + 2e3x

15. y ′′ − 4y ′ + 13y = 3e2x − 5e3x

16. y ′′ − 2y ′ + y = 3x + 25 sin(3x)

In each of Problems 17 through 24, solve the initial value
problem.

17. y ′′ − 4y =−7e2x + x; y(0)= 1, y ′(0)= 3

18. y ′′ + 4y ′ = 8 + 34cos(x); y(0)= 3, y ′(0)= 2

19. y ′′ + 8y ′ + 12y = e−x + 7; y(0)= 1, y ′(0)= 0

20. y ′′ − 3y ′ = 2e2x sin(x); y(0)= 1, y ′(0)= 2

21. y ′′ − 2y ′ − 8y = 10e−x + 8e2x ; y(0)= 1, y ′(0)= 4

22. y ′′ − y ′ + y = 1; y(1)= 4, y ′(1)=−2

23. y ′′ − y = 5 sin2(x); y(0)= 2, y ′(0)=−4

24. y ′′ + y = tan(x); y(0)= 4, y ′(0)= 3

2.4 Spring Motion

A spring suspended vertically and allowed to come to rest has a natural length L . An object
(bob) of mass m is attached at the lower end, pulling the spring d units past its natural length.
The bob comes to rest in its equilibrium position and is then displaced vertically a distance y0

units (Figure 2.3) and released from rest or with some initial velocity. We want to construct a
model allowing us to analyze the motion of the bob.

Let y(t) be the displacement of the bob from the equilibrium position at time t , and take
this equilibrium position to be y = 0. Down is chosen as the positive direction. Now consider the
forces acting on the bob. Gravity pulls it downward with a force of magnitude mg. By Hooke’s
law, the spring exerts a force ky on the object. k is the spring constant, which is a number
quantifying the “stiffness" of the spring. At the equilibrium position, the force of the spring is
−kd, which is negative because it acts upward. If the object is pulled downward a distance y
from this position, an additional force −ky is exerted on it. The total force due to the spring
is therefore −kd − ky. The total force due to gravity and the spring is mg − kd − ky. Since at
the equilibrium point this force is zero, then mg = kd. The net force acting on the object due to
gravity and the spring is therefore just −ky.

There are forces tending to retard or damp out the motion. These include air resistance or
perhaps viscosity of a medium in which the object is suspended. A standard assumption (verified
by observation) is that the retarding forces have magnitude proportional to the velocity y′. Then
for some constant c called the damping constant, the retarding forces equal cy ′. The total force
acting on the bob due to gravity, damping, and the spring itself is −ky − cy ′.

Finally, there may be a driving force f (t) acting on the bob. In this case, the total external
force is

F =−ky − cy ′ + f (t).
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(a) Unstretched (b) Static
equilibrium

(c) System in
motion

m

m

d

y (t)

y  0

FIGURE 2.3 Spring at natural and
equilibrium lengths and in motion.

Assuming that the mass is constant, Newton’s second law of motion gives us

my ′′ =−ky − cy ′ + f (t)

or

y ′′ + c

m
y ′ + k

m
y = 1

m
f (t). (2.12)

This is the spring equation. Solutions give the displacement of the bob as a function of time and
enable us to analyze the motion under various conditions.

2.4.1 Unforced Motion

The motion is unforced if f (t) = 0. Now the spring equation is homogeneous, and the
characteristic equation has roots

λ=− c

2m
± 1

2m

√
c2 − 4km.

As we might expect, the solution for the displacement, and hence the motion of the bob, depends
on the mass, the amount of damping, and the stiffness of the spring.

Case 1: c2 − 4km > 0

Now the roots of the characteristic equation are real and distinct:

λ1 =− c

2m
+ 1

2m

√
c2 − 4km and λ2 =− c

2m
− 1

2m

√
c2 − 4km.

The general solution of the spring equation in this case is

y(t)= c1e
λ1 t + c2e

λ2 t .
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Clearly, λ2 < 0. Since m and k are positive, c2 − 4km < c2, so
√

c2 − 4km < c and λ1 < 0.
Therefore,

lim
t→∞

y(t)= 0

regardless of initial conditions. In the case that that c2 − 4km > 0, the motion simply decays to
zero as time increases. This case is called overdamping.

EXAMPLE 2.18 Overdamping

Let c = 6, k = 5, and m = 1. Now the general solution is y(t)= c1e−t + c2e−5t . Suppose the bob
was initially drawn upward 4 feet from equilibrium and released downward with a speed of 2
feet per second. Then y(0)=−4 and y ′(0)= 2, and we obtain

y(t)= 1

2
e−t
(−9 + e−4t

)
.

Figure 2.4 is a graph of this solution. Keep in mind here that down is the positive direction. Since
−9 + e−4t < 0 for t > 0, then y(t) < 0, and the bob always remains above the equilibrium point.
Its velocity y ′(t)= e−t(9−5e−4t)/2 decreases to zero as t increases, so the bob moves downward
toward equilibrium with decreasing velocity, approaching arbitrarily close to but never reaching
this position and never coming completely to rest. �

Case 2: c2 − 4km = 0

In this case, the general solution of the spring equation is

y(t)= (c1 + c2t)e
−ct/2m .

This case is called critical damping. While y(t)→ 0 as t → ∞, as with overdamping, now the
bob can pass through the critical point, as the following example shows.

–2

–4

0

–1

–3

t

431 20

FIGURE 2.4 Overdamped, unforced motion in
Example 2.18.
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EXAMPLE 2.19 Critical Damping

Let c = 2 and k = m = 1. Then y(t)= (c1 + c2t)e−t . Suppose the bob is initially pulled up four
feet above the equilibrium position and then pushed downward with a speed of 5 feet per second.
Then y(0)=−4, and y ′(0)= 5. So

y(t)= (−4 + t)e−t .

Since y(4)=0, the bob reaches the equilibrium four seconds after it was released and then passes
through it. In fact, y(t) reaches its maximum when t = 5 seconds, and this maximum value is
y(5)=e−5, which is about 0.007 units below the equilibrium point. The velocity y ′(t)= (5− t)e−t

is negative for t > 5, so the bob’s velocity decreases after the five second point. Since y(t)→ 0
as t → ∞, the bob moves with decreasing velocity back toward the equilibrium point as time
increases. Figure 2.5 is a graph of this displacement function for 2 ≤ t ≤ 8. �

In general, when critical damping occurs, the bob either passes through the equilibrium point
exactly once, as in Example 2.19, or never reaches it at all, depending on the initial conditions.

Case 3: c2 − 4km < 0

Here the spring constant and mass of the bob are sufficiently large that c2<4km and the damping
is less dominant. This is called underdamping. The general underdamped solution has the form

y(t)= e−ct/2m[c1 cos(βt)+ c2 sin(βt)]
in which

β = 1

2m

√
4km − c2.

Since c and m are positive, y(t)→0 as t →∞, as in the other two cases. This is not surprising in
the absence of an external driving force. However, with underdamping, the motion is oscillatory
because of the sine and cosine terms in the displacement function. The motion is not periodic
however because of the exponential factor e−ct/2m , which causes the amplitudes of the oscillations
to decay as time increases.

t
876532 4

–0.2

–0.25

–0.05

–0.15

0

–0.1

FIGURE 2.5 Critically damped, unforced motion in
Example 2.19.
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EXAMPLE 2.20 Underdamping

Let c = k = 2 and m = 1. The general solution is

y(t)= e−t [c1 cos(t)+ c2 sin(t)].
Suppose the bob is driven downward from a point three feet above equilibrium with an initial
speed of two feet per second. Then y(0)=−3, and y ′(0)= 2. The solution is

y(t)=−e−t(3cos(t)+ sin(t)).

The behavior of this solution is visualized more easily if we write it in phase angle form. Choose
C and δ so that

3 cos(t)+ sin(t)= C cos(t + δ).
For this, we need

3cos(t)+ sin(t)= C cos(t) cos(δ)− C sin(t) sin(δ).

Then

C cos(δ)= 3 and C sin(δ)=−1,

so
C sin(δ)

C cos(δ)
= tan(δ)=−1

3
.

Now

δ= arctan

(

−1

3

)

=− arctan

(
1

3

)

.

To solve for C , write

C2 cos2(δ)+ C2 sin2(δ)= C2 = 32 + 1 = 10.

Then C =√
10, and the solution can be written in phase angle form as

y(t)=√
10e−t cos(t − arctan(1/3)).

The graph is a cosine curve with decaying amplitude squeezed between graphs of y =√
10e−t and

y = −√
10e−t . Figure 2.6 shows y(t) and these two exponential functions as reference curves.

0.4

0

0.2

–0.2

t
5 642 3

–0.4

FIGURE 2.6 Underdamped, unforced motion in
Example 2.20.
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The bob passes back and forth through the equilibrium point as t increases. Specifically, it passes
through the equilibrium point exactly when y(t)= 0, which occurs at times

t = arctan

(
1

3

)

+ 2n + 1

2
π

for n = 0,1,2, · · · . �

Next we will pursue the effect of a driving force on the motion of the bob.

2.4.2 Forced Motion

Different driving forces will result in different motion. We will analyze the case of a periodic
driving force f (t)= A cos(ωt). Now the spring equation (2.12) is

y ′′ + c

m
y ′ + k

m
y = A

m
cos(ωt). (2.13)

We have solved the associated homogeneous equation in all cases on c, k, and m. For the general
solution of equation (2.13), we need only a particular solution. Application of the method of
undetermined coefficients yields the particular solution

Yp(t)= m A(k − mω2)

(k − mω2)2 +ω2c2
cos(ωt)

+ Aωc

(k − mω2)2 +ω2c2
sin(ωt).

It is customary to denote ω0 =√
k/m to write

Yp(t)= m A(ω2
0 −ω2)

m2(ω2
0 −ω2)2 +ω2c2

cos(ωt)

+ Aωc

m2(ω2
0 −ω2)2 +ω2c2

sin(ωt).

We will analyze some specific cases to get some insight into the motion with this forcing function.

Case 1: Overdamped Forced Motion

Overdamping occurs when c2 − 4km > 0. Suppose c = 6, k = 5, m = 1 A = 6
√

5 and ω= √
5.

If the bob is released from rest from the equilibrium position, then y(t) satisfies the initial value
problem

y ′′ + 6y ′ + 5y = 6
√

5cos(
√

5t); y(0)= y ′(0)= 0

The solution is

y(t)=
√

5

4
(−e−t + e−5t)+ sin(

√
5t).

A graph of this solution is shown in Figure 2.7. As time increases, the exponential terms decay to
zero, and the displacement behaves increasingly like sin(

√
5t), oscillating up and down through

the equilibrium point with approximate period 2π/
√

5. Contrast this with the overdamped motion
without the forcing function in which the bob began above the equilibrium point and moved with
decreasing speed down toward it but never reached it.
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FIGURE 2.7 Overdamped, forced motion.
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FIGURE 2.8 Critically damped, forced motion

Case 2: Critically Damped Forced Motion

Let c = 2, m = k = 1, ω = 1, and A = 2. Assume that the bob is released from rest from the
equilibrium point. Now the initial value problem is

y ′′ + 2y ′ + y = 2cos(t); y(0)= y ′(0)= 0

with the solution

y(t)=−te−t + sin(t).

Figure 2.8 is a graph of this solution, which is a case of critically damped forced motion. As t
increases, the term with the exponential factor decays (although not as fast as in the overdamping
case where there is no factor of t). Nevertheless, after sufficient time, the motion settles into
nearly (but not exactly because −te−t is never zero for t > 0) a sinusoidal motion back and forth
through the equilibrium point.

Case 3: Underdamped Forced Motion

Let c = k = 2, m = 1, ω=√
2, and A = 2

√
2, so c2 − 4km< 0. Suppose the bob is released from

rest at the equilibrium position. The initial value problem is

y ′′ + 2y ′ + 2y = 2
√

2cos(
√

2t); y(0)= y ′(0)= 0

with the solution

y(t)=−√
2e−t sin(t)+ sin(

√
2t).

This is underdamped forced motion. Unlike overdamping and critical damping, the expo-
nential term e−t has a trigonometric factor sin(t). Figure 2.9 is a graph of this solution. As time
increases, the term −√

2e−t sin(t) becomes less influential and the motion settles nearly into an
oscillation back and forth through the equilibrium point with a period of nearly 2π/

√
2.

2.4.3 Resonance

In the absence of damping, an important phenomenon called resonance can occur. Suppose c=0,
but there is still a driving force A cos(ωt). Now the spring equation (2.12) is

y ′′ + k

m
y = A

m
cos(ωt).
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FIGURE 2.9 Underdamped, forced motion.

From the particular solution Yp found in Section 2.4.2, with c = 0, we find that this spring
equation has general solution

y(t)= c1 cos(ωt)+ c2 sin(ωt)+ A

m(ω2
0 −ω2)

cos(ωt)

in which ω0 = √
k/m. This number is called the natural frequency of the spring system, and

it is a function of the stiffness of the spring and the mass of the bob. ω is the input frequency
and is contained in the driving force. This general solution assumes that the natural and input
frequencies are different. Of course, the closer we choose the natural and input frequencies, the
larger the amplitude of the cos(ωt) term in the solution.

Resonance occurs when the natural and input frequencies are the same. Now the differential
equation is

y ′′ + k

m
y = A

m
cos(ω0t). (2.14)

The solution derived for the case when ω �= ω0 does not apply to equation (2.14). To find the
general solution in the present case, first find the general solution of the associated homogeneous
equation

y ′′ + k

m
y = 0.

This has the general solution

yh(t)= c1 cos(ω0t)+ c2 sin(ω0t).

Now we need a particular solution of equation (2.14). To use the method of undetermined coeffi-
cients, we might try a function of the form a cos(ω0t)+ b sin(ω0t). However, these are solutions
of the associated homogeneous equation, so instead we try

Yp(t)= at cos(ω0t)+ bt sin(ω0t).

Substitute Yp(t) into equation (2.14) to get

−2aω0 sin(ω0t)+ 2b cos(ω0t)= A

m
cos(ω0t).

Thus, choose

a = 0 and 2bω0 = A

m
.
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FIGURE 2.10 Resonance.

This gives us the particular solution

Yp(t)= A

2mω0

t sin(ω0t).

The general solution is

y(t)= c1 cos(ω0t)+ c2 sin(ω0t)+ A

2mω0

t sin(ω0t).

This solution differs from the case ω �=ω0 in the factor of t in the particular solution. Because of
this, solutions increase in amplitude as t increases. This phenomenon is called resonance.

As an example, suppose c1 = c2 =ω0 = 1 and A/2m = 1. Now the solution is

y(t)= cos(t)+ sin(t)+ t sin(t).

Figure 2.10 displays the increasing amplitude of the oscillations with time.
While there is always some damping in the real world, if the damping constant is close to

zero when compared to other factors and if the natural and input frequencies are (nearly) equal,
then oscillations can build up to a sufficiently large amplitude to cause resonance-like behavior.
This caused the collapse of the Broughton Bridge near Manchester, England, in 1831 when a
column of soldiers marching across maintained a cadence (input frequency) that happened to
closely match the natural frequency of the material of the bridge. More recently the Tacoma
Narrows Bridge in the state of Washington experienced increasing oscillations driven by high
winds, causing the concrete roadbed to oscillate in sensational fashion until it collapsed into
Puget Sound. This occurred on November 7, 1940. At one point, one side of the roadbed was
about twenty-eight feet above the other as it thrashed about. Unlike the Broughton Bridge, local
news crews were on hand to film this, and motion pictures of the collapse are available in many
engineering and science schools.

2.4.4 Beats

In the absence of damping, an oscillatory driving force can also cause a phenomenon called
beats. Suppose ω �=ω0, and consider

y ′′ +ω2
0 y = A

m
cos(ωt).

Assume that the object is released from rest from the equilibrium position, so y(0)= y ′(0)= 0.
The solution is
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FIGURE 2.11 Beats.

y(t)= A

m(ω2
0 −ω2)

[cos(ωt)− cos(ω0t)].

The behavior of this solution reveals itself more clearly if we write it as

y(t)= 2A

m(ω2
0 −ω2)

sin

(
1

2
(ω0 +ω)t

)

sin

(
1

2
(ω0 −ω)t

)

.

This formulation exhibits a periodic variation of amplitude in the solution, depending on the
relative sizes of ω0 + ω and ω0 − ω. This periodic variation is called a beat. As an example,
suppose ω0 +ω= 5 and ω0 −ω= 1, and the constants are chosen so that 2A/m(ω2

0 −ω2)= 1.
Now the displacement function is

y(t)= sin

(
5t

2

)

sin

(
t

2

)

.

Figure 2.11 is a graph of this solution.

2.4.5 Analogy with an Electrical Circuit

In an RLC circuit with electromotive force E(t), the differential equation for the current is

Li ′(t)+ Ri(t)+ 1

C
q(t)= E(t).

Since i = q ′, this is a second-order differential equation for the charge:

q ′′ + R

L
q ′ + 1

LC
q = 1

L
E(t).

Assuming that the resistance, inductance, and capacitance are constant, this equation is exactly
analogous to the spring equation with a driving force, which has the form

y ′′ + c

m
y ′ + k

m
y = 1

m
f (t).
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This means that solutions of the spring equation immediately translate into solutions of the circuit
equation with the following identifications:

Displacement function y(t) ⇐⇒ charge q(t)

Velocity y ′(t) ⇐⇒ current i(t)

Driving force f (t) ⇐⇒ electromotive force E(t)

Mass m ⇐⇒ inductance L

Damping constant c ⇐⇒ resistance R

Spring modulus k ⇐⇒ reciprocal 1/C of the capacitance.

SECTION 2.4 PROBLEMS

1. This problem gauges the relative effects of initial
position and velocity on the motion in the unforced,
overdamped case. Solve the initial value problems

y ′′ + 4y ′ + 2y = 0; y(0)= 5, y ′(0)= 0

and

y ′′ + 4y ′ + 2y = 0; y(0)= 0, y ′(0)= 5.

Graph the solutions on the same set of axes.

2. Repeat the experiment of Problem 1, except now use
the critically damped, unforced equation

y ′′ + 4y ′ + 4y = 0.

3. Repeat the experiment of Problem 1 for the under-
damped, unforced equation

y ′′ + 2y ′ + 5y = 0.

Problems 4 through 9 explore the effects of changing the
initial position or initial velocity on the motion of the
object. In each, use the same set of axes to graph the solu-
tion of the initial value problem for the given values of
A and observe the effect that these changes cause in the
solution.

4. y ′′ + 4y ′ + 2y = 0; y(0)= A, y ′(0)= 0; A has values
1,3,6,10,−4 and −7.

5. y ′′ + 4y ′ + 2y = 0; y(0)= 0, y ′(0)= A; A has values
1,3,6,10,−4 and −7.

6. y ′′ + 4y ′ + 4y = 0; y(0)= A, y ′(0)= 0; A has values
1,3,6,10,−4 and −7.

7. y ′′ + 4y ′ + 4y = 0; y(0)= 0, y ′(0)= A; A has values
1,3,6,10,−4 and −7.

8. y ′′ + 2y ′ + 5y = 0; y(0)= A, y ′(0)= 0; A has values
1,3,6,10,−4 and −7.

9. y ′′ + 2y ′ + 5y = 0; y(0)= 0, y ′(0)= A; A has values
1,3,6,10,−4 and −7.

10. An object having a mass of 1 gram is attached to the
lower end of a spring having a modulus of 29 dynes

per centimeter. The mass in turn is adhered to a dash-
pot that imposes a damping force of 10v dynes, where
v(t) is the velocity of the mass at time t in centimeters
per second. Determine the motion of the mass if it is
pulled down 3 centimeters from equilibrium and then
struck upward with a blow sufficient to impart a veloc-
ity of 1 centimeter per second. Graph the solution.
Solve the problem when the initial velocity is (in turn)
2,4,7, and 12 centimeters per second. Graph these
solutions on the same axes to visualize the influence
of the initial velocity on the motion.

11. How many times can the mass pass through the equi-
librium point in overdamped motion? What condition
can be placed on the initial displacement to ensure that
it never passes through equilibrium?

12. How many times can the mass pass through equi-
librium in critical damping? What condition can be
placed on y(0) to ensure that the mass never passes
through the equilibrium point? How does the initial
velocity influence whether the mass passes through
the equilibrium point?

13. In underdamped, unforced motion, what effect does
the damping constant have on the frequency of the
oscillations?

14. Suppose y(0) = y ′(0) �= 0. Determine the maxi-
mum displacement of the mass in critically damped,
unforced motion. Show that the time at which this
maximum occurs is independent of the initial dis-
placement.

15. Consider overdamped forced motion governed by

y ′′ + 6y ′ + 2y = 4cos(3t).

(a) Find the solution satisfying y(0)= 6, y ′ = 0.
(b) Find the solution satisfying y(0)= 0, y ′(0)= 6.

Graph these solutions on the same set of axes to com-
pare the effects of initial displacement and velocity on
the motion.
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16. Carry out the program of Problem 15 for the critically
damped, forced system governed by

y ′′ + 4y ′ + 4y = 4cos(3t).

17. Carry out the program of Problem 15 for the under-
damped, forced system governed by

y ′′ + y ′ + 3y = 4cos(3t).

2.5 Euler’s Differential Equation

If A and B are constants, the second-order differential equation

x2 y ′′ + Axy ′ + By = 0 (2.15)

is called Euler’s equation. Euler’s equation is defined on the half-lines x>0 and x<0. We
will find solutions on x > 0, and a simple adjustment will yield solutions on x < 0.

A change of variables will convert Euler’s equation to a constant coefficient linear second-
order homogeneous equation, which we can always solve. Let

x = et

or, equivalently, t = ln(x). If we substitute x = et into y(x), we obtain a function of t as

Y (t)= y(et).

To convert Euler’s equation to an equation in t , we need to convert derivatives of y(x) to
derivatives of Y (t). First, by the chain rule, we have

y ′(x)= d

dx
(y(x))= d

dx
(Y (t))

= dY

dt

dt

dx
= 1

x
Y ′(t).

Next,

y ′′(x)= d

dx
(y ′(x))

= d

dx

(
1

x
Y ′(t)

)

=− 1

x2
Y ′(t)+ 1

x

d

dx
(Y ′(t))

=− 1

x2
Y ′(t)+ 1

x

dY ′(t)

dt

dt

dx

=− 1

x2
Y ′(t)+ 1

x

1

x
Y ′′(t)

= 1

x2
(Y ′′(t)− Y ′(t)).

Therefore,

x2 y ′′(x)= Y ′′(t)− Y ′(t).
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Substitute these into Euler’s equation to obtain the transformed differential equation

Y ′′(t)− Y ′(t)+ AY ′(t)+ BY (t)= 0

or

Y ′′(t)+ (A − 1)Y ′(t)+ BY (t)= 0. (2.16)

This is a constant coefficient equation which we know how to solve.
We need not go through this derivation whenever we encounter an Euler equation. The coef-

ficients of equation (2.16) can be read directly from those of the Euler equation. Solve this
transformed equation for Y (t), then replace t = ln(x) to obtain the solution y(x) of the Euler
equation. In doing this, it is useful to recall that, for any number r and for x > 0,

xr = er ln(x).

Furthermore,

eln(k) = k

for any positive quantity k. Thus, for example,

e3 ln(x) = eln(x3) = x3.

EXAMPLE 2.21

We will find the general solution of

x2 y ′′ + 2xy ′ − 6y = 0.

With A = 2 and B =−6, this Euler equation transforms to

Y ′′(t)+ Y ′(t)− 6Y (t)= 0.

This constant coefficient linear homogeneous equation has general solution

Y (t)= c1e
−3t + c2e

2t .

Replace t = ln(x) to obtain the general solution of the Euler equation:

y(x)= c1e
−3 ln(x) + c2e

2 ln(x) = c1x
−3 + c2x

2

for x > 0. �

EXAMPLE 2.22

Consider the Euler equation x2 y ′′ − 5xy ′ + 9y = 0. The transformed equation is

y ′′ − 6y ′ + 9y = 0,

with the general solution Y (t)= c1e3t + c2te3t . The Euler equation has the general solution

y(x)= c1e
3 ln(x) + c2 ln(x)e3 ln(x) = c1x

3 + c2x
3 ln(x)

for x > 0. �

EXAMPLE 2.23

Solve x2 y ′′ + 3xy ′ + 10y = 0.
The transformed equation is Y ′′ + 2Y ′ + 10Y = 0 with the general solution

Y (t)= c1e
−t cos(3t)+ c2e

−t sin(3t).
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Then

y(x)= c1e
− ln(x) cos(3 ln(x))+ c2e

− ln(x) sin(3 ln(x))

= 1

x
(c1 cos(3 ln(x))+ c2 sin(3 ln(x))) . �

As usual, we solve an initial value problem by finding the general solution of the differential
equation and then using the initial conditions to determine the constants.

EXAMPLE 2.24

Solve

x2 y ′′ − 5xy ′ + 10y = 0; y(1)= 4, y ′(1)=−6.

The Euler equation transforms to Y ′′ − 6y ′ + 10Y = 0 with the general solution

Y (t)= c1e
3t cos(t)+ c2e

3t sin(t)

for x > 0. Then

y(x)= x3 (c1 cos(ln(x))+ c2 sin(ln(x))) .

Then

y(1)= 4 = c1.

Thus far,

y(x)= 4x3 cos(ln(x))+ c2x
3 sin(ln(x)).

Compute

y ′(x)=12x2 cos(ln(x))− 4x2 sin(ln(x))

+ 3c2x
2 sin(ln(x))+ c2x

2 cos(ln(x)).

Then

y ′(1)= 12 + c2 =−6,

so c2 =−18. The solution of the initial value problem is

y(x)= 4x3 cos(ln(x))− 18x3 sin(ln(x)). �

SECTION 2.5 PROBLEMS

In each of Problems 1 through 10, find the general solution.

1. x2 y ′′ + 2xy ′ − 6y = 0

2. x2 y ′′ + 3xy ′ + y = 0

3. x2 y ′′ + xy ′ + 4y = 0

4. x2 y ′′ + xy ′ − 4y = 0

5. x2 y ′′ + xy ′ − 16y = 0

6. x2 y ′′ + 3xy ′ + 10y = 0

7. x2 y ′′ + 6xy ′ + 6y = 0

8. x2 y ′′ − 5xy ′ + 58y = 0

9. x2 y ′′ + 25xy ′ + 144y = 0

10. x2 y ′′ − 11xy ′ + 35y = 0

In each of Problems 11 through 16, solve the initial value
problem.

11. x2 y ′′ + 5xy ′ − 21y = 0; y(2)= 1, y ′(2)= 0

12. x2 y ′′ − xy ′ = 0; y(2)= 5, y ′(2)= 8

13. x2 y ′′ − 3xy ′ + 4y = 0; y(1)= 4, y ′(1)= 5
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14. x2 y ′′ + 25xy ′ + 144y = 0; y(1)=−4, y ′(1)= 0

15. x2 y ′′ − 9xy ′ + 24y = 0; y(1)= 1, y ′(1)= 10

16. x2 y ′′ + xy ′ − 4y = 0; y(1)= 7, y ′(1)=−3

17. Here is another approach to solving an Euler equa-
tion. For x > 0, substitute y = xr into the differential

equation to obtain a quadratic equation for r . Roots of
this quadratic equation yield solutions y = xr . Use this
approach to solve the Euler equations of Examples
2.22, 2.22, and 2.23.

18. Outline a procedure for solving the Euler equation for
x < 0. Hint: Let t = ln |x | in this case.
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CHAPTER 3
The Laplace
Transform

DEFINITION AND NOTATION SOLUTION OF
INITIAL VALUE PROBLEMS SHIFTING AND
THE HEAVISIDE FUNCTION CONVOLUTION
IMPULSES AND THE DELTA FUNCTION

3.1 Definition and Notation

The Laplace transform is an important tool for solving certain kinds of initial value problems,
particularly those involving discontinuous forcing functions, as occur frequently in areas such
as electrical engineering. It is also used to solve boundary value problems involving partial
differential equations to analyze wave and diffusion phenomena.

We will see that the Laplace transform converts some initial value problems to algebra
problems, leading us to attempt the following procedure:

Initial value problem =⇒ algebra problem

=⇒ solution of the algebra problem

=⇒ solution of the initial value problem.

This is often an effective strategy, because some algebra problems are easier to solve than initial
value problems. We begin in this section with the definition and elementary properties of the
transform.

The Laplace transform of a function f is a function L[ f ] defined by

L[ f ](s)=
∫ ∞

0

e−st f (t)dt.

The integration is with respect to t and defines a function of the new variable s for all s
such that this integral converges.

Because the symbol L[ f ](s) may be awkward to write in computations, we will make the
following convention. We will use lowercase letters for a function we put into the transform and
the corresponding uppercase letters for the transformed function. In this way,

L[ f ] = F, L[g] = G, and L[h] = H

77
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and so on. If we include the variable, these would be written

L[ f ](s)= F(s), L[g](s)= G(s), and L[h](s)= H(s)

It is also customary to use t (for time) as the variable of the input function and s for the variable
of the transformed function.

EXAMPLE 3.1

Let a be any real number, and f (t)= eat . The Laplace transform of f is the function defined by

L[ f ](s)=
∫ ∞

0

e−st eatdt

=
∫ ∞

0

e(a−s)t dt = lim
k→∞

∫ k

0

e(a−s)t dt

= lim
k→∞

[
1

a − s
e(a−s)t

]k

0

=− 1

a − s
= 1

s − a
provided that s > a. The Laplace transform of f (t)= eat can be denoted F(s)= 1/(s − a) for
s> a. �

We rarely determine a Laplace transform by integration. Table 3.1 is a short table of Laplace
transforms of familiar functions, and much longer tables are available. In this table, n denotes a
nonnegative integer, and a and b are constants. Reading from the table (left to right), if f (t)=
sin(3t) then by entry (6), we have

F(s)= 3

s2 + 9
,

and if k(t)= e2t cos(5t) then by entry (11), we have

K (s)= s − 2

(s − 2)2 + 25
.

There are also software routines for transforming functions. In MAPLE, first enter

with(inttrans);

TA B L E 3.1 Laplace Transforms of Selected Functions

f (t) F(s) f (t) F(s)

(1) 1
1

s
(8) t sin(at)

2as

(s2 + a2)2

(2) t n n!
sn+1

(9) t cos(at)
s2 − a2

(s2 + a2)2

(3) eat 1

s − a
(10) eat sin(bt)

b

(s − a)2 + b2

(4) t neat n!
(s − a)n+1

(11) eat cos(bt)
s − a

(s − a)2 + b2

(5) eat − ebt a − b

(s − a)(s − b)
(12) sinh(at)

a

s2 − a2

(6) sin(at)
a

s2 + a2
(13) cosh(at)

s

s2 − a2

(7) cos(at)
s

s2 + a2
(14) δ(t − a) e−as
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to open the integral transforms package of subroutines. For the Laplace transform of f (t), enter

laplace(f(t),t,s);
to obtain F(s).

The Laplace transform is linear, which means that the transform of a sum is the sum of the
transforms and that constants factor through the transform:

L[ f + g] = F + G and L[c f ] = cF

for all s such that F(s) and G(s) are both defined and for any number c.

Given F(s), we sometimes need to find f (t) such that L[ f ]= F . This is the reverse process
of computing the transform of f , and we refer to it as taking an inverse Laplace transform.
This is denoted L−1, and

L−1[F] = f exactly when L[ f ] = F.

For example, the inverse Laplace transform of 1/(s − a) is eat .
If we use Table 3.1 to find an inverse transform, read from the right column to the left

column. For example, using the table and the linearity of the Laplace transform, we can read that

L−1

[
3

s2 + 16
− 7

1

(s − 5)(s − 12)

]

= 3

4
sin(4t)+ e5t − e12t .

The inverse Laplace transform L−1 is linear because L is. This means that

L−1[F + G] =L−1[F] +L−1[G] = f + g,

and for any number c,

L−1[cF] = cL−1[F] = c f.

To use MAPLE to compute the inverse Laplace transform of F(s), enter

invlaplace(F(s),s,t);

to obtain f (t). This assumes that the integral transforms package has been opened.

SECTION 3.1 PROBLEMS

In each of Problems 1 through 5, use Table 3.1 to determine
the Laplace transform of the function.

1. f (t)= 3t cos(2t)

2. g(t)= e−4t sin(8t)

3. h(t)= 14t − sin(7t)

4. w(t)= cos(3t)− cos(7t)

5. k(t)=−5t 2e−4t + sin(3t)

In each of Problems 6 through 10, use Table 3.1 to
determine the inverse Laplace transform of the function.

6. R(s)= 7
s2−9

7. Q(s)= s
s2+64

8. G(s)= 5
s2+12

− 4s
s2+8

9. P(s)= 1
s+42

− 1
(s+3)4

10. F(s)= −5s
(s2+1)2

For Problems 11 through 14, suppose that f (t) is defined
for all t ≥0 and has a period T . This means that f (t + T )=
f (t) for all t ≥ 0.

11. Show that

L[ f ](s)=
∞∑

n=0

∫ (n+1)T

nT

e−st f (t)dt.
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12. Show that
∫ (n+1)T

nT

e−st f (t)dt = e−nsT

∫ T

0

e−st f (t)dt.

13. From Problems 11 and 12, show that

L[ f ](s)=
[ ∞∑

n=0

e−nsT

]∫ T

0

e−st f (t)dt.

14. Recall the geometric series

∞∑

n=0

rn = 1

1 − r

for |r | < 1. With this and the result of Problem 13,
show that

L[ f ](s)= 1

1 − e−sT

∫ T

0

e−st f (t)dt.

In each of Problems 15 through 22, a periodic function is
given (sometimes by a graph). Use the result of Problem
14 to compute its Laplace transform.

15. f has period of 6, and

f (t)=
{

5 for 0< t ≤ 3,

0 for 3< t ≤ 6

16. f (t)= |E sin(ωt)| with E and ω positive numbers.

17. f has the graph of Figure 3.1.

 t

f(t)

30   355     10 55   60

5

FIGURE 3.1 Function for Problem 17, Section 3.1.

18. f has the graph of Figure 3.2.

t

f(t)

  6 12 18 0

FIGURE 3.2 Function for Problem 18, Section 3.1.

19. f has the graph of Figure 3.3.

  E

E sin(ω t)

π/ω 2π/ω 3π/ω
t

f(t)

FIGURE 3.3 Function for Problem 19, Section 3.1.

20. f has the graph of Figure 3.4.

2 8 10 16 18 24
t

f(t)

3

0
0

FIGURE 3.4 Function for Problem 20, Section 3.1.

21. f has the graph of Figure 3.5.

t

f(t)

h

0 a 2a 4a 5a3a

FIGURE 3.5 Function for Problem 21, Section 3.1.

22. f has the graph of Figure 3.6.

t

f(t)

0

h

a 2a 3a 4a 5a 6a

FIGURE 3.6 Function for Problem 22,
Section 3.1.
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3.2 Solution of Initial Value Problems

To apply the Laplace transform to the solution of an initial value problem, we must
be able to transform a derivative. This involves the concept of a piecewise continuous
function.

Suppose f (t) is defined at least on [a,b]. Then f is piecewise continuous on [a,b] if:
1. f is continuous at all but perhaps finitely many points of [a,b].
2. If f is not continuous at t0 in (a,b), then f (t) has finite limits from both sides at t0.

3. f (t) has finite limits as t approaches a and as t approaches b from within the
interval.

This means that f can have at most finitely many discontinuities on the interval, and these
are all jump discontinuities. The function graphed in Figure 3.7 has jump discontinuities at t0 and
t = t1. The magnitude of a jump discontinuity is the width of the gap in the graph there. In Figure
3.7, the magnitude of the jump at t1 is

| lim
t→t1+

f (t)− lim
t→t1−

f (t)|.

By contrast, let

g(t)=
{

1/t for 0< t ≤ 1

0 for t = 0.

Then g is continuous on (0,1], but is not piecewise continuous on [0,1], because
limt→0+ g(t) = ∞.

t
t0 t1

FIGURE 3.7 Typical jump discontinuities.
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THEOREM 3.1 Transform of a Derivative

Let f be continuous for t ≥ 0, and suppose f ′ is piecewise continuous on [0, k] for every k> 0.
Suppose also that limk→∞ e−sk f (k)= 0 if s> 0. Then

L[ f ′](s)= sF(s)− f (0). � (3.1)

This states that the transform of f ′(t) is s times the transform of f (t), minus f (0), which
is the original function evaluated at t = 0. This can be proved by integration by parts (see
Problem 11).

If f has a jump discontinuity at 0, as occurs if f is an electromotive force that is switched
on at time zero, then the conclusion of the theorem must be amended to read

L[ f ′](s)= sF(s)− f (0+)
where f (0+)= limt→0+ f (t).

There is an extension of Theorem 3.1 to higher derivatives. If n is a positive integer, let f (n)

denote the nth derivative of f .

THEOREM 3.2 Transform of a Higher Derivative

Let f , f ′, f (n−1) be continuous for t > 0, and suppose f (n) is piecewise continuous on [0, k] for
every k> 0. Suppose also that

lim
k→∞

e−sk f ( j)(k)= 0

for s> 0 and j = 1,2, · · · ,n − 1. Then

L[ f (n)](s)= sn F(s)− sn−1 f (0)− sn−2 f ′(0)− · · · − s f (n−2)(0)− f (n−1)(0). (3.2)
�

The second derivative case n = 2 occurs sufficiently often that we will record the formula
separately for this case:

L[ f ′′](s)= s2 F(s)− s f (0)− f ′(0). (3.3)

We are now prepared to use the Laplace transform to solve some initial value problems.

EXAMPLE 3.2

We will solve y ′ − 4y = 1; y(0)= 1.
We already know how to solve this problem, but we will apply the Laplace transform to

illustrate the idea. Take the transform of the differential equation using the linearity of L and
equation (3.1) to write

L[y ′ − 4y](s)=L[y ′](s)− 4L[y](s)
= (sY (s)− y(0))− 4Y (s)=L[1](s).

Insert the initial data y(0)= 1, and use the table to find that L[1](s)= 1/s. Then

(s − 4)Y (s)− 1 = 1

s
.
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There is no derivative in this equation! L has converted the differential equation into an algebraic
equation for the transform Y (s) of the unknown function y(t). Solve for Y (s) to obtain

Y (s)= 1

s − 4
+ 1

s(s − 4)
.

This is the transform of the solution of the initial value problem. The solution is y(t), which we
obtain by applying the inverse transform:

y =L−1[Y ]

=L−1

[
1

s − 4

]

+L−1

[
1

s(s − 4)

]

.

From entry (3) of the table with a = 4,

L−1

[
1

s − 4

]

= e4t

and from entry (5) with a = 0 and b = 4,

L−1

[
1

s(s − 4)

]

= 1

−4
(e0t − e4t)

= 1

4
(e4t − 1).

The solution is

y(t)= e4t + 1

4
(e4t − 1)= 5

4
e4t − 1

4
. �

EXAMPLE 3.3

Solve

y ′′ + 4y ′ + 3y = et; y(0)= 0, y ′(0)= 2.

Using the linearity of L and equations (3.1) and (3.3), we obtain

L[y ′′] + 4L[y ′] + 3L[y]
= [s2Y − sy(0)− y ′(0)] + 4[sY − y(0)] + 3Y

=[s2Y − 2] − 4sY + 3Y

=L[et ] = 1

s − 1
.

Solve for Y to get

Y (s)= 2s − 1

(s − 1)(s2 + 4s + 3)

= 2s − 1

(s − 1)(s + 1)(s + 3)
.

To read the inverse transform from the table, use a partial fractions decomposition to write
the quotient on the right as a sum of simpler quotients. We will carry out the algebra of this
decomposition. First write

2s − 1

(s − 1)(s + 1)(s + 3)
= A

s − 1
+ B

s + 1
+ C

s + 3
.
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To solve for the constants, observe that if we added the fractions on the right the numerator would
have to equal the numerator 2s − 1 of the fraction on the left. Therefore,

A(s + 1)(s + 3)+ B(s − 1)(s + 3)+ C(s − 1)(s + 1)= 2s − 1.

We can solve for A, B, and C by inserting values of s into this equation. Put s = 1 to get 8A = 1,
so A = 1/8. Put s =−1 to get −4B =−3, so B = 3/4. Put s =−3 to get 8C =−7, so C =−7/8.
Then

Y (s)= 1

8

1

s − 1
+ 3

4

1

s + 1
− 7

8

1

s + 3
.

Invert this to obtain the solution

y(t)= 1

8
et + 3

4
e−t − 7

8
e−3t . �

Partial fractions decompositions are frequently used with the Laplace transform. The
appendix at the end of this chapter reviews the algebra of this technique.

Notice that the transform method does not first produce the general solution and then solve
for the constants to satisfy the initial conditions. Equations (3.1), (3.2), and (3.3) insert the initial
conditions directly into an algebraic equation for the transform of the unknown function. Still,
we could have solved the problem of Example 3.3 by methods from Chapter 2. The object here
was to illustrate a technique. This technique extends to problems beyond the reach of methods
from Chapter 2, and this is the subject of the next section.

SECTION 3.2 PROBLEMS

In each of Problems 1 through 10, use the Laplace trans-
form to solve the initial value problem.

1. y ′ + 4y = 1; y(0)= −3

2. y ′ − 9y = t; y(0)= 5

3. y ′ + 4y = cos(t); y(0)= 0

4. y ′ + 2y = e−t ; y(0)= 1

5. y ′ − 2y = 1 − t; y(0)= 4

6. y ′′ + y = 1; y(0)= 6, y ′(0)= 0

7. y ′′ − 4y ′ + 4y = cos(t); y(0)= 1, y ′(0)= −1

8. y ′′ + 9y = t 2; y(0)= y ′(0)= 0

9. y ′′ + 16y = 1 + t; y(0)=−2, y ′(0)= 1

10. y ′′ − 5y ′ + 6y = e−t ; y(0)= 0, y ′(0)= 2

11. Prove Theorem 3.1. Hint: Write

L[ f ′](s)=
∫ ∞

0

e−st f ′(t)dt

and integrate by parts.

12. Derive equation (3.3). Hint: Integrate by parts twice.

3.3 Shifting and the Heaviside Function

The shifting theorems of this section will enable us to solve problems involving pulses and other
discontinuous forcing functions.

3.3.1 The First Shifting Theorem

We will show that the Laplace transform of eat f (t) is the transform of f (t), shifted a units to the
right. This shift is achieved by replacing s by s − a in F(s) to obtain F(s − a).
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THEOREM 3.3 First Shifting Theorem

For any number a,

L[eat f (t)](s)= F(s − a). (3.4)
�

This conclusion is also called shifting in the s variable. The proof is a straightforward appeal
to the definition:

L[eat f (t)](s)=
∫ ∞

0

e−st eat f (t)dt

=
∫ ∞

0

e−(s−a) f (t)dt = F(s − a).

EXAMPLE 3.4

We know from the table that L[cos(bt)] = s/(s2 + b2)= F(s). For the transform of eat cos(bt),
replace s with s − a to get

L[eat cos(bt)](s)= s − a

(s − a)2 + b2
. �

EXAMPLE 3.5

Since L[t 3] = 6/s4, then

L[t 3e7t ](s)= 6

(s − 7)4
. �

Every formula for the Laplace transform of a function is also a formula for the inverse
Laplace transform of a function. The inverse version of the first shifting theorem is

L−1[F(s − a)] = eat f (t). (3.5)

EXAMPLE 3.6

Compute

L−1

[
4

s2 + 4s + 20

]

.

The idea is to manipulate the given function of s to the form F(s −a) for some F and a. Then we
can apply the inverse form of the shifting theorem, which is equation (3.5). Complete the square
in the denominator to write

4

s2 + 4s + 20
= 4

(s + 2)2 + 16
= F(s + 2)

if

F(s)= 4

s2 + 16
.

From the table, F(s) has inverse f (t)= sin(4t). By equation (3.5),

L−1

[
4

s2 + 4s + 20

]

=L−1[F(s + 2)]
= e−2t f (t)= e−2t sin(4t). �
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EXAMPLE 3.7

Compute

L−1

[
3s − 1

s2 − 6s + 2

]

.

Follow the strategy of Example 3.6. Manipulate F(s) to a function of s − a for some a:

3s − 1

s2 − 6s + 2
= 3s − 1

(s − 3)2 − 7

= 3(s − 3)+ 8

(s − 3)2 − 7

= 3(s − 3)

(s − 3)2 − 7
+ 8

(s − 3)2 − 7

= G(s − 3)+ K (s − 3)

where

G(s)= 3s

s2 − 7
and K (s)= 8

s2 − 7
.

By equation (3.5),

L−1

[
3s − 1

s2 − 6s + 2

]

=L−1[G(s − 3)] +L−1[K (s − 3)]

= e3tL−1[G(s)] + e3tL−1[K (s)]

= e3tL−1

[
3s

s2 − 7

]

+ e3tL−1

[
8

s2 − 7

]

= 3e3t cosh(
√

7t)+ 8√
7

e3t sinh(
√

7t). �

3.3.2 The Heaviside Function and Pulses

Functions having jump discontinuities are efficiently treated by using the unit step function,
or Heaviside function H , defined by

H(t)=
{

0 for t < 0

1 for t ≥ 0.

H is graphed in Figure 3.8. We will also use the shifted Heaviside function H(t − a) of
Figure 3.9. This is the Heaviside function shifted a units to the right:

H(t − a)=
{

0 for t < a

1 for t ≥ a.
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t

y

y = 1

FIGURE 3.8 The Heaviside function.

t
t = a 

y

y = 1

FIGURE 3.9 Shifted Heaviside function.

H(t − a) can be used to turn a signal (function) off until time t = a and then to turn it on. In
particular,

H(t − a)g(t)=
{

0 for t < a

g(t) for t ≥ a.

To illustrate, Figure 3.10 shows H(t − π) cos(t). This is the familiar cosine function for
t ≥π , but is turned off (equals 0) for t <π . Multiplying a function f (t) by H(t − a) leaves the
graph of f (t) unchanged for t ≥ a, but replaces it by 0 for t < a.

We can also use the Heaviside function to define a pulse. If a< b, then

H(t − a)− H(t − b)=

⎧
⎪⎨

⎪⎩

0 for t < a

1 for a ≤ t < b

0 for t ≥ b.
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FIGURE 3.10 H(t −π) cos(t).

t

y

a b

y = 1

FIGURE 3.11 A pulse H(t − a)− H(t − b).

0.5

0

–0.5

1

–1

t

86420

FIGURE 3.12 (H(t − π/2) − H(t − 2π))
sin(t).

Figure 3.11 shows the pulse H(t − a)− H(t − b) with a < b. Pulses are used to turn a signal
off until time t = a and then to turn it on until time t = b, after which it is switched off again.
Figure 3.12 shows this effect for [H(t − π/2)− H(t − 2π)] sin(t), which is zero before time
π/2 and after time 2π and equals sin(t) between these times.

It is important to understand the difference between g(t), H(t − a)g(t) and H(t − a)
g(t − a). Figures 3.13, 3.14 and 3.15, show, respectively, graphs of t sin(t), H(t − 3/2)t sin(t),
and H(t − 4)(t − 4) sin(t − 4). H(t − 3/2)t sin(t) is zero until time 3/2 and then equals t sin(t),
while H(t − 4)(t − 4) sin(t − 4) is zero until time 4, then is the graph of t sin(t) shifted 4 units to
the right.

Using the Heaviside function, we can state the second shifting theorem, which is also called
shifting in the t variable.
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FIGURE 3.13 t sin(t).
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FIGURE 3.14 H(t − 3/2)t sin(t).
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5

–5

–10

t
10 15 20–50

FIGURE 3.15 H(t − 4) (t − 4)
sin(t − 4).

THEOREM 3.4 Second Shifting Theorem

L[H(t − a) f (t − a)](s)= e−as F(s). � (3.6)

This result follows directly from the definition of the transform and of the Heaviside
function.

EXAMPLE 3.8

Suppose we want L[H(t − a)]. Write

H(t − a)= H(t − a) f (t − a)

with f (t)= 1 for all t . Since F(s)=L[1](s)= 1/s, then by the second shifting theorem,

L[H(t − a)](s)= e−as F(s)= 1

s
e−as . �
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EXAMPLE 3.9

Compute L[g] where

g(t)=
{

0 for t < 2

t 2 + 1 for t ≥ 2.

To apply the second shifting theorem, we must write g(t) as a function, or perhaps sum of
functions, of the form f (t − 2)H(t − 2). To do this, first write t 2 + 1 as a function of t − 2:

t2 + 1 = (t − 2 + 2)2 + 1 = (t − 2)2 + 4(t − 2)+ 5.

Then

g(t)= H(t − 2)(t2 + 1)

= (t − 2)2 H(t − 2)+ 4(t − 2)H(t − 2)+ 5H(t − 2).

Now apply the second shifting theorem to each term on the right:

L[g]=L[(t − 2)2 H(t − 2)] + 4L[(t − 2)H(t − 2)] + 5L[H(t − 2)]
= e−2sL[t 2] + 4e−2sL[t] + 5e−2sL[1]

= e−2s

[
2

s3
+ 4

s2
+ 5

s

]

. �

As usual, any formula for L can be read as a formula for L−1. The inverse version of the
second shifting theorem is

L−1[e−as F(s)](t)= H(t − a) f (t − a). (3.7)

This enables us to compute the inverse transform of a known transformed function that is
multiplied by an exponential e−as .

EXAMPLE 3.10

Compute

L−1

[
se−3s

s2 + 4

]

.

The presence of e−3s suggests the use of equation (3.7). From the table, we read that

L−1

[
s

s2 + 4

]

= cos(2t).

Then

L−1

[
se−3s

s2 + 4

]

(t)= H(t − 3) cos(2(t − 3)). �

EXAMPLE 3.11

Solve the initial value problem

y ′′ + 4y = f (t); y(0)= y ′(0)= 0

where

f (t)=
{

0 for t < 3

t for t ≥ 3.
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First apply L to the differential equation, using equations (3.1) and (3.3):

L[y ′′] + 4L[y] = [s2 − sy(0)− y ′(0)]Y (s)+ 4Y (s)

= s2Y (s)+ 4Y (s)= (s2 + 4)Y (s)=L[ f ].
To compute L[ f ], use the second shifting theorem. Since f (t)= H(t − 3)t , we can write

L[ f ] =L[H(t − 3)t]
=L[H(t − 3)(t − 3 + 3)]
=L[H(t − 3)(t − 3)] + 3L[H(t − 3)]

= e−3s

s2
+ 3e−3s

s
.

In summary, we have

(s2 + 4)Y (s)= 1

s2
e−3s + 3

s
e−3s = 3s + 1

s2
e−3s .

The transform of the solution is therefore

Y (s)= 3s + 1

s2(s2 + 4)
e−3s .

The solution is the inverse transform of Y (s). To take this inverse, use a partial fractions
decomposition, writing

3s + 1

s2(s2 + 4)
= A

s
+ B

s2
+ Cs + D

s2 + 4
.

After solving for A, B,C , and D, we obtain

Y (s)= 3s + 1

s2(s2 + 4)
e−3s

= 3

4

1

s
e−3s − 3

4

s

s2 + 4
e−3s + 1

4

1

s2
e−3s − 1

4

1

s2 + 4
e−3s .

Now apply the second shifting theorem to write the solution

y(t)= 3

4
H(t − 3)− 3

4
H(t − 3) cos(2(t − 3))

+ 1

4
H(t − 3)(t − 3)− 1

8
H(t − 3) sin(2(t − 3)).

This solution is 0 until time t = 3. Since H(t − 3)= 1 for t ≥ 3, then for these times,

y(t)= 3

4
− 3

4
cos(2(t − 3))+ 1

4
(t − 3)

− 1

8
sin(2(t − 3)).

Upon combining terms, the solution is

y(t)=
{

0 for t < 3
1
8
[2t − 6cos(2(t − 3))− sin(2(t − 3))] for t ≥ 3.

Figure 3.16 shows part of the graph of this solution. �
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FIGURE 3.16 Graph of the solution in
Example 3.11.
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FIGURE 3.17 f (t) in Example 3.12.

EXAMPLE 3.12

Sometimes we need to deal with a function having several jump discontinuities. Here is an
example of writing such a function in terms of step functions. Let

f (t)=

⎧
⎪⎨

⎪⎩

0 for t < 2

t − 1 for 2 ≤ t < 3

−4 for t ≥ 3.

Figure 3.17 shows a graph of f . There are jump discontinuities of magnitude 1 at t = 2 and
magnitude 6 at t = 3.

Think of f (t) as consisting of two nonzero parts: the part that is t − 1 for 2 ≤ t < 3 and the
part that is −4 for t ≥ 3. We want to turn on t − 1 at time 2 and turn it off at time 3, then turn −4
on at time 3 and leave it on.

The first effect is achieved by multiplying t − 1 by the pulse H(t − 2)− H(t − 3). The
second is achieved by multiplying −4 by H(t − 3). Thus, write

f (t)=[H(t − 2)− H(t − 3)](t − 1)− 4H(t − 3). �

EXAMPLE 3.13

Suppose the capacitor in the circuit of Figure 3.18 initially has a charge of zero and there is no
initial current. At time t = 2 seconds, the switch is thrown from position B to A, held there for 1
second, and then switched back to B. We want the output voltage Eout on the capacitor.

From the circuit, write

E(t)= 10[H(t − 2)− H(t − 3)].
By Kirchhoff’s voltage law,

Ri(t)+ 1

C
q(t)= E(t)

or

250,000q ′(t)+ 106q(t)= E(t).
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B

A

250,000 Ω

Eout

1 micro F

10 V

FIGURE 3.18 The circuit of Example
3.13.

We want to solve for q(t) subject to the condition q(0)= 0. Take the Laplace transform of the
differential equation to get

250,000[sQ(s)− q(0)] + 106 Q(s)=L[E(t)].
Now

L[E(t)](s)= 10L[H(t − 2)](s)− 10L[(t − 3)](s)

= 10

s
e−2s − 10

s
e−3s .

Now we have an equation for Q:

2.5(105)sQ(s)+ 106 Q(s)= 10

s
e−2s − 10

s
e−3s .

Then

Q(s)= 4(10−5)
1

s(s + 4)
e−2s − 4(10−5)

1

s(s + 4)
e−3s .

Use a partial fractions decomposition to write

Q(s)= 10−5

[
1

s
e−2s − 1

s + 4
e−2s

]

− 10−5

[
1

s
e−3s − 1

s + 4
e−3s

]

.

Applying the second shifting theorem, we get

q(t)= 10−5 H(t − 2)[1 − e−4(t−2)] − 10−5 H(t − 3)[1 − e−4(t−3)].
Finally, the output voltage is Eout(t)= 106q(t). Figure 3.19 shows a graph of Eout(t). �

3.3.3 Heaviside’s Formula

There is a formula due to Heaviside that can be used to take the inverse transform of a quotient
of polynomials.

Suppose F(s)= p(s)/q(s) with p and q polynomials and q of higher degree than p. We
assume that q can be factored into linear factors and has the form

q(s)= c(s − a1)(s − a2) · · · (s − an),

with c a nonzero constant and the a j ’s n distinct numbers (which may be real or complex). None
of the a j ’s are roots of p(s).
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FIGURE 3.19 Eout(t) in Example 3.13.

Let q j(s) be the polynomial of degree n − 1 formed by omitting the factor s − a j from q(s),
for j = 1,2, · · · ,n. For example,

q1(s)= c(s − a2) · · · (s − an).

Then

L−1[F(s)](t)=
n∑

j=1

p(a j)

q j(a j)
ea j t .

This is called Heaviside’s formula. In applying the formula, start with a1, evaluate p(a1), then
substitute a1 into the denominator with the term (s − a1) removed. This gives the coefficient of
ea1 t . Continue this with the other a j ’s and sum to obtain L−1[F].

Before showing why Heaviside’s formula is true, here is a simple example with

F(s)= s

(s2 + 4)(s − 1)
= s

(s − 2i)(s + 2i)(s − 1)
.

Here p(s)= s, and q(s)= (s − 2i)(s + 2i)(s − 1). Write a1 = 2i , a2 =−2i , and a3 = 1. Then

L[F(s)](t)= 2i

4i(2i − 1)
e2i t + −2i

−4i(−2i − 1)
e−2i t + 1

(1 − 2i)(1 + 2i)
et

= −1 − 2i

10
e2i t + −1 + 2i

10
e−2i t + 1

5
et

=− 1

10
(e2i t + e−2i t)− 2i

10
(e2i t − e−2i t)+ 1

5
et

=−1

5
cos(2t)+ 2

5
sin(2t)+ 1

5
et .

We have used the fact that

cos(θ)= 1

2
(eiθ + e−iθ ) and sin(θ)= 1

2i
(eiθ − e−iθ ).

These can be obtained by solving for cos(θ) and sin(θ) in Euler’s formulas

eiθ = cos(θ)+ i sin(θ) and e−iθ = cos(θ)− i sin(θ).
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Here is a rationale for Heaviside’s formula. The partial fractions expansion of p(s)/q(s) has the
form

p(s)

q(s)
= A1

s − a1

+ A2

s − a2

+ · · ·+ An

s − an

.

All we need are the numbers A1, · · · , An to write

L−1[F](t)= A1e
a1 t + · · · + Ane

an t .

We will find A1. The other A j ’s are found similarly. Notice that

(s − a1)
p(s)

q(s)
= A1 + A2

s − a1

s − a1

+ · · ·+ An

s − a1

s − an

.

Because the aj ’s are assumed to be distinct, then

lim
s→a1

(s − a1)
p(s)

q(s)
= A1

with all the other terms on the right having zero limit as s → a1. But in this limit, (s −
a1)p(s)/q(s) is exactly the quotient of p(s) with the polynomial obtained by deleting s − a1

from q(s). This yields Heaviside’s formula.
For those familiar with complex analysis, in Section 22.4, we will present a general formula

for L−1[F] as a sum of residues of etz F(z) at singularities of F(z). In that context, Heaviside’s
formula is the special case that F(z) is a quotient of polynomials with simple poles at a1, · · · ,an .

SECTION 3.3 PROBLEMS

In each of Problems 1 through 15, find the Laplace trans-
form of the function.

1. (t3 − 3t + 2)e−2t

2. e−3t(t − 2)

3. f (t)=
{

1 for 0 ≤ t < 7

cos(t) for t ≥ 7

4. e−4t(t − cos(t))

5. f (t)=
{

t for 0 ≤ t < 3

1 − 3t for t ≥ 3

6. f (t)=
{

2t − sin(t) for 0 ≤ t <π

0 for t ≥π
7. e−t(1 − t2 + sin(t))

8. f (t)=
{

t2 for 0 ≤ t < 2

1 − t − 3t 2 for t ≥ 2

9. f (t)=
{

cos(t) for 0 ≤ t < 2π

2 − sin(t) for t ≥ 2π

10. f (t)=

⎧
⎪⎨

⎪⎩

−4 for 0 ≤ t < 1

0 for 1 ≤ t < 3

e−t for t ≥ 3

11. te−t cos(3t)

12. et(1 − cosh(t))

13. f (t)=
{

t − 2 for 0 ≤ t < 16

−1 for t ≥ 16

14. f (t)=
{

1 − cos(2t) for 0 ≤ t < 3π

0 for t ≥ 3π

15. e−5t(t4 + 2t2 + t)

In each of Problems 16 through 25, find the inverse Laplace
transform.

16.
1

s2 + 4s + 12

17.
1

s2 − 4s + 5

18. e−5s/s3

19.
e−2s

s2 + 9

20.
3

s + 2
e−4s

21.
1

s2 + 6s + 7

22.
s − 4

s2 − 8s + 10

23.
s + 2

s2 + 6s + 1
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24.
1

s − 5
e−s

25.
1

s(s2 + 16)
e−21s

26. Determine L[e−2t
∫ t

0 e2w cos(3w)dw]. Hint: Use the
first shifting theorem.

In each of Problems 27 through 32, solve the initial value
problem.

27. y ′′ + 4y = f (t); y(0)= 1, y ′(0)= 0, with

f (t)=
{

0 for 0 ≤ t < 4

3 for t ≥ 4

28. y ′′ − 2y ′ − 3y = f (t); y(0)= 1, y ′(0)= 0, with

f (t)=
{

0 for 0 ≤ t < 4

12 for t ≥ 4

29. y ′′′ − 8y = g(t); y(0)= y ′(0)= y ′′(0)= 0, with

g(t)=
{

0 for 0 ≤ t < 6

2 for t ≥ 6

30. y ′′ + 5y ′ + 6y = f (t); y(0)= y ′(0)= 0, with

f (t)=
{

−2 for 0 ≤ t < 3

0 for t ≥ 3

31. y ′′′ − y ′′ + 4y ′ − 4y = 0; y(0)= y ′(0)= 0, y ′′(0)= 1,
with

f (t)=
{

1 for 0 ≤ t < 5

2 for t ≥ 5

32. y ′′ − 4y ′ + 4y = f (t); y(0)=−2, y ′(0)= 1, with

f (t)=
{

t for 0 ≤ t < 3

t + 2 for t ≥ 3

33. Determine the output voltage in the circuit of
Figure 3.18, assuming that at time zero the capacitor

is charged to a potential of 5 volts and the switch is
opened at time zero and closed 5 seconds later. Graph
this output.

34. Determine the output voltage in the RL circuit of
Figure 3.20 if the current is initially zero and

E(t)=
{

0 for 0 ≤ t < 5

2 for t ≥ 5.

Graph this output function.

E(t)

L

R

FIGURE 3.20 The RL circuit of
Problem 34, Section 3.3.

35. Solve for the current in the RL circuit of Problem 34
if the current is initially zero and

E(t)=
{

k for 0 ≤ t < 5

0 for t ≥ 5.

36. Show that Heaviside’s formula can be written

L−1[F](t)=
n∑

j=1

p(a j )

q ′(a j )
ea j t .

Hint: Write

(s − a j )
p(s)

q(s)
= p(s)

(q(s)− q(a j ))/(s − a j )
.

3.4 Convolution

If f (t) and g(t) are defined for t ≥0, then the convolution f ∗ g of f with g is the function
defined by

( f ∗ g)(t)=
∫ t

0

f (t − τ)g(τ )dτ
for t ≥ 0 such that this integral converges.
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In general the transform of a product of functions does not equal the product of their trans-
forms. However, the transform of a convolution is the product of the transforms of the individual
functions. This fact is called the convolution theorem, and is the rationale for the definition.

THEOREM 3.5 The Convolution Theorem

L[ f ∗ g] =L[ f ]L[g]. �
Equivalently,

L[ f ∗ g](s)= F(s)G(s).

A proof is outlined in Problem 26.

The inverse transform version of the convolution theorem is

L−1[FG] = f ∗ g. (3.8)

This states that the inverse transform of a product of two functions F(s) and G(s) is the convolu-
tion f ∗ g of the inverse transforms of the functions. This fact is sometimes useful in computing
an inverse transform.

EXAMPLE 3.14

Compute

L−1

[
1

s(s − 4)2

]

.

Certainly, we can do this by a partial fractions decomposition. To illustrate the use of the
convolution, however, write

F(s)= 1

s
and G(s)= 1

(s − 4)2

so we are computing the inverse transform of a product. By the convolution theorem,

L−1

[
1

s(s − 4)2

]

= f ∗ g,

where

f (t)=L−1

[
1

s

]

= 1

and

g(t)=L−1

[
1

(s − 4)2

]

= te4t .

Then

L−1

[
1

s(s − 4)2

]

= f (t) ∗ g(t)

= 1 ∗ te4t =
∫ t

0

τe4τdτ

= 1

4
te4t − 1

16
e4t + 1

16
. �
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Convolution is commutative:

f ∗ g = g ∗ f.

This can be proved by a straightforward change of variables in the integral defining the convol-
ution.

In addition to its use in computing the inverse transform of products, convolution allows us
to solve certain general initial value problems.

EXAMPLE 3.15

Solve the initial value problem

y ′′ − 2y ′ − 8y = f (t); y(0)= 1, y ′(0)= 0.

We want a formula for the solution that will hold for any “reasonable” forcing function f . Apply
the Laplace transform to the differential equation in the usual way, obtaining

s2Y (s)− s − 2(sY (s)− 1)− 8Y (s)= F(s).

Then

(s2 − 2s − 8)Y (s)= s − 2 + F(s).

Then

Y (s)= s − 2

s2 − 2s − 8
+ 1

s2 − 2s − 8
F(s).

Factor s2 − 2s − 8 = (s − 4)(s + 2), and use a partial fractions decomposition to write

Y (s)= 1

3

1

s − 4
+ 2

3

1

s + 2
+ 1

6

1

s − 4
F(s)− 1

6

1

s + 2
F(s).

Now apply the inverse transform to obtain the solution

y(t)= 1

3
e4t + 2

3
e−2t + 1

6
e4t ∗ f (t)− 1

6
e−2t ∗ f (t),

which is valid for any function f for which these convolutions are defined. �

Convolution also enables us to solve some kinds of integral equations, which are equations
in which the unknown function appears in an integral.

EXAMPLE 3.16

Solve for f (t) in the integral equation

f (t)= 2t2 +
∫ t

0

f (t − τ)e−τdτ.

Recognize the integral on the right as the convolution of f (t) with e−t . Therefore, the integral
equation has the form

f (t)= 2t2 + f (t) ∗ e−t .

Apply the Laplace transform and the convolution theorem to this equation to get

F(s)= 4

s3
+ 1

s + 1
F(s).
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Then

F(s)= 4

s3
+ 4

s4
,

which we invert to obtain

f (t)= 2t2 + 2

3
t 3. �

A Replacement Scheduling Problem

We will develop an integral equation that arises in the context of planning replacements for items
(such as pieces of equipment that wear out or stored drugs that lose their effectiveness over time).

Suppose a company or organization uses large numbers of a certain item. An example might
be portable computers for use by the military, copying machines in a business, or vaccine doses
in a hospital. The organization’s plan of operation includes an estimate of how many of these
items it wants to have on hand at any time. We will imagine that this number is large enough
that it can be approximated by a piecewise continuous availability function f (t) that gives the
number of items available for use at time t . Experience and familiarity with the items enables
the organization and the supplier to produce a function m(t), called a mortality function, that is
a measure of the number of items still working satisfactorily (surviving) up to time t . We will be
more explicit about m(t) shortly.

Given f (t) and m(t) (items needed and how long items remain good), planners want to
develop a replacement function r(t) that measures the total number of replacements that must be
made up to time t .

To begin the analysis, assign the time t = 0 to that time when these items of equipment were
introduced into use, so at this initial time all the items are new. We also set r(0)= 0.

In a time interval from τ to τ +�τ , there have been

r(τ +�τ)− r(τ )≈ r ′(τ )�τ

replacements. Here is where the mortality function comes in. We assume that, at any later time
t , the number of surviving items, out of these replacements in this time interval, is

r ′(τ )(�τ)m(�τ),

which we write as

r ′(τ )m(t − τ)�τ.
The total number f (t) of items available for use at time t is the sum of the number of items
surviving from the new items introduced at time 0 plus the number of items surviving from
replacements made over every interval of length �τ from τ = 0 to τ = t . This means that

f (t)= f (0)m(t)+
∫ t

0

r ′(τ )m(t − τ)dτ.

This is an integral equation for the derivative of the replacement function r(t). Given f (t) and
m(t), we attempt to solve this integral equation to obtain r(t).

The reason this strategy works in some instances is that this integral is a convolution,
suggesting the use of the Laplace transform. Application of L to the integral equation yields

F(s)= f (0)M(s)+L[r ′(t)](s)L[m(t)](s)
= f (0)M(s)+ (s R(s)− r(0))M(s)

= f (0)M(s)+ s R(s)M(s).
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Then

R(s)= F(s)− f (0)M(s)

sM(s)
.

If we can invert R(s), we have r(t).
We will see how this model works in a specific example. Suppose we want to have f (t)=

A + Bt doses of a drug on hand at time t with A and B as positive constants. Thus, f (0)= A,
and the need increases in time at the rate f ′(t)= B. Suppose the mortality function is

m(t)= 1 − H(t − k)

in which H is the Heaviside function and k is a positive constant determined by how long doses
remain effective.

Now

F(s)= A

s
+ B

s2
and M(s)= 1

s
− 1

s
e−ks .

The transform of the replacement function is

R(s)= F(s)− F(0)M(s)

sM(s)

=
A
s
+ B

s2 − A
(

1
s
− 1

s
e−ks

)

s
(

1
s
− 1

s
e−ks

)

= A

s

1

1 − e−ks
+ B

s2

1

1 − e−ks
− A

s

in which we have omitted some routine algebra in going from the second line to the third. Now
0< e−ks < 1 for ks> 0, so we can use the geometric series to write

1

1 − e−ks
=

∞∑

n=0

(e−ks)n = 1 +
∞∑

n=1

e−kns .

Therefore,

R(s)= A

(
1

s
+

∞∑

n=1

1

s
e−kns

)

+ B

(
1

s2
+

∞∑

n=1

1

s2
e−kns

)

− A

s
.

Invert this term by term to obtain

r(t)= A + A
∞∑

n=1

H(t − nk)+ Bt + B
∞∑

n=1

(t − nk)H(t − nk)− A

= Bt +
∞∑

n=1

(A + B(t − nk))H(t − nk).

Notice that t − nk< 0 (hence H(t − nk)= 0) if t/n< k. Since k is given and n increases from 1
through the positive integers, this always occurs after some time, so “most” of the terms of this
series vanish for a given time.
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25
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0

t

80 106

5

2 4

FIGURE 3.21 Replacement function.

Figure 3.21 is a graph of this replacement function for A = 2, B = 0.001, and k = 1. As
expected, r(t) is a strictly increasing function, because it measures total replacements up to a
given time. The graph gives an indication of how the drug needs to be replenished to maintain
f (t) doses at time t .

SECTION 3.4 PROBLEMS

In each of Problems 1 through 8, use the convolution the-
orem to help compute the inverse Laplace transform of
the function. Wherever they occur, a and b are positive
constants.

1.
1

(s2 + 4)(s2 − 4)

2.
1

s2 + 16
e−2s

3.
s

(s2 + a2)(s2 + b2)

4.
s2

(s − 3)(s2 + 5)

5.
1

s(s2 + a2)2

6.
1

s4(s − 5)

7.
1

s(s + 2)
e−4s

8.
2

s2(s2 + 5)

In each of Problems 9 through 16, use the convolution
theorem to write a formula for the solution in terms of f .

9. y ′′ − 5y ′ + 6y = f (t); y(0)= y ′(0)= 0

10. y ′′ + 10y ′ + 24y = f (t); y(0)= 1, y ′(0)= 0

11. y ′′ − 8y ′ + 12y = f (t); y(0)=−3, y ′(0)= 2

12. y ′′ − 4y ′ − 5y = f (t); y(0)= 2, y ′(0)= 1

13. y ′′ + 9y = f (t); y(0)=−1, y ′(0)= 1

14. y ′′ − k2 y = f (t); y(0)= 2, y ′(0)=−4

15. y(3) − y ′′ − 4y ′ + 4y = f (t); y(0) = y ′(0) =
1, y ′′(0) = 0

16. y(4) − 11y ′′ + 18y = f (t); y(0) = y ′(0) = y ′′(0) =
y(3)(0)= 0

In each of Problems 17 through 23, solve the integral
equation.

17. f (t)=−1 + ∫ t

0 f (t − τ)e−3τdτ

18. f (t)=−t + ∫ t

0 f (t − τ) sin(τ )dτ
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19. f (t)= e−t + ∫ t

0 f (t − τ)dτ
20. f (t)=−1 + t − 2

∫ t

0 f (t − τ) sin(τ )dτ
21, f (t)= 3 + ∫ t

0 f (τ ) cos(2(t − τ))dτ
22. f (t)= cos(t)+ e−2t

∫ t

0 f (τ )e2τdτ

23. Solve for the replacement function r(t) if f (t)= A,
constant, and m(t)= e−kt with k a positive constant.
Graph r(t).

24. Solve for the replacement function r(t) if f (t)= A +
Bt and m(t)= e−kt . Graph r(t).

25. Solve for the replacement function r(t) if f (t)= A +
Bt + Ct2 and m(t)= e−kt . Graph r(t).

26. Prove the convolution theorem. Hint: First write

F(s)G(s)=
∫ ∞

0

F(s)e−sτg(τ )dτ.

Show that

F(s)G(s)=
∫ ∞

0

L[H(t − τ) f (t − τ)](s)g(τ )dτ.

Use the definitions of the Heaviside function and of
the transform to obtain

F(s)G(s)=
∫ ∞

0

∫ ∞

τ

e−st g(τ ) f (t − τ)dτ.

Reverse the order of integration to obtain

F(s)G(s)=
∫ ∞

0

∫ t

0

e−st g(τ ) f (t − τ)dτ dt

=
∫ ∞

0

e−st( f ∗ g)(t)dt.

From this, show that L[ f ∗ g](s)= F(s)G(s).

3.5 Impulses and the Delta Function

Informally, an impulse is a force of extremely large magnitude applied over an extremely
short period of time (imagine hitting your thumb with a hammer). We can model this idea
as follows. First, for any positive number ε consider the pulse δε defined by

δε(t)= 1

ε
[H(t)− H(t − ε)].

This pulse, which is graphed in Figure 3.22, has magnitude (height) of 1/ε and dura-
tion of ε. The Dirac delta function is thought of as a pulse of infinite magnitude over an
infinitely short duration and is defined to be

δ(t)= lim
ε→0+

δε(t).

 1/ε

δε(t)

ε t

FIGURE 3.22 δε(t)
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This is not a function in the conventional sense but is a more general object called a distribution.
For historical reasons, it continues to be known as the Dirac function after the Nobel laureate
physicist P.A.M. Dirac. The shifted delta function δ(t − a) is zero except for t = a, where it has
an infinite spike.

To take the Laplace transform of the delta function, begin with

δε(t − a)= 1

ε
[H(t − a)− H(t − a − ε)].

This has transform

L[δε(t − a)] = 1

ε

[
1

s
e−as − 1

s
e−(a+ε)s

]

= e−as(1 − e−εs)

εs
,

suggesting that we define

L[δ(t − a)] = lim
ε→0+

e−as(1 − e−εs)

εs
= e−as .

In particular, we can choose a = 0 to get

L[δ(t)] = 1.

The following result is called the filtering property of the delta function. Suppose at time t = a a
signal is impacted with an impulse by mutliplying the signal by δ(t − a), and the resulting signal
is then summed over all positive time by integrating it from zero to infinity. We claim that this
yields exactly the value f (a) of the signal at time a.

THEOREM 3.6 Filtering Property of the Delta Function

Let a> 0 and let
∫ ∞

0
f (t)dt converge. Suppose also that f is continuous at a. Then

∫ ∞

0

f (t)δ(t − a)dt = f (a). �

A proof is outlined in Problem 9.
If we apply the filtering property to f (t)= e−st , we get

∫ ∞

0

e−stδ(t − a)dt = e−as,

which is consistent with the definition of the Laplace transform of the delta function. Now change
notation in the filtering property, and write it as

∫ ∞

0

f (τ )δ(t − τ)dτ = f (t).

We recognize the convolution of f with δ . The last equation becomes

f ∗ δ= f.

The delta function therefore acts as an identity for the “product” defined by convolution.
In using the Laplace transform to solve an initial value problem involving the delta function,

proceed as we have been doing, except that now we must use the transform of the delta function.
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EXAMPLE 3.17

We will solve

y ′′ + 2y ′ + 2y = δ(t − 3); y(0)= y ′(0)= 0.

Apply the transform to the differential equation to get

s2Y (s)+ 2sY (s)+ 2Y (s)= e−3s,

so

Y (s)= 1

s2 + 2s + 2
e−3s .

The solution is the inverse transform of Y (s). To compute this, first write

Y (s)= 1

(s + 1)2 + 1
e−3s .

Because L−1[1/(s2 + 1)] = sin(t), a shift in the s− variable gives us

L−1

[
1

(s + 1)2 + 1

]

= e−t sin(t).

Now shift in the t− variable to obtain

y(t)= H(t − 3)e(t−3) sin(t − 3).

Figure 3.23 is a graph of this solution. �

100

0

50

–50

–150

–100

t
8642

FIGURE 3.23 Graph of the solution in Example
3.17.
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Transients can be generated in a circuit during switching and can be harmful because they
contain a broad spectrum of frequencies. If one of these is near the natural frequency of the
system, introducing the transient can cause resonance to occur, resulting in oscillations large
enough to cause damage. For this reason, engineers sometimes use a delta function to model a
transient and study its effect on a circuit being designed.

EXAMPLE 3.18

Suppose the current and charge on the capacitor in the circuit of Figure 3.24 are zero at time
zero. We want to describe the output voltage response to a transient modeled by δ(t). The output
voltage is q(t)/C , so we will determine q(t). By Kirchhoff’s voltage law,

Li ′ + Ri + 1

C
q = i ′ + 10i + 100q = δ(t).

Since i ′ = q , then

q ′′ + 10q ′ + 100q = δ(t).
Assume the initial conditions q(0)= q ′(0)= 0. Apply the transform to the initial value problems
to get

s2 Q(s)+ 10sQ(s)+ 100Q(s)= 1.

Then

Q(s)= 1

s2 + 10s + 100
= 1

(s + 5)2 + 75
.

The last expression is preparation for shifting in the s− variable. Since

L−1

[
1

s2 + 75

]

= 1

5
√

3
sin(5

√
3t),

then

q(t)=L−1

[
1

(s + 5)2 + 75

]

= 1

5
√

3
e−5t sin(5

√
3t).

The output voltage is

1

C
q(t)= 100q(t)= 20√

3
e−5t sin(5

√
3t).

A graph of this output voltage is given in Figure 3.25. The circuit output displays damped
oscillations at its natural frequency even though it was not explicitly forced by oscillation of this
frequency. �

0.01 F

10 Ω1 H

FIGURE 3.24 Circuit of Example 3.18 with
Ein(t)= δ(t).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:14 THM/NEIL Page-106 27410_03_ch03_p77-120

106 CHAPTER 3 The Laplace Transform

5

3

–1

4

2

0

1

t
21.510.5

FIGURE 3.25 Graph of the output voltage in
Example 3.18.

SECTION 3.5 PROBLEMS

In each of Problems 1 through 5, solve the initial value
problem and graph the solution.

1. y ′′ + 5y ′ + 6y =3δ(t − 2)− 4δ(t − 5); y(0)= y ′(0)=0

2. y ′′ − 4y ′ + 13y = 4δ(t − 3); y(0)= y ′(0)= 0

3. y ′′′ + 4y ′′ + 5y ′ + 2y = 6δ(t); y(0)= y ′(0)= y ′′(0)= 0

4. y ′′ + 16y ′ = 12δ(t − 5π/8); y(0)= 3, y ′(0)= 0

5. y ′′ + 5y ′ + 6y = Bδ(t); y(0)= 3, y ′(0)= 0

6. An object of mass m is attached to the lower end of a
spring of modulus k. Assume that there is no damping.
Derive and solve an equation of motion for the object,
assuming that at time zero it is pushed down from the
equilibrium position with an initial velocity v0. With
what momentum does the object leave the equilibrium
position?

7. Suppose, in the setting of Problem 6, the object is struck
a downward blow of magnitude mv0 at time 0. How

does the position of this object compare with that of the
object in Problem 6 at any positive time t?

8. A 2 pound weight is attached to the lower end of a
spring, stretching it 8/3 inches. The weight is allowed
to come to rest in the equilibrium position. At some
later time, which we call time 0, the weight is struck a
downward blow of magnitude 1/4 pound (an impulse).
Assume no damping in the system. Determine the
velocity with which the weight leaves the equilibrium
position as well as the frequency and magnitude of the
oscillations.

9. Prove the filtering property of the delta function (The-
orem 3.6). Hint: Replace δ(t − a) with

lim
ε→0

1

ε
(H(t − a − ε)− H(t − a))

in the integral and interchange the limit and the integral.

3.6 Solution of Systems

Physical systems, such as circuits with multiple loops, may be modeled by systems of linear
differential equations. These are often solved using the Laplace transform (and later by matrix
methods).

We will illustrate the idea with a system having no particular significance, then look at a
problem in mechanics and one involving a circuit.
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EXAMPLE 3.19

We will solve the system (with initial conditions):

x ′′ − 2x ′ + 3y ′ + 2y = 4,

2y ′ − x ′ + 3y = 0,

x(0)= x ′(0)= y(0)= 0.

Apply the transform to each equation of the system, making use of the initial conditions, to
obtain

s2 X − 2sX + 3sY + 3Y = 4

s
,

2sY − sX + 3Y = 0.

Solve these for X (s and Y (s):

X (s)= 4s + 6

s2(s + 2)(s − 1)
and Y (s)= 2

s(s + 2)(s − 1)
.

Use partial fractions to write

X (s)=−7

2

1

s
− 3

1

s2
+ 1

6

1

s + 2
+ 10

3

1

s − 1

and

Y (s)=−1

s
+ 1

3

1

s + 2
+ 2

3

1

s − 1
.

Then

x(t)=−7

2
− 3t + 1

6
e−2t + 10

3
et

and

y(t)=−1 + 1

3
e−2t + 2

3
et . �

EXAMPLE 3.20

Figure 3.26 shows a mass/spring system. Let x1 = x2 = 0 at the equilibrium position, where the
weights are at rest. Choose the direction to the right as positive, and suppose the weights are at
x1(t) and x2(t) at time t .

By two applications of Hooke’s law, the restoring force on m1 is

−k1x1 + k2(x2 − x1)

and that on m2 is

−k2(x2 − x1)− k3x2.

k1 k2 k3

m1 m2

FIGURE 3.26 Mass-spring system of Example 3.20.
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By Newton’s second law,

m1x
′′
1 =−(k1 + k2)x1 + k2x2 + f1(t)

and

m2x
′′
2 (t)= k2x1 − (k2 + k3)x2 + f2(t),

where f1(t) and f2(t) are forcing functions. We have assumed here that damping is negligible.
As a specific example, let

m1 = m2 = 1, k1 = k3 = 4, k2 = 5/2.

Also suppose f2(t)= 0 and f1(t)= 2(1 − H(t − 3)). This acts on the first mass with a force of
constant magnitude 2 for the first three seconds, then turns off. Now the system is

x ′′
1 =−13

2
x1 + 5

2
x2 + 2[1 − H(t − 3)]

x ′′
2 = 5

2
x1 − 13

2
x2.

Suppose the masses are initially at rest in the equilibrium position:

x1(0)= x2(0)= x ′
1(0)= x ′

2(0)= 0.

Apply the transform to the system to obtain

s2 X1 =−13

2
X1 + 5

2
X2 + 2(1 − e−3s)

s

s2 X2 = 5

2
X1 − 13

2
X2.

Solve these to obtain

X1(s)= 2

(s2 + 9)(s2 + 4)

(

s2 + 13

2

)
1

s
(1 − e−3s)

= 13

36

1

s
− 1

4

s

s2 + 4

− 1

9

s

s2 + 9
− 13

36

1

s
e−3s

+ 1

4

s

s2 + 4
e−3s + 1

9

s

s2 + 9
e−3s

and

X2(s)= 5

36

1

s
− 1

4

s

s2 + 4

+ 1

9

s

s2 + 9
− 5

36

1

s
e−3s

+ 1

4

s

s2 + 4
e−3s − 1

9

s

s2 + 9
e−3s .

Apply the inverse transform to obtain

x1(t)= 13

36
− 1

4
cos(2t)− 1

9
cos(3t)

+
[

−13

36
+ 1

4
cos(2(t − 3))− 1

9
cos(3(t − 3))

]

H(t − 3)
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and

x2(t)= 5

36
− 1

4
cos(2t)+ 1

9
cos(3t)

+
[

− 5

36
+ 1

4
cos(2(t − 3))− 1

9
cos(3(t − 3))

]

H(t − 3). �

The next example involves an electrical circuit and will require that we know how to take
the transform of a function defined by an integral. To see how to do this, suppose

f (t)=
∫ t

0

g(τ )dτ.

Then f (0)= 0, and assuming that g is continuous, f ′(t)= g(t), so

L[ f ′] =L[g] = sL
[∫ t

0

g(τ )dτ

]

.

But this means that

L
[∫ t

0

g(τ )dτ

]

= 1

s
L[g].

EXAMPLE 3.21

We will use this result to analyze the circuit of Figure 3.27.
Suppose the switch is closed at time zero. We want to solve for the current in each loop.

Assume that both loop currents and the charges on the capacitors are initially zero, and apply
Kirchhoff’s laws to each loop to obtain

40i1 + 120(q1 − q2)= 10

60i2 + 120q2 = 120(q1 − q2).

Since i = q ′, we can write

q(t)=
∫ t

0

i(τ )dτ + q(0).

40 Ω 60 Ω

1/120 F

1/120 F

10 V

FIGURE 3.27 Circuit in Example 3.21.
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Put these into the circuit equations to get

40i1 + 120
∫ t

0

(i1(τ )− i2(τ ))dτ

+ 120(q1(0)− q2(0))= 10,

60i2 + 120
∫ t

0

i2(τ )dτ + 120q2(0)

= 120
∫ t

0

(i1(τ )− i2(τ ))dτ + 120(q1(0)− q2(0)).

Setting q1(0)= q2(0)= 0 in this system, we obtain

40i1 + 120
∫ t

0

(i1(τ )− i2(τ ))dτ = 10

60i2 + 120
∫ t

0

i2(τ )dτ = 120
∫ t

0

(i1(τ )− i2(τ ))dτ.

Apply the transform to obtain

40I1 + 120

s
I1 − 120

s
I2 = 10

s

60I2 + 120

s
I2 = 120

s
I1 − 120

s
I2.

These can be written

(s + 3)I1 − 3I2 = 1

4

2I1 − (s + 4)I2 = 0.

Solve these to obtain

I1(s)= s + 4

4(s + 1)(s + 6)
= 3

20

1

s + 1
+ 1

10

1

s + 6
and

I2(s)= 1

2(s + 1)(s + 6)
= 1

10

1

s + 1
− 1

10

1

s + 6
.

Then

i1(t)= 3

20
e−t + 1

10
e−6t

and

i2(t)= 1

10
e−t − 1

10
e−6t . �

SECTION 3.6 PROBLEMS

In each of Problems 1 through 11, use the Laplace trans-
form to solve the initial value problem.

1. x ′ − 2y ′ = 1, x ′ + y − x = 0; x(0)= y(0)= 0

2. 2x ′ − 3y + y ′ = 0, x ′ + y ′ = t; x(0)= y(0)= 0

3. x ′ + 2y ′ − y = 1,2x ′ + y = 0; x(0)= y(0)= 0

4. x ′ + y ′ − x = cos(t), x ′ + 2y ′ = 0; x(0)= y(0)= 0

5. 3x ′ − y = 2t, x ′ + y ′ − y = 0; x(0)= y(0)= 0

6. x ′ + 4y ′ − y = 0, x ′ + 2y = e−t ; x(0)= y(0)= 0

7. x ′ + 2x − y ′ = 0, x ′ + y + x = t2; x(0)= y(0)= 0

8. x ′ + 4x − y = 0, x ′ + y ′ = t; x(0)= y(0)= 0

9. x ′ + y ′ + x − y = 0, x ′ + 2y ′ + x = 1; x(0)= y(0)= 0

10. x ′ + 2y ′ − x = 0,4x ′ + 3y ′ + y =−6; x(0)= y(0)= 0
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11. y ′
1 − 2y ′

2 + 3y1 = 0
y1 − 4y ′

2 + 3y ′
3 = t

y1 − 2y ′
2 + 3y ′

3 = −1
y1(0)= y2(0)= y3(0)= 0

12. Solve for the currents in the circuit of Figure 3.28
assuming that the currents and charges are initially
zero and that E(t)= 2H(t − 4)− H(t − 5).

E(t)

2 Ω

3 Ω

1 Ω

4 Ω
5 H 

i2i1

FIGURE 3.28 Circuit in Problems 12 and 13,
Section 3.6.

13. Solve for the currents in the circuit of Figure 3.28 if
the currents and charges are initially zero and E(t)=
1 − H(t − 4) sin(2(t − 4)).

14. Solve for the displacement functions of the masses
in the system of Figure 3.29. Neglect damping and
assume zero initial displacements and velocities and
external forces f1(t)= f2(t)= 0.

k1 = 

m1 = 1

k2 = 2

m2 = 1

k3 = 3

6

FIGURE 3.29 Mass/spring
system in Problems 14
and 15, Section 3.6.

15. Solve for the displacement functions in the system of
Figure 3.29 if

f1(t)= 1 − H(t − 2), f2(t)= 0

and the initial displacements and velocities are zero.

16. Consider the system of Figure 3.30. Let M be sub-
jected to a periodic driving force f (t) = A sin(ωt).
The masses are initially at rest in the equilibrium
position.

M mk2  

k1

y1 y2

FIGURE 3.30 Mass/spring system in
Problem 16, Section 3.6.

(a) Derive and solve the initial value problem for the
displacement functions for the masses.

(b) Show that, if m and k2 are chosen so that ω =√
k2/m, then the mass m cancels the forced vibra-

tions of M . In this case, we call m a vibration
absorber.

17. Two objects of masses m1 and m2 are attached to
opposite ends of a spring having spring constant k
(Figure 3.31). The entire apparatus is placed on a
highly varnished table. Show that, if the spring is
stretched and released from rest, the masses oscillate
with respect to each other with period

2π
√

m1m2

k(m1 + m2)
.

m1 m2
k

FIGURE 3.31 Mass/spring system in
Problem 17, Section 3.6.

18. Solve for the currents in the circuit of Figure 3.32 if
E(t)= 5H(t − 2) and the initial currents are zero.

E(t)

20 H 30 H 

10 Ω10 Ω

i2i1

FIGURE 3.32 Circuit of Problem 18, Section 3.6.
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3 gal/min

2 gal/min5 gal/min

2 gal/min

1/6 lb/gal

1 2

FIGURE 3.33 System of tanks in Problem 20, Section 3.6.

3 gal/min

1 gal/min4 gal/min2 gal/min

3 gal/min

1 2

FIGURE 3.34 System of tanks in Problem 21, Section 3.6.

19. Solve for the currents in the circuit of Figure 3.32 if
E(t)= 5δ(t − 1).

20. Two tanks are connected by a series of pipes as shown
in Figure 3.33. Tank 1 initially contains 60 gallons
of brine in which 11 pounds of salt are dissolved.
Tank 2 initially contains 7 pounds of salt dissolved
in 18 gallons of brine. Beginning at time zero, a mix-
ture containing 1/6 pound of salt for each gallon of
water is pumped into tank 1 at the rate of 2 gallons
per minute, while salt water solutions are interchanged
between the two tanks and also flow out of tank 2 at
the rates shown in the diagram. Four minutes after
time zero, salt is poured into tank 2 at the rate of
11 pounds per minute for a period of 2 minutes.

Determine the amount of salt in each tank for any
time t ≥ 0.

21. Two tanks are connected by a series of pipes as shown
in Figure 3.34. Tank 1 initially contains 200 gallons of
brine in which 10 pounds of salt are dissolved. Tank
2 initially contains 5 pounds of salt dissolved in 100
gallons of water. Beginning at time zero, pure water is
pumped into tank 1 at the rate of 3 gallons per minute,
while brine solutions are interchanged between the
tanks at the rates shown in the diagram. Three min-
utes after time zero, 5 pounds of salt are dumped into
tank 2. Determine the amount of salt in each tank for
any time t ≥ 0.

3.7 Polynomial Coefficients

3.7.1 Differential Equations with Polynomial Coefficients

If a differential equation has polynomial coefficients, we can use the Laplace transform if we
know how to take the transform of a function of the form t n f (t). Begin with the case n = 1.
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THEOREM 3.7

Let f (t) have Laplace transform F(s) for s> b, and assume that F(s) is differentiable. Then

L[t f (t)](s)=−F ′(s)

for s> b. �
Thus the transform of t f (t) is the negative of the derivative of the transform of f (t).

Proof Differentiate under the integral sign:

F ′(s)= d

ds

∫ ∞

0

e−st f (t)dt

=
∫ ∞

0

d

ds
(e−st f (t))dt

=
∫ ∞

0

−te−st f (t)dt

=
∫ ∞

0

e−st(−t f (t))dt =L[−t f (t)](s). �

An induction argument yields the general result

L[t n f (t)](s)= (−1)n
dn

dsn
F(s)

if F(s) can be differentiated n times. �
We will also have use of the fact that, under certain conditions, the transform of f (t) has

limit 0 as s → ∞.

THEOREM 3.8

Let f be piecewise continuous on [0, k] for every positive number k. Suppose there are numbers
M and b such that | f (t)| ≤ Mebt for t ≥ 0. Then,

lim
s→∞

F(s)= 0. �

Proof Write

|F(s)| =
∣
∣
∣
∣

∫ ∞

0

e−st f (t)dt

∣
∣
∣
∣

≤
∫ ∞

0

e−st Mebt dt

= M

b − s
e−(s−b)t

]∞

0

= M

s − b
→ 0

as s → ∞. �

EXAMPLE 3.22

We will solve

y ′′ + 2t y ′ − 4y = 1; y(0)= y ′(0)= 0.
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Apply the Laplace transform to the differential equation to get

s2Y (s)− sy(0)− y ′(0)+ 2L[t y ′](s)− 4Y (s)= 1

s
.

Now y(0)= y ′(0)= 0, and

L[t y ′](s)=− d

ds

[L[y ′](s)]

=− d

ds
(sY (s)− y(0))=−Y (s)− sY ′(s).

The transformed differential equation is therefore

s2Y (s)− 2Y (s)− 2sY ′(s)− 4Y (s)= 1

s
or

Y ′ +
(

3

s
− s

2

)

Y =− 1

2s2
.

This is a linear first order differential equation for Y . To find an integrating factor, first compute
∫ (

3

s
− s

2

)

ds = 3 ln(s)− 1

4
s2.

The exponential of this function is a integrating factor. This is

e3 ln(s)−s2/4

or s3e−s24. Multiply the differential equation for Y by this to obtain

(s3e−s2/4Y )′ =−1

2
se−s2/4.

Then

s3e−s2/4Y = e−s2/4 + c.

Then

Y (s)= 1

s3
+ c

s3
es2/4.

In order to have lims→0 Y (s)= 0, choose c = 0, obtaining Y (s)= 1/s3. The solution is

y(t)= 1

2
t 2. �

3.7.2 Bessel Functions

If n is a nonnegative integer, the differential equation

t 2 y ′′ + t y ′ + (t 2 − n2)y = 0

is called Bessel’s equation of order n.

This is usually considered for t ≥ 0. Bessel’s equation is second order, and the phrase order
n refers to the parameter n in the coefficient of y. Solutions of Bessel’s equation are called
Bessel functions of order n, and they occur in many settings, including diffusion processes, flow
of alternating current, and astronomy. Bessel functions and some applications are developed in
detail in Section 15.3.
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We will use the Laplace transform to derive solutions of Bessel’s equation. Consider first the
case n = 0. Bessel’s equation of order zero is

t y ′′ + y ′ + t y = 0.

Apply L to obtain

L[t y ′′] +L[y ′] +L[t y] = 0.

Then

− d

ds

(
s2Y (s)− sy(0)− y ′(0)

)+ sY (s)− y(0)+ d

ds
(sY (s)− y(0))= 0.

This is

−2sY − s2Y ′ + sY − Y ′ = 0

or

−sY − (1 + s2)Y ′ = 0.

This is a separable differential equation for Y . Write

Y ′

Y
=− s

1 + s2
.

Integrate to obtain

ln |Y | =−1

2
ln(1 + s2)+ c = ln((1 + s2)−1/2)+ c.

Take the exponential of both sides of this equation to write

Y (s)= ec(1 + s2)−1/2 = C√
1 + s2

in which C = ec is constant. We have to invert this. First rewrite

Y (s)= C

s

(

1 + 1

s2

)−1/2

.

The reason for doing this is to invoke the binomial series, which in general has the form

(1 + x)k = 1 + kx + k(k − 1)

2! x2

+ k(k − 1)(k − 2)

3! x2 + · · ·

=
∞∑

m=0

(
k

m

)

xm for |x |< 1.

Here

(
k

m

)

=
{

1 for m = 0,
k(k−1)···(k−m+1)

m! for m = 1,2, · · · .
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This is an infinite series if k is not a positive integer. Now set k = −1/2 and x = 1/s2 in the
binomial series. For s> 1, this gives us

Y (s)= C

s

(

1 + 1

s2

)−1/2

= C

s

(

1 − 1

2

1

s2
+ (1)(3)

222!
1

s4
+ · · ·

)

= C
∞∑

m=0

(−1)m(2m)!
(2mm!)2

1

s2m+1
.

Then

y(t)= C
∞∑

m=0

(−1)m(2m)!
(2mm!)2 L−1

(
1

s2m+1

)

= C
∞∑

m=0

(−1)m(2m)!
(2mm!)2

t 2m

(2m)!

= C
∞∑

m=0

(−1)m

(2mm!)2 t 2m .

If we impose the condition y(0)=1, then C =1, and we have the solution called the Bessel
function of the first kind of order zero:

J0(t)=
∞∑

m=0

(−1)m

(2mm!)2 t 2m .

We will now solve Bessel’s equation of any positive integer order n. Bessel’s equation is

t 2 y ′′ + t y ′ + (t 2 − n2)y = 0.

Change variables by setting

y(t)= t−nw(t).

Compute y ′ and y ′′, substitute into Bessel’s equation, and carry out some routine algebra to obtain

tw′′ + (1 − 2n)w′ + tw= 0.

Now apply the Laplace transform to obtain

− d

ds

(
s2W − sw(0)−w′(0)

)+ (1 − 2n)(sW −w(0))− d

ds
W = 0.

After carrying out these differentiations, we obtain

(−1 − s2)W ′ + (−2s + (1 − 2n)s)W +w(0)− (1 − 2n)w(0)= 0.

We will seek a solution satisfying w(0)= 0, so this equation becomes

(1 + s2)W ′ + (1 + 2n)sW = 0.

This is separable. Write

W ′

W
=− (2n + 1)s

1 + s2
.
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Integrate to obtain

ln |W | =−2n + 1

2
ln(1 + s2)= ln

(
(1 + s2)−(2n+1)/2

)
.

Here we have chosen the constant of integration to be zero to obtain a particular solution. Then

W (s)= (1 + s2)−(2n+1)/2.

We must invert W (s) to obtain w(t) and finally y(t). To carry out this inversion, write

W (s)= 1

s2n+1

(

1 + 1

s2

)−(2n+1)/2

and use the binomial expansion to obtain

W (s)= 1

s2n+1

(

1 − 2n + 1

2

1

s2
+ 1

2!
−2n − 1

2

−2n − 3

2

1

s4

+ 1

3!
−2n − 1

2

−2n − 3

2

−2n − 5

2

1

s4

1

s6
+ · · ·

)

.

Then

W (s)= 1

s2n+1
− 2n + 1

2

1

s2n+3

+ (2n + 1)(2n + 3)

2(2)(2!)
1

s2n+5

− (2n + 1)(2n + 3)(2n + 5)

2(2)(2)(3!)
1

s2n+7
+ · · · .

Now we can invert this series term by term to obtain

w(t)= 1

(2n)! t
2n − 2n + 1

2

t 2(n+1)

(2(n + 1))!
+ (2n + 1)(2n + 3)

2(2)(2!)
t 2(n+2)

(2(n + 2))!
− (2n + 1)(2n + 3)(2n + 5)

2(2)(2)(3!)
t 2(n+3)

(2(n + 3))! + · · · .
Finally recall that y = t−nw to obtain the solution

y(t)= t−nw(t)= 1

(2n)! t
n − 2n + 1

2(2(n + 1))! t
n+2

+ (2n + 1)(2n + 3)

2(2)(2!)((2(n + 2))!) t
n+4

− (2n + 1)(2n + 3)(2n + 5)

2(2)(2)(3!)(2(n + 3))! t n+6 + · · ·

=
∞∑

k=0

(−1)k

22k+nk!(n + k)! t
n+2k = Jn(t).

This is the Bessel function of the first kind of order n, usually denoted Jn(t) with the choice of
constant made in the integration of the separated variables.

In Section 15.3, we will derive Bessel functions Jν(t) of arbitrary order ν and also second,
linearly independent solutions Yν(t) to write the general solution of Bessel’s equation of order ν.
We will also develop properties of Bessel functions that are needed for applications.
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SECTION 3.7 PROBLEMS

Solve each of the following problems using the Laplace
transform.

1. t2 y ′ − 2y = 2 Hint: First set u = 1/t .

2. y ′′ + 4t y ′ − 4y = 0; y(0)= 0, y ′(0)=−7

3. y ′′ − 16t y ′ + 32y = 0; y(0)= y ′(0)= 0

4. y ′′ + 8t y ′ − 8y = 0; y(0)= 0, y ′(0)=−4

5. t y ′′ + (t − 1)y ′ + y = 0; y(0)= 0

6. y ′′ + 2t y ′ − 4y = 6; y(0)= y ′(0)= 0

7. y ′′ + 8t y ′ = 0; y(0)= 4, y ′(0)= 0

8. y ′′ − 4t y ′ + 4y = 0; y(0)= 0, y ′(0)= 10

9. y ′′ − 8t y ′ + 16y = 3; y(0)= y ′(0)= 0

10. (1 − t)y ′′ + t y ′ − y = 0; y(0)= 3, y ′(0)=−1

11. Review the derivation of the solution of Bessel’s equa-
tion of order n for n a positive integer. Are any steps
taken that would prevent n being an arbitrary posi-
tive number, not necessarily an integer? Could n be
negative?

Appendix on Partial Fractions Decompositions

Partial fractions decomposition is an algebraic manipulation designed to write a quotient
P(x)/Q(x) of polynomials as a sum of simpler quotients, where simpler will be defined by
the process.

Let P have degree m and let Q have degree n and assume that n>m. If this is not the case,
divide Q into P . Assume that P and Q have no common roots, and that Q has been completely
factored into linear and/or irreducible quadratic factors. A factor is irreducible quadratic if it
is second degree with complex roots, hence it cannot be factored into linear factors with real
coefficients. An example of an irreducible quadratic factor is x2 + 4.

The partial fractions decomposition consisting of writing P(x)/Q(x) as a sum S(x) of
simpler quotients is given in the following rules.

1. If x − a is a factor of Q(x) but (x − a)2 is not, then include in S(x) a term of the form

A

x − a
.

2. If (x − a)k is a factor of Q(x) with k > 1 but (x − a)k+1 is not a factor, then include in
S(x) a sum of terms of the form

B1

x − a
+ B2

(x − a)2
+ · · ·+ Bk

(x − a)k
.

3. If ax2 + bx + c is an irreducible quadratic factor of Q(x) but no higher power is a factor
of Q(x), then include in S(x) a term of the form

Cx + D

ax2 + bx + c
.

4. If (ax2 + bx + c)k is a product of irreducible factors of Q(x) but (ax2 + bx + c)k+1 is not
a factor of Q(x), then include in S(x) a sum of terms of the form

C1x + D1

ax2 + bx + c
+ C2x + D2

(ax2 + bx + c)2
+ · · ·+ Ck x + Dk

(ax2 + bx + c)k
.

When each factor of Q(x) has contributed one or more terms to S(x) according to these
rules, we have an expression of the form

P(x)

Q(x)
= S(x),
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with the coefficients to be determined. One way to do this is to add the terms in S(x), set the
numerator of the resulting quotient equal to P(x), which is known, and solve for the coefficients
of the terms in S(x) by equating coefficients of like powers of x .

EXAMPLE 3.23

We will decompose

2x − 1

x3 + 6x2 + 5x − 12

into a sum of simpler fractions. First factor the denominator, then use the rules 1 through 4 to
write the form of a partial fractions decomposition:

2x − 1

x3 + 6x2 + 5x − 12
= 2x − 1

(x − 1)(x + 3)(x + 4)

= A

x − 1
+ B

x + 3
+ C

x + 4
.

Once we have this template, the rest is routine algebra. If the fractions on the right are added,
the numerator of the resulting quotient must equal 2x − 1, which is the numerator of the original
quotient. Therefore,

A(x + 3)(x + 4)+ B(x − 1)(x + 4)+ C(x − 1)(x + 3)= 2x − 1.

There are at least two ways we can find A, B, and C .
Method 1 Multiply the factors on the left and collect the coefficients of each power of x to
write

A(x2 + 7x + 12)+ B(x2 + 3x − 4)+ C(x2 + 2x − 3)

= (A + B + C)x2 + (7A + 3B + 2C)x + (12A − 4B − 3C)= 2x − 1.

Equate the coefficient of each power of x on the left to the coefficient of that power of x on the
right, obtaining a system of three linear equations in three unknowns:

A + B + C = 0 from the coefficients of x2,

7A + 3B + 2C = 2 from the coefficients of x,

and

12A − 4B − 3C =−1 from the constant term.

Solve these three equations obtaining A = 1/20, B = 7/4, and C =−9/5. Then

2x − 1

x3 + 6x2 + 5x − 12
= 1

20

1

x − 1
+ 7

4

1

x + 3
− 9

5

1

x + 4
.

Method 2 Begin with

A(x + 3)(x + 4)+ B(x − 1)(x + 4)+ C(x − 1)(x + 3)= 2x − 1,

and assign values of x that make it easy to determine A, B, and C . Put x = 1 to get 20A = 1,
so A = 1/20. Put x = −3 to get −4B = −7, so B = 7/4. And put x = −4 to get 5C = −9, so
C = −9/5. This yields the same result as method 1, but in this example, method 2 is probably
easier and quicker. �
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EXAMPLE 3.24

Decompose

x2 + 2x + 3

(x2 + x + 5)(x − 2)2

into partial fractions. First observe that x2 + x + 5 has complex roots and so is irreducible. Thus,
use the form

x2 + 2x + 3

(x2 + x + 5)(x − 2)2
= A

x − 2
+ B

(x − 2)2
+ Cx + D

x2 + x + 5
.

If we add the fractions on the right, the numerator must equal x2 + 2x + 3. Therefore,

A(x − 2)(x2 + x + 5)+ B(x2 + x + 5)+ (Cx + D)(x − 2)2 = x2 + 2x + 3.

Expand the left side, and collect terms to write this equation as

(A + C)x3 + (−A + B − 4C + D)x2 + (3A + B + 4C − 4D)x − 10A + 5B + 4D

= x2 + 2x + 3.

Equate coefficients of like powers of x to get

A + C = 0,

−A + B − 4C + D = 1,

3A + B + 4C − 4D = 2,

and

−10A + 5B + 4D = 3.

Solve these to obtain A = 1/11, B = 1,C = −1/11, and D = −3/11. The partial fractions
decomposition is

x2 + 2x + 3

(x2 + x + 5)(x − 2)2
= 1

11

1

x − 2
+ 1

(x − 2)2
− 1

11

x + 3

x2 + x + 5
. �
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CHAPTER 4
Series Solutions

POWER SERIES SOLUTIONS
FROBENIUS SOLUTIONS

Sometimes we can solve an initial value problem explicitly. For example, the problem

y ′ + 2y = 1; y(0)= 3

has the unique solution

y(x)= 1

2
(1 + 5e−2x).

This solution is in closed form, which means that it is a finite algebraic combination of elementary
functions (such as polynomials, exponentials, sines and cosines, and the like).

We may, however, encounter problems for which there is no closed form solution. For
example,

y ′′ + ex y = x2; y(0)= 4

has the unique solution

y(x)= e−ex
∫ x

0

ξ 2eeξ dξ + 4e−ex
.

This solution (while explicit) has no elementary, closed form expression.
In such a case, we might try a numerical approximation. However, we may also be able to

write a series solution that contains useful information. In this chapter, we will deal with two
kinds of series solutions: power series (Section 4.1) and Frobenius series (Section 4.2).

4.1 Power Series Solutions

A function f is called analytic at x0 if f (x) has a power series representation in some
interval (x0 − h, x0 + h) about x0. In this interval,

f (x)=
∞∑

n=0

an(x − x0)
n,

where the an’s are the Taylor coefficients of f (x) at x0:

an = 1

n! f (n)(x0).

121
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Here n! (n factorial) is the product of the integers from 1 through n if n is a positive integer,
and 0! = 1 by definition. The symbol f (n)(x0) denotes the nth derivative of f evaluated at x0. As
examples of power series representations, sin(x) expanded about 0 is

sin(x)=
∞∑

n=0

1

(2n + 1)! x
2n+1

for all x , and the geometric series is

1

1 − x
=

∞∑

n=0

xn

for −1< x < 1.
An initial value problem having analytic coefficients has analytic solutions. We will state

this for the first- and second-order cases when the differential equation is linear.

THEOREM 4.1

1. If p and q are analytic at x0, then the problem

y ′ + p(x)y = q(x); y(x0)= y0

has a unique solution that is analytic at x0.

2. If p, q , and f are analytic at x0, then the problem

y ′′ + p(x)y ′ + q(x)y = f (x); y(x0)= A, y ′(x0)= B

has a unique solution that is analytic at x0. �

We are therefore justified in seeking power series solutions of linear equations having ana-
lytic coefficients. This strategy may be carried out by substituting y =∑∞

n=0 an(x − x0)
n into the

differential equation and attempting to solve for the an
′s.

EXAMPLE 4.1

We will solve

y ′ + 2xy = 1

1 − x
.

We can solve this using an integrating factor, obtaining

y(x)= e−x2
∫ x

0

1

1 − ξ e−ξ2
dξ + ce−x2

.

This is correct, but it involves an integral we cannot evaluate in closed form. For a series
solution, let

y =
∞∑

n=0

anxn.

Then

y ′ =
∞∑

n=1

nanxn−1

with the summation starting at 1, because the derivative of the first term a0 of the
power series for y is zero. Substitute the series into the differential equation to obtain
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∞∑

n=1

nanxn−1 +
∞∑

n=0

2anxn+1 = 1

1 − x
. (4.1)

We would like to combine these series and factor out a common power of x to solve for the an’s.
To do this, write 1/(1 − x) as a power series about 0 as

1

1 − x
=

∞∑

n=0

xn

for −1< x < 1. Substitute this into equation (4.1) to obtain
∞∑

n=1

nanxn−1 +
∞∑

n=0

2anxn+1 =
∞∑

n=0

xn. (4.2)

Now rewrite the series so that they all contain powers xn . This is like a change of variables in the
summation index. First,

∞∑

n=1

nanxn−1 = a1 + 2a2x + 3a3x
2 + · · ·=

∞∑

n=0

(n + 1)an+1x
n,

and next,
∞∑

n=0

2anxn+1 = 2a0x + 2a1x
2 + 2a2x

3 + · · ·

=
∞∑

n=1

2an−1x
n.

Now equation (4.2) can be written as
∞∑

n=0

(n + 1)an+1x
n +

∞∑

n=1

2an−1x
n −

∞∑

n=0

xn = 0. (4.3)

These rearrangements allow us to combine these summations for n = 1,2, · · · and to write the
n = 0 terms separately to obtain

∞∑

n=1

((n + 1)an+1 + 2an−1 − 1)xn + a1 − 1 = 0. (4.4)

Because the right side of equation (4.4) is zero for all x in (−1,1), the coefficient of each power
of x on the left, as well as the constant term a1 − 1, must equal zero. This gives us

(n + 1)an+1 + 2an−1 − 1 = 0 for n = 1,2,3, · · ·
and

a1 − 1 = 0.

Then a1 = 1, and

an+1 = 1

n + 1
(1 − 2an−1) for n = 1,2,3, · · · .

This is a recurrence relation for the coefficients, giving an+1 in terms of a preceding coefficient
an−1. Now solve for some of the coefficients using this recurrence relation:

(n = 1) a2 = 1

2
(1 − 2a0),

(n = 2) a3 = 1

3
(1 − 2a1)=−1

3
,
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(n = 3) a4 = 1

4
(1 − 2a2)

= 1

4
(1 − 1 + 2a0)= 1

2
a0,

(n = 4) a5 = 1

5
(1 − 2a3)= 1

5
(1 + 2/3)= 1

3
,

(n = 5) a6 = 1

6
(1 − 2a4)= 1 − a0

6
,

(n = 6) a7 = 1

7
(1 − 2a5)= 1

21
,

and so on. With the coefficients computed thus far, the solution has the form

y(x)= a0 + x + 1

2
(1 − 2a0)x

2 − 1

3
x3

+ 1

2
a0x

4 + 1

3
x5

+ 1

6
(1 − a0)x

6 + 1

21
x7 + · · · .

This has one arbitrary constant, a0, as expected. By continuing to use the recurrence relation, we
can compute as many terms of the series as we like. �

EXAMPLE 4.2

We will find a power series solution of

y ′′ + x2 y = 0

expanded about x0 = 0.
Substitute y =∑∞

n=0 anxn into the differential equation. This will require that we compute

y ′ =
∞∑

n=1

nanxn−1and y ′′ =
∞∑

n=2

(n − 1)nanxn−2.

Substitute these power series into the differential equation to obtain
∞∑

n=2

(n − 1)nanxn−2 + x2

∞∑

n=0

anxn = 0

or
∞∑

n=2

n(n − 1)anxn−2 +
∞∑

n=0

anxn+2 = 0. (4.5)

We will shift indices so that the power of x in both summations is the same, allowing us to
combine terms from both summations. One way to do this is to write

∞∑

n=2

(n − 1)nanxn−2 =
∞∑

n=0

(n + 2)(n + 1)an+2x
n

and
∞∑

n=0

anxn+2 =
∞∑

n=2

an−2x
n.
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Now equation (4.5) is ∞∑

n=0

(n + 2)(n + 1)an+2x
n +

∞∑

n=2

an−2x
n = 0.

We can combine the terms for n ≥ 2 in one summation. This requires that we write the n = 0 and
n = 1 terms in the last equation separately, or else we lose terms:

2a2x
0 + 2(3)a3x +

∞∑

n=2

[(n + 2)(n + 1)an+2 + an−2]xn = 0.

The left side can be zero for all x in some interval (−h,h) only if the coefficient of each power
of x is zero:

a2 = a3 = 0

and

(n + 2)(n + 1)an+2 + an−2 = 0 for n ≥ 2.

The last equation gives us

an+2 =− 1

(n + 2)(n + 1)
an−2 for n = 2,3, · · · . (4.6)

This is a recurrence relation for the coefficients of the series solution, giving us a4 in terms of
a0, a5 in terms of a1, and so on. Recurrence relations always give a coefficient in terms of one
or more previous coefficients, allowing us to generate as many terms of the series solution as we
want. To illustrate, use n = 2 in equation (4.6) to obtain

a4 =− 1

(4)(3)
a0 =− 1

12
a0.

With n = 3,

a5 =− 1

(5)(4)
a1 =− 1

20
a1.

In turn, we obtain

a6 =− 1

(6)(5)
a2 = 0

because a2 = 0,

a7 =− (7)(6)
a 3

= 0

because a3 = 0,

a8 =− 1

(8)(7)
a4 = 1

(56)(12)
a0 = 1

672
a0,

a9 =− 1

(9)(8)
a5 = 1

(72)(20)
a1 = 1

1440
a1,

and so on. Thus far, we have the first few terms of the series solution about 0:

y(x)= a0 + a1x + 0x2 + 0x3 − 1

12
a0x

4

− 1

20
a1x

5 + 0x6 + 0x7 + 1

672
x8 + 1

1440
x9 + · · ·
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= a0

(

1 − 1

12
x4 + 1

672
x8 + · · ·

)

+ a1

(

x − 1

20
x5 + 1

1440
x9 + · · ·

)

.

This is the general solution, since a0 and a1 are arbitrary constants. Because a0 = y(0) and
a1 = y ′(0), a unique solution is determined by specifying these two constants. �

SECTION 4.1 PROBLEMS

In each of Problems 1 through 10, find the recurrence rela-
tion and use it to generate the first five terms of a power
series solution about 0.

1. y ′ − xy = 1 − x

2. y ′ − x3 y = 4

3. y ′ + (1 − x2)y = x

4. y ′′ + 2y ′ + xy = 0

5. y ′′ − xy ′ + y = 3

6. y ′′ + xy ′ + xy = 0

7. y ′′ − x2 y ′ + 2y = x

8. y ′ + xy = cos(x)

9. y ′′ + (1 − x)y ′ + 2y = 1 − x2

10. y ′′ + xy ′ = 1 − ex

4.2 Frobenius Solutions

We will focus on the differential equation

P(x)y ′′ + Q(x)y ′ + R(x)y = F(x). (4.7)

If P(x) �= 0 on some interval, then we can divide by P(x) to obtain the standard form

y ′′ + p(x)y ′ + q(x)y = f (x). (4.8)

If P(x0)= 0, we call x0 a singular point of equation (4.7). This singular point regular if

(x − x0)
Q(x)

P(x)
and (x − x0)

2 R(x)

P(x)

are analytic at x0. A singular point that is not regular is an irregular singular point.

EXAMPLE 4.3

x3(x − 2)2 y ′′ + 5(x + 2)(x − 2)y ′ + 3x2 y = 0

has singular points at 0 and 2. Now

(x − 0)
Q(x)

P(x)
= 5x(x + 2)(x − 2)

x3(x − 2)2
= 5

x2

(
x + 2

x − 2

)

is not analytic (or even defined) at 0, so 0 is an irregular singular point. But

(x − 2)
Q(x)

P(x)
= 5(x + 2)

x3
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and

(x − 2)2
R(x)

P(x)
= 3

x

are both analytic at 2, so 2 is a regular singular point of this differential equation. �

We will not treat the case of an irregular singular point. If equation (4.7) has a regular
singular point at x0, there may be no power series solution about x0, but there will be a Frobenius
series solution, which has the form

y(x)=
∞∑

n=0

cn(x − x0)
n+r

with c0 �= 0. We must solve for the coefficients cn and a number r to make this series a solution.
We will look at an example to get some feeling for how this works and then examine the method
more critically.

EXAMPLE 4.4

Zero is a regular singular point of

x2 y ′′ + 5xy ′ + (x + 4)y = 0.

Substitute y =∑∞
n=0 cnxn+r to obtain

∞∑

n=0

(n + r)(n + r − 1)cnxn+r−2 +
∞∑

n=0

5(n + r)cnxn+r

+
∞∑

n=0

cnxn+r+1 +
∞∑

n=0

4cnxn+r = 0.

Notice that the n = 0 term in the proposed series solution is c0xr , which is not constant if c0 �= 0,
so the series for the derivatives begins with n = 0 (unlike what we saw with power series). Shift
indices in the third summation to write this equation as

∞∑

n=0

(n + r)(n + r − 1)cnxn+r−2 +
∞∑

n=0

5(n + r)cnxn+r

+
∞∑

n=1

cn−1x
n+r +

∞∑

n=0

4cnxn+r = 0.

Combine terms to write

[r(r − 1)+ 5r + 4]c0x
r

+
∞∑

n=1

[(n + r)(n + r − 1)cn + 5(n + r)cn + cn−1 + 4cn]xn+r = 0.

Since we require that c0 �= 0, the coefficient of xr is zero only if

r(r − 1)+ 5r + 4 = 0.

This is called the indicial equation and is used to solve for r , obtaining the repeated root r =−2.
Set the coefficient of xn+r in the series equal to zero to obtain

(n + r)(n + r − 1)cn + 5(n + r)cn + cn−1 + 4cn = 0
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or, with r =−2,

(n − 2)(n − 3)cn + 5(n − 2)cn + cn−1 + 4cn = 0.

From this we obtain the recurrence relation

cn =− 1

(n − 2)(n − 3)+ 5(n − 2)+ 4
cn−1 for n = 1,2, · · · .

This simplifies to

cn =− 1

n2
cn−1 for n = 1,2, · · · .

Solve for some coefficients:
c1 =−c0

c2 =−1

4
c1 = 1

4
c0 = 1

22
c0

c3 =−1

9
c2 =− 1

(2 · 3)2
c0

c4 =− 1

16
c3 = 1

(2 · 3 · 4)2
c0

and so on. In general,

cn = (−1)n
1

(n!)2 c0

for n = 1,2,3, · · · . We have found the Frobenius solution

y(x)= c0

[

x−2 − x−1 + 1

4
− 1

36
x + 1

576
x2 + · · ·

]

= c0

∞∑

n=0

(−1)n
1

(n!)2 xn−2

for x �= 0. This series converges for all nonzero x . �

Usually, we cannot expect the recurrence equation for cn to have such a simple form.
Example 4.4 shows that an equation with a regular singular point may have only one

Frobenius series solution about that point. A second, linearly independent solution is needed. The
following theorem tells us how to produce two linearly independent solutions. For convenience,
the statement is posed in terms of x0 = 0.

THEOREM 4.2

Suppose 0 is a regular singular point of

P(x)y ′′ + Q(x)y ′ + R(x)y = 0.

Then

(1) The differential equation has a Frobenius solution

y(x)=
∞∑

n=0

cnxn+r

with c0 �= 0. This series converges in some interval (0,h) or (−h,0).
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Suppose that the indicial equation has real roots r1 and r2 with r1 ≥ r2. Then the following
conclusions hold.

(2) If r1 − r2 is not a positive integer, then there are two linearly independent Frobenius
solutions

y1(x)=
∞∑

n=0

cnxn+r1 and y2(x)=
∞∑

n=0

c∗
nxn+r2

with c0 �= 0 and c∗
0 �= 0. These solutions are valid at least in an interval (0,h) or (−h,0).

(3) If r1 − r2 = 0, then there is a Frobenius solution

y1(x)=
∞∑

n=0

cnxn+r1

with c0 �= 0, and there is a second solution

y2(x)= y1 ln(x)+
∞∑

n=1

c∗
nxn+r1 .

These solutions are linearly independent on some interval (0,h).

(4) If r1 − r2 is a positive integer, then there is a Frobenius solution

y1(x)=
∞∑

n=0

cnxn+r1 .

with c0 �= 0, and there is a second solution

y2(x)= ky1(x) ln(x)+
∞∑

n=0

c∗
nxn+r2

with c∗
0 �= 0. y1 and y2 are linearly independent solutions on some interval (0,h). �

The method of Frobenius consists of using Frobenius series and Theorem 4.2 to solve equa-
tion (4.7) in some interval (−h,h), (0,h), or (−h,0), assuming that 0 is a regular singular point.
Proceed as follows:

Step 1. Substitute y =∑∞
n=0 cnxn+r into the differential equation, and solve for the roots r1 and

r2 of the indicial equation for r . This yields a Frobenius solution (which may or may not
be a power series).

Step 2. Depending on which of Cases (2), (3), or (4) of Theorem 4.2 applies, the theorem pro-
vides a template for a second solution which is linearly independent from the first.
Once we know what this second solution looks like, we can substitute its general
form into the differential equation and solve for the coefficients and, in Case (4), the
constant k.

We will illustrate the Cases (2), (3), and (4) of the Frobenius theorem. For case (2), Exam-
ple 4.5, we will provide all of the details. In Cases (3) and (4) (Examples 4.6, 4.7, and 4.8), we
will omit some of the calculations and include just those that relate to the main point of that
case.
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EXAMPLE 4.5 Case 2 of the Frobenius Theorem

We will solve

x2 y ′′ + x

(
1

2
+ 2x

)

y ′ +
(

x − 1

2

)

y = 0.

It is routine to check that 0 is a regular singular point. Substitute the Frobenius series y =∑∞
n=0 cnxn+r to obtain

∞∑

n=0

(n + r)(n + r − 1)cnc
n+r−2 +

∞∑

n=0

1

2
(n + r)cnxn+r +

∞∑

n=0

2(n + r)xn+r+1

+
∞∑

n=0

cnxn+r+1 −
∞∑

n=0

1

2
cnxn+r = 0.

In order to be able to factor xn+r from most terms, shift indices in the third and fourth summations
to write this equation as

∞∑

n=1

[

(n + r)(n + r − 1)cn + 1

2
(n + r)cn + 2(n + r − 1)cn−1 + cn−1 − 1

2
cn

]

xn+r

+
[

r(r − 1)c0 + 1

2
c0r − 1

2
c0

]

xr = 0.

This equation will hold if the coefficient of each power of x is zero:
[

r(r − 1)+ 1

2
r − 1

2

]

c0 = 0 (4.9)

and for n = 1,2,3, · · · ,

(n + r)(n + r − 1)cn + 1

2
(n + r)cn + 2(n + r − 1)cn−1 + cn−1 − 1

2
cn = 0. (4.10)

Assuming that c0 �= 0, an essential requirement of the method, equation (4.9) implies that

r(r − 1)+ 1

2
r − 1

2
= 0. (4.11)

This is the indicial equation for this differential equation. It has the roots r1 = 1 and r2 = −1/2.
This puts us in case 2 of the Frobenius theorem. From equation (4.10), we obtain the recurrence
relation

cn =− 1 + 2(n + r − 1)

(n + r)(n + r − 1)+ 1
2
(n + r)− 1

2

cn−1

for n = 1,2,3, · · · .
First put r1 = 1 into the recurrence relation to obtain

cn =− 2n + 1

n
(
n + 3

2

)cn−1

for n = 1,2,3, · · · .
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Some of these coefficients are

c1 =− 3

5/2
c0 =−6

5
c0,

c2 =−5

7
c1 =−5

7

(

−6

5
c0

)

= 6

7
c0,

c3 =− 7

27/2
c2 =−14

27

(
6

7
c0

)

=−4

9
c0,

and so on. One Frobenius solution is

y1(x)= c0

(

x − 6

5
x2 + 6

7
x3 − 4

9
x4 + · · ·

)

.

Because r1 is a nonnegative integer, this first Frobenius series is actually a power series about 0.
For a second Frobenius solution, substitute r = r2 = −1/2 into the recurrence relation. To

avoid confusion with the first solution, we will denote the coefficients c∗
n instead of cn . We obtain

c∗
n =− 1 + 2

(
n − 3

2

)

(
n − 1

2

) (
n − 3

2

)+ 1
2

(
n − 1

2

)− 1
2

c∗
n−1

for n = 1,2,3, · · · . This simplifies to

c∗
n =− 2n − 2

n
(
n − 3

2

)c∗
n−1

for n = 1,2,3, · · · . It happens in this example that c∗
1 = 0, so each c∗

n = 0 for n = 1,2,3, · · · , and
the second Frobenius solution is

y2(x)=
∞∑

n=0

c∗
nxn−1/2 = c∗

0x−1/2

for x > 0. �

EXAMPLE 4.6 Case 3 of the Frobenius Theorem

We will solve

x2 y ′′ + 5xy ′ + (x + 4)y = 0.

In Example 4.5, we found the indicial equation

r(r − 1)+ 5r + 4 = 0

with repeated root r1 = r2 =−2 and the recurrence relation

cn =− 1

n2
cn−1

for n = 1,2, · · · . This yielded the first Frobenius solution

y1(x)= c0

∞∑

n=0

(−1)n
1

(n!)2 xn−2

= c0

[

x−2 − x−1 + 1

4
− 1

36
x + 1

576
x2 + · · ·

]

.

Conclusion (3) of Theorem 4.2 tells us the general form of a second solution that is linearly
independent from y1(x). Set
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y2(x)= y1(x) ln(x)+
∞∑

n=1

c∗
nxn−2.

Note that on the right, the series starts at n =1, not n =0. Substitute this series into the differential
equation and find after some rearranging of terms that

4y1 + 2xy ′
1 +

∞∑

n=1

(n − 2)(n − 3)c∗
n xn−2 +

∞∑

n=1

5(n − 2)c∗
n xn−2

+
∞∑

n=1

c∗
nxn−1 +

∞∑

n=1

4c∗
nxn−2

+ ln(x)
[
x2 y ′′

1 + 5xy ′
1 + (x + 4)y1

]= 0.

The bracketed coefficient of ln(x) is zero because y1 is a solution. Choose c∗
0 = 1 (we need only

one second solution), shift the indices to write
∑∞

n=1 c∗
nxn−1 =∑∞

n=2 c∗
n−1x

n−2, and substitute the
series for y1(x) to obtain

− 2x−1 + c∗
1x−1 +

∞∑

n=2

[[
4(−1)n

(n!)2 + 2(−1)n

(n!)2
]

(n − 2)+ (n − 2)(n − 3)c∗
n

+5(n − 2)c∗
n + c∗

n−1 + 4c∗
n

]
xn−2 = 0.

Set the coefficient of each power of x equal to 0. From the coefficient of x−1, we have c∗
1 = 2.

From the coefficient of xn−2, we obtain (after some routine algebra)

2(−1)n

(n!)2 n + n2c∗
n + c∗

n−1 = 0

or

c∗
n =− 1

n2
c∗

n−1 − 2(−1)n

n(n!)2
for n = 2,3,4, · · · . With this, we can calculate as many coefficients as we want, yielding

y2(x)= y1(x) ln(x)+ 2

x
− 3

4
+ 11

108
x

− 25

3456
x2 + 137

432,000
x3 + · · · . �

The next two examples illustrate Case (4) of the theorem, first with k = 0 and then k �= 0.

EXAMPLE 4.7 Case 4 of Theorem 4.2 with k = 0

We will solve

x2 y ′′ + x2 y ′ − 2y = 0.

There is a regular singular point at 0. Substitute y =∑∞
n=0 cnxn+r to obtain

(r(r − 1)− 2)c0x
r

+
∞∑

n=1

[(n + r)(n + r − 1)cn + (n + r − 1)cn−1 − 2cn]xn+r = 0.

The indicial equation is r 2 − r − 2=0 with roots r1 =2, r2 =−1. Now r1 − r2 =3, putting us
in Case (4) of the theorem. From the coefficient of xn+r , we obtain the general recurrence relation

(n + r)(n + r − 1)cn + (+r − 1)cn−1 − 2cn = 0

for n = 1,2,3, · · · .
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For a first solution, use r = 2 to obtain the recurrence relation

cn =− n + 1

n(n + 3)
cn−1

for n = 1,2, · · · . Using this, we obtain a first solution

y1(x)= c0x
2

[

1 − 1

2
x + 3

20
x2 − 1

30
x3 + 1

168
x4 − 1

1120
x5 + · · ·

]

.

Now we need a second, linearly independent solution. Put r = −1 into the general recurrence
relation to obtain

(n − 1)(n − 2)c∗
n + (n − 2)c∗

n−1 − 2c∗
n = 0

for n = 1,2, · · · . When n = 3, this gives c∗
2 = 0, which forces c∗

n = 0 for n = 2,3, · · · . But then

y2(x)= c∗
0

1

x
+ c∗

1 .

Substitute this into the differential equation to obtain

x2(2c∗
0x−3)+ x2(−c∗

0x−2)− 2

(

c∗
1 + c∗

0

1

x

)

=−c∗
0 − 2c∗

1 = 0.

Then c∗
1 =−c∗

0/2, and a second solution is

y2(x)= c∗
0

(
1

x
− 1

2

)

with c∗
0 arbitrary but nonzero. The functions y1 and y2 form a fundamental set of solutions. In

these solutions, there is no y1(x) ln(x) term. �

EXAMPLE 4.8 Case 4 of Theorem 4.2 with k �= 0

We will solve

xy ′′ − y = 0,

which has a regular singular point at 0. Substitute y =∑∞
n=0 cnxn+r and rearrange terms to obtain

(r 2 − r)c0x
r−1 +

∞∑

n=1

[(n + r)(n + r − 1)cn − cn−1]xn+r−1 = 0.

The indicial equation is r 2 − r = 0, with roots r1 = 1, r2 = 0. Here r1 − r2 = 1, a positive integer,
putting us in Case (4) of the theorem. The general recurrence relation is

(n + r)(n + r − 1)cn − cn−1 = 0

for n = 1,2, · · · . With r = 1, this is

cn = 1

n(n + 1)
cn−1,

and some of the coefficients are

c1 = 1

2
c0,

c2 = 1

2(3)
c1 = 1

2(2)(3)
c0,

c3 = 1

3(4)
c2 = 1

2(3)(2)(3)(4)
c0,
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and so on. In general,

cn = 1

n!(n + 1)!c0

for n = 1,2,3, · · · , and one Frobenius solution is

y1(x)= c0

∞∑

n=0

1

n!(n + 1)! x
n+1

= c0

[

x + 1

x
x2 + 1

12
x3 + 1

144
x4 + · · ·

]

.

For a second solution, put r = 0 into the general recurrence relation to obtain

n(n − 1)cn − cn−1 = 0

for n =1,2, · · · . If we put n =1 into this, we obtain c0 =0, violating one of the conditions for the
method of Frobenius. Here we cannot obtain a second solution as a Frobenius series. Theorem
4.2, Case (4), tells us to look for a second solution of the form

y2(x)= ky1 ln(x)+
∞∑

n=0

c∗
nxn.

Substitute this into the differential equation to obtain

x

[

ky ′′
1 ln(x)+ 2ky ′

1

1

x
− ky1

1

x2
+

∞∑

n=2

n(n − 1)c∗
n xn−2

]

− ky1 ln(x)−
∞∑

n=0

c∗
nxn = 0.

Now

k ln(x)[xy ′′
1 − y1] = 0,

because y1 is a solution. For the remaining terms, let c0 = 1 in y1(x) for convenience (we need
only one more solution) to obtain

2k
∞∑

n=0

1

(n!)2 xn − k
∞∑

n=0

1

n!(n + 1)! x
n +

∞∑

n=2

c∗
nn(n − 1)xn−1 −

∞∑

n=0

c∗
nxn = 0.

Shift indices in the third summation to write

2k
∞∑

n=0

1

(n!)2 xn − k
∑

n=0

∞ 1

n!(n + 1)! x
n

+
∞∑

n=1

cn+1n(n + 1)xn −
∞∑

n=0

c∗
nxn = 0.

Then

(2k − k − c∗
0)x

0 +
∞∑

n=1

[
2k

(n!)2 − k

n!(n + 1)! + n(n + 1)c∗
n+1 − c∗

n

]

xn = 0.

This implies that k − c∗
0 = 0, so

k = c∗
0 .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:17 THM/NEIL Page-135 27410_04_ch04_p121-136

4.2 Frobenius Solutions 135

Furthermore, the recurrence relation is

c∗
n+1 = 1

n(n + 1)

[

c∗
n − (2n + 1)k

n!(n + 1)!
]

for n = 1,2, · · · . Since c∗
0 can be any nonzero number, we will for convenience let c∗

0 = 1. For a
particular solution, we may also choose c∗

1 = 1. These give us

y2(x)= y1 ln(x)+ 1 − 3

4
x2 − 7

36
x3 − 35

1728
x4 − · · · . �

SECTION 4.2 PROBLEMS

In each of Problems 1 through 10, find the first five terms
of each of two linearly independent solutions.

1. xy ′′ + (1 − x)y ′ + y = 0

2. xy ′′ − 2xy ′ + 2y = 0

3. x(x − 1)y ′′ + 3y ′ − 2y = 0

4. 4x2 y ′′ + 4xy ′ + (4x2 − 9)y = 0

5. 4xy ′′ + 2y ′ + 2y = 0

6. 4x2 y ′′ + 4xy ′ − y = 0

7. x2 y ′′ − 2xy ′ − (x2 − 2)y = 0

8. xy ′′ − y ′ + 2y = 0

9. x(2 − x)y ′′ − 2(x − 1)y ′ + 2y = 0

10. x2 y ′′ + x(x3 + 1)y ′ − y = 0
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CHAPTER 5
Approximation
of Solutions

DIRECTION FIELDS EULER’S METHOD
TAYLOR AND MODIFIED EULER METHODS

In this chapter, we will concentrate on the first-order initial value problem

y ′ = f (x, y); y(x0)= y0.

Depending on f , it may be impossible to write the solution in a form from which we can
conveniently draw conclusions. For example, the problem

y ′ − sin(x)y = 4; y(0)= 2

has the solution

y(x)= 4e− cos(x)

∫ x

0

e− cos(ξ)dξ + 2e1−cos(x).

It is unclear how this solution behaves or what its graph looks like.
In such cases, we may turn to computer-implemented methods to approximate solution val-

ues at specific points or to sketch an approximate graph. This chapter explores some techniques
for doing this.

5.1 Direction Fields

Suppose y ′ = f (x, y), with f (x, y) given, at least for (x, y) in some specified region of the plane.
The slope of the solution passing through (x, y) is therefore a known number f (x, y). Form a
rectangular grid of points (xi , yj). Through each grid point (xi , yj), draw a short line segment
having slope f (xi , yj). These line segments are called lineal elements. The lineal element through
(xi , yj) is tangent to the solution through this point, and the collection of all the lineal elements
is called a direction field for the differential equation y ′ = f (x, y). If enough lineal elements are
drawn, they trace out the shapes of integral curves of y ′ = f (x, y), just as short tangent segments
drawn along a curve give an impression of the shape of the curve. The direction field therefore
provides a picture of how integral curves behave in the region over which the grid has been
placed.

137
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2

1

–1

–2

21y(x)=0–1–2

FIGURE 5.1 Direction field for y ′ = y2.

If we think of the integral curves of y ′ = f (x, y) as the trajectories of moving particles of a
fluid, then the direction field is a flow pattern of this fluid.

EXAMPLE 5.1

The differential equation

y ′ = y2.

has f (x, y)= y2. The general solution is

y =− 1

x + k
in which k is an arbitrary constant. Figure 5.1 shows a direction field for this differential equation
for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Figure 5.2 shows a direction field together with four solution
curves, corresponding to y(0) = −2, y(0) = −1/2, y(0) = 1/2 and y(0) = 1. These solution
curves follow the flow of the tangent line segments making up the direction field. �

EXAMPLE 5.2

The differential equation

y ′ = sin(xy)

has no nontrivial solution that can be written as a finite algebraic combination of elementary
functions. Figure 5.3 shows a direction field for this equation, together with five solution curves
corresponding to y(0)= −2, y(0)= −1/2, y(0)= 1/2, y(0)= 1, and y(0)= 2. These integral
curves fit the flow of the lineal elements of the direction field. As guides in sketching integral
curves, a direction field provides useful information about the behavior of solutions, which in
this example we do not have explicitly in hand. �

It is not practical to draw direction fields by hand. Instructions for constructing direction
fields using MAPLE are given in the MAPLE Primer in Appendix A.
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–3

42y(x)=0–2–4

FIGURE 5.2 Integral curves in the direction field
for y ′ = y2.

3

2

1

y(x)=0

–1

–2

–3

42–2–4

FIGURE 5.3 Direction field and some integral curves
for y ′ = sin(xy).

SECTION 5.1 PROBLEMS

In each of Problems 1 through 6, draw a direction field for
the differential equation and some solution curves. Use it
to sketch the integral curve of the solution of the initial
value problem.

1. y ′ = sin(y); y(1)=π/2

2. y ′ = x cos(2x)− y; y(1)= 0

3. y ′ = y sin(x)− 3x2; y(0)= 1

4. y ′ = ex − y; y(−2)= 1

5. y ′ − y cos(x)= 1 − x2; y(2)= 2

6. y ′ = 2y + 3; y(0)= 1

5.2 Euler’s Method

In this section, we present Euler’s method for generating approximate numerical values of the
solution of an initial value problem

y ′ = f (x, y); y(x0)= y0

at selected points x0, x1 = x0 + h, x2 = x0 + 2h, · · · , and xn = x0 + nh. Here n is a positive integer
(the number of iterations to be performed); and h is a (small) positive number called the step
size. This number h is the distance between successive points at which approximate values of the
solution are computed.

The idea behind Euler’s method is conceptually simple. First choose n and h. We are given
y(x0)= y0. Calculate f (x0, y0) and draw the line having this slope through (x0, y0). This line is
tangent to the solution at (x0, y0). Move along this tangent line to the point (x1, y1), where x1 =
x0 + h. Use this number y1 as the approximation to y(x1) at x1. This is illustrated in Figure 5.4.
We have some hope that this is a “good” approximation for h “small” because a tangent line at a
point fits the curve closely near that point. Note that (x1, y1) is probably not on the integral curve
through (x0, y0) but is on the tangent to this curve at (x0, y0).
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x

y

x0

Slope
f (x1, y1) (x0, y0)

Slope f (x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

Slope f (x2, y2)

x1 x2 x3

FIGURE 5.4 The Euler approximation scheme.

Now compute f (x1, y1). This is the slope of the tangent to the graph of the solution pass-
ing through (x1, y1). Draw the line through (x1, y1) having this slope, and move along this line
to (x2, y2) where y2 = x1 + h = x0 + 2h. This determines a number y2, which we take as an
approximation to y(x2). (Figure 5.4 again).

Continue in this way. Compute f (x2, y2), and draw the line with this slope through (x2, y2).
Move along this line to (x3, y3) where x3 = x2 + h = x0 + 3h, and use y3 as an approximation
to y(x3).

In general, once we have reached (xk, yk), draw the line through this point having a
slope of f (xk, yk), and move along this line to (xk+1, yk+1). Take yk+1 as an approximation
to y(xk+1).

This is the idea of the method. It is sensitive to how much f (x, y) changes if x and y are
varied by a small amount. The method also tends to accumulate error, since we use an approx-
imation yk to make the next approximation yk+1. Following segments of lines is conceptually
simple but is not as accurate as some other methods—two of which we will develop in the next
section.

We will derive an expression for the approximate value yk at xk . From Figure 5.4,

y1 = y0 + f (x0, y0)(x1 − x0).

At the next step,

y2 = y1 + f (x1, y1)(x2 − x1).

After the approximation yk has been computed, the next approximate value is

yk+1 = yk + f (xk, yk)(xk+1 − xk).

Since each xk+1 − xk = h, the method can be summarized as follows.

Euler’s method Define yk+1 in terms of yk by

yk+1 = yk + h f (xk, yk)

for k = 0,1,2, · · · ,n − 1.
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TA B L E 5.1 Euler’s Method Applied to y′ = x
√

y; y(2)= 4

x y(x) Euler approximation of y(x)

2.0 4 4
2.05 4.205062891 4.200000000
2.1 4.42050650 4.410062491
2.15 4.646719141 4.630564053
2.2 4.88410000 4.861890566
2.25 5.133056641 5.104437213
2.3 5.394006250 5.358608481
2.35 5.667475321 5.624818168
2.4 5.953600000 6.903489382
2.45 6.253125391 6.195054550
2.5 6.566406250 6.499955415
2.55 6.893906641 6.818643042
2.6 7.236100000 7.151577819
2.65 7.593469141 7.499229462
2.7 7.966506250 7.862077016
2.75 8.355712891 8.240608856
2.8 8.761600000 8.635322690
2.85 9.184687891 9.046725564
2.9 9.625506250 9.475333860
2.95 10.08459414 9.921673298
3 10.56250000 10.38627894

EXAMPLE 5.3

Consider

y ′ = x
√

y; y(2)= 4.

This problem (with separable differential equation) is easily solved exactly as

y(x)=
(

1 + x2

4

)2

.

We will apply Euler’s method and use the exact solution to gauge the accuracy. Use h =0.05 and
n = 20. Then x0 = 2, and x20 = 2 + (20)(0.05)= 3, so we are approximating values at points on
[2,3]. The approximate values are computed by

yk+1 = yk + 0.2xk

√
yk for k = 0,1,2, · · · ,19.

Table 5.1 gives the Euler approximate values, together with values computed from the exact
solution. The approximate values become less accurate as xk moves further from x0. �

It can be shown that the error in Euler’s method is proportional to h. For this reason, Euler’s
method is called a first-order method. We can increase the accuracy in an Euler approximation
by choosing h to be smaller (at the cost of more computing time).

SECTION 5.2 PROBLEMS

In each of Problems 1 through 6, generate approximate
numerical values of the solution using h = 0.2 and twenty
iterations (n = 20). In each of Problems 1 through 5, the

problem can be solved exactly. Obtain this solution to com-
pare approximate values at the xk’s with the exact solution
values.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:19 THM/NEIL Page-142 27410_05_ch05_p137-144

142 CHAPTER 5 Approximation of Solutions

1. y ′ = y sin(x); y(0)= 1

2. y ′ = x + y; y(1)=−3

3. y ′ = 3xy; y(0)= 5

4. y ′ = 2 − x; y(0)= 1

5. y ′ = y − cos(x); y(1)=−2

6. y ′ = x − y2; y(0)= 4

5.3 Taylor and Modified Euler Methods

We will develop two other numerical approximation schemes, both of which are (in general)
more accurate than Euler’s method.

Under certain conditions on f and h, we can use Taylor’s theorem with remainder to write

y(xk+1)= y(xk)+ hy ′(xk)+ 1

2
h2 y ′′(xk)+ 1

6
h3 y(3)(ξk)

for some ξk in [xk, xk+1]. If the third derivative of y(x) is bounded, we can make the last term in
this sum as small as we like by choosing h to be small enough, leading to the approximation

yk+1 ≈ y(xk)+ hy ′(xk)+ 1

2
h2 y ′′(xk). (5.1)

Now, y(x)= f (x, y(x)). This suggests that in equation (5.1) we consider f (xk, yk) as an approx-
imation of y ′(xk) if yk is an approximation of y(xk). This leaves the term y ′′(xk) in equation (5.1)
to approximate. To do this, differentiate the equation y ′(x)= f (x, y(x)) with respect to x to get

y ′′(x)= ∂ f

∂x
(x, y)+ ∂ f

∂y
(x, y)y ′(x).

We are therefore led to approximate

y ′′(xk)≈ ∂ f

∂x
(xk, yk)+ ∂ f

∂y
(xk, yk)y

′(xk).

Insert these approximations of y ′(xk) and y ′′(xk) into equation (5.1) to get

yk+1 ≈ yk + h f (xk, yk)+ 1

2
h2

(
∂ f

∂x
(xk, yk)+ ∂ f

∂y
(xk, yk)y

′(xk)

)

.

The second-order Taylor method consists of using this expression to approximate y(xk+1)

by yk+1 We can simplify this expression for the approximate value of yk+1 by using the
notation

fk = f (xk, yk),

∂ f

∂x
= fx ,

∂ f

∂y
= fy,

∂ f

∂x
(xk, yk)= fxk,

∂ f

∂y
(xk, yk)= fyk .

With this notation, the second-order Taylor approximation is

yk+1 ≈ yk + h fk + 1

2
h2( fxk + fk fyk).

The second-order Taylor method is a one-step method because it approximates the solution
value at xk using the approximation made at xk−1, which is just one step back. Euler’s method is
also one-step.
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EXAMPLE 5.4

We will use the second-order Taylor method to approximate some solution values for y ′ =
y2 cos(x); y(0)=1/5. This problem can be solved exactly to obtain y(x)=1/(5− sin(x)), so we
can compare approximate values with exact values.

With f (x, y) = y2 cos(x), fx = −y2 sin(x) and fy = 2y cos(x). The second-order Taylor
approximation formula is

yk+1 = yk + hy2
k cos(xk)+ h2 y2

k cos2(xk)− 1

2
h2 y2

k sin(xk).

Table 5.2 lists approximate values computed using h = 0.2 and n = 20. Values computed from
the exact solution are included for comparison. �

Near the end of the nineteenth century, the German mathematician Karl Runge noticed a
similarity between part of the formula for the second-order Taylor method and another Taylor
polynomial approximation. Write this second-order Taylor formula as

yk+1 = yk + h

[

fk + 1

2
h( fx(xk, yk)+ fk fy(xk, yk))

]

. (5.2)

Runge observed that the term in square brackets resembles the Taylor approximation

f (xk +αh, yk +βh))≈ fk +αh fx(xk, yk)+βh fy(xk, yk).

In fact, the term in square brackets in equation (5.2) is exactly the right side of the last equation
with α=β = 1/2. This suggests the following approximation scheme.

Use of the equation

yk+1 ≈ yk + h f

(

xk + h

2
, yk + h fk

2

)

.

to approximate y(xk+1) by yk+1 is called the modified Euler method. This method
is in the spirit of Euler’s method except that f (x, y) is evaluated at (xk + h/2,
yk + h fk/2) instead of at (xk, yk). Notice that xk + h/2 is midway between xk and xk + h.

TA B L E 5.2 Second-Order Taylor Method for y′ = y2 cos(x); y(0)= 1/5

x Exact Value Approximate Value x Exact Value Approximate Value

0.0 0.2 0.2 2.2 0.2385778700 0.2389919589
0.2 0.2082755946 0.20832 2.4 0.2312386371 0.2315347821
0.4 0.2168923737 0.2170013470 2.6 0.2229903681 0.2231744449
0.6 0.2254609677 0.2256558280 2.8 0.2143617277 0.2144516213
0.8 0.2335006181 0.2337991830 3.0 0.2058087464 0.2058272673
1.0 0.2404696460 0.2408797598 3.2 0.197691800 0.1976613648
1.2 0.2458234042 0.2463364693 3.4 0.1902753647 0.1902141527
1.4 0.2490939041 0.2496815188 3.6 0.1837384003 0.1836603456
1.6 0.2499733530 0.2505900093 3.8 0.1781941060 0.1781084317
1.8 0.2483760942 0.2489684556 4.0 0.1737075401 0.1736197077
2.0 0.2444567851 0.2449763987
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TA B L E 5.3 Modified Euler’s Method Applied to y′ = y/x + 2x2; y(1)= 4

x y(x) Approximate Solution x y(x) Approximate Solution

1.0 4 4 3.0 36 35.87954731
1.2 5.328 5.320363636 3.2 42.368 42.23164616
1.4 6.944 6.927398601 3.4 49.504 49.35124526
1.6 8.896 8.869292639 3.6 57.496 57.28637379
1.8 11.232 11.19419064 3.8 66.272 66.08505841
2.0 14 13.95020013 4.0 76 75.79532194
2.2 17.248 17.18541062 4.2 86.688 86.46518560
2.4 21.024 20.94789549 4.4 98.384 98.14266841
2.6 25.376 25.25871247 4.6 111.136 110.8757877
2.8 30.352 30.24691542 4.8 124.992 124.7125592

5.0 140 139.7009975

EXAMPLE 5.5

Consider the initial value problem

y ′ − 1

x
y = 2x2; y(1)= 4.

Write the differential equation as

y ′ = 1

x
y + 2x2 = f (x, y),

and use the Euler method with h = 0.2 and n = 20. Again, we have chosen a problem we can
solve exactly, obtaining y(x)= x3 + 3x . Table 5.3 lists the exact and approximate values for
comparison. �

SECTION 5.3 PROBLEMS

In each of Problems 1 through 6, use the second-order Tay-
lor method and the modified Euler method to approximate
solution values, using h = 0.2 and n = 20. Problems 2 and
5 can be solved exactly. For these problems, list the exact
solution values for comparison with the approximations.

1. y ′ = sin(x + y); y(0)= 2

2. y ′ = y − x2; y(1)=−4

3. y ′ = cos(y)+ e−x ; y(0)= 1

4. y ′ = y3 − 2xy; y(3)= 2

5. y ′ =−y + e−x ; y(0)= 4

6. y ′ = sec(1/y)− xy2; y(π/4)= 1
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CHAPTER 6
Vectors and
Vector Spaces

VECTORS IN THE PLANE AND
3-SPACE THE DOT PRODUCT THE CROSS
PRODUCT THE VECTOR SPACE RN

ORTHOGONALIZATION

6.1 Vectors in the Plane and 3-Space

Some quantities, such as temperature and mass, are completely specified by a number. Such
quantities are called scalars. By contrast, a vector has both a magnitude and a sense of direction.
If we push against an object, the effect is determined not only by the strength of the push, but its
direction. Velocity and acceleration are also vectors.

We can include both both magnitude and direction in one package by representing a vector
as an arrow from the origin to a point (x, y, z) in 3-space, as in Figure 6.1. The choice of the point
gives the direction of the vector (when viewed from the origin), and the length is its magnitude.
The greater the force, the longer the arrow representation.

To distinguish when we are thinking of a point as a vector (arrow from the origin to the
point), we will denote this vector < x, y, z>. We call x the first component of < x, y, z>,
y the second component and z the third component. These components are scalars.

Two vectors are equal exactly when their respective components are equal. That is,

< x1, y1, z1>=< x2, y2, z2>

exactly when x1 = x2, y1 = y2, and z1 = z2.
Since only direction and magnitude are important in specifying a vector, any arrow of the

same length and orientation denotes the same vector. The arrows in Figure 6.2 represent the same
vector.

The vector<−x,−y,−z> is opposite in direction to< x, y, z>, as suggested in Figure 6.3.
It is convenient to denote vectors by bold-face letters (such as F,G, and H) and scalars (real

numbers) in ordinary type.

147
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(x,y,z)

<x,y,z>

x

y

z

FIGURE 6.1 Vector < x, y, z > from the
origin to the point (x, y, z).

x

y

z

FIGURE 6.2 Arrow representations
of the same vector.

<x,y,z><–x, –y, –z>

x

y

z

FIGURE 6.3 <−x,−y,−z> is opposite
< x, y, z>.

The length (also called the magnitude or norm) of a vector F =< x, y, z> is the scalar

‖ F ‖=√x2 + y2 + z2.

This is the distance from the origin to the point (x, y, z) and also the length of any arrow repre-
senting the vector < x, y, z>. For example, the norm of G =<−1,4,2> is ‖ G ‖=√

21, which
is the distance from the origin to the point (−1,4,2).

Multiply a vector F =< a,b, c> by a scalar α by multiplying each component of F by α.
This produces a new vector denoted αF:

αF =<αa, αb, αc> .

Then

‖αF ‖= |α| ‖ F ‖,
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because

‖αF ‖ =√(αa)2 + (αb)2 + (αc)2

=√(α2)(a2 + b2 + c2)= |α|√a2 + b2 + c2

= |α| ‖ F ‖ .
This means that the length of αF is |α| times the length of F. We may therefore think of multipli-
cation of a vector by a scalar as a scaling (stretching or shrinking) operation. In particular, take
the following cases:

• If α > 1, then αF is longer than F and in the same direction.
• If 0<α< 1, then αF is shorter than F and in the same direction.
• If −1<α< 0 then αF is shorter than F and in the opposite direction.
• If α <−1 then αF is longer than F and in the opposite direction.
• If α=−1 then αF has the same length as F, and exactly opposite the direction.

For example, 1
2
F is a vector having the direction of F and half the length of F, while 2F

has the direction of F and length twice that of F, and − 1
2
F has direction opposite that of F

and half the length.
• If α= 0, then αF =< 0,0,0>, which we call the zero vector and denote O. This is the only

vector with zero length and no direction, since it cannot be represented by an arrow.

Consistent with these interpretations of αF, we define two vectors F and G to be parallel if
each is a nonzero scalar multiple of the other. Parallel vectors may differ in length and even be
in opposite directions, but the straight lines through arrows representing them are parallel lines
in 3-space.

We add two vectors by adding their respective components:
If F =< a1,a2,a3> and G =< b1,b2,b3>, then

F + G =< a1 + a2,b1 + b2, c1 + c2 > .

Vector addition and multiplication by scalars have the following properties:

1. F + G = G + F. (commutativity)

2. F + (G + H)= (F + G)+ H. (associativity)

3. F + O = F.

4. α(F + G)=αF +αG.

5. (αβ)F =α(βF).

6. (α+β)F =αF +βF.

It is sometimes useful to represent vector addition by the parallelogram law. If F and G are
drawn as arrows from the same point, they form two sides of a parallelogram. The arrow along
the diagonal of this parallelogram represents the sum F + G (Figure 6.4). Because any arrows
having the same lengths and direction represent the same vector, we can also draw the arrows in
F + G (as in Figure 6.5) with G drawn from the tip of F. This still puts F + G along the diagonal
of the parallelogram.

The triangle of Figure 6.5 also suggests an important inequality involving vector sums and
lengths. This triangle has sides of length ‖ F ‖, ‖ G ‖, and ‖ F + G ‖. Because the sum of the
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x

y

z

F

G
F + G

FIGURE 6.4 Parallelogram law for vector
addition.

x

y

z

F

GF + G

FIGURE 6.5 Alternative view of the
parallelogram law.

k

i
j

(1,0,0)

(0,1,0)

(0,0,1)

x

y

z

FIGURE 6.6 Unit vectors i, j, and k.

lengths of any two sides of a triangle must be at least as great as the length of the third side, we
have the triangle inequality

‖ F + G ‖≤‖ F ‖+‖ G ‖ .

A vector of length 1 is called a unit vector. The unit vectors along the positive axes are
shown in Figure 6.6 and are labeled

i =< 1,0,0>, j =< 0,1,0>, k =< 0,0,1> .

We can write any vector F =< a,b, c> as

F =< a,b, c> = a< 1,0,0> +b< 0,1,0> + c< 0,0,1>

= ai + bj + ck.
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We call ai+bj+ ck the standard representation of F. When a component of a vector is zero,
we usually just omit this term in the standard representation. For example, we would usually write
F =<−8,0,3> as −8i + 3k instead of −8i + 0j + 3k.

If a vector is represented by an arrow in the x, y-plane, we often omit the third coordinate
and use i =< 1,0> and j =< 0,1>. For example, the vector V from the origin to the point
<2,−6,0> can be represented as an arrow from the origin to the point (2,−6) in the x, y-plane
and can be written in standard form as

V = 2i − 6j

where i =< 1,0> and j =< 0,1>.
It is often useful use to know the components of the vector V represented by the arrow from

one point to another, say from P0 = (x0, y0, z0) to P1 : (x1, y1, z1). Denote

G = x0i + y0j + z0k and F = x1i + y1j + z1k.

By the parallelogram law in Figure 6.7, the vector V we want satisfies

G + V = F.

Therefore,

V = F − G = (x1 − x0)i + (y1 − y0)j + (z1 − z0)k.

For example, the vector represented by the arrow from (−1,6,3) to (9,−1,−7) if 10i−7j−10k.
Using this idea, we can find a vector of any length in any given direction. For example,

suppose we want a vector of length 7 in the direction from (−1,6,5) to (−8,4,9).
The strategy is to first find a unit vector in the given direction, then multiply it by 7 to obtain

a vector of length 7 in that direction. The vector V = −7i − 2j + 4k is in the direction from
(−1,6,5) to (−8,4,9). Since ‖ V ‖=√

69, a unit vector in this direction is

F = 1

‖ V ‖V = 1√
69

V.

Then

7F = 7√
69
(−7i − 2j + 4k)

has length 7 and is in the direction from (−1,6,5) to (−8,4,9).

(x1,y1,z1)

(x0,y0,z0)

G

F

x

y

z

V = F – G

FIGURE 6.7 Vector from (x0, y0, z0) to
(x1, y1, z1).
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FIGURE 6.8 Quadrilateral
with lines connecting successive
midpoints.

P0

P1

A

B

C

D

y

v u
x

FIGURE 6.9 Quadrilateral of
Figure 6.8 with vectors as sides.

As an example of the efficiency of vector notation, we will derive a fact about quadrilaterals:
the lines formed by connecting successive midpoints of the sides of a quadrilateral form a paral-
lelogram. Figures 6.8 and 6.9 illustrate what we want to show. Draw the quadrilateral again with
vectors A,B, C, and D as the sides (Figure 6.9). The vectors x,y, u, and v connect the midpoints
of successive sides. We want to show that x and u are parallel and of the same length, and the
same for y and v. From the parallelogram law and the choices of these vectors,

x = 1

2
A + 1

2
B

and

u = 1

2
C + 1

2
D.

But also by the parallelogram law, C + D is the vector from P1 to P0, while A + B is the
vector from P0 to P1. These vectors have the same lengths and opposite directions, so

A + B =−(C + D).

Then x = −u, so these vectors are parallel and of the same length (just opposite in direction).
Similarly, y and v are parallel and of the same length.

Equation of a Line in 3-Space

We will show how to find parametric equations of a line L in 3-space containing two given
points. This is more subtle than the corresponding problem in the plane, because there is no
slope to exploit. To illustrate the idea, suppose the points are (−2,−4,7) and (9,1,−7). Form
a vector between these two points (in either order). The arrow from the first to the second point
represents the vector

V = 11i + 5j − 14k.

Because P0 and P1 are on L , V is parallel to L , hence to any other vector aligned with L . Now sup-
pose (x, y, z) is any point on L . Then the vector (x + 2)i + (y + 4)j + (z − 7)k from (−2,−4,7)
to (x, y, z) is also parallel to L , hence to V. This vector must therefore be a scalar multiple of V:

(x + 2)i + (y + 4)j + (z − 7)k = tV

= 11t i + 5tj − 14tk

for some scalar t . Since two vectors are equal only when their respective components are equal,

x + 2 = 11t, y + 4 = 5t, z − 7 =−14t.
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P

P0

P1

x

y

z

FIGURE 6.10 Determining
parametric equations of a line.

Usually we write these equations as

x =−2 + 11t, y =−4 + 5t, z = 7 − 14t.

These are parametric equations of L . As t varies over the real numbers, the point (−2 +
11t,−4 + 5t,7 − 14t) varies over L . We obtain (−2,−4,7) when t = 0 and (9,1,−7) when
t = 1.

The reasoning used in this example can be carried out in general. Suppose we are given
points P0 : (x0, y0, z0) and P1 : (x1, y1, z1), and we want parametric equations of the line L through
P0 and P1. The vector

(x1 − x0)i + (y1 − y0)j + (z1 − z0)k

is along L , as is the vector

(x − x0)i + (y − y0)j + (z − z0)k

from P0 to an arbitrary point (x, y, z) on L . These vectors (see Figure 6.10), being both along L ,
are parallel, hence for some real t ,

(x − x0)i + (y − y0)j + (z − z0)k

= t[(x1 − x0)i + (y1 − y0)j + (z1 − z0)k].
Then

x − x0 = t (x1 − x0), y − y0 = t (y1 − y0), z − z0 = t (z1 − z0).

Parametric equations of the line are

x = x0 + t (x1 − x0), y = y0 + t (y1 − y0), z = z0 + t (z1 − z0),

with t taking on all real values. We get P0 when t = 0 and P1 when t = 1.

EXAMPLE 6.1

Find parametric equations of the line through (−1,−1,7) and (7,−1,4).
Let one of these points be P0 and the other P1. To be specific, choose P0 = (−1,−1,7)=

(x0, y0, z0) and P1 = (7,−1,4) = (x1, y1, z1). The line through these points has parametric
equations

x =−1 + (7 − (−1))t, y =−1 + (−1 − (−1))t, z = 7 + (4 − 7)t
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for t real. These parametric equations are

x =−1 + 8t, y =−1, z = 7 − 3t

for t real. We obtain P0 when t = 0 and P1 when t = 1. In this example, the y-coordinate of every
point on the line is −1, so the line is in the plane y =−1.

We may also say that this line consists of all points (−1 + 8t,−1,7 − 3t) for t real. �

SECTION 6.1 PROBLEMS

In each of Problems 1 through 5, compute F + G, F − G,
2F, 3G, and ‖ F ‖.

1. F = 2i − 3j + 5k,G = √
2i + 6j − 5k

2. F = i − 3k,G = 4j

3. F = 2i − 5j,G = i + 5j − k

4. F = √
2i − j − 6k,G = 8i + 2k

5. F = i + j + k,G = 2i − 2j + 2k

In each of Problems 6 through 9, find a vector having the
given length and in the direction from the first point to the
second.

6. 5, (0,1,4), (−5,2,2)

7. 9, (1,2,1), (−4,−2,3)

8. 12, (−4,5,1), (6,2,−3)

9. 4, (0,0,1), (−4,7,5)

In each of Problems 10 through 15, find the para-
metric equations of the line containing the given
points.

10. (1,0,4), (2,1,1)

11. (3,0,0), (−3,1,0)

12. (2,1,1), (2,1,−2)

13. (0,1,3), (0,0,1)

14. (1,0,−4), (−2,−2,5)

15. (2,−3,6), (−1,6,4)

6.2 The Dot Product

The dot product F · G of F and G is the real number formed by multiplying the two first
components, then the two second components, then the two third components, and adding
these three numbers. If F = a1i + b1j + c1k and G = a2i + b2j + c2k, then

F · G = a1a2 + b1b2 + c1c2.

Again, this dot product is a number, not a vector. For example,

(
√

3i + 4j −πk) · (−2i + 6j + 3k)=−2
√

3 + 24 − 3π.

The dot product has the following properties.

1. F · G = G · F.

2. (F + G) · H = F · H + G · H.

3. α(F · G)= (αF) · G = F · (αG).

4. F · F =‖ F ‖2 .

5. F · F = 0 if and only if F = O.

6. ‖αF +βG ‖2=α2 ‖ F ‖2 +2αβF · G +β2 ‖ G ‖2 .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:21 THM/NEIL Page-155 27410_06_ch06_p145-186

6.2 The Dot Product 155

Dot products of vectors can be computed using MAPLE and the DotProduct command,
which is in the VectorCalculus package of subroutines. This command also applies to n-
dimensional vectors, which are introduced in Section 6.4.

Conclusions (1), (2), and (3) are routine computations. Conclusion (4) is often used in
computations. To verify conclusion (4), suppose

F = ai + bj + ck.

Then

F · F = a2 + b2 + c2 =‖ F ‖2 .

Conclusion (5) follows easily from (4), since O is the only vector having length 0. For conclusion
(6), use conclusions (1) through (4) to write

‖αF +βG ‖2 = (αF +βG) · (αF +βG)

=α2F · F +αβF · G +αβG · F +β2G · G

=α2 ‖ F ‖2 +2αβF · G +β2 ‖ G ‖2 .

The dot product can be used to find an angle between two vectors. Recall the law of cosines:
For the upper triangle of Figure 6.11 with θ being the angle opposite the side of length c, the law
of cosines states that

a2 + b2 − 2ab cos(θ)= c2.

Apply this to the vector triangle of Figure 6.11 (lower), which has sides of length a =‖ G ‖,
b =‖ F ‖, and c =‖ G − F ‖. Using property (6) of the dot product, we obtain

‖ G ‖2 +‖ F ‖2 −2 ‖ F ‖‖ G ‖ cos(θ)=‖ G − F ‖2

=‖ G ‖2 +‖ F ‖2 −2G · F.

Assuming that neither F nor G is the zero vector, this gives us

cos(θ)= F · G
‖ F ‖‖ G ‖ . (6.1)

Since | cos(θ)| ≤ 1 for all θ , equation (6.1) implies the Cauchy-Schwarz inequality:

|F · G| ≤‖ F ‖‖ G ‖ .

θ

a

b

θ
c

G

F

G – F

FIGURE 6.11 The law
of cosines and the angle
between vectors.
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EXAMPLE 6.2

The angle θ between F =−i + 3j + k and G = 2j − 4k is given by

cos(θ)= (−i + 3j + k) · (2j − 4k)
‖−i + 3j + k ‖‖ 2j − 4k ‖

= (−1)(0)+ (3)(2)+ (1)(−4)√
12 + 32 + 12

√
22 + 42

= 2√
220

.

Then θ ≈ 1.436 radians. �

EXAMPLE 6.3

Lines L1 and L2 have parametric equations

L1 : x = 1 + 6t, y = 2 − 4t, z =−1 + 3t

and

L2 : x = 4 − 3p, y = 2p, z =−5 + 4p.

The parameters t and p can take on any real values. We want an angle θ between these lines.
The strategy is to take a vector V1 along L1 and a vector V2 along L2 and find the angle

between these vectors. For V1, find two points on L1, say (1,2,−1) when t = 0 and (7,−2,2)
when t = 1, and form

V1 = (7 − 1)i + (−2 − 2)j + (2 − (−1))k = 6i − 4j + 3k.

On L2, take (4,0,−5) with p = 0 and (1,2,−1) with p = 1, forming

V2 = 3i − 2j − 4k.

Now compute

cos(θ)= 6(3)− 4(−2)+ 3(−4)√
36 + 16 + 9

√
9 + 4 + 16

= 14√
1769

.

An angle between L1 and L2 is arccos(14/
√

1769), which is approximately 1.23 radians. �

Two nonzero vectors F and G are orthogonal (perpendicular) when the angle θ between
them is π/2 radians. This happens exactly when

cos(θ)= 0 = F · G
‖ F ‖‖ G ‖

which occurs when F · G = 0. It is convenient to also agree that O is orthogonal to every
vector. With this convention, two vectors are orthogonal if and only if their dot product is
zero.

EXAMPLE 6.4

Let F = −4i + j + 2k, G = 2i + 4k and H = 6i − j − 2k. Then F · G = 0, so F and G are orthog-
onal. But F · H and G · H are not zero, so F and H are not orthogonal and G and H are not
orthogonal. �

Property (6) of the dot product has a particularly simple form when the vectors are
orthogonal. In this case, F · G = 0, and upon setting α=β = 1, we have

‖ F + G ‖2=‖ F ‖2 +‖ G ‖2 .
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This is the familiar Pythagorean theorem, because the vectors F and G form the sides of a right
triangle with hypotenuse F + G (imagine Figure 6.5 with F and G forming a right angle).

EXAMPLE 6.5

Suppose two lines are defined parametrically by

L1 : x = 2 − 4t, y = 6 + t, z = 3t

and

L2 : x =−2 + p, y = 7 + 2p, z = 3 − 4p.

We want to know if these lines are orthogonal. Note that the question makes sense even if L1 and
L2 do not intersect.

The idea is to form a vector along each line and test these vectors for orthogonality. For
a vector along L1, take two points on this line, say (2,6,0) when t = 0 and (−2,7,3) when
t = 1. Then V1 = −4i + j + 3k is parallel to L1. Similarly, (−2,7,3) is on L2 when p = 0, and
(−1,9,−1) is on L2 when p=1, so V2 = i+2j−4k is parallel to L2. Compute V1 ·V2 =−14 �=0.
Therefore, L1 and L2 are not orthogonal. �

Orthogonality is also useful for determining the equation of a plane in 3-space. Any plane
has an equation of the form

ax + by + cz = d.

As suggested by Figure 6.12, if we specify a point on the plane and a vector orthogonal to
the plane, then the plane is completely determined. Example 6.6 suggests a strategy for finding
the equation of this plane.

EXAMPLE 6.6

We will find the equation of the plane � containing the point (−6,1,1) and orthogonal to the
vector N = −2i + 4j + k. Such a vector N is said to be normal to � and is called a normal
vector to �.

Here is a strategy. Because (−6,1,1) is on �, a point (x, y, z) is on � exactly when the
vector between (−6,1,1) and (x, y, z) lies in �. But then (x + 6)i + (y − 1)j + (z − 1)k must
be orthogonal to N, so

N · ((x + 6)i + (y − 1)j + (z − 1)k)= 0.

P

N

FIGURE 6.12 A point P and a normal
vector N determine a plane.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:21 THM/NEIL Page-158 27410_06_ch06_p145-186

158 CHAPTER 6 Vectors and Vector Spaces

Then

−2(x + 6)+ 4(y − 1)+ (z − 1)= 0,

or

−2x + 4y + z = 17.

This is the equation of �. �

Following this reasoning in general, the equation of a plane containing a point P0 : (x0, y0, z0)

and having a normal vector N = ai + bj + ck is

N · [(x − x0)i + (y − y0)j + (z − z0)k] = 0

or

a(x − x0)+ b(y − y0)+ c(z − z0)= 0. (6.2)

It is also sometimes convenient to notice that the vector ai + bj + ck is always a normal
vector to a plane ax + by + cz = d, for any d. Changing the value of d moves the plane in 3-
space but does not change its orientation with respect to the axes, so the normal vector remains
the same and is determined by the coefficients a, b, and c only.

Another use for the dot product is in forming vector projections.
Let u and v be given, nonzero vectors, represented as arrows from a common point (for

convenience). The projection of v onto u is a vector projuv in the direction of u having magnitude
equal to the length of the perpendicular projection of the arrow representing v onto the line along
the arrow representing u. This projection is done by constructing a perpendicular line from the
tip of v onto the line through u. The base of the right triangle having v as hypotenuse is the length
d of projuv (Figure 6.13).

If θ is the angle between u and v, then

cos(θ)= d

‖ v ‖ .
Then

d =‖ v ‖ cos(θ)=‖ v ‖ u · v
‖ u ‖‖ v ‖ = u · v

‖ u ‖ .

d

x

y

z

u

v

θ

FIGURE 6.13 Orthogonal projection of v
onto u.
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To obtain a vector in the direction of u and of length d, divide u by its length to obtain a unit
vector, then multiply this vector by d. Therefore,

projuv = d

(
u

‖ u ‖
)

= u · v
‖ u ‖2

u.

As an example, suppose v = 4i − j + 2k and u = i − j + 2k. Then

u · v = 9 and ‖ u ‖2= 6,

so

projuv = 9

6
u = 3

2
(i − j + 2k).

If we think of these vectors as forces, we may interpret projuv as the effect of v in the
direction of u.

SECTION 6.2 PROBLEMS

In each of Problems 1 through 6, compute the dot product
of the vectors and the cosine of the angle between them.
Also determine if the vectors are orthogonal.

1. i,2i − 3j + k

2. 2i − 6j + k, i − j

3. −4i − 2i + 3k,6i − 2j − k

4. 8i − 3j + 2k,−8i − 3j + k

5. i − 3k,2j + 6k

6. i + j + 2k, i − j + 2k

In each of Problems 7 through 12, find the equation of
the plane containing the given point and orthogonal to the
given vector.

7. (−1,1,2),3i − j + 4k

8. (−1,0,0), i − 2j

9. (2,−3,4),8i − 6j + 4k

10. (−1,−1,−5),−3i + 2j

11. (0,−1,4),7i + 6j − 5k

12. (−2,1,−1),4i + 3j + k

In each of Problems 13, 14, and 15, find the projection of
v onto u.

13. v = i − j + 4k,u = −3i + 2j − k

14. v = 5i + 2j − 3k,u = i − 5j + 2k

15. v =−i + 3j + 6k,u = 2i + 7j − 3k

6.3 The Cross Product

The dot product produces a scalar from two vectors. The cross product produces a vector
from two vectors.

Let F = a1i + b1j + c1k and G = a2i + b2j + c2k. The cross product of F with G is the
vector F × G defined by

F × G = (b1c2 − b2c1)i + (a2c1 − a1c2)j + (a1b2 − a2b1)k.

Here is a simple device for remembering and computing these components. Form the determinant
∣
∣
∣
∣
∣
∣

i j k
a1 b1 c1

a2 b2 c2

∣
∣
∣
∣
∣
∣
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having the standard unit vectors in the first row, the components of F in the second row, and the
components of G in the third row. If this determinant is expanded by the first row, we get exactly
F × G:

∣
∣
∣
∣
∣
∣

i j k
a1 b1 c1

a2 b2 c2

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
b1 c1

b2 c2

∣
∣
∣
∣ i −

∣
∣
∣
∣
a1 c1

a2 c2

∣
∣
∣
∣ j +

∣
∣
∣
∣
a1 b1

a2 b2

∣
∣
∣
∣k

= (b1c2 − b2c1)i + (a2c1 − a1c2)j + (a1b2 − a2b1)k

= F × G.

The cross product of two 3-vectors can be computed in MAPLE using the CrossProduct
command, which is part of the VectorCalculus package.

We will summarize some properties of the cross product.

1. F × G =−G × F.

2. F × G is orthogonal to both F and G. This is shown in Figure 6.14.

3. ‖ F × G ‖=‖ F ‖‖ G ‖ sin(θ) in which θ is the angle between F and G.

4. If F and G are nonzero vectors, then F × G = O if and only if F and G are parallel.

5. F × (G + H)= F × G + F × H.

6. α(F × G)= (αF)× G = F × (αG).

Property (1) of the cross product follows from the fact that interchanging two rows of a
determinant changes its sign. In computing F × G, the components of F are in the second row
of the determinant, and those of G in the third row. These rows are interchanged in computing
G × F.

For property (2), compute the dot product

F · (F × G)

= a1[b1c2 − b2c1] + b1[a2c1 − a1c2] + c1[a1b2 − a2b1] = 0.

Therefore, F is orthogonal to F × G. Similarly, G is orthogonal to F × G.

F

G

F × G

FIGURE 6.14 F × G is orthogonal
to F and to G.
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To derive property (3), suppose both vectors are nonzero and recall that
cos(θ)= (F · G)/ ‖ F ‖‖ G ‖, where θ is the angle between F and G. Now write

‖ F ‖2‖ G ‖2 −(F · G)2

=‖ F ‖2‖ G ‖2 −‖ F ‖2‖ G ‖2 cos2(θ)

=‖ F ‖2‖ G ‖2 sin2(θ).

It is therefore enough to show that

‖ F × G ‖2=‖ F ‖2‖ G ‖2 −(F · G)2,

and this is a tedious but routine calculation.
Property (4) follows from (3), since two nonzero vectors are parallel exactly when the

angle θ between them is zero, and in this case, sin(θ)= 0. Properties (5) and (6) are routine
computations.

Property (4) provides a test for three points to be collinear, that is, to lie on a single line. Let
P , Q, and R be the points. These points will be collinear exactly when the vector F from P to Q
is parallel to the vector G from P to R. By property (4), this occurs when F × G = O.

One of the primary uses of the cross product is to produce a vector orthogonal to two given
vectors. This can be used to find the equation of a plane containing three given points. The
strategy is to pick one of the points and write the vectors from this point to the other two. The
cross product of these two vectors is normal to the plane containing the points. Now we know
a normal vector and a point (in fact three points) on the plane, so we can use equation (6.2) to
write the equation of the plane.

This strategy fails if the cross product is zero. But by property (4), this only occurs if the
given points are collinear, hence do not determine a unique plane (there are infinitely many planes
through any line in 3-space).

EXAMPLE 6.7

Find the equation of a plane containing the points P : (−1,4,2), Q : (6,−2,8), and
R : (5,−1,−1).

Use the three given points to form two vectors in the plane:

PQ = 7i − 6j + 6k and PR = 6i − 5j − 3k.

The cross product of these vectors is orthogonal to the plane of these vectors, so

N = PQ × PR = 48i + 57j + k

is a normal vector. By equation (6.2), the equation of the plane is

48(x + 1)+ 57(y − 4)+ (z − 2)= 0,

or

48x + 57y + z = 182. �

SECTION 6.3 PROBLEMS

In each of Problems 1 through 4, compute F×G and G×F
and verify the anticommutativity of the cross product.

1. F =−3i + 6j + k,G = −i − 2j + k

2. F = 6i − k,G = j + 2k

3. F = 2i − 3j + 4k,G =−3i + 2j

4. F = 8i + 6j,G = 14j
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In each of Problems 5 through 9, determine whether the
points are collinear. If they are not, determine an equation
for the plane containing these points.

5. (−1,1,6), (2,0,1), (3,0,0)

6. (4,1,1), (−2,−2,3), (6,0,1)

7. (1,0,−2), (0,0,0), (5,1,1)

8. (0,0,2), (−4,1,0), (2,−1,−1)

9. (−4,2,−6), (1,1,3), (−2,4,5)

In each of Problems 10, 11, and 12, find a vector nor-
mal to the given plane. There are infinitely many such
vectors.

10. 8x − y + z = 12

11. x − y + 2z = 0

12. x − 3y + 2z = 9

13. Let F and G be nonparallel vectors and let R be the
parallelogram formed by representing these vectors as
arrows from a common point. Show that the area of
this parallelogram is ‖ F × G ‖.

14. Form a parallelepiped (skewed rectangular box) hav-
ing as incident sides the vectors F, G, and H drawn as
arrows from a common point. Show that the volume
of this parallelepiped is

|F · (G × H)|.
This quantity is called the scalar triple product of F,
G, and H.

6.4 The Vector Space Rn

For systems involving n variables we may consider n-vectors

< x1, x2, · · · , xn >

having n components. The j th component of this n-vector is x j and this is a real number. The
totality of such n-vectors is denoted Rn and is called “n-space”. R1 is the real line, consisting
of all real numbers. We can think of numbers as 1-vectors, although we do not usually do this.
R2 is the familiar plane, consisting of vectors with two components. And R3 is in 3-space. Rn

has an algebraic structure which will prove useful when we consider matrices, systems of linear
algebraic equations, and systems of linear differential equations.

Two n-vectors are equal exactly when their respective components are equal:

< x1, x2, · · · , xn >=< y1, y2, · · · , yn >

if and only if

x1 = y1, x2 = y2, · · · , xn = yn.

Add n-vectors, and multiply them by scalars, in the natural ways:

< x1, x2, · · · , xn > + < y1, y2, · · · , yn >=< x1 + y1, x2 + y2, · · · , xn + yn >

and

α < x1, x2, · · · , xn >=<αx1, αx2, · · · , αxn > .

These operations have the properties we expect of vector addition and multiplication by
scalars. If F, G, and H are in Rn and α an β are real numbers, then

1. F + G = G + F.

2. F + (G + H)= (F + G)+ H.

3. F + O = F,
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where

O = (0,0, · · · ,0)
is the zero vector in Rn (all components zero).

4. (α+β)F =αF +βF.

5. (αβ)F =α(βF).

6. α(F + G)=αF +αG.

7. αO = O.

Because of properties (1) through (7), and the fact that 1F = F for every F in Rn , we refer to
Rn as a vector space. There is a general theory of vector spaces which includes a broader class of
spaces than Rn . As one example, we will touch upon the function space C[a,b] in Section 6.5.

The norm (length) of an n-vector F =< x1, x2, · · · , xn > is

‖ F ‖=
√

x2
1 + · · ·+ x2

n .

This norm can be used to define a concept of distance in Rn . Given two points P : (x1, x2, · · · , xn)

and Q : (y1, y2, · · · , yn) in Rn , think of

F =< x1, x2, · · · , xn > and G =< y1, y2, · · · , yn >

as vectors from the origin to these points, respectively. The distance between the points is the
norm of the difference of F and G:

distance between P and Q

=‖ F − G ‖
=√(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

When n = 3 this is the usual distance between two points in R3.

The dot product of two n-vectors is defined by

< x1, x2, · · · , xn > · < y1, y2, · · · , yn >= x1 y1 + x2 y2 + · · ·+ xn yn.

This operation is a direct generalization of the dot product in R3. Some properties of the norm
and the dot product are:

1. ‖αF ‖= |α| ‖ F ‖.

2. Triangle inequality for n-vectors:

‖ F + G ‖≤‖ F+‖ G ‖ .
3. F · G = G · F.

4. (F + G) · H = F · H + GH.

5. α(F · G)= (αF) · G = F · (αG).

6. F · F =‖ F ‖2.

7. F · F = 0 if and only if F = O.

8. ‖αF +βG ‖2=α2 ‖ F ‖2 +2αβF · G +β2 ‖ G ‖2 .

9. Cauchy-Schwarz inequality:

|F · G| ≤‖ F ‖‖ G ‖ .
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These conclusions are proved by straightforward manipulations. Property (8) is proved by
a calculation identical to that done for vectors in R3, thinking of F and G as vectors with n
components instead of three.

To verify property (9), use (8). First observe that the conclusion is just 0 ≤ 0 if either F
or G is the zero vector. Thus suppose both are nonzero. In property (8), choose α =‖ G ‖ and
β =−‖ F ‖ to obtain

0 ≤‖αF +βG ‖2

=‖ F ‖2‖ G ‖2 −2 ‖ F ‖‖ G ‖ (F · G)+‖ F ‖2‖ G ‖2

= 2 ‖ F ‖‖ G ‖ (‖ F ‖‖ G ‖−F · G).

Divide this inequality by 2 ‖ F ‖‖ G ‖ to obtain

F · G ≤‖ F ‖‖ G ‖ .
Now go back to conclusion (8) but this time set α =‖ G ‖ and β =‖ F ‖ to obtain, by a similar
computation,

0 ≤‖αF +βG ‖2

= 2 ‖ F ‖‖ G ‖ (‖ F ‖‖ G ‖+F · G).

Then

−‖ F ‖‖ G ‖≤ F · G.

Put these two inequalities together to conclude that

−‖ F ‖‖ G ‖≤ F · G ≤‖ F ‖‖ G ‖,
and this is equivalent to

|F · G| ≤‖ F ‖‖ G ‖ .
There is no cross product for n-vectors if n> 3.
In view of the Cauchy-Schwarz inequality, we can define the cosine of the angle between

n-vectors F and G by

cos(θ)=
{

0 if F or G is the zero vector,

(F · G)/(‖ F ‖‖ G ‖) if both vectors are nonzero.

This definition is motivated by the fact that this is the cosine of the angle between two vectors in
R3. We use this definition to bring some geometric intuition to vectors in Rn , which we cannot
visualize if n> 3. For example, as in R3, it is natural to define F and G to be orthogonal if their
dot product is zero (so the angle between the two vectors is π/2, or one or both vectors is the
zero vector).

If F and G are orthogonal, then F · G = 0. Upon setting α=β = 1 in (8) we obtain

‖ F + G ‖2=‖ F ‖2 +‖ G ‖2 .

This is the n-dimensional version of the Pythagorean theorem.
Define standard unit vectors along the axes in Rn by

e1 =< 1,0,0, · · · ,0>,
e2 =< 0,1,0, · · · ,0>, · · · ,
en =< 0,0, · · · ,0,1> .

These vectors are orthonormal in the sense that each is a unit vector (length 1), and the vectors
are mutually orthogonal (each is orthogonal to all of the others).
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We can write any n-vector in standard form

< x1, x2, · · · , xn >= x1e1 + x2e2 + · · ·+ xnen.

This is a direct generalization of writing a 3-vector in terms of the orthonormal 3-vectors i, j
and k.

Suppose now that S is a set of vectors in Rn . We call S a subspace of Rn if the following
conditions are met:

1. O is in S.

2. The sum of any vectors in S is in S.

3. The product of any vector in S by any real number is in S.

Conditions (2) and (3) of this definition are equivalent to asserting that αF + βG is in S for
any numbers α and β and vectors F and G in S.

Rn is a subspace of itself, and the set S ={< 0,0, · · · ,0>} consisting of just the zero vector
is a subspace of Rn . This is called the trivial subspace. Here are more substantial examples.

EXAMPLE 6.8

Let S consist of all vectors in Rn having norm 1. In R2 this can be visualized as the set of points
on the unit circle about the origin, and in 3-space as the set of points on the unit sphere about the
origin. S is not a subspace of Rn because the zero vector is not in S, violating requirement (1) of
the definition. This is enough to disqualify S from being a subspace. However, in this example,
requirements (2) and (3) also fail. A sum of two vectors having length 1 does not have length
1, hence is not in S. And a scalar multiple of a vector in S is not in S unless the scalar is 1
or −1. �

EXAMPLE 6.9

Let K consist of all scalar multiples of F =<−1,4,2,0> in R4. The zero vector is in K (this is
the product of F with the number zero). A sum of scalar multiples of F is a scalar multiple of F,
hence is in K , so requirement (2) holds. And a scalar multiple of a scalar multiple of F is also a
scalar multiple of F, so requirement (3) is true. �

EXAMPLE 6.10

In R6, let W consist of all vectors having second, fourth and sixth component zero. Thus S con-
sists of all 6-vectors< x,0, y,0, z,0>. Then<0,0,0,0,0,0> is in W (choose x = y = z = 0).
A sum of vectors in W also has second, fourth and sixth components zero, as does any scalar
multiple of a vector in W . Therefore W is a subspace of R6. �

EXAMPLE 6.11

Let F1, · · · ,Fk be any k vectors in Rn . Then the set L of all vectors of the form

α1F1 +α2F2 + · · ·+αkFk,

in which the α j
′s can be any real numbers, forms a subspace of Rn . We call this subspace the

span of F1, · · · ,Fk and we will say more shortly about subspaces formed in this way. �
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In the plane and in 3-space, it is easy to visualize all of the subspaces in addition to the entire
space and the trivial subspace.

First consider R2 and look at a straight line y = mx through the origin. Every point on this
line has the form (x,mx). With i =< 1,0> and j =< 0,1>, every vector x i + mxj, with second
component m times the first, is along this line. Further, any sum of two vectors x1i + mx1j and
x2i + mx2j has this form, as does any multiple of such a vector by a real number. Therefore the
vectors x i + mxj form a subspace of R2.

So far we have excluded the vertical axis, which is also a line through the origin, but does
not have finite slope. However, all vectors parallel to the vertical axis also form a subspace of R2,
being scalar multiples of j.

Every line through the origin therefore determines a subspace of R2, consisting of all vectors
parallel to this line.

Are there any other subspaces of R2 that we have missed?
Suppose S is a nontrivial subspace containing two vectors ai + bj and ci + dj that are not on

the same line through the origin. Then ad − bc �= 0, because the lines along these vectors have
different slopes. We claim that this forces every 2-vector x i + yj to be in S. To verify this, we
will solve for numbers α and β such that

x i + yj =α(ai + bj)+β(ci + dj).

This requires that

αa +βc = x, and

αb +βd = y.

But these equations have the solutions

α= dx − cy

ad − bc
and β = ay − bx

ad − bc
.

Therefore every 2-vector x i + yj in R2is of the form

α(ai + bj)+β(ci + dj)

hence is in S. In this event S = R2. We therefore know all of the subspaces of R2. They are R2,
the trivial subspace {< 0,0>} and, for any line L through the origin, all vectors parallel to L .

By similar reasoning, there are exactly four kinds of subspaces of R3. These are R3, the
trivial subspace containing just the zero vector, the subspace of all vectors on any given line
through the origin, and the subspace of all vectors lying on any given plane through the origin.

A linear combination of k vectors F1, · · · ,Fk in Rn is a sum of the form

α1F1 +α2F2 + · · ·+αkFk .

in which each α j is a real number.
The span of vectors F1,F2, · · · ,Fk in Rn consists of all linear combinations of these

vectors, that is, of all vectors of the form

α1F1 +α2F2 + · · ·+αkFk .

From Example 6.11, the span of any set of vectors in Rn is a subspace of Rn . We say that these
vectors form a spanning set for this subspace.

Every nontrivial subspace has many spanning sets.
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EXAMPLE 6.12

The vectors i, j,k span all of R3. But so do

3i,2j,−k.

The vectors

F1 = i + k,F2 = i + j,F3 = j + k

also span R3. To see this, let V = ai + bj + ck be any 3− vector. Then

V = a + b − c

2
F1 + a − b + c

2
F2 + 3a − b − c

2
F3. �

In this example these spanning sets all have three vectors in them. But a spanning set for R3

may have more than three vectors. For example, the vectors

i, j,k,−4i,
√

97k

also span R3 because we can write any 3-vector as

< x, y, z>= x i + yj + zk + 0(−4i)+ 0(
√

97kj).

This set of five vectors spans R3, but does so inefficiently in the sense that two of the vectors are
not needed to have a spanning set for R3. �

More generally, if vectors V1, · · · ,Vk span a subspace S of Rn , we can adjoin any number
m of other vectors of S to these k vectors, and the resulting m + k vectors will still span S.

Going the other way, if V1, · · · ,Vk span a subspace S of Rn , it may be possible to remove
some vectors from this set and have the smaller set of vectors still span S. This occurs when
V1, · · · ,Vk contain redundant information and not all of them are needed to completely specify S.
The efficiency of a spanning set (the idea of whether it contains unnecessary vectors) is addressed
through the notions of linear dependence and independence.

A (finite) set of vectors in Rn is called linearly dependent if one of the vectors is a linear
combination of the others. Otherwise, if no one of the vectors is a linear combination of
the others, then these vectors are linearly independent.

EXAMPLE 6.13

The vectors

F =< 3,−1,0,4>,G =< 3,−2,−1,10>,H =< 6,−1,1,2>

are linearly dependent in R4 because G = 3F − H. The two vectors F and G are linearly
independent, because neither is a scalar multiple of the other. �

Think of linear independence in terms of information. Suppose F1, · · · ,Fk are vectors in Rn .
If these vectors are linearly dependent, then at least one of them, say Fk for convenience, is a
linear combination of F1, · · · ,Fk−1. This means that any linear combination of these k vectors
is really a linear combination of just the first k − 1 of them. Put another way, the subspace S
spanned by all k of these vectors is the same as the subspace space spanned by just the first k − 1
of them, and Fk is not needed in specifying S.
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EXAMPLE 6.14

Let

F1 =< 1,0,1,0>,F2 =< 0,1,1,0> and F3 =< 2,3,5,0> .

These vectors are linearly dependent in R4 because

F3 = 2F1 + 3F2.

The subspace S of R4 spanned by F1 and F2 is the same as the subspace spanned by all three of
these vectors. Indeed, any linear combination of all three vectors is a linear combination of the
first two:

c1F1 + c2F2 + c3F3

= c1F1 + c2F2 + c3(2F1 + 3F2)

= (c1 + 2c3)F1 + (c2 + 3c3)F2.

F1 and F2 contain all of the information needed to specify S. �

There is an important characterization of linear independence and dependence that is used
frequently.

THEOREM 6.1 Linear Dependence and Independence

Let F1,F2, · · · ,Fk be vectors in Rn . Then

1. F1,F2, · · · ,Fk are linearly dependent if and only if there are real numbers α1, α2, · · · , αk ,
not all zero, such that

α1F1 +α2F2 + · · ·+αkFk = O.

2. F1,F2, · · · ,Fk are linearly independent if and only if an equation

α1F1 +α2F2 + · · ·+αkFk = O,

can hold only if each coefficient is zero:

α1 =α2 = · · ·=αk = 0. �
Proof To prove (1), suppose first that F1,F2, · · · ,Fk are linearly dependent. Then at least one
of these vectors is a linear combination of the others. As a convenience, suppose

F1 =α2F2 + · · ·+αkFk .

Then

F1 −α2F2 − · · ·−αkFk = O.

This is a linear combination of F1,F2, · · · ,Fk adding up to the zero vector, and having at least
one nonzero coefficient (the coefficient of F1 is 1).

Conversely, suppose there are real numbers α1, · · · , αk , not all zero, such that

α1F1 +α2F2 + · · ·+αkFk = O.

By assumption at least one of the coefficient is not zero. Suppose, for convenience, that αk �= 0.
Then

Fk =−α1

αk

F1 − · · ·− αk−1

αk

Fk−1,

so Fk is a linear combination of F1, · · · , Fk−1 and F1,F2, · · · ,Fk are linearly dependent.
Part (2) of the theorem is proved similarly. �
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If k and n are large, it may be difficult to tell whether a set of k vectors in Rn is linearly
independent or dependent. This task is simplified if the vectors are mutually orthogonal.

THEOREM 6.2

Let F1, · · ·Fk be nonzero mutually orthogonal vectors in Rn . Then F1, · · ·Fk are linearly
independent.

Proof Suppose

α1F1 +α2F2 + · · ·+αkFk = O.

Take the dot product of this equation with F1:

α1F1 · F1 +α2F1 · F2 + · · ·+αkF1 · Fk = O · F1 = 0.

Because F1 · F j = 0 for j = 2, · · · , k, by the orthogonality of these vectors, this equation
reduces to

α1F1 · F1 = 0.

Then

α1 ‖ F1 ‖2= 0.

But F1 is not the zero vector, so ‖ F1 ‖�= 0 and therefore α1 = 0. By using F j in place of F1 in
this dot product, we conclude that each α j = 0. By (2) of Theorem 6.1, F1, · · ·Fk are linearly
independent. �

We would like to combine the notions of spanning set and linearly independence to define
vector spaces and subspaces as efficiently as possible. To this end, define a basis for a
subspace S of Rn to be a set of vectors that spans S and is linearly independent. In this
definition, S may be Rn .

EXAMPLE 6.15

The vectors i, j,k in R3 are linearly independent, and span R3. These vectors form a basis for R3.
In Rn , the standard unit vectors

e1 =< 1,0,0, · · · ,0>, e2 =< 0,1,0, · · · ,0>, · · · , en < 0,0, · · · ,0,1>
form a basis. �

EXAMPLE 6.16

Let S be the subspace of Rn consisting of all n− vectors with first component zero. Then
e2, · · · , en form a basis for S. �

EXAMPLE 6.17

In R3, let M be the subspace of all vectors parallel to the plane x + y + z = 0. A point is on this
plane exactly when it has coordinates (x, y,−x − y). Therefore every vector in M has the form
< x, y,−x − y>. We can write this vector as

< x, y,−x − y>= x < 1,0,−1>+y< 0,1,−1> .
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The vectors < 1,0,−1> and < 0,1,−1> span M . These vectors are also linearly independent,
since neither is a scalar multiple of the other. These vectors therefore form a basis for M . Both
vectors are needed to specify all vectors in S.

There is nothing unique about a basis for a subspace. For example,

< 2,0,−2> and < 0,2,−2>

also form a basis for M , as do

< 1,0,−1> and < 0,4,−4> . �

We will need some additional facts about bases. The first is that any spanning set for a
subspace S of Rn contains a basis.

THEOREM 6.3

Let S be a subspace of Rn that is spanned by F1, · · · ,Fk . Then a basis for S can be formed from
some or all of the vectors F1, · · · ,Fk . �

We will sketch the idea of a proof. Suppose we have a set of vectors F1, · · · ,Fk that span a
given subspace S of Rn (perhaps all of Rn). If these vectors are also linearly independent, then
they form a basis for S.

If these spanning vectors are linearly dependent, then at least one F j is a linear combination
of others. Remove F j , and the remaining set (one vector smaller) spans S. If these vectors are
linearly dependent, then one is a linear combination of the others, and we can remove this one to
obtain a still smaller spanning set for S. Continuing in this way, we eventually reach a spanning
set for S that is linearly independent, with no one vector a linear combination of the others.

A spanning set for S is a basis if the vectors are linearly independent. If we are willing to
forego linear independence, however, then we can adjoin as many vectors from S as we like to
this spanning set and still have a spanning set for S. This suggests that a basis is limited in size,
while a spanning set is not. The next theorem is a careful statement of this idea, and says that
any spanning set for S has at least as many vectors in it as any basis for S. It is in this sense that
a basis for a subspace is a “smallest possible” spanning set for this subspace.

THEOREM 6.4

Suppose V1, · · · ,Vk span a subspace S of Rn , and let G1, · · · ,Gt be a basis for S. Then t ≤ k. �

Proof Since V1, · · · ,Vk span S and G1 is in S, then

G1 = c1V1 + · · ·+ ckVk

for some numbers c1, · · · , ck . Then

G1 − c1V1 − · · ·− ckVk = O.

If each c j = 0 then G1 = O, impossible since G1 is a basis vector. Therefore some c j is nonzero.
As a notational convenience, suppose c1 �= 0. Then

V1 =− 1

c1

G1 − c2

c1

V2 − · · ·− ck

c1

Vk .

Further, G1,V2, · · · ,Vk span S. Denote this set of vectors as A1:

A1 : G1,V2, · · · ,Vk .
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V1, V2, ..., Vk

G1, G2, ..., Gt

S

A1: G1, V2, V3, ..., Vk

A2: G2, G1, V3, ..., Vk

Aj: Gj, Gj–1, ..., G1, Aj+1, ..., At

S

S

S

FIGURE 6.15 The sets A1, A2, · · · formed
in the proof of Theorem 6.4.

Now adjoin G2 to this list of vectors to form

G2,G1,V2, · · · ,Vk .

This set spans S and is linearly dependent because G2 is a linear combination of the other vectors.
Arguing as we did for A1, some V j is a linear combination of the other vectors in this list. Again
for notational ease, suppose this is V2. Deleting this vector from the list therefore yields a set of
vectors that still spans S. Denote this set A2:

A2 : G2,G1,V3, · · · ,Vk .

The vectors in A2 span S and are linearly dependent. We can continue this process of replacing,
one by one, the vectors in V1, · · · ,Vk with vectors in G1, · · · ,Gt . Figure 6.15 illustrates this
interchange of vectors between the basis to the spanning set that we have been carrying out.

There are two possibilities for this process to end.
First, this process may exhaust the basis vectors G1, · · · ,Gt with some vectors V j remaining.

Since we delete a V j from the list exactly when we adjoin some Gi , this would imply that t ≤ k.
The other possibility is that at some stage we have removed all of the V j

′s, and still have
some Gi s left (so we would have t > k). At this stage, we would have the list

Ak : Gk,Gk−1, · · · ,G1.
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But each time we form such a list by replacing a spanning set vector with a basis vector, we
obtain a new set of vectors that spans S. This would make Gk+1 a linear combination of the first
k basis vectors, and then these basis vectors would be linearly dependent, a contradiction.

This proves that this possibility cannot occur, leaving the first possibility, and t ≤ k. �

This theorem has a profound consequence—all bases for a given subspace of Rn have the
same number of vectors in them.

COROLLARY 6.1

Let G1, · · · ,Gm and H1, · · · ,Hk be bases for a subspace S of Rn . Then m = k.

Proof Each basis is a spanning set, so two applications of Theorem 6.4 gives us m ≤ k and also
k ≤ m. �

The number of vectors in a basis for a subspace S of Rn is called the dimension of S. For
example, Rn has dimension n, and the subspace of R3 in Example 6.17 has dimension 2.

Now suppose S is a k-dimensional subspace of Rn , and v1,v2, · · · ,vk form a basis for S. If
X is in S, then there are numbers c1, c2, · · · , ck such that

X = c1v1 + c2v2 + · · ·+ ckvk =
k∑

j=1

c jvk .

The numbers c1, · · · , ck are called the coordinates of X with respect to this basis. These
coordinates are unique to X and to this basis.

For, if

X = d1v1 + · · ·+ dkvk

then

X − X = O = (c1 − d1)v1 + · · · + (ck − dk)vk =
k∑

j=1

(c j − dj)v j .

Since the vectors v1, · · · ,vk are linearly independent, each c j − dj = 0, and therefore each
c j = dj .

A nontrivial subspace of Rn has many bases, and each n-vector X has unique coordinates
with respect to each basis. However, on a practical level, some bases are more convenient to work
with in the sense that coordinates of vectors with respect to these bases are easier to determine.
To illustrate, let S be the subspace of R4 consisting of all vectors< x, y,0,0>, with x and y any
real numbers.

This is a two-dimensional subspace with e1 =< 1,0,0,0> and e2 =< 0,1,0,0> forming a
basis B1 for S. The vectors

w1 =< 2,−6,0,0> and w2 =< 2,4,0,0>
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form another basis B2 for S. Why does B1 seem more natural than B2? It is because, given any X
in S, it is easy to find the coordinates of X with respect to B1. Indeed, if X =< a,b,0,0>, then
immediately

X = ae1 + be2.

However, finding the coordinates of X with respect to B2 is more tedious. If these coordinates are
c1 and c2, then we would have to have

< a,b,0,0>= c1w1 + c2w2

= c1 < 2,−6,0,0>+c2 < 2,4,0,0>

=< 2c1 + 2c2,−6c1 + 4c2,0,0>,

requiring that

2c1 + 2c2 = a and − 6c1 + 4c2 = b.

Solve for these coordinates to obtain

c1 = 1

10
(2a − b), c2 = 1

10
(3a + b).

Thus,

X = 1

10
(2a − b)w1 + 1

10
(3a + b)w2.

We can tell the coordinates of any X in S with respect to B1 just by looking at X, while finding
the coordinates of X with respect to B2 takes some work.

Another nice feature of B1 is that it consists of mutually orthogonal vectors. In general, a
basis is an orthogonal basis if its vectors are mutually orthogonal. If these vectors are also unit
vectors, then the basis is orthonormal. With any orthogonal basis for S, it is possible to write a
simple formula for the coordinates of any vector X in S.

THEOREM 6.5 Coordinates in Orthogonal Bases

Let S be a subspace of Rn and let V1, · · · ,Vk be an orthogonal basis for S. If X is in S, then

X = c1V1 + c2v2 + · · ·+ ckVk,

where

c j = X · V j

‖ V j ‖2

for j = 1,2, · · · , k. �
This gives the j th coordinate of any X with respect to these basis vectors as the dot product

of X with V j , divided by the length of V j squared. In terms of projections, any vector in X is
the sum of the projections of X onto the orthogonal basis vectors. This is true for any orthogonal
basis for S.

