
.

1
Overview

1–1

Chapter 1: OVERVIEW 1–2

TABLE OF CONTENTS

Page

§1.1. WHERE THIS MATERIAL FITS 1–3
§1.1.1. Computational Mechanics 1–3
§1.1.2. Statics vs. Dynamics 1–4
§1.1.3. Linear vs. Nonlinear 1–5
§1.1.4. Discretization methods. 1–5
§1.1.5. FEM Variants 1–5

§1.2. WHAT DOES A FINITE ELEMENT LOOK LIKE? 1–6

§1.3. THE FEM ANALYSIS PROCESS 1–7
§1.3.1. The Mathematical FEM 1–8
§1.3.2. The Physical FEM. 1–9
§1.3.3. Synergy of Physical and Mathematical FEM 1–9

§1.4. INTERPRETATIONS OF THE FINITE ELEMENT METHOD 1–11
§1.4.1. Physical Interpretation 1–11
§1.4.2. Mathematical Interpretation 1–12

§1.5. KEEPING THE COURSE 1–13

§1.6. *WHAT IS NOT COVERED 1–13

EXERCISES . 1–15

1–2

1–3 §1.1 WHERE THIS MATERIAL FITS

This book is an introduction to the analysis of linear elastic structures by the Finite Element Method
(FEM). It embodies three Parts:

I Finite Element Discretization: Chapters 2-11. This part provides an introduction to the
discretization and analysis of skeletal structures by the Direct Stiffness Method.

II Formulation of Finite Elements: Chapters 12-20. This part presents the formulation of
displacement assumed elements in one and two dimensions.

III Computer Implementation of FEM: Chapters 21-28. This part usesMathematicaas the
implementation language.

This Chapter presents an overview of where the book fits, and what finite elements are.

§1.1. WHERE THIS MATERIAL FITS

The field of Mechanics can be subdivided into three major areas:

Mechanics

{ Theoretical
Applied
Computational

(1.1)

Theoretical mechanicsdeals with fundamental laws and principles of mechanics studied for their
intrinsic scientific value.Applied mechanicstransfers this theoretical knowledge to scientific and
engineering applications, especially as regards the construction of mathematical models of physical
phenomena.Computational mechanicssolves specific problems by simulation through numerical
methods implemented on digital computers.

REMARK 1.1

Paraphrasing an old joke about mathematicians, one may define a computational mechanician as a person who
searches for solutions to given problems, an applied mechanician as a person who searches for problems that
fit given solutions, and a theoretical mechanician as a person who can prove the existence of problems and
solutions.

§1.1.1. Computational Mechanics

Several branches of computational mechanics can be distinguished according to thephysical scale
of the focus of attention:

Computational Mechanics




Nanomechanics and micromechanics

Continuum mechanics

{ Solids and Structures
Fluids
Multiphysics

Systems

(1.2)

Nanomechanics deals with phenomena at the molecular and atomic levels of matter. As such it
is closely interrelated with particle physics and chemistry. Micromechanics looks primarily at the
crystallographic and granular levels of matter. Its main technological application is the design and
fabrication of materials and microdevices.

1–3

Chapter 1: OVERVIEW 1–4

Continuum mechanics studies bodies at the macroscopic level, using continuum models in which
the microstructure is homogenized by phenomenological averages. The two traditional areas of
application are solid and fluid mechanics. The former includesstructureswhich, for obvious
reasons, are fabricated with solids. Computational solid mechanics takes a applied-sciences ap-
proach, whereas computational structural mechanics emphasizes technological applications to the
analysis and design of structures.

Computational fluid mechanics deals with problems that involve the equilibrium and motion of
liquid and gases. Well developed related areas are hydrodynamics, aerodynamics, atmospheric
physics, and combustion.

Multiphysics is a more recent newcomer. This area is meant to include mechanical systems that
transcend the classical boundaries of solid and fluid mechanics, as in interacting fluids and structures.
Phase change problems such as ice melting and metal solidification fit into this category, as do the
interaction of control, mechanical and electromagnetic systems.

Finally, systemidentifies mechanical objects, whether natural or artificial, that perform a distin-
guishable function. Examples of man-made systems are airplanes, buildings, bridges, engines,
cars, microchips, radio telescopes, robots, roller skates and garden sprinklers. Biological systems,
such as a whale, amoeba or pine tree are included if studied from the viewpoint of biomechanics.
Ecological, astronomical and cosmological entities also form systems.1

In this progression of (1.2) thesystemis the most general concept. A system is studied byde-
composition: its behavior is that of its components plus the interaction between the components.
Components are broken down into subcomponents and so on. As this hierarchical process continues
the individual components become simple enough to be treated by individual disciplines, but their
interactions may get more complex. Consequently there is a tradeoff art in deciding where to stop.2

§1.1.2. Statics vs. Dynamics

Continuum mechanics problems may be subdivided according to whether inertial effects are taken
into account or not:

Continuum mechanics

{
Statics
Dynamics

(1.3)

In dynamics the time dependence is explicitly considered because the calculation of inertial (and/or
damping) forces requires derivatives respect to actual time to be taken.

Problems in statics may also be time dependent but the inertial forces are ignored or neglected.
Static problems may be classified into strictly static and quasi-static. For the former time need not
be considered explicitly; any historical time-like response-ordering parameter (if one is needed)
will do. In quasi-static problems such as foundation settlement, creep deformation, rate-dependent

1 Except that their function may not be clear to us. “The usual approach of science of constructing a mathematical model
cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to
all the bother of existing?” (Stephen Hawking).

2 Thus in breaking down a car engine, say, the decomposition does not usually proceed beyond the components you can
buy at a parts shop.

1–4

1–5 §1.1 WHERE THIS MATERIAL FITS

plasticity or fatigue cycling, a more realistic estimation of time is required but inertial forces are
still neglected.

§1.1.3. Linear vs. Nonlinear

A classification of static problems that is particularly relevant to this book is

Statics
{

Linear
Nonlinear

Linear static analysis deals with static problems in which theresponseis linear in the cause-and-
effect sense. For example: if the applied forces are doubled, the displacements and internal stresses
also double. Problems outside this domain are classified as nonlinear.

§1.1.4. Discretization methods

A final classification of CSM static analysis is based on the discretization method by which the
continuum mathematical model isdiscretizedin space,i.e., converted to a discrete model of finite
number of degrees of freedom:

Spatial discretization method




Finite Element Method (FEM)
Boundary Element Method (BEM)
Finite Difference Method (FDM)
Finite Volume Method (FVM)
Spectral Method
Mesh-Free Method

(1.4)

For linear problems finite element methods currently dominate the scene, with boundary element
methods posting a strong second choice in specific application areas. Fornonlinearproblems the
dominance of finite element methods is overwhelming.

Classical finite difference methods in solid and structural mechanics have virtually disappeared
from practical use. This statement is not true, however, for fluid mechanics, where finite difference
discretization methods are still important. Finite-volume methods, which address finite volume
method conservation laws, are important in highly nonlinear problems of fluid mechanics. Spectral
methods are based on transforms that map space and/or time dimensions to spaces where the problem
is easier to solve.

A recent newcomer to the scene are the mesh-free methods. These are finite different methods on
arbitrary grids constructed through a subset of finite element techniques and tools.

§1.1.5. FEM Variants

The termFinite Element Methodactually identifies a broad spectrum of techniques that share
common features outlined in §1.3 and §1.4. Two subclassifications that fit well applications to
structural mechanics are

FEM Formulation




Displacement
Equilibrium
Mixed
Hybrid

FEM Solution

{ Stiffness
Flexibility
Mixed (a.k.a. Combined)

(1.5)

1–5

Chapter 1: OVERVIEW 1–6

(The distinction between these subclasses require advanced technical concepts, and will not be
covered here.)

Using the foregoing classification, we can state the topic of this book more precisely: thecomputa-
tional analysis of linear static structural problemsby the Finite Element Method. Of the variants
listed in (1.5), emphasis is placed on thedisplacementformulation andstiffnesssolution. This
combination is called theDirect Stiffness Methodor DSM.

§1.2. WHAT DOES A FINITE ELEMENT LOOK LIKE?

The subject of this book is FEM. But what is a finite element? The concept will be partly illustrated
through a truly ancient problem: find the perimeterL of a circle of diameterd. SinceL = π d,
this is equivalent to obtaining a numerical value forπ .

Draw a circle of radiusr and diameterd = 2r as in Figure 1.1(a). Inscribe a regular polygon ofn
sides, wheren = 8 in Figure 1.1(b). Rename polygon sides aselementsand vertices asnodal points
or nodes. Label nodes with integers 1, . . . 8. Extract a typical element, say that joining nodes 4–5
as shown in Figure 1.1(c). This is an instance of thegeneric element i– j shown in Figure 1.1(d).
The element length isLi j = 2r sin(π/n). Since all elements have the same length, the polygon
perimeter isLn = nLi j , whence the approximation toπ is πn = Ln/d = n sin(π/n).

1

2

3

4

5

6

7

8

r

4

5 i j

(a) (b) (c) (d)

d

r

2r sin(π/n)

2π/n

Figure 1.1. The “findπ ” problem treated with FEM concepts: (a) continuum
object, (b) a discrete approximation (inscribed regular polygon),
(c) disconnected element, (d), generic element.

Values ofπn obtained forn = 1, 2, 4, . . . 256 are listed in the second column of Table 1.1. As can
be seen the convergence toπ is fairly slow. However, the sequence can be transformed by Wynn’s
ε algorithm3 into that shown in the third column. The last value displays 15-place accuracy.

Some of the key ideas behind the FEM can be identified in this simple example. The circle, viewed
as asource mathematical object, is replaced by polygons. These arediscrete approximationsto
the circle. The sides, renamed aselements, are specified by their endnodes. Elements can be
separated by disconnecting the nodes, a process calleddisassemblyin the FEM. Upon disassembly

3 A widely used extrapolation algorithm that speeds up the convergence of many sequences. See, e.g, J. Wimp,Sequence
Transformations and Their Applications, Academic Press, New York, 1981.

1–6

1–7 §1.3 THE FEM ANALYSIS PROCESS

Table 1.1. Rectification of Circle by Inscribed Polygons (“Archimedes FEM”)

n πn = n sin(π/n) Extrapolated by Wynn-ε Exactπ to 16 places

1 0.000000000000000
2 2.000000000000000
4 2.828427124746190 3.414213562373096
8 3.061467458920718
16 3.121445152258052 3.141418327933211
32 3.136548490545939
64 3.140331156954753 3.141592658918053
128 3.141277250932773
256 3.141513801144301 3.141592653589786 3.141592653589793

ageneric elementcan be defined,independently of the original circle, by the segment that connects
two nodesi and j . The relevant element property: lengthLi j , can be computed in the generic
element independently of the others, a property calledlocal support in the FEM. Finally, the
desired property: the polygon perimeter, is obtained by reconnectingn elements and adding up
their length; the corresponding steps in the FEM beingassemblyandsolution, respectively. There
is of course nothing magic about the circle; the same technique can be be used to rectify any smooth
plane curve.4

This example has been offered in the FEM literature to aduce that finite element ideas can be
traced to Egyptian mathematicians fromcirca 1800 B.C., as well as Archimedes’ famous studies
on circle rectification by 250 B.C. But comparison with the modern FEM, as covered in Chapters
2–3, shows this to be a stretch. The example does not illustrate the concept of degrees of freedom,
conjugate quantities and local-global coordinates. It is guilty of circular reasoning: the compact
formulaπ = limn→∞ n sin(π/n) uses the unknownπ in the right hand side.5 Reasonable people
would argue that a circle is a simpler object than, say, a 128-sided polygon. Despite these flaws the
example is useful in one respect: showing a fielder’s choice in the replacement of one mathematical
object by another. This is at the root of the simulation process described in the next section.

§1.3. THE FEM ANALYSIS PROCESS

A model-based simulation process using FEM involves doing a sequence of steps. This sequence
takes two canonical configurations depending on the environment in which FEM is used. These
are reviewed next to introduce terminology.

4 A similar limit process, however, may fail in three or more dimensions.

5 This objection is bypassed ifn is advanced as a power of two, as in Table 1.1, by using the half-angle recursion
√

2 sinα =
√

1 −
√

1 − sin2 2α, started from 2α = π for which sinπ = −1.

1–7

Chapter 1: OVERVIEW 1–8

Discretization + solution error

REALIZATION

IDEALIZATION

solution error

Discrete
model

Discrete
solution

VERIFICATION

VERIFICATION

FEM

IDEALIZATION &
DISCRETIZATION

SOLUTION

Ideal
physical
 system

Mathematical
model

generally irrelevant

Figure 1.2. The Mathematical FEM. The mathematical model (top) is the source of the
simulation process. Discrete model and solution follow from it. The ideal
physical system (should one go to the trouble of exhibiting it) is inessential.

§1.3.1. The Mathematical FEM

The process steps are illustrated in Figure 1.2. The process centerpiece, from which everything
emanates, is themathematical model. This is often an ordinary or partial differential equation in
space and time. A discrete finite element model is generated from a variational or weak form of
the mathematical model.6 This is thediscretizationstep. The FEM equations are processed by an
equation solver, which delivers a discrete solution (or solutions).

On the left Figure 1.2 shows anideal physical system. This may be presented as arealizationof
the mathematical model; conversely, the mathematical model is said to be anidealizationof this
system. For example, if the mathematical model is the Poisson’s equation, realizations may be a
heat conduction or a electrostatic charge distribution problem. This step is inessential and may be
left out. Indeed FEM discretizations may be constructed without any reference to physics.

The concept oferror arises when the discrete solution is substituted in the “model” boxes. This
replacement is generically calledverification. The solution error is the amount by which the
discrete solution fails to satisfy the discrete equations. This error is relatively unimportant when
using computers, and in particular direct linear equation solvers, for the solution step. More
relevant is thediscretization error, which is the amount by which the discrete solution fails to
satisfy the mathematical model.7 Replacing into the ideal physical system would in principle
quantify modeling errors. In the mathematical FEM this is largely irrelevant, however, because the
ideal physical system is merely that: a figment of the imagination.

6 The distinction between strong, weak and variational forms is discussed in advanced FEM courses. In the present course
such forms will be stated as recipes.

7 This error can be computed in several ways, the details of which are of no importance here.

1–8

1–9 §1.3 THE FEM ANALYSIS PROCESS

Physical
 system

simulation error= modeling + solution error

solution error

Discrete
model

Discrete
solution

VALIDATION

VERIFICATION

FEM

CONTINUIFICATION

Ideal
Mathematical

model

IDEALIZATION &
DISCRETIZATION

SOLUTION

generally
irrelevant

Figure 1.3. The Physical FEM. The physical system (left) is the source of
the simulation process. The ideal mathematical model (should
one go to the trouble of constructing it) is inessential.

§1.3.2. The Physical FEM

The second way of using FEM is the process illustrated in Figure 1.3. The centerpiece is now
the physical systemto be modeled. Accordingly, this sequence is called thePhysical FEM. The
processes of idealization and discretization are carried outconcurrentlyto produce the discrete
model. The solution is computed as before.

Just like Figure 1.2 shows an ideal physical system, 1.3 depicts anideal mathematical model. This
may be presented as acontinuum limitor “continuification” of the discrete model. For some physical
systems, notably those well modeled by continuum fields, this step is useful. For others, such as
complex engineering systems, it makes no sense. Indeed FEM discretizations may be constructed
and adjusted without reference to mathematical models, simply from experimental measurements.

The concept oferror arises in the Physical FEM in two ways, known asverificationandvalidation,
respectively. Verification is the same as in the Mathematical FEM: the discrete solution is replaced
into the discrete model to get the solution error. As noted above this error is not generally important.
Substitution in the ideal mathematical model in principle provides the discretization error. This is
rarely useful in complex engineering systems, however, because there is no reason to expect that the
mathematical model exists, and if it does, that it is more physically relevant than the discrete model.
Validation tries to compare the discrete solution against observation by computing thesimulation
error, which combines modeling and solution errors. As the latter is typically insignificant, the
simulation error in practice can be identified with the modeling error.

One way to adjust the discrete model so that it represents the physics better is calledmodel updating.
The discrete model is given free parameters. These are determined by comparing the discrete
solution against experiments, as illustrated in Figure 1.4. Inasmuch as the minimization conditions
are generally nonlinear (even if the model is linear) the updating process is inherently iterative.

1–9

Chapter 1: OVERVIEW 1–10

Physical
 system

 simulation error

Parametrized
discrete
model

Experimental
database

Discrete
solution

FEM

EXPERIMENTS

Figure 1.4. Model updating process in the Physical FEM.

§1.3.3. Synergy of Physical and Mathematical FEM

The foregoing physical and mathematical sequences are not exclusive but complementary. This
synergy8 is one of the reasons behind the power and acceptance of the method. Historically the
Physical FEM was the first one to be developed to model very complex systems such as aircraft, as
narrated in Appendix H. The Mathematical FEM came later and, among other things, provided the
necessary theoretical underpinnings to extend FEM beyond structural analysis.

A glance at the schematics of a commercial jet aircraft makes obvious the reasons behind the
physical FEM. There is no differential equation that captures, at a continuum mechanics level,9 the
structure, avionics, fuel, propulsion, cargo, and passengers eating dinner.

There is no reason for despair, however. The time honoreddivide and conquerstrategy, coupled
with abstraction, comes to the rescue. First, separate the structure and view the rest as masses
and forces, most of which are time-varying and nondeterministic. Second, consider the aircraft
structure as built ofsubstructures:10 wings, fuselage, stabilizers, engines, landing gears, and so on.
Take each substructure, and continue to decompose it intocomponents: rings, ribs, spars, cover
plates, actuators, etc, continuing through as many levels as necessary. Eventually those components
become sufficiently simple in geometry and connectivity that they can be reasonably well described
by the continuum mathematical models provided, for instance, by Mechanics of Materials or the
Theory of Elasticity. At that point,stop. The component level discrete equations are obtained
from a FEM library based on the mathematical model. The system model is obtained by going
through the reverse process: from component equations to substructure equations, and from those
to the equations of the complete aircraft. Thissystem assemblyprocess is governed by the classical
principles of Newtonian mechanics expressed in conservation form.

This multilevel decomposition process is diagramed in Figure 1.5, in which the intermediate sub-
structure level is omitted for simplicity.

8 This interplay is not exactly a new idea: “The men of experiment are like the ant, they only collect and use; the reasoners
resemble spiders, who make cobwebs out of their own substance. But the bee takes the middle course: it gathers its
material from the flowers of the garden and field, but transforms and digests it by a power of its own.” (Francis Bacon,
1620).

9 Of course at the atomic and subatomic level quantum mechanics works for everything, from landing gears to passengers.
But it would be slightly impractical to model the aircraft by 1036 interacting particles.

10 A substructureis a part of a structure devoted to a specific function.

1–10

1–11 §1.4 INTERPRETATIONS OF THE FINITE ELEMENT METHOD

FEM Library

Component

discrete

model

Component

equations

Physical

 system

System

discrete

model

Complete

solution

Mathematical

model

SYSTEM

LEVEL

COMPONENT

LEVEL

Figure 1.5. Combining physical and mathematical modeling through
multilevel FEM. Only two levels (system and component) are
shown for simplicity; intermediate substructure levels are omitted.

REMARK 1.2

More intermediate decomposition levels are used in some systems, such as offshore and ship structures, which
are characterized by a modular fabrication process. In that case the decomposition mimics the way the system
is actually constructed. The general technique, calledsuperelements, is discussed in Chapter 11.

REMARK 1.3

There is no point in practice in going beyond a certain component level while considering the complete model,
since the level of detail can become overwhelming without adding significant information. Further refinement
or particular components is done by the so-called global-local analysis technique outlined in Chapter 11. This
technique is an instance of multiscale analysis.

For sufficiently simple structures, passing to a discrete model is carried out in a singleidealization
and discretizationstep, as illustrated for the truss roof structure shown in Figure 1.6. Multiple
levels are unnecessary here. Of course the truss may be viewed as a substructure of the roof, and
the roof as a a substructure of a building.

§1.4. INTERPRETATIONS OF THE FINITE ELEMENT METHOD

Just like there are two complementary ways of using the FEM, there are two complementary
interpretations for teaching it. One interpretation stresses the physical significance and is aligned
with the Physical FEM. The other focuses on the mathematical context, and is aligned with the
Mathematical FEM.

§1.4.1. Physical Interpretation

The physical interpretation focuses on the view of Figure 1.3. This interpretation has been shaped by
the discovery and extensive use of the method in the field of structural mechanics. This relationship

1–11

Chapter 1: OVERVIEW 1–12

joint

Physical System

support

member

IDEALIZATION

�
�
�
�
�
�

�
�

�
�

�
�

Figure 1.6. The idealization process for a simple structure. The physical
system, here a roof truss, is directly idealized by the mathematical
model: a pin-jointed bar assembly. For this particular structure,
the idealization coalesces with the discrete model.

is reflected in the use of structural terms such as “stiffness matrix”, “force vector” and “degrees of
freedom.” This terminology carries over to non-structural applications.

The basic concept in the physical interpretation is thebreakdown(≡ disassembly, tearing, partition,
separation, decomposition) of a complex mechanical system into simpler, disjoint components
called finite elements, or simplyelements. The mechanical response of an element is characterized
in terms of a finite number of degrees of freedom. These degrees of freedoms are represented as
the values of the unknown functions as a set of node points. The element response is defined by
algebraic equations constructed from mathematical or experimental arguments. The response of
the original system is considered to be approximated by that of thediscrete modelconstructed by
connectingor assemblingthe collection of all elements.

The breakdown-assembly concept occurs naturally when an engineer considers many artificial and
natural systems. For example, it is easy and natural to visualize an engine, bridge, aircraft or
skeleton as being fabricated from simpler parts.

As discussed in §1.3, the underlying theme isdivide and conquer. If the behavior of a system
is too complex, the recipe is to divide it into more manageable subsystems. If these subsystems
are still too complex the subdivision process is continued until the behavior of each subsystem is
simple enough to fit a mathematical model that represents well the knowledge level the analyst
is interested in. In the finite element method such “primitive pieces” are calledelements. The
behavior of the total system is that of the individual elements plus their interaction. A key factor
in the initial acceptance of the FEM was that the element interaction can be physically interpreted
and understood in terms that were eminently familiar to structural engineers.

§1.4.2. Mathematical Interpretation

This interpretation is closely aligned with the configuration of Figure 1.2. The FEM is viewed as
a procedure for obtaining numerical approximations to the solution of boundary value problems

1–12

1–13 §1.6 *WHAT IS NOT COVERED

(BVPs) posed over a domain
. This domain is replaced by the union∪ of disjoint subdomains

(e) called finite elements. In general the geometry of
 is only approximated by that of∪
(e).

The unknown function (or functions) is locally approximated over each element by an interpolation
formula expressed in terms of values taken by the function(s), and possibly their derivatives, at a
set ofnode pointsgenerally located on the element boundaries. The states of the assumed unknown
function(s) determined by unit node values are calledshape functions. The union of shape functions
“patched” over adjacent elements form atrial function basisfor which the node values represent the
generalized coordinates. The trial function space may be inserted into the governing equations and
the unknown node values determined by the Ritz method (if the solution extremizes a variational
principle) or by the Galerkin, least-squares or other weighted-residual minimization methods if the
problem cannot be expressed in a standard variational form.

REMARK 1.4

In the mathematical interpretation the emphasis is on the concept oflocal (piecewise) approximation. The
concept of element-by-element breakdown and assembly, while convenient in the computer implementation,
is not theoretically necessary. The mathematical interpretation permits a general approach to the questions
of convergence, error bounds, trial and shape function requirements, etc., which the physical approach leaves
unanswered. It also facilitates the application of FEM to classes of problems that are not so readily amenable
to physical visualization as structures; for example electromagnetics and thermal conduction.

REMARK 1.5

It is interesting to note some similarities in the development of Heaviside’s operational methods, Dirac’s
delta-function calculus, and the FEM. These three methods appeared as ad-hoc computational devices created
by engineers and physicists to deal with problems posed by new science and technology (electricity, quantum
mechanics, and delta-wing aircraft, respectively) with little help from the mathematical establishment. Only
some time after the success of the new techniques became apparent were new branches of mathematics
(operational calculus, distribution theory and piecewise-approximation theory, respectively) constructed to
justify that success. In the case of the finite element method, the development of a formal mathematical theory
started in the late 1960s, and much of it is still in the making.

§1.5. KEEPING THE COURSE

The first Part of this course, which is the subject of Chapters 2 through 11, stresses the physical
interpretation in the framework of the Direct Stiffness Method (DSM) on account of its instructional
advantages. Furthermore the computer implementation becomes more transparent because the
sequence of computer operations can be placed in close correspondence with the DSM steps.

Subsequent Chapters incorporate ingredients of the mathematical interpretation when it is felt
convenient to do so. However, the exposition avoids excessive entanglement with the mathematical
theory when it may obfuscate the physics.

A historical outline of the evolution of Matrix Structural Analysis into the Finite Element Method
is given in Appendix H, which provides appropriate references.

In Chapters 2 through 6 the time is frozen at about 1965, and the DSM presented as an aerospace
engineer of that time would have understood it. This is not done for sentimental reasons, although
that happens to be the year in which the writer began his thesis work on FEM under Ray Clough.
Virtually all finite element codes are now based on the DSM and the computer implementation has
not essentially changed since the late 1960s.

1–13

Chapter 1: OVERVIEW 1–14

§1.6. *WHAT IS NOT COVERED

The following topics are not covered in this book:

1. Elements based on equilibrium, mixed and hybrid variational formulations.

2. Flexibility and mixed solution methods of solution.

3. Kirchhoff-based plate and shell elements.

4. Continuum-based plate and shell elements.

5. Variational methods in mechanics.

6. General mathematical theory of finite elements.

7. Vibration analysis.

8. Buckling analysis.

9. General stability analysis.

10. General nonlinear response analysis.

11. Structural optimization.

12. Error estimates and problem-adaptive discretizations.

13. Non-structural and coupled-system applications of FEM.

14. Structural dynamics.

15. Shock and wave-propagation dynamics.

16. Designing and building production-level FEM software and use of special hardware (e.g. vector and
parallel computers)

Topics 1–7 pertain to what may be called “Advanced Linear FEM”, whereas 9–11 pertain to “Nonlinear FEM”.
Topics 12-15 pertain to advanced applications, whereas 16 is an interdisciplinary topic that interweaves with
computer science.

For pre-1990 books on FEM see Appendix G: Oldies but Goodies.

1–14

1–15 Exercises

Homework Exercises for Chapter 1

Overview

EXERCISE 1.1

[A:15] Do Archimedes’ problem using a circumscribed regular polygon, withn = 1, 2, . . . 256. Does the
sequence converge any faster?

EXERCISE 1.2

[D:20] Select one of the following vehicles: truck, car, motorcycle, or bicycle. Draw a two level decomposition
of the structure into substructures, and of selected components of some substructures.

1–15

.

2
The Direct

Stiffness Method:
Breakdown

2–1

Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 2–2

TABLE OF CONTENTS

Page

§2.1. WHY A PLANE TRUSS? 2–3

§2.2. TRUSS STRUCTURES 2–3

§2.3. IDEALIZATION 2–5

§2.4. JOINT FORCES AND DISPLACEMENTS 2–5

§2.5. THE MASTER STIFFNESS EQUATIONS 2–7

§2.6. BREAKDOWN 2–8
§2.6.1. Disconnection 2–8
§2.6.2. Localization 2–8
§2.6.3. Computation of Member Stiffness Equations 2–8

EXERCISES . 2–11

2–2

2–3 §2.2 TRUSS STRUCTURES

This Chapter begins the exposition of the Direct Stiffness Method (DSM) of structural analysis.
The DSM is by far the most common implementation of the Finite Element Method (FEM). In
particular, all major commercial FEM codes are based on the DSM.

The exposition is done by following the DSM steps applied to a simple plane truss structure.

§2.1. WHY A PLANE TRUSS?

The simplest structural finite element is the bar (also called linear spring) element, which is illustrated
in Figure 2.1(a). Perhaps the most complicated finite element (at least as regards number of degrees
of freedom) is the curved, three-dimensional “brick” element depicted in Figure 2.1(b).

(a) (b)

Figure 2.1. From the simplest to a highly complex structural finite element:
(a) 2-node bar element for trusses, (b) 64-node tricubic,
curved “brick” element for three-dimensional solid analysis.

Yet the remarkable fact is that, in the DSM, the simplest and most complex elements are treated
alike! To illustrate the basic steps of this democratic method, it makes educational sense to keep
it simple and use a structure composed of bar elements. A simple yet nontrivial structure is the
pin-jointed plane truss.1

Using a plane truss to teach the stiffness method offers two additional advantages:

(a) Computations can be entirely done by hand as long as the structure contains just a few elements.
This allows various steps of the solution procedure to be carefully examined and understood
before passing to the computer implementation. Doing hand computations on more complex
finite element systems rapidly becomes impossible.

(b) The computer implementation on any programming language is relatively simple and can be
assigned as preparatory computer homework.

§2.2. TRUSS STRUCTURES

Plane trusses, such as the one depicted in Figure 2.2, are often used in construction, particularly
for roofing of residential and commercial buildings, and in short-span bridges. Trusses, whether
two or three dimensional, belong to the class of skeletal structures. These structures consist of
elongated structural components called members, connected at joints. Another important subclass

1 A one dimensional bar assembly would be even simpler. That kind of structure would not adequately illustrate some of
the DSM steps, however, notably the back-and-forth transformations from global to local coordinates.

2–3

Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 2–4

joint

support

member

Figure 2.2. An actual plane truss structure. That shown is typical of a roof
truss used in residential building construction.

of skeletal structures are frame structures or frameworks, which are common in reinforced concrete
construction of building and bridges.

Skeletal structures can be analyzed by a variety of hand-oriented methods of structural analysis
taught in beginning Mechanics of Materials courses: the Displacement and Force methods. They
can also be analyzed by the computer-oriented FEM. That versatility makes those structures a good
choice to illustrate the transition from the hand-calculation methods taught in undergraduate courses,
to the fully automated finite element analysis procedures available in commercial programs.

In this and the following Chapter we will go over the basic steps of the DSM in a “hand-computer”
calculation mode. This means that although the steps are done by hand, whenever there is a
procedural choice we shall either adopt the way which is better suited towards the computer im-
plementation, or explain the difference between hand and computer computations. The actual
computer implementation using a high-level programming language is presented in Chapter 5.

Figure 2.3. The example plane truss structure, called “example truss”
in the sequel. It has three members and three joints.

To keep hand computations manageable in detail we use just about the simplest structure that can be
called a plane truss, namely the three-member truss illustrated in Figure 2.3. The idealized model
of the example truss as a pin-jointed assemblage of bars is shown in Figure 2.4(a), which also gives
its geometric and material properties. In this idealization truss members carry only axial loads,
have no bending resistance, and are connected by frictionless pins. Figure 2.4(b) displays support
conditions as well as the applied forces applied to the truss joints.

2–4

2–5 §2.4 JOINT FORCES AND DISPLACEMENTS

E (1) A(1) = 100

E (2) A(2) = 50
E (3) A(3) = 200

√
2

1

2

3

L(1) = 10

L(2) = 10
L(3) = 10

√
2

fx1, ux1

fy1, uy1

fx2, ux2

fy2, uy2

fx3, ux3

fy3, uy3

x

y

��� ���

fx3 = 2

fy3 = 1

1 2

3

(1)

(2)(3)

(a) (b)

Figure 2.4. Pin-jointed idealization of example truss: (a) geometric and
elastic properties, (b) support conditions and applied loads.

It should be noted that as a practical structure the example truss is not particularly useful — the
one depicted in Figure 2.2 is far more common in construction. But with the example truss we can
go over the basic DSM steps without getting mired into too many members, joints and degrees of
freedom.

§2.3. IDEALIZATION

Although the pin-jointed assemblage of bars (as depicted in Figure 2.4) is sometimes presented as
a real problem, it actually represents an idealization of a true truss structure. The axially-carrying
members and frictionless pins of this structure are only an approximation of a real truss. For
example, building and bridge trusses usually have members joined to each other through the use
of gusset plates, which are attached by nails, bolts, rivets or welds; see Figure 2.2. Consequently
members will carry some bending as well as direct axial loading.

Experience has shown, however, that stresses and deformations calculated for the simple idealized
problem will often be satisfactory for overall-design purposes; for example to select the cross section
of the members. Hence the engineer turns to the pin-jointed assemblage of axial force elements
and uses it to carry out the structural analysis.

This replacement of true by idealized is at the core of the physical interpretation of the finite element
method discussed in §1.4.

§2.4. JOINT FORCES AND DISPLACEMENTS

The example truss shown in Figure 2.3 has three joints, which are labeled 1, 2 and 3, and three
members, which are labeled (1), (2) and (3). These members connect joints 1–2, 2–3, and 1–3,
respectively. The member lengths are denoted by L(1), L(2) and L(3), their elastic moduli by E (1),
E (2) and E (3), and their cross-sectional areas by A(1), A(2) and A(3). Both E and A are assumed to
be constant along each member.

Members are generically identified by index e (because of their close relation to finite elements, see
below), which is usually enclosed in parentheses to avoid confusion with exponents. For example,

2–5

Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 2–6

the cross-section area of a generic member is A(e). Joints are generically identified by indices
such as i , j or n. In the general FEM, the name “joint” and “member” is replaced by node and
element, respectively. The dual nomenclature is used in the initial Chapters to stress the physical
interpretation of the FEM.

The geometry of the structure is referred to a common Cartesian coordinate system {x, y}, which
is called the global coordinate system. Other names for it in the literature are structure coordinate
system and overall coordinate system.

The key ingredients of the stiffness method of analysis are the forces and displacements at the joints.

In a idealized pin-jointed truss, externally applied forces as well as reactions can act only at the
joints. All member axial forces can be characterized by the x and y components of these forces,
which we call fx and fy , respectively. The components at joint i will be denoted as fxi and fyi ,
respectively. The set of all joint forces can be arranged as a 6-component column vector:

f =




fx1
fy1
fx2
fy2
fx3
fy3




. (2.1)

The other key ingredient is the displacement field. Classical structural mechanics tells us that the
displacements of the truss are completely defined by the displacements of the joints. This statement
is a particular case of the more general finite element theory.

The x and y displacement components will be denoted by ux and uy , respectively. The values of
ux and uy at joint i will be called uxi and uyi and, like the joint forces, they are arranged into a
6-component vector:

u =




ux1
uy1
ux2
uy2
ux3
uy3




. (2.2)

In the DSM these six displacements are the primary unknowns. They are also called the degrees of
freedom or state variables of the system.2

How about the displacement boundary conditions, popularly called support conditions? This data
will tell us which components of f and u are true unknowns and which ones are known a priori. In
structural analysis procedures of the pre-computer era such information was used immediately by
the analyst to discard unnecessary variables and thus reduce the amount of bookkeeping that had
to be carried along by hand.

2 Primary unknowns is the correct mathematical term whereas degrees of freedom has a mechanics flavor. The term state
variables is used more often in nonlinear analysis.

2–6

2–7 §2.5 THE MASTER STIFFNESS EQUATIONS

The computer oriented philosophy is radically different: boundary conditions can wait until the
last moment. This may seem strange, but on the computer the sheer volume of data may not be so
important as the efficiency with which the data is organized, accessed and processed. The strategy
“save the boundary conditions for last” will be followed here for the hand computations.

§2.5. THE MASTER STIFFNESS EQUATIONS

The master stiffness equations relate the joint forces f of the complete structure to the joint dis-
placements u of the complete structure before specification of support conditions.

Because the assumed behavior of the truss is linear, these equations must be linear relations that
connect the components of the two vectors. Furthermore it will be assumed that if all displacements
vanish, so do the forces.3

If both assumptions hold the relation must be homogeneous and be expressable in component form
as follows: 



fx1
fy1
fx2
fy2
fx3
fy3




=




Kx1x1 Kx1y1 Kx1x2 Kx1y2 Kx1x3 Kx1y3
Ky1x1 Ky1y1 Ky1x2 Ky1y2 Ky1x3 Ky1y3
Kx2x1 Kx2y1 Kx2x2 Kx2y2 Kx2x3 Kx2y3
Ky2x1 Ky2y1 Ky2x2 Ky2y2 Ky2x3 Ky2y3
Kx3x1 Kx3y1 Kx3x2 Kx3y2 Kx3x3 Kx3y3
Ky3x1 Ky3y1 Ky3x2 Ky3y2 Ky3x3 Ky3y3







ux1
uy1
ux2
uy2
ux3
uy3




. (2.3)

In matrix notation:
f = Ku. (2.4)

Here K is the master stiffness matrix, also called global stiffness matrix, assembled stiffness matrix,
or overall stiffness matrix. It is a 6 × 6 square matrix that happens to be symmetric, although this
attribute has not been emphasized in the written-out form (2.3). The entries of the stiffness matrix
are often called stiffness coefficients and have a physical interpretation discussed below.

The qualifiers (“master”, “global”, “assembled” and “overall”) convey the impression that there
is another level of stiffness equations lurking underneath. And indeed there is a member level or
element level, into which we plunge in the Breakdown section.

REMARK 2.1

Interpretation of Stiffness Coefficients. The following interpretation of the entries of K is highly valuable for
visualization and checking. Choose a displacement vector u such that all components are zero except the
i th one, which is one. Then f is simply the i th column of K. For instance if in (2.3) we choose ux2 as unit
displacement,

u =




0
0
1
0
0
0


 , f =




Kx1x2
Ky1x2
Kx2x2
Ky2x2
Kx3x2
Ky3x2


 . (2.5)

3 This assumption implies that the so-called initial strain effects, also known as prestress or initial stress effects, are
neglected. Such effects are produced by actions such as temperature changes or lack-of-fit fabrication, and are studied
in Chapter 4.

2–7

Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 2–8

1
2

3

(1)

(2)(3)

y

x x̄(1)

ȳ(1)

x̄(2
)

ȳ(2
)

x̄
(3)

ȳ
(3)

Figure 2.5. Breakdown of example truss into individual members (1), (2) and (3),
and selection of local coordinate systems.

Thus Ky1x2, say, represents the y-force at joint 1 that would arise on prescribing a unit x-displacement at joint
2, while all other displacements vanish.

In structural mechanics the property just noted is called interpretation of stiffness coefficients as displacement
influence coefficients, and extends unchanged to the general finite element method.

§2.6. BREAKDOWN

The first three DSM steps are: (1) disconnection, (2) localization, and (3) computation of member
stiffness equations. These are collectively called breakdown steps and are described below.

§2.6.1. Disconnection

To carry out the first step of the DSM we proceed to disconnect or disassemble the structure into
its components, namely the three truss members. This step is illustrated in Figure 2.5.

To each member e = 1, 2, 3 is assigned a Cartesian system {x̄ (e), ȳ(e)}. Axis x̄ (e) is aligned along
the axis of the eth member. See Figure 2.5. Actually x̄ (e) runs along the member longitudinal axis;
it is shown offset in that Figure for clarity. By convention the positive direction of x̄ (e) runs from
joint i to joint j , where i < j . The angle formed by x̄ (e) and x is called ϕ(e). The axes origin is
arbitrary and may be placed at the member midpoint or at one of the end joints for convenience.

These systems are called local coordinate systems or member-attached coordinate systems. In the
general finite element method they receive the name element coordinate systems.

§2.6.2. Localization

Next, we drop the member identifier (e) so that we are effectively dealing with a generic truss
member as illustrated in Figure 2.6. The local coordinate system is {x̄, ȳ}. The two end joints are
called i and j .

As shown in Figure 2.6, a generic truss member has four joint force components and four joint
displacement components (the member degrees of freedom). The member properties include the
length L , elastic modulus E and cross-section area A.

2–8

2–9 §2.6 BREAKDOWN

§2.6.3. Computation of Member Stiffness Equations

The force and displacement components of Figure 2.7(a) are linked by the member stiffness relations

f̄ = K ū, (2.6)

which written out in full is



f̄xi

f̄ yi

f̄x j

f̄ y j


 =




K̄xi xi K̄xiyi K̄xi x j K̄xiy j

K̄ yi xi K̄ yiyi K̄ yi x j K̄ yiy j

K̄x j xi K̄x j yi K̄x j x j K̄x j y j

K̄ y j xi K̄ y j yi K̄ y j x j K̄ y j y j







ūxi

ū yi

ūx j

ū y j


 . (2.7)

Vectors f̄ and ū are called the member joint forces and member joint displacements, respectively,
whereas K̄ is the member stiffness matrix or local stiffness matrix. When these relations are
interpreted from the standpoint of the FEM, “member” is replaced by “element” and “joint” by
”node.”

There are several ways to construct the stiffness matrix K̄ in terms of the element properties L , E
and A. The most straightforward technique relies on the Mechanics of Materials approach covered
in undergraduate courses. Think of the truss member in Figure 2.6(a) as a linear spring of equivalent
stiffness ks , an interpretation depicted in Figure 2.7(b). If the member properties are uniform along
its length, Mechanics of Materials bar theory tells us that4

ks = E A

L
, (2.8)

Consequently the force-displacement equation is

F = ksd = E A

L
d, (2.9)

where F is the internal axial force and d the relative axial displacement, which physically is the
bar elongation.

The axial force and elongation can be immediately expressed in terms of the joint forces and
displacements as

F = f̄x j = − f̄xi , d = ūx j − ūxi , (2.10)

which express force equilibrium5 and kinematic compatibility, respectively.

Combining (2.9) and (2.10) we obtain the matrix relation6

f̄ =




f̄xi

f̄ yi

f̄x j

f̄ y j


 = E A

L




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0







ūxi

ū yi

ūx j

ū y j


 = K ū, (2.11)

4 See for example, Chapter 2 of F. P. Beer and E. R. Johnston, Mechanics of Materials, McGraw-Hill, 2nd ed. 1992.

5 Equations F = f̄x j = − f̄xi follow by considering the free body diagram (FBD) of each joint. For example, take joint i
as a FBD. Equilibrium along x requires −F − f̄xi = 0 whence F = − f̄xi . Doing this on joint j yields F = f̄x j .

6 The detailed derivation of (2.11) is the subject of Exercise 2.3.

2–9

Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 2–10

i

i

i

j

j

j

(e)

d

(b)

(a)

L

x̄

ȳ

fxi , uxi

fy j , uyj

ks = E A/L

fyi , uyi

fx j , ux j

F−F

_ _

_ _ _ _

_ _

Figure 2.6. Generic truss member referred to its local coordinate system {x̄, ȳ}:
(a) idealization as bar element, (b) interpretation as equivalent spring.

Hence

K = E A

L




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0


 . (2.12)

This is the truss stiffness matrix in local coordinates.

Two other methods for obtaining the local force-displacement relation (2.9) are covered in Exercises
2.6 and 2.7.

In the following Chapter we will complete the main DSM steps by putting the truss back together
and solving for the unknown forces and displacements.

2–10

2–11 Exercises

Homework Exercises for Chapter 2

The Direct Stiffness Method: Breakdown

EXERCISE 2.1

[D:5] Explain why arbitrarily oriented mechanical loads on an idealized pin-jointed truss structure must be
applied at the joints. [Hint: idealized truss members have no bending resistance.] How about actual trusses:
can they take loads applied between joints?

EXERCISE 2.2

[A:15] Show that the sum of the entries of each row of the master stiffness matrix K of any plane truss, before
application of any support conditions, must be zero. [Hint: think of translational rigid body modes.] Does the
property hold also for the columns of that matrix?

EXERCISE 2.3

[A:15] Using matrix algebra derive (2.11) from (2.9) and (2.10).

EXERCISE 2.4

[A:15] By direct matrix multiplication verify that for the generic truss member f̄
T

ū = F d. Can you interpret
this result physically? (Interpretation hint: look at (E2.3) below]

EXERCISE 2.5

[A:20] The transformation equations between the 1-DOF spring and the 4-DOF generic truss member may
be written in compact matrix form as

d = Td ū, f̄ = F T f , (E2.1)

where Td is 1 × 4 and T f is 4 × 1. Starting from the identity f̄
T

ū = F d proven in the previous exercise, and
using compact matrix notation, show that T f = TT

d . Or in words: the displacement transformation matrix
and the force transformation matrix are the transpose of each other. (This is a general result.)

EXERCISE 2.6

[A:20] Derive the equivalent spring formula F = (E A/L) d of (2.9) by the Theory of Elasticity relations
e = dū(x̄)/dx̄ (strain-displacement equation), σ = Ee (Hooke’s law) and F = Aσ (axial force definition).
Here e is the axial strain (independent of x̄) and σ the axial stress (also independent of x̄). Finally, ū(x̄)

denotes the axial displacement of the cross section at a distance x̄ from node i , which is linearly interpolated
as

ū(x̄) = ūxi

(
1 − x̄

L

)
+ ūx j

x̄

L
(E2.2)

Justify that (E2.2) is correct since the bar differential equilibrium equation: d[A(dσ/dx̄)]/dx̄ = 0, is verified
for all x̄ if A is constant along the bar.

