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1-3 81.1 WHERE THIS MATERIAL FITS

This book is an introduction to the analysis of linear elastic structures by the Finite Element Method
(FEM). It embodies three Parts:

I Finite Element Discretization: Chapters 2-11. This part provides an introduction to the
discretization and analysis of skeletal structures by the Direct Stiffness Method.

I Formulation of Finite Elements. Chapters 12-20. This part presents the formulation of
displacement assumed elements in one and two dimensions.

[l Computer Implementation of FEM: Chapters 21-28. This part usedlathematicaas the
implementation language.

This Chapter presents an overview of where the book fits, and what finite elements are.

81.1. WHERE THISMATERIAL FITS

The field of Mechanics can be subdivided into three major areas:

Theoretical
Mechanics{ Applied (1.1
Computational

Theoretical mechanicgeals with fundamental laws and principles of mechanics studied for their
intrinsic scientific value Applied mechanictansfers this theoretical knowledge to scientific and
engineering applications, especially as regards the construction of mathematical models of physical
phenomenaComputational mechanis®lves specific problems by simulation through numerical
methods implemented on digital computers.

REMARK 1.1

Paraphrasing an old joke about mathematicians, one may define a computational mechanician as a person who
searches for solutions to given problems, an applied mechanician as a person who searches for problems that
fit given solutions, and a theoretical mechanician as a person who can prove the existence of problems and
solutions.

81.1.1. Computational Mechanics

Several branches of computational mechanics can be distinguished accordingtigdical scale
of the focus of attention:

Nanomechanics and micromechanics

Solids and Structures
Computational Mechanicg Continuum mechania%FIuids 1.2
Multiphysics
Systems

Nanomechanics deals with phenomena at the molecular and atomic levels of matter. As such it
is closely interrelated with particle physics and chemistry. Micromechanics looks primarily at the
crystallographic and granular levels of matter. Its main technological application is the design and
fabrication of materials and microdevices.

13



Chapter 1: OVERVIEW 14

Continuum mechanics studies bodies at the macroscopic level, using continuum models in which
the microstructure is homogenized by phenomenological averages. The two traditional areas of
application are solid and fluid mechanics. The former inclustesctureswhich, for obvious
reasons, are fabricated with solids. Computational solid mechanics takes a applied-sciences ap-
proach, whereas computational structural mechanics emphasizes technological applications to the
analysis and design of structures.

Computational fluid mechanics deals with problems that involve the equilibrium and motion of
liquid and gases. Well developed related areas are hydrodynamics, aerodynamics, atmospheric
physics, and combustion.

Multiphysics is a more recent newcomer. This area is meant to include mechanical systems that
transcend the classical boundaries of solid and fluid mechanics, as in interacting fluids and structures.
Phase change problems such as ice melting and metal solidification fit into this category, as do the
interaction of control, mechanical and electromagnetic systems.

Finally, systemidentifies mechanical objects, whether natural or artificial, that perform a distin-
guishable function. Examples of man-made systems are airplanes, buildings, bridges, engines,
cars, microchips, radio telescopes, robots, roller skates and garden sprinklers. Biological systems,
such as a whale, amoeba or pine tree are included if studied from the viewpoint of biomechanics.
Ecological, astronomical and cosmological entities also form systems.

In this progression of (1.2) theystemis the most general concept. A system is studiedléy
composition its behavior is that of its components plus the interaction between the components.
Components are broken down into subcomponents and so on. As this hierarchical process continues
the individual components become simple enough to be treated by individual disciplines, but their
interactions may get more complex. Consequently there is a tradeoff art in deciding where?to stop.

81.1.2. Staticsvs. Dynamics

Continuum mechanics problems may be subdivided according to whether inertial effects are taken
into account or not:

Statics

Dynamics (13)

Continuum mechanic:{

In dynamics the time dependence is explicitly considered because the calculation of inertial (and/or
damping) forces requires derivatives respect to actual time to be taken.

Problems in statics may also be time dependent but the inertial forces are ignored or neglected.
Static problems may be classified into strictly static and quasi-static. For the former time need not
be considered explicitly; any historical time-like response-ordering parameter (if one is needed)
will do. In quasi-static problems such as foundation settlement, creep deformation, rate-dependent

1 Except that their function may not be clear to us. “The usual approach of science of constructing a mathematical model
cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to
all the bother of existing?” (Stephen Hawking).

2 Thus in breaking down a car engine, say, the decomposition does not usually proceed beyond the components you can
buy at a parts shop.

14



1-5 81.1 WHERE THIS MATERIAL FITS

plasticity or fatigue cycling, a more realistic estimation of time is required but inertial forces are
still neglected.

81.1.3. Linear vs. Nonlinear

A classification of static problems that is particularly relevant to this book is

Linear

Statics{ .
Nonlinear

Linear static analysis deals with static problems in whichrésponses linear in the cause-and-
effect sense. For example: if the applied forces are doubled, the displacements and internal stresses
also double. Problems outside this domain are classified as nonlinear.

81.1.4. Discretization methods

A final classification of CSM static analysis is based on the discretization method by which the
continuum mathematical modeldsscretizedn spacej.e., converted to a discrete model of finite
number of degrees of freedom:

Finite Element Method (FEM)
Boundary Element Method (BEM)
dFinite Difference Method (FDM)
Finite Volume Method (FVM)
Spectral Method

Mesh-Free Method

Spatial discretization metho (1.4

For linear problems finite element methods currently dominate the scene, with boundary element
methods posting a strong second choice in specific application areasoorear problems the
dominance of finite element methods is overwhelming.

Classical finite difference methods in solid and structural mechanics have virtually disappeared
from practical use. This statement is not true, however, for fluid mechanics, where finite difference
discretization methods are still important. Finite-volume methods, which address finite volume
method conservation laws, are important in highly nonlinear problems of fluid mechanics. Spectral
methods are based on transforms that map space and/or time dimensions to spaces where the problem
is easier to solve.

A recent newcomer to the scene are the mesh-free methods. These are finite different methods on
arbitrary grids constructed through a subset of finite element techniques and tools.

§1.1.5. FEM Variants

The termFinite Element Methodactually identifies a broad spectrum of techniques that share
common features outlined in 81.3 and 81.4. Two subclassifications that fit well applications to
structural mechanics are

Displacement

Equilibrium Stiffness
FEM Formulation q FEM Solution{ Flexibility (1.5
Mixed ) .
) Mixed (a.k.a. Combined)
Hybrid
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(The distinction between these subclasses require advanced technical concepts, and will not be
covered here.)

Using the foregoing classification, we can state the topic of this book more precisetyntipeita-
tional analysis of linear static structural problenby the Finite Element Method. Of the variants
listed in (1.5), emphasis is placed on tiisplacemenftormulation andstiffnesssolution. This
combination is called thBirect Stiffness Methodr DSM.

§1.2. WHAT DOESA FINITE ELEMENT LOOK LIKE?

The subject of this book is FEM. But what is a finite element? The concept will be partly illustrated
through a truly ancient problem: find the perimeteof a circle of diameted. SinceL = n d,
this is equivalent to obtaining a numerical value for

Draw a circle of radius and diameted = 2r as in Figure 1.1(a). Inscribe a regular polygomof
sides, whera = 8in Figure 1.1(b). Rename polygon sidegbsnentand vertices asodal points

or nodes Label nodes with integers 1.. 8. Extract a typical element, say that joining nodes 4-5
as shown in Figure 1.1(c). This is an instance ofdgkeaeric elementij shown in Figure 1.1(d).
The element length i&;; = 2r sin(zr/n). Since all elements have the same length, the polygon
perimeter isL, = nL;;, whence the approximation tois 7, = L,/d = nsin(z/n).

(@) (b) () (d)

2r sin(tth)
N —
I \ IJ
/,\\th//\
\ /
\ /r

\/

Figure 1.1. The “findr” problem treated with FEM concepts: (a) continuum
object, (b) a discrete approximation (inscribed regular polygon),
(c) disconnected element, (d), generic element.

Values ofrr, obtained fom = 1, 2, 4, ... 256 are listed in the second column of Table 1.1. As can
be seen the convergencertas fairly slow. However, the sequence can be transformed by Wynn’s
e algorithn? into that shown in the third column. The last value displays 15-place accuracy.

Some of the key ideas behind the FEM can be identified in this simple example. The circle, viewed
as asource mathematical objeds replaced by polygons. These aliecrete approximations

the circle. The sides, renamed elementsare specified by their endodes Elements can be
separated by disconnecting the nodes, a process cidiassemblyn the FEM. Upon disassembly

3 A widely used extrapolation algorithm that speeds up the convergence of many sequences. See, e.gSkdenpe
Transformations and Their Application&cademic Press, New York, 1981.
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1-7 81.3 THE FEM ANALYSIS PROCESS

Table 1.1. Rectification of Circle by Inscribed Polygons (“ Archimedes FEM™)

n = Nsin(m/n) Extrapolated by Wynr- Exactr to 16 places

=]

1  0.000000000000000
2  2.000000000000000
4  2.828427124746190 3.414213562373096
8  3.061467458920718
16  3.121445152258052 3.141418327933211
32 3.136548490545939
64  3.140331156954753 3.141592658918053
128 3.141277250932773
256 3.141513801144301 3.141592653589786 3.141592653589793

ageneric elementan be definedndependently of the original circlédy the segment that connects

two nodes andj. The relevant element property: lendth, can be computed in the generic
element independently of the others, a property caibedl supportin the FEM. Finally, the
desired property: the polygon perimeter, is obtained by reconneetaigments and adding up

their length; the corresponding steps in the FEM beisgemblyandsolution respectively. There

is of course nothing magic about the circle; the same technique can be be used to rectify any smooth
plane curve'

This example has been offered in the FEM literature to aduce that finite element ideas can be
traced to Egyptian mathematicians framca 1800 B.C., as well as Archimedes’ famous studies

on circle rectification by 250 B.C. But comparison with the modern FEM, as covered in Chapters
2-3, shows this to be a stretch. The example does not illustrate the concept of degrees of freedom,
conjugate quantities and local-global coordinates. It is guilty of circular reasoning: the compact
formulaz = lim,_,  nsin(z/n) uses the unknown in the right hand sidé.Reasonable people
would argue that a circle is a simpler object than, say, a 128-sided polygon. Despite these flaws the
example is useful in one respect: showing a fielder’s choice in the replacement of one mathematical
object by another. This is at the root of the simulation process described in the next section.

81.3. THE FEM ANALYSISPROCESS

A model-based simulation process using FEM involves doing a sequence of steps. This sequence
takes two canonical configurations depending on the environment in which FEM is used. These
are reviewed next to introduce terminology.

4 A similar limit process, however, may fail in three or more dimensions.

5 This objection is bypassed if is advanced as a power of two, as in Table 1.1, by using the half-angle recursion

V2sina =4/ 1 —+/1— sir? 2a, started from @ = x for which sinz = —1.
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VERIFICATION
.............. »{Mathematical| Discretization + solution error

............. model
IDEALIZATION

SOLUTION

I deal | Discrete %, Discrete
ph)gcal 7> modd solution
system /

IDEALIZATION &
DISCRETIZATION KERIIENTION

solution error

generally irrelevant

Figure 1.2. The Mathematical FEM. The mathematical model (top) is the source of the
simulation process. Discrete model and solution follow from it. The ideal
physical system (should one go to the trouble of exhibiting it) is inessential.

81.3.1. The Mathematical FEM

The process steps are illustrated in Figure 1.2. The process centerpiece, from which everything
emanates, is theathematical modelThis is often an ordinary or partial differential equation in
space and time. A discrete finite element model is generated from a variational or weak form of
the mathematical modé&|This is thediscretizationstep. The FEM equations are processed by an
equation solver, which delivers a discrete solution (or solutions).

On the left Figure 1.2 shows adeal physical systemThis may be presented asealizationof
the mathematical model; conversely, the mathematical model is said toideadizationof this
system. For example, if the mathematical model is the Poisson’s equation, realizations may be a
heat conduction or a electrostatic charge distribution problem. This step is inessential and may be
left out. Indeed FEM discretizations may be constructed without any reference to physics.

The concept okrror arises when the discrete solution is substituted in the “model” boxes. This
replacement is generically callagkrification The solution erroris the amount by which the
discrete solution fails to satisfy the discrete equations. This error is relatively unimportant when
using computers, and in particular direct linear equation solvers, for the solution step. More
relevant is thediscretization erroy which is the amount by which the discrete solution fails to
satisfy the mathematical model.Replacing into the ideal physical system would in principle
guantify modeling errors. In the mathematical FEM this is largely irrelevant, however, because the
ideal physical system is merely that: a figment of the imagination.

6 The distinction between strong, weak and variational forms is discussed in advanced FEM courses. In the present course
such forms will be stated as recipes.

7 This error can be computed in several ways, the details of which are of no importance here.
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"""""" 1 generally

C T deal 1
' Mathematical ko0 S/ 2
i model !

CONTINUIFICATION

SOLUTION

Physical Discrete % Discrete
7 > model

system solution

IDEALIZATION &
DISCRETIZATION VER'_F'CAT|ON
solution error

simulation error=modeling + solution error

VALIDATION

Figure 1.3. The Physical FEM. The physical system (left) is the source of
the simulation process. The ideal mathematical model (should
one go to the trouble of constructing it) is inessential.

81.3.2. ThePhysical FEM

The second way of using FEM is the process illustrated in Figure 1.3. The centerpiece is how
the physical systeno be modeled. Accordingly, this sequence is calledRhgsical FEM The
processes of idealization and discretization are carriecconturrentlyto produce the discrete
model. The solution is computed as before.

Just like Figure 1.2 shows an ideal physical system, 1.3 depidtieahmathematical modeT his

may be presented asantinuum limior “continuification” of the discrete model. For some physical
systems, notably those well modeled by continuum fields, this step is useful. For others, such as
complex engineering systems, it makes no sense. Indeed FEM discretizations may be constructed
and adjusted without reference to mathematical models, simply from experimental measurements.

The concept oérror arises in the Physical FEM in two ways, knownvasificationandvalidation,
respectively. Verification is the same as in the Mathematical FEM: the discrete solution is replaced
into the discrete model to get the solution error. As noted above this error is not generally important.
Substitution in the ideal mathematical model in principle provides the discretization error. This is
rarely useful in complex engineering systems, however, because there is no reason to expect that the
mathematical model exists, and if it does, that it is more physically relevant than the discrete model.
Validation tries to compare the discrete solution against observation by computisigniblation

error, which combines modeling and solution errors. As the latter is typically insignificant, the
simulation error in practice can be identified with the modeling error.

One way to adjust the discrete model so that it represents the physics better imcalddipdating

The discrete model is given free parameters. These are determined by comparing the discrete
solution against experiments, as illustrated in Figure 1.4. Inasmuch as the minimization conditions
are generally nonlinear (even if the model is linear) the updating process is inherently iterative.

1-9
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EXPERIMENTS

Physical ; Experimental _ Pardaiu;(ratertiezed o~ Discrlete
system database - model | solution

simulation error

Figure 1.4. Model updating process in the Physical FEM.

81.3.3. Synergy of Physical and Mathematical FEM

The foregoing physical and mathematical sequences are not exclusive but complementary. This
synergy is one of the reasons behind the power and acceptance of the method. Historically the
Physical FEM was the first one to be developed to model very complex systems such as aircraft, as
narrated in Appendix H. The Mathematical FEM came later and, among other things, provided the
necessary theoretical underpinnings to extend FEM beyond structural analysis.

A glance at the schematics of a commercial jet aircraft makes obvious the reasons behind the
physical FEM. There is no differential equation that captures, at a continuum mechaniéshevel,
structure, avionics, fuel, propulsion, cargo, and passengers eating dinner.

There is no reason for despair, however. The time hondmde and conquestrategy, coupled

with abstraction comes to the rescue. First, separate the structure and view the rest as masses
and forces, most of which are time-varying and nondeterministic. Second, consider the aircraft
structure as built oubstructures® wings, fuselage, stabilizers, engines, landing gears, and so on.
Take each substructure, and continue to decompose itortgponentsrings, ribs, spars, cover

plates, actuators, etc, continuing through as many levels as necessary. Eventually those components
become sufficiently simple in geometry and connectivity that they can be reasonably well described
by the continuum mathematical models provided, for instance, by Mechanics of Materials or the
Theory of Elasticity. At that pointstop The component level discrete equations are obtained
from a FEM library based on the mathematical model. The system model is obtained by going
through the reverse process: from component equations to substructure equations, and from those
to the equations of the complete aircraft. Téystem assembyocess is governed by the classical
principles of Newtonian mechanics expressed in conservation form.

This multilevel decomposition process is diagramed in Figure 1.5, in which the intermediate sub-
structure level is omitted for simplicity.

8 This interplay is not exactly a new idea: “The men of experiment are like the ant, they only collect and use; the reasoners
resemble spiders, who make cobwebs out of their own substance. But the bee takes the middle course: it gathers its
material from the flowers of the garden and field, but transforms and digests it by a power of its own.” (Francis Bacon,
1620).

9 Of course at the atomic and subatomic level quantum mechanics works for everything, from landing gears to passengers.
But it would be slightly impractical to model the aircraft by*#nteracting particles.

10 A substructurds a part of a structure devoted to a specific function.

1-10



1-11 81.4 INTERPRETATIONS OF THE FINITE ELEMENT METHOD

£l

Figure 1.5. Combining physical and mathematical modeling through
multilevel FEM. Only two levels (system and component) are
shown for simplicity; intermediate substructure levels are omitted.

REMARK 1.2

More intermediate decomposition levels are used in some systems, such as offshore and ship structures, which
are characterized by a modular fabrication process. In that case the decomposition mimics the way the system
is actually constructed. The general technique, callgmbrelementss discussed in Chapter 11.

REMARK 1.3

There is no point in practice in going beyond a certain component level while considering the complete model,
since the level of detail can become overwhelming without adding significant information. Further refinement

or particular components is done by the so-called global-local analysis technique outlined in Chapter 11. This
technique is an instance of multiscale analysis.

For sufficiently simple structures, passing to a discrete model is carried out in aigieglieation

and discretizatiorstep, as illustrated for the truss roof structure shown in Figure 1.6. Multiple
levels are unnecessary here. Of course the truss may be viewed as a substructure of the roof, and
the roof as a a substructure of a building.

81.4. INTERPRETATIONSOF THE FINITE ELEMENT METHOD

Just like there are two complementary ways of using the FEM, there are two complementary
interpretations for teaching it. One interpretation stresses the physical significance and is aligned
with the Physical FEM. The other focuses on the mathematical context, and is aligned with the
Mathematical FEM.

81.4.1. Physical Interpretation

The physical interpretation focuses on the view of Figure 1.3. This interpretation has been shaped by
the discovery and extensive use of the method in the field of structural mechanics. This relationship

1-11



Chapter 1: OVERVIEW 1-12

member
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joing#

Physical System

* IDEALIZATION

|
|

A\

Figure 1.6. The idealization process for a simple structure. The physical
system, here a roof truss, is directly idealized by the mathematical
model: a pin-jointed bar assembly. For this particular structure,
the idealization coalesces with the discrete model.

Is reflected in the use of structural terms such as “stiffness matrix”, “force vector” and “degrees of
freedom.” This terminology carries over to non-structural applications.

The basic concept in the physical interpretation idtteakdowr(= disassembly, tearing, partition,
separation, decomposition) of a complex mechanical system into simpler, disjoint components
called finite elements, or simpBlements The mechanical response of an element is characterized

in terms of a finite number of degrees of freedom. These degrees of freedoms are represented as
the values of the unknown functions as a set of node points. The element response is defined by
algebraic equations constructed from mathematical or experimental arguments. The response of
the original system is considered to be approximated by that afifoeete modetonstructed by
connectingor assemblinghe collection of all elements.

The breakdown-assembly concept occurs naturally when an engineer considers many artificial and
natural systems. For example, it is easy and natural to visualize an engine, bridge, aircraft or
skeleton as being fabricated from simpler parts.

As discussed in 81.3, the underlying themealigide and conquer If the behavior of a system

is too complex, the recipe is to divide it into more manageable subsystems. If these subsystems
are still too complex the subdivision process is continued until the behavior of each subsystem is
simple enough to fit a mathematical model that represents well the knowledge level the analyst
Is interested in. In the finite element method such “primitive pieces” are calledents The
behavior of the total system is that of the individual elements plus their interaction. A key factor
in the initial acceptance of the FEM was that the element interaction can be physically interpreted
and understood in terms that were eminently familiar to structural engineers.

81.4.2. Mathematical Interpretation

This interpretation is closely aligned with the configuration of Figure 1.2. The FEM is viewed as
a procedure for obtaining numerical approximations to the solution of boundary value problems

1-12



1-13 81.6 *WHAT IS NOT COVERED

(BVPs) posed over a domain. This domain is replaced by the uniahof disjoint subdomains
Q® called finite elements. In general the geometrf2dé only approximated by that afQ2®.

The unknown function (or functions) is locally approximated over each element by an interpolation
formula expressed in terms of values taken by the function(s), and possibly their derivatives, at a
set ofnode pointgenerally located on the element boundaries. The states of the assumed unknown
function(s) determined by unit node values are cadleape functionsThe union of shape functions
“patched” over adjacent elements forrrial function basigor which the node values represent the
generalized coordinates. The trial function space may be inserted into the governing equations and
the unknown node values determined by the Ritz method (if the solution extremizes a variational
principle) or by the Galerkin, least-squares or other weighted-residual minimization methods if the
problem cannot be expressed in a standard variational form.

REMARK 1.4

In the mathematical interpretation the emphasis is on the conceéptalf(piecewise) approximationThe

concept of element-by-element breakdown and assembly, while convenient in the computer implementation,

is not theoretically necessary. The mathematical interpretation permits a general approach to the questions
of convergence, error bounds, trial and shape function requirements, etc., which the physical approach leaves
unanswered. It also facilitates the application of FEM to classes of problems that are not so readily amenable

to physical visualization as structures; for example electromagnetics and thermal conduction.

REMARK 1.5

It is interesting to note some similarities in the development of Heaviside's operational methods, Dirac’s
delta-function calculus, and the FEM. These three methods appeared as ad-hoc computational devices created
by engineers and physicists to deal with problems posed by new science and technology (electricity, quantum
mechanics, and delta-wing aircraft, respectively) with little help from the mathematical establishment. Only
some time after the success of the new techniques became apparent were new branches of mathematics
(operational calculus, distribution theory and piecewise-approximation theory, respectively) constructed to
justify that success. In the case of the finite element method, the development of a formal mathematical theory
started in the late 1960s, and much of it is still in the making.

81.5. KEEPING THE COURSE

The first Part of this course, which is the subject of Chapters 2 through 11, stresses the physical
interpretation in the framework of the Direct Stiffness Method (DSM) on account of its instructional
advantages. Furthermore the computer implementation becomes more transparent because the
sequence of computer operations can be placed in close correspondence with the DSM steps.

Subsequent Chapters incorporate ingredients of the mathematical interpretation when it is felt
convenient to do so. However, the exposition avoids excessive entanglement with the mathematical
theory when it may obfuscate the physics.

A historical outline of the evolution of Matrix Structural Analysis into the Finite Element Method
is given in Appendix H, which provides appropriate references.

In Chapters 2 through 6 the time is frozen at about 1965, and the DSM presented as an aerospace
engineer of that time would have understood it. This is not done for sentimental reasons, although
that happens to be the year in which the writer began his thesis work on FEM under Ray Clough.
Virtually all finite element codes are now based on the DSM and the computer implementation has
not essentially changed since the late 1960s.

1-13
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§1.6. *WHAT ISNOT COVERED
The following topics are not covered in this book:

Elements based on equilibrium, mixed and hybrid variational formulations.

2. Flexibility and mixed solution methods of solution.

3.  Kirchhoff-based plate and shell elements.

4.  Continuum-based plate and shell elements.

5. Variational methods in mechanics.

6. General mathematical theory of finite elements.

7.  Vibration analysis.

8.  Buckling analysis.

9. General stability analysis.

10. General nonlinear response analysis.

11. Structural optimization.

12. Error estimates and problem-adaptive discretizations.
13. Non-structural and coupled-system applications of FEM.
14. Structural dynamics.

15. Shock and wave-propagation dynamics.

16. Designing and building production-level FEM software and use of special hardsvgregctor and

parallel computers)

Topics 1-7 pertain to what may be called “Advanced Linear FEM”, whereas 9-11 pertain to “Nonlinear FEM”.
Topics 12-15 pertain to advanced applications, whereas 16 is an interdisciplinary topic that interweaves with
computer science.

For pre-1990 books on FEM see Appendix G: Oldies but Goodies.
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1-15 Exercises

Homework Exercisesfor Chapter 1
Overview

EXERCISE 1.1
[A:15] Do Archimedes’ problem using a circumscribed regular polygon, with 1, 2, ... 256. Does the
sequence converge any faster?

EXERCISE 1.2

[D:20] Select one of the following vehicles: truck, car, motorcycle, or bicycle. Draw a two level decomposition
of the structure into substructures, and of selected components of some substructures.
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2-3 822 TRUSS STRUCTURES

This Chapter begins the exposition of the Direct Stiffness Method (DSM) of structural analysis.
The DSM is by far the most common implementation of the Finite Element Method (FEM). In
particular, all mgjor commercial FEM codes are based on the DSM.

The exposition is done by following the DSM steps applied to a simple plane truss structure.
82.1. WHY A PLANE TRUSS?

Thesimplest structural finiteelementisthebar (al so calledlinear spring) element, whichisillustrated
inFigure2.1(a). Perhapsthe most complicated finite element (at |east asregards number of degrees
of freedom) is the curved, three-dimensional “brick” element depicted in Figure 2.1(b).

@

Figure2.1. From the simplest to a highly complex structural finite element:
(a) 2-node bar element for trusses, (b) 64-node tricubic,
curved “brick” element for three-dimensional solid analysis.

Yet the remarkable fact is that, in the DSM, the smplest and most complex elements are treated
alike! To illustrate the basic steps of this democratic method, it makes educational sense to keep
it simple and use a structure composed of bar elements. A simple yet nontrivial structure is the
pin-jointed plane truss.!

Using a plane truss to teach the stiffness method offers two additional advantages:

(@ Computationscanbeentirely doneby hand aslong asthe structure containsjust afew elements.
This allows various steps of the solution procedure to be carefully examined and understood
before passing to the computer implementation. Doing hand computations on more complex
finite element systems rapidly becomes impossible.

(b) The computer implementation on any programming language is relatively ssimple and can be
assigned as preparatory computer homework.

§2.2. TRUSSSTRUCTURES

Plane trusses, such as the one depicted in Figure 2.2, are often used in construction, particularly
for roofing of residential and commercial buildings, and in short-span bridges. Trusses, whether
two or three dimensional, belong to the class of skeletal structures. These structures consist of
elongated structural components called members, connected at joints. Another important subclass

1 A onedimensional bar assembly would be even simpler. That kind of structure would not adequately illustrate some of
the DSM steps, however, notably the back-and-forth transformations from global to local coordinates.

2-3



Chapter 2: THE DIRECT STIFFNESS METHOD: BREAKDOWN 24

member

support

joint

Figure2.2. An actual planetruss structure. That shown istypical of aroof
truss used in residential building construction.

of skeletal structures are frame structures or frameworks, which are common in reinforced concrete
construction of building and bridges.

Skeletal structures can be analyzed by a variety of hand-oriented methods of structural analysis
taught in beginning Mechanics of Materials courses. the Displacement and Force methods. They
can also be analyzed by the computer-oriented FEM. That versatility makes those structures agood
choicetoillustratethetransition from the hand-cal cul ation methodstaught in undergraduate courses,
to the fully automated finite element analysis procedures available in commercia programs.

In this and the following Chapter we will go over the basic steps of the DSM in a* hand-computer”
calculation mode. This means that although the steps are done by hand, whenever there is a
procedural choice we shall either adopt the way which is better suited towards the computer im-
plementation, or explain the difference between hand and computer computations. The actual
computer implementation using a high-level programming language is presented in Chapter 5.

N

Figure 2.3. The example plane truss structure, called “example truss’
in the sequel. It has three members and three joints.

To keep hand computations manageabl e in detail we use just about the simplest structure that can be
called a plane truss, namely the three-member trussillustrated in Figure 2.3. The idealized model
of the example truss as a pin-jointed assemblage of barsis shown in Figure 2.4(a), which also gives
its geometric and materia properties. In this idealization truss members carry only axial loads,
have no bending resistance, and are connected by frictionless pins. Figure 2.4(b) displays support
conditions as well as the applied forces applied to the truss joints.
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fya, UyST fyza=1
f)<3, Ux3

3
(b)

fx3=2
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E®A® = 200/2
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>
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y2, Uy2
fy1, Uy EDAD® = 100

Figure 2.4. Pin-jointed idealization of example truss. (a) geometric and
elastic properties, (b) support conditions and applied loads.

It should be noted that as a practical structure the example truss is not particularly useful — the
one depicted in Figure 2.2 isfar more common in construction. But with the example truss we can
go over the basic DSM steps without getting mired into too many members, joints and degrees of
freedom.

§2.3. IDEALIZATION

Although the pin-jointed assemblage of bars (as depicted in Figure 2.4) is sometimes presented as
areal problem, it actually represents an idealization of atrue truss structure. The axially-carrying
members and frictionless pins of this structure are only an approximation of a real truss. For
example, building and bridge trusses usually have members joined to each other through the use
of gusset plates, which are attached by nails, bolts, rivets or welds; see Figure 2.2. Consequently
members will carry some bending as well as direct axial loading.

Experience has shown, however, that stresses and deformations calculated for the simple idealized
problemwill often be satisfactory for overall-design purposes; for exampleto select the cross section
of the members. Hence the engineer turns to the pin-jointed assemblage of axial force elements
and usesit to carry out the structural analysis.

Thisreplacement of true by idealized isat the core of the physical inter pretation of thefinite element
method discussed in §1.4.

§2.4. JOINT FORCESAND DISPLACEMENTS

The example truss shown in Figure 2.3 has three joints, which are labeled 1, 2 and 3, and three
members, which are labeled (1), (2) and (3). These members connect joints 1-2, 2-3, and 1-3,
respectively. The member lengths are denoted by L™, L@ and L®, their elastic moduli by EW,
E®@ and E®, and their cross-sectional areasby AL, A@ and A®. Both E and A are assumed to
be constant along each member.

Membersare generically identified by index e (because of their close relation to finite elements, see
below), which is usually enclosed in parentheses to avoid confusion with exponents. For example,
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the cross-section area of a generic member is A®, Joints are generically identified by indices
such asi, j or n. Inthe general FEM, the name “joint” and “member” is replaced by node and
element, respectively. The dual nomenclature is used in the initial Chapters to stress the physical
interpretation of the FEM.

The geometry of the structure is referred to a common Cartesian coordinate system {x, y}, which
is called the global coordinate system. Other namesfor it in the literature are structure coordinate
system and overall coordinate system.

Thekey ingredients of the stiffnessmethod of analysisare the forces and displacementsat thejoints.

In aidealized pin-jointed truss, externally applied forces as well as reactions can act only at the
joints. All member axial forces can be characterized by the x and y components of these forces,
which we call fy and fy, respectively. The components at joint i will be denoted as f,; and fy;,
respectively. The set of all joint forces can be arranged as a 6-component column vector:

x1
yl
x2 | (2.1)
y2
x3
y3 -

—h —h —h —h —h —h

The other key ingredient is the displacement field. Classical structural mechanics tells us that the
displacements of the truss are completely defined by the displacements of thejoints. This statement
isaparticular case of the more general finite element theory.

The x and y displacement components will be denoted by uy and uy, respectively. The values of
uy and uy at joint i will be called uy; and uy; and, like the joint forces, they are arranged into a
6-component vector:

U,
Uy

— ux2

u u, . (2.2
ux3

L Uy

In the DSM these six displacements are the primary unknowns. They are also called the degrees of
freedom or state variables of the system.?

How about the displacement boundary conditions, popularly called support conditions? This data
will tell us which components of f and u are true unknowns and which ones are known a priori. In
structural analysis procedures of the pre-computer era such information was used immediately by
the analyst to discard unnecessary variables and thus reduce the amount of bookkeeping that had
to be carried along by hand.

2 Primary unknowns is the correct mathematical term whereas degrees of freedom has a mechanics flavor. The term state
variablesis used more often in nonlinear analysis.
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2—7 82.5 THE MASTER STIFFNESS EQUATIONS

The computer oriented philosophy is radically different: boundary conditions can wait until the
last moment. This may seem strange, but on the computer the sheer volume of data may not be so
important as the efficiency with which the data is organized, accessed and processed. The strategy
“save the boundary conditions for last” will be followed here for the hand computations.

§2.5. THE MASTER STIFFNESS EQUATIONS

The master stiffness equations relate the joint forces f of the complete structure to the joint dis-
placements u of the complete structure before specification of support conditions.

Because the assumed behavior of the truss is linear, these equations must be linear relations that
connect the components of thetwo vectors. Furthermoreit will be assumed that if al displacements
vanish, so do the forces.?

If both assumptions hold the relation must be homogeneous and be expressable in component form
asfollows:

i fx1 ] [ lexl leyl Kx1x2 ley2 Kx1x3 Kx1y3 17 Uyq ]
fy1 Kylxl Ky1y1 Ky1x2 Kyly2 Ky1x3 Ky1y3 uyl
fx2 — I'<x2x1 Kx2y1 Kx2x2 Kx2y2 Kx2x3 Kx2y3 ux2 . (2.3)
fy2 K y2x1 K y2yl K y2x2 K y2y2 K y2x3 K y2y3 u y2
fx3 Kx3x1 Kx3y1 Kx3x2 Kx3y2 Kx3x3 Kx3y3 ux3
L fy3 - L Kyaaa Kygyn Kyao Kygo Kyas Kyggd LUz
In matrix notation:
f =Ku. (2.4)

HereK isthe master stiffnessmatrix, also called global stiffness matrix, assembled stiffness matrix,
or overall stiffness matrix. Itisa6 x 6 square matrix that happens to be symmetric, although this
attribute has not been emphasized in the written-out form (2.3). The entries of the stiffness matrix
are often called stiffness coefficients and have a physical interpretation discussed below.

The qualifiers (“master”, “global”, “assembled” and “overall”) convey the impression that there
Is another level of stiffness equations lurking underneath. And indeed there is a member level or
element level, into which we plunge in the Breakdown section.

REMARK 2.1

Interpretation of Stiffness Coefficients. The following interpretation of the entries of K is highly valuable for
visualization and checking. Choose a displacement vector u such that all components are zero except the
ith one, which isone. Then f is simply the it" column of K. For instance if in (2.3) we choose uy, as unit
displacement,

lex2

y1x2

x2x2 (2.5
y2x2

x3x2
y3x2

c

Il
ool el

—

Il
AANARNANAXN

3 This assumption implies that the so-called initial strain effects, also known as prestress or initial stress effects, are
neglected. Such effects are produced by actions such as temperature changes or lack-of-fit fabrication, and are studied
in Chapter 4.
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@

Figure 2.5. Breakdown of example truss into individual members (1), (2) and (3),
and selection of local coordinate systems.

Thus K10, say, representsthe y-force at joint 1 that would arise on prescribing a unit x-displacement at joint
2, while all other displacements vanish.

In structural mechanics the property just noted is called interpretation of stiffness coefficients as displacement
influence coefficients, and extends unchanged to the general finite element method.

§2.6. BREAKDOWN

Thefirst three DSM steps are: (1) disconnection, (2) localization, and (3) computation of member
stiffness equations. These are collectively called breakdown steps and are described bel ow.

§2.6.1. Disconnection

To carry out the first step of the DSM we proceed to disconnect or disassemble the structure into
its components, namely the three truss members. This step isillustrated in Figure 2.5.

To each member e = 1, 2, 3 isassigned a Cartesian system {X©, y©}. Axis x® isaligned along
the axis of the et" member. See Figure 2.5. Actually X© runs along the member longitudinal axis;
it is shown offset in that Figure for clarity. By convention the positive direction of X® runs from
jointi tojoint j, wherei < j. The angle formed by X® and x is called ¢®. The axes origin is
arbitrary and may be placed at the member midpoint or at one of the end joints for convenience.
These systems are called local coordinate systems or member-attached coordinate systems. In the
generd finite element method they receive the name element coordinate systems.

8§2.6.2. Localization

Next, we drop the member identifier (e) so that we are effectively dealing with a generic truss
member asillustrated in Figure 2.6. The local coordinate systemis {X, y}. The two end joints are
caledi and j.

As shown in Figure 2.6, a generic truss member has four joint force components and four joint
displacement components (the member degrees of freedom). The member properties include the
length L, elastic modulus E and cross-section area A.
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§2.6.3. Computation of Member Stiffness Equations

Theforceand displacement componentsof Figure2.7(a) arelinked by the member stiffnessrelations

f=Kua. (2.6)
which written out in full is
f:xi @xi Xi @xiyi @xi Xj I{xiyj Uy
i | 2| Kvid Koy Kyig Kyiyg | ] Oy | 2.7
;_XJ' Kaixi Kuyi Kuxi Kyjyj || Ui
yi Kyixi Kyiyi Kyixi Kyjyg Z

Vectors f and U are called the member joint forces and member joint displacements, respectively,
whereas K is the member stiffness matrix or local stiffness matrix. When these relations are
interpreted from the standpoint of the FEM, “member” is replaced by “element” and “joint” by
"node.”

There are several way's to construct the stiffness matrix K in terms of the element properties L, E
and A. The most straightforward technique relies on the M echanics of Materials approach covered
inundergraduate courses. Think of the trussmember in Figure 2.6(a) asalinear spring of equivalent
stiffness ks, an interpretation depicted in Figure 2.7(b). If the member properties are uniformalong
its length, Mechanics of Materials bar theory tells us that*

EA
ks = -+ (2.8)
Consequently the force-displacement equation is
F=kd=d, (2.9)

where F istheinternal axial force and d the relative axial displacement, which physicaly is the
bar elongation.

The axial force and elongation can be immediately expressed in terms of the joint forces and
displacements as

F=fy=—"f, d = Uy — Uxi, (2.10)
which express force equilibrium® and kinematic compatibility, respectively.
Combining (2.9) and (2.10) we obtain the matrix relation®

i 1 0 —1 07 [y
- || _EA|l 00 o0 o0||Os]| oo
=1 21=T1]10 10]|la|=Ko (2.11)

4 Seefor example, Chapter 2 of F. P. Beer and E. R. Johnston, Mechanics of Materials, McGraw-Hill, 2nd ed. 1992.

5 Equations F = f_xj = — fy; follow by consideri ng the free body diagram (FBD) of each joint. For example, takejoint i
asaFBD. Equilibrium along x requires —F — fy; = 0whence F = — fy;. Doing thisonjoint j yields F = fy;.

6 The detailed derivation of (2.11) is the subject of Exercise 2.3.
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a =
( ) fyi, Qy;i Y fyj’ Uy;

y
1i(i » Uy T T_»X T f_x' , Uyj
u o (e) S j» Uxj

s = EA/L
| LARNRRR2ANANDADNND AR J
— F € @~ i e @ F
PR R R AR R R AR
Y > ’I

Figure 2.6. Generic truss member referred to itslocal coordinate system {X, y}:
(a) ideadlization as bar element, (b) interpretation as equivalent spring.

Hence
10 -1 0
_ EA| 00 o0 o0
K=T"1-10 10 (212)
00 00

Thisisthe truss stiffness matrix in local coordinates.

Two other methodsfor obtaining thelocal force-displacement relation (2.9) are covered in Exercises
2.6and 2.7.

In the following Chapter we will complete the main DSM steps by putting the truss back together
and solving for the unknown forces and displacements.
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2-11 Exercises

Homework Exercisesfor Chapter 2
The Direct Stiffness Method: Breakdown

EXERCISE 2.1

[D:5] Explain why arbitrarily oriented mechanical loads on an idealized pin-jointed truss structure must be
applied at the joints. [Hint: idealized truss members have no bending resistance.] How about actual trusses:
can they take loads applied between joints?

EXERCISE 2.2

[A:15] Show that the sum of the entries of each row of the master stiffness matrix K of any planetruss, before
application of any support conditions, must be zero. [Hint: think of trandational rigid body modes.] Doesthe
property hold aso for the columns of that matrix?

EXERCISE 2.3
[A:15] Using matrix algebra derive (2.11) from (2.9) and (2.10).

EXERCISE 2.4

[A:15] By direct matrix multiplication verify that for the generic truss member flo=Fd. Can you interpret
thisresult physically? (Interpretation hint: look at (E2.3) below]

EXERCISE 2.5

[A:20] The transformation equations between the 1-DOF spring and the 4-DOF generic truss member may
be written in compact matrix form as

d=Tq40, f=FTy, (E2.1)

whereTqisl x 4and T is4 x 1. Starting from the identity flo=Fd proven in the previous exercise, and
using compact matrix notation, show that Tr = Tj. Or in words: the displacement transformation matrix
and the force transformation matrix are the transpose of each other. (Thisis a genera result.)

EXERCISE 2.6

[A:20] Derive the equivalent spring formula F = (EA/L) d of (2.9) by the Theory of Elasticity relations
e = di(x)/dx (strain-displacement equation), 0 = Ee (Hooke's law) and F = Ao (axia force definition).
Here e is the axial strain (independent of X) and o the axial stress (aso independent of X). Finaly, G(X)
denotes the axial displacement of the cross section at a distance X from nodei, which islinearly interpolated
as

L

Justify that (E2.2) is correct since the bar differential equilibrium equation: d[ A(do/dX)]/dX = O, isverified
for al x if Aisconstant along the bar.