Proof Write

X = c1V1 + c2V2 + · · ·+ ckVk .

We must solve for the c j
′s. Take the dot product of X with V j to obtain

X · V j = c j V j · V j = c j ‖ V j ‖2,

since, by orthogonality, Vi · V j = 0 if i �= j . This yields the expression for c j given in the
theorem. �
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EXAMPLE 6.18

The vectors

v1 =< 2,0,1,0,0>,v2 =< 0,5,0,0,0>,v3 =<−1,0,2,0,0>

form an orthogonal basis for a three-dimensional subspace S of R5. Let X =< 12,−5,4,0,0>,
a vector in S. We will find the coordinates c1, c2, c3 of X with respect to this basis. Compute

c1 = X · v1

‖ v1 ‖2
= 28

5
,

c2 = X · v2

‖ v2 ‖2
= −25

25
=−1,

c3 = X · v3

‖ v3 ‖2
=−4

5
. �

Then

X = c1v1 + c2v2 + c3v3. �

We will pursue further properties of sets of orthogonal vectors in the next section.

SECTION 6.4 PROBLEMS

In each of Problems 1 through 10, determine whether
the vectors are linearly independent or dependent in the
appropriate Rn .

1. 3i + 2j, i − j in R3

2. 2i,3j,5i − 12k, i + j + k in R3

3. < 8,0,2,0,0,0,0>,< 0,0,0,0,1,−1,0> in R7

4. < 1,0,0,0>,< 0,1,1,0>,<−4,6,6,0> in R4

5. < 1,2,−3,1>,< 4,0,0,2>,< 6,4,−6,4> in R4

6. < 0,1,1,1 >,< −3,2,4,4 >,< −2,2,34,2 >,

< 1,1,−6,−2> in R4

7. < 1,−2>,< 4,1>,< 6,6> in R2

8. <−1,1,0,0,0>,< 0,−1,1,0,0>,< 0,1,1,1,0>
in R5

9. < −2,0,0,1,1 >,< 1,0,0,0,0 >,< 0,0,0,0,2 >,
< 1,−1,3,3,1> in R5

10. < 3,0,0,4>,< 2,0,0,8> in R4

In each of Problems 11 through 15, show that the set S is
a subspace of the appropriate Rn and find a basis for this
subspace and the dimension of the subspace.

11. S consists of all vectors < x, y,−y,−x > in R4.

12. S consists of all vectors < x, y,2x,3y> in R4.

13. S consists of all vectors in R4 with zero second
component.

14. S consists of all vectors in R6 of the form < x, x,
y, y,0, z>.

15. S consists of all vectors<0, x,0,2x,0,3x,0> in R7.

In each of Problems 16, 17, and 18, find the coordinates of
X with respect to the given basis.

16. X =< 4,4,−1,2,0 > with vectors < 2,1,0,0,0 >,
< 1,−2,0,0,0 >, < 0,0,3,−2,0 >, < 0,0,2,
−3,0> spanning a subspace S of R5.

17. X =< −3,−2,5,1,−4 >, with the basis < 1,1,1,
1,0>, <−1,1,0,0,0>, < 1,1,−1,−1,0>, < 0,0,
2,−2,0>, < 0,0,0,0,2> of R5.

18. X =< −3,1,1,6,4,5 >, with the basis < 4,0,1,
0,0,0 >, < −1,1,4,0,0,0 >, < 0,0,0,2,1,0 >,
< 0,0,0,−1,2,5>, < 0,0,0,0,0,5>.

19. Suppose V1, · · · ,Vk form a basis for a subspace S of
Rn . Let U be any other vector in S. Show that the
vectors V1, · · · ,Vk , U are linearly dependent.

20. Let V1, · · · ,Vk be mutually orthogonal vectors in Rn .
Prove that

‖ V1 + · · ·+ Vk ‖2 =‖ V1 ‖2 +· · ·+ ‖ Vk ‖2 .

Hint: Write

‖V1 +· · ·+ Vk ‖2 = (V1 +· · ·+ Vk) · (V1 +· · ·+ Vk).

21. Let X and Y be vectors in Rn , and suppose that ‖X‖=
‖ Y ‖. Show that X − Y and X + Y are orthogonal.
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Draw a parallelogram law diagram justification for
this conclusion, for the case that the vectors are in R2.

22. Let V1, · · · ,Vk be mutually orthogonal vectors in Rn .
Show that, for any X in Rn ,

k∑

j=1

(X · V j )
2 ≤‖ X ‖2 .

This is known as Bessel’s inequality for vectors. A
version for Fourier series and eigenfunction expan-
sions will be seen in Chapter Fifteen. Hint Let Y =
X −∑k

j=1(X · V j )V j and compute ‖ Y ‖2.

23. Suppose V1, · · · ,Vn are a basis for Rn , consisting of
mutually orthogonal unit vectors. Show that, if X is
any vector in Rn , then

n∑

j=1

(X · V j )
2 =‖ X ‖2 .

This is a vector version of Parseval’s equality.

24. Show that any finite set of vectors that includes the
zero vector is linearly dependent.

25. Let S be a nontrivial subspace of Rn . Show that any
spanning set of S must contain a basis for S.

26. Let u1, · · · ,uk be linearly independent vectors in
Rn , with k < n. Show that there are n − k vectors
v1, · · · ,vn−k such that

u1, · · · ,uk,v1, · · · ,vn−k

form a basis for Rn . This states that any linearly inde-
pendent set of vectors in Rn is either a basis, or can
be expanded into a basis by adjoining more vectors.
Hint: Choose v1 in Rn but not in the span of u, · · · ,uk .
If u1, · · · ,uk,v1 span Rn , stop. Otherwise, there is
some v2 in Rn but not in the span of u1, · · · ,uk,v1.
If u1, · · · ,uk,v1,v2 span Rn , stop. Otherwise continue
this process.

6.5 Orthogonalization

Suppose X1, · · · , Xm form a basis for a subspace S of Rn , with m ≥ 2. We would like to replace
this basis with an orthogonal basis V1, · · · ,Vm for S.

We will build an orthogonal basis one vector at a time. Begin by setting

V1 = X1.

Now look for a nonzero V2 that is in S and orthogonal to V1. One way to do this is to attempt V2

of the form

V2 = X2 − cV1.

Choose c so that V2 is orthogonal to V1. For this, we need

V2 · V1 = X2 · V1 − cV1 · V1 = 0.

This will be true if

c = X2 · V1

‖ V1 ‖2
.

Therefore set

V2 = X2 − X2 · V1

‖ V1 ‖2
V1.

Observe that V2 is X2, minus the projection of X2 onto V1.
If m =2 we are done. If m ≥3, produce nonzero V3 in S orthogonal to V1 and V2 as follows.

Try

V3 = X3 − dV1 − hV2.

We need

V3 · V2 = X3 · V2 − dV1 · V2 − hV2 · V2 = 0,
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so

h = X3 · V2

‖ V2 ‖2
.

And we need

V3 · V1 = X3 · V1 − dV1 · V1 = 0,

so

d = V3 · V1

V1 · V1

= V3 · V1

‖ V1 ‖2
V1.

Therefore, choose

V3 = X3 − X3 · V1

‖ V1 ‖2
V1 − X3 · V2

‖ V2 ‖2
V2.

This is X3, minus the projections of X3 onto V1 and V2.
This pattern suggests a general procedure. Set V1 = X1 and, for j = 2, · · · ,m, V j equal to

X j minus the projections of X j onto V1, · · · ,V j−1. This gives us

V j =X j − X j · V1

‖ V1 ‖2
V1

− X j · V2

‖ V2 ‖2
V2 − · · ·− X j · V j−1

‖ V j−1 ‖2
V j−1,

for j = 2, · · · ,m.

This way of forming mutually orthogonal vectors from X1, · · · ,Xm is called the Gram-
Schmidt orthogonalization process. When we use it, we say that we have orthogonalized
the given basis for S (in the sense of replacing that basis with an orthogonal basis).

The vectors V1, · · · ,Vm are linearly independent because they are orthogonal. Further, they
span the same subspace S of Rn that X1, · · · ,Xm span, because each V j is a linear combination
of the X j vectors, which span S. The vectors V j therefore form an orthogonal basis for S. If we
want an orthonormal basis, then divide each V j by its length.

EXAMPLE 6.19

Let S be the subspace of R7 having basis

X1 =< 1,2,0,0,2,0,0>,X2 =< 0,1,0,0,3,0,0>,X3 =< 1,0,0,0,−5,0,0> .

We will produce an orthogonal basis for S. First let

V1 = X1 =< 1,2,0,0,2,0,0> .

Next let

V2 = X2 − X2 · V1

‖ V1 ‖2
V1

=< 0,1,0,0,3,0,0>−8

9
< 1,2,0,0,2,0,0>

=<−8/9,−7/9,0,0,11/9,0,0> .
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Finally, let

V3 =X3 − X3 · V1

‖ V1 ‖2
V1 − X3 · V2

‖ V2 ‖2
V2

= < 1,0,0,0,−5,0,0>+< 1,2,0,0,2,0,0>

+ 63

26
<−8/9,−7/9,0,0,11/9,0,0>

= <−2/13,3/26,0,0,−1/26,0,0> .

Then V1,V2,V3 form an orthogonal basis for S. �

SECTION 6.5 PROBLEMS

In each of Problems 1 through 8, use the Gram-Schmidt
process to find an orthogonal basis spanning the same
subspace of Rn as the given set of vectors.

1. < 1,4,0>,< 2,−5,0> in R3.

2. < 0,−1,2,0>,< 0,3,−4,0> in R4

3. < 0,2,1,−1>,< 0,−1,1,6>,< 0,2,2,3> in R4

4. <−1,0,3,0,4>,<4,0,−1,0,3>,<0,0,−1,0,5>
in R5

5. < 0,0,2,2,1>,< 0,0,1,−1,5>,< 0,1,−2,1,0>,
< 0,1,1,2,0> in R5

6. < 1,2,0,−1,2,0 >,< 3,1,−3,−4,0,0 >,< 0,−1,
0,−5,0,0>,< 1,−6,4,−2,−3,0> in R6

7. < 0,0,1,1,0,0>,< 0,0,−3,0,0,0> in R6

8. <0,−2,0,−2,0,−2>,<0,1,0,−1,0,0>,<0,−4,
0,0,0,6> in R6

6.6 Orthogonal Complements and Projections

The Gram-Schmidt process serves as a springboard to an important concept that has practical
consequences, including the rationale for least squares approximations (see Section 7.8).

Let S be a subspace of Rn . Denote by S⊥ the set of all vectors in Rn that are orthogonal to
every vector in S. S⊥ is called the orthogonal complement of S in Rn .

For example, in R3, suppose S is the two-dimensional subspace having < 1,0,0 > and
< 0,1,0> as basis. We think of S as the x, y - plane. Now S⊥ consists of all vectors in 3-space
that are perpendicular to this plane, hence all constant multiples of k.

In this example, S⊥ is a subspace of R3. We claim that this is always true.

THEOREM 6.6

If S is a subspace of Rn , then S⊥ is also a subspace of Rn . Further, the only vector in both S and
S⊥ is the zero vector. �

Proof The zero vector is certainly in S⊥ because O is orthogonal to every vector, hence to
every vector in S.
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Next we will show that linear combinations of vectors in S⊥ are in S⊥. Suppose u and v are
in S⊥. Then u and v are orthogonal to every vector in S. If c and d are real numbers and w is in
S, then

w · (cu + dv)= cw · u + dw · v = 0 + 0 = 0.

Therefore w is orthogonal to cu + dv, so cu + dv is in S⊥ and S⊥ is a subspace of Rn .
Certainly O is in both S and S⊥. If u is in both S and S⊥, then u is orthogonal to itself, so

u · u =‖ u ‖2= 0

and then u = O. �

We will now show that, given a subspace S of Rn , containing nonzero vectors, then each
vector in Rn has a unique decomposition into the sum of a vector in S and a vector in S⊥. This
decomposition will prove useful in developing approximation techniques in Section 7.8.

THEOREM 6.7

Let S be a nontrivial subspace of Rn and let u be in Rn . Then there is exactly one vector uS in S
and exactly one vector u⊥ in S⊥ such that

u = uS + u⊥. �

Proof We know that we can produce an orthogonal basis V1, · · · ,Vm for S. Define

uS = u · V1

‖ V1 ‖2
V1 + u · V2

‖ V2 ‖2
V2 + · · ·+ u · Vm

‖ Vm ‖2
Vm

=
m∑

j=1

u · V j

V j · V j

V j .

uS is the sum of the projections of u onto each of the orthogonal basis vectors V1, · · · ,Vm , and
is in S because this is a linear combination of the basis vectors of S. Next set

u⊥ = u − uS.

Certainly u = uS + u⊥. All that remains to show is that u⊥ is in S⊥. To show this, we must
show that u⊥ is orthogonal to every vector in S. Since every vector in S is a linear combination
of V1, · · · ,Vm , it is enough to show that u⊥ is orthogonal to each V j . Begin with V1. Since
V1 · V j = 0 if j �= 1,

u⊥ · V1 = (u − uS) · V1

= u · V1 −
(

m∑

j=1

u · V j

V j · V j

V j

)

· V1

= u · V1 − u · V1

V1 · V1

(V1 · V1)= 0.

Similarly, u⊥ · V j = 0 for j = 2, · · · ,m. Therefore u⊥ is in S⊥.
Finally, we must show that u can be written in only one way as the sum of a vector in S and

a vector in S⊥. Suppose

u = uS + u⊥ = U + U⊥,

where U is in S and U⊥ is in S⊥. Then

uS − U = u⊥ − U⊥.
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The vector on the left is in S and the vector on the right is in S⊥. Therefore both sides equal the
zero vector, so

uS = U and u⊥ = U⊥.
This completes the proof. �

Notice in the theorem that, if u is actually in S, then uS = u and u⊥ = O.

The vector uS produced in the proof is called the orthogonal projection of u onto S. It is
the sum of the projections of u onto an orthogonal basis for S.

It would appear from the way uS was formed that this orthogonal projection depends on the
orthogonal basis specified for S. In fact it does not, and any orthogonal basis for S leads to the
same orthogonal projection uS , justifying the term the orthogonal projection of u onto S. The
reason for this is that, given u, the orthogonal projection of u onto S is the unique vector in S
such that u is the sum of this projection and a vector in S⊥.

It is therefore true that, if we write a vector u as the sum of a vector in S and a vector in
S⊥, then necessarily the vector in S is uS and the vector in S⊥ is u − uS . In particular, u − uS is
orthogonal to every vector in S.

EXAMPLE 6.20

Let S be the subspace of R5 consisting of all < x,0, y,0, z > having zero second and fourth
components. Let

u =< 1,4,1,−1,3> .

We will determine at uS and u⊥. First use the orthogonal basis

V1 =< 1,0,0,0,0>,V2 =< 0,0,1,0,2>,V3 =< 0,0,2,0,−1>

for S. The orthogonal projection uS is

uS = u · V1

V1 · V1

V1 + u · V2

V2 · V2

V2 + u · V3

V3 · V3

V3

= V1 + 7

5
V2 − 1

5
V3

=< 1,0,1,0,3>,

and

u⊥ = u − uS =< 0,4,0,−1,0>

is in the orthogonal complement of S, being orthogonal to every vector in S, and u = uS + u⊥.
Suppose we used a different orthogonal basis for S, say

V∗
1 =< 1,0,1,0,0>,V∗

2 =<−3,0,3,0,0>,V∗
3 =< 0,0,0,0,6> .

Now compute the orthogonal projection of u with respect to this basis:
u · V∗

1

V∗
1 · V∗

1

V∗
1 + u · V∗

2

V∗
2 · V∗

2

V∗
2 + u · V∗

3

V∗
3 · V∗

3

V∗
3

= V∗
1 + 0V∗

2 + 1

2
V∗

3

=< 1,0,1,0,3>,

the same as obtained using the first orthogonal basis. This illustrates the uniqueness of uS , given
u and S. �
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We will now show that uS has a remarkable property—it is the unique vector in S that is
closest to u. That is, the distance between u and uS is less than or equal to the distance between
u and v for every v in S:

‖ u − uS ‖<‖ u − v ‖ for every v in S.

THEOREM 6.8

Let S be a nontrivial subspace of Rn and let u be in Rn . Then, for all vectors v in S different
from uS ,

‖ u − uS ‖<‖ u − v ‖ . �

Proof If u is in S, then u = uS and ‖ u − uS ‖= 0. Clearly u is the unique vector in S closest to
itself.

Thus suppose that u is not in S. Let v be any vector in S different from uS . Write

u − v = (u − uS)+ (uS − v).

Now uS − v is in S, being a sum of vectors in S. And we know that u − uS is in S⊥. Therefore
uS − v and u − uS are orthogonal. By the Pythagorean theorem,

‖ u − v ‖2=‖ u − uS ‖2 +‖ uS − v ‖2 .

But u �= uS , so

‖ u − uS ‖> 0.

Therefore

‖ u − v ‖2>‖ uS − v ‖2

and this is equivalent to the conclusion of the theorem. �

EXAMPLE 6.21

Let S be the subspace of R5 having orthogonal basis vectors

V1 =< 1,0,0,0,0,0>,V2 =< 0,1,0,0,0,1>,V3 =< 0,1,0,0,0,−1> .

Let u=<1,−1,4,1,2,−5>. We will find the vector in S closest to u. We may also think of this
as the distance between u and S. First, the orthogonal projection of u onto S is

uS = (u · v1)v1 + 1

2
(u · v2)v1 + 1

2
(u · v3)v3

= v1 − 3v2 + 2v3

=< 1,−1,0,0,0,−5> .

Then

‖ u − uS ‖=√
21.

This is the distance between u and the vector in S closest to u. �

Because the distance between two vectors is the square root of a sum of squares, use of
Theorem 6.8 to find a vector at minimum distance from a given vector is called the method of
least squares. We will pursue the idea of least squares approximations in the next section and in
Section 7.8.
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SECTION 6.6 PROBLEMS

In each of Problems 1 through 5, write u as a sum of a
vector in S and a vector in S⊥.

1. S has orthogonal basis < 1,−1,0,0>, < 1,1,0,0>
in R4, u =<−2,6,1,7>.

2. S has orthogonal basis < 1,0,0,2,0 >, < −2,0,
0,1,0> in R5, u =< 0.− 4,−4,1,3>.

3. S has orthogonal basis < 1,−1,0,1,−1 >, < 1,0,
0,−1,0 >, < 0,−1,0,0,1 > in R5, u =< 4,−1,
3,2,−7>.

4. S has orthogonal basis < 1,−1,0,0>, < 1,1,6,1>
in R4, u =< 3,9,4,−5>.

5. S has orthogonal basis < 1,0,1,0,1,0,0>, < 0,1,
0,1,0,0,0> in R7, u =< 8,1,1,0,0,−3,4>.

6. Let S be a subspace of Rn . Determine (S⊥)⊥.

7. Suppose S is a subspace of Rn . Determine a relation-
ship between the dimensions of S and S⊥.

8. Let S be the subspace of R4 spanned by < 1,0,1,0>
and < 0,0,2,1 >. Find the vector in S closest to
< 1,−1,3,−3>.

9. Let S be the subspace of R5 spanned by < 1,1,
−1,0,0 >, < 0,2,1,0,0 > and < 0,1,−2,0,0 >.
Find the vector in S closest to < 3,0,0,1,4>.

10. Let S be the subspace of R6 spanned by < 0,1,1,
0,0,1 >, < 0,0,3,0,0,−3 >, and < 0,0,0,0,
0,4 >. Find the vector in S closest to < 0,1,1,
−2,−2,6>.

6.7 The Function Space C[a, b]
We will extend the notion of a vector space from Rn to a space of functions. This will enable us
to view Theorem 6.8 as an approximation tool for functions as well as an introduction to Fourier
series and eigenfunction expansions in Chapters 13 and 15.

Let C[a,b] denote the set of all (real-valued) functions that are continuous on a closed
interval [a,b]. If f and g are continuous on [a,b], so is their sum f + g, defined by

( f + g)(x)= f (x)+ g(x).

Furthermore, if c is any real number, then c f , defined by

(c f )(x)= c f (x)

is also continuous on [a,b].
The zero function θ is defined by θ(x)= 0 for a ≤ x ≤ b, and this is in C[a,b].
These operations of addition of functions and multiplication of functions by scalars have the

same properties in C[a,b] as addition of vectors and multiplication of vectors by scalars in Rn .
In this sense C[a,b] has an algebraic structure like that of Rn , and we also refer to C[a,b] as a
vector space. In this space we continue to denote functions by upper and lower case letters, rather
than the boldface we used for matrices and vectors in Rn .

Many of the concepts developed for vectors in Rn extend readily to this function space. We
say that f1, f2, · · · , fn in C[a,b] are linearly dependent if there are numbers c1, · · · , cn ,
not all zero, such that

c1 f1 + c2 f2 + · · ·+ cn fn = θ.

This means that

c1 f1(x)+ c2 f2(x)+ · · · + cn fn(x)= 0
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for a ≤ x ≤ b. Linear independence means that the only way a linear combination of f1, · · · , fn

can be the zero function is for all the coefficients to be zero. This is the same as asserting that
no f j is a linear combination of the other functions. We saw this concept, without reference
to the vector space context, when dealing with solutions of second order linear homogeneous
differential equations in Chapter 2.

One significant difference between C[a,b] and Rn is that Rn has a basis consisting of n
vectors, hence has dimension n. However, C[a,b] has no such finite basis. Consider, for example,
the functions

p0(x)= 1, p1(x)= x, p2(x)= x2, p3(x)= x3, · · · , pn(x)= xn,

with n any positive integer. These functions are all in C[a,b] and are linearly independent. The
reason for this is that, if

c1 + c2x + c3x
2 + · · ·+ cnxn = 0

for all x in [a,b], then each ci = 0 because a real polynomial of degree n can have at most n
distinct roots. We can produce arbitrarily large linearly independent sets of functions in C[a,b],
hence C[a,b] can have no finite basis.

We can introduce a dot product for functions in C[a,b] as follows. Select a function p that
is continuous on [a,b], with p(x)> 0 for a< x < b. If f and g are in C[a,b], define

f · g =
∫ b

a

p(x) f (x)g(x)dx .

This operation is called a dot product with weight function p, and it has all of the properties we
saw for dot products of vectors. In particular:

1. f · g = g · f ,

2. ( f + g) · h = f · h + g · h,

3. c( f · g)= (c f ) · g = f · (cg),

4. f · f ≥ 0, and f · f = 0 if and only if f (x)= 0 for a ≤ x ≤ b.

In view of property (4), we can, as in Rn , define the norm or length of f to be

‖ f ‖=√ f · f =
√∫ b

a

p(x)( f (x))2 dx .

Once we have the norm of a function, we can define the distance between f and g to be the norm
of f − g. This is

‖ f − g ‖=√( f − g) · ( f − g)

=
√∫ b

a

p(x)( f (x)− g(x))2 dx .

Continuing the analogy with Rn , define f and g to be orthogonal if f · g = 0. This means
that

∫ b

a

p(x) f (x)g(x)dx = 0.

These definitions enable us to think geometrically in the function space C[a,b], with con-
cepts of distance between functions and orthogonality. The Gram-Schmidt process extends
verbatim to subspaces of C[a,b] using this integral dot product.
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EXAMPLE 6.22

Let n and m be positive integers, and let Sn(x)= sin(nx) and Cm(x)= cos(mx). These functions
are in C[−π,π]. Let p(x)= 1 to use the dot product

f · g =
∫ π

−π
f (x)g(x)dx

in C[−π,π]. With respect to this dot product, Sn(x) and Cm(x) are orthogonal, because their dot
product is

Sn · Cm =
∫ π

−π
sin(nx) cos(mx)dx = 0,

by a routine integration. This type of orthogonality of functions will form the basis for Fourier
series in Chapter 13, and for more general eigenfunction expansions in Chapter 15. �

Theorems 6.6, 6.7, and 6.8 and their proofs, while stated for vectors in Rn , depend only on
the vector space structure in which they were stated, and are valid in C[a,b] as well. Here is an
application of Theorem 6.8.

EXAMPLE 6.23

Suppose we want to approximate f (x)= x(π − x) on [0,π ], using a sum of the form

c1 sin(x)+ c2 sin(2x)+ c3 sin(3x)+ c4 sin(4x).

The term “approximate” has meaning only in the context of some measure of distance, since we
generally call one object a good approximation to another when the objects are close together in
some sense. The necessary structure is available to us if we work in the function space C[0,π ],
which contains f (x) and the functions sin(nx). Using the integral dot product with p(x)=1, the
distance between two functions in C[0,π ] is

‖ F − G ‖=√(F − G) · (F − G)=
√∫ π

0

(F(x)− G(x))2 dx .

To make use of Theorem 6.8, let S be the four-dimensional subspace of C[0,π ] spanned by
sin(x), sin(2x), sin(3x) and sin(4x). Then S consists of exactly the linear combinations

c1 sin(x)+ c2 sin(2x)+ c3 sin(3x)+ c4 sin(4x)

that we want to use to approximate f (x). f is not in S. By Theorem 6.8, the object in S closest
to f is the orthogonal projection fS of f onto S. This is

fS = f · sin(x)

‖ sin(x) ‖2
sin(x)+ f · sin(2x)

‖ sin(2x) ‖2
sin(2x)

+ f · sin(3x)

‖ sin(3x) ‖2
sin(3x)+ f · sin(4x)

‖ sin(4x) ‖2
sin(4x).

All that remains is to compute these coefficients. First, for n = 1,2,3,4,

‖ sin(nx) ‖2=
∫ π

0

sin2
(nx)dx = π

2
.

Furthermore,

f · sin(nx)=
∫ π

0

x(π − x) sin(nx)dx = 2(1 − (−1)n)

n3
.
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FIGURE 6.16 f (x) and fS(x) in Example 6.23.

Therefore,

f (x) · sin(nx)

‖ sin(nx) ‖2
= 4(1 − (−1)n)

πn3

for n = 1,2,3,4. This number is 0 for n = 2 and n = 4, and equals 8/π for n = 1 and 8/27π
for n = 3. The function in S having minimum distance (that is, the closest approximation) to
x(π − x), using this dot product metric, is

fS(x)= 8

π
sin(x)+ 8

27π
sin(3x).

Figure 6.16 is a graph of f (x) and fS(x) on [0,π ]. In the scale of the drawing, the graphs are
nearly indistinguishable, so in this example the approximation appears to be quite good. More
specifically, the square of the distance between f (x) and fS(x) is

‖ f − fS ‖2 =
∫ π

0

( f (x)− fS(x))
2 dx

=
∫ π

0

(x(x −π)− 8

π
sin(x)− 8

27π
sin(3x))2 dx

≈ 0.0007674. �

The apparent accuracy we saw in this example is not guaranteed in general, since we did no
analysis to estimate errors or to determine how many terms of the form sin(nx) would have to
be used to approximate f (x) to within a certain tolerance. Nevertheless, Theorem 6.8 forms a
starting point for some approximation schemes.

EXAMPLE 6.24

Suppose we want to approximate f (x)= ex on [−1,1] by a linear combination of the first three
Legendre polynomials. These polynomials are developed in Section 15.2, and the first three are

P0(x)= 1, P1(x)= x, P2(x)= 1

2
(3x2 − 1).
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These polynomials are orthogonal in C[−1,1], using the integral dot product

f · g =
∫ 1

−1

f (x)g(x)dx .

This means that
∫ 1

−1

Pn(x)Pm(x)dx = 0 if n �= m.

Let S be the subspace of C[−1,1] spanned by P0(x), P1(x), P2(x). The orthogonal projection of
f onto S is

fS(x)= a0 P0(x)+ a1 P1(x)+ a2 P2(x)

= a0 + a1x + a2

1

2
(3x2 − 1),

where

an = f (x) · Pn(x)

Pn(x) · Pn(x)

=
∫ 1

−1
ex Pn(x)dx

∫ 1

−1
P2

n (x)dx

for n = 0,1,2. These integrals are easily done using MAPLE and we find that

a0 = 1

2
(e − e−1),a1 = 3e−1,a2 =−35

2
e−1 + 5

2
e.

Using these coefficients, fs(x) is the closest approximation (in the distance defined by this dot
product) to exp(x) on [−1,1]. Figure 6.17 shows graphs of f (x) and fS(x) on this interval.

We can improve the accuracy of this polynomial approximation by including more terms.
Suppose S∗ is the subspace of C[−1,1] generated by the orthogonal basis consisting of the first
four Legendre polynomials. These are the three given previously, together with

P3(x)= 1

2
(5x3 − 3x).

S∗ differs from S by the inclusion of P3(x) in the basis. Compute the orthogonal projection of
f (x) onto S∗ to obtain

fS∗(x)=
3∑

n=0

an Pn(x).

where a0,a1 and a2 are as before, and

a3 =
∫ 1

−1
ex P3(x)dx

∫ 1

−1
P2

3 (x)dx

= 259

2
e−1 − 35

2
e.

Figure 6.18 shows graphs of f (x) and fS∗(x) on [−1,1]. These graphs are nearly indistinguish-
able in the scale of the drawing.

With a little more computation we can quantify the distance between f and fS and between
f and fS∗ . The squares of these distances are

‖ f − fS ‖2=
∫ 1

−1

( f (x)− fS(x))
2 dx ≈ 0.00144058
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FIGURE 6.17 f and fS in Example 6.24.
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FIGURE 6.18 f and fS∗ in Example 6.24.

and

‖ f − fS∗ ‖2=
∫ 1

−1

( f (x)− fS∗)2 dx ≈ 0.000022.

Then

‖ f − fS ‖≈ 0.038 and ‖ f − fS∗ ‖≈ 0.005. �

SECTION 6.7 PROBLEMS

Problems 1 through 4, involve use of the Gram-
Schmidt orthogonalization process in a function space
C[a,b].

1. In C[0,1], find an orthogonal set of two functions
that spans the same subspace as the two functions e−x

and ex , using p(x)= 1 in the weighted inner product
integral.

2. In C[−π,π ], find an orthogonal set of functions that
spans the same subspace as sin(x), cos(x), and sin(2x).
Use p(x)= 1 in the weighted inner product.

3. In C[0,1], find an orthogonal set of functions that spans
the same subspace as 1, x and x2, using p(x)= x in the
weighted inner product.

4. In C[0,2], find an orthogonal set of functions that spans
the same subspace as 1, cos(πx/2), and sin(πx/2). Use
p(x)= x in the weighted inner product.

The following problems are in the spirit of Example 6.24.

5. Approximate f (x)= x2 on [0,π ] with a linear combi-
nation of the functions 1, cos(x), cos(2x), cos(3x), and
cos(4x). Use p(x)=1 in the weighted inner product on
this function space. Graph f (x) and the approximating
linear combination on the same set of axes. Hint: Cal-
culate fS , the orthogonal projection of f onto the sub-
space of C[0,π ] spanned by 1, cos(x), · · · , cos(4x).

6. Repeat Problem 5, except now use the functions
sin(x), · · · , sin(5x).

7. Approximate f (x)= x(2− x) on [−2,2] using a linear
combination of the functions 1, cos(πx/2), cos(πx),
cos(3πx/2), sin(πx/2), sin(πx), and sin(3πx/2).
Graph f and the approximating function on the same
set of axes. Hint: In C[−2,2], project f orthogonally
onto the subspace spanned by the given functions. Use
the weight function p(x)= 1 in the inner product for
this function space.
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CHAPTER 7
Matrices and
Linear Systems

MATRICES ELEMENTARY ROW OPERATIONS
REDUCED ROW ECHELON FORM ROW AND
COLUMN SPACES HOMOGENEOUS SYSTEMS
NONHOMOGENEOUS SYSTEMS MATRIX

7.1 Matrices

An n by m (or n × m) matrix is a rectangular array of objects arranged in n rows and m
columns.

We will denote matrices in boldface. For example,

A =
(

2 1 π

1
√

2 −5

)

is a 2 × 3 matrix (two rows, three columns) and

B =
(

et 1 −1 cos(t)
0 4t −7 1 − t

)

is a 2 × 4 matrix.
The object located in the row i and column j place of a matrix is called its i, j element.

Often we write A = [ai j ], meaning that the i, j element of A is ai j . In the above matrices A and
B, a11 = 2, a22 =√

2, a23 =−5, b14 = cos(t) and b21 = 0.
If the elements of an n × m matrix are real numbers, then each row can be thought of as a

vector in Rm and each column as a vector in Rn . In the first example, A has two rows that are
vectors in R3 and columns forming three vectors in R2. This vector point of view is often useful
in dealing with matrices.

Two matrices A = [ai j ] and B = [bi j ] are equal if they have the same number of rows, the
same number of columns, and for each i and j , ai j = bi j . Equal matrices have the same
dimensions, and objects located in the same positions in the matrices must be equal.

187
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There are three operations we will define for matrices: addition, multiplication by a real or
complex number, and multiplication. These are defined as follows.

Addition of Matrices

If A=[ai j ] and B=[bi j ] are both n × m matrices, then their sum is defined to be the n × m
matrix A + B =[ai j + bi j ].

We add two matrices of the same dimensions by adding objects in the same locations in the
matrices. For example,

(
1 2 −3
4 0 2

)

+
(−1 6 3

8 12 14

)

=
(

0 8 0
12 12 16

)

.

We can think of this as adding respective row vectors, or respective column vectors, of the matrix.

Multiplication by a Scalar

Multiply a matrix by a scalar quantity (say a number or function) by multiplying each
matrix element by the scalar. If A =[ai j ], then cA =[cai j ]. For example,

√
2

⎛

⎜
⎜
⎝

−3
4
2t

sin(2t)

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

−3
√

2
4
√

2
2t

√
2√

2 sin(2t)

⎞

⎟
⎟
⎠ .

This is the same as multiplying each row vector, or each column vector, by c. As another
example,

cos(t)

(
2 et

sin(t) 4

)

=
(

2cos(t) et cos(t)
cos(t) sin(t) 4cos(t)

)

.

Multiplication of Matrices

Let A = [ai j ] be n × k and B = [bi j ] be k × m. Then the product AB is the n × m matrix
whose i, j element is

ai1b1 j + ai2b2 j + · · ·+ aikbkj ,

or
k∑

s=1

aisbs j .

This is the dot product of row i of A with column j of B (both are vectors in Rk):

i, j element of AB = ( row i of A) · ( column j of B)

= (ai1,ai2, · · · ,aik) · (b1 j ,b2 j , · · · ,bkj)

= ai1b1 j + ai2b2 j + · · ·+ aikbkj .
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This clarifies why the number of columns of A must equal the number of rows of B for
the product AB to be defined. We can only take the dot product of two vectors of the same
dimension.

EXAMPLE 7.1

Let

A =
(

1 3
2 5

)

and B =
(

1 1 3
2 1 4

)

.

Here A is 2 × 2 and B is 2 × 3, so we can compute AB, which is 2 × 3 (number of rows of A,
number of columns of B). In terms of dot products of rows with columns,

AB =
(

1 3
2 5

)(
1 1 3
2 1 4

)

=
(
< 1,3> ·< 1,2> < 1,3> ·< 1,1> < 1,3> ·< 3,4>
< 2,5> ·< 1,2> < 2,5> ·< 1,1> < 2,5> ·< 3,4>

)

=
(

7 4 15
12 7 26

)

.

In this example, BA is not defined because the number of columns of B does not equal the number
of rows of A. �

EXAMPLE 7.2

Let

A =
(

1 1 2 1
4 1 6 2

)

and B =

⎛

⎜
⎜
⎝

−1 8
2 1
1 1
12 6

⎞

⎟
⎟
⎠.

Because A is 2 × 4 and B is 4 × 2, then AB is defined and is 2 × 2:

AB =
(
< 1,1,2,1> ·<−1,2,1,12> < 1,1,2,1> ·< 8,1,1,6>
< 4,1,6,2> ·<−1,2,1,12> < 4,1,6,2> ·< 8,1,1,6>

)

=
(

15 17
28 51

)

.

In this example, BA is also defined and is a 4 × 4 matrix:

BA =

⎛

⎜
⎜
⎝

−1 8
2 1
1 1
12 6

⎞

⎟
⎟
⎠

(
1 1 2 1
4 1 6 2

)

=

⎛

⎜
⎜
⎝

31 7 46 15
6 3 10 4
5 2 8 3
36 18 60 24

⎞

⎟
⎟
⎠.

Even when both AB and BA are defined, these matrices may not be equal, and may not even
have the same dimensions. Matrix multiplication is noncommutative. �

We will list some properties of these matrix operations.
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THEOREM 7.1

Let A, B and C be matrices. Then, whenever the indicated operations are defined:

1. A + B = B + A (matrix addition is commutative).

2. A(B + C)= AB + AC.

3. (A + B)C = AC + AC.

4. (AB)C = A(BC).

5. cAB = (cA)B = A(cB) for any scalar c. �
Proof Proofs of these conclusions are straightforward. To illustrate, we will prove opera-
tion (3):

i, j element of A(B + C)= (row i of A) · (column j of B + C)

= (row i of A) · (column j of B + column j of C)

= (row i of A) · (column j of B)+ ((row i of A) · (column j of C)

= (i, j element of AB)+ (i, j element of AC)

= i, j element of AB + AC. �

We have already noted that in some ways matrix multiplication does not behave like
multiplication of real numbers. The following examples illustrate other differences.

EXAMPLE 7.3

Even when AB and BA are defined and have the same dimensions, it is possible that AB �= BA:
(

1 0
2 −4

)(−2 6
1 3

)

=
(−2 0

8 0

)

but
(−2 0

8 0

)(
1 0
2 −4

)

=
(−14 24

−5 12

)

. �

EXAMPLE 7.4

There is in general no cancelation in products: if AB = AC, it does not follow that A = C. To
illustrate,

(
1 1
3 3

)(
4 2
3 16

)

=
(

1 1
3 3

)(
2 7
5 11

)

=
(

7 18
21 54

)

,

even though
(

4 2
3 16

)

�=
(

2 7
5 11

)

. �

EXAMPLE 7.5

The product of two nonzero matrices may be a zero matrix:
(

1 2
0 0

)(
6 4

−3 −2

)

=
(

0 0
0 0

)

. �
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Matrix addition and multiplication can be done in MAPLE using the A+B and A.B com-
mands, which are in the linalg package of subroutines. Multiplication of A by a scalar c is
achieved by c*A.

7.1.1 Matrix Multiplication from Another Perspective

Let A be an n × k matrix and B a k × m matrix. We have defined AB to be the n × m matrix
whose i, j-element is the dot product of row i of A with column j of B.

It is sometimes useful to observe that column j of AB is the matrix product of A with column
j of B. We can therefore compute a matrix product AB by multiplying an n × k matrix A in turn
by each k × 1 column of B.

Specifically, if the columns of B are B1, · · · ,Bm , then we can think of B as a matrix of these
columns:

B =
⎛

⎝
‖ ‖ · · · ‖
B1 B2 · · · Bm

‖ ‖ · · · ‖

⎞

⎠.

Then

AB = A

⎛

⎝
‖ ‖ · · · ‖
B1 B2 · · · Bm

‖ ‖ · · · ‖

⎞

⎠

=
⎛

⎝
‖ ‖ · · · ‖

AB1 AB2 · · · ABm

‖ ‖ · · · ‖

⎞

⎠.

As an example, let

A =
(

2 −4
1 7

)

and B =
(−3 6 7

−5 1 2

)

.

Then
(

2 −4
1 7

)(−3
−5

)

=
(

14
−38

)

,

(
2 −4
1 7

)(
6
1

)

=
(

8
13

)

,

and
(

2 −4
1 7

)(
7
2

)

=
⎛

⎝
8
6
21

⎞

⎠.

These are the columns of AB:
(

2 −4
1 7

)(−3 6 7
−5 1 2

)

=
(

14 8 6
−38 13 21

)

.

We also will sometimes find it useful to think of a product AX, when X is a k × 1 column
matrix, as a linear combination of the columns A1, · · · ,Ak of A. In particular, if

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xk

⎞

⎟
⎟
⎟
⎠
,
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then

AX = x1A1 + x2A2 + · · · + xkAk .

For example,

(
6 −3 4
2 1 7

)
⎛

⎝
x1

x2

x3

⎞

⎠=
(

6x1 − 3x2 + 4x3

2x1 + x2 + 7x3

)

= x1

(
6
2

)

+ x2

(−3
1

)

+ x3

(
4
7

)

.

7.1.2 Terminology and Special Matrices

We will define some terms and special matrices that are encountered frequently.

The n × m zero matrix Onm is the n × m matrix having every element equal to zero.

For example

O23 =
(

0 0 0
0 0 0

)

.

If A is n × m then

A + Onm = Onm + A = A.

The negative of a matrix A is just the scalar product (−1)A formed by multiplying each
matrix element by −1. We denote this matrix −A. If B has the same dimensions as A, then we
denote B + (−A) as B − A, as we do with numbers.

A square matrix is one having the same number of rows and columns. If A=[ai j ] is n × n,
the main diagonal of A consists of the matrix elements a11,a22, · · · ,ann . These are the
matrix elements along the diagonal from the upper left corner to the lower right corner.

The n × n identity matrix is the n × n matrix In having each i, j element equal to zero if
i �= j , and each i, i element equal to 1. For example,

I4 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠.

Thus In has 1 down the main diagonal and zeros everywhere else.

THEOREM 7.2

If A is n × m, then

InA = AIm = A. �
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This is routine to prove. Note that the dimensions must be correct - we must multiply A on
the left by In , but on the right by Im , for these products to be defined.

EXAMPLE 7.6

Let

A =
⎛

⎝
1 0
2 1

−1 8

⎞

⎠.

Then

I3A =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
1 0
2 1

−1 8

⎞

⎠=
⎛

⎝
1 0
2 1

−1 8

⎞

⎠= A

and

AI2 =
⎛

⎝
1 0
2 1

−1 8

⎞

⎠
(

1 0
0 1

)

=
⎛

⎝
1 0
2 1

−1 8

⎞

⎠= A. �

If A =[ai j ] is an n × m matrix, the transpose of A is the m × n matrix defined by

At =[a ji ].
We form the transpose by interchanging the rows and columns of A.

EXAMPLE 7.7

Let

A =
(−1 6 3 −4

0 π 12 −5

)

,

a 2 × 4 matrix. Then At is the 4 × 2 matrix

At =

⎛

⎜
⎜
⎝

−1 0
6 π

3 12
−4 −5

⎞

⎟
⎟
⎠ . �

THEOREM 7.3 Properties of the Transpose

1. (In)
t = In .

2. For any matrix A,

(At)t = A.

3. If AB is defined, then

(AB)t = BtAt . �

Proof of Conclusion (2) It is obvious if we take the transpose of a transpose, then we inter-
change the rows and columns, then interchange them again, leaving every element in its original
position.

It is less obvious that, if we take the transpose of a product, then we obtain the product of
the transposes, in the reverse order, which is conclusion (3). We will prove this.
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Proof of Conclusion (3) First observe that the conclusion is consistent with the definition of
the matrix product. If A = [ai j ] is n × m and B = [bi j ] is m × k, then AB is n × k, so (AB)t is
k × n. However, At is m × n and Bt is k × m, so AtBt is defined only if n = k, while BtAt is
always defined and is k × n.

Now, from the definition of matrix product

i, j element of BtAt =
k∑

s=1

(Bt)is(At)s j

=
k∑

s=1

bsia js =
k∑

s=1

a jsbsi

= j, i element of AB = i, j element of (AB)t .

This argument can also be given conveniently in terms of dot products:

(BtAt)i j = ( row i of Bt) · ( column j of At)

= ( column i of B) · ( row j of A)

= ( row j of A) · ( column i of B)

= (AB) j i = ((AB)t)i j . �

In some contexts, it is useful to observe that the dot product of two n - vectors can be written
as a matrix product. Write the n-vectors

X =< x1, x2, · · · , xn > and Y =< y1, y2, · · · , yn > .

as n × 1 column matrices

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xn

⎞

⎟
⎟
⎟
⎠

and Y =

⎛

⎜
⎜
⎜
⎝

y1

y2

...

yn

⎞

⎟
⎟
⎟
⎠
.

Then Xt is a 1 × n matrix, and XtY is a 1 × 1 matrix, which we think of as just a scalar:

XtY = (x1 x2 · · · xn

)

⎛

⎜
⎜
⎜
⎝

y1

y2

...

yn

⎞

⎟
⎟
⎟
⎠

= (x1 y1 + x2 y2 + · · ·+ xn yn)= X · Y.

7.1.3 Random Walks in Crystals

We will apply matrix multiplication to the enumeration of paths through a crystal. Crystals have
sites arranged in a lattice pattern. An atom may jump from a site it occupies to an adjacent,
unoccupied one, and then proceed from there to other sites, making a random walk through the
crystal.

We can represent this lattice of locations by drawing a point for each location and a line
between points exactly when an atom can move directly from one to the other in the crystal.
Such a diagram is called a graph. Figure 7.1 shows a typical graph. In this graph, an atom could
move from v1 to v2 or v3, to which it is connected by lines, but not directly to v6 because there is
no line between v1 and v6. Points connected by a line of the graph are called adjacent.
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v1

v2

v3

v4

v5

v6

FIGURE 7.1 A typical graph.

A walk of length n in a graph is a sequence v1, v2, · · · , vn+1 of points (not necessarily dif-
ferent), with each v j adjacent to v j+1. Such a walk represents a possible path an atom might take
over n edges (perhaps some repeated) through various sites in the crystal. A vi − v j walk is one
that begins at vi and ends at v j .

Physicists and materials engineers are interested in the following question: given a crystal
with n sites v1, v2, · · · , vn , how many different walks of length k are there between two selected
sites?

Define the adjacency matrix A =[ai j ] of the graph to be the n × n matrix having

ai j =
{

1 if vi is adjacent to v j in the graph

0 if there is no line between vi and v j in the graph.

The graph of Figure 7.1 has the 6 × 6 adjacency matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The main diagonal elements are zero because there is no line between any vi and itself.
We claim that, if k be any positive integer, then the number of distinct vi −v j walks of length

k in the crystal is the i, j-element of Ak . The elements of Ak therefore answer the question posed.
To see why this is true, begin with k = 1. If i �= j , there is a walk of length 1 between vi and

v j exactly when vi is adjacent to v j , and in this case ai j = 1.
We next show that, if the result is true for walks of length k, then it must be true for walks

of length k + 1. Consider how a vi − v j walk of length k + 1 is formed. First there must be a
vi − vr walk of length 1 from vi to some vr adjacent to vi , followed by a vr − v j walk of length k
(Figure 7.2). Then

number of distinct vi − v j walks of length k + 1

= sum of the number of distinct vr − v j walks of length k,
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Length 1

Length k
vi

vr

vj

FIGURE 7.2 Constructing vi − v j

walks of length k + 1.

with this sum taken over all points vr adjacent to vi . Now air = 1 if vr is adjacent to vi , and
0 otherwise. Further, by assumption, the number of distinct vr − v j walks of length k is the
r, j-element of Ak . Denote Ak = B =[bi j ]. Then, for r = 1, · · · ,n,

airbr j = 0 if vr is not adjacent to vi

and

airbr j =
the number of distinct vi − v j walks of length k + 1 if vr is adjacent to vi .

Therefore, the number of vi − v j walks of length k + 1 is

ai1b1 j + ai2b2 j + · · ·+ ainbnj

and this is the i, j-element of AB, which is Ak+1.

EXAMPLE 7.8

The adjacency matrix of the graph of Figure 7.3 is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 1 0 1 1 0
1 0 0 1 1 0 0 0
0 1 0 1 1 0 0 1
0 1 0 1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

v1

v2

v3

v4

v5

v6

v7

v8

FIGURE 7.3 Graph of Example 7.8.
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Suppose we want the number of walks of length 3 in this graph. Calculate

A3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 5 1 4 2 4 3 2
6 2 7 4 5 4 9 8
1 7 0 8 3 2 3 2
4 4 8 6 8 8 11 10
2 5 3 8 4 6 8 4
4 4 2 8 6 2 4 4
3 9 3 11 8 4 6 7
2 8 2 10 4 4 7 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For example, the 4,7 element of A3 is 11, so there are 11 walks of length 3 between v4 and v7.
There are no walks of length 3 between v4 and v6.

Generally we would use a software package to compute Ak . �

SECTION 7.1 PROBLEMS

In each of Problems 1 through 6, perform the requested
computation.

1. A=
⎛

⎝
1 −1 3
2 −4 6

−1 1 2

⎞

⎠ ,B=
⎛

⎝
−4 0 0
−2 −1 6
8 15 4

⎞

⎠ ;2A−3B

2. A =

⎛

⎜
⎜
⎝

−2 2
0 1
14 2
6 8

⎞

⎟
⎟
⎠ ,B =

⎛

⎜
⎜
⎝

4 4
2 1
14 16
1 25

⎞

⎟
⎟
⎠ ,−5A + 3B

3. A =
(

x 1 − x
2 ex

)

,B =
(

1 −6
x cos(x)

)

,A2 + 2AB

4. A = (14),B = (−12),−3A − 5B

5. A =
(

1 −2 1 7 −9
8 2 −5 0 0

)

,

B =
(−5 1 8 21 7

12 −6 −2 −1 9

)

,4A + 8B

6. A =
(−2 3

1 1

)

,B =
(

0 8
−5 1

)

,A3 − B2

In each of Problems 7 through 16, determine which of AB
and BA are defined. Carry out all such products.

7. A =
⎛

⎝
−4 6 2
−2 −2 3
1 1 8

⎞

⎠ ,

B =
⎛

⎝
−2 4 6 12 5
−3 −3 1 1 4
0 0 1 6 −9

⎞

⎠

8. A =
(−2 −4

3 −1

)

,B =
(

6 8
1 −4

)

9. A = (−1 6 2 14 −22
)
,B =

⎛

⎜
⎜
⎜
⎜
⎝

−3
2
6
0

−4

⎞

⎟
⎟
⎟
⎟
⎠

10. A =

⎛

⎜
⎜
⎝

−3 1
6 2
18 −22
1 6

⎞

⎟
⎟
⎠ ,B =

(−16 0 0 28
0 1 1 26

)

11. A =

⎛

⎜
⎜
⎝

−21 4 8 −3
12 1 0 14
1 16 0 −8
13 4 8 0

⎞

⎟
⎟
⎠ ,

B =
(−9 16 3 2

5 9 14 0

)

12. A =
(−2 4

3 9

)

,B =
(

1 −3 7 2
5 9 1 0

)

13. A =
⎛

⎝
−4 −2 0
0 5 3

−3 1 1

⎞

⎠ ,B = (1 −3 4
)

14. A =

⎛

⎜
⎜
⎝

3
0

−1
4

⎞

⎟
⎟
⎠ ,B = (3 −2 4

)
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15. A =
(

7 −8
1 6

)

,B =
(

1 −4 3
−4 7 0

)

16. A =

⎛

⎜
⎜
⎝

−3 2
0 −2
1 8
3 −3

⎞

⎟
⎟
⎠ ,B = (−5 5 7 2

)

In each of Problems 17 through 21, determine if AB and/or
BA is defined. For those products that are defined, give the
dimensions of the product matrix.

17. A is 14 × 21, B is 21 × 14.

18. A is 18 × 4, B is 18 × 4.

19. A is 6 × 2, B is 4 × 6.

20. A is 1 × 3, B is 3 × 3.

21. A is 7 × 6, B is 7 × 7.

22. Find nonzero 2 × 2 matrices A, B, and C such that
BA = CA but B �= C.

23. For the graph G of Figure 7.4, determine the number
of v1 − v4 walks of length 3, the number of v2 − v3

walks of length 3, and the number of v2 − v4 walks of
length 4.

24. For the graph H of Figure 7.4, determine the number
of v1 − v4 walks of length 4 and the number of v2 − v3

walks of length 2.

25. For the graph K of Figure 7.4, determine the number
of v4 − v5 walks of length 2, the number of v2 − v3

walks of length 3, and the number of v1 − v2 walks
and v4 − v5 walks of length 4.

26. Let A be the adjacency matrix of a graph G.
(a) Prove that the i, j-element of A2 equals the number
of points of G that are neighbors of vi in G. This
number is called the degree of vi .

Problem 23

G

H

K

Problem 24

Problem 25

v1

v2

v4

v3v5

v1

v5

v4 v3

v2

v5

v1

v2

v3v4

FIGURE 7.4 Graphs of
Problems 23, 24, and 25,
in Section 7.1.

(b) Prove that the i, j-element of A3 equals twice the
number of triangles in G containing vi as a vertex. A
triangle in G consists of three points, each a neighbor
of the other.

27. Show that the set of all n × m matrices with real ele-
ments is a vector space, using the usual addition of
matrices and multiplication of matrices by scalars as
the operations. What is the dimension of this vector
space?

28. Redo Problem 27 for the case that the elements in the
matrices are complex numbers.

7.2 Elementary Row Operations

Some applications, as well as determining certain information about matrices, make
use of elementary row operations. We will define three such operations. Let A be a
matrix.

1. Type I operation: interchange two rows of A.

2. Type II operation: multiply a row of A by a nonzero number.

3. Type III operation: add a scalar multiple of one row to another row of A.
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EXAMPLE 7.9

We will look at an example of each of these row operations. Let

A =

⎛

⎜
⎜
⎝

−2 1 6 −3
1 1 2 5
0 9 3 −7
2 −3 4 11

⎞

⎟
⎟
⎠ .

If we interchange rows two and three of A, we obtain
⎛

⎜
⎜
⎝

−2 1 6 −3
0 9 3 −7
1 1 2 5
2 −3 4 11

⎞

⎟
⎟
⎠ .

If we multiply row three of A by 7, we obtain
⎛

⎜
⎜
⎝

−2 1 6 −3
1 1 2 5
0 63 21 −49
2 −3 4 11

⎞

⎟
⎟
⎠ .

And if we add −6 times row one to row three of A, we obtain
⎛

⎜
⎜
⎝

−2 1 6 −3
1 1 2 5
12 3 −33 11
2 −3 4 11

⎞

⎟
⎟
⎠ . �

Every elementary row operation can be performed by multiplying A on the left by a square
matrix constructed by applying that row operation to an identity matrix.

THEOREM 7.4

Let A be an n × m matrix. Suppose B is formed from A by an elementary row operation. Let E
be the matrix formed by performing this row operation on In . Then

B = EA. �

A matrix formed by performing an elementary row operation on In is called an elementary
matrix. Theorem 7.4 says that we can perform any elementary row operation on A by multiplying
A on the left by the elementary matrix formed by performing this row operation on In . We leave
a proof of this to Exercises 7.9, 7.10, and 7.11. However, it is instructive to see the theorem in
action.

EXAMPLE 7.10

Let

A =
⎛

⎝
−2 1 6 −3
1 1 2 5
0 9 3 −7

⎞

⎠ .

Since A is 3 × 4, we will use I3 to perform row operations.
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First, interchange rows two and three of A to form

B =
⎛

⎝
−2 1 6 −3
0 9 3 −7
1 1 2 5

⎞

⎠ .

Perform this row operation on I3 to obtain

E1 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ .

Then

E1A =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝
−2 1 6 −3
1 1 2 5
0 9 3 −7

⎞

⎠=
⎛

⎝
−2 1 6 −3
0 9 3 −7
1 1 2 5

⎞

⎠= B.

Next multiply row three of A by 7 to form

C =
⎛

⎝
−2 1 6 −3
1 1 2 5
0 63 21 −49

⎞

⎠ .

Perform this row operation on I3 to obtain

E2 =
⎛

⎝
1 0 0
0 1 0
0 0 7

⎞

⎠ .

Then

E2A =
⎛

⎝
1 0 0
0 1 0
0 0 7

⎞

⎠

⎛

⎝
−2 1 6 −3
1 1 2 5
0 9 3 −7

⎞

⎠=
⎛

⎝
−2 1 6 −3
1 1 2 5
0 63 21 −49

⎞

⎠= C.

Finally, add 2 times row one to row two to form

D =
⎛

⎝
−2 1 6 −3
−3 3 14 −1
0 9 3 −7

⎞

⎠ .

This operation can be achieved by the elementary matrix

E3 =
⎛

⎝
1 0 0
2 1 0
0 0 1

⎞

⎠ .

As a check,

E3A =
⎛

⎝
1 0 0
2 1 0
0 0 1

⎞

⎠

⎛

⎝
−2 1 6 −3
1 1 2 5
0 9 3 −7

⎞

⎠=
⎛

⎝
−2 1 6 −3
−3 3 14 −1
0 9 3 −7

⎞

⎠= D. �

This result has an important consequence. Suppose we form B from A by performing a
sequence of elementary row operations in succession. That is, we perform operation O1 on A to
obtain A1, then O2 on A1 to form A2, and so on until we perform Or on Ar−1 to form Ar = B. We
may envision this process

A
O1−→ A1

O2−→ A2
O3−→ A3 →

·· · Or−1−−→ Ar−1
Or−→ Ar = B.

We can perform each elementary operation O j by multiplying on the left by the elementary
matrix E j formed by performing that operation on In . Then
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A1 = E1A

A2 = E2A1 = E2E1A

A3 = E3A2 = E3E2E1A

...

...

Ar−1 = Er−1Ar−2 = Er−1Er−2 · · ·E2E1A

Ar = Er Ar−1 = Er Er−1 · · ·E2E1A.

If we designate

�= Er Er−1 · · ·E2E1

in this order, then

B =�A.

Furthermore � is a product of elementary matrices.
We will record this as a theorem.

THEOREM 7.5

Let B be obtained from A by a sequence of elementary row operations. Then there is a matrix �
which is a product of elementary matrices such that

B =�A. �
In forming � as a product of elementary matrices, E1 performs the first row operation on A,

then E2 performs the second operation on E1A, and so on. The order of the operations, hence of
the factors making up �, is crucial.

We do not need to actually write down each E j to form �. The same result is achieved
as follows: perform the first row operation on In , then the second operation on the resulting
matrix, then the third operation on this matrix, and so on. After all the row operations have been
performed, the end result is �.

EXAMPLE 7.11

Let

A =
⎛

⎝
0 −1 1 4
9 3 7 −7
0 2 1 5

⎞

⎠ .

We will form B by starting with A and performing the following operations in the order given:
O1: add −3 times row 2 to row 3; then
O2: add 2 times row 1 to row 2; then
O3: interchange rows 1 and 3; then
O4: multiply row 2 by −4.

To form � to perform these operations, begin

I3
O1−→
⎛

⎝
1 0 0
0 1 0
0 −3 1

⎞

⎠ O2−→
⎛

⎝
1 0 0
2 1 0
0 −3 1

⎞

⎠
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O3−→
⎛

⎝
0 −3 1
2 1 0
1 0 0

⎞

⎠ O4−→
⎛

⎝
0 −3 1

−8 −4 0
1 0 0

⎞

⎠=�.

Then

�A =
⎛

⎝
0 −3 1

−8 −4 0
1 0 0

⎞

⎠

⎛

⎝
0 −1 1 4
9 3 7 −7
0 2 1 5

⎞

⎠

=
⎛

⎝
−27 −7 −20 26
−84 −4 −36 −4

6 −1 1 4

⎞

⎠= B. �

Later it will be important to know that the effect of each elementary row operation can be
reversed by an elementary row operation of the same type. To see this, look at each type in turn.

If we form B from A by interchanging rows i and j , then interchanging these rows (another
type I operation) in B returns A.

If we multiply a row of A by a nonzero number k, then multiply that row of B by 1/k
(a type II operation) to reproduce A.

Finally, if we add α times row i to row j of A, then add −α times row i to row j of B
(a type III operation) to return to A.

Since all of these reversals are done by elementary row operations, they can also be achieved
by multiplying on the left by an elementary matrix.

We say that A is row equivalent to B if B can be obtained from A by a sequence of elementary
row operations. Row equivalence has the following properties.

THEOREM 7.6

1. Every matrix is row equivalent to itself.

2. If A is row equivalent to B, then B is row equivalent to A.

3. If A is row equivalent to B, and B is row equivalent to C, then A is row equivalent
to C. �

Elementary row operations can be done in MAPLE using the swaprow(A,i,j),
mulrow(A,2,α), and addrow(A,i,j,α) commands, within the linalg package of
subroutines. These are discussed in the MAPLE Primer.

SECTION 7.2 PROBLEMS

In each of Problems 1 through 8, perform the elementary
row operation or sequence of row operations on A and then
produce a matrix � so that �A is the end result.

1. A =
⎛

⎝
−2 1 4 2
0 1 16 3
1 −2 4 8

⎞

⎠; multiply row 2 by
√

3.

2. A =

⎛

⎜
⎜
⎝

3 −6
1 1
8 −2
0 5

⎞

⎟
⎟
⎠; add 6 times row 2 to row 3.

3. A=
⎛

⎝
−2 14 6
8 1 −3
2 9 5

⎞

⎠; add
√

13 times row 3 to row 1,

then interchange rows 2 and 1 and then multiply row
1 by 5.

4. A =
⎛

⎝
−4 6 −3
12 4 −4
1 3 0

⎞

⎠; interchange rows 2 and 3, then

add the negative of row 1 to row 2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:23 THM/NEIL Page-203 27410_07_ch07_p187-246

7.3 Reduced Row Echelon Form 203

5. A =
(−3 15

2 8

)

; add
√

3 times row 2 to row 1, then

multiply row 2 by 15, then interchange rows 1 and 2.

6. A =
⎛

⎝
3 −4 5 9
2 1 3 −6
1 13 2 6

⎞

⎠; add row 1 to row 3, then

add
√

3 times row 1 to row 2, then multiply row 3 by
4, then add row 2 to row 3.

7. A =
⎛

⎝
−1 0 3 0
1 3 2 9

−9 7 −5 7

⎞

⎠; multiply row 3 by 4, then

add 14 times row 1 to row 2 and then interchange rows
3 and 2.

8. A =
⎛

⎝
0 −9 14
1 5 2
9 15 0

⎞

⎠; interchange rows 2 and 3, then

add 3 times row 2 to row 3, then interchange rows 1
and 3 and then multiply row 3 by 4.

In each of Problems 9, 10, and 11, A is an n × m matrix.

9. Let B be formed from A by interchanging rows s and
t . Let E be formed from In by interchanging these
rows. Prove that B = EA.

10. Let B be formed from A by multiplying row s by α.
Let E be formed from In by multiplying row s by α.
Prove that B = EA.

11. Let B be formed from A by adding α times row s
to row t . Let E be formed from In by this operation.
Prove that B = EA.

7.3 Reduced Row Echelon Form

Now that we know how to perform elementary row operations, we will address a reason why we
should want to do this. This section establishes a special form that we will want to manipulate
matrices into, and the next two sections apply this special form to the solution of systems of
linear equations.

Define the leading entry of a row of a matrix to be its first nonzero element, reading
from left to right. If all of the elements of a row are zero, then this row has no leading
entry.

An n × m matrix A is in reduced row echelon form if it satisfies the following conditions.

1. The leading entry of each nonzero row is 1.

2. If any row has its leading entry in column j , then all other elements of column j
are zero.

3. If row i is a nonzero row and row k is a zero row, then i < k.

4. If the leading entry of row r1 is in column c1, and the leading entry of row r2 is in
column c2, and r1< r2, then c1< c2.

When a matrix satisfies these conditions, we will often shorten “reduced row echelon
form” and simply say that the matrix is reduced, or in reduced form.

Condition (1) of the definition means that, if we look across any nonzero row from left
to right, the first nonzero element we see is 1. Condition (2) means that, if we stand at the
leading entry 1 of any nonzero row and look straight up or down that column, we see only
zeros. Condition (3) means that any row of zeros in a reduced matrix must lie below all rows
having nonzero elements. Zero rows are at the bottom of the matrix. Condition (4) means that
the leading entries of a reduced matrix move downward from left to right as we look at the
matrix.
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EXAMPLE 7.12

The following matrices are all reduced:
(

1 −4 1 0
0 0 0 1

)

,

⎛

⎝
0 1 3 0
0 0 0 1
0 0 0 0

⎞

⎠

⎛

⎜
⎜
⎝

0 1 2 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1 0 0 2 1
0 1 0 −2 4
0 0 1 0 1
0 0 0 0 0

⎞

⎟
⎟
⎠ . �

EXAMPLE 7.13

C =
⎛

⎝
2 0 1
0 −4 6
2 −2 5

⎞

⎠

is not reduced. However, we claim that, by a sequence of elementary row operations, we can
transform C to a reduced matrix.

First, if the matrix had one or more zero rows, we would interchange rows to place these at
the bottom of the new matrix. In this example C has no zero rows.

In view of condition (4) of the definition, start at the upper left corner. Multiply row one by
1/2 to obtain a matrix having a leading entry of 1 in row one:

C →
⎛

⎝
1 0 1/2
0 −4 6
2 −2 5

⎞

⎠ .

To get zeros below the 1 in the 1,1− position, add −2 times row one to row three:
⎛

⎝
1 0 1/2
0 −4 6
2 −2 5

⎞

⎠→
⎛

⎝
1 0 1/2
0 −4 6
0 −2 4

⎞

⎠ .

Now look across row two of the last matrix. The leading entry is −4, so divide this row by −4:
⎛

⎝
1 0 1/2
0 −4 6
0 −2 4

⎞

⎠→
⎛

⎝
1 0 1/2
0 1 −3/2
0 −2 4

⎞

⎠ .

Aside from the 1 in the 2,2 position of the last matrix, we want zeros in column two. Add 2 times
row two to row three:

⎛

⎝
1 0 1/2
0 1 −3/2
0 −2 4

⎞

⎠→
⎛

⎝
1 0 1/2
0 1 −3/2
0 0 1

⎞

⎠ .

It happens that the leading entry of row three of the last matrix is 1. To get zeros in column
three above this leading entry, add 3/2 times row three to row one, then −1/2 times row three to
row one:

⎛

⎝
1 0 1/2
0 1 −3/2
0 0 1

⎞

⎠→
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ .

This is a reduced matrix that is row equivalent to C, having been obtained from it by a sequence
of elementary row operations. �
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In this example, we started with C and obtained a reduced matrix. If we had used a different
sequence of elementary row operations, could we have reached a different reduced matrix? The
answer is no.

THEOREM 7.7

Every matrix is row equivalent to a matrix in reduced form. Further, the reduced form of a matrix
is completely determined by the matrix itself, not by the reduction process. That is, no matter
what sequence of elementary row operations is used to produce a reduced matrix equivalent to
A, the same reduced matrix will result. �
Proof Every matrix can be manipulated to reduced form by following the idea of Example 7.13.
First, move any zero rows to the bottom of the matrix by row interchanges. Then start at the
upper left leading entry, and by multiplying this row by a scalar, obtain a matrix having a 1 in
this position. Add multiples of this row to the other rows to obtain zeros in this column below
this leading entry. Then move to the second row and carry out the same procedure starting with
its leading entry. After each nonzero row has been treated, a reduced matrix results. �

In view of the uniqueness of the reduced form of a given matrix, we will denote the reduced
form of A as AR . The process of determining AR , by any sequence of elementary row operations,
is referred to as reducing A.

EXAMPLE 7.14

Let

A =

⎛

⎜
⎜
⎝

0 0 0 0 0
0 0 2 0 0
0 1 0 1 1
0 0 3 0 −4

⎞

⎟
⎟
⎠ .

We will reduce this matrix. First interchange rows to move the zero row to the bottom of the
matrix:

A =

⎛

⎜
⎜
⎝

0 0 0 0 0
0 0 2 0 0
0 1 0 1 1
0 0 3 0 −4

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

0 0 2 0 0
0 1 0 1 1
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠ .

The leading entry of row one is in the 1,3 position, and the leading entry of row three is in the 2,2
position. We want the leading entries to move down the matrix from left to right, so interchange
rows one and two to obtain

⎛

⎜
⎜
⎝

0 0 2 0 0
0 1 0 1 1
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 2 0 0
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠ .

The leading entry of (the new) row one is 1 and already has zeros below it, so move to the second
row and find its leading entry, which is 2. Multiply row two by 1/2:

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 2 0 0
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠.
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In the last matrix, add −3 times row two to row three:
⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 3 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 0 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠ .

The leading entry of row three is −4. Multiply row three of the last matrix by −1/4:

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 0 0 −4
0 0 0 0 0

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎠ .

Finally, get zeros above and below the leading entry in row three of the last matrix by adding −1
times row three to row 1:

⎛

⎜
⎜
⎝

0 1 0 1 1
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎠ →

⎛

⎜
⎜
⎝

0 1 0 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎠= AR.

If we had reduced A by using another sequence of elementary row operations, we would have
reached the same AR . �

In all of the examples we have seen so far, observe that the nonzero rows of a reduced
matrix are linearly independent m-vectors, where m is the number of columns of the matrix.
This is true in general because, if row i is a nonzero row, then the leading element of row i is
1, and all rows above and below this row have 0 in this column. Thus each nonzero row vector
in AR has a 1 in a coordinate where all the other row vectors have zeros. Later, when we deal
with rank and solve systems of equations, it will be important to know that the nonzero rows
of AR are linearly independent in the row space of A, hence they form a basis for this row
space.

The elementary row operations used to reduce a matrix A can be achieved by multiplying A
on the left by some elementary matrix � (which is a product of elementary matrices). In view of
Theorems 7.5 and 7.7, we can state the following.

THEOREM 7.8

Let A be any matrix. Then there is a matrix � such that

�A = AR. �

Given A, there is a convenient notational device that allows us to find AR and � simultane-
ously. Suppose A is n ×m. Then� will be n ×n. Form the n × (m +n) augmented matrix [A

...In]
by putting In as n additional columns to the right of A. The vertical dots separate the original
m columns of A from the adjoined n columns of In , and play no role in the computations. Now
reduce A, carrying out the same operations on the adjoined rows of In . When A (the left m
columns of this augmented matrix) has been reduced to AR , the right n columns will be �,
since we form � by starting with the identity matrix and performing the same elementary row
operations used to reduce A.
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EXAMPLE 7.15

Let

A =
(−3 1 0

4 −2 1

)

.

We will reduce A and, at the same time, find a 2 × 2 matrix � such that �A = AR . Start with the
augmented matrix and reduce it:

[A...I2] =
⎛

⎝−3 1 0
... 1 0

4 −2 1
... 0 1

⎞

⎠

((−1/3) times row one )→
⎛

⎝1 −1/3 0
... −1/3 0

4 −2 1
... 0 1

⎞

⎠

(add − 4 times row one to row two )→
⎛

⎝1 −1/3 0
... −1/3 0

0 −2/3 1
... 4/3 1

⎞

⎠

(multiply row two by − 3/2)→
⎛

⎝1 −1/3 0
... −1/3 0

0 1 −3/2
... −2 −3/2

⎞

⎠

( add 1/3 row two to row one )→
⎛

⎝1 0 −1/2
... −1 −1/2

0 1 −3/2
... −2 −3/2

⎞

⎠

=[A...I2]R.

The first three columns of this reduced augmented matrix are AR , while the last two columns
form �:

AR =
(

1 0 −1/2
0 1 −3/2

)

and �=
(−1 −1/2

−2 −3/2

)

.

As a check,

�A =
(−1 −1/2

−2 −3/2

)(−3 1 0
4 −2 1

)

=
(

1 0 −1/2
0 1 −3/2

)

= AR.

This is the reduced form of [A...I2]. �

MAPLE’s pivot command is well suited to reducing a matrix A which has been entered
into the program. First look for the leading entries of the nonzero rows. The location of a leading
entry is called a pivot position. We obtain zeros above and below a leading entry by elementary
row operations, adding constant multiples of this row to the other rows if necessary. This is called
pivoting about this leading entry, and can be done in one operation which in MAPLE is called
pivot. If a leading entry α occurs in the i, j position of A, we can form a matrix B having zeros
above and below α by entering

B := pivot(A,i,j);
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After pivoting about each leading entry, resulting in a matrix K, we need only make all the
leading entries 1 to obtain a reduced row echelon form. If K has leading entry α in row i , multiply
this row by 1/α by entering

F := mulrow(K,i,1/α);
After this is done for all the rows containing a leading entry, the reduced row echelon form

of A results.

SECTION 7.3 PROBLEMS

In each of Problems 1 through 12, find the reduced form of
A and produce a matrix � such that �A = AR .

1. A =
⎛

⎝
1 −1 3
0 1 2
0 0 0

⎞

⎠

2. A =
(

3 1 1 4
0 1 0 0

)

3. A =

⎛

⎜
⎜
⎝

−1 4 1 1
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠

4. A =
(

1 0 1 1 −1
0 1 0 0 2

)

5. A =

⎛

⎜
⎜
⎝

0 1
0 0
1 3
0 1

⎞

⎟
⎟
⎠

6. A =
(

2 2
1 1

)

7. A =
⎛

⎝
−1 4 6
2 3 −5
7 1 1

⎞

⎠

8. A =
(−3 4 4

0 0 0

)

9. A =
(−1 2 3 1

1 0 0 0

)

10. A =
⎛

⎝
8 2 1 0
0 1 1 3
4 0 0 −3

⎞

⎠

11. A =
⎛

⎝
4 1 −7
2 2 0
0 1 0

⎞

⎠

12. A =

⎛

⎜
⎜
⎝

0
−3
1
1

⎞

⎟
⎟
⎠

7.4 Row and Column Spaces

In this section, we will develop three numbers associated with matrices. These numbers play a
significant role in applications such as the solution of systems of linear equations.

Let A be an n × m matrix of real numbers. Each of the n rows is a vector in Rm . The span
of these row vectors (the set of all linear combinations of these vectors) is a subspace of
Rm called the row space of A. This may or may not be all of Rm , depending on A. The
dimension of the row space of A is the row rank of A.

Similarly, the m columns are vectors in Rn . The span of these column vectors is the
column space of A, and is a subspace of Rn . The dimension of this column space is the
column rank of A.
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EXAMPLE 7.16

Let

A =

⎛

⎜
⎜
⎜
⎜
⎝

5 −1 5
−1 1 3
1 1 7
2 0 4
1 −3 −6

⎞

⎟
⎟
⎟
⎟
⎠
.

The row space is the subspace of R3 spanned by the five rows of A. This subspace consists of all
linear combinations

α(5,1,−5)+β(−1,1,3)+ γ (1,1,7)
+ δ(2,0,4)+ ε(1,−3,6)

of the row vectors. The last three row vectors are linearly independent (none is a linear
combination of the other two). The first two are linear combinations of the last three:

(5,−1,5)=−(1,1,7)+ 3(2,0,4)

and

(−1,1,3)= (1,1,7)− (2,0,4),
The first three row vectors therefore form a basis for the row space. This row space has dimension
3 and is all of R3. The row rank of A is 3.

The column space of A is the subspace of R5 consisting of all linear combinations of the
column vectors, which we continue to write as columns:

α

⎛

⎜
⎜
⎜
⎜
⎝

5
−1
1
2
1

⎞

⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎝

−1
1
1
0

−6

⎞

⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎝

5
3
7
4

−6

⎞

⎟
⎟
⎟
⎟
⎠
.

These three column vectors are linearly independent in R5 and span a three-dimensional subspace
of R5. The column rank of A is 3.

In this example,

row rank of A = column rank of A = 3. �

We claim that this is not a coincidence.

THEOREM 7.9 Equality of Row and Column Rank

For any matrix, the row rank equals the column rank. �
Proof Although this is true in general, we will prove it when each ai j is a real number, enabling
us to exploit the row and column spaces of A. Suppose A is n × m:
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A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 · · · a1r a1,r+1 · · · a1m

a21 a22 · · · a2r a2,r+1 · · · a2m

...
...

...
...

...
...

...

ar1 ar2 · · · arr ar,r+1 · · · arm

ar+1,1 ar+1,2 · · · ar+1,r ar+1,r+1 · · · ar+1,m

...
...

...
...

...
...

...

an1 an2 · · · anr an,r+1 · · · anm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Denote the row vectors R1,R2, · · · ,Rn , so

Ri = (ai1,ai2, · · · ,aim) in Rm .

Suppose the row rank of A is r . As a notational convenience, suppose the first r rows
are linearly independent. Then each of Rr+1, · · · ,Rn is a linear combination of R1, · · · ,Rr .
Write

Rr+1 =βr+1,1R1 + · · ·+βr+1,r Rr

Rr+2 =βr+2,1R1 + · · ·+βr+2,r Rr

...

Rn =βn,1R1 + · · ·+βn,r Rr .

Now observe that column j of A can be written
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 j

a2 j

...

ar j

ar+1, j

...

anj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= a1 j

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
...

0
βr+1,1

...

βn1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ a2 j

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
...

0
βr+1,2

...

βn,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ · · ·+ ar j

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

1
βr+1,r

...

βn,r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, each column of A is a linear combination of the r n-vectors on the right side of the last
equation. These r vectors therefore span the column space of A, so the dimension of this column
space is at most r (equal to r if these columns are linearly independent, less than r if they are
not). This proves that

dimension of the column space of A ≤ dimension of the row space.

By repeating this argument, using columns instead of rows, we find that the dimension of
the row space is less than or equal to the dimension of the column space. This proves the
theorem. �

Now define the rank of A as the row rank of the matrix, which is the same as the column
rank. Denote this number as rank(A). The matrix of Example 7.16 has rank 3.

Given an arbitrary real matrix A, it may not be obvious what the rank of a A is. However,
if R is a reduced matrix, then

rank(R)= number of nonzero rows of R.
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To see this, recall that the nonzero rows of R form a basis for the row space of this matrix, hence
their number is the dimension of this row space.

Now suppose we perform an elementary row operation on A to form B. How does this
change the row space of A? The answer is that it does not change it at all. This fact will be
important in solving systems of linear equations

THEOREM 7.10

Let B be formed from an n × m matrix A by a sequence of elementary row operations. Then A
and B have the same row space, hence also

rank(A)= rank(B). �

Proof It is enough to prove the theorem for the case that B is formed from A by one elementary
row operation. Let the row vectors of A be A1, · · · ,An . The row space of A is the subspace of
Rm consisting of all linear combinations

α1A1 +α2A2 + · · ·+αnAn.

If the elementary row operation is an interchange of rows, then the rows of A and B are the
same (appearing in a different order) and hence span the same subspace of Rm .

Suppose a type II elementary row operation is performed, multiplying row r of A by the
nonzero number c. Now the row space of B consists of all vectors

α1A1 + · · ·+ cαr Ar + · · ·+αnAn.

Since the α j ’s are arbitrary, this is again a linear combination of the rows of A, hence the row
spaces of A and B are the same.

Finally, consider the case that a type III operation is performed, adding c times row i to row
j to form B. Now the row vectors of B are

A1, · · · ,A j−1, cAi + A j ,A j+1, · · · ,An.

Any linear combination of these rows is again a linear combination of the rows of A, hence in
this case the row spaces of A and B are also the same.

Finally, because the row spaces are the same, their dimension is the same and the matrices
have the same rank. �

If we defined elementary column operations analogous to the elementary row operations, we
would find that these leave the column space of a matrix unchanged.

Theorem 7.10 has several important consequences.

COROLLARY 7.1

For any real matrix A, A and AR have the same row space. Thus,

rank(A)= number of nonzero rows of AR. �

This follows from the fact AR is formed from A by a sequence of elementary row
operations, so

rank(A)= rank(AR)

= number of nonzero rows of AR.
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EXAMPLE 7.17

Let

A =

⎛

⎜
⎜
⎝

0 1 0 0 3 0 6
0 0 1 0 −2 1 5
0 0 0 1 2 0 −4
0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ .

Since this is a reduced matrix with three nonzero rows, rank(A)= 3. �

COROLLARY 7.2

Let A be an n × n matrix of real numbers. Then

rank(A)= n if and only if AR = In.

This says that the rank of a square matrix equals the number of rows exactly when the
reduced form is the identity matrix.

Proof First, we know that

rank(A)= number of nonzero rows of AR.

If AR = In , then AR has n nonzero rows and this matrix has rank n, hence A also has rank n.
Conversely, if A has rank n, then so does AR , so this reduced matrix is an n × n matrix with

1 down the main diagonal and all other elements (above and below leading entries) zero. Then
AR = In . �

The MAPLE command rank(A) will return the rank of A.

SECTION 7.4 PROBLEMS

In each of Problems 1 through 14, find the reduced form of
the matrix and use this to determine the rank of the matrix.
Also find a basis for the row space of the matrix and a basis
for the column space.

1.

(−4 1 3
2 2 0

)

2.

⎛

⎝
1 −1 4
0 1 3
2 −1 11

⎞

⎠

3.

⎛

⎝
−3 1
2 2
4 −3

⎞

⎠

4.

⎛

⎝
6 0 0 1 1
12 0 0 2 2
1 −1 0 0 0

⎞

⎠

5.

(
8 −4 3 2
1 −1 1 0

)

6.

(
1 3 0
0 0 1

)

7.

⎛

⎜
⎜
⎝

2 2 1
1 −1 3
0 0 1
4 0 7

⎞

⎟
⎟
⎠

8.

⎛

⎝
0 −1 0
0 0 −1
0 0 2

⎞

⎠

9.

⎛

⎝
0 4 3
0 1 0
2 2 2

⎞

⎠

10.

⎛

⎜
⎜
⎝

1 0 0
2 0 0
1 0 −1
3 0 0

⎞

⎟
⎟
⎠

11.

⎛

⎝
−3 2 2
1 0 5
0 0 2

⎞

⎠
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12.

⎛

⎝
−4 −1 1 6
0 4 −4 2
1 0 0 0

⎞

⎠

13.

⎛

⎝
−2 5 7
0 1 −3

−4 11 11

⎞

⎠

14.

(−3 2 1 1 0

6 −4 −2 −2 0

)

15. Let A be any matrix of real numbers. Prove that

rank(A)= rank(At).

7.5 Homogeneous Systems

We want to develop a method for finding all solutions of a linear homogeneous system of
n equations in m unknowns:

a11x1 + a12x2 + · · · + a1m xm = 0

a21x1 + a22x2 + · · · + a2m xm = 0

...

an1x1 + an2x2 + · · · + anm xm = 0.

The numbers ai j are called the the coefficients of the system and A = [ai j ] is the matrix
of coefficients. Row i contains the coefficients of equation i and column j contains the
coefficients of x j .

Define

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xm

⎞

⎟
⎟
⎟
⎠

and write the n × 1 zero matrix as just O, a column of n zeros. Then the system can be written
as the matrix equation

AX = O.

We will develop the following strategy for solving this system.

1. We will show that AX = O has the same solutions as the reduced system ARX = O.

2. We will show how to write all solutions of the reduced system directly from the reduced
matrix AR .

3. We will also use facts about vector spaces and rank to derive additional information about
solutions.

The remainder of this section consists of the details of carrying out this strategy, and
examples. The first two examples give us some feeling for what to look for in solving a
homogeneous system.

EXAMPLE 7.18

Consider the simple system
x1 − 3x2 + 2x3 = 0

−2x1 + x2 − 3x3 = 0.
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Of course, we do not need matrices to solve this system, but we want to illustrate a point. The
matrix of coefficients is

A =
(

1 −3 2
−2 1 −3

)

.

It is routine to find

AR =
(

1 0 7/5
0 1 −1/5

)

.

The reduced system ARX = O is

x1 + 7

5
x3 = 0

x2 − 1

5
x3 = 0.

This reduced system can be solved by inspection:

x1 =−7

5
x3, x2 = 1

5
x3, x3 is arbitrary.

We can give x3 any numerical value, and this determines x1 and x2 to yield a solution.
It will be useful to write this solution as a column matrix:

X =
⎛

⎝
x1

x2

x3

⎞

⎠= x3

⎛

⎝
−7/5
1/5
1

⎞

⎠=α
⎛

⎝
−7/5
1/5
1

⎞

⎠ ,

in which we have written x3 =α because it looks neater. Here α can be any number.
This general solution of the reduced system is also the solution of the original system. In

this example the general solution depends on one arbitrary constant, hence is, in a sense to be
discussed, a one-dimensional solution. �

In Example 7.18, x3 is called a free variable, since it can assume any value. This example
had one free variable, but the general solution of a system AX = O might have any number.

Free variables occur in columns of AR that contain no leading entry of a row.

EXAMPLE 7.19

Consider the 3 × 5 system

x1 − 3x2 + x3 − 7x4 + 4x5 = 0

x1 + 2x2 − 3x3 = 0

x2 − 4x3 + x5 = 0.

The matrix of coefficients is

A =
⎛

⎝
1 −3 1 −7 4
1 2 −3 0 0
0 1 −4 0 1

⎞

⎠.

A routine calculation yields

AR =
⎛

⎝
1 0 0 −35/16 13/16
0 1 0 28/16 −20/16
0 0 1 7/16 −9/16

⎞

⎠.
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The reduced system ARX = O is

x1 − 35
16

x4 + 13
16

x5 = 0,

x2 + 28
16

x4 − 20
16

x5 = 0,

and

x3 + 7
16

x4 − 9
16

x5 = 0.

This system is easy to solve:

x1 = 35
16

x4 − 13
16

x5,

x2 =− 28
16

x4 + 20
16

x5,

and

x3 =− 7
16

x4 + 9
16

x5

in which x4 and x5 (the free variables) can be given any values and these determine x1, x2 and
x3. Again, note that these two free variables are in the two columns of the reduced matrix that
contain no leading element of any row.

We can express this solution more neatly by setting x4 = 16α and x5 = 16β with α and β
arbitrary numbers and writing

x1 = 35α− 13β,

x2 =−28α+ 20β,

x3 =−7α+ 9β,

x4 = 16α,

and

x5 = 16β.

Here α and β are any numbers. This is the general solution of the reduced system, and it is routine
to verify that it is also the solution of the original system. As a column matrix, this solution is

X =

⎛

⎜
⎜
⎜
⎜
⎝

35α− 13β
−28α+ 20β
−7α+ 9β

16α
16β

⎞

⎟
⎟
⎟
⎟
⎠

=α

⎛

⎜
⎜
⎜
⎜
⎝

35
−28
−7
16
0

⎞

⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎝

−13
20
9
0
16

⎞

⎟
⎟
⎟
⎟
⎠
. �

This way of writing the general solution reveals its structure as being two dimensional,
depending on two arbitrary constants. �

These examples illustrate the strategy outlined at the beginning of this section. This will
depend on the crucial fact that the reduced system has the same solutions as the original system,
as we will now verify.

THEOREM 7.11

Let A be n × m. Then the systems AX = O and ARX = O have the same solutions. �
Proof First, we know that there is a matrix

�= Er Er−1 · · ·E2E1,

a product of elementary matrices, that reduces A:

�A = AR.
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Now suppose that X = C is a solution of AX = O. Then AC = O, so

�O =�(AC)= (�A)C = ARC = O,

so C is also a solution of the reduced system.
Conversely, suppose K is a solution of the reduced system, so ARK = O. We want to show

that AK = O. Since �A = AR , we have (�A)K = O, so

(ErEr−1 · · ·E2E1)AK = O.

Now, each E j is an elementary matrix, and we know that there is an elementary matrix E∗
j that

reverses the effect of E j . From the last equation, we have

E∗
1E

∗
2 · · ·E∗

r−1E
∗
r (ErEr−1 · · ·E2E1)AK = O.

But E∗
r Er = In , and E∗

r−1Er−1 = In , and so on until E∗
1E1 = In , so in the last product all of the

elementary matrices cancel in pairs, leaving AK = O. Therefore K is also a solution of the
original system, completing the proof. �

We can therefore concentrate on solving a reduced system. As we have seen in the examples,
the solution of ARX=O is easily read from this matrix, and has the added dividend that it reveals
the structure of these solutions. The set of all solutions of the homogeneous system AX = O
form a vector space, which is a subspace of Rm if A is n × m. Furthermore, the dimension of this
solution space can read from AR , as we saw in the examples.

If AR has k nonzero rows (hence rank k), then k of the xi ’s are determined by the m − k free
variables, which can be assigned any values in writing solutions of the system. This means that
x1, · · · , xk are determined by xk+1, · · · , xm , which can be chosen arbitrarily. The general solution
will have m − k arbitrary constants in it.

We will summarize these observations.

THEOREM 7.12 Solution Space of a Homogeneous System

Let A be n × m. Then
1. The set of all solutions of AX = O forms a subspace of Rm , called the solution space of

this system.

2. The dimension of this solution space is

m − number of nonzero rows of AR,

which is the same as m − rank (A). �
Proof Let S be the set of all solutions of the system. Since

x1 = x2 = · · ·= xm = 0

is a solution, the zero m-vector is in S.
Now suppose X1 and X2 are solutions, and α and β are numbers. Then

A(αX1 +βX2)=αAX1 +βAX2 = O + O = O,

so linear combinations of solutions are solutions, and S is a subspace of Rm .
For the dimension of S, use the fact that the system has the same solution space as the

reduced system. As the examples suggest, the nonzero rows of AR enable us to express the
general solution as a linear combination of linearly independent solutions, one for each free
variable. Since the number of free variables is the number of columns of AR , minus the number
of nonzero rows, then the dimension of S is m − rank(A). �
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Since the number of nonzero rows of the reduced matrix is the rank of AR , which is also the
rank of A, then the dimension of the solution space can also be computed as

m − rank(A).

EXAMPLE 7.20

Solve the system

−x1 + x3 + x4 + 2x5 = 0

x2 + 3x3 + 4x5 = 0

x1 + 2x2 + x3 + x4 + x5 = 0

−3x1 + x2 + 4x5 = 0.

The matrix of coefficients is

A =

⎛

⎜
⎜
⎝

−1 0 1 1 2
0 1 3 0 4
1 2 1 1 1

−3 1 0 0 4

⎞

⎟
⎟
⎠ .

Routine manipulations yield the reduced form

AR =

⎛

⎜
⎜
⎝

1 0 0 0 −9/8
0 1 0 0 5/8
0 0 1 0 9/8
0 0 0 1 −1/4

⎞

⎟
⎟
⎠ .

In this example A has m = 5 columns, and the rank of A is 4 because AR has four nonzero rows.
The solution space will have dimension 5 − 4 = 1.

AR is the coefficient matrix of the reduced system

x1 − 9
8
x5 = 0,

x2 + 5
8
x5 = 0,

x3 + 9
8
x5 = 0,

x4 − 1
4
x5 = 0.

Notice that x1 through x4 depend on the single free variable x5, which can be chosen arbitrarily.
Set x5 =α to write the general solution

x1 = 9

8
α, x2 =−5

8
α, x3 =−9

8
α, x4 = 1

4
α, x5 =α.

If we let β =α/8 (β is still any number), then

x1 = 9β, x2 =−5β, x3 =−9β, x4 = 2β, x5 = 8β.

As a column matrix, this solution is

X =β

⎛

⎜
⎜
⎜
⎜
⎝

9
−5
−9
2
8

⎞

⎟
⎟
⎟
⎟
⎠
.

This gives the general solution as the set of all multiples of one solution, which forms a basis
for the one-dimensional solution space (a subspace of R5). �
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EXAMPLE 7.21

We will solve the system

2x1 − 4x2 + x3 + x4 + 6x5 + 4x6 − 2x7 = 0

−4x1 + x2 + 6x3 + 3x4 + 10x5 − 3x6 + 6x7 = 0

3x1 + x2 − 4x3 + 2x4 + 5x5 + x6 + 3x7 = 0.

The coefficient matrix is

A =
⎛

⎝
2 −4 1 1 6 4 −2

−4 1 6 3 10 −3 6
3 1 −4 2 5 1 3

⎞

⎠ .

We find the reduced matrix

AR =
⎛

⎝
1 0 0 3 67/7 4/7 29/7
0 1 0 9/5 178/35 −5/7 118/35
0 0 1 11/5 36/5 0 16/5

⎞

⎠ .

Since m = 7 and AR has three nonzeros, the solution space is a four-dimensional subspace of R7.
The general solution depends on the arbitrary free variables x4, · · · , x7. Let x4 =α, x5 =β, x6 =γ
and x7 = δ to write the general solution

X =α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3
−9/5
−11/5

1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−67/7
−178/35
−36/5

0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−4/7
5/7
0
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ δ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−29/7
−118/35
−16/5

0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. �

As Example 7.21 suggests, with a little practice, the general solution can be read directly
from the reduced matrix.

A homogenous system always has at least the trivial solution, and may or may not have
nontrivial solutions. Here is a simple condition for a homogeneous system to have a nontrivial
solution.

COROLLARY 7.3

Let A be n × m. Then the homogeneous system AX = O has a nontrivial solution if and only

m − number of nonzero rows of (AR)> 0. �

The reason for this is that the system can have a nontrivial solution only when the dimension
of the solution space is positive, having something in it other than the zero vector. Since this
solution space has dimension m − rank(A), there will be a nontrivial solution exactly when this
number is positive.

In particular, look at the case that the system has more equations than unknowns, so m< n.
Since the rank of A cannot exceed the number of rows (equations), in this case

rank(A)≤ n<m

so m − rank(A)> 0 and the system has a nontrivial solution.
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COROLLARY 7.4

A linear homogeneous system with more unknowns than equations always has a nontrivial
solution. �

Corollary 7.3 implies that AX = O has only the trivial solution exactly when m minus the
number of nonzero rows of the reduced matrix is zero. In particular, when A is square, then m =n
and this occurs exactly when the n × n matrix AR has n nonzero rows, which in turn happens
exactly when AR = In .

COROLLARY 7.5

If A is n × n, then AX = O has only the trivial solution if and only if AR = In . �

EXAMPLE 7.22

We will solve the system

−4x1 + x2 − 7x3 = 0

2x1 + 9x2 − 13x3 = 0

x1 + x2 + 10x3 = 0.

The coefficient matrix is

A =
⎛

⎝
−4 1 −7
2 9 −13
1 1 10

⎞

⎠ .

We find that AR = I3. Therefore the system has only the trivial solution. This can also be seen
from the reduced system, which is

x1 = 0

x2 = 0

x3 = 0. �

SECTION 7.5 PROBLEMS

In each of Problems 1 through 12, determine the dimen-
sion of the solution space and find the general solution of
the system by reducing the coefficient matrix. Write the
general solution in terms of one or more column matrices.

1. x1 + 2x2 − x3 + x4 = 0
x2 − x3 + x4 = 0

2. −3x1 + x2 − x3 + x4 + x5 = 0
x2 + x3 + 4x5 = 0

−3x3 + 2x4 + x5 = 0

3. −2x1 + x2 + 2x3 = 0
x1 − x2 = 0
x1 + x2 = 0

4. 4x1 + x2 − 3x3 + x4 = 0
2x1 − x3 = 0

5. x1 − x2 + 3x3 − x4 + 4x5 = 0
2x1 − 2x2 + x3 + x4 = 0

x1 − 2x3 + x5 = 0
x3 + x4 − x5 = 0

6. 6x1 − x2 + x3 = 0
x1 − x4 + 2x5 = 0

x1 − 2x5 = 0
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7. −10x1 − x2 + 4x3 − x4 + x5 − x6 = 0
x2 − x3 + 3x4 = 0
2x1 − x2 + x5 = 0
x2 − x4 + x6 = 0

8. 8x1 − 2x3 + x6 = 0
2x1 − x2 + 3x4 − x6 = 0
x2 + x3 − 2x5 − x6 = 0

x4 − 3x5 + 2x6 = 0

9. x2 − 3x4 + x5 = 0
2x1 − x2 + x4 = 0

2x1 − 3x2 + 4x5 = 0

10. 4x1 − 3x2 + x4 + x5 − 3x6 = 0
2x2 + 4x4 − x5 − 6x6 = 0
3x1 − 2x2 + 4x5 − x6 = 0
2x1 + x2 − 3x3 + 4x4 = 0

11. x1 − 2x2 + x5 − x6 + x7 = 0
x3 − x4 + x5 − 2x6 + 3x7 = 0

x1 − x5 + 2x6 = 0
2x1 − 3x4 + x5 = 0

12. 2x1 − 4x5 + x7 + x8 = 0
2x2 − x6 + x7 − x8 = 0

x3 − 4x4 + x5 = 0
x2 − x3 + x4 = 0

x2 − x5 + x6 − x7 = 0

13. Can a system AX = O having at least as many equa-
tions as unknowns, have a nontrivial solution?

14. Show that a system AX = O has a nontrivial solu-
tion if and only if the columns of A are linearly
dependent. Hint: This can be done using a dimension
argument. Another approach is to write AX as a lin-
ear combination of the columns of A, as suggested in
Section 7.1.1.

15. Let A be an n × m matrix of real numbers. Let S(A)
denote the solution space of A. Let R be the row space
and C the column space of A.

(a) Show that R⊥ = S(A).
(b) Show that C⊥ = S(At).

7.6 Nonhomogeneous Systems

Now consider the nonhomogeneous linear system of n equations in m unknowns:

a11x1 + a12x2 + · · · + a1m xm = b1

a21x1 + a22x2 + · · · + a2m xm = b2

...

an1x1 + an2x2 + · · ·+ anm xm = bn.

In matrix form,

AX = B (7.1)

where A is the coefficient matrix,

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xm

⎞

⎟
⎟
⎟
⎠

and B =

⎛

⎜
⎜
⎜
⎝

b1

b2

...

bn

⎞

⎟
⎟
⎟
⎠
.

The system is nonhomogeneous if at least one bj �= 0. Nonhomogeneous systems differ
from linear systems in two significant ways.

1. A nonhomogeneous system may have no solution. For example, the system

2x1 − 3x2 = 6

4x1 − 6x2 = 8

can have no solution. If 2x1 − 3x2 = 6, then 4x1 − 6x2 must equal 12, not 8.
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We call AX = B consistent if there is a solution. If there is no solution, the system
is inconsistent.

2. A linear combination of solutions of a nonhomogeneous system AX = B need not
be a solution. Therefore the solutions do not have the vector space structure seen
in the homogeneous case.

Nevertheless, solutions of AX = B do have a property that parallels that for solutions of lin-
ear second order differential equations. We will call AX=O the associated homogeneous system
of the nonhomogeneous system AX = B. Although a sum of solutions of the nonhomogeneous
system need not be a solution, we claim that the difference of any two solutions of the nonhomo-
geneous system is a solution, not of the system, but of the associated homogeneous system. The
reason for this is that, if AU1 = B and AU2 = B, then

A(U1 − U2)= AU1 − AU2 = B − B = O.

This is the key to the fundamental theorem for writing the general solution of AX = B.

THEOREM 7.13

Let H be the general solution of the associated homogeneous system. Let Up be any particular
solution of AX=B. Then the expression H+Up contains every solution of the nonhomogeneous
system AX = B. �
Proof Suppose H1, · · · ,Hk form a basis for the solution space of AX = O, where k =
m − number of nonzero rows of (AR). Then the general solution of the homogeneous system is

H =α1H1 + · · ·+αkHk .

If U is any solution of AX=B, then U−Up is a solution of the associated homogeneous system,
and therefore has the form

U − Up = c1H1 + · · ·+ ckHk

for some constants c1, · · · , ck . But then

U = c1H1 + · · ·+ ckHk + Up,

and this solution is contained in the general expression H + Up. �

As an immediate consequence, Theorem 7.13 tells us when a nonhomogeneous system can
have only one solution.

COROLLARY 7.6

A consistent nonhomogeneous system AX=B has a unique solution if and only if the associated
homogeneous system has only the trivial solution. �

The corollary follows from the fact that the nonhomogeneous system has a unique solution
exactly when H is the zero vector in Theorem 7.13.

Theorem 7.13 suggests a strategy for finding all solutions of AX = B, when the system is
consistent.
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Step 1. Find the general solution H of AX = O.
Step 2. Find any one solution Up of AX = B.
Step 3. The general solution AX = B is then H + Up.

We know how to carry out step (1). We will outline a procedure for step (2).

To find a particular solution Up, proceed as follows.

Step 1. Define the n × m + 1 augmented matrix [A...B] by adjoining the column matrix B as an
additional column to A. The augmented matrix contains the coefficients of the unknowns
of the system (in the first m columns), as well as the numbers on the right side of the
equations (elements of B).

Step 2. Reduce [A...B]. Since we reduce a matrix to obtain leading entries of 1 wherever possible
from upper left toward the lower right, this results eventually in a reduced matrix

[A...B]R =[AR

...C],
in which the first m columns are the reduced form of A, and the last column is whatever
results from B after the row operations used to reduce A have been applied to [A...B].

Solutions of the reduced system ARX = C are the same as solutions of the original
system AX = B because the operations performed on the coefficients of the unknowns
are also performed on the bj ’s.

Step 3. From [AR

...C], read a particular solution Up. When added to the general solution H of the
associated homogeneous system, we have the general solution of AX = B.

We will look at some examples. Example 7.24 suggests how this augmented matrix
procedure tells us when the system has no solution.

EXAMPLE 7.23

We will solve the system
⎛

⎝
−3 2 2
1 4 −6
0 −2 2

⎞

⎠X =
⎛

⎝
8
1

−2

⎞

⎠ .

The first step is to reduce the augmented matrix

[A...B] =

⎛

⎜
⎜
⎜
⎝

−3 2 2
... 8

1 4 −6
... 1

0 −2 2
... −2

⎞

⎟
⎟
⎟
⎠
.

Carrying out the reduction procedure on this 3 × 4 augmented matrix, we obtain

[A...B]R =

⎛

⎜
⎜
⎜
⎝

1 0 0
... 0

0 1 0
... 5/2

0 0 1
... 3/2

⎞

⎟
⎟
⎟
⎠

=[AR

...C]= [I3

...C].

C is whatever results in the fourth column when we reduce A, the first three columns of [A...B]).
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This reduced augmented matrix [AR

...C] represents the reduced system I3X=C, which is the
system

x1 = 0

x2 = 5/2

x3 = 3/2.

From this, we directly read a solution of the reduced nonhomogeneous system. In this example,
this solution is unique by Corollary 7.6 because the associated homogeneous system has only the
trivial solution (AR = I3).

Consistent with treating the system as a matrix equation, we usually write the solution in
terms of column matrices. In this example,

X =
⎛

⎝
0

5/2
3/2

⎞

⎠ . �

EXAMPLE 7.24

We have seen that the system

2x1 − 3x2 = 6

4x1 − 6x2 = 8

has no solution. We will see how this conclusion reveals itself when we work with the augmented
matrix, which is

[A...B] =
⎛

⎝2 3
... 6

4 −6
... 8

⎞

⎠ .

Reduce this matrix to obtain

[A...B]R =[AR

...C] =
⎛

⎝1 −3/2
... 2

0 0
... −4

⎞

⎠ .

The second equation of the reduced system is

0x1 + 0x2 =−4

which can have no solution. �

In this example, the augmented matrix has rank 2, while the matrix of the homogeneous
system has rank 1. In general, whenever the rank of A is less than the rank of [A...B], then AR will
have at least one row of zeros, while the corresponding row in the reduced augmented matrix
[AR

...C] has a nonzero element in this row in the C column. This corresponds to an equation of
the form

0x1 + 0x2 + · · ·+ 0xm = c j �= 0

and this has no solution for the xi ’s. In this case the system is inconsistent.
We will record this important observation.
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THEOREM 7.14

The nonhomogeneous system AX = B is consistent if and only if A and [A...B] have the same
rank. �

EXAMPLE 7.25

We will solve the system

x1 − x2 + 2x3 = 3

−4x1 + x2 + 7x3 =−5

−2x1 − x2 + 11x3 = 14.

The augmented matrix is

[A...B] =

⎛

⎜
⎜
⎜
⎝

1 −1 2
... 3

−4 1 7
... −5

−2 −1 11
... 14

⎞

⎟
⎟
⎟
⎠
.

Reduce this augmented matrix to obtain

[A...B]R =[AR

...C] =

⎛

⎜
⎜
⎜
⎝

1 0 −3
... 0

0 1 −5
... 0

0 0 0
... 1

⎞

⎟
⎟
⎟
⎠
.

A has rank 2, because its reduced matrix has two nonzero rows. But [A...B] has rank 3 because its
reduced form has three nonzero rows. Therefore, this system is inconsistent. We can also observe
from the reduced system that the last equation is

0x1 + 0x2 + 0x3 = 1

with no solution. �

EXAMPLE 7.26

Solve the system

x1 − x2 + 2x4 + x5 + 6x6 =−3

x2 + x3 + 3x4 + 2x5 + 4x6 = 1

x1 − 4x2 + 3x3 + x4 + 2x6 = 0.

The augmented matrix is

[A...B] =

⎛

⎜
⎜
⎜
⎝

1 0 −1 2 1 6
... −3

0 1 1 3 2 4
... 1

1 −4 3 1 0 2
... 0

⎞

⎟
⎟
⎟
⎠
.

Reduce this to obtain

[A...B]R =[AR

...C]

⎛

⎜
⎜
⎜
⎝

1 0 0 27/8 15/8 60/8
... −17/8

0 1 0 13/8 9/8 20/8
... 1/8

0 0 1 11/8 7/8 12/8
... 7/8

⎞

⎟
⎟
⎟
⎠
.
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The first six columns are AR , and we read from [A...B]R that both A and [A...B] have rank 3,
so the system is consistent. From the reduced augmented matrix, we see immediately that

x1 + 27
8

x4 + 15
8

x5 + 60
8

x6 =− 17
8

x2 + 13
8

x4 + 9
8
x5 + 20

8
x6 = 1

8

x3 + 11
8

x4 + 7
8
x5 + 12

8
x6 = 7

8
.

From these we have

x1 =− 27
8

x4 − 15
8

x5 − 60
8

x6 − 17
8

x2 =− 13
8

x4 − 9
8
x5 − 20

8
x6 + 1

8

x3 =− 11
8

x4 − 7
8
x5 − 12

8
x6 + 7

8
.

We could have gone directly to these equations without the intermediate step. These equations
actually give the general solution, with x1, x2, and x3 in terms of the arbitrary constants x4, x5,
and x6. The solution is

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 27
8

x4 − 15
8

x5 − 60
8

x6 − 17
8

− 13
8

x4 − 9
8
x5 − 20

8
x6 + 1

8

− 11
8

x4 − 7
8
x5 − 12

8
x6 + 7

8

x4

x5

x6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To write this in a more revealing way, let x4 = 8α, x5 = 8β, and x6 = 8γ to write

X =α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−27
−13
−11

8
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−15
−9
−7
0
8
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−60
−20
−12

0
0
8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−17/8
1/8
7/8
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= H + Up

with H as the general solution of AX = O and Up as a particular solution of AX = C. �

EXAMPLE 7.27

The system
⎛

⎝
2 1 −11

−5 1 9
1 1 14

⎞

⎠X =
⎛

⎝
−6
12
−5

⎞

⎠ .

has the augmented matrix

[A...B] =

⎛

⎜
⎜
⎜
⎝

2 1 −11
... −6

−5 1 9
... 12

1 1 14
... −5

⎞

⎟
⎟
⎟
⎠
,

and we reduce this to

[A...B]R =

⎛

⎜
⎜
⎜
⎝

1 0 0
... −86/31

0 1 0
... −191/155

0 0 1
... −11/155

⎞

⎟
⎟
⎟
⎠
.
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The first three columns tell us that A has a rank of 3, so the associated homogeneous system
has only the trivial solution. Since the rank of [AR

...C] is also 3, the system has a solution. This
solution is unique because AR = I3.

From the fourth column of [A...B]R , we read the unique solution

X =
⎛

⎝
−86/31

−191/155
−11/155

⎞

⎠ . �

SECTION 7.6 PROBLEMS

In each of Problems 1 through 14, find the general solution
of the system or show that the system is inconsistent. Write
the solution in matrix form.

1. 3x1 − 2x2 + x3 = 6
x1 + 10x2 − x3 = 2

−3x1 − 2x2 + x3 = 0

2. 4x1 − 2x2 + 3x3 + 10x4 = 1
x1 − 3x4 = 8

2x1 − 3x2 + x4 = 16

3. 2x1 − 3x2 + x4 − x6 = 0
3x1 − 2x3 + x5 = 1
x2 − x4 + 6x6 = 3

4. 2x1 − 3x2 = 1
−x1 + 3x2 = 0

x1 − 4x2 = 3

5. 3x2 − 4x4 = 10
x1 − 3x2 + 4x3 − x6 = 8
x2 + x3 − 6x4 + x6 =−9

x1 − x2 + x6 = 0

6. 2x1 − 3x2 + x4 = 1
3x2 + x3 − x4 = 0

2x1 − 3x2 + 10x3 = 0

7. 8x2 − 4x3 + 10x6 = 1
x3 + x5 − x6 = 2

x4 − 3x5 + 2x6 = 0

8. 2x1 − 3x3 = 1
x1 − x2 + x3 = 1

2x1 − 4x2 + x3 = 2

9. 14x3 − 3x5 + x7 = 2
x1 + x2 + x3 − x4 + x6 =−4

10. 3x1 − 2x2 = −1
4x1 + 3x2 = 4

11. 7x1 − 3x2 + 4x3 ==−7
2x1 + x2 − x3 + 4x4 = 6

x2 − 3x4 =−5

12. −4x1 + 5x2 − 6x3 = 2
2x1 − 6x2 + x3 =−5

−6x1 + 16x2 − 11x3 = 1

13. 4x1 − x2 + 4x3 = 1
x1 + x2 − 5x3 = 0

−2x1 + x2 + 7x3 = 4

14. −6x1 + 2x2 − x3 + x4 = 0
x1 + 4x2 − x4 =−5

x1 + x2 + x3 − 7x4 = 0

15. Show that the system AX=B is consistent if and only
if B is in the column space of A.

7.7 Matrix Inverses

Let A be an n × n matrix. An n × n matrix B is an inverse of A if

AB = BA = In.
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It is easy to find matrices that have no inverse. For example, let

A =
(

1 0
2 0

)

.

Suppose

B =
(

a b
c d

)

.

is an inverse of A. Then

AB =
(

1 0
2 0

)(
a b
c d

)

=
(

a b
2a 2b

)

=
(

1 0
0 1

)

,

implying that

a = 1,b = 0,2a = 0 and b = 1

and this is impossible. On the other hand, some matrices do have inverses. For example,
(

2 1
1 4

)(
4/7 −1/7

−1/7 2/7

)

=
(

4/7 −1/7
−1/7 2/7

)(
2 1
1 4

)

=
(

1 0
0 1

)

.

A matrix that has an inverse is called nonsingular. A matrix with no inverse is singular.

A matrix can have only one inverse. For suppose that B and C are inverses of A. Then

B = BIn = B(AC)= (BA)C = InC = C.

In view of this, we will denote the inverse of A as A−1. Here are additional facts about nonsingular
matrices and matrix inverses.

THEOREM 7.15

Let A be an n × n matrix. Then,
1. In is nonsingular and is its own inverse.
2. If A and B are nonsingular n × n matrices, then so is AB. Further,

(AB)−1 = B−1A−1.

The inverse of a product is the product of the inverses in the reverse order. This extends to a
product of any finite number of matrices.

3. If A is nonsingular, so is A−1, and

(A−1)−1 = A.

The inverse of the inverse is the matrix itself.
4. If A is nonsingular, so is its transpose At , and

(At)−1 = (A−1)t .

The inverse of a transpose is the transpose of the inverse.
5. A is nonsingular if and only if AR = In .
6. A is nonsingular if and only if rank(A)= n.
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7. If AB is nonsingular, so are A and B.

8. If A and B are n ×n matrices, and either one is singular, then their products AB and BA
are singular.

9. Every elementary matrix is nonsingular, and its inverse is an elementary matrix of the
same type.

10. An n × n matrix A is nonsingular if and only if AX = B has a solution for every
n × 1 B. �

Proof These statements use the uniqueness of the inverse of a matrix. This allows us to show
that a matrix is the inverse of another matrix by showing that it behaves like the inverse (the
product of the two matrices is the identity matrix).

Conclusion (2) of the theorem is true because

(B−1A−1)(AB)= B−1(A−1A)B = B−1B = In.

Similarly

(AB)(B−1A−1)= In.

This proves that B−1A−1 behaves like the inverse of AB, hence this must be inverse.
For conclusion (3) observe that the equation

AA−1 = A−1A = In

is symmetric in the sense that A−1 is the inverse of A, but also A is the inverse of A−1. The latter
phrasing means that

A = (A−1)−1.

For conclusion (4), first write

In = (In)
t = (AA−1)t = (A−1)tAt .

Similarly,

At(A−1)t = In.

These two equations show that (At)−1 = (A−1)t .
The key to conclusion (5) lies in recalling (Section 7.1.1) that the columns of AB are A times

the columns of B. Using this, we can attempt to build an inverse for A a column at a time. To
find B so that AB = In , we must be able to choose the columns of B so that

column j of AB = A

⎛

⎜
⎜
⎜
⎝

b1 j

b2 j

...

bnj

⎞

⎟
⎟
⎟
⎠

= column j of In =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

having 1 in the j th place and zeros elsewhere.
If now AR = In , then the system just written for column j of B has a unique solution for

j = 1, · · · ,n. These solutions form the columns of B such that AB = In , yielding A−1.
(Actually we must show that BA = In also, but we will not go through these details.)
Conversely, if A is nonsingular, then this system has a unique solution for j = 1, · · · ,n

because these solutions are the columns of A−1. Then AR = In . This proves conclusion (5).
Conclusion (6) follows directly from (5).
For conclusion (7), suppose AB is nonsingular. Then for some matrix K, (AB)K = In . Then

A(BK)= In , so A is nonsingular. Similarly, B is nonsingular.
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Conclusion (8) follows from (7).
Conclusion (9) follows immediately from the discussion preceding Theorem 7.6.
Finally, for conclusion (10), first suppose AX = B has a solution for every n × 1 matrix B.

Let X j be the solution of

AX =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with 1 in row j and all other elements zero. Then X1, · · · ,Xn form the columns of an n × n
matrix K and it is routine to check that AK = In , hence K = A−1 and A is nonsingular.

Conversely, if A is nonsingular, then X = A−1B is the solution of AX = B for any n × 1
matrix B. �

Matrix inverses relate to systems of linear equations in the following way.

THEOREM 7.16

Let A be n × n.
1. A homogeneous system AX = O has a nontrivial solution if and only if A is singular.

2. A consistent nonhomogeneous system AX = B has a unique solution if and only if A is
nonsingular. In this case the solution is

X = A−1B. �

Proof If A is singular, then AR �= In by Theorem 7.15, conclusion (5), so the system AX = O
has a nontrivial solution by Corollary 7.3.

Conversely, suppose the system AX = O has a nontrivial solution. Then rank(A) < n by
Theorem 7.15, conclusion (6), so A is singular.

This proves conclusion (1). For conclusion (2), suppose the system is consistent. The general
solution has the form X=H+Up, where H is the general solution of the associated homogeneous
system. Therefore the given system has a unique solution exactly when the homogeneous system
has only the trivial solution, which occurs if and only if A is nonsingular. �

Finding the inverse of a nonsingular matrix is most easily done using a software routine. In
the linalg package of linear algebra routines of MAPLE, the inverse of a matrix A that has
been entered can be found using

inverse(A);

If it happens that A is singular, the routine will return this conclusion.
Despite this, it is sometimes useful to understand a procedure for finding a matrix inverse.

Let A be an n × n matrix. Form the n × 2n matrix [In

...A] whose first n columns are A and whose
second n columns are In . For example, if

A =
(

2 3
−1 9

)
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then

[A...I2] =
⎛

⎝ 2 3
... 1 0

−1 9
... 0 1

⎞

⎠ .

Reduce A, carrying out the row operations across the entire matrix [A...In]. A is nonsingular
exactly when AR = In turns up in the first n columns. In this event the second n columns form A−1.

EXAMPLE 7.28

Let

A =
(

5 −1
6 8

)

.

Form

[A...I2] =
⎛

⎝5 −1
... 1 0

6 8
... 0 1

⎞

⎠ .

Reduce A, carrying out each row operation on the entire row of the augmented matrix. First
multiply row one by 1/5:

⎛

⎝1 −1/5
... 1/5 0

6 8
... 0 1

⎞

⎠ .

Add −6 times row one to row two:
⎛

⎝1 −1/5
... 1/5 0

0 46/5
... −6/5 1

⎞

⎠ .

Multiply row two by 5/46:
⎛

⎝1 −1/5
... 1/5 0

6 1
... −6/46 5/46

⎞

⎠ .

Add 1/5 times row two to row one:
⎛

⎝1 0
... 8/46 1/46

0 1
... −6/46 5/46

⎞

⎠ .

This is in reduced form. The first two columns are AR . Since AR = I2, A is nonsingular. Further,
we can read A−1 from the last two columns:

A−1 =
(

8/46 1/46
−6/46 5/46

)

. �

EXAMPLE 7.29

Let

A =
(−3 21

4 −28

)

.

Form

[A...I2] =
⎛

⎝−3 21
... 1 0

4 −28
... 0 1

⎞

⎠ .
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Reduce this by multiplying row one by −1/3 and then adding −4 times row one to row two
to get

⎛

⎝1 −7
... −1/3 0

0 0
... 4/3 1

⎞

⎠ .

The left two columns, which form AR , do not equal I2, so A is singular and has no inverse. �

We will illustrate the use of a matrix inverse to solve a nonhomogeneous system.

EXAMPLE 7.30

We will solve the system

2x1 − x2 + 3x3 = 4

x1 + 9x2 − 2x3 =−8

4x1 − 8x2 + 11x3 = 15.

The matrix of coefficients is

A =
⎛

⎝
2 −1 3
1 9 −2
4 −8 11

⎞

⎠ .

A routine reduction yields

[A...I3]R =

⎛

⎜
⎜
⎜
⎝

1 0 0
... 83/53 −13/53 −25/53

0 1 0
... −19/53 10/53 7/53

0 0 1
... −44/53 12/53 19/53

⎞

⎟
⎟
⎟
⎠
.

The first three columns are I3, hence A is nonsingular and the system has a unique solution. The
last three columns of the reduced augmented matrix give us

A−1 = 1

53

⎛

⎝
83 −13 −25

−19 10 7
−44 12 19

⎞

⎠ .

The unique solution of the system is A−1B:

X = A−1B = 1

53

⎛

⎝
83 −13 −25

−19 10 7
−44 12 19

⎞

⎠

⎛

⎝
4

−8
15

⎞

⎠=
⎛

⎝
61/53

−51/53
13/53

⎞

⎠ . �

SECTION 7.7 PROBLEMS

In each of Problems 1 through 10, find the inverse of the
matrix or show that the matrix is singular.

1.

(−1 2
2 1

)

2.

(
12 3
4 1

)

3.

(−5 2
1 2

)

4.

(−1 0
4 4

)

5.

(
6 2
3 3

)
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6.

⎛

⎝
1 1 −3
2 16 1
0 0 4

⎞

⎠

7.

⎛

⎝
−3 4 1
1 2 0
1 1 3

⎞

⎠

8.

⎛

⎝
−2 1 −5
1 1 4
0 3 3

⎞

⎠

9.

⎛

⎝
−2 1 1
0 1 1

−3 0 6

⎞

⎠

10.

⎛

⎜
⎝

12 1 14
−3 2 0
0 9 14

⎞

⎟
⎠

In each of Problems 11 through 15, use a matrix inverse to
find the unique solution of the system.

11. x1 − x2 + 3x3 − x4 = 1
x2 − 3x3 + 5x4 = 2

x1 − x3 + x4 = 0
x1 + 2x3 − x4 = −5

12. 8x1 − x2 − x3 = 4
x1 + 2x2 − 3x3 = 0
2x1 − x2 + 4x3 = 5

13. 2x1 − 6x2 + 3x3 =−4
−x1 + x2 + x3 = 5

2x1 + 6x2 − 5x3 = 8

14. 12x1 + x2 − 3x3 = 4
x1 − x2 + 3x3 =−5

−2x1 + x2 + x3 = 0

15. 4x1 + 6x2 − 3x3 = 0
2x1 + 3x2 − 4x3 = 0

x1 − x2 + 3x3 =−7

7.8 Least Squares Vectors and Data Fitting

In this section, we will develop an approach to the method of least squares as it applies to a data
fitting problem.

Let A be an n × m matrix of numbers and B a vector in Rn . The system AX = B may or
may not have a solution. Define an m-vector X∗ to be a least squares vector for the system
AX = B if

‖ AX∗ − B ‖≤‖ AX − B ‖ (7.2)

for every X in Rm .

Thus X∗ is a least squares vector for AX = B if AX∗ is at least as close to B as AX is to B,
for every m-vector X. This means that, for every X,

‖ AX∗ − B ‖≤‖ AX − B ‖ .
We will develop a method for finding all least squares vectors for a given system AX = B.

The key lies in the column space S of A. S is a subspace of Rn , spanned by the columns C1, · · · ,
Cm of A. S consists of exactly those vectors B in Rn for which the system AX=B has a solution.
This is because, if

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xm

⎞

⎟
⎟
⎟
⎠
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is a matrix of numbers, then

AX = x1C1 + x2C2 + · · ·+ xmCm = B

exactly when B is a linear combination of the columns of A, hence is in S.
The following lemma reveals a connection between the least squares vectors for AX=B and

orthogonal projections, as suggested by the inequality (7.2).

LEMMA 7.1

Let B be an n-vector. Then an m-vector X∗ is a least squares vector for AX = B if and only if

AX∗ = BS,

where BS is the orthogonal projection of B onto S. �
Proof Suppose first that AX∗ = BS . Then

‖ B − BS ‖ =‖ B − AX∗ ‖
≤‖ B − C ‖

for all vectors C in S, because BS is the vector in S closest to B. But the vectors C in S are exactly
the vectors AX for X in Rm , so

‖ B − AX∗ ‖≤‖ B − AX ‖
for every m-vector X, and this proves that X∗ is a least squares vector for AX = B.

Conversely, suppose X∗ is a lease squares vector for AX = B. Then

‖ AX∗ − B ‖≤‖ AX − B ‖
for all X in S. But then AX∗ is the vector in S closest to B. Because BS is the unique vector with
this property, then AX∗ = BS . This completes the proof. �

We are now able to completely characterize the least squares vectors of AX = B as the
solutions of a system of linear equations obtained using A.

THEOREM 7.17 Least Squares Vectors for AX = B

An m-vector X is a least squares vector of AX = B if and only if X is a solution of the system

AtAX = AtB. �
Proof Suppose first that X∗ is a least squares vector of AX = B. By the lemma,

AX∗ = BS.

We know that B − BS is in S⊥, so B − AX∗ is in S⊥. This means that the columns of A are
orthogonal to B − AX∗. Writing the dot product of column j of A with B − AX∗ as a matrix
product, this orthogonality means that

(C j)
t(B − AX∗)= 0.

Now (C j)
t is row j of At , so

At(B − AX∗)= O

in which O is the m × 1 zero matrix. But this equation can be written

AtAX∗ = At(B)
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and this means that X∗ is a solution of the system AtAX = AtB.
To prove the converse, suppose X∗ is a solution of this system. Reversing part of the

argument just given shows that B − AX∗ is in S⊥. But then

B = AX∗ + (B − AX∗)

is a decomposition of B into a sum of a vector in S and a vector in S⊥. Since this decomposition
is unique, then AX∗ must be the orthogonal projection of B onto S:

AX∗ = BS.

By the lemma, X∗ is a least squares vector for AX = B. �

Theorem 7.17 provides a way of obtaining all least squares vectors for AX = B. These are
the solutions of the linear system AtAX=AtB. Since we know how to solve linear systems,
this provides a computable method for finding least squares vectors. For this reason, we
will call the system

AtAX = AtB

the auxiliary lsv system of AX = B.

In addition to providing a method for finding all least squares vectors for a system, the
auxiliary lsv system tells us when a system has only one least squares vector. This occurs exactly
when the auxiliary system has a unique solution, which in turn occurs when AT A is nonsingular.
In this event, the least squares vector for AX = B is

X∗ = (AtA)−1AtB.

This proves the following.

COROLLARY 7.7

AX = B has a unique least squares vector if AtA is nonsingular. �

EXAMPLE 7.31

Let

A =
⎛

⎝
−1 −2
1 4
2 2

⎞

⎠

and

B =
⎛

⎝
3

−2
7

⎞

⎠ .

We will find all of the least squares vectors for AX = B. Compute

AtA =
(

6 10
10 24

)

.

This is nonsingular, and we find that

(AtA)−1 =
(

12/22 −5/22
−5/22 3/22

)

.
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Finally,

AtB =
(−1 1 2

−2 4 2

)
⎛

⎝
3

−2
7

⎞

⎠=
(

9
0

)

.

The auxiliary lsv system is
(

6 10
10 24

)

X =
(

9
0

)

.

This has a unique solution, which is the unique least squares vector for the system:

X∗ =
(

6 10
10 24

)−1(
9
0

)

=
(

12/22 −5/22
−5/22 3/22

)(
9
0

)

=
(

108/22
−45/22

)

. �

We will apply least squares vectors to the problem of drawing a straight line that is, in some
sense, a best fit to a set of given data points in the plane. We can see the idea by looking at an
example. Suppose (perhaps by experiment or observation) we have data points

(0,−5.5), (1,−2.7), (2,−0.8), (3,1.2), (5,4.7),

which we will label (x j , yj) (from left to right) for j = 1,2,3,4,5. We want to draw a straight
line y = ax + b that is a “best fit” to these points. For each of the observed points (x j , yj), think
of ax j + b as an approximation to yj , so

ax1 + b ≈ y1,

ax2 + b ≈ y2,

...

ax5 + b ≈ y5.

Consider the system
⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 1
1 2
1 3
1 5

⎞

⎟
⎟
⎟
⎟
⎠

(
b
a

)

=

⎛

⎜
⎜
⎜
⎜
⎝

−5.5
−2.7
−0.8
1.2
4.7

⎞

⎟
⎟
⎟
⎟
⎠
.

This has the form AX = B with A defined so that row j of the matrix product AX is ax j + b,
and this is set equal to the column matrix B listing the given y j ’s. Of course, ax j + b is only
approximately equal to yj . We want a line that “best approximates” these points, so we obtain a
and b by solving for a least squares vector X∗ for this system.

Once we decide on this approach, the rest is arithmetic. Compute

AtA =
(

5 11
11 39

)

,

and

(AtA)−1 =
(

39/74 −11/74
−11/74 5/74

)

.

The unique least squares vector is

X∗ = (AtA)−1AtB =
(−5.0229729 · · ·

2.001351351 · · ·
)

.
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x

y

(5, 4.7)

(3, 1.2)

(2, –0.8)

(1, –2.7)

(0, –5.5)

FIGURE 7.5 Least squares fit to data.

Choose a = 2 and b = −5.02 to obtain the line y = 2x − 5.02 as the line of best fit to the data.
Among all lines we could draw, this minimizes the sum of the vertical distances from the line to
the data points (Figure 7.5). �

It should not be surprising that this problem has a unique solution. The line we found is
called a least squares line for the data. In statistics this is often referred to as the regression line.

SECTION 7.8 PROBLEMS

In each of Problems 1 through 6, find all least squares
vectors for the given system.

1.

(
1 1

−2 3

)

X =
(

4
−1

)

2.

(−5 2
1 4

)

X =
(

1
−1

)

3.

(
1 0
6 2

)

X =
(−2

−4

)

4.

(
1 1 −2

−2 3 1

)

X =
(

0
3

)

5.

⎛

⎝
1 1 −2 1

−2 3 0 −4
0 −2 1 5

⎞

⎠X =
⎛

⎝
4

−1
6

⎞

⎠

6.

⎛

⎜
⎜
⎜
⎜
⎝

1 1
−2 3
0 −1
2 2

−3 7

⎞

⎟
⎟
⎟
⎟
⎠

X =

⎛

⎜
⎜
⎜
⎜
⎝

−5
1
3
2
1

⎞

⎟
⎟
⎟
⎟
⎠

In each of Problems 7 through 10, find the least squares
line for the data.

7. (1,3.8), (3,11.7), (5,20.6), (7,26.5), (9,35.2)

8. (−5,21.2), (−3,13.6), (−2,10.7), (0,4.2), (1,2.4),
(3,−3.7), (6,−14.2)

9. (−3,−23), (0,−8.2), (1,−4.6), (2,−0.5), (4,7.3),
(7,19.2)

10. (−3,−7.4), (−1,−4.2), (0,−3.7), (2,−1.9),
(4,0.3), (7,2.8), (11,7.2)
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7.9 LU Factorization

Let A be an n × m matrix of numbers. We sometimes want to factor A into a product of an n × n
lower triangular matrix L and an n × m upper triangular matrix U. We will see why this is useful
shortly. First we will develop a procedure for doing this.

A matrix is upper triangular if its only nonzero elements lie on or above the main
diagonal. Equivalently, all elements below the main diagonal are zero. A matrix is lower
triangular if its only nonzero elements are on or below the main diagonal. In the case
that the matrix is not square, main diagonal elements are the 1,1, 2,2, · · · , n,n ele-
ments. If m > n, there will be columns beyond the columns containing these diagonal
elements.

To see how to construct L and U, consider an example. Let

A =
⎛

⎝
2 1 1 −3 5
2 3 6 1 4
6 2 1 −1 −3

⎞

⎠ .

We will construct U using the elementary row operation of adding a scalar multiple of one row
to another. We will not interchange rows or multiply individual rows by scalars in forming U.

Begin with the leading entry in A. This is 2 in the 1,1 position. For a reason that will become
clear when we construct L, highlight column one of A in some way, such as boldface (or if you
are writing the matrix on a piece of paper, you might circle these elements):

A =
⎛

⎝
2 1 1 −3 5
2 3 6 1 4
6 2 1 −1 −3

⎞

⎠ .

Now add scalar multiples of row one to the other rows to obtain zeros below the leading entry of
2. In the matrix B, highlight the elements in column two below column one.

A → B =
⎛

⎝
2 1 1 −3 5
0 2 5 4 −1
0 −1 −2 8 −18

⎞

⎠ .

Row two has leading element 2 also. Add a scalar multiple (in this example, multiply by 1/2) of
row two to row three to obtain a zero in the 3,2 position. After doing this, highlight the element
in the 3,3 position.

B → C =
⎛

⎝
2 1 1 −3 5
0 2 5 4 −1
0 0 1/2 10 −37/2

⎞

⎠ .

In this example n = 3 and m = 5, so the diagonal elements are the 1,1; 2,2; and 3,3 elements,
and there are two columns to the right of the columns containing this main diagonal. Notice that
C is upper triangular. This is U:

U =
⎛

⎝
2 1 1 −3 5
0 2 5 4 −1
0 0 1/2 10 −37/2

⎞

⎠ .
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Notice that the highlighting has played no role in producing U. These highlighted parts of
columns will be used to form L, which will be 3 × 3 lower triangular. The highlighted elements
are all in the first three columns, and all fall on or below the main diagonal. Now form the 3 × 3
lower triangular matrix

D =
⎛

⎝
2 0 0
2 2 0
6 −1 1/2

⎞

⎠ .

D includes the highlighted first column from A, the highlighted elements of the second column
in B, and the highlighted element of the third column in C, with zeros filled in above the
main diagonal. This is not yet L. For this, we want 1 along the main diagonal. Thus, mul-
tiply column one of D by 1/2, the second column by 1/2, and the third column by 2. This
yields L:

L =
⎛

⎝
1 0 0
1 1 0
3 −1/2 1

⎞

⎠ .

It is routine to check that LU = A.
This procedure can be carried out in general. First form U, exploiting leading elements

of columns of A and an elementary row operation to obtain zeros below these elements, then
retaining the elements of these columns on and above the main diagonal to form the ele-
ments of U above its main diagonal. Fill in the rest of U, below the main diagonal, with
zeros.

The highlighting strategy is a way of recording the elements to be used in forming columns
of L on and below its main diagonal. After placing these elements, and filling in zeros above
the main diagonal, multiply each column by a scalar to obtain 1 ’s along the main diagonal. The
resulting matrix is L.

The process of factoring A into a product of lower and upper triangular matrices is called
LU factorization.

What is the point to LU factorization? In real-world applications, matrices may be extremely
large and the numbers will not all be small integers. A great deal of arithmetic is involved in
manipulating such matrices. Upper and lower triangular matrices involve less arithmetic (hence
save computer time and money), and systems of equations having triangular coefficient matrices
are easier to solve.

As a specific instance of a simplification with LU factorization, suppose we want to solve a
system AX = B. If we write A = LU, then the system is

AX = (LU)X = L(UX)= B.

Let UX = Y and solve the system

LY = B

for Y. Once we know Y, then the solution of AX = B is the solution of

UX = Y.

Both of these systems involve triangular coefficient matrices, hence may be easier to solve
than the original system.
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EXAMPLE 7.32

We will solve the system AX = B, where

A =

⎛

⎜
⎜
⎝

4 3 3 −4 6
1 1 −1 3 4
2 2 −4 6 1
8 −2 1 4 6

⎞

⎟
⎟
⎠ and B =

⎛

⎜
⎜
⎝

4
−2
6
1

⎞

⎟
⎟
⎠ .

We could solve this system by finding the reduced row echelon form of A. To illustrate LU
factorization, first factor A. Begin by finding U:

A =

⎛

⎜
⎜
⎝

4 3 3 −4 6
1 1 −1 3 4
2 2 −4 6 1
8 −2 1 4 6

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

4 3 3 −4 6
0 1/4 −7/4 4 5/2
0 1/2 −11/1 8 −2
0 −8 −5 12 −6

⎞

⎟
⎟
⎠

→

⎛

⎜
⎜
⎝

4 3 3 −4 6
0 1/4 −7/4 4 5/2
0 0 −2 8 −7
0 0 −61 140 74

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

4 3 3 −4 6
0 1/4 −7/4 4 5/2
0 0 −2 0 −7
0 0 0 140 575/2

⎞

⎟
⎟
⎠= U.

We can now form the 4 × 4 matrix L by beginning with the highlighted columns and obtaining
1’s down the main diagonal:

⎛

⎜
⎜
⎝

4 0 0 0
1 1/4 0 0
2 1/2 −2 0
8 −8 −61 140

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

1 0 0 0
1/4 1 0 0
1/2 2 1 0
2 −32 61/2 1

⎞

⎟
⎟
⎠= L.

Now solve LY = B. Because L is lower triangular, this is the system

y1 = 4,

1

4
y1 + y2 =−2,

1

2
y1 + 2y2 + y3 = 6

2y1 − 32y2 + 61

2
y3 + y4 = 1

with solution

Y =

⎛

⎜
⎜
⎝

4
−3
10

−408

⎞

⎟
⎟
⎠ .

Now solve

UX = Y.
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Because U is upper triangular, this is the system

4x1 + 3x2 + 3x3 − 4x4 + 6x5 = 4,

1

4
x2 − 7

4
x3 + 4x4 + 5

2
x5 =−3

−2x3 − 7x5 = 10

140x4 + 575

2
x5 =−408.

Solve this to obtain the solution of the solution of the original system:

X =α

⎛

⎜
⎜
⎜
⎜
⎝

523/28
−183/7
−7/2

−115/56
1

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

3971/140
−1238/35

−5
−102/35

0

⎞

⎟
⎟
⎟
⎟
⎠
. �

SECTION 7.9 PROBLEMS

In each of Problems 1 through 6, find an LU factorization
of the matrix.

1.

⎛

⎝
2 4 −6
8 2 1

−4 4 10

⎞

⎠

2.

⎛

⎝
1 5 2
3 −4 2
1 4 10

⎞

⎠

3.

⎛

⎝
−2 1 12
2 −6 1
2 2 4

⎞

⎠

4.

⎛

⎝
1 7 2 −1
3 5 2 6

−3 −7 10 −4

⎞

⎠

5.

⎛

⎜
⎜
⎝

1 4 2 −1 4
1 −1 4 −1 4

−2 6 8 6 −2
4 2 1 2 −4

⎞

⎟
⎟
⎠

6.

⎛

⎜
⎜
⎝

4 −8 2
2 24 −2

−3 2 14
0 1 −5

⎞

⎟
⎟
⎠

In each of Problems 7 through 12, solve the system AX=B
by factoring A. A is given first, then B

7.

⎛

⎝
4 4 2
1 −1 3
1 42 2

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠

8.

(
2 1 1 3
1 4 6 2

)

,

(
2
4

)

9.

⎛

⎝
−1 1 1 6
2 1 0 4
1 −2 4 6

⎞

⎠ ,

⎛

⎝
2
1
6

⎞

⎠

10.

⎛

⎝
7 2 −4

−3 2 8
4 4 20

⎞

⎠ ,

⎛

⎝
7

−1
3

⎞

⎠

11.

⎛

⎜
⎜
⎝

6 1 −1 3
4 2 1 5

−4 1 6 5
2 −1 −1 4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

4
12
2

−3

⎞

⎟
⎟
⎠

12.

⎛

⎝
1 2 0 1 1 2 −4
3 3 −3 6 −5 2 5
6 8 4 0 −2 2 0

⎞

⎠ ,

⎛

⎝
0

−4
2

⎞

⎠

7.10 Linear Transformations

Sometimes we want to consider functions between Rn and Rm . Such a function associates with
each vector in Rn a vector in Rm , according to a rule defined by the function.
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A function T that maps n-vectors to m-vectors is called a linear transformation if the
following two conditions are satisfied:

1.

T (u + v)= T (u)+ T (v)

for all n-vectors u and v, and
2.

T (αu)=αT (u)

for every real number α and all n-vectors u

These two conditions can be rolled into the single requirement that

T (αu +βv)=αT (u)+βT (v)

for all real numbers α and β and vectors u and v in Rn .
A linear transformation is also called a linear mapping.

EXAMPLE 7.33

Define T by

T (x, y)=< x + y, x − y,2x > .

Then T maps vectors in R2 to vectors in R3. For example,

T (2,−3)=<−1,5,4> and T (1,1)=< 2,0,2> .

We will verify that T is a linear transformation. Let

u =< a,b> and v =< c,d > .

Then

u + v =< a + c,b + d >

and

T (u + v)= T (a + c,b + d)=< a + c + b + d,a + c − b − d,2a + 2c>,

while

T (u)+ T (v)=< a + b,a − b,2a>+< c + d, c − d,2c>

=< a + b + c + d,a − b + c − d,2a + 2c>

=< a + c + b + d,a + c − b − d,2a + 2c>

= T (a + c,b + d)= T (u + v).

This verifies condition (1) of the definition. For condition (2), let α be any number. Then

T (αu)= T (αa, αb)

=<αa +αb, αa −αb,2αa>

=α < a + b,a − b,2a>= αT (u). �

It is easy to check that the function

P(a,b, c)=< a2,1,1, sin(a)>
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from R2 to R4 is not linear. Generally a function is nonlinear (fails to be linear) when it involves
products or powers of the coordinates, or nonlinear functions such as trigonometric functions and
exponential functions, whose graphs are not straight lines.

We will use the notation

T : Rn → Rm

to indicate that T is a linear transformation from Rn to Rm .
Every linear transformation T : Rn → Rm must map the zero vector On of Rn to the zero

vector Om of Rm . To see why this is true, use the linearity of T to write

T (On)= T (On + On)= T (On)+ T (On),

so

T (On)= Om .

However, a linear transformation may take nonzero vectors to the zero vector. For example, the
linear transformation

T (x, y)= (x − y,0)

from R2 to R2 maps every vector < x, x > to < 0,0>.
We will define two important properties that a linear transformation T : Rn → Rm may

exhibit.

T is onto if every vector in Rm is the image of some vector in Rn under T . This means that,
if v is in Rm , then there must be some u in Rn such that T (u)= v.

T is one-to-one, or 1 − 1, if the only way T (u1) can equal T (u2) is for u1 = u2. This
means that two vectors in Rn cannot be mapped to the same vector in Rm by T .

The notions of one-to-one and onto are independent. A linear transformation may be one-
to-one and onto, one-to-one and not onto, onto and not one-to-one, or neither one-to-one or
onto.

EXAMPLE 7.34

Let

T (x, y)=< x − y,0,0> .

Then T is a linear transformation from R2 to R3. T is certainly not one-to-one, since, for example,

T (1,1)= T (2,2)=< 0,0,0> .

In fact, T (x, x)=< 0,0,0> for every number x . Thus T maps many vectors to the origin in R3.
T is also not onto R3, since no vector in R3 with a nonzero second or third component is the

image of any vector in R2 under T . �

EXAMPLE 7.35

Let S : R3 → R2 be defined by

S(x, y, z)=< x, y> .
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S is onto, since every vector in R2 is the image of a vector in R3 under S. For example,
< −3,

√
97 >= S(−3,

√
97,0). But S is not one-to-one. For example, S(−3,

√
97,22) also

equals <−3,
√

97>. �

There is a convenient test to tell whether a linear transformation is one-to-one. We know
that every linear transformation maps the zero vector to the zero vector. The transformation is
one-to-one when this is the only vector mapping to the zero vector.

THEOREM 7.18

Let T : Rn → Rm be a linear transformation. Then T is one-to-one if and only if T (u)=Om occurs
only if u = On . �
Proof Suppose first that T is one-to-one. If T (u)= Om , then

T (u)= T (On)= Om

so the assumption that T is one-to-one requires that u = On .
Conversely, suppose T (u) = Om occurs only if u = On . To show that T is one-to-one,

suppose, for some u and v in Rn ,

T (u)= T (v).

By the linearity of T ,

T (u − v)= Om .

By assumption, this implies that

u − v = On.

But then u = v, so T is one-to-one. �

To illustrate, S in Example 7.35 is not one-to-one, because nonzero vectors map to the zero
vector. In Example 7.34, T is not one-to-one for the same reason.

EXAMPLE 7.36

Let T : R4 → R7 be defined by

T (x, y, z,w)=< x − y + 2z + 8w, y − z, x −w, y + 4w,5x + 5y − z,0,0> .

To see if T is one-to-one, examine whether nonzero vectors can map to the zero vector. Suppose

T (x, y, z,w)= O7 =< 0,0,0,0,0,0,0> .

Then

< x + y + z +w, y − z, x −w, x − y + z −w,5x + 5y − z,0,0>=< 0,0,0,0,0,0,0> .

Looking at the second and third components of both sides of this equation, we must have y − z =
0 and x −w= 0, so y = z and x =w. From the first components,

x + y + z +w= 2x + 2y = 0,

so y =−x . From the fifth component,

5x + 5y − z = 5x − 5x − z = 0
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yields z = 0. But then y = 0, so x = 0 also. Then, from the third component, x −w= −w= 0
implies that w= 0. We conclude that

< x, y, z,w >=< 0,0,0,0> .

The only vector T maps to the zero vector is the zero vector, so T is one-to-one. Clearly T
is not onto, since T does not map any vector to a 7-vector with a nonzero sixth or seventh
component. �

Every linear transformation T : Rn → Rm can be associated with a matrix AT that carries all
of the information about the transformation. Recall that the standard basis for Rn consists of the
n orthogonal unit vectors

e1 =< 1,0, · · · ,0>, e2 =< 0,1,0, · · · ,0>,
· · · ,en =< 0,0, · · · ,0,1>

with a similar basis (with m components) for Rm . Now let AT be the matrix whose columns are
of the images in Rm of T (e1),T (e2), · · · ,T (en) with coordinates written in terms of the standard
basis in Rm . The AT is an m × n matrix that represents T in the sense that

T (x1, x2, · · · , xn)= AT

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xn

⎞

⎟
⎟
⎟
⎠
.

Thus we can compute T (X) as the matrix product of AT with the column matrix of the compo-
nents of X. Note that AT is m × n, and X (written as a column matrix) is n × 1, so AT X is m × 1.
Hence, it is a vector in Rm .

EXAMPLE 7.37

Let T (x, y)=< x − y,0,0>, as in Example 7.34. Then

T (1,0)=< 1,0,0> and T (0,1)=<−1,0,0>

so

AT =
⎛

⎝
1 −1
0 0
0 0

⎞

⎠ .

Now observe that

AT

(
x
y

)

=
⎛

⎝
x − y

0
0

⎞

⎠ ,

giving the coordinates of T (x, y) with respect to the standard basis for R3. We can therefore read
the coordinates of T (x, y) as a matrix product. �

EXAMPLE 7.38

In Example 7.36 we had

T (x, y, z,w)=< x − y + 2z + 8w, y − z, x −w, y + 4w,5x + 5y − z,0,0> .

For the matrix of T , compute

T (1,0,0,0)=< 1,0,1,0,5,0,0>,T (0,1,0,0)=<−1,1,0,1,5,0,0>

T (0,0,1,0)=< 2,−1,0,0,−1,0,0>,T (0,0,0,1)=< 8,0,−1,4,0,0,0> .
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Then

AT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 2 8
0 1 −1 0
1 0 0 −1
0 1 0 4
5 5 −1 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We obtain T (x, y, z,w) as the matrix product

AT

⎛

⎜
⎜
⎝

x
y
z
w

⎞

⎟
⎟
⎠ . �

AT enables us to pose questions about T in terms of linear systems of equations, about which
we know a good deal.

First, T : Rn → Rm is one-to-one exactly when T (X)=< 0,0, · · · ,0> in Rm implies that
X =< 0,0, · · · ,0> in Rn . This is equivalent to asserting that the m × n system

AT X = O

has only the trivial solution X = O. This occurs if and only if n − rank(AT )= 0, which in turn
occurs if and only if the n columns of AT are linearly independent, since the rank of AT is the
dimension of its row space. This establishes the following.

THEOREM 7.19

Let T : Rn → Rm be a linear transformation. Then the following conditions are equivalent:

1. T is one-to-one.

2. rank(AT )= n.

3. The columns of AT are linearly independent. �

This can be checked for T Example 7.36, with AT given in Example 7.38. There AT was a
7 × 4 matrix having rank 4, and T was one-to-one.

AT will also tell us if T is onto. For T to be onto, for each B in Rm , there must be some X
in Rn such that T (X)= B. This means that the m × n system AT X = B must have a solution for
each B, and this is equivalent to the columns of AT forming a spanning set for Rm . We therefore
have the following.

THEOREM 7.20

Let T : Rn → Rm . Then the following are equivalent.

1. T is onto.

2. The system AT (X)= B has a solution for each B in Rm .

3. The columns of AT span Rm .

4. rank(AT )= rank([AT

...B] for each B in Rm . �
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The null space of a linear transformation T : Rn → Rm is the set of all vectors in Rn that
T maps to the zero vector in Rm . Thus X in Rn is in the null space of T exactly when
T (X)=< 0,0, · · · ,0> in Rm .

We can determine this null space from AT . In terms of matrix multiplication, T (X) is com-
puted as AT X, in which X is an n × 1 column matrix. Thus X is in the null space of T exactly
when X is a solution of

AT X = O.

The null space of T is exactly the solution space of the homogeneous linear system AT X=O.
This solution space is a subspace of Rn and, because AT has n columns, it has dimension
n − rank(AT ). This proves the following.

THEOREM 7.21

Let T : Rn → Rm be a linear transformation. Then the null space of T is a subspace of Rn of
dimension n − rank(AT ). �

The dimension of the null space of T is also n minus the number of nonzero rows in the
reduced form of AT .

Algebraists often refer to the null space of a linear transformation as its kernel.
We have seen that every linear transformation from Rn to Rm has a matrix representation. In

the other direction, every m ×n matrix A of real numbers is the matrix of a linear transformation,
defined by T (X)= Y if AX = Y. In this sense linear transformations and matrices are equivalent
bodies of information. However, matrices are better suited to computation, particularly using
software packages. For example, the rank of the matrix of a linear transformation, which we can
find quickly using MAPLE, tells us the dimension of the transformation’s null space.

As a final note, observe that a linear transformation actually has many different matrix rep-
resentations. We defined AT in the most convenient way, using standard bases for Rn and Rm .
If we used other bases, we could still write matrix representations, but then we would have to
use coordinates of vectors with respect to these bases, and these coordinates might not be as
convenient to compute.

SECTION 7.10 PROBLEMS

In each of Problems 1 through 10, determine whether or
not the given function is a linear transformation. If it is,
write the matrix representation of T (using the standard
bases) and determine if T is onto and if T is one-to-one.
Also determine the null space of T and its dimension.

1. T (x, y, z)=< 3x, x − y,2z>

2. T (x, y, z,w)=< x − y, z −w>
3. T (x, y)=< x − y, x + y,2xy,2y, x − 2y>

4. T (x, y, z, v,w)=<w,v, x − y, x − z,w− x − 3y>

5. T (x, y, z,u, v)=< x − u, y − z,u + v >
6. T (x, y, z,u)=< x + y + 4z − 8u, y − z − x >

7. T (x, y)=< x − y, sin(x − y)>

8. T (x, y,w)=< 4y − 2x, y + 3x,0,0>

9. T (x, y,u, v,w)=< u − v−w,w+ u, z,0,1>

10. T (x, y, z, v)=< 3z + 8v− y, y − 4v >
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CHAPTER 8
Determinants

DEFINITION OF THE DETERMINANT
EVALUATION OF DETERMINANTS I
EVALUATION OF DETERMINANTS II A
DETERMINANT FORMULA FOR A−1

8.1 Definition of the Determinant

Determinants are scalars (numbers or sometimes functions) formed from square matrices accord-
ing to a rule we will develop. The Wronskian of two functions, seen in Chapter 2, is a
determinant, and we will shortly see determinants in other important contexts. This chapter
develops some properties of determinants that we will need to evaluate and make use of them.

Let n be an integer with n ≥ 2. A permutation of the integers 1,2, · · · ,n is a rearrangement
of these integers. For example, if p is the permutation that rearranges

1,2,3,4,5,6 → 3,1,4,5,2,6,

then p(1)= 3, p(2)= 1, p(3)= 4, p(4)= 5, p(5)= 2 and p(6)= 6.

A permutation is characterized as even or odd according to a rule we will illustrate.
Consider the permutation

p : 1,2,3,4,5 → 2,5,1,4,3

of the integers 1,2,3,4,5. For each k in the permuted list on the right, count the number
of integers to the right of k that are smaller than k. There is one number to the right of 2
smaller than 2, three numbers to the right of 5 smaller than 5, no numbers to the right of 1
smaller than 1, one number to the right of 4 smaller than 4, and no numbers to the right of
3 smaller than 3. Since 1 + 3 + 0 + 1 + 0 = 5 is odd, p is an odd permutation. When this
sum is even, p is an even permutation.

If p is a permutation on 1,2, · · · ,n, define

σ(p)=
{

1 if p is an even permutation

−1 if p is an odd permutation.

247
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The determinant of an n × n matrix A is defined to be

det A =
∑

p

σ(p)a1p(1)a2p(2) · · ·anp(n) (8.1)

with this sum extending over all permutations p of 1,2, · · · ,n. Note that det A is a sum of
terms, each of which is plus or minus a product containing one element from each row and
each column of A.

We often denote det A as |A|. This is not to be confused with the absolute value, as a
determinant can be negative.

EXAMPLE 8.1

We will use the definition to evaluate the general 2 × 2 and 3 × 3 determinants. For the 2 × 2
case, we have a matrix

A =
(

a11 a21

a21 a22

)

.

There are only two permutations on the numbers 1,2, namely

p1 : 1,2 → 1,2 and p2 : 1,2 → 2,1.

It is easy to check that p1 is even and p2 is odd. Therefore

|A| = σ(p1)a1p1(1)a2p1(2) + σ(p2)a1p2(1)a2p2(2)

= a11a22 − a12a21.

For the 3×3 case, suppose B=[bi j ] is a 3×3 matrix. Now we must use the six permutations
of the integers 1,2,3:

p1 : 1,2,3 → 1,2,3, (even); p2 : 1,2,3,→ 1,3,2, (odd);
p3 : 1,2,3 → 2,3,1, (even); p4 : 1,2,3,→ 2,1,3, (odd);
p5 : 1,2,3,→ 3,1,2, (even); p6 : 1,2,3,→ 3,2,1, (odd).

Then

|B| =
6∑

k=1

σ(pk)b1pk (1)b2pk (2)b3pk (3)

= b11b22b33 − b11b23b32 + b12b23b31

= b12b21b33 + b13b21b32 − b13b22b31. �

There are n! = 1 · 2 · 3 · · ·n permutations of 1,2, · · · ,n (for example, 120 permutations
of 1,2,3,4,5), so the definition is not a practical method of evaluation. However, it serves
as a starting point to develop the properties of determinants we will need to make use
of them.
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THEOREM 8.1 Some Fundamental Properties of Determinants

Let A be an n × n matrix. Then

1. |At | = |A|.
2. If A has a zero row or column then |A| = 0.

3. If B is formed from A by interchanging two rows or columns (a type I operation,
extended to include columns) then

|B| =−|A|.
4. If two rows of A are the same, or if two columns of A are the same, then |A| = 0.

5. If B is formed from A by multiplying a row or column by a nonzero number α (a type
II operation), then

|B| =α|A|.
6. If one row (or column) of A is a constant multiple of another row (or column), then

|A| = 0.

7. Suppose each element of row k of A is written as a sum

akj = bkj + ckj .

Define a matrix B from A by replacing each akj of A by bkj . Define a matrix C from A
by replacing each akj by ckj . Then

|A| = |B| + |C|.
In determinant notation,

|A| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 · · · a1 j · · · a1n

...
...

...
...

...

bk1 + ck1 · · · bkj + ckj · · · bkn + ckn

...
...

...
...

...

an1 · · · akj · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 · · · a1 j · · · a1n

...
...

...
...

...

bk1 · · · bkj · · · bkn

...
...

...
...

...

an1 · · · akj · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 · · · a1 j · · · a1n

...
...

...
...

...

ck1 · · · ckj · · · ckn

...
...

...
...

...

an1 · · · akj · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (8.2)

8. If D is formed from A by adding α times one row (or column) to another row (or
column) (a type III operation), then

|D| = |A|.
9. A is nonsingular if and only if |A| �= 0.

10. If A and B are both n × n, then

|AB| = |A||B|. �

The determinant of a product is the product of the determinants.
We will give informal arguments for these conclusions.
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Proof Conclusion (1) follows from the observation that each term in the sum of equation (8.1)
is a product of matrix elements, one element from each row and one from each column. We
therefore obtain the same terms from both A and At .

The reason for conclusion (2) is that a zero row or column puts a zero factor in each term of
the defining sum in equation (8.1).

Conclusion (3) states that interchanging two rows, or two columns, changes the sign of the
determinant. We will illustrate this for the 3 × 3 case. Let A = [ai j ] be 3 × 3 matrix and let
B =[bi j ] be formed by interchanging rows one and three of A. Then

b11 = a31,b12 = a32,b13 = a33,

b21 = a21,b22 = a22,b23 = a23,

and

b31 = a11,b32 = a12,b33 = a13.

From Example 8.1,

|B| = b11b22b33 − b11b23b32 + b12b23b31

=−b12b21b33 + b13b21b32 − b13b22b31

= a31a22a13 − a31a23a12 + a32a23a11

=−a32a21a13 + a33a21a12 − a33a22a11

=−|A|.

Conclusion (4) follows immediately from (3). Form B from A by interchanging the two
identical rows or columns. Since A = B, |A| = |B|. But by (3), |A| =−|B| = |A|. Then |A| = 0.

Conclusion (5) is true because multiplying a row or column of A by α puts a factor of α in
every term of the sum (8.1) defining the determinant.

Conclusion (6) follows from (2) if α=0, so suppose that α �=0. Now the conclusion follows
from (4) and (5). Suppose that row k of A is α times row i . Form B from A by multiplying
row k by 1/α. Then B has two identical rows, hence zero determinant by (4). But by (5), |B| =
(1/α)|A| = 0, so |A| = 0.

Conclusion (7) follows by replacing each akj in the defining sum (8.1) with bkj + ckj . Note
here that k is fixed, so only one factor in each term of (8.1) is replaced. In particular, generally
the determinant of a sum is not the sum of the determinants. Conclusion (7) also holds if each
element of a specified column is written as a sum of two terms.

Conclusion (8) follows from (4) and (7). To see this we will deal with rows to be specific.
Suppose α times row i is added to row k of A to form D. On the right side of equation (8.2),
replace each bkj with αai j , and each ckj with akj , resulting in the following:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 · · · a1n

· · · · · · · · · · · ·
ai1 ai2 · · · ain

· · · · · · · · · · · ·
αai1 + ak1 αai2 + ak2 · · · αain + akn

· · · · · · · · · · · ·
an1 an2 · · · ain

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 · · · a1n

· · · · · · · · · · · ·
ai1 ai2 · · · ain

· · · · · · · · · · · ·
αai1 αai2 · · · αain

· · · · · · · · · · · ·
an1 an2 · · · ain

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 · · · a1n

· · · · · · · · · · · ·
ai1 ai2 · · · ain

· · · · · · · · · · · ·
ak1 ak2 · · · akn

· · · · · · · · · · · ·
an1 an2 · · · ain

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then |A| is the sum of the determinants of the matrices on the right. But the second determinant
on the right is just |A| and the first is 0 by (4) because row k is a multiple of row i .

For conclusion (9), note that, by (3), (5) and (8), every time we produce B from A by an
elementary row operation, |B| is equal to a nonzero multiple of A. Since we reduce a matrix by
a sequence of elementary row operations, then |A| is always a nonzero multiple of |AR|. This
means that |A| is nonzero if and only if |AR| is nonzero. But this is the case exactly when A is
nonsingular, since in this case AR = In . If AR �= In , then AR has at least one zero row and has
determinant zero.

Vanishing or non-vanishing of the determinant is an important test for existence of an
inverse, and we will use it when we discuss eigenvalues in the next chapter.

Finally, we will sketch a proof of conclusion (10). If A is nonsingular, then there is a product
of elementary matrices that reduces A to In:

ErEr−1 · · ·E1A = In.

Then

A = E−1
1 E−1

2 · · ·E−1
r ,

a product of inverses of elementary matrices, which are again elementary matrices. Since we
can do this for nonsingular B as well, we can write AB as a product of elementary matrices. It
is therefore sufficient to show that the determinant of a product of elementary matrices is the
product of the determinants of these elementary matrices. This can be done for two elementary
matrices using properties (3), (5) and (8) of determinants then extended to arbitrary products by
induction.

If either A or B is singular, then so is AB, and in this case,

|AB| = 0 = |A||B|.
Conclusions (3), (5), and (8) tell us the effects of elementary row operations on the deter-

minant of a matrix. However, in the context of determinants, these operations can be applied
to columns as well. When we use matrices to represent systems of equations, rows contain
equations and columns contain coefficients of particular unknowns, so there is an essential dif-
ference between rows and columns. However, the determinant of a matrix does not involve these
interpretations and there is no preference of rows over columns (for example, |A| = |At |). �

SECTION 8.1 PROBLEMS

1. Let A =[ai j ] be an n × n matrix and let α be a number.
Form B = [αai j ] by multiplying each element of A by
α. How are |A| and |B| related?

2. Let A = [ai j ] be an n × n matrix. Let α be a nonzero
number. Form the matrix B = [αi− j ai j ]. How are |A|

and |B| related? Hint: It is useful to look at the 2 × 2
and 3 × 3 cases to get some idea of what B looks like.

3. An n ×n matrix is skew-symmetric if A=−At . Explain
why the determinant of a skew symmetric matrix hav-
ing an odd number of rows and columns must be zero.
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4. Evaluate |In| for n = 2,3, · · · . Hint: In the sum of
equation (8.1), the only term that does not have a
zero factor corresponds to the identity permutation
p : 1,2, · · · ,n → 1,2, · · ·n.

5. Show that the determinant of an upper or lower triangu-
lar matrix is the product of its main diagonal elements.
Hint: Every term but one of the sum (8.1) contains a
factor ai j with i > j and a term ai j with i < j , and one
of these terms must be zero if the matrix is upper or
lower triangular. The exceptional term corresponds to
the permutation p that leaves every number 1,2, · · · ,n
unmoved.

6. Show that an upper or lower triangular matrix is non-
singular if and only if it has nonzero main diagonal
elements.

7. Let B be n × m. We know that we can achieve each
elementary row operation by multiplying on the left
by the matrix formed by performing the operation
on In . Show that each elementary column operation
can be performed by multiplying on the right by the
matrix obtained by performing the column operation
on Im .

8.2 Evaluation of Determinants I

The more zero elements a matrix has, the easier it is to evaluate its determinant. The reason for
this is that every zero element causes some terms in the sum of equation (8.1) to vanish. For
example, in Example 8.1, if a12 = a13 = 0,

A =
⎛

⎝
a11 0 0
a21 a22 a23

a31 a32 a33

⎞

⎠

and

|A| = a11

∣
∣
∣
∣
a22 a23

a32 a33

∣
∣
∣
∣= a11(a22a33 − a23a32)

with four of the six terms of |A| being 0 cancelling because of the zeroes in the first row of A.
A generalization of this observation will form the basis of a useful method for evaluating

determinants.

LEMMA 8.1

Let A be n × n, and suppose row k or column r has all zero elements, except perhaps for akr .
Then

|A| = (−1)k+rakr |Akr |, (8.3)

where Akr is the n − 1 × n − 1 matrix formed by deleting row k and column r of A. �

This reduces the problem of evaluating an n × n determinant to one of evaluating a smaller,
n −1×n −1, determinant. To see why the lemma is true, begin with the case that all the elements
of row one, except perhaps a11, are zero. Then

A =

⎛

⎜
⎜
⎜
⎝

a11 0 0 · · · 0
a12 a22 a23 · · · a2n

...
...

...
...

...

an1 an2 an3 · · · ann

⎞

⎟
⎟
⎟
⎠
.

In the sum of equation (8.1), the factor a1p(1) is zero if p(1) �= 1, because all the other elements
of row one are zero. This means we need only consider the sum over permutations p of the form

p : 1,2,3, · · · ,n → 1, p(2), p(3), · · · , p(n).
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But this is really just a permutation of the n − 1 numbers 2,3, · · · ,n, since 1 is fixed and only
2,3, · · · ,n are acted upon. In the definition of equation (8.1), we may therefore sum over only
the permutations q of 2,3, · · · ,n, and factor a11 from all of the terms of the sum, to obtain

|A| =
∑

q

a11

∑

q

a2q(2)a3q(3) · · ·anq(n) = |A11|.

This is a11 times the determinant of the n − 1 × n − 1 matrix formed by deleting row one and
column one of A.

In the general case that akr is an element of a row or column whose other elements are all
zero, we can interchange k −1 rows and then r −1 columns to obtain a new matrix with akr in the
1,1 position of a row or column having its other elements equal to zero. Since each interchange
incurs a factor of −1 in the determinant, then by the preceding result,

|A| = (−1)k−1+r−1akr |Akr | = (−1)k+r akr |Akr .

We are rarely lucky enough to encounter a matrix A having a row or column with all but
possibly one element equal to zero. However, we can use elementary row and column operations
to obtain such a matrix B from A. Furthermore from properties (3), (5), and (8) of determinants,
we can track the effect of each row and column operation on the value of the determinant. This
and the lemma enable us to reduce the evaluation of an n × n determinant to a constant times
an n − 1 × n − 1 determinant. We can then repeat this strategy, eventually obtaining a constant
times a determinant small enough to evaluate conveniently.

EXAMPLE 8.2

Let

A =
⎛

⎝
4 2 −3
3 4 6
2 −6 8

⎞

⎠ .

We want |A|. This is a simple example, but illustrates the point. We can get two zeros in column
two by adding −2 times row one to row two, then 3 times row one to row three. Since this
elementary row operation does not change the value of the determinant, then |A| = |B|, where

B =
⎛

⎝
4 2 −2

−5 0 10
14 0 2

⎞

⎠ .

Exploiting the zeros in all but the 1,2 place in column two, then

|A| = |B| = (−1)1+2(2)|B12|

=−2

∣
∣
∣
∣
−5 10
14 2

∣
∣
∣
∣

=−2(−10 − 140)= 300. �

EXAMPLE 8.3

Let

A =

⎛

⎜
⎜
⎜
⎜
⎝

−6 0 1 3 2
−1 5 0 1 7
8 3 2 1 7
0 1 5 −3 2
1 15 −3 9 4

⎞

⎟
⎟
⎟
⎟
⎠
.
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There are many ways to evaluate |A|. One way to begin is to exploit the 1 in the 1,3 position to
get zeros in the other locations in column 3. Add −2 times row one to row three, −5 times row
one to row four, and 3 times row one to row five to get

B =

⎛

⎜
⎜
⎜
⎜
⎝

−6 0 1 3 2
−1 5 0 1 7
20 3 0 −5 3
30 1 0 −18 −8

−17 15 0 18 10

⎞

⎟
⎟
⎟
⎟
⎠
.

Adding a multiple of one row to another does not change the value of the determinant, so

|A| = |B|.
Furthermore, by equation (8.3),

|B| = (−1)1+3(1)|C| = |C|,
where C is the 4 × 4 matrix formed by deleting row one and column three of B:

C =

⎛

⎜
⎜
⎝

−1 5 1 7
20 3 −5 3
30 1 −18 −8

−17 15 18 10

⎞

⎟
⎟
⎠ .

Now work on C. Again, there are many ways to proceed. We will use the −1 in the 1,1 position
to get zeros in row one. Add 5 times column one to column two, add column one to column three
and add 7 times column one to column four of C to get

D =

⎛

⎜
⎜
⎝

−1 0 0 0
20 103 15 143
30 151 12 202

−17 70 1 −109

⎞

⎟
⎟
⎠ .

Because we added a multiple of one column to another,

|C| = |D|.
And, using equation (8.3) again,

|D| = (−1)1+1(−1)|E| =−|E|,
where E is the 3 × 3 matrix formed from D by deleting row one and column one:

E =
⎛

⎝
103 15 143
151 12 202
−70 1 −109

⎞

⎠ .

To evaluate E we will use the 1 in the 3,2 place. Add −1 times row three to row one and −12
times row three to row two to get

F =
⎛

⎝
1153 0 1778
991 0 1510
−70 1 −109

⎞

⎠ .

Then

|E| = |F|.
Furthermore

|F| = (−1)3+2(1)|G| =−|G|

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:26 THM/NEIL Page-255 27410_08_ch08_p247-266

8.3 Evaluation of Determinants I I 255

where G is the 2 × 2 matrix obtained by deleting row three and column two of F:

G =
(

1153 1778
991 1510

)

.

This is 2 × 2 which we evaluate easily:

|G| = (1153)(1510)− (1778)(991)=−20,968.

Working back through the chain of determinants, we have

|A| = |B| = |C||D|
=−|E| =−|F| = |G| =−20,968. �

SECTION 8.2 PROBLEMS

In each of Problems 1 through 10, use the method of this
section to evaluate the determinant. In each problem there
are many different sequences of operations that can be used
to make the evaluation.

1.

∣
∣
∣
∣
∣
∣
∣

−2 4 1
1 6 3
7 0 4

∣
∣
∣
∣
∣
∣
∣

2.

∣
∣
∣
∣
∣
∣
∣

2 −3 7
14 1 1

−13 −1 5

∣
∣
∣
∣
∣
∣
∣

3.

∣
∣
∣
∣
∣
∣
∣

−4 5 6
−2 3 5
2 −2 6

∣
∣
∣
∣
∣
∣
∣

4.

∣
∣
∣
∣
∣
∣
∣

2 −5 8
4 3 8
13 0 −4

∣
∣
∣
∣
∣
∣
∣

5.

∣
∣
∣
∣
∣
∣
∣

17 −2 5
1 12 0
14 7 −7

∣
∣
∣
∣
∣
∣
∣

6.

∣
∣
∣
∣
∣
∣
∣
∣

−3 3 9 6
1 −2 15 6
7 1 1 5
2 1 −1 3

∣
∣
∣
∣
∣
∣
∣
∣

7.

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 −4
6 −3 2 2
1 −5 1 −2
4 8 2 2

∣
∣
∣
∣
∣
∣
∣
∣

8.

∣
∣
∣
∣
∣
∣
∣
∣

2 7 −1 0
3 1 1 8

−2 0 3 1
4 8 −1 0

∣
∣
∣
∣
∣
∣
∣
∣

9.

∣
∣
∣
∣
∣
∣
∣
∣

10 1 −6 2
0 3 3 9
0 1 1 7

−2 6 8 8

∣
∣
∣
∣
∣
∣
∣
∣

10.

∣
∣
∣
∣
∣
∣
∣
∣

−7 16 2 4
1 0 0 5
0 3 −4 4
6 1 1 −5

∣
∣
∣
∣
∣
∣
∣
∣

11. Fill in the details of the following argument that
|AB| = |A||B|.
First, if AB is singular, show that at least one of A or B
is singular, hence that the determinant of the product
and the product of the determinants are both zero.

Thus, suppose that AB is nonsingular. Show that A
and B can be written as products of elementary matri-
ces, and then show that the determinant of a prod-
uct of elementary matrices equals the product of the
determinants of these matrices.

8.3 Evaluation of Determinants II

In the preceding section, we evaluated determinants by using row and column operations to
produce rows and/or columns with all but one entry zero. In this section we exploit this idea from
a different perspective to write the determinant as a sum of numbers times smaller determinants.
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This method, called expansion by cofactors, can be used recursively until we have determinants
of small enough size to be easily evaluated.

Choose a row k of A = [ai j ]. An extension of property (7) of determinants from Section 8.1
enables us to write

|A| = |[ai j ]| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · · · · a1n

...
...

...
...

...

ak1 ak2 · · · · · · akn

...
...

...
...

...

an1 an2 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · · · · a1n

...
...

...
...

...

ak1 0 · · · · · · 0
...

...
...

...
...

an1 an2 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · · · · a1n

...
...

...
...

...

0 ak2 · · · · · · 0
...

...
...

...
...

an1 an2 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ · · · +

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · · · · a1n

...
...

...
...

...

0 0 · · · · · · akn

...
...

...
...

...

an1 an2 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Each of the n determinants on the right has a row with exactly one possibly nonzero element,
and can be expanded by that element, as in Section 8.2. To write this expansion, define the minor
of ai j to be the determinant of the n − 1 × n − 1 matrix formed by deleting row i and column j
of A. This minor is denoted Mi j . The cofactor of ai j is the number (−1)i+ j Mi j . Now this sum of
determinants gives us the following theorem.

THEOREM 8.2 Cofactor Expansion by a Row

For any k with 1 ≤ i ≤ n.

|A| =
n∑

j=1

(−1)k+ j ak j Mkj . � (8.4)

Equation (8.4) states that the determinant of A is the sum, along any row k, of the matrix ele-
ments of that row, each multiplied by its cofactor. This holds for any row of the matrix, although
of course this sum is easier to evaluate if we choose a row with as many zero elements as possi-
ble. Equation (8.4) is called expansion by cofactors along row k. If we write out a few terms for
fixed k we get

|A| = (−1)k+1ak1 Mk1 + (−1)k+2ak2 Mk2 + · · ·+ (−1)k+nakn Mkn.

EXAMPLE 8.4

Let

A =
⎛

⎝
−6 3 7
12 −5 −6
2 4 −6

⎞

⎠
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If we expand by cofactors along row one, we get

|A| =
3∑

j=1

(−1)1+ j a1 j M1 j

= (−1)1+1(−6)

∣
∣
∣
∣
−5 −9
4 −6

∣
∣
∣
∣+ (−1)1+2(3)

∣
∣
∣
∣
12 −9
2 −6

∣
∣
∣
∣

+ (−1)1+3(7)

∣
∣
∣
∣
12 −5
2 4

∣
∣
∣
∣

= (−6)(30 + 36)− 3(−72 + 18)+ 7(−48 + 10)= 172.

If we expand by row three, we get

|A| =
3∑

j=1

(−1)3+ j a3 j M3 j

= (−1)3+1(2)

∣
∣
∣
∣

3 7
−5 −9

∣
∣
∣
∣+ (−1)3+2(4)

∣
∣
∣
∣
−6 7
12 −9

∣
∣
∣
∣

+ (−1)3+3(−6)

∣
∣
∣
∣
−6 3
12 −5

∣
∣
∣
∣

= (2)(−27 + 35)− 4(54 − 84)− 6(30 − 36)= 172. �

We can also do a cofactor expansion along a column. Now fix j and sum the elements of
column j times their cofactors.

THEOREM 8.3 Cofactor Expansion by a Column

For any j with 1 ≤ j ≤ n,

|A| =
n∑

i=1

(−1)i+ j ai j Mi j . � (8.5)

EXAMPLE 8.5

We will expand the determinant of the matrix of Example 8.3, using column 1:

|A| =
3∑

i=1

(−1)i+1ai1 Mi1

= (−1)1+1(−6)

∣
∣
∣
∣
−5 −9
4 −6

∣
∣
∣
∣+ (−1)2+1(12)

∣
∣
∣
∣
3 7
4 −6

∣
∣
∣
∣

+ (−1)3+1(2)

∣
∣
∣
∣

3 7
−5 −9

∣
∣
∣
∣

= (−6)(30 + 36)− 12(−18 − 28)+ 2(−27 + 35)= 172.
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If we expand by column two, we get

|A| =
3∑

i=1

(−1)i+2ai2 Mi2

= (−1)1+2(3)

∣
∣
∣
∣
12 −9
2 −6

∣
∣
∣
∣+ (−1)2+2(−5)

∣
∣
∣
∣
−6 7
2 −6

∣
∣
∣
∣

+ (−1)3+2(4)

∣
∣
∣
∣
−6 7
12 −9

∣
∣
∣
∣

= (−3)(−72 + 18)− 5(36 − 14)− 4(54 − 84)= 172. �

Sometimes we use row and column operations to produce a row or column with some zero
elements, then write a cofactor expansion by that row or column. Each zero element eliminates
one term from the cofactor expansion.

SECTION 8.3 PROBLEMS

In each of Problems 1 through 10, evaluate the determi-
nant using a cofactor expansion by a row and again by a
column. Elementary row and/or column operations may be
performed first to simplify the cofactor expansion.

1.

∣
∣
∣
∣
∣
∣

−4 2 −8
1 1 0
1 −3 0

∣
∣
∣
∣
∣
∣

2.

∣
∣
∣
∣
∣
∣

1 1 6
2 −2 1
3 −1 4

∣
∣
∣
∣
∣
∣

3.

∣
∣
∣
∣
∣
∣

7 −3 1
1 −2 4

−3 1 0

∣
∣
∣
∣
∣
∣

4.

∣
∣
∣
∣
∣
∣

5 −4 3
−1 1 6
−2 −2 4

∣
∣
∣
∣
∣
∣

5.

∣
∣
∣
∣
∣
∣
∣
∣

−5 0 1 6
2 −1 3 7
4 4 −5 −8
1 −1 6 2

∣
∣
∣
∣
∣
∣
∣
∣

6.

∣
∣
∣
∣
∣
∣
∣
∣

4 3 −5 6
1 −5 15 2
0 −5 1 7
8 9 0 15

∣
∣
∣
∣
∣
∣
∣
∣

7.

∣
∣
∣
∣
∣
∣

−3 1 14
0 1 16
2 −3 4

∣
∣
∣
∣
∣
∣

8.

∣
∣
∣
∣
∣
∣
∣
∣

14 13 −2 5
7 1 1 7
0 2 12 3
1 −6 5 23

∣
∣
∣
∣
∣
∣
∣
∣

9.

∣
∣
∣
∣
∣
∣
∣
∣

−5 4 1 7
−9 3 2 −5
−2 0 −1 1
1 14 0 3

∣
∣
∣
∣
∣
∣
∣
∣

10.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−8 5 1 7 2
0 1 3 5 −6
2 2 1 5 3
0 4 3 7 2
1 1 −7 −6 5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

11. Show that
∣
∣
∣
∣
∣
∣

1 a a2

1 b b2

1 c c2

∣
∣
∣
∣
∣
∣
= (a − b)(c − a)(b − c).

This is called Vandermonde’s determinant.

12. Show that
∣
∣
∣
∣
∣
∣
∣
∣

a b c d
b c d a
c d a b
d a b c

∣
∣
∣
∣
∣
∣
∣
∣

= (a + b + c + d)(b − a + d − c)

∣
∣
∣
∣
∣
∣
∣
∣

0 1 −1 1
1 c d a
1 d a b
1 a b c

∣
∣
∣
∣
∣
∣
∣
∣

.

13. Prove that the points (x1, y1), (x2, y2), and (x3, y3) in
the plane are collinear (lie on a line) if and only if

∣
∣
∣
∣
∣
∣

1 x1 y1

1 x2 y2

1 x3 y3

∣
∣
∣
∣
∣
∣
= 0.

Hint: This determinant is zero exactly when one row
or column is a linear combination of the others.
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8.4 A Determinant Formula for A−1

When |A| �= 0, A has an inverse. Furthermore, there is a formula for the elements of this inverse
in terms of determinants formed from elements of A.

THEOREM 8.4 Elements of a Matrix Inverse

Let A be a nonsingular n × n matrix and define an n × n matrix B =[bi j ] by

bi j = 1

|A| (−1)i+ j M ji .

Then B = A−1. �

Note that the i, j element of B is defined in terms of (−1)i+ j M ji , the cofactor of a ji (not ai j ).
We can see why this construction yields A−1 by explicitly multiplying the two matrices. By

the definition of matrix multiplication, the i, j element of AB is

(AB)i j =
n∑

k=1

aikbkj = 1

|A|
n∑

k=1

(−1) j+kaik Mjk . (8.6)

Now consider two cases. If i = j the sum in equation (8.6) is exactly the cofactor expansion
of |A| by row i . The main diagonal elements of AB are therefore 1.

If i �= j , the sum in equation (8.6) is the cofactor expansion by row j of the determinant of
the matrix formed from A by replacing row j by row i . But this matrix has two identical rows,
so its determinant is zero and the off-diagonal elements of AB are all zero. This means that

AB = In.

Similarly, BA = In .

EXAMPLE 8.6

Let

A =
⎛

⎝
−2 4 1
6 3 −3
2 9 −5

⎞

⎠ .

It is routine to compute |A| = 120 so A is nonsingular. We will determine A−1 by computing the
elements of the matrix B of Theorem 8.4:

b11 = 1

120
M11 = 1

120

∣
∣
∣
∣
3 −3
9 −5

∣
∣
∣
∣=

12

120
= 1

10
,

b12 = 1

120
(−1)M21 =− 1

120

∣
∣
∣
∣
4 1
9 −5

∣
∣
∣
∣=

29

120
,

b13 = 1

120
M31 = 1

120

∣
∣
∣
∣
4 1
3 −3

∣
∣
∣
∣=−1

8
,

b21 =− 1

120
M12 =− 1

120

∣
∣
∣
∣
6 −3
2 −5

∣
∣
∣
∣=

1

5
,
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b22 = 1

120
M22 = 1

120

∣
∣
∣
∣
−2 1
2 −5

∣
∣
∣
∣=

1

15
,

b23 =− 1

120
M32 =− 1

120

∣
∣
∣
∣
−2 1
6 −3

∣
∣
∣
∣= 0,

b31 = 1

120
M13 = 1

120

∣
∣
∣
∣
6 3
2 9

∣
∣
∣
∣=

2

5
,

b32 =− 1

120
M23 =− 1

120

∣
∣
∣
∣
−2 4
2 9

∣
∣
∣
∣=

13

60
,

b33 = 1

120
M33 = 1

120

∣
∣
∣
∣
−2 4
6 3

∣
∣
∣
∣=−1

4
.

Then

B = A−1 =
⎛

⎝
1/10 29/120 −1/8
1/5 1/15 0
2/5 13/60 −1/4

⎞

⎠ . �

SECTION 8.4 PROBLEMS

In each of Problems 1 through 10, test the matrix
for singularity by evaluating its determinant. If the
matrix is nonsingular, use Theorem 8.4 to compute the
inverse.

1.

(
2 −1
1 6

)

2.

(
3 0
1 4

)

3.

(−1 1
1 4

)

4.

(
2 5

−7 −3

)

5.

⎛

⎝
6 −1 3
0 1 −4
2 2 −3

⎞

⎠

6.

⎛

⎝
−14 1 −3

2 −1 3
1 1 7

⎞

⎠

7.

⎛

⎝
0 −4 3
2 −1 6
1 −1 7

⎞

⎠

8.

⎛

⎝
11 0 −5
0 1 0
4 −7 9

⎞

⎠

9.

⎛

⎜
⎜
⎝

3 1 −2 1
4 6 −3 9

−2 1 7 4
13 0 1 5

⎞

⎟
⎟
⎠

10.

⎛

⎜
⎜
⎝

7 −3 −4 1
8 2 0 0
1 5 −1 7
3 −2 −5 9

⎞

⎟
⎟
⎠

8.5 Cramer’s Rule

Cramer’s rule is a determinant formula for the unique solution of a nonhomogeneous system
AX = B when A is nonsingular. Of course, this is X = A−1B, but the following method is
sometimes convenient.
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THEOREM 8.5 Cramer’s Rule

Let A be a nonsingular n × n matrix of numbers, and B be an n × 1 matrix of numbers. Then the
unique solution of AX = B is determined by

xk = 1

|A| |A(k;B)| (8.7)

for k = 1,2, · · · ,n, where A(k;B) is the matrix obtained from A by replacing column k of A
with B. �

It is easy to see why this works. Let

B =

⎛

⎜
⎜
⎜
⎝

b1

b2

...

bn

⎞

⎟
⎟
⎟
⎠
.

Multiply column k of A by xk . This multiplies the determinant of A by xk :

xk |A| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1k xk · · · a1n

a21 a22 · · · a2k xk · · · a2n

...
...

...
...

...
...

an1 an2 · · · ank xk · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

For each j �= k add x j times column j to column k in the last determinant. Since this operation
does not change the value of a determinant, then

xk |A| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a11x1 + · · ·+ a1nxn · · · a1n

a21 a22 · · · a21x1 + · · ·+ a2nxn · · · a2n

...
...

...
...

...
...

an1 an2 · · · an1x1 + · · ·+ annxn · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · b1 · · · a1n

a21 a22 · · · b2 · · · a2n

...
...

...
...

...
...

an1 an2 · · · bn · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

= |A(k;B)|

and this gives us equation (8.7).

EXAMPLE 8.7

Solve the system

x1 − 3x2 − 4x3 = 1

−x1 + x2 − 3x3 = 14

x2 − 3x3 = 5.

The matrix of coefficients is

A =
⎛

⎝
1 −3 −4

−1 1 −3
0 1 −3

⎞

⎠ .
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We find that |A| = 13, so this system has a unique solution. By Cramer’s rule,

x1 = 1

13

∣
∣
∣
∣
∣
∣

1 −3 −4
14 1 −3
5 1 −3

∣
∣
∣
∣
∣
∣
=−117

13
=−9,

x2 = 1

13

∣
∣
∣
∣
∣
∣

1 1 −4
−1 14 −3
0 5 −3

∣
∣
∣
∣
∣
∣
=−10

13
,

x3 = 1

13

∣
∣
∣
∣
∣
∣

1 −3 1
−1 1 14
0 1 5

∣
∣
∣
∣
∣
∣
=−25

13
. �

SECTION 8.5 PROBLEMS

In each of Problems 1 through 10, solve the system using
Cramer’s rule, or show that the rule does not apply because
the matrix of coefficients is singular.

1. 15x1 − 4x2 = 5
8x1 + x2 =−4

2. x1 + 4x2 = 3
x1 + x2 = 0

3. 8x1 − 4x2 + 3x3 = 0
x1 + 5x2 − x3 =−5

−2x1 + 6x2 + x3 =−4

4. 5x1 − 6x2 + x3 = 4
−x1 + 3x2 − 4x3 = 5

2x1 + 3x2 + x3 =−8

5. x1 + x2 − 3x3 = 0
x2 − 4x3 = 0

x1 − x2 − x3 = 5

6. 6x1 + 4x2 − x3 + 3x4 − x5 = 7
x1 − 4x2 + x5 =−5

x1 − 3x2 + x3 − 4x5 = 0
−2x1 + x3 − 2x5 = 4

x3 − x4 − x5 = 8

7. 2x1 − 4x2 + x3 − x4 = 6
x2 − 3x3 = 10
x1 − 4x3 = 0

x2 − x3 + 2x4 = 4

8. 2x1 − 3x2 + x4 = 2
x2 − x3 + x4 = 2

x3 − 2x4 = 5
x1 − 3x2 + 4x3 = 0

9. 14x1 − 3x3 = 5
2x1 − 4x3 + x4 = 2

x1 − x2 + x3 − 3x4 = 1
x3 − 4x4 =−5

10. x2 − 4x4 = 18
x1 − x2 + 3x3 =−1

x1 + x2 − 3x3 + x4 = 5
x2 + 3x4 = 0

8.6 The Matrix Tree Theorem

In 1847, G.R. Kirchhoff published a classic paper in which he derived many of the electrical
circuit laws that bear his name, including the matrix tree theorem we will now discuss.

Figure 8.1 shows a typical electrical circuit. The underlying geometry of the circuit if shown
in Figure 8.2. Such a diagram of points and interconnecting lines is called a graph, and was seen
in the context of atoms moving through crystals in Section 7.1.3. A labeled graph has symbols
attached to the points.

Some of Kirchhoff’s results depend on geometric properties of the circuit’s underlying
graph. One such property is the arrangement of the closed loops. Another is the number of
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V

FIGURE 8.1 Typical electrical circuit.

FIGURE 8.2 Underlying
graph of the circuit of
Figure 8.1.

v2v1 v3

v4v6 v5

v10

v7

v9

v2
v1 v3

v4v6 v5

v8v10

v7

v9

v2
v1 v3

v4
v6

v5

v8v10

v7

v9

FIGURE 8.3 Labeled graph and
two spanning trees.

spanning trees in the labeled graph. A spanning tree is a collection of lines in the graph forming
no closed loops, but containing a path between any two points of the graph. Figure 8.3 shows a
labeled graph and two spanning trees in this graph.

Kirchhoff derived a relationship between determinants and the number of spanning trees in
a labeled graph.

THEOREM 8.6 The Matrix Tree Theorem

Let G be a graph with vertices labeled v1, v2, · · · , vn . Form an n × n matrix T = [ti j ] as follows.
If i = j , then ti j is the number of lines to vi in the graph. If i �= j , then ti j = 0 if there is no line
between vi and v j in G, and ti j =−1 if there is such a line. Then all cofactors of T are equal and
their common value is the number of spanning trees in G. �
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v7

G

v6

v5 v4

v3

v2v1

FIGURE 8.4 Graph of
Example 8.8.

EXAMPLE 8.8

For the labeled graph of Figure 8.4, T is the 7 × 7 matrix

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 −1 0 0 0 −1 −1
−1 3 −1 −1 0 0 0
0 −1 3 −1 0 −1 0
0 −1 −1 4 −1 0 −1
0 0 0 −1 3 −1 −1

−1 0 −1 0 −1 4 −1
−1 0 0 −1 −1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Evaluate any cofactor of T. For example, deleting row 1 and column 1, evaluate the cofactor

(−1)1+1 M11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

3 −1 −1 0 0 0
−1 3 −1 0 −1 0
−1 −1 4 −1 0 −1
0 0 −1 3 −1 −1
0 −1 0 −1 4 −1
0 0 −1 −1 −1 4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 386. �

Even with this small graph in Example 8.8, it would clearly be impractical to enumerate the
spanning trees by listing them all.

SECTION 8.6 PROBLEMS

1. Find the number of spanning trees in the graph of
Figure 8.5.

2
1

5

43

FIGURE 8.5 Graph
of Problem 1,
Section 8.6.

2. Find the number of spanning trees in the graph of
Figure 8.6.

1

6

3 5
4

2

FIGURE 8.6 Graph
of Problem 2,
Section 8.6.
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3. Find the number of spanning trees in the graph of
Figure 8.7.

3

2
1

6

5
4

FIGURE 8.7 Graph
of Problem 3,
Section 8.6.

4. Find the number of spanning trees in the graph of
Figure 8.8.

1 2

3

4

5

6

FIGURE 8.8 Graph
of Problem 4,
Section 8.6.

5. Find the number of spanning trees in the graph of
Figure 8.9.

1
2

3

4

56

FIGURE 8.9 Graph
of Problem 5,
Section 8.6.

6. A complete graph on n points consists of n points, with
a line between each pair of points. This graph is often
denoted Kn . With the points labeled 1,2, · · · ,n, show
that the number of spanning trees in Kn is nn−2 for
n = 3,4, · · · .
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CHAPTER 9
Eigenvalues,
Diagonalization,
and Special
Matrices

EIGENVALUES AND EIGENVECTORS
DIAGONALIZATION SOME SPECIAL TYPES
OF MATRICES

9.1 Eigenvalues and Eigenvectors

In this chapter, the term number refers to a real or complex number. Let A be an n × n matrix of
numbers. A number λ is an eigenvalue of A if there is a nonzero n × 1 matrix E such that

AE = λE. (9.1)

We call E an eigenvector associated with the eigenvalue λ.

We may think of an n × 1 matrix of numbers as an n-vector, with real and/or complex
components. If we consider A as a linear transformation mapping an n-vector X to an n-vector
AX, then equation (9.1) holds when A moves E to a parallel vector λE. This is the geometric
significance of an eigenvector.

If c is a nonzero number and AE = λE, then

A(cE)= cAE = cλE = λ(cE).

This means that nonzero constant multiples of eigenvectors are eigenvectors (with the same
eigenvalue).

EXAMPLE 9.1

Let

A =
(

1 0
0 0

)

.

267
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Because
(

1 0
0 0

)(
0
4

)

=
(

0
0

)

= 0

(
0
4

)

,

then 0 is an eigenvalue of A with eigenvector

E =
(

0
4

)

.

For any nonzero number α,
(

0
4α

)

is also an eigenvector. Zero can be an eigenvalue, but an eigenvector must be a nonzero vector
(at least one nonzero component). �

EXAMPLE 9.2

Let

A =
⎛

⎝
1 −1 0
0 1 1
0 0 −1

⎞

⎠ .

Then

A

⎛

⎝
6
0
0

⎞

⎠=
⎛

⎝
6
0
0

⎞

⎠ .

Therefore 1 is an eigenvalue with eigenvector
⎛

⎝
6
0
0

⎞

⎠

or any nonzero constant times this matrix. Similarly,

A

⎛

⎝
1
2

−4

⎞

⎠=
⎛

⎝
−1
−2
4

⎞

⎠= (−1)

⎛

⎝
1
2

−4

⎞

⎠ .

Therefore −1 is an eigenvalue with eigenvector
⎛

⎝
1
2

−4

⎞

⎠ ,

or any nonzero multiple of this vector. �

We would like to be able to find all of the eigenvalues of a matrix. We will have AE = λE,
for some number λ and n × 1 matrix E, exactly when

λE − AE = O.

This is equivalent to

(λIn − A)E = O,

and this occurs exactly when the system

(λIn − A)X = O

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:49 THM/NEIL Page-269 27410_09_ch09_p267-294

9.1 Eigenvalues and Eigenvectors 269

has a nontrivial solution E. The condition for this is that the coefficient matrix be singular
(determinant zero), hence that

|λIn − A| = 0.

If expanded, the determinant on the left is a polynomial of degree n in the unknown λ, and
is called the characteristic polynomial of A. Thus

pA(λ)= |λIn − A|.

This polynomial has n roots for λ (perhaps some repeated, perhaps some or all complex).
These n numbers, counting multiplicities, are all of the eigenvalues of A. Corresponding to each
eigenvalue λ, a nontrivial solution of

(λIn − A)X = O

is an eigenvector.
We can summarize this discussion as follows.

THEOREM 9.1 Eigenvalues and Eigenvectors of A

Let A be an n × n matrix of numbers. Then

1. λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A.
This occurs exactly when

pA(λ)= |λIn − A| = 0.

Since pA(λ) has degree n, A has n eigenvalues, counting each eigenvalue as many times
as it appears as a root of pA(λ).

2. If λ is an eigenvalue of A, then any nontrivial solution E of

(λIn − A)X = O

is an eigenvector of A associated with λ.

3. If E is an eigenvector associated with the eigenvalue λ, then so is cE for any nonzero
number c. �

EXAMPLE 9.3

Let

A =
⎛

⎝
1 −1 0
0 1 1
0 0 −1

⎞

⎠ ,

as in Example 9.2. The characteristic polynomial is

pA(λ)= |λI3 − A| =
∣
∣
∣
∣
∣
∣

λ− 1 1 0
0 λ− 1 −1
0 0 λ+ 1

∣
∣
∣
∣
∣
∣
= (λ− 1)2(λ+ 1).

This polynomial has roots 1,1,−1 and these are the eigenvalues of A. The root 1 has multiplicity
2 and must be listed twice as an eigenvalue of A. A has three eigenvalues.
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To find an eigenvector associated with the eigenvalue 1, put λ= 1 in (2) of the theorem and
solve the system

((1)I3 − A)X =
⎛

⎝
0 1 0
0 0 −1
0 0 2

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠=
⎛

⎝
0
0
0

⎞

⎠ .

This system of three equations in three unknowns has the general solution
⎛

⎝
α

0
0

⎞

⎠

and this is an eigenvector associated with 1 for any α �= 0.
For eigenvectors associated with −1, put λ=−1 in (2) of the theorem and solve

((−1)I3 − A)X =
⎛

⎝
−2 1 0
0 −2 −1
0 0 0

⎞

⎠X = O.

This system has the general solution
⎛

⎝
β

2β
−4β

⎞

⎠

and this is an eigenvector associated with −1 for any β �= 0. �

EXAMPLE 9.4

Let

A =
(

1 −2
2 0

)

.

The characteristic polynomial is

pA(λ)= |λI2 − A| =
∣
∣
∣

(
λ 0
0 λ

)

−
(

1 −2
2 0

)∣
∣
∣=

∣
∣
∣
∣
λ− 1 2
−2 λ

∣
∣
∣
∣= λ2 − λ+ 4,

with roots

1 +√
15i

2
and

1 −√
15i

2
and these are the eigenvalues of A.

For an eigenvector corresponding to (1 + √
15i)/2 solve (((1 + √

15i)/2)I2 − A)X = O,
which is

[
1 +√

15i

2

(
1 0
0 1

)

−
(

1 −2
2 0

)]

X = O.

This is the system ⎛

⎜
⎜
⎝

−1 +√
15i

2
2

−2
1 +√

15i

2

⎞

⎟
⎟
⎠

(
x1

x2

)

=
(

0
0

)

.

This 2 × 2 system has general solution

α

(
1

(1 −√
15i)/4

)

.

This is an eigenvector associated with (1 +√
15i)/2 for any α �= 0.
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For eigenvectors associated with (1 −√
15i)/2, solve the 2 × 2 system

(((1 −√
15i)/2)I2 − A)X = O

to obtain

β

(
1

(1 +√
15i)/4

)

.

This is an eigenvector associated with (1 −√
15i)/2 for any β �= 0. �

If A has real numbers as elements and λ= α+ iβ is an eigenvalue, then the conjugate λ=
α− iβ is also an eigenvalue. This is because the characteristic polynomial of A has real coeffi-
cients in this case, so complex roots (eigenvalues of A) occur in conjugate pairs. Furthermore, if
E is an eigenvector corresponding to λ, then E is an eigenvector corresponding to λ, where we
take the conjugate of a matrix by taking the conjugate of each of its elements. This can be seen
by taking the conjugate of AE = λE to obtain

AE = λE.

Because A has real elements, A = A so

AE = λE.

This observation can be seen in Example 9.4.
There is a general expression for the eigenvalues of a matrix that will be used soon to draw

conclusions about eigenvalues of matrices having special properties.

LEMMA 9.1

Let A be an n × n matrix of numbers. Let λ be an eigenvalue of A, with eigenvector E. Then

λ= E
t
AE

E
t
E
. � (9.2)

Before giving the one line proof of this expression, examine what the right side means. Let

E =

⎛

⎜
⎜
⎜
⎝

e1

e2

...

en

⎞

⎟
⎟
⎟
⎠
.

Then

E
t
AE = (e1 e2 · · · en

)

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e1

e2

...

en

⎞

⎟
⎟
⎟
⎠
.

This is a product of a 1 × n matrix with an n × n matrix, then an n × 1 matrix, hence is a 1 × 1
matrix, which we think of as a number. If we carry out this matrix product we obtain the number

E
t
AE =

n∑

i=1

n∑

j=1

ai j ei e j .

For the denominator of equation (9.2) we have a 1 × n matrix multiplied by an n × 1 matrix,
which is also a 1 × 1 matrix, or number. Specifically,
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E
t
E = (e1 e2 · · · en

)

⎛

⎜
⎜
⎜
⎝

e1

e2

...

en

⎞

⎟
⎟
⎟
⎠

=
n∑

j=1

e je j =
n∑

j=1

|e j |2.

Therefore the conclusion of Lemma 9.1 can be written

λ=
∑n

i=1

∑n
j=1 ai j ei e j

∑n
j=1 |e j |2 .

Proof of Lemma 9.1 Since AE = λE, then

E
t
AE = λE

t
E,

yielding the conclusion of the lemma. �

When we discuss diagonalization, we will need to know if the eigenvectors of a matrix
are linearly independent. The following theorem answers this question for the special case
that the n eigenvalues of A are distinct (the characteristic polynomial has no repeated
roots).

THEOREM 9.2

Suppose the n × n matrix A has n distinct eigenvalues. Then A has n linearly independent
eigenvectors. �

To illustrate, in Example 9.4, A was 2×2 and had two distinct eigenvalues. The eigenvectors
produced for each eigenvalue were linearly independent.

Proof We will show by induction that any k distinct eigenvalues have associated with them k
linearly independent eigenvectors. For k = 1 there is nothing to show. Thus suppose k ≥ 2 and
the conclusion of the theorem is valid for any k − 1 distinct eigenvalues. This means that any
k − 1 distinct eigenvalues have associated with them k − 1 distinct eigenvectors. Suppose A has
k distinct eigenvalues λ1, · · · , λk with corresponding eigenvectors V1, · · · ,Vk . We want to show
that these eigenvectors are linearly independent.

If they were linearly dependent, then there would be numbers c1, · · · , ck , not all zero, such
that

c1V1 + c2V2 + · · ·+ ckVk = O.

By relabeling if necessary, we may assume for convenience that c1 �= 0. Multiply this equation
by λ1In − A:

O = (λ1In − A)(c1V1 + c2V2 + · · ·+ ckVk)

= c1(λ1In − A)V1 + c2(λ1In − A)V2

+ · · ·+ ck(λ1In − A)Vk

= c1(λ1V1 − λ1V1)+ c2(λ1V2 − λ2V2)

+ · · ·+ ck(λ1Vk − λkVk)

= c2(λ1 − λ2)V1 + · · ·+ ck(λ1 − λk)Vk .

Now V2, · · · ,Vk are linearly independent by the inductive hypothesis, so these coefficients are all
zero. But λ1 �=λ j for j = 2, · · · , k by the assumptions that the eigenvalues are distinct. Therefore

c2 = · · · = ck = 0.
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But then c1V1 = O. Since an eigenvalue cannot be the zero vector, this means that c1 = 0 also.
Therefore V1, . . . ,Vk are linearly independent. By induction, this proves the theorem. �

In Example 9.3, the 3 × 3 matrix A had only two distinct eigenvalues, and only two lin-
early independent eigenvectors. However, the matrix of the next example has three linearly
independent eigenvectors even though it has only two distinct eigenvalues. When eigenvalues
are repeated, a matrix may or may not have n linearly independent eigenvectors.

EXAMPLE 9.5

Let

A =
⎛

⎝
5 −4 4
12 −11 12
4 −4 5

⎞

⎠ .

The eigenvalues of A are −3,1,1, with 1 a repeated root of the characteristic polynomial.
Corresponding to −3, we find an eigenvector

⎛

⎝
1
3
1

⎞

⎠ .

Now look for an eigenvector corresponding to 1. We must solve the system

((1)I2 − A)X =
⎛

⎝
−4 4 −4
−12 12 −12
−4 4 −4

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠=
⎛

⎝
0
0
0

⎞

⎠ .

This system has the general solution

α

⎛

⎝
1
0

−1

⎞

⎠+β
⎛

⎝
0
1
1

⎞

⎠ ,

in which α and β are any numbers. With α = 1 and β = 0, and then with α = 0 and β = 1, we
obtain two linearly independent eigenvectors associated with eigenvalue 1:

⎛

⎝
1
0

−1

⎞

⎠ and

⎛

⎝
0
1
1

⎞

⎠ .

For this matrix A, we can produce three linearly independent eigenvectors, even though the
eigenvalues are not distinct. �

Eigenvalues and eigenvectors of special classes of matrices may exhibit special properties.
Symmetric matrices form one such class. A =[ai j ] is symmetric if ai j = a ji whenever i �= j . This
means that A=At , hence that each off-diagonal element is equal to its reflection across this main
diagonal. For example,

⎛

⎜
⎜
⎝

−7 −2 − i 1 14
−2 − i 2 −9 47i

1 −9 −4 π

14 47i π 22

⎞

⎟
⎟
⎠

is symmetric.
It is a significant property of symmetric matrices that those with real elements have all real

eigenvalues.
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THEOREM 9.3 Eigenvalues of Real Symmetric Matrices

The eigenvalues of a real symmetric matrix are real. �
Proof By Lemma 9.1 (equation (9.2)), for any eigenvalue λ of A, with eigenvector E =
(e1, · · · , en),

λ= E
t
AE

E
t
E
.

As noted previously, the denominator is

E
t
E =

n∑

j=1

|e j |2

and this is real. All we have to do is show that the numerator real, which we will do by showing
that E

t
AE equals its complex conjugate. First, because elements of A are real, each equals its

own conjugate, so A = A. Further, because A is symmetric, At = A. Therefore

E
t
AE = E

t
AE = E

t
AE = EtAE.

But the last quantity is a 1 × 1 matrix, which equals its own transpose. Thus, continuing the last
equation,

EtAE = (EtAE)t = (Et)A(Et)t = E
t
AE.

The last two equations together show that E
t
AE is its own conjugate, hence is real, proving the

theorem. �

If the eigenvalues of a real matrix are all real, then associated eigenvectors will have real
elements as well. In the case that A is also symmetric, we claim that eigenvectors associated
with distinct eigenvalues must be orthogonal.

THEOREM 9.4 Orthogonality of Eigenvectors

Let A be a real symmetric matrix. Then eigenvectors associated with distinct eigenvalues are
orthogonal.

Proof We can derive this result by a useful interplay between matrix and vector notation. Let
λ and μ be distinct eigenvalues of A, with eigenvectors, respectively,

E =

⎛

⎜
⎜
⎜
⎝

e1

e2

...

en

⎞

⎟
⎟
⎟
⎠

and G =

⎛

⎜
⎜
⎜
⎝

g1

g2

...

gn

⎞

⎟
⎟
⎟
⎠
.

We have seen that

E · G = e1g1 + e2g2 + · · ·+ engn = EtG.

Now use the facts that AE = λE, AG =μG, and A = At to write

λEtG = (AE)tG = (EtAt)G

= (EtA)G = Et(AG)= Et(μG)=μEtG.
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But then

(λ−μ)EtG = 0.

Since λ �=μ, then EtG = E · G = 0. �

EXAMPLE 9.6

A =
⎛

⎝
3 0 −2
0 2 0

−2 0 0

⎞

⎠

is a 3 × 3 symmetric matrix. The eigenvalues are 2,−1, and 4, with associated eigenvectors
⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
1
0
2

⎞

⎠ , and

⎛

⎝
2
0

−1

⎞

⎠ .

These eigenvectors are mutually orthogonal. �

Finding eigenvalues of a matrix may be difficult because finding the roots of a polynomial
can be difficult. In MAPLE, the command

eigenvals(A);

will list the eigenvalues of A, if n is not too large. The command

eigenvects(A);

will list each eigenvalue, its multiplicity, and, for each eigenvalue, as many linearly inde-
pendent eigenvectors as are associated with that eigenvalue. We can also find the characteristic
polynomial of A by

charpoly(A,t);

in which the variable of the polynomial is called t , but could be given any designation.
There is a method due to Gershgorin that enables us to place the eigenvalues inside disks in

the complex plane. This is sometimes useful to get some idea of how the eigenvalues of a matrix
are distributed.