EXERCISE 2.7

[A:20] Derive the equivalent spring formula F = (E A/L) d of (2.9) by the principle of Minimum Potential
Energy (MPE). In Mechanics of Materials it is shown that the total potential energy of the axially loaded bar
is

 = 1
2

∫ L

0

A σ e dx̄ − Fd (E2.3)

where symbols have the same meaning as the previous Exercise. Use the displacement interpolation (E2.2),
the strain-displacement equation e = dū/dx̄ and Hooke’s law σ = Ee to express
 as a function
(d) of the
relative displacement d only. Then apply MPE by requiring that ∂
/∂d = 0.

2–11

.

3
The Direct

Stiffness Method:
Assembly and Solution

3–1

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–2

TABLE OF CONTENTS

Page

§3.1. INTRODUCTION 3–3

§3.2. ASSEMBLY 3–3
§3.2.1. Coordinate Transformations 3–3
§3.2.2. Globalization 3–4
§3.2.3. Assembly Rules 3–5
§3.2.4. Hand Assembly by Augmentation and Merge 3–6

§3.3. SOLUTION 3–8
§3.3.1. Applying Displacement BCs by Reduction 3–8
§3.3.2. Solving for Displacements 3–9

§3.4. POSTPROCESSING 3–10
§3.4.1. Recovery of Reaction Forces 3–10
§3.4.2. Recovery of Internal Forces and Stresses 3–10

§3.5. *COMPUTER ORIENTED ASSEMBLY AND SOLUTION 3–11
§3.5.1. *Assembly by Freedom Pointers 3–11
§3.5.2. *Applying Displacement BCs by Modification 3–11

EXERCISES . 3–13

3–2

3–3 §3.2 ASSEMBLY

§3.1. INTRODUCTION

Chapter 2 explained the breakdown of a truss structure into components called members or elements.
Upon deriving the stiffness relations at the element level in terms of the local coordinate system,
we are now ready to go back up to the original structure. This process is called assembly.

Assembly involves two substeps: globalization, through which the member stiffness equations are
transformed back to the global coordinate system, and merging of those equations into the global
stiffness equations. On the computer these steps are done concurrently, member by member. After
all members are processed we have the free-free master stiffness equations.

Next comes the solution. This process also embodies two substeps: application of boundary
conditions and solution for the unknown joint displacements. First, the free-free master stiffness
equations are modified by taking into account which components of the joint displacements and
forces are given and which are unknown. Then the modified equations are submitted to a linear
equation solver, which returns the unknown joint displacements. On some equation solvers, both
operations are done concurrently.

The solution step completes the DSM proper. Postprocessing steps may follow, in which derived
quantities such as internal forces are recovered from the displacement solution.

§3.2. ASSEMBLY

§3.2.1. Coordinate Transformations

Before describing the globalization step, we must establish matrix relations that connect joint
displacements and forces in the global and local coordinate systems. The necessary transformations
are easily obtained by inspection of Figure 3.1. For the displacements

ūxi = uxi c + uyi s, ū yi = −uxi s + uyi c,

ūx j = ux j c + uyj s, ū y j = −ux j s + uyj c,
. (3.1)

where c = cos ϕ, s = sin ϕ and ϕ is the angle formed by x̄ and x , measured positive counterclock-
wise from x . The matrix form of this relation is


ūxi
ū yi
ūx j
ū y j


 =




c s 0 0
−s c 0 0
0 0 c s
0 0 −s c







uxi
uyi
ux j
uyj


 . (3.2)

The 4×4 matrix that appears above is called a displacement transformation matrix and is denoted1

by T. The node forces transform as fxi = f̄xi c − f̄ yi s, etc., which in matrix form become




fxi
fyi
fx j
fy j


 =




c −s 0 0
s c 0 0
0 0 c −s
0 0 s c







f̄xi
f̄ yi

f̄x j

f̄ y j


 . (3.3)

1 This matrix will be called Td when its association with displacements is to be emphasized, as in Exercise 2.5.

3–3

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–4

i

j

ϕ

x̄ȳ

x

y

uxi

uyi

ux j

uyj

ūxiū yi

ūx j

ū y j

i

j

ϕ

fxi

fyi

fx j

fy j

f̄xif̄yi

f̄x j

f̄y j

Displacement
transformation

Force
transformation

Figure 3.1. The transformation of node displacement and force components
from the local system {x̄, ȳ} to the global system {x, y}.

The 4 × 4 matrix that appears above is called a force transformation matrix. A comparison of
(3.2) and (3.3) reveals that the force transformation matrix is the transpose TT of the displacement
transformation matrix T. This relation is not accidental and can be proved to hold generally.2

REMARK 3.1

Note that in (3.2) the local-system (barred) quantities appear on the left hand side, whereas in (3.3) they appear
on the right-hand side. The expressions (3.2) and (3.3) are discrete counterparts of what are called covariant
and contravariant transformations, respectively, in continuum mechanics. The counterpart of the transposition
relation is the adjointness property.

REMARK 3.2

For this particular structural element T is square and orthogonal, that is, TT = T−1. But this property does
not extend to more general elements. Furthermore in the general case T is not even a square matrix, and does
not possess an ordinary inverse. However the congruential transformation relations (3.4)-(3.6) hold generally.

§3.2.2. Globalization

From now on we reintroduce the member index, e. The member stiffness equations in global
coordinates will be written

f (e) = K(e)u(e). (3.4)

The compact form of (3.2) and (3.3) for the eth member is

ū(e) = T(e)u(e), f(e) = (T(e))T f̄
(e)

. (3.5)

Inserting these matrix expressions into (2.6) and comparing with (3.4) we find that the member

stiffness in the global system {x, y} can be computed from the member stiffness K̄
(e)

in the local

2 A simple proof that relies on the invariance of external work is given in Exercise 2.5. However this invariance was only
checked by explicit computation for a truss member in Exercise 2.4. The general proof relies on the Principle of Virtual
Work, which is discussed later.

3–4

3–5 §3.2 ASSEMBLY

system {x̄, ȳ} through the congruential transformation

K(e) = (T(e))T K̄
(e)

T(e). (3.6)

Carrying out the matrix multiplications we get

K(e) = E (e) A(e)

L(e)




c2 sc −c2 −sc
sc s2 −sc −s2

−c2 −sc c2 sc
−sc −s2 sc s2


 , (3.7)

in which c = cos ϕ(e), s = sin ϕ(e), with superscripts of c and s suppressed to reduce clutter. If
the angle is zero we recover (2.11), as may be expected. K(e) is called a member stiffness matrix in
global coordinates. The proof of (3.6) and verification of (3.7) is left as Exercise 3.1.

The globalized member stiffness matrices for the example truss can now be easily obtained by
inserting appropriate values into (3.7). For member (1), with end joints 1–2, angle ϕ = 0◦ and the
member data listed in Figure 2.4(a) we get




f (1)
x1

f (1)
y1

f (1)
x2

f (1)
y2


 = 10




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0







u(1)
x1

u(1)
y1

u(1)
x2

u(1)
y2


 . (3.8)

For member (2), with end joints 2–3, and angle ϕ = 90◦:




f (2)
x2

f (2)
y2

f (2)
x3

f (2)
y3


 = 5




0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1







u(2)
x2

u(2)
y2

u(2)
x3

u(2)
y3


 . (3.9)

Finally, for member (3), with end joints 1–3, and angle ϕ = 45◦:




f (3)
x1

f (3)
y1

f (3)
x3

f (3)
y3


 = 20




0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5

−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5







u(3)
x1

u(3)
y1

u(3)
x3

u(3)
y3


 . (3.10)

§3.2.3. Assembly Rules

The key operation of the assembly process is the “placement” of the contribution of each member
to the master stiffness equations. The process is technically called merging of individual members.
The merge operation can be physically interpreted as reconnecting that member in the process of
fabricating the complete structure. For a truss structure, reconnection means inserting the pins back
into the joints. This is mathematically governed by two rules of structural mechanics:

3–5

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–6

3 3
(a) (b)f3

f(2)
3

f(3)
3− f(2)

3
− f(3)

3
(3)

(2)

Figure 3.2. The force equilibrium of joint 3 of the example truss, depicted as a free body diagram
in (a). Here f3 is the known external joint force applied on the joint. Joint forces
f(2)

3 and f(3)

3 are applied by the joint on the members, as illustrated in (b). Consequently
the forces applied by the members on the joint are −f(2)

3 and −f(3)

3 . These forces
would act in the directions shown if both members (2) and (3) were in tension. The free-body
equilibrium statement is f3 − f(2)

3 − f(3)

3 = 0 or f3 = f(2)

3 + f(3)

3 . This translates into
the two component equations: fx3 = f (2)

x3 + f (3)

x3 and fy3 = f (2)

y3 + f (3)

y3 , of (3.11).

1. Compatibility of displacements: The joint displacements of all mem-
bers meeting at a joint are the same.

2. Force equilibrium: The sum of forces exerted by all members that meet
at a joint balances the external force applied to that joint.

The first rule is physically obvious: reconnected joints must move as one entity. The second one
can be visualized by considering a joint as a free body, but care is required in the interpretation of
joint forces and their signs. Notational conventions to this effect are explained in Figure 3.2 for
joint 3 of the example truss, at which members (2) and (3) meet. Application of the foregoing rules
at this particular joint gives

Rule 1: u(2)
x3 = u(3)

x3 , u(2)
y3 = u(3)

y3 .

Rule 2: fx3 = f (2)
x3 + f (3)

x3 = f (1)
x3 + f (2)

x3 + f (3)
x3 , fy3 = f (2)

y3 + f (3)
y3 = f (1)

y3 + f (2)
y3 + f (3)

y3 .

(3.11)

The addition of f (1)
x3 and f (1)

y3 to f (2)
x3 + f (3)

x3 and f (2)
y3 + f (3)

y3 , respectively, changes nothing because
member (1) is not connected to joint 3; we are simply adding zeros. But this augmentation enables
us to write the matrix relation: f = f(1) + f(2) + f(3), which will be used in (3.19).

§3.2.4. Hand Assembly by Augmentation and Merge

To directly visualize how the two assembly rules translate to member merging rules, we first augment
the member stiffness relations by adding zero rows and columns as appropriate to complete the force
and displacement vectors.

3–6

3–7 §3.2 ASSEMBLY

For member (1): 


f (1)
x1

f (1)
y1

f (1)
x2

f (1)
y2

f (1)
x3

f (1)
y3




=




10 0 −10 0 0 0
0 0 0 0 0 0

−10 0 10 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







u(1)
x1

u(1)
y1

u(1)
x2

u(1)
y2

u(1)
x3

u(1)
y3




. (3.12)

For member (2): 


f (2)
x1

f (2)
y1

f (2)
x2

f (2)
y2

f (2)
x3

f (2)
y3




=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 5 0 −5
0 0 0 0 0 0
0 0 0 −5 0 5







u(2)
x1

u(2)
y1

u(2)
x2

u(2)
y2

u(2)
x3

u(2)
y3




. (3.13)

For member (3):




f (3)
x1

f (3)
y1

f (3)
x2

f (3)
y2

f (3)
x3

f (3)
y3




=




10 10 0 0 −10 −10
10 10 0 0 −10 −10
0 0 0 0 0 0
0 0 0 0 0 0

−10 −10 0 0 10 10
−10 −10 0 0 10 10







u(3)
x1

u(3)
y1

u(3)
x2

u(3)
y2

u(3)
x3

u(3)
y3




. (3.14)

According to the first rule, we can drop the member identifier in the displacement vectors that
appear in the foregoing matrix equations. Hence




f (1)
x1

f (1)
y1

f (1)
x2

f (1)
y2

f (1)
x3

f (1)
y3




=




10 0 −10 0 0 0
0 0 0 0 0 0

−10 0 10 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







ux1

uy1

ux2

uy2

ux3

uy3


 , (3.15)




f (2)
x1

f (2)
y1

f (2)
x2

f (2)
y2

f (2)
x3

f (2)
y3




=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 5 0 −5
0 0 0 0 0 0
0 0 0 −5 0 5







ux1

uy1

ux2

uy2

ux3

uy3


 , (3.16)

3–7

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–8




f (3)
x1

f (3)
y1

f (3)
x2

f (3)
y2

f (3)
x3

f (3)
y3




=




10 10 0 0 −10 −10
10 10 0 0 −10 −10
0 0 0 0 0 0
0 0 0 0 0 0

−10 −10 0 0 10 10
−10 −10 0 0 10 10







ux1

uy1

ux2

uy2

ux3

uy3


 . (3.17)

These three equations can be represented in direct matrix notation as

f(1) = K(1) u, f(2) = K(2) u, f(3) = K(3) u. (3.18)

According to the second rule

f = f(1) + f(2) + f(3) = (
K(1) + K(2) + K(3)

)
u = Ku, (3.19)

so all we have to do is add the three stiffness matrices that appear above, and we arrive at the master
stiffness equations:




fx1

fy1

fx2

fy2

fx3

fy3


 =




20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15







ux1

uy1

ux2

uy2

ux3

uy3


 . (3.20)

Using this technique member merging becomes simply matrix addition.

This explanation of the assembly process is conceptually the easiest to follow and understand. It
is virtually foolproof for hand computations. However, this is not the way the process is carried
out on the computer because it would be enormously wasteful of storage for large systems. A
computer-oriented procedure is discussed in §3.5.

§3.3. SOLUTION

Having formed the master stiffness equations we can proceed to the solution phase. To prepare the
equations for an equation solver we need to separate known and unknown components of f and u.
In this Section a technique suitable for hand computation is described.

§3.3.1. Applying Displacement BCs by Reduction

If one attempts to solve the system (3.20) numerically for the displacements, surprise! The solution
“blows up” because the coefficient matrix (the master stiffness matrix) is singular. The mathematical
interpretation of this behavior is that rows and columns of K are linear combinations of each other
(see Remark 3.4 below). The physical interpretation of singularity is that there are still unsuppressed
rigid body motions: the truss “floats” in the {x, y} plane.

3–8

3–9 §3.3 SOLUTION

To eliminate rigid body motions and render the system nonsingular we must apply the support
conditions or displacement boundary conditions. From Figure 2.4(b) we observe that the support
conditions for the example truss are

ux1 = uy1 = uy2 = 0, (3.21)

whereas the known applied forces are

fx2 = 0, fx3 = 2, fy3 = 1. (3.22)

When solving the stiffness equations by hand, the simplest way to account for support conditions is
to remove equations associated with known joint displacements from the master system. To apply
(3.21) we have to remove equations 1, 2 and 4. This can be systematically accomplished by deleting
or “striking out” rows and columns number 1, 2 and 4 from K and the corresponding components
from f and u. The reduced three-equation system is

[10 0 0
0 10 10
0 10 15

] [ux2
ux3
uy3

]
=

[fx2
fx3
fy3

]
=

[0
2
1

]
. (3.23)

Equation (3.23) is called the reduced master stiffness system. The coefficient matrix of this system
is no longer singular.

REMARK 3.3

In mathematical terms, the free-free master stiffness matrix K in (3.20) has order N = 6, rank r = 3 and a
rank deficiency of d = N − r = 6 − 3 = 3 (these concepts are summarized in Appendix C.) The dimension
of the null space of K is d = 3. This space is spanned by three independent rigid body motions: the two rigid
translations along x and y and the rigid rotation about z.

REMARK 3.4

Conditions (3.21) represent the simplest type of support conditions, namely zero specified displacements.
Subsequent Chapters discuss how more general constraint forms, such as prescribed nonzero displacements
and multipoint constraints, are handled.

§3.3.2. Solving for Displacements

Solving the reduced system by hand (for example, via Gauss elimination) yields

[ux2
ux3
uy3

]
=

[0
0.4

−0.2

]
. (3.24)

This is called a partial displacement solution because it excludes suppressed displacement com-
ponents. This solution vector is expanded to six components by including the specified values

3–9

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–10

(3.21):

u =




0
0
0
0

0.4
−0.2


 (3.25)

This is called the complete displacement solution, or simply the displacement solution.

§3.4. POSTPROCESSING

The last major processing step of the DSM is the solution for joint displacements. But often the
analyst needs information on other mechanical quantities; for example the reaction forces at the
supports, or the internal member forces. Such quantities are said to be derived because they are
recovered from the displacement solution. The recovery of derived quantities is part of the so-called
postprocessing steps of the DSM. Two such steps are described below.

§3.4.1. Recovery of Reaction Forces

Premultiplying the complete displacement solution (3.25) by K we get

f = Ku =




20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15







0
0
0
0

0.4
−0.2


 =




−2
−2
0
1
2
1


 (3.26)

This vector recovers the known applied forces (3.22) as can be expected. Furthermore we get three
reaction forces: fx1 = fy1 = −2 and fy2 = 1, which are associated with the support conditions
(3.21). It is easy to check that the complete force system is in equilibrium; this is the topic of
Exercise 3.2.

§3.4.2. Recovery of Internal Forces and Stresses

Frequently the structural engineer is not primarily interested in displacements but in internal forces
and stresses. These are in fact the most important quantities for preliminary design.

In trusses the only internal forces are the axial member forces, which are depicted in Figure 3.3.
These forces are denoted by p(1), p(2) and p(3) and collected in a vector p. The average axial stress
σ (e) is easily obtained on dividing p(e) by the cross-sectional area of the member.

The axial force p(e) in member (e) can be obtained as follows. Extract the displacements of member
(e) from the displacement solution u to form u(e). Then recover local joint displacements from
ū(e) = T(e)u(e). Compute the deformation d (relative displacement) and recover the axial force
from the equivalent spring constitutive relation:

d(e) = ū(e)
x j − ū(e)

xi , p(e) = E (e) A(e)

L(e)
d(e). (3.27)

3–10

3–11 §3.5 *COMPUTER ORIENTED ASSEMBLY AND SOLUTION

1 2

3

p(1)

p(2)
p(3)

Figure 3.3. The internal forces in the example truss are the axial forces p(1), p(2) and
p(3) in the members. Signs shown for these forces correspond to tension.

An alternative interpretation of (3.27) is to regard e(e) = d(e)/L(e) as the (average) member axial
strain, σ (e) = E (e)e(e) as (average) axial stress, and p(e) = A(e)σ (e) as the axial force. This is more
in tune with the Theory of Elasticity viewpoint discussed in Exercise 2.6.

§3.5. *COMPUTER ORIENTED ASSEMBLY AND SOLUTION

§3.5.1. *Assembly by Freedom Pointers

The practical computer implementation of the DSM assembly process departs significantly from the “augment
and add” technique described in §3.2.4. There are two major differences:

(I) Member stiffness matrices are not expanded. Their entries are directly merged into those of K through
the use of a “freedom pointer array” called the Element Freedom Table or EFT.

(II) The master stiffness matrix K is stored using a special format that takes advantage of symmetry and
sparseness.

Difference (II) is a more advanced topic that is deferred to the last part of the book. For simplicity we shall
assume here that K is stored as a full square matrix, and study only (I). For the example truss the freedom-pointer
technique expresses the entries of K as the sum

Kpq =
3∑

e=1

K (e)
i j for i = 1, . . . 4, j = 1, . . . 4, p = EFT(e)(i), q = EFT(e)(j). (3.28)

Here K (e)
i j denote the entries of the 4 × 4 globalized member stiffness matrices in (3.9) through (3.11). Entries

Kpq that do not get any contributions from the right hand side remain zero. EFT(e) denotes the Element
Freedom Table for member (e). For the example truss these tables are

EFT(1) = {1, 2, 3, 4}, EFT(2) = {3, 4, 5, 6}, EFT(3) = {1, 2, 5, 6}. (3.29)

Physically these tables map local freedom indices to global ones. For example, freedom number 3 of member
(2) is ux3, which is number 5 in the master equations; consequently EFT(2)(3) = 5. Note that (3.28) involves
3 nested loops: over e (outermost), over i , and over j . The ordering of the last two is irrelevant. Advantage
may be taken of the symmetry of K(e) and K to roughly halve the number of additions. Exercise 3.6 follows
the process (3.28) by hand.

3–11

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–12

§3.5.2. *Applying Displacement BCs by Modification

In §3.3.1 the support conditions (3.21) were applied by reducing (3.20) to (3.23). Reduction is convenient for
hand computations because it cuts down on the number of equations to solve. But it has a serious flaw for
computer implementation: the equations must be rearranged. It was previously noted that on the computer
the number of equations is not the only important consideration. Rearrangement can be as or more expensive
than solving the equations, particularly if the coefficient matrix is stored in sparse form on secondary storage.

To apply support conditions without rearranging the equations we clear (set to zero) rows and columns
corresponding to prescribed zero displacements as well as the corresponding force components, and place
ones on the diagonal to maintain non-singularity. The resulting system is called the modified set of master
stiffness equations. For the example truss this approach yields


1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0 0
0 0 0 1 0 0
0 0 0 0 10 10
0 0 0 0 10 15







ux1

uy1

ux2

uy2

ux3

uy3


 =




0
0
0
0
2
1


 , (3.30)

in which rows and columns for equations 1, 2 and 4 have been cleared. Solving this modified system yields
the complete displacement solution (3.25).

REMARK 3.5

In a “smart” stiffness equation solver the modified system need not be explicitly constructed by storing zeros
and ones. It is sufficient to mark the equations that correspond to displacement BCs. The solver is then
programmed to skip those equations. However, if one is using a standard solver from, say, a library of
scientific routines or a commercial program such as Matlab or Mathematica, such intelligence cannot be
expected, and the modified system must be set up explicitly .

3–12

3–13 Exercises

Homework Exercises for Chapter 3

The Direct Stiffness Method: Assembly and Solution

EXERCISE 3.1

[A:20] Derive (3.6) from K̄
(e)

ū(e) = f̄
(e)

, (3.4) and (3.5). (Hint: premultiply both sides of K̄
(e)

ū(e) = f̄
(e)

by
an appropriate matrix). Then check by hand that using that formula you get (3.7). Use Falk’s scheme for the
multiplications.3

EXERCISE 3.2

[A:15] Draw a free body diagram of the nodal forces (3.26) acting on the free-free truss structure, and verify
that this force system satisfies translational and rotational (moment) equilibrium.

EXERCISE 3.3

[A:15] Using the method presented in §3.4.2 compute the axial forces in the three members of the example
truss. Partial answer: p(3) = 2

√
2.

EXERCISE 3.4

[A:20] Describe an alternative method that recovers the axial member forces of the example truss from
consideration of joint equilibrium, without going through the computation of member deformations.

EXERCISE 3.5

[A:20] Suppose that the third support condition in (3.21) is ux2 = 0 instead of uy2 = 0. Rederive the reduced
system (3.23) for this case. Verify that this system cannot be solved for the joint displacements uy2, ux3 and
uy3 because the reduced stiffness matrix is singular.4 Offer a physical interpretation of this failure.

EXERCISE 3.6

[N:20] Construct by hand the free-free master stiffness matrix of (3.20) using the freedom-pointer technique
(3.28). Note: start from K initialized to the null matrix, then cycle over e = 1, 2, 3.

�� ��S

H

x

y (2)(1)

1

2

3

ux2

uy2

S/2 S/2

E, A(1)
E, A(2)

fx2 = P

fy2 = 0

Figure E3.1. Truss structure for Exercise 3.7.

3 This scheme is recommended to do matrix multiplication by hand. It is explained in §B.3.2 of Appendix B.

4 A matrix is singular if its determinant is zero; cf. §C.2 of Appendix C for a “refresher” in that topic.

3–13

Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3–14

EXERCISE 3.7

[N:25] Consider the two-member arch-truss structure shown in Figure E3.1. Take span S = 8, height
H = 3, elastic modulus E = 1000, cross section areas A(1) = 2 and A(2) = 4, and horizontal crown force
P = fx2 = 12. Using the DSM carry out the following steps:

(a) Assemble the master stiffness equations. Any method: augment-and-add, or the more advanced “freedom
pointer” technique explained in §3.5.1, is acceptable.

(b) Apply the displacement BCs and solve the reduced system for the crown displacements ux2 and uy2.
Partial result: ux2 = 9/512 = 0.01758.

(c) Recover the node forces at all joints including reactions. Verify that overall force equilibrium (x forces,
y forces, and moments about any point) is satisfied.

(d) Recover the axial forces in the two members. Result should be p(1) = −p(2) = 15/2.

3–14

.

4
The Direct

Stiffness Method:
Additional Topics

4–1

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–2

TABLE OF CONTENTS

Page

§4.1. PRESCRIBED NONZERO DISPLACEMENTS 4–3
§4.1.1. Application of DBCs by Reduction 4–3
§4.1.2. *Application of DBCs by Modification 4–4
§4.1.3. *Matrix Forms of DBC Application Methods 4–5

§4.2. THERMOMECHANICAL EFFECTS 4–6
§4.2.1. Thermomechanical Behavior 4–7
§4.2.2. Thermomechanical Stiffness Equations 4–8
§4.2.3. Globalization 4–9
§4.2.4. Merge . 4–10
§4.2.5. Solution 4–10
§4.2.6. Postprocessing 4–10
§4.2.7. Worked-Out Example 1 4–11
§4.2.8. Worked-Out Example 2 4–11

§4.3. INITIAL FORCE EFFECTS 4–13

§4.4. PSEUDOTHERMAL INPUTS 4–13

EXERCISES . 4–15

4–2

4–3 §4.1 PRESCRIBED NONZERO DISPLACEMENTS

Chapters 2 and 3 presented the “core” steps of the Direct Stiffness Method (DSM). These steps were
illustrated with the hand analysis of a plane truss structure. This Chapter covers some topics that
were left out from Chapters 2–3 for clarity. These include: the imposition of prescribed nonzero
displacements, and the treatment of thermal effects.

§4.1. PRESCRIBED NONZERO DISPLACEMENTS

The support conditions considered in the example truss of Chapters 2–3 resulted in the specification
of zero displacement components; for example uy2 = 0. There are cases, however, where the known
value is nonzero. This happens, for example, in the study of settlement of foundations of ground
structures such as buildings and bridges, and in the analysis of driven machinery components.
Mathematically these are called non-homogenous boundary conditions. The treatment of this
generalization of the FEM equations is studied in the following subsections.

§4.1.1. Application of DBCs by Reduction

We describe first a reduction technique, analogous to that explained in §3.2.1, which is suitable for
hand computations. Recall the master stiffness equations (3.20) for the example truss:

20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15




ux1

uy1

ux2

uy2

ux3

uy3

 =


fx1

fy1

fx2

fy2

fx3

fy3

 (4.1)

Suppose that the applied forces are as for the example truss but the prescribed displacements are

ux1 = 0, uy1 = −0.5, uy2 = 0.4 (4.2)

This means that joint 1 goes down vertically whereas joint 2 goes up vertically, as depicted in
Figure 4.1. Inserting the known data into (4.1) we get

20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15




0

−0.5
ux2

0.4
ux3

uy3

 =


fx1

fy1

0
fy2

2
1

 (4.3)

The first, second and fourth rows of (4.3) are removed, leaving only

[−10 0 10 0 0 0
−10 −10 0 0 10 10
−10 −10 0 −5 10 15

] 
0

−0.5
ux2

0.4
ux3

uy3

 =
[0

2
1

]
(4.4)

4–3

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–4

�
�
�
� �
�

�
�

fx3 = 2

fy3 = 1

1 2

3

uy1 = −0.5

uy2 = 0.4

ux1 = 0

going up

going down
no horizontal motion

Figure 4.1. The example truss with prescribed nonzero vertical displacements at joints 1 and 2.

Columns 1, 2 and 4 are removed by transferring all known terms from the left to the right hand side:[10 0 0
0 10 10
0 10 15

] [ux2

ux3

uy3

]
=

[0
2
1

]
−

[
(−10) × 0 + 0 × (−0.5) + 0 × 0.4

(−10) × 0 + (−10) × (−0.5) + 0 × 0.4
(−10) × 0 + (−10) × (−0.5) + (−5) × 0.4

]
=

[0
−3
−2

]
.

(4.5)

The matrix equation (4.5) is the reduced system. Note that its coefficient matrix is exactly the
same as in the reduced system (3.23) for prescribed zero displacements. The right hand side,
however, is different. It consists of the applied joint forces modified by the effect of known nonzero
displacements. Solving the reduced system yields[ux2

ux3
uy3

]
=

[0
−0.5
0.2

]
. (4.6)

Filling the missing slots with the known values (4.2) yields the complete displacement solution

u =


0

−0.5
0

0.4
−0.5
0.2

 (4.7)

Going through the postprocessing steps discussed in §3.3 with (4.7), we can find that the reaction
forces and the internal member forces do not change. This is a consequence of the fact that the
example truss is statically determinate. The force systems (internal and external) in such structures
are insensitive to movements such as foundation settlements.

4–4

4–5 §4.1 PRESCRIBED NONZERO DISPLACEMENTS

§4.1.2. *Application of DBCs by Modification

The computer-oriented modifification approach follows the same idea outlined in §3.5.2. As there, the main
objective is to avoid rearranging the master stiffness equations. To understand the process it is useful to think
of being done in two stages. First equations 1, 2 and 4 are modified so that they become trivial equations, as
illustrated for the example truss and the support conditions (4.2):

1 0 0 0 0 0
0 1 0 0 0 0

−10 0 10 0 0 0
0 0 0 1 0 0

−10 −10 0 0 10 10
−10 −10 0 −5 10 15




ux1

ux2

ux2

uy2

ux3

uy3

 =


0

−0.5
0

0.4
2
1

 (4.8)

The solution of this system recovers (4.2) by construction (for example, the fourth equation is simply 1×uy2 =
0.4). In the next stage, columns 1, 2 and 4 of the coefficient matrix are cleared by transferring all known terms
to the right hand side, following the same procedure explained in (4.5). We thus arrive at

1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0 0
0 0 0 1 0 0
0 0 0 0 10 10
0 0 0 0 10 15




ux1

ux2

ux2

uy2

ux3

uy3

 =


0

−0.5
0

0.4
−3
−2

 (4.9)

As before, this is called the modified master stiffness system. Observe that the equations retain the original
order. Solving this system yields the complete displacement solution (4.7).

Note that if all prescribed displacements are zero, forces on the right hand side are not modified, and one
would recover (3.30).

REMARK 4.1

The modification is not actually programmed as discussed above. First the applied forces in the right-hand
side are modified for the effect of nonzero prescribed displacements, and the prescribed displacements stored
in the reaction-force slots. This is called the force modification procedure. Second, rows and columns of the
stiffness matrix are cleared as appropriate and ones stored in the diagonal positions. This is called the stiffness
modification procedure. It is essential that the procedures be executed in the indicated order, because stiffness
terms must be used to modify forces before they are cleared.

§4.1.3. *Matrix Forms of DBC Application Methods

The reduction and modification techniques for applying DBCs can be presented in compact matrix form. The
free-free master stiffness equations Ku = f are partitioned as follows:[

K11 K12

K21 K22

] [
u1
u2

]
=

[
f1

f2

]
. (4.10)

In this matrix equation, subvectors u2 and f1 collect displacement and force components, respectively, that are
known, given or prescribed. On the other hand, subvectors u1 and f2 collect force and displacement components,
respectively, that are unknown. The force components in f2 are reactions on supports; consequently f2 is called
the reaction force vector.

4–5

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–6

On transferring the known terms to the right hand side the first matrix equation becomes

K11u1 = f1 − K12u2. (4.11)

This is the reduced master equation system. If the displacement B.C. are homogeneous (that is, all prescribed
displacements are zero), u2 = 0, and we do not need to change the right-hand side:

K11u1 = f1. (4.12)

Examples that illustrate (4.11) and (4.12) are (4.5) and (3.23), respectively.

The computer-oriented modification technique retains the same joint displacement vector as in (4.10) through
the following rearrangement: [

K11 0
0 I

] [
u1

u2

]
=

[
f1 − K12u2

u2

]
, (4.13)

This modified system is simply the reduced equation (4.11) augmented by the trivial equation Iu2 = u2. This
system is often denoted as

K̂u = f̂. (4.14)

Solving (4.14) yields the complete displacement solution including the specified displacements u2.

For the computer implemenmtation it is important to note that the partitioned form (4.10) is used only to
facilitate the use of matrix notation. The equations are not explicitly rearranged and retain their original
numbers. For instance, in the example truss

u1 =
[

ux1

uy1

uy2

]
≡

[
DOF #1
DOF #2
DOF #4

]
, u2 =

[
ux2

ux3

uy3

]
≡

[
DOF #3
DOF #5
DOF #6

]
. (4.15)

The example shows that u1 and u2 are generally interspersed throughout u. Thus, matrix operations such as
K12u2 required indirect (pointer) addressing to avoid explicit array rearrangements.

§4.2. THERMOMECHANICAL EFFECTS

The assumptions invoked in Chapters 2-3 for the example truss result in zero external forces under
zero displacements. This is implicit in the linear-homogeneous expression of the master stiffness
equation f = Ku. If u vanishes, so does f. This behavior does not apply, however, if there are initial
force effects.1 If those effects are present, there can be displacements without external forces, and
internal forces without displacements.

A common source of initial force effects are temperature changes. Imagine that a plane truss
structure is unloaded (that is, not subjected to external forces) and is held at a uniform reference
temperature. External displacements are measured from this environment, which is technically
called a reference state. Now suppose that the temperature of some members changes with respect
to the reference temperature while the applied external forces remain zero. Because the length
of members changes on account of thermal expansion or contraction, the joints will displace. If
the structure is statically indeterminate those displacements will induce strains and stresses and
thus internal forces. These are distinguished from mechanical effects by the qualifier “thermal.”

1 Called initial stress or initial strain effects by many authors. These names reflect what is viewed as the physical source
of initial force effects at the continuum level.

4–6

4–7 §4.2 THERMOMECHANICAL EFFECTS

i j

(e)

(b)

(a)

L

x̄

ȳ

fxi , uxi

fy j , uyj

ks = E A/L

fyi , uyi

fx j , ux j

F− F

�Tα ,

L + dM + dT

d = dM + dT

Figure 4.2. Generic truss member subjected to mechanical and thermal effects:
(a) idealization as bar, (b) idealization as equivalent linear spring.

For many structures, particularly in aerospace and mechanical engineering, such effects have to be
considered in the analysis and design.

There are other physical sources of initial force effects, such as moisture (hygrosteric) effects,2

member prestress, residual stresses, or lack of fit. For linear structural models all such sources may
be algebraically treated in the same way as thermal effects. The treatment results in an initial force
vector that has to be added to the applied mechanical forces. This subject is outlined in §4.3 from
a general perspective. However, to describe the main features of the matrix analysis procedure it is
sufficient to consider the case of temperature changes.

In this Section we go over the analysis of a plane truss structure whose members undergo temperature
changes from a reference state. It is assumed that the disconnection and localization steps of the
DSM have been carried out. Therefore we begin with the derivation of the matrix stiffness equations
of a generic truss member.

§4.2.1. Thermomechanical Behavior

Consider the generic plane-truss member shown in Figure 4.2. The member is prismatic and
uniform. The temperature T is also uniform. For clarity the member identification subscript will
be omitted in the following development until the transformation-assembly steps.

We introduce the concept of reference temperature Tre f . This is conventionally chosen to be the
temperature throughout the structure at which the displacements, strains and stresses are zero if

2 These are important in composite materials and geomechanics.

4–7

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–8

i j

p = pM + pT F = f̄xj− F = f̄xi

Figure 4.3. Equilibrium of truss member under thermomechanical forces.

no mechanical forces are applied. In structures such as buildings and bridges Tref is often taken
to be the mean temperature during the construction period. Those zero displacements, strains and
stresses, together with Tref , define the thermomechanical reference state for the structure.

The member temperature variation from that reference state is �T = T −Tref . This may be positive
or negative. If the member is disassembled or disconnected, under this variation the member length
is free to change from L to L + dT . If the thermoelastic constitutive behavior is linear3 then dT is
proportional to L and �T :

dT = αL �T . (4.16)

Here α is the coefficient of thermal expansion, which has physical units of one over temperature.
This coefficient will be assumed to be uniform over the generic member. It may, however, vary
from member to member. The thermal strain is defined as

eT = dT /L = α �T . (4.17)

Now suppose that the member is also subject to mechanical forces, more precisely the applied axial
force F shown in Figure 4.2. The member axial stress is σ = F/A. In response to this stress
the length changes by dM . The mechanical strain is eM = dM/L . The total strain e = d/L =
(dM + dT)/L is the sum of the mechanical and the thermal strains:

e = eM + eT = σ

E
+ α�T (4.18)

This superposition of deformations is the basic assumption made in the thermomechanical analysis.
It is physically obvious for an unconstrained member such as that depicted in Figure 4.2.

At the other extreme, suppose that the member is completely blocked against axial elongation; that
is, d = 0 but �T 	= 0. Then e = 0 and eM = −eT . If α > 0 and �T > 0 the blocked member
goes in compression because σ = EeM = −EeT = −Eα �T < 0. This thermal stress is further
discussed in Remark 4.2.

§4.2.2. Thermomechanical Stiffness Equations

Because e = d/L and d = ūx j − ūxi , (4.18) can be developed as

ūx j − ūxi

L
= σ

E
+ α �T, (4.19)

3 An assumption justified if the temperature changes are small enough so that α is approximately constant through the
range of interest, and no material phase change effects occur.

4–8

4–9 §4.2 THERMOMECHANICAL EFFECTS

To pass to internal forces (4.19) is multiplied through by E A:

E A

L
(ūx j − ūxi) = Aσ + E A α �T = pM + pT = p = F. (4.20)

Here pM = Aσ denotes the mechanical axial force, and pT = E A α �T , which has the dimension
of a force, is called (not surprisingly) the internal thermal force. The sum p = pM + pT is called
the effective internal force. The last relation in (4.20), F = p = pM + pT follows from free-body
member equilibrium; see Figure 4.3. Passing to matrix form:

F = E A

L
[−1 0 1 0]


ūxi

ū yi

ū yi

ū y j

 . (4.21)

Noting that F = f̄x j = − f̄xi while f̄ yi = f̄ y j = 0, we can relate joint forces to joint displacements
as  f̄xi

f̄ yi

f̄x j

f̄ y j

 =

−F
0
F
0

 =

 f̄Mxi

f̄Myi

f̄Mx j

f̄Myj

 + Eα �T

−1
0
1
0

 = E A

L

 1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0


 ūxi

ū yi

ūx j

ū y j

 , (4.22)

In compact matrix form this is f̄ = f̄M + f̄T = K̄ū, or

K̄ū = f̄M + f̄T . (4.23)

Here K̄ is the same member stiffness matrix derived in §2.6.3. The new ingredient that appears is
the vector

f̄T = E A α �T


−1
0
1
0

 , (4.24)

This is called the vector of thermal joint forces in local coordinates. It is an instance of an initial
force vector at the element level.

REMARK 4.2

A useful physical interpretation of (4.23) is as follows. Suppose that the member is completely blocked against
joint motions so that ū = 0. Then f̄M + f̄T = 0 or f̄M = −f̄T . It follows that fT contains the negated joint
forces (internal forces) that develop in a heated or cooled bar if joint motions are precluded. Because for
most materials α > 0, rising the temperature of a blocked bar — that is, �T > 0 — produces an internal
compressive thermal force pT = AσT = −E AαT , in accordance with the expected physics. The quantity
σT = −Eα �T is the thermal stress. This stress can cause buckling or cracking in severely heated structural
members that are not allowed to expand or contract. This motivates the use of expansion joints in pavements,
buildings and rails, and roller supports in long bridges.

4–9

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–10

§4.2.3. Globalization

At this point we restore the member superscript so that the member stiffness equations(4.22) are
rewritten as

K̄
(e)

ū(e) = f̄
(e)
M + f̄

(e)
T . (4.25)

Use of the transformation rules developed in §3.1 to change displacements and forces to the global
system {x, y} yields

K(e)u(e) = f(e)M + f(e)T , (4.26)

where T(e) is the displacement transformation matrix (3.1), and the transformed quantities are

K(e) = (
T(e)

)T
K̄

(e)
T(e), f(e)M = (

T(e)
)T

f̄
(e)

, f(e)T = (
T(e)

)T
f̄
(e)
T . (4.27)

These globalized member equations are used to assemble the free-free master stiffness equations
by a member merging process.

§4.2.4. Merge

The merge process is based on the same assembly rules stated in §3.1.3 with only one difference:
thermal forces are added to the right hand side. The member by member merge is carried out
much as described as in §3.1.4, the main difference being that the thermal force vectors f(e)T are also
merged into a master thermal force vector.4 Upon completion of the assembly process we arrive at
the free-free master stiffness equations

Ku = fM + fT = f. (4.28)

§4.2.5. Solution

The master system (4.28) has formally the same configuration as the master stiffness equations (2.3).
The only difference is that the effective joint force vector f contains a superposition of mechanical
and thermal forces.

Displacement boundary conditions can be applied by reduction or modification of these equations,
simply by using effective joint forces in the descriptions of §3.2.1, §3.4.1 and §4.1. Processing the
reduced or modified system by a linear equation solver yields the displacement solution u.

§4.2.6. Postprocessing

The postprocessing steps described in §3.4 require some modifications because the derived quanti-
ties of interest to the structural engineer are mechanical reaction forces and internal forces. Effective
forces by themselves are of little use in design.

Mechanical joint forces including reactions are recovered from

fM = Ku − fT (4.29)

4 An illustrative example is provided in §4.2.7.

4–10

4–11 §4.2 THERMOMECHANICAL EFFECTS

�� ���

�
�

�
�

P = 90
1 2 3

(1) (2)

E = 1000, A = 12, α = 0.0005 for both
members; ∆T = 25, ∆T = −10Ο Ο(1) (2)

L = 4 L = 6(1) (2)
x̄ // x

ȳ // y

Figure 4.4. Structure for worked-out Example 1.

To recover mechanical internal forces in member (e), obtain p(e) by the procedure outlined in
§3.4.2, and subtract the thermal component:

p(e)
M = p(e) − E (e) A(e)α(e) �T (e). (4.30)

The mechanical axial stress is then σ (e) = p(e)
M /A(e).

§4.2.7. Worked-Out Example 1

The first problem is defined in Figure 4.4. Two truss members are connected in series as shown and fixed at
the ends. Properties E = 1000, A = 5 and α = 0.0004 are common to both members. The member lengths
are 4 and 6. A mechanical load P = 90 acts on the roller node. The temperature of member (1) increases by
�T (1) = 25◦ while that of member (2) drops by �T (2) = −10◦. Find the stress in the members.

To reduce clutter note that all y motions are suppressed so only the x freedoms are kept: ux1 = u1, ux2 = u2

and ux3 = u3. The corresponding node forces are denoted fx1 = f1, fx2 = f2 and fx3 = f3. The thermal
force vectors, stripped to their x̄ ≡ x components, are

f̄
(1)

T =
[f̄ (1)

T 1

f̄ (1)

T 2

]
= E (1)A(1)α(1)�T (1)

[−1
1

]
=

[−150
150

]
, f̄

(2)

T =
[f̄ (2)

T 2

f̄ (2)

T 3

]
= E (2)A(2)α(2)�T (2)

[−1
1

]
=

[
60

−60

]
.

(4.31)

The element stiffness equations are:

3000
[

1 −1
−1 1

] [ū(1)

1

ū(1)

2

]
=

[f̄ (1)

M1

f̄ (1)

M2

]
+

[−150
150

]
, 2000

[
1 −1

−1 1

] [ū(2)

2

ū(2)

3

]
=

[f̄ (2)

M2

f̄ (2)

M3

]
+

[
60

−60

]
, (4.32)

No globalization is needed because the equations are already in the global system, and thus we get rid of the
local symbols: f̄ → f , ū → u. Assembling:

1000

[
3 −3 0

−3 5 −2
0 −2 2

][
u1

u2

u3

]
=

[
fM1

fM2

fM3

]
+

[−150
150 + 60

−60

]
=

[
fM1

fM2

fM3

]
+

[−150
210
−60

]
. (4.33)

The displacement boundary conditions are u1 = u3 = 0. The mechanical force boundary condition is fM2 =
90. On removing the first and third equations, the reduced system is 5000 u2 = fM2 +210 = 90+210 = 300,
which yields u2 = 300/5000 = +0.06. The internal forces in the members are recovered from

p(1)

M = E (1) A(1)

L (1)
(u2 − u1) − E (1)A(1)α(1)�T (1) = 3000 × 0.06 − 12000 × 0.0004 × 25 = 60,

p(2)

M = E (2) A(2)

L (2)
(u3 − u2) − E (2)A(2)α(2)�T (2) = 2000 × (−0.06) − 12000 × 0.0004 × (−10) = −72,

(4.34)

whence σ (1) = 60/12 = 5 and σ (2) = −72/12 = −6. Member (1) is in tension and member (2) in
compression.

4–11

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–12

§4.2.8. Worked-Out Example 2

The second example concerns the example truss of Chapters 2-3. The truss is mecanically unloaded, that is,
fMx2 = fMx3 = fMy3 = 0. However the temperature of members (1) (2) and (3) changes by �T , −�T and
3�T , respectively, with respect to Tref . The thermal expansion coefficient of all three members is assumed to
be α. We will perform the analysis keeping α and �T as variables.

The thermal forces for each member in global coordinates are obtained by using (4.25) and the third of (4.27):

f(1)

T = E (1) A(1)α(1) �T (1)

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1

0
1
0

 = 100α �T

−1
0
1
0

 ,

f(2)

T = E (2) A(2)α(2) �T (2)

 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


−1

0
1
0

 = 50α �T

 0
−1

0
1

 ,

f(3)

T = E (3) A(3)α(3) �T (3) 1√
2

 1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1


−1

0
1
0

 = 200α �T

−1
−1
1
1

 .