U(X) = Uy (1 - 5) + uxjé (E2.2)

EXERCISE 2.7

[A:20] Derivethe equivalent spring formula F = (EA/L) d of (2.9) by the principle of Minimum Potential
Energy (MPE). In Mechanics of Materiasit is shown that the total potential energy of the axially loaded bar

IS
L
= g/ Ao eds — Fd (E2.3)
0

where symbols have the same meaning as the previous Exercise. Use the displacement interpolation (E2.2),
the strain-displacement equation e = dii/dx and Hooke'slaw o = Eeto expressIT asafunction I1(d) of the
relative displacement d only. Then apply MPE by requiring that 9IT1/0d = 0.
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33 83.2 ASSEMBLY

83.1. INTRODUCTION

Chapter 2 explained the breakdown of atrussstructureinto components called membersor el ements.
Upon deriving the stiffness relations at the element level in terms of the local coordinate system,
we are now ready to go back up to the original structure. This processis called assembly.

Assembly involves two substeps: globalization, through which the member stiffness equations are
transformed back to the global coordinate system, and merging of those equations into the global
stiffness equations. On the computer these steps are done concurrently, member by member. After
all members are processed we have the free-free master stiffness equations.

Next comes the solution. This process aso embodies two substeps. application of boundary
conditions and solution for the unknown joint displacements. First, the free-free master stiffness
equations are modified by taking into account which components of the joint displacements and
forces are given and which are unknown. Then the modified equations are submitted to a linear
eguation solver, which returns the unknown joint displacements. On some equation solvers, both
operations are done concurrently.

The solution step completes the DSM proper. Postprocessing steps may follow, in which derived
quantities such as internal forces are recovered from the displacement solution.

§3.2. ASSEMBLY

83.2.1. Coordinate Transformations

Before describing the globalization step, we must establish matrix relations that connect joint
displacementsand forcesin the global and local coordinate systems. The necessary transformations

are easily obtained by inspection of Figure 3.1. For the displacements
U, = U,;CH U,S, U, = —Uu,S+u,cC,
) Xi Xi yi _yl Xi yi . (3.1)

wherec = cosg, s = sing and ¢ isthe angle formed by X and x, measured positive counterclock-
wise from x. The matrix form of thisrelation is

Oy c s 0 O Uy
ay, -s ¢ 0 O Uy,
i | = yi
Uyj 0 0 ¢ s U | 3.2
Uy 0 0 -s ¢ Uy;

The 4 x 4 matrix that appears aboveis called a displacement transformation matrix and is denoted!
by T. The node forces transform as fy; = fy;c — fy;s, etc., which in matrix form become

f, c -s 0 0 i
f. s ¢ 0 O fy;
yi | — el
fyj 0 0 c -s fj | 33

1 Thismatrix will be called T4 when its association with displacements is to be emphasized, asin Exercise 2.5.
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Displacement Force
transformation Qy;j Uyi transformation

f .
fyi &

)UX|

Figure 3.1. The transformation of node displacement and force components
from the local system {X, y} to the global system {x, y}.

The 4 x 4 matrix that appears above is called a force transformation matrix. A comparison of
(3.2) and (3.3) reveals that the force transformation matrix isthe transpose T of the displacement
transformation matrix T. Thisrelation is not accidental and can be proved to hold generally.?

REMARK 3.1

Notethat in (3.2) thelocal -system (barred) quantities appear on theleft hand side, whereasin (3.3) they appear
on the right-hand side. The expressions (3.2) and (3.3) are discrete counterparts of what are called covariant
and contravariant transformations, respectively, in continuum mechanics. The counterpart of the transposition
relation is the adjointness property.

REMARK 3.2

For this particular structural element T is square and orthogonal, that is, TT = T~1. But this property does
not extend to more general elements. Furthermore in the general case T is not even a square matrix, and does
not possess an ordinary inverse. However the congruential transformation relations (3.4)-(3.6) hold generally.

83.2.2. Globalization

From now on we reintroduce the member index, e. The member stiffness equations in global

coordinates will be written
O = K@y®, (3.4)

The compact form of (3.2) and (3.3) for the €' member is
0© = TOYO, f© — (TO)TF®, (3.5)

Inserting these matrix expressions into (2.6) and comparing with (3.4) we find that the member
stiffness in the global system {x, y} can be computed from the member stiffness K in the local

2 A simple proof that relies on the invariance of external work is given in Exercise 2.5. However this invariance was only
checked by explicit computation for atruss member in Exercise 2.4. The general proof relies on the Principle of Virtual
Work, which is discussed |ater.

34



35 83.2 ASSEMBLY

system {X, y} through the congruential transformation

©

KO® = (TOTK T®, (3.6)

Carrying out the matrix multiplications we get

2 sc —c? —sc
B E® A® sc 2 _—sc —g2
T Le —c2 —sc ¢ sC

—s¢ —-s? sc &

©

, (3.7)

in which ¢ = cos¢®, s = sing®, with superscripts of ¢ and s suppressed to reduce clutter. |f
the angle is zero we recover (2.11), as may be expected. K © is called amember stiffness matrix in
global coordinates. The proof of (3.6) and verification of (3.7) isleft as Exercise 3.1.

The globalized member stiffness matrices for the example truss can now be easily obtained by
inserting appropriate values into (3.7). For member (1), with end joints 1-2, angle ¢ = 0° and the
member data listed in Figure 2.4(a) we get

1 1
fy 1 0 -1 07[Uy
| _ 10/ 2 0 00 U (3.8)
1 —_— . .
(|77 10 1 ol
£ @ 0O 0 0 od| @
y2 y2
For member (2), with end joints 2-3, and angle ¢ = 90°:
2 2
fx(%) 00 0 O U(xzz)
fe |_s|0 1 0 —1|up @9
6|70 0 0 o gl |
f(2) 0O -1 0 1 u(2)
y3 y3

Finally, for member (3), with end joints 1-3, and angle ¢ = 45°:

fyr 05 05 -05 —057[Y%
e | o9 05 05 —05 —05||uy 210
1@ =% 05 —05 05 05 [|u® |’ (310
(@ —05 -05 05 05 ][ ®
y3 y3

83.2.3. Assembly Rules

The key operation of the assembly processis the “placement” of the contribution of each member
to the master stiffness equations. The processistechnically called merging of individual members.
The merge operation can be physically interpreted as reconnecting that member in the process of
fabricating the complete structure. For atruss structure, reconnection meansinserting the pins back
into the joints. Thisis mathematically governed by two rules of structural mechanics:

35



Chapter 3: THE DIRECT STIFFNESS METHOD: ASSEMBLY AND SOLUTION 3-6

(@ 3 f3 (b) 3
f(3)
— fés%—/ﬁ; . 3 @
2

Figure 3.2. Theforce equilibrium of joint 3 of the example truss, depicted as afree body diagram
in (4). Heref3 isthe known external joint force applied on the joint. Joint forces
% and £ are applied by the joint on the members, asillustrated in (b). Consequently
the forces applied by the members on the joint are —f and —f5”. These forces
would act in the directions shown if both members (2) and (3) werein tension. The free-body
equilibrium statement isf; — £ — ) = 0 or f3 = f2 + 5. Thistransatesinto
the two component equations: s = f5 + f3 and fiz = 7 + £, of (3.11).

1. Compatibility of displacements: The joint displacements of all mem-
bers meeting at ajoint are the same.

2. Forceequilibrium: The sum of forces exerted by all membersthat meet
at ajoint balances the external force applied to that joint.

Thefirst rule is physically obvious: reconnected joints must move as one entity. The second one
can be visualized by considering ajoint as a free body, but careis required in the interpretation of
joint forces and their signs. Notational conventions to this effect are explained in Figure 3.2 for
joint 3 of the exampletruss, at which members (2) and (3) meet. Application of theforegoing rules
at this particular joint gives

Ruel  u?=ug. us=uy.
Rue2 fio="f2+ 15 =13+ 19+ 13, fa=10+13 =13+ {3+ 13
(3.11)
The addition of 5" and f3 to £5 + 13 and 3’ + £, respectively, changes nothing because

member (1) isnot connected to joint 3; we are simply adding zeros. But this augmentation enables
us to write the matrix relation: f = f + @ 4 & which will be used in (3.19).

83.2.4. Hand Assembly by Augmentation and Merge

Todirectly visualize how thetwo assembly rulestransl ateto member merging rules, wefirst augment
the member stiffnessrelations by adding zero rows and columns as appropriate to completetheforce
and displacement vectors.
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For member (1):

- £ - ~u® -
KL - 10 0 -10 0 0 07| ™
fyi 0 0 0 00 0ffY
£ _|-10 0 10 000 u'l 3.12)
fyy 0 0 0 00 Offuly| '
¢ @) 0 0 0 00 O0f|,b
3 | 0o o o o0o0od| &
f u
For member (2): (2) o
'al rooo o o o7[%
f u
" 000 O 0 O "
fig |_|0 00 0 0 0 |]ug a1
fy 000 5 0 —5||u '
e 000 0 0 0|,
3 000 50 5] %
f u
For member (3):
- £ o -u®
L 10 10 0 0 -10 -107 |4
fyé) 10 10 0 0 —-10 —10 U(yél)
(1 | o 0o 00 0 o u? @14
f91 | 0 0o 00 0o 0 [|u}] '
e ~10 -10 0 0 120 10 ||, ®
3 |10 -10 0 0 10 10]]| B
f u
L y3 - L y3 —

According to the first rule, we can drop the member identifier in the displacement vectors that
appear in the foregoing matrix equations. Hence

- £ o
it - 10 0 —10 0 O 07 [Ux]
y1 0 0 0 00 O0f|uy
f5 1 | -10 0 10 0 0 0| ue 315
f2 | | 0 0 0 00 Offup|’ .15
(0 0 0 0O 0 0 O] uy
R 0 0 0 00 0oJLuygs.
- £@ -
X 0 0 0 0 O O 7[UqT
fy1 000 0 0 0 |]|uy
21 |00 0 0 0 0 ||ue 316
(211000 5 0 —5||up|’ (316
e 0 00 0O O O |]|uy
fxé) 000 -5 0 5JLugs.
|5
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— (3 S
fx(g) 10 10 0 0 —10 —107 [UxT]
'y 10 10 0 0 —10 —10 || uy
1 | o 0o 00 0 0 Uy @17
f9 ] | 0 0 00 0 0 [|up '
e -10 —10 0 0 10 10 Ux3
%] L-10 -10 0 0 10 10 J Luy
L fy3
These three equations can be represented in direct matrix notation as
fO=K®u,  f@=K®@u, ®=Kk®u. (3.18)
According to the second rule
f=f0 4§D 4O = (K® 4+ K@+ K®)u=Ku, (3.19)

so all we haveto do isadd the three stiffness matrices that appear above, and we arrive at the master
stiffness equations:

“fa] [ 20 10 -10 0 —10 —107 [Ux]
fr 10 10 0 0 -10 —10||up
fe| |-10 0 10 0 0 0 ||ue
fo|=| 0 0 0 5 0 -5]]uyp (3.20)
fea ~10 —10 0 0 10 10 || ux

| fed L-10 —10 0 -5 10 15 1 Lug.

Using this technique member merging becomes simply matrix addition.

This explanation of the assembly process is conceptually the easiest to follow and understand. It
is virtually foolproof for hand computations. However, this is not the way the process is carried
out on the computer because it would be enormously wasteful of storage for large systems. A
computer-oriented procedure is discussed in 83.5.

§3.3. SOLUTION

Having formed the master stiffness equations we can proceed to the solution phase. To prepare the
eguations for an equation solver we need to separate known and unknown components of f and u.
In this Section atechnigue suitable for hand computation is described.

83.3.1. Applying Displacement BCs by Reduction

If one attemptsto solvethe system (3.20) numerically for the displacements, surprise! The solution
“blowsup” becausethe coefficient matrix (the master stiffnessmatrix) issingular. Themathematical
interpretation of this behavior isthat rows and columns of K are linear combinations of each other
(seeRemark 3.4 below). Thephysical interpretation of singularity isthat therearestill unsuppressed
rigid body motions: the truss “floats’ in the {x, y} plane.
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39 83.3 SOLUTION

To eliminate rigid body motions and render the system nonsingular we must apply the support
conditions or displacement boundary conditions. From Figure 2.4(b) we observe that the support
conditions for the example truss are

Uxy = Uys = Uyp =0, (3.21)
whereas the known applied forces are
fX2 == O, fX3 - 2, fys == 1. (3.22)

When solving the stiffness equations by hand, the simplest way to account for support conditionsis
to remove equations associated with known joint displacements from the master system. To apply
(3.21) we haveto remove equations 1, 2 and 4. Thiscan be systematically accomplished by deleting
or “striking out” rows and columns number 1, 2 and 4 from K and the corresponding components
from f and u. The reduced three-equation systemis

10 0 07ru, f 0
[ 0 10 10} [uxs} = [ fx3} = [2} (3.23)
0 10 151 Luy, f 1

y3

Equation (3.23) is called the reduced master stiffness system. The coefficient matrix of this system
isno longer singular.

REMARK 3.3

In mathematical terms, the free-free master stiffness matrix K in (3.20) hasorder N = 6, rankr = 3and a
rank deficiency of d = N —r = 6 — 3 = 3 (these concepts are summarized in Appendix C.) The dimension
of the null space of K isd = 3. This spaceis spanned by three independent rigid body motions. thetwo rigid
translations along x and y and therigid rotation about z.

REMARK 3.4

Conditions (3.21) represent the simplest type of support conditions, namely zero specified displacements.
Subsequent Chapters discuss how more general constraint forms, such as prescribed nonzero displacements
and multipoint constraints, are handled.

83.3.2. Solving for Displacements
Solving the reduced system by hand (for example, via Gauss elimination) yields

Uy 0
H - [ 0 } @20
Uys -0.2

Thisis called a partial displacement solution because it excludes suppressed displacement com-
ponents. This solution vector is expanded to six components by including the specified values
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(3.20):

(3.25)

o
hOOOO

| —0.2 ]
Thisis called the compl ete displacement solution, or ssmply the displacement solution.

83.4. POSTPROCESSING

The last major processing step of the DSM is the solution for joint displacements. But often the
anayst needs information on other mechanical quantities; for example the reaction forces at the
supports, or the internal member forces. Such quantities are said to be derived because they are
recovered from the displacement solution. Therecovery of derived quantitiesis part of the so-called
postprocessing steps of the DSM. Two such steps are described below.

83.4.1. Recovery of Reaction Forces

Premultiplying the complete displacement solution (3.25) by K we get

20 10 -10 0 -10 —107[ 0 7 [-27
0 10 0 0 -10 -10|| © 2
-0 0 10 0 0 O 0 0
f=Ku=109" 0o 0o 5 o 5| o |T|1 (320
~10 -10 0 0 10 10 || 04 2
|10 —10 0 -5 10 15 JL-02] L 1]

Thisvector recovers the known applied forces (3.22) as can be expected. Furthermore we get three
reaction forces: fy; = fy3 = —2and fy, = 1, which are associated with the support conditions
(3.21). It is easy to check that the complete force system is in equilibrium; this is the topic of
Exercise 3.2.

83.4.2. Recovery of Internal Forcesand Stresses

Frequently the structural engineer is not primarily interested in displacements but in internal forces
and stresses. These are in fact the most important quantities for preliminary design.

In trusses the only internal forces are the axial member forces, which are depicted in Figure 3.3.
These forces are denoted by pP, p® and p®® and collected in avector p. The average axial stress
0® iseasily obtained on dividing p® by the cross-sectional area of the member.

Theaxial force p®® in member (e) can be obtained asfollows. Extract the displacements of member
(e) from the displacement solution u to form u®. Then recover local joint displacements from
u® = T®u®, Compute the deformation d (relative displacement) and recover the axial force
from the equivalent spring constitutive relation:

e A
EFA® o

© _g® _ g® © _
d¥ =10, —0 P =—16

Xi

(3.27)
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3
@)
©)
S
p(l)
1 O —> < 02

Figure 3.3. Theinterna forcesin the example truss are the axial forces p®, p® and
p® in the members. Signs shown for these forces correspond to tension.

An alternative interpretation of (3.27) isto regard €® = d®© /L ©® as the (average) member axial
strain, 0 ® = E®e® as (average) axial stress, and p® = A®s© asthe axial force. Thisismore
in tune with the Theory of Elasticity viewpoint discussed in Exercise 2.6.

§3.5. *COMPUTER ORIENTED ASSEMBLY AND SOLUTION

§3.5.1. *Assembly by Freedom Pointers

The practical computer implementation of the DSM assembly process departs significantly from the “ augment
and add” technique described in §3.2.4. There are two major differences:

()  Member stiffness matrices are not expanded. Their entries are directly merged into those of K through
the use of a*“freedom pointer array” called the Element Freedom Table or EFT.

(I The master stiffness matrix K is stored using a specia format that takes advantage of symmetry and
Sparseness.

Difference (11) is a more advanced topic that is deferred to the last part of the book. For simplicity we shall
assumeherethat K isstored asafull squarematrix, and study only (1). For theexampl etrussthefreedom-pointer
technique expresses the entries of K asthe sum

3
Kog=» K for i=1..4 j=1..4 p=EFT®(), q=EFTe()). (3.28)

e=1

Here Ki(je) denote the entries of the 4 x 4 globalized member stiffness matricesin (3.9) through (3.11). Entries

Kpq that do not get any contributions from the right hand side remain zero. EFT'® denotes the Element
Freedom Table for member (e). For the example truss these tables are

EFT® ={1,2,3,4}, EFT®=(3,4,56}, EFT® =({1,25,6}. (3.29)

Physically these tables map local freedom indicesto global ones. For example, freedom number 3 of member
(2) is Uys, which is number 5 in the master equations; consequently EFT® (3) = 5. Note that (3.28) involves
3 nested loops: over e (outermost), over i, and over j. The ordering of the last two isirrelevant. Advantage
may be taken of the symmetry of K© and K to roughly halve the number of additions. Exercise 3.6 follows
the process (3.28) by hand.
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83.5.2. *Applying Displacement BCs by Modification

In §3.3.1 the support conditions (3.21) were applied by reducing (3.20) to (3.23). Reduction is convenient for
hand computations because it cuts down on the number of equations to solve. But it has a serious flaw for
computer implementation: the equations must be rearranged. It was previously noted that on the computer
the number of equationsis not the only important consideration. Rearrangement can be as or more expensive
than solving the equations, particularly if the coefficient matrix is stored in sparse form on secondary storage.

To apply support conditions without rearranging the equations we clear (set to zero) rows and columns
corresponding to prescribed zero displacements as well as the corresponding force components, and place
ones on the diagonal to maintain non-singularity. The resulting system is called the modified set of master
stiffness equations. For the example truss this approach yields

100 0 0 07[Ua 0
0100 0 0]|[uu 0
00100 0 0 ||uz|_1O
000 10 0|lux|["]o]| (3.30)
00 0 0 10 10 | | ue 2
00 0 0 10 15] Lug 1

in which rows and columns for equations 1, 2 and 4 have been cleared. Solving this modified system yields
the complete displacement solution (3.25).

REMARK 3.5

Ina“smart” stiffness equation solver the modified system need not be explicitly constructed by storing zeros
and ones. It is sufficient to mark the equations that correspond to displacement BCs. The solver is then
programmed to skip those equations. However, if one is using a standard solver from, say, a library of
scientific routines or a commercial program such as Matlab or Mathematica, such intelligence cannot be
expected, and the modified system must be set up explicitly .
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313 Exercises

Homework Exercisesfor Chapter 3
TheDirect StiffnessMethod: Assembly and Solution

EXERCISE 3.1

[A:20] Derive (3.6) from K ©a® = 7, (3.4) and (3.5). (Hint: premultiply both sides of K ©a® = 7 by
an appropriate matrix). Then check by hand that using that formulayou get (3.7). Use Falk’s scheme for the
multiplications.3

EXERCISE 3.2

[A:15] Draw afree body diagram of the nodal forces (3.26) acting on the free-free truss structure, and verify
that this force system satisfies translational and rotational (moment) equilibrium.

EXERCISE 3.3

[A:15] Using the method presented in §3.4.2 compute the axial forces in the three members of the example
truss. Partial answer: p®@ = 2./2.

EXERCISE 3.4

[A:20] Describe an aternative method that recovers the axial member forces of the example truss from
consideration of joint equilibrium, without going through the computation of member deformations.
EXERCISE 3.5

[A:20] Suppose that the third support condition in (3.21) isuy, = O instead of u,, = 0. Rederive the reduced
system (3.23) for this case. Verify that this system cannot be solved for the joint displacements uy,, uys and
uy3 because the reduced stiffness matrix is singular.* Offer aphysical interpretation of thisfailure.

EXERCISE 3.6

[N:20] Construct by hand the free-free master stiffness matrix of (3.20) using the freedom-pointer technique
(3.28). Note: start from K initialized to the null matrix, then cycleovere=1, 2, 3.

Tfyz =0

Figure E3.1. Truss structure for Exercise 3.7.

3 This schemeis recommended to do matrix multiplication by hand. It is explained in §B.3.2 of Appendix B.

4 A matrix issingular if its determinant is zero; cf. §C.2 of Appendix C for a*“refresher” in that topic.
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EXERCISE 3.7

[N:25] Consider the two-member arch-truss structure shown in Figure E3.1. Take span S = 8, height
H = 3, elastic modulus E = 1000, cross section areas AY = 2 and A® = 4, and horizontal crown force
P = f,, = 12. Using the DSM carry out the following steps:

(@ Assemblethemaster stiffnessequations. Any method: augment-and-add, or themore advanced “freedom
pointer” technique explained in §3.5.1, is acceptable.

(b) Apply the displacement BCs and solve the reduced system for the crown displacements uy, and uy,.
Partial result: uy, = 9/512 = 0.01758.

(c) Recover the nodeforcesat al jointsincluding reactions. Verify that overall force equilibrium (x forces,
y forces, and moments about any point) is satisfied.

(d) Recover the axial forcesin the two members. Result should be p® = —p@ = 15/2.
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4-3 84.1 PRESCRIBED NONZERO DISPLACEMENTS

Chapters 2 and 3 presented the“ core” steps of the Direct StiffnessMethod (DSM). These stepswere
illustrated with the hand analysis of a plane truss structure. This Chapter covers some topics that
were left out from Chapters 2-3 for clarity. These include: the imposition of prescribed nonzero
displacements, and the treatment of thermal effects.

84.1. PRESCRIBED NONZERO DISPLACEMENTS

The support conditions considered in the exampl e truss of Chapters 2—3 resulted in the specification
of zero displacement components; for exampleuy, = 0. Thereare cases, however, wheretheknown
value is nonzero. This happens, for example, in the study of settlement of foundations of ground
structures such as buildings and bridges, and in the analysis of driven machinery components.
Mathematically these are called non-homogenous boundary conditions. The treatment of this
generalization of the FEM equationsis studied in the following subsections.

84.1.1. Application of DBCs by Reduction

We describe first a reduction technique, analogous to that explained in 83.2.1, which is suitable for
hand computations. Recall the master stiffness equations (3.20) for the example truss:

-20 10 -10 0 -10 -107[ua7 [ fu]
10 10 0 0 -10 -10||up o
10 0 10 0 0 0 ||lue|_ | fe
0 0 0 5 0 5| upl|~|fpe @D
10 10 0 0 10 10 || um s
|10 10 0 -5 10 15 Jlugd L.

Suppose that the applied forces are as for the exampl e truss but the prescribed displacements are

This means that joint 1 goes down vertically whereas joint 2 goes up verticaly, as depicted in
Figure 4.1. Inserting the known datainto (4.1) we get

- 20 10 -10 0O -10 =107 O 7 ~ fx1 ]
10 10 0 0 -10 -10 —-05 fy1
-10 O 10 O 0 0 U | | O
0 0 0 5 0 -5 04 | | fp 4.3
-10 -10 O 0O 10 10 Ux3 2
| -10 =10 0 -5 10 15 1L uy |1
The first, second and fourth rows of (4.3) are removed, leaving only
p— O —
-10 0 10 O O O _UO'S 0
[—10 -10 0 O 10 10} Oxj = {2} (4.4)
-10 -10 0 -5 10 15 ' 1
Ux3
L Uy3 -
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1 _—90ing up
going down

qu :0 .
no horizontal motion

Figure4.1. The example truss with prescribed nonzero vertical displacements at joints 1 and 2.

Columns 1, 2 and 4 areremoved by transferring all known termsfrom the left to the right hand side:

10 0 O Ux2 0 (-10) x 0+ 0x (=05 +0x 0.4 0

[ 0 10 10} |:Ux3i| = [2} - [ (=10) x 0+ (—10) x (—0.5) +0x 0.4 :| = [—3]
0 10 151 Luys 1 (=10) x 0+ (—10) x (—0.5) + (-5 x 0.4 —%4 5

The matrix equation (4.5) is the reduced system. Note that its coefficient matrix is exactly the

same as in the reduced system (3.23) for prescribed zero displacements. The right hand side,

however, is different. It consists of the applied joint forces modified by the effect of known nonzero

displacements. Solving the reduced system yields

Uy, 0

H - [_0.5} . 9
Uys 0.2

Filling the missing slots with the known values (4.2) yields the complete displacement solution

p— 0 —
~0.5
0
u=1 o4 4.7)
~05

| 0.2

Going through the postprocessing steps discussed in 83.3 with (4.7), we can find that the reaction
forces and the internal member forces do not change. This is a consequence of the fact that the
exampletrussis statically determinate. Theforce systems (internal and external) in such structures
are insensitive to movements such as foundation settlements.
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4-5 84.1 PRESCRIBED NONZERO DISPLACEMENTS

84.1.2. *Application of DBCs by Moaodification

The computer-oriented modifification approach follows the same idea outlined in 83.5.2. Asthere, the main
objectiveisto avoid rearranging the master stiffness equations. To understand the processit is useful to think
of being done in two stages. First equations 1, 2 and 4 are modified so that they become trivial equations, as
illustrated for the example truss and the support conditions (4.2):

1 0 0O 0 O O Ux1 0

0 1 0O 0 0 O Ux2 -0.5
-10 0 10 0 O O U | 0

0 0 0O 1 0 O up | | 04 4.8)
-10 -10 0 O 10 10 Uxs 2
-10 -10 0 -5 10 15 Uys 1

Thesolution of this system recovers (4.2) by construction (for example, thefourth equationissimply 1 x uy, =
0.4). Inthe next stage, columns 1, 2 and 4 of the coefficient matrix are cleared by transferring all known terms
to the right hand side, following the same procedure explained in (4.5). We thus arrive at

10 0 0 0 O Ux1 0

01 0 0 0 O Ux2 -0.5

0 0 100 0 O U | 0

00 01 0 O up | | 04 (4.9)
0 0 0 0 10 10 Uxs -3

0 0 0 0 10 15 Uys -2

As before, thisis called the modified master stiffness system. Observe that the equations retain the original
order. Solving this system yields the complete displacement solution (4.7).

Note that if all prescribed displacements are zero, forces on the right hand side are not modified, and one
would recover (3.30).

REMARK 4.1

The modification is not actually programmed as discussed above. First the applied forces in the right-hand
side are modified for the effect of nonzero prescribed displacements, and the prescribed displacements stored
in the reaction-force dots. Thisis called the force modification procedure. Second, rows and columns of the
stiffness matrix are cleared as appropriate and ones stored in the diagonal positions. Thisiscalled the stiffness
modification procedure. It isessential that the procedures be executed in the indicated order, because stiffness
terms must be used to modify forces before they are cleared.

84.1.3. *Matrix Formsof DBC Application M ethods

The reduction and modification techniques for applying DBCs can be presented in compact matrix form. The
free-free master stiffness equations Ku = f are partitioned as follows:

e[
= . 4.10
|: Ka K u, f, ( )
In this matrix equation, subvectors u, and f, collect displacement and force components, respectively, that are
known, given or prescribed. Ontheother hand, subvectorsu; andf, collect forceand displacement components,

respectively, that are unknown. The force componentsin f, are reactions on supports; consequently f, iscalled
the reaction force vector.
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On transferring the known terms to the right hand side the first matrix egquation becomes
KU, =, — Kpu,. (4.11)

Thisisthe reduced master equation system. |If the displacement B.C. are homogeneous (that is, all prescribed
displacements are zero), u, = 0, and we do not need to change the right-hand side:

KUy =f,. (4.12)

Examplesthat illustrate (4.11) and (4.12) are (4.5) and (3.23), respectively.
The computer-oriented modification technique retains the same joint displacement vector asin (4.10) through

the following rearrangement:
K11 0 up | f]_—K12U2
ot el =) 13

This modified systemis simply the reduced equation (4.11) augmented by the trivial equation lu, = u,. This
system is often denoted as R A
Ku=T. (4.14)

Solving (4.14) yields the complete displacement solution including the specified displacements u,.

For the computer implemenmtation it is important to note that the partitioned form (4.10) is used only to
facilitate the use of matrix notation. The equations are not explicitly rearranged and retain their original
numbers. For instance, in the example truss

Ux1 DOF #1 Ux2 DOF #3
Uup=|uy | =| DOF#2 |, U= | Uxys | = | DOF#5 |. (4.15)
Uy2 DOF #4 Uy3 DOF #6

The example shows that u; and u, are generally interspersed throughout u. Thus, matrix operations such as
K 12U, required indirect (pointer) addressing to avoid explicit array rearrangements.

84.2. THERMOMECHANICAL EFFECTS

The assumptions invoked in Chapters 2-3 for the example truss result in zero external forces under
zero displacements. Thisisimplicit in the linear-homogeneous expression of the master stiffness
equationf = Ku. If u vanishes, so doesf. Thisbehavior doesnot apply, however, if thereareinitial
force effects.! If those effects are present, there can be displacements without external forces, and
internal forces without displacements.

A common source of initial force effects are temperature changes. Imagine that a plane truss
structure is unloaded (that is, not subjected to external forces) and is held at a uniform reference
temperature. External displacements are measured from this environment, which is technically
called areference state. Now suppose that the temperature of some members changes with respect
to the reference temperature while the applied external forces remain zero. Because the length
of members changes on account of thermal expansion or contraction, the joints will displace. If
the structure is statically indeterminate those displacements will induce strains and stresses and
thus internal forces. These are distinguished from mechanical effects by the qualifier “thermal.”

1 cCalled initial stress or initial strain effects by many authors. These names reflect what is viewed as the physical source
of initial force effects at the continuum level.
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fy Uyj
ij s ij
O—>
ks = EA/L
"F‘I "“I ‘1| “‘I ’r‘l ‘1| ‘7‘| "F‘I "“I ‘7‘| "F‘I ’r‘l ‘1| ‘7‘| "F‘I "“I ‘7‘|‘ “ F
— F — @i >
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Y > >
B L+dv+dr
<

Figure 4.2. Generic truss member subjected to mechanical and thermal effects:
(a) idedlization as bar, (b) idealization as equivalent linear spring.

For many structures, particularly in aerospace and mechanical engineering, such effects have to be
considered in the analysis and design.

There are other physical sources of initial force effects, such as moisture (hygrosteric) effects,?
member prestress, residual stresses, or lack of fit. For linear structural modelsall such sources may
be algebraically treated in the same way asthermal effects. The treatment resultsin an initial force
vector that has to be added to the applied mechanical forces. This subject isoutlined in 84.3 from
agenera perspective. However, to describe the main features of the matrix analysis procedureit is
sufficient to consider the case of temperature changes.

InthisSectionwego over theanalysisof aplanetrussstructurewhose membersundergo temperature
changes from a reference state. It is assumed that the disconnection and localization steps of the
DSM have been carried out. Thereforewebeginwith the derivation of the matrix stiffness equations
of ageneric truss member.

84.2.1. Thermomechanical Behavior

Consider the generic plane-truss member shown in Figure 4.2. The member is prismatic and
uniform. The temperature T is aso uniform. For clarity the member identification subscript will
be omitted in the following development until the transformation-assembly steps.

We introduce the concept of reference temperature T,e;. This is conventionally chosen to be the
temperature throughout the structure at which the displacements, strains and stresses are zero if

2 These areimportant in composite materials and geomechanics.
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_F=fxi P= Py + Pr F:ij
i )

Figure 4.3. Equilibrium of truss member under thermomechanical forces.

no mechanical forces are applied. In structures such as buildings and bridges T;¢; is often taken
to be the mean temperature during the construction period. Those zero displacements, strains and
stresses, together with T, ¢, define the thermomechanical reference state for the structure.

The member temperaturevariationfromthat referencestateisAT = T —T,¢f . Thismay bepositive
or negative. If the member is disassembled or disconnected, under this variation the member length
is free to change from L to L + dr. If the thermoelastic constitutive behavior is linear® then dr is
proportional to L and AT:

dr = oL AT. (4.16)

Here « is the coefficient of thermal expansion, which has physical units of one over temperature.
This coefficient will be assumed to be uniform over the generic member. It may, however, vary
from member to member. The thermal strain is defined as

er = dr/L = a AT. (4.17)

Now suppose that the member is al so subject to mechanical forces, more precisely the applied axial
force F shown in Figure 4.2. The member axia stressiso = F/A. In response to this stress
the length changes by dy. The mechanical strainisey = dy /L. Thetotal straine = d/L =
(dw + dy)/L isthe sum of the mechanical and the thermal strains:

e=ey +eT:%+aAT (4.18)

Thissuperposition of deformationsisthe basic assumption made in the thermomechanical analysis.
It is physically obvious for an unconstrained member such as that depicted in Figure 4.2.

At the other extreme, suppose that the member is completely blocked against axial elongation; that
iIs,d =0 but AT #0. Thene=0andey = —ey. If @« > 0and AT > 0 the blocked member
goesin compression becauseo = Eey = —Eer = —Ea AT < 0. Thisthermal stressis further
discussed in Remark 4.2.

84.2.2. Thermomechanical Stiffness Equations

Becausee = d/L and d = Uy — Uy, (4.18) can be developed as

i o
2 4 a AT 4.19
L E Y0 4.19)

3 An assumption justified if the temperature changes are small enough so that o is approximately constant through the
range of interest, and no material phase change effects occur.
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To passto internal forces (4.19) is multiplied through by E A:

EA _ _
T(uxj —Uy) =Ac + EAc AT =pu+pr=p=F. (4.20)

Here py = Ao denotesthe mechanical axial force, and pt = EAa AT, which hasthe dimension
of aforce, is called (not surprisingly) the internal thermal force. Thesum p = pw + pr iscaled
the effective internal force. The last relation in (4.20), F = p = pwm + pr follows from free-body
member equilibrium; see Figure 4.3. Passing to matrix form:

L_in
EA Oy
F=—"[-1 0 1 o]| Y[, (4.21)
L Uyi
Uy;
Notingthat F = f,; = — f,; while f;; = f,; = 0, wecan relatejoint forcesto joint displacements
as
fui —F v -1 10 -1 0 {ix
f_yi _ 0 _ f_Myi 0 _ E\ 00 00 L_in
Wl F [T fug | T2 [T T -1 0 1 0]]ay (4.22)
fyj 0 fayj 0 00 00 Uy
In compact matrix form thisisf = fy + fr = K, or

Here K is the same member stiffness matrix derived in §2.6.3. The new ingredient that appearsis
the vector
-1
0
1 |
0

fr = EAa AT (4.24)

Thisis called the vector of thermal joint forcesin local coordinates. It is an instance of an initial
force vector at the element level.

REMARK 4.2

A useful physical interpretation of (4.23) isasfollows. Supposethat the member iscompletely blocked against
joint motions so that 0 = 0. Thenfy + fr = O or fy = —f1. It follows that f+ contains the negated joint
forces (internal forces) that develop in a heated or cooled bar if joint motions are precluded. Because for
most materials o > 0, rising the temperature of a blocked bar — that is, AT > 0 — produces an internal
compressive thermal force pr = Aot = —EA«T, in accordance with the expected physics. The quantity
o1 = —Ea AT isthethermal stress. This stress can cause buckling or cracking in severely heated structural
members that are not alowed to expand or contract. This motivates the use of expansion jointsin pavements,
buildings and rails, and roller supportsin long bridges.

4-9
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84.2.3. Globalization

At this point we restore the member superscript so that the member stiffness equations(4.22) are
rewritten as e o e
KOu© =79 +7°. (4.25)

Use of the transformation rules devel oped in 83.1 to change displacements and forces to the global
system {x, y} yields
KOU® =9 4 §© (4.26)

where T® s the displacement transformation matrix (3.1), and the transformed quantities are
KO = (T@)TREOTO 10 = (T@)TF O — (T@)T§? (4.27)

These globalized member equations are used to assemble the free-free master stiffness equations
by a member merging process.

84.2.4. Merge

The merge process is based on the same assembly rules stated in 83.1.3 with only one difference:
thermal forces are added to the right hand side. The member by member merge is carried out
much as described asin §3.1.4, the main difference being that the thermal force vectorsf(® arealso
merged into a master thermal force vector.* Upon completion of the assembly process we arrive at
the free-free master stiffness equations

84.2.5. Solution

Themaster system (4.28) hasformally the same configuration asthe master stiffnessequations(2.3).
The only difference is that the effective joint force vector f contains a superposition of mechanical
and thermal forces.

Displacement boundary conditions can be applied by reduction or modification of these equations,
simply by using effective joint forces in the descriptions of 83.2.1, 83.4.1 and 84.1. Processing the
reduced or modified system by alinear equation solver yields the displacement solution u.

84.2.6. Postprocessing

The postprocessing steps described in 8§3.4 require some modifications because the derived quanti-
tiesof interest to the structural engineer are mechanical reactionforcesand internal forces. Effective
forces by themselves are of little usein design.

Mechanical joint forces including reactions are recovered from

fM = Ku— fT (429)

4 Anillustrative exampleis provided in §4.2.7.

4-10
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E =1000, A= 12, a = 0.0005 for both
members: ATW= 250 AT@ = —1¢P

P=90

2
()&

yil'y

X Il X

1P=4 19=6

Figure4.4. Structure for worked-out Example 1.

To recover mechanical internal forces in member (e), obtain p® by the procedure outlined in
83.4.2, and subtract the thermal component:

p = p© — E@A®® AT®, (4.30)
The mechanical axial stressisthen o© = p{® /A®.

84.2.7. Worked-Out Example 1

The first problem is defined in Figure 4.4. Two truss members are connected in series as shown and fixed at

the ends. Properties E = 1000, A = 5 and @ = 0.0004 are common to both members. The member lengths

are4 and 6. A mechanical load P = 90 acts on the roller node. The temperature of member (1) increases by

AT® = 25° while that of member (2) dropsby AT®@ = —10°. Find the stress in the members.

To reduce clutter note that all y motions are suppressed so only the x freedoms are kept: Uy; = Ug, Uy, = Uy

and u,z = uz. The corresponding node forces are denoted fy; = f;, fyxo = f> and fyz3 = f3. Thethermal

force vectors, stripped to their X = x components, are

f(Tl) = [ f_ﬁ;] = EVAYyDATD [_1] = [_150], f(TZ) = [ f—%] = EQAPy@ AT [_l] = [ 60] .

15 1 150 f13 1 —60

(4.31)

The element stiffness equations are:

1 -1770"1 1 fin —150 1 -177027 [ fao 60
oo 3 [ ] =[]+ [ i) o[y [l ] =48]+ e0) @
No globalization is needed because the equations are already in the global system, and thus we get rid of the
local symbols: f — f, 0 — u. Assembling:

3 -3 0 (VEY fM]_ —150 fMl —150
1000 -3 5 -2 Uy [ = fma [+ 150+60 | = fuo | + 210 |. (4.33)
0 -2 2 Us fM3 —60 fMg —60

The displacement boundary conditions are u; = uz = 0. The mechanical force boundary condition is fy, =
90. Onremoving thefirst and third equations, the reduced systemis5000u, = fy, + 210 = 90+ 210 = 300,
which yieldsu, = 300/5000 = +0.06. The internal forcesin the members are recovered from

E®AD
P’ = T (U2 —U1) — EVADeDAT® = 3000 x 0.06 — 12000 x 0.0004 x 25 = 60,
, E@A®
P2 = —[p (Us—U) - E@APa¢PAT® = 2000 x (—0.06) — 12000 x 0.0004 x (—10) = —72,
(4.34)
whence 0¥ = 60/12 = 5and 0@ = —72/12 = —6. Member (1) is in tension and member (2) in
compression.

4-11
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84.2.8. Worked-Out Example 2

The second example concerns the example truss of Chapters 2-3. The truss is mecanically unloaded, that is,

fuxe = fmxs = fmys = 0. However the temperature of members (1) (2) and (3) changesby AT, —AT and
3AT, respectively, with respect to T, . The thermal expansion coefficient of all three membersis assumed to
be «. We will perform the analysis keeping « and AT asvariables.