THEOREM 9.5 Gershgorin

Let A be an n × n matrix of numbers. For k = 1,2, · · · ,n let

rk =
n∑

j=1, j �=k

|akj |.

Let Ck be the circle of radius rk centered at (αk, βk), where akk = αk + βki . Then each eigen-
value of A, when plotted as a point in the complex plane, lies on or within one of the circles
C1, · · · ,Cn . �
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Ck is the circle centered at the kth diagonal element akk of A, having radius equal to the
sum of the magnitudes of the elements across row k, excluding the diagonal element occurring
in that row.

EXAMPLE 9.7

Let

A =
⎛

⎝
12i 1 3
2 −6 2 + i
3 1 5

⎞

⎠ .

The characteristic polynomial of A is

pA(λ)=λ3 + (1 − 12i)λ2

− (43 + 13i)λ− 68 + 381i.

The Gershgorin circles have centers and radii:

C1 : (0,12), r1 = 1 + 3 = 4,

C2 : (−6,0), r2 = 2 +√
5

C3 : (5,0), r3 = 3 + 1 = 4.

Figure 9.1 shows these Gershgorin circles. The eigenvalues are in the disks determined by these
circles. �

Gershgorin’s theorem is not a way of approximating eigenvalues, since some of the disks
may have large radii. However, sometimes important information that is revealed by these disks
can be useful. For example, in studies of the stability of fluid flow it is important to know whether
eigenvalues occur in the right half-plane.

(–6, 0)

(0, 12)

(5, 0)
x

y

FIGURE 9.1 Gerschgorin circles in Example 9.7.
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SECTION 9.1 PROBLEMS

In each of Problems 1 through 16, find the eigenvalues
of the matrix. For each eigenvalue, find an eigenvector.
Sketch the Gershgorin circles for the matrix and locate the
eigenvalues as points in the plane.

1.

(
1 3
2 1

)

2.

(−2 0
1 4

)

3.

(−5 0
1 2

)

4.

(
6 −2

−3 4

)

5.

(
1 −6
2 2

)

6.

(
0 1
0 0

)

7.

⎛

⎝
2 0 0
1 0 2
0 0 3

⎞

⎠

8.

⎛

⎝
−2 1 0
1 3 0
0 0 −1

⎞

⎠

9.

⎛

⎝
−3 1 1
0 0 0
0 1 0

⎞

⎠

10.

⎛

⎝
0 0 −1
0 0 1
2 0 0

⎞

⎠

11.

⎛

⎝
−14 1 0

0 2 0
1 0 2

⎞

⎠

12.

⎛

⎝
3 0 0
1 −2 −8
0 −5 1

⎞

⎠

13.

⎛

⎝
1 −2 0
0 0 0

−5 0 7

⎞

⎠

14.

⎛

⎜
⎜
⎝

−2 1 0 0
1 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

15.

⎛

⎜
⎜
⎝

−4 1 0 1
0 1 0 0
0 0 2 0
1 0 0 3

⎞

⎟
⎟
⎠

16.

⎛

⎜
⎜
⎝

5 1 0 9
0 1 0 9
0 0 0 9
0 0 0 0

⎞

⎟
⎟
⎠

In each of Problems 17 through 22, find the eigenval-
ues and associated eigenvectors of the matrix. Verify
that eigenvectors associated with distinct eigenvalues are
orthogonal.

17.

(
4 −2

−2 1

)

18.

(−3 5
5 4

)

19.

(
6 1
1 4

)

20.

(−13 1
1 4

)

21.

⎛

⎝
0 1 0
1 −2 0
0 0 3

⎞

⎠

22.

⎛

⎝
0 1 1
1 2 0
1 0 2

⎞

⎠

23. Suppose λ is an eigenvalue of A with eigenvector
E. Let k be a positive integer. Show that λk is an
eigenvalue of Ak with eigenvector E.

24. Let A be an n × n matrix of numbers. Show that the
constant term in the characteristic polynomial of A is
(−1)n|A|. Use this to show that any singular matrix
must have 0 as an eigenvalue.

9.2 Diagonalization

Recall that the elements aii of a matrix make up its main diagonal. All other matrix elements are
called off-diagonal elements.
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A square matrix is called a diagonal matrix if all the off-diagonal elements are zero. A
diagonal matrix has the appearance

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d1 0 0 · · · 0 0
0 d2 0 · · · 0 0
0 0 d3 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 dn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

Diagonal matrices have many pleasant properties. Let A and B be n × n diagonal matrices
with diagonal elements, respectively, aii and bii .

1. A + B is diagonal with diagonal elements aii + bii .

2. AB is diagonal with diagonal elements aiibii .

3.

|A| = a11a22 · · ·ann,

the product of the diagonal elements.

4. From (3), A is nonsingular exactly when each diagonal element is nonzero (so A has
nonzero determinant). In this event, A−1 is the diagonal matrix having diagonal elements
1/aii .

5. The eigenvalues of A are its diagonal elements.

6.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with all zero elements except for 1 in the i,1 place, is an eigenvector corresponding to
the eigenvalue aii .

Most matrices are not diagonal. However, sometimes it is possible to transform a matrix to
a diagonal one. This will enable us to transform some problems to simpler ones.

An n × n matrix A is diagonalizable if there is an n × n matrix P such that P−1AP is a
diagonal matrix. In this case we say that P diagonalizes A.

We will see that not every matrix is diagonalizable. The following result not only tells us
exactly when A is diagonalizable, but also how to choose P to diagonalize A, and what P−1AP
must look like.
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THEOREM 9.6 Diagonalization of a Matrix

Let A be n ×n. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.
Furthermore, if P is the n × n matrix having these eigenvectors as columns, then P−1AP is the
n × n diagonal matrix having the eigenvalues of A down its main diagonal, in the order in which
the eigenvectors were chosen as columns of P.

In addition, if Q is any matrix that diagonalizes A, then necessarily the diagonal matrix
Q−1AQ has the eigenvalues of A along its main diagonal, and the columns of Q must be
eigenvectors of A, in the order in which the eigenvalues appear on the main diagonal of
Q−1AQ. �

We will prove the theorem after looking at three examples.

EXAMPLE 9.8

Let

A =
(−1 4

0 3

)

.

A has eigenvalues −1,3 and corresponding linearly independent eigenvectors
(

1
0

)

and

(
1
1

)

.

Form

P =
(

1 1
0 1

)

.

Determine

P−1 =
(

1 −1
0 1

)

.

A simple computation shows that

P−1AP =
(−1 0

0 3

)

,

a diagonal matrix with the eigenvalues of A on the main diagonal, in the order in which the
eigenvectors were used to form the columns of

If we reverse the order of these eigenvectors as columns and define

Q =
(

1 1
1 0

)

,

then

Q−1AQ =
(

3 0
0 −1

)

with the eigenvalues along the main diagonal, but now in the order reflecting the order of the
eigenvectors used in forming the columns of Q. �
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EXAMPLE 9.9

Let

A =
⎛

⎝
−1 1 3
2 1 4
1 0 −2

⎞

⎠ .

The eigenvalues are −1, (−1 +√
29)/2 and (−1 −√

29)/2, and corresponding eigenvectors are
⎛

⎝
1

−3
1

⎞

⎠ ,

⎛

⎝
3 +√

29
10 + 2

√
29

2

⎞

⎠ ,

⎛

⎝
3 −√

29
10 − 2

√
29

2

⎞

⎠ .

These are linearly independent because the eigenvalues are distinct. Use these eigenvectors as
columns of P to form

P =
⎛

⎝
1 3 +√

29 3 −√
29

−3 10 + 2
√

29 10 − 2
√

29
1 2 2

⎞

⎠ .

We find that

P−1 =
√

29

812

⎛

⎝
232/

√
29 −116/

√
29 232/

√
29

16 − 2
√

29 −1 +√
29 −19 + 5

√
29

−16 − 2
√

29 1 +√
29 19 + 5

√
29

⎞

⎠

and

P−1AP =
⎛

⎝
−1 0 0
0 (−1 +√

29)/2 0
0 0 (−1 −√

29)/2

⎞

⎠ ,

with the eigenvalues down the main diagonal in the order of the eigenvalues listed for
columns of P.

In this example, P−1 is an unpleasant matrix. One of the values of Theorem 9.6 is that it
tells us what P−1AP looks like, without actually having to determine P−1 and carry out this
product. �

Although n distinct eigenvalues guarantee that A is diagonalizable, an n × n matrix with
fewer than n distinct eigenvalues may still be diagonalizable. This will occur if we are able to
find n linearly independent eigenvectors.

EXAMPLE 9.10

Let

A =
⎛

⎝
5 −4 4
12 −11 12
4 −4 5

⎞

⎠

as in Example 9.5. We found the eigenvalues −3,1,1, with a repeated eigenvalue. Nevertheless,
we were able to find three linearly independent eigenvectors. Use these as columns to form

P =
⎛

⎝
1 1 0
3 0 1
1 −1 1

⎞

⎠ .
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Then P diagonalizes A:

P−1AP =
⎛

⎝
−3 0 0
0 1 0
0 0 1

⎞

⎠ .

Again, we know this from Theorem 9.6, without explicitly computing the product P−1AP. �

If A has fewer than n linearly independent eigenvectors, then A is not diagonalizable.

We will now prove Theorem 9.6.

Proof Let the eigenvalues of A be λ1, λ2, · · · , λn (not necessarily distinct). Suppose first that
these eigenvalues have corresponding linearly independent eigenvectors V1,V2, · · · ,Vn . These
form the columns of P, which we indicate by writing

P =
⎛

⎝
| | · · · |

V1 V2 · · · Vn

| | · · · |

⎞

⎠ .

P is nonsingular because its columns are linearly independent.
Let D be the n ×n diagonal matrix having the eigenvalues of A, in the given order, down the

main diagonal. We want to prove that

P−1AP = D.

We will prove this by showing by direct computation that

AP = PD.

First, recall that the product AP has as columns the product of A with the columns of P. Thus

column j of AP = A(column j of P)

= A(V j)= λ jV j .

Now compute PD. As a convenience in understanding the computation, write

V j =

⎛

⎜
⎜
⎝

v1 j

v2 j

· · ·
vnj

⎞

⎟
⎟
⎠ .

Then

PD =

⎛

⎜
⎜
⎜
⎝

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

...
...

vn1 vn2 · · · vnn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

λ1v11 λ2v12 · · · λnv1n

λ1v21 λ2v22 · · · λnv2n

...
...

...
...

λ1vn1 λ2v2n · · · λnvnn

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
| | · · · |

λ1V1 λ2V2 · · · λnVn

| | · · · |

⎞

⎠= AP,

since column j of this matrix is λ jV j .
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Thus far we have proved that, if A has n linearly independent eigenvectors, then A is diag-
onalizable and P−1AP is the diagonal matrix having the eigenvalues down the main diagonal, in
the order in which the eigenvectors are seen as columns of P.

To prove the converse, now suppose that A is diagonalizable. We want to show that A has
n linearly independent eigenvectors (regardless of whether the eigenvalues are distinct). Further,
we want to show that, if Q−1AQ is a diagonal matrix, then the diagonal elements of this matrix
are the eigenvalues of A, and the columns of Q are corresponding eigenvectors. Thus suppose
that

Q−1AQ =

⎛

⎜
⎜
⎜
⎝

d1 0 · · · 0
0 d1 · · · 0
...

...
...

...

0 0 · · · dn

⎞

⎟
⎟
⎟
⎠

= D.

Let V j be column j of Q. These columns are linearly independent because Q is nonsingular. We
will show that dj is an eigenvalue of A with eigenvector V j .

From Q−1AQ=D, we have AQ=QD. Compute both sides of this equation separately. First,
since the columns of Q are the V j

′s, then

QD =
⎛

⎝
| | · · · |

V1 V2 · · · Vn

| | · · · |

⎞

⎠

⎛

⎜
⎜
⎜
⎝

d1 0 · · · 0
0 d1 · · · 0
...

...
...

...

0 0 · · · dn

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
| | · · · |

d1V1 d2V2 · · · dnVn

| | · · · |

⎞

⎠ ,

which is a matrix having djV j as column j . Now compute

AQ = A

⎛

⎝
| | · · · |

V1 V2 · · · Vn

| | · · · |

⎞

⎠=
⎛

⎝
| | · · · |

AV1 AV2 · · · AVn

| | · · · |

⎞

⎠ ,

which is a matrix having AV j as column j . Since these matrices are equal, then

AV j = djV j

and this makes dj an eigenvalue of A with eigenvector V j . �
Not every matrix is diagonalizable. We know from the theorem that a n × n matrix with

fewer than n linearly independent eigenvectors is not diagonalizable.

EXAMPLE 9.11

Let

B =
(

1 −1
0 1

)

.

B has eigenvalues 1,1, and all eigenvectors are constant multiples of
(

1
0

)

.

Therefore B has as eigenvectors only nonzero multiples of one vector, and does not have two
linearly independent eigenvectors. By the theorem, B is not diagonalizable.
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Notice that, if P diagonalized A, then P would have to have eigenvectors of B as columns.
Then P would have to have the form

P =
(
α β

0 0

)

for some nonzero α and β. But this matrix is singular, with no inverse, because |P| = 0. �

The key to diagonalizing A is the existence of n linearly independent eigenvectors.
By Theorem 9.2, one circumstance in which this always happens is that A has n distinct
eigenvalues.

COROLLARY 9.1

An n × n matrix with n distinct eigenvalues must be diagonalizable. �

EXAMPLE 9.12

Let

A =

⎛

⎜
⎜
⎝

−2 0 0 5
1 3 0 0
0 4 4 0
2 0 0 −3

⎞

⎟
⎟
⎠ .

A has eigenvalues 3,4, (−5 + √
41)/2 and (−5 − √

41)/2. Because these are distinct, A has 4
linearly independent eigenvectors and therefore is diagonalizable. There is a matrix Psuch that

P−1AP =

⎛

⎜
⎜
⎝

3 0 0 0
0 4 0 0
0 0 (−5 +√

41)/2 0
0 0 0 (−5 −√

41)/2

⎞

⎟
⎟
⎠ .

We do not have to actually write down P (this would require finding eigenvectors) or compute
P−1 to draw this conclusion. �

SECTION 9.2 PROBLEMS

In each of Problems 1 through 10, produce a matrix P that
diagonalizes the given matrix, or show that the matrix is
not diagonalizable. Determine P−1AP. Hint: Keep in mind
that it is not necessary to compute P to know this product
matrix.

1.

(
0 −1
4 3

)

2.

(
5 3
1 3

)

3.

(
1 0

−4 1

)

4.

(−5 3
0 9

)

5.

⎛

⎝
5 0 0
1 0 3
0 0 −2

⎞

⎠

6.

⎛

⎝
0 0 0
1 0 2
0 1 3

⎞

⎠

7.

⎛

⎝
−2 0 1
1 1 0
0 0 −2

⎞

⎠

8.

⎛

⎝
2 0 0
0 2 1
0 −1 2

⎞

⎠
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9.

⎛

⎜
⎜
⎝

1 0 0 0
0 4 1 0
0 0 −3 1
0 0 1 −2

⎞

⎟
⎟
⎠

10.

⎛

⎜
⎜
⎝

−2 0 0 0
−4 −2 0 0
0 0 −2 0
0 0 0 −2

⎞

⎟
⎟
⎠

11. Let A have eigenvalues λ1, · · · , λn , and suppose that P
diagonalizes A. Show that, for any positive integer k,

Ak = P

⎛

⎜
⎜
⎜
⎝

λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...
...

0 0 · · · λn
k

⎞

⎟
⎟
⎟
⎠

P−1.

In each of Problems 12 through 15, use the idea of
Problem 11 to compute the indicated power of the matrix.

12. A =
(−3 −3

−2 4

)

;A16

13. A =
(−1 0

1 −5

)

;A18

14. A =
(−2 3

3 −4

)

;A31

15. A =
(

0 2
1 0

)

;A43

16. Suppose A2 is diagonalizable. Prove that A is diago-
nalizable.

9.3 Some Special Types of Matrices

In this section, we will discuss several types of matrices having special properties.

9.3.1 Orthogonal Matrices

An n × n matrix is orthogonal if its transpose is its inverse:

A−1 = At .

In this event,

AAt = AtA = In.

For example, it is routine to check that

A =
⎛

⎝
0 1/

√
5 2/

√
5

1 0 0
0 2

√
5 −1

√
5

⎞

⎠

is orthogonal. Just multiply this matrix by its transpose to obtain I3.
Because (At)t = A, a matrix is orthogonal exactly when its transpose is orthogonal.
It is also easy to verify that an orthogonal matrix must have determinant 1 or −1.

THEOREM 9.7

If A is orthogonal, then |A| =±1. �
Proof Because a matrix and its transpose have the same determinant,

|In| = 1 = |AA−1| = |AAt | = |A||At | = |A|2. �

The name “orthogonal matrix” derives from the following property.
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THEOREM 9.8

Let A be an n × n matrix of real numbers. Then

1. A is orthogonal if and only the row vectors are mutually orthogonal unit vectors in Rn .

2. A is orthogonal if and only if the column vectors are mutually orthogonal unit vectors
in Rn . �

We say that the row vectors of an orthogonal matrix form an orthonormal set of vectors in
Rn . The column vectors also form an orthonormal set.

Proof The i, j element of AAt is the dot product of row i of A with column j of At , and this
is the dot product of row i of A with row j of A.

If i �= j , then this dot product is zero, because the i, j− element of In is zero. And if i =
j , then this dot product is 1 because the i, i− element of In is 1. This proves that, if A is an
orthogonal matrix, then its rows form an orthonormal set of vectors in Rn .

Conversely, suppose the rows are mutually orthogonal unit vectors in Rn . Then the i, j
element of AAt is 0 if i �= j and 1 if i = j , so AAt = In .

By applying this argument to At , this transpose is orthogonal if and only if its rows are
orthogonal unit vectors, and these rows are the columns of A. �

We now know a lot about orthogonal matrices. We will use this information to determine all
2 × 2 real orthogonal matrices. Suppose

Q =
(

a b
c d

)

is orthogonal. What does this tell us about a,b, c and d? Because the row (column) vectors are
mutually orthogonal unit vectors,

ac + bd = 0

ab + cd = 0

a2 + b2 = 1

c2 + d2 = 1.

Furthermore, |Q| =±1, so

ad − bc = 1 or ad − bc =−1.

By analyzing these equations in all cases, we find that there must be some θ in [0,2π) such that
a = cos(θ) and b = sin(θ), and Q must have one of the two forms:

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)

or

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)

,

depending on whether the determinant is 1 or −1. For example, with θ = π/6, we obtain the
orthogonal 2 × 2 matrices

(√
3/2 1/2

−1/2
√

3/2

)

or

(√
3/2 1/2

1/2 −√
3/2

)

.

If we put Theorems 9.4 and 9.8 together, we obtain an interesting conclusion. Suppose S is
a real, symmetric n × n matrix with n distinct eigenvalues. Then the associated eigenvectors are
orthogonal. These may not be unit vectors. However, a scalar multiple of an eigenvector is still
an eigenvector. Divide each eigenvector by its length and use these unit eigenvectors as columns
of an orthogonal matrix Q that diagonalizes S. This proves the following.
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THEOREM 9.9

An n × n real symmetric matrix with distinct eigenvalues can be diagonalized by an orthogonal
matrix. �

EXAMPLE 9.13

Let

S =
⎛

⎝
3 0 −2
0 2 0

−2 0 0

⎞

⎠ .

This real, symmetric matrix has eigenvalues 2,−1,4, with corresponding eigenvectors
⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
1
0
2

⎞

⎠ and

⎛

⎝
2
0

−1

⎞

⎠ .

The matrix having these eigenvectors as columns will diagonalize S, but is not an orthogonal
matrix because these eigenvectors do not all have length 1. Normalize the second and third eigen-
vectors by dividing them by their lengths, and then use these unit eigenvectors as columns of an
orthogonal matrix Q:

Q =
⎛

⎝
0 1/

√
5 2/

√
5

1 0 0
0 2/

√
5 −1/

√
5

⎞

⎠ .

This orthogonal matrix also diagonalizes S. �

9.3.2 Unitary Matrices

We will use the following fact. If W is any matrix, then the operations of taking the transpose
and the complex conjugate can be performed in either order:

(Wt)= (W)t .

This is verified by a routine calculation.
It is also straightforward to verify that the operations of taking a matrix inverse, and of taking

its complex conjugate, can be performed in either order.
Now let U be an n × n matrix with complex elements.

We say that U is unitary if the inverse is the conjugate of the transpose (which is the same
as the transpose of the conjugate):

U−1 = U
t
.

This means that

(U)tU = U(U)t = In.

EXAMPLE 9.14

U =
(

i/
√

2 1/
√

2
−i/

√
2 1/

√
2

)

.

It is routine to check that U is unitary. �
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If U is a unitary matrix with real elements, then U = U and the condition of being unitary
becomes U−1 = Ut . Therefore a real unitary matrix is orthogonal. In this sense unitary matrices
are the extension of orthogonal matrices to allow complex matrix elements.

Since the rows (and columns) of an orthogonal matrix are mutually orthogonal unit vectors,
we would expect a complex analogue of this condition for unitary matrices. If (x1, · · · , xn) and
(y1, · · · , yn) are vectors in Rn , we can write

X =

⎛

⎜
⎜
⎜
⎝

x1

x2

...

xn

⎞

⎟
⎟
⎟
⎠

and Y =

⎛

⎜
⎜
⎜
⎝

y1

y2

...

yn

⎞

⎟
⎟
⎟
⎠

and obtain the dot product X ·Y as the matrix product XtY, which is the 1×1 matrix (or number)
x1 y1 + x2 y2 + · · ·+ xn yn . In particular, the square of the length of X is

XtX = x2
1 + x2

2 + · · ·+ x2
n .

To generalize this to the complex case, suppose we have complex n− vectors (z1, z2, · · · , zn) and
(w1,w2, · · · ,wn). Let

Z =

⎛

⎜
⎜
⎜
⎝

z1

z2

...

zn

⎞

⎟
⎟
⎟
⎠

and W =

⎛

⎜
⎜
⎜
⎝

w1

w2

...

wn

⎞

⎟
⎟
⎟
⎠

and define the dot product Z · W by

Z · W = Z
t
W.

Then

Z · W = z1w1 + z2w2 + · · ·+ znwn.

In this way,

Z · Z = z1z1 + z2z2 + · · ·+ znzn =
n∑

j=1

|z j |2,

a real number, consistent with the interpretation of the dot product of a vector with itself as
the square of the length. With this as background, we now define the complex analogue of an
orthonormal set of vectors in Rn . We will say that complex n− vectors F1, · · · ,Fr form a unitary
system if F j · Fk = 0 if j �= k, and each F j has length 1 (that is, F j · F j = 1).

A unitary system is an orthonormal set of vectors when each of the vectors has real
components. With this background, we can state the unitary version of Theorem 9.8.

THEOREM 9.10

A complex matrix U is unitary if and only its row (column) vectors form a unitary system. �

We claim that the eigenvalues of a unitary matrix must have magnitude 1.

THEOREM 9.11

Let λ be an eigenvalue of a unitary matrix U. Then |λ| = 1. �
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This means that the eigenvalues of U lie on the unit circle about the origin in the complex
plane. Since a real orthogonal matrix is also unitary, this also holds for real orthogonal matrices.

Proof Let λ be an eigenvalue of U with eigenvector E. We know that UE=λE. Then UE=λE.
Therefore,

(UE)t = λ(E)t .
Then,

(E)t(U)t = λ(E)t .
But U is unitary, so U

t = U−1. The last equation becomes

(E)tU−1 = λ(E)t .
Multiply both sides of this equation on the right by UE:

(E)tU−1UE = λ(E)tUE = λ(E)tλE = λλE
t
E.

Now E
t
E is the dot product of an eigenvector with itself, and so is a positive number. Dividing

the last equation by E
t
E yields the conclusion that λλ=1. Then |λ|2 =1, proving the theorem. �

9.3.3 Hermitian and Skew-Hermitian Matrices

An n × n complex matrix H is hermitian if H = Ht .

That is, a matrix is hermitian if its conjugate equals its transpose. If a hermitian matrix has
real elements, then it must be symmetric, because then the matrix equals its conjugate, which
equals its transpose.

An n × n complex matrix S is skew-hermitian if S =−St .

Thus, S is skew-hermitian if its conjugate equals the negative of its transpose.

EXAMPLE 9.15

The matrix

H =
⎛

⎝
15 8i 6 − 2i
−8i 0 −4 + i

6 + 2i −4 − i −3

⎞

⎠

is hermitian because

H =
⎛

⎝
15 −8i 6 + 2i
8i 0 −4 − i

6 − 2i −4 + i −3

⎞

⎠= Ht .

The matrix

S =
⎛

⎝
0 8i 2i
8i 0 4i
2i 4i 0

⎞

⎠
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is skew-hermitian because

S =
⎛

⎝
0 −8i −2i

−8i 0 −4i
−2i −4i 0

⎞

⎠=−St . �

We want to derive a result about eigenvalues of hermitian and skew-hermitian matrices.
For this we need the following conclusions about the numerator of the general expression for
eigenvalues in Lemma 9.1.

LEMMA 9.2

Let

Z =

⎛

⎜
⎜
⎜
⎝

z1

z2

...

zn

⎞

⎟
⎟
⎟
⎠

be a complex n × 1 matrix. Then
1. If H is n × n hermitian, then Z

t
HZ is real.

2. If S is n × n skew-hermitian, then Z
t
HZ is pure imaginary. �

Proof of Lemma 9.3 For condition (1), suppose H is hermitian, so that H
t = H. Then

(Z
t
HZ)= ((Z)t)HZ = ZtHZ.

But Z
t
HZ is a 1 × 1 matrix and so equals its own transpose. Continuing from the last equation,

we have

ZtHZ = (ZtHZ)t = Z
t
H

t
(Z)t = Z

t
HZ.

This shows that

(Z
t
HZ)= Z

t
HZ.

Since Z
t
HZ equals its own conjugate, this quantity is real.

To prove condition (2), suppose S is skew-hermitian, so S
t = −S. By an argument like that

in the proof of condition (1), we find that

(Z
t
SZ)=−Z

t
SZ

If we write Z
t
SZ = a + ib, then the last equation means that

a − ib =−a − ib.

But then a = −a so a = 0 and Z
t
SZ is pure imaginary. This includes the possibility of a zero

eigenvalue. �

This lemma absorbs most of the work we need for the following result, giving us information
about eigenvalues.
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THEOREM 9.12

1. The eigenvalues of a hermitian matrix are real.

2. The eigenvalues of a skew-hermitian are pure imaginary. �

Proof By Lemma 9.1, an eigenvalue λ of any n × n matrix A, with corresponding eigenvector
E, satisfies

λ= E
t
AE

E
t
E
.

We know that the denominator of this quotient is a positive number. Now use Lemma 9.2. If A
is hermitian, the numerator is real, so λ is real. If A is skew-hermitian then the numerator is pure
imaginary, so λ is pure imaginary. �

Figure 9.2 shows a graphical representation of these conclusions about eigenvalues of matri-
ces. When plotted as points in the complex plane, eigenvalues of a unitary (or orthogonal)
matrix lie on the unit circle about the origin, eigenvalues of a hermitian matrix lie on the hor-
izontal (real) axis, and eigenvalues of a skew-hermitian matrix are on the vertical (imaginary)
axis.

9.3.4 Quadratic Forms

A quadratic form is an expression
n∑

j=1

n∑

k=1

a jk z j zk

in which the a jk
′s and the z j

′s are complex numbers. If these quantities are all real, we say
that we have a real quadratic form.

Real axis

Imaginary axis

Skew-hermitian
eigenvalues

Hermitian
eigenvalues

Unitary
eigenvalues

1

i

FIGURE 9.2 Eigenvalues of unitary,
hermitian, and skew-hermitian matrices.
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For n = 2, the quadratic form is

2∑

j=1

2∑

k=1

a jk z j zk = a11z1z1 + a12z1z2 + a21z1z2 + a22z2z2.

The two middle terms are called mixed product terms, involving z j and zk with j �= k.
If the quadratic form is real, then all of the numbers involved are real. In this case the

conjugates play no role and this quadratic form can be written

2∑

j=1

2∑

k=1

a jk x j xk = a11x1x1 + a12x1x2 + a21x1x2 + a22x2x2

= a1x
2
1 + (a12 + a21)x1x2 + a22x

2
2 .

As we have seen previously (in the discussion immediately preceding Lemma 9.1), we can let
A =[a jk] and write the complex quadratic form as Z

t
AZ, where

Z =

⎛

⎜
⎜
⎜
⎝

z1

z2

...

zn

⎞

⎟
⎟
⎟
⎠
.

If all the quantities are real, we usually write this as XtAX. In fact, any real quadratic form can
be written in this way, with A a real symmetric matrix. We will illustrate this process.

EXAMPLE 9.16

Consider the real quadratic form

(
x1 x2

)
(

1 4
3 2

)(
x1

x2

)

= x2
1 + 3x1x2 + 4x2x1 + 2x2

2

= x2
1 + 7x1x2 + 2x2

2 .

We can write the same quadratic form as

(
x1 x2

)
(

1 7/2
7/2 2

)(
x1

x2

)

= x2
1 + 7x1x2 + 2x2

2

in which A is a symmetric matrix. �

This is important in developing a standard change of variables that is used to simplify
quadratic forms by eliminating cross product terms.

THEOREM 9.13 Principal Axis Theorem

Let A be a real symmetric matrix with distinct eigenvalues λ1, · · ·λn . Then there is an orthog-
onal matrix Q such that the change of variables X = QY transforms the quadratic form∑n

j=1

∑n
k=1 ai j xi x j to

n∑

j=1

λ j y
2
j .
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Proof Let Q be an orthogonal matrix that diagonalizes A. Then
n∑

j=1

n∑

k=1

ai j xi x j = XtAX

= (QY)tAQY = (YtQt)AQY

= Yt(QtAQ)Y

= Yt(Q−1AQ)Y

= (y1 y2 · · · yn

)

⎛

⎜
⎜
⎜
⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

y1

y2

...

yn

⎞

⎟
⎟
⎟
⎠

= λ1 y2
1 + λ2 y2

2 + · · · + λn y2
n . �

The expression
∑n

j=1 λ j y2
j is called the standard form of XtAX.

EXAMPLE 9.17

Consider the quadratic form

x2
1 − 7x1x2 + x2

2 .

This is XtAX, where

(
1 −7/2

−7/2 1

)

.

In general, the real quadratic form

ax2
1 + bx1x2 + cx2

2

can always be written as XtAX, with A the real symmetric matrix

A =
(

a b/2
b/2 c

)

.

In this example, the eigenvalues of A are −5/2,9/2 with corresponding eigenvectors
(

1
1

)

and

(−1
1

)

.

Divide each eigenvector by its length to obtain columns of an orthogonal matrix Q that
diagonalizes A:

Q =
(

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

)

.

The change of variables X = QY is equivalent to setting

x1 = 1√
2
(y1 − y2)

x2 = 1√
2
(y1 + y2).
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This transforms the given quadratic form to its standard form

λ1 y2
1 + λ2 y2

2 =−5

2
y2

1 + 9

2
y2

2 ,

in which there are no cross product y1 y2 terms. �

SECTION 9.3 PROBLEMS

In each of Problems 1 through 12, find the eigenvalues
and associated eigenvectors. Check that the eigenvectors
associated with distinct eigenvalues are orthogonal. Find
an orthogonal matrix that diagonalizes the matrix. Note
Problems 17-22, Section 9.1.

1.

(
4 −2

−2 1

)

2.

(−3 5
5 4

)

3.

(
6 1
1 4

)

4.

(−13 1
1 4

)

5.

⎛

⎝
0 1 0
1 −2 0
0 0 3

⎞

⎠

6.

⎛

⎝
0 1 1
1 2 0
0 0 3

⎞

⎠

7.

⎛

⎝
5 0 2
0 0 0
2 0 0

⎞

⎠

8.

⎛

⎝
2 −4 0

−4 0 0
0 0 0

⎞

⎠

9.

⎛

⎝
0 0 0
1 1 −2
0 −2 0

⎞

⎠

10.

⎛

⎝
1 3 0
3 0 1
0 1 1

⎞

⎠

11.

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 −2 0
0 −2 1 0
0 −3 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

12.

⎛

⎜
⎜
⎝

5 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0

⎞

⎟
⎟
⎠

In each of Problems 13 through 21, determine whether
the matrix is unitary, hermitian, skew-hermitian, or none
of these. Find the eigenvalues and associated eigenvec-
tors. If the matrix is diagonalizable, write a matrix that
diagonalizes it. In Problems 5 and 7, eigenvalues must be
approximated, so only “approximate eigenvectors" can be
found. It is instructive to try to diagonalize a matrix using
approximate eigenvectors.

13.

(
0 2i
2i 4

)

14.

(
3 4i
4i −5

)

15.

⎛

⎝
0 1 0

−1 0 1 − i
0 −1 − i 0

⎞

⎠

16.

⎛

⎝
1/

√
2 i/

√
2 0

−1/
√

2 i/
√

2 0
0 0 1

⎞

⎠

17.

⎛

⎝
3 2 0
2 0 i
0 −i 0

⎞

⎠

18.

⎛

⎝
−1 0 3 − i
0 1 0

3 + i 0 0

⎞

⎠

19.

⎛

⎝
i 1 0

−1 0 2i
0 2i 0

⎞

⎠

20.

⎛

⎝
3i 0 0
−1 0 0
−i 0 0

⎞

⎠

21.

⎛

⎝
8 −1 i

−1 0 0
−i 0 0

⎞

⎠
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In each of Problems 22 through 28, determine a matrix A
so that the quadratic form is XtAX, and find the standard
form of the quadratic form.

22. −5x2
1 + 4x1x2 + 3x2

2

23. 4x2
1 − 12x1x2 + x2

2

24. −3x2
1 + 4x1x2 + 7x2

2

25. 4x2
1 − 4x1x2 + x2

2

26. −6x1x2 + 4x2
2

27. 5x2
1 + 4x1x2 + 2x2

2

28. −2x1x2 + 2x2
2

29. Suppose A is hermitian. Show that

(AAt)= AA.

30. Prove that the main diagonal elements of a hermitian
matrix are real.

31. Prove that each main diagonal element of a skew-
hermitian matrix is zero or pure imaginary.

32. Prove that the product of two unitary matrices is
unitary.
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CHAPTER 10
Systems of
Linear
Differential
Equations

LINEAR SYSTEMS SOLUTION OF X′ = AX
FOR CONSTANT A SOLUTION OF
X′ = AX + G EXPONENTIAL MATRIX
SOLUTIONS APPLICATIONS

10.1 Linear Systems

We will apply matrices to the solution of a system of n linear differential equations in n unknown
functions:

x ′
1(t)= a11(t)x1(t)+ a12(t)x2(t)+ · · ·+ a1n(t)xn(t)+ g1(t)

x ′
2(t)= a21(t)x1(t)+ a22(t)x2(t)+ · · ·+ a2n(t)xn(t)+ g2(t)

...

x ′
n(t)= an1(t)x1(t)+ an2(t)x2(t)+ · · ·+ ann(t)xn(t)+ gn(t).

The functions ai j(t) are continuous and gj(t) are piecewise continuous on some interval (perhaps
the whole real line). Define matrices

A(t)=[ai j(t)],X(t)=

⎛

⎜
⎜
⎜
⎝

x1(t)
x2(t)
...

xn(t)

⎞

⎟
⎟
⎟
⎠

and G(t)=

⎛

⎜
⎜
⎜
⎝

g1(t)
g2(t)
...

gn(t)

⎞

⎟
⎟
⎟
⎠
.

Differentiate a matrix by differentiating each element. Matrix differentiation follows the usual
rules of calculus. The derivative of a sum is the sum of the derivatives, and the product rule has
the same form, whenever the product is defined:

(WN)′ = W′N + WN′.

With this notation, the system of linear differential equations is

X′(t)= A(t)X(t)+ G(t)

or

X′ = AX + G. (10.1)

295
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We will refer to this as a linear system. This system is homogeneous if G(t) is the n × 1
zero matrix, which occurs when each gj(t) is identically zero. Otherwise the system is
nonhomogeneous.

We have an initial value problem for this linear system if the solution is specified at some
value t = t0. Here is the fundamental existence/uniqueness theorem for initial value problems

THEOREM 10.1

Let I be an open interval containing t0. Suppose A(t)= [ai j(t)] is an n × n matrix of functions
that are continuous on I , and let

G(t)=

⎛

⎜
⎜
⎜
⎝

g1(t)
g2(t)
...

gn(t)

⎞

⎟
⎟
⎟
⎠

be an n × 1 matrix of functions that are continuous on I . Let X0 be a given n × 1 matrix of real
numbers. Then the initial value problem:

X′ = AX + G;X(t0)= X0

has a unique solution that is defined for all t in I . �

Armed with this result, we will outline a procedure for finding all solutions of the
system (10.1). This will be analogous to the theory of the second order linear differential equa-
tion y ′′ + p(x)y ′ +q(x)y = g(x) in Chapter 2. We will then show how to carry out this procedure
to produce solutions in the case that A is a constant matrix.

10.1.1 The Homogeneous System X′ = AX

If �1 and �2 are solutions of X′ = AX, then so is any linear combination

c1�1 + c2�2.

This is easily verified by substituting this linear combination into X′ = AX. This conclusion
extends to any finite sum of solutions.

A set of k solutions X1, · · · ,Xk is linearly dependent on an open interval I (which can be
the entire real line) if one of these solutions is a linear combination of the others, for all t
in I . This is equivalent to the assertion that there is a linear combination

c1X1(t)+ c2X2(t)+ · · ·+ ckXk(t)= 0

for all t in I , with at least one of the coefficients c1, · · · , ck nonzero.
We call these solutions linearly independent on I if they are not linearly dependent

on I . This means that no one of the solutions is a linear combination of the others.
Alternatively, these solutions are linearly independent if and only if the only way an
equation

c1X1(t)+ c2X2(t)+ · · ·+ ckXk(t)= 0

can hold for all t in I is for each coefficient to be zero: c1 = c2 = · · ·= ck = 0.
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EXAMPLE 10.1

Consider the system

X′ =
(

1 −4
1 5

)

X.

It is routine to verify by substitution that

�1(t)=
(−2e3t

e3t

)

and �2(t)=
(
(1 − 2t)e3t

te3t

)

are two solutions. These are linearly independent on the entire real line, since neither is a constant
multiple of the other, for all t .

A third solution is

�3(t)=
(
(−5 − 6t)e3t

(4 + 3t)e3t

)

.

However, these three solutions are linearly dependent, since, for all real numbers t ,

�3(t)= 4�1(t)+ 3�2(t). �

There is a test for linear independence of n solutions of an n × n homogeneous system
X′ = AX.

THEOREM 10.2 Test for Independence of Solutions

Suppose that

�1(t)=

⎛

⎜
⎜
⎜
⎝

ϕ11(t)
ϕ21(t)
...

ϕn1(t)

⎞

⎟
⎟
⎟
⎠
,�2(t)=

⎛

⎜
⎜
⎜
⎝

ϕ12(t)
ϕ22(t)
...

ϕn2(t)

⎞

⎟
⎟
⎟
⎠
, · · · ,�n(t)=

⎛

⎜
⎜
⎜
⎝

ϕ1n(t)
ϕ2n(t)
...

ϕnn(t)

⎞

⎟
⎟
⎟
⎠

are n solutions of X′ = AX on an open interval I . Let t0 be any number in I . Then

1. �1,�2, · · · ,�n are linearly independent on I if and only if�1(t0),�2(t0), · · · ,�n(t0) are
linearly independent, when considered as vectors in Rn .

2. �1,�2, · · · ,�n are linearly independent on I if and only if
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕ11(t0) ϕ12(t0) · · · ϕ1n(t0)

ϕ21(t0) ϕ22(t0) · · · ϕ2n(t0)
...

... · · · ...

ϕn1(t0) ϕn2(t0) · · · ϕnn(t0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0. �

Conclusion (2) is an effective test for linear independence of solutions of the homoge-
neous system on an interval. Evaluate each solution at any number t0 in the interval and
form the n × n determinant having � j(t0) as column j . We may choose t0 in the interval to
suit our convenience (to make this determinant as easy as possible to evaluate). If this deter-
minant is nonzero, then the solutions are linearly independent; otherwise the solutions are
linearly dependent. This is similar to the Wronskian test for second order linear differential
equations.
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EXAMPLE 10.2

In Example 10.1,

�1(t)=
(−2e3t

e3t

)

and �2(t)=
(
(1 − 2t)e3t

te3t

)

for all t . Evaluate these at some convenient point, say t = 0:

�1(0)=
(−2

1

)

and �2(0)=
(

1
0

)

.

Use these 2− vectors as columns of a 2 × 2 determinant:
∣
∣
∣
∣
−2 1
1 0

∣
∣
∣
∣=−1 �= 0.

Therefore �1 and �2 are linearly independent on the real line. In this case this conclusion is
obvious without the determinant test, but this is not always the case. �

Proof of Theorem 10.2 Conclusion (2) follows from (1) by the fact that a determinant is zero
exactly when its columns are linearly dependent.

To prove conclusion (1), let t0 be in I . Suppose first that �1, · · · ,�n are linearly dependent
on I . Then one of these solutions is a linear combination of the others. By relabeling if necessary,
suppose �1 is a linear combination of �2, · · · ,�n . Then there are numbers c2, · · · , cn such that

�1(t)= c2�2(t)+ · · ·+ cn�n(t)

for all t in I . In particular, this holds at t = t0, hence the vectors

�1(t0), · · · ,�n(t0)

are linearly dependent.
Conversely, suppose �1(t0), · · · ,�n(t0) are linearly dependent in Rn . Then one of these

vectors is a linear combination of the others. Again, suppose for convenience that the first is a
combination of the others:

�1(t0)= c2�2(t0)+ · · · + cn�n(t0).

Define

�(t)=�1(t)− c2�2(t)− · · ·− cn�n(t)

for t in I . Then �(t) is a linear combination of solutions, hence it is a solution of the system.
Furthermore,

�(t0)=

⎛

⎜
⎜
⎜
⎝

0
0
...

0

⎞

⎟
⎟
⎟
⎠
.

Therefore, �(t) is a solution of the initial value problem

X′ = AX;X(0)= O.

But the zero function �(t) = O is also a solution of this problem. By the uniqueness of the
solution of this initial value problem (Theorem 10.1),

�(t)=�(t)= O =�1(t)− c2�2(t)− · · ·− cn�n(t)
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for all t in I . This means that

�1(t)= c2�2(t)+ · · ·+ cn�n(t)

for all t in I , hence that �1(t),�2(t), · · · ,�n(t) are linearly dependent on I . This completes the
proof. �

Thus far, we know how to test n solutions of the homogeneous system for linear indepen-
dence on an open interval. We will now show that n linearly independent solutions are all that
are needed to specify all solutions.

THEOREM 10.3

Let A(t)= [ai j(t)] be an n × n matrix of functions that are continuous on an open interval I .
Then

1. The system X′ = AX has n linearly independent solutions on I .

2. Given n linearly independent solutions �1(t), , · · · ,�n(t) defined on I , every solution
on I is a linear combination of �1(t), , · · · ,�n(t).

Proof To prove that there are n linearly independent solutions, define the n × 1 constant
matrices

E(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
...

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,E(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
...

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, · · · ,E(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Choose any t0 in I . We know that the initial value problem

X′ = AX;X(0)= E( j)

has a unique solution � j(t), for j = 1,2, · · · ,n. These solutions are linearly independent,
because, the way the initial conditions were chosen, the n × n matrix whose columns are these
solutions evaluated at t0 is In , with determinant 1. This proves part (1).

To prove conclusion (2), suppose �1, · · · ,�n are n linearly independent solutions on I .
Let � be any solution. We want to show that � is a linear combination of �1, · · · ,�n . Pick
any t0 in I . Form the n × n nonsingular matrix S having the linearly independent vectors
�1(t0), · · · ,�n(t0) as its columns and consider the linear system of n algebraic equations in n
unknowns:

S

⎛

⎜
⎜
⎜
⎝

c1

c2

...

cn

⎞

⎟
⎟
⎟
⎠

=�(t0).

Because S is nonsingular, this algebraic system has a unique solution for numbers c1, c2, · · · , cn

such that

�(t0)= c1�1(t0)+ · · ·+ cn�n(t0).
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Then

�(t)= c1�1(t)+ · · ·+ cn�n(t)

for all t in I , because now�(t) and c1�1(t)+· · ·+ cn�n(t) are both solutions of the initial value
problem

X′ = AX;X(t0)=�(t0)

and this solution is unique. This shows that any solution �(t) of the system X′ = AX is a linear
combination of �1(t), · · · ,�n(t). �

We call

c1�1(t)+ · · ·+ cn�n(t)

the general solution of X′ =AX when these solutions are linearly independent. Every solu-
tion is contained in this expression by varying the choices of the constants. In the language
of linear algebra, the set of all solutions of X′ =AX is a vector space of dimension n, hence
any n linearly independent solutions form a basis.

EXAMPLE 10.3

We have seen that

�1(t)=
(−2e3t

e3t

)

and �2(t)=
(
(1 − 2t)e3t

te3t

)

are linearly independent solutions of

X′ =
(

1 −4
1 5

)

X.

The general solution is

X(t)= c1�1(t)+ c2�2(t). �

We know the general solution of X′ = AX if we have n linearly independent solutions.
These solutions are n × 1 matrices. We can form an n × n matrix� using these n solutions
as columns. Such a matrix is called a fundamental matrix for the system. In terms of this
fundamental matrix, we can write the general solution in the compact form

c1�1 + c2�2 + · · ·+ cn�n =�C.

EXAMPLE 10.4

Continuing Example 10.3, form a 2 × 2 matrix using the linearly independent solutions �1(t)
and �2(t) as columns:

�(t)=
(−2e3t (1 − 2t)e3t

e3t te3t

)

.
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�(t) is a fundamental matrix for this system. The general solution c1�1 + c2�2 can be written
as �C:

�C =
(−2e3t + (1 − 2t)e3t

e3t + te3t

)(
c1

c2

)

=
(

c1(−2e3t) c2(1 − 2t)e3t

c1e3t c2te3t

)

= c1

(−2e3t

e3t

)

+ c2

(
(1 − 2t)e3t

te3t

)

= c1�1(t)+ c2�2(t). �

In an initial value problem, x1(t0), · · · , xn(t0) are given. This information specifies the n × 1
matrix X(t0). We usually solve an initial value problem by finding the general solution of the
system and then solving for the constants to find the particular solution satisfying the initial
conditions. It is often convenient to use a fundamental matrix to carry out this plan.

EXAMPLE 10.5

Solve the initial value problem

X′ =
(

1 −4
1 5

)

X;X(0)=
(−2

3

)

.

The general solution is �C, with � the fundamental matrix of Example 10.4. To solve the initial
value problem we must choose C so that

X(0)=�(0)C =
(−2

3

)

.

This is the algebraic system
(−2 1

1 0

)

C =
(−2

3

)

.

The solution for C is

C =
(−2 1

1 0

)−1(−2
3

)

=
(

0 1
1 2

)(−2
3

)

=
(

3
4

)

.

The unique solution of the initial value problem is

X(t)=�(t)
(

3
4

)

=
(−2e3t − 8te3t

3e3t + 4te3t

)

. �

10.1.2 The Nonhomogeneous System

We will develop an analog of Theorem 2.5 for the nonhomogeneous linear system X′ = AX + G.
The key observation is that, if �1 and �2 are any two solutions of this nonhomogeneous system,
then their difference �1 −�2 is a solution of the homogeneous system X′ = AX. Therefore, if �
is a fundamental matrix for this homogeneous system, then

�1 −�2 =�K

for some constant n × 1 matrix K, hence

�1 =�2 +�K.

We will state this result as a general theorem.
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THEOREM 10.4

Let � be a fundamental matrix for the homogeneous system X′ = AX. Let �p be any par-
ticular solution of the nonhomogeneous system X′ = AX + G. Then every solution of the
nonhomogeneous system has the form

X =�C +�p. �
For this reason we call

�C +�p,
in which C is an n × 1 matrix of arbitrary constants, the general solution of X′ = AX + G.

We now know what to look for in solving homogeneous and nonhomogeneous n × n linear
systems.

For the homogeneous system X′ = AX, form a fundamental matrix � whose columns are
n linearly independent solutions. The general solution is X =�C.

For the nonhomogeneous system X′ = AX + G, first find the general solution �C of
the associated homogeneous system X′ = AX. Then find any particular solution �p of the
nonhomogeneous system. The general solution of X′ = AX + G is X =�C +�p.

In the next section, we will begin to carry out this strategy for the case that the coefficient
matrix A is constant.

SECTION 10.1 PROBLEMS

In each of Problems 1 through 5, (a) verify that the given
functions satisfy the system, (b) write the system in matrix
form X′ = AX for an appropriate A, (c) write n linearly
independent n × 1 matrix solutions�1, · · · ,�n , for appro-
priate n, (d) use the determinant test of Theorem 10.2(2)
to verify that these solutions are linearly independent, (e)
form a fundamental matrix for the system, and (f) use the
fundamental matrix to solve the initial value problem.

1. x ′
1 = 5x1 + 3x2, x ′

2 = x1 + 3x2,

x1(t)= c1e2t + 3c2e6t , x2(t)= c1e2t + c2e6t ,

x1(0)= 0, x2(0)= 4

2. x ′
1 = 2x1 + x2, x ′

2 =−3x1 + 6x2,

x1(t)= c1e4t cos(t)+ c2e4t sin(t)
x2(t)= 2c1e4t [cos(t)− sin(t)]

+2c2e4t [cos(t)+ sin(t)],
x1(0)=−2, x2(0)= 1

3. x ′
1 = 3x1 + 8x2, x ′

2 = x1 − x2,

x1(t)= 4c1e(1+2
√

3)t + 4c2e(1−2
√

3t),

x2(t)= (−1 + √
3)c1e(1+√

3)t + (−1 − √
3)c2e(1−2

√
3)6t ,

x1(0)= 2, x2(0)= 2

4. x ′
1 = x1 − x2, x ′

2 = 4x1 + 2x2,

x1(t)= 2e3t/2
[
c1 cos(

√
15t/2)+ c2 sin(

√
15t/2)

]
,

x2(t)= c1e3t/2
[
− cos(

√
15t/2)+ √

15 sin(
√

15t/2)
]

−c2e3t/2
[
sin(

√
15t/2)+ √

15cos(
√

15t/2)
]
,

x1(0)=−2, x2(0)= 7

5. x ′
1 = 5x1 − 4x2 + 4x3, x ′

2 = 12x1 − 11x2 + 12x3,

x ′
3(t)= 4x1 − 4x2 + 5x3

x1(t)=−c1et + c3e−3t , x2(t)= c2e2t + c3e−3t ,

x3(t)= (c3 − c1)et + c3e−3t ,

x1(0)= 1, x2(0)=−3, x3(0)= 5

10.2 Solution of X′ = AX for Constant A

Now we know what to look for to solve a linear system. We must find n linearly independent
solutions.
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To carry out this strategy we will focus on the special case that A is a real, constant matrix.
Taking a cue from the constant coefficient, second order differential equation, attempt solutions
of the form X=Eeλt , with E an n ×1 matrix of numbers and λ a number. For this to be a solution,
we need

(Eeλt)′ = Eλeλt = AEeλt .

This will be true if

AE = λE,

which holds if λ is an eigenvalue of A with associated eigenvector E.

THEOREM 10.5

Let A be an n × n matrix of real numbers. If λ is an eigenvalue with associated eigenvector E,
then Eeλt is a solution of X′ = AX. �

We need n linearly independent solutions to write the general solution of X′ = AX. The next
theorem addresses this.

THEOREM 10.6

Let A be an n × n matrix of real numbers. Suppose A has eigenvalues λ1, · · · , λn , and sup-
pose there are n corresponding eigenvectors E1, · · · ,En that are linearly independent. Then
E1eλ1 t , · · · ,Eneλn t are linearly independent solutions. �

When the eigenvalues are distinct, we can always find n linearly independent eigenvectors.
But even when the eigenvalues are not distinct, it may still be possible to find n linearly indepen-
dent eigenvectors, and in this case, we have n linearly independent solutions, hence the general
solution. We can also use these solutions as columns of a fundamental matrix.

EXAMPLE 10.6

We will solve the system

X′ =
(

4 2
3 3

)

X.

A has eigenvalues of 1,6 with corresponding eigenvectors

E1 =
(

1
−3/2

)

and E2 =
(

1
1

)

.

These are linearly independent (the eigenvalues are distinct), so we have two linearly independent
solutions

(
1

−3/2

)

et and

(
1
1

)

e6t .

The general solution is

X(t)= c1

(
1

−3/2

)

et + c2

(
1
1

)

e6t .
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We can also write the fundamental matrix

�(t)=
(

et e6t

−3et/2 e6t

)

in terms of which the general solution is X(t)=�(t)C.
If we write out the components individually, the general solution is

x1(t)= c1e
t + c2e

6t

x2(t)=−3

2
c1e

t + c2e
6t . �

EXAMPLE 10.7

Consider the system

X′ =
⎛

⎝
5 14 4
12 −11 12
4 −4 5

⎞

⎠X.

The eigenvalues of A are −3,1,1. Even though there is a repeated eigenvalue, in this example,
A has three linearly independent eigenvectors. They are

⎛

⎝
1
3
1

⎞

⎠ associated with eigenvalue − 3

and
⎛

⎝
1
1
0

⎞

⎠ and

⎛

⎝
−1
0
1

⎞

⎠ associated with eigenvalue 1.

The general solution is

X(t)= c1

⎛

⎝
1
3
1

⎞

⎠ e−3t + c2

⎛

⎝
1
1
0

⎞

⎠ et + c3

⎛

⎝
−1
0
1

⎞

⎠ et .

We also can write the general solution X(t)=�(t)C, where

�(t)=
⎛

⎝
e−3t et −et

3e−3t et 0
e−3t 0 et

⎞

⎠ . �

EXAMPLE 10.8 A Mixing Problem

Two tanks are connected by pipes as in Figure 10.1. Tank 1 initially contains 20 liters of water
in which 150 grams of chlorine are dissolved. Tank 2 initially contains 50 grams of chlorine
dissolved in 10 liters of water. Beginning at time t = 0, pure water is pumped into tank 1 at a rate
of 3 liters per minute, while chlorine/water solutions are exchanged between the tanks and also
flow out of both tanks at the rates shown. We want to determine the amount of chlorine in each
tank at time t .

Let x j(t) be the number of grams of chlorine in tank j at time t . Reading from
Figure 10.1,
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Tank 2Tank 1

Mixture:
1 liter/min

Mixture:
4 liters/min

Mixture:
2 liters/min

Mixture:
3 liters/min

Pure water:
3 liters/min

FIGURE 10.1 Exchange of mixtures in tanks in Example 10.8.

rate of change of x j(t)= x ′
j(t)= rate in minus rate out

= 3

(
liter

min

)

· 0
(gram

liter

)
+ 3

(
liter

min

)

· x2

10

(gram

liter

)

− 2

(
liter

min

)

· x1

20

(gram

liter

)
− 4

(
liter

min

)

· x1

20

(gram

liter

)

=− 6

20
x1 + 3

10
x2.

Similarly, with the dimensions excluded,

x ′
2(t)= 4

x1

20
− 3

x2

10
− x2

10
= 4

20
x1 − 4

10
x2.

The system we must solve is X′ = AX with

A =
(−3/10 3/10

1/5 −2/5

)

.

The initial conditions are

x1(0)= 150, x2(0)= 50

or

X(0)=
(

150
50

)

.

The eigenvalues of A are −1/10,−1/5 with corresponding eigenvalues, respectively,
(

3/2
1

)

and

(−1
1

)

.

A fundamental matrix is

�(t)=
(
(3/2)e−t/10 −e−3t/5

e−t/10 e−3t/5

)

.

The general solution is X(t)=�(t)C. To solve the initial value problem, we need C so that

X(0)=
(

150
50

)

=�C =
(

3/2 −1
1 1

)

C.
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Then

C =
(

3/2 −1
1 1

)−1(
150
50

)

=
(

2/5 2/5
−2/5 3/5

)(
150
50

)

=
(

80
−30

)

.

The solution of the initial value problem is

X(t)=
(
(3/2)e−t/10 −e−3t/5

e−t/10 e−3t/5

)(
80

−30

)

=
(

120e−t/10 + 30e−3t/5

80e−t/10 − 30e−3t/5

)

.

As t → ∞, x1(t)→ 0 and x2(t)→ 0, as we might expect. �

10.2.1 Solution When A Has a Complex Eigenvalue

We used Euler’s formula to write real-valued solutions of the second-order linear homogeneous
constant coefficient differential equation when the characteristic equation has complex roots. We
will follow a similar procedure for systems when the matrix of coefficients has (at least some)
complex eigenvalues.

Since A is assumed to have real elements, the characteristic polynomial has real coefficients,
so complex roots must occur in complex conjugate pairs. If λ is a complex eigenvalue with eigen-
vector ξ , then λ is also an eigenvalue, with complex eigenvector ξ . Therefore, ξeλt and ξeλt

are solutions. By taking linear combinations of any two such solutions, we obtain the
following.

THEOREM 10.7 Solutions When Complex Eigenvalues Occur

Let A be an n ×n matrix of real numbers. Let α+ iβ be a complex eigenvalue with corresponding
eigenvector U + iV, in which U and V are real n × 1 matrices. Then

eαt [cos(βt)U − sin(βt)V]
and

eαt [sin(βt)U + cos(βt)V]
are linearly independent solutions of X′ = AX. �
Proof We know that α− iβ is also an eigenvalue with eigenvector U− iV. Write two solutions:

�1(t)= e(α+iβ)t(U + iV)

= eαt(cos(βt)+ i sin(βt))(U + iV)

= eαt(cos(βt)U − sin(βt)V)+ ieαt(sin(βt)U + cos(βt)V)

and

�2(t)= e(α−iβ)t(U − iV)

= eαt(cos(βt)− i sin(βt))(U − iV)

= eαt(cos(βt)U − sin(βt)V)+ ieαt(− cos(βt)V − sin(βt)U).
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Linear combination of these solutions are also solutions. Thus, define two solutions

1

2
(�1(t)+�2(t))

and
1

2i
(�1(t)−�2(t)),

and these are the solutions given in the theorem. �

Theorem 10.7 enables us to replace two complex solutions

e(α+iβ)(U + iV) and e(α−iβ)(U − iV)

in the general solution with the two solutions given in the theorem, which involve only real
quantities.

EXAMPLE 10.9

We will solve the system X′ = AX with

A =
⎛

⎝
2 0 1
0 −2 −2
0 2 0

⎞

⎠ .

The eigenvalues are 2,−1 +√
3i,−1 −√

3i . Corresponding eigenvectors are, respectively,
⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
1

−2
√

3i
−3 +√

3i

⎞

⎠ and

⎛

⎝
1

2
√

3i
−3 −√

3i

⎞

⎠.

One solution is
⎛

⎝
1
0
0

⎞

⎠ e2t .

Two other solutions are complex:
⎛

⎝
1

−2
√

3i
−3 +√

3i

⎞

⎠ e(−1+√
3i)t and

⎛

⎝
1

2
√

3i
−3 −√

3i

⎞

⎠ e(−1−√
3i)t .

These three solutions can be used as columns of a fundamental matrix. However, if we wish, we
can write a solution involving only real numbers and real-valued functions. First,

⎛

⎝
1

−2
√

3i
−3 +√

3i

⎞

⎠=
⎛

⎝
1
0

−3

⎞

⎠+ i

⎛

⎝
0

−2
√

3√
3

⎞

⎠= U + iV

with

U =
⎛

⎝
1
0

−3

⎞

⎠ and V =
⎛

⎝
0

−2
√

3√
3

⎞

⎠ .

By Theorem 10.7, with α= −1 and β = √
3, we can replace the two complex solutions with the

two solutions

e−t [cos(
√

3t)U − sin(
√

3t)V]
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and

e−t [sin(√3t)U + cos(
√

3t)V].
In terms of these solutions, a fundamental matrix is

�(t)=
⎛

⎝
e2t e−t cos(

√
3t) e−t sin(

√
3t)

0 2
√

3e−t sin(
√

3t) −2
√

3e−t cos(
√

3t)
0 e−t [−3cos(

√
3t)−√

3 sin(
√

3t)] e−t [√3cos(
√

3t)− 3 sin(
√

3t)]

⎞

⎠ .

The general solution is X(t)=�(t)C. �

10.2.2 Solution When A Does Not Have n Linearly Independent Eigenvectors

Two examples will give us a sense of how to proceed when A does not have n linearly
independent eigenvectors.

EXAMPLE 10.10

We will solve X′ = AX when

A =
(

1 3
−3 7

)

.

A has eigenvalues 4,4, and all eigenvectors have the form

α

(
1
1

)

with α �= 0. A does not have two linearly independent eigenvectors. One solution is

�1(t)=
(

1
1

)

e4t .

We need a second, linearly independent solution. Let

E1 =
(

1
1

)

and attempt a second solution of the form

�2(t)= E1te
4t + E2e

4t ,

in which E2 is a 2×1 constant matrix to be determined. For�2(t) to be a solution, we must have
�′

2(t)= A�2(t). This is the equation

E1[e4t + 4te4t ] + 4E2e
4t = AE1te

4t + AE2e
4t .

Divide this by e4t to get

E1 + 4tE1 + 4E2 = AE1t + AE2.

But AE1 = 4E1, so the terms involving t cancel, leaving

AE2 − 4E2 = E1

or

(A − 4I2)E2 = E1.

If

E2 =
(

a
b

)

,
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then we have the linear system of two equations in two unknowns:

(A − 4I2)

(
a
b

)

=
(

1
1

)

.

This is the system
(−3 3

−3 3

)(
a
b

)

=
(

1
1

)

with general solution

E2 =
(

α

(1 + 3α)/2

)

.

Since we need only one E2, let α= 1 to get

E2 =
(

1
4/3

)

.

Therefore, a second solution is

�2(t)= E1te
4t + E2e

4t =
(

1
1

)

te4t +
(

1
4/3

)

e4t =
(

1 + t
4/3 + t

)

e4t .

�1 and �2 are linearly independent solutions and can be used as columns of the fundamental
matrix

�(t)=
(

e4t (1 + t)e4t

e4t (4/3 + t)e4t

)

.

The general solution is X(t)=�(t)C. �

EXAMPLE 10.11

We will solve X′ = AX when

A =
⎛

⎝
−2 −1 −5
25 −7 0
0 1 3

⎞

⎠ .

A has eigenvalues −2,−2,−2, and all eigenvectors are scalar multiples of

E1 =
⎛

⎝
−1
−5
1

⎞

⎠ .

One solution is�1(t)=E1e−2t . We will try a second solution, linearly independent from the first,
of the form

�2(t)= E1te
−2t + E2e

−2t

in which E2 must be determined. Substitute this proposed solution into the differential equation
to get

E1[e−2t − 2te−2t ] + E2[−2e−2t ] = AE1te
−2t + AE2e

−2t .

Divide out e−2t and recall that AE1 =−2E1 to cancel terms in the last equation, leaving

AE2 + 2E2 = E1.

This is the system

(A + 2I3)E2 = E1.
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If we write

E2 =
⎛

⎝
a
b
c

⎞

⎠

then we have the system of algebraic equations
⎛

⎝
0 −1 −5
25 −5 0
0 1 5

⎞

⎠

⎛

⎝
a
b
c

⎞

⎠=
⎛

⎝
−1
−5
1

⎞

⎠ .

This system has general solution
⎛

⎝
−α

1 − 5α
α

⎞

⎠

for α any real number. Choose α= 1 to get

E2 =
⎛

⎝
−1
−4
1

⎞

⎠ .

This gives us a second solution of the differential equation

�2(t)= E1te
−2t + E2e

−2t

=
⎛

⎝
−1
−5
1

⎞

⎠ te2t +
⎛

⎝
−1
−4
1

⎞

⎠ e−2t =
⎛

⎝
−1 − t
−4 − 5t

1 + t

⎞

⎠ e−2t .

We need one more solution, linearly independent from the first two. Try for a third solution of
the form

�3(t)= 1

2
E1t

2e−2t + E2te
−2t + E3e

−2t .

Substitute this into X′ = AX to get

E1[te−2t − t 2e−2t ] + E2[e−2t − 2te−2t ] + E3[−2e−2t ]

= 1

2
AE1t

2e−2t + AE2te
−2t + AE3e

−2t .

Divide e−2t and use the fact that AE1 =−2E1 and

AE2 =
⎛

⎝
1
3

−1

⎞

⎠

to get

E1t − E1t
2 + E2 − 2E2t − 2E3 =−E1t

2 +
⎛

⎝
1
3

−1

⎞

⎠ t + AE3. (10.2)

Now

E1t − 2E2t = (E1 − 2E2)t =
⎛

⎝
−1 − 2(−1)
−5 − 2(−4)

1 − 2(1)

⎞

⎠ t =
⎛

⎝
1
3

−1

⎞

⎠ t.

Therefore, three terms cancel in equation (10.2) and it reduces to

E2 − 2E1 = AE3.

Write this equation as

(A + 2I3)E3 = E2.
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This is the system
⎛

⎝
0 −1 −5
25 −5 0
0 1 5

⎞

⎠E3 =
⎛

⎝
−11
−4
1

⎞

⎠

with general solution

E3 =
⎛

⎝
(1 − 25α)/25

1 − 5α
α

⎞

⎠ .

Let α= 1 to get

E3 =
⎛

⎝
−24/25

−4
1

⎞

⎠ .

A third solution is

�3(t)= 1

2

⎛

⎝
−1
−5
1

⎞

⎠ t 2e−2t +
⎛

⎝
−1
−4
1

⎞

⎠ te−2t +
⎛

⎝
−24/25

−4
1

⎞

⎠ e−2t

=
⎛

⎝
−24/25 − t − t 2/2
−4 − 4t − 5t 2/2

1 + t + t2/2

⎞

⎠ e−2t .

We now have three linearly independent solutions and can use these as columns of the
fundamental matrix

�(t)=
⎛

⎝
−e−2t (−1 − t)e−2t (−24/25 − t − t 2/2)e−2t

−5e−2t (−4 − 5t)e−2t (−4 − 4t − 5t 2/2)e−2t

e−2t (1 + t)e−2t (1 + t + t2/2)e−2t

⎞

⎠ .

The general solution is X(t)=�(t)C. �

These examples suggest a procedure to follow. Suppose we know the eigenvalues of A. If
these are all distinct, the corresponding eigenvectors are linearly independent and we can write
the general solution.

Thus, suppose an eigenvalue λ has multiplicity k > 1. If there are k linearly inde-
pendent solutions associated with λ, then we can produce k linearly independent solutions
corresponding to λ.

If λ only has r linearly independent associated eigenvectors and r < k, we need from λ a
total of r − k more solutions linearly independent from the others.

If r − k = 1, we need one more solution, which can be obtained as in Example 10.10.
If r − k = 2, proceed as in Example 10.11 to find another linearly independent solution.
If r − k = 3, follow the pattern of the previous cases, trying

�4(t)= 1

3!E1t
3eλt + 1

2
E2t

2eλt + E3te
λt + E4e

λt

where E1,E2, and E3 were found in generating preceding solutions.
If r − k = 4, try

�5(t)= 1

4!E1t
4eλt + 1

3!E2t
3eλt + 1

2
E3t

2eλt + E4te
λt + E5e

λt .

This process must be continued until k linearly independent solutions have been obtained
associated with the eigenvalue λ.
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Repeat this procedure for each eigenvalue of multiplicity greater than 1. Each eigenvalue
must have associated with it as many linearly independent solutions as the multiplicity of the
eigenvalue. This process terminates when n linearly independent solutions have been generated.

SECTION 10.2 PROBLEMS

In each of Problems 1 through 10, find a fundamental
matrix for the system and write the general solution as a
matrix. If initial values are given, solve the initial value
problem.

1. x ′
1 = 3x1, x ′

2 = 5x1 − 4x2

2. x ′
1 = 4x1 + 2x2, x ′

2 = 3x1 + 3x2

3. x ′
1 = x1 + x2, x ′

2 = x1 + x2

4. x ′
1 = 2x1 + x2 − 2x3, x ′

2 = 3x1 − 2x2,

x ′
3 = 3x1 − x2 − 3x3

5. x ′
1 = x1 + 2x2 + x3, x ′

2 = 6x1 − x2, x ′
3 =−x1 − 2x2 − x3

6. x ′
1 = 3x1 − 4x2, x ′

2 = 2x1 − 3x2; x1(0)= 7, x2(0)= 5

7. x ′
1 = x1 − 2x2, x ′

2 =−6x1; x1(0)= 1, x2(0)=−19

8. x ′
1 = 2x1 − 10x2, x ′

2 =−x1 − x2; x1(0)=−3, x2(0)= 6

9. x ′
1 = 3x1 − x2 + x3, x ′

2 = x1 + x2 − x3, x ′
3 = x1 − x2 +

x3; x1(0)= 1, x2(0)= 5, x3(0)= 1

10. x ′
1 = 2x1 + x2 − x3, x ′

2 = 3x1 − 2x2,

x ′
3 = 3x1 + x2 − 3x3; x1(0)= 1, x2(0)= 7, x3(0)= 3

In each of Problems 11 through 15, find a real-valued fun-
damental matrix for the system X′ = AX with the given
coefficient matrix.

11.

(
2 −4
1 2

)

12.

(
0 5

−1 −2

)

13.

(
3 −5
1 −1

)

14.

⎛

⎝
1 −1 1
1 −1 0
1 0 −1

⎞

⎠

15.

⎛

⎝
−2 1 0
−5 0 0
0 3 −2

⎞

⎠

In each of Problems 16 through 21, find a fundamental
matrix for the system with the given coefficient matrix.

16.

(
2 0
5 2

)

17.

(
3 2
0 3

)

18.

⎛

⎝
1 5 0
0 1 0
4 8 1

⎞

⎠

19.

⎛

⎝
2 5 6
0 8 9
0 1 −2

⎞

⎠

20.

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1

−1 −2 0 0

⎞

⎟
⎟
⎠

21.

⎛

⎜
⎜
⎝

1 5 −2 6
0 3 0 4
0 3 0 4
0 0 0 1

⎞

⎟
⎟
⎠

10.3 Solution of X′ = AX + G

We know that the general solution is the sum of the general solution of the homogeneous problem
X′ =AX plus any particular solution of the nonhomogeneous system. We therefore need a method
for finding a particular solution of the nonhomogeneous system. We will develop two methods.

10.3.1 Variation of Parameters

Variation of parameters for systems follows the same line of reasoning as variation of parameters
for second order linear differential equations. If �(t) is a fundamental matrix for the homo-
geneous system X′ = AX, then the general solution of the homogeneous system is �C. Using
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this as a template, look for a particular solution of the nonhomogeneous system of the form
�p(t)=�(t)U(t), where U(t) is an n × 1 matrix to be determined.

Substitute this proposed particular solution into the nonhomogeneous system to obtain

(�U)′ =�′U +�U′ = A(�U)+ G = (A�)U + G. (10.3)

� is a fundamental matrix for the homogeneous system, so �′ = A�. Therefore, �′U = (A�)U
and equation (10.3) becomes

�U′ = G.

Since � is nonsingular,

U′ =�−1G.

Then

U(t)=
∫
�−1(t)G(t)dt

in which we integrate a matrix by integrating each element of the matrix. Once we have U(t), we
have the general solution

X(t)=�(t)C +�(t)U(t)
of the nonhomogeneous system.

EXAMPLE 10.12

We will solve the system

X′ =
(

1 −10
−1 4

)

X +
(

t
1

)

.

The eigenvalues of A are −1,6 with corresponding eigenvectors
(

5
1

)

and

(−2
1

)

.

A fundamental matrix for X′ = AX is

�(t)=
(

5e−t −2e6t

e−t e6t

)

.

Compute

�−1(t)= 1

7

(
et 2et

−e−6t 5e−6t

)

.

This inverse is most easily computed using MAPLE. In this 2 × 2 case we could also proceed as
in Example 7.28 of Section 7.7.

With this inverse matrix, we have

U′(t)=�−1(t)G(t)= 1

7

(
et 2et

−e−6t 5e−6t

)(
t
1

)

= 1

7

(
2et + tet

5e−6t − te−6t

)

.

Then

U(t)=
∫
�−1(t)G(t)dt

=
(

(t + 1)et/7
(−29/252)e−6t + (1/42)te−6t

)

.
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The general solution of the nonhomogeneous system is

X(t)=�(t)C +�(t)U(t)=
(

5e−t −2e6t

e−t e6t

)

C

+
(

5e−t −2e6t

e−t e6t

)(
(t + 1)et/7

(−29/252)e−6t + (1/42)te−6t

)

=
(

5e−t −2e6t

e−t e6t

)

C + 1

3

(
17/6 + (49/7)t

1/12 + t/2

)

. �

Although in this example the coefficient matrix A was constant, this is not required to apply
the method of variation of parameters.

10.3.2 Solution by Diagonalizing A

If A is a diagonalizable matrix of real numbers, then we can solve the system X′ = AX + G by
the change of variables X = PZ, where P diagonalizes A.

EXAMPLE 10.13

We will solve the system

X′ =
(

3 3
1 5

)

X +
(

8
4e3t

)

.

The eigenvalues of A are 2,6, with eigenvectors, respectively,
(−3

1

)

and

(
1
1

)

.

Form P using these eigenvectors as columns:

P =
(−3 1

1 1

)

.

Then

P−1AP = D =
(

2 0
0 6

)

with the eigenvalues down the main diagonal. Compute

P−1 =
(−1/4 1/4

1/4 3/4

)

.

Now make the change of variables X = PZ in the differential equation:

X′ = (PZ)′ = PZ′ = A(PZ)+ G.

Then

PZ′ = (AP)Z + G.

Multiply this equation on the left by P−1 to get

Z′ = (P−1AP)Z + P−1G

or

Z′ = DZ + P−1G.
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This is
(

z′
1

z′
2

)

=
(

2 0
0 6

)(
z1

z2

)

+
(−1/4 1/4

1/4 3/4

)(
8

4e3t

)

=
(

2z1 − 2 + e3t

6z2 + 2 + 3e3t

)

.

This is an uncoupled system, consisting of one differential equation for just z1, and a second
differential equation for just z2. Solve each of these first-order linear differential equations to
obtain

z1(t)= c1e
2t + e3t + 1

z2(t)= c2e
6t − e3t − 1

3
.

Then

X(t)= PZ(t)=
(−3 1

1 1

)(
c1e2t + e3t + 1

c2e6t − e3t − 1/3

)

=
(−3c1e2t + c2e6t − 4e3t − 10/3

c1e2t + c2e6t + 2/3

)

=
(−3e2t e6t

e2t e6t

)

C +
(−4e3t − 10/3

2/3

)

.

This is the general solution in the form�(t)C+�p, which is a sum of the general solution of the
associated homogeneous equation and a particular solution of the nonhomogeneous equation. �

SECTION 10.3 PROBLEMS

In each of Problems 1 through 9, use variation of param-
eters to find the general solution, with A and G given. If
initial conditions are given, also satisfy the initial value
problem

1.

(
5 2

−2 1

)

,

(−3et

e3t

)

2.

(
2 −4
1 −2

)

,

(
1
3t

)

3.

(
7 −1
1 5

)

,

(
2e6t

6te6t

)

4.

⎛

⎝
2 0 0
0 6 −4
0 4 −2

⎞

⎠ ,

⎛

⎝
e2t cos(3t)

−2
−2

⎞

⎠

5.

⎛

⎜
⎜
⎝

1 0 0 0
4 3 0 0
0 0 3 0

−1 2 9 1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
−2et

0
et

⎞

⎟
⎟
⎠

6.

(
2 0
5 2

)

,

(
2

10t

)

;
(

0
3

)

7.

(
5 −4
4 −3

)

,

(
2et

2et

)

;
(−1

3

)

8.

⎛

⎝
2 −3 1
0 2 4
0 0 1

⎞

⎠ ,

⎛

⎝
10e2t

6e2t

−e2t

⎞

⎠ ;
⎛

⎝
5
11
−2

⎞

⎠

9.

⎛

⎝
1 −3 0
3 −5 0
4 7 −2

⎞

⎠ ,

⎛

⎝
te−2t

te−2t

t2e−2t

⎞

⎠ ;
⎛

⎝
6
2
3

⎞

⎠

In each of Problems 10 through 19, find a general solu-
tion of the system. If initial values are given, also solve the
initial value problem.

10. x ′
1 =−2x1 + x2, x ′

2 =−4x1 + 3x2 + 10cos(t)

11. x ′
1 = 3x1 + 3x2 + 8, x ′

2 = x1 + 5x2 + 4e3t

12. x ′
1 = x1 + x2 + 6e3t , x ′

2 = x1 + x2 + 4

13. x ′
1 = 6x1 + 5x2 − 4cos(3t), x ′

2 = x1 + 2x2 + 8

14. x ′
1 = 3x1 − 2x2 + 3e2t , x ′

2 = 9x1 − 3x2 + e2t

15. x ′
1 = x1 + x2 + 6e2t , x ′

2 = x1 + x2 + 2e2t ;
x1(0)= 6, x2(0)= 0

16. x ′
1 = x1 − 2x2 + 2t, x ′

2 =−x1 + 2x2 + 5;
x1(0)= 13, x2(0)= 12

17. x ′
1 = 2x1 − 5x2 + 5 sin(t), x ′

2 = x1 − 2x2;
x1(0)= 10, x2(0)= 5

18. x ′
1 = 5x1 − 4x2 + 4x3 − 3e−3t , x ′

2 = 12x1 − 11x2 +
12x3 + t, x ′

3 = 4x1 − 4x2 + 5x3; x1(0)= 1,
x2(0)=−1, x3(0)= 2

19. x ′
1 = 3x1 − x2 − x3, x ′

2 = x1 + x2 − x3 + t,
x ′

3 = x1 − x2 + x3 + 2et ; x1(0)= 1,
x2(0)= 2, x3(0)=−2
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10.4 Exponential Matrix Solutions

A differential equation y ′ = ay with a as a constant has the general solution y = ceax . This leads
us to ask whether there is an analogous solution for the system X′ = AX with A as an n × n real
constant matrix.

Recall that

eax = 1 + ax + 1

2
(ax)2 + 1

3! (ax)3 + · · · .

Define the exponential matrix eAt by

eAt = In + At + 1

2
A2t 2 + 1

3!A3t 3 + · · · ,
whenever the infinite series defining the i, j element on the right converges for i and j
varying from 1 through n.

It is routine to verify that

e(A+B)t = eAt eBt

if A and B are n × n real matrices that commute, that is, if

AB = BA.

Differentiate a matrix by differentiating each element of the matrix. Using the fact that A is a
constant matrix with derivative zero (the n × n zero matrix), we obtain from the definition that

(eAt)′ = AeAt ,

which has the same form as the familiar

(eat)′ = aeat .

This derivative formula leads to the main point.

THEOREM 10.8

Let A be an n × n real, constant matrix and K be any n × 1 matrix of constants. Then eAtK is a
solution of X′ = AX. In particular, eAt is a fundamental matrix for this system. �

The proof is immediate by differentiating. Upon setting X(t)= eAtK, we have

X′(t)= d

dt
eAtK = AeAt K = AX. �

We therefore have the general solution of X′ = AX if we can compute the exponential
matrix eAt . Except for very simple cases this is impractical by hand and requires a computational
software package. If MAPLE is used, the command

exponential(A,t)

will return eAt if A has been defined and n is not “too large.”
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EXAMPLE 10.14

Let

A =
(

2 −5
1 4

)

.

MAPLE returns the exponential matrix

eAt = e3t

(
cos(2t)− 1

2
sin(2t) − 5

2
sin(2t)

1
2

sin(2t) cos(2t)− 1
2

sin(2t).

)

This is a fundamental matrix for the system X′ = AX. We could also solve this system by
diagonalizing A, which has eigenvalues 3 ± 2i . �

EXAMPLE 10.15

Let

A =
⎛

⎝
2 1 0
0 3 −2
0 1 1

⎞

⎠ .

Then

eAt = e2t

⎛

⎝
1 sin(t)− cos(t)+ 1 2(cos(t)− 1)
0 sin(t)+ cos(t) −2 sin(t)
0 sin(t) cos(t)+ sin(t)

⎞

⎠ .

This is a fundamental matrix for X′ = AX. �

The fundamental matrix �(t)= eAt is sometimes called a transition matrix for the system
X′ = AX. This is a fundamental matrix satisfying �(0)= In .

Variation of Parameters and the Laplace Transform

We will briefly mention a connection between the Laplace transform, the exponential matrix and
the variation of parameters method for finding a particular solution �p(t) of X′ = AX + G, in
which A is an n × n real, constant matrix.

The variation of parameters method is to write �p(t)=�(t)U(t), where

U(t)=
∫
�−1(t)G(t)dt

and �(t) is a fundamental matrix for X′ = AX.
Write U(t) as a definite integral with s as the variable of integration:

U(t)=
∫ t

0

�−1(s)G(s)ds.

Then

�p(t)=�(t)
∫ t

0

�−1(s)G(s)ds

=
∫ t

0

�(t)�−1(s)G(s)ds.

In this, �(t) can be any fundamental matrix for the system. If we choose �(t) = eAt , then
�−1(t)= e−At and

�(t)�−1(s)= eAt e−As = eA(t−s) =�(t − s).
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Now

�p(t)=
∫ t

0

�(t − s)G(s)ds =�(t) ∗ G(t).

If we take the Laplace transform of a matrix by applying the transform to each element, then the
last equation is a convolution formula for a particular solution.

To illustrate the idea, consider the system

X′ =
(

1 −4
1 5

)

X +
(

e2t

t

)

.

Compute

�(t)= eAt =
(
(1 − 2t)e3t −4te3t

te3t (1 + 2t)e3t

)

.

A particular solution of the system is

�p(t)=
∫ t

0

�(t − s)G(s)ds

=
∫ t

0

(
(1 − 2(t − s))e3(t−s) −4(t − s)e3(t−s)

(t − s)e3(t−s) (1 + 2(t − s))e3(t−s)

)(
e2s

s

)

ds

=
∫ t

0

(
(1 − 2t + 2s)e3t e−s − 4s(t − s)e3t e−3s

(t − s)e3t e−s + s(1 + 2t − 2s)e3t e−3s

)

ds

=
(∫ t

0
[(1 − 2t + 2s)e3t e−s − 4s(t − s)e3t e−3s]ds∫ t

0
[(t − s)e3t e−s + (1 + 2t − 2s)e3t e−3s]ds

)

=
(−3e2t + 89

27
e3t − 22

9
te3t − 4

9
t − 8

27

e2t + 11
9

te3t − 28
27

e3t − 1
9
t + 1

27

)

.

The general solution is X(t)=�(t)C +�p(t), in which C is an n × 1 matrix of constants.

SECTION 10.4 PROBLEMS

In each of the following, use a software package to com-
pute eAt , obtaining a fundamental matrix for the system
X′ = AX, .

1. A =
(−1 1

−5 1

)

2. A =
(−2 1

2 −1

)

3. A =
(

5 −2
4 8

)

4. A =
(

4 −1
2 −2

)

5. A =
⎛

⎝
1 0 1

−2 1 1
1 −1 0

⎞

⎠

6. Let D be an n × n diagonal matrix of numbers,
with j th diagonal element d j . Show that eDt is the

n × n diagonal matrix having ed j t as its j th diagonal
element.

7. Let A be an n × n matrix of numbers, and let P be an
n ×n nonsingular matrix of numbers. Let B=P−1AP.
Show that

eBt = P−1eAt P.

From this, conclude that

eAt = PeBt P−1.

8. Use the results of Problems 6 and 7 to show that, if
P diagonalizes A, so P−1AP = D, which is a diagonal
matrix with diagonal elements dj . Then

eAt = PeDt P−1,

where eDt is the diagonal matrix having ed j t as main
diagonal elements.

9. Use the result of Problem 8 to determine the exponen-
tial matrix in each of Problems 1 and 2.
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10.5 Applications and Illustrations of Techniques

This section presents some examples involving mechanical systems and electrical circuits, whose
analysis gives rise to systems of differential equations. We have previously applied the Laplace
transform to solve such systems. Here we will apply matrix methods.

EXAMPLE 10.16 A Mass/Spring System

We will analyze the system of three springs and two weights shown in Figure 10.2, which dis-
plays the spring constants and the mass of each weight. At time 0, the upper weight is pulled
down one unit and the lower one is raised one unit, then both are released. We want to know the
position of each weight relative to its equilibrium position at any later time.

The initial value problem to be solved is

y ′′
1 =−8y1 + 2y2,

y ′′
2 = 2y1 − 5y2,

y1(0)= 1, y2(0)=−1, y ′
1(0)= y ′

2(0)= 0.

Begin by converting this system of two second-order differential equations to a system of four
first-order differential equations by putting

x1 = y1,

x2 = y2,

x3 = y ′
1,

and

x4 = y ′
2.

k1 = 6

y1

y2

k2 = 2

m2 = 1

k3 = 3

FIGURE 10.2 Mass/spring
system of Example 10.16.
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The system of two second-order equations translates to the following system in terms of
x1, · · · , x4:

x ′
1 = y ′

1 = x3,

x ′
2 = y ′

2 = x4,

x ′
3 = y ′′

1 =−8y1 + 2y2 =−8x1 + 2x2,

x ′
4 = y ′′

2 = 2y1 − 5y2 = 2x1 − 5x2,

and

x1(0)= 1, x2(0)=−1, x3(0)= x4(0)= 0.

This is the system X′ = AX with

A =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1

−8 2 0 0
2 −5 0 0

⎞

⎟
⎟
⎠

and

X(0)=

⎛

⎜
⎜
⎝

1
−1
0
0

⎞

⎟
⎟
⎠ .

A has the characteristic equation

(λ2 + 4)(λ2 + 9)= 0

with eigenvalues ±2i and ±3i . Corresponding to the eigenvalues 2i and 3i , we find two
eigenvectors

⎛

⎜
⎜
⎝

1
2
0
0

⎞

⎟
⎟
⎠+ i

⎛

⎜
⎜
⎝

0
0
2
4

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

2
−1
0
0

⎞

⎟
⎟
⎠+ i

⎛

⎜
⎜
⎝

0
0
6

−3

⎞

⎟
⎟
⎠ .

The complex conjugates of these eigenvectors are also eigenvectors corresponding to eigenvalues
−2i and −3i . However, we will not write these other two eigenvectors, because we will use The-
orem 10.8 to write the four linearly independent solutions involving only real-valued functions.
From the eigenvector for 2i , write the two solutions

⎛

⎜
⎜
⎝

1
2
0
0

⎞

⎟
⎟
⎠ cos(2t)−

⎛

⎜
⎜
⎝

0
0
2
4

⎞

⎟
⎟
⎠ sin(2t) and

⎛

⎜
⎜
⎝

1
2
0
0

⎞

⎟
⎟
⎠ sin(2t)+

⎛

⎜
⎜
⎝

0
0
2
4

⎞

⎟
⎟
⎠ cos(2t).

From the eigenvector for 3i , write the two solutions
⎛

⎜
⎜
⎝

2
−1
0
0

⎞

⎟
⎟
⎠ cos(3t)−

⎛

⎜
⎜
⎝

0
0
6

−3

⎞

⎟
⎟
⎠ sin(3t) and

⎛

⎜
⎜
⎝

2
−1
0
0

⎞

⎟
⎟
⎠ sin(3t)+

⎛

⎜
⎜
⎝

0
0
6

−3

⎞

⎟
⎟
⎠ cos(3t).

Use these four linearly independent solutions as columns of the fundamental matrix

�(t)=

⎛

⎜
⎜
⎝

cos(2t) sin(2t) 2cos(3t) 2 sin(3t)
2cos(2t) 2 sin(2t) − cos(3t) − sin(3t)
−2 sin(2t) 2cos(2t) −6 sin(3t) 6cos(3t)
−4 sin(2t) 4cos(2t) 3 sin(3t) −3cos(3t)

⎞

⎟
⎟
⎠ .
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Notice that row three is the derivative of row one, and row four is the derivative of row two,
consistent with the fact that x3 = y ′

1 = x ′
1 and x4 = y ′

2 = x ′
2. This serves as a partial check on the

computations.
The general solution of the system is X(t)=�(t)C. To solve the initial value problem, we

need

�(0)C =

⎛

⎜
⎜
⎝

1 0 2 0
2 0 −1 0
0 2 0 6
0 4 0 −3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

c1

c2

c3

c4

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

1
−1
0
0

⎞

⎟
⎟
⎠ .

This has the unique solution

C =

⎛

⎜
⎜
⎝

−1/5
0

3/5
0

⎞

⎟
⎟
⎠ .

The solution of the initial value problem is

X(t)=

⎛

⎜
⎜
⎝

cos(2t) sin(2t) 2cos(3t) 2 sin(3t)
2cos(2t) 2 sin(2t) − cos(3t) − sin(3t)
−2 sin(2t) 2cos(2t) −6 sin(3t) 6cos(3t)
−4 sin(2t) 4cos(2t) 3 sin(3t) −3cos(3t)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

−1/5
0

3/5
0

⎞

⎟
⎟
⎠

= 1

5

⎛

⎜
⎜
⎝

− cos(2t)+ 6cos(3t)
−2cos(2t)− 3cos(3t)
2 sin(2t)− 18 sin(3t)
4 sin(2t)+ 9 sin(3t)

⎞

⎟
⎟
⎠ .

Since x1 = y1 and x2 = y2, we may write, in the notation of Figure 10.2,

y1(t)=−1

5
cos(2t)+ 6

5
cos(3t)

y2(t)=−2

5
cos(2t)− 3

5
cos(3t).

We could also have used the exponential matrix to produce a fundamental matrix. MAPLE
may produce a different fundamental matrix than that found using Theorem 10.7, but of course,
the solution of the initial value problem is the same. �

EXAMPLE 10.17 An Electrical Circuit

Assume that the currents and charges in the circuit of Figure 10.3 are zero until time t = 0, at
which time the switch is closed. We want to determine the current in each loop.

Use Kirchhoff’s voltage and current laws on the left and right loops to obtain

5i1 + 5(i ′
1 − i ′

2)= 10 (10.4)

and

5(i ′
1 − i ′

2)= 2i2 + q2

5 × 10−2
. (10.5)

Using the exterior loop (around the entire circuit), we get

5i1 + 20i2 + q2

5 × 10−2
= 10. (10.6)
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5 Ω 20 Ω

5 × 10–2 F

5 H 
i2

i1

10 V

FIGURE 10.3 Circuit of Example 10.17.

Any two of these equations contain all of the information needed to solve the problem. We will
use equations (10.4) and (10.6). The reason for this choice is that we would have to differentiate
the second equation to eliminate the q2 term in equation (10.5), producing second derivative
terms in the currents. This is avoided by using the first and third equations.

Divide equations (10.4) and (10.6) by 5 and differentiate the new equation (10.6), using the
fact that q ′

2 = i2, to obtain

i ′
1 − i ′

2 =−i1 + 2

i ′
1 + 4i ′

2 =−4i2.

We must determine the initial conditions. We know that

i1(0−)= i2(0−)= q2(0−)= 0.

Then (i1 − i2)(0−) = 0. Since the current i1 − i2 through the inductor is continuous, then
(i1 − i2)(0+)= 0 also. Therefore,

i1(0+)= i2(0+)= 0.

Put this into equation (10.6) and use the fact that the charge on the capacitor is continuous to
obtain

5i1(0+)+ 20i2(0+)+ 20q2(0+)= 10

or

25i1(0+)= 10.

Then

i1(0+)= i2(0+)= 10

25
= 2

5

amperes. Finally, the initial value problem for the currents is

i ′
1 − i ′

2 =−i1 + 2

i ′
1 + 4i ′

2 =−4i2

i1(0+)= i2(0+)= 2

5
.

In matrix form,
(

1 −1
1 4

)(
i1

i2

)′
=
(−1 0

0 −4

)(
i1

i2

)

+
(

2
0

)

.
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This can be written as

Bi′ = Ai + K.

This is not quite in the form we have studied. However, |B|= 5, so B is nonsingular. We find that

B−1 = 1

5

(
4 1

−1 1

)

.

Multiply the system by B−1 to obtain
(

i1

i2

)′
=
(−4/5 −4/5

1/5 −4/5

)(
i1

i2

)

+
(

8/5
−2/5

)

.

This is in the standard form

i′ = Ai + G

in which

A =
(−4/5 −4/5

1/5 −4/5

)

.

We will use the exponential matrix and variation of parameters to solve for the currents, assuming
availability of software to compute eAt and carry out integrations and matrix products that are
needed. First, compute the fundamental matrix

�(t)= eAt =
(

e−4t/5 cos(2t/5) −2e−4t/5 sin(2t/5)
1
2
e−4t/5 sin(2t/5) e−4t/5 cos(2t/5)

)

.

Then

�−1(t)=
(

e4t/5 cos(2t/5) 2e4t/5 sin(2t/5)
− 1

2
e4t/5 sin(2t/5) e4t/5 cos(2t/5)

)

.

The general solution of the associated homogeneous system i′ = Ai is �C.
For a particular solution �p of the nonhomogeneous system, first compute

�−1G =�
(

8/5
−2/5

)

=
(

8
5
e4t/5 cos(2t/5)− 4

5
e4t/5 sin(2t/5)

− 4
5
e4t/5 sin(2t/5)− 2

5
e4t/5 cos(2t/5)

)

.

Form

U(t)=
∫
�−1(t)G(t)dt =

(
2e4t/5 cos(2t/5)
−e4t/5 sin(2t/5)

)

.

A particular solution of the nonhomogeneous system is

�(t)=�(t)U(t)=
(

2cos2(2t/5)+ 2 sin2(2t/5)
cos(2t/5) sin(2t/5)− cos(2t/5) sin(2t/5)

)

=
(

2
0

)

.

The general solution of i′ = Ai + G is

i =
(

e−4t/5 cos(2t/5) −2e−4t/5 sin(2t/5)
1
2
e−4t/5 sin(2t/5) e−4t/5 cos(2t/5)

)(
c1

c2

)

+
(

2
0

)

.

Since i1(0)= i2(0)= 2/5, then we must choose c1 and c2 so that
(

2/5
2/5

)

=
(

1 0
0 1

)(
c1

c2

)

+
(

2
0

)

.

Then c1 =−8/5 and c2 = 2/5. The solution for the currents is
(

i1

i2

)

=
(

e−4t/5 cos(2t/5) −2e−4t/5 sin(2t/5)
1
2
e−4t/5 sin(2t/5) e−4t/5 cos(2t/5)

)(−8/5
2/5

)

+
(

2
0

)

.
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This gives us

i1(t)= 2 − 4

5
e−4t/5 (2cos(2t/5)+ sin(2t/5))

i2(t)= 2

5
e−4t/5 (cos(2t/5)− 2 sin(2t/5)) .

The currents can also be obtained by diagonalizing A and changing variables by setting
i = PZ, where P diagonalizes A. This is a straightforward computation but is a little tedious
because the eigenvalues of A are complex. �

EXAMPLE 10.18 Another Electrical Circuit

The circuit of Figure 10.4 has three connected loops (and of course, the external loop). The
currents in these three loops are zero prior to t = 0, at which time the switch is closed. The
capacitor is in a discharged state at time zero. We want to determine the current in each loop at
all later times.

Apply Kirchhoff’s current and voltage laws to obtain

4i1 + 2i ′
1 − 2i ′

2 = 36, (10.7)

2i ′
1 − 2i ′

2 = 5i2 + 10q2 − 10q3, (10.8)

10q2 − 10q3 = 5i3, (10.9)

4i1 + 5i2 + 10q2 − 10q3 = 36, (10.10)

4i1 + 5i2 + 5i3 = 36, (10.11)

2i ′
1 − 2i ′

2 = 5i2 + 5i3. (10.12)

Any three of these equations are enough to determine the currents. Because equation
(10.8) involves both charge and current terms, we would have to differentiate to put every-
thing in terms of currents (recall that q ′

j = i j ). This would introduce second derivatives, which
we want to avoid. Cross out this equation. We could use equation (10.11) to eliminate one
variable and reduce the problem to a two by two system, but this would involve a lot of
algebra.

Equation (10.9) is a likely candidate to retain. If we then use equations (10.7) and (10.12),
we obtain a system of the form Bi′ = Di + F with B as singular, so we would not be able to
multiply by B−1 to obtain a system in standard form.

4 Ω 5 Ω 5 Ω

 10–1 F

2 H i2i1
i3

36 V

FIGURE 10.4 Circuit of Example 10.18.
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We therefore choose to use equations (10.7), (10.9), and (10.10). In rearranged order and
some manipulation, these can be rewritten as

i ′
1 − i ′

2 =−2i1 + 18,

4i ′
1 + 5i ′

2 =−10i1 + 10i3,

and

i ′
3 = 2i2 − 2i3.

Henceforth, we refer to this as the system. We must determine the initial conditions. The
conductor current i1 − i2 is continuous, and i1(0−)− i2(0−)= 0. Therefore,

i1(0+)− i2(0+)= 0,

so

i1(0+)= i2(0+).
The capacitor charge q1 − q2 is also continuous. Since q1(0−)− q2(0−)= 0, then

q1(0+)= q2(0+).
By equation (10.9),

i3(0+)= 0.

Now use equation (10.11) to write

4i1(0+)+ 5i2(0+)+ 5i3(0+)= 36.

Since i3(0+)= 0 and i1(0+)= i2(0+), then 9i1(0+)= 36. So

i1(0+)= i2(0+)= 4.

In summary, we now have the system
⎛

⎝
1 −1 0
4 5 0
0 0 1

⎞

⎠

⎛

⎝
i1

i2

i3

⎞

⎠

′

=
⎛

⎝
−2 0 0
0 −10 10
0 2 −2

⎞

⎠

⎛

⎝
i1

i2

i3

⎞

⎠+
⎛

⎝
18
0
0

⎞

⎠ . (10.13)

This has the form Bi′ = Di + F with B nonsingular. The initial condition is

i(0+)=
⎛

⎝
4
4
0

⎞

⎠ .

Multiply the system (10.13) by

B−1 = 1

9

⎛

⎝
5 1 0

−4 1 0
0 0 9

⎞

⎠

to obtain a system
⎛

⎝
i1

i2

i3

⎞

⎠

′

=
⎛

⎝
−10/9 −10/9 10/9

8/9 −10/9 10/9
0 2 −2

⎞

⎠

⎛

⎝
i1

i2

i3

⎞

⎠+
⎛

⎝
10
−8
0

⎞

⎠ .

This is in the standard form i′ =Ai+G. A has eigenvalues 0,−2, and −20/9 with corresponding
eigenvectors

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
5
0

−4

⎞

⎠ , and

⎛

⎝
10
1

−9

⎞

⎠ .
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The matrix

P =
⎛

⎝
0 5 10
1 0 1
1 −4 −9

⎞

⎠

diagonalizes A. To make the change of variables i = PZ, we will need

P−1 = 1

10

⎛

⎝
4 5 5
10 −10 10
−4 5 −5

⎞

⎠ and P−1G =
⎛

⎝
0
18
−8

⎞

⎠ .

Now set i = PZ in the system to obtain

PZ′ = (AP)Z + G.

Multiply this system on the left by P−1 for

Z′ = (P−1AP)Z + P−1G

or

Z′ = DZ + P−1G

in which D is the 3×3 diagonal matrix having the eigenvalues of A down its main diagonal. This
uncoupled system is

⎛

⎝
z′

1

z′
2

z′
3

⎞

⎠=
⎛

⎝
0 0 0
0 −2 0
0 0 −20/9

⎞

⎠

⎛

⎝
z1

z2

z3

⎞

⎠+
⎛

⎝
0
18
−8

⎞

⎠ .

The uncoupled differential equations for the z j ’s are

z′
1 = 0

z′
2 + 2z2 = 18

and

z′
3 + 20

9
z3 =−8,

which we solve individually to obtain

z1 = c1

z2 = c2e
−2t + 9

z3 = c3e
−20t/9 − 18

5
.

Then

i =
⎛

⎝
i1

i2

i3

⎞

⎠= PZ =
⎛

⎝
0 5 10
1 0 1
1 −4 −9

⎞

⎠

⎛

⎝
z1

z2

z3

⎞

⎠

=
⎛

⎝
0 5 10
1 0 1
1 −4 −9

⎞

⎠

⎛

⎝
c1

c2e−2t + 9
c3e−20t/9 − 18/5

⎞

⎠

=
⎛

⎝
9 + 5c2e−2t + 10c3e−20t/9

c1 + c3e−20t/9 − 18/5
c1 − 4c2e−2t − 9c3e−20t/9 − 18/5

⎞

⎠ .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 20:32 THM/NEIL Page-327 27410_10_ch10_p295-342

10.5 Applications and Illustrations of Techniques 327

Now use the initial condition to solve for the constants. Solve

i(0+)=
⎛

⎝
4
4
0

⎞

⎠=
⎛

⎝
5c2 + 10c3 + 9
c1 + c3 − 18/5

c1 − 4c2 − 9c3 − 18/5

⎞

⎠ .

This can be written as
⎛

⎝
0 5 10
1 0 1
1 −4 −9

⎞

⎠C = PC =
⎛

⎝
−5

38/5
18/5

⎞

⎠ .

Then

C = P−1

⎛

⎝
−5

38/5
18/5

⎞

⎠= 1

10

⎛

⎝
4 5 5
10 −10 10
−4 5 −5

⎞

⎠

⎛

⎝
−5

38/5
18/5

⎞

⎠=
⎛

⎝
18/5
−9
4

⎞

⎠ .

The current is

i =
⎛

⎝
9 − 4te−2t + 40e−20t/9

4e−20t/9

36e−2t − 36e−20t/9

⎞

⎠ . �

SECTION 10.5 PROBLEMS

1. Referring to the circuit of Figure 10.4, determine how
much time elapses between the time the switch is
closed and the time the charge on the capacitor is
a maximum. What is the maximum voltage on the
capacitor?

2. Referring to Figure 10.5, tank 1 initially contains 200
gallons of saltwater (brine), while tank 2 initially con-
tains 300 gallons of brine. Beginning at time 0, brine
is pumped into tank 1 at the rate of 4 gallons per
minute, pure water is pumped into tank 2 at 6 gallons
per minute, and the brine solutions are interchanged
between the two tanks and also flow out of both tanks
at the rates shown. The input to tank 1 contains 1/4

pound of salt per gallon, tank 1 initially has 200
pounds of salt, and tank 2 initially has 150 pounds
of salt. Determine the amount of salt in each tank at
time t > 0.

3. Two tanks are connected as shown in Figure 10.6.
Tank 1 initially contains 100 gallons of water in which
40 pounds of salt are dissolved. Tank 2 initially con-
tains 150 gallons of pure water. Beginning at t = 0, a
brine solution containing 1/5 pound of salt per gal-
lon is pumped into tank 1 at the rate of 5 gallons
per minute. At this time, a solution which also con-
tains 1/5 pound of salt per gallon is pumped into
tank 2 at the rate of 10 gallons per minute. The

Tank 2Tank 1

Brine 4 gal/min

4 gal/min

12 gal/min Water 6 gal/min

6 gal/min

12 gal/min

FIGURE 10.5 Connected tank system for Problem 2, Section 10.5.
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Tank 2Tank 1

Brine
5 gal/min 3 gal/min

Brine
10 gal/min

6 gal/min 2 gal/min 9 gal/min

FIGURE 10.6 Tank system for Problem 3, Section 10.5.

brine solutions are interchanged between the tanks
and also flow out of both tanks at the rates shown.
Determine the amount of salt in each tank for t ≥ 0.
Also calculate the time at which the brine solution
in tank 1 reaches its minimum salinity (concentration
of salt) and determine how much salt is in tank 1 at
that time.

4. Find the currents i1(t) and i2(t) in the circuit of
Figure 10.7 for t > 0, assuming that the currents and
charges are all zero prior to the switch being closed at
t = 0.

50 Ω

1 H 

10–3 F 

i2

i1

5 V

FIGURE 10.7 Circuit for Problem 4, Section 10.5.

Each of Problems 5 and 6 refer to the system of
Figure 10.8. Derive and solve the differential equations for
the motions of the masses under the assumption that there
is no damping.

5. Each mass is pulled downward one unit and released
from rest with no external driving forces.

6. The masses have zero initial displacement and veloc-
ity. The lower mass is subjected to an external driving
force of magnitude F(t)= 2 sin(3t), while the upper
mass has no driving force applied to it.

k1 = 8

y1

y2

k2 = 3

m1 = 1/2

m2 = 1/2

FIGURE 10.8 Mass/spring
system for Problems 5 and 6,
Section 10.5.

7. Refer to the mechanical system of Figure 10.9. The
left mass is pushed to the right one unit, and the right
mass is pushed to the left one unit. Both are released
from rest at time t = 0. Assume that there are no
external driving forces. Derive and solve the differ-
ential equations with appropriate initial conditions for
the displacement of the masses, assuming that there
is no damping. Denote left to right as the positive
direction.

k1 = 8 k2 = 5

m1 = 2 m2 = 2

k3 = 8

FIGURE 10.9 Mass/spring system for Problem 7,
Section 10.5.
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8. Find the currents in each loop of the circuit of
Figure 10.10. Assume that the currents and charges
are all zero prior to the switch being closed
at t = 0.

40 Ω

10–3 F

10 H
i2

i1

5 V

FIGURE 10.10 Circuit for Problem 8, Section 10.5.

9. In the circuit of Figure 10.11, assume that the cur-
rents and charges are all zero prior to the switch
being closed at time 0. Find the loop currents for
time t > 0.

50 Ω

10–3 F
10 H 

i2
i1

5 V

FIGURE 10.11 Circuit for Problem 9, Section 10.5.

10. Find the loop currents in the circuit of Figure 10.12
for t >0, assuming that the currents and charge are all
zero prior to the switch being closed at t = 0. Also
determine the maximum value of Eout(t) and when
this maximum value is reached.

20 Ω 25 Ω

25 Ω
1/50 F 

10 H Eouti1

45 V
i2

i3

FIGURE 10.12 Circuit for Problem 10, Section 10.5.

11. Derive a system of differential equations for the dis-
placement functions for the masses in Figure 10.13, in
which a = 10

√
26. Assume that the top weight is low-

ered one unit and the lower one raised one unit, then
both are released from rest at time 0. The upper weight
is free of external driving forces, while the lower
weight is subjected to an external force of magnitude
F(t)= 39 sin(t).

k1 = 65 – a

y1

y2

k2 = a

k3 = 65 – a

m1 = 5

m2 = 13

FIGURE 10.13 Mass/spring
system for Problem 11,
Section 10.5.

10.6 Phase Portraits

10.6.1 Classification by Eigenvalues

Consider the linear 2 × 2 system X′ = AX with A as a real nonsingular matrix and

X(t)=
(

x(t)
y(t)

)

.

We know how to solve this system. However, now we want to focus on the geometry and
qualitative behavior of solutions.
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Given a solution, we can think of the point (x(t), y(t)) as moving along a curve or trajectory
in the plane as t , often thought of as time, increases. A copy of the plane, with trajectories drawn
through various points, is called a phase portrait for X′ = AX. Phase portraits provide visual
insight into how the trajectories move and how solutions behave. Because of the uniqueness of
solutions of initial value problems, there can be only one trajectory through any given point in the
plane. Furthermore, two distinct trajectories cannot intersect, because at the point of intersection
there would be two trajectories through the same point, and these would both be solutions of the
same initial value problem.

Often phase portraits are drawn within a direction field. Recall from Chapter 5 that a direc-
tion field consists of short line segments of tangents to trajectories. These tangent segments
outline the way solution curves move in the plane, and provide a flow pattern for the trajectories.
Arrows drawn along these segments indicate the direction of the flow as t increases.

For the system X′ =AX, the origin (0,0) plays a special role. This point is actually the graph
of the constant solution

x(t)= 0, y(t)= 0 for all t

which is the solution of the unique initial value problem

X′ = AX;X(0)=
(

0
0

)

.

No other trajectory can pass through the origin, because then two distinct trajectories would
intersect.

We will now examine trajectories of X′ = AX, paying particular attention to their behavior
near the origin. Because solutions are determined by the eigenvalues of A, we will use these to
distinguish cases.

Case 1: Real Distinct Eigenvalues λ and μ of the Same Sign

Let associated eigenvectors be E1 and E2. Because λ and μ are distinct, these eigenvectors are
linearly independent and the general solution is

X(t)=
(

x(t)
y(t)

)

= c1E1e
λt + c2E2e

μt .

Represent the vectors E1 and E2 as vectors from the origin, as in Figure 10.14. Draw L1 and L2,
respectively, through the origin along these vectors. These will serve as guidelines in drawing
trajectories.

Case 1(a): The Eigenvalues are Negative, say λ<μ< 0

Now eλt → 0 and eμt → 0 as t → ∞, so X(t)→ (0,0) and each trajectory approaches the ori-
gin. This can happen in three ways, depending on an initial point P0 : (x0, y0) we choose for a
trajectory to pass through at time t = 0. These possibilities are as follows.

1. If P0 is on L1, then c2 = 0 and

X(t)= c1e
λt .

For any t this is a scalar multiple of E1, so the trajectory through P0 is part of L1, with arrows
along it pointing toward the origin because the trajectory moves toward the origin as time
increases. This is the trajectory T1 of Figure 10.15.

2. If P0 is on L2, then c1 = 0 and now

X(t)= c2e
μt .

This trajectory is part of the line L2, with arrows of the direction field indicating that it also
approaches the origin as t increases. This is the trajectory T2 of Figure 10.15.
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x

y

L1
L2

E1
E2

FIGURE 10.14 Eigenvectors E1, E2 in
Case 1.

P0

P0

P0

L1

L2
T1

T2

T3

x

y

FIGURE 10.15 Trajectories in Case 1-a.

3. If P0 is on neither L1 or L2, then the trajectory is a curve through P0 having the parametric
form

X(t)= c1E1e
λt + c2E2e

μt .

Write this as

X(t)= eμt [c1E1e
(λ−μ)t + c2E2].

Because λ − μ < 0, e(λ−μ)t → 0 as t → ∞ and the term c1E1e(λ−μ)t exerts increasingly less
influence on X(t). The trajectory still approaches the origin, but also approaches the line L2

asymptotically as t → ∞, as with T3 in Figure 10.15.
A phase portrait of X′ = AX in this case therefore has all trajectories approaching the origin,

some along L1, some along L2, and all others asymptotic to L2. In this case, the origin is called
a nodal sink of the system. We can think of particles flowing along the trajectories toward (but
never quite reaching) the origin.

EXAMPLE 10.19

Suppose

A =
(−6 −2

5 1

)

.

A has eigenvalues and eigenvectors

−1,

(
2

−5

)

and − 4,

(−1
1

)

.

Here λ=−4 and μ=−1. The general solution is

X(t)= c1

(−1
1

)

e−4t + c2

(
2

−5

)

e−t .

L1 is the line through the origin and (−1,1) and L2 the line through the origin and (2,−5).
Figure 10.16 shows a phase portrait for this system. The origin is a nodal sink. �

Case 1(b): The Eigenvalues are Positive, say 0 <μ<λ

Now the trajectories are the same as in Case 1 (a), but the flow is reversed. Instead of flowing
into the origin, the trajectories are directed out of and away from the origin, because now eλt and
eμt approach ∞ instead of zero as t → ∞. All of the arrows on the trajectories now point away
from the origin and (0,0) is called a nodal source.
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y

3

2

1

–1

–2

x
43210–1–2–3

FIGURE 10.16 Phase portrait in Example
10.19.

EXAMPLE 10.20

The system

X′ =
(

3 3
1 5

)

X

has a nodal source at the origin because the eigenvalues are 2 and 6 and these are positive and
distinct. The general solution is

X(t)= c1

(−3
1

)

e2t + c2

(
1
1

)

e6t

and a phase portrait is shown in Figure 10.17. �

Case 2: The Eigenvalues of A are of Opposite Sign

Suppose the eigenvalues are μ and λ, with μ< 0<λ. The general solution will again have the
form

y

x
0–0.5–1–1.5–2

2.5

2

1.5

1

0.5

–0.5

–1

FIGURE 10.17 Phase portrait in Example
10.20.
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X(t)= c1E1e
λt + c2E2e

μt .

Examine trajectories along an arbitrary point P0 other than the origin.

1. If P0 is on L1, then c2 = 0 and X(t) moves on part of L1 away from the origin as t
increases, because eλt → ∞ as t → ∞.

2. If P0 is on L2, then c1 =0 and X(t)moves on part of L2 toward the origin, because eμt →0
as t →∞. Thus, along these lines, some trajectories move toward the origin, others move
away.

3. Now suppose P0 is on neither L1 or L2. Then the trajectory through P0 does not pass
arbitrarily close to the origin for any times but instead moves toward the origin asymptotic
to L2 and then away from the origin asymptotic to L1 as t increases. We may think
of L1 and L2 as separating the plane into four regions with each trajectory confined to
one region (because a trajectory starting in one of these regions cannot cross another
trajectory along one of L1 or L2 to pass into another region). The trajectories move along
L1 away from the origin and along L2 toward the origin or in one of the four regions these
lines determine, sweeping toward and then away from the origin asymptotic to these lines.
This is similar to Halley’s comet entering our solar system and moving toward the Sun,
then sweeping along a curve that takes it away from the Sun.

In this case, we call the origin a saddle point.
The behavior we have just described can be seen in the following example.

EXAMPLE 10.21

The system

X′ =
(−1 3

2 −2

)

X

has general solution

X(t)= c1

(−1
1

)

e−4t + c2

(
3
2

)

et .

The eigenvalues of A are −4 and 1, real and of opposite sign. Figure 10.18 shows a phase portrait,
with a saddle point at the origin.

Case 3: A Has Equal Eigenvalues

Suppose A has the eigenvalue λ of multiplicity 2. There are two possibilities.

Case 3(a): A Has Two Linearly Independent Eigenvectors E1 and E2

Now the general solution is

X = (c1E1 + c2E2)e
λt .

If

E1 =
(

a
b

)

and E2 =
(

h
k

)

,

then, in terms of components,

x(t)= (c1a + c2b)e
λt and y(t)= (c1h + c2k)e

kt .

Now
y(t)

x(t)
= constant.
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y

10

5

–5

x
1050–5–10

FIGURE 10.18 Phase portrait in Example
10.21.

x

y

FIGURE 10.19 Proper node in Case 3(a).

x

y

W + 2EW + E

W

E

W − E

−W + 2E

FIGURE 10.20 W and E in Case 3(b).

This means that the trajectories in this case are half-lines from the origin. If λ> 0, these move
away from the origin as t increases, and if λ< 0, they move toward the origin. The origin in this
case is called a proper node. Figure 10.19 illustrates this for trajectories moving away from the
origin.

Case 3(b): A Does Not Have Two Linearly Independent Eigenvectors

In this case the general solution has the form

X(t)=[c1W + c2E]eλt + c1Eteλt ,

where E is an eigenvector and W is determined by the procedure outlined in Section 10.2.2.
To visualize the trajectories, begin with arrows from the origin representing W and E. Using

these we can draw vectors c1W + c2E, which may have various orientations relative to W and
E, depending on the signs and magnitudes of the constants. Some possibilities are shown in
Figure 10.20. For given c1 and c2, c1W + c2E + c1Et sweeps out a straight line L as t varies. For
a given t , X(t) is eλt times this vector (see Figure 10.21). If λ is negative, this vector shrinks to
zero length as t → ∞ and X(t) sweeps out a curve that approaches the origin tangent to E. If λ
is positive, reverse the orientation on this trajectory.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 20:32 THM/NEIL Page-335 27410_10_ch10_p295-342

10.6 Phase Portraits 335

L

E
W

c1W + c2E + c1Et

X(t)

x

y

FIGURE 10.21 Trajectory formed from W
and E in Case 3(b).

The origin in this case is called an improper node of X′ = AX. The next example shows
typical trajectories in the case of an improper node.

EXAMPLE 10.22

Let

A =
(−10 6

−6 2

)

.

A has an eigenvalue of −4, and every eigenvector is a nonzero multiple of

E =
(

1
1

)

.

A routine calculation gives

W =
(

1
7/6

)

.

The general solution is

X(t)= c1

(
t + 1

t + 7/6

)

e−4t + c2

(
1
1

)

e−4t .

Figure 10.22 is a phase portrait for this system. The trajectories approach the origin tangent to
the line through E, when this vector is represented as an arrow from the origin. The origin is an
improper node for this system.

Case 4: A Has Complex Eigenvalues With Nonzero Real Part

Let λ=α+ iβ be an eigenvalue with α �= 0 and eigenvector U + iV. Then the general solution is

X(t)= c1e
αt [U cos(βt)− v sin(βt)] + c2e

αt [U sin(βt)+ V sin(βt)].
The trigonometric terms cause the solution vector X(t) to rotate as t increases, while if α < 0,
the length of X(t) decreases to zero. Thus, trajectories spiral inward toward the origin as t → ∞
and the origin is called a spiral sink.

If α>0, the trajectories spiral outward from the origin as t increases, and the origin is called
a spiral source.

In both cases, we call the origin a spiral point.
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FIGURE 10.22 Improper node in Example 10.22.

EXAMPLE 10.23

Let

A =
(−1 −2

4 3

)

.

Eigenvalues are 1 ± 2i , so α= 1 and β = 2 in the discussion. An eigenvector for the eigenvalue
1 + 2i is U + iV, where

U =
(−1

2

)

and V =
(

1
0

)

.

The general solution is

X(t)= c1e
t [U cos(2t)− V sin(2t)]

+ c2e
t [u sin(t)+ V cos(2t)].

Figure 10.23 is a phase portrait of this system, showing trajectories spiraling out from the origin
as t increases. The origin is a spiral source. �
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FIGURE 10.23 Spiral source in Example 10.23.
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Case 5: A Has Pure Imaginary Eigenvalues

Now trajectories have the form

X(t)= c1[U cos(βt)− V sin(βt)] + c2[U sin(βt)+ V cos(βt)].
Without an exponential factor to increase or decrease the length of this vector, trajectories now
are closed curves about the origin, representing a periodic solution. Now the origin is called a
center of the system.

In general, closed trajectories of a system represent periodic solutions.

EXAMPLE 10.24

Let

A =
(

3 18
−1 −3

)

.

Eigenvalues of A are ±3i and eigenvectors are U ± iV, where

U =
(−3

1

)

and V =
(−3

0

)

.

Figure 10.24 is a phase portrait, showing closed trajectories moving (in this case) clockwise
about the origin, which is a center. �

We now have a complete description of the trajectories of the real, linear 2 × 2 system
X′ = AX. The qualitative behavior of the trajectories is determined by the eigenvalues, and we
have the following classification of the origin:

• Real, distinct eigenvalues of the same sign—(0,0) is a nodal source (positive eigenvalues) or
sink (negative eigenvalues);

• Real, distinct eigenvalues of the same sign—(0,0) is a saddle point;
• Equal eigenvalues, linearly independent eigenvectors—(0,0) is a proper node;
• Equal eigenvalues, all eigenvectors a multiple of a single eigenvector—(0,0) is an improper

node;

y

4

2

–2

–4

x
151050–5–10–15

FIGURE 10.24 Center in Example 10.24.
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• Complex eigenvalues with nonzero real part—(0,0) is a spiral source (positive real part) or
spiral sink (negative real part);

• Pure imaginary eigenvalues—(0,0) is a center (periodic solutions).

10.6.2 Predator/Prey and Competing Species Models

We will show how phase portraits are used in the analysis of two types of systems that arise
in important applications. These systems will be 2 × 2, but are nonlinear, hence they are not as
easily solved as linear constant coefficient systems. Nevertheless, the phase portraits will display
the qualitative behavior of solutions of the phenomena being modeled.

A Predator/Prey Model

Begin with a predator/prey model. Suppose an environment includes two species having popu-
lations x(t) and y(t) at time t . One species y(t) consists of predators, whose food is in the prey
(x(t)) population. For example, we could be looking at rabbits and foxes in a wilderness area. Or
we could have birds preying on young sea turtles near an island where the turtles lay their eggs.
For convenience in the discussion, we will use rabbits and foxes as a prototypical predator/prey
setting.

As a simplification, assume that the rabbits have no other natural enemies in the setting, and
that every encounter of a rabbit with a fox results in the fox eating the rabbit.

To model these two populations, suppose that at time t , the rabbit population increases at a
rate proportional to x(t), which is the number of rabbits at this time, but also decreases at a rate
proportional to encounters of rabbits with foxes, which is modeled by a product x(t)y(t) of the
rabbit and fox populations at that time. Then, for some positive constants a and b,

x ′(t)= ax(t)− bx(t)y(t).

The foxes are assumed to increase at a rate proportional to their encounters with rabbits (hence
proportional to x(t)y(t)) but to decrease at a rate proportional to their own population (because in
the absence of rabbits the foxes have no food and die). Thus, for some positive numbers c and k,

y ′(t)= cx(t)y(t)− ky(t).

We now have a 2 × 2 system for these populations:

x ′ = ax − bxy

y ′ = cxy − ky.

This is a nonlinear system because of the xy terms.
If the initial rabbit population is x(0)= α > 0, and there are no foxes, then b = 0, and the

rabbit population increases exponentially with x(t)=αeat . If the initial fox population is y(0)=β
and there are no rabbits, then c = 0 and, with no food, the fox population dies out exponentially
according to the rule y(t)=βe−kt .

Phase portraits reveal an interesting characteristic of the populations in the case that α and β
are both positive. Clearly all trajectories will be in the first octant of the x, y-plane, since popula-
tions must be nonnegative. Figure 10.25 is a typical trajectory of this system. The horizontal and
vertical lines through P : (k/c,a/b) separate the first quadrant into four regions I, II, III, and IV,
and trajectories move about P through these regions. Follow a typical point (x(t), y(t)) around
one trajectory. Suppose a population pair (x(t0), y(t0)) is in region I at some time t0 (so the rab-
bit population at this time is greater than k/c and the fox population less than a/b). Now both
populations may be large. This produces more encounters, hence more rabbit kills. In this region,
x ′(t)< 0 and y ′(t)> 0, so the rabbit population is declining and the fox population increasing.
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FIGURE 10.25 Typical predator/prey
trajectory.
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FIGURE 10.26 Trajectories for x ′ = 0.2x − 0.02xy,
y ′ = 0.02xy − 1.2y.

Once the rabbit population reaches the value k/c, the foxes find insufficient food to sustain
their population and their numbers begin to decline. Now (x(t), y(t)) passes into region II, where
both populations are in decline.

When the fox population reaches the value a/b, their numbers are small enough that the
rabbits begin to multiply much faster than they are consumed, and the point (x(t), y(t)) moves
through region III, where the foxes decline but the rabbits increase in numbers.

When the fox population reaches its minimum value, the rabbit population is increasing at
its fastest rate. Now (x(t), y(t)) moves into region IV, where the foxes begin to increase again in
number because of the availability of more rabbits.

This process repeats cyclically, with foxes increasing any time the rabbit population can
sustain them, and declining when there is a lack of food. The rabbits increase whenever the
fox population falls below a certain level. Following this the foxes have more food and their
population increases, so the rabbits then go into decline, and the cycle repeats.

Figure 10.26 shows several trajectories for the system

x ′ = 0.2x − 0.02xy

y ′ = 0.02xy − 1.2y.

It is possible to write an implicitly defined solution of the predator/prey model. Write

dy/dt

dx/dt
= dy

dx
= y

x

cx − k

a − by

and separate the variables by writing

a − by

y
dy = cx − k

x
dx .

Integrate and rearrange terms to obtain

yae−by = K x−kecx ,

in which K is a positive constant of integration.
There are predator/prey populations for which good records have been kept and against

which this model can be tested. One is the lynx/snowshoe hare population in Canada. The Hudson
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Bay Company has kept records of pelts traded at their stations since the middle of the nineteenth
century when trappers worked these areas. Assuming that the actual populations of lynx and hare
were proportional to the number of pelts obtained by trappers, the records for 1845 through 1935
exhibit cyclical variations as seen in the predator/prey model, with about a ten year cycle.

Another predator/prey setting occurred in Michigan’s Isle Royale, an untamed island having
a length of about 45 miles. At one time, moose abounded on the island, having no natural enemy.
However, the harsh winter of 1949 caused wolves from Canada to cross over a frozen stretch
of Lake Superior, searching for food. The resulting behavior of the moose/wolf populations was
studied by Purdue biologist Durward Allen, who observed cyclic variations in the populations
over the 1957–1993 period. In this case, the predator wolf population that came to the island had
two problems which would alter the model—a very narrow genetic base coupled with the spread
of a canine virus that destroyed many wolves.

More complex predator/prey models have been used in many contexts, including research
into the behavior of the HIV virus. In one such model, the predators consist of the invading
viruses and the prey consists of their target cells within the body. The model is complicated by
the fact that the viruses mutate over time, presenting the immune system with many different
predators. One study along these lines is given in a November 15, 1991 paper in the journal
Science, entitled Antigenic Diversity Thresholds and the Development of AIDS and authored by
Martin A. Nowak, A.R. McLean, and R.M. May of the Department of Zoology, University of
Oxford; T. Wolfe and J. Goudsmit of the Human Retrovirus Laboratory, Department of Virol-
ogy, Amsterdam, the Netherlands; and R.M. Anderson of the Department of Biology, Imperial
College of London University.

A Competing Species Model

A competing species model offers a different type of population dynamic. In this model, we
have some environment in which two species compete for a common resource, but neither preys
on the other. In this case, it seems reasonable that an increase in either population decreases
the availability of this resource for both, causing a decline in both populations. Assuming no
restriction on the needed resource, one possible competing species model is given by

x ′ = ax − bxy

y ′ = ky − cxy,

in which a,b, c, and k are positive constants. Now a term proportional to the product of the
populations is subtracted in both equations.

As with the predator/prey model, we can obtain an implicitly defined solution of this system.
Divide the differential equations to obtain

dy/dt

dx/dt
= dy

dx
= y

x

k − cx

a − by
.

Separate variables to obtain

a − by

y
dy = k − cx

x
dx .

Integrate and rearrange terms to obtain

yae−by = K xke−cx

in which K is the constant of integration and can be any positive number.
Typical trajectories of this model are shown in Figure 10.27. Asymptotes of these trajectories

pass through (k/c,a/b) and subdivide the first octant into four regions, I, II, III, and IV. If the
initial population (x(0), y(0)) is in regions I or IV, then the x population increases with time,
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FIGURE 10.27 Trajectories for a typical competing
species model.
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FIGURE 10.28 Trajectories for x ′ = x −0.01xy, y ′ =
4y − 0.1xy.

while the y population dies out with time (decreasing to zero in the limit as t →∞). If the initial
population is in II or III, then the y population wins and the x population dies out asymptotically.
The coefficients a,b, c, k play a crucial role in determining the asymptotes, hence the regions, so
just having a large initial population is not enough to guarantee survival.

As a specific example, Figure 10.28 shows a phase portrait for the model

x ′ = 2x − 0.1xy

y ′ = 4y − 0.1xy.

SECTION 10.6 PROBLEMS

In each of Problems 1 through 10, classify the origin of
the system X′ = AX for the given coefficient matrix. If
software is available, produce a phase portrait.

1. A =
(

3 −5
5 −7

)

2. A =
(

1 4
3 0

)

3. A =
(

1 −5
1 −1

)

4. A =
(

9 −7
6 −4

)

5. A =
(

7 −17
2 1

)

6. A =
(

2 −7
5 −10

)

7. A =
(

4 −1
1 2

)

8. A =
(

3 −5
8 −3

)

9. A =
(−2 −1

3 −2

)

10. A =
(−6 −7

7 −20

)

11. Derive a system of differential equations modeling
the predator/prey relationship in an environ-
ment with indiscriminate harvesting. Do this by
assuming that there is some outside agent that
removes numbers of both species from the sys-
tem at a rate proportional to the populations,
with the same constant of proportionality for both
species.
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12. Use a software package to generate a phase portrait
for each of the following predator/prey models.

(a) x ′ = x − 0.5xy, y ′ = 2xy − 1.2y

(b) x ′ = 3x − 1.5xy, y ′ = xy − 1.6y

(c) x ′ = 1.6x − 2.1xy, y ′ = 1.9xy − 0.4y

(d) x ′ = 1.8 − 0.2xy, y ′ = 3.1xy − 0.4y

13. Generate a phase portrait for each of the following
competing species models.

(a) x ′ = 2x − xy, y ′ = y − 2xy

(b) x ′ = 1.6y − 1.2xy, y ′ = 2y − 0.4xy

(c) x ′ = 1.4x − 0.6xy, y ′ = 2y − 0.7xy

(d) x ′ = 3.2x − 1.4xy, y ′ = 4.4y − 0.8xy

14. A more sophisticated approach to a competing species
model is to incorporate a logistic term, leading to the
model

x ′ = ax − bx2 − kxy, y ′ = cy − dy2 − r xy,

with the coefficients positive constants. Generate
phase portraits for the following systems.
(a) x ′ = x(1 − x − 0.5y),

y ′ = y(1 − 0.5y − 0.25x)

(b) x ′ = x(1 − x − 0.2y),
y ′ = y(1 − 0.4y − 0.25x)

(c) x ′ = x(2 − x − 0.2y), y ′ = y(1 − 0.4y − x)

(d) x ′ = x(1 − 0.5x − y), y ′ = y(2 − 0.5y − 0.4x)
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CHAPTER 11
Vector
Differential
Calculus

VECTOR FUNCTIONS OF ONE VARIABLE
VELOCITY AND CURVATURE VECTOR
FIELDS AND STREAMLINES THE
GRADIENT FIELD DIVERGENCE

11.1 Vector Functions of One Variable

A vector function of one variable is a function of the form F(t)= x(t)i + y(t)j + z(t)k.
This vector function is continuous at t0 if each component function is continuous at t0.

We may think of F(t) as the position vector of a curve in 3-space. For each t for which
the vector is defined, draw F(t) as an arrow from the origin to the point (x(t), y(t), z(t)). This
arrow sweeps out a curve C as t varies. When thought of in this way, the coordinate functions
are parametric equations of this curve.

EXAMPLE 11.1

H(t)= t 2i + sin(t)j − t2k is the position vector for the curve given parametrically by

x = t 2, y = sin(t), z =−t 2.

Figure 11.1 shows part of a graph of this curve. �

F(t)= x(t)i+ y(t)j+ z(t)k is differentiable at t if each component function is differentiable
at t , and in this case

F′(t)= x ′(t)i + y ′(t)j + z′(t)k.

We differentiate a vector function by differentiating each component.

345
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FIGURE 11.1 Graph of the curve of Example 11.1.

x

y

z

F�(t0)

F(t0 + h)

F(t0 + h) – F(t0)

F(t0)

(f(t0), g(t0), h(t0))

FIGURE 11.2 F′(t0) as a tangent vector.

To give an interpretation to the vector F′(t0), look at the limit of the difference quotient:

F′(t0)= lim
h→0

F(t0 + h)− F(t0)

h

=
(

lim
h→0

x(t0 + h)− x(t0)

h

)

i +
(

lim
h→0

y(t0 + h)− y(t0)

h

)

j

+
(

lim
h→0

z(t0 + h)− z(t0)

h

)

k

= x ′(t0)i + y ′(t0)j + z′(t0)k.

Figure 11.2 shows the vectors F(t0 + h), F(t0) and F(t0 + h)−F(t0), using the parallelogram
law. As h is chosen smaller, the tip of the vector F(t0 + h)− F(t0) slides along C toward F(t0),
and (1/h)[F(t0 + h)− F(t0)] moves into the position of the tangent vector to C at the point
( f (t0), g(t0),h(t0)). In calculus, the derivative of a function gives the slope of the tangent to the
graph at a point. In vector calculus, the derivative of the position vector of a curve gives the
tangent vector to the curve at a point.
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In Example 11.1,

H′(t)= 2t i + cos(t)j − 2tk,

and this vector is tangent to the curve at any point (t2, sin(t),−t2) on the curve. The tangent
vector at (0,0,0) is H′(0)= j, as we can visualize from Figure 11.1.

The length of a curve given parametrically by x = x(t), y = y(t), and z = z(t) for a ≤ t ≤b is

length =
∫ b

a

√
(x ′(t))2 + (y ′(t))2 + (z′(t))2 dt.

In vector notation, this is

length =
∫ b

a

‖ F′(t) ‖ dt.

The length of a curve is the integral (over the defining interval) of the length of the tangent vector
to the curve, assuming differentiability at each t .

Now imagine starting at (x(a), y(a), z(a)) at time t = a and moving along the curve, reach-
ing the point (x(t), y(t), z(t)) at time t . Let s(t) be the distance along C from the starting point
to this point (Figure 11.3). Then

s(t)=
∫ t

a

‖ F′(ξ) ‖ dξ.

This function measures length along C and is strictly increasing, hence it has an inverse. At least
in theory, we can solve for t = t (s), writing the parameter t in terms of arc length along C . We
can substitute this function into the position function to obtain

G(s)= F(t (s)).

G is also a position vector for C , except now the variable is s and s varies from 0 to L , the length
of C . Therefore, G′(s) is also a tangent vector to C . We claim that this tangent vector in terms of
arc length is always a unit vector. To see this, observe from the fundamental theorem of calculus
that

s ′(t)=‖ F′(t) ‖ .

C

(x(a), y(a), z(a))

(x(t), y(t), z(t))

s(t)

x

y

z

FIGURE 11.3 Distance function along a
curve.
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Then

G′(s)= d

ds
F(t (s))= d

dt
F(t)

dt

ds

= 1

ds/dt
F′(t)= 1

‖ F′(t) ‖F′(t),

and this vector has a length of 1.

EXAMPLE 11.2

Let C be defined by

x = cos(t), y = sin(t), z = t/3

for −4π ≤ t ≤ 4π . C has the position vector

F(t)= cos(t)i + sin(t)j + 1

3
tk

and the tangent vector

F′(t)=− sin(t)i + cos(t)j + 1

3
k.

It is routine to compute ‖ F′(t) ‖=√
10/3, so the distance function along C is

s(t)=
∫ t

−4π

1

3

√
10dξ = 1

3

√
10(t + 4π).

In this example, we can explicitly solve for t in terms of s:

t = t (s)= 3√
10

s − 4π.

Substitute this into F(t) to get

G(s)= F(t (s))= F
(

3√
10

s − 4π

)

= cos

(
3√
10

s − 4π

)

i + sin

(
3√
10

s − 4π

)

j + 1

3

(
3√
10

s − 4π

)

k

= cos

(
3√
10

s

)

i + sin

(
3√
10

s

)

j +
(

1√
10

s − 4π

3

)

k.

Now compute

G′(s)=− 3√
10

cos

(
3√
10

s

)

i + 3√
10

sin

(
3√
10

s

)

j + 1√
10

k,

and this is a unit tangent vector to C . �

Rules for differentiating various combinations of vectors are like those for functions of one
variable. If the functions and vectors are differentiable and α is a number, then
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1. [F(t)+ G(t)]′ = F′(t)+ G′(t).

2. (αF)′(t)=αF′(t).

3. [ f (t)F(t)]′ = f ′(t)F(t)+ f (t)F′(t).

4. [F(t) · G(t)]′ = F′(t) · G(t)+ F(t) · G′(t).

5. [F(t)× G(t)]′ = F′(t)× G(t)+ F(t)× G′(t).

6. [F( f (t))]′ = f ′(t)F′( f (t)).

Rules (3), (4), and (5) are product rules, reminiscent of the rule for differentiating a product
of functions of one variable. In rule (4), the order of the factors is important, since the cross
product is anti-commutative. Rule (6) is a chain rule for vector differentiation.

SECTION 11.1 PROBLEMS

In each of Problems 1 through 8, compute the requested
derivative in two ways, first by using rules (1) through (6)
as appropriate, and second by carrying out the vector oper-
ation and then differentiating the resulting vector or scalar
function.

1. F(t)= i+3t2j+2tk, f (t)=4cos(3t); (d/dt)[ f (t)F(t)]
2. F(t)= t i−3t 2k,G(t)= i+cos(t)k; (d/dt)[F(t) ·G(t)]
3. F(t) = t i + j + 4k,G(t) = i − cos(t)j + tk; (d/dt)

[F(t)× G(t)]
4. F(t) = sinh(t)j − tk,G(t) = t i + t2j − t2k; (d/dt)

[F(t)× G(t)]
5. F(t)= t i−cosh(t)j+etk, f (t)=1−2t3; (d/dt)[ f (t)F(t)]
6. F(t) = t i − tj + t2k,G(t) = sin(t)i − 4tj +

t3k; (d/dt)[F(t) · G(t)]
7. F(t)=−9i + t2j + t2k,G(t)= et i; (d/dt)[F(t)× G(t)]

8. F(t)=−4cos(t)k,G(t)=−t2i+4 sin(t)k; (d/dt)[F(t) ·
G(t)]

In each of Problems 9, 10, and 11, (a) write the position
vector and tangent vector for the curve whose parametric
equations are given, (b) find the length function s(t) for
the curve, (c) write the position vector as a function of s,
and (d) verify by differentiation that this position vector in
terms of s is a unit tangent to the curve.

9. x = sin(t), y = cos(t), z = 45t;0 ≤ t ≤ 2π

10. x = y = z = t 3;−1 ≤ t ≤ 1

11. x = 2t2, y = 3t2, z = 4t2;1 ≤ t ≤ 3

12. Suppose F(t)= x(t)i + y(t)j + z(t)k is the position
vector for a particle moving along a curve in 3-space.
Suppose that F×F′ =O. Show that the particle always
moves in the same direction.

11.2 Velocity and Curvature

Imagine a particle or object moving along a path C having the position vector F(t)= x(t)i +
y(t)j+ z(t)k, as t varies from a to b. We want to relate F to the dynamics of the particle. Assume
that the coordinate functions are twice differentiable.

Define the velocity v(t) of the particle at time t to be

v(t)= F′(t).

The speed v(t) is the magnitude of the velocity:

v(t)=‖ v(t) ‖ .
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Then

v(t)=‖ F′(t) ‖= ds

dt
,

which is the rate of change with respect to time of the distance along the trajectory or path of
motion.

The acceleration a(t) is the rate of change of the velocity with respect to time, or

a(t)= v′(t)= F′′(t).

If F′(t) �= O, then this vector is a tangent vector to C . We obtain a unit tangent vector T(t)
by dividing F′(t) by its length. This leads to various expressions for the unit tangent vector to C :

T(t)= 1

‖ F′(t) ‖F′(t)= 1

ds/dt
F′(t)

= 1

‖ v(t) ‖v(t)= 1

v(t)
v(t).

Thus, the unit tangent vector is also the velocity vector divided by the speed.

The curvature κ(s) of C is defined as the magnitude of the rate of change of the unit tangent
with respect to arc length along C :

κ(s)=
∣
∣
∣
∣
∣
∣
dT
ds

∣
∣
∣
∣
∣
∣.

This definition is motivated by Figure 11.4, which suggests that the more a curve bends at
a point, the faster the unit tangent vector is changing direction there. This expression for the
curvature, however, is difficult to work with because we usually have the unit tangent vector as a

x

y

z

FIGURE 11.4 Curvature as a rate of
change of the tangent vector.
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function of t , not of s. We, therefore, usually compute the curvature as a function of t by using
the chain rule:

κ(t)=
∣
∣
∣
∣
∣
∣
dT
dt

dt

ds

∣
∣
∣
∣
∣
∣

= 1

‖ F′(t) ‖ ‖ T′(t) ‖ .

EXAMPLE 11.3

Let C have position vector

F(t)=[cos(t)+ t sin(t)]i +[sin(t)− t cos(t)]j + t 2k.

for t ≥ 0. Figure 11.5 is part of the graph of C . A tangent vector is given by

F′(t)= t cos(t)i + t sin(t)j + 2tk.

This tangent vector has the length

v(t)=‖ F′(t) ‖=√
5t.

The unit tangent vector in terms of t is

T(t)= 1

‖ F′(t) ‖F′(t)= 1√
5
[cos(t)i + sin(t)j + 2k].

Then

T′(t)= 1√
5
[− sin(t)i + cos(t)j],

and the curvature of C is

κ(t)= 1

‖ F′(t) ‖ ‖ T′(t) ‖

= 1√
5t

√
1

5
[sin2(t)+ cos2(t)] = 1

5t
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FIGURE 11.5 Graph of the curve of Example 11.3.
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for t > 0. It is usually more convenient to compute such quantities as the unit tangent and the
curvature in terms of the parameter t used to define C , rather than attempting to solve for t in
terms of the arc length s. �

Given a position vector F(t) for a curve C , we have a unit tangent at any point where the
component functions are differentiable and their derivatives are not all zero. We claim that,
in terms of s, the vector

N(s)= 1

κ(s)
T′(s).

is a unit normal vector (orthogonal to the tangent) to C .

First, N(s) is a unit vector because κ(s)=‖ T′(s) ‖, so

‖ N(s) ‖= 1

‖ T′(s) ‖ ‖ T′(s) ‖= 1.

We claim also that N(s) is orthogonal to the tangent vector T(s). To see this, recall that T(s) is a
unit vector, so

‖ T(s) ‖2 = T(s) · T(s)= 1.

Differentiate this equation to get

T′(s) · T(s)+ T(s) · T′(s)= 2T(s) · T′(s)= 0.

Therefore, T(s) is orthogonal to T′(s). But N(s) is a scalar multiple of T′(s), hence it is in the
same direction as T′(s). Therefore, T(s) is orthogonal to N(s).

At any point where F is twice differentiable, we may now place a unit tangent and a unit
normal vector, as in Figure 11.6. With these in hand, we claim that we can write the acceleration
in terms of tangential and normal components:

a(t)= aT T(t)+ aN N(t)

x

y

z

N T

FIGURE 11.6 Unit tangent and normal vectors to
a curve.
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where

aT = tangential component of the acceleration = dv

dt

and

aN = normal component of the acceleration = v(t)2κ(t).
To verify this decomposition of a(t), begin with

T(t)= 1

‖ F′(t) ‖F′(t)= 1

v(t)
v(t).

Then

v = vT,

so

a = d

dt
v = dv

dt
T + vT′

= dv

dt
T + v ds

dt

dT
ds

= dv

dt
T + v2T′(s)

= dv

dt
T + v2κN.

Because T and N are orthogonal, then

‖ a ‖2 = a · a = (aT T + aN N) · (aT T + aN N)

= a2
T T · T + 2aT aN T · N + a2

N N · N

= a2
T + a2

N .

This means that, whenever two of ‖a‖, aT , and aN are known, we can compute the third quantity.
If aN is known, it is sometimes convenient to compute the curvature κ(t) as

κ(t)= aN

v2
.

EXAMPLE 11.4

Let F(t) be as in Example 11.3. There we computed v(t)=√
5t . Therefore,

aT = dv

dt
=√

5.

The acceleration is

a = v′ = F′′(t)=[cos(t)− t sin(t)]i +[sin(t)+ t cos(t)]j + 2k.

Then

‖ a ‖=√
5 + t 2.

so

a2
N =‖ a ‖2 −a2

T = 5 + t 2 − 5 = t 2.
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Since t > 0, aN = t . The acceleration may be written as

a =√
5T + tN.

If we know aN and v, it is easy to compute the curvature, since

aN = t = κv2 = 5t2κ,

implying that κ = 1/5t , as we found in Example 11.3. �

SECTION 11.2 PROBLEMS

In each of Problems 1 through 10, a position vector is
given. Determine the velocity, speed, acceleration, cur-
vature, and the tangential and normal components of the
acceleration.

1. F = 3t i − 2j + t2k

2. F = t sin(t)i + t cos(t)j + k

3. F = 2t i − 2tj + tk

4. F = et sin(t)i − j + et cos(t)k

5. F = 3e−t(i + j − 2k)

6. F =α cos(t)i +βtj +α sin(t)k

7. F = 2 sinh(t)j − 2cosh(t)k

8. F = ln(t)(i − j + 2k)

9. F =αt 2i +βt2j + γ t2k

10. F = 3t cos(t)j − 3t sin(t)k

11. Show that any straight line has curvature zero. Con-
versely, if a smooth curve has curvature zero, then it
must be a straight line. Hint: For the first part, recall
that any straight line has a position vector F(t) =
(a + bt)i + (d + ct)j + (h + kt)k. For the converse,
if κ = 0, then T′(t)= O.

12. Show that the curvature of a circle is constant. Hint: If
the radius is r , show that the curvature is 1/r .

13. Show that κ(t)= ||F′(t)× F′′(t)||
||F′(t)||3 .

11.3 Vector Fields and Streamlines

Vector functions F(x, y) in two variables, and G(x, y, z) in three variables, are called vec-
tor fields. At each point where the vector field is defined, we can draw an arrow representing
the vector at that point. This suggests fields of arrows "growing" out of points in regions of
the plane or 3-space.

Take partial derivatives of vector fields by differentiating each component. For example, if

F(x, y, z)= cos(x + y2 + 2z)i − xyzj + xyezk,

then
∂F
∂x

=− sin(x + y2 + 2z)i − yzj + yezk,

∂F
∂y

=−2y sin(x + y2 + 2z)i − xzj + xezk,

and
∂F
∂z

=−2 sin(x + y2 + 2z)i − xyj + xyezk.
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Given a vector field F in 3-space, a streamline of F is a curve with the property that, at
each point (x, y, z) of the curve, F(x, y, z) is a tangent vector to the curve.

If F is the velocity field for a fluid flowing through some region, then the streamlines
are called flow lines of the fluid and describe trajectories of imaginary particles moving
with the fluid. If F is a magnetic field the streamlines are called lines of force. Iron filings
put on a piece of cardboard held over a magnet will align themselves on the lines of force.

Given a vector field, we would like to find all of the streamlines. This is the problem of
constructing a curve through each point of a region of space, given the tangent to the curve at
each point. To solve this problem suppose that C is a streamline of F= f i + gj + hk. Let C have
parametric equations x = x(ξ), y = y(ξ), z = z(ξ). A position vector for C is

R(ξ)= x(ξ)i + y(ξ)j + z(ξ)k.

Now

R′(ξ)= x ′(ξ)i + y ′(ξ)j + z′(ξ)k

is tangent to C at (x(ξ), y(ξ), z(ξ)) and is therefore parallel to the tangent vector F(x(ξ),
y(ξ), z(ξ)) at this point. These vectors must therefore be scalar multiples of each other, say

R′(ξ)= tF(x(ξ), y(ξ), z(ξ)).

Then

dx

dξ
i + dy

dξ
j + dz

dξ
k =

t f (x(ξ), y(ξ), z(ξ))i + tg(x(ξ), y(ξ), z(ξ))j + th(x(ξ), y(ξ), z(ξ))k.

Equating respective components in this equation gives us

dx

dξ
= t f,

dy

dξ
= tg,

dz

dξ
= th.

This is a system of differential equations for the parametric equations of the streamlines. If f , g
and h are nonzero this system can be written as

dx

f
= dy

g
= dz

h
.

EXAMPLE 11.5

We fill find the streamlines of F(x, y, z)= x2i + 2yj − k. If x and y are not zero, the streamlines
satisfy

dx

x2
= dy

2y
= dz

−1
.

These differential equations can be solved in pairs. First integrate

dx

x2
=−dz

to get

− 1

x
=−z + c
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with c an arbitrary constant. Next integrate

dy

2y
=−dz

to get

1

2
ln |y| =−z + k.

It is convenient to express two of the variables in terms of the third. If we write x and y in terms
of z we have

x = 1

z − c
and y = ae−2z,

in which a is constant. This gives us parametric equations of the streamlines, with z as the
parameter. If we want the streamline through a particular point, we must choose a and c accord-
ingly. For example, suppose we want the streamline through (−1,6,2). Then z = 2 and we
need

−1 = 1

2 − c
and 6 = ae−4.

Then c = 3 and a = 6e4 so the streamline through (−1,6,2) has parametric equations

x = 1

z − 3
, y = 6e4−2z, z = z. �

SECTION 11.3 PROBLEMS

In each of Problems 1 through 6, find the streamlines of
the vector field and also the streamline through the given
point.

1. F = i − y2j + zk; (2,1,1)
2. F = i − 2j + k; (0,1,1)
3. F = (1/x)i + ex j − k; (2,0,4)

4. F = cos(y)i + sin(x)j; (π/2,0,−4)

5. F = 2ez i − cos(y)k; (3,π/4,0)
6. F = 3x2i − yj + z3k; (2,1,6)
7. Construct a vector field whose streamlines are circles

about the origin.

11.4 The Gradient Field

Let ϕ(x, y, z) be a real-valued function of three variables. In the context of vector fields, ϕ
is called a scalar field. The gradient of ϕ is the vector field

∇ϕ= ∂ϕ

∂x
i + ∂ϕ

∂y
j + ∂ϕ

∂z
k.

The symbol ∇ϕ is read "del ϕ" and ∇ is called the del operator. If ϕ is a function of just
(x, y), then ∇ϕ is a vector field in the plane.

∇ is also often called nabla.
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For example, if ϕ(x, y, z)= x2 y cos(yz), then

∇ϕ= 2xy cos(yz)i +[x2 cos(yz)− x2z sin(yz)]j − x2 y2 sin(yz)k.

If P is a point, then the gradient of ϕ evaluated at P is denoted ∇ϕ(P).
The gradient has the obvious properties

∇(ϕ+ψ)=∇(ϕ)+∇(ψ)
and, for any number c,

∇(cϕ)= c∇(ϕ).
The gradient is related to the directional derivative. Let P0 : (x0, y0, z0) be a point and let

u = ai + bj + ck be a unit vector, represented as an arrow from P0. We want to measure the rate
of change of ϕ(x, y, z) as (x, y, z) varies from P0 in the direction of u. To do this let t > 0. The
point P : (x0 + at, y0 + bt, z0 + ct) is on the line through P0 in the direction of u and P varies in
this direction as t varies.

We measure the rate of change Duϕ(P0) of ϕ(x, y, z) in the direction of u, at P0, by setting

Duϕ(P0)= d

dt

[
ϕ(x0 + at, y0 + bt, z0 + ct)

]
t=0
.

Duϕ(P0) is the directional derivative of ϕ at P0 in the direction of u.

We can compute a directional derivative in terms of the gradient as follows. By the chain
rule,

Duϕ(P0)=
[

d

dt
ϕ(x0 + at, y0 + bt, z0 + ct)

]

t=0

= a
∂ϕ

∂x
(x0, y0, z0)+ b

∂ϕ

∂y
(x0, y0, z0)+ c

∂ϕ

∂z
(x0, y0, z0)

= a
∂ϕ

∂x
(P0)+ b

∂ϕ

∂y
(P0)+ c

∂ϕ

∂z
(P0)

=∇ϕ(P0) · (ai + bj + ck)

=∇ϕ(P0) · u.

Therefore Duϕ(P0) is the dot product of the gradient of ϕ at the point, with the unit vector
specifying the direction.

EXAMPLE 11.6

Let ϕ(x, y, z)= x2 y − xez and P0 = (2,−1,π). We will compute the rate of change of ϕ(x, y, z)
at P0 in the direction of u = (1/√6)(i − 2j + k).

The gradient is

∇ϕ= (2xy − ez)i + x2j − xezk.

Then

∇ϕ(2,−1,π)= (−4 − eπ )i + 4j − 2eπk.
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The directional derivative of ϕ at P0 in the direction of u is

Duϕ(2,−1,π)

= ((−4 − eπ )i + 4j − 2eπk) · 1√
6
(i − 2j + k)

= 1√
6
(−4 − eπ − 8 − 2eπ )

= −3√
6
(4 + eπ ). �

If a direction is specified by a vector that is not of length 1, divide it by its length before
computing the directional derivative.

Now imagine standing at P0 and observing ϕ(x, y, z) as (x, y, z) moves away from P0. In
what direction will ϕ(x, y, z) increase at the greatest rate? We claim that this is the direction of
the gradient of ϕ at P0.

THEOREM 11.1

Let ϕ and its first partial derivatives be continuous in some sphere about P0, and suppose that
∇ϕ(P0) �= O. Then

1. At P0, ϕ(x, y, z) has its maximum rate of change in the direction of ∇ϕ(P0). This
maximum rate of change is ‖∇ϕ(P0) ‖.

2. At P0, ϕ(x, y, z) has its minimum rate of change in the direction of −∇ϕ(P0). This
minimum rate of change is −‖∇ϕ(P0) ‖. �

For condition (1), let u be any unit vector from P0 and consider

Duϕ(P0)=∇ϕ(P0) · u

=‖∇ϕ(P0) ‖‖ u ‖ cos(θ)

=‖∇ϕ(P0) ‖ cos(θ)

where θ is the angle between u and ∇ϕ(P0). Clearly Duϕ(P0) has its maximum when cos(θ)=1,
which occurs when θ = 0, hence when u is in the same direction as ∇ϕ(P0).

For condition (2), Duϕ(P0) has its minimum when cos(θ)= −1, hence when θ = π and
∇ϕ(P0) is opposite u.

EXAMPLE 11.7

Let ϕ(x, y, z)= 2xz + z2ey and P0 : (2,1,1). The gradient of ϕ is

∇ϕ(x, y, z)= 2zi + z2eyj + (2x + 2zey)k

so

∇ϕ(2,1,1)= 2i + ej + (4 + 2e)k.

The maximum rate of increase of ϕ(x, y, z) at (2,1,1) is in the direction of 2i + ej + (4 + 2e)k,
and this maximum rate of change is

√
4 + e2 + (4 + 2e)2,

or
√

20 + 16e + 5e2. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 15, 2010 16:11 THM/NEIL Page-359 27410_11_ch11_p343-366

11.4 The Gradient Field 359

11.4.1 Level Surfaces, Tangent Planes, and Normal Lines

Depending on ϕ and the number k, the locus of points (x, y, z) such that ϕ(x, y, z)= k may be a
surface in 3-space. Any such surface is called a level surface of ϕ. For example, if ϕ(x, y, z)=
x2 + y2 + z2, then the level surface of ϕ(x, y, z)=k is a sphere of radius

√
k if k>0, a single point

(0,0,0) if k = 0, and is vacuous if k< 0. Part of the level surface ψ(x, y, z)= z − sin(xy)= 0 is
shown in Figure 11.7.

Suppose P0 : (x0, y0, z0) is on a level surface S given by ϕ(x, y, z)= k. Assume that there are
smooth (having continuous tangents) curves on the surface passing through P0, as typified by C
in Figure 11.8. Each such curve has a tangent vector at P0. The plane containing these tangent
vectors is called the tangent plane to S at P0. A vector orthogonal to this tangent plane at P0 is
called a normal vector, or normal, to this tangent plane at P0. We will determine this tangent
plane and normal vector. The key lies in the following fact about the gradient vector.

THEOREM 11.2 Normal to a Level Surface

Let ϕ and its first partial derivatives be continuous. Then ∇ϕ(P) is normal to the level surface
ϕ(x, y, z)= k at any point P on this surface such that ∇ϕ(P) �= O. �

To understand this conclusion, let P0 be on the level surface S and suppose a smooth curve C
on the surface passes through P0, as in Figure 11.8. Let C have parametric equations x = x(t), y =
y(t), z = z(t) for a ≤ t ≤ b. Since P0 is on C , for some t0,

x(t0)= x0, y(t0)= y0, z(t0)= z0.

Furthermore, because C lies on the level surface,

ϕ(x(t), y(t), z(t))= k

FIGURE 11.7 Part of the graph of the level
surface z = sin(xy).
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x

y

z

C

P0

Tangent to C at P0

Normal to the
tangent plane at P0

Part of the tangent
plane at P0

Part of S

FIGURE 11.8 Normal to a level surface.

for a ≤ t ≤ b. Then

d

dt
ϕ(x(t), y(t), z(t))= 0 = ∂ϕ

∂x
x ′(t)+ ∂ϕ

∂y
y ′(t)+ ∂ϕ

∂z
z ′(t)

=∇ϕ · [x ′(t)i + y ′(t)j + z′(t)k].
But x ′(t)i + y ′(t)j + z′(t)k = T(t) is a tangent vector to C . Letting t = t0, T(t0) is tangent to C at
P0 and the last equation tells us that

∇ϕ(P0) · T(t0)= 0.

Therefore ∇ϕ(P0) is normal to the tangent to C at P0. But C is any smooth curve on S passing
through P0. Therefore ∇ϕ(P0) is normal to every tangent vector at P0 to any curve on S through
P0, and is therefore normal to the tangent plane to S at P0.

Now we have a point P0 on the normal plane at P0, and a vector ∇ϕ(P0) orthogonal to this
plane. The equation of the tangent plane is

∇ϕ(P0) · [(x − x0)i + (y − y0)j + (z − z)0k] = 0,

or

∂ϕ

∂x
(P0)(x − x0)+ ∂ϕ

∂y
(P0)(y − y0)+ ∂ϕ

∂z
(P0)(z − z0)= 0. (11.1)

A straight line through P0 and parallel to the normal vector is called the normal line to S at
P0. Since the gradient of ϕ at P0 is a normal vector, if (x, y, z) is on this normal line, then for
some scalar t ,

(x − x0)i + (y − y0)j + (z − z0)k = t∇ϕ(P0).

The parametric equations of the normal line to S at P0 are

x = x0 + t
∂ϕ

∂x
(P0), y = y0 + t

∂ϕ

∂y
(P0), z = z0 + t

∂ϕ

∂z
(P0). (11.2)
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FIGURE 11.9 Circular cone z =√x2 + y2.

EXAMPLE 11.8

The level surface ϕ(x, y, z)= z −√
x2 + y2 is a cone with vertex at the origin (Figure 11.9).

Compute

∇ϕ(1,1,√2)=− 1√
2

i − 1√
2

j + k.

The tangent plane to the cone at (1,1,
√

2) has the equations

− 1√
2
(x − 1)− 1√

2
(y − 1)+ z −√

2 = 0

or

x + y −√
2z = 0.

The normal line to the cone at (1,1,
√

2) has parametric equations

x = 1 − 1√
2

t, y = 1 − 1√
2

t, z =√
2 + t. �

SECTION 11.4 PROBLEMS

In each of Problems 1 through 6, compute the gradient of
the function and evaluate this gradient at the given point.
Determine at this point the maximum and minimum rate of
change of the function at this point.

1. ϕ(x, y, z)= xyz; (1,1,1)
2. ϕ(x, y, z)= x2 y − sin(xz); (1,−1,π/4)

3. ϕ(x, y, z)= 2xy + xez; (−2,1,6)

4. ϕ(x, y, z)= cos(xyz); (−1,1,π/2)

5. ϕ(x, y, z)= cosh(2xy)− sinh(z); (0,1,1)

6. ϕ(x, y, z)=√x2 + y2 + z2; (2,2,2)

In each of Problems 7 through 10, compute the direc-
tional derivative of the function in the direction of the given
vector.

7. ϕ(x, y, z)= 8xy2 − xz; (1/√3)(i + j + k)

8. ϕ(x, y, z)= cos(x − y)+ ez; i − j + 2k

9. ϕ(x, y, z)= x2 yz3;2j + k

10. ϕ(x, y, z)= yz + xz + xy; i − 4k
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In each of Problems 11 through 16, find the equation of
the tangent plane and normal line to the level surface at the
point.

11. x2 + y2 + z2 = 4; (1,1,√2)

12. z = x2 + y; (−1,1,2)

13. z2 = x2 − y2; (1,1,0)

14. x2 − y2 + z2 = 0; (1,1,0)
15. 2x − cos(xyz)= 3; (1,π,1)
16. 3x4 + 3y4 + 6z4 = 12; (1,1,1)
17. Suppose that ∇ϕ(x, y, z) = i + k. What can be said

about level surfaces of ϕ? Show that the streamlines
of ∇ϕ are orthogonal to the level surfaces of ϕ.

11.5 Divergence and Curl

The gradient operator produces a vector field from a scalar function. We will discuss two other
important vector operations. One produces a scalar field from a vector field, and the other
produces a vector field from a vector field. Let

F(x, y, z)= f (x, y, z)i + g(x, y, z)j + h(x, y, z)k.

The divergence of F is the scalar field

div F = ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
.

The curl of F is the vector field

curl F =
(
∂h

∂y
− ∂g

∂z

)

i +
(
∂ f

∂z
− ∂h

∂x

)

j +
(
∂g

∂x
− ∂ f

∂y

)

k.

Divergence, curl and gradient can all be written as vector operations with the del operator
∇, which is a symbolic vector defined by

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.

The symbol ∇, which is called "del", or sometimes "nabla", is treated like a vector in carrying out
calculations, and the "product" of ∂/∂x , ∂/∂y and ∂/∂z with a scalar function ϕ is interpreted to
mean, respectively, ∂ϕ/∂x , ∂ϕ/∂y and ∂ϕ/∂z. Now observe how gradient, divergence, and curl
are obtained using this operator.

1. The product of the vector ∇ and the scalar function ϕ is the gradient of ϕ:

∇ϕ=
(
∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

ϕ

= ∂ϕ

∂x
i + ∂ϕ

∂y
j + ∂ϕ

∂z
k = gradient of ϕ.

2. The dot product of ∇ and F is the divergence of F:

∇ · F =
(
∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

· ( f i + gj + hk)

= ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
= divergence of F.
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3. The cross product of ∇ with F is the curl of F:

∇ × F =
∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z

f g h

∣
∣
∣
∣
∣
∣

=
(
∂h

∂y
− ∂g

∂z

)

i +
(
∂ f

∂z
− ∂h

∂x

)

j +
(
∂g

∂x
− ∂ f

∂y

)

k = curl of F.

The del (or nabla) operator is part of the MAPLE set of routines collected under the Vec-
torCalculus designation. Using this and the operations of scalar multiplication, dot product
(DotProduct) and cross product (CrossProduct), we can carry out computations with vector fields.
This package can also be used to compute divergence and curl in other coordinate systems, such
as cylindrical and spherical coordinates.

There are two relationships between gradient, divergence and curl that are fundamental to
vector analysis: the curl of a gradient is the zero vector, and the divergence of a curl is (the
number) zero.

THEOREM 11.3

Let F be a continuous vector field whose components have continuous first and second par-
tial derivatives and let ϕ be a continuous scalar field with continuous first and second partial
derivatives. Then

1.

∇ × (∇ϕ)= O.

2.

∇ · (∇ × F)= 0. �

These conclusions may be paraphrased:

curl grad = O, div curl = 0.

Both of these identities can be verified by direct computation, using the equality of mixed second
partial derivatives with respect to the same two variables. For example, for conclusion (1),

∇ × (∇ϕ)=∇ ×
(
∂ϕ

∂x
i + ∂ϕ

∂y
j + ∂ϕ

∂z
k
)

=
∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z
∂ϕ/∂x ∂ϕ/∂y ∂ϕ/∂z

∣
∣
∣
∣
∣
∣

=
(
∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)

i +
(
∂2ϕ

∂z∂x
− ∂2ϕ

∂x∂z

)

j +
(
∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

)

k

= O

because the mixed partials cancel in pairs in the components of ∇ × (∇ϕ).
Operator notation with ∇ can simplify such calculations. In this notation, ∇ × (∇ϕ)= O is

immediate because ∇ × ∇ is the cross product of a "vector" with itself, which is always zero.
Similarly, for conclusion (2), ∇ × F is orthogonal to ∇, so its dot product with ∇ is zero.
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11.5.1 A Physical Interpretation of Divergence

Suppose F(x, y, z, t) is the velocity of a fluid at point (x, y, z) and time t . Time plays no role in
computing divergence, but is included here because a flow may depend on time. We will show
that the divergence of F measures the outward flow of the fluid from any point.

Imagine a small rectangular box in the fluid, as in Figure 11.10. First look at the front and
back faces II and I, respectively. The flux of the flow out of this box across II is the normal
component of the velocity (dot product of F with i) multiplied by the area of this face:

flux outward across face II = F(x +�x, y, z, t) · i�y�z

= f (x +�x, y, z, t)�y�z.

On face I the unit outer normal is −i, so the flux outward across this face is
− f (x, y, z, t)�y�z. The total outward flux across faces II and I is therefore

[ f (x +�x, y, z, t)− f (x, y, z, t)]�y�z.

A similar calculation holds for the pairs of other opposite sides. The total flux of fluid flowing
out of the box across its faces is

total flux =[ f (x +�x, y, z, t)− f (x, y, z, t)]�y�z

+[g(x, y +�y, z, t)− g(x, y, z, t)]�x�z

+[h(x, y, z +�z, t)− h(x, y, z, t)]�x�y.

The total flux per unit volume out of the box is obtained by dividing this quantity by �x�y�z,
obtaining

flux per unit volume = f (x +�x, y, z, t)− f (x, y, z, t)

�x

+ g(x, y +�y, z, t)− g(x, y, z, t)

�y

+ h(x, y, z +�z, t)− h(x, y, z, t)

�z
.

In the limit as (�x,�y,�t)→ (0,0,0), this sum approaches the divergence of F(x, y, z, t).

x

y

z

Δy

Δx

Δz

Back face I

Front face II

(x, y, z)

FIGURE 11.10 Interpretation of divergence.
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11.5.2 A Physical Interpretation of Curl

The curl vector is interpreted as a measure of rotation or swirl about a point. In British literature,
the curl is often called the rot (for rotation) of a vector field.

To understand this interpretation, suppose an object rotates with uniform angular speed ω
about a line L , as in Figure 11.11. The angular velocity vector� has magnitude ω and is directed
along L as a right-handed screw would progress if given the same sense of rotation as the object.
Put L through the origin and let R = x i + yj + zk for any point (x, y, z) on the rotating object.
Let T(x, y, z) be the tangential linear velocity and R =‖ R ‖. Then

‖ T ‖=ωR sin(θ)=‖�× R ‖,

with θ the angle between R and �. Since T and �× R have the same direction and magnitude,
we conclude that T =�× R. Now write �= ai + bj + ck to obtain

T =�× R = (bz − cy)i + (cx − az)j + (ay − bx)k.

Then

∇ × T =
∣
∣
∣
∣
∣
∣

i j k
∂/∂z ∂/∂y ∂/∂z

bz − cy cx − az ay − bx

∣
∣
∣
∣
∣
∣

= 2ai + 2bj + 2ck = 2�.

Therefore,

�= 1

2
∇ × T.

The angular momentum of a uniformly rotating body is a constant times the curl of the linear
velocity.

Ω

R

T

R sin(θ)

L

(0, 0, 0)

(x, y, z)

θ

FIGURE 11.11 Interpretation of curl.
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SECTION 11.5 PROBLEMS

In each of Problems 1 through 6, compute ∇ · F and ∇ × F
and verify explicitly that ∇ · (∇ × F)= 0.

1. F = x i + yj + 2zk

2. F = sinh(xyz)j

3. F = 2xyi + xeyj + 2zk

4. F = x i + yj + 2zk

5. F = sinh(x)i + cosh(xyz)j − (x + y + z)k

6. F = sinh(x − z)i + 2yj + (z − y2)k

In each of Problems 7 through 12, compute ∇ϕ and verify
explicitly that ∇ × (∇ϕ)= O.

7. ϕ(x, y, z)= x − y + 2z2

8. ϕ(x, y, z)= 18xyz + ex

9. ϕ(x, y, z)=−2x3 yz2

10. ϕ(x, y, z)= sin(xz)

11. ϕ(x, y, z)= x cos(x + y + z)

12. ϕ(x, y, z)= ex+y+z

13. Let ϕ be a scalar field and F a vector field. Derive
expressions for ∇ · (ϕF) and ∇ × (ϕF) in terms of
operations applied to ϕ(x, y, z) and to F(x, y, z).
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CHAPTER 12
Vector Integral
Calculus

LINE INTEGRALS GREEN’S THEOREM
AN EXTENSION OF GREEN’S THEOREM
INDEPENDENCE OF PATH AND
POTENTIAL THEORY SURFACE

The primary objects of vector integral calculus are line and surface integrals and relationships
between them involving the vector differential operators gradient, divergence and curl.

12.1 Line Integrals

For line integrals we need some preliminary observations about curves. Suppose a curve C
has parametric equations

x = x(t), y = y(t), z = z(t) for a ≤ t ≤ b.

These are the coordinate functions of C . It is convenient to think of t as time and C as the
trajectory of an object, which at time t is at C(t)= (x(t), y(t), z(t)). C has an orientation,
since the object starts at the initial point (x(a), y(a), z(a)) at time t = a and ends at the
terminal point (x(b), y(b), z(b)) at time t =b. We often indicate this orientation by putting
arrows along the graph.

We call C :

• continuous if each coordinate function is continuous;
• differentiable if each coordinate function is differentiable;
• closed if the initial and terminal points coincide: (x(a), y(a), z(a))= (x(b), y(b), z(b));
• simple if a< t1< t2< b implies that

(x(t1), y)t1), z(t1)) �= (x(t2), y(t2), z(t2));
and

• smooth if the coordinate functions have continuous derivatives which are never all zero
for the same value of t .

367

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:53 THM/NEIL Page-368 27410_12_ch12_p367-424

368 CHAPTER 12 Vector Integral Calculus

x

y

z

FIGURE 12.1 A nonsimple
curve.

If C is smooth and we let R(t)= x(t)i + y(t)i + z(t)k be the position function for C , then
R′(t) is continuous tangent vector to C . Smoothness of C means that the curve has a continuous
tangent vector as we move along it.

A curve is simple if it does not intersect itself at different times. The curve whose graph is
shown in Figure 12.1 is not simple. A closed curve has the same initial terminal points, but is
still called simple if it does not pass through any other point more than once.

We must be careful to distinguish between a curve and its graph, although informally we
often use these terms interchangeably. The graph is a drawing, while the curve carries with it a
sense of orientation from an initial to a terminal point. The graph of a curve does not carry all of
this information.

EXAMPLE 12.1

Let C have coordinate functions

x = 4cos(t), y = 4 sin(t), z = 9 for 0 ≤ t ≤ 2π.

The graph of C is a circle of radius 4 about the origin in the plane z = 9. C is simple, closed and
smooth.

Let K be given by

x = 4cos(t), y = 4 sin(t), z = 9 for 0 ≤ t ≤ 4π.

The graph of K is the same as the graph of K , except that a particle traversing K goes around
this circle twice. K is closed and smooth but not simple. This information is not clear from the
graph alone.

Let L be the curve given by

x(t)= 4cos(t), y = 4 sin(t), z = 9 for 0 ≤ t ≤ 3π.

The graph of L is again the circle of radius 4 about the origin in the plane z = 9. L is smooth
and not simple, but L is also not closed, since the initial point is (4,0,9) and the terminal point
is (−4,0,9). A particle moving along L traverses the complete circle from (4,0,9) to (4,0,9)
and then continues on to (−4,0,9), where it stops. Again, this behavior is not clear from the
graph. �

We are now ready to define the line integral, which is an integral over a curve.

Suppose C is a smooth curve with coordinate functions x = x(t), y = y(t), z = z(t) for
a ≤ t ≤ b. Let f, g and h be continuous at least at points on the graph of C . Then the line
integral

∫
C

f dx + gdy + hdz is defined by
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∫

C

f dx + g dy + h dz

=
∫ b

a

[

f (x(t), y(t), z(t))
dx

dt
+ g(x(t), y(t), z(t))

dy

dt
+ h(x(t), y(t), z(t))

dz

dt

]

dt.

∫
C

f dx + g dy + h dz is a number obtained by replacing x, y and z in f (x, y, z), g(x, y, z)
and h(x, y, z) with the coordinate functions x(t), y(t) and z(t) of C , replacing

dx = x ′(t)dt,dy = y ′(t)dt, and dz = z′(t)dt,

and integrating the resulting function of t from a to b.

EXAMPLE 12.2

We will evaluate
∫

C
x dx − yz dy + ez dz if C is the curve with coordinate functions

x = t 3, y =−t, z = t 2 for 1 ≤ t ≤ 2.

First,

dx = 3t2 dt,dy =−dt, and dz = 2t dt.

Put the coordinate functions of C into x , −yz and ez to obtain
∫

C

x dx − yz dy + ez dz

=
∫ 2

1

[
t 3(3t 2)− (−t)(t 2)(−1)+ et2(2t)

]
dt

=
∫ 2

1

[3t 5 − t 3 + 2tet2 ]dt

= 111

4
+ e4 − e. �

EXAMPLE 12.3

Evaluate
∫

C
xyz dx − cos(yz)dy + xz dz along the straight line segment L from (1,1,1) to

(−2,1,3).
Parametric equations of L are

x = 1 − 3t, y = 1, z = 1 + 2t for 0 ≤ t ≤ 1.

Then

dx =−3 dt,dy = 0 and dz = 2 dt.

The line integral is
∫

C

xyz dx − cos(yz)dy + xz dz

=
∫ 1

0

[(1 − 3t)(1 + 2t)(−3)− cos(1 + 2t)(0)+ (1 − 3t)(1 + 2t)(2)]dt

=
∫ 1

0

(−1 + t + 6t 2)dt = 3

2
. �
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We have a line integral in the plane if C is in the plane and the functions involve only
x and y.

EXAMPLE 12.4

Evaluate
∫

K
xy dx − y sin(x)dy if K has coordinate functions x = t 2, y = t for −1 ≤ t ≤ 2. Here

dx = 2t dt and dy = dt

so
∫

K

xy dx − y sin(x)dy =
∫ 2

−1

[t 2t (2t)− t sin(t 2)]dt

=
∫ 2

−1

[2t 4 − t sin(t 2)]dt = 66

5
+ 1

2
(cos(4)− cos(1)). �

Line integrals have properties we normally expect of integrals.
1. The line integral of a sum is the sum of the line integrals:

∫

C

( f + f ∗)dx + (g + g∗)dy + (h + h∗)dz

=
∫

C

f dx + g dy + h dz +
∫

C

f ∗ dx + g∗ dy + h∗ dz.

2. Constants factor through a line integral:
∫

C

(c f )dx + (cg)dy + (ch)dz = c
∫

C

f dx + g dy + h dz.

For definite integrals,
∫ b

a
F(x)dx = − ∫ a

b
F(x)dx . The analogue of this for line integrals is

that reversing the direction on C changes the sign of the line integral. Suppose C is a smooth
curve from P0 to P1. Let C have coordinate functions

x = x(t), y = y(t), z = z(t) for a ≤ t ≤ b.

Define K as the curve with coordinate functions

x̃(t)= x(a + b − t), ỹ(t)= y(a + b − t), z̃(t)= z(a + b − t) for a ≤ t ≤ b.

The graphs of C and K are the same, but the initial point of K is the terminal point of C , since

(x̃(a), ỹ(a), z̃(a))= (x(b), y(b), z(b)).

Similarly, the terminal point of K is the initial point of C . We denote a curve K formed from C
in this way as −C . The effect of this reversal of orientation is to change the sign of a line integral.

3.
∫

C

f dx + g dy + h dz =−
∫

−C

f dx + g dy + h dz.

This can be proved by a simple change of variables in the integrals with respect to t defining
these line integrals.

The next property of line integrals reflects the fact that
∫ b

a

F(x)dx =
∫ c

a

F(x)dx +
∫ b

c

F(x)dx

for definite integrals. A curve C is piecewise smooth if it has a continuous tangent at all but
finitely many points. Such a curve typically has the appearance of the graph in Figure 12.2, with
a finite number of “corners” at which there is no tangent.
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C1
C2

C4

C3

x

y

z

FIGURE 12.2 A piecewise
smooth curve.

Write

C = C1

⊕
C2

⊕
· · ·

⊕
Cn

if, as in Figure 12.2, C begins with a smooth piece C1. C2 begins where C1 ends, C3 begins where
C2 ends, and so on. Each C j is smooth, but where C j joins with C j+1 there may be no tangent in
the resulting curve. For C formed in this way,

4.
∫

C

f dx + g dy + h dz =
∫

C1
⊕

C2
⊕···⊕Cn

f dx + g dy + h dz

=
n∑

j=1

∫

C j

f dx + g dy + h dz.

EXAMPLE 12.5

Let C be the curve consisting of the quarter circle x2 + y2 = 1 in the x, y - plane from
(1,0) to (0,1), followed by the horizontal line segment from (0,1) to (2,1). We will compute∫

C
dx + y2dy.

Write C = C1 ⊕ C2, where C1 is the quarter circle part and C2 the line segment part.
Parametrize C1 by x = cos(t), y = sin(t) for 0 ≤ t ≤π/2. On C1,

dx =− sin(t)dt and dy = cos(t)dt,

so
∫

C1

dx + y2 dy =
∫ π/2

0

[− sin(t)+ sin2
(t) cos(t)]dt =−2

3
.

Parametrize C2 by x = s, y = 1 for 0 ≤ s ≤ 2. On C2,

dx = ds and dy = 0

so
∫

C2

dx + y2 dy =
∫ 2

0

ds = 2.

Then
∫

C

dx + y2 dy =−2

3
+ 2 = 4

3
. �
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We often write a line integral in vector notation. Let F = f i + gj + hk and form the position
vector R(t)= x(t)i + y(t)j + z(t)k for C . Then

dR = dx i + dy j + dz k

and

F · dR = f dx + g dy + h dz

suggesting the notation
∫

C

f dx + g dy + h dz =
∫

C

F · dR.

EXAMPLE 12.6

A force F(x, y, z)= x2i − zyj + x cos(z)k moves an object along the path C given by x = t 2,

y = t, z =π t for 0 ≤ t ≤ 3. We want to calculate the work done by this force.
At any point on C the particle will be moving in the direction of the tangent to C at that point.

We may approximate the work done along a small segment of the curve starting at (x, y, z) by
F(x, y, z) · dR, with the dimensions of force times distance. The work done in moving the object
along the entire path is approximated by the sum of these approximations along segments of the
path. In the limit as the lengths of these segments tend to zero we obtain

work =
∫

C

F · dR =
∫

C

x2 dx − zy dy + x cos(z)dz

=
∫ 3

0

[t 4(2t)− (π t)(t)+ t 2 cos(π t)(π)]dt

=
∫ 3

0

[2t 5 −π t 2 +π t 2 cos(π t)]dt

= 243 − 9π − 6

π
. �

12.1.1 Line Integral With Respect to Arc Length

In some contexts it is useful to have a line integral with respect to arc length along C . If
ϕ(x, y, z) is a scalar field and C is a smooth curve with coordinate functions x = x(t), y =
y(t), z = z(t) for a ≤ t ≤ b, we define

∫

C

ϕ(x, y, z)ds =
∫ b

a

ϕ(x(t), y(t), z(t))
√

x ′(t)2 + y ′(t)2 + z′(t)2 dt.

The rationale behind this definition is that

ds =√
x ′(t)2 + y ′(t)2 + z′(t)2 dt

is the differential element of arc length along C .

To see how such a line integral arises, suppose C is a thin wire having density δ(x, y, z)
at (x, y, z), and we want to compute the mass. Partition [a,b] into n subintervals by inserting
points

a = t0< t1< t2< · · ·< tn−1< tn = b
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of length �t = (b − a)/n, where n is a positive integer. We can make �t as small as we want
by choosing n large, so that values of δ(x, y, z) are approximated as closely as we want on
[t j−1, t j ] by δ(Pj), where Pj = (x(t j), y(t j), z(t j)). The length of wire between Pj−1 and Pj is
�s = s(Pj)− s(Pj−1)≈ ds j . The density of this piece of wire is approximately δ(Pj)ds j , and∑n

j=1 δ(Pj)ds j approximates the mass of the wire. In the limit as n → ∞, this gives

mass of the wire =
∫

C

δ(x, y, z)ds.

A similar argument gives the coordinates (x̃, ỹ, z̃) of the center of mass of the wire as

x̃ = 1

m

∫

C

xδ(x, y, z)ds, ỹ = 1

m

∫

C

yδ(x, y, z)ds, z̃ = 1

m

∫

C

zδ(x, y, z)ds,

in which m is the mass.

EXAMPLE 12.7

A wire is bent into the shape of the quarter circle C given by x = 2cos(t), y = 2 sin(t), z = 3 for
0 ≤ t ≤ π/2. The density function is δ(x, y, z)= xy2. We want the mass and center of mass of
the wire.

The mass is

m =
∫

C

xy2 ds =
∫ π/2

0

2 cos(t)[2 sin(t)]2

√
4 sin2(t)+ 4cos2 dt

=
∫ π/2

0

16 cos(t) sin2(t)dt = 16

3
.

Now compute the coordinates of the center of mass. First,

x̃ = 1

m

∫

C

xδ(x, y, z)ds

= 3

16

∫ π/2

0

[2cos(t)]2[2 sin(t)]2

√
4 sin2(t)+ 4cos2 dt

= 6
∫ π/2

0

cos2(t) sin2(t)dt = 3π

8
.

Next,

ỹ = 1

m

∫

C

yδ(x, y, z)ds

= 3

16

∫ π/2

0

[2cos(t)][2 sin(t)]3

√
4 sin2(t)+ 4cos2 dt

= 6
∫ π/2

0

cos(t) sin3
(t)dt = 3

2
.

And

z̃ = 3

16

∫

C

zxy2 ds

= 3

16

∫ 16

0

3[2cos(t)][2 sin(t)]2

√
4 sin2

(t)+ 4cos2 dt

= 9
∫ π/2

0

sin2(t) cos(t)dt = 3.

It should not be surprising that z̃ = 3 because the wire is in the z = 3 plane. �
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SECTION 12.1 PROBLEMS

In each of Problems 1 through 10, evaluate the line
integral.

1.
∫

C
x dx − dy + z dz with C given by x = y = t, z = t3

for 0 ≤ t ≤ 1

2.
∫

C
−4x dx + y2 dy − yz dz with C given by x =

−t2, y = 0, z =−3t for 0 ≤ t ≤ 1

3.
∫

C
(x + y)ds with C given by x = y = t, z = t2 for

0 ≤ t ≤ 2

4.
∫

C
x2z ds with C the line segment from (0,1,1) to

(1,2,−1)

5.
∫

C F · dR with F = cos(x)i − yj + xzk and R =
t i − t2j + k for 0 ≤ t ≤ 3

6.
∫

C
4xy ds with C given by x = y = t, z = 2t for

1 ≤ t ≤ 2

7.
∫

C
F · dR with F = x i + yj − zk and C the circle

x2 + y2 =4, z =0, going around once counterclock-
wise.

8.
∫

C
yz ds with C the parabola z = y2, x =1 for 0≤ y ≤2

9.
∫

C
−xyz dz with C given by x = 1, y = √

z for
4≤ z ≤9

10.
∫

C
xz dy with C given by x = y = t, z = −4t2 for

1 ≤ t ≤ 3

11. Find the work done by F = x2i − 2yzj + zk in mov-
ing an object along the line segment from (1,1,1) to
(4,4,4).

12. Find the mass and center of mass of a thin,
straight wire extending from the origin to (3,3,3) if
δ(x, y, z)= x + y + z grams per centimeter.

13. Show that any Riemann integral
∫ b

a
f (x)dx is a line

integral
∫

C
F · dR for appropriate choices of F and R.

12.2 Green’s Theorem

Green’s theorem is a relationship between double integrals and line integrals around closed
curves in the plane. It was formulated independently by the self-taught amateur British natural
philosopher George Green and the Ukrainian mathematician Michel Ostrogradsky, and is used
in potential theory and partial differential equations.

A closed curve C in the x, y - plane is positively oriented if a point on the curve moves
counterclockwise as the parameter describing C increases. If the point moves clockwise, then C
is negatively oriented. We denote orientation by placing an arrow on the graph, as in Figure 12.3.

A simple closed curve C in the plane encloses a region, called the interior of C . The
unbounded region that remains if the interior is cut out is the exterior of C (Figure 12.4). If

x

y

FIGURE 12.3 Orientation on a
curve.

x

y

C

Interior of C

Exterior of C

FIGURE 12.4 Interior and exterior
of a simple closed curve.
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C is positively oriented then, as we walk around C in the positive direction, the interior is over
our left shoulder.

We will use the term path for a piecewise smooth curve. And we often denote a line integral
over a closed path C as

∮
C
, with a small oval on the integral sign. This is not obligatory and does

not affect the meaning of the line integral or the way it is evaluated.

THEOREM 12.1 Green’s Theorem

Let C be a simple closed positively oriented path in the plane. Let D consist of all points on C
and in its interior. Let f, g, ∂ f/∂y and ∂g/∂x be continuous on D. Then

∮

C

f (x, y)dx + g(x, y)dy =
∫∫

D

(
∂g

∂x
− ∂ f

∂y

)

d A. �

A proof under special conditions on D is sketched in Problem 14.

EXAMPLE 12.8

Sometimes Green’s theorem simplifies an integration. Suppose we want to compute the work
done by F(x, y)= (y − x2ex)i+ (cos(2y2)− x)j in moving a particle counterclockwise about the
rectangular path C having vertices (0,1), (1,1), (1,3) and (0,3).

If we attempt to evaluate
∫

C
F · dR we encounter integrals that cannot be done in elementary

form. However, by Green’s theorem, with D the solid rectangle bounded by C ,

work =
∮

C

F · dR =
∫∫

D

(
∂

∂x
(cos(2y2)− x)− ∂

∂y
(y − x2ex)

)

d A

=
∫∫

D

−2d A = (−2)[area ofD]=−4. �

EXAMPLE 12.9

Another use of Green’s theorem is in deriving general results. Suppose we want to evaluate

∮

C

2x cos(2y)dx − 2x2 sin(2y)dy

for every positively oriented simple closed path C in the plane.
There are infinitely many such paths. However, f (x, y) and g(x, y) have the special property

that

∂

∂x

(−2x2 sin(2y)
)− ∂

∂y
(2x cos(2y))

=−4x sin(2y)+ 4x sin(2y)= 0.

By Green’s theorem, for any such closed path C in the plane,

∮

C

2x cos(2y)dx − 2x2 sin(2y)dy =
∫∫

D

0 d A = 0. �
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SECTION 12.2 PROBLEMS

1. A particle moves once counterclockwise about the tri-
angle with vertices (0,0), (4,0) and (1,6), under the
influence of the force F= xyi+ xj. Calculate the work
done by this force.

2. A particle moves once counterclockwise around the
circle of radius 6 about the origin, under the influence
of the force F = (ex − y + x cosh(x))i + (y3/2 + x)j.
Calculate the work done.

3. A particle moves once counterclockwise about the
rectangle with vertices (1,1), (1,7), (3,1) and (3,7),
under the influence of the force F = (− cosh(4x4)+
xy)i + (e−y + x)j. Calculate the work done.

In each of Problems 4 through 11, use Green’s theorem to
evaluate

∮
C

F · dR. All curves are oriented positively.

4. F=2yi− xj and C is the circle of radius 4 about (1,3)

5. F = x2i − 2xyj and C is the triangle with vertices
(1,1), (4,1), (2,6)

6. F = (x + y)i + (x − y)j and C is the ellipse x2 +
4y2 =1

7. F = 8xy2j and C is the circle of radius 4 about the
origin

8. F = (x2 − y)i + (cos(2y)− e3y + 4x)j and C is any
square with sides of length 5

9. F = ex cos(y)i − ex sin(y)j and C is any simple closed
path in the plane

10. F = x2 yi − xy2j and C is the boundary of the region
x2 + y2 ≤ 4, x ≥ 0, y ≥ 0

11. F = xyi + (xy2 − ecos(y))j and C is the triangle with
vertices (0,0), (3,0) and (0,5)

12. Let D be the interior of a positively oriented simple
closed path C .

(a) Show that the area of D equals
∮

C
−ydx .

(b) Show that the area of D equals
∮

C
xdy.

(c) Show that the area of D equals

1

2

∮

C

−ydx + xdy.

13. Let u(x, y) be continuous with continuous first and
second partial derivatives on a simple closed path C
and throughout the interior D of C . Show that

∮

C

−∂u

∂y
dx + ∂u

∂x
dy =

∫∫

D

[
∂2u

∂x2
+ ∂2u

∂y2

]

d A.

14. Fill in the details of the following argument to prove
Green’s theorem under special conditions. Assume
that D can be described in two ways. First, D con-
sists of all (x, y) with q(x)≤ y ≤ p(x), for a ≤ x ≤ b.
This means that D has an upper boundary (graph
of y = p(x)) and a lower boundary (y = q(x)) for
a ≤ x ≤ b. Also assume that D consists of all (x, y)
with α(y)≤ x ≤ β(y), with c ≤ y ≤ d. In this descrip-
tion, the graph of x = α(y) is a left boundary of D,
and the graph of x =β(y) is a right boundary.

Using the first description of D, show that
∫

C

g(x, y)dy =
∫ d

c

g(β(y), y)dy +
∫ c

d

g(α(y), y)dy

and
∫∫

D

∂g

∂x
d A =

∫ d

c

∫ β(y)

α(y)

∂g

∂x
d A

=
∫ c

c

(g(β(y), y)− g(α(y), y))dy.

Thus, conclude that
∫

C

g(x, y)dy =
∫∫

D

∂g

∂x
d A.

Now use the other description of D to show that
∫

C

f (x, y)dx =−
∫∫

D

∂ f

∂y
d A.

12.3 An Extension of Green’s Theorem

There is an extension of Green’s theorem to include the case that there are finitely many points
P1, · · · , Pn enclosed by C at which f , g, ∂ f/∂y and/or ∂g/∂x are not continuous, or perhaps
not even defined. The idea is to excise these points by enclosing them in small disks which are
thought of as cut out of D.

Enclose each Pj with a circle K j of sufficiently small radius that no circle intersects either C
or any of the other circles (Figure 12.5). Draw a channel consisting of two parallel line segments
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C

P1

P2

P3

K1

K3

K2

FIGURE 12.5 Enclosing points with small cir-
cles interior to C.

C

K1

K3

K2

P2

P3

P1

FIGURE 12.6 Channels connecting C to K1,
K1 to K2, · · · , Kn−1 to Kn.

C*

FIGURE 12.7 The simple closed path C∗,
with each Pj exterior to C∗.

from C to K1, then from K1 to K2, and so on, until the last channel is drawn from Kn−1 to Kn .
This is illustrated in Figure 12.6 for n = 3.

Now form the simple closed path C∗ of Figure 12.7, consisting of “most of ” C , “most of ”
each K j , and the inserted channel lines. By “most of” C , we mean that a small arc of C and each
circle between the channel cuts has been excised in forming C∗.

Each Pj is external to C∗ and f, g, ∂ f/∂y and ∂g/∂x are continuous on and in the inte-
rior of C∗. The orientation on C∗ is also crucial. If we begin at a point of C just before the
channel to K1, we move counterclockwise on C until we reach the first channel cut, then go
along this cut to K1, then clockwise around part of K1 until we reach a channel cut to K2,
then clockwise around K2 until we reach a cut to K3. After going clockwise around part of
K3, we reach the other side of the cut from this circle to K2, move clockwise around it to the
cut to K1, then clockwise around it to the cut back to C , and then continue counterclockwise
around C .
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If D∗ is the interior of C∗, then by Green’s theorem,

∮

C∗
f dx + g dy =

∫∫

D∗

(
∂g

∂x
− ∂ f

∂y

)

d A. (12.1)

Now take a limit in Figure 12.7 as the channels are made narrower. The opposite sides
of each channel merge to single line segments, which are integrated over in both directions in
equation (12.1). The contributions to the sum in this equation from the channel cuts is therefore
zero. Further, as the channels narrow, the small arcs of C and each K j cut out in making the
channels are restored, and the line integrals in equation (12.1) are over all of C and the circles
K j . Recalling that in equation (12.1) the integrations over the K j ’s are clockwise, equation (12.1)
can be written

∮

C

f dx + g dy −
n∑

j=1

∮

K j

f dx + g dy =
∫∫

D∗

(
∂g

∂x
− ∂ f

∂y

)

d A. (12.2)

in which all integrations (over C and each K j ) are now taken in the positive, counterclock-
wise sense. This accounts for the minus sign on each of the integrals

∮
K j

f dx + g dy in
equation (12.2). Finally, write equation (12.2) as

∮

C

f dx + g dy =
n∑

j=1

∮

K j

f dx + g dy +
∫∫

D∗

(
∂g

∂x
− ∂ f

∂y

)

d A. (12.3)

This is the extended form of Green’s theorem. When D contains points at which f, g, ∂ f/∂y
and/or ∂g/∂x are not continuous, then

∮
C

f dx + g dy is the sum of the line integrals
∮

K j
f dx +

g dy about small circles centered at the Pj ’s, together with

∫∫

D∗

(
∂g

∂x
− ∂ f

∂y

)

d A

over the region D∗ formed by excising from D the disks bounded by the K j ’s.

EXAMPLE 12.10

We will evaluate
∮

C

−y

x2 + y2
dx + x

x2 + y2
dy

in which C is any simple closed positively oriented path in the plane, but not passing through the
origin.

With

f (x, y)= −y

x2 + y2
and g(x, y)= x

x2 + y2

we have

∂g

∂x
= ∂ f

∂y
= y2 − x2

(x2 + y2)2
.

This suggests that we consider two cases.
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C
K

x

y

FIGURE 12.8 Case 2 of Example 12.10.

Case 1 If C does not enclose the origin, Green’s theorem applies and

∮

C

−y

x2 + y2
dx + x

x2 + y2
dy =

∫∫

D

(
∂g

∂x
− ∂ f

∂y

)

d A = 0.

Case 2 If C encloses the origin, then C encloses a point where f and g are not defined. Now
use equation (12.3). Let K be a circle about the origin, with sufficiently small radius r that K
does not intersect C (Figure 12.8). Then

∮

C

f dx + g dy

=
∮

K

f dx + g dy +
∫∫

D∗

(
∂g

∂x
− ∂ f

∂y

)

d A

=
∮

K

f dx + g dy

where D∗ is the region between D and K , including both curves. Both of these line integrals
are in the counterclockwise sense. The last line integral is over a circle and can be evaluated
explicitly. Parametrize K by x = r cos(θ), y = r sin(θ) for 0 ≤ θ ≤ 2π . Then

∮

K

f dx + g dy

=
∫ 2π

0

(−r sin(θ)

r 2
[−r sin(θ)] + r cos(θ)

r 2
[r cos(θ)]

)

dθ

=
∫ 2π

0

dθ = 2π.

We conclude that

∮

C

f dx + g dy =
{

0 if C does not enclose the origin

2π if C encloses the origin.
�
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SECTION 12.3 PROBLEMS

In each of Problems 1 through 5, evaluate
∮

C
F · dR over

any simple closed path in the x, y-plane that does not
pass through the origin. This may require cases, as in
Example 12.10.

1. F = x

x2 + y2
i + y

x2 + y2
j

2. F =
(

1

x2 + y2

)3/2

(x i + yj)

3. F =
( −y

x2 + y2
+ x2

)

i +
(

x

x2 + y2
− 2y

)

j

4. F =
( −y

x2 + y2
+ 3x

)

i +
(

x

x2 + y2
− y

)

j

5. F =
(

x
√

x2 + y2
+ 2x

)

i +
(

y
√

x2 + y2
− 3y2

)

j

12.4 Independence of Path and Potential Theory

A vector field F is conservative if it is derivable from a potential function. This means that
for some scalar field ϕ,

F =∇ϕ= ∂ϕ

∂x
i + ∂ϕ

∂y
j + ∂ϕ

∂z
k.

We call ϕ a potential function, or potential, for F. Of course, if ϕ is a potential, so is ϕ+ c
for any constant c.

One consequence of F being conservative is that the value of
∫

C
F · dR depends only on

the endpoints of C . If C has differentiable coordinate functions x = x(t), y = y(t), z = z(t) for
a ≤ t ≤ b, then

∫

C

F · dR =
∫

C

∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dy

=
∫ b

a

(
∂ϕ

∂x

dx

dt
+ ∂ϕ

∂y

dy

dt
+ ∂ϕ

∂z

dz

dt

)

dt

=
∫ b

a

d

dt
ϕ(x(t), y(t), z(t))dt

=ϕ(x(b), y(b), z(b))−ϕ(x(a), y(a), z(a))

which requires only that we evaluate the potential function for F at the endpoints of C . This is
the line integral version of the fundamental theorem of calculus, and applies to line integrals of
conservative vector fields.

THEOREM 12.2

Let F be conservative in a region D (of the plane or of 3-space). Let C be a path from P0 to P1 in
D. Then

∫

C

F · dR =ϕ(P1)−ϕ(P0). (12.4)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:53 THM/NEIL Page-381 27410_12_ch12_p367-424

12.4 Independence of Path and Potential Theory 381

In particular, if C is a closed path in D, then
∮

C

F · dR = 0. �

The last conclusion follows from the fact that, if the path is closed, then the initial point P0

and the terminal point P1 are the same and equation (12.4) yields 0 for the value of the integral.

Another consequence of F having a potential function is independence of path. We say that∫
C

F · dR is independent of path in D if the value of this line integral for any path C in D
depends only on the endpoints of C . Another way of putting this is that

∫

C1

F dR =
∫

C2

F · dR

for any paths C1 and C2 in D having the same initial point and the same terminal point
in D. In this case, the route is unimportant - the only thing that matters is where we
start and where we end. By equation (12.4), existence of a potential function implies
independence of path.

THEOREM 12.3

If F is conservative in D, then
∫

C
FḋR is independent of path in D. �

Proof Let ϕ be a potential function for F in D. If C1 and C2 are paths in D having initial point
P0 and terminal point P1, then

∫

C1

F · dR =ϕ(P1)−ϕ(P0)=
∫

C2

F · dR. �

Independence of path is equivalent to the vanishing of integrals around closed paths.

THEOREM 12.4

∫
C

F · dR is independent of path in D if and only if
∮

C

F · dR = 0

for every closed path in D. �
Proof To go one way, suppose first that

∮
C

F · dR=0 for every closed path in D and let C1 and
C2 be paths in D from P0 to P1. Form a closed path C by starting at P0, moving along C1 to P1,
and then reversing orientation to move along −C2 from P1 to P0. Then C = C1

⊕
(−C2) and

∮

C

F · dR = 0 =
∫

C1

F · dR −
∫

C2

F · dR,

implying that
∫

C1

F · dR =
∫

C2

F · dR.

This makes
∫

C
F · dR independent of path in D.
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Conversely, suppose
∫

C
F · dR is independent of path in D and let C be any closed path in

D. Choose distinct points P0 and P1 on C . Let C1 be the part of C from P0 to P1 and C2 the part
from P1 to P0. Then C =C1

⊕
C2. Furthermore, C1 and −C2 are paths in D from P0 to P1, so by

assumption
∫

C1

F · dR =
∫

−C2

F · dR =−
∫

C2

F · dR.

Then

0 =
∫

C1

F · dR +
∫

C2

F · dR =
∮

C

F · dR. �

Thus far, we have the following implications for
∫

C
F · dR over paths in some region D:

1. Conservative F ⇒ independence of path of
∫

C
F · dR.

2. Independence of path in D ⇐⇒ integrals over all closed paths in D are zero.

We will improve on this table of implications shortly. First, consider the problem of finding
a potential function for a conservative vector field. Sometimes this can be done by integration.

EXAMPLE 12.11

We will determine if the vector field

F(x, y, z)= 3x2 yz2i + (x3z2 + ez)j + (2x3 yz + yez)k.

is conservative by attempting to find a potential function.
If F =∇ϕ for some ϕ, then

∂ϕ

∂x
= 3x2 yz2, (12.5)

∂ϕ

∂y
= x3z2 + ez, (12.6)

∂ϕ

∂z
= 2x3 yz + yez. (12.7)

Choose one of these equations, say 12.5. To reverse ∂ϕ/∂x , integrate this equation with respect
to x to get

ϕ(x, y, z)=
∫

3x2 yz2dx = x3 yz2 +α(y, z).
The “constant of integration” may involve y and z because the integration reverses a partial
differentiation in which y and z were held fixed. Now we know ϕ to within α(y, z). To determine
α(x, y), choose one of the other equations, say 12.6, to get

∂ϕ

∂y
= x3z2 + ez = ∂

∂y
(x3 yz2 +α(y, z))

= x3z2 + ∂α(y, z)

∂y
.

This requires that

∂α(y, z)

∂y
= ez.

Integrate this with respect to y, holding z fixed to get
∫
∂α(y, z)

∂y
dy = yez +β(z),
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with β(z) an as yet unknown function of z. We now have

ϕ(x, y, z)= x3 yz2 +α(y, z)= x3 yz2 + yez +β(z)
and we have only to determine β(z). For this use the third equation, 12.7, to write

∂ϕ

∂z
= 2x3 yz + yez = 2x3 yz + yez +β ′(z).

This forces β ′(z)=0, so β(z)=k, any number. With ϕ(x, y, z)= x3 yz2 + yez + k for any number
k (which we can choose to be 0), we have F =∇ϕ and ϕ is a potential function for F.

This enables us to easily evaluate
∫

C
F · dR. If, for example, C is a path from (0,0,0) to

(−1,3,−2), then
∫

C

F · dR =ϕ(−1,3,−2)−ϕ(0,0,0)=−12 + 3e−2.

And if C is a closed path, then
∮

C
F · dR = 0. �

This method for finding a potential function for a function of two variables was seen
previously in solving exact differential equations (Example 1.12).

There are nonconservative vector fields.

EXAMPLE 12.12

Let F = yi + ex j, a vector field in the plane. If this is conservative, there would be a potential
function ϕ(x, y) such that

∂ϕ

∂x
= y and

∂ϕ

∂y
= ex .

Integrate the first with respect to x , thinking of y as fixed, to get

ϕ(x, y)=
∫

ydx = xy +α(y).
But then we would have to have

∂ϕ

∂y
= ex = ∂

∂y
(xy +α(y))= x +α′(y).

This would make α depend on x . This is impossible, since α(y) was the “constant” of integration
with respect to x . F has no potential and is not conservative. �

If a vector field is conservative, we may be able to find a potential function by integration.
But in general, integration is an ineffective way to determine if a vector field is conservative, one
problem being that we cannot integrate every function. The following test is simple to apply for
vector fields defined over a rectangle in the plane. We will extend this test to a three dimensional
version later when we have Stokes’s theorem.

THEOREM 12.5 Test for a Conservative Field in the Plane

Let f and g be continuous in a region D of the plane bounded by a rectangle having its sides
parallel to the axes. Then F(x, y)= f (x, y)i + g(x, y)j is conservative on D if and only if, for
all (x, y) in D,

∂g

∂x
= ∂ f

∂y
. �

Proof In one direction the proof is a simple differentiation. If F is conservative on D, then
F =∇ϕ. Then
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f (x, y)= ∂ϕ

∂x
and g(x, y)= ∂ϕ

∂y
so

∂g

∂x
= ∂2ϕ

∂x∂y
= ∂2ϕ

∂y∂x
= ∂ f

∂y
.

A proof of the converse is outlined in Problem 22.

EXAMPLE 12.13

Often Theorem 12.5 is used in the following form: if
∂g

∂x
�= ∂ f

∂y

then f (x, y)i + g(x, )j is not conservative. As an example of the use of this test, consider

F(x, y)= (2xy2 + y)i + (2x2 y + ex y)j = f (x, y)i + g(x, y)j.

This is continuous over the entire plane, hence on any rectangular region. Compute
∂g

∂x
= 4xy + ex y and

∂ f

∂y
= 4xy + 1.