(4.35)

Merging the contribution of these 3 members gives the master thermal force vector

fT = α �T


−100 + 0 − 200

0 + 0 − 200
100 + 0 + 0
0 − 50 + 0

0 + 0 + 200
0 + 50 + 200

 = α �T


−300
−200

100
−50
200
250

 (4.36)

The master stiffness matrix K does not change. Consequently the master stiffness equations are
20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15




ux1 = 0
uy1 = 0

ux2

uy2 = 0
ux3

uy3

 =


fMx1

fMy1

fMx2 = 0
fMy2

fMx3 = 0
fMy3 = 0

 + α �T


−300
−200

100
−50
200
250

 (4.37)

in which fMx1, fMy1 and fMy2 are the unknown mechanical reaction forces, and the known forces and dis-
placements have been marked. Since the prescribed displacements are zero, the reduced system is simply[

10 0 0
0 10 10
0 10 15

][
ux2

ux3

uy3

]
=

[
0
0
0

]
+ α �T

[
100
200
250

]
= α �T

[
100
200
250

]
. (4.38)

Solving (4.38) gives ux2 = ux3 = uy3 = 10α �T . Completing u with the prescribed zero displacements and
premultiplying by K gives the complete effective force vector:

f = Ku =


20 10 −10 0 −10 −10
10 10 0 0 −10 −10

−10 0 10 0 0 0
0 0 0 5 0 −5

−10 −10 0 0 10 10
−10 −10 0 −5 10 15




0
0
10
0
10
10

α �T = α �T


−300
−200

100
−50
200
250

 . (4.39)

4–12

4–13 §4.4 PSEUDOTHERMAL INPUTS

But the effective force vector is exactly fT . Consequently

fM = Ku − fT = 0. (4.40)

All mechanical joint forces, including reactions, vanish, and so do the internal mechanical forces. This is
a consequence of the example frame being statically determinate.5 Such structures do not develop thermal
stresses under any combination of temperature changes.

§4.3. INITIAL FORCE EFFECTS

As previously noted, a wide spectrum of mechanical and non-mechanical effects can be acommo-
dated under the umbrella of the initial force concept. The stiffness equations at the local (member)
level are

K̄
(e)

ū(e) = f̄
(e)
M + f̄

(e)
I = f̄

(e)
, (4.41)

and at the global (assembled structure) level:

Ku = fM + fI = f. (4.42)

In these equations subscripts M and I identify mechanical and initial node forces, respectively. The
sum of the two: f̄ at the member level and f at the structure level, are called effective forces.

A physical interpretation of (4.42) can be obtained by considering that the structure is blocked
against all motions: u = 0. Then fM = −fI , and the undeformed structure experiences mechanical
forces. These translate into internal forces and stresses. Engineers also call these prestresses.

Local effects that lead to initial forces at the member level are: temperature changes (studied in §4.2,
in which fI ≡ fT), moisture diffusion, residual stresses, lack of fit in fabrication, and in-member
prestressing. Global effects include prescribed nonzero joint displacements (studied in §4.1) and
multimember prestressing (for example, by cable pretensioning of concrete structures).

As can be seen there is a wide variety of physical effects, whether natural or artificial, that lead to
nonzero initial forces. The good news is that once the member equations (4.41) are formulated, the
remaining DSM steps (globalization, merge and solution) are identical. This nice property extends
to the general Finite Element Method.

§4.4. PSEUDOTHERMAL INPUTS

Some commercial FEM programs do not have a way to handle directly effects such as moisture,
lack of fit, or prestress. But all of them can handle temperature variation inputs. Since in linear
analysis all such effects can be treated as initial forces, it is possible (at least for bar elements) to
model them as fictitious thermomechanical effects, by inputting phony temperature changes. The
following example indicate that this is done for a bar element.

Suppose that a prestress force FP is present in a bar. The total elongation is d = dM + dP where
dP = FP L/(E A) is due to prestress. Equate to a thermal elongation: dT = α�TP L and solve for

5 For the definition of static determinacy, see any textbook on Mechanics of Materials.

4–13

Chapter 4: THE DIRECT STIFFNESS METHOD: ADDITIONAL TOPICS 4–14

�TP = FP/(E Aα). This is input to the program as a fictitious temperature change. If in addition
there is a real temperature change �T one would of course specify �T + �TP .

If this device is used, care should be exercised in interpreting results for internal forces and stresses
given by the program. The trick is not necessary for personal or open-source codes over which you
have full control.

4–14

4–15 Exercises

Homework Exercises for Chapter 4

The Direct Stiffness Method: Additional Topics

EXERCISE 4.1

[N:20] Resolve items (a) through (c) — omitting (d) — of the problem of Exercise 3.7 if the vertical right
support “sinks” so that the displacement uy3 is now prescribed to be −0.5. Everything else is the same. Use
a reduction scheme to apply the displacement BCs.

EXERCISE 4.2

[N:20] Use the same data of Exercise 3.7 except that P = 0 and hence there are no applied mechanical forces.
Both members have the same dilatation coefficient α = 10−6 1/◦F. Find the crown displacements ux2 and uy2

and the member stresses σ (1) and σ (2) if the temperature of member (1) rises by �T = 120 ◦F above Tref ,
whereas member (2) stays at Tref .

Shortcut: the element stiffnesses and master stiffness matrix are the same as in Exercise 3.7, so if that Exercise
has been previously assigned no stiffness recomputations are necessary.

EXERCISE 4.3

[A:15] Consider the generic truss member of Figure 2.6. The disconnected member was supposed to have
length L , but because of lack of quality control it was fabricated with length L + δ, where δ is called the “lack
of fit.” Determine the initial force vector f̄I to be used in (4.41). Hint: find the mechanical forces that would
compensate for δ and restore the desired length.

EXERCISE 4.4

[A:10] Show that the lack of fit of the previous exercise can be viewed as equivalent to a prestress force of
−(E A/L)δ.

EXERCISE 4.5

[A:40]. Prove that statically determinate truss structures are free of thermal stresses.

4–15

.

5
Analysis

of Example Truss
by a CAS

5–1

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–2

TABLE OF CONTENTS

Page

§5.1. COMPUTER ALGEBRA SYSTEMS 5–3
§5.1.1. Why Mathematica? 5–3
§5.1.2. Programming Style and Prerequisites 5–3
§5.1.3. Class Demo Scripts 5–4

§5.2. THE ELEMENT STIFFNESS MODULE 5–4
§5.2.1. Module Description 5–4
§5.2.2. Programming Remarks 5–7
§5.2.3. Case Sensitivity 5–7
§5.2.4. Testing the Member Stiffness Module 5–7

§5.3. MERGING A MEMBER INTO THE MASTER STIFFNESS 5–7

§5.4. ASSEMBLING THE MASTER STIFFNESS 5–9

§5.5. MODIFYING THE MASTER SYSTEM 5–9

§5.6. RECOVERING INTERNAL FORCES 5–11

§5.7. PUTTING THE PIECES TOGETHER 5–12

EXERCISES . 5–15

5–2

5–3 §5.1 COMPUTER ALGEBRA SYSTEMS

§5.1. COMPUTER ALGEBRA SYSTEMS

Computer algebra systems, known by the acronym CAS, are programs designed to perform symbolic and
numeric manipulations following the rules of mathematics.1 The development of such programs began
in the mid 1960s. The first comprehensive system — the “granddaddy” of them all, called Macsyma (an
acronym for Project Mac Symbolic Manipulator) — was developed using the programming language
Lisp at MIT’s famous Artificial Intelligence Laboratory over the period 1967 to 1980.

The number and quality of symbolic-manipulation programs has expanded dramatically since the avail-
ability of graphical workstations and personal computers has encouraged interactive and experimental
programming. As of this writing the leading general-purpose contenders are Maple and Mathematica.2

In addition there are a dozen or so more specialized programs, some of which are available free or at
very reasonable cost.

§5.1.1. Why Mathematica?

In the present book Mathematica will be used for Chapters and Exercises that develop symbolic and
numerical computation for matrix structural analysis and FEM implementations. Mathematica is a
commercial product developed by Wolfram Research, web site: http://www.wolfram.com. The
version used to construct the code fragments presented in this Chapter is 4.1, which was commercially
released in 2001. The main advantages of Mathematica for technical computing are:

1. Availability on a wide range of platforms that range from PCs and Macs through Unix workstations.
Its competitor Maple is primarily used on Unix systems.

2. Up-to-date user interface with above average graphics. On all machines Mathematica offers a
graphics user interface called the Notebook front-end. This is mandatory for serious work.

3. A powerful programming language.

4. Good documentation and abundance of application books at all levels.

One common disadvantage of CAS, and Mathematica is not exception, is computational inefficiency in
numerical calculations compared with a low-level implementation in, for instance, C or Fortran. The
relative penalty can reach several orders of magnitude. For instructional use, however, the penalty is
acceptable when compared to human efficiency. This means the ability to get FEM programs up and
running in very short time, with capabilities for symbolic manipulation and graphics as a bonus.

§5.1.2. Programming Style and Prerequisites

The following material assumes that you are a moderately experienced user of Mathematica, or are
willing to learn to be one. The Mathematica Book is just a reference manual and not good for training.
But there is an excellent tutorial available: The Beginner’s Guide to Mathematica by Jerry Glynn and
Theodore W. Gray.3

Practice with the program until you reach the level of writing functions, modules and scripts with relative
ease. With the Notebook interface and a good primer it takes only a few hours.

1 Some vendors call that kind of activity “doing mathematics by computer.” It is more appropriate to regard such programs as
enabling tools that help humans with complicated and error-prone manipulations. As of now, only humans can do mathematics.

2 Another commonly used program for engineering computations: Matlab, does only numerical computations although an
interface to Maple can be purchased as a toolbox.

3 This is also available on CDROM from MathWare, Ltd, P. O. Box 3025, Urbana, IL 61208, e-mail: info@mathware.com.
The CDROM is a hyperlinked version of the book that can be installed on the same directory as Mathematica.

5–3

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–4

When approaching that level you may notice that functions in Mathematica display many aspects similar
to C.4 You can exploit this similarity if you are proficient in that language. But Mathematica functions
do have some unique aspects, such as matching arguments by pattern, and the fact that internal variables
are global unless otherwise made local.

Although function arguments can be modified, in practice this should be avoided because it may be
difficult to trace side effects. The programming style enforced here outlaws output arguments and a
function can only return its name. But since the name can be a list of arbitrary objects the restriction is
not serious.5

Our objective is to develop a symbolic program written in Mathematica that solves the example plane
truss as well as some symbolic versions thereof. The program will rely heavily on the development and
use of functions implemented using the Module construct of Mathematica. Thus the style will be one
of procedural programming.6 The program will not be particularly modular (in the computer science
sense) because Mathematica is not suitable for that programming style.7

The code presented in Sections 5.2–5.7 uses a few language constructs that may be deemed as advanced,
and these are briefly noted in the text so that appropriate reference to the Mathematica reference manual
can be made.

§5.1.3. Class Demo Scripts

The cell scripts shown in Figures 5.1 and 5.2 will be used to illustrate the organization of a Notebook
file and the “look and feel” of some basic Mathematica commands. These scripts will be demonstrated
in class from a laptop.

§5.2. THE ELEMENT STIFFNESS MODULE

As our first FEM code segment, the top box of Figure 5.3 shows a module that evaluates and returns
the 4 × 4 stiffness matrix of a plane truss member (two-node bar) in global coordinates. The text in
that box of that figure is supposed to be placed on a Notebook cell. Executing the cell, by clicking on
it and hitting an appropriate key (<Enter> on a Mac), gives the output shown in the bottom box. The
contents of the figure is described in further detail below.

§5.2.1. Module Description

The stiffness module is called ElemStiff2DTwoNodeBar. Such descriptive names are permitted by
the language. This reduces the need for detailed comments.

4 Simple functions can be implemented in Mathematica directly, for instance DotProduct[x ,y]:=x.y; more complex
ones are handled by the Module construct emphasized here.

5 Such restrictions on arguments and function returns are closer in spirit to C than Fortran although you can of course modify
C-function arguments using pointers.

6 The name Module should not be taken too seriously: it is far away from the concept of modules in Ada, Modula or Fortran
90. But such precise levels of interface control are rarely needed in symbolic languages.

7 And indeed none of the CAS packages in popular use is designed for strong modularity because of historical and interactivity
constraints.

5–4

5–5 §5.2 THE ELEMENT STIFFNESS MODULE

Integration example

f[x_,Α_,Β_]:=(1+Β*x^2)/(1+Α*x+x^2);
F=Integrate[f[x,-1,2],{x,0,5}];
F=Simplify[F];
Print[F]; Print[N[F]];
F=NIntegrate[f[x,-1,2],{x,0,5}];
Print["F=",F//InputForm];

10 � Log�21�
13.0445

F�13.044522437723455

Figure 5.1. Example cell for class demo.

Fa=Integrate[f[z,a,b],{z,0,5}];
Fa=Simplify[Fa]; Print[Fa];
Plot3D[Fa,{a,-1,1},{b,-10,10},ViewPoint->{-1,-1,1}];
Print["Fa=",Fa//InputForm]

1
������������������������
2
��������������
4 � a2

�
�
����10

��������������
4 � a2 b � a

��������������
4 � a2 b Log�26 � 5 a� � � �2 � ��2 � a2	 b	 Log
1 �

� a
����������������������������������
4 � a2

� �

2 � Log
1 �
� a

����������������������������������
4 � a2

� � 2 � b Log
1 �
� a

����������������������������������
4 � a2

� � � a2 b Log
1 �
� a

����������������������������������
4 � a2

� �

2 � Log
 �10 � � � a �
��������������
4 � a2

��
4 � a2

� � 2 � b Log
 �10 � � � a �
��������������
4 � a2

��
4 � a2

� � � a2 b Log
 �10 � � � a �
��������������
4 � a2

��
4 � a2

� �

2 � Log
 10 � � � a �
��������������
4 � a2

���
4 � a2

� � 2 � b Log
 10 � � � a �
��������������
4 � a2

���
4 � a2

� � � a2 b Log
 10 � � � a �
��������������
4 � a2

���
4 � a2

��

����

-1

-0.5

0

0.5

1

-10

-5

0

5

10 -50
-25
0
25
50

-1

-0.5

0

0.5

1

Fa��10�Sqrt�4 � a^2��b � a�Sqrt�4 � a^2��b�Log�26 � 5�a� �
I��2 � ��2 � a^2	�b	�Log�1 � �I�a	�Sqrt�4 � a^2�� � �2�I	�Log�1 � �I�a	�Sqrt�4 � a^2�� �
�2�I	�b�Log�1 � �I�a	�Sqrt�4 � a^2�� � I�a^2�b�Log�1 � �I�a	�Sqrt�4 � a^2�� �
�2�I	�Log���10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2�� �
�2�I	�b�Log���10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2�� �
I�a^2�b�Log���10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2�� �
�2�I	�Log��10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2�� �
�2�I	�b�Log��10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2�� �
I�a^2�b�Log��10�I � I�a � Sqrt�4 � a^2�	�Sqrt�4 � a^2��	��2�Sqrt�4 � a^2�	

Figure 5.1. Another example cell for class demo.

5–5

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–6

ElemStiff2DTwoNodeBar[{{x1_,y1_},{x2_,y2_}},{Em_,A_}] :=
 Module[{c,s,dx=x2-x1,dy=y2-y1,L,Ke},
 L=Sqrt[dx^2+dy^2]; c=dx/L; s=dy/L;
 Ke=(Em*A/L)* {{ c^2, c*s,-c^2,-c*s},

 { c*s, s^2,-s*c,-s^2},
 {-c^2,-s*c, c^2, s*c},

 {-s*c,-s^2, s*c, s^2}};
 Return[Ke]
];
Ke= ElemStiff2DTwoNodeBar[{{0,0},{10,10}},{100,2*Sqrt[2]}];
Print["Numerical elem stiff matrix:"]; Print[Ke//MatrixForm];
Ke= ElemStiff2DTwoNodeBar[{{0,0},{L,L}},{Em,A}];
Ke=Simplify[Ke,L>0];
Print["Symbolic elem stiff matrix:"]; Print[Ke//MatrixForm];

Numerical elem stiff matrix:

�

�

�������������

10 10 �10 �10

10 10 �10 �10

�10 �10 10 10

�10 �10 10 10

�

�������������

Symbolic elem stiff matrix:

�

�

�����������������������

A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

� A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

A Em��������������
2
�����
2 L

�

�����������������������

Figure 5.3. Module ElemStiff2DTwoNodeBar to form the element stiffness of
a 2D bar element in global coordinates, test program and its output.

The module takes two arguments:

{ { x1,y1 },{ y1,y2 } } A two-level list8 containing the {x, y} coordinates of the bar end nodes labelled
as 1 and 2.9

{ Em,A } A level-one list containing the bar elastic modulus, E and the member cross
section area, A. See §5.2.3 as to why name E cannot be used.

The use of the underscore after argument item names in the declaration of the Module is a requirement
for pattern-matching in Mathematica. If, as recommended, you have learned functions and modules
this aspect should not come as a surprise.

The module name returns the 4 × 4 member stiffness matrix internally called Ke. The logic that leads
to the formation of that matrix is straightforward and need not be explained in detail. Note, however,
the elegant direct declaration of the matrix Ke as a level-two list, which eliminates the fiddling around
with array indices typical of standard programming languages. The format in fact closely matches the
mathematical expression (3.4).

8 A level-one list is a sequence of items enclosed in curly braces. For example: { x1,y1 } is a list of two items. A level-two list
is a list of level-one lists. An important example of a level-two list is a matrix.

9 These are called the local node numbers, and replace the i, j of previous Chapters. This is a common FEM programming
practice.

5–6

5–7 §5.3 MERGING A MEMBER INTO THE MASTER STIFFNESS

§5.2.2. Programming Remarks

The function in Figure 5.3 uses several intermediate variables with short names: dx, dy, s, c and L. It is
strongly advisable to make these symbols local to avoid potential names clashes somewhere else.10 In
the Module[...] construct this is done by listing those names in a list immediately after the opening
bracket. Local variables may be initialized when they are constants or simple functions of the argument
items; for example on entry to the module dx=x2-x1 initializes variable dx to be the difference of x
node coordinates, namely �x = x2 − x1.

The use of the Return statement fulfills the same purpose as in C or Fortran 90. Mathematica guides
and textbooks advise against the use of that and other C-like constructs. The writer strongly disagrees:
the Return statement makes clear what the Module gives back to its invoker and is self-documenting.

§5.2.3. Case Sensitivity

Mathematica, like most recent computer languages, is case sensitive so that for instance E is not the
same as e. This is fine. But the language designer decided that names of system-defined objects such as
built-in functions and constants must begin with a capital letter. Consequently the liberal use of names
beginning with a capital letter may run into clashes. If, for example, you cannot use E because of its
built-in meaning as the base of natural logariths.11

In the code fragments presented throughout this book, identifiers beginning with upper case are used for
objects such as stiffness matrices, modulus of elasticity, and cross section area, following established
usage in Mechanics. When there is danger of clashing with a protected system symbol, additional lower
case letters are used. For example, Em is used for the elastic modulus instead of E because the latter is
a reserved symbol.

§5.2.4. Testing the Member Stiffness Module

Following the definition of ElemStiff2DTwoNodeBar in Figure 5.3 there are several statements that
constitute the module test program that call the module and print the returned results. Two cases are
tested. First, the stiffness of member (3) of the example truss, using all-numerical values. Next, some
of the input arguments for the same member are given symbolic names so they stand for variables; for
example the elastic module is given as Em instead of 100 as in the foregoing test. The print output of
the test is shown in the lower portion of Figure 5.3.

The first test returns the member stiffness matrix (3.10) as may be expected. The second test returns
a symbolic form in which three symbols appear: the coordinates of end node 2, which is taken to be
located at { L,L } instead of {10, 10}, A, which is the cross-section area and Em, which is the elastic
modulus. Note that the returning matrix Ke is subject to a Simplify step before printing it, which is
the subject of an Exercise. The ability to carry along variables is of course a fundamental capability of
any CAS and the main reason for which such programs are used.

10 The “global by default” choice is the worst one, but we must live with the rules of the language.

11 In retrospect this appears to have been a highly questionable decision. System defined names should have been identified by a
reserved prefix or postfix to avoid surprises, as done in Macsyma or Maple. Mathematica issues a warning message, however,
if an attempt to redefine a “protected symbol” is made.

5–7

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–8

MergeElemIntoMasterStiff[Ke_,eftab_,Kin_]:=Module[
{i,j,ii,jj,K=Kin},
 For [i=1, i<=4, i++, ii=eftab[[i]];
 For [j=i, j<=4, j++, jj=eftab[[j]];
 K[[jj,ii]]=K[[ii,jj]]+=Ke[[i,j]]
]
]; Return[K]
];
K=Table[0,{6},{6}];
Print["Initialized master stiffness matrix:"];
Print[K//MatrixForm]
Ke=ElemStiff2DTwoNodeBar[{{0,0},{10,10}},{100,2*Sqrt[2]}];
Print["Member stiffness matrix:"]; Print[Ke//MatrixForm];
K=MergeElemIntoMasterStiff[Ke,{1,2,5,6},K];
Print["Master stiffness after member merge:"];
Print[K//MatrixForm];

Initialized master stiffness matrix:

�

�

�����������������������

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�

�����������������������

Member stiffness matrix:

�

�

�������������

10 10 �10 �10

10 10 �10 �10

�10 �10 10 10

�10 �10 10 10

�

�������������

Master stiffness after member merge:

�

�

�����������������������

10 10 0 0 �10 �10

10 10 0 0 �10 �10

0 0 0 0 0 0

0 0 0 0 0 0

�10 �10 0 0 10 10

�10 �10 0 0 10 10

�

�����������������������

Figure 5.4. Module MergeElemIntoMasterStiff to merge a 4 × 4 bar element
stiffness into the master stiffness matrix, test program and its output.

§5.3. MERGING A MEMBER INTO THE MASTER STIFFNESS

The next fragment of Mathematica code, listed in Figure 5.4, is used in the assembly step of the
DSM. Module MergeElemIntoMasterStiff receives the 4 × 4 element stiffness matrix formed by
FormElemStiff2DNodeBar and “merges” it into the master stiffness matrix. The module takes three
arguments:

Ke The 4 × 4 member stiffness matrix to be merged. This is a level-two list.

eftab The column of the Element Freedom Table, defined in §3.4.1, appropriate to the member
being merged; cf. (3.29). Recall that the EFT lists the global equation numbers for the
four member degrees of freedom. This is a level-one list consisting of 4 integers.

Kinp The incoming 6 × 6 master stiffness matrix. This is a level-two list.

MergeElemIntoMasterStiff returns, as module name, the updated master stiffness matrix internally
called K with the member stiffness merged in. Thus we encounter here a novelty: an input-output

5–8

5–9 §5.5 MODIFYING THE MASTER SYSTEM

AssembleMasterStiffOfExampleTruss[]:=
Module[{Ke,K=Table[0,{6},{6}]},
 Ke=ElemStiff2DTwoNodeBar[{{0,0},{10,0}},{100,1}];
 K= MergeElemIntoMasterStiff[Ke,{1,2,3,4},K];
 Ke=ElemStiff2DTwoNodeBar[{{10,0},{10,10}},{100,1/2}];
 K= MergeElemIntoMasterStiff[Ke,{3,4,5,6},K];
 Ke=ElemStiff2DTwoNodeBar[{{0,0},{10,10}},{100,2*Sqrt[2]}];
 K= MergeElemIntoMasterStiff[Ke,{1,2,5,6},K];
 Return[K]
];
K=AssembleMasterStiffOfExampleTruss[];
Print["Master stiffness of example truss:"]; Print[K//MatrixForm];

Master stiffness of example truss:

�

�

�����������������������

20 10 �10 0 �10 �10

10 10 0 0 �10 �10

�10 0 10 0 0 0

0 0 0 5 0 �5

�10 �10 0 0 10 10

�10 �10 0 �5 10 15

�

�����������������������

Figure 5.5. Module MasterStiffOfExampleTruss that forms the 6 × 6 master
stiffness matrix of the example truss, test program and its output.

argument. Because a formal argument cannot be modified, the situation is handled by copying the
incoming Kin into K on entry. It is the copy which is updated and returned via the Return statement.
The implementation has a strong C flavor with two nested For loops. Because the iterators are very
simple, nested Do loops could have been used as well.

The statements after the module provide a simple test. Before the first call to this function, the master
stiffness matrix must be initialized to a zero 6 × 6 array. This is done in the first test statement using
the Table function. The test member stiffness matrix is that of member (3) of the example truss, and
is obtained by calling ElemStiff2DTwoNodeBar. The EFT is { 1,2,5,6 } since element freedoms
1,2,3,4 map into global freedoms 1,2,5,6. Running the test statements yields the listing given in Figure
5.4. The result is as expected.

§5.4. ASSEMBLING THE MASTER STIFFNESS

The module MasterStiffOfExampleTruss, listed in the top box of Figure 5.5, makes use of the
foregoing two modules: ElemStiff2DTwoNodeBar and MergeElemIntoMasterStiff, to form the
master stiffness matrix of the example truss. The initialization of the stiffness matrix array in K to zero
is done by the Table function of Mathematica, which is handy for initializing lists. The remaining
statements are self explanatory. The module is similar in style to argumentless Fortran or C functions.
It takes no arguments. All the example truss data is “wired in.”

The output from the test program in is shown in the lower box of Figure 5.5. The output stiffness
matches that in Equation (3.20), as can be expected if all fragments used so far work correctly.

§5.5. MODIFYING THE MASTER SYSTEM

Following the assembly process the master stiffness equations Ku = f must be modified to account
for single-freedom displacement boundary conditions. This is done through the computer-oriented
equation modification process described in §3.4.2.

5–9

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–10

ModifiedMasterStiffForDBC[pdof_,K_] := Module[
 {i,j,k,nk=Length[K],np=Length[pdof],Kmod=K},
 For [k=1,k<=np,k++, i=pdof[[k]];
 For [j=1,j<=nk,j++, Kmod[[i,j]]=Kmod[[j,i]]=0];
 Kmod[[i,i]]=1];
 Return[Kmod]
];
ModifiedMasterForcesForDBC[pdof_,f_] := Module[
 {i,k,np=Length[pdof],fmod=f},
 For [k=1,k<=np,k++, i=pdof[[k]]; fmod[[i]]=0];
 Return[fmod]
];
K=Array[Kij,{6,6}]; Print["Assembled master stiffness:"];
Print[K//MatrixForm];
K=ModifiedMasterStiffForDBC[{1,2,4},K];
Print["Master stiffness modified for displacement B.C.:"];
Print[K//MatrixForm];
f=Array[fi,{6}]; Print["Force vector:"]; Print[f];
f=ModifiedMasterForcesForDBC[{1,2,4},f];
Print["Force vector modified for displacement B.C.:"]; Print[f];

Assembled master stiffness:

�

�

�����������������������

Kij�1, 1� Kij�1, 2� Kij�1, 3� Kij�1, 4� Kij�1, 5� Kij�1, 6�
Kij�2, 1� Kij�2, 2� Kij�2, 3� Kij�2, 4� Kij�2, 5� Kij�2, 6�
Kij�3, 1� Kij�3, 2� Kij�3, 3� Kij�3, 4� Kij�3, 5� Kij�3, 6�
Kij�4, 1� Kij�4, 2� Kij�4, 3� Kij�4, 4� Kij�4, 5� Kij�4, 6�
Kij�5, 1� Kij�5, 2� Kij�5, 3� Kij�5, 4� Kij�5, 5� Kij�5, 6�
Kij�6, 1� Kij�6, 2� Kij�6, 3� Kij�6, 4� Kij�6, 5� Kij�6, 6�

�

�����������������������

Master stiffness modified for displacement B.C.:

�

�

�����������������������

1 0 0 0 0 0

0 1 0 0 0 0

0 0 Kij�3, 3� 0 Kij�3, 5� Kij�3, 6�
0 0 0 1 0 0

0 0 Kij�5, 3� 0 Kij�5, 5� Kij�5, 6�
0 0 Kij�6, 3� 0 Kij�6, 5� Kij�6, 6�

�

�����������������������

Force vector:

�fi�1�, fi�2�, fi�3�, fi�4�, fi�5�, fi�6��
Force vector modified for displacement B.C.:

�0, 0, fi�3�, 0, fi�5�, fi�6��

Figure 5.6. Modules ModifiedMasterStiff and ModifiedMasterForce that modify the
master stiffness matrix and force vector of a truss to impose displacement BCs.

Module ModifiedMasterStiffForDBC carries out this process for the master stiffness matrix K,
whereas ModifiedMasterForcesForDBC does this for the nodal force vector f. These two modules
are listed in the top box of Figure 5.6, along with test statements. The logic of both functions, but
especially that of ModifiedMasterForcesForBC, is considerably simplified by assuming that all
prescribed displacements are zero, that is, the BCs are homogeneous. The more general case of
nonzero prescribed values is treated in Chapter 21.

Function ModifiedMasterStiffnessForDBC has two arguments:

pdof A list of the prescribed degrees of freedom identified by their global number. For the
example truss this list contains three entries: {1, 2, 4}.

K The master stiffness matrix K produced by the assembly process.

The function clears appropriate rows and columns of K, places ones on the diagonal, and returns the
modified K as function value. The only slightly fancy thing in this module is the use of the Mathematica
function Length to extract the number of prescribed displacement components: Length[pdof] here

5–10

5–11 §5.6 RECOVERING INTERNAL FORCES

IntForce2DTwoNodeBar[{{x1_,y1_},{x2_,y2_}},{Em_,A_},eftab_,u_]:=
 Module[{c,s,dx=x2-x1,dy=y2-y1,L,ix,iy,jx,jy,ubar,e},
 L=Sqrt[dx^2+dy^2]; c=dx/L; s=dy/L; {ix,iy,jx,jy}=eftab;
 ubar={c*u[[ix]]+s*u[[iy]],-s*u[[ix]]+c*u[[iy]],
 c*u[[jx]]+s*u[[jy]],-s*u[[jx]]+c*u[[jy]]};
 e=(ubar[[3]]-ubar[[1]])/L; Return[Em*A*e]
];
p =IntForce2DTwoNodeBar[{{0,0},{10,10}},{100,2*Sqrt[2]},
 {1,2,5,6},{0,0,0,0,0.4,-0.2}];
Print["Member int force (numerical):"]; Print[N[p]];
p =IntForce2DTwoNodeBar[{{0,0},{L,L}},{Em,A},
 {1,2,5,6},{0,0,0,0,ux3,uy3}];
Print["Member int force (symbolic):"]; Print[Simplify[p]];

Member int force �numerical	:
2.82843

Member int force �symbolic	:
A Em �ux3 � uy3	
��

2 L

Figure 5.7. Module IntForce2DTwoNodeBar for computing the internal force in a bar element.

will return the value 3, which is the length of the list pdof. Similarly nk=Length[K] assigns 6 to nk,
which is the order of matrix K. Although for the example truss these values are known a priori, the use
of Length serves to illustrate a technique that is heavily used in more general code.

Module ModifiedMasterForcesForDBC has similar structure and logic and need not be described
in detail. It is important to note, however, that for homogeneous BCs the modules are independent
of each other and may be called in any order. On the other hand, if there were nonzero prescribed
displacements the force modification must be done before the stiffness modification. This is because
stiffness coefficients that are cleared in the latter are needed for modifying the force vector.

The test statements are purposedly chosen to illustrate another feature of Mathematica: the use of the
Array function to generate subscripted symbolic arrays of one and two dimensions. The test output
is shown in the bottom box of Figure 5.6, which should be self explanatory. The force vector and its
modified form are printed as row vectors to save space.

§5.6. RECOVERING INTERNAL FORCES

Mathematica provides built-in matrix operations for solving a linear system of equations and multiplying
matrices by vectors. Thus we do not need to write application functions for the solution of the modified
stiffness equations and for the recovery of nodal forces. Consequently, the last application functions
we need are those for internal force recovery.

Function IntForce2DTwoNodeBar listed in the top box of Figure 5.7 computes the internal
force in an individual bar element. It is somewhat similar in argument sequence and logic to
ElemStiff2DTwoNodeBar (Figure 5.3). The first two arguments are identical. Argument eftab
provides the Element Foreedom Table array for the element. The last argument, u, is the vector of
computed node displacements.

The logic of IntForce2DTwoNodeBar is straightforward and follows the method outlined in §3.2.1.
Member joint displacements ū(e) in local coordinates {x̄, ȳ} are recovered in array ubar, then the
longitudinal strain e = (ūx j − ūxi)/L and the internal (axial) force p = E Ae is returned as function
value. As coded the function contains redundant operations because entries 2 and 4 of ubar (that

5–11

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–12

IntForcesOfExampleTruss[u_]:= Module[{f=Table[0,{3}]},
 f[[1]]=IntForce2DTwoNodeBar[{{0,0},{10,0}},{100,1},{1,2,3,4},u];
f[[2]]=IntForce2DTwoNodeBar[{{10,0},{10,10}},{100,1/2},{3,4,5,6},u];

 f[[3]]=IntForce2DTwoNodeBar[{{0,0},{10,10}},{100,2*Sqrt[2]},
 {1,2,5,6},u];
 Return[f]
];

f=IntForcesOfExampleTruss[{0,0,0,0,0.4,-0.2}];
Print["Internal member forces in example truss:"];Print[N[f]];

Internal member forces in example truss:

�0., �1., 2.82843�

Figure 5.8. Module IntForceOfExampleTruss that computes
internal forces in the 3 members of the example truss.

is, components ū yi and uyj) are not actually needed to get p, but were kept to illustrate the general
backtransformation of global to local displacements.

Running this function with the test statements shown after the module produces the output shown in the
bottom box of Figure 5.7. The first test is for member (3) of the example truss using the actual nodal
displacements (3.24). It also illustrates the use of the Mathematica built in function N to produce output
in floating-point form. The second test does a symbolic calculation in which several argument values
are fed in variable form.

The top box of Figure 5.8 lists a higher-level function, IntForcesOfExampleTruss, which has a
single argument: u, which is the complete vector of joint displacements u. This function calls
IntForce2DTwoNodeBar three times, once for each member of the example truss, and returns the
three member internal forces thus computed as a 3-component list.

The test statements listed after IntForcesOfExampleTruss feed the actual node displacements (3.24)
to IntForcesOfExampleTruss. Running the functions with the test statements produces the output
shown in the bottom box of Figure 5.8. The internal forces are p(1) = 0, p(2) = −1 and p(3) = 2

√
2 =

2.82843.

§5.7. PUTTING THE PIECES TOGETHER

After all this development and testing effort documented in Figures 5.3 through 5.8 we are ready to
make use of all these bits and pieces of code to analyze the example plane truss. This is actually done
with the logic shown in Figure 5.9. This driver program uses the previously described modules

ElemStiff2DTwoNodeBar
MergeElemIntoMasterStiff
MasterStiffOfExampleTruss
ModifiedMasterStiffForDBC
ModifiedMasterForcesForDBC
IntForce2DTwoNodeTruss
IntForcesOfExampleTruss (5.1)

These functions must have been defined (”compiled”) at the time the driver programs described below
are run. A simple way to making sure that all of them are defined is to put all these functions in the

5–12

5–13 §5.7 PUTTING THE PIECES TOGETHER

same Notebook file and to mark them as initialization cells. These cells may be executed by picking
up Kernel → Initialize → Execute Initialization. (An even simpler procedure would to group them all
in one cell, but that would make placing separate test statements difficult.)

f={0,0,0,0,2,1};
K=AssembleMasterStiffOfExampleTruss[];
Kmod=ModifiedMasterStiffForDBC[{1,2,4},K];
fmod=ModifiedMasterForcesForDBC[{1,2,4},f];
u=Simplify[Inverse[Kmod].fmod];
Print["Computed nodal displacements:"]; Print[u];
f=Simplify[K.u];
Print["External node forces including reactions:"]; Print[f];
p=Simplify[IntForcesOfExampleTruss[u]];
Print["Internal member forces:"]; Print[p];

Computed nodal displacements:

�0, 0, 0, 0,
2
����
5
, �

1
����
5
�

External node forces including reactions:

��2, �2, 0, 1, 2, 1�
Internal member forces:

�0, �1, 2 �����2 �

Figure 5.9. Driver program for numerical analysis of example truss and its output.

The program listed in the top box of Figure 5.9 first assembles the master stiffness matrix through
MasterStiffOfExampleTruss. Next, it applies the displacement boundary conditions through
ModifiedMasterStiffForDBC and ModifiedMasterForcesForDBC. Note that the modified stiff-
ness matrix is placed into Kmod rather than K to save the original form of the master stiffness for the
reaction force recovery later. The complete displacement vector is obtained by the matrix calculation

u=Inverse[Kmod].fmod

which takes advantage of two built-in Mathematica functions. Inverse returns the inverse of its matrix
argument12 The dot operator signifies matrix multiply (here, matrix-vector multiply.) The enclosing
Simplify function is placed to simplify the expression of vector u in case of symbolic calculations; it
is actually redundant if all computations are numerical as in Figure 5.9.

The remaining calculations recover the node vector including reactions by the matrix-vector multiply
f = K.u (recall that K contains the unmodified master stiffness matrix) and the member internal forces
p through IntForcesOfExampleTruss. The program prints u, f and p as row vectors to conserve
space.

Running the program of the top box of Figure 5.9 produces the output shown in the bottom box of that
figure. The results confirm the hand calculations of Chapter 3.

At this point you may wonder whether all of this is worth the trouble. After all, a hand calculation
(typically helped by a programable calculator) would be quicker in terms of flow time. Writing and
debugging the Mathematica fragments displayed here took the writer about six hours (although about
two thirds of this was spent in editing and getting the fragment listings into the Chapter.) For larger

12 This is a highly inefficient way to solve Ku = f if this system becomes large. It is done here to keep simplicity.

5–13

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–14

f={0,0,0,0,fx3,fy3};
K=AssembleMasterStiffOfExampleTruss[];
Kmod=ModifiedMasterStiffForDBC[{1,2,4},K];
fmod=ModifiedMasterForcesForDBC[{1,2,4},f];
u=Simplify[Inverse[Kmod].fmod];
Print["Computed nodal displacements:"]; Print[u];
f=Simplify[K.u];
Print["External node forces including reactions:"]; Print[f];
p=Simplify[IntForcesOfExampleTruss[u]];
Print["Internal member forces:"]; Print[p];

Computed nodal displacements:

�0, 0, 0, 0,
1

�������
10
�3 fx3 � 2 fy3	, 1

����
5
��fx3 � fy3	�

External node forces including reactions:

��fx3, �fx3, 0, fx3 � fy3, fx3, fy3�
Internal member forces:

�0, �fx3 � fy3, �����2 fx3�

Figure 5.10. Driver program for symbolic analysis of example truss and its output.

problems, however, Mathematica would certainly beat hand-plus-calculator computations, the cross-
over typically appearing for 10-20 equations. For up to about 500 equations and using floating-point
arithmetic, Mathematica gives answers within minutes on a fast PC or Mac with sufficient memory but
eventually runs out of steam at about 1000 equations. For a range of 1000 to about 10000 equations,
Matlab would be the best compromise between human and computer flow time. Beyond 10000 equations
a program in a low-level language, such as C or Fortran, would be most efficient in terms of computer
time.

One distinct advantage of computer algebra systems appear when you need to parametrize a small
problem by leaving one or more problem quantities as variables. For example suppose that the applied
forces on node 3 are to be left as fx3 and fy3. You replace the last two components of array p as shown
in the top box of Figure 5.10, execute the cell and shortly get the symbolic answer shown in the bottom
box of Figure 5.10. This is the answer to an infinite number of numerical problems. Although one
may try to undertake such studies by hand, the likelyhood of errors grows rapidly with the complexity
of the system. Symbolic manipulation systems can amplify human abilities in this regard, as long
as the algebra “does not explode” because of combinatorial complexity. Examples of such nontrivial
calculations will appear throughout the following Chapters.

REMARK 5.1

The “combinatorial explosion” danger of symbolic computations should be always kept in mind. For example,
the numerical inversion of a N × N matrix is a O(N 3) process, whereas symbolic inversion goes as O(N !). For
N = 48 the floating-point numerical inverse will be typically done in a fraction of a second. But the symbolic
adjoint will have 48! = 12413915592536072670862289047373375038521486354677760000000000 terms, or
O(1061). There may be enough electrons in this Universe to store that, but barely ...

5–14

5–15 Exercises

Homework Exercises for Chapter 5

Analysis of Example Truss by a CAS

Before doing any of these Exercises, download the Mathematica Notebook file ExampleTruss.nb from the course
web site. (Go to Chapter 5 Index and click on the link). Open this Notebook file using version 4.0 or a later one.
The first eight cells contain the modules and test statements listed in the top boxes of Figures 5.3–10. The first six
of these are marked as initialization cells. Before running driver programs, they should be executed by picking up
Kernel → Initialize → Execute Initialization. Verify that the output of those six cells agrees with that shown in the
bottom boxes of Figures 5.3–6. Then execute the driver programs in Cells 7–8 by clicking on the cells and hitting
<Enter>, and compare the output with that shown in Figures 5.9–10. If the output checks out, you may proceed to
the Exercises.

EXERCISE 5.1

[C:10] Explain why the Simplify command in the test statements of Figure 5.3 says L>0. (One way to figure this
out is to just say Ke=Simplify[Ke] and look at the output. Related question: why does Mathematica refuse to
simplify Sqrt[L^2] to L unless one specifies the sign of L in the Simplify command?

EXERCISE 5.2

[C:10] Explain the logic of the For loops in the merge function MergeElemIntoMasterStiff of Figure 5.4. What
does the operator += do?

EXERCISE 5.3

[C:10] Explain the reason behind the use of Length in the modules of Figure 5.6. Why not simply set nk and np

to 6 and 3, respectively?

EXERCISE 5.4

[C:15] Of the seven modules listed in Figures 5.3 through 5.8, two can be used only for the example truss, three
can be used for any plane truss, and two can be used for other structures analyzed by the DSM. Identify which ones
and briefly state the reasons for your classification.

EXERCISE 5.5

[C:20] Modify the modulesMasterStiffOfExampleTruss, IntForcesOfExampleTruss and the driver program
of Figure 5.9 to solve numerically the three-node, two-member truss of Exercise 3.7. Verify that the output
reproduces the solution given for that problem.

EXERCISE 5.6

[C:25] Expand the logic ModifiedMasterForcesForDBC to permit specified nonzero displacements. Specify
these in a second argument called pval, which contains a list of prescribed values paired with pdof.

5–15

Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 5–16

xynode={{0,0},{10,0},{10,10}}; elenod={{1,2},{2,3},{3,1}};
unode={{0,0},{0,0},{2/5,-1/5}}; amp=5; p={};
For [t=0,t<=1,t=t+1/5,
 For [e=1,e<=Length[elenod],e++, {i,j}=elenod[[e]];
 xyi=xynode[[i]];ui=unode[[i]];xyj=xynode[[j]];uj=unode[[j]];
 p=AppendTo[p,Graphics[Line[{xyi+amp*t*ui,xyj+amp*t*uj}]]];
];
];
Show[p,Axes->False,AspectRatio->Automatic];

Figure E5.1. Mystery program for Exercise 5.7.

EXERCISE 5.7

[C:20] Explain what the program of Figure E5.1 does, and the logic behind what it does. (You may want to put it
in a cell and execute it.) What modifications would be needed so it can be used for any plane struss?

5–16

.

6
Constructing

MoM Members

6–1

Chapter 6: CONSTRUCTING MOM MEMBERS 6–2

TABLE OF CONTENTS

Page
§6.1. FORMULATION OF MOM MEMBERS 6–3

§6.1.1. What They Look Like 6–3
§6.1.2. End Quantities, Degrees of Freedom, Joint Forces 6–4
§6.1.3. Internal Quantities 6–4
§6.1.4. Discrete Field Equations, Tonti Diagram 6–5

§6.2. SIMPLEX MOM MEMBERS 6–6
§6.2.1. The Truss Element Revisited 6–7
§6.2.2. The Spar Element 6–8

§6.3. NON-SIMPLEX MOM MEMBERS 6–10

EXERCISES . 6–12

6–2

6–3 §6.1 FORMULATION OF MOM MEMBERS

The truss member used as example in Chapters 2–4 is an instance of a structural element. Such ele-
ments may be formulated directly using concepts and modeling techniques developed in Mechanics
of Materials (MoM).1 The construction does not involve the more advanced tools that are required
for the continuum finite elements that appear in Part II.

This Chapter presents an overview of the technique to construct the element stiffness equations of
“MoM members” using simple matrix operations. These simplified equations come in handy for
a surprisingly large number of applications, particularly in skeletal structures. Focus is on simplex
elements, which may be formed directly as a sequence of matrix operations. Non-simplex elements
are presented as a recipe, since their proper formulation requires work theorems not yet studied.

The physical interpretation of the FEM is still emphasized. Consequently we continue to speak of
structures built up of members connected at joints.