Thethermal forcesfor each member in global coordinates are obtained by using (4.25) and the third of (4.27):

1 000 -1 -1
W _ w0, AT [0 1 00 0] _ 0
= EVADD AT | & 1| =100eAT ],
|0 0 0 1 0 0
0 -1 0 0 -1 0
@_p@p2,2 72|+ 0 0 0 0 | _ 1
7 = EYAYaY AT 0 00 -1 1= 500 AT ol (4.35)
|0 01 O 0 1
1 -1 0 0 -1 -1
1 1 10 0 0 1
B _EG AR, ATO _—_ _
7 = EYAYa™ AT VAR 0 1 -1 1 = 2000 AT 1
0 01 1 0 1
Merging the contribution of these 3 members gives the master thermal force vector
—100+ 0 — 200 —300
0+ 0— 200 —200
_ 100+0+0 _ 100
fr =a AT 0—50+0 =a AT “g0 (4.36)
0+ 0+ 200 200
0+ 50 + 200 250
The master stiffness matrix K does not change. Consequently the master stiffness equations are
20 10 -10 0 -10 -10 Uy =0 fmxe —300
10 10 0 0 -10 -10 Uy =0 fmya —200
-10 O 10 O 0 0 Uy | fuxe=0 100
0 0 0 5 0 -5 Uy = o~ fMyZ +a AT —50 (4.37)
-10 -10 0 O 10 10 Ux3 fuxa =0 200
-10 -10 0 -5 10 15 Uys fmys =0 250

in which fyya, fuy: and fyy, are the unknown mechanical reaction forces, and the known forces and dis-
placements have been marked. Since the prescribed displacements are zero, the reduced system is simply

10 0 O Ux2 0 100 100
0 10 10 Ugs | =] 0| +aAT | 200 | =a AT | 200 |. (4.38)
0 10 15 Uy3 0 250 250

Solving (4.38) gives Uy, = Uxs = Uyz = 10 AT. Completing u with the prescribed zero displacements and
premultiplying by K gives the complete effective force vector:

20 10 -10 0 -10 -10 0 —300
10 10 O O -10 -10 0 —200
-10 O 10 0 O 0 10 100
f=Ku= 0 0 0 5 0 -5 0 a AT =a AT 50 |- (4.39)
-10 -20 0 O 10 10 10 200
-10 -10 0 -5 10 15 10 250

4-12



4-13 84.4 PSEUDOTHERMAL INPUTS

But the effective force vector is exactly f+. Consequently
fM =Ku - fT =0. (440)

All mechanical joint forces, including reactions, vanish, and so do the internal mechanical forces. Thisis
a consequence of the example frame being statically determinate.® Such structures do not develop thermal
stresses under any combination of temperature changes.

84.3. INITIAL FORCE EFFECTS

As previously noted, a wide spectrum of mechanical and non-mechanical effects can be acommo-
dated under the umbrella of theinitial force concept. The stiffness equations at the local (member)
level are

KO9® =7 419 =7, (4.41)

and at the global (assembled structure) level:

Ku=fy+f =f. (4.42)

In these equations subscripts M and | identify mechanical and initial node forces, respectively. The
sum of the two: f at the member level and f at the structure level, are called effective forces.

A physical interpretation of (4.42) can be obtained by considering that the structure is blocked
against all motions: u = 0. Thenfy = —f,, and the undeformed structure experiences mechanical
forces. These trangdlate into internal forces and stresses. Engineers also call these prestresses.

Local effectsthat lead toinitial forcesat the member level are: temperature changes (studiedin 84.2,
inwhich f; = fy), moisture diffusion, residual stresses, lack of fit in fabrication, and in-member
prestressing. Global effects include prescribed nonzero joint displacements (studied in 84.1) and
multimember prestressing (for example, by cable pretensioning of concrete structures).

As can be seen there is awide variety of physical effects, whether natural or artificial, that lead to
nonzero initial forces. The good newsisthat once the member equations (4.41) are formulated, the
remaining DSM steps (globalization, merge and solution) areidentical. This nice property extends
to the genera Finite Element Method.

84.4. PSEUDOTHERMAL INPUTS

Some commercial FEM programs do not have a way to handle directly effects such as moisture,
lack of fit, or prestress. But all of them can handle temperature variation inputs. Since in linear
analysis all such effects can be treated as initial forces, it is possible (at least for bar elements) to
model them as fictitious thermomechanical effects, by inputting phony temperature changes. The
following example indicate that thisis done for a bar element.

Suppose that a prestress force Fp is present in abar. The total elongationisd = dy + dp where
dp = FpL/(EA) isdueto prestress. Equate to athermal elongation: dr = ¢ ATp L and solve for

5 For the definition of static determinacy, see any textbook on Mechanics of Materials.
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ATp = Fp/(EAx). Thisisinput to the program as afictitious temperature change. If in addition
thereisarea temperature change AT one would of course specify AT + ATp.

If thisdeviceisused, care should be exercised in interpreting resultsfor internal forces and stresses
given by the program. Thetrick isnot necessary for personal or open-source codes over which you
have full control.
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4-15 Exercises

Homework Exercisesfor Chapter 4

The Direct Stiffness Method: Additional Topics

EXERCISE 4.1

[N:20] Resolve items (a) through (c) — omitting (d) — of the problem of Exercise 3.7 if the vertical right
support “sinks” so that the displacement uys is now prescribed to be —0.5. Everything elseis the same. Use
areduction scheme to apply the displacement BCs.

EXERCISE 4.2

[N:20] Usethe same dataof Exercise 3.7 except that P = 0 and hence there are no applied mechanical forces.
Both members have the same dilatation coefficient « = 10~ 1/°F. Find the crown displacements uy, and uy,
and the member stresses oY and @ if the temperature of member (1) risssby AT = 120°F above T,
whereas member (2) staysat Tef.

Shortcut: the element stiffnesses and master stiffness matrix arethe sameasin Exercise 3.7, soif that Exercise
has been previously assigned no stiffness recomputations are necessary.

EXERCISE 4.3

[A:15] Consider the generic truss member of Figure 2.6. The disconnected member was supposed to have
length L, but because of lack of quality control it was fabricated with length L + &, where § is called the “lack
of fit” Determine the initial force vector f, to be used in (4.41). Hint: find the mechanica forces that would
compensate for § and restore the desired length.

EXERCISE 4.4

[A:10] Show that the lack of fit of the previous exercise can be viewed as equivalent to a prestress force of
—(EA/L)S.

EXERCISE 4.5

[A:40]. Prove that statically determinate truss structures are free of thermal stresses.
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53 85.1 COMPUTER ALGEBRA SYSTEMS

85.1. COMPUTER ALGEBRA SYSTEMS

Computer algebrasystems, known by theacronym CAS, are programsdesigned to perform symbolic and
numeric manipulations following the rules of mathematics.® The development of such programs began
inthemid 1960s. Thefirst comprehensive system — the*granddaddy” of them all, called Macsyma (an
acronym for Project Mac Symbolic M anipulator) — was devel oped using the programming language
Lisp at MIT'sfamous Artificial Intelligence Laboratory over the period 1967 to 1980.

The number and quality of symbolic-manipulation programs has expanded dramatically since the avail-
ability of graphical workstations and personal computers has encouraged interactive and experimental
programming. Asof thiswriting the leading general -purpose contenders are Maple and Mathematica.?
In addition there are a dozen or so more specialized programs, some of which are available free or at
very reasonable cost.

85.1.1. Why Mathematica?

In the present book Mathematica will be used for Chapters and Exercises that develop symbolic and
numerical computation for matrix structural analysis and FEM implementations. Mathematica is a
commercia product developed by Wolfram Research, web site: http://www.wolfram.com. The
version used to construct the code fragments presented in this Chapter is 4.1, which was commercialy
released in 2001. The main advantages of Mathematica for technical computing are:

1. Availability onawiderangeof platformsthat rangefrom PCsand Macsthrough Unix workstations.
Its competitor Mapleis primarily used on Unix systems.

2. Up-to-date user interface with above average graphics. On all machines Mathematica offers a
graphics user interface called the Notebook front-end. Thisis mandatory for serious work.

3. A powerful programming language.
4. Good documentation and abundance of application books at all levels.

One common disadvantage of CA S, and Mathematica is not exception, is computational inefficiency in
numerical calculations compared with a low-level implementation in, for instance, C or Fortran. The
relative penalty can reach several orders of magnitude. For instructional use, however, the penalty is
acceptable when compared to human efficiency. This means the ability to get FEM programs up and
running in very short time, with capabilities for symbolic manipulation and graphics as a bonus.

85.1.2. Programming Style and Prerequisites

The following material assumes that you are a moderately experienced user of Mathematica, or are
willing to learn to be one. The Mathematica Book is just areference manual and not good for training.
But there is an excellent tutorial available: The Beginner’s Guide to Mathematica by Jerry Glynn and
Theodore W. Gray.3

Practicewith the program until you reach thelevel of writing functions, modulesand scriptswithrelative
ease. With the Notebook interface and a good primer it takes only afew hours.

1 some vendors call that kind of activity “doing mathematics by computer” It is more appropriate to regard such programs as
enabling toolsthat help humanswith complicated and error-prone manipulations. Asof now, only humans can do mathematics.

2 Another commonly used program for engineering computations; Matlab, does only numerical computations although an
interface to Maple can be purchased as a toolbox.

3 Thisis aso available on CDROM from MathWare, Ltd, P. O. Box 3025, Urbana, IL 61208, email: info@mathware . com.
The CDROM is a hyperlinked version of the book that can be installed on the same directory as Mathematica.
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Chapter 5: ANALYSIS OF EXAMPLE TRUSS BY A CAS 54

When approaching that level you may noticethat functionsin Mathematica display many aspectssimilar
to C.# You can exploit this similarity if you are proficient in that language. But Mathematica functions
do have some unique aspects, such as matching arguments by pattern, and the fact that internal variables
are global unless otherwise made local.

Although function arguments can be modified, in practice this should be avoided because it may be
difficult to trace side effects. The programming style enforced here outlaws output arguments and a
function can only return its name. But since the name can be alist of arbitrary objectstherestriction is
not serious.®

Our objective is to develop a symbolic program written in Mathematica that solves the example plane
truss aswell as some symbolic versionsthereof. The program will rely heavily on the development and
use of functions implemented using the Module construct of Mathematica. Thus the style will be one
of procedural programming.® The program will not be particularly modular (in the computer science
sense) because Mathematica is not suitable for that programming style.”

The code presented in Sections 5.2-5.7 uses afew language constructs that may be deemed as advanced,
and these are briefly noted in the text so that appropriate reference to the Mathematica reference manual
can be made.

85.1.3. Class Demo Scripts

The cell scripts shown in Figures 5.1 and 5.2 will be used to illustrate the organization of a Notebook
fileand the “look and feel” of some basic Mathematica commands. These scriptswill be demonstrated
in class from alaptop.

§5.2. THEELEMENT STIFFNESSMODULE

As our first FEM code segment, the top box of Figure 5.3 shows a module that evaluates and returns
the 4 x 4 stiffness matrix of a plane truss member (two-node bar) in globa coordinates. The text in
that box of that figure is supposed to be placed on a Notebook cell. Executing the cell, by clicking on
it and hitting an appropriate key (<Enter> on a Mac), gives the output shown in the bottom box. The
contents of the figure is described in further detail below.

§5.2.1. Module Description

The stiffness module is called ElemStiff2DTwoNodeBar. Such descriptive names are permitted by
the language. This reduces the need for detailed comments.

4 Simple functions can be implemented in Mathematica directly, for instance DotProduct [x_,y_] :=x.y; more complex
ones are handled by the Module construct emphasized here.

5 Such restrictions on arguments and function returns are closer in spirit to C than Fortran athough you can of course modify
C-function arguments using pointers.

6 The name Module should not be taken too seriously: it is far away from the concept of modules in Ada, Modula or Fortran
90. But such precise levels of interface control are rarely needed in symbolic languages.

7 And indeed none of the CAS packages in popular use is designed for strong modularity because of historical and interactivity
constraints.
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55 85.2 THE ELEMENT STIFFNESS MODULE

Integration example

fIx_,a_,B_]:=(1+p*x"2)/ (1+a*x+x"2);
F=Integrate[f[x,-1,2],{x,0,5}];
F=Si npli fy[F];

Print[F]; Print[NF]];
F=NIntegrate[f[x,-1,2],{x,0,5}];
Print["F=",F//InputForn;

10 + Log[21]
13. 0445
F=13. 044522437723455

Figure5.1. Example cell for class demo.

Fa=Integrate[f[z,a, b],{z, 0,5}];

Fa=Sinplify[Fa]; Print[Fa];

Pl ot 30 Fa, {a, -1, 1}, {b, - 10, 10}, Vi ewPoi nt - >{-1, -1, 1}];
Print["Fa=", Fa// | nput Form

! ia

= |10V4-a? b-a+/4-a2 blog[26+5a] -i (2+ (-2+a?) b) Log[1 - N
24 a2 9l -1 (2 ( ) b) Log[1 - 0]

2ilogl+ 22 ]_2ibLog[l+ 2 iaZblog[l+ 2

d "= ] ol " Va—a - o[t~ W]
_ ] _ a2 _ - —3 B o —
ZJiLOg[ 10i-1a++vV4-a }721bLog[ 10i-1a+v4-a ]H’Laszog[ 10i-1a+v4-a }7
4-a? 4 - a2 4 _ 32
o — o — . -
ZiLOg[101+14a+\2/4 a }+2].lb|_og[1011+14a+\2/4 a }7ja2b|—og[101+14a+\2/4 a }
- a _a 2

4
-10-1
Fa=(10+Sgrt [4 - a*2] «b - axSgrt [4 - a*2] »b+Log[26 + 5+a] -
I (2 + (-2 + a”2) «b) xLog[1l - (I ra) /Sqrt[4 - a”2]] + (2x1) «Log[l + (I »a) /Sqrt [4 - an2]] -
(2%1)«bxLog[l + (I »a) /Sqgrt[4 - a”2]] + | xa”2xbxLog[l + (I »a) /Sqrt [4 - a”2]] +

(2%1)«Log[(-10x1 -1 xa + Sgrt [4 - a*2])/Sqrt [4 - a”2]] -
(2+1)+bxLog[(-10«l -1 xa + Sqrt[4 - a*2]) /Sqrt [4 - a™2]] +
Il xa*2+bxLog[(-10«1 -1 ~a + Sgrt (4 - a~2]) /Sqrt [4 - a*2]] -

(2x1)«Log[ (10«1 + 1 xa + Sqrt (4 - a~2]) /Sqrt [4 - an2]] +
(2%1)«bxLog[ (10«1 + 1 xa + Sqrt [4 - a*2])/Sqrt [4 - a*2]] -
Il xa*2+bxLog[ (10«1 + 1 xa + Sqgrt [4 - an2]) /Sqrt [4 - an2]])/ (2+«Sqrt [4 - an2])

Figure5.1. Another example cell for class demo.
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L=Sgrt [ dx"*2+dy”2] ;
Ke=(EmrA/ L)* {{ c”2,
{ c*s,
{-c"2, -
{-s*c, -
Ret ur n[ Ke]

Print["Nunerical elemsti

Ke=Si npl i fy[ Ke, L>0] ;

El entsti f f 2DTwoNodeBar [ {{x1_,y1 },{x2_,y2_}},{Em, A }]
Modul e[ {c, s, dx=x2-x1, dy=y2-y1, L, Ke},
C=

Print["Synbolic elemstiff matrix:"];

dx/L; s=dy/L;
c*s,-c"2,-c*s},
sN2,-s*c, -s"2},
s*c, c"2, s*c},
sh2, s*c, s"2}};

s
Ke= El enti f f 2DTwoNodeBar [ {{0, 0}, {10, 10}}, {100, 2*Sqrt[2] }];

ff matrix:"]; Print[Ke//MtrixForn;

Ke= El entt i f f 2DTwoNodeBar [ {{0, 0}, {L, L}},{Em A}];

Print[Ke//MatrixForni;

Nunerical elemstiff matri

10 10
10 10
-10 -10 10
-10 -10 10

-10 -10
-10 -10
10
10
Synmbolic elemstiff matrix
AEmM

AEm AEm

X:

AEm

22 L 22 L 2v2L 22 L
AEm AEm __AEm _ AEm
22 L 242 L 242 L 22 L
A Em AEm AEm AEm
T2VzZL 22 L 22 L 22 L
__AEm___AEm AEm AEm
242 L 22 L 22 L 242 L

Figure5.3. ModuleElenStiff2DTwoNodeBar to form the element stiffness of
a 2D bar element in global coordinates, test program and its output.

The modul e takes two arguments:

{{x1,y1},{y1,y2}} Atwo-level list® containingthe {x, y} coordinatesof the bar end nodes|abelled

asland2.°

{Em,A}

The use of the underscore after argument i
for pattern-matching in Mathematica. If,
this aspect should not come as a surprise.

The module name returns the 4 x 4 member stiffness matrix internally called Ke. The logic that leads
orward and need not be explained in detail. Note, however,
the elegant direct declaration of the matrix Ke as alevel-two list, which eliminates the fiddling around
with array indices typical of standard programming languages. The format in fact closely matches the

to the formation of that matrix is straightf

mathematical expression (3.4).

8 A level-onelist is a sequence of items enclosed in curly braces. For example: {x1,y1} isalist of two items. A level-two list

A level-one list containing the bar elastic modulus, E and the member cross
section area, A. See 85.2.3 as to why name E cannot be used.

tem names in the declaration of the Module is arequirement
as recommended, you have learned functions and modules

isalist of level-onelists. Animportant example of alevel-two list is a matrix.

9 These are called the local node numbers, and replace the i, j of previous Chapters. Thisis acommon FEM programming

practice.
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85.2.2. Programming Remarks

Thefunctionin Figure 5.3 uses several intermediate variableswith short names: dx, dy, s, cand L. Itis
strongly advisable to make these symbols local to avoid potential names clashes somewhere else.’© In
theModule[ ...] construct thisisdone by listing those namesin alist immediately after the opening
bracket. Local variables may be initialized when they are constants or simple functions of the argument
items; for example on entry to the module dx=x2-x1 initializes variable dx to be the difference of x
node coordinates, namely AX = X, — Xj.

The use of the Return statement fulfills the same purpose asin C or Fortran 90. Mathematica guides
and textbooks advise against the use of that and other C-like constructs. The writer strongly disagrees:
the Return statement makes clear what the Module gives back to itsinvoker and is self-documenting.

85.2.3. Case Sensitivity

Mathematica, like most recent computer languages, is case sensitive so that for instance E is not the
samease. Thisisfine. But thelanguage designer decided that names of system-defined objects such as
built-in functions and constants must begin with a capital letter. Consequently the liberal use of names
beginning with a capital letter may run into clashes. If, for example, you cannot use E because of its
built-in meaning as the base of natural logariths.

In the code fragments presented throughout this book, identifiers beginning with upper case are used for
objects such as stiffness matrices, modulus of elasticity, and cross section area, following established
usagein Mechanics. When thereisdanger of clashing with a protected system symbol, additional lower
case letters are used. For example, Em is used for the elastic modulus instead of E because the latter is
areserved symbol.

85.2.4. Testingthe Member StiffnessModule

Following the definition of ElemStiff2DTwoNodeBar in Figure 5.3 there are severa statements that
constitute the module test program that call the module and print the returned results. Two cases are
tested. First, the stiffness of member (3) of the example truss, using al-numerical values. Next, some
of the input arguments for the same member are given symbolic names so they stand for variables; for
example the elastic module is given as Em instead of 100 as in the foregoing test. The print output of
the test is shown in the lower portion of Figure 5.3.

The first test returns the member stiffness matrix (3.10) as may be expected. The second test returns
a symbolic form in which three symbols appear: the coordinates of end node 2, which is taken to be
located at {L,L} instead of {10, 10}, A, which is the cross-section area and Em, which is the elastic
modulus. Note that the returning matrix Ke is subject to a Simplify step before printing it, which is
the subject of an Exercise. The ability to carry along variables is of course afundamental capability of
any CAS and the main reason for which such programs are used.

10 The“global by default” choice is the worst one, but we must live with the rules of the language.
11 In retrospect this appears to have been a highly questionable decision. System defined names should have been identified by a

reserved prefix or postfix to avoid surprises, as done in Macsyma or Maple. Mathematica issues awarning message, however,
if an attempt to redefine a“ protected symbol” is made.
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Mer geEl eml nt ovaster Sti ff[Ke_, eftab_, Ki n_] : =Modul e[

{i,j,ii,jj,K=Kin},
For [i=1, i<=4, i++, ii=eftab[[i]];
For [j=i, j<=4, j++ jj=eftab[[j]];
KELjj,ii11=KI[ii,jjll+=Ke[[i,j]]
]; Return[K]

I

K=Tabl e[ 0, {6}, {6} ];

Print["Initialized master stiffness matrix:"];
Print[K//MatrixForm

Ke=El entti f f 2DTwoNodeBar [ {{ 0, O}, {10, 10} }, {100, 2*Sqgrt[2] }];
Print["Menber stiffness matrix:"]; Print[Ke//MatrixForni;
K=Mer geEl em nt oMaster Sti ff[Ke, {1, 2,5, 6}, K];

Print["Master stiffness after nenber nerge:"];
Print[K//MatrixForn;

Initialized master stiffness matrix:

000O0O0O
00O0OOO
00O0O0OOO
000O0O0O
00O0O0OOO
00O0O0OOTO

Menber stiffness matrix:

10 10 -10 -10
10 10 -10 -10
-10 -10 10 10
-10 -10 10 10

Master stiffness after nmenber nerge:

10 10 0 O -10 -10
10 10 0 O -10 -10
0 0 00 O 0
0 0 00 O 0
-10 -10 0 O 10 10
-10 -10 0 0 10 10

Figure5.4. ModuleMergeElemIntoMasterStiff to mergea4 x 4 bar element
gtiffness into the master stiffness matrix, test program and its output.

85.3. MERGING A MEMBER INTO THE MASTER STIFFNESS

The next fragment of Mathematica code, listed in Figure 5.4, is used in the assembly step of the
DSM. Module MergeElemIntoMasterStiff receives the 4 x 4 element stiffness matrix formed by
FormElemStiff2DNodeBar and “merges’ it into the master stiffness matrix. The module takes three
arguments:

Ke The 4 x 4 member stiffness matrix to be merged. Thisisalevel-two list.

eftab Thecolumn of the Element Freedom Table, defined in §3.4.1, appropriate to the member
being merged; cf. (3.29). Recall that the EFT lists the global equation numbers for the
four member degrees of freedom. Thisisalevel-onelist consisting of 4 integers.

Kinp  Theincoming 6 x 6 master stiffness matrix. Thisisalevel-two list.

MergeElemIntoMasterStiff returns, as module name, the updated master stiffness matrix internally
called K with the member stiffness merged in. Thus we encounter here a novelty: an input-output
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59 85.5 MODIFYING THE MASTER SYSTEM

Assenbl eMast er Sti f f Of Exanpl eTruss[]: =
Modul e[ { Ke, K=Tabl e[ 0, {6}, {6}]}.
Ke=El enst i f f 2DTwoNodeBar [ {{ O, 0}, {10, 0}}, {100, 1}];
K= Mer geEl enl ntoMaster Stiff[Ke, {1, 2, 3,4},K];
Ke=El entti f f 2DTwoNodeBar [ {{ 10, 0}, {10, 10} }, {100, 1/ 2}];
K= Mer geEl eml ntoMaster Stiff[Ke, {3,4,5,6},K];
Ke=El entt i f f 2DTwoNodeBar [ {{O0, 0}, {10, 10}}, { 100, 2*Sqrt[2] }];
K= Mer geEl em ntoMvaster Stiff[Ke, {1, 2,5, 6}, K];

Ret ur n[ K]

I
K=Assenbl eMast er Sti f f OFf Exanpl eTruss[ ] ;
Print["Master stiffness of exanple truss:"]; Print[K//MatrixFornj;
Master stiffness of exanple truss:

20 10 -10 O -10 -10

10 10 0 0 -10 -10

-10 O 10 O 0 0

0 0 0 5 0 -5

-10 -10 O 0 10 10

-10 -10 0 -5 10 15

Figure5.5. Module MasterStiff0fExampleTruss that formsthe 6 x 6 master
stiffness matrix of the example truss, test program and its output.

argument. Because a formal argument cannot be modified, the situation is handled by copying the
incoming Kin into K on entry. It isthe copy which is updated and returned via the Return statement.
The implementation has a strong C flavor with two nested For loops. Because the iterators are very
simple, nested Do loops could have been used as well.

The statements after the module provide asimple test. Before the first call to this function, the master
stiffness matrix must be initialized to azero 6 x 6 array. Thisis done in the first test statement using
the Table function. The test member stiffness matrix is that of member (3) of the example truss, and
is obtained by calling ElemStiff2DTwoNodeBar. The EFT is{1,2,5,6} since element freedoms
1,2,3,4 map into global freedoms 1,2,5,6. Running the test statementsyields the listing given in Figure
5.4. Theresult is as expected.

85.4. ASSEMBLING THE MASTER STIFFNESS

The module MasterStiffOfExampleTruss, listed in the top box of Figure 5.5, makes use of the
foregoing two modules: ElemStiff2DTwoNodeBar and MergeElemIntoMasterStiff, to form the
master stiffness matrix of the example truss. Theinitialization of the stiffness matrix array in K to zero
is done by the Table function of Mathematica, which is handy for initializing lists. The remaining
statements are self explanatory. The module is similar in style to argumentless Fortran or C functions.
It takes no arguments. All the example truss datais “wired in.”

The output from the test program in is shown in the lower box of Figure 5.5. The output stiffness
matches that in Equation (3.20), as can be expected if all fragments used so far work correctly.

85.5. MODIFYING THE MASTER SYSTEM

Following the assembly process the master stiffness equations Ku = f must be modified to account
for single-freedom displacement boundary conditions. This is done through the computer-oriented
equation modification process described in §3.4.2.
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Modi fi edMast er Sti f f For DBC[ pdof _, K ] := Modul e[
{i,]j,k, nk=Lengt h[ K], np=Lengt h[ pdof ] , Knod=K} ,
For [k=1, k<=np, k++, i=pdof[[k]];
For [j=1,j<=nk,j++ Knod[[i,]j]]=Kmod[[j,i]]=0];
Knod[ [i,i]]=1];
Ret ur n[ Knod]

I
Modi fi edMast er For cesFor DBC[ pdof _, f _] : = Modul e[
{i, k, np=Lengt h[ pdof ], f nod=f},
For [ k=1, k<=np, k++, i=pdof[[k]]; frod[[i]]=0];
Ret ur n[ f nod]

g

K=Array[Kij,{6,6}]; Print["Assenbled master stiffness:"];
Print[K//MatrixForn;

K=Modi fi edast er Sti f f ForDBC[ { 1, 2, 4}, K] ;

Print["Master stiffness nodified for displacement B.C. :"];
Print[K/ /MatrixForm;

f=Array[fi,{6}]; Print["Force vector:"]; Print[f];

f =Modi f i edMast er For cesFor DBC[ {1, 2, 4},f];

Print["Force vector nodified for displacement B.C.:"]; Print[f];

Assenbl ed naster stiffness:

Kijri, 1] Kij[1, 2] Kij[1, 3] Kij[1, 4] KijI[1, 5] KijI[1, 6]
Kij[2, 11 Kij[2, 2] Kij[2, 3] Kij[2, 4] Kij[2, 5] Kij[2 6]
Kij[3, 1] Kij[3, 2] Kij[3 3] Kij[3, 4] KijI[3, 5] Kij[3, 6]
Kij[4, 1] Kij[4, 2] Kij[4, 3] Kij[4, 4] Kij[4, 5] Kij[4, 6]
Kij[5 1] Kij[5 2] Kij[5 3] Kij[5 4] KijI[5 5] KijI[5 6]
Kij[6, 1] Kij[6, 2] Kij[6, 3] Kij[6, 4] Kij[6, 5] Kij[6, 6]
Master stiffness nodified for displacement B.C. :

10 0 0 0 0

01 0 0 0 0

0 0 Kij[3, 3] 0 Kij[3, 5] Kij[3, 6]

00 0 1 0 0

0 0 Kij([5 3] 0 Kij([5 5] KijI[5 6]

0 0 Kij[6, 3] O Kij[6, 5] Kij[6, 6]

Force vector:

(fi[1y, fi 2y, fi (31, fi (43, fi (5], fi[6]}
Force vector nodified for displacenment B.C.:
{0, O, fi[3], O, fi[5], fi[6]}

Figure5.6. ModulesModifiedMasterStiff and ModifiedMasterForce that modify the
master stiffness matrix and force vector of atruss to impose displacement BCs.

Module ModifiedMasterStiffForDBC carries out this process for the master stiffness matrix K,
whereas ModifiedMasterForcesForDBC does this for the nodal force vector f. These two modules
are listed in the top box of Figure 5.6, along with test statements. The logic of both functions, but
especially that of ModifiedMasterForcesForBC, is considerably ssimplified by assuming that all
prescribed displacements are zero, that is, the BCs are homogeneous. The more general case of
nonzero prescribed valuesis treated in Chapter 21.

Function ModifiedMasterStiffnessForDBC hastwo arguments:

pdof A list of the prescribed degrees of freedom identified by their global number. For the
example truss this list contains three entries: {1, 2, 4}.

K The master stiffness matrix K produced by the assembly process.

The function clears appropriate rows and columns of K, places ones on the diagonal, and returns the
modified K asfunction value. Theonly slightly fancy thing in thismoduleisthe use of the Mathematica
function Length to extract the number of prescribed displacement components: Length [pdof] here
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I nt For ce2DTwoNodeBar [ {{x1_,y1_},{x2_,y2_}},{Em, A },eftab_,u_]:=
Modul e[ {c, s, dx=x2-x1, dy=y2-yl1,L,ix,iy,jX,]jy,ubar,e},
L=Sqrt [ dx*2+dy”~2]; c=dx/L; s:dy/ L; {ix,iy,]jx,jy}=eftab;
ubar={c*u[[ix]]+s*u[[iy]],-s*u[[ix]]+c*u[[iy]],
c*ul[jx]]+s*ul[jy]],-s*ul[jx]]+c* u[[Jy]]}
e=(ubar[[3]]-ubar[[1]])/L; Return[EntA*e]

p =| nt For ce2DTwoNodeBar [ { {0, 0}, { 10, 10}} {100, 2*Sqrt[ 2]},
{1,2,5,6},{0,0,0,0,0.4,-0. 2}

Print["Menber int force (nunerical): ]; Print[N p]];

p =Int For ce2DTwoNodeBar [{{0, 0}, {L, L}}, {Em A},
{1,2,5,6},{0,0,0,0, ux3, uy3}];

Print["Menber int force (synbolic):"]; Print[Sinmplify[p]];

Menber int force (nunerical):
2.82843
Menber int force (synbolic):
AEmM (ux3 + uy3)

2L

Figure5.7. Module IntForce2DTwoNodeBar for computing the internal forcein a bar element.

will return the value 3, which is the length of the list pdof. Similarly nk=Length [K] assigns 6 to nk,
which isthe order of matrix K. Although for the example truss these values are known a priori, the use
of Length servesto illustrate a technique that is heavily used in more general code.

Module ModifiedMasterForcesForDBC has similar structure and logic and need not be described
in detail. It is important to note, however, that for homogeneous BCs the modules are independent
of each other and may be called in any order. On the other hand, if there were nonzero prescribed
displacements the force modification must be done before the stiffness modification. This is because
stiffness coefficients that are cleared in the latter are needed for modifying the force vector.

The test statements are purposedly chosen to illustrate another feature of Mathematica: the use of the
Array function to generate subscripted symbolic arrays of one and two dimensions. The test output
is shown in the bottom box of Figure 5.6, which should be self explanatory. The force vector and its
modified form are printed as row vectors to save space.

§5.6. RECOVERING INTERNAL FORCES

Mathematica providesbuilt-in matrix operationsfor solving alinear system of equationsand multiplying
matrices by vectors. Thuswe do not need to write application functionsfor the solution of the modified
stiffness equations and for the recovery of nodal forces. Consequently, the last application functions
we need are those for internal force recovery.

Function IntForce2DTwoNodeBar listed in the top box of Figure 5.7 computes the internal
force in an individual bar element. It is somewhat similar in argument sequence and logic to
ElemStiff2DTwoNodeBar (Figure 5.3). The first two arguments are identical. Argument eftab
provides the Element Foreedom Table array for the element. The last argument, u, is the vector of
computed node displacements.

The logic of IntForce2DTwoNodeBar is straightforward and follows the method outlined in 83.2.1.
Member joint displacements G® in local coordinates {X, y} are recovered in array ubar, then the
longitudinal strain e = (Uy; — Uyi)/L and the internal (axial) force p = E Ae isreturned as function
value. As coded the function contains redundant operations because entries 2 and 4 of ubar (that
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I nt For cesOf Exanpl eTruss[u_]: = Modul e[ {f=Tabl e[ 0,{3}]},
f[[1]]=I nt For ce2DTwoNodeBar [ {{0, 0}, {10, 0}}, {100, 1}, {1, 2, 3, 4}, u] ;
f[[2]]=IntForce2DTwoNodeBar [ {{10, 0}, {10, 10}}, {100, 1/ 2},{3, 4,5, 6}, u] ;
f[[3]]=Int Force2DTwoNodeBar [ {{O0, 0}, {10, 10}}, {100, 2*Sqrt[2] },
{1, 2,5,6}, u];
Ret urn[ f]

f =I nt For cesOf Exanpl eTruss[{0,0,0,0,0.4,-0.2}];
Print["Internal nmenber forces in exanple truss:"];Print[Nf]];

I nternal menber forces in exanple truss:
{0., -1., 2.82843)}

Figure5.8. Module IntForceOfExampleTruss that computes
internal forcesin the 3 members of the example truss.

is, components Gy; and uy;) are not actually needed to get p, but were kept to illustrate the general
backtransformation of global to local displacements.

Running this function with the test statements shown after the modul e produces the output shown in the
bottom box of Figure 5.7. The first test is for member (3) of the example truss using the actual nodal
displacements (3.24). It also illustrates the use of the Mathematica built in function N to produce output
in floating-point form. The second test does a symbolic calculation in which several argument values
arefed in variable form.

The top box of Figure 5.8 lists a higher-level function, IntForcesO0fExampleTruss, which has a
single argument: u, which is the complete vector of joint displacements u. This function calls
IntForce2DTwoNodeBar three times, once for each member of the example truss, and returns the
three member internal forces thus computed as a 3-component list.

Thetest statementslisted after IntForcesOfExampleTruss feed the actual node displacements (3.24)
to IntForcesOfExampleTruss. Running the functions with the test statements produces the output
shown in the bottom box of Figure 5.8. Theinternal forcesare p® = 0, p@@ = —1and p® = 22 =
2.82843.

85.7. PUTTING THE PIECESTOGETHER

After al this development and testing effort documented in Figures 5.3 through 5.8 we are ready to
make use of all these bits and pieces of code to analyze the example planetruss. Thisis actually done
with the logic shown in Figure 5.9. Thisdriver program uses the previously described modules

ElemStiff2DTwoNodeBar
MergeElemIntoMasterStiff
MasterStiffOfExampleTruss
ModifiedMasterStiffForDBC
ModifiedMasterForcesForDBC
IntForce2DTwoNodeTruss
IntForcesOfExampleTruss (5.1

These functions must have been defined (" compiled”) at the time the driver programs described below
arerun. A simple way to making sure that all of them are defined is to put al these functions in the
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5-13 85.7 PUTTING THE PIECES TOGETHER

same Notebook file and to mark them as initialization cells. These cells may be executed by picking
up Kernel — Initialize — Execute Initialization. (An even simpler procedure would to group them all
in one cell, but that would make placing separate test statements difficult.)

f={0,0,0,0, 2, 1};

K=Assenbl eMvast er Sti f f OF Exanpl eTruss|[];

Knmod=Modi fi edMast er Sti ff For DBC[ { 1, 2, 4}, K] ;

f mod=Mbodi f i edMast er For cesFor DBC[ {1, 2, 4}, f];

u=Si npl i fy[ | nver se[ Knod] . f nod] ;

Print["Conput ed nodal displacenments:"]; Print[u];
f=Sinplify[K u];

Print["External node forces including reactions:"]; Print[f];
p=Si npl i f y[ | nt For cesCf Exanpl eTruss[ u] ] ;
Print["Internal nmenber forces:"]; Print[p];

Conput ed nodal di spl acenents:
{0,000 2, -1}
00,0, 0, &, - %
Ext ernal node forces including reactions:
(-2, -2, 0,1, 2, 1}
I nternal menber forces:

{0, -1, 2+/2}

Figure5.9. Driver program for numerical analysis of example truss and its output.

The program listed in the top box of Figure 5.9 first assembles the master stiffness matrix through
MasterStiffOfExampleTruss. Next, it applies the displacement boundary conditions through
ModifiedMasterStiffForDBC and ModifiedMasterForcesForDBC. Note that the modified stiff-
ness matrix is placed into Kmod rather than X to save the original form of the master stiffness for the
reaction force recovery later. The complete displacement vector is obtained by the matrix calculation

u=Inverse[Kmod] .fmod

which takes advantage of two built-in Mathematica functions. Inverse returnstheinverse of its matrix
argument'? The dot operator signifies matrix multiply (here, matrix-vector multiply.) The enclosing
Simplify function is placed to simplify the expression of vector u in case of symbolic calculations; it
is actually redundant if all computations are numerical asin Figure 5.9.

The remaining calculations recover the node vector including reactions by the matrix-vector multiply
f = K.u (recall that K contains the unmodified master stiffness matrix) and the member internal forces

p through IntForcesOfExampleTruss. The program printsu, £ and p as row vectors to conserve
space.

Running the program of the top box of Figure 5.9 produces the output shown in the bottom box of that
figure. The results confirm the hand calculations of Chapter 3.

At this point you may wonder whether all of this is worth the trouble. After al, a hand calculation
(typically helped by a programable calculator) would be quicker in terms of flow time. Writing and
debugging the Mathematica fragments displayed here took the writer about six hours (although about
two thirds of this was spent in editing and getting the fragment listings into the Chapter.) For larger

2 Thisisahighly inefficient way to solve Ku = f if this system becomes large. It is done here to keep simplicity.
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f={0,0,0,0, fx3,fy3};

K=Assenbl eMast er Sti f f OF Exanpl eTruss[ ] ;

Knod=Modi fi edMast er Sti f f For DBJ {1, 2, 4}, K] ;

f mod=Modi f i edMast er For cesFor DBC[ {1, 2, 4},f];

u=Si npl i fy[ | nver se[ Knod] . f nod] ;

Print["Conput ed nodal displacements:"]; Print[u];
f=Sinplify[K u];

Print["External node forces including reactions:"]; Print[f];
p=Si npl i fy[ | nt For cesCf Exanpl eTruss[ u] ];

Print["Internal nenber forces:"]; Print[p];

Conput ed nodal di spl acenents:

{0, 0,0, 0, % (3tx3-2fy3), % (-fx3+1y3)}
Ext ernal node forces including reactions:
{-fx3, -fx3, 0, fx3-fy3, fx3, fy3}

I nternal menber forces:

{0, -fx3+fy3, /2 1x3}

Figure 5.10. Driver program for symbolic analysis of example truss and its outpui.

problems, however, Mathematica would certainly beat hand-plus-calculator computations, the cross-
over typicaly appearing for 10-20 equations. For up to about 500 equations and using floating-point
arithmetic, Mathematica gives answers within minutes on afast PC or Mac with sufficient memory but
eventually runs out of steam at about 1000 equations. For arange of 1000 to about 10000 equations,
Matlab would bethe best compromi se between human and computer flow time. Beyond 10000 equations
aprogram in alow-level language, such as C or Fortran, would be most efficient in terms of computer
time.

One distinct advantage of computer algebra systems appear when you need to parametrize a small
problem by leaving one or more problem quantities as variables. For example suppose that the applied
forces on node 3 areto be left as fyz and fy3. You replace the last two components of array p as shown
in the top box of Figure 5.10, execute the cell and shortly get the symbolic answer shown in the bottom
box of Figure 5.10. Thisis the answer to an infinite number of numerical problems. Although one
may try to undertake such studies by hand, the likelyhood of errors grows rapidly with the complexity
of the system. Symbolic manipulation systems can amplify human abilities in this regard, as long
as the algebra " does not explode”’ because of combinatorial complexity. Examples of such nontrivial
calculations will appear throughout the following Chapters.

REMARK 5.1

The “combinatorial explosion” danger of symbolic computations should be always kept in mind. For example,
the numerical inversion of a N x N matrix isa O(N?) process, whereas symbolic inversion goes as O(N!). For
N = 48 the floating-point numerical inverse will be typically done in a fraction of a second. But the symbolic
adjoint will have 48! = 12413915592536072670862289047373375038521486354677760000000000 terms, or
O(10%Y). There may be enough electrons in this Universe to store that, but barely ...
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5-15 Exercises

Homework Exercisesfor Chapter 5

Analysis of Example Trussby a CAS

Before doing any of these Exercises, download the Mathematica Notebook file ExampleTruss . nb from the course
web site. (Go to Chapter 5 Index and click on the link). Open this Notebook file using version 4.0 or alater one.
Thefirst eight cells contain the modules and test statements listed in the top boxes of Figures 5.3-10. Thefirst six
of these are marked as initialization cells. Before running driver programs, they should be executed by picking up
Kernel — Initialize — Execute Initialization. Verify that the output of those six cells agreeswith that shown in the
bottom boxes of Figures 5.3-6. Then execute the driver programsin Cells 7-8 by clicking on the cells and hitting
<Enter>, and compare the output with that shown in Figures 5.9-10. If the output checks out, you may proceed to
the Exercises.