These partial derivatives are not equal throughout any rectangular region, so F is not conservative.
If we attempted to find a potential function ϕ by integration, we would begin with

∂ϕ

∂x
= 2xy2 + y and

∂ϕ

∂y
= 2x2 y + ex y.

Integrate the first equation with respect to x to obtain

ϕ(x, y)= x2 y2 + xy +α(y),
in which α(y) is the “constant” of integration with respect to x . But then

∂ϕ

∂y
= 2x2 y + x +α′(y)= g(x, y)= 2x2 y + ex y.

This requires that

α′(y)= yex ,

and then α′(y) would depend on x , not y, a contradiction. Thus F has no potential function, as
we found with less effort using the test of Theorem 12.5. �

In special regions (rectangular), existence of a potential function for f (x, y)i + g(x, y)j
implies that

∂g

∂x
= ∂ f

∂y
.

We can ask whether equality of these partial derivatives implies that f i + gj has a potential
function. This is a subtle question, and the answer depends not only on the vector field, but on
the set D over which this field is defined. The following example demonstrates this.

EXAMPLE 12.14

Let

F(x, y)= −y

x2 + y2
i + x

x2 + y2
j
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for all (x, y) except the origin. This is a vector field in the plane with the origin removed, with

f (x, y)= −y

x2 + y2
and g(x, y)= x

x2 + y2
.

Routine integrations would appear to derive the potential function

ϕ(x, y)=− arctan

(
x

y

)

.

However, this potential is not defined for all (x, y).
If we restrict (x, y) to the right quarter plane x > 0, y > 0, then ϕ is indeed a potential

function and F is conservative in this region. However, suppose we attempt to consider F over the
set D consisting of the entire plane with the origin removed. Then ϕ is not a potential function.
Further, F is not conservative over D because

∫
C

F · dR is not independent of path in D. To see
this, we will evaluate this integral over two paths from (1,0) to (−1,0), shown in Figure 12.9.

First, let C1 be the half-circle given by x = cos(θ), y = sin(θ) for 0≤ θ ≤π . This is the upper
half of the circle x2 + y2 = 1. Then

∫

C1

F · dR =
∫ π

0

[(− sin(θ))(− sin(θ))+ cos(θ)(cos(θ))]dθ

=
∫ π

0

dθ =π.
Next let C2 be the half-circle from (1,0) to (−1,0) given by x = cos(θ), y =− sin(θ) for 0≤ θ ≤
π . This is the lower half of the circle x 2 + y2 = 1 and

∫

C2

F · dR =
∫ π

0

[sin(θ)(− sin(θ))+ cos(θ)(− cos(θ))]dθ

=−
∫ π

0

dθ =−π.

In this example,
∫

C
F · dR depends not only on the vector field, but also on the curve, and the

vector field cannot be conservative over the plane with the origin removed. �

In attempting a converse of the test of Theorem 12.5, Example 12.14 means that we must
place some condition on the set D over which the vector field is defined. This leads us to define
a set D of points in the plane to be a domain if it satisfies two conditions:

1. If P is a point in D, then there is a circle about P that encloses only points of D.

2. Between any two points of D there is a path lying entirely in D.

(1, 0)(–1, 0)

C1

C2

x

y

FIGURE 12.9 Two paths of integration
in Example 12.14.
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For example, the interior of a solid rectangle is a domain and the entire plane is a domain.
The right quarter plane consisting of points (x, y)with x>0 and y>0 is also a domain. However,
if we include parts of the axes, considering points (x, y) with x ≥ 0 and y ≥ 0, the resulting set
is not a domain. For example, (0,1) is in this set, but no circle about this point can contain only
points with nonnegative coordinates, violating condition (1) for a domain.

A domain D is called simply connected if every simple closed path in D encloses only points
of D. In Example 12.14, the plane with the origin removed is not simply connected, because a
closed path about the origin encloses a point (the origin) not in the set.

Now we can improve Theorem 12.5 to obtain a necessary and sufficient condition for a
vector field to be conservative.

THEOREM 12.6

Let F= f i+ gj be a vector field defined over a simply connected domain D in the plane. Suppose
f and g are continuous and that ∂ f/∂y and ∂g/∂x are continuous. Then F is conservative on D
if and only if

∂ f

∂y
= ∂g

∂x
. � (12.8)

Thus, under the given conditions, equality of these partials is both necessary and sufficient
for the vector field to have a potential function.

In Example 12.14, the components of F satisfy equation (12.8), but the set (the plane with
the origin removed), is not simply connected, so the theorem does not apply. In that example we
saw that there is no potential function for F over the entire punctured plane.

In 3-space there is a similar test for a vector field to be conservative, with adjustments to
accommodate the extra dimension. A set S of points in R3 is a domain if it satisfies the following
two conditions:

1. If P is a point in S, then there is a sphere about P that encloses only points of S.

2. Between any two points of S there is a path lying entirely in S.

For example, the interior of a cube is a domain.
Furthermore, S is simply connected if every simple closed path in S is the boundary of a

surface in S.
With this notion of simple connectivity in 3-space, we can state a three-dimensional version

of Theorem 12.6.

THEOREM 12.7

Let F be a vector field defined over a simply connected domain S in R3. Then F is conservative
on S if and only if

∇ × F = O. �

Thus, the conservative vector fields in R3 are those with zero curl. These are the irrotational
vector fields. We will prove this theorem in Section 12.9.1 when we have Stokes’s theorem.

With the right perspective, these tests in 2-space and 3-space can be combined into a single
test. Given F = f i + gj in the plane, define

G(x, y, z)= f (x, y)i + g(x, y)j + 0k
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to think of F as a vector field in 3-space. Now compute

∇ × G =
∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z
f (x, y) g(x, y) 0

∣
∣
∣
∣
∣
∣
=

(
∂g

∂x
− ∂ f

∂y

)

k.

The 3-space condition ∇ ×G=O therefore reduces to equation (12.8) if the vector field is in the
plane.

Theorem 12.7 can be proved when Stokes’s theorem is available to us.

SECTION 12.4 PROBLEMS

In each of Problems 1 through 10, determine whether F
is conservative in the given region D. If D is not defined
explicitly, it is understood to be the entire plane or 3-space.
If the vector field is conservative, find a potential.

1. F = y3i + (3xy2 − 4)j

2. F = (6y + exy)i + (6x + xexy)j

3. F = 16x i + (2 − y2)j

4. F = 2xy cos(x2)i + sin(x2)j

5. F =
(

2x

x2 + y2

)

i +
(

2y

x2 + y2

)

j D is the plane with

the origin removed.

6. F = 2x i − 2yj + 2zk

7. F = i − 2j + k

8. F = yz cos(x)i + (z sin(x)+ 1)j + y sin(x)k

9. F = (x 2 − 2)i + xyzj − yz2k

10. F = exyz(1 + xyz)i + x2zj + x2 yk

In each of Problems 11 through 20, determine a potential
function to evaluate

∫
C

F · dR for C any path from the first
point to the second.

11. F = 3x2(y2 − 4y)i + (2x3 y − 4x3)j; (−1,1), (2,3)

12. F = ex cos(y)i − ex sin(y)j; (0,0), (2,π/4)
13. F=2xyi+ (x2 −1/y)j; (1,3), (2,2) (The path cannot

cross the x - axis).

14. F = i + (6y + sin(y))j; (0,0), (1,3)
15. F = (3x 2 y2 − 6y3)i + (2x3 y − 18xy2)j; (0,0), (1,1)
16. F= (y cos(xz)− xyz sin(xz))i+ x cos(xz)j− x 2 sin(xz)k;

(1,0,π), (1,1,7)

17. F = i − 9y2zj − 3y3k; (1,1,1), (0,3,5)
18. F =−8y2i − (16xy + 4z)j − 4yk; (−2,1,1), (1,3,2)

19. F=6x2eyz i+2x3zeyzj+2x3 yeyzk; (0,0,0), (1,2,−1)

20. F = (y − 4xz)i + xj + (3z2 − 2x2)k; (1,1,1), (3,1,4)

21. Prove the law of conservation of energy, which states
that the sum of the kinetic and potential energies of an
object acted on by a conservative force is a constant.
Hint: The kinetic energy is (m/2) ‖ R′(t) ‖2, where m
is the mass and R(t) describes the trajectory of the
particle. The potential energy is −ϕ(x, y, z), where
F =∇ϕ.

22. Complete the proof of Theorem 12.5 by filling in the
details of the following argument. By differentiation,
it has already been shown that, if F has a potential
function, then

∂g

∂x
= ∂ f

∂y
.

To prove the converse, assume equality of these par-
tial derivatives for (x, y) in D. We must produce a
potential function ϕ for F.

First use Green’s theorem to show that
∮

C
F ·

dR = 0 for any closed path in D. Thus conclude that∫
C

F · dR is independent of path in D. Choose a point
P0 = (a,b) in D. Then, for any (x, y), define

ϕ(x, y)=
∫ (x,y)

P0

F · dR.

This is a function because the integral is independent
of path, hence depends only on (x, y). To show that
∂ϕ/∂x = f (x, y), first show that

ϕ(x +�x, y)−ϕ(x, y)

=
∫ (x+�x,y)

(x,y)

f (ξ, η)dξ + g(ξ, η)dη.

Parametrize the horizontal line segment from (x, y) to
(x +�x, y) by ξ = x + t�x for 0 ≤ t ≤ 1 to show that

ϕ(x +�x, y)−ϕ(x, y)=�x
∫ 1

0

f (x + t�x, y)dt.

Use this to show that
ϕ(x +�x, y)−ϕ(x, y)

�x
= f (x + t0�x, y)

for some t0 in (0,1). Now take the limit as �x → 0 to
show that ∂ϕ/∂x = f (x, y). A similar argument shows
that ∂ϕ/∂y = g(x, y).
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12.5 Surface Integrals

Just as there are integrals of vector fields over curves, there are also integrals of vector fields over
surfaces. We begin with some facts about surfaces.

A curve in R3 is given by coordinate functions of one variable, and may be thought of
as a one-dimensional object (such as a thin wire). A surface is defined by coordinate or
parametric functions of two variables,

x = x(u, v), y = y(u, v), z = z(u, v)

for (u, v) in some specified set in the u, v-plane. We call u and v parameters for the surface.

EXAMPLE 12.15

Figure 12.10 shows part of the surface having coordinate functions

x = u cos(v), y = u sin(v), z = 1

2
u2 sin(2v)

in which u and v can be any real numbers. Since z = xy, the surface cuts any plane z = k in a
hyperbola xy = k. However, the surface intersects a plane y =±x in a parabola z =±x2. For this
reason the surface is called a hyperbolic paraboloid. �

Often a surface is defined as a level surface f (x, y, z)= k, with f a given function. For
example

f (x, y, z)= (x − 1)2 + y2 + (z + 4)2 = 16

has the sphere of radius 4 and center (1,0,−4) as its graph.
We may also express a surface as a locus of points satisfying an equation z = f (x, y) or

y =h(x, z) or x =w(y, z). Figure 12.11 shows part of the graph of z =6 sin(x − y)/
√

1 + x2 + y2.

–4

–2

0

0

1
0

2 31

2

2

3

4

FIGURE 12.10 The surface x =
u cos(v), y = u sin(v), z =
(u2/2) sin(2v) in Example 12.15.

–4

–2

–2

2

2

4

–4

4

FIGURE 12.11 The surface z = 6 sin(x − y)/√
1 + x2 + y2.
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We often write a position vector

R(u, v)= x(u, v)i + y(u, v)j + z(u, v)k

for a surface. R(u, v) can be thought of as an arrow from the origin to the point
(x(u, v), y(u, v), z(u, v)) on the surface.

Although a surface is different from its graph (the surface is a triple of coordinate functions,
the graph is a geometric locus in R3), often we will informally identify the surface with its graph,
just as we sometimes identify a curve with its graph.

A surface is simple if it does not fold over and intersect itself. This means that R(u1, v1)=
R(u2, v2) can occur only when u1 = u2 and v1 = v2.

12.5.1 Normal Vector to a Surface

We would like to define a normal vector to a surface at a point. Previously this was done for level
surfaces.

Let � be a surface with coordinate functions x(u, v), y(u, v), z(u, v). Let P0 be a point on
� corresponding to u = u0, v= v0.

If we fix v= v0 we can define the curve �u on �, having coordinate functions

x = x(u, v0), y = y(u, v0), z = z(u, v0).

The tangent vector to this curve at P0 is

Tu0 = ∂x

∂u
(u0, v0)i + ∂y

∂u
(u0, v0)j + ∂z

∂u
(u0, v0)k.

Similarly, we can fix u = u0 and form the curve �v on the surface. The tangent to this curve
at P0 is

Tv0 = ∂x

∂v
(u0, v0)i + ∂y

∂v
(u0, v0)j + ∂z

∂v
(u0, v0)k.

These two curves and tangent vectors are shown in Figure 12.12.

x

z

y

Tu0

Σ

Σv

Σu
Tv0

FIGURE 12.12 Curves �u and �v and
tangent vectors Tu0 and Tv0 .
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Assuming that neither of these tangent vectors is the zero vector, they both lie in the tangent
plane to the surface at P0. Their cross product is therefore normal to this tangent plane. This
leads us to define the normal to the surface at P0 to be the vector

N(P0)= Tu0 × Tv0

=
∣
∣
∣
∣
∣
∣

i j k
∂x
∂u
(u0, v0)

∂y
∂u
(u0, v0)

∂z
∂u
(u0, v0)

∂x
∂v
(u0, v0)

∂y
∂v
(u0, v0)

∂z
∂v
(u0, v0)

∣
∣
∣
∣
∣
∣

=
(
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

)

i +
(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)

j +
(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)

k,

in which all partial derivatives are evaluated at (u0, v0).
To make this vector easier to write, define the Jacobian of two functions f and g to be

∂( f, g)

∂(u, v)
=

∣
∣
∣
∣
∂ f/∂u ∂ f/∂v
∂g/∂u ∂g/∂v

∣
∣
∣
∣=

∂ f

∂u

∂g

∂v
− ∂g

∂u

∂ f

∂v
.

Then

N(P0)= ∂(y, z)

∂(u, v)
i + ∂(z, x)

∂(u, v)
j + ∂(x, y)

∂(u, v)
k,

with all the partial derivatives evaluated at (u0, v0). This expression is easy to remember with an
observation. Write x, y, z in this order. For the i component of N, delete x , leaving y, z, (in this
order) in the numerator of the Jacobian. For the j component, delete y from x, y, z, but move to
the right, getting z, x in the Jacobian. For the k component, delete z, leaving x, y, in this order.

EXAMPLE 12.16

The elliptical cone has coordinate functions

x = au cos(v), y = au sin(v), z = u

with a and b positive constants. Part of this surface is shown in Figure 12.13.

3

–3–20 –2–10 –1
0

1 10
2 203

FIGURE 12.13 Elliptical cone z =
au cos(v), y = bu sin(v), z = u.
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Since

z2 =
( x

a

)2 +
( y

b

)2

.

this surface is a “cone” with major axis the z - axis. Planes z = k parallel to the x, y - plane
intersect this surface in ellipses. We will write the normal vector P0 at P0 = (a

√
3/4,b/4,1/2)

obtained when u = u0 = 1/2 and v= v0 =π/6. Compute the Jacobian components:

∂(y, z)

∂(u, v)
=

[
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v

]

(1/2,π/6)

=[b sin(v)(0)− bu cos(v)](1/2,π/6) =−√
3b/4,

∂(z, x)

∂(u, v)
=

[
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

]

(1/2,π/6)

=[−au sin(v)− a cos(v)(0)](1/2,π/6) =−a/4,

∂(x, y)

∂(u, v)
=

[
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

]

(1/2,π/6)

=[a cos(v)bu cos(v)− b sin(v)(−au sin(v))](1/2,π/6) = ab/2.

Then

N(P0)=−
√

3b

4
i − a

4
j + ab

2
k. �

We frequently encounter the case that a surface is given by an equation z = S(x, y), with
u = x and v= y as parameters. In this case

∂(y, z)

∂(u, v)
= ∂(y, z)

∂(x, y)
=

∣
∣
∣
∣

0 1
∂S/∂x ∂S/∂y

∣
∣
∣
∣=−∂S

∂x
,

∂(z, x)

∂u, v
= ∂(z, x)

∂(x, y)
=

∣
∣
∣
∣
∂S/∂x ∂S/∂y

1 0

∣
∣
∣
∣=−∂S

∂y
,

and
∂(x, y)

∂(u, v)
= ∂(x, y)

∂(x, y)
=

∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣= 1.

Now the normal vector at P0 : (x0, y0) is

N(P0)=−∂S

∂x
(x0, y0)i − ∂S

∂y
(x0, y0)j + k

=− ∂z

∂x
(x0, y0)i − ∂z

∂y
(x0, y0)j + k.

EXAMPLE 12.17

Let � be the hemisphere given by

z =√
4 − x2 − y2.

We will find the normal vector at P0 : (1,√2,1). Compute

∂z

∂x (1,
√

2)
=−1 and

∂z

∂y (1,
√

2)

=−√
2.
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Then

N(P0)= i +√
2j + k.

This result is consistent with the fact that a line from the origin through a point on this hemisphere
is normal to the hemisphere at that point. �

12.5.2 Tangent Plane to a Surface

If a surface � has a normal vector N(P0) at a point then it has a tangent plane at P0. This
is the plane through P0 : (x0, y0, z0) having normal vector N(P0). The equation of this tangent
plane is

N(P0) · [(x − x0)i + (y − y0)j + (z − z0)k] = 0,

or
[
∂(y, z)

∂(u, v)

]

(u0,v0)

(x − x0)+
[
∂(z, x)

∂(u, v)

]

(u0,v0)

(y − y0)+
[
∂(x, y)

∂(u, v)

]

(u0,v0)

(z − z0)= 0.

If � is given by z = S(x, y), this tangent plane has equation

−
(
∂S

∂x

)

(x0,y0)

(x − x0)−
(
∂S

∂y

)

(x0,y0)

(y − y0)+ z − z0 = 0.

EXAMPLE 12.18

For the elliptical cone of Example 12.16, the tangent plane at (
√

3a/4,b/4,1/2) has
equation

−
√

3b

4

(

x −
√

3a

4

)

− a

4

(

x − b

4

)

+ ab

2

(

z − 1

2

)

= 0. �

EXAMPLE 12.19

For the hemisphere of Example 12.17, the tangent plane at (1,
√

2,1) has equation

(x − 1)+√
2(y −√

2)+ (z − 1)= 0,

or

x +√
2y + z = 4. �

12.5.3 Piecewise Smooth Surfaces

A curve is smooth if it has a continuous tangent. A smooth surface is one that has a contin-
uous normal. A piecewise smooth surface is one that consists of a finite number of smooth
surfaces. For example, a sphere is smooth and the surface of a cube is piecewise smooth,
consisting of six smooth faces. The cube does not have a normal vector (or tangent plane)
along an edge.

In calculus it is shown that the area of a smooth surface � given by z = S(x, y) is

area of �=
∫∫

D

√

1 +
(
∂S

∂x

)2

+
(
∂S

∂y

)2

d A

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:53 THM/NEIL Page-393 27410_12_ch12_p367-424

12.5 Surface Integrals 393

where D is the set of points in the x, y - plane over which the surface is defined. We now
recognize that this area is actually the integral of the length of the normal vector:

area of �=
∫∫

D

‖ N(x, y) ‖ dx dy. (12.9)

This is analogous to the formula for the length of a curve as the integral of the length of the
tangent vector. More generally, if � is given by coordinate functions x(u, v), y(u, v), z(u, v) for
(u, v) varying over some set D in the u, v - plane, then

area of �=
∫∫

D

‖ N(u, v) ‖ du dv.

12.5.4 Surface Integrals

The line integral of f (x, y, z) over C with respect to arc length is
∫

C

f (x, y, z)ds =
∫ b

a

f (x(t), y(t), z(t))
√

x ′(t)2 + y ′(t)2 + z′(t)2 dt.

We want to lift this idea up one dimension to integrate a function over a surface instead of over
a curve. To do this, imagine that the coordinate functions are functions of two variables u and
v, so

∫ b

a
· · ·dt will be replaced by

∫ ∫
D
· · ·du dv. The differential element of arc length ds for

C will be replaced by the differential element of surface area on �, which by equation (12.9) is
dσ =‖ N(u, v) ‖ du dv.

Let� be a smooth surface with coordinate functions x(u, v), y(u, v), z(u, v) for (u, v) in D.
Let f be continuous on �. Then the surface integral of f over � is denoted

∫ ∫
�

f (x, y, z)dσ
and is defined by

∫∫

�

f (x, y, z)dσ =
∫∫

D

f (x(u, v), y(u, v), z(u, v)) ‖ N(u, v) ‖ du dv.

If � is piecewise smooth, then the line integral of f over � is the sum of the line integrals over
the smooth pieces.

If � is given by z = S(x, y) for (x, y) in D, then

∫∫

�

f (x, y, z)dσ =
∫∫

D

f (x, y, S(x, y))

√

1 +
(
∂S

∂x

)2

+
(
∂S

∂y

)2

dx dy.

EXAMPLE 12.20

We will compute the surface integral
∫ ∫

�
xyz dσ over the part of the surface

x = u cos(v), y = u sin(v), z = 1

2
u2 sin(2v)

corresponding to (u, v) in D : 1 ≤ u ≤ 2,0 ≤ v≤π .
First we need the normal vector. The components of N(u, v) are:

∂(y, z)

∂(u, v)
=

∣
∣
∣
∣

sin(v) u cos(v)
u sin(2v) u2 cos(2v)

∣
∣
∣
∣= u2[sin(v) cos(2v)− cos(v) sin(2v)],

∂(z, x)

∂(u, v)
=

∣
∣
∣
∣
u sin(2v) u2 cos(2v)
cos(v) −u sin(v)

∣
∣
∣
∣=−u2[sin(v) sin(2v)+ cos(v) cos(2v)],

and

∂(x, y)

∂(u, v)
=

∣
∣
∣
∣
cos(v) −u sin(v)
sin(v) u cos(v)

∣
∣
∣
∣= u.
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Then

‖ N(u, v) ‖2=u4[sin(v) cos(2v)− cos(v) sin(2v)]2

+ u4[sin(v) sin(2v)+ cos(v) cos(2v)]2 + u2

=u2(1 + u2),

so

‖ N(u, v) ‖= u
√

1 + u2.

The surface integral is
∫∫

�

xyzdσ =
∫∫

D

[u cos(v)][u sin(v)]
[

1

2
u2 sin(2v)

]

u
√

1 + u2d A

=
∫ π

0

cos(v) sin(v) sin(2v)dv
∫ 2

1

u5
√

1 + u2du

= π

4

(
100

21

√
21 − 11

105

√
2

)

. �

EXAMPLE 12.21

We will evaluate
∫ ∫

�
zdσ over the part of the plane x + y + z = 4 lying above the rectangle

D : 0 ≤ x ≤ 2,0 ≤ 1 ≤ 1. This surface is shown in Figure 12.14.
With z = S(x, y)= 4 − x − y we have

∫∫

�

zdσ =
∫∫

D

z
√

1 + (−1)2 + (−1)2 dy dx

=√
3
∫ 2

0

∫ 1

0

(4 − x − y)dy dx .

First compute
∫ 1

0

(4 − x − y)d y = (4 − x)y − 1

2
y2

]1

0

= 4 − x − 1

2
= 7

2
− x .

x

y

z

(0, 1, 0)

(2, 1, 0)

(0, 4, 0)

(0, 0, 4)

(2, 0, 2)

(2, 1, 1)

(0, 1, 3)

Part of the plane
x + y + z = 4

(4, 0, 0)

FIGURE 12.14 Part of the plane x + y + z = 4.
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Then
∫∫

�

z dσ =√
3
∫ 2

0

(
7

2
− x

)

dx = 5
√

3. �

SECTION 12.5 PROBLEMS

In each of Problems 1 through 10, evaluate∫∫
�

f (x, y, z)dσ .

1. f (x, y, z)= x , � is the part of the plane x + 4y + z =
10 in the first octant.

2. f (x, y, z)= y2, � is the part of the plane z = x for
0 ≤ x ≤ 2, 0 ≤ y ≤ 4.

3. f (x, y, z) = 1, � is the part of the paraboloid
z = x2 + y2 lying between the planes z = 2
and z = 7.

4. f (x, y, z) = x + y, � is the part of the plane
4x + 8y + 10z = 25 lying above the triangle
in the x, y - plane having vertices (0,0), (1,0)
and (1,1).

5. f (x, y, z)= z, � is the part of the cone z =√
x2 + y2

in the first octant and between the planes z =2 and
z =4.

6. f (x, y, z)= xyz, � is the part of the plane z = x + y
with (x, y) in the square with vertices (0,0), (1,0),
(0,1) and (1,1).

7. f (x, y, z)= y, � is the part of the cylinder z = x2 for
0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

8. f (x, y, z) = x2, � is the part of the paraboloid z =
4 − x2 − y2 lying above the x, y - plane.

9. f (x, y, z)= z, � is the part of the plane z = x − y for
0 ≤ x ≤ 1 and 0 ≤ y ≤ 5.

10. f (x, y, z) = xyz, � is the part of the cylinder z =
1 + y2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

12.6 Applications of Surface Integrals

12.6.1 Surface Area

If � is a piecewise smooth surface, then
∫∫

�

dσ =
∫∫

D

‖ N(u, v) ‖ du dv= area of �.

This assumes a bounded surface having finite area. Clearly we do not need surface integrals to
compute areas of surfaces. However, we mention this result because it is in the same spirit as
other familiar mensuration formulas:

∫

C

ds = length of C,

∫∫

D

d A = area of D,

∫∫∫

M

dV = volume of M.

12.6.2 Mass and Center of Mass of a Shell

Imagine a shell of negligible thickness in the shape of a piecewise smooth surface �. Let
δ(x, y, z) be the density of the material of the shell at point (x, y, z). We want to compute the
mass of the shell.

Let � have coordinate functions x(u, v), y(u, v), z(u, v) for (u, v) in D. Form a grid of
lines over D, as in Figure 12.15, by drawing vertical lines �u units apart and horizontal lines
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u

v

Δv

Rj (uj, vj)

Δu

FIGURE 12.15 Forming a grid over D.

z

x

y

Pj: (x(uj, vj), y(uj, vj), z(uj, vj)

Σ

Σj

FIGURE 12.16 Grid rectangle R j maps to a patch of
surface � j .

�v apart. These lines form rectangles R1, · · · , Rn that cover D. Each Rj corresponds to a patch
of surface � j , as in Figure 12.16. Let (u j , v j) be a point in Rj . This corresponds to a point
Pj = (x(u j , v j), y(u j , v j), z(u j , v j)) on � j . Approximate the mass of � j by the density at Pj

times the area of � j . The mass of the shell is approximately the sum of the approximate masses
of these patches of surface:

mass of the shell ≈
n∑

j=1

δ(Pj)
(
area of � j

)
.

But the area of � j can be approximated as the length of the normal at Pj times the area of Rj :

area of � j ≈‖ N(Pj) ‖ �u�v.

Therefore,

mass of �≈
n∑

j=1

δ(Pj)N(Pj) ‖�u�v

and in the limit as �u → 0 and �v→ 0 we obtain

mass of �=
∫∫

�

δ(x, y, z)dσ.

The center of mass of the shell is (x, y, z), where

x = 1

m

∫∫

�

xδ(x, y, z)dσ, y = 1

m

∫∫

�

yδ(x, y, z)dσ,

and

z = 1

m

∫∫

�

zδ(x, y, z)dσ,

in which m is the mass.
If the surface is given as z = S(x, y) for (x, y) in D, then the mass is

m =
∫∫

D

δ(x, y, z)

√

1 +
(
∂S

∂x

)2

+
(
∂S

∂y

)2

dy dx .
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EXAMPLE 12.22

We will find the mass and center of mass of the cone z =√
x2 + y2 for x2 + y2 ≤ 4 if δ(x, y, z)=

x2 + y2.
Let D be the disk of radius 2 about the origin. Compute

∂z

∂x
= x

z
and

∂z

∂y
= y

z
.

The mass is

m =
∫∫

�

(x2 + y2)dσ

=
∫∫

D

(x2 + y2)

√

1 + x2

z2
+ y2

z2
dy dx

=
∫ 2π

0

∫ 2

0

r 2
√

2r dr dθ

= 2
√

2π
1

4
r 4

]2

0

= 8
√

2π.

By symmetry of the surface and of the density function, we expect the center of mass to lie
on the z - axis, so x = y = 0. This can be verified by computation. Finally,

z = 1

8
√

2π

∫∫

�

z(x2 + y2)dσ

= 1

8
√

2π

∫∫

D

√
x2 + y2(x2 + y2)

√

1 + x2

z2
+ y2

z2
dy dx

= 1

8π

∫ 2π

0

∫ 2

0

r(r 2)r dr dθ

= 1

8π
(2π)

[
1

5
r 5

]2

0

= 8

5
.

The center of mass is (0,0,8/5). �

12.6.3 Flux of a Fluid Across a Surface

Suppose a fluid moves in some region of 3-space with velocity V(x, y, z, t). In studying the flow,
it is often useful to place an imaginary surface � in the fluid and analyze the net volume of fluid
flowing across the surface per unit time. This is the flux of the fluid across the surface.

Let n(u, v, t) be the unit normal vector to the surface at time t . If we are thinking of flow out
of the surface from its interior, then choose n to be an outer normal, oriented from a point of the
surface outward away from the interior.

In a time interval�t the volume of fluid flowing across a small piece� j of� approximately
equals the volume of the cylinder with base � j and altitude Vn�t , where Vn is the component of
V in the direction of n, evaluated at some point of � j . This volume (Figure 12.17) is (Vn�t)A j ,
where A j is the area of � j . Because ‖ n ‖= 1, Vn = V · n. The volume of fluid across � j per unit
time is

(Vn�t)A j

�t
= Vn A j = V · n�t.
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x

y

z
Σj

Σ

V

n

FIGURE 12.17 Cylinder with base � j and
height Vn�t .

x

y

z

x2 + y2 + z2 = 4

1 ≤ z ≤ 2

x2 + y2 = 3

FIGURE 12.18 Surface in Example 12.23.

Sum these quantities over the entire surface and take a limit as the surface elements are chosen
smaller, as we did for the mass of a shell. We get

flux of V across � in the direction of n =
∫∫

�

V · ndσ.

The flux of the fluid (or any vector field) across a surface is therefore computed as the surface
integral of the normal component of the field to the surface.

EXAMPLE 12.23

We will calculate the flux of F = x i + yj + zk across the part of the sphere x2 + y2 + z2 = 4
between the planes z = 1 and z = 2.

The plane z = 1 intersects the sphere in the circle x2 + y2 = 3, z = 1. This circle projects
onto the circle x2 + y2 = 3 in the x, y - plane. The plane z = 2 hits the sphere at (0,0,2) only.
Think of � as specified by z = S(x, y)=√

4 − x2 + y2 for (x, y) in D, the disk 0 ≤ x2 + y2 ≤ 3
(Figure 12.18).

To compute the partial derivatives ∂z/∂x and ∂z/∂y we can implicitly differentiate the
equation of the sphere to get

2x + 2z
∂z

∂x
= 0

so
∂z

∂x
=− x

z
.

Similarly,

∂z

∂y
=− y

z
.

The vector
x

z
i + y

z
j + k
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is normal to the sphere and oriented outward. This vector has magnitude 2/z, so a unit outer
normal is

n = z

2

(
x

z
i + y

z
j + k

)

= 1

2
(x i + yj + zk).

We need

F · n = 1

2
(x2 + y2 + z2).

Then

flux =
∫∫

�

1

2
(x2 + y2 + z2)dσ

= 1

2

∫∫

D

(x2 + y2 + z2)

√

1 + x2

z2
+ y2

z2
d A

= 1

2

∫∫

D

(x2 + y2 + z2)

√
x2 + y2 + z2

z2
d A

= 1

2

∫∫

D

(x2 + y2 + z2)3/2
1

√
4 − x2 − y2

d A

= 4
∫∫

D

1
√

4 − x2 − y2
d A.

Here we used the fact that x2 + y2 + z2 = 4 on �. Converting to polar coordinates, we have

flux = 4
∫ 2π

0

∫ √
3

0

1√
4 − r 2

rdr dθ

= 8π [−(4 − r 2)1/2]√
3

0 = 8π. �

SECTION 12.6 PROBLEMS

In each of Problems 1 through 6, find the mass and center
of mass of the shell �.

1. � is a triangle with vertices (1,0,0), (0,3,0) and
(0,0,2), with δ(x, y, z)= xz + 1.

2. � is the part of the sphere x2 + y2 + z2 = 9 above the
plane z = 1, and the density function is constant.

3. � is the cone z =√
x2 + y2 for x2 + y2 ≤9, δ= constant

= K .

4. � is the part of the paraboloid z = 16 − x2 − y2

in the first octant and between the cylinders

x2 + y2 = 1 and x2 + y2 = 9, with δ(x, y, z) = xy/√
1 + 4x2 + 4y2.

5. � is the paraboloid z = 6 − x2 − y2 for z ≥ 0, with
δ(x, y, z)=√

1 + 4x2 + 4y2.

6. � is the part of the sphere of radius 1 about the origin,
lying in the first octant. The density is constant.

7. Find the flux of F = x i + yj − zk across the part of the
plane x + 2y + z = 8 in the first octant.

8. Find the flux of F = xzi − yk across the part of the
sphere x2 + y2 + z2 = 4 above the plane z = 1.

12.7 Lifting Green’s Theorem to R3

The fundamental results of vector integral calculus are the theorems of Gauss and Stokes. In this
section we will show how both can be viewed as natural generalizations of Green’s theorem from
two to three dimensions.
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The conclusion of Green’s theorem can be written
∮

C

f (x, y)dx + g(x, y)dy =
∫∫

D

(
∂g

∂x
− ∂ f

∂y

)

d A

with C the simple closed path bounding the region D of the plane.
Define the vector field

F(x, y)= g(x, y)i − f (x, y)j.

With this choice,

∇ · F = ∂g

∂x
− ∂ f

∂y
.

Parametrize C by arc length so the coordinate functions are x = x(s), y = y(s) for 0 ≤ s ≤ L .
The unit tangent vector to C is T(s) = x ′(s)i + y ′(s)j and the unit normal vector is
n(s)= y ′(s)i − x ′(s)j. These are shown in Figure 12.19. This normal points outward away from
D, and so is called a unit outer normal. Now

F · n = g(x, y)
dy

ds
+ f (x, y)

dx

ds
so

∮

C

f (x, y)dx + g(x, y)dy =
∮

C

[

f (x, y)
dx

ds
+ g(x, y)

dy

ds

]

ds

=
∮

C

F · n ds.

We may therefore write the conclusion of Green’s theorem as
∮

C

F · n ds =
∫∫

D

∇ · F d A.

In this form, Green’s theorem suggests a generalization to three dimensions. Replace the closed
curve C in the plane with a closed surface � in 3-space (closed means bounding a volume, such

x

y

T

n

FIGURE 12.19 Unit tangent and normal
vectors to C.
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as a sphere). Replace the line integral over C with a surface integral over � and allow the vector
field to be a function of three variables. We conjecture that Green’s theorem generalizes to

∫∫

�

F · n dσ =
∫∫∫

M

∇ · F dV,

where M is the solid region bounded by� and n is a unit normal to� pointing out of the surface
and away from M . This conclusion is Gauss’s divergence theorem.

Now begin again with Green’s theorem and pursue a different generalization to three
dimensions. This time let

F(x, y, z)= f (x, y)i + g(x, y)j + 0k.

Including a third component allows us to take the curl:

∇ × F =
∣
∣
∣
∣
∣
∣

i j k
∂/∂x ∂/∂y ∂/∂z

f g 0

∣
∣
∣
∣
∣
∣
=

(
∂g

∂x
− ∂ f

∂y

)

k.

Then

(∇ × F)= ∂g

∂x
− ∂ f

∂y
.

Further, with unit tangent T(s)= x ′(s)i + y ′(s)j to C , we can write

F · T ds =[ f (x, y)i + g(x, y)j] ·
(

dx

ds
i + dy

ds
k
)

= f (x, y)dx + g(x, y)dy.

Now the conclusion of Green’s theorem can be written
∮

C

F · T ds =
∫∫

D

(∇ × F) · k d A.

Think of D as a flat surface in the x, y-plane, with unit normal k, and bounded by the closed path
C . To generalize this, allow C to be a path in 3-space, bounding a surface � having unit outer
normal N, as in Figure 12.20. With these changes, the last equation suggests that

x

y

z

C

n

Σ

FIGURE 12.20 C
bounding a surface �

having outer normal n.
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∮

C

F · T ds =
∫∫

�

(∇ × F) · n dσ.

We will see this in Section 12.9 as Stokes’s theorem.

SECTION 12.7 PROBLEMS

1. Let C be a simple closed path in the x, y-plane with
interior D. Let ϕ(x, y) and ψ(x, y) be continuous with
continuous first and second partial derivatives on C and
throughout D. Let

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
.

Prove that

∫∫

D

ϕ∇2ψ d A

=
∮

C

−ϕ ∂ψ
∂y

dx +ϕ ∂ψ
∂x

dy −
∫∫

D

∇ϕ · ∇ψ d A.

2. Under the conditions of Problem 1, show that
∫∫

D

(ϕ∇2ψ −ψ∇2ϕ)d A

=
∮

C

[

ψ
∂ϕ

∂y
−ϕ ∂ψ

∂y

]

dx +
[

ϕ
∂ψ

∂x
−ψ ∂ϕ

∂x

]

dy.

3. Let C be a simple closed path in the x, y-plane, with
interior D. Let ϕ be continuous with continuous first
and second partial derivatives on C and throughout D.
Let N(x, y) be the unit outer normal to C (outer mean-
ing pointing away from D from points on C). Prove that

∮

C

ϕN(x, y)ds =
∫∫

D

∇2ϕ(x, y)d A.

(Recall that ϕN is the directional derivative of ϕ in the
direction of N.)

12.8 The Divergence Theorem of Gauss

The discussion of the preceding section suggested a possible extension of Green’s theorem to
three dimensions, yielding what is known as the divergence theorem.

THEOREM 12.8 The Divergence Theorem of Gauss

Let � be a piecewise smooth closed surface bounding a region M of 3-space. Let � have unit
outer normal n. Let F be a vector field with continuous first and second partial derivatives on �
and throughout M . Then

∫∫

�

F · n dσ =
∫∫∫

M

∇ · F dV . � (12.10)

The theorem is named for the great nineteenth-century German mathematician and scientist
Carl Friedrich Gauss, and is actually a conservation of mass equation. Recall that the diver-
gence of a vector field at a point is a measure of the flow of the field away from that point.
Equation (12.10) states that the flux of the vector field outward from M across � exactly bal-
ances the flow of the field from each point in M . Whatever crosses the surface and leaves M must
be accounted for by flow out of M (in the absence of sources or sinks in M).

We will look at two computational examples to get some feeling for equation (12.10), and
then consider applications.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:53 THM/NEIL Page-403 27410_12_ch12_p367-424

12.8 The Divergence Theorem of Gauss 403

EXAMPLE 12.24

Let � be the piecewise smooth surface consisting of the surface �1 of the cone z = √
x2 + y2

for x2 + y2 ≤ 1, together with the flat cap �2 consisting of the disk x2 + y2 ≤ 1 in the plane
z = 1. � is shown in Figure 12.21. Let F(x, y, z)= x i + yj + zk. We will calculate both sides of
equation (12.10).

The unit outer normal to �1 is

n1 = 1√
2

(
x

z
i + y

z
j − k

)

.

Then

F · n1 = 1√
2

(
x2

z
+ y2

z
− z

)

= 0

because on �1, z2 = x2 + y2. Therefore
∫∫

�1

F · n1 dσ = 0.

The unit outer normal to �2 is n2 = k, so F · n2 = z. Since z = 1 on �2, then
∫∫

�2

F · n2 dσ =
∫∫

�2

z dσ =
∫∫

�2

dσ

= area of �2 =π.
Therefore,

∫∫

�

F · n dσ =
∫∫

�1

F · n1 dσ +
∫∫

�2

F · n2 dσ =π.

Now compute the triple integral. The divergence of F is

∇ · F = ∂

∂x
x + ∂

∂y
y + ∂

∂z
z = 3,

x

y

z

(0, 0, 1)

Σ1

Σ2

FIGURE 12.21 � in Example 12.24.
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so
∫∫∫

M

∇ · F dV =
∫∫∫

M

3 dV

= 3[volume of the cone of height 1, radius 1]

= 3

(
1

3

)

π =π. �

EXAMPLE 12.25

Let � be the piecewise smooth surface of the cube having vertices

(0,0,0), (1,0,0), (0,1,0), (0,0,1)

(1,1,0), (0,1,1), (1,0,1), (1,1,1).

Let F(x, y, z) = x 2i + y2j + z2k. We want to compute the flux of F across �. This flux is∫ ∫
�

F · ndσ . We can certainly evaluate this integral, but this will be tedious because � has
six smooth faces. It is easier to use the triple integral of the divergence theorem. Compute

∇ · F = 2x + 2y + 2z.

Then

flux =
∫∫

�

F · n dσ

=
∫∫∫

M

∇ · F dV =
∫∫∫

M

(2x + 2y + 2z)dV

=
∫ 1

0

∫ 1

0

∫ 1

0

(2x + 2y + 2z)dz dy dx

=
∫ 1

0

∫ 1

0

(2x + 2y + 1)dy dx

=
∫ 1

0

(2x + 2)dx = 3. �

12.8.1 Archimedes’s Principle

Archimedes’s principle is that the buoyant force a fluid exerts on a solid object immersed in it,
is equal to the weight of the fluid displaced. An aircraft carrier floats in the ocean if it displaces
a volume of seawater whose weight at least equals that of the carrier. We will use the divergence
theorem to derive this principle.

Imagine a solid object M bounded by a piecewise smooth surface �. Let ρ be the constant
density of the fluid. Draw a coordinate system as in Figure 12.22 with M below the surface.
Using the fact that pressure equals depth multiplied by density, the pressure ρ(x, y, z) at a point
on � is p(x, y, z)= −ρz, the negative sign because z is negative in the downward direction and
we want pressure to be positive. Now consider a piece � j of �. The force of the pressure on
� j is approximately −ρz multiplied by the area A j of � j . If n is the unit outer normal to � j ,
then the force caused by the pressure on � j is approximately ρznA j . The vertical component of
this force is the magnitude of the buoyant force acting upward on � j . This vertical component is
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x

y

z

M

k

n

Σj

FIGURE 12.22 Archimedes’s
Principle.

ρzn · kA j . Sum these vertical components over � to obtain approximately the buoyant force on
the object, then take the limit as the surface elements are chosen smaller. We obtain

net buoyant force on �=
∫∫

�

ρzn · k dσ.

Write this integral as
∫ ∫

�
ρzk · n dσ and apply the divergence theorem to obtain

net buoyant force on �=
∫∫∫

M

∇ · (ρzk)dV .

But ∇ · (ρzk)= ρ, so

net buoyant force on �=
∫∫∫

M

ρ dV = ρ[volume of M].

and ρ multiplied by the volume of M is the weight of the object.

12.8.2 The Heat Equation

We will use the divergence theorem to derive a partial differential equation that models heat
conduction and diffusion processes. Suppose some medium (such as a bar of metal or water in
a pool) has density ρ(x, y, z), specific heat μ(x, y, z) and coefficient of thermal conductivity
K (x, y, z). Let u(x, y, z, t) be the temperature of the medium at (x, y, z) and time t . We want an
equation for u.

We will exploit an idea frequently used in constructing mathematical models. Consider an
imaginary smooth closed surface � in the medium, bounding a solid region M . The amount of
heat energy leaving M across � in a time interval �t is

(∫∫

�

(K∇u) · n dσ

)

�t.
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This is the flux of K∇u across �, multiplied by the length of the time interval. But, the change
in temperature at (x, y, z) over �t is approximately (∂u/∂t)�t so the resulting heat loss in M is

⎛

⎝
∫∫∫

M

μρ
∂u

∂t
dV

⎞

⎠�t.

Assuming no heat sources or sinks in M (which occur, for example, during chemical reactions
or radioactive decay), the change in heat energy in M over �t must equal the heat exchange
across �:

(∫∫

�

(K∇u) · n dσ

)

�t =
⎛

⎝
∫∫∫

M

μρ
∂u

∂t
dV

⎞

⎠�t.

Therefore,
∫∫

�

(K∇u) · n dσ =
∫∫∫

M

μρ
∂u

∂t
dV .

Now use the divergence theorem to convert the surface integral to a triple integral:
∫∫

�

(K∇u) · n dσ =
∫∫∫

M

∇ · (K∇u)dV .

Substitute this into the preceding equation to obtain
∫∫∫

M

(

μρ
∂u

∂t
−∇ · (K∇u)

)

dV = 0.

Now � is an arbitrary closed surface within the medium. If the integrand in the last equation
were, say, positive at some point P0, then it would be positive throughout some (perhaps very
small) sphere about P0, and we could choose� as this sphere. But then the triple integral over M
of a positive quantity would be positive, not zero, a contradiction. The same conclusion follows
if this integrand were negative at some P0.

Vanishing of the last integral for every closed surface � in the medium therefore forces the
integrand to be identically zero:

μρ
∂u

∂t
−∇ · (K∇u)= 0.

This is the partial differential equation

μρ
∂u

∂t
=∇ · (K∇u)

for the temperature function. This equation is called the heat equation.
We can expand

∇ · (K∇u)=∇ ·
(

K
∂u

∂x
i + K

∂u

∂y
j + K

∂u

∂z
k
)

= ∂

∂x

(

K
∂u

∂x

)

+ ∂

∂y

(

K
∂u

∂y

)

+ ∂

∂z

(

K
∂u

∂z

)

= ∂K

∂x

∂u

∂x
+ ∂K

∂y

∂u

∂y
+ ∂K

∂z

∂u

∂z
+ K

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)

=∇K · ∇u + K∇2u.
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Here we have introduced the symbol ∇2, defined by

∇2u = ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
.

∇2 is called the Laplacian, or Laplacian operator, and is read “del squared.”

Now the heat equation is

μρ
∂u

∂t
=∇K · ∇u + K∇2u.

If K is constant then its gradient vector is zero and this equation simplifies to

∂u

∂t
= K

μρ
∇2u.

In the case of one space dimension, u = u(x, t) and we often write this equation as

∂u

∂t
= k

∂2u

∂x2

in which k = K/μρ.

The steady-state heat equation occurs when ∂u/∂t = 0. In this case we get ∇2u =0, which
is called Laplace’s equation.

SECTION 12.8 PROBLEMS

In each of Problems 1 through 8, evaluate either
∫ ∫

�
F · ndσ

or
∫∫∫

M

div(F)dV , whichever is easier.

1. F = x i + yj − zk,� is the sphere of radius 4 about
(1,1,1).

2. F=4x i−6yj+ zk,� is the surface of the solid cylin-
der x2 + y2 ≤ 4,0 ≤ z ≤ 2, including the end caps of
the cylinder.

3. F = 2yzi − 4xzj + xyk,� is the sphere of radius 5
about (−1,3,1)

4. F = x3i + y3j + z3k,� is the sphere of radius 1 about
the origin.

5. F=4x i− zj+ xk,� is the hemisphere x2 + y2 + z2 =
1, z ≥ 0, including the base consisting of points
(x, y,0) with x2 + y2 ≤ 1.

6. F = (x − y)i + (y − 4xz)j + xzk,� is the surface
of the rectangular box bounded by the coordinate

planes x = 0, y = 0, z = 0 and the planes x = 4,
y = 2, z = 3.

7. F = x2i + y2j + z2k,� is the cone z = √
x2 + y2 for

x2 + y2 ≤ 2, together with the top cap consisting of
the points (x, y,

√
2) with x2 + y2 ≤ 2.

8. F = x2i − ezj + zk,� is the surface bounding the
cylinder x2 + y2 ≤ 4,0 ≤ z ≤ 2, including the top and
bottom caps of the cylinder.

9. Let � be a smooth closed surface and F a vector
field that is continuous with continuous first and sec-
ond partial derivatives throughout � and the region it
bounds. Evaluate

∫ ∫
�
(∇ × F) · n dσ .

10. Let � be a piecewise smooth closed surface bounding
a region M . Show that

volume of M = 1

3

∫∫∫

�

R · n dσ

where R = x i + yj + zk.
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12.9 Stokes’s Theorem

In Section 12.7, we suggested a lifting of Green’s theorem to three dimensions to arrive at
Stokes’s theorem. That discussion passed quickly over some subtleties which we will now
address more carefully.

First we need to explore the idea of a surface and a bounding curve. Suppose � is a sur-
face defined by x = x(u, v), y = y(u, v), z = z(u, v) for (u, v) in some bounded region D of the
u, v-plane. As (u, v) varies over D, the point (x(u, v), y(u, v), z(u, v)) traces out �. We will
assume that D is bounded by a piecewise smooth curve K . As (u, v) traverses K , the corre-
sponding point (x(u, v), y(u, v), z(u, v)) traverses a curve C on �. This is the curve we call the
boundary curve of �. This is shown in Figure 12.23.

EXAMPLE 12.26

Let � be given by z = x2 + y2 for 0 ≤ x2 + y2 ≤ 4. Here x and y are the parameters and vary
over the disk of radius 2 in the x, y-plane. Figure 12.24 shows D and a graph of the surface. The
boundary K of D is the circle x2 + y2 = 4 in the x, y-plane. This circle maps to the circle x2 +
y2 = 4, z = 4 on �. This is the boundary C of �, and is the circle at the top of the bowl-shaped
surface. �

We need a rule for choosing a normal to the surface at each point. We can use the standard
normal vector

∂(y, z)

∂(u, v)
i + ∂(z, x)

∂(u, v)
j + ∂(x, y)

∂(u, v)
k,

dividing this by its length to obtain a unit normal vector. The negative of this is also a unit normal
vector. Whichever we use, call it n and use it throughout the surface. We cannot use n at some
points and −n at others.

This choice of the normal vector n is used to determine an orientation on the boundary curve
C of �. Referring to Figure 12.25, at any point on C , if you stand along n with your head at the
tip of this normal, then the positive direction of C is the one in which you have to walk to have
the surface over your left shoulder. This is admittedly informal, but a more rigorous treatment
involves topological subtleties we do not wish to engage here. When this direction is chosen
on C we say that C has been oriented coherently with n. The choice of normal determines the

u
D

K

x

y

z

(u, v)

(x(u,v), y(u,v), z(u,v))

C

v
Σ

FIGURE 12.23 Boundary curve of a surface.

x2 + y2 = 4

D

y

x

x

y

z

K

C

Σ

FIGURE 12.24 The surface in Example 12.26.
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x

y

z

C
n

Σ

FIGURE 12.25 Orienting the bound-
ary curve coherently with the normal
vector.

x

y

z

(0, 0, 3)

N(3, 0, 3)

C: boundary curve

Σ

FIGURE 12.26 The surface and boundary
curve in Example 12.27.

orientation on the boundary curve. There is no intrinsic positive or negative orientation on this
curve in 3-space, simply orientation coherent with the chosen normal.

With these conventions we can state the theorem.

THEOREM 12.9 Stokes’s Theorem

Let � be a piecewise smooth surface bounded by a piecewise smooth curve C . Suppose a unit
normal n has been chosen on� and that C is oriented coherently with this normal. Let F(x, y, z)
be a vector field that is continuous with continuous first and second partial derivatives on �.
Then,

∮

C

F · dR =
∫∫

�

(∇ × F) · n dσ. �

We will illustrate the theorem with a computational example.

EXAMPLE 12.27

Let F(x, y, z)= −yi + xyj − xyzk. Let � consist of the part of the cone z = √
x2 + y2 for 0 ≤

x2 + y2 ≤ 9. We will compute both sides of the equation in Stokes’s theorem.
The bounding curve C of � is the circle x2 + y2 = 3, z = 3 at the top of the cone. This is

similar to Example 12.26. A routine computation yields the normal vector

N =− x

z
i − y

z
j + k.

There is no normal at the origin, where the cone has a sharp point.
For Stokes’s theorem we need a unit normal vector, so divide N by ‖ N ‖ to get

n = 1√
2z
(−x i − yj + k).

Notice that this vector, if represented as an arrow from a point on the cone, points into the
region bounded by the cone. Figure 12.26 shows the orientation on C coherent with n.
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We are now ready to evaluate
∮

C
F · dR. Parametrize C by x = 3cos(t), y = 3 sin(t), z = 3

for 0 ≤ t ≤ 2π . The point (3cos(t),3 sin(t),3) traverses C in the positive direction as t increases
from 0 to 2π . Therefore

∮

C

F · dR =
∮

C

−y dx + x dy − xyz dz

=
∫ 2π

0

[−3 sin(t)(−3cos(t))+ 3cos(t)(3cos(t))]dt

=
∫ 2π

0

9 dt = 18π.

For the surface integral, compute

∇ × F =−xzi + yzj + 2k

and

(∇ × F) · n = 1√
2
(x2 − y2 + 2).

Then
∫∫

�

(∇ × F) · n dσ =
∫∫

D

(∇ × F) · n ‖ N ‖ dx dy

=
∫∫

D

1√
2
(x2 − y2 + 2)

√
2dx dy

=
∫∫

D

(x2 − y2 + 2)dx dy

=
∫ 2π

0

∫ 3

0

[r 2 cos2(θ)− r 2 sin2(θ)]r dr dθ

=
∫ 2π

0

∫ 3

0

r 3 cos(2θ)dr dθ +
∫ 2π

0

∫ 3

0

2r dr dθ

=
[

1

2
sin(2θ)

]2π

0

[
1

4
r 4

]3

0

+ 2π
[
r 2

]3

0
= 18π. �

12.9.1 Potential Theory in 3-Space

In Section 12.4, we discussed conservative vector fields and used Green’s theorem to derive a nec-
essary and sufficient condition for a vector field in the plane to have a potential function. Using
Stokes’s theorem we can prove the three-dimensional version of this test, which was suggested
in Section 12.4.

THEOREM 12.10 Test for a Conservative Vector Field

Let D be a simply connected region in 3-space. Let F and ∇ × F be continuous on D. Then F is
conservative on D if and only if ∇ × F = O in D. �

This means that, in simply connected regions, irrotational vector fields (those with curl
(rotation) zero) are exactly the fields with potential functions.

Proof In one direction the proof is simple. If F =∇ϕ, then

∇ × F =∇ × (∇ϕ)= O.
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For the converse, it is enough to show that, if F has curl zero, then
∫

C
F · d R is independent of

path, since then we can define a potential function by choosing P0 and setting

ϕ(x, y, z)=
∫ (x,y,z)

P0

F · dR.

To show this independence of path, let C and K be paths in D from P0 to P1. Form a closed path
L =C

⊕
(−K ). Since D is simply connected, there is a piecewise smooth surface� in D having

C as boundary. By Stokes’s theorem,
∮

L

F · dR =
∫

C

F · dR −
∫

K

F · dR

=
∫∫

�

(∇ × F) · n dσ = 0. �

12.9.2 Maxwell’s Equations

The theorems of Gauss and Stokes are used in the analysis of vector fields. We will illustrate this
with electric and magnetic fields and Maxwell’s equations. To begin, we will use the following
standard notation and relationships:

E= electric intensity ε= permitivity of the medium
J= current density σ = conductivity
μ= permeability D = εE = electric flux density
Q = charge density B =μH = magnetic flux density
H= magnetic intensity

q =
∫∫∫

V

Q dV = total charge in a region V

ϕ=
∫∫

�

B · n dσ = magnetic flux across �

i =
∫∫

�

J · n dσ = flux of current across �.

In these, flux is computed using an outer unit normal to the closed surface �.
We also have the following relationships, which have been observed and verified experimen-

tally.

Faraday’s law
∮

C

E · dR =−∂ϕ
∂t
.

Here C is any piecewise smooth closed curve in the medium. We may think of this as saying that
the rate of change of the magnetic flux across � is the negative of the measure of the tangential
component of the electric intensity around any closed curve bounding �.

Ampère’s law
∮

H · dR = i.

This says that the measure of the tangential component of the magnetic intensity about C is the
current flowing through any surface bounded by C .
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Gauss’s laws
∫∫

�

D · n dσ = q and
∫∫

�

B · n dσ = 0.

These say that the measure of the normal component of the electric flux density across � equals
the total charge in the bounded region, and that the measure of the normal component of the
magnetic flux density across � is zero.

We will now carry out arguments similar to that used to derive the heat equation using the
divergence theorem. Begin by applying Stokes’s theorem to Faraday’s law to obtain

∮

C

E · dR =
∫∫

�

∇ × E · n dσ =−∂ϕ
∂t

=− ∂

∂t

∫∫

�

B · n dσ =
∫∫

�

−∂B
∂t

· n dσ.

Then
∫∫

�

(

∇ × E + ∂B
∂t

)

· n dσ = 0.

Since this holds for any piecewise smooth closed surface� within the medium, then the integrand
must be zero, leading to

∇ × E + ∂B
∂t

= 0.

A similar analysis, using Ampère’s law, yields

∇ × H = J.

Maxwell had observed that

J = σE + ε ∂E
∂t
.

Then

∇ × H = σE + ε ∂E
∂t
.

Now start on a new tack. Apply Gauss’s theorem to Gauss’s law q = ∫ ∫
�

D · n dσ to obtain
∫∫

�

D · n dσ =
∫∫∫

V

(∇ · D)dV = q =
∫∫∫

V

Q dV .

Again falling back on the arbitrary nature of �, we conclude from this that

∇ · D = Q.

Now go back to ∇ × E =−∂B/∂t and take the curl of both sides:

∇ × (∇ × E)=∇ ×
(

−∂B
∂t

)

=− ∂

∂t
(∇ × B).

We were able to interchange ∇ and ∂/∂t here because the curl involves only the space variables.
Since B =μH, then

∇ × (∇ × E)=− ∂

∂t
(∇ ×μH)=−μ ∂

∂t
(∇ × H).

It is a routine calculation to verify that this is the same as

∇(∇ · E)− (∇ ·∇)E =−μ ∂
∂t
(∇ × H).
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In this,

∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

Since

∇ × H = σE + ε ∂E
∂t
,

we have finally

∇(∇ · E)− (∇ · ∇)E =−μ ∂
∂t

(

σE + ε ∂E
∂t

)

.

In practice, it is often the case that Q = 0. In this event,

Q =∇ · D =∇ · (cE)= ε∇ · E = 0,

hence,

∇ · E = 0.

We can then further conclude that

(∇ · ∇)E =μσ ∂E
∂t

+με ∂
2E
∂t 2

.

This is Maxwell’s equation for the electric intensity field. By a similar analysis we obtain
Maxwell’s equation for the magnetic intensity field:

(∇ · ∇)H =μσ ∂H
∂t

+με ∂
2H
∂t 2

.

In the case of a perfect dielectric, σ = 0, and Maxwell’s equations become

(∇ · ∇)E =με ∂
2(E)

∂t 2
and (∇ · ∇)H =με ∂

2(H)

∂t 2
.

If, instead of σ = 0, we have ε= 0, then we have

(∇ · ∇)E =μσ ∂E
∂t

and (∇ · ∇)H =μσ ∂H
∂t
.

These are vector forms of the three-dimensional heat equation.

SECTION 12.9 PROBLEMS

In each of Problems 1 through 5, use Stokes’s theorem
to evaluate

∮
C

F · dR or
∫ ∫

�
(∇ × F) · n dσ , whichever

appears easier.

1. F= yx2i− xy2j+ z2k with� the hemisphere x2 + y2 +
z2 = 4, z ≥ 0.

2. F = xyi + yzj + xzk with � the paraboloid z = x2 + y2

for x2 + y2 ≤ 9.

3. F = zi + xj + yk with � the cone z = √
x2 + y2 for

0 ≤ z ≤ 4.

4. F = z2i + x2j + y2k with � the part of the paraboloid
z = 6 − x2 − y2 above the x, y - plane.

5. F = xyi + yzj + xyk with � the part of the plane
2x + 4y + z = 8 in the first octant.

6. Calculate the circulation of F= (x − y)i+ x 2 yj+axzk
counterclockwise about the circle x2 + y2 = 1. Here
a is any positive number. Hint: Use Stokes’s theo-
rem with � any smooth surface having the circle as
boundary.

7. Use Stokes’s theorem to evaluate
∫

C
F · T ds, where C

is the boundary of the part of the plane x + 4y + z = 12
lying in the first octant, and

F = (x − z)i + (y − x)j + (z − y)k.
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12.10 Curvilinear Coordinates

Thus far, we have done vector algebra and calculus in rectangular coordinates. For some set-
tings, other coordinate systems may be more convenient. Spherical coordinates are natural when
dealing with spherical surfaces, cylindrical coordinates for cylinders, and sometimes we invent
systems to deal with other settings we may encounter.

Begin with the usual rectangular coordinate system with axes labeled x, y and z. Suppose
we have some other coordinate system with coordinates labeled q1,q2 and q3. We assume that
the two systems are related by equations

x = x(q1,q2,q3), y = y(q1,q2,q3), z = z(q1,q2,q3). (12.11)

We also assume that these equations are invertible and can be solved for

q1 = q2(x, y, z),q2 = q2(x, y, z),q3 = q3(x, y, z).

In this way we can convert the coordinates of points back and forth from one system to the other.
Finally, we assume that each point in 3-space has exactly one set of coordinates (q1,q2,q3), as it
does in rectangular coordinates. We call (q1,q2,q3) a system of curvilinear coordinates.

EXAMPLE 12.28 Cylindrical Coordinates

As shown in Figure 12.27, a point P having rectangular coordinates (x, y, z) can be specified
uniquely by a triple (r, θ, z), where (r, θ) are polar coordinates of the point (x, y) in the plane,
and z is the same in both rectangular and cylindrical coordinates (the distance from the x, y-plane
to the point).

These coordinate systems are related by

x = r cos(θ), y = r sin(θ), z = z

with 0 ≤ θ < 2π , r ≥ 0 and z any real number. With some care in using the inverse function
tangent function, these equations can be inverted to write

r =√
x2 + y2, θ = arctan

( y

x

)
, z = z. �

P

x

y

z

r

z

θ

FIGURE 12.27 Cylindrical coordi-
nates of Example 12.28.
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Pρ
φ

θ
y

x

z

FIGURE 12.28 Spherical coordinates of
Example 12.29.

EXAMPLE 12.29 Spherical Coordinates

Any point P having rectangular coordinates (x, y, z) also has unique spherical coordinates
(ρ, θ,ϕ). Here ρ is the distance from the origin to P , θ is the angle of rotation from the ori-
gin to the line from (0,0) to (x, y) in the x,y-plane, and ϕ is the angle of declination from the
positive z-axis to the line from the origin to P . These are indicated in Figure 12.28. Thus, ρ≥ 0,
0 ≤ θ < 2π and 0 ≤ϕ≤π .

Rectangular and spherical coordinates are related by

x = ρ cos(θ) sin(ϕ), y = ρ sin(θ) sin(ϕ), z = ρ cos(ϕ). �

Again with care in using the inverse trigonometric functions, these equations can be inverted to
read

ρ=√
x2 + y2 + z2, θ = arcsin

(
y

√
x2 + y2 + z2

)

ϕ= arccos

(
y

√
x2 + y2 + z2

)

. �

The coordinate systems of these examples may appear quite dissimilar, but they share a
common feature if we adopt a particular point of view. Let P0 : (x0, y0, z0) be a point in rectangular
coordinates. Observe that P0 is the point of intersection of the planes x = x0, y = y0, and z = z0,
which are called coordinate surfaces for rectangular coordinates.

Now suppose P0 has cylindrical coordinates (r0, θ0, z0). Look at the corresponding coordi-
nate surfaces for these coordinates. In 3-space, the surface r = r0 is a cylinder of radius r0 about
the origin. The surface θ = θ0 is a half-plane with edge on the z-axis and making an angle θ0

with the positive x-axis. And the surface z = z0 is the same as in rectangular coordinates, a plane
in 3-space parallel to the x, y-plane. The point P0 : (r0, θ0, z0) is the intersection of these three
cylindrical coordinate surfaces.

Spherical coordinates can be viewed in the same way. Suppose P0 has spherical coordinates
(ρ0, θ0, ϕ0). The coordinate surface ρ = ρ0 is a sphere of radius ρ0 about the origin. The surface
θ = θ0 is a half-plane with one edge along the z-axis, as in cylindrical coordinates. And the
surface ϕ=ϕ0 is an infinite cone with vertex at the origin and making an angle ϕ with the z-axis.
These surfaces intersect at P0 (Figure 12.29).
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x

y

z

Half-plane θ = θ0

Cone φ = φ0

ρ0

θ0

FIGURE 12.29 Intersection of coordinate
surfaces in spherical coordinates.

∇q3(P0)

∇q2(P0)
∇q1(P0)

q1 = k1

q3 = k3

q2 = k2

FIGURE 12.30 Coordinate surfaces in curvilinear
coordinates.

In general curvilinear coordinates, which need not be any of these three systems, we sim-
ilarly specify a point ((q1)0, (q2)0, (q3)0) as the intersection of the three coordinate surfaces
q1 = (q1)0, q2 = (q2)0 and q3 = (q3)0 (Figure 12.30).

In rectangular coordinates, the coordinate surfaces are planes x = x0, y = y0, z = z0, which
are mutually orthogonal. Similarly, in cylindrical and spherical coordinates, the coordinate sur-
faces are mutually orthogonal, in the sense that their normal vectors are mutually orthogonal at
any point of intersection. Because of this, we refer to these coordinate systems as orthogonal
curvilinear coordinates.

EXAMPLE 12.30

We will verify that cylindrical coordinates are orthogonal curvilinear coordinates. In terms of
rectangular coordinates, cylindrical coordinates are given by

r =√
x2 + y2,

θ = arctan
( y

x

)

z = z,

except at the origin, which is called a singular point of these coordinates. Suppose P0 is the point
of intersection of the cylinder r = r0, the half-plane θ = θ0 and the half-plane z = z0. To verify
that these surfaces are mutually orthogonal, we will show that their normal vectors are mutually
orthogonal. Compute these normal vectors using the gradient in rectangular coordinates:

∇r = 1
√

x2 + y2
(x i + yj),

∇θ = 1

x2 + y2
(−yi + xj),∇z = k.

Now it is routine to verify that

∇r · ∇θ =∇r · ∇z =∇θ · ∇z = 0. �
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A similar, but more complicated, calculation shows that spherical coordinates are orthogonal
curvilinear coordinates.

In rectangular coordinates, the differential element ds of arc length is given by

(ds)2 = (dx)2 + (dy)2 + (dz)2. (12.12)

We assume that this differential element of arc length is given in terms of the orthogonal
curvilinear coordinates q1,q2,q3 by the quadratic form

(ds)2 =
3∑

i=1

3∑

j=1

h2
i j dqidq j .

The numbers hi j are called scale factors for the curvilinear coordinate system. We want to
determine these scale factors so that we can compute such quantities as arc length, area,
volume, gradient, divergence and curl in curvilinear coordinates. Begin by differentiating
equations (12.11):

dx = ∂x

∂q1

dq1 + ∂x

∂q2

dq2 + ∂x

∂q3

dq3,

dy = ∂y

∂q1

dq1 + ∂y

∂q2

dq2 + ∂y

∂q3

dq3,

dz = ∂z

∂q1

dq1 + ∂z

∂q2

dq2 + ∂z

∂q3

dq3.

Substitute these into equation (12.12). This is a long calculation, but after collecting the
coefficients of (dq1)

2, (dq2)
2 and (dq3)

2 (the terms in the double sum with i = j), and leav-
ing the cross product terms involving dqidq j with i �= j within the summation notation, we
obtain

(ds)2 =
[(

∂x

∂q1

)2

+
(
∂y

∂q1

)2

+
(
∂z

∂q1

)2
]

(dq1)
2

+
[(

∂x

∂q2

)2

+
(
∂y

∂q2

)2

+
(
∂z

∂q2

)2
]

(dq2)
2

+
[(

∂x

∂q3

)2

+
(
∂y

∂q3

)2

+
(
∂z

∂q3

)2
]

(dq3)
2

+
3∑

i=1

3∑

j=1, j �=i

hi j dqidq j

= (h11)
2(dq1)

2 + (h22)
2(dq2)

2 + (h33)
2(dq3)

2 +
3∑

i=1

3∑

j=1, j �=i

hi j dqidq j

=
3∑

i=1

3∑

j=1

hi jdqidq j .
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In this equation, equate coefficients of (dqi)
2 for i = 1,2,3 to obtain

h2
11 =

(
∂x

∂q1

)2

+
(
∂y

∂q1

)2

+
(
∂z

∂q1

)2

,

h2
22 =

(
∂x

∂q2

)2

+
(
∂y

∂q2

)2

+
(
∂z

∂q2

)2

,

h2
33 =

(
∂x

∂q3

)2

+
(
∂y

∂q3

)2

+
(
∂z

∂q3

)2

.

We left the cross product terms within the summation because all such terms are zero for
orthogonal coordinates. For example,

h2
12 = 2

(
∂x

∂q1

∂x

∂q2

+ ∂y

∂q1

∂y

∂q2

+ ∂z

∂q1

∂z

∂q2

)

=∇x(q1,q2,q3) · ∇ y(q1,q2,q3)= 0

by virtue of the orthogonality of the curvilinear coordinates. Similarly, each hi j = 0 for i �= j . To
simplify the notation, write hii = hi for i = 1,2,3. Finally we can write

(ds)2 = (h1dq1)
2 + (h2dq2)

2 + (h3dq3)
2. (12.13)

with h1,h2,h3 given in terms of partial derivatives of x , y, and z in terms of q1,q2 and q3.

EXAMPLE 12.31

We will put these ideas into the context of cylindrical coordinates. Now q1 =r , q2 = θ , and q3 = z.
Compute

hr =
√(

∂x

∂r

)2

+
(
∂y

∂r

)2

+
(
∂z

∂r

)2

= 1,

hθ =
√(

∂x

∂θ

)2

+
(
∂y

∂θ

)2

+
(
∂z

∂θ

)2

= r,

hz =
√(

∂x

∂z

)2

+
(
∂y

∂z

)2

+
(
∂z

∂z

)2

= 1.

In the plane, cylindrical coordinates are polar coordinates and the differential element dx dy of
area in rectangular coordinates corresponds to

dx dy = ds1 ds2 = hr hθ dr dθ = r dr dθ.

This accounts for the change of variables formula for transforming a double integral from
rectangular to polar coordinates:

∫∫

D

f (x, y)dx dy =
∫∫

D

f (r cos(θ), r sin(θ))r dr dθ.

We can also recognize r as the Jacobian

∂(x, y)

∂(r, θ)
=

∣
∣
∣
∣
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣
∣
∣
∣= r.

In 3-space,

dx dy dz = hr hθhz dr dθ dz = r dr dθ dz.
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This is the reason for the formula for converting a triple integral from rectangular to
cylindrical coordinates:

∫∫∫

M

f (x, y, z)dx dy dz =
∫∫∫

M

f (r cos(θ), r sin(θ), z)r dr dθ dz. �

Again, in 3-space we can recognize the factor of r as the Jacobian

∂(x, y, z)

∂(r, θ, z)
=

∣
∣
∣
∣
∣
∣

cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

∣
∣
∣
∣
∣
∣
= r. �

EXAMPLE 12.32

In spherical coordinates, q1 =ρ, q2 = θ , and q3 =ϕ. From Example 12.29 we know x , y and z in
terms of ρ, θ and ϕ, so compute the partial derivatives to obtain

hρ =
√(

∂x

∂ρ

)2

+
(
∂y

∂ρ

)2

+
(
∂z

∂ρ

)2

= 1,

hθ =
√(

∂x

∂θ

)2

+
(
∂y

∂θ

)2

+
(
∂z

∂θ

)2

= ρ sin(θ),

hϕ =
√(

∂x

∂ϕ

)2

+
(
∂y

∂ϕ

)2

+
(
∂z

∂ϕ

)2

= ρ.

Therefore, in spherical coordinates, the differential element of arc length, squared, is

(ds)2 = (dρ)2 + ρ2 sin2(ϕ)(dθ)2 + ρ2(dϕ)2. �

In general, if dsi is the differential element of arc length along the qi axis (in the qi direction),
then

dsi = hi dqi .

Therefore the differential elements of area are

dsids j = hi h j dqi dq j .

The differential element of volume is

ds1ds2ds3 = h1h2h3 dq1 dq2 dq3.

The formula for a differential volume element in spherical coordinates is

dsρdsθdsϕ = ρ2 sin(ϕ)dρ dθ dϕ.

This should look familiar. In calculus, we are told that when we convert a triple integral from
rectangular to spherical coordinates we obtain

∫∫∫

M

f (x, y, z)dx dy dz =
∫∫∫

Mρ,θ,ϕ

F(ρ, θ,ϕ)ρ2 sin(ϕ)dρ dθ dϕ,

in which F(ρ, θ,ϕ) is obtained by substituting for x, y, z in terms of spherical coordinates in
f (x, y, z), and Mρ,θ,ϕ is the region M defined in spherical coordinates. Notice that the ρ2 sin(ϕ)
has shown up in the differential element of volume. That is, in terms of differentials,

dx dy dz = ρ2 sin(ϕ)dρ dθ dϕ.
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We can also recognize ρ2 sin(ϕ) as the Jacobian

∂(x, y, z)

∂(ρ, θ,ϕ)

seen in the general expression for transformation of triple integrals.
Now let ui be a unit vector in the direction of increasing qi at the point

(x(q1,q2,q3), y(q1,q2,q3), z(q1,q2,q3)). In cylindrical coordinates, these unit vectors can be
written in terms of the standard i, j, and k as

ur = cos(θ)i + sin(θ)j,

uθ =− sin(θ)i + cos(θ)j,

uz = k.

In spherical coordinates,

uρ = cos(θ) sin(ϕ)i + sin(θ) sin(ϕ)j + cos(ϕ)k,

uθ =− sin(θ)i + cos(θ)j,

uϕ = cos(θ) cos(ϕ)i + sin(θ) cos(ϕ)j − sin(ϕ)k.

Unlike rectangular coordinates, where the standard unit vectors are constant, with orthogonal
curvilinear coordinates, the vectors u1, u2, u3 are generally functions of the point.

A vector field in curvilinear coordinates has the form

F(q1,q2,q3)= F1(q1,q2,q3)u1 + F2(q1,q2,q3)u2 + F3(q1,q2,q3)u3.

We want to write expressions for the gradient, Laplacian, divergence, and curl operations in
curvilinear coordinates.

Gradient

Let ψ(q1,q2,q3) be a scalar-valued function. At any point, we want ∇ψ to be normal to the level
surface ψ = constant passing through that point, and we want this gradient to have magnitude
equal to the greatest rate of change of ψ from that point. Thus, the component of ∇ψ normal to
q1 = constant must be ∂ψ/∂s1, or

1

h1

∂ψ

∂q1

.

Arguing similarly for the other components, we have

∇ψ(q1,q2,q3)= 1

h1

∂ψ

∂q1

u1 + 1

h2

∂ψ

∂q2

u2 + 1

h3

∂ψ

∂q3

u3.

Divergence

We will use the flux interpretation of divergence to obtain an expression for the divergence of a
vector field in curvilinear coordinates. First write

F = F1u1 + F2u2 + F3u3.

Referring to Figure 12.31, the flux across the face abcd is approximately

F(q1 + ds1,q2,q3) · h2(q1 + ds1,q2,q3)h3(q1 + ds1,q2,q3)dq2dq3.

Across face e f gk the flux is

F(q1,q2,q3) · u1h2(q1,q2,q3)h3(q1,q2,q3)dq2 dqq .

Across both of these faces the flux is approximately

∂

∂q1

(F1h2h3)dq1 dq2 dq3.
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g

f

ba

d

k

e
c

e = (q1, q2, q3)

a = (q1 + ds1, q2, q3)

b = (q1 + ds1, q2 + ds2, q3)

FIGURE 12.31 Calculating the divergence
in curvilinear coordinates.

a
b

c

d

u1

u2

u3

ds3 = h3dq3

ds2 = h2dq2

FIGURE 12.32 Calculating the curl in
curvilinear coordinates.

Similarly, the fluxes across the other two pairs of opposite faces are

∂

∂q2

(F2h1h3)dq1 dq2 dq3 and
∂

∂q3

(F3h1h2)dq1 dq2 dq3.

We obtain the divergence, or flux per unit volume, at a point by adding these three expressions for
the flux across pairs of opposite sides, and dividing by the volume h1h2h3 dq1 dq2 dq3 to obtain

∇ · F(q1,q2,q3)

= 1

h1h2h3

(
∂

∂q1

(F1h2h3)

)

+
(
∂

∂q2

(F2h1h3)

)

+
(
∂

∂q3

(F3h1h2)

)

.

Laplacian

Knowing the divergence, we immediately have the Laplacian, since

∇2 f =∇ ·∇ f

for a scalar field f . Then

∇2 f (q1,q2,q3)=∇ ·∇ f (q1,q2,q3)

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ f

∂q1

)

+ ∂

∂q2

(
h1h3

h2

∂ f

∂q2

)

+ ∂

∂q3

(
h1h2

h3

∂ f

∂q3

)]

.

Curl

For the curl in curvilinear coordinates, we will use the interpretation of (∇ ×F) ·n as the rotation
or swirl of a fluid with velocity field F about a point in a plane having unit normal n.

At P , the component of ∇ × F in the direction u1 is

lim
A→0

1

A

∫

C

F,

where C may be taken as a rectangle about P in the u2 − u3 plane at P (Figure 12.32). Compute
the integral over each side of this rectangle. On side a,

∫

a

F ≈ F2(q1,q2,q3)h2(q1,q2,q3)dq2,
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since u2 is tangent to a. On side c,
∫

c
F is approximately

−F2(q1,q2,q3)h2(q1,q2,q3 + dq3)dq3.

The net contribution from sides a and c is approximately

− ∂

∂q3

(F2h2)dq2 dq3.

Similarly, from sides b and d, the net contribution is approximately

∂

∂q2

(F3h3)dq2 dq3.

Then

(∇ × F) · u1 = 1

h2h3 dq2 dq3

(
∂

∂q2

(F3h3)− ∂

∂q3

(F2h2)

)

dq2 dq3.

Obtain the other components of ∇ × F in the same way. We obtain

∇ × F = 1

h2h3

(
∂

∂q2

(F3h3)− ∂

∂q3

(F2h2)

)

u1

+ 1

h1h3

(
∂

∂q3

(F1h1)− ∂

∂q1

(F3h3)

)

u2

+ 1

h1h2

(
∂

∂q1

(F2h2)− ∂

∂q2

(F1h1)

)

u3.

This can be written in a convenient determinant form:

∇ × F = 1

h1h2h3

∣
∣
∣
∣
∣
∣

h1u1 h2u2 h3u3

∂/∂q1 ∂/∂q2 ∂/∂q3

F1h1 F2h2 F3h3

∣
∣
∣
∣
∣
∣
.

We will apply these to spherical coordinates, recalling that

hρ = 1,hθ = ρ sin(ϕ),hϕ = ρ.
If

F = Fρuρ + Fθuθ + Fϕuϕ,

then divergence is given by

∇ · F = 1

ρ2

∂

∂ρ
(ρ2 Fρ)+ 1

ρ sin(ϕ)

∂

∂θ
(Fθ )+ 1

ρ sin(ϕ)

∂

∂ϕ
(Fϕ sin(ϕ)).

The curl is obtained as

∇ × F =
∣
∣
∣
∣
∣
∣

uρ ρ sin(ϕ)uθ ρuϕ
∂/∂ρ ∂/∂θ ∂/∂ϕ

Fρ ρ sin(ϕ)Fθ ρFϕ

∣
∣
∣
∣
∣
∣
.

The gradient of a scalar function f (ρ, θ,ϕ) is

∇ f = ∂ f

∂ρ
uρ + 1

ρ sin(ϕ)

∂ f

∂θ
uθ + 1

ρ

∂ f

∂ϕ
uϕ.

From this, we have the Laplacian

∇2 f = 1

ρ2

∂

∂ρ

(

ρ2 ∂ f

∂ρ

)

+ 1

ρ2 sin2(ϕ)

∂2 f

∂θ 2
+ 1

ρ2 sin(ϕ)

∂

∂ϕ

(

sin(ϕ)
∂ f

∂ϕ

)

.
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The Laplacian in various coordinate systems is often encountered in connection with
diffusion problems, wave motion and potential theory.

SECTION 12.10 PROBLEMS

1. Compute the scale factors for cylindrical coordinates.
Use them to compute ∇ · F and ∇ × F if F(r, θ, z) is a
vector field in cylindrical coordinates. If g(r, θ, z) is a
scalar field, compute ∇g and ∇2g.

2. Elliptic cylindrical coordinates are defined by

x = a cosh(u) cos(v), y = a sinh(u) sin(v), z = z,

where u ≥0, 0≤v<2π and z can be any real number.

(a) Sketch the coordinate surfaces u = constant, v =
constant, and z = constant.

(b) Determine the scale factors hu , hv , hz .

(c) Determine ∇ f (u, v, z) in this system.

(d) Determine ∇ · F(u, v, z) and ∇ × F(u, v, z) in this
system.

(e) Determine ∇2 f (u, v, z).

3. Bipolar coordinates are defined by

x = a sinh(v)

cosh(v)− cos(u)
, y = a sin(u)

cosh(v)− cos(u)
, z = z,

with u and z any real numbers and 0 ≤ v < 2π .

(a) Sketch the coordinate surfaces u = constant, v =
constant, and z = constant. Are these coordinates
orthogonal?

(b) Determine the scale factors hu , hv , hz .

(c) Determine ∇ f (u, v, z) in this system.

(d) Determine ∇ · F(u, v, z) and ∇ × F(u, v, z) in this
system.

(e) Determine ∇2 f (u, v, z).

4. Parabolic cylindrical coordinates are defined by

x = uv, y = 1

2
(u2 − v2), z = z,

with u ≥ 0 and v and z any real numbers.

(a) Sketch the coordinate surfaces u = constant, v =
constant, and z = constant.

(b) Determine the scale factors hu , hv , hz .

(c) Determine ∇ f (u, v, z) in this system.

(d) Determine ∇ · F(u, v, z) and ∇ × F(u, v, z) in this
system.

(e) Determine ∇2 f (u, v, z).
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CHAPTER 13
Fourier Series

WHY FOURIER SERIES? THE FOURIER
SERIES OF A FUNCTION SINE AND
COSINE SERIES INTEGRATION AND
DIFFERENTIATION

In 1807, Joseph Fourier submitted a paper to the French Academy of Sciences in competition for
a prize offered for the best mathematical treatment of heat conduction. In the course of this work
Fourier shocked his contemporaries by asserting that “arbitrary” functions (such as might specify
initial temperatures) could be expanded in series of sines and cosines. Consequences of Fourier’s
work have had an enormous impact on such diverse areas as engineering, music, medicine, and
the analysis of data.

13.1 Why Fourier Series?

A Fourier series is a representation of a function as a series of constant multiples of sine and/or
cosine functions of different frequencies. To see how such a series might arise, we will look at a
problem of the type that concerned Fourier.

Consider a thin homogeneous bar of metal of length π , constant density and uniform cross
section. Let u(x, t) be the temperature in the bar at time t in the cross section at x . Then (see
Section 12.8.2) u satisfies the heat equation

∂u

∂t
= k

∂2u

∂x2

for 0< x <π and t > 0. Here k is a constant depending on the material of the bar. If the left and
right ends are kept at temperature zero, then

u(0, t)= u(π, t)= 0 for t > 0.

These are the boundary conditions. Further, assume that the initial temperature has been
specified, say

u(x,0)= f (x)= x(π − x).

This is the initial condition.

427
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Fourier found that the functions

un(x, t)= bn sin(nx)e−kn2 t

satisfy the heat equation and the boundary conditions, for every positive integer n and any number
bn . However, there is no choice of n and bn for which this function satisfies the initial condition,
which would require that

un(x,0)= bn sin(nx)= x(π − x).

for 0 ≤ x ≤π .
We could try a finite sum of these functions, attempting a solution

u(x, t)=
N∑

n=1

bn sin(nx)e−kn2 t .

But this would require that N and numbers b1, · · · ,bN be found so that

u(x,0)= x(π − x)=
N∑

n=1

bn sin(nx)

for 0 ≤ x ≤ π . Again, this is impossible. A finite sum of multiples of sine functions is not a
polynomial.

Fourier’s brilliant insight was to attempt an infinite superposition,

u(x, t)=
∞∑

n=1

bn sin(nx)e−kn2 t .

This function will still satisfy the heat equation and the boundary conditions u(x,0)= u(π,0)=
0. To satisfy the initial condition, the problem is to choose the numbers bn so that

u(x,0)= x(π − x)=
∞∑

n=1

bn sin(nx)

for 0 ≤ x ≤π . Fourier claimed not only that this could this be done, but that the right choice is

bn = 1

π

∫ π

0

x(π − x) sin(nx)dx = 4

π

1 − (−1)n

n3
.

With these coefficients, Fourier wrote the solution for the temperature function:

u(x, t)= 4

π

∞∑

n=1

1 − (−1)n

n3
sin(nx)e−kn2 t .

The astonishing claim that

x(π − x)= 4

π

∞∑

n=1

1 − (−1)n

n3
sin(nx)

for 0 ≤ x ≤π was too much for Fourier’s contemporaries to accept, and the absence of rigorous
proofs in his paper led the Academy to reject its publication (although they awarded him the
prize). However, the implications of Fourier’s work were not lost on natural philosophers of
his time. If Fourier was right, then many functions would have expansions as infinite series of
trigonometric functions.

Although Fourier did not have the means to supply the rigor his colleagues demanded, this
was provided throughout the ensuing century and Fourier’s ideas are now seen in many important
applications. We will use them to solve partial differential equations, beginning in Chapter 16.
This and the next two chapters develop the requisite ideas from Fourier analysis.
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SECTION 13.1 PROBLEMS

1. Let

SN (x)= 4

π

N∑

n=1

1 − (−1)n

n3
sin(nx).

Construct graphs of SN (x) and x(π − x), for 0≤ x ≤π ,
for N =2 and then N =10. This will give some sense of
the correctness of Fourier’s claim that this polynomial
could be exactly represented by the infinite series

4

π

∞∑

n=1

1 − (−1)n

n3
sin(nx)

on [0,π ].

2. Let p(x) be a polynomial. Prove that there is no number
k such that p(x)= k sin(nx) on [0,π ] for any positive
integer n.

3. Let p(x) be a polynomial. Prove that there is no finite
sum

∑N
n=1 bn sin(nx) that is equal to p(x) for 0≤ x ≤π ,

for any choice of the numbers b1, · · · ,bN .

13.2 The Fourier Series of a Function

Let f (x) be defined on [−L , L]. We want to choose numbers a0,a1,a2 · · · and b1,b2, · · ·
so that

f (x)= 1

2
a0 +

∞∑

k=1

[ak cos(kπx/L)+ bk sin(kπx/L)]. (13.1)

This is a decomposition of the function into a sum of terms, each representing the influence of a
different fundamental frequency on the behavior of the function.

To determine a0, integrate equation (13.1) term by term to get
∫ L

−L

f (x)dx =1

2

∫ L

−L

a0dx

+
∞∑

k=1

(

ak

∫ L

−L

cos(kπx/L)dx + bk

∫ L

−L

sin(kπx/L)dx

)

=1

2
a0(2L)=πa0.

because all of the integrals in the summation are zero. Then

a0 = 1

L

∫ L

−L

f (x)dx . (13.2)

To solve for the other coefficients in the proposed equation (13.1), we will use the following three
facts, which follow by routine integrations. Let m and n be integers. Then

∫ L

−L

cos(nπx/L) sin(mπx/L)dx = 0. (13.3)

Furthermore, if n �= m, then
∫ L

−L

cos(nπx/L) cos(mπx/L)dx =
∫ L

−L

sin(nπx/L) sin(mπx/L)dx = 0. (13.4)
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And, if n �= 0, then
∫ L

−L

cos2(nπx/L)dx =
∫ L

−L

sin2(nπx/L)dx = L . (13.5)

Now let n be any positive integer. To solve for an , multiply equation (13.1) by cos(nπx/L) and
integrate the resulting equation to get

∫ L

−L

f (x) cos(nπx/L)dx = 1

2
a0

∫ L

−L

cos(nπx/L)dx

+
∞∑

k=1

[

ak

∫ L

−L

cos(kπx/L) cos(nπx/L)dx + bk

∫ L

−L

sin(kπx/L) cos(nπx/L)dx

]

.

Because of equations (13.3) and (13.4), all of the terms on the right are zero except the coefficient
of an , which occurs in the summation when k = n. The last equation reduces to

∫ L

−L

f (x) cos(nπx/L)dx = an

∫ L

−L

cos2(nπx/L)dx = an L

by equation (13.5). Therefore

an = 1

L

∫ L

L

f (x) cos(nπx/L)dx . (13.6)

This expression contains a0 if we let n = 0.
Similarly, if we multiply equation (13.1) by sin(nπx/L) instead of cos(nπx/L) and

integrate, we obtain

bn = 1

L

∫ L

−L

f (x) sin(nπx/L)dx . (13.7)

The numbers

an = 1

L

∫ L

−L

f (x) cos(nπx/L)dx for n = 0,1,2, · · · (13.8)

bn = 1

L

∫ L

−L

f (x) sin(nπx/L)dx for n = 1,2, · · · (13.9)

are called the Fourier coefficients of f on [L , L]. When these numbers are used, the series
(13.1) is called the Fourier series of f on [L , L].

EXAMPLE 13.1

Let f (x)= x − x2 for −π ≤ x ≤π . Here L =π . Compute

a0 = 1

π

∫ π

−π
(x − x2)dx =−2

3
π 2,

an = 1

π

∫ π

−π
(x − x2) cos(nx)dx

= 4 sin(nπ)− 4nπ cos(nπ)− 2n2π 2 sin(nπ)

πn3
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=− 4

n2
cos(nπ)=− 4

n2
(−1)n

= 4(−1)n+1

n2
,

and

bn = 1

π

∫ π

−π
(x − x2) sin(nx)dx

= 2 sin(nπ)− 2nπ cos(nπ)

πn2

=−2

n
cos(nπ)=−2

n
(−1)n

= 2(−1)n+1

n
.

We have used the facts that sin(nπ)= 0 and cos(nπ)= (−1)n if n is an integer.
The Fourier series of f (x)= x − x2 on [−π,π] is

−1

3
π 2 +

∞∑

n=1

[
4(−1)n+1

n2
cos(nx)+ 2(−1)n+1

n
sin(nx)

]

. �

This example illustrates a fundamental issue. We do not know what this Fourier series con-
verges to. We need something that establishes a relationship between the function and its Fourier
series on an interval. This will require some assumptions about the function.

Recall that f is piecewise continuous on [a,b] if f is continuous at all but perhaps finitely
many points of this interval, and, at a point where the function is not continuous, f has finite
limits at the point from within the interval. Such a function has at worst jump discontinuities, or
finite gaps in the graph, at finitely many points. Figure 13.1 shows a typical piecewise continuous
function.

If a< x0 < b, denote the left limit of f (x) at x0 as f (x0−), and the right limit of f (x) at x0

as f (x0+):
f (x0−)= lim

h→0+
f (x0 − h) and f (x0+)= lim

h→0+
f (x0 + h).

If f is continuous at x0, then these left and right limits both equal f (x0).

x

y

FIGURE 13.1 A piecewise con-
tinuous function.
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x
4 62–2–4 0

FIGURE 13.2 f in Example 13.2.

EXAMPLE 13.2

Let

f (x)=
{

x for −3 ≤ x < 2,

1/x for 2 ≤ x ≤ 4.

f is piecewise continuous on [−3,4], having a single discontinuity at x = 2. Furthermore,
f (2−)= 2 and f (2+)= 1/2. A graph of f is shown in Figure 13.2. �

f is piecewise smooth on [a,b] if f is piecewise continuous and f ′ exists and is continuous
at all but perhaps finitely many points of (a,b).

EXAMPLE 13.3

The function f of Example 13.2 is differentiable on (−3,4) except at x = 2:

f ′(x)=
{

1 for −3< x < 2

−1/x2 for 2< x < 4.

This derivative is itself piecewise continuous. Therefore f is piecewise smooth on [−3,4]. �

We can now state a convergence theorem.

THEOREM 13.1 Convergence of Fourier Series

Let f be piecewise smooth on [−L , L]. Then, for each x in (−L , L), the Fourier series of f on
[−L , L] converges to

1

2
( f (x+)+ f (x−)).
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x

y

FIGURE 13.3 Convergence of a Fourier
series at a jump discontinuity.

At both −L and L this Fourier series converges to

1

2
( f (L−)+ f (−L+)). �

At any point in (−L , L) at which f (x) is continuous, the Fourier series converges to f (x),
because then the right and left limits at x are both equal to f (x). At a point interior to the
interval where f has a jump discontinuity, the Fourier series converges to the average of the left
and right limits there. This is the point midway in the gap of the graph at the jump discontinuity
(Figure 13.3). The Fourier series has the same sum at both ends of the interval.

EXAMPLE 13.4

Let f (x)= x − x2 for −π ≤ x ≤π . In Example 13.1 we found the Fourier series of f on [−π,π].
Now we can examine the relationship between this series and f (x).

f ′(x)= 1 − 2x is continuous for all x , hence f is piecewise smooth on [−π,π]. For −π <
x <π , the Fourier series converges to x − x2. At both π and −π , the Fourier series converges to

1

2
( f (π−)+ f (−π+))= 1

2
((π −π 2)+ (−π − (−π)2))

= 1

2
(−2π 2)=−π 2.

Figures 13.4, 13.5, and 13.6 show the fifth, tenth and twentieth partial sums of this Fourier
series, together with a graph of f for comparison. The partial sums are seen to approach the
function as more terms are included. �

EXAMPLE 13.5

Let f (x)= ex . The Fourier coefficients of f on [−1,1] are

a0 =
∫ 1

−1

ex dx = e − e−1,

an =
∫ 1

−1

ex cos(nπx)dx = (e − e−1)(−1)n

1 + n2π 2
,
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0
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FIGURE 13.4 Fifth partial sum of the
Fourier series in Example 13.4.

0

–4
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–6

x

310–3

–10

–8

22– 1–

FIGURE 13.5 Tenth partial sum in Example
13.4.

0

–4

–12

–2

–6

x
310–3

–10

–8

22– 1–

FIGURE 13.6 Twentieth partial sum in
Example 13.4.

and

bn =
∫ 1

−1

ex sin(nπx)dx =− (e − e−1)(−1)n(nπ)

1 + n2π 2
.

The Fourier series of ex on [−1,1] is

1

2
(e − e−1)+ (e − e−1)

∞∑

n=1

(
(−1)n

1 + n2π 2

)

(cos(nπx)− nπ sin(nπx)).

Because ex is continuous with a continuous derivative for all x , this series converges to
{

ex for −1< x < 1
1
2
(e + e−1) for x = 1 and for x =−1.
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2.5

1.5

2

1

0.5

x
10.50–0.5–1

FIGURE 13.7 Thirtieth partial sum of the
Fourier series in Example 13.5.

Figure 13.7 shows the thirtieth partial sum of this series, suggesting its convergence to the
function except at the endpoints −1 and 1. �

EXAMPLE 13.6

Let

f (x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

5 sin(x) for −2π ≤ x <−π/2
4 for x =−π/2
x2 for −π/2< x < 2

8cos(x) for 2 ≤ x <π

4x for π ≤ x ≤ 2π.

f is piecewise smooth on [−2π,2π ]. The Fourier series of f on [−2π,2π ] converges to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 sin(x) for −2π < x <−π/2
1
2

(
π2

4
− 5

)
for x =−π/2

x2 for −π/2< x < 2
1
2
(4 + 8cos(2)) for x = 2

8cos(x) for 2< x <π
1
2
(4π − 8) for x =π

4x for −π < x < 2π

4π for x = 2π and x =−2π .

This conclusion does not require that we write the Fourier series. �
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13.2.1 Even and Odd Functions

A function f is even on [−L , L] if its graph on [−L ,0] is the reflection across the vertical
axis of the graph on [0, L]. This happens when f (−x)= f (x) for 0< x ≤ L . For example,
x2n and cos(nπx/L) are even on any [−L , L] for any positive integer n.

A function f is odd on [−L , L] if its graph on [−L ,0) is the reflection through the
origin of the graph on (0, L]. This means that f is odd when f (−x)=− f (x) for 0< x ≤ L .
For example, x2n+1 and sin(nπx/L) are odd on [−L , L] for any positive integer n.

Figures 13.8 and 13.9 show typical even and odd functions, respectively.
A product of two even functions is even, a product of two odd functions is even, and a

product of an odd function with an even function is odd.
If f is even on [−L , L] then

∫ L

−L

f (x)dx = 2
∫ L

0

f (x)dx

and if f is odd on [−L , L] then

∫ L

−L

f (x)dx = 0.

These facts are sometimes useful in computing Fourier coefficients. If f is even, only the cosine
terms and possibly the constant term will appear in the Fourier series, because f (x) sin(nπx/L)
is odd and the integrals defining the sine coefficients will be zero. If the function is odd
then f (x) cos(nπx/L) is odd and the Fourier series will contain only the sine terms, since
the integrals defining the constant term and the coefficients of the cosine terms will be
zero.

0

35

25

5

4– 2–

20

10

15

0

x
62–6 4

30

FIGURE 13.8 A typical even function.

60

20

–60

40

0
x

20–2–4

–40

–20

4

FIGURE 13.9 A typical odd function.
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FIGURE 13.10 Twentieth partial sum of the
series in Example 13.7.

EXAMPLE 13.7

We will compute the Fourier series of f (x)= x on [−π,π].
Because x cos(nx) is an odd function on [−π,π] for n = 0,1,2, · · · , each an = 0. We need

only compute the bn
′s:

bn = 1

π

∫ π

−π
x sin(nx)dx

= 2

π

∫ π

0

x sin(nx)dx

=
[

2

n2π
sin(nx)− 2x

nπ
cos(nx)

]π

0

=−2

n
cos(nπ)= 2

n
(−1)n+1.

The Fourier series of x on [−π,π] is
∞∑

n=1

2

n
(−1)n+1 sin(nx).

This converges to x for −π < x <π , and to 0 at x = ±π . Figure 13.10 shows the twentieth
partial sum of this Fourier series compared to the function. �

EXAMPLE 13.8

We will write the Fourier series of x4 on [−1,1]. Since x4 sin(nπx) is an odd function on [−1,1]
for n = 1,2, · · · , each bn = 0. Compute

a0 = 2
∫ 1

0

x4dx = 2

5

and

an = 2
∫ 1

0

x4 cos(nπx)dx

= 2

[
(nπx)4 sin(nπx)+ 4(nπx)3 cos(nπx)

(nπ)5

]1

0
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FIGURE 13.11 Tenth partial sum of the
series of Example 13.8.

+ 2

[−12(nπx)2 sin(nπx)− 24nπx cos(nπx)+ 24 sin(nπx)

(nπ)5

]1

0

=8
n2π 2 − 6

n4π 4
(−1)n.

The Fourier series is

1

5
+

∞∑

n=1

(
8(−1)n

n4π 4
(n2π 2 − 6)

)

cos(nπx).

By Theorem 13.1, this series converges to x4 for −1 ≤ x ≤ 1. Figure 13.11 shows the
twentieth partial sum of this series, compared with the function. �

13.2.2 The Gibbs Phenomenon

A.A. Michelson was a Prussian-born physicist who teamed with E.W. Morley of Case-Western
Reserve University to show that the postulated “ether,” a fluid which supposedly permeated all of
space, had no effect on the speed of light. Michelson also built a mechanical device for construct-
ing a function from its Fourier coefficients. In one test, he used eighty coefficients for the series
of f (x)= x on [−π,π] and noticed unexpected jumps in the graph near the endpoints. At first,
he thought this was a problem with his machine. It was subsequently found that this behavior is
characteristic of the Fourier series of a function at a point of discontinuity. In the early twentieth
century, the Yale mathematician Josiah Willard Gibbs finally explained this behavior.

To illustrate the Gibbs phenomenon, expand f in a Fourier series on [−π,π], where

f (x)=

⎧
⎪⎨

⎪⎩

−π/4 for −π ≤ x < 0

0 for x = 0

π/4 for 0< x ≤π .

This function has a jump discontinuity at 0, but its Fourier series on [−π,π] converges at 0 to

1

2
( f (0+)+ f (0−))= 1

2

(π

4
− π

4

)
= 0 = f (0).
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FIGURE 13.12 The Gibbs phenomenon.

The Fourier series therefore converges to the function on (−π,π). This series is

∞∑

n=1

1

2n − 1
sin((2n − 1)x).

Figure 13.12 shows the fifth and twenty-fifth partial sums of this series, compared to the
function. Notice that both of these partial sums show a peak near 0, the point of discontinuity of
f . Since the partial sums SN approach the function as N → ∞, we might expect these peaks to
flatten out, but they do not. Instead they remain roughly the same height, but move closer to the
y-axis as N increases. This is the Gibbs phenomenon.

Postscript We will add two comments on the ideas of this section, the first practical and the
second offering a broader perspective.

1. Writing and graphing partial sums of Fourier series are computation intensive activities.
Evaluating integrals for the coefficients is most efficiently done in MAPLE using the
int command, and partial sums are easily graphed using the sum command to enter the
partial sum and then the plot command for the graph.

2. Partial sums of Fourier series can be viewed from the perspective of orthogonal pro-
jections onto a subspace of a vector space (Sections 6.6 and 6.7). Let PC[−L , L] be
the vector space of functions that are piecewise continuous on [−L , L] and let S be the
subspace spanned by the functions

C0(x)= 1,Cn(x)= cos(nπx/L) and Sn(x)= sin(nπx/L) for n = 1,2, · · · , N .

A dot product can be defined on PL[−L , L] by

f · g =
∫ L

−L

f (x)g(x)dx .

Using this dot product, these functions form an orthogonal basis for S. If f if piecewise
continuous on [−L , L], the orthogonal projection of f onto S is

fS = f · C0

C0 · C0

C0 +
N∑

n=1

(
f · Cn

Cn · Cn

Cn + f · Sn

Sn · Sn

Sn

)

.
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Compare these coefficients in the orthogonal projection with the Fourier coefficients of f on
[−L , L]. First

f · C0

C0 · C0

=
∫ L

−L
f (x)dx

∫ L

−L
dx

= 1

2L

∫ L

−L

f (x)dx = 1

2
a0.

Next,

f · Cn

Cn · Cn

=
∫ L

−L
f (x) cos(nπx/L)dx

∫ L

−L
cos2(nπx/L)dx

= 1

L

∫ L

−L

f (x) cos(nπx/L)dx = an,

and similarly,

f · Sn

Sn · Sn

= 1

L

∫ L

−L

f (x) sin(nπx/L)dx = bn.

Thus, the orthogonal projection fS of f onto S is exactly the N th partial sum of the Fourier series
of f on [−L , L].

This broader perspective of Fourier series will provide a unifying theme when we consider
general eigenfunction expansions in Chapter 15.

SECTION 13.2 PROBLEMS

In each of Problems 1 through 12, write the Fourier series
of the function on the interval and determine the sum of
the Fourier series. Graph some partial sums of the series,
compared with the graph of the function.

1. f (x)= 4,−3 ≤ x ≤ 3

2. f (x)= −x,−1 ≤ x ≤ 1

3. f (x)= cosh(πx),−1 ≤ x ≤ 1

4. f (x)= 1 − |x |,−2 ≤ x ≤ 2

5. f (x)=
{

−4 for −π ≤ x ≤ 0

4 for 0< x ≤π
6. f (x)= sin(2x),−π ≤ x ≤π
7. f (x)= x2 − x + 3,−2 ≤ x ≤ 2

8. f (x)=
{

−x for −5 ≤ x < 0

1 + x2 for 0 ≤ x ≤ 5

9. f (x)=
{

1 for −π ≤ x < 0

2 for 0 ≤ x ≤π

10. f (x)= cos(x/2)− sin(x),−π ≤ x ≤π
11. f (x)= cos(x),−3 ≤ x ≤ 3

12. f (x)=
{

1 − x for −1 ≤ x ≤ 0

0 for 0< x ≤ 1

In each of Problems 13 through 19, use the convergence
theorem to determine the sum of the Fourier series of the
function on the interval. It is not necessary to write the
series to do this.

13. f (x)=

⎧
⎪⎪⎨

⎪⎪⎩

2x for −3 ≤ x <−2

0 for −2 ≤ x < 1

x2 for 1 ≤ x ≤ 3

14. f (x)=
{

2x − 2 for −π ≤ x ≤ 1

3 for 1< x ≤ −π

15. f (x)=
{

x2 for −π ≤ x ≤ 0

2 for 0< x ≤π
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16. f (x)=
⎧
⎨

⎩

cos(x) for −2 ≤ x < 0

sin(x) for 0 ≤ x ≤ 2

17. f (x)=
{

−1 for −4 ≤ x < 0

1 for 0 ≤ x ≤ 4

18. f (x)=

⎧
⎪⎨

⎪⎩

0 for −1 ≤ x < 1/2

1 for 1/2 ≤ x ≤ 3/4

2 for 3/4< x ≤ 1

19. f (x)=

⎧
⎪⎨

⎪⎩

−2 for −4 ≤ x ≤−2

1 + x2 for −2< x ≤ 2

0 for 2< x ≤ 4

20. Using Problem 14, write the Fourier series of the
function and plot some partial sums, pointing out the
occurrence of the Gibbs phenomenon at the points of
discontinuity of the function.

21. Carry out the program of Problem 20 for the function
of Problem 16.

13.3 Sine and Cosine Series

If f is piecewise continuous on [−L , L], we can represent f (x) at all but possibly finitely many
points of [−L , L] by its Fourier series. This series may contain just sine terms, just cosine terms,
or both sine and cosine terms. We have no control over this.

If f is defined on the half interval [0, L], we can write a Fourier cosine series (containing
just cosine terms) and a Fourier sine series (containing just sine terms) for f on [0, L].

13.3.1 Cosine Series

Suppose f (x) is defined for 0 ≤ x ≤ L . To get a pure cosine series on this interval, imagine
reflecting the graph of f across the vertical axis to obtain an even function g defined on [−L , L]
(see Figure 13.13).

Because g is even, its Fourier series on [−L , L] has only cosine terms and perhaps the
constant term. But g(x) = f (x) for 0 ≤ x ≤ L , so this gives a cosine series for f on [0, L].
Furthermore, because g is even, the coefficients in the Fourier series of g on [−L , L] are

an = 1

L

∫ L

−L

g(x) cos(nπx/L)dx

= 2

L

∫ L

0

g(x) cos(nπx/L)dx

= 2

L

∫ L

0

f (x) cos(nπx/L)dx .

x

y

FIGURE 13.13 Even extension of a
function defined on [0, L].
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for n = 0,1,2, · · · . Notice that we can compute an strictly in terms of f on [0, L]. The construc-
tion of g showed us how to obtain this cosine series for f , but we do not need g to compute the
coefficients of this series.

Based on these ideas, define the Fourier cosine coefficients of f on [0, L] to be the numbers

an = 2

L

∫ L

0

f (x) cos(nπx/L)dx (13.10)

for n = 0,1,2, · · · . The Fourier cosine series for f on [0, L] is the series

1

2
a0 +

∞∑

n=1

an cos(nπx/L) (13.11)

in which the a′
ns are the Fourier cosine coefficients of f on [0, L].

By applying Theorem 13.1 to g, we obtain the following convergence theorem for cosine
series on [0, L].

THEOREM 13.2 Convergence of Fourier Cosine Series

Let f be piecewise smooth on [0, L]. Then

1. If 0< x < L , the Fourier cosine series for f on [0, L] converges to

1

2
( f (x+)+ f (x−)).

2. At 0 this cosine series converges to f (0+).
3. At L this cosine series converges to f (L−). �

EXAMPLE 13.9

Let f (x)= e2x for 0 ≤ x ≤ 1. We will write the cosine expansion of f on [0,1]. The coefficients
are

a0 = 2
∫ 1

0

e2x dx = e2 − 1

and for n = 1,2, · · · ,

an = 2
∫ 1

0

e2x cos(nπx)dx

=
[

4e2x cos(nπx)+ 2nπe2x sin(nπx)

4 + n2π 2

]1

0

= 4
e2(−1)n − 1

4 + n2π 2
.
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The cosine series for e2x on [0,1] is

1

2
(e2 − 1)+

∞∑

n=1

4
e2(−1)n − 1

4 + n2π 2
cos(nπx).

This series converges to
⎧
⎪⎨

⎪⎩

e2x for 0< x < 1

1 for x = 0

e2 for x = 1.

This Fourier cosine series converges to e2x for 0≤ x ≤1. Figure 13.14 shows e2x and the fifth
partial sum of this cosine series. �

13.3.2 Sine Series

We can also write an expansion of f on [0, L] that contains only sine terms. Now reflect the
graph of f on [0, L] through the origin to create an odd function h on [−L , L], with h(x)= f (x)
for 0< x ≤ L (Figure 13.15).

7

5

1

6

4

2

3

0.20
x

10.4 0.6 0.8

FIGURE 13.14 Fifth partial sum of the
cosine series in Example 13.9.

x

y

FIGURE 13.15 Odd extension of a func-
tion defined on [0, L].
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The Fourier expansion of h on [−L , L] has only sine terms because h is odd on [−L , L]. But
h(x)= f (x) on [0, L], so this gives a sine expansion of f on [0, L]. This suggests the following
definitions.

The Fourier sine coefficients of f on [0, L] are

bn = 2

L

∫ L

0

f (x) sin(nπx/L)dx . (13.12)

for n = 1,2, · · · . With these coefficients, the series
∞∑

n=1

bn sin(nπx/L) (13.13)

is the Fourier sine series for f on [0, L].

Again, we have a convergence theorem for sine series directly from the convergence theorem
for Fourier series.

THEOREM 13.3 Convergence of Fourier Sine Series

Let f be piecewise smooth on [0, L]. Then

1. If 0< x < L , the Fourier sine series for f on [0, L] converges to

1

2
( f (x+)+ f (x−)).

2. At x = 0 and x = L , this sine series converges to 0. �

Condition (2) is obvious because each sine term in the series vanishes at x = 0 and at x = L ,
regardless of the values of the function there.

EXAMPLE 13.10

Let f (x)= e2x for 0≤ x ≤1. We will write the Fourier sine series of f on [0,1]. The coefficients
are

bn = 2
∫ 1

0

e2x sin(nπx)dx

=
[−2nπe2x cos(nπx)+ 4e2x sin(nπx)

4 + n2π 2

]1

0

= 2
nπ(1 − (−1)ne2)

4 + n2π 2
.

The sine expansion of e2x on [0,1] is
∞∑

n=1

2
nπ(1 − (−1)ne2)

4 + n2π 2
sin(nπx).

This series converges to e2x for 0< x < 1 and to 0 at x = 0 and x = 1. Figure 13.16 shows
the function and the fortieth partial sum of this sine expansion. �
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6

x

2

10.6 0.8

0

0 0.2 0.4

FIGURE 13.16 Fortieth partial sum of the sine
series of Example 13.10.

SECTION 13.3 PROBLEMS

In each of Problems 1 through 10, write the Fourier cosine
and sine series for f on the interval. Determine the sum
of each series. Graph some of the partial sums of these
series.

1. f (x)= 4,0 ≤ x ≤ 3

2. f (x)=
{

1 for 0 ≤ x ≤ 1

−1 for 1< x ≤ 2

3. f (x)=
{

0 for 0 ≤ x ≤π
cos(x) for π < x ≤ 2π

4. f (x)= 2x,0 ≤ x ≤ 1

5. f (x)= x2,0 ≤ x ≤ 2

6. f (x)= e−x ,0 ≤ x ≤ 1

7. f (x)=
{

x for 0 ≤ x ≤ 2

2 − x for 2< x ≤ 3

8. f (x)=

⎧
⎪⎨

⎪⎩

1 for 0 ≤ x < 1

0 for 1 ≤ x ≤ 3

−1 for 3< x ≤ 5

9. f (x)=
{

x2 for 0 ≤ x < 1

1 for 1 ≤ x ≤ 4

10. f (x)= 1 − x3,0 ≤ x ≤ 2

11. Sum the series
∑∞

n=1(−1)n/(4n2 − 1). Hint: Expand
sin(x) in a cosine series on [0,π ] and choose an
appropriate value of x .

12. Let f (x) be defined on [−L , L]. Prove that f can
be written as a sum of an even function and an odd
function on this interval.

13. Determine all functions on [−L , L] that are both even
and odd.

13.4 Integration and Differentiation of Fourier Series

Term by term differentiation of a Fourier series may lead to nonsense.

EXAMPLE 13.11

Let f (x)= x for −π ≤ x ≤π . The Fourier series is

f (x)= x =
∞∑

n=1

2

n
(−1)n+1 sin(nx)
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for −π < x <π . Differentiate this series term by term to get

∞∑

n=1

2(−1)n+1 cos(nx).

This series does not converge on (−π,π). �

However, under fairly mild conditions, we can integrate a Fourier series term by term.

THEOREM 13.4 Integration of Fourier Series

Let f be piecewise continuous on [−L , L], with Fourier series

1

2
a0 +

∞∑

n=1

(an cos(nπx/L)+ bn sin(nπx/L)).

Then, for any x with −L ≤ x ≤ L ,
∫ x

−L

f (t)dt =1

2
a0(x + L)

+ L

π

∞∑

n=1

1

n

[
an sin(nπx/L)− bn(cos(nπx/L)− (−1)n)

]
. �

The expression on the right in this equation is exactly what we obtain by integrating the
Fourier series term by term, from −L to x . This means that we can integrate any piecewise
continuous function f from −L to x by integrating its Fourier series term by term. This is true
even if the function has jump discontinuities and its Fourier series does not converge to f (x) for
all x in [−L , L]. Notice, however, that the result of this integration is not a Fourier series.

EXAMPLE 13.12

From Example 13.11,

f (x)= x =
∞∑

n=1

2

n
(−1)n+1 sin(nx)

on (−π,π). Term by term differentiation results in a series that does not converge on the interval.
However, we can integrate this series term by term:

∫ x

−π
t dt = 1

2
(x2 −π 2)

=
∞∑

n=1

2

n
(−1)n+1

∫ x

−π
sin(nt)dt

=
∞∑

n=1

2

n
(−1)n+1

[

−1

n
cos(nx)+ 1

n
cos(nπ)

]

=
∞∑

n=1

2

n
(−1)n+1(cos(nx)− (−1)n). �
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Proof Define

F(x)=
∫ x

−L

f (t)dt − 1

2
a0x

for −L ≤ x ≤ L . Then F is continuous on [−L , L] and

F(−L)= F(L)= 1

2
a0L .

Furthermore,

F ′(x)= f (x)− 1

2
a0

at every point on (−L , L) at which f is continuous. Therefore F ′(x) is piecewise continuous on
[−L , L], and the Fourier series of F(x) converges to F(x) on this interval. This series is

F(x)= 1

2
A0 +

∞∑

n=1

(
An cos

(nπx

L

)
+ Bn sin

(nπx

L

))
.

Here we obtain, using integration by parts,

An = 1

L

∫ L

−L

F(t) cos
(nπx

L

)
dt

= 1

L

[

F(t)
L

nπ
sin
(nπx

L

)]L

−L

− 1

L

∫ L

−L

L

nπ
sin
(nπx

L

)
F ′(t)dt

=− 1

nπ

∫ L

−L

(

f (t)− 1

2
a0

)

sin
(nπx

L

)
dt

=− 1

nπ

∫ L

−L

f (t) sin
(nπx

L

)
dt + 1

2nπ
a0

∫ L

−L

sin
(nπx

L

)
dt

=− L

nπ
bn.

Similarly,

Bn = 1

L

∫ L

−L

F(t) sin
(nπx

L

)
dt = L

nπ
an,

where the an
′s and bn

′s are the Fourier coefficients of f (x) on [−L , L]. Therefore the Fourier
series of F(x) has the form

F(x)= 1

2
A0 + L

π

∞∑

n=1

(
1

n

)(
−bn cos

(nπx

L

)
+ an sin

(nπx

L

))

for −L ≤ x ≤ L . To determine A0, write

F(L)= L

2
a0 − L

π

∞∑

n=1

bn cos(nπ)

= 1

2
A0 − L

π

∞∑

n=1

(
1

n

)

bn(−1)n.

This gives us

A0 = La0 + 2L

π

∞∑

n=1

(
1

n

)

bn(−1)n.
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Upon substituting these expressions for A0, An , and Bn into the Fourier series for F(x), we obtain
the conclusion of the theorem. �

Valid term by term differentiation of a Fourier series requires stronger conditions.

THEOREM 13.5 Differentiation of Fourier Series

Let f be continuous on [−L , L] and suppose that f (−L) = f (L). Let f ′ be piecewise
continuous on [−L , L]. Then the Fourier series of f on [−L , L] converges to f (x) on [−L , L]:

f (x)= 1

2
a0 +

∞∑

n=1

(an cos(nπx/L)+ bn sin(nπx/L))

for −L ≤ x ≤ L . Further, at each x in (−L , L) at which f ′′(x) exists, the term by term derivative
of the Fourier series converges to the derivative of the function:

f ′(x)=
∞∑

n=1

nπ

L
(−an sin(nπx/L)+ bn cos(nπx/L)). �

The idea of a proof of this theorem is to begin with the Fourier series for f ′(x), noting
that this series converges to f ′(x) at each point where f ′′ exists. Use integration by parts to
relate the Fourier coefficients of f ′(x) to those for f (x), similar to the strategy used in proving
Theorem 13.4,

EXAMPLE 13.13

Let f (x)= x2 for −2 ≤ x ≤ 2. By the Fourier convergence theorem,

x2 = 4

3
+ 16

π 2

∞∑

n=1

(−1)n+1

n2
cos(nπx/2)

for −2 ≤ x ≤ 2. Only cosine terms appear in this series because x2 is an even function. Now,
f ′(x)= 2x is continuous and f is twice differentiable for all x . Therefore, for −2< x < 2,

f ′(x)= 2x = 8

π

∞∑

n=1

(−1)n+1

n
sin(nπx/2).

This can be verified by expanding 2x in a Fourier series on [−2,2]. �

Fourier coefficients, and Fourier sine and cosine coefficients, satisfy an important set of
inequalities called Bessel’s inequalities.

THEOREM 13.6 Bessel’s Inequalities

Suppose
∫ L

0
g(x)dx exists.

1. The Fourier sine coefficients bn of g(x) on [0, L] satisfy

∞∑

n=1

b2
n ≤ 2

L

∫ L

0

(g(x))2 dx .
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2. The Fourier cosine coefficients an of g(x) on [0, L] satisfy

1

2
a2

0 +
∞∑

n=1

a2
n ≤ 2

L

∫ L

0

(g(x))2 dx .

3. If
∫ L

−L
g(x)dx exists, then the Fourier coefficients of f (x) on [−L , L] satisfy

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n)≤
1

L

∫ L

−L

(g(x))2 dx . �

In particular, the sum of the squares of the coefficients in a Fourier series (or cosine or sine
series) converges.

We will prove conclusion (1). The argument is notationally simpler than that for conclusions
(2) and (3), but contains the ideas involved.

Proof of (1) The Fourier sine series of g(x) on [0, L] is
∞∑

n=1

bn sin
(nπx

L

)
,

where

bn = 2

L

∫ L

0

g(x) sin
(nπx

L

)
dx .

The N th partial sum of this sine series is

SN (x)=
N∑

n=1

bn sin
(nπx

L

)
.

Then

0 ≤
∫ L

0

(g(x)− SN (x))
2 dx

=
∫ L

0

(g(x))2 dx − 2
∫ L

0

g(x)SN (x)dx +
∫ L

0

(SN (x))
2 dx

=
∫ L

0

(g(x))2 dx − 2
∫ L

0

g(x)

(
N∑

n=1

bn sin
(nπx

L

)
)

dx

+
∫ L

0

(
N∑

n=1

bn sin
(nπx

L

)
)(

N∑

k=1

bk sin

(
kπx

L

))

dx

=
∫ L

0

(g(x))2 dx − 2
N∑

n=1

bn

∫ L

0

g(x) sin
(nπx

L

)
dx

+
N∑

n=1

N∑

k=1

bnbk

∫ L

0

sin
(nπx

L

)
sin

(
kπx

L

)

dx

=
∫ L

0

(g(x))2 dx −
N∑

n=1

bn(Lbn)+ L

2

N∑

n=1

bnbn.

Here we have used the fact that
∫ L

0

sin
(nπx

L

)
sin

(
kπx

L

)

dx =
{

0 for n �= k,

L/2 for n = k.
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We therefore have

0 ≤
∫ L

0

(g(x))2 dx − L
N∑

n=1

b2
n + L

2

N∑

n=1

b2
n,

and this gives us

N∑

n=1

b2
n ≤ 2

L

∫ L

0

( f (x))2 dx .

Since this is true for all positive integers N , we can let N → ∞ to obtain
∞∑

n=1

b2
n ≤ 2

L

∫ L

0

( f (x))2 dx . �

EXAMPLE 13.14

We will use Bessel’s inequality to derive an upper bound for the sum of a series. Let f (x)= x2

on [−π,π]. The Fourier series is

f (x)= 1

3
π 2 +

∞∑

n=1

4
(−1)n

n2
cos(nx)

for −π ≤ x ≤π . Here a0 =2π 2/3 and an =4(−1)n/n2, while each bn =0 (x2 is an even function).
By Bessel’s inequality,

1

2

(
2π

3

)2

+
∞∑

n=1

(
4(−1)n

n2

)2

≤ 1

π

∫ π

−π
x4 dx = 2

5
π 4.

Then

16
∞∑

n=1

1

n4
≤
(

2

5
− 2

9

)

π 4 = 8π 4

45
.

Then
∞∑

n=1

1

n4
≤ π 4

90
,

which is approximately 1.0823. Infinite series are generally difficult to sum, so it is sometimes
useful to be able to derive an upper bound. �

With stronger assumptions than just existence of the integral over the interval, we can derive
an important equality satisfied by the Fourier coefficients of a function on [−L , L] or by the
Fourier sine or cosine coefficients of a function on [0, L]. We will state the result for f (x)
defined on [−L , L].

THEOREM 13.7 Parseval’s Theorem

Let f be continuous on [−L , L] and let f ′ be piecewise continuous. Suppose that f (−L)=
f (L). Then the Fourier coefficients of f on [−L , L] satisfy

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n)=
1

L

∫ L

−L

f (x)2 dx . �
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Proof Begin with the fact that, from the Fourier convergence theorem,

f (x)= 1

2
a0 +

∞∑

n=1

(an cos(nπx/L)+ bn sin(nπx/L)).

Multiply this series by f (x) to get

f (x)2 = 1

2
a0 f (x)+

∞∑

n=1

(an f (x) cos(nπx/L)+ bn f (x) sin(nπx/L)).

We can integrate this equation term by term (Theorem 13.4). In doing this, observe that the
integrals in the series on the right are Fourier coefficients. This yields Parseval’s theorem. �

EXAMPLE 13.15

We will apply Parseval’s theorem to sum a series. The Fourier coefficients of cos(x/2) on [−π,π]
are

a0 = 1

π

∫ π

−π
cos(x/2)dx = 4

π

and, for n = 1,2, · · · ,,

an = 1

π

∫ π

−π
cos(x/2) cos(nx)dx =− 4

π

(−1)n

4n2 − 1
.

Each bn = 0 because cos(x/2) is an even function. By Parseval’s theorem,

1

2

(
4

π

)2

+
∞∑

n=1

(
4

π

(−1)n

4n2 − 1

)2

= 1

π

∫ π

−π
cos2(x/2)dx = 1.

After some routine manipulation, this yields

∞∑

n=1

1

(4n2 − 1)2
= π 2 − 8

16
. �

We conclude this section with sufficient conditions for a Fourier series to converge
uniformly.

THEOREM 13.8

Let f be continuous on [−L , L], and let f ′ be piecewise continuous. Suppose f (L)= f (−L).
Then the Fourier series for f (x) on [−L , L] converges absolutely and uniformly to f (x) on
[−L , L].

A proof is outlined in Problem 6.
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SECTION 13.4 PROBLEMS

1. Let

f (x)=
{

0 for −π ≤ x ≤ 0

x for 0< x ≤π .

(a) Write the Fourier series of f (x) on [−π,π ] and
show that this series converges to f (x) on (−π,π).

(b) Use Theorem 12.5 to show that this series can be
integrated term by term.

(c) Use the results of (a) and (b) to obtain a trigono-
metric series expansion of

∫ x

−π f (t)dt on [−π,π ].
2. Let f (x)= |x | for −1 ≤ x ≤ 1.

(a) Write the Fourier series for f on [−1,1].
(b) Show that this series can be differentiated term by

term to yield the Fourier expansion of f ′(x) on
[−π,π ].

(c) Determine f ′(x) and expand this function in a
Fourier series on [−π,π ]. Compare this result with
that of (b).

3. Let f (x)= x sin(x) for −π ≤ x ≤π .

(a) Write the Fourier series for f on [−π,π ]
(b) Show that this series can be differentiated term

by term and use this fact to obtain the Fourier
expansion of sin(x)+ x cos(x) on [−π,π ].

(c) Write the Fourier series for sin(x)+ x cos(x) on
[−π,π ] and compare this result with that of (b).

4. Let f (x)= x 2 for −3 ≤ x ≤ 3.

(a) Write the Fourier series for f on [−3,3].
(b) Show that this series can be differentiated term by

term and use this to obtain the Fourier expansion
of 2x on [−3,3].

(c) Expand 2x in a Fourier series on [−3,3] and
compare this result with that of (b).

5. Let f and f ′ be piecewise continuous on [−L , L]. Use
Bessel’s inequality to show that

lim
n→∞

∫ L

−L

f (x) cos
(nπx

L

)
dx

= lim
n→∞

∫ L

−L

f (x) sin
(nπx

L

)
dx = 0.

This result is called Riemann’s lemma.

6. Prove Theorem 13.8 by filling in the details of the fol-
lowing argument. Denote the Fourier coefficients of
f (x) by lower case letters, and those of f ′(x) by upper
case. Show that

A0 = 0, An = nπ

L
bn, and Bn =−nπ

L
an .

Show that

0 ≤ A2
n − 2

n
|An| + 1

n2

for n = 1,2, · · · , with a similar inequality for Bn . Add
these two inequalities to obtain

1

n
(|An| + |Bn|)≤ 1

2
(A2

n + B2
n )+

1

n2
.

Hence show that

|an| + |bn| ≤ L

2π
(A2

n + B2
n )+

L

π(n2)
.

Thus show by comparison that

∞∑

n=1

(|an| + |bn|)

converges. Finally, show that

|an cos(nπx/L)+ bn sin(nπx/L)| ≤ |an| + |bn|
and apply a theorem of Weierstrass on uniform conver-
gence.

13.5 Phase Angle Form

A function f has period p if f (x + p)= f (x) for all x . The smallest positive p for which
this holds is the fundamental period of f . For example sin(x) has fundamental period 2π .

The graph of a function with fundamental period p simply repeats itself over intervals of
length p. We can draw the graph for −p/2 ≤ x < p/2, then replicate this graph on p/2 ≤ x <
3p/2, 3p/2 ≤ x < 5p/2, −3p/2 ≤ x <−p/2, and so on.
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Now suppose f has fundamental period p. Its Fourier series on [−p/2, p/2], with L = p/2,
is

1

2
a0 +

∞∑

n=1

(an cos(2nπx/p)+ bn sin(2nπx/p)),

where

an = 2

p

∫ p/2

−p/2

f (x) cos(2nπx/p)dx

and

bn = 2

p

∫ p/2

−p/2

f (x) sin(2nπx/p)dx .

It is sometimes convenient to write this series in a different way. Let

ω0 = 2π

p
.

The Fourier series of f (x) on [−p/2, p/2] is

1

2
a0 +

∞∑

n=1

(an cos(nω0x)+ bn sin(nω0x)),

where

an = 2

p

∫ p/2

−p/2

f (x) cos(nω0x)dx

and

bn = 2

p

∫ p/2

−p/2

f (x) sin(nω0x)dx .

Now look for numbers cn and δn so that

an cos(nω0x)+ bn sin(nω0x)= cn cos(nω0x + δn).

To solve for these constants, use a trigonometric identity to write this equation as

an cos(nω0x)+ bn sin(nω0x)= cn cos(nω0x) cos(δn)− cn sin(nω0x) sin(δn).

One way to satisfy this equation is to put

cn cos(δn)= an and cn sin(δn)=−bn.

If we square both sides of these equations and add the results, we obtain

c2
n = a2

n + b2
n,

so

cn =√a2
n + b2

n.

Next, divide to obtain

cn sin(δn)

cn cos(δn)
= tan(δn)=−bn

an

,

assuming that an �= 0. Then

δn =− arctan

(
bn

an

)

.
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When each an �= 0, these equations enable us to write the phase angle form of the Fourier
series of f (x) on [−p/2, p/2]:

1

2
a0 +

∞∑

n=1

cn cos(nω0x + δn),

where

ω0 = 2π/p, cn =√a2
n + b2

n, and δn =− arctan(bn/an).

This phase angle form is also called the harmonic form of the Fourier series for f (x)
on [−p/2, p/2]. The term cos(nω0x + δn) is called the nth harmonic of f , cn is the nth
harmonic amplitude, and δn is the nth phase angle of f .

If f has fundamental period p, then in the expressions for the coefficients an and bn , we can
compute the integrals over any interval [α,α+ p], since any interval of length p carries all of the
information about a p-periodic function.

This means that the Fourier coefficients of p-periodic f can be obtained as

an = 2

p

∫ α+p

α

f (x) cos(nω0x)dx

and

bn = 2

p

∫ α+p

α

f (x) sin(nω0x)dx

for any number α.

EXAMPLE 13.16

Let

f (x)= x2 for 0 ≤ x < 3

and suppose f has fundamental period p = 3. A graph of f is shown in Figure 13.17.
Since f is 3-periodic, and we are given an algebraic expression for f (x) only on [0,3), we

will use this interval to compute the Fourier coefficients of f . That is, use p = 3 and α= 0 in the
preceding discussion. We also have ωo = 2π/p = 2π/3.

The Fourier coefficients are

a0 = 2

3

∫ 3

0

x2 dx = 6,

an = 2

3

∫ 3

0

x2 cos

(
2nπx

3

)

dx = 9

n2π 2
,
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–2

8

4

6

4

2

0

x
620

FIGURE 13.17 f (x) in Example 13.16.

and

bn = 2

3

∫ 3

0

x2 sin

(
2nπx

3

)

dx =− 9

nπ
.

The Fourier series of f (x) is

3 +
∞∑

n=1

9

nπ

(
1

nπ
cos

(
2nπx

3

)

− sin

(
2nπx

3

))

.

We may think of this as the Fourier series of f (x) on the symmetric interval [−3/2,3/2]. How-
ever, keep in mind that f (x) is not x2 on this interval. We have f (x)= x2 on 0 ≤ x < 3, hence
also on [0,3/2]. But from Figure 13.17, f (x)= (x + 3)2 on [−3/2,0).

This Fourier series converges to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

9/4 for x =±3/2,

9/2 for x = 0,

(x + 3)2 for −3/2< x < 0,

x2 for 0< x < 3/2.

For the phase angle form, compute

cn =√a2
n + b2

n = 9

n2π 2

√
1 + n2π 2

and

δn = arctan

(

−−9/nπ

9/n2π 2

)

= arctan(nπ)= 0.

The phase angle form of the Fourier series of f (x) is

3 +
∞∑

n=1

9

n2π 2

√
1 + n2π 2 cos

(
2nπx

3

)

. �
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nω02ω0ω0 3ω0 4ω0

3

1.5

.725
.36

cn/2

FIGURE 13.18 Amplitude spectrum of f
in Example 13.16.

The amplitude spectrum of a periodic function f is a plot of points (nω0, cn/2) for n =
1,2, · · · , and also the point (0, |c0|/2). For the function of Example 13.14, this is a plot of
points (0,3) and, for nonzero integer n, points

(
2nπ

3
,

9

2n2π 2

√
1 + n2π 2

)

.

The amplitude spectrum for the function of Example 13.16 is shown in Figure 13.18, with
the intervals on the horizontal axis of length ω0 = 2π/3. This graph displays the relative effects
of the harmonics in the function. This is useful in signal analysis.

SECTION 13.5 PROBLEMS

In Problems 1, 2, and 3, let f be periodic of period p.

1. If g is also periodic of period p, show that α f + βg is
periodic of period p, for any numbers α and β.

2. Let α be a positive number. Show that g(t)= f (αt) has
period p/α and h(t)= f (t/α) has period αp.

3. If f is differentiable, show that f ′ has period p.

In each of Problems 4 through 12, find the phase angle
form of the Fourier series of the function and plot some
points of the amplitude spectrum. Some of these functions
are specified by a graph.

4. Let f (x)= x for 0≤ x<2, with fundamental period 2.

5. Let

f (x)=
{

1 for 0 ≤ x < 1,

0 for 1< x < 2,

and let f has fundamental period 2.

6. Let f (x)= 3x2 for 0 ≤ x < 4 and let f have funda-
mental period 4.

7. Let

f (x)=
{

1 + x for 0 ≤ x < 3,

2 for 2 ≤ x < 4,

and suppose f has fundamental period 4.

8. f (x)= cos(πx) for 0 ≤ x < 1 and f has fundamental
period 1.
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9. f has the graph of Figure 13.19.

x

y

–1

1

–1–2–3 1 2 3

FIGURE 13.19 f (x) in Problem 9,
Section 13.5.

10. f has the graph of Figure 13.20.

x

y

k

2 4–2

FIGURE 13.20 f (x) in Problem 10,
Section 13.5.

11. f has the graph of Figure 13.21.

x

y

1

2

1 3–3 –1

FIGURE 13.21 f (x) in Problem 11,
Section 13.5.

12. f has the graph of Figure 13.22.

y

x

k

0 1 2 3–2 –1

FIGURE 13.22 f (x) in Problem 12,
Section 13.5.

13.6 Complex Fourier Series

There is a complex form of Fourier series that is sometimes used. As preparation for this, recall
that, in polar coordinates, a complex number (point in the plane) can be written

z = x + iy = r cos(θ)+ ir sin(θ)

where

r = |z| =√x2 + y2

and θ is an argument of z. This is the angle (in radians) between the positive x− axis and the
line from the origin through (x, y), or this angle plus any integer multiple of 2π . Using Euler’s
formula, we obtain the polar form of z:

z = r [cos(θ)+ i sin(θ)] = reiθ .

Now

eiθ = cos(θ)+ i sin(θ),
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and by replacing θ with −θ , we get

e−iθ = cos(θ)− i sin(θ).

Solve these equations for cos(θ) and sin(θ) to obtain the complex exponential forms of the
trigonometric functions:

cos(θ)= 1

2

(
eiθ + e−iθ

)
, sin(θ)= 1

2i

(
eiθ − e−iθ

)
.

We will also use the fact that, if x is a real number, then the conjugate of eix is

eix = e−i x .

This follows from Euler’s formula, since

eix = cos(x)+ i sin(x)= cos(x)− i sin(x)= e−i x .

Now let f be a piecewise smooth periodic function with fundamental period 2L . To derive a
complex Fourier expansion of f (x) on [−L , L], begin with the Fourier series of f (x). With
ω0 =π/L , this series is

1

2
a0 +

∞∑

n=1

(an cos(nω0x)+ bn sin(nω0x))

Put the complex forms of cos(nω0x) and sin(nω0x) into this expansion:

1

2
a0+

∞∑

n=1

[

an

1

2

(
einω0x + e−inω0x

)+ bn

1

2i

(
einω0x − e−inω0x

)
]

= 1

2
a0 +

∞∑

n=1

[
1

2
(an − ibn)e

inω0x + 1

2
(an + ibn)e

−inω0x

]

,

in which we used the fact that 1/ i =−i . In this series, let

d0 = 1

2
a0

and, for n = 1,2, · · · ,
dn = 1

2
(an − ibn).

The Fourier series on [−L , L] becomes

d0 +
∞∑

n=1

dne
inω0x +

∞∑

n=1

dne
−inω0x (13.14)

Now

d0 = 1

2
a0 = 1

L

∫ L

−L

f (x)dx

and for n = 1,2, · · · ,
dn = 1

2
(an − ibn)

= 1

2L

∫ L

−L

f (x) cos(nω0x)dx − i

2L

∫ L

−L

f (x) sin(nω0x)dx

= 1

2L

∫ L

−L

f (x)[cos(nω0x)− i sin(nω0x)]dx

= 1

2L

∫ L

−L

f (x)e−inω0x dx .
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Then

dn = 1

2L

∫ L

−L

f (x)e−inω0x dx = 1

2L

∫ L

−L

f (x)einω0x dx = d−n.

With this, the expansion of equation (13.14) becomes

d0 +
∞∑

n=1

dne
inω0x +

∞∑

n=1

d−ne
−inω0x

=
∞∑

n=−∞
dne

inω0x .

This leads us to define the complex Fourier series of f on [−L , L] to be
∞∑

n=−∞
dne

inω0x ,

with coefficients

dn = 1

2L

∫ L

−L

f (x)e−inω0x dx

for n = 0,±1,±2, · · · .

Because of the periodicity of f , the integral defining the coefficients can be carried out over
any interval [α,α+ 2L] of length 2L . The Fourier convergence theorem applies to this complex
Fourier expansion, since it is just the Fourier series in complex form.

EXAMPLE 13.17

Let f (x)= x for −1 ≤ x < 1 and suppose f has fundamental period 2, so f (x + 2)= f (x) for
all x . Figure 13.23 is part of a graph of f . Now ω0 =π .

Immediately d0 = 0 because f is an odd function. For n �= 0,

dn = 1

2

∫ 1

−1

xe−inπx dx

= 1

2n2π 2

[
inπeinπ − einπ + inπe−inπ + e−inπ

]

= 1

2n2π 2

[
inπ

(
einπ + e−inπ

)− (einπ − e−inπ
)]
.

The complex Fourier series of f is
∞∑

n=−∞,n �=0

1

2n2π 2

[
inπ

(
einπ + e−inπ

)− (einπ − e−inπ
)]

einπx .

This converges to x for −1< x < 1. In this example we can simplify the series. For n �= 0,

dn = 1

2n2π 2
[2inπ cos(nπ)− 2i sin(nπ)]

= i

nπ
(−1)n.
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1
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–1

x 21–1 0–3 –2

FIGURE 13.23 Graph of f in Example 13.17.

All the terms sin(nπ)=0. In
∑−1

n=−∞, replace n with −n and sum from n =1 to ∞, then combine
the two summations from 1 to ∞ to write

∞∑

n=−∞,n �=0

i

nπ
(−1)neinπx

=
∞∑

n=1

(
i

nπ
(−1)neinπx + i

−nπ
(−1)−ne−inπx

)

=
∞∑

n=1

i

nπ
(−1)n

(
einπx − e−inπx

)

=
∞∑

n=1

2

nπ
(−1)n+1 sin(nπx).

This is the Fourier series for f (x)= x on [−1,1]. �

The amplitude spectrum of a complex Fourier series of a periodic function is a graph of the
points (nω0, |dn|). Sometimes this graph is also referred to as a frequency spectrum.

SECTION 13.6 PROBLEMS

In each of Problems 1 through 7, write the complex Fourier
series of f , determine the sum of the series, and plot some
points of the frequency spectrum.

1. f (x)= 2x for 0 ≤ x < 3, period 3

2. f (x)= x2 for 0 ≤ x < 2, period 2

3. f (x)=
{

0 for 0 ≤ x < 1

1 for 1 ≤ x < 4
, f has period 4

4. f (x)= 1 − x for 0 ≤ x < 6, period 6

5. f (x)=
{

−1 for 0 ≤ x < 2

2 for 2 ≤ x < 4
, f has period 4

6. f (x)= e−x for 0 ≤ x < 5, period 5

7. f (x)=
{

x for 0 ≤ x < 1

2 − x for 1 ≤ x < 2
, f has period 2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:57 THM/NEIL Page-461 27410_13_ch13_p425-464

13.7 Filtering of Signals 461

13.7 Filtering of Signals

A periodic signal f (t) of period 2L is sometimes filtered to cancel out or diminish unwanted
effects, or perhaps to enhance other effects. We will briefly examine one way this is done.

Suppose f has complex Fourier series
∞∑

n=−∞
dne

nπ i t/L,

where

dn = 1

2L

∫ L

−L

f (t)e−nπ i t/L dt.

The N th partial sum of the series is

SN (t)=
N∑

j=−N

d je
π i j t/L .

A filtered partial sum of this Fourier series is a sum of the form

N∑

j=−N

Z

(
j

N

)

dje
π i j t/L . (13.15)

Z is the filter function and is assumed to be a continuous even function on [−L , L]. In
applications the object is to choose Z to achieve some specified purpose or effect.

To illustrate, we will develop a filter that damps out the Gibbs phenomenon. In the nineteenth
century there was an intense effort to understand convergence properties of Fourier series. In the
course of this work it was observed that the sequence of averages of partial sums of a Fourier
series is in general better behaved than the sequence of partial sums of the series itself. If SN is
the N th partial sum of the series, this average has the form

σN (t)= 1

N

N−1∑

k=0

Sk(t).

The quantity σN (t) is called the N th Cesàro sum of f . It was shown that, if f is periodic of
period 2π and

∫ 2π

0
f (t)dt exists, then σN (t)→ f (t) for any t at which f is continuous, a much

stronger result than holds for partial sums of Fourier series.
Inserting the summation for Sk(t), we have

σN (t)= 1

N

N−1∑

k=0

(
k∑

j=−k

d j e
π i j t/L

)

.

With some manipulation, this double sum can be rearranged to write

σN (t)=
N∑

n=−N

(
1 −

∣
∣
∣

n

N

∣
∣
∣
)

dne
π int/L .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 14:57 THM/NEIL Page-462 27410_13_ch13_p425-464

462 CHAPTER 13 Fourier Series

This is of the form of equation (13.15) with the Cesàro filter function

Z(t)= 1 − |t | for − 1 ≤ t ≤ 1.

The sequence
[
Z
( n

N

)]N

n=−N
=
[
1 −

∣
∣
∣

n

N

∣
∣
∣
]N

n=−N

is called the sequence of filter factors for the Cesàro filter.

This “averaging” filter damps out the Gibbs effect in the convergence of a Fourier series. To
observe this, let f have fundamental period 2π , and, on [−π,π],

f (t)=
{

−1 for −π ≤ t < 0

1 for 0 ≤ t <π .

The complex Fourier series of f is

∞∑

n=−∞,n �=0

i

π

−1 + (−1)n

n
eint .

The N th partial sum of this series is

SN (t)=
N∑

n=−N ,n �=0

i

π

−1 + (−1)n

n
eint .

If we pair positive and negative values of n in this summation, we find that

SN (t)=
N∑

n=1

−2

nπ
(−1 + (−1)n) sin(nt).

If N is even, then −1 + (−1)n = 0. If N is odd, then −1 + (−1)n =−2. Therefore, for odd N ,

SN (t)= 4

π

(

sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ · · ·+ 1

N
sin(Nt)

)

.

The N th Cesàro sum is

σN (t)=
N∑

n=−N ,n �=0

(
1 −

∣
∣
∣

n

N

∣
∣
∣
)( i

π

) −1 + (−1)n

n
eint .

With some manipulation, this can be written

σN (t)=
N∑

n=1

(
1 − n

N

)(−2

π

) −1 + (−1)n

n
sin(nt).

Figure 13.24 shows graphs of S10(t) and σ10(t), and Figure 13.25 graphs of S30(t) and σ30(t),
showing the Gibbs effect in the partial sums of the Fourier series, and this effect damped out in
the smoother Cesàro sums. The Cesàro filter also damps out the higher frequency terms in the
Fourier series because 1 − |n/N | tends to zero as n increases toward N .
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FIGURE 13.24 Tenth partial sum and Cesàro
sum of f .
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–0.5
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0 2–2 1–3 3–1

FIGURE 13.25 Thirtieth partial sum and
Cesàro sum of f .

There are many filters used in signal analysis. Two of the more frequently used ones are the
Hamming and Gauss filters.

The Hamming filter is named for Richard Hamming, who was a senior research scientist
at Bell Labs, and is defined by

Z(t)= 0.54 + 0.46cos(π t).

The Gauss filter is sometimes used to filter out background noise and is defined by

Z(t)= e−απ2 t2,

with α a positive constant.

SECTION 13.7 PROBLEMS

In each of Problems 1 through 5, graph the function, the
fifth partial sum of its Fourier series on the interval, and
the fifth Cesàro sum, using the same set of axes. Repeat this
process for the tenth and twenty-fifth partial sums. Notice
in particular the graphs at points of discontinuity of the
function, where the Gibbs phenomenon appears.

1. f (t)=
{

1 for 0 ≤ t < 2

−1 for −2 ≤ t < 0

2. f (t)=
{

t2 for −2 ≤ t < 1

2 + t for 1 ≤ t < 2

3. f (t)=

⎧
⎪⎨

⎪⎩

−1 for −1 ≤ t <−1/2

0 for −1/2 ≤ t < 1/2

1 for 1/2 ≤ t < 1

4. f (t)=
{

0 for −3 ≤ t < 0

cos(t) for 0 ≤ t < 3

5. f (t)=
{

2 + t for −1 ≤ t < 0

7 for 0 ≤ t < 1
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6. Let

f (t)=
{

1 for 0 ≤ t < 2

−1 for −2 ≤ t < 0

Plot the fifth partial sum of the Fourier series for f (t)
on [−2,2], together with the fifth Cesàro sum, the
fifth Hamming and Gauss filtered partial sums, using
the same set of axes. Repeat this with the tenth and
twenty-fifth partial sums.

7. Let

f (t)=
{

t for −2 ≤ t < 0

2 + t for 0 ≤ t < 2

Plot the fifth partial sum of the Fourier series for f (t)
on [−2,2], together with the fifth Cesàro sum, the
fifth Hamming and Gauss filtered partial sums, using
the same set of axes. Repeat this with the tenth and
twenty-fifth partial sums.
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CHAPTER 14
The Fourier
Integral and
Transforms

THE FOURIER INTEGRAL FOURIER
COSINE AND SINE INTEGRALS THE
FOURIER TRANSFORM FOURIER COSINE
AND SINE TRANSFORMS THE DISCRETE

14.1 The Fourier Integral

If f (x) is defined for −L ≤ x ≤ L , we may be able to represent f (x) as a Fourier series on this
interval. However, Fourier series are tied to intervals. If f is defined over the entire line and is
not periodic, then the idea of a Fourier series representation is replaced with the idea of a Fourier
integral representation, in which the role of

∑∞
n=0 is played by

∫ ∞
0

.
We will give an informal argument to suggest the form that the Fourier integral should take.

Assume that f is absolutely integrable, which means that
∫ ∞

−∞ | f (x)|dx converges. We also
assume that f is piecewise smooth on every interval [−L , L].

Write the Fourier series of f (x) on an arbitrary interval [−L , L]. With the formulas for the
coefficients included, this series is

1

2L

∫ L

−L

f (ξ)dξ +
∞∑

n=1

[(
1

L

∫ L

−L

f (ξ) cos(nπξ/L)dξ

)

cos(nπx/L)

+
(

1

L

∫ L

−L

f (ξ) sin(nπξ/L)dξ

)

sin(nπx/L)

]

.

We want to let L → ∞ to obtain a representation of f (x) over the entire real line. It is not clear
what this quantity approaches, if anything, as L → ∞, so we will rewrite some terms. First,
let

ωn = nπ

L

and

ωn −ωn−1 = π

L
=�ω.

465
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Now the Fourier series on [−L , L] can be written

1

2π

(∫ L

−L

f (ξ)dξ

)

�ω+ 1

π

[(∫ L

−L

f (ξ) cos(ωnξ)dξ

)

cos(ωnx)

+
(∫ L

−L

f (ξ) sin(ωnξ)dξ

)

sin(ωnx)

]

�ω.

Let L → ∞, so [−L , L] expands to cover the entire real line. Then �ω→ 0. Examine what
happens in the terms of the last equation. First,

1

2π

(∫ L

−L

f (ξ)dξ

)

�ω→ 0

because the integral converges (hence is bounded). The other terms in this equation resemble a
Riemann sum for a definite integral. As L → ∞ and �ω→ 0, this expression approaches the
limit

1

π

[(∫ ∞

−∞
f (ξ) cos(ωξ)dξ

)

cos(ωx)

+
(∫ ∞

−∞
(ξ) sin(ωξ)dξ

)

sin(ωx)

]

dω.

This is the Fourier integral of f (x) on the real line, and it has the form
∫ ∞

0

(Aω cos(ωx)+ Bω sin(ωx))dω (14.1)

in which the Fourier integral coefficients of f are

Aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ)dξ (14.2)

and

Bω = 1

π

∫ ∞

−∞
f (ξ) sin(ωξ)dξ. (14.3)

The integration variable ω replaces the summation index n in this integral representation.
As with Fourier series, the relationship between the integral (14.1) and f (x) must be

clarified. This is done in the following theorem.

THEOREM 14.1 Convergence of the Fourier Integral

Suppose f (x) is defined for all real x and that
∫ ∞

−∞ | f (x)|dx converges. Suppose f is piecewise
smooth on every interval [−L , L] for L > 0. Then at any x the Fourier integral (14.1) of f
converges to

1

2
( f (x+)+ f (x−)).

In particular, if f is continuous at x , then the Fourier integral converges at x to f (x). �

EXAMPLE 14.1

Let

f (x)=
{

1 for −1 ≤ x ≤ 1

0 for |x |> 1.

Certainly f is absolutely integrable. The Fourier integral coefficients of f are
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Aω = 1

π

∫ 1

−1

cos(ωξ)dξ = 2 sin(ω)

πω

and

Bω = 1

π

∫ 1

−1

sin(ωξ)dξ = 0.

The Fourier integral of f is
∫ ∞

0

2 sin(ω)

πω
cos(ωx)dω.

Because f is continuous for x �= ±1, the integral converges to f (x) for x �= ±1. At x = 1 the
integral converges to

1

2
( f (1+)+ f (1−))= 1

2
(1 + 0)= 1

2
.

Similarly, the integral converges to 1/2 at x =−1. This Fourier integral is a faithful representation
of the function except at 1 and −1, where it averages the ends of the jump discontinuities there.

In view of this convergence, we have

1

π

∫ ∞

0

2 sin(ω)

ω
cos(ωx)dω=

⎧
⎪⎨

⎪⎩

1 for −1< x < 1

1/2 for x =±1

0 for |x |> 1. �

There is another expression for the Fourier integral of a function that is sometimes
convenient to use. Insert the coefficients into the Fourier integral:

∫ ∞

0

[Aω cos(ωx)+ Bω sin(ωx)]dω=
∫ ∞

0

[(
1

π

∫ ∞

−∞
f (ξ) cos(ωξ)dξ

)

cos(ωx)+
(

1

π

∫ ∞

−∞
f (ξ) sin(ωξ)dξ

)

sin(ωx)

]

dω

= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ)[cos(ωξ) cos(ωx)+ sin(ωξ) sin(ωx)]dξ dω

= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))dξ dω.

This gives us the equivalent Fourier integral representation

1

π

∫ ∞

0

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))dξ dω (14.4)

of f (x) on the real line.

SECTION 14.1 PROBLEMS

In each of Problems 1 through 10, write the Fourier integral
representation (14.1) of the function and determine what
this integral converges to.

1. f (x)=
{

x for −π ≤ x ≤π
0 for |x |>π

2. f (x)=
{

k for −10 ≤ x ≤ 10

0 for |x |> 10

3. f (x)=

⎧
⎪⎨

⎪⎩

−1 for −π ≤ x ≤ 0

1 for 0< x ≤π
0 for |x |>π
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4. f (x)=

⎧
⎪⎨

⎪⎩

sin(x) for −4 ≤ x ≤ 0

cos(x) for 0< x ≤ 4

0 for |x |> 4

5. f (x)=
{

x2 for −100 ≤ x ≤ 100

0 for |x |> 100

6. f (x)=
{

|x | for −π ≤ x ≤ 2π

0 for x <−π and for x > 2π

7. f (x)=
{

sin(x) for −3π ≤ x ≤π
0 for x <−3π and for x >π

8. f (x)=

⎧
⎪⎨

⎪⎩

1/2 for −5 ≤ x < 1

1 for 1 ≤ x ≤ 5

0 for |x |> 5

9. f (x)= e−|x |

10. f (x)= xe−4|x |

11. Show that the Fourier integral of f (x) can be written

lim
ω→∞

1

π

∫ ∞

−∞
f (t)

sin(ω(t − x))

t − x
dt.

14.2 Fourier Cosine and Sine Integrals

We can define Fourier cosine and sine integral expansions for functions defined on the half-line
in a manner completely analogous to Fourier cosine and sine expansions of functions defined on
a half interval.

Suppose f (x) is defined for x ≥ 0. Extend f to an even function fe on the real line. where

fe(x)=
{

f (x) for x ≥ 0,

f (−x) for x < 0.

This reflects the graph of f (x) for x ≥ 0 back across the vertical axis to a function fe defined on
the entire line. Because fe is an even function, its Fourier coefficients are

Aω = 1

π

∫ ∞

−∞
fe(ξ) cos(ωξ)dξ

= 2

π

∫ ∞

0

f (ξ) cos(ωξ)dξ

and

Bω = 1

π

∫ ∞

−∞
fe(ξ) cos(ωξ)dξ = 0.

The Fourier integral of fe(x) contains only cosine terms. Since fe(x) = f (x) for x ≥ 0, this
expansion may be thought of as a cosine expansion of f (x), on the half-line x ≥ 0.

This leads us to define the Fourier cosine integral of f (x) on x ≥ 0 to be
∫ ∞

0

Aω cos(ωx)dω (14.5)

in which

Aω = 2

π

∫ ∞

0

f (ξ) cos(ωξ)dξ (14.6)

is the Fourier integral cosine coefficient.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 16:43 THM/NEIL Page-469 27410_14_ch14_p465-504

14.2 Fourier Cosine and Sine Integrals 469

Similarly, we can reflect the graph of f (x) through the origin to obtain an odd extension fo

defined for all real x . Now the Fourier coefficients of the Fourier expansion of fo on the line are

Bω = 1

π

∫ ∞

−∞
fo(ξ) sin(ωξ)dξ

= 2

π

∫ ∞

0

f (ξ) sin(ωξ)dξ

and

Aω = 0.

This Fourier expansion of fo(x) on the whole line contains just sine terms. Furthermore fo(x)=
f (x) for x ≥ 0.

We define the Fourier sine integral of f on x ≥ 0 is
∫ ∞

0

Bω sin(ωx)dω (14.7)

in which

Bω = 2

π

∫ ∞

0

f (ξ) sin(ωξ)dξ (14.8)

is the Fourier integral sine coefficient.

Theorem 14.1 immediately gives us a convergence theorem for Fourier cosine and sine
integrals on the half-line.

THEOREM 14.2 Convergence of Fourier Cosine and Sine Integrals

Suppose f (x) is defined for x ≥ 0 and is piecewise smooth on every interval [0, L] for L > 0.
Assume that

∫ ∞
0

| f (ξ)|dξ converges. Then, at each x > 0, the Fourier cosine and sine integral
representations converge to

1

2
( f (x+)+ f (x−)).

Further, the cosine integral converges to f (0+) at x = 0, and the sine integral converges to 0 at
x = 0. �

EXAMPLE 14.2 Laplace’s Integrals

Let f (x)= e−kx for x ≥ 0, with k a positive number. Then f has a continuous derivative and is
absolutely integrable on [0,∞). For the Fourier cosine integral, compute the coefficients

Aω = 2

π

∫ ∞

0

e−kξ cos(ωξ)dξ = 2

π

k

k2 +ω2
.

Then, for x ≥ 0,

e−kx = 2k

π

∫ ∞

0

1

k2 +ω2
cos(ωx)dω.
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Next compute the sine coefficients

Bω = 2

π

∫ ∞

0

e−kξ sin(ωξ)dξ = 2

π

ω

k2 +ω2
.

Then, for x > 0, we also have

e−kx = 2

π

∫ ∞

0

ω

k2 +ω2
sin(ωx)dω.

However, this integral is zero for x = 0 and so does not represent f (x) there.
These integral representations are called Laplace’s integrals because Aω is 2/π times the

Laplace transform of sin(kx), while Bω is 2/π times the Laplace transform of cos(kx). �

SECTION 14.2 PROBLEMS

In each of Problems 1 through 10, find the Fourier
cosine and sine integral representations of the func-
tion. Determine what each integral representation
converges to.

1. f (x)=
{

x2 for 0 ≤ x ≤ 10

0 for x > 10

2. f (x)=
{

sin(x) for 0 ≤ x ≤ 2π

0 for x > 2π

3. f (x)=

⎧
⎪⎨

⎪⎩

1 for 0 ≤ x ≤ 1

2 for 1< x ≤ 4

0 for x > 4

4. f (x)=
{

cosh(x) for 0 ≤ x ≤ 5

0 for x > 5

5. f (x)=

⎧
⎪⎨

⎪⎩

2x + 1 for 0 ≤ x ≤π
2 for π < x ≤ 3π

0 for x > 3π .

6. f (x)=

⎧
⎪⎨

⎪⎩

x for 0 ≤ x ≤ 1

x + 1 for 1< x ≤ 2

0 for x > 2

7. f (x)= e−x cos(x) for x ≥ 0
8. f (x)= xe−3x for x ≥ 0
9. Let k be a nonzero number and c a positive number,

and

f (x)=
{

k for 0 ≤ x ≤ c

0 for x > c.

10. f (x)= e−2x cos(x) for x ≥ 0.
11. Use the Laplace integrals to compute the Fourier

cosine integral of f (x)= 1/(1 + x2) and the Fourier
sine integral of g(x)= x/(1 + x2).

14.3 The Fourier Transform

We will use equation (14.4) to derive a complex form of the Fourier integral representation of a
function, and then use this to define the Fourier transform.

Suppose f is absolutely integrable on the real line, and piecewise smooth on each [−L , L].
Then, at any x ,

1

2
( f (x+)+ f (x−))= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))dξ dω.

Recall that

cos(x)= 1

2

(
eix + e−i x

)
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to obtain
1

2
( f (x+)+ f (x−))= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ)

1

2

(
eiω(ξ−x) + e−iω(ξ−x)

)
dξ dω

= 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξ dω

+ 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω.

In the next-to-last integral, replace ω with −ω and compensate for this change by replacing∫ ∞
0

· · · dω with
∫ 0

−∞ · · · dω. This enables us to write

1

2
( f (x+)+ f (x−))

= 1

2π

∫ 0

−∞

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω+ 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω.

Combine these integrals to obtain

1

2
( f (x+)+ f (x−))= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)e−iωξeiωx dξ dω. (14.9)

This is the complex Fourier integral representation of f (x) on the real line. If we let

Cω =
∫ ∞

−∞
f (ξ)e−iωξ dξ,

then this integral representation is

1

2
( f (x+)+ f (x−))= 1

2π

∫ ∞

−∞
Cωeiωxdω.

We call Cω the complex Fourier integral coefficient of f .
We may use this complex Fourier integral as a springboard to the Fourier transform, the idea

of which is contained in equation (14.9). For emphasis in how we want to think of this equation,
write it as

1

2
( f (x+)+ f (x−))= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)

eiωx dω. (14.10)

The term in large parentheses on the right in equation (14.10) is the Fourier transform of f . We
summarize this discussion as follows.

If f is absolutely integrable on the real line, then the Fourier transform F[ f ] of f is the
function defined by

F[ f ](ω)=
∫ ∞

−∞
f (t)e−iωt dt.

Thus, the Fourier transform of f is the coefficient Cω in the complex Fourier integral
representation of f .

Because of the use of the Fourier transform in applications such as signal analysis, we
usually use t (for time) as the variable in the defining integral, and ω as the variable of the
transformed function F[ f ]. Engineers refer to ω in the transformed function as the frequency of
the signal f .
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We also denote F[ f ] as f̂ :

F[ f ](ω)= f̂ (ω).

EXAMPLE 14.3

We will determine the transform of e−c|t |, with c a positive number. First, write

f (t)= e−c|t | =
{

e−ct for t ≥ 0

ect for t < 0.

Then

F[ f ](ω)=
∫ ∞

−∞
e−c|t |e−iωt dt

=
∫ 0

−∞
ecte−iωt dt +

∫ ∞

0

e−ct e−iωt dt

=
∫ 0

−∞
e(c−iω)t dt +

∫ ∞

0

e−(c+iω)t dt

=
[

1

c − iω
e(c−iω)t

]0

−∞
+
[ −1

c + iω
e−(c+iω)t

]∞

0

=
(

1

c + iω
+ 1

c − iω

)

= 2c

c2 +ω2
.

We can also write

f̂ (ω)= 2c

c2 +ω2
. �

EXAMPLE 14.4

Let H(t) be the Heaviside function, defined by

H(t)=
{

1 for t ≥ 0

0 for t < 0.

We will compute the Fourier transform of f (t)= H(t)e−5t . This is the function

f (t)=
{

e−5t for t ≥ 0

0 for t < 0.

From the definition of F ,

f̂ (ω)=
∫ ∞

−∞
H(t)e−5t e−iωt dt

∫ ∞

0

e−5t e−iωt dt =
∫ ∞

0

e−(5+iω)t dt

=− 1

5 + iω

[
e−(5+iω)t

]∞
0

= 1

5 + iω
. �

EXAMPLE 14.5

Let a and k be positive numbers. We will determine f̂ (t), where

f (t)=
{

k for −a ≤ t < a

0 for t <−a and t ≥ a.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 16:43 THM/NEIL Page-473 27410_14_ch14_p465-504

14.3 The Fourier Transform 473

This is the pulse

f (t)= k[H(t + a)− H(t − a)].
Then

f̂ (t)=
∫ ∞

−∞
f (t)e−iωt dt

=
∫ a

−a

ke−iωt dt =
[−k

iω
e−iωt

]a

−a

=− k

iω
[e−iωa − eiωa] = 2k

ω
sin(aω). �

These examples were done by integration. Usually the Fourier transform of a function is
computed using tables or software. In MAPLE, use

fourier(f(t),t,ω);
This is in the inttrans set of subroutines, for integral transforms. The Laplace transform is

also in this set.
Now suppose that f is continuous and f ′ is piecewise smooth on every interval [−L , L].

Because f̂ (ω) is the coefficient in the complex Fourier integral representation of f ,

f (t)= 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω. (14.11)

Equation (14.11) defines the inverse Fourier transform. Given f satisfying certain conditions,
we can compute its Fourier transform f̂ , and, conversely, given this transform, we can recover f
from equation (14.11). For this reason we call the equations

f̂ (ω)=
∫ ∞

−∞
f (t)e−iωt dt and f (t)= 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω

a transform pair. We also denote the inverse Fourier transform as F−1:

F−1[ f̂ ] = f exactly when F[ f ] = f̂ .

In MAPLE, F−1[ f ] can be computed using

invfourier[F,ω,t];

EXAMPLE 14.6

Let

f (t)=
{

1 − |t | for −1 ≤ t ≤ 1

0 for |t |> 1.

Then f is continuous and absolutely integrable, and f ′ is piecewise continuous. A routine
integral gives us the Fourier transform of f :

f̂ (ω)=
∫ ∞

−∞
f (t)e−iωt dt

=
∫ 1

−1

(1 − |t |)e−iωt = 2(1 − cos(ω))

ω2
.
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As an illustration, we will compute the inverse of this Fourier transform. By equation
(14.11),

F−1[ f̂ ](t)= 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω

= 1

π

∫ ∞

−∞

1 − cos(ω)

ω2
eiωt dω

=π(t + 1)sgn(t + 1)+π(t − 1)sgn(t − 1)− 2sgn(t).

This integration was done using MAPLE, in which

sgn(t)=

⎧
⎪⎨

⎪⎩

1 for t > 0

−1 for t < 0

0 for t = 0.

By considering cases t<−1, −1< t <1 and t >1, it is routine to verify that indeed F−1[ f̂ ](t)=
f (t) in this example. �

In the context of the Fourier transform, the amplitude spectrum of a signal f (t) is the graph
of | f̂ (ω)|.

EXAMPLE 14.7

Let a and k be positive numbers and let

f (t)=
{

k for −a ≤ t ≤ a

0 for t <−a and for t > a.

4

2

3

1

4–8
x

8–4
0

0

FIGURE 14.1 Graph of | f̂ (ω)| in Example
14.7, for k = 1,a = 2.
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By Example 14.5,

f̂ (ω)=
∫ ∞

−∞
f (t)e−iωt dt

=
∫ a

−a

ke−iωt dt =− k

iω
(e−iωt − eiωt)

= 2k

ω
sin(aω).

The amplitude spectrum of f is the graph of

| f̂ (ω)| = 2k
∣
∣
∣
sin(aω)

ω

∣
∣
∣,

shown in Figure 14.1 for k = 1 and a = 2. �

We will list some properties and computational rules for the Fourier transform.

Linearity

F[ f + g] =F[ f ] +F[g]
and, for any number k,

F[k f ] = kF[ f ].

Time Shifting If t0 is a real number then

F[ f (t − t0)](ω)= e−iωt0 f̂ (ω).

The Fourier transform of a shifted function f (t − t0) is the Fourier transform of f , multiplied
by e−iωt0 . This is similar to the second shifting theorem for the Laplace transform.

Proof From the definition of the Fourier transform,

F[ f (t − t0)](ω)=
∫ ∞

−∞
f (t − t0)e

−iωt dt

= e−iωt0

∫ ∞

−∞
f (t − t0)e

−iω(t−t0) dt.

Upon setting u = t − t0 we have

F[ f (t − t0)](ω)= e−iωt0

∫ ∞

−∞
f (u)e−iωu du = e−iωt0 f̂ (ω),

completing the proof. �

The inverse version of the time shifting theorem is

F−1[e−iωt0 f̂ (ω)](t)= f (t − t0). (14.12)

EXAMPLE 14.8

We will compute

F−1

[
e2iω

5 + iω

]

.
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The presence of the exponential factor e2iω suggests use of the inverse version of the time
shifting theorem. Put t0 =−2 and

f̂ (ω)= 1

5 + iω

into equation (14.12) to get

F−1[e2iω f̂ (ω)](t)= f (t − (−2))= f (t + 2)

where

f (t)=F−1

[
1

5 + iω

]

= H(t)e−5t

from Example 14.5. Then, by time shifting,

F−1

[
e2iω

5 + iω

]

= f (t + 2)= H(t + 2)e−5(t+2). �

Frequency Shifting If ω0 is any real number then

F[eiω0t f (t)] = f̂ (ω−ω0).

The Fourier transform of a function multiplied by eiω0 t is the Fourier transform of f shifted right
by ω0.

Proof To prove this result, compute

F[e−ω0t f (t)](ω)=
∫ ∞

−∞
eiω0 t f (t)e−iωt dt

=
∫ ∞

−∞
e−i(ω−ω0)t dt = f̂ (ω−ω0).

The inverse version of frequency shifting is that

F−1[ f̂ (ω−ω0)](t)= eiω0 t f (t). �

Time shifting and frequency shifting are reminiscent of the two shifting theorems for the Laplace
transform.

Scaling If c is any nonzero real number, then

F[ f (ct)](ω)= 1

|c| f̂ (ω/c).

Scaling can be verified by a change of variables u = ct in the integral for the transform
of f (ct).

The inverse version of the scaling theorem is

F−1[ f̂ (ω/c)]= |c| f (ct).

Time Reversal

F[ f (−t)](ω)= f̂ (−ω).
Time reversal follows immediately from the scaling theorem upon putting c =−1.
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Symmetry

F[ f̂ (t)](ω)= 2π f (−ω).
If we replace ω by t in the transformed function f̂ , and then take the transform of this function
of t , we obtain 2π times the original function f with t replaced by −ω.

Modulation If ω0 is a real number, then

F[ f (t) cos(ω0t)](ω)= 1

2

(
f̂ (ω+ω0)+ f̂ (ω−ω0)

)

and

F[ f (t) sin(ω0t)](ω)= i

2

(
f̂ (ω+ω0)− f̂ (ω−ω0)

)

To prove the first expression, put

cos(ωt)= 1

2

(
eiωt + e−iωt

)
,

then use the linearity of F and the frequency-shifting theorem to write

F[ f (t) cos(ω0t)](ω)=F
[

1

2
eiω0t f (t)+ 1

2
e−iω0 t f (t)

]

(ω)

= 1

2
F[eiω0t f (t)](ω)+ 1

2
F[e−iω0t f (t)](ω)

= 1

2
f̂ (ω−ω0)+ 1

2
f̂ (ω+ω0).

The second conclusion is proved by a similar calculation.

Operational Formula To apply the Fourier transform to a differential equation we must be able
to transform a derivative. This is called an operational rule. Recall that the kth derivative of f
is denoted f (k). As a convenience, we let f (0) = f - the zero-order derivative of a function is just
the function.

Now let n be any positive integer and suppose that f (n−1) is continuous and f (n) is piecewise
continuous on each interval [−L , L]. Suppose also that

∫ ∞
−∞ | f (n−1)|dt converges and that

lim
t→∞

f (k)(t)= lim
t→−∞

f (k)(t)= 0

for k = 0,1,2, · · · ,n − 1. Then

F[ f (n)(t)](ω)= (iω)n f̂ (ω).

That is, under the given conditions, the Fourier transform of the nth derivative of f is the
nth power of iω times the Fourier transform of f .

Proof Since

f (n)(t)= d

dt
f (n−1)(t),
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it is enough to derive the operational formula when n = 1. Integrate by parts:

[ f ′(t)](ω)=
∫ ∞

−∞
f ′(t)e−iω0t dt

= [ f (t)e−iωt
]∞
∞ −

∫ ∞

−∞
f (t)(−iω)e−iωt dt

= iω
∫ ∞

−∞
e−iωt f (t)dt

= iω f̂ (ω),

where we have used the fact that f (t) has limit 0 at ∞ and at −∞ to conclude that
[

f (t)e−iωt
]∞
−∞ = 0. �

Now an inductive argument leads to the conclusion for the nth derivative.

EXAMPLE 14.9

We will solve the differential equation

y ′ − 4y = H(t)e−4t .

Apply the Fourier transform to the differential equation to get

F[y ′(ω)] − 4ŷ(ω)=F[H(t)e−4t ](ω).
From the operational rule with n = 1,

F[y ′](ω)= iω ŷ(ω).

Further, from Example 14.4, with 4 in place of 5,

F[H(t)e−4t ](ω)= 1

4 + iω
.

Therefore

iω ŷ − 4ŷ = 1

4 + iω
.

Solve for ŷ to get

ŷ(ω)= −1

16 +ω2
.

From Example 14.3,

y(t)=F−1

[ −1

16 +ω2

]

=−1

8
e−4|t |. �

The operational formula can be adjusted to accommodate a finite number of jump disconti-
nuities of f . If these occur at t1, · · · , tM and if

lim
t→−∞

f (t)= lim
t→∞

f (t)= 0,

then

F[ f ′(t)](ω)= iω f̂ (ω)−
M∑

j=1

( f (t j+)− f (t j−))e−i t jω.

Each term f (t j+)− f (t j−) is the magnitude of the jump discontinuity at t j .
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Frequency Differentiation The variableω used in f̂ (ω) is the frequency of f (t), since it occurs
in the complex exponential eiωt , which is cos(ωt)+ i sin(ωt). In this context, the process of
computing f̂ ′(ω) is called frequency differentiation. We will show how derivatives of f̂ (ω) relate
to f (t).

Let n be a positive integer. Let f be piecewise continuous on [−L , L] for every positive L
and assume that

∫ ∞
−∞ |t n f (t)|dt converges. Then

dn

dωn
f̂ (ω)= i−nF[t n f (t)](ω).

This means that the nth derivative of the Fourier transform of f is i−n times the transform
of t n f (t).

We will indicate a proof for the case n = 1. Write

d

dω
f̂ (ω)= d

dω

∫ ∞

−∞
f (t)e−iωt dt =

∫ ∞

−∞

∂

∂ω
[ f (t)e−iωt ]dt

=
∫ ∞

−∞
f (t)(−i t)e−iωt dt =−i

∫ ∞

−∞
[t f (t)]e−iωt dt

=−iF[t f (t)](ω).
As an example, using the result of Example 14.3, we can write

F[t 2e−5|t |](ω)= i 2 d2

dω2

(
10

25 +ω2

)

= 20

(
25 − 3ω2

(25 +ω2)2

)

.

The Fourier Transform of an Integral Let f be piecewise continuous on every interval
[−L , L]. Suppose

∫ ∞
−∞ | f (t)|dt converges and that f (0)= 0. Then

F
[∫ t

−∞
f (τ )dτ

]

(ω)= 1

iω
f̂ (ω).

To prove this, define g(t)= ∫ t

−∞ f (τ )dτ . Then g′(t) = f (t) at each point at which f is
continuous. Further, g(t)→ 0 as t → −∞, and

lim
t→∞

g(t)=
∫ ∞

−∞
f (τ )dτ = f̂ (0)= 0

by assumption. Therefore, applying the operational formula,

f̂ (ω)=F[g′(t)](ω)

= iω[g(t)](ω)= iωF
[∫ t

−∞
f (τ )dτ

]

(ω).

Convolution

Integral transforms usually have some kind of convolution operation. We have seen a convolution
for the Laplace transform. For the Fourier transform, we define the convolution of f with g to be
the function f ∗ g given by

( f ∗ g)(t)=
∫ ∞

−∞
f (t − τ)g(τ )dτ.

In making this definition, we assume that
∫ b

a
f (t)dt and

∫ b

a
g(t)dt exist for every interval [a,b]

and that, for every real number t ,
∫ ∞

−∞ | f (t − τ)g(t)|dτ converges.
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Convolution has the following properties.

Commutativity If f ∗ g is defined, so is g ∗ f and

f ∗ g = g ∗ f.

Linearity This means that, for numbers α and β and functions f , g and h,

(α f +βg) ∗ h =α( f ∗ h)+β(g ∗ h)

provided that all these convolutions are defined.
For the next three properties of convolution, suppose that f and g are bounded and

continuous on the real line and that f and g are both absolutely integrable. Then
∫ ∞

−∞
( f ∗ g)(t)dt =

∫ ∞

−∞
f (t)dt

∫ ∞

−∞
g(t)dt.

Time Convolution

F[ f ∗ g] = f̂ ĝ.

This says that the Fourier transform of the convolution of two functions is the product of the
Fourier transforms of the functions. This is known as the convolution theorem, and a similar
result holds for the Laplace transform. The ramification of convolution for the inverse Fourier
transform is that

F−1[ f̂ (ω)ĝ(ω)](t)= ( f ∗ g)(t).

That is, the inverse Fourier transform of a product of two transformed functions is the convolution
of the functions.

Frequency Convolution

F[ f g](ω)= 1

2π
( f̂ ∗ ĝ)(ω).

EXAMPLE 14.10

We will compute

F−1

[
1

(4 +ω2)(9 +ω2)

]

.

We want the inverse transform of a product, knowing the inverse of each factor:

F−1

(
1

4 +ω2

)

= f (t)= 1

4
e−2|t |

and

F−1

(
1

9 +ω2

)

= g(t)= 1

6
e−3|t |.

The inverse version of the convolution theorem tells us that

F−1

[
1

(4 +ω2)(9 +ω2)

]

(t)= ( f ∗ g)(t)= 1

24

∫ ∞

−∞
e−2|t−τ |e−3|τ |dτ.
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To evaluate this integral, we must consider three cases. If t > 0 then

24( f ∗ g)(t)=
∫ 0

−∞
e−2|t−τ |e−3|τ |dτ +

∫ t

0

e−2|t−τ |e−3|τ |dτ +
∫ ∞

t

e−2|t−τ |e−3|τ |dτ

=
∫ 0

−∞
e−2(t−τ )e3τdτ +

∫ t

0

e−2(t−τ )e−3τdτ +
∫ ∞

t

e−2(t−τ )e−3τdτ

= 6

5
e−2t − 4

5
e−3t .

If t < 0, then

24( f ∗ g)(t)=
∫ t

−∞
e−2|t−τ |e−3|τ |dτ +

∫ 0

t

e−2|t−τ |e−3|τ |dτ +
∫ ∞

0

e−2|t−τ |e−3|τ |dτ

=
∫ t

−∞
e−2(t−τ )e3τdτ +

∫ 0

t

e2(t−τ )e3τdτ +
∫ ∞

0

e2(t−τ )e−3τdτ

=−4

5
e3t + 6

5
e2t .

Finally, if t = 0,

24( f ∗ g)(0)=
∫ ∞

−∞
e−2|τ |e−3|τ | dτ = 2

5
.

Therefore

F−1

[
1

(4 +ω2)(9 +ω2)

]

(t)= 1

24

(
6

5
e−2|t | − 4

5
e−3|t |

)

= 1

20
e−2|t | − 1

30
e−3|t |. �

14.3.1 Filtering and the Dirac Delta Function

The Dirac delta function δ(t) was discussed in Section 3.5. We may think of this function as the
limit of a pulse (Section 3.3.2), as the height tends to infinity and the duration to zero. In terms
of the Heaviside function H(t),

δ(t)= lim
a→0+

1

2a
[H(t + a)− H(t − a)].

In this definition, the pulse is centered at 0, extending from t − a to t + a. Often we deal with the
shifted delta function H(t − t0), in which the defining pulse is centered at t0.

The filtering property of the delta function enables us to recover a function value f (t0) by
“summing” function values when they are impacted with a shifted delta function.

THEOREM 14.3 Filtering by a Delta Function

If f (t) has a Fourier transform and is continuous at t0, then
∫ ∞

−∞
f (t)δ(t − t0)dt = f (t0). �

Proof To prove this, first observe that

H(t − t0 + a)− H(t − t0 − a)=
{

0 for t ≤ t0 − a and for t > t0 + a,

1 for t0 − a ≤ t < t0 + a.
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Now use the definition of δ(t) to write
∫ ∞

−∞
f (t)δ(t − t0)dt =

∫ ∞

−∞
f (t)

[

lim
a→0+

1

2a
[H(t − t0 + a)− H(t − t0 − a)]

]

dt

= lim
a→0+

1

2a

∫ ∞

−∞
f (t)[H(t − t0 + a)− H(t − t0 − a)]dt

= lim
a→0+

1

2a

∫ t0+a

t0−a

f (t)dt.

By the mean value theorem for integrals, for some ξa ,
∫ t0+a

t0−a

f (t)dt = 2a f (ξa)

where t0 − a<ξa < t0 + a. As a → 0+, ξa → t0, so f (ξa)→ f (t0) and then
∫ ∞

−∞
f (t)δ(t − t0)dt = lim

a→0

1

2a
(2a f (ξa))= f (t0). �

If f has a jump discontinuity at t0, this argument can be modified to yield
∫ ∞

−∞
f (t)δ(t − t0)dt = 1

2
[ f (t0+)+ f (t0−)].

We will derive the Fourier transform of the delta function. Begin with

F[H(t + a)− H(t − a)] =
∫ a

−a

e−iωt dt = − 1

iω
e−iωt

]a

−1

= 1

iω

(
eiaω − e−iaω

)= 2
sin(aω)

ω
.

By interchanging the limit and the operation of taking the Fourier transform, we have

F[δ(t)](ω)=F
[

lim
a→0+

1

2a
[H(t + a)− H(t − a)]

]

(ω)

= lim
a→0+

1

2a
F[H(t + a)− H(t − a)](ω)

= lim
a→0+

sin(aω)

aω
= 1.

This formal manipulation leads us to

F[δ(t)](ω)= 1.

The Fourier transform of the delta function is the constant function taking on the value 1. Now
use this with the convolution:

F[δ ∗ f ] =F[δ]F [ f ] =F[ f ]
and

F[ f ∗ δ] =F[ f ]F [δ] =F[ f ],
suggesting that

δ ∗ f = f ∗ δ= f.

The delta function behaves like the identity under Fourier convolution.
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14.3.2 The Windowed Fourier Transform

Let f (t) be a signal (function). We assume that
∫ ∞

−∞ | f (t)|2 dt is finite. This integral is
defined to be the energy of the signal.

In analyzing a signal, we sometimes want to localize the frequency content with respect to
time. We know that f̂ (ω) carries information about the frequencies ω of the signal. However,
f̂ (ω) does not particularize this information to specific time intervals, since

f̂ (ω)=
∫ ∞

−∞
f (t)e−iωt dt,

and this integration is over all time. From this we can compute the total amplitude spectrum
| f̂ (ω)|, but cannot look at small time intervals. If we think of f (t) as a piece of music, we have
to wait until the entire piece is done before computing this amplitude spectrum.

We can obtain a picture of the frequency content of f (t) within a given time interval
by windowing the signal before taking its transform. The idea is to use a window func-
tion w(t) that is nonzero only on a finite interval, often [0,T ] or [−T,T ]. Window f (t)
with w(t) by forming the product w(t) f (t), which can be nonzero only on the selected
interval. The windowed Fourier transform of f , with respect to the particular window
function w, is

f̂win(ω)=
∫ ∞

−∞
w(t) f (t)e−iωt dt.

EXAMPLE 14.11

Let f (t)= 6e−|t |. Then

f̂ (ω)=
∫ ∞

−∞
6e−|t |e−iωt dt = 12

1 +ω2
.

We will window f with the window function

w(t)=
{

1 for −2 ≤ t ≤ 2,

0 for |t |> 2.

Figures 14.2, 14.3, and 14.4 show, respectively, f (t), the window function w(t), and w(t) f (t).
The effect of windowing on this signal is to cut the signal off for times |t |> 2. The windowed
Fourier transform is therefore an integral only over [−2,2] instead of the entire real line:

f̂win(ω)=
∫ ∞

−∞
6w(t)e−|t |e−iωt dt

=
∫ 2

−2

6e−|t |e−iωt dt

= 12

1 +ω2

(−2e−2 cos2(ω)+ e−2 + e−2ω sin(2ω)+ 1
)
. �
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FIGURE 14.2 f (t)= 6e−|t |
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FIGURE 14.3 Window function w(t) in
Example 14.11.
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2

FIGURE 14.4 Windowed function w(t) f (t)
in Example 14.11.

Sometimes we use a shifted window function. If w(t) is nonzero only on [−T,T ], then
the shifted function w(t − t0) is the graph of w(t) shifted t0 units to the right and is nonzero
only on [t0 − T, t0 + T ]. In this case, the shifted windowed Fourier transform is the transform of
w(t − t0) f (t):

f̂win,t0(ω)=F[w(t − t0) f (t)](ω)

=
∫ t0+T

t0−T

w(t − t0) f (t)e−iωt dt.

This gives the frequency content of the signal in the time interval [t0 − T, t0 + T ].
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Engineers refer to the windowing process as time-frequency localization. The center of the
window function w is defined to be

tC =
∫ ∞

−∞ t |w(t)|2 dt
∫ ∞

−∞ |w(t)|2 dt
.

The number

tR =
(∫ ∞

−∞(t − tC)2|w(t)|2 dt
∫ ∞

−∞ |w(t)|2 dt

)1/2

is the radius of the window function. The width of the window function is 2tR , a number
referred to as the RMS duration of the window.

Similar terminology applies when we deal with the the Fourier transform of the window
function:

center of ŵ=ωC =
∫ ∞

−∞ω|ŵ(ω)|2 dω
∫ ∞

−∞ |ŵ(ω)|2 dω

and

radius of ŵ=ωR =
(∫ ∞

−∞(ω−ωC)
2|ŵ(ω)|2 dω

∫ ∞
−∞ |ŵ(ω)|2 dω

)1/2

.

The width of ŵ is 2ωR , a number referred to as the RMS bandwidth of the window function.

14.3.3 The Shannon Sampling Theorem

A signal f (t) is band-limited if its Fourier transform f̂ (ω) has nonzero values only on
some interval [−L , L]. If f is band-limited, the smallest positive L for which this is true
is called the bandwidth of f . For such L we have

f̂ (ω)= 0 if |ω|> L .

The total frequency content of such a signal lies in the band [−L , L].

We will show that a band-limited signal can be reconstructed from samples taken at
appropriately chosen times. Begin with the integral for the inverse Fourier transform:

f (t)= 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω.

Because f is assumed to have bandwidth L , we actually have

f (t)= 1

2π

∫ L

−L

f̂ (ω)eiωt dω. (14.13)

Now expand f̂ (ω) in a complex Fourier series on [−L , L]:

f̂ (ω)=
∞∑

n=−∞
cne

nπ iω/L, (14.14)
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where

cn = 1

2L

∫ L

−L

f̂ (ω)e−nπ iω/L dω.

Compare cn with f (t) in equations (14.13) and (14.14) to conclude that

cn = π

L
f

(−nπ

L

)

.

Substitute this into equation (14.14) to get

f̂ (ω)=
∞∑

n=−∞

π

L
f

(−nπ

L

)

enπ iω/L .

Since n takes on all integer values (zero, positive and negative) in this summation, we can replace
n with −n without changing the sum:

f̂ (ω)= π

L

∞∑

n=−∞
f
(nπ

L

)
e−nπ iω/L .

Substitute this expansion of f̂ (ω) into equation (14.13) to get

f (t)= 1

2π

π

L

∫ L

−L

f
(nπ

L

)
e−nπ iω/Leiωt dω.

Now interchange the summation and the integral and carry out the integration to get

f (t)= 1

2L

∞∑

−∞
f
(nπ

L

)∫ L

−L

eiω(t−nπ/L)dω

= 1

2L

∞∑

n=−∞
f
(nπ

L

) 1

i(t − nπ/L)

[
eiω(t−nπ/L)

]L

−L

= 1

2L

∞∑

n=−∞
f
(nπ

L

) 1

i(t − nπ/L)

(
ei(Lt−nπ) − e−i(Lt−nπ)

)

=
∞∑

n=−∞
f
(nπ

L

) 1

Lt − nπ

1

2i

(
ei(Lt−nπ) − e−(Lt−nπ)

)

=
∞∑

n=−∞
f
(nπ

L

) sin(Lt − nπ)

Lt − nπ
.

This is the Shannon sampling theorem. It says that we know f (t) at all times if we know just the
function values f (nπ/L) for all integers n. An engineer would sample the signal f (t) at times
0,±π/L ,±2π/L , · · · and be able to reconstruct the entire signal. This is how engineers convert
digital signals to analog signals, with application to technology such as that used in making
compact disks.

In the case L =π the Shannon sampling theorem is

f (t)=
∞∑

n=−∞
f (n)

sin(π(t − n))

π(t − n)
.
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14.3.4 Low-Pass and Bandpass Filters

If f is a signal with finite energy, then the spectrum of f is given by its Fourier transform. If
ω0 is a positive number and f is not band-limited, we can replace f with a band-limited signal
fω0 having bandwidth not exceeding ω0 by applying a low-pass filter which cuts f̂ (ω) off at
frequencies outside the range [−ω0,ω0]. That is, let

f̂ω0(ω)=
{

f̂ (ω) for −ω0 ≤ω≤ω0,

0 for |ω|>ω0.

This defined the transform f̂ω0 , from which we recover fω0 by the inverse Fourier transform

fω0(t)=
1

2π

∫ ∞

−∞
f̂ω0ω)e

iωt dω= 1

2π

∫ ω0

−ω0

f̂ω0(ω)e
iωt dω.

Applying a low-pass filter is actually a windowing process. Define the characteristic function χI

of an interval I by

χI (t)=
{

1 for t in I ,

0 for t not in I .

Then

f̂ω0(ω)=χ[−ω0,ω0](ω) f̂ (ω) (14.15)

so we have windowed f̂ (ω) with the characteristic function χ[−ω0,ω0]. More succinctly,

f̂ω0 =χ[−ω0,ω0] f̂ .

In this context, the window function χ[−ω0,ω0] is called the transfer function. The inverse Fourier
transform of the transfer function is

F−1[χ[−ω0,ω0]](t)= 1

2π

∫ ω0

−ω0

eiωt dω= sin(ω0t)

π t
,

whose graph is given in Figure 14.5 for ω0 =π .

0.8

0.6

1

0.4

0

t

642–6 –4

–0.2

0.2

0–2

FIGURE 14.5 sin(π t)/t
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Now recall time and frequency convolution for the Fourier transform. Analog filtering in the
time variable is done by convolution. If ϕ(t) is the filter function, then the effect of filtering f
by ϕ is

fϕ(t)= (ϕ ∗ f )(t)=
∫ ∞

−∞
ϕ(τ) f (t − τ)dτ.

Take the Fourier transform of this equation to obtain

f̂ϕ(ω)= ϕ̂(ω) f̂ (ω).

We therefore filter f in the frequency variable by taking a product of the Fourier transform of
the filter function ϕ with the transform of f .

Using the convolution theorem, we can formulate equation (14.15) as

fω0(t)=
(

sin(ω0t)

π t
∗ f (t)

)

.

This gives the low-pass filtering of f as the convolution of the Shannon sampling function
with f .

In low-pass filtering, we produce a band-limited signal fω0 from f . This filters out frequen-
cies outside of [−ω0,ω0]. In a similar kind of filtering, called bandpass filtering, we want to filter
out the effects of the signal outside of given bandwidths. A band-limited signal f can always be
decomposed into a sum of signals, each of which carries the information content of f within a
specified frequency band. To see how to do this suppose f is band-limited with bandwidth 
.
Consider a finite increasing sequence of frequencies

0<ω1<ω2< · · ·<ωN =
.
For j = 1,2, · · · , N , define a bandwidth filter function β j by means of its transfer function:

β̂ j =χ[−ω j ,−ω j−1] +χ[ω j−1,ω j ].

This is a sum of characteristic functions of frequency intervals, and is zero outside of these
intervals and 1 for −ω j ≤ ω ≤ −ω j−1 and ω j−1 ≤ ω ≤ ω j . The bandwidth filter function β j(t),
which filters the frequency content of f (t) outside of the frequency range [ω j−1,ω j ], is obtained
as the inverse Fourier transform of β̂ j(ω). We obtain

β j(t)= sin(ω j t)− sin(ω j−1t)

π t
.

A graph of this function is shown in Figure 14.6. Now define functions

f0(t)= sin(ω0t)

π t
∗ f (t)

and, for j = 1,2, · · · , N ,

f j(t)=β j(t) ∗ f (t).

Then, for j =1,2, · · · , N , f j(t) carries the content of f (t) in the frequency range ω j−1 ≤ω≤ω j ,
while f0(t) carries the content in [0,ω0], the low-frequency range of f (t). Furthermore,

f (t)= f0(t)+ f1(t)+ · · ·+ fN (t).

This is a decomposition of the signal into components, each carrying information about the
frequency in a specific frequency interval.

We conclude this section with an observation connecting low-pass filters to a previously seen
phenomenon. In signal analysis, the Gibbs phenomenon can be thought of as the step response of
a low-pass filter. In this context the oscillations near the point of discontinuity are called ringing
artifacts.
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FIGURE 14.6 Graph of β j (t) for ω j = 2.2,
ω j−1 = 1.7.

SECTION 14.3 PROBLEMS

In each of Problems 1 through 15, find the Fourier trans-
form of the function and graph the amplitude spectrum.
Wherever k appears it is a positive constant. Use can be
made of the following transforms:

F [e−kt2 ](ω)=
√
π

k
e−ω2/4k

and

F
[

1

k2 + t2

]

(ω)= π

k
e−k|ω|

1. f (t)=

⎧
⎪⎨

⎪⎩

1 for 0 ≤ t ≤ 1

−1 for −1 ≤ t < 0

0 for |t |> 1

2. f (t)=
{

sin(t) for −k ≤ t ≤ k

0 for |t |> k

3. f (t)= 5[H(t − 3)− H(t − 11)]
4. f (t)= 5e−3(t−5)2

5. f (t)= H(t − k)e−t/4

6. f (t)= H(t − k)t2

7. f (t)= 1/(1 + t2)

8. f (t)= 3H(t − 2)e−3t

9. f (t)= 3e−4|t+2|

10. f (t)= H(t − 3)e−2t

In each of Problems 11 through 15, find the inverse Fourier
transform of the function.

11. 9e−(ω+4)2/32

12. e(20−4ω)i/(3 − (5 −ω)i)
13. e(2ω−6)i/(5 − (3 −ω)i)
14. 10 sin(3ω)/(ω+π)
15. (1+ iω)/(6−ω2 +5iω)Hint: Factor the denominator

and use partial fractions.

In each of Problems 16, 17, and 18, use convolution to find
the inverse Fourier transform of the function.

16. 1/((1 + iω)(2 + iω))
17. 1/(1 + iω)2

18. sin(3ω)/ω(2 + iω)
19. Prove the following version of Parseval’s theorem:

∫ ∞

−∞
| f (t)|2 dt = 1

2π

∫ ∞

−∞
| f̂ (ω)|2 dω.

20. Compute the total energy of the signal f (t) =
H(t)e−2t .

21. Compute the total energy of the signal f (t)= (1/t)
sin(3t). Hint: Use Parseval’s theorem, Problem 19.

22. Use the Fourier transform to solve

y ′′ + 6y ′ + 5y = δ(t − 3).

In each of Problems 23 through 28, compute the windowed
Fourier transform of f for the given window function
w. Also compute the center and RMS bandwidth of the
window function.

23. f (t)= t2, w(t)=
{

1 for −5 ≤ t ≤ 5,

0 for |t |> 5.
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24. f (t)= cos(at), w(t)=
{

1 for −4π ≤ t ≤ 4π ,

0 for |t |> 4π .

25. f (t)= e−t , w(t)=
{

1 for 0 ≤ t ≤ 4,

0 for t < 0 or t > 4.

26. f (t)= et sin(π t), w(t)=
{

1 for −1 ≤ t ≤ 1,

0 for |t |> 1.

27. f (t)= (t + 2)2, w(t)=
{

1 for −2 ≤ t ≤ 2,

0 for |t |> 2.

28. f (t)= H(t −π), w(t)=
{

1 for 3π ≤ t ≤ 5π ,

0 for t < 3π or t > 5π .

14.4 Fourier Cosine and Sine Transforms

If f is piecewise smooth on each interval [0, L] and
∫ ∞

0
| f (t)|dt converges, then at each t where

f is continuous, the Fourier cosine integral for f is

f (t)=
∫ ∞

0

aω cos(ωt)dω,

where

aω = 2

π

∫ ∞

0

f (t) cos(ωt)dt.

We define the Fourier cosine transform of f by

FC [ f ](ω)=
∫ ∞

0

f (t) cos(ωt)dt. (14.16)

Often we denote FC [ f ](ω)= f̂C(ω).
Notice that

f̂C(ω)= π

2
aω

and that

f (t)= 2

π

∫ ∞

0

f̂c(ω) cos(ωt)dω. (14.17)

Equations (14.16) and (14.17) form a transform pair for the Fourier cosine transform. Equa-
tion (14.17) is the inverse Fourier cosine transform, reproducing f from f̂c. This inverse is
denoted f̂ −1

C .

EXAMPLE 14.12

Let K be a positive number and let

f (t)=
{

1 for 0 ≤ t ≤ K

0 for t > K .

Then

f̂C(ω)=
∫ ∞

0

f (t) cos(ωt)dt =
∫ K

0

cos(ωt)dt = sin(Kω)

ω
. �
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Using the Fourier sine integral instead of the cosine integral, this discussion leads us to
define the Fourier sine transform of f by

FS[ f ](ω)=
∫ ∞

0

f (t) sin(ωt)dt.

We also denote this as f̂ S(ω).
If f is continuous at t > 0 then the Fourier sine integral representation is

f (t)=
∫ ∞

0

bω sin(ωt)dω,

where

bω = 2

π

∫ ∞

0

f (t) sin(ωt)dt = 2

π
f̂ S(ω).

This means that

f (t)= 2

π

∫ ∞

0

f̂ S(ω) sin(ωt)dω

which provides a way of retrieving f from f̂ S . This integral is the inverse Fourier sine transform
f̂ −1

S .

EXAMPLE 14.13

With f as in Example 14.12,

f̂ S(ω)=
∫ ∞

0

f (t) sin(ωt)dt =
∫ K

0

sin(ωt)dt = 1

ω
[1 − cos(Kω)]. �

The following operational formulas are needed when these transforms are used to solve
differential equations.

Operational Formulas Let f and f ′ be continuous on every interval [0, L] and let
∫ ∞

0
| f (t)|dt

converge. Suppose f (t)→ 0 and f ′(t)→ 0 as t → ∞. Suppose f ′′ is piecewise continuous on
every [0, L]. Then

1. FC [ f ′′(t)](ω)=−ω2 f̂C(ω)− f ′(0).

2. FS[ f ′′(t)](ω)=−ω2 f̂ S(ω)+ω f (0). �

SECTION 14.4 PROBLEMS

In each of Problems 1 through 6, determine the Fourier
cosine transform and the Fourier sine transform of the
function.

1. f (t)= e−t

2. f (t)= te−at with a any positive number

3. f (t) =
{

cos(t) for 0 ≤ t ≤ K

0 for t > K
with K any positive

number.
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4. f (t)=

⎧
⎪⎨

⎪⎩

1 for 0 ≤ t < K

−1 for K ≤ t < 2K

0 for t ≥ 2K

5. f (t)= e−t cos(t)

6. f (t)=
{

sinh(t) for K ≤ t < 2K

0 for 0 ≤ t < K and for t ≥ 2K

7. Show that, under appropriate conditions on f and its
derivatives,

FS[ f (4)(t)](ω)=ω4 f̂ S(ω)=ω3 f (0)+ω f ′′(0).

8. Show that, under appropriate conditions on f and its
derivatives,

FC [ f (4)(t)](ω)=ω4 f̂C(ω)+ω2 f ′(0)− f (3)(0).

14.5 The Discrete Fourier Transform

If f has fundamental period p, its complex Fourier series is
∞∑

k=−∞
dke

2π ikt/p,

in which

dk = 1

p

∫ p

0

f (t)e−2π ikt/p dt

for k = 0,±1,±2, · · · .
Under certain conditions on f , this series converges at t to to ( f (t+)+ f (t−))/2.
Our objective is to define the discrete Fourier transform. To understand why this definition

will take the form that it does, consider the problem of approximating the coefficients dk in the
complex Fourier series. One way is to begin by subdividing [0, p] into N subintervals of equal
length p/N and choosing a point in each interval of the subdivision, say

t j in

[
j p

N
,
( j + 1)p

N

]

for j = 0,1,2, · · · , N − 1. Approximate dk by the Riemann sum

dk ≈ 1

p

N−1∑

j=0

f (t j)e
−2π ikt j /p p

N
.

This suggests the definition of the discrete Fourier transform, which acts on a sequence of
N given complex numbers and produces an infinite sequence of complex numbers, one for each
integer k, as follows.

Let N be a positive integer and let u =[u j ]N−1
j=0 be a sequence of N complex numbers. Then

the N -point discrete Fourier transform of u is the sequence D[u] defined by

D[u](k)=
N−1∑

j=0

u je
−2π i jk/N

for k = 0,±1,±2, · · · .

To simplify the notation, we will denote the N -point discrete Fourier transform of u by
U , with lower case for the input sequence and upper case for its discrete transform. In this
notation,
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Uk =
N−1∑

j=0

u je
−2π i jk/N

for k = 0,±1,±2, · · · . We will also abbreviate the phrase “discrete Fourier transform” to DFT.

EXAMPLE 14.14

Let u = [c]N−1
j=0 , a constant sequence, with c a given complex number. The N -point DFT of u is

given by

Uk =
N−1∑

j=0

ce−2π i jk/N = c
N−1∑

j=0

e−2π i jk/N .

Observe that this is

Uk = c
N−1∑

j=0

(
e−2π ik/N

) j
,

a finite geometric series. In general, for |r |< 1,
N−1∑

j=0

r j = 1 − r N

1 − r
.

Then

Uk =
(

1 − (e−2π ik/N )N

1 − e−2π ik/N

)

c

=
(

1 − e−2π ik

1 − e−2π ik/N

)

c = 0

for k = 0,±1,±2, · · · because, for any integer k,

e−2π ik = cos(2πk)− i sin(2πk)= 1.

The N -point DFT of a constant sequence is an infinite sequence of zeros. �

EXAMPLE 14.15

We will find the N -point DFT of u = [sin( ja)]N−1
j=0 , in which N is a positive integer and a is a

given complex number. To avoid trivialities, suppose a is not an integer multiple of π . We have

Uk =
N−1∑

j=0

sin( ja)e−2π i jk/N .

Use the fact that

sin( ja)= 1

2i

(
ei ja − e−i ja

)
.

Then

Uk = 1

2i

N−1∑

j=0

ei jae−2π i jk/N − 1

2i

N−1∑

k=0

e−i jae−2π i jk/N

= 1

2i

N−1∑

j=0

(eia−2π ik/N ) j − 1

2i

N−1∑

j=0

(e−ia−2π ik/N ) j .
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Again recognizing geometric series in the last two terms,

Uk = 1

2i

1 − (eia−2π i jk/N )N

1 − eia−2π i jk/N
− 1

2i

1 − (e−ia−2π i jk/N )N

1 − e−ia−2π i jk/N

= 1

2i

1 − eiaN e−2π ik

1 − eiae−2π ik/N
− 1

2i

1 − e−iaN e−2π ik

1 − e−iae−2π ik/N

= 1

2i

1 − eiaN

1 − eia−2π ik/N
− 1

2i

1 − e−iaN

1 − e−ia−2π ik/N
,

in which we have used the fact that e−2π ik = 1.
To be specific, let N = 5 and a =√

2. Then

u0 = 0,u1 = sin(
√

2),u2 = sin(2
√

2),u3 = sin(3
√

2),u4 = sin(4
√

2).

The 5-point DFT of u has kth term

Uk = 1

2i

1 − e5i
√

2

1 − ei
√

2−2π ik/5
− 1

2i

1 − e−5
√

2

1 − e−i
√

2−2π ik/5
.

For example,

U0 = 1

2i

1 − e5i
√

2

1 − ei
√

2
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2

= sin(4
√

2)+ sin(
√

2)− sin(5
√

2)

2 − 2cos(
√

2)
≈−0.1820207591

and

U1 = 1

2i

1 − 5i
√

2

1 − ei
√

2−2π i/5
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2−2π i/5

≈ 0.4162488825 − 2.202105642i. �

14.5.1 Linearity and Periodicity of the DFT

Linearity of the DFT is obvious because it is defined as a sum. For any numbers α and β or u
and v which are N -point sequences, then

D[αu +βv](k)=αUk +βVk .

We claim next that the N -point DFT is periodic of period N . This follows from the fact that
e−2π i jk = 1, since i jk is an integer. Specifically,

Uk+N =
N−1∑

j=0

u je
−2π i j (k+N )/N

=
N−1∑

j=0

u je
−2π i jk/N e−2π i jk =

N−1∑

j=0

u je
−2π i jk/N =Uk .

14.5.2 The Inverse N-Point DFT

Suppose we know the numbers Uk , the N -point DFT of some u. We would like to retrieve u.
We know that, whatever each u j is,

Uk =
N−1∑

j=0

u je
−2π i jk/N .
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We claim that

u j = 1

N

N−1∑

k=0

Uke
2π i jk/N (14.18)

for j = 0,1, · · · , N − 1. This is the inversion formula for the N -point DFT, and it is analogous
to inversion formulas for the Fourier transform and for the Fourier cosine and sine transforms,
with a summation replacing an integral.