§6.1. FORMULATION OF MOM MEMBERS

§6.1.1. What They Look Like

MoM-based formulations are largely restricted to intrinsically one-dimensional members. These are
structural components one of whose dimensions, called the longitudinal dimension, is significantly
larger than the other two, which are called the tranverse dimensions. Such members are amenable
to the simplified structural theories developed in MoM textbooks. We shall study only straight
members with geometry defined by the two end joints. The member cross sections are defined by
the intersection of planes normal to the longitudinal dimension with the member. See Figure 6.1.
Note that although the individual member will be idealized as being one-dimensional in its intrinsic
or local coordinate system, it is generally part of a two- or three-dimensional structure.

This class of structural components embodies bars, beams, beam-columns, shafts and spars. Al-
though geometrically similar, the names distinguish the main kind of internal forces the member
resists and transmits: axial forces for bars, bending and shear forces for beams, axial compression
and bending for beam-columns, torsion forces for shafts, and shear forces for spars.

The members are connected at their end joints by displacement degrees of freedom. For truss (bar)
members those freedoms are the translational components of the joint displacements. For other
types, notably beams and shafts, nodal rotations are chosen as additional degrees of freedom.

The structures fabricated with these kinds of members are generally three-dimensional. Their
geometry is defined with respect to a global Cartesian coordinate system {x, y, z}. Two-dimensional
idealizations are useful simplifications in cases where the nature of the geometry and loading allows
the reduction of the structural model to one plane of symmetry, which is chosen to be the {x, y}
plane. Plane trusses and plane frameworks are examples of such simplifications.

In this Chapter we study generic structural members that fit the preceding class. An individual
member is identified by (e) but this superscript will be usually suppressed in the equations below

1 Mechanics of Materials was called Strength of Materials in older texts. The scope of this subject includes bars, beams,
shafts, arches, thin plates and shells, but only one-dimensional models are covered in basic undergraduate courses. MoM
involves ab initio kinematic assumptions such as “plane sections remain plane.” An identical acronym is used in Electrical
Engineering for something completely different: the Method of Moments.

6–3

Chapter 6: CONSTRUCTING MOM MEMBERS 6–4

x̄

z̄

ȳz

y x

Figure 6.1. A Mechanics of Materials (MoM) member is a structural element one of
whose dimensions (the longitudinal dimension) is significantly larger than
the other two. Local axes {x̄, ȳ, z̄} are chosen as indicated. Although the
depicted member is prismatic, some applications utilize tapered or stepped
members, the cross section of which varies as a function of x̄ .

to reduce clutter. The local axes are denoted by {x̄, ȳ, z̄}, with x̄ along the longitudinal direction.
See Figure 6.1.

The mathematical model of a MoM member is obtained by an idealization process. The model
represents the member as a line segment that connects the two end joints, as depicted in Figure 6.2.

§6.1.2. End Quantities, Degrees of Freedom, Joint Forces

The set of mathematical variables used to interconnect members are called end quantities or connec-
tors. In the Direct Stiffness Method (DSM) these are joint displacements (the degrees of freedom)
and the joint forces. These quantities are linked by the member stiffness equations.

The degrees of freedoms selected at the end joints i and j are collected in the joint displacement
vector ū. This may include translations only, or a combination of translations and rotations.

The vector of joint forces f̄ collects components in one to one correspondence with ū. Component
pairs must be conjugate in the sense of the Principle of Virtual Work. For example if the x̄-translation
at joint i : ūxi appears in ū, the corresponding entry in f̄ is the x̄-force f̄xi at i . If the rotation about
z̄ at joint j : θ̄z j appears in ū, the corresponding entry in f̄ is the z-moment m̄z j .

§6.1.3. Internal Quantities

Internal quantities are mechanical actions that take place inside the member. Those actions involve
stresses and deformations. Accordingly two types of internal quantities appear:

Internal member forces form a finite set of stress-resultant quantities collected in an array p. This set
globally characterizes the forces resisted by the material. They are also called generalized stresses
in structural theory. Stresses at any point in the member may be recovered if p is known.

Member deformations form a finite set of quantities, chosen in one-to one correspondence with
internal member forces, and collected in an array v. This set characterizes the deformations expe-
rienced by the material. They are also called generalized strains in structural theory. Strains at any
point in the member can be recovered if v is known.

As in the case of end quantities, internal forces and deformations are paired in one to one corre-
spondence. For example, the axial force in a bar member must be paired either with an average

6–4

6–5 §6.1 FORMULATION OF MOM MEMBERS

i
j

x̄

z̄

ȳ

(e)

z

y x

End quantities (connectors)
are defined at the joints i, j

¯
Internal quantities are
defined within the member
and may depend on x.

Figure 6.2. The FE mathematical idealization of a MoM member. The model is
one-dimensional in x̄ . The two end joints are the site of end quantities:
joint forces and displacements, that interconnect members. The internal
quantities characterize the stresses and deformations in the member.

axial deformation, or with the total elongation. Pairs that mutually correspond in the sense of the
Principle of Virtual Work are called conjugate. Unlike the case of end quantities, conjugacy is not
a mandatory requirement but simplifies some derivations.

§6.1.4. Discrete Field Equations, Tonti Diagram

The matrix equations that connect ū, v, p and f are called the discrete field equations. There are
three of them.

The member deformations v are linked to the joint displacements ū by the kinematic compability
conditions, also called the deformation-displacement or strain-displacement equations:

v = Bū. (6.1)

The internal member forces are linked to the member deformations by the constitutive equations.
In the absence of initial strain effects those equations are homogeneous:

p = Sv. (6.2)

Finally, the internal member forces are linked to the joint forces by the equilibrium equations. If
the internal forces p are constant over the member, the relation is simply

f̄ = AT p. (6.3)

where the transpose of A is used for convenience.2

2 If p is a function of x̄ the relation is of differential type and is studied in §6.3.

6–5

Chapter 6: CONSTRUCTING MOM MEMBERS 6–6

v

ū f̄

p

f̄ = A pT Equilibrium

Constitutive

Kinematic

p = S v

¯v = B u

¯ T ¯ ¯f = A S B u = K u

Figure 6.3. Tonti diagram of the three discrete field equations (6.1)–(6.3) and the
stiffness equation (6.4) for a simplex MoM element. Internal and end
quantities appear inside the orange and yellow boxes, respectively.

These equations can be presented graphically as shown in Figure 6.3. This is a discrete variant
of the so-called Tonti diagrams, which represent the governing equations as arrows linking boxes
containing kinematic and static quantities.

Matrices B, S and A receive the following names in the literature:

A Equilibrium

S Rigidity, material, constitutive3

B Compatibility, deformation-displacement, strain-displacement

If the element is sufficiently simple, the determination of these three matrices can be carried out
through MoM techniques. If the construction requires more advanced tools, however, recourse to
the general methodology of finite elements and variational principles is necessary.

§6.2. SIMPLEX MOM MEMBERS

In this section we assume that the internal quantities are constant over the member length. Such
members are called simplex elements. If so the matrices A, B and S are independent of member
cross section, and the derivation of the element stiffness equations is particularly simple.

Under the constancy assumption, elimination of the interior quantities p and v from (6.1)-(6.3)
yields the element stiffness relation

f̄ = AT SB ū = K̄ū. (6.4)

Hence the element stiffness matrix is

K̄ = AT SB. (6.5)

The four preceding matrix equations are diagrammed in Figure 6.3.

3 The name rigidity matrix for S is preferable. It is a member integrated version of the cross section constitutive equations.
The latter are usually denoted by symbol R, as in §6.3.

6–6

6–7 §6.2 SIMPLEX MOM MEMBERS

i j

F

x̄

x̄

ȳ

ȳ

L

z

y x z̄

f̄xi , ūxi f̄x j , ūx j

Axial rigidity E A, length L
−F

(a)

(b) E A

Figure 6.4. The prismatic truss (also called bar) member: (a) individual
member in 3D space, (b) idealization as generic member.

If {p, v} and {f̄, ū} are conjugate in the sense of the Principle of Virtual Work, it can be shown that
A = B and that S is symmetric. Then

K̄ = BT SB. (6.6)

is a symmetric matrix. Symmetry is computationally desirable for reasons outlined in Part III.

REMARK 6.1

If f̄ and ū are conjugate but p and v are not, K̄ must come out to be symmetric even if S is unsymmetric and
A �= B. However there are more opportunities to go wrong.

§6.2.1. The Truss Element Revisited

The simplest example of a MoM element is the prismatic truss (bar) element already derived in
Chapter 2. See Figure 6.4. This qualifies as a simplex MoM element since all internal quantities are
constant. One minor difference in the derivation below is that the joint displacements and forces
in the ȳ direction are omitted in the generic element since they contribute nothing to the stiffness
equations. In the FEM terminology, freedoms associated with zero stiffness are called inactive.

Three choices for internal deformation and force variables are studied below. They illustrate that
the resulting element stiffness equations coalesce, as can be expected, since the external quantities
are the same.

Derivation Using Axial Elongation and Axial Force. The member axial elongation d is taken as
deformation measure, and the member axial force F as internal force measure. Hence v and p
reduce to the scalars v = d and p = F , respectively. The chain of discrete field equations is easily

6–7

Chapter 6: CONSTRUCTING MOM MEMBERS 6–8

constructed:

d = [−1 1]

[
ūxi

ūx j

]
= Bū,

F = E A

L
d = Sd,

f̄ =
[

f̄xi

f̄x j

]
=

[−1
1

]
F = AT F

(6.7)

Hence

K̄ = AT SB = SBT B = E A

L

[
1 −1

−1 1

]
. (6.8)

Note that A = B because F and d are conjugate.

Derivation Using Mean Axial Strain and Axial Force. Instead of d we may use the mean axial strain
ē = d/L as deformation measure whereas F is kept as internal force measure. The only change
is that B becomes [−1 1] /L whereas S becomes E A. Matrix A does not change. The product
AT SB gives the same K̄ as in (6.8), as can be expected. Now AT is not equal to B because F and
ē are not conjugate, but they differ only by a factor 1/L .

Derivation Using Mean Axial Strain and Axial Stress. We keep the mean axial strain ē = d/L as
deformation measure but the mean axial stress σ̄ = F/A, (which is not conjugate to ē) is taken as
internal force measure. Now B = [−1 1] /L , S = E and AT = A [−1 1]. The product AT SB
gives again the same K̄ shown in (6.8).

§6.2.2. The Spar Element

The spar or shear-web member has two joints, i and j . It can only resist and transmit a constant
shear force V in the plane of the web, which is chosen to be the {x̄, ȳ} plane. See Figure 6.5. This
element is often used in modeling high-aspect aircraft wing structures, as illustrated in Figure 6.6.

The active degrees of freedom for the generic element of length L depicted in Figure 6.5(b) are
ū yi and ū y j . Let G be the shear modulus and As the effective shear area.4 The shear rigidity is
G As . As deformation measure the mean shear strain γ = V/(G As) is chosen. The deformation-
displacement, constitutive, and equilibrium equations are

γ = 1

L
[−1 1]

[
ū yi

ū y j

]
= Bū,

V = G Asγ = Sγ,

f̄ =
[

f̄ yi

f̄ y j

]
=

[−1
1

]
V = AT V .

(6.9)

Therefore the member stiffness equations are

f̄ =
[

f̄ yi

f̄ y j

]
= AT SBū = G As

L

[
1 −1

−1 1

] [
ū yi

ū y j

]
= K̄ū. (6.10)

4 A concept developed in Mechanics of Materials. For a narrow rectangular cross section, As = 5A/6.

6–8

6–9 §6.2 SIMPLEX MOM MEMBERS

i j
x̄

x̄

ȳ

ȳ

L

z

y x

z̄

f̄ yi , ū yi f̄ y j , ū y j

(b)

V

−V

Shear rigidity G As , length L
(a)

G As

Figure 6.5. The prismatic spar (also called shear-web) member: (a) individual
member in 3D space, (b) idealization as generic member.

Note that A �= B as V and γ are not conjugate. However, the difference is easily adjusted for. See
Exercise 6.2.

The equations (6.10) may be augmented with zero rows and columns to bring in the node displace-
ments in the x̄ and z̄ directions, and then referred to the global axis {x, y, z} through a congruential
transformation.

SPAR

COVER
PLATES

RIB

Figure 6.6. Spar members in aircraft wing (Piper Cherokee). For
more impressive aircraft structures see CATECS slides.

6–9

Chapter 6: CONSTRUCTING MOM MEMBERS 6–10

v

ū f̄

p

Equilibrium

Constitutive
(at each section)

Kinematic
(at each section)

p = R v

¯ Td f = B dp¯v = B u

¯f = B E B dx uT¯ ¯
∫ L

0

Figure 6.7. Diagram of the discrete field equations for a non-simplex MoM element.

§6.3. NON-SIMPLEX MOM MEMBERS

In the general case, the internal quantities p and v may vary over the member; that is, depend on x̄ .
This dependence may be due to element type, variable cross section, or both. Consequently one or
more of the matrices A, B and S, depend on x̄ . Such elements are called non-simplex.

If the element falls under this category, the straightforward matrix multiplication recipe (6.5) cannot
be used to construct the element stiffness matrix K̄. This fact can be grasped by observing that
A(x̄)T S(x̄)B(x̄) would depend on x̄ . On the other hand, K must be independent of x̄ because it
relates the end quantities ū and f̄.

The derivation of non-simplex MoM elements requires the use of work principles of mechanics,
for example the Principle of Virtual Work or PVW. More care must be exercised in the selection of
conjugate internal quantities. The following rules can be justified through the variational arguments
discussed in Part II. They are stated here only as recipe.

Rule 1. Select internal deformations v(x̄) and internal forces p(x̄) that are conjugate in the PVW
sense. Link deformations to node displacements by v(x̄) = B(x̄)u.

Rule 2. From the PVW it may be shown5 that the force equilibrium equation exists only in a
differential sense: BT dp = d f̄. Here d denotes differentiation with respect to x̄ .6

Rule 3. The constitutive matrix R(x̄) that relates p(x̄) to v(x̄) must be symmetric.7

Relations that emanate from these rules are diagrammed in Figure 6.7. Internal quantities are now

5 The proof is done by equating the virtual work of a slice of length dx̄ : d f̄
T
.δū = dpT .δv = dpT .(B ū) = (BT .dp)T .δū.

Since δū is arbitrary, BT dp = d f̄.

6 The meaning of dp is simply p(x̄) dx̄ . That is, the differential of internal forces as one passes from cross-section x̄ to a
neighboring one x̄ + dx̄ . The interpretation of d f̄ is less immediate because f̄ is not a function of x̄ . It actually means
the contribution of that member slice to the building of the node force vector f̄. See Equation (6.12).

7 Note that symbol R replaces the S of the previous section. R applies to a specific cross section, S to the entire member.
See Exercise 6.9.

6–10

6–11 §6.3 NON-SIMPLEX MOM MEMBERS

eliminated using the differential equilibrium relation:

d f̄ = BT dp = BT p dx̄ = BT R v dx̄ = BT RBū dx̄ = BT RB dx̄ ū. (6.11)

Integrating both sides over the member length L yields

f̄ =
∫ L

0
d f̄ =

∫ L

0
BT RB dx̄ ū = K̄ū, (6.12)

because ū does not depend on x̄ . Consequently the element stiffness matrix is

K̄ =
∫ L

0
BT R B dx̄ (6.13)

The result (6.13) will be justified in Part II of the course through energy methods. It will be seen
there that this formula applies to arbitrary displacement-assumed finite elements in any number of
dimensions. It is applied to the derivation of the stiffness equations of the plane beam element in
Chapter 13.

6–11

Chapter 6: CONSTRUCTING MOM MEMBERS 6–12

Homework Exercises for Chapter 6

Constructing MoM Members

EXERCISE 6.1

[A:15] Formulate a prismatic shaft member of length L that can only transmit a torque T along the longitudinal
(x̄) direction. The only active degrees of freedom of this member are the twist-angle rotations θ̄xi and θ̄x j of the
end joints about x̄ . The constitutive equation furnished by Mechanics of Materials is T = (G J/L)φ, where
G J is the torsional rigidity and φ = θ̄x j − θ̄xi is the relative twist angle. Draw the Tonti diagram to illustrate
the discrete equations.

The result should be [
m̄xi

m̄x j

]
= G J

L

[
1 −1

−1 1

] [
θ̄xi

θ̄x j

]
(E6.1)

in which m̄xi = −T and m̄x j = T are the nodal moments about x̄ .

EXERCISE 6.2

[A:10] Explain how to select the deformation variable v (paired to V) of the spar member formulated in
§6.2.2, so that A = B.

EXERCISE 6.3

[A/C:25] Derive the 4 × 4 global element stiffness matrix of a prismatic spar element in a two dimensional
Cartesian system {x, y}. Start from the local stiffness (6.10) and proceed as in §3.2.1 and §3.2.2 for the bar
element. Since K̄ in (6.10) is 2 × 2, T is 2 × 4. Show that T consists of rows 2 and 4 of the matrix of (3.2).

E, A

L

(a) (b)

y

z x

x−

y−

y−

z−

i i i i(x , y , z) L

x−

j j jj(x , y , z)

−uyi

−uxj

i

j

−uxi

Figure E6.1. Bar element in 3D for Exercise 6.4.

EXERCISE 6.4

[A+N:15] A bar element moving in three dimensional space is defined by the global coordinates {xi , yi , zi },
{x j , y j , z j } of its end nodes i and j , as illustrated in Figure E6.1. The 2×6 displacement transformation matrix
T relates ū(e) = Tu(e). Here ū(e) contains the local axial displacements ūxi and ūx j whereas u(e) contains the
global displacements uxi , uyi , uzi , ux j , uyj , uzj . Show that

T = 1

L

[
x ji y ji z ji 0 0 0
0 0 0 x ji y ji z ji

]
=

[
cx ji cy ji cz ji 0 0 0
0 0 0 cx ji cy ji cz ji

]
(E6.2)

in which L is the element length, x ji = x j − xi , etc., and cx ji = x ji/L , etc., are the direction cosines of the
vector going from i to j . Evaluate T for a bar going from node i at {1, 2, 3} to node j at {3, 8, 6}.

6–12

6–13 Exercises

y

z x

x−

y−

−−

y−

z−

i i i i(x , y , z)

k k kk(x , y , z)

L

x−

j j jj(x , y , z)

b
β

c

a

α

h
−uyi

−uyj

i

j

k

m L − c

G, A s

Orientation node k defines plane
 {x,y} as passing through {i,j,k}

(a) (b)

Figure E6.2. Spar element in 3D for Exercise 6.5.

EXERCISE 6.5

[A+N:25 (10+15)] A spar element in three dimensional space is only partially defined by the global coordinates
{xi , yi , zi }, {x j , y j , z j } of its end nodes i and j , as illustrated in Figure E6.2. The problem is that axis ȳ, which
defines the direction of shear force transmission, is not uniquely defined by i and j .8 Most FEM programs use
the orientation node method to complete the definition. A third node k, not colinear with i and j , is provided
by the user. Nodes {i, j, k} define the {x̄, ȳ} plane and consequently z̄. The projection of k on line i j is point m
and the distance h > 0 from m to k is called h as shown in Figure E6.2. The 2×6 displacement transformation
matrix T relates ū(e) = Tu(e). Here ū(e) contains the local transverse displacements ū yi and ū y j whereas u(e)

contains the global displacements uxi , uyi , uzi , ux j , uyj , uzj .

(a) Show that

T = 1

h

[
xkm ykm zkm 0 0 0
0 0 0 xkm ykm zkm

]
=

[
cxkm cykm czkm 0 0 0

0 0 0 cxkm cykm czkm

]
(E6.3)

in which xkm = xk − xm , etc., and cxkm = xkm/h, etc., are the direction cosines of the vector going from
m to k.

(b) Work out the formulas to compute the coordinates of point m in terms of the coordinates of {i, j, k}.
Using the notation of Figure E6.2(b) and elementary trigonometry, show that h = 2A/L , where A =√

p(p − a)(p − b)(p − L) with p = 1
2 (L + a + b) (Heron’s formula), cos α = (L2 + b2 − a2)/(2bL),

cos β = (L2 +a2 −b2)/(2aL), c = b cos α, L − c = a cos β, xm = xi (L − c)/L + x j c/L , etc. Evaluate
T for a spar member going from node i at {1, 2, 3} to node j at {3, 8, 6}. with k at {4, 5, 6}.

EXERCISE 6.6

[A:15] If the matrices B and R are constant over the element length L , show that expression (6.13) of the
element stiffness matrix for a variable-section element reduces to (6.6), in which S = LR.

EXERCISE 6.7

[A:25] Explain in detail the quick derivation of footnote 5. (Knowledge of the Principle of Virtual Work is
required to do this exercise.)

8 This full specification of the local system is also required for 3D beam elements.

6–13

Chapter 6: CONSTRUCTING MOM MEMBERS 6–14

EXERCISE 6.8

[A:20] Explain how thermal effects can be generally incorporated in the constitutive equation (6.2) to produce
an initial force vector.

EXERCISE 6.9

[A:20] Consider a non-simplex MoM element in which R varies with x̄ but B is constant. From (6.13) show
that

K̄ = LBT R̄ B, with R̄ = 1

L

∫ L

0

R(x̄) dx̄ (E6.4)

Here R̄ is an element-averaged constitutive matrix. Apply this result to form K̄ for a truss member of tapered
cross section area A(x̄). Assume that the area is defined by the linear law A = Ai (1 − x̄/L) + A j x̄/L , where
Ai and A j are the end areas at joints i and j , respectively. Take B to be the same as in the prismatic case
discussed in §6.2.1.

EXERCISE 6.10

[A/C+N:30] A prismatic bar element in 3D space is referred to a global coordinate system {x, y, z}, as in
Figure E6.1. The end nodes are located at {x1, y1, z1} and {x2, y2, z2}.9 The elastic modulus E and the
cross section area A are constant along the length. Denote x21 = x2 − x1, y21 = y2 − y1, z21 = z2 − z1

and L =
√

x2
21 + y2

21 + z2
21. Show that the element stiffness matrix in global coordinates can be compactly

written10

K(e) = E A

L3
BT B (E6.5)

where
B = [−x21 −y21 −z21 x21 y21 z21] (E6.6)

Compute K(e) if the nodes are at {1, 2, 3} and {3, 8, 6}, with elastic modulus E = 343 and cross section area
A = 1. Note: the computation can be either done by hand or with the help of a program such as the following
Mathematica module, which is used in Part III of the course:

Stiffness3DBar[ncoor_,mprop_,fprop_,opt_]:= Module[

{x1,x2,y1,y2,z1,z2,x21,y21,z21,Em,Gm,rho,alpha,A,

num,L,LL,LLL,B,Ke}, {{x1,y1,z1},{x2,y2,z2}}=ncoor;

{x21,y21,z21}={x2-x1,y2-y1,z2-z1};

9 End nodes are labeled 1 and 2 instead of i and j to agree with the code listed below.

10 There are several ways of arriving at this result. Some are faster and more elegant than others. Here is a sketch of one of
the ways. Denote by L0 and L the lengths of the bar in the undeformed and deformed configurations, respectively. Then

1
2 (L2 − L2

0) = x21(ux2 − ux1) + y21(uy2 − uy1) + z21(uz2 − uz1) + R ≈ Bu

in which R is a quadratic function of node displacements which is therefore dropped in the small-displacement linear
theory. But

1
2 (L2 − L2

0) = 1
2 (L + L0)(L − L0) ≈ L �L

also because of small displacements. Hence the small axial strain is e = �L/L = (1/L2)Bu(e), which begins the Tonti
diagram. Next is F = E A e, and finally you should show that force equilibrium at nodes requires f(e) = (1/L)BT F .
Multiplying through you get (E6.5). Another way is to start from the local stiffness (6.8) and transform to global using
the transformation matrix (E6.2).

6–14

6–15 Exercises

{Em,Gm,rho,alpha}=mprop; {A}=fprop; {num}=opt;

If [num,{x21,y21,z21,Em,A}=N[{x21,y21,z21,Em,A}]];

LL=x21^2+y21^2+z21^2; L=PowerExpand[Sqrt[LL]];

LLL=Simplify[LL*L]; B={{-x21,-y21,-z21,x21,y21,z21}};

Ke=(Em*A/LLL)*Transpose[B].B;

Return[Ke]];

ClearAll[Em,A]; Em=343; A=1;

ncoor={{0,0,0},{2,6,3}}; mprop={Em,0,0,0}; fprop={A}; opt={False};

Ke=Stiffness3DBar[ncoor,mprop,fprop,opt];

Print["Stiffness of 3D Bar Element:"];

Print[Ke//MatrixForm];

Print["eigs of Ke: ",Eigenvalues[Ke]];

As a check, the six eigenvalues of this particular K(e) should be 98 and five zeros.

6–15

.

7
FEM Modeling:

Introduction

7–1

Chapter 7: FEM MODELING: INTRODUCTION 7–2

TABLE OF CONTENTS

Page
§7.1. FEM TERMINOLOGY 7–3

§7.2. IDEALIZATION 7–4
§7.2.1. Models 7–4
§7.2.2. Mathematical Models 7–5
§7.2.3. Implicit vs. Explicit Modeling 7–6

§7.3. DISCRETIZATION 7–7
§7.3.1. Purpose 7–7
§7.3.2. Error Sources and Approximation 7–7
§7.3.3. Other Discretization Methods 7–8

§7.4. THE FINITE ELEMENT METHOD 7–8
§7.4.1. Interpretation 7–8
§7.4.2. Element Attributes 7–9

§7.5. CLASSIFICATION OF MECHANICAL ELEMENTS 7–11
§7.5.1. Primitive Structural Elements 7–11
§7.5.2. Continuum Elements 7–11
§7.5.3. Special Elements 7–11
§7.5.4. Macroelements 7–11
§7.5.5. Substructures 7–12

§7.6. ASSEMBLY 7–12

§7.7. BOUNDARY CONDITIONS 7–12
§7.7.1. Essential and Natural B.C. 7–12
§7.7.2. Boundary Conditions in Structural Problems 7–13

7–2

7–3 §7.1 FEM TERMINOLOGY

Chapters 2 through 6 cover material technically known as Matrix Structural Analysis or MSA. This
is a subject that historically preceded the Finite Element Method (FEM), as chronicled in Appendix
H. This Chapter starts the coverage of the FEM proper, which is distingished from MSA by the
more dominant role of continuum and variational mechanics.

This Chapter introduces terminology used in FEM modeling, and surveys the attributes and types
of finite elements used in structural mechanics. The next Chapter gives more specific rules for
defining meshes, forces and boundary conditions.

§7.1. FEM TERMINOLOGY

The ubiquitous term “degrees of freedom,” often abbreviated to DOF, has figured prominently in
the preceding Chapters. This term, as well as “stiffness matrix” and “force vector,” originated in
structural mechanics, which is the application for which FEM was invented. These names have
carried over to non-structural applications. This “terminology overspill” is discussed next.

Classical analytical mechanics is that invented by Euler and Lagrange and developed by Hamilton
and Jacobi as a systematic formulation of Newtonian mechanics. Its objects of attention are models
of mechanical systems ranging from particles composed of sufficiently large of molecules, through
airplanes, to the Solar System.1 The spatial configuration of any such system is described by its
degrees of freedom. These are also called generalized coordinates. The terms state variables and
primary variables are also used, particularly in mathematically oriented treatments.

If the number of degrees of freedom of the model is finite, the model is called discrete, and continuous
otherwise.

Because FEM is a discretization method, the number of degrees of freedom of a FEM model is
necessarily finite. The freedoms are collected in a column vector called u. This vector is generally
called the DOF vector or state vector. The term nodal displacement vector for u is reserved to
mechanical applications.

In analytical mechanics, each degree of freedom has a corresponding “conjugate” or “dual” term,
which represents a generalized force.2 In non-mechanical applications, there is a similar set of
conjugate quantities, which for want of a better term are also called forces or forcing terms. These
forces are collected in a column vector called f. The inner product fT u has the meaning of external
energy or work.

Just as in the truss problem, the relation between u and f is assumed to be of linear and homogeneous.
The last assumption means that if u vanishes so does f. The relation is then expressed by the master
stiffness equations:

Ku = f. (7.1)

K is universally called the stiffness matrix even in non-structural applications because no consensus
has emerged on different names.

1 For cosmological scales, such as the full Universe, the general theory of relativity is necessary. For the sub-particle
world, quantum mechanics is required.

2 In variational mathematics this is called a duality pairing.

7–3

Chapter 7: FEM MODELING: INTRODUCTION 7–4

Table 7.1. Physical Significance of Vectors u and f
in Miscellaneous FEM Applications

Application State (DOF) vector u Conjugate vector f
Problem represents represents

Structures and solid mechanics Displacement Mechanical force

Heat conduction Temperature Heat flux

Acoustic fluid Displacement potential Particle velocity

Potential flows Pressure Particle velocity

General flows Velocity Fluxes

Electrostatics Electric potential Charge density

Magnetostatics Magnetic potential Magnetic intensity

The physical significance of the vectors u and f varies according to the application being modeled,
as illustrated in Table 7.1.

If the relation between forces and displacements is linear but not homogeneous, equation (7.1)
generalizes to

Ku = fM + fI . (7.2)

Here fI is the initial node force vector introduced in Chapter 4 for effects such as temperature
changes, and fM is the vector of mechanical forces.

The basic steps of FEM are discussed below in more generality. Although attention is focused on
structural problems, most of the steps translate to other applications problems as noted above. The
role of FEM in numerical simulation is schematized in Figure 7.1, which is a merged simplification
of Figures 1.2 and 1.3. Although this diagram oversimplifies the way FEM is actually used, it serves
to illsutrates terminology. It shows the three key simulation steps are: idealization, discretization
and solution,and indicates that each step is a source of errors. For example, the discretization error
is the discrepancy that appears when the discrete solution is substituted in the mathematical model.
The reverse steps: continuification and realization, are far more difficult and ill-posed problems.

The idealization and discretization steps, briefly mentioned in Chapter 1, deserve further discussion.
The solution step is dealt with in the last Part of this course.

§7.2. IDEALIZATION

Idealization passes from the physical system to a mathematical model. This is the most important
step in engineering practice.

§7.2.1. Models

The word “model” has the traditional meaning of a scaled copy or representation of an object. And
that is precisely how most dictionaries define it. We use here the term in a more modern sense,
which has become increasingly common since the advent of computers:

7–4

7–5 §7.2 IDEALIZATION

Physical
system

Modeling + discretization + solution error

Discretization + solution error

Solution error

Discrete
 model

Mathematical
model

CONTINUIFICATIONREALIZATION &
IDENTIFICATION

IDEALIZATION DISCRETIZATION SOLUTION

FEM Discrete
solution

Figure 7.1. A simplified view of the physical simulation process,
primarily useful to illustrate modeling terminology.

A model is a symbolic device built to simulate and predict aspects of behavior of a system.

Note the distinction made between behavior and aspects of behavior. To predict everything, in all
physical scales, you must deal with the actual system. A model abstracts aspects of interest to the
modeler. The qualifier symbolic means that a model represents a system in terms of the symbols
and language of another discipline. For example, engineering systems may be (and are) modeled
with the symbols of mathematics and/or computer sciences.3

§7.2.2. Mathematical Models

Mathematical modeling, or idealization, is a process by which the engineer passes from the actual
physical system under study, to a mathematical model of the system, where the term model is
understood in the sense defined above.

The process is called idealization because the mathematical model is necessarily an abstraction of
the physical reality. (Note the phrase aspects of behavior in the foregoing definition.) The analytical
or numerical results obtained for the mathematical model are re-interpreted in physical terms only
for those aspects.4

To give an example on the choices an engineer may face, suppose that the structure is a flat plate
structure subjected to transverse loading. Here is a list of four possible mathematical models:

1. A very thin plate model based on Von Karman’s coupled membrane-bending theory.

2. A thin plate model, such as the classical Kirchhoff’s plate theory.

3. A moderately thick plate model, for example Mindlin-Reissner plate theory.

4. A very thick plate model based on three-dimensional elasticity.

The person responsible for this kind of decision is supposed to be familiar with the advantages,

3 A problem-definition input file or a stress plot are examples of the latter.

4 Whereas idealization can be reasonably taught in advanced design courses, the converse process of “realization” or
“parameter identification” generally requires considerable physical understanding and maturity that can only be gained
through professional experience.

7–5

Chapter 7: FEM MODELING: INTRODUCTION 7–6

FEM Library

of Black-Box

FEM Code Component

discrete

model

Component

equations

Physical

 system

System

discrete

model

Complete

solution

Mathematical

model

SYSTEM

LEVEL

COMPONENT

LEVEL

Figure 7.2. A reproduction of Figure 1.5 with some relabeling.
Illustrates implicit modeling: picking elements from
an existing FEM code consents to an idealization.

disadvantages, and range of applicability of each model. Furthermore the decision may be different
in static analysis than in dynamics.

Why is the mathematical model an abstraction of reality? Engineering systems, particularly in
Aerospace and Mechanical, tend to be highly complex. For simulation it is necessary to reduce that
complexity to manageable proportions. Mathematical modeling is an abstraction tool by which
complexity can be controlled. This is achieved by “filtering out” physical details that are not
relevant to the analysis process. For example, a continuum material model filters out the aggregate,
crystal, molecular and atomic levels of matter. Engineers are typically interested in a few integrated
quantities, such as the maximum deflection of a bridge or the fundamental periods of an airplane.
Although to a physicist this is the result of the interaction of billions and billions of molecules, such
details are weeded out by the modeling process. Consequently, picking a mathematical model is
equivalent to choosing an information filter.

§7.2.3. Implicit vs. Explicit Modeling

As noted the diagram of Figure 7.1 is an oversimplification of engineering practice. The more
common scenario is that pictured in Figures 1.2, 1.4 and 1.5. The latter is reproduced in Figure 7.2
for convenience.

A common scenario in industry is: you have to analyze a structure or a substructure, and at your
disposal is a “black box” general-purpose finite element program. Those programs offer a catalog
of element types; for example, bars, beams, plates, shells, axisymmetric solids, general 3D solids,
and so on. The moment you choose specific elements from the catalog you automatically accept
the mathematical models on which the elements are based. This is implicit modeling. Ideally you
should be fully aware of the implications of your choice. Providing such “finite element literacy” is
one of the objective of this book. Unfortunately many users of commercial programs are unaware
of the implied-consent aspect of implicit modeling.

The other extreme happens when you select a mathematical model of the physical problem with

7–6

7–7 §7.3 DISCRETIZATION

your eyes wide open and then either shop around for a finite element program that implements
that model, or write the program yourself. This is explicit modeling. It requires far more technical
expertise, resources, experience and maturity than implicit modeling. But for problems that fall out
of the ordinary it may be the right thing to do.

In practice a combination of implicit and explicit modeling is common. The physical problem
to be simulated is broken down into subproblems. Those subproblems that are conventional and
fit available programs may be treated with implicit modeling, whereas those that require special
handling may only submit to explicit modeling.

§7.3. DISCRETIZATION

§7.3.1. Purpose

Mathematical modeling is a simplifying step. But models of physical systems are not necessarily
simple to solve. They often involve coupled partial differential equations in space and time subject to
boundary and/or interface conditions. Such models have an infinite number of degrees of freedom.

At this point one faces the choice of trying for analytical or numerical solutions. Analytical solutions,
also called “closed form solutions,” are more intellectually satisfying, particularly if they apply to
a wide class of problems, so that particular instances may be obtained by substituting the values
of symbolic parameters. Unfortunately they tend to be restricted to regular geometries and simple
boundary conditions. Moreover some closed-form solutions, expressed for example as inverses of
integral transforms, often have to be numerically evaluated to be useful.

Most problems faced by the engineer either do not yield to analytical treatment or doing so would
require a disproportionate amount of effort.5 The practical way out is numerical simulation. Here
is where finite element methods and the digital computer enter the scene.

To make numerical simulations practical it is necessary to reduce the number of degrees of freedom
to a finite number. The reduction is called discretization. The product of the discretization process
is the discrete model. For complex engineering systems this model is the product of a multilevel
decomposition.

Discretization can proceed in space dimensions as well as in the time dimension. Because the
present course deals only with static problems, we need not consider the time dimension and are
free to concentrate on spatial discretization.

§7.3.2. Error Sources and Approximation

Figure 7.1 tries to convey graphically that each simulation step introduces a source of error. In engi-
neering practice modeling errors are by far the most important. But they are difficult and expensive
to evaluate, because such model verification and validation requires access to and comparison with
experimental results. These may be either scarce, or unavailable in the case of a new product.

5 This statement has to be tempered in two respects. First, the wider availability and growing power of computer algebra
systems, discussed in Chapter 5, has widened the realm of analytical solutions than can be obtained within a practical
time frame. Second, a combination of analytical and numerical techniques is often effective to reduce the dimensionality
of the problem and to facilitate parameter studies. Important examples are provided by Fourier analysis, perturbation
and boundary-element methods.

7–7

Chapter 7: FEM MODELING: INTRODUCTION 7–8

Next in order of importance is the discretization error. Even if solution errors are ignored — and
usually they can — the computed solution of the discrete model is in general only an approximation
in some sense to the exact solution of the mathematical model. A quantitative measurement of
this discrepancy is called the discretization error. The characterization and study of this error is
addressed by a branch of numerical mathematics called approximation theory.

Intuitively one might suspect that the accuracy of the discrete model solution would improve as
the number of degrees of freedom is increased, and that the discretization error goes to zero as that
number goes to infinity. This loosely worded statement describes the convergence requirement of
discrete approximations. One of the key goals of approximation theory is to make the statement as
precise as it can be expected from a branch of mathematics.

§7.3.3. Other Discretization Methods

It was stated in the first chapter that the most popular discretization techniques in structural mechan-
ics are finite element methods and boundary element methods. The finite element method (FEM)
is by far the most widely used. The boundary element method (BEM) has gained in popularity
for special types of problems, particularly those involving infinite domains, but remains a distant
second, and seems to have reached its natural limits.

In non-structural application areas such as fluid mechanics and electromagnetics, the finite element
method is gradually making up ground but faces stiff competition from both the classical and energy-
based finite difference methods. Finite difference and finite volume methods are particularly well
entrenched in computational gas dynamics.

§7.4. THE FINITE ELEMENT METHOD

§7.4.1. Interpretation

The finite element method (FEM) is the dominant discretization technique in structural mechanics.
As noted in Chapter 1, the FEM can be interpreted from either a physical or mathematical standpoint.
The treatment has so far emphasized the former.

The basic concept in the physical FEM is the subdivision of the mathematical model into disjoint
(non-overlapping) components of simple geometry called finite elements or elements for short. The
response of each element is expressed in terms of a finite number of degrees of freedom characterized
as the value of an unknown function, or functions, at a set of nodal points. The response of the
mathematical model is then considered to be approximated by that of the discrete model obtained
by connecting or assembling the collection of all elements.

The disconnection-assembly concept occurs naturally when examining many artificial and natural
systems. For example, it is easy to visualize an engine, bridge, building, airplane, or skeleton as
fabricated from simpler components.

Unlike finite difference models, finite elements do not overlap in space. In the mathematical
interpretation of the FEM, this property goes by the name disjoint support.

7–8

7–9 §7.4 THE FINITE ELEMENT METHOD

1D

2D

2D

3D

Figure 7.3. Typical finite element geometries in one through three dimensions.

§7.4.2. Element Attributes

Just like members in the truss example, one can take finite elements of any kind one at a time. Their
local properties can be developed by considering them in isolation, as individual entities. This is
the key to the modular programming of element libraries.

In the Direct Stiffness Method, elements are isolated by disconnection and localization steps,
which were described for the truss example in Chapter 2. This procedure involves the separation
of elements from their neighbors by disconnecting the nodes, followed by referral of the element
to a convenient local coordinate system. After these two steps we can consider generic elements:
a bar element, a beam element, and so on. From the standpoint of computer implementation, it
means that you can write one subroutine or module that constructs, by suitable parametrization, all
elements of one type, instead of writing one for each element instance.

Following is a summary of the data associated with an individual finite element. This data is used
in finite element programs to carry out element level calculations.

Intrinsic Dimensionality. Elements can have one, two or three space dimensions.6 There are also
special elements with zero dimensionality, such as lumped springs or point masses.

Nodal points. Each element possesses a set of distinguishing points called nodal points or nodes
for short. Nodes serve two purposes: definition of element geometry, and home for degrees of
freedom. They are usually located at the corners or end points of elements, as illustrated in Figure
7.3; in the so-called refined or higher-order elements nodes are also placed on sides or faces, as
well as the interior of the element.

6 In dynamic analysis, time appears as an additional dimension.

7–9

Chapter 7: FEM MODELING: INTRODUCTION 7–10

Physical
Structural

Component

Finite Element
Discretization

bar

beam

tube, pipe

spar (web)

shear panel
(2D version of above)

Mathematical
Model Name

Figure 7.4. Examples of primitive structural elements.

Geometry. The geometry of the element is defined by the placement of the nodal points. Most
elements used in practice have fairly simple geometries. In one-dimension, elements are usually
straight lines or curved segments. In two dimensions they are of triangular or quadrilateral shape.
In three dimensions the three common shapes are tetrahedra, pentahedra (also called wedges or
prisms), and hexahedra (also called cuboids or “bricks”). See Figure 7.3.

Degrees of freedom. The degrees of freedom (DOF) specify the state of the element. They also
function as “handles” through which adjacent elements are connected. DOFs are defined as the
values (and possibly derivatives) of a primary field variable at nodal points. The actual selection
depends on criteria studied at length in Part II. Here we simply note that the key factor is the way
in which the primary variable appears in the mathematical model. For mechanical elements, the
primary variable is the displacement field and the DOF for many (but not all) elements are the
displacement components at the nodes.

Nodal forces. There is always a set of nodal forces in a one-to-one correspondence with degrees of
freedom. In mechanical elements the correspondence is established through energy arguments.

Constitutive properties. For a mechanical element these are relations that specify the material
behavior. For example, in a linear elastic bar element it is sufficient to specify the elastic modulus
E and the thermal coefficient of expansion α.

Fabrication properties. For mechanical elements these are fabrication properties which have been
integrated out from the element dimensionality. Examples are cross sectional properties of MoM
elements such as bars, beams and shafts, as well as the thickness of a plate or shell element.

7–10

7–11 §7.5 CLASSIFICATION OF MECHANICAL ELEMENTS

plates 3D solids

Physical
Finite element

idealization
Physical Finite element

idealization

Figure 7.5. Continuum element examples.

This data is used by the element generation subroutines to compute element stiffness relations in
the local system.

§7.5. CLASSIFICATION OF MECHANICAL ELEMENTS

The following classification of finite elements in structural mechanics is loosely based on the
“closeness” of the element with respect to the original physical structure. It is given here because
it clarifies many points that appear over and over in subsequent sections and provides insight into
advanced modeling techniques such as hierarchical breakdown and global-local analysis.

§7.5.1. Primitive Structural Elements

These resemble fabricated structural components, and are often drawn as such; see Figure 7.4. The
qualifier primitive is used to distinguish them from macroelements, which is another element class
described below. It means that they are not decomposable into simpler elements. These elements
are usually derived from Mechanics-of-Materials simplified theories and are better understood from
a physical, rather than mathematical, standpoint. Examples are the elements discussed in Chapter
6: bars, cables, beams, shafts, spars.

§7.5.2. Continuum Elements

These do not resemble fabricated structural components at all. They result from the subdivision of
“blobs” of continua, or of structural components viewed as continua. Unlike structural elements,
continuum elements are better understood in terms of their mathematical interpretation. Examples:
plates, slices, shells, axisymmetric solids, general solids. See Figure 7.5.

§7.5.3. Special Elements

Special elements partake of the characteristics of structural and continuum elements. They are
derived from a continuum mechanics standpoint but include features closely related to the physics
of the problem. Examples: crack elements for fracture mechanics applications, shear panels, infinite
and semi-infinite elements, contact and penalty elements, rigid-body elements. See Figure 7.6.

7–11

Chapter 7: FEM MODELING: INTRODUCTION 7–12

Infinity

Infinite
element

Crack
element

Honeycomb
panel

double node

Figure 7.6. Special element examples.

§7.5.4. Macroelements

Macroelements are also called mesh units and superelements, although the latter term overlaps with
substructures (defined below). These often resemble structural components, but are fabricated with
simpler elements. See Figure 7.7.

§7.5.5. Substructures

Also called structural modules and superelements. These are macroelements with a well defined
structural function, typically obtained by cutting the complete structure into functional components.
Examples: the wings and fuselage in an airplane, the deck and cables in a suspension bridge. It
should be noted that the distinction between complete structures, substructures and macroelements
is not clear-cut. The term superelement is often used in a collective sense to embrace all levels
beyond that of primitive elements. This topic is further covered in Chapter 11.

§7.6. ASSEMBLY

The assembly procedure of the Direct Stiffness Method for a general finite element model follows
rules identical in principle to those discussed for the truss example. As in that case the processs
involves two basic steps:

Globalization. The element equations are transformed to a common global coordinate system.

Merge. The element stiffness equations are merged into the master stiffness equations by appropriate
indexing and entry addition.

The computer implementation of this process is not necessarily as simple as the hand calculations of
the truss example suggest. The master stiffness relations in practical cases may involve thousands
(or even millions) of degrees of freedom. To conserve storage and processing time the use of
sparse matrix techniques as well as peripheral storage is required. But this inevitably increases the
programming complexity. The topic is elaborated upon in the last part of this course.