EXERCISE 5.1

[C:10] Explainwhy the Simplify command in thetest statements of Figure 5.3 saysL>0. (Oneway to figurethis
out isto just say Ke=Simplify[Ke] and look at the output. Related question: why does Mathematica refuseto
simplify Sqrt [L~2] to L unless one specifies the sign of L in the Simplify command?

EXERCISE 5.2

[C:10] Explainthelogic of theFor loopsin themergefunction MergeElemIntoMasterStiff of Figure5.4. What
does the operator += do?

EXERCISE 5.3

[C:10] Explain the reason behind the use of Length in the modules of Figure 5.6. Why not ssimply set nk and np
to 6 and 3, respectively?

EXERCISE 5.4

[C:15] Of the seven modules listed in Figures 5.3 through 5.8, two can be used only for the example truss, three
can be used for any planetruss, and two can be used for other structures analyzed by the DSM. Identify which ones
and briefly state the reasons for your classification.

EXERCISE 5.5

[C:20] Modify themodulesMasterStiff0fExampleTruss, IntForcesOfExampleTruss andthedriver program
of Figure 5.9 to solve numerically the three-node, two-member truss of Exercise 3.7. Verify that the output
reproduces the solution given for that problem.

EXERCISE 5.6

[C:25] Expand the logic ModifiedMasterForcesForDBC to permit specified nonzero displacements. Specify
these in a second argument called pval, which contains alist of prescribed values paired with pdof.
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xynode={{0, 0}, {10, 0}, {10, 10} }; el enod={{1, 2},{2,3},{3, 1}};
unode={{0, 0},{0,0},{2/5,-1/5}}; anp=5; p={};
For [t=0,t<=1,t=t+1/5,

For [e=1, e<=Lengt h[ el enod], e++, {i,j}=elenod[[€e]];

xyi =xynode[[i]];ui =unode[[i]];xyj=xynode[[j]];uj=unode[[]j]];

p=AppendTo[ p, Gr aphi cs[ Li ne[ { xyi +anp*t *ui , xyj +tamp*t*uj }]111;
1K

I
Show p, Axes->Fal se, Aspect Rat i o- >Aut omat i c] ;

EXERCISE 5.7

Figure E5.1. Mystery program for Exercise 5.7.

5-16

[C:20] Explain what the program of Figure E5.1 does, and the logic behind what it does. (You may want to put it

inacell and execute it.) What modifications would be needed so it can be used for any plane struss?
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6-3 86.1 FORMULATION OF MOM MEMBERS

Thetruss member used as example in Chapters 2—4 isan instance of astructural element. Such ele-
ments may be formulated directly using concepts and modeling techniques devel oped in Mechanics
of Materials (MoM).! The construction does not involve the more advanced tools that are required
for the continuum finite elements that appear in Part 11.

This Chapter presents an overview of the technique to construct the element stiffness equations of
“MoM members’ using simple matrix operations. These simplified equations come in handy for
asurprisingly large number of applications, particularly in skeletal structures. Focusison simplex
elements, which may beformed directly as a sequence of matrix operations. Non-simplex elements
are presented as a recipe, since their proper formulation requires work theorems not yet studied.

The physical interpretation of the FEM is still emphasized. Consequently we continue to speak of
structures built up of members connected at joints.

86.1. FORMULATION OF MOM MEMBERS
86.1.1. What They Look Like

MoM-based formulationsarelargely restricted tointrinsically one-dimensional members. Theseare
structural components one of whose dimensions, called the longitudinal dimension, issignificantly
larger than the other two, which are called the tranverse dimensions. Such members are amenable
to the simplified structural theories developed in MoM textbooks. We shall study only straight
members with geometry defined by the two end joints. The member cross sections are defined by
the intersection of planes normal to the longitudinal dimension with the member. See Figure 6.1.
Notethat although the individual member will beidealized as being one-dimensional initsintrinsic
or local coordinate system, it is generally part of atwo- or three-dimensional structure.

This class of structural components embodies bars, beams, beam-columns, shafts and spars. Al-
though geometrically similar, the names distinguish the main kind of internal forces the member
resists and transmits: axial forces for bars, bending and shear forces for beams, axial compression
and bending for beam-columns, torsion forces for shafts, and shear forces for spars.

The members are connected at their end joints by displacement degrees of freedom. For truss (bar)
members those freedoms are the tranglational components of the joint displacements. For other
types, notably beams and shafts, nodal rotations are chosen as additional degrees of freedom.

The structures fabricated with these kinds of members are generaly three-dimensional. Their
geometry isdefined with respect to aglobal Cartesian coordinate system {Xx, y, z}. Two-dimensional
idealizations are useful simplificationsin caseswhere the nature of the geometry and loading allows
the reduction of the structural model to one plane of symmetry, which is chosen to be the {x, y}
plane. Plane trusses and plane frameworks are examples of such simplifications.

In this Chapter we study generic structural members that fit the preceding class. An individual
member is identified by (e) but this superscript will be usually suppressed in the equations below

1 Mechanics of Materials was called Strength of Materialsin older texts. The scope of this subject includes bars, beams,
shafts, arches, thin plates and shells, but only one-dimensional models are covered in basic undergraduate courses. MoM
involvesab initio kinematic assumptions such as* plane sectionsremain plane.” Anidentical acronymisusedin Electrical
Engineering for something completely different: the Method of Moments.
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\ X

Figure6.1. A Mechanics of Materials (MoM) member is a structural element one of
whose dimensions (the longitudinal dimension) is significantly larger than
the other two. Local axes {X, Y, z} are chosen as indicated. Although the
depicted member is prismatic, some applications utilize tapered or stepped
members, the cross section of which varies as afunction of x.

to reduce clutter. The local axes are denoted by {X, y, z}, with X along the longitudinal direction.
See Figure 6.1.

The mathematical model of a MoM member is obtained by an idealization process. The model
represents the member as aline segment that connects the two end joints, as depicted in Figure 6.2.

86.1.2. End Quantities, Degrees of Freedom, Joint Forces

The set of mathematical variables used to interconnect membersare called end quantities or connec-
tors. Inthe Direct Stiffness Method (DSM) these are joint displacements (the degrees of freedom)
and the joint forces. These quantities are linked by the member stiffness equations.

The degrees of freedoms selected at the end jointsi and j are collected in the joint displacement
vector 0. This may include trandations only, or a combination of translations and rotations.

The vector of joint forces f collects componentsin one to one correspondence with G. Component
pairsmust be conjugatein the sense of the Principleof Virtual Work. For exampleif the x-trandlation
atjointi: Gy appearsin i, the corresponding entry in f isthe x-force fy; ati. If the rotation about
zatjoint j: 6, appearsin G, the corresponding entry in f isthe z-moment my;.

86.1.3. Internal Quantities

Internal quantities are mechanical actions that take place inside the member. Those actionsinvolve
stresses and deformations. Accordingly two types of internal quantities appear:

Internal member forcesform afinite set of stress-resultant quantitiescollectedinanarray p. Thisset
globally characterizes the forces resisted by the material. They are also called generalized stresses
in structural theory. Stresses at any point in the member may be recovered if p isknown.

Member deformations form a finite set of quantities, chosen in one-to one correspondence with
internal member forces, and collected in an array v. This set characterizes the deformations expe-
rienced by the material. They are also called generalized strainsin structural theory. Strains at any
point in the member can be recovered if v is known.

As in the case of end quantities, internal forces and deformations are paired in one to one corre-
spondence. For example, the axial force in a bar member must be paired either with an average
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End quantities (connectors)
are defined at thejointsi |

Y4
>/ G 0/’ X

Internal quantities are
defined within the member
and may depend on X.

Figure 6.2. The FE mathematical idealization of aMoM member. The model is
one-dimensional in X. The two end joints are the site of end quantities:
joint forces and displacements, that interconnect members. The internal
quantities characterize the stresses and deformations in the member.

axia deformation, or with the total elongation. Pairs that mutually correspond in the sense of the
Principle of Virtual Work are called conjugate. Unlike the case of end quantities, conjugacy is not
amandatory requirement but simplifies some derivations.

86.1.4. Discrete Field Equations, Tonti Diagram
The matrix equations that connect U, v, p and f are called the discrete field equations. There are
three of them.

The member deformations v are linked to the joint displacements U by the kinematic compability
conditions, also called the deformation-displacement or strain-displacement equations:

v = BO. (6.1)

The internal member forces are linked to the member deformations by the constitutive equations.
In the absence of initial strain effects those equations are homogeneous:

p = Sv. (6.2)

Finally, the internal member forces are linked to the joint forces by the equilibrium equations. If
the internal forces p are constant over the member, the relation is simply

f=ATp. (6.3)

where the transpose of A is used for convenience.?

2 |f pisafunction of X the relation is of differential type and is studied in §6.3.
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— 1 f=ATSBu=K 0 1=

u >» f

lszu f=ATp
p=Sv

v > p

Figure 6.3. Tonti diagram of the three discrete field equations (6.1)—(6.3) and the
stiffness equation (6.4) for asimplex MoM element. Internal and end
quantities appear inside the orange and yellow boxes, respectively.

These equations can be presented graphically as shown in Figure 6.3. This is a discrete variant
of the so-called Tonti diagrams, which represent the governing equations as arrows linking boxes
containing kinematic and static quantities.

Matrices B, S and A receive the following namesin the literature:
A Equilibrium
S Rigidity, material, constitutive®
B  Compatibility, deformation-displacement, strain-displacement

If the element is sufficiently simple, the determination of these three matrices can be carried out
through MoM techniques. If the construction requires more advanced tools, however, recourse to
the general methodology of finite elements and variational principlesis necessary.

86.2. SIMPLEX MOM MEMBERS

In this section we assume that the internal quantities are constant over the member length. Such
members are called simplex elements. If so the matrices A, B and S are independent of member
cross section, and the derivation of the element stiffness equationsis particularly simple.

Under the constancy assumption, elimination of the interior quantities p and v from (6.1)-(6.3)
yields the element stiffness relation

f=ATSBO=Kau. (6.4)

Hence the element stiffness matrix is

K = ATSB. (6.5)

The four preceding matrix equations are diagrammed in Figure 6.3.

3 Thenamerigidity matrix for Sispreferable. It isamember integrated version of the cross section constitutive equations.
The latter are usually denoted by symbol R, asin 86.3.
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@ z
Y Axia rigidity EA, length L
y X
b - T EA o
() fxi, Uxi oi X é) ija Ux;j %

Figure 6.4. The prismatic truss (also called bar) member: (a) individual
member in 3D space, (b) idealization as generic member.

If {p, v} and {f, 0} are conjugate in the sense of the Principle of Virtual Work, it can be shown that
A = B and that Sis symmetric. Then

K = BTSB. (6.6)

isasymmetric matrix. Symmetry is computationally desirable for reasons outlined in Part 111.

REMARK 6.1

If f and O are conjugate but p and v are not, K must come out to be symmetric even if Sis unsymmetric and
A # B. However there are more opportunities to go wrong.

86.2.1. TheTrussElement Revisited

The ssimplest example of a MoM element is the prismatic truss (bar) element already derived in
Chapter 2. SeeFigure6.4. Thisqualifiesasasimplex MoM element since all internal quantitiesare
constant. One minor difference in the derivation below is that the joint displacements and forces
in the y direction are omitted in the generic element since they contribute nothing to the stiffness
equations. In the FEM terminology, freedoms associated with zero stiffness are called inactive.

Three choices for internal deformation and force variables are studied below. They illustrate that
the resulting element stiffness equations coal esce, as can be expected, since the external quantities
are the same.

Derivation Using Axial Elongation and Axial Force. The member axia elongation d is taken as
deformation measure, and the member axia force F as internal force measure. Hence v and p
reduceto thescalarsv = d and p = F, respectively. The chain of discrete field equationsis easily
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constructed: )
d=[-1 u[%]:su
qu
EA
i f_xi -1 T
f=| = | = F=AF
o=
Hence EA
~ AT _ opTp _ EA 1 -1
K=A"SB=SB'B= 3 [_1 1]. (6.8)

Notethat A = B because F and d are conjugate.

Derivation Using Mean Axial Strain and Axial Force. Instead of d we may use the mean axial strain
€ = d/L as deformation measure whereas F is kept as internal force measure. The only change
isthat B becomes[ —1 1] /L whereas S becomes EA. Matrix A does not change. The product
AT SB givesthe same K asin (6.8), as can be expected. Now AT is not equal to B because F and
€ are not conjugate, but they differ only by afactor 1/L.

Derivation Using Mean Axial Strain and Axial Stress. We keep the mean axial strainé = d/L as
deformation measure but the mean axial stresso = F/ A, (which is not conjugate to €) is taken as
internal forcemeasure. NowB =[—1 1]/L,S= EandAT = A[—1 1]. Theproduct AT SB
gives again the same K shown in (6.8).

86.2.2. The Spar Element

The spar or shear-web member has two joints, i and j. It can only resist and transmit a constant
shear force V in the plane of the web, which is chosen to bethe {X, y} plane. See Figure 6.5. This
element is often used in modeling high-aspect aircraft wing structures, asillustrated in Figure 6.6.

The active degrees of freedom for the generic element of length L depicted in Figure 6.5(b) are
Uy and Oyj. Let G be the shear modulus and As the effective shear area* The shear rigidity is
GAs. As deformation measure the mean shear strain y = V/(GAg) is chosen. The deformation-
displacement, constitutive, and equilibrium equations are

y
V =GAsy = Sy, (6.9)

Therefore the member stiffness equations are

r f_yi AT __GAs 1 -1 l]yi A
= [P]-arsma- A 1 ][9] ke 610

4 A concept developed in Mechanics of Materials. For anarrow rectangular cross section, As = 5A/6.
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—~
&
<i

Shear rigidity G As, length L

f_yi ; Uyi GAS fyj , Uyj
(b) i S i

Figure 6.5. The prismatic spar (also called shear-web) member: (a) individual
member in 3D space, (b) idealization as generic member.

Notethat A # B asV and y are not conjugate. However, the difference is easily adjusted for. See
Exercise 6.2.

The equations (6.10) may be augmented with zero rows and columnsto bring in the node displace-
mentsin the X and z directions, and then referred to the global axis {Xx, y, z} through a congruential

transformation.

COVER
PLATES

Figure 6.6. Spar membersin aircraft wing (Piper Cherokee). For
more impressive aircraft structures see CATECS dlides.
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L
f:/OBTEBd)_( a

0 » f
lszu df=B"dp
p=Rv
v > p

Figure6.7. Diagram of the discrete field equations for a non-simplex MoM element.

86.3. NON-SSMPLEX MOM MEMBERS

In the general case, the internal quantities p and v may vary over the member; that is, depend on X.
This dependence may be due to element type, variable cross section, or both. Consequently one or
more of the matrices A, B and S, depend on X. Such elements are called non-simplex.

If the element fallsunder this category, the straightforward matrix multiplication recipe (6.5) cannot
be used to construct the element stiffness matrix K. This fact can be grasped by observing that
A(X)TS(X)B(X) would depend on X. On the other hand, K must be independent of X because it
relates the end quantities G and .

The derivation of non-simplex MoM elements requires the use of work principles of mechanics,
for example the Principle of Virtual Work or PVW. More care must be exercised in the selection of
conjugateinternal quantities. Thefollowing rules can bejustified through the variational arguments
discussed in Part 1. They are stated here only as recipe.

Rule 1. Select internal deformations v(X) and internal forces p(X) that are conjugate in the PVW
sense. Link deformations to node displacements by v(X) = B(X)u.

Rule 2. From the PVW it may be shown® that the force equilibrium equation exists only in a
differential sense: BT dp = df. Here d denotes differentiation with respect to X.°

Rule 3. The constitutive matrix R(X) that relates p(X) to v(X) must be symmetric.’
Relations that emanate from these rules are diagrammed in Figure 6.7. Internal quantities are now

® The proof is done by equating the virtual work of aslice of length dx: df’ 50 =dpT.sv=dpT.(BO) = BT.dp)T.50.
Since 8a is arbitrary, B" dp = df.

6 The meaning of dp issimply p(X) d%. That is, the differential of internal forces as one passes from cross-section X to a
neighboring one X + dX. The interpretation of df islessimmediate because f is not a function of x. It actually means
the contribution of that member slice to the building of the node force vector f. See Equation (6.12).

7 Note that symbol R replaces the S of the previous section. R applies to a specific cross section, S to the entire member.
See Exercise 6.9.
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eliminated using the differential equilibrium relation:
df =BTdp =B"pdx = B'TRvdx = BTRBUdx = B'TRB dx Q. (6.11)
Integrating both sides over the member length L yields
L L
f:/o df:/o B'RBdx 0 = K, (6.12)

because U does not depend on X. Consequently the element stiffness matrix is

L
K = / B' RB dx (6.13)
0

The result (6.13) will be justified in Part 11 of the course through energy methods. It will be seen
there that this formula applies to arbitrary displacement-assumed finite elements in any number of
dimensions. It is applied to the derivation of the stiffness equations of the plane beam element in
Chapter 13.
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Homework Exercisesfor Chapter 6
Constructing MoM Members

EXERCISE 6.1

[A:15] Formulate aprismatic shaft member of length L that can only transmit atorque T along thelongitudinal
(X) direction. Theonly active degrees of freedom of this member are the twist-angle rotationsfy; and fy; of the
end joints about X. The congtitutive equation furnished by Mechanics of Materialsis T = (GJ/L)¢, where
GJ isthetorsional rigidity and ¢ = 6x; — 6y istherelative twist angle. Draw the Tonti diagram to illustrate

the discrete equations.
The result should be B GIr 1 1103
My; - Xi
T e 2 E6.1
[y ]= [ Talla] s
inwhichm,; = —T andm,; = T arethe nodal moments about X.
EXERCISE 6.2

[A:10] Explain how to select the deformation variable v (paired to V) of the spar member formulated in
86.2.2, sothat A = B.

EXERCISE 6.3

[A/C:25] Derivethe 4 x 4 global element stiffness matrix of a prismatic spar element in a two dimensional
Cartesian system {x, y}. Start from the local stiffness (6.10) and proceed asin §3.2.1 and §3.2.2 for the bar
element. SinceK in(6.10) is2 x 2, T is2 x 4. Show that T consists of rows 2 and 4 of the matrix of (3.2).

(5. Y,7)

() (b)

Wyi

J
PG ¥, Z) N

’

Figure E6.1. Bar element in 3D for Exercise 6.4.

EXERCISE 6.4

[A+N:15] A bar element moving in three dimensional space is defined by the global coordinates {x;, V;, z },
{Xj, yj, zj} of itsend nodesi and j, asillustrated in Figure E6.1. The 2 x 6 displacement transformation matrix
T relates 0®® = Tu®. Here 0 contains the local axial displacements Uy and Uy; Whereas u® contains the
global displacements uy;, Uyi, Uz, Uyj, Uyj, Uz. Show that

1rx; vii zi O O O Ciii Cyii C4i O O O
T —— [ I J1 J1 :I — [ X1 L Z|| ] E62

LLO 0 0 Xii Vi Zji 0 0 0 Cxji Cyji Gy ( )
inwhich L isthe element length, X;; = X; — X, €tc., and ¢yj; = X;i /L, etc., are the direction cosines of the
vector going fromi to j. Evaluate T for abar going from nodei at {1, 2, 3} tonode j at {3, 8, 6}.
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Orientation node k defines plane
KX, Y » Zc) o= xy} as passing through {i j,k}

(@) iy i(.Y.z) k (b)

Figure E6.2. Spar element in 3D for Exercise 6.5.

EXERCISE 6.5

[A+N:25(10+15)] A spar elementinthreedimensional spaceisonly partially defined by the global coordinates
{Xi,¥i,z}, {Xj,Yj, z;} of itsend nodesi and j, asillustrated in Figure E6.2. The problemisthat axisy, which
defines the direction of shear force transmission, is not uniquely defined by i and j.2 Most FEM programs use
the orientation node method to complete the definition. A third node k, not colinear withi and j, is provided
by theuser. Nodes({i, |, k} definethe {X, y} plane and consequently z. The projection of k onlineij ispoint m
andthedistanceh > O0frommtokiscalled h asshownin Figure E6.2. The 2 x 6 displacement transformation
matrix T relates 0®® = Tu®. Here 0 contains the local transverse displacements ty; and Gy; whereas u®
contains the global displacements Uyi, Uyi, Ui, Uyj, Uyj, Uyj.

(@ Show that

1 Xk Yii Zy 0 0 0 Cxk Cyki Cki 0 0 0
T — [ m m m } — [ XKM yKm ZKm ] E63
h 0 0 0 Xkm  Ykm  Zkm 0 0 0 Cxkm Cykm Czkm ( )

inwhich Xgm = Xk — Xm, €tc., and Cym = Xkm/ h, €tc., are the direction cosines of the vector going from
m to k.

(b) Work out the formulas to compute the coordinates of point m in terms of the coordinates of {i, j, k}.
Using the notation of Figure E6.2(b) and elementary trigonometry, show that h = 2A/L, where A =
\/p(p —a)(p—b)(p— L) with p= (L +a+b) (Heron'sformula), cose = (L + b? —a?)/(2bL),
cosB = (L2+a?—b?)/(2aL),c = bcosa, L —c = acospB, Xm = X (L —)/L +X;c/L, etc. Evaluate
T for aspar member going from nodei at {1, 2, 3} tonode j at {3, 8, 6}. withk at {4, 5, 6}.

EXERCISE 6.6

[A:15] If the matrices B and R are constant over the element length L, show that expression (6.13) of the
element stiffness matrix for a variable-section element reduces to (6.6), inwhichS= LR.

EXERCISE 6.7

[A:25] Explainin detail the quick derivation of footnote 5. (Knowledge of the Principle of Virtual Work is
required to do this exercise.)

8 Thisfull specification of the local system is also required for 3D beam elements.
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EXERCISE 6.8

[A:20] Explain how thermal effects can be generally incorporated in the constitutive equation (6.2) to produce
aninitial force vector.

EXERCISE 6.9

[A:20] Consider anon-simplex MoM element in which R varies with X but B is constant. From (6.13) show
that

_ _ _ 1 [t
K =LB"RB, with R= E/ R(X) dx (E6.4)
0

Here R is an element-averaged constitutive matrix. Apply this result to form K for atruss member of tapered
cross section area A(X). Assume that the areaiis defined by thelinear law A = A (1 —X/L) + AjX/L, where
A and A; are the end areas at jointsi and j, respectively. Take B to be the same as in the prismatic case
discussed in §86.2.1.

EXERCISE 6.10

[A/C+N:30] A prismatic bar element in 3D space is referred to a global coordinate system {Xx, y, z}, asin
Figure E6.1. The end nodes are located at {Xi, Y1, z1} and {Xo, Yo, 2,}.° The elastic modulus E and the
cross section area A are constant along the length. Denote Xo; = Xo — X1, Vo1 = Vo — V1, 201 = 2 — 23
and L = \/x3, + Y5 + z5,. Show that the element stiffness matrix in global coordinates can be compactly

written'® A
® _ T
K™ = FB B (E6.5)
where
B=[-Xa1 —Ya1 —2Zu Xa Ya Za] (E6.6)

Compute K© if the nodes are at {1, 2, 3} and {3, 8, 6}, with elastic modulus E = 343 and cross section area
A = 1. Note: the computation can be either done by hand or with the help of a program such as the following
Mathematica module, which is used in Part |11 of the course:

Stiffness3DBar [ncoor_,mprop_,fprop_,opt_]:= Module[
{x1,x2,y1,y2,21,22,x21,y21,221,Em,Gm,rho,alpha,A,
num,L,LL,LLL,B,Ke}, {{x1,y1,z1},{x2,y2,z2}}=ncoor;
{x21,y21,z21}={x2-x1,y2-y1,z2-z1};

9 End nodes are labeled 1 and 2 instead of i and j to agree with the code listed below.

10 There are several ways of arriving at this result. Some are faster and more elegant than others. Hereis a sketch of one of
theways. Denote by Lo and L the lengths of the bar in the undeformed and deformed configurations, respectively. Then

%(Lz — L3) = X21(Uxp — Ux1) + Y21(Uy2 — Uy1) + Z21(Uz2 — Uz) + R~ Bu

in which R is a quadratic function of node displacements which is therefore dropped in the small-displacement linear
theory. But
IL?-L) =3 (L +Lo(L—Lo~LAL

also because of small displacements. Hence the small axial strainise = AL /L = (1/L2)Bu‘®, which begins the Tonti
diagram. Nextis F = EAe, and finally you should show that force equilibrium at nodes requires f® = (1/L)BTF.
Multiplying through you get (E6.5). Another way is to start from the local stiffness (6.8) and transform to global using
the transformation matrix (E6.2).
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{Em,Gm,rho,alpha}=mprop; {A}=fprop; {num}=opt;
If [num,{x21,y21,z21,Em,A}=N[{x21,y21,2z21,Em,A}]];
LL=x21"2+y21"2+2z21"2; L=PowerExpand[Sqrt[LL]];
LLL=Simplify[LL*L]; B={{-x21,-y21,-z21,x21,y21,221}};
Ke=(Em*A/LLL) *Transpose [B] .B;

Return[Kel];

ClearAll[Em,A]; Em=343; A=1;

ncoor={{0,0,0},{2,6,3}}; mprop={Em,0,0,0}; fprop={A}; opt={False};
Ke=Stiffness3DBar [ncoor,mprop,fprop,opt];

Print["Stiffness of 3D Bar Element:"];

Print [Ke//MatrixForm] ;

Print["eigs of Ke: ",Eigenvalues[Kell;

As a check, the six eigenvalues of this particular K® should be 98 and five zeros.
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7-3 87.1 FEM TERMINOLOGY

Chapters 2 through 6 cover material technically known asMatrix Structural Analysisor MSA. This
isasubject that historically preceded the Finite Element Method (FEM), as chronicled in Appendix
H. This Chapter starts the coverage of the FEM proper, which is distingished from MSA by the
more dominant role of continuum and variational mechanics.

This Chapter introduces terminology used in FEM modeling, and surveys the attributes and types
of finite elements used in structural mechanics. The next Chapter gives more specific rules for
defining meshes, forces and boundary conditions.

§7.1. FEM TERMINOLOGY

The ubiquitous term “ degrees of freedom,” often abbreviated to DOF, has figured prominently in
the preceding Chapters. This term, as well as “stiffness matrix” and “force vector,” originated in
structural mechanics, which is the application for which FEM was invented. These names have
carried over to non-structural applications. This*terminology overspill” is discussed next.

Classical analytical mechanicsisthat invented by Euler and Lagrange and developed by Hamilton
and Jacobi as a systematic formulation of Newtonian mechanics. Its objects of attention are models
of mechanical systems ranging from particles composed of sufficiently large of molecules, through
airplanes, to the Solar System.! The spatial configuration of any such system is described by its
degrees of freedom. These are also called generalized coordinates. The terms state variables and
primary variables are also used, particularly in mathematically oriented treatments.

If thenumber of degreesof freedom of themodel isfinite, themodel iscalled discrete, and continuous
otherwise.

Because FEM is a discretization method, the number of degrees of freedom of a FEM model is
necessarily finite. The freedoms are collected in acolumn vector called u. Thisvector isgeneraly
called the DOF vector or state vector. The term nodal displacement vector for u is reserved to
mechanical applications.

In analytical mechanics, each degree of freedom has a corresponding “conjugate” or “dual” term,
which represents a generalized force.? In non-mechanical applications, there is a similar set of
conjugate quantities, which for want of a better term are also called forces or forcing terms. These
forces are collected in acolumn vector called f. Theinner product f™u has the meaning of external
energy or work.

Just asinthetrussproblem, therelation between u and f isassumed to be of linear and homogeneous.
Thelast assumption meansthat if u vanishes so doesf. Therelation isthen expressed by the master
stiffness equations:

Ku=f. (7.1)

K isuniversally called the stiffness matrix even in non-structural applications because no consensus
has emerged on different names.

1 For cosmological scales, such as the full Universe, the general theory of relativity is necessary. For the sub-particle
world, quantum mechanicsis required.

2 Invariational mathematics thisis called a duality pairing.
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Table 7.1. Physical Significance of Vectorsu and f
in Miscellaneous FEM Applications

Application Sate (DOF) vector u Conjugate vector f
Problem represents represents
Structures and solid mechanics  Displacement Mechanical force
Heat conduction Temperature Heat flux

Acoustic fluid Displacement potential  Particle velocity
Potential flows Pressure Particle velocity
General flows Velocity Fluxes
Electrostatics Electric potential Charge density
Magnetostatics Magnetic potential Magnetic intensity

The physical significance of the vectors u and f varies according to the application being model ed,
asillustrated in Table 7.1.

If the relation between forces and displacements is linear but not homogeneous, equation (7.1)
generalizesto

Ku="fy+f. (7.2)

Here f, is the initial node force vector introduced in Chapter 4 for effects such as temperature
changes, and f\, isthe vector of mechanical forces.

The basic steps of FEM are discussed below in more generality. Although attention is focused on
structural problems, most of the steps translate to other applications problems as noted above. The
role of FEM in numerical ssimulation is schematized in Figure 7.1, which isamerged simplification
of Figures 1.2 and 1.3. Although thisdiagram oversimplifiestheway FEM isactually used, it serves
to illsutrates terminology. It shows the three key simulation steps are: idealization, discretization
and solution,and indicates that each step is a source of errors. For example, the discretization error
Isthe discrepancy that appears when the discrete solution is substituted in the mathematical model.
The reverse steps: continuification and realization, are far more difficult and ill-posed problems.

Theidealization and discretization steps, briefly mentioned in Chapter 1, deservefurther discussion.
The solution step is dealt with in the last Part of this course.

§7.2. IDEALIZATION

| dealization passes from the physical system to a mathematical model. Thisis the most important
step in engineering practice.

§7.2.1. Models

Theword “model” hasthe traditional meaning of a scaled copy or representation of an object. And
that is precisely how most dictionaries define it. We use here the term in a more modern sense,
which has become increasingly common since the advent of computers:
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IDEALIZATION DISCRETIZATION SOLUTION
Physical M athematical Discrete Discrete
system model model > solution
< e < e

REALIZATION & CONTINUIFICATION T Solution error
IDENTIFICATION

Discretization + solution error

M odeling + discretization + solution error

Figure7.1. A simplified view of the physical simulation process,
primarily useful to illustrate modeling terminology.

A model isasymbolic device built to ssmulate and predict aspects of behavior of a system.

Note the distinction made between behavior and aspects of behavior. To predict everything, in all
physical scales, you must deal with the actual system. A model abstracts aspects of interest to the
modeler. The qualifier symbolic means that a model represents a system in terms of the symbols
and language of another discipline. For example, engineering systems may be (and are) modeled
with the symbols of mathematics and/or computer sciences.®

8§7.2.2. Mathematical Models

Mathematical modeling, or idealization, is a process by which the engineer passes from the actual
physical system under study, to a mathematical model of the system, where the term model is
understood in the sense defined above.

The process is called idealization because the mathematical model is necessarily an abstraction of
the physical reality. (Notethe phraseaspectsof behavior intheforegoing definition.) Theanalytical
or numerical results obtained for the mathematical model are re-interpreted in physical termsonly
for those aspects.

To give an example on the choices an engineer may face, suppose that the structure is aflat plate
structure subjected to transverse loading. Hereisalist of four possible mathematical models:

1. A verythin plate model based on Von Karman's coupled membrane-bending theory.
2. A thin plate model, such asthe classical Kirchhoff’s plate theory.

3. A moderately thick plate model, for example Mindlin-Reissner plate theory.

4. A very thick plate model based on three-dimensional elasticity.

The person responsible for this kind of decision is supposed to be familiar with the advantages,

3 A problem-definition input file or a stress plot are examples of the latter.

4 Whereas idealization can be reasonably taught in advanced design courses, the converse process of “realization” or
“parameter identification” generally requires considerable physical understanding and maturity that can only be gained
through professional experience.

-5



Chapter 7: FEM MODELING: INTRODUCTION 7-6

Figure 7.2. A reproduction of Figure 1.5 with some relabeling.
[llustrates implicit modeling: picking elements from
an existing FEM code consents to an idealization.

disadvantages, and range of applicability of each model. Furthermore the decision may be different
In static analysis than in dynamics.

Why is the mathematical model an abstraction of reality? Engineering systems, particularly in
Aerospace and Mechanical, tend to be highly complex. For simulation it is necessary to reduce that
complexity to manageable proportions. Mathematical modeling is an abstraction tool by which
complexity can be controlled. This is achieved by “filtering out” physical details that are not
relevant to the analysis process. For example, acontinuum material model filters out the aggregate,
crystal, molecular and atomic levels of matter. Engineersaretypicaly interested in afew integrated
guantities, such as the maximum deflection of a bridge or the fundamental periods of an airplane.
Althoughto aphysicist thisisthe result of theinteraction of billionsand billions of molecules, such
details are weeded out by the modeling process. Consequently, picking a mathematical model is
equivalent to choosing an information filter.

§7.2.3. Implicit vs. Explicit Modeling

As noted the diagram of Figure 7.1 is an oversimplification of engineering practice. The more
common scenario isthat pictured in Figures 1.2, 1.4 and 1.5. The latter isreproduced in Figure 7.2
for convenience.

A common scenario in industry is: you have to analyze a structure or a substructure, and at your
disposal isa*“black box” general-purpose finite element program. Those programs offer a catalog
of element types; for example, bars, beams, plates, shells, axisymmetric solids, genera 3D solids,
and so on. The moment you choose specific elements from the catalog you automatically accept
the mathematical models on which the elements are based. Thisisimplicit modeling. Ideally you
should be fully aware of theimplications of your choice. Providing such “finite element literacy” is
one of the objective of this book. Unfortunately many users of commercia programs are unaware
of the implied-consent aspect of implicit modeling.

The other extreme happens when you select a mathematical model of the physical problem with

7-6



77 87.3 DISCRETIZATION

your eyes wide open and then either shop around for a finite element program that implements
that model, or write the program yourself. Thisis explicit modeling. It requires far more technical
expertise, resources, experience and maturity than implicit modeling. But for problemsthat fall out
of the ordinary it may be the right thing to do.

In practice a combination of implicit and explicit modeling is common. The physical problem
to be simulated is broken down into subproblems. Those subproblems that are conventional and
fit available programs may be treated with implicit modeling, whereas those that require special
handling may only submit to explicit modeling.

§7.3. DISCRETIZATION

§7.3.1. Purpose

Mathematical modeling is a simplifying step. But models of physical systems are not necessarily
simpletosolve. They ofteninvolve coupled partial differential equationsin spaceand timesubject to
boundary and/or interface conditions. Such models have an infinite number of degrees of freedom.

At thispoint onefacesthechoiceof trying for analytical or numerical solutions. Analytical solutions,
also called “closed form solutions,” are more intellectually satisfying, particularly if they apply to
awide class of problems, so that particular instances may be obtained by substituting the values
of symbolic parameters. Unfortunately they tend to be restricted to regular geometries and simple
boundary conditions. Moreover some closed-form solutions, expressed for example as inverses of
integral transforms, often have to be numerically evaluated to be useful.

Most problems faced by the engineer either do not yield to analytical treatment or doing so would
require a disproportionate amount of effort.> The practical way out is numerical simulation. Here
is where finite element methods and the digital computer enter the scene.

To make numerical simulations practical it is necessary to reduce the number of degrees of freedom
to afinite number. The reduction is called discretization. The product of the discretization process
Is the discrete model. For complex engineering systems this model is the product of a multilevel
decomposition.

Discretization can proceed in space dimensions as well as in the time dimension. Because the
present course deals only with static problems, we need not consider the time dimension and are
free to concentrate on spatial discretization.

§7.3.2. Error Sourcesand Approximation

Figure 7.1 triesto convey graphically that each simulation step introduces a source of error. Inengi-
neering practice modeling errors are by far the most important. But they are difficult and expensive
to evaluate, because such model verification and validation requires access to and comparison with
experimental results. These may be either scarce, or unavailable in the case of a new product.

5 This statement has to be tempered in two respects. First, the wider availability and growing power of computer algebra
systems, discussed in Chapter 5, has widened the realm of analytical solutions than can be obtained within a practical
timeframe. Second, acombination of analytical and numerical techniquesis often effective to reduce the dimensionality
of the problem and to facilitate parameter studies. Important examples are provided by Fourier analysis, perturbation
and boundary-element methods.
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Next in order of importance is the discretization error. Even if solution errors are ignored — and
usually they can — the computed solution of the discrete model isin general only an approximation
in some sense to the exact solution of the mathematical model. A quantitative measurement of
this discrepancy is called the discretization error. The characterization and study of this error is
addressed by a branch of numerical mathematics called approximation theory.

Intuitively one might suspect that the accuracy of the discrete model solution would improve as
the number of degrees of freedom isincreased, and that the discretization error goes to zero as that
number goes to infinity. Thisloosely worded statement describes the convergence requirement of
discrete approximations. One of the key goals of approximation theory isto make the statement as
precise asit can be expected from a branch of mathematics.

§7.3.3. Other Discretization M ethods

It was stated in thefirst chapter that the most popular discretization techniquesin structural mechan-
ics are finite element methods and boundary element methods. The finite element method (FEM)
is by far the most widely used. The boundary element method (BEM) has gained in popularity
for specia types of problems, particularly those involving infinite domains, but remains a distant
second, and seemsto have reached its natural limits.

In non-structural application areas such as fluid mechanics and el ectromagnetics, the finite element
method isgradually making up ground but faces stiff competition from both the classical and energy-
based finite difference methods. Finite difference and finite volume methods are particularly well
entrenched in computational gas dynamics.

§7.4. THEFINITE ELEMENT METHOD
§7.4.1. Interpretation

The finite element method (FEM) is the dominant discretization technique in structural mechanics.
Asnotedin Chapter 1, the FEM can beinterpreted from either aphysical or mathematical standpoint.
The treatment has so far emphasized the former.

The basic concept in the physical FEM is the subdivision of the mathematical model into disjoint
(non-overlapping) components of simple geometry called finite elements or elementsfor short. The
response of each element isexpressed in termsof afinite number of degreesof freedom characterized
as the value of an unknown function, or functions, at a set of nodal points. The response of the
mathematical model is then considered to be approximated by that of the discrete model obtained
by connecting or assembling the collection of all elements.

The disconnection-assembly concept occurs naturally when examining many artificial and natural
systems. For example, it is easy to visualize an engine, bridge, building, airplane, or skeleton as
fabricated from simpler components.

Unlike finite difference models, finite elements do not overlap in space. In the mathematical
interpretation of the FEM, this property goes by the name disjoint support.
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1D

2D

2D

3D

Figure 7.3. Typical finite element geometriesin one through three dimensions.

8§7.4.2. Element Attributes

Just like membersin the truss exampl e, one can take finite elements of any kind oneat atime. Their
local properties can be developed by considering them in isolation, as individual entities. Thisis
the key to the modular programming of element libraries.

In the Direct Stiffness Method, elements are isolated by disconnection and localization steps,
which were described for the truss example in Chapter 2. This procedure involves the separation
of elements from their neighbors by disconnecting the nodes, followed by referral of the element
to a convenient local coordinate system. After these two steps we can consider generic elements.
a bar element, a beam element, and so on. From the standpoint of computer implementation, it
means that you can write one subroutine or module that constructs, by suitable parametrization, all
elements of one type, instead of writing one for each element instance.

Following is asummary of the data associated with an individual finite element. This datais used
in finite element programsto carry out element level calculations.

Intrinsic Dimensionality. Elements can have one, two or three space dimensions.® There are also
special elements with zero dimensionality, such as lumped springs or point masses.

Nodal points. Each element possesses a set of distinguishing points called nodal points or nodes
for short. Nodes serve two purposes: definition of element geometry, and home for degrees of
freedom. They are usually located at the corners or end points of elements, asillustrated in Figure
7.3; in the so-called refined or higher-order elements nodes are also placed on sides or faces, as
well astheinterior of the element.

6 In dynamic analysis, time appears as an additional dimension.
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Physica Mathematical Finite Element
Structural Model Name Discretization
Component

/ bar /
ﬁ beam /
& tube, pipe /
Ij spar (weh) _
G shear panel Ij
(2D version of above)

Figure 7.4. Examples of primitive structural elements.

Geometry. The geometry of the element is defined by the placement of the nodal points. Most
elements used in practice have fairly ssmple geometries. In one-dimension, elements are usually
straight lines or curved segments. In two dimensions they are of triangular or quadrilateral shape.
In three dimensions the three common shapes are tetrahedra, pentahedra (also called wedges or
prisms), and hexahedra (also called cuboids or “bricks’). See Figure 7.3.

Degrees of freedom. The degrees of freedom (DOF) specify the state of the element. They aso
function as “handles’ through which adjacent elements are connected. DOFs are defined as the
values (and possibly derivatives) of a primary field variable at nodal points. The actual selection
depends on criteria studied at length in Part 1. Here we simply note that the key factor is the way
in which the primary variable appears in the mathematical model. For mechanical elements, the
primary variable is the displacement field and the DOF for many (but not all) elements are the
displacement components at the nodes.

Nodal forces. Thereisalways a set of nodal forcesin a one-to-one correspondence with degrees of
freedom. In mechanical elements the correspondence is established through energy arguments.