To verify equation (14.18) it is convenient to put W = e−2π i/N . Then

W N = 1 and W −1 = e2π i/N .

Write

1

N

N−1∑

k=0

Uke
2π i jk/N = 1

N

N−1∑

k=0

Uk W
− jk

= 1

N

N−1∑

k=0

(
N−1∑

r=0

ure
−2π irk/N

)

W − jk

= 1

N

N−1∑

k=0

N−1∑

r=0

ur W
rk W − jk

= 1

N

N−1∑

r=0

ur

N−1∑

k=0

W rk W − jk

= 1

N

N−1∑

r=0

ur

N−1∑

k=0

(W r− j)k .

Now, if r �= j then (again using the finite geometric series),

N−1∑

k=0

(W r− j)k = 1 − (W r− j)N

1 − W r− j
= 0

because

(W r− j)N = e−2π(r− j) = 1 and W r− j = e2π i(r− j)/N �= 1.

But if r = j , then (W r− j)k = 1, so

N−1∑

k=0

(W r− j)k = N .

Therefore, in the last double summation we need only retain the term when r = j in the
summation with respect to r , yielding

1

N

N−1∑

k=0

Uke
2π i jk/N = 1

N

N−1∑

r=0

ur

N−1∑

k=0

(W r− j)k

= 1

N
u j N = u j .

14.5.3 DFT Approximation of Fourier Coefficients

We will now complete the idea suggested at the beginning of this section, approximating Fourier
coefficients by a discrete Fourier transform.
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FIGURE 14.7 f (t)= sin(t) for 0 ≤ t < 4, period 4.

To see the idea in action, consider the example of a function f having fundamental period
4, and f (t)= sin(t) for 0 ≤ t < 4. A graph of this function is shown in Figure 14.7. With p = 4
the Fourier coefficients are

dk = 1

4

∫ 4

0

sin(ξ)e−2π ikξ/4 dξ = 1

4

∫ 4

0

sin(ξ)e−π ikξ/2 dξ

= cos(4)− 1

π 2k2 − 4
+ 1

2
i
πk sin(4)

π 2k2 − 4

for k = 0,±1,±2, · · · .
Let N be a positive integer and subdivide [0,4] into N subintervals of equal lengths 4/N .

These subintervals are
[

4 j

N
,

4( j + 1)

n

]

for j = 0,1, · · · , N − 1.

Select N numbers 4 j/N by choosing the left endpoint of each of these subintervals. These define
an N -point sequence u, where

u j = sin

(
4 j

n

)

.

The N -point DFT of u is

Uk =
N−1∑

j=0

sin

(
4 j

N

)

e−2π i jk/4 =
N−1∑

j=0

sin

(
4 j

N

)

e−π i jk/2.

Now

!
N

Uk = 1

N

N−1∑

j=0

sin

(
4 j

N

)

e−π i jk/2

is a Riemann sum for the integral defining dk .
We now ask: To what extent does (1/N )Uk approximate dk? In this example we have

an explicit expression for dk , so we can explore this question directly. We will evaluate
(1/N )Uk using a = 4/N in the DFT of [sin( ja)]N−1

j=0 determined in Example 14.15. This
gives us
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1

N
Uk = 1

N

[
1

2i

1 − e4i

1 − e4i/N−2π ik/N
− 1

2i

1 − e−4i

1 − e−4i/N−2π ik/N

]

.

Now approximate the exponential terms in the denominator by using the first two terms of the
power series of ex about 0. This gives us

ex ≈ 1 + x

for |x |<< 1. Then

1

N
Uk = 1

N

[
1 − e4i

1 −[1 + (4i/N − 2π ik/N )] − 1

2i

1 − e−4i

1 −[1 + (−4i/N − 2π ik/N )]
]

=−1

4

[
1 − e4i

−2 + kπ
− 1 − e−4i

2 + kπ

]

=−1

4

1

π 2k2 − 4
[4 −π i(e4i − e−4i)− 2(e4i + e−4i)]

=−1

4

1

π 2k2 − 4
[4 − 2πki sin(4)− 4cos(4)]

= cos(4)− 1

π 2k2 − 4
+ 1

2
i
πk sin(4)

π 2k2 − 4
.

The approximation ex ≈ 1 + x has led to an approximate expression for (1/N )Uk that is exactly
equal to dk . This approximation cannot be valid for all k, however. First, the approximate value
used for ex assumed that x is much less than 1 in magnitude. Further, the N -point DFT is periodic
of period N , so Uk+N =Uk , while there is no such periodicity in the dk

′s.
In general it would be difficult to derive an estimate on relative sizes of |k| and N that would

result in (1/N )Uk approximating dk to within a given tolerance, and which would hold for a
reasonably broad class of functions. However, for many applications encountered in practice, the
empirical rule

|k| ≤ N

8
has proved to be effective.

SECTION 14.5 PROBLEMS

In each of Problems 1 through 6, compute D[u](k) for
k = 0,±1, · · · ,±4.

1. u =[cos( j)]5
j=0

2. u =[ei j ]5
j=0

3. [1/( j + 1)]5
j=0

4. [1/( j + 1)2]5
j=0

5. [ j 2]5
j=0

6. [cos( j)− sin( j)]5
j=0

In each of Problems 7 through 12, a sequence [Uk]N
k=0

is given. Determine the N -point inverse discrete Fourier
transform of this sequence.

7. Uk = (1 + i)k, N = 6

8. Uk = i−k, N = 5
9. Uk = e−ik, N = 7

10. Uk = k2, N = 5
11. Uk = cos(k), N = 5
12. Uk = ln(k + 1), N = 6

In each of Problems 13 through 16, compute the first seven
complex Fourier coefficients d0,d±1, d±2 and d±3 of f (t).
Then use the DFT to approximate these coefficients, with
N = 128.

13. f (t)= cos(t) for 0 ≤ t ≤ 2, f has period 2
14. f (t)= e−t for 0 ≤ t < 3, f has period 3
15. f (t)= t2 for 0 ≤ t < 1, f has period 1
16. f (t)= te2t for 0 ≤ t < 4, f has period 4
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14.6 Sampled Fourier Series

We have just discussed the approximation of Fourier coefficients of a periodic function f (t).
This was done by approximating terms of an N -point DFT formed by sampling f (t) at N points
of [0, p].

We will now discuss the use of an inverse DFT to approximate sampled partial sums (partial
sums evaluated at selected points) of the Fourier series of a period function.

Consider the partial sum

SN (t)=
M∑

k=−M

dke
2π ikt/p.

Subdivide [0, p] into N subintervals of equal length p/N and choose sample points t j = j p/N
for j = 0,1, · · · , N − 1. Form the N -point sequence

u =[ f ( j p/N )]N−1
j=0

and approximate

dk ≈ 1

N
Uk

where

Uk =
N−1∑

j=0

f ( j p/N )e−2π i jk/N .

In order to have |k| ≤ N/8, we will require that M ≤ N/8 in forming the partial sum of the
Fourier series. We have

SM(t)≈
M∑

k=−M

1

N
Uke

2π ikt/p.

In particular, if we sample this partial sum at the partition point j p/N , then

SM( j p/N )≈ 1

N

M∑

k=−M

Uke
2π i jk/N .

We will show that the sum on the right is actually an N -point inverse DFT for a particular N -point
sequence which we will determine by exploiting the periodicity of the N -point DFT (Uk+N =Uk).
Write

SM( j p/N )≈ 1

N

−1∑

k=−M

Uke
2π i jk/N + 1

N

M∑

k=0

Uke
2π i jk/N

= 1

N

M∑

k=1

U−ke
−2π i jk/N + 1

N

M∑

k=0

Uke
2π i jk/N

= 1

N

M∑

k=1

U−k+N e2π i j (−k+N )/N + 1

N

M∑

k=0

Uke
2π i jk/N

= 1

N

M−1∑

k=N−M

Uke
2π i jk/N +

M∑

k=0

Uke
2π i jk/N .
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In these summations we use the 2M + 1 numbers

UN−M , · · · ,UN−1,U0, · · · ,UM .

Since M < N/8 we must fill in the missing values to obtain an N -point sequence. One way to do
this is to fill in these places with zeros to form

Vk =

⎧
⎪⎨

⎪⎩

Uk for k = 0,1, · · · ,M

0 for k = M + 1, · · · , N − M − 1

Uk for k = N − M, · · · , N − 1.

Then the Mth partial sum of the Fourier series of f (t), sampled at t = j p/N , is approximated by

SM( j p/N )≈ 1

N

N−1∑

k=0

Vke
2π i jk/N .

EXAMPLE 14.16

Let f (t)= t for 0 ≤ t < 2 and suppose f (t) has period 2. Part of the graph of f (t) is shown in
Figure 14.8.

The Fourier coefficients are

dk = 1

2

∫ 2

0

te−2π ikt/2 dt =
{

i/πk for k �= 0

1 for k = 0.

The complex Fourier series of f (t) is

1 +
∞∑

k=−∞,k �=0

i

πk
eπ ikt .

This converges to t on (0,2). The Mth partial sum is

SM(t)= 1 +
M∑

k=−M,k �=0

i

πk
eπ ikt

t

2

1

542

0.5

0–2

1.5

31–1

0

FIGURE 14.8 f (t)= t for 0≤ t <2, period 2.
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For this example, choose N = 27 = 128 and M = 10, so M ≤ N/8. Sample the partial sum at
points j p/N = j/64 for j = 0,1, · · · ,127. Thus define the finite sequence

u =[ f ( j p/N )]127
j=0 =

[
j

64

]127

j=0

.

The 128-point DFT of u has kth term

Uk =
127∑

j0

j

64
e−π i jk/64.

Fill in the missing places by defining

Vk =

⎧
⎪⎨

⎪⎩

Uk for k = 0,1, · · · ,10

0 for k = 11, · · · ,117

Uk for k = 117, · · · ,127.

Then

S10( j p/N )= S10( j/64)= 1 +
10∑

k=−10,k �=0

i

πk
eπ i jk/64

≈ 1

128

127∑

k=0

Vke
π i jk/64.

For comparison, we will compute S10(1/2), and then the approximate value from the last term in
this equation. First,

S10(1/2)= 1 +
10∑

k=−10,k �=0

i

πk
eπ ik/2 = 0.45847 · · · .

For the approximation, we first need the numbers Uk :

U0 =
127∑

j=0

j

64
= 127,U1 =

127∑

j=0

j

64
e−π i j/64 =−1.0 + 40.735i,

U2 =
127∑

j=0

j

64
e−π i j/32 =−1.0 + 20.355i,U3 =−1.0 + 13.557i,

U4 =−1.0 + 10.153i,U5 =−1.0 + 8.1078i

U6 =−1.0 + 6.7415i,U7 =−1.0 + 5.7631i

U8 =−1.0 + 5.0273i,U9 =−1.0 + 4,4532i

U10 =−1.0 + 3.9922i,U118 =−1.0 − 3.9922i

U119 =−1.0 − 4.4532i,U120 =−1.0 − 5.0273i

U121 =−1.0 − 5.7631i,U122 =−1.0 − 6.7415i

U123 =−1.0 − 8.1078i,U124 =−1.0 − 10.153i

U125 =−1.0 − 13.557i,U126 =−1.0 − 20.355i

U127 =−1.0 − 40.735i.
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Using these numbers, we can compute

127∑

k=0

Vke
π ik/2

=127 + (−1 + 40.735i)eπ i/2 + (−1 + 20.355i)eπ i

+ (−1 + 13.557i)e3π i/2 + (−1 + 10.153i)e2π i

+ (−1 + 8.1078i)e5π i/2 + (−1 + 6.7415i)e3π i

+ (−1 + 5.7631i)e7π i/2 + (−1 + 5.0273i)e4π i

+ (−1 + 4.4532i)e9π i/2 + (−1 + 3.9922i)e5π i

+ (−1 − 3.9922i)e118π i/2 + (−1 − 4.4532i)e1119π i/2

+ (−1 − 5.0273i)e120π i/2 + (−1 − 5.7631i)e121π/2

+ (−1 − 6.7415i)e122π i/2 + (−1 − 8.1078i)e123π i/2

+ (−1 − 10.153i)e124π i/2 + (−1 − 13.557i)e125π i/2

+ (−1 − 20.355i)e126π i/2 + (−1 − 30.735i)e127π i/2

=61.04832.

Then

1

128

127∑

k=0

Vke
π i jk/64 = 0.47694.

This gives the 128 point DFT approximation of 0.47694 to the sampled partial sum S10(1/2),
which was computed to be 0.45847. The difference is 0.0185.

The actual sum of the Fourier series at t = 1/2 is f (1/2)= 0.50000. In practice we would
achieve greater accuracy by choosing N larger, allowing larger M . �

SECTION 14.6 PROBLEMS

In each of Problems 1 through 6, a function is given
having period p. Compute the complex Fourier series
of the function and then the 10th partial sum of
this series at the indicated t0. Then, using N = 128,
compute a DFT approximation to this partial sum
at t0.

1. f (t)= 1 + t for 0 ≤ t < 2, p = 2, t0 = 1/8
2. f (t)= t2 for 0 ≤ t < 1, p = 1, t0 = 1/2
3. f (t)= cos(t) for 0 ≤ t < 2, p = 2, t0 = 1/8
4. f (t)= e−t for 0 ≤ t < 4, p = 4, t0 = 1/4
5. f (t)= t3 for 0 ≤ t < 1, p = 1, t0 = 1/4
6. f (t)= t sin(t) for 0 ≤ t < 4, p = 4, t0 = 1/8.

14.7 DFT Approximation of the Fourier Transform

Under certain conditions the DFT can be used to approximate the Fourier transform of a function.
To begin, suppose f̂ (ω) can be approximated to within some acceptable tolerance by an integral
over a finite interval

f̂ (ω)=
∫ ∞

−∞
f (ξ)e−iωξ dξ ≈

∫ 2πL

0

f (ξ)e−iωξ dξ.
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Subdivide [0,2πL] into N subintervals of length 2πL/N and choose partition points ξ j =
2π j L/N for j = 0,1, · · · , N − 1. Using these, approximate

f̂ (ω)≈
∫ 2πL

0

f (ξ)e−iωξ dξ

≈
N−1∑

j=0

f (2π j L/N )e−2π i j Lω/N

(
2πL

N

)

= 2πL

N

N−1∑

j=0

f (2π j L/N )e−2π i j Lω/N .

The sum on the right is nearly in the form of a DFT. If we put ω= k/L with k any integer, then
we have

f̂ (k/L)≈ 2πL

N

N−1∑

j=0

f (2π j L/N )e−2π i jk/N . (14.19)

This approximates f̂ (k/L), the Fourier transform of f evaluated at k/L , with the N -point DFT
of the sequence

[

f

(
2π j L

N

)]N−1

j=0

.

Again, we must restrict |k| ≤ N/8 because the DFT is periodic of period N , while f̂ (k/L) is not
periodic.

EXAMPLE 14.17

We will test the approximation (14.19) for the simple case that

f (t)=
{

e−t for t ≥ 0

0 for t < 0.

f has Fourier transform

f̂ (ω)=
∫ ∞

−∞
f (ξ)e−iωξ dξ

=
∫ ∞

0

e−ξe−iωξ dξ = 1 − iω

1 +ω2
.

Choose L = 1, N = 27 = 128 and k = 3, so |k| ≤ N/8. Now k/L = 3 and the approximation
(14.17) is

f̂ (k/L)= f̂ (3)≈ 2π

128

127∑

j=0

e−π j/64e−6π i j/128

= π

64

127∑

j=0

e−π j/64e−3π i j/64 = 0.12451 − 0.29884i.

For comparison, the exact value is

f̂ (3)= 1 − 3i

10
= 0.1 − 0.3i.
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We can improve the accuracy by choosing N larger. With N = 29 = 512 we obtain

f̂ (3)≈ 2π

512

511∑

j=0

e−2π j/512e−6π i j/512

= 0.10595 − 0.2994i. �

EXAMPLE 14.18

We will continue the preceding example, but now carry out the approximation at more points.
Use L = 4 and N = 28 = 256. The approximations are obtained by

f̂ (k/4)≈ π

32

255∑

j=0

e−π j/32e−π i jk/128.

To have |k| ≤ N/8 = 32, we will only use this approximation for f̂ (k/4) for k = 1,2, · · · ,13.
Table 14.1 gives the approximate values along with the actual values of f̂ (ω).

The real part of f̂ (ω) is consistently approximated in this scheme with an error of about 0.05,
while the imaginary part is approximated in many cases with an error of about 0.002. Improved
accuracy is achieved by choosing N larger. �

This approximation was based on the assumption that f̂ (ω) could be approximated by
an integral oer an interval [0,2πL]. We can extend these ideas to the case that f̂ (ω) can be
approximated by an integral

∫ πL

−πL
f (ξ)e−iωξ dξ :

f̂ (ω)≈
∫ πL

−πL

f (ξ)e−iωξ dξ.

Then

f̂ (k/L)≈
∫ 0

−πL

f (ξ)e−ikξ/L dξ +
∫ L

0

f (ξ)e−ikξ/L dξ.

TA B L E 14.1 DFT Approximation of f̂ (ω) in Example 14.18

k DFT approximation of f̂ (ω) f̂ (ω)

(k = 1) f̂ (1/4) 0.99107 - 0.23509i 0.94118 - 0.23529i
(k = 2) f̂ (1/2) 0.84989 - 0.3996i .8 - 0.4i
(k = 3) f̂ (3/4) 0.68989 - 0.4794i 0.64 - 0.48i
(k = 4) f̂ (1) 0.54989 - 0.4992i 0.5 - 0.5i
(k = 5) f̂ (5/4) 0.44013 - 0.4868i 0.39024 - 0.4878i
(k = 6) f̂ (3/2) 0.35758 - 0.46033i 0.3077 - 0.4615i
(k = 7) f̂ (7/4) 0.29605 0.42936i 0.24615 - 0.43077i
(k = 8) f̂ (2) 0.24989 - 0.39839i 0.2 - 0.4i
(k = 9) f̂ (9/4) 0.21484 - 0.36933i 0.16495 - 0.37113i
(k = 10) f̂ (5/2) 0.18782 - 0.34282i 0.13793 - 0.34483i
(k = 11) f̂ (11/4) 0.16668 - 0.31896i 0.11679 - 0.32117i
(k = 12) f̂ (3) 0.14989 - 0.29759i 0.1 - 0.3i
(k = 13) f̂ (13/4) 0.13638 - 0.27847i 0.086486 - 0.28108i
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In the first integral on the right, set ζ = ξ + 2πL to obtain

f̂ (ω)≈
∫ 2πL

πL

f (ζ − 2πL)e−ik(ζ−2πL) dζ +
∫ πL

0

f (ξ)e−ikξ/L dξ

=
∫ 2πL

πL

f (ζ − 2πL)e−ikζ/L dζ +
∫ πL

0

f (ξ)e−ikξ/L dξ.

Write ξ for ζ as the variable of integration to write the last approximation as

f̂ (k/L)≈
∫ 2πL

πL

f (ξ − 2πL)e−ikξ/L dξ +
∫ πL

0

f (ξ)e−ikξ/L dξ.

Now define

g(t)=

⎧
⎪⎨

⎪⎩

f (t) for 0 ≤ t <πL

( f (πL)+ f (−πL))/2 for t =πL

f (t − 2πL) for πL < t < 2πL .

Then

f̂ (k/L)≈
∫ 2πL

0

g(ξ)e−ikξ/L dξ

=
∫ L

0

g(2π t)e−2π ikt/L(2π)dt (let ξ = 2π t)

= 2π
∫ L

0

g(2π t)e−2π ikt/L dt.

Finally, approximate the last integral by a Riemann sum, subdividing [0, L], subdividing [0, L]
into L/N subintervals and choosing partition points t j = j L/N for j = 0,1, · · · , N − 1. Then

f̂ (k/L)≈ 2πL

N

N−1∑

j=0

g

(
2π j L

N

)

e−2π i jk/N .

As before, we assume that |k| ≤ N/8. This approximates f̂ (k/L) by a constant multiple of the
N -point DFT of the sequence

[

g

(
2π j L

N

)]N−1

j=0

.

SECTION 14.7 PROBLEMS

In each of Problems 1 through 4, make a DFT approxima-
tion to the Fourier transform of f at the given point, using
N = 512 and the given L .

1. f (t)=
{

e−4t for t ≥ 0

0 for t < 0,

L = 3; f̂ (4)

2. f (t)=
{

t cos(t) for 0 ≤ t ≤ 12π

0 for t < 0 and t > 12π

L = 6; f̂ (1)

3. f (t)=
{

te−2t for t ≥ 0

0 for t < 0,

L = 3; f̂ (2)

4. f (t)=
{

e−t cos(t) for t ≥ 0

0 for t < 0,

L = 4; f̂ (4)
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CHAPTER 15
Special
Functions and
Eigenfunction
Expansions

EIGENFUNCTION EXPANSIONS LEGENDRE
POLYNOMIALS BESSEL FUNCTIONS

15.1 Eigenfunction Expansions

Functions may be designated as special functions when they arise in important applications and
contexts, often as solutions of differential equations. The most familiar special functions are
cos(kx) and sin(kx), which are solutions of

y ′′ + k2 y = 0.

Other special functions include Legendre polynomials and Bessel functions, which are solutions
of Legendre’s and Bessel’s differential equations. We will develop these functions shortly.

Fourier series are used to solve many problems involving partial differential equations mod-
eling diffusion processes and wave motion. We will see, however, that some problems require
series expansions in terms of special functions. This chapter develops a framework in which to
make such expansions.

Begin with the ordinary differential equation

y ′′ + R(x)y ′ + (Q(x)+ λP(x))y = 0

on some interval (a,b) or [a,b], with λ a constant to be determined along with y. Assume that
the coefficient functions are continuous on the interval. First manipulate the differential equation
into a special form. Multiply it by

r(x)= e
∫

R(x)dx

to obtain

y ′′e
∫

R(x)dx + R(x)y ′e
∫

R(x)dx + (Q(x)+ λP(x))e
∫

R(x)dx y = 0.

This is
(
y ′e

∫
R(x)dx

)′ + (Q(x)e∫ R(x)dx + λP(x)e
∫

R(x)dx
)

y = 0,

505
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which has the form

(r y ′)′ + (q + λp)y = 0. (15.1)

When p,q, r , and r ′ are continuous on (a,b), and r(x)> 0 and p(x)> 0 on (a,b), we call
equation (15.1) the Sturm-Liouville differential equation.

This Sturm-Liouville equation contains a quantity λ. We want to determine values of λ,
called eigenvalues, such that there are nontrivial (not identically zero) solutions y of the differen-
tial equation which satisfy certain conditions at a and b. For a given eigenvalue λ, such a solution
is an eigenfunction associated with λ. Conditions at a and b that solutions must satisfy are called
boundary conditions. There are three kinds of boundary value problems for the eigenvalues and
eigenfunctions, depending on the form of the boundary conditions. In each problem, we assume
that p(x)> 0 and r(x)> 0 on (a,b).

The Regular Sturm-Liouville Problem

We want numbers λ for which there are nontrivial solutions of equation (15.1) satisfying regular
boundary conditions

A1 y(a)+ A2 y ′(a)= 0 and B1 y(b)+ B2 y ′(b)= 0,

in which A1 and A2 are given numbers, not both zero, and B1 and B2 are also given numbers, not
both zero.

The Periodic Sturm-Liouville Problem

r(a)= r(b) and we want numbers λ for which there are nontrivial solutions of equation (15.1)
satisfying periodic boundary conditions

y(a)= y(b) and y ′(a)= y ′(b).

The Singular Sturm-Liouville Problem

r(a)= 0 or r(b)= 0, but not both. For this problem we want numbers λ for which there are
nontrivial solutions of equation (15.1), subject to the following boundary conditions at a or b.

If r(a)= 0 then there is the single boundary condition

B1 y(b)+ B2 y ′(b)= 0,

with B1 and B2 not both zero.
If r(b)= 0, then there is the single boundary condition

A1 y(a)+ A2 y ′(a)= 0,

with A1 and A2 given and not both zero.
We will derive properties of eigenvalues and eigenfunctions after looking at two examples.

EXAMPLE 15.1 A Regular Sturm-Liouville Problem

The problem

y ′′ + λy = 0; y(0)= y(L)= 0

is regular on [0, L]. We will solve it for later use. Consider cases on λ.
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Case 1: λ= 0

Then y(x) = cx + d for some constants c and d. But y(0) = 0 = d and then y(L) = cL = 0
requires that c =0, so all solutions are trivial when λ=0. Therefore λ is not an eigenvalue of this
problem.

Case 2: λ< 0

Say λ=−k2 for k> 0. The general solution of y ′′ − k2 y = 0 is

y(x)= c1e
kx + c2e

−kx .

But y(0)= c1 + c2 = 0 means that c2 =−c1, so

y(x)= c1

(
ekx − e−kx

)
.

Then

y(L)= c1

(
ekL − e−kL

)= 0.

If ekL − e−kL = 0 we would have e2kL = 1 and then 2kL = 0, impossible if k > 0 and L > 0.
Therefore c1 = 0, so c2 = 0 also and y is the trivial solution. This problem has no negative
eigenvalue.

Case 3: λ> 0

Say λ= k2 for k> 0. Now y ′′ + k2 y = 0 has general solution

y(x)= c1 cos(kx)+ c2 sin(kx).

Since y(0)= c1 = 0, then y = c2 sin(kx). Then

y(L)= c2 sin(kL)= 0.

To have a nontrivial solution we cannot have c2 vanish, so we must choose k so that sin(kL)= 0.
Then kL = nπ for n any positive integer, so, using n as an index,

λn = k2 =
(nπ

L

)2

.

These are the eigenvalues of this problem, for each positive integer n. Corresponding to each
such eigenvalue is the eigenfunction

yn(x)= sin
(nπx

L

)
.

Any nonzero constant multiple of yn is also an eigenfunction corresponding to λn . �

EXAMPLE 15.2 A Periodic Sturm-Liouville Problem

The problem

y ′′ + λy = 0; y(−L)= y(L), y ′(−L)= y ′(L)

is periodic on [−L , L]. If we compare y ′′ + λy = 0 with the Sturm-Liouville equation we have
r(x)= 1, so r(−L)= r(L), as is required for a periodic problem on [−L , L]. We will also solve
this problem by taking cases on λ.

Case 1: λ= 0

Then y(x)= cx + d. Now

y(−L)=−cL + d = y(L)= cL + d

implies that c = 0. The constant function y(x)= d satisfies both boundary conditions. Thus 0 is
an eigenvalue of this problem with constant (nonzero) functions as eigenfunctions.
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Case 2: λ< 0

Say λ=−k2. Now y(x)= c1ekx + c2e−kx . The condition y(L)= y(−L) gives us

c1e
−kL + c2e

kL = c1e
kL + c2e

−kL .

Write this as

c1(e
−kL − ekL)= c2(e

−kL − ekL).

This implies that c1 = c2, so y(x)= c1(ekx + e−kx). Now y ′(−L)= y ′(L) gives us

c1k(e
−kL − ekL)= c1k(e

kL − e−kL).

This implies that c1 =−c1, hence c1 =0, so c2 =0 also. This problem has only the trivial solution,
so there is no negative eigenvalue.

Case 3: λ> 0

Say λ= k2. The general solution of y ′′ + k2 y = 0 is

y(x)= c1 cos(kx)+ c2 sin(kx).

Now

y(−L)= c1 cos(kL)− c2 sin(kL)= y(L)= c1 cos(kL)+ c2 sin(kL).

This implies that c2 sin(kL)= 0. Next,

y ′(−L)= kc1 sin(kL)+ kc2 cos(kL)= y ′(L)=−kc1 sin(kL)+ kc2 cos(kL),

implying that kc1 sin(kL) = 0. If sin(kL) �= 0, then c1 = c2 = 0 and we have only the trivial
solution. For a nontrivial solution, we must have sin(kL)= 0, so at least one of the constants c1

and c2 can be chosen nonzero. But sin(kL)= 0 is satisfied if kL = nπ , with n a positive integer
(positive because we chose k > 0). Since λ= k2, the eigenvalues of this problem, indexed by n,
are

λn =
(nπ

L

)2

for n = 1,2, · · ·
and corresponding eigenfunctions are

yn(x)= c1 cos
(nπx

L

)
+ c2 sin

(nπx

L

)
,

with c1 and c2 any constants, not both zero.
By choosing n = 0 and c2 = 0 but c1 �= 0, we obtain a constant eigenfunction corresponding

to the eigenvalue 0. This consolidates cases 1 and 3. �

Bessel’s equation will provide an example of a singular Sturm-Liouville problem (here we
will have r(0)= 0).

We may also have a Sturm-Liouville problem in which r(a)= r(b)= 0, but there are no
boundary conditions specified. In this event we impose the condition that eigenfunctions must
be bounded on [a,b]. The Legendre differential equation will provide an example of this type of
problem.

A Fourier sine series on [0, L] is an expansion in the eigenfunctions of Example 15.1. A
Fourier series on [−L , L] is an expansion in the eigenfunctions of Example 15.2. This raises an
intriguing question. If a Sturm-Liouville problem on [a,b] has eigenfunctions ϕ1(x), ϕ2(x), · · · ,
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we ask whether it might be possible to expand an “arbitrary” function f on [a,b] in a series of
these eigenfunctions,

f (x)=
∞∑

k=1

ckϕk(x).

The key lies in the choice of the coefficients ck , which in turn hinges on an orthogonality property
of the eigenfunctions. Recall that, in seeking the coefficients an and bn in the Fourier expansion

f (x)= 1

2
a0 +

∞∑

k=1

(ak cos(kπx/L)+ bk sin(kπx/L))

we multiplied the series by a particular eigenfunction cos(nπx/L) or sin(nπx/L) and integrated.
Because of equations (13.3), (13.4) and (13.5), the integral of any two distinct eigenfunctions
vanished, leaving simple integral expressions for an or bn .

We will show that similar properties hold for the eigenfunctions of any Sturm-Liouville
problem, suggesting a similar strategy for finding the coefficients in a series of eigenfunctions∑∞

k=1 ckϕk(x).
We will also show the eigenvalues must be real numbers. Thus the absence of complex

eigenvalues in Example 15.1 and 15.2 is characteristic of Sturm-Liouville problems in general.

THEOREM 15.1

Suppose we have a regular, periodic or singular Sturm-Liouville problem on an interval [a,b].
Then

1. There is an infinite sequence of eigenvalues λ j which can be ordered so that

λ1<λ2< · · · .
Further, with this ordering as an increasing sequence,

lim
n→∞

λn =∞.

2. If ϕ is an eigenfunction, then so is cϕ for any nonzero real number c.

3. Let λn and λm be distinct eigenvalues of the problem, with corresponding eigenfunctions
ϕn and ϕm . Then

∫ b

a

p(x)ϕn(x)ϕm(x)dx = 0, (15.2)

where p is the coefficient of λ in the Sturm-Liouville differential equation (r y ′)′+
(q + λp)y = 0.

4. Every eigenvalue of the Sturm-Liouville problem is real. �

Proof Conclusion (1) requires a lengthy analysis we will not enter into here. Note that con-
clusion (1) implies that the eigenvalues cannot cluster around a finite number, as, for example,
the numbers 1 − 1/n fall within arbitrarily small intervals about 1 as n is chosen larger. These
numbers cannot be the eigenvalues of a Sturm-Liouville problem.

For conclusion (2), suppose ϕ(x) is an eigenfunction corresponding to eigenvalue λ. Then

(rϕ′)′ + (q + λp)ϕ= 0.

Multiplication of this equation by c shows that cϕ satisfies this differential equation as well.
Finally, by multiplying the appropriate boundary conditions in each case by c, it is verified that
cϕ is an eigenfunction corresponding to λ. (Note: cϕ is an eigenfunction corresponding to λ, not
to cλ.)
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To prove equation (15.2), begin with the fact that the eigenvalues and corresponding
eigenfunctions satisfy the Sturm-Liouville differential equation:

(
rϕ ′

n

)′ + (q + λn p)ϕn = 0

and
(
rϕ′

m

)′ + (q + λm p)ϕm = 0.

Multiply the first equation by ϕm and the second by ϕn and subtract to obtain
(
rϕ ′

n

)′
ϕm − (rϕ ′

m

)′
ϕn + (λn − λm)pϕnϕm = 0.

Write this equation as

d

dx

[
r
(
ϕmϕ

′
n −ϕnϕ

′
m

)]= (λm − λn)pϕnϕm .

This means that

(λm − λn)

∫ b

a

p(x)ϕn(x)ϕm(x)dx

= [r (ϕm yϕ ′
n −ϕnϕ

′
m

)]b

a

= r(b)
[
ϕm(b)ϕ

′
n(b)−ϕn(b)ϕ

′
m(b)

]− r(a)
[
ϕm(a)ϕ

′
n(a)−ϕn(a)ϕ

′
m(a)

]
.

This gives us

(λm − λn)

∫ b

a

p(x)ϕn(x)ϕm(x)dx

= r(b)
[
ϕm(b)ϕ

′
n(b)−ϕn(b)ϕ

′
m(b)

]− r(a)
[
ϕm(a)ϕ

′
n(a)−ϕn(a)ϕ

′
m(a)

]
. (15.3)

Equation (15.2) is therefore verified if we can show that the right side of equation (15.3)
is zero. This is done by examining the boundary conditions accompanying each type of Sturm-
Liouville problem.

Suppose first that the problem is regular. Each eigenfunction must satisfy the boundary
condition at a:

A1ϕn(a)+ A2ϕ
′
n(a)= 0,

A1ϕm(a)+ A2ϕ
′
m(a)= 0,

with not both A1 and A2 zero. Think of these boundary conditions at a as a homogeneous system
of two algebraic equations in two unknowns A1 and A2. The fact that there is a nontrivial solution
for these numbers means that the determinant of the system is zero:

∣
∣
∣
∣
ϕn(a) ϕ ′

n(a)
ϕm(a) ϕ ′

m(a)

∣
∣
∣
∣= 0.

The same argument applies to the regular boundary condition at b:
∣
∣
∣
∣
ϕn(b) ϕ ′

n(b)
ϕm(b) ϕ ′

m(b)

∣
∣
∣
∣= 0.

This shows that both terms in square brackets on the right side of equation (15.3) are zero. Then

(λm − λn)

∫ b

a

p(x)ϕn(x)ϕm(x)dx = 0.

Since λn and λn were assumed to be distinct eigenvalues, this means that
∫ b

a

p(x)ϕn(x)ϕm(x)dx = 0,

proving conclusion (3) for the regular Sturm-Liouville problem.
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One proceeds in similar fashion for periodic and singular boundary conditions. This proves
conclusion (3) of the theorem.

For conclusion (4), let λ be any eigenvalue, with corresponding eigenfunction ϕ(x). It is
routine to check by taking complex conjugates that λ is an eigenvalue with eigenfunction ϕ(x).
If λ �= λ, then by conclusion (3),

(λ− λ)
∫ b

a

p(x)ϕ(x)ϕ(x)dx = 0.

Then

(λ− λ)
∫ b

a

p(x)|ϕ(x)|2 dx = 0.

But p(x)> 0 on (a,b), and an eigenfunction cannot be identically zero, so this integral must be
positive. Therefore λ= λ, implying that λ must be real, proving conclusion (4). �

The integral relationship (15.2) between eigenfunctions associated with distinct eigenvalues
is called orthogonality of the eigenfunctions with respect to the weight function p. This terminol-
ogy derives from the fact that

∫ b

a
p(x) f (x)g(x)dx behaves like a dot product for vectors, and

two vectors are called orthogonal when their dot product is zero. In Example 15.1, p(x)= 1 and
the orthogonality relationship is the familiar

∫ L

0

sin(nπx/L) sin(mπx/L)dx = 0

for n �= m.
Using this notion of weighted orthogonality of eigenfunctions, we can solve for the coef-

ficients in a proposed series of eigenfunctions, arguing much as we did for the coefficients of
a Fourier series. Suppose the eigenvalues are λk and corresponding eigenfunctions are ϕk for
k = 1,2, · · · , and we want to write

f (x)=
∞∑

k=1

ckϕk(x).

Multiply this equation by p(x)ϕn(x) and integrate to get
∫ b

a

p(x) f (x)ϕn(x)dx =
∞∑

k=1

∫ b

a

p(x)ϕk(x)ϕn(x)dx .

By equation (15.2) all of the integrals in the summation are zero except when k = n, yielding
∫ b

a

p(x) f (x)ϕn(x)dx = cn

∫ b

a

p(x)ϕ2
n(x)dx,

or

cn =
∫ b

a
p(x) f (x)ϕn(x)dx
∫ b

a
p(x)ϕ2

n(x)dx
. (15.4)

By analogy with Fourier series, we call the numbers defined by equation (15.4) the general-
ized Fourier coefficients of f with respect to the Sturm-Liouville problem. With this choice of
coefficients, we call

∞∑

k=1

ckϕk(x)

the eigenfunction expansion of f with respect to the eigenfunctions of the Sturm-Liouville
problem.

As with Fourier (trigonometric) series, the question now is the relationship between the
function and its eigenfunction expansion.
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THEOREM 15.2 Convergence of Eigenfunction Expansions

Suppose ϕn , for n = 1,2, · · · , are the eigenfunctions of a Sturm-Liouville problem on [a,b]. Let
f be piecewise smooth on [a,b] and let cn be given by equation (15.4). Then, for a< x < b, the
eigenfunction expansion

∑∞
n=1 cnϕn(x) converges to

1

2
( f (x+)+ f (x−)).

In particular, if f is continuous at x , then this eigenfunction expansion converges to f (x). �

It should not be surprising that this conclusion has the same form as that for convergent
Fourier series, since Fourier series are eigenfunction expansions.

EXAMPLE 15.3

The regular Sturm-Liouville problem

y ′′ + λy = 0; y ′(0)= y ′(π/2)= 0

has eigenvalues λn =4n2 and eigenfunctions ϕn(x)= cos(2nx) for n =0,1,2, · · · . Here p(x)=1
and the interval is [0,π/2].

Let f (x)= x2(1 − x) for 0 ≤ x ≤ π/2. We will expand f (x) in a series
∑∞

n=0 cnϕn(x) of f
of the eigenfunctions of this problem, using equation (15.4) for the coefficients. First compute

c0 =
∫ π/2

0
f (x)ϕ0(x)dx
∫ π/2

0
ϕ2

0dx

=
∫ π/2

0
x2(1 − x)dx
∫ π/2

0
dx

= − 1
64
π 4 + 1

24
π 3

π

2

=− 1

32
π 3 + 1

12
π 2.

For n = 1,2, · · · , the denominator of cn is
∫ π/2

0

cos2(2nx)dx = π

4
.

The numerator is
∫ π/2

0

x2(1 − x) cos(2nx)dx = −6 + (−1)n[6 + 4πn2 − 3π 2n2]
16n4

.

Therefore

cn = −6 + (−1)n[6 +πn2 − 3π 2n2]
4πn4

.

The eigenfunction expansion is

x2(1 − x)=π 2

(
1

12
− 1

32
π

)

+
∞∑

n=1

−6 + (−1)n[6 +πn2 − 3π 2n2]
4πn4

cos(2nx).

From the convergence theorem, this eigenfunction expansion converges to x2(1 − x) for 0< x <
π/2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:20 THM/NEIL Page-513 27410_15_ch15_p505-562

15.1 Eigenfunction Expansions 513

0

–2

–1

–3

–4

x
1.510.50–0.5 2

FIGURE 15.1 Eigenfunction expansion in Example 15.3.

Figure 15.1 shows a graph of f compared with the fifteenth partial sum of this series. The
graph is drawn on a slightly larger interval than [0,π/2]. This eigenfunction expansion appears to
converge rapidly to f (x) on [0,π/2], but the graphs diverge from each other outside this interval.
The eigenfunction expansion is unrelated to f (x) outside of the interval of the Sturm-Liouville
problem. �

The following example illustrates an eigenfunction expansion in which the eigenfunctions
are not just sines and cosines.

EXAMPLE 15.4

We will expand f (x)= x in a series of the eigenfunctions of the regular Sturm-Liouville problem

y ′′ + 4y ′ + (3 + λ)y = 0; y(0)= y(1)= 0

on [0,1]. First we must generate the eigenvalues and eigenfunctions. Put y = erx to obtain the
characteristic equation of the differential equation:

r 2 + 4r + (3 + λ)= 0,

with roots

r =−2 ±√
1 − λ.

Take cases on λ.

Case 1: λ = 1

Then

y(x)= c1e
−2x + c2xe−2x .

Now

y(0)= c1 = 0 and y(1)= c2e
−2 = 0

so c2 = 0 and y is the trivial solution. Therefore, 1 is not an eigenvalue of this problem.

Case 2: 1 − λ > 0

Write 1 − λ=α2 with α > 0 to obtain

y(x)= c1e
(−2+α)x + c2e

(−2−α)x .
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Then

y(0)= c1 + c2 = 0

so c2 =−c1. And

y(1)= c1e
−2(eα − e−α)=−2c1e

−2 sinh(α).

Since α> 0, sinh(α)> 0, so c2 = c1 = 0 and again y is the trivial solution. There is no eigenvalue
λ< 1.

Case 3: 1 − λ < 0

Write 1 − λ=−α2, with α > 0. Now

y(x)= c1e
−2x cos(αx)+ c2e

−2x sin(αx).

Then

y(0)= c1 = 0.

This leaves us with y(x)= c2e−2x sin(αx). Now

y(1)= c2e
−2 sin(α)= 0.

To have a nontrivial solution, we need c2 �=0, so we must have sin(α)=0. We can choose α=nπ
for n any positive integer. The eigenvalues are

λn = 1 +α2 = 1 + n2π 2.

The eigenfunctions are

ϕn(x)= e−2x sin(nπx)

for n = 1,2, · · · .
To compute the coefficients in the expansion of f (x)= x in a series of these eigenfunctions,

we need to know the weight function p. For this, we must write the differential equation in
Sturm-Liouville form. Multiply it by

e
∫

4dx = e4x

to obtain

e4x y ′′ + 4e4x y ′ + (3 + λ)e4x y = 0.

This is
(
e4x y ′)′ + (3e4x + λe4x)y = 0.

This is in Sturm-Liouville form with r(x)= p(x)= e4x and q(x)= 3e4x . To write f (x)= x =∑∞
n=1 cnϕn(x), choose

cn =
∫ 1

0
p(x)e−2x sin(nπx)dx

∫ 1

0
p(x)e−4x sin2(nπx)dx

=
∫ 1

0
e2x sin(nπx)dx
∫ 1

0
sin2(nπx)dx

= −8nπ − 2e2n3π 3(−1)n

(4 + (nπ)2)2 .

Figure 15.2 compares graphs of f (x) = x with the 70th partial sum of this expansion. This
particular expansion converges fairly slowly to f (x), compared to Example 15.3. The Gibbs
phenomenon can be seen at x = 1. This behavior applies to general eigenfunction expansions,
not just to Fourier series. �
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FIGURE 15.2 Eigenfunction expansion in
Example 15.4.

15.1.1 Bessel’s Inequality and Parseval’s Theorem

Given a Sturm-Liouville problem on [a,b], we have seen that the eigenfunctions are
orthogonal with respect to the weight function p. To carry the analogy with vectors a little
further, define the weighted dot product of functions f and g to be

f · g =
∫ b

a

p(x) f (x)g(x)dx .

We may also denote

f · f =
∫ b

a

p(x) f (x)2 dx =‖ f ‖2 .

As with vectors, define f and g to be orthogonal when f · g = 0.

We call ‖ f ‖ the length or norm of f , and we interpret

‖ f − g ‖ =√( f − g) · ( f − g)

=
√∫ b

a

p(x)( f (x)− g(x))2 dx

to be the distance between f and g.

Now let ϕn be eigenfunctions of a Sturm-Liouville problem, with eigenvalues λn . In the dot
product notation, the coefficients of an expansion of f in a series of these eigenfunctions has
coefficients
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cn = f ·ϕn

ϕn ·ϕn

= f ·ϕn

‖ϕn ‖2
.

We will use some facts from linear algebra to derive an important property of these
coefficients. Suppose we write a linear combination

N∑

n=1

knϕn(x),

with the kn ’s any numbers. We ask: how should we choose the kn ’s so that
∑N

n=1 knϕn(x) best
approximates f (x) for a < x < b? This question is well posed because we have a notion of
distance between functions. The problem is to choose the kn ’s to minimize the distance between
f (x) and

∑N
n=1 knϕn(x):

∥
∥
∥
∥
∥

f −
N∑

n=1

knϕn(x)

∥
∥
∥
∥
∥
.

We know the answer to this question if we think in the context of orthogonal projections in
a vector space. Let PC[a,b] be the vector space of piecewise continuous functions defined on
[a,b]. This is a vector space because sums and scalar multiples of piecewise continuous functions
are also piecewise continuous, and the zero function is piecewise continuous. The eigenfunctions

ϕ1(x), ϕ2(x), · · · , ϕN (x)

span a subspace S of PC[a,b], and in fact form an orthogonal basis for this subspace. The
linear combination of these eigenfunctions having minimum distance from f is the orthogo-
nal projection fS of f onto this subspace, and we know from Sections 6.6 and 6.7 that this
projection is

fS(x)=
N∑

n=1

f ·ϕn

ϕn ·ϕn

ϕn(x).

This is exactly the N th partial sum of the eigenfunction expansion of f .
We may therefore think of the coefficients in the eigenfunction expansion of f as those

for which the N th partial sum of the expansion is the best approximation to f (x) as a linear
combinations of the first N eigenfunctions.

There is also a Bessel inequality and a Parseval theorem for general eigenfunction expansion
coefficients. First, let

�n = ϕn

‖ϕn ‖ ,

which we can also write as

�n = ϕn√
ϕn ·ϕn

.

This divides each eigenfunction by its length, resulting in an eigenfunction of length 1:

‖�n ‖2=�n ·�n = 1.

We say that the eigenfunctions have been normalized. Since nonzero constant multiples
of eigenfunctions are eigenfunctions, we can expand f (x) in a series of these normalized
eigenfunctions

∞∑

n=1

cn�n(x),
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where

cn = f ·�n

�n ·�n

= f ·�n.

Now,

�n ·�m =
{

1 if n = m,

0 if n �= m.

Then,

0 ≤
∥
∥
∥
∥
∥

f −
N∑

n=1

cn�n

∥
∥
∥
∥
∥

2

=
(

f −
N∑

n=1

cn�n

)

·
(

f −
N∑

n=1

cm�m

)

= f · f − 2
N∑

n=1

cn f ·�n +
N∑

n=1

N∑

m=1

cncm�n ·�m

= f · f − 2
N∑

n=1

c2
n +

N∑

n=1

c2
n

= f · f −
N∑

n=1

c2
n.

Therefore,

N∑

n=1

c2
n ≤ f · f.

This is Bessel’s inequality for this general setting. It says that the sum of the first N squares
of the generalized Fourier coefficients of f is less than or equal to the length of f . Since
N can be any positive number, this implies that

∞∑

n=1

c2
n ≤‖ f ‖2 .

The series of squares of these coefficients converges, and the sum is bounded by the square
of the length of f .

If f is continuous on [a,b], then f (x) =∑∞
n=1 cn�n(x) on (a,b) and in this case

Bessel’s inequality is an equality:
∞∑

n=1

c2
n =‖ f ‖2,

or, equivalently,
∞∑

n=1

c2
n = f · f.

This is Parseval’s theorem.

Both of these results were seen previously in the special case of Fourier series in Theorems
13.6 and 13.7.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:20 THM/NEIL Page-518 27410_15_ch15_p505-562

518 CHAPTER 15 Special Functions and Eigenfunction Expansions

We conclude this subsection with the idea of completeness, which is perhaps most easily
understood in the context of R3. The vectors i, j, and k are complete in R3 because there is no
nonzero vector that is orthogonal to all three of these vectors. In terms of axes, there is no axis
perpendicular to the x-, y- and z-axes.

Now let C ′[a,b] be the set of functions that are continuous on [a,b] with piecewise con-
tinuous derivatives. The eigenfunctions �n are in C ′[a,b], and may be thought of as defining
perpendicular axes, or directions, just as the unit vectors do in R3. These eigenfunctions are com-
plete in the sense that there is no nonzero function in C ′[a,b] that is orthogonal to all of the�n ’s.
It can be shown that the eigenfunctions of a Sturm-Liouville problem are complete in C ′[a,b].

SECTION 15.1 PROBLEMS

In each of Problems 1 through 10, classify the Sturm-
Liouville problem as regular, periodic or singular, state
the relevant interval, and find the eigenvalues and eigen-
functions. In some cases, the eigenvalues may be defined
implicitly by a transcendental equation.

1. y ′′ + λy = 0; y(0)= y ′(L)= 0
2. y ′′ + λy = 0; y ′(0)= y ′(L)= 0
3. y ′′ + λy = 0; y ′(0)= y(4)= 0
4. y ′′ + λy = 0; y(0)= y(π), y ′(0)= y ′(π)
5. y ′′ + λy = 0; y(−3π)= y(3π), y ′(−3π)= y ′(3π)
6. y ′′ + λy = 0; y(0)= 0, y(π)+ 2y ′(π)= 0
7. y ′′ + λy = 0; y(0)− 2y ′(0)= 0, y ′(1)= 0
8. y ′′ + 2y ′ + (1 + λ)y = 0; y(0)= y(1)= 0
9. (e2x y ′)′ + λe2x y = 0; y(0)= y(π)= 0

10. (e−6x y ′)′ + (1 + λ)e−6x y = 0; y(0)= y(8)= 0

In each of Problems 11 through 16, find the eigenfunction
expansion of the given function in the eigenfunctions of
the Sturm-Liouville problem. In each case, determine what
this expansion converges to and graph the N th partial sum
of the expansion and the function on the same set of axes.
In Problem 11, do the graph for L = 1.

11. f (x)= 1 − x for 0 ≤ x ≤ L
y ′′ + λy = 0; y(0)= y(L)= 0; N = 40

12. f (x)= x for 0 ≤ x ≤π
y ′′ + λy = 0; y(0)= y ′(π)= 0; N = 30

13. f (x)=
{

−1 for 0 ≤ x ≤ 2

1 for 2< x ≤ 4
y ′′ + λy = 0; y ′(0)= y(4)= 0; N = 40

14. f (x)= sin(2x) for 0 ≤ x ≤π
y ′′ + λy = 0; y ′(0)= y ′(π)= 0; N = 30

15. f (x)= x2 for −3π ≤ x ≤ 3π
y ′′ + λy = 0; y(−3π) = y(3π), y ′(−3π) =
y ′(3π); N = 10

16. f (x)=
{

0 for 0 ≤ x ≤ 1/2

1 for 1/2< x ≤ 1
y ′′ + 2y ′ + (1 + λ)y = 0; y(0)= y(1)= 0; N = 30

17. Write Bessel’s inequality for f (x) = x(4 − x) for
the eigenfunctions of the Sturm-Liouville problem of
Problem 3. Hint: Remember to normalize the eigen-
functions.

18. Write Bessel’s inequality for f (x)=e−x for the eigen-
functions of the Sturm-Liouville problem of Prob-
lem 6.

15.2 Legendre Polynomials

We will derive a class of special functions called Legendre polynomials, which are
solutions of Legendre’s differential equation

((1 − x2)y ′)′ + λy = 0.

Adrien-Marie Legendre (1752 - 1833) was a professor at the Ecole Militaire who worked in
many fields, including number theory and elliptic integrals. He encountered what would become

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:20 THM/NEIL Page-519 27410_15_ch15_p505-562

15.2 Legendre Polynomials 519

known as Legendre polynomials in the 1780s while continuing Laplace’s work on the potential
equation (Chapter 18).

Legendre’s differential equation is in Sturm-Liouville form, with r(x)= 1 − x2, q(x)= 0
and p(x)= 1. Since r(−1)= r(1)= 0, Legendre’s equation forms a singular Sturm-Liouville
problem on [−1,1], with no boundary conditions. However, we seek solutions that are bounded
on this interval.

To find such solutions, attempt a power series solution y =∑∞
n=0 anxn expanded about 0 (see

Section 4.1). Substitute this series into Legendre’s equation to obtain

∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=2

n(n − 1)anxn −
∞∑

n=0

2nanxn +
∞∑

n=0

λanxn = 0.

Rewrite the first summation as
∞∑

n=2

n(n − 1)anxn−2 =
∞∑

n=0

(n + 2)(n + 1)an+2x
n

to obtain
∞∑

n=0

(n + 2)(n + 1)an+2x
n −

∞∑

n=2

n(n − 1)anxn −
∞∑

n=0

2nanxn +
∞∑

n=0

λanxn = 0.

Write this as

2a2 + 6a3x − 2a1x + λa0 + λa1x

+
∞∑

n=2

[(n + 2)(n + 1)an+2 − (n2 + n − λ)an]xn = 0.

The constant term and the coefficient of each power of x on the left must be zero, so

2a2 + λa0 = 0

6a3 − 2a1 + λa1 = 0, and

(n + 1)(n + 2)an+2 −[n(n + 1)− λ]an = 0 for n = 2,3, · · · .
From these equations, we obtain

a2 =−λ
2

a0,

a3 = 2 − λ
6

a1 = 2 − λ
3! a1

and

an+2 = n(n + 1)− λ
(n + 1)(n + 2)

an for n = 2,3, · · · . (15.5)

Equation (15.5) is a recurrence relation which gives each an+2 in terms of λ and an . This enables
us to produce the coefficients in turn from previously found coefficients. We already have expres-
sions for a2 and a3 in terms of λ, a0 and a1. From the recurrence relation of equation (15.5) with
n = 2,

a4 = 6 − λ
(3)(4)

a2 =−λ
2

6 − λ
(3)(4)

a0 = −λ(6 − λ)
4! a0.
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With n = 4 we obtain

a6 = 20 − λ
(5)(6)

a4 = −λ(6 − λ)(20 − λ)
6! a0,

and so on, with each even-indexed a2n in terms of λ, n and a0. Similarly, with n = 3,

a5 = 12 − λ
(4)(5)

a3 = (2 − λ)(12 − λ)
5! a1,

and with n = 7,

a7 = 30 − λ
(6)(7)

a5 = (2 − λ)(12 − λ)(30 − λ)
7! a1

and so on. Each odd-indexed a2n+1 can be written in terms of λ, n and a1.
Now we can write the solution

y(x)=
∞∑

n=0

anxn = a0

(

1 − λ

2
x2 − λ(6 − λ)

4! x4 − λ(6 − λ)(20 − λ)
6! x6 + · · ·

)

+ a1

(

x + 2 − λ
3! x3 + (2 − λ)(12 − λ)

5! x5 + (2 − λ)(12 − λ)(30 − λ)
7! x7 + · · ·

)

.

These two series solutions in large parentheses are linearly independent, one containing only odd
powers of x , the other only even powers. This expression therefore gives the general solution of
Legendre’s equation, with a0 and a1 arbitrary constants.

Now observe that we obtain polynomial solutions by choosing λ of the form n(n + 1), and
either a0 or a1 zero. For example:

With n = 0 and a1 = 0, we have λ= 0 and

y(x)= a0 = constant ;
with n = 1 and a0 = 0, we have λ= 2 and

y(x)= a1x;
with n = 2 and a1 = 0, we have λ= 6 and

y(x)= a0(1 − 3x2);
with n = 3 and a0 = 0, we have λ= 12 and

y(x)= a1

(

x − 5

3
x3

)

;

with n = 4 and a1 = 0, we have λ= 20 and

y(x)= a0

(

1 − 10x2 + 35

3
x4

)

;

and so on. These polynomial solutions are bounded on [−1,1]. If the constant is always chosen
so that y(1)= 1, we obtain the Legendre polynomials Pn(x), the first six of which are

P0(x)= 1, P1(x)= x, P2(x)= 1

2
(3x2 − 1),

P3(x)= 1

2
(5x3 − 3x), P4(x)= 1

8
(35x4 − 30x2 + 3), and

P5(x)= 1

8
(63x5 − 70x3 + 15x).
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FIGURE 15.3 The first six Legendre
polynomials.

Graphs of these first six are shown in Figure 15.3.
In summary, the numbers λ= n(n + 1) for n = 0,1,2, · · · are eigenvalues of Legendre’s

equation, for each nonnegative integer n. For each such n, ϕn(x)= Pn(x) is an eigenfunction.
This eigenfunction is an odd polynomial if n is odd and an even polynomial if n is even.

From Theorem 15.1, these Legendre polynomials (eigenfunctions) are orthogonal on [−1,1]
with respect to the weight function p(x)= 1. This means that

∫ b

a

Pn(x)Pm(x)dx = 0

if n and m are distinct nonnegative integers. The weight function p(x)= 1 can be read directly
from the coefficient of y in Legendre’s differential equation.

There is an extensive literature on Legendre polynomials. We will develop some frequently
used facts about them.

15.2.1 A Generating Function for Legendre Polynomials

Define

L(x, t)= 1√
1 − 2xt + t2

.

For a given x , we can think of L(x, t) as a function of t which can be expanded in a power
series about t = 0. We claim that, when this is done, the coefficient of t n is Pn(x). For this
reason we call L(x, t) a generating function for the Legendre polynomials.

THEOREM 15.3 A Generating Function

L(x, t)=
∞∑

n=0

Pn(x)t
n. �
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This result is useful in deriving properties of Legendre polynomials. We will not give a
complete proof, but we will derive some terms in the power series expansion of L(x, t) about
t = 0, suggesting why the theorem is true. Begin with the Maclaurin series for (1 −w)−1/2:

1√
1 −w = 1 + 1

2
w+ 3

8
w2 + 15

48
w3 + 105

384
w4 + 945

3840
w5 + · · ·

for −1<w< 1. Put w= 2xt − t 2 to obtain

1√
1 − 2xt + t2

=1 + 1

2
(2xt − t2)+ 3

8
(2xt − t2)2

+ 15

48
(2xt − t 2)3 + 105

384
(2xt − t2)4 + 945

3840
(2xt − t 2)5 + · · · .

Now expand each of these powers of 2xt − t 2 and collect the coefficient of each power of t to
obtain

1√
1 − 2xt + t2

=1 + xt − 1

2
t 2 − 3

2
xt 3 + 3

8
t 4 + 5

2
x3t 3

− 15

4
x2t 4 + 15

8
xt 5 − 5

16
t 6 + 35

4
x3t 5 + 105

16
x2t 6

− 35

16
xt 7 + 35

128
t 8 + 63

8
x5t 5 − 315

16
x4t 6 + 315

16
x3t 7

− 315

32
x2t 8 + 315

128
xt 9 − 69

256
t 10 + · · ·

=1 + xt +
(

−1

2
+ 3

2
x2

)

t 2 +
(

−3

2
x + 5

2
x3

)

t 3

+
(

3

8
− 15

4
x2 + 35

8
x4

)

t 4 +
(

15

8
x − 35

4
x3 + 63

8
x5

)

t 5 + · · ·

= P0(x)+ P1(x)t + P2(x)t
2 + P3(x)t

3 + P4(x)t
4 + P5(x)t

5 + · · · .
We know that Pn(1)= 1 because a0 and a1 in the derivation of these polynomial solutions

of Legendre’s equation were chosen for this purpose. Using the generating function, we can also
evaluate Pn(−1).

COROLLARY 15.1

For every nonnegative integer n,

Pn(−1)= (−1)n.

Proof Evaluate

L(−1, t)= 1√
1 + 2t + t 2

= 1√
(1 + t)2

= 1

1 + t
=

∞∑

n=0

Pn(−1)t n

for −1< t < 1. But, for these values of t , we have the geometric series

1

1 + t
=

∞∑

n=0

(−1)nt n.
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By comparing coefficients in these two Maclaurin series for 1/(1 + t), we conclude that
Pn(−1)= (−1)n . �

15.2.2 A Recurrence Relation for Legendre Polynomials

There is a recurrence relation for Legendre polynomials that gives Pn+1(x) in terms of Pn(x) and
Pn−1(x).

THEOREM 15.4 A Recurrence Relation

If n is a positive integer, then

(n + 1)Pn+1(x)− (2n + 1)x Pn(x)+ nPn−1(x)= 0. � (15.6)

Proof Begin with

∂L

∂t
= x − t

(1 − 2xt + t2)3/2
.

Multiply this equation by 1 − 2xt + t2 to obtain

(1 − 2xt + t2)
∂L

∂t
(x, t)− (x − t)L(x, t)= 0.

Substitute L(x, t)=∑∞
n=0 Pn(x)t n into this equation to obtain

(1 − 2xt + t2)

∞∑

n=1

nPn(x)t
n−1 − (x − t)

∞∑

n=0

Pn(x)t
n = 0.

Carry out the indicated multiplications to write
∞∑

n=1

nPnt
n−1 −

∞∑

n=1

2nx Pn(x)t
n +

∞∑

n=1

nPn(x)t
n+1−

∞∑

n=0

x Pn(x)t
n +

∞∑

n=0

Pn(x)t
n+1 = 0.

Rearrange the series where necessary to have t n as the power of t in each summation:
∞∑

n=0

(n + 1)Pn+1(x)t
n −

∞∑

n=1

2nx Pn(x)t
n +

∞∑

n=2

(n − 1)Pn−1(x)t
n

−
∞∑

n=0

x Pn(x)t
n +

∞∑

n=1

Pn−1(x)t
n = 0.

Combine these summations from n = 2 on, writing the terms for n = 0 and n = 1 separately, to
obtain

P1(x)+ 2P2(x)t − 2x P1(x)t − x P0(x)− x P1(x)t + P0(x)t

+
∞∑

n=2

[(n + 1)Pn+1(x)− 2nx Pn(x)+ (n − 1)Pn−1(x)− x Pn(x)+ Pn−1(x)] t n = 0.

For this power series in t to be zero for all t in some open interval about 0, the coefficient of
each power of t must equal 0. Therefore

P1(x)− x P0(x)= 0

2P2(x)− 2x P1(x)− x P1(x)+ P0(x)= 0
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and, for n = 2,3, · · · ,
(n + 1)Pn+1(x)− 2nx Pn(x)+ (n − 1)Pn−1(x)− x Pn(x)+ Pn−1(x)= 0.

These give us

P1(x)= x P0(x)= x,

P2(x)= 1

2
(3x P1(x)− P0(x))= 1

2
(3x2 − 1),

and, for n = 2,3, · · · ,
(n + 1)Pn+1(x)− (2n + 1)x Pn(x)+ nPn−1(x)= 0.

Since this equation is also valid for n = 1, the recurrence relation is proved. �

When we consider eigenfunction expansions in terms of Legendre polynomials, we will
need to know the coefficient of xn in Pn(x). We can obtain this using the recurrence relation.

COROLLARY 15.2

For each positive integer n, the coefficient of xn in Pn(x) is

1 · 3 · · · (2n − 1)

n! . �

This is the product of the odd integers from 1 through 2n − 1 inclusive, divided by the
product of the integers from 1 through n.

Proof Let An be the coefficient of xn in Pn(x). In the recurrence relation (15.6), the highest
power of x that occurs is xn+1, and this power occurs only in Pn+1(x) and in x Pn(x). Therefore
the coefficient of xn+1 on the left side of the recurrence relation is

(n + 1)An+1 − (2n + 1)An.

This must equal zero, because the right side of the recurrence relation is 0, with no xn+1 term.
Thus

An+1 = 2n + 1

n + 1
An

for n = 0,1,2, · · · . We know that A0 = 1 because P0(x)= 1, so we can work back from this
recurrence relation for An to obtain:

An+1 = 2n + 1

n + 1
An = 2n + 1

n + 1

2(n − 1)+ 1

(n − 1)+ 1
An−1

= 2n + 1

n + 1

2n − 1

n
An−1 = 2n + 1

n + 1

2n − 1

n

2(n − 2)+ 1

(n − 2)+ 1
An−2

= 2n + 1

n + 1

2n − 1

n

2n − 3

n − 1
An−2 = · · ·= 2n + 1

n + 1

2n − 1

n

2n − 3

n − 1
· · · 3

2
A0

= 2n + 1

n + 1

2n − 1

n

2n − 3

n − 1
· · · 3

2
.

Therefore

An+1 = 1 · 3 · 5 · · · (2n − 1)(2n + 1)

(n + 1)! ,

and this is the conclusion of the theorem, stated in terms of n + 1 instead of n. �
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15.2.3 Fourier-Legendre Expansions

Because the Legendre polynomials are eigenfunctions of a Sturm-Liouville problem, we can
write an eigenfunction expansion

∑∞
n=0 cn Pn(x) of a function f that is piecewise smooth on

[−1,1]. The cn ’s are given by equation (15.4) with p(x)= 1 and ϕn(x)= Pn(x):

cn =
∫ 1

−1
f (x)Pn(x)dx
∫ 1

−1
P2

n (x)dx
.

The resulting series
∑∞

n=0 cn Pn(x) for f (x) is called the Fourier-Legendre expansion of
f (x) on [−1,1], and the cn ’s are the Fourier-Legendre coefficients of f (x) on this interval.

We will look at an example of a Fourier-Legendre expansion shortly. First we will observe
that the Fourier-Legendre expansion of any polynomial q(x) can be achieved purely by algebraic
manipulation. To do this, solve for powers of x in terms of Legendre polynomials and substitute
these into q(x). To illustrate this process, let

q(x)=−4 + 2x + 9x2.

We know that x = P1(x). Next solve for x2 in P2(x). Since

P2(x)= 3

2
x2 − 1

2
,

then

x2 = 2

3
P2(x)+ 1

3
= 2

3
P2(x)+ 1

3
P0(x).

Substitute these into q(x) to obtain

q(x)=−4 + 2x + 9x2

=−4P0(x)+ 2P1(x)+ 9

(
2

3
P2(x)+ 1

3
P0(x)

)

=−P0(x)+ 2P1(x)+ 6P2(x).

As a simple consequence of this observation, we can show that every Legendre polynomial
is orthogonal on [−1,1] to every polynomial of lower degree.

THEOREM 15.5

If q(x) is a polynomial of degree m, and n>m, then
∫ 1

−1

q(x)Pn(x)dx = 0. �

Proof Suppose q(x) has degree m. Write the Fourier-Legendre representation

q(x)=
m∑

k=0

ck Pk(x).
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Then, if n>m, we have

∫ 1

−1

q(x)Pn(x)dx =
m∑

k=0

ck

∫ 1

−1

Pk(x)Pn(x)dx = 0

because each k< n. �

Using this result, we can derive a simple expression for
∫ 1

−1
P2

n (x)dx , the denominator in the
expression for the Fourier-Legendre coefficients of any function.

THEOREM 15.6

For n = 0,1,2, · · · ,
∫ 1

−1

P2
n (x)dx = 2

2n + 1
. �

Proof Let An denote the coefficient of xn in Pn(x) and let

pn =
∫ 1

−1

P2
n (x)dx .

The highest power term in Pn(x) is Anxn , while the highest power term in Pn−1(x) is An−1xn−1.
Therefore all terms involving xn cancel in the polynomial

q(x)= Pn(x)− An

An−1

x Pn−1

so q(x) has degree at most n − 1. Write

Pn(x)= q(x)+ An

An−1

x Pn−1(x).

Because
∫ 1

−1
q(x)Pn(x)dx = 0 by Theorem 15.5, then

pn =
∫ 1

−1

Pn(x)Pn(x)dx

=
∫ 1

−1

Pn(x)

(

q(x)+ An

An−1

x Pn−1(x)

)

dx

= An

An−1

∫ 1

−1

x Pn(x)Pn−1(x)dx .

Now use the recurrence relation to write

x Pn(x)= n + 1

2n + 1
Pn+1(x)+ n

2n + 1
Pn−1(x).

Then

x Pn(x)Pn−1(x)= n + 1

2n + 1
Pn+1(x)Pn−1(x)+ n

2n + 1
P2

n−1(x).
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Then

pn = An

An−1

∫ 1

−1

x Pn(x)Pn−1(x)dx

= An

An−1

[
n + 1

2n + 1

∫ 1

−1

Pn+1(x)Pn−1(x)dx + n

2n + 1

∫ 1

−1

P2
n−1(x)dx

]

= An

An−1

n

2n + 1
pn−1,

since
∫ 1

−1
Pn+1(x)Pn−1(x)dx = 0. But we know An from Corollary 15.2. Substitute this into the

last expression to obtain

pn = 1 · 3 · 5 · · · (2n − 3)(2n − 1)

n!
(n − 1)!

1 · 3 · 5 · · · (2n − 3)

n

2n + 1
pn−1

= 2n − 1

2n + 1
pn−1.

Now work forward:

p1 = 1

3
p0 = 1

3

∫ 1

−1

P0(x)
2 dx = 1

3

∫ 1

−1

dx = 2

3

p2 = 3

5
p1 = 3

5

2

3
= 2

5

p3 = 5

7
p2 = 2

7

p4 = 7

9
p3 = 2

9
and so on. One can complete the proof by induction and obtain

pn = 2

2n + 1
. �

With this result, we can write the Fourier-Legendre coefficient of f (x) as

cn = 2n + 1

2

∫ 1

−1

f (x)Pn(x)dx .

Now here is an example of a Fourier-Legendre expansion.

EXAMPLE 15.5

We will write the Fourier-Legendre expansion of f (x) = cos(πx/2). Because cos(πx/2) is
continuous with a continuous derivative,

cos(πx/2)=
∞∑

n=0

cn Pn(x)

for −1< x < 1, where

cn = 2n + 1

2

∫ 1

−1

cos(πx/2)Pn(x)dx .

There is no simple expression for cn for arbitrary n, so we will approximate this eigenfunction
expansion with the sum of the first six terms. We must therefore compute c0, · · · , c5. Since we
know P0(x) through P5(x), these integrations can be carried out explicitly.
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1
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–1

x

–0.5

20 1–1–2

FIGURE 15.4 Eigenfunction expansion in
Example 15.5.

First, cos(πx/2) is even on [−1,1], cos(πx/2)Pn(x) is an odd function for n odd and∫ 1

−1
cos(πx/2)Pndx = 0. This means that cn = 0 if n is odd. In particular, c1 = c3 = c5 = 0.
For c0, c2 and c4, we can do the integrations exactly but it is more efficient to use a software

package. If MAPLE is used, the nth Legendre polynomial is denoted LegendreP(n,x). To compute
cn , use the MAPLE code:

((2*n + 1)/2)*int(cos(Pi*x/2)*LegendreP(n,x),x=-1..1);

With, respectively, n = 0,2,4, this yields

c0 ≈ 0.6366197722, c2 ≈−0.6870852690, c4 ≈ 0.05177890435.

If we retain four decimal places, then the sixth partial sum of the Fourier-Legendre expansion of
cos(πx/2) is

cos(πx/2)≈ 0.6366 − 0.3435(3x2 − 1)+ 0.0065(35x4 − 30x2 + 3)

for −1< x < 1.
Figure 15.4 shows a graph of cos(πx/2) and this partial sum on an interval slightly larger

than [−1,1]. Even with this small number of terms, the partial sum is nearly indistinguishable
from the function on [−1,1], within the scale of the graph. Outside [−1,1], the polynomial
approximation rapidly diverges from cos(πx/2). We would not in general expect to obtain this
good an approximation with as few terms of an eigenfunction expansion. �

We conclude this section with some additional properties of Legendre polynomials.

15.2.4 Zeros of Legendre Polynomials

If f is a given function, a number x0 is a zero of f if f (x0)= 0. Not every function has real
zeros. For example, f (x)=1+ x2 does not. A real-valued function of a single real variable has a
zero exactly where its graph crosses the horizontal axis, and the graph of y = 1 + x2 has no such
crossing.

Notice, however, that for (n = 1,2,3,4,5), the graph of Pn(x) in Figure 15.3 crosses the
x-axis exactly n times between −1 and 1, suggesting that each of these functions has n zeros
between −1 and 1.
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More than this can be shown. A zero x0 of f (x) is simple if f (x0)= 0 but f ′(x0) �= 0. For
example, f (x)= x2 −4 has simple zeros at x =2 and x =−2, while g(x)= (1+ x)2 has a zero at
x =−1, but this zero is not simple because g(−1)= g′(−1)=0. We call −1 a double or repeated
zero of g(x).

THEOREM 15.7 Zeros of Legendre Polynomials

For each positive integer n, Pn(x) has n simple zeros, all lying between −1 and 1. �

Proof Let n be a positive integer.
First we will show that, if Pn(x) has a zero x0 in (−1,1), then this zero must be simple.

Since Pn(x) satisfies Legendre’s equation with λ= n(n + 1), then
[
(1 − x2)P ′

n

]′ + n(n + 1)Pn = 0.

If Pn(x0)= P ′
n(x0)= 0, then Pn(x) satisfies the initial value problem

[(1 − x2)y ′]′ + n(n + 1)y = 0; y(x0)= y ′(x0)= 0.

But y(x)= 0, the identically zero function, is also a solution of this problem. By uniqueness of
the solution to this problem, we would then have y(x)= Pn(x)= 0 for all x , and this is false.
Therefore, any zero that Pn(x) has must be simple.

Next we will show that Pn(x) has at least one zero in (−1,1). Because Pn(x) is orthogonal
to P0(x)= 1,

∫ 1

−1

P0(x)Pn(x)dx =
∫ 1

−1

Pn(x)dx = 0.

If Pn(x) were strictly positive, or strictly negative, on (−1,1), then this integral would be,
respectively, positive or negative. Therefore for some x0 in (−1,1), Pn(x0)= 0.

We now know that Pn(x) has at least one zero in (−1,1), and any zero must be simple.
Now we will show that Pn(x) has n zeros between −1 and 1. Let x1, · · · , xm be all the zeros

of Pn(x) in (−1,1). Then 1 ≤ m ≤ n. Order these zeros from left to right across the interval

−1< x1 < x2< · · ·< xm < 1.

If m< n, then the polynomial

q(x)= (x − x1)(x − x2) · · · (x − xm)

has degree m < n and the same zeros as Pn(x) in (−1,1). Then Pn(x) and q(x) change sign at
exactly the same points in (−1,1). This means that Pn(x) and q(x) are either of the same sign
on each interval (−1, x1), (x1, x2), · · · , (xm−1, xm), (xm,1), or of opposite sign on each of these
intervals. But then q(x)Pn(x) is either strictly positive or strictly negative on (−1,1), except at
x1, · · · , xm . Then

∫ 1

−1

q(x)Pn(x)dx

must be positive or negative. But this integral is zero if the degree of q(x) is less than the degree
of Pn(x). We conclude that m = n, hence Pn(x) has n simple zeros on (−1,1), as was to be
proved. �

The zeros of Legendre polynomials have quite fascinating properties, one of which we will
now explore.
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15.2.5 Distribution of Charged Particles

Suppose N charged beads are distributed on the x-axis between −1 and 1. The beads are free to
move along the wire on this interval. There is a planar charge of +1 at the ends of the interval
and each bead has a charge of +2. The like charges of the beads repel each other, and the ends
repel the beads as well. If left alone, the beads will eventually reach an equilibrium position in
which they are at rest, with the repelling forces in balance. We claim that the beads will end up
at the zeros of PN (x).

To show this, we will use the fact that two particles (beads) carrying planar charge q1 and q2

and located r units apart exert a force of magnitude kq1q2/r on each other.
Begin with the simple case that N = 2. This will help us understand the forces involved. If

the beads are at x1 and x2, with x1< x2, then the force q1 at x1 is

F1 = 2k

[
1

x1 + 1
− 2

x2 − x1

+ 1

x1 − 1

]

.

The force on q2 at x2 is

F2 = 2k

[
1

x2 + 1
+ 2

x2 − x1

+ 1

x2 − 1

]

.

To be in equilibrium it is necessary that F1 = 0 and F2 = 0. Add these two equations to obtain

2x1

x2
1 − 1

+ 2x2

x2
2 − 1

= 0.

Simplify this to obtain

2(x1x2 − 1)(x2 + x2)= 0,

hence x1 =−x2. From F1 = 0 this yields

1

x1 + 1
+ 2

2x1

+ 1

x1 − 1
= 0,

or 3x2
1 − 1 = 0. Then

x1 =− 1√
3

and x2 = 1√
3

and these are the zeros of P2(x).
This gives us some confidence in proceeding to the case of N beads. Suppose they are

located at x1 < x2 < · · ·< xN . The forces acting on qk at xk are 2k/(xk + 1) due to the charge of
+1 at x = −1, 2k/(xk − 1) due to the charge of +1 at x = +1, 4k/(xk − xi) due to the charge of
+2 at xi < xk , and −4k/(xi − xk) due to the charge of +2 at xi > xk . The total force on qk is

Fk = 2k

xk + 1
+ 2k

xk − 1
+

N∑

i=1,i �=k

4k

xk − xi

.

The beads are in equilibrium if and only if the forces are zero, hence if and only if, after dividing
out k, x1, · · · , xN satisfy

2xk

1 − x2
k

=
N∑

i=1,i �=k

2

xk − xi

for k =1,2, · · · , N . This is a necessary and sufficient condition for the beads to be in equilibrium.
We will show that the N simple zeros of PN (x) (labeled in increasing order) also satisfy this
condition.
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First observe from Legendre’s differential equation that

(1 − x2)P ′′
N (x)− 2x P ′

N (x)+ N (N + 1)PN (x)= 0.

If we put x = xk , the kth zero of PN (x), then PN (xk)= 0 and P ′
N (xk) �= 0, so

P ′′
N (xk)

P ′
N (xk)

= 2xk

1 − x2
k

.

The right side of this equation is the left side of the necessary and sufficient condition for equi-
librium. To complete the proof, we will show that the right side of this condition is also equal to
P ′′

N (x)/P ′
N (xk).

Since PN (x) has all simple zeros, then for some number A,

PN (x)= A(x − x1)(x − x2) · · · (x − xN ).

In product notation,

PN (x)= A�N
i=1(x − xi).

Take the derivative of this product and use the fact that (d/dx)(x − xi)= 1:

P ′
N (x)= A

N∑

i=1

�N
m=1,m �=i(x − xm)

so

P ′′
N (x)= A

N∑

j=1

N∑

i=1,i �= j

�N
m=1,m �=i, j(x − xm).

Then

P ′
N (xk)= A

N∑

i=1

�N
m=1,m �=i(xk − xm).

In this expression, all terms are zero except when m �= k, so

P ′
N (xk)= A�N

m=1,m �=k(xk − xm).

Similarly compute

P ′′
N (xk)= 2A

N∑

j=1, j �=k

�N
m=1,m �= j,k(xk − xm).

Since the zeros are simple, then P ′
N (xk) �= 0 and

P ′′
N (xk)

P ′
N (xk)

=
∑

j=1, j �=k

2

xk − x j

.

This is the right side of the necessary and sufficient condition for the beads to be in equilibrium.
Using j for the summation index on the right, we now have

2xk

1 − x2
k

= P ′′
N (xk)

P ′
N (xk)

=
N∑

j=1, j �=k

2

xk − x j

.

Therefore the zeros satisfy the necessary and sufficient condition for the beads to be in
equilibrium, completing the proof.
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15.2.6 Some Additional Results

There are many other results involving Legendre polynomials. One of these is a derivative
formula for Pn(x), called Rodrigues’s formula. For n any nonnegative integer,

Pn(x)= 1

2nn!
dn

dxn
((x2 − 1)n).

In this it is understood that the zero order derivative is just the function itself. This formula can
be proved by induction on n.

There is also an integral formula. For any nonnegative integer n,

Pn(x)= 1

π

∫ π

0

(
x +√

x2 − 1 cos(θ)
)n

dθ.

This integral formula can be established as follows. Let Qn denote the integral on the right.
Show that Qn satisfies the same recurrence relation as the Legendre polynomials. This will
involve an integration by parts. Finally, show directly that Q0 = P0 and Q1(x)= P1(x). This
will show that Qn(x)= Pn(x) for all nonnegative integers n.

There is a considerable literature on properties of Legendre polynomials, as well as on other
weighted orthogonal polynomials arising as eigenfunctions of Sturm-Liouville problems. These
include the Hermite, Laguerre and Tchebyshev polynomials, and many others.

SECTION 15.2 PROBLEMS

1. Use the recurrence relation to derive P6(x), P7(x), and
P8(x).

2. Use Rodrigues’s formula to derive P2(x) through
P5(x).

3. It can be shown that

Pn(x)=
[n/2]∑

k=0

(−1)k
(2n − 2k)!

2nk!(n − k)!(n − 2k)! xn−2k,

where, for any number t , [t] denotes the largest inte-
ger not exceeding t . Use this formula to generate P0(x)
through P5(x).

4. Put λ= n(n + 1) into Legendre’s differential equation,
and let y(x)= u(x)Pn(x). Solve the resulting equation
for u(x) to derive the second solution

Qn(x)= Pn(x)
∫

1

(1 − x2)(Pn(x))2
dx

of Legendre’s equation. These functions Qn(x) are
called Legendre functions of the second kind, and they
are defined but unbounded on (−1,1).
Show that

Q0(x)=−1

2
ln

(
1 + x

1 − x

)

,

Q1(x)= 1 − x

2
ln

(
1 + x

1 − x

)

,

and

Q2(x)= 1

4
(3x2 − 1) ln

(
1 + x

1 − x

)

− 3

2
x .

5. The gravitational potential at a point P : (x, y, z) due to
a unit mass at (x0, y0, z0) is

ϕ(x, y, z)= 1
√
(x − x0)2 + (y − y0)2 + (z − z0)2

.

In some contexts (such as astronomy), it is convenient
to expand ϕ(x, y, z) in powers of r or 1/r , where

r =√x2 + y2 + z2.

To do this, introduce the angle θ shown in Figure 15.5.
Let

d =
√

x2
0 + y2

0 + z2
0

P: (x, y, z)

(x0, y0, z0)

(0, 0, 0)

Rr

d
θ

FIGURE 15.5 Problem 5, Section
15.2.
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and

R =√(x − x0)2 + (y − y0)2 + (z − z0)2.

(a) Use the law of cosines to write

ϕ(x, y, z)= 1

d
√

1 − 2(r/d) cos(θ)+ (r/d)2 .

(b) If r < d , use the generating function for Legendre
polynomials to show that

ϕ(r)=
∞∑

n=0

1

dn+1
Pn(cos(θ))rn.

(c) If r > d, use the generating function to show that

ϕ(r)= 1

r

∞∑

n=0

dn Pn(cos(θ))r−n.

6. Show that
∞∑

n=0

(
1

2n+1

)

Pn(1/2)= 1√
3
.

7. Let n be a nonnegative integer. Prove that

P2n+1(0)= 0 and P2n(0)= (−1)n
(2n)!

22n(n!)2 .

8. Expand each of the following polynomials in a series
of Legendre polynomials.

(a) 1 + 2x − x2

(b) 2x + x2 − 5x3

(c) 2 − x2 + 4x4

In each of Problems 9 through 14, find the first five coef-
ficients in the Fourier-Legendre expansion of f (x) on
[−1,1]. Graph the function and the partial sum of these
first five terms on the same set of axes, for −3≤ x ≤3. The
expansion only represents the function on (−1,1), but it is
instructive to see how the partial sums and the function are
unrelated outside this interval.

9. f (x)= sin(πx/2)
10. f (x)= e−x

11. f (x)= sin2(x)
12. f (x)= cos(x)− sin(x)

13. f (x)=
{

−1 for −1 ≤ x ≤ 0

1 for 0< x ≤ 1.

14. f (x)= (x + 1) cos(x)

15.3 Bessel Functions

This section is devoted to Bessel functions, Bessel’s differential equation, Fourier-Bessel
eigenfunction expansions and some applications.

Friedrich Wilhelm Bessel (1784 - 1846) was a mathematician and director of the astro-
nomical observatory in Königsberg. He obtained series which would later be known as Bessel
functions in solving a problem known as Kepler’s problem. The same functions had appeared
in the 1730’s in work by the Swiss natural philosopher Daniel Bernoulli, who was attempt-
ing to describe oscillations in a suspended heavy chain. Joseph Fourier also encountered these
functions in his treatise on heat diffusion, which carried the seeds of modern day Fourier
analysis. We will discuss some of these applications as we develop the functions named for
Bessel.

To do this we will need the gamma function, which is used in writing Bessel functions.

15.3.1 The Gamma Function

The gamma function is defined by


(x)=
∫ ∞

0

t x−1e−t dt.

This integral converges for x > 0. We will use the following property of 
(x).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:20 THM/NEIL Page-534 27410_15_ch15_p505-562

534 CHAPTER 15 Special Functions and Eigenfunction Expansions

THEOREM 15.8 Factorial Property of the Gamma Function

If x > 0 then


(x + 1)= x
(x). �

Proof This is a straightforward integration by parts, with u = t x and dv= e−t dt :


(x + 1)=
∫ ∞

0

t xe−t dt

=[t x(−e−t)]∞
0 −

∫ ∞

0

xt x−1(−1)e−t dt

= x
∫ ∞

0

t x−1e−t dt = x
(x). �

To see why this is called the factorial property, first compute


(1)=
∫ ∞

0

e−t dt = 1.

By Theorem 15.8,


(2)= 1
(1)= 1,
(3)= 2
(2)= 2!,

(4)= 3
(3)= 3 · 2 = 3!,
(5)= 4
(4)= 4 · 3! = 4!,

and, for any positive integer n, 
(n + 1)= n!.
The gamma function can be extended to negative noninteger values by rewriting the factorial

property as


(x)= 1

x

(x + 1)

for x>0. If −1< x<0, then x +1>0, so 
(x +1) is defined and we can 
(x)= (1/x)
(x +1).
Once we have defined 
(x) for −1< x < 0, then we can use this strategy again to 
(x) for
−2< x <−1. In this way we can walk to the left over the real line, defining 
(x) for all negative
numbers except integers.

For example,


(−1/2)= 1

−1/2



(

−1

2
+ 1

)

=−2
(1/2)

and


(−3/2)= 1

−3/2



(−3

2
+ 1

)

=−2

3

(−1/2)= 4

3

(1/2).

15.3.2 Bessel Functions of the First Kind

The differential equation

x2 y ′′ + xy ′ + (x2 − ν2)y = 0 (15.7)

in which ν≥ 0, is called Bessel’s equation of order ν. This differential equation is second-
order, and the phrase “order ν” refers to the parameter ν appearing in it.
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In Section 3.7, we used the Laplace transform to solve Bessel’s equation of order n, for n a
nonnegative integer. This led to solutions

Jn(x)=
∞∑

k=0

(−1)k

22k+nk!(n + k)! x
2k+n.

Jn(x) is the Bessel function of the first kind of order n. However, we also need solutions for n
not necessarily having integer values, and we need a second, linearly independent, solution for
Bessel’s equation. To these ends we will employ the Frobenius method of solution discussed in
Section 4.2.

Bessel’s equation of order ν can be written

y ′′ + 1

x
y ′ +

(

1 − ν2

x2

)

y = 0,

from which we see that 0 is a regular singular point. We therefore attempt a Frobenius solution

y(x)=
∞∑

n=0

cnxn+r .

Substitute the proposed Frobenius solution into the differential equation and attempt to solve for
r and the coefficients cn . Begin with the substitution of y into Bessel’s equation (15.7):

x2

∞∑

n=0

(n + r)(n + r − 1)cnxn+r−2 + x
∞∑

n=0

(n + r)cnxn+r−1

+ (x2 − ν2)

∞∑

n=0

cnxn+r = 0.

Write this equation as
∞∑

n=0

(n + r)(n + r − 1)cnxn+r +
∞∑

n=0

(n + r)cnxn+r

+
∞∑

n=0

cnxn+r+2 −
∞∑

n=0

ν2cnxn+r = 0.

Shift indices to write the third summation as
∞∑

n=0

cnxn+r+2 =
∞∑

n=2

cn−2x
n+r

to write the last equation as

[r(r − 1)+ r − ν2]c0x
r +[r(r + 1)+ r + 1 − ν2]c1x

r+1

+
∞∑

n=2

[[(n + r)(n + r − 1)+ (n + r)− ν2]cn + cn−2

]
xn+r = 0.

Set the coefficient of each power of x equal to 0. Since we require in this method that c0 �=0,
we obtain from the coefficient of xr the indicial equation

r 2 − ν2 = 0.

Then r =±ν. Set r = ν in the coefficient of xr+1 to obtain

(2ν+ 1)c1 = 0,

hence c1 = 0.
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From the coefficient of xn+r , we have

[(n + r)(n + r − 1)+ (n + r)− ν2]cn + cn−2

for n = 2,3, · · · . Since r = ν, this reduces to

cn =− 1

n(n + 2ν)
cn−2

for n = 2,3, · · · . But c1 = 0, so

c3 = c5 = codd = 0.

All of the odd-indexed coefficients are zero.
For the even-indexed coefficients, write

c2n =− 1

2n(2n + 2ν)
c2n−2 =− 1

22n(n + ν)c2n−2

=− 1

22n(n + ν)
−1

2(n − 1)[2(n − 1)+ 2ν]c2n−4

= 1

24n(n − 1)(n + ν)(n + ν− 1)
c2n−4

= · · · = (−1)n

22nn(n − 1) · · · (2)(1)(n + ν)(n − 1 + ν) · · · (1 + ν)c0

= (−1)n

22nn!(1 + ν)(2 + ν) · · · (n + ν)c0.

One Frobenius solution of Bessel’s equation of order ν is therefore

y(x)= c0

∞∑

n=0

(−1)n

22nn!(1 + ν)(2 + ν) · · · (n + ν) x
2n+ν .

For any c0 �= 0, this function is a solution of Bessel’s equation of order ν ≥ 0. These solutions
occur in many applications, including the analysis of radiation from cylindrical containers and
vibrations of circular membranes.

Consider the factor

(1 + ν)(2 + ν) · · · (n + ν)
in the denominator of y(x). Using the factorial property of the gamma function, write


(n + ν+ 1)= (n + ν)
(n + ν)= (n + ν)(n + ν − 1)
(n + ν− 1)

= · · ·= (n + ν)(n + ν− 1) · · · (n + ν− (n − 1))
(n + ν− (n − 1))

= (1 + ν)(2 + ν) · · · (n − 1 + ν)(n + ν)
(ν+ 1).

Then

(1 + ν)(2 + ν) · · · (n + ν)= 
(n + ν+ 1)


(ν+ 1)
.

This enables us to write the solution of Bessel’s equation as

y(x)= c0

∞∑

n=0

(−1)n
(ν+ 1)

22nn!
(n + ν+ 1)
x2n+ν .

It is customary to choose

c0 = 1

2ν
(ν+ 1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:20 THM/NEIL Page-537 27410_15_ch15_p505-562

15.3 Bessel Functions 537

to obtain the solution usually denoted Jν(x):

Jν(x)=
∞∑

n=0

(−1)n

22n+νn!
(n + ν+ 1)
x2n+ν .

Jν(x) is called a Bessel function of the first kind of order ν. The series defining Jν(x)
converges for all x .

Because Bessel’s equation is second-order (as a differential equation), there is a second
solution that is linearly independent from Jν . The Frobenius theorem (Theorem 4.2) tells us how
to proceed to find a second solution. Recall that the indicial equation of Bessel’s differential
equation is r 2 − ν2 = 0, with roots ν and −ν. The form that a second solution will take depends
on the difference 2ν of these roots. With Theorem 4.2 as a guide, we find the following second
solutions by taking cases on 2ν.

Case 1 If 2ν is not an integer, then Jν and J−ν are linearly independent (neither is a constant
multiple of the other). In this case, the general solution of Bessel’s equation is

y(x)= a Jν(x)+ bJ−ν(x),

with a and b arbitrary constants.

Case 2 If 2ν is an odd positive integer, say 2ν = 2n + 1 for some nonnegative integer n, then
ν = n + 1

2
and Jν and J−ν are again linearly independent, as in Case 1. In this case, the general

solution of Bessel’s equation is

y(x)= a Jn+1/2(x)+ bJ−n−1/2(x).

By manipulating the series for Jν(x), it can be shown that in this case, Jn+1/2(x) and J−n−1/2(x)
can be expressed in closed form as finite sums of terms involving algebraic combinations of x ,
sin(x) and cos(x). For example,

J1/2(x)=
√

2

πx
sin(x), J−1/2(x)=

√
2

πx
cos(x),

J3/2(x)=
√

2

πx

[
sin(x)

x
− cos(x)

]

,

and

J−3/2(x)=
√

2

πx

[

− sin(x)− cos(x)

x

]

.

Case 3 If 2ν is an integer, but not of the form 2n + 1 for any nonnegative integer n, then Jν and
J−ν are solutions of Bessel’s equation, but are linearly dependent:

J−ν(x)= (−1)ν Jν(x).

In this case, we cannot manufacture a second linearly independent solution from Jν(x). This
leads us to construct such a second linearly independent solution, leading us to Bessel functions
of the second kind.
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15.3.3 Bessel Functions of the Second Kind

We are in Case 3 of the preceding subsection. Begin with the case that ν = 0. The Frobenius
theorem (4.2) tells us in this case to look for a second solution

y2(x)= Jν(x) ln(x)+
∞∑

n=1

c∗
nxn.

Substitute this into Bessel’s equation of order 0 and obtain, after a computation like that used to
derive Jν(x),

y2(x)= J0(x) ln(x)+
∞∑

n=1

(−1)n+1

22n(n!)2 φ(n)x
2n

where

φ(n)= 1 + 1

2
+ · · ·+ 1

n
.

Instead of using this solution, it is customary to use a linear combination of y2(x) and J0(x),
which will also be a solution. This leads to the second solution (in this case ν= 0)

Y0(x)= 2

π
[y2(x)+ (γ − ln(2))J0(x)],

for x > 0. Here γ is the Euler constant, defined to be

γ = lim
n→∞

(φ(n)− ln(n))≈ 0.577215664901533 · · · .
Because of the logarithm term, Y0 and J0 are linearly independent solutions of Bessel’s equation
of order 0, which therefore has the general solution

y(x)= a J0(x)+ bY0(x)

for x > 0. Y0 is the Bessel function of the second kind of order zero. With the choice of constants
used to define Y0, this function is also called Neumann’s function of order zero.

In many applications, we can immediately choose b=0 in solving Bessel’s equation of order
zero, because the logarithm term in Y0(x) tends to −∞ as x → 0. This means that a bounded
solution requires b = 0. As we will see later, this reasoning applies when we analyze the motion
of a vibrating circular membrane, since in polar coordinates the center of the membrane is r = 0
and the amplitudes of the vibration must be bounded.

If ν is a positive integer, say ν= n, the second solution of Bessel’s equation of order ν is the
Bessel function of the second kind of order n, defined by

Yn(x)= 2

π

[

Jn(x)[γ + ln(x/2)] +
∞∑

k=1

(−1)k+1[φ(k)+φ(k + 1)]
22k+n+1k!(k + n)! x2k+n

]

− 2

π

n−1∑

k=0

n − k − 1!
22k−n+1k! x2k−n.

This agrees with Y0(x) if n =0 with the understanding that in this case the last (finite) summation
is omitted.

The general solution of Bessel’s equation of positive integer order ν= n is therefore

y(x)= a Jn(x)+ bYn(x).

It is also possible to define Bessel functions of the second kind of noninteger order by setting

Yν(x)= 1

sin(νπ)
[Jν(x) cos(νπ)− J−ν(x)].
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FIGURE 15.6 Jν(x) for ν= 0,1,5/3,4.
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FIGURE 15.7 Yν(x) for ν= 0,1/3,1/2.

Figures 15.6 and 15.7 show graphs of some Bessel functions of the first and second kinds,
respectively.

Sometimes we encounter disguised versions of Bessel’s equation. The differential equation

y ′′ −
(

2a − 1

x

)

y ′ +
(

b2c2x2c−2 + a2 − ν2c2

x2

)

y = 0 (15.8)

has the general solution

y(x)= c1x
a Jn(bxc)+ c2x

aYn(bxc)

if ν= n is an integer, and

y(x)= c1x
a Jν(bxc)+ c2x

a Jν(bxc)

if ν is not an integer. Verification of this is an exercise in chain rule differentiation and is requested
in Problem 1.

EXAMPLE 15.6

We will solve

y ′′ −
(

2
√

3 − 1

x

)

y ′ +
(

784x6 − 61

x2

)

y = 0.

Match this equation to the template (15.8). Clearly we need a = √
3. Because of the xb term, try

2c − 2 = 6, so c = 4. Now we must choose b and ν so that

784 = b2c2 = 16b2.

Then b = 2. Next,

a2 − ν2c2 = 3 − 16ν2 =−61,

so ν= 2. The general solution of this differential equation is

y(x)= c1x
√

3 J2(7x4)+ c2x
√

3Y2(7x4).

Because of the Bessel function of the second kind, this solution is defined for x > 0. �
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We will pause in the development of Bessel functions to look at two applications. The first
is the problem studied by Daniel Bernoulli in perhaps the first appearance of a Bessel function.
Notice that both solutions depend on knowledge of zeros of Bessel functions. These will also
be important for eigenfunction expansions involving Bessel functions, and we will devote some
time to them later.

15.3.4 Displacement of a Hanging Chain

Imagine a heavy flexible chain fixed at its upper end and free at the lower end. We want to
describe oscillations caused by a small displacement of the lower end.

First, we need to model the problem. Assume that each particle of the chain oscillates in a
horizontal straight line. Let m be the mass of the chain per unit length, assumed constant, L its
length, and y(x, t) the horizontal displacement at time t of the particle of chain at distance x from
the top end of the chain. To derive an equation for y, consider an element of chain of length �x .
Let the forces acting on the ends of this segment have magnitudes T and T +�T . The horizon-
tal component of Newton’s first law of motion (force equals mass times acceleration) requires
that

m�x
∂2 y

∂t 2
= ∂

∂x

(

T
∂y

∂x

)

�x .

Then

m
∂2 y

∂t 2
= ∂

∂x

(

T
∂y

∂x

)

.

We will assume at this point that

T = mg(L − x),

which has been found to be a good approximation for small disturbances. The equation for y is
now

∂2 y

∂t 2
=−g

∂y

∂x
+ g(L − x)

∂2 y

∂x2
.

This is a partial differential equation. To solve it, first change variables by putting

z = L − x and u(z, t)= y(L − z, t).

The partial differential equation transforms to

∂2u

∂t 2
= g

∂u

∂z
+ gz

∂2z

∂z2
.

We will now anticipate the method of separation of variables (Chapter 16). Look for a solution
having the form of a function of z multiplied by a function of t . Not all functions of z and t have
this form (for example, sin(zt) does not). However, for the equation under consideration, some
thought and trial and error suggest that there might be a solution of the form

u(z, t)= f (z) cos(ωt − δ).
The cosine term is suggested by the fact that we expect the motion of the free end of the chain
to exhibit periodic oscillations. Substitute this expression for u(z, t) into the partial differential
equation to obtain

−ω2 f (z) cos(ωt − δ)= g f ′(z) cos(ωt − δ)+ gz f ′′(z) cos(ωt − δ).
Dividing out the common term cos(ωt − δ), we obtain

−ω2 f (z)= g f ′(z)+ gz f ′′(z).
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This can be written

f ′′(z)+ 1

z
f ′(z)+ ω2

gz
f (z)= 0.

This is in the form of equation (15.8) if we can solve for a, b, and c so that

−(2a − 1)= 1,2c − 2 =−1,b2c2 = ω2

g
, and a2 − n2c2 = 0.

Choose

a = n = 0, c = 1

2
and b = 2ω√

g
.

The solution for f (z) is

f (z)= c1 J0

(

2ω
√

z

g

)

+ c2Y0

(

2ω
√

z

g

)

.

Now Y0

(
2ω

√
z/g

)→−∞ as z → 0 (which occurs if x → L , the lower end of the chain). This is
not realistic physically, so choose c2 = 0. Then f (z) must have the form

f (z)= c1 J0

(

2ω
√

z

g

)

.

Therefore,

u(z, t)= c1 J0

(

2ω
√

z

g

)

cos(ωt − δ)

so y(x, t) is

y(x, t)= c1 J0

(

2ω

√
L − x

g

)

cos(ωt − δ)

The frequencies of the normal vibrations are determined by using the fact that the upper end of
the chain does not move. This means that, for all times t , y(0, t)= 0. Assuming that c1 �= 0 (or
else the solution vanishes), this requires that

J0

(

2ω

√
L

g

)

= 0.

We will see shortly that the zero order Bessel function of the first kind has infinitely many positive
zeros. If these zeros are labeled ω1, ω2, · · · in increasing order, then ω must satisfy

2ω

√
L

g
=ω j

for some positive integer j . This means that ω can take on the values

ω= 1

2
ω j

√
g

L
.

These are the frequencies of the normal modes of vibration of the end of the chain, one normal
mode for each positive zero of J0. The periods of the oscillation are

4π

ω j

√
L

g
.
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If we consult a table or use MAPLE to call up these zeros (see Example 15.7), we find that

ω1 ≈ 2.40483,ω2 ≈ 5.52008,ω3 ≈ 8.65373,

and so on. Using these we can obtain approximate numerical values for the frequencies of the
first three normal modes of vibration, given the length of the chain.

15.3.5 Critical Length of a Rod

We will analyze the critical bending length of a rod. Suppose we have a thin rod of constant
weight w per unit length, length L and circular cross section of radius a. The rod is clamped
in a vertical position. If the rod is “long enough,” and the upper end is displaced and held
in position until the rod is at rest, the rod will remain bent. By contrast, if the rod is “short
enough”, it will return to its vertical position after the end has been displaced slightly. The crit-
ical length LC is the transition between these two states. If L ≥ LC , the rod remains bent, but
if L < LC , it returns to the vertical after a small displacement. We want to derive an expression
for LC .

Let E be the Young’s modulus for the material of the rod. This is the ratio of stress to
strain for a linear compression. Figure 15.8 shows the rod after a small displacement. The x-axis
is vertical, along the original position of the rod. Downward is positive and the origin O is
at the upper end. P : (x, y) and Q : (ξ, η) are points on the bent rod, as shown. The moment
about P of the weight of an element w�x at Q is w�x[y(ξ)− y(x)]. By integrating this we
obtain the moment about P of the weight of the rod above P . From the theory of elasticity, this
moment about P equals E I y ′′(x). Assuming that the part of the rod above P is in equilibrium,
then

E I y ′′(x)=
∫ x

0

w[y(ξ)− y(x)]dξ.

Differentiate this equation with respect to x :

E I y(3)(x)=w[y(x)− y(x)] −
∫ x

0

wy ′(x)dξ =−wxy ′(x).

(0, 0)

P: (x, y)

Q

x

FIGURE 15.8 Displacement of
a rod.
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Then

y(3)(x)+ w

E I
xy ′(x)= 0.

Let u = y ′ to write the second order differential equation

u ′′ + w

E I
xu = 0.

Compare this with equation (15.8), putting

2a − 1 = 0,a2 − ν2c2 = 0,2c − 3 = 1, and b2c2 = w

E I
.

Thus choose

a = 1

2
, c = 3

2
, ν= 1

3
,b = 2

3

√
w

E I
.

The general solution for u(x) is

u(x)= y ′(x)= c1

√
x J1/3

(
2

3

√
w

E I
x3/2

)

+ c2

√
x J−1/3

(
2

3

√
w

E I
x3/2

)

.

Since there is no bending moment at the top of the rod, y ′′(0)=0. A routine differentiation shows
that this forces c1 = 0. Now

y ′(x)= c2

√
x J−1/3

(
2

3

√
w

E I
x3/2

)

.

Because the lower end of the rod is clamped vertically, then y ′(L)= 0, so

c2

√
L J−1/3

(
2

3

√
w

E I
L3/2

)

= 0.

We must have c2 �= 0 to have a nontrivial solution. The critical length LC is the smallest positive
value of L such that

J−1/3

(
2

3

√
w

E I
L3/2

)

= 0.

We find from a table or from MAPLE that the smallest positive number α such that J−1/3(α)= 0
is approximately 1.8663. Therefore

2

3

√
w

E I
L3/2

c ≈ 1.8663.

Solve for LC :

LC ≈ 1.9863

(
E I

w

)1/3

.

This is the critical length.

15.3.6 Modified Bessel Functions

Some applications use modified Bessel functions. We will show how these are obtained. Begin
with the general solution

y(x)= c1 J0(kx)+ c2Y0(kx)

of the zero-order Bessel equation

y ′′ + 1

x
y ′ + k2 y = 0.
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With k = i ,

y(x)= c1 J0(i x)+ c2Y0(i x)

is the general solution of

y ′′ + 1

x
y ′ − y = 0,

for x > 0. This differential equation is a modified Bessel equation of order zero, and J0(i x) is a
modified Bessel function of the first kind of order zero. Usually this is denoted I0(x):

I0(x)= J0(i x)= 1 + 1

22
x2 + 1

2242
x4 + 1

224262
x6 + · · · .

Normally Y0(i x) is not used, but instead the second solution is chosen to be

K0(x)=[ln(2)− γ ]I0(x)− I0(x) ln(x)+ 1

4
x2 + · · ·

for x > 0. Here γ is the Euler constant and K0 is a modified Bessel function of the second kind of
order zero. Figure 15.9 shows partial graphs of I0 and K0.

For x > 0, the general solution of

y ′′ + 1

x
y ′ − b2 y = 0

is

y(x)= c1 I0(bx)+ c2 K0(bx).

It is routine to manipulate the series for I0(bx) to obtain
∫

x I0(bx)dx = x

b
I ′

0(bx)+ c, (15.9)

for any nonzero b.
Sometimes we need to know how I0(x) behaves for large x . We can obtain an expression for

I0(x), valid for large positive x , as follows. Begin with the fact that I0(x) is a solution of

y ′′ + 1

x
y ′ − y = 0.

6

4

0

5

3

1

2

x
310.5 2.50 21.5

FIGURE 15.9 I0(x) and K0(x).
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Make the change of variables y = ux−1/2 to obtain

u ′′ =
(

1 − 1

4x2

)

u. (15.10)

As x increases, 1 − 1/4x2 → 1 and this differential equation for u more closely approximates
u ′′ − u = 0, with solutions ex and e−x . We therefore argue intuitively that, as x increases, any
solution of the differential equation for u which approaches ∞ as x → ∞ will be approximated
by cex for some c.

More generally, this suggests the further transformation u =vex . Substitute this into equation
(15.10) to obtain

v′′ + 2v′ + 1

4x2
v= 0. (15.11)

We will attempt a solution of this equation by a series of the form

v(x)= 1 + c1

1

x
+ c2

1

x2
+ c3

1

x3
+ · · · .

Substitute this into equation (15.11) and rearrange terms to obtain
(

−2c1 + 1

4

)
1

x2
+
(

2c1 − 4c2 + 1

4
c1

)
1

x3

+
(

6c2 − 6c3 + 1

4
c2

)
1

x4

+
(

12c3 − 8c4 + 1

4
c3

)
1

x5
+ · · ·= 0.

Each coefficient of a power of 1/x must vanish, so

−2c1 + 1

4
= 0

9

4
c1 − 4c2 = 0

25

4
c2 − 6c3 = 0

49

4
c3 − 8c4 = 0

and so on. Then

c1 = 1

8
, c2 = 9

16
c1 = 32

2 · 82
,

c3 = 3252

3!83
, c4 = 325272

4!84
,

and so on. The pattern is clear and we write

v(x)= 1 + 1

8

1

x
+ 32

2 · 82

1

x2
+ 3252

3!83

1

x3
+ 325272

4!84

1

x4
+ · · · . (15.12)

This suggests an expansion of the form

I0(x)= cex

√
x

(

1 +
8

1

x
+ 32

2 · 82

1

x2
+ 3252

3!83

1

x3
+ 325272

4!84

1

x4
+ · · ·

)

, (15.13)

in which c is an appropriately chosen positive constant. The series on the right is actually a
divergent series. However, the partial sum of the first N terms approximates I0(x) as closely as
we like for x sufficiently large. Such an approximation is called an asymptotic expansion. By an
analysis we will omit, it can be shown that c = 1/

√
2π .
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15.3.7 Alternating Current and the Skin Effect

We will use a modified Bessel function to analyze the flow of alternating current in a wire of
circular cross section. Begin with general principles named for Ampére and Faraday. Ampére’s
law states that the integral of the magnetic force around a circuit is equal to 4π times the integral
of the current through the circuit. Faraday’s law states that the integral of the electric force around
a circuit equals the negative of the time derivative of the magnetic induction through the circuit.

We will determine the current density at radius r in a wire of radius a. Let ρ be the specific
resistance of the wire, μ its permeability, x(r, t) the current density, and H(r, t) the magnetic
intensity at radius r and time t . Apply Ampére’s law to a circle of radius r having its axis along
the axis of the wire:

2πr H = 4π
∫ r

0

2πr x(ξ, t)dξ,

or

r H = 4π
∫ r

0

r x(ξ, t)dξ. (15.14)

Then
∂

∂r
(r H)= 4πxr,

hence
1

r

∂

∂r
(r H)= 4πx(r, t). (15.15)

Now apply Faraday’s law to the rectangular circuit having one side of length L along the axis of
the wire, and the other side of length r . We get

ρLx(0, t)− ρLx(r, t)=− ∂

∂t

∫ r

0

μL H(ξ, t)dξ.

Differentiate this equation with respect to r to obtain

ρ
∂x

∂r
=μ∂H

∂t
. (15.16)

Use equations (15.15) and (15.16) to eliminate H . First multiply (15.16) by r to obtain

ρr
∂x

∂r
=μr

∂H

∂t
.

Differentiate this equation with respect to r :

ρ
∂

∂r

(

r
∂x

∂r

)

=μ ∂
∂r

(

r
∂H

∂t

)

=μ ∂
∂t

(
∂

∂r
(r H)

)

=μ ∂
∂t
(4πxr)= 4πμr

∂x

∂t
,

in which we substituted from equation (15.15) at the last step. Now we have

ρ
∂

∂r

(

r
∂x

∂r

)

= 4πμr
∂x

∂t
. (15.17)

The strategy is to solve this partial differential equation for x(r, t), then obtain H(r, t) from
equation (15.14). To do this, assume that the alternating current flowing through the wire has
period 2π/ω and is given by C cos(ωt), with C constant. It is convenient to introduce complex
quantities and write

z(r, t)= x(r, t)+ iy(r, t).
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The quantity of interest is the real part of z(r, t), denoted

x(r, t)= Re(z(r, t)).

We can also think of the current as the real part of the complex exponential function

Ceiωt = C cos(ωt)+ iC sin(ωt).

In terms of z, equation (15.17) is

ρ
∂

∂r

(

r
∂z

∂r

)

= 4πμr
∂z

∂t
. (15.18)

Attempt a solution of the form z(r, t)= f (r)eiωt . Substitute this into equation (15.18) to obtain

ρ
∂

∂r
(r f ′(r))eiωt = 4πμr f (r)iωeiωt .

Upon dividing by eiωt we have

f ′′(r)+ 1

r
f ′(r)− b2 f (r)= 0,

in which

b2 = 4πμω

ρ
i.

From Section 15.3.6, this equation has general solution

f (r)= c1 I0(br)+ c2 K0(br),

in which

b =
√

4πμω

ρ

1 + i√
2
.

The logarithm term in K0(br) is unbounded as r → 0, the center of the wire, so we must choose
c2 = 0. Then

f (r)= c1 I0(br) and z(r, t)= c1 I0(br)eiωt .

To determine c1, use the fact that the current C cos(ωt) is the real part of Ceiωt . Using equation
(15.9),

C = 2πc1

∫ a

0

r I0(br)dr = 2πac1

b
I ′

0(ba).

Therefore,

c1 = bC

2πa

1

I ′
0(ba)

.

Now

z(r, t)= bC

2πa

1

I ′
0(ba)

I0(br)eiωt .

Then

x(r, t)= Re(z(r, t))

is the current density in the wire. The magnetic intensity is

H(r, t)= Re

(
2C

aI ′
0(ba)

I0(br)eiωt

)

.
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With a bit more analysis, we can observe the skin effect in this mathematical model of current
flow in the wire. The entire current flowing through a cylinder of radius r within the wire, and
having the same central axis as the wire, is

Re

[
b

2πaI ′
0(ba)

Ceiωt

∫ r

0

2πξ I0(bξ)dξ

]

.

Again using equation (15.9), this is

Re

(
r I ′

0(br)

aI ′
0(ba)

Ceiωt

)

.

Then

current in the cylinder of radius r

total current in the wire
= r

a

I ′
0(br)

I ′
0(ba)

.

When the frequency ω is large, b is large in magnitude and we can use the asymptotic expansion
(15.13) to write

r

a

I ′
0(br)

I ′
0(ba)

≈ r

a

ebr

√
br

√
ba

eba
=
√

b

a
e−b(a−r).

For any r with 0< r < a, the quantity on the right in this equation can be made arbitrarily small
by choosing ω sufficiently large. This means that, for large frequencies of the current, “most” of
the current flows in a thin layer near the outer surface of the wire. This is the skin effect.

15.3.8 A Generating Function for Jn(x)

Thus far, we have defined Bessel and modified Bessel functions as solutions to Bessel’s equation,
and examined some applications. Now we will carry out a program like that for Legendre poly-
nomials. We will develop a generating function, recurrence relations, zeros of Bessel functions,
and eigenfunction expansions involving Bessel functions.

THEOREM 15.9 Generating Function for Jn(x)

ex(t−1/t)/2 =
∞∑

n=−∞
Jn(x)t

n. � (15.19)

This means that, if we expand the exponential ex(t−1/t)/2 in an infinite series, then the coef-
ficient of t n is Jn(x), for any integer n. This is in the same spirit that Pn(x) is the coefficient of
t n in the expansion of L(x, t)= 1/

√
1 − 2xt + t2. One difference is that the expansion of L(x, t)

involves only nonnegative powers of t , while this expansion of ex(t−1/t)/2 involves negative powers
of t because of the 1/t term in the exponent.

To understand why equation (15.19) is true, begin with the familiar Maclaurin expansions
of the exponential function:

ex(t−1/t)/2 = ext/2e−x/2t

=
( ∞∑

m=0

1

m!
(

xt

2

)m
)( ∞∑

k=0

1

k! (−1)k
( x

2t

)k
)

=
(

1 + xt

2
+ 1

2!
x2t 2

22
+ 1

3!
x3t 3

23
+ · · ·

)(

1 − x

2t
+ 1

2!
x2

22t 2
− 1

3!
x3

23t 3
+ · · ·

)

.
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Now we must collect all the coefficients of t n , for each n. To illustrate the idea, look for the
coefficients of t4 in this product. We obtain t4 when x4t 4/244! on the left is multiplied by 1 on the
right, and when x5t 5/255! on the left is multiplied by −x/2t on the right, and when x6t 6/266! on
the left is multiplied by x2/222!t 2 on the right, and so on. In this way, we find that the coefficient
of t 4 in the above product is

1

244! x
4 − 1

265! x
5 + 1

282!6! x
6 − 1

2103!7! x
7 + · · ·

=
∞∑

n=0

(−1)n

22n+4n!(n + 4)! x
2n+4 = J4(x).

Similar analysis shows that the coefficient of t n in equation (15.19) is Jn(x) for each nonnegative
integer n. For negative integers, we can use the fact that, if n is a positive integer, then

J−n(x)= (−1)n Jn(x).

While this is not a formal proof, it is a plausibility argument in support of the generating function.

15.3.9 Recurrence Relations

We will state three recurrence relations involving Bessel functions of the first kind. In these, ν is
a real number.

THEOREM 15.10

d

dx
(x ν Jν(x))= x ν Jν−1(x). � (15.20)

Proof Begin with the case that ν is not a negative integer. Differentiate the series for x ν Jν(x)
to obtain

d

dx
(x ν Jν(x))= d

dx

[

x ν
∞∑

n=0

(−1)n

22n+νn!
(n + ν+ 1)
x2n+ν

]

= d

dx

[ ∞∑

n=0

(−1)n

22n+νn!
(n + ν+ 1)
x2n+2ν

]

=
∞∑

n=0

(−1)n2(n + ν)
22n+νn!(n + ν)
(n + ν) x2n+2ν−1

= x ν
∞∑

n=0

(−1)n

22n+ν−1n!
(n + ν) x
2n+ν−1 = x ν Jν−1(x).

Now extend this result to negative integers by using the fact that, if ν = −m, with m a positive
integer, then

Jν(x)= J−m(x)= (−1)m Jm(x). �

THEOREM 15.11

d

dx
(x−ν Jν(x))=−x−ν Jν+1(x). � (15.21)

The proof is like that of the preceding theorem.
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THEOREM 15.12

For x > 0,

2ν

x
Jν(x)= Jν+1(x)+ Jν−1(x). � (15.22)

Proof Carry out the indicated differentiations in equations (15.20) and (15.21) to obtain

x ν J ′
ν
(x)+ νx ν−1 Jν(x)= x ν Jν−1(x)

and

x−ν J ′
ν
(x)− νx−ν−1 Jν(x)=−x ν Jν+1(x).

Multiply the first equation by x−ν and the second by x ν to obtain

J ′
ν
+ ν

x
Jν(x)= Jν−1(x) (15.23)

and

J ′
ν
(x)− ν

x
Jν(x)=−Jν+1(x). (15.24)

Upon subtracting the second of these equations from the first, we have the conclusion of the
theorem. �

As an example of how these relationships can be used, recall from Section 15.3.2 that

J1/2(x)=
√

2

πx
sin(x), J−1/2(x)=

√
2

πx
cos(x),

J3/2(x)=
√

2

πx

[
sin(x)

x
− cos(x)

]

.

Put ν= 3/2 into equation (15.22):

3

x
J3/2(x)= J5/2(x)+ J1/2(x).

Then

J5/2(x)=−J1/2(x)+ 3

x
J3/2(x)

=
√

2

πx

[

− sin(x)+ 3

x2
sin(x)− 3

x
cos(x)

]

.

15.3.10 Zeros of Bessel Functions

We have seen applications in which we needed to know about zeros of a Bessel function. We will
also need such information for eigenfunction expansions involving Bessel functions.

We will show that Jν(x) has infinitely many positive zeros (positive numbers α such that
Jν(α)= 0). We will also derive estimates for their distribution on the half-line x > 0, and we will
show an important relationship between zeros of Jν(x), Jν−1(x) and Jν+1(x).

As a starting point, recall that Jν(kx) is a solution of

x2 y ′′ + xy ′ + (k2x2 − ν2)y = 0.
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Assume that k> 1 and substitute u(x)=√
kx Jν(kx) to obtain

u ′′(x)+
(

k2 − ν2 − 1
4

x2

)

u(x)= 0. (15.25)

Our intuition is that, as x increases, the term (ν2 −1/4)/x2 exerts less influence, and this differen-
tial equation for u more closely approximates u ′′ + k2u = 0, with solutions cos(kx) and sin(kx).
This suggests that, for large x , Jν(kx) is approximated by cos(kx)/

√
kx or sin(kx)/

√
kx . Since

these functions have infinitely many positive zeros, we suspect that Jν(kx) does also.
While not a proof, this informal argument suggests an approach to the question of zeros of

Jν(kx). Consider the equation

v′′(x)+ v(x)= 0, (15.26)

which has solution v(x)= sin(x −α) for any positive number α. Multiply equation (15.25) by v
and equation (15.26) by u and subtract to get

uv′′ − vu ′′ =
(

k2 − ν2 − 1
4

x2

)

uv− uv.

Write this as

(uv′ − vu ′)′ =
(

k2 − 1 − ν2 − 1
4

x2

)

uv.

For any positive number α, compute
∫ α+π

α

(uv′ − vu ′)dx = u(α+π)v′(α+π)− u(α)v′(α)− v(α+π)u ′(α+π)+ v(α)u ′(α)

=−u(α+π)− u(α)

=
∫ α+π

α

(

k2 − 1 − ν2 − 1
4

x2

)

u(x)v(x)dx

=
∫ α+π

α

(

k2 − 1 − ν2 − 1
4

x2

)

u(x) sin(x −α)dx

By the mean value theorem for integrals, there is some number τ between α and α+π such that

−u(α+π)− u(α)= u(τ )
∫ α+π

α

(

k2 − 1 − ν2 − 1
4

x2

)

sin(x −α)dx .

Now sin(x −α)> 0 for α < x <α+π . Further, we can choose α large enough (depending on k
and ν) so that

k2 − 1 − ν2 − 1
4

x2
> 0 for α≤ x ≤α+π.

Therefore the integral on the right in the last equation is positive. This means that u(α+π), u(α)
and u(τ ) cannot all have the same sign. Since u is continuous, u(x) must equal zero for some x
between α and α+π . But u(x)= √

kx Jν(kx), so wherever u(x) vanishes, Jν(kx) must be zero
also. This proves that Jν(kx) has at least one zero between α and α+π .

We conclude that, if α is sufficiently large, then Jν(x) has a zero between α and α+ kπ .
With this as background, we will state a fundamental result on positive zeros of Bessel

functions, their distribution on the half-line x > 0, and a relationship between zeros of Jν−1(x),
Jν(x) and Jν+1(x).
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THEOREM 15.13 Zeros of Jν(x)

Let k> 1 and let ν be a real number.

1. For α sufficiently large, there is a zero of Jν(x) on each of the intervals

(α,α+ kπ), (α+ kπ,α+ 2kπ), (α+ 2kπ,α+ 3kπ), · · · .
2. Every positive zero of Jν(x) is simple.

3. The positive zeros of Jν(x) and Jν+1(x) are distinct.

4. The positive zeros of Jν(x) and Jν−1(x) are distinct.

5. If a and b are distinct positive zeros of Jν(x), then Jν−1(x) and Jν+1(x) each has a zero
between a and b. �

Proof For conclusion (1), we know from the preceding discussion that Jν(x) has a zero between
α and α+ kπ for α sufficiently large. But then Jν(x) also has a zero between α+ kπ and α+
kπ + kπ =α+ 2kπ , and so on.

For conclusion (2), suppose x0 is a positive zero of Jν(x), but is not simple. Then

Jν(x0)= J ′
ν
(x0)= 0.

But then y = Jν(x) is a solution of the initial value problem

y ′′ + 1

x
y ′ +

(

k2 − ν2

x2

)

y = 0; y(x0)= y ′(x0)= 0

on some open interval about x0. But y(x)= 0 is also a solution of this problem, so Jν(x) would
be identically zero on an open interval, and this is a contradiction.

To verify conclusion (3), suppose x0 is a positive zero of both Jν(x) and Jν+1(x). By equation
(15.24), we would also have J ′

ν
(x0)=0, so x0 would be a non-simple zero of Jν(x), contradicting

conclusion (2).
Conclusion (4) is proved by a similar argument, using equation (15.23).
To prove conclusion (5), let f (x)= x ν Jν(x). Then f (a)= f (b)= 0. By the mean value

theorem, there is some c between a and b such that f ′(c)= 0. But by equation (15.20),

f ′(x)= d

dx
(x ν Jν(x))= x ν Jν−1(x)

so f ′(c)= 0 implies that Jν−1(c)= 0 also. But then c is a common positive zero of Jν(x) and
Jν−1(x), contradicting conclusion (4). �

Conclusion (5) is called the interlacing lemma. It means that the graphs of Jν−1(x), Jν(x)
and Jν+1(x) weave about each other, as can be seen in Figure 15.10 for J7(x), J8(x) and
J9(x).

We are now prepared to look at eigenfunction expansions in terms of Bessel functions.

15.3.11 Fourier-Bessel Expansions

We will write Bessel’s equation in a form to fit within Sturm-Liouville theory and use
equation (15.8) to determine eigenvalues and eigenfunctions. The Bessel equation

x2 y ′′ + xy ′ + (λx2 − ν2)y = 0
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FIGURE 15.10 Interlacing lemma for J7(x), J8(x),
and J9(x).

can be written as

xy ′′ + y ′ +
(

λx − ν2

x

)

y = 0

which is the Sturm-Liouville equation

(xy ′)′ +
(

λx − ν2

x

)

y = 0

on (0,1) with r(x)= p(x)= x and q(x)= −ν2/x . From equation (15.8) with a = 0, c = 1 and

λ= b2, solutions that are bounded on (0,1) are multiples of Jν
(√
λx
)
. Further, for solutions

satisfying the boundary condition y(1)= 0, we need
√
λ to be a positive zero of Jν(x). Denote

these positive zeros as jk , ordered so that

0< j1 < j2< j3< · · · .
Then the numbers λn = j 2

n are eigenvalues of this problem, with eigenfunctions Jν( jnx). Notice
that ν is fixed here (occurring in the differential equation), so these eigenfunctions are all written
in terms of the same Bessel function Jν . It is jn that changes to form the eigenfunctions Jν( jnx).

These eigenfunctions are orthogonal on (0,1) with weight function p(x)= x . This means
that

∫ 1

0

x Jν( jnx)Jν( jm x)dx = 0

if n �= m.
If f is piecewise smooth on (0,1), then we can write the eigenfunction expansion

∞∑

n=1

cn Jν( jnx) (15.27)

in which

cn =
∫ 1

0
x f (x)Jν( jnx)dx
∫ 1

0
x(Jν(x))2 dx

. (15.28)
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These are the Fourier-Bessel coefficients of f (x) on (0,1), and the eigenfunction expansion
(15.27) is called the Fourier-Bessel expansion or Fourier-Bessel series for f (x) on (0,1). This
expansion converges to

1

2
( f (x+)+ f (x−))

for 0< x < 1.
We can simplify equation (15.28) for the Fourier-Bessel coefficients of f by using the

identity
∫ 1

0

x(Jν(x))
2 dx = 1

2
(Jν+1( jn))

2. (15.29)

To derive this, begin with the Bessel equation

x2 y ′′ + xy ′ + ( j 2
n x2 − ν2

)
y = 0

in which y = Jν( jnx). Multiply the differential equation by 2y ′ to obtain

2x2 y ′y ′′ + 2x(y ′)2 + 2
(

j 2
n x2 − ν2

)
yy ′ = 0.

Write this as
[
x2(y ′)2 + ( j 2

n x2 − ν2
)

y2
]′ − 2 j 2

n xy2 = 0.

Integrate this equation from 0 to 1, keeping in mind that y(1)= Jν( jn)= 0. We get

0 = [x2(y ′)2 + ( j 2
n x2 − ν2

)
y2
]1

0
− 2 j 2

n

∫ 1

0

xy2 dx

= (y ′(1))2 − 2 j 2
n

∫ 1

0

xy2 dx

= j 2
n

(
J ′
ν
( jn)

)− 2 j 2
n

∫ 1

0

(Jν( jnx))2 dx .

Then
∫ 1

0

x J 2
ν
( jnx)dx = 1

2

(
J ′
ν
( jn)

)2
.

But, from equation (15.24),

J ′
ν
( jn)=−Jν+1( jn).

Therefore,
∫ 1

0

x
(
J 2
ν
( jnx)

)2
dx = 1

2
J 2
ν+1( jn),

as we wanted to show. Now we can write the Fourier-Bessel coefficients of f as

cn = 2

J 2
ν+1( jn)

∫ 1

0

x f (x)Jν( jnx)dx . (15.30)

These coefficients cannot be computed by hand and a software routine should be used to
approximate the positive zeros jn and then the Fourier-Bessel coefficients for a given f (x).
Table 15.1 gives approximate values of the first five zeros of J0 through J4, providing some idea
of their distribution. These zeros also illustrate the interlacing property of zeros of consecutive
Bessel functions (conclusion (5) of Theorem 15.13).

The eigenfunction expansion of a function f is different for each choice of ν, since the
functions Jν( jnx) are eigenfunctions of a different Sturm-Liouville problem for each ν.
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TA B L E 15.1 Some Zeros of Bessel functions

Jn j1 j2 j3 j4 j5

J0 2.405 5.520 8.654 11.792 14.931
J1 3.832 7.016 10.173 13.323 16.470
J2 5.135 8.417 11.620 14.796 17.960
J3 6.379 9.760 13.017 16.224 19.410
J4 7.586 11.064 14.373 17.616 20.827

EXAMPLE 15.7

We will compute some terms in the Fourier-Bessel expansion of f (x)= x(1 − x) on [0,1], with
ν = 1. In this case the eigenfunctions are J1( jnx) and the jn ’s are the positive zeros of J1. The
coefficients are

cn = 2
∫ 1

0
x2(1 − x)J1( jnx)dx

J 2
2 ( jn)

and, because x(1 − x) is twice differentiable on [0,1], we will have

x(1 − x)=
∞∑

n=1

cn Jν( jnx)dx

for 0< x < 1. We will compute the first four coefficients to illustrate the ideas involved. First we
need j1, · · · , j4. These can be obtained from tables, or from MAPLE by the command

evalf(BesselJZeros(ν,n));

with ν= 1 in this example and n successively chosen to be 1,2,3,4. The output is

j1 ≈ 3.83170597, j2 ≈ 7.01558667, j3 ≈ 10.17346814, j4 ≈ 13.32369194.

Using this value for j1, c1 is approximately

c1 ≈ 2

J2(3.83170597)2

∫ 1

0

x2(1 − x)J1(3.83170597x)dx .

To carry out this computation, first approximate the denominator J 2
2 ( j1), using a software

package. If MAPLE is used, the denominator is the square of the number computed as

evalf (BesselJ(2,3.83170597));

The integral in the numerator is computed as

evalf int((x ∧ 2) * (1-x) * BesselJ(1,x)(3.83170597 * x),x=0..1);

This computation yields

c1 ≈ 0.45221702.

By repeating this calculation for (n =2,3,4) in turn with the appropriate jn inserted, we similarly
approximate

c2 ≈−0.03151859, c3 ≈ 0.03201789, c4 ≈−0.00768864.
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FIGURE 15.11 Fourier-Bessel expansion in
Example 15.7.

Using the first four terms of the partial sum of the Fourier-Bessel expansion, we therefore
have

x(1 − x)≈ 0.45221702J1(3.83170597x)− 0.03151859J1(7.01558667x)

+ 0.03201794J1(10.17346814x)− 0.00768864J1(13.32369194x).

To see how good this approximation is, Figure 15.11 compares a graph of x(1 − x) with this
sum of four terms on [−1/4,6/5]. In the scale of the graph the approximation appears to be quite
good on [0,1]. Outside of [0,1] the graphs move away from each other. Again, we cannot expect
in general to obtain this good an approximation on the relevant interval with so few terms of an
eigenfunction expansion. �

15.3.12 Bessel’s Integrals and the Kepler Problem

We will use the generating function for Jn(x) to derive Bessel’s integrals, which are the
expressions

Jn(x)= 1

π

∫ π

0

cos(nθ − x sin(θ))dθ

for n = 0,1,2, · · · . Using these, we will solve the Kepler problem that Bessel was working on.
Begin with the generating function:

ex(t−1/t)/2 =
∞∑

n=−∞
Jn(x)t

n.

If n is a positive integer, then J−n(x)= (−1)n Jn(x). Therefore,

ext/2e−x/2t =
−∞∑

n=−1

Jn(x)t
n + J0(x)+

∞∑

n=1

Jn(x)t
n

=
∞∑

n=1

(−1)n Jn(x)t
−n + J0(x)+

∞∑

n=1

Jn(x)t
n
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= J0(x)+
∞∑

n=1

Jn(x)

(

t n + (−1)n
1

t n

)

= J0(x)+
∞∑

n=1

J2n(x)

(

t 2n + 1

t 2n

)

+
∞∑

n=1

J2n−1(x)

(

t 2n−1 − 1

t 2n−1

)

.

Now set t = eiθ . Then

t 2n + 1

t 2n
= e2inθ + e−2inθ = 2cos(2nθ)

and

t 2n−1 − 1

t 2n−1
= ei(2n−1)θ − e−i(2n−1)θ = 2i sin((2n − 1)θ).

Then

ex(t−1/t)/2 = eix sin(θ)

= cos(x sin(θ))+ i sin(x sin(θ))

= J0(x)+ 2
∞∑

n=1

J2n cos(2nθ)+ 2i
∞∑

n=1

J2n−1(x) sin((2n − 1)θ).

Equating real parts on both sides and imaginary parts on both sides of this equation, we have

cos(x sin(θ))= J0(x)+ 2
∞∑

n=1

J2n(x) cos(2nθ) (15.31)

and

sin(x sin(θ))= 2
∞∑

n=1

J2n−1(x) sin((2n − 1)θ). (15.32)

The series on the right side of each of these two equations is the Fourier series of the function on
the left side, over the interval [−π,π]. Focusing on equation (15.31) first, we have

cos(x sin(θ))= 1

2
a0 +

∞∑

k=1

ak cos(kθ)+ bk sin(kθ)

= J0(x)+
∞∑

n=1

2J2n(x) cos(2nθ).

Since we know the coefficients in the Fourier expansion of a function, we conclude that

ak = 1

π

∫ π

−π
cos(x sin(θ)) cos(kθ)dθ =

{
0 if k is odd

2J2n(x) if k = 2n is even,
(15.33)

and

bk = 1

π

∫ π

−π
cos(x sin(θ)) sin(kθ)dθ = 0 (15.34)

for k = 1,2,3, · · · .
Similarly, we know from equation (15.32) that

sin(x sin(θ))= 1

2
A0 +

∞∑

k=1

Ak cos(kθ)+ Bk sin(kθ)

=
∞∑

n=1

2J2n−1(x) sin((2n − 1)θ).
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These Fourier coefficients are

Ak = 1

π

∫ π

−π
sin(x sin(θ)) cos(k(θ))dθ = 0 (15.35)

for k = 0,1,2, · · · , and

Bk = 1

π

∫ π

−π
sin(x sin(θ)) sin(kθ)dθ =

{
0 if k is even

2J2n−1(x) if k = 2n − 1 is odd.
(15.36)

Upon adding equations (15.35) and (15.36), we obtain

1

π

∫ π

−π
cos(x sin(θ)) cos(kθ)dθ + 1

π

∫ π

−π
sin(x sin(θ)) sin(kθ)dθ

= 1

π

∫ π

−π
cos(kθ − x sin(θ))dθ

=
{

2Jk(x) if k is even

2Jk(x) if k is odd.

In summary,

Jk(x)= 1

2π

∫ π

−π
cos(kθ − x sin(θ))dθ

for k = 0,1,2, · · · . Finally, observe that cos(kθ − x sin(θ)) is an even function, so the
integral over [−π,π] is twice the integral over [0,π ]. Then

Jn(x)= 1

π

∫ π

0

cos(nθ − x sin(θ))dθ

for n = 0,1,2, · · · . These integrals are called Bessel’s integrals.

We will apply Bessel’s integrals to the solution of Kepler’s problem in astronomy. A planet
moves along its elliptical orbit with the sun at one focus. In Figure 15.12, the center of the orbit

C
AB

P
P*

Elliptical orbit

S

Q

FIGURE 15.12 Kepler’s problem.
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is C and line B A is the semimajor axis, whose length we will denote 2a. The focus is the sun
at S. P is the planet at some time t , which we set at zero when P is at A. A (dashed) circle is
drawn with center C and through A and B. Q is the point of intersection of this circle with the
line through P perpendicular to AB. P∗ is imagined to move along the circle at a constant speed
so that its location coincides with that of P at both A and B.

We are interested in the two angles

ψ =∠AC P∗ and ϕ=∠AC Q.

ψ is the mean anomaly of the planet, and ϕ the eccentric anomaly. The true anomaly is
θ = ∠ASP , but we will not be concerned with θ here. The part of Kepler’s problem we
will discuss is to express ϕ in terms of ψ .

Note that ψ is proportional to the time t it takes for the planet to move from A to P . Thus,
we might equivalently state the problem as expressing ϕ in terms of t .

As is customary, let e be the eccentricity of the ellipse. Also let T denote the period of the
planet (time required for one complete orbit).

Recall that the area of an ellipse with semimajor axis of length 2a and semiminor axis 2b is
πab. Now, since ψ and ∠ASP are both proportional to t , then

t

T
= ψ

2π
= area of elliptical sector ASP

πab

= area of circular sector ASQ

πa2
.

But

area of ASQ = area of elliptical sector AC Q

− area of triangleSC Q

= 1

2
a2ϕ− 1

2
ae(a sin(ϕ)).

Therefore

ψ

2π
=

1
2
a2ϕ− 1

2
a2e sin(ϕ)

πa2
,

so

ψ =ϕ− e sin(ϕ).

We want ϕ in terms of ψ , so we must somehow solve this equation for ϕ. Observe that ψ − ϕ is
an odd periodic function of ϕ, having period 2π . We can therefore write a Fourier expansion

ψ −ϕ=
∞∑

n=1

bn sin(nψ)

in which

bn = 2

π

∫ π

0

(ϕ−ψ) sin(nψ)dψ.
Integrate by parts, keeping in mind that

(ϕ−ψ)(0)= (ϕ−ψ)(π)= 0 and
∫ π

0

cos(ψ)dψ = 0.
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We obtain

bn = 2

π

[

(ψ −ϕ)cos(nψ)

ψ

]π

0

+ 2

π

∫ π

0

cos(nψ)

n
dϕ

− 2

π

∫ π

0

cos(nψ)

n
dψ

= 2

nπ

∫ π

0

cos(nψ)dϕ

= 2

nπ

∫ π

0

cos(nϕ− ne sin(ϕ))dϕ

= 2

n
Jn(ne).

The last line comes from Bessel’s integrals. The solution to Kepler’s problem is therefore

ϕ=ψ +
∞∑

n=1

2

n
Jn(ne) sin(nψ).

SECTION 15.3 PROBLEMS

1. Show that xa Jν(bxc) is a solution of

y ′′ −
(

2a − 1

x

)

y ′ +
(

b2c2x2c−2 + a2 − ν2c2

x2

)

y = 0.

In each of Problems 2 through 9, write the general solu-
tion of the differential equation in terms of xa Jν(bxx) and
xa J−ν(bxc for appropriate a, b and c.

2. y ′′ + 1

3x
y ′ +

(

1 + 7

144x2

)

y = 0

3. y ′′ + 1

x
y ′ +

(

4x2 − 4

9x2

)

y = 0

4. y ′′ − 5

x
y ′ +

(

64x6 + 5

x2

)

y = 0

5. y ′′ + 3

x
y ′ +

(

16x2 − 5

4x2

)

y = 0

6. y ′′ − 3

x
y ′ + 9x4 y = 0

7. y ′′ − 7

x
y ′ +

(

36x4 + 175

16x2

)

y = 0

8. y ′′ + 1

x
y ′ −

(
1

16x2

)

y = 0

9. y ′′ + 5

x
y ′ +

(

81x4 + 7

4x2

)

y = 0

10. Use the change of variables

bu = 1

u

du

dx
to transform the differential equation

dy

dx
+ by2 = cxm

into the differential equation

d2u

dx2
− bcxmu = 0.

Find the general solution of this differential equation
in terms of Bessel functions and use this to solve
the original differential equation. Assume that b is a
positive constant.

In each of Problems 11 through 16, use the given change
of variables to transform the differential equation into one
whose general solution can be written in terms of Bessel
functions. Use this to write the general solution of the
original differential equation.

11. 4x2 y ′′ + 4xy ′ + (x − 9)y = 0; z = √
x

12. 4x2 y ′′ + 4xy ′ + (9x3 − 36)y = 0; z = x3/2

13. 9x2 y ′′ + 9xy ′ + (4x2/3 − 16)y = 0; z = 2x1/3

14. 9x2 y ′′ − 27xy ′ + (9x2 + 35)y = 0;u = yx−2

15. 36x2 y ′′ − 12xy ′ + (36x2 + 7)y = 0;u = yx−2/3

16. 4x2 y ′′ + 8xy ′ + (4x2 − 35)y = 0;u = y
√

x
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17. Let α be a positive zero of J0. Show that
∫ 1

0

J1(αx)dx = 1

α
.

18. Let u(x)= J0(αx) and v(x)= J0(βx), with α and β
positive constants.

(a) Show that xu ′′ + u ′ + α2xu = 0, with a similar
equation for v.

(b) Multiply the differential equation for u by v and
the equation for v by u and subtract to show that

[x(u ′v− v′u)]′ = (β2 −α2)xuv.

(c) Use the conclusion of part (b) to show that

(β2 −α2)

∫
x J0(αx)J0(βx)dx

= x
[
α J ′

0(αx)J0(βx)−β J ′
0(βx)J0(αx)

]
.

This is one of a class of integrals known as
Lommel’s integrals.

19. Show that, for any positive integer n,
∫

xn Jn−1(x)dx = xn Jn(x)

and
∫

Jn+1(x)

xn
dx =− Jn(x)

xn
.

(Here we have omitted the constants of integration).
Hint: Use Theorem 15.10. Alternatively, one can inte-
grate the series for Jn+1(x)/x term by term.

20. Show that, for any positive integer n and any nonzero
number α,

∫
xn Jn−1(αx)dx = 1

α
xn Jn(αx)

and
∫

Jn+1(αx)

xn
dx =− Jn(αx)

αxn
.

Hint: The result of Problem 19 can be used, or the
series for Jn(x) can be used.

21. For α any nonzero number, and n and k nonnegative
integers, define

In,k =
∫ 1

0

(1 − x2)k xn+1 Jn(αx)dx .

(a) Show that

In,0 = 1

α
Jn+1(α).

Hint: Use the first integral in Problem 20.
(b) Show that

In,k =
∫ 1

0

(1 − x2)k
d

dx

(
xn+1

α
Jn+1(αx)

)

dx .

Hint: Use the first integral from Problem 20 in the
definition of In,k .
(c) Show that

In,k = 2k

α
In+1,k−1.

This provides a recurrence relation for the quantities
In,k . Hint: Integrate by parts in (b).
(d) Show that

In,k = 2kk!
αk

In+k,0.

Hint: Apply part (c) in repetition.
(e) Show that
∫ 1

0

(1 − x2)k xn+1 Jn(αx)dx = 2k
(k + 1)

αk+1
Jn+k+1(α).

Hint: Use the result of part (d).
(f) Show that

Jn+k+1(x)= xk+1

2k
(k + 1)

∫ 1

0

t n+1(1 − t2)k Jn(xt)dt.

(g) Show that, if n is a nonnegative integer and m is a
positive integer with n<m, then

Jm(x)= 2xm−n

2m−n
(m − n)

∫ 1

0

t n+1(1− t2)m−n−1 Jn(xt)dt.

Hint: Let m = n + k + 1 in the result of part (f).
The integral expressions in parts (e), (f), and (g) are
called Sonine’s integrals.

22. Use the fact that

J−1/2(xt)=
√(

2

πxt

)

cos(xt)

to show that, if n is a positive integer, then

Jn(x)= xn

2n−1
√
π
(n + 1/2)

∫ 1

0

(1 − t2)n−1/2 cos(xt)dt.

This is called Hankel’s integral. Hint: Use Sonine’s
integral, Problem 21 (g).

23. Show that, if m is a positive integer, then

Jm(x)= xm

2m−1
√
π
(m + 1/2)

∫ π/2

0

cos2m(θ) cos(x sin(θ))dθ.

This expression is called Poisson’s integral. Hint: Put
t = sin(θ) in Hankel’s integral, Problem 22.

In each of Problems 24 through 29, find (approximately)
the first five terms in the Fourier-Bessel expansion of f (x)
on (0,1) in a series of the functions J1( jnx), where jn is
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the nth positive zero of J1. Compare a graph of this partial
sum with f .

24. f (x)= e−x

25. f (x)= x
26. f (x)= x2e−x

27. f (x)= xe−x

28. f (x)= x cos(πx)
29. f (x)= sin(πx)

For each of Problems 30 through 35, find (approximately)
the first five terms in the Fourier-Bessel expansion of f (x)
on (0,1) in a series of the functions J2( jnx), with jn the
nth positive zero of J2.

30. f (x)= e−x

31. f (x)= x
32. f (x)= x2e−x

33. f (x)= xe−x

34. f (x)= x cos(πx)
35. f (x)= sin(πx)

Problems 36 through 40 deal with the gamma and beta
functions.

36. Show that 
(1/2)=√
π , using the fact from statistics

that
∫ ∞

0 e−x2
dx = √

π/2.

37. Show that, if r > 0, then for any positive x ,


(x)= r x

∫ ∞

0

e−r t t x−1 dt.

Hint: Let t = r y in the definition of 
(x).
38. Show that, for positive x ,


(x)= 2
∫ ∞

0

e−t2 t2x−1 dt.

Hint: Let t = y2 in the definition of the gamma
function.

39. Define the beta function by

B(x, y)=
∫ 1

0

t x−1(1 − t)y−1 dt.

It can be shown that this integral converges for x and
y positive. Show that

B(x, y)=
∫ ∞

0

ux−1

(1 + u)x+y
du.

Hint: Let t = u/(1 + u) in the definition of B(x, y).
40. Show that, if x and y are positive integers, then

B(x, y)= 
(x)
(y)


(x + y)
.

Hint: Begin with L[t x ] = 
(x+1)
sk+1 . Now compute

L−1
[

1
sx+y

]
in two ways, first by using this formula,

and second, by using the convolution theorem.
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CHAPTER 16
The Wave
Equation

DERIVATION OF THE WAVE EQUATION
WAVE MOTION ON AN INTERVAL WAVE
MOTION IN AN INFINITE MEDIUM

16.1 Derivation of the Wave Equation

Vibrations in a membrane or steel plate, or oscillations along a guitar string, are all modeled
by the wave equation and appropriate initial and boundary conditions. We will begin with a
derivation of the one-dimensional wave equation.

Suppose an elastic string has its ends fastened by two pegs. The string is displaced, released
and allowed to vibrate in a plane.

Place the string along the x - axis from 0 to L and assume that it vibrates in the x, y - plane.
We want a function y(x, t) such that, at time t , the graph of y(x, t) is the shape of the string at
that time. We call y(x, t) the position function for the string.

To take a simple case, neglect damping forces such as the weight of the string and assume
that the tension T(x, t) acts tangent to the string, and that individual particles of the string move
only vertically. Also assume that the mass ρ per unit length is constant. Consider a segment of
string between x and x +�x . By Newton’s second law of motion, the net force on this segment
due to the tension is equal to the acceleration of the center of mass of this segment, multiplied
by its mass. This is a vector equation. Its vertical component (Figure 16.1) gives us

T (x +�x, t) sin(θ +�θ)− T (x, t) sin(θ)= ρ�x
∂2 y

∂t 2
(x, t),

where x is the center of mass of this segment and T (x, t)=‖ T(x, t) ‖. Then

T (x +�x, t) sin(θ +�θ)− T (x, t) sin(θ)

�x
= ρ ∂

2 y

∂t 2
(x, t).

Now v(x, t)= T (x, t) sin(θ) is the vertical component of the tension, so this equation becomes

v(x +�x, t)− v(x, t)
�x

= ρ ∂
2 y

∂t 2
(x, t).

565
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θ + Δθ

θ

FIGURE 16.1 Deriving the wave equation.

As �x → 0, x → x and we obtain

∂v

∂x
= ρ ∂

2 y

∂t 2
.

The horizontal component of the tension is h(x, t)= T (x, t) cos(θ), so

v(x, t)= h(x, t) tan(θ)= h(x, t)
∂y

∂x
.

Then

∂

∂x

(

h
∂y

∂x

)

= ρ ∂
2 y

∂t 2
.

To compute the left side of this equation, use the fact that the horizontal component of the tension
of the segment is zero, so

h(x +�x, t)= h(x, t).

This means that h is independent of x , so

h
∂2 y

∂x2
= ρ ∂

2 y

∂t 2
.

Let c2 = h/ρ to get the one-dimensional wave equation

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
. (16.1)

The fact that the ends are held fixed is reflected in the boundary conditions

y(0, t)= y(L , t)= 0 for t ≥ 0.

The initial displacement of the string, and the velocity with which it is released at time 0, are the
initial conditions, given by

y(x,0)= f (x) for 0 ≤ x ≤ L .

and
∂y

∂t
(x,0)= g(x).

The wave equation, together with these initial and boundary conditions, is called an initial-
boundary value problem for y(x, t).
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If the string is released from rest (zero initial velocity), then g(x) is identically zero. Further,
if the string has its ends fixed at the same level, then the initial position function f must satisfy
the compatibility condition f (0)= f (L)= 0.

Variations on this problem can allow for moving ends with conditions such as

y(0, t)=α(t) and y(L , t)=β(t).
We can also have a forcing term in which an external force drives the motion of the string. In this
case the wave equation is

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
+ F(x, t).

The wave equation in two space dimensions is

∂2z

∂t 2
= c2

(
∂2z

∂x2
+ ∂2z

∂y2

)

(16.2)

in which z(x, y, t) is the displacement function.
It is a routine exercise in chain rule differentiation to convert this two-dimensional wave

equation to polar coordinates. If the displacement function is u(r, θ, t), this wave equation is

∂2u

∂t 2
= c2

(
∂2u

∂r 2
+ 1

r

∂u

∂r
+ 1

r 2

∂2u

∂θ 2

)

. (16.3)

SECTION 16.1 PROBLEMS

1. Let y(x, t)= sin(nπx/L) cos(nπct/L) for 0≤ x ≤ L .
Show that y satisfies the one-dimensional wave equa-
tion for any positive integer n.

2. Show that z(x, y, t)=sin(nx) cos(my) cos
(√

n2 + m2t
)

satisfies the two-dimensional wave equation for any
positive integers n and m.

3. Let f be a twice-differentiable function of one variable.
Show that

y(x, t)= 1

2
[ f (x + ct)+ f (x − ct)]

satisfies the one-dimensional wave equation.
4. Show that

y(x, t)= sin(x) cos(ct)+ 1

c
cos(x) sin(ct)

satisfies the one-dimensional wave equation together
with the boundary conditions

y(0, t)= y(2π, t)= 1

c
sin(ct) for t > 0

and the initial conditions

y(x,0)= sin(x),
∂y

∂t
(x,0)= cos(x) for 0< x <π.

5. Formulate an initial-boundary value problem for
vibrations of a rectangular membrane occupying 0 ≤
x ≤ a,0 ≤ y ≤ b if the initial position is the graph of
z = f (x, y) and the initial velocity is g(x, y). The mem-
brane is fastened to a still frame along the rectangular
boundary of the region.

6. Formulate an initial-boundary value problem for the
motion of an elastic string of length L fastened at
both ends and released from rest with an initial posi-
tion given by f (x). The motion is opposed by air
resistance, which has a force at each point of magni-
tude proportional to the square of the velocity at that
point.

16.2 Wave Motion on an Interval

We will solve initial-boundary value problems for the wave equation on a closed interval [0, L],
starting with special cases we can solve and building toward more complex wave motion.
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16.2.1 Zero Initial Velocity

An elastic string of length L with fixed ends is released from rest (zero initial velocity) from
an initial position given as the graph of y = f (x). The initial-boundary value problem for the
position function y(x, t) is

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for 0< x < L , t > 0,

y(0, t)= y(L , t)= 0 for t ≥ 0,

y(x,0)= f (x) for 0 ≤ x ≤ L ,

and
∂y

∂t
(x,0)= 0.

The Fourier method (or method of separation of variables) is to attempt a solution of the form
y(x, t)= X (x)T (t). Substitute this into the wave equation to get

XT ′′ = c2 X ′′T,

where X ′ = d X/dx and T ′ = dT/dt . Then

X ′′

X
= T ′′

c2T
.

The left side depends only on x . We could fix x and then the right side, which depends only
on t , would be constant for all t . But then the left side must equal the same constant for all x .
Therefore, for some number λ, called the separation constant,

X ′′

X
= T ′′

c2T
=−λ.

Calling the constant −λ is common practice. Then

X ′′ + λX = 0 and T ′′ + λc2T = 0,

two ordinary differential equations for X and T . Next use the boundary conditions. First,

y(0, t)= X (0)T (t)= 0 for t ≥ 0

implies that X (0) = 0. Similarly, y(x, L) = X (L)T (t) = 0 implies that X (L) = 0. We have
obtained a Sturm-Liouville problem for X :

X ′′ + λX = 0; X (0)= X (L)= 0.

In Example 15.1, we solved this problem for the values of λ (eigenvalues) and corresponding
solutions for X (eigenfunctions):

λn = n2π 2

L2
and Xn(x)= sin

(nπx

L

)
for n = 1,2, · · · .

Next focus on T . Since λn = n2π 2/L2, the differential equation for T is

T ′′ + n2π 2c2

L2
T = 0.

Because the string is released from rest,

∂y

∂t
(x,0)= X (x)T ′(0)= 0,

so

T ′(0)= 0.

Solutions for T (t) subject to this condition are constant multiples of cos(nπct/L).
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So far, for (n = 1,2, · · · ) we have a function

yn(x, t)= cn sin(nπx/L) cos(nπct/L)

that satisfies the wave equation, both boundary conditions and the initial condition of zero initial
velocity. We have yet to satisfy y(x,0)= f (x). If f (x)= K sin(mπx/L) for some integer m,
then y(x, t)= K sin(mπx/L) cos(mπct/L) is the solution. But f (x) need not look like this. For
example, if the string is picked up at its midpoint, say

f (x)=
{

x for 0 ≤ x ≤ L/2

L − x for L/2 ≤ x ≤ L
(16.4)

then not even a finite sum y(x, t)=∑N
n=0 yn(x, t) can satisfy y(x,0)= f (x). In such a case we

use an infinite superposition

y(x, t)=
∞∑

n=1

cn sin
(nπx

L

)
cos

(
nπct

L

)

.

The condition y(x,0)= f (x) is satisfied if we can choose the coefficients so that

y(x,0)= f (x)=
∞∑

n=0

cn sin
(nπx

L

)
.

This is the Fourier sine expansion of f (x) on [0, L], hence choose

cn = 2

L

∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ.

The solution of the problem, with zero initial velocity and initial position given by f , is

y(x, t)= 2

L

∞∑

n=1

(∫ L

0

f (ξ) sin(nπξ/L)dξ

)

sin
(nπx

L

)
cos

(
nπct

L

)

. (16.5)

EXAMPLE 16.1

With f given by equation (16.4) and L =π , the coefficients are

cn = 2

π

∫ π

0

f (ξ) sin(nξ)dξ

= 2

π

∫ π/2

0

ξ sin(nξ)dξ + 2

π

∫ π

π/2

(π − ξ) sin(nξ)dξ

= 4 sin(nπ/2)

πn2
.

The solution of this problem is

y(x, t)=
∞∑

n=1

4 sin(nπ/2)

πn2
sin(nx) cos(nct).

Figure 16.2 shows the string profile for c = 2 at times t = 0.3,0.6, 0.9, and 1.2, starting at
the top and moving downward in this time frame. �
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FIGURE 16.2 Wave motion in Example 16.1.
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FIGURE 16.3 Wave profiles in Example 16.2.

EXAMPLE 16.2

We will solve for y(x, t) on [0,π ] with zero initial velocity and initial position f (x) =
x cos(5x/2). The coefficients are

cn = 2

π

∫ π

0

ξ cos(5ξ/2) sin(nξ)dξ = 8

π

n(−1)n+1

(5 + 2n)2(5 − 2n)2
.

The solution is

y(x, t)=
∞∑

n=1

8

π

n(−1)n+1

(5 + 2n)2(5 − 2n)2
sin(nx) cos(nct).

Figure 16.3 shows wave profiles for c = 1 at times t = 0.1,0.3, 0.6, and 0.9, moving
downward over these times. �

16.2.2 Zero Initial Displacement

We will solve the initial-boundary value problem for the displacement of the string if there is an
initial velocity but no initial displacement. The problem is
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∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for 0< x < L , t > 0,

y(0, t)= y(L , t)= 0 for t ≥ 0,

y(x,0)= 0,

and

∂y

∂t
(x,0)= g(x) for 0< x < L .

Again, let y(x, t)= X (x)T (t). The problem for X is the same as before,

X ′′ + λX = 0; X (0)= X (L)= 0

with eigenvalues λn = n2π 2/L2 and eigenfunctions sin(nπx/L). The problem for T , however, is
different, The differential equation is still

T ′′ + λc2T = T ′′ +
(

n2π 2c2

L2

)

T = 0

but now the zero initial displacement gives us y(x,0)= X (x)T (0)= 0, so T (0)=0. Solutions of
this problem for T (t) have the form

Tn(t)= cn sin

(
nπct

L

)

.

Now we have functions

yn(x, t)= Xn(x)Tn(t)= cn sin
(nπx

L

)
sin

(
nπct

L

)

that satisfy the wave equation, the boundary conditions, and the initial condition y(x,0)= 0. To
satisfy the initial velocity condition, we will generally (depending on g) need a superposition

y(x, t)=
∞∑

n=1

cn sin
(nπx

L

)
sin

(
nπct

L

)

.

We must choose the cn ’s to satisfy

∂y

∂t

]

t=0

=
∞∑

n=1

(nπc

L

)
cn sin

(nπx

L

)
= g(x).

Then

L

nπc
g(x)=

∞∑

n=1

cn sin
(nπx

L

)
,

This is the Fourier sine expansion of L
nπc

g(x). Therefore choose the coefficients

cn = 2

L

L

nπc

∫ L

0

g(ξ) sin

(
nπξ

L

)

dξ,

or

cn = 2

nπc

∫ L

0

g(ξ) sin

(
nπξ

L

)

dξ.

With this choice of the coefficients the solution is

y(x, t)= 2

πc

∞∑

n=1

1

n

(∫ L

0

g(ξ) sin(nπξ/L)dξ

)

sin
(nπx

L

)
sin

(
nπct

L

)

. (16.6)
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FIGURE 16.4 Wave moving downward for
increasing times in Example 16.3.

EXAMPLE 16.3

Suppose the string is released from its horizontal position with an initial velocity given by g(x)=
x(1 + cos(πx/L)). Equation (16.6) is the solution. First compute the integral

∫ L

0

g(ξ) sin(nπξ/L)dξ =
∫ L

0

ξ (1 + cos(πξ/L)) sin(nπξ/L)dξ

=

⎧
⎪⎪⎨

⎪⎪⎩

3L2

4π
for n = 1

L2(−1)n

nπ(n2 − 1)
for n = 2,3, · · · .

The solution is

y(x, t)= 2

πc

(
3L2

4π

)

sin
(πx

L

)
sin

(
πct

L

)

+ 2

πc

∞∑

n=2

L2(−1)n

n2π(n2 − 1)
sin
(nπx

L

)
sin

(
nπct

L

)

.

Then with c = 1 and L =π , this solution is

y(x, t)= 3

2
sin(x) sin(t)+

∞∑

n=2

2(−1)n

n2(n2 − 1)
sin(nx) sin(nt).

Figure 16.4 shows the wave moving downward at times t = 0.2,0.5, 0.7,1.3, and 3.4. �

16.2.3 Nonzero Initial Displacement and Velocity

Suppose the string has an initial displacement f (x) and an initial velocity g(x). Write the solu-
tion y f (x, t) for the problem with initial displacement f and zero initial velocity and the solution
yg(x, t) for the problem with zero initial displacement and initial velocity g(x). Then the solution
for the current problem is

y(x, t)= y f (x, t)+ yg(x, t).
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FIGURE 16.5 Waves in Example 16.4.

This function satisfies the wave equation and boundary conditions, because both y f (x, t) and
yg(x, t) do. Furthermore,

y(x,0)= y f (x,0)+ yg(x,0)= f (x)+ 0 = f (x)

and

∂y

∂t
(x,0)= ∂y f

∂t
(x,0)+ ∂yg

∂t
(x,0)= 0 + g(x)= g(x).

EXAMPLE 16.4

We will solve the wave equation on [0, L] with y(0, t)= y(L , t)= 0, subject to initial position

f (x)=
{

x for 0 ≤ x ≤ L/2

L − x for L/2 ≤ x ≤ L .

and initial velocity g(x)= x(1 + cos(πx/L)). The solution y(x, t) is the sum of the solutions of
the problems solved in Examples 16.1 and 16.3. If c = 1 and L =π , this solution is

y(x, t)=
∞∑

n=1

4

n2π
sin(nπ/2) sin(nx) cos(nt)

+ 3

2
sin(x) sin(t)+

∞∑

n=2

2(−1)n

n2(n2 − 1)
sin(nx) sin(nt).

In Figure 16.5, the string’s position at t = 0.2 is the fourth graph from the top. The wave
moves upward to the next graph at t = 0.6, then upward again at t = 1.2. The highest wave is at
t = 1.8. Following this, the wave is partly below the horizontal axis at t = 2.3, and completely
below this axis at t = 2.9. �

16.2.4 Influence of Constants and Initial Conditions

It is interesting to observe how the initial conditions and the constant c influence the wave
motion.
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FIGURE 16.6 Wave profiles for different values of
c in Example 16.5.

EXAMPLE 16.5

In Example 16.3, we solved the problem with zero initial displacement and initial velocity given
by g(x)= x(1 + cos(πx/L)). If L =π this solution is

y(x, t)= 3

2c
sin(x) sin(ct)+

∞∑

n=2

2(−1)n

cn2(n2 − 1)
sin(nx) sin(nct).

Figure 16.3 showed wave profiles at various times for c =1. Figure 16.6 shows wave profiles
at time t = 5.3, with c = 1.05, c = 1.1, c = 1.2 and c = 1.65. These increase in amplitude as c
increases. �

EXAMPLE 16.6

We will examine the effects of changes in an initial condition on the wave motion with the
problem

∂y2

∂t 2
= 1.44

∂y2

∂x2
for 0< x <π, t > 0,

y(0, t)= y(π, t)= 0 for t ≥ 0,

and

y(x,0)= 0,
∂y

∂t
(x,0)= sin(εx) for 0< x <π

in which ε is a positive number that is not an integer.
Use equation (16.6) to write the solution

y(x, t)= 5

3π

∞∑

n=1

sin(πε)(−1)n+1

n2 − ε2
sin(nx) sin(1.2t).

To gauge the effect of ε on the motion, compare graphs of this solution for different values
of ε at given times. Figure 16.7 shows the wave profile at t = 0.5 for ε equal to 0.7 (wave above
the x-axis), 1.5 (wave below the axis), and 9.3 (wave oscillating rapidly). �
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FIGURE 16.7 Wave profiles in Example 16.6,
decreasing as ε increases.

16.2.5 Wave Motion with a Forcing Term

Separation of variables may fail if the partial differential equation contains terms allowing for
some type of external forcing, or if the boundary conditions are nonhomogeneous. In such a case
it may be possible to transform the initial-boundary value problem to one that we know how to
solve.

EXAMPLE 16.7

We will solve the problem

∂2 y

∂t 2
= ∂y2

∂x2
+ Ax for 0< x < L , t > 0,

y(0, t)= y(L , t)= 0 for t ≥ 0,

and

y(x,0)= 0,
∂y

∂t
(x,0)= 1 for 0< x < L .

A is a positive constant and the term Ax in the wave equation represents an external force having
magnitude Ax at x . We have let c = 1 in this problem.

If we put y(x, t)= X (x)T (t) into the partial differential equation we obtain

XT ′′ = X ′′T + Ax,

and there is no way to separate the t dependency on one side of an equation and the x dependency
on the other. One strategy in such a case is to try to transform this problem into one to which
separation of variables applies. Let

y(x, t)= Y (x, t)+ψ(x).
The idea is to choose ψ to obtain a problem for Y that we can solve. Substitute y(x, t) into the
partial differential equation to get

∂2Y

∂t 2
= ∂2Y

∂x2
+ψ ′′(x)+ Ax .
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This will be simplified if we choose ψ so that

ψ ′′(x)+ Ax = 0.

Integrate twice to get

ψ(x)=−A
x3

6
+ Cx + D,

with C and D constants of integration. To find C and D look at the boundary conditions. First,

y(0, t)= Y (0, t)+ψ(0)= 0.

This will be just y(0, t)= Y (0, t) if we make

ψ(0)= 0.

This requires that we choose D = 0. Next,

y(L , t)= Y (L , t)+ψ(L)= Y (L , t)− A
L3

6
+ C L = 0.

This reduces to y(L , t)= Y (L , t) if we choose C so that

ψ(L)=−A
L3

6
+ C L = 0.

With C = AL2/6, we have

ψ(x)= 1

6
Ax(L2 − x2).

With this ψ ,

Y (0, t)= Y (L , t)= 0.

Next relate the initial conditions for y to initial conditions for Y . First,

Y (x,0)= y(x,0)−ψ(x)=−ψ(x)= 1

6
Ax(x2 − L2),

then

∂Y

∂t
(x,0)= ∂y

∂t
(x,0)= 1.

Now we have an initial-boundary value problem for Y :

∂2Y

∂t 2
= ∂Y 2

∂x2
for 0< x < L , t > 0,

Y (0, t)= Y (L , t)= 0 for t ≥ 0,

and

Y (x,0)= 1

6
Ax(x2 − L2),

∂Y

∂t
(x,0)= 1 for 0< x < L .

We know the solution of this problem. By equations (16.5) and (16.6),

Y (x, t)= 2

L

∞∑

n=1

(∫ L

0

1

6
Aξ(ξ 2 − L2) sin(nπξ/L)dξ

)

sin(nπx/L) cos(nπ t/L)

+ 2

π

∞∑

n=1

1

n

(∫ L

0

sin(nπξ/L)dξ

)

sin(nπx/L) sin(nπ t/L)
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FIGURE 16.8 Wave profiles in Example 16.7.

=2AL3

π 3

∞∑

n=1

(−1)n

n3
sin(nπx/L) cos(nπ t/L)

+ 2L

π 2

∞∑

n=1

1 − (−1)n

n2
sin(nπx/L) sin(nπ t/L).

The solution of the original problem is

y(x, t)= Y (x, t)+ 1

6
Ax(L2 − x2).

Figure 16.8 shows wave profiles for c =1 and L =π at times t =0.03,0.2, 0.5,0.9, 1.4, and
2.2. The waves move upward as t increases over these times. �

SECTION 16.2 PROBLEMS

In each of Problems 1 through 8, solve the initial-
boundary value problem using separation of variables.
Graph the fiftieth partial sum of the solution for some
values of t , with c = 1 if c is unspecified in the
problem.

1.
∂2 y

∂t2
= c2 ∂

2 y

∂x2
for 0< x < 2, t > 0

y(0, t)= y(2, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= g(x) for 0 ≤ x ≤ 2

where g(x)=
{

2x for 0 ≤ x ≤ 1

0 for 1< x ≤ 2.

2.
∂2 y

∂t2
= 9

∂2 y

∂x2
for 0< x < 4, t > 0

y(0, t)= y(4, t)= 0 for t ≥ 0

y(x,0)= 2 sin(πx),
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 4

3.
∂2 y

∂t2
= 4

∂2 y

∂x2
for 0< x < 3, t > 0

y(0, t)= y(3, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= x(3 − x) for 0 ≤ x ≤ 3

4.
∂2 y

∂t2
= 9

∂2 y

∂x2
for 0< x <π, t > 0

y(0, t)= y(π, t)= 0 for t ≥ 0

y(x,0)= sin(x),
∂y

∂t
(x,0)= 1 for 0 ≤ x ≤π
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5.
∂2 y

∂t2
= 8

∂2 y

∂x2
for 0< x < 2π, t > 0

y(0, t)= y(2π, t)= 0 for t ≥ 0

y(x,0)= f (x),
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 2π

where f (x)=
{

3x for 0 ≤ x ≤π
6π − 3x for π < x ≤ 2π .

6.
∂2 y

∂t2
= 4

∂2 y

∂x2
for 0< x < 5, t > 0

y(0, t)= y(5, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= g(x) for 0 ≤ x ≤ 5

where g(x)=
{

0 for 0 ≤ x < 4

5 − x for 4 ≤ x ≤ 5.

7.
∂2 y

∂t2
= 9

∂2 y

∂x2
for 0< x < 2, t > 0

y(0, t)= y(2, t)= 0 for t ≥ 0

y(x,0)= x(x − 2),
∂y

∂t
(x,0)= g(x) for 0 ≤ x ≤ 2

where g(x)=
{

0 for 0 ≤ x < 1/2 and 1< x ≤ 2

3 for 1/2 ≤ x ≤ 1.

8.
∂2 y

∂t2
= 25

∂2 y

∂x2
for 0< x <π, t > 0

y(0, t)= y(π, t)= 0 for t ≥ 0

y(x,0)= sin(2x),
∂y

∂t
(x,0)=π − x for 0 ≤ x ≤π

9. Solve the initial-boundary value problem

∂2 y

∂t2
= 3

∂2 y

∂x2
+ 2x for 0< x < 2, t > 0

y(0, t)= y(2, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 2.

Graph the fortieth partial sum of the solution for some
values of the time.

10. Solve

∂2 y

∂t2
= 9

∂2 y

∂x2
+ x2 for 0< x < 4, t > 0

y(0, t)= y(4, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 4.

Graph the fortieth partial sum of the solution for
selected values of t ,

11. Solve

∂2 y

∂t2
= ∂2 y

∂x2
− cos(x) for 0< x < 2π, t > 0

y(0, t)= y(2π, t)= 0 for t ≥ 0

y(x,0)= 0,
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 2π.

Graph the fortieth partial sum for some values of the
time.

12. Transverse vibrations in a homogeneous rod of length
π are modeled by the partial differential equation

a4 ∂
4u

∂x4
+ ∂2u

∂t2
= 0 for 0< x <π, t > 0.

Here u(x, t) is the displacement at time t of the cross
section through x perpendicular to the x-axis and
a2 = E I/ρA, where E is Young’s modulus, I is the
moment of inertia of this cross section, ρ is the con-
stant density and A is the constant cross-sectional
area.

(a) Let u(x, t)= X (x)T (t) to separate the variables.
(b) Solve for values of the separation constant and for

X and T in the case of free ends, in which

∂2u

∂x2
(0, t)= ∂2u

∂x2
(π, t)= ∂3u

∂x3
(0, t)= ∂3 y

∂x3
(π, t)=0

for t > 0.
(c) Solve for the separation constant and for X and T

in the case of supported ends in which

u(0, t)= u(π, t)= ∂2u

∂x2
(0, t)= ∂2u

∂x2
(π, t)= 0.

13. Solve the telegraph equation

∂2u

∂t2
+ A

∂u

∂t
+ Bu = c2 ∂

2u

∂x2

for 0< x < L , t > 0. A and B are positive constants.
The boundary conditions are

u(0, t)= u(L , t)= 0 for t ≥ 0,

and the initial conditions are

u(x,0)= f (x),
∂u

∂t
(x,0)= 0 for 0 ≤ x ≤ L .

Assume that A2 L2 < 4(BL2 + c2π 2).
14. (a) Write a series solution for

∂2 y

∂t2
= 9

∂2 y

∂x2
+ 5x3 for 0< x < 4, t > 0

y(0, t)= y(4, t)= 0 for t ≥ 0

y(x,0)= cos(πx),
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 4.

(b) Write a series solution when the forcing term 5x3

is removed.
(c) In order to gauge the effect of the forcing term

on the motion, graph the fortieth partial sum of
the solutions in parts (a) and (b) on the same set
of axes when t = 0.4 seconds. Repeat this for
t = 0.8,1.4, 2,2.5, 3, and 4.
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15. (a) Write a series solution for

∂2 y

∂t2
= 9

∂2 y

∂x2
− e−x for 0< x < 4, t > 0

y(0, t)= y(4, t)= 0 for t ≥ 0

y(x,0)= sin(πx),
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 4.

(b) Write a series solution when the forcing term e−x

is removed.
(c) In order to gauge the effect of the forcing term

on the motion, graph the fortieth partial sum of
the solutions in parts (a) and (b) on the same set
of axes when t = 0.4 seconds. Repeat this for
t = 0.8,1.4, 2,2.5, 3, and 4.

16. (a) Write a series solution for

∂2 y

∂t2
= 9

∂2 y

∂x2
+ cos(πx) for 0< x < 4, t > 0

y(0, t)= y(4, t)= 0 for t ≥ 0

y(x,0)= x(4 − x),
∂y

∂t
(x,0)= 0 for 0 ≤ x ≤ 4.

(b) Write a series solution when the forcing term
cos(πx) is removed.

(c) In order to gauge the effect of the forcing term on
the motion, graph the fortieth partial sum of the
solutions in (a) and (b) on the same set of axes
when t = 0.6 seconds, then for t = 1,1.4, 2,3, 5
and 7.

16.3 Wave Motion in an Infinite Medium

If great distances are involved (as with sound waves through the ocean or cosmic background
radiation across the universe), wave motion is often modeled by the wave equation on −∞<

x <∞. In this case, there is no boundary, hence no boundary condition. However, we seek
bounded solutions.

The analysis is similar to that for solutions on a closed interval, except that
∫ ∞

−∞ · · ·dω
replaces

∑∞
n=1. As we did on a bounded interval, we will consider separately the cases of zero

initial velocity and no initial displacement.

Zero Initial Velocity The initial-boundary value problem is

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for −∞< x <∞, t > 0,

y(x,0)= f (x),
∂y

∂t
(x,0)= 0 for −∞< x <∞.

Separate variables by putting y(x, t)= X (x)T (t). Exactly as with wave motion on a bounded
interval, we obtain

X ′′ + λX = 0,T ′′ + λc2T = 0.

There are three cases on λ.

Case 1: If λ= 0 then X = ax + b

This is bounded if a = 0, so 0 is an eigenvalue with constant eigenfunctions.

Case 2: If λ< 0, write λ=−ω2 with ω > 0

Then X (x) = c1eωx + c2e−ωx , and this function is unbounded on the entire real line if either
constant is nonzero. This problem has no negative eigenvalue.

Case 3: If λ> 0, write λ=ω2 with ω > 0

Now X (x)= c1 cos(ωx)+ c2 sin(ωx), a bounded function for any choices of positive ω. Every
positive number λ= ω2 is an eigenvalue, with eigenfunctions of the form Xω = c1 cos(ωx)+
c2 sin(ωx).
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We can consolidate cases 1 and 3 by allowing λ= 0 in case 3.
The equation for T is T ′′ + c2ω2T = 0 with solutions of the form

Tω(t)= a cos(ωct)+ b sin(ωct).

But

∂y

∂t
(x,0)= X (x)T ′(0)= X (x)ωcb = 0,

and this is satisfied if we choose b = 0. This leaves Tω(t) as a constant multiple of cos(ωct).
Thus far, for every ω≥ 0, we have functions

yω(x, t)= Xω(x)Tω(t)=[aω cos(ωx)+ bω cos(ωx)] cos(ωct),

which satisfy the wave equation and the initial condition (∂y/∂t)(x,0)= 0 for all x . We need to
satisfy the initial condition y(x,0)= f (x). For the similar problem on a bounded interval, we
attempted a superposition

∑∞
n=1 yn(x, t). Now the eigenvalues fill out the entire nonnegative real

line, so the superposition has the form
∫ ∞

0
yω(x, t)dω. Thus, attempt a solution

y(x, t)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)] cos(ωct)dω. (16.7)

The initial condition requires that

y(x,0)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)]dω= f (x).

This is a Fourier integral expansion of f (x) on the real line, so choose aω and bω as the Fourier
integral coefficients of f :

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ)dξ

and

bω = 1

π

∫ ∞

−∞
f (ξ) sin(ωξ)dξ.

With this choice of coefficients, equation (16.7) is the solution.

EXAMPLE 16.8

We will solve the problem

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for −∞< x <∞, t > 0,

y(x,0)= e−|x |,
∂y

∂t
(x,0)= 0 for −∞< x <∞.

Compute the Fourier coefficients of the initial position function. First,

aω = 1

π

∫ ∞

−∞
e−|ξ | cos(ωξ)dξ = 2

π(1 +ω2)
.

Because e−|ξ | sin(ωξ) is an odd function of ξ , bω = 0. The solution is

y(x, t)= 2

π

∫ ∞

0

1

1 +ω2
cos(ωx) cos(ωct)dω. �

The solution (16.7) is sometimes seen in a different form. If we insert the integrals for the
coefficients into the solution, we have
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y(x, t)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)] cos(ωct)dω

= 1

π

∫ ∞

0

[(∫ ∞

−∞
f (ξ) cos(ωξ)dξ

)

cos(ωx)

+
(∫ ∞

−∞
f (ξ) sin(ωξ)dξ

)

sin(ωx)

]

cos(ωct)dω

= 1

π

∫ ∞

−∞

∫ ∞

0

[cos(ωξ) cos(ωx)+ sin(ωξ) sin(ωx)] f (ξ) cos(ωct)dω dξ.

Upon applying a trigonometric identity to the term in square brackets, we have

y(x, t)= 1

π

∫ ∞

−∞

∫ ∞

0

cos(ω(ξ − x)) f (ξ) cos(ωct)dω dξ. (16.8)

We will use this form of the solution when we solve this problem using the Fourier transform.

Zero Initial Displacement We will solve

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for −∞< x <∞, t > 0

and

y(x,0)= 0,
∂y

∂t
(x,0)= g(x) for −∞< x <∞.

Letting y(x, t)= X (x)T (t), the analysis proceeds exactly as in the case of zero initial velocity,
except now we find that Tω(t)= sin(ωct) because T (0)= 0 instead of T ′(0)= 0. For ω≥ 0, we
have functions

yω(x, t)=[aω cos(ωx)+ bω sin(ωx)] sin(ωct),

which satisfy the wave equation and the condition y(x,0)= 0. To satisfy (∂y/∂t)(x,0)= g(x),
attempt a superposition

y(x, t)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)] sin(ωct)dω. (16.9)

Compute

∂y

∂t
(x, t)=

∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)]ωc cos(ωct)dω.

We must choose the coefficients so that
∂y

∂t
(x,0)=

∫ ∞

0

ωc[aω cos(ωx)+ bω sin(ωx)]dω= g(x).

We can do this by choosing ωcaω and ωcbω as the Fourier coefficients in the integral expansion
of g. Thus, let

aω = 1

πcω

∫ ∞

−∞
g(ξ) cos(ωξ)dξ and bω = 1

πcω

∫ ∞

−∞
g(ξ) sin(ωξ)dξ.

With these choices, equation (16.9) is the solution of the initial-boundary value problem.

EXAMPLE 16.9

Suppose the initial displacement is zero and the initial velocity is given by

g(x)=
{

ex for 0 ≤ x ≤ 1

0 for x < 0 and for x > 1.

Compute the coefficients
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aω = 1

πcω

∫ ∞

−∞
g(ξ) cos(ωξ)dξ = 1

πcω

∫ 1

0

eξ cos(ωξ)dξ

= 1

πcω

e cos(ω)+ eω sin(ω)− 1

1 +ω2

and

bω = 1

πcω

∫ ∞

−∞
g(ξ) sin(ωξ)dξ = 1

πcω

∫ 1

0

eξ sin(ωξ)dξ

=− 1

πcω

eω cos(ω)− e sin(ω)−ω
1 +ω2

.

The solution is

y(x, t)=
∫ ∞

0

(
1

πcω

e cos(ω)+ eω sin(ω)− 1

1 +ω2

)

cos(ωx) sin(ωct)dω

−
∫ ∞

0

(
1

πcω

eω cos(ω)− e sin(ω)−ω
1 +ω2

)

sin(ωx) sin(ωct)dω. �

As with motion on a bounded interval, the general initial-boundary value problem is solved
by adding the solution with no initial velocity to the solution with no initial displacement.

Solution by Fourier Transform

We will illustrate the use of the Fourier transform to solve the initial-boundary value prob-
lem for the wave equation on the real line. Let the initial displacement be f (x) and the initial
velocity, g(x).

Begin by taking the Fourier transform of the wave equation. This transform must be taken
with respect to x , since −∞ < x < ∞, the appropriate range of values for this transform.
Throughout this transform process, t is carried along as a symbol. Applying the transform, we
have

F
[
∂2 y

∂t 2

]

(ω)= c2F
[
∂2 y

∂x2

]

(ω). (16.10)

On the right side of equation (16.10), we must transform a second derivative with respect to x ,
the variable of the function being transformed. Use the operational rule for the Fourier transform
to write

F
[
∂2 y

∂x2

]

(ω)= (iω)2 ŷ(ω, t)=−ω2 ŷ(ω, t).

For the left side of equation (16.10), the derivative with respect to t passes through the transform
in the x-variable:

F
[
∂2 y

∂t 2

]

(ω)=
∫ ∞

−∞

∂2 y

∂t 2
(x, t)e−iωx dx

= ∂2

∂t 2

∫ ∞

−∞
y(x, t)e−iωx dx = ∂2

∂t 2
f̂ (ω, t).

The transformed wave equation is

∂2

∂t 2
ŷ(ω, t)=−c2ω2 ŷ(x, t).
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Write this differential equation as

∂2

∂t 2
ŷ(ω, t)+ c2ω2 ŷ(x, t)= 0.

Think of this as an ordinary differential equation for ŷ(ω, t) with t as the variable and ω carried
along as a parameter. The general solution is

ŷ(ω, t)= aω cos(ωct)+ bω sin(ωct).

To solve for the coefficients to satisfy the initial conditions, transform the initial data. First,

ŷ(ω,0)= aω =F[y(x,0)](ω)=F[ f (x)](ω)= f̂ (ω),

the transform of the initial position function. Next,

∂ ŷ

∂t
(ω,0)= cωbω =F

[
∂y

∂t
(x,0)

]

(ω,0)

=F[g(x)](ω)= ĝ(ω),

which is the transform of the initial velocity function. Therefore,

bω = 1

ωc
ĝ(ω).

Now

ŷ(ω, t)= f̂ (ω) cos(ωct)+ 1

ωc
ĝ(ω) sin(ωct).

This is the Fourier transform of the solution. Invert this to find the solution

y(x, t)= 1

2π

∫ ∞

−∞

[

f̂ (ω) cos(ωct)+ 1

ωc
ĝ(ω) sin(ωct)

]

eiωx dω.

In the case that the string is released from rest, g(x)= 0 and this solution is

y(x, t)= 1

2π

∫ ∞

−∞
f̂ (ω) cos(ωct)eiωx dω. (16.11)

We claim that this solution (16.11) obtained by using the Fourier transform agrees with the
solution (16.8) obtained by separation of variables and the Fourier integral. For the moment,
denote the solution (16.11) by Fourier transform as ytr(x, t). Manipulate ytr(x, t) as follows:

ytr(x, t)= 1

2π

∫ ∞

−∞
f̂ (ω) cos(ωct)eiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξdξ

)

cos(ωct)eiωx dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−iω(ξ−x) cos(ωct) f (ξ)dω dξ

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
[cos(ω(ξ − x))− i sin(ω(ξ − x))] cos(ωct) f (ξ)dω dξ.

Since y(x, t) must be real-valued, the solution is actually the real part of this integral. Therefore,

ytr(x, t)= 1

2π

∫ ∞

−∞

∫ ∞

−∞
cos(ω(ξ − x)) cos(ωct) f (ξ)dω dξ.

Finally, the integrand is an even function of ω, so

ytr(x, t)= 1

π

∫ ∞

−∞

∫ ∞

0

cos(ω(ξ − x)) cos(ωct) f (ξ)dω dξ,

and this is the solution (16.8).
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EXAMPLE 16.10

We will use the Fourier transform to solve the wave equation on the real-line subject to the initial
conditions g(x)= 0 and

f (x)=
{

cos(x) for −π/2 ≤ x ≤π/2
0 for |x |>π/2.

With zero initial velocity, we can use the solution (16.11). We need the Fourier transform of the
initial position function:

f̂ (ω)=
∫ ∞

−∞
f (ξ)e−iωξ dξ

=
∫ π/2

−π/2
cos(ξ)e−iωξ dξ =

{
2cos(πω/2)/(1 −ω2) for ω 	= 1

π/2 for ω= 1.

f̂ is continuous because

lim
ω→1

2 cos(πω/2)

1 −ω2
= π

2
.

The solution is

y(x, t)= Re

(
1

π

∫ ∞

−∞

2cos(πω/2)

1 −ω2
cos(ωct)eiωx dω

)

.

The integral is complex because the Fourier transform is a complex quantity. The real part is the
solution of the problem. In this case, we can extract the real part by writing

eiωx = cos(ωx)+ i sin(ωx),

obtaining

y(x, t)= 1

π

∫ ∞

−∞

2cos(πω/2)

1 −ω2
cos(ωx) cos(ωct)dω. �

SECTION 16.3 PROBLEMS

In each of Problems 1 through 6, solve the wave equa-
tion on the real line for the given initial position f
and initial velocity g, first by separation of variables
and the Fourier integral, and then by using the Fourier
transform. The same solution should result from both
methods.

1. c = 12, f (x)= e−5|x |, g(x)= 0

2. c = 8, g(x)= 0,

and f (x)=
{

8 − x for 0 ≤ x ≤ 8

0 for x < 0 and for x > 8.

3. c = 4, f (x)= 0, and g(x)=
{

sin(x) for −π ≤ x ≤π
0 for |x |>π

4. c = 1, g(x)= 0, and f (x)=
{

2 − |x | for −2 ≤ x ≤ 2

0 for |x |> 2

5. c = 3, f (x)= 0, and g(x)=
{

e−2x for x ≥ 1

0 for x < 1

6. c = 2, f (x)= 0, and

g(x)=

⎧
⎪⎨

⎪⎩

1 for 0 ≤ x ≤ 2

−1 for −2 ≤ x < 0

0 for x > 2 and for x <−2
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16.4 Wave Motion in a Semi-Infinite Medium

We will solve the wave equation on a half-line 0 ≤ x <∞. The problem is

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for 0 ≤ x <∞, t > 0,

y(0, t)= 0 for t ≥ 0

and

y(x,0)= f (x),
∂y

∂t
(x,0)= g(x) for 0 ≤ x <∞.

We will seek a bounded solution, considering first the case that g(x)= 0. Separate variables
by putting y(x, t)= X (x)T (t) to obtain

X ′′ + λX = 0 and T ′′ + λc2T = 0.

Unlike the problem on the entire line, we have a boundary condition at the fixed left end. This
means that y(0, t)= X (0)T (t)= 0, so X (0)= 0, and the problem for X is

X ′′ + λX = 0; X (0)= 0.

Upon considering cases as we have done before, we find the eigenvalues λ≥0 and eigenfunctions

Xω = bω sin(ωx).

Because the motion is assumed to begin from rest,

∂y

∂t
(x,0)= X (x)T ′(0)= 0,

so T ′(0)= 0. The problem for T is

T ′′ + c2ω2T = 0; T ′(0)= 0

with solutions that are constant multiples of cos(ωct). For each ω≥ 0, we now have a function

yω(x, t)= bω sin(ωx) cos(ωct)

that satisfies the wave equation, the boundary condition and the initial condition that the
string starts from rest. To satisfy the condition y(x,0) = f (x), we generally need the
superposition

y(x, t)=
∫ ∞

0

bω sin(ωx) cos(ωct).

Then

y(x,0)=
∫ ∞

0

bω sin(ωx)= f (x),

so we must choose

bω = 2

π

∫ ∞

0

f (ξ) sin(ωξ)dξ,

which is the coefficient in the Fourier sine integral representation of f on [0,∞). This solves the
problem when g(x)=0. A similar analysis allows us to write an integral solution when f (x)=0
and the string has an initial velocity of (∂y/∂t)(x,0)= g(x).
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EXAMPLE 16.11

We will solve the problem

∂2 y

∂t 2
= 16

∂2 y

∂x2
for 0 ≤ x <∞, t > 0,

y(0, t)= 0 for t ≥ 0

∂y

∂t
(x,0)= 0 for 0 ≤ x <∞

and

y(x,0)= f (x)=
{

sin(πx) for 0 ≤ x ≤ 4

0 for x > 4.

To write the solution, we need only compute the coefficients

bω = 2

π

∫ ∞

0

f (ξ) sin(ωξ)dξ

= 2

π

∫ 4

0

sin(πξ) sin(ωξ)dξ = 8 sin(ω) cos(ω)
2cos2(ω)− 1

ω2 −π 2
.

The solution is

y(x, t)=
∫ ∞

0

8 sin(ω) cos(ω)
2cos2(ω)− 1

ω2 −π 2
sin(ωx) cos(4ωt)dω. �

16.4.1 Solution by Fourier Sine or Cosine Transform

We will illustrate the use of a Fourier transform to solve the problem on a half-line. Having
considered the case of zero initial velocity for the separation of variables solution, we will assume
here an initial velocity g(x) but zero initial position f (x)= 0. The problem is

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for 0 ≤ x <∞, t > 0,

y(0, t)= 0 for t ≥ 0

and

y(x,0)= 0,
∂y

∂t
(x,0)= g(x) for 0 ≤ x <∞.

On the half-line, we can try a Fourier sine or a Fourier cosine transform of y(x, t), thinking of
x as the variable and t as a parameter. The choice depends on the operational rules for these
transforms. The cosine transform requires that we know something about the derivative (with
respect to x) of y at x =0, while the sine transform requires information about the function itself
at x =0. Since we are given that y(0, t)=0, this is the kind of information we have, so choose the
sine transform. Apply FS to the wave equation and use the fact that the derivative with respect to
t goes through the transform to get

∂2

∂t 2
ŷS = c2FS

[
∂2 y

∂x2

]

=−c2ω2 ŷS(ω, t)+ωc2 y(0, t)=−c2ω2 ŷS(ω, t).

This is a differential equation for ŷS(ω, t) with t as the variable:

∂2 ŷS

∂t 2
+ c2ω2 ŷS(ω, t)= 0.
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The general solution is

ŷS(ω, t)= aω cos(ωct)+ bω sin(ωct).

Since

aω = ŷS(ω,0)=FS[y(x,0)](ω)=FS[0](ω)= 0

and

∂ ŷS

∂t
(ω,0)=ωcbω = ĝS(ω)

then

bω = 1

ωc
ĝS(ω).

This gives us

ŷS(ω, t)= 1

ωc
ĝS(ω) sin(ωct),

which is the sine transform of the solution. We obtain the solution by inverting:

y(x, t)= 2

π

∫ ∞

0

1

ωc
ĝS(ω) sin(ωx) sin(ωct)dω.

If we have a wave equation on the half-line with zero initial velocity and initial position given
by f , then we can proceed as we have just done, but using the Fourier cosine transform instead
of the sine transform. This is because the information given now fits within the framework of
the operational rule for the cosine transform. As usual, a problem with initial displacement and
velocity can be solved as the sum of the solution with zero initial velocity and the solution with
zero initial position.

SECTION 16.4 PROBLEMS

In each of Problems 1 through 5, solve the problem for
wave equation on the half-line for the given c, initial posi-
tion f and initial velocity g, first by separation of variables,
then by using an appropriate Fourier transform.

1. c = 3, g(x)= 0, and f (x)=
{

x(1 − x) for 0 ≤ x ≤ 1

0 for x > 1

2. c = 3, f (x)= 0, and g(x)=

⎧
⎪⎨

⎪⎩

0 for 0 ≤ x ≤ 4

2 for 4< x ≤ 11

0 for x > 11

3. c = 2, f (x)= 0, and

g(x)=
{

cos(x) for π/2 ≤ x ≤ 5π/2

0 for 0 ≤ x <π/2 and for x > 5π/2

4. c = 6, f (x)=−2e−x , and g(x)= 0

5. c=14, f (x)=0, and g(x)=
{

x2(3 − x) for 0 ≤ x ≤ 3

0 for x > 3

16.5 Laplace Transform Techniques

The Laplace transform is well suited to solving certain problems involving wave motion, both on
closed intervals and on the half-line. We will illustrate this by solving one problem on x > 0 and
another on a closed interval.
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A Problem on a Half-Line We will solve the boundary value problem

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
− A for x > 0, t > 0,

y(x,0)= ∂y

∂t
(x,0)= 0,

and

y(0, t)= 0,

with A as a positive constant. Because the half-line is unbounded to the right, we also impose the
condition that

lim
x→∞

∂y

∂x
(x, t)= 0

for t ≥ 0.
This problem models an infinitely long string lying on the nonnegative x-axis, with its left

end (x = 0) fastened. The string is pulled downward by a force of constant magnitude A.
Apply the Laplace transform L, with respect t , to the wave equation, using the boundary

conditions and the operational rule for taking the transform of derivatives. In this process L, and
∂/∂x interchange because x is independent of t . The wave equation transforms to

s2Y (x, s)− sy(x,0)− ∂y

∂t
(x,0)= c2 ∂

2Y

∂x2
− A

s
.

Substitute the boundary conditions into this and let Y ′(x, s) denote ∂Y/∂x . This differential
equation becomes

Y ′′(x, s)− s2

c2
Y (x, s)= A

c2s
.

Think of this as a nonhomogeneous constant coefficient second order differential equation, whose
general solution is the general solution of the associated homogeneous equation plus a particular
solution of the nonhomogeneous equation. By inspection, Yp = −A/s3 is a particular solution.
The characteristic equation of the associated homogeneous equation is

λ2 −
( s

c

)2 = 0

with roots ±s/c. The general solution of the associated homogeneous equation is

Y (x, s)= k1e
sx/c + k2e

−sx/c.

Therefore, the general solution for Y (x, s) is

Y (x, s)= k1e
sx/c + k2e

−sx/c − A

s3
.

To solve for k1 and k2, we need two pieces of information. Use the boundary conditions. Take the
transform of y(0, t)= 0 to obtain Y (0, s)= 0. Then

Y (0, s)= k1 + k2 − A

s3
= 0,

so k2 = A
s3 − k1. Thus far,

Y (x, s)= k1e
sx/c +

(
A

s3
− k1

)

e−sx/c − A

s3
.

Now use the limit boundary condition. Applying the transform, we have

L[ lim
x→∞

(∂/∂x)y(x, t)] = lim
x→∞

Y ′(x, s)= 0.
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Now

Y ′(x, s)= s

c
k1e

sx/c − s

c

(
A

s3
− k1

)

e−sx/c.

Since esx/c → ∞ and x → ∞, we must choose k1 = 0. This gives us

Y (x, s)= A

s3
e−sx/c − A

s3
.

The solution is y(x, t)=L−1[Y (x, s)]. Now

L−1

[
A

s3

]

= A

2
t 2

and, from the shifting theorems in Chapter 3,

L−1

[
A

s3
e−sx/c

]

= A

2

(
t − x

c

)2

H
(
t − x

c

)

in which H is the Heaviside function. The solution is therefore

y(x, t)= A

2

(
t − x

c

)2

H
(
t − x

c

)
− A

2
t 2.

Since
(
t − x

c

)2

H
(
t − x

c

)
=
{

0 if x > ct,

(t − x/c)2 if x ≤ ct ,

then

y(x, t)=
{

− At2

2
for x > ct ,

A
2

x2

c2 − A
c
xt for x ≤ ct .

A Problem on [0, L] Next consider the boundary value problem:

∂2 y

∂t 2
= c2 ∂

2 y

∂x2
for 0< x < L , t > 0,

y(x,0)= ∂y

∂t
(x,0)= 0,

and

y(0, t)= 0, E
∂y

∂t
(L , t)= f (t).

This models vibrations in an elastic bar of constant density ρ, uniform cross section and length
L . f (t) is a force per unit length acting parallel to the bar at the right end x = L . Here c2 = E/ρ,
where E is Young’s modulus for the material of the bar. The bar is initially at rest and lying flat
along the interval [0, L].

Apply the Laplace transform L, with respect t , using the boundary conditions and the oper-
ational rule for taking the transform of derivatives. This is similar to the problem just solved and
we obtain

Y ′′(x, s)− s2

c2
Y (x, s)= 0,

in which Y ′(x, s)= ∂Y/∂x and s is carried along as a parameter. This is a second order linear
homogeneous constant coefficient differential equation. The characteristic equation is

λ2 −
( s

c

)2 = 0,
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with roots ±s/c. The general solution for Y (s, x) is

Y (x, s)= k1e
sx/c + k2e

−sx/c.

We need two initial conditions to solve for k1 and k2. First, transform y(0, t) = 0 to obtain
Y (0, s)= 0. Then

Y (0, s)= k1 + k2 = 0

so k1 =−k2. This means that Y (x, s) has the form

Y (x, s)= k sinh(sx/c),

in which k is an arbitrary constant. To determine k, transform the other initial condition
E(∂y/∂t)(L , t)= f (t) to obtain EY ′(L , s)= F(s).

Apply this to Y (x, s)= k sinh(sx/c) to obtain

Ek
s

c
cosh(sL/c)= F(s),

or

k = c

E
F(s)

1

s cosh(sL/c)
.

We now have

Y (x, s)= c

E
F(s)

sinh(sx/c)

s cosh(sL/c)
.

The solution to the original problem is

y(x, t)=L−1[Y (x, s)](t).
Because of the generality of the problem, f (t) is unspecified and we cannot proceed beyond this
point. However, there are special cases of interest in which we can complete the solution. We
will consider two such cases.

Case 1 Suppose f (t)= K , constant.
Now

F(s)=LK = K

s
so

Y (x, s)= cK

E

sinh(sx/c)

s2 cosh(sL/c)
.

We can take the inverse transform of this expression by making use of the geometric series:

1

1 + ξ =
∞∑

n=0

(−1)nξ n

for |ξ |< 1. Now write

sinh(sx/c)

cosh(sL/c)
= esx/c − e−sx/c

esL/c + e−sL/c

= esx/ce−sL/c − e−sx/ce−sL/c

1 + e−sL/ce−sL/c

= e−(L−x)s/c − e−(L+x)s/c

1 + e−2sL/c

= (e−(L−x)s/c − e−(L+x)s/c
) 1

1 + e−2sL/c
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= (e−(L−x)s/c − e−(L+x)s/c
) ∞∑

n=0

(−1)n
(
e−2sL/c

)n

= (e−(L−x)s/c − e−(L+x)s/c
) ∞∑

n=0

(−1)ne−2nsL/c.

Here we used ξ = e−2sL/c in the geometric series, using the fact that this exponential is always
less than 1 for x > 0. Finally, we can write

Y (x, s)= cK

E
e−(L−x)s/c

∞∑

n=0

(−1)n
1

s2
e−2snL/c

− cK

E
e−(L+x)s/c

∞∑

n=0

(−1)n
1

s2
e−2nsL/c

= cK

E

∞∑

n=0

(−1)n
1

s2
e((−(2n+1)L−x)/c)s

− cK

E

∞∑

n=0

1

s2
e((−(2n+1)L+x)/c)s .

Now recall that, for any nonzero number α

L−1

(
1

s2
e−αs

)

= (t −α)H(t −α)

in which H is the Heaviside function. Assuming that we can take the transform of the geometric
series term by term, the solution is

y(x, t)= cK

E

∞∑

n=0

(

t − (2n + 1)L − x

c

)

H

(

t − (2n + 1)L − x

c

)

− cK

E

∞∑

n=0

(

t − (2n + 1)L + x

c

)

H

(

t − (2n + 1)L + x

c

)

.

Look at this solution for a particular choice of the constants. Suppose c = 2 and K = E =
L = 1. Now the solution is

y(x, t)=2
∞∑

n=0

(−1)n
(

t − 2n + 1 − x

2

)

H

((

t − 2n + 1 − x

2

))

− 2
∞∑

n=0

(−1)n
(

t − 2n + 1 + x

2

)

H

((

t − 2n + 1 + x

2

))

.

Graphs of this solution on 0≤ x ≤1 are shown in Figure 16.9. The lower graph is for time t =1.7.
Moving up, the next graph is t = 2.4, then 3.4, then 1.3 and 4.7 (indistinguishable in the scale of
the graphs), then 5.2, and the highest graph is 0.9.

It is interesting to look at the motion of the right end of the bar. The analysis carried out to
find Y (x, s) applies, except now put x = L to obtain

Y (L , s)= cK

E

1

s2

sinh(sL/c)

cosh(sL/c)
= cK

E

1

s2
tanh(sL/c).
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1.6
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0.8

0.4

0

x
10.80.60.40.20

FIGURE 16.9 Profiles of the elastic bar at dif-
ferent times with f (t)= K.

(0, 2L /c)

(4L /c, 0) (8L /c, 0)
t

g(t)

FIGURE 16.10 Sawtooth wave.

The interesting thing about this is that this function has a simple inverse transform. Let g be
periodic of fundamental period 4L/c, with g(t) for 0 ≤ t ≤ 4L/c defined by

g(t)=
{

t for 0 ≤ t ≤ 2L/c,

4L/c for 2L/c ≤ t ≤ 4L/c.

A graph of this sawtooth wave is shown in Figure 16.10.
Thus the right end of the bar moves according to the graph of g, exhibiting an up-and-down

oscillation.

Case 2 Another case in which we can do a fairly complete analysis is that the end is hit with
an impulse of magnitude I at time zero. Suppose f (t)= I δ(t), with δ the delta function. The
analysis proceeds as in case 1, except now we obtain

Y (x, s)= cI

E

sinh(sx/c)

s cosh(sL/c)
,

differing from case 1 in the power of s in the denominator. This occurs because the Laplace trans-
form of K is K/s, while the transform of I δ(t) is just I , the delta function having transform 1.
Since
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–2

0 0.80.2 0.4 0.6

FIGURE 16.11 Profiles of the bar at different
times with f (t)= I δ(t).

h(t)

t

(0,1)

(4L/c, 0) (8L/c, 0)

FIGURE 16.12 Square wave of height 1 and
period 4L/c.

L
(

1

s
e−αs

)

= H(t −α)

the analysis of case 1, with this adjustment, yields

Y (x, s)= cI

E

∞∑

n=0

(−1)n
1

s
e−(((2n+1)L−x)/c)s

− cI

E

∞∑

n=0

(−1)n
1

s
e−(((2n+1)L+x)/c)s .

Invert this term by term to obtain

y(x, t)= cI

E

∞∑

n=0

(−1)n H

(

t − (2n + 1)L − x

c

)

− cI

E

∞∑

n=0

(−1)n H

(

t − (2n + 1)L + x

c

)

.

Figure 16.11 shows a graph of this solution for c = 2 and I = E = L = 1.
The graph shows the profile at times t =0.4,0.7,0.9 (with maximum point 2 achieved farther

to the right as t increases, and t = 1.3,1.8, with minimum −2 achieved farther to the right as t
increases.

As in case 1, this case also has a simple form if we focus on the right end of the bar. In this
case, the Laplace transform of the solution is

Y (L , s)= cI

E

1

s
tanh(sL/c).

This also has a simple inverse and we obtain y(L , s) = h(t), where h is the square wave of
Figure 16.12, with a height of 1 and a period of 4L/c.
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SECTION 16.5 PROBLEMS

1. Use the Laplace transform to write the solution (in
terms of f (t)) of the boundary value problem

∂2 y

∂t2
= c2 ∂

2 y

∂x2
+ K for x > 0, t > 0

y(x,0)= ∂y

∂t
(x,0)= 0 for x > 0,

y(0, t)= f (t), lim
x→∞

y(x, t)= 0 for t ≥ 0.

2. Use the Laplace transform to write the solution (in
terms of f (t)) of the boundary value problem

9
∂2 y

∂t2
+ ∂2 y

∂x2
− 6

∂2 y

∂x∂t
= 0 for x > 0, t < 0

y(x,0)= ∂y

∂t
(x,0)= 0 for x > 0, y(2, t)= f (t),

y(0, t)= 0, lim
x→∞

y(x, t)= 0 for t ≥ 0.

3. Use the Laplace transform to solve

∂2 y

∂t2
= c2 ∂

2 y

∂x2
− At for x > 0, t > 0,

y(x,0)= ∂y

∂t
(x,0)= 0,

y(0, t)= f (t), and lim
x→∞

y(x, t)= 0,

in which A is a positive constant.
4. Use the Laplace transform to find the solution

y(x, t)= 1

2
( fo(x + ct)+ fo(x − ct))

of the problem

∂2 y

∂t2
= c2 ∂

2 y

∂x2
for x > 0, t > 0

y(x,0)= ∂y

∂t
(x,0)= 0 for x > 0,

y(0, t)= f (t), lim
x→∞

y(x, t)= 0 for t ≥ 0.