§7.7. BOUNDARY CONDITIONS

A key strength of the FEM is the ease and elegance with which it handles arbitrary boundary and
interface conditions. This power, however, has a down side. One of the biggest hurdles a FEM
newcomer faces is the understanding and proper handling of boundary conditions. In the present
Section we summarize some basic rules for treating boundary conditions. The following Chapter
provides specific rules and examples.

7–12

7–13 §7.7 BOUNDARY CONDITIONS

Figure 7.7. Macroelement examples.

§7.7.1. Essential and Natural B.C.

The important thing to remember is that boundary conditions (BCs) come in two basic flavors,
essential and natural.

Essential BCs are those that directly affect the degrees of freedom, and are imposed on the left-hand
side vector u.

Natural BCs are those that do not directly affect the degrees of freedom, and are imposed on the
right-hand side vector f.

The mathematical justification for this distinction requires use of the variational calculus, and is
consequently relegated to Part II of the course. For the moment, the basic recipe is:

1. If a boundary condition involves one or more degrees of freedom in a direct way, it
is essential. An example is a prescribed node displacement.

2. Otherwise it is natural.

The term “direct” is meant to exclude derivatives of the primary function, unless those derivatives
also appear as degrees of freedom, such as rotations in beams and plates.

§7.7.2. Boundary Conditions in Structural Problems

In mechanical problems, essential boundary conditions are those that involve displacements (but
not strain-type displacement derivatives). The support conditions for the truss problem furnish a
particularly simple example. But there are more general boundary conditions that occur in practice.
A structural engineer must be familiar with displacement B.C. of the following types.

Ground or support constraints. Directly restraint the structure against rigid body motions.

Symmetry conditions. To impose symmetry or antisymmetry restraints at certain points, lines or
planes of structural symmetry. This allows the discretization to proceed only over part of the
structure with a consequent savings in the number of equations to be solved.

7–13

Chapter 7: FEM MODELING: INTRODUCTION 7–14

Ignorable freedoms. To suppress displacements that are irrelevant to the problem. (In classical dy-
namics these are called ignorable coordinates.) Even experienced users of finite element programs
are sometimes baffled by this kind. An example are rotational degrees of freedom normal to shell
surfaces.

Connection constraints. To provide connectivity to adjoining structures or substructures, or to
specify relations between degrees of freedom. Many conditions of this type can be subsumed under
the label multipoint constraints or multifreedom constraints, which can be notoriously difficult to
handle from a numerical standpoint. These will be covered in Chapters 9 and 10.

7–14

.

8
FEM Modeling:

Mesh, Loads
and BCs

8–1

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–2

TABLE OF CONTENTS

Page

§8.1. GENERAL RECOMMENDATIONS 8–3

§8.2. GUIDELINES ON ELEMENT LAYOUT 8–3
§8.2.1. Mesh Refinement 8–3
§8.2.2. Element Aspect Ratios 8–3
§8.2.3. Physical Interfaces 8–5
§8.2.4. Preferred Shapes 8–5

§8.3. DIRECT LUMPING OF DISTRIBUTED LOADS 8–5
§8.3.1. Node by Node (NbN) Lumping 8–6
§8.3.2. Element by Element (EbE) Lumping 8–7

§8.4. BOUNDARY CONDITIONS 8–7

§8.5. SUPPORT CONDITIONS 8–8
§8.5.1. Supporting Two Dimensional Bodies 8–8
§8.5.2. Supporting Three Dimensional Bodies 8–9

§8.6. SYMMETRY AND ANTISYMMETRY CONDITIONS 8–9
§8.6.1. Visualization 8–9
§8.6.2. Effect of Loading Patterns 8–10

EXERCISES . 8–11

8–2

8–3 §8.2 GUIDELINES ON ELEMENT LAYOUT

This Chapter continues the exposition of finite element modeling principles. After some general rec-
ommendations, it provides guidelines on layout of finite element meshes, conversion of distributed
loads to node forces, and how to handle the simplest forms of support boundary conditions. The
following Chapters deal with more complicated forms of boundary conditions called multifreedom
constraints.

The presentation is “recipe oriented” and illustrated by specific examples. All examples are from
structural mechanics; most of them are two-dimensional. No attempt is given at a rigorous justi-
fication of rules and recommendations, because that would require mathematical tools beyond the
scope of this course.

§8.1. GENERAL RECOMMENDATIONS

The general rules that should guide you in the use of commercial or public FEM packages, are:

• Use the simplest type of finite element that will do the job.

• Never, never, never mess around with complicated or special elements, unless you
are absolutely sure of what you are doing.

• Use the coarsest mesh you think will capture the dominant physical behavior of the
physical system, particularly in design applications.

Three word summary: keep it simple. Initial FE models may have to be substantially revised to
accommodate design changes, and there is little point in using complicated models that will not
survive design iterations. The time for refined models is when the design has stabilized and you have
a better view picture of the underlying physics, possibly reinforced by experiments or observation.

§8.2. GUIDELINES ON ELEMENT LAYOUT

The following guidelines are stated for structural applications. As noted above, they will be often
illustrated for two-dimensional meshes of continuum elements for ease of visualization.

§8.2.1. Mesh Refinement

Use a relatively fine (coarse) discretization in regions where you expect a high (low) gradient of
strains and/or stresses. Regions to watch out for high gradients are:

• Near entrant corners, or sharply curved edges.

• In the vicinity of concentrated (point) loads, concentrated reactions, cracks and cutouts.

• In the interior of structures with abrupt changes in thickness, material properties or cross
sectional areas.

The examples in Figure 8.1 illustrate some of these “danger regions.” Away from such regions one
can use a fairly coarse discretization within constraints imposed by the need of representing the
structural geometry, loading and support conditions reasonably well.

8–3

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–4

Cutouts Cracks

entrant corners

Vicinity of concentrated (point)
loads, and sharp contact areas

Load transfer
(bonded joints,
welds, anchors,

reinforcing bars, etc.)
Abrupt thickness

changes
Material
interfaces

weld

Figure 8.1. Some situations where a locally refined finite element
discretization (in the red-colored areas) is recommended.

§8.2.2. Element Aspect Ratios

When discretizing two and three dimensional problems, try to avoid finite elements of high aspect
ratios: elongated or “skinny” elements, as the ones illustrated in Figure 8.2.1 As a rough guideline,
elements with aspect ratios exceeding 3 should be viewed with caution and those exceeding 10 with
alarm. Such elements will not necessarily produce bad results — that depends on the loading and
boundary conditions of the problem — but do introduce the potential for trouble.

Good Bad

Figure 8.2.Elements of good and bad aspect ratios.

1 The aspect ratio of a two- or three-dimensional element is the ratio between its largest and smallest dimension.

8–4

8–5 §8.3 DIRECT LUMPING OF DISTRIBUTED LOADS

REMARK 8.1

In many “thin” structures modeled as continuous bodies the appearance of “skinny” elements is inevitable on
account of computational economy reasons. An example is provided by the three-dimensional modeling of
layered composites in aerospace and mechanical engineering problems.

§8.2.3. Physical Interfaces

A physical interface, resulting from example from a change in material, should also be an interele-
ment boundary. That is, elements must not cross interfaces. See Figure 8.3.

No

Physical interface

OK

Figure 8.3. Illustration of the rule that elements should not cross material interfaces.

§8.2.4. Preferred Shapes

In two-dimensional FE modeling, if you have a choice between triangles and quadrilaterals with
similar nodal arrangement, prefer quadrilaterals. Triangles are quite convenient for mesh generation,
mesh transitions, rounding up corners, and the like. But sometimes triangles can be avoided
altogether with some thought. One of the homework exercises is oriented along these lines.

In three dimensional FE modeling, prefer strongly bricks over wedges, and wedges over tetrahedra.
The latter should be used only if there is no viable alternative. The main problem with tetrahedra
and wedges is that they can produce wrong stress results even if the displacement solution looks
reasonable.

§8.3. DIRECT LUMPING OF DISTRIBUTED LOADS

In practical structural problems, distributed loads are more common than concentrated (point)
loads.2 Distributed loads may be of surface or volume type.

Distributed surface loads (called surface tractions in continuum mechanics) are associated with
actions such as wind or water pressure, lift in airplanes, live loads on bridges, and the like. They
are measured in force per unit area.

Volume loads (called body forces in continuum mechanics) are associated with own weight (gravity),
inertial, centrifugal, thermal, prestress or electromagnetic effects. They are measured in force per
unit volume.

2 In fact, one of the objectives of a good design is to avoid or alleviate stress concentrations produced by concentrated
forces.

8–5

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–6

Nodal force f at 3 is set to P, the
magnitude of the crosshatched area
under the load curve. This area
goes halfway over adjacent
element sides

Distributed load
intensity (load acts
downward on boundary)

Boundary

Finite element
mesh

1 2 3 4 5 6��
��
��
��

3

f = P3

Figure 8.4. NbN direct lumping of distributed load, illustrated for a 2D problem.

A derived type: line loads, result from the integration of surface loads along one transverse direction,
or of volume loads along two transverse directions. Line loads are measured in force per unit length.

Whatever their nature or source, distributed loads must be converted to consistent nodal forces
for FEM analysis. These forces eventually end up in the right-hand side of the master stiffness
equations.

The meaning of “consistent” can be made precise through variational arguments, by requiring that
the distributed loads and the nodal forces produce the same external work. Since this requires
the introduction of external work functionals, the topic is deferred to Part II. However, a simpler
approach called direct load lumping, or simply load lumping, is often used by structural engineers
in lieu of the more mathematically impeccable but complicated variational approach. Two variants
of this technique are described below for distributed surface loads.

§8.3.1. Node by Node (NbN) Lumping

The node by node (NbN) lumping method is graphically explained in Figure 8.4. This example
shows a distributed surface loading acting on the straight boundary of a two-dimensional FE mesh.
(The load is assumed to have been integrated through the thickness normal to the figure, so it is
actually a line load measured as force per unit length.)

The procedure is also called tributary region or contributing region method. For the example of
Figure 8.4, each boundary node is assigned a tributary region around it that extends halfway to the
adjacent nodes. The force contribution P of the cross-hatched area is directly assigned to node 3.

This method has the advantage of not requiring the computation of centroids, as required in the
EbE technique discussed in the next subsection. For this reason it is often preferred in hand
computations. It can be extended to three-dimensional meshes as well as volume loads.3 It should

3 The computation of tributary areas and volumes can be done through the so-called Voronoi diagrams.

8–6

8–7 §8.4 BOUNDARY CONDITIONS

Force P has magnitude of
crosshatched area under load
curve and acts at its centroid.

Distributed load
intensity (load acts
downward on boundary)

Boundary

Finite element
mesh

���
���
���
���

f

1 2 3 4 5 6
2

f (e)
3

(e)

(e)
P

centroid C of
crosshatched area

P

C

2 3
a b

L=a+b

Details of element
force computations

2
(e)f = (b/L)P (e)

3f = (a/L)P

Figure 8.5. EbE direct lumping of distributed load, illustrated for a 2D problem.

be avoided, however, when the applied forces vary rapidly (within element length scales) or act
only over portions of the tributary regions.

§8.3.2. Element by Element (EbE) Lumping

In this variant the distributed loads are divided over element domains. The resultant load is assigned
to the centroid of the load diagram, and apportioned to the element nodes by statics. A node force
is obtained by adding the contributions from all elements meeting at that node. The procedure is
illustrated in Figure 8.5, which shows details of the computation over segment 2-3. The total force
at node 3, for instance, would that contributed by segments 2-3 and 3-4.

If applicable, the EbE procedure is more accurate than NbN lumping. In fact it agrees with the
consistent node lumping for simple elements that possess only corner nodes. In those cases it is not
affected by the sharpness of the load variation and can be used for point loads that are not applied
at the nodes.

The procedure is not applicable if the centroidal resultant load cannot be apportioned by statics.
This happens if the element has midside faces or internal nodes in addition to corner nodes, or if it
has rotational degrees of freedom. For those elements the variational approach is preferable.

§8.4. BOUNDARY CONDITIONS

The key distinction between essential and natural boundary conditions (BC) was introduced in
the previous Chapter. The distinction is explained in Part II from a variational standpoint. In this
Chapter we discuss next the simplest essential boundary conditions in structural mechanics from
a physical standpoint. This makes them relevant to problems with which a structural engineer is
familiar. Because of the informal setting, the ensuing discussion relies heavily on examples.

8–7

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–8

�
�
�

�
�
�

�
�
�
�

�
�
�

A

B

�
�

�
�
�

�

�
�
�

A

B

x x

y y(b)

�
�

�
�

�
�

�
�

A

B

(c)(a)

Figure 8.6. Examples of restraining a body against two-dimensional rigid body motions.

In structural problems formulated by the DSM, the recipe of §7.7.1 that distinguishes between
essential and natural BC is: if it directly involves the nodal freedoms, such as displacements or
rotations, it is essential. Otherwise it is natural. Conditions involving applied loads are natural.
Essential BCs take precedence over natural BCs.

The simplest essential boundary conditions are support and symmetry conditions. These appear
in many practical problems. More exotic types, such as multifreedom constraints, require more
advanced mathematical tools and are covered in the next two Chapters.

§8.5. SUPPORT CONDITIONS

Supports are used to restrain structures against relative rigid body motions. This is done by attaching
them to Earth ground (through foundations, anchors or similar devices), or to a “ground structure”
which is viewed as the external environment.4 The resulting boundary conditions are often called
motion constraints. In what follows we analyze two- and three-dimensional motions separately.

§8.5.1. Supporting Two Dimensional Bodies

Figure 8.6 shows two-dimensional bodies that displace in the plane of the paper. If a body is not re-
strained, an applied load will cause infinite displacements. Regardless of the loading conditions, the
structure must be restrained against two translations and one rotation. Consequently the minimum
number of constraints that has to be imposed in two dimensions is three.

In Figure 8.4, support A provides translational restraint, whereas support B, together with A,
provides rotational restraint. In finite element terminology, we say that we delete (fix, remove,
preclude) all translational displacements at point A, and that we delete the translational degree of
freedom directed along the normal to the AB direction at point B. This body is free to distort in any
manner without the supports imposing any displacement constraints.

Engineers call A and B reaction-to-ground points. This means that if the supports are conceptually
removed, the applied loads are automatically balanced by reactive forces at points A and B, in
accordance with Newton’s third law. Additional freedoms may be removed to model greater restraint
by the environment. However, Figure 8.6(a) does illustrate the minimal number of constraints.

4 For example, the engine of a car is attached to the vehicle frame through mounts. The car frame becomes the “ground
structure,” which moves with respect to Earth ground.

8–8

8–9 §8.6 SYMMETRY AND ANTISYMMETRY CONDITIONS

���
�
�

�
�

A

B

x

y

z

C

D�
�
�

��������������
Figure 8.7. Suppressing RBM freedoms in a three-dimensional body.

Figure 8.6(b) shows a simplified version of Figure 8.6(a). Here the line AB is parallel to the global
y axis. We simply delete the x and y translations at point A, and the x translation at point B.
If the roller support at B is modified as in Figure 6(c), it becomes ineffective in constraining the
infinitesimal rotational motion about point A because the rolling direction is normal to AB. The
configuration of Figure 6(c) is called a kinematic mechanism, and can be flagged by a singular
modified stiffness matrix.

§8.5.2. Supporting Three Dimensional Bodies

Figure 8.7 illustrates the extension of the freedom deletion concept to three dimensions. The minimal
number of freedoms that have to be deleted is now six and many combinations are possible. In the
example of the figure, all three degrees of freedom at point A have been deleted to prevent rigid
body translations. The x displacement component at point B is deleted to prevent rotation about z,
the z component is deleted at point C to prevent rotation about y, and the y component is deleted
at point D to prevent rotation about x .

§8.6. SYMMETRY AND ANTISYMMETRY CONDITIONS

Engineers doing finite element analysis should be on the lookout for conditions of symmetry or
antisymmetry. Judicious use of these conditions allows only a portion of the structure to be analyzed,
with a consequent saving in data preparation and computer processing time.5

§8.6.1. Visualization

Recognition of symmetry and antisymmetry conditions can be done by either visualization of the
displacement field, or by imagining certain rotational ot reflection motions. Both techniques are
illustrated for the two-dimensional case.

A symmetry line in two-dimensional motion can be recognized by remembering the “mirror” dis-
placement pattern shown in Figure 8.8(a). Alternatively, a 180◦ rotation of the body about the
symmetry line reproduces exactly the original problem.

5 Even if the conditions are not explicitly applied through BCs, they provide valuable checks on the computed solution.

8–9

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–10

A' A'
A

A"
A

A"

Symmetry
line

Antisymmetry
line(a) (b)

displacement
vectors

loads

Figure 8.8. Visualizing symmetry and antisymmetry lines.

An antisymmetry line can be recognized by the displacement pattern illustrated in Figure 8.8(b).
Alternatively, a 180◦ rotation of the body about the antisymmetry line reproduces exactly the original
problem except that all applied loads are reversed.

Similar recognition patterns can be drawn in three dimensions to help visualization of planes of
symmetry or antisymmetry. More complex regular patterns associated with sectorial symmetry
(also called harmonic symmetry) and rotational symmetry can be treated in a similar manner, but
will not be discussed here.

§8.6.2. Effect of Loading Patterns

Although the structure may look symmetric in shape, it must be kept in mind that model reduction
can be used only if the loading conditions are also symmetric or antisymmetric.

Consider the plate structure shown in Figure 8.9(a). This structure is symmetrically loaded on the
x-y plane. Applying the recognition patterns stated above one concludes that the structure is doubly
symmetric in both geometry and loading. It is evident that no displacements in the x-direction are
possible for any point on the y-axis, and that no y displacements are possible for points on the x
axis. A finite element model of this structure may look like that shown in Figure 8.8(b).

On the other hand if the loading is antisymmetric, as shown in Figure 8.10(a), then the x axis
becomes an antisymmetry line because none of the y = 0 points can move along the x direction.
The boundary conditions to be imposed on the finite element model are also different, as shown in
Figure 8.10(b).

REMARK 8.2

For the antisymmetric loading case, one node point has to be constrained against vertical motion. The choice
is arbitrary and amounts only to an adjustment on the overall (rigid-body) vertical motion. In Figure 8.10(b)
the center point C has been chosen to be that vertically-constrained node. But any other node could be selected
as well; for example A or D. The important thing is not to overconstrain the structure by applying more than
one y constraint.

8–10

8–11 Exercises

y

x

A

A

B

B

C

C

D

D

(a)

(b)

�
�
��

�
�

� � �
Figure 8.9. A doubly symmetric structure under symmetric loading.

y

x

A

A

B

B

C

C

D

D

(a)

(b) �
�
����

Vertical (y) motion of C (or
another point) may be constrained
to eliminate the y rigid motion

Figure 8.10. A doubly symmetric structure under antisymmetric loading.

8–11

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–12

Homework Exercises for Chapters 7 and 8

FEM Modeling

EXERCISE 8.1

[D:10] The plate structure shown in Figure E8.1 is loaded and deforms in the plane of the figure. The applied
load at D and the supports at I and N extend over a fairly narrow area. Give a list of what you think are the
likely “trouble spots” that would require a locally finer finite element mesh to capture high stress gradients.

Identify those spots by its letter and a reason. For example, D: vicinity of point load.

C
A

L

E

P

B
D

F G

H
IJ

K

M
O

N

�� ��
Figure E8.1. Plate structure for Exercise 8.1.

EXERCISE 8.2

[D:15] Part of a two-dimensional FE mesh has been set up as indicated in Figure E8.2. Region ABC D is still
unmeshed. Draw a transition mesh within that region that correctly merges with the regular grids shown, uses
4-node quadrilateral elements (quadrilaterals with corner nodes only), and avoids triangles. Note: There are
several (equally acceptable) solutions.

A B

CD

Figure E8.2. Plate structure for Exercise 8.2.

EXERCISE 8.3

[A:15] Compute the “lumped” nodal forces f1, f2, f3 and f4 equivalent to the linearly-varying distributed
surface load q for the finite element layout defined in Figure E8.3. Use both NbN and EbE lumping. For
example, f1 = 3q/8 for NbN. Check that f1 + f2 + f3 + f4 = 6q for both schemes (why?). Note that q is
given as a force per unit of vertical length.

8–12

8–13 Exercises

6

4

2

1

2

3

4 q

Figure E8.3. Mesh layout for Exercise 8.3.

�
�
�
�

(e) (f)P

P

P

P P

infinite half plane

(b)(a)

(c)
(d)

q q

(uniform)

P

P

P

P P

P

45

45

o

o

center
 hole

fixed

Figure E8.4. Problems for Exercise 8.4.

EXERCISE 8.4

[D:15] Identify the symmetry and antisymmetry lines in the two-dimensional problems illustrated in Figure
E8.4. They are: (a) a circular disk under two diametrically opposite point forces (the famous “Brazilian test”
for concrete); (b) the same disk under two diametrically opposite force pairs; (c) a clamped semiannulus under

8–13

Chapter 8: FEM MODELING: MESH, LOADS AND BCS 8–14

��������
��������

��

B

G

D

E

friction force on
worm surface

Figure E8.5. The hungry bird.

a force pair oriented as shown; (d) a stretched rectangular plate with a central circular hole. Finally (e) and (f)
are half-planes under concentrated loads.6

Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the complete structure
to one half or one quarter before laying out a finite element mesh. Then draw a coarse FE mesh indicating, with
rollers or fixed supports, which kind of displacement BCs you would specify on the symmetry or antisymmetry
lines. Note: Do all sketches on your paper, not on the printed figures.

EXERCISE 8.5

[D:20] You (a finite element guru) pass away and come back to the next life as an intelligent but hungry bird.
Looking around, you notice a succulent big worm taking a peek at the weather. You grab one end and pull for
dinner; see Figure E8.5.

After a long struggle, however, the worm wins. While hungrily looking for a smaller one your thoughts wonder
to FEM and how the bird extraction process might be modeled so you can pull it out more efficiently. Then
you wake up to face this homework question. Try your hand at the following “worm modeling” points.

(a) The worm is simply modeled as a string of one-dimensional (bar) elements. The “worm axial force” is
of course constant from the beak B to ground level G, then decreases rapidly because of soil friction
(which varies roughly as plotted in the figure above) and drops to nearly zero over DE . Sketch how a
good “worm-element mesh” should look like to capture the axial force well.

(b) On the above model, how would you represent boundary conditions, applied forces and friction forces?

(c) Next you want a more refined anaysis of the worm that distinguishes skin and insides. What type of
finite element model would be appropriate?

(d) (Advanced) Finally, point out what need to be added to the model of (c) to include the soil as an elastic
medium.

Briefly explain your decisions. Dont write equations.

6 Note that (e) is the famous Flamant’s problem, which is important in the 2D design of foundations of civil structures.
The analytical solution of (e) and (f) may be found, for instance, in Timoshenko-Goodier’s Theory of Elasticity, 2nd
Edition, page 85ff.

8–14

8–15 Exercises

EXERCISE 8.6

[A/D:20] Explain from kinematics why two antisymmetry lines in 2D cannot cross at a finite point. As a
corollary, investigate whether it is possible to have more than one antisymmetric line in a 2D elasticity problem.

EXERCISE 8.7

[A/D:15] Explain from kinematics why a symmetry line and an antisymmetry line must cross at right angles.

EXERCISE 8.8

[A/D:15] A 2D body has n > 1 symmetry lines passing through a point C and spanning an angle π/n from
each other. This is called sectorial symmetry if n ≥ 3. Draw a picture for n = 5, say for a car wheel. Explain
why C is fixed.

EXERCISE 8.9

[A/D:25, 5 each] A body is in 3D space. The analogs of symmetry and antisymmetry lines are symmetry and
antisymmetry planes, respectively. The former are also called mirror planes.

(a) State the kinematic properties of symmetry and antisymmetric planes, and how they can be identified.

(b) Two symmetry planes intersect. State the kinematic properties of the intersection line.

(c) A symmetry plane and an antisymmetry plane planes intersect. State the kinematic properties of the
intersection line. Can the angle between the planes be arbitrary?

(d) Can two antisymmetry planes intersect?

(e) Three symmetry planes intersect. State the kinematic properties of the intersection point.

EXERCISE 8.10

[A:25] A 2D problem is called periodic in the x direction if all fields, in particular displacements, repeat upon
moving over a distance a > 0: ux (x + a, y) = ux (x, y) and uy(x + a, y) = uy(x, y). Can this situation be
treated by symmetry and/or antisymmetry lines?

EXERCISE 8.11

[A:25] Extend the previous exercise to antiperiodicity, in which ux (x + a, y) = ux (x, y) and uy(x + a, y) =
−uy(x, y).

EXERCISE 8.12

[A:40] If the world were spatially n-dimensional (meaning it has elliptic metric), how many independent rigid
body modes would a body have? (Prove by induction)

8–15

.

9
MultiFreedom
Constraints I

9–1

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–2

TABLE OF CONTENTS

Page
§9.1. CLASSIFICATION OF CONSTRAINT CONDITIONS 9–3

§9.1.1. MultiFreedom Constraints 9–3
§9.1.2. MFC Examples 9–3
§9.1.3. *MFC Matrix Forms 9–4

§9.2. METHODS FOR IMPOSING MULTIFREEDOM CONSTRAINTS 9–4

§9.3. THE EXAMPLE STRUCTURE 9–6

§9.4. THE MASTER-SLAVE METHOD 9–7
§9.4.1. A One-Constraint Example 9–7
§9.4.2. Several Homogeneous MFCs 9–8
§9.4.3. Nonhomogeneous MFCs 9–9
§9.4.4. *The General Case 9–10
§9.4.5. *Retaining the Original Freedoms 9–10
§9.4.6. Model Reduction by Kinematic Constraints 9–11
§9.4.7. Assessment of the Master-Slave Method 9–13

EXERCISES . 9–15

9–2

9–3 §9.1 CLASSIFICATION OF CONSTRAINT CONDITIONS

§9.1. CLASSIFICATION OF CONSTRAINT CONDITIONS

In previous Chapters we have considered structural support conditions that are mathematically
expressable as constraints on individual degrees of freedom:

nodal displacement component = prescribed value. (9.1)

These are called single-freedom constraints. Chapters 3 and 4 explain how to incorporate constraints
of this form into the master stiffness equations, using hand- or computer-oriented techniques. The
displacement boundary conditions studied in Chapter 8, including the modeling of symmetry and
antisymmetry, lead to constraints of this form.

For example:

ux4 = 0, uy9 = 0.6. (9.2)

These are two single-freedom constraints. The first one is homogeneous and the second one non-
homogeneous.

§9.1.1. MultiFreedom Constraints

The next step up in complexity involves multifreedom equality constraints, or multifreedom con-
straints for short, the last name being acronymed to MFC. These are functional equations that
connect two or more displacement components:

F(nodal displacement components) = prescribed value, (9.3)

where function F vanishes if all its nodal displacement arguments do. Equation (9.3), where all
displacement components are in the left-hand side, is called the canonical form of the constraint.

An MFC of this form is called multipoint or multinode if it involves displacement components at
different nodes. The constraint is called linear if all displacement components appear linearly on
the left-hand-side, and nonlinear otherwise.

The constraint is called homogeneous if, upon transfering all terms that depend on displacement
components to the left-hand side, the right-hand side — the “prescribed value” in (9.3) — is zero.
It is called non-homogeneous otherwise.

In this and next Chapter only linear constraints will be studied. Furthermore more attention is
devoted to the homogeneous case, because it arises more frequently in practice.

REMARK 9.1

The most general constraint class is that of inequality constraints, such as uy5 − 2ux2 ≥ 0.5. These constraints
are relatively infrequent in linear structural analysis, except in problems that involve contact conditions. They
are of paramount importance, however, in other fields such as optimization.

9–3

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–4

§9.1.2. MFC Examples

Here are three examples of MFCs:

ux2 = 1
2 uy2, ux2−2ux4+ux6 = 0.25, (x5+ux5−x3−ux3)

2+(y5+uy5−y3−uy3)
2 = 0. (9.4)

The first one is linear and homogeneous. It is not a multipoint constraint because it involves the
displacement components of one node: 2.

The second one is multipoint because it involves three nodes: 2, 4 and 6. It is linear and non-
homogeneous.

The last one is multipoint, nonlinear and homogeneous. Geometrically it expresses that the distance
between nodes 3 and 5 in two-dimensional motions on the {x, y} plane remains constant. This kind
of constraint appears in geometrically nonlinear analysis of structures, which is a topic beyond the
scope of this course.

§9.1.3. *MFC Matrix Forms

Matrix forms of linear MFCs are often convenient for compact notation. An individual constraint such as the
second one in (9.4) can be written

[1 −2 1]

[
ux2

ux4

ux6

]
= 0.25 (9.5)

or, in direct matrix notation:
āi ūi = bi , (no sum on i) (9.6)

in which index i (i = 1, 2, . . .) identifies the constraint, āi is a row vector, ūi collects the set of degrees of
freedom that participate in the constraint, and gi is the right hand side scalar (0.25 above). The bar over a and
u distinguishes (9.6) from the expanded form (9.8) discussed below.

For method description and general proofs it is often convenient to expand matrix forms so that they embody all
degrees of freedom. For example, if (9.5) is part of a two-dimensional finite element model with 12 freedoms:
ux1, uy1, . . . uy6, the left-hand side row vector may be expanded with nine zeros as follows

[0 0 1 0 0 0 −2 0 0 0 1 0]




ux1

uy1

ux2
...

uy6


 = 0.25, (9.7)

in which case the matrix notation
ai u = gi (9.8)

is used. Finally, all multifreedom constraints expressed as (9.8) may be collected into a single matrix relation:

Au = g, (9.9)

where rectangular matrix A is formed by stacking the ai ’s as rows and column vector g is formed by stacking
the gi s as entries. If there are 12 degrees of freedom in u and 5 multifreedom constraints then A will be 5×12.

9–4

9–5 §9.2 METHODS FOR IMPOSING MULTIFREEDOM CONSTRAINTS

§9.2. METHODS FOR IMPOSING MULTIFREEDOM CONSTRAINTS

Accounting for multifreedom constraints is done — at least conceptually — by changing the
assembled master stiffness equations to produce a modified system of equations. The modification
process is also called constraint application or constraint imposition. The modified system is the
one submitted to the equation solver.

Three methods for treating MFCs are discussed in this and the next Chapter:

1. Master-Slave Elimination. The degrees of freedom involved in each MFC are separated into
master and slave freedoms. The slave freedoms are then explicitly eliminated. The modified
equations do not contain the slave freedoms.

2. Penalty Augmentation. Also called the penalty function method. Each MFC is viewed as
the presence of a fictitious elastic structural element called penalty element that enforces it
approximately. This element is parametrized by a numerical weight. The exact constraint
is recovered if the weight goes to infinity. The MFCs are imposed by augmenting the finite
element model with the penalty elements.

3. Lagrange Multiplier Adjunction. For each MFC an additional unknown is adjoined to the
master stiffness equations. Physically this set of unknowns represent constraint forces that
would enforce the constraints exactly should they be applied to the unconstrained system.

For each method the exposition tries to give first the basic flavor by working out the same example
for each method. The general technique is subsequently presented in matrix form for completeness
but is considered an advanced topic.

Conceptually, imposing MFCs is not different from the procedure discussed in Chapters 3 and 4 for
single-freedom constraints. The master stiffness equations are assembled ignoring all constraints.
Then the MFCs are imposed by appropriate modification of those equations. There are, however,
two important practical differences:

1. The modification process is not unique because there are alternative constraint imposition
methods, namely those listed above. These methods offer tradeoffs in generality, programming
implementation complexity, computational effort, numerical accuracy and stability.

2. In the implementation of some of these methods — particularly penalty augmentation —
constraint imposition and assembly are carried out simultaneously. In that case the framework
“first assemble, then modify,” is not strictly respected in the actual implementation.

REMARK 9.2

The three methods are also applicable, as can be expected, to the simpler case of a single-freedom constraint
such as (9.2). For most situations, however, the generality afforded by the penalty function and Lagrange
multiplier methods are not warranted. The hand-oriented reduction process discussed in Chapters 3 and 4 is
in fact a special case of the master-slave elimination method in which “there is no master.”

REMARK 9.3

Often both multifreedom and single-freedom constraints are prescribed. The modification process then involves
two stages: apply multifreedom constraints and apply single freedom constraints. The order in which these are
carried out is implementation dependent. Most implementations do the MFCs first, either after the assembly
is completed or during the assembly process. The reason is practical: single-freedom constraints are often
automatically taken care of by the equation solver itself.

9–5

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–6

1 2 3 4 5 6 7
x

u1, f1 u3, f3 u4, f4 u5, f5 u6, f6 u7, f7u2, f2

(1) (2) (3) (4) (5) (6)

Figure 9.1. A one-dimensional problem discretized with six bar finite
elements. The seven nodes may move only along the x direction.
Subscript x is omitted from the u’s and f ’s for simplicity.

§9.3. THE EXAMPLE STRUCTURE

The one-dimensional finite element discretization shown in Figure 9.1 will be used throughout to
illustrate the three MFC application methods. This structure consists of six bar elements connected
by seven nodes that can only displace in the x direction.

Before imposing various multifreedom constraints discussed below, the master stiffness equations
for this problem are assumed to be




K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 K34 0 0 0
0 0 K34 K44 K45 0 0
0 0 0 K45 K55 K56 0
0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77







u1

u2

u3

u4

u5

u6

u7




=




f1

f2

f3

f4

f5

f6

f7




, (9.10)

or
Ku = f. (9.11)

The nonzero stiffness coefficients Ki j in (9.10) depend on the bar rigidity properties. For example,
if E (e) A(e)/L(e) = 100 for each element e = 1, . . . , 6, then K11 = K77 = 100, K22 = . . . = K66 =
200, K12 = K23 = . . . = K67 = −100. However, for the purposes of the following treatment the
coefficients may be kept arbitrary. The component index x in the nodal displacements u and nodal
forces f has been omitted for brevity.

Now let us specify a multifreedom constraint that states that nodes 2 and 6 are to move by the same
amount:

u2 = u6. (9.12)

Passing all node displacements to the right hand side gives the canonical form:

u2 − u6 = 0. (9.13)

Constraint conditions of this type are sometimes called rigid links because they can be mechanically
interpreted as forcing node points 2 and 6 to move together as if they were tied by a rigid member.1

1 This physical interpretation is exploited in the penalty method described in the next Chapter. In two and three dimensions
rigid link constraints are more complicated.

9–6

9–7 §9.4 THE MASTER-SLAVE METHOD

We now study the imposition of constraint (9.13) on the master equations (9.11) by the methods
mentioned above. In this Chapter the master-slave method is treated. The other two methods:
penalty augmentation and Lagrange multiplier adjunction, are discussed in the following Chapter.

§9.4. THE MASTER-SLAVE METHOD

To apply this method by hand, the MFCs are taken one at a time. For each constraint a slave degree
of freedom is chosen. The freedoms remaining in that constraint are labeled master. A new set
of degrees of freedom û is established by removing all slave freedoms from u. This new vector
contains master freedoms as well as those that do not appear in the MFCs. A matrix transformation
equation that relates u to û is generated. This equation is used to apply a congruential transformation
to the master stiffness equations. This procedure yields a set of modified stiffness equations that
are expressed in terms of the new freedom set û. Because the modified system does not contain the
slave freedoms, these have been effectively eliminated.

§9.4.1. A One-Constraint Example

The mechanics of the process is best seen by going through an example. To impose (9.13) choose
u6 as slave and u2 as master. Relate the original unknowns u1, . . . u7 to the new set in which u6 is
missing:




u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1







u1

u2

u3

u4

u5

u7


 , (9.14)

This is the required transformation relation. In compact form:

u = Tû. (9.15)

Replacing (9.15) into (9.11) and premultiplying by TT yields the modified system

K̂û = f̂, in which K̂ = TT KT, f̂ = TT f. (9.16)

Carrying out the indicated matrix multiplications yields


K11 K12 0 0 0 0
K12 K22 + K66 K23 0 K56 K67

0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 K56 0 K45 K55 0
0 K67 0 0 0 K77







u1

u2

u3

u4

u5

u7


 =




f1

f2 + f6

f3

f4

f5

f7


 , (9.17)

Equation (9.17) is a new linear system containing 6 equations in the remaining 6 unknowns: u1,
u2, u3 , u4, u5 and u7. Upon solving it, u6 is recovered from the constraint (9.12).

9–7

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–8

REMARK 9.4

The form of modified system (9.16) can be remembered by a simple mnemonic rule: premultiply both sides
of u = T û by TT K, and replace K u by f on the right hand side.

REMARK 9.5

For a simple freedom constraint such as u4 = 0 the only possible choice of slave is of course u4 and there is
no master. The congruential transformation is then nothing more than the elimination of u4 by striking out
rows and columns from the master stiffness equations.

REMARK 9.6

For a simple MFC such as u2 = u6, it does not matter which degree of freedom is chosen as master or unknown.
Choosing u2 as slave produces a system of equations in which now u2 is missing:


K11 0 0 0 K12 0
0 K33 K34 0 K23 0
0 K34 K44 K45 0 0
0 0 K45 K55 K56 0

K12 K23 0 K56 K22 + K66 K67

0 0 0 0 K67 K77







u1

u3

u4

u5

u6

u7


 =




f1

f3

f4

f5

f2 + f6

f7


 , (9.18)

Although (9.17) and (9.18) are algebraically equivalent, the latter would be processed faster if a skyline solver
(Part III of course) is used for the modified equations.

§9.4.2. Several Homogeneous MFCs

The matrix equation (9.16) in fact holds for the general case of multiple homogeneous linear
constraints. Direct establishment of the transformation equation, however, is more complicated if
slave freedoms in one constraint appear as masters in another. To illustrate this point, suppose that
for the example system we have three homogeneous multifreedom constraints:

u2 − u6 = 0, u1 + 4u4 = 0, 2u3 + u4 + u5 = 0, (9.19)

Picking as slave freedoms u6, u4 and u3 from the first, second and third constraint, respectively, we
can solve for them as

u6 = u2, u4 = − 1
4 u1, u3 = − 1

2 (u4 + u5) = 1
8 u1 − 1

2 u5. (9.20)

Observe that solving for u3 from the third constraint brings u4 to the right-hand side. But because
u4 is also a slave freedom (it was chosen as such for the second constraint) it is replaced in favor of
u1 using u4 = − 1

4 u1. The matrix form of the transformation (9.20) is




u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0
0 1 0 0
1
8 0 − 1

2 0

− 1
4 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1







u1

u2

u5

u7


 , (9.21)

9–8

9–9 §9.4 THE MASTER-SLAVE METHOD

The modified system is now formed through the congruential transformation (9.16). Note that the
slave freedoms selected from each constraint must be distinct; for example the choice u6, u4, u4

would be inadmissible as long as the constraints are independent. This rule is easy to enforce when
slave freedoms are chosen by hand, but can lead to implementation and numerical difficulties when
it is programmed as an automated procedure, as further discussed later.

REMARK 9.7

The three MFCs (9.20) with u6, u4 and u2 chosen as slaves and u1, u2 and u5 chosen as masters, may be
presented in the partitioned matrix form:[

0 0 1
0 4 0
2 1 0

][
u3

u4

u6

]
=

[
0 1 0

−1 0 0
0 0 −1

][
u1

u2

u5

]
(9.22)

This may be compactly written Asus + Amum = 0. Solving for the slave freedoms gives us = −A−1
s Amum .

Expanding with zeros to fill out u and û produces (9.21). This general matrix form is considered in §9.4.4.
Note that non-singularity of As is essential for this method to work.

§9.4.3. Nonhomogeneous MFCs

Extension to non-homogeneous constraints is immediate. In such a case the transformation equation
becomes non-homogeneous. For example suppose that (9.15) contains a nonzero prescribed value:

u2 − u6 = 0.2 (9.23)

Nonzero RHS values such as 0.2 in (9.23) may be often interpreted physically as “gaps” (thus the
use of the symbol g in the matrix form). Chose u6 again as slave: u6 = u2 − 0.2, and build the
transformation 



u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1







u1

u2

u3

u4

u5

u7


 +




0
0
0
0
0

−0.2
0




. (9.24)

In compact matrix notation,

u = T û + g. (9.25)

Here the constraint gap vector g is nonzero and T is the same as before. To get the modified system
applying the shortcut rule of Remark 9.4, premultiply both sides of (9.25) by TT K, replace Ku by
f, and pass the data to the RHS:

K̂ û = f̂, in which K̂ = TT KT, f̂ = TT (f − Kg). (9.26)

Upon solving (9.26) for û, the complete displacement vector is recovered from (9.25).

9–9

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–10

For the MFC (9.22) this technique gives the system


K11 K12 0 0 0 0
K12 K22 + K66 K23 0 K56 K67

0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 K56 0 K45 K55 0
0 K67 0 0 0 K77







u1

u2

u3

u4

u5

u7


 =




f1

f2 + f6 − 0.2K66

f3

f4

f5 − 0.2K56

f7 − 0.2K67


 . (9.27)

See Exercise 9.2 for multiple non-homogeneous MFCs.

§9.4.4. *The General Case

For implementation in general-purpose programs the master-slave method can be described as follows. The
degrees of freedoms in u are classified into three types: independent or uncommitted, masters and slaves.
(The uncommitted freedoms are those that do not appear in any MFC.) Label these sets as uu , um and us ,
respectively, and partition the stiffness equations accordingly:[

Kuu Kum Kus

KT
um Kmm Kms

KT
us KT

ms Kss

][
uu

um

us

]
=

[
fu

fm

fs

]
(9.28)

The MFCs may be written in matrix form as

Amum + Asus = g, (9.29)

where As is assumed square and nonsingular. If so we can solve for the slave freedoms:

us = −A−1
s Amum + A−1

s g = Tum + g, (9.30)

Inserting into the partitioned stiffness matrix and symmetrizing[
Kuu KumT

TT KT
um TT KmmT

] [
uu

um

]
=

[
fu − Kusg
fm − Kmsg

]
(9.31)

It is seen that the misleading simplicity of the handworked examples is gone.

§9.4.5. *Retaining the Original Freedoms

A potential disadvantage of the master-slave method in computer work is that it requires a rearrangement of
the original stiffness equations because û is a subset of u. The disadvantage can be annoying when sparse
matrix storage schemes are used for the stiffness matrix, and becomes intolerable if secondary storage is used
for that purpose.

With a bit of trickiness it is possible to maintain the original freedom ordering. Let us display it for the example
problem under (9.13). Instead of (9.14), use the square transformation




u1

u2

u3

u4

u5

u6

u7




=




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1







u1

u2

u3

u4

u5

ũ6

u7




, (9.32)

9–10

9–11 §9.4 THE MASTER-SLAVE METHOD

1 7
x

u1, f1 u7, f7

Master Master

Figure 9.2. Model reduction of the example structure of Figure 9.1 to the end freedoms.

where ũ6 is a placeholder for the slave freedom u6. The modified equations are




K11 K12 0 0 0 0 0 0
K12 K22 + K66 K23 0 0 K56 0 K67

0 K23 K33 K34 0 0 0 0
0 0 K34 K44 K45 0 0 0
0 K56 0 K45 K55 0 0 0
0 0 0 0 0 0 0 0
0 K67 0 0 0 0 0 K77







u1

u2

u3

u4

u5

ũ6

u7




=




f1

f2 + f6

f3

f4

f5

0
f7




, (9.33)

which are submitted to the equation solver. If the solver is not trained to skip zero row and columns, a one
should be placed in the diagonal entry for the ũ6 (sixth) equation. The solver will return ũ6 = 0, and this
placeholder value is replaced by u2. Note the points in common with the computer-oriented placeholder
technique described in §3.4 to handle single-freedom constraints.

§9.4.6. Model Reduction by Kinematic Constraints

The congruential transformation equations (9.16) and (9.26) have additional applications beyond
the master-slave method. An important one is model reduction by kinematic constraints. Through
this procedure the number of DOF of a static or dynamic FEM model is reduced by a significant
number, typically to 1% – 10% of the original number. This is done by taking a lot of slaves and a
few masters. Only the masters are left after the transformation. The reduced model is commonly
used in subsequent calculations as component of a larger system, particularly during design or in
parameter identification.