Constitutive properties. For a mechanical element these are relations that specify the material
behavior. For example, in alinear elastic bar element it is sufficient to specify the elastic modulus
E and the thermal coefficient of expansion «.

Fabrication properties. For mechanica elements these are fabrication properties which have been
integrated out from the element dimensionality. Examples are cross sectional properties of MoM
elements such as bars, beams and shafts, as well as the thickness of a plate or shell element.
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Figure 7.5. Continuum element examples.

plates
This datais used by the element generation subroutines to compute element stiffness relations in
the local system.

8§7.5. CLASSIFICATION OF MECHANICAL ELEMENTS

The following classification of finite elements in structural mechanics is loosely based on the
“closeness’ of the element with respect to the original physical structure. It is given here because
it clarifies many points that appear over and over in subsequent sections and provides insight into
advanced modeling techniques such as hierarchical breakdown and global-local analysis.

8§7.5.1. Primitive Structural Elements

These resembl e fabricated structural components, and are often drawn as such; see Figure 7.4. The
qualifier primitive is used to distinguish them from macroelements, which is another element class
described below. It means that they are not decomposable into simpler elements. These elements
are usually derived from M echanics-of-Materials simplified theories and are better understood from
aphysical, rather than mathematical, standpoint. Examples are the elements discussed in Chapter
6: bars, cables, beams, shafts, spars.

§7.5.2. Continuum Elements

These do not resembl e fabricated structural components at all. They result from the subdivision of
“blobs” of continua, or of structural components viewed as continua. Unlike structural elements,
continuum elements are better understood in terms of their mathematical interpretation. Examples:
plates, slices, shells, axisymmetric solids, general solids. See Figure 7.5.

87.5.3. Special Elements

Specia elements partake of the characteristics of structural and continuum elements. They are
derived from a continuum mechanics standpoint but include features closely related to the physics
of theproblem. Examples: crack elementsfor fracture mechanicsapplications, shear panels, infinite
and semi-infinite elements, contact and penalty elements, rigid-body elements. See Figure 7.6.
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Figure 7.6. Specia element examples.

87.5.4. Macroelements

Macroelements are also called mesh units and superelements, although the latter term overlapswith
substructures (defined below). These often resemble structural components, but are fabricated with
simpler elements. See Figure 7.7.

87.5.5. Substructures

Also called structural modules and superelements. These are macroelements with a well defined
structural function, typically obtained by cutting the complete structure into functional components.
Examples: the wings and fuselage in an airplane, the deck and cables in a suspension bridge. It
should be noted that the distinction between compl ete structures, substructures and macroelements
is not clear-cut. The term superelement is often used in a collective sense to embrace all levels
beyond that of primitive elements. Thistopic isfurther covered in Chapter 11.

§7.6. ASSEMBLY

The assembly procedure of the Direct Stiffness Method for a general finite element model follows
rulesidentical in principle to those discussed for the truss example. Asin that case the processs
involves two basic steps:

Globalization. The element equations are transformed to a common global coordinate system.

Merge. Theelement stiffnessequationsare merged into themaster stiffnessequationsby appropriate
indexing and entry addition.

The computer implementation of this processisnot necessarily as simple asthe hand cal cul ations of
the truss example suggest. The master stiffness relationsin practical cases may involve thousands
(or even millions) of degrees of freedom. To conserve storage and processing time the use of
sparse matrix techniques as well as peripheral storageisrequired. But thisinevitably increases the
programming complexity. Thetopic is elaborated upon in the last part of this course.

§7.7. BOUNDARY CONDITIONS

A key strength of the FEM is the ease and elegance with which it handles arbitrary boundary and
interface conditions. This power, however, has a down side. One of the biggest hurdles a FEM
newcomer faces is the understanding and proper handling of boundary conditions. In the present
Section we summarize some basic rules for treating boundary conditions. The following Chapter
provides specific rules and examples.
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§7.7.1. Essential and Natural B.C.

The important thing to remember is that boundary conditions (BCs) come in two basic flavors,
essential and natural.

Essential BCs arethosethat directly affect the degrees of freedom, and areimposed on the left-hand
side vector u.

Natural BCs are those that do not directly affect the degrees of freedom, and are imposed on the
right-hand side vector f.

The mathematical justification for this distinction requires use of the variational calculus, and is
consequently relegated to Part |1 of the course. For the moment, the basic recipeis:

1. If aboundary condition involves one or more degrees of freedom in adirect way, it
isessential. An example is a prescribed node displacement.

2. Otherwiseitisnatural.

The term “direct” is meant to exclude derivatives of the primary function, unless those derivatives
also appear as degrees of freedom, such as rotations in beams and plates.

87.7.2. Boundary Conditionsin Structural Problems

In mechanical problems, essential boundary conditions are those that involve displacements (but
not strain-type displacement derivatives). The support conditions for the truss problem furnish a
particularly simple example. But there are more general boundary conditionsthat occur in practice.
A structural engineer must be familiar with displacement B.C. of the following types.

Ground or support constraints. Directly restraint the structure against rigid body motions.

Symmetry conditions. To impose symmetry or antisymmetry restraints at certain points, lines or
planes of structura symmetry. This allows the discretization to proceed only over part of the
structure with a consequent savings in the number of equations to be solved.
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Ignorable freedoms. To suppress displacements that are irrelevant to the problem. (In classical dy-
namics these are called ignorable coordinates.) Even experienced users of finite element programs
are sometimes baffled by this kind. An example are rotational degrees of freedom normal to shell
surfaces.

Connection constraints. To provide connectivity to adjoining structures or substructures, or to
specify relations between degrees of freedom. Many conditions of thistype can be subsumed under
the label multipoint constraints or multifreedom constraints, which can be notorioudly difficult to
handle from a numerical standpoint. These will be covered in Chapters 9 and 10.
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8-3 83.2 GUIDELINES ON ELEMENT LAYOUT

ThisChapter continuesthe exposition of finite element modeling principles. After somegeneral rec-
ommendations, it provides guidelines on layout of finite element meshes, conversion of distributed
loads to node forces, and how to handle the simplest forms of support boundary conditions. The
following Chapters deal with more complicated forms of boundary conditions called multifreedom
constraints.

The presentation is “recipe oriented” and illustrated by specific examples. All examples are from
structural mechanics, most of them are two-dimensional. No attempt is given at a rigorous justi-
fication of rules and recommendations, because that would require mathematical tools beyond the
scope of this course.

88.1. GENERAL RECOMMENDATIONS

The general rules that should guide you in the use of commercial or public FEM packages, are:

e Usethe simplest type of finite element that will do the job.

e Never, never, never mess around with complicated or special elements, unless you
are absolutely sure of what you are doing.

e  Usethe coarsest mesh you think will capture the dominant physical behavior of the
physical system, particularly in design applications.

Three word summary: keep it simple. Initial FE models may have to be substantially revised to
accommodate design changes, and there is little point in using complicated models that will not
survivedesigniterations. Thetimefor refined model siswhen the design has stabilized and you have
abetter view picture of the underlying physics, possibly reinforced by experiments or observation.

88.2. GUIDELINESON ELEMENT LAYOUT

The following guidelines are stated for structural applications. As noted above, they will be often
illustrated for two-dimensional meshes of continuum elements for ease of visualization.

88.2.1. Mesh Refinement

Use arelatively fine (coarse) discretization in regions where you expect a high (low) gradient of

strains and/or stresses. Regionsto watch out for high gradients are:

e Near entrant corners, or sharply curved edges.

e Inthevicinity of concentrated (point) loads, concentrated reactions, cracks and cutouts.

e Inthe interior of structures with abrupt changes in thickness, material properties or cross
sectional areas.

The examplesin Figure 8.1 illustrate some of these “danger regions.” Away from such regions one
can use a fairly coarse discretization within constraints imposed by the need of representing the
structural geometry, loading and support conditions reasonably well.
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Figure8.1. Some situations where alocally refined finite element
discretization (in the red-colored areas) is recommended.
88.2.2. Element Aspect Ratios

When discretizing two and three dimensional problems, try to avoid finite elements of high aspect
ratios. elongated or “skinny” elements, asthe onesillustrated in Figure 8.2.1 Asarough guideline,
elements with aspect ratios exceeding 3 should be viewed with caution and those exceeding 10 with
alarm. Such elements will not necessarily produce bad results — that depends on the loading and
boundary conditions of the problem — but do introduce the potential for trouble.

Good Bad

D 1
Q = \
) ——

Figure 8.2.Elements of good and bad aspect ratios.

1 The aspect ratio of atwo- or three-dimensional element is the ratio between its largest and smallest dimension.
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REMARK 8.1

In many “thin” structures modeled as continuous bodies the appearance of “skinny” elementsisinevitable on
account of computational economy reasons. An example is provided by the three-dimensional modeling of
layered composites in aerospace and mechanical engineering problems.

88.2.3. Physical Interfaces

A physical interface, resulting from example from a change in material, should also be an interele-
ment boundary. That is, elements must not cross interfaces. See Figure 8.3.

No OK

O e

Physical interface

Figure 8.3. lllustration of the rule that elements should not cross material interfaces.

88.2.4. Preferred Shapes

In two-dimensional FE modeling, if you have a choice between triangles and quadrilaterals with
similar nodal arrangement, prefer quadrilaterals. Trianglesare quite convenient for mesh generation,
mesh transitions, rounding up corners, and the like. But sometimes triangles can be avoided
altogether with some thought. One of the homework exercisesis oriented along these lines.

In three dimensional FE modeling, prefer strongly bricks over wedges, and wedges over tetrahedra.
The latter should be used only if there is no viable alternative. The main problem with tetrahedra
and wedges is that they can produce wrong stress results even if the displacement solution looks
reasonable.

8§8.3. DIRECT LUMPING OF DISTRIBUTED LOADS

In practical structural problems, distributed loads are more common than concentrated (point)
loads.? Distributed loads may be of surface or volume type.

Distributed surface loads (called surface tractions in continuum mechanics) are associated with
actions such as wind or water pressure, lift in airplanes, live loads on bridges, and the like. They
are measured in force per unit area.

Volumeloads (called body forcesin continuum mechanics) are associ ated with ownweight (gravity),
inertial, centrifugal, thermal, prestress or electromagnetic effects. They are measured in force per
unit volume.

2 |n fact, one of the objectives of a good design is to avoid or alleviate stress concentrations produced by concentrated
forces.
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Figure 8.4. NDN direct lumping of distributed load, illustrated for a 2D problem.

A derivedtype: lineloads, result fromtheintegration of surfaceloadsalong onetransversedirection,
or of volumeloadsalong two transverse directions. Lineloadsare measured inforce per unit length.

Whatever their nature or source, distributed loads must be converted to consistent nodal forces
for FEM analysis. These forces eventually end up in the right-hand side of the master stiffness
equations.

The meaning of “consistent” can be made precise through variational arguments, by requiring that
the distributed loads and the nodal forces produce the same external work. Since this requires
the introduction of external work functionals, the topic is deferred to Part 11. However, a Simpler
approach called direct load lumping, or smply load lumping, is often used by structural engineers
in lieu of the more mathematically impeccable but complicated variational approach. Two variants
of thistechnique are described below for distributed surface loads.

§8.3.1. Node by Node (NbN) Lumping

The node by node (NbN) lumping method is graphically explained in Figure 8.4. This example
shows adistributed surface loading acting on the straight boundary of atwo-dimensional FE mesh.
(The load is assumed to have been integrated through the thickness normal to the figure, so it is
actually aline load measured as force per unit length.)

The procedure is also called tributary region or contributing region method. For the example of
Figure 8.4, each boundary node is assigned atributary region around it that extends halfway to the
adjacent nodes. The force contribution P of the cross-hatched areais directly assigned to node 3.

This method has the advantage of not requiring the computation of centroids, as required in the
EbE technique discussed in the next subsection. For this reason it is often preferred in hand
computations. It can be extended to three-dimensional meshes aswell as volume loads.® It should

3 The computation of tributary areas and volumes can be done through the so-called Voronoi diagrams.
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Figure 8.5. EbE direct lumping of distributed load, illustrated for a 2D problem.

be avoided, however, when the applied forces vary rapidly (within element length scales) or act
only over portions of the tributary regions.

88.3.2. Element by Element (EbE) Lumping

Inthisvariant the distributed loads are divided over element domains. Theresultant load isassigned
to the centroid of the load diagram, and apportioned to the element nodes by statics. A node force
is obtained by adding the contributions from all elements meeting at that node. The procedure is
illustrated in Figure 8.5, which shows details of the computation over segment 2-3. Thetotal force
at node 3, for instance, would that contributed by segments 2-3 and 3-4.

If applicable, the EbE procedure is more accurate than NbN lumping. In fact it agrees with the
consi stent node lumping for simple elements that possess only corner nodes. In those casesit isnot
affected by the sharpness of the load variation and can be used for point loads that are not applied
at the nodes.

The procedure is not applicable if the centroidal resultant load cannot be apportioned by statics.
This happensif the element has midside faces or internal nodes in addition to corner nodes, or if it
has rotational degrees of freedom. For those elements the variational approach is preferable.

§8.4. BOUNDARY CONDITIONS

The key distinction between essential and natural boundary conditions (BC) was introduced in
the previous Chapter. The distinction is explained in Part || from avariationa standpoint. In this
Chapter we discuss next the simplest essential boundary conditions in structural mechanics from
a physical standpoint. This makes them relevant to problems with which a structural engineer is
familiar. Because of the informal setting, the ensuing discussion relies heavily on examples.
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Figure 8.6. Examples of restraining a body against two-dimensional rigid body motions.

In structural problems formulated by the DSM, the recipe of 8§7.7.1 that distinguishes between
essential and natural BC is: if it directly involves the nodal freedoms, such as displacements or
rotations, it is essential. Otherwise it is natural. Conditions involving applied loads are natural.
Essential BCs take precedence over natural BCs.

The simplest essential boundary conditions are support and symmetry conditions. These appear
in many practical problems. More exotic types, such as multifreedom constraints, require more
advanced mathematical tools and are covered in the next two Chapters.

§8.5. SUPPORT CONDITIONS

Supportsare usedtorestrain structuresagainst rel ativerigid body motions. Thisisdoneby attaching
them to Earth ground (through foundations, anchors or similar devices), or to a*“ground structure”
which is viewed as the external environment.* The resulting boundary conditions are often called
motion constraints. In what follows we analyze two- and three-dimensional motions separately.

88.5.1. Supporting Two Dimensional Bodies

Figure 8.6 shows two-dimensional bodiesthat displace in the plane of the paper. If abody isnot re-
strained, an applied load will causeinfinite displacements. Regardless of the loading conditions, the
structure must be restrained against two translations and one rotation. Consequently the minimum
number of constraints that has to be imposed in two dimensionsis three.

In Figure 8.4, support A provides translational restraint, whereas support B, together with A,
provides rotational restraint. In finite element terminology, we say that we delete (fix, remove,
preclude) all trandational displacements at point A, and that we delete the tranglational degree of
freedom directed along the normal to the AB direction at point B. This body isfreeto distort in any
manner without the supports imposing any displacement constraints.

Engineerscall A and B reaction-to-ground points. Thismeansthat if the supports are conceptually
removed, the applied loads are automatically balanced by reactive forces at points A and B, in
accordancewith Newton'sthirdlaw. Additional freedomsmay beremovedto model greater restraint
by the environment. However, Figure 8.6(a) does illustrate the minimal number of constraints.

4 For example, the engine of a car is attached to the vehicle frame through mounts. The car frame becomes the “ground
structure,” which moves with respect to Earth ground.

88



89 88.6 SYMMETRY AND ANTISYMMETRY CONDITIONS

YA
Z
B
D
A C —> X
2/ > _

Figure 8.7. Suppressing RBM freedomsin athree-dimensional body.

Figure 8.6(b) shows asimplified version of Figure 8.6(a). Heretheline AB is paralel to the global
y axis. We simply delete the x and y trandations at point A, and the x trandation at point B.
If the roller support a B is modified as in Figure 6(c), it becomes ineffective in constraining the
infinitesimal rotational motion about point A because the rolling direction is normal to AB. The
configuration of Figure 6(c) is called a kinematic mechanism, and can be flagged by a singular
modified stiffness matrix.

88.5.2. Supporting Three Dimensional Bodies

Figure8.7illustratesthe extension of thefreedom del etion concept to threedimensions. Theminimal
number of freedoms that have to be deleted is now six and many combinations are possible. In the
example of the figure, all three degrees of freedom at point A have been deleted to prevent rigid
body tranglations. The x displacement component at point B is deleted to prevent rotation about z,
the z component is deleted at point C to prevent rotation about y, and the y component is deleted
at point D to prevent rotation about X.

§88.6. SYMMETRY AND ANTISYMMETRY CONDITIONS

Engineers doing finite element analysis should be on the lookout for conditions of symmetry or
antisymmetry. Judicioususeof these conditionsallowsonly aportion of the structureto beanalyzed,
with a consequent saving in data preparation and computer processing time.>

88.6.1. Visualization

Recognition of symmetry and antisymmetry conditions can be done by either visualization of the
displacement field, or by imagining certain rotational ot reflection motions. Both techniques are
illustrated for the two-dimensional case.

A symmetry line in two-dimensional motion can be recognized by remembering the “mirror” dis-
placement pattern shown in Figure 8.8(a). Alternatively, a 180° rotation of the body about the
symmetry line reproduces exactly the original problem.

5 Even if the conditions are not explicitly applied through BCs, they provide valuable checks on the computed solution.
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Figure 8.8. Visualizing symmetry and antisymmetry lines.

An antisymmetry line can be recognized by the displacement pattern illustrated in Figure 8.8(b).
Alternatively, a180° rotation of thebody about the antisymmetry linereproducesexactly theoriginal
problem except that all applied loads are reversed.

Similar recognition patterns can be drawn in three dimensions to help visualization of planes of
symmetry or antisymmetry. More complex regular patterns associated with sectorial symmetry
(also called harmonic symmetry) and rotational symmetry can be treated in a similar manner, but
will not be discussed here.

88.6.2. Effect of Loading Patterns

Although the structure may look symmetric in shape, it must be kept in mind that model reduction
can be used only if the loading conditions are also symmetric or antisymmetric.

Consider the plate structure shown in Figure 8.9(a). This structure is symmetrically loaded on the
x-y plane. Applying the recognition patterns stated above one concludesthat the structureisdoubly
symmetric in both geometry and loading. It is evident that no displacements in the x-direction are
possible for any point on the y-axis, and that no y displacements are possible for points on the x
axis. A finite element model of this structure may look like that shown in Figure 8.8(b).

On the other hand if the loading is antisymmetric, as shown in Figure 8.10(a), then the x axis
becomes an antisymmetry line because none of the y = 0 points can move along the x direction.
The boundary conditions to be imposed on the finite element model are also different, as shown in
Figure 8.10(b).

REMARK 8.2

For the antisymmetric loading case, one node point has to be constrained against vertical motion. The choice
is arbitrary and amounts only to an adjustment on the overall (rigid-body) vertical motion. In Figure 8.10(b)
the center point C has been chosen to bethat vertically-constrained node. But any other node could be selected
aswell; for example A or D. The important thing is not to overconstrain the structure by applying more than
oney constraint.
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Figure 8.9. A doubly symmetric structure under symmetric loading.
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Figure 8.10. A doubly symmetric structure under antisymmetric loading.
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Homework Exercisesfor Chapters7 and 8
FEM Modeling

EXERCISE 8.1

[D:10] The plate structure shown in Figure E8.1 isloaded and deformsin the plane of the figure. The applied
load at D and the supportsat | and N extend over afairly narrow area. Give alist of what you think are the
likely “trouble spots’ that would require alocally finer finite element mesh to capture high stress gradients.

Identify those spots by itsletter and areason. For example, D: vicinity of point load.

=
C E
A D R G
ON M L 1
Z HW

Figure E8.1. Plate structure for Exercise 8.1.

EXERCISE 8.2

[D:15] Part of atwo-dimensional FE mesh has been set up asindicated in Figure E8.2. Region ABCD istill
unmeshed. Draw atransition mesh within that region that correctly mergeswith the regular grids shown, uses
4-node quadrilateral elements (quadrilaterals with corner nodes only), and avoids triangles. Note: There are
severa (equally acceptable) solutions.

O
0

o 0

(o, O O O O O O O

D C

Figure E8.2. Plate structure for Exercise 8.2.

EXERCISE 8.3

[A:15] Compute the “lumped” nodal forces f;, f,, f3 and f, equivalent to the linearly-varying distributed
surface load q for the finite element layout defined in Figure E8.3. Use both NbN and EbE lumping. For
example, f; = 3q/8 for NbN. Check that f, + f, + f3 + f4 = 6q for both schemes (why?). Notethat g is
given as aforce per unit of vertical length.
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Figure E8.3. Mesh layout for Exercise 8.3.
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Figure E8.4. Problemsfor Exercise 8.4.

EXERCISE 8.4

[D:15] Identify the symmetry and antisymmetry lines in the two-dimensional problemsillustrated in Figure
E8.4. They are: (a) acircular disk under two diametrically opposite point forces (the famous “Brazilian test”
for concrete); (b) the same disk under two diametrically opposite force pairs; (c) a clamped semiannulus under
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Figure E8.5. The hungry bird.

aforce pair oriented as shown; (d) astretched rectangular plate with acentral circular hole. Finally (e) and (f)
are half-planes under concentrated loads.®

Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the compl ete structure
to one half or one quarter before laying out afinite element mesh. Then draw acoarse FE mesh indicating, with
rollersor fixed supports, which kind of displacement BCsyou would specify on the symmetry or antisymmetry
lines. Note: Do all sketches on your paper, not on the printed figures.

EXERCISE 8.5

[D:20] You (afinite element guru) pass away and come back to the next life as an intelligent but hungry bird.
L ooking around, you notice a succulent big worm taking a peek at the weather. You grab one end and pull for
dinner; see Figure E8.5.

After along struggle, however, thewormwins. While hungrily looking for asmaller one your thoughtswonder
to FEM and how the bird extraction process might be modeled so you can pull it out more efficiently. Then
you wake up to face this homework question. Try your hand at the following “worm modeling” points.

(@ Theworm issimply modeled as a string of one-dimensional (bar) elements. The “worm axia force” is
of course constant from the beak B to ground level G, then decreases rapidly because of soil friction
(which varies roughly as plotted in the figure above) and drops to nearly zero over DE. Sketch how a
good “worm-element mesh” should look like to capture the axial force well.

(b) On the above model, how would you represent boundary conditions, applied forces and friction forces?

(c) Next you want a more refined anaysis of the worm that distinguishes skin and insides. What type of
finite element model would be appropriate?

(d) (Advanced) Finaly, point out what need to be added to the model of (c) to include the soil as an elastic
medium.

Briefly explain your decisions. Dont write equations.

6 Notethat (€) is the famous Flamant’s problem, which is important in the 2D design of foundations of civil structures.
The analytical solution of (€) and (f) may be found, for instance, in Timoshenko-Goodier's Theory of Elasticity, 2nd
Edition, page 85ff.
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EXERCISE 8.6

[A/D:20] Explain from kinematics why two antisymmetry linesin 2D cannot cross at a finite point. As a
corollary, investigate whether it is possibleto have morethan one antisymmetric linein a2D elasticity problem.

EXERCISE 8.7
[A/D:15] Explain from kinematics why a symmetry line and an antisymmetry line must cross at right angles.

EXERCISE 8.8

[A/D:15] A 2D body hasn > 1 symmetry lines passing through a point C and spanning an angle /n from
each other. Thisiscalled sectorial symmetry if n > 3. Draw apicturefor n = 5, say for acar whedl. Explain
why C isfixed.

EXERCISE 8.9

[A/D:25, 5each] A body isin 3D space. The analogs of symmetry and antisymmetry lines are symmetry and
antisymmetry planes, respectively. The former are also called mirror planes.

() Statethe kinematic properties of symmetry and antisymmetric planes, and how they can be identified.
(b) Two symmetry planesintersect. State the kinematic properties of the intersection line.

(c) A symmetry plane and an antisymmetry plane planes intersect. State the kinematic properties of the
intersection line. Can the angle between the planes be arbitrary?

(d) Cantwo antisymmetry planesintersect?
(e) Three symmetry planesintersect. State the kinematic properties of the intersection point.

EXERCISE 8.10

[A:25] A 2D problemiscalled periodicinthe x directionif al fields, in particular displacements, repeat upon
moving over adistancea > 0: Ux(X + @, y) = Ux(X, Y) and uy(X + a, y) = uy(X, y). Can this situation be
treated by symmetry and/or antisymmetry lines?

EXERCISE 8.11

[A:25] Extend the previous exerciseto antiperiodicity, inwhich uy(X +a, y) = ux(X, y) anduy(x +a, y) =
_uy(X, y)

EXERCISE 8.12

[A:4Q] If theworld were spatially n-dimensional (meaning it has elliptic metric), how many independent rigid
body modes would a body have? (Prove by induction)
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9-3 8§9.1 CLASSIFICATION OF CONSTRAINT CONDITIONS

89.1. CLASSIFICATION OF CONSTRAINT CONDITIONS

In previous Chapters we have considered structural support conditions that are mathematically
expressable as constraints on individual degrees of freedom:

nodal displacement component = prescribed value. (9.1

Thesearecalled single-freedomconstraints. Chapters3 and 4 explain how toincorporate constraints
of thisform into the master stiffness equations, using hand- or computer-oriented techniques. The
displacement boundary conditions studied in Chapter 8, including the modeling of symmetry and
antisymmetry, lead to constraints of this form.

For example:
UX4 = 0, Uyg = 0.6. (9.2)

These are two single-freedom constraints. The first one is homogeneous and the second one non-
homogeneous.

89.1.1. MultiFreedom Constraints

The next step up in complexity involves multifreedom equality constraints, or multifreedom con-
straints for short, the last name being acronymed to MFC. These are functiona equations that
connect two or more displacement components:

F (nodal displacement components) = prescribed value, (9.3)

where function F vanishes if al its nodal displacement arguments do. Equation (9.3), where all
displacement components are in the left-hand side, is called the canonical form of the constraint.

An MFC of thisform is called multipoint or multinode if it involves displacement components at
different nodes. The constraint is called linear if al displacement components appear linearly on
the left-hand-side, and nonlinear otherwise.

The constraint is called homogeneous if, upon transfering all terms that depend on displacement
components to the left-hand side, the right-hand side — the “ prescribed value” in (9.3) — is zero.
It is called non-homogeneous otherwise.

In this and next Chapter only linear constraints will be studied. Furthermore more attention is
devoted to the homogeneous case, because it arises more frequently in practice.

REMARK 9.1

The most general constraint classisthat of inequality constraints, such asuys — 2u,, > 0.5. These constraints
arerelatively infrequent in linear structural analysis, except in problems that involve contact conditions. They
are of paramount importance, however, in other fields such as optimization.
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89.1.2. MFC Examples

Here are three examples of MFCs:

Uxz = Uy,  Uxo—2Uxa+Uxs = 0.25, (Xs+Uxs—X3—Uyx3)?+(Y5+Uys—Y3—Uy3)> = 0. (9.4)

The first oneis linear and homogeneous. It is not a multipoint constraint because it involves the
displacement components of one node: 2.

The second one is multipoint because it involves three nodes:. 2, 4 and 6. It is linear and non-
homogeneous.

Thelast oneismultipoint, nonlinear and homogeneous. Geometrically it expressesthat the distance
between nodes 3 and 5 in two-dimensional motionson the {x, y} planeremains constant. Thiskind
of constraint appearsin geometrically nonlinear analysis of structures, which is atopic beyond the
scope of this course.

89.1.3. *MFC Matrix Forms

Matrix forms of linear MFCs are often convenient for compact notation. An individual constraint such asthe
second onein (9.4) can be written

Uxo
[1 —2 1] ux | =0.25 (9.5
ux6
or, in direct matrix notation:
au =b, (nosumoni) (9.6)

inwhichindexi (i = 1, 2,...) identifies the constraint, & is arow vector, U; collects the set of degrees of
freedom that participate in the constraint, and g; isthe right hand side scalar (0.25 above). The bar over aand
u distinguishes (9.6) from the expanded form (9.8) discussed below.

For method description and general proofsit isoften convenient to expand matrix forms so that they embody all
degrees of freedom. For example, if (9.5) ispart of atwo-dimensiona finite element model with 12 freedoms:
Ux1, Uy1, . . . Uyg, the left-hand side row vector may be expanded with nine zeros as follows

Ux1
[001 000 —2000 1 0]|Y%|=025 9.7
in which case the matrix notation
au=g (9.8)

isused. Finally, all multifreedom constraints expressed as (9.8) may be collected into asingle matrix relation:
Au =g, (9.9

where rectangular matrix A isformed by stacking the a;’s as rows and column vector g is formed by stacking
the gisasentries. If thereare 12 degrees of freedom in u and 5 multifreedom constraintsthen A will be 5 x 12.
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§9.2. METHODSFOR IMPOSING MULTIFREEDOM CONSTRAINTS

Accounting for multifreedom constraints is done — at least conceptually — by changing the
assembled master stiffness equations to produce a modified system of equations. The modification
process is aso called constraint application or constraint imposition. The modified system is the
one submitted to the equation solver.

Three methods for treating MFCs are discussed in this and the next Chapter:

1. Master-Save Elimination. The degrees of freedom involved in each MFC are separated into
master and slave freedoms. The slave freedoms are then explicitly eliminated. The modified
equations do not contain the slave freedoms.

2. Penalty Augmentation. Also called the penalty function method. Each MFC is viewed as
the presence of afictitious elastic structural element called penalty element that enforces it
approximately. This element is parametrized by a numerical weight. The exact constraint
is recovered if the weight goes to infinity. The MFCs are imposed by augmenting the finite
element model with the penalty elements.

3. Lagrange Multiplier Adjunction. For each MFC an additional unknown is adjoined to the
master stiffness equations. Physically this set of unknowns represent constraint forces that
would enforce the constraints exactly should they be applied to the unconstrained system.

For each method the exposition tries to give first the basic flavor by working out the same example
for each method. The general technique is subsequently presented in matrix form for compl eteness
but is considered an advanced topic.

Conceptually, imposing MFCsis not different from the procedure discussed in Chapters 3 and 4 for
single-freedom constraints. The master stiffness equations are assembled ignoring all constraints.
Then the MFCs are imposed by appropriate modification of those equations. There are, however,
two important practical differences:

1. The modification process is not unique because there are aternative constraint imposition
methods, namely thoselisted above. These methodsoffer tradeoffsin generality, programming
implementation complexity, computational effort, numerical accuracy and stability.

2. In the implementation of some of these methods — particularly penalty augmentation —
constraint imposition and assembly are carried out simultaneously. In that case the framework
“first assemble, then modify,” is not strictly respected in the actual implementation.

REMARK 9.2

The three methods are also applicable, as can be expected, to the simpler case of a single-freedom constraint
such as (9.2). For most situations, however, the generality afforded by the penalty function and Lagrange
multiplier methods are not warranted. The hand-oriented reduction process discussed in Chapters 3 and 4 is
in fact a specia case of the master-slave elimination method in which “there is no master.”

REMARK 9.3

Often both multifreedom and single-freedom constraintsare prescribed. Themodification processtheninvolves
two stages. apply multifreedom constraints and apply single freedom constraints. The order in whichtheseare
carried out is implementation dependent. Most implementations do the MFCsfirst, either after the assembly
is completed or during the assembly process. The reason is practical: single-freedom constraints are often
automatically taken care of by the equation solver itself.
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Figure9.1. A one-dimensional problem discretized with six bar finite
elements. The seven nodes may move only along the x direction.
Subscript x isomitted from the u’sand f’sfor simplicity.

§9.3. THE EXAMPLE STRUCTURE

The one-dimensional finite element discretization shown in Figure 9.1 will be used throughout to
illustrate the three MFC application methods. This structure consists of six bar elements connected
by seven nodes that can only displace in the x direction.

Before imposing various multifreedom constraints discussed below, the master stiffness equations
for this problem are assumed to be

K1 Koo 0 0 0 0 0 71U ~ f1
Ko Ky Ko 0 0 0 0 Uo f2
0 Kz Kz Kz 0 0 0 U3 f3
0 0 Kz Ky Kg O 0 ug | =1 fa |, (9.10)
0 0 0 Kss Kss Ksg 0 Us f5
0 0 0 0 Ksg Ke Ker Ues f6
| O 0 0 0 0 Kez K774 Lu7 | f7_
or
Ku="f. (9.11)
The nonzero stiffness coefficients K;j in (9.10) depend on the bar rigidity properties. For example,
if E(e)A(e)/L(e) = 100for eacheemente = 1,...,6, then Kii=K7z=100,Kp = ... = K66 =
200, K1 = Koz = ... = Kg7 = —100. However, for the purposes of the following treatment the

coefficients may be kept arbitrary. The component index x in the nodal displacements u and nodal
forces f has been omitted for brevity.

Now let us specify amultifreedom constraint that states that nodes 2 and 6 are to move by the same
amount:
Uz = Ue. (9.12)

Passing all node displacements to the right hand side gives the canonical form:

U, —ug = 0. (913)

Constraint conditions of thistype are sometimes called rigid links because they can be mechanically
interpreted as forcing node points 2 and 6 to move together asif they weretied by arigid member.t

L Thisphysical interpretation isexploited in the penalty method described in the next Chapter. Intwo and three dimensions
rigid link constraints are more complicated.
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We now study the imposition of constraint (9.13) on the master equations (9.11) by the methods
mentioned above. In this Chapter the master-slave method is treated. The other two methods:
penalty augmentation and Lagrange multiplier adjunction, are discussed in the following Chapter.

§89.4. THE MASTER-SLAVE METHOD

To apply this method by hand, the MFCs are taken one at atime. For each constraint a slave degree
of freedom is chosen. The freedoms remaining in that constraint are labeled master. A new set
of degrees of freedom @ is established by removing all slave freedoms from u. This new vector
contains master freedoms aswell as those that do not appear inthe MFCs. A matrix transformation
equationthat relatesu to G isgenerated. Thisequationisused to apply acongruential transformation
to the master stiffness equations. This procedure yields a set of modified stiffness equations that
are expressed in terms of the new freedom set (1. Because the modified system does not contain the
dave freedoms, these have been effectively eliminated.

89.4.1. A One-Constraint Example

The mechanics of the process is best seen by going through an example. To impose (9.13) choose
Us as slave and u, as master. Relate the original unknowns uy, . .. U7 to the new set in which ug is

missing:
U7 ] ‘100000‘_u_
uy 010000 ul
Uz 001000 u2
uy |=({0 0 0 1 0 0 u3 , (9.14)
Us 000010 u“
Us 010000 u5
lu;d LO OO OO 1]-77"
Thisisthe required transformation relation. In compact form:
u=TaO. (9.15)
Replacing (9.15) into (9.11) and premultiplying by TT yields the modified system
Ka=Ff, inwhich K=TTKT, f=TTt. (9.16)
Carrying out the indicated matrix multiplications yields
r Ko Ko 0 0 0 0 7 r1rus B fq
Ko K+ Kg K 0 Kg Ke Uz fo + fe
0 Koz Kaz Kz 0 0 us | f3
0 Kse 0 Kg Kss O Us fs
L O K67 0 0 0 K77_ L U7 _ L f7

Equation (9.17) is a new linear system containing 6 equations in the remaining 6 unknowns: us,
Uy, Uz, U4, Us and u7. Upon solving it, ug is recovered from the constraint (9.12).
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REMARK 9.4

The form of modified system (9.16) can be remembered by a simple mnemonic rule: premultiply both sides
ofu=T0 by TT K, and replace K u by f on the right hand side.

REMARK 9.5

For a simple freedom constraint such as us = 0 the only possible choice of slaveis of course u, and thereis
no master. The congruential transformation is then nothing more than the elimination of u, by striking out
rows and columns from the master stiffness equations.

REMARK 9.6

For asimple MFC suchasu, = ug, it doesnot matter which degree of freedom ischosen as master or unknown.
Choosing u; as slave produces a system of equations in which now u, is missing:

Kup 0 0 0 Ko 0 Uz f]_

0 Kz Kz 0 Koz 0 Us fs

0 K34 K44 K45 0 0 Uy _ f4

0 0 Ki Ks Ko 0 |[|us|=| £ | .18
Kiz Kz 0 Kss Kyt Ke Koz Us fo+ fs

0 0 0 0 K67 K77 u; f7

Although (9.17) and (9.18) are algebraically equivalent, the latter would be processed faster if askyline solver
(Part 111 of course) is used for the modified equations.

89.4.2. Several Homogeneous MFCs

The matrix equation (9.16) in fact holds for the genera case of multiple homogeneous linear
constraints. Direct establishment of the transformation equation, however, is more complicated if
slave freedomsin one constraint appear as mastersin another. To illustrate this point, suppose that
for the example system we have three homogeneous multifreedom constraints:

U, — Ug =0, u; + 4u, = 0, 2Uz + Us +Us =0, (9.19)

Picking as dave freedoms ug, u4 and uz from the first, second and third constraint, respectively, we
can solve for them as

1 1 1 1
Ug = U2, Usg=—3zU1,  Ug=—3(Us+Us) = gUy— 5Us. (9.20)

Observe that solving for us from the third constraint brings u4 to the right-hand side. But because
u4 isaso aslave freedom (it was chosen as such for the second constraint) it is replaced in favor of

Ui using ug = —%ul. The matrix form of the transformation (9.20) is
- L -~ 1 0 0 07
1
Uy O 1 0 O
us % 0 _% 0 31
ugs | = _711 O 0O O ui , (9.21)
Us 0 0 1 0fly,
Us 0 1 0 O
L U7 . 0 0 0 1.
9-8



9-9 89.4 THE MASTER-SLAVE METHOD

The modified system is now formed through the congruential transformation (9.16). Note that the
slave freedoms selected from each constraint must be distinct; for example the choice ug, Us, Ug
would beinadmissible aslong asthe constraints are independent. Thisruleis easy to enforcewhen
slave freedoms are chosen by hand, but can lead to implementation and numerical difficulties when
It is programmed as an automated procedure, as further discussed later.

REMARK 9.7

The three MFCs (9.20) with ug, us and u, chosen as slaves and u;, u, and us chosen as masters, may be
presented in the partitioned matrix form:

0 01 U3 0O 1 0 Uz
0 40 up [=1-1 0 0 Uo (9.22
2 10 Ug 0O 0 -1 Us

This may be compactly written Asus + Amun = 0. Solving for the slave freedoms gives us = —As‘lAmum.
Expanding with zeros to fill out u and O produces (9.21). This general matrix form is considered in §9.4.4.
Note that non-singularity of As isessential for this method to work.

89.4.3. Nonhomogeneous MFCs

Extensionto non-homogeneous constraintsisimmediate. 1nsuch acasethetransformation equation
becomes non-homogeneous. For example suppose that (9.15) contains anonzero prescribed value:

Uz —ug = 0.2 (9.23)

Nonzero RHS values such as 0.2 in (9.23) may be often interpreted physically as “gaps’ (thus the
use of the symbol g in the matrix form). Chose ug again as dave: ug = u, — 0.2, and build the
transformation

fwl 1000007 [ 07
Uy 010000 ul 0
Us 001000 u2 0
uu|=(0 00100 u3 +| 0 (9.24)
Us 000010 u“ 0
Us 010000 u5 0.2
lu;,J LoOoooo0OoO 2] L o
In compact matrix notation,
u=T0+g. (9.25)

Here the constraint gap vector gisnonzero and T isthe same as before. To get the modified system
applying the shortcut rule of Remark 9.4, premultiply both sides of (9.25) by TTK, replace Ku by
f, and pass the data to the RHS:

Ka=f, inwhich K=T'KT, f=T"¢-Kg). (9.26)

Upon solving (9.26) for G, the complete displacement vector is recovered from (9.25).
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For the MFC (9.22) this technique gives the system

9-10

r K K1z 0 0 0 0 7r1rus’ B fl ]
Ko Ko+ Kg K 0 Ksg Kg uz fo + fe — 0.2Kgg
0 Koz Kazs Kag 0 0 us | f3
0 0 Kaw Kau Ky 0 Uy B f4 (927)
0 Ksg 0 Kss Kss 0 Usg f5 — 0.2K56
L O Keg7 0 0 0 K74 Luy | f7 —0.2Kg7

See Exercise 9.2 for multiple non-homogeneous MFCs.

89.4.4. *The General Case

For implementation in general-purpose programs the master-slave method can be described as follows. The
degrees of freedoms in u are classified into three types. independent or uncommitted, masters and slaves.
(The uncommitted freedoms are those that do not appear in any MFC.) Label these sets as u,, uy and ug,
respectively, and partition the stiffness equations accordingly:

Kuw Kum Kus Uy fu
Kin Kom Kms || un [ =] fm (9.28)
KIS K;s Kss Us fs
The MFCs may be written in matrix form as
AmUm + AsUs = g, (9.29)
where Ag is assumed square and nonsingular. |f so we can solve for the dave freedoms:
Us = —A ' ApUnm +AJ'g = Tum + g, (9.30)
Inserting into the partitioned stiffness matrix and symmetrizing
Kuu KumT ][Uu]_[fu_Kusg]

It is seen that the misleading simplicity of the handworked examplesis gone.