5. Use the Laplace transform to solve:

∂y

∂t2
= c2 ∂y

∂x2
− Axt for x > 0, t > 0,

y(x,0)= ∂y

∂t
(x,0)= 0 for x > 0,

y(0, t)= e−t , lim
x→∞

y(x, t)= 0 for t > 0.

16.6 Characteristics and d’Alembert’s Solution

In this section, we will derive d’Alembert’s solution of a wave problem on the real line. We will
denote partial derivatives by subscripts, ∂u/∂t =ut and ∂u/∂x =ux . The problem we will solve is

utt = c2uxx for −∞< x <∞, t > 0

and

u(x,0)= f (x),ut(x,0)= g(x) for −∞< x <∞.

We are using u(x, t) for the position function of the wave. A graph of the wave’s profile at time
t is the graph of y = u(x, t) in the x, y-plane for that value of t .

This initial-boundary value problem is called the Cauchy problem for the wave equation.
The lines x − ct = k1 and x + ct = k2 in the x, t-plane are called characteristics of the wave
equation. These are straight lines of slope 1/c and −1/c in the x, t-plane. Exploiting these
characteristics, make the change of variables

ξ = x − ct, η= x + ct.
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The transformation is invertible, since we can solve for x and t to get

x = 1

2
(ξ + η), t = 1

2c
(−ξ + η).

Define

U (ξ, η)= u((ξ + η)/2, (−ξ + η)/2c).

We must compute chain rule derivatives:

ux =Uξ ξx +Uηηx =Uξ +Uη,

and

uxx =Uξξ ξx +Uξηηx +Uηξ ξx +Uηηηx

=Uξξ + 2Uξη +Uηη.

Similarly,

utt = c2Uξξ − 2c2Uξη + c2Uηη.

The wave equation transforms to

utt − c2uxx = 0 =[c2Uξξ − 2c2Uξη + c2Uηη] − c2[Uξξ + 2Uξη +Uηη],
or

Uξη = 0.

Now we see the rationale for this change of variables. The transformed equation Uξη = 0 is easy
to solve. First, (Uη)ξ = 0 means that Uη is independent of ξ , so for some function h,

Uη = h(η).

Then

U (ξ, η)=
∫

h(η)dη+ F(ξ)

in which this integration with respect to η may have ξ in its “constant” of integration. Now∫
h(η)dη is just another function of η, so we conclude that U (ξ, η) must be a sum of a function

just of ξ and a function just of η:

U (ξ, η)= F(ξ)+ G(η).

This function satisfies the transformed wave equation for any twice differentiable functions F
and G of one variable and, conversely, every solution of the transformed wave equation has this
form. In terms of x and t , this means that every solution of the one-dimensional (unforced) wave
equation has the form

u(x, t)= F(x − ct)+ G(x + ct). (16.12)

Thus far, we have dealt with just the partial differential equation. The idea now is to choose
F and G to obtain a solution satisfying the initial conditions y(x,0)= f (x) and yt(x,0)= g(x).
First we need

u(x,0)= F(x)+ G(x)= f (x) (16.13)

and

ut(x,0)=−cF ′(x)+ cG ′(x)= g(x). (16.14)

Integrate equation (16.14) and rearrange terms to get

−F(x)+ G(x)= 1

c

∫ x

0

g(w)dw− F(0)+ G(0).
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Add this to equation (16.13) to get

2G(x)= f (x)+ 1

c

∫ x

0

g(w)dw− F(0)+ G(0).

Then

G(x)= 1

2
f (x)+ 1

2c

∫ x

0

g(w)dw− 1

2
F(0)+ 1

2
G(0). (16.15)

But then, from equation (16.13),

F(x)= f (x)− G(x)= 1

2
f (x)− 1

2c

∫ x

0

g(w)dw+ 1

2
F(0)− 1

2
G(0). (16.16)

Finally, use equations (16.15) and (16.16) to obtain the solution

u(x, t)= F(x − ct)+ G(x + ct)

= 1

2
f (x − ct)− 1

2c

∫ x−ct

0

g(w)dw+ 1

2
F(0)− 1

2
G(0)

+ 1

2
f (x + ct)+ 1

2c

∫ x+ct

0

g(w)dw− 1

2
F(0)+ 1

2
G(0).

After cancellations and combining the integrals, we have the solution

u(x, t)= 1

2
( f (x − ct)+ f (x + ct))+ 1

2c

∫ x+ct

x−ct

g(w)dw. (16.17)

This is d’Alembert’s solution of the Cauchy problem for the wave equation on the real line. It
gives an explicit solution in terms of the initial position and velocity functions.

EXAMPLE 16.12

We will solve the initial-boundary value problem

utt = 4uxx for −∞< x <∞, t > 0

and

u(x,0)= e−|x |,ut(x,0)= cos(4x) for −∞< x <∞.

Immediately,

u(x, t)= 1

2

(
e−|x−2t | + e−|x+2t |)+ 1

4

∫ x+2t

x−2t

cos(4w)dw

= 1

2

(
e−|x−2t | + e−|x+2t |)+ 1

16
(sin(4(x + 2t))− sin(4(x − 2t)))

= 1

2

(
e−|x−2t | + e−|x+2t |)+ 1

8
sin(4x) cos(8t). �

16.6.1 Forward and Backward Waves

Write d’Alembert’s solution as

u(x, t)= 1

2

(

f (x − ct)− 1

c

∫ x−ct

0

g(w)dw

)

+ 1

2

(

f (x + ct)+ 1

c

∫ x+ct

0

g(w)dw

)

=ϕ(x − ct)+β(x + ct),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:23 THM/NEIL Page-597 27410_16_ch16_p563-610

16.6 Characteristics and d’Alembert’s Solution 597

where

ϕ(x)= 1

2
f (x)− 1

2c

∫ x

0

g(w)dw

and

β(x)= 1

2
f (x)+ 1

2c

∫ x

0

g(w)dw.

We call ϕ(x − ct) a forward wave. Its graph is the graph of ϕ(x) translated ct units to the right,
and so may be thought of as a wave moving to the right with speed c. We call β(x + ct) a back-
ward wave. Its graph is the graph of β(x) translated ct units to the left, and may be thought
of as a wave moving to the left with speed c. This allows us to think of the wave profile
y = u(x, t) at any time t as a sum of a wave moving to the right and a wave moving to the
left.

EXAMPLE 16.13

Suppose g(x)= 0, c = 1 and

f (x)=
{

4 − x2 for −2 ≤ x ≤ 2

0 for |x |> 2.

The solution is

u(x, t)=ϕ(x + ct)+β(x + ct)= 1

2
( f (x − t)+ f (x + t)).

At any time t the wave profile consists of the initial position function translated t units to
the right, superimposed on the initial position function translated t units to the left. Figures 16.13
through 16.19 show this profile at increasing times.

x
420–2–4

4

3

2

1

0

FIGURE 16.13 Initial position in
Example 16.13.

x
420–2–4

3.5

3

2.5

2

1.5

1

0.5

0

FIGURE 16.14 Wave in Example 16.13
at time t = 0.5.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:23 THM/NEIL Page-598 27410_16_ch16_p563-610

598 CHAPTER 16 The Wave Equation
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FIGURE 16.15 t = 1.
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0

x
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FIGURE 16.16 t = 1.5.
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0
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FIGURE 16.17 t = 2.
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0
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FIGURE 16.18 t = 2.5.
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FIGURE 16.19 t = 3.
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Notice that by time t = 3 the wave has split into two disjoint copies of the original (t = 0
wave, one continuing to move to the right, the other to the left.) This separation is because f (x)
in this example is nonzero on only a bounded interval. �

16.6.2 Forced Wave Motion

Using the characteristics we will write a solution for the Cauchy problem on the line with a
forcing term:

utt = c2uxx + F(x, t) for −∞< x <∞, t > 0

and

u(x,0)= f (x),ut(x,0)= g(x) for −∞< x <∞.

Suppose we want the solution at P0 : (x0, t0). There are two characteristics through P0, namely
the straight lines

x − ct = x0 − ct0 and x + ct = x0 + ct0.

Use parts of these to form the characteristic triangle of Figure 16.20, with vertices (x0 −
ct0,0), (x0 + ct0,0) and (x0, t0) and sides L ,M , and I . Let � denote this solid triangle and
compute the double integral of −F over �.

−
∫∫

�

F(x, t)d A =
∫∫

�

(c2uxx − utt)d A =
∫∫

�

(
∂

∂x
(c2ux)− ∂

∂t
(ut)

)

d A.

Apply Green’s theorem to the last integral to obtain

−
∫∫

�

F(x, t)d A =
∮

C

ut dx + c2ux dt,

where C is the boundary of�, oriented counterclockwise. C consists of the line segments L , M ,
and I . Compute the line integral over each side.

On I , T = 0, and x varies from x0 − ct0 to x0 + ct0, so
∫

I

ut dx + c2ux dt =
∫ x0+ct0

x0−ct0

ut(x,0)dx =
∫ x0+ct0

x0−ct0

g(w)dw.

On L , x + ct = x0 + ct0, so dx =−cdt and
∫

L

ut dx + c2ux dt =
∫

L

ut(−c)dt + c2ux

(

−1

c

)

dx =−c
∫

L

du

=−c[u(x0, t0)− u(x0 + ct0,0)].

x

t

(x0 – ct0, 0)

Characteristic triangle

LM

I (x0 + ct0, 0)

P0 :(x0, t0)

FIGURE 16.20 The characteristic triangle.
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Finally, on M , x − ct = x0 − ct0 so dx = cdt and
∫

M

ut dx + c2ux dt =
∫

M

utc dt + c2

(
1

c

)

dx = c
∫

M

du

= c[u(x0 − ct0,0)− u(x0, t0)].
M has initial point (x0, t0) and terminal point (x0 − ct0,0) because of the counterclockwise

orientation on C . Upon summing these integrals, we obtain

−
∫∫

�

F(x, y)d A =
∫∫ x0+ct0

x0−ct0

g(w)dw

− c[u(x0, t0)− u(x0 + ct0,0)] + c[u(x0 − ct0,0)− u(x0, t0)].
Then

−
∫∫

�

F(x, y)d A =
∫ x0+ct0

x0−ct0

g(w)dw− 2cu(x0, t0)+ c[ f (x0 + ct0)+ f (x0 − ct0)].

Solve this equation for u(x0, t0) to get

u(x0, t0)= 1

2
( f (x0 − ct0)+ f (x0 + ct0))

+ 1

2c

∫ x0+ct0

x0−ct0

g(w)dw+ 1

2c

∫∫

�

F(x, t)d A.

Since x0 is any real number and t0 any positive number, we can drop the subscripts and write the
solution u(x, t) as

u(x, t)= 1

2
( f (x − ct)+ f (x + ct))+ 1

2c

∫ x+ct

x−ct

g(w)dw

+ 1

2c

∫∫

�

F(X,T )d X dT

in which we have used X and T as the variables of integration to avoid confusion with the point
(x, t) at which the solution is given.

EXAMPLE 16.14

We will solve the problem

utt = 25uxx + x2t 2 for −∞< x <∞, t > 0

and

u(x,0)= x cos(x),ut(x,0)= e−x for −∞< x <∞.

The solution at any x and time t is

u(x, t)= 1

2
[(x − 5t) cos(x − 5t)+ (x + 5t) cos(x + 5t)]

+ 1

10

∫ x+5t

x−5t

ew dw+ 1

10

∫∫

�

X 2T 2 d X dT .

Compute

1

10

∫ x+5t

x−5t

e−w dw= 1

10

(
e−x+5t − e−x−5t

)
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X
x + 5t

(x, t)

T

x – 5t

X – 5T = x – 5t
X + 5T = x + 5t

(x + 5t – 5T, T )

(x – 5t + 5T, T )

FIGURE 16.21 Characteristic triangle in
Example 16.14

and, from Figure 16.21,

1

10

∫∫

�

X 2T 2d XdT = 1

10

∫ T

0

∫ x+5t−5T

x−5t+5T

X 2T 2 d X dT = 1

12
x2t 4 + 5

36
t 6.

The solution is

u(x, t)= 1

2
[(x − 5t) cos(x − 5t)+ (x + 5t) cos(x + 5t)]

+ 1

10

(
e−x+5t − e−x−5t

)+ 1

12
x2t 4 + 5

36
t 6. �

SECTION 16.6 PROBLEMS

In each of Problems 1 through 6, write the d’Alembert
solution for the problem

utt = c2uxx for −∞< x <∞, t > 0

and

u(x,0)= f (x),ut(x,0)= g(x) for −∞< x <∞.

1. c = 1, f (x)= x2, g(x)=−x

2. c = 4, f (x)= x2 − 2x, g(x)= cos(x)
3. c = 7, f (x)= cos(πx), g(x)= 1 − x 2

4. c = 5, f (x)= sin(2x), g(x)= x3

5. c = 14, f (x)= ex , g(x)= x

6. c = 12, f (x)= −5x + x2, g(x)= 3

In each of Problems 7 through 12, solve the problem

utt = c2uxx + F(x, t) for − ∞< x <∞, t > 0

and

u(x,0)= f (x),ut(x,0)= g(x) for −∞< x <∞.

7. c = 4, f (x)= x, g(x)= e−x , F(x, t)= x + t

8. c = 2, f (x)= sin(x), g(x)= 2x, F(x, t)= 2xt

9. c = 8, f (x)= x 2 − x, g(x)= cos(2x), F(x, t)= xt2

10. c = 4, f (x)= x2, g(x)= xe−x , F(x, t)= x sin(t)
11. c = 3, f (x)= cosh(x), g(x)= 1, F(x, t)= 3xt 3

12. c = 7, f (x)= 1 + x, g(x)= 0, F(x, t)= x − cos(t)

In each of Problems 13 through 18, write the solution of
the problem

utt = uxx for −∞< x <∞, t > 0

and

u(x,0)= f (x),ut(x,0)= 0 for − ∞< x <∞
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as a sum of a forward and a backward wave. Graph the
initial position function and then graph the solution at
selected times, showing the wave as a superposition of a
wave moving to the right and a wave moving to the left.

13. f (x)=
{

sin(2x) for −π ≤ x ≤π
0 for |x |>π

14. f (x)=
{

1 − |x | for −1 ≤ x ≤ 1

0 for |x |> 1

15. f (x)=
{

cos(x) for −π/2 ≤ x ≤π/2
0 for |x |>π/2

16. f (x)=
{

1 − x2 for |x | ≤ 1

0 for |x |> 1

17. f (x)=
{

x2 − x − 2 for −1 ≤ x ≤ 2

0 for x <−1 and for x > 2

18. f (x)=
{

x3 − x2 − 4x + 4 for −2 ≤ x ≤ 2

0 for |x |> 2

16.7 Vibrations in a Circular Membrane I

Imagine an elastic membrane of radius R fastened onto a circular frame (such as a drumhead).
The membrane is set in motion from a given initial position and with a given initial velocity. In
polar coordinates, the membrane occupies the disk r ≤ R. Assume that the particle of membrane
at (r, θ) vibrates vertical to the x, y-plane and let the displacement of this particle at time t be
z(r, θ, t).

The wave equation in polar coordinates is

∂2z

∂t 2
= c2

(
∂2z

∂r 2
+ 1

r

∂z

∂r
+ 1

r 2

∂2z

∂θ 2

)

.

We will assume axial symmetry, which means that the motion is independent of θ . Then z =
z(r, t) and the wave equation is

∂2z

∂t 2
= c2

(
∂2z

∂r 2
+ 1

r

∂z

∂r

)

.

The initial position is z(r,0)= f (r) and the initial velocity is (∂z/∂t)(r,0)= g(r).
Attempt a solution z(r, t)= F(r)T (t). A routine calculation leads to

F ′′ + 1

r
F ′ + λ

c2
F = 0 and T ′′ + λT = 0.

If λ=ω2> 0, this equation for F is a zero-order Bessel equation with solutions (bounded on the
disk r < R) that are multiples of

J0

(ω

c
r
)
.

The equation for T is

T ′′ +ω2T = 0

with solutions of the form

T (t)= a cos(ωt)+ b sin(ωt).

For each positive number ω, we now have a function

zω(r, t)= aω J0

(ω

c
r
)

cos(ωt)+ bω J0

(ω

c
r
)

sin(ωt).

that satisfies the wave equation.
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Because the membrane is fixed on a circular frame,

zω(R, t)= aω J0

(ω

c
R
)

cos(ωt)+ bω J0

(ω

c
R
)

sin(ωt)= 0

for t > 0. This equation will be satisfied for all t > 0 if J0(ωR/c)= 0. Thus, choose ω so that
ωR/c is a positive zero of J0(x). Let these zeros be j1 < j2 < · · · . For each positive integer n,
choose ωn so that ωn R/c = jn . This gives us the eigenvalues

λn =ω2
n =

(
jnc

R

)2

and the corresponding eigenfunctions

J0

(
jn
R

r

)

.

The functions

zn(r, t)= an J0

(
jn
R

r

)

cos

(
jnct

R

)

+ bn J0

(
jn
R

r

)

sin

(
jnct

R

)

satisfy the wave equation and the boundary condition that z(R,0)= 0, for each positive integer
n. To satisfy the initial condition z(r,0)= f (r), use a superposition

z(r, t)=
∞∑

n=1

[

an J0

(
jn
R

r

)

cos

(
jnct

R

)

+ bn J0

(
jn
R

r

)

sin

(
jnct

R

)]

. (16.18)

The initial condition gives us

z(r,0)= f (r)=
∞∑

n=1

an J0

(
jnr

R

)

.

This is a Fourier-Bessel expansion, which we developed in Chapter 15 for the interval [0,1]. Let
s = r/R to convert this expansion to

f (Rs)=
∞∑

n=1

an J0( jns)

on 0 ≤ s ≤ 1. Choose

an = 2
∫ 1

0
s f (Rs)J0( jns)ds

J 2
1 ( jn)

for n = 1,2, · · · .
Next solve for the bn’s. We need

∂z

∂t
(r,0)= g(r)=

∞∑

n=1

bn

jnc

R
J0

(
jnr

R

)

.

Again we let s = r/R to normalize the interval to [0,1] and obtain

bn = 2R

jnc

∫ 1

0
sg(Rs)J0( jns)ds

J 2
1 ( jn)

.

With these coefficients, equation (16.18) is the solution for z(r, t).
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x = 0 x = j1

J0(x)

FIGURE 16.22 First normal mode of
vibration.

x = 0 x = j1 x = j2

y = J0 (x)

FIGURE 16.23 Second normal mode.

16.7.1 Normal Modes of Vibration

The numbers ωn = jnc/R are the frequencies of normal modes of vibration of the membrane with
periods 2π/ωn = 2πR/jnc. The normal modes of vibration are the functions zn(r, t), which are
often written in phase angle form as

zn(r, t)= An J0

(
jnr

R

)

cos(ωnt + δn)

in which ωn = jnc/R, An =√a2
n + b2

n and δn = arctan(−bn/an) if an 	= 0.
The first normal mode is

z1(r, t)= A1 J0

(
j1r

R

)

cos(ω1t + δ1).

As r varies from 0 to R, j1r/R varies from 0 to j1, the first positive zero of J0. At any time
t , a radial section through the membrane takes the shape of the graph of J0(x) for 0 ≤ x ≤ j1
(Figure 16.22).

The second normal mode is

z2(r, t)= A2 J0

(
j2r

R

)

cos(ω2t + δ2).

As r varies from 0 to R, j2r/R varies from 0 to j2, passing through j1 along the way. Since
J0( j2r/R) = 0 when j2r/R = j1, this mode has a nodal circle (fixed in the motion) at radius
r = j1 R/j2. A section through the membrane takes the shape of the graph of J0(x) for 0 ≤ x ≤ j2
(Figure 16.23).

Similarly, the third normal mode is

z3(r, t)= A3 J0

(
j3r

R

)

cos(ω3t + δ3)

and this mode has two nodes, one at r = j1 R/j3 and the second at r = j2 R/j3. Now a radial section
has the shape of a graph of J0(x) for 0 ≤ x ≤ j3 (Figure 16.24).

In general, the nth normal mode has N − 1 nodes (fixed circles in the motion of the
membrane), occurring at j1 R/jn, j2 R/jn , · · · , jn−1 R/jn .
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0 j1 j2 j3 y = J0 (x)

FIGURE 16.24 Third normal mode.

SECTION 16.7 PROBLEMS

1. Let c = R = 1, f (r)= 1 − r , and g(r)= 0. Approxi-
mate the coefficients a1 through a5 in the solution for
the motion of the membrane, and graph the fifth partial
sum for a selection of different times.

2. Repeat Problem 1 with f (r)= 1 − r 2.
3. Repeat Problem 1 with f (r)= sin(πr).

16.8 Vibrations in a Circular Membrane II

We will expand the discussion of vibrations in a circular elastic membrane to include a
dependence of the displacement function on θ . Now the problem is

∂2z

∂t 2
= c2

(
∂2z

∂r 2
+ 1

r

∂z

∂r
+ 1

r 2

∂2z

∂θ 2

)

z(r, θ,0)= f (r, θ),
∂z

∂t
(r, θ,0)= 0 for 0 ≤ r < R,−π ≤ θ ≤π, t > 0.

Thus, we assume that the membrane is released from rest with the initial displacement function
f (r, θ).

In cylindrical coordinates, θ can be replaced by θ +2nπ for any integer n, so we also impose
the periodicity conditions

z(r,−π, t)= z(r,π, t) and
∂z

∂θ
(r,−π, t)= ∂z

∂θ
(r,π, t).

To separate the variables, set

z(r, θ, t)= F(r)�(θ)T (t).

Upon substituting this into the wave equation we obtain

T ′′

c2T
= F ′′ + (1/r)F ′

F
+ 1

r 2

�′′

�
=−λ,

for some separation constant λ. The reason for this is that the left side depends only on t and the
right side only on r and θ , and these variables are independent. Then

T ′′ + c2T = 0
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and

F ′′ + (1/r)F ′

F
+ λr 2 =−�

′′

�
.

Because the left side depends only on r and the right side only on θ , there is some constant μ
such that

F ′′ + (1/r)F ′

F
+ λr 2 =−�

′′

�
=μ.

Then

�′′ +μ�= 0

and

r 2 F ′′ + r F ′ + (λr 2 −μ)F = 0.

These differential equations for F(r), T (t), and �(θ) come with the conditions. First, there is
the periodicity condition

�(−π)=�(π) and �′(−π)=�′(π).

Because of the fixed frame,

F(R)= 0.

Finally, if the membrane is released from rest,

T ′(0)= 0.

The problem for �(θ) is a periodic Sturm-Liouville problem and was solved in Example 15.2
(here L =π ). The eigenvalues are

μn = n2 for n = 1,2, · · ·
and the eigenfunctions are

�n(θ)= an cos(nθ)+ bn sin(nθ).

Now we have μn = n2, so the problem for F(r) is

r 2 F ′′(r)+ r F ′(r)+ (kr 2 − n2)F(r)= 0; F(R)= 0.

This is a Bessel equation with general solution

F(r)=α Jn(
√
λr)+βYn(

√
λr),

with α and β as yet arbitrary constants. Because Yn(
√
λr) is unbounded as r → 0+ (the center

of the membrane), we must choose β= 0 to have a bounded solution. We expect oscillations of a
vibrating membrane to be finite in magnitude. This leaves F(r)=α Jn(

√
λr). To find admissable

values of λ, use the boundary condition to require that

F(R)=α Jn(
√
λR)= 0.

We must have α 	= 0 for a nontrivial solution. Thus, choose
√
λR to be a positive zero of Jn . Let

these positive zeros be

jn1< jn2< jn3< · · · ,
which are double indexed because this derivation depends on the eigenvalue μ= n2. Then

λnk = j 2
nk

R2
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are the eigenvalues in the problem for F(r). Corresponding eigenfunctions are

Jn

(
jnk

R
r

)

for n = 0,1,2, · · · , k = 1,2, · · · .
With these eigenvalues λ, the problem for T is

T ′′ + c2

(
jnk

R

)2

T = 0; T ′(0)= 0.

Solutions are constant multiples of

Tnk(r)= cos

(
jnkct

R

)

.

We now have functions

znk(r, θ, t)=[ank cos(nθ)+ bnk sin(nθ)]Jn

(
jnk

R
r

)

cos

(
jnk

R
ct

)

for n = 0,1,2 · · · and k = 1,2,3, · · · . Each of these functions satisfies the wave equation and the
boundary conditions, together with the initial condition of zero velocity. To satisfy the condition
on initial position given by f , we must in general use the superposition

z(r, θ, t)=
∞∑

n=0

∞∑

k=1

[ank cos(nθ)+ bnk sin(nθ)]Jn

(
jnk

R
r

)

cos

(
jnk

R
ct

)

.

We must choose the constants ank and bnk to satisfy

z(r, θ,0)=
∞∑

n=0

∞∑

k=1

[ank cos(nθ)+ bnk sin(nθ)]Jn

(
jnk

R
r

)

= f (r, θ)).

To see how to choose these coefficients, first write this equation in the more suggestive form

f (r, θ)=
∞∑

k=1

a0k J0

(
jnk

R
r

)

+
∞∑

n=1

([ ∞∑

k=1

ank Jn

(
jnk

R
r

)]

cos(nθ)+
∞∑

n=1

[ ∞∑

k=1

bnk Jn

(
jnk

R
r

)]

sin(nθ)

)

.

For a given r , f (r, θ) is a function of θ , and this is the Fourier series for this function of θ on
[−π,π]. In this case, the coefficients are infinite series, but they are also the Fourier coefficients
of f (r, θ) for a fixed r . We know these Fourier coefficients. For a given r ,

∞∑

k=1

a0k J0

(
jnk

R
r

)

= 1

2π

∫ π

−π
f (r, θ)dθ =α0(r),

and, for n = 1,2, · · · ,
∞∑

k=1

ank Jn

(
jnk

R
r

)

= 1

π

∫ π

−π
f (r, θ) cos(nθ)dθ =αn(r),

and
∞∑

k=1

bnk Jn

(
jnk

R
r

)

= 1

π

∫ π

−π
f (r, θ) sin(nθ)dθ =βn(r),

Now recognize that, for n = 0,1,2, · · · , each of the last three equations is an expansion of a
function of r in a Fourier-Bessel series, with coefficients a0k , ank and bnk , respectively. We know
the coefficients in these expansions. Make the change of variables r/R = ξ so that ξ varies from
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0 to 1 as r varies from 0 to R. In this way, we can use the formula for Fourier-Bessel coefficients
on (0,1). We have

a0k = 2

[J1( j0k)]2

∫ 1

0

ξα0(Rξ)J0( j0kξ)dξ for k = 1,2,3, · · · ,

ank = 2

[Jn+1( jnk)]2

∫ 1

0

ξαn(Rξ)Jn( jnkξ)dξ for k = 1,2,3, · · · and n = 1,2, · · · ,
and

bnk = 2

[Jn+1( jnk)]2

∫ 1

0

ξβn(Rξ)Jn( jnkξ)dξ.

For a given problem, first perform the integrations with respect to θ to obtain the functions α0(r),
αn(r) and βn(r), written as Fourier-Bessel series. Then integrate to obtain the coefficients ank and
bnk in these expansions. These integrations require a computational software package.

SECTION 16.8 PROBLEMS

1. Approximate the vertical deflections of the center of
a circular membrane of radius 2 for any time t >
0 by computing the first three nonzero terms in the
solution for the case c = 2 and the initial displace-
ment f (r, θ) = (4 − r 2) sin2(θ). Assume zero initial
velocity.

2. Use the general solution derived in this section to
prove the plausible fact that the center of the mem-
brane remains undeflected for all time if the initial
displacement is an odd function of θ (that is, f (r, θ)=
− f (r,−θ). Hint: The only integer order Bessel func-
tion that is different from zero at r = 0 is J0.

16.9 Vibrations in a Rectangular Membrane

Suppose an elastic membrane is attached to a rectangular frame that occupies the region 0 ≤ x ≤
L ,0 ≤ y ≤ K . The membrane is given an initial displacement and released with a given initial
velocity. We want the displacement function z(x, y, t).

The initial-boundary value problem for z is

∂2z

∂t 2
= c2

(
∂2z

∂x2
+ ∂2z

∂y2

)

for 0< x < L ,0< y< K , t > 0,

z(x,0, t)= z(x,K , t)= 0 for 0< x < L , t > 0,

z(0, y, t)= z(L , y, t)= 0 for 0< y< K , t > 0,

z(x, y,0)= f (x, y) for 0< x < L ,0< y< K ,

and
∂z

∂t
(x, y,0)= g(x, y) for 0< x < L ,0< y< K .

We will solve this for the case g(x, y)= 0, so the membrane is displaced and released from
rest. To attempt a separation of variables, substitute z(x, y, t)= X (x)Y (y)T (t) into the wave
equation to get

XY T ′′ = c2(X ′′Y T + XY ′′T )

or
T ′′

c2T
− Y ′′

Y
= X ′′

X
.
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The left side depends only on y and t and the right only on x , and these variables are independent,
so both sides must be constant:

T ′′

c2T
− Y ′′

Y
= X ′′

X
=−λ.

Then

X ′′ + λX = 0 and
T ′′

c2T
+ λ= Y ′′

Y
.

The equation for T and Y has one side dependent only on t and the other side only on y.
Therefore, for some constant μ,

T ′′

c2T
+ λ= Y ′′

Y
=−μ.

Then

Y ′′ +μY = 0 and T ′′ + c2(λ+μ)T = 0.

Separation of variables has introduced two separation constants. From the boundary conditions,

X (0)= X (L)= Y (0)= Y (K )= 0.

We have solved these problems for X and Y before, obtaining eigenvalues and eigenfunctions

λn = n2π 2

L2
, Xn(x)= sin

(nπx

L

)

and

μm = m2π 2

L2
,Ym(x)= sin

(mπy

K

)

with n and m varying independently over the positive integers. The problem for T becomes

T ′′ + c2

(
n2π 2

L2
+ m2π 2

K 2

)

T = 0.

With zero initial velocity we have T ′(0)= 0. Therefore, T (t) must be a constant multiple of
cos(αnmπct), where

αnm =
√

n2

L2
+ m2

K 2
.

For each positive integer n and m, we now have functions

znm(x, y, t)= anm sin
(nπx

L

)
sin
(mπy

K

)
cos(αnmπct).

that satisfy the wave equation and the boundary conditions, as well as the condition of zero initial
velocity. To satisfy z(x, y,0)= f (x, y), attempt a superposition, which is now a double sum:

z(x, y, t)=
∞∑

n=1

∞∑

m=1

znm(x, y, t).

We must choose the coefficients so that

z(x, y,0)=
∞∑

n=1

∞∑

m=1

anm sin
(nπx

L

)
sin
(mπy

K

)
= f (x, y).

If we think of y as fixed for the moment, then f (x, y)= hy(x) is a function of x . Now

f (x, y)= hy(x)=
∞∑

n=1

[ ∞∑

m=1

anm sin
(mπy

K

)
]

sin
(nπx

L

)

is the Fourier sine expansion in x of f (x, y) on [0, L]. Therefore, the coefficient of sin(nπx/L),
which is the entire sum in square brackets, is the Fourier sine coefficient of this function. For a
given n,
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∞∑

m=1

anm sin
(mπy

K

)
= 2

L

∫ L

0

hy(ξ) sin

(
nπξ

L

)

dξ

= 2

L

∫ L

0

f (ξ, y) sin

(
nπξ

L

)

dξ

The integral on the right is a function of y, and on the left is a series that we can think of as its
Fourier sine expansion on [0,K ], with the anm ’s as coefficients. Therefore,

anm = 2

K

∫ K

0

[
2

L

∫ L

0

f (ξ, y) sin

(
nπξ

L

)

dξ

]

sin
(mπη

K

)
dη

= 4

L K

∫ L

0

∫ K

0

f (ξ, η) sin

(
nπξ

L

)

sin
(mπη

K

)
dη dξ.

With this choice of constants we have the solution for the displacement function z(x, y, t).

EXAMPLE 16.15

Suppose the initial position function is

z(x, y,0)= x(L − x)y(K − y)

and the initial velocity is zero. Compute

anm = 4

L K

∫ L

0

∫ K

0

ξ(L − ξ)η(K − η) sin
(

nπξ

L

)

sin
(mπη

K

)
dη dξ

= 16L2 K 2

(nmπ 2)3
[(−1)n − 1][(−1)m − 1].

The solution is

z(x, y, t)=
∞∑

n=1

∞∑

m=1

16L2 K 2

(nmπ 2)3
[(−1)n − 1][(−1)m − 1] sin

(nπx

L

)
sin
(mπy

K

)
cos(αnmπct). �

SECTION 16.9 PROBLEMS

In each of Problems 1, 2, and 3, solve the problem for the
rectangular membrane with the given c, L , K , f (x, y) and
g(x, y).

1. c = 1, L = K = 2π, f (x, y)= x2 sin(y), g(x, y)= 0
2. c = 3, L = K =π, f (x, y)= 0, g(x, y)= xy
3. c = 2, L = K = 2π, f (x, y)= 0, g(x, y)= 1
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CHAPTER 17
The Heat
Equation

INITIAL AND BOUNDARY CONDITIONS
THE HEAT EQUATION ON [0, L]
SOLUTIONS IN AN INFINITE MEDIUM
LAPLACE TRANSFORM TECHNIQUES HEAT

17.1 Initial and Boundary Conditions

In Section 12.8, we used Gauss’s divergence theorem to derive a partial differential equation
modeling heat distribution, or diffusion. In the absence of sources or sinks within the medium,
the one-dimensional heat equation is

∂u

∂t
= k

∂2u

∂x2
(17.1)

in which k is a constant depending on the medium.
Equation (17.1) can be solved subject to a variety of boundary and initial conditions. For

example,

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= T1,u(L , t)= T2 for t ≥ 0,

u(x,0)= f (x) for 0 ≤ x ≤ L

models the temperature distribution in a thin homogeneous bar of length L whose left end is
kept at temperature T1 and right end at temperature T2, and having initial temperature f (x) in the
cross section at x .

The initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(L , t)= 0 for t ≥ 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L

611
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models the distribution in a bar of length L having no heat loss across its ends (insulation
conditions) and initial temperature function f .

Other kinds of boundary conditions also can be specified. If the left end is kept at constant
temperature T and the right end is insulated, then we would have

u(0, t)= T and
∂u

∂x
(L , t)= 0 for t > 0.

Free radiation or convection occurs when the bar loses energy by radiation from its ends into
the surrounding medium, which is assumed to be maintained at constant temperature T . Now the
boundary conditions have the form

∂u

∂x
(0, t)= A[u(0, t)− T ], ∂u

∂x
(L , t)=−A[u(L , t)− T ] for t ≥ 0,

in which A is a positive constant. Notice that, if the bar is kept hotter than the surrounding
medium, then the heat flow as measured by ∂u/∂x must be positive at one end and negative at
the other.

Boundary conditions

u(0, t)= T1,
∂u

∂x
(L , t)=−A[u(L , t)− T2]

are used if the left end is kept at constant temperature T1 while the right end radiates heat energy
into a medium of constant temperature T2.

As with the wave equation, we also consider the heat equation on the line or half-line, subject
to various conditions.

SECTION 17.1 PROBLEMS

1. Formulate an initial-boundary value problem modeling
heat conduction in a thin homogeneous bar of length L
if the left end is kept at temperature zero and the right
end is insulated. The initial temperature function is f .

2. Formulate an initial-boundary value problem modeling
heat conduction in a thin homogeneous bar of length
L if the left end is kept at temperature α(t) and the

right end at temperature β(t). The initial temperature
function in the cross section at x is f (x).

3. Formulate an initial-boundary value problem for the
temperature distribution in a thin bar of length L if
the left end is insulated and the right end is kept at
temperature β(t). The initial temperature function is f .

17.2 The Heat Equation on [0, L]
We will solve several initial-boundary value problems on an interval [0, L].

17.2.1 Ends Kept at Temperature Zero

If the initial temperature in the cross section at x is f (x) and the ends of the bar are kept at
temperature zero, the problem for the temperature distribution function is

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t ≥ 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .
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Put u(x, t)= X (x)T (t) into the heat equation to obtain

X ′′

X
= T ′

kT
=−λ

in which λ is the separation constant. Now,

u(0, t)= X (0)T (t)= 0 = u(L , t)= X (L)T (t)

for all t ≥ 0, so X (0)= X (L)= 0, and the problem for X is

X ′′ + λX = 0; X (0)= X (L)= 0

with eigenvalues λn = n2π 2/L2 and eigenfunctions sin(nπx/L).
It is in the time dependence that the heat and wave equations differ. The equation for T is

T ′ + n2π 2k

L2
T = 0,

which is a first-order differential equation with solutions that are constant multiples of e−n2π2kt/L2
.

For n = 1,2, · · · , we have functions

un(x, t)= cn sin
(nπx

L

)
e−n2π2kt/L2

,

which satisfy the heat equation and the boundary conditions u(0, t)= u(L , t)= 0. To satisfy the
initial condition, we must (depending on f ) use a superposition

u(x, t)=
∞∑

n=1

cn sin
(nπx

L

)
e−n2π2kt/L2

and choose the coefficients so that

u(x,0)= f (x)=
∞∑

n=1

cn sin
(nπx

L

)
.

This is the Fourier sine expansion of f on [0, L], so choose

cn = 2

L

∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ.

With this choice of the cn’s, the solution is

u(x, t)= 2

L

∞∑

n=1

(∫ L

0

f (ξ) sin(nπξ/L)dξ

)

sin(nπx/L)e−n2π2kt/L2
. (17.2)

EXAMPLE 17.1

Suppose the ends are kept at zero temperature and the initial temperature is f (x)= A, which is
constant. Compute

cn = 2

L

∫ L

0

A sin(nπξ/L)dξ = 2A

nπ
[1 − (−1)n].

The solution is

u(x, t)= 2A

π

∞∑

n=1

1 − (−1)n

n
sin
(nπx

L

)
e−n2π2kt/L2

.

Since

1 − (−1)n =
{

2 if n is odd

0 if n is even,
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we can omit the even values of n in the summation to write the solution

u(x, t)= 4A

π

∞∑

n=1

1

2n − 1
sin

(
(2n − 1)πx

L

)

e−(2n−1)2π2kt/L2
. �

17.2.2 Insulated Ends

Suppose the bar has insulated ends, hence no energy is lost across the ends. The temperature
distribution is modeled by the initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(L , t)= 0 for t ≥ 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .

As before, separation of variables yields

X ′′ + λX = 0 and T ′ + λkT = 0.

The insulation conditions give us

∂u

∂x
(0, t)= X ′(0)T (t)= ∂u

∂x
(L , t)= X ′(L)T (t)= 0,

so X ′(0)= X ′(L)= 0, and the problem for X is

X ′′ + λX = 0; X ′(0)= X ′(L)= 0.

Previously, we solved this problem for the eigenvalues λn = n2π 2/L2 and eigenfunctions
cos(nπx/L) for n = 0,1,2, · · · .

The equation for T is

T ′ + n2π 2k

L2
T = 0.

For n = 0, we get T0(t)= constant. For n = 1,2, · · · ,
Tn(t)= e−n2π2kt/L2

,

or constant multiples of this function. We now have a function

un(x, t)= cn cos
(nπx

L

)
e−n2π2kt/L2

,

which satisfies the heat equation and the insulation boundary conditions for n = 0,1,2, · · · . To
satisfy the initial condition, use the superposition

u(x, t)= 1

2
c0 +

∞∑

n=1

cn cos
(nπx

L

)
e−n2π2kt/L2

.

Then

u(x,0)= f (x)= 1

2
c0 +

∞∑

n=1

cn cos
(nπx

L

)
,

so choose the cn’s to be the Fourier cosine coefficients of f on [0, L]:

cn = 2

L

∫ L

0

f (ξ) cos

(
nπξ

L

)

dξ.
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EXAMPLE 17.2

Suppose the ends of the bar are insulated and the left half of the bar is initially at constant
temperature A while the right half is initially at temperature zero. Then

f (x)=
{

A for 0 ≤ x ≤ L/2

0 for L/2< x ≤ L .

Compute

c0 = 2

L

∫ L/2

0

Adξ = A

and, for n = 1,2, · · · ,
cn = 2

L

∫ L/2

0

A cos

(
nπξ

L

)

dξ = 2A

nπ
sin(nπ/2).

The solution is

u(x, t)= A

2
+ 2A

π

∞∑

n=1

1

n
sin
(nπ

2

)
cos

(nπx

L

)
e−n2π2kt/L2

.

Since sin(nπ/2)=0 if n is even, we can retain only odd n in this summation to write this solution
as

u(x, t)= A

2
+ 2A

π

∞∑

n=1

1

2n − 1
cos

(
(2n − 1)πx

L

)

e−(2n−1)2π2kt/L2
. �

17.2.3 Radiating End

Suppose the left end of the bar is maintained at temperature zero, while the right end radiates
energy into the surrounding medium, which is kept at temperature zero. If the initial temperature
function is f , then the temperature distribution is modeled by the initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= 0,
∂u

∂x
(L , t)=−Au(L , t) for t > 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .

A is a positive constant called the transfer coefficient. Let u(x, t)= X (x)T (t) to obtain

X ′′ + λX = 0,T ′ + λkT = 0.

Because u(0, t)= X (0)T (t)= 0, then X (0)= 0. From the radiation condition at the right end,

X ′(L)T (t)=−AX (L)T (t) for t > 0,

so

X ′(L)+ AX (L)= 0.

The problem for X is

X ′′ + λX = 0; X (0)= 0, X ′(L)+ AX (L)= 0.

This is a regular Sturm-Liouville problem. To solve for the eigenvalues and eigenfunctions,
consider cases on λ.
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Case 1: λ= 0

We get X (x)= cx + d , so X (0)= d = 0. Then X (x)= cx , so

X ′(L)+ AX (L)= c + cL = 0

and this forces c = 0. This case yields only the trivial solution, so 0 is not an eigenvalue of this
problem.

Case 2: λ< 0

Write λ=−α2 with α > 0. Then X ′′ −α2 X = 0, with solutions

X (x)= ceαx + de−αx .

Now X (0)= c + d = 0 implies that d =−c, so

X (x)= c(eαx − e−αx).

From the radiation condition at L ,

X ′(L)=αc(eαL + e−αL)=−AX (L)=−Ac(eαL − e−αL).

If c �= 0, then

αc(eαL + e−αL)> 0 and − Ac
(
eαL − e−αL

)
< 0,

contradicting the preceding line. We conclude that c = 0, so this case also has only the trivial
solution. This problem has no negative eigenvalue.

Case 3: λ> 0

Set λ=α2 with α > 0. Now X ′′ +α2 X = 0, so

X (x)= c cos(αx)+ d sin(αx).

Then X (0)= c = 0, so X (x)= d sin(αx). Next,

X ′(L)=αd cos(αL)=−AX (L)=−Ad sin(αL).

If d = 0, we have only the trivial solution. If d �= 0, then α cos(αL)=−A sin(αL), so

tan(αL)=− α
A
. (17.3)

We have a nontrivial solution for X only if α is chosen to satisfy this transcendental equa-
tion, which we cannot solve algebraically for α. However, let z = αL . Then equation (17.3) is
tan(z)= −z/AL . Part of the graphs of y = tan(z) and y = −z/AL are shown in Figure 17.1,
and they have infinitely many points of intersection for z> 0. The z-coordinates of these points
are solutions of tan(z)=−z/AL . Let these z-coordinates be z1, z2, · · · in increasing order. Since
α= z/L , the eigenvalues of this problem for X are

λn =α2
n = z2

n

L2
.

The eigenfunctions are functions Xn(x)= sin(αnx)= sin(znx/L).
With these eigenvalues, the problem for T is

T ′ + z2
nk

L2
T = 0

with solutions that are constant multiples of

Tn(t)= e−z2
nkt/L2

.
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y

z

y = –z/AL

y = tan(z)

z1 z2

FIGURE 17.1 Eigenvalues as the problem with
radiating end.

For each positive integer n, we now have a function

un(x, t)= Xn(x)Tn(t)= sin
( znx

L

)
e−z2

nkt/L2
.

that satisfies the heat equation and the boundary conditions. To satisfy the initial condition, write
the superposition

u(x, t)=
∞∑

n=1

cn sin
( znx

L

)
e−z2

nkt/L2
.

We must choose the cn’s to satisfy

u(x,0)= f (x)=
∞∑

n=1

cn sin
( znx

L

)
.

This is not a Fourier sine series, but it is an eigenfunction expansion in the eigenfunctions of a
Sturm-Liouville problem. The coefficients are

cn =
∫ L

0
f (ξ) sin(znξ/L)dξ
∫ L

0
sin2(znξ/L)dξ

.

The difficulty in computing these numbers is one we frequently encounter in such problems. We
do not have an explicit formula for the zn’s. However, we can compute approximate values of the
zn’s for a given L . For the first four values, with L = 1, we obtain the approximate values

z1 ≈ 2.0288, z2 ≈ 49132, z3 ≈ 7.9787, z4 ≈ 11.0855.

Using these numbers, we can perform numerical integrations to approximate

c1 ≈ 1.9207, c2 ≈ 2.6593, c3 ≈ 4.1457, c4 ≈ 5.6329.

With just the first four terms, we have an approximation

u(x, t)≈1.9027 sin(2.0288x)e−4.1160kt + 2.6593 sin(4.9132x)e−24.1395kt

+ 4.1457 sin(7.9787x)e−63.6597kt + 5.6329 sin(11.0855x)e−1,228.883kt .

Depending on k, these exponentials may be decaying so fast that these first four terms would be
a good enough approximation for some applications.
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17.2.4 Transformation of Problems

As with the wave equation, it may be impossible to separate variables in a diffusion problem,
depending on the partial differential equation and/or the boundary conditions. Sometimes we
can transform such a problem into one to which separation of variables applies.

EXAMPLE 17.3

A thin, homogeneous bar extends from x = 0 to x = L . The left end is maintained at constant
temperature T1 and the right end at constant temperature T2. The initial temperature in the cross
section at x is f (x).

The initial-boundary value problem modeling this setting is

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= T1,u(L , t)= T2 for t > 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .

If we set u(x, t)= X (x)T (t), we must have X (0)T (t)= T1. If T1 =0, this is satisfied by requiring
that X (0)= 0. If T1 �= 0, then X (0) �= 0, and we must have T (t)= T1/X (0)= constant, which is
not acceptable.

Perturb the temperature distribution function by setting

u(x, t)=U (x, t)+ψ(x).
The idea is to choose ψ to obtain a problem we know how to solve. Substitute U into the wave
equation to get

∂U

∂t
= k

(
∂2U

∂x2
+ψ ′′(x)

)

.

This is the standard heat equation (17.1) if ψ ′′(x)= 0, hence, if ψ(x)= cx + d. Now

u(0, t)= T1 =U (0, t)+ψ(0),
and this is the more friendly condition U (0, t)= 0 if ψ(0)= T1. Thus, choose d = T1 to have
ψ(x)= cx + T1. Next we need

u(L , t)= T2 =U (L , t)+ψ(L),
and this is just U (L , t)= 0 if ψ(L)= T2. We need cL + T1 = T2, so c = (T2 − T1)/L , and

ψ(x)= 1

L
(T2 − T1)x + T1.

Finally,

u(x,0)= f (x)=U (x,0)+ψ(x),
so

U (x,0)= f (x)−ψ(x)= f (x)− 1

L
(T2 − T1)x − T1.
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The problem for U is:

∂U

∂t
= k

∂2U

∂x2
for 0< x < L , t > 0,

U (0, t)=U (L , t)= 0 for t > 0,

and

U (x,0)= f (x)− 1

L
(T2 − T1)x − T1 for 0 ≤ x ≤ L .

We know the solution of this problem for U :

U (x, t)= 2

L

∞∑

n=1

cn sin
(nπx

L

)
e−n2π2kt/L2

where

cn = 2

L

∫ L

0

[

f (ξ)− 1

L
(T2 − T1)ξ − T1

]

sin

(
nπξ

L

)

dξ.

The solution of the original problem is

u(x, t)=U (x, t)+ 1

L
(T2 − T1)x + T1.

As a specific example, suppose T1 = 1,T2 = 2 and f (x)= 3/2. Now

ψ(x)= 1

L
x + 1,

and

cn = 2

L

∫ L

0

[
3

2
− 1

L
x − 1

]

sin

(
nπξ

L

)

dξ

= 2

L

∫ L

0

(
1

2
− 1

L
x

)

sin

(
nπξ

L

)

dξ

= 1 + (−1)n

nπ
.

The solution is

u(x, t)=
∞∑

n=1

(
1 + (−1)n

nπ

)

sin
(nπx

L

)
e−n2π2kt/L2 + 1

L
x + 1. �

Sometimes an initial-boundary value problem involving the heat equation can be trans-
formed into a simpler problem by multiplying by an exponential function eαx+βt and making
appropriate choices for α and β. We will pursue this idea in the problems.

17.2.5 The Heat Equation with a Source Term

We will determine the solution of the initial-boundary value problem

∂u

∂t
= k

∂2u

∂x2
+ F(x, t) for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t > 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .
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The term F(x, t), for example, could account for a source or loss of energy within the medium.
It is routine to try separation of variables and find that it does not apply in general to this

heat equation. A different approach is needed.
As a starting point, we know that in the case that F(x, t)= 0 for all x and t the solution has

the form

u(x, t)=
∞∑

n=1

cn sin
(nπx

L

)
e−n2π2kt/L2

.

Taking a cue from this case, we will attempt a solution of the current problem of the form

u(x, t)=
∞∑

n=1

Tn(t) sin
(nπx

L

)
. (17.4)

We must find the functions Tn(t). If t is fixed, the left side of equation (17.4) is a function of x
and the right side is its Fourier sine expansion on [0, L], so the coefficients must be

Tn(t)= 2

L

∫ L

0

u(ξ, t) sin

(
nπξ

L

)

dξ. (17.5)

Assume that for any t ≥ 0, F(x, t), thought of as a function of x , also can be expanded in a
Fourier sine series on [0, L]:

F(x, t)=
∞∑

n=1

Bn(t) sin

(
nπξ

L

)

(17.6)

where

Bn(t)= 2

L

∫ L

0

F(ξ, t) sin

(
nπξ

L

)

dξ. (17.7)

Differentiate equation (17.5) with respect to t to get

T ′
n(t)=

2

L

∫ L

0

∂u

∂t
(ξ, t) sin

(
nπξ

L

)

dξ. (17.8)

Substitute for ∂u/∂t from the heat equation to get

T ′
n(t)=

2k

L

∫ L

0

∂2u

∂x2
(ξ, t) sin

(
nπξ

L

)

dξ + 2

L

∫ L

0

F(ξ, t) sin

(
nπξ

L

)

dξ.

In view of equation (17.6), this equation becomes

T ′
n(t)=

2k

L

∫ L

0

∂2u

∂x2
(ξ, t) sin

(
nπξ

L

)

dξ + Bn(t). (17.9)

Integrate by parts twice, at the last step making use of the boundary conditions and equation
(17.5). We get

∫ L

0

∂2u

∂x2
(ξ, t) sin

(
nπξ

L

)

dξ

=
[
∂u

∂x
(ξ, t) sin

(
nπξ

L

)]L

0

−
∫ L

0

nπ

L

∂u

∂x
(ξ, t) cos

(
nπξ

L

)

dξ

=−nπ

L

[

u(ξ, t) cos

(
nπξ

L

)]L

0

+ nπ

L

∫ L

0

−nπ

L
u(ξ, t) sin

(
nπξ

L

)

dξ

=−n2π 2

L2

∫ L

0

u(ξ, t) sin

(
nπξ

L

)

dξ

=−n2π 2

L2

L

2
Tn(t)=−n2π 2

2L
Tn(t).
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Substitute this into equation (17.9) to get

T ′
n =−n2π 2k

L2
Tn(t)+ Bn(t).

For n = 1,2, · · · , this is a first-order differential equation for Tn(t), which we write as

T ′
n(t)+

n2π 2k

L2
Tn(t)= Bn(t).

Next, use equation (17.5) to obtain the condition

Tn(0)= 2

L

∫ L

0

u(ξ,0) sin

(
nπξ

L

)

dξ = 2

L

∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ = bn

which is the nth coefficient in the Fourier sine expansion of f on [0, L]. Solve the differential
equation for Tn(t) subject to this boundary condition to get

Tn(t)=
∫ t

0

e−n2π2k(t−τ )/L2
Bn(τ )dτ + bne

−n2π2kt/L2
.

Finally, substitute this into equation (17.4) to obtain the solution

u(x, t)=
∞∑

n=1

(∫ t

0

e−n2π2k(t−τ )/L2
Bn(τ )dτ

)

sin
(nπx

L

)

+ 2

L

∞∑

n=1

(∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ

)

sin
(nπx

L

)
e−n2π2kt/L2

. (17.10)

Notice that the last term is the solution of the problem if F(x, t)= 0, while the first term is
the effect of this source term on the solution.

EXAMPLE 17.4

We will solve the problem

∂u

∂t
= 4

∂2u

∂x2
+ xt for 0< x <π, t > 0,

u(0, t)= u(π, t)= 0 for t ≥ 0,

and

u(x,0)= f (x)=
{

20 for 0 ≤ x ≤π/4
0 for π/4< x ≤π .

Since we have a formula (17.10) for the solution, we need only carry out the integrations. First
compute

Bn(t)= 2

π

∫ π

0

ξ t sin(nξ)dξ = 2(−1)n+1

n
t.

This enables us to evaluate
∫ t

0

e−4n2(t−τ )Bn(τ )dτ =
∫ t

0

2(−1)n+1

n
τe−4n2(t−τ ) dτ

= 1

8
(−1)n+1 −1 + 4n2t + e−4n2 t

n5
.
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Finally we need

bn = 2

π

∫ π

0

f (ξ) sin(nξ)dξ = 40

π

∫ π/4

0

sin(nξ)dξ = 40

π

1 − cos(nπ/4)

π
.

With all the components in place, the solution is

u(x, t)=
∞∑

n=1

(
1

8
(−1)n+1 −1 + 4n2t + e−4n2 t

n5

)

sin(nx)

+
∞∑

n=1

40

π

1 − cos(nπ/4)

n
sin(nx)e−4n2 t .

The second term on the right is the solution of the problem with the xt term omitted. Denote this
“no-source” solution as

u0(x, t)=
∞∑

n=1

40

π

1 − cos(nπ/4)

n
sin(nx)e−4n2 t .

Then the solution with the source term is

u(x, t)= u0(x, t)+
∞∑

n=1

(
1

8
(−1)n+1 −1 + 4n2t + e−4n2 t

n5

)

sin(nx).

Writing the solution in this way enables us to gauge the effect of the xt term on the solution.
Figures 17.2 through 17.5 compare graphs of u(x, t) and u0(x, t) at times t = 0.3,0.8, 1.2 and
1.3. In each figure, u0(x, t) falls below u(x, t). Both solutions decay to zero as t increases, but
the effect of the xt term is to retard this decay. �

17.2.6 Effects of Boundary Conditions and Constants

We will investigate how constants and terms appearing in diffusion problems influence the
behavior of solutions.

1.2

0.8

0

1

0.6

0.2

0.4

x
1.5 30.5 1 2 2.50

FIGURE 17.2 u(x, t) and u0(x, t) at t = 0.3.

1

0.6

0.8

0.4

0

0.2

x
2 2.5 30.5 1 1.50

FIGURE 17.3 t = 0.8.
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FIGURE 17.4 t = 1.2.
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FIGURE 17.5 t = 1.3.

EXAMPLE 17.5

A homogeneous bar of length π has initial temperature function f (x)= x2 cos(x/2) and ends
maintained at temperature zero. The temperature distribution function satisfies

∂u

∂t
= k

∂2u

∂x2
for 0< x <π, t > 0,

u(0, t)= u(π, t)= 0 for t > 0,

and

u(x,0)= x2 cos(x/2) for 0 ≤ x ≤π.
The solution is

u(x, t)= 2

π

∞∑

n=1

(∫ π

0

ξ 2 cos(ξ/2) sin(nξ)dξ

)

sin(nx)e−n2kt

= 4

π

∞∑

n=1

16πn(−1)n − 64πn3(−1)n − 48n − 64n3

64n6 − 48n4 + 12n2 − 1
sin(nx)e−n2kt .

To gauge the effect of the diffusivity constant k on the solution, Figure 17.6 shows graphs of
y = u(x, t) for t = 0.2 and for k = 0.3,0.6, 1.1, and 2.7. Figure 17.7 has the graphs for the same
values of k, but t = 1.2. For each k, the temperature function decays with time, as we expect.
However, for each time the temperature function has a smaller maximum as k increases. �

EXAMPLE 17.6

We will examine the effects on u(x, t), depending on whether the ends of the bar are kept at
temperature zero, or are insulated. Suppose the initial temperature function is f (x)= x2(π − x)
and L =π and k = 1/4. For the ends at temperature zero, we find that
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2
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FIGURE 17.6 The solution in Example 17.5 at
t = 0.2 and k = 0.3,0.6,1.4, and 2.7.
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FIGURE 17.7 The solution in Example 17.5 at
t = 1.2 and k = 0.3,0.6,1.4, and 2.7.
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FIGURE 17.8 u1(x, t) at times t = 0.4,0.9,
1.5, and 3.6.

4

2

3

1

0

x
2.5 30.5 1 1.5 20

FIGURE 17.9 u2(x, t) at times t = 0.4,0.9,
1.5, and 3.6.

u1(x, t)=
∞∑

n=1

(
8(−1)n+1 − 4

n3

)

sin(nx)e−n2 t/4.

If the ends are insulated the solution is

u2(x, t)= 1

12
π 3 +

∞∑

n=1

(
n2π 2(−1)n+1 + 6(−1)n − 6

n4

)

cos(nx)e−n2 t/4.

Figure 17.8 shows u1(x, t), and Figure 17.9 shows u2(x, t), at times t =0.4,0.9, 1.5 and 3.6.
Both solutions decrease as t increases. However, as t → ∞, u2(x, t)→ π 3/12, as suggested in
Figure 17.9. �
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SECTION 17.2 PROBLEMS

In each of Problems 1 through 7, write a solution of the
initial-boundary value problem. Graph the twentieth par-
tial sum of the series for u(x, t) on the same set of axes for
different values of the time.

1.
∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t ≥ 0,
u(x,0)= x(L − x) for 0 ≤ x ≤ L

2.
∂u

∂t
= 4

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t ≥ 0,
u(x,0)= x2(L − x) for 0 ≤ x ≤ L

3.
∂u

∂t
= 3

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t ≥ 0,
u(x,0)= L(1 − cos(2πx/L)) for 0 ≤ x ≤ L

4.
∂u

∂t
= ∂2u

∂x2
for 0< x <π, t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(π, t)= 0 for t ≥ 0,

u(x,0)= sin(x) for 0 ≤ x ≤π

5.
∂u

∂t
= 4

∂2u

∂x2
for 0< x < 2π, t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(2π, t)= 0 for t ≥ 0,

u(x,0)= x(2π − x) for 0 ≤ x ≤ 2π

6.
∂u

∂t
= 4

∂2u

∂x2
for 0< x < 3, t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(3, t)= 0 for t ≥ 0,

u(x,0)= x2 for 0 ≤ x ≤ 3

7.
∂u

∂t
= 2

∂2u

∂x2
for 0< x < 6, t > 0,

∂u

∂x
(0, t)= ∂u

∂x
(6, t)= 0 for t ≥ 0,

u(x,0)= e−x for 0 ≤ x ≤ 6

8. A thin, homogeneous bar of length L has insulated
ends and initial temperature B, a positive constant.
Find the temperature distribution in the bar.

9. A thin homogeneous bar of length L has initial tem-
perature f (x)= B where the right end x = L is insu-
lated, while the left end is kept at zero temperature.
Find the temperature distribution in the bar.

10. A thin, homogeneous bar having thermal diffusivity
of 9 and a length of 2 cm has insulated sides and

its left end maintained at zero temperature, while its
right end is perfectly insulated. The bar has an initial
temperature f (x)= x2 for 0 ≤ x ≤ 2. Determine the
temperature distribution u(x, t) and limt→0 u(x, t).

11. Show that the partial differential equation

∂u

∂t
= k

(
∂2u

∂x2
+ A

∂u

∂x
+ Bu

)

can be transformed into a standard heat equation for v
by letting u(x, t)= eαx+βtv(x, t) and choosing α and
β appropriately.

12. Use the idea of Problem 11 to solve

∂u

∂t
= ∂2u

∂x2
+ 4

∂u

∂x
+ 2u for 0< x <π, t > 0,

u(0, t)= u(π, t)= 0 for t ≥ 0,

u(x,0)= x(π − x) for 0 ≤ x ≤π.
13. Solve

∂u

∂t
= ∂2u

∂x2
+ 6

∂u

∂x
for 0< x < 4, t > 0,

u(0, t)= u(4, t)= 0 for t ≥ 0,

u(x,0)= 1 for 0 ≤ x ≤ 4.

Graph the twentieth partial sum of the solution for
selected times.

14. Solve

∂u

∂t
= ∂2u

∂x2
− 6

∂u

∂x
for 0< x <π, t > 0,

u(0, t)= u(π, t)= 0 for t ≥ 0,

u(x,0)= x(π − x) for 0 ≤ x ≤π.
Graph the twentieth partial sum of the solution for
selected times.

15. Solve

∂u

∂t
= 16

∂2u

∂x2
for 0< x < 1, t > 0,

u(0, t)= 2,u(1, t)= 5 for t ≥ 0,

u(x,0)= x2 for 0 ≤ x ≤ 1.

16. Solve

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= T,u(L , t)= 0 for t ≥ 0,

u(x,0)= x(L − x) for 0 ≤ x ≤ L .
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17. Solve
∂u

∂t
= 4

∂2u

∂x2
− Au for 0< x < 9, t > 0,

u(0, t)= u(9, t)= 0 for t ≥ 0,

u(x,0)= 0 for 0 ≤ x ≤ 9.

Graph the twentieth partial sum of the solution for
t = 0.2 with A = 1/4. Repeat this for t = 0.7 and
t = 1.4

18. Solve
∂u

∂t
= 9

∂2u

∂x2
for 0< x < L , t > 0,

u(0, t)= T,u(L , t)= 0 for t ≥ 0,

u(x,0)= 0 for 0 ≤ x ≤ L .

In each of Problems 19 through 23, solve the problem

∂u

∂t
= k

∂2u

∂x2
+ F(x, t) for 0< x < L , t > 0,

u(0, t)= u(L , t)= 0 for t ≥ 0,

and

u(x,0)= f (x) for 0 ≤ x ≤ L .

Choose a value of time, and using the same set of
axes, graph the twentieth partial sum of the solution
together with the solution of the problem with F(x, t)
removed. Repeat this for several times. This gives some
sense of the influence of F(x, t) on the temperature
distribution.

19. k = 4, F(x, t)= t, f (x)= x(π − x), L =π
20. k = 1, F(x, t)= x sin(t), f (x)= 1, L = 4

21. k = 1, F(x, t)= t cos(x), f (x)= x 2(5 − x), L = 5

22. k = 4, f (x)= sin(πx/2), L = 2,

F(x, t)=
{

K for 0 ≤ x ≤ 1

0 for 1< x ≤ 2

23. k = 16, F(x, t)= xt, f (x)= K , L = 3

17.3 Solutions in an Infinite Medium

We will consider problems involving the heat equation over the entire line or half-line.

17.3.1 Problems on the Real Line

For a setting in which one dimension is very much greater than the others, it is sometimes useful
to model heat conduction or a diffusion process by imagining the space variable free to vary
over the entire real line. In this case, there is no boundary condition, but we look for bounded
solutions. The problem we will solve is

∂u

∂t
= k

∂2u

∂x2
for −∞< x <∞, t > 0

and

u(x,0)= f (x) for −∞< x <∞.

Separation of variables yields

X ′′ + λX = 0,T ′ + λkT = 0.

As with the wave equation on the line, the eigenvalues λ=ω2 ≥ 0 and the eigenfunctions have
the form aω cos(ωx)+ bω sin(ωx).

The problem for T is T ′ + kω2T = 0 with solutions that are constant multiples of e−ω2kt .
For ω≥ 0, we now have functions

uω(x, t)=[aω cos(ωx)+ bω sin(ωx)]e−ω2kt

that satisfy the heat equation and are bounded for all x . To satisfy the initial condition, attempt a
superposition

u(x, t)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)]e−ω2kt dω. (17.11)
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We must choose the coefficients so that

u(x,0)= f (x)=
∫ ∞

0

[aω cos(ωx)+ bω sin(ωx)]dω.

This is the Fourier integral of f on the real line, so the coefficients should be chosen as the
Fourier integral coefficients of f :

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ)dξ and bω = 1

π

∫ ∞

−∞
f (ξ) sin(ωξ)dξ.

EXAMPLE 17.7

Suppose the initial temperature function is f (x)= e−|x |. Compute the coefficients

aω = 1

π

∫ ∞

−∞
e−|ξ | cos(ωξ)dξ = 2

π

1

1 +ω2

and bω = 0, because e−|x | sin(ωx) is an odd function. The solution is

u(x, t)= 2

π

∫ ∞

0

1

1 +ω2
cos(ωx)e−ω2kt dω. �

In general, if we put the integrals for aω and bω into the solution (17.11) and argue as we did
for the solution of the wave equation on the line (equation (16.8)), we obtain an alternative form
of this solution:

u(x, t)= 1

π

∫ ∞

0

∫ ∞

−∞
cos(ω(x − ξ)) f (ξ)e−ω2kt dω dξ. (17.12)

It is possible to rewrite this solution in terms of a single integral. To do this, first write the solution
(17.12) as

u(x, t)= 1

2π

∫ ∞

−∞

∫ ∞

−∞
cos(ω(x − ξ)) f (ξ)e−ω2kt dω dξ.

Now we need the following integral. If α and β are real numbers with β �= 0,
∫ ∞

−∞
e−ζ2

cos

(
αζ

β

)

dζ =√
πe−α2/4β2

. (17.13)

A derivation of this integral is sketched in Problem 11. In this integral, let

ξ =√
ktω, α= x − ξ, and β =√

kt

to obtain
∫ ∞

−∞
e−ω2kt cos(ω(x − ξ))dω=

√
π√
kt

e−(x−ξ)2/4kt .

Now the solution (17.12) can be written

u(x, t)= 1

2
√
πkt

∫ ∞

−∞
f (ξ)e−(x−ξ)2/4kt dξ. (17.14)

17.3.2 Solution by Fourier Transform

We will illustrate the use of the Fourier transform to solve the problem

∂u

∂t
= k

∂2u

∂x2
for −∞< x <∞, t > 0
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and

u(x,0)= f (x) for −∞< x <∞.

Take the Fourier transform of the heat equation with respect to x to get

F
[
∂u

∂t

]

= kF
[
∂2u

∂x2

]

.

Because x and t are independent, F passes through ∂/∂t , and

F
[
∂u

∂t

]

= ∂

∂t
û(ω, t)

in which ω appears as a parameter. Next use the operational rule for the Fourier transform to
write

F
[
∂2u

∂x2

]

=−ω2û(ω, t).

The transformed heat equation is

∂

∂t
û(ω, t)+ kω2û(ω, t)= 0

with solutions

û(ω, t)= aωe−ω2kt .

Since u(x,0)= f (x),

û(ω,0)= f̂ (ω)= aω.

We now have the Fourier transform of the solution:

û(ω, t)= f̂ (ω)e−ω2kt .

Apply the inverse Fourier transform. Since this transform is complex valued and the solution for
a temperature distribution is real, the solution is the real part of this inverse:

u(x, t)= Re F−1
[

f̂ (ω)e−ω2kt
]
(t)

= Re
1

2π

∫ ∞

−∞
f̂ (ω)e−ω2kt eiωxdω

= Re
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)

eiωxe−ω2kt dω

= Re
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)e−iω(ξ−x)e−ω2kt dξ dω

= Re
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)[cos(ω(ξ − x))− i sin(ω(ξ − x))]e−ω2kt dξ dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))e−ω2kt dξ dω,

which is the same expression obtained by separation of variables.
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17.3.3 Problems on the Half-Line

We will solve the problem

∂u

∂t
= k

∂2u

∂x2
for 0< x <∞, t > 0,

u(0, t)= 0 for t > 0,

and

u(x,0)= f (x) for 0< x <∞.

for the half-line, taking the case that the left end at x = 0 is kept at zero temperature. Putting
u(x, t)= X (x)T (t) leads in the usual way to

X ′′ + λX = 0; X (0)= 0

and

T ′ + kλT = 0.

The eigenvalues are λ= ω2 with ω > 0 and eigenfunctions bω sin(ωx). With these values of λ,
T (t) is a constant multiple of e−ω2kt . For each ω> 0, the function

uω(x, t)= bω sin(ωx)e−ω2kt

satisfies the heat equation and the boundary condition. For the initial condition, write

u(x, t)=
∫ ∞

0

bω sin(ωx)e−ω2ktdω.

Then

u(x,0)= f (x)=
∫ ∞

0

bω sin(ωx)dω

requires that we choose the coefficients as the Fourier integral sine coefficients of f on [0,∞):

bω = 2

π

∫ ∞

0

f (ξ) sin(ωξ)dξ.

EXAMPLE 17.8

Suppose the initial temperature function is

f (x)=
{
π − x for 0 ≤ x ≤π
0 for x >π .

Compute the coefficients

bω = 2

π

∫ π

0

(π − ξ) sin(ωξ)dξ = 2

ω

πω− sin(πω)

ω2
.

The solution is

u(x, t)= 2

π

∫ ∞

0

πω− sin(πω)

ω2
sin(ωx)e−ω2kt dω. �
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17.3.4 Solution by Fourier Sine Transform

We also can solve this problem on the half-line using the Fourier sine transform. Take this
transform of the heat equation with respect to x to get

∂u

∂t
ûS(ω, t)=−ω2kûS(ω, t)+ωku(0, t)=−ω2kûS(ω, t).

This has general solution

û S(ω, t)= bωe−ω2kt .

Furthermore,

û S(ω,0)= f̂ S(ω)= bω,

so

û S(ω, t)= f̂ S(ω)e
−ω2kt .

Upon taking the inverse Fourier sine transform, we obtain the solution

u(x, t)= 2

π

∫ ∞

0

f̂ S(ω)e
−ω2kt sin(ωx)dω.

It is a calculation along lines we have done previously to insert the integral for f̂ S(ω) into this
expression to obtain the solution by separation of variables.

SECTION 17.3 PROBLEMS

In each of Problems 1 through 4, solve the problem

∂u

∂t
= k

∂2u

∂x2
for − ∞< x <∞, t > 0

and

u(x,0)= f (x) for −∞< x <∞.

1. f (x)= e−4|x |

2. f (x)=
{

sin(x) for |x | ≤π
0 for |x |>π

3. f (x)=
{

x for 0 ≤ x ≤ 4

0 for x < 0 and for x > 4

4. f (x)=
{

e−x for |x | ≤ 1

0 for |x |> 1

In each of Problems 5 through 8, solve the problem

∂u

∂t
= k

∂2u

∂x2
for x > 0, t > 0,

u(0, t)= 0 for t > 0,

u(x,0)= f (x) for x > 0.

5. f (x)= e−αx with α any positive constant.

6. f (x)= xe−αx with α any positive constant.

7. f (x)=
{

1 for 0 ≤ x ≤ h

0 for x > h
with h any positive number.

8. f (x)=
{

x for 0 ≤ x ≤ 2

0 for x > 2

In each of Problems 9 and 10, use a Fourier transform on
the half-line to solve the problem.

9.
∂u

∂t
= ∂2u

∂x2
− tu for x > 0, t > 0,

u(0, t)= 0 for t > 0,

u(x,0)= xe−x for x > 0.

10.
∂u

∂t
= ∂2u

∂x2
− u for x > 0, t > 0,

u(0, t)= 0 for t > 0,

∂u

∂x
(0, t)= f (t) for t > 0.
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11. Derive equation (17.13). Hint: This can be done using
complex function theory and a contour integral. Here
is another way. Let

F(x)=
∫ ∞

0

e−ζ2
cos(xζ )dζ.

Compute F ′(x) by differentiating under the integral
sign and show that F ′(x)=−x F(x)/2. Solve for F(x)

subject to the initial condition that

F(0)=
∫ ∞

0

e−ζ2
dζ =

√
π

2
.

This integral for F(0) is familiar from statistics and is
assumed to be known. Finally, let x =α/β.

17.4 Laplace Transform Techniques

In this section, we make use of the Laplace transform to solve diffusion problems. As we did with
the wave equation, we will look at two typical problems. First, however, we need two functions
and a transform formula that occur frequently when dealing with diffusion problems.

The error function is defined by

erf(t)= 2√
π

∫ t

0

e−u2
du

and the complementary error function by

erfc(t)= 2√
π

∫ ∞

t

e−u2
du.

These are also used in probability and statistics. If the standard result that
∫ ∞

0

e−u2
du =

√
π

2

is used, it is routine to check that

erfc(t)= 1 − erf(t).

The transform formula that we will need is

L
[

erfc

(
k

2
√

t

)]

(s)= 1

s
e−k

√
s .

Armed with these tools, we will look at two problems.

Temperatures in a Homogeneous Slab

We will solve the following:

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(x,0)= T0 = constant,

and

u(L , t)= ∂u

∂x
(0, t)= 0 for t > 0.

This problem models the temperature distribution in a homogeneous solid slab or bar bounded
by the planes x =0 and x = L with the left side insulated (no flow of heat energy across this face)
and the right end kept at temperature zero. The initial temperature in the slab is constant.

Apply the Laplace transform with respect to t to the heat equation. As in Section 16.5, where
the Laplace transform was used to analyze wave motion, the resulting differential equation will
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be in terms of x with the transformed t variable s carried along as a parameter. The second
derivative term with respect to x passes through the transform, which is with respect to t because
x and t are independent. From the partial differential equation, we obtain

sU (x, s)− u(x,0)= k
∂2

∂x2
U (x, s).

If we write

∂U (x, s)

∂x
=U ′(x, s),

the diffusion equation transforms to

sU (x, s)− T0 = kU ′′(x, s).

This is the second-order ordinary differential equation

U ′′(x, s)− s

k
U (x, s)=−1

k
T0.

By inspection, a particular solution of this equation is Up = T0/s. For the general solution, we
need the general solution of the associated homogeneous equation

U ′′(x, s)− s

k
U (x, s)= 0.

This has the characteristic equation

λ2 − s

k
= 0

with roots ±√
s/k. Therefore, the general solution for U (x, s) is

U (x, s)= c1e
√

s/kx + c2e
−√

s/kx + 1

s
T0.

Now use the boundary conditions. Take the transform of u(L , t) = 0 to obtain U (L , s) = 0.
Similarly, (∂/∂x)u(0, t)= 0 gives us (∂U/∂x)(0, s)= 0. From the second of these conditions,
we have

∂U

∂x
(0, s)=

√
s

k
c1 −

√
s

k
c2 = 0,

so c1 = c2 and U has the form

U (x, s)= T0

s
+ c cosh

(√
s

k
x

)

in which c can be any constant. From the first boundary condition, we have

U (L , s)= 0 = T0

s
+ c cosh

(√
s

k
L

)

,

implying that

c =− T0

s cosh
(√

s/kL
) .

We now have the transform of the solution:

U (x, s)= T0

s
− T0

s

cosh
(√

s/kx
)

cosh
(√

s/kL
) .
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This can be inverted using the geometric series, as we did for the problem with the wave equation
on [0, L] in Section 16.5. Recall that the geometric series is

1

1 + u
=

∞∑

n=0

(−1)nun for |u|< 1.

In the following, the third line is obtained from the second by multiplying numerator and
denominator by e−√

s/kx :

cosh
(√

s/kx
)

cosh
(√

s/kL
) = e

√
s/kx + e−√

s/kx

e
√

s/kL + e−√
s/kL

= e
√

s/kxe−√
s/kL + e−√

s/kxe−√
s/kL

1 + e−2
√

s/kL

= (e−√
s/k(L−x) + e−√

s/k(L+x)
)
(

1

1 + e−2
√

s/kL

)

= (e−√
s/k(L−x) + e−√

s/k(L+x)
) ∞∑

n=0

(−1)ne−2n
√

s/kL

=
∞∑

n=0

(−1)n
[
e−√

s/k((2n+1)L−x) + e−√
s/k((2n+1)L+x)

]
.

Then

U (x, s)= T0

s

− T0

s

∞∑

n=0

(−1)n
[
e−√

s/k((2n+1)L−x) + e−√
s/k((2n+1)L+x)

]
.

Taking the inverse transform term by term, we have the solution

u(x, t)= T0

− T0

∞∑

n=0

(−1)n
[

erfc

(
(2n + 1)L − x

2
√

kt

)

+ erfc

(
(2n + 1)L + x

2
√

kt

)]

.

Temperature Distribution in a Semi-Infinite Bar

We will solve the boundary value problem

∂u

∂t
= k

∂2u

∂x2
for x > 0, t > 0

and

u(x,0)= 0,u(0, t)= f (t).

This models diffusion in a thin homogeneous bar lying along the x-axis with a given initial
temperature function. Because there is no bound on x , we also impose the condition

lim
x→∞

u(x, t)= 0 for t > 0.

Take the transform in the time variable to obtain

sU (x, s)= k
∂2U

∂x2
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and

U (0, s)= f (s), lim
x→∞

U (x, t)= 0.

This differential equation has general solution

U (x, s)= c1e
√

s/kx + c2e
−√

s/kx .

Since u(x, t)→ 0 as x → ∞, then U (x, s)→ 0 as x → ∞, requiring that c1 = 0. Furthermore,
u(0, t)= f (t) implies that U (0, s)= F(s)= c2. Note here that c2 may depend on s, which is a
parameter in the transform with respect to t . Therefore,

U (x, s)= F(s)e−√
s/kx .

The solution is

u(x, t)=L−1[u(x, s)](t)=L−1
[
F(s)e−√

s/kx
]
.

We can also write this solution as a convolution

u(x, t)= f (t) ∗ g(t),

where

g(t)=L−1
[
e−√

s/kx
]
(t).

A Semi-Infinite Bar with Discontinuous Temperature at the Left End

We will solve the boundary value problem

∂u

∂t
= k

∂2u

∂x2
for x > 0, t > 0,

u(x,0)= A for x > 0,

and

u(0, t)=
{

B for 0 ≤ t ≤ t0

0 for t > t0.

Here t0, A, and B are positive constants.
This problem models the temperature distribution in a thin, homogeneous bar extending

along the nonnegative x-axis with a constant initial temperature A and a discontinuous temper-
ature function at the left end where x = 0. The Laplace transform is a natural approach for this
problem, because this transform is well suited to treating piecewise continuous functions. Begin
by writing

u(0, t)= B[1 − H(t − t0)]
in which H is the Heaviside function. Apply the Laplace transform with respect to t in the heat
equation using the condition that u(x,0)= A to obtain

∂2

∂x2
U (x, s)− s

k
U (x, s)=− A

k
.

As usual, think of this as a differential equation in x . The general solution is

U (x, s)= c1e
√

s/kx + c2e
−√

s/kx + A

s
,
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in which the “constants” c1 and c2 may depend on s. We will require that U (x, s)→0 as x →∞,
so choose c2 = 0. This leaves

U (x, s)= c1e
√

s/kx + A

s
.

To obtain c1, take the Laplace transform of the boundary condition u(0, t)= B[1 − H(t − t0)] to
obtain

U (0, s)=L[B] −L[B(t − t0)] = B

s
− B

e−t0s

s
.

Then

U (0, s)= B

s
− B

e−t0s

s
= c1 + A

s
.

Solve for c1 to obtain

c1 = B − A

s
− B

s
e−t0s .

This gives us

U (x, s)=
[

B − A

s
− B

s
e−t0s

]

e−√
s/kx + A

s
.

Invert this expression to obtain the solution in terms of the error function and the complementary
error function:

u(x, t)=
(

Aerf

(
x

2
√

kt

)

+ Berfc

(
x

2
√

kt

))

(1 − H(t − t0))

+
(

Aerf

(
x

2
√

kt

)

+ Berfc

(
x

2
√

kt

))

H(t − t0)

− Berfc

(
x

2
√

k(t − t0)

)

H(t − t0).

SECTION 17.4 PROBLEMS

1. Solve

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(x,0)= 0,u(0, t)= 0,u(L , t)= T0 = constant.

2. Solve

∂u

∂t
= k

∂2u

∂x2
for x > 0, t > 0

u(x,0)= 0,u(0, t)= t 2, lim
x→∞

u(x, t)= 0

3.
∂u

∂t
= k

∂2u

∂x2
for x > 0, t > 0,

u(x,0)= e−x ,u(0, t)= 0, lim
x→∞

u(x, t)= 0

4. Apply the Laplace transform with respect to t to the
problem

∂u

∂t
= k

∂2u

∂x2
for 0< x < L , t > 0,

u(x,0)= 1,u(0, t)= u(L , t)= 0.

Then use the transform with respect to x to solve the
resulting problem for U (x, s).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:25 THM/NEIL Page-636 27410_17_ch17_p611-640

636 CHAPTER 17 The Heat Equation

17.5 Heat Conduction in an Infinite Cylinder

We will determine the temperature distribution in a solid, infinitely long, homogeneous cylinder
of radius R with its axis along the z-axis in 3-space.

In cylindrical coordinates, the heat equation for the temperature distribution U (r, θ, z, t) is

∂U

∂t
= k

(
∂2U

∂r 2
+ 1

r

∂U

∂r
+ 1

r 2

∂2U

∂θ 2
+ ∂2U

∂z2

)

.

This is a formidable equation to solve at this stage, and we will restrict it to the special case
that the temperature at any point in the cylinder depends only on the time t and the horizontal
distance r from the z-axis. This symmetry means that ∂U/∂θ=∂U/∂z =0, and the heat equation
becomes

∂U

∂t
= k

(
∂2U

∂r 2
+ 1

r

∂U

∂r

)

for 0 ≤ r < R, t > 0. We will write U (r, t), with dependence only on r and t and assume the
boundary condition

U (R, t)= 0 for t > 0.

The initial condition is

U (r,0)= f (r) for 0 ≤ r < R.

Put U (r, t)= F(r)T (t) and separate the variables, obtaining

T ′

kT
= F ′′ + (1/r)F ′(r)

F(r)
=−λ.

Then

T ′ + λT = 0 and F ′′ + 1

r
F ′ + λF = 0.

Since U (R, t)= F(R)T (t)= 0, then F(R)= 0. The problem for F is a singular Sturm-Liouville
problem on [0, R]. To determine the eigenvalues and eigenfunctions take cases on λ.

Case 1: λ= 0

Then

F ′′ + 1

r
F ′ = 0

with general solution of the form F(r)= c ln(r)+ d. Since ln(r)→ −∞ as r → 0 (the center
of the cylinder), we must choose c = 0. Then F(r)= d. Since T ′(t)= 0 if λ= 0, then T (t)=
constant also. In this case, U (r, t)= constant, and this constant must be zero because U (R,0)=0.
U (r, t)= 0 is indeed the solution if f (r)= 0. If f (r) is not identically zero, then λ= 0 does not
contribute to the solution.

Case 2: λ< 0

Write λ=−ω2 with ω> 0. Now T ′ − kω2T = 0 has a general solution

T (t)= ceω
2kt ,

and this is unbounded as t increases. To have a bounded solution, we reject this case.
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Case 3: λ> 0

Write λ=ω2 with ω> 0. Now T ′ + kω2T = 0, with general solution

T (t)= ce−ω2kt .

This is a bounded function. The equation for F becomes

F ′′(r)+ 1

r
F ′(r)+ω2 F(r)= 0.

Write this as

r 2 F ′′(r)+ r F ′(r)+ω2 F(r)= 0.

This is Bessel’s equation of order zero. Bounded solutions on [0, R] are constant multiples of
J0(ωr).

Thus far we have

Uω(r, t)= aω J0(ωr)e−ω2kt .

The condition U (R,0)= 0 requires that

J0(ωR)= 0.

Let j1 < j2 < · · · be the positive zeros of J0(x) in ascending order. For J0(ωR)= 0, there must
be some positive integer n such that ωR = jn . Denote ωn = jn/R. This gives us the eigenvalues
of this problem:

λn =ω2
n = j 2

n

R2
.

The eigenfunctions are constant multiples of J0( jnr/R).
Now for n = 1,2, · · · , we have functions

Un(r, t)= an J0

(
jnr

R

)

e− j2n kt/R2

satisfying the heat equation and the boundary condition. To satisfy the initial condition, employ
a superposition

U (r, t)=
∞∑

n=1

an J0

(
jnr

R

)

e− j2n kt/R2
.

Now we must choose the coefficients so that

U (r,0)= f (r)=
∞∑

n=1

an J0

(
jnr

R

)

.

Let ξ = r/R to write

f (rξ)=
∞∑

n=1

an J0( jnξ)

for 0 ≤ ξ ≤ 1. In this framework, previous results on eigenfunction expansions apply, and we can
write

an = 2
∫ 1

0
r f (r R)J0( jnξ)dξ

J 2
1 ( jn)

.

With these coefficients, we have the solution for U (r, t).
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SECTION 17.5 PROBLEMS

1. Suppose R = 1, k = 1 and f (r) = r . Assume that
U (1, t) = 0 for t > 0. Use a numerical integration to
approximate the coefficients a1, · · · ,a5 and use these
numbers in the fifth partial sum of the series solu-
tion to approximate U (r, t). Graph this partial sum for
different values of t .

2. Repeat the calculations of Problem 1 with k =16, R =3
and f (r)= er .

3. Repeat the calculations of Problem 1 with k = 1/2,
R = 3 and f (r)= 9 − r 2.

17.6 Heat Conduction in a Rectangular Plate

We will solve for the temperature distribution u(x, y, t) in a flat, square homogeneous plate
covering the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 in the plane. The sides are kept at temperature zero, and
the interior temperature at (x, y) at time 0 is f (x, y).

To be specific, we will let f (x, y)= x(1 − x2)y(1 − y) and solve the initial-boundary value
problem

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2

)

for 0< x < 1,0< y< 1, t > 0,

u(x,0, t)= u(x,1, t)= 0 for 0< x < 1, t > 0,

u(0, y, t)= u(1, y, t)= 0 for 0< y< 1, t > 0,

and

u(x, y,0)= f (x, y)= x(1 − x2)y(1 − y).

Let u(x, y, t)= X (x)Y (y)T (t), and separate variables to obtain

X ′′ + λX = 0,Y ′′ +μY = 0,T ′ + (λ+μ)T = 0,

as in the analysis of wave motion of a membrane in Chapter 16. The boundary conditions imply
that

X (0)= X (1)= 0,Y (0)= Y (1)= 0,

so the eigenvalues and eigenfunctions are

λn = n2π 2, Xn(x)= sin(nπx)

and

μm = m2π 2,Ym(y)= sin(mπy)

for n = 1,2, · · · and m = 1,2, · · · . The equation for T becomes

T ′ + (n2 + m2)π 2T = 0

with solutions that are constant multiples of e−(n2+m2)π2kt . For each positive integer m and n, we
now have functions

unm(x, y, t)=
∞∑

n=1

∞∑

m=1

cnm sin(nπx) sin(mπy)e−(n2+m2)π2kt
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satisfying the heat equation and the boundary conditions. Reasoning as we did with the two-
dimensional wave equation, we get

cnm = 4
∫ 1

0

∫ 1

0

ξ(1 − ξ 2)η(1 − η) sin(nπξ) sin(mπη)dξ dη

= 48

(
(−1)n

n3π 3

)(
(−1)m − 1

m3π 3

)

.

The solution is

u(x, y, t)=
48

π 6

∞∑

n=1

∞∑

m=1

(
(−1)n

n3

)(
(−1)m − 1

m3

)

sin(nπx) sin(mπy)e−(n2+m2)π2kt . �

SECTION 17.6 PROBLEMS

1. Write the solution for the general problem

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2

)

for 0< x < L ,

0< y< K , t > 0,

u(x,0, t)= u(x,K , t)= 0 for 0< x < L , t > 0,

u(0, y, t)= u(L , y, t)= 0 for 0< y< K , t > 0,

and

u(x, y,0)= f (x, y) for 0 ≤ x ≤ L ,0 ≤ y ≤ K .

2. Solve this problem when k = 4, L = 2,K = 3, and
f (x, y)= x2(L − x) sin(y)(K − y).

3. Solve this problem when k = 1, L = π,K = π , and
f (x, y)= sin(x) cos(y/2).
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CHAPTER 18
The Potential
Equation

LAPLACE’S EQUATION DIRICHLET
PROBLEM FOR A RECTANGLE
DIRICHLET PROBLEM FOR A DISK
POISSON’S INTEGRAL FORMULA

18.1 Laplace’s Equation

The partial differential equation

∂2u

∂x2
+ ∂2u

∂y2
= 0

is called Laplace’s equation in two dimensions. In three dimensions Laplace’s equation is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= 0.

These equations are often written ∇2u = 0, in which the symbol ∇ is read “del” and ∇2 is read
“del squared”. We saw the del operator previously with the gradient vector field.

Laplace’s equation arises in several contexts. It is the steady-state heat equation, occurring
when ∂u/∂t = 0. It is also called the potential equation. If a vector field F has a potential ϕ, then
ϕ must satisfy Laplace’s equation.

A function satisfying Laplace’s equation in a region of the plane (or 3-space) is said to be
harmonic on that region. For example, x2 − y2 and xy are both harmonic over the entire
plane.

A Dirichlet problem for a region D consists of finding a function that is harmonic on
D and assumes specified values on the boundary of D. We will be primarily concerned
with Dirichlet problems in the plane, in which D is a region that is bounded by one or
more piecewise smooth curves. Denote the boundary by ∂D. The Dirichlet problem for D
is to solve

641
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∇2u = 0 on D

and

u(x, y)= f (x, y) for (x, y) in ∂D

with f (x, y) as a given function. The function f is called boundary data for D.

SECTION 18.1 PROBLEMS

1. Show that if f and g are harmonic on D so are f + g
and, for any constant c, c f .

2. Show that the following functions are harmonic (on the
entire plane, if D is not specified).

(a) x3 − 3xy2

(b) 3x2 y − y3

(c) x4 − 6x2 y2 + y4

(d) 4x3 y − 4xy3

(e) sin(x)(ey + e−y)

(f) cos(x)(ey − e−y)

(g) e−x cos(y)
(h) ln(x2 + y2) if D is the plane with the origin

removed.

18.2 Dirichlet Problem for a Rectangle

The region D exerts a great influence on our ability to explicitly solve a Dirichlet problem, or
even whether a solution exists. Some regions admit solutions by Fourier methods. In this and the
next section, we will treat two such cases: that D is a rectangle or disk in the plane.

Let D be the solid rectangle consisting of points (x, y) with 0 ≤ x ≤ L ,0 ≤ y ≤ K . We will
solve the Dirichlet problem for D.

This problem can be solved by separation of variables if the boundary data is nonzero on
only one side of D. We will illustrate this for the case that this is the upper horizontal side of D.
The problem in this case is

∇2u = 0 on D,

u(x,0)= 0 for 0 ≤ x ≤ L ,

u(0, y)= 0 for 0 ≤ y ≤ K ,

u(L , y)= 0 for 0 ≤ y ≤ K ,

and
u(x,K )= f (x) for 0 ≤ x ≤ L .

Figure 18.1 shows D and the boundary data. Let u(x, y)= X (x)Y (y) in Laplace’s equation
to obtain

X ′′

X
=−Y ′′

Y
=−λ

or

X ′′ + λX = 0 and Y ′′ − λY = 0.

From the boundary conditions, X (0)= X (L)= Y (0)= 0, so the problems for X and Y are

X ′′ + λX = 0; X (0)= X (L)= 0
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D

(L, 0)

(0, K) (L, K)

u = 0

u = 0u = 0

u(x, K) = f(x)

x

y

FIGURE 18.1 D and the boundary data
for this problem.

and

Y ′′ − λY = 0;Y (0)= 0.

The problem for X has eigenvalues and eigenfunctions

λn = n2π 2

L2
and Xn(x)= sin

(nπx

L

)

for n = 1,2, · · · .
The problem for Y becomes

Y ′′ − n2π 2

L2
Y = 0;Y (0)= 0

with solutions that are constant multiples of

Yn(y)= sinh
(nπy

L

)
.

For each positive integer n, we have a function

un(x, y)= sin
(nπx

L

)
sinh

(nπy

L

)

that is harmonic on D and satisfies the zero boundary conditions on the lower side and vertical
sides of D. For the condition on the top side, use a superposition

u(x, y)=
∞∑

n=1

bn sin
(nπx

L

)
sinh

(nπy

L

)
.

We need

u(x,K )= f (x)=
∞∑

n=1

bn sin
(nπx

L

)
sinh

(
nπK

L

)

.

This is a Fourier sine expansion of f (x) on [0, L] with coefficient bn sinh(nπK/L). Thus, choose
bn sinh(nπK/L) to be the nth Fourier sine coefficient of f (x) on [0, L]:

bn sinh(nπK/L)= 2

L

∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ.

Then

bn = 2

L sinh(nπK/L)

∫ L

0

f (ξ) sin

(
nπξ

L

)

dξ.
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D D D D

u = f1

0

0

0

0

0

0

u = f2

0

0
u = g2

0 0

0

0

u = g1

u = f1

u = g1 u = g2

u = f2

D

FIGURE 18.2 u(x, y)=∑4
j=1 u j (x, y).

With this choice of coefficients, the solution can be written

u(x, y)=
∞∑

n=1

2

L

(∫ ∞

0

f (ξ) sin(nπξ/L)dξ

)

sin(nπx/L)
sinh(nπy/L)

sinh(nπK/L)
.

EXAMPLE 18.1

Suppose, in the problem just solved, L = K =π and f (x)= x(π − x). Compute the numbers

2

π

∫ π

0

x(π − ξ) sin(nξ)dξ = 4

πn3
(−1)n.

The solution is

u(x, y)=
∞∑

n=1

4

πn3
(−1)n sin(nx)

sinh(ny)

sinh(nπ)
. �

If nonzero boundary data is prescribed on all four sides of D, define four Dirichlet problems
in each of which the data is nonzero on just one side (Figure 18.2). Each of these problems can
be solved by the separation of variables. The sum of the solutions of these four problems is the
solution of the original problem.

SECTION 18.2 PROBLEMS

In each of Problems 1 through 5, solve the Dirichlet
problem for the given rectangle and boundary conditions.

1. u(0, y)= u(1, y)= 0 for 0 ≤ y ≤π and
u(x,π)= 0,u(x,0)= sin(πx) for 0 ≤ x ≤ 1.

2. u(0, y) = y(2 − y),u(3, y) = 0 for 0 ≤ y ≤ 2 and
u(x,0)= u(x,2)= 0 for 0 ≤ x ≤ 3

3. u(0, y)= u(1, y)= 0 for 0 ≤ y ≤ 4 and
u(x,4)= x cos(πx/2),u(x,0)= 0 for 0 ≤ x ≤ 1

4. u(0, y) = sin(y),u(π, y) = 0 for 0 ≤ y ≤ π and
u(x,0)= x(π − x),u(x,π)= 0 for 0 ≤ x ≤π

5. u(0, y) = 0,u(2, y) = sin(y) for 0 ≤ y ≤ π and
u(x,0)= 0,u(x,π)= x sin(πx) for 0 ≤ x ≤ 2
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6. Apply separation of variables to the problem

∇2u = 0 for 0< x < a,0< y< b,

u(x,0)= ∂u

∂y
(x,b)= 0 for 0 ≤ x ≤ a,

u(0, y)= 0,u(a, y)= g(y) for 0 ≤ y ≤ b.

7. Use separation of variables to solve

∇2u = 0 for 0< x < a,0< y< b,

u(x,0)= 0,u(x,b)= f (x) for 0 ≤ x ≤ a,

u(0, y)= ∂u

∂x
(a, y)= 0 for 0 ≤ y ≤ b.

8. Solve for the steady-state temperature distribution in
a homogeneous, thin, flat plate covering the rect-
angle 0 ≤ x ≤ a, 0 ≤ y ≤ b if the temperature
on the vertical and lower sides are kept at zero
and the temperature along the top side is f (x) =
x(x − a)2.

9. Solve for the steady-state temperature distribution in
a thin, flat plate covering the rectangle 0 ≤ x ≤
4, 0 ≤ y ≤ 1 if the temperature on the horizontal
sides is zero while the temperature on the left side
is f (y) = sin(πy) and on the right side, g(y) =
y(1 − y).

18.3 Dirichlet Problem for a Disk

We will solve the Dirichlet problem for a disk of radius R centered at the origin. The boundary
of this disk is the circle x2 + y2 = R2. Using polar coordinates, the problem for u(r, θ) is

∇2u = ∂2u

∂r 2
+ 1

r

∂u

∂r
+ 1

r 2

∂2u

∂θ 2
= 0 for 0 ≤ r < R,−π ≤ θ ≤π

and

u(R, θ)= f (θ) for −π ≤ θ ≤π.
It is easy to check that the functions 1, r n cos(nθ), and rn sin(nθ) are harmonic on the entire

plane. Thinking ahead to the possibility of a Fourier series to satisfy the boundary condition,
attempt a solution in a series of these functions:

u(r, θ)= 1

2
a0 +

∞∑

n=1

(anr
n cos(nθ)+ bnr

n sin(nθ)).

This would require that

u(R, θ)= f (θ)= 1

2
a0 +

∞∑

n=1

(an Rn cos(nθ)+ bn Rn sin(nθ)).

This is a Fourier expansion of f (θ) on [−π,π] if we choose the entire coefficients, an Rn and
bn Rn to be the Fourier coefficients of f on [−π,π]. This means that

a0 = 1

π

∫ π

−π
f (ξ)dξ

and, for n = 1,2, · · · ,
an = 1

Rn

∫ π

−π
f (ξ) cos(nξ)dξ and bn = 1

Rn

∫ π

−π
f (ξ) sin(nξ)dξ.

Another form of this solution is

u(r, θ)= 1

π

∫ π

−π
f (ξ)dξ

+ 1

π

∞∑

n=1

( r

R

)n
(∫ π

−π
f (ξ) cos(nξ)dξ cos(nθ)+

∫ π

−π
f (ξ) sin(nξ)dξ sin(nθ)

)

.

(18.1)
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This can be rearranged to

u(r, θ)= 1

2π

∫ π

−π
f (ξ)dξ

+ 1

π

∞∑

n=1

( r

R

)n
∫ π

−π
f (ξ) cos(n(ξ − θ))dξ. (18.2)

If we combine terms in equation (18.2), we obtain

u(r, θ)= 1

2π

∫ π

−π

[

1 + 2
∞∑

n=1

( r

R

)n

cos(n(ξ − θ))
]

f (ξ)dξ, (18.3)

which will be used to derive Poisson’s integral formula in the next section.

EXAMPLE 18.2

We will solve the Dirichlet problem for the disk with a radius of 4 about the origin if u(4, θ)=
f (θ)= θ 2. Using equation (18.1), the solution is

u(r, θ)= 1

2π

∫ π

−π
ξ 2 dξ

+ 1

π

∞∑

n=1

(r

4

)n
(∫ π

−π
ξ 2 cos(nξ)dξ cos(nθ)+

∫ π

−π
ξ 2 sin(nξ)dξ sin(nθ)

)

= 1

3
π 2 +

∞∑

n=1

4(−1)n

n2

(r

4

)n

cos(nθ). �

EXAMPLE 18.3

We will solve the Dirichlet problem

∇2u(x, y)= 0 for x2 + y2 < 9

and

u(x, y)= x2 y2 for x2 + y2 = 9.

Convert this problem to polar coordinates. Let U (r, θ)= u(r cos(θ), r sin(θ)). On the boundary,

U (3, θ)= 9cos2(θ)9 sin2(θ)= 81 sin2(θ) cos2(θ)= f (θ).

The solution in polar coordinates is

U (r, θ)= 1

2π

∫ π

−π
81cos2(ξ) sin2(ξ)dξ

+ 1

π

∞∑

n=1

(r

3

)n
[∫ π

−π
81cos2(ξ) sin2

(ξ) cos(nξ)dξ cos(nθ)

+
∫ π

−π
81cos2(ξ) sin2(ξ) sin(nξ)dξ sin(nθ)

]

.
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There remains to evaluate the integrals:

1

2π

∫ π

−π
81cos2(ξ) sin2(ξ)dξ = 81

4
π,

∫ π

−π
81cos2(ξ) sin2(ξ) cos(nξ)dξ =

{
0 if n �= 4

−81π/8 if n = 4,

and
∫ π

−π
81cos2(ξ) sin2(ξ) sin(nξ)dξ = 0.

The solution is

U (r, θ)= 1

2π

81π

4
− 1

π

81π

8

(r

3

)4

cos(4θ)

= 81

8
− 1

8
r 4 cos(4θ).

To convert this solution to rectangular coordinates, use the fact that

cos(4θ)= 8cos4(θ)− 8cos2(θ)+ 1

to obtain

U (r, θ)= 81

8
− 1

8
(8r 4 cos4(θ)− 8r 4 cos2(θ)+ r 4)

= 81

8
− 1

8
(8r 4 cos4(θ)− 8r 2r 2 cos2(θ)+ r 4).

Then

u(x, y)= 81

8
− 1

8
(8x4 − 8(x2 + y2)x2 + (x2 + y2)2)

= 81

8
− 1

8
(x4 + y4 − 6x2 y2). �

SECTION 18.3 PROBLEMS

In each of Problems 1 through 8, write the solution of the
Dirichlet problem for the disk, with the given boundary
data.

1. R = 3, f (θ)= 1
2. R = 3, f (θ)= 8cos(4θ)
3. R = 2, f (θ)= θ 2 − θ
4. R = 5, f (θ)= θ cos(θ)
5. R = 4, f (θ)= e−θ

6. R = 1, f (θ)= sin2(θ)

7. R = 8, f (θ)= 1 − θ 2

8. R = 4, f (θ)= θe2θ

In each of Problems 9 through 12, solve the problem by
converting it to polar coordinates.

9. ∇2u(x, y)= 0 for x2 + y2 < 16,
u(x, y)= x2 for x2 + y2 = 16

10. ∇2u(x, y)= 0 for x2 + y2 < 9,
u(x, y)= x − y for x2 + y2 = 9

11. ∇2u(x, y)= 0 for x2 + y2 < 4,
u(x, y)= x2 − y2 for x2 + y2 = 4

12. ∇2u(x, y)= 0 for x2 + y2 < 25,
u(x, y)= xy for x2 + y2 = 25
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18.4 Poisson’s Integral Formula

We will derive an integral formula due to Poisson for the Dirichlet problem for a disk. Suppose
the disk is centered at the origin and has a radius of 1, and that u(1, θ)= f (θ). By equation
(18.3), the solution with R = 1 is

u(r, θ)= 1

2π

∫ π

−π

[

1 + 2
∞∑

n=1

rn cos(n(ξ − θ))
]

f (ξ)dξ.

The quantity

P(r, ζ )= 1

2π

[

1 + 2
∞∑

n=1

rn cos(nζ )

]

is called the Poisson kernel. In terms of this kernel function, the solution is

u(r, θ)=
∫ π

−π
P(r, ξ − θ) f (ξ)dξ.

We will evaluate the sum in the Poisson kernel, yielding Poisson’s integral formula for the
solution.

Let z be a complex number. In polar form, z = reiζ with r < 1 inside the unit disk and ζ an
argument of z. By Euler’s formula,

zn = rneinζ = rn cos(nζ )+ ir n sin(nζ ).

This enables us to recognize rn cos(nζ ), which appears in the Poisson kernel, as the real part of
zn and write

1 + 2
∞∑

n=1

rn cos(nζ )= Re

(

1 + 2
∞∑

n=1

zn

)

.

Now suppose |z| = r < 1. Then this sum is just a geometric series:

∞∑

n=1

zn = z

1 − z
.

Combining these observations, we have

1 + 2
∞∑

n=1

rn cos(nθ)= Re

(

1 + 2
∞∑

n=1

zn

)

= Re

(

1 + 2
z

1 − z

)

= Re

(
1 + z

1 − z

)

= Re

(
1 + reiζ

1 − reiζ

)

.

To extract this real part, compute

1 + reiζ

1 − reiζ
= 1 + reiζ

1 − reiζ

(
1 − re−iζ

1 − re−iζ

)

= 1 − r 2 + r(eiζ − e−iζ )

1 + r 2 − r(eiζ + e−iζ )

= 1 − r 2 + 2ir sin(ζ )

1 + r 2 − 2r cos(ζ )
.
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In this form, the real part is easily identified, yielding

1 + 2
∞∑

n=1

rn cos(nζ )= 1 − r 2

1 + r 2 − 2r cos(ζ )
.

Therefore, the solution of the Dirichlet problem for the unit disk is

u(r, θ)= 1

2π

∫ π

−π

1 − r 2

1 + r 2 − 2r cos(ξ − θ) f (ξ)dξ.

This is Poisson’s integral formula. For a disk of radius R, a change of variables gives us
the solution

u(r, θ)= 1

2π

∫ π

−π

R2 − r 2

R2 + r 2 − 2Rr cos(ξ − θ) f (ξ)dξ.

EXAMPLE 18.4

The solution of the problem of Example 18.2 also can be written

u(r, θ)= 1

2π

∫ π

−π

16 − r 2

16 + r 2 − 8r cos(ξ − θ)ξ
2 dξ

= 16 − r 2

2π

∫ π

−π

ξ 2

16 + r 2 − 8r cos(ξ − θ) dξ

for 0 ≤ r < 4,−π ≤ θ ≤ π . This integral solution may be more suitable than the infinite series
solution if we want to approximate values at specific points. �

SECTION 18.4 PROBLEMS

In each of Problems 1 through 4, find an integral formula
for the solution of the Dirichlet problem. Use a numeri-
cal integration routine to approximate u(r, θ) at the given
points.

1. R = 1, f (θ)= θ; (1/2,π), (3/4,π/3), (0.2,π/4)
2. R = 4, f (θ)= sin(4θ); (1,π/6), (3,7π/2), (1,π/4),
(2.5,π/12)

3. R = 15, f (θ)= θ 3 − θ; (4,π), (12,π/6), (8,π/4),
(7,π/3)

4. R = 6, f (θ)= e−θ ; (5.5,3π/5), (4,2π/7), (1,π),
(4,9π/4)

5. Show that, for 0 ≤ r < 1,

rn sin(nθ)= 1

2π

∫ π

−π

1 − r 2

1 + r 2 − 2r cos(ξ − θ) sin(nξ)dξ.

Hint: Notice that rn sin(nθ) is harmonic (in polar coor-
dinates) and use Poisson’s formula.

18.5 Dirichlet Problem for Unbounded Regions

When D is unbounded (has points arbitrarily far from the origin), we may use a Fourier integral
or transform to solve a Dirichlet problem on D.
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18.5.1 The Upper Half-Plane

We will solve the problem

∇2u(x, y)= 0 for −∞< x <∞, y> 0

and

u(x,0)= f (x) for −∞< x <∞.

This is a Dirichlet problem because the horizontal axis is the boundary of the upper half-plane.
We seek a bounded solution.

Put u(x, t)= X (x)T (t), and obtain

X ′′ + λX = 0,T ′′ − λT = 0.

The eigenvalues are λ=ω2 with ω≥ 0, and the eigenfunctions are

Xω(x)= aω cos(ωx)+ bω sin(ωx).

The equation for Y is Y ′′ −ω2Y =0 with constant multiples of e−ωy as bounded solutions because
y ≥ 0. For each ω≥ 0, we have a solution

uω(x, y)= (aω cos(ωx)+ bω sin(ωx))e−ωy

of Laplace’s equation. To obtain a solution satisfying the boundary condition, use the superposi-
tion

u(x, y)=
∫ ∞

0

(aω cos(ωx)+ bω sin(ωx))e−ωy dω.

We need

u(x,0)= f (x)=
∫ ∞

0

(aω cos(ωx)+ bω sin(ωx))dω.

The coefficients are the Fourier integral coefficients of f on the real line:

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ)dξ and bω = 1

π

∫ ∞

−∞
f (ξ) sin(ωξ)dξ.

Insert these coefficients into the integral expression for u(x, y):

u(x, y)= 1

π

∫ ∞

0

∫ ∞

−∞
[ f (ξ) cos(ωξ) cos(ωx)+ f (ξ) sin(ωξ) sin(ωx)]e−ωy dξ dω

= 1

π

∫ ∞

−∞

[∫ ∞

0

cos(ω(ξ − x))e−ωy dω

]

f (ξ)dξ.

The inner integral can be evaluated explicitly:
∫ ∞

0

cos(ω(ξ − x))e−ωy dω=
[

e−ωy

y2 + (ξ − x)2
[−y cos(ω(ξ − x))+ (ξ − x) sin(ω(ξ − x))]

]∞

0

= y

y2 + (ξ − x)2
.

The solution of the Dirichlet problem for the upper half-plane is therefore

u(x, y)= y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2
dξ. (18.4)
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Solution Using the Fourier Transform

We also can solve this problem for the upper half-plane using the Fourier transform. Apply the
transform in the x variable to Laplace’s equation to obtain

F
[
∂2u

∂x2

]

+F
[
∂2u

∂y2

]

= ∂2û

∂y2
(ω, y)−ω2û(ω, y)= 0.

This has the general solution

û(ω, y)= aωeωy + bωe−ωy.

We want this to be bounded. But for ω> 0, eωy → ∞ as y → ∞, so aω = 0 for positive ω. And
e−ωy → ∞ as y → ∞ if ω< 0, so for negative ω, we must have bω = 0. Therefore,

û(ω, y)=
{

bωe−ωy for ω> 0

aωeωy for ω< 0.

Consolidate these cases by writing

û(ω, y)= cωe−|ω|y.

To solve for the constants, take the transform of u(x,0)= f (x) to get

û(ω,0)= f̂ (ω)= cω.

Then

û(ω, y)= f̂ (ω)e−|ω|y.

Finally, apply the inverse Fourier transform to get

u(x, y)=F−1
[

f̂ (ω)e−|ω|y
]
(x)

= 1

2π

∫ ∞

−∞
f̂ (ω)e−|ω|yeiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)

e−|ω|yeiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−|ω|ye−iω(ξ−x) dω

)

f (ξ)dξ.

A routine integration gives us
∫ ∞

−∞
e−|ω|ye−iω(ξ−x) dω= 2y

y2 + (ξ − x)2
.

Then

u(x, y)= 1

2π

∫ ∞

−∞

(
2y

y2 + (ξ − x)2

)

f (ξ)dξ

= y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2
dξ,

in agreement with the solution obtained by separation of variables.
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18.5.2 The Right Quarter-Plane

The right quarter-plane has the nonnegative horizontal and vertical axes as boundary. The
Dirichlet problem for this region is

∇2u(x, y)= 0 for x > 0, y> 0,

u(x,0)= f (x) for x ≥ 0,

and

u(0, y)= g(y) for y ≥ 0.

This problem can be treated by solving separately the cases that either f (x) or g(y) is iden-
tically zero. Separation of variables applies to both cases, and the solution of the given problem
is the sum of the solutions of these simpler problems.

We will demonstrate a different method for the case that g(y)= 0. Notice that if we fold
the upper half-plane across the vertical axis we obtain the right quarter-plane. This suggests that
we might be able to use the solution for the upper half-plane to solve the problem for the right
quarter-plane. To do this, let

w(x)=
{

f (x) for x ≥ 0

anything for x < 0.

where by “anything” we mean we will fill in this part shortly. We now have a Dirichlet problem
for the upper half-plane with the data function u(x,0)=w(x). We know the solution uhp of this
problem for the upper half-plane:

uhp(x, y)= y

π

∫ ∞

−∞

w(ξ)

y2 + (ξ − x)2
dξ.

Write this as

uhp(x, y)= y

π

[∫ 0

−∞

w(ξ)

y2 + (ξ − x)2
dξ +

∫ ∞

0

w(ξ)

y2 + (ξ − x)2
dξ

]

.

Change variables in the first integral on the right by letting ζ =−ξ :
∫ 0

−∞

w(ξ)

y2 + (ξ − x)2
dξ =

∫ ∞

0

w(−ζ )
y2 + (ζ + x)2

(−1)dζ.

For uniformity in notation, replace the dummy variable of integration on the right with ξ to write

uhp(x, y)= y

π

[∫ 0

∞

w(−ξ)
y2 + (ξ + x)2

(−1)dξ +
∫ ∞

0

w(ξ)

y2 + (ξ − x)2
dξ

]

= y

π

∫ ∞

0

(
w(−ξ)

y2 + (ξ + x)2
+ f (ξ)

y2 + (ξ − x)2

)

dξ.

In the last integral, we used the fact that w(ξ)= f (ξ) for ξ ≥ 0. Now fill in the “anything” in the
definition of w. Notice that the last integral will vanish at points (0, y) on the positive y-axis if
f (ξ)+w(−ξ)= 0 for ξ ≥ 0. This will occur if w(−ξ)= − f (ξ). Make w the odd extension of
f to the entire line. In this way, we obtain the solution for the upper half-plane:

uhp(x, y)= y

π

∫ ∞

0

(
1

y2 + (ξ − x)2
− 1

y2 + (ξ + x)2

)

f (ξ)dξ.

But this function is also harmonic on the right quarter-plane, vanishes when x = 0, and equals
f (x) if x ≥ 0 and y = 0. Therefore, this function is also the solution of the problem for the right
quarter-plane (in this case of zero data along the positive y-axis).
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EXAMPLE 18.5

We have a formula for the solution of

∇2u(x, y)= 0 for x > 0, y> 0,

u(0, y)= 0 for y> 0,

and

u(x,0)= 1 for x > 0.

With f (x)= 1, we can write the solution

u(x, y)= y

π

∫ ∞

0

1

y2 + (ξ − x)2
dξ − y

π

∫ ∞

0

1

y2 + (ξ + x)2
dξ. �

A routine integration yields

y

π

∫ ∞

0

1

y2 + (ξ − x)2
dξ = 1

2
+ 1

π
arctan

(
x

y

)

and

y

π

∫ ∞

0

1

y2 + (ξ + x)2
dξ = 1

2
− 1

π
arctan

(
x

y

)

.

The solution is

u(x, y)= 2

π
arctan

(
x

y

)

.

This function is harmonic on the right quarter-plane and u(0, y)= 0 for y > 0. Furthermore, if
x > 0,

lim
y→0+

2

π
arctan

(
x

y

)

= 2

π

π

2
= 1,

as required. �

SECTION 18.5 PROBLEMS

1. Write an integral solution for the Dirichlet problem for
the upper half-plane if

u(x,0)=

⎧
⎪⎨

⎪⎩

−1 for −4 ≤ x < 0

1 for 0 ≤ x < 4

0 for |x |> 4.

2. Write an integral solution for the Dirichlet problem for
the upper half-plane if u(x,0)= e−|x |.

3. Write an integral solution for the Dirichlet problem
for the right quarter-plane if u(x,0)= e−x cos(x) for
x > 0 and u(0, y)= 0 for y> 0.

4. Write an integral solution for the Dirichlet problem
for the right quarter-plane if u(x,0)= 0 for x > 0 and
u(0, y)= g(y) for y > 0. Use separation of variables,

and then derive a solution using an appropriate Fourier
transform.

5. Find a general formula for the solution of the Dirichlet
problem for the right quarter-plane if u(x,0)= f (x)
and u(0, y)= g(y).

6. Write an integral solution for the Dirichlet problem for
the lower half-plane y< 0 if u(x,0)= f (x).

7. Find the steady-state temperature distribution in a
thin, homogeneous flat plate extending over the right
quarter plane if the temperature on the vertical side
is e−y and the temperature on the horizontal side is
maintained at zero.

8. Solve the Dirichlet problem for the strip −∞< x <
∞, 0< y<1 if u(x,0)=0 for x<0 and u(x,0)=e−αx

for x > 0 with α a positive number.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:27 THM/NEIL Page-654 27410_18_ch18_p641-666

654 CHAPTER 18 The Potential Equation

9. Solve for the steady-state temperature distribution in
an infinite, homogeneous flat plate covering the half-
plane y ≥ 0 if the temperature on the boundary y = 0
is kept at zero for x < 4, constant A for 4 ≤ x ≤ 8, and
zero for x > 8.

10. Solve the following problem:

∇2u(x, y)= 0 for 0< x <π,0< y< 2

with boundary conditions u(0, y)= 0 and u(π, y)= 4
for 0< y< 2 and

∂u

∂y
(x,0)= u(x,2)= 0 for 0< x <π.

11. Solve for the steady-state temperature distribution in
a homogeneous, infinite flat plate covering the half-
plane x ≥ 0 if the temperature on the boundary x = 0
is f (y) where

f (y)=
{

1 for |y| ≤ 1

0 for |y|> 1.

12. Write a general expression for the steady-state tem-
perature distribution in an infinite, homogeneous flat
plate covering the strip 0 ≤ y ≤ 1, x ≥ 0 if the tem-
perature on the left boundary and on the bottom side
is zero while the temperature on the top part of the
boundary is f (x).

18.6 A Dirichlet Problem for a Cube

To illustrate a Dirichlet problem in three dimensions, we will solve:

∇2u(x, y, z)= 0 for 0< x < A,0< y< B,0< z<C,

u(x, y,0)= u(x, y,C)= 0,

u(0, y, z)= u(A, y, z)= 0,

and

u(x,0, z)= 0,u(x, B, z)= f (x, z).

Let u(x, y, z)= X (x)Y (y)Z(z) to obtain

X ′′

X
=−Y ′′

Y
− Z ′′

Z
=−λ.

After a second separation (of y and z), we have

Z ′′

Z
= λ− Y ′′

Y
=−μ.

Then,

X ′′ + λX = 0, Z ′′ +μZ = 0 and Y ′′ − (λ+μ)Y = 0.

From the boundary conditions,

X (0)= X (A)= 0, Z(0)= Z(C)= 0, and Y (0)= 0.

The problems for X and Z have eigenvalues and eigenfunctions of

λn = n2π 2

A2
, Xn(x)= sin

(nπx

A

)

and

μm = m2π 2

C2
, Zm(z)= sin

(mπ z

C

)

with n and m independently varying over the positive integers. The problem for Y is

Y ′′ −
(

n2π 2

A2
+ m2π 2

C2

)

Y = 0;Y (0)= 0
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with solutions that are constant multiples of

Ynm(y)= sinh(βnm y)

where

βnm =
√

n2π 2

A2
+ m2π 2

C2
.

Attempt a solution

u(x, y, z)=
∞∑

n=1

∞∑

m=1

cnm sin
(nπx

A

)
sin
(mπ z

C

)
sinh(βnm y).

We must choose the coefficients so that

u(x, B, z)= f (x, z)=
∞∑

n=1

∞∑

m=1

cnm sin
(nπx

A

)
sin
(mπ z

C

)
sinh(βnm B).

This is a double Fourier series for f (x, z) on 0 ≤ x ≤ A,0 ≤ z ≤ C . We have seen this type of
expansion before (Sections 17.7 and 18.5), leading us to choose

cnm = 2

AC sinh(βnm B)

∫ A

0

∫ C

0

f (ξ, ζ ) sin

(
nπξ

A

)

sin

(
mπζ

C

)

dζ dξ.

As usual, if nonzero data is prescribed on more than one face, split the Dirichlet problem
into a sum of problems; each of which has nonzero data on only one face.

SECTION 18.6 PROBLEMS

1. Solve

∇2u(x, y, z)= 0 for 0< x < 1,0< y< 1,0< z< 1,

u(0, y, z)= u(1, y, z)= 0,

u(x,0, z)= u(x,1, z)= 0,

u(x, y,0)= 0,u(x, y,1)= xy.

2. Solve

∇2u(x, y, z)= 0 for 0< x < 2π,0< y< 2π,0< z< 1,

u(x, y,0)= u(x, y,1)= 0,

u(x,0, z)= u(x,2π, z)= 0,

u(0, y, z)= 0,u(2π, y, z)= z.

3. Solve

∇2u(x, y, z)= 0 for 0< x < 1,0< y< 2π,0< z<π,

u(0, y, z)= u(1, y, z)= 0,

u(x,0, z)= u(x, y,0)= 0,

u(x, y,π)= 1,u(x,2π, z)= xz2.

4. Solve

∇2u(x, y, z)= 0 for 0< x < 1,0< y< 2,0< z<π,

u(x,0, z)= u(x,2, z)= 0,

u(0, y, z)= u(x, y,π)= 0,

u(x, y,0)= x2(1 − x)y(2 − y),u(1, y, z)

= sin(πy) sin(z).

18.7 Steady-State Equation for a Sphere

We will solve for the steady-state temperature distribution in a solid sphere given the temperature
at all times on the surface.

Let the sphere be centered at the origin and have a radius of R. Use spherical coordinates
(ρ, θ,ϕ) in which ρ is the distance from the origin to the point, θ is the polar angle between the
positive x-axis and the projection onto the x, y-plane of the line from the origin to the point, and
ϕ is the angle of declination from the positive z-axis to this line (Figure 18.3).
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x

y

z

θ

ϕ

ρ

FIGURE 18.3 Spher-
ical coordinates.

Assuming symmetry of the temperature function about the z-axis, the solution is inde-
pendent of θ and depends only on ρ and ϕ. Laplace’s equation in spherical coordinates (with
independence from θ ) is

∇2u(ρ,ϕ)= ∂2u

∂ρ2
+ 2

ρ

∂u

∂ρ
+ 1

ρ2

∂2u

∂ϕ2
+ cot(ϕ)

ρ2

∂u

∂ϕ
= 0.

The temperature on the surface is u(R, ϕ)= f (ϕ) with f being given.
Let u(ρ,ϕ)= X (ρ)
(ϕ) to obtain

X ′′
+ 2

ρ
X ′
+ 1

ρ2
X
′′ + cot(ϕ)

ρ2
X
′ = 0.

Upon dividing this equation by X
, we can separate the variables, obtaining


′′



+ cot(ϕ)


′



=−ρ2 X ′′

X
− 2ρ

X ′

X
=−λ.

Then

ρ2 X ′′ + 2ρX ′ − λX = 0 and 
′′ + cot(ϕ)
′ + λ
= 0.

To solve this equation for 
, write it as

1

sin(ϕ)
[
′ sin(ϕ)]′ + λ
= 0. (18.5)

Change variables by putting x = cos(ϕ). Then ϕ= arccos(x). Let

G(x)=
(arccos(x)).

Since 0 ≤ϕ≤π , then −1 ≤ x ≤ 1. Compute


′(ϕ) sin(ϕ)= sin(ϕ)
d


dx

dx

dϕ

= sin(ϕ)G ′(x)[− sin(ϕ)]
=− sin2(ϕ)G ′(x)=−[1 − cos2(x)]G ′(x)

=−(1 − x2)G ′(x).
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Then

d

dϕ
[
′(ϕ) sin(ϕ)=− d

dϕ
[(1 − x2)G ′(x)]

=− d

dx
[(1 − x2)G ′(x)]dx

dϕ

=− d

dx
[(1 − x2)G ′(x)][− sin(ϕ)].

We conclude that

1

sin(ϕ)

d

dϕ
[
′(ϕ) sin(ϕ)] = d

dx
[(1 − x2)G ′(x)].

The point to this calculation is that equation (18.5) transforms to

[(1 − x2)G ′(x)]′ + λG(x)= 0,

which is Legendre’s differential equation, considered on the interval [−1,1]. In Section 15.2, we
found the eigenvalues λn =n(n +1) for n =0,1,2, · · · . The eigenfunctions are constant multiples
of the Legendre polynomials Pn(x). For nonnegative integers n, we therefore have a solution of
the differential equation for 
:


n(ϕ)= G(cos(ϕ))= Pn(cos(ϕ)).

Now that we know the eigenvalues, the differential equation for X is

ρ2 X ′′ + 2ρX ′ − n(n + 1)X = 0.

This is an Euler equation with general solution

X (ρ)= aρn + bρ−n−1.

Choose b = 0 to have a solution that is bounded as ρ→ 0+, which is the center of the sphere.
For each nonnegative integer n, we now have a function

un(ρ,ϕ)= anρ
n Pn(cos(ϕ))

that satisfies the steady-state heat equation. To satisfy the boundary condition, write a superposi-
tion

u(ρ,ϕ)=
∞∑

n=0

anρ
n Pn(cos(ϕ)).

We must choose the coefficients to satisfy

u(R, ϕ)=
∞∑

n=0

an Rn Pn cos(ϕ).

To put this into the context of an eigenfunction expansion in terms of Legendre polynomials,
recall that ϕ(x)= arccos(x) to obtain

∞∑

n=0

an Rn Pn(x)= f (arccos(x)).

Then

an Rn = 2n + 1

2

∫ 1

−1

f (arccos(x))Pn(x)dx
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so

an = 2n + 1

2Rn

∫ 1

−1

f (arccos(x))Pn(x)dx .

The steady-state temperature function is

u(ρ,ϕ)=
∞∑

n=0

2n + 1

2

(∫ 1

−1

f (arccos(x))Pn(x)dx

)( ρ

R

)n

Pn(cos(ϕ)).

EXAMPLE 18.6

For f (ϕ)=ϕ, the solution is

u(ρ,ϕ)=
∞∑

n=0

2n + 1

2

(∫ 1

−1

arccos(x)Pn(x)dx

)( ρ

R

)n

Pn(cos(ϕ)).

We will use numerical integrations to approximate the first six coefficients. P0(x), · · · , P5(x)
were listed in Chapter 15. Using these and MAPLE to perform the computations, we obtain

∫ 1

−1

arccos(x)P0(x)dx ≈π,
∫ 1

−1

x arccos(x)dx,≈−0.7854,

∫ 1

−1

1

2
(3x2 − 1) arccos(x)dx = 0,

∫ 1

−1

1

2
(5x3 − 3x) arccos(x)dx ≈−.049087,

∫ 1

−1

1

8
(35x4 − 30x2 + 3) arccos(x)dx = 0,

∫ 1

−1

1

8
(63x5 − 70x3 + 15x) arccos(x)dx ≈−0.012272.

Then

u(ρ,ϕ)≈ π

2
− 3

2
(0.7854)

ρ

R
cos(ϕ)− 7

2
(0.049087)

1

2

( ρ

R

)3

(5cos3(ϕ)− 3cos(ϕ))

− 11

2
(0.012272)

( ρ

R

)5 1

8
(63cos5(ϕ)− 70cos3(ϕ)+ 15cos(ϕ)). �

SECTION 18.7 PROBLEMS

In each of Problems 1 through 4, write a solution for the
steady-state temperature distribution in the sphere if the
boundary data is given by f (ϕ). Use numerical integration
to approximate the first six terms in the solution.

1. f (ϕ)= Aϕ2, in which A is a positive number.
2. f (ϕ)= sin(ϕ)
3. f (ϕ)=ϕ3

4. f (ϕ)= 2 −ϕ2

5. Solve for the steady-state temperature distribution in a
hollowed-out sphere given in spherical coordinates by
R1 ≤ ρ ≤ R2. The inner surface is kept at constant tem-
perature T and the outer surface at temperature zero.
Assume that u is a function of ρ and ϕ only. Approxi-
mate the solution with a sum of the first six terms, using
numerical integration to approximate the coefficients.
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18.8 The Neumann Problem

Recall that, if g is a function of two variables defined on a set of points D in the plane having
boundary C , then the normal derivative ∂g/∂n of g on C is the dot product of the gradient of g
with a unit normal vector n to C :

∂g

∂n
=∇g · n.

We will assume that n is a unit outer normal to D. This means that, if drawn as an arrow from a
point on C , n points away from D, as in Figure 12.19.

A Neumann problem in the plane consists of finding a function that is harmonic on a given
region D, and whose normal derivative assumes given values on the boundary C of D.
This problem has the form

∇2u(x, y)= 0 on D,

∂u

∂n
= g(x, y) for (x, y) in C,

with g(x, y) a given function defined on the boundary of C .

The following lemma plays an important role in attempting to solve a Neumann problem.

LEMMA 18.1 Green’s First Identity

Let D be a bounded set of points in the plane, having boundary curve C . Assume that C is a
simple, closed, piecewise smooth curve. Let f and g be continuous with continuous first and
second partial derivatives on D and at points of C . Then

∮

C

g
∂ f

∂n
ds =

∫∫

D

(g∇2 f +∇ f · ∇g)d A. �

The line integral on the left is with respect to arc length along C .

Proof of Lemma 18.1 By Green’s theorem,
∮

C

g
∂g

∂n
ds =

∮

C

(g∇ f ) · n ds =
∫∫

D

∇ · (g∇ f )d A.

The rest of the proof consists of computing

∇ · (g∇ f )=∇ ·
(

g
∂ f

∂x
i + g

∂ f

∂y
j
)

= ∂

∂x

(

g
∂ f

∂x

)

+ ∂

∂y

(

g
∂ f

∂y

)

= g

(
∂2 f

∂x2
+ ∂2 f

∂y2

)

+ ∂g

∂x

∂ f

∂x
+ ∂g

∂y

∂ f

∂

= g∇2 f +∇ f · ∇g. �
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Use the lemma as follows. If g(x, y)= 1 and f = u (a harmonic function on D), then the
double integral in the lemma is zero because its integrand vanishes, and the line integral is just
the line integral of the normal derivative of u over the boundary C of D. For a Neumann problem,
this normal derivative is a given function g, so the lemma tells us that

∮

C

∂u

∂n
ds =

∮

C

g ds = 0.

This means that vanishing of the integral of the given normal derivative over the boundary of the
region is a necessary condition for the Neumann problem to have a solution. Put another way, if
the integral of g over C is not zero, this Neumann problem has no solution.

This result can be extended to the case that D is not a bounded region and C is not a closed
curve. This occurs, for example, with the right quarter plane given by x ≥ 0, y ≥ 0. Here the
region is unbounded, and its boundary curve consists of the nonnegative x- and y-axes.

EXAMPLE 18.7

We will solve a Neumann problem for a square:

∇2u = 0 for 0< x <,0< y< 1,

∂u

∂n
=
{

0 on the left, top and lower sides,

y2 on the right side of the square.

This means that
∂u

∂n
(x,0)= ∂u

∂n
(x,1)= ∂u

∂n
(0, y)= 0

while
∂u

∂n
(1, y)= y2 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

First take the line integral of ∂u/∂n about the boundary of D, which consists of four straight
line segments:

∮

C

∂u

∂n
ds =

∫ 2

o

y2 dy = 1

3
�= 0.

Therefore this Neumann problem has no solution. �

Dirichlet problems may also fail to have solutions, depending on the region and the given
function at values on the boundary. However, for “simple” regions such as rectangles and disks,
and “reasonable” data functions on the boundary, Dirichlet problems have solutions. The last
example shows that, even for a simple region (a square) and reasonably well-behaved normal
derivative on the boundary, a Neumann problem may be ill posed (no solution).

We will analyze Neumann problems for rectangles and disks.

18.8.1 A Neumann Problem for a Rectangle

We will consider the Neumann problem

∇2u(x, y)= 0 for 0< x < a,0< y< b,

∂u

∂y
(x,0)= ∂u

∂y
(x,b)= 0 for 0 ≤ x ≤ a,

∂u

∂x
(0, y)= 0 for 0 ≤ y ≤ b,
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and
∂u

∂x
(a, y)= g(y) for 0 ≤ y ≤ b.

For the rectangle, the normal derivative is ∂u/∂x on the vertical sides and ∂u/∂y on the horizontal
sides. As a necessary (but not sufficient) condition for a solution to exist, we assume that

∫ b

0

g(y)dy = 0.

It will be instructive to see how this assumption plays a role in this problem having a solution.
Let u(x, y)= X (x)Y (y), and substitute into Laplace’s equation and also into the boundary

conditions to obtain

X ′′ + λX = 0; X ′(0)= 0

and

Y ′′ − λY = 0;Y ′(0)= Y ′(b)= 0.

This Sturm-Liouville problem for Y has eigenvalues and eigenfunction

λn =−n2π 2

b2
,Yn(y)= cos

(nπy

b

)

for n = 0,1,2, · · · . Notice that Y (y) is constant for n = 0.
Now the problem for X is

X ′′ − n2π 2

b2
X = 0; X ′(0)= 0.

This problem for X has only a boundary condition at x = 0, so we must look at cases in solving
for X .

If n =0, the differential equation for X is just X ′′ =0, so X (x)=cx +d. Then X ′(0)=d =0,
so X (x) is constant in this case.

If n is a positive integer, then the differential equation for X has the general solution

X (x)= cenπx/b + de−nπx/b.

Then

X ′(0)= nπ

b
c − nπ

b
d = 0,

so c = d . This means that X (x) must be have the form

X (x)= c cosh
(nπ

b
x
)
.

We now have functions

u0(x, y)= constant

and, for each positive integer n,

un(x, y)= Xn(x)Yn(y)= cn cosh
(nπ

b
x
)

cos
(nπ

b
y
)
.

We have used the zero boundary conditions on the top, bottom, and left sides of the rectangle. To
satisfy the last boundary condition (on the right side) attempt a superposition

u(x, y)=
∞∑

n=0

un(x, y)

= c0 +
∞∑

n=1

cn cosh
(nπ

b
x
)

cos
(nπ

b
y
)
.
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Now we need to choose the cn’s so that

∂u

∂x
(a, y)= g(y)=

∞∑

n=1

nπ

b
cn sinh

(nπa

b

)
cos

(nπ

b
y
)
.

This is a Fourier cosine expansion of g(y) on [0,b]. Notice that the constant term in this
expansion is zero. But this constant term is

1

b

∫ b

0

g(y)dy,

and we would have a contradiction if this integral were not zero. In this event, this problem would
have no solution.

For the other coefficients in this cosine expansion, we have

nπ

b
cn sinh

(nπa

b

)
= 2

b

∫ b

0

g(ξ) cos

(
nπξ

b

)

dξ,

so

cn = 2

nπ sinh(nπa/b)

∫ b

0

g(ξ) cos

(
nπξ

b

)

dξ.

With this choice of the coefficients, the solution of the Neumann problem is

u(x, y)= c0 +
∞∑

n=1

cn cosh
(nπx

b

)
cos

(nπy

b

)
.

Here c0 is an arbitrary constant. Neumann problems do not have unique solutions: If u is a
solution, so is u + c for any number c.

18.8.2 A Neumann Problem for a Disk

Suppose D is a disk of radius R about the origin. The boundary is the circle C of radius R about
the origin. In polar coordinates, the Neumann problem for D is

∇2u(r, θ)= 0 for 0 ≤ r < R,−π ≤ θ ≤π
and

∂u

∂r
(R, θ)= f (θ) for −π ≤ θ ≤π.

Notice that the normal derivative to C is ∂u/∂r because the line from the origin to a point of C
is perpendicular to C at that point.

A necessary condition for existence of a solution is that
∫ π

−π
f (θ)dθ = 0,

which is a condition we will assume for f (θ).
Attempt a solution

u(r, θ)= 1

2
a0 +

∞∑

n=1

[anr
n cos(nθ)+ bnr

n sin(nθ)].

We must choose the coefficients to satisfy

∂u

∂r
(R, θ)= f (θ)

=
∞∑

n=1

[nan Rn−1 cos(nθ)+ nbn Rn−1 sin(nθ)].
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This is a Fourier expansion of f (θ) on [−π,π]. Notice that the constant term in this expansion
is zero. But this constant term is exactly

1

π

∫ π

−π
f (θ)dθ,

so we would have a contradiction if this integral did not vanish, as we have assumed. For the
other coefficients, we need

nan Rn−1 = 1

π

∫ π

−π
f (ξ) cos(nξ)dξ

and

bn = 1

π

∫ π

−π
f (ξ) sin(nξ)dξ

for n = 1,2, · · · . Then

an = 1

nπRn−1

∫ π

−π
f (ξ) cos(nξ)dξ

and

bn = 1

nπRn−1

∫ π

−π
f (ξ) sin(nξ)dξ.

Upon inserting these coefficients, the solution is

u(r, θ)=1

2
a0 + R

π

∞∑

n=1

1

n

( r

R

)n
∫ π

0π

[cos(nξ) cos(nθ)+ sin(nξ) sin(nθ)] f (ξ)dξ.

We can also write this solution as

u(r, θ)= 1

2
a0 + R

π

∞∑

n=1

1

n

( r

R

)n
∫ π

−π
cos(n(ξ − θ)) f (ξ)dξ.

The term a0/2 is an arbitrary constant, written as a0/2 simply because of the context of a Fourier
series.

EXAMPLE 18.8

Solve the Neumann problem for the unit disk about the origin:

∇2u(x, y)= 0 for x2 + y2 < 1

and
∂u

∂n
(x, y)= xy2 for x2 + y2 = 1.

Switch to polar coordinates, letting U (r, θ)= u(r cos(θ), r sin(θ)). Now the problem is

∇2U (r, θ)= 0 for 0 ≤ r < 1,−π ≤ θ ≤π
and

∂U

∂r
(1, θ)= cos(θ) sin2(θ).

First, compute
∫ π

−π
cos(θ) sin2(θ)dθ = 0,
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which is a necessary condition for this problem to have a solution. Write the solution

U (r, θ)= 1

2
a0 + 1

π

∞∑

n=1

1

n
rn

∫ π

−π
cos(n(ξ − θ)) cos(ξ) sin2(ξ)dξ.

Evaluate this integral:
∫ π

−π
cos(n(ξ − θ)) cos(ξ) sin2(ξ)dξ =

⎧
⎪⎨

⎪⎩

0 for n = 2,4,5,6,7, · · ·
π cos(θ)/4 for n = 1

−π cos2(θ)+ 3π cos(θ)/4 for n = 3.

The solution is

U (r, θ)= 1

2
a0 + 1

4
r cos(θ)+ 1

3
r 3

(

− cos3(θ)+ 3

4
cos(θ)

)

= 1

2
a0 + 1

4
r cos(θ)− 1

3
r 3 cos3(θ)+ 1

4
r 3 cos(θ).

To convert this solution to rectangular coordinates, let x = r cos(θ) and r 2 = x2 + y2 to obtain

u(x, y)= 1

2
a0 + 1

4
x − 1

3
x3 + 1

4
(x2 + y2)

with a0 as an arbitrary constant. �

18.8.3 A Neumann Problem for the Upper Half-Plane

To illustrate a Neumann problem for an unbounded set, consider:

∇2u(x, y)= 0 for −∞< x <∞, y> 0

and

∂u

∂y
(x,0)= f (x) for −∞< x <∞.

Again, notice that ∂u/∂y is the derivative of u normal to the horizontal axis, which is the
boundary of the upper half-plane.

Assume that
∫ ∞

−∞
f (x)dx = 0

as a necessary condition for a solution to exist.
We can solve this problem by separation of variables. However, there is an elegant device

for reducing this problem to one we have already solved. Let

v= ∂u

∂y
.

Then

∇2v= ∂2

∂x2

(
∂u

∂y

)

+ ∂2

∂y2

(
∂u

∂y

)

= ∂

∂y

(
∂2u

∂x2
+ ∂2u

∂y2

)

= 0.
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Then v is harmonic wherever u is. Furthermore,

v(x,0)= ∂u

∂y
(x,0)= f (x)

on the x-axis. Therefore v satisfies a Dirichlet problem for the upper half-plane. We know the
solution of this problem is

v(x, y)= y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2
dξ.

Now integrate to recover u from v. To within an arbitrary constant,

u(x, y)=
∫
∂u

∂y
dy =

∫
y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2
dξ dy

= 1

π

∫ ∞

−∞

(∫ ∞

−∞

y

y2 + (ξ − x)2
dy

)

f (ξ)dξ

= 1

2π

∫ ∞

−∞
ln(y2 + (ξ − x)2) f (ξ)dξ.

SECTION 18.8 PROBLEMS

1. ∇2u(x, y)= 0 for 0< x < 1,0< y< 1,

∂u

∂y
(x,0)= 4cos(πx),

∂u

∂y
(x,1)= 0 for 0 ≤ x ≤ 1,

∂u

∂x
(0, y)= ∂u

∂x
(1, y)= 0 for 0 ≤ y ≤ 1

2. ∇2u(x, y)= 0 for 0< x < 1,0< y<π,

∂u

∂y
(x,0)= ∂u

∂y
(x,π)= 0 for 0 ≤ x ≤ 1,

∂u

∂x
(0, y)= y − π

2
,
∂u

∂x
(π, y)

= cos(y) for 0 ≤ y ≤π
3. ∇2u(x, y)= 0 for 0< x <π,0< y<π,

∂u

∂y
(x,0)= cos(3x) for 0 ≤ x ≤π

∂u

∂y
(x,π)= 6x − 3π for 0 ≤ x ≤π

∂u

∂x
(0, y)= ∂u

∂x
(π, y)= 0 for 0 ≤ y ≤π

4. Use separation of variables to write an expres-
sion for the solution of the mixed boundary value
problem

∇2u(x, y)= 0 for 0< x <π,0< y<π

u(x,0)= f (x),u(x,π)= 0 for 0 ≤ x ≤π
∂u

∂x
(0, y)= ∂u

∂x
(π, y)= 0 for 0 ≤ y ≤π

Does this problem have a unique solution?

5. Attempt a separation of variables to solve

∇2u(x, y)= 0 for 0< x < 1,0< y< 1

u(x,0)= u(x,1)= 0 for 0 ≤ x ≤ 1

∂u

∂x
(0, y)= 3y2 − 2y,

∂u

∂x
(1, y)= 0 for 0 ≤ y ≤ 1

6. Write a series solution for

∇2u(r, θ)= 0 for 0 ≤ r < R,−π ≤ θ ≤π
∂u

∂r
(R, θ)= sin(3θ) for −π ≤ θ ≤π

7. Write a series solution for

∇2u(r, θ)= 0 for 0 ≤ r < R,−π ≤ θ ≤π
∂u

∂r
(R, θ)= cos(2θ) for −π ≤ θ ≤π

8. Solve the following Neumann problem for the upper
half-plane:

∇2u(x, y)= 0 for − ∞< x <∞, y> 0

∂u

∂y
(x,0)= xe−|x | for −∞< x <∞

9. Solve the following Neumann problem for the upper
half-plane:

∇2u(x, y)= 0 for −∞< x <∞, y> 0

∂u

∂y
(x,0)= e−|x | sin(x) for −∞< x <∞
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10. Write an expression for the solution of the following
Neumann problem for the lower half-plane:

∇2u(x, y)= 0 for − ∞< x <∞, y< 0

∂u

∂y
(x,0)= f (x) for −∞< x <∞

11. Solve the following Neumann problem for the right
quarter-plane:

∇2u(x, y)= 0 for x > 0, y> 0

∂u

∂x
(0, y)= 0 for y ≥ 0

∂u

∂y
(x,0)= f (x) for x ≥ 0

12. Solve the following mixed-boundary value problem:

∇2u(x, y)= 0 for x > 0, y> 0

u(0, y)= 0 for y ≥ 0

∂u

∂y
(x,0)= f (x) for x ≥ 0
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CHAPTER 19
Complex
Numbers and
Functions

GEOMETRY AND ARITHMETIC OF
COMPLEX NUMBERS COMPLEX
FUNCTIONS THE EXPONENTIAL AND
TRIGONOMETRIC FUNCTIONS

19.1 Geometry and Arithmetic of Complex Numbers

Complex Numbers

A complex number is a symbol x + iy, or x + yi , where x and y are real numbers and
i 2 =−1. Arithmetic of complex numbers is defined by:

Equality a + ib = c + id exactly when a = c and b = d.
Addition (a + ib)+ (c + id)= (a + c)+ i(b + d).
Multiplication (a + ib)(c + id)= (ac − bd)+ i(ad + bc).

In multiplying two complex numbers, we proceed exactly as we would with polynomials
a + bx and c + dx with i in place of x and i2 =−1. For example,

(6 − 4i)(8 + 13i)= (6)(8)+ (−4)(13)i 2 + i[(6)(13)+ (−4)(8)] = 100 + 46i.

The number a is called the real part of a + bi , denoted Re(a + bi). We call b the imaginary
part of a + bi , denoted Im(a + bi). For example,

Re(−4 + 12i)=−4 and Im(−4 + 12i)= 12.

The real and imaginary parts of any complex numbers are themselves real.
We may think of any real number a as the complex number a + 0i . In this way, the com-

plex numbers are an extension of the real numbers. This extension has profound implications in
algebra and analysis. The equation x 2 + 1 = 0 has no solutions if we restrict x to be real. In the
complex numbers, it has two solutions: i and −i .

669
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Complex arithmetic obeys many of the rules we are accustomed to from working with real
numbers. If z, w, and u are complex numbers, then

1. z +w=w+ z (addition is commutative)

2. zw=wz (multiplication is commutative)

3. z + (w+ u)= (z +w)+ u (associative law for addition)

4. z(wu)= (zw)u (associative law for multiplication)

5. z(w+ u)= zw+ zu (distributive law)

6. z + 0 = 0 + z = z

7. z · 1 = 1 · z = z.

The Complex Plane

Complex numbers admit two geometric interpretations.
Any complex number z = x + iy can be identified with the point (x, y) in the plane

(Figure 19.1(a)). In this context, the plane is called the complex plane, the horizontal axis is
called the real axis, and the vertical axis is called the imaginary axis. Any real number x graphs
as a point (x,0) on the horizontal (or real) axis, and any pure imaginary number yi (with y real)
is a point (0, y) on the imaginary axis.

A complex number x + iy also can be identified with the vector x i + yj in the plane
(Figure 19.1(b)). This is consistent with addition, since we add two vectors by adding their
respective components, and we add two complex numbers by adding their real and imaginary
parts, respectively.

Magnitude and Conjugate

The magnitude of x + iy is the real number

|x + iy| =√x2 + y2.

x

y

x

y

x

y
x + iy

(x, y)

(a) (b) (c)

xi + yj
(x, y)

x + iy

x + iy

x

y

(d)

w

z

z – w

FIGURE 19.1 x + iy as a point, a vector, and its
length.
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This is the distance from the origin to the point (x, y) in the complex plane or the length of
the arrow representing the vector x i + yj (Figure 19.1(c)). |z −w| is the distance between the
complex numbers z and w or, equivalently, between these points in the plane (Figure 19.1(d)).

The complex conjugate, or just conjugate of x + iy is the complex number x − iy with the
sign of the imaginary part reversed. Denote the conjugate of z as z.

In the complex plane, z is the reflection of z across the real axis (Figure 19.2). We have

Re(z)= Re(z) and Im(z)=− Im(z).

Conjugation (the operation of taking a conjugate) and magnitude have the following properties.

1. z = z.

2. z +w= z +w.

3. zw= (z)(w).
4. z/w= z/w if w �= 0.

5. |z| = |z|.
6. |zw| = |z||w|.
7. Re(z)= 1

2
(z + z) and Im(z)= 1

2i
(z − z).

8. |z| ≥ 0, and |z| = 0 if and only if z = 0.

9. If z = x + iy, then |z|2 = zz.

These are established by routine calculations. For property (5), observe that x2 + y2 remains
the same if y is replaced with −y. Equivalently, z and z are the same distance from the origin.
For property (9), compute

|z|2 = x2 + y2 = (x + iy)(x − iy)= zz.

Conjugates are often used to compute a complex quotient z/w. Multiply the numerator and
denominator of this quotient by the conjugate of the denominator:

z

w
= z

w

w

w
= zw

ww
= 1

|w|2 (zw).
This converts a division problem z/w into one of computing a product zw, which is a simpler
operation. For example,

2 − 7i

8 + 3i
= 2 − 7i

8 + 3i

8 + 3i

8 + 3i
= (2 − 7i)(8 − 3i)

64 + 9
=− 5

73
− 62

73
i.

x

y

z

z

FIGURE 19.2 Complex
conjugate.
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Inequalities

There are several inequalities that are useful in dealing with complex quantities. Let z and
w be complex numbers. Then

1. |Re(z)| ≤ |z| and | Im(z)| ≤ |z|.
2. |z +w| ≤ |z| + |w|.
3. ||z| − |w|| ≤ |z −w|.
Property (1) follows from the fact that |x | ≤√x2 + y2 and |y| ≤√x2 + y2.
Property (2) is called the triangle inequality. It follows immediately from the vec-

tor interpretation of complex numbers, since we already know the triangle inequality for
vectors.

For property (3), use the triangle inequality to write

|z| = |(z +w)−w| ≤ |z +w| + |w|.
Therefore,

|z| − |w| ≤ |z +w|.
By interchanging z and w,

|w| − |z| ≤ |z +w|.
Upon multiplying this inequality by −1, which reverses the inequality, we have

−|z +w| ≤ |w| − |z|.
Combine inequalities to obtain

−|z +w| ≤ |z| − |w| ≤ |z +w|
and this implies that ||z| − |w|| ≤ |z +w|.
Argument and Polar Form

Let z = a + ib be a nonzero complex number. The point (a,b) has polar coordinates (r, θ),
where r = |z| (Figure 19.3). We call θ an argument of z. Of course, given any argument θ , then
θ + 2nπ is also an argument for any integer n.

Using Euler’s formula, we can write

z = a + ib = r cos(θ)+ ir sin(θ)= r(cos(θ)+ i sin(θ))= reiθ .

The expression reiθ is called the polar form of z.

x

y

r =  z

θ

FIGURE 19.3 Polar form of z.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 15, 2010 18:5 THM/NEIL Page-673 27410_19_ch19_p667-694

19.1 Geometry and Arithmetic of Complex Numbers 673

EXAMPLE 19.1

Let z = 1 + i . We can identify z with the point (1,1) which has polar coordinates (
√

2,π/4 +
2nπ) for any integer n. Any number π/4 + 2nπ with n an integer is an argument of 1 + i . The
polar form of z is

z = 1 + i =√
2eiπ/4. �

Ordering

If a and b are distinct real numbers, then either a< b (if b − a> 0) or b< a (if a − b> 0).
The real numbers are ordered. We claim that the complex numbers are not ordered.

If the complex numbers had an ordering, then i would have to be positive or negative,
since i is not zero. If i were positive, then we would have i 2 = −1 positive in this ordering,
since a product of positives is assumed to be positive. But then (−1)i = −i , again a product
of positives, also would be positive, and we would have both i and −i positive, which is a
contradiction.

A similar contradiction follows if we supposed that i were negative, using the fact that a
product of two negative numbers is positive.

Disks, Open Sets, and Closed Sets

A circle of radius r about a point (x0, y0) has the equation
√
(x − x0)2 + (y − y0)2 = r.

If we let z = x + iy and z0 = x0 + iy0, then this equation of the circle also can be written
efficiently as

|z − z0| = r.

This is the usual way of describing a circle with center z0 and radius r .

The open disk of radius r about z0 consists of all points z satisfying

|z − z0|< r.

This open disk contains all points enclosed by the circle of radius r about z0, but it does not
include points on the boundary circle.

The closed disk of radius r about z0 consists of all points z satisfying

|z − z0| ≤ r.

This closed disk consists of all points in the open disk of radius r about z0 together with the
points on the boundary circle.

In complex analysis, open disks play the role of open intervals (a,b) in calculus, and closed
disks play the role of closed intervals [a,b].

Now let S be any set of complex numbers, and let ζ be a complex number (which may
belong to S or not).
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1. ζ is an interior point of S if there is some open disk about ζ , all of whose points are in
S. In this sense, an interior point of S is one entirely surrounded by points of S.

2. ζ is a boundary point of S if every open disk about ζ contains at least one point of S
and at least one point not in S.

A boundary point of S has points of S arbitrarily close to it and points not in S
arbitrarily close to it. In this sense, a boundary point of S is “on the edge” of S and
may or may not belong to S. A boundary point of S cannot be an interior point, and an
interior point of S cannot be a boundary point.

3. S is open (an open set) if every point of S is an interior point.
4. S is closed (a closed set) if S contains all of its boundary points.

As the following examples show, a set may be open, closed, both open and closed, or neither
open nor closed. The concepts of “open” and “closed” are not opposites—a set does not have to
be either open or closed, and not being open does not make a set closed.

EXAMPLE 19.2

Let S consist of all complex numbers z = x + iy with x ≥ 0 and y > 0, shown in Figure 19.4.
These are points (x, y) in the right quarter plane if x and y are both positive and points (0, y) on
the positive imaginary axis if x =0. Points (x,0) on the positive real axis are not in S. These facts
are indicated in the diagram by using a dashed positive real axis and a solid positive imaginary
axis.

• 1+ i is an interior point of S. We can place a circle about 1+ i (say of radius 1/10) containing
only points in S.

• 2i is a boundary point. Every circle about 2i contains points of S and points not in S. Because
2i is in S and is not an interior point of S, S is not open.

• 2 is also a boundary point of S, because every circle drawn about 2 contains points of S and
points not in S. However, 2 is not in S. S contains some of its boundary points but not all of
them. S is not closed. This set is neither open nor closed. �

EXAMPLE 19.3

Every open disk is an open set. Every closed disk is a closed set. The open and closed disks of
radius r about z0 have the same boundary points, namely those on the circle |z − z0| = r . �

1 + i S

y

2i

x
2

FIGURE 19.4 The set S in Example 19.2.
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EXAMPLE 19.4

Let M consist of all complex numbers with rational real and imaginary parts. M has no inte-
rior points, because every disk about any point must contain points with irrational real and/or
imaginary parts, hence it contains points not in M . This uses the fact that every real number has
irrational numbers arbitrarily close to it. No points of M are interior points, and M is not open.
Every complex number (whether in M or not) is a boundary point of M . M does not contain all
of its boundary points and is not closed. �

EXAMPLE 19.5

Let K consist of all real numbers together with the number 5i (Figure 19.5). Because every open
disk about 5i contains points not in K and a point in K (namely 5i itself), 5i is a boundary point
in K , and K is not open. Every point of K is a boundary point, and these are its only boundary
points. Therefore, K contains all of its boundary points and is closed. �

EXAMPLE 19.6

Any finite set of complex numbers is closed. Suppose S = {z1, · · · , zN } is a set of N numbers.
Each z j is a boundary point, and there are no other boundary points of S. Therefore, S contains
all of its boundary points and is closed. �

THEOREM 19.1

Let S be a set of complex numbers. Then S is open if and only if S contains no boundary
points. �

This theorem implies that a set having no boundary points must be open. It also means that
containing a single boundary point is enough to disqualify a set from being open. The reason the
theorem is true is that, if ζ is a boundary point of S that is in S, ζ is not an interior point, so not
every point of S is an interior point and S cannot be open.

An open set can have boundary points, but these cannot be in the set. We have seen this with
open disks. Every point on the bounding circle is a boundary point, but none of these are in the
open disk.

x

y

5i

FIGURE 19.5 K in Example 19.5.
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SECTION 19.1 PROBLEMS

In each of Problems 1 through 10, carry out the indicated
calculation.

1. (3 − 4i)(6 + 2i)

2. i(6 − 2i)+ |1 + i |
3. (2 + i)/(4 − 7i)

4. ((2 + i)− (3 − 4i))/(5 − i)(3 + i)

5. (17 − 6i)(−4 − 12i)

6. |3i/(−4 + 8i)|
7. i 3 − 4i 2 + 2

8. (3 + i)3

9. ((−6 + 2i)/(1 − 8i))2

10. (−3 − 8i)(2i)(4 − i)

In each of Problems 11 through 16, determine the magni-
tude and all of the arguments of z.

11. 3i

12. −2 + 2i

13. −3 + 2i

14. 8 + i

15. −4

16. 3 − 4i

In each of Problems 17 through 22, write the number in
polar form.

17. −2 + 2i

18. −7i

19. 5 − 2i

20. −4 − i

21. 8 + i

22. −12 + 3i

23. Show that, for any positive integer n,

i 4n = 1, i 4n+1 = i, i 4n+2 =−1, i 4n+3 =−i.

24. Let z = a + ib. Determine Re(z2) and Im(z2).

25. Show that complex numbers z,w, and u form vertices
of an equilateral triangle if and only if

z2 +w2 + u2 = zw+ zu +wu.

26. Show that z2 = (z)2 if and only if z is either real or
pure imaginary.

27. Let z and w be numbers with zw �= 1. Suppose either
z or w has magnitude 1. Prove that

∣
∣
∣

z −w
1 − zw

∣
∣
∣= 1.

Hint: Recall that |u|2 = uu for every complex num-
ber u.

28. Show that, for any numbers z and w,

|z +w|2 + |z −w|2 = 2
(|z|2 + |w|2) .

Hint: Note the hint from Problem 27.

In each of Problems 29 through 37, a set of complex num-
bers is specified. Determine whether the set is open, closed,
open and closed, or not open and not closed. Specify all
boundary points of the set (whether or not they belong to
the set).

29. M is the set of all z satisfying Im(z)< 7.

30. S is the set of all z with |z|> 2.

31. U is the set of all z with 1< Re(z)≤ 3.

32. V is the set of all z with 2 < Re(z) ≤ 3 and −1 <
Imz< 1.

33. W consists of all z with Re(z)> ( Im(z))2.

34. R is the set of all numbers 1/m + (1/n)i with m and
n positive integers.

19.2 Complex Functions

A complex function is a function that acts on complex numbers and produces complex
numbers. For example, f (z)= z2 for |z|< 1 is a complex function acting on numbers in
the open unit disk.
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In this section, we will extend the calculus concepts of continuity and differentiability to com-
plex functions and also develop complex versions of powers, exponentials, logarithms, and
trigonometric functions.

19.2.1 Limits, Continuity, and Differentiability

If f is a complex function, f (z) has limit L as z approaches z0 if, given any positive
number ε, there is a positive number δ such that

| f (z)− L|<ε
for all z in S such that 0< |z − z0|<δ.

This means that we must be able to make the values f (z) as close as we like to L by
confining z to a small enough disk about z0, excluding the center z0. The actual value of f (z0),
if this is defined, is not relevant for the limit, which has to do only with the behavior of f (z) as
z is taken close to z0.

EXAMPLE 19.7

Let f (z)= z2 for z �= i . Even though f (i) is not defined,

lim
z→i

f (z)= i 2 =−1. �

A significant difference between limits of complex and real functions is that (on the real line)
x can approach x0 only from the left or right, while in the complex plane, z can approach z0 along
infinitely many different paths (Figure 19.6). Requiring that f (z) approach the same number L
along all such paths is a much stronger condition than requiring that the function approach the
same value only from the left or right.

As in calculus, we rarely invoke the ε − δ definition of limit to evaluate a limit. The limit
of a finite sum (product, quotient) is the sum (product, quotient) of the limits whenever all
the limits are defined, and in the case of a quotient, the denominator is nonzero. Furthermore,
limz→z0 f (z)= L implies that limz→z0 c f (z)= cL for any number c.

In the special case that limz→z0 f (z)= f (z0), we say that f is continuous at z0. This requires
that f (z0) be defined and that f (z) approach f (z0) as z approaches z0 along any path. The
function of Example 19.7 is not continuous at i because f (i) is not defined.

z0
z

x

y

FIGURE 19.6 z → z0 along arbitrary
paths.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 15, 2010 18:5 THM/NEIL Page-678 27410_19_ch19_p667-694

678 CHAPTER 19 Complex Numbers and Functions

If f is continuous at each point of a set S, we say that f is continuous on S. The function of
Example 19.7 is continuous on the set S consisting of the complex plane with i removed.

A function f is bounded on S if for some positive number M ,

| f (z)| ≤ M for all z in S.

This means that there must be a disk about the origin containing all the numbers f (z) for z in S.
A continuous function need not be bounded. For example, f (z)= 1/z is continuous on the

plane with the origin removed.
If, however, we place some conditions on the set S, then a function that is continuous on S

will be bounded on S.
One condition we will use is that the set is bounded (not to be confused with a function being

bounded). We say that a set S of complex numbers is bounded if, for some positive number K ,
|z| ≤ K for all z in S. This means that we can enclose all of S within a disk, if we choose the
radius large enough.

THEOREM 19.2

If f is continuous on a set S that is closed and bounded, then f is a bounded function on S.

A set that is closed and bounded is called compact. In this terminology, the theorem says
that a function that is continuous on a compact set must be a bounded function.

The complex derivative is modeled after the real derivative. We say that f is differentiable
at z0 if for some number L

lim
z→z0

f (z)− f (z0)

z − z0

= L .

This is equivalent to requiring that

lim
h→0

f (z0 + h)− f (z0)

h
= L

with the understanding that h is complex and must be allowed to approach 0 along an arbitrary
path.

In this case, we call L the derivative of f at z0 and denote it f ′(z0), or in the Leibniz notation,

d

dz
f (z)

]

z=z0

.

As with real functions, we rarely compute a complex derivative by applying the limit defini-
tion. The rules for computing derivatives of complex functions have the same form as those for
real functions whenever all of the derivatives are defined.
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1. ( f + g)′(z)= f ′(z)+ g′(z),

2. ( f − g)′(z)= f ′(z)− g′(z),

3. (c f )′(z)= c f ′(z) for any number c,

4. ( f g)′(z)= f (z)g′(z)+ f ′(z)g(z),

5.

(
f

g

)′
(z)= g(z) f ′(z)− f (z)g′(z)

(g(z))2
.

6. There is also a complex version of the chain rule for differentiating a composition f ◦ g,
which is defined by ( f ◦ g)(z)= f (g(z)). Assuming that the derivatives exist, then

( f ◦ g)′(z)= f ′(g(z))g′(z).

In the Leibniz notation,
d

dz
( f (g(z))= d f

dw

dw

dz
where w= g(z).

In form, this looks just like the chain rule for real functions in calculus.
Not every function is differentiable.

EXAMPLE 19.8

Let f (z)= z. Suppose f is differentiable at z. Then

f ′(z)= lim
h→0

f (z + h)− f (z)

h

= lim
h→0

z + h − z

h
= lim

h→0

h

h
.

For f ′(z0) to exist, we need this limit to be the same no matter how h approaches zero. If h
approaches 0 along the real axis, h = h and h/h = 1, so this limit would have to be 1. But if h
approaches 0 along the imaginary axis, then h = ik for real k, and

h

h
= ik

ik
= −ik

ik
=−1.

Since this quotient is always −1 on the imaginary axis (no matter how close k is to zero), the
limit defining f ′(z) would have to be −1. We conclude that the limit defining this derivative does
not exist. This function has no derivative at any point. �

As with real functions, a complex function is continuous wherever it is differentiable.

THEOREM 19.3

If f is differentiable at z0 then f is continuous at z0. �
To see why this is true, begin with

f (z0 + h)− f (z0)= h

(
f (z0 + h)− f (z0)

h

)

.

As h →0, the difference quotient in parentheses on the right approaches f ′(z0), and the factor of
h approaches 0, so the right side approaches 0. Therefore

lim
h→0
( f (z0 + h)− f (z0))= 0

and this is equivalent to limz→z0 f (z)= f (z0).
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19.2.2 The Cauchy-Riemann Equations

We will derive a pair of partial differential equations that are intimately tied to differentiability
for complex functions. These equations also play a role in potential theory and in treatments of
the Dirichlet problem.

If f is a complex function and z = x + iy, then we can always write

f (z)= f (x + iy)= u(x, y)+ iv(x, y)

where u and v are real-valued functions of two real variables:

u(x, y)= Re( f (z)) and v(x, y)= Im( f (z)).

EXAMPLE 19.9

Let f (z)= z2. Then

f (z)= (x + iy)2 = x2 − y2 + 2i xy = u(x, y)+ iv(x, y).

For this function, u(x, y)= x2 − y2 and v(x, y)= 2xy.
If g(z)= 1/z for z �= 0, then

g(z)= 1

x + iy
= x

x2 + y2
− i

y

x2 + y2
= u(x, y)+ iv(x, y).

For g(z),

u(x, y)= x

x2 + y2
and v(x, y)=− y

x2 + y2
. �

For f to be differentiable, partial derivatives of u and v must be related in a special way.

THEOREM 19.4 Cauchy-Riemann Equations

Let f (x + iy)= u(x, y)+ iv(x, y) be differentiable at z = x + iy. Then, at (x, y),

∂u

∂x
= ∂v

∂y
and

∂v

∂x
=−∂u

∂y
. �

These are the Cauchy-Riemann equations for the real and imaginary parts of f . In deriving
these equations, we will also obtain expressions for f ′(z).

If f is differentiable at z, then

f ′(z)= lim
h→0

f (z + h)− f (z)

h
.

This difference quotient approaches f ′(z0) regardless of path of approach of h to 0. Focus on two
specific paths.

Path 1 Along the Real Axis.

Now h is real and moves left or right toward 0. Since h is real, z + h = x + h + iy and

f ′(z)= lim
h→0

f (z + h)− f (z)

h

= lim
h→0

u(x + h, y)+ iv(x + h, y)− u(x, y)− iv(x, y)

h
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= lim
h→0

(
u(x + h, y)− u(x, y)

h
+ i

v(x + h, y)− v(x, y)

h

)

= ∂u

∂x
+ i

∂v

∂x
.

Path 2 Along the Imaginary Axis.

Now h = ik with k real and z + h = z + ik = x + i(y + k). Then

f ′(z)= lim
k→0

u(x, y + k)+ iv(x, y + k)− u(x, y)− iv(x, y)

ik

= lim
k→0

(
1

i

u(x, y + k)− u(x, y)

k
+ v(x, y + k)− v(x, y)

k

)

=−i
∂u

∂y
+ ∂v

∂y
.

Here we used the fact that 1/ i =−i . We conclude that

f ′(z)= ∂u

∂x
+ i

∂v

∂x
=−i

∂u

∂y
+ ∂v

∂y
. (19.1)

Equating real parts and then imaginary parts of opposite sides of this equation, we obtain
∂u

∂x
= ∂v

∂y
and

∂v

∂x
=−∂u

∂y
.

The Cauchy-Riemann equations are a necessary condition for a complex function to be
differentiable. Given f , u, and v are uniquely determined and f cannot be differentiable at any
point where u and v do not satisfy the Cauchy-Riemann equations.

EXAMPLE 19.10

We already know that f (z)= z is not differentiable. To illustrate the theorem, we will use the
Cauchy-Riemann equations to show this. Write

f (z)= z = x − iy = u(x, y)+ iv(x, y),

so u(x, y)= x and v(x, y)=−y. Then
∂u

∂x
= 1 and

∂v

∂y
=−1,

so the Cauchy-Riemann equations fail to hold and f is not differentiable at any z. �

EXAMPLE 19.11

Let f (z)= z Re(z). Then

f (z)= f (x + iy)= (x + iy)x = x2 + i xy,

so u(x, y)= x2 and v(x, y)= xy. Compute
∂u

∂x
= 2x,

∂v

∂y
= x

and
∂u

∂y
= 0,

∂v

∂x
= 0.

If z �= 0, the Cauchy-Riemann equations do not hold, so f cannot be differentiable at any
z �= 0. �
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The theorem states that the Cauchy-Riemann equations are necessary for f = u + iv to
be differentiable at a point. If u, v, and their first partial derivatives are continuous, then the
Cauchy-Riemann equations are also sufficient for f to be differentiable.

Using the Cauchy-Riemann equations, we can establish the following results.

THEOREM 19.5

Let f be differentiable on an open disk D. Let f = u + iv, and suppose that u and v are con-
tinuous with continuous first and second partial derivatives, and satisfy the Cauchy-Riemann
equations on D. Then

1. If f ′(z)= 0 on D, then f is a constant function on D.

2. If | f (z)| is constant on D, so is f (z). �

Proof Conclusion (1) is easy to prove. For each z in D,

f ′(z)= 0 = ∂u

∂x
+ i

∂v

∂x

implies that ∂u/∂x = ∂v/∂x = 0 on D. By the Cauchy-Riemann equations, ∂u/∂y = ∂v/∂y = 0
on D also, so u and v are constant functions and therefore so is f .

Conclusion (2) is more involved. Suppose | f (z)| = k for all z in D. Then

| f (z)|2 = u(x, y)2 + v(x, y)2 = k2 (19.2)

for (x, y) in D. If k = 0, then f (z)= 0 for all z in D. If k �= 0, differentiate equation (19.2) with
respect to x to get

u
∂u

∂x
+ v ∂v

∂x
= 0 (19.3)

and with respect to y to get

u
∂u

∂y
+ v ∂v

∂y
= 0. (19.4)

Use the Cauchy-Riemann equations to write equations (19.3) and (19.4) as

u
∂u

∂x
− v ∂u

∂y
= 0 (19.5)

and

u
∂u

∂y
+ v ∂u

∂x
= 0. (19.6)

Multiply equation (19.5) by u and equation (19.6) by v and add the resulting equations to get

(u2 + v2)
∂u

∂x
= k2 ∂u

∂x
= 0.

Therefore, ∂u/∂x = 0 on D, and by the Cauchy-Riemann equations, ∂v/∂y = 0 also. A similar
manipulation shows that ∂u/∂y = ∂v/∂x = 0, so u(x, y) and v(x, y) are constant, hence f (z) is
constant on D. �

There is an intimate connection between differentiable complex functions and harmonic
functions. Recall that a real-valued function u(x, y) of two real variables is harmonic on a set of
points in the x, y-plane if u satisfies Laplace’s equation
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∂2u

∂x2
+ ∂2u

∂y2
= 0.

We claim that the real and imaginary parts of a differentiable complex function must be
harmonic.

THEOREM 19.6

Let G be an open set in the complex plane, and suppose f (z)=u(x, y)+ iv(x, y) is differentiable
on G. Then u and v are harmonic on G. �

Proof Begin with the fact that u and v satisfy the Cauchy-Riemann equations:

∂u

∂x
= ∂v

∂y
and

∂v

∂x
=−∂u

∂y
.

Differentiate the first equation with respect to x and the second with respect to y to get

∂2u

∂x2
= ∂2v

∂y∂x
= ∂2v

∂x∂y
=−∂

2u

∂y2

and this implies that

∂2u

∂x2
+ ∂2u

∂y2
= 0.

Similarly,

∂2v

∂x2
+ ∂2v

∂y2
= 0.

Therefore, u and v are harmonic on G. �

Thus far, the real and imaginary parts of a differentiable complex function are harmonic. The
connection also goes the other way, in the following sense. Given a function u that is harmonic
on a domain D, there is a function v harmonic on D such that f = u + iv is differentiable on D.
We call a v a harmonic conjugate for u. Thus, differentiable complex functions are constructed
from harmonic functions.

THEOREM 19.7

Let u be harmonic on an open disk D in the complex plane. Then, for some v defined on D, the
function f defined by f (z)= u(x, y)+ iv(x, y) is differentiable on D. �

Proof Define

g(z)= ∂u

∂x
− i

∂u

∂y

for (x, y) in D. Using the Cauchy-Riemann equations, show that g is differentiable on D. Then,
for some complex function G,

G ′(z)= g(z)

for z in D. Write G(z)=U (x, y)+ iV (x, y). Then

G ′(z)= ∂U

∂x
− i

∂U

∂y

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 15, 2010 18:5 THM/NEIL Page-684 27410_19_ch19_p667-694

684 CHAPTER 19 Complex Numbers and Functions

= g(z)= ∂u

∂x
− i

∂u

∂y
.

Therefore,

∂U

∂x
= ∂u

∂x
and

∂U

∂y
= ∂u

∂y

for (x, y) in D. This means that U (x, y)− u(x, y) is constant on D, so for some real number K ,

U (x, y)= u(x, y)+ K .

Now define f (z)= G(z)− K . Then f is differentiable on D, and

f (z)= G(z)− K =U (x, y)+ iV (x, y)− K = u(x, y)+ iv(x, y).

We may therefore choose v(x, y)= V (x, y), proving the theorem. �

Given a harmonic function defined on a domain, we are rarely interested in actually pro-
ducing a harmonic conjugate. However, knowing that a harmonic conjugate exists enables us to
go from harmonic u to a differentiable complex function f = u + iv, bringing complex function
methods to bear on some problems. We will exploit this in solving Dirichlet problems by confor-
mal mappings in Chapter 23. We will also use complex integration to derive important properties
of harmonic functions in Chapter 20.

SECTION 19.2 PROBLEMS

In each of Problems 1 through 12, find u and v so that
f = u + iv, determine all points (x, y) at which the
Cauchy-Riemann equations hold, and determine all z at
which f is differentiable. Familiar facts about continuity of
real-valued functions of two real variables can be assumed.

1. f (z)= z − i

2. f (z)= z2 − i z

3. f (z)= |z|
4. f (z)= (2z + 1)/z

5. f (z)= i |z|2
6. f (z)= z + Im(z)

7. f (z)= z/Re(z)

8. f (z)= z3 − 8z + 2

9. f (z)= (z)2
10. f (z)= i z + |z|
11. f (z)=−4z + 1/z

12. f (z)= (z − i)/(z + i)

13. Let zn = an + ibn be a sequence of complex num-
bers. We say that this sequence converges to w =
c + id if the real sequences an → c and bn → d. Show
that, if f (z) is continuous at z0 and zn is a sequence
converging to z0, f (zn) converges to f (z0).

19.3 The Exponential and Trigonometric Functions

The complex exponential function ez is defined for all z = x + iy by

ez = ex cos(y)+ iex sin(y).

Notice that f (iy) = eiy = cos(y)+ i sin(y) is just Euler’s equation. The functions u(x, y) =
ex cos(y) and v(x, y)= ex sin(y) are continuous with continuous first partial derivatives, which
satisfy the Cauchy-Riemann equations. Therefore, ez is differentiable for all z. Furthermore,
using equation (19.1),
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f ′(z)= ∂u

∂x
+ i

∂v

∂x
= ex cos(y)+ iex sin(y)= ez

as with the real exponential function.
The following properties of ez are straightforward consequences of the definition.

1. e0 = 1.

2. ez+w = ezew.

3. ez �= 0 for all complex z.

4. e−z = 1/ez .

5. If t is real, then eit = e−i t .

To prove property (3), suppose

ez = ex cos(y)+ iex sin(y)= 0.

Then

ex cos(y)= ex sin(y)= 0.

Since for real x , ex �= 0, then

cos(y)= sin(y)= 0.

This is impossible, because the real sine and cosine functions have no common zeros.
For property (4), use properties (1) and (2) to write

e0 = 1 = ez−z = eze−z

implying that 1/ez = e−z .
To verify property (5), suppose t is a real number. By Euler’s formula,

eit = cos(t)+ i sin(t)

= cos(t)− i sin(t)= e−i t .

Perhaps the first surprise we find with the complex exponential function is that ez is peri-
odic. This periodicity does not appear in the real exponential function because the period is pure
imaginary.

THEOREM 19.8

1. ez = 1 if and only if z = 2nπ i for some integer n.

2. If p is a number such that ez+p = ez for all complex z, then for some integer n, p = 2nπ i .

3. ez is periodic with period 2nπ i for each nonzero integer n. Furthermore, these are the
only periods of the complex exponential function. �

Proof To prove conclusion (1) first observe that, if z = 2nπ i for some integer n, then

ez = e2nπ i = cos(2nπ)+ i sin(2nπ)= 1

because cos(2nπ)= 1 and sin(2nπ)= 0.
Conversely, if ez = ea+ib = 1, then

ea cos(b)+ iea sin(b)= 1.

so

ea cos(b)= 1 and ea sin(b)= 0.
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Since ea �= 0, then sin(b)= 0, so b = kπ for some integer k. But then

ea cos(b)= ea cos(kπ)= (−1)kea = 1.

This requires that (−1)k be positive, so k =2n for some integer n. But then ea =1, which for real
a means that a = 0. Therefore z = a + bi = 2nπ i for some integer n.

For conclusion (2), suppose that ez+p = ez for all z. Then ep = 1, so p = 2nπ i for some
integer n, by (1).

For conclusion (3), let n be a nonzero integer. By conclusion (1),

ez+2nπ i = eze2nπ i = ez,

for all z, so ez has period 2nπ i . For the rest of conclusion (3), we need to show that any period of
ez is an integer multiple of 2π . Thus, suppose that ez+p = ez for all z and for some number p �= 0.
Then by conclusion (2), p = 2nπ i for some nonzero integer n.

Every period of ez is therefore pure imaginary, explaining why no period is evident for the
real exponential function. �

Another difference between the real and complex exponential functions is that ez can be
negative. For example, it is easy to check that ez = −1 exactly when z = (2n + 1)π for some
integer n.

EXAMPLE 19.12

Solve the equation

ez = 1 + 2i.

We want all z such that

ez = ex cos(y)+ iex sin(y)= 1 + 2i.

This requires that

ex cos(y)= 1 and ex sin(y)= 2.

If we square these equations and add, we obtain

e2x(cos2(y)+ sin2(y))= e2x = 5,

which implies that x = ln(5)/2. Next,

ex sin(y)

ex cos(y)
= tan(y)= 2,

so y = arctan(2). All solutions of ez are

z = 1

2
ln(5)+ i arctan(2). �

The complex sine and cosine functions are defined by

cos(z)= 1

2

(
eiz + e−i z

)
and sin(z)= 1

2i

(
e−z − e−i z

)
.

A routine calculation gives us

cos(z)= cos(x) cosh(y)− i sin(x) sinh(y)

and

sin(z)= sin(x) cosh(y)+ i cos(x) sinh(y),
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where

cosh(y)= 1

2
(ey + e−y) and sinh(y)= 1

2
(ey − e−y).

To verify these, write

cos(z)= 1

2

(
eiz + e−i z

)

= 1

2

(
ei(x+iy) + e−i(x+iy)

)

= 1

2

(
eixe−y + e−i x ey

)

= 1

2

(
e−y(cos(x)+ i sin(x))+ ey(cos(x)− i sin(x))

)

= 1

2
cos(x)

(
ey + e−y

)+ i

2
sin(x)

(
e−y − ey

)

= cos(x) cosh(y)− i sin(x) sinh(y).

Similarly,

sin(z)= sin(x) cosh(y)+ i cos(x) sinh(y).

If z = x is real, then y =0, the complex sine agrees with the real sine, and the complex cosine
agrees with the real cosine. In this sense, sin(z) and cos(z) are extensions of sin(x) and cos(x)
to the complex plane.

A multiplication shows that, for all z,

cos2(z)+ sin2(z)= 1,

as we should expect. Other identities for the real sine and cosine functions extend readily to their
complex counterparts, although their derivations are very much simplified in the complex case
because exponential functions are easy to compute with. For example, suppose we want to show
that sin(2z)= 2 sin(z) cos(z). Compute

2 sin(z) cos(z)= 1

2i

(
eiz − e−i z

) (
eiz + e−i z

)

= 1

2i

(
e2i z − e−2i z

)= sin(2z).

From the Cauchy-Riemann equations, cos(z) and sin(z) are differentiable for all z. Further-
more, using equations (19.1),

d

dz
cos(z)= ∂u

∂x
+ i

∂v

∂y

=− sin(x) cosh(y)− i cos(x) sinh(y)=− sin(z),

and similarly,

d

dz
sin(z)= cos(z).

The complex sine and cosine functions exhibit some properties that are not seen in the real
case. For example, the real sine and cosine functions are bounded: | cos(x)| ≤ 1 and | sin(x)| ≤ 1
for all real x . But the complex sine and cosine are not bounded functions in the complex plane.
For real y,

cos(iy)= 1

2
(e−y + ey),
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which can be made as large as we like by choosing y or −y large. Similarly, sin(iy) can be
arbitrarily large in magnitude.

In view of this new behavior, we might ask about periods and zeros of the complex sine and
cosine. We claim that the extension of these functions to the complex plane does not bring any
new periods or zeros.

THEOREM 19.9

1. sin(z)= 0 if and only if z = nπ for some integer n.

2. cos(z)= 0 if and only if z = (2n + 1)π/2 for some integer n.

3. cos(z) and sin(z) are periodic with periods 2nπ for every nonzero integer n. Furthermore,
these are the only periods of these functions. �

These follow by systematic use of the real and imaginary parts of cos(z) and sin(z). For
example, to find the zeros of sin(z), solve

sin(z)= sin(x) cosh(y)+ i cos(x) sinh(y)= 0.

Then

sin(x) cosh(y)= 0 and cos(x) sinh(y)= 0.

From the first equation and the fact that cosh(y) �= 0 for real y, we have sin(x)= 0, which for
real x means that x = nπ for some integer n. From the second equation,

cos(x) sinh(y)= cos(nπ) sinh(y)= (−1)n sinh(y)= 0.

But then sinh(y) = 0 so y = 0. Therefore z = nπ , with n an integer, proving part (1) of
Theorem 19.9. Parts (2) and (3) are proved similarly.

The other trigonometric functions are defined in terms of sine and cosine in the usual way.
For example, tan(z)= sin(z)/ cos(z) for cos(z) �= 0.

SECTION 19.3 PROBLEMS

In each of Problems 1 through 10, write the function value
in the form a + bi .

1. ei

2. sin(1 − 4i)

3. cos(3 + 2i)

4. tan(3i)

5. e5+2i

6. cot(1 −π i/4)

7. sin2(1 + i)

8. cos(2 − i)− sin(2 − i)

9. eπ i/2

10. sin(ei )

11. Determine u and v such that ez2 = u(x, y)+ iv(x, y).
Show that u and v satisfy the Cauchy-Riemann equa-
tions.

12. Find u and v such that e1/z =u(x, y)+ iv(x, y). Show
that u and v satisfy the Cauchy-Riemann equations.

13. Find u and v such that zez = u(x, y)+ iv(x, y). Show
that u and v satisfy the Cauchy-Riemann equations
wherever they are defined.

14. Find u and v such that cos2(z)= u(x, y)+ iv(x, y).
Show that u and v satisfy the Cauchy-Riemann equa-
tions wherever they are defined.

15. Find all solutions of ez = 2i .

16. Derive the following identities.

(a) sin(z +w)= sin(z) cos(w)+ cos(z) sin(w).

(b) cos(z +w)= cos(z) cos(w)− sin(z) sin(w).

17. Find all solutions of ez = −2.

18. Find all solutions of sin(z)= i .
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19.4 The Complex Logarithm

In real calculus, the natural logarithm is the inverse of the exponential function. For x > 0,

y = ln(x) if and only if x = ey.

In this way, the real natural logarithm can be thought of as the solution of the equation x = ey .
We will use this approach in developing a complex logarithm. Given z �= 0, we want to solve for
w in the equation

ew = z.

To do this, put z in polar form as z = reiθ , and let w= u + iv to write

z = reiθ = ew = eueiv. (19.7)

Since θ and v are real, |eiθ |= |eiv|=1. Taking magnitudes in equation (19.7) gives us r =|z|=eu ,
therefore

u = ln(r),

which is the real natural logarithm of the positive number r . But now equation (19.7) implies that
eiθ = eiv . Then eiv/eiθ = ei(v−θ) = 1. We know all the solutions of this equation, namely

i(v− θ)= 2nπ i

for integer n. Then

v= θ + 2nπ.

In summary, given z = reiθ with r �= 0, there are infinitely many complex numbers w such that
ew = z. All of these numbers are

w= ln(r)+ iθ + 2nπ i,

with n any integer. This leads us to define, for z �= 0,

log(z)= ln(|z|)+ iθ + 2nπ i

in which θ is any argument of z and n can be any integer. The complex log is not a function in
the conventional sense because each nonzero z has infinitely many different complex logarithms.

EXAMPLE 19.13

Let z = 1 + i . In polar form, z =√
2ei(π/4+2nπ i). The values of the logarithm of 1 + i are

log(1 + i z)= ln
√

2 + i
[π

4
+ 2nπ i

]
. �

In the complex plane, we can take the logarithm of a negative number.

EXAMPLE 19.14

Let z =−3. In polar form, z = 3e(π+2nπ)i = 3e(2n+1)π i . The values of the logarithm of −3 are

log(−3)= ln(3)+ (2n + 1)π i

in which n can be any integer. �
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SECTION 19.4 PROBLEMS

In each of Problems 1 through 6, determine all values of
the complex logarithm of z.

1. −4i

2. 2 − 2i

3. −5

4. 1 + 5i

5. −9 + 2i

6. 5

7. Let z and w be nonzero complex numbers. Show that
each value of log(zw) is equal to a value of log(z) plus
a value of log(w).

8. Let z and w be nonzero complex numbers. Show that
each value of log(z/w) is equal to a value of log(z)
minus a value of log(w).

19.5 Powers

We want to assign a meaning to zw when z andw are complex and z �=0. Ifw is a positive integer,
zn is clear. For example, z3 = z · z · z. And z−n = 1/zn if z �= 0. For other powers, we will proceed
in stages.

nth Roots

Let n be a positive integer. An nth root z1/n of z is a number z1/n whose nth power is z. We want
all values of z1/n . To find these, begin with the polar form of z,

z = rei(θ+2kπ)

with all of the arguments θ + 2kπ of z in the exponent. Then

z1/n = r 1/nei(θ+2kπ)/n

in which r 1/n is the real nth root of the positive number r . As k varies over the integers, the
numbers on the right give all the nth roots of z.

For k = 0,1, · · · ,n − 1, we obtain n distinct numbers

r 1/neiθ/n, r 1/nei(θ+2π)/n, r 1/nei(θ+4π)/n · · · and r 1/nei(θ+2(n−1)π)/n. (19.8)

These are all nth roots of z. Other choices of k reproduce numbers already in this list. For
example, with k = n we get

r 1/nei(θ+2nπ)/n = r 1/neiθ/ne2π i = r 1/neiθ/n

because e2π i = 1. Therefore k = n gives us the first number in the list (19.8) corresponding to
k = 0.

If k = n + 1, we obtain

r 1/nei(θ+2(n+1)π)/n = r 1/nei(θ+2π)/ne2π i = r 1/nei(θ+2π)/n,

which is the second number in the list (19.8), corresponding to k = 1.
To sum up, the nth roots of z are the n numbers

r 1/nei(θ+2kπ)/n for k = 0,1, · · · ,n − 1.

These can be written as

r 1/n

[

cos

(
θ + 2kπ

n

)

+ i sin

(
θ + 2kπ

n

)]

for k = 0,1, · · · ,n − 1.
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EXAMPLE 19.15

We will find the fourth roots of 1 + i . One argument of 1 + i is π/4, and |1 + i | = √
2, so

1 + i = 21/2ei(π/4+2kπ) in which k can be any integer. The fourth roots are the four numbers

21/8eπ i/16, 21/8ei(π/4+2π), 21/8ei(π/4+4π)/4, and 21/8ei(π/4+6π)/4.

Other choices for k simply reproduce these numbers. The fourth roots of 1+ i also can be written
as

21/8
[
cos

( π

16

)
+ i sin

( π

16

)]
,

21/8

[

cos

(
9π

16

)

+ i sin

(
9π

16

)]

,

21/8

[

cos

(
17π

16

)

+ i sin

(
17π

16

)]

,

and

21/8

[

cos

(
25π

16

)

+ i sin

(
25π

16

)]

. �

EXAMPLE 19.16

The nth roots of 1 are called the nth roots of unity. They appear in many contexts: for example,
in the development of the fast Fourier transform. Since 1 has a magnitude of 1 and an argument
is 0, the nth roots of unity are the n numbers

e2πki/n for k = 0,1, · · · ,n − 1.

For example, the fifth roots of unity are

1, e2π i/5, e4π i/5, e6π i/5, and e8π i/5.

These are the numbers

1, cos

(
2π

5

)

+ i sin

(
2π

5

)

, cos

(
4π

5

)

+ i sin

(
4π

5

)

,

cos

(
6π

5

)

+ i sin

(
6π

5

)

, and cos

(
8π

5

)

+ i sin

(
8π

5

)

.

If plotted as points in the plane, the nth roots of unity form vertices of a regular polygon with
vertices on the unit circle and having one vertex at (1,0). Figure 19.7 shows the fifth roots of
unity displayed in this way. �

x

y

FIGURE 19.7 Fifth roots of unity.
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Rational Powers

A rational number is a quotient of integers. If m and n are positive integers with no common
factors, compute zm/n as (zm)1/n , which are the nth roots of zm .

EXAMPLE 19.17

We will compute all values of (2 − 2i)3/5. Compute (2 − 2i)3 = −16 − 16i . We want the fifth
roots of −16 − 16i . One argument of −16 − 16i is 5π/4 and | − 16 − 16i | = √

512, so in polar
form

−16 − 16i = (512)1/2ei(5π/4+2kπ).

The fifth roots of −16 − 16i are

(−16 − 16i)1/5 = (512)1/10ei(5π/4+2kπ)/5.

These are the numbers

(512)1/10e5π i/4, (512)1/10e13π i/20,

(512)1/10e21π i/20, (512)1/10e29π i/20, and (512)1/10e37π i/20. �

Powers zw

If z �= 0, define for any complex number w

zw = ew log(z).

This definition is suggested by the fact that, if a and b are real numbers and a �=0, then ab =eb ln(a).
If w is not a rational number, then zw has infinitely many values.

EXAMPLE 19.18

We will compute all values of (1 − i)1+i . These numbers are obtained as e(1+i) log(1−i), so first
determine all values of log(1− i). We have |1− i |=√

2. We also need an argument of 1− i . Any
argument will do. One convenient argument is 7π/4, obtained by a counterclockwise (positive)
rotation from the positive real axis to the point (1,−1). Another argument is −π/4, which is a
clockwise (negative) rotation from the positive real axis to this point. Using the latter, we have

1 − i =√
2ei(−π/4+2nπ).

Then all values of log(1 − i) are given by

ln
(√

2
)

+ i
(
−π

4
+ 2nπ

)

in which n can be any integer. Every value of (1 − i)1+i is contained in the expression

e(1+i) log(1−i) = e(1+i)[ln(
√

2)+i(−π/4+2nπ)].

These can be written as

eln(
√

2)+π/4−2nπei(ln(
√

2)−π/4+2nπ)

=√
2eπ/4−2nπ

(
cos

(
ln
(√

2
)

−π/4 + 2nπ
)

+ i sin
(
ln
(√

2
)

−π/4 + 2nπ
))

=√
2eπ/4−2nπ

(
cos

(
ln
(√

2
)

−π/4
)

+ i sin
(
ln
(√

2
)

−π/4
))
. �
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SECTION 19.5 PROBLEMS

In each of Problems 1 through 14, determine all values
of zw.

1. i 1+i

2. (1 + i)2i

3. i i

4. (1 + i)2−i

5. (−1 + i)−3i

6. (1 − i)1/3

7. i 1/4

8. 161/4

9. (−4)2−i

10. 6−2−3i

11. (−16)1/4

12. [(1 + i)/(1 − i)]1/3

13. 11/6

14. (7i)3i

15. Let u1, · · · ,un be the nth roots of unity with n a pos-
itive integer and n ≥ 2. Prove that

∑n
j=1 u j = 0. Hint:

Write each nth root of unity as a power of e2π i/n . A
vector argument can also be made based on plotting
the nth roots as vertices of a polygon.

16. Let n be a positive integer, and let ω= e2π i/n . Evaluate∑n−1
j=0(−1) jω j .
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CHAPTER 20
Complex
Integration

THE INTEGRAL OF A COMPLEX
FUNCTION CAUCHY’S THEOREM
CONSEQUENCES OF CAUCHY’S
THEOREM

20.1 The Integral of a Complex Function

Real-valued functions are integrated over intervals. Complex functions are integrated over curves
and have many properties in common with line integrals of vector fields. The notions of contin-
uous, differentiable, smooth, and piecewise smooth curves were developed in Section 12.1. Here
we will use complex notation and represent points (x, y) on a curve as complex numbers x + iy.

EXAMPLE 20.1

Let γ (t)= eit for 0 ≤ t ≤ 3π/2. Then γ is a simple, smooth curve with initial point γ (0)= 1 and
terminal point γ (3π/2)=−i . γ is therefore not closed. Since γ (t)= cos(t)+ i sin(t), this curve
has coordinate functions x = cos(t) and y = sin(t). The graph of γ is the three-quarter circle of
Figure 20.1. �

x

y

1

–i 

FIGURE 20.1 γ in Exam-
ple 20.1.

695
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x

y

2 + 4i

–1 + i

FIGURE 20.2 δ in Example 20.2.

EXAMPLE 20.2

Let δ(t)= t + i t 2 for −1 ≤ t ≤ 2. Then δ is a simple, smooth curve from −1 + i to 2 + 4i , as
shown in Figure 20.2. The coordinate functions are x = t and y = t 2, and we can think of C as
the part of the parabola y = x2 from (−1,1) to (2,4). �

We are now ready to define the complex integral, which we will do in two stages.

First Stage—Integral Over a Closed Interval Suppose f is a complex function, and f (x)=
u(x)+ iv(x) is defined at least for a ≤ x ≤ b. Define

∫ b

a

f (x)dx =
∫ b

a

u(x)dx + i
∫ b

a

v(x)dx .

EXAMPLE 20.3

Let f (x)= x − i x2 for 1 ≤ x ≤ 2. Then
∫ 2

1

f (x)dx =
∫ 2

1

x dx − i
∫ 2

1

x2 dx = 3

2
− 7

3
i. �

Second Stage—Integral Over a Curve Now we can define the integral of a complex function
over a smooth curve in the plane. Let f be a complex function and γ a curve with γ (t) defined
for a ≤ t ≤ b. Assume that f is continuous at all points on the curve. Then we define the integral
of f over γ by

∫

γ

f (z)dz =
∫ b

a

f (γ (t))γ ′(t)dt.

This integral also may be formulated as
∫

γ

f (z)dz =
∫ b

a

f (z(t))z′(t)dt.

Evaluate
∫
γ

f (z)dz by replacing z by z(t)= γ (t) and integrating f (γ (t))γ ′(t) over [a,b],
according to the first stage in the definition of the integral.

EXAMPLE 20.4

We will evaluate
∫
γ

z dz if γ (t)= eit for 0 ≤ t ≤π .
The graph of γ is the upper half of the unit circle oriented counterclockwise from initial

point 1 to terminal point −1. On γ , z(t)= eit and z′(t)= ieit , so
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f (z(t))z′(t)= eit ieit = i.

Therefore,
∫

γ

f (z)dz =
∫ π

0

idt =π i. �

EXAMPLE 20.5

Evaluate
∫
ϕ

z2 dz if ϕ(t)= t + i t for 0 ≤ t ≤ 1.
The graph of ϕ is the straight line segment from 0 to 1 + i . On the curve, z(t)= ϕ(t)=

t + i t = (1 + i)t . Then z′(t)= 1 + i and

f (z(t))z′(t)= ((1 + i)t)2(1 + i)= (1 + i)3t 2 = (−2 + 2i)t 2.

Then
∫

γ

z2 dz =
∫ 1

0

(−2 + 2i)t 2 dt = 2

3
(−1 + i). �

EXAMPLE 20.6

Evaluate
∫
γ

zRe(z)dz if γ (t)= t − i t 2 for 0 ≤ t ≤ 2.
On this curve, z(t)= t − i t2, so

f (z(t))= z(t)Re(z(t))

= (t − i t 2)Re(t − i t 2)= (t − i t 2)(t)= t 2 − i t 3.

Furthermore, z′(t)= 1 − 2i t , so

f (z(t))z ′(t)= (t 2 − i t 3)(1 − 2i t)= t 2 − 3i t 3 − 2t4.

Then
∫

γ

f (z)dz =
∫ 2

0

(t 2 − 3i t 3 − 2t4)dt

=
∫ 2

0

(t 2 − 2t4)dt − 3i
∫ 2

0

t 3 dt =−152

15
− 12i. �

Thus far, we can only integrate over a smooth curve. Often we want to integrate over a
piecewise smooth curve, which is a curve that is made up of a finite number of smooth arcs.
Such a curve has a continuous tangent except perhaps at finitely many points (such as corners
or “sharp points”). In this case, we think of γ as made up of curves γ1, γ2, · · ·γn , with each γ j

smooth and the terminal point of γ j equal to the initial point of γ j+1, as in Figure 20.3. We call γ
the join of γ1, · · · , γn and write

γ = γ1

⊕
γ2

⊕
· · ·
⊕

γn,

as we did in Section 12.1.
Define

∫

γ

f (z)dz =
n∑

j=1

∫

γ j

f (z)dz.

This is the analog of
∫ c

a

+
∫ b

c

=
∫ b

a

for real integrals.
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x

y

�1

�3

�4

�5

�2

FIGURE 20.3 The join of γ1, · · · , γn .

EXAMPLE 20.7

Let γ1(t)= 3eit for 0≤ t ≤π/2. Let γ2(t)= t 2 + 3(t + 1)i for 0≤ t ≤ 1. Let γ = γ1

⊕
γ2. We will

compute
∫
γ

f (z)dz, where f (z)= Im(z).
γ is shown in Figure 20.4. γ1 is the quarter circle part from 3 counterclockwise to 3i , and γ2

is part of the parabola x = (y − 3)2/9 from 3i to 1 + 6i .
For the integral over γ1, z(t)= 3eit , so f (z(t))= Im(3eit)= 3 sin(t). Since

z′(t)= 3ieit =−3 sin(t)+ 3i cos(t),

we have
∫

γ1

Im(z)dz =
∫ π/2

0

3 sin(t)[−3 sin(t)+ 3i cos(t)]dt

=−9
∫ π/2

0

sin2(t)dt + 9i
∫ π/2

0

sin(t) cos(t)dt

=−9

4
π + 9

2
i.

On γ2, z(t)= t 2 + 3(t + 1)i , so f (z(t))= 3(t + 1), and z′(t)= 2t + 3i . Then
∫

γ2

Im(z)dz =
∫ 1

0

3(t + 1)(2t + 3i)dt

=
∫ 1

0

(6t 2 + 6t)dt + 9i
∫ 1

0

(t + 1)dt

= 5 + 27

2
i.

x

y

3

3i

1 + 6i

FIGURE 20.4 γ in Example 20.7.
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Finally,
∫

γ

Im(z)dz =−9

4
π + 9

2
i + 5 + 27

2
i = 5 − 9

4
π + 18i. �

We will list some properties of the complex integral. These reflect properties of line integrals
from Chapter 12.

1.
∫
γ
( f (z)+ g(z))dz = ∫

γ
f (z)dz + ∫

γ
g(z)dz.

2. If c is a number, then
∫
γ

c f (z)dz = c
∫
γ

f (z)dz.

3. Reversing the orientation on the curve changes the sign of the integral. Specifically, given
γ defined on [a,b], define ϕ(t)= γ (a + b − t) for a ≤ t ≤ b. Then

γ (a)=ϕ(b) and γ (b)=ϕ(a).
The initial point of γ is the terminal point of ϕ, and the terminal point of γ is the initial
point of ϕ. We denote the curve ϕ formed in this way as −γ . Then

∫

−γ
f (z)dz =−

∫

γ

f (z)dz.

4. There is a version of the fundamental theorem of calculus for complex integrals. Suppose
f is continuous on an open set G and F is defined on G with the property that F ′(z)=
f (z). If γ is a smooth curve in G, defined on an interval [a,b], then

∫

γ

f (z)dz = F(γ (b))− F(γ (a)).

To see why this is true, write F(z)=U (x, y)+ iV (x, y) to get
∫

γ

f (z)dz =
∫ b

a

f (z(t))z′(t)dt

=
∫ b

a

F ′(z(t))z′(t)dt =
∫ b

a

d

dt
F(z(t))dt

=
∫ b

a

d

dt
U (x(t), y(t))dt + i

∫ b

a

d

dt
V (x(t), y(t))dt

=U (x(b), y(b))+ iV (x(b), y(b))− iU (x(a), y(a))− iV (x(a), y(a))

= F(γ (b))− F(γ (a)).

One ramification of this is that, under the given conditions, the value of
∫
γ

f (z)dz
depends only on the initial and terminal points of γ and not on γ itself. This is called
independence of path, and we saw a version of it in Chapter 12 with conservative force
fields. If γ is a closed curve, the initial and terminal points are the same, and

∫
γ

f (z)dz =
0. We will consider this in more detail in the next section.

EXAMPLE 20.8

Evaluate
∫
γ

z2 dz, with γ any smooth curve from i to 1 − i . Since F ′(z)= z2, if F(z)= z3/3,

∫

γ

z2 dz = F(1 − i)− F(i)= (1 − i)3

3
− i 3

3
= −2 − i

3
.

regardless of how γ moves about the plane between i and 1 − i . �
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5.
∫
γ

f (z)dz can be written as a sum of two real line integrals. To do this, suppose γ is
defined on [a,b], and write

f (z)= f (x + iy)= u(x, y)+ iv(x, y) and dz = (x ′(t)+ iy ′(t))dt.

Then
∫

γ

f (z)dz =
∫ b

a

[u(x(t), y(t))+ iv(x(t), y(t))][x ′(t)+ iy ′(t)]dt

=
∫

γ

u dx − v dy + i
∫

γ

v dx + u dy. (20.1)

6. Let γ be a smooth curve defined on [a,b], and let f be continuous on γ . Suppose | f (z)|≤
M for all z on γ , and let L be the length of γ . Then

∣
∣
∣
∣

∫

γ

f (z)dz

∣
∣
∣
∣≤ M L .

This is the complex version of the inequality
∣
∣
∣
∫ b

a
g(x)dx

∣
∣
∣ ≤ M(b − a) if |g(x)| ≤ M for

a ≤ x ≤ b for real integrals.

SECTION 20.1 PROBLEMS

In each of Problems 1 through 15, evaluate
∫
γ

f (z)dz.

1. f (z)= 1;γ (t)= t2 − i t for 1 ≤ t ≤ 3.

2. f (z)= z2 − i z;γ is the quarter circle about the origin
from 2 to 2i .

3. f (z)= Re(z);γ is the line segment from 1 to 2 + i .

4. f (z)= 1/z;γ is the part of the half circle of radius 4
about the origin from 4i to −4i .

5. f (z)= z − 1;γ is any piecewise smooth curve from
2i to 1 − 4i .

6. f (z)= i z2;γ is the line segment from 1 + 2i to 3 + i .

7. f (z)= sin(2z);γ is the line segment from −i to −4i .

8. f (z)= 1 + z2;γ is the part of the circle of radius 3
about the origin from −3i to 3i .

9. f (z) = −i cos(z);γ is any smooth curve from 0 to
2 + i .

10. f (z)= |z|2;γ is the line segment from −4 to i .

11. f (z)= (z − i)3;γ (t)= t − i t2 for 0 ≤ t ≤ 2.

12. f (z)= eiz;γ is any smooth curve from −2 to −4 − i .

13. f (z)= i z;γ is the line segment from 0 to −4 + 3i .

14. f (z) = Im(z);γ is the circle of radius 4 about the
origin (oriented positively).

15. f (z)= |z|2;γ is the line segment from −i to 1.

16. Find a bound for | ∫
γ

cos(z2)dz| if γ is the circle of
radius 4 about the origin.

17. Find a bound for | ∫ (1/(1 + z))dz| if γ is the line
segment from 2 + i to 4 + 2i .

20.2 Cauchy’s Theorem

Cauchy’s theorem is the cornerstone of complex integration theory. We need some terminology
and preparation for its statement.

If γ is a continuous, simple, closed curve in the plane, then γ separates the plane into three
parts: the graph of the curve itself, a bounded open set called the interior of γ , and an unbounded
open set called the exterior of the curve (Figure 20.5). This is the Jordan curve theorem, which
we will assume.
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x

y

Interior

Exterior

FIGURE 20.5 Interior and exterior
of a closed curve.

We will refer to a simple, piecewise smooth curve as a path. A path in a set S is a path
whose graph lies in S.

A set S of complex numbers is connected if every two points of S are endpoints of a path
in S. This means that we can get from any point of S to any other point by moving along
some path without leaving S. An open, connected set is called a domain. For example, any
open disk is a domain, and the right quarter plane x > 0, y> 0 is a domain.