To illustrate the method for a static model, consider the bar assembly of Figure 9.1. Assume that the
only masters are the end motions u1 and u7, as illustrated in Figure 9.2, and interpolate all freedoms
linearly: 



u1

u2

u3

u4

u5

u6

u7




=




1 0
5/6 1/6
4/6 2/6
3/6 3/6
2/6 4/6
1/6 5/6
0 1




[
u1

u7

]
, or u = T û. (9.34)

The reduced-model equations are K̂û = TT KTû = TT f = f̂, or in detail

[
K̂11 K̂17

K̂17 K̂77

] [
u1

u7

]
=

[
f̂1

f̂7

]
, (9.35)

9–11

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–12

(* Model Reduction Example *)
ClearAll[K11,K12,K22,K23,K33,K34,K44,K45,K55,K56,K66,
 f1,f2,f3,f4,f5,f6];
K={{K11,K12,0,0,0,0,0},{K12,K22,K23,0,0,0,0},
 {0,K23,K33,K34,0,0,0},{0,0,K34,K44,K45,0,0},
 {0,0,0,K45,K55,K56,0},{0,0,0,0,K56,K66,K67},
 {0,0,0,0,0,K67,K77}}; Print["K=",K//MatrixForm];
f={f1,f2,f3,f4,f5,f6,f7}; Print["f=",f];
T={{6,0},{5,1},{4,2},{3,3},{2,4},{1,5},{0,6}}/6;
Print["T (transposed to save space)=",Transpose[T]//MatrixForm];
Khat=Simplify[Transpose[T].K.T];
fhat=Simplify[Transpose[T].f];
Print["Modified Stiffness:"];
Print["Khat(1,1)=",Khat[[1,1]],"\nKhat(1,2)=",Khat[[1,2]],
 "\nKhat(2,2)=",Khat[[2,2]]];
Print["Modified Force:"];
Print["fhat(1)=",fhat[[1]]," fhat(2)=",fhat[[2]]];

K�

�

�

����������������������������

K11 K12 0 0 0 0 0

K12 K22 K23 0 0 0 0

0 K23 K33 K34 0 0 0

0 0 K34 K44 K45 0 0

0 0 0 K45 K55 K56 0

0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77

�

�

����������������������������

f��f1, f2, f3, f4, f5, f6, f7�

T 	transposed to save space
�
�

�

������

1 5����
6

2����
3

1����
2

1����
3

1����
6

0

0 1����
6

1����
3

1����
2

2����
3

5����
6

1

�

�

������

Modified Stiffness:

Khat	1,1
�
1
�������
36
	36 K11 � 60 K12 � 25 K22 � 40 K23 � 16 K33 � 24 K34 � 9 K44 � 12 K45 � 4 K55 � 4 K56 � K66

Khat	1,2
�
1
�������
36
	6 K12 � 5 K22 � 14 K23 � 8 K33 � 18 K34 � 9 K44 � 18 K45 � 8 K55 � 14 K56 � 5 K66 � 6 K67

Khat	2,2
�
1
�������
36
	K22 � 4 K23 � 4 K33 � 12 K34 � 9 K44 � 24 K45 � 16 K55 � 40 K56 � 25 K66 � 60 K67 � 36 K77

Modified Force:

fhat	1
�
1
����
6
	6 f1 � 5 f2 � 4 f3 � 3 f4 � 2 f5 � f6
 fhat	2
�

1
����
6
	f2 � 2 f3 � 3 f4 � 4 f5 � 5 f6 � 6 f7

Figure 9.3. Mathematica script for the model reduction example of Figure 9.2.

where

K̂11 = 1
36 (36K11+60K12+25K22+40K23+16K33+24K34+9K44+12K45+4K55+4K56+K66),

K̂17 = 1
36 (6K12+5K22+14K23+8K33+18K34+9K44+18K45+8K55+14K56+5K66+6K67),

K̂77 = 1
36 (K22+4K23+4K33+12K34+9K44+24K45+16K55+40K56+25K66+60K67+36K77),

f̂1 = 1
6 (6 f1+5 f2+4 f3+3 f4+2 f5+ f6), f̂7 = 1

6 (f2+2 f3+3 f4+4 f5+5 f6+6 f7).

(9.36)

This reduces the order of the FEM model from 7 to 2. A Mathematica script to do the reduction
is shown in Figure 9.3. The key feature is that the masters are picked a priori, as the freedoms to
be retained in the model for further use.

9–12

9–13 §9.4 THE MASTER-SLAVE METHOD

REMARK 9.8

Model reduction can also be done by the static condensation method explained in Chapter 11. As its name
indicates, condensation is restricted to static analysis. On the other hand, for such problems it is exact whereas
model reduction by kinematic constraints generally introduces approximations.

§9.4.7. Assessment of the Master-Slave Method

What are the good and bad points of this constraint imposition method? It enjoys the advantage of
being exact (except for inevitable solution errors) and of reducing the number of unknowns. The
concept is also easy to explain. The main implementation drawback is the complexity of the general
case as can be seen by studying (9.28) through (9.31). The complexity is due to three factors:

1. The equations may have to be rearranged because of the disappearance of the slave freedoms.
This drawback can be alleviated, however, through the placeholder trick outlined in §9.4.5.

2. An auxiliary linear system, namely (9.30), has to be assembled and solved to produce the
transformation matrix T and vector g.

3. The transformation process may generate many additional matrix terms. If a sparse matrix
storage scheme is used for K, the logic for allocating memory and storing these entries can be
difficult and expensive.

The level of complexity depends on the generality allowed as well as on programming decisions.
At one extreme, if K is stored as full matrix and slave freedom coupling in the MFCs is disal-
lowed the logic is simple.2 At the other extreme, if arbitrary couplings are permitted and K is
placed in secondary (disk) storage according to some sparse scheme, the complexity can become
overwhelming.

Another, more subtle, drawback of this method is that it requires decisions as to which degrees
of freedom are to be treated as slaves. This can lead to implementation and numerical stability
problems. Although for disjointed constraints the process can be programmmed in reliable form, in
more general cases of coupled constraint equations it can lead to incorrect decisions. For example,
suppose that in the example problem you have the following two MFCs:

1
6 u2 + 1

2 u4 = u6, u3 + 6u6 = u7 (9.37)

For numerical stability reasons it is usually better to pick as slaves the freedoms with larger co-
efficients. If this is done, the program would select u6 as slave freedoms from both constraints.
This leads to a contradiction because having two constraints we must eliminate two slave degrees
of freedom, not just one. The resulting modified system would in fact be inconsistent. Although
this defect can be easily fixed by the program logic in this case, one can imagine the complexity
burden if faced with hundreds or thousands of MFCs.

Serious numerical problems can arise if the MFCs are not independent. For example:

1
6 u2 = u6,

1
5 u3 + 6u6 = u7, u2 + u3 − u7 = 0. (9.38)

2 This is the case in model reduction, since each slave freedom appears in one and only one MFC.

9–13

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–14

The last constraint is an exact linear combination of the first two. If the program blindly choses u2,
u3 and u7 as slaves, the modified system is incorrect because we eliminate three equations when in
fact there are only two independent constraints.

Exact linear dependence, as in (9.38), can be recognized by a rank analysis of the As matrix defined
in (9.29). In inexact floating-point arithmetic, however, such detection may fail.3

The complexity of slave selection is in fact equivalent to that of automatically selecting kinematic
redundancies in the force method. It has led implementors of programs that use this method to
require masters and slaves be prescribed in the input data, thus transfering the burden to users.

The method is not generally extendible to nonlinear constraints without extensive reworking.

In conclusion, the master-slave method is useful when a few simple linear constraints are imposed
by hand. As a general purpose technique for finite element analysis it suffers from complexity and
lack of robustness. It is worth learning this method, however, because of its great importance of
the congruential transformation technique in model reduction for static and dynamic problems.

3 The safest technique to identify dependencies is to do a singular-value decomposition (SVD) of As . This can be, however,
prohibitively expensive if one is dealing with hundreds or thousands of constraints.

9–14

9–15 Exercises

Homework Exercises for Chapter 9

MultiFreedom Constraints I

EXERCISE 9.1

[C+N:20] The example structure of Figure 9.1 has E (e) A(e)/L (e) = 100 for each element e = 1, . . . , 6.
Consequently K11 = K77 = 100, K22 = . . . = K66 = 200, K12 = K23 = . . . = K67 = −100. The applied
node forces are taken to be f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6 and f7 = 7, which are easy to
remember. The structure is subjected to one support condition: u1 = 0 (a fixed left end), and to one MFC:
u2 − u6 = 1/5.

Solve this problem using the master-slave method to process the MFC, taking u6 as slave. Upon forming the
modified system (9.30) apply the left-end support u1 = 0 using the placeholder method of §3.4. Solve the
equations and verify that the displacement solution and the recovered node forces including reactions are

u = [0 0.270 0.275 0.250 0.185 0.070 0.140]T

Ku = [−27 26.5 3 4 5 −18.5 7]T
(E9.1)

Use Mathematica or Matlab to do the algebra is recommended. For example, the following Mathematica
script solves this Exercise:

(* Exercise 9.1 - Master-Slave Method *)
(* MFC: u2-u6 = 1/5 - slave: u6 *)
MasterStiffnessOfSixElementBar[kbar_]:=Module[
{K=Table[0,{7},{7}]}, K[[1,1]]=K[[7,7]]=kbar;
For [i=2,i<=6,i++,K[[i,i]]=2*kbar];
For [i=1,i<=6,i++,K[[i,i+1]]=K[[i+1,i]]=-kbar];
Return[K]];

FixLeftEndOfSixElementBar[Khat_,fhat_]:=Module[
{Kmod=Khat,fmod=fhat}, fmod[[1]]=0; Kmod[[1,1]]=1;
Kmod[[1,2]]=Kmod[[2,1]]=0; Return[{Kmod,fmod}]];

K=MasterStiffnessOfSixElementBar[100];
Print["Stiffness K=",K//MatrixForm];
f={1,2,3,4,5,6,7}; Print["Applied forces=",f];
T={{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},

{0,0,0,1,0,0},{0,0,0,0,1,0},{0,1,0,0,0,0},
{0,0,0,0,0,1}};

Print["Transformation matrix T=",T//MatrixForm];
g={0,0,0,0,0,-1/5,0};
Print["Constraint gap vector g=",g];
Khat=Simplify[Transpose[T].K.T]; fhat=Simplify[Transpose[T].(f-K.g)];
{Kmod,fmod}=FixLeftEndOfSixElementBar[Khat,fhat]; (* fix left end *)
Print["Modified Stiffness upon fixing node 1:",Kmod//MatrixForm];
Print["Modified RHS upon fixing node 1:",fmod];
umod=LinearSolve[Kmod,fmod];
Print["Computed umod (lacks slave u6)=",umod];
u=T.umod+g; Print["Complete solution u=",u];
Print["Numerical u=",N[u]];
fu=K.u; Print["Recovered forces K.u with reactions=",fu];
Print["Numerical K.u=",N[fu]];

9–15

Chapter 9: MULTIFREEDOM CONSTRAINTS I 9–16

EXERCISE 9.2

[C+N:25] As in the previous Exercise but applying the following three MFCs, two of which are non-
homogeneous:

u2 − u6 = 1/5, u3 + 2u4 = −2/3, 2u3 − u4 + u5 = 0. (E9.2)

Hints. Chose u4, u5 and u6 as slaves. Much of the script shown for Exercise 9.1 can be reused. The main
changes are in the formation of T and g. If you are a Mathematica wizard (or willing to be one) those can be
automatically formed by saying

sol=Simplify[Solve[{u2-u6==1/5, u3+2*u4==-2/3,2*u3-u4+u5==0},{u4,u5,u6}]];
ums={u1,u2,u3,u4,u5,u6,u7}/.sol[[1]]; um={u1,u2,u3,u7};
T=Table[Coefficient[ums[[i]],um[[j]]],{i,1,7},{j,1,4}];
g=ums/.{u1->0,u2->0,u3->0,u4->0,u5->0,u6->0,u7->0};
Print["Transformation matrix T=",T//MatrixForm];
Print["Gap vector g=",g]

If you do this, explain what it does and why it works. Otherwise form and enter T and g by hand. The
numerical results (shown to 5 places) should be

u = [0. 0.043072 −0.075033 −0.29582 −0.14575 −0.15693 −0.086928]T ,

Ku = [−4.3072 16.118 10.268 −37.085 16.124 −8.1176 7.]T .
(E9.3)

EXERCISE 9.3

[A:25] Can the MFCs be pre-processed to make sure that no slave freedom in a MFC appears as master in
another?

EXERCISE 9.4

[A:25] In the general case discussed in §9.4.4, under which condition is the matrix As of (9.32) diagonal and
thus trivially invertible?

EXERCISE 9.5

[A:25] Work out the general technique by which the unknowns need not be rearranged, that is, u and û are
the same. Use “placeholders” for the slave freedoms. (Hint: use ideas of §3.4).

EXERCISE 9.6

[A/C:35] Is it possible to establish a slave selection strategy that makes As diagonal or triangular? (This
requires knowledge of matrix techniques such as pivoting.)

EXERCISE 9.7

[A/C:40] Work out a strategy that produces a well conditioned As by selecting new slaves as linear combinations
of finite element freedoms if necessary. (Requires background in numerical analysis).

9–16

.

10
MultiFreedom
Constraints II

10–1

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–2

TABLE OF CONTENTS

Page
§10.1.THE PENALTY METHOD 10–3

§10.1.1. Physical Interpretation 10–3
§10.1.2. Choosing the Penalty Weight. 10–4
§10.1.3. The Square Root Rule 10–5
§10.1.4. Penalty Elements for General MFCs. 10–5
§10.1.5. *The Theory Behind the Recipe 10–6
§10.1.6. Assessment of the Penalty Method. 10–7

§10.2.LAGRANGE MULTIPLIER ADJUNCTION 10–8
§10.2.1. Physical Interpretation 10–8
§10.2.2. Lagrange Multipliers for General MFCs. 10–9
§10.2.3. *The Theory Behind the Recipe 10–10
§10.2.4. Assessment of the Lagrange Multiplier Method 10–10

§10.3.*THE AUGMENTED LAGRANGIAN METHOD 10–11

§10.4.SUMMARY 10–11

EXERCISES .10–13

10–2

10–3 §10.1 THE PENALTY METHOD

In this Chapter we continue the discussion of methods to treat multifreedom constraints (MFCs). The
master-slave method described in the previous Chapter was found to exhibit serious shortcomings
for treating arbitrary constraints, although the method has important applications to model reduction.

We now pass to the study of two other methods: penalty augmentation and Lagrange multiplier
adjunction. Both of these techniques are better suited to general implementations of the Finite
Element Method.

§10.1. THE PENALTY METHOD

1 2 3 4 5 6 7
x

u1, f1 u3, f3 u4, f4 u5, f5 u6, f6 u7, f7u2, f2

(1) (2) (3) (4) (5) (6)

Figure 10.1. The example structure of Chapter 9, repeated for convenience.

§10.1.1. Physical Interpretation

The penalty method will be first presented using a physical interpretation, leaving the mathematical
formulation to a subsequent section. Consider again the example structure of Chapter 9, which is
reproduced in Figure 10.1 for convenience. To imposeu2 = u6 imagine that nodes 2 and 6 are
connected with a “fat” bar of axial stiffnessw, labeled with element number 7, as shown in Figure
10.2. This bar is called apenalty elementandw is its penalty weight.

1 2 3 4 5 6 7
x

penalty element of axial rigidity w

u1, f1 u3, f3 u4, f4 u5, f5 u6, f6 u7, f7u2, f2

(1) (2) (3) (4) (5) (6)

(7)

Figure 10.2. Adjunction of a fictitious penalty bar of axial stiffnessw,
identified as element 7,to enforce the MFCu2 = u6.

Such an element, albeit fictitious, can be treated exactly like another bar element insofar as con-
tinuing the assembly of the master stiffness equations. The penalty element stiffness equations,
K(7)u(7) = f(7), are1

w

[
1 −1

−1 1

] [
u2

u6

]
=

[
f (7)
2

f (7)
6

]
(10.1)

1 The general method to get these equations is described in §10.1.4.

10–3

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–4

Because there is one freedom per node, the two local element freedoms map into global freedoms 2
and 6, respectively. Using the assembly rules of Chapter 3 we obtain the following modified master
stiffness equations:̂Kû = f̂, which shown in detail are

K11 K12 0 0 0 0 0
K12 K22 + w K23 0 0 −w 0
0 K23 K33 K34 0 0 0
0 0 K34 K44 K45 0 0
0 0 0 K45 K55 K56 0
0 −w 0 0 K56 K66 + w K67

0 0 0 0 0 K67 K77





u1

u2

u3

u4

u5

u6

u7


=



f1

f2

f3

f4

f5

f6

f7


, (10.2)

This system can now be submitted to the equation solver. Note thatû ≡ u, and onlyK has changed.

§10.1.2. Choosing the Penalty Weight

What happens when (10.2) is solved numerically? If afinite weight w is chosen the constraint
u2 = u6 is approximately satisfied in the sense that one getsu2 −u6 = eg, whereeg �= 0. The “gap
error” eg is called theconstraint violation. The magnitude|eg| of this violation depends onw: the
largerw, the smaller the violation. More precisely, it can be shown that|eg| becomes proportional
to 1/w asw gets to be sufficiently large (see Exercises). For example, raisingw from, say, 106

to 107 can be expected to cut the constraint violation by roughly 10 if the physical stiffnesses are
small compared tow.

Consequently, it seems as if the proper strategy should be: try to makew as large as possible while
respecting computer overflow limits. However, this is misleading. As the penalty weightw tends
to ∞ the modified stiffness matrix in (10.2) becomes more and moreill-conditioned with respect
to inversion.

To make this point clear, suppose for definiteness that the rigiditiesE(e) A(e)/L(e) of the actual bars
e = 1, . . . 6 are unity, thatw >> 1, and that the computer solving the stiffness equations has a
floating-point precision of 16 decimal places. Numerical analysts characterize such precision by
saying thatε f = O(10−16), where|ε f | is the smallest power of 10 that perceptibly adds to 1 in
floating-point arithmetic.2 The modified stiffness matrix of (10.2) becomes

K̂ =



1 −1 0 0 0 0 0
−1 2+ w −1 0 0 −w 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 −w 0 0 −1 2+ w −1
0 0 0 0 0 −1 1


(10.3)

Clearly asw → ∞ rows 2 and 6, as well as columns 2 and 6, tend to become linearly dependent;
in fact the negative of each other. Linear dependence means singularity; henceK̂ approaches

2 Such definitions are more rigurously done by working with binary numbers and base-2 arithmetic but for the present
conceptual discussion the use of decimal powers is sufficient.

10–4

10–5 §10.1 THE PENALTY METHOD

singularity asw → ∞. In fact, if w exceeds 1/ε f = 1016 the computer will not be able to
distinguisĥK from an exactly singular matrix. Ifw << 1016 butw >> 1, the effect will be seen in
increasing solution errors affecting the computed displacementsû returned by the equation solver.
These errors, however, tend to be more of a random nature than the constraint violation error.

§10.1.3. The Square Root Rule

Obviously we have two effects at odds with each other. Makingw larger reduces the constraint
violation error but increases the solution error. The bestw is that which makes both errors roughly
equal in absolute value. This tradeoff value is difficult to find aside of systematically running
numerical experiments. In practice the heuristicsquare root ruleis often followed.

This rule can be stated as follows. Suppose that the largest stiffness coefficient, before adding
penalty elements, is of the order of 10k and that the working machine precision isp digits.3 Then
choose penalty weights to be of order 10k+p/2 with the proviso that such a choice would not cause
arithmetic overflow.4

For the above example in whichk ≈ 0 and p ≈ 16, the optimalw given by this rule would be
w ≈ 108. This w would yield a constraint violation and a solution error of order 10−8. Note
that there is no simple way to do better than this accuracy aside from using more floating-point
precision. This is not easy to do when using standard low-level programming languages.

The name “square root” arises because the recommendedw is in fact 10k
√

10p. It is seen that
the choice of penalty weight by this rule involves knowledge of both stiffness magnitudes and
floating-point hardware properties of the computer used as well as the precision selected by the
program.

§10.1.4. Penalty Elements for General MFCs

For the constraintu2 = u6 the physical interpretation of the penalty element is clear. Points 2 and
6 must move in lockstep alongx, which can be approximately enforced by the heavy bar device
shown in Figure 10.2. But how about 3u3 + u5 − 4u6 = 1? Or justu2 = −u6?

The treatment of more general constraints is linked to the theory ofCourant penalty functions, which
in turn is a topic in variational calculus. Because the necessary theory has not yet been introduced
(it is given in the next subsection), the procedure used for constructing a penalty element is stated
here as a recipe. Consider the homogeneous constraint

3u3 + u5 − 4u6 = 0. (10.4)

Rewrite this equation in matrix form

[3 1 −4]

[u3

u5

u6

]
= 0, (10.5)

3 Such order-of-magnitude estimates can be readily found by scanning the diagonal ofK because the largest stiffness
coefficient of the actual structure is usually a diagonal entry.

4 If overflows occurs, the master stiffness should be scaled throughout or a better choice of physical units made.

10–5

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–6

and premultiply both sides by the transpose of the coefficient matrix:[3
1

−4

]
[3 1 −4]

[u3

u5

u6

]
=

[9 3 −12
3 1 −4

−12 −4 16

] [u3

u5

u6

]
= K̄

(e)
u(e) = 0. (10.6)

HereK̄
(e)

is theunscaledstiffness matrix of the penalty element. This is now multiplied by the
penalty weightw and assembled into the master stiffness matrix following the usual rules. For the
example problem, augmenting (10.1) with the scaled penalty element (10.6) yields

K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 + 9w K34 3w −12w 0
0 0 K34 K44 K45 0 0
0 0 3w K45 K55 + w K56 − 4w 0
0 0 −12w 0 K56 − 4w K66 + 16w K67

0 0 0 0 0 K67 K77





u1

u2

u3

u4

u5

u6

u7


=



f1

f2

f3

f4

f5

f6

f7


, (10.7)

If the constraint is nonhomogeneous the force vector is also modified. To illustrate this effect,
consider the MFC: 3u3 + u5 − 4u6 = 1. Rewrite in matrix form as

[3 1 −4]

[u3

u5

u6

]
= 1. (10.8)

Premultiply both sides by the transpose of the coefficient matrix:[9 3 −12
3 1 −4

−12 −4 16

] [u3

u5

u6

]
=

[3
1

−4

]
. (10.9)

Scaling byw and assembling yields

K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 + 9w K34 3w −12w 0
0 0 K34 K44 K45 0 0
0 0 3w K45 K55 + w K56 − 4w 0
0 0 −12w 0 K56 − 4w K66 + 16w K67

0 0 0 0 0 K67 K77





u1

u2

u3

u4

u5

u6

u7


=



f1

f2

f3 + 3w

f4

f5 + w

f6 − 4w

f7


,

(10.10)

§10.1.5. *The Theory Behind the Recipe

The rule comes from the following mathematical theory. Suppose we have a set ofm linear MFCs. Using the
matrix notation introduced in §9.1.3, these will be stated as

apu = bp, p = 1, . . . m (10.11)

10–6

10–7 §10.1 THE PENALTY METHOD

whereu contains all degrees of freedom and eachap is a row vector with same length asu. To incorporate
the MFCs into the FEM model one selects a weightwp > 0 for each constraints and constructs the so-called
Courant quadratic penalty function or “penalty energy”

P =
m∑

p=1

Pp, with Pp = uT
(

1
2aT

papu − wpaT
pbp

) = 1
2uT K(p)u − uT f(p), (10.12)

where we have calledK(p) = wpaT
pap and f(p) = wpaT bi . P is added to the potential energy function

� = 1
2uT Ku − uT f to form theaugmented potential energy�a = � + P. Minimization of�a with respect

to u yields (
Ku +

m∑
p=1

K(p)
)

u = f +
m∑

p=1

f(p). (10.13)

Each term of the sum onp, which derives from termPp in (10.12), may be viewed as contributed by a penalty
element with globalized stiffness matrixK(p) = wpaT

pap and globalized added force termf(p) = wpaT
pbp.

To use a even more compact form we may write the set of multifreedom constraints asAu = b. Then the
penalty augmented system can be written compactly as

(K + AT WA) u = f + WAT b, (10.14)

whereW is a diagonal matrix of penalty weights. This compact form, however, conceals the structure of the
penalty elements.

§10.1.6. Assessment of the Penalty Method

The main advantage of the penalty function method is its straightforward computer implementation.
Looking at modifified systems such as (10.7) and (10.10) it is obvious that the equations need not be
re-arranged. That is,u andû are the same. Constraints may be programmed as “penalty elements,”
and stiffness and force contributions of these elements implemented through the standard assembler.
In fact using this method there is no need to distinguish between unconstrained and constrained
equations! Once all elements — regular and penalty — are assembled, the system (upon processsing
for single-freedom constraints if necessary) can be passed to the equation solver.

An important advantage with respect to the master-slave (elimination) method is its lack of sensitivity
with respect to whether constraints are linearly dependent. To give a simplistic example, suppose
that the constraintu2 = u6 appears twice. Then two penalty bar elements connecting 2 and 6 will
be inserted, doubling the intended weight but otherwise not causing undue harm.

An advantage with respect to the Lagrange multiplier method described in §10.2 is that positive
definiteness is not lost. Such loss can affect the performance of certain numerical processes. Finally,
it is worth noting that the the penalty method is easily extendible to nonlinear constraints although
such extension falls outside the scope of this book.

The main disadvantage, however, is a serious one: the choice of weight values that balance solution
accuracy with the violation of constraint conditions. For simple cases the square root rule mentioned
previously often works, although its effective use calls for knowledge of the magnitude of stiffness
coefficients. Such knowledge may be difficult to extract from a general purpose “black box”
program. For difficult cases selection of appropriate weights may require extensive numerical

10–7

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–8

1 2 3 4 5 6 7
x

u1, f1 u3, f3 u4, f4 u5, f5 u6, f6 u7, f7u2, f2

(1) (2) (3) (4) (5) (6)

−λ λ

Figure 10.3. Physical interpretation of Lagrange multiplier
adjunction to enforce the MFCu2 = u6.

experimentation, wasting the user time with numerical games that have no bearing on the actual
objective, which is getting a solution.

The deterioration of the condition number of the penalty-augmented stiffness matrix can have a
serious side effects in some solution procedures such as eigenvalue extraction or iterative solvers.
Finally, even if optimal weights are selected, the combined solution error cannot be lowered beyond
a treshold value.

From these comments it is evident that penalty augmentation, although superior to the master-slave
method from the standpoint of generality and ease of implementation, is no panacea.

§10.2. LAGRANGE MULTIPLIER ADJUNCTION

§10.2.1. Physical Interpretation

As in the case of the penalty function method, the method of Lagrange multipliers can be given a
rigorous justification within the framework of variational calculus. But in the same spirit it will be
introduced for the example structure from a physical standpoint that is particularly illuminating.

Consider again the constraintu2 = u6. Borrowing some ideas from the penalty method, imagine
that nodes 2 and 6 are connected now by arigid link rather than a flexible one. Thus the constraint
is imposed exactly. But of course the penalty method with an infinite weight would “blow up.”

We may remove the link if it is replaced by an appropriate reaction force pair (−λ, +λ), as illustrated
in Figure 10.3. These are called theconstraint forces. Incorporating these forces into the original
stiffness equations (9.10) we get



K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 K34 0 0 0
0 0 K34 K44 K45 0 0
0 0 0 K45 K55 K56 0
0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77





u1

u2

u3

u4

u5

u6

u7


=



f1

f2 − λ

f3

f4

f5

f6 + λ

f7


. (10.15)

Thisλ is called aLagrange multiplier. Becauseλ is an unknown, let us transfer it to theleft hand

10–8

10–9 §10.2 LAGRANGE MULTIPLIER ADJUNCTION

sideby appendingit to the vector of unknowns:



K11 K12 0 0 0 0 0 0
K12 K22 K23 0 0 0 0 1
0 K23 K33 K34 0 0 0 0
0 0 K34 K44 K45 0 0 0
0 0 0 K45 K55 K56 0 0
0 0 0 0 K56 K66 K67 −1
0 0 0 0 0 K67 K77 0





u1

u2

u3

u4

u5

u6

u7

λ


=



f1

f2

f3

f4

f5

f6

f7


. (10.16)

But now we have 7 equations in 8 unknowns. To render the system determinate, the constraint
condition u2 − u6 = 0 is appended as eighth equation:

K11 K12 0 0 0 0 0 0
K12 K22 K23 0 0 0 0 1
0 K23 K33 K34 0 0 0 0
0 0 K34 K44 K45 0 0 0
0 0 0 K45 K55 K56 0 0
0 0 0 0 K56 K66 K67 −1
0 0 0 0 0 K67 K77 0
0 1 0 0 0 −1 0 0





u1

u2

u3

u4

u5

u6

u7

λ


=



f1

f2

f3

f4

f5

f6

f7

0


, (10.17)

This is called themultiplier-augmentedsystem. Its coefficient matrix, which is symmetric, is
called thebordered stiffness matrix. The process by whichλ is appended to the vector of original
unknowns is calledadjunction. Solving this system provides the desired solution for the degrees
of freedom while also characterizing the constraint forces throughλ.

§10.2.2. Lagrange Multipliers for General MFCs

The general procedure will be stated first as a recipe. Suppose that we want to solve the example
structure subjected to three MFCs

u2 − u6 = 0, 5u2 − 8u7 = 3, 3u3 + u5 − 4u6 = 1, (10.18)

Adjoin these MFCs as the eighth, nineth and tenth equations:

K11 K12 0 0 0 0 0
K12 K22 K23 0 0 0 0
0 K23 K33 K34 0 0 0
0 0 K34 K44 K45 0 0
0 0 0 K45 K55 K56 0
0 0 0 0 K56 K66 K67

0 0 0 0 0 K67 K77

0 1 0 0 0 −1 0
0 5 0 0 0 0 −8
0 0 3 0 1 −4 0





u1

u2

u3

u4

u5

u6

u7


=



f1

f2

f3

f4

f5

f6

f7

0
3
1


, (10.19)

10–9

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–10

Three Lagrange multipliers:λ1, λ2 andλ3, are required to take care of three MFCs. Adjoin those
unknowns to the nodal displacement vector. Symmetrize the coefficient matrix by adjoining 3
columns that are the transpose of the 3 last rows, and filling the bottom right-hand corner with
zeros:

K11 K12 0 0 0 0 0 0 0 0
K12 K22 K23 0 0 0 0 1 5 0
0 K23 K33 K34 0 0 0 0 0 3
0 0 K34 K44 K45 0 0 0 0 0
0 0 0 K45 K55 K56 0 0 0 1
0 0 0 0 K56 K66 K67 −1 0 −4
0 0 0 0 0 K67 K77 0 −8 0
0 1 0 0 0 −1 0 0 0 0
0 5 0 0 0 0 −8 0 0 0
0 0 3 0 1 −4 0 0 0 0





u1

u2

u3

u4

u5

u6

u7

λ1

λ2

λ3


=



f1

f2

f3

f4

f5

f6

f7

0
3
1


, (10.20)

§10.2.3. *The Theory Behind the Recipe

The recipe illustrated by (10.20) comes from a well known technique of variational calculus. Using the matrix
notation introduced in §9.1.3, compactly denote the set ofm MFCs byAu = b, whereA is m × n. The
potential energy of the unconstrained finite element model is� = 1

2uT Ku − uT f. To impose the constraint,
adjoinm Lagrange multipliers collected in vectorλ and form the Lagrangian

L(u, λ) = � + λT (Au − b) = 1
2uT Ku − uT f + λT (Au − b). (10.21)

Extremization ofL with respect tou andλ yields the multiplier-augmented form[
K AT

A 0

] [
u
λ

]
=

[
f
b

]
(10.22)

The master stiffness matrixK in (10.22) is said to beborderedwith A andAT . Solving this system provides
u andλ. The latter can be interpreted as forces of constraint in the following sense: a removed constraint can
be replaced by a system of forces characterized byλ multiplied by the constraint coefficients. More precisely,
the constraint forces are−ATλ.

§10.2.4. Assessment of the Lagrange Multiplier Method

In contrast to the penalty method, the method of Lagrange multipliers has the advantage of being
exact (aside from computation errors). It provides directly the constraint forces, which are of
interest in many applications. It does not require any guesses as regards weights. As the penalty
method, it can be extended without difficulty to nonlinear constraints.

It is not free of disadvantages. It introduces additional unknowns, requiring expansion of the
original stiffness method. It renders the augmented stiffness matrix indefinite, a property that may
cause grief with some linear equation solving methods such as Cholesky factorization or conjugate
gradients. Finally, as the master-slave method, it is sensitive to the degree of linear independence
of the constraints: if the constraintu2 = u6 is specified twice, the bordered stiffness is obviously
singular.

10–10

10–11 §10.4 SUMMARY

On the whole the Lagrangian multiplier method appear to be the most elegant for a general-purpose
finite element program that is supposed to work as a “black box” by minimizing guesses and
choices from its users. Its implementation, however, is not simple. Special care must be exercised
to detect singularities due to constraint dependency and to account for the effect of loss of positive
definiteness of the bordered stiffness on equation solvers.

§10.3. *THE AUGMENTED LAGRANGIAN METHOD

The general matrix forms of the penalty function and Lagrangian multiplier methods are given by expressions
(10.14) and (10.22), respectively. A useful connection between these methods can be established as follows.

Because the lower diagonal block of the bordered stiffness matrix in (10.22) is null, it is not possible to directly
eliminateλ. To allow that, replace this block byεS−1, whereS is a constraint-scaling diagonal matrix of
appropriate order andε is a small number. The reciprocal ofε is a large number calledw = 1/ε. To maintain
exactness of the second equation,εS−1λ is added to the right-hand side:[

K AT

A εS−1

] [
u
λ

]
=

[
f

εS−1λP

]
(10.23)

Here superscriptP (for “predicted value”) is attached to theλ on the right-hand side as a “tracer.” We can
now formally solve forλ and subsequently foru. The results may be presented as

(K + wAT SA) u = f + wAT Sb − ATλP,

λ = λP + wS(b − Au),
(10.24)

SettingλP = 0 in the first matrix equation yields

(K + wAT SA) u = f + wAT Sb. (10.25)

On takingW = wS, the general matrix equation (10.14) of the penalty method is recovered.

This relation suggests the construction ofiterative proceduresin which one tries toimprove the accuracy
of the penalty function method whilew is kept constant.5 This strategy circumvents the aforementioned ill-
conditioning problems when the weightw is gradually increased. One such method is easily constructed by
inspecting (10.24). Using superscriptk as an iteration index and keepingw fixed, solve equations (10.24) in
tandem as follows:

(K + AT WA) uk = f + AT Wb − ATλk,

λk+1 = λk + W(b − Auk),
(10.26)

for k = 0, 1, . . . , beginning withλ0 = 0.6 Thenu0 is the penalty solution. If the process converges one
recovers the exact Lagrangian solution without having to solve the Lagrangian system (10.23) directly.

The family of iterative procedures that may be precipitated from (10.24) collectively pertains to the class
of augmented Lagrangian methods. These have received much attention since the late 1960s, when they
originated in the field of constrained optimization.

5 C. A. Felippa, Iterative procedures for improving penalty function solutions of algebraic systems,Int. J. Numer. Meth.
Engrg., 12, 821–836, 1978.

6 This form of the stiffness equations is discussed in C. A. Felippa, Iterative procedures for improving penalty function
solutions of algebraic systems,Int. J. Numer. Meth. Engrg., 12, 821–836, 1978.

10–11

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–12

 Master-Slave Penalty Lagrange
 Elimination Function Multiplier

Generality fair excellent excellent

Ease of implementation poor to fair good fair

Sensitivity to user decisions high high small to none

Accuracy variable mediocre excellent

Sensitivity as regards high none high
constraint dependence

Retains positive definiteness yes yes no

Modifies unknown vector yes no yes

Figure 10.4. Assessment summary of MFC application methods.

§10.4. SUMMARY

The treatment of linear MFCs in finite element systems can be carried out by several methods. Three
of these: the master-slave elimination, penalty augmentation and Lagrange multiplier adjunction,
have been discussed. It is emphasized that no method is uniformly satisfactory in terms of generality,
numerical behavior and simplicity of implementation. See Figure 10.4 for a summary.

For a general purpose program that tries to approach “black box” behavior (that is, minimal decisions
on the part of users) the method of Lagrange multipliers has the edge. This edge is unfortunately
blunted by a fairly complex computer implementation and by the loss of positive definiteness in the
bordered stiffness matrix.

10–12

10–13 Exercises

Homework Exercises for Chapter 10

MultiFreedom Constraints II

EXERCISE 10.1

[C+N:20] This is identical to Exercise 9.1, except that the MFCu2 − u6 = 1/5 is to be treated by the penalty
function method. Take the weightw to be 10k, in which k varies ask = 3, 4, 5, . . . 16. For each sample
w compute the Euclidean-norm solution errore(w) = ||up(w) − uex||2, whereup is the computed solution
anduex is the exact solution listed in (E9.1). Plotk = log10 w versus log10 e and report for which weighte
attains a minimum. (See Slide #5 for a check). Does it roughly agree with the square root rule (§10.1.3) if the
computations carry 16 digits of precision?

As in Exercise 9.1, useMathematica, Matlab (or similar) to do the algebra. For example, the following
Mathematicascript solves this Exercise:

(* Exercise 10.1 - Penalty Method *)
(* MFC: u2-u6=1/5 variable w *)
K=MasterStiffnessOfSixElementBar[100];
Print["Stiffness K=",K//MatrixForm];
f={1,2,3,4,5,6,7}; Print["Applied forces=",f];
uexact= {0,0.27,0.275,0.25,0.185,0.07,0.14}; ew={};
For [w=100, w<=10^16, w=10*w; (* increase w by 10 every pass *)

Khat=K; fhat=f;
Khat[[2,2]]+=w; Khat[[6,6]]+=w; Khat[[6,2]]=Khat[[2,6]]-=w;
fhat[[2]]+=(1/5)*w; fhat[[6]]-=(1/5)*w; (*insert penalty *)
{Kmod,fmod}=FixLeftEndOfSixElementBar[Khat,fhat];
u=LinearSolve[N[Kmod],N[fmod]];
Print["Weight w=",N[w]//ScientificForm," u=",u//InputForm];
e=Sqrt[(u-uexact).(u-uexact)];
(*Print["L2 solution error=",e//ScientificForm]; *)
AppendTo[ew,{Log[10,w],Log[10,e]}];

];
ListPlot[ew,AxesOrigin->{5,-8},Frame->True, PlotStyle->
{AbsolutePointSize[4],AbsoluteThickness[2],RGBColor[1,0,0]},
PlotJoined->True,AxesLabel->{"Log10(w)","Log10(u error)"}];

HereMasterStiffnessOfSixElementBarandFixLeftEndOfSixElementBarare the same modules listed
in Exercise 9.1.

Note: If you run the above program, you may get several beeps fromMathematicaas it is processing some of
the systems with very large weights. Don’t be alarmed: those are only warnings. TheLinearSolve function
is alerting you that the coefficient matricesK̂ for weights of order 1012 or bigger are ill-conditioned.

EXERCISE 10.2

[C+N:15] Again identical to Exercise 9.1, except that the MFCu2 −u6 = 1/5 is to be treated by the Lagrange
multiplier method. The results for the computedu and the recovered force vectorKu should agree with (E9.1).
UseMathematica, Matlab(or similar) to do the algebra. For example, the followingMathematicascript solves
this Exercise:

(* Exercise 10.2 - Lagrange Multiplier Method *)
(* MFC: u2-u6=1/5 *)
K=MasterStiffnessOfSixElementBar[100];

10–13

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–14

Khat=Table[0,{8},{8}]; f={1,2,3,4,5,6,7}; fhat=AppendTo[f,0];
For [i=1,i<=7,i++, For[j=1,j<=7,j++, Khat[[i,j]]=K[[i,j]]]];
{Kmod,fmod}=FixLeftEndOfSixElementBar[Khat,fhat];
Kmod[[2,8]]=Kmod[[8,2]]= 1;
Kmod[[6,8]]=Kmod[[8,6]]=-1; fmod[[8]]=1/5;
Print["Kmod=",Kmod//MatrixForm];
Print["fmod=",fmod];
umod=LinearSolve[N[Kmod],N[fmod]]; u=Take[umod,7];
Print["Solution u=",u ,", lambda=",umod[[8]]];
Print["Recovered node forces=",K.u];

HereMasterStiffnessOfSixElementBarandFixLeftEndOfSixElementBarare the same modules listed
in Exercise 9.1.

Does the computed solution agree with (E9.1)?

EXERCISE 10.3

[A:10] For the example structure, show which penalty elements would implement the following MFCs:

(a) u2 + u6 = 0,

(b) u2 − 3u6 = 1/3.
(E10.1)

As answer, show the stiffness equations of those two elements in a manner similar to (10.1).

EXERCISE 10.4

[A/C+N:15+15+10] Suppose that the assembled stiffness equations for a one-dimensional finite element
model before imposing constraints are[

2 −1 0
−1 2 −1

0 −1 2

][
u1
u2
u3

]
=

[
1
0
2

]
. (E10.2)

This system is to be solved subject to the multipoint constraint

u1 = u3. (E10.3)

(a) Impose the constraint (E10.3) by the master-slave method takingu1 as master, and solve the resulting
2 × 2 system of equations by hand.

(b) Impose the constraint (E10.3) by the penalty function method, leaving the weightw as a free parameter.
Solve the equations by hand or CAS (Cramer’s rule is recommended) and verify analytically that as
w → ∞ the solution approaches that found in (a). Tabulate the values ofu1, u2, u3 forw = 0, 1, 10, 100.
Hint 1: the value ofu2 should not change.Hint 2: the solution foru1 should be(6w + 5)/(4w + 4).

(c) Impose the constraint (E10.3) by the Lagrange multiplier method. Show the 4× 4 multiplier-augmented
system of equations analogous to (10.13) and solve it by computer or calculator.

10–14

10–15 Exercises

�
�

�
�

�
�
�

beam-column
member E, A, I

x

y

θ 1 2P

L

45
o

zz

Figure E10.1. Beam-colum member for Exercise 10.5.

EXERCISE 10.5

[A/C:10+15+10] The beam-column member shown in Figure E10.1 rests on a skew roller that forms a 45◦

angle with the horizontal axisx, and is loaded axially by a forceP.

The finite element equations upon removing the fixed right end, but before imposing the skew-roller MFC, are[
E A/L 0 0

0 12E Izz/L3 6E Izz/L2

0 6E Izz/L2 4E Izz/L

][
ux1

uy1

θ1

]
=

[
P
0
0

]
, (E10.4)

whereE, A, andIzz are member properties,θ1 is the left end rotation, andL is the member length.7 To simplify
the calculations setP = αE A, andIzz = β AL2, in whichα andβ are dimensionless parameters, and express
the following solutions in terms ofα andβ.

(a) Apply the skew roller constraint by the master-slave method (makeuy1 slave) and solve forux1 andθ1

in terms ofL, α andβ. This may be done by hand or a CAS. Partial solution:ux1 = αL/(1 + 3β).

(b) Apply the skew roller constraint by the penalty method by adjoining a penalty truss member of axial
stiffnessk = wE A normal to the roller, and computeux1 (Cramer’s rule is recommended if solved
by hand). Verify that asw → ∞ the answer obtained in (a) is recovered. Partial solution:ux1 =
αL(3β + wL)/(3β + wL(1 + 3β)).

(c) Apply the skew roller constraint by Lagrangian multiplier adjunction, and solve the resulting 4×4 system
of equations using a CAS. Verify that you get the same solution as in (a).

EXERCISE 10.6

[A:30] Show that the master-slave transformation methodu = Tû can be written down as a special form of
the method of Lagrange multipliers. Start from the augmented functional

�MS = 1
2uT Ku − uT f + λT (u − Tû) (E10.5)

and write down the stationarity conditions of�MS with respect tou, λ andû in matrix form.

EXERCISE 10.7

[A:35] Check the matrix equations (10.23) through (10.26) quoted for the Augmented Lagrangian method.

7 The stiffness equations for a beam column are derived in Part III of this book. For now consider (E10.4) as a recipe.

10–15

Chapter 10: MULTIFREEDOM CONSTRAINTS II 10–16

EXERCISE 10.8

[A:40] (Advanced, close to a research problem) Show that the master-slave transformation methodu = Tû can
be expressed as a limit of the penalty function method as the weights go to infinity. Start from the augmented
functional

�P = 1
2uT Ku − uT f + 1

2w(u − Tû)T (u − Tû) (E10.6)

Write down the matrix stationarity conditions with respect to tou û and eliminateu. Hint: using Woodbury’s
formula (Appendix C, §C.5.2)

(K + wTT ST)−1 = K−1 − K−1TT (K + w−1S−1)−1T K−1. (E10.7)

show that
K = TK−1TT (E10.8)

10–16

.

11
Superelements

and Global-Local
Analysis

11–1

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–2

TABLE OF CONTENTS

Page

§11.1. SUPERELEMENT CONCEPT 11–3
§11.1.1. Where Does the Idea Comes From? 11–3
§11.1.2. Subdomains 11–4
§11.1.3. *Mathematical Requirements 11–5

§11.2. STATIC CONDENSATION 11–5
§11.2.1. Condensation by Explicit Matrix Operations 11–6
§11.2.2. Condensation by Symmetric Gauss Elimination 11–7

§11.3. GLOBAL-LOCAL ANALYSIS 11–9

EXERCISES . 11–12

11–2

11–3 §11.1 SUPERELEMENT CONCEPT

§11.1. SUPERELEMENT CONCEPT

Superelements are groupings of finite elements that, upon assembly, may be considered as an
individual element for computational purposes. These purposes may be related to modeling or
solution needs.

A random assortment of elements does not necessarily make up a superelement. To be considered
as such, an element grouping must meet certain conditions. Informally we can say that the grouping
must form a structural component on its own. This imposes certain conditions stated mathematically
in §11.1.3. Inasmuch as these conditions involve advanced concepts such as rank sufficiency, which
are introduced in later Chapters, the restrictions are not dwelled upon here.