89.4.5. *Retainingthe Original Freedoms

A potential disadvantage of the master-slave method in computer work is that it requires a rearrangement of
the original stiffness equations because ( is a subset of u. The disadvantage can be annoying when sparse
matrix storage schemes are used for the stiffness matrix, and becomes intolerable if secondary storageis used
for that purpose.

With abit of trickinessit ispossibleto maintain the original freedom ordering. Let usdisplay it for the example
problem under (9.13). Instead of (9.14), use the square transformation

9-10

up 1 000 0O0O ug
U 01 0O0O0O0ODO Uy
Uz 0 01 0O0O0ODO Us
u =10 0 0 1 0 0 O ug |, (9.32)
Us 0 000O0O1O00 Us
Ug 01 0O0O0O0CDO Ue
| U7 _ |0 0 0 0O OO 11 Luy



911 89.4 THE MASTER-SLAVE METHOD

Master Master

et .

O e e s e ) ————3 X
1 7

Figure9.2. Model reduction of the example structure of Figure 9.1 to the end freedoms.

where (g is a placeholder for the slave freedom ug. The modified equations are

MK Ko 0 0 0 0 0 0r Uy B fl ]
Ko Kp+Keg Kp 0 0 Ks 0 Kg Uy fo+ fe
0 Koz Kz Kz 0 0 0 0 us f3
0 0 K34 K44 K45 0 0 0 Uy = f4 y (933)
0 Kse 0 Ksas Kes 0 0 0 Us f5
0 0 0 0 0 0O 0 O Ue 0
L 0 K67 0 0 0 0 0 K771 Lu7_ | f7 _

which are submitted to the equation solver. If the solver is not trained to skip zero row and columns, a one
should be placed in the diagonal entry for the Gg (sixth) equation. The solver will return Gg = 0, and this
placeholder value is replaced by u,. Note the points in common with the computer-oriented placeholder
technique described in §3.4 to handle single-freedom constraints.

89.4.6. Model Reduction by Kinematic Constraints

The congruential transformation equations (9.16) and (9.26) have additional applications beyond
the master-slave method. An important oneis model reduction by kinematic constraints. Through
this procedure the number of DOF of a static or dynamic FEM model is reduced by a significant
number, typically to 1% — 10% of the origina number. Thisis done by taking alot of slavesand a
few masters. Only the masters are left after the transformation. The reduced model is commonly
used in subsequent calculations as component of a larger system, particularly during design or in
parameter identification.

Toillustrate the method for astatic model, consider the bar assembly of Figure 9.1. Assumethat the
only masters are the end motionsu; and u-, asillustrated in Figure 9.2, and interpolate all freedoms
linearly:

ruzl 1 0T

Uy 5/6 1/6

Us 4/6 2/6 |

us | = | 3/6 3/6 {ul], oo u=TQ. (9.34)
Us 2/6 4/6 !

Us 1/6 5/6

L U7 _ L O 1 ]

The reduced-model equations are KO=T'KT0=T"f=f, orin detail

Ku Kz |[us f)
(u K _[ ] 9.35
|:K17 K??][W] |:f7} (9:35)
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(* Model Reduction Exanple *)
Clear All [ K11, K12, K22, K23, K33, K34, K44, K45, K55, K56, K66,

K={{K11, K12, 0, 0, 0, 0, 0}, { K12, K22, K23, 0, 0, 0, O},

f={f1,f2,f3,f4,f5f6,f7}; Print["f=",f];
T={{6,0},{5,1},{4,2},{3,3},{2,4},{1,5},{0,6}}/6;

Print["T (transposed to save space) =", Transpose[T]// Matri xFornj;
Khat =Si npl i fy[ Transpose[ T] . K. T] ;

fhat =Si npl i fy[ Transpose[T].f];

Print["Mdified Stiffness:"];

Print["Khat (1,1)=",Khat[[1,1]],"\nKhat(1,2)=",Khat[[1,2]],

Print["Mdified Force:"];
Print["fhat(1)=",fhat[[1]]," fhat(2)=",fhat[[2]] ];

f1,f2,f3,14,f5,f6];
{0, K23, K33, K34, 0, 0, 0}, {0, 0, K34, K44, K45, 0, 0},

{0, 0, 0, K45, K55, K56, 0}, {0, 0, 0, 0, K56, K66, K67},
{0,0,0,0,0, K67, K77}}; Print["K=", K//MatrixForni;

"\'nkKhat (2,2)=",Khat[[2,2]] ];

f-(f1, f2, £3, f4, 5, 16, {7}
T (transposed to save space)=

Modi fied Stiffness:

Khat (1, 1):§1- (36 K11 + 60 K12 + 25 K22 + 40 K23 + 16 K33 + 24 K34 + 9 K44 + 12 K45 + 4 K55 + 4 K56 + K66)
Khat (1,2):% (6 K12 + 5 K22 + 14 K23 + 8 K33 + 18 K34 + 9 K44 + 18 K45 + 8 K55 + 14 K56 + 5 K66 + 6 K67)
Khat (2, 2):% (K22 + 4 K23 + 4 K33 + 12 K34 + 9 K44 + 24 K45 + 16 K55 + 40 K56 + 25 K66 + 60 K67 + 36 K77)

Modi fi ed Force:

K11 K12 O 0 0 0
K12 K22 K23 O 0 0
0 K23 K33 K34 O 0
0 K34 K44 K45 O
0 0 K45 K55 K56 O

0 0 0 K56 K66 K67
0 0 0 0 K67 K77

o O oo

0
0
0
0

ok oo
Wl w|n
NN
w|N w|e
ol ofr
=

[o)]

fhat (1)-g (671+512:413:314.2f5.16) fhat (2)-¢ (f2+2f3:314:415:5(6+617)
Figure 9.3. Mathematica script for the model reduction example of Figure 9.2.
where
Ky = % (36K 11+60K 12+ 25K 20-+40K 234 16K 33+ 24K 34+ 9K 44+ 12K 45+ 4K 55+ 4K 56+ Kgg),
K17 = % (6K1o+5K22+14K 23+ 8K 33+ 18K 34+ 9K 44+ 18K 45+ 8K 5+ 14K 55+ 5K 65+ 6K 7).
K7 = 3—16(K22+4K23+4K33+12K34+9K44+24K45+16K55+40K56+25K66+60K67+36K77),
f1 = £(6f1+5f+4f3+3f4+2f5+ fe), f7 = £ (fo+2f3+3f4+4f5+5f6+6 7).

(9.36)

This reduces the order of the FEM model from 7 to 2. A Mathematica script to do the reduction

isshown in Figure 9.3. The key feature is that the masters are picked a priori, as the freedoms to
be retained in the model for further use.
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REMARK 9.8

Model reduction can also be done by the static condensation method explained in Chapter 11. Asits name
indicates, condensation isrestricted to static analysis. On the other hand, for such problemsit is exact whereas
model reduction by kinematic constraints generally introduces approximations.

89.4.7. Assessment of the Master-Slave M ethod

What are the good and bad points of this constraint imposition method? It enjoys the advantage of
being exact (except for inevitable solution errors) and of reducing the number of unknowns. The
concept isalso easy to explain. The mainimplementation drawback isthe complexity of the general
case as can be seen by studying (9.28) through (9.31). The complexity is due to three factors:

1. Theequations may have to be rearranged because of the disappearance of the slave freedoms.
This drawback can be alleviated, however, through the placeholder trick outlined in §9.4.5.

2. An auxiliary linear system, namely (9.30), has to be assembled and solved to produce the
transformation matrix T and vector g.

3. The transformation process may generate many additional matrix terms. If a sparse matrix
storage schemeisused for K, the logic for allocating memory and storing these entries can be
difficult and expensive.

The level of complexity depends on the generality alowed as well as on programming decisions.
At one extreme, if K is stored as full matrix and slave freedom coupling in the MFCs is disal-
lowed the logic is simple.? At the other extreme, if arbitrary couplings are permitted and K is
placed in secondary (disk) storage according to some sparse scheme, the complexity can become
overwhelming.

Another, more subtle, drawback of this method is that it requires decisions as to which degrees
of freedom are to be treated as slaves. This can lead to implementation and numerical stability
problems. Although for digjointed constraintsthe process can be programmmed in reliable form, in
more general cases of coupled constraint equationsit can lead to incorrect decisions. For example,
suppose that in the example problem you have the following two MFCs:

%Uz + %U4 = Usg, Uz + 6ug = U7 (9.37)

For numerical stability reasons it is usually better to pick as slaves the freedoms with larger co-
efficients. If thisis done, the program would select ug as slave freedoms from both constraints.
This leads to a contradiction because having two constraints we must eliminate two slave degrees
of freedom, not just one. The resulting modified system would in fact be inconsistent. Although
this defect can be easily fixed by the program logic in this case, one can imagine the complexity
burden if faced with hundreds or thousands of MFCs.

Serious numerical problems can ariseif the MFCs are not independent. For example:

%Uz = Usg, %U;}, + 6ug = U7, U +us—u;=0. (9.38)

2 Thisisthe case in mode! reduction, since each slave freedom appearsin one and only one MFC.
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Thelast constraint is an exact linear combination of the first two. If the program blindly choses u,,
uz and uy as daves, the modified system isincorrect because we eliminate three equations when in
fact there are only two independent constraints.

Exact linear dependence, asin (9.38), can be recognized by arank analysis of the Ag matrix defined
in (9.29). In inexact floating-point arithmetic, however, such detection may fail .2

The complexity of slave selection isin fact equivalent to that of automatically selecting kinematic
redundancies in the force method. It has led implementors of programs that use this method to
require masters and slaves be prescribed in the input data, thus transfering the burden to users.

The method is not generally extendible to nonlinear constraints without extensive reworking.

In conclusion, the master-slave method is useful when afew simple linear constraints are imposed
by hand. Asageneral purpose technique for finite element analysisit suffers from complexity and
lack of robustness. It is worth learning this method, however, because of its great importance of
the congruential transformation technique in model reduction for static and dynamic problems.

3 Thesafest techniquetoidentify dependenciesisto do asingular-val ue decomposition (SVD) of As. Thiscan be, however,
prohibitively expensive if oneis dealing with hundreds or thousands of constraints.
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9-15 Exercises

Homework Exercisesfor Chapter 9
MultiFreedom Constraints |

EXERCISE 9.1
[C+N:20] The example structure of Figure 9.1 has E® A®/L® = 100 for each element e = 1, ..., 6.
Con%quently Kiu =K =100, Ky = ... = Kgg = 200, K1 = Koz = ... = Kgz = —100. The applled

node forcesaretakentobe f; =1, f, =2, 3 =3, f4, =4, fs =5, fg = 6 and f; = 7, which are easy to
remember. The structure is subjected to one support condition: u; = 0 (afixed left end), and to one MFC:
Uy — Ug = 1/5

Solve this problem using the master-slave method to process the MFC, taking ug as slave. Upon forming the
modified system (9.30) apply the left-end support u; = 0 using the placeholder method of §3.4. Solve the
equations and verify that the displacement solution and the recovered node forces including reactions are

u=[0 0270 0275 0.250 0.185 0.070 0.140]"

E9.1
Ku=[-27 265 3 4 5 —-185 7]" (=D

Use Mathematica or Matlab to do the algebra is recommended. For example, the following Mathematica
script solves this Exercise:

(* Exercise 9.1 - Master-Slave Method *)

(* MFC: u2-u6 = 1/5 - slave: u6 *)

MasterStiffness0fSixElementBar [kbar_] :=Modulel[
{K=Table[0,{7},{7}1}, K[[1,111=K[[7,7]]=kbar;
For [i=2,i<=6,i++,K[[i,i]]=2*kbar];
For [i=1,i<=6,i++,K[[i,i+1]1]1=K[[i+1,i]]=-kbar];
Return([K]];

FixLeftEndOfSixElementBar [Khat_,fhat_] :=Module[
{Kmod=Khat ,fmod=fhat}, fmod[[1]]=0; Kmod[[1,1]1]1=1;
Kmod[[1,2]]1=Kmod[[2,1]]=0; Return[{Kmod,fmod}]];

K=MasterStiffnessO0fSixElementBar[100];
Print["Stiffness K=",K//MatrixForm] ;
£={1,2,3,4,5,6,7}; Print["Applied forces=",f];
T={{1,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},
{0,0,0,1,0,0},4{0,0,0,0,1,0},{0,1,0,0,0,03%},
{0,0,0,0,0,1}};
Print ["Transformation matrix T=",T//MatrixForm];
g={0,0,0,0,0,-1/5,0};
Print ["Constraint gap vector g=",gl;
Khat=Simplify[Transpose[T].K.T]; fhat=Simplify[Transposel[T].(f-K.g)];
{Kmod , fmod}=FixLeftEndOfSixElementBar [Khat,fhat]; (* fix left end *)
Print["Modified Stiffness upon fixing node 1:",Kmod//MatrixForm];
Print["Modified RHS upon fixing node 1:",fmod];
umod=LinearSolve [Kmod,fmod] ;
Print["Computed umod (lacks slave u6)=",umod];
u=T.umod+g; Print["Complete solution u=",ul;
Print ["Numerical u=",N[ull;
fu=K.u; Print["Recovered forces K.u with reactions=",ful;
Print ["Numerical K.u=",N[ful];
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EXERCISE 9.2

[C+N:25] As in the previous Exercise but applying the following three MFCs, two of which are non-
homogeneous:
U, — Ug = 1/5, Uz + 2uy = —2/3, 2U3z — Us +Us = 0. (E9.2)

Hints. Chose uy4, Us and ug as slaves. Much of the script shown for Exercise 9.1 can be reused. The main
changes are in the formation of T and g. If you are a Mathematica wizard (or willing to be one) those can be
automatically formed by saying

sol=Simplify[Solve[{u2-u6==1/5, u3+2*ud==-2/3,2%u3-ud+u5==0},{ud,u5,u6}1];
ums={ul,u2,u3,ud,u5,u6,u7}/.sol[[1]]; um={ul,u2,u3d,u7};
T=Table[Coefficient [ums[[i]],um[[j1]1],{i,1,7},{j,1,4}];
g=ums/.{ul->0,u2->0,u3->0,u4->0,u5->0,u6->0,u7->0};

Print ["Transformation matrix T=",T//MatrixForm];

Print["Gap vector g=",g]

If you do this, explain what it does and why it works. Otherwise form and enter T and g by hand. The
numerical results (shown to 5 places) should be

u=[0. 0.043072 -0.075033 —0.29582 -0.14575 —0.15693 —0.086928]", (£9.3)
Ku=[-43072 16.118 10.268 —37.085 16.124 —8.1176 7.]'. .
EXERCISE 9.3

[A:25] Can the MFCs be pre-processed to make sure that no slave freedom in a MFC appears as master in
another?

EXERCISE 9.4

[A:25] Inthegeneral case discussed in §89.4.4, under which condition is the matrix A of (9.32) diagonal and
thus trivialy invertible?

EXERCISE 9.5

[A:25] Work out the general technique by which the unknowns need not be rearranged, that is, u and O are
the same. Use “placeholders’ for the slave freedoms. (Hint: use ideas of §3.4).

EXERCISE 9.6

[A/C:35] Isit possible to establish a slave selection strategy that makes A diagona or triangular? (This
requires knowledge of matrix techniques such as pivoting.)

EXERCISE 9.7

[A/C:40] Work out astrategy that producesawell conditioned A by selecting new slavesaslinear combinations
of finite element freedomsif necessary. (Requires background in numerical analysis).
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10-3 810.1 THE PENALTY METHOD

Inthis Chapter we continue the discussion of methods to treat multifreedom constraints (MFCs). The
master-slave method described in the previous Chapter was found to exhibit serious shortcomings
for treating arbitrary constraints, although the method has important applications to model reduction.

We now pass to the study of two other methods: penalty augmentation and Lagrange multiplier
adjunction. Both of these techniques are better suited to general implementations of the Finite
Element Method.

810.1. THE PENALTY METHOD

up, fpoquy By qug, Ty Uy, 4 us, f5 JUg T (U, 5

> > > —> —>
(1) (2) (3) (4) (5) (6)
1 2 3 4 5 6 7

Figure 10.1. The example structure of Chapter 9, repeated for convenience.

810.1.1. Physical Interpretation

The penalty method will be first presented using a physical interpretation, leaving the mathematical
formulation to a subsequent section. Consider again the example structure of Chapter 9, which is
reproduced in Figure 10.1 for convenience. To impose= Ug imagine that nodes 2 and 6 are
connected with a “fat” bar of axial stiffness, labeled with element number 7, as shown in Figure
10.2. This bar is called penalty elemerdndw is its penalty weight

u, f; qu, f, qug, f Uy, f us, f Ug, f u,, f
(1) (6)

penalty element of axial rigidity

Figure 10.2. Adjunction of a fictitious penalty bar of axial stiffnass
identified as element 7,to enforce the MBLC= us.

Such an element, albeit fictitious, can be treated exactly like another bar element insofar as con-
tinuing the assembly of the master stiffness equations. The penalty element stiffness equations,

KOu® =7 aré
1 -1 u] _[f5"
ol L= asy

1 The general method to get these equations is described in §10.1.4.
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104

Because there is one freedom per node, the two local element freedoms map into global freedoms 2
and 6, respectively. Using the assembly rules of Chapter 3 we obtain the following modified master
stiffness equationK 0 = f, which shown in detail are

BLSE
K12
0

eoNeoloeNe

K12
Koo+ w
K23
0
0
—w

0

0
K23
Kss
Kaa

0

0

0

0
0
Kz
Kas
Kas
0
0

0
0
0
Kas
Kss
Kse
0

0 0 T
—w 0
0 0
0 0
Kse 0
Kes +w Kg7
Ke7 K774

ui
uz
us

Ug | =

Us
Us

[ U7 _

, (10.2)

This system can now be submitted to the equation solver. Noté tkat, and onlyK has changed.

810.1.2. Choosing the Penalty Weight

What happens when (10.2) is solved numerically? finge weight w is chosen the constraint

Uy = Ug is approximately satisfied in the sense that one ggetsus = €y, wheregy # 0. The “gap

error” gy is called theconstraint violation The magnitudgey| of this violation depends ow: the
largerw, the smaller the violation. More precisely, it can be shown iaatbecomes proportional

to 1/w asw gets to be sufficiently large (see Exercises). For example, raisifigm, say, 16

to 10’ can be expected to cut the constraint violation by roughly 10 if the physical stiffnesses are
small compared ta.

Consequently, it seems as if the proper strategy should be: try tomnakédarge as possible while
respecting computer overflow limits. However, this is misleading. As the penalty weitgrids
to oo the modified stiffness matrix in (10.2) becomes more and rmilecenditioned with respect

to inversion

To make this point clear, suppose for definiteness that the rigiditRé© /L ©® of the actual bars

e = 1,...6 are unity, thatv >> 1, and that the computer solving the stiffness equations has a
floating-point precision of 16 decimal places. Numerical analysts characterize such precision by
saying thate; = O(1071%), where|e¢| is the smallest power of 10 that perceptibly adds to 1 in
floating-point arithmetié. The modified stiffness matrix of (10.2) becomes

~)
I

-1 -1
-1 2+4+w
0 -1
0 0
0 0
0 —w

| 0 0

0O O
-1 0
2 -1
-1 2
0 -1
0O O
0O O

0 0
0 —w 0
0 0
-1 0
2 -1 0
-1 24+w -1
0 -1 1

(10.3)

Clearly asw — oo rows 2 and 6, as well as columns 2 and 6, tend to become linearly dependent;
in fact the negative of each other. Linear dependence means singularity; iKemgperoaches

2 Such definitions are more rigurously done by working with binary numbers and base-2 arithmetic but for the present
conceptual discussion the use of decimal powers is sufficient.
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singularity asw — oo. In fact, if w exceeds fet = 106 the computer will not be able to
distinguishK from an exactly singular matrix. 6 << 10 butw >> 1, the effect will be seen in
increasing solution errors affecting the computed displacentergiirned by the equation solver.
These errors, however, tend to be more of a random nature than the constraint violation error.

810.1.3. The Square Root Rule

Obviously we have two effects at odds with each other. Makinigrger reduces the constraint
violation error but increases the solution error. The hbewst that which makes both errors roughly
equal in absolute value. This tradeoff value is difficult to find aside of systematically running
numerical experiments. In practice the heuristicare root rulds often followed.

This rule can be stated as follows. Suppose that the largest stiffness coefficient, before adding
penalty elements, is of the order ofl&nd that the working machine precisiongsligits3 Then

choose penalty weights to be of ordek1®? with the proviso that such a choice would not cause
arithmetic overflow?

For the above example in whidh~ 0 andp ~ 16, the optimakw given by this rule would be

w ~ 1. This w would yield a constraint violation and a solution error of order® 0Note

that there is no simple way to do better than this accuracy aside from using more floating-point
precision. This is not easy to do when using standard low-level programming languages.

The name “square root” arises because the recommendedn fact 1(:v/10P. It is seen that

the choice of penalty weight by this rule involves knowledge of both stiffness magnitudes and
floating-point hardware properties of the computer used as well as the precision selected by the
program.

§10.1.4. Penalty Elementsfor General MFCs

For the constraintl, = ug the physical interpretation of the penalty element is clear. Points 2 and
6 must move in lockstep along which can be approximately enforced by the heavy bar device
shown in Figure 10.2. But how abouti3+ us — 4ug = 1? Or justu; = —ug?

The treatment of more general constraints is linked to the the®@yuofant penalty functionsvhich

in turn is a topic in variational calculus. Because the necessary theory has not yet been introduced
(it is given in the next subsection), the procedure used for constructing a penalty element is stated
here as a recipe. Consider the homogeneous constraint

3u3 + Us — 4ug = 0. (10.4)
Rewrite this equation in matrix form

us
[3 1 -—-4] |:U5i| =0, (10.5)

Us

3 Such order-of-magnitude estimates can be readily found by scanning the diagéhdlenfiuse the largest stiffness
coefficient of the actual structure is usually a diagonal entry.

4 If overflows occurs, the master stiffness should be scaled throughout or a better choice of physical units made.
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and premultiply both sides by the transpose of the coefficient matrix:

3 Us 9 3 —127rus]
{ 1 }[3 1 —4][u5}:[ 3 1 —4Mu5}=|<“’)u<6>:o. (10.6)
-4 Ug -12 -4 16 Ues

HereK® is theunscaledstifiness matrix of the penalty element. This is now multiplied by the
penalty weightw and assembled into the master stiffness matrix following the usual rules. For the
example problem, augmenting (10.1) with the scaled penalty element (10.6) yields

r K11 Koo 0 0 0 0 O rupT ~ f1
Kio Ko Kos 0 0 0 0 uo f2
0 Koz Kiz+9%w Kzg 3w —12w 0 Us f3
0 0 Kag Kaa Kas 0 0 Usg | = f4 R (107)
0 0 3w K45 K55 +w K56 — 4w 0 Us f5
0 0 —12w 0 Kse — 4w Kgg+ 16w Kg7 Ug fe
L O 0 0 0 0 K57 K774 Luy L f7_

If the constraint is nonhomogeneous the force vector is also modified. To illustrate this effect,
consider the MFC: 33 + us — 4ug = 1. Rewrite in matrix form as

Uz
[3 1 —4] |:U5i| =1 (10.8)

Us

Premultiply both sides by the transpose of the coefficient matrix:

9 3 -12 us 3
[3 1 _4} H:[l} 109)
-12 -4 16 Us —4

Scaling byw and assembling yields

K11 Koo 0 0 0 0 O7rui’ B f]_ ]
Kio Ko Ko 0 0 0 0 Uso f2
0 Koz Kizz+9w Kay 3w —12w 0 Us f3 + 3w
0 0 Kzs Kas Kas 0 0 Ug | = fa ,
0 0 3w Kas Kss4+ w Kse — 4w 0 Us fs +w
0 0 —12w 0 Kse — 4w Kgg+ 16w Kgr Ug fe — 4w
L 0 0 0 0 0 Ke7 K774 Lus L f7 .
(10.10

810.1.5. *The Theory Behind the Recipe

The rule comes from the following mathematical theory. Suppose we have amsdéinebir MFCs. Using the
matrix notation introduced in §89.1.3, these will be stated as

apu="b,, p=1...m (10.11
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whereu contains all degrees of freedom and eaghs a row vector with same length as To incorporate
the MFCs into the FEM model one selects a weight> 0 for each constraints and constructs the so-called
Courant quadratic penalty function or “penalty energy”

m
P= Z Pp, with Pp = UT (%a-gapu — wpa-rl;bp) — %UTK(p)U _ qu(p)’ (1012)

where we have calle'” = wpala, andf®® = wpya'h. P is added to the potential energy function

M= %uTKu — u'f to form theaugmented potential enerd@y, = IT + P. Minimization of IT, with respect
to u yields

m m
(Ku+ Y KP)u=f+) . (10.13)
p=1 p=1

Each term of the sum op, which derives from terni, in (10.12), may be viewed as contributed by a penalty
element with globalized stiffness mati® = wjala, and globalized added force teft?’ = walby.

To use a even more compact form we may write the set of multifreedom constraifsts asb. Then the
penalty augmented system can be written compactly as

(K +ATWA)u =f+ WATb, (10.14)

whereW is a diagonal matrix of penalty weights. This compact form, however, conceals the structure of the
penalty elements.

810.1.6. Assessment of the Penalty Method

The main advantage of the penalty function method is its straightforward computer implementation.
Looking at modifified systems such as (10.7) and (10.10) it is obvious that the equations need not be
re-arranged. That is,and( are the same. Constraints may be programmed as “penalty elements,”
and stiffness and force contributions of these elements implemented through the standard assembler.
In fact using this method there is no need to distinguish between unconstrained and constrained
equations! Once all elements —regular and penalty — are assembled, the system (upon processsing
for single-freedom constraints if necessary) can be passed to the equation solver.

Animportantadvantage with respect to the master-slave (elimination) method is its lack of sensitivity
with respect to whether constraints are linearly dependent. To give a simplistic example, suppose
that the constraini, = ug appears twice. Then two penalty bar elements connecting 2 and 6 will
be inserted, doubling the intended weight but otherwise not causing undue harm.

An advantage with respect to the Lagrange multiplier method described in §10.2 is that positive
definitenessis notlost. Suchloss can affect the performance of certain numerical processes. Finally,
it is worth noting that the the penalty method is easily extendible to nonlinear constraints although
such extension falls outside the scope of this book.

The main disadvantage, however, is a serious one: the choice of weight values that balance solution
accuracy with the violation of constraint conditions. For simple cases the square root rule mentioned
previously often works, although its effective use calls for knowledge of the magnitude of stiffness
coefficients. Such knowledge may be difficult to extract from a general purpose “black box”
program. For difficult cases selection of appropriate weights may require extensive numerical
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u,, f; u,, f, us, f3 Juy, f, Us, fg Ug, fg u,, f;
(1) ( (

Figure 10.3. Physical interpretation of Lagrange multiplier
adjunction to enforce the MFQ, = us.

experimentation, wasting the user time with numerical games that have no bearing on the actual
objective, which is getting a solution.

The deterioration of the condition number of the penalty-augmented stiffness matrix can have a
serious side effects in some solution procedures such as eigenvalue extraction or iterative solvers.
Finally, even if optimal weights are selected, the combined solution error cannot be lowered beyond
a treshold value.

From these comments itis evident that penalty augmentation, although superior to the master-slave
method from the standpoint of generality and ease of implementation, is no panacea.

§10.2. LAGRANGE MULTIPLIER ADJUNCTION

810.2.1. Physical Interpretation

As in the case of the penalty function method, the method of Lagrange multipliers can be given a
rigorous justification within the framework of variational calculus. But in the same spirit it will be
introduced for the example structure from a physical standpoint that is particularly illuminating.

Consider again the constraimt = ug. Borrowing some ideas from the penalty method, imagine
that nodes 2 and 6 are connected now bigia link rather than a flexible one. Thus the constraint
is imposed exactly. But of course the penalty method with an infinite weight would “blow up.”

We may remove the link if itis replaced by an appropriate reaction force-pair1), as illustrated
in Figure 10.3. These are called tbenstraint forces Incorporating these forces into the original
stiffness equations (9.10) we get

K1 Koo 0 0 0 0 O r1rus - f1
Ko Ko Koy 0 0 0 0 Uo f2 — A
0 Koz Kizz Ksza 0 0 0 us f3
0 0 K3z Kaz Kgs 0 0 Ug | = f4 . (1015)
0 0 0 Kss Kss Ksg 0 Us f5
0 0 0 0 Ks Kgg Kg7 Ug fe + A
| 0 0 0 0 0 K67 K77_ L U7 | f7 _

This A is called aLagrange multiplier Because. is an unknown, let us transfer it to theft hand
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sideby appendingt to the vector of unknowns:

- Uy

K1y Koo 0 0 0 0 0 07 u ~
Kip Ky Kyz O 0 0 0 1 u2 fs
0 Ky Kiz3 Kzu O 0 0 0 u3 f
0 0 Kz Kug Kgs O 0 0 u“ =| f,|. (10.16)
0 0 0 Kgs Kss Kgg 0O O u5 fs
0 0 0 0 Kss Kg Kgz —1 UG f
| 0 0 0 0 0 Kg Kz7 0O ; B

But now we have 7 equations in 8 unknowns. To render the system determinate, the constraint
condition u, — ug = 0 is appended as eighth equation:

- Kir Koo 0 0 0 0 0 07 rugT i
Ko Ko Ko 0 0 0 0 1 Uo fz
0 Koz Kizz Kag 0 0 0 0 us f3
0 0 Kas Kaa Kysg 0 0 0 Uy f4
0 0 0 Kss Kss Ksg 0 0 Ug - f5 ’ (1017)
0 0 0 0 Kse Keg Kg7 —1 Ue f6
0 0 0 0 0 Kz Ko7 0 Uz f7
0] 1 0 0 0O -1 O 0L A | 0

This is called themultiplier-augmentedystem. Its coefficient matrix, which is symmetric, is
called thebordered stiffness matrixrhe process by which is appended to the vector of original
unknowns is calle@djunction Solving this system provides the desired solution for the degrees
of freedom while also characterizing the constraint forces thraugh

810.2.2. Lagrange Multipliersfor General MFCs

The general procedure will be stated first as a recipe. Suppose that we want to solve the example
structure subjected to three MFCs

U, — ug =0, 5u, — 8u; = 3, 3u3z + Us — 4ug = 1, (10.18)

Adjoin these MFCs as the eighth, nineth and tenth equations:

- Kir Koo 0 0 0 0 0 7 ~
K12 K22 K23 0 0 0 0 - Us ] f2
0 Ky Ks3 Ksg O 0 O ul f
0 0 Kz Kug Kgis 0 O ui fy
0 0 0 Kg Kss Kgg O fs
0 0 0 0 Kss Kes Ker ||| 7| Fl|" (10.19
0 0 O 0 0 Kg Ky u5 f
0O 1 0 0 0 -1 o0 u6 0
0O 5 0 0 0 0 -—-8| - 3
0 0 3 0 1 -4 o0 | | 1
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Three Lagrange multipliersky, A, andis, are required to take care of three MFCs. Adjoin those
unknowns to the nodal displacement vector. Symmetrize the coefficient matrix by adjoining 3
columns that are the transpose of the 3 last rows, and filling the bottom right-hand corner with
Zeros:

K1 Koo 0 0 0 0 0 0 0 07 rup ~ 1]
Kiz Ko Koz 0 0 0 0 1 5 0 U f2
0 Koz Kizz Kgy 0 0 0 0 0 3 us f3
0 0 Kas Kas Kyus 0 0 0 0 0 Uy f4
0 0 0 Kas Kss Ksg 0 0 0 1 Us f5
0 0 0 0 Kse Keg Kez —1 0 —4 Ug - f6 ’ (1020)
0 0 0 0 0 Ke7 Kv7 0 -8 0 uy; f7
0 1 0 0 0O -1 O 0 0 0 A1 0
0 5 0 0 0 O -8 O 0 0 A2 3
. O 0 3 0 1 -4 O 0 0 01 Lxzd [ 1 ]

810.2.3. *The Theory Behind the Recipe

The recipe illustrated by (10.20) comes from a well known technique of variational calculus. Using the matrix
notation introduced in 89.1.3, compactly denote the seh®fIFCs by Au = b, whereA ism x n. The
potential energy of the unconstrained finite element modHI is %uTKu — u'f. To impose the constraint,
adjoinm Lagrange multipliers collected in vectarand form the Lagrangian

Lu,A)=TI+AT(Au—b) = 2u"Ku —u'f+ 17 (Au — b). (10.21)

Extremization ofL with respect tas and yields the multiplier-augmented form

[i AOT][;]:[:)] (10.22)

The master stiffness matrik in (10.22) is said to beorderedwith A andAT. Solving this system provides

u and\. The latter can be interpreted as forces of constraint in the following sense: a removed constraint can
be replaced by a system of forces characterize bwltiplied by the constraint coefficients. More precisely,

the constraint forces areAT .

810.2.4. Assessment of the L agrange Multiplier M ethod

In contrast to the penalty method, the method of Lagrange multipliers has the advantage of being
exact (aside from computation errors). It provides directly the constraint forces, which are of
interest in many applications. It does not require any guesses as regards weights. As the penalty
method, it can be extended without difficulty to nonlinear constraints.

It is not free of disadvantages. It introduces additional unknowns, requiring expansion of the
original stiffness method. It renders the augmented stiffness matrix indefinite, a property that may
cause grief with some linear equation solving methods such as Cholesky factorization or conjugate
gradients. Finally, as the master-slave method, it is sensitive to the degree of linear independence
of the constraints: if the constraioy = ug is specified twice, the bordered stiffness is obviously

singular.
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On the whole the Lagrangian multiplier method appear to be the most elegant for a general-purpose
finite element program that is supposed to work as a “black box” by minimizing guesses and
choices from its users. Its implementation, however, is not simple. Special care must be exercised
to detect singularities due to constraint dependency and to account for the effect of loss of positive
definiteness of the bordered stiffness on equation solvers.

810.3. *THE AUGMENTED LAGRANGIAN METHOD

The general matrix forms of the penalty function and Lagrangian multiplier methods are given by expressions
(10.14) and (10.22), respectively. A useful connection between these methods can be established as follows.

Because the lower diagonal block of the bordered stiffness matrix in (10.22) is null, it is not possible to directly
eliminateX. To allow that, replace this block byS™, whereS is a constraint-scaling diagonal matrix of
appropriate order andis a small number. The reciprocal ©fs a large number called = 1/¢. To maintain
exactness of the second equatie®, >\ is added to the right-hand side:

[ﬁ eAsjl] [;] - [es—fup} (10.23)

Here superscripP (for “predicted value”) is attached to theon the right-hand side as a “tracer.” We can
now formally solve forA and subsequently far. The results may be presented as

(K +wATSA)u="f+ wATSh— ATAP,

b (10.24)
A=X" +wS(b - Au),
SettingAP = 0in the first matrix equation yields
(K +wATSA)u =f + wATSh. (10.25)

On takingW = wS, the general matrix equation (10.14) of the penalty method is recovered.

This relation suggests the constructionitefative proceduresn which one tries tamprove the accuracy
of the penalty function method while is kept constant This strategy circumvents the aforementioned ill-
conditioning problems when the weightis gradually increased. One such method is easily constructed by
inspecting (10.24). Using superscripas an iteration index and keepingfixed, solve equations (10.24) in
tandem as follows:

(K +ATWA) UK =+ ATWb — ATXK,

(10.26)
A = Ak Wb — AU,

fork = 0,1, ..., beginning withA\’ = 0.6 Thenu? is the penalty solution. If the process converges one
recovers the exact Lagrangian solution without having to solve the Lagrangian system (10.23) directly.

The family of iterative procedures that may be precipitated from (10.24) collectively pertains to the class
of augmented Lagrangian method3hese have received much attention since the late 1960s, when they
originated in the field of constrained optimization.

5 C. A. Felippa, Iterative procedures for improving penalty function solutions of algebraic systendsNumer. Meth.
Engrg, 12, 821-836, 1978.

6 This form of the stiffness equations is discussed in C. A. Felippa, Iterative procedures for improving penalty function
solutions of algebraic systemnist. J. Numer. Meth. Engrgl2, 821-836, 1978.
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Master-Slave| Penalty Lagrange
Elimination Function Multiplier
Generality fair excellent excellent
Ease of implementation poor to fair good fair
Sensitivity to user decisions high high small to none
Accuracy variable mediocre excellent
Sensitivity asregards high none high
constraint dependence
Retains positive definiteness yes yes no
M odifies unknown vector yes no yes

Figure 10.4. Assessment summary of MFC application methods.

§10.4. SUMMARY

10-12

The treatment of linear MFCs in finite element systems can be carried out by several methods. Three
of these: the master-slave elimination, penalty augmentation and Lagrange multiplier adjunction,
have been discussed. Itis emphasized that no method is uniformly satisfactory in terms of generality,
numerical behavior and simplicity of implementation. See Figure 10.4 for a summary.

Forageneral purpose program that tries to approach “black box” behavior (thatis, minimal decisions
on the part of users) the method of Lagrange multipliers has the edge. This edge is unfortunately
blunted by a fairly complex computer implementation and by the loss of positive definiteness in the

bordered stiffness matrix.
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Homework Exercisesfor Chapter 10
MultiFreedom Constraintsl||

EXERCISE 10.1

[C+N:20] This is identical to Exercise 9.1, except that the M&G- us = 1/5 is to be treated by the penalty
function method. Take the weight to be 10, in whichk varies ask = 3,4, 5,...16. For each sample

w compute the Euclidean-norm solution eragw) = ||uP(w) — u®¥||,, whereuP is the computed solution
andu®* is the exact solution listed in (E9.1). Plot= log,,w versus log,e and report for which weighe

attains a minimum. (See Slide #5 for a check). Does it roughly agree with the square root rule (§10.1.3) if the
computations carry 16 digits of precision?

As in Exercise 9.1, usdlathematica Matlab (or similar) to do the algebra. For example, the following
Mathematicascript solves this Exercise:

(* Exercise 10.1 - Penalty Method *)
(* MFC: u2-u6=1/5 variable w *)
K=MasterStiffnessO0fSixElementBar[100];
Print["Stiffness K=",K//MatrixForm] ;
£={1,2,3,4,5,6,7}; Print["Applied forces=",f];
uexact= {0,0.27,0.275,0.25,0.185,0.07,0.14}; ew={};
For [w=100, w<=10"16, w=10*w; (* increase w by 10 every pass *)
Khat=K; fhat=f;
Khat[[2,2]]1+=w; Khat[[6,6]]1+=w; Khat[[6,2]]1=Khat[[2,6]]-=w;
fhat [[2]]+=(1/5)*w; fhat[[6]]1-=(1/5)*w; (*insert penalty *)
{Kmod , fmod}=FixLeftEndOfSixElementBar [Khat,fhat];
u=LinearSolve[N[Kmod] ,N[fmod]];
Print["Weight w=",N[w]//ScientificForm," u=",u//InputForm];
e=Sqrt [(u-uexact) . (u-uexact)];
(*Print["L2 solution error=",e//ScientificForm]; *)
AppendTo [ew,{Log[10,w] ,Log[10,e]}];
1
ListPlot[ew,AxesOrigin->{5,-8},Frame->True, PlotStyle->
{AbsolutePointSize[4],AbsoluteThickness[2] ,RGBColor[1,0,0]%},
PlotJoined->True, AxesLabel->{"Logl0(w)","Logl0(u error)"}];

HereMasterStiffness0fSixElementBar andFixLeftEnd0fSixElementBar are the same moduleslisted
in Exercise 9.1.

Note If you run the above program, you may get several beeps fathematicaas it is processing some of
the systems with very large weights. Don’t be alarmed: those are only warningsifdéerSolve function
is alerting you that the coefficient matricksfor weights of order 1& or bigger are ill-conditioned.

EXERCISE 10.2

[C+N:15] Againidentical to Exercise 9.1, except that the M&G- ug = 1/5 is to be treated by the Lagrange
multiplier method. The results for the computednd the recovered force vectdu should agree with (E9.1).
UseMathematicaMatlab (or similar) to do the algebra. For example, the followigthematicascript solves
this Exercise:

(* Exercise 10.2 - Lagrange Multiplier Method *)
(* MFC: u2-u6=1/5 *)
K=MasterStiffnessO0fSixElementBar [100] ;
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Khat=Table[0,{8},{8}]; f={1,2,3,4,5,6,7}; fhat=AppendTo[f,0];
For [i=1,i<=7,i++, For[j=1,j<=7,j++, Khat[[i,j1]1=K[[i,31] 1];
{Kmod, fmod}=FixLeftEnd0fSixElementBar [Khat,fhat];
Kmod[[2,8]]1=Kmod[[8,2]]1= 1;

Kmod[[6,8]]1=Kmod[[8,6]1=-1; fmod[[8]]1=1/5;

Print ["Kmod=",Kmod//MatrixForm] ;

Print ["fmod=",fmod] ;

umod=LinearSolve [N[Kmod] ,N[fmod]]; u=Take[umod,7];
Print["Solution u=",u ,", lambda=",umod[[8]]];

Print ["Recovered node forces=",K.u];

HereMasterStiffness0fSixElementBar andFixLeftEnd0fSixElementBar are the same moduleslisted
in Exercise 9.1.

Does the computed solution agree with (E9.1)?