We encountered domains in connection with potential functions in Chapter 12.

A set S of complex numbers is simply connected if every closed path in S encloses only
points of S.

This concept was also discussed in Chapter 12. Every open disk is simply connected. However,
let S be an open disk with the center removed (a punctured disk). Then a closed path about the
center in the disk encloses a point not in the set, so this set is not simply connected (although it
is open and connected, hence is a domain).

We can now state the main result.

THEOREM 20.1 Cauchy

Let f be differentiable on a simply connected domain G. Then
∮

γ

f (z)dz = 0

for every closed path γ in G. �

Cauchy’s theorem means that
∮
γ

f (z)dz = 0 if f is differentiable on the path γ and all
points enclosed by γ . Unless otherwise stated, we always understand closed curves to be oriented
counterclockwise, which we take to be the positive sense.
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In Theorem 20.1, the notation
∮
γ

is used. The oval on the integral is a reminder that the path
is closed. This notation was also used in connection with line integrals in Chapter 12. It is not
required to include this oval for integrals over closed paths.

EXAMPLE 20.9

If γ is any closed path in the plane,
∮

γ

ez2
dz = 0,

because ez2
is differentiable on the entire plane, which is a simply connected domain. �

EXAMPLE 20.10

We will evaluate
∮

γ

2z + 1

z2 + 3i z
dz,

where γ is the circle |z + 3i | = 2 of radius 2 about −3i .
Observe that f (z) is differentiable at all points except 0 and −3i , where the denominator

vanishes. Use a partial fractions decomposition to write

f (z)= 1

3i

1

z
+ 6 + i

3

1

z + 3i
.

Then
∮

γ

2z + 1

z2 + 3i z
dz = 1

3i

∮

γ

1

z
dz + 6 + i

3

∮

γ

1

z + 3i
dz.

Because γ does not enclose 0, 1/z is differentiable on and within the simply connected
domain enclosed by γ . By Cauchy’s theorem,

∮

γ

1

z
dz = 0.

However, 1/(z + 3i) is not differentiable in the region enclosed by γ , so Cauchy’s theorem
does not apply to the integral of this function over γ . We will evaluate this integral directly by
parametrizing γ (t)= z(t)=−3i + 2eit (polar coordinates centered at −3i) for 0 ≤ t ≤ 2π . Now

∮

γ

1

z + 3i
dz =

∫ 2π

0

1

z(t)+ 3i
z ′(t)dt

=
∫ 2π

0

1

2eit
2ieit dt =

∫ 2π

0

i dt = 2π i.

Therefore,
∮

γ

2z + 1

z2 + 3i z
dz = 6 + i

3
(2π i)=

(

−2

3
+ 4i

)

π. �

A proof of Cauchy’s theorem requires a delicate argument we will not engage here. However,
a less general version can be established easily. Write f = u + iv and assume that u and v are
continuous with continuous first and second partial derivatives on G. Now we can apply Green’s

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:32 THM/NEIL Page-703 27410_20_ch20_p695-714

20.3 Consequences of Cauchy’s Theorem 703

theorem and the Cauchy-Riemann equations. If D is the region containing the path and all points
enclosed by γ , then

∫

γ

f (z)dz =
∮

γ

u dx − v dy + i
∮

γ

v dx + u dy

=
∫∫

D

(
∂(−v)
∂x

− ∂u

∂y

)

d A + i
∫∫

D

(
∂u

∂x
− ∂v

∂y

)

d A = 0,

because by the Cauchy-Riemann equations,

∂u

∂x
= ∂v

∂y
and

∂u

∂y
=−∂v

∂x
.

Cauchy’s theorem has several important consequences, which are the object of the next
section.

SECTION 20.2 PROBLEMS

In each of Problems 1 through 12, evaluate the integral
of the function over the closed path. All curves are ori-
ented counterclockwise. In some cases, Cauchy’s theorem
applies, while in others it does not, but may still be useful
(as in Example 20.10).

1. f (z)= sin(3z);γ is the circle |z| = 4.

2. f (z)= 2z/(z − i);γ is the circle |z − i | = 3.

3. f (z)= 1/(z − 2i)3;γ is given by |z − 2i | = 2.

4. f (z)= z2 sin(z);γ is the square having vertices 0,1, i
and 1 + i .

5. f (z)= z;γ is the unit circle about the origin.

6. f (z)=1/z;γ is the circle of radius 5 about the origin.

7. f (z)= zez;γ is the circle |z − 3i | = 8.

8. f (z) = z2 − 4z + i;γ is the rectangle with vertices
1,8,8 + 4i and 1 + 4i .

9. f (z)=|z|2;γ is the circle of radius 7 about the origin.

10. f (z)= sin(1/z);γ is the circle |z − 1 + 2i | = 1.

11. f (z)= Re(z);γ is given by |z| = 2.

12. f (z) = z2 + Im(z);γ is the square with vertices
0,−2i,2 and 2 − 2i .

20.3 Consequences of Cauchy’s Theorem

This section develops some consequences of Cauchy’s theorem.

20.3.1 Independence of Path

Independence of path was mentioned briefly in connection with evaluating
∫
γ

f (z)dz in terms
of an antiderivative F of f . Independence of path can also be viewed from the perspective of
Cauchy’s theorem.

Suppose f is differentiable on a simply connected domain G, and z0 and z1 are points of G.
Let γ1 and γ2 be paths in G from z0 to z1 (Figure 20.6).

If we reverse the orientation on γ2, we form a closed path � = γ1

⊕
(−γ2). By Cauchy’s

theorem,
∮
�

f (z)dz = 0, so
∫

γ1

f (z)dz +
∫

−γ2

f (z)dz = 0.

But
∫

−γ2

f (z)dz =−
∫

γ2

f (z)dz,
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�1

–�2

x

y

z0

z1

FIGURE 20.6 Independence of path.

so ∫

γ1

f (z)dz =
∫

γ2

f (z)dz.

This means that
∫
γ

f (z)dz is independent of path on G, because the integral over any path in G
depends only on the endpoints of the path. In such a case, we sometimes write

∫

γ

f (z)dz =
∫ z1

z0

f (z)dz.

20.3.2 The Deformation Theorem

The deformation theorem enables us, under certain conditions, to replace one closed path of
integration with another, perhaps more convenient one.

THEOREM 20.2 The Deformation Theorem

Let � and γ be closed paths in the plane with γ in the interior of �. Suppose f is differentiable
on an open set containing both paths and all points between them. Then

∮

�

f (z)dz =
∮

γ

f (z)dz. �

Figure 20.7 suggests the reason for the name of the theorem. Think of γ as made of rubber,
and continuously stretch and deform γ into �. In doing this, it is important that the interme-
diate stages of the deformation only cross over points at which f is differentiable, hence the
assumption that f is differentiable at all points between the two curves.

x

y

�

�

FIGURE 20.7 The deformation theorem.
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The theorem states that the integral of f has the same value over both paths under the
conditions stated. This means that we can replace the integral over one curve with the integral
over the other, allowing us great flexibility in choice of paths in evaluating an integral.

EXAMPLE 20.11

Evaluate
∮

�

1

z − a
dz

where � is any closed path enclosing the number a (Figure 20.8(a)).
We do not know �, so it might appear that we cannot evaluate this integral. Because f (z)=

1/(z − a) is not differentiable in this region, and Cauchy’s theorem does not apply. However, a
is the only point at which f is not differentiable. Place a circle γ about a of sufficiently small
radius r so that the two curves do not intersect (Figure 20.8(b)). Now f is differentiable on both
curves and on the region between them, so

∮

�

f (z)dz =
∫

γ

f (z)dz.

The point is that we can easily evaluate the integral over γ . Using polar coordinates centered at
a, write γ (t)= a + reit for 0 ≤ t ≤ 2π . Then

∮

�

f (z)dz =
∮

γ

f (z)dz

=
∫ 2π

0

1

reit
ireit dt = i

∫ 2π

0

dt = 2π i. �

A proof of the deformation theorem is reminiscent of the argument used for the extended
Green’s theorem in Chapter 12. Figure 20.9(a) shows typical curves � and γ . Insert line segments
L1 and L2 between these paths (Figure 20.9(b)), and use these to form two closed paths,� and	,
as in Figure 20.10. Both� and 	 are oriented positively (counterclockwise), which is consistent
with positive orientations on � and γ . Because f is differentiable on � and γ and all points in
between, f is differentiable on � and 	 and all points they enclose, so by Cauchy’s theorem,

∮

�

f (z)dz =
∮

	

f (z)dz = 0.

x

y

(a) (b)

x

y

a a

� �

�

FIGURE 20.8 Enclosing a in a circle γ interior to
� in Example 20.11.
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L1

L2

(a) (b)

��

�
�

FIGURE 20.9 Start of the proof of the deformation
theorem.

�

�

FIGURE 20.10 Last stage in the proof
of the deformation theorem.

Then
∮

�

f (z)dz +
∮

	

f (z)dz = 0. (20.2)

In this sum of integrals, each of L1 and L2 is integrated over in one direction as part of � and
in the opposite direction as part of 	. The contributions from these segments therefore cancel
in the sum of equation (20.2). Next observe that, in adding the integrals in equation (20.2), we
obtain the integral over � oriented counterclockwise and the integral over γ oriented clockwise
(negatively). Equation (20.2) becomes

∮

�

f (z)dz −
∮

γ

f (z)dz = 0

with both curves oriented positively. But then
∮

�

f (z)dz =
∮

γ

f (z)dz.

The function f may have points interior to γ at which it is undefined or not differentiable,
but f is differentiable on and in the region between � and γ , so

∮
�

f (z)dz = ∮
γ

f (z)dz.

20.3.3 Cauchy’s Integral Formula

We will state a remarkable result which gives an integral formula for the values of a differentiable
function.

THEOREM 20.3 Cauchy’s Integral Formula

Let f be differentiable on an open set G. Let γ be a closed path in G enclosing only points of
G. Then, for any z0 enclosed by γ ,

f (z0)= 1

2π i

∮

γ

f (z)

z − z0

dz. �

We will see many uses of this theorem. One is immediate. We can write Cauchy’s formula as

2π i f (z0)=
∮

γ

f (z)

z − z0

dz,
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thereby evaluating the integral on the right in terms of the value of f (z) at a point z0 enclosed by
γ . Keep in mind, however, that we have evaluated

∮
γ
( f (z)/(z − z0))dz, not

∮
γ

f (z)dz.

EXAMPLE 20.12

We will evaluate
∮

γ

ez2

z − i
dz

for any closed path that does not pass through i . Here f (z)= ez2
is differentiable for all z. There

are two cases.

Case 1 If γ does not enclose i , then ez2
/(z − i) is differentiable on and in the region enclosed

by γ , so by Cauchy’s theorem,
∮

γ

ez2

z − i
dz = 0.

Case 2 If γ encloses i , then by Cauchy’s integral formula with z0 = i ,
∮

γ

ez2

z − i
dz = 2π i f (i)= 2π ie−1. �

EXAMPLE 20.13

Evaluate
∮

γ

e2z sin(z2)

z − 2
dz

over any closed path that does not pass through 2. Let f (z)= e2z sin(z2). Then f is differentiable
for all z. There are two cases.

Case 1 If γ does not enclose 2, then f (z)/(z − 2) is differentiable on and within γ , so
∮

γ

e2z sin(z2)

z − 2
,dz = 0.

Case 2 If γ encloses 2, then by Cauchy’s integral formula,
∮

γ

e2z sin(z2)

z − 2
dz = 2π i f (2)= 2π ie4 sin(4). �

There is a version of the integral formula for derivatives.

THEOREM 20.4 Cauchy’s Integral Formula for Higher Derivatives

With f , G, γ , and z0 as in Cauchy’s integral formula (Theorem 20.3), then

f (n)(z0)= n!
2π i

∮

γ

f (z)

(z − z0)n+1
dz (20.3)

in which n is any nonnegative integer. �
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For n = 0, this is Cauchy’s integral formula with the convention that f (0)(z)= f (z). In the
equation, n! (read n factorial) is the product of the integers 1 through n inclusive, and f (n) is
the nth derivative of f . This integral formula for the nth derivative of f (z) at z0 is exactly what
we would get if we differentiated n times with respect to z0 under the integral sign in Cauchy’s
integral formula.

EXAMPLE 20.14

We will evaluate
∮

γ

ez3

(z − i)3
dz

with γ any closed path not passing through i . If γ does not enclose i , this integral is zero by
Cauchy’s theorem. Suppose that γ does enclose i . Because z − i occurs to the third power in
the denominator of the integral, let n = 2 in Cauchy’s formula for higher derivatives (20.3) with
f (z)= ez3

. Compute

f ′(z)= 3z2ez3
and f ′′(z)= (6z + 9z4)ez3

.

Then
∮

γ

ez3

(z − i)3
dz = 2π i

2! f ′′(i)= (−6 + 9i)πe−i . �

Proof We will outline a proof of Cauchy’s integral formula. First, use the deformation theorem
to replace γ with a circle C of radius r about z0, as in Figure 20.11. Then

∮

γ

f (z)

z − z0

dz =
∮

C

f (z)

z − z0

dz =
∮

C

f (z)− f (z0)+ f (z0)

z − z0

dz

= f (z0)

∮

C

1

z − z0

dz +
∮

C

f (z)− f (z0)

z − z0

dz

= 2π i f (z0)+
∮

C

f (z)− f (z0)

z − z0

dz

in which we used the result of Example 20.11. We will have proved the Cauchy integral repre-
sentation if we can show that the last integral is zero. On C , write C(t)= z0 + reit for 0≤ t ≤2π .
Then

x

y

z0

C

�

FIGURE 20.11 A proof of the Cauchy inte-
gral formula.
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∣
∣
∣

∮

C

f (z)− f (z0)

z − z0

dz
∣
∣
∣=

∣
∣
∣

∫ 2π

0

f (z0 + reit)− f (z0)

reit
ireit dt

∣
∣
∣

=
∣
∣
∣

∫ 2π

0

( f (z0 + reit)− f (z0))dt
∣
∣
∣

≤
∫ 2π

0

| f (z0 + reit)− f (z0) | dt.

But | f (z0 + reit)− f (z0) |→ 0 as r → 0 by continuity of f . We conclude that
∣
∣
∣

∮

C

f (z)− f (z0)

z − z0

dz
∣
∣
∣= 0,

and hence, that
∮

C

f (z)− f (z0)

z − z0

dz = 0,

establishing Cauchy’s integral formula. �

The integral formula gives added appreciation of the power of the condition of differentiabil-
ity for complex functions. The formula gives the value of f (z) at all points enclosed by a closed
path γ , strictly in terms of values of f (z) at points on γ , because these are all that are needed to
evaluate

∮

γ

f (z)

z − z0

dz.

By contrast, knowing the values of a differentiable real-valued function g(x) at the endpoints of
an interval [a,b] tells us nothing about values g(x) for a< x < b.

Another implication of the integral formula for higher derivatives is that a complex function
that is differentiable on an open set has derivatives of all orders on that set. Again, real functions
do not behave this well. If g′(x) exists, g′′(x) may not.

20.3.4 Properties of Harmonic Functions

As an application of Cauchy’s integral formula, we will derive two important properties of har-
monic functions. This is a prime example of the use of complex functions to derive facts about
real functions—a theme we will see again and which is made possible by the connection between
harmonic functions and the real and imaginary parts of differentiable complex functions.

THEOREM 20.5 The Mean Value Property

Let u be harmonic on a domain D. Let (x0, y0) be any point of D, and let C be a circle of radius
r in D centered at (x0, y0) and enclosing only points of D. Then

u(x0, y0)= 1

2π

∫ 2π

0

u(x0 + r cos(θ), y0 + r sin(θ))dθ. �

Notice that (x0 + r sin(θ), y0 + r sin(θ)) are polar coordinates of points on the circle, varying
once counterclockwise over the circle as θ varies from 0 to 2π . The theorem therefore says that
the value of u at the center of the circle is the average of the values of u(x, y) over the circle.

Proof For some v, f = u + iv is harmonic on D. Let z0 = x0 + iy0. By Cauchy’s integral
formula,
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f (z0)=u(x0, y0)+ iv(x0, y0)= 1

2π i

∮

C

f (z)

z − z0

dz

= 1

2π i

∫ 2π

0

f (z0 + reiθ )

reiθ
ireiθ dθ

= 1

2π

∫ 2π

0

u(x0 + r cos(θ), y0 + r sin(θ))dθ

+ i

2π

∫ 2π

0

v(x0 + r cos(θ), y0 + r sin(θ))dθ.

By comparing the real part of the left and right sides of this equation, we have the conclusion of
the theorem. �

If D is a bounded domain, then the set D consisting of D, together with all boundary points
of D, is a closed and bounded set in the x, y-plane. If u(x, y) is continuous on D, then u(x, y)
must achieve a maximum value on D. In general, this might occur at any point or number of
points of D. However, if u is also harmonic on D, then u(x, y) must achieve its maximum value
at a boundary point of D. A proof of this uses the fact that u has a harmonic conjugate v, enabling
us to work with a differentiable complex function f = u + iv.

THEOREM 20.6 The Maximum Principle

Let D be a bounded domain in the plane and suppose u is continuous on D and harmonic on D.
Then u(x, y) achieves its maximum value at a boundary point of D. �
Proof Let v be a harmonic conjugate of u in D, and let f = u + iv. Define

g(z)= e f (z).

Then g is differentiable on D. Now |g(z)| is a continuous function of two real variables on the
closed and bounded set D of points in the plane. By a theorem of calculus, |g(z)| achieves a
maximum value at a boundary point of D. But

|g(z)| = |eu(x,y)+iv(x,y)| = |eu(x,y)eiv(x,y)| = eu(x,y).

Since eu(x,y) is a strictly increasing function, eu(x,y) and u(x, y) must achieve their maximum
values at the same point. Therefore, u(x, y) must achieve its maximum at a boundary point. �

20.3.5 Bounds on Derivatives

It is possible to bound the derivatives of a complex function in terms of a bound on the function.

THEOREM 20.7 Bounds on Derivatives

Suppose f is differentiable on an open set G, and z0 is a point in G. Let the closed disk of radius
r about z0 be entirely contained in G. Suppose that | f (z)| ≤ M for z on the circle bounding this
disk. Then, for any positive integer n,

| f (n)(z0)| ≤ Mn!
rn

. �

Theorem 20.7 can be proved by parametrizing the circle bounding the disk as γ (t)= z0 +reit

in Cauchy’s integral formula for f (n)(z0).
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One important consequence of this bound on higher derivatives is Liouville’s theorem, which
states that a bounded function that is differentiable for all z must be constant. This means that, if
f is nonconstant and differentiable for all z, then f cannot be a bounded function. We saw this
with cos(z) and sin(z), which are differentiable for all z and are not bounded functions (over the
entire complex plane).

To prove Liouville’s theorem, suppose | f (z)|≤ M for all z. By Theorem 20.7 with n =1 for
any number z0,

| f ′(z0)| ≤ M

r

in which r is the radius of a circle about z0. Since r can be as large as we want, M/r can be made
arbitrarily small, so | f ′(z0)| must be zero. Then f ′(z0)= 0. But z0 is any number so f ′(z)=0 for
all z, and from this it is routine to check, using Theorem 19.5, that f (z) must be constant.

Liouville’s theorem provides a simple proof of the fundamental theorem of algebra, which
states that if p(z) is a complex polynomial of degree n ≥ 1, then for some z0, p(z0)= 0. If this
were not true, then we would have p(z) �= 0 for all z. Then 1/p(z) would differentiable for all z.
But routine estimates enable us to conclude that 1/p(z) is bounded on the entire plane. By Liou-
ville’s theorem, 1/p(z) would be constant, so p(z) would be constant, which is a contradiction.
Therefore, p(z) must be zero for some complex number.

20.3.6 An Extended Deformation Theorem

The deformation theorem enables us, under certain conditions, to deform one closed path � to
another γ without changing the value of

∮
γ

f (z)dz. This requires that the deformation of one
path into the other not pass over any points at which f is not differentiable. If γ is enclosed by
�, this requires that f be differentiable at all points between these curves.

We will extend this result to the case that � encloses any finite number of disjoint closed
paths. As usual, unless otherwise stated, all closed paths are oriented counterclockwise.

THEOREM 20.8 Extended Deformation Theorem

Let � be a closed path, and let γ1, · · · , γn be closed paths enclosed by �. Assume that no two
of �,γ1, · · ·γn intersect and no point interior to any γ j is interior to any other γk . Let f be
differentiable on an open set containing � and each γ j and all points that are both interior to �
and exterior to each γ j . Then

∮

�

f (z)dz =
n∑

j=1

∮

γ j

f (z)dz. �

If n =1, this is the deformation theorem. Here is an example of the theorem in evaluating an
integral.

EXAMPLE 20.15

We will evaluate
∮

�

z

(z + 2)(z − 4i)
dz

where � is a closed path enclosing both −2 and 4i .
As in Figure 20.12, enclose each of −2 and 4i by closed paths γ1 and γ2 small enough that

they do not intersect each other or �. Then
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4i

–2
x

y �

�2

�1

FIGURE 20.12 �, γ1, and γ2 in Exam-
ple 20.15.

∮

�

z

(z + 2)(z − 4i)
dz =

∮

γ1

z

(z + 2)(z − 4i)
dz +

∮

γ2

z

(z + 2)(z − 4i)
dz.

Use a partial fractions decomposition to write

z

(z + 2)(z − 4i)
= 1 − 2i

5

1

z + 2
+ 4 + 2i

5

1

z − 4i
.

Putting the last two equations together with Cauchy’s theorem and the conclusion of Exam-
ple 20.11, we have

∮

�

z

(z + 2)(z − 4i)
dz = 1 − 2i

5

∮

γ1

1

z + 2
dz +

∮

γ1

4 + 2i

5

1

z − 4i
dz

+ 1 − 2i

5

∮

γ2

1

z + 2
dz + 4 + 2i

5

∮

γ2

1

z − 4i
dz

= 1 − 2i

5
(2π i)+ 4 + 2i

5
(2π i)

=2π i. �

A proof of the extended deformation theorem can be modeled after that of the deformation
theorem, except now we draw a line segment from � to γ1, from γ1 to γ2 and so on until we come
to γn−1 to γn , and finally from γn to �, as in Figure 20.13 for n = 3.

x

y
L4

L3

L2

L1

�

�1

�3

�2

FIGURE 20.13 Argument for the extended deforma-
tion theorem.
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20.3.7 A Variation on Cauchy’s Integral Formula

We will develop another form of the Cauchy integral formula which we will use in Section 22.4
to write a complex integral formula for the inverse Laplace transform. This will be used to apply
complex analysis to a diffusion problem for a solid cylinder.

THEOREM 20.9 Cauchy Integral Formula—Second Version

Let σ be a real number, and suppose f (z) is differentiable in the half-plane x ≥ σ . Suppose that
there are positive numbers M and n such that

|zn f (z)| ≤ M

for |z| to be sufficiently large (for example, for |z| ≥ R for some positive number R).
Then, for any z0 with Re(z0)>σ ,

f (z0)=− 1

2π
lim
b→∞

∫ σ+ib

σ−ib

f (z)

z − z0

dz. �

In this limit, we actually have the integral over the vertical line x =σ , oriented upward (from
−∞ to ∞). This integral of f (z)/(z − z0) over this line is equal to −2π i f (z0), hence it is in the
same spirit as the Cauchy integral formula.

We will outline an argument suggesting why this formula is true. Suppose z0 lies to the right
of the line x = σ . Construct the closed rectangular path C shown in Figure 20.14 having corners
b − ib,b + ib, σ − ib, and σ + ib with b chosen to be sufficiently large, so that C encloses z0.
Let C∗ be the path consisting of the upper, lower, and right sides of this rectangle, while L is the
left side of the rectangle, which is the vertical line from σ − ib to σ + ib. By the Cauchy integral
formula,

f (z0)= 1

2π i

∮

C

f (z)

z − z0

dz

= 1

2π i

[∫

C∗

f (z)

z − z0

dz −
∫ σ+ib

σ−ib

f (z)

z − z0

dz

]

.

x

y

z0 x = b

b + ib

b – ib

L

x = σ

σ – ib

σ + ib

FIGURE 20.14 C and C∗ in this Cauchy
integral representation.
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The negative sign on the integral from σ − ib to σ + ib is due to the fact that counterclockwise
orientation on C requires that the integral over L be taken from σ + ib to σ − ib. Reversing these
limits of integration (as we have done) reverses the sign on the integral.

We will have the conclusion of the theorem if we can show that

lim
b→∞

∫

C∗

f (z)

z − z0

dz = 0.

A proof of this is outlined in Problem 15.

SECTION 20.3 PROBLEMS

In each of Problems 1 through 12, evaluate
∫
γ

f (z)dz. All
closed curves are positively oriented. These problems may
involve Cauchy’s theorem, the integral formulas, and/or
the deformation theorem.

1. f (z)= z4/(z − 2i);γ is any closed path enclosing 2i .

2. f (z)= sin(z2)/(z − 5);γ is any closed path enclosing
5.

3. f (z)= (z2 − 5z + i)/(z − 1 + 2i);γ is the circle |z|=
3.

4. f (z)=2z3/(z −2)2;γ is the rectangle having vertices
4 ± i,−4 ± i .

5. f (z)= iez/(z − 2 + i)2;γ is the circle |z − 1| = 4.

6. f (z) = cos(z − i)/(z + 2i)3;γ is any closed path
enclosing −2i .

7. f (z)= z sin(3z)/(z + 4)3;γ is the circle |z − 2i | = 9.

8. f (z)= 2i z|z|;γ is the line segment from 1 to −i .

9. f (z)=−(2 + i) sin(z4)/(z + 4)2;γ is any closed path
enclosing −4.

10. f (z)= (z − i)2;γ is the semicircle of radius 1 about 0
from i to −i .

11. f (z)= Re(z + 4);γ is the line segment from 3 + i to
2 − 5i .

12. f (z)= 3z2 cosh(z)/(z + 2i)2;γ is the circle of radius
8 about 1.

13. Evaluate
∫ 2π

0

ecos(θ) cos(sin(θ))dθ.

Hint: Consider
∫
γ
(ez/z)dz with γ as the unit cir-

cle about the origin. Evaluate the integral once using
Cauchy’s integral formula and then directly by using
coordinate functions for γ .

14. Use the extended deformation theorem to evaluate
∮

γ

z − 4i

z3 + 4z
dz

where γ is any closed path enclosing the origin, −2i
and 2i .

15. Complete a proof of Theorem 20.9 by filling in the
details of the following argument. Use a hypothesis of
the theorem to show that

∣
∣
∣
zn f (z)

z − z0

∣
∣
∣≤ M

for |z| to be sufficiently large. Do some manipulation
to show that

∣
∣
∣

f (z)

z − z0

∣
∣
∣≤ M

|z|n+1|1 − (z0/z)|
for |z| to be sufficiently large. Now require that b be
large enough that b> 2|z0| to show that

∣
∣
∣

f (z)

z − z0

∣
∣
∣≤ M

bn+1
.

Taking into account the length of C∗, show that
∣
∣
∣

∫

C∗

f (z)

z − z0

dz
∣
∣
∣≤ 2M

bn

(

4 − 2σ

b

)

.

Finally, show that the right side of this inequality
approaches 0 as b → ∞.
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CHAPTER 21
Series
Representations
of Functions

POWER SERIES THE LAURENT
EXPANSION

There are two types of series expansions that are important for working with complex functions.
The first is the power series.

21.1 Power Series

We will precede a discussion of power series with some facts about series of complex numbers.

Sequences and Series of Complex Numbers

We will assume some familiarity with real sequences and series.
Suppose zn is a complex number for each positive integer n. If we write zn = xn + iyn , then

the complex sequence zn converges to L = c + id exactly when

lim
n→∞

xn = c and lim
n→∞

yn = d.

In this case, we write

lim
n→∞

zn = L .

This reduces every complex sequence to a consideration of two real sequences.
Complex series are treated similarly in terms of their real counterparts. Suppose

∑∞
n=1 cn is

a series of complex numbers. Write cn = an + ibn . Then
∞∑

n=1

cn converges to L = A + i B

if and only if
∞∑

n=1

an = A and
∞∑

n=1

bn = B.

This reduces questions about series of complex numbers to questions about real series to which
standard tests (comparison, integral test, ratio test, and others) may apply. In particular, if

∑∞
n=1 cn

715
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converges, then limn→∞ an = limn→∞ bn =0, so limn→∞ cn =0 also. As with real series, the general
term cn of a convergent complex series must have a limit of 0 as n → ∞.

We say that
∑∞

n=1 cn converges absolutely if the real series
∑∞

n=1 |cn| converges. As with real
series, absolute convergence of a complex series implies its convergence. For suppose

∑∞
n=1 |cn|

converges. Since |an| ≤ |cn|, then
∑∞

n=1 |an| converges by comparison, so
∑∞

n=1 an converges.
Similarly, |bn| ≤ |cn|, so

∑∞
n=1 bn converges, and therefore,

∑∞
n=1 cn converges.

Power Series and Taylor Series

A power series is a series of the form
∞∑

n=0

cn(z − z0)
n = c0 + c1(z − z0)+ c2(z − z0)

2 + · · · .

The complex numbers cn are the coefficients of the power series, and z0 is its center. A
fundamental issue about any power series is determination of those values of z for which it
converges. We will show that, if a power series converges at some point z1 different from
z0, then it must converge absolutely at all points closer to z0 than z1.

THEOREM 21.1 Convergence of Power Series

Suppose
∑∞

n=0 cn(z − z0)
n converges at z1 different from z0. Then this series converges absolutely

at all z satisfying

|z − z0|< |z1 − z0|. �

Proof Because
∑∞

n=0 cn(z1 − z0)
n converges,

lim
n→∞

cn(z1 − z0)
n = 0.

This means that we can make the terms of the series as small in magnitude as we like by choosing
n to be large enough. In particular, for some N ,

|cn(z1 − z0)
n|< 1 if n ≥ N .

Then, for n ≥ N ,

|cn(z − z0)
n| =

∣
∣
∣
∣
(z − z0)

n

(z1 − z0)n

∣
∣
∣
∣ |cn(z1 − z0)

n|

≤
∣
∣
∣
∣
(z − z0)

n

(z1 − z0)n

∣
∣
∣
∣

=
∣
∣
∣
∣

z − z0

z1 − z0

∣
∣
∣
∣

n

< 1

because |z − z0|< |z1 − z0|. Then the geometric series
∞∑

n=0

∣
∣
∣
∣

z − z0

z1 − z0

∣
∣
∣
∣

n

converges. By comparison,
∞∑

n=N

|cn(z − z0)
n|
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converges. But then
∞∑

n=0

|cn(z − z0)
n|

converges, so
∑∞

n=0 cn(z − z0)
n converges absolutely. �

This theorem implies that there are exactly three possibilities for convergence of power
series.

1. It may be that the series does not converge for any points other than z0. In this case we
say that the power series has a radius of convergence zero, converging only at its center.

2. The power series may converge for all z. In this case, we say that it has infinite radius of
convergence.

3. The power series may converge for some points other than z0 but also diverge at some
points (that is, Cases (1) and (2) do not hold). Let ζ be the closest point to z0 at which the
series diverges, and let R = |ζ − z0|.
• If |z − z0|< R, then the power series must converge at z. Otherwise this open disk

would contain a point at which the series diverges, and this point would be closer to
z0 than ζ .

• If |z − z0|> R, then the power series must diverge at z. For if it converged at such a z,
then it would converge at all points closer to z0 than z, hence also at ζ , a contradiction.

Therefore, in this case, there is a number R such that the power series converges within the
disk |z − z0|< R, and diverges outside this disk. We call the open disk |z − z0|< R the open disk
of convergence of the power series, and R is the radius of convergence.

At specific points on the circle |z − z0| = R, the power series may converge or diverge. This
would have to be tested for each point and each power series.

These cases can be consolidated by setting R = 0 in Case (1) and R =∞ in Case (2). In this
case, the inequality

|z − z0|<∞
is interpreted to mean the entire complex plane, since all points z are at a finite distance from z0.

Sometimes the radius of convergence of a power series can be computed using the ratio test.

EXAMPLE 21.1

The power series
∞∑

n=0

(−1)n
2n

n + 1
(z − 1 + 2i)n

has center 1 − 2i . Look at the magnitude of the ratio of successive terms:
∣
∣
∣
∣
(−1)n+1(2n+1/(n + 1))(z − 1 + 2i)n+1

(−1)n(2n/(n + 1))(z − 1 + 2i)n

∣
∣
∣
∣=

∣
∣
∣
∣
2(n + 1)

n + 2
(z − 1 + 2i)

∣
∣
∣
∣

→ 2|z − 1 + 2i | as n → ∞.

By the ratio test, this real series converges if this limit is less than 1 and diverges if this limit is
greater than 1. Therefore, the power series converges if

|z − 1 + 2i |< 1

2
and diverges if |z − 1 + 2i | > 1/2. The radius of convergence is 1/2, and the open disk of
convergence is the disk |z − 1 + 2i |< 1/2. �
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If we apply this method and the limit of the magnitude of successive terms is zero, then the
power series has infinite radius of convergence.

A power series can be differentiated and integrated term by term within its open disk of
convergence.

THEOREM 21.2 Differentiation and Integration of Power Series

Let f be a function defined by

f (z)=
∞∑

n=0

cn(z − z0)
n

for z in D : |z − z0|< R. Then

1.

f ′(z)=
∞∑

n=1

ncn(z − z0)
n−1 for z in D.

Furthermore, this power series for f ′(z) has the same radius of convergence as the power
series for f (z).

2. If γ is a path within D, then
∫

γ

f (z)dz =
∞∑

n=0

cn

∫

γ

(z − z0)
n dz. �

We now want to address the possibility of representing a function as a power series about a
point.

THEOREM 21.3 Taylor Expansion

Suppose f is differentiable on an open disk D : |z − z0|< R. Then, for z in D,

f (z)=
∞∑

n=0

cn(z − z0)
n,

where for n = 0,1,2, · · · ,
cn = f (n)(z0)

n! .

Furthermore, this power series converges absolutely in D. �

cn is the nth Taylor coefficient of f at z0, and this power series is called the Taylor series
or expansion of f about z0. In the case z0 = 0, the Taylor series is also known as the
Maclaurin series.

In Theorem 21.3, R can be ∞, in which case f (z) is differentiable for all z, and the Taylor
series representation of f (z) is valid for all z.

Proof Let z be in D, and choose a number r with

|z − z0|< r < R.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:35 THM/NEIL Page-719 27410_21_ch21_p715-728

21.1 Power Series 719

z0

D

�

FIGURE 21.1 γ in the proof of Theorem 21.3.

Let γ be the circle of radius r about z0 (Figure 21.1), so γ has a center at z0 and encloses z. By
the Cauchy integral formula,

f (z)= 1

2π i

∮

γ

f (w)

w− z
dw.

An algebraic manipulation allows us to write

1

w− z
= 1

w− z0 − (z − z0)
= 1

w− z0

1

1 − z−z0
w−z0

.

Now
∣
∣
∣
∣

z − z0

w− z0

∣
∣
∣
∣< 1,

so we can write the convergent geometric series

1

w− z
=

∞∑

n=0

(
z − z0

w− z0

)n

=
∞∑

n=0

1

(w− z0)n+1
(z − z0)

n.

Then

f (w)

w− z
=

∞∑

n=0

f (w)

(w− z0)n+1
(z − z0)

n.

It can be shown that this series can be integrated term by term, so

f (z)= 1

2π i

∮

γ

f (w)

w− z
dw

= 1

2π i

∮

C

( ∞∑

n=0

f (w)

(w− z0)n+1
(z − z0)

n

)

dw

=
∞∑

n=0

(
1

2π i

∮

γ

f (w)

(w− z0)n+1
dw

)

(z − z0)
n

=
∞∑

n=0

f n(z0)

n! (z − z0)
n.

At the last line, we used the Cauchy representation formula for higher derivatives. �
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In some cases, we have extended important real-valued functions to the complex plane.
Examples are ez; sin(z) and cos(z), which agree with ex; and sin(x) and cos(x), respectively,
when z = x is real. In such cases, we can obtain the power series expansion of the complex
function directly from the expansion for the real-valued function, if this is known. For example,
using the familiar Maclaurin series, we can immediately write

ez =
∞∑

n=0

1

n! z
n,

sin(z)=
∞∑

n=0

(−1)n

(2n + 1)! z
2n+1,

and

cos(z)=
∞∑

n=0

(−1)n

(2n)! z2n.

We rarely compute Taylor coefficients as f n(z0)/n! in expanding f (z) about z0. If possible,
we use known series with algebra and calculus operations. Of course, term by term differentiation
and integration of power series applies to Taylor series.

EXAMPLE 21.2

ez2 =
∞∑

n=0

1

n! z
2n

by replacing z with z2 in the Maclaurin expansion of ez . �

EXAMPLE 21.3

Start with the familiar geometric series

1

1 − z
=

∞∑

n=0

zn = 1 + z + z2 + z3 + · · ·

for |z|< 1. Differentiate to obtain

1

(1 − z)2
=

∞∑

n=1

nzn=1 = 1 + 2z + 3z2 + · · ·

for |z|< 1. Differentiate again to obtain

2

(1 − z)3
=

∞∑

n=2

n(n − 1)zn−2 = 2 + 6z + 12z2 + · · ·

for |z|< 1.
Replacing z with −z, we obtain

1

1 + z
=

∞∑

n=0

(−1)nzn

for |z|< 1. This is also called a geometric series. Now differentiation yields

−1

(1 + z)2
=

∞∑

n=1

n(−1)nzn−1

for |z|< 1. �
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EXAMPLE 21.4

We will use algebra and the geometric series to write the Taylor expansion of 2i/(4 + i z)
about −3i .

Since this expansion about −3i will contain powers (z + 3i)n , we attempt to rearrange
2i/(4 + i z) so that we can expand it in a geometric series involving powers of z + 3i . Write

2i

4 + i z
= 2i

4 + i(z + 3i)+ 3

= 2i

7 + i(z + 3i)
= 2i

7

1

1 + i(z+3i)
7

= 2i

7

∞∑

n=0

(−1)n
(

i

7
(z + 3i)

)n

=
∞∑

n=0

2(−1)n+1i n+1

7n+1
(z + 3i)n.

This expansion is valid for
∣
∣
∣
∣
i

7
(z + 3i)

∣
∣
∣
∣< 1

or

|z + 3i |< 7.

This expansion has center −3i and a radius of convergence of 7. �

We could have predicted the radius of convergence of this power series expansion without
actually writing the series. The function being expanded is f (z)= 2i/(4 + i z), which is differ-
entiable for all z except z = 4i . The radius of convergence of the expansion of f (z) about −3i
will be the distance between the center, −3i , and the closest point to −3i at which f (z) is not
differentiable, in this case 4i . This distance is 7, which we have just seen from the expansion
itself is the radius of convergence.

As a less obvious example, consider g(z)= 1/ sin(z). This is differentiable for all z except
integer multiples of π . We can (in theory) expand g(z) in a power series about 3 + i . The radius
of convergence of this series will be the distance between 3 + i and the point nearest 3 + i at
which g(z) is not differentiable. This point is π , so the radius of convergence is the distance
between 3 + i and π (or

√
(3 −π)2 + 1).

We will conclude this section with some consequences of power series expansions which
display important properties of complex functions.

Existence of an Antiderivative

If f is differentiable on an open disk D about z0, we claim that there must exist a dif-
ferentiable function F such that F ′(z) = f (z) for all z in D. F is an antiderivative
of f .

To construct F(z), expand f (z) in a power series about z0 on D as

f (z)=
∞∑

n=0

cn(z − z0)
n
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for z in D. Now let

F(z)=
∞∑

n=0

1

n + 1
cn(z − z0)

n+1.

It is easy to check that F ′(z)= f (z) for z in D.

Isolated Zeros

The Taylor expansion of a function about a point gives us important information about the
zeros of the function. A number ζ is a zero of f if f (ζ )= 0. A zero ζ is isolated if there is
an open disk about ζ containing no other zero of f .

For example, sin(z) has isolated zeros at integer multiples of π . By contrast, let

g(z)=
{

sin(1/z) for z �= 0

0 for z = 0.

Then g has zeros at 0 and 1/nπ for each nonzero integer n. 0 is not an isolated zero,
because every disk about 0 contains zeros 1/nπ , which are arbitrarily close to 0 for n suffi-
ciently large. We claim that this behavior of g(z) at 0 prevents g(z) from being differentiable
there.

THEOREM 21.4

Let f be differentiable on a domain G, and let ζ be a zero of f in G. Then either ζ is an isolated
zero or there is an open disk about ζ on which f (z) is identically zero. �

This means that a differentiable complex function that is not identically zero on a domain
can have only isolated zeros there.

Proof Write the power series expansion of f about ζ as

f (z)=
∞∑

n=0

cn(z − ζ )n

in some open disk D in G centered at ζ . There are two cases.
First, if every cn = 0, then f (z)= 0 throughout D.
Thus, suppose some coefficients are not zero. Let m be the smallest integer such that cm �=0.

Then c0 = c1 = · · ·= cm−1 = 0, and for z in D,

f (z)=
∞∑

n=m

cn(z − ζ )n = (z − ζ )m
∞∑

n=0

cn+m(z − ζ )n.

Next, let g(z)=∑∞
n=0 cn+m(z −ζ )n . Then g is differentiable on D and g(ζ )=cm �=0. Furthermore,

f (z)= (z − ζ )mg(z).

Because g(ζ ) �= 0 there is some open disk K about ζ in which g(z) �= 0. But then f (z) �= 0 if z is
in K and is different from ζ . Therefore, ζ is an isolated zero. �

If ζ is a zero of f , then the smallest m such that cm �= 0 in the Taylor expansion of f about
ζ is called the order of the zero ζ . Because the Taylor coefficients preceding cm must be zero,
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then f ( j)(ζ )= 0 for j = 0,1, · · · ,m − 1, while f (m)(ζ ) �= 0. Therefore, the order of a zero is the
smallest integer such that the derivative of that order is nonzero at ζ .

In the proof of Theorem 21.4, we actually showed that, in some disk about an isolated zero
of f of order m, we can write

f (z)= (z − z)mg(z)

where g(z) �= 0 on this disk. This fact is important in its own right.

EXAMPLE 21.5

Let f (z)= z2 sin(z). Then f has an isolated zero at 0. Compute

f ′(z)= 2z sin(z)+ z2 cos(z),

f ′′(z)= 2 sin(z)+ 4z cos(z)− z2 sin(z),

and

f ′′′(z)= 6cos(z)− 6z sin(z)− z2 cos(z).

Now f (0)= f ′(0)= f ′′(0)= 0, while f ′′′(0) �= 0. Therefore, f has a zero of order 3 at 0.
We will write f (z)= z3g(z) where g(z) is differentiable and nonzero is on some disk about

0. Use the Maclaurin expansion to write

sin(z)= z + 1

3! z
3 + 1

5! z
5 + · · · ,

so

f (z)= z2 sin(z)= z3 + 1

3! z
5 + 1

5! z
7 + · · ·

= z3

(

1 + 1

3! z
2 + 1

5! z
4 + · · ·

)

= z3g(z),

where g(z) �= 0 on a disk about 0. �

One immediate ramification of being able to write f (z)= (z − ζ )mg(z) with g(z) �= 0 in
some disk about ζ is that, under certain conditions, the orders of the zeros of products add and
orders of zeros of quotients subtract (reminiscent of a logarithm). To be specific, suppose h has
a zero of order m at ζ , and k has a zero of order n at ζ . Then

1. h(z)k(z) has a zero of order m + n at ζ .

2. If n<m, then h(z)/k(z) has a zero of order m − n at ζ .

To see why statement (1) is true, write h(z)= (z − ζ )mα(z) and k(z)= (z − ζ )nβ(z), where
α(z) and β(z) are nonzero in some open disk D about ζ . Then

h(z)k(z)= (z − ζ )m+nα(z)β(z)

and α(z)β(z) �= 0 in D, so h(z)k(z) has a zero of order m + n at ζ . Statement (2) is proved
similarly.

These facts will be important when we consider the order of poles as singularities of
functions.
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EXAMPLE 21.6

cos3(z)

(z −π/2)2
has a zero of order 1 at π/2, because the numerator has a zero of order of 3 there, and the
denominator has a zero of order 2. �

SECTION 21.1 PROBLEMS

In each of Problems 1 through 6, find the radius of con-
vergence and open disk of convergence of the power
series.

1.
∞∑

n=0

n + 1

2n
(z + 3i)n

2.
∞∑

n=0
(−1)n

1

(2n + 1)2
(z − i)2n

3.
∞∑

n=0

nn

(n + 1)n
(z − 1 + 3i)n

4.
∞∑

n=0

(
2i

5 + i

)n

(z + 3 − 4i)n

5.
∞∑

n=0

i n

2n+1
(z + 8i)n

6.
∞∑

n=0

(1 − i)n

n + 2
(z − 3)n

7. Is it possible for
∑∞

n=0 cn(z − 2i)n to converge at 0 and
diverge i?

8. Is it possible for
∑∞

n=0 cn(z − 4 + 2i)n to converge at i
and diverge at 1 + i?

In each of Problems 9 through 14, find the Taylor expan-
sion of the function about the point.

9. cos(2z); z = 0
10. e−z; z =−3i

11. z2 − 3z + i; z = 2 − i

12. ez − i sin(z); z = 0
13. (z − 9)2;1 + i

14. sin(z + i);−i

15. Suppose f is differentiable in an open disk about 0
and satisfies f ′′(z) = 2 f (z) + 1. Suppose f (0) = 1
and f ′(0)= i . Find the first six terms of the Maclaurin
expansion of f (z).

16. Find the first seven terms of the Maclaurin expansion
of f (z)= sin2(z) in four ways, as follows.

(a) First, compute the Taylor coefficients at 0.
(b) Find the first seven terms of the product of the

Maclaurin series for sin(z) with itself.
(c) Write sin2(z) in terms of the exponential func-

tion and use the Maclaurin expansion of this
function.

(d) Write sin2(z) = (1 − cos(2z))/2, and use the
Maclaurin expansion of cos(z).

17. Show that

∞∑

n=0

1

(n!)2 = 1

2π

∫ 2π

0

e2z cos(θ)dθ.

Hint: Show that

(
zn

n!
)2

= 1

2π i

∮

γ

zn

n!wn+1
ezwdw

for n = 0,1,2, · · · and γ is the unit circle about the
origin.

In each of Problems 18 through 24, determine the order of
the zero of the function.

18. f (z)= z3 cos(z); z = 0
19. f (z)= z2 sin2(z); z = 0
20. f (z)= (z −π/2)2 cos(z); z =π/2
21. f (z)= cos3(z); z = 3π/2
22. f (z)= cos4(z −π/2), z = 0
23. f (z)= sin(z4)/z2, z = 0

24. f (z)= (z−π)5
sin2(z)

, z =π
25. Suppose

f (z)=
∞∑

n=0

an(z − z0)
n =

∞∑

n=0

bn(z − z0)
n

in some open disk D about z0. Show that an = bn for
n = 0,1,2, · · · .
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21.2 The Laurent Expansion

If f is differentiable in some disk about z0, then f (z) has a Taylor series representation about z0.
If f is not differentiable at z0, then f (z) may have a different kind of series expansion about z0,
which is a Laurent expansion. This will have important applications in evaluating integrals. First
we need some terminology.

The open set of points between two concentric circles is called an annulus. Typically, an
annulus with center z0 is described by inequalities

r < |z − z0|< R,

in which r is the radius of the inner circle and R is the radius of the outer circle. We allow
r = 0, in which case the annulus 0< |z − z0|< R is the open disk of radius R about z0 with the
center removed. Such an annulus is called a punctured disk. We also allow R = ∞, in which
case the annulus r < |z − z0| <∞ consists of all points outside the inner circle. An annulus
0< |z − z0|<∞ is the entire plane with z0 removed.

We can now state the fundamental result on Laurent series.

THEOREM 21.5 The Laurent Expansion

Let f be differentiable in the annulus r < |z − z0|< R where 0 ≤ r < R ≤∞. Then, for each z in
this annulus,

f (z)=
∞∑

n=−∞
cn(z − z0)

n,

where for each integer n,

cn = 1

2π i

∮

γ

f (z)

(z − z0)n+1
dz

with γ as any closed path in the annulus enclosing z0. �

A proof is outlined in Problem 11.
The Laurent expansion about z0 enables us to write, in some annulus about z0,

f (z)=
−1∑

n=−∞
cn(z − z0)

n +
∞∑

n=0

cn(z − z0)
n = h(z)+ g(z),

where

h(z)=
−1∑

n=−∞
cn(z − z0)

n

= · · ·+ c−3

(z − z0)3
+ c−2

(z − z0)2
+ c−1

(z − z0)

contains all of the terms in the expansion with negative powers of z − z0 and

g(z)=
∞∑

n=0

cn(z − z0)
n

= c0 + c1(z − z0)+ c2(z − z0)
2 + · · ·
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contains all the nonnegative powers of z − z0. The series defining g(z) is a power series about z0

and so is a differentiable function in the open disk |z − z0|< R. Any “bad” behavior of f (z) near
z0 is contained in h(z).

It can be shown (Problem 12) that, if

f (z)=
∞∑

n=−∞
cn(z − z0)

n =
∞∑

n=−∞
dn(z − z0)

n

in some annulus about z0, then cn = dn for each integer n. This means that a Laurent expansion is
unique to f and z0 and will be the same no matter how it is derived. This is important, because
usually, we obtain a Laurent expansion by manipulating known series and very rarely use the
integral formula to compute the coefficients.

EXAMPLE 21.7

The Laurent expansion of e1/z about 0 is

∞∑

n=0

1

n!
(

1

z

)n

= 1 + 1

z
+ 1

2!
1

z2
+ · · · ,

which is obtained by replacing z with 1/z in the Maclaurin expansion of ez . This Laurent
expansion is valid for 0< |z<∞, hence, in the entire plane with the origin removed. �

EXAMPLE 21.8

f (z)= cos(z)/z5 is differentiable in the annulus 0 < |z|<∞, which is the entire plane with
the origin removed. We know the Taylor expansion of cos(z) about 0. Therefore, we know the
Laurent expansion of f (z) in 0< |z|<∞ is

f (z)= 1

z5
cos(z)= 1

z5

∞∑

n=0

(−1)n

(2n)! z2n

=
∞∑

n=0

(−1)n

(2n)! z2n−5

= 1

z5
− 1

2

1

z3
+ 1

24

1

z
− 1

720
z + 1

40,320
z3 − · · · for z �= 0.

We can think of

cos(z)

z5
= h(z)+ g(z),

where

h(z)= 1

z5
− 1

2!
1

z3
+ 1

4!
1

z
,

and

g(z)=− 1

6! z + 1

8! z
3 − · · · .

g(z) is differentiable for all z and h(z) is differentiable on the plane with the origin removed, so
h(z)+ g(z) is differentiable on the plane with the origin removed. It is the behavior of h(z) near
the origin that determines the behavior of cos(z)/z5 there. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:35 THM/NEIL Page-727 27410_21_ch21_p715-728

21.2 The Laurent Expansion 727

EXAMPLE 21.9

Let

f (z)= 1

(z + 1)(z − 3i)
.

Then f is differentiable except at −1 and 3i . We will find the Laurent expansion of f (z) about
−1. Use a partial fractions decomposition to write

f (z)= −1 + 3i

10

1

z + 1
+ 1 − 3i

10

1

z − 3i
.

On the right, the first term is itself a Laurent expansion about −1, because it is a sum (with only
one term) of powers of z + 1. Therefore, concentrate on the second term. We will manipulate it
and use a geometric series, keeping in mind that we want a series of powers of z + 1:

1

z − 3i
= 1

−1 − 3i + (z + 1)
= 1

−1 − 3i

1

1 − z+1
1+3i

=− 1

1 + 3i

∞∑

n=0

(
z + 1

1 + 3i

)n

=
∞∑

n=0

−1

(1 + 3i)n+1
(z + 1)n.

This expansion is valid for
∣
∣
∣
∣

z + 1

1 + 3i

∣
∣
∣
∣< 1

or |z + 1|<√
10. The Laurent expansion of f (z) about −1 is

f (z)= −1 + 3i

10

1

z + 1
− 1 − 3i

10

∞∑

n=0

−1

1 + 3i

n+1

(z + 1)n

in the annulus 0< |z + 1|<√
10. Behavior of f (z) as z approaches −1 is determined by the

1/(z + 1) term in this expansion. �

We have emphasized that we do not want to have to use the integral formula for the cn’s to
compute a Laurent expansion. This is really just the tip of the iceberg. Usually we are interested
in just one term of a Laurent expansion because it will enable us to evaluate integrals. This is the
theme of the next chapter.

SECTION 21.2 PROBLEMS

In each of Problems 1 through 10, write the Laurent expan-
sion of f (z) in an annulus 0 < |z − z0| < R about z0,
specifying R for each problem. These should all be done
by manipulating known series.

1. 2z/(1 + z2); i

2. sin(z)/z2;0

3. (1 − cos(2z))/z2;0

4. z2 cos(i/z);0

5. z2/(1 − z);1

6. (z2 + 1)/(2z − 1);1/2

7. ez2
/z2;0

8. sin(4z)/z;0

9. (z + i)/(z − i); i

10. sinh(1/z3);0

11. Fill in the details of the following proof of the Laurent
expansion theorem (21.5). Let z be in the annulus, and
choose r1 and r2 such that

0< r < r1 < r2 < R

and so that the circle γ1 : |z − z0|= r1 does not enclose
z while the circle γ2 : |z − z0| = r2 encloses z. Insert
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z0

z

r

r1
r2

R

�2

�1

FIGURE 21.2 Circles in the proof of Theorem 21.5 for
Problem 21.11, Section 21.2.

L2

L2

L1

L1

z0

z0

z
�1

�2

FIGURE 21.3 �1 and �2 in the proof of The-
orem 21.5 for Problem 21.11, Section 21.2.

line segments L1 and L2 between these circles (Figure
21.2), forming two closed paths �1 and �2 in the
annulus (shown separately in Figure 21.3). Show that

f (z)= 1

2π i

∮

�1

f (w)

w− z
dw

and
1

2π i

∮

�2

f (w)

w− z
dw= 0.

Add these to obtain

f (w)= 1

2π i

∮

�1

f (w)

w− z
dw+ 1

2π i

∮

�2

f (w)

w− z
dw

with counterclockwise orientation on both paths. By
noting that in these integrals, the parts of the inte-
grals over the line segments vanish (these segments
are traversed in both directions), show that

f (z)= 1

2π i

∮

γ2

f (w)

w− z
dz − 1

2π i

∮

γ1

f (w)

w− z
dw

with both integrations counterclockwise over the
closed path.

On γ2, show that |(z − z0)/(w− z0)|< 1, and use
the geometric series to write

1

w− z
=

∞∑

n=0

1

(w− z0)n+1
(z − z0)

n .

On γ1, show that |(w− z0)/(z − z0)|< 1 to show that

1

w− z
=−

∞∑

n=0

(w− z0)
n 1

(z − z0)n+1
.

Use these to show that

f (z)=
∞∑

n=0

(
1

2π i

∮

γ2

f (w)

(w− z0)n+1
dw

)

(z − z0)
n

+
∞∑

n=0

(
1

2π i

∮

γ1f (w)(w− z0)
n dw

)
1

(z − z0)n+1
.

Finally, replace n =−m −1 in the last summation, and
then use the deformation theorem to replace γ1 and γ2

by any closed path � about z0 and in the annulus.
12. Fill in the details of the following proof of the unique-

ness of Laurent expansions. Suppose, in the annulus,

f (z)=
∞∑

n=−∞
cn(z − z0)

n =
∞∑

n=−∞
bn(z − z0)

n,

where the cn’s are the Laurent coefficients. Then

2π ick =
∮

γ

f (w)

(w− z0)k+1
dw

=
∮

γ

( ∞∑

n=−∞
bn(z − z0)

n

)
1

(w− z0)k+1
dw

=
∞∑

n=−∞
bn

∮

γ

1

(w− z0)k−n+1
dw.

Choose γ as a circle, and evaluate the integral in the
last summation to complete the proof.
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CHAPTER 22
Singularities
and the Residue
Theorem

SINGULARITIES THE RESIDUE THEOREM
EVALUATION OF REAL INTEGRALS
RESIDUES AND THE INVERSE LAPLACE
TRANSFORM

22.1 Singularities

We will use the Laurent expansion to classify points at which complex functions are not
differentiable.

We say that f has an isolated singularity at z0 if f is differentiable in an annulus 0<
|z − z0|< R, but not at z0 itself.

For example, 1/z has an isolated singularity at z = 0, and sin(z)/(z − π) has an isolated
singularity at z =π .

We will identify three different kinds of isolated singularities, depending on the coefficients
in the Laurent expansion.

Classification of Singularities

Suppose f has an isolated singularity at z0. Let the Laurent expansion of f (z) in an annulus
0< |z − z0|< R be

f (z)=
∞∑

n=−∞
cn(z − z0)

n.

1. z0 is a removable singularity if cn = 0 for every negative integer n.

729
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2. z0 is a pole of order m, with m a positive integer, if c−m �= 0, but

c−m−1 = c−m−2 = c−m−3 = · · ·= 0.

3. z0 is an essential singularity if c−n �= 0 for infinitely many positive integers n.

Thus, z0 is a removable singularity if the Laurent expansion about z0 is actually a power
series, a pole of order m if 1/(z − z0)

m is the largest power of 1/(z − z0) appearing in the Laurent
expansion of f (z) about z0, and an essential singularity if the expansion of f (z) about z0 has
infinitely many powers of 1/(z − z0) with nonzero coefficients.

EXAMPLE 22.1

Let f (z)= (1 − cos(z))/z. Then f is differentiable for all z �= 0 and is not defined at 0. Using
the Maclaurin series for cos(z), the Laurent expansion of f (z) around zero is

f (z)= 1 − cos(z)

z
= 1

z

(

1 −
∞∑

n=0

(−1)n

(2n)! z2n

)

= 1

z

(
1

2! z
2 − 1

4! z
4 + 1

6! z
6 − · · ·

)

= 1

2! z − 1

4! z
3 + 1

6! z
5 − · · · .

Since this is a power series about 0, f has a removable singularity at 0. We can define f (0)= 0,
the value of this power series at z = 0, and this “extended” f is differentiable at 0. �

EXAMPLE 22.2

Let f (z) = 1/(z + i)2. This function is its own Laurent expansion about −i , where it is not
differentiable. Because the largest power of 1/(z + i) appearing in this expansion is 1/(z + i)2,
f has a pole of order 2 at −i . There is no way to define f (−i), so the extended function is
differentiable at −i . �

EXAMPLE 22.3

Let g(z)= sin(z)/z5. This function is differentiable except at z =0, where it is not defined. Using
the Maclaurin expansion of sin(z), the Laurent expansion of f about 0 is

f (z)=
∞∑

n=0

(−1)n

(2n + 1)!
z2n+1

z5
=

∞∑

n=0

(−1)n

(2n + 1)! z
2n−4

= 1

z4
− 1

3!
1

z2
+ · · ·

for z �= 0. The highest power of 1/z appearing in this expansion is 4, so f has a pole of order 4
at 0. �
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EXAMPLE 22.4

The Laurent expansion of e1/z about 0 is

e1/z =
∞∑

n=0

1

n!
1

zn

for z �= 0. f has an essential singularity at 0, because infinitely many powers of 1/z appear in
this expansion. �

A pole of order 1 is called a simple pole, and a pole of order 2 is a double pole.

We do not want to have to resort to a Laurent expansion to classify a singularity. For the rest
of this section, we will explore other ways to do this.

THEOREM 22.1 Condition for a Pole of Order m

Let f be differentiable in 0< |z − z0|< R. Then f has a pole of order m at z0 if and only if

lim
z→z0

(z − z0)
m f (z)

exists and is finite and nonzero. �
Proof We can understand how this condition arises by manipulating the Laurent expansion of
f (z) about z0:

f (z)=
∞∑

n=−∞
cn(z − z0)

n

for 0< |z − z0|< R. If f has a pole of order m at z0, then c−m �= 0 and c−m−1 = cm−2 = · · ·= 0, so
the Laurent about the z0 expansion is

f (z)= c−m

(z − z0)m
+ c−m+1

(z − z0)m−1
+ · · · .

Then

(z − z0)
m f (z)= c−m + c−m+1(z − z0)+ c−m+2(z − z0)

2 + · · · ,
so

lim
z→z0

(z − z0)
m f (z)= c−m �= 0. �

We will omit the details of the proof of the converse.
To illustrate the idea, look again at Example 22.3 with g(z)= sin(z)/z5 and z0 =0. Compute

lim
z→0

z4g(z)= lim
z→0

z4 sin(z)

z5
= lim

z→0

sin(z)

z
= 1,

which is a limit that can be seen by using the Maclaurin expansion of sin(z) about 0 to write

sin(z)

z
= 1 − z2

3! + z4

5! − · · · .
Theorem 22.1 tells us that sin(z)/z5 has a pole of order 4 at 0, as we found in Example 22.3 by
examining the Laurent expansion. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 15:37 THM/NEIL Page-732 27410_22_ch22_p729-750

732 CHAPTER 22 Singularities and the Residue Theorem

If f (z) is a quotient of functions, it is natural to look for poles at places where the denom-
inator vanishes, that is, where the denominator has a zero. With some care, this strategy is
effective.

THEOREM 22.2 Poles of Quotients (1)

Let f (z)= h(z)/g(z) where h and g are differentiable in some open disk about z0. Suppose that
h(z0) �= 0 but g(z) has a zero of order m at z0. Then f has a pole of order m at z0. �

EXAMPLE 22.5

Let

f (z)= 1 + ez2 + 4z3

sin6(z)
.

Then f has a pole of order 6 at 0 because the numerator is differentiable and nonzero at z = 0,
while the denominator is differentiable and has a zero of order 6 at 0. �

EXAMPLE 22.6

Let

f (z)= 1

cos3(z)
.

Then f has a pole of order 3 at each zero of cos(z), which are the numbers z = (2n + 1)π/2 for
integer n. �

Theorem 22.2 does not apply if the numerator also vanishes at z0. The example f (z) =
sin(z)/z5 is instructive. The numerator has a zero of order 1 at 0, the denominator has a zero of
order 5 at 0, but the quotient has a pole of order 4 at 0. It appears that the orders of the zeros
of the numerator and denominator subtract to give the order of the pole. That is, zeros appear to
cancel (recall the observations about addition and subtraction of orders of zeros in quotients at
the end of Chapter 21). This is indeed the case.

THEOREM 22.3 Poles of Quotients (2)

Let f (z)= h(z)/g(z), and suppose h and g are differentiable in some open disk about z0. Let h
have a zero of order k at z0, and let g have a zero of order m at z0 with m> k. Then f has a pole
of order m − k at z0. �

If m = k in Theorem 22.3, f has a removable singularity at z0 (recall Example 22.1). If
m< k, then f does not have a pole at z0.

EXAMPLE 22.7

Let

f (z)= (z − 3π/2)4

cos7(z)
.
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Here h(z)= (z − 3π/2)4 has a zero of order 4 at 3π/2, and g(z)= cos7(z) has a zero of order 7
at 3π/2. Therefore, f has a pole of order 3 at 3π/2. �

EXAMPLE 22.8

f (z)= tan3(z)/z9 has a pole of order 6 at 0, because the numerator has a zero of order 3 there
and the denominator has a zero of order 9. �

EXAMPLE 22.9

Let

f (z)= 1

cos4(z)(z −π/2)3 .
Then f has a pole of order 7 at π/2. f also has poles of order 4 at each (2n + 1)π/2 with n as
any nonzero integer. �

SECTION 22.1 PROBLEMS

In each of Problems 1 through 12, determine all singulari-
ties of the function and classify each singularity. In the case
of a pole, give the order of the pole.

1. cos(z)/z2

2.
4 sin(z + 2)

(z + i)2(z − i)

3. e1/z(z + 2i)

4. sin(z)/(z −π)

5.
cos(2z)

(z − 1)2(z2 + 1)

6. z/(z + 1)2

7. (z − i)/(z2 + 1)

8. sin(z)/ sinh(z)

9. z/(z4 − 1)

10. tan(z)

11. sec(z)

12. e1/z(z+1)

13. Let f be differentiable at z0 and f (z0) �=0. Let g have
a pole of order m at z0. Show that f g has a pole of
order m at z0.

22.2 The Residue Theorem

We will use singularities and a single term of the Laurent expansion to develop a powerful method
for evaluating integrals.

Suppose f is differentiable in an annulus 0< |z − z0|< R and has an isolated singularity at
z0. Let γ be a closed path in this annulus enclosing z0. We want to evaluate

∮
γ

f (z)dz. At least
in theory, we can write the Laurent expansion

f (z)=
∞∑

n=−∞
cn(z − z0)

n.

Recall the formula for the cn’s:

cn = 1

2π i

∮

γ

f (z)

(z − z0)n+1
dz

for n = · · · ,−1,−2,0,1,2, · · · . The coefficient of 1/(z − z0) in the expansion is

c−1 = 1

2π i

∫

γ

f (z)dz.
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This means that
∮

γ

f (z)dz = 2π ic−1.

We will know the integral if we just know c−1! This one term of the Laurent expansion wins the
game!

The coefficient of 1/(z − z0) in the Laurent expansion of f about z0 is called the residue
of f at z0 and is denoted Res( f, z0).

What we have so far is that
∮
γ

f (z)dz = 2π iRes( f, z0) if z0 is the only singularity of f
enclosed by γ . This is of limited value. The power of the residue theorem is that it allows for any
finite number of singularities of f to be enclosed by γ .

THEOREM 22.4 The Residue Theorem

Let γ be a closed path, and suppose f is differentiable on γ and all points enclosed by γ , except
for z1, · · · , zn , which are all of the isolated singularities of f enclosed by γ . Then

∮

γ

f (z)dz = 2π i
n∑

j=1

Res( f, z j). �

The proof is immediate. Enclose each z j by a small circle C j that does not intersect any of
the other circles or γ . Because C j encloses just one singularity, z j ,

∮
C j

f (z)dz = 2π iRes( f, z j).
By the extended deformation theorem,

∮

γ

f (z)dz =
n∑

j=1

∮

C j

f (z)dz = 2π i
n∑

j=1

Res( f, z j).

The residue theorem is as effective as our ability to evaluate residues. We do not want to have
to write a Laurent series about each singularity to pick off the coefficient of each 1/(z − z j). We
will now develop efficient ways to compute residues at poles.

THEOREM 22.5 Residue at a Simple Pole

If f has a simple pole at z0, then

Res( f, z0)= lim
z→z0

(z − z0) f (z). �

To see why this is true, the Laurent expansion of f about a simple pole z0 has the form

f (z)= c−1

z − z0

+
∞∑

n=0

cn(z − z0)
n

in some annulus about z0. Then

(z − z0) f (z)= c−1 +
∞∑

n=0

cn(z − z0)
n+1,

so c−1 = limz→z0(z − z0) f (z).
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EXAMPLE 22.10

f (z)= sin(z)/z2 has a simple pole at 0, and

Res( f,0)= lim
z→0

z f (z)= lim
z→0

sin(z)

z
= 1.

Because 0 is the only singularity of f , if γ is any closed path enclosing the origin, then
∮

γ

sin(z)

z2
dz = 2π iRes( f,0)= 2π i. �

Here is an alternative version of Theorem 22.5.

COROLLARY 22.1

Let f (z)= h(z)/g(z) where h is continuous at z0 and h(z0) �= 0. Suppose g is differentiable at z0

and has a simple zero there. Then f has a simple pole at z0, and

Res( f, z0)= h(z0)

g′(z0)
. �

The fact that f has a simple pole at z0 follows from Theorem 22.2. By Theorem 22.5,
because g(z0)= 0, we can write

Res( f, z0)= lim
z→z0

(z − z0) f (z)

= lim
z→z0

(z − z0)
h(z)

g(z)

= lim
z→z0

h(z)

(g(z)− g(z0))/(z − z0)
= h(z0)

g′(z0)
.

EXAMPLE 22.11

Let

f (z)= 4i z − 1

sin(z)
.

Then f has a simple pole at π , and by the corollary,

Res( f,π)= 4iπ − 1

cos(π)
= 1 − 4π i.

In fact, f has a simple pole at nπ for each integer n, and

Res( f,nπ)= 4inπ − 1

cos(nπ)
= (−1)n(4inπ − 1). �

EXAMPLE 22.12

Evaluate
∮
γ

f (z)dz where f (z) is the function of Example 22.11 and γ is the closed path shown
in Figure 22.1.
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x

y

3π2π–π π

�

FIGURE 22.1 γ in Example 22.12.

The singularities of f enclosed by γ are 0,π , 2π,3π and −π . By the residue theorem and
the conclusion of Example 22.11,

∮

γ

4i z − 1

sin(z)
dz = 2π i

3∑

n=−1

Res( f,nπ)

= 2π i[−(−1 − 4π i)− 1 − (−1 + 4π i)+ (−1 + 8π i)− (−1 + 12π i)]
= 8 + 2π i. �

Next we treat poles of multiplicity greater than one.

THEOREM 22.6 Residue at a Pole of Order m

Let f have a pole of order m at z0. Then

Res( f, z0)= 1

(m − 1)! lim
z→z0

dm−1

dzm−1
[(z − z0)

m f (z)]. �

The theorem can be proved by manipulating the Laurent expansion of f (z) about z0, which
in the case of a pole of order m is

f (z)= c−m

(z − z0)m
+ c−m+1

(z − z0)m−1
+ · · · ,

so that

(z − z0)
m f (z)= c−m + c−m+1(z − z0)+ · · · + c−1(z − z0)

m−1 + · · · .
Differentiation of this equation m − 1 times isolates c−1, yielding the residue of f at z0.

Theorem 22.6 reduces to Corollary 22.1 if m = 1 with the conventions that 0! = 1 and the
zero-order derivative of a function is the function itself.

By this result, to obtain the residue of f at a pole of order m,
1. Multiply f (z) by (z − z0)

m .

2. Differentiate m − 1 times.

3. Take the limit as z approaches z0.

4. Divide by (m − 1)!.
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EXAMPLE 22.13

Let

f (z)= cos(z)

(z + i)3
.

f has a pole of order 3 at −i , and

Res( f,−i)= 1

2! lim
z→−i

d2

dz2

(

(z + i)3
cos(z)

(z + i)3

)

= 1

2
lim
z→−i

d2

dz2
cos(z)=−1

2
cos(−i)=−1

2
cos(i). �

The following example emphasizes that the value of
∮
γ

f (z)dz depends on the residues of
f at singularities enclosed by γ . Any other singularities (outside of γ ) are irrelevant for this
integral.

EXAMPLE 22.14

Evaluate
∮
γ

f (z)dz where

f (z)= 2i z − cos(z)

z3 + z

if γ is any closed path not passing through a singularity of f .
The singularities of f are simple poles at 0, i,−i . We will need the residues:

Res( f,0)= − cos(0)

1
=−1,

Res( f, i)= 2i 2 − cos(i)

3i 2 + 1
= −2 − cos(i)

−2
= 1 + 1

2
cos(i),

Res( f,−i)= 2i(−i)− cos(−i)

3(−i)2 + 1
=−1 + 1

2
cos(i).

The following cases occur.

Case 1 If γ does not enclose any of the singularities of f , then
∮
γ

f (z)dz = 0 by Cauchy’s
theorem.

Case 2 If γ encloses 0 but not ±i ,
∮

γ

f (z)dz = 2π iRes( f,0)=−2π i.

Case 3 If γ encloses i but not 0 or −i ,
∮

γ

f (z)dz = 2π i

(

1 + 1

2
cos(i)

)

.

Case 4 If γ encloses −i but not 0 or i ,
∮

γ

f (z)dz = 2π i

(

−1 + 1

2
cos(i)

)

.
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Case 5 If γ encloses 0 and i but not −i ,
∮

γ

f (z)dz = 2π i

(

−1 + 1 + 1

2
cos(i)

)

=π i cos(i).

Case 6 If γ encloses 0 and −i but not i ,
∮

γ

f (z)dz = 2π i

(

−1 − 1 + 1

2
cos(i)

)

= 2π i

(

−2 + 1

2
cos(i)

)

.

Case 7 If γ encloses i and −i but not 0,
∮

γ

f (z)dz = 2π i

(

1 + 1

2
cos(i)− 1 + 1

2
cos(i)

)

= 2π i cos(i).

Case 8 If γ encloses all three singularities,
∫

γ

f (z)dz = 2π i

(

−1 + 1 + 1

2
cos(i)− 1 + 1

2
cos(i)

)

= 2π i(−1 + cos(i)). �

EXAMPLE 22.15

Let

f (z)= sin(z)

z2(z2 + 4)
.

f has a simple poles at 0 and ±2i . Suppose γ is a closed path enclosing 0 and 2i but not −2i .
Compute the residues of f at 0 and 2i . In doing this, the corollary does not apply for the
residue of f at 0 because sin(0)= 0. We can, if we wish, use the corollary for the residue at 2i .
Compute

Res( f,0)= lim
z→0

z f (z)= lim
z→0

sin(z)

z

1

z2 + 4
= 1

4

and

Res( f,2i)= lim
z→2i

sin(z)

z2(z − 2i)(z + 2i)

= sin(2i)

(−4)(4i)
= i

16
sin(2i).

Then
∮

γ

f (z)dz = 2π i

(
1

4
+ i

16
sin(2i)

)

. �

EXAMPLE 22.16

We will evaluate
∮
γ

e1/z dz where γ is a closed path enclosing the origin.
The Laurent expansion of e1/z about 0 is

e1/z =
∞∑

n=0

1

n!
1

zn
,

so 0 is an essential singularity. There is no simple formula for residues at essential singularities.
Because we have the Laurent expansion of e1/z about 0, we can read that the coefficient of 1/z is 1,
so Res( f,0) = 1 and

∮
γ

e1/z dz = 2π i . �
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SECTION 22.2 PROBLEMS

In each of Problems 1 through 16, use the residue theorem
to evaluate the integral.

1.
∮
γ

1 + z2

(z − 1)2(z + 2i)
dz with γ the circle of radius 7

about −i .

2.
∮
γ

2z

(z − i)2
dz with γ the circle of radius 3 about 1.

3.
∮
γ

ez

z
dz with γ the circle of radius 2 about −3i .

4.
∮
γ

cos(z)

4 + z2
dz with γ the square of side length 3 and

sides parallel to the axes centered at −2i .

5.
∮
γ

z + i

z2 + 6
dz with γ the square of side length 8 and

sides parallel to the axes centered at the origin.

6.
∮
γ

z − i

2z + 1
dz with γ the circle of radius 1 about the

origin.

7.
∮
γ

z

sinh2(z)
dz with γ the circle of radius 1 about 1/2.

8.
∮
γ

cos(z)

zez
dz with γ the circle of radius 1/2 about i/8.

9.
∮
γ

i z

(z2 + 9)(z − i)
dz with γ the circle of radius 2

about −3i .

10.
∮
γ

e2/z2
dz with γ the square with sides parallel to the

axes and of length 3 centered at −i .

11.
∮
γ

8z − 4i + 1

z + 4i
dz with γ the circle of radius 2 about

−i .

12.
∮
γ

z2

z − 1 + 2i
dz with γ the square of side length 4 and

sides parallel to the axes centered at 1 − 2i .

13.
∮
γ

coth(z)dz with γ the circle of radius 2 about i .

14.
∮
γ

(1 − z)2

z3 − 8
dz with γ the circle of radius 2 about 2.

15.
∮
γ

e2z

z(z − 4i)
dz with γ any closed path enclosing 0

and 4i .

16.
∮
γ

(
z

z − 1

)2

dz with γ any closed path enclosing 1.

17. Let h and g be differentiable at z0 and g(z0) �= 0.
Suppose h has a zero of order 2 at z0. Show that

Res(g(z)/h(z), z0)= 2g′(z0)

h ′′(z0)
− 2

3

g(z0)h(3)(z0)

(h ′′(z0))2
.

Hint: Use Theorem 22.6. Begin by writing h(z) =
(z − z0)

2ϕ(z) where ϕ(z0) �= 0.

18. Suppose f is differentiable at points on a closed path
γ and at all points in the region G enclosed by γ ,
except possibly at a finite number of poles of f in G.
Let Z be the number of zeros of f in G and P be the
number of poles of f in G with each zero and pole
counted as many times as its multiplicity. Show that

1

2π i

∮

γ

f ′(z)
f (z)

dz = Z − P.

This formula is known as the argument principle.
Hint: If f has a zero of order k at z0, show by looking
at the Taylor expansion of f (z) about z0 that

f ′(z)
f (z)

= k

z − z0

+ g′(z)
g(z)

where g is differentiable at z0 and g(z0) �= 0. Use this
to evaluate Res( f ′/ f, z0).

If f has a pole of order m at z1, show by
examining the Laurent expansion of f (z) about z1 that

f ′(z)
f (z)

= − m

z − z1

+ h ′(z)
h(z)

for some h(z) that is differentiable and nonzero at z1.
Use these facts and the residue theorem to derive

the argument principle.

19. Evaluate
∮

γ

z

2 + z2
dz

with γ as the circle |z| = 2 first by using the residue
theorem and then by using the argument principle.

20. Evaluate
∮
γ

tan(z)dz with γ the circle |z| = π first
by using the residue theorem and then by using the
argument principle.

21. Evaluate
∮

γ

z + 1

z2 + 2z + 4
dz

with γ the circle |z| = 2, first by using the residue
theorem and then by using the argument principle.

22. Let

p(z)= (z − z1)(z − z2) · · · (z − zn)

with z1, · · · , zn distinct complex numbers. Let γ be
a positively oriented closed path enclosing each z j .
Evaluate

∮

γ

p′(z)
p(z)

dz

first by using the residue theorem and then by using
the argument principle.
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22.3 Evaluation of Real Integrals

Complex integration can be used to evaluate some types of real integrals that are otherwise
inaccessible. We will illustrate with three classes of integrals.

22.3.1 Rational Functions

We will apply complex integration to evaluate real integrals of the form
∫ ∞

−∞

p(x)

q(x)
dx

in which p and q are polynomials with real coefficients. A quotient of polynomials is called a
rational function. Assume that the degree of q exceeds that of p by at least 2, that p and q have
no common factors, and that q(x) has no real zeros. This ensures convergence of the improper
integral.

The idea is to create a complex integral whose value is this real integral, then use the residue
theorem to evaluate the complex integral. To do this, assume that we can find all the zeros of
q(z). Since q(z) has real coefficients and no real zeros, its zeros occur in complex conjugate
pairs z1, z1,, z2, z2, · · · , zm, zm with each z j in the upper half-plane and its conjugate in the lower
half-plane.

Let �R be the curve of Figure 22.2 consisting of a semicircle γR of radius R and the segment
SR from −R to R on the real axis with R large enough that �R encloses z1, · · · , zm . These are all
the poles of p(z)/q(z) in the upper half-plane. Then

∮

�R

p(z)

q(z)
dz = 2π i

m∑

j=1

Res( f, z j)=
∫

SR

p(z)

q(z)
dz +

∫

γR

p(z)

q(z)
dz. (22.1)

On SR , z = x as x varies from −R to R for counterclockwise orientation on �R , so
∫

SR

p(z)

q(z)
dz =

∫ R

−R

p(x)

q(x)
dx .

Therefore, equation (22.1) is
∫ R

−R

p(x)

q(x)
dx +

∫

γR

p(z)

q(z)
dz = 2π i

m∑

j=1

Res( f, z j). (22.2)

x

y

R–R SR

z1

z2

zm

�R

FIGURE 22.2 Evaluation of real inte-
grals of rational functions.
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Take the limit in this equation as R →∞. In this limit, the semicircle γR expands over the entire
upper half-plane, and the interval [−R, R] expands over the real line. Furthermore, because q(z)
has degrees at least 2 more than the degree of p(z), the degree of z2 p(z) does not exceed that
of q(z). This means that, for large R, z2 p(z)/q(z) is bounded. If |z2 p(z)/q(z)| ≤ M for |z| ≥ R,
then

∣
∣
∣

p(z)

q(z)

∣
∣
∣≤ M

|z|2 ≤ M

R2
for |z| ≥ R.

But then, because γR has length πR,
∣
∣
∣

∫

SR

p(z)

q(z)
dz
∣
∣
∣≤ M

R2
(πR)→ 0 as R → ∞.

Therefore, in the limit as R → ∞ in equation (22.2), the integral over γR tends to zero and we
are left with

∫ ∞

−∞

p(x)

q(x)
dx = 2π i

m∑

j=1

Res(p(z)/q(z), z j). (22.3)

In sum, under the stated assumptions,
∫ ∞

−∞ p(x)/q(x)dx can be evaluated as 2π i times the
sum of the residues of p(z)/q(z) at the zeros of q(z) occurring in the upper half-plane.

EXAMPLE 22.17

We will evaluate
∫ ∞

∞

1

x6 + 64
dx .

The conditions of the method are met with p(z)=1 and q(z)= z6 +64. The zeros of q(z) are the
sixth roots of −64. To find these, put −64 in polar form as −64 = 64ei(π+2nπ) in which n can be
any integer. The sixth roots are 2ei(π+2nπ) for n = 0,1,2,3,4,5. The three sixth roots in the upper
half-plane correspond to n = 0,1,2 and are

z1 = 2eπ i/6, z2 = 2eπ i/2 = 2i, and z3 = 2e5π i/6.

We need the residue of p(z)/q(z) at each of these simple poles:

Res(p(z)/q(z), z1)= 1

6(2eπ i/6)5
= 1

192
e−5π i/6,

Res(p(z)/q(z), z2)= 1

6(2i)5
=− i

192
,

and

Res(p(z)/q(z), z3)= 1

6(2e5π i/6)5
= 1

192
e−25π i/6 = 1

192
e−π i/6.

Then
∫ ∞

−∞

p(x)

q(x)
dx = 2π i

192
[e−5π i/6 − i + e−π i/6]

= π i

96

[

cos

(
5π

6

)

− i sin

(
5π

6

)

− i + cos
(π

6

)
− i sin

(π

6

)]

.

Now

cos

(
5π

6

)

+ cos
(π

6

)
= 0 and sin

(
5π

6

)

= sin
(π

6

)
= 1

2
,
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so
∫ ∞

−∞

1

x6 + 64
dx = π i

96
(−2i)= π

48
. �

22.3.2 Rational Functions Times Cosine or Sine

Suppose p and q are polynomials with real coefficients, have no common zeros, and the degree
of q exceeds that of p by at least 2. Suppose also that q has no real zeros, and zeros z1, · · · , zm

are in the upper half-plane. We want to evaluate integrals of the form
∫ ∞

−∞

p(x)

q(x)
cos(cx)dx and

∫ ∞

−∞

p(x)

q(x)
sin(cx)dx

in which c can be any positive number.
The idea is to consider

∮

�R

p(z)

q(z)
eicz dz

with �R as the curve of Section 22.3.1, consisting of the upper part of a semicircle and part of
the real axis joining the ends of the semicircle. We obtain

∮

�R

p(z)

q(z)
eicz dz = 2π i

m∑

j=1

Res(p(z)eicz/q(z), z j)

=
∫

γR

p(z)

q(z)
eicz dz +

∫

SR

p(z)

q(z)
eicz dz

=
∫

γR

p(z)

q(z)
eicz dz +

∫ R

−R

p(x)

q(x)
cos(cx)dx + i

∫ R

−R

p(x)

q(x)
sin(cx)dx .

Take the limit as R → ∞. As in Section 22.3.1, the integral over γR tends to 0 and
∫ ∞

−∞

p(x)

q(x)
cos(cx)dx + i

∫ ∞

−∞

p(x)

q(x)
sin(cx)dx = 2π i

m∑

j=1

Res(p(z)eicz/q(z), z j). (22.4)

We actually obtain two real integrals in this calculation. After computing 2π i times the sum
of the residues, the real part of this number is the integral containing cos(cx), and the imaginary
part is the integral containing sin(cx).

EXAMPLE 22.18

We will evaluate
∫ ∞

−∞

cos(cx)

(x2 +α2)(x2 +β2)
dx

in which c, α and β are positive numbers and α �=β. Let

f (z)= eicz

(z2 +α2)(z2 +β2)
.

The poles of f in the upper half-plane are αi and βi , and

Res( f, αi)= e−cα

2αi(β2 −α2)
,

and

Res( f, βi)= e−cβ

2βi(α2 −β2)
.
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Then
∫ ∞

−∞

cos(cx)

(x2 +α2)(x2 +β2)
dx + i

∫ ∞

−∞

sin(cx)

(x2 +α2)(x2 +β2)
dx

= 2π i

[
e−cα

2αi(β2 −α2)
+ e−cβ

2βi(α2 −β2)

]

= π

β2 −α2

(
e−cα

α
− e−cβ

β

)

.

Separate real and imaginary parts to obtain
∫ ∞

−∞

cos(cx)

(x2 +α2)(x2 +β2)
dx = π

β2 −α2

(
e−cα

α
− e−cβ

β

)

and
∫ ∞

−∞

sin(cx)

(x2 +α2)(x2 +β2)
dx = 0.

The last integral is obvious because the integrand is odd. �

22.3.3 Rational Functions of Cosine and Sine

Let K (x, y) be a quotient of polynomials in x and y. For example,

K (x, y)= x3 y − 2xy2 + x − 2y

x4 + xy4 − 8
.

Such a function is called a rational function of x and y. If we replace x = cos(θ) and y = sin(θ),
we obtain a rational function of cosine and sine. We want a way to evaluate the integral of such
a function over [0,2π ]. This will be an integral of the form

∫ 2π

0

K (cos(θ), sin(θ))dθ.

Again, the idea is to express this real integral as a complex integral, which is then evaluated
using the residue theorem.

Let γ be the unit circle about the origin γ (θ)= eiθ for 0 ≤ θ ≤ 2π . On this curve, z = eiθ and
z = e−iθ = 1/z, so

cos(θ)= 1

2

(

z + 1

z

)

and sin(θ)= 1

2i

(

z − 1

z

)

.

Furthermore, on γ ,

dz = ieiθdθ = i zdθ,

so

dθ = 1

i z
dz.

Therefore,
∮

γ

K

(
1

2

(

z + 1

z

)

,
1

2i

(

z − 1

z

))
1

i z
dz =

∫ 2π

0

K (cos(θ), sin(θ))
1

ieiθ
ieiθ dθ

=
∫ 2π

0

K (cos(θ), sin(θ))dθ.

Evaluate the integral on the left using the residue theorem, yielding the integral we want.
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In summary, to evaluate
∫ 2π

0
K (cos(θ), sin(θ)dθ , begin by computing the function

f (z)= K

(
1

2

(

z + 1

z

)

,
1

2i

(

z − 1

z

))
1

i z
. (22.5)

Then
∫ 2π

0

K (cos(θ), sin(θ))dθ = 2π i
∑

|z j |<1

Res( f, z j) (22.6)

with this sum over all singularities z j of f (z) enclosed by the unit circle.

EXAMPLE 22.19

Evaluate
∫ 2π

0

sin2(θ)

2 + cos(θ)
dθ.

Here K (x, y)= y2/(2 + x), and

K (cos(θ), sin(θ))= sin2(θ)

2 + cos(θ)
.

Let x = cos(θ)= (z + 1/z)/2, and y = sin(θ)= (z − 1/z)/2i in K (x, y), and multiply by 1/ i z to
produce the complex function of equation (22.5):

f (z)=
( [(z − 1/z)/2i]2

2 + (z + 1/z)/2

)
1

i z
= i

2

z4 − 2z2 + 1

z2(z2 + 4z + 1)
.

f has a double pole at 0 and simple poles at zeros of z2 + 4z + 1, which are −2 ± √
3. Only the

poles 0 and 2 −√
3 are enclosed by γ . By equation (22.6),
∫ 2π

0

sin2
(θ)

2 + cos(θ)
dθ = 2π i[Res( f,0)+ Res( f,−2 +√

3)].

Compute these residues:

Res( f,0)= lim
z→0

d

dz
(z2 f (z))= lim

z→0

d

dz

i

2

z4 − 2z2 + 1

z2 + 4z + 1

= i

2
lim
z→0

(

2
z5 + 6z4 + 2z3 − 4z2 − 3z − 2

(z2 + 4z + 1)2

)

=−2i

and

Res( f,−2 +√
3)= i

2

[
z4 − 2z2 + 1

2z(z2 + 4z + 1)+ z2(2z + 4)

]

z=−2+√
3

= i

2

42 − 24
√

3

−12 + 7
√

3
.

Therefore,

∫ 2π

0

sin2(θ)

2 + cos(θ)
dθ = 2π i

[

−2i + i

2

42 − 24
√

3

−12 + 7
√

3

]

=
(

90 − 52
√

3

12 − 7
√

3

)

π. �
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EXAMPLE 22.20

We will evaluate
∫ 2π

0

1

α+β cos(θ)
dθ

in which 0<β <α.
Replace cos(θ)= (z + 1/z)/2, and use equation (22.5) to produce the function

f (z)= 1

α+ (β/2)(z + 1/z)

1

i z
= −2i

βz2 + 2αz +β .
f has simple poles at

z = −α±√
α2 −β2

β
.

Since α >β, these numbers are real. Only one of them,

z1 = −α+√
α2 −β2

β
,

is enclosed by γ . Therefore,
∫ 2π

0

1

α+β cos(θ)
dθ = 2π iRes( f, z1)

= 2π i
−2i

2βz1 + 2α
= 2π√

α2 −β2
. �

SECTION 22.3 PROBLEMS

In each of Problems 1 through 10, evaluate the integral.
Wherever they appear, α and β are positive numbers.

1.
∫ 2π

0

1

2 − cos(θ)
dθ

2.
∫ ∞

−∞
1

x4 + 1
dx

3.
∫ ∞

−∞
1

x6 + 1
dx

4.
∫ 2π

0

1

6 + sin(θ)
dθ

5.
∫ ∞

−∞
x sin(2x)

x4 + 16
dx

6.
∫ ∞

−∞
1

x2 − 2x + 6
dx

7.
∫ ∞

−∞
cos2(x)

(x2 + 4)2
dx

8.
∫ 2π

0

2 sin(θ)

2 + sin2(θ)
dθ

9.
∫ ∞

−∞
x2

(x2 + 4)2
dx

10.
∫ ∞

−∞
cos(βx)

(x2 +α2)2
dx

In Problems 11 through 18, α and β are positive numbers
wherever they occur.

11. Show that
∫ ∞

−∞
cos(αx)

x2 + 1
dx =πe−α .

12. Show that
∫ ∞

−∞
x2 cos(αx)

(x2 +β2)2
dx = π

2β
e−αβ(1 −αβ).

13. Let α �=β. Show that
∫ 2π

0

1

α2 cos2(θ)+β2 sin2(θ)
dθ=

2π

αβ
.

14. Show that
∫ π/2

0

1

α+ sin2(θ)
dθ = π

2
√
α(1 +α) .

15. Show that
∫ ∞

0 e−x2
cos(2βx)dx =

√
π

2
e−β2

.

Hint: Integrate e−z2
about the rectangular path having

corners at ±R and ±R + βi . Use Cauchy’s theorem
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to evaluate this integral, set this equal to the sum of
the integrals on the sides of the rectangle, and take the
limit as R → ∞. Assume the standard result that

∫ ∞

0

e−x2
dx =

√
π

2
.

16. Derive Fresnel’s integrals:

∫ ∞

0

cos(x2)dx =
∫ ∞

0

sin(x2)dx = 1

2

√
π

2
.

Hint: Integrate eiz2
over the closed path bounding the

sector 0 ≤ x ≤ R,0 ≤ θ ≤ π/4, as in Figure 22.3. Use
Cauchy’s theorem to evaluate this integral, then eval-
uate it as the sum of the integrals over the boundary
segments of the sector. Show that the integral over
the circular arc tends to zero as R → ∞, and use the
integrals over the line segments to obtain Fresnel’s
integrals.

x

y

R

π/4

FIGURE 22.3 Path in
Problem 16, Section 22.3.

17. Let α and β be positive numbers. Show that
∫ ∞

0

x sin(αx)

x4 +β4
dx = π

2β2
e−αβ/√2 sin

(
αβ√

2

)

.

18. Let 0<β <α. Show that
∫ π

0

1

(α+β cos(θ))2
dθ = απ

(α2 −β2)3/2
.

22.4 Residues and the Inverse Laplace Transform

If f is a complex function defined at least for all z on [0,∞), then the Laplace transform of f is

L[ f ](z)=
∫ ∞

0

e−zt f (t)dt

for all z such that this integral converges. If L[ f ] = F , we write f =L−1[F]. In Chapter 3, we
saw some techniques for manipulating L and L−1. The following theorem provides a formula
for the inverse Laplace transform of F(s) in terms of residues etz F(z), which we can sometimes
compute quite easily.

THEOREM 22.7 Inverse Laplace Transform

Let F be differentiable for all z except for poles z1, · · · , zn . Suppose for some real number σ , F
is differentiable for all z with Re(z)≥ σ . Suppose there are numbers M and R such that

|zF(z)| ≤ M for |z| ≥ R.

For t ≥ 0, let

f (t)=
n∑

j=1

Res
(
etz F(z), z j

)
.

Then

f =L−1[F]. �

Because F is differentiable for Re(z)≥σ , F ′(z) exists at least for z to the right of the vertical
line x = σ . The condition that |zF(z)| ≤ M for |z| ≥ R means that zF(z) is bounded for all z on
and outside some sufficiently large circle. This condition is satisfied by any rational function
p(z)/q(z) if the degree of q(z) exceeds that of p(z).
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x

y

σ + ib

σ – ib

σ

Re(z) > σ
Re(z) < σ 

FIGURE 22.4 σ in Theorem 22.7.

Theorem 22.7 can be proved using the version of the Cauchy integral formula given in
Section 20.3.7. Following a sketch of the argument and two examples computing inverse Laplace
transforms of functions, we will use the theorem to analyze heat diffusion in a homogeneous solid
cylinder.

Begin by writing, in the notation of this section,

F(s)=− 1

2π i
lim
b→∞

∫ σ+ib

σ−ib

F(z)

z − s
dz.

Referring to Figure 22.4, take L−1 through the integral (this is justified by hypotheses of the
theorem) to compute

L−1[F(s)](t)= 1

2π i
lim
b→∞

∫ σ+ib

σ−ib

L−1

[
F(z)

s − z

]

dz

= 1

2π i
lim
b→∞

∫ σ+ib

σ−ib

etz F(z)dz

=
∑

p

Res(etz F(z), p),

with this summation extending over all of the poles of etz F(z). σ is chosen so that all of these
poles are to the right of σ .

EXAMPLE 22.21

Let a be a positive number. We will find the inverse Laplace transform of F(z)= 1/(a2 + z2).
We can do this using MAPLE, a table, or a method from Chapter 3. As an illustration of the

use of the theorem, note that F(z) has simple poles at ±ai . Compute the residues as

Res(etz F(z),ai)= eai

2ai
and Res(etz F(z),−ai)= e−ai

−2ai
.

This can be done easily by writing

etz F(z)= etz

(z − ai)(z + ai)

and using Corollary 22.1. By Theorem 22.7

L−1[F](t)= 1

2ai

(
eai − e−ai

)= 1

a
sin(at). �
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EXAMPLE 22.22

Let

F(z)= 1

(z2 − 4)(z − 1)2
.

Then F(z) has simple poles at ±2 and a double pole at 1. Compute

Res(etz F(z),2)= lim
z→2

etz

(z + 2)(z − 1)2
= 1

4
e2t ,

Res(etz F(z),−2)= lim
z→−2

etz

(z − 2)(z − 1)2
=− 1

36
e−2t ,

and

Res(etz F(z),1)= lim
z→1

d

dz
((z2 − 4)−1etz)

= lim
z→1
(−2z(z2 − 4)−2etz + tetz(z2 − 4)−1)

=−1

3
tet − 2

9
et .

Then

L−1[F](t)= 1

4
e2t − 1

36
e−2t − 1

3
tet − 2

9
et . �

22.4.1 Diffusion in a Cylinder

We will find the temperature distribution function for a homogeneous, solid cylinder of radius R
centered along the z-axis. This problem was solved in Section 17.5 using separation of variables.
We will now use the Laplace transform and Theorem 22.7 to obtain the temperature distribution
function. In the course of this, we will use properties of the modified Bessel function I0(x) and
the Bessel functions J0(x) and J1(x) of the first kind of orders zero and one, respectively. These
functions are developed in Section 15.3.

We will assume angular independence and use the heat equation in cylindrical coordinates.
The boundary value problem is

∂u

∂t
= ∂2u

∂r 2
+ 1

r

∂u

∂r
for 0 ≤ r ≤ R, t > 0

u(r,0)= 0,u(R, t)= T0.

Apply the Laplace transform with respect to t to this problem to obtain

∂2U

∂r 2
+ 1

r

∂U

∂r
− sU (r, s)= 0.

This is a modified Bessel equation of order zero. A solution that is bounded at r = 0, which is
the center of the cylinder, is given by

U (r, s)= cI0(
√

sr),

where I0(z)= J0(i z). Transform the condition u(R, t)= T0 to obtain U (R, s)= T0/s. Then

U (R, s)= cI0(
√

s R)= T0

s
.
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This means that

c = T0

s I0(
√

s R)
.

The transform of the solution is therefore

U (r, s)= T0 I0(
√

sr)

s I0(
√

s R)
.

We must invert this to obtain u(r, t). To use Theorem 22.7, we need the singularities of

etzU (r, z)= etz T0 I0(
√

zr)

z I0(
√

zR)
.

Singularities of etzU (r, z) occur at zeros of the denominator. There is a simple pole at z = 0
because I0(0)= 1 �= 0. Furthermore,

I0(
√

zR)= J0(i
√

zR)= 0

if i
√

zR is a zero of J0. These zeros are real, simple, and nonzero. If the positive zeros are labeled
j1, j2, · · · , then all the zeros are ± j1,± j2, · · · . Therefore, I0(

√
zR)= 0 if

√
zR = ±i jn for some

n. Then

z =− j 2
n /R2.

Therefore, etzU (r, z) has simple poles at 0 and − j 2
n /R2 for n = 1,2, · · · . Inverting U (r, s) by

Theorem 22.7 yields the solution

u(r, t)= Res(etzU (r, z), z = 0)+
∞∑

n=1

Res
(
etz F(z), z =− j 2

n /R2
)
.

There remains to compute these residues. First,

Res(etzU (r, z),0)= lim
z→0

zetz I0(
√

zr)

z I0(
√

zR)

= lim
z→0

etz I0(
√

zr)

I0(
√

zR)

= I0(0)

I0(0)
= 1.

For the residues at the other poles, use Corollary 22.1, since the poles are simple zeros of the
denominator of a function of the form g(z)/h(z) with

g(z)= etz I0(
√

zr)

z
and h(z)= I0(

√
zR).

Then

Res
(
g(z)/h(z),− j 2

n /R2
)

= e− j2n t/R2
I0(− jnr i/R)

− j 2
n /R2

[
1

d
dz

I0(
√

zR)

]

− j2n /R2

= e− j2n t/R2
I0(− jnr i/R)

− j 2
n /R2

[
2
√

z

RI ′
0(

√
zR)

]

z=− j2n /R2

= −2Ri

jn
e− j2n t/R2 I0( jnr i/R)

I ′
0( jni)

.
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Now use the facts that

I ′
0(z)= i J ′

0(i z)

and

J ′
0(z)=−J1(z)= J1(−z)

to obtain

Res(g(z)/h(z), jn)

= −2R

jn

J0( jnr/R)

J1( jn)
e− j2n t/R2

.

The solution is therefore

u(r, t)= T0

(

1 − 2
∞∑

n=1

−2R

jn

J0( jnr/R)

J1( jn)
e− j2n t/R2

)

.

SECTION 22.4 PROBLEMS

In each of Problems 1 through 10, use Theorem 22.7 to
find the inverse Laplace transform of the function.

1.
z

z2 + 9

2.
1

(z + 3)2

3.
1

(z − 2)2(z + 4)

4.
1

(z2 + 9)(z − 2)2

5.
1

(z + 5)3

6.
1

z3 + 8

7.
1

z4 + 1

8.
1

ez(z − 1)

9.
z2

(z − 2)3

10.
z + 3

(z3 − 1)(z + 2)
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CHAPTER 23
Conformal
Mappings and
Applications

CONFORMAL MAPPINGS CONSTRUCTION
OF CONFORMAL MAPPINGS CONFORMAL
MAPPING SOLUTIONS OF DIRICHLET
PROBLEMS MODELS OF PLANE FLUID

In this chapter, we will discuss conformal mappings and applications of complex functions to the
solution of Dirichlet problems and the analysis of fluid flow.

23.1 Conformal Mappings

It is sometimes useful to think of a complex function as a mapping. If f (z) is defined for all z in
some set S of complex numbers and each f (z) is in some set K if z is in S, we write f : S → K
and say that f maps S into K . If every point in K is the image of some point in S, then f maps
S onto K . This is the same notion of onto encountered in Chapter 7 for linear transformations.

f (S) denotes the set of numbers f (z) for z in S. Then f : S → K is an onto mapping exactly
when f (S)= K .

EXAMPLE 23.1

Let w= f (z)= z/|z| for z �= 0. Then f (z) is defined on the set S consisting of the plane with the
origin removed. If z �= 0, then | f (z)| = 1 because

∣
∣
∣
∣

z

|z|
∣
∣
∣
∣= 1.

If K is the set of all points of magnitude 1, then f maps S into K . In this case, f maps S onto
K because every number in K is the image of some number under this mapping. Indeed, if z is
in K , then |z| = 1 and f (z)= z. This mapping contracts the entire plane (with origin removed)
onto the unit circle. �

In visualizing the action of a mapping f it is convenient to make two copies of the complex
plane, the z-copy and the w-copy, as in Figure 23.1. Picture S in the z-plane, and K in the
w-plane.

751
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z w

S K

f

FIGURE 23.1 f (z) as a mapping.

We will examine this mapping perspective for two familiar functions.

EXAMPLE 23.2

Let f (z)= ez . Then

w= u + iv= ez = ex+iy = ex cos(y)+ iex sin(y),

so

u = ex cos(y) and v= ex sin(y).

Consider a vertical line x =a in the z-plane. The image of this line under the exponential mapping
consists of points u + iv with

u = ea cos(y) and v= ea sin(y).

Now

u2 + v2 = e2a,

so this vertical line x = a maps to the circle of radius ea about the origin in the w-plane
(Figure 23.2). As the point z = a + iy moves along the line, the image point ea+iy = eaeiy moves
around this circle, making one complete circuit every time y varies over an interval of length
2π . We may think of this vertical line as made up of infinitely many intervals of length 2π
strung together, and the exponential function maps each of these segments once around the image
circle.

The image of a point z = x + ib on a horizontal line y = b is the point u + iv with

u = ex sin(b) and v= ex cos(b).

z

Re(z) = a

x

y

w

u

v

 w   = ea 

w = ez

FIGURE 23.2 Image of a vertical line under the map-
ping f (z)= ez in Example 23.2.
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Im(z) = b

x

y

z

u

v

w

b
w = ez

FIGURE 23.3 Image of a horizontal line under
f (z)= ez in Example 23.2.

x = a 
x = b 

y = c

y = d

x

y

z w

θ = b 

u

 w  = eb

w  = ea

v

θ = a

FIGURE 23.4 Image of a rectangle under f (z)= ez for Exam-
ple 23.2.

Because ex >0 for all real x , as x + ib varies over the horizontal line, the image point ex sin(b)+
iex cos(b) moves along a half-line from the origin to infinity, making an angle b radians with the
positive real axis (Figure 23.3). In polar coordinates, this is the half-line θ = b.

We can put these results together to find the image of any rectangle in the z-plane having
sides parallel to the axes. Let the rectangle have sides on the lines x = a, x = b, y = c, and y = d
(Figure 23.4). These lines map, respectively, to the circles

u2 + v2 = e2a and u2 + v2 = e2b

and the half-lines

θ = c and θ = d.

The wedge in the w-plane in Figure 23.4 is the image of this rectangle under the
exponential map. �

EXAMPLE 23.3

We will determine the image, under the mapping w= f (z)= sin(z), of the strip S consisting of
all z with −π/2 ≤ Re(z)≤π/2 and Im(z)≥ 0. Write

w= u + iv= sin(x) cosh(y)+ i cos(x) sinh(y).

If z = x + iy is interior to S, then y> 0 so sinh(y) > 0. Furthermore, since −π/2< x <π/2 for
z interior to S, cos(x)> 0. Therefore, the image point has positive imaginary part and lies in the
upper half-plane in the w-plane, so f maps the interior of S to the upper half-plane.
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x

y

z

u

v

w

1−12 2π π

FIGURE 23.5 Image of a strip under f (z) = sin(z) in
Example 23.3.

Now look at boundary points of S. The boundary of S consists of the segment −π/2 ≤ x ≤
π/2 on the real axis together with the half-lines x = −π/2 and x = π/2 with y ≥ 0. Imagine
a point z moving counterclockwise (positive orientation) around the boundary of S, and keep a
record of how the image point w moves. Follow z and its image in Figure 23.5.

To start, put z on the left vertical boundary of S, which is the half-line x =−π/2 with y ≥ 0.
This z maps to

w= u + iv=− cosh(y).

Furthermore, as z moves down this half-line toward the real axis so y is decreasing toward zero,
w=− cosh(y)moves from left to right on the negative real axis and approaches −1 from the left.

Now z has reached −π/2 and turns to move from −π/2 to π/2 along the bottom boundary
segment of S. On this segment, z = x and y = 0, so the image point is w= sin(x), which moves
from −1 to 1 as z moves toward π/2.

When z reaches π/2, it turns and moves up the right side of S, which is the half-line x =
π/2, y ≥ 0. The image point is w= cosh(y), which moves from 1 to the right out the real axis in
the w-plane as y increases.

Therefore, f maps the boundary of S to the boundary of the upper half-plane, which is the
real axis in the w-plane. If we imagine walking around the boundary of S in a positive sense
with S over our left shoulder, the image point moves in a positive sense over the boundary of
the image of S, which is the upper half-plane (which is over our left shoulder in that plane if we
walk left to right along the real axis). �

We will find two properties enjoyed by some mappings to be particularly important.

1. f preserves angles if it satisfies the following requirement. If L1 and L2 are smooth
curves in S intersecting at a point z0 in S and θ is the angle between their tangents at
this point, the images f (L1) and f (L2) in the w-plane have the same angle θ between
their tangents at f (z0). This is indicated in Figure 23.6.

2. f preserves orientation if the following is true. In the scenario of property (1), if
the sense of orientation from L1 to L2 at any point z0 is counterclockwise, the sense
of orientation from f (L1) to f (L2) in the w-plane also must be counterclockwise.
Figure 23.7 shows the idea of an orientation preserving map, while Figure 23.8 suggests
an orientation reversing map.
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Tangent to  C2

C2

Tangent to  C1

C1

z w

Tangent to f(C2)

f(C2)

Tangent to
f(C1)

f(C1)

θ θ

FIGURE 23.6 f preserves angles.

z w
L2

L1

f(L2)

f(L1)

FIGURE 23.7 f preserves orientation.

z w

f(L2)

L2

L1

f(L1)

FIGURE 23.8 f fails to preserve orientation.

Not every function preserves angles and orientation. For example, the function f (z)= z
reverses a rotation from counterclockwise to clockwise orientation. In particular, if we think of
the counterclockwise rotation from z = 0 to z = i , the image points f (0)= 0 and f (i)= i = −i
has a reversed, clockwise sense of rotation.

A function that is both orientation and angle preserving on a domain is said to be conformal
on this domain. We refer to such a function as a conformal mapping.

The next theorem provides a large number of conformal mappings, namely, differentiable
functions with nonvanishing derivatives.

THEOREM 23.1 Conformal Mappings

Let D and D∗ be domains and let f : D → D∗. Suppose f is differentiable on D and f ′(z) �= 0
on D. Then f is a conformal mapping. �

We will sketch a geometric argument to suggest why this result is true. Let z0 be in D
and let γ be a smooth curve in D through z0. Then f (γ ), which consists of all points f (z)
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z

w

γ
z0

f(z0)

D

f(γ)   

D*

FIGURE 23.9 A curve in a domain and its image
under f .

x

y

u

v

z0

θ ϕ

z

w

w0

f(γ)   
γ

FIGURE 23.10 Argument θ of the line through z and z0.

for z in γ , is a smooth curve through f (z0) in D∗ (Figure 23.9). Let z be another point on γ , and
write w= f (z) and w0 = f (z0). Then

w−w0 = f (z)− f (z0)

z − z0

(z − z0).

Now, the argument of a product of two numbers is the sum of the arguments of the numbers (to
within integer multiples of 2π). Therefore, to within 2nπ ,

arg(w−w0)= arg

(
f (z)− f (z0)

z − z0

)

+ arg(z − z0).

In Figure 23.10, θ is the angle between the positive real axis and the line through z and z0

and is an argument of z − z0. The angle ϕ between the positive real axis and the line through w
and w0 is an argument of w−w0. In the limit, as z → z0, the last equation implies that

ϕ= arg( f ′(z0))+ θ.
Repeat this discussion for any other smooth curve γ ∗ through z0 with z∗ a point on γ ∗. By the
same reasoning,

ϕ∗ = arg( f ′(z0))+ θ ∗.

But then

ϕ−ϕ∗ = θ − θ ∗.
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Since θ − θ ∗ is the angle between the tangents to γ and γ ∗ at z0 and ϕ−ϕ∗ is the angle between
the tangents to f (γ ) and f (γ ∗) at f (z0), this shows that f preserves angles. The assumption that
f ′(z0) �= 0 is required to take the argument of f ′(z0).

This equation also shows that f preserves orientation, since the sense of rotation from γ to
γ ∗ is the same as that from f (γ ) to f (γ ∗), otherwise we would have

ϕ−ϕ∗ =−(θ − θ ∗).

This shows that f is conformal.

A mapping f : D → D∗ is one-to-one, often written 1 − 1, if two different numbers in D
cannot be mapped to the same number in D∗.

This means that f (z1) �= f (z2) if z1 and z2 are different points of D. Thus, for example,
w = sin(z) is not a one-to-one mapping of the complex plane to the complex plane, because
f (0)= f (2π)= 0.

We say that f is onto D∗ if every number in D∗ is the image of some number in D under the
mapping. This means that if w is in D∗ there must be some z in D such that f (z)=w.

If f is a one-to-one mapping of a domain D onto a domain D∗, then there is a unique pairing
of each z in D with exactly one w in D∗, and conversely. This enables us to define the inverse
mapping f −1 : D∗ → D by setting

f −1(w)= z exactly when f (z)=w.
It is possible to show that f −1 is conformal if f is.

If f : D → D∗ and g : D∗ → D∗∗ are both conformal, then their composition g ◦ f : D →
D∗∗ is also conformal, since angles and orientation are preserved at each stage of the mapping
(Figure 23.11).

D D*

D**

f

gg ° f

FIGURE 23.11 A composition of conformal map-
pings is conformal.
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Sometimes we want to construct a conformal mapping between two sets—often between
two domains D and D∗. We will see that this is one approach to solving Dirichlet problems.
Depending on D and D∗, constructing a conformal mapping f : D → D∗ may be very difficult.
There is a special class of relatively simple mappings that can sometimes be used.

A mapping T is called a bilinear transformation, or bilinear mapping if it has the form

w= T (z)= az + b

cz + d

for given constants a,b, c, and d with ad −bc �=0. This condition insures that we can solve
for z and invert the mapping

z = T −1(w)= dw− b

−cw+ a
,

which is again a bilinear transformation. Bilinear transformations are also known as linear
fractional transformations or Möbius transformations, although these terms sometimes
carry slight variations in the definition.

Because

T ′(z)= ad − bc

(cz + d)2

is not zero, a bilinear transformation and its inverse are conformal.
We will look at some special kinds of bilinear transformations, with a view toward dissecting

general bilinear transformations into simple components.

EXAMPLE 23.4

Let w= T (z)= z + b, with b constant. This mapping is called a translation, because T shifts z
horizontally by Re(z) and vertically by Im(z).

As an example, let T (z)= 2 − i . T takes z and moves it two units to the right and one unit
down (Figure 23.12). For example, T maps

0 → 2 − i, 1 → 3 − i, i → 2, 4 + 3i → 6 + 2i. �

x

y

z

w = z + 2 − i

FIGURE 23.12 A translation.
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4i

2 + 2i−2 + 2i

1

1 + i
i

x

y

u

v

z

w

FIGURE 23.13 Effect of the mapping T (z)= (2+2i)z
on specific points of Example 23.5.

z

θ x

y

u

v w = T(z)
z w

 θ + π/4    

2 + 2i    z

FIGURE 23.14 Action of T (z)= (2 + 2i)z on arbi-
trary z in Example 23.5.

EXAMPLE 23.5

Let w= T (z)= az with a a nonzero constant. This mapping is called a rotation/magnification.
To see why this name applies, write

|w| = |a||z|.
If |a|>1, then T (z) is further from the origin than z is for z �=0. If |a|<1, then T moves z closer
to the origin. Thus the term magnification.

But T does more than this. If we write the polar forms z = reiθ and a = Aeiα, then

T (z)= arei(θ+α)

adding the constant angle α to the argument of z. This corresponds to a rotation by α radians—
counterclockwise if α > 0 and counterclockwise if α < 0.

The total effect of this transformation is therefore a scaling and a rotation. We can see this
effect in the mapping

T (z)= (2 + 2i)z.

This will map, for example,

i → −2 + 2i, 1 → 2 + 2i, 1 + i → −4i,

as shown in Figure 23.13. Figure 23.14 shows the action of T on an arbitrary nonzero z, multi-
plying the magnitude of z by |2 + 2i | = √

8 and adding arg(2 + 2i)= π/4 to the argument of z
for a counterclockwise (positive) rotation through π/4 radians. �

If |a| = 1, T (z)= az is called a pure rotation. In this case, there is no magnification effect,
just a rotation through an argument of a.

EXAMPLE 23.6

Let

T (z)= 1

z
for z �= 0.

This mapping is called an inversion. If z �= 0, then

|w| = 1

|z|
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1/z

1/  z

1

i

z

FIGURE 23.15 Image of z under an inver-
sion in Example 23.6.

and

arg(w)= arg(1)− arg(z)=− arg(z)

(within integer multiples of 2π ). This means that we arrive at T (z) by moving 1/|z| units from the
origin along the line from 0 to z and then reflecting this point across the real axis (Figure 23.15).
Points enclosed by the unit circle map outside this circle, and points exterior to the unit circle
map to the inside. Points on the unit circle remain on this circle but are moved around it, except
for 1 and −1, which remain fixed under T . For example, T maps (1+ i)/

√
2, which has argument

π/4, to (1 − i)/
√

2, which is still on the unit circle but has argument −π/4. �

We will now show that translations, rotation/magnifications, and inversions are the funda-
mental bilinear transformations in the sense that the effect of any bilinear transformation can be
achieved as a sequence of mappings of these three types. To see how to do this, begin with

T (z)= az + b

cz + d
.

If c = 0, then

T (z)= a

d
z + b

d
,

which is a rotation/magnification followed by a translation:

z
rot/mag−−−→ a

d
z

trans−→ +b

d
.

If c �= 0, then T is the result of the following sequence:

z
rot/mag−−−→ cz

trans−→ cz + d

inv−→ 1

cz + d
rot/mag−−−→ bc − ad

c

1

cz + d

trans−→ bc − ad

c

1

cz + d
+ a

c

= az + b

cz + d
= T (z).

This way of breaking a bilinear transformation into simpler components has two purposes.
First, we can analyze general properties of these transformations by analyzing properties of the
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components. Second, and perhaps more important, we can sometimes use this sequence to build
conformal mappings between given domains.

To illustrate the first point just made, we will state a general result about the action of a
bilinear transformation. In this statement, the term line refers to a straight line in the plane.

THEOREM 23.2

A bilinear transformation maps any circle to a circle or line, and any line to a circle or line. �
Proof We need only verify the theorem for each of the three basis types: translations, rota-
tion/magnifications, and inversions. Then the theorem will be true for any compositions of these
mappings.

It is obvious geometrically that a translation maps a circle to a circle and a line to a line.
Similarly, a rotation/magnification maps a circle to a circle (perhaps of different radius) and a
line to a line. The issue comes down to the effect of an inversion on a circle or line. Begin with
the fact that any circle or line in the plane is the graph of an equation

A(x2 + y2)+ Bx + Cy + R = 0

with A, B, C , and R as real numbers. This graph is a circle if A �= 0 and a line if A = 0 and B
and C are not both zero. Let z = x + iy. This equation becomes

A|z|2 + B

2
(z + z)+ C

2i
(z − z)+ R = 0.

Now let w= T (z)= 1/z, which is an inversion. The image in the w plane of the locus of this
equation is the locus of

A
1

|w|2 + B

2

(
1

w
+ 1

w

)

+ C

2i

(
1

w
− 1

w

)

+ R = 0.

Multiply this equation by ww (the same as |w|2) to obtain

R|w|2 + B

2
(w+w)− C

2i
(w−w)+ A = 0.

In the w-plane, this is the equation of a circle if R �= 0 and a line if A = 0 and B and C are not
both zero. This proves the theorem. �

As the proof shows, translations and rotation/magnifications actually map lines to lines and
circles to circles, while an inversion may map a circle to a circle or line and a line to a circle
or line.

EXAMPLE 23.7

We will examine the action of the inversion w= 1/z on the vertical line Re(z)= a �= 0. This is
the line x = a in the x, y-plane, and it consists of all complex numbers z = a + iy. The image of
such a point under the inversion is

w= 1

z
= a

a2 + y2
− y

z2 + y2
i = u + iv.

It is routine to check that
(

u − 1

2a

)2

+ v2 = 1

4a2
.

The image of the line x = a is therefore the circle of radius 1/2a with center (1/2a,0). �
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In preparation for constructing mappings between given domains, we will show that it is
always possible to produce a bilinear transformation mapping three given points to three given
images.

THEOREM 23.3 The Three Point Theorem

Let z1, z2, and z3 be three distinct points in the z-plane, and let w1, w2 and w3 be three distinct
points in the w-plane. Then there is a bilinear transformation T of the z-plane to the w-plane
such that

T (z1)=w1, T (z2)=w2, and T (z3)=w3. �
Proof We will provide a method for producing T . Let w= T (z) be the solution for w in terms
of z and the six given points in the equation

(w1 −w)(w3 −w2)(z1 − z2)(z3 − z)= (z1 − z)(z3 − z2)(w1 −w2)(w3 −w). (23.1)

Substitution of z = z j into this equation yields w=w j for j = 1,2,3. �

EXAMPLE 23.8

We will produce a bilinear transformation mapping

3 → i, 1 − i → 4, 2 − i → 6 + 2i.

Label

z1 = 3, z2 = 1 − i, z3 = 2 − i

and

w1 = i, w2 = 4, w3 = 6 + 2i.

Put these into equation (23.1):

(i −w)(2 + 2i)(2 + i)(2 − i − z)= (3 − z)(1)(i − 4)(6 + 2i −w).
Solve for w:

w= T (z)= (20 + 4i)z − (68 + 16i)

(6 + 5i)z − (22 + 7i)
.

Then each T (z j)=w j . �

It is sometimes convenient to replace the complex plane with the complex sphere. This is
done as follows. Let S be the sphere of radius 1 about (0,0,1) in x, y, z-space R3. Then S has
the equation

x2 + y2 + (z − 1)2 = 1.

Let N denote the point (0,0,2). As Figure 23.16 suggests, given any point (x, y), or x + iy in the
plane, the straight line through N and (x, y) intersects the sphere in exactly one point S(x, y).
This associates with every point on the sphere, except N , exactly one point in the complex plane,
and conversely, every point in the plane is associated with a unique point on the sphere. This map-
ping is called the stereographic projection of the sphere, minus the point N , onto the complex
plane. For this reason, this punctured sphere is called the complex sphere. N does not correspond
to any complex number under the stereographic projection. However, observe that, as the com-
plex number x + iy is chosen farther from the origin, the line from N to x + iy intersects the
sphere at a point closer to N . Thus, N plays the role of the point at infinity. It is not a point on the
complex sphere any more than ∞ is a point in the complex plane. However, it is an identifiable
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(x, y)

S(x, y)

N : (0, 0, 2)

x

y

z

FIGURE 23.16 Stereographic
projection and the complex sphere.

point on a simple surface, and we can envision a point on the complex sphere approaching N on
the sphere more easily and concretely than we can envision z → ∞ in the plane.

In defining bilinear transformations, it is sometimes convenient to map one of the three given
points in Theorem 23.3 to infinity. The next theorem and its proof tell how to do this.

THEOREM 23.4

Let z1, z2, z3 be three distinct numbers in the z-plane, and let w1,w2 be distinct numbers in the
w-plane. Then there is a bilinear transformation T that maps

T (z1)=w1, T (z2)=w2, T (z3)=∞. �
Proof T is obtained by solving for w in the equation

(w1 −w)(z1 − z2)(z3 − z)= (z1 − z)(z1 − z2)(w1 −w2). (23.2)

We can therefore map z3 to infinity by deleting the factors in equation (23.1) that involve w3.

EXAMPLE 23.9

We will find a bilinear transformation mapping

i → 4i,1 → 3 − i,2 + i → ∞.

Solve for w in the equation

(4i −w)(i − 1)(2 + i − z)= (i − z)(−3 + 5i)(1 + i)

to obtain

w= T (z)= (5 − i)z − 1 + 3i

−z + 2 + i
.

It is routine to check that T (i)= 4i , T (1)= 3 − i , and T (2 + i)=∞. �
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The next section is devoted to the construction of conformal mappings between
domains.

SECTION 23.1 PROBLEMS

1. In each of parts (a) through (e), find the image
of the rectangle under the mapping w = ez . Sketch
the rectangle in the z-plane and its image in the
w-plane.

(a) 0 ≤ x ≤π,0 ≤ y ≤π
(b) −1 ≤ x ≤ 1,−π/2 ≤ y ≤π/2
(c) 0 ≤ x ≤ 1,0 ≤ y ≤π/4
(d) 1 ≤ x ≤ 2,0 ≤ y ≤π
(e) −1 ≤ x ≤ 2,−π/2 ≤ y ≤π/2

2. In each of parts (a) through (e), find the image of
the rectangle under the mapping w = cos(z). Sketch
the rectangle in the z-plane and its image in the
w-plane.

(a) 0 ≤ x ≤ 1,1 ≤ y ≤ 2
(b) π/2 ≤ x ≤π,1 ≤ y ≤ 3
(c) 0 ≤ x ≤π,π/2 ≤ y ≤π
(d) π ≤ x ≤ 2π,1 ≤ y ≤ 2
(e) 0 ≤ x ≤π/2,0 ≤ y ≤ 1

3. In each of parts (a) through (e), find the image of
the rectangle under the mapping w= 4 sin(z). Sketch
the rectangle in the z-plane and its image in the
w-plane.

(a) 0 ≤ x ≤π/2,0 ≤ y ≤π/2
(b) π/4 ≤ x ≤π/2,0 ≤ y ≤π/2
(c) 0 ≤ x ≤ 1,0 ≤ y ≤π/6
(d) π/2 ≤ x ≤ 3π/2,0 ≤ y ≤π/2
(e) 1 ≤ x ≤ 2,1 ≤ y ≤ 2

4. Determine the image of the sector π/4 ≤ θ ≤ 5π/4
under the mapping w = z2. Sketch the sector and its
image.

5. Determine the image of the sector π/6 ≤ θ ≤ π/3
under the mapping w = z3. Sketch the sector and its
image.

6. Show that the mapping

w= 1

2

(

z + 1

z

)

maps the circle |z| = r onto an ellipse with foci ±1 in
the w-plane. Sketch a typical circle and its image.

7. Show that the mapping of Problem 6 maps a half-line
θ = k onto a hyperbola with foci ±1 in the w-plane,
assuming that sin(k) �= 0 and cos(k) �= 0. Sketch a
typical half-line and its image.

8. Let D consist of all z in the rectangle having vertices
±αi and π ±αi , with α a positive number.

(a) Determine the image of D under the mapping
w= cos(z). Sketch D and its image.
(b) Determine the image of D under the mapping
w= sin(z). Sketch this image.

9. Determine the image of D under the mappingw=2z2.
Sketch this image.

10. Determine the image of the infinite strip 0 ≤ Im ≤ 2π
under the mapping w= ez .

In each of Problems 11 through 16, find the image of the
given circle or line under the bilinear transformation.

11. w= 2i/z;Re(z)=−4

12. w= 2i z − 4;Re(z)= 5

13. w= (z − i)/ i z; (z + z)/2 + (z − z)/2i = 4

14. w= (z − 1 + i)/(2z + 1); |z| = 4

15. w= (2z − 5)(z + i); z + z − (3/2i)(z − z)− 5 = 0

16. w= ((1 + 3i)z − 2)/z; |z − i | = 1

In each of Problems 17 through 21, find a bilinear transfor-
mation taking the given points to the indicated images.

17. 1 → 1,2 → −i,3 → 1 + i

18. i → i,1 → −i,2 → 0

19. 1 → 1 + i,2i → 3 − i,4 → ∞
20. −5 + 2i → 1,3i → 0,−1 → ∞
21. 6 + i → 2 − i, i → 3i,4 → −i

22. Prove that the composition of two conformal map-
pings is conformal.

23. Show that the mappingw= T (z)= z is not conformal.

24. Suppose T is a bilinear transformation that is not the
identity mapping or a translation. Show that T must
have either one or two fixed points. Why does this fail
for translations?

25. A point z0 is a fixed point of a bilinear transforma-
tion T if T (z0)= z0. Suppose a bilinear transformation
T has three fixed points. Show that T must be the
identity mapping, sending each z to itself.

26. Let T and S be bilinear mappings that agree at three
points. Show that T = S.

27. Define the cross ratio of four complex numbers
z1, z2, z3, and z4 to be the image of z1 under the
bilinear transformation that maps
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z2 → 1, z3 → 0, z4 →∞.

Denote this cross ratio [z1, z2, z3, z4]. Suppose T is
any bilinear transformation. Show that T preserves
this cross product. This means that

[z1, z2, z3, z4] = [T (z1),T (z2),T (z3),T (z4)].

28. Show that the cross ratio [z1, z2, z3, z4] is the image of
z1 under the bilinear transformation

w= 1 − (z3 − z4)(z − z2)

(z3 − z2)(z − z4)
.

29. Show that a cross ratio [z1, z2, z3, z4] is real if and only
if the z j ’s are on a circle or a line.

23.2 Construction of Conformal Mappings

One strategy for solving some kinds of problems (such as Dirichlet problems) is to find the
solution for a “simple” domain (for example, a disk) and then map this domain conformally to
the domain D on which we want to solve the problem. The idea is that this mapping may take
the solution for the simple domain to a solution for D. This requires that we be able to construct
conformal mappings between two domains.

Depending on the domains, this can be a daunting task, and it may not even be obvious that
such a conformal mapping exists. The following theorem settles this issue, with one exception.

THEOREM 23.5 The Riemann Mapping Theorem

Let D be the unit disk |z|< 1. Let D∗ be a domain in the w-plane, and assume that D∗ is not the
entire w-plane. Then there exists a one-to-one conformal mapping f : D → D∗ of D onto D∗. �

This powerful result implies the existence of a conformal mapping between two given
domains. Suppose we want a conformal mapping from a domain D onto a domain D∗ with
neither domain the entire plane. Put the unit disk U in between, as in Figure 23.17. The Riemann
mapping theorem ensures the existence of one-to-one, onto conformal mappings

f :U → D and g :U → D∗.

Then the inverse mapping of f as

f −1 : D →U

is also conformal, and the composition F = g ◦ f −1 is a one-to-one, conformal mapping of D
onto D∗.

z w

D

D*

1

i
g

f

f −1

g ° f −1

FIGURE 23.17 Mapping D onto D∗ through the unit disk.
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In theory then, two domains D and D∗ (neither of which is the entire plane) can be mapped
conformally onto each other in a one-to-one fashion. This does not, however, make such a confor-
mal mapping easy to find. Bilinear transformations are conformal and will be suitable for some
domains, but they will not be enough in general. However, here is an observation that is central
to constructing a conformal mapping between two domains.

A conformal mapping f : D → D∗ will map the boundary of D into the boundary of D∗.
This can be exploited as follows. Suppose D is bounded by a path C (not necessarily closed),
which separates the z-plane into two complementary domains D and D. Similarly, suppose D∗

is bounded by a path C∗, which separates the w-plane into complementary domains D∗ and D∗

(Figure 23.18). Try to find a conformal mapping f that sends points of C to points of C∗. This
may be easier than mapping the entire domains to each other. This mapping f will then send D
to either D∗ or D∗. To see which it is, choose any point z0 in D and see whether f (z0) is in D∗

or D∗. If f (z0) is in D∗, then f : D → D∗ (Figure 23.19). If f (z0) is in D∗, then f : D →D∗

(Figure 23.20). In the first case, we have our conformal mapping. In the second, we do not, but
in some cases, it is possible to take another step from f and construct a conformal mapping of
D → D∗.

We will illustrate these ideas with some examples, starting with very simple ones and
building to more difficult problems.

D

D D*

D*
C

C*

z w

FIGURE 23.18 Domains and complementary
domains.

z

w

D
C

D*

C*

z0

f(z0)

f : D       D *

FIGURE 23.19 f : D → D∗ if f (x0) is in D∗.

z

w

D

C

D*

C*

z0

f(z0)

f : D     D*
D*

FIGURE 23.20 f : D →D∗ if f (z0) is in D∗.
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x

y

u
1

i

3

v

3i
w = 3z

FIGURE 23.21 Mapping |z| < 1 onto |w| < 3 in
Example 23.10.

EXAMPLE 23.10

We will map the open unit disk D : |z|< 1 conformally onto the open disk D∗ : |w|< 3.
Clearly this is just a magnification, so w= f (z)= 3z will do, expanding the unit disk to a

disk of radius 3 while leaving the origin at the center (Figure 23.21). Observe that f carries the
boundary of D onto the boundary of D∗. �

EXAMPLE 23.11

Map the open unit disk conformally onto the domain D∗ : |w|> 3.
Here we are mapping the open unit disk to the complementary domain of the preceding

example. We know that f (z)= 3z maps D conformally onto |w|< 3. We also know that inver-
sions map the domains interior to circles to domains exterior to circles. Thus, combine this map
with an inversion, letting

g(z)= f (1/z)= 3

z
.

This maps |z|< 1 onto |w|> 3 (Figure 23.22). Again observe that g maps the boundary to the
boundary. �

x

y

u

v

1

i

3

3i

w = 3/z

FIGURE 23.22 Mapping |z| onto |w|> 3 in Example 23.11.
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y

x

3i

−2i

i

4i

u

v

Y

3 X

Z = 3z

w = Z + i

w = 3z + i

FIGURE 23.23 Mapping |z|< 1 onto |w− i |< 3 in Exam-
ple 23.12.

EXAMPLE 23.12

Map the open unit disk onto the disk |w− i |< 3 or radius 3 centered at i in the w-plane.
Figure 23.23 suggests one way to construct this mapping. We want to expand the unit disk’s

radius by a factor of 3, then translate the resulting disk up one unit. Put an intermediary Z =
X + iY plane between the z-plane and the final w-plane, and map in steps:

z → Z = 3z →w= Z + i = 3z + i =w= f (z).

Note that the boundaries map to each other: the unit circle |z| = 1 maps to

|w− i | = 3|z| = 3,

which is the circle of radius 3 about i . �

EXAMPLE 23.13

We will find a conformal mapping of the right half-plane Re(z)> 0 to the unit disk |w|< 1.
Let S denote the right half-plane in the z-plane, and K denote the unit disk in the w-plane

(Figure 23.24). The boundary of S is the imaginary axis, and the boundary of K is the unit circle.
A bilinear transformation may work here, since the boundaries are a line and a circle. Pick three
points on the imaginary axis (boundary of S) in order down the axis for positive orientation of
this axis as the boundary of the right half-plane (walking in this direction, the right half-plane is
over our left shoulder). We will use z1 = i, z2 = 0, and z3 = −i , although other choices will do.
Now choose three image points in order counterclockwise (positive orientation) on the unit circle
in the w-plane, say w1 = 1,w2 = i , and w3 = −1. This is the direction we have to walk around
the unit circle to have the unit disk over our left shoulder.
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0

Re(z) > 0

1

i

FIGURE 23.24 Mapping the right half-plane onto the
unit disk in Example 23.13.

Put these z j ’s and w j ’s into equation (23.1):

(1 −w)(−1 − i)(i)(−i − z)= (i − z)(−i)(1 − i)(−1 −w).
Solve for w to get

w= T (z)=−i

(
z − 1

z + 1

)

.

To ensure that T maps S onto the unit disk (not its complement), pick a point in S, say z =1, and
compute

T (1)= 0

as the center of the unit disk. Thus, we have a bilinear transformation (hence a conformal
mapping) of the right half-plane onto the unit disk. �

Later (Example 23.16) we will want a mapping from the unit disk to the right half-plane.
This is just the inverse of the mapping of Example 23.13, where we went the other way (inverse
mapping) from the right half-plane to the unit disk. To find this inverse, solve for z in terms of w
in Example 23.13 to obtain

z = i −w
i +w.

This is the mapping in the reverse direction from that of the last example. If we started from
scratch, and wanted a mapping from the unit disk in the z-plane to the right half-plane in the
w-plane, then we would interchange z and w in this mapping to write

w= i − z

i + z
.

EXAMPLE 23.14

We will find a conformal mapping of the upper half-plane onto the exterior of the unit disk
|w| = 1 in the w-plane. Again, since the boundaries are a line (the real axis) and a circle, we can
attempt a bilinear transformation.

Choose three points on the boundary of the upper half-plane, which is the real axis oriented
from left to right (so the upper half-plane is over the left shoulder as we walk along the line). Say
we choose z1 = −1, z2 = 0, and z3 = 1, as in Figure 23.25. Choose three points on the boundary
of the disk of radius 1, but select them in order clockwise so that, as we walk along the circle in
this direction, the exterior of the circle is over our left shoulder. Say we pick w1 = −1,w2 = i ,
and w3 = 1. Now solve for w in

(−1 −w)(1 − i)(−1)(1 − z)= (−1 − z)(1)(−1 − i)(1 −w)
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x
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z1 = −1 z3 = 1z2 = 0

w1 = −1

w3 = 1

w2 = i

FIGURE 23.25 Mapping the upper half-plane onto the
exterior of the unit disk in Example 23.14.

to get

w= T (z)= (1 + i)z − 1 + i

(−1 + i)z + 1 + i
.

To ensure that the upper half-plane maps to the exterior (not the interior) of the unit circle, pick
a point in the upper half-plane and verify that it maps to the exterior (not the interior) of the
unit circle. For example, choosing z = 2i , we find that T (2i)= −3i with a magnitude greater
than 1. �

Thus far, we have gotten by with bilinear transformations. These are limited by the fact that
they map circles and lines to circles and lines.

EXAMPLE 23.15

We will map the horizontal infinite strip S : −π/2< Im(z)<π/2 onto the unit disk |w|< 1.
The boundary of S is not a line but consists of two lines, so a bilinear transformation is out

of the question. To get our hands on a beginning, recall from Example 23.2 that the exponential
function w= ez maps horizontal lines to half-rays from the origin. The boundary of S consists of
two horizontal lines: Im(z)=−π/2 and Im(z)=π/2. On the lower boundary line, z = x − iπ/2,
so

w= ez = exe−iπ/2 =−iex ,

which varies over the negative imaginary axis as x takes on all real values. On the upper boundary
line of S, z = x + iπ/2 and

w= ez = exeiπ/2 = iex ,

which varies over the positive part of the imaginary axis as x varies over the real line. Now the
imaginary axis forms the boundary of the right half-plane Re(w)> 0 in the w-plane and also the
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FIGURE 23.26 Mapping a horizontal strip onto
the unit disk in Example 23.15.

boundary of the left half-plane, which is Im(w)<0. The conformal mapping w= ez must send S
to one of these half-planes. Since z = 0 is mapped to w= 1 in the right half-plane, then w= ez

maps S to the right half-plane.
This is a start, but we want to map S onto the unit disk. However, we know of a conformal

mapping of S onto the right half-plane, and now we also know of a mapping of the right half-
plane onto the unit disk. This suggests that we put these together (Figure 23.26), mapping S first
to the right half-plane, then the right half-plane to the open unit disk.

This will involve some change in notation, since proceeding in two steps requires that we
insert an intermediary Z plane between the z- and w-planes. First map

Z = f (z)= ez.

This takes S to the right half-plane in the Z -plane. Second, map this right half-plane Re(Z) > 0
onto the unit disk |w|< 1. We know how to do this, mapping

w= g(Z)=−i

(
Z − 1

Z + 1

)

.

Compose these mappings:

w= F(z)= (g ◦ f )(z)= g( f (z))= g(ez)=−i

(
ez − 1

ez + 1

)

.

Notice if we pick a point in S, say z = 0, we obtain w= F(0)= 0 interior to |w|< 1, so F maps
the right half-plane onto the interior (not the exterior) of the w-plane.

If we wish, we can write this mapping in terms of the hyperbolic tangent function

w= F(z)=−i tanh(z/2). �

EXAMPLE 23.16

We will map the disk D : |z|< 2 onto the domain D∗ : u + v > 0 in the w= u + iv plane. These
domains are shown in Figure 23.27. D∗ consists of points above the line v=−u in the w-plane.
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x

y

2

2i

u

v

D* : u + v > 0

D :   z   < 2

FIGURE 23.27 The domains |z|< 2 and u + v > 0
in Example 23.16.

x

y

u

v

2

2i

1

i

u + v > 0

FIGURE 23.28 Mapping |z|< 2 onto the rotated
half-plane u + v > 0 in Example 23.16.

As usual, first look for mappings we already have that relate to this problem. We can map
|z|< 2 to the unit disk |Z |< 1 (multiply by 1/2). We also know a mapping from the unit disk
to the right half-plane, say from the Z -plane to the W -plane. Finally, we can obtain D∗ from the
right half-plane by a counterclockwise rotation through π/4 radians, which is an effect achieved
by multiplying by eiπ/4 (a straight rotation). This suggests that we construct the mapping we want
in the stages shown in Figure 23.28:

|z|< 2 → |Z |< 1 → Re(W )> 0 → u + v > 0.

For the first step, let

Z = 1

2
z.

Next, following Example 23.13, we write a mapping between the unit circle and the right half-
plane. In the current notation for the planes, this is

W = i − Z

i + Z
.

Finally, we want to rotate the effect of this mapping counterclockwise by π/4 (last stage of
Figure 23.28). For this, set

w= Weiπ/4.

Putting everything together, a conformal mapping from D to D∗ is given by

w= Weiπ/4 =
(

i − Z

i + Z

)

eiπ/4

=
(

i − z/2

i + z/2

)

eiπ/4

=
(

2i − z

2i + z

)

eiπ/4 = f (z).
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As an example, 0 is in D, and

f (0)= eiπ/4 =
√

2

2
(1 + i)

is in the rotated half-plane u + v > 0. �

23.2.1 The Schwarz-Christoffel Transformation

The Schwarz-Christoffel transformation is designed to produce a conformal mappings of the
upper half-plane U in the z-plane to the region P bounded by a polygon P in the w-plane. This
polygon could be a triangle, rectangle, pentagon, or other polyhedron. Because of the corners on
the boundary polygon P of P , such a mapping will be unlike anything we have seen up to this
point.

Let P be an n-sided polygon with vertices w1,w2, · · · ,wn in the w-plane (Figure 23.29)
with exterior angles α1π,α2π, · · · , αnπ .

The Schwarz-Christoffel conformal mapping f of the upper half-plane to the interior of P
has the form

f (z)= a
∫ z

z0

(ξ − x1)
−α1(ξ − x2)

−α2 · · · (ξ − xn)
−αn dξ + b (23.3)

in which x1, x2, · · · , xn are real numbers labeled in increasing order, a and b are complex num-
bers, and z0 is a complex number with Im(z0)> 0. These numbers must be chosen to suit P . The
integral is taken over any path in U from z0 to z in U . The factors (ξ − x j)

−α j are defined using
the complex logarithm obtained by restricting the argument to [0,2π).

To dissect this expression for f (z) and see the ideas behind the various components, let

g(z)= a(ξ − x1)
−α1(ξ − x2)

−α2 · · · (ξ − xn)
−αn

for z in U . Then f ′(z)= g(z), and

arg( f ′(z))= arg(a)−α1 arg(z − x1)− · · ·−αn arg(z − xn).

As we saw in the proof of Theorem 23.1, arg( f ′(z)) is the number of radians by which f (as a
mapping) rotates tangent lines if f ′(z) �= 0.

Now imagine z moving from left to right along the real axis, which is the boundary of U . On
(−∞, x1) to the left of x1, f (z) moves along a straight line (no change in the angle). As z passes
over x1, arg( f ′(z)) changes by α1π . This angle remains fixed as z moves from x1 to x2. As z

u

v

w2

w3

w1

w

α2π

α3π

α1π

FIGURE 23.29 A polygon and its exterior
angles.
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passes over x2, arg( f ′(z)) increases by α2π , then remains at this value until z passes over x3, at
which arg( f ′(z)) increases by α3π . In general, arg( f ′(z)) increases by α jπ as z passes over x j .
The net result (as z traverses the entire line) is that the real axis is mapped to a polygon P∗ having
exterior angles α1π,α2π, · · · , αnπ , which are the same as P . In fact α1, · · · , αn−1 determine all n
of these exterior angles, since

n∑

j=1

α jπ = 2π.

Now P∗ has the same exterior angles as P but need not be the same as P because of its location
and size. We may have to rotate and/or magnify P∗ to obtain P . These effects are achieved by
choosing x1, · · · , xn to make P∗ similar to P , then choosing a (a rotation/magnification) and b (a
translation) to superimpose P∗ onto P .

If we choose xn = ∞, then x1, x2, · · · , xn−1,∞ are mapped to the vertices of P . In this case,
the Schwarz-Christoffel transformation has the possibly simpler form as

f (z)= a
∫ z

z0

(ξ − x1)
−α1(ξ − x2)

−α2 · · · (ξ − xn−1)
−αn−1 dξ + b (23.4)

It can be shown that any conformal mapping of U onto a region bounded by a polygon must
have the form of a Schwarz-Christoffel mapping. In practice, it may be impossible to carry out
the integration needed to write a Schwarz-Christoffel transformation in closed form.

EXAMPLE 23.17

Suppose we want to map the upper half-plane onto a rectangle. Choose x1 = 0, x2 = 1,
and x3 as any number greater than 1. The corresponding Schwarz-Christoffel transformation
equation (23.4) has the form

f (z)= a
∫ z

z0

1√
ξ(ξ − 1)(ξ − x3)

dξ + b

with a and b chosen to fit the dimensions and orientation of the original rectangle. The radical
appears because the exterior angles of a rectangle are all π/2, so each α j = 1/2. This integral is
an elliptic integral and cannot be evaluated in closed form. �

EXAMPLE 23.18

We will map U onto the strip S defined by Im(w)> 0,−c<Re(z) < c in the w-plane. Here c is
a positive constant.

U and S are shown in Figure 23.30. To use the Schwarz-Christoffel transformation, think of
S as a polygon with vertices −c, c, and ∞. Choose x1 =−1 to map −c to −1 and x2 =1 to map to
c. Map ∞ to ∞. The exterior angles of S are π/2 and π/2, so α1 =α2 = 1/2. The transformation
has the form

w= f (z)= a
∫ z

z0

(ξ + 1)−1/2(ξ − 1)−1/2 dξ + b.

Choose z0 = 0 and b = 0, and write

(ξ − 1)−1/2 =[−(1 − ξ)]−1/2 =−i(1 − ξ)−1/2.

Writing −ai = A, we have

w= f (z)= A
∫ z

0

1

(1 − ξ 2)1/2
dξ.
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x uc−c 

y
v

FIGURE 23.30 Mapping the upper half-plane onto
a vertical strip in Example 23.18.

This integral reminds us of the real integral representation of the inverse sine function. Indeed,
write

w= A arcsin(z)

to mean that

z = sin
(w

A

)
.

To choose A so that −1 maps to −c and 1 to c, we need

sin
( c

A

)
= 1.

Thus, choose c/A =π/2, so A = 2c/π . Then

w= 2c

π
arcsin(z).

If we choose c =π/2, this mapping is exactly w= arcsin(z), mapping U onto the strip Im(z) >
0,−π/2<Re(w)<π/2. This is consistent with Example 23.3. �

SECTION 23.2 PROBLEMS

In each of Problems 1 through 6, find a bilinear transfor-
mation of the first domain onto the second.

1. |z|< 3 onto |w− 1 + i |< 6

2. |z|< 3 onto |w− 1 + i |> 6

3. |z + 2i |< 1 onto |w− 3|> 2

4. Re(z)> 1 onto Im(w)>−1

5. Re(z)< 0 onto |w|< 4

6. Im(z)>−4 onto |w− i |> 2

7. Find a conformal mapping of the upper half-plane onto
the wedge 9< arg(w)<π/3.

8. Let w = f (z) = log(z) be defined by restricting the
argument of z to lie in [0,2π ]. Show that f takes the
upper half-plane onto the strip 0<Re(w)<π .

9. Show that the Schwarz-Christoffel transformation

f (z)= 2i
∫ z

0

(ξ + 1)−1/2(ξ − 1)−1/2ξ−1/2 dξ

maps the upper half-plane onto the rectangle
with vertices 0, c, c + ic, and ic where c =
�(1/2)�(1/4)/�(3/4). For this problem, it is nec-
essary to know the integral formula

B(x, y)=
∫ 1

0

ux−1(1 − u)y−1 du

for the beta function B(x, y), and also to know that, in
terms of the gamma function,

B(x, y)= �(x)�(y)

�(x + y)
.

Hint: See Section 15.3 (Problems 39 and 40).
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23.3 Conformal Mapping Solutions of Dirichlet Problems

The intimate connection between harmonic functions and differentiable complex functions
allows a conformal mapping approach to certain Dirichlet problems.

The strategy behind this approach is to first solve the Dirichlet problem for a simple domain,
the unit disk D̃. Given another domain D, we attempt to find a conformal mapping T : D̃ → D.
T will then map the solution for D̃ to a solution for D.

We have Poisson’s integral to solve the Dirichlet problem for the unit disk, but this is not
well suited to the strategy we have outlined. We will derive another integral solution that will be
more useful. Thus, suppose we want u that is harmonic on D̃ and u(x, y)= g(x, y) on the unit
circle bounding D̃.

If v is the harmonic conjugate of u, f = u + iv is differentiable on the disk. We can assume
(by adding a constant if necessary) that v(0,0)= 0. Expand f (z) in a Maclaurin series

f (z)=
∞∑

n=0

anzn.

Then

u(x, y)= Re( f (x + iy))= 1

2

(
f (z)+ f (z)

)

= 1

2

∞∑

n=0

(anzn + anzn)= a0 +
∞∑

n=1

1

2
(anzn + an zn

).

Let ζ be on the unit circle γ . Then |ζ |2 = ζ ζ = 1, so ζ = 1/ζ and

u(ζ )= a0 + 1

2

∞∑

n=1

(anζ
n + anζ

−n).

Multiply this equation by zm/2π i , and integrate over γ with γ as the variable of integration:

1

2π i

∮

γ

u(ζ )ζm dζ = a0

2π i

∮

γ

ζ m dζ

+ 1

2

1

2π i

∞∑

n=1

(

an

∮

γ

ζ n+m dζ + an

∮

γ

z−n+m dζ

)

. (23.5)

But

∮

γ

ζ k dζ =
{

0 if k �=−1

2π i if k =−1.

Therefore, if m =−1 in equation (23.5), we have

1

2π i

∮

γ

u(ζ )
1

ζ
dζ = a0.

If m =−n − 1 with n = 1,2,3, · · · , we obtain

1

2π i

∮

γ

u(ζ )ζ−n−1 dζ = 1

2
an.
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Substitute these expressions for the coefficients into the Maclaurin series for f (z) to get

f (z)=
∞∑

n=0

anzn = 1

2π i

∮

γ

u(ζ )
1

ζ
dζ +

∞∑

n=1

(
1

π i

∮

γ

u(ζ )ζ−n−1

)

dζ zn

= 1

2π i

∮

γ

[

1 + 2
∞∑

n=1

(
z

ζ

)n
]

u(ζ )

ζ
dζ.

Since |z|< 1 and |ζ | = 1, then |z/ζ |< 1, and the geometric series in this equation converges:
∞∑

n=1

(
z

ζ

)n

= z/ζ

1 − z/ζ
= z

ζ − z
.

Insert this into the last equation to obtain

f (z)= 1

2π i

∮

γ

[

1 + 2z

ζ − z

]
1

ζ
dζ = 1

2π i

∮

γ

(
ζ + z

ζ − z

)
1

ζ
dζ.

Since ζ is on γ , u(ζ )= g(ζ ). Therefore, for |z|< 1,

u(x, y)= Re( f (z))= Re

(
1

2π i

∮

γ

g(ζ )

(
ζ + z

ζ − z

)
1

ζ
dζ

)

. (23.6)

This is an integral solution of the Dirichlet problem for the unit disk. If z = reiθ and ζ = eiϕ

are inserted into this solution, the Poisson integral formula results.
Equation (23.6) is well suited to solving certain Dirichlet problems using conformal map-

pings. Suppose we know a conformal mapping T : D → D̃ where D̃ is the unit disk |w|< 1
(Figure 23.31). Assume that T maps C , which is the boundary of D, onto the unit circle C̃
bounding D̃, and that T −1 is also a conformal mapping.

To clarify the discussion, we will use ζ for a point of C̃ , ξ for a point on C , and (x̃, ỹ) for a
point in the w-plane.

Now consider a Dirichlet problem for D:

∂2u

∂x2
+ ∂2u

∂2 y
= 0 for (x, y) in D

and

u(x, y)= g(x, y) for (x, y) in C = ∂D.

The idea is to map this problem to one for the unit disk D̃ for which we have the solution of
equation (23.6), then use the inverse map to convert this integral into the solution for D.

x

y

z

u

v

w

D

C

C
~

~
D :  w  < 1

1

i
T

T−1

FIGURE 23.31 Solving a Dirichlet problem by a con-
formal mapping.
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If w= T (z), then z = T −1(w), and we define

g̃(w)= g(T −1(w))= g(z).

In the w-plane, we now have a Dirichlet problem for the unit disk:

∂2ũ

∂x2
+ ∂2ũ

∂2 y
= 0 for (x̃, ỹ) in D̃

and

ũ(x̃, ỹ)= g̃(x̃, ỹ) for (x̃, ỹ) in C̃ .

By equation (23.6), the solution is

ũ(w)= Re( f̃ (w))= Re

[
1

2π i

∮

C̃

g̃(ζ )

(
ζ +w
ζ −w

)
1

ζ
dζ

]

.

Because T maps C onto C̃ and ζ =T (ξ) for ξ on C , the solution of the Dirichlet problem for D is

u(x, y)= Re( f (z))= Re

[
1

2π i

∫

C̃

g̃(T (ξ))

(
T (ξ)+ T (z)

T (ξ)− T (z)

)
1

T (ξ)
T ′(ξ)dξ

]

.

Since g̃(T (ξ))= g(T −1(T (ξ)))= g(ξ), we can write the solution

u(x, y)= Re( f (z))= Re

[
1

2π i

∫

C

g(ξ)

(
T (ξ)+ T (z)

T (ξ)− T (z)

)
T ′(ξ)

T (ξ)
dξ

]

. (23.7)

In this integral, C need not be a closed curve. If D is (for example) the right quarter-plane
x > 0, y> 0, then C will consist of two segments of the real and imaginary axes.

EXAMPLE 23.19

We will demonstrate this technique for a Dirichlet problem for the right half-plane:

∂2u

∂x2
+ ∂2u

∂2 y
= 0 for x > 0,−∞< y<∞

and

u(0, y)= g(y) for −∞< y<∞.

We need a conformal mapping from the right half-plane to the unit disk. There are many such
mappings, but we found one in Example 23.13:

w= T (z)=−i

(
z − 1

z + 1

)

.

Compute

T ′(z)= −2i

(z + 1)2
.

From equation (23.7), the solution is the real part of

f (z)=
1

2π i

∫

C

u(ξ)

(−i(ξ − 1)/(ξ + 1)− i(z − 1)/(z + 1)

−i(ξ − 1)/(ξ + 1)+ i(z − 1)/(z + 1)

)
1

−i(ξ − 1)/(ξ + 1)

−2i

(ξ + 1)2
dξ

= 1

π i

∫

C

u(ξ)

(
ξ z − 1

ξ − z

)
1

ξ 2 − 1
dξ.
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C is the boundary of the right half-plane, which is the imaginary axis. Parametrize C as ξ =
(0, t)= i t with t varying from ∞ to −∞ for positive orientation (if we walk down this axis, the
right half-plane is over our left shoulder). Now

f (z)= 1

π i

∫ −∞

∞
u(0, t)

(
i t z − 1

i t − z

)( −1

1 + t 2

)

idt

= 1

π

∫ ∞

−∞
u(0, t)

(
i t z − 1

i t − z

)(
1

1 + t 2

)

dt.

The solution is the real part of this integral. Now t , u(0, t) and 1/(1 + t 2) are real, so we must
pull out the real part of the terms containing i and z = x + iy in the integral. Write

i t z − 1

i t − z
= i t x − t y − 1

i t − x − iy
=
(

i t x − t y − 1

i t − x − iy

)(−i t − x + iy

−i t − x + iy

)

= t x(t − y)− i t x2 + i t y(t − y)+ t xy + i(t − y)+ x

x2 + (t − y)2
.

The real part of this expression is

x(1 + t2)

x2 + (t − y)2
.

Therefore,

u(x, y)= Re( f (z))= 1

π

∫ ∞

−∞
u(0, t)

x(1 + t 2)

x2 + (t − y)2
1

1 + t 2
dt

= 1

π

∫ ∞

−∞
g(t)

x

x2 + (t − y)2
dt. �

SECTION 23.3 PROBLEMS

In each of Problems 1 through 6, use equation (23.4) to
solve the Dirichlet problem for the given domain with the
given boundary data.

1. Upper half-plane: u(x,0)= f (x).

2. Right quarter plane: Re(z) > 0, u(x,0) = f (x), and
u(0, y)= 0.

3. The disk |z − z0|< R if u(x, y)= xy for (x, y) on the
boundary.

4. Right half-plane with boundary condition:

u(0, y)=
{

1 for −1 ≤ x ≤ 1

0 for |y|> 1.

5. The unit disk if u(x, y) = x − y for (x, y) on the
boundary circle.

6. The unit disk with

u(eiθ )=
{

1 for 0 ≤ θ ≤π/4
0 for π/4<θ < 2π .

7. Solve the Dirichlet problem for the strip −1< Im(z)<
1, Re(z)> 0 with the boundary conditions

u(x,1)= u(x,−1)= 0 for x > 0

and

u(0, y)= 1 − |y| for − 1 ≤ y ≤ 1.

23.4 Models of Plane Fluid Flow

This section is an introduction to complex function models of fluid flow. Suppose an incompress-
ible fluid moves with velocity field V(x, y). By assuming that the velocity depends only on two
variables, we are taking the flow to be the same in all planes parallel to the complex plane. Such
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a flow is called plane-parallel. This velocity vector is also assumed to be independent of time, in
which case we say that the flow is stationary. Write

V(x, y)= u(x, y)i + v(x, y)j.

Since we identify vectors in the plane with complex numbers, we will write this as

V (z)= V (x + iy)= u(x, y)+ iv(x, y).

Given V (z), think of the complex plane as divided into two sets. The first is the domain D
on which V is defined. The complement of D consists of the points not in D. Think of this
complement as comprising channels or barriers confining the fluid to D. This enables us to
model fluid flow through a variety of configurations and around barriers of various shapes.

Suppose γ is a closed path in D. Write γ (s)= x(s)+ iy(s), using arc length s as a parameter.
Then x ′(s)i + y ′(s)j is the unit tangent vector to γ . Furthermore,

(ui + vj) ·
(

dx

ds
i + dy

ds
j
)

ds = udx + vdy.

Since udx + vdy is the dot product of the velocity with the unit tangent along the trajectory γ ,
we interpret

∮

γ

u dx + v dy

as a measure of the velocity of the fluid along γ . This integral is the circulation of the fluid
around γ .

The vector −y ′(s)i + x ′(s)j is a unit normal vector to γ (Figure 23.32). Then

−
∮

γ

(ui + vj) ·
(

dy

ds
i + dx

ds
j
)

ds =
∮

γ

−v dx + u dy

is the negative of the integral of the normal component of the velocity along γ . When this integral
is not zero, it is called the flux of the fluid across the path. This gives a measure of fluid flow across
γ out of the region enclosed by γ . When this flux is zero for every closed path in the domain of
the fluid, we call the fluid solenoidal.

A point z0 = x0 + iy0 is a vortex of the fluid if the circulation has a nonzero value k that is
the same for every closed path about z0 in the interior of some annulus 0< |z − z0|< r . We call
|k| the strength of the vortex. If k> 0 the vortex is a source, and if k< 0 it is a sink.

The following result is the key to using complex functions to analyze fluid flow.

T

N

y

γ

x

FIGURE 23.32 Unit tangent and
normal vectors to C.
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THEOREM 23.6

Let u and v be continuous with continuous first and second partial derivatives in a simply con-
nected domain D. Suppose ui + vj is irrotational (has curl O) and solenoidal. Then u and −v
satisfy the Cauchy-Riemann equations on D, and f (z)= u(x, y)− iv(x, y) is differentiable on
D. Conversely, if u and −v satisfy the Cauchy-Riemann equations on D, then ui + vj defines an
irrotational, solenoidal flow on D. �

With zero curl, the fluid experiences no swirling, although there can be translations and
distortions in the motion. If the flow is solenoidal, then

div(ui + vj)= ∂u

∂x
+ ∂v

∂y
= 0.

A further connection between flows and complex functions is provided by the following.

THEOREM 23.7

Let f be differentiable on a domain D. Then f ′(z) is an irrotational solenoidal flow on D. Con-
versely, if V = ui + vj is an irrotational, solenoidal vector field on a simply connected domain
D, then there is a differentiable complex function f defined on D such that f ′(z) = V (z).
Furthermore, if f (z)=ϕ(x, y)= iψ(x, y), then

∂ϕ

∂x
= u = ∂ψ

∂y
and

∂ϕ

∂y
= v=−∂ψ

∂x
. �

In view of the fact that f ′(z) is the velocity of a flow, we call f a complex potential for the
flow. Theorem 23.7 implies that any differentiable function f (z)= ϕ(x, y)+ iψ(x, y) defined
on a simply connected domain D determines an irrotational, solenoidal flow

f ′(z)= ∂ϕ

∂x
+ i

∂ψ

∂x
= u(x, y)− iv(x, y)= u(x, y)+ iv(x, y).

We call ϕ the velocity potential of the flow, and curves ϕ(x, y)= k are equipotential curves. The
function ψ is the stream function of the flow, and curves ψ(x, y)= c are the streamlines.

At any z at which f ′(z) �= 0, f is a conformal mapping. A point at which f ′(z)= 0 is called
a stagnation point. Thinking of f as a mapping of the z-plane to the w-plane, we have

w= f (z)=ϕ(x, y)+ iψ(x, y)=α+ iβ.

Equipotential curves ϕ(x, y)= k map to vertical lines α= k, and streamlines ψ(x, y)= c map to
horizontal lines β = c. Because these vertical and horizontal lines are orthogonal in the w-plane
and f is conformal, the streamlines and equipotential curves in the z-plane also form orthogonal
families. Every streamline is orthogonal to each equipotential curve at any point of intersection.
This condition fails at a stagnation point, where the mapping may not be conformal.

Along an equipotential curve ϕ(x, y)= k,

dϕ= ∂ϕ

∂x
dx + ∂ϕ

∂y
dy = u dx + v dy = 0.

Now ui + vj is the velocity of the flow at (x, y), and x ′(s)i + y ′(s)j is a unit tangent to the
equipotential curve through (x, y). Since the dot product of these two vectors is zero (from the
fact that dϕ=0 along the equipotential curve), we conclude that the velocity is orthogonal to the
equipotential curve through (x, y)—provided that (x, y) is not a stagnation point.
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Along a streamline ψ(x, y)= c,

dψ = ∂ψ

∂x
dx + ∂ψ

∂y
dy =−v dx + u dy = 0,

so the normal to the velocity vector is orthogonal to the streamline. This means that the velocity
is tangent to the streamline and justifies the interpretation that the particle of fluid at (x, y) is
moving in the direction of the streamline at this point. We therefore interpret streamlines as the
trajectories of the particles in the fluid. For this reason, graphs of the streamlines form a picture
of the motion of the fluid.

EXAMPLE 23.20

Let f (z)=−Keiθ z with K as a positive constant and θ is fixed with 0 ≤ θ ≤ 2π . Write

f (z)=−K (cos(θ)+ i sin(θ))(x + iy)

=−K (x cos(θ)− y sin(θ))− i K (y cos(θ)+ x sin(θ)).

If f (z)=ϕ(x, y)+ iψ(x, y), then

ϕ(x, y)=−K (x cos(θ)− y sin(θ))

and

ψ(x, y)=−K (y cos(θ)+ x sin(θ)).

Since K is constant, equipotential curves are graphs of

x cos(θ)− y sin(θ)= k

or

y = cot(θ)+ b

in which b = k sec(θ) is constant. These are straight lines with slope cot(θ).
Streamlines are graphs of

ψ(x, y)=− tan(θ)x + d,

which are straight lines of slope − tan(θ). These lines make an angle π − θ with the positive real
axis, as in Figure 23.33. These are the trajectories of the flow. The streamlines and equipotential
lines are orthogonal with slopes that are negative reciprocals of each other.

Now compute

f ′(z)= −Keiθ =−Ke−iθ ,

z

θ

FIGURE 23.33 Streamlines in
Example 23.20.
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since θ is real. This implies that the velocity has constant magnitude K . In sum, f models a
uniform flow with velocity of a constant magnitude K moving at an angle π − θ with the positive
real axis. �

EXAMPLE 23.21

We will analyze the flow having complex potential f (z)= z2. Since f ′(z)= 2z = 0 exactly when
z = 0, the origin is the only stagnation point. We will determine the trajectories of the flow.

With z = x + iy, f (z)= x2 − y2 + 2i xy, so

ϕ(x, y)= x2 − y2 and ψ(x, y)= 2xy.

Equipotential curves are hyperbolas x2 − y2 = k if k �=0, and straight lines y =±x if k =0. These
are asymptotes of the hyperbolic equipotential curves. Streamlines are hyperbolas xy =c if c �=0,
and the axes are x = 0 and y = 0 if c = 0. Some streamlines and equipotential lines are shown in
Figure 23.34.

The velocity of the flow is f ′(z) = 2z. f models a nonuniform flow having velocity of
magnitude 2|z| at z. This flow moves along the hyperbolic streamlines with the axes acting as
barriers of the flow (think of sides of a container holding the fluid). �

EXAMPLE 23.22

Consider the flow associated with the complex potential

f (z)= i K

2π
Log(z),

for z �= 0, where Log(z) is the logarithm of z having argument between 0 and 2π . Thus,

Log(z)= 1

2
ln(x2 + y2)+ iθ,

y

x

−2 −1 1 20

1

2

−2

−1

FIGURE 23.34 Streamlines and equipotential lines in
Example 23.21.
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where θ is the argument of z lying in [0,2π). We therefore may write

f (z)= i K

2π

(
1

2
ln(x2 + y2)+ iθ

)

=− K θ

2π
+ i K

4π
ln(x2 + y2).

Then

ϕ(x, y)=− K

2π
θ and ψ(x, y)= K

2π
ln(x2 + y2).

Equipotential curves are graphs of θ = constant, which are half-lines from the origin making
angle θ with the positive real axis. Streamlines are graphs of ψ(x, y)= c, and these are circles
about the origin. These are trajectories of the fluid, which can be envisioned as moving in circular
paths about the origin. Some streamlines and equipotential curves are shown in Figure 23.35.

Compute f ′(z)= (i K/2π z) if z �= 0. On the circle |z| = r , the magnitude of the velocity is

| f ′(z)| = K

2π

1

|z| = K

2πr
.

This velocity increases as r → 0, so the fluid swirls about the origin with increasing velocity
toward the center (origin). The origin is a vortex of this flow.

To calculate the circulation of the flow about the origin, write

f ′(z)=− i K

2π

1

z
=− i K

2π

z

|z|2 = K

2π

y

x2 + y2
− i K

2π

x

x2 + y2
= u + iv.

If γ is the circle of radius r about the origin, then on γ , we have x = r cos(t) and y = r sin(t) for
0 ≤ t ≤ 2π , so

y

x
20−2 −1 1

1

2

−1

−2

FIGURE 23.35 Streamlines and equipotential lines in
Example 23.22.
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∮

γ

udx + vdy =
∫ 2π

0

[
K

2π

r sin(t)

r 2
(−r sin(t))− K

2π

r cos(t)

r 2
(r cos(t))

]

dt

= K

2π

∫ 2π

0

−dt =−K .

This is the value of the circulation on any circle about the origin.
By a similar calculation,

∮

γ

−v dx + u dy = 0.

The origin is therefore neither a source nor a sink.
If we wish, we may restrict |z|> R to model flow having a solid cylinder about the origin as

a barrier with the flow swirling about the cylinder. �

EXAMPLE 23.23

Interchange the roles of streamlines and equipotential curves in Example 23.22 by setting

f (z)= KLog(z)

with K a positive constant. Now

f (z)= K

2
ln(x2 + y2)+ i K θ,

so

ϕ(x, y)= K

2
ln(x2 + y2) and ψ(x, y)= K θ.

The equipotential curves are circles about the origin, and the streamlines are half-lines emanating
from the origin. The velocity of the flow is

f ′(z)= K

z
= K

x

x2 + y2
+ i K

y

x2 + y2
= u + iv.

If γ is a circle of radius r about the origin, then a straightforward calculation yields
∮

γ

u dx + v dy = 0 and
∮

γ

−v dx + u dy = 2πK .

The origin is a source of strength 2πK . This flow streams out from the origin, moving along
straight lines with velocity that decreases with distance from the source. �

EXAMPLE 23.24

We will model flow around an elliptical barrier using a conformal mapping. From Example 23.22,
f (z)= (i K/2π)Log(z) for |z|> R models flow with circulation −K about a cylindrical barrier of
radius R centered at the origin. If the barrier is elliptical, we can combine this complex potential
with a mapping taking the circle |z| = R to an ellipse. To do this, consider the mapping

w= z + a2

z

in which a is a positive constant. This is a Joukowski transformation, and it is used in modeling
fluid flow around airplane wings because of the different images of the circle that occur by
making different choices for a.
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Let z = x + iy, and w= X + iY . The circle x2 + y2 = R2 is mapped to the ellipse

X 2

1 + (a/R)2
+ Y 2

1 − (a/R)2
= R2

if a �= R. If a = R, the circle maps to the interval [−2a,2a] on the real axis.
Solve for z in the Joukowski transformation to get

z = w+√
w2 − 4a2

2
.

Compose this mapping with the complex potential function for the circular barrier to get

F(w)= f (z(w))= i K

2π
Log

(
w+√

w2 − 4a2

2

)

.

This is the complex potential for flow in thew-plane about an elliptical barrier if R>a and about
the flat plate −2a ≤ X ≤ 2a,Y = 0 if R = a. �

We conclude this section with an application of complex integration to fluid flow. Suppose f
is a complex potential for a flow about a barrier whose boundary is a closed path γ . Let Ai + Bj
be the thrust of the fluid outside the barrier. Blasius’s theorem states that

A + i B = iρ

2

∮

γ

( f ′(z))2 dz,

in which ρ is the constant density of the fluid. Furthermore, the moment of the thrust about the
origin is

Re

(

−ρ
2

∮

γ

z( f ′(z))2 dz

)

.

SECTION 23.4 PROBLEMS

In each of Problems 1 through 4, analyze the flow hav-
ing the given complex potential. Sketch some equipotential
curves and streamlines and determine the velocity, any
stagnation points, and whether the flow has any sources
or sinks.

1. f (z)= az with a a nonzero complex number.

2. f (z)= z3

3. f (z)= cos(z)

4. f (z)= z + i z2

5. f (z)= KLog(z − z0) with K as a nonzero real con-
stant and z0 as a complex number. Show that z0

is a source if K > 0 and a sink if K < 0. Sketch
some equipotential curves and streamlines. Log(z) is
defined here to be the branch of log(z) obtained by
restricting −π ≤ arg (z)<π .

6. Let

f (z)= KLog

(
z − a

z − b

)

with K as a nonzero real numbers and a and b as
distinct complex numbers. Sketch some equipotential
curves and streamlines and determine any stagnation
points, sources, and sinks.

7. Let

f (z)= K

(

z + 1

z

)

with K as a nonzero real number. Sketch some equipo-
tential curves and streamlines. Show that f models
flow around the upper half of the unit circle.

8. Let

f (z)= m − ik

2π
Log

(
z − a

z − b

)

with m and k as nonzero, real numbers and a and b as
distinct, complex numbers. Show that this flow has a
source or sink of strength m and a vortex of strength
k at both a and b. A point combining properties of a
source or sink and a vortex is called a spiral vortex.
Sketch some equipotential curves and streamlines for
this flow.
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9. Analyze the flow having complex potential

f (z)= K

(

z + 1

z

)

+ ib

2π
Log(z)

with k and b as nonzero, real numbers. Sketch some
equipotential curves and streamlines.

10. Analyze the flow having potential

f (z)= i Ka
√

3Log

(
2z − ia

√
3

2z + ia
√

3

)

with K and a positive constants. Show that f mod-
els an irrotational flow around a cylinder 4x2 + 4(y −
a)2 = a2 with a flat boundary along the y-axis. Sketch
some equipotential curves and streamlines.

11. Use Blasius’s theorem to show that the force per unit
width on the cylinder in Problem 10 has vertical com-
ponent of 2

√
3πρaK 2 with ρ as the constant density

of the fluid.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

S 50
R 51

1st Pass Pages

1019763_FM_VOL-I.qxp  9/17/07  4:22 PM  Page viii

User
Zone de texte 
This page was intentionally left blank



October 14, 2010 15:43 THM/NEIL Page-789 27410_24_appA_p789-800

APPENDIX A
A MAPLE Primer

This section is intended to assist students in using MAPLE. In some cases, examples are given
which can be easily adapted to general use. Additional examples and details can be found in
MAPLE’s HELP function. The student should experiment with the code given here and expand
and adapt it to personal needs and preferences. In many instances, it is also possible to write
different instructions to carry out computations.

A.1 Beginning Computations

Numerical computations are carried out as one might expect, with an asterisk * denoting a
product and a wedge ∧ a power. If we type

2∧ 14;

we obtain the fourteenth power of 2, which is 16,380. Note the semicolon ending this MAPLE
command. In some versions of MAPLE, semicolons are used to end commands. In later releases,
the semicolon is not needed. However, if the semicolon is included, the command will still
execute.

To multiply 214 by 19, type

19∗2∧14;

π is stored in MAPLE as Pi (upper case P—MAPLE is case sensitive). The exponential
function is denoted exp, and the number e is obtained as exp(1). If we enter

(Pi ∧ 2)∗exp(1);

this will return the symbolic product

(π 2)e

To obtain the (approximate) decimal value of this product, use the evalf command:

evalf((Pi ∧ 2)∗exp(1));

789
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This will return the decimal 26.82836630. As another example,

evalf(cos(3) + sin(3));

will return the decimal value -.8488724885 of cos(3)+ sin(3).
To solve an algebraic equation, use the solve command. For example,

solve(x∧2 + 2∗x - 1=0,x);

will return the roots −1 +√
2 and −1 −√

2 of x2 + 2x − 1 = 0. This solve command includes
a designation of x as the variable for which to solve—an essential piece of information for the
program. Of course, other symbols than x can be used in the equation and the instruction. For
the solutions in decimal form, use

evalf(solve(x∧2 + 2∗x - 1=0,x);

which will return the decimal values 0.414213562 and −2.414213562 of these roots. As another
example, enter

evalf(solve(cos(t) - t = 0,t));

to obtain the approximate solution 0.7390851332 of cos(t)− t = 0.
To solve a system of equations, enter the system in curly brackets in the solve command. For

example,

solve({x - 2*y = 4, 5∗x + y = -3},{x,y});

gives the solution x =−2/11, y =−23/11. Again, note the designation of x and y as the variables
for which solutions are wanted.

In order to define a function, say f (x)= x sin(5x)− 3x , enter

f:=x→x∗sin(5∗x) - 3∗x;

This names the function f and the variable x . The arrow must be typed into MAPLE as a dash
followed by a “greater than” symbol. If we want to evaluate this function at a point, say π/4,
type

f(Pi/4);

to obtain the value −π√
2/8 − 3π/4.

To plot a graph of f , say on the interval [−1,3], enter

plot(f(x), x=-1..3);

If we wish, we can enter a function directly into the plot command without prior definition.
For example,

plot(x∗cos(3∗x) - exp(x), x=-1..1);

will graph x cos(3x)− ex for −1 ≤ x ≤ 1.
To plot several graphs of functions that have been defined, enter, for example,

plot({f(x),g(x),h(x)},x=a..b);

We can arrange for all the graphs to be in one color, say black, by

plot({f(x),g(x),h(x)},x=a..b,color=black);

Sometimes we want to enter a function having jump discontinuities. This is done by
specifying the value of the function on successive intervals. For example, to define

s(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x for x <−1

cos(3x) for −1< x < 4

x 2 for 4< x < 9

sin(4x) for x > 9
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enter

s:=x→ piecewise(x < -1,x,x < 4,cos(3∗x),x < 9,x∧2,sin(4∗x));

We can differentiate f (x) by

diff(f(x),x);

This can be done with a previously entered f (x), or we can put the function into the command,
as with

diff(x∗cos(3∗x)∗exp(2∗x),x);

We can also take a derivative using D(f)(x).
To evaluate an indefinite integral

∫
f (x)dx , use the int command:

int(f(x),x);

The variable of integration must be specified. For a definite integral
∫ b

a
f (x)dx , include the limits

of integration:

int(f(x),x=a..b);

This also can be used with improper integrals. For example, enter

int(exp(-x),x=0..infinity);

to evaluate
∫ ∞

0
e−x dx = 1.

MAPLE has a sum command. If a1, · · ·an are n numbers that have been defined in some
way, then their sum is computed as

sum(aj,j=1..n);

It may be necessary to precede this command with evalf to obtain a decimal evaluation. Often it
is convenient in a summation to define the sequence as a function. For example, if we define

a:=j → j∗sin(Pi/j);

then

sum(a(j),j=4..7);

will produce the sum

4sin(π/4)+ 5 sin(π/5)+ 6 sin(π/6)+ 7 sin(π/7).

Preceding the sum command with evalf will produce the decimal value of the sum.
If a MAPLE file is saved, any code that has been entered will be retained. However, if the

file is closed and then reopened, some commands may have to be reactivated. For example, if a
function f(x) was previously entered, then place the cursor at the end of the line defining f(x)
and hit ENTER again to reactivate this function.

A.2 Ordinary Differential Equations

Some operations with differential equations require that a special package of subroutines be
opened. This is done by

with(DEtools);

For a direction field of y ′ = y2 on a grid −2< x < 2,−2< y< 2, type

DEplot(diff(y(x),x) = y(x)∧2,y(x),x=-2..2,y=-2..2,color=black);
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y is entered as y(x) in the specification of the differential equation. The instruction to show the
direction field in black is optional.

We could also use

dfieldplot(diff(y(x),x) = y(x)∧2,y(x),x=-2..2,y=-2..2,

color=black);

For a field plot with sketches of some integral curves, enter initial conditions specifying these
curves, for example,

DEplot(diff(y(x),x) = y(x)∧2,y(x),x=-4..4,y=-3..3,[[y(0)=-1/2],

[y(0)=1/2],[y(0)=1],[y(0)=-2]],color=black,linecolor=[black,

black,black,black]);

This produces a black direction fieid over the grid −4< x < 4,−3< y< 3, with sketches of the
integral curves (in black) through (0,−1/2), (0,1/2), (0,1), and (0,−2). Be careful in spec-
ifying things like color of integral curves. Since a set of four initial values is given, the color
instructions for the integral curves must include four colors (although some or all can be the
same).

We can solve some differential equations using the dsolve command. For example, for the
general solution of y ′ − (1/x)y =−2, enter

dsolve(diff(y(x),x) - (1/x)∗y(x) = -2,y(x));

This returns the general solution

y(x)= C1x − 2x ln(x).

The arbitrary constant in the MAPLE output is denoted C1.
As an example of a second order differential equation, consider

y ′′ − 4y ′ + y = x3 − sin(2x).

Enter

dsolve(diff(diff(y(x),x),x) + 4∗diff(y(x),x) + y(x)

= x∧3 - sin(2∗x),y(x));

This gives the general solution

y(x)=C1e
(2+√

3)x + C2e
(2−√

3)x + 90x + 12x2 + x3

+ 336 − 8

73
cos(2x)+ 3

73
sin(2x).

For an initial value problem, include the initial condition(s). For example,

dsolve(diff(y(x),x) - (1/x)∗y(x) = -2,y(1) = 5,y(x));

gives the solution y = (1/2)x2 + x + 1 of the initial value problem y ′ − (1/x)y =−2; y(1)= 5.
We can also solve some systems of differential equations. For example, to solve

y ′
1 − 4y ′

2 = 1, y ′
1 + 2y ′

2 = t

enter

dsolve({diff(y1(t),t) - 4∗diff(y2(t),t)

= 1, diff(y1(t),t)+ 2∗diff(y2(t),t) = t},{y1(t),y2(t)});
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to obtain the general solution

y1(t)= 1

10
t 2 − 1

5
t + c1, y2(t)= 2

5
t 2 + 1

5
t + c2.

MAPLE can be used to write the first n terms of the power series solution of a differential
equation with analytic coefficients, expanded about 0, with initial condition(s) specified at 0. To
illustrate, give the differential equation y ′ − cos(x)y = ex the name deq1 by

deq1:= diff(y(x),x) - cos(x)∗y(x) = exp(x);

Now obtain a power series solution about 0, with y(0)= 5, by

dsolve(deq1,y(0)=5,y(x),series);

This produces the output

y(x)= 5 + 6x + 7

2
x2 + 1

2
x3 − 7

12
x4 − 5

12
x5 + O(x6).

The symbol O(x6) means that terms involving sixth and higher powers of x have not been
included in this expression. In the absence of an instruction, MAPLE defaults to giving the first
six terms of a power series solution about 0, and these are the constant term and terms involving
xk for k = 1,2, · · · ,5. For terms up to and including x N , include a value of N in the instruction.
For example, to obtain terms up to and including x10, enter

dsolve({deq2,y(0)=5},y(x),series,order = 10);

For a phase portrait of a 2 × 2 system, we can use DEplot. For example,

DEplot([diff(x(t),t) = x(t)∧2 - y(t),diff(y(t),t) =
x(t)∗y(t)],[x(t),y(t)],t=-7..0,[[x(0)=0,y(0)=1],

[x(0)=0,y(0)=2],[x(0)=0,y(0)=1/2]], stepsize=.02,

linecolor=0,color=black,arrows=MEDIUM,method=rkf45);

will produce a direction field (in black) for the system

x ′(t)= x2 − y, y ′(t)= xy

and solution curves through (0,1), (0,2), and (0,1/2). In applying the DEplot function, some
experimentation may be needed for the rang of values of t and for the selection of points through
which solution curves are to be drawn. In this example, if we set t = 0..1, we obtain an
error message. We do not know the solution explicitly, and some terms in it may blow up for
certain values of t . For example, if a solution has an e6t term and we specify t:0..3, then, as t
increases, the numbers e6t become too large for the program to handle. The key is to try various
t intervals. If one interval yields only parts of curves, try extending the range of t . It is also the
case that some selections of initial data will work better than others.

A.3 Vector Operations

Vector operations can be carried out using the vector calculus package. Begin by loading this
package using

with(VectorCalculus);

Vector algebra can be done in Rn by either performing the operations (addition and scalar
multiplication) directly on the vectors, or by entering the vectors separately and then carrying
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out the operations. For example, to add 16/37 times < 1,−5,3,−9,−22 > to 15/92 times
< 0,3,−3,6,−1>, enter

(16/37)∗< 1,−5,3,−9,−22> + (15/92)∗< 0,3,−3,6,−1>;

We could also name the first vector V and the second vector G by

V:=< 1,−5,3,−9,−22>;

and

G:=< 0,3,−3,6,−1>

and then compute

(16/37)∗V + (15/92)∗G;

For the dot product of two vectors V and F (which can be n-vectors), enter

DotProduct(V,F);

Here V and F can be defined previously or can be entered into the dot product command.
Unlike the dot product, for the curl of two vectors, we are restricted to vectors in R3. For the

curl of V =< a,b, c> and F =< d, e, f >, enter

CrossProduct(< a,b, c>,< d, e, f >);

As usual, the vectors can be entered directly or they could have been previously defined.
We can also carry out the vector calculus operations of gradient, divergence and curl. To

begin, we will work in rectangular coordinates. Set this system by

SetCoordinates(‘cartesian’[x,y,z]);

MAPLE expects the word cartesian in this command.
For the gradient of a scalar field, use the del operator, which in MAPLE is called del or

nabla. For example, we can define the scalar field f (x, y, z)= xyz − xy2 cos(z), by entering

f:=(x,y,z) → x∗y∗z - x + 4∗y∗z;

Now compute the gradient of f in any of the following ways:

Gradient(f(x,y,z));

or

Del(f(x,y,z));

or

Nabla(f(x,y,z));

or

Del(x∗y∗z - x + 4∗y∗z);

or

Nabla(x∗y∗z - x + 4∗y∗z);

To work with divergence and curl in rectangular (cartesian) coordinates, we can first enter
the vector fields of interest. For example, to enter the vector field

F(x, y, z)= xyzi + (x − y)j + yzk,
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use

F:= VectorField(<x∗y∗z,x - y,yz>);

Take the divergence of F as the dot product of del with F.

DotProduct(Nabla,F);

or

DotProduct(Del,F);

For the curl, take the cross product of the del operator with the vector field:

CrossProduct(Nabla,F);

or

CrossProduct(Del,F);

The output from this command will have the appearance

0ex + xyey + (1 − xz)ez.

In MAPLE, unit vectors along the coordinate axes are denoted eα where α denotes the coordinate.
In rectangular coordinates, ex = i, ey = j, and ez =k. In spherical coordinates, these vectors would
be denoted eρ , eθ , and eϕ .

We can also carry out vector operations in other curvilinear coordinate systems. We will
illustrate these for cylindrical and spherical coordinates.

To work in cylindrical coordinates, begin with

SetCoordinates(‘cylindrical’ [r,theta,z]);

As an example, define a vector field G(r, θ, z) by

G:=VectorField(<(r∧2)∗cos(theta),r∗z∗cos(theta)∗sin(theta),

(z∧2)>);

This will produce the output

G := r 2 cos(θ)er + r z cos(θ) sin(θ)eθ + z2ez.

For the divergence, enter

Divergence(G);

resulting in the output

3r 2 cos(θ)− r z sin(θ)2 + r z cos(θ)2 + 2r z

r
.

Of course, we can divide out the r in the denominator. For the curl of G, enter

Curl(G);

to obtain

−r cos(θ) sin(θ)er + 2r z cos(θ) sin(θ)+ r 2 sin(θ)

r
ez.

We would divide out the r in the ez component. MAPLE does not automatically simplify all
output.
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In an entirely analogous way, we can carry out vector operations in spherical coordinates.
First, change to this coordinate system:

SetCoordinates(‘spherical’[rho,theta,phi]);

For the MAPLE command

Gradient(rho∗sin(phi)∧2)∗cos(theta/2));

returns the gradient in spherical coordinates:

sin(φ)2 cos

(
1

2
θ

)

eρ − 1

2
sin(φ)2 sin

(
1

2
θ

)

eθ + 2 sin(φ) cos
(

1
2
θ
)
cos(φ)

sin(θ)
eφ.

Some vector operations can also be carried out using the linear algebra package, which is
discussed next. Details are available in the MAPLE Help package.

A.4 Matrix Manipulations

To work with matrices, load the linear algebra package, using

with(linalg);

Again, the semicolon will give a list of the subroutines. To avoid the list, end this command with
a colon.

There are many ways to enter a matrix. One way is to enter the dimension and the rows. For
example,

Matrix(4,2,[[-1,3],[6,1],[6,5],[-1,-2]]);

enters the 4 × 2 matrix
⎛

⎜
⎜
⎝

−1 3
6 1
6 5

−1 −2

⎞

⎟
⎟
⎠ .

To give this matrix the name K, enter

K:=Matrix(4,2,[[-1,3],[6,1],[6,5],[-1,-2]]);

For the inverse of a nonsingular matrix A which has been entered, use

inverse(A);

For the rank of a matrix L (which need not be square), use

rank(L);

For the determinant of square A, use

det(A);

Multiply a matrix A by a scalar c by

c∗A;

Add two n × m matrices as we would expect using

A + B;
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Multiply matrices A and B by

A.B;

Elementary row operations can be carried out very efficiently. Let A be an n × m matrix that
has been entered. To interchange rows k and j and A to form a new matrix B, use

B:=swaprow(A,k,j);

To form S from A by multiplying row r of B by x, use

S:=mulrow(A,r,x);

And to form T from A by adding x times row r1 to row r2, use

T:= addrow(A,r1,r2,x);

Finally, suppose we select an element ak, j of A, and we want to proceed by elementary row
operations to a new matrix W having zeros above and below this element. This is called pivoting
about ak, j , and is done using the pivot command. Enter

W:=pivot(A,k,j);

W will be the matrix with zeros above and below ak, j , which could have been obtained by
systematically applying row operations as needed to each of the rows above and below row k of
the matrix.

Using the pivot command, it is easy to find the reduced row echelon form of a matrix.
Starting in the upper left corner of the matrix, pivot about the leading element of each row. The
resulting matrix is nearly reduced. The only problem is that leading entries of nonzero rows may
not equal 1. Just divide each nonzero row by its leading entry (using mulrow) to obtain leading
entries of 1, resulting in a reduced row echelon matrix.

The corresponding column operations can be achieved by replacing row with col in these
commands. Such column operations may be useful, for example, in manipulating determinants.

The elementary row and column operations of adding a scalar multiple of one row (column)
to another are also useful in carrying out an LU factorization of matrix. The algorithms for
forming the two matrices in such a factorization depend on these operations.

The characteristic polynomial of a square matrix A is obtained using

charpoly(A,x);

in which the variable in which the polynomial will be written (here x) must be specified. The
command

eigenvals(A);

lists the eigenvalues of A (real or complex), giving each eigenvalue according to its multiplicity.
Note that the imaginary unit i is denoted I in the program. The command

eigenvects(A);

lists each eigenvalue, along with its multiplicity and for each eigenvalue, as many linearly
independent eigenvectors as can be found for that eigenvalue. To illustrate, let

A:=Matrix(3,3,[[1,-1,0],[0,1,1],[0,0,-1]]);
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This is the matrix of Example 9.3. Now

eigenvects(A);

gives the output

[1,2, [1,0,0]], [−1,1, [1,2,−4]]
This gives eigenvalue 1 with multiplicity 2, and every eigenvector associated with 1 is a

multiple of (1,0,0). Eigenvalue −1 has multiplicity 1 and eigenvector (1,2,−4).
Now let B be the 3 × 3 matrix of Example 9.5:

B:=Matrix(3,3,[[5,-4,4],[12,-11,12],[4,-4,5]]);

The command

eigenvals(B);

gives the list 1,1,−3 of eigenvalues, 1 having multiplicity 2, and −3 having multiplicity 1.
Next use

eigenvects(B);

to obtain the output

[1,2, [1,1,0], [−1,0,1]], [−3,1, [1,3,1]]
giving two linearly eigenvectors associated with eigenvalue −3.

A.5 Integral Transforms

MAPLE has subroutines for several integral transforms. To load these, enter

with(inttrans);

To take the Laplace transform of f (t), use

laplace(f(t),t,s);

in which f (t) may have been loaded previously, or can be specified in the command. For
example,

laplace(t∗cos(t),t,s);

returns the transform (s2 − 1)((s2 + 1)2) of t cos(t).
For the inverse Laplace transform of 1/((s2 + 4)2), use

invlaplace(1/((s∧2 + 4)∧2),s,t);

to obtain (1/16) sin(2t)− (1/8) cos(2t).
For the Fourier, Fourier sine and Fourier cosine transforms, the commands are similar,

except replace laplace with fourier, fouriersin, or fouriercos. For example, for
the Fourier transform of e−|t |, use

fourier(exp(-abs(t)),t,w);

to obtain the transform 2/(1 +w2). To compute the inverse Fourier transform of 1/(1 +w), use

invfourier((1/(1 + w),w,t);

to obtain the inverse transform 1
2
ie−i t(2H(t)− 1), where H(t) is the Heaviside function.
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A.6 Special Functions

In MAPLE, Jn(x) is called BesselJ(n,x), and the Bessel function of the second kind, Yn(x),
is denoted BesselY(n,x). To evaluate, for example, J3(1.21), use

evalf(BesselJ(3,1.21));

In similar fashion, there are BesselI and BesselK commands for modified Bessel
functions of the first and second kinds, respectively.

For integrals involving Bessel functions, use the int command. For example,

evalf(int(x∗BesselJ(1,x)∗cos(3∗x),x=0..1));

will give a decimal evaluation of
∫ 1

0
x J1(x) cos(x)dx .

We can find (approximately) the kth (in order of increasing magnitude) positive zero of
Jn(x) by using

evalf(BesselJZeros(n,k));

For example,

evalf(BesselJZeros(3,7));

returns the seventh positive zero of J3(x).
The nth Legendre polynomial Pn(x) is denoted LegendreP(n,x) in MAPLE. Since

Legendre’s differential equation is second order, there is a second, linearly independent solu-
tion, often denoted Qn(x). In MAPLE, this function is LegendreQ(n,x). To obtain Pn(x)
explicitly, use

simplify(LegendreP(n,x));

Integrals involving Legendre polynomials can be done using the int command. For example,

evalf(int(sin(x)∗LegendreP(5,x),x=-1..1));

will give a decimal evaluation of
∫ 1

−1
sin(x)P5(x)dx .

Legendre polynomials form a special case of a class of special functions called orthogonal
polynomials, which include Laguerre polynomials, Hermite polynomials and many others. The
command

with(orthopoly);

will call up MAPLE’s subroutines of orthogonal polynomials.

A.7 Complex Functions

MAPLE will do complex arithmetic with the imaginary unit i denoted I .

For the residue of a function at a point, use the command

Res( f, z0);

For example, if f (z)= cos(z)/z, entered by

f:=z → cos(z)/z;

then the residue at zero can be computed as

residue(f(z),z=0);
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which returns the residue 1. We could also enter

residue(cos(z)/z,z=0);

If f (z) is a conformal mapping, we can obtain a picture of the image of a rectangle defined by
a ≤ x ≤ b, c ≤ y ≤ d by first opening the plots subroutines:

with(plots);

Next, enter

conformal(f(z),z=a + b∗I,c + d∗I,xtickmarks = 8,ytickmarks = 8);
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Answers to 
Selected Problems

CHAPTER ONE FIRST-ORDER DIFFERENTIAL EQUATIONS

Section 1.1 Terminology and Separable Equations

1. Yes, since

2ϕ(x)ϕ ′(x)= 2
√

x − 1

(
1

2
√

x − 1

)

= 1 for x > 1.

3. Yes 5. Yes 7. y3 = 2x2 + c, or y = (2x2 + c)1/3

9. Not separable
11. y = 1/(1 − cx); also y = 0 and y = 1 as singular solutions
13. sec(y)= kx and y = (2n + 1)π/2 with n any integer
15. Not separable 17. 1

2
y2 − y + ln(y + 1)= ln(x)− 2

19. (ln(y))2 = 3x2 − 3 21. 3y sin(3y)+ cos(3y)= 9x2 − 5
23. 45◦ F 25. 10(1/2)1/4.5 ≈ 8.57 kg

29. The tank empties at t = 3888
√

2 seconds; about 91 minutes and 39 seconds.
31. (a) t = 243(64/27)= 576 seconds, or 9 minutes, 36 seconds (b) t = (160/27)(1296/5)= 1536 seconds; about 25

minutes, 36 seconds.

Section 1.2 Linear Equations

1. y = cx3 + 2x3 ln |x | 3. y = 1
2
x − 1

4
+ ce−2x 5. y = 4x2 + 4x + 2 + ce2x

7. y = x2 − x − 2 9. y = x + 1 + 4(x + 1)−2 11. y =−2x2 + cx
13.

A1(t)= 50 − 30e−t/20, A2(t)= 75 + 90e−t/20 − 75e−t/30,

A1(t) has its minimum value of 5450/81 pounds at 60 ln(9/5) minutes.

Section 1.3 Exact Equations

1. 2xy2 + exy + y2 = c 3. not exact
5. y3 + xy + ln |x | = c 7. α=−3; x2 y3 − 3xy − 3y2 = c
9. 3xy4 − x = 47 11. x sin(2y − x)=π/24

13. The general solutions are the same, since the equations ϕ(x, y)= k and ϕ(x, y)+ c = k implicitly define the same
functions of y in terms of x .

15. μ(x, y)= x1/2 y3/2, (1/5)x5/2 y5/2 + (1/3)x3/2 = c

Section 1.4 Homogeneous, Bernoulli and Riccati Equations

1. Riccati equation with S(x)= x ;

y = x + x

c − ln(x)

801
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3. Bernoulli equation with α= 2;

y = 1

1 + cex2/2

5. Homogeneous; y ln |y| − x = cy
7. Exact with general solution implicitly defined by xy − x2 − y2 = c; also homogeneous
9. Bernoulli with α=−3/4; 5x7/4 y7/4 + 7x−5/4 = c

11. Bernoulli with α= 2;

y = 2 + 2

cx2 − 1

13. Riccati with S(x)= ex ;

y = 2ex

ce2x − 1

17. Choose h = 2, k =−3 to obtain

3(x − 2)2 − 2(x − 2)(y + 3)− (y + 3)2 = k

19. (2x + y − 3)2 = k(y − x + 3)

Section 1.5 Additional Applications

1. Maximum height is 342.25 feet, at t = 1/8 second; at t = 19/4 the bag hits the ground with speed 148 ft/sec.
3. Terminal velocity is 8 ft/sec. Distance fallen is 32(t − 1 + e−t) for 0 ≤ t ≤ 4, and for t ≥ 4,

32(3 + e−4)+ 8(t − 4)+ 2 ln(1 − e−8(t−4))− 2 ln

(
2

5 − 4e−4

)

,

where k = (3 − 4e−4)/(5 − 4e−4).
5. Surfacing velocity is approximately 17.5 ft/sec at t ≈ 10.56 sec.
7. t = 2

√
R/g, with R the radius of the circle.

9. Voltage reaches 76 volts when t = (1/2) ln(20). Current at this time is 32(10−5)e− ln(20) = 16 micro amps.
11. The inductive time constant is

L

R
ln

(
e(E − Ri(0))

E

)

,

decreasing as i(0) is chosen larger.
13. y =−(3/4) ln |x | + c
15. (y − 1)2 =−(1/2)x2 + c, a family of ellipses
17. y2(ln(y2)− 1)= c − 2x2

19. (a) Pursuit curves are r = f (θ)= (a/√2)e−θ . (b) distance = a (c) No

21. Time is (
√

3/2)(ln(6 + √
35), about 2.15 seconds; velocity is 12

√
5, about 26.84 ft/sec.

Section 1.6 Existence and Uniqueness Questions

1. f (x, y)= sin(xy) and ∂ f/∂y = x cos(xy) are continuous for all (x, y), hence in any rectangle centered at (π/2,1).
3. f (x, y)= x2 − y2 + 8x/y and ∂ f/∂y = −2y − 8x/y2 are continuous on any rectangle centered at (3,−1) that does not

intersect the x-axis.
5. Two solutions are

y =−1

2
ln
(
e−2y0 + 2(x − x0)

)

and

y =−1

2
ln
(
e−2y0 + 2(x0 − x)

)
.

The theorem does not apply, because the differential equation is y ′ =±2y.
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7. (a) Since f (x, y)= 4 + y and ∂ f/∂y = 1 are continuous everywhere, the initial value problem has a unique solution
in some interval about 0.

(b) y = −4 + 7ex

(c) y0 = 3,

y1 = 3 +
∫ x

0

7dt = 3 + 7x,

y2 = 3 +
∫ x

0

(7 + 7t)dt = 3 + 7x + 7

2
x2,

y3 = 3 +
∫ x

0

(

7 + 7t + 7

2
t2

)

dt = 3 + 7x + 7

2
x2 + 7

3! x3,

y4 = 3 +
∫ x

0

(

7 + 7x + 7

2
x2 + 7

3! x3

)

dt

= 3 + 7x + 7

2
x2 + 7

3
x3! + 7

4! x4,

y5 = 3 +
∫ x

0

(4 + y4(t))dt

= 3 + 7x + 7

2
x2 + 7

3
x3! + 7

4! x4 + 7

5! x5,

y6 = 3 +
∫ x

0

(4 + y5(t))dt

= 3 + 7x + 7

2
x2 + 7

3
x3! + 7

4! x4 + 7

5! x5 + 7

6! x6.

(d)

yn = 3 + 7x + 7

2! x2 + 7

3! x3 + · · · + 7

n! xn

Note that

yn =−4 + 7
n∑

k=0

1

k! xk

so limn→∞ yn(x)=−4 + 7ex .
9. (a) Both f (x, y)= 2x2 and ∂ f/∂y = 0 are continuous for all (x, y).

(b) y = (2/3)x 3 + 7/3
(c) y0)= 3, y1 = 3 + ∫ x

1 2t2 dt = (2/3)x3 + 7/3
(d) Since f (x, y)= 2x2 is independent of y, yn(x)= y1(x) for all n ≥ 1 and the sequence of Picard iterates simply

repeats this term. Now

y = 2

3
x3 + 7

3
= 3 + 2(x − 1)+ 2(x − 1)2 + 2

3
(x − 1)3

is the Taylor series of the solution about 1. For n ≥ 3, the nth partial sum of this expansion is the solution, so
yn → y and the Picard iterates converge to the solution.

CHAPTER TWO LINEAR SECOND-ORDER EQUATIONS

Section 2.1 The Linear Second-Order Equation

1. y(x)= c1 sin(6x)+ c2 cos(6x); y(x)= 1
3

sin(6x)− 5cos(6x)

3. y(x)= c1e−2x + c2e−x ; y(x)= 4e−2x − 7e−x

5. y(x)= c1ex cos(x)+ c2ex sin(x); y(x)= 6ex cos(x)− 5ex sin(x)

7. y(x)= c1e4x + c2e−4x − x2

4
+ 1

2

9. y(x)= c1e3x cos(2x)+ c2e3x sin(2x)− 8ex
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13. The functions are linearly independent, since neither is a constant multiple of the other on [−1,1]. The differential
equation in linear form is

y ′′ − 2

x
y ′ + 2

x2
y = 0,

which is undefined at 0, so the theorem does not apply.
15. We know that the initial value problem

y ′′ + py ′ + qy = 0; y(x0)= y ′(x0)= 0

has the unique solution y = 0 in some interval about x0. If ϕ(x0)=ϕ ′(x0)= 0, then ϕ is also a solution of this
problem, hence ϕ would have to be identically zero, which is a contradiction.

Section 2.2 The Constant Coefficient Case

1. y = c2e−2x + c2e3x 3. y = e−3x(c1 + c2x)
5. y = e−5x(c1 cos(x)+ c2 sin(x))

7. y = e−3x/2[c1 cos(3
√

7x/2)+ c2 sin(3
√

7x/2)]
9. y = e7x(c1 + c2x)

11. y = 5 − 2e−3x 13. y(x)= 0
15. y = 9

7
e3(x−2) + 5

7
e−4(x−2)

17. y = ex−1(29 − 17x)

19. y = e(x+2)/2
[
cos(

√
15(x + 2)/2)+ 5√

15
sin(

√
15(x + 2)/2)

]

21. (a) ϕ(x)= eax(c1 + c2x) (b) ϕε(x)= eax(c1eεx + c2e−εx)
(c) limε→0 ϕε(x)= eax (c1 + c2) 
=ϕ(x) in general.

23. The characteristic equation has roots

λ1 = −a + √
a2 − 4b

2
, λ2 = −a − √

a2 − 4b

2
.

Now take cases. If a2 − 4b> 0, then λ1 and λ2 are both negative, so the solution c1eλ1x + c2eλ2 x decays to zero as
x → ∞. If a2 = 4b, the solution e−ax/2(c1 + c2x)→ 0 as x → ∞ because a> 0. If a2 − 4b< 0, the solution is a linear
combination of sines and cosines, multiplied by e−ax/2, and this solution goes to zero as x → ∞.

Section 2.3 The Nonhomogeneous Equation

1. y = c1 cos(x)+ c2 sin(x)− cos(x) ln | sec(x)+ tan(x)|
3. y = c1 cos(3x)+ c2 sin(3x)+ 4x sin(3x)+ 4

3
cos(3x) ln | cos(3x)|

5. y = c1ex + c2e2x − e2x cos(e−x)

7. y = c1e2x + c2e−x − x2 + x − 4
9. y = ex [c1 cos(3x)+ c2 sin(3x)]+ 2x2 + x − 1

11. y = c1e2x + c2e4x + ex

13. y = c1ex + c2e2x ++3cos(x)+ sin(x)
15. y = e2x [c1 cos(3x)+ c2 sin(3x)]+ 1

3
e2x − 1

2
e3x

17. y = 7
4
e2x − 3

4
e−2x − 7

4
xe2x − 1

4
x

19. y = 3
8
e−2x − 19

120
e−6x + 1

5
e−x + 7

12

21. y = 2e4x + 2e−2x − 2e−x − e2x

23. y = 4e−x − sin2(x)− 2

Section 2.4 Spring Motion

1. With y(0)= 5 and y ′(0)= 0, y = e−2t
[
5cosh(

√
2t)+ 10√

2
sinh(

√
2t)
]
.

With y(0)= 0 and y ′(0)= 5, y = 5√
2
e−2t sinh(

√
2t).

These functions are graphed in Figure A.1.
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FIGURE A.1 Graphs in Problem 1, Section
2.4

5

3

–1

4

2

t
43210

0

1

5

FIGURE A.2 Graphs in Problem 3, Section 2.4
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0
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FIGURE A.3 Graphs in Problem 5, Section 2.4

1.5

0.5

1

0

–1

t
4310

–0.5

2

FIGURE A.4 Graphs in Problem 7, Section 2.4

3. With y(0)= 5 and y ′(0)= 0,

y = 5

2
e−t [2cos(2t)+ sin(2t)]

and with y(0)= 0 and y ′(0)= 5,

y = 5

2
e−t sin(2t).

Graphs are in Figure A.2.

5. y = A√
2
e−2t sinh(

√
2t); graphs are in Figure A.3, proceeding from the lowest to the highest graph as A increases.