As noted in Chapter 7, superelements may originate from two overlapping contexts: “bottom up” or
“top down.” In a bottom up context one thinks of superelements as built from simpler elements. In
the top-down context, superelements may be thought as being large pieces of a complete structure.
This dual viewpoint motivates the following classification:

Macroelements. These are superelements assembled with a few primitive elements. Also called
mesh units when they are presented to program users as individual elements.

Substructures. Complex assemblies of elements that result on breaking up a structure into distin-
guishable portions.

When does a substructure becomes a macroelement or vice-versa? There are no precise rules. In
fact the generic term superelement was coined in the 1970s to take up the entire spectrum, ranging
from individual elements to complete structures. This universality is helped by the common features
noted below.

Both macroelements and substructures are treated exactly the same way in so far as matrix processing
is concerned. The basic processing rule is that associated with condensation of internal degrees
of freedom. This is illustrated in the following section with a very simple example. The reader
should note, however, that the technique applies to any superelement, whether composed of two or
a million elements.

§11.1.1. Where Does the Idea Comes From?

Substructuring was invented by aerospace engineers in the early 1960s1 to carry out a first-level
breakdown of complex systems such as a complete airplane, as depicted in Figures 11.1 and 11.2.
The decomposition may continue hierarchically through additional levels as illustrated in Figure
11.3. The concept is also natural for space vehicles operating in stages, such as the Apollo short
stack depicted in Figure 11.4.

One obvious advantage of this idea results if the structure is built of several identical units. For
example, the wing substructures S2 and S3 are largely identical except for a reflection about the
fuselage midplane, and so are the stabilizers S4 and S5. Even if the loading is not symmetric, taking
account of the structural symmetry reduces mesh preparation time.

1 For a bibliography of early work, see J. S. Przeminiecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York,
1968 (also in Dover ed).

11–3

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–4

Figure 11.1. A complete airplane.

S1

S2

S3

S4

S5

S6

Figure 11.2. Airplane broken down into six level one substructures identified as S1 through S6.

The concept was then picked up and developed extesively by the offshore and shipbuilding industries,
the products of which tend to be very modular and repetitive to reduce fabrication costs. As noted
above, repetition of structural components favors the use of substructuring techniques.

At the other extreme, mesh units appeared in the early days of finite element methods. They
were motivated by user convenience. For example, in hand preparation of finite element models,
quadrilateral and bricks involve less human labor than triangles and tetrahedra, respectively. It was
therefore natural to combine the latter to assemble the former.

§11.1.2. Subdomains

Applied mathematicians working on solution procedures for parallel computation have developed
the concept of subdomains. These are groupings of finite elements that are entirely motivated by
computational considerations. They are subdivisions of the finite element model done more or less

11–4

11–5 §11.2 STATIC CONDENSATION

level one substructure

level two substructure

individual
element

Figure 11.3. Further breakdown of wing structure. The decomposition
process may continue down to the individual element level.

automatically by a program called domain decomposer.

Although the concepts of substructures and subdomains overlap in many respects, it is better to
keep the two separate. The common underlying theme is divide and conquer but the motivation is
different.

§11.1.3. *Mathematical Requirements

A superelement is said to be rank-sufficient if its only zero-energy modes are rigid-body modes. Equivalently,
the superelement does not possess spurious kinematic mechanisms.

Verification of the rank-sufficient condition guarantees that the static condensation procedure described below
will work properly.

§11.2. STATIC CONDENSATION

Degrees of freedom of a superelement are classified into two groups:

Internal Freedoms. Those that are not connected to the freedoms of another superelement. Node
whose freedoms are internal are called internal nodes.

Boundary Freedoms. These are connected to at least another superelement. They usually reside at
boundary nodes placed on the periphery of the superelement. See Figure 11.5.

The objective is to get rid of all displacement degrees of freedom associated with internal freedoms.
This elimination process is called static condensation, or simply condensation.

Condensation may be presented in terms of explicit matrix operations, as shown in the next sub-
section. A more practical technique based on symmetric Gauss elimination is discussed later.

11–5

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–6

COMMAND MODULE

SERVICE MODULE

ADAPTER

LUNAR MODULE

INSTRUMENT UNIT

THIRD STAGE
SIV-B

Figure 11.4. The Apollo short stack.

§11.2.1. Condensation by Explicit Matrix Operations

To carry out the condensation process, the assembled stiffness equations of the superelement are
partitioned as follows: [

Kbb Kbi

Kib Ki i

] [
ub

ui

]
=

[
fb

fi

]
. (11.1)

where subvectors ub and ui collect boundary and interior degrees of freedom, respectively. Take
the second matrix equation:

Kibub + Ki i ui = fi , (11.2)

If Ki i is nonsingular we can solve for the interior freedoms:

ui = K−1
i i (fi − Kibub), (11.3)

Replacing into the first matrix equation of (11.2) yields the condensed stiffness equations

K̃bbub = f̃b. (11.4)

In this equation,
K̃bb = Kbb − Kbi K−1

i i Kib, f̃b = fb − Kbi K−1
i i fi , (11.5)

are called the condensed stiffness matrix and force vector, respectively, of the substructure.

From this point onward, the condensed superelement may be viewed, from the standpoint of further
operations, as an individual element whose element stiffness matrix and nodal force vector are K̃bb

and f̃b, respectively.

11–6

11–7 §11.2 STATIC CONDENSATION

b

b

b

b
b

b
b b

b b

i
i

(a) (b)

Figure 11.5. Classification of superelement freedoms into boundary and internal. (a) shows
the vertical stabilizer substructure S6 of Figure 11.2. (The FE mesh is depicted as
two-dimensional for illustrative purposes; for an actual aircraft it will be three
dimensional with an internal structure similar to the one displayed in Figure 11.3.)
Boundary freedoms are those associated to the boundary nodes labeled b (shown in red),
which are connected to the fuselage substructure. (b) shows a quadrilateral macroelement
mesh-unit fabricated with 4 triangles: it has one interior and four boundary nodes.

REMARK 11.1

The feasibility of the condensation process (11.5) hinges on the non-singularity of Ki i . This matrix is nonsin-
gular if the superelement is rank-sufficient in the sense stated in §11.1.3, and if fixing the boundary freedoms
precludes all rigid body motions. If the former condition is verified but not the latter, the superelement is
called floating. Processing floating superelements demands more advanced computational techniques, among
which we cite the concepts of projectors and generalized inverses.

§11.2.2. Condensation by Symmetric Gauss Elimination

In the computer implementation of the the static condensation process, calculations are not carried
out as outlined above. There are two major differences: the equations of the substructure are not
actually rearranged, and the explicit calculation of the inverse of Ki i is avoided. The procedure is
in fact coded as a variant of symmetric Gauss elimination. To convey the flavor of this technique,
consider the following stiffness equations of a superelement:


6 −2 −1 −3

−2 5 −2 −1
−1 −2 7 −4
−3 −1 −4 8




u1

u2

u3

u4

 =


3
6
4
0

 . (11.6)

Suppose that the last two displacement freedoms: u3 and u4, are classified as interior and are to be
statically condensed out. To eliminate u4, perform symmetric Gauss elimination of the fourth row

11–7

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–8

Cell 11.1 Program to Condense Out the Last Freedom from Ku = f

CondenseLastFreedom[K_,f_]:=Module[{n=Length[K],c,pivot,Kc,fc},
If [n<=0,Return[{K,f}]];
Kc=Table[0,{n-1},{n-1}]; fc=Table[0,{n-1},{1}];
pivot=K[[n,n]]; If [pivot==0,Print["Singular Matrix"]; Return[{K,f}]];
Do[c=K[[i,n]]/pivot; fc[[i,1]]=f[[i,1]]-c*f[[n,1]];

Do[Kc[[j,i]]=Kc[[i,j]]=K[[i,j]]-c*K[[n,j]],
{j,1,i}],

{i,1,n-1}];
Return[{Kc,fc}]

];

K={{6,-2,-1,-3},{ -2,5,-2,-1},{ -1,-2,7,-4},{-3,-1,-4,8}};
f={{3},{6},{4},{0}}; Print["K=",K, " f=",f];
{K,f}=CondenseLastFreedom[K,f]; Print["Upon condensing freedom 4: ",K,f];
{K,f}=CondenseLastFreedom[K,f]; Print["Upon condensing freedom 3: ",K,f];

and column: 6 − (−3)×(−3)

8 −2 − (−1)×(−3)

8 −1 − (−4)×(−3)

8

−2 − (−3)×(−1)

8 5 − (−1)×(−1)

8 −2 − (−4)×(−1)

8

−1 − (−3)×(−4)

8 −2 − (−1)×(−4)

8 7 − (−4)×(−4)

8


 u1

u2

u3

 =

 3 − 0×(−3)

8

6 − 0×(−1)

8

4 − 0×(−4)

8

 , (11.7)

or  39
8 − 19

8 − 5
2

− 19
8

39
8 − 5

2

− 5
2 − 5

2 5

  u1

u2

u3

 =
 3

6

4

 . (11.8)

Repeat the process for the third row and column to eliminate u3:[39
8 − (−5/2)×(−5/2)

5 − 19
8 − (−5/2)×(−5/2)

5

− 19
8 − (−5/2)×(−5/2)

5
39
8 − (−5/2)×(−5/2)

5

] [
u1

u2

]
=

[
3 − 4×(−5/2)

5

6 − 4×(−5/2)

5

]
, (11.9)

or [29
8 − 29

8

− 29
8

29
8

] [
u1

u2

]
=

[
5

8

]
. (11.10)

These are the condensed stiffness equations. Cell 11.1 shows a Mathematica program that executes
the foregoing steps.

Obviously this procedure is much simpler than going through the explicit matrix inverse. Another
important advantage of Gauss elimination is that equation rearrangement is not required even if the
condensed degrees of freedom do not appear in any particular order. For example, suppose that
the assembled substructure contains originally eight degrees of freedom and that the freedoms to

11–8

11–9 §11.3 GLOBAL-LOCAL ANALYSIS

coarse mesh finer meshes

Figure 11.6. Left: example panel structure for global-local analysis.
Right: a FEM mesh for a one-shot analysis.

be condensed out are numbered 1, 4, 5, 6 and 8. Then Gauss elimination is carried out over those
equations only, and the condensed (3 × 3) stiffness and (3 × 1) force vector extracted from rows
and columns 2, 3 and 7.

REMARK 11.2

The symmetric Gauss elimination procedure, as illustrated in steps (11.7) through (11.10), is primarily useful
for macroelements and mesh units, since the number of stiffness equations for those typically does not exceed
a few hundreds. This permits the use of full matrix storage. For substructures containing thousands or
millions of degrees of freedom — such as in the airplane example — the elimination is carried out using more
sophisticated sparse matrix algorithms.

REMARK 11.3

The static condensation process is a matrix operation called “partial inversion” or “partial elimination” that
appears in many disciplines. Here is the general form. Suppose the linear system Ax = y, where A is n × n
square and x and y are n-vectors, is partitioned as[

A11 A12

A21 A22

] [
x1

x2

]
=

[
y1

y2

]
. (11.11)

Assuming the appropriate inverses to exist, then the following are easily verified matrix identities:[
A−1

11 −A−1
11 A12

A21A−1
11 A22 − A21A−1

11 A12

][
y1

x2

]
=

[
x1

y2

]
,

[
A11 − A12A−1

22 A21 A12A−1
22

−A−1
22 A21 A−1

22

][
x1

y2

]
=

[
y1

x2

]
.

(11.12)

We say that x1 has been eliminated or “condensed out” in the left identity and x2 in the right one. In FEM
applications, it is conventional to condense out the bottom vector x2, so the right identity is relevant. If A is
symmetric, to retain symmetry in (11.12) it is necessary to change the sign of one of the subvectors.

§11.3. GLOBAL-LOCAL ANALYSIS

As noted in the first Chapter, complex engineering systems are often modeled in a multilevel fashion
following the divide and conquer approach. The superelement technique is a practical realization
of that approach.

11–9

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–10

Global analysis with a coarse mesh, ignoring holes, followed
 bylocal analysis of the vicinity of the holes with finer meshes:

Figure 11.7. Global-local analysis of problem of Figure 11.5.

A related, but not identical, technique is multiscale analysis. The whole system is first analyzed as
a global entity, discarding or passing over details deemed not to affect its overall behavior. Local
details are then analyzed using the results of the global analysis as boundary conditions. The
process can be continued into the analysis of further details of local models. And so on. When this
procedure is restricted to two stages and applied in the context of finite element analysis, it is called
global-local analysis in the FEM literature.

In the global stage the behavior of the entire structure is simulated with a finite element model that
necessarily ignores details such as cutouts or joints. These details do not affect the overall behavior
of the structure, but may have a bearing on safety. Such details are incorporated in a series of local
analyses.

The gist of the global-local approach is explained in the example illustrated in Figures 11.6 and 11.7.
Although the structure is admittedly two simple to merit the application of global-local analysis, it
serves to illustrate the basic ideas. Suppose one is faced with the analysis of the rectangular panel
shown on the top of Figure 11.6, which contains three small holes. The bottom of that figure shows
a standard (one-stage) FEM treatment using a largely regular mesh that is refined near the holes.
Connecting the coarse and fine meshes usually involves using multifreedom constraints because
the nodes at mesh boundaries do not match, as depicted in that figure.

Figure 11.6 illustrates the global-local analysis procedure. The global analysis is done with a coarse
but regular FEM mesh which ignores the effect of the holes. This is followed by local analysis of
the region near the holes using refined finite element meshes. The key ingredient for the local
analyses is the application of boundary conditions (BCs) on the finer mesh boundaries. These BCs
may be of displacement (essential) or of force (natural) type. If the former, the applied boundary
displacements are interpolated from the global mesh solution. If the latter, the internal forces
or stresses obtained from the global calculation are converted to nodal forces on the fine meshes
through a lumping process.

The BC choice noted above gives rise to two basic variations of the global-local approach. Expe-

11–10

11–11 §11.3 GLOBAL-LOCAL ANALYSIS

rience accumulated over several decades2 has shown that the stress-BC approach generally gives
more reliable answers.

The global-local technique can be extended to more than two levels, in which case it receives the more
encompassing name multiscale analysis. Although this generalization is still largely in the realm
of research, it is receiving increasing attention from various science and engineering communities
for complex products such as the thermomechanical analysis of microelectronic components.

2 Particularly in the aerospace industry, in which the global-local technique has been used since the mid 1960s.

11–11

Chapter 11: SUPERELEMENTS AND GLOBAL-LOCAL ANALYSIS 11–12

Homework Exercises for Chapter 11

Superelements and Global-Local Analysis

EXERCISE 11.1

[N:15] Suppose that the assembled stiffness equations for a one-dimensional superelement are[
2 −1 0

−1 2 −1
0 −1 2

][
u1
u2
u3

]
=

[
1
0
2

]
. (E11.1)

Eliminate u2 from the unconstrained stiffness equations (E10.1) by static condensation, and show (but do not
solve) the condensed equation system. Use either the explicit inverse formulas (11.5) or the symmetric Gauss
elimination process explained in §11.2.2. Hint: regardless of method the result should be[

1.5 −0.5
−0.5 1.5

] [
u1

u3

]
=

[
1
2

]
, (E11.2)

EXERCISE 11.2

[C+N:20] Generalize the program of Cell 11.1 to a module CondenseFreedom[K,f,i] that is able to
condense the ith degree of freedom from K and f, which is not necessarily the last one. That is, i may range
from 1 to n, where n is the dimension of Ku = f. Apply that program to solve Exercise 11.1.

EXERCISE 11.3

[D:15] Explain the similarities and differences between superelement analysis and global-local FEM analysis.

EXERCISE 11.4

[A:25] Show that the static condensation process can be viewed as a master-slave transformation method
(Chapter 9) in which the interior freedoms ui are taken as slaves linked by the transformation relation

u =
[

ub

ui

]
=

[
I

−K−1
22 K21

]
[ub] −

[
0

−K−1
22 fi

]
= Tub − g. (E11.3)

Hint: apply (9.26) in which û ≡ ub are the masters and compare the result to (11.6)-(11.7).

EXERCISE 11.5

[D:30] (Requires thinking) Explain the conceptual and operational differences between standard (one-stage)
FEM analysis and global-local analysis of a problem such as that illustrated in Figures 11.5-6. Are the answers
the same? What is gained, if any, by the global-local approach over the one-stage FEM analysis?

EXERCISE 11.6

[A:20] Two beam elements: 1–2 and 2–3, each of length L and rigidity E I are connected at node 2. Eliminate
node 2 by condensation. Does the condensed stiffness equals the stiffness of a beam element of length 2L and
rigidity E I ?

(For expressions of the beam stiffness matrices, see Chapter 13.)

11–12

.

12
Variational

Formulation of
Bar Element

12–1

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–2

TABLE OF CONTENTS

Page
§12.1.A NEW BEGINNING 12–3

§12.2.DEFINITION OF BAR MEMBER 12–3

§12.3.VARIATIONAL FORMULATION 12–5
§12.3.1. The Total Potential Energy Functional. 12–5
§12.3.2. Variation of an Admissible Function 12–6
§12.3.3. The Minimum Potential Energy Principle. 12–6
§12.3.4. TPE Discretization 12–7
§12.3.5. Bar Element Discretization. 12–8
§12.3.6. Shape Functions. 12–8
§12.3.7. The Strain-Displacement Equation. 12–9

§12.4.THE FINITE ELEMENT EQUATIONS 12–9
§12.4.1. The Stiffness Matrix 12–10
§12.4.2. The Consistent Node Force Vector. 12–10
§12.4.3. When are Two-Node Bar Elements Exact?. 12–11

§12.5.GENERALIZATIONS 12–11

EXERCISES .12–13

12–2

12–3 §12.2 DEFINITION OF BAR MEMBER

§12.1. A NEW BEGINNING

This Chapter begins Part II of the course. This Part focuses on the construction of structural and
continuum finite elements using avariational formulationbased on the Total Potential Energy.

Why only elements? Because the other synthesis steps of the DSM: assembly and solution, remain
the same as in Part I. These operations are not element dependent.

Part II constructsindividual elementsbeginning with the simplest ones and progressing to more
complicated ones. The formulation of two-dimensional finite elements from a variational standpoint
is discussed in Chapters 14 and following. Although the scope of that formulation is broad,
exceeding structural mechanics, it is better understood by going through specific elements first.

The simplest finite elements from a geometrical standpoint are one-dimensional orline elements.
The term means that theintrinsic dimensionalityis one, although they may be used in one, two or
three space dimensions upon transformation to global coordinates as appropriate. The simplest one-
dimensional structural element is thetwo-node bar element, which we have already encountered in
Chapters 2-3 as the truss member.

In this Chapter the stiffness equations of that bar element are rederived using the variational for-
mulation. For uniform properties the resulting equations are the same as those found previously
using the physical or Mechanics of Materials approach. The variational method has the advantage
of being readily extendible to more complicated situations, such as variable cross section or more
than two nodes.

§12.2. DEFINITION OF BAR MEMBER

In structural mechanics abar is a structural component characterized by two properties:

(1) One bar dimension: thelongitudinal dimensionoraxial dimensionis much larger that the other
two dimensions, which are collectively known astransverse dimensions. The intersection of
a plane normal to the longitudinal dimension and the bar defines thecross sections. The
longitudinal dimension defines thelongitudinal axis. See Figure 12.1.

(2) The bar resists an internal axial force along its longitudinal dimension.

In addition to trusses, bar elements are used to model cables, chains and ropes. They are also used
as fictitious elements in penalty function methods, as discussed in Chapter 10.

We will consider here onlystraight bars, although their cross section may vary. The one-dimensional
mathematical model assumes that the bar material is linearly elastic, obeying Hooke’s law, and that
displacements and strains are infinitesimal. Figure 12.2 pictures the relevant quantities for a fixed-
free bar. Table 12.1 collects the necessary terminology for the governing equations.

Figure 12.3 displays the governing equations of the bar in a graphic format called aTonti diagram.
The formal similarity with the diagrams used in Chapter 6 to explain MoM elements should be
noted, although the diagram of Figure 12.3 pertains to the continuum model rather than to the
discrete one.

12–3

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–4

Table 12.1 Nomenclature for Mathematical Model of Axially Loaded Bar

Quantity Meaning

x Longitudinal bar axis∗

(.)′ d(.)/dx
u(x) Axial displacement
q(x) Distributed axial force, given per unit of bar length

L Total bar length
E Elastic modulus
A Cross section area; may vary withx

E A Axial rigidity
e = du/dx = u′ Infinitesimal axial strain
σ = Ee= Eu′ Axial stress

p = Aσ = E A e= E Au′ Internal axial force
P Prescribed end load

∗ x is used in this Chapter instead ofx̄ (as in Chapters 2–3) to simplify the notation.

Cross section

P

x

z

y

��
��
��
��

Longitudinal axis

Figure 12.1. A fixed-free bar member.

axial rigidity EA

u(x)q(x)

x�
�
�

L

cross section

P

Figure 12.2. Quantities that appear in the mathematical
model of a bar member.

12–4

12–5 §12.3 VARIATIONAL FORMULATION

 Axial
displacements

Distributed
 axial load

Axial
strain

Axial
force

Prescribed
end loads

u(x) q(x)

e(x) p(x)

e=du/dx=u'

p=EAe

p'+q=0Kinematic

Constitutive Force BC

Equilibrium

Displacement
BC

Prescribed end
 displacements

Figure 12.3. Tonti diagram for the mathematical model of a bar member. The diagram
displays the field equations and boundary conditions as lines connecting
the boxes. Boxes shown in relief contain known (given) quantities.

§12.3. VARIATIONAL FORMULATION

To illustrate the variational formulation, the finite element equations of the bar will be derived from
the Minimum Potential Energy principle.

§12.3.1. The Total Potential Energy Functional

In Mechanics of Materials it is shown that theinternal energy densityat a point of a linear-elastic
material subjected to a one-dimensional state of stressσ and straine is U = 1

2σ(x)e(x), where
σ is to be regarded as linked to the displacementu through Hooke’s lawσ = Ee and the strain-
displacement relatione = u′ = du/dx. ThisU is also called thestrain energy density. Integration
over the volume of the bar gives the total internal energy

U = 1
2

∫ L

0
pe dx= 1

2

∫ L

0
(E Au′)u′ dx = 1

2

∫ L

0
u′E A u′ dx, (12.1)

in which all integrand quantities may depend onx.

Theexternal energydue to applied mechanical loads pools contributions from two sources:

1. The distributed loadq(x). This contributes a cross-section density ofq(x)u(x) becauseq is
assumed to be already integrated over the section.

2. Any applied end load(s). For the fixed-free example of Figure 12.2 the end loadP would
contributeP u(L).

The second source may be folded into the first by conventionally writing any point loadP acting
at a cross sectionx = a as a contributionP δ(a) to q(x), whereδ(a) denotes the one-dimensional
Dirac delta function atx = a. If this is done the external energy can be concisely expressed as

W =
∫ L

0
qu dx. (12.2)

12–5

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–6

u(0) = 0

u(L)

x

u(x)+δu(x) δu(x)

u(x)

u

Figure 12.4. Concept of variation of the axial displacement functionalu(x).
For convenienceu(x) is plotted normal to the bar longitudinal
axis. Both theu(x) andu(x) + δu(x) shown in the figure are
kinematically admissible, and so is the variationδu(x).

The total potential energy of the bar is given by

	 = U − W (12.3)

Mathematically this is a functional, called theTotal Potential Energyfunctional or TPE. It depends
only on the axial displacementu(x). In variational calculus this is called theprimary variableof
the functional. When the dependence of	 on u needs to be emphasized we shall write	[u] =
U [u]−W[u], with brackets enclosing the primary variable. To display both primary and independent
variables we write, for example,	[u(x)] = U [u(x)] − W[u(x)].

§12.3.2. Variation of an Admissible Function

The concept ofadmissible variationis fundamental in both variational calculus and the variationally
formulated FEM.Only the primary variable(s) of a functional may be varied. For the TPE functional
(12.3) this is the axial displacementu(x). Suppose thatu(x) is changed tou(x) + δ u(x).1 This
is illustrated in Figure 12.4, where for convenienceu(x) is plotted normal tox. The functional
changes from	 to 	 + δ	. The functionδ u(x) and the scalarδ	 are called thevariationsof
u(x) and	, respectively. The variationδ u(x) should not be confused with the ordinary differential
du(x) = u′(x) dx since on taking the variation the independent variablex is frozen; that is,δx = 0.

A displacement variationδu(x) is said to beadmissiblewhen bothu(x) andu(x) + δ u(x) are
kinematically admissiblein the sense of the Principle of Virtual Work (PVW), which agrees with the
conditions stated in the classic variational calculus. A kinematically admissible axial displacement
u(x) obeys two conditions:

(i) It is continuous over the bar length, that is,u(x) ∈ C0 in x ∈ [0, L].

(ii) It satisfies exactly any displacement boundary condition, such as the fixed-end specification
u(0) = 0 of Figure 12.2.

The variationδ u(x) depicted in Figure 12.4 is kinematically admissible because bothu(x) and
u(x) + δ u(x) satisfy the foregoing conditions. The physical meaning of (i)–(ii) is the subject of
Exercise 12.1.

1 The symbolδ not immediately followed by a parenthesis is not a delta function but instead denotes variation with respect
to the variable that follows.

12–6

12–7 §12.3 VARIATIONAL FORMULATION

1 2 3 4 5

(1) (2) (3) (4)

u = 01

u2 u3
u4

u5

u1, f1 u3, f3 u4, f4 u5, f5u2, f2

x

u(x)

u

Figure 12.5. FEM discretization of bar member. A piecewise-linear admissible
displacement trial functionu(x) is drawn below the mesh.
It is assumed that the left end is fixed, henceu1 = 0.

§12.3.3. The Minimum Potential Energy Principle

The Minimum Potential Energy (MPE) principle states2 that the actual displacement solutionu∗(x)

that satisfies the governing equations is that which renders	 stationary:

δ	 = δU − δW = 0 iff u = u∗ (12.4)

with respect toadmissiblevariationsu = u∗ + δu of the exact displacement fieldu∗(x). (The
symbol “iff” in (12.4) is an abbreviation for “if and only if”.)

REMARK 12.1

Using standard techniques of variational calculus3 it can be shown that ifE A > 0 the solutionu∗(x) of (12.4)
exists, is unique, and renders	[u] a minimum over the class of kinematically admissible displacements. The
last attribute explains the “mininum” in the name of the principle.

§12.3.4. TPE Discretization

To apply the TPE functional (12.3) to the derivation of finite element equations we replace the
continuum mathematical model by a discrete one consisting of a union of bar elements. For
example, Figure 12.5 illustrates the subdivision of a bar member into four two-node elements.

Functionals are scalars. Consequently, corresponding to a discretization such as that shown in
Figure 12.5, the TPE functional (12.3) may be decomposed into a sum of contributions of individual
elements:

	 = 	(1) + 	(2) + . . . + 	(Ne) (12.5)

whereNe is the number of elements. The same decomposition applies to the internal and external
energies, as well as to the stationarity condition (12.4):

δ	 = δ	(1) + δ	(2) + . . . + δ	(Ne) = 0. (12.6)

2 The proof may be found in texts on variational methods in mechanics, e.g., H. L. Langhaar,Energy Methods in Applied
Mechanics, McGraw-Hill, 1960. This is the most readable “old fashioned” treatment of the energy principles of structural
mechanics, with a beautiful treatment of virtual work. Out of print but used copies may be found from web sites.

3 See for example, I. M. Gelfand and S. V. Fomin,Calculus of Variations, Prentice-Hall, 1963.

12–7

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–8

Using the fundamental lemma of variational calculus,4 it can be shown that (12.6) implies that for
a generic elemente we may write

δ	(e) = δU (e) − δW(e) = 0. (12.7)

This variational equation5 is the basis for the derivation of element stiffness equations once the
displacement field has been discretized over the element, as described next.

§12.3.5. Bar Element Discretization

Figure 12.5 depicts a generic bar elemente. The element is referred to its local axisx. Note that
there is no need to call it̄x because in one dimension local and global coordinates coalesce. The
two degrees of freedom areui andu j .

The mathematical concept of bar finite elements is based onapproximationof the axial displacement
u(x) over the element. The exact displacementu∗ is replaced by an approximate displacement

u∗(x) ≈ u(x) (12.8)

over the finite element mesh. The value ofu(x) over elemente is denoted byu(e)(x). This
approximate displacement,u(x), taken over all elements, is called thefinite element trial expansion
or simplytrial function. See Figure 12.5.

This FE trial expansion must belong to the class of kinematically admissible displacements defined
in §12.3.2. Consequently, it must beC0 continuous over and between elements.

§12.3.6. Shape Functions

For a two node bar element the only possible variation of the displacementu(e) which satisfies the
interelement continuity requirement stated above islinear, and expressable by the interpolation
formula

u(e)(x) = N(e)
i u(e)

i + N(e)
j u(e)

j = [N(e)
i N(e)

j]

[
u(e)

i

u(e)
j

]
= Nu(e). (12.9)

The functionsN(e)
i and N(e)

j that multiply the node displacementsui and u j are calledshape
functions. These functionsinterpolatethe internal displacementu(e) directly from the node values.
See Figure 12.6. For the present element the shape functions are linear:

N(e)
i = 1 − x

�
= 1 − ζ, N(e)

j = x

�
= ζ, (12.10)

4 See Gelfand and Fomin,loc. cit., Chapter II.

5 Mathematically called aweak formor Galerkin form. Equation (12.7) also states the Principle of Virtual Work for each
element:δU (e) = δW(e), which says that the virtual work of internal and external forces on admissible displacement
variations is equal if the element is in equilibrium.

12–8

12–9 §12.4 THE FINITE ELEMENT EQUATIONS

i j(e)
x

1

0

0

1

N(e)
1

N(e)
2

� = L(e)

Figure 12.6. The generic two-node bar element and its two shape functions.

in which � = L(e) denotes the element length, andζ = x/� is a dimensionless coordinate, also
known as anatural coordinate.

Note that the shape functionN(e)
i has the value 1 at nodei and 0 at nodej . Conversely, shape

function N(e)
j has the value 0 at nodei and 1 at nodej . This is a general property of shape

functions, required by the fact that that element displacement interpolations such as (12.9) are
based on physical node values.

REMARK 12.2

In addition to continuity, shape functions must satisfy acompletenessrequirement with respect to the governing
variational principle. This condition is stated and discussed in later Chapters. Suffices for now to say that the
shape functions (12.10) do satisfy this requirement.

§12.3.7. The Strain-Displacement Equation

The axial strain over the element is

e = du(e)

dx
= (u(e))′ =

[
d N(e)

i

dx

d N(e)
j

dx

] [
u(e)

i

u(e)
j

]
= 1

�
[−1 1]

[
u(e)

i

u(e)
j

]
= Bu(e), (12.11)

where

B = 1

�
[−1 1] (12.12)

is called thestrain-displacementmatrix.

§12.4. THE FINITE ELEMENT EQUATIONS

In linear finite element analysis, the discretization process for the TPE functional invariably leads
to the following algebraic form

	(e) = U (e) − W(e), U (e) = 1
2(u(e))T K(e)u(e), W(e) = (u(e))T f(e), (12.13)

whereK(e) andf(e) are called theelement stiffness matrixand theelement consistent nodal force vec-
tor, respectively. Note that in (12.13) the three energies are only function of the node displacements
u(e). U (e) andW(e) depend quadratically and linearly, respectively, on those displacements.

12–9

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–10

Taking the variation of the discretized TPE of (12.13) with respect to the node displacements gives6

δ	(e) = (
δu(e)

)T ∂	(e)

∂u(e)
= (

δu(e)
)T [

K(e)u(e) − f(e)
] = 0. (12.14)

Because the variationsδu(e) can be arbitrary, the bracketed quantity must vanish, which yields

K(e)u(e) = f(e) (12.15)

These are the element stiffness equations. Hence the foregoing names given toK(e) andf(e) are
justifieda posteriori.

§12.4.1. The Stiffness Matrix

For the two-node bar element, the internal energyU (e) is

U (e) = 1
2

∫ �

0
e E A e dx, (12.16)

where the straine is related to the nodal displacements through (12.11). This form is symmetrically
expanded by insertinge = Bu(e) into the seconde ande = eT = (u(e))T BT into the firste:

U (e) = 1
2

∫ �

0
[u(e)

i u(e)
j]

1

�

[−1
1

]
E A

1

�
[−1 1]

[
u(e)

i

u(e)
j

]
dx. (12.17)

The nodal displacements can be moved out of the integral, giving

U (e) = 1
2 [u(e)

i u(e)
j]

∫ �

0

E A

�2

[
1 −1

−1 1

]
dx

[
u(e)

i

u(e)
j

]
= 1

2

(
u(e)

)T
K(e)u(e). (12.18)

in which

K(e) =
∫ �

0

E A

�2

[
1 −1

−1 1

]
dx =

∫ �

0
E ABT B dx, (12.19)

is the element stiffness matrix. If the rigidityE A is constant over the element,

K(e) = E ABT B
∫ �

0
dx = E A

�2

[
1 −1

−1 1

]
� = E A

�

[
1 −1

−1 1

]
. (12.20)

This is the same element stiffness matrix of the prismatic truss member derived in Chapters 2 and
6 by Mechanics of Materials arguments, but now obtained through a variational method.

6 The 1
2 factor disappears on taking the variation becauseU (e) is quadratic in the node displacements. For a review on

the calculus of discrete quadratic forms, see Appendix D.

12–10

12–11 §12.5 GENERALIZATIONS

§12.4.2. The Consistent Node Force Vector

Theconsistent node force vectorf(e) introduced in (12.13) comes from the element contribution to
the external work potentialW:

W(e) =
∫ �

0
qu dx=

∫ �

0
q NT u(e) dx = (

u(e)
)T

∫ �

0
q

[
1 − ζ

ζ

]
dx = (

u(e)
)T

f(e), (12.21)

in which ζ = x/�. Consequently

f(e) =
∫ �

0
q

[
1 − ζ

ζ

]
dx (12.22)

If the forceq is constant over the element, one obtains the same results as with the EbE load-lumping
method of Chapter 8. See Exercise 12.3.

§12.4.3. When are Two-Node Bar Elements Exact?

Suppose that the following three conditions are satisfied:

1. The bar properties are constant along the length (prismatic member).

2. The distributed forceq(x) is zero between nodes.

3. The only applied forces are point forces applied at the nodes.

If so, a linear axial displacementu(x) as defined by (12.9) and (12.10) is the exact solution over
each element because constant strain and stress satisfy, element by element, all of the governing
equations listed in Figure 12.3.7 It follows that if the foregoing conditions are verified the FEM
solution isexact; that is, it agrees with the analytical solution of the mathematical model. Adding
extra elements and nodes would not change the solution. That is the reason behind the truss
discretizations used in Chapters 2–4:one element per member is sufficientif the members are
prismatic and the only loads are applied at the joints.8

If any of the foregoing conditions is violated, the FEM solution will be approximate, but can be
improved by adding more elements, nodes and degrees of freedom.

§12.5. GENERALIZATIONS

The foregoing development pertains to the simplest finite element possible: the linear two-node bar
element. If we stay within the realm of one-dimensional elements the technique may be generalized
in the following directions:

Refined bar elements. Adding internal nodes we can pass from linear to quadratic and cubic shape
functions. These elements are rarely useful on their own right, but as accessories to 2D and 3D

7 The internal equilibrium equationp′ + q = 0 is trivially verified becausep′ = q = 0.

8 In fact, adding more elements per member makes the stiffness equations singular in 2D and 3D because zero-energy
mechanisms appear. Removing those mechanisms would require the application of MFCs at intermediate nodes.

12–11

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–12

high order continuum elements (for example, to model plate edge reinforcements.) For that reason
they are not considered here. The 3-node bar element is developed in Exercise 16.5.

Two and three dimensional structures built with bar elements. The only required extra ingredient
are the nodal-displacement transformation matrices discussed in Chapters 3 and 6.

Beam-type elements. These require the introduction of displacement-derivative nodal freedoms
(interpretable as nodal rotations). Plane beam elements are treated in the next Chapter.

Curved elements. These are derivable using isoparametric mapping. This device will be introduced
later when considering triangular and quadrilateral elements in Chapter 16.

12–12

12–13 Exercises

Homework Exercises for Chapter 12

Variational Formulation of Bar Element

EXERCISE 12.1

[D:10] Explain the kinematic admissibility requirements stated in §12.3.2 in terms of physics, namely ruling
out the possibility of gaps or interpenetration as the bar material deforms.

EXERCISE 12.2

[A/C:15] Using the expression (12.19), derive the stiffness matrix for ataperedbar element in which the cross
section area varies linearly along the element length:

A = Ai (1 − ζ) + Aj ζ (E12.1)

where Ai and Aj are the areas at the end nodes, andζ = x/� is the dimensionless coordinate defined in
§12.3.6. Show that this yields the same answer as that of a stiffness of a constant-area bar with cross section
1
2(Ai + Aj). Note: the followingMathematicascript may be used to solve this exercise:9

ClearAll[Le,x,Em,A,Ai,Aj];
Be={{-1,1}}/Le; Ζ=x/Le; A=Ai*(1-Ζ)+Aj*Ζ;
Ke=Integrate[Em*A*Transpose[Be].Be,{x,0,Le}];
Ke=Simplify[Ke];
Print["Ke for varying cross section bar: ",Ke//MatrixForm];

In this and following scriptsLe stands for�.

EXERCISE 12.3

[A:10] Using the expression (12.22), find the consistent load vectorf(e) for a bar of constant areaA subject
to a uniform axial forceq = ρgA per unit length along the element. Show that this vector is the same as that
obtained with the element-by-element (EbE) “lumping” method of §8.4, which simply assigns half of the total
load: 1

2ρgA�, to each node.

EXERCISE 12.4

[A/C:15] Repeat the previous calculation for the tapered bar element subject to a forceq = ρgA per unit
length, in whichA varies according to (E12.1) whereasρ andg are constant. Check that ifAi = Aj one
recoversfi = f j = 1

2ρgA�. Note: the followingMathematicascript may be used to solve this exercise:10

ClearAll[q,A,Ai,Aj,ρ,g,Le,x];
ζ=x/Le; Ne={{1-ζ,ζ}}; A=Ai*(1-ζ)+Aj*ζ; q=ρ*g*A;
fe=Integrate[q*Ne,{x,0,Le}];
fe=Simplify[fe];
Print["fe for uniform load q: ",fe//MatrixForm];
ClearAll[A];
Print["fe check: ",Simplify[fe/.{Ai->A,Aj->A}]//MatrixForm];

9 TheClearAll[...] at the start of the script is recommended programming practice to initialize variables and avoid
“cell crosstalk.” In aModule this is done by listing the local variables after theModule keyword.

10 TheClearAll[A] before the last statement is essential; elseA would retain the previous assignation.

12–13

Chapter 12: VARIATIONAL FORMULATION OF BAR ELEMENT 12–14

EXERCISE 12.5

[A/C:20] A tapered bar element of length�, end areasAi and Aj with A interpolated as per (E12.1), and
constant densityρ, rotates on a plane at uniform angular velocityω (rad/sec) about nodei . Taking axisx
along the rotating bar with origin at nodei , the centrifugal axial force isq(x) = ρ Aω2x along the length.
Find the consistent node forces as functions ofρ, Ai , Aj , ω and�, and specialize the result to the prismatic
bar A = Ai = Aj . Partial result check:f j = 1

3ρω2 A�2 for A = Ai = Aj .

EXERCISE 12.6

[A:15] (Requires knowledge of Dirac’s delta function properties.) Find the consistent load vectorf(e) if the bar
is subjected to a concentrated axial forceQ at a distancex = a from its left end. Use Equation (12.22), with
q(x) = Q δ(a), in which δ(a) is the one-dimensional Dirac’s delta function atx = a. Note: the following
script does it byMathematica, but it is overkill:

ClearAll[Le,q,Q,a,x];
Ζ=x/Le; Ne={{1-Ζ,Ζ}}; q=Q*DiracDelta[x-a];
fe=Simplify[Integrate[q*Ne,{x,-Infinity,Infinity}]];
Print["fe for point load Q at x=a: ",fe//MatrixForm];

EXERCISE 12.7

[C+D:20] In a learned paper, Dr. I. M. Clueless proposes “improving” the result for the example truss by putting
three extra nodes, 4, 5 and 6, at the midpoint of members 1–2, 2–3 and 1–3, respectively. His “reasoning” is
that more is better. Try Dr. C.’s suggestion using theMathematicaimplementation of Chapter 5 and verify that
the solution “blows up” because the modified master stiffness is singular. Explain physically what happens.

12–14

.

13
Variational

Formulation of
Plane Beam Element

13–1

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–2

TABLE OF CONTENTS

Page
§13.1.INTRODUCTION 13–3

§13.2.WHAT IS A BEAM? 13–3
§13.2.1. Terminology 13–3
§13.2.2. Mathematical Models 13–4
§13.2.3. Assumptions of Classical Beam Theory. 13–4

§13.3.THE CLASSICAL BEAM THEORY 13–5
§13.3.1. The Neutral Axis. 13–5
§13.3.2. Element Coordinate Systems. 13–5
§13.3.3. Kinematics 13–6
§13.3.4. Loading 13–6
§13.3.5. Support Conditions 13–6
§13.3.6. Strains, Stresses and Bending Moments. 13–6

§13.4.TOTAL POTENTIAL ENERGY FUNCTIONAL 13–7

§13.5.BEAM FINITE ELEMENTS 13–8
§13.5.1. Finite Element Trial Functions 13–9
§13.5.2. Shape Functions 13–9

§13.6.THE FINITE ELEMENT EQUATIONS 13–10
§13.6.1. The Stiffness Matrix of a Prismatic Beam 13–11
§13.6.2. Consistent Nodal Force Vector for Uniform Load 13–11

EXERCISES . 13–13

13–2

13–3 §13.2 WHAT IS A BEAM?

§13.1. INTRODUCTION

The previous Chapter introduced the TPE-based variational formulation of finite elements, which
was illustrated for the bar element. This Chapter applies that technique to a more complicated
one-dimensional element: the plane beam described by the Bernoulli-Euler mathematical model.

Mathematically, the main difference of beams with respect to bars is the increased order of conti-
nuity required for the assumed transverse-displacement functions to be admissible. Not only must
these functions be continuous but they must possess continuousx first derivatives. To meet this
requirement both deflectionsand slopes are matched at nodal points. Slopes may be viewed as
rotationaldegrees of freedom in the small-displacement assumptions used here.

§13.2. WHAT IS A BEAM?

Beams are the most common type of structural component. Abeamis a bar-like structural member
whose primary function is to supporttransverseloading and carry to the supports. See Figure 13.1.
By “bar-like” it is meant that one of the dimensions is considerably larger than the other two. This
dimension is called thelongitudinal dimensionor beam axis. The intersection of planes normal to
the longitudinal dimension with the beam member are calledcross sections. A longitudinal plane
is one that passes through the beam axis.

Figure 13.1. A beam is a structural member design to resist transverse loads.

A beam resists transverse loads mainly throughbending action, as illustrated in Figure 13.2. Such
bending produces compressive longitudinal stresses in one side of the beam and tensile stresses in
the other. The two regions are separated by aneutral surfaceof zero stress.

The combination of tensile and compressive stresses produces an internalbending moment. This
moment is the primary mechanism that transports loads to the supports.

§13.2.1. Terminology

A general beamis a bar-like member designed to resist a combination of loading actions such as
biaxial bending, transverse shears, axial stretching or compression, and possibly torsion. If the
internal axial force is compressive, the beam has also to be designed to resist buckling. If the
beam is subject primarily to bending and axial forces, it is called abeam-column. If it is subjected
primarily to bending forces, it is called simply a beam. A beam isstraight if its longitudinal axis
is straight. It isprismaticif its cross section is constant.

13–3

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–4

Neutral surface Compressive stress

Tensile stress

Figure 13.2. Beam transverse loads are primarily resisted by bending action.

A spatial beamsupports transverse loads that can act on arbitrary directions along the cross section.
A plane beamresists primarily transverse loading on a preferred longitudinal plane. This Chapter
considers only plane beams.

§13.2.2. Mathematical Models

One-dimensional mathematical models of structural beams are constructed on the basis ofbeam
theories. Because beams are actually three-dimensional bodies, all models necessarily involve
some form of approximation to the underlying physics. The simplest and best known models
for straight, prismatic beams are based on theBernoulli-Eulertheory, also calledclassical beam
theoryor engineering beam theory, and theTimoshenko beam theory. The Bernoulli-Euler theory
is that taught in introductory Mechanics of Materials, and is the one used here. The Timoshenko
beam theory, which assumes additional importance in dynamics and vibration, is studied in more
advanced courses.

Both models can be used to formulate beam finite elements. The classical beam theory used
here leads to the so-calledHermitian beam elements.1 These elements neglect transverse shear
deformations. Elements based on Timoshenko beam theory incorporate a first order correction for
transverse shear effects.