EXERCISE 10.3
[A:10] For the example structure, show which penalty elements would implement the following MFCs:

(@ ux+us=0,

(b) u, —3ug=1/3. (E101)

As answer, show the stiffness equations of those two elements in a manner similar to (10.1).

EXERCISE 10.4

[A/C+N:15+15+10] Suppose that the assembled stiffness equations for a one-dimensional finite element
model before imposing constraints are

2 -1 0][u 1
EREIEEH €102
0 -1 2] [u 2

This system is to be solved subject to the multipoint constraint

u, = Us. (E103)

(@) Impose the constraint (E10.3) by the master-slave method takiag master, and solve the resulting
2 x 2 system of equations by hand.

(b) Impose the constraint (E10.3) by the penalty function method, leaving the wegght free parameter.
Solve the equations by hand or CAS (Cramer’s rule is recommended) and verify analytically that as
w — oothe solution approachesthatfoundin (a). Tabulate the valugswf, uz forw = 0, 1, 10, 100.
Hint 1: the value ofu, should not changeHint 2: the solution foru; should be6w + 5)/(4w + 4).

(c) Impose the constraint (E10.3) by the Lagrange multiplier method. Showstierultiplier-augmented
system of equations analogous to (10.13) and solve it by computer or calculator.
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Figure E10.1. Beam-colum member for Exercise 10.5.

EXERCISE 10.5

[A/C:10+15+10] The beam-column member shown in Figure E10.1 rests on a skew roller that forms a 45
angle with the horizontal axis, and is loaded axially by a forde.

The finite element equations upon removing the fixed right end, but before imposing the skew-roller MFC, are

EA/L 0 0 Ux1 P
0  12El,,/L® 6El,/L?||us|=] 0], (E104)
0 6El,,/L? A4El,,/L 01 0

whereE, A, andl,,are member propertieg, is the left end rotation, anid is the member length.To simplify
the calculations se® = o E A, andl,, = BAL?2, in whicha andp are dimensionless parameters, and express
the following solutions in terms af andpg.

(a) Apply the skew roller constraint by the master-slave method (ragkslave) and solve fou,, and6,
in terms ofL, « andB. This may be done by hand or a CAS. Partial solution: = oL /(1 + 38).

(b) Apply the skew roller constraint by the penalty method by adjoining a penalty truss member of axial
stiffnessk = wE A normal to the roller, and computg, (Cramer’s rule is recommended if solved
by hand). Verify that asw — oo the answer obtained in (a) is recovered. Partial solutiep: =
aL (38 +wl)/(38 + wL(1+ 38)).

(c) Applythe skew roller constraint by Lagrangian multiplier adjunction, and solve the resuktidgystem
of equations using a CAS. Verify that you get the same solution as in (a).

EXERCISE 10.6

[A:30] Show that the master-slave transformation methed T can be written down as a special form of
the method of Lagrange multipliers. Start from the augmented functional

Mys=2u"Ku—u"f+AT(u—T0) (E105)
and write down the stationarity conditions Idf, s with respect tau, A andd in matrix form.

EXERCISE 10.7
[A:35] Check the matrix equations (10.23) through (10.26) quoted for the Augmented Lagrangian method.

7 The stiffness equations for a beam column are derived in Part 1l of this book. For now consider (E10.4) as a recipe.

10-15



Chapter 10: MULTIFREEDOM CONSTRAINTS Il 10-16

EXERCISE 10.8

[A:40] (Advanced, close to aresearch problem) Show that the master-slave transformationumetidiccan
be expressed as a limit of the penalty function method as the weights go to infinity. Start from the augmented

functional
Mp=Ju"Ku—u"f+ Jwu—-THT(U-TO) (E10.6)

Write down the matrix stationarity conditions with respect to fband eliminatau. Hint: using Woodbury's
formula (Appendix C, 8C.5.2)

K+wT'SH 1=K T-KITTK +wisHITK™ (E10.7)

show that B
K =TKTT (E108)
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11-3 811.1 SUPERELEMENT CONCEPT

§11.1. SUPERELEMENT CONCEPT

Superelements are groupings of finite elements that, upon assembly, may be considered as an
individual element for computational purposes. These purposes may be related to modeling or
solution needs.

A random assortment of elements does not necessarily make up a superelement. To be considered
as such, an element grouping must meet certain conditions. Informally we can say that the grouping
must form astructural component onitsown. Thisimposes certain conditions stated mathematically
in811.1.3. Inasmuch asthese conditionsinvolve advanced concepts such asrank sufficiency, which
areintroduced in later Chapters, the restrictions are not dwelled upon here.

Asnoted in Chapter 7, superelements may originate from two overlapping contexts: “bottom up” or
“top down.” In abottom up context one thinks of superelements as built from simpler elements. In
the top-down context, superelements may be thought as being large pieces of a complete structure.
This dual viewpoint motivates the following classification:

Macroelements. These are superelements assembled with a few primitive elements. Also called
mesh units when they are presented to program users as individual €lements.

Substructures. Complex assemblies of elements that result on breaking up a structure into distin-
guishable portions.

When does a substructure becomes a macroelement or vice-versa? There are no precise rules. In
fact the generic term superelement was coined in the 1970s to take up the entire spectrum, ranging
fromindividual elementsto complete structures. Thisuniversality ishel ped by the common features
noted bel ow.

Both macroel ementsand substructuresaretreated exactly the sameway in sofar asmatrix processing
is concerned. The basic processing rule is that associated with condensation of internal degrees
of freedom. Thisisillustrated in the following section with a very simple example. The reader
should note, however, that the technique appliesto any superelement, whether composed of two or
amillion elements.

811.1.1. Where Doestheldea Comes From?

Substructuring was invented by aerospace engineers in the early 1960s! to carry out a first-level
breakdown of complex systems such as a complete airplane, as depicted in Figures 11.1 and 11.2.
The decomposition may continue hierarchically through additional levels as illustrated in Figure
11.3. The concept is also natural for space vehicles operating in stages, such as the Apollo short
stack depicted in Figure 11.4.

One obvious advantage of this idea results if the structure is built of several identical units. For
example, the wing substructures S and S; are largely identical except for a reflection about the
fuselage midplane, and so arethe stabilizers §, and S;. Even if theloading isnot symmetric, taking
account of the structural symmetry reduces mesh preparation time.

1 For abibliography of early work, see J. S. Przeminiecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York,
1968 (also in Dover ed).
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Figure 11.1. A complete airplane.

X

Figure 11.2. Airplane broken down into six level one substructuresidentified as S through .

Theconcept wasthen picked up and devel oped extesively by the offshoreand shipbuildingindustries,
the products of which tend to be very modular and repetitive to reduce fabrication costs. As noted
above, repetition of structural components favors the use of substructuring techniques.

At the other extreme, mesh units appeared in the early days of finite element methods. They
were motivated by user convenience. For example, in hand preparation of finite element models,
quadrilateral and bricksinvolve less human labor than triangles and tetrahedra, respectively. It was
therefore natural to combine the latter to assemble the former.

§11.1.2. Subdomains

Applied mathematicians working on solution procedures for parallel computation have devel oped
the concept of subdomains. These are groupings of finite elements that are entirely motivated by
computational considerations. They are subdivisions of the finite element model done more or less
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level two substructure

level one substructure
individual /

element

Figure 11.3. Further breakdown of wing structure. The decomposition
process may continue down to the individual element level.

automatically by a program called domain decomposer.

Although the concepts of substructures and subdomains overlap in many respects, it is better to
keep the two separate. The common underlying theme is divide and conquer but the motivation is
different.

811.1.3. *Mathematical Requirements

A superelement is said to be rank-sufficient if its only zero-energy modes are rigid-body modes. Equivalently,
the superelement does not possess spurious kinematic mechanisms.

Verification of the rank-sufficient condition guarantees that the static condensation procedure described bel ow
will work properly.

§11.2. STATIC CONDENSATION

Degrees of freedom of a superelement are classified into two groups:

Internal Freedoms. Those that are not connected to the freedoms of another superelement. Node
whose freedoms are internal are called internal nodes.

Boundary Freedoms. These are connected to at least another superelement. They usually reside at
boundary nodes placed on the periphery of the superelement. See Figure 11.5.

Theobjectiveisto get rid of al displacement degrees of freedom associated with internal freedoms.
This elimination processis called static condensation, or simply condensation.

Condensation may be presented in terms of explicit matrix operations, as shown in the next sub-
section. A more practical technique based on symmetric Gauss elimination is discussed later.
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COMMAND MODULE

SERVICE MODULE

ADAPTER

LUNAR MODULE

INSTRUMENT UNIT

THIRD STAGE
SIV-B

Figure 11.4. The Apollo short stack.

811.2.1. Condensation by Explicit Matrix Operations

To carry out the condensation process, the assembled stiffness equations of the superelement are
partitioned as follows:
Kb Kpi || Ub fy
= : 111
|:Kib Kii:||:ui:| [fi] (11.1)

where subvectors u, and u; collect boundary and interior degrees of freedom, respectively. Take
the second matrix equation:
KipUp + Kjiuj = fi, (11.2)

If Kii isnonsingular we can solve for the interior freedoms:
u = Kt (fi — Kipup), (11.3)
Replacing into the first matrix equation of (11.2) yields the condensed stiffness equations
K bpUp = Tp. (11.4)

In this equation, ) )
Kpp = Kpp — Kpi K Kip, fo = fo — Kpi Ki; i, (11.5)
are called the condensed stiffness matrix and force vector, respectively, of the substructure.

From this point onward, the condensed superelement may be viewed, from the standpoint of further
operations, as an individual element whose element stiffness matrix and nodal force vector are Ky,
and fy,, respectively.
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(b)

Figure 11.5. Classification of superelement freedomsinto boundary and internal. (a) shows
the vertical stabilizer substructure S of Figure 11.2. (The FE mesh is depicted as
two-dimensional for illustrative purposes; for an actual aircraft it will be three
dimensional with an internal structure similar to the one displayed in Figure 11.3.)
Boundary freedoms are those associated to the boundary nodes labeled b (shown in red),
which are connected to the fuselage substructure. (b) shows a quadrilateral macroelement
mesh-unit fabricated with 4 triangles: it has one interior and four boundary nodes.

REMARK 11.1

Thefeasibility of the condensation process (11.5) hinges on the non-singularity of K;;. Thismatrix is nonsin-
gular if the superelement is rank-sufficient in the sense stated in 811.1.3, and if fixing the boundary freedoms
precludes al rigid body motions. If the former condition is verified but not the latter, the superelement is
called floating. Processing floating superelements demands more advanced computational techniques, among
which we cite the concepts of projectors and generalized inverses.

§11.2.2. Condensation by Symmetric Gauss Elimination

In the computer implementation of the the static condensation process, cal culations are not carried
out as outlined above. There are two major differences. the equations of the substructure are not
actually rearranged, and the explicit calculation of the inverse of K;; isavoided. The procedureis
in fact coded as a variant of symmetric Gauss elimination. To convey the flavor of this technique,
consider the following stiffness equations of a superelement:

6 -2 -1 -3 Up 3
2 5 -2 -1||lu|_ |86
1 =2 7 —4||us| T |4 (11.6)
-3 -1 -4 8 Uy 0

Suppose that the last two displacement freedoms. uz and uy, are classified asinterior and are to be
statically condensed out. To eliminate ug4, perform symmetric Gauss elimination of the fourth row
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Cell 11.1 Program to Condense Out the Last Freedom from Ku = f

CondenseLastFreedom[K_,f_] :=Module [{n=Length[K],c,pivot,Kc,fc},
If [n<=0,Return[{K,f}]1];
Kc=Table[0,{n-1},{n-1}]; fc=Tablel[0,{n-1},{1}];
pivot=K[[n,n]]; If [pivot==0,Print["Singular Matrix"]; Return[{K,f}]];
Do[ c=K[[i,n]]/pivot; fc[[i,1]1]1=f[[i,1]]-c*f[[n,1]1];
Do[ Kcl[j,il1=Kc[[i,j]1=K[[i,jl]-c*K[[n,jI],
{j,1,i}1,
{i,1,n-1}]1;
Return[{Kc,fc}]
1;

K={{6,-2,-1,-3},{ -2,5,-2,-1},{ -1,-2,7,-4},{-3,-1,-4,8}};
f={{3},{6},{4},{0}}; Print["K=",K, " f=",f];
{K,f}=CondenselLastFreedom[K,f]; Print["Upon condensing freedom 4: ",K,f];
{K,f}=CondenselLastFreedom[K,f]; Print["Upon condensing freedom 3: ",K,f];

and column:
—3)x(—3 —1)x(—3 —4)x(—3 - Ox(—3
6_ ¢ )2( ) _o_( );( ) _1_ ¢ )E( ) Uy 3_ x<8 )
(=3)x(=1 (=) x(=1 (=4 x(=1 _ 0x(=1)
(=3x(=4) (=D x (=% (= x (=4 0x(=4)
—l-=F—= -2-—5— -5 — LU 4— =5
or
39 19 5 -
8 8 “2|[W 3
1
-2 2 s ilu=]6]. (11.8)
5 5
) ) 5 us 4_
Repeat the process for the third row and column to eliminate us:
39 _ (=5/29x(=5/2 _19 _ (=5/2x(=5/2 3 _ x(=52
8 5 8 5 up | 5 (11.9)
_19 _ (=5/2x(=5/2) 39 _ (52x(52 ||up | | g &XE52 | :
8 5 8 5 5

or
29 29
8 738 “1] - [5] (11.10)
29 29 - . .
|: -3 T ] [ U2 3
These are the condensed stiffness equations. Cell 11.1 shows a Mathematica program that executes
the foregoing steps.

Obvioudly this procedure is much simpler than going through the explicit matrix inverse. Another
important advantage of Gauss elimination isthat equation rearrangement is not required even if the
condensed degrees of freedom do not appear in any particular order. For example, suppose that
the assembled substructure contains originally eight degrees of freedom and that the freedoms to
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\

coarse mesh finer meshes

Figure 11.6. Left: example panel structure for global-local analysis.
Right: a FEM mesh for a one-shot analysis.

be condensed out are numbered 1, 4, 5, 6 and 8. Then Gauss elimination is carried out over those
equations only, and the condensed (3 x 3) stiffness and (3 x 1) force vector extracted from rows
and columns 2, 3and 7.

REMARK 11.2

The symmetric Gauss elimination procedure, asillustrated in steps (11.7) through (11.10), is primarily useful
for macroelements and mesh units, since the number of stiffness equations for those typically does not exceed
a few hundreds. This permits the use of full matrix storage. For substructures containing thousands or
millions of degrees of freedom — such asin the airplane example — the elimination is carried out using more
sophisticated sparse matrix algorithms.

REMARK 11.3

The static condensation process is a matrix operation called “partial inversion” or “partial elimination” that
appears in many disciplines. Hereisthe general form. Suppose the linear system Ax =y, where A isn x n
square and x and y are n-vectors, is partitioned as

A1 Alz][xl] |:Y1]
= . 11.11
[AZl Axn ] LX Y2 ( )
Assuming the appropriate inverses to exist, then the following are easily verified matrix identities:
AL —AL AL Yi| | X Ap — ApRAL A ARAL [ x R
A21AI1l Az — A21AI11A12 X2 Yo |’ —A2_21A21 Agzl Y2 X2 |
(11.12)
We say that x; has been eliminated or “condensed out” in the left identity and X, in the right one. In FEM
applications, it is conventional to condense out the bottom vector x,, so the right identity isrelevant. If A is
symmetric, to retain symmetry in (11.12) it is necessary to change the sign of one of the subvectors.

§11.3. GLOBAL-LOCAL ANALYSIS

Asnotedinthefirst Chapter, complex engineering systemsare often modeled in amultilevel fashion
following the divide and conquer approach. The superelement technique is a practical realization
of that approach.
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Global analysiswith acoarse mesh, ignoring holes, followed
bylocal analysis of the vicinity of the holes with finer meshes:

Figure 11.7. Global-local analysis of problem of Figure 11.5.

A related, but not identical, technique is multiscale analysis. The whole system isfirst analyzed as
aglobal entity, discarding or passing over details deemed not to affect its overall behavior. Local
details are then analyzed using the results of the globa analysis as boundary conditions. The
process can be continued into the analysis of further details of local models. And so on. When this
procedureis restricted to two stages and applied in the context of finite element analysis, itiscalled
global-local analysisin the FEM literature.

In the global stage the behavior of the entire structure is simulated with afinite element model that
necessarily ignores details such as cutouts or joints. These details do not affect the overall behavior
of the structure, but may have a bearing on safety. Such details are incorporated in a series of local
analyses.

Thegist of theglobal-local approach isexplained intheexampleillustratedin Figures11.6 and 11.7.
Although the structure is admittedly two simple to merit the application of global-local analysis, it
servesto illustrate the basic ideas. Suppose one is faced with the analysis of the rectangular panel
shown on the top of Figure 11.6, which contains three small holes. The bottom of that figure shows
a standard (one-stage) FEM treatment using a largely regular mesh that is refined near the holes.
Connecting the coarse and fine meshes usually involves using multifreedom constraints because
the nodes at mesh boundaries do not match, as depicted in that figure.

Figure11.6illustratesthe global-local analysisprocedure. Theglobal analysisisdonewith acoarse
but regular FEM mesh which ignores the effect of the holes. Thisis followed by local analysis of
the region near the holes using refined finite element meshes. The key ingredient for the local
analysesisthe application of boundary conditions (BCs) on the finer mesh boundaries. These BCs
may be of displacement (essential) or of force (natural) type. If the former, the applied boundary
displacements are interpolated from the global mesh solution. If the latter, the internal forces
or stresses obtained from the global calculation are converted to nodal forces on the fine meshes
through alumping process.

The BC choice noted above gives rise to two basic variations of the global-local approach. Expe-
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rience accumulated over several decades® has shown that the stress-BC approach generally gives
more reliable answers.

Theglobal-local technique can beextended to morethantwolevels, inwhich caseit receivesthemore
encompassing name multiscale analysis. Although this generalization is till largely in the realm
of research, it isreceiving increasing attention from various science and engineering communities
for complex products such as the thermomechanical analysis of microel ectronic components.

2 Particularly in the aerospace industry, in which the global-local technique has been used since the mid 1960s.
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Homework Exercisesfor Chapter 11

Superelements and Global-Local Analysis

EXERCISE 11.1
[N:15] Suppose that the assembled stiffness equations for a one-dimensional superelement are

2 -1 0]y 1
|:—1 2 —1i| |:u2} = |:O} (E11.1)
0 -1 2] [u 2

Eliminate u, from the unconstrained stiffness equations (E10.1) by static condensation, and show (but do not
solve) the condensed equation system. Use either the explicit inverse formulas (11.5) or the symmetric Gauss
elimination process explained in 811.2.2. Hint: regardless of method the result should be

o5 sllu]=[2]) Enno

EXERCISE 11.2

[C+N:20] Generalize the program of Cell 11.1 to a module CondenseFreedom[K,f,i] that is able to
condense the ith degree of freedom from K and £, which is not necessarily the last one. That is, i may range
from 1 ton, wheren isthe dimension of Ku = f. Apply that program to solve Exercise 11.1.

EXERCISE 11.3
[D:15] Explainthesimilaritiesand differences between superelement analysis and global-local FEM analysis.

EXERCISE 11.4

[A:25] Show that the static condensation process can be viewed as a master-slave transformation method
(Chapter 9) in which the interior freedoms u; are taken as slaves linked by the transformation relation

_|[Uo | _ I B 0 B B
4= |:ui ] N I:—K2_21K21:| [ub] [_Kz_zlfi ] =Tup g (Ellg)
Hint: apply (9.26) in which G = u, are the masters and compare the result to (11.6)-(11.7).

EXERCISE 11.5

[D:30] (Requires thinking) Explain the conceptual and operational differences between standard (one-stage)
FEM analysisand global-local analysis of aproblem such asthat illustrated in Figures 11.5-6. Aretheanswers
the same? What is gained, if any, by the global-local approach over the one-stage FEM analysis?

EXERCISE 11.6

[A:20] Two beam elements. 1-2 and 2—3, each of length L and rigidity E| are connected at node 2. Eliminate
node 2 by condensation. Does the condensed stiffness equal s the stiffness of abeam element of length 2L and
rigidity E1?

(For expressions of the beam stiffness matrices, see Chapter 13.)
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12-3 8§12.2 DEFINITION OF BAR MEMBER

§12.1. A NEW BEGINNING

This Chapter begins Part Il of the course. This Part focuses on the construction of structural and
continuum finite elements usingvariational formulationbased on the Total Potential Energy.

Why only elements? Because the other synthesis steps of the DSM: assembly and solution, remain
the same as in Part |. These operations are not element dependent.

Part 1l constructsndividual element®eginning with the simplest ones and progressing to more
complicated ones. The formulation of two-dimensional finite elements from a variational standpoint
Is discussed in Chapters 14 and following. Although the scope of that formulation is broad,
exceeding structural mechanics, it is better understood by going through specific elements first.

The simplest finite elements from a geometrical standpoint are one-dimensidima& elements

The term means that thetrinsic dimensionalitys one, although they may be used in one, two or
three space dimensions upon transformation to global coordinates as appropriate. The simplest one-
dimensional structural element is ttveo-node bar elemenivhich we have already encountered in
Chapters 2-3 as the truss member.

In this Chapter the stiffness equations of that bar element are rederived using the variational for-
mulation. For uniform properties the resulting equations are the same as those found previously
using the physical or Mechanics of Materials approach. The variational method has the advantage
of being readily extendible to more complicated situations, such as variable cross section or more
than two nodes.

§12.2. DEFINITION OF BAR MEMBER

In structural mechanicslaar is a structural component characterized by two properties:

(1) One bardimension: tHengitudinal dimensioworaxial dimensions much larger that the other
two dimensions, which are collectively knowntaansverse dimensiond he intersection of
a plane normal to the longitudinal dimension and the bar definesrtss sections The
longitudinal dimension defines thengitudinal axis See Figure 12.1.

(2) The bar resists an internal axial force along its longitudinal dimension.

In addition to trusses, bar elements are used to model cables, chains and ropes. They are also used
as fictitious elements in penalty function methods, as discussed in Chapter 10.

We will consider here onlgtraight bars although their cross section may vary. The one-dimensional
mathematical model assumes that the bar material is linearly elastic, obeying Hooke’s law, and that
displacements and strains are infinitesimal. Figure 12.2 pictures the relevant quantities for a fixed-
free bar. Table 12.1 collects the necessary terminology for the governing equations.

Figure 12.3 displays the governing equations of the bar in a graphic format cditedi aiagram

The formal similarity with the diagrams used in Chapter 6 to explain MoM elements should be
noted, although the diagram of Figure 12.3 pertains to the continuum model rather than to the
discrete one.
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Table12.1 Nomenclaturefor Mathematical Model of Axially L oaded Bar

Quantity Meaning
X Longitudinal bar axis
) d(.)/dx
u(x) Axial displacement
q(x) Distributed axial force, given per unit of bar length
L Total bar length
E Elastic modulus
A Cross section area; may vary with
EA Axial rigidity
e=du/dx=U Infinitesimal axial strain
o =Ee=EU Axial stress
p=Ac =EAe=EAU Internal axial force
P Prescribed end load
* x is used in this Chapter insteadfas in Chapters 2—-3) to simplify the notation.

y
Cross section
z
P
Longitudinal axis
X
Figure 12.1. A fixed-free bar member.
Cross section
>| axial rigidity EA
a(x)
—>—>—>>
N
B L .
- g

Figure 12.2. Quantities that appear in the mathematical

model of a bar member.
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Prescribed enfj] D' SPlacement Axial Distributed
displacementg BC displacementp axial load
u(x) ax)
| I | —
Kinematic | e=du/dx=u’ p'+g=0 | Equilibrium

AtXi"’,ll p=EAe ,foiaI Prescribed

strain — orce end loads

e(x) Constitutive p(x) Force BC

Figure 12.3. Tonti diagram for the mathematical model of a bar member. The diagram
displays the field equations and boundary conditions as lines connecting
the boxes. Boxes shown in relief contain known (given) quantities.

§12.3. VARIATIONAL FORMULATION

To illustrate the variational formulation, the finite element equations of the bar will be derived from
the Minimum Potential Energy principle.

812.3.1. The Total Potential Energy Functional

In Mechanics of Materials it is shown that thrgernal energy densitgt a point of a linear-elastic
material subjected to a one-dimensional state of swreand straine is U/ = %a(x)e(x), where
o is to be regarded as linked to the displacemetiirough Hooke’s laws = Ee and the strain-
displacement relatioa= u’ = du/dx. Thisi/ is also called thstrain energy densityintegration
over the volume of the bar gives the total internal energy

L L L
U= %f pedx= %f (EAU)U dx = %/ uUEAU dx, (12.1)
0 0 0

in which all integrand quantities may depend»an
Theexternal energylue to applied mechanical loads pools contributions from two sources:

1. The distributed load(x). This contributes a cross-section densitygof)u(x) becausey is
assumed to be already integrated over the section.

2. Any applied end load(s). For the fixed-free example of Figure 12.2 the endPloaould
contributeP u(L).

The second source may be folded into the first by conventionally writing any poinfHaaxding
at a cross section = a as a contributiorP §(a) to q(x), wheres(a) denotes the one-dimensional
Dirac delta function ak = a. If this is done the external energy can be concisely expressed as

L
W=/ qudx (122
0
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)

u(L)
ui0) =0 > X

Figure 12.4. Concept of variation of the axial displacement functiota).
For convenience(x) is plotted normal to the bar longitudinal
axis. Both theu(x) andu(x) + du(x) shown in the figure are
kinematically admissible, and so is the variatiur(x).

The total potential energy of the bar is given by

[n=u-w | (123)

Mathematically this is a functional, called tfietal Potential Energyunctional or TPE. It depends
only on the axial displacementx). In variational calculus this is called tipgimary variableof

the functional. When the dependencelbbn u needs to be emphasized we shall wiitpu] =

U [u] —WI[u], with brackets enclosing the primary variable. To display both primary and independent
variables we write, for exampl&I[u(x)] = U[u(x)] — W[u(x)].

8§12.3.2. Variation of an Admissible Function

The concept cddmissible variatiofs fundamental in both variational calculus and the variationally
formulated FEMOnly the primary variable(s) of a functional may be variéwr the TPE functional
(12.3) this is the axial displacemem¢x). Suppose thati(x) is changed tai(x) + 8 u(x).! This

is illustrated in Figure 12.4, where for conveniena®) is plotted normal tax. The functional
changes fronil to IT + §I1. The functions u(x) and the scaladI1 are called thevariations of
u(x) andIT, respectively. The variatiahu(x) should not be confused with the ordinary differential
du(x) = u'(x) dx since on taking the variation the independent variab$frozen; that is§x = 0.

A displacement variatiodu(x) is said to beadmissiblewhen bothu(x) andu(x) 4+ § u(x) are
kinematically admissiblii the sense of the Principle of Virtual Work (PVW), which agrees with the
conditions stated in the classic variational calculus. A kinematically admissible axial displacement
u(x) obeys two conditions:

(i) Itis continuous over the bar length, thatigx) € Co in x € [0, L].

(i) It satisfies exactly any displacement boundary condition, such as the fixed-end specification
u(0) = 0 of Figure 12.2.

The variations u(x) depicted in Figure 12.4 is kinematically admissible because both and
u(x) + 8 u(x) satisfy the foregoing conditions. The physical meaning of (i)—(ii) is the subject of
Exercise 12.1.

1 The symbob not immediately followed by a parenthesis is not a delta function but instead denotes variation with respect
to the variable that follows.
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|u1, f |u2, f, |u3, fs |u4, f, |u5, f5
(1 (3)
3

) (2) (4)
1 2 4 5

Us
u Us Uy U(X)
uw=0 > X

Figure 12.5. FEM discretization of bar member. A piecewise-linear admissible
displacement trial function(x) is drawn below the mesh.
It is assumed that the left end is fixed, henge= 0.

812.3.3. The Minimum Potential Energy Principle

The Minimum Potential Energy (MPE) principle statéisat the actual displacement solutiof(x)
that satisfies the governing equations is that which rendestationary:

SII=6U—8W=0 iff u=u* (12.4)

with respect toadmissiblevariationsu = u* + §u of the exact displacement field'(x). (The
symbol “iff” in (12.4) is an abbreviation for “if and only if”.)

REMARK 12.1

Using standard techniques of variational calctiitisan be shown that iE A > 0 the solutioru*(x) of (12.4)
exists, is unique, and renddifu] a minimum over the class of kinematically admissible displacements. The
last attribute explains the “mininum” in the name of the principle.

§12.3.4. TPE Discretization

To apply the TPE functional (12.3) to the derivation of finite element equations we replace the
continuum mathematical model by a discrete one consisting of a union of bar elements. For
example, Figure 12.5 illustrates the subdivision of a bar member into four two-node elements.

Functionals are scalars. Consequently, corresponding to a discretization such as that shown in
Figure 12.5, the TPE functional (12.3) may be decomposed into a sum of contributions of individual
elements:

M=% +n10®+... .+t (12.5)

whereNg is the number of elements. The same decomposition applies to the internal and external
energies, as well as to the stationarity condition (12.4):

STT =TIV +811@ 4 ...+ 611N = 0. (12.6)

2 The proof may be found in texts on variational methods in mechanics, e.g., H. L. Lan§hasagy Methods in Applied
MechanicsMcGraw-Hill, 1960. This is the most readable “old fashioned” treatment of the energy principles of structural
mechanics, with a beautiful treatment of virtual work. Out of print but used copies may be found from web sites.

3 See for example, I. M. Gelfand and S. V. Fom@glculus of VariationsPrentice-Hall, 1963.
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Using the fundamental lemma of variational calculitsgcan be shown that (12.6) implies that for
a generic elemergwe may write

STI® =sU® — sW® =0, (12.7)

This variational equatiof is the basis for the derivation of element stiffness equations once the
displacement field has been discretized over the element, as described next.

812.3.5. Bar Element Discretization

Figure 12.5 depicts a generic bar elementThe element is referred to its local axis Note that
there is no need to call k because in one dimension local and global coordinates coalesce. The
two degrees of freedom atg andu;.

The mathematical concept of bar finite elements is basegproximatiorof the axial displacement
u(x) over the element. The exact displacemenis replaced by an approximate displacement

u*(X) ~ u(x) (12.8)

over the finite element mesh. The valueuxik) over elemente is denoted byu®(x). This
approximate displacemeni(x), taken over all elements, is called tird@te element trial expansion
or simplytrial function. See Figure 12.5.

This FE trial expansion must belong to the class of kinematically admissible displacements defined
in 812.3.2. Consequently, it must Bg continuous over and between elements.

§12.3.6. Shape Functions

For a two node bar element the only possible variation of the displacearffenthich satisfies the
interelement continuity requirement stated abovénisar, and expressable by the interpolation
formula

(©
(UR
u(e)(x) — Ni(e)ui(e) + Nj(E)UEe) — [ Ni(e) Nj(e)] |:u|<e)j| — Nu®. (12.9)
J

The functionsN® and N{® that multiply the node displacementis and u; are calledshape

functions These functionsterpolatethe internal displacement® directly from the node values.
See Figure 12.6. For the present element the shape functions are linear:

X X

4 See Gelfand and Fomitgc. cit, Chapter Il

5 Mathematically called aveak formor Galerkin form Equation (12.7) also states the Principle of Virtual Work for each
element:8U® = §W® which says that the virtual work of internal and external forces on admissible displacement
variations is equal if the element is in equilibrium.
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\

Figure 12.6. The generic two-node bar element and its two shape functions.

0

in which ¢ = L® denotes the element length, and= x/¢ is a dimensionless coordinate, also
known as anatural coordinate

Note that the shape functidkli(e) has the value 1 at nodeand O at nodg. Conversely, shape
function Nj(e) has the value 0 at nodeand 1 at nodg. This is a general property of shape
functions, required by the fact that that element displacement interpolations such as (12.9) are
based on physical node values.

REMARK 12.2

In addition to continuity, shape functions must satisfpepletenesgquirement with respect to the governing
variational principle. This condition is stated and discussed in later Chapters. Suffices for now to say that the
shape functions (12.10) do satisfy this requirement.

812.3.7. The Strain-Displacement Equation

The axial strain over the element is

©

du® © © © 1
o= = (U = [dN‘ an; ] H'(e)} =, [-1 1] [El(e)] =Bu®, (1211

dx dx dx j j

where 1
B = 7 [-1 1] (1212

Is called thestrain-displacementatrix.

8124. THE FINITE ELEMENT EQUATIONS

In linear finite element analysis, the discretization process for the TPE functional invariably leads
to the following algebraic form

ne® =y® — W(e), u®e — %(u(e))TK(e)u(e), W® — (u(e))Tf(e)’ (12.13)
whereK © andf® are called thelement stiffness matrand theelement consistent nodal force vec-
tor, respectively. Note thatin (12.13) the three energies are only function of the node displacements
u®. U® andW® depend quadratically and linearly, respectively, on those displacements.

12-9
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Taking the variation of the discretized TPE of (12.13) with respect to the node displacemerfts gives

T oT1®

= (5u®)" [K@u® —f®] =0, (12.14)

Because the variatiorssi®® can be arbitrary, the bracketed quantity must vanish, which yields

K®u® = §® (12.15)

These are the element stiffness equations. Hence the foregoing names d¢iéhaind f© are
justifieda posteriori

§12.4.1. The Stiffness Matrix

For the two-node bar element, the internal endddf) is

4
u® = %/ eEAedx (12.16)
0

where the straieris related to the nodal displacements through (12.11). This form is symmetrically
expanded by inserting= Bu‘® into the secon@ ande = " = (u®)TBT into the firste:

(e
u® — /[u(e) (e)]_[ ]EA [—1 ﬂ[ﬁb]dx. (12.17)
j

The nodal displacements can be moved out of the integral, giving

‘EA - u'®
T O [ L
J
in which
0 EA 1 -1 l
K(e):/ —[ ]dx:f EAB'Bdx, (12.19)
o ¢ [-1 1 0

is the element stiffness matrix. If the rigidify A is constant over the element,

EA 1 -1 EA 1 -1
(e)_ T —
K® =EAB /d A [_1 1]15_ - {_1 1]. (12.20)

This is the same element stiffness matrix of the prismatic truss member derived in Chapters 2 and
6 by Mechanics of Materials arguments, but now obtained through a variational method.

6 The % factor disappears on taking the variation becdu&® is quadratic in the node displacements. For a review on
the calculus of discrete quadratic forms, see Appendix D.
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812.4.2. The Consistent Node Force Vector

Theconsistent node force vectB? introduced in (12.13) comes from the element contribution to
the external work potentialV:

¢ ¢ T (" T1-¢ T
W® = / qudx= / gNTu®dx = (u®) / q [ : ] dx=(u®) f°, (@221
0 0 0

in which¢ = x/¢. Consequently

V4
f(e>:/ q[lgg] dx (12.22)
0

If the forceq is constant over the element, one obtains the same results as with the EbE load-lumping
method of Chapter 8. See Exercise 12.3.

812.4.3. When are Two-Node Bar Elements Exact?

Suppose that the following three conditions are satisfied:

1. The bar properties are constant along the length (prismatic member).
2. The distributed forcg(x) is zero between nodes.

3. The only applied forces are point forces applied at the nodes.

If so, a linear axial displacementx) as defined by (12.9) and (12.10) is the exact solution over
each element because constant strain and stress satisfy, element by element, all of the governing
equations listed in Figure 12731t follows that if the foregoing conditions are verified the FEM
solution isexact that is, it agrees with the analytical solution of the mathematical model. Adding
extra elements and nodes would not change the solution. That is the reason behind the truss
discretizations used in Chapters 2-dne element per member is sufficiénthe members are
prismatic and the only loads are applied at the jofnts.

If any of the foregoing conditions is violated, the FEM solution will be approximate, but can be
improved by adding more elements, nodes and degrees of freedom.

812.5. GENERALIZATIONS

The foregoing development pertains to the simplest finite element possible: the linear two-node bar
element. If we stay within the realm of one-dimensional elements the technique may be generalized
in the following directions:

Refined bar element&dding internal nodes we can pass from linear to quadratic and cubic shape
functions. These elements are rarely useful on their own right, but as accessories to 2D and 3D

" The internal equilibrium equatiop’ 4 q = 0 is trivially verified becaus@’ = q = 0.

8 In fact, adding more elements per member makes the stiffness equations singular in 2D and 3D because zero-energy
mechanisms appear. Removing those mechanisms would require the application of MFCs at intermediate nodes.
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high order continuum elements (for example, to model plate edge reinforcements.) For that reason
they are not considered here. The 3-node bar element is developed in Exercise 16.5.

Two and three dimensional structures built with bar elemefitee only required extra ingredient
are the nodal-displacement transformation matrices discussed in Chapters 3 and 6.

Beam-type elementsThese require the introduction of displacement-derivative nodal freedoms
(interpretable as nodal rotations). Plane beam elements are treated in the next Chapter.

Curved elementsThese are derivable using isoparametric mapping. This device will be introduced
later when considering triangular and quadrilateral elements in Chapter 16.
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1213 Exercises

Homework Exercisesfor Chapter 12
Variational Formulation of Bar Element

EXERCISE 12.1

[D:10] Explain the kinematic admissibility requirements stated in 812.3.2 in terms of physics, namely ruling
out the possibility of gaps or interpenetration as the bar material deforms.

EXERCISE 12.2

[A/C:15] Using the expression (12.19), derive the stiffness matrix faparedbar element in which the cross
section area varies linearly along the element length:

A=AQA-0)+A L (E121)

where A and A; are the areas at the end nodes, ang x/¢ is the dimensionless coordinate defined in
812.3.6. Show that this yields the same answer as that of a stiffness of a constant-area bar with cross section
%(Ai + Aj). Note: the followingMathematicascript may be used to solve this exercise:

ClearAl[Le, x,EmA A ,A ];

Be={{-1,1}}/Le; &=x/Le; A=A *(1l-8)+A *¢&;

Ke=I nt egr at e[ Ent A* Tr anspose[ Be] . Be, {x, O, Le}];

Ke=Si nmpl i fy[ Ke] ;

Print["Ke for varying cross section bar: ",Ke//MatrixForm;

In this and following script&.e stands for.

EXERCISE 12.3

[A:10] Using the expression (12.22), find the consistent load veiRdior a bar of constant area subject

to a uniform axial force = pg A per unit length along the element. Show that this vector is the same as that
obtained with the element-by-element (EbE) “lumping” method of 8.4, which simply assigns half of the total
load: $pgA¢, to each node.

EXERCISE 12.4

[A/C:15] Repeat the previous calculation for the tapered bar element subject to ajfesceg A per unit
length, in whichA varies according to (E12.1) whereasandg are constant. Check that & = A; one
recoversf; = f; = %pgAﬁ. Note: the followingMathematicascript may be used to solve this exercie:

ClearAll[q, A A ,A,p, 0, Le x];

I=x/Le; Ne={{1-7,T}}; A=A *(1-0)+A *I; q=p*g*A
fe=Integrate[ g*Ne, {X, 0, Le}];

fe=Sinplify[fe];

Print["fe for uniformload q: ",fe//MtrixForm;
CearAl[A;

Print["fe check: ",Sinmplify[fe/.{Ai->A A ->A}]//MatrixForni;

9 TheClearAll[...] atthe start of the script is recommended programming practice to initialize variables and avoid
“cell crosstalk.” In aModule this is done by listing the local variables after theiule keyword.

10 Thec1learAl1[A] before the last statement is essential; elseould retain the previous assignation.
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EXERCISE 12.5

[A/C:20] A tapered bar element of length end areash, and A; with A interpolated as per (E12.1), and
constant density, rotates on a plane at uniform angular velocityrad/sec) about nodie Taking axisx
along the rotating bar with origin at nodethe centrifugal axial force ig(x) = p Aw?x along the length.
Find the consistent node forces as functiong of;, A;, w and¢, and specialize the result to the prismatic
bar A= A = Aj. Partial result checkf; = fpw?Al2for A= A = A.

EXERCISE 12.6

[A:15] (Requires knowledge of Dirac’s delta function properties.) Find the consistent load ¥&tiithe bar
is subjected to a concentrated axial fof@et a distance = a from its left end. Use Equation (12.22), with
g(x) = Qé(a), in whichs(a) is the one-dimensional Dirac’s delta functionxat= a. Note: the following
script does it byMathematicabut it is overkill:

ClearAll[Le,q,Q a,X];

g=x/Le; Ne={{1l-g,g}}; q=Q*DiracDelta[x-a];
fe=Simplify[ Integrate[g*Ne, {x,-Infinity,Infinity}] ];
Print["fe for point load Q at x=a: ",fe//MatrixForni;

EXERCISE 12.7

[C+D:20] Inalearned paper, Dr. I. M. Clueless proposes “improving” the result for the example truss by putting
three extra nodes, 4, 5 and 6, at the midpoint of members 1-2, 2—3 and 1-3, respectively. His “reasoning” is
that more is better. Try Dr. C.'s suggestion usingMethematicamplementation of Chapter 5 and verify that

the solution “blows up” because the modified master stiffness is singular. Explain physically what happens.
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13-3 813.2 WHAT IS A BEAM?

§13.1. INTRODUCTION

The previous Chapter introduced the TPE-based variational formulation of finite elements, which
was illustrated for the bar element. This Chapter applies that technique to a more complicated
one-dimensional element: the plane beam described by the Bernoulli-Euler mathematical model.