7. y = Ate−2t , with the graphs in Figure A.4 moving from the lowest to the highest as A increases.
9. y = A

2
e−t sin(2t), with the graphs moving from lowest to highest as A increases. Graphs are given in Figure A.5,

increasing as A increases.
11. At most once; a condition on y(0) alone is not enough to guarantee that the bob never passes through the origin. A

condition on y ′(0) is also needed.

13. Obtain ω= √
4km − c2/2m, so increasing c decreases the frequency ω.
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FIGURE A.5 Graphs in Problem 9, Section 2.4
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FIGURE A.6 Graphs in Problem 15, Section 2.4

15. (a) y(t)= 1

373
e−3t

(

2266cosh(
√

7t)+ 6582√
7

sinh(
√

7t)

)

+ 1

373
(−28cos(3t)+ 72 sin(3t))

(b) y(t)= 1

373
e−3t

(

29cosh(
√

7t)+ 2106√
7

sinh(
√

7t)

)

+ 1

373
(−28cos(3t)+ 72 sin(3t))

Graphs are shown in Figure A.6.

17. (a) y(t)= 1

15
e−t/2

(

98cos(
√

11t/2)+ 74√
11

sin(
√

11t/2)

)

+ 1

15
(−8cos(3t)+ 4 sin(3t))

(b) y(t)= 1

15
e−t/2

(

8cos(
√

11t/2)+ 164√
11

sin(
√

11t/2)

)

+ 1

15
(−8cos(3t)+ 4 sin(3t))

Graphs are given in Figure A.7.

Section 2.5 Euler’s Differential Equation

1. y = c1x2 + c2x−3 3. y = c1 cos(2 ln(x))+ c2 sin(2 ln(x))
5. y = c1x4 + c2x−4 7. y = c1x−2 + c2x−3

9. y = x−12(c1 + c2 ln(x))

11. y = 7
10

(
x
2

)3 + 3
10

(
x
2

)−7

13. y = x2(4 − 3 ln(x)) 15. y = 3x6 − 2x4

17. Let x = et and Y (t)= y(xt). This transforms the Euler equation x2 y ′′ + Axy ′ + By = 0 to the constant coefficient
equation Y ′′(t)+ (A − 1)Y ′(t)+ BY (t)= 0. Solve this and then put t = ln(x).
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FIGURE A.7 Graphs in Problem 17, Section 2.4

CHAPTER THREE THE LAPLACE TRANSFORM

Section 3.1 Definition and Notation

1. 3
s2 − 4

(s2 + 4)2

3.
14

s2
− 7

s2 + 49

5. −10
1

(s + 4)3
+ 3

s2 + 9
7. cos(8t) 9. e−42t − t3e−3t/6

15. L[ f ](s)= 5

s

1

1 + e−3s

17. L[ f ](s)= 5e−5s(1 − e−5s)

s(1 − e−25s)

19.
Eω

s2 +ω2

1

1 − e−πs/ω

21. L[ f ](s)= h

s(1 + e−as)

Section 3.2 Solution of Initial Value Problems

1. y = 1

4
− 13

4
e−4t

3. y =− 4

17
e−4t + 4

17
cos(t)+ 1

17
sin(t)

5. y =−1

4
+ 1

2
t + 17

4
e2t

7. y = 22

25
e2t − 13

5
te2t + 3

25
cos(t)− 4

25
sin(t)

9. y = 1

16
+ 1

16
t − 33

16
cos(4t)+ 15

64
sin(4t)

Section 3.3 Shifting and the Heaviside Function

1.
6

(s + 2)4
− 3

(s + 2)2
+ 2

s + 2
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3.
1

s
(1 − e−7s)+ s

s2 + 1
cos(7)e−7s − 1

s2 + 1
sin(7)e−7s

5.
1

s2
− 11

s
e−3s − 4

s2
e−3s

7.
1

s + 1
− 2

(s + 1)3
+ 1

(s + 1)2 + 1

9.
s

s2 + 1
+
(

2

s
− s

s2 + 1
− 1

s2 + 1

)

e−2πs

11.
(s + 1)2 − 9

((s + 1)2 + 9)2

13.
1

s2
− 2

s
−
(

1

s2
+ 1

s

)

e−16s

15.
24

(s + 5)5
+ 4

(s + 5)3
+ 1

(s + 5)2

17. F(s)= 1

(s − 2)2 + 1
, so f (t)= e2t sin(t)

19.
1

3
sin(t − 2)H(t − 2)

21. F(s)= 1

(s + 3)2 − 2
, so f (t)= 1√

2
e−3t sinh

(√
2t
)

23. F(s)= (s + 3)− 1

(s + 3)2 − 8
so

f (t)= e−3t cosh
(
2
√

2t
)

− 1

2
√

2
e−3t sinh

(
2
√

2t
)

25.
1

16
(1 − cos(4(t − 2)))H(t − 2)

27. y = cos(2t)+ 3

4
(1 − cos(2(t − 4)))H(t − 4)

29. y =
[

−1

4
+ 1

12
e−2(t−6) + 1

6
e−(t−6) cos

(√
3(t − 6)

)]

H(t − 6)

31. y = −1

4
+ 2

5
et − 3

20
cos(2t)− 1

5
sin(2t)

−
[

−1

4
+ 2

5
et−5 − 3

20
cos(2(t − 5))− 1

5
sin(2(t − 5))

]

H(t − 5)

33. Eout = 5e−4t + 10[1 − e−4(t−5)]H(t − 5)

35. i(t)= k

R
(1 − e−Rt/L)− k

R
(1 − e−R(t−5)/L)H(t − 5)

Section 3.4 Convolution

1.
1

16
[sinh(2t)− sin(2t)]

3.
cos(at)− cos(bt)

(b − a)(b + a)
if b2 
= a2; t sin(at)/2a if b2 = a2

5.
1

a4
[1 − cos(at)]− 1

2a3
t sin(at)

7.
(

1

2
− 1

2
e−2(t−4)

)

H(t − 4)

9. y(t)= e3t ∗ f (t)− e2t ∗ f (t)

11. y(t)= 1

4
e6t ∗ f (t)− 1

4
e2t ∗ f (t)+ 2e6t − 5e2t

13. y(t)= 1

3
sin(3t) ∗ f (t)− cos(3t)+ 1

3
sin(3t)
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15. y(t)= 4

3
et − 1

4
e2t − 1

12
e−2t − 1

3
et ∗ f (t)

+1

4
e2t ∗ f (t)+ 1

12
e−2t ∗ f (t)

17. f (t)= 1

2
e−2t − 3

2
19. f (t)= cosh(t)

21. f (t)= 3 + 2

5

√
15et/2 sin

(√
15t/2

)

23. r(t)= Akt

25. r(t)= (Ak + B)t +
(

1

2
kB + C

)

t2 + 1

3
kCt3

Section 3.5 Impulses and the Delta Function

1. y(t)= 3[e−2(t−2) − e−3(t−2)]H(t − 2)− 4[e−2(t−5) − e−3(t−5)]H(t − 5)
3. y = 6(e−2t − e−t + tet)

5. ϕ(t)= (B + 9)e−2t − (B + 6)e−3t

7. y(t)=
√

m

k
v0 sin

(√
k

m
t

)

Section 3.6 Solution of Systems

1. x(t)=−t − 2 + 2et/2, y(t)=−t − 1 + et/2

3. x(t)= 1

3
t + 4

9
(1 − e3t/4), y(t)= 2

3
(−1 + e3t/4)

5. x(t)= 1

2
(t + t2)+ 3

4
(1 − e2t/3), y(t)= t + 3

2
(1 − e2t/3)

7. x(t)= t − 1 + e−t cos(t), y(t)= t2 − t + e−t sin(t)
9. x(t)= 1 − e−t − 2te−t , y(t)= 1 − e−t

11. y1(t)=−1 − t + 1

2
(et + e−t), y2(t)=−1

2
t − 1

4
t2, y3(t)=−1

3
t − 1

6
(et − e−t)

13. The loop currents satisfy

5i ′
1 − 5i1 − 5i ′

2 = 1 − H(t − 4) sin(2(t − 4)),

−5i ′
1 + 5i ′

2 + 5i2 = 0.

The currents are

i1(t)= 1

5

(

1 − 1

2
e−t/2

)

− 2

85

(

e−(t−4)/2 − cos(2(t − 4))+ 9

2
sin(2(t − 4))

)

H(t − 4)

i2(t)= 1

10
e−t/2 + 2

85

(
e−(t−4)/2

− cos(2(t − 4))− 4 sin(2(t − 4)))H(t − 4).

15. The system is

x ′′
1 + 8x1 − 2x2 = 1 − H(t − 2),−2x1 + x ′′

2 + 5x2 = 0.

The solution is

x1(t)= 5

36
− 1

20
cos(2t)− 4

45
cos(3t)

−
[

5

36
− 1

20
cos(2(t − 2))− 4

45
cos(3(t − 2))

]

H(t − 2),
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x2(t)= 1

18
− 1

10
cos(2t)+ 2

45
cos(3t)

−
[

1

18
− 1

10
cos(2(t − 2))+ 2

45
cos(3(t − 2))

]

H(t − 2)

17. The equations of motion are

m1 y ′′
1 = k(y2 − y1),m2 y ′′

2 = k(y1 − y2)

with initial conditions y1(0)= y ′
1(0)= y ′

2(0)= 0, y2(0)= d. Transform these to find that Y1(s) and Y2(s) have
quadratic factors

s2 + m1 + m2

m1m2

k

in their denominators, implying that the motion has frequency ω= √
(m1 + m2)k/m1m2, hence period

2π

√
m1m2

m1 + m2

.

19. With E(t)= 5δ(t − 1),

i1(t)= 1

10

[
e−(t−1) + 3e−(t−1)/6

]
H(t − 1)

i2(t)= 1

10

[−e−(t−1) + e−(t−1)/6
]

H(t − 1)

21. x1(t)= e−3t/50 + 9e−t/100 + 3(e−(t−3)/100 − e−3(t−3)/50)H(t − 3)
x2(t)=−e−3t/50 + 6e−t/100 + (3e−(t−3)/50 + 2e−(t−3)/100)H(t − 3)

Section 3.7 Polynomial Coefficients

1. With u = 1/t , obtain −z′(u)− 2z = 2 where z(u)= y(t (u)). Then y(t)=−1 + ce−2/t .
3. y = 7t2

5. y = ct2e−t

7. y = 4
9. y = 3

2
t2

11. With W (s) being inverted, use is made of the formula for the Laplace transform of n!/sn+1 for n any nonnegative
integer.

CHAPTER FOUR SERIES SOLUTIONS

Section 4.1 Power Series Solutions

1. a0 is arbitrary; a1 = 1, 2a2 − a0 =−1, and an = 1
n
an−2 for n = 3,4, · · · ;

y(x)=a0 + x + 1

3
x3 + 1

3 · 5
x5 + 1

3 · 5 · 7
x7 + · · ·

(a0 − 1)

(
1

2
x2 + 1

2 · 4
x4 + 1

2 · 4 · 6
x6 + · · ·

)

3. a0 is arbitrary; a1 + a0 = 0, 2a2 + a1 = 1,

an+1 = 1

n + 1
(an−2 − an) for n = 2,3, · · · ,

and

y(x)=a0

[

1 − x + 1

2! x2 + 1

3! x3 − 7

4! x4 + · · ·
]

+ 1

2! x2 − 1

3! x3 + 1

4! x4 + 11

5! x5 − 31

6! x6 + · · ·
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5. a0 and a1 arbitrary; a2 = 1
2
(3 − a0),

an+2 = n − 1

(n + 1)(n + 2)
an for n = 1,2, · · · ,

and

y(x)=a0 + a1x

+ (3 − a0)

[
1

2! x2 + 1

4! x4 + 3

6! x6 + 3(5)

8! x8 + 3(5)(7)

10! x10 + · · ·
]

7. a0, a1 are arbitrary; a2 + a0 = 0, 6a3 + 2a1 = 1,

an = (n − 3)an−3 − 2an−2

n(n − 1)
for n = 4,5, · · · ,

and

y(x)=a0

[

1 − x2 + 1

6
x4 − 1

10
x5 − 1

90
x6 + · · ·

]

+ a1

[

x − 1

3
x3 + 1

12
x4 + 1

30
x5 − 7

180
x6 + · · ·

]

[
1

6
x3 −− 1

60
x5 + 1

60
x6 + 1

1260
x7 − 1

480
x8 + · · ·

]

with a0 = y(0) and a1 = y ′(0). The third bracket is a particular solution for the case a0 = a1 = 0.
9. a0, a1 arbitrary; 2a2 + a1 + 2a0 = 1, 6a3 + 2a2 + a1 = 0, 12a4 + 3a3 =−1,

an = −(n − 1)an−1 + (n − 4)an−2

n(n − 1)
for n = 5,6, · · ·

and

y(x)=a0

(

1 − x2 + 1

3
x3 − 1

12
x4 + 1

30
x5 − · · ·

)

+ a1

(

x − 1

2
x2

)

+ 1

2
x2 − 1

6
x3

− 1

24
x7 − 1

360
x6 + 1

2520
x7 + · · ·

Section 4.2 Frobenius Solutions

1. y1(x)= c0(1 − x),

y2(x)= c∗
0

[

(1 − x) ln(x)+ 3x + 1

4
x2

+ 1

36
x3 + 1

288
x4 + 1

2400
x5 + · · ·

]

3. y1(x)= c0[x4 + 2x5 + 3x6 + 4x7 + · · · ]
= c0

x4

(1 − x)2
, y2(x)= c∗

0

3 − 4x

(1 − x)2

5. y1(x)= c0

[

x1/2 − 1

2(1!)(3) x3/2 + 1

22(2!)(3)(5) x5/2

− 1

23(3!)(3)(5)(7) x7/2 + 1

24(4!)(3)(5)(7)(9) x9/2 + · · ·
]

= c0x1/2

[

1 +∑∞
n=1

(−1)n

2nn!(3 · 5 · · · (2n + 1))
xn

]

,
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y2(x)= c∗
0

[

1 − 1

2
x + 1

22(3!)(3)(5) x3

+ 1

24(4!)(3)(5)(7) x4 + · · ·
]

= c∗
0

[

1 +∑∞
n=1

(−1)n

2nn!(1 · 3 · · · (2n − 1))
xn

]

7. y1(x)= c0

[

x2 + 1

3! x4 + 1

5! x6 + 1

7! x8 + · · ·
]

= c0x sinh(x),

y2(x)= c∗
0

[

x − x2 + 1

2! x3 − 1

3! x4 + 1

4! x5 − · · ·
]

= c∗
0 xe−x

9. y1(x)= c0(1 − x), y2(x)= c∗
0

[

1 + 1

2
(x − 1) ln((x − 2)/x)

]

CHAPTER FIVE APPROXIMATIONS OF SOLUTIONS

Section 5.1 Direction Fields

1. Figure A.8 3. Figure A.9 5. Figure A.10

Section 5.2 Euler’s Method

1. Approximate values are given in Table A.1.
3. See Table A.2.

In this case the exact solution y = 5e3x2/2 increases so rapidly that the Euler approximations are increasingly
inaccurate as x increases from 0.

5. See Table A.3.

Section 5.3 Taylor and Modified Euler Methods

7. See Table A.4.
9. See Table A.5.

11. See Table A.6.

y (x)

4

2

0

–2

–4

x
–4 –2 0 2 4

FIGURE A.8 Direction field and solution
for Problem 1, Section 5.1

y(x)

2

1

0

–1

–2

x
3210–3 –2 –1

FIGURE A.9 Direction field and solution
for Problem 3, Section 5.1
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y (x)

3

2

1

0

–1

–2

–3

x
–3 –2 1– 0 1 2 3

FIGURE A.10 Direction field and solution
for Problem 5, Section 5.1

TA B L E A.1 Euler Approximations in Problem 1, Section 5.2

x yapp(xk) y(xk)

0.0 1 1
0.05 1 1.001250521
0.10 1.002498958 1.001250521
0.15 1.007503103 1.005008335
0.20 1.015031072 1.020133420
0.25 1.025113849 1.031575844
0.30 1.037794710 1.045675942
0.35 1.053129175 1.062502832
0.40 1.071184959 1.082138316
0.45 1.092041913 1.104676904
0.50 1.115791943 1.130225803

TA B L E A.2 Euler Approximations in Problem 3, Section 5.2

x yapp(xk) y(xk)

0.00 5 5
0.05 5 5.018785200
0.10 5.0375 5.075565325
0.15 5.1130625 5.171629965
0.20 5.228106406 5.309182735
0.25 5.384949598 5.491425700
0.30 7.404305698 5.722683920
0.35 10.73624326 6.008576785
0.40 16.37277097 6.356245750
0.45 26.19643355 6.774651405
0.50 43.87902620 7.274957075
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TA B L E A.3 Euler Approximations in Problem 5, Section 5.2

x yapp(xk) y(xk)

1 –2 –2
1.05 –2.127015115 –2.129163318
1.10 –2.258244233 –2.262726023
1.15 –2.393836450 –2.400852694
1.20 –2.533952645 –2.543722054
1.25 –2.678768165 –2.691527843
1.30 –2.828472691 –2.844479697
1.35 –2.983271267 –3.002804084
1.40 –3.143385165 –3.166745253
1.45 –3.309052780 –3.336566227
1.50 –3.480530557 –3.512549830

TA B L E A.4 Runge-Kutta Approximation in Problem 1, Section 5.3

x yk

0.0 2
0.2 2.16257799
0.4 2.27783452
0.6 2.34198641
0.8 2.35938954
1.0 2.33750216
1.2 2.28392071
1.4 2.20519759
1.6 2.106598
1.8 2.99222519
2.0 2.8652422

TA B L E A.5 Runge-Kutta Approximation in Problem 3, Section 5.3

x yk

0 1
0.2 1.26466198
0.4 1.45391187
0.6 1.58485267
0.8 1.67218108
1.0 1.7274517
1.2 1.75945615
1.4 1.77481079
1.6 1.7784748
1.8 1.77415235
2.0 1.76459409

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-815 27410_25_Ans_p801-866

Answers to Selected Problems 815

TA B L E A.6 Runge-Kutta Approximation in Problem 5, Section 5.3

x yk

0 4
0.2 3.43866949
0.4 2.94940876
0.6 2.52453424
0.8 2.15677984
1.0 1.83939807
1.2 1.56621078
1.4 1.33162448
1.6 1.13062448
1.8 0.958734358
2.0 0.812012458

CHAPTER SIX ALGEBRA AND GEOMETRY OF VECTORS

Section 6.1 Vectors in the Plane and 3-Space

In Problems 1 through 5, answers given, are, F + G, F − G, 2F, 3G, and ‖ F ‖, respectively.

1.
(2 + √

2)i + 3j, (2 − √
2)i − 9j + 10k,

4i − 6j + 10k,3
√

2i + 18j − 15k,
√

38

3.
3i − k, i − 10j + k,
4i − 10j,3i + 15j − 3k,

√
29

5.
3i − j + 3k,−i + 3j − k,
2i + 2j + 2k,6i − 6j + 6k,

√
3

7.
3√
5
(−5i − 4j + 2k)

9.
4

9
(−4i + 7j + 4k)

11. x = 3 − 6t, y = t, z = 0,−∞< t <∞
13. x = 0, y = 1 − t, z = 3 − 2t,−∞< t <∞
15. x = 2 − 3t, y =−3 + 9t, z = 6 − 2t,−∞< t <∞

Section 6.2 The Dot Product

1. 2, cos(θ)= 2/
√

14, not orthogonal

3. −23, cos(θ)=−23/
√

29
√

41, not orthogonal
5. −18, cos(θ)=−9/10, not orthogonal
7. 3x − y + 4z = 4
9. 4x − 3y + 2z = 25

11. 7x + 6y − 5z =−26

13. − 9

14
(−3i + 2j − k)

15.
1

62
(2i + 7j − 3k)

Section 6.3 The Cross Product

1. F × G = 8i + 2j + 12k
3. F × G =−8i − 12j − 5k
5. Not collinear, x − 2y + z = 3
7. Not collinear, 2x − 11y + z = 0
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9. Not collinear, 29x + 37y − 12z = 30
11. i − j + 2k
13. ‖ F × G ‖=‖ F ‖‖ G ‖ sin(θ), and this is the area of a parallelogram having incident sides of length ‖ F ‖ and ‖ G ‖ and

incident angle θ .

Section 6.4 The Vector Space Rn

1. Independent 3. Independent 5. Dependent
7. Dependent 9. Independent

11. A basis consists of < 1,0,0,−1> and < 0,1,−1,0> and the dimension is 2.
13. A basis consists of < 1,0,0,0>,< 0,0,1,0> and < 0,0,0,1>. The dimension is 3.
15. The vector < 0,1,0,2,0,3,0> forms a basis and the dimension is 1.
17. X = 1

4
< 1,1,1,1,0> +1

2
<−1,1,0,0,0>

−11

4
< 1,1,−1,−1,0> +< 0,0,2,−2,0> −2< 0,0,0,0,2>

19. Since a basis spans the space, form some numbers a1, · · · , ck ,

U = a1V1 + a2V2 + · · · + akVk .

If U 
= O, some a j 
= 0, so

U − a1V1 − · · · − akVk = O,

and therefore, U,V1, · · · ,Vk are linearly dependent by Theorem 6.1(1). If U = O, then

U − 0V1 − · · · − 0Vk

again shows by Theorem 6.1(1) that U,V1, · · · ,Vk are linearly dependent.
21. If X · X = Y · Y, then

(X − Y) · (X + Y)= X · X + X · Y + Y · X − Y · Y = 0.

23. Write X =∑n
j=1(X · V j )V j . Then

‖ X ‖2 = X · X

=
(

n∑

j=1

(X · V j )V j

)

·
(

n∑

k=1

(X · Vk)Vk

)

=
n∑

j=1

n∑

k=1

(X · V j )(X · Vk)

=
n∑

j=1

(X · V j )
2.

Section 6.5 Orthogonalization

1. V1 =< 1,4,0>,V2 =< 52/17,−13/17,0>
3. V1 =< 0,2,1,1>,V2 =< 0,4/3,13/6,29/6>,V3 =< 0,7/179,−11/179,3/179>
5. V1 =< 0,0,2,2,1>,V2 =< 0,0,−1/9,−19/9,40/9>,

V3 =< 0,1,−341/218,279/218,62/218>,V4 =< 0,248/393,88/393,−24/131,−32/393>
7. V1 =< 0,0,1,1,0,0>,V2 =< 0,0,−3/2,3/2,0,0>

Section 6.6 Orthogonal Complements and Projections

1. uS =<−2,6,0,0>,u⊥ = u − uS =< 0,0,1,7>
3. uS =< 9/2,−1/2,0,5/2,−13/2>,u⊥ =<−1/2,−1/2,3,−1/2,−1/2>
5. uS =< 3,1/2,3,1/2,3,0,0>,u⊥ =< 5,1/2,−2,−1/2,−3,−3,4>
7. If u1, · · · ,uk is a basis for S and v1, · · · ,vm a basis for S⊥, then any vector w in Rn has a unique representation

w= c1u1 + · · · + ckuk + d1v1 + · · ·+ dmvm .
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Furthermore, these vectors are linearly independent hence form a basis for Rn . Therefore,

dim(S)+ dim(S⊥)= k + m = n.

9. The closest vector is

uS = 7

3
< 1,1,−1,0,0>+< 0,2,1,0,0>−4

3
< 0,1,−2,0,0>=< 11

3
,3,

−11

3
,

11

3
,0>

Section 6.7 The Function Space C[a,b]

1. V1(x)= ex ,V2(x)= e−x − 2
e2−1

ex

3. V1(x)= 1,V2(x)= x − 2/3,V3(x)= x2 − 1
2
− 6

5
(x − 2

3
)

5. fS(x)= π 2

3
− 4cos(x)+ cos(2x)− 1

2
cos(3x)+ 1

4
cos(4x);

7. fS = −4

3
+ 16

π 2
cos(πx/2)− 4

π 2
cos(πx)+ 16

9π 2
cos(3πx/2)

+ 8

π
sin(πx/2)− 4

π
sin(πx)+ 8

3π
sin(3πx/2)

CHAPTER SEVEN MATRICES AND SYSTEMS OF LINEAR EQUATIONS

Section 7.1 Matrices

1.

⎛

⎝
14 −2 6
10 −5 −6

−26 −43 −8

⎞

⎠

3.
(

2 + 2x − x2 −12x + (1 − x)(x + ex + 2cos(x))
4 + 2x + 2ex + 2xex −22 − 2x + e2x + 2ex cos(x)

)

5.
(−36 0 68 196 20

128 −40 −36 −8 72

)

7. AB =
⎛

⎝
−10 −34 −16 −30 −14
10 −2 −11 −8 −45
−5 1 15 61 −63

⎞

⎠ , BA is not defined.

9. AB = (115) and BA =

⎛

⎜
⎜
⎜
⎝

3 −18 −6 −42 66
−2 12 4 28 −44
−6 36 12 84 −132
0 0 0 0 0
4 −24 −8 −56 88

⎞

⎟
⎟
⎟
⎠

11. AB is not defined; BA =
(

410 36 −56 227
17 253 40 −1

)

13. AB is not defined, BA = (−16 −13 −5
)

15. BA is not defined, AB =
(

39 −84 21
−23 38 3

)

17. AB is 14 × 14, BA is 21 × 21
19. AB is not defined, BA is 4 × 2
21. AB is not defined, BA is 7 × 6
23. The number of v1 − v4 walks of length 3 is 4, of length 4, 18. The number of v2 − v3 walks of length 3 is 9. The

number of distinct v2 − v4 walks of length 4 is 26.
25. The number of v4 − v5 walks of length 2 is 2, the number of v2 − v3 walks of length 3 is 10, the number of v1 − v2

walks of length 4 is 32, the number of v4 − v5 walks of length 4 is 32.
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27. Let Mnm be the set of all n × m real matrices. We have an addition of matrices and a multiplication of an n × m
matrix by a real number. There is a zero matrix (all entries zero), and the matrix −A =[−ai j ] serves as an additive
inverse of A. Furthermore, for any real numbers α and β,

(α+β)A =αA +βA,

(αβ)A =α(βA), and

α(A + B)=αA +αB.

Thus, Mnm has the algebraic properties of a vector space. If we take the rows of an n × m matrix and simply string
then out one written after the other, then we obtain an nm vector. Thus, there is a one-to-one matching of matrices in
Mnm and vectors in Rnm . This also suggests the dimension of Mnm . The nm matrices formed by setting one element
equal to 1 and all others zero form a basis for Mnm . Thus, Mnm has dimension nm, the same as Rnm .

Section 7.2 Elementary Row Operations

1.

⎛

⎝
−2 1 4 2
0

√
3 16

√
3 3

√
3

1 −2 4 8

⎞

⎠ ;�=
⎛

⎝
1 0 0
0

√
3 0

0 0 1

⎞

⎠

3.

⎛

⎝
40 5 −15

−2 + 2
√

13 14 + 9
√

13 6 + 5
√

13
2 9 5

⎞

⎠ ;�=
⎛

⎝
0 5 0
1 0

√
13

0 0 1

⎞

⎠

5.
(

30 120
−3 + 2

√
3 15 + 8

√
3

)

;�=
(

0 15
1

√
3

)

7.

⎛

⎝
−1 0 3 0
−36 28 −20 28
−13 3 44 9

⎞

⎠ ;�=
⎛

⎝
1 0 0
0 0 4
14 1 0

⎞

⎠

9. If i 
= s and i 
= t ,

(EA)i j = (row i of E) · (column j of A)

= (InA)i j = Ai j .

Next,

(EA)s j = ( row s of E) · column j of A)

= (row t of In) · (column j of A)

= At j = Bs j .

Similarly, (EA)t j = As j = Bt j .

Section 7.3 The Row Echelon Form

1. AR =
⎛

⎝
1 0 5
0 1 2
0 0 0

⎞

⎠ ;�=
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠

3. AR =
⎛

⎜
⎝

1 −4 −1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎠ ;�=

⎛

⎜
⎝

−1 0 0 1
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎠

5. AR =
⎛

⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎠ ;�=

⎛

⎜
⎝

0 0 1 −3
0 0 0 1
1 0 −6 17
0 1 0 0

⎞

⎟
⎠
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7. AR =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ;�= 1
270

⎛

⎝
−8 −2 38
37 43 −7
19 −29 11

⎞

⎠

9. AR =
(

1 0 0 0
0 1 3/2 1/2

)

;�=
(

0 1
1/2 1/2

)

11. AR =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ;�=
⎛

⎝
0 1/2 −1
0 0 1

−1/7 2/7 −3/7

⎞

⎠

Section 7.4 Row and Column Spaces

1. (a)

AR =
(

1 0 −3/5
0 1 3/5

)

,

so A has rank 2. (b) <−4,1,3> and < 2,2,0> form a basis for the row space. (c) The column vectors
(−4

2

)

and

(
1
2

)

form a basis for the column space of A.
3. (a)

AR =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ ,

so rank(A)= 2. (b) The row vectors <−3,1> and < 2,2> form a basis for the row space. The column space has
basis consisting of

⎛

⎝
−3
2
4

⎞

⎠ and

⎛

⎝
1
2

−3

⎞

⎠ .

5. (a)

AR =
(

1 0 −1/4 1/2
0 1 −5/4 1/2

)

,

so rank(A)= 2. (b) The row vectors < 8,−4,3,2> and < 1,−1,1,0> form a basis for the row space. (c) The
column space has basis consisting of

(
8
1

)

and

(−4
−1

)

.

7. (a)

AR =
⎛

⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟
⎠ ,

so A has rank 3. (b) The row vectors < 2,2,1>, < 1,−1,3>, and < 0,0,1> form a basis for the row space. (c) The
column space has a basis consisting of

⎛

⎜
⎝

2
1
0
4

⎞

⎟
⎠ ,

⎛

⎜
⎝

2
−1
0
0

⎞

⎟
⎠ , and

⎛

⎜
⎝

1
3
1
7

⎞

⎟
⎠ .

9. (a)

�R =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,
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so A has rank 3. (b) < 0,4,3>, < 6,1,0> and < 2,2,2> form a basis for the row space of A. The column space has
basis consisting of

⎛

⎝
0
6
2

⎞

⎠ ,

⎛

⎝
4
1
2

⎞

⎠ , and

⎛

⎝
3
0
2

⎞

⎠ .

11.

AR =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,

so rank(A)= 3. (b) The row space has basis consisting of <−3,2,2>, < 1,0,5> and < 0,0,2>. The column space
has basis consisting of

⎛

⎝
−3
1
0

⎞

⎠ ,

⎛

⎝
2
0
0

⎞

⎠ , and

⎛

⎝
2
5
2

⎞

⎠ .

13.

AR =
⎛

⎝
1 0 −11
0 1 −3
0 0 0

⎞

⎠ ,

so a has rank 2. (b) <−2,5,7> and < 0,1,−3> form a basis for the row space. (c) The column space has basis
consisting of

⎛

⎝
−2
0
4

⎞

⎠ and

⎛

⎝
5
1
11

⎞

⎠ .

15.

rank(A)= dim row space of A

= dim col space of A = dim row space of AT

= rank(At).

Section 7.5 Homogeneous Systems of Equations

1.

α

⎛

⎜
⎝

−1
1
1
0

⎞

⎟
⎠+β

⎛

⎜
⎝

1
−1
0
1

⎞

⎟
⎠

The solution space has dimension 2.
3.

α

⎛

⎝
0
0
0

⎞

⎠

(only the trivial solution). The solution space has dimension 0.
5.

α

⎛

⎜
⎜
⎜
⎝

−9/4
−7/4
−5/8
13/8

1

⎞

⎟
⎟
⎟
⎠

The solution space has dimension 1.
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7.

α

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−5/6
−2/3
−8/3
−2/3

1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−5/9
−10/9
−13/9
−1/9

0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The solution space has dimension 2.
9.

α

⎛

⎜
⎝

5/14
11/7
6/7
1

⎞

⎟
⎠=

⎛

⎜
⎝

x1

x2

x4

x5

⎞

⎟
⎠

The solution space has dimension 1.
11.

α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
0
1
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2
−3/2
2/3

−4/3
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1/2
−3
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The solution space has dimension 3.
13. Yes, if m − rank (A)> 0. For example, the system

x1 + 3x2 = 0,2x1 + 6x2 = 0,3x1 + 9x3 = 0

has the solution x1 =−3x3, x2 = x3 and the solution space has dimension 1.

Section 7.6 Nonhomogeneous Systems

1. Unique solution

⎛

⎝
1

1/2
4

⎞

⎠

3. α

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1

3/2
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0

1/2
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−17/2
−6

−51/4
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

9/2
3

25/4
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

5. α

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
2
7

3/2
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2
−1

−9/2
−3/4

0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−4
−4
−38

−11/2
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

7. α

⎛

⎜
⎜
⎜
⎝

−1/2
−1
3
1
0

⎞

⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎝

−3/4
1

−2
0
1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

9/8
2
0
0
0

⎞

⎟
⎟
⎟
⎠
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9. α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3/14
0

3/14
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ δ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
0
0
0
0

−1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/14
0

−1/14
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−29/7
0

1/7
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

11. α

⎛

⎜
⎝

−19/15
3

67/15
1

⎞

⎟
⎠+

⎛

⎜
⎝

22/15
−5

−121/15
0

⎞

⎟
⎠

13. Unique solution

X =
⎛

⎝
16/57
99/57
23/57

⎞

⎠

15. If AX = B is consistent, then there is a solution C. Since AC is a linear combination of the columns of A (see Section
7.1.1), so B is in the column space of A. Conversely, if B is in the column space of A, then B is a linear combination

a1 A1 + · · · + am Am

of the columns of A, and then AC = B, where C is the column matrix of the coefficients a1, · · · ,am .

Section 7.7 Matrix Inverses

1.
1

5

(−1 2
2 1

)

3.
1

12

(−2 2
1 5

)

5.
1

12

(
3 −2

−3 6

)

7.
1

31

⎛

⎝
−6 11 2
3 10 −1
1 −7 10

⎞

⎠

9. − 1

12

⎛

⎝
6 −6 0

−3 −9 2
3 −3 −2

⎞

⎠

11. X = A−1B = 1

11

⎛

⎜
⎝

−1 −1 8 4
−9 2 −5 14
2 2 −5 3
3 3 −2 −1

⎞

⎟
⎠

⎛

⎜
⎝

1
2
0

−5

⎞

⎟
⎠= 1

11

⎛

⎜
⎝

−23
−75
−9
14

⎞

⎟
⎠

13.
1

7

⎛

⎝
22
27
30

⎞

⎠

15.
1

5

⎛

⎝
−21
14
0

⎞

⎠

Section 7.8 The Method of Least Squares and Data Fitting

1. X∗ =
(

13/5
7/5

)

3. X∗ =
(−2

4

)

5. X∗ =α
⎛

⎝
7/3
1

5/3

⎞

⎠+
⎛

⎝
−2
0

−1

⎞

⎠

7. y = 3.88x + 0.16 9. y = 4.164x − 9.267
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Section 7.9 LU Factorization

1. U =
⎛

⎝
2 4 −6
0 −14 25
0 0 136/7

⎞

⎠ and L =
⎛

⎝
1 0 0
4 1 0

−2 −6/7 1

⎞

⎠

3. U =
⎛

⎝
−2 1 12
0 −5 13
0 0 119/5

⎞

⎠ and L =
⎛

⎝
1 0 0

−1 1 0
−1 −3/5 1

⎞

⎠

5. U =
⎛

⎜
⎝

1 4 2 −1 4
0 −5 2 0 0
0 0 88/5 4 6
0 0 0 195/22 −691/44

⎞

⎟
⎠ and L =

⎛

⎜
⎝

1 0 0 0
1 1 0 0

−2 −14/5 1 0
4 14/5 −63/88 1

⎞

⎟
⎠

7. First obtain

U =
⎛

⎝
4 4 2
0 −2 5/2
0 0 21/4

⎞

⎠ and L =
⎛

⎝
1 0 0

1/4 1 0
1/4 −3/2 1

⎞

⎠ .

Solve

LY =
⎛

⎝
1
0
1

⎞

⎠ to obtain Y =
⎛

⎝
1

−1/4
3/8

⎞

⎠ .

Solve UX = Y to obtain

X =
⎛

⎝
0

3/14
1/4

⎞

⎠ .

9.

U =
⎛

⎝
−1 1 1 6
0 3 2 16
0 0 17/3 52/3

⎞

⎠ and L =
⎛

⎝
1 0 0

−2 1 0
−1 −1/3 1

⎞

⎠ .

Solve LY = B and then UX = Y to obtain Y =
⎛

⎝
2
5

29/3

⎞

⎠ and X =α
⎛

⎜
⎝

1
28/3
26/3

−17/6

⎞

⎟
⎠+

⎛

⎜
⎝

0
−5/3
−1/3
2/3

⎞

⎟
⎠ .

11.

U =
⎛

⎜
⎝

6 1 −1 3
0 4/3 5/3 3
0 0 13/4 13/4
0 0 0 5

⎞

⎟
⎠ and L =

⎛

⎜
⎝

1 0 0 0
2/3 1 0 0

−2/3 5/4 1 0
1/3 −1 4/13 1

⎞

⎟
⎠ .

Solve LY = B and then UX = Y to obtain Y =
⎛

⎜
⎝

4
28/3
−7

43/13

⎞

⎟
⎠ and X =

⎛

⎜
⎝

−263/130
537/65

−233/65
93/65

⎞

⎟
⎠ .

Section 7.10 Matrices and Linear Transformations

1. T is linear and T(1,0,0) = (3,1,0), T(0,1,0) = (0,−1,0), and T(0,0,1) = (0,0,2), so

AT =
⎛

⎝
3 0 0
1 −1 0
0 0 2

⎞

⎠ .

T is onto and one-to-one because AT has rank 3 one-to-one. The null space of T has dimension
m − rankAT = 3 − 3 = 0.

3. Nonlinear (because of the 2xy term)
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5. T is linear and

AT =
⎛

⎝
1 0 0 −1 0
0 1 −1 0 0
0 0 0 1 1

⎞

⎠ .

T is onto but not one-to-one; AT has rank 3.
7. Not linear because of the sin(xy) term.
9. T is not linear (the image of a sum of two vectors has last component 2).

CHAPTER EIGHT DETERMINANTS

Section 8.1 Definition of the Determinant

1. |B| =αn|A|
3. |A| = (−1)n|At | = (−1)n|A|.

Since (−1)n =−1 if n is odd, then |A| = −|A|, so |A| = 0.

Section 8.2 Evaluation of Determinants I

1. −22 3. −14 5. −2247 7. −122
9. 72

Section 8.3 Evaluation of Determinants II

1. 32 3. 3 5. −773 7. −152
9. 1693

11.
∣
∣
∣
∣
∣
∣

1 α α2

1 β β2

1 γ γ 2

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

1 α α2

0 β −α β2 −α2

0 γ −α γ 2 −α2

∣
∣
∣
∣
∣
∣

= (β −α)(γ −α)
∣
∣
∣
∣
∣
∣

1 α α2

0 1 β +α
0 1 γ +α

∣
∣
∣
∣
∣
∣
= (β −α)(γ −α)

∣
∣
∣
∣
1 β +α
1 γ +α,

∣
∣
∣
∣

leading to the value β −α)(γ −α)(γ −β).

Section 8.4 A Determinant Formula for A−1

1.
1

13

(
6 1

−1 2

)

3.
1

5

(−4 1
1 1

)

5.
1

32

⎛

⎝
5 3 1

−8 −24 24
−2 −14 6

⎞

⎠

7.
1

29

⎛

⎝
−1 25 −21
−8 −3 6
−1 −4 8

⎞

⎠

9.
1

378

⎛

⎜
⎝

210 −42 42 0
899 −124 223 −135
275 −64 109 −27

−601 122 −131 81

⎞

⎟
⎠
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Section 8.5 Cramer’s Rule

1. x1 =−11/47, x2 =−100/47, 3. x1 =−1/2, x2 =−19/22, x3 = 2/11
5. x1 = 5/6, x2 = −10/3, x3 = −5/6 7. x1 =−86, x2 =−109/2, x3 =−43/2, x4 = 37/2
9. x1 = 33/93, x2 =−409/33, x3 =−1/93, x4 = 116/93

Section 8.6 The Matrix Tree Theorem

1.

T =

⎛

⎜
⎜
⎜
⎝

2 0 −1 0 −1
0 2 −1 −1 0

−1 −1 4 −1 −1
0 −1 −1 3 −1

−1 0 −1 −1 3

⎞

⎟
⎟
⎟
⎠

and the number of spanning trees is 21.
3. 61 5. 61

CHAPTER NINE EIGENVALUES AND DIAGONALIZATION

Eigenvalues and Eigenvectors

1. pA(λ)= λ2 − 2λ− 5; eigenvalues and corresponding eigenvectors are

1 +√
6,

(√
6

2

)

;1 − √
6,

(−√
6

2

)

;3.

The Gerschgorin circles are of radius 3 about (1,0) and radius 2 about (1,0).
3. pA(λ)= λ2 + 3λ− 10;

−5,

(
7

−1

)

; 2,

(
0
1

)

The Gerschgorin circle has radius 1, center (2,0).
5. pA(λ)= λ2 − 3λ+ 14;

1

2
(3 + √

47i),

(−1 + √
47i

4

)

,
1

2
(3 −√

47i),

(−1 − √
47i

4

)

Gerschgorin circles have radius 6, center (1,0) and radius 2, center (2,0).
7. pA(λ)= λ3 − 5λ2 + 6λ,

0,

⎛

⎝
0
1
0

⎞

⎠ ; 2,

⎛

⎝
2
1
0

⎞

⎠ ; 3,

⎛

⎝
0
2
3

⎞

⎠

The Gerschgorin circle has radius 3, center (0,0).
9. pA(λ)= λ3(λ+ 3),

0,0,

⎛

⎝
1
0
3

⎞

⎠ ;−3,

⎛

⎝
1
0
0

⎞

⎠

The Gerschgorin circle has radius 2, center (−3,0).
11. pA(λ)= (λ+ 14)(λ− 2)2,

−14,

⎛

⎝
−16

0
1

⎞

⎠ ;2,2,

⎛

⎝
0
0
1

⎞

⎠

The eigenvalue 2 of multiplicity 2 does not have two linearly independent eigenvectors. The Gerschgorin circles have
radius 1 and center (−14,0) and radius 1 and center (2,0).
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13. pA(λ)= λ(λ2 − 8λ+ 7),

0,

⎛

⎝
14
7
10

⎞

⎠ ;1,

⎛

⎝
6
0
5

⎞

⎠ ;7,

⎛

⎝
0
0
1

⎞

⎠

The Gerschgorin circles have radius 2 and center (1,0) and radius 5 and center (7,0).
15. pA(λ)= (λ− 1)(λ− 2)(λ2 + λ− 13),

1,

⎛

⎜
⎝

−2
−11

0
1

⎞

⎟
⎠ ;2,

⎛

⎜
⎝

0
0
1
0

⎞

⎟
⎠ ;

(−1 + √
53)/2,

⎛

⎜
⎝

√
53 − 7

0
0
2

⎞

⎟
⎠ ; (−1 − √

53)/2,

⎛

⎜
⎝

−√
53 − 7
0
0
2

⎞

⎟
⎠

The Gerschgorin circles have radius 2, center (−4,0) and radius 1 and center (3,0).
17. pA(λ)= λ2 − 5λ,

0,

(
1
2

)

;5,

(−2
1

)

19. pA(λ)= λ2 − 10λ− 23,

5 + √
2,

(
1 +√

2
1

)

;5 − √
2,

(
1 −√

2
1

)

21. pA(λ)= (λ− 3)(λ2 + 2λ− 1),

3,

⎛

⎝
0
0
1

⎞

⎠ ;−1 + √
2,

⎛

⎝
1 +√

2
1
0

⎞

⎠ ;−1 − √
2,

⎛

⎝
1 −√

2
0
4

⎞

⎠

23. If AE = λE, then

A2E = A(AE)= A(λE)= λAE = λ2E.

Repetition of this argument yields the general conclusion AkE = λkE.

Section 9.2 Diagonalization

In Problems 1 through 9, P is given, or it is stated that the matrix is not diagonalizable.

1.
(−3 + √

7i −3 − √
7i

8 8

)

3. Not diagonalizable (A does not have two linearly independent eigenvectors)

5.

⎛

⎝
0 5 0
1 1 −3
0 0 2

⎞

⎠

7. A is not diagonalizable

9.

⎛

⎜
⎜
⎝

1 0 0 0
0 1 (2 − 3

√
5)/41 (2 + 3

√
5)/41

0 0 (−1 + √
5)/2 (−1 − √

5)/2
0 0 1 1

⎞

⎟
⎟
⎠

11. Since P−1AP = D, then A = PAP−1, so

Ak = (PDP−1)(PDP−1) · · · (PDP−1)

= PDkP−1.
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13. A18 =
(

1 0
(1 − 518)/4 518

)

15. A43 =
(

0 222

221 0

)

Section 9.3 Some Special Types of Matrices

In Problems 1 through 12, Q is an orthogonal matrix that diagonalizes the given matrix.

1. 0,

(
1
2

)

;5,

(−2
1

)

;Q =
(

1/
√

5 −2/
√

5
2/

√
5 1/

√
5

)

3. 5 + √
2,

(
1 +√

2
1

)

;5 − √
2,

(
1 −√

2
1

)

Q =
(
(1 + √

2)/(
√

4 + 2
√

2) (1 − √
2)/(

√
4 − 2

√
2)

1/
√

4 + 2
√

2 1/
√

4 − 2
√

2

)

5. 3,

⎛

⎝
0
0
1

⎞

⎠ ;−1 + √
2,

⎛

⎝
1 +√

2
1
0

⎞

⎠ ;−1 − √
2,

⎛

⎝
1 −√

2
1
0

⎞

⎠

Q =
⎛

⎝
0 (1 + √

2)/
√

4 + 2
√

2 (1 − √
2)/
√

4 − 2
√

2

0 1/
√

4 + 2
√

2 1/
√

4 − 2
√

2
1 0 0

⎞

⎠

7. 0,

⎛

⎝
0
1
0

⎞

⎠ ; (5 + √
41)/2,

⎛

⎝
5 +√

41
0
4

⎞

⎠ ; (5 − √
41)/2,

⎛

⎝
5 −√

41
0
4

⎞

⎠

Q =
⎛

⎝
0 (5 + √

41)/
√

82 + 10
√

41 (5 − √
41)/

√
82 − 10

√
41

1 0 0

0 4/
√

82 + 10
√

41 4/
√

82 − 10
√

41

⎞

⎠

9. 0,

⎛

⎝
1
0
0

⎞

⎠ ; (1 + √
17)/2,

⎛

⎝
0

−1 − √
17

4

⎞

⎠ ; (1 − √
17)/2,

⎛

⎝
0

−1 − √
17

4

⎞

⎠

Q =
⎛

⎝
1 0 0

0 (−1 − √
17)/

√
34 + 2

√
17 (−1 + √

17)/
√

34 + 2
√

17

0 4/
√

34 + 2
√

17 4/
√

34 + 2
√

17

⎞

⎠

11. 0 is an eigenvalue of multiplicity 2, with independent eigenvectors
⎛

⎜
⎝

1
0
0
0

⎞

⎟
⎠ ,

⎛

⎜
⎝

0
0
0
1

⎞

⎟
⎠

−1,

⎛

⎜
⎝

0
1
1
0

⎞

⎟
⎠ ;3,

⎛

⎜
⎝

0
−1
1
0

⎞

⎟
⎠

Q =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1/

√
2 −1/

√
2

0 0 1/
√

2 1/
√

2
0 1 0 0

⎞

⎟
⎟
⎠
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13. Not hermitian, not skew-hermitian, not unitary; 2 is a repeated eigenvalue and all eigenvectors are scalar multiples of
(

i
1

)

.

This matrix is not diagonalizable.
15. Skew-hermitian;

0,

⎛

⎝
2
0

1 + i

⎞

⎠ ;√3i,

⎛

⎝
1√
3i

−1 − i

⎞

⎠ ;−√
3i,

⎛

⎝
1

−√
3i

−1 − i

⎞

⎠

The matrix is diagonalized by

P =
⎛

⎝
2 1 1
0

√
3i −√

3i
1 + i −1 − i −1 − i

⎞

⎠

17. Hermitian; approximate eigenvalues and eigenvectors are

4.051374,

⎛

⎝
1

0.525687
−0.129755i

⎞

⎠ ;0.482696,

⎛

⎝
1

−1.258652
2.607546i

⎞

⎠ ;−1.53407,

⎛

⎝
1

−2.267035
−1.477791i

⎞

⎠

Use these eigenvectors as columns of p.
19. skew-hermitian; approximate eigenvalues and eigenvectors are

−2.164248i,

⎛

⎝
−i

−3.164248
2.924109

⎞

⎠ ;0.772866i,

⎛

⎝
i

0.227134
0.587771

⎞

⎠ ; 2.391382i,

⎛

⎝
i

−1.391382
−1.163664

⎞

⎠

Use these eigenvectors as columns of P.
21. Hermitian,

0,

⎛

⎝
0
i
1

⎞

⎠ ;4 + 3
√

2,

⎛

⎝
4 + 3

√
2

−1
−i

⎞

⎠ ;4 − 3
√

2,

⎛

⎝
4 − 3

√
2

−1
−i

⎞

⎠ ,

use these eigenvectors as columns of P.
23.

A =
(

4 −6
−6 1

)

and the standard form is
(

5 +√
153

2

)

y2
1 +
(

5 −√
153

2

)

y2
2

25.

A =
(

4 −2
−2 1

)

and the standard form is
(

3 +√
17

2

)

y2
1 +
(

3 − √
17

2

)2

y2
2

27.

A =
(

5 2
2 2

)

and the standard form is y2
1 + 6y2

2
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29. If A is hermitian then A = At , so

(AAt)= A(At)

= A(A)= (A)A.

31. If St =−S, then each s j j = −s j j . Write s j j = a j j + ib j j . Then a j j =−a j j , so a j j = 0 and s j j is pure imaginary.

CHAPTER TEN SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

Section 10.1 Linear Systems

The following solutions give the fundamental matrix �(t) and the solution of the initial value problem.

1. �(t)=
(−e2t 3e6t

e2t e6t

)

; X(t)=
(−3e2t + 3e6t

3e2t + e6t

)

3. �(t)=
(

4e(1+2
√

3)t 4e(1−2
√

3)t

(−1 + √
3)e(1+2

√
3)t (−1 − √

3)e(1−2
√

3)t

)

X(t)=
(
(1 + 5

√
3/3)e(1+2

√
3)t + (1 − 5

√
3/3)e(1−2

√
3)t

(−1 + √
3/6)e(1+2

√
3)t + (1 + √

3/6)e(1−2
√

3)t

)

5. �(t)=
⎛

⎝
et 0 e−3t

0 et 3e−3t

e−t et e−3t

⎞

⎠ ; X(t)=
⎛

⎝
10et − 9e−3t

24et − 27e−3t

14et − 9e−3t

⎞

⎠

Section 10.2 Solution of X′ = AX for Constant A

1. �(t)=
(

7e3t 0
5e3t e−4t

)

; X(t)=�(t)C =
(

7c1e3t

5c1e3t + c2e−4t

)

3. �(t)=
(

1 e2t

−1 e2t

)

; X(t)=
(

c1 + c2e2t

−c1 + c2e2t

)

5. �(t)=
⎛

⎝
1 2e3t −e−4t

6 3e3t 2e−4t

−13 −2e3t e−4t

⎞

⎠ ; X(t)=
⎛

⎝
c1 + 2c2e3t − c3e−4t

6c1 + 3c2e3t + 2c2e−4t

−13c1 − 2c2e3t + c3e−4t

⎞

⎠

7. �(t)=
(

2e4t e−3t

−3e4t 2e−3t

)

; X(t)=
(

6e4t − 5e−3t

−9e4t − 10e−3t

)

9. �(t)=
⎛

⎝
0 e2t 3e3t

1 e2t e3t

1 0 e3t

⎞

⎠ ; X(t)=
⎛

⎝
4e2t − 3e3t

2 + 4e2t − e3t

2 − e3t

⎞

⎠

11. �(t)=
(

2e2t cos(2t) 2e2t sin(2t)
e2t sin(2t) −e2t cos(2t)

)

13. �(t)=
(

5et cos(t) 5et sin(t)
et [2cos(t)+ sin(t)] et [2 sin(t)− cos(t)]

)

15. �(t)=
⎛

⎝
0 e−t cos(2t) e−t sin(2t)
0 e−t [cos(2t)− 2 sin(2t)] e−t [sin(2t)+ 2cos(2t)]

e−2t 3e−t cos(2t) 3e−t sin(2t)

⎞

⎠

17. �(t)=
(

e3t 2te3t

0 e3t

)
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19. �(t)=
⎛

⎝
e2t 3e5t 27te5t

0 3e5t (3 + 27t)e5t

0 −e5t (2 − 9t)e5t

⎞

⎠

21. �(t)=
⎛

⎜
⎝

2 3e3t et 0
0 2e3t 0 −2et

1 2e3t 0 −2et

0 0 0 et

⎞

⎟
⎠

Section 10.3 Solution of X′ = AX + G

1. X(t)=
( [c1(1 + 2t)+ 2c2t + t2]e3t

[−2c1t + (1 − 2t)c2 + t − t2]e3t + 3et/2

)

3. X(t)=
([c1 + c2(1 + t)+ 2t + t2 − t3]e6t

[c1 + c2t + 4t2 − t3]e6t

)

5. X(t)=
⎛

⎜
⎝

c2et

−2c2et + (c3 − 9c4)e3t + et

2c4e3t

(c1 − 5c2t)et + c3e3t + (1 + 3t)et

⎞

⎟
⎠

7. X(t)=
(
(−1 − 14t)et

(3 − 14t)et

)

9. X(t)=
⎛

⎝
(6 + 12t + t2/2)e−2t

(2 + 12t + t2/2)e−2t

(3 + 38t + 66t2 + 13t3/6)e−2t

⎞

⎠

11. X(t)=
(

3c1e2t + c2e6t − 4e3t − 10/3
−c1e2t + c2e6t + 2/3

)

13. X(t)=
(

c1et + 5c2e7t + (68/145) cos(3t)− (54/145) sin(3t)+ 40/7
−c1et + c2e7t + (2/145) cos(3t)+ (24/145) sin(3t)− 48/7

)

15. X(t)=
(

2 + 4(1 + t)e2t

−2 + 2(1 + 2t)e2t

)

17. X =
(

10cos(t)+ 5
2
t sin(t)− 5t cos(t)

5cos(t)+ 5
2

sin(t)− 5
2
t cos(t)

)

19. X =
⎛

⎜
⎝

− 1
4
e2t + (2 + 2t)et − 3

4
− 1

2
t

e2t + (2 + 2t)et − 1 − t

− 5
4
e2t + 2te2t − 3

4
− 1

2
t

⎞

⎟
⎠

Section 10.4 Exponential Matrix Solutions

In Problems 1 through 5, eAt is given. The solution is X(t)= eAtC.

1. eAt =
(

cos(2t)− 1
2

sin(2t) 1
2

sin(2t)

− 5
2

sin(2t) cos(2t)+ 1
2

sin(2t)

)

3. eAt = e13t/2

(
cos(

√
23t/2)− 3

√
23

23
sin(

√
23t/2) − 4

√
23

23
sin(

√
23t/2)

8
√

23
23

sin(
√

23t/2) cos(
√

23t/2)+ 3
√

23
23

sin(
√

23t/2)

)

5. eAt =
⎛

⎜
⎝

2
5

cos(t)− 1
5

sin(t)+ 3
5
e2t 2

5
sin(t)+ 1

5
cos(t)− 1

5
e2t 3

5
sin(t)− 1

5
cos(t)+ 1

5
e2t

3
5

cos(t)− 4
5

sin(t)− 3
5
e2t 3

5
sin(t)+ 4

5
cos(t)+ 1

5
e2t 7

5
sin(t)+ 1

5
cos(t)− 1

5
e2t

− 3
5

cos(t)− 1
5

sin(t)+ 3
5
e2t 1

5
cos(t)− 3

5
sin(t)− 1

5
e2t 4

5
cos(t)− 2

5
sin(t)+ 1

5
e2t

⎞

⎟
⎠
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7.

eBt = In +
∞∑

k=1

1

k!B
k t k

so

PeBtP−1 = PInP−1 +
∞∑

k=1

1

k!PBkP−1t k

= In +
∞∑

k=1

1

k! (PBP−1)k t k

= e(PBP−1)t = eAt .

Section 10.5 Applications and Illustrations of Techniques

1. The capacitor charge is maximum when the capacitor voltage is maximum. This voltage is

VC = 10(q1 − q2)= 5i3.

Setting dVc/dt = 0 yields t = (9/2) ln(10/9)≈ 0.474 seconds. At this time, the capacitor voltage is 6.97 volts.
3.

x1(t)= 20 + 25e−t/10 − 5e−3t/50 pounds ,

x2(t)= 30 − 25e−t/10 − 5e−3t/50 pounds

The brine solution in tank 1 has minimum concentration at t = 25 ln(25/3) minutes. At this time there is
20 − (6√

3)/125 ≈ 19.9 pounds of salt in tank 1.
5. Designate y1(t) as the position of the upper weight relative to its equilibrium position and y2(t) the position of the

lower weight relative to its equilibrium position. Then

y1(t)= 2

5
cos(2t)+ 3

5
cos(2

√
6t),

y2(t)= 6

5
cos(2t)− 1

5
cos(2

√
6t)

7. Let y1(t) be the displacement function of the left mass, and y2(t) the displacement function of the right mass (from
their equilibrium positions). The solution is

y1(t)= cos(3t), y2(t)=− cos(3t).

9. The currents are

i1(t)= 1

10
− 2te−10t amp ,

i2(t)=
(

1

10
− t

)

e−10t amp

11. y1(t)= 3
√

26

40

[
2e−t sin(2t)+ e−2t(3cos(t)+ sin(t))− 3cos(t)+ sin(t)

]
,

y2(t)= 3

40

[
e−t(8cos(2t)+ 4 sin(2t))+ e−2t(7cos(t)− sin(t))

−15cos(t)+ 15 sin(t)]

Section 10.6 Phase Portraits

1. Eigenvalues are −2,−2 and the origin is an improper node. The solution is

X =
(

c1e−2t + 5(c1 − c2)te−2t

c2e−2t + 5(c1 − c2)te−2t

)

A phase portrait is given in Figure A.11.
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6

4

2

0

–2

–4

–6

x
6420–2–4–6

FIGURE A.11 Phase portrait for Problem
1, Section 10.6.

y

6

4

2

0

–2

–4

–6

151050–5–10–15

FIGURE A.12 Phase portrait for Problem
3, Section 10.6.

y

600

400

200

–200

–400

–600

x
8004000–400–800

FIGURE A.13 Phase portrait for Problem
5, Section 10.6.

4

2

0

–2

–4

–6

3020100–10

FIGURE A.14 Phase portrait for Problem
7, Section 10.6.

3. Eigenvalues are ±2i ; the origin is a center. Solution is

X =
(
(c1 − 2c2) sin(2t)+ (2c1 + c2) cos(2t)

c1 sin(2t)+ c2 cos(2t)

)

Figure A.12 is a phase portrait.
5. 4 ± 5i , and the origin is a spiral point. The solution is

X =
(
(3c1 − 5c2)e4t sin(5t)+ (5c1 + 3c2)e4t cos(5t)

2c1e4t sin(5t)+ 2c2e4t cos(5t)

)

Figure A.13 is a phase portrait.
7. 3,3, the origin is an improper node. The solution is

X =
(

c1e3t + c2te3t

(c1 + c2)e3t + c2te3t

)

Figure A.14 is a phase portrait.
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2

0

–2

–4

–6

0.50–0.5–1–1.5

FIGURE A.15 Phase portrait for Problem
9, Section 10.6.

y

10

8

6

4

2

0

x
242016128

FIGURE A.16 Phase portrait for Problem
13(a), Section 10.6.

y

10

8

6

4

2

0

x
706050403020100

FIGURE A.17 Phase portrait for Problem
13(c), Section 10.6.

9. −2 ± √
3i , spiral point. The solution is

X =
(

c1e−2t cos(
√

3t)− c2e−2t sin(
√

3t)
c1e−2t sin(

√
3t)+ 3c2e−2t cos(

√
3t)

)

Figure A.15 is a phase portrait.
11.

x ′
1 = ax1 − bx1x2 − Hx1, x

′
2 =−kx2 + cx1x2 − Hx2

13. Figure A.16 is a phase portrait for (a), and Figure A.17 for (c).
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CHAPTER ELEVEN VECTOR DIFFERENTIAL CALCULUS

Section 11.1 Vector Functions of One Variable

1. ( f (t)F(t))′ = −12 sin(3t)i + 12t[2cos(3t)− 3t sin(3t)]j
+8[cos(3t)− 3t sin(3t)]k

3. (F × G)′ = (1 − 4 sin(t))i − 2tj − (cos(t)− t sin(t))k

5. ( f (t)F(t))′ = (1 − 8t3)i + (6t2 cosh(t)− (1 − 2t3) sinh(t))j

+(−6t2et + et(1 − 2t3))k

7. tet(2 + t)(j − k)

9. (a) F(t) = sin(t)i + cos(t)j + 45tk for 0 ≤ t ≤ 2π,

F′(t)= cos(t)i − sin(t)j + 45k

(b) s(t)= √
2026t

(c) F(t (s))= 1√
2026

[
sin
(
s/

√
2026

)
i + cos

(
s/

√
2026

)
+
(
45s/

√
2026

)
k
]

11. (a) F(t)= t2(2i + 3j + 4k) for 1 ≤ t ≤ 3, F′(t)= 2t (2i + 3j + 4k)

(b) s(t)= √
29(t2 − 1)

(c) F(t (s))=
(

1 + s√
29

)

(2i + 3j + 4k)

Section 11.2 Velocity and Curvature

1. v(t)= 3i + 2tk, v(t)= √
9 + 4t2,a(t)= 2k,

aT = 4t√
9 + 4t2

, κ = 6

(9 + 4t2)3/2
,aN = 6

(9 + 4t2)1/2

6

(9 + 4t2)1/2

3. v(t)= 2i − 2j + k, v(t)= 3,a(t)= O

κ = 0,aT = aN = 0

5. v(t)= −3e−t(i + j − 2k), v(t)= 3
√

6e−t ,a(t)= 3e−t(i + j − 2k)

κ = 0,aT =−3
√

6e−t ,aN = 0

7. v(t)= 2cosh(t)j − 2 sinh(t)k, v(t)= 2
√

cosh(2t),

a(t)= 2 sinh(t)j − 2cosh(t)k

κ = 1

2(cosh(2t))3/2
,

aT = 2 sinh(2t)/
√

cosh(2t),aN = 2/
√

cosh(2t)

9. v(t)= 2t (αi +βj + γk), v(t)= 2|t |√α2 +β2 + γ 2, aN = 0, κ = 0, aT = 2σ
√
α2 +β2 + γ 2, where σ equals 1 if t ≥ 0,

and −1 if t < 0

Section 11.3 Vector Fields and Streamlines

1. x = x, y = 1/(x + c), z = ex+k; x = x, y = 1/(x − 1), z = ex−2

3. x = x, y = ex(x − 1)+ c, x2 = −2z + k;
x = x, y = ex(x − 1)− e2, z = 1

2
(12 − x2)

5. x = c, y = y,2ez = k − sin(y);
x = 3, y = y, z = ln

(
1 +√

2/4 − (1/2) sin(y)
)

7. There are many such vector fields. One whose streamlines are circles about the origin in the plane z = 0 is given by

F(x, y, z)=− 1

x
i + 1

y
j.
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Section 11.4 The Gradient Field

1. yzi + xzj + xyk, i + j + k,√
3,−√

3

3. (2y + ez)i + 2xj + xezk, (2 + e6)i − 4j − 2e6k,
√

20 + 4e6 + 5e12,−√
20 + 4e6 + 5e12

5. 2y sinh(2xy)i + 2x sinh(2xy)j − cosh(z)k, cosh(1)k, cosh(1),− cosh(1)

7.
(
1/

√
3
)
(8y2 − z + 16xy − x)

9.
(
1/

√
5
)
(2x2z3 + 3x2 yz2)

11. x + y + √
2z = 4; x = y = 1 + 2t, z = √

2(1 + 2t)

13. x = y; x = 1 + 2t, y = 1 − 2t, z = 0

15. x = 1; x = 1 + 2t, y =π, z = 1

17. Level surfaces are planes x + z = k.

Section 11.5 Divergence and Curl

In Problems 1, 3, and 5, ∇ · F is given first, then ∇ × F.
1. 4,O 3. 2y + xey + 2, (ey − 2x)k

5. cosh(x) f xz sinh(xyz)− 1, (−1 − xy sinh(xyz))i − j + yz sinh(xyz)k(i, j, k)

In Problems 7 and 9, ∇ϕ is given.

7. i − j + 4zk

9. −6x2 yz2i − 2x3z2j − 4x3 yzk

11. (cos(x + y + z)− x sin(x + y + z))i − x sin(x + y + z)(j + k)

13. ∇ · (ϕF) =∇ϕ · F +ϕ(∇ · F)

∇ × (ϕF)=∇ϕ× F +ϕ(∇ × F)

CHAPTER TWELVE VECTOR INTEGRAL CALCULUS

Section 12.1 Line Integrals

1. 0 3. 26
√

2/3 5. sin(3)− 81/2

7. 0 9. −422/5 11. −27/2

Section 12.2 Green’s Theorem

1. −8 3. −12 5. −40 7. 512π

9. 0 11. 95/4

13. By Green’s theorem,

∮

C

−∂u

∂y
dx + ∂u

∂x
dy =

∫∫

D

[
∂

∂x

(
∂u

∂x

)

− ∂

∂y

(

−∂u

∂y

)]

d A

Section 12.3 An Extension of Green’s Theorem

1. 0
3. 2π if C encloses the origin; 0 otherwise
5. 0
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Section 12.4 Potential Theory

1. Conservative, ϕ(x, y)= xy3 − 4y
3. Conservative, ϕ(x, y)= 8x2 + 2y − y3/3
5. Conservative, ϕ(x, y)= ln(x2 + y2)

7. ϕ(x, y, z)= x − 2y + z
9. Not conservative

11. −27
13. 5 + ln(3/2)
15. −5
17. −403
19. 2e−2

21. Write

E(t)= total energy = m

2
R′(t) · R′(t)−ϕ(x(t), y(t), z(t)).

Use the fact that mR′′ =∇ϕ (by one of Newton’s laws of motion) to show that E ′(t)= 0.

Section 12.5 Surface Integrals

1. 125
√

2 3. π(293/2 − 27)/6 5. 28π
√

2/3

7. (9/8)
(
ln
(
4 +√

17
)

+ 4
√

17
)

9. −10
√

3

Section 12.6 Applications of Surface Integrals

1. 49/12, (12/35,33/35,24/35) 3. 9πK
√

2, (0,0,2)
5. 78π, (0,0,27/13) 7. 128/3

Section 12.7 Lifting Green’s Theorem to R3

1. Apply Green’s theorem to the line integral
∮

C

−ϕ ∂ψ
∂y

dx +ϕ ∂ψ
∂x

dy.

3. Apply Green’s theorem to
∮

C

−∂ϕ
∂y

dx + ∂ϕ

∂x
dy.

Section 12.8 The Divergence Theorem of Gauss

1. 256π/3 3. 0 5. 8π/3
7. 2π 9. 0 because ∇ · (∇ × F)= 0

Section 12.9 Stokes’s Theorem

1. −8π 3. −16π 5. −32/3 7. −108

Section 12.10 Curvilinear Coordinates

2.

h1 = h2 = a
√

sinh2(u) cos2(v)+ cosh2(u) sin2(v),h3 = 1

∇ f (u, v, z)= 1

h1

∂ f

∂u
uu + 1

h1

∂ f

∂v
uv + ∂ f

∂z
uz,

where

uu = a

h1

(sinh(u) cos(v)i + cosh(u) sin(v)j),
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uv = a

h1

(−a cosh(u) sin(v)i + sinh(u) cos(v)j),

uz = k

∇ · F(u, v, z)= 1

h2
1

[
∂

∂u
(F1h1)+ ∂

∂v
(F2h1)

]

+ ∂F3

∂z

∇ × F(u, v, z)=
(

1

h1

∂F3

∂v
− ∂F2

∂z

)

uu

+
(
∂F1

∂z
− 1

h1

∂F3

∂u

)

uv

+ 1

h2
1

(
∂

∂u
(F2h1 − ∂

∂v
(F1h1)

)

uz

∇2 f (u, v, z)= 1

h2
1

(
∂2 f

∂u2
+ ∂2 f

∂v2

)

+ ∂2 f

∂z2

4.

hu = hv =√
u2 + v2,hz = 1

∇ f (u, v, z)= 1

hu

∂ f

∂u
uu + 1

hv

∂ f

∂v
uv + ∂ f

∂z
uz

∇ · F(u, v, z)= 1

h2
u

(
∂

∂u
(hu F1)+ ∂

∂v
(hvF2)

)

+ 1

h2
u

∂

∂z

(
h2

u F3

)

∇ × F(u, v, z)= 1

hu

(
∂

∂u
(F3)− ∂

∂z
(hu F2)

)

u1

+ 1

h2
v

(
∂

∂z
(hu F1)− ∂

∂u
(F3)

)

u2

+ 1

h2
v

(
∂

∂u
(hvF2)− ∂

∂v
(hu F1)

)

u3

∇2 f = 1

h2
u

(
∂2 f

∂u2
+ ∂2 f

∂v2
+ ∂

∂z

(

h2
u

∂ f

∂z

))

CHAPTER THIRTEEN FOURIER SERIES

Section 13.1 Why Fourier Series?

3. If p(x) has degree k, then differentiating p(x), k + 1 times yields the zero function, while
∑N

n=1 bn sin(nx) can be
differentiated any number of times, and none of these derivatives is identically zero on [0,π ].

Section 13.2 The Fourier Series of a Function

1. 4; the series (consisting of one term) converges to 4 on [−3,3].
3.

1

π
sinh(π)+ 2

π
sinh(π)

∞∑

n=1

(−1)n

n2 + 1
cos(nπx),

converging to cosh(πx) for −1 ≤ x ≤ 1.
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5.

16

π

∞∑

n=1

1

2n − 1
sin((2n − 1)x),

converging to −4 for −π < x < 0, to 4 for 0< x <π and to 0 for x = 0,−π,π .
7.

13

3
+

∞∑

n=1

(−1)n
[

16

n2π 2
cos
(nπx

2

)
+ 4

nπ
sin
(nπx

2

)]

,

converging to f (x) for −2< x < 2, to 2 at x =−2 and to 7 at x = 2.
9.

3

2
+ 1

π

∞∑

n=1

1 − (−1)n

n
sin(nx),

converging to 1 for −π < x < 0, to 2 for 0< x <π and to 3/2 at x = 0,−π,π .
11.

1

3
sin(3)+ 6 sin(3)

∞∑

n=1

(−1)n+1

n2π 2 − 9
cos
(nπx

3

)
,

converging to cos(x) on [−3,3].
13. The series converges to 3/2 for x =±3, to 2x if −3< x <−2, to −2 if x =−2, to 0 if −2< x < 1, to 1/2 if x = 1 and

to x2 if 1< x < 3.
15. The series converges to (2 +π 2)/2 if x =±π , to x2 if −π < x < 0, to 1 if x = 0 and to 2 if 0< x <π .
17. The series converges to −1 if −4< x < 0, to 0 if x =±4 or x = 0, and to 1 if 0< x < 4.
19. The series converges to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 for x =−4 and for x = 4
3/2 for x =−2
5/2 for x = 2
f (x) elsewhere on [−4,4].

Section 13.3 Sine and Cosine Series

1. The cosine series is 4, the function itself, for 0 ≤ x ≤ 3. The sine series is

16

π

∞∑

n=1

1

2n − 1
sin

(
(2n − 1)πx

3

)

,

converging to 0 if x = 0 or x = 3 and to 4 for 0< x < 3.
3. The cosine series is

1

2
cos(x)− 2

π

∞∑

n=1

(−1)n(2n − 1)

(2n − 3)(2n + 1)
cos

(
(2n − 1)x

2

)

,

converging to 0 for 0 ≤ x <π , to 0 at x = 2π , to cos(x) for π < x < 2π , and to −1/2 at x =π .
The sine series is

−2

3π
sin(x/2)+

∞∑

n=3

−2n

π(n2 − 4)
(cos(nπ/2)+ (−1)n) sin(nx/2),

converging to 0 for 0 ≤ x <π and for x = 2π , to −1/2 for x =π , and to cos(x) for π < x < 2π .
5. The cosine series is

4

3
+ 16

π 2

∞∑

n=1

(−1)n

n2
cos(nπx/2),

converging to x2 for 0 ≤ x ≤ 2. The sine series is

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-839 27410_25_Ans_p801-866

Answers to Selected Problems 839

− 8

π

∞∑

n=1

[
(−1)n

n
+ 2(1 − (−1)n)

n3π 2

]

sin(nπx/2),

converging to x2 if 0< x < 2 and to 0 for x = 0 and for x = 2.
7. The cosine series is

1

2

+
∞∑

n=1

[
4

nπ
sin(2nπ/3)+ 12

n2π 2
cos(2nπ/3)− 6

n2π 2
(1 + (−1)n)

]

cos(nπx/3),

converging to x if 0 ≤ x < 2, to 1 if x = 2 and to 2 − x if 2< x ≤ 3. The sine series is

∞∑

n=1

[
12

n2π 2
sin(2nπ/3)− 4

nπ
cos(2nπ/3)+ 2

nπ
(−1)n

]

sin(nπx/3),

converging to x if 0 ≤ x < 2 to 1 if x = 2, to 2 − x if 2< x < 3 and to 0 if x = 3.
9. The cosine series is

5

6
+ 16

π 2

∞∑

n=1

[
1

n2
cos
(nπ

4

)
− 4

n3π
sin
(nπ

4

)]

cos
(nπx

4

)

converging to x2 for 0 ≤ x ≤ 1 and to 1 for 1< x ≤ 4.
The sine series is

∞∑

n=1

[
16

n2π 2
sin
(nπ

4

)
+ 64

n3π 3

[
cos
(nπ

4

)
− 1
]
− 2(−1)n

nπ

]

sin
(nπx

4

)

converging to x2 for 0 ≤ x ≤ 1, 1 for 1< x < 4, and 0 for x = 4.
11. The series converges to 1/2 −π/4.
13. If f is both even and odd, then f (x)= f (−x)=− f (x), so f (x)= 0.

Section 13.4 Integration and Differentiation of Fourier Series

1. The Fourier series of f on [−π,π ] is

1

4
π +

∞∑

n=1

[
(−1)n − 1

πn2
cos(nx)+ (−1)n+1

n
sin(nx)

]

.

This converges to 0 for −π < x < 0 and to x for 0< x <π . Because f is continuous, its Fourier series can be
integrated term by term, yielding the integral of the sum of the series. Term by term integration yields

∫ x

−π
f (t)dt = π

4
(x +π)

+
∞∑

n=1

(
1

πn3
((−1)n − 1) sin(nx)+ (−1)n

n2
cos(nx)− 1

n2

)

3. For −π ≤ x ≤π ,

x sin(x)= 1 − 1

2
cos(x)+ 2

∞∑

n=2

(−1)n+1

n2 − 1
cos(nx).

f is continuous with continuous first and second derivatives on [−π,π ], and f (−π)= f (π), so we can differentiate
the series term by term to obtain

x cos(x)+ sin(x)= 1

2
sin(x)+ 2

∞∑

n=2

n(−1)n

n2 − 1
sin(nx)

for −π < x <π .
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Section 13.5 The Phase Angle Form

1. α f (t + p)+β f g(t + p)=α f (t)+βg(t)

3. f ′(t + p)= limh→0
f (t + p + h)− f (t + p)

h

= limh→0
f (t + h)− f (t)

h
= f ′(t)

5. The Fourier series is

1

2
+ 2

π

∞∑

n=1

1

2n − 1
sin((2n − 1)πx),

so the phase angle form is

1 + 2

π

∞∑

n=1

1

2n − 1
cos
(
(2n − 1)πx − π

2

)

7.

19

8
+ 1

π 2

∞∑

n=1

cn cos
(nπx

2
+ δn

)

where

cn = 1

n2

√
8 + 5n2π 2 − 12nπ sin(3nπ/2)+ 4(n2π 2 − 2) cos(3nπ/2)

and

δn =− arctan

(
sin(3nπ/2)− nπ/2 − 2cos(3nπ/2)

nπ sin(3nπ/2)+ cos(3nπ/2)− 1

)

.

9. Write f (x)= x for 0 ≤ x < 1 and f (x)= x − 2 for 1< x < 2. The phase angle form of the Fourier series is

2

π

∞∑

n=1

1

n
cos
(
nπx + (−1)n

π

2

)
.

11. Write f (x)= 1 for 0 ≤ x < 1 and f (x)= 2 for 1< x < 3. The phase angle form of the Fourier series is

3

2
+ 2

π

∞∑

n=1

1

2n − 1
cos
(
(2n − 1)

πx

2
+ π

2
(1 − (−1)n)

)
.

Section 13.6 Complex Fourier Series

1. 3 + 3i

π
+∑∞

n=−∞,n 
=0

1

n
e2nπ i x/3

3.
3

4
− 1

2π

∑∞
n=−∞,n 
=0

1

n
(sin(nπ/2)+ (cos(nπ/2)− 1)i) enπ i x/2

5.
1

2
+ 3i

π

∑∞
n=−∞,n 
=0 e(2n−1)π i x/2

Section 13.7 Filtering of Signals

1. The complex Fourier series is
∞∑

n=−∞,n 
=0

i

nπ
((−1)n − 1)einπ t/2.

The Nth partial sum is

SN (t)= 4

π

∞∑

n=1

1

2n − 1
sin

(
(2n − 1)π t

2

)

.
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The Nth Cesàro sum is

σN (t)= 4

π

N∑

n=1

(

1 − 2n − 1

N

)
1

2n − 1
sin

(
(2n − 1)π t

2

)

.

3. The complex Fourier series is
∞∑

n=−∞

i

nπ

(
(−1)n − cos

(nπ

2

))
einπ t .

The Nth partial sum is

SN (t)=
∞∑

n=1

2

nπ
(cos(nπ/2)− (−1)n) sin(nπ t)

The Nth Cesàro sum is

σN (t)=
N∑

n=1

(
1 − n

N

) 2

nπ

[
cos
(nπ

2

)
− (−1)n

]
sin(nπ t).

5. The complex Fourier series is

17

4
+

∞∑

n=−∞,n 
=0

(
1

2n2π 2
(1 − (−1)n)+ i

2nπ
(6(−1)n − 5)

)

einπ t/2.

The Nth Cesàro sum is

σN (t)= 17

4
+

N∑

n=1

1

n2π 2

(

1 − |n|
N

)

(1 − (−1)n) cos(nπ t)

+
N∑

n=1

i

nπ

(

1 − |n|
N

)

(5 − 6(−1)n) sin(nπ t).

7. The Nth partial sums are

CHAPTER FOURTEEN THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

Section 14.1 The Fourier Integral

1. The Fourier integral is
∫ ∞

0

[
2 sin(πω)

πω2
− 2cos(πω)

ω

]

sin(ωx)dω,

converging to −π/2 if x =−π , to x for −π < x <π , to π/2 for x =π and to 0 if |x |>π .
3.

∫ ∞

0

(
2

πω
(1 − cos(πω))

)

sin(ωx)dω,

converging to −1/2 at x = −π , to −1 for −π < x < 0, to 0 if x = 0, to 1 if 0< x <π , to 1/2 if x =π and to 0 if
|x |>π .

5.
∫ ∞

0

1

πω3
[400ω cos(100ω)+ (20000ω2 − 4) sin(100ω)] cos(ωx)dω,

converging to x2 if −100< x < 100, to 5000 if x =±100, and to 0 if |x |> 100.
7.

4

π

∫ ∞

0

[
cos(πω)(cos2(πω)− 1)

ω2 − 1
cos(ωx)+ sin(πω) cos2(πω)

1 −ω2
sin(ωx)

]

dω,

converging to sin(x) if −3π < x <π and to 0 if x <−3π or x ≥π .
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9. For all x ,
∫ ∞

0

2

π(1 +ω2)
cos(ωx)dω= e−|x |.

11. Because f (t) cos(ω(t − x)) is even in ω and f (t) sin(ω(t − x)) is odd, we can write

1

π

∫ ∞

0

∫ ∞

−∞
f (t) cos(ω(t − x))dt dω= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t) cos(ω(t − x))dω dt

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t)eiω(t−x) dω dt.

Complete the derivation by carrying out the inner integration in the last double integral.

Section 14.2 Fourier Cosine and Sine Integrals

1. Sine integral:
∫ ∞

0

4

πω3
[10ω sin(10ω)− (50ω2 − 1) cos(10ω)− 1] sin(ωx)dω.

Cosine integral:
∫ ∞

0

4

πω3
[10ω cos(10ω)− (50ω2 − 1) sin(10ω)] cos(ωx)dω.

Both integrals converge to x2 for 0 ≤ x < 10, to 50 if x = 10 and to 0 if x > 10.
3. Sine integral:

∫ ∞

0

2

πω
[1 + cos(ω)− 2cos(4ω)] sin(ωx)dω.

Cosine integral:
∫ ∞

0

2

πω
[2 sin(4ω)− sin(ω)] cos(ωx)dω.

Both integrals converge to 1 for 0< x < 1, to 3/2 for x = 1, to 2 for 1< x < 4, to 1 for x = 4 and to 0 for x > 4. The
cosine integral converges to 1 at x = 0 while the sine integral converges to 0 at x = 0.

5. Sine integral:
∫ ∞

0

[
2

πω
[1 + (1 − 2π) cos(πω)− 2cos(3πω)]+ 4

πω2
sin(πω)

]

sin(ωx)dω.

Cosine integral:
∫ ∞

0

[
2

πω
[(2π − 1) sin(πω)+ 2 sin(3πω)]+ 4

πω2
[cos(πω)− 1]

]

cos(ωx)dω.

Both integrals converge to 1 + 2x for 0< x <π , to (3 + 2π)/2 for x =π , to 2 for π < x < 3π , to 1 for x = 3π , and to
0 for x > 3π . The sine integral converges to 0 at x = 0, while the cosine integral converges to 1 for x = 0.

7. Sine integral:
∫ ∞

0

2

π

(
ω3

4 +ω4

)

sin(ωx)dω.

Cosine integral:
∫ ∞

0

2

π

(
2 +ω2

4 +ω4

)

cos(ωx)dω.

Both integrals converge to e−x cos(x) for x > 0. the cosine integral converges to 1 for x = 0 and the sine integral
converges to 0 at x = 0.

9. Sine integral:
∫ ∞

0

2k

πω
(1 − cos(cω)) sin(ωx)dω.
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Cosine integral:
∫ ∞

0

2k

πω
sin(cω) cos(ωx)dω.

Both integrals converge to k for 0< x < c, to k/2 for x = c, and to 0 for x > c, while the sine integral converges to 0 at
x = 0, and the cosine integral to k there.

11. From the Laplace integrals and the convergence theorem, for x > 0,

e−kx = 2k

π

∫ ∞

0

1

k2 +ω2
cos(ωx)dω= 2

π

∫ ∞

0

ω

k2 +ω2
sin(ωx)dω.

Put k = 1 and interchange the symbols x and ω to obtain

Aω = πe−ω

2k
=
∫ ∞

0

1

1 + x2
cos(ωx)dx

and

Bω = πe−ω

2
=
∫ ∞

0

x

1 + x2
sin(ωx)dx .

Therefore, the Fourier cosine integral of 1/(1 + x2) is

C(x)=
∫ ∞

0

e−ω cos(ωx)dω= 1

1 + x2
for x ≥ 0.

And the Fourier sine integral of x/(1 + x2) is

S(x)=
∫ ∞

0

e−ω sin(ωx)dω= x

1 + x2
for x > 0.

Section 14.3 The Fourier Transform

1. 2i[cos(ω)− 1]/ω 3. 10e−7iω sin(4ω)/ω

5.
4

1 + 4iω
e−(1+4iω)k/4 7. πe−|ω|

9.
24

16 +ω2
e2iω

11. 18

√
2

π
e−8t2 e−4i t 13. H(t + 2)e−10−(5−3i)t

15. H(t)[2e−3t − e−2t ] 17. H(t)te−t

19.
∫ ∞

−∞ | f (t)|2 dt = 1

2π

∫ ∞
−∞ f̂ (ω) f̂ (ω)dω= 1

2π
| f̂ (ω)|2 dω

21. 3π

23. (2/ω3)[25ω2 sin(5ω)+ 10ω cos(5ω)− 2 sin(5ω)]

25.
1

1 +ω2
(1 − e−4 cos(4ω)+ e−4 sin(4ω))+ i

1 +ω2
(e−4 sin(4ω)+ (e−4 cos(4ω)− 1)ω)

27.
4

ω3
(sin(2ω)(4ω2 − 1)+ 2ω cos(2ω))+ 8i

ω2
(2ω cos(2ω)− sin(2ω))

Section 14.4 Fourier Cosine and Sine Transforms

1. f̂C(ω)= 1

1 +ω2
, f̂ S(ω)= ω

1 +ω2

3. For ω 
=±1,

f̂C(ω)= 1

2

[
sin(K (1 −ω))

1 −ω + sin(K (1 +ω))
1 +ω

]

,

f̂C(−1)= f̂C(1)= K

2
+ 1

2
sin(2K )
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For ω 
=±1,

f̂ S(ω)= ω

ω2 − 1
− 1

2

[
cos(K (1 +ω))

1 +ω − cos(K (1 −ω))
1 −ω

]

,

f̂ S(1)= 1

4
(1 − cos(2K ))=− f̂ S(−1)

5. f̂C(ω)= 1

2

[
1

1+(1+ω2)
+ 1

1 + (1 −ω2)

]

;

f̂ S(ω)= 1

2

[
1 +ω

1 + (1 +ω2)
− 1 −ω

1 + (1 −ω2)

]

Section 14.5 The Discrete Fourier Transform

1. Approximate values are given in Table A.7.

3. Approximate values are given in Table A.8.

5. Approximate values are given in Table A.9.

7. u j = 1
6

∑5
k=0(1 + i)ke2π i jk/6

u0 =−1.33333 + 0.166667i,u1 =−0.427030 + 0.549038i

u2 =−0.016346 + 0.561004i,u3 = 0.33333 + 0.500000i

u4 = 0.849679 + 0.272329i,u5 = 1.593696 − 2.049038i

TA B L E A.7 Approximate Discrete Fourier Transform Values in Problem 1,
Section 14.5

k D[u](k)
–4 0.13292 – 0.01658i
–3 0.09624 + 0.72830(10−9)i
–2 0.13292 + 0.01658i
–1 2.93687 + 0.42794i
0 0.1.82396
1 2.93687 – 0.42794i
2 0.13292 – 0.01658i
3 0.09624 – 0.72830(10−9)i
4 0.13292 + 0.01658i

TA B L E A.8 Approximate Discrete Fourier Transform Values in Problem 3,
Section 14.5

k D[u](k)
–4 0.65000 – 0.17321i
–3 0.61667 – 0.25346(10−9)i
–2 0.65000 + 0.17321i
–1 0.81667 + 0.40415i
0 2.45000
1 0.81667 – 0.40415i
2 0.65000 – 0.17321i
3 0.61667 + 0.25346(10−9)i
4 0.65000 + 0.17321i

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-845 27410_25_Ans_p801-866

Answers to Selected Problems 845

TA B L E A.9 Approximate Discrete Fourier Transform Values in Problem 5,
Section 14.5

k D[u](k)
–4 –14.00000 + 10.39230i
–3 –15.00000 + 0.22023(10−7)i
–2 –14.00000 – 10.39230i
–1 –6.00000 – 31.17691i
0 55.00000
1 –6.00000 + 31.17691i
2 –14.00000 + 10.39230i
3 –15.00000 – 0.22023(10−7)i
4 –14.00000 – 10.39230i

TA B L E A.10 Approximate Values in Problem 13, Section 14.5

k Complex Coefficients dk DFT Approximations fk

–3 –0.005177 + 0.075984i 0.000346 + 0.075849i
–2 0.011816 + 0.115622i –0.006293 + 0.115532i
–1 –0.051259 + 0.250780i –0.045737 + 0.250753i
0 0.454649 0.460171
1 –0.051259 – 0.250798i –0.045737 – 0.250753i
2 –0.011816 – 0.115622i –0.006293 – 0.075849i
3 –0.005177 – 0.075984i 0.000346 – 0.075849i

TA B L E A.11 Approximate Values in Problem 15, Section 14.5

k Complex Coefficients dk DFT Approximations fk

–3 0.005629 – 0.053051i 0.001733 – 0.052956i
–2 0.012665 – 0.079577i 0.008769 – 0.079514i
–1 0.050661 – 0.159155i 0.046765 – 0.159123i
0 0.33333 0.329437
1 0.050661 + 0.159155i 0.046765 + 0.159123i
2 0.012665 + 0.179577i 0.008769 + 0.079514i
3 0/005629 + 0.053052i 0.001733 + 0.052956i

9. u j = 1

7

∑6
k=0 e−ike2π i jk/7

u0 = 0.103479 + 0.014751i,u1 = 0.933313 − 0.296094,

u2 =−0.094163 + 0.088785i,u3 =−0.023947 + 0.062482i,

u4 = 0.004307 + 0.051899i,u5 = 0.025788 + 0.043852i,

u5 = 0.051222 + 0.034325i

11. u j = 1

5

∑4
k=0 co(k)e2π i jk/5

u0 = 1.096542,u1 =−0.249644 − 0.232302i,u2 =−0.201697 − 0.084840i

u3 =−0.193858,u4 =−0.201697 + 0.084840i,u5 =−0.249644 + 0.232302i

13. Approximate values are given in Table A.10.
15. Approximate values are given in Table A.11.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-846 27410_25_Ans_p801-866

846 Answers to Selected Problems

Section 14.6 Sampled Fourier Series

1. U0 = 255. The other approximate values are given in Table A.12.
3. U0 = 58.901925. The other approximate values are given in Table A.13.
5. U0 = 31.501953. The other approximate values are given in Table A.14.

TA B L E A.12 Approximate Values in Problem 1, Section 14.6

Un Approximate Value Un Approximate Value

U1 –1 + 40.735484i U118 –1 – 3.992224i
U2 –1 + 20.355468i U119 –1– 4.453202i
U3 –1 + 13.556669i U120 –1 – 5.027339i
U4 –1 + 10.153170i U121 –1 – 5.763142i
U5 –1 - 8.107786i U122 –1 – 6.741452i
U6 –1 + 6.741452i U123 –1 – 8.107786i
U7 –1 + 5.763142i U124 –1 – 10.153170i
U8 –1 + 5.027339i U125 –1 – 13.556670i
U9 –1 + 4.453202i U126 –1 – 20.355468i
U10 –1 + 3.992224i U127 –1 – 40.735484i

TA B L E A.13 Approximate Values in Problem 3, Section 14.6

Un Approximate Value Un Approximate Value

U1 –5.854287 – 32.096339i U118 0.647851 + 2.829713i
U2 –0.805518 – 14.788044i U119 0.633992 + 3.157208i
U3 0.44274 – 9.708611i U120 0.614603 + 3.565443i
U4 0.336014 – 7.235154i U121 0.586989 + 4.089267i
U5 0.470070 – 5.764387i U122 0.542633 + 4.787014i
U6 0.542633 – 4.787014i U123 0.470070 + 5.764387i
U7 0.586299 – 4.089267i U124 0.336014 + 7.235154i
U8 0.614603 – 3.565443i U125 0.044274 + 9.708611i
U9 0.633991 – 3.157208i U126 –0.805518 + 14.788044i
U10 0.647851 – 2.829712i U127 –5.854287 + 32.096339i

TA B L E A.14 Approximate Values in Problem 5, Section 14.6

Un Approximate Value Un Approximate Value

U1 9.228787 + 17.271595i U118 –0.400755 – 1.993017i
U2 1.933662 + 9.790716i U119 –0.377943 – 2.222355i
U3 0.582715 + 6.663663i U120 –0.346050 – 2.507623i
U4 0.109884 + 5.028208i U121 –0.299528 – 2.872545i
U5 –0.108968 + 4.029124i U122 –0.227849 – 3.356393i
U6 –0.227849 + 3.356393i U123 –0.108968 – 4.029124i
U7 –0.299528 + 2.872544i U124 0.109884 – 5.028208i
U8 –0.346050 + 2.507623i U125 0.582715 – 6.663663i
U9 –0.377943 + 2.222355i U126 1.933662 – 9.790715i
U10 –0.400755 + 1.993017i U127 9.228757 – 17.271595i
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Section 14.7 DFT Approximation of the Fourier Transform

1.

f̂ (ω)= 4 − 4iω

ω2 + 16
, f̂ (4)= 1

8
(1 − i),

DFT approximation = 3π

256

511∑

j=0

f

(
3π j

256

)

e−3π i j/64 = 0.143860 − 0.124549i

3.

f̂ (ω)= 4 −ω2

(ω2 + 4)2
− 4ωi

(ω2 + 4)2
, f̂ (12)≈−0.006392 − 0.002191i,

DFT approximation = 3π

256

511∑

j=0

f

(
3π j

256

)

e−9π i j/64 =−0.006506 − 0.002191i

CHAPTER FIFTEEN SPECIAL FUNCTIONS AND EIGENFUNCTION EXPANSIONS

Section 15.1 Eigenfunction Expansions

1. The problem is regular on [0, L] with eigenvalues ((2n − 1)π/2L)2 for n = 1,2, · · · . The functions
sin((2n − 1)πx/2L) are eigenfunctions.

3. Regular on [0,4], ((2n − 1)π/8)2, cos((2n − 1)πx/8)
5. Periodic on [−3π,3π ], n2/9 for n = 0,1,2, · · · , an cos(nx/3)+ bn sin(nx/3) with not both an and bn equal to 0

7. Regular on [0,1], eigenvalues are positive solutions of tan(
√
λ)= 1

2

√
λ. If λ is an eigenvalue, an eigenfunction is

2
√
λ cos(

√
λx)+ sin(

√
λx).

9. Regular on [0,π ], 1 + n2 and e−x sin(nx) for n = 1,2, · · ·
11. For 0< x < 1,

1 − x =
∞∑

n=1

2

nπ
(1 + (−1)n(L − 1)) sin(nπx).

13. The expansion is

∞∑

n=1

4

π

√
2 cos(nπ/2)− √

2 sin(nπ/2)− (−1)n

2n − 1
cos

(
2n − 1

8
πx

)

.

This converges to −1 for 0< x < 2, to 1 for 2< x < 4, and to 0 at x = 0.
15. For −3π < x < 3π ,

x2 = 3π 2 + 36
∞∑

n=1

(−1)n

n2
cos(nx/3).

17. Compute both sides of Bessel’s inequality. With some rearrangement, obtain

∞∑

n=1

(
4(−1)n + (2n − 1)π

(2n − 1)3π 3

)2

≤ 512

15

2

2562
= 1

960
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Section 15.2 Legendre Polynomials

1. With n = 5 in the recurrence relation,

P6(x)= 1

6
(11x P5(x)− 5P4(x))

= 1

16
(231x6 − 315x4 + 105x2 − 5)

Similarly,

P7(x)= 1

16
(429x7 − 693x5 + 315x3 − 35x),

P8(x)= 6435

128
x8 − 3003

32
x6 + 3465

64
x4 − 315

32
x2 + 35

128

3. For n = 2, this gives

1

4(2!)
d2

dx2
((x2 − 1)2)= 1

2
(3x2 − 1)= P2(x).

5. Use the binomial series to write

1√
1 − 2at + t2

=
∞∑

n=0

(−1/2)(−3/2) · · · (−1/2 − n + 1)

n! (t2 − 2at)n

=
∞∑

n=0

∑

j+k=n,k≤ j

(−1)k1 · 3 · · · (2 j − 1) j !(−1) j−k2 j−ka j−k

2 j j !k!( j − k)! t n .

Show that the coefficient of t n is Pn(a). For r < d, let a = cos(θ) and t = r/d. For r > d, use a = cos(θ) and t = d/r .
8. (a)

1 + 2x − x2 = 2

3
P0(x)+ 2P1(x)− 2

3
P2(x)

(c)

2 − x2 + 4x4 = 37

15
P0(x)+ 34

21
P2(x)+ 32

35
P4(x)

9. For −1< x < 1,

sin(πx/2)= 12

π 2
x + 168

(
π 2 − 10

π 4

)

P3(x)

+ 660

(−112π 2 +π 4 + 1008

π 6

)

P5(x)+ · · ·

11. For −1< x < 1,

sin2(x)= − 1

2
cos(1) sin(1)+ 1

2

+
[

−5

8
cos(1)+ 15

8
− 15

4
cos2(1)

]

P2(x)

+
[

531

32
cos(1) sin(1)− 585

32
+ 585

16
cos2(1)

]

P4(x)+ · · ·

13. For −1< x < 0 and 0< x < 1,

f (x)= 3

2
P1(x)− 7

8
P3(x)+ 11

16
P5(x)+ · · ·
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15.3 Bessel Functions

1. With y = xa Jν(bxc), compute

y ′ =axa−1 Jν(bxc)+ xabcxc−1 J ′
ν(bxc)

y ′′ =a(a − 1)xa−2 Jν(bxc)+ (2axa−1bcxc−1 + xabc(c − 1)xc−2)J ′
ν(bxc)

+ xac2x2c−2 J ′′
ν (bxc).

Substitute these into the differential equation to verify that y = Jν(bxc) is a solution.
3. y = c1 J1/3(x2)+ c2 J−1/3(x2)

5. y = c1x−1 J3/4(2x2)+ c2x−1 J−3/4(2x2)

7. y = c1x4 J3/4(2x3)+ c2x4 J−3/4(2x3)

9. y = c1x−2 J1/2(3x3)+ cx−2 J−1/2(3x3)

11. The differential equation transforms to

z2 y ′′ + zy ′ + (z2 − 9)y = 0

with general solution

y(z)= c1 J3(z)+ c2Y3(z)

so

y(x)= c1 J3(
√

x)+ c2Y3(
√

x).

13. The differential equation transforms to

z2 y ′′ + zy ′ + (z2 − 16)y = 0

giving y(x)= c1 J4(2x1/3)+ c2Y4(2x1/3).
15. The transformed differential equation is

x2u ′′ + xu ′ + (x2 − 1/4)u = 0

leading to y = c1x2/3 J1/2(x)+ c2x2/3Y1/2(x).
17. It is routine to check from the infinite series expansions that J ′

0(s)=−J1(s). Then
∫ α

0

J1(s)ds = −J0(s)]
α

0 = J0(α)= J0(0)− J0(α)= 1 − 0 = 1.

Now let s =αx to complete the solution.
19. From the infinite series, it is easy to check that (xn Jn(x))′ = xn Jn−1(x). Integrating this yields the first conclusion.

Next, (x−n Jn(x))′ =−x−n Jn+1(x). Integrating this gives the second expression.
21. Begin with the observation that

∫
xn+1 Jn(αx)dx = (1/α)xn+1 Jn+1(αx). Then

In,0 =
∫ 1

0

xn+1 Jn(αx)= Jn+1(α)

α
.

giving part (a). Part (b) follows by using the quoted identity again. The other parts follow by using the given hints.
23. Put t = x sin(θ) in Hankel’s integral, which is given in Problem 22.
25. f (x)= x

2.213145642J1(3.831705970x)− 0.5170987826J1(7.015586670x)

+ 1.104611216J1(10.17346814x)− 0.4549641786J1(13.32369194x)

+ 0.8113206562J1(16.47063005x)

27. f (x)= xe−x

1.256395517J1(3.831705970x)+ 0.08237394412J1(7.015586670x)

+ 0.5976577270J1(10.173468144x)− 0.01994105804J1(13.32369194x)

+ 0.4181324338J1(16.47063005x)
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29. f (x)= sin(πx)

3.555896220J1(3.831705970x)+ 1.670058301J1(7.015586670x)

+ 0.9956101332J1(10.173468144x)+ 0.7772068876J1(13.32369194x)

+ 0.6036626350J1(16.47063005x)

31. f (x)= x

7.749400696J2(5.135622302x)− 0.1583973994J2(8.417244140x)

+ 1.310726377J2(11.61984117x)− 0.2381008476J2(14.79595178x)

+ 0.9524470038J2(17.95981949x)

33. f (x)= xe−x

1.418532841J2(5.135622302x)+ 0.2923912667J2(8.417244140x)

+ 0.7581692534J2(11.61984117x)+ 0.1399888559J2(14.79595178x)

+ 0.5434687461J2(17.95981949x)

35. f (x)= sin(πx)

3.733991576J2(5.135622302x)+ 2.468532251J2(8.417244140x)

+ 1.700629359J2(11.61984117x)+ 1.356527124J2(14.79595178x)

+ 1.099075410J2(17.95981949x)

37. With t = r y,

r x

∫ ∞

0

t x−1e−r t dt = r x

∫ ∞

0

e−y
( y

r

)x−1 1

r
dy

= r x

∫ ∞

0

yx−1e−y 1

r x
dy

=
∫ ∞

0

yx−1e−y dy =�(x),

with y used instead of t as the variable of integration in the last line.
39. Let t = u/(1 + u) to obtain

B(x, y)=
∫ ∞

0

t x−1(1 − t)y−1 dt

∫ ∞

0

(
u

1 + u

)x−1( 1

1 + u

)y−1 1

(1 + u)2
du

=
∫ ∞

0

ux−1

(1 + u)x+y
du.

CHAPTER SIXTEEN THE WAVE EQUATION

16.1 Derivation of the Equation

1. Compute

∂2 y

∂t2
=−n2π 2c2

L2
sin
(nπx

L

)
cos

(
nπct

L

)

and

∂2 y

∂x2
=−n2π 2

L2
sin
(nπx

L

)
cos

(
nπct

L

)

3. Compute

∂2 y

∂x2
= 1

2
( f ′′(x + ct)+ f ′′(x − ct))

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-851 27410_25_Ans_p801-866

Answers to Selected Problems 851

and

∂2 y

∂t2
= 1

2
(c2 f ′′(x + ct)+ c2 f ′′(x − ct))

5. The wave equation is

∂2z

∂t2
= c2

(
∂2z

∂x2
+ ∂2z

∂y2

)

for 0< x < a,0< y< b; boundary conditions are

z(0, y, t)= z(a, y, t)= z(x,0, t)= z(x,b, t)= 0

for t ≥ 0; initial conditions are

z(x, y,0)= f (x, y),
∂z

∂t
(x, y,0)= g(x, y).

Section 16.2 Wave Motion on an Interval

1. y(x, t)=∑∞
n=1

(
16 sin(nπ/2)− 8nπcos(nπ/2)

n3π 3c

)

sin
(nπx

2

)
sin

(
nπct

2

)

3. y(x, t)=∑∞
n=1

108

(2n − 1)4π 4
sin((2n − 1)πx/3) sin(2(2n − 1)π t/3)

5. y(x, t)=∑∞
n=1

24(−1)n+1

(2n − 1)2π
sin((2n − 1)x/2) cos((2n − 1)

√
2t)

7. y(x, t)=∑∞
n=1

−32

(2n − 1)3π 3
sin((2n − 1)πx/2) cos(3(2n − 1)π t/2)

+∑∞
n=1

4

n2π 2

[
cos(nπ/4)− cos(nπ/2)

]
sin(nπx/2) sin(3nπ t/2)

9. Let Y (x, t)= y(x, t)+ h(x) and substitute into the problem to choose h(x)= (x 3 − 4x)/9. The problem for Y is

∂2Y

∂t2
= 3

∂2Y

∂x2

Y (0, t)= Y (2, t)= 0,

Y (x,0)= 1

9
(x3 − 4x),

∂Y

∂t
(x,0)= 0,

with solution

Y (x, t)=
∞∑

n=1

32(−1)n

3n3π 3
sin(nπx/2) cos(nπ

√
3t/2).

11. Let Y (x, t)= y(x, t)+ h(x) and find that h(x)= cos(x)− 1. The problem for Y is

∂2Y

∂t2
= ∂2Y

∂x2

Y (0, t)= Y (2π, t)= 0,

Y (x,0)= cos(x)− 1,
∂Y

∂t
(x,0)= 0,

with solution

Y (x, t)= 16

π

∞∑

n=1

1

(2n − 1)[(2n − 1)2 − 4] sin((2n − 1)x/2) cos((2n − 1)t/2).

13. u(x, t)= e−At/2
∑∞

n=1 Cn sin(nπx/L)
[

1
AL

rn cos(rnt/2L)+ sin(rnt/2L)
]
,

where

Cn = 2

L

∫ L

0

f (ξ) sin(nπξ/L)dξ
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and

rn =√4(BL2 + n2π 2c2)− A2 L2.

15. (a) With the forcing term, the solution is

y f (x, t)=
∞∑

n=1

dn sin(nπx/4) cos(3nπ t/4)

+ 1

9π 2
(cos(πx)− 1),

where

dn =
{

−32(1−(−1)n )(288−17n2)

9n3π3(n2−16)
for n 
= 4,

0 for n = 4.

(b) Without the forcing term, the solution is

y(x, t)=
∞∑

n=1

128

π 3(2n − 1)3
sin((2n − 1)πx/3) cos(3(2n − 1)π t/4).

Section 16.3 Wave Motion in an Infinite Medium

1. y(x, t)= ∫ ∞
0

10

π(25 +ω2)
cos(ωx) cos(12ωt)dω

3. y(x, t)= ∫ ∞
0

1

2πω

sin(πω)

1 −ω2
sin(ωx) sin(4ωt)dω

5. y(x, t)= ∫ ∞
0

[(
e−2

3πω

2cos(ω)−ω sin(ω)

4 +ω2

)

cos(ωx)

+
(

e−2

3πω

ω cos(ω)+ 2 sin(ω)

4 +ω2

)

sin(ωx)

]

sin(3ωt)dω

Section 16.4 Wave Motion in a Semi-Infinite Medium

1. y(x, t)= ∫ ∞
0

2

π

2 −ω sin(ω)− 2cos(ω)

ω3
sin(ωx) cos(3ωt)dω

3. y(x, t)= ∫ ∞
0

1

πω

sin(πω/2)− sin(5πω/2)

ω2 − 1
sin(ωx) sin(2ωt)dω

5.

y(x, t)=
∫ ∞

0

3

7πω5
dω sin(ωx) sin(14ωt)dω,

where

dω = 2 sin(3ω)− 4ω cos(3ω)− 3ω2 sin(3ω)− 2ω

Section 16.5 Laplace Transform Techniques

1. y(x, t)=
[

f
(
t − x

c

)
− K

2

(
t − x

c

)2
]

H
(
t − x

c

)
+ 1

2
Kt2

3. y(x, t)= A

6

(
t − x

c

)3

H
(
t − x

c

)
− A

6
t3

5. y(x, t)= f
(
t − x

c

)
H
(
t − x

c

)
− 1

6
Axt4
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Section 16.6 Characteristics and d’Alembert’s Solution

1. y(x, t)= 1

2
[(x − t)2 + (x + t)2] + 1

2

∫ x+t

x−t
−ξ dξ = x2 + t2 − xt

3. y(x, t)= 1

2
[cos(π(x − 7t))+ cos(π(x + 7t))]+ t − x2t − 49

3
t3 = 1

2
cos(πx) cos(7π t)+ t − x2t − 49

3
t3

5. y(x, t)= 1

2
[ex−14t + ex+14t ] + xt = ex cosh(14t)+ xt

7. y(x, t)= x + 1

8
(e−x+4t − e−x−4t)+ 1

2
xt2 + 1

6
t3

9. y(x, t)= 1

32
(sin(2(x + 8t))− sin(2(x − 8t)))+ 1

12
xt4 + x2 + 64t2 − x

11. y(x, t)= 1

2
[cosh(x − 3t)+ cosh(x + 3t)]+ t + 9

10
xt5

13.
1

2
(sin(2(x − ct))+ sin(2(x + ct)))

15.
1

2
(cos(x − ct)+ cos(x + ct))

Section 16.7 Vibrations in a Circular Membrane

1. We find that (approximately),

a1 = 2
∫ 1

0 x J0(2.405x)dx

[J1(2.405)]2
≈ 2

0.1057

0.2695
= 0.78442,

a2 ≈ 0.06869,a3 ≈ 0.05311,a4 ≈ 0.01736,a5 ≈ 0.01698

The fifth partial sum gives the approximation

z(r, t)≈ 0.78442J0(2.405r) cos(2.405t)+ 0.05311J0(5.520r) cos(5.520t)

+ 0.06869J0(8.654r) cos(8.654t)+ 0.01736J0(11.792r) cos(11.792t)

+ 0.01698J0(14.931r) cos(14.931t).

3. We find the approximation

z(r, t)≈ 1.2534J0(2.405r) cos(2.405t)− 0.80469J0(5.520r) cos(5.520t)

− 0.11615J0(8.654r) cos(8.654t)− 0.09814J0(11.792r) cos(11.792t)

− 0.03740J0(14.931r) cos(14.931t)

Section 16.8 Vibrations in a Circular Membrane II

1. The solution is

z(r, θ, t)=
∞∑

k=1

αk J0

(
j0k

2
r

)

cos( j0k t)

+ cos(2θ)
∞∑

k=1

βk J2

(
j2k

2
r

)

cos( j2k t)

+
∞∑

p=1

sin(pθ)
∞∑

q=1

δpq Jp

(
jpq

2
r

)

sin( jpq t)

where

αk =
(

2

[J1( j0k)]2

∫ 1

0

ξ(1 − ξ 2)J0( j0kξ)dξ

)

,
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βk =
(

4

[J3( j0k)]2

∫ 1

0

ξ(ξ 2 − 1)J2( j2kξ)

)

,

δpq =
(

4(−1)p+1

pjpq [Jp+1( jpq)]2

∫ 1

0

ξ Jp( jpqξ)dξ

)

.

Computing some of these terms, we have

z(r, θ, t)≈
1.108022J0(1.202413r) cos(2.404826t)− 0.13977J0(2.760039r) cos(5.520078t)

+ 0.045476J0(4.32686r) cos(8.653728t)− 0.02099J0(5.895767r) cos(11.79153t)

+ 0.011636J0(7.465459t) cos(14.930918t)+ · · ·
+ cos(2θ)[−2.976777J2(2.567811r) cos(5.135622t)

− 1.434294J2(4.208622r) cos(8.417244t)+ · · · ]
+ sin(θ)[1.155175J1(1.915853r) sin(3.831706t)

− 0.14741J1(3.507794r) sin(7.015587t)+ · · · ] + · · · .

Section 16.9 Vibrations in a Rectangular Membrane

1. z(x, y, t)= 1

π

∑∞
n=1

[
8(−1)n+1π 2

n
+ 16

n3
[(−1)n − 1]

]

sin(nx/2) sin(y) cos(
√

n2 + 4t/2)

3. z(x, y, t)=∑∞
n=1

∑∞
m=1 dnm cos((2n − 1)x/2) sin((2m − 1)y/2) sin(knmt),

where

dnm = 16

π 2(2n − 1)(2m − 1)
√
(2n − 1)2 + (2m − 1)2

and

knm =√(2n − 1)2 + (2m − 1)2.

CHAPTER SEVENTEEN THE HEAT EQUATION

Section 17.1 Initial and Boundary Conditions

1. ∂u

∂t
= k

∂2u

∂x2
for t > 0,0< x < L ,

u(0, t)= ∂u

∂x
(L , t)= 0 for t > 0,

u(x,0)= f (x)

3. ∂u

∂t
= k

∂2u

∂x2
for t > 0,0< x < L ,

∂u

∂x
(0, t)= 0,u(L , t)=β(t) for t > 0,

u(x,0)= f (x)

Section 17.2 The Heat Equation on [0, L]
In these solutions, we sometimes use the notation exp(g(t))= eg(t).

1. u(x, t)=∑∞
n=1

8L2

(2n − 1)3π 3
sin((2n − 1)πx/L) exp(−(2n − 1)2π 2kt/L2)

3.

u(x, t)=
∞∑

n=1

dn sin((2n − 1)πx/L) exp(−3(2n − 1)2π 2t/L2)
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where

dn = −16L

(2n − 1)π [(2n − 1)2 − 4] .

5. u(x, t)= 2

3
π 2 −∑∞

n=1

4

n2
cos(nx)e−4n2 t

7. u(x, t)= 1

6
(1 − e−6)+ 12

∑∞
n=1

(
1 − e−6(−1)n

36 + n2π 2

)

cos(nπx/6)e−n2π2 t/18

9. u(x, t)=∑∞
n=1

4B

(2n − 1)π
sin((2n − 1)πx/2L) exp(−(2n − 1)2π 2kt/4L2)

11. Substitute eαx+βtv(x, t) into the partial differential equation, and solve for α and β, so that vt = kvxx . Obtain
α=−A/2 and β = k(B − A2/4).

13. Let u(x, t)= e−3x−9tv(x, t). Then v(0, t)= v(4, t)= 0 and v(x,0)= e3x , so

v(x, t)=
∞∑

n=1

(
2nπ

144 + n2π 2
(1 − e12(−1)n)

)

sin(nπx/4)e−n2π2 t/16.

15. Let u(x, t)= v(x, t)+ f (x) and choose f (x)= 3x + 2. We obtain v(0, t)= v(1, t)= 0 and u(x,0)= x 2 − f (x). The
solution for v is

v(x, t)= 2
∞∑

n=1

4

n3π 3

(
(−1)n(1 + 2n2π 2)− (1 + n2π 2)

)
sin(nπx)e−16n2π2 t .

17. Let u(x, t)= e−At W (x, t). Then w(0, t)=w(9, t)= 0 and u(x,0)= 3x . We find that

w(x, t)=
∞∑

n=1

54(−1)n+1

nπ
sin(nπx/9)e−4n2π2 t/81.

19. u(x, t)=∑∞
n=1

[
1

8π

1 − (−1)n

n5

(
−1 + 4n2t + e−4n2 t

)]

sin(nx)

+ 4

π

∑∞
n=1

(
1 − (−1)n

n3

)

sin(nx)e−4n2 t

21. u(x, t)=∑∞
n=1

50

n3π 3

1 − cos(5)(−1)n

n2π 2 − 25

(
−25 + n2π 2t + 25e−n2π2 t/25

)
sin(nπx/5)

+∑∞
n=1

(

500
(−1)n+1 − 1

n3π 3

)

sin(nπx/5)e−n2π2 t/25

23. u(x, t)=∑∞
n=1

27(−1)n

128

(
16n2π 2t + 9e−16n2π2 t/9 − 9

n5π 5

)

sin(nπx/3)

+2K
∑∞

n=1

1 − (−1)n

nπ
sin(nπx/3)e−16n2π2 t/9

Section 17.3 Solutions in an Infinite Medium

1. By separation of variables,

u(x, t)= 1

π

∫ ∞

0

8

16 +ω2
cos(ωx)e−ω2kt dω

By Fourier transform,

u(x, t)= 1

2
√
πkt

∫ ∞

−∞
e−4|ξ |e−(x−ξ)2/4kt dξ

3.

u(x, t)=
∫ ∞

0

(aω cos(ωx)+ bω sin(ωx))e−ω2kt dω,
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with

aω = 4ω sin(4ω)+ cos(4ω)− 1

πω2
,bω = sin(4ω)− 4ω cos(4ω)

πω2

By Fourier transform,

u(x, t)= 1

2
√
πkt

∫ 4

0

ξe−(x−ξ)2/4kt dξ

5. u(x, t)= 2

π

∫ ∞
0

(
ω

α2 +ω2

)

e−ω2kt dω

7. u(x, t)= 2

π

∫ ∞
0

(
1 − cos(hω)

ω

)

sin(ωx)e−ω2kt dω

9. u(x, t)= 4

π

∫ ∞
0

ω

(1 +ω2)2
sin(ωx)e−ω2 t e−t2/2 dω

Section 17.4 Laplace Transform Techniques

1. u(x, t)= T0

∑∞
n=0

(

erfc

(
(2n + 1)L − x

2
√

kt

)

− erfc

(
(2n + 1)L + x

2
√

kt

))

3. u(x, t)= ekt−x − ekt ∗L−1
(
e−√

s/kx
)= ekt−x − ekt ∗ x

2
√
π t3

e−x2/4kt

Section 17.5 Heat Conduction in an Infinite Cylinder

1. Write

U (r, t)=
∞∑

n=1

2

[J1( jn)]2

(∫ 1

0

ξ 2 J0( jnξ)dξ

)

J0( jnr)e
− j2n t.

Inserting the approximate values, we have

U (r, t)≈0.8170J0(2.405r)e−5.785t − 1.1394J0(5/520r)e−30.47t

+ 0.7983J0(8.654r)e−74.89t − 0.747J0(11.792r)e−139.04t

+ 0.6315J0(14.931r)e−222.93t .

3.

U (r, t)=
∞∑

n=1

2

(J1( jn))2

(∫ 1

0

ξ(9 − ξ 2)J0( jnξ)dξ

)

J0( jnr/3)e
− j2n t/18

The fifth partial sum approximation is

U (r, t)≈9.9722J0(2.405r/3)e−5.78t/18 − 1.258J0(5.520r/3)e−30.47t/18

+ 0.4093J0(8.654r/3)e−74.89t/18 − 0.1889J0(11.792r/3)e−139.04t/18

+ 0.1048J0(14.931r/3)e−222.93t/18

Section 17.6 Heat Conduction in a Rectangular Plate

1.

u(x, t, t)=
∞∑

n=1

∞∑

n=1

bnm sin(nπx/L) sin(mπy/K )e−βnm kt

where

βnm =
(

n2

L2
+ m2

K 2

)

π 2
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and

bnm = 4

LK

∫ K

0

∫ L

0

f (ξ, η) sin(nπξ/L) sin(mπη/K )dξ dη.

3. u(x, y, t)= 8

π
sin(x)

∑∞
m=1

(
m

4m2 − 1

)

sin(my)e−(1+m2)kt

CHAPTER EIGHTEEN THE POTENTIAL EQUATION

Section 18.1 Laplace’s Equation

1. ( f + g)xx + ( f + g)yy = ( fxx + fyy)+ (gxx + gyy)= 0 and (c f )xx + (c f )yy = c( fxx + gyy)= 0

2. (a) (x3 − 3xy2)xx + (x3 − 3xy2)yy = 6x − 6x = 0

(c) (x4 − 6x2 y2 − y4)xx + (x4 − 6x2 y2 − y4)yy = 6y − 6y = 0

(e) (sin(x)(ey + e−y))xx + (sin(x)(ey + e−y))yy =− sin(x)(ey + e−y)+ sin(x)(ey + e−y)= 0

(g) fxx = 2y2 − zx2

(x2 + y2)2
, fyy = 2x2 − 2y2

(x2 + y2)2

Section 18.2 Dirichlet Problem for a Rectangle

1. u(x, y)= 1

sinh(π 2)
sin(πx) sinh(π(π − y))

3. u(x, y)=∑∞
n=1

32

π 2 sinh(4nπ)

n(−1)n+1

(2n − 1)2(2n + 1)2
sin(nπx) sinh(nπy)

5. u(x, y)= 1

sinh(π 2)
sin(πx) sinh(πy)+

+∑∞
n=1,n 
=2

16n[(−1)n − 1]
π 2(n − 2)2(n + 2)2 sinh(nπ 2/2)

sin(nπx/2) sinh(nπy/2)

7.

u(x, y)=
∞∑

n=1

cn sin((2n − 1)πx/2a) sinh((2n − 1)πy/2a)

where

cn = 2

a sinh((2n − 1)πb/2a)

∫ a

0

f (ξ) sin((2n − 1)πξ/2a)dξ

9. u(x, y)= −1

sinh(4π)
sinh(π(x − 4)) sin(πy)+∑∞

n=1

2

sinh(4nπ)

(
2(1 − (−1)n)

π 3n3

)

sinh(nπx) sin(nπy)

Section 18.3 Dirichlet Problem for a Disk

1. u(r, θ)= 1

3. u(r, θ)= 1

3
π 2 +∑∞

n=1

( r

2

)n

2(−1)n
1

n2
[2cos(nθ)+ n sin(nθ)]

5.

u(r, θ)= 1

π
sinh(π)

+ 2

π

∞∑

n=1

( r

4

)n (−1)n

n2 + 1
[an cos(nθ)+ bn sin(nθ)],

where

an = sinh(π) and bn = n sinh(π).
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7. u(r, θ)= 1 − 1

3
π 2 +∑∞

n=1

( r

8

)n 4(−1)n+1

n2
cos(nθ)

9. In polar coordinates, the problem is to solve

∇2U (r, θ)= 0 for r < 4,U (4, θ)= 16cos2(θ).

This has solution

U (r, θ)= 8 + r 2

(

cos2(θ)− 1

2

)

,

so

u(x, y)= 1

2
(x2 − y2)+ 8.

11. In polar coordinates, U (r, θ)= r 2(2cos2(θ)− 1), so u(x, y)= x2 − y2.

Section 18.4 Poisson’s Integral Formula

1. u(1/2,π)= 3

8π

∫ π
−π

ξ

5/4 − cos(ξ −π) dξ = 0 (odd integrand)

u(3/4,π/3)≈ 0.88261, u(0.2,π/4)≈ 0.024076

3. u(4,π)= 0, u(12,3π/2)≈−2.571176,
u(8,π/4)≈ 0.59705, u(7,0)≈ 0

Section 18.5 Dirichlet Problem for Unbounded Regions

1. u(x, y)= 1

π

[

2arctan

(
x

y

)

− arctan

(
4 + x

y

)

+ arctan

(
4 − x

y

)]

3. u(x, y)= 2

π

∫ ∞
0

(
1

y2 + (ξ − x)2
− 1

y2 + (ξ + x)2

)

e−ξ cos(ξ)dξ

5. u(x, y)= 2

π

∫ ∞
0

(∫ ∞
0 f (ξ) sin(ωξ)dξ

)
sin(ωx)e−ωy dω

+ 2

π

∫ ∞
0

(∫ ∞
0 g(ξ) sin(ωξ)dξ

)
sin(ωy)e−ωx dω

7. u(x, y)= 2

π

∫ ∞
0

(
1

1 +ω2

)

sin(ωy)e−ωx dω

9. u(x, y)= y

π

∫ 8

4

A

y2 + (ξ − x)2
dξ = A

π

[

− arctan

(
x − 8

y

)

+ arctan

(
x − 4

y

)]

11. u(x, y)= 1

π

[

arctan

(
1 − y

x

)

+ arctan

(
1 + y

x

)]

Section 18.6 Dirichlet Problem for a Cube

1. u(x, y, z)=∑∞
n=1

∑∞
m=1

4(−1)n+m

nmπ2 sinh(π
√

n2+m2)
sin(nπx) sin(mπy) sinh(π

√
n2 + m2z)

3.

u(x, y, z)=
∞∑

n=1

∞∑

m=1

anm sin(nπx)sin(mπy/2) sinh(
√

n2π 2 + m2/4z)

+
∞∑

n=1

∞∑

m=1

cnm sin(nπx) sin(mz) sinh(
√

n2π 2 + m2z)
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where

anm = 1

sinh(π
√

n2π 2 + m2/4)

2

nπ
(1 − (−1)n)

2

mπ
(1 − (−1)m),

cnm = 8

sinh(2π
√

n2π 2 + m2)

(
1 − (−1)n

nπ

)(
1 − (−1)m

mπ

)

Section 18.7 Steady-State Equation for a Sphere

1. u(ρ,ϕ)=∑∞
n=0

(2n + 1)A

2

(∫ 1

−1(arccos(ξ))2 Pn(ξ)
)( ρ

R

)n

Pn(cos(ϕ))

≈ 2.9348A − 3.7011A
( ρ

R

)
P1(cos(ϕ))+ 1.1111A

( ρ

R

)2

P2(cos(ϕ))

−0.5397A
( ρ

R

)3

P3(cos(ϕ))+ 0.3200A
( ρ

R

)4

P4(cos(ϕ))

−0.2120A
( ρ

R

)5

P5(cos(ϕ))+ · · ·

3. u(ρ,ϕ)≈ 6.0784 − 9.8602
( ρ

R

)
P1(cos(ϕ))

+5.2360
( ρ

R

)2

P2(cos(ϕ))− 2.4044
( ρ

R

)3

P3(cos(ϕ))

+1.5080
( ρ

R

)4

P4(cos(ϕ))− 0.9783
( ρ

R

)5

P5(cos(ϕ))+ · · ·

5. u(ρ,ϕ)= T1 R1

R2 − R1

[
1

ρ
R2 − 1

]

Section 18.8 The Neumann Problem

1. u(x, y)= c0 − 4

π sinh(π)
cosh(π(1 − y)) cos(πx)

3. u(x, y)= c0 − cosh(3(π − y))

3 sinh(π)
cos(3x)+∑∞

n=1

12((−1)n − 1)

n3π sinh(nπ)
cosh(ny) cos(nx)

5. u(x, y)=∑∞
n=1

2

n4π 4 sinh(nπ)
[n2π 2(−1)n + 6(1 − (−1)n)] cosh(nπ(1 − x)) sin(nπy)

7. u(r, θ)= 1

2
a0 + R

2

( r

R

)2

cos(2θ)

9. u(x, y)= 1

2π

∫ ∞
−∞ ln(y2 + 9(ξ − y)2)ξe−|ξ | sin(ξ)dξ

11.

u(x, y)=
∫ ∞

0

aω cos(ωx)e−ωy dω

with

aω =− 2

πω

∫ ∞

0

f (ξ) cos(ωξ)dξ

CHAPTER NINETEEN COMPLEX NUMBERS AND FUNCTIONS

Section 19.1 Geometry and Arithmetic of Complex Numbers

1. 26 − 18i 3. (1 + 18i)/65 5. 4 + 228i 7. 6 − i
9. (−1632 + 2024i)/4225 11. π/2 + 2kπ , k any integer; |3i | = 3

13. | − 3 + 2i | =√
13; arctan(−2/3)+π + 2kπ 15. | − 4| = 4; π + 2kπ

17. 2
√

2e3π i/4 19.
√

29ei arctan(−2/5)

21.
√

65ei(arctan(1/8))

23. i 4n = (i 2)2n = (−1)2n = 1, i 4n+1 = i , i 4n+2 =−1, i 4n+3 =−i
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25. Label the vertices z,w,u in counterclockwise order. The sides are vectors represented by the complex numbers
w− z,u −w, z − u. The triangle is equilateral if and only if

|w− z| = |u −w| = z − u|,
and each side can be rotated 2π/3 radians to align with the next side. Therefore,

u −w= (w− z)e−2π i/3 and z − u = (u −w)e−2π i/3.

Check that this gives z2 +w2 + u2 = zw+ zu +wu.
27. If |z| = 1, then zz = 1. Divide by zz and manipulate the denominator to show that

∣
∣
∣
∣

z −w
1 − zw

∣
∣
∣
∣=
∣
∣
∣
∣

z −w
zz − zzzzw

∣
∣
∣
∣=
∣
∣
∣
∣
z −w
z −w

∣
∣
∣
∣ .

Similarly, if |w| = 1, divide (z −w)(1 − zw) by ww and take the absolute value.
29. M is an open half-plane consisting of all z = x + iy with y< 7. Boundary points are points x + 7i , a horizontal line.
31. U is the vertical strip of points z = x + iy with 1< x ≤ 3. U is neither open nor closed. Boundary points are points

1 + iy (not in U ) and points 3 + iy (in U ). U is not bounded.
33. z = x + iy is in W if and only if x > y2. This is the open region "inside" the parabola x = y2. Boundary points are

points y2 + iy on the parabola. W is not closed, because it does not contain all of its boundary points. W is open,
because all points of W are interior points.

Section 19.2 Complex Functions

1. u(x, y)= x, v(x, y)= y − 1. The Cauchy-Riemann equations hold everywhere, and f is differentiable for all z.

3. u(x, y)=√x2 + y2, v(x, y)= 0. The Cauchy-Riemann equations hold nowhere, and f is differentiable at no z.
5. u(x, y)= 0, v(x, y)= x2 + y2. The Cauchy-Riemann equations hold only at z = 0. From the limit definition of the

derivative, we obtain f ′(0)= 0.
7. u(x, y = 1, v(x, y)= y/x , The Cauchy-Riemann equations hold nowhere, and f is not differentiable at any point at

which f (z) is defined.
9. u(x, y)= x2 − y2, v(x, y)=−2xy. The Cauchy-Riemann equations hold only at z = 0. From the limit definition of the

derivative, f ′(0)= 0.

11.

u(x, y)=−4x + x

x2 + y2
, v(x, y)=−4y + y

x2 + y2
.

The Cauchy-Riemann equations hold for all z 
= 0. f is differentiable for all nonzero z (the partial derivatives are
continuous for z 
= 0).

Section 19.3 The Exponential and Trigonometric Functions

1. cos(1)+ i sin(1) 3. cos(3) cosh(2)− i sin(3) sinh(2)
5. e5[cos(2)+ i sin(2)] 7. 1

2
[(1 − cos(2) cosh(2)]+ i

2
sin(2) sinh(2)

9. i
11. u(x, y)= ex2−y2

cos(2xy), v(x, y)ex2−y2
sin(2xy),

∂u

∂x
= ex2−y2

(2x cos(2xy)− 2y sin(2xy)= ∂v

∂y
,

∂u

∂y
= ex2−y2

(−2y cos(2xy)− 2x sin(2xy)= − ∂v
∂x

13.

u(x, y)= xex cos(y)− yex sin(y),

v(x, y)= yex cos(y)+ xex sin(y),

The Cauchy-Riemann equations hold at all (x, y).
15. ln(2)+ i(4k + 1) π

2
, k any integer 17. ln(2)+ (2k + 1)π
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Section 19.4 The Complex Logarithm

1. ln(4)+ i(3π/2 + 2nπ), with n any integer.

3. ln(5)+ (2n + 1)π i 5. 1
2

ln
(√

85
)

+ (arctan(−2/9)+ (2n + 1)π)i

Section 19.5 Powers

1. ie−(π/2+2nπ) 3. e−(π/2+2nπ)

5. e9π/4+6nπ
[
cos
(
3 ln
(
2
√

2
))

− i sin
(
3 ln
(
2
√

2
))]

7. ei(π+4nπ)/8, n = 0,1,2,3 9. 16e(2n+1)π [cos(ln(4))− i sin(ln(4))]
11. 2e(2n+1)π i/4, n = 0,1,2,3
13. enπ i/3, n = 0,1,2,3,4,5

CHAPTER TWENTY COMPLEX INTEGRATION

Section 20.1 The Integral of a Complex Function

1. 8 − 2i 3. 3
2
(1 + i) 5. − 13

2
+ 2i

7. − 1
2
[cosh(8)− cosh(2)] 9. − cos(2) sinh(1)− i sin(2) cosh(1)

11. 10 + 210i 13. 25i/2 15. 2
3
(1 + i)

17. One bound is 1/
√

2. Any larger number is also a bound.

Section 20.2 Cauchy’s Theorem

1. 0 by Cauchy’s theorem 3. 0 5. 2π i
7. 0 9. 0 11. 4π i

Section 20.3 Consequences of Cauchy’s Theorem

1. 32π i 3. 2π i(−8 + 7i) 5. −2πe2[cos(1)− sin(1)i]
7. π i[6cos(12)− 36 sin(12)] 9. −512π(1 − 2i) cos(256)

11. − 13
2

− 39i 13. 2π

CHAPTER TWENTY ONE SERIES REPRESENTATIONS OF FUNCTIONS

Section 21.1 Power Series

1. Radius 2, open disk |z + 3i |< 2 3. 1/e, |z − 1 + 3i |< 1/e
5. 2, |z + 8i |< 2 7. No (zero is further from 2i than i is)

9.
∑∞

n=0

(−1)n

(2n)! 22nz2n for |z|<∞

11. −3 + (1 − 2i)(z − 2 + i)+ (z − 2 + i)2

13. z − 9)2 = 63 − 16i + (−16 + 2i)(z − 1 − i)+ (z − 1 − i)2

15. 1 + i z + 3

2
z2 + 2i

3! z3 + 6

4! z
4 + 4i

5! z5

17. First expand ezw in a Maclaurin series to write

1

2π i

∮

γ

zn

n!wn+1
ezw dw= 1

2π i

∮

γ

∞∑

k=0

zn+kwk−n−1

n!k! dw.

Parametrize w= eθ for 0 ≤ θ ≤ 2π in this integral to obtain

1

2π i

∮

γ

zn

n!wn+1
ezw dw= (zn)2

(n!)2 .
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Using this, obtain

∞∑

n=0

1

(n!)2 z2n = 1

2π

∫ 2π

0

∞∑

n=0

zn

n!ei(n+1)θ
ezeiθ

eiθ dθ

= 1

2π

∫ 2π

0

ez(eiθ+eiθ ),dθ = 1

2π

∫ 2π

0

e2z cos(θ) dθ.

19. 4 21. 3 23. 2
25. Show that

an = f (n)(z0)

n! = bn for n = 0,1,2, · · · .

Section 21.2 The Laurent Expansion

1.
1

z − i
+ 1

2i

∑∞
n=0

(−1)n

(2i)n
(z − i)n for 0< |z − i |< 2

3.
∑∞

n=1

(−1)n+14n

(2n)! z2n−2,0< |z|<∞

5. − 1

z − 1
− 2 − (z − 1),0< |z − 1|<∞

7.
∑∞

n=1

1

n! z
2n−2,0< |z|<∞

9. 1 + 2i

z − i
,0< |z − i |<∞

CHAPTER TWENTY TWO SINGULARITIES AND THE RESIDUE THEOREM

Section 22.1 Singularities

1. Pole of order 2 at 0 3. Essential singularity at 0
5. Simple poles at i,−i and a double pole at 1
7. Removable singularity at i , simple pole at −i
9. Simple poles at 1,−1, i,−i

11. Simple poles at (2n + 1)π/2 for n any integer

Section 22.2 The Residue Theorem

1. 2π i 3. 0 5. 2π i 7. 2π i
9. −π i/4 11. 0 13. 2π i

15. π [cos(8)− 1 + i sin(8)]/2 19. 2π i 21. 2π i

section 22.3 Evaluation of Real Integrals

1. 2π/
√

3
3. π/3

5. πe−2
√

2 sin
(
2
√

2
)
/4

7. π(1 + 5e−4)/32
9. π/4

11. eiαz/(z2 + 1) has one singularity in the upper half-plane and a simple pole at i . Compute the residue at i to be πe−α .
13. With z = eiθ , substitute for cos(θ), sin(θ) and dz to obtain

∫ 2π

0

1

α2 cos2(θ)+β2 sin2(θ)
dθ

= 4

i

∫

|z|=1

z

(α2 −β2)z4 + 2(α2 +β2)z2 + (α2 −β2)
dz.
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The integrand has two simple poles enclosed by the unit circle, and these are the square roots of (β −α)/(β +α).
Compute the residue of f (z) at each of these poles to obtain 1/(8αβ) and evaluate the integral.

15. Call the rectangular path �. By Cauchy’s theorem,
∮
�

e−z2
dz = 0. Parametrize each side of �, and write

∮
�

e−z2
dz as a

sum of three integrals
∫ R

−R

e−x2
dx − eβ

2
∫ R

−R

e−x2
cos(2βx)dx

+ 2e−R2
∫ β

0

et2 sin(2Rt)dt = 0.

Let R → ∞ to obtain
∫ ∞

−∞
e−x2

cos(2βx)dx = √
πe−β2

.

17. First show by a change of variable that
∫ ∞

0

x sin(αx)

x4 +β4
dx = 1

2

∫ ∞

−∞

x sin(αx)

x4 +β4
dx .

Show that zeiαz/(z4 +β4) has simple poles in the upper half-plane at βeiπ/4 and βe3π i/4, and evaluate the residues there
to obtain the requested integral.

Section 22.4 Residues and the Inverse Laplace Transform

1. cos(3t)

3.
(−1

36
+ 1

6
t

)

e2t + 1

36
e−4t

5.
1

2
t2e−5t

7.

√
2

2

[

cosh

(√
2

2
t

)

sin

(√
2

2
t

)

− sinh

(√
2

2
t

)

cos

(√
2

2
t

)]

9. (1 + 4t + 2t2)e2t

CHAPTER TWENTY THREE CONFORMAL MAPPINGS AND APPLICATIONS

Section 23.1 Conformal Mappings

1. Under w= ez = u + iv= ex(cos(y)+ i sin(y)), vertical lines x = x0 map to circles |w| = ex0 , and horizontal lines
y = y0 map onto half-lines (rays) arg(w)= y0.

3. w= sin(z)= 4 sin(x) cosh(y)+ 4i cos(x) sinh(y) maps vertical lines x = kπ (k any integer) to the vertical axis in the
w-plane. Vertical lines x = (2k + 1)π/2 map to the part of the u-axis |u| ≥ 4. Other vertical lines map to hyperbolas

(
u

4 sin(x0)

)2

−
(

v

4cos(x0)

)2

= 1.

The horizontal line y = 0 maps onto |u| ≤ 4, while other horizontal lines map to ellipses
(

u

4cosh(y0)

)2

+
(

v

4 sinh(y0)

)2

= 1.

5. If z = reiθ then w= z3 = r 3e3iθ , yielding the second quadrant of the w-plane if π/6 ≤ θ ≤π/3.
7. If θ = k, check that

u = 1

2

(

r + 1

r

)

cos(k) and v= 1

2

(

r − 1

r

)

sin(k),

so

u2

cos2(k)
− v2

sin2(k)
= 1

if sin(k) 
= 0 and cos(k) 
= 0.
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9. w= u + iv= 2(x2 − y2 + 4xyi , so u = 2(x2 − y2 and v= 4xy. The vertical line x = 0 maps to the negative u-axis.
Other vertical lines x = x0 
= 0 map onto parabolas u = 2x2

0 − v2/8x2
0 . The horizontal line y = 0 maps onto the positive

u-axis. Other horizontal lines y = y0 
= 0 map onto parabolas u = (v2/8y2
0 )− 2y2

0 .
11. The circle of radius 1/2 centered at (0,−1/4)
13. The circle

(

u + 1

8

)2

+
(

v+ 7

8

)2

= 1

32

15. the circle

(u − 1)2 +
(

v+ 19

4

)2

= 377

16

17. w= (1 + 4i)z − (3 + 8i)

(2 + 3i)z − (4 + 7i)

19. w= (33 + i)z − (48 + 16i)

5(z − 4)

21. w= (3 + 22i)z + (4 − 75i)

(2 + 3i)z − (21 − 4i)

23. The mapping does not preserve angles. As an example, look at the images of the unit circle and the real axis, and their
point of intersection at z = 1.

25. Suppose T (z0)= (az0 + b)(cz0 + d)= z0. This yields a quadratic equation for z0, having one or two solutions (fixed
points of T ). This argument fails if T (z)= z + a + bi , a translation.

27. Use Theorem 23.4 to explicitly write the bilinear transformation mapping z2 → 1, z3 → 0, z4 → ∞.

Section 23.2 Construction of Conformal Mappings

1. w= 2z + 1 − i 3. w= (3z + 2 + 6i)/(z + 2i)
5. w= 4(1 + z)/(1 − z) 7. w= (1/3)z−2/3

9. f (0)= 0 is immediate. Next

f (1)= 2i
∫ 1

0

(ξ 2 − 1)−1/2ξ−1/2 dξ

= 2i
∫ 1

0

(1 − ξ 2)−1/2

i
ξ−1/2 dξ = 2

∫ 1

0

(1 − ξ 2)−1/2ξ−1/2 dξ.

Let ξ = u1/2 to obtain f (1)= ∫ 1

0 (1 − u)−1/2u−3/4 du, and this is B(1/4,1/2), where B is the beta function (see Problem
40, Section 15.3). This in turn is �(1/4)�(1/2)/�(3/4). Call this number c. Similarly evaluate f (−1)= ic and
f (∞)= (1 + i)c.

Section 23.3 Conformal Mappings and Solutions of the Dirichlet Problem

1. u(x, y)= y

π

∫ ∞

−∞

g(t)

(x − t)2 + y2
dt for y> 0

3.

u(x, y)= 1

2π

∫ 2π

0

g(x0 + R cos(t), y0 + R sin(t))K (x, y, t)dt

where

K (x, y, t)= R2 − (x − x0)
2 − (y − y0)

2

R2 + (x − x0)2 + (y − y0)2 − 2R(x − x0) cos(t)− 2R(y − y0) sin(t)

5. u(r cos(θ), r sin(θ))= 1

2π

∫ 2π

0

r(cos(ξ)− sin(ξ))(1 − r 2)

1 + r 2 − 2r cos(ξ − θ) dξ

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 14, 2010 17:50 THM/NEIL Page-865 27410_25_Ans_p801-866

Answers to Selected Problems 865

7. u(x, y)=
∫ −1

1

(1 − |t |) cos(π t/2)

1 + sin2(π t/2)

Im(T (z)T (i t))

1 − 2Re(T (z)T (i t))+ |T (z)|2 dt

Section 23.4 Models of Plane Fluid Flow

1. With a = Keiθ write

f (z)= az = Keiθ (x + iy)= K (x cos(θ)− y sin(θ))+ i K (x sin(θ)+ y cos(θ)).

Equipotential curves: x cos(θ)− y sin(θ)= c.
Streamlines: x sin(θ)+ y cos(θ)= k. There are no stagnation points, hence no sinks or sources.

3. f (z)= cos(x) cosh(y)− i sin(x) sinh(y). Equipotential curves are graphs of cos(x) cosh(y)= c, and streamlines are
graphs of sin(x) sinh(y)− k. Each point (nπ,0) with n any integer is a stagnation point.

5. f (z)= K log(z − z0)= K ln |z − z0| + i arg(z − z0). Equipotential curves are graphs of K ln |z − z0| = c, concentric
circles about z0, streamlines are graphs of arg(z − z0)= k, which are half-lines from z0. z0 is a source if K > 0, a sink
if K < 0.

7. Write f (z)= K (x + iy + 1)/(x + iy) to obtain the equipotential curves as graphs of

K x(x2 + y2 + 1)

x2 + y2
= c

and streamlines as graphs of

ky(x2 + y2 − 1)

x2 + y2
= k.

9. In polar coordinates, equipotential curves are graphs (in polar coordinates) of

K cos(θ)(r 2 + 1)− b

2π
rθ = c, r

and streamlines are graphs of

K sin(θ)(r 2 − 1)+ b

4π
r ln(r 2)= c2r

There are stagnation points where f ′(z)= 0, as

z =− ib

4Kπ
±
√

1 − b2

16π 2 K 2

11. Compute

| f ′(z)|2 = 9aK 2

(
z − ia

√
3

2

)2 (
z + ia

√
3

2

)2

Use the residue theorem to compute

A − Bi = 1

2
iρ
∮

γ

| f ′(z)|2 dz =−18πa4 K 2ρ

3
√

3a3
i,

yielding the vertical component B of the thrust.
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Index 

A
Acceleration a(t), 350
Adjacency matrix, 195–196
Alternating current and skin effect,

Bessel function application,
546–548

Ampère’s law, 411
Amplitude spectrum, 456, 460, 474–475

Fourier series, 456, 460
Fourier transforms, 474–475

Analytic functions, 121–122
Angles preserved by mapping, 754–755
Annulus, 725
Anomaly ψ , planetary angles, 559
Antiderivative, existence of, 721–722
Approximation solutions, 134–144

direction fields, 137–139
Euler’s methods, 139–141, 143–144
Taylor method, 142–144

Arc length, line integrals and, 372–373
Archimedes’s principle, 404–405
Area, surface integrals of, 395
Argument, complex numbers, 672–673
Arithmetic of complex numbers,

669–670
Associated homogeneous differential

equation, 48
Asymptotic expansion, 545
Augmented matrix, 206–207, 221–226

defined, 206
nonhomogeneous system solutions

using, 221–226
reducing, 206–207

Auxiliary lsv (least squares vector)
systems, 233–236

Availability function f (t), 99

B
Backward wave, 596–598
Band–limited signal, 485
Bandpass filters, 488–489
Bandwidth, defined, 485
Basis, vector space, 172–173
Beat phenomena, 69–70
Bernoulli equation, 27–28
Bessel functions, 114–117, 533–560,

799
alternating current and skin effect,

application of, 546–548
asymptotic expansion, 545
critical length of a rod, application of,

542–543
displacement of a hanging chain,

application of, 540–542
eigenfunction expansions and,

533–560
equation of order n, 114–117
equation of order zero, 116
Euler constant γ , 538
first kind of order v, 534–537
Fourier-Bessel expansions, 552–556
gamma function �(x), 533–534
generating function for, 548–549
integrals, 556–560
Kepler’s problem, application of,

556–560
Laplace transforms and, 114–117

867
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Bessel functions (Continued)
MAPLE commands for, 555, 799
modified, 543–545
Neumann’s function (second kind) of

order zero, 538–540
recurrence relations, 549–550
second kind of order n, 538–540
zeros of, 550–552

Bessel’s inequality, 175, 448–450,
515–518

eigenfunction expansions and,
515–518

Fourier series and, 448–450
special functions and, 515–518
vectors, 175

Bilinear transformation, 758–763
Boundary conditions, 427–428, 506,

566–567, 611–612, 622–624
Fourier series, 427–428
heat equations, 611–612, 622–624
periodic, 506
Sturm-Liouville problems, 506
wave equations, 566–567

Boundary curve of a surface, 408–409
Boundary data for D, 641–642
Boundary points, 674–675
Bounded complex functions and

numbers, 678
Bounds on derivatives, harmonic

functions, 710–711

C
Carbon dating, 11
Cauchy problem, d’Alembert’s solution

for, 594–601
Cauchy-Riemann equations, 680–684
Cauchy-Schwartz inequality, 155,

163–164
Cauchy’s theorem, 700–714

bounds on derivatives, 710–711
complex function integration and,

700–714
consequences of, 703–714

defined, 701–703
deformation theorem and, 704,

711–712
harmonic functions and, 709–711
independence of path and, 703–704
integral formula, 706–709, 713–714
Jordan curve theorem for, 700–701
maximum principle, 710
mean value property, 709–710

Center of system, 337
Cesàro filter function Z (t), 461–463
Cesàro sum σ (t), 461–463
Characteristic function, 487
Characteristic polynomials, 269–271
Characteristic triangle, 599–601
Circles, see Disks
Circuit law, Kirchhoff’s, 33
Circuits, see Electrical circuits
Circular membranes, vibrations in,

602–608
Closed-form solutions, 121
Coefficients of a system, 213
Cofactor expansion, 256–258
Collinear points, 161
Column space (rank), matrices, 208–212
Compact set, 678
Competing species model, phase

portraits applied to, 340–341
Complementary domains, 766–767, 780
Complementary error function (erfc),

631
Complements, orthogonal vectors,

177–180
Complex Fourier series, 457–460
Complex functions, 667–787, 799–800.

See also Integration
Cauchy-Riemann equations for,

680–684
complex integration, 695–714
complex logarithms, 689
complex numbers and, 669–693
conformal mappings, 751–787, 800
continuous, 678–679
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defined, 676
differentiable, 679–680
exponential, 684–688
integrals of, 695–700
inverse Laplace transform for,

746–750
limits L , 677–678
MAPLE commands for, 799–800
real integrals, evaluation of, 740–745
residues (Res), 733–738, 746–750,

799–800
series representations of, 715–728
singularities, 729–733
trigonometric, 684–688

Complex numbers, 669–693, 715–716
argument, 672–673
arithmetic of, 669–670
bounded, 678
Cauchy-Riemann equations, 680–684
complex functions and, 669–693
complex logarithms, 689
complex plane, 670
conjugate, 671, 683–684
continuous complex functions,

678–679
defined, 669
differentiable complex functions,

679–680
exponential functions and, 684–688
imaginary part, 669
inequality, 672
magnitude, 670–671
ordering, 673–675
polar form, 672–673
power series and, 715–716
powers of, 690–692
pure, imaginary, 670
real part, 669
trigonometric functions and, 684–688

Complex roots, 52–54, 271–272,
306–308

defined, 52
eigenvalues (λ), 271–272, 306–308

homogeneous linear system solutions
and, 306–308

linear second-order equations for,
52–54

Conformal mappings, 751–787, 800
angles preserved by, 754–755
bilinear transformations, 758–763
construction of, 765–775
defined, 755
Dirichlet problem solutions using,

776–779
infinity, point at, 762–763
inversion, 759–760
magnification, 759
MAPLE commands for, 800
mapping defined, 751
one-to-one, 757–758
orientation preserved by, 754–755
plane fluid flow models, application

of, 779–786
properties of, 754–755
Riemann mapping theorem, 765–773
rotation, 759
Schwarz-Christoffel transformation,

773–775
stereographic projection, 762–763
theorem for, 755–757
three point theorem for, 762–763
translation, 758

Conjugate, complex numbers, 671,
683–684

Conservative vector fields, 380–387
Consistent system, 220–221
Constant coefficient case, 50–54

characteristic equations for, 51–54
complex roots, 52–54
real, distinct roots, 51
repeated roots, 51–52

Constants, 61, 568, 573–575, 611–612,
615, 622–624

damping c, 61, 573–574
diffusivity k, 623–624
Euler γ , 538
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Constants (Continued)
heat equation and, 611–612, 622–624
separation λ, 568
spring k, 61
temperature distribution and, 622–624
wave equation and, 568, 573–575

Continuous complex function, 678–679
Convection, 612
Convergence, 432–435, 442–445,

466–467, 469–470, 512–513,
716–718

absolute, 716
cosine integral, 469–470
cosine series, 442–443
eigenfunction expansion, 512–513
Fourier integral, 466–467, 469–470
Fourier series, 432–435
power series, 716–718
radius of, 717–718
sine integral, 469–470
sine series, 444–445

Convolution, 96–101, 479–481
commutivity of, 480
defined, 96
Fourier transforms, 479–481
frequency, 480
Laplace transforms, 96–101
linearity of, 480
replacement scheduling problem

using, 99–101
theorem, 96–101, 480
time, 480

Coordinate functions, 367
Coordinate surfaces, 415–416
Cosine function, 441–442, 468–470,

490–491, 586–587, 742–745
convergence of, 442–443, 469–470
Fourier integral, 468–470
Fourier series, 441–442
Fourier transform, 490–491, 586–587
integral evaluation using, 742–745
rational functions of, 743–754
rational functions times, 742–743

residue theorem and, 742–745
wave equation solution using,

586–587
Cramer’s rule, 260–262
Critical damping, 63–64, 67
Critical length of a rod, Bessel function

application, 542–543
Cross product, 159–161

collinear points for, 161
defined, 159
MAPLE computation of, 160
orthogonal vectors, 160–161

Cubes, Dirichlet problem for, 654–655
Curl, 362–363, 365, 421–423

curvilinear coordinates, 421–423
defined, 362
del operator ∇ for, 362–363
differential calculus and 362–363, 365
integral calculus and, 421–423
physical interpretation of, 365
vector analysis and 362–363, 365,

421–423
Curvature κ(s), 349–354

defined, 350
unit normal vector and, 352–353
unit tangent vector and, 350–352
vector differential calculus analysis

and, 349–354
velocity v and, 349–354

Curves, 349–354, 367–372, 380–387,
392–393, 408–410, 695–714

boundary of a surface, 408–409
Cauchy’s theorem and, 700–714
coherent orientation of, 408–409
complex function integrals, 695–714
connected, 701
coordinate functions, 367
curvature κ(s), 349–354
domain, 701
exterior of, 374, 700–701
Green’s theorem and, 374–375
initial point, 367
integral over, 696–700
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interior of, 374, 700–701
Jordan curve theorem, 700–701
line integrals and, 367–374
orientation of, 374–375
path of, 375, 380–387, 699, 701–706
piecewise smooth, 370–372
simple, 368
smooth, 392–393
Stoke’s theorem for, 408–410
terminal point, 367

Curvilinear coordinates, 414–423
coordinate surfaces, 415–416
curl in, 421–423
cylindrical, 414, 418–419
divergence and, 420–421
gradient field ϕ and, 420
Laplacian in, 421–423
orthogonal, 416
scale factors of, 417
singular point of, 416
spherical, 415–416, 419–420
system of, 414

Cylinders, heat conduction in, 636–638
Cylindrical curvilinear coordinates, 414,

418–419

D
d’Alembert’s solution, wave motion and,

594–601
Damping constant (c), 61, 573–574
Data fitting, least squares vectors and,

232–236
Deformation theorem, 704, 711–712
Del operator ∇, 356–357, 362–363, 641

divergence use of, 362–363
gradient field ϕ use of, 356–657
Laplace’s equation use of, 641

Dependence, see Linear dependence and
independence

Derivatives, Laplace transform theorem
of, 82

Determinants, 247–265
cofactor expansion, 256–258

Cramer’s rule, 260–262
defined, 247–248
evaluation of, 252–258
matrix inverse and, 259–260
matrix tree theorem, 262–264
minor, 256
permutations (p), 247–248
properties of, 249–251
Vandermark’s, 258
zero matrix elements and, 252–255

Diagonal matrices, 192, 277–283,
314–315

defined, 192, 277–278
diagonalization, 277–283, 314–315
eigenvectors (E) used with, 279–283
main, 192, 277–278
nonhomogeneous linear system

solution using, 314–315
off elements, 277–278

Differentiable complex function,
679–680

Differential calculus, 345–366
curl, 362–363, 365
curvature κ(s), 349–354
del operator ∇ for, 356–357, 362–363
divergence, 362–364
gradient field ϕ, 356–361
position vectors, 345–346
streamlines, 354–356
tangent vectors, 346–349
vector analysis using, 345–366
vector fields, 354–356
vector functions of one variable,

345–349
velocity v, 349–354

Differential equations, 1–144, 187–246,
295–342, 506, 518–519, 563–666,
791–793

approximation solutions, 134–144
Bernoulli, 27–28
Bessel functions, 114–117
characteristic equations for, 51–54
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Differential equations (Continued)
eigenfunction expansion and, 506,

518–519
Euler’s, 72–74
exact, 21–25
first-order, 3–42
forcing function ( f ), 43, 77–79
homogeneous, 26–27, 45–48
initial value problems, 6–8, 40–41,

45–47
integral curves for, 4–6, 44–45
Laplace transform, 77–120
Legendre, 518–519
linear, 16–20, 43–75
MAPLE operations, 791–793
nonhomogeneous, 48–49, 55–60
ordinary, 3
partial, 563–666
partial fractions decomposition and,

84, 118–120
polynomial coefficients and, 112–114
Riccati, 28–29
second-order, 43–75
separable, 3–13
series solutions, 121–135
solutions of, 3–6, 45–49, 121–135,

137–144
Sturm-Liouville, 506
systems of linear, 187–246, 295–342

Differentiation, 445–446, 448, 718
Fourier series, 445–446, 448
power series, 718

Diffusion, 631–635, 748–750
complementary error function (erfc),

631
cylinder, in a, 748–750
discontinuous temperature in a

semi-infinite bar, 634–635
error function (erf), 631
heat equations for, 631–635
Laplace transform techniques for,

631–635

residue theorem integral evaluation of,
748–750

temperature distribution in a
semi-infinite bar, 633–635

temperatures in a homogeneous slab,
631–633

Diffusivity constant k, 623–624
Dimension, vector space, 172
Dirac delta function δ(t),102–106,

481–482
circuit transient modeling using,

105–106
defined, 102–103
filtering property of, 103–104,

481–482
Fourier transforms and, 481–482
Heaviside function H(t) and, 481
impulses (δ),102–106
shifted, 103, 481

Direction fields, 137–139
Directional derivative, 357–358
Dirichlet problems, 641–655, 776–779

boundary data for D, 641–642
conformal mapping solutions of,

776–779
cube, for a, 654–655
disk, for a, 645–647
Laplace’s equation and, 641–642
Poisson’s integral formula for,

648–649
potential equations for, 641–655
rectangle, for a, 642–644
unbounded regions, for, 649–653

Discrete Fourier transform (DFT),
492–504

approximation of Fourier coefficients,
495–497

approximation of Fourier transform,
501–504

inverse of, 494–495
linearity of, 494
N -point, 492–494
partial sums from, 498–501
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periodicity of, 494
sampled Fourier series from, 498–501

Disks, 645–647, 662–664, 725–727
annulus, 725
Dirichlet problem for, 645–647
Laurent expansion and, 725–727
Neumann problem for, 662–664
punctured, 725

Displacement δ, 540–542, 570–573,
581–582

hanging chain, Bessel function
application, 540–542

nonzero initial, 572–573
wave motion, 570–573, 581–582
zero initial, 570–572, 581–582

Displacement function z(x , y, t), 567
Distribution of charged particles,

530–531
Divergence (div), 362–364, 401–407,

420–421
curl and, 362–363, 365
curvilinear coordinates and, 420–421
defined, 362
del operator ∇ for, 362–363
differential calculus and, 362–364
Gauss’s theorem, 401–407
integral calculus and, 401–407,

420–421
physical interpretation of, 364
vector analysis and, 362–364,

401–407, 420–421
Domain D, 383–387, 701, 765–773

Cauchy’s theorem and, 701
complementary, 766–767
conservative vector field test in,

383–384
defined, 385, 701
independence of path and, 383–387
planar, 385–387
potential theory and, 383–387
Riemann mapping theorem and,

765–773
simply connected, 386

Dot product, 154–159, 163–164,
182–183, 511, 515

defined, 154
eigenfunction expansion and, 511,

515
function space C[a, b], 182–183
MAPLE configuration for, 154–156
n-space Rn, 163–164
normal vectors, 157–158
orthogonal vectors, 156–157
vector projections, 158–159
weight function p and, 182–183, 511,

515

E
Eigenfunction expansions, 505–562

Bessel functions, 533–560
Bessel’s inequality, 515–518
boundary conditions, 506
complete vectors and, 518
differential equations for, 506,

518–519
Legendre polynomials, 518–532
Parseval’s theorem, 515–518
special functions and, 505–562
Sturm-Liouville problems, 506–515
weight function p and, 511, 515

Eigenvalues λ, 267–276, 306–308,
329–338, 506–511

characteristic polynomials, 269–271
complex roots, 271–272, 306–308,

335–336
defined, 267
eigenvectors (E) and, 267–276
equal, 333–335
Gershgorin method for, 275–276
homogeneous linear system solutions

and, 306–308
imaginary, 337–338
phase portraits, classification of,

329–338
real distinct and of same sign,

330–332
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Eigenvalues λ (Continued)
real distinct and opposite signs,

332–333
repeated roots, 273
Sturm-Liouville problems and,

506–511
symmetric matrices, 273–275
zero and nonzero values of, 267–268

Eigenvectors (E), 267–276, 279–283,
308–312

characteristic polynomials, 269–271
defined, 267
diagonalization of matrices using,

279–283
eigenvalues λ and, 267–276
homogeneous linear system solutions

and, 308–312
linear dependence and independence

of, 272–273, 308–312
nonzero multiples of, 267–268
orthogonality of, 247–275
symmetric matrices, 273–275

Electrical circuits, 33, 70–71, 105–106,
321–327

first-order differential equation
applications for, 33

Kirchhoff’s current and voltage laws,
33

second-order differential equation
applications for, 70–71

solutions for, 321–327
spring equation for, 70–71
transient modeling using Dirac delta

function d(t), 105–106
Element of a matrix, 187
Elementary matrix, 199
Elliptical cone, surface integrals of, 390
Equal matrices, 187
Equilibrium position, 61
Equipotential lines, 783–784
Error function (erf), 631
Essential singularities, 730
Euler constant γ , 538

Euler’s differential equation, 72–74
Euler’s formula, 457–458
Euler’s method, 139–141, 143–144

approximation scheme, 139–141
modified with Taylor method,

143–144
Even functions, 436–438
Even permutation, 247
Exact equations, 21–25
Exactness test, 23–25
Existence and uniqueness theorem,

40–41
Exponential functions, 684–688
Exponential matrix solutions, 316–318

defined, 316
Laplace transform for, 317–318
MAPLE command for, 316
variation of parameters, method of

for, 317–318

F
Faraday’s law, 411
Filtering,103–104, 461–463, 481–482

Cesàro function Z (t), 461–463
Cesàro sum σ (t), 461–463
Dirac delta function δ(t),103–104,

481–482
Fourier series used for, 461–463
Fourier transforms and, 481–482
function Z , 461–462
Gauss filter, 463
graphs for, 462–463
Hamming filter, 463
property,103–104, 481
signals, 461–463

First-order differential equations, 3–42
Bernoulli equation, 27–28
electrical circuits, applications for, 33
exact equations, 21–25
existence and uniqueness theorem,

40–41
homogeneous equation, 26–27
initial value problems, 6–8, 40–41
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integral curves for, 4–6
linear, 16–20
orthogonal trajectories, applications

for, 34–35
pursuit problem, application for,

35–37
Riccati equation, 28–29
separable equations, 3–13
sliding motion on inclined planes,

applications for, 31–33
terminal velocity, applications for,

30–31
velocity of unwinding chain,

application for, 37–38
Flow lines, 355
Fluids, 397–399, 779–786

circulation of, 780
conformal mapping of flow models,

779–786
flux across surfaces, 397–399
graphs of flow models, 783–784
Joukowski transformation, 785–786
plane-parallel flow, 779–780
solenoidal, 780
stationary flow, 780
vortex, 780

Flux, defined, 397, 780
Forced motion, 66–67, 599–601

springs, 66–67
waves, 599–601

Forcing function ( f ), 43, 77–79
Forcing term, 567
Forward wave, 596–598
Fourier analysis, 425–562

discrete Fourier transform (DFT),
492–504

Fourier integral, 465–470
Fourier series, 427–464
Fourier transforms, 470–504

Fourier-Bessel expansions, 552–556
Fourier integral, 465–471

absolutely integrible, 465
coefficients, 466, 468–469, 471

complex, 471–472
convergence of, 466–467, 469–470
cosine function, 468–470
defined, 466
Fourier transform and, 471–472
functions and, 465–467
Laplace representations, 469–470
sine function, 468–470

Fourier-Legendre expansions, 525–528
Fourier series, 427–464, 495–501

amplitude spectrum of, 456, 460
Bessel’s inequalities, 448–450
boundary conditions, 427–428
coefficients, 430, 442, 444
complex, 457–460
convergence of, 432–435, 442–445
cosine function, 441–442
DFT approximation of coefficients,

495–497
differentiation of, 445–446, 448
discrete Fourier transform (DFT) and,

495–501
even functions, 436–438
filtering signals using, 461–463
functions, 429–440
Gibbs phenomenon, 438–440
harmonic form of, 454–455
integration of, 446–448
odd functions, 436–438
Parseval’s theorem, 450–451
phase angle form, 452–456
piecewise continuous functions,

431–432
piecewise smooth functions, 432
sampled partial sum of, 498–501
sine function, 443–445

Fourier transforms, 470–504, 582–584,
586–587, 627–628, 630

amplitude spectrum of, 474–475
bandpass filters and, 488–489
complex Fourier integral and,

471–472
convolution, 479–481
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Fourier transforms (Continued)
cosine function, 490–491, 586–587
defined, 471–472
DFT approximation of, 501–504
Dirac delta function δ(t) and,

481–482
discrete (DFT), 492–504
filtering and, 481–482
frequency differentiation, 479
frequency of signals ω, 471–472
frequency shifting, 476
heat equation solutions using,

627–628, 630
integrals, 479–481
inverse, 473–474, 494–495
linearity, 475, 480, 494
low-pass filters and, 487–488
MAPLE commands for, 473–474
modulation, 477
operational rule for, 477–478
pair, 473
scaling, 476
Shannon sampling theorem and,

485–486
sine function, 490–491, 586–587, 630
symmetry, 477
time reversal, 476
time shifting, 475–476
wave (motion) equation solution

using, 582–584, 586–587
windowed, 483–485

Free radiation, 612
Free variables, 214–215
Frequency ω, 460, 471–472, 476,

479–480, 604
convolution, 480
differentiation, 479
Fourier transforms, 476, 479–480
normal modes, 604
shifting, 476
signals ω, 471–472
spectrum, 460
vibration, 604

Frobenius solutions, 126–135
Function space C[a, b], 181–186

distance between, 182
dot product with weight function p

for, 182–183
linear dependence and independence,

181–182
orthogonality of, 183–186
scalar addition and multiplication,

181–182
Functions, 22–25, 43, 77–79, 81–82,

84–101,114–117, 121–122, 241,
345–349, 367, 380–381, 429–440,
452–456, 465–467, 483–485, 487,
511, 521–523, 533–560, 565–567,
641, 709–711.

See also Complex functions;
Eigenfunction expansions; Fourier
series; Special functions

analytic, 121–122
availability f (t), 99
Bessel, 114–117, 533–560
Cesàro filter Z(t), 462–463
Cesàro sum σ (t), 461
characteristic, 487
convolution theorem for, 96–101
coordinate, 367
Dirac delta δ(t),102–106
eigenfunction expansions and, 511,

521–523, 533–534
even, 436–438
filter Z , 461–462
forcing f , 43, 77–79
Fourier integrals and, 465–467
Fourier series of, 429–440, 452–456
fundamental period of, 452–454
gamma �(x), 533–534
generating, 521–523, 548–549
harmonic, 454–455, 641, 709–711
Heaviside H , 86–95
jump discontinuities, 81, 86–87
Laplace transforms of, 77–79
Legendre polynomials, 521–523
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linear transformation function T , 241
mortality m(t), 99
odd, 436–438
phase angle form of, 454–456
piecewise continuous, 81–82,

431–432
piecewise smooth, 432
position y(x ,t), 565–567
potential ϕ, 22–25, 380–381
replacement r(t), 99–101
shifting theorems for, 84–95
transfer, 487
vectors of one variable, 345–349
weight p, 511, 515
window w(t), 483–485

Fundamental matrix, 300–301
Fundamental period p, 452–454
Fundamental set of solutions,

differential equations, 47

G
Gamma function �(x), 533–534
Gauss filter, 463
Gauss’s divergence theorem, 401–407

defined, 401–402
heat equation and, 405–407
Stoke’s theorem and, 402, 408–413
vector integral analysis using,

401–407
Gauss’s laws, 412
General solutions, differential equations,

4, 47
Generating functions, 521–523, 548–549

Bessel functions, 548–549
Legendre polynomials, 521–523

Gershgorin method, 275–276
Gibbs phenomenon, 438–440
Gradient field ϕ, 356–361, 420

curvilinear coordinates and, 420
del operator ∇ for, 356–357
directional derivative, 357–358
level surface of, 359–361
normal vectors (lines) of, 359–361

tangent plane of, 359–361
vector differential calculus analysis

and, 356–361
Gram-Schmidt orthogonalization

process, 176
Graphs, 194–196, 236, 262–264,

388–389, 456, 460, 462–463,
783–784

amplitude spectrum, 456, 460
defined, 194, 262
equipotential lines, 783–784
filtering signals, 462–463
Fourier series, 456, 460, 462–463
frequency spectrum, 460
labeled, 262–263
least squares line, 236
matrix trees, 262–264
regression line, 236
spanning tree, 263
streamlines, 783–784
surfaces, 388–389
walks of length, 195–196

Green’s first identity, 659
Green’s theorem, 374–379, 399–402

curve orientation and, 374–375
extension of, 376–379
three dimensions, 399–402
two dimensions, 374–376
vector integral analysis using,

374–379, 399–402

H
Half-life (h) of an element, 10–11
Hamming filter, 463
Hankel’s integral, 561
Harmonic conjugate, 683–684
Harmonic functions, 454–455, 641,

709–711
bounds on derivatives, 710–711
Cauchy’s theorem and, 709–711
Fourier series and, 454–455
maximum principle, 710
mean value property, 709–710
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Heat conduction, 636–639
heat equations for, 636–639
infinite cylinders, 636–638
rectangular plates, 638–639

Heat equation, 405–407, 611–639
boundary conditions for, 611–612,

622–624
constants, effects of on, 611–612,

622–624
convection, 612
diffusion problems, 631–635
Fourier transforms for solution of,

627–628, 630
free radiation, 612
Gauss’s divergence theorem and,

405–407
half-line problems, 629–630
heat conduction problems, 636–639
infinite medium, solutions in,

626–630
initial conditions for, 611–612
initial-boundary value problem,

611–612
insulation conditions for, 612
interval [0, L], 612–624
Laplace transform techniques for,

631–635
Laplace’s equation and, 407
real line problems, 626–628
temperature distribution, 612–624
vector integral calculus analysis

using, 405–407
Heaviside function (H), 86–95, 481

Dirac delta function δ(t) and, 481
inverse transform formula, 93–95
jump discontinuities, 86–87
pulses and, 87–89
shifted, 86–89
shifting theorems and, 86–95

Hermitian matrix, 288–290
Higher derivatives, Laplace transform

theorem of, 82

Homogeneous differential equations,
26–27, 45–48, 213–219, 296–312

coefficient of system, 213
complex eigenvalue occurrence,

306–308
defined, 26, 213
first-order, 26–27
free variables, 214–215
fundamental matrix for system,

300–301
general solution of, 300, 302–304
linear dependence and independence

of, 46–47, 296–300
linear systems, 213–219, 296–312
matrix of coefficients, 213–215
mixing problem application of,

304–306
nontrivial solution, 218–219
reduced (matrix) systems, 213–219
second-order, 45–47
solution space of system, 216–217
solutions of, 45–47, 296–312
system solutions, 296–312
trivial solution, 219
without linearly independent

eigenvectors, 308–312
Wronskian (W ) of, 46–47

Hyperbolic parabloid, surface integrals
of, 388

I
Identity matrix, 192–193
Imaginary axis, 670
Improper node, 334–336
Impulses (δ),102–106
Inclined planes, sliding motion on,

31–33
Inconsistent system, 220–221
Indicial equations, 127–129
Inequality, complex numbers and, 672
Infinite medium, 626–630

Fourier transforms for solution of,
627–628, 630
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half-line problems, 629–630
heat equations for, 626–630
real line problems, 626–628
wave (motion) equations for, 597–584

Infinity, mapping point at, 762–763
Initial-boundary value problem, 566,

594–601, 611–612
heat equations, 611–612
wave equations, 566, 594–601

Initial condition, 6, 566, 573–575,
611–612

Initial displacement, 570–573, 581–582
nonzero, 572–573
wave motion in an infinite medium,

581–582
wave motion over an interval,

570–573
zero, 570–572, 581–582

Initial point, 367
Initial value problems, 6–8, 40–41,

45–47, 81–84
existence and uniqueness theorem for,

40–41
first-order differential equations, 6–8,

40–41
Laplace transform solutions, 81–84
second-order differential equations,

45–47
separable differential equations for,

6–8
Initial velocity, 568–570, 572–573,

579–581
nonzero, 572–573
wave motion in an infinite medium,

579–581
wave motion over an interval,

568–570, 572–573
zero, 568–570, 579–581

Insulated ends, heat equation for,
614–615

Insulation conditions, 612
Integral calculus, 367–423

Archimedes’s principle, 404–405

conservative vector fields, 380–387,
410–411

curvilinear coordinates, 414–423
Gauss’s divergence theorem,

401–407
Green’s theorem, 374–379, 399–402
heat equation, 405–407
independence of path, 380–387
line integrals, 367–373
Maxwell’s equations, 411–413
potential theory, 380–387
Stoke’s theorem, 402, 408–413
surface integrals, 388–399
vector analysis using, 367–423

Integral curves, 4–6, 44–45
Integrals, 367–373, 388–399, 465–471,

479–481, 556–561, 695–700,
706–709, 713–714, 740–750,
798–799

Bessel’s, 556–560
Cauchy’s formula, 706–709, 713–714
complex functions, 695–700,

706–709, 713–714
diffusion in a cylinder, application of,

748–750
eigenfunction expansion and,

556–561
Fourier, 465–471
Fourier transform of, 479–481
Hankel’s, 561
inverse Laplace transform and,

746–750
line, 367–373
Lommel’s, 561
MAPLE commands for transforms,

798–799
Poisson’s, 561
rational functions and, 740–745
residue theorem evaluation of,

740–750
Sonine’s, 561
surface, 388–399

Integrating factor, 17
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Integration, 446–448, 695–714, 718
Cauchy’s theorem for, 700–714
complex, 695–714
Fourier series, 446–448
integrals of complex functions,

695–700
Jordan curve theorem for, 700–701
power series, 718

Interior point, 674
Interlacing lemma, 552
Intervals, 567–577, 612–624

heat equation on [0, L], 612–624
wave motion in, 567–577

Inverses, 79, 95–97, 226–231, 259–260,
473–474, 494

defined, 227–228
determinant for, 259–260
discrete Fourier transform (DFT), 494
Fourier transform, 473–474
Laplace transform, 79, 95–97
linear systems and, 229–231
matrices, 226–231, 259–260
nonsingular matrix, 227–229
singular matrix, 227, 229–230

Inversion mapping, 759–762
Irregular singular point, 126
Isolated singularities, 729
Isolated zeros, 722–724

J
Jordan curve theorem, 700–701
Joukowski transformation, 785–786
Jump discontinuities, 81, 86–87

K
Kepler’s problem, Bessel integral

application, 556–560
Kirchhoff’s current and voltage laws, 33

L
Labeled graph, 262–263
Laplace integrals, 469–470

Laplace transform, 77–120, 317–318,
587–593, 746–750

availability function f (t), 99
Bessel functions, 114–117
convolution theorem, 96–101
defined, 77
derivatives, theorem of, 82
Dirac delta function δ(t),102–106
exponential matrix solutions using,

317–318
forcing function ( f ), 77–79
Heaviside function (H), 86–95
higher derivatives, theorem of, 82
impulses (δ),102–106
initial value problem solutions using,

81–84
inverse, 79, 93–95, 746–750
jump discontinuities, 81, 86–87
linearity of, 79
MAPLE routines for, 78–79
mortality function m(t), 99
partial fractions decomposition and,

84, 118–120
piecewise continuity, 81–82
polynomial coefficients and, 112–117
replacement scheduling problem

using, 99–101
residue theorem integral evaluation

using, 746–750
selected functions, 78
shifting theorems, 84–95
system solutions using, 106–110,

317–318
wave (motion) equations, techniques

for, 587–593
Laplace’s equation, 407, 421–423,

641–642
curvilinear coordinates and, 421–423
del operator ∇ for, 641
harmonic functions of, 641
heat transfer and, 407
potential equation, as, 641–642
steady-state equation, as, 641
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Laurent expansion, 725–727
Leading entry, 203, 207–208
Least squares vectors (lsv), 180,

232–236
auxiliary lsv systems, 233–236
data fitting and, 232–236
nonsingular matrices and, 234–236
orthogonal projection and, 180,

233–234
regression line, 236
vectors for systems, 232–236

Legendre polynomials, 518–532, 799
differential equation, 518–519
distribution of charged particles,

application of, 530–531
eigenfunction expansions and,

518–532
Fourier-Legendre expansions,

525–528
generating function for, 521–523
MAPLE commands for, 799
recurrence relation for, 523–524
Rodrigues’s formula and, 532
zeros of, 528–569

Length, vectors, 148
Level surface of gradient field ϕ,

359–361
Limits L , complex functions, 677–678
Line integrals, 367–373

arc length and, 372–373
curves and, 367–372
defined, 368–370

Lineal elements, 137
Linear dependence and independence,

46–47, 167–174, 181–182,
272–273, 296–300, 308–312

dependent vectors, defined, 167
eigenvectors (E), 272–273, 308–312
function space C[a, b], 181–182
homogeneous linear differential

equations, 46–47, 296–300
homogeneous linear system solutions

and, 308–312

independent vectors, defined, 167
n-space (Rn), 167–174
spanning sets, 167–174
theorems for, 168–172
Wronskian (W ), 46–47

Linear differential equations, 16–20,
43–75, 145–342

constant coefficient case for, 50–54
defined, 16
determinants, 247–265
diagonalization, 277–283
eigenvalues, 267–276
Euler’s equation, 72–74
first-order, 16–20
forcing function ( f ), 43
homogeneous equations, 45–48
homogeneous systems, 213–219
initial value problem for, 45–47
integral curves for, 44–45
integrating factor, 17
matrices, 187–246, 277–293
matrix inverses for, 229–231
matrix operations for systems,

213–226
nonhomogeneous equations, 48–49,

55–60
nonhomogeneous systems, 220–226
reduction of order method for, 51–52
second-order, 43–75
spring motion, applications for, 61–71
systems of, 187–246, 295–342
vectors, 147–186
Wronskian (W ) of, 46–47

Linear fractional transformation, 758
Linear systems, see Systems of

differential equations
Linear transformations (mapping),

240–246
function (T ), 241
one-to-one, 242–245
onto, 242
null space, 246
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Linearity, Fourier transforms, 475, 480,
494

Lines of force, 355
Liouville’s theorem, 711
Local result, 41
Logarithms, 689
Lommel’s integral, 561
Low-pass filters, 487–488
Lower triangular matrix (L), 237
LU factorization, 237–240

M
Magnification mapping, 759
Magnitude, 148, 670–671
Main diagonal matrix, 192, 277–278
MAPLE commands, 78–79, 154–156,

160, 191, 202, 207–208, 212, 229,
246, 316–317, 473–474, 555

Bessel functions, 555, 799
complex functions, 799–800
conformal mapping, 800
cross product computation, 160
dot product configuration, 154–156
exponential matrix solutions, 316–317
first-order differential equation, 78–79
Fourier-Bessel expansion, 555
Fourier transforms, 473–474
integral transforms, 798–799
Laplace transform routines, 78–79
Legendre polynomials, 799
matrix manipulations, 796–798
matrix operations, 191, 202, 207–208,

212, 229, 246
numerical computations, 789–791
ordinary differential equations,

791–793
residue (Res), 799–800
vector computations, 154–156, 160
vector operations, 793–796

Mapping, 751. See also Conformal
mappings

Mass, surface integrals of, 395–397

Mass/spring systems, solution of,
319–321

Mathematical modeling, 13
Matrices, 187–293, 300–301, 316–318,

796–798
addition of, 188
adjacency, 195–196
augmented, 206–207, 221–226
column space (rank), 208–212
defined, 187–188
determinants, 247–265
diagonal, 192
diagonalization, 277–283
element, 187
elementary row operations, 198–202
equal, 187
exponential, 316–318
fundamental of systems, 300–301
Hermitian, 288–290
homogeneous systems, 213–219
identity, 192–193
inverses, 226–231, 259–260
leading entry, 203, 207–208
least squares vectors for systems,

232–236
linear differential equations, 187–246,

277–293
linear systems and, 187–246
linear transformations (mapping),

240–246
lower triangular (L), 237
LU factorization, 237–240
main diagonal, 192, 277–278
MAPLE commands for, 191, 202,

207–208, 212, 229, 246
MAPLE operations, 796–798
multiplication of, 188–192
nonhomogeneous systems, 220–226
nonsingular, 227–229, 234–236
orthogonal, 284–286
pivot position, 207–208
quadratic forms, 290–293

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



October 15, 2010 16:21 THM/NEIL Page-883 27410_26_Ind_p867-898

Index 883

Matrices (Continued)
random walks in crystals, application

of, 194–197
reduced row echelon form, 203–208
reduced systems, 213–219
row operations, 198–208
row space (rank), 208–212
scalar algebra operations, 188
singular, 227, 229–230
skew-hermitian, 288–290
square, 192
symmetric, 273–275
transition, 317
transpose of, 193–194
unitary, 286–288
upper triangular (U), 237
zero, 192

Matrix of coefficients, 213–215
Matrix tree theorem, 262–264
Maximum principle, harmonic

functions, 710
Mclaurin series, 718
Mean value property, harmonic

functions, 709–710
Method of least squares, 180
Minor determinant, 256
Mixing problem, 18–20, 304–306
Möbius transformations, 758
Modified Bessel function, 543–545
Modulation, Fourier transforms, 477
Mortality function m(t), 99
Motion, 31–33, 61–71, 567–587,

596–610
Cauchy initial-boundary value

problem, 594–601
constant c influence of, 573–575
d’Alembert’s solution for, 594–601
forced, 66–67, 599–601
forcing term for, 567, 575–577
forward and backward waves,

596–599
infinite medium, in a, 579–584

initial condition, influence of,
573–575

initial displacement, 570–573,
581–582

initial velocity, 568–570, 572–573,
579–581

intervals of, 567–577
Laplace transform techniques for,

587–593
semi-infinite medium, in a, 585–587
sliding, 31–33
spring, 61–71
unforced, 62–66
vibrations in a membrane, 602–610
wave, 567–587, 596–610

N
n-space (Rn), 162–174

basis, 172–173
coordinates of, 172–173
dimension, 172
dot product of, 163–164
linear dependence and independence

theorem for, 167–170
orthogonal vectors, 164, 173–174
orthonormal vectors, 164, 173
spanning set for, 166–172
standard representation of, 165
subspace (S), 165–174

Nabla ∇, 356–357, 362–363
Natural length (L), 61
Neumann problems, 659–665

disk, for a, 662–664
Green’s first identity for, 659
rectangle, for a, 660–662
square, for a, 660
unbounded regions, for, 664–665

Neumann’s function of order zero,
538–540

Nodal sink, 331
Nodal source, 331–332
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Nonhomogeneous differential equations,
48–49, 55–60, 220–226, 301–302,
312–315

associated homogeneous equation for,
48

associated homogeneous system for,
221

augmented matrix procedure for,
221–226

consistent system, 220–221
defined, 48, 220
diagonalization of, 314–315
general solution of, 302
inconsistent system, 220–221
linear systems, 220–226, 301–302,

312–315
solutions of, 48–49, 220–226,

301–302, 312–315
superposition, principle of, 60
system solutions, 220–226, 301–302,

312–315
undetermined coefficients, method of,

57–60
variation of parameters, method of

for, 55–56, 312–314
Nonsingular matrix, 227–229, 234–236

defined, 227
inverses as, 227–229
least squares vectors for, 234–236

Nontrivial solution, 218–219
Nonzero initial displacement, 572–573
Nonzero initial velocity, 572–573
Norm, vectors, 148
Normal modes of vibration, 604–605
Normal vector, 157–158, 359–361,

389–392
defined, 157
dot product for, 157–158
gradient field ϕ, lines of, 359–361
surfaces, 389–392

Normalized eigenfunctions, 516
Null space, 246

Numerical computations using MAPLE,
789–791

O
Odd functions, 436–438
Odd permutation, 247
Off-diagonal elements, 277–278
One-dimensional wave equation, 566
One-step method, 142
One-to-one linear transformation,

242–245
One-to-one mapping, 757–758
Onto linear transformation, 242
Operational rule, Fourier transforms,

477–478
Order of complex numbers, 673–675

boundary points, 674–675
disks, 673–674
interior point, 674
open and closed sets, 673–675

Ordinary differential equations, see
Differential equations

Orientation preserved by mapping,
754–755

Orthogonal cylindrical coordinates, 416
Orthogonal eigenfunctions, 511
Orthogonal matrix, 284–286
Orthogonal trajectories, 34–35
Orthogonal vectors, 156–158, 164,

173–180, 183–186, 274–275
basis, 173
complements, 177–180
defined, 156
dot product, 156–157
eigenvectors (E), 274–275
function space C[a, b], 183–186
Gram-Schmidt process for, 176
method of least squares for, 180
n-space (Rn), 164, 173–174
orthogonalization, 175–177
projection, 158, 178–180

Orthonormal vectors, 164, 173
Overdamping, 63
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P
Parallelogram law, vector applications

of, 149–150, 152
Parametric equations, 3-space vector

lines, 152–154
Parseval’s inequality, 175
Parseval’s theorem, 450–451, 515–518

eigenfunction expansions, 515–518
Fourier series integration using,

450–451
Partial differential equations, 563–666

heat equation, 611–639
Laplace’s equation, 641–644
potential equation, 641–666
wave equation, 565–610

Partial fractions decomposition, Laplace
transform and, 84, 118–120

Particular solutions, 4–6
Path of a curve, 375, 380–387, 699,

701–706
Cauchy’s theorem and, 701–706
closed, 375, 381–382
complex function integrals and, 699,

701–706
defined, 375, 701
deformation theorem and, 704–706
independence of, 380–387, 699,

703–704
potential theory and, 380–387

Periodic boundary conditions, 506
Periodicity, 494, 605–606

discrete Fourier transform (DFT), 494
vibration, 605–606

Permutations (p), 247–248
Phase angle form, Fourier series,

452–456
Phase portraits, 329–341

center of system, 337
competing species model, application

of, 340–341
defined, 330
eigenvalue (λ) classification of,

329–338

improper node, 334–336
nodal sink, 331
nodal source, 331–332
prey/predator model, application of,

338–340
proper node, 333–334
saddle point, 333
spiral point, 335
spiral sink, 335
spiral source, 335–336

Piecewise continuity, 81–82
Piecewise continuous functions,

431–432
Piecewise smooth functions, 432
Piecewise smooth surface, 392–393
Plane-parallel flow, 779–780
Planes, 380–387, 392, 670, 779–786

axes, real and imaginary, 670
complex, 670
conformal mapping of, 779–786
conservative vector fields in, 380–387
domain D, 383–387
fluid flow models, 779–786
independence of path and, 383–387
potential theory and, 383–387
tangent to a surface, 392
vector integral analysis of, 380–387,

392
Plates, heat conduction in, 638–639
Poisson’s integral formula, 561,

648–649
Polar form, 457, 672–673, 730–738

argument and, 672–673
Fourier series, 457
pole of order m, 730–732, 736–738
poles of quotients, 732–733
residues at, 734–738
simple, 734–736
singularities, 730–733

Polynomial coefficients, 112–117,
269–273

Bessel functions, 114–117
characteristic, 269–271
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Polynomial coefficients (Continued)
complex roots, 271–272
differential equations with, 112–114
eigenvalues (λ) as, 269–273
Laplace transform and, 112–117
repeated roots, 273

Position function y(x ,t), 565–567
Position vector, 345–346
Potential equation, 641–666

Dirichlet problems, 641–655
Green’s first identity, 659
Laplace’s equation, 641–642
Neumann problems, 659–665
Poisson’s integral formula, 648–649
steady-state equation, 655–658

Potential function ϕ, 22–25, 380–381
exact first-order equations, 22–25
vector fields, 380–381

Potential theory, 380–387, 410–411
conservative vector field test,

383–387, 410–411
Green’s theorem for, 380–387
independence of the path and,

380–387
Stoke’s theorem for, 410–411
3-space, 410–411

Power series, 121–126, 715–724
antiderivative, existence of, 721–722
complex numbers, 715–716
convergence of, 716–718
defined, 716
differentiation of, 718
integration of, 718
isolated zeros, 722–724
recurrence relations, 123–126
sequences, 715–716
solutions, 121–126
Taylor expansion, 718–722

Powers of complex numbers, 690–692
nth roots 690–691
rational, 692

Prey/predator model, phase portraits
applied to, 338–340

Principal axis theorem, 291–292
Projections, 158–159, 178–180,

762–763
dot products for vectors, 158–159
orthogonal, 158, 178–180
stereographic, 762–763

Proper node, 333–334
Pulses, Heaviside formula (H) and,

87–89
Punctured disk, 725
Pure imaginary numbers, 670
Pursuit problem, 35–37
Pythagorean theorem, 156–157

Q
Quadratic forms of matrices, 290–293

defined, 290
mixed product terms, 291
principal axis theorem, 291–292
real, 290
standard, 291–293

Quadrilateral vector, 152

R
Radiating ends, heat equation for,

615–617
Radius of convergence, 717–718
Random walks in crystals, matrix

application of, 194–197
Rational functions, 740–745

defined, 740
of sine or cosine, 742–743
residue theorem integral evaluation

using, 740–745
times sine or cosine, 742–743

Rational powers, 692
Real axis, 670
Real distinct roots, linear second-order

equations for, 51
Rectangles, 642–644, 660–662

Dirichlet problem for, 642–644
Neumann problem for, 660–662
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Rectangular membranes, vibrations in,
608–610

Recurrence relations, 123–126,
523–524, 549–550

Bessel functions, 549–550
Legendre polynomials, 523–524
power series solutions, 123–126

Reduction of order method, 51–52
Regression line, 236
Removable singularities, 729
Repeated roots, 51–52, 273
Replacement function r(t), 99–101
Replacement scheduling problem,

99–101
Residue (Res), 729–750, 799–800

defined, 734
diffusion in a cylinder, application of,

748–750
inverse Laplace transform and,

746–750
MAPLE commands for, 799–800
pole of order m, at, 736–738
rational functions and, 740–745
real integral evaluation using,

740–750
simple pole, at, 734–736
singularities and, 729–733
theorems, 733–738

Resonance, 67–69
Riccati equation, 28–29
Riemann mapping theorem, 765–773
RMS bandwidth, 485
Rodrigues’s formula, 532
Rotation mapping, 759
Row equivalence, 202
Row operations, 198–208

augmented matrix, 206–207
elementary matrix, 198–202
leading entry, 203, 207–208
MAPLE commands for, 202, 207–208
reduced (row echelon) form, 203–208
pivot position, 207–208

Row space (rank), matrices, 208–212

S
Saddle point, 333
Scalar field, 356
Scalar triple product, 162
Scalars, 147–149, 188. See also

Determinants
defined, 147
matrix algebra operations by, 188
vector algebra operations by, 147–149

Scale factors, 417
Scaling, Fourier transforms, 476
Schwarz-Christoffel transformation,

773–775
Second-order differential equations,

43–75
constant coefficient case, 50–54
Euler’s equation, 72–74
forcing function ( f ), 43
homogeneous equations, 45–48
initial value problem for, 45–47
integral curves for, 44–45
nonhomogeneous equations, 48–49,

55–60
reduction of order method for, 51–52
spring motion, applications for, 61–71
Wronskian W of, 46–47

Semi-infinite mediums, 585–587,
633–635

discontinuous temperature in,
634–635

Fourier transforms for solutions of,
586–587

heat equations for, 633–635
Laplace transform used for, 633–635
temperature distribution in, 633–634
wave (motion) equations for, 585–587

Separable equations, 3–13
applications of, 8–13
defined, 3
first-order differential equations, 3–13

Separation constant λ, 568
Sequences, see Series representation
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Series representations, 121–135,
715–728

Frobenius, 126–135
isolated zeros, 722–724
Laurent expansion, 725–727
power series, 121–126, 715–724
solutions, 121–135
Taylor expansion, 718–722

Shannon sampling theorem, 485–486
Shifting theorems, 84–95, 103, 484

Dirac delta fuction,103
first (s variable), 84–86
Heaviside formula, 86–89
Heaviside function H and, 86–95
second (t variable), 88–93
window function, 484

Signals, 461–463, 471–472, 483–489
band-limited, 485
bandpass filtering, 488–489
bandwidth, 485
Cesàro filter function Z(t), 462–463
energy of, 483
filter function Z , 461
filtering, 461–463
Fourier series used for, 461–462
Fourier transform used for, 471–472,

483–489
frequency ω, 471–472
Gauss filter, 463
Hamming filter, 463
low-pass filtering, 487–488
Shannon sampling theorem for,

485–486
shifted windowed Fourier transform

for, 484
windowed Fourier transform for,

483–485
Sine functions, 443–445, 468–470,

490–491, 586–587, 630, 742–745
convergence of, 444–445, 469–470
Fourier integral, 468–470
Fourier series, 443–445

Fourier transform, 490–491, 586–587,
630

heat equation solution using, 630
integral evaluation using, 742–745
rational functions of, 743–754
rational functions times, 742–743
residue theorem and, 742–745
wave equation solution using,

586–587
Singular matrix, 227, 229–230
Singular point, 126, 416
Singular solutions, 4
Singularities, 729–750

classification of, 729–733
essential, 730
isolated, 729
pole of order m, 730–732
poles of quotients, 732–733
removable, 729
residue theorem and, 729–750

Skew-hermitian matrix, 288–290
Skin effect, 548
Sliding motion on inclined planes,

31–33
Smooth surface, 392
Solenoidal fluid, 780
Solutions of differential equations, 3–13,

19–20, 44–45, 47–49, 81–84,
106–110, 121–135, 137–144,
218–226

approximation, 134–144
closed-form, 121
defined, 3–4
first-order equations, 4–6, 19–20
fundamental set of, 47
general, 4, 47
homogeneous, 218–219
integral curves, 4–6, 44–45
Laplace transform used for, 81–84,

106–110
matrix operations for, 218–226
nonhomogeneous, 48–49, 220–226
nontrivial, 218–219
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particular, 4–6
second-order equations, 44–45, 47–49
series, 121–135
singular, 4
systems, 106–110
transient term, 19–20
trivial, 219

Sonine’s integral, 561
Source term, heat equation, 619–622
Span, vector space, 165–166
Spanning sets, 166–174
Spanning tree, 263
Special functions, 505–562, 799

Bessel functions, 533–560, 799
Bessel’s inequality, 515–518
boundary conditions, 506
convergence of eigenfunction

expansion, 512–513
defined, 505
eigenfunction expansions and,

505–562
gamma function �(x), 533–534
Kepler’s problem, 556–560
Legendre polynomials, 518–532, 799
MAPLE commands for, 799
normalized eigenfunctions, 516
orthogonality of eigenfunctions, 511
Parseval’s theorem, 515–518
Sturm-Liouville problems, 506–515
weight function p, 511, 515
weighted dot product of, 515

Speed v(t), 349
Spherical cylindrical coordinates,

415–416, 419–420
Spiral point, 335
Spiral sink, 335
Spiral source, 335–336
Spring constant k, 61
Spring motion, 61–71

beat phenomena, 69–70
critical damping, 63–64, 67
damping constant c, 61

electrical circuits, applications for,
70–71

equation for, 62
equilibrium position and, 61
forced, 66–67
natural length L , 61
overdamping, 63
resonance, 67–69
second-order differential applications

for, 61–71
spring constant k, 61
underdamping, 65–67
unforced, 62–66

Square matrix, 192
Squares, Neumann problem for, 660
Standard representation of vectors, 151,

165
Stationary flow, 780
Steady-state, 19–20, 407, 655–658

heat equation, 407
temperature distribution for a sphere,

655–658
value, 19–20

Step size h, 139
Stereographic projection, 762–763
Stoke’s theorem, 402, 408–413

boundary curves and, 408–409
defined, 409
Maxwell’s equations and, 411–413
potential theory in 3-space using,

410–411
surface analysis using, 402, 408–413
vector integral analysis using, 402,

408–413
Streamlines, 354–356, 783–784

fluid flow model graphs, 783–784
3-space vectors, 354–356

Sturm-Liouville problems, 506–515
boundary conditions, 506
convergence of eigenfunction

expansion, 512–513
differential equation, 506
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Sturm-Liouville problems (Continued)
eigenfunction expansion and,

511–515
eigenvalues (λ), 506–511
Fourier coefficients with respect to,

511
orthogonal eigenfunctions, 511
periodic, 506–511
regular, 506–507, 509
singular, 506, 509
theorem for, 509
weight function p and, 511

Subspace S, 165–174, 177–179
basis of, 169–174
defined, 165
n-space Rn, 165–174
orthogonal complements of, 177–179
orthogonal projection onto, 179–180
span of, 165–166
spanning set for, 166–172
trivial, 165

Superposition, principle of, 60
Surfaces, 388–399, 408–410

area, integral applications of, 395
boundary curve of, 408–409
defined, 388
elliptical cone, 390
fluid flux across, 397–399
graphs, 388–389
hyperbolic parabloid, 388
integrals, 393–399
level, 388
mass, integral applications of,

395–397
normal vector to, 389–392
piecewise smooth, 392–393
plane tangent to, 392
simple, 389
smooth, 392–393
Stoke’s theorem for, 408–410
vector integral analysis of, 388–399,

408–410
Symmetric matrix, 273–275

Symmetry, Fourier transforms, 477
Systems of differential equations,

106–110, 187–246, 295–342
augmented matrix procedure for,

221–226
complex roots and, 306–308
diagonalization for, 314–315
electrical circuits, application of,

321–327
exponential matrix solutions,

316–318
fundamental matrix of, 300–301
general solutions of, 300, 302–306
homogeneous systems, 213–219,

296–312
Laplace transform for solutions of,

106–110
linear dependence and independence

of, 296–300, 308–312
linear, 187–246, 295–342
mass/spring systems, application of,

319–321
matrix operations for, 187–246,

295–342
matrix solutions of, 295–302
nonhomogeneous systems, 220–226,

301–302, 312–315
phase portraits, 329–341
reduced, 213–219
solution space of, 216–217
solutions of, 295–342
variation of parameters, method of

for, 312–314, 317–318

T
Tangent plane, 359–361, 392

gradient field ϕ, 359–361
surface, to a, 392

Tangent vector, 346–349
Taylor method of approximation,

142–144
Taylor series expansion, 718–722
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Temperature distribution, 612–624,
633–634, 655–658

boundary conditions, effects of on,
622–624

constants, effects of on, 622–624
diffusion in a semi-infinite bar,

633–634
diffusivity constant k, 623–624
heat equations for, 612–624
insulated ends, 614–615
radiating ends, 615–617
separation constant λ, 568
source term for, 619–622
steady-state equation for a sphere,

655–658
transformation of problems, 618–619
zero, 612–614

Terminal point, 367
Terminal velocity, first-order differential

equation applications for, 30–31
Three-point mapping theorem, 762–763
3-space, 152–154, 410–411

parametric equations for, 152–154
potential theory in, 410–411
vectors, 152–154

Time convolution, 480
Time-frequency localization, 485
Time reversal, Fourier transforms, 476
Time shifting, Fourier transforms,

475–476
Torricelli’s law, 12
Trajectories, 34–37

orthogonal, 34–35
pursuit problem for, 35–37

Transfer function, 487
Transient solution term, 19–20
Transition matrix, 317
Translation mapping, 758
Transpose of a matrix, 193–194
Triangle inequality, 672
Trigonometric functions, 684–688
Trivial solution, 219
Trivial subspace, 165

U
Unbounded regions, 649–653, 664–665

Dirichlet problem for, 649–653
Neumann problem for, 664–665

Underdamping, 65–67
Undetermined coefficients, method of,

57–60
Unforced spring motion, 62–66
Unit normal vector, 352–353
Unit tangent vector and, 350–352
Unit vector, 150
Unitary matrix, 286–288
Upper triangular matrix (U), 237

V
Vandermark’s determinant, 258
Variation of parameters, 55–56,

312–314, 317–318
exponential matrix solutions using,

317–318
Laplace transform and, 317–318
linear system solution using, 312–314
nonhomogeneous differential

equations and, 55–56, 312–314
Vector analysis, 343–423

Archimedes’s principle, 404–405
conservative vector fields, 380–387,

410–411
curl, 362–363, 365, 421–423
curvature κ(s), 349–354
curves, 349–354, 367–372, 392–393,

408–410
curvilinear coordinates, 414–423
del operator ∇ for, 356–357, 362–363
differential calculus, 345–366
divergence, 362–364, 401–407,

420–421
Gauss’s divergence theorem, 401–407
gradient field ϕ, 356–361
Green’s theorem, 374–380, 399–402
heat equation, 405–407
independence of path, 380–387
integral calculus, 367–423
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Vector analysis (Continued)
line integrals, 367–373
Maxwell’s equations, 411–413
planes, 380–387, 392
position vectors, 345–346
potential theory, 380–387, 410–413
Stoke’s theorem, 402, 408–413
streamlines, 354–356
surface integrals, 388–399
tangent vectors, 346–349
vector fields, 354–356
vector functions of one variable,

345–349
velocity v, 349–345

Vector fields, 354–356, 380–387,
410–411

conservative, 380–387
defined, 354
differential calculus use of, 354–356
domain D, 385–387
independent of the path, 380–387
integral calculus analysis and,

380–387, 410–411
planar test for conservative, 383–384
potential function ϕ of, 380–381
potential theory and, 380–387
streamlines and, 354–356
vector analysis and, 354–356,

380–387, 410–411
Vector space, 162–174, 181–186

basis, 172–173
coordinates of, 172–173
dimension, 172
function space C[a, b], 181–186
linear dependence and independence

theorem for, 167–170, 181–182
n-space(Rn), 162–174
orthogonal vectors, 164, 173–174
orthonormal vectors, 164, 173
spanning set for, 166–172
standard representation of, 165
subspace S, 165–174

Vectors, 147–186, 345–349, 793–796.
See also Eigenvectors

addition of, 149–152
Bessel’s inequality, 175
collinear points and, 161
components of, 147–148
coordinates of, 172–173
cross product of, 159–161
defined, 147
dot product of, 154–159, 163–164,

182–183
function space C[a, b], 181–186
length, 148
linear dependence and independence

theorem for, 167–170, 181–182
linear differential equations, 147–186
magnitude, 148
MAPLE commands for, 154–156,

160
MAPLE operations, 793–796
multiplication of, 148–149
n-space, 162–174
norm, 148
normal, 157
orthogonal, 156–158, 164, 173–180,

183–186
orthonormal, 164, 173
parallel, 149
parallelogram law applied to,

149–150, 152
parametric equations for, 152–154
Parseval’s inequality, 175
position, 345–346
projections, 158–159, 177–180
quadrilateral, 152
scalar algebra operations, 147–149
space, 162–174, 181–186
spanning set of, 166–172
standard representation of, 151, 165
subspace S, 165–174, 177–179
tangent, 346–349
3-space lines, 152–154
triangle inequality, 149–150
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unit, 150
zero, 149

Velocity v, 30–31, 37–38, 349–354,
568–570, 572–573, 579–581

acceleration a(t), 350
curvature κ(s) and, 349–354
defined, 349
first-order differential equation

applications for, 30–31, 37–38
nonzero initial, 572–573
speed v(t), 349
terminal, 30–31
unwinding chain, 37–38
vector analysis for, 349–354
wave motion and, 568–570, 572–573,

579–581
zero initial, 568–570, 579–581

Verhulst’s logistic equation, 15
Vibrations, 602–610

circular membranes, 602–608
frequencies of normal modes of, 604
normal modes of, 604–605
periodicity conditions, 605–606
rectangular membranes, 608–610
wave equations for, 602–610

Voltage law, Kirchhoff’s, 33
Vortex, 780

W
Walk (path), 195
Wave equation, 565–610

boundary conditions, 566–567
Cauchy problem for, 594–596
characteristics of, 594–601
d’Alembert’s solution for, 594–601
derivation of, 565–567
displacement function z(x , y, t), 567

forcing term, 567, 575–577
Fourier transforms for solution of,

582–584, 586–587
infinite medium, motion in a, 579–584
initial conditions, 566, 573–575
initial-boundary value problem for,

566
intervals, motion in, 567–577
Laplace transform techniques for,

587–593
one-dimensional equation, 566
position function y(x ,t), 565–567
semi-infinite medium, motion in a,

585–587
vibrations in a membrane,

applications of, 602–610
wave motion, 567–587, 596–610

Weight function p, 182–183, 511, 515
Weighted dot product, 515
Window function w(t), 483–485
Windowed Fourier transform, 483–485
Wronskian (W ), 46–47
Wronskian test, 46

Z
Zero function, 181
Zero initial displacement, 570–572,

581–582
Zero initial velocity, 568–570, 579–581
Zero matrix, 192
Zero temperature, heat equation for,

612–614
Zero vector, 149
Zeros of Bessel functions, 550–552
Zeros of Legendre polynomials,

528–569
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