§13.2.3. Assumptions of Classical Beam Theory

The classical (Bernoulli-Euler) theory forplane beamsis based on the following assumptions:

1. Planar symmetry. The longitudinal axis is straight, and the cross section of the beam has a
longitudinal plane of symmetry. The resultant of the transverse loads acting on each section
lies on this plane.

2. Cross section variation. The cross section is either constant or varies smoothly.

3. Normality. Plane sections originally normal to the longitudinal axis of the beam remain plane
and normal to the deformed longitudinal axis upon bending.

1 The qualifier “Hermitian” relates to the use of a interpolation method studied by the French mathematician Hermite. The
term has nothing to do with the beam model used.

13–4

13–5 §13.3 THE CLASSICAL BEAM THEORY

z

Beam cross section

Symmetry planeNeutral surface

Neutral axis

q(x)

L

x, u

y, v

y, v

Figure 13.3. Terminology in Bernoulli-Euler model of plane beam.

4. Strain energy. The internal strain energy of the beam member accounts only for bending
moment deformations. All other effects, notably transverse shear and axial force effects, are
ignored.

5. Linearization. Transverse deflections, rotations and deformations are considered so small that
the assumptions of infinitesimal deformations apply.

6. Elastic behavior. The beam is fabricated of material assumed to be elastic and isotropic.
Heterogeneous beams fabricated with several materials, such as reinforced concrete, are not
excluded.

§13.3. THE CLASSICAL BEAM THEORY

§13.3.1. The Neutral Axis

Under transverse loading one of the beam surfaces shortens while the other elongates; see Fig-
ure 13.2. Therefore aneutral surfaceexists between the top and the bottom that undergoes no
elongation or contraction. The intersection of this surface with each cross section defines theneu-
tral axis of that cross section. If the beam is fabricated of uniform material, the position of the
neutral axis is only a function of the cross section geometry.

§13.3.2. Element Coordinate Systems

The Cartesian axes for plane beam analysis are chosen as follows:

1. x along the longitudinal beam axis, at neutral axis height.2

2. z along the neutral axis at the origin section.

3. y upwards forming a RHS system withx andz.

The origin of thex, y, z system is placed at the the leftmost section. The total length of the beam
member isL. See Figure 13.3.

2 If the beam is homogenous, the neutral axis passes through the centroid of the cross section. If the beam is fabricated
of different materials — for example, a reinforced concrete beam — the neutral axes passes through the centroid of an
“equivalent” cross section. This topic is covered in Mechanics of Materials textbooks.

13–5

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–6

�������
�������
�������
�������

Figure 13.4. A simply supported beam has end supports that preclude
transverse displacements but permit end rotations.

§13.3.3. Kinematics

Themotionof a plane beam member in thex, y plane is described by the two dimensional displace-
ment field [

u(x, y)

v(x, y)

]
, (13.1)

whereu andv are the axial and transverse displacement components, respectively, of an arbitrary
beam material point. The motion in thezdirection, which is primarity due to Poisson’s ratio effects,
is of no interest. The normality assumption can be represented mathematically as[

u(x, y)

v(x, y)

]
=

[−y∂v(x)
∂x

v(x)

]
=

[−yv′

v(x)

]
=

[−yθ

v(x)

]
. (13.2)

Note that the slopev′ = ∂v/∂x = dv/dx of the deflection curve has been identified with the
rotation symbolθ . This is permissible becauseθ represents to first order, according to the kine-
matic assumptions of the Bernoulli-Euler model, the rotation of a cross section aboutz, positive
counterclockwise.

§13.3.4. Loading

The transverse forceper unit lengththat acts on the beam in the+y direction is denoted byq(x),
as illustrated in Figure 13.3.

Concentrated loads and moments acting on isolated beam sections can be represented by the delta
function and its derivative. For example, if a transverse point loadF acts atx = a, it contributes
Fδ(a) toq(x). If the concentrated momentC acts atx = b, positive counterclockwise, it contributes
Cδ′(b) to q(x), whereδ′ denotes a doublet acting atx = b.

§13.3.5. Support Conditions

Support conditions for beams exhibit far more variety than for bar members. Two canonical
cases often encountered in engineering practice: simple support and cantilever support. These are
illustrated in Figures 13.4 and 13.5, respectively. Beams often appear as components of skeletal
structures called frameworks, in which case the support conditions are of more complex type.

13–6

13–7 §13.4 TOTAL POTENTIAL ENERGY FUNCTIONAL

Figure 13.5. A cantilever beam is clamped at one end and free at the other. Airplane
wings and stabilizers provide examples of this configuration.

§13.3.6. Strains, Stresses and Bending Moments

The classical (Bernoulli-Euler) model assumes that the internal energy of beam member is entirely
due to bending strains and stresses. Bending produces axial stressesσxx, which will be abbreviated
to σ , and axial strainsexx, which will be abbreviated toe. The strains can be linked to the
displacements by differentiating the axial displacementu(x) of (13.2):

e = ∂u

∂x
= −y

∂2v

∂x2
= −y

d2v

dx2
= −yκ, (13.3)

in which κ denotes the deformed beam axis curvature, which to first order is∂2v/∂x2approxv′′.
The bending stressσ = σxx is linked toe through the one-dimensional Hooke’s law

σ = Ee= −Ey
d2v

dx2
= −Eyκ, (13.4)

whereE is the elastic modulus.

The most important stress resultant in classical beam theory is thebending moment M, which is
defined as the cross section integral

M =
∫

A
−yσ dx = E

d2v

dx2

∫
A

y2 d A = E Iκ, (13.5)

in which I denotes the moment of inertia
∫

A y2 d A of the cross section with respect to thez (neutral)
axis. (In general beams this moment of inertia is identified asIzz.) The productE I is called the
bending rigidityof the beam with respect to flexure about thez axis.

The governing equations of the Bernoulli-Euler beam model are summarized in the Tonti diagram
of Figure 13.6.

§13.4. TOTAL POTENTIAL ENERGY FUNCTIONAL

The total potential energy of the beam is

 = U − W (13.6)

13–7

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–8

Transverse
displacements

Distributed
 transverse load

Prescribed
end

displacements

Curvature
Bending
moment Prescribed

 end loads

v(x) q(x)

κ(x) M(x)

κ=v''

M=EI κ

M''=qKinematic

Constitutive

Displacement
 BCs

Force BCs

Equilibrium

Figure 13.6. The Tonti diagram for the governing equations of the Bernoulli-Euler beam model.

where as usualU andW are the internal and external energies, respectively. As previously explained,
in the Bernoulli-Euler modelU includes only the bending energy:

U = 1
2

∫
V

σe dV = 1
2

∫ L

0
Mκ dx = 1

2

∫ L

0
E Iκ2 dx = 1

2

∫ L

0
E I

(
v′′)2

dx = 1
2

∫ L

0
v′′E Iv′′ dx.

(13.7)

The external workW accounts for the applied transverse force:

W =
∫ L

0
qv dx. (13.8)

The three functionals
, U andW must be regarded as depending on the transverse displacement
v(x). When this dependence needs to be emphasized we write
[v], U [v] andW[v].

Observe that
[v] includes up to second derivatives inv, becausev′′ = κ appears inU . This
number (the order of the highest derivatives present in the functional) is called thevariational
index. Variational calculus tells us that since the variational index is 2, admissible displacements
v(x) must be continuous, have continuous first derivatives (slopes or rotations), and satisfy the
displacement boundary conditions exactly.

This continuity requirement can be succintly stated by saying that admissible displacements must
beC1 continuous. This guides the construction of beam finite elements described below.

REMARK 13.1

If there is an applied distributed momentm(x) per unit of beam length, the external energy (13.8) must be
augmented with a

∫ L

0
m(x)θ(x) dx term. This is further elaborated in Exercises 13.4 and 13.5. Such kind of

distributed loading is uncommon in practice although in framework analysis occassionally the need arises for
treating a concentrated momentC between nodes.

13–8

13–9 §13.5 BEAM FINITE ELEMENTS

i

θi

θj

(e)= L�

x

E = E(e), I = I (e)

x, u
j

y,v

P′(x + u, y + v)

P(x, y)

vi

vj

Figure 13.7. The two-node plane beam element with four degrees of freedom.

§13.5. BEAM FINITE ELEMENTS

Beam finite elements are obtained by subdividing beam members longitudinally. The simplest
Bernoulli-Euler plane beam element, depicted in Figure 13.7, has two end nodes, i and j, and four
degrees of freedom:

u(e) =




vi

θi

v j

θ j


 . (13.9)

§13.5.1. Finite Element Trial Functions

The freedoms (13.9) must be used to define uniquely the variation of the transverse displacement
v(e)(x) over the element. TheC1 continuity requirement stated at the end of the previous Section
says that bothw and the slopeθ = v′ must be continuous over the entire beam member, and in
particular between beam elements.

C1 continuity can be trivially satisfied within each element by choosing polynomial interpolation
functions as shown below. Matching the nodal displacements and rotations with adjacent beam
elements enforces the necessary interelement continuity.

§13.5.2. Shape Functions

The simplest shape functions that meet theC1 continuity requirements for the nodal freedoms (13.9)
are called theHermitian cubicshape functions. The interpolation formula based on these functions
may be written as

v(e) = [N(e)
vi

N(e)
θi

N(e)
v j

N(e)
θ j

]




v
(e)
i

θ
(e)
i

v
(e)
j

θ
(e)
j


 = Nu(e). (13.10)

13–9

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–10

N(e)
θ i (ξ) = 1

8�(1 − ξ)2(1 + ξ)

θ
(e)
i = 1

θ
(e)
j = 1

N(e)
θ j (ξ) = − 1

8�(1 + ξ)2(1 − ξ)

v
(e)
i = 1

v
(e)
j = 1

N(e)
vi (ξ) = 1

4(1 − ξ)2(2 + ξ)

N(e)
v j (ξ) = 1

4(1 + ξ)2(2 − ξ)

ξ = −1 ξ = 1

Figure 13.8. Hermitian shape functions of plane beam element

These shape functions are conveniently written in terms of the dimensionless “natural” coordinate

ξ = 2x

�
− 1, (13.11)

which varies from−1 at nodei (x = 0) to+1 at nodej (x = �); � being the element length:

N(e)
vi

= 1
4(1 − ξ)2(2 + ξ), N(e)

θi
= 1

8�(1 − ξ)2(1 + ξ),

N(e)
v j

= 1
4(1 + ξ)2(2 − ξ), N(e)

θ j
= − 1

8�(1 + ξ)2(1 − ξ).
(13.12)

These functions are depicted in Figure 13.8.

The curvatureκ that appears inU can be expressed in terms of the nodal displacements by differ-
entiating twice with respect tox:

κ = d2v(e)(x)

dx2
= 4

�2

d2v(e)(ξ)

dξ2
= 4

�2

dN(e)

dξ2
u(e) = Bu(e) = N′′u(e). (13.13)

HereB = N′′ is the 1× 4 curvature-displacement matrix

B = 1

�

[
6ξ
�

3ξ − 1 −6ξ
�

3ξ + 1
]

. (13.14)

REMARK 13.2

The 4/�2 factor that shows up in (13.13) comes from the differentiation chain rule. Iff (x) is a function ofx,
andξ = 2x/� − 1,

d f (x)

dx
= d f (ξ)

dξ

dξ

dx
= 2

�

d f (ξ)

dξ
,

d2 f (x)

dx2
= d(2/�)

dx

d f (ξ)

dξ
+ 2

�

d

dx

(
d f (ξ)

dξ

)
= 4

�2

d2 f (ξ)

dξ2
,

(13.15)

becaused(2/�)/dx = 0.

13–10

13–11 §13.6 THE FINITE ELEMENT EQUATIONS

§13.6. THE FINITE ELEMENT EQUATIONS

Insertion of (13.12) and (13.14) into the TPE functional specialized to the element, yields the
quadratic form in the nodal displacements

(e) = 1
2u(e)T

K(e)u(e) − u(e)T
f(e), (13.16)

where

K(e) =
∫ �

0
E I BT B dx =

∫ 1

−1
E I BT B 1

2� dξ, (13.17)

is the element stiffness matrix and

f(e) =
∫ �

0
NTq dx =

∫ 1

−1
NTq 1

2� dξ, (13.18)

is the consistent element nodal force vector.

The calculation of the entries ofK(e) andf(e) for prismatic beams and uniform loadq is studied
next. More complex cases are treated in the Exercises.

§13.6.1. The Stiffness Matrix of a Prismatic Beam

If the bending rigidityE I is constant over the element it can be moved out of theξ -integral in
(13.17):

K(e) = 1
2 E I �

∫ 1

−1
BT B dξ = E I

2�

∫ 1

−1




6ξ
�

3ξ − 1
−6ξ

�
3ξ + 1




[6ξ
�

3ξ − 1 −6ξ
�

3ξ + 1
]

dξ. (13.19)

Expanding and integrating over the element yields

K(e) = E I

2�3

∫ 1

−1




36ξ2 6ξ(3ξ − 1)� −36ξ2 6ξ(3ξ + 1)�

(3ξ − 1)2�2 −6ξ(3ξ − 1)� (9ξ2 − 1)�2

36ξ2 −6ξ(3ξ + 1)�

symm (3ξ + 1)2�2


 dξ

= E I

�3




12 6� −12 6�
4�2 −6� 2�2

12 −6�

symm 4�2




(13.20)

Although the foregoing integrals can be easily carried out by hand, it is equally expedient to use
a CAS such asMathematicaor Maple. For example theMathematicascript listed in the top box
of Figure 13.9 processes (13.20) using theIntegrate function. The output, shown in the bottom
box, corroborates the hand integration result.

13–11

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–12

Ke for prismatic beam:

�

�

����������������������

 EI���������������
l

 EI������������l �  EI���������������
l

 EI������������l

 EI������������l
 EI
�������������l �  EI������������l

 EI������������l

�  EI���������������
l

�  EI������������l
 EI���������������

l
�  EI������������l

 EI������������l
 EI������������l �  EI������������l

 EI
�������������l

�

�

����������������������

ClearAll[EI,l,Ξ];
B={{6*Ξ,(3*Ξ-1)*l,-6*Ξ,(3*Ξ+1)*l}}/l^2;
Ke=(EI*l/2)*Integrate[Transpose[B].B,{Ξ,-1,1}];
Ke=Simplify[Ke];
Print["Ke for prismatic beam:"];
Print[Ke//MatrixForm];

Figure 13.9. UsingMathematicato form K(e) for a prismatic beam element.

ClearAll[q,l,Ξ]
Ne={{2*(1-Ξ)^2*(2+Ξ), (1-Ξ)^2*(1+Ξ)*l,
 2*(1+Ξ)^2*(2-Ξ),-(1+Ξ)^2*(1-Ξ)*l}}/8;
fe=(q*l/2)*Integrate[Ne,{Ξ,-1,1}]; fe=Simplify[fe];
Print["fe^T for uniform load q:"];
Print[fe//MatrixForm];

� l q
�������

l q
�����������

l q
������� �

l q
�����������
�

fe^T for uniform load q:

Figure 13.10. UsingMathematicato form f(e) for uniform transverse loadq.

§13.6.2. Consistent Nodal Force Vector for Uniform Load

If q does not depend onx it can be moved out of (13.18), giving

f(e) = 1
2q�

∫ 1

−1
NT dξ = 1

2q�

∫ 1

−1




1
4(1 − ξ)2(2 + ξ)

1
8�(1 − ξ)2(1 + ξ)

1
4(1 + ξ)2(2 − ξ)

− 1
8�(1 + ξ)2(1 − ξ)


 dξ = q�




1
2

1
12�

1
2

− 1
12�


 . (13.21)

This shows that a uniform loadq over the beam element maps to two transverse node loadsq�/2,
as may be expected, plus two nodal moments±q�2/12. The latter are called thefixed-end moments
in the FEM literature.

The hand result (13.21) can be verified with theMathematicascript displayed in Figure 13.10, in
which f(e) is printed as a row vector to save space.

13–12

13–13 Exercises

Homework Exercises for Chapter 13

Variational Formulation of Plane Beam Element

EXERCISE 13.1

[A/C:20] Use (13.17) to derive the element stiffness matrixK(e) of a Hermitian beam element of variable
bending rigidity given by the inertia law

I (x) = Ii (1 − x

�
) + I j

x

�
= Ii

1
2(1 − ξ) + I j

1
2(1 + ξ). (E13.1)

Use ofMathematicaor similar CAS tool is recommended since the integrals are time consuming.Mathematica
hint: write

EI = EIi*(1-ξ)/2 + EIj*(1+ξ)/2; (E13.2)

and keepEI inside the argument ofIntegrate. Check whether you get back (13.20) ifEI=EIi=EIj. If you
useMathematica, this check can be simply done after you got and printed the tapered beamKe, by writing
ClearAll[EI]; Ke=Simplify[Ke/.{EIi->EI,EIj->EI}]; and printing this matrix.3

EXERCISE 13.2

[A/C:20] Use (13.18) to derive the consistent nodal force vectorf(e) for a Hermitian beam element under
linearly varying transverse loadq defined by

q(x) = qi (1 − x

�
) + qj

x

�
= qi

1
2(1 − ξ) + qj

1
2(1 + ξ). (E13.3)

Again use of a CAS is recommended, particularly since the polynomials to be integrated are quartic inξ , and
hand computations are error prone.Mathematicahint: write

q = qi*(1-ξ)/2 + qj*(1+ξ)/2; (E13.4)

and keepq inside the argument ofIntegrate. Check whether you get back (13.21) ifqi = qj = q (See
previous Exercise forMathematicaprocedure).

EXERCISE 13.3

[A:20] Obtain the consistent node force vectorf(e) of a Hermitian beam element subject to a transverse point
load P at abscissax = a where 0≤ a ≤ �. Use the Dirac’s delta function expressionq(x) = P δ(a) and the
fact that for any continuous functionf (x),

∫ �

0
f (x) δ(a) dx = f (a) if 0 ≤ a ≤ �.

EXERCISE 13.4

[A:25] Derive the consistent node force vectorf(e) of a Hermitian beam element subject to a uniformly
distributedz-momentm per unit length. Use the fact that the external work per unit length ism(x)θ(x) =
m(x) v′(x) = (u(e))T (dN/dx)T m(x). For arbitrarym(x) show that this gives

f(e) =
∫ �

0

∂NT

∂x
m dx=

∫ 1

−1

∂NT

∂ξ

2

�
m 1

2� dξ =
∫ 1

−1

NT
ξ m dξ, (E13.5)

whereNT
ξ denote the column vectors of beam shape function derivatives with respect toξ . Can you see a

shortcut that avoids the integral for constantm?

3 ClearAll[EI] discards the previous definition (E13.2) ofEI; the same effect can be achieved by writingEI=. (dot).

13–13

Chapter 13: VARIATIONAL FORMULATION OF PLANE BEAM ELEMENT 13–14

EXERCISE 13.5

[A:20] Obtain the consistent node force vectorf(e) of a Hermitian beam element subject to a concentrated
momentC applied atx = a. Use the expression (E13.5) in whichm(x) = C δ(a), whereδ(a) denotes the
Dirac’s delta function atx = a.

EXERCISE 13.6

[A/C:25] Consider the one-dimensional Gauss integration rules.

One point :

∫ 1

−1

f (ξ) dξ
.= 2 f (0) (E13.6)

Two points:

∫ 1

−1

f (ξ) dξ
.= f (−1/

√
3) + f (1/

√
3) (E13.7)

Three points:

∫ 1

−1

f (ξ) dξ
.= 5

9
f (−

√
3/5) + 8

9
f (0) + 5

9
f (

√
3/5) (E13.8)

Try each rule on the monomial integrals

∫ 1

−1

dξ,

∫ 1

−1

ξ dξ,

∫ 1

−1

ξ2 dξ, . . . (E13.9)

until the rule fails. In this way verify that the rules (E13.6), (E13.7) and (E13.8) are exact for polynomials of
degree up to 1, 3 and 5, respectively. (Labor-saving hint: for odd monomial degree no computations need to
be done; why?).

EXERCISE 13.7

[A/C:25] Repeat the derivation of Exercise 13.1 using the two-point Gauss rule (E13.7) to evaluate integrals
in ξ . A CAS is recommended. If usingMathematicayou may use a function definition to save typing; for
example to evaluate

∫ 1

−1
f (ξ) dξ in which f (ξ) = 6ξ4 − 3ξ2 + 7, by the 3-point Gauss rule (E13.8), say

f[ξ]:=6ξ^4-3ξ^2+7; int=Simplify[(5/9)*(f[-Sqrt[3/5]]+f[Sqrt[3/5]])+(8/9)*f[0]];

and printint. To form an element by Gauss integration define matrix functions in terms ofξ , for example
Be[ξ], or use the substitution operator/., whatever you prefer. Check whether one obtains the same answers
as with analytical integration, and explain why there is agreement or disagreement. Hint for the explanation:
consider the order of theξ polynomials you are integrating over the element.

EXERCISE 13.8

[A/C:25] As above but for Exercise 13.2.

13–14

.

14
The Plane Stress

Problem

14–1

Chapter 14: THE PLANE STRESS PROBLEM 14–2

TABLE OF CONTENTS

Page
§14.1.INTRODUCTION 14–3

§14.1.1. Plate in Plane Stress. 14–3
§14.1.2. Mathematical Model 14–4

§14.2.PLANE STRESS PROBLEM DESCRIPTION 14–5
§14.2.1. Problem Data 14–5
§14.2.2. Problem Unknowns. 14–5

§14.3.LINEAR ELASTICITY EQUATIONS 14–6
§14.3.1. Governing Equations. 14–6
§14.3.2. Boundary Conditions 14–8
§14.3.3. Weak Forms versus Strong Form. 14–9
§14.3.4. Total Potential Energy 14–9

§14.4.FINITE ELEMENT EQUATIONS 14–10
§14.4.1. Displacement Interpolation. 14–11
§14.4.2. Element Energy 14–12
§14.4.3. Element Stiffness Equations 14–12

EXERCISES . 14–14

14–2

14–3 §14.1 INTRODUCTION

§14.1. INTRODUCTION

We now pass to the variational formulation of two-dimensionalcontinuumfinite elements. The
problem of plane stress will serve as the vehicle for illustrating such formulations. As narrated in
Appendix H, continuum finite elements were invented in the aircraft industry1 to solve this kind of
problem when it arose in the design and analysis of delta wing panels.

The problem is presented here within the framework of the linear theory of elasticity.

§14.1.1. Plate in Plane Stress

In structural mechanics, a flat thin sheet of material is called aplate.2 The distance between the
plate faces is called thethicknessand denoted byh. Themidplanelies halfway between the two
faces. The direction normal to the midplane is called thetransversedirection. Directions parallel to
the midplane are calledin-planedirections. The global axisz will be oriented along the transverse
direction. Axesx andy are placed in the midplane, forming a right-handed Rectangular Cartesian
Coordinate (RCC) system. Thus the midplane equation isz = 0. See Figure 14.1.

A plate loaded in its midplane is said to be in a state ofplane stress, or amembrane state, if the
following assumptions hold:

1. All loads applied to the plate act in the midplane direction, and are symmetric with respect to
the midplane.

2. All support conditions are symmetric about the midplane.

3. In-plane displacements, strains and stresses can be taken to be uniform through the thickness.

4. The normal and shear stress components in thez direction are zero or negligible.

The last two assumptions are not necessarily consequences of the first two. For the latter to hold,
the thicknessh should be small, typically 10% or less, than the shortest in-plane dimension. If the
plate thickness varies it should do so gradually. Finally, the plate fabrication must exhibit symmetry
with respect to the midplane.

To these four assumptions we add the following restriction:

5. The plate is fabricated of the same material though the thickness. Such plates are called
transversely homogeneousor monocoqueplates.

The last assumption excludes wall constructions of importance in aerospace, in particular compos-
ite and honeycomb plates. The development of models for such configurations requires a more
complicated integration over the thickness as well as the ability to handle coupled bending and
stretching effects, and will not be considered here.

REMARK 14.1

Selective relaxation from assumption 4 lead to the so-calledgeneralized plane stress state, in whichz stresses
are accepted. Theplane strain stateis obtained if strains in thez direction is precluded. Although the

1 At Boeing over the period 1952-53.

2 If it is relatively thick, as in concrete pavements, or cheese slices, the termslab is also used but not for plane stress
conditions.

14–3

Chapter 14: THE PLANE STRESS PROBLEM 14–4

x

y

z

Figure 14.1. A plate structure in plane stress.

Ω

Γ
x

y

Mathematical
Idealization

Midplane

Plate

Figure 14.2. Mathematical model of plate in plane stress.

construction of finite element models for those states has many common points with plane stress, we shall not
consider those models here. For isotropic materials the plane stress and plane strain problems can be mapped
into each other through a fictitious-property technique; see Exercise 14.1.

REMARK 14.2

Transverse loading on a plate producesplate bending, which is associated with a more complex configuration
of internal forces and deformations. This subject is studied in more advanced courses.

§14.1.2. Mathematical Model

The mathematical model of the plate in plane stress is a two-dimensional boundary value problem
(BVP). This problem is posed over a plane domain� with a boundary�, as illustrated in Figure
14.2.

In this idealization the third dimension is represented as functions ofx and y that areintegrated
through the plate thickness. Engineers often work with internal plate forces, which result from
integrating the in-plane stresses through the thickness. See Figure 14.3.

14–4

14–5 §14.2 PLANE STRESS PROBLEM DESCRIPTION

h

x

x

y

y

y

z

x

x

y

Inplane internal forces

h

Inplane stresses

σxx

σyy

σxy σ xy=

pxx

pxx

pyy

pyy

pxy

pxy

Figure 14.3. Internal stresses and plate forces.

§14.2. PLANE STRESS PROBLEM DESCRIPTION

§14.2.1. Problem Data

The given data includes:

Domain geometry. This is defined by the boundary� illustrated in Figure 14.2.

Thickness. Most plates used as structural components have constant thickness. If the thickness
does vary, in which caseh = h(x, y), it should do so gradually to maintain the plane stress state.

Material data. This is defined by the constitutive equations. Here we shall assume that the plate
material is linearly elastic but not necessarily isotropic.

Specified Interior Forces. These are known forces that act in the interior� of the plate. There
are of two types.Body forcesor volume forcesare forces specified per unit of plate volume; for
example the plate weight.Face forcesact tangentially to the plate faces and are transported to the
midplane. For example, the friction or drag force on an airplane skin is of this type if the skin is
modeled to be in plane stress.

Specified Surface Forces. These are known forces that act on the boundary� of the plate. In
elasticity these are calledsurface tractions. In actual applications it is important to know whether
these forces are specified per unit of surface area or per unit length.

Displacement Boundary Conditions. These specify how the plate is supported. Points on the plate
boundary may be fixed, allowed to move in one direction, or subject to multipoint constraints. In
addition symmetry and antisymmetry lines may be identified as discussed in Chapter 8.

If no displacement boundary conditions are imposed, the plate structure is said to befree-free.

14–5

Chapter 14: THE PLANE STRESS PROBLEM 14–6

§14.2.2. Problem Unknowns

The three unknown fields are displacements, strains and stresses. Because of the assumed wall
fabrication homogeneity the in-plane components are assumed to beuniform through the plate
thickness. Consequently the dependence onzdisappears and all such components become functions
of x andy only.

Displacements. The in-plane displacement field is defined by two components:

u(x, y) =
[

ux(x, y)

uy(x, y)

]
(14.1)

The transverse displacement componentuz(x, y, z) component is generally nonzero because of
Poisson’s ratio effects, and depends onz. However, this displacement does not appear in the
governing equations.

Strains. The in-plane strain field forms a tensor defined by three independent components:exx, eyy

andexy. To allow stating the FE equations in matrix form, these components are conventionally
arranged to form a 3-component “strain vector”

e(x, y) =
[exx(x, y)

eyy(x, y)

2exy(x, y)

]
(14.2)

The factor of 2 inexy shortens strain energy expressions. The shear strain componentsexz and
eyz vanish. The transverse normal strainezz is generally nonzero because of Poisson effects. This
strain does not enter the governing equations as unknown because the associated stressσzz is zero,
which eliminates the contribution ofσzzezz to the internal energy.

Stresses. The in-plane stress field forms a tensor defined by three independent components:σxx,
σyy andσxy. As in the case of strains, to allow stating the FE equations in matrix form, these
components are conventionally arranged to form a 3-component “stress vector”

σ(x, y) =
[

σxx(x, y)

σyy(x, y)

σxy(x, y)

]
(14.3)

The remaining three stress components:σzz, σxz andσyz, are assumed to vanish.

Theplate internal forcesare obtained on integrating the stresses through the thickness. Under the
assumption of uniform stress distribution,

pxx = σxxh, pyy = σyyh, pxy = σxyh. (14.4)

Thesep’s also form a tensor. They are often calledmembrane forcesin the literature. See Figure
14.3.

14–6

14–7 §14.3 LINEAR ELASTICITY EQUATIONS

Displacements

Strains

Body forces

Stresses

 Prescribed
displacements

Prescribed
tractions t
or forces q

e = D u

^

^

n = t^Tσ
n = q̂Tp

σ

D + b = 0T σ

u = u^

bu

e

û

in Ω in Ω

in Ω

on Γu

on Γt

σ = E e

Kinematic

Displacement BC

Force BC

Constitutive

Equilibrium

Ω
Γ

or

Figure 14.4. The Strong Form of the plane stress equations of linear
elastostatics displayed as a Tonti diagram. Yellow boxes identify
prescribed fields whereas orange boxes denote unknown fields. The
distinction between Strong and Weak Forms is explained in §14.3.3.

§14.3. LINEAR ELASTICITY EQUATIONS

We shall develop plane stress finite elements in the framework of classical linear elasticity. The
necessary governing equations are presented below. They are graphically represented in the Strong
Form Tonti diagram of Figure 14.4.

§14.3.1. Governing Equations

The three internal fields: displacements, strains and stresses (14.2)-(14.4) are connected by three
field equations: kinematic, constitutive and internal-equilibrium equations. If initial strain effects
are ignored, these equations read

[exx

eyy

2exy

]
=

[
∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

] [
ux

uy

]
,

[
σxx

σyy

σxy

]
=

[E11 E12 E13

E12 E22 E23

E13 E23 E33

] [exx

eyy

2exy

]
,

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

] [
σxx

σyy

σxy

]
+

[
bx

by

]
=

[
0
0

]
.

(14.5)

In these equations,bx and by are the components of the interior body forceb, E is the 3× 3
stress-strain matrix of plane stress elastic moduli,D is the 3× 2 symmetric-gradient operator and
its transpose the 2× 3 tensor-divergence operator. The dependence on(x, y) has been omitted to
reduce clutter.

14–7

Chapter 14: THE PLANE STRESS PROBLEM 14–8

���
���
���
���

����
������������
������
��������������
�
�
�������
�
�
�����������
�
�
�

Γ Γ
u

t+

u

Boundary displacements u
 are prescribed on Γ

^

t

^
^

Boundary tractions t or
boundary forces q
are prescribed on Γ

u = 0^

n (unit
exterior normal)

t

σ
σ

σ

n

^

^

t
t

t

n
t̂

nt

nn

Stress BC details
(decomposition of forces
 q would be similar)

^
t̂

Figure 14.5. Displacement and force (stress, traction) boundary
conditions for the plane stress problem.

The compact matrix version of (14.5) is

e = Du, σ = Ee, DTσ + b = 0, (14.6)

in which E = ET .

If the plate material is isotropic with elastic modulusE and Poisson’s ratioν, the moduli in the
constitutive matrixE reduce toE11 = E22 = E/(1 − ν2), E33 = 1

2 E/(1 + ν) = G, E12 = νE11

andE13 = E23 = 0. See also Exercise 14.1.

§14.3.2. Boundary Conditions

Boundary conditions prescribed on� may be of two types: displacement BC or force BC (also
called stress BC or traction BC). To write down those conditions it is conceptually convenient to
break up� into two subsets:�u and�t , over which displacements and force or stresses, respectively,
are specified. See Figure 14.5.

Displacement boundary conditions are prescribed on�u in the form

u = û. (14.7)

Hereû are prescribed displacements. Oftenû = 0. This happens in fixed portions of the boundary,
as the ones illustrated in Figure 14.5.

Force boundary conditions (also called stress BCs and traction BCs in the literature) are specified
on�t . They take the form

σn = t̂. (14.8)

Here t̂ are prescribed surface tractions specified as a force per unit area (that is, not integrated
through the thickness), andσn is the stress vector shown in Figure 14.5.

14–8

14–9 §14.3 LINEAR ELASTICITY EQUATIONS

An alternative form of (14.8) uses the internal plate forces:

pn = q̂. (14.9)

Here pn = σnh and q̂ = t̂ h. This form is used more often than (14.8) in structural design,
particularly when the plate wall construction is nonhomogeneous.

The components ofσn in Cartesian coordinates follow from Cauchy’s stress transformation formula

σn =
[

σxxnx + σxyny

σxynx + σyyny

]
=

[
nx 0 ny

0 ny nx

] [
σxx

σyy

σxy

]
, (14.10)

in which nx andny denote the Cartesian components of the unit normal vectorn(e) (also called
the direction cosines of the normal). Thus (14.8) splits into two scalar conditions:t̂x = σnx and
t̂y = σny.

It is sometimes convenient to write the condition (14.8) in terms of normaln and tangentialt
directions:

σnn = t̂n, σnt = t̂t (14.11)

in whichσnn = σnxnx + σnyny andσnt = −σnxny + σnynx.

REMARK 14.3

The separation of� into �u and�t is useful for conciseness in the mathematical formulation, such as the
energy integrals presented below. It does not exhaust, however, all BC possibilities. Frequently at points of�

one specifies a displacement in one direction and a force (or stress) in the other. An example of these are roller
and sliding conditions as well as lines of symmetry and antisymmetry. To cover these situations one needs
either a generalization of the split, in which�u and�t are permitted to overlap, or to define another portion
�m for “mixed” conditions. Such generalizations will not be presented here, as they become unimportant once
the FE discretization is done.

§14.3.3. Weak Forms versus Strong Form

We introduce now some further terminology from variational calculus. The Tonti diagram of Figure
14.4 is said to display the Strong Form of the governing equations because all relations are verified
point by point. These relations, calledstrong links, are shown in the diagram with black lines.

A Weak Form is obtained byrelaxingone or more strong links. Those are replaced byweak links,
which enforce relations in an average or integral sense rather than point by point. The weak links
are then provided by the variational formulation chosen for the problem. Because in general many
variational forms of the same problem are possible, there are many possible Weak Forms. On the
other hand the Strong Form is unique.

The Weak Form associated with the Total Potential Energy (TPE) variational form is illustrated
in Figure 14.6. The internal equilibrium equations and stress BC become weak links, which are
indicated by gray lines. These equations are given by the variational statementδ
 = 0, where the
TPE functional
 is given in the next subsection. The FEM displacement formulation discussed
below is based on this particular Weak Form.

14–9

Chapter 14: THE PLANE STRESS PROBLEM 14–10

Force BC

δΠ= 0
 in Ω

t

δΠ = 0

 on Γ

Displacements

Strains

Body forces

Stresses

 Prescribed
displacements

Prescribed
tractions t
or forces q

e = D u

^

^σ

u = u^

bu

e

û

in Ω

in Ω

on Γu

σ = E e

Kinematic

Displacement BC

Constitutive

Equilibrium

Ω
Γ

Figure 14.6. The TPE-based Weak Form of the plane stress equations of
linear elastostatics. Weak links are marked with grey lines.

§14.3.4. Total Potential Energy

As usual the Total Potential Energy functional for the plane stress problem is given by

 = U − W. (14.12)

The internal energy is the elastic strain energy:

U = 1
2

∫
�

h σT e d� = 1
2

∫
�

h eT Ee d�. (14.13)

The derivation details are relegated to Exercise E14.5. The external energy is the sum of contribu-
tions from known interior and boundary forces:

W =
∫

�

h uT b d� +
∫

�t

h uT t̂ d�. (14.14)

Note that the boundary integral over� is taken only over�t . That is, the portion of the boundary
over which tractions or forces are specified.

§14.4. FINITE ELEMENT EQUATIONS

The necessary equations to apply the finite element method are collected here and expressed in
matrix form. The domain of Figure 14.7(a) is discretized by a finite element mesh as illustrated in
Figure 14.7(b). From this mesh we extract a generic element labeled(e) with n ≥ 3 node points. In
the subsequent derivation the numbern is keptarbitrary. Therefore, the formulation is applicable
to arbitrary two-dimensional elements, for example those sketched in Figure 14.8.

14–10

14–11 §14.4 FINITE ELEMENT EQUATIONS

Ω

ΩΓ

Γ(a) (b) (c)
(e)

(e)

Figure 14.7. Finite element discretization and extraction of generic element.

Departing from previous practice in 1D elements, the element node points will be labelled 1 through
n. These are calledlocal node numbers. The element domain and boundary are denoted by�(e)

and�(e), respectively. The element has 2n degrees of freedom. These are collected in the element
node displacement vector

u(e) = [ux1 uy1 ux2 . . . uxn uyn]T . (14.15)

§14.4.1. Displacement Interpolation

The displacement fieldu(e)(x, y) over the element is interpolated from the node displacements. We
shall assume that the same interpolation functions are used for both displacement components.3

Thus

ux(x, y) =
n∑

i =1

N(e)
i (x, y) uxi , uy(x, y) =

n∑
i =1

N(e)
i (x, y) uyi , (14.16)

whereN(e)
i (x, y) are the element shape functions. In matrix form:

u(x, y) =
[

ux(x, y)

uy(x, y)

]
=

[
N(e)

1 0 N(e)
2 0 . . . N(e)

n 0
0 N(e)

1 0 N(e)
2 . . . 0 N(e)

n

]
u(e) = N(e)u(e).

(14.17)
The minimum conditions onN(e)

i (x, y) is that it must take the value one at thei th node and zero at
all others, so that the interpolation (14.17) is correct at the nodes. Additional requirements on the
shape functions are stated in later Chapters.

Differentiating the finite element displacement field yields the strain-displacement relations:

e(x, y) =




∂N(e)
1

∂x 0
∂N(e)

2
∂x 0 . . .

∂N(e)
n

∂x 0

0
∂N(e)

1
∂y 0

∂N(e)
2

∂y . . . 0
∂N(e)

n
∂y

∂N(e)
1

∂y
∂N(e)

1
∂x

∂N(e)
2

∂y
∂N(e)

2
∂x . . .

∂N(e)
n

∂y
∂N(e)

n
∂x


 u(e) = B u(e). (14.18)

3 This is the so calledelement isotropycondition, which is studied and justified in advanced FEM courses.

14–11

Chapter 14: THE PLANE STRESS PROBLEM 14–12

1

2

3

1 2

3
4

1

2

3

4

5
6

1

2

3
4

5

6
7

8
9

10
11
12

n = 3 n = 4 n = 6 n = 12

Figure 14.8. Example two-dimensional finite elements,
characterized by their number of nodesn.

The strain-displacement matrixB = DN(e) is 3 × 2n. The superscript(e) is omitted from it to
reduce clutter. The stresses are given in terms of strains and displacements byσ = E e = EBu(e),
which is assumed to hold at all points of the element.

§14.4.2. Element Energy

To obtain finite element stiffness equations, the variation of the TPE functional is decomposed into
contributions from individual elements:

δ
(e) = δU (e) − δW(e) = 0. (14.19)

where

U (e) = 1
2

∫
�(e)

h σT e d�(e) = 1
2

∫
�(e)

h eT Ee d�(e) (14.20)

and

W(e) =
∫

�(e)

h uT b d�(e) +
∫

�(e)

h uT t̂ d�(e) (14.21)

Note that in (14.21)�(e)
t has been taken equal to the complete boundary�(e) of the element. This

is a consequence of the fact that displacement boundary conditions are appliedafter assembly, to
a free-free structure. Consequently it does not harm to assume that all boundary conditions are of
stress type insofar as forming the element equations.

§14.4.3. Element Stiffness Equations

Inserting the relationsu = Nu(e), e = Bu(e) andσ = Ee into
(e) yields the quadratic form in the
nodal displacements

(e) = 1
2u(e)T

K(e)u(e) − u(e)T
f(e), (14.22)

where the element stiffness matrix is

K(e) =
∫

�(e)

h BT EB d�(e), (14.23)

14–12

14–13 §14.4 FINITE ELEMENT EQUATIONS

and the consistent element nodal force vector is

f(e) =
∫

�(e)

h NT b d�(e) +
∫

�(e)

h NT t̂ d�(e). (14.24)

In the second integral the matrixN is evaluated on the element boundary only.

The calculation of the entries ofK(e) andf(e) for several elements of historical or practical interest
is described in subsequent Chapters.

14–13

Chapter 14: THE PLANE STRESS PROBLEM 14–14

Homework Exercises for Chapter 14

The Plane Stress Problem

EXERCISE 14.1

[A:25] Suppose that the structural material is isotropic, with elastic modulusE and Poisson’s ratioν. The
in-plane stress-strain relations for plane stress (σzz = σxz = σyz = 0) and plane strain (ezz = exz = eyz = 0)
as given in any textbook on elasticity, are

plane stress:

[
σxx

σyy

σxy

]
= E

1 − ν2

[
1 ν 0
ν 1 0
0 0 1 − ν

2

][
exx

eyy

2exy

]
,

plane strain:

[
σxx

σyy

σxy

]
= E(1 − ν)

(1 + ν)(1 − 2ν)


 1 ν

1 − ν
0

ν
1 − ν

1 0

0 0 1 − 2ν
2(1 − ν)


[

exx

eyy

2exy

]
.

(E14.1)

Show that the constitutive matrix of plane strain can be formally obtained by replacingE by a fictitious
modulusE∗ andν by a fictitious Poisson’s ratioν∗ in the plane stress constitutive matrix and suppressing the
stars. Find the expression ofE∗ andν∗ in terms ofE andν. This device permits “reusing” a plane stress FEM
program to do plane strain, as long as the material is isotropic.

EXERCISE 14.2

[A:25] In the finite element formulation of near incompressible isotropic materials (as well as plasticity
and viscoelasticity) it is convenient to use the so-calledLamé constantsλ andµ instead ofE andν in the
constitutive equations. Bothλ andµ have the physical dimension of stress and are related toE andν by

λ = νE

(1 + ν)(1 − 2ν)
, µ = G = E

2(1 + ν)
. (E14.2)

Conversely

E = µ(3λ + 2µ)

λ + µ
, ν = λ

2(λ + µ)
. (E14.3)

Substitute (E14.3) into (E14.1) to express the two stress-strain matrices in terms ofλ andµ. Then split the
stress-strain matrixE of plane strain as

E = Eµ + Eλ (E14.4)

in which Eµ andEλ contain onlyµ andλ, respectively, withEµ diagonal andEλ33 = 0. This is the Lam´e or
{λ, µ} splitting of the plane strain constitutive equations, which leads to the so-calledB-bar formulation of
near-incompressible finite elements.4 ExpressEµ andEλ also in terms ofE andν.

For the plane stress case perform a similar splitting in which whereEλ contains onlȳλ = 2λµ/(λ + 2µ) with
Eλ33 = 0, andEµ is a diagonal matrix function ofµ andλ̄.5 ExpressEµ andEλ also in terms ofE andν.

4 Equation (E14.4) is sometimes referred to as the deviatoric+volumetric splitting of the stress-strain law, on account of
its physical meaning in plane strain. That meaning is lost, however, for plane stress.

5 For the physical significance ofλ̄ see I. Sokolnikoff,The Mathematical Theory of Elasticity, McGraw-Hill, 2nd ed.,
1956, p. 254ff.

14–14

14–15 Exercises

x

y
σxx

σyy

σxy σ xy=

tx

ty n(n =dy/ds, n =dx/ds)

dy

x y

dx
ds

Figure E14.1. Geometry for deriving (14.10).

EXERCISE 14.3

[A:20] Derive the Cauchy stress-to-traction equations (14.10) using force equilibrium alongx andy and the
geometric relations shown in Figure E14.1. Hint:tx ds = σxx dy + σxy dx, etc.

EXERCISE 14.4

[A:15] Include thermoelastic effects in the plane stress field equations, assuming a thermally isotropic material
with coefficient of linear expansionα.

EXERCISE 14.5

[A:25=5+5+15] A plate is in linearly elastic plane stress. It is shown in courses in elasticity that the internal
strain energy density stored per unit volume is

U = 1
2(σxxexx + σyyeyy + σxyexy + σyxeyx) = 1

2(σxxexx + σyyeyy + 2σxyexy). (E14.5)

(a) Show that (E14.5) can be written in terms of strains only as

U = 1
2eT E e, (E14.6)

and hence justify (14.13).

(b) Show that (E14.5) can be written in terms of stresses only as

U = 1
2σT C σ, (E14.7)

whereC = E−1 is the elastic compliance (strain-stress) matrix.

(c) Suppose you want to write (E14.5) in terms of the extensional strains{exx, eyy} and of the shear stress
σxy = σyx. This is known as a mixed representation. Show that

U = 1
2

[
exx

eyy

σxy

]T [
A11 A12 A13

A12 A22 A23

−A13 −A23 A33

][
exx

eyy

σxy

]
, (E14.8)

and explain how the entriesAi j can be calculated6 in terms of the elastic moduliEi j .

6 The process of computingA is an instance of “partial inversion” of matrixE. See Remark 11.3.

14–15