Mathematically, the main difference of beams with respect to bars is the increased order of conti-
nuity required for the assumed transverse-displacement functions to be admissible. Not only must
these functions be continuous but they must possess contixuings derivatives. To meet this
requirement both deflectiorend slopes are matched at nodal points. Slopes may be viewed as
rotational degrees of freedom in the small-displacement assumptions used here.

§13.2. WHAT ISA BEAM?

Beams are the most common type of structural componebeaiis a bar-like structural member
whose primary function is to suppdransversdoading and carry to the supports. See Figure 13.1.
By “bar-like” it is meant that one of the dimensions is considerably larger than the other two. This
dimension is called thiongitudinal dimensiomr beam axis The intersection of planes normal to
the longitudinal dimension with the beam member are calteds sectionsA longitudinal plane

is one that passes through the beam axis.

d o

Figure 13.1. A beam is a structural member design to resist transverse loads.

A beam resists transverse loads mainly throbghding actionas illustrated in Figure 13.2. Such
bending produces compressive longitudinal stresses in one side of the beam and tensile stresses in
the other. The two regions are separated bgatral surfaceof zero stress.

The combination of tensile and compressive stresses produces an ibemdalg momentThis
moment is the primary mechanism that transports loads to the supports.

§13.2.1. Terminology

A general beanis a bar-like member designed to resist a combination of loading actions such as
biaxial bending, transverse shears, axial stretching or compression, and possibly torsion. If the
internal axial force is compressive, the beam has also to be designed to resist buckling. If the
beam is subject primarily to bending and axial forces, it is callbdam-columnlf it is subjected
primarily to bending forces, it is called simply a beam. A bearstiaightif its longitudinal axis

Is straight. It isprismaticif its cross section is constant.
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Neutral surface Compressive stress

Tensile stres/

Figure 13.2. Beam transverse loads are primarily resisted by bending action.

A spatial beansupports transverse loads that can act on arbitrary directions along the cross section.
A plane beanresists primarily transverse loading on a preferred longitudinal plane. This Chapter
considers only plane beams.

§13.2.2. Mathematical M odels

One-dimensional mathematical models of structural beams are constructed on the basis of
theories Because beams are actually three-dimensional bodies, all models necessarily involve
some form of approximation to the underlying physics. The simplest and best known models
for straight, prismatic beams are based onBleenoulli-Eulertheory, also called¢lassical beam
theoryor engineering beam theargnd theTimoshenko beam theoryhe Bernoulli-Euler theory

is that taught in introductory Mechanics of Materials, and is the one used here. The Timoshenko
beam theory, which assumes additional importance in dynamics and vibration, is studied in more
advanced courses.

Both models can be used to formulate beam finite elements. The classical beam theory used
here leads to the so-callédermitian beam elements. These elements neglect transverse shear
deformations. Elements based on Timoshenko beam theory incorporate a first order correction for
transverse shear effects.

813.2.3. Assumptionsof Classical Beam Theory

The classical (Bernoulli-Euler) theory fptane beamss based on the following assumptions:

1. Planar symmetry The longitudinal axis is straight, and the cross section of the beam has a
longitudinal plane of symmetry. The resultant of the transverse loads acting on each section
lies on this plane.

2. Cross section variationThe cross section is either constant or varies smoothly.

Normality. Plane sections originally normal to the longitudinal axis of the beam remain plane
and normal to the deformed longitudinal axis upon bending.

L The qualifier “Hermitian” relates to the use of a interpolation method studied by the French mathematician Hermite. The
term has nothing to do with the beam model used.
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13-5 8§13.3 THE CLASSICAL BEAM THEORY

y, v
A
a(x) v
' T A /»/Beam Cross section
X, U .
- f - -> Neutral axis
Neutral surface B L - S Symmetry plane

Figure 13.3. Terminology in Bernoulli-Euler model of plane beam.

4. Strain energy The internal strain energy of the beam member accounts only for bending
moment deformations. All other effects, notably transverse shear and axial force effects, are
ignored.

5. Linearization Transverse deflections, rotations and deformations are considered so small that
the assumptions of infinitesimal deformations apply.

6. Elastic behavior The beam is fabricated of material assumed to be elastic and isotropic.
Heterogeneous beams fabricated with several materials, such as reinforced concrete, are not
excluded.

§13.3. THE CLASSICAL BEAM THEORY

813.3.1. TheNeutral Axis

Under transverse loading one of the beam surfaces shortens while the other elongates; see Fig-
ure 13.2. Therefore ameutral surfaceexists between the top and the bottom that undergoes no
elongation or contraction. The intersection of this surface with each cross section defines-the

tral axis of that cross section. If the beam is fabricated of uniform material, the position of the
neutral axis is only a function of the cross section geometry.

§13.3.2. Element Coordinate Systems

The Cartesian axes for plane beam analysis are chosen as follows:
1. x along the longitudinal beam axis, at neutral axis hefght.

2. zalong the neutral axis at the origin section.

3. yupwards forming a RHS system wikhandz.

The origin of thex, y, z system is placed at the the leftmost section. The total length of the beam
member isL. See Figure 13.3.

2 If the beam is homogenous, the neutral axis passes through the centroid of the cross section. If the beam is fabricated
of different materials — for example, a reinforced concrete beam — the neutral axes passes through the centroid of an
“equivalent” cross section. This topic is covered in Mechanics of Materials textbooks.
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Figure 13.4. A simply supported beam has end supports that preclude
transverse displacements but permit end rotations.

813.3.3. Kinematics

Themotionof a plane beam member in tkey plane is described by the two dimensional displace-

ment field

u(x, y)

, 131
[v(x, y) ] (15D

whereu andv are the axial and transverse displacement components, respectively, of an arbitrary

beam material point. The motion in taelirection, which is primarity due to Poisson’s ratio effects,

is of no interest. The normality assumption can be represented mathematically as

_yov(X) /! —Vvh
Loon =17 1= Lo )= Lo )
v(X,Y) v(X) v(X) v(X)
Note that the slope’ = dv/dx = dv/dx of the deflection curve has been identified with the
rotation symbol6. This is permissible becauserepresents to first order, according to the kine-

matic assumptions of the Bernoulli-Euler model, the rotation of a cross section alumditive
counterclockwise.

§13.3.4. Loading

The transverse forgeer unit lengththat acts on the beam in they direction is denoted by (x),
as illustrated in Figure 13.3.

Concentrated loads and moments acting on isolated beam sections can be represented by the delta
function and its derivative. For example, if a transverse point Battts atx = a, it contributes
Fdé(a)toq(x). Ifthe concentrated mome@tacts ak = b, positive counterclockwise, it contributes

Cé'(b) to q(x), wheres’ denotes a doublet actingat= b.

§13.3.5. Support Conditions

Support conditions for beams exhibit far more variety than for bar members. Two canonical
cases often encountered in engineering practice: simple support and cantilever support. These are
illustrated in Figures 13.4 and 13.5, respectively. Beams often appear as components of skeletal
structures called frameworks, in which case the support conditions are of more complex type.
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PEEERTY —orrrt bt

Figure 13.5. A cantilever beam is clamped at one end and free at the other. Airplane
wings and stabilizers provide examples of this configuration.

813.3.6. Strains, Stresses and Bending M oments

The classical (Bernoulli-Euler) model assumes that the internal energy of beam member is entirely
due to bending strains and stresses. Bending produces axial strggseisich will be abbreviated

to o, and axial strain®,y, which will be abbreviated t@. The strains can be linked to the
displacements by differentiating the axial displacemgrp of (13.2):

ou . 920 d2y

e—= a_X — _yW = _yW = —y/(, (13.3)

in which « denotes the deformed beam axis curvature, which to first ordéwj&x?approxv”.
The bending stress = oy Is linked toe through the one-dimensional Hooke’s law

2
<7=Ee=—Ey7§::—EW, (13.4)

whereE is the elastic modulus.

The most important stress resultant in classical beam theory tsethding moment Mwhich is
defined as the cross section integral

d?v 2
M _/A—yodx_ E@/Ay dA= El«x, (135)

inwhich| denotes the moment of inertja y2 d A of the cross section with respect to th@eutral)
axis. (In general beams this moment of inertia is identified, a3 The productE | is called the
bending rigidityof the beam with respect to flexure about #exis.

The governing equations of the Bernoulli-Euler beam model are summarized in the Tonti diagram
of Figure 13.6.

8134. TOTAL POTENTIAL ENERGY FUNCTIONAL

The total potential energy of the beam is

m=U_—W (13.6)
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Prescribed | | Pisplacement]  Transverse Distributed
end BCs displacements transverse 104
displacements v(X) q(x)
| —

Kinematic | K=v" M"=q | Equilibrium
Curvature M=EI K I?n%r;](;ilenng![ Force BCs Prescribed
K(X) Constitutive M(X) end loads

Figure 13.6. The Tonti diagram for the governing equations of the Bernoulli-Euler beam model.

where as usu&l andW are the internal and external energies, respectively. As previously explained,
in the Bernoulli-Euler moddl includes only the bending energy:

L L L L

U :%/aedV:%/ dex:%/ E|K2dX=%/ El (v”)zdx:%/ v'Elv" dx.
\ 0 0 0 0

(137)

The external worRV accounts for the applied transverse force:

L
W:/ qu dx. (138)
0

The three functionalsl, U andW must be regarded as depending on the transverse displacement
v(X). When this dependence needs to be emphasized weljrife U [v] and W[v].

Observe thafl[v] includes up to second derivatives in because” = « appears ilJ. This
number (the order of the highest derivatives present in the functional) is calledatiaional

index Variational calculus tells us that since the variational index is 2, admissible displacements
v(X) must be continuous, have continuous first derivatives (slopes or rotations), and satisfy the
displacement boundary conditions exactly.

This continuity requirement can be succintly stated by saying that admissible displacements must
beC* continuous. This guides the construction of beam finite elements described below.

REMARK 13.1

If there is an applied distributed momemix) per unit of beam length, the external energy (13.8) must be

augmented with #OL m(x)8(x) dx term. This is further elaborated in Exercises 13.4 and 13.5. Such kind of
distributed loading is uncommon in practice although in framework analysis occassionally the need arises for
treating a concentrated mometibetween nodes.
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P'(X+U,y+v)

<
%

Figure 13.7. The two-node plane beam element with four degrees of freedom.

§13.5. BEAM FINITE ELEMENTS

Beam finite elements are obtained by subdividing beam members longitudinally. The simplest
Bernoulli-Euler plane beam element, depicted in Figure 13.7, has two end nodes, i and j, and four
degrees of freedom:
Vi
ue — | 4| (139)
UVj
0

§13.5.1. Finite Element Trial Functions

The freedoms (13.9) must be used to define uniquely the variation of the transverse displacement
v®(x) over the element. Th&?! continuity requirement stated at the end of the previous Section
says that bothw and the slop® = v’ must be continuous over the entire beam member, and in
particular between beam elements.

C! continuity can be trivially satisfied within each element by choosing polynomial interpolation
functions as shown below. Matching the nodal displacements and rotations with adjacent beam
elements enforces the necessary interelement continuity.

813.5.2. Shape Functions

The simplest shape functions that meet@ieontinuity requirements for the nodal freedoms (13.9)
are called thédermitian cubicshape functions. The interpolation formula based on these functions
may be written as
C)
Vi
(©
v® =[N® N N© NI v'(e) = Nu®, (13.10)
]
C)
0
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v® =1 N@@E) = 1-8622+¢)
69 =1

NS (&) = 261 - £)2(1+§)

= N, (&) = 31+ 822 &)

e __
\91 =1 NP® =-la+e’a-g

Figure 13.8. Hermitian shape functions of plane beam element

These shape functions are conveniently written in terms of the dimensionless “natural” coordinate

2X
£ = - 1, (1311

which varies from-1 at nodd (x = 0) to+1 at nodej (x = ¢); £ being the element length:

NO =21-8622+8), NP =2ad-6%1+8),

1312
NG =30+8%2-8), N7 =—3e1+8°1-8). (542

These functions are depicted in Figure 13.8.

The curvaturer that appears iU can be expressed in terms of the nodal displacements by differ-
entiating twice with respect te:

d2v®@(x) 4 dW©®E) 4 dN®
K = = — = —
dx2 2 dg? 02 dg2
HereB = N” is the 1x 4 curvature-displacement matrix

u® = Bu® = N"u®@, (13.13)

1
_ T T1a& 3
|3_£[6z -1 65 k+1] | (1314

REMARK 13.2

The 4/¢? factor that shows up in (13.13) comes from the differentiation chain rule(xf is a function ofx,
andé = 2x/¢ — 1,

dfeo _ df@ ds _ 2df)

dx ~ d& dx ¢ d& ’
i d@odi@  2d (di©)  4diE) (1315)
dx2 ~  dx dg £ dx F 2 dg2

becausel(2/¢)/dx = 0.

13-10



1311 813.6 THE FINITE ELEMENT EQUATIONS

§13.6. THE FINITE ELEMENT EQUATIONS

Insertion of (13.12) and (13.14) into the TPE functional specialized to the element, yields the
guadratic form in the nodal displacements

e — %U@)TK(%(@ —_u@Ti@ (13.16)

where

0 1
K ®© =/ El BTde=/ El B'B 3¢ds, (13.17)
0 -1

is the element stiffness matrix and

£ 1
f(© :/0 NTq dx:/lNTq $edé, (13.18)

is the consistent element nodal force vector.

The calculation of the entries &®® andf® for prismatic beams and uniform loagis studied
next. More complex cases are treated in the Exercises.

813.6.1. The StiffnessMatrix of a Prismatic Beam

If the bending rigidityE | is constant over the element it can be moved out oftthetegral in
(13.17):

6¢
[4
. ! El (*|3-1]|q 6
K():%Ele/lBTBdgzz—gfl —?é [TS ¥ -1 TS 3 +1]ds. (1319
3k +1

Expanding and integrating over the element yields

3657 6£(3 — )¢ —365° 6£(3¢ + 1)¢

ke _ El / ' B -1 —6e@ -1 (%2 -DE |
203 ), 3652 —6E(38 + )¢
22
>ymm B+ D% (13.20)
12 & -12 6
_El a2 —6 202
IE 12 —6¢
symm 4¢?

Although the foregoing integrals can be easily carried out by hand, it is equally expedient to use
a CAS such adlathematicaor Maple For example thdlathematicascript listed in the top box

of Figure 13.9 processes (13.20) using Iheegrate function. The output, shown in the bottom
box, corroborates the hand integration result.
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ClearAl[El,I, &;
B:{{6*§!(3*§'1)*|!'6*§l(3*§+1)*|}}/ll\2;

Ke=(El *|/2)*I ntegrate[ Transpose[B] . B, {&, -1, 1}];
Ke=Si mpl i f y[ Ke] ;

Print["Ke for prismatic beam"];
Print[Ke//MatrixForn;

Ke for prismatic beam:

12 BT 6 BI 12 BT 6 E1

13 12 13 12

6 EI 4 EI _6FEI 2 FEI

2 [ 2 [

12 BT 6 Kl 12 EI 6 K1
B TR 3 e

6 BT 2 Bl _6FEI 4 ET

2 [ 2 [

Figure 13.9. UsingMathematicao formK®© for a prismatic beam element.

ClearAl[q,l, &
Ne={{2*(1- §)"2*(2+E&), (1l-&"2*(1+&)*I,

2% (1+£)"2*(2- &), - (1+8) "2*(1- &) *1 } }/ 8;
fe=(qg*l/2)*Integrate[Ne, {& -1,1}]; fe=Sinplify[fe];
Print["feArT for uniformload q:"];
Print[fe//MtrixForni;

fe~T for uniform load q:
( lg 1?q g I? q )

2 12 2 12

Figure 13.10. Usindg/iathematicao form f© for uniform transverse loag.

813.6.2. Consistent Nodal Force Vector for Uniform Load

If g does not depend anit can be moved out of (13.18), giving

T1-622+¢) :
! Ll lea-e)21+e) Le
© _ 1 T _1 8 _ 12
% = sq¢ /;lN dé = 5q¢ /_1 %(1+€)2(2_§) dé =q¢ % . (1321
—S(1+6)%1-¢) —L¢

This shows that a uniform loaglover the beam element maps to two transverse node tpa@s
as may be expected, plus two nodal momerqg2/12. The latter are called thixed-end moments
in the FEM literature.

The hand result (13.21) can be verified with Mathematicascript displayed in Figure 13.10, in
whichf® is printed as a row vector to save space.
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1313 Exercises

Homework Exercisesfor Chapter 13
Variational Formulation of Plane Beam Element

EXERCISE 13.1

[A/C:20] Use (13.17) to derive the element stiffness makti® of a Hermitian beam element of variable
bending rigidity given by the inertia law

X X 1 1
100 =1iA= D+ 15 =l 30-6+1; 3A+5). (E131)

Use ofMathematicaor similar CAS tool is recommended since the integrals are time consuietfpematica
hint: write
EI = EIi*(1-£)/2 + EIj*(1+£)/2; (E132)

and kee[EI inside the argument dintegrate. Check whether you get back (13.20Ef=EIi=EIj. If you
useMathematicathis check can be simply done after you got and printed the taperededmg writing
ClearAl11[EI]; Ke=Simplify[ Ke/.{EIi->EI,EIj->EI}]; and printing this matrix.

EXERCISE 13.2

[A/C:20] Use (13.18) to derive the consistent nodal force vetfofor a Hermitian beam element under
linearly varying transverse loagldefined by

900 =G (1= ) +0;5 =g 31— §) +0 L+8). (E133)

Again use of a CAS is recommended, particularly since the polynomials to be integrated are ggaditdn
hand computations are error proéathematicahint: write

q = qi*x(1-£)/2 + qj*(1+£)/2; (E134)

and keep inside the argument dfntegrate. Check whether you get back (13.21)jf = g; = q (See
previous Exercise foMathematicgorocedure).

EXERCISE 13.3

[A:20] Obtain the consistent node force vectt of a Hermitian beam element subject to a transverse point
load P at abscissa = a where 0< a < ¢. Use the Dirac’s delta function expressigix) = P §(a) and the

fact that for any continuous functioh(x), fcf f(x)é(@dx= f(@)if 0 <a<d.

EXERCISE 13.4

[A:25] Derive the consistent node force vecté? of a Hermitian beam element subject to a uniformly
distributedz-momentm per unit length. Use the fact that the external work per unit lengtin@g)0 (x) =
m(x) v'(X) = (u®)T(dN/dx)" m(x). For arbitrarym(x) show that this gives

¢ T 1 T 1

N INT 2

f= | —mdx= [ —>-miedeé= [ N mds, (E135)
s 0X L 08 €2 o

WhereN%T denote the column vectors of beam shape function derivatives with respgectGan you see a
shortcut that avoids the integral for consterit

3 ClearAll[EI] discards the previous definition (E13.2)RT, the same effect can be achieved by writiig. (dot).
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EXERCISE 13.5

[A:20] Obtain the consistent node force vectt of a Hermitian beam element subject to a concentrated
momentC applied atx = a. Use the expression (E13.5) in whiofi(x) = C §(a), whered(a) denotes the
Dirac’s delta function ak = a.

EXERCISE 13.6
[A/C:25] Consider the one-dimensional Gauss integration rules.

1
One point : / f(&)de =21 (0) (E136)
-1
1
Two points: f f(&)de = f(=1/4/3) + f(1/V/3) (E137)
-1
. ' .5 8 5
Three points: / f(&)de = 9 f(—/3/5 + 5 f(0) + 9 f(4/3/5) (E138)
-1

Try each rule on the monomial integrals

1 1 1
/ds, fsds, /szds, (E139)
-1 -1 -1

until the rule fails. In this way verify that the rules (E13.6), (E13.7) and (E13.8) are exact for polynomials of
degree up to 1, 3 and 5, respectivelyalfor-saving hirtt for odd monomial degree no computations need to
be done; why?).

EXERCISE 13.7

[A/C:25] Repeat the derivation of Exercise 13.1 using the two-point Gauss rule (E13.7) to evaluate integrals
in &. A CAS is recommended. If usinglathematicayou may use a function definition to save typing; for

example to evaluatg?_ll f (£) d& in which f (&) = 664 — 362 + 7, by the 3-point Gauss rule (E13.8), say
f[£_]:=6£"4-3£72+7; int=Simplify[(5/9)*(f[-Sqrt[3/5]1]1+f[Sqrt[3/5]11)+(8/9)*£[0]];

and printint. To form an element by Gauss integration define matrix functions in terrasfof example

Be [£_], or use the substitution operatbr, whatever you prefer. Check whether one obtains the same answers
as with analytical integration, and explain why there is agreement or disagreement. Hint for the explanation:
consider the order of the polynomials you are integrating over the element.

EXERCISE 13.8
[A/C:25] As above but for Exercise 13.2.
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14-3 814.1 INTRODUCTION

814.1. INTRODUCTION

We now pass to the variational formulation of two-dimensiar@itinuumfinite elements. The
problem of plane stress will serve as the vehicle for illustrating such formulations. As narrated in
Appendix H, continuum finite elements were invented in the aircraft induirgolve this kind of
problem when it arose in the design and analysis of delta wing panels.

The problem is presented here within the framework of the linear theory of elasticity.

814.1.1. Platein Plane Stress

In structural mechanics, a flat thin sheet of material is callpthte? The distance between the
plate faces is called thihicknessand denoted by. The midplanelies halfway between the two
faces. The direction normal to the midplane is calledtaesversalirection. Directions parallel to

the midplane are calleéd-planedirections. The global axswill be oriented along the transverse
direction. Axesx andy are placed in the midplane, forming a right-handed Rectangular Cartesian
Coordinate (RCC) system. Thus the midplane equatian=s). See Figure 14.1.

A plate loaded in its midplane is said to be in a stat@lahe stressor amembrane statéf the
following assumptions hold:

1. Allloads applied to the plate act in the midplane direction, and are symmetric with respect to
the midplane.

2. All support conditions are symmetric about the midplane.
3. In-plane displacements, strains and stresses can be taken to be uniform through the thickness.
4. The normal and shear stress components iz theection are zero or negligible.

The last two assumptions are not necessarily consequences of the first two. For the latter to hold,
the thicknes$ should be small, typically 10% or less, than the shortest in-plane dimension. If the
plate thickness varies it should do so gradually. Finally, the plate fabrication must exhibit symmetry
with respect to the midplane.

To these four assumptions we add the following restriction:

5. The plate is fabricated of the same material though the thickness. Such plates are called
transversely homogeneoasmonocoquelates.

The last assumption excludes wall constructions of importance in aerospace, in particular compos-
ite and honeycomb plates. The development of models for such configurations requires a more
complicated integration over the thickness as well as the ability to handle coupled bending and
stretching effects, and will not be considered here.

REMARK 14.1

Selective relaxation from assumption 4 lead to the so-cgedralized plane stress stabe which z stresses
are accepted. Thplane strain statds obtained if strains in the direction is precluded. Although the

1 At Boeing over the period 1952-53.

2 If it is relatively thick, as in concrete pavements, or cheese slices, theslabnis also used but not for plane stress
conditions.
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Figure 14.1. A plate structure in plane stress.

Midplane

Mathematical

- Idealization
D
k/_\/ X

Figure 14.2. Mathematical model of plate in plane stress.

construction of finite element models for those states has many common points with plane stress, we shall not
consider those models here. For isotropic materials the plane stress and plane strain problems can be mapped
into each other through a fictitious-property technique; see Exercise 14.1.

REMARK 14.2

Transverse loading on a plate produpkge bendingwhich is associated with a more complex configuration
of internal forces and deformations. This subject is studied in more advanced courses.

814.1.2. Mathematical M odel

The mathematical model of the plate in plane stress is a two-dimensional boundary value problem
(BVP). This problem is posed over a plane dom&imvith a boundanyl”, as illustrated in Figure
14.2.

In this idealization the third dimension is represented as functionxsanfd y that areintegrated
through the plate thicknessEngineers often work with internal plate forces, which result from
integrating the in-plane stresses through the thickness. See Figure 14.3.
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145 814.2 PLANE STRESS PROBLEM DESCRIPTION

Inplane stresses

T Py T

/ xX Pxy y

Inplane internal forces

X
Figure 14.3. Internal stresses and plate forces.

814.2. PLANE STRESS PROBLEM DESCRIPTION

814.2.1. Problem Data

The given data includes:
Domain geometryThis is defined by the boundatyillustrated in Figure 14.2.

Thickness Most plates used as structural components have constant thickness. If the thickness
does vary, in which case = h(x, y), it should do so gradually to maintain the plane stress state.

Material data This is defined by the constitutive equations. Here we shall assume that the plate
material is linearly elastic but not necessarily isotropic.

Specified Interior ForcesThese are known forces that act in the intetibof the plate. There

are of two types.Body forcesor volume forcesre forces specified per unit of plate volume; for
example the plate weighEace forcesact tangentially to the plate faces and are transported to the
midplane. For example, the friction or drag force on an airplane skin is of this type if the skin is
modeled to be in plane stress.

Specified Surface ForcesThese are known forces that act on the boundawf the plate. In
elasticity these are callesirface tractionsIn actual applications it is important to know whether
these forces are specified per unit of surface area or per unit length.

Displacement Boundary Conditianshese specify how the plate is supported. Points on the plate
boundary may be fixed, allowed to move in one direction, or subject to multipoint constraints. In
addition symmetry and antisymmetry lines may be identified as discussed in Chapter 8.

If no displacement boundary conditions are imposed, the plate structure is saiffde-free
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Chapter 14: THE PLANE STRESS PROBLEM 146

814.2.2. Problem Unknowns

The three unknown fields are displacements, strains and stresses. Because of the assumed wall
fabrication homogeneity the in-plane components are assumed uaifsem through the plate
thickness Consequently the dependencezaiisappears and all such components become functions

of x andy only.

DisplacementsThe in-plane displacement field is defined by two components:

_ UX(X7 y)
ucx,y) = [uy(x, y)] (14.1)

The transverse displacement componesik, y, z) component is generally nonzero because of
Poisson’s ratio effects, and depends 2znHowever, this displacement does not appear in the
governing equations.

Strains The in-plane strain field forms a tensor defined by three independent compaggnts,
ande,y. To allow stating the FE equations in matrix form, these components are conventionally
arranged to form a 3-component “strain vector”

eXX(X’ y) :|
(14.2)

e(X, y) - |: eyy(xa Y)
2e4y(X, y)

The factor of 2 iney, shortens strain energy expressions. The shear strain compepgatsd

ey, vanish. The transverse normal strajnis generally nonzero because of Poisson effects. This
strain does not enter the governing equations as unknown because the associated Ses®,
which eliminates the contribution of,,,, to the internal energy.

StressesThe in-plane stress field forms a tensor defined by three independent compaengnts:
oyy andoyy. As in the case of strains, to allow stating the FE equations in matrix form, these
components are conventionally arranged to form a 3-component “stress vector”

oxx(X,Y) :|
(14.3)

o(X,y) = |:Uyy(x, Y)
ny(x, Y)

The remaining three stress componenmts; oy, andoy,, are assumed to vanish.

Theplate internal forcesre obtained on integrating the stresses through the thickness. Under the
assumption of uniform stress distribution,

pXX - Gxxh, pyy - Uyyh, pr == nyh. (14.4)

Thesep’s also form a tensor. They are often call@mbrane forcem the literature. See Figure
14.3.
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Displacement BC
Prescribed _A )
displacemen U=u |Displacemen
N

I Body forces r
8 onT, u b
—— | | E—

[2]

Kinematic | e=D u Equilibrium | D'o+b =0
Force BC
Congtitutive Oin =t .
Strains o=Ee Stresses | orpn=4 Prescribed
tractionst
€ in Q o onl; or forcesy

Figure 14.4. The Strong Form of the plane stress equations of linear
elastostatics displayed as a Tonti diagram. Yellow boxes identify
prescribed fields whereas orange boxes denote unknown fields. The
distinction between Strong and Weak Forms is explained in §14.3.3.

814.3. LINEAR ELASTICITY EQUATIONS

We shall develop plane stress finite elements in the framework of classical linear elasticity. The
necessary governing equations are presented below. They are graphically represented in the Strong
Form Tonti diagram of Figure 14.4.

814.3.1. Governing Equations

The three internal fields: displacements, strains and stresses (14.2)-(14.4) are connected by three
field equations: kinematic, constitutive and internal-equilibrium equations. If initial strain effects
are ignored, these equations read

M Ex d/0X 0 y
eyy}=|: 0 3/3y:|[ux},
L 26,y 9/0y 9/dX y

[ Oxx Eir Ei12 E Exx
oyy | =| BEi2 E2 E2s &y |, (14.5)
| oyy Eizs Ezz Eszzd L2ey

[9/0x 0 a/ay | 7 by] [0
|0 a0y 8/8x] [gyy}r[by]_[o]
Xy

In these equationd), andby are the components of the interior body folzeE is the 3x 3
stress-strain matrix of plane stress elastic moduis the 3x 2 symmetric-gradient operator and
its transpose the 2 3 tensor-divergence operator. The dependencepy) has been omitted to
reduce clutter.
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n (unit
i exterior normal)
Ont n \’\f
t

Stress BC details
(decomposition of forces
9 would be similar)

///,L\]:O

Boundary tractiond or
boundary forcesq
are prescribed oFi;

Boundary displacement§
are prescribed dn,

Figure 14.5. Displacement and force (stress, traction) boundary
conditions for the plane stress problem.

The compact matrix version of (14.5) is

e=Du, o = Ee, D'o+b=0, (14.6)

in whichE = E'.

If the plate material is isotropic with elastic modulksand Poisson’s ratio, the moduli in the
constitutive matrixE reduce toEy; = Ex = E/(1 —v?), Egs = 3E/(1+v) = G, Ero = vEy
andE;3 = E,3 = 0. See also Exercise 14.1.

814.3.2. Boundary Conditions

Boundary conditions prescribed dhmay be of two types: displacement BC or force BC (also
called stress BC or traction BC). To write down those conditions it is conceptually convenient to
break ud" into two subsetsI', andI';, over which displacements and force or stresses, respectively,
are specified. See Figure 14.5.

Displacement boundary conditions are prescribed om the form

(147)

Herel are prescribed displacements. Oftea: 0. This happens in fixed portions of the boundary,
as the ones illustrated in Figure 14.5.

Force boundary conditions (also called stress BCs and traction BCs in the literature) are specified
onT. They take the form

on = {. (14.8)

Heret are prescribed surface tractions specified as a force per unit area (that is, not integrated
through the thickness), ant}, is the stress vector shown in Figure 14.5.
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14-9 814.3 LINEAR ELASTICITY EQUATIONS

An alternative form of (14.8) uses the internal plate forces:

P, = 4. (14.9)

Herep, = os,h and§ = th. This form is used more often than (14.8) in structural design,
particularly when the plate wall construction is nonhomogeneous.

The components af, in Cartesian coordinates follow from Cauchy’s stress transformation formula

OxxNy + oxyNn ny, 0 n Txx
o= | XX TIXVY X ' oy |, (14.10
oxyNx + ayyNy 0 ny ny

ny

in which ny andn, denote the Cartesian components of the unit normal vectb(also called
the direction cosines of the normal). Thus (14.8) splits into two scalar conditfprs: o, and
f, = ony.

It is sometimes convenient to write the condition (14.8) in terms of nommahd tangentiat

directions:
onn = tn, ont = f (14.11)

In WhICh Unn = Unxnx + Onyny anddm = _Unxny + Unynx.

REMARK 14.3

The separation of into I'y, andTY is useful for conciseness in the mathematical formulation, such as the
energy integrals presented below. It does not exhaust, however, all BC possibilities. Frequently at points of
one specifies a displacement in one direction and a force (or stress) in the other. An example of these are roller
and sliding conditions as well as lines of symmetry and antisymmetry. To cover these situations one needs
either a generalization of the split, in whi¢ty andT'; are permitted to overlap, or to define another portion

I'm for “mixed” conditions. Such generalizations will not be presented here, as they become unimportant once
the FE discretization is done.

§14.3.3. Weak Formsversus Strong Form

We introduce now some further terminology from variational calculus. The Tonti diagram of Figure
14.4 is said to display the Strong Form of the governing equations because all relations are verified
point by point. These relations, callsttong links are shown in the diagram with black lines.

A Weak Form is obtained byelaxingone or more strong links. Those are replaceaviegk links

which enforce relations in an average or integral sense rather than point by point. The weak links
are then provided by the variational formulation chosen for the problem. Because in general many
variational forms of the same problem are possible, there are many possible Weak Forms. On the
other hand the Strong Form is unique.

The Weak Form associated with the Total Potential Energy (TPE) variational form is illustrated

in Figure 14.6. The internal equilibrium equations and stress BC become weak links, which are
indicated by gray lines. These equations are given by the variational stat&ren0, where the

TPE functionalll is given in the next subsection. The FEM displacement formulation discussed

below is based on this particular Weak Form.
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Displacement BC

0 onl, u b
| S

(2]

Kinematic | e=Du Equilibrium 6!'I= 0
inoQ in Q
Constitutive ForceBC _
Strains o=Ee Stresses on=0 Prescribed
tractionst
= inQ Y onl, or forcesy

Figure 14.6. The TPE-based Weak Form of the plane stress equations of
linear elastostatics. Weak links are marked with grey lines.

814.3.4. Total Potential Energy

As usual the Total Potential Energy functional for the plane stress problem is given by

| OI=U-W. | (14.12)

The internal energy is the elastic strain energy:

U= %f holedQ = %f he'Eedg. (1413
Q Q

The derivation details are relegated to Exercise E14.5. The external energy is the sum of contribu-
tions from known interior and boundary forces:

W:f hudeS2+/ hu'tdr. (14.14)
Q I

Note that the boundary integral ovEris taken only overl;. That is, the portion of the boundary
over which tractions or forces are specified.

814.4. FINITE ELEMENT EQUATIONS

The necessary equations to apply the finite element method are collected here and expressed in
matrix form. The domain of Figure 14.7(a) is discretized by a finite element mesh as illustrated in
Figure 14.7(b). From this mesh we extract a generic element la®ledth n > 3 node points. In

the subsequent derivation the numhes keptarbitrary. Therefore, the formulation is applicable

to arbitrary two-dimensional elements, for example those sketched in Figure 14.8.
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Figure 14.7. Finite element discretization and extraction of generic element.

Departing from previous practice in 1D elements, the element node points will be labelled 1 through
n. These are calletbcal node numbersThe element domain and boundary are denotet {5y
andI'®, respectively. The element has @egrees of freedom. These are collected in the element
node displacement vector

U(e) = [qu Uyl Uy ... Uyxn Uyn]T . (1415)

814.4.1. Displacement Interpolation

The displacement field® (x, y) over the element is interpolated from the node displacements. We
shall assume that the same interpolation functions are used for both displacement components.
Thus

n n

U Y) = Y NP Y U, Uy y) =Y N X y)uy, (14.16)

=1 i=1

WhereNi(e) (X, y) are the element shape functions. In matrix form:

© ©
Ux (X, y)} _ [Nl 0 N; 0O ... N® 0 ]u(e) _ NOY©

u(x’y):{uy(x,y) 0 N® 0 NP ... 0 N®

(14.17)
The minimum conditions oi.® (x, y) is that it must take the value one at iffenode and zero at
all others, so that the interpolation (14.17) is correct at the nodes. Additional requirements on the
shape functions are stated in later Chapters.

Differentiating the finite element displacement field yields the strain-displacement relations:

L INL® NG -
X B X 0 8Q 0
(® G ©
ex,y)=| 0 32'31/ 0 agf, 0 82'9 u® —Bu®. (1418
aNg® AN ANy 9NS® AN IN©
L dy X ay X T ay ax -

3 This is the so calleélement isotropgondition, which is studied and justified in advanced FEM courses.
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n=3 n=4 n==6

Figure 14.8. Example two-dimensional finite elements,
characterized by their number of nodes

The strain-displacement matri& = DN® is 3 x 2n. The superscripte) is omitted from it to
reduce clutter. The stresses are given in terms of strains and displacements By = EBu®,
which is assumed to hold at all points of the element.

§14.4.2. Element Energy

To obtain finite element stiffness equations, the variation of the TPE functional is decomposed into
contributions from individual elements:

STI® =sU® — sW® = Q. (14.19)
where
ue® =1 hoTedQ® = 3 / he'EedQ® (14.20)
Qe Q®©
and
W®e — hu'bdQ® + hu' tdr® (14.21)
Q®© re

Note that in (14.21}‘t(e) has been taken equal to the complete bound@&?yof the element. This

is a consequence of the fact that displacement boundary conditions are affdressembly, to

a free-free structure. Consequently it does not harm to assume that all boundary conditions are of
stress type insofar as forming the element equations.

814.4.3. Element Stiffness Equations

Inserting the relations = Nu®, e = Bu® ando = Ee into I1® yields the quadratic form in the
nodal displacements

ne — %u<e)TK<e>u<e> _u®@T§@, (14.22)

where the element stiffness matrix is

K® — hBTEBdQ®@, (14.23)

Q@©
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and the consistent element nodal force vector is

f© :/ hNdeQ(e)+f hNTtdr®. (14.24
Q© re

In the second integral the matikis evaluated on the element boundary only.

The calculation of the entries &© andf® for several elements of historical or practical interest
is described in subsequent Chapters.
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Homework Exercisesfor Chapter 14
The Plane Stress Problem

EXERCISE 14.1

[A:25] Suppose that the structural material is isotropic, with elastic modalaad Poisson’s ratio. The
in-plane stress-strain relations for plane stress € oy, = oy, = 0) and plane straire{, = e, = e,, = 0)
as given in any textbook on elasticity, are

" oyy ] E 1 v 0 €x
plane stress: | oy, | = v 1 0 ey |,
1-2 1—v
L axy a O O 2 2eXy
o 1 0 (E14.1)
plane strain: o _EA-w v Ty ’ 0 gxx
. Oyy | = 1—v vy |-
1+v)1-2v) 1_2
0 d—czv 2e
L Oxy 0 0 2(I=v) Xy

Show that the constitutive matrix of plane strain can be formally obtained by replé&cimg a fictitious
modulusE* andv by a fictitious Poisson’s ratio* in the plane stress constitutive matrix and suppressing the
stars. Find the expression Bf andv* in terms ofE andv. This device permits “reusing” a plane stress FEM
program to do plane strain, as long as the material is isotropic.

EXERCISE 14.2

[A:25] In the finite element formulation of near incompressible isotropic materials (as well as plasticity
and viscoelasticity) it is convenient to use the so-calladé constants. and i instead ofE andv in the
constitutive equations. Bothandu have the physical dimension of stress and are relat&daondv by

vE E
Q+na—2n * 2(1+ v) (E142)
Conversely
e D S S (E143)
A+ 200 + 1)

Substitute (E14.3) into (E14.1) to express the two stress-strain matrices in teknadfc. Then split the
stress-strain matrik of plane strain as

E=E, +E, (E14.4)

in which E,, andE; contain only anda, respectively, wittE,, diagonal anckE; 33 = 0. This is the Lara’or
{1, u} splitting of the plane strain constitutive equations, which leads to the so-@&dbad formulation of
near-incompressible finite elemefAtExpressE, andE, also in terms o andv.

For the plane stress case perform a similar splitting in which wgmntains onlyn = 2iu/ (A + 2u) with
Eiss = 0, andE, is a diagonal matrix function qf andx.> ExpressE, andE; also in terms o andv.

4 Equation (E14.4) is sometimes referred to as the deviatoric+volumetric splitting of the stress-strain law, on account of
its physical meaning in plane strain. That meaning is lost, however, for plane stress.

5 For the physical significance af see . Sokolnikoff, The Mathematical Theory of ElasticjtcGraw-Hill, 2nd ed.,
1956, p. 254ff.
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14-15 Exercises

. tyA / n(n, =dy/ds, § =dx/ds)
Oxx
T—>X h’o tx
J Y dx:

~=]
Voyy

Figure E14.1. Geometry for deriving (14.10).

EXERCISE 14.3

[A:20] Derive the Cauchy stress-to-traction equations (14.10) using force equilibrium>akmdyy and the
geometric relations shown in Figure E14.1. Higtds = oy, dy + o,y dX, etc.

EXERCISE 14.4

[A:15] Include thermoelastic effects in the plane stress field equations, assuming a thermally isotropic material
with coefficient of linear expansiam.

EXERCISE 14.5

[A:25=5+5+15] A plate is in linearly elastic plane stress. It is shown in courses in elasticity that the internal
strain energy density stored per unit volume is

U= %(Uxxexx + oyyeyy + oxyEy + nyeyx) = %(Uxxexx + oyyeyy + 20'xyexy)- (E14.5)

(@) Show that (E14.5) can be written in terms of strains only as
U= %eTE e, (E14.6)

and hence justify (14.13).
(b) Show that (E14.5) can be written in terms of stresses only as

U=1s"Co, (E147)

whereC = E~ is the elastic compliance (strain-stress) matrix.

(c) Suppose you want to write (E14.5) in terms of the extensional stfainsey,} and of the shear stress
oyxy = Oyx. Thisis known as a mixed representation. Show that

(5% T All A12 A13 € x
U=3| ey A A A || ey |, (E148)
_A13 _A23 A33

Oxy Oxy

and explain how the entrie&; can be calculatédn terms of the elastic modul;; .

6 The process of computing is an instance of “partial inversion” of matri. See Remark 11.3.
